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Preface 

The Geometrization Program of Thurston has been the driving force for re­
search in 3-manifold topology in the last 25 years. This has inspired a surge 
of activity investigating hyperbolic 3-manifolds (and Kleinian groups), as 
these manifolds form the largest and least well-understood dass of compact 
3-manifolds. Familiar and new tools from diverse areas of mathematics have 
been utilised in these investigations - from topology, geometry, analysis, 
group theory and, from the point of view of this book, algebra and number 
theory. The important observation in this context is that Mostow Rigidity 
implies that the matrix entries of the elements of 8L(2, C), representing 
a finite-covolume Kleinian group, can be taken to lie in a field which is a 
finite extension of Q. This has led to the use of tools from algebraic number 
theory in the study of Kleinian groups of finite covolume and thus of hyper­
bolic 3-manifolds of finite volume. A particular subdass of finite-covolume 
Kleinian groups for wh ich the number-theoretic connections are strongest 
is the dass of arithmetic Kleinian groups. These groups are particularly 
amenable to exhibiting the interplay between the geometry, on the one 
hand and the number theory, on the other. 

This book is designed to introduce the reader, who has begun the study of 
hyperbolic 3-manifolds or Kleinian groups, to these interesting connections 
with number theory and the tools that will be required to pursue them. 
There are a number of texts which cover the topologie al , geometrie and 
analytical aspects of hyperbolic 3-manifolds. This book is constructed to 
cover arithmetic aspects which have not been discussed in other texts. A 
central theme is the study and determination of the invariant number field 
and the invariant quaternion algebra associated to a Kleinian group of 
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finite covolume, these arithmetic objects being invariant with respect to 
the commensurability dass of the group. We should point out that this 
book does not investigate some dassical arithmetic objects associated to 
Kleinian groups via the SeI berg Trace Formula. Indeed, we would suggest 
that, if prospective readers are unsure whether they wish to follow the 
road down which this book leads, they should dip into Chapters 4 and 5 
to see what is revealed about examples and problems with which they are 
already familiar. Thus this book is written for an audience already familiar 
with the basic aspects of hyperbolic 3-manifolds and Kleinian groups, to 
expand their repertoire to arithmetic applications in this field. By suitable 
selection, it can also be used as an introduction to arithmetic Kleinian 
groups, even, indeed, to arithmetic Fuchsian groups. 

We now provide a guide to the content and intent of the chapters and 
their interconnection, for the reader, teacher or student who may wish to 
be selective in choosing a route through this book. As the numbering is in­
tended to indicate, Chapter 0 is a reference chapter containing terminology 
and background information on algebraic number theory. Many readers can 
bypass this chapter on first reading, especially if they are familiar with the 
basic concepts of algebraic number theory. Chapter 1, in essence, defines the 
target audience as those who have, at least, a passing familiarity with some 
of the topics in this chapter. In Chapters 2 to 5, the structure, construction 
and applications of the invariant number field and invariant quaternion al­
gebra associated to any finite-covolume Kleinian group are developed. The 
algebraic structure of quaternion algebras is given in Chapter 2 and this is 
furt her expanded in Chapters 6 and 7, where, in particular, the arithmetic 
structure of quaternion algebras is set out. Chapter 3 gives the tools and 
formulas to determine, from a given Kleinian group, its associated invariant 
number field and quaternion algebra. This is then put to effect in Chapter 
4 in many examples and utilised in Chapter 5 to investigate the geometrie 
ramifications of determining these invariants. 

From Chapter 6 onward, the emphasis is on developing the theory of 
arithmetic Kleinian groups, concentrating on those aspects which have geo­
metrie applications to hyperbolic 3-manifolds and 3-orbifolds. Our defini­
tion of arithmetic Kleinian groups, and arithmetic Fuchsian groups, given 
in Chapter 8, proceeds via quaternion algebras and so naturally progresses 
from the earlier chapters. The geometrie applications follow in Chapters 9, 
11 and 12. In particular, important aspects such as the development of the 
volume formula and the determination of maximal groups in a commen­
surability dass form the focus of Chapter 11 building on the ground work 
in Chapters 6 and 7. 

Using quaternion algebras to define arithmetic Kleinian groups facilitates 
the flow of ideas between the number theory, on the one hand and the 
geometry, on the other. This interplay is one of the special beauties of 
the subject which we have taken every opportunity to emphasise. There 
are other, equally meritorious approaches to arithmetic Kleinian groups, 
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particulary via quadratic forms. These are discussed in Chapter 10, where 
we also show how these arithmetic Kleinian groups fit into the wider realm 
of general discrete arithmetic subgroups of Lie groups. 

Some readers may wish to use this book as an introduction to arithmetic 
Kleinian groups. A short course covering the general theory of quaternion 
algebras over number fields, suitable for such an introduction to either 
arithmetic Kleinian groups or arithmetic Fuchsian groups, is essentially self­
contained in Chapters 2, 6 and 7. The construction of arithmetic Kleinian 
groups from quaternion algebras is given in the first part of Chapter 8 and 
the main consequences of this construction appear in Chapter 11. However, 
if the reader wishes to investigate the role played by arithmetic Kleinian 
groups in the general framework of all Kleinian groups, then he or she must 
further assimiliate the material in Chapter 3, such examples in Chapter 4 
as interest them, the remainder of Chapter 8, Chapter 9 and as much of 
Chapter 12 as they wish. 

For those in the field of hyperbolic 3-manifolds and 3-orbifolds, we have 
endeavoured to make the exposition here as self-contained as possible, given 
the constraints on some familiarity with basic aspects of algebraic number 
theory, as mentioned earlier. There are, however, certain specific exceptions 
to this, which, we believe, were unavoidable in the interests of keeping the 
size of this treatise within reasonable bounds. Two of these are involved in 
steps which are critical to the general development of ideas. First, we state 
without proof in Chapter 0, the Hasse-Minkowski Theorem on quadratic 
forms and use that in Chapter 2 to prove part of the classification theorem 
for quaternion algebras over a number field. Second, we do not give the full 
proof in Chapter 7 that the Tamagawa number of the quotient A~/Al is 
1, although we do develop all of the surrounding theory. This Tamagawa 
number is used in Chapter 11 to obtain volume formulas for arithmetic 
Kleinian groups and arithmetic Fuchsian groups. We should also mention 
that the important theorem of Margulis, whereby the arithmeticity and 
non-arithmeticity in Kleinian groups can be detected by the denseness or 
discreteness of the commensurator, is discussed, but not proved, in Chapter 
10. However, this result is not used critically in the sequel. Also, on a 
small number of occasions in later chapters, specialised results on algebraic 
number theory are employed to obtain specific applications. 

Many of the arithmetic methods discussed in this book are now available 
in the computer program Snap. Once readers have come to terms with 
some of these methods, we strongly encourage them to experiment with this 
wonderful program to develop a feel for the interaction between hyperbolic 
3-manifolds and number theory. 

Finally, we should comment on our method of referencing. We have 
avoided "on the spot" references and have placed all references in a given 
chapter in the Further Reading section appearing at the end of each chapter. 
We should also remark that these Further Reading sections are intended to 
be just that, and are, by no means, designed to give a historical account of 
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the evolution of ideas in the chapter. Thus regrettably, some papers crit­
ical to the development of certain topics may have been omitted while, 
perhaps, later refinements and expository articles or books, are included. 
No offence or prejudice is intended by any such omissions, which are surely 
the result of shortcomings on the authors' part possibly due to the some­
what unsystematic way by which they themselves became acquainted with 
the material contained here. 

We owe a great deal to many colleagues and friends who have contrib­
uted to our understanding of the subject matter contained in these pages. 
These contributions have ranged through inspiring lectures, enlightening 
conversations, helpful collaborations, ongoing encouragement and critical 
feedback to a number of lecture courses wh ich the authors have separately 
given on parts of this material. We especially wish to thank Ted Chin­
burg, Eduardo Friedman, Kerry Jones, Darren Long, Murray Macbeath, 
Gaven Martin, Walter Neumann and Gerhard Rosenberger. We also wish 
to thank Fred Gehring, who additionally encouraged us to write this text, 
and Oliver Goodman for supplying Snap Data which is included in the 
appendix. Finally, we owe a particular debt of gratitude to two people: 
Dorothy Maclachlan and Edmara Cavalcanti Reid. Dorothy has been an 
essential member of the backroom staff, with endless patience and support 
over the years. More recently, Edmara's patience and support has been 
important in the completion of the book. 

In addition to collaborating, and working individually, at our horne insti­
tutions of Aberdeen University and the University of Texas at Austin, work 
on the text has benefited from periods spent at the University of Auckland 
and the Instituto de Maternatica Pura e Aplicada, Rio de Janiero. Fur­
thermore, we are grateful to a number of sources for financial support over 
the years (and this book has been several years in preparation) - Engin­
eering and Physical Sciences Research Council (UK), Marsden Fund (NZ), 
National Science Foundation (US), Royal Society (UK), Sloan Foundation 
(US) and the Texas Advanced Research Program. The patient support 
provided by the staff at Springer-Verlag has also been much appreciated. 

Aberdeen, UK 
Austin, Texas, USA 

Colin Maclachlan 
Alan W. Reid 
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o 
Number-Theoretic Menagerie 

This chapter gathers together number-theoretic concepts and results which 
will be used at various stages throughout the book. There are few proofs 
in this chapter and it should be regarded as a synopsis of some of the main 
results in algebraic number theory, the proofs and details of which can be 
found in one of the many excellent texts on algebraic number theory. Being 
labelled Chapter 0, the implication is that this is a reference section, and 
key results given in this chapter will be referred back to subsequently as 
required in the book. It is certainly not necessary for the reader to absorb 
all the material here before proceeding furt her. The basic ideas in Sections 
0.1,0.2 and 0.3 will arise frequently in the succeeding chapters. However, 
until Chapter 6, only these basic ideas together with, in a couple of sections, 
so me ideas from Sections 0.6,0.7 and 0.9 are required to understand the 
proofs and examples. Thus we suggest that the readers with a passing 
familiarity with basic not ions in algebraic number theory should return 
to this chapter only when they encounter a concept with which they are 
unfamiliar. 

We assume that the reader is familiar with standard results on field 
extensions and Galois theory. At the end of each section of this chapter, 
we give some guidance to proofs of results contained in that section. These 
results are all weIl established, so there are many possible sources which 
could be referenced. For the reader's convenience, and for this chapter only, 
references are given at the end of each section. We have endeavoured to 
make our choice of references as accessible as possible to the non-expert, 
but it is simply our choice, and the interested reader may weIl want to seek 
furt her advice in chasing down the details of these proofs. 



2 O. Number-Theoretic Menagerie 

Sinee we are to establish these number fields as invariants of Kleinian 
groups, we initially plaee some emphasis on diseussing the invariants of the 
number fields themselves - in partieular, their diseriminants. 

0.1 Number Fields and Field Extensions 

The invariant fields whieh form the main topic of this book are defined to 
be extensions of the rationals Q, generated by elements ti E C, i running 
through some index set n. Thus 

is the smallest subfield of C eontaining {ti : i E n}. The set n is usually 
finite and the elements ti are frequently algebraic so that they satisfy poly­
nomials with rational eoefficients. If both these eonditions hold, then k is 
a finite extension of Q (i.e., a number field:) . Beeause Q has eharaeteristic 
0, k is a simple extension k = Q(t) where t satisfies a monie irreducible 
polynomial f(x) E Q[x], the minimum polynomial of t, where the degree 
of f is the degree of the extension [k : Q] = d .. 

The roots of the minimum polynomial of t are ealled the conjugates of t. 
If they are denoted t = tl, t2, ... , td, then the assignment t ~ ti induees a 
field isomorphism Q(t) ~ Q(ti)' Conversely, if a : k = Q(t) ~ C is a field 
monomorphism, then a(t) is a root of the minimum polynomial of t. There 
are thus, exaetly d field (or Galois) monomorphisms a : k ~ C. These will 
usually be denoted al, a2,··. , ad. 

Sinee f has its eoefficients in Q, the roots ti will either be real or fall into 
eomplex eonjugate pairs. Thus the monomorphisms ai will be designated as 
real if ai(k) C IR. Otherwise, they oeeur in eomplex eonjugate pairs (ai, ö'i) 
where ai(k) r:t IR. If we let rl denote the number of real monomorphisms 
and r2 the number of eomplex eonjugate pairs, then 

We say that k has rl real places and r2 complex places. Furthermore, we 
refer to k as being totally real if r2 = O. 

Examples 0.1.1 

1. For quadratic extensions k = Q( v'd) where d is a square-free integer, 
the parameters (rl, r2) distinguish between the eases where d is positive 
with (rl,r2) = (2,0) and dis negative with (rl,r2) = (0,1). 

2. If k = Q(t) where t satisfies the polynomial x3 + x + 1 = 0, then this 
irreducible polynomial has one real root only. Thus k has one real and 
one eomplex plaee. 
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3. If t = y'(3 - 2V5), t satisfies x 4 - 6x2 -11 = 0, which has roots ±y'(3 ± 
2V5). Thus k = Q(t) has two real places and one complex place. 

4. If k = Q(e21l"i/n) is a cyclotomic extension, then the roots ofthe minimum 
polynomial are all primitive nth roots of unity. Thus for n > 2, this field 
has no real places and </J( n) /2 complex places, where </J is Euler's function. 

5. In a similar way, the real subfield Q(cos21f/n) of the cyclotomic field is 
totally real. 

If a E k, then the norm and trace of aare defined by 

In the case where a = t and k = Q(t), these are the product and sum, 
respectively, of the conjugates of t. As such, they are, up to a sign, the 
constant and leading coefficients of the minimum polynomial and so lie 
in Q. 

If K denotes a Galois closure of the extension k I Q, then K can be taken 
to be the compositum of the fields ai(k), i = 1,2, ... ,d. For each a in the 
Galois group, Gal(K I Q), the set {aad is apermutation of the set {ad. 
Thus for each a E k, NkIQ(a), TrkIQ(a) are fixed by each such a and so lie 
in the fixed field of Gal(K I Q) [i.e., NkIQ(a) and TrkIQ(a) lie in Q]. 

If [k : Q] = d, let {al, a2,· .. ,ad} be any set of elements in k. If 

with Xi E Q, then for each monomorphism ai, 

Thus one readily deduces that the set {al, a2, ... ,ad} is a basis of k I Q 
if and only if det[ai(aj)] =1= o. 

The element 0 = det[ai(aj)] lies in K and for a E Gal(K I Q), a(O) is 
the determinant of a matrix obtained from [ai(aj)] by apermutation of 
the rows. Thus a(o) = ±o. 

Definition 0.1.2 1f {al, a2,··. ,ad} is a basis of the field k I Q, then the 
discriminant of {al, a2,· .. ,ad} is defined by 

(0.1) 

Alternatively, the discriminant of a basis can be defined as 
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Note that discr{ al, a2, ... , ad} is invariant under each (J E Gal(K I <Q) 
and so lies in its fixed field (i.e., in <Q). Thus 

If {ßl, ß2, . .. , ßd} is another basis of k I <Q then 

discr{ßb ß2, ... , ßd} = (detX)2discr{ ab a2, ... , ad} (0.2) 

where X is the non-singular change of basis matrix. If k = <Q( t), then 

discr{l, t, ... , td - 1 } = det[t{J2 (0.3) 

where, as before, t = tl, t2, ... ,td are the roots ofthe minimum polynomial 
of t. The calculation of the Vandermonde determinant at (0.3) gives 

discr{l, t, ... ,td- 1} = II (ti - tj)2. 
l:5i<j:5d 

(0.4) 

This discriminant is asymmetrie homogeneous polynomial in the roots and 
as such, can be expressed in terms of the elementary symmetrie homogen­
eous polynomials of degrees up to d in the roots. However, these elementary 
polynomials are just the coefficients of the minimum polynomial of t. Thus 
the discriminant at (0.4) ean be computed directly from the coefficients of 
the minimum polynomial. More generally, for any polynomial f of degree 
d with roots tl, t2, ... ,td, define 

discr(f) = II (ti - tj)2. 
l:5i<j:5d 

(0.5) 

The value of this discriminant can be calculated direct1y from the polyno­
mial as is shown in Exercise 0.1, No. 6. 

The above deseription refers to the discriminants of bases of extensions 
k I <Q, but can be extended to any finite extension of number fields f I k. 
Thus let {(Ji : f -+ C I i = 1,2, ... , d} run through the Galois embeddings 
such that (Ji I k = Id, and let {al, a2, ... ,ad} be any basis of f I k. Then 

(0.6) 

These (relative) discriminants are related to the (absolute) discriminants 
over<Q as follows: Let ßl, ß2, ... , ße be a basis of k I <Q so that {ßiaj : 1 :::; 
i :::; e, 1 :::; j :::; d} is a basis of f I <Q. Then 

discrlIQ{ßiaj} = (discrkIQ{ßd)dNkIQ(discreldaj}). (0.7) 

This can be seen as follows: With (Ji as defined above, let Tj denote the 
Galois embeddings of k I <Q. Let K be the normal closure in C of k I <Q and 
L the normal closure of f I <Q, so that K c L. Now each (Ji extends to an 
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automorphism, denoted ai, of Gal( L I QI). Furthermore, choose fJ E Gal( L I 
QI) such that Tj Ik = Tj, j = 1,2, ... ,e. Then the elements {Tiaj, 1 S i S 
e,l S j S d} restricted to C give aU the Galois embeddings of C I QI. Thus 

discrpl<QI{ßiCtj} = det[Ti a j(ßm Ctn)]2. 

Evaluating this determinant, we get 

e 

det[Ti(ßm)(Ti(aj(Ctn )))] = det[Ti(ßm)]d rr Tidet[aj(Ctn )] 
i=l 

and (0.7) foUows from this. 

For a discussion of conjugates and discriminants, see Chapter 2 of Stewart 
and TaU (1987) or Chapter 2 of Ribenboim (1972) 

Exercise 0.1 

1. Let K be a number field which is a Galois extension ofQl. Show that K 
is either totally real or has no real places. 

2. Let K be a field with exactly one complex place. Show that every proper 
subfield of K is totally real. 

3. Let K be a field of degree 4 over QI of the form K = QI( Ja) where Ct 
satisfies x 2 - tx - m = 0, where t, mEZ and t 2 + 4m > O. Determine the 
number of real and complex places of K. 

4. Let K be a number field and L a finite extension of K. Define the norm 
NLIK and trace TrL1K . Show that 

NLI<QI = NKI<QI 0 NLIK. 

5. Evaluate the Vandermonde determinant at (0.3) to obtain the formula 
at (0.4): that is, if Xl, X2, ... ,Xn are n independent variables and X is the 
n x n matrix [xi], 1 Si sn, 0 S j S n - 1, then detX = TIi<j(Xj - Xi). 

6. This exercise shows how to compute the discriminant of a polynomial 
directly from its coefficients. 
(a) Let Xl, X2, ... ,Xn be indeterminates and let Si denote the i th elementary 
symmetrie polynomial in Xl, X2, ... ,Xn for 1 Si S n. Thus 

Si = L xm,xm2 ·· ·xmi · 
l-O:m, <m2<··-<mi-O:n 

Let Po = n and Pk = x~ + x~ + ... + x~ for k 2: 1. Show that the Pk can be 
computed systematically from the Si as follows: 

(i) If k S n, then 

Pk - Pk-ISI + Pk-2S2 - ... + (_1)k-IpISk_1 + (-l)kksk = O. 



6 o. Number-Theoretic Menagerie 

(ii) If k > n, then 

(b) Let f(x) = xn +aIxn- 1 +a2Xn-2 + ... +an so that ai is (-1)i times Si, 
the ith elementary symmetrie polynomial evaluated at the roots of f. Prove 
that 

PI 

P2 
I 
I 

discr(f) = det ( T 
Pn-I Pn 

pn-I) Pn 

p,L, 
where the Pi are evaluated at the roots of the polynomial. 

7. (a) Find the diseriminant of x 4 - 2x3 + X - 1. 
(b) Let a satisfy x 2 - x + (-1 + J5)/2 = O. Taking the bases {1,a} of 
Q(a) I Q( J5) and {l, (1 + J5)/2} of Q( J5) I Q, use (0.7) to determine 
the diseriminant of the basis {1, a, (1 + J5)/2, a(1 + J5)/2}. Compare with 
(a). 

8. Let K = Q( t) and let f be the minimum polynomial of t (of degree n). 
Show that 

discr{1,t,t2 , ... ,tn-I} = (-1)n(n-I)/2NK IIQi(Df(t)) (0.8) 

where D f is the formal derivative of f. 

9. (a) Let ~ = e27ri/pk, where P is an odd prime. Show that 

(b) Let p = 2cos(27f/pk), where pis an odd prime. Show that 

discr{1, p, p2, ... ,p<p(pk)/2-1} = ppk-l[k(p-I)-IJ-I. (0.10) 

0.2 Algebraic Integers 

To carry the study of number fields farther, the field-theoretic concepts of 
the preceding section are insufficient and the arithmetic nature of these 
fields must be examined. In this section, the role of algebraic integers is 
introduced. 

Definition 0.2.1 An element a E C is an algebraie integer if it satisfies 
a monie polynomial with eoeffieients in Z. 
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From Gauss' Lemma (see Exercise 0.2, No. 1), the minimum polynomial of 
an algebraic integer will have its coefficients in Z. Also, an element 0: E C 
will be an algebraic integer if and only if the ring Z[o:] is a finitely generated 
abelian group. Using this, it follows that the set of all algebraic integers is 
a subring of C. 

Notation Let k be a number field. The set of algebraic integers in k will 
be denoted by Rk. 

Theorem 0.2.2 The set Rk is a ring. 

In the next section, the ideal structure of these rings will be discussed. 
For the moment, only the elementary structure will be considered. 

To distinguish elements of Z among all algebraic integers, they may be 
referred to as rational integers. 

An algebraic integer is integral over Z in the following more general sense. 

Definition 0.2.3 

• Let R be a subring 0/ the eommutative ring A. Then 0: E A is integral 
over R i/ it satisfies a monie polynomial with eoeffieients in R. 

• The set 0/ all elements 0/ A whieh are integral over R is ealled the 
integral closure 0/ R in A. 

Thus Rk is the integral closure of Z in k. If 0: E C satisfies a monie poly­
nomial whose coefficients are algebraic integers O:b 0:2, •.• ,O:n, then Z[o:] 
is a finitely generated module over the ring Z[O:b 0:2, ••• ,O:n]' which is a 
finitely generated abelian group. Thus Z[o:] is a finitely generated abelian 
group and so 0: is an algebraic integer. Thus if C I k is a finite extension, 
then Rl is also the integral closure of Rk in C. This also shows that Rk is 
integrally closed in k; that is, if 0: E k is integral over Rk, then 0: E Rk. 

Let k be a number field and let 0: E k have minimum polynomial / of 
degree n. If N is the least common multiple of the denominators of the 
coefficients of /, then No: is an algebraic integer. Thus the field k can be 
recovered from Rk as the field of fractions of Rk. Since every number field 
k is a simple extension Ql(o:) of Ql, it also follows that 0: can be chosen to 
be an algebraie integer. Thus the free abelian group Rk has rank at least 
n. 

Definition 0.2.4 A Z-basis /or the abelian group Rk is ealled an integral 
basis 0/ k. 

Theorem 0.2.5 Every number field has an integral basis. 

If 0: is an algebraic integer such that k = Ql(o:), then we have seen that 
Z[o:] c Rk. If <5 is the discriminant of the basis {I, 0:, 0:2 , ... ,o:n-l}, then 
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it can be shown that Rk C iZ[a] (see Exercise 0.2, No. 4), so that Rk has 
rank exactly n. 

Not every number field has an integral basis which has the simple form 
{I, a, a 2 , ..• ,an - 1 }. Such a basis is termed a power basis. (See Examples 
0.3.11, No. 3 and Exercise 0.2, No. 11). In general, finding an integral basis 
is a tricky problem. 

The discriminant of an integral basis is an algebraic integer which also 
lies in Q, and hence its discriminant lies in Z. For two integral bases of 
a number field k, the change of bases matrix, and its inverse, will have 
rational integer entries and, hence, determinant ±1. Thus by (0.2), any 
two integral bases of k will have the same discriminant. 

Definition 0.2.6 The discriminant of a number field k, written ßk, is the 
discriminant of any integral basis of k. 

Recall that the discriminant is defined in terms of all Galois embeddings 
of k, so that the discriminant of a number field is an invariant of the 
isomorphism dass of k. 

Examples 0.2.7 

1. The quadratic number fields k = Q( Yd), where d is a square-free integer, 
positive or negative, have integral bases {I, a}, where a = Yd if d i=­
I(mod 4) and a = (1 + Yd)/2 if d == I(mod 4). Thus ßk = 4d if 
d i=- I(mod 4) and ßk = d if d == I(mod 4). 

2. For the cydotomic number fields k = Q(~) where ~ is a primitive pth 
root of unity for some odd prime p, it can be shown with some effort 
that I,~,e, ... ,~p-2 is an integral basis. Hence, ßk = (_I)(p-l)/2pp-2 
(see Exercise 0.1, No. 9). 

The discriminant is a strang invariant as the following important theorem 
shows. 

Theorem 0.2.8 For any positive integer D, there are only finitely many 
fields with I ßk I :::; D. 

This theorem can be deduced from Minkowski's theorem in the geometry 
of numbers on the existence of lattice points in convex bodies in jRn whose 
volume is large enough relative to a fundamental region for the lattice. 

Considerable effort has gone into determining fields of small discrimin­
ant and much data is available on these. There do exist non-isomorphie 
fields with the same discriminant, but they are rather thinly spread. (See 
Examples 0.2.11). Thus in pinning down a number field, it is frequently 
sufficient to determine its degree over Q, the number of real and complex 
places and its discriminant. 
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One of our first priorities is to be able to compute the discriminant. Recall 
that the discriminant of a polynomial, and, hence, of a basis of the form 
{I, t, t 2 , ... ,td - 1 } can be determined systematically (see Exercise 0.1, No. 
6). Note also, that if {al, a2, ... ,ad} is a basis of k consisting of algebraic 
integers, then 

(0.11) 

where mEZ by (0.2). Thus if the discriminant of a basis consisting of 
algebraic integers is square-free, then that basis will be an integral basis 
and that discriminant will be the field discriminant. 

We mayaIso use relative discriminants to assist in the computation. In 
general, for a field extension I: I k, there may not be a relative integral basis, 
since Rk need not be a principal ideal domain and Re is not necessarily a 
free Rk-module. 

Definition 0.2.9 The relative discriminant Oelk 0] a finite extension 0] 
number fields I: I k is the ideal in Rk generated by the set 0] elements 
{ discr{ a1, a2, ... ,ad}} where {al, a2, ... ,ad} runs through the bases 0] I: I 
k consisting 0] algebraic integers. 

The following theorem then connects the discriminants (cf. (0.7)). 

Theorem 0.2.10 Let I: I k be a finite extension 0] number fields, with 
[I:: k] = d. 

(0.12) 

In this formula, N(I) is the norm of the ideal I, which is the cardinality of 
the ring Rk/ I. As we shall see in the next section, this is finite. 

Examples 0.2.11 

1. Let k = Ql(t), where t satisfies the polynomial x 3 +x+1. This polynomial 
has discriminant -31. Thus this is the field discriminant and {I, t, t 2 } is 
an integral basis. 

2. Consider again the example I: = Ql(t), where t = v!(3 - 2V5). From 
(004) the discriminant of the basis {I, t, t2 , t3 } is 1,126,400. However, 
u = (1 + t)/2 satisfies x 2 - x + (-1 + V5)/2 = 0 and so is an algebraic 
integer. The discriminant of the basis {I, u, u2, u3 } is -275 (see Exercise 
0.1, No. 7). Note that k = Ql( V5) c C and so by (0.12), N(Oelk) I 11. 
In this case, Rk is a prinCipal ideal domain, so that Re is a free Rk­
module and has a basis over Rk, which we can take to be of the form 
{al + b1 u, a2 + b2u} with ai, bi E k. The discriminant of this basis is the 
ideal generated by (a2b1 - a1b2)2(3 - 2V5). It now easily follows that 
Oelk cannot be Rk· Thus N(oelk) = 11 and so ~e = -275. 
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3. Let k1 = Q(tl)' where tl satisfies x 3 + 4x + 1 = 0, and k2 = Q(t2), 
where t2 satisfies x4 - 2x2 + X + 1 = O. Both these polynomials are 
irrredueible and have diseriminant -283. As 283 is prime, the fields both 
have diseriminant -283 using (0.11). These fields will be eneountered 
later in our investigations. 

4. For non-isomorphie fields of the same degree, same number of real and 
eomplex places and the same diseriminant, eonsider the following ex­
amples of degree 4 over Q. Let k1 = Q(tl), where h satisfies h(x) = 
x4 + 2x3 + 3x2 + 2x - 1, and k2 = Q(t2) where t2 satisfies h(x) = 
x4 - 2x3 + 2x2 - 2. Both polynomials are irreducible, have one eomplex 
plaee and diseriminant -1472 = -23 x 64. If either eontains a subfield 
other than Q, that subfield must be totally real (see Exercise 0.1, No. 2) 
and, by (0.12), eould only be Q(V2). One then easily checks that h(x) 
factorises over Q( V2) but that h(x) does not. Thus k1 and k2 are not iso­
morphie. As in Example 0.2.11, No. 2, one ean show that ~kl = -1472, 
but one has to work harder to establish that ~k2 is exaetly -1472 (see 
Exercise 0.2, Nos.4 to 6). 

For integral bases and diseriminants, see Ribenboim (1972), Chapters 5 
and 6 or Stewart and Tall (1987), Chapter 2. For Minkowski's theorem and 
its eonsequenee Theorem 0.2.7, see Ribenboim (1972), Chapter 9 or Lang 
(1970), Chapter 5. See also Stewart and Tall (1987), Chapter 7. 

In this seetion, we refer to available data on fields of small diseriminant. 
Data aeerued over the years and the methods used in obtaining data have 
developed into the area of eomputational number theory (Cohen (1993), 
Pohst and Zassenhaus (1989)). The data ean now be aeeessed via paekages 
such as Pari (Cohen (2001)). 

Exercise 0.2 

1. Prove Gauss' Lemma; that is, if f(x) is a polynomial in Z[x] which is 
reducible in Q(x), then f(x) is reducible in Z[x]. 

2. Show that Z[v'5] is not integrally closed in its jield of fractions. 

3. Let f I k be a jinite extension. Prove that if a E Rf then Nflk(a) and 
Trflk(a) lie in Rk. If f I k is quadratic, prove the converse; that is, if a E f 
and Nf1k(a) and Trf1k(a) both lie in Rk then a E Rf. 

For the next three questions, make the following assumptions: a is an al­
gebraic integer, k = Q(a) and the basis {1, a, a 2, ... ,an-I} has discrim­
inant 15. 

4· Prove that Rk C tZ[a]. 

5. Among all integers of the form (ao + ala + a2a2 + ... + aiai)/t5, choose 
an Xi suchthat lail is minimal (# 0), for i = 0,1, ... ,n - 1. Prove that 
{xo, Xl, ... ,Xn-l} is an integral basis of k. 
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6. In No. 5, it clearly suffices to consider lail < 8. Prove the following 
simplifying version: If none of the elements 

where p is a prime divisor of 8, are algebraic integers, then Rk = Z[a). 

7. If a is a root of x3 - 2 = 0 and k = Q(a), show that Rk = Z[a). 

8. Determine the discriminant of Q( a), where a satisfies x3 + 2x - 1 = 0 
and show that Rk = Z[a). 

9. Given that {l,.;,.;2, ... ,.;p-2} is an integral basis of Q(';), where .; = 
e27ri /p for p an odd prime, prove that {l,p,p2, ... ,p(p-3)/2}, where p = 

2cos(21f-jp), is an integral basis ofQ(p). (Cf Exercise 0.1, No. 9). 

10. Show that 7! is an algebraic integer. Determine the discriminant of 

Q()2,i). 

11. Let fex) = x3 + x 2 - 2x + 8. 
(a) Compute the discriminant of f. 
(b) Let t be a root of fand let u = 4ft. Show that u is an algebraic integer. 
Prove that u f/. Z[t). Deduce that {l, t, u} is an integral basis of k = Q(t). 
(c) Prove that k does not have a power basis. 

0.3 Ideals in Rings of Integers 

Although there is no unique factorisation at the element level in general in 
these rings Rk, there is unique factorisation at the ideal level into products 
of prime ideals. This holds in a more general setting and this will be our 
starting point in describing the elegant ideal structure of the rings Rk. 

Definition 0.3.1 Let D be an integral domain with field of jractions K. 
Then D is a Dedekind domain if all the following three conditions hold: 

(i) D is Noetherian. 

(ii) D is integrally closed in K. 

(iii) Every non-zero prime ideal of D is maximal. 

Note that, as observed in the last section, for a number field, k is the field of 
fractions of Rk and Rk is integrally closed in k. Also, if I is any ideal in Rk, 
then the abelian group I is free abelian of finite rank by Theorem 0.2.5. 
Thus I is finitely generated and so Rk is Noetherian. Let P be a prime 
ideal with a E P, a =1= O. Then NkIQ(a) E P and NkIQ(a) E Z, so that the 
principal ideal NkIQ(a)Rk C P. However, the quotient RkfNkIQ(a)Rk is a 
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finitely generated abelian group in which every element has finite order. It 
is thus finite, and as a quotient, so is Rk/P. However, any finite integral 
domain is necessarily a field and so P is maximal. Thus Rk is a Dedekind 
domain. Note that the above argument shows that, for any non-zero ideal 
I, the quotient Rk/ I is finite. 

Theorem 0.3.2 Let Rk be the ring 0/ integers in the number jield k. Then: 

1. Rk is a Dedekind domain. 

2. 1/ I is a non-zero ideal 0/ Rk, Rk/ I is a jinite ring. 

Before stating the unique factorisation theorem for Dedekind domains, 
we first note that the unique factorisation of ideals is closely related to the 
existence of a group structure on a more general class of modules in k, 
which we now introduce: 

Definition 0.3.3 Let D be a Dedekind domain with jield 0/ fr-actions K. 
Then a D-submodule A 0/ K is a fractional ideal 0/ D i/ there exists a E D 
such that aA cD. 

Every ideal is a fractional ideal and the set of ideals in D is closed under 
multiplication of ideals. The fractional ideals are also closed under multi­
plication but can also be shown to be closed under taking inverses where 
the identity element is the ring D itself. Indeed, it turns out that each ideal 
I has, as its inverse, 

r 1 = {a E K I a1 cD}. 

Theorem 0.3.4 Let D be a Dedekind domain. 

1. Let I be a non-zero ideal 0/ D. Then 

where Pi are distinct prime ideals uniquely determined by 1, as are 
the positive integers ai. 

2. The set 0/ fractional ideals 0/ D form a free abelian group under 
multiplication, free on the set 0/ prime ideals. 

We now leave the general setting of Dedekind domains and return to the 
rings of integers Rk to determine more information on their prime ideals. 

Note that, from Theorem 0.3.2, for any non-zero ideal I, the quotient 
Rk/ I is finite. 

Definition 0.3.5 1/ I is a non-zero ideal 0/ Rk, dejine the norm 0/ I by 
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The unique factorisation enables the determination of the norm of ideals to 
be reduced to the determination of norms of prime ideals. This reduction 
firstly requires the use of the Chinese Remainder Theorem in this context: 

Lemma 0.3.6 Let Ql, Q2,'" ,Qr be ideals in Rk such that Qi + Qj = Rk 
for i I- j. Then 

Ql Q2 ... Qr = ni=1 Qi and Rk/ Ql ... Qr ~ EB L Rk/ Qi' 
i 

For distinct prime ideals PI, P2 the condition Pf + P~ = Rk can be shown 
to hold for any positive integers a, b (see Exercise 0.3, No. 3). Secondly, the 
ring Rk/pa has ideals pa+b /pa and each ideal of the form pe /pe+1 can 
be shown to be a one-dimensional vector space over the field Rk/P. Thus 
if 

then 

r 

N(I) = II (N(Pi))ai (0.13) 
i=1 

and N is multiplicative so that 

N(IJ) = N(I)N(J). (0.14) 

The unique factorisation thus requires that the prime ideals in Rk be in­
vestigated. If P is a prime ideal of Rk, then Rk/P is a finite field and so 
has order of the form pI for some prime number p. Note that P n Z is a 
prime ideal p'Z of Z and that Z/p'Z embeds in Rk/P. Thus p' = p and 

(0.15) 

where, for each i, Rk/Pi is a field of order pli for some li 2: 1. The primes 
Pi are said to lie over or above p, or pZ. Note that fi is the degree of the 
extension of finite fields [Rk/Pi : Z/pZ]. If [k : Ql] = d, then N(pRk) = pd 
and so 

g 

d= Ledi' (0.16) 
i=1 

Definition 0.3.7 The prime number p is said to be ramified in the exten­
sion k I Q iJ, in the decomposition at (0.15), some ei > 1. Otherwise, p is 
unramified. 

The following theorem of Dedekind connects ramification with the dis­
criminant. 
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Theorem 0.3.8 A prime number p is ramified in the extension k I Q if 
and only if p I ßk. There are thus only finitely many rational primes which 
ramify in the extension k I Q. 

If Pis a prime ideal in Rk with IRk/PI = q (= pm), and i I k is a finite 
extension, then a similar analysis to that given above holds. Thus in Rl, 

PR - Qe1 Qe2 Qeg l - 1 2··· 9 (0.17) 

where, for each i, Re! Qi is a field of order qfi. The ei, Ii then satisfy (0.16) 
where [i : k] = d. Dedekind's Theorem 0.3.8 also still holds when ßk is 
replaced by the relative discriminant, and, of course, in this case, the ideal 
P must divide the ideal bllk. 

Now consider the cases of quadratic extensions Q( v'd) I Q in some de­
tail. Denote the ring of integers in Q( v'd) by Od. Note that from (0.16), 
there are exactly three possibilities and it is convenient to use some special 
terminology to describe these. 

1. pOd = p 2 (Le., 9 = 1, el = 2 and so h = 1). Thus pis ramified in 
Q( v'd) I Q and this will occur if p I d when d == l(mod 4) and if p I 4d 
when d:f:. l(mod 4). Note also in this case that Od/P ~ Fp , so that 
N(P) =p. 

2. pOd = P 1P2 (Le., 9 = 2,el = e2 = h = h = 1). In this case, we say 
that p deeomposes in Q( v'd) I Q . In this case N(Pl) = N(P2) = p. 

3. pOd = P (Le., 9 = 1, el = 1, h = 2). In this case, we say that p is 
inert in the extension. Note that N(P) = p2. 

The deductions here are particularly simple since the degree of the exten­
sion is 2. To determine how the prime ideals of Rk lie over a given rational 
prime p can often be decided by the result below, which is particularly 
useful in computations. We refer to this result as Kummer's Theorem. (It 
is not clear to us that this is a correct designation, and in algebraic num­
ber theory, it is not a unique designation. However, in this book, it will 
uniquely pick out this result.) 

Theorem 0.3.9 Let Rk = Z[O] for some 0 E Rk with minimum polynomial 
h. Let p be a (rational) prime. Suppose, over Fp , that 

where h i E Z[x] is monie of degree Ii and the overbar denotes the natural 
map Z[x]--+ Fp[x]. Then Pi = pRk+hi(O)Rk is a prime ideal, N(Pi) = pli 
and 
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There is also a relative version of this theorem applying to an extension 
f I k with RE = R k [9] and P a prime ideal in Rk. As noted earlier, such 
extensions may not have integral bases. Even in the absolute case of k I Q, 
it is not always possible to find a 61 E Rk such that {I, 61, 612 , • .. ,9d- 1} is an 
integral basis. Thus the theorem as stated is not always applicable. There 
are further versions of this theorem which apply in a wider range of cases. 

Once again we consider quadratic extensions, which always have such a 
basis as required by Kummer's Theorem, with 61 = v'd if d ~ l(mod 4) and 
61 = (1 + v'd)/2 if d == l(mod 4). In the first case, pis ramified if pi 4d. For 
other values of p, x 2 - d E lFp[x] factorises if and only if there exists a E Z 

such that a2 == d(mod p) [Le. if and only if (:) = 1]. In the second case, if 

pis odd and p A d, then x 2 - x + (1 - d)/4 E lFp[x] factorises if and only if 

(2x _1)2 - d E lFp[x] factorises [Le. if and only if (:) = 1]. If p = 2, then 

if d == l(mod 8) 
if d == 5(mod 8). 

Thus using Kummer's Theorem, we have the following complete picture of 
prime ideals in the ring of integers of a quadratic extension of Q. 

Lemma 0.3.10 In the quadratic extension, Q( Vd) I Q, where the integer 
d is square-free and p a prime, the following hold: 

1. Let p be odd. 

(a) If p I d, p is ramified. 

(b) If (:) = 1, p decomposes. 

(c) If (:) = -1, p is inert. 

2. Let p = 2. 

(a) If d ~ l(mod 4), 2 is ramified. 

(b) If d == l(mod 8), 2 decomposes. 

(c) If d == 5(mod 8), 2 is inert. 

Examples 0.3.11 

1. The examples treated at the end of the preceding section will be con­
sidered further here. Thus let k = Q(t) where t satisfies x 3 + x + 1. 
This polynomial is irreducible mod 2, so there is one prime ideal P2 
in Rk lying over 2 and N(P2) = 23 . Modulo 3, the polynomial factor­
ises as (x - 1)(x2 + x-I), so that 3Rk = P~Pf{ with N(P~) = 3 and 
N(Pf{) = 32 • Modulo 31, the polynomial factorises as (x-3)(x-14)2 so 
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that 31Rk = P{n Pf{l 2, as required by Dedekind's Theorem 0.3.8. Note 
that all possiblescenarios can arise, because modulo 67, the polynomial 
factorises as (x + 4)(x + 13)(x - 9). 

2. Now consider k = Q('v'(3 - 2.J5)), where, by the discussion in the pre­
ceding section Rk = Z[u], with u satisfying x4 - 2x3 + X - 1 = O. 
Again using Kummer's Theorem, we obtain, for example, 2Rk = P2, 
3Rk = P~Pf{ and 5Rk = Pg. In cases like this one, where there is 
an intermediate field, it may be easier to determine the distribution of 
prime ideals in two stages using the relative version of Kummer's The­
orem. Thus, for example, the rational prime 5 ramifies in Q(.J5) I Q, 
so 5RQ (.,/5) = Q~. Over the field RQ (.,/5) / Q5 ~ lF 5, the polynomial 

x2 + x + (-1 + .J5)/2 = x2 + X + 2 and is irreducible. Thus in the 
extension k I Q(.J5), there is one prime P5 over Q5 and so 5Rk = Pg. 

3. Here we give an example of a number field which does not have apower 
basis. Let k = Q( v' -15, .;=7). The rational prime 2 splits completely 
in k I Q into four distinct primes of norm 2. There are thus four distinct 
homomorphisms of Rk onto lF 2. If, however, Rk had a power basis so 
that Rk = Z[1, V, v2 , v3 ], then there can be at most two homomorphisms 
onto lF2 • 

From Lemma 0.3.10, we see that for a quadratic extension Q(..,fd) I Q 
and a rational prime p, there are finitely many primes p which ramify in 
the extension, infinitely many which decompose and infinitely many which 
are inert. Of course, Q(..,fd) I Q is Galois, even abelian, and the description 
and distribution of the splitting types of prime ideals in general Galois 
extensions will now be discussed. The proofs of the results presented here 
involve an analysis of the zeta function and associated L-functions of the 
fields involved. The resulting density theorems will only be used toward 
the end of the book, where we need to establish the existence of certain 
arithmetic Kleinian and Fuchsian groups with specialised properties. 

Thus let f I k be a Galois extension with Galois group Q and P a prime 
ideal of k. Then Q acts transitivelyon the primes of f lying over P (see 
Exercise 0.3, No. 2) and (0.17) becomes 

with each Qi having the same ramification degree e and residual dass degree 
f· Thus [f : k] = efg and e > 1 only occurs for finitely many P. Thus for 
the unramified primes P, we have [f : k] = fg and (J,g) determines the 
splitting type of P. For the absolute quadratic case, the splitting types are 
(1,2) and (2,1) and there are infinitely many primes of each type. The 
density theorems are concerned with generalising this. 

Continue to assume that P is unramified in the Galois extension f I k 
and let Q(Qi) = {a E Q I a(Qi) = (Qi)}, the decomposition group of Qi. 
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There is an obvious homomorphism : Q(Qi) -+ Gal(RdQi I RkIP) which 
turns out to be an isomorphism. This latter group is cyclie of order f, as 
it arises from a finite field extension and is generated by the Frobenius 
automorphism x -+ xNP . Under the isomorphism, this pulls back to the 
Frobenius automorphism u of Q(Qi) determined by u(x) == xNP(mod Qi). 

In these eireumstances, u is denoted (R.67) and will be conjugate in Q to 

the Frobenius automorphism (~). In particular, when f I k is abelian, 

the Frobenius automorphism simply depends on P and is denoted (~). 
The density is a measure of the number of ideals in a set relative to 

the total number of ideals. The Dedekind zeta junetion for a number field 
K, (K(S), is defined for ~(s) > 1 as 'E1I/N(I)s, where the sum is over all 
ideals. It has a simple pole at s = 1 and admits an Euler product expansion 
over the prime ideals as IIp(l - NP- 8 )-I. For any set A of prime ideals 
of K, the Diriehlet density d(A) is defined by 

1. In(IIpEA(l- NP- 8 )-I) 
1m . 

8--+1 + In (K(S) 

Thus if A has positive Dirichlet density, then it has infinitely many mem­
bers. 

Theorem 0.3.12 (Dirichlet) Let f I k be an abelian extension and let 
u E Q. If 

A(u) = {P I (f~k) = u}, 

then A(u) has Diriehlet density I/n, where n = [f: klo 
We will be mainly coneerned with the simple eases where f I k is quad­

ratie, but the Tehebotarev density theorem extends the above theorem to 
general Galois extensions, with individual elements in the Galois group be­
ing replaeed by eonjugaey dasses of elements and the corresponding density 
then being ein, where eis the number of elements in the eonjugacy dass. 

Corollary 0.3.13 Let f I k be an abelian extension and (I, g) a splitting 
type for f I k. Then a neeessary and suffieient eondition that there are 
infinitely many prime ideals in k with this splitting type is that Q eontains 
an element of order f. 

This is an immediate deduetion from the theorem, for if n f is the number 
of elements in Q of order f, then the set of unramified primes P such 

that e~k) has order f has density n f In. However, when this Frobenius 

automorphism has order f, the residue dass degree is f. 

Finally, in this section, we expand on the notions of norms of ideals. Note 
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that any non-zero ideal 1 of Rk is a subgroup of finite index in the additive 
abelian group R k of rank d = [k : <Ql]. Thus 1 also has rank d. Since Z is 
a principal ideal domain, we can choose an integral basis {Xl, X2, ... , Xd} 
such that for suitable integers fI, 12, ... , fd, the set {fIXI, h X2, ... , fdXd} 
is a basis of I. Thus it foUows that, for any Z-basis {ßI, ß2, ... , ßd} of I, 
(see Exercise 0.3, No.8) 

N(I)2 = 1 discr{ß~~ .. , ßd} I. (0.18) 

If I is a principal ideal, with 1 = o:Rk, we can take ßi = aXi. 

Lemma 0.3.14 If 1 = aRk is a principal ideal in Rk, then 

(0.19) 

Now, just as the norm NkllQl was extended to a relative norm Nll k (see 
Exercise 0.1, No. 4) for a finite field extension € I k, we now consider the 
extension of the norms of ideals in Definition 0.3.5 to an extension € I k. 
We put this in the general language of Dedekind domains. 

Let D be a Dedekind domain with field of fractions K and let L be a 
finite extension of K. Let D' denote the integral closure of D in L. It can 
be shown that D' is also a Dedekind domain. Let I be any ideal in D' and 
define 

(0.20) 

so that NL1K(I) is the ideal in D generated by the norms of the elements 
in I. We summarise the main properties of this norm. 

Theorem 0.3.15 

1. NLIK(I J) = NL1K(I)NLIK(J) for ideals I, JE D'. 

2. NLIK(aD') = NL1K(a)D for a E D'. 

3. NLIK 0 N M1L = N M1K for fields K cL c M. 

4· NL11QI(I) = N(I)Z, where N(I) is given by Definition 0.3.5. 

5. NL1K(Qi) = pli, with notation as at (0.16) and (0.17). 

For unique factorisation and norms of ideals, see Stewart and TaU (1987), 
Chapter 5, Ribenboim (1972), Chapter 7 or Janusz (1996), Chapter 1, §3 
and §4. For Dedekind's ramification theorem and Kummer's theorem, see 
Ribenboim (1972), Chapter 10, Janusz (1996), Chapter 1, §7 and Stewart 
and TaU (1987), Chapter 10. For the density theorems, see Janusz (1996), 
Chapter 5, §10, Lang (1970) Chapter 8 §4, or Goldstein (1971) Chapter 9. 
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For relative norms of ideals, see Ribenboim (1972), Chapter 10 or Janusz 
(1996), Chapter 1, §5. As in the preceding section, für fields of small discrim­
inant, the factorisation of ideals has been automated and can be obtained 
using Cohen (2001). 

Exercise 0.3 

1. Prove the Chinese Remainder Theorem as stated in Lemma 0.3.6. 

2. Let k I Q be a finite Galois extension. For a prime p E Z, let lIdenote 
the set of ideals in k lying over p. Prove that the Galois group Gal(k I Q) 
acts transitivelyon II. Deduce that all ei defined at (0.15) are equal and 
also that all fi are equal. The formula (0.16) thus takes the form 

d = efg. (0.21) 

[This result also holds for a general finite Galois extension e I k.J 

3. Show that if PI, P2 are distinct prime ideals 01 Rk, then Pf + P~ = Rk 
for all integers a, b 2 1. 

4. We will see later that fj.k = 1 if and only if k = Q. This implies that 
for every number field k =f Q, there is always a prime ideal which ramifies 
in k I Q. Show that this last statement is not true in general for relative 
extensions e I k by considering e = Q( J5, i) and k = Q( y'=5). 

5. Let k l , k2 be such that [k l : Q] = nl and [k2 : Q] = n2. Let K be the 
compositum of kl , k2. Assume, in addition, that 

(0.22) 

(a) Prove that a prime p is unramified in K I Q if and only if p is unramified 
in kl I Q and in k2 I Q. 
(b) N ow, assume further that (fj.kl' fj. k2) = 1. Prove that: 

(i) fj.K = fj.n 2 fj. n 1. 
kl k2 

(ii) If {Xl, X2, ... ,Xn1 } and {YI, Y2, ... ,Yn2} are integral bases of k l and 
k2, respectively, then {XiYj : 1 :s; i :s; nl, 1 :::; j :s; n2} is an integral 
basis of K. 

[These results are actually true without the assumption (O.22).J 

6. Let k = Q(a), where a satisfies x3 - 2 = O. Investigate the distribution 
of primes in Rk which lie over p for p = 2,3,5,7 (see Exercise 0.2, No. 
7). Show that they are all principal by finding a generator for each one. 
Deduce that k I Q is not a Galois extension. 11 k is the Galois closure of k, 
determine the distribution of primes in Rr., over the primes 2,3,5,7. 

7. Describe the distribution of prime ideals over the prim es 2, 3 and 5 in 
Q( J5, i). 
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8. Let I be a non-zero ideal in Rk with Z-basis {ßI, ß2,'" ,ßd}' Prove that 

N(I)2 = discr{ßI, ß2,'" ,ßd}. 
f).k 

Prove Lemma 0.3.14. 

9. Let e I k be an abelian extension. Show that there are infinitely many 
primes P with splitting pattern ([e : k], 1) if and only if 9 is cyclic. 

10. Show that in any finite extension e I k of number fields, there are 
infinitely many primes P of k which split completely in e. 
11. Deduce /rom Dirichlet's density theorem that there are infinitely many 
rational primes in any arithmetic progression {an + d I (a, d) = 1}. (This 
is, of course, a cart-before-the-horse deduction.) 

0.4 Units 

Although, in general, we will be concerned with the ideals themselves, it is 
important to be able to work at the level of elements, and there, the units 
play a crucial role. It should also be noted that principal ideals do not 
uniquely determine their generator, but only up to a multiple by a unit. 

The units in Rk, denoted by Rio or U, 

Rio = {a E Rk I 3ß E Rk such that aß = 1} 

form an abelian group under multiplication. The crucial result on the struc­
ture of this group is Dirichlet's Unit Theorem, which is described in this 
section and shows, in particular, that this group is finitely generated. 

From the multiplicativity of the norm, it is easy to see the following: 

Lemma 0.4.1 1f a E Rk, then a is a unit if and only if NkIQ(a) = ±l. 

Note that -1 E Rio for all k, so Rio always has an element of order 2. The 
cyclotomic fields kn = Q( e27ri/ n ) have the finite cyclic group of order n 
generated by ~ = e27ri/ n as a subgroup of Rion • More generally, any element 
a of finite order in Rio will be a root of unity and so, in particular, will 
satisfy lai = 1. In the cases of the cyclotomic fields kn , for n f:- 2,3,4,6, 
the group of units Rion can also be shown to have elements of infinite order. 
For example, when n = 5, e + 1 E Rion has inverse -ce +e) and le + 11 f:- 1 
(see also Exercise 0.4, No. 2). 

To state Dirichlet's Unit Theorem, recall the definitions of rl and r2 from 
§0.1 as the number of real and complex places of k, respectively. 

Theorem 0.4.2 For any number field k, the multiplicative abelian group 

Rio ~ W x Z x Z x ... x Z (0.23) 
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where W is a finite cyclic group of even order consisting of the roots of unity 
and the rank of Rh' which is the number of Z factors, is r = rl + r2 - l. 

A set of r elements in Rh' {UI' U2, ... ,Ur} is called a set of fundamental 
units if these elements generate RkiW. For such a set, every unit in Rh can 
be uniquely expressed in the form ~U~l U~2 ••• u~r where ~ is a root of unity 
and ai E Z. Note, in particular, that Rh is finitely generated and is finite 
only for the fields Q and Q( R). For these quadratic imaginary fields, Rh 
is cyclic of order 4 if d = 1, cyclic of order 6 if d = 3 and otherwise, it has 
order 2. 

Dirichlet's Unit Theorem can, like Theorem 0.2.8, be proved using results 
from the geometry of numbers. This gives the structure of the group Rh as 
indicated, but it is a difficult problem to determine, for a given field k, a 
specific set of fundamental units. 

In the case of real quadratic fields Q( Vd), then Rh ~ W x Z, where 
o(W) = 2, and we can choose a unique fundamental unit a such that 
a > 1. It is not difficult to see that it can be characterised by the fact that 
there is no other unit ß with 1 < ß < a. If, for example, a + bVd is a unit, 
then so are ±(a + bVd)±1 = ±a ± bVd. Precisely one of these is > 1 and 
for that unit, a, b > o. Thus, for example, 1 + J2 is a fundamental unit 
in Q( J2). More generally, one can determine a fundamental unit in the 
cases of Q( Vd), where d t=. l(mod 4) as follows: Run through the integers 
b = 1,2, ... and choose the smallest bo such that dbB± 1 is a perfect square, 
aB. Then ao+boVd is a fundamental unit. A similar argument applies when 
d == l(mod 4) (see Exercise 0.4, No. 4). 

For other fields, the determination of fundamental units is not an easy 
task. In some simple cases, elementary arguments will yield these units, 
but, in general, more powerful techniques are required. 

Example 0.4.3 Let k = Q(t), where t satisfies x 3 + x + 1 = O. This field 
has one complex and one real place so that Rh ~ W x Z, where o(W) = 2 in 
this case. Note that t is a unit. In fact, we will prove that it is a fundamental 
unit. Suppose that p = a + bt + ct2, where a, b, c E Z, is a fundamental unit, 
so that t = ±pn. Let k denote the Galois closure of k. Then xn±t must split 
completely in k and so e21ri / n E k. If Q(e21ri / n ) C k, then n = 1,2,3,4,6. If 
n -I- 1,2, k = Q(t, e21ri / n ) and x 3 + x + 1 will split completely in this field. 
A direct calculation (e.g., using Exercise 0.3, No. 5), shows that this is not 
possible. If n = 2 and assuming we choose t to be the real root, then 

-t = (a + bt + ct2)2 

from which we deduce the equations 

a2 - 2bc = 0; 2ab - 2bc - c2 = -1; b2 + 2ac - c2 = O. 

The second gives that (b, c) = 1 and so from the third, that c = ±l. The 
third equation then forces b to be odd, which contradicts the first. Thus we 
have that t is a fundamental unit. 
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For Dirichlet's unit theorem, see Ribenboim (1972), Chapter 9 or Stewart 
and TaU (1987), Chapter 12. 

Exercise 0.4 

1. Let k = Q(a), where ais an algebraic integer with minimum polynomial 
f. Prove that 

NklQ(a - a) = f(a). (0.24) 

2. Recall that xn - 1 = TIdln q,d(X) and that the cyclotomic polynomial 
q,n(x) is the minimum polynomial of e = e27ri/ n • Prove that e + 1 is a unit 
unless n is apower of 2. 

3. Dirichlet's Unit Theorem shows, in particular, that the group of roots 
of unity in R'k is finite. Prove this directly. 

4. Show that the method given in this section for obtaining a fundamental 
unit in Q( v'd), d t=. 1 (mod 4), d > 0, does indeed do that. N ow give a 
similar method for the cases where d == l(mod 4). 

5. Find fundamental units in Q(V7) and in Q(v'i3). 

6. Determine all the units in k = Q(a), where a satisfies x 3 - 2 = o. 
7. Order the Galois embeddings of k such that 0"1, 0"2, ... ,0" rl are real and 
O"rl +r2+i = O"rl +i for i = 1,2, ... ,r2. Let>. be the mapping from R'k to 
IRrl +r2 defined by 

>.(u) = (In h (u)l, ... ,ln 100rl (u)l, 2ln 100rl +1 (u)l, ... ,21n 100rl +r2 (u)l). 

Show that >'(R'k) is a lattice in the r(= r1 + r2 - l)-dimensional subspace 
V of Rrl +r2, where 

V = {(X1,X2' ... 'Xrl +r2 ) ILxi = o}. 
The volume of a fundamental cell for this lattice times (r1 +r2)-1/2 is called 
the Regulator 01 k. It is clearly an invariant of the isomorphism class of 
k. If {U1, U2, ... ,ur} is a set 01 fundamental units for k, show that the 
Regulator 01 k is the determinant of any r x r minor 01 U, where U is 
the r + 1 x r matrix with entries J!i 100i (Uj) I, where J!i = 1 or 2 according to 
whether O"i is real or not. 

Calculate the regulator for Q( V3) and for the field Q( a), where a satisfies 
x 3 - 2 = O. 

0.5 Class Groups 

The dass group of a number field gives a measure of how far the ring of 
integers in that number field is from being a principal ideal domain, as 
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the "dass" refers to dasses of ideals modulo principal ideals (see below). 
This group has a role to play when we come to consider the structure 
of arithmetic Kleinian groups. Additionally, further investigations into the 
structure of arithmetic Kleinian groups lead to the consideration of certain 
ray dass groups. It is more natural to consider these after the introduction 
of valuations and so we will defer the consideration of these ray dass groups 
until §0.6. 

Let us denote the group of fractional ideals of k by I k and recall that 
it is a free abelian group on the set of prime ideals of Rk (Theorem 0.3.4) 
We will call Ik the ideal group of k. The subset Pk of non-zero principal 
fractional ideals (i.e., those of the form aRk for a E k*), is a subgroup of 

h· 

Definition 0.5.1 

• The class group, Ck, of k is the quotient group h/Pk . 

• The class number, always denoted h, of k is the order of the class 
group. 

The second definition depends, of course, crucially on the following funda­
mental and important result: 

Theorem 0.5.2 The order of the class group of a number field is finite. 

The definition of dass group can be formulated independently of frac­
tional ideals. If necessary, to distinguish ideals from fractional ideals, we 
use the terminology integral ideals. Note that, by the definition of frac­
tional ideals, each coset of Pk in I k can be represented by an integral 
ideal I of Rk. Define two integral ideals I, J to be equivalent if there exist 
non-zero elements a, ß E Rk such that aI = ßJ. Thus in the group h, 
IJ- 1 = (a-1ß)Rk E Pk so that I,J belong to the same coset of Pk in 
h. Defining multiplication of these equivalence dasses of integral ideals by 
[I][J] = [I J] is well-defined and gives the dass group. 

Clearly, the dass number is 1 if and only if Rk is a principal ideal domain. 
Again, Minkowski's Theorem can be used to prove the finiteness of the 

dass number. This is used to obtain relationships between the norms of 
ideals and the discriminant. In particular, Theorem 0.5.2 will follow quite 
readily from Theorem 0.5.3 below. The inequality in this result is some­
times referred to as Minkowski's bound and it is used, in particular, in 
computations in specific fields. 

Theorem 0.5.3 In every class of ideals of the number field k, where the 
degree [k : Q] = n, there exists a non-zero (integral) ideal J such that 

(0.25) 
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Examples 0.5.4 

1. Let k = Q( v'6), so that Minkowski's bound gives approximately 2.4. 
Since 2 is ramified in the extension Q( v'6) I Q (see Lemma 0.3.10), there 
is exactly one prime ideal of norm 2. However, the element 2 + v'6 has 
norm -2 and so this ideal is principal (see Lemma 0.3.14). Thus h = 1. 

2. Let k = Q(vf:[O), so that Minkowski's bound gives approximately 3.16. 
Again, since 2 is ramified, there is a unique prime ideal P2 of norm 2 and 
since (13°) = 1, there are two prime ideals P3, pr; of norm 3 (see Lemma 
0.3.10). However, one easily checks that a2 - 10b2 = ±2, a2 - lOb2 = 
±3 have no solution, so that the ideals P2 , P3, pr; are all non-principal. 
However, P3Pr; = 3Rk and since 22 - 10.12 = -6, there is a principal 
ideal of norm 6. It thus follows that h = 2. 

3. For k = Q(t) where t satisfies x 3 + x + 1 = 0, Minkowski's bound is < 1, 
so that h = 1. 

For Minkowski's bound and the finiteness of dass number, see Stewart 
and Tall (1987), Chapter 10, Ribenboim (1972), Chapters 8 and 9 or Janusz 
(1996), Chapter 1, §13. 

Exercise 0.5 

1. Show that the group Pk of non-zero prineipal fraetional ideals of k is 
isomorphie to k* / R'k. 

2. In the number field k, define 

k~ = {a E k* I (T(a) > 0 for all real (T}. 

Let Pk,+ be the subgroup of Pk eonsisting of prineipal fraetional ideals aRk, 
where a E k.+.. Show that the quotient group Ik / Pk,+ is finite of order at 
most 2T1 - 1 h. If [R'k : R'k n k.+.l = 2T1 show that h/Pk,+ has order h. Find 
the order of h/Pk,+ for k = Q(v'5) and k = Q(.J3). 

3. Use Minkowski's bound to prove that if l.D.kl = 1, then k = Q. 

4· Show that if k is a field of degree 3 over Q, then f::::..k < -12 or f::::..k > 20. 

5. Show that k = Q(a), where a satisfies x 3 - 2 = 0 has class number 1. 

6. Show that the class number of Q( v'5, i) is 1, but that of its subfield 
Q(V-5) is 2. 

0.6 Valuations 

As indicated in the Preface, it will be shown how to associate with a finite­
covolume Kleinian group a pair of invariants consisting of a number field 
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and a quaternion algebra over that number field. So far, number fields have 
been discussed and, in partieular, their invariants. The general structure 
of quaternion algebras will be diseussed in Chapter 2. The classification 
theorem for quaternion algebras over a number field is given in Chapters 
2 and 7. It is a loeal-global result so that the strueture over the number 
(global) field is obtained by eonsidering the struetures over all of the asso­
ciated loeal fields. These loeal fields are the eompletions of the global field 
at the valuations defined on the global field. The framework for this will 
be introdueed in this and the following two seetions. 

For the moment, let K be any field. 

Definition 0.6.1 A valuation v on K is a mapping v : K ---+ lR+, such 
that 

(i) v(x) ~ 0 for all xE K and v(x) = 0 if and only if x = o. 
(ii) v(xy) = v(x)v(y) for all x, y E K. 

(iii) v(x + y) ::::; v(x) + v(y) for all x, y E K. 

There is always the trivial valuation where v(x) = 1 for all x #- 0, so we 
assurne throughout that our valuations are non-trivial. A valuation v on K 
defines ametrie on K via d(x, y) = v(x - y) for all x, y E K and, hence, 
defines K as a topological space. 

Definition 0.6.2 Two valuations v, v' on Kare equivalent if there exists 
a E lR+ such that v'(x) = [v(xW for xE K. 

An alternative formulation of this notion of equivalence is that the valu­
ations define the same topology on K. 

Definition 0.6.3 

• 1f the valuation v satisfies in addition 

(iv) v(x + y) ::::; max{ v(x), v(y)} for all x, y E K, 

then v is called a non-Archimedean valuation. 

• 1f the valuation v is not equivalent to one which satisfies (iv), then v 
is Archimedean. 

Non-Archimedean valuations can be characterised among valuations as 
those for which {v(n.1 K ) : n E Z} is a bounded set (see Exercise 0.6, 
No. 1). 

Lemma 0.6.4 Let v be a non-Archimedean valuation on K. Let 

• R(v) = {a E Klv(a) ::::; I}, 
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• P(v) = {a E Klv(a) < I}. 

Then R( v) is a loeal ring whose unique maximal ideal is P( v) and whose 
jield of jraetions is K. 

Definition 0.6.5 The ring R(v) is ealled the valuation ring of K (with 
respeet to v). 

Now let K = k be a number field. All the valuations on k can be determ­
ined as we now indicate. Let 0' : k ~ C be any one of the Galois embeddings 
of k. Define Vu by vu(x) = 100(x)l, where 1·1 is the usual absolute value. It is 
not difficult to see that these are all Archimedean valuations and that V u 

and Vu ' are equivalent if and only if (0',0") is a complex conjugate pair of 
embeddings. Out of an equivalence class of valuations, it is usual to select 
a normalised one. For realO', this is just Vu as defined above, but for a 
complex embedding 0', choose vu(x) = 10'(x)12. 

Now let P be any prime ideal in Rk and let e be areal number such that 
0< e < 1. For x E Rk \ {O}, define Vp (and np) by vp(x) = enp(x), where 
np(x) is the largest integer m such that x E pm or, alternatively, such 
that pm I XRk. It is straightforward to show that Vp satisfies (i), (ii) and 
(iv). Since k is the field of fractions of Rk, the definition extends to k* by 
vp(x/y) = vp(x)/vp(y). This is well-defined and gives a non-Archimedean 
valuation on k. Alternatively, the functions np can be defined by using the 
unique expression of the fractional ideal XRk as a product of prime ideals: 

Changing the value of c gives an equivalent valuation and a normalised 
valuation is frequently selected by the choice (recall Definition 0.3.5) c = 
l/N(P) so that 

vp(x) = N(p)-np(x). 

On a number field k, all the valuations, up to equivalence, have been 
described in view of the following crucial result: 

Theorem 0.6.6 Let k be a number jield. Any non-Arehimedean valuation 
on k is equivalent to a P -adie valuation Vp for some prime ideal P in Rk. 
Any Arehimedean valuation on k is equivalent to a valuation Vu as deseribed 
earlier for a Galois monomorphism 0' of k. 

For prime ideals PI i P2, the valuations VP1' VP2 cannot be equivalent. 
Recall that PI + P2 = Rk so that 1 = x + y with x E PI and y E P2. Thus 
npl (x) ~ 1. If np2(x) ~ 1, then np2(1- y) and np2(y) ~ 1 so that 1 E P2. 
Thus np2(x) = 0 so that VPUVP2 cannot be equivalent. 

An equivalence class of valuations is called a plaee, a prime or a prime 
spot of k. There are rl + r2 Archimedean places on k and these are referred 
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to as the infinite places or infinite primes of k (recall §0.1). The dasses of 
non-Archimedean valuations are known as the finite places or finite prim es 
and these are in one-to-one correspondence with the prime ideals of R k . To 
avoid confusion, we will use p to denote any prime, finite or infinite, in k, 
but we will reserve P for a non-Archimedean prime or prime ideal in k. 

For the valuations Vp, the image of k* under Vp is a discrete subgroup 
of the positive reals under multiplication. It is isomorphie to the additive 
group np(k*), which is Z. Let 7r E Rk be such that np(7r) = 1. Such 
an element is called a uniformiser and will be used heavily in the next 
section. Then the unique maximal ideal P( vp) = 7r R( vp) and the local 
ring R( vp) will be a principal ideal domain, all of whose ideals are of the 
form 7rn R( Vp ). Since k is the field of fractions of Rk, the local ring R( Vp ) 
can be identified with the localisation of R k at the multiplicative set Rk \ P, 
and k is also the field of fractions of R( Vp ). The unique maximal ideal in 
R( vp) is P R( vp) = 7r R( vp) and the quotient field R( Vp ) I 7r R( Vp ), called 
the residue field, coincides with RkIP. 

A principal ideal domain with only one maximal ideal is known as a 
discrete valuation ring so that these rings R( vp) are all discrete valuation 
rings. More generally, these can be used to give an alternative character­
isation of Dedekind domains (see Definition 0.3.1) 

Theorem 0.6.7 Let D be an integral domain. The following are equival­
ent: 

1. D is a Dedekind domain. 

2. D is Noetherian and the localisation of D at each non-zero prime 
ideal is a discrete valuation ring. 

Example 0.6.8 Let k = Q. Then there is precisely one infinite place rep­
resented by the usual absolute value v(x) = lxi. The finite places are in 
one-to-one correspondence with the rational primes p of Z. For a fixed 
prime p, the corresponding finite place can be represented by the normal­
ised p-adic valuation. Thus for x E Z, vp(x) = p-np(x), where np(x) is the 
highest power of p dividing x. Then 

R(vp) = {alb E Q I p X b}, 

and since n p (p) = 1, the unique maximal ideal is the principal ideal pR( vp). 
Note that the field of fractions of R(vp ) is again Q and the quotient field 
R(vp)/pR(vp) is the finite field lFp . 

We condude this section with a discussion of ray class groups, now that 
the appropriate language is available to do this. A ray dass group is defined 
with respect to a modulus in k where the following definition holds. 
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Definition 0.6.9 A modulus in k is a formal product 

over alt finite and infinite prim es, with m(p) = ° for alt but a finite number, 
m(p) = ° if p is a complex infinite prime, m(p) = 0, 1 if p is a real infinite 
prime and m(p) is a positive integer otherwise. 

Thus a modulus is a finite produet whieh ean be split into two parts: the 
infinite part M oo , where the produet is over the real primes and the finite 
part Mo, where the produet is over a finite number of prime ideals. 

Reeall that the ideal group h is the free abelian group on the prime 
ideals of k. Let h(M) denote the subgroup of those fraetional ideals that 
are relatively prime to all P, where P I Mo, so that Ik(M) is generated by 
prime ideals not dividing Mo. 

With respect to M, we introduee the following equivalenee relation on 
elements of k*. 

Definition 0.6.10 Let a E k*. Then a == l(mod* M) if 

• a E R(vp) and a == l(mod (p(vp))m(P)) for alt P with m(P) > 0, 

• a(a) > 0 if a is the real embedding corresponding to an infinite prime 
p of M with m(p) = 1. 

We denote by kM the set of elements a E k* such that a == l(mod* M). 
This is a subgroup of k* and if Pk(M) denotes the fraetional ideals {aRk : 
a E kM}' then Pk(M) is a subgroup of h(M). 

Definition 0.6.11 The ray dass group (mod M) is defined to be the quo­
tient group IdM)jPk(M). 

These groups also have finite order and their orders are dosely related to 
h. We introduee some temporary notation to deseribe this relationship. 
Let k*(M) denote the subgroup of k* eonsisting of those elements whose 
ideals are prime to Mo and P:(M) denote the corresponding subgroup of 
principal fractional ideals. It can be shown that the ideal dass group Ikj Pk 
is isomorphie to Ik (M) j P: (M). Thus if hM denotes the order of the ray 
dass group (mod M), then hM is h times the order of P:(M)jPk(M). 
However, this group is obviously a factor group of k*(M)jkM . This last 
group splits as a product oflocal faetors corresponding to the primes in M. 
If p is a real prime, the factor is 1R* jIR+, whereas if p = P, then the factor 
is the group ofunits (R(vp )jP(vp )m(P))*, whieh is finite. By analogy with 
rational primes, we denote the order ofthis group by </>(pm(P)), generalising 
Euler's function. A detailed analysis yields the following: 
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Theorem 0.6.12 The order of the ray class group (mod M) is given by 

h 4>(Mo) 21Moo1 

[Rk: Rk nkMl 
where IMool denotes the number of real places in M. 

(0.26) 

Remark If we take M to be the product üf all real places of k, then the 
ray class group in that case is that described in Exercise 0.5 No. 2 so that 
its order depends on which units in R k are tütally positive. 

Für valuations and results on valuatiüns in number fields, see Janusz 
(1996), Chapter 2, §1 and §3 or Artin (1968), Chapter 1. For discrete valu­
atiün rings, see Janusz (1996), Chapter 1, §3. Für ray class groups, see 
Janusz (1996), Chapter 4, §1 or Lang (1970), Chapter 6. 

Exercise 0.6 

1. Let v be a valuation on the field K. 1f {v(n.1k),n E Z} is bounded by 
L, prove that for all x, y E K and positive integers m, 

v(x + y)m ~ (m + l)L(max(v(x), v(y)))m. 

Hence show that the valuation v is non-Archimedean if and only if the set 
{v(n.1k), n E Z} is bounded. 

2. Let v be a non-Archimedean valuation on K. Show that U(v) := {a E 

K I v(a) = I} is the group of units in R(v). Hence prove the result of 
Lemma 0.6.4 that P(v) is the unique maximal ideal in R(v). 

3. Prove that the P-adic function defined above does indeed satisfy (i), (ii) 
and (iv). 1ndeed, prove that 

vp(x + y) = max(vp(x), vp(y)) 

whenever Vp (x) =f. Vp (y). 

4. Prove the product formula for the number field k; that is, if x E k*, 
then I1p vp(x) = 1, where the product is over all primes of k, both finite 
and infinite, and each vp is a normalised valuation as described in this 
section. 

5. Let k = (Q(t) where t satisfies x 3 + x + 1 = o. Let a = t + 2. Find all 
primes p, both finite and infinite, such that vp(a) =f. 1. 

0.7 Completions 

Let K be a field with valuation v. Then as we have seen, defining d(x, y) = 
v(x - y) makes K ametrie space. 
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Definition 0.7.1 The field K is said to be complete at v if every Cauchy 
sequence in K converges to an element of K. 

For a number field k, we have indicated how to obtain all valuations. The 
field k is not complete with respect to any of these valuations, but for each 
valuation v, one can construct a field kv in which k embeds, such that the 
valuation v extends to kv and kv is complete with respect to this extended 
valuation. These field are the completions of k. 

For the moment, consider any field K with a valuation v. Let C be the set 
of all Cauchy sequences in K and let N be the subset of null sequences, (Le., 
those that converge to 0). Under pointwise addition and multiplication, C is 
a commutative ring with 1 and N is an ideal of C. For x E K, the mapping 
x I--t {x} + N, where {x} is the constant sequence, defin~s an embedding 
of K in the quotient K := C / N. It can be shown that K is a field. (See 
Exercise 0.7, No. 1). 

If {an} E C, then {v(an)} is a Cauchy sequence in lR and so it has a 
limit. It then follows, defining v on k by 

that v is well-defined. Note that vlK = v. With some efIort, the following 
can then be proved: 

Theorem 0.7.2 The field k is complete with respect to v. Furthermore, 
it is unique. More generally, if a : K ---- L is a field embedding, where L 
has a valuation Vi with vi(a(x)) = v(x) for each x E K, then there is a 
unique embedding a- : k ---- i such that 'lh(a-(x)) = v(x) for all xE k and 
the following diagram commutes: 

K CT 

----
L 

1 1 

k 

Definition 0.7.3 The field k is called the completion of K at the valu­
ation v. 

The above theorem justifies calling this field the completion, as it is 
unique up to a valuation-preserving isomorphism. Equivalent valuations 
on K determine the same field k and the valuations extend to equivalent 
valuations on k. Furthermore, non-Archimedean valuations extend to non­
Archimedean valuations by Exercise 0.6, NO.1 and Archimedean valuations 
extend to Archimedean valuations. 

For these Archimedean valuations, we have the following theorem of Os­
trowski: 
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Theorem 0.7.4 Let K be a field with an Arehimedean valuation. 1f K is 
eomplete, then K is isomorphie to :IR. or C and the valuation is equivalent 
to the usual absolute value. 

Thus consider again a number field k and the places on k, (i.e., the equi­
valence classes of valuations on k, as described in Theorem 0.6.6). 

Definition 0.7.5 1fv is a valuation on k, let kv denote the eompletion of 
k at v. 1f v eorresponds to a prime ideal P, we will also write this as kp. 
We use, if neeessary, iv or ip to denote an embedding 0/ k into kv or kp. 

If v is Archimedean, then kv ~ :IR. or C, by Theorem 0.7.4. Furthermore, 
if v belongs to the place corresponding to the embedding (T, there will be 
an embedding iv such that v(iv(x)) = 1(T(x)l. 

If v is non-Archimedean, then v belongs to a place corresponding to a 
prime ideal P. The field kp is usually referred to as a P-adie field. The 
valuation ring of kp with respect to the extended valuation vp is the ring 
0/ P-adie integers and is denoted by Rp. Recall that the valuation ring 
R( vp) of k with respect to Vp is a discrete valuation ring whose unique 
maximal ideal is generated by an element 7r E Rk. The same can be proved 
for the ring Rp. More precisely, the following holds: 

Theorem 0.7.6 The valuation ring R p 0/ the eompletion kp is a diserete 
valuation ring whose unique maximal ideal is generated by ip (7r). Further­
more, R p jip(7r)Rp ~ R(vp)j7rR(vp), the residuefield. 

This result follows because the image of kp under vp is the same as the 
image of k* under Vp. For, if a E kp, then a = {an} +N. Hence 

o f:. vp(a) = lim vp(an) = lim enp(an ). 
n--+oo n-+oo 

However, the sequence {en : n E Z} is a discrete sequence, so that vp(a) = 
eno for some no. Also vp(ip(7r)) = vp(7r) = e. 

Notation Because we have given a number of constructions related to 
the prime ideal P of Rk , we re-emphasise for clarity the notation for each 
of these constructions. Thus Vp is the valuation on the number field k and 
R( vp) and P( vp) are the valuation ring and the unique maximal ideal, 
respectively, of the valuation on k. The completion of k at Vp is the P­
adic field kp and the unique extension of the valuation Vp on k to kp is 
denoted vp. Subsequently, we may drop the hat. An embedding of k in 
kp is denoted by ip. The valuation ring of P-adic integers of vp in kp is 
denoted by Rp. We will denote its unique maximal ideal by P and note 
that P = 7rRp, where we have identified 7r and its image ip(7r). 
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Definition 0.7.7 Such an element 'Ir as described in the above theorem, is 
called a unijormiser in kp . Thus a unijormiser in kp is an element oj Rh 
(or R( Vp ), or Rp) such that Vp ('Ir) generates the group Vp (k*) = vp (k:P). 

We can use this to give an alternative description of the elements of the 
P-adic field kp as power series. Let {cd be a set of coset representatives of 
the ideal P in Rp, which can be identified with a set of coset representatives 
for the residue field. This set will thus have N(P) elements and is always 
chosen so that 0 represents the zero coset. 

Theorem 0.7.8 Every element a =1= 0 in kp has a unique expression in 
the jorm 

(0.27) 

where Cio =1= o. 

(See Exercise 0.7, No. 3.) 
The finite prime P of a number field k gives rise to a complete field 

kp . If Q is a prime in a finite extension f I k which lies over P, then 
vQ I k is readily shown to be equivalent to Vp. Thus there is an embedding 
i : kp ~ fQ by Theorem 0.7.2. Furthermore, the image in f Q of a basis for 
f I k will span €Q over kp. Thus €Q I k p is a finite extension. 

In these circumstances, we have the following uniqueness result: 

Theorem 0.7.9 Let K be a field which is complete with respect to a non­
Archimedean valuation v whose valuation ring R is a discrete valuation 
ring. Let L be a finite extension oj K oj degree n. Then there is a unique 
extension v' of v to L such that L is complete with respect to v' and v' is 
determined jor all y E L by 

(0.28) 

The valuation ring R' oj v' is also a discrete valuation ring. 

If M is the unique maximal ideal in Rand M' in R', then, as these are 
Dedekind domains, we have MR' = M,e for some integer e. In addition, 
if j = [R' IM': RIM], then 

n = [L : K] = ef. (0.29) 

As in §0.3, we say that M is unramified in L I K if e = 1. Since the maximal 
ideals are unique in these cases, we describe the extension L I K as being 
unramified if e = 1. 
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Consider, again, a finite extension of number fields f I k and a prime 
ideal P of k with 

(0.30) 

For each of the ideals Qi there is an embedding i : kp ---> f Qi. By localising 
at Qi in Rf, we see that we can choose a uniformiser 'Tr' in fQ. such that 
i('Tr) = 'Tr,ei , with 'Tr a uniformiser in kp. Thus if ei = 1, then th~ extension 
is unramified. Also, 

[fQi : i(kp)l = ni = edi 

where Ii is the degree of the extension of residue fields, [Rd Qi : Rk/P], 
since, for example, Rp/P ~ Rk/P. 

The notation used here can be extended to valuations. Thus if v is a 
valuation corresponding to the prime ideal P, let Wi be the valuation on f 
corresponding to Qi. Thus we say Wi I v and for the extension f I k, there 
will be exactly g valuations Wi on f such that Wi Iv. The completions of f 
at these valuations, and also the Archimedean valuations, can be combined, 
as the following result shows. 

Theorem 0.7.10 Let f I k be a finite extension of number fields and let v 
be a valuation on k. Then 

(0.31) 

Example 0.7.11 In the field k = Q(t) where t satisfies x3+x+1 = 0, con­
sider the completions at the prime ideals lying over the rational primes 2, 3 
and 31. These were discussed in §0.3 and again using Kummer's Theorem, 
we can obtain uniformisers in these completions. Since 2Rk is a prime ideal 
in R k , 2 will be a uniformiser for kP2 and [kp2 : Q2l = 3. The two prime 
ideals P~ and P~' are generated by t - 1 and t 2 + t - 1, respectively, so these 
are uniformisers for kp~ and kp~', respectively. Note that [kp~ : Q3l = 1 
and [kp~' : Q3l = 2. These extensions are all unramified. In the case of 31, 

we have 31Rk = P~l P!!l 2 with Ph generated by t - 3 and P!!l generated 
by t - 14. Thus [kp~l : Q31l = 1 and [kp~'l : i(Q3dl = 2. In the second case, 
the extension is ramified. 

Finally, we give a form of Hensel's Lemma, which is critical for a detailed 
discussion of P-adic fields. 

Theorem 0.7.12 (Hensel's Lemma) Let Rp be a ring 01 P-adic in­
tegers and let k denote the residue field. Let 1 (x) be a monic polynomial in 
Rp[xl such that 

f(x) = g(x)h(x) 
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where g, h E k[x] are relatively prime polynomials. Then there exist poly­
nomials g, h E Rp[x] where 9 and h reduce mod P to 9 and h, with 
deg 9 = deg g, deg h = deg hand f(x) = g(x)h(x). 

For the moment, we will use this to prove the result below on unramified 
quadratic extensions. We include a proof, as this is central to deducing the 
structure of quaternion algebras over local fields (see §2.6). 

Theorem 0.7.13 The field kp has a unique unramified quadratic exten­
sion L. Furthermore, there exists u E R p such that L = kp ( vu). Also 
Rp c NLlkp(RL) and the group kp/NLlkp(L*) has order 2 with cosets 
represented by 1 and 7f. 

Proof: To simplify notation, let K = kp and denote the residue field by R. 
Note that R ~ lF q for some q = pn. Let n be an algebraic closure of K and 
let L c n be a splitting field of x q2 - x over K. The residue field L is then 
the field of q2 elements, [L : R] = 2 and xQ2 - xE L[x] has distinct roots. 
Thus by Hensel's Lemma, there is a primitive root a of X Q2 _ I -1 in L such 
that L = K(a). Now, the discriminant of x Q2 - 1 - 1 is not divisible by p. 
Dedekind's Theorem 0.3.8 holds in any Dedekind domain and so we deduce 
that the extension L I K is unramified. Thus from (0.29), [L : K] = 2. 

If L I K is a quadratic unramified extension, then L is the unique quad­
ratic extension oflFQ and L = RL/PRL . Thus as earlier, L = K(a), where 
ais a primitive root of X Q2 _ I - l. 

Let L = K(ß) where ß2 E K. If 7f is a uniformiser of K, it can also 
be taken to be a uniformiser of L. From Theorem 0.7.8, ß2 = 7fr U , where 
U E R p . In the discrete valuation ring RL, this implies that r is even. Hence 
L = K(VU) with u E R p. 

Suppose that 7f E NL1K(L*). Then from (0.28), vp(7f) = v' (y)2 where v' 
is the unique extension to L, for some y E L. However, this is impossible 
as the extension is unramified and 7f is a uniformiser. 

Finally, we show that R p C NLIK(RL). Since R is finite, the norm and 
trace maps L -+ Rare onto. Let x E Rp. Pick ao = bo E RL such that 
NL1K(bo) == x(mod P). Suppose we have constructed an = bo + bl 7f + ... + 
bn _ 17fn - 1 such that NL1K(an ) == x(mod p n ). Let an+! = an + bn7fn , bn E 

R L, be a candidate for NLIK(an+d == x(mod p n+I ). Let a be the non­
trivial automorphism in Gal(L I K). Thus 

NL1K(an+I) = (an + bn7fn )(a(an ) + a(bn )7fn ) 

== NLIK(an ) + 7fn(TrLIK(a(an )bn )) (mod p n+1 ) 

== X + 7fn(y + TrLIK(a(an)bn )) (mod pn+I). 

Since Tr is onto at the residue field level, we can choose bn E RL such 
that TrLIK(a(an)bn) == -y(mod P). Thus we have constructed a Cauchy 
sequence {an} and we let a = liman . 
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The last part of the theorem now follows from the representation of the 
elements of K given in Theorem 0.7.8.0 

For information on completions, on power series representations and 
on Hensel's Lemma, see Janusz (1996), Chapter 2. See also Lang (1970), 
Chapter 2, §1, Artin (1968), Chapters 2 and 3 and ü'Meara (1963), Chapter 
1. 

Exercise 0.7 

1. Show that the set of Cauchy sequences C in a field with valuation is a 
commutative ring, that N, the sub set of null sequences, is an ideal of C and 
that the quotient k = C / N is a field. 

2. Let k = Q( J2) and let a = {an}, where an = J2 + (2 + J2)n. Show 
that an is a Cauchy sequence with respect to Va and VP2 where (J is the 
non-trivial automorphism in Gal(k I Q) and P2 is the unique prime ideal 
of norm 2. Show that if a is a Cauchy sequence with respect to any non­
trivial valuation v on Q( J2), then v is equivalent to Va or VP2' Determine 
va(a) and vP2(a). 

3. Let u be a unit in Rp. Deduce that u has a unique expression in the 
form E Ci.,. 7rn , where Cio i=- O. Hence deduce Theorem 0.7.8. 

4. In the 3-adic numbers Q3, choose coset representatives to be 0, 1 and 
2. Find the unique power series expressions for the 3-adic integers 1/2 and 
1/4. Show that the 3-adic integer E~=o an3n, where an(n+l)/2 = 1 for all 
n ?: 0 and am = 0 otherwise, is not a rational. 

5. Let Pl, P2,'" , Pn be distinct prime ideals in k. Prave that there exists 
an element 7r E Rk which is simultaneously a uniformiser for all kPi for 
i = 1,2, ... , n. For k = Q( V-5) and the prime ideals P2, P~, pr; of norms 
2 and 3, find such an element. 

6. If kp is a P -adic field, prove that there exists an exact sequence 

Hp k* Z 
1 ---+ -- ---+ ~ ---+ - --+ 1 R:p2 kp 2 2Z . 

A prime ideal P is called non-dyadic if N(P) is not apower of 2. Prave 
that kp / kp 2 has order 4 if P is non-dyadic. 

0.8 Adeles and Ideles 

In the preceding section, we associated with each number field k an infinite 
collection of completions {kv }. These are the local fields associated with 
the global field k. Number fields will be the only global fields considered 
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here. The additive and multiplicative groups of all these local fields can be 
welded together to form adeles or ideles, and later, this process will also 
be carried out for groups related to quaternion algebras. The key feature 
is that these local fields give rise to locally compact topological groups and 
so duality and Haar measures can be utilised. The Archimedean fields 
are simply lR and C and the topology is the usual one. Now consider the 
topology on the fields kp. The operations of addition and multiplication 
are continuous in the metric space so that kp is a topological field and 
the additive and multiplicative groups k:J; and kp are abelian topological 
groups. Let 1f be a uniformiser of k p so that kp = UnEZ1fn Rp. Now Rp is 
an open and closed set and the set {a + 1fn Rp : n ;:::: O} is a fundamental 
system of neighbourhoods of a. The topology is clearly Hausdorff. It is also 
locally compact and we indulge ourselves by including a proof. 

Theorem 0.8.1 The complete field kp is locally compact and its valuation 
ring Rp is compact. 

Proof: We first show that Rp is compact. As earlier, let {Ci} be a (finite) 
set of coset representatives of P in R p . Let {UA , A E n} be an open cover 
of Rp, which we suppose has no finite subcover. Now R p = Ui(Ci +1fRp), 

so there is a Cio such that Cio + 1fRp has no finite subcover. Now 

so that the argument can be repeated. 
The sequence {L:7=o Cij 1fj} is Cauchy and so converges to L:~o Cij 1fj 

in Rp. Now L~OCij1fj E UA for some A. As UA is open, there exists N 

such that L:~o Cij 1fj + 7fN Rp C UA . However, then L:f=o Cij 7fj + 7fN+l Rp 

has a finite sub cover. This contradiction shows that R p is compact. Since 
kp = U1fn Rp, it follows that kp is locally compact. D 

This theorem shows that the additive topological group k:J; is locally 
compact and its subgroup Rp is compact. For the multiplicative group k p, 
the subgroup of units 

is also compact. 

Corollary 0.8.2 

1. R p is a compact subgroup 0/ the locally compact topological group k:J;. 

2. Rp is a compact subgroup 0/ the locally compact topological group kp. 
Note also that since each elemen~ of Rp has the form L: Cij 1fj , it is a limit 
of the partial sums {L:7=o Cij 7fJ }, each of which lies in Rk. Thus Rk is 
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dense in Rp and k is dense in kp. 

For the moment, let G be any locally compact topological group. A 
regular Borel measure p, on G such that 

• p,(V) > 0 if V is an open set, 

• p,(F) < 00 if F is a compact set, 

• p,(g.A) = p,(A) for all 9 E G and Borel sets A 

is a left Haar measure on G. A right Haar measure could equally weIl be 
defined. The basic result is as follows: 

Theorem 0.8.3 Let G be a locally compact topological group. 

1. There exists a left Haar measure on G. 

2. 1f P,I and P,2 are left Haar measures on G, then there exists r E IR+ 
such that P,2 = rp,l. 

Thus Haar measures are unique up to a scaling and by a suitable choice, a 
normalised measure can frequently be chosen. 

Let G = (kp, +), in which R p is compact. Thus we can choose a normal­
ised Haar measure p, such that p,(Rp) = 1. We note that this choice is com­
patible with our earlier choice of a normalised valuation on k in the follow­
ing sense. Consider p,( 7rn Rp ). By left invariance, p,( a + 7rn Rp) = p,( 7rn R p ). 
Now 

7rn Rp = Ui(7rnCi + 7rn +1 R p ) 

where this is a disjoint union running over the coset representatives of P in 
Rp. Thus p,(7rnRp) = N(P)p,(7rn+I Rp). Hence p,(7rnRp) = N(p)-n. Thus 
for any y E kp , we have 

p,(yRp) = vp (y) (0.32) 

where the measure on the left is the normalised Haar measure and the 
valuation on the right is the extension of the normalised valuation on k. 
Further consideration of these normalised measures will arise later. 

We now show how to form adelic groups. For later applications, we put 
this in a general context. 

In the following, we use the expression "almost all" to mean "all but a 
finite number". Let {GA: >. E O} be a family of locally compact Hausdorff 
topological groups and let 0 0 be a finite subset of O. For each >. E 0 \ 0 0 , 

there is a given compact open subgroup HA of GA' 

Definition 0.8.4 The restricted direct product of the GA with respect to 
the HA is the subgroup of the direct product defined by 

G = {x = {xA} E rr GA I x A E HA for almost all >. }. (0.33) 
AEn 
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The group G is topologised by taking as a neighbourhood system of the 
identity, the sets TI U).., where U).. is an open neighbourhood of the identity 
in G).. for all A and U).. = H).. for almost all A. 

By Tychonov's theorem, this defines G as a locally compact topological 
group and t"he group and its topology is independent of the choice of finite 
subset 0 0 . 

In all of the cases we will consider, the index set will be the set of all 
places of a number field k and 0 0 will always contain the finite subset of 
Archimedean places, usually denoted 0 00 • 

Thus let k be a number field and 0 = {v : v a place of k}. Then the 
completions k;; are alllocally compact and for the non-Archimedean places 
R v is the designated compact open subgroup. The group of adeles is then 
the restricted direct product of the k;; with respect to the Rv . In this case, 
the product is also a ring and is referred to as the ring of adeles. lt will be 
denoted kA. 

For the same number field, take the multiplicative groups k~ as the loc­
ally compact groups and for v non-Archimedean, take the units R~ as the 
designated subgroups. From this, we obtain the idele group of k, denoted 
kA· 

Note that the ring kA has zero divisors and that kA is the group of units 
of kA. However, the topology on kA is not the subspace topology from kA. 
In fact the relation is that the topology on kA agrees with the subspace 
topology under the embedding x f---4 (x, X-I) of kA in kA x kA (see Exercise 
0.8, No. 4). 

For each x E k, we know that vp(x) = 1 for all but a finite number of 
P. Thus, since k embeds in kv for each v, there is an embedding of k in 
kA . In the same way, each x E k* is a P-adic unit for almost all P, and 
k* embeds in kA. Under this embedding, k inherits a topology from kA. 
lt is the discrete topology. For, let us choose the normalised valuations vp 

at each pI ace of k, so that we can use the product formula (see Exercise 
0.6, No. 4). Let x E k. By the product formula, all vp(x) are bounded and 
vp(x) = 1 for all but a finite number. However, x being arbitrarily dose to 
o would contradict the product formula. Via the embedding x f---4 (x, x-I), 
it follows that k* is also discrete in kA. 

There are furt her important results concerning these structures, such as 
the compactness ofthe quotient kAlk, the denseness of k+kv in kA, and so 
on, which have important number-theoretic ramifications. As we will have 
to develop similar results in a wider context to obtain results on arithmetic 
Kleinian and Fuchsian groups, furt her discussion of these topics will re­
emerge in Chapter 7. 

For an initial introduction to adeles and ideles, see Cassels and Frölich 
(1967), Chapter 2. 
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Exercise 0.8 

1. Prove that Rp is the unique maximal eompaet subring of kp . 

2. Let n7L be an integral ideal. Show that for alt p sueh that p ;1n, the 
closure of n7L in Q!p is 7Lp . 

3. Let k and C be number fields with C I k a finite extension. Let Q be 
a prime ideal of C lying over a prime ideal P 0/ k so that we have an 
embedding i : kp -; CQ . Prove that i is eontinuous and deduee that i(kp) 
is closed in f!.Q. 

4. Prove that k'A. is the group of units in kA and that the topology on k'A.. 
is the subspaee topology of k'A. embedded in kA x kA via x f---4 (x, X-I). 

0.9 Quadratic Forms 

Quadratie forms arise naturally in various guises throughout the subsequent 
ehapters and, indeed, large parts of the theory of quaternion algebras over 
mlmber fields and quadratie farms are closely intertwined. Throughout, 
quadratie forms appear in mainly geometrie eontexts. It is thus appropri­
ate to introduee the basies of quadratie forms in a geometrie, co ordinate­
free manner. Throughout this seetion, all fields will be assumed to have 
eharaeteristie i= 2. 

Definition 0.9.1 Let V be a finite-dimensional veetor spaee over a field 
K and let B : V x V -; K be asymmetrie bilinear map. Then the pair 
(V, B) is a quadratie spaee. 

The bi linear map determines a quadratie map q : V -; K by q(v) = 
B(v, v) so that q(av) = a2 q(v), far all a E K. More generally, Band q are 
related by 

2B(v, w) = q(v + w) - q(v) - q(w) (0.34) 

and so the quadratie spaee may also be denoted by (V, q). 
Choosing a basis VI, V2, ... ,Vn of V, we obtain a quadratie form, also 

denoted here by q, on n variables Xl, X2, ... ,Xn as 

q(Xl' X2,· .. ,Xn ) = L B(Vi' Vj)XiXj 
i,j 

(0.35) 

with assoeiated symmetrie matrix M = [B(Vi' Vj)]. A change of basis will 
give rise to a eongruent symmetrie matrix and, more generally, two quad­
ratie forms over K with assoeiated matriees M and M' are equivalent if 
there exists a non-singular matrix X E GL(n, K) such that 

M' =XtMX. 
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In geometrie language, this equivalenee eorresponds to isometrie quadratie 
spaees (V, B) and (V', B') where an isometry T is a K-linear isomorphism 
T : V -t V' sueh that 

B'(T(V), T(W)) = B(v, w) V v, W E V. (0.36) 

A quadratie spaee is regularifthe dual map v f-+ B( ,v) from V to its dual 
V* is an isomorphism and this eorresponds to a non-singular quadratie 
form where the matrix M is non-singular. 

Lemma 0.9.2 Let (V, B) be a regular quadratie space and W a subspaee 
ofV. Then 

1. dim(W) + dim(W~) = dim(V); 

2. (W~)~ = W 

Here W ~ denotes the orthogonal eomplement of W; that is, 

W~ = {v E V I B(v, w) = 0 V w E W}. 

The restrietion of B to W makes W a quadratie spaee, but note that V 
being regular does not imply that W need be regular. A veetor v f=. 0 is 
ealled isotropie if q(v) = B(v, v) = O. A quadratie spaee is ealled isotropie 
if it eontains isotropie veetors and is ealled anisotropie otherwise. Note 
that if (V, B) is an isotropie spaee with q(v) = 0, then the one-dimensional 
subspaee (v) is not a regular quadratie spaee. 

Example 0.9.3 Let (V, B) be a four-dimensional quadratie spaee over Q. 
With respeet to a basis VI, V2, va, v4 of V, let M be the diagonal matrix 
with entries 2, 1, 1 and -1. Then V is regular and isotropie, as q(va + V4) = 
O. If W 1 = (va + V4), then wf = (v!, V2, Va + V4). If W 2 = (v!, V2), 
W3 = (v!, V4), W4 = (va, V4) and W 5 = (VI + V2 + va, V4), then W 2 and 
W3 are anisotropie subspaees whereas W4 and W 5 are isotropie. Further­
more, W 2 and W3 are not isometrie whereas W4 and W 5 are isometrie. 

Quadratie spaees (V, B) may be deeomposed into orthogonal summands 
W 1 and W 2 , where V = W 1 E9 W 2 and B(wI, W2) = 0 for all WI E W 1 , W2 E 
W 2 . This is denoted W1..l W2. In partieular, if V is not regular, then V = 
rad(V)..l W, where rad(V) is the kernel of the dual map and W is a regular 
subspaee. 

If a E K* and (V, B) is a regular quadratie spaee over K, then (V, B) is 
said to represent a if:3 v E V sueh that q(v) = a. In that ease V = (v)..lW, 
where W is a regular subspaee. Thus by repeating this, we obtain, 

Lemma 0.9.4 If (V, B) is a quadratie spaee over K, then V has an or­
thogonal basis VI, V2, ... ,Vn sueh that the assoeiated matrix M is diag­
onal. In other words, every quadratie form is equivalent to a diagonal form 
dlX~ + d2X~ + ... +dnx;. 
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We ean also define the (external) orthogonal sum V1..l V2 of two quadratie 
spaees (V1,Bd, (V2,B2) with biIinear map B the sum of BI and B2 via 

The representation of an element a E K* by (Vi, BI) is then equivalent to 
the existenee of an isotropie orthogonal sum of the form VI..l(V2), where 
Q2(V2) = -a. 

An important invariant of a regular quadratie spaee is its determinant 
or discriminant. This is an element of the quotient group K* / K*2 and it 
is defined to be det(M)K*2 where M is the symmetrie matrix obtained 
with respeet to any basis of V. For an orthogonal basis as deseribed above, 
it will be d1d2 ... dnK*2. Note, in Example 0.9.3, that the subspaces W 2 
and W3 have determinants 2Q*2 and _2Q*2 respeetively, and so eannot be 
isometrie. 

A quadratie form over a field K ean clearly be regarded as a quadratie 
form over any exten~ion field L. Alternatively, the scalars in a quadratie 
spaee (V, B) ean be extended to (V Q9 L, B), where B is now defined on 
the extended veetor spaee. If (V, B) and (V', B') are isometrie quadratie 
spaces over K, then their extensions will be isometrie quadratie spaees over 
L. Of course, non-isometrie spaees may beeome isometrie over an extension 
field and, in the same way, an anisotropie spaee may weIl beeome isotropie 
under extension of scalars. 

If k is a number field, then from the preeeding seetion we ean embed k in 
the eompletions kv for eaeh finite and infinite place v of k. Thus if (V, B) 
is a regular quadratie spaee over k, then it gives rise to regular quadratie 
spaees over the loeal fields, C, IR, and kp for eaeh finite plaee P. 

Regular quadratie spaees over C are classified up to isometry by their di­
mension and over IR by their dimension and signature, whieh is the number 
of positive eigenvalues minus the number of negative eigenvalues. 

Over the P-adie fields, the classifieation is more complieated and we will 
not go into it in detail. However, we make some important remarks in these 
eases. Reeall that a P-adie field kp is ealled dyadic if N(P) is apower of 2 
and otherwise non-dyadic. For non-dyadie fields, reduetion to the (finite) 
residue field is enough to determine the isotropicity of quadratie spaees. 
First note that a regular quadratie form over kp with uniformiser 1f will be 
equivalent to one of the form dlxI +d2X~ + ... +dnx;, where either d i E R:p 
or di = 1fd~ with d~ E R:p sinee we ean always adjust modulo squares. If 
n = 2 for example, then such a form is isotropie if and only if -d1I d2 is 
a square in R:p. However, an element a E Rp is a square if and only if its 
image ä is a square in the residue field. This follows from Hensel's Lemma, 
the rest riet ion to non-dyadie being implied by the requirement in Hensel's 
Lemma that x 2 - ä faetorises in the finite field into relatively prime faetors. 
More generally, we have the following result for quadratie forms. 
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Theorem 0.9.5 Let kp be a non-dyadie field with residue field k. Let (V, q) 
be an n-dimensional quadratie spaee over kp , where V = VI -LV2, and q = 
ql-Lq2, where ql (Xl, X2, ... ,xr) = dlX~ + d2X~ + ... + drx; with di E Ep 
and q2(Xr+1,' .. ,xn ) = 7rq~(Xr+1,'" ,xn ) = 7r(dr+1X;+1 + ... + dnx;,) 
with di E Ep. Then (V, q) is anisotropie over kp if and only if (VI, iil) and 
(V2, ii~) are both anisotropie over k. 

Remark In applieations later in the book, this result will only be required 
for n = 3. A proof of this result for that ease follows the diseussion of 
quaternion algebras over loeal fields in §2.6. 

This theorem reduees ealculations to quadratie spaees over finite fields. 
If IFq is a field of odd order q, 1F~ is eyclie of even order so that 1F~/1F~2 
has order 2. Let 1 and s be eoset representatives and eonsider any three­
dimensional form over IFq . Up to a scalar, it will be equivalent to one of 
the diagonal forms diag{l,l,l} or diag{l,l,s}. If -1 E 1F~2, then these 
forms are clearly isotropie. If -1 rt. 1F~2, we ean take s to be -1 and 
so diag{l, 1, -I} is isotropie. Also the sets 1F~2, 1 + 1F~2 are unequal and 
have the same eardinality. So, :3 z E 1F~ such that 1 + z2 rt. 1F~2, but then 
-1 = (1 + Z2)y2 and so diag{l, 1, I} is isotropie. Thus the following holds: 

Corollary 0.9.6 Let kp be a non-dyadie field. Then any quadratie form 
dlX~ + d2X~ + d3X~ with di E R p is isotropie. 

The situation for dyadie fields is eonsiderably more eomplieated. 

Example 0.9.1 Consider the quadratie spaee over Q with diagonal form 
x~+3x~+5x~. With the obvious embeddings ofQ in Qp, we ean regard this 
as a quadratie form over the p-adie fields Qp. For p f=. 2,3,5, this form is 
isotropie by Corollary 0.9.6. For p = 3, we eonsider the summands (VI, ql) 
and (V2, q~), where ql = X~ + 5x~ and q~ = x~. Sinee Xl + 5x~ == O(mod 3) 
has a solution, the form is isotropie over Q3 by Theorem 0.9.5. For p = 5, 
ql = x~ + 3x~, q~ = x~, and these are both anisotropie mod 5, so the form 
is anisotropie over Q5. 

Clearly, if a quadratie spaee over a number field is isotropie, it remains 
isotropie over any of its eompletions. The following powerful loeal-global 
theorem gives the eonverse to this. 

Theorem 0.9.8 (Hasse-Minkowski Theorem) Let k be a number field 
and (V, B) a quadratie spaee over k. Then V is isotropie over kif and only 
if V is isotropie over all kv where v ranges over all plaees of k. 

Corollary 0.9.9 If V is a quadratie spaee over k and a E k*, then V 
represents a in k if and only if V represents a in all kv where v ranges over 
all plaees of k. 
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The eorollary follows direetly from the theorem in view of the remarks 
following Lemma 0.9.4. 

In Example 0.9.7, the spaee was shown to be anisotropie over Q5 and 
henee is anisotropie over Q. This is more obvious, however, from the faet 
that x~ + 3x~ + 5x~ is clearly anisotropie over the reals. There are thus at 
least two plaees of Q at which this form is anisotropie and no more than 3 
sueh plaees sinee we do not know what happens at the prime 2. 

For eertain eases, whieh are partieularly relevant for later applieations, 
we ean obtain information on the parity of the eardinality of the number 
of plaees at whieh a form is anisotropie. 

Let K be a field and let a, b E K*. We introduee a Hilbert symbol (a, b) 
which takes the values ±1 aeeording asthe quadratie form ax2 + by2 rep­
resents 1 or not. 

Theorem 0.9.10 (Hilbert's Reciprocity Law) Let k be a number field 
and let a, b E k*. Then the set of places {v I (a, b) = -1 in kv } is finite and 
of even cardinality. 

Consider, again, the example x~+3x~+5x~, rewritten as -3x~-5x~ = x~. 
Thus x~+3x~+5x~ is isotropie with Xl -=I- 0 if and only ifthe Hilbert symbol 
(-3, -5) = 1, where referenee to a speeifie field has, for the moment, been 
suppressed. It is not diffieult to see that for all primes p f. 2,5, there is a 
solution to x~ + 3x~ + 5x~ = 0 in Qp with Xl f. O. At the infinite plaee and 
p = 5, (-3, -5) = -1. Thus by Hilbert 's Reciproeity Law, it follows that 
x~ + 3x~ + 5x~ is isotropie in Q2. 

We now make some brief eomments on the orthogonal groups of quadratie 
spaees. For a regular quadratie spaee (V, B) over a field K, the set of 
isometries of V forms a group O(V, B) or O(V), the orthogonal group of the 
spaee. If we ehoose a basis 8 = {Vl, V2,'" ,vn } of V, then eaeh TE O(V) 
is represented by a matrix T so that we obtain a matrix representation 

Os(V) = {T E GL(n,K) I TtMT = M} 

where, as before, M is the symmetrie matrix [B(Vl, V2)]. The determinant 
of T, whieh is independent of the ehoice of basis, will be ±1 and SO(V) 
will denote the subgroup of those with determinant + 1. This representation 
depends on the ehoice of basis and if X is the change of basis matrix from 
8 to 8', then 

For any anisotropie veetor v E V, we ean define arefleetion Tv in the 
hyperplane orthogonal to v. This is given by 

2B(x, v) 
Tv(X) = X - q(v) v. (0.37) 
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Then Tv E O(V) fixes all vectors orthogonal to v and Tv(V) = -v. Thus 
Tv has determinant -1. These refiections generate O(V) and indeed more 
is true: 

Theorem 0.9.11 1f (V, B) is a regular quadratie spaee of dimension n, 
then every isometry of O(V, B) is a produet of at most n refleetions. 

Finally, the Hasse-Minkowski Theorem ean be used to show that quad­
ratie spaees over a number field are isometrie if and only if they are loeally 
isometrie. Indeed, this result is also referred to as the Hasse-Minkowski 
Theorem. If V is a quadratie spaee over k and v is a plaee of k, let Vv 

denote the quadratie spaee obtained by extending the eoeffieients to kv . 

Theorem 0.9.12 Let U and V be regular quadratie spaees of the same 
dimension over a number field k. Then U and V are isometrie if and only 
if Uv and Vv are isometrie over kv for all plaees v on k. 

Proof: Any isometry from U to V clearly extends to one from Uv to Vv . 

The reverse implieation is proved by induetion on dim U. Let q and Q 
denote the quadratie maps on U and V, respeetively. Suppose that U =< 
u > is one-dimensional with q(u) = a i= O. Thus U represents a loeally 
and, henee, so does V. Thus by Corollary 0.9.9, V represents a. Henee U 
and V are isometrie. 

Now let U have dimension n 2: 2, u E U with q(u) = a i= O. As above, V 
also represents a. Thus there exists v E V with Q(v) = a. Let U' =< u >.1 

and V' =< v >.1. By assumption, for eaeh v there exits an isometry 
a v : Uv -+ Vv . Furthermore, there exists T E O(Vv ) such that Tav(u) = v 
(see Exereise 0.9, No. 7). Thus Tav gives an isometry from U~ to V~. Thus 
by induetion, there is an isometry U' -+ V', whieh ean be easily extended 
to an isometry between U and V. D. 

For basie results and results over P-adie fields, see Lam (1973), Chapters 
1 and 6. For the Hasse-Minkowski theorem and Hilbert Reeiproeity, also 
see Lam (1973), Chapter 6, but for full proofs, using ideles as deseribed in 
preeeding section, see O'Meara (1963), Chapters 6 and 7. 

Exercise 0.9 

1. Let V be a quadratic spaee (not neeessarily regular) and let W be a 
regular subspace. Prove that V = W J.. W .1 . 

2. Let (V, q) be a two-dimensional regular quadratic spaee over K. Prove 
that the following are equivalent: 
(a) V is isotropie. 
(b) The determinant of V is -lK*2. 
(e) q has the diagonal form xi - x§. 
(d) q has the form XIX2. 
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(A spaee sueh as deseribed by these equivalent eonditions is ealled a hyper­
bolie plane.) 

3. Let V = M 2 (K) and define Band B' by B(X, Y) = tr (XY) and 
B'(X, Y) = tr (Xyt ), respeetively. Show that (V, B) and (V, B') are regular 
quadratie spaees and find orthogonal bases Jor eaeh. Show that they are 
isometrie iJ and only iJ -1 E K*2. 

4. Let k p be non-dyadie. 
(a) Prove that every regular quadratie spaee oJ dimension 2:: 5 over kp is 
isotropie. 
(b) Show that iJ 1, U, 7r and U7r are the eoset representatives in kp / k p 2 given 
in Exereise 0.7, No. 6 with U E Rp, then the Jour-dimensional quadratie 
spaee with diagonal Jorm xI - 7rX~ - uX§ + 7rUX~ is anisotropie. 

(This result is also true Jor dyadie fields ; see §2.5.) 

5. Show that the Jour-dimensional Jorm 

xi + 3x~ + (2 + v'16)x~ + (2 - v'16)x~ 

is anisotropie over Q( v'IO). 

6. Determine iJ the Jollowing quadratie Jorms represent 1 or not: 
(a) 15x2 - 21y 2 in Q. 
(b) 2x2 + 5y2 in Q2. 
(e) (1+~)X2 - e-~)y2 in Q(yC7). 
(d) (t + 1)x2 + t y2 in Q(t), where t satisfies x 3 + x + 1 = O. 

7. Let (V, B) be a quadratie spaee over a field K oJ eharacteristie i= 2 and 
let a E K*. Let A = {v E V I q(v) = a}. Prove that iJv,w E A, then at 
least one oJ v ± w is anisotropie. Deduee that O(V) aets transitivelyon A. 



1 
Kleinian Groups and Hyperbolic 
Manifolds 

As indicated in the Preface, this book is written for those with a reasonable 
knowledge of Kleinian groups and hyperbolic 3-manifolds, with the aim 
of extending their repertoire in this area to include the applications and 
implications of algebraic number theory to the study of these groups and 
manifolds. This chapter includes the main ideas and results on Kleinian 
groups and hyperbolic 3-manifolds, which will be used subsequently. There 
are no proofs in this chapter and we assume that the reader has at least 
a passing knowledge of some of the ideas expounded here. In the Further 
Reading at the the end of the chapter, references are given for all the 
results that appear here so that deficiencies in the presentation here may 
be remedied from these sources. 

1.1 PSL(2, CC) and Hyperbolic 3-Space 

The group PSL(2, q is the quotient of the group SL(2, q of all 2 x 2 
matrices with complex entries and determinant 1 by its center {±I}. Ele­
ments of a subgroup r of PSL(2, q will usually be regarded as 2 x 2 
matrices of determinant 1, so that the distinction between rand its pre­
image in SL(2, C) is frequently blurred. In general, this is innocuous, but, if 
necessary, we use the notation f = p-l(r) C SL(2, C) to distinguish these 
groups. 

Via the linear fractional action 
az+b 

z~-­

cz+d' 
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elements')' = (~ !) ofPSL(2, q are biholomorphic maps oft = CU{oo}. 

The action of each ')' E PSL(2, C) on textends to an action on the upper 
half 3-space 

H 3 = {(x, y, t) E lR3 I t> O} 

via the Poincare extension. Each ')' is a product of an even number of 
inversions in circles and lines in C. Regarding t as lying on the boundary 
of H3 as t = 0, (Le., the sphere at infinity), each circle C and line f in C has 
a unique hemisphere C or plane i in H3, orthogonal to C and meeting C 
in C or f. The Poincare extension of ')' to H3 is the corresponding product 
of inversions in C and reflections in i. 

When H3 is equipped with the hyperbolic metric induced from the line 
element ds defined by 

2 dx2 + dy 2 + dt2 
ds = , 

t 2 
(1.1) 

then H3 becomes a model of hyperbolic 3-space, (Le., the unique three­
dimensional connected and simply connected Riemannian manifold with 
constant sectional curvature -1). The line element induces a distance met­
ric d on H3 and H 3 is complete with respect to this in that every Cauchy 
sequence converges. The inversions in hemispheres and reflections in planes 
as described above are isometries of H 3 with the hyperbolic metric and 
generate the full group of isometries, Isom H 3. Thus, under the Poincare 
extension, the group PSL(2, C) is identified with the subgroup Isom+H3 of 
orientation-preserving isometries of H3: 

. (1.2) 

The whole book is concerned with subgroups r ofPSL(2, q which satisfy 
various conditions, same of which are topological, but mainly these condi­
tions relate to the geometry of the action of r on H 3. The broad idea is to 
relate the geometry, on the one hand, to the algebra and arithmetic of the 
associated matrix entries, on the other. In this chapter, we collect tagether 
the main geometrical ideas which will form the basis of this association. 

Before embarking on a discussion of the conditions to be satisfied by 
r c PSL(2, q, we remark that, starting instead with PSL(2, lR), the linear 
fractional action of its elements on C restricts to upper half 2-space H 2 = 
{(x, t) E lR2 I t > O} so that PSL(2, lR) becomes identified with Isom+H2 

for this upper half-space model of hyperbolic 2-space with metric induced 
by ds2 = dX2ttdt2: 

(1.3) 

This metric on H 2 is the restriction of the hyperbolic metric on H 3 to the 
plane y = O. Note that elements of PSL(2, C) are isometries of H 3 and the 
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group acts transitivelyon the set of circles and straight lines in <C. Thus 
the hemispheres and planes in H3, orthogonal to <C, with the restrietion of 
the hyperbolic metric in H3 are all models of hyperbolic 2-space and form 
the set of all geodesie hyperplanes, or planes, in H 3 . 

If two such planes intersect in H 3 , then there is a well-defined dihedral 
angle between them. This angle degenerates to zero if the planes are tan­
gent on the sphere at infinity. In all other cases, two planes have a unique 
common perpendicular and a well-defined distance between them. 

The geodesie lines in H3 are circles and straight lines orthogonal to <C. 
The underlying geometry of points, lines and planes and their incidence 
relationships in hyperbolic space is weIl understood. In addition, specific 
computations can be made on geometrie configurations in hyperbolic 3-
space. Indeed, there are many precise formulas governing the structure 
of such configurations. Some of these concerning volumes will play a key 
role in our later discussions. All volumes are computed with respect to 
the hyperbolic volume element dV induced from the metric. For the upper 
half-space model, this is given by 

dV= dx~:dt. (1.4) 

Some of the formulas referred to above are most readily proved using 
other models of hyperbolic 3-space. The only other model, apart from the 
upper half-space model, which will play any direct role subsequently, is the 
Lobachevski model A, which we now describe. 

Let V be a four-dimensional space over lR with a quadratic form q of 
signature (3,1). Thus, with respect to a suitable basis of V, 

q(x) = xi + x~ + x~ - x~. 

First consider one sheet of the hyperboloid defined by 

{x E V I q(x) = -1,X4 > O}. 

The line element ds defined by ds2 = dx~ + dx~ + dx~ - dx~ yields a 
Riemannian metric on the hyperboloid, making it a model of hyperbolic 
3-space. 

Alternatively, consider the positive cone in V defined by 

c+ = {x E V I q(x) < 0 and X4 > O} 

and let Adenote its projective image PC+. There is an obvious bijection 
with the hyperboloid and using this, one obtains that A is another model of 
hyperbolic 3-space : the Lobachevski model. Points, lines and planes in this 
model are the projective images of one-, two- and three-dimensionallinear 
subspaces of V which intersect C+. In particular, such three-dimensional 
subspaces will have a one-dimensional orthogonal complement in (V, q) and 
so every hyperbolic plane in A is the image of aspace vJ.. where q(v) > O. 
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The subgroup of the orthogonal group of (V, q) which preserves the 
cone C+, 

O+(V, q) = {l7 E GL(V) 1 q(l7(v)) = q(v) for all v E V, and a(C+) = C+} 
(1.5) 

induces an action on A, yielding the full group of isometries of this model 
of hyperbolic 3-space. A reflection in a space v~ where q(v) > 0 lies in 
0+ (V, q) and has negative determinant. Thus for A, we have the description 
of the isometry groups as 

Isom A ~ PO+(V,q), Isom+ A ~ PSO+(V,q). (1.6) 

Exercise 1.1 

1. Show that stereographie projeetion !rom a point on the unit sphere in ]R4 

is the restrietion of an inversion in a sphere. Show that the upper half-spaee 
H 3 ean be mapped eonformally to the unit ball 

B 3 = {(Xl, X2, X3) E ]R3 1 X~ + X~ + X~ < I} 

by a eouple 01 stereographie projeetions. Use this to deseribe the hyperbolie 
metrie on the ball and the geodesie lines and planes in the B3 model of 
hyperbolie spaee. 

2. Show that inversions in hemispheres in H 3 with eentres on the sphere 
at injinity are isometries of the hyperbolie metrie in H 3 . 

3. Find a formula for the hyperbolic distance between two points (Xl, yl, iI) 
and (X2, Y2, t2) in H3. 

4. Show that, in the Lobaehevski model, if two planes PI and P2 in Aare 
the images 01 VI ~ and V2 ~, respeetively, as deseribed above, then 
(a) il PI and P2 intersect in the dihedral angle (), then cos() = -B(vI, V2), 
where B is the symmetrie bilinear form indueed from q; 
(b) if PI and P2 do not interseet and are not tangent, then the hyperbolie 
distanee f between them is given by coshf = -B(VI, V2). 

5. Prove that PSL(2, C) aets transitivelyon the set of eircles and straight 
lines in C. 

1.2 Subgroups of PSL(2, C) 

Now let us consider various subgroups of PSL(2, C) and the related geo­
metry. First, for individual elements "I i=- Id, we have the following classi­
fication: 

• "I is elliptic if tr "I E ]R and Itr "11 < 2. 
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• 'Y is parabolic if tr 'Y = ±2. 

• 'Y is loxodromic otherwise. 

In the cases where 'Y is loxodromie and tr 'Y E IR, then 'Y is usually termed 
hyperbolic. 

In its action on t, 'Y is parabolic if and only if it has exactly one fixed 
point and in that case, it is conjugate to Z f--* Z + 1. In all other cases, 'Y 
has a pair of fixed points and the unique geodesie in H3 joining these is 
called the axis 01 'Y, A')'. If 'Y is elliptie, then 'Y rotates H 3 about AT If 
'Y is loxodromic, then 'Y is a screw motion translating along its axis and 
simultaneously rotating about it. Note that only the elliptic elements have 
fixed points in H 3 • 

The group P8L(2, q acts transitivelyon the points of H 3 so that the 
stabiliser of any point in H3 is conjugate to the stabiliser of (0, 0,1), whieh is 
the compact subgroup P8U(2, q, which is isomorphie to 80(3, IR). Indeed 
H3 and its geometry can be obtained from 8L(2, q as its symmetrie space 
as 8U(2, C) is a maximal compact subgroup. Likewise, the action on the 
sphere at infinity is transitive so that point stabilisers are conjugate to B, 
the stabiliser of 00, whieh consists of upper-triangular matrices: 

(1.7) 

Any finite subgroup of P8L(2, C) must have a fixed point in H 3 and so 
be conjugate to a subgroup of 80(3, IR). As such, it will either be cyclic, 
dihedral or conjugate to one of the regular solids groups and isomorphie to 
A4 ,84 or A5 . 

Two notions of "smallness" for subgroups of P8L(2, C) are important in 
the subsequent discussion. 

Definition 1.2.1 Let r be a subgroup 01 P8L(2, q. 

• The group r is reducible il all elements have a common fixed point in 
their action on t. Otherwise, r is irreducible. 

• The group r is elementary il it has a finite orbit in its action on 
H3 U t. Otherwise, r is non-elementary. 

Clearly, reducible groups are elementary, but the converse is not true. In 
particular, any non-cyclic finite group is irreducible and elementary. Also 
subgroups of finite index in non-elementary groups remain non-elementary. 
The important feature of non-elementary groups is as follows: 

Theorem 1.2.2 Every non-elementary subgroup oIP8L(2, q contains in­
finitely many loxodromic elements, no two 01 which have a common fixed 
point. 
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Reducible groups can be characterised by a trace condition. 

Lemma 1.2.3 Let x, y ;: PSL(2, q. Then (x, y) is. reducible if and only if 
tr[x,y] = 2. 

Note that the trace of the commutator is well-defined, independent of the 
choice of pre-images of x and y in SL(2, C). More generally, for any X, Y E 
SL(2, C), let M(X, Y) denote the 4 x 4 matrix whose columns are the 
matrices I, X, Y and XY. Then a simple calculation yields 

det M(X, Y) = 2 - tr [X, Y]. (1.8) 

This yields the following elementary but important resu1t: 

Lemma 1.2.4 Let x, y E PSL(2, q. The group (x, y) is irreducible if and 
only if the vectors I, X, Y and XY in M 2 (C) are linearly independent. 

Definition 1.2.5 A Kleinian group r is a discrete subgroup of PSL(2, q. 

This condition is equivalent to requiring that r acts discontinuously on 
H3, where this means that, for any compact subset K of H 3, the set {"( E 
r I "(K n K 1- 0} is finite. Thus the stabiliser of a point in H3 is finite. 
The stabiliser of a point on the sphere at infinity can be conjugated to a 
subgroup of B described at (1.7). The discrete subgroups of B fall into one 
of the following classes: 

• Finite cyclic 

• A finite extension of an infinite cyclic group generated either by a 
loxodromic element or by a parabolic element 

• A finite extension of Z EB Z, which is generated by a pair of parabolics 

A more precise classification of the discrete subgroups of B can be given. 
One outcome of this is the following: 

Lemma 1.2.6 If r is a Kleinian group, then a parabolic and loxodromic 
element cannot have a jixed point in C in common. 

The last category of discrete subgroups of B described above is critical for 
the description of hyperbolic manifolds. 

Definition 1.2.7 A point ( E C, the sphere at injinity, is a cusp of the 
Kleinian group r if the stabiliser r t; contains a free abelian group of rank 
2. 

Since a Kleinian group acts discontinuously on H3, we can construct a 
fundamental domain for this action of r on H 3 . A fundamental domain is 
a closed subset :F of H3 such that 
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• U')'H'YF = H 3 

• FO n 'YFo = 0 für every l' -=I=- Id, l' E f, where FO is the interior of F 

• theboundary of F has measure zero. 

The following construction of Dirichlet gives the existence of such a fun­
damental domain. Pick a point P E H 3 such that 'Y(P) -=I=- P for all 
l' E f, l' -=I=- Id. Define 

Fp(f) = {Q E H 3 I d(Q, P) ~ d(-y(Q), P) for all l' E r}. (1.9) 

The boundary of Fp(f) consists of parts of hyperbolic planes bounding 
the half-spaces which contain Fp(f). These fundamental domains are poly­
hedra so that the boundary is a union of faces, each of which is a polygon 
on a geodesie plane. The following definition gives the most important fi­
niteness conditions on f: 

Definition 1.2.8 A Kleinian group f is called geometrically finite if it 
admits a finite-sided Dirichlet domain. 

Such groups are therefore finitely generated. 
A Kleinian group f is said to be of finite covolume if it has a fundamental 

domain of finite hyperbolic volume. The covolume of fis then 

Covol(f) = L dV. (1.10) 

The group f is said to be cocompact if f has a compact fundamental do­
main. Implicit in the above definition is the result that the volume is inde­
pendent of the choice of fundamental domain. This is stated more precisely 
as follows: 

Lemma 1.2.9 Let F 1 and F2 be fundamental domains for the Kleinian 
group f. Then, if f.1'"1 dV is finite, so is f.1'"2 dV and they are equal. 

Of course, cocompact groups are necessarily of finite covolume. This con­
dition has the following geometrie and algebraic consequences. 

Theorem 1.2.10 If f has finite covolume, then there is a P E H 3 such 
that Fp(f) has finitely many faces. In particular, f is geometrically finite 
and so finitely generated. 

Again, if we start instead with PSL(2, ~), much of the above discussion 
goes through, in particular with Kleinian replaced by Fuchsian. 

Definition 1.2.11 A Fuchsian group is a discrete subgroup of PSL(2, lR). 



54 1. Kleinian Groups and Hyperbolic Manifolds 

Since a Fuchsian group is a Kleinian group, it is only when we consider 
the actions on H 2 or H 3 that differences arise. Thus a Fuchsian group will 
be said to have finite covolume (or strictly finite coarea) if a fundamental 
domain in H 2 has finite hyperbolic area. 

Connecting the two, note that if a Kleinian group r has a subgroup F 
which leaves invariant a circle or straight line in C and the complementary 
components, then F will be termed a Fuchsian subgroup of r. Note that 
Fis conjugate to a subgroup of PSL(2, ~). We will normally be interested 
only in the cases where F is non-elementary. There is a sharp distinction 
between those Kleinian groups r which contain parabolic elements and 
those that do not, which is reflected in the related topology, geometry and, 
as we shall see later, algebra. So let us assume that r contains a parabolic 
element whose fixed point, by conjugation, can be assumed to be at 00. 

Then there is a horoball neighbourhood of 00; that is, an open upper-half 
space of the form 

Hoo(to) = {(x, y, t) E H 3 I t > to} (1.11) 

such that any two points of H 00 (to) which are equivalent under the action 
of rare equivalent under the action of r 00, the stabiliser of 00. Now, r 00 

being a subgroup of B acts as a group of Euclidean similarities on the 
horosphere bounding the horoball [i.e., {(x, y, toH]. Thus we have a precise 
description of the action of a Kleinian group in the neighbourhood of a 
cusp. A horoball neighbourhood of a parabolic fixed point ( E C is a 
Euclidean ball in H 3 tangent to C at (, as it is the image of some Hoo(to) 
at (1.11) under an element of PSL(2, C). It is then not difficult to see that 
if r contains a parabolic element, then r is not cocompact. However, under 
the finite covolume condition, much more can be obtained: 

Theorem 1.2.12 Let r be a Kleinian group of jinite covolume. 1fr is not 
cocompact, then r must contain a parabolic element. 1f ( is the fixed point 
of such a parabolic element, then ( is a cusp. Furthermore, there are only 
jinitely many r -equivalence classes of cusps, so the horoball neighbourhoods 
can be chosen to be mutually disjoint. 

Exercise 1.2 

1. Prove Lemma 1.2.3. 

2. Establish the formula (1.8). 

3. Determine the groups which can be stabilisers of cusps of Kleinian 
groups. 

4. Let r be a non-elementary Kleinian group. The limit set A(r) of r is 
the set of accumulation points on the sphere at injinity of orbits of points 
in H3. Show that the limit set is the closure of the set of jixed points of 
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loxodromie elements in r. Show also that it is the smallest non-empty r­
invariant closed subset on the sphere at infinity. 

5. If K is a non-trivial normal subgroup of r of infinite index where r is 
a Kleinian group of finite eovolume, show that K eannot be geometrieally 
finite. 

6. Show that if the Kleinian group r eontains a parabolie element, then r 
cannot be eoeompaet. 

1.3 Hyperbolic Manifolds and Orbifolds 

A hyperbolie n-manifold is a manifold which is modelIed on hyperbolie 
n-spaee. More precisely, it is an n-manifold M with a Riemannian metrie 
such that every point on M has a neighbourhood isometrie to an open 
subset of hyperbolie n-spaee. If r is a torsion-free Kleinian group, then 
r aets diseontinuously and freely on H 3 so that the quotient H 3 Ir is an 
orientable hyperbolie 3-manifold. Conversely, the hyperbolie strueture of 
an orientable hyperbolie 3-manifold M ean be lifted to the universal eover 
M whieh, by uniqueness, will be isometrie to H 3 . Thus the fundamental 
group 7f1 (M) ean be identified with the eovering group whieh will be a 
subgroup r of PSL(2, C) acting freely and diseontinuously. 

Theorem 1.3.1 If M is an orientable hyperbolic 3-manifold, then M is 
isometrie to H 3 Ir, where r is a iorsion-free Kleinian group. 

Now let us suppose that the manifold M = H3 Ir has finite volume. 
This means that the fundamental domain for r has finite volume and so r 
has finite eovolume. Thus r is finitely generated. Furthermore, if M is not 
compact, then the ends of M can be described following Theorem 1.2.12 
and the remarks preeeding it. 

Theorem 1.3.2 If M is a non-eompact orientable hyperbolie 3-manifold 
of finite volume, then M has finitely many ends and eaeh end (or eusp 
neighbourhood) is isometrie in a Euclidean sense, to T 2 x [0, (0), where T 2 

is a torus. 

Note that the classifieation of discrete subgroups of B gives that a torsion­
free cusp stabiliser is a lattice in Euclidean 2-spaee generated by a pair of 
independent translations. 

In order for the quotient H 3 Ir to be a manifold, r must be torsion free. 
In that case, if'Y is a loxodromic element of r, then its axis Ar in H 3 

projeets to a closed geodesic on the manifold M = H 3 Ir. Conversely, for 
the Riemannian manifold M, every essential non-peripheral closed curve 
is freely homotopic to a unique closed geodesic. The length of this closed 
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geodesie on M then coincides with the translation length of a corresponding 
loxodromic element. 

If r has torsion, then the elliptic elements have fixed axes and the image 
of the fixed axes of all elliptic elements in r forms the singular set in the 
quotient space H3 Ir. Away from the fixed axes, that action is free. 

Definition 1.3.3 A hyperbolic 3-orbilold is a quotient H3 Ir where r is a 
Kleinian group. 

For orbifolds H3 Ir, closed geodesics also arise as the projection of the axes 
of loxodromic elements in r. 

Many of the geometrie properties we consider remain valid for finite cov­
ers of manifolds or orbifolds and the main invariants discussed throughout 
this book are commensurability invariants. 

Definition 1.3.4 

• Let r 1 and r 2 be subgroups 0IPSL(2, C). Then r 1 and r 2 are directly 
commensurable il r 1 n r 2 is 01 finite index in both r 1 and r 2 . Also, 
r 1 and r 2 are commensurable in the wide sense il r 1 and a conjugate 
01 r 2 are commensurable . 

• 11 M 1 and M 2 are two hyperbolic 3-manilolds or orbilolds, then M 1 

and M 2 are commensurable il they have a common finite hyperbolic 
cover. 

Note that in the manifold/orbifold definition of commensurable, the com­
mon cover will be defined up to isometry and so this corresponds to com­
mensur ability in the wide sense for the corresponding covering groups. Sub­
sequently, commensurability will usually be taken to mean in the wide 
sense. 

One can pass from finitely generated Kleinian groups with torsion to 
torsion-free Kleinian groups within a commensurability class thanks to Sel­
berg's Lemma. 

Theorem 1.3.5 11 r is a finitely generated subgroup 01 GL(n, C), then r 
has a torsion-free subgroup 01 finite index. 

With appropriate modifications, much of the above discussion carries 
through to hyperbolic 2-manifolds and orbifolds, with r now a Fuchsian 
group. Linking the two, note that if F is a non-elementary Fuchsian sub­
group of a torsion-free Kleinian group r, leaving invariant a circle C say, 
then Facts on the geodesie plane C in H 3 . There is then an obvious map 
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which will, in general, be an immersion of this totally geodesic surface. 
These surfaces may not be embedded and, as we shall see later, finite 
volume hyperbolic 3-manifolds may not admit any totally geodesie im­
mersed surfaces. Away from the realm of totally geodesic, however, there 
may well be other embedded surfaces (see §1.5). 

Exercise 1. 3 

1. Let r be a Kleinian group of finite covolume. Show that r cannot leave 
a geodesie plane in H3 invariant. 

2. Let r be the subgroup of PSL(2, q genemted by the images of the 
matrices 

( 1/2 
v3i/2 

v3i / 2) 
1/2 ' 

-2) o . 
Use a Klein combination theorem to show that r is a Kleinian group. De­
scribe the quotient orbifold H 3 /r and its singular set. 

3. Let r be a Kleinian group of finite covolume, with cusp set C (r). Show 
that C(r) is a (narrow) commensumbility invariant. 

4. For a subgroup Hof a group G, the commensumtor, or commensurability 
subgroup of H in G, is defined by 

Comm(H,G) = {g E G I Hand gHg- 1 are directly commensurable}. 

Show that Comm(H, G) is indeed a subgroup. 

5. Let r = PSL(2, Z[i]), the Picard group. Then r has finite covolume (see 
§1.4). Determine Comm(r, PSL(2, q). 

1.4 Examples 

Most of the groups to wh ich our subsequent results apply are Kleinian 
groups of finite covolume. To show that a given Kleinian group is of finite 
covolume is, in general, a non-trivial task. Arithmetic Kleinian groups, 
which are studied extensively in this book, form a dass which have finite 
covolume. Groups obtained by reftecting in the faces of a Coxeter polyhed­
ron of finite volume in H 3 , all of whose dihedral angles are submultiples of 7r, 

furnish furt her examples. More generally, polyhedra with side-pairing trans­
formations that satisfy the requirements of Poincan?s polyhedron theorem 
will also yield examples. At least a partial construction of a fundamental 
region would appear to be necessary, by its very definition, to show that 
a group has finite covolume. This has been circumvented by the hyperbol­
isation results and Dehn surgery methods of Thurston. These methods are 
discussed later in this chapter. For the moment, we consider some dassical 
examples and these, and many more, will be dealt with again in subsequent 
chapters. 
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1.4.1 Bianchi Groups 
Any discrete subring of C with 1 will give a diserete subgroup of PSL(2, q. 
Thus the Bianehi groups PSL(2,Od), where Od is the ring of integers in 
the quadratie imaginary number field Q( R.), are Kleinian groups. As 
arithmetie groups, they have finite eovolume but for these groups this ean 
be shown directly via a deseription of a fundamental region. (The ease 
PSL(2,01 ) is eonsidered below.) Translations by 1 and w, where these 
form a Z-basis of Od, dearly lie in PSL(2, Od) so that 00 always gives rise 
to a eusp and these groups are not eoeompaet. Already here, the geometry 
is related to the number theory as the number of cusps ean be shown to 
be the dass number of Od. (Note the partieular ease of 0 1 in Exercise 1.3, 
No. 5.) 

As indieated in §1.2, the Diriehlet region is a fundamental region for 
Kleinian groups. Alternatively, we ean take the Ford region eonsisting of 
the exterior of all isometrie spheres of elements in r if r (X) = 1 or the 
interseetion of this region with a fundamental region for r (X)' Reeall that 

for 'Y = (~ ~), c =I- 0, the isometrie sphere is 

For r = PSL(2, Od, the Pieard group, the region exterior to all isometrie 
spheres, is the region exterior to all unit spheres whose eentres lie on the 
integral lattiee in C. The stabiliser r (X) is an extension of the translation 
subgroup by a rotation of order 2 about the origin. We thus obtain the 
fundamental region shown in Figure 1.1, whieh has the deseription 

Using Poineare's polyhedral theorem, we ean also obtain a presentation 
for the group r in terms of the side-pairing transformations whieh, here, 

y 

FIGURE 1.1. 
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are represented by the matrices 

X= (~ -1) 
o ' ( i 0) 

y = 0 -i ' ( i -1) 
W = 0 -i . 

Apart from the order 2 elements, the relations come from the sets of equi­
valent edges in the fundamental domain. Thus in PSL(2, C), we obtain the 
following presentation of the Bianchi group PSL(2, OI): 

1.4.2 Coxeter Groups 
Combinatorial conditions for the existence in H 3 of acute-angled convex 
polyhedra have been given by Andreev. When such polyhedra have all their 
dihedral angles submultiples of 1r, then the Coxeter subgroup generated by 
reflections in the faces is discrete with that polyhedron as its fundamental 
region. Thus the index two subgroup r consisting of orientation-preserving 
elements will be a Kleinian group and if the polyhedron has finite volume, 
then r will be of finite covolume. If we restrict to tetrahedra, then it is 
weIl known that there are nine such which are compact. If we allow ideal 
vertices (Le., vertices on the sphere at infinity), then there are a further 
23 tetrahedra with at least one ideal vertex and finite volume. There are 
further "tetrahedra" whose dihedral angles are submultiples of 1r but do not 
have finite volume. For these tetrahedra, at least one of the vertices can 
be thought of as lying beyond the sphere at infinity, and we refer to these 
as super-ideal vertices. In the Lobachevski model, let the planes "meeting" 
at such a super-ideal vertex, the projection of v, be the projective images 
of V1..i, V2..i and va..i. Thus v E V1..i n V2..i n va..i and q(v) > O. However, 
then the projective image of v..i is a hyperbolic plane which is orthogonal 
to each of the Vi..i. Thus the super-ideal vertex can be truncated by an 
orthogonal hyperbolic plane so that the resulting prism has all dihedral 
angles submultiples of 1r. Using this furt her finite covolume, even cocompact 
groups can be obtained. 

1.4.3 Figure 8 Knot Complement 
This classical example due to Riley was the first example of a knot or link 
complement shown to have a complete hyperbolic structure and has been 
a beacon leading to further developments and understanding. That is still 
its status in this book. We briefly indicate this construction. 

The complement in 8 3 of the figure 8 knot K is a 3-manifold MI whose 
fundamental group has the presentation 
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Defining iV = XlX2lXllX2, we can distinguish a peripheral subgroup P = 
(Xl" = iV-lW), where Xl and, represent a meridian and longitude on the 
boundary of a compact manifold which is the complement of an open tu­
bular neighbourhood of K in 8 3 . The mapping p : 7r K ---* SL(2, q induced 
by 

p(Xl) = A = GD, p(X2) = B = (~w n 
where w = (-1 + H) /2 is easily seen to be a homomorphism for this 
choice of w. If r = (A, B), then, as a subgroup of SL(2, 03), r is discrete. 
A precise description of a Ford fundamental domain of finite volume for r 
can be obtained. Again using Poincan§'s theorem, this yields a presentation 
for the group r from which it is deduced that the above representation p is 
faithful. The image of, under p is a translation by -2H fixing 00, from 
which it follows that the quotient manifold H 3 /r has the same peripheral 
structure as the figure 8 knot complement. An important 3-manifold result 
of Waldhausen then allows one to deduce that the knot complement 8 3 \ K 
and the quotient H 3 /r are homeomorphic. The precise description of the 
fundamental polyhedron also shows that r has index 12 in the Bianchi 
group PSL(2, 0 3 ). 

1.4.4 Hyperbolic Manifolds by Gluing 

Orientable hyperbolic manifolds can also be obtained by gluing hyperbolic 
polyhedra together, always ensuring that the gluing pattern is consistent 
with the geornetry. Thus the surn of the dihedral angles around equivalent 
edges must be 27r, the link corrresponding to equivalent ideal vertices should 
be a torus and for a manifold with hyperbolic totally geodesic boundary, 
the link corresponding to equivalent truncated super-ideal vertices should 
be a closed hyperbolic surface. We consider examples of these below. 

8eifert- Weber Dodecahedral 8pace 

Identifying opposite pairs of faces of a regular dodecahedron by a 37r /5 
twist yields a rnanifold, as the 30 edges of the dodecahedron fall into 6 sets 
of 5 equivalent edges. Using a little geometry, it can be shown that there ex­
ists a compact hyperbolic regular dodecahedron with dihedral angles 27r /5 
and all vertices in H3. Thus the Seifert-Weber space has the structure of a 
compact hyperbolic 3-manifold. 

Figure 8 K not Complement Again 

Take two regular tetrahedra all of whose vertices are ideal and whose di­
hedral angles are 7r /3. Glue them together according to the pattern of 
matching faces given in Figure 1.2 such that the directed edges match up. 
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FIGURE 1.2. 

There are then two equivalence dasses of six edges and all ideal vertices are 
equivalent. The link of this is easily checked to be a torus. The resulting 
manifold of finite volume of this well-worked example is the Figure 8 knot 
complement. 

Knotted Y 

Once again we take two regular tetrahedra, viewed in Figure 1.3, already 
glued together along one face and seen in stereographie projection. Now 
match up the faces according to the pattern shown by the dots. There is 
then one equivalence dass of edges and one equivalence dass of vertices. 
The tetrahedra thus have dihedral angles 7r /6 and the vertices of such a 
hyperbolic tetrahedron are necessarily super-ideal. Truncating these ver­
tices by orthogonal planes, we obtain a hyperbolic manifold with totally 
geodesie boundary a compact surface of genus 2. 

0 
0 0 

0 

C' 
B' A 

C 0 0 
0 0 

00 

0 0 B 

0 
00 

A' 

FIGURE 1.3. 
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Exercise 1.4 

1. Obtain a fundamental polyhedron for the group PGL(2, 0 3 ) and deduce 
that this group is of index 2 in a Coxeter group for a tetrahedron with one 
ideal vertex. Identify matrices generating PGL(2, 0 3 ) and obtain a present­
ation for the group. 

2. Another classical example of a link complement which admits a com­
plete hyperbolic structure of finite covolume is that of the Whitehead link 
in Figure 1.4. Prove this by completing the details below. In this case, the 
representation is onto the subgroup of the Picard group generated by the 
matrices 

Show that this group has a fundamental domain with (Xl as avertex, con­
sisting of two square "chimneys" whose projection onto the complex plane 
is given in Figure 1.4. Deduce from Poincare 's theorem that this does give a 
discrete faithful representation of the fundamental group of the complement 
of the Whitehead link. Deduce, finally, that the Whitehead link complement 
has a complete hyperbolic structure of finite volume. 

3. With reference to the hyperbolic tetrahedra used in the figure 8 knot 
complement and the knotted Yexamples above, show that regular hyperbolic 
tetrahedra with super-ideal vertices exist with dihedral angles e where 0 < 
e < 7f /3 and that regular compact hyperbolic exist with dihedral angles e 
where 7f/3 < e < cos- 1 (1/3). 

1.5 3-Manifold Topology and Dehn Surgery 

A major contribution of Thurston has been in showing that so many 3-
manifolds are indeed hyperbolic and frequently of finite covolume. This is 
the thrust of this section and the role of embedded surfaces in this devel­
opment is discussed. 

FIGURE 1.4. 
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1.5.1 3-M anifolds 

We will only use some very basic 3-manifold topology, and we recall what 
is needed here for completeness. Throughout this section, M will denote 
a compact orientable 3-manifold (possibly with boundary). It is a con­
sequence of the Scott core theorem (also proved by Shalen) that such M 
have 7rl (M) finitely generated and finitely presented. 

Let S be a compact connected orientable surface, and 1 : S ----+ M an 
embedding. If ÖS -=f. 0, we insist that öM -=f. 0 and f(öS) c öM. We define 
1(S) (or sometimes, by abuse, simply S) to be compressible if one of the 
following holds: 

(a) S is a 2-sphere and 1 (S) bounds a 3-ball in M. 

(b) S is not a 2-sphere and 1* : 7rl (S) ----+ 7rl (M) is not injective. 

If neither of these conditions hold, 1 (S) (or, again, S) is called incompress­
ible in M. We also allow the map 1 to be an immersion, and since we will 
only be interested in surfaces other than S2, we define, in this case, 1 (S) 
to be incompressible if 1* is injective. 

When M has a non-empty boundary, an incompressible surface S (not 
necessarilyembedded) in M is called boundary parallel if 7rl (S) is conjugate 
to a subgroup of 7rl (öoM) where öoM is a component of the boundary of M. 

M is called irreducible if every embedded 2-sphere in M compresses. 
M is called atoroidal if every immersion 1 : T 2 --4 M of a torus into M 
which is incompressible is boundary parallel. M is Haken if it is irreducible 
and contains an embedded incompressible surface. Otherwise, M is called 
non-Haken. 

Examples 1.5.1 

1. It is a famous theorem of J. W. Alexander that S3 is irreducible. With 
the obvious extension of the definition, ]R3 is also irreducible. 

2. Let p and q be coprime positive integers with p > 1. The Lens Space 
L(p, q) is non-Haken. Examples of non-Haken 3-manifolds with infinite 
fundamental group are discussed later in the examples. 

3. Let V denote a solid torus. Then öV is compressible. 

4. Let K C S3 be a non-trivial knot, and N(K) a regular neighbourhood 
of K. Then X(K) = S3 \ Int(N(K)) is irreducible (by a theorem of 
Papakyriakopoulos) and Haken-öX(K) is a torus which is incompress­
ible. A surface in X(K) which is not boundary parallel is a Seifert surface 
for the knot. 

5. Suppose M is a compact orientable irreducible 3-manifold with 7rl (M) 
admitting a surjection to Z. Then M is Haken. 
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6. As a particular example of a manifold given by No. 5, consider M a 
fiber bundle over the circle with fiber a surface of Euler characteristic 
::; O. Such manifolds can be constructed as follows. Let 1; be a com­
pact orientable surface (possibly with boundary). Let 1J : 1; --+ 1; be a 
homeomorphism. We define the mapping torus of 1J to be the compact 
orientable 3-manifold obtained as the identification space: 

Mq, = 1; x [0, 1l/ "', 

where'" is the equivalence relation identifying (x,O) '" (1J(x) , 1) 

It is an easy consequence ofVan Kampen's theorem that if M contains an 
embedded incompressible surface that is not boundary parallel, then 'Ir! (M) 
decomposes as a free product with amalgamation, or HNN-extension. An 
important theorem in 3-manifold topology, which combines work ofEpstein, 
Stallings and Waldhausen gives a converse to this: 

Theorem 1.5.2 Let M be a compact orientable irreducible 3-manifold for 
which 'Ir! (M) splits as a non-trivial free product with amalgamation, or 
HNN-extension. Then M contains an embedded incompressible surface that 
is not boundary parallel. 

Following the work of Bass and Serre, the splittings of the group given in 
Theorem 1.5.2 can be interpreted in terms of group actions on trees. Thus 
in this language, we have the following: 

Theorem 1.5.3 Assume that M is as above and that 'Ir! (M) acts non­
triviallyon a tree without inversions. Then M contains an embedded in­
compressible surface. Furthermore, if C is a connected subset of ßM for 
which the image of'lr!(C) in 'Ir!(M) is contained in avertex stabiliser, then 
the surface may be taken disjoint from C. 

Remark The hypothesis that 'Ir! (M) acts non-trivially on a tree without 
inversions is equivalent to saying that 'Ir! (M) decomposes as the funda­
mental group of a graph of groups. 

1.5.2 Hyperbolic Manifolds 

As yet we have not connected 3-manifold topology and hyperbolic struc­
tures. This is not really germane to the main thrust of this book however, 
the following result of Thurston is the motivation behind much of the study 
of arithmetic methods in 3-manifold topology that lies behind this book. 

We call a compact orientable 3-manifold hyperbolizable if the interior 
of M admits a complete hyperbolic structure [Le., Int(M) = H3 Ir for a 
torsion-free Kleinian group rj. 
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Theorem 1.5.4 Let M be a Haken 3-manifold which is atomidal and for 
which 1l"1 (M) contains no abelian subgmup of finite index. Then M is hy­
perbolizable. 

The following particular corollary of this is most relevant to uso 

Corollary 1.5.5 Let M be an atomidal Haken 3-manifold which is either 
closed, or if 8M is non-empty, then all boundary components are tori. 
Assume 1l"1(M) contains no abelian subgmup of finite index. Then IntM 
admits a camplete hyperbolic structure of finite volume. 

In particular, this theorem says "most" compact 3-manifolds with non­
empty boundary are hyperbolic. For example, most links in S3 have com­
plements admitting complete hyperbolic structures of finite volume. For 
knots, the following precise result holds: 

Theorem 1.5.6 Let K be a non-trivial prime knot. Then S3 \ K is hyper­
bolic with finite volume if and only if K is not a torus knot or a satellite 
knot. 

1.5.3 Dehn Surgery 

A basic operation in 3-manifold topology is Dehn surgery. By this we mean 
the following: Let M be a compact orientable 3-manifold and T an incom­
pressible torus boundary component of M. Let a be an essential simple 
closed curve on T, V be a solid torus and r be a meridional curve of V. 
We attach V to M by gluing 8V to T along their boundaries so that a is 
identified with r. The result is a 3-manifold obtained by a-Dehn surgery 
on T. By specifying a framing {M, f}, for T (i.e. a choice of generators for 
1l"1(T)) a can be described as MPfq and a-Dehn surgery is referred to as 
(p, q)-Dehn surgery on T. 

Example 1.5.7 When M = X K is a knot exterior in S3 and a is meridian 
for K, then with the canonical co-ordinates, XK(l,O) = S3. 

Another beautiful idea of Thurston was to introduce geometrie techniques 
into the theory of Dehn surgery; this he called hyperbolic Dehn surgery. His 
hyperbolic Dehn Surgery Theorem states the following: 

Theorem 1.5.8 Let M be a compact orientable 3-manifold with incom­
pressible tomidal boundary components Tl, ... ,Tn . 11 Int(M) admits a 
complete hyperbolic structure of finite volume, then for all but finitely many 
(Pi, qi)-Dehn surgeries on the torus Ti, the result is a complete hyperbolic 
3-manifold 01 finite volume. 
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Remarks 

1. For the exterior of the figure 8 knot in 8 3 , the exceptional surgeries 
are 

{(I, 0), (0, 1), ±(I, 1), ±(2, 1), ±(3, 1), ±(4, I)}. 

For all other surgeries in this case, closed hyperbolic 3-manifolds are 
obtained. Furthermore, in contrast to Theorem 1.5.3, it can be shown 
that these hyperbolic manifolds are all non-Haken. 

2. In the context of hyperbolic Dehn surgery, one mayaIso perform 
(p, q)-Dehn surgery, where P and q are not necessarily coprime in­
tegers. This allows one to speak of orbifold Dehn surgery. For ex­
ample, performing (p,O)-Dehn surgery on a knot Kin 8 3 gives rise 
to an orbifold with base 8 3 and singular set K with cone angle 27f/p. 
The hyperbolic Dehn surgery theorem is also valid in this setting. 

3. One can also extend the notion of Dehn surgery to include torus and 
pillow cusps of orbifolds, where by a pillow cusp we mean an end 
that has a cross-section which is a two sphere with four cone points 
of cone angle 7f. More details can be found in the articles listed in the 
Further Reading. 

Thurston also shows that for those (pi, qi) which yield hyperbolic Dehn 
surgeries (not necessarily manifolds), the volume of the (Pi, qi)-surgered 
manifold or orbifold is less than Vol(M) and the volumes of the surgered 
manifolds accumulate to Vol(M). 

The computation of volumes is described later in this chapter, but the 
overall structure of the set of volumes of hyperbolic 3-manifolds and 3-
orbifolds is itself very interesting. We will not discuss this here; the following 
result gives the only facts to which we will have recourse. 

Theorem 1.5.9 

1. There is a lower bound to the volume of a hyperbolic 3-orbifold. Fur­
thermore there are only finitely many hyperbolic 3-orbifolds of the 
same volume. 

2. Given an infinite sequence of hyperbolic 3-manifolds and 3-orbifolds 
{ M j } of bounded volume, there is a finite collection of cusped hyper­
bolic 3-orbifolds Xl, ... ,X m such that M j is obtained by (possibly 
orbifold) Dehn surgery on a set of cusps of some Xi. 

Exercise 1.5 

1. Let W be the compact 3-manifold with boundary obtained by drilling 
tubes out of the solid 3-ball as shown below in Figure 1.5. 1f ~ is the 4-
punctured sphere on the boundary of the 3-ball, show that ~ is compressible. 
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FIGURE 1.5. 

2. Let I; be a closed orientable surfaee, c an essential simple closed eurve 
on c and<jJ a homeomorphism of I; sueh that <jJ(c) = c. Prove directly that 
the mapping torus of <jJ is not hyperbolie. 

3. Let I; denote the torus with one boundary eomponent and 1f1 (I;) have free 
basis a, b. Let<jJ : I; --t I; be a homeomorphism indueing the automorphism 
a f-+ ab-I, b f-+ b2a- 1. Show that 7r1(Mq,), where Mq, is the mapping torus of 
4;, is isomorphie to the fundamental group of the figure 8 knot eomplement 
and deduee that Int(Mq,) admits a eomplete hyperbolie strueture of finite 
volume. 

1.6 Rigidity 

So far we have been concerned with the existence of hyperbolic structures 
of finite volume. Here we address uniqueness. 

We begin by recalling so me algebraic geometry. By a eomplex algeb­
raie set we mean a subset of cn which is the vanishing set of a sys­
tem S of polynomials in C[X1 ,X2 , ... ,Xn ]. By Hilbert's basis theorem, 
the ideal generated by these polynomials, 1(S), is finitely generated. If 
1(S) C k[X1 , X 2 , ... ,Xn ], where k is a subfield of C, then S is said to be 
defined over k. When S is irreducible (i.e., not the union of two non-trivial 
algebraic subsets), then S is a variety V and 1(V) is a prime ideal. The 
quotient qX]j 1(V) = qV] is an integral domain and its field of quotients 
is the function field C(V), which is an extension of C embedded as the 
constant polynomials. 

Definition 1.6.1 Let V be an algebraie variety. The dimension of V is 
the transeendenee degree of its function field C(V) over C. 

Now let r be a finitely generated group, generated by '/'1, '/'2, ... ,'/'n. The 
group r need not be finitely presented nor torsion free, but since this is the 
case of interest to us, we simply ass urne this. Let a set of defining relations 
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be 

Let 

Hom(r, SL(2, C)) = {p : p: r -+ SL(2, C) a homomorphism}. 

Given p E Hom(r, SL(2, C)), phi) is a 2 x 2 matrix 

with XiWi - YiZi = 1. Thus the relations Rj('Yl, ... ,'Yn) = I determine 4m 
polynomial equations in the quantities Xi, Yi, Zi and Wi, with coefficients 
in Z. Thus Hom(r, SL(2, C)) has the structure of an algebraic set defined 
over Q. 

Assume now that the group r is a torsion-free Kleinian group of finite 
covolume. So as remarked, it is finitely gener.ated and finitely presented. 
Let Al, A 2 , ... ,An be a set of generators for rand 

(1.12) 

be a set of defining relations for r. Since r is non-elementary, it will have a 
pair of loxodromic elements, and we can assume that (Al, A 2 ) is irreducible. 
As above, let 

with 

XiWi - YiZi = 1, for i = 1,2, ... ,n. (1.13) 

By conjugation, assume that Al fixes 0 and 00 and A2 fixes 1. Therefore, 

Yl = Zl = 0 and X2 + Y2 = Z2 + W2· (1.14) 

We obtain a furt her 4m polynomial equations, with coefficients in Z, 
in the quantities Xi, Yi, Zi and Wi. These determine an algebraic subset 
in Hom(r, SL(2, C)). In the case where r contains parabolic elements, we 
include additional equations determined by the finite number of cusps as 
follows. Since r is assumed to be torsion free, the ends of H3 Ir are of 
the form T 2 x [0, 00). Therefore for each cusp Cl, ... ,Ct of H 3 Ir, fix a 
pair of parabolic generators Ui = Pi(Al , ... ,An), Vi = Qi(Al , ... ,An) for 
7rl(Ci). This leads to additional equations in the indeterminates Xi, Yi, Zi 

and Wi: 

(1.15) 
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Choose an irreducible subset of the algebraic set determined by the equa­
tions (1.12), (1.13) and (1.14) together with (1.15) in the cusped case, which 
contains the inclusion map of rand denote this variety by V(r). 

The following two theorems, the first a combination of the work of 
Weil (the cocompact case) and Garland (the non-cocompact case) and the 
second by Mostow (cocompact) and Prasad (non-cocompact), give local 
and global rigidity theorems that are critical in later developments (see 
Theorem 3.1.2). 

Theorem 1.6.2 Let /, denote the inclusion homomorphism r --+ SL(2, q. 
Then for p E V (r) sufficiently close to /', p is an isomorphism and p(r) 
has finite covolume. 

Theorem 1.6.3 Let r 1 and r 2 be finite covolume Kleinian groups and 
<P : r 1 --+ r 2 an isomorphism. Then there exists gE Isom(H3 ) such that 

<phI) = g"/lg-\ V "/1 E r 1. 

There are various equivalent statements of Mostow-Prasad rigidity, but 
the most succinct is that given a compact orientable 3-manifold whose 
interior supports a hyperbolic structure of finite volume, then this structure 
is unique. This is the biggest distinction in the theory of surface groups and 
hyperbolic 3-manifold groups of finite volume. 

Exercise 1.6 

1. Let r be a subgroup ofSL(2, q. Let R(r) be the set of conjugacy classes 
of representations <P in H om(r, SL(2, q) where <p preserves parabolic ele­
ments. Then V(r), as described in this section is the component of this 
algebraic set which contains the identity representation. 
(a) 1f r is a Schottky group which is free on n generators, determine 
dim(V(r)). 
(b) 1f r is such that H 2 Ir is a hyperbolic once-punctured torus, determine 
dim(V(r)). 

1.7 Volumes and Ideal Tetrahedra 

So far we have stressed the requirement that hyperbolic manifolds and or­
bifolds have finite volume. In that case, the hyperbolic volume itself is a 
topological invariant, even a homotopy invariant as follows from Mostow's 
Rigidity Theorem given in the preceding section. In this section, we indicate 
how volumes and numerical approximations to volumes may be computed. 
In later applications, the results of such calculations serve, in particular, to 
distinguish manifolds and as a guide to possible degrees of commensurab­
ility between Kleinian groups or the associated manifolds or orbifolds. 
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FIGURE 1.6. 

Finite-volume fundamental polyhedra whose combinatorial structure is 
not too complicated can be decomposed into a union of tetrahedra (see 
Exercise 1.7, No 1). In turn, these tetrahedra can be expressed setwise as 
a sum and difference of tetrahedra with at least one ideal vertex. Finally, 
locating such a tetrahedron so that the ideal vertex in the upper half-space 
model of H 3 is at 00 and the remaining vertices lie on the unit hemisphere 
centred at the origin, that tetrahedron can be decomposed into a sum 
and difference of tetrahedra of the standard form we now describe: Let 
Ta,'Y denote the tetrahedron in H3 with one vertex at 00 and the other 
vertices on the unit hemisphere such that they project vertically onto C 
to form the Euclidean triangle T as shown in Figure 1.6 with acute angle 
B' A'e' = a and the dihedral angle along Be is "(. Note that the length 
of A' B' is cos "(. These acute dihedral angles a, "( determine the isometry 
class of the tetrahedron Ta,'Y. The volume of this tetrahedron is thus given 
by the convergent integral 

which, after a little manipulation reduces to 

Vol(Ta ) = ~ ("/2 In 12 sin(O - a) 1 dO. 
,'Y 4 J'Y 2 sin(O - a) 

(1.16) 

This integral can be conveniently expressed in terms of the Lobachevski 
function whose definition we now recall. 

For 0 f= mT, define 

1:-(0) = - fo9 In 12 sin uldu. (1.17) 
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It is not difficult to see that this integral converges for () E (0,11") and 
admits a continuous extension to 0 and 11" with C(O) = C(1I") = O. By 
further extension, the above definition allows one to extend C in such a 
way that it admits a continuous extension to the whole of R. On (0,11"), 
C(() + n1l") - C(()) is differentiable with derivative 0 and so is constant on 
[0,11"]. Thus we obtain the following: 

Lemma 1.7.1 The Lobachevski function C is periodic of period 11" and is 
also odd. 

The function C has a uniformly convergent Fourier series expansion which 
can be obtained via its connection with the complex dilogarithm function 

Izl ::; 1. 

For Izl < 1, z'lj;' (z) = -ln(l- z), where we take the principal branch of log, 
so that 'lj;(z) = - J; In(~w) dw. Indeed this definition can also be extended 
to Izl = 1. Then comparing imaginary parts of 'lj;(e2iO ) - 'lj;(1) for the two 
expansions of the dilogarithm function yields this next result. 

Lemma 1.7.2 C(()) has the uniformly convergent Fourier series expansion 

C( ()) = ~ ~ sin(2n()) . 
2 L..J n 2 

n=l 

Returning to the calculation of volumes, it readily follows from (1.16) and 
(1.17) that 

Vol(Ta ,"!) = ~ [C(a + 'Y) + C(a - 'Y) + 2C(i - a)]. (1.18) 

Example 1.7.3 The Coxeter tetrahedron with Coxeter symbol given in 
Figure 1. 7 is the difference of two tetrahedra each with one ideal vertex as 
shown in Figure 1.8. The number n labelling an edge indicates a dihedral 
angle of 11" In. The tetrahedron with vertices A, B, C and 00 is of the type 
Ta,"! described earlier, where a = 11"/3 and, via some hyperbolic geometry, 
'Y is such that sin'Y = 3/(4cos1l"/5). Thus by (1.18), the volume of Ta,"! 
is approximately 0.072165 .... The tetrahedron with vertices D, B, C and 
00 is not of the type Ta,-y but can be shown to be the union of two such 
tetrahedra minus one such tetrahedron and so the volume of the compact 
tetrahedron in Figure 1.8 can be determined (see Exercise 1.7, No. 4). 

0----0----0----0 

FIGURE 1.7. 
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If in the tetrahedron described by Figure 1.6, the vertex C was also ideal, 
then it would lie on the unit circle in <C and a = "I. In that case, 

(1.19) 

(See Exercise 1.7, No. 5.) 

Definition 1.7.4 An ideal tetrahedron in H3 is a hyperbolic tetrahedron 
all 01 whose vertices lie on the sphere at injinity. 

For such a tetrahedron, the dihedral angles meeting at each vertex form 
a Euclidean triangle from which it is easy to deduce that opposite angles 
of an ideal tetrahedron must be equal. Locating the ideal tetrahedron with 
dihedral angles a, ß and "I (with sum 7r) such that one vertex is at 00 

and the others on the unit circle centred at the origin, if the angles are all 
acute, then the ideal tetrahedron can be decomposed into the union of six 
tetrahedra, two each of the forms Ta,oll Tß,ß and TI'I as described above. 
Thus the volume of an ideal tetrahedron with angles a, ß and "I is 

C(a) + C(ß) + Ch)· (1.20) 

This formula still holds if not all angles are acute. These ideal tetrahedra 
can be used to build non-compact manifolds obtained by suitable gluing, as 
discussed in §1.4.4, the particular example of the figure 8 knot complement 
appearing there. Furthermore, the procedure of hyperbolic Dehn surgery 
on a cusped manifold built from such tetrahedra can be described by de­
forming the initial tetrahedra to further ideal tetrahedra before completing 
the structure. 

The key to calculations involving these is an appropriate parametrisation 
for such oriented tetrahedra. Normalise so that three of the vertices lie at 
0,1 and 00 and the fourth is a complex number z with 'S(z) > o. Such 
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FIGURE 1.9. 

a z = Zl is not uniquely determined by the oriented tetrahedron because 
it depends on the choice of normalisation, but the other possibilities are 
cyclically related to it as Z2 = Z-;l and Z3 = l~z' as shown in Figure 1.9. 
From (1.20), the volume of such a parametrised ideal tetrahedron is 

C( arg( z)) + C ( arg ( Z : 1 ) ) + C ( arg ( 1 ~ z) ) . (1.21) 

This parametrisation of ideal tetrahedra allows the geometrie structure 
of manifolds buHt from ideal tetrahedra to be systematically determined. 
In the classic example of the figure 8 knot complement, suppose initially 
that we just took twü ideal tetrahedra parametrised by Z and wand glued 
them together according to the pattern given in Figure 1.2. Then the glu­
ing consistency conditions around the two edges yield the single equation 
zw (1 - z) (1 - w) = 1. The link L of the vertex consists of eight triangles 
from whose arrangement we deduce the derivative of the holonomy of L 
as H'(x) = (z/w)2 and H'(y) = w(l - z). For the complete structure, 
these must both be 1 so we deduce that z = w = e27ri/ 3 • Thus the volume 
of the hyperbolic manifold that is the complement of the figure 8 knot is 
6C(7T"/3) ~ 2.029 ... (See §5.5 für another example.) 

The volume of a hyperbülic manifold obtained by Dehn surgery on a torus 
boundary component can also be computed in terms of tetrahedral para­
meters. The complete structure is obtained from the incomplete structure 
by adjoining a set of measure zero. The incomplete structure is described 
by tetrahedral parameters that satisfy the gluing consistency conditions 
together with conditions on the holonomy determined by the Dehn surgery 
coefficients. Thus returning to the familiar figure 8 knot complement, a 
meridian and longitude pair can be chosen to have holonomy derivatives 
w(l - z) and z2(1 - z)2 respectively. The generalised Dehn surgery equa­
tion then requires that {.dog(w(l - z)) + 2Alog(z(1 - z)) is a multiple of 
2n for the correct branch of log. Sülving this, for example, in the case of 
(J.L, A) = (5,1) then yields values far z and w from which the computation of 
the volume of the resulting compact hyperbolic manifold can be obtained 
as 0.9813 ... using (1.21). 
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Exercise 1. 7 

1. Let P be the polyhedron in H 3 = {(x, y, t) I t > O} bounded by the 
hyperbolic planes given by x = ±1, y = ±1, x 2+y2+t2 = 4 and X 2+y2+t2 = 
8. Decompose P into tetrahedra and hence determine the volume of P. 

2. Deduce (1.16). 

3. Complete the proof of Lemma 1. 7.2. 

4. The tetrahedron BCDoo in Figure 1.10 is that described in Figure 
1.8. Let Tal,")'l be the tetrahedron BCEoo, T a2 ,")'2 = CEFoo and T03tY3 = 
DEFoo, so that setwise 

Use the relationships between dihedral angles and face angles to determine 
the ai and 'Yi. Hence, using (1.18), show that the volume of the compact 
tetrahedron in Figure 1.8 is approximately 0.03905 .... 

F 

B 

FIGURE 1.10. 

5. Prove that C(2a) = 2C(a) - 2C(7r/2 - a). (See Exercise 11.1, No. 5 for 
a generalisation of this.) 

1.8 Further Reading 

Most of the material in this chapter has appeared in a variety of styles in a 
number of books. Since we are taking the viewpoint that our readership will 
have some familiarity with the main concepts here, in this reference section, 
we will content ourselves with listing references section by section which 
cover the relevant material. These lists are not intended to be proscriptive 
and, indeed, the reader may weH prefer other sources. We trust, however, 
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that any obscurities which do arise in this brief introductory chapter can 
be clarified by consulting at least one of the sources given here. 

§1.1 See Anderson (1999), Beardon (1983), Thurston (1979), Thurston 
(1997), Ratcliffe (1994), Vinberg (1993a) and Matsuzaki and Tanigu­
chi (1998). 

§1.2 See Thurston (1997), Thurston (1979), Vinberg (1993b), Ratcliffe 
(1994), Maskit (1988), Harvey (1977)and Matsuzaki and Taniguchi 
(1998). 

§1.3 See Thurston (1997), Thurston (1979), Matsuzaki and Taniguchi 
(1998), Ratcliffe (1994) and Elstrodt et al. (1998). 

§1.4 See Elstrodt et al. (1998), Vinberg (1993b), Ratcliffe (1994), Thurston 
(1997), Thurston (1979), Maskit (1988) and Epstein and Petronio 
(1994). 

§1.5 See Gromov (1981), Hempel (1976), Jaco (1980), Morgan and Bass 
(1984), Thurston (1979), Benedetti and Petronio (1992), Ratcliffe 
(1994), Dunbar and Meyerhoff (1994), Neumann and Reid (1992a) 
and Matsuzaki and Taniguchi (1998). 

§1.6 See Thurston (1979), Ratcliffe (1994), Benedetti and Petronio (1992), 
Matsuzaki and Taniguchi (1998), Weil (1960), Garland (1966), Mum­
ford (1976), Mostow (1973) and Prasad (1973). 

§1.7 See Vinberg (1993a), Ratcliffe (1994) and Thurston (1979). 



2 
Quaternion Algebras I 

Throughout this book, the main algebraic structure which plays a major 
role in all investigations is that of a quaternion algebra over a number 
field. In this chapter, the basic theory of quaternion algebras over a field of 
characteristic i=- 2 will be developed. This will suffice for applications in the 
following three chapters, but a more detailed analysis of quaternion algebras 
will need to be developed in order to appreciate the number-theoretic input 
in the cases of arithmetic Kleinian groups. This will be carried out in a later 
chapter. For the moment, fundamental elementary not ions for quaternion 
algebras are developed. In this development, use is made of two key results 
on central simple algebras and these are proved independently in the later 
sections of this chapter. 

2.1 Quaternion Algebras 

For almost all of our purposes, and certainly in this chapter, it suffices to 
consider the cases where F is a field of characteristic i=- 2. A modification 
of the definition is required in the case of characteristic 2 (see Exercise 2.1, 
No. 1). 

Definition 2.1.1 A quaternion algebra A over F is a Jour-dimensional 
F -space with basis vectors 1, i, j and k, where multiplication is dejined on 
A by requiring that 1 is a multiplicative identity element, that 

i 2 =a1, l=b1, ij=-ji=k (2.1) 
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for some a and b in F* and by extending the multiplication linearly so that 
A is an associative algebra over F. 

The algebra so constructed can be denoted by the Hilbert symbol 

(2.2) 

Note that 
k2 = (ij)2 = -ab 

and that any pair of the basis vectors i, j and k anti-commute. Thus this 
quaternion algebra could equally weIl be denoted by the Hilbert symbols 

( b;), ( a, ;ab) , etc. 

Thus it should be noted that the quaternion algebra does not uniquely 
determine a Hilbert Symbol. 

If K is a field extending F, then 

Familiar examples of quaternion algebras are Hamilton's quaternions 

and, for any field F, 

with generators 

. (1 0) 
z = 0 -1 ' . (0 01) J = 1 

Lemma 2.1.2 

1. (al)~(ax2ly2) foranya,b,x,yEF* 

2. The centre of (~) is F 1. 

3. (~) is a simple algebra (i.e., has no proper two-sided ideals). 
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Proof: 

1. Let A = (~) and A' = (ax2ly2) have bases {I, i,j, k} and {I, i',j', k'}, 

respectively. Define 4J : A' ----t A by 4J(1) = 1, cp(i') = xi, 4J(j') = yj and 
4J(k') = xyk and extend linearly. Since (Xi)2 = ax2, (yj)2 = by2, and 
(xi)(yj) = (xy)ij = -(xy)ji = -(yj)(xi), it follows that 4J is an F­
algebra isomorphism. 

2. Let F denote an algebraic closure of F. Then, extending the coefficients 

(~) ®F F = (~). Every element in F is a square so by part 1, 

(~) ~ C!f) ~ M 2 (F), whose cent re is F 1. Thus the centre of (al) 
is F1. 

3. If I is a non-zero ideal in A, then I ®F Fis a non-zero ideal in M2(F). 
However, M 2 (F) is simple. As a vector space over F, I will then have 
dimension 4 and so I = A. 0 

Thus quaternion algebras are central and simple. They can be character­
ised in terms of central simple algebras and this will be shown later in 
this section, modulo some results on central simple algebras which will be 
discussed later in this chapter. 

Like Hamilton's quaternions, every quaternion algebra admits a "con­
jugation" leading to the notions of trace and norm. To discuss these, we 
first introduce the subspace of pure quaternions. 

Let A = (~) as above with basis {l,i,j,k} satisfying (2.1). This is 

referred to as a standard basis. 

Definition 2.1.3 Let A o be the subspace of A spanned by the vectors i,j 
and k. Then the elements of A o are the pure quaternions in A. 

This definition does not depend on the choice of basis. For, let x = ao + 
a1i + a2j + a3k. Then 

Lemma 2.1.4 xE A (x f:. 0) is a pure quaternion if and only if x tJ. Z(A) 
and x2 E Z(A). 

Thus each x E A has a unique decomposition as x = a + a, where a E 
Z(A) = Fand a E A o. Define the conjugate x of x by x = a - a. This 
defines an anti-involution ofthe algebra such that (x + y) = x+jj, xy = jjx, 
Ir = x and rx = rx for r E F. On a matrix algebra M 2(F), 

( a b) = ( d -b). 
c d -c a 
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Definition 2.1.5 For x E A, the (redueed) norm and (redueed) traee of x 
lie in Fand are defined by n(x) = xx and tr (x) = x + x, respeetively. 

Thus on a matrix algebra, these coincide with the not ions of determinant 
and trace. 

The norm map n : A ---> F is multiplicative, as n(xy) = (xy)(xy) = 

xyyx = n(x)n(y). Thus the invertible elements of Aare precisely those 
such that n(x) =I- 0, with the inverse of such an x being x/n(x). 

Thus if we let A* denote the invertible elements of A, and 

Al = {x E A I n(x) = I}, 

then Al c A*. 
This reduced norm n is related to field norms (see also Exercise 2.1, No. 

7). An element w of the quaternion algebra A satisfies the quadratic 

x 2 -tr(w)x+n(w) =0 (2.3) 

with tr (w), n(w) E F. Let F(w) be the smallest subalgebra of A which 
contains F 1 and w, so that F(w) is commutative. If Ais a division algebra, 
then the polynomial (2.3) is reducible over F if and only if w E Z(A). 
Thus for w rt. Z(A), F(w) = E is a quadratic field extension ElF. Then 
N EIF = niE' 

Lemma 2.1.6 If the quaternion algebra A over F is a division algebra 
and w rt. Z(A), then E = F(w) is a quadratie field extension of Fand 
niE = NEIF' 

If A = (al) and x = ao + ali + a2j + a3k, then 

n(x) = a6 - aai - ba~ + aba~. 

In the case of Hamilton's quaternions (-lrr\t-l), n(x) = a6 + ai + a~ + a§ 
so that every non-zero element is invertible and 1{ is a division algebra. 
The matrix algebras M2 (F) are, of course, not division algebras. That 
these matrix algebras are the only non-division algebras among quaternion 
algebras is a consequence of Wedderburn's Theorem. 

From Wedderburn's Structure Theorem for finite-dimensional simple al­
gebras (see Theorem 2.9.6), a quaternion algebra A is isomorphie to a 
full matrix algebra Mn(D), where D is a division algebra, with n and 
D uniquely determined by A. The F-dimension of Mn(D) is mn2 , where 
m = dimF(D) and, so, for the four-dimensional quaternion algebras there 
are only two possibilities: m = 4, n = 1 ; m = 1, n = 2. 

Theorem 2.1. 7 If A is a quaternion algebra over F, then A is either a 
division algebra or A is isomorphie to M 2(F). 
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We now use the Skolem Noether Theorem (see Theorem 2.9.8) to show that 
quaternion algebras ean be eharaeterised algebraieally as follows: 

Theorem 2.1.8 Every Jour-dimensional central simple algebra over afield 
F oJ characteristic -=1= 2 is a quaternion algebra. 

Proof: Let A be a four-dimensional eentral simple algebra over F. If A 
is isomorphie to M2 (F), it is a quaternion algebra, so by Theorem 2.1.7 
we ean assurne that A is a division algebra. For w (j. Z(A), the subalgebra 
F( w) will be eommutative. As a subring of A, F( w) is an integral domain 
and sinee A is finite-dimensional, w will satisfy an F-polynomial. Thus 
F( w) is a field. 

Sinee A is eentral, F(w) -=1= A. Pick w' E A \ F(w). Now the elements 
1, w, w' and ww' are neeessarily independent over Fand so form a basis of 
A. Thus 

w 2 = ao + alW + a2w' + a3ww', ai E F. 

Sinee w' (j. F(w), it follows that w2 = ao + alW. Thus F(w) = E is 
a quadratic extension of F. Choose y E E such that y2 = a E Fand 
E = F(y). 

The automorphism on E indueed by y --+ -y will be indueed by eonjug­
ation in A by an invertible element z of A by the Skolem Noether Theorem 
(see Theorem 2.9.8). Thus zyz-l = -y. Clearly z (j. E and 1, y, z and 
yz are linearly independent over F. Also Z2yz-2 = Y so that z2 E Z(A) 
(i.e., z2 = b E F). However, {l,y,z,yz} is then a standard basis of A and 

A~(al)·D 

Corollary 2.1.9 Let A be a quaternion division algebra over F. 1J w E 
A \ Fand E = F(w), then A 0F E ~ M2(E). 

Proof: As in the above theorem, E is a quadratie extension field of F. 
Furthermore, there exists a standard basis {I, y, z, yz} of A with E = F(y) 
and y2 = a E F. Thus there exists x E A 0 F E such that x 2 = 1. However, 
then A 0F E eannot be a division algebra and so must be isomorphie to 
M 2 (E). D 

Deciding for a given quaternion algebra (al) whether or not it is iso­

morphie to M2(F) is an important problem and, as will be seen later in 
our applieations, has topological implieations. Für a given a and b, the 
problem ean be re-expressed in terms of quadratic forms, as will be shown 
in §2.3. 
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Exercise 2.1 

1. Let A be a Jour-dimensional eentral algebra over the jield F sueh that 
there is a two-dimensional separable subalgebra Lover Fand an element 
c E F* with A = L + Lu Jor some u E A with 

u 2 = e and um = inu 

where m E Land m 1-+ in is the non-trivial F-automorphism oJ L. Prove 
that iJ F has eharaeteristie =1= 2, then A is a quaternion algebra. Indeed, 
this is a dejinition oJ a quaternion algebra valid Jor any eharacteristie. 
Show that, under this dejinition, eonjugation ean be dejined as: that F­
endomorphism oJ A, denoted x 1-+ x, sueh that u = -u and restrieted to L 
is the non-trivial automorphism. Prove also that Theorem 2.1.8 is valid in 
any eharaeteristie. 

2. Show that the ring oJ Hamilton's quaternions 1{ = (-llR-1 ) is isomorphie 
to the lPI..-subalgebra 

Henee show that 1{1 = {h E 1{ I n(h) = I} is isomorphie to SU(2). 

3. Let 

Prove that A is a quaternion algebra over Q. Prove that it is isomorphie 
to M2(Q) (ef. Exereise 2.7, No. 1). 

4. Let A be a quaternion algebra over a number jield k. Show that there 
exists a quadratie extension jield L I k sueh that A has a JaithJul represent­
ation p in M2(L), sueh that p(x) = p(x) Jor alt xE A. 

5. Let F be a finite jield oJ eharaeteristie =1= 2. IJ A is a quaternion algebra 
over F, prove that A <::::' M 2(F). 

6. For any quaternion algebra A and xE A, show that 

tr (x2) = tr (x? - 2n(x). 

7. Let Adenote the left regular representation oJ a quaternion algebra A. 
Prove that, Jor xE A, n(x)2 = detA(x). 

2.2 Orders in Quaternion Algebras 

Throughout this chapter, we are mainly concerned with the structure of 
algebras, particularly quaternion algebras, over a field. However, in this 
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section, we briefly introduce orders, which are the analogues in quaternion 
algebras of rings of integers in number fields. These playavital role in 
developing the arithmetic theory of quaternion algebras over a number field 
and all of Chapter 6 is devoted to their study. Only some of the most basic 
notions associated to orders which are required in the following chapters 
will be discussed here. 

Throughout this section, the ring R will be a Dedekind domain (see §O.2 
and §O.6) whose field of quotients k is either a number field or a P-adic 
field. In applications, it will usually be the case that when k is a number 
field, R = Rk, the ring of integers in k. Recall that a Dedekind domain is 
an integrally closed Noetherian ring in which every non-trivial prime ideal 
is maximal. 

Definition 2.2.1 1f V is a vector space over k, an R-lattice L in V is a 
jinitely generated R-module contained in V. Furthermore, L is a complete 
R-lattice if L ®R k ~ V. 

Lemma 2.2.2 Let L be a complete lattice in V and M an R-submodule of 
V. Then M is a complete R-lattice if and only if there exists a ERsuch 
that aL c M c a-1L. 

(See Exercise 2.2, No. 1.) 

Definition 2.2.3 Let A be a quaternion algebra over k. An element a E A 
is an integer (over R) if R[al is an R-lattice in A. 

Lemma 2.2.4 An element a E A is an integer if and only if the reduced 
trace tr (a) and the reduced norm n(a) lie in R. 

Proof: Any a in A satisfies the polynomial 

x 2 - tr (a)x + n(a) = O. 

Thus if the trace and norm lie in R, then a is clearly an integer in A. 
Suppose conversely that a is an integer in A. If a E k, then, since a 

is integral over R, it will lie in R. Thus tr (a), n(a) E R. Now suppose 
that a E A \ k. If k(a) is an integral domain, necessarily the case when 
Ais a division algebra, then k(a) is a quadratic field extension L of k, as 
in Lemma 2.1.6. Note that a is the field extension conjugate of a. Now 
a, a E R L , the integral closure of R in L, which is also a Dedekind domain. 
However, then tr (a), n( a) E RL n k = R. If k( a) is not an integral domain, 
then A ~ M 2 (k) and a is conjugate in M2 (k) to a matrix ofthe form (g n, 
a, b, c E k. But then an = (aon c*n). Thus since a is an integer in A, then 
a, cER and the result follows. 0 

In contrast to the case of integers in number fields, it is not always true 
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that the sum and product of a pair of integers in a quaternion algebra are 

necessarily integers. For example, if we take A = (-~!3) with standard 

basis {1, i,j, ij}, then a = j and ß = (3j + 4ij)j5 are integers, but neither 
a + ß nor aß are integers. The role played by the ring of integers R in a 
number field is replaced by that of an order in a quaternion algebra. 

Definition 2.2.5 

• An ideal I in A is a complete R-lattice. 

• An order 0 in A is an ideal which is also a ring with 1. 

• An order 0 is maximal if it is maximal with respect to inclusion. 

Examples 2.2.6 

1. If {Xl, X2, X3, X4} is any k-base of A, then the free module R[XI, X2, X3, X4] 

is an ideal in A. 

2. If A ~ (7!), then by adjoining squares, if necessary, we can assurne that 

a,b E R. The free module R[1,i,j,ij], where {1,i,j,ij} is a standard 
basis, is an order in A. 

3. The module M 2 (R) is an order in M 2 (k). Indeed it is a maximalorder. 
If not, then there exists an order 0 containing M 2 (R) and an element 
(~ !t) E 0 where at least one of the entries is not in R. By suitably 
multiplying and adding elements of M 2 (R), it is easy to see that 0 must 
contain an element a = (g ~), where a ~ R. However, R[a] then fails to 
be an R-lattice, which as submodule of an R-lattice, is impossible. 

4. If I is an ideal in A, then the order on the left of I and the order on the 
right of I, defined respectively by 

OE(I) = {a E A I aI cI}, Or(I) = {a E A I Ia C I} (2.4) 

are orders in A. (See Exercise 2.2, No.2.) 

Lemma 2.2.7 

1. 0 is an order in A if and only if 0 is a ring of integers in A which 
contains Rand is such that kO = A. 

2. Every order is contained in a maximal order. 

Proof: Let a E 0, where 0 is an order in A. Since 0 is an R-lattice, 
R[a] will be an R-lattice and so a is an integer. The other properties are 
immediate. 
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For the converse, choose a basis {Xl, X2, X3, X4} of A such that each Xi E 
o. Now the reduced trace defines a non-singular symmetrie bilinear form on 
A (see Exercise 2.3, No. 1). Thus d = det(tr(xiXj)) i- O. Let L = {2:: aix i I 
ai ER}. Thus L c O. Now suppose a E 0 so that a = 2:: biXi with bi E k. 
For each j, aXj E 0 and so tr (axj) = 2:: Mr (XiXj) E R. Thus bi E (l/d)R 
and 0 C (l/d)L. Thus 0 is finitely generated and the result follows. 

Using a Zorn's Lemma argument, the above characterisation shows that 
every order is contained in a maximal order. D 

Let us consider the special cases where A = M 2 (k). If V is a two­
dimensional space over k, then A can be identified with End(V). If L is a 
complete R-lattice in V, define 

End(L) = {a E End(V) I a(L) cL}. 

If V has basis {eI, ed giving the identification of M 2 (k) with End(V), then 
Lo = Rel + Re2 is a complete R-lattice and End(Lo) is identified with the 
maximal order M 2 (R). For any complete R-lattice L, there exists a E R 
such that aLo C L C a- 1 L o. It follows that a2 End(Lo) C End(L) C 
a-2 End(Lo). Thus each End(L) is an order. 

Lemma 2.2.8 Let 0 be an order in End(V). Then 0 C End(L) for same 
complete R-lattice L in V. 

Proof: Let L = {t' E L o lOt' C L o}. Then L is an R-submodule of 
L o. Also, if a End(Lo) C 0 C a-1 End(Lo), then a L o C L. Thus L is a 
complete R-lattice and 0 C End(L). D 

A simple description of these orders End( L) can be given by obtaining a 
simple description of the complete R-lattices in V. 

Theorem 2.2.9 Let L be a complete R-lattice in V. Then there exists a 
basis {x, y} of V and a fractional ideal J such that L = Rx + Jy. 

Proof: For any non-zero element y E V, Ln ky = I y y, where I y = {a E 
k I ay E L}. Since L is a complete R-lattice, there exists ß ERsuch that 
ßIy C R so that I y is a fractional ideal. 

We first show that there is a basis {x, y} of V such that L = I x + I y y 
for so me fractional ideal I. Let {e 1, e2} be a basis of V and define 

I = {a E k I ae1 E L + ke2}. 

Again it is easy to see that I is a fractional ideal. Since I I-I = R, there 
exist ai E land ßi E I-I such that 1 = 2:: aißi. Now aie1 = t'i + ,ie2 
where t'i E L, ,i E k. Thus e1 = 2:: ßit'i + ,e2, where , = 2:: ßi/i. Let 
x = el - ,e2, Y = e2· I claim that L = Ix + I y y. First note that 

I x + I y y = I( el - ,e2) + L n ky = I (2: ßit'i) + L n ky c L. 
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Conversely, suppose that z = a(el + ße2) E L for some a, ß E k. Now 
ae1 = z - a(3e2 E L + ke2 so that a E I. Thus a(ße2 + ')'e2) = a(e1 + 
ße2) -a(e1 -')'e2) E L. Hence z = a(e1-')'e2) +a(ße2 +')'e2) E Ix+Iy y. 

It remains to show that we can choose y such that I y = R. Suppose L = 
Ix+Iy y, as above. Then there exist 81 ,82 E k such that 811-1+821;;1 = R. 
Let y' = 81x+82y. Then Iyl = (18;-1 )n(Iy821) = ((h I - 1+ 82I;;1 )-1 = R. 0 

Thus if End(V) is identified with M 2 (k), then for any complete R-lattice 
L, End(L) is a conjugate of 

M2 (R; J):= {(~ ~) I a,d E R,b E J- 1 ,c E J} (2.5) 

for some fractional ideal J. Note that if R is a PID and so J = xR for so me 
x E k, then M2 (R; J) is conjugate to M 2 (R) and from Lemma 2.2.8 and 
Theorem 2.2.9, we obtain the following: 

Corollary 2.2.10 If R is a PID, all maximal orders in M 2(k) are conjug­
ate. 

Exercise 2.2 

1. Complete the proof of Lemma 2.2.2. 

2. Establish the result in Examples 2.2.6, No. 4 ; that is, if I is an ideal 
of A, then the sets OR(I) and Or(I) are, indeed, orders in A. 

3. In the special case where R = Z, show that 

0= {(~ ~) E M 2 (Z) la == d(mod 2),b == c(mod 2)} 

is an order in M 2 (Q). 

4. Show that 

is a quaternion algebra A over Q and that A ~ ( -~,5). Show that the order 

Z[I, i, j, ij] is not a maximal order in A. 

5. Let A = (-1,~\~)/2) and let R be the ring of inte'gers in Q( v'5). Let 

0= R[I,i,j,ij] + Ra, where a = (1 + i)((1 - v'5)/2 + j)/2. Show that 0 
is an order in A. 
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2.3 Quaternion Algebras and Quadratic Forms 

Let A be a quaternion algebra over F. From the norm map on the veetor 
spaee A, define asymmetrie bilinear form B on A by 

1 1 
B(x, y) = 2[n(x + y) - n(x) - n(y)] = 2[xy + yx] 

so that A beeomes a quadratie spaee (see §0.9). If A has a standard basis 
{I, i, j, k}, then it is easy to see that these veetors eonstitute an orthogonal 

basis of A. If A = (al), then the quadratie spaee has the quadratie form 

xi - ax~ - bX5 + abx~ and so is obviously regular. The rest riet ion of n, 
and henee B, to the pure quaternions Ao makes Ao into a regular three­
dimensional quadratic spaee. The forms n and B have partieularly simple 
deseriptions on A o sinee, for x E Ao, x = -x. Thus n(x) = -x2 and 
B(x, y) = -~(xy+yx). The norm map will be referred to as the norm form 
on both A and Ao. Reeall that a quadratie spaee V with a quadratie form 
q : V ---+ F is said to be isotropie if there is a non-zero veetor v E V such 
that q( v) = O. Otherwise, the spaee, or the form, is said to be anisotropie. 

Theorem 2.3.1 For A = (al), the following are equivalent: 

(b) A is not a division algebra. 

(e) A is isotropie as a quadratie spaee with the norm form. 

(d) Ao is isotropie as a quadratie spaee with the norm form. 

(e) The quadratie form ax2 + by2 = 1 has a solution with (x, y) E F x F. 

(f) If E = F(v'b), then a E NEIF(E). 

Proof: The equivalenee of (a) and (b) is just arestatement of Theorem 
2.1.7. 

(b) =} (e). If A is not a division algebra, it eontains a non-zero non­
invertible element x. Thus n(x) = 0 and A is isotropie. 

(e) =} (d). Suppose x = ao + ali + a2j + a3ij is such that n(x) = O. If 
ao = 0, then x E A o and A o is isotropie. Thus assume that ao -I=- 0 so that 
at least one of al, a2 and a3 must be non-zero. Without loss, assume that 
al -I=- O. Now from n(x) = 0, we obtain aö - ba~ = a(ar - ba5)' Let 

y = b(aOa3 + ala2)i + a(ai - ba~)j + (aOal + ba2a3)ij. 

A straightforward ealculation gives that n(y) = O. Now suppose that A o is 
anisotropie. Thus y = 0 and, in partieular, -aai+aba5 = O. Thus n(z) = 0 
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where z = ali + a3ij. Again, if Ao is anisotropie, this implies that al = O. 
This is a contradiction showing that Ao is isotropie. 

(d) => (e). An equation of the form -aai - ba~ + aba~ = 0 holds with 
at least two of al, a2 and a3 non-zero. If a3 -I- 0, then the pair x, Y, where 
x = a2/aa3, Y = adba3 satisfy ax2+by2 = 1. If a3 = 0, then x = (l+a)/2a 
and y = a2(1- a)/2aal satisfy ax2 + by2 = 1. 

(e) => (1). Let aX6+bY5 = 1. If Xo = 0, then Vb E Fand E = F, in whieh 
ease the result is obvious. Assuming then that Xo -I- 0, arearrangement 
shows that N E IF(1/xO + Vbyo/xo) = a. 

(J) => (b). If Vb = c E F, then c2 = b = j2. So (c+j)(c-j) = 0 
and A has zero divisors. Now suppose that Vb fI. F. Then a E NEIF(E) 
shows that there exist xl, Yl E F, not both 0, such that a = xi - byr. Then 
n(xl + i + Yd) = 0 so that A has non-zero non-invertible elements. 0 

Definition 2.3.2 1f the quaternion algebra A over F is sueh that A ~ 
M 2(F), then A is said to split over F. 

Remark Reeall that in §0.9, a Hilbert symbol (a, b) was defined for the 
quadratie form ax2 +by 2. This theorem relates the two definitions of Hilbert 

symbol. Thus ( 7ß-) splits if and only if (a, b) = 1. 

Corollary 2.3.3 The quaternion algebras (!.f-) and (a,;;a) are isomorphie 
to M 2 (F). 

Proof: For (l;..a), the result follows immediately from (e). For (a,;;a), the 
norm form on Ao is -ax2 + ay2 + a2 z2, whieh is clearly isotropie. 0 

The above results give several eriteria to determine when a given qua­
ternion algebra is isomorphie to the fixed quaternion algebra M2 (F). Now 
eonsider some examples whieh are not isomorphie to M2 (F). Let k be a 

number field and A = (7!). By Lemma 2.1.2, it ean be assumed that 

a, b E Rk, the ring of integers in k. Now the form ax2 + by2 = 1 has a 
solution in k if and only if the form ax2 + by 2 = z2 has a solution in Rk 
with z -I- O. If the form has a solution in Rk, then for any ideal I of Rk, 
there will be a solution in the finite ring Rk/ I. This enables us to eonstruet 
many examples whieh are not isomorphie to M2 (F). Take, for example, 

( -~,p), where pis a prime == -1(mod 4). Then ehoosing I, as above, to be 

p7L., the eongruenee _x2 + py2 == z2(mod p) clearly has no solution. Thus by 

Theorem 2.3.1(e), (-~'p) is not isomorphie to M 2(Q). On the other hand, 

noting that Pell's equation 

x 2 _ py2 =-1 

has an integral solution if p == l(mod 4), in these eases ( -~'p) ~ M 2(Q). 
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More generally, it is neeessary to deeide when two quaternion algeb­
ras over the same field are isomorphie by an isomorphism whieh aets like 
the identity on the eentre. The important classifieation theorem, which 
precisely deseribes the isomorphism classes of quaternion algebras over a 
number field, will be given in §2.7 and Chapter 7, but for the moment we 
reeast the problem in terms of quadratie forms. 

Theorem 2.3.4 Let A and A' be quaternion algebras over F. Then A 
and A' are isomorphie if and only if the quadratie spaees Ao and A~ are 
isometrie. 

Proof: With norm forms n and n', this last statement means that there 
exists a linear isomorphism cjJ : Ao ---+ A~ such that n' (cjJ( x)) = n( x) für all 
xE Ao. 

Thus suppose that 'ljJ : A ---+ A' is an algebra isomorphism. Then by the 
eharacterisation of the pure quaternions in terms of the eentre (Lemma 
2.1.4), 'ljJ must map Ao to A~. Then for x E Ao, n'('ljJ(x)) = _'ljJ(X)2 = 
'ljJ( _x2) = 'ljJ(n(x)) = n(x). Thus Ao and A~ are isometrie. 

Now suppose cjJ : Ao ---+ A~ is an isometry with {1, i, j, ij} a standard 
basis of A. We will show that {cjJ(i), cjJ(j), cjJ(i)cjJ(j)} is a basis of A~. Let A = 

(al). First note that cjJ(i)2 = -n'(cjJ(i)) = -n(i) = i 2 = a and cjJ(j)2 = b. 
Sinee i and j are orthogonal in Ao, cjJ(i) and cjJ(j) are orthogonal in A~ 
[i.e., cjJ(i)cjJ(j) + cjJ(j)cjJ(i) = 0]. Now cjJ(i)(cjJ(i)cjJ(j)) = -cjJ(i)(cjJ(j)cjJ(i)) = 
-(cjJ(i)cjJ(j))cjJ(i) so that cjJ(i)cjJ(j) ~ Z(A). Also (cjJ(i)cjJ(j))2 = -ab E Z(A). 
Thus cjJ(i)cjJ(j) E Ao. Now eonsider alcjJ(i) + a2cjJ(j) + a3cjJ(i)cjJ(j) = O. Left 
multiplieation by cjJ(i) forees al = 0 and, in the same way, a2 = a3 = O. 
Thus {1, cjJ(i), cjJ(j), cjJ(i)cjJ(j)} forms a standard basis of A' so that A' ~ 
(j,b) = A. 0 

Corollary 2.3.5 If A = (al) and A' = (a'l'), then A and A' are iso­

morphie if and only if the quadratie forms ax2 + by2 - abz2 and a' x 2 + 
b' y2 - a' b' Z2 are equivalent over F. 

Proof: The norm form on Ao with respeet to the restrietion of the stand­
ard basis is -ax2 - by 2 + abz2 . Thus the equivalenee of the quadratie forms 
in this eorollary is arestatement of the faet that Ao and A~ are isometrie 
(see §0.9). 0 

Consider again the ex am pIes (-~'P ), where p == -1 (mod 4). By this 

eorollary, it ean be shown that no two of these are isomorphie. For, sup­

pose A = (-~'p) and A' = (-~,q) are isomorphie so that fj.' = Mt fj.M, 

where fj. = diag{1, -p, -p}, fj.' = diag{1, -q, -q}. The matrix M will have 
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rational entries and determinant ±q/p. Let pO/n be the least common mul­
tiple of the denominators of the entries of M so that pO/nM = [mij] with 
mij E Z, and a 2 1. The first of the nine equations obtained from equating 
the entries of the matrices is 

2 2 2 (0/)2 m ll - pm21 - pm31 = P n . 

Thus mll == O(mod p) and m~l + m~l == O(mod p). Since -1 is not a 
square mod p, this forces m21 == m31 == O(mod p). In the same way, all 
entries of pCtnM are divisible by p. Thus pO/-l n M E M 3(Z) contradicting 
the choiee of pO/n. Thus A and A' cannot be isomorphie. In particular, there 
are infinitely many isomorphism dasses of quaternion algebras over {Q. This 
is true more generally over any number field and all of these results will be 
trivial consequences of the dassification theorem for quaternion algebras 
over a number field (see Theorem 2.7.5). 

The elementary argument given above, which uses quadratic forms to 
distinguish quaternion algebras, is, in some senses, the wrang approach. 
For, in distinguishing equivalence dasses of quadratic forms, use can be 
made of the Hasse invariant, whieh is a product of quaternion algebras 
in the Brauer group (see §2.8). Thus, counter to the above approach, it 
uses non-isomorphie quaternion algebras to distinguish quadratie forms. 
In the case of the two-dimensional form ax2 + by 2 over F, the associated 

Hasse invariant is the dass of the quaternion algebra (7l-). (For a related 

discussion, see Exercise 2.3, No. 6.) 

Exercise 2.3 

1. Let A be a quaternion algebra over F. Show that, for any x,y E A, 

B'(x, y) = tr (xy) 

defines a non-singular symmetrie bilinear form on A and on Ao. Show 
that (Ao, B') and (Ao, B), where B is obtained from the norm form, are 
isometrie if and only if - 2 is a square in F. 

2. Show that if a!- 0,1 then (a,~a) is isomorphie to M2(F). 

3. Let K be a field extension of F, where [K : F] is odd. Let a, b E F*. 

Prove that (7l-) splits if and only if ( 7f) splits. 

4· Determine if the quaternion algebra ek3) splits over k, where (i) k = 

Q, (ii) k = Q(i), (iii) k = Q(V5), (iv) k = (Q(t), where t satisfies x3 = 2. 

5 Show that (t-l,t2 +2t-l) does not split when t satisfies x3 + x + 1 = 0 . Q(t) 

(See §O.3). 
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6. The Clifford algebra of a quadratic space (V, q) is an associative algebra 
C with 1, where V c C and for every x E V, x 2 = q(x) 1. Furthermore, 
it is universal with this property in that if D is any algebra with the above 
properties, then there exists a unique algebra homomorphism 7r : D ~ C 
such that 7rlv is the identity. This ensures that C is an invariant of the 
isometry class of (V, q). For the case of a two-dimensional space (V, q) with 

q = ax2 + by2, where a, b E F*, show that C ~ ( 7J!-) . 

7. Show that the binary tetrahedral group has a faithful representation in 
A l , where A = (-lQ -1) . 

2.4 Orthogonal Groups 

This seetion eontinues the eonnection of the preeeding seetion between 
quaternion algebras and quadratie forms. Here we diseuss the relationship 
between the group of invertible elements of the quaternion algebra and the 
orthogonal group of the related quadratie form. 

Let A be a quaternion algebra over the field F. The group A * ean be 
regarded as a linear algebraie subgroup of GL(4) defined over F via the left 
regular representation A. The orthogonal group O(Ao, n) of the quadratie 
spaee (Ao, n) is defined by 

O(Ao, n) = {T : Ao ~ Ao I T is linear, n(Tx) = n(x) \/x E Ao}. 

The mapping c defined on A * by, 

c(a)(x) = axa-l, a E A*, xE A o (2.6) 

is a group homomorphism into O(Ao, n). Its kernel is clearly the eentre 
of A*. 

Reeall that the orthogonal groups O(Ao, n) are generated by refleetions, 
where, for an anisotropie veetor y E Ao, the refleetion T y is defined by 

2B(x, y) xy + yx -1 
Ty(X)=X- () y=x- 2 y=-yxy. (2.7) 

ny y 

(See (0.37) and Theorem 0.9.11.) Thus T y = -c(y). Now det(Ty ) = -1 
and so SO(Ao,n) is generated by produets Ty1 Ty2 , where Yl and Y2 are 
anisotropie veetors in A o. However, Ty! TY2 = C(YlY2), with YlY2 E A*. Thus 
SO(Ao, n) lies in the image of c. 

We now show that SO(Ao, n; F) is precisely the image of c. If not, then 
every refleetion in O(Ao, n) lies in the image of c. Suppose that Ti = c(a) 
for some a E A* and i is one of the standard basis veetors. However, then 
- Id lies in the image of c; say c(ß) = - Id. However, then c(ß2) = Id and 
ß2 E Z(A). Clearly ß ~ Z(A) so that ß E Ao. Now ßx = -xß for all 
xE Ao. Choosing x = ß gives a eontradietion. 
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Theorem 2.4.1 Let A be a quaternion algebra defined over a field F. The 
homomorphism e defined at (2.6) induees an isomorphism 

A* jZ(A*) ~ 80(Ao, n; F). 

A well-known example of this result shows, by taking A = M 2 (lR) , that 
PGL(2, lR) is isomorphie to the group 80(2,1; lR). 

Ifwe restriet to Al = {x E A I n(x) = 1}, then the kernel of cis ±1. If A 
is such that n(A*) c F*2, then e again maps onto 80(Ao, n), for, if a E A* 
and n(a) = t2, then e(t-1 a ) = e(a) and n(r1a) = 1. If we take A = 11., 
then sinee 11.1 ~ 8U(2) (see Exercise 2.1, No.2), this gives the isomorphism 
8U(2)j{±1} ~ 80(3,lR). 

Exercise 2.4 

1. Let (V, q) be a three-dimensional quadratie spaee over F with q = 
x~ - ax~ - bx~, a, b E F*. Find a quaternion algebra A over F such that 
A* jZ(A*) ~ 80(V, q; F). 

2. Show that PGL(2, Z) ~ 80(2,1; Z), reealling that PGL(2, Z) is a max­
imal diserete subgroup of PGL(2, lR). 

3. Let LI k be afield extension with [L: k] = 2. Define Ton M2(k)®kL ~ 
M 2(L) to be induced by T(a ® b) = Ci ® b, where, in the first component, the 
overbar is conjugation in the quaternion algebra M 2(k), and in the second, 
it is conjugation in the field extension L I k. Show that T is an involutive 
k-linear anti-automorphism of M2(L). Let V = {x E M 2(L) I T(X) = x}. 
With the restriction of the norm (determinant) form, show that (V, n) is 
a four-dimensional k-quadratie spaee and obtain an orthogonal basis. For 
a E 8L(2, L) and x E V define 

d(a)(x) = aXT(a). 

Show that d is a homomorphism d : 8L(2,L) ~ O(V,n;k). Use this to 
prove that PGL(2, q ~ 80(3,1; lR)O, where this last group is the identity 
eomponent of 80(3,1; lR). 

2.5 Quaternion Algebras over the Reals 

8inee every positive real number is a square in the reals, it follows from 
Lemma 2.1.2 that the Hilbert symbol of a quaternion algebra over lR ean 
have one of the forms (-\f) , C,;l) or (-11R-1). By Theorem 2.3.1, the first 
two are isomorphie to M2 (lR) and the third, whieh is Hamilton's quaternions 
11., is not isomorphie to M 2 (lR). 

Theorem 2.5.1 A quaternion algebra (alRb) is isomorphie to exaetly one 
of11. and M 2 (lR), according to whether both a and b are negative or not. 



2.5 Quaternion Algebras over the Reals 93 

Now let k be a number field with [k : Q] = n. Recall that there are n 
(Galois) field embeddings of k into C where n = rl + 2r2. Here rl is the 
number of embeddings u such that u(k) C lR (the number of real places) 
and r2 is the number of pairs (u, ä), where u(k) ct. lR (the number of 
complex places). 

Recall that if k c L, so that L is a field extension of k, then 

More generally, let u : k --+ L be a field embedding. Then, with respect to 
that embedding, we obtain an isomorphism 

(a~b) ~a L ~ (u(a)~u(b)) 

induced by 

(ao + a1i1 + a2jl + a3idl) ~a a --+ a(u(ao) + u(al)i2 + u(a2)j2 + u(a3)i2h) 

where {1,i1,jl,idd is the standard basis of (a,;n and {1,i2,h,i2j2} is 

the standard basis of ( a(a)t(b) ). 

We now consider this for the real and complex embeddings of a number 
field k. For any complex embedding u, 

(a~b) ~a C ~ (u(a)cu(b)) ~ M2 (C). 

However, for areal embedding u : k --+ lR, 

Definition 2.5.2 1/ u : k --+ lR is areal embedding 0/ a number field k, 
then (!!f) is said to be ramified at u i/ ( a(a)Ra(b») 9! 'H. 

It is more natural to think of this in terms of the valuation on k induced 
by the embedding u. Recall that v : k --+ lR+ defined by v(x) = lu(x)1 
defines an (Archimedean) valuation on k. Then k embeds naturally in the 
completion kv and, if u is areal embedding, then kv 9! lR. The composition 
of this natural embedding with the isomorphism gives u : k --+ lR. We thus 
obtain 

(a~b) ~k kv ~ (u(a)~u(b)) . 

We thus speak of (!!f) being ramified at kv or ramified at the real place 

corresponding to u. Conversely, the quaternion algebra ( aiob) is unramified 

or split at kv if ( !!f) ~k kv 9! M 2 (lR). 
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Example 2.5.3 Let k = Q( v'(2-V5)) so that k has one complex place and 
two real places corresponding to the embeddings given by a( v'(2 - V5)) = 

±v'(2 + V5). Let A = (-1,-5+iC2-v's)). Then A is ramified at both the 

real embeddings since -1 is negative and -5 ± v'(2 + V5) is negative for 
both choices of sign. 

Exercise 2.5 

1. Let k = Q(t) where t satisfies x 3 + x + 1 = o. Show that A = C,lt2t ) 

does not split. 

2. Let k be a totally real extension of Q of degree n. Show that for any set 
S of r Archimedean places of k, where 0 ~ r ~ n, there is a quaternion 
algebra over k which is ramified at the real places in Sand unramified at the 
real places not in S. 1f k = Q( cos( 27r /11)), find a, b E k* such that (akb) 
is ramified at the real places corresponding to cos(27r /11) and cos(107r /11) 
but is unramified at the other real places. (This is a special case of a very 
general result on quaternion algebras to be proved in Theorem 7.3.6.) 

2.6 Quaternion Algebras over P-adic Fields 

In the preceding section, it was shown that a quaternion algebra over the 
local field lR is isomorphie to precisely one of M2 (lR) and the division ring 1i 
of Hamilton's quaternions. In this section, we consider quaternion algebras 
over the local P-adic fields and show that a similar dichotomy arises. 

Recall the results of §O.7 on P-adic fields K, with ring of integers R, 
uniformiser 7r, P = 7rR the unique maximal ideal and k = R/P, the 
finite residue field. If the non-Archimedean valuation v : K -t lR+ takes its 
values in {cn In E Z}, we let v: K* -t Z denote the logarithmic valuation 
v = loge 0 v. 

Let A be a quaternion division algebra over K. Let us define 

w: A* -t Z (2.8) 

by w(x) = v(n(x)), where n is the norm on A. 

Lemma 2.6.1 The function w just defined has the following properties: 

(a) w(xy) = w(x) + w(y) for alt x, y E A*. 

(b) w(x + y) :? Min{w(x), w(y)} with equality when w(x) -=I- w(y). 

Thus w defines a valuation on A. 



2.6 Quaternion Algebras over P-adic Fields 95 

Proof: The equation (a) follows immediately from the definition of v sinee 
n is multiplieative. Now eonsider the inequality (b). Let x E A \ K so that 
K(x) is a quadratie extension of K by Lemma 2.1.6 and the restrietion 
of n to K(x) is the norm N of the field extension K(x) I K. Now voN 
is a diserete valuation on the loeal field K(x) by Theorem 0.7.9. Thus w 
restrieted to sueh a quadratie extension satisfies (b) (see Exercise 0.6, No. 
3). Thus for x, y E A*, we have 

w(x + y) - w(y) = W(xy-l + 1) ~ Min{ W(xy-l), w(l)} 

with equality if w(xy-l) -I- w(l) using the quadratie extension K(xy-l). 
Thus using (a) again, w satisfies (b). D 

Extending the definition of w so that w(O) = 00, yields this result: 

Corollary 2.6.2 The set 0 = {x E A I w(x) ~ O} is a ring (the valuation 
ring of A) and Q = {x E A I w(x) > O} is a two-sided ideal of O. 

The main result of this seetion is that, for eaeh P-adic field, there is a 
unique quaternion division algebra over K. Reeall that the P-adie field K 
has a unique unramified quadratie extension F = K( VU), where u E R*, 
the group of units of R. From Theorem 0.7.13, the group K* /N(F*) has 
order 2 with the non-identity element represented by n. Thus if we define 
A = (U;), then by Theorem 2.3.1 (f), A is a division algebra. 

Theorem 2.6.3 There is a unique quaternion division algebra over K and 
it is isomorphie to (U;), where F = K (VU) is the unique unramified 
quadratie extension of K. 

Proof: It remains to show that if A is any quaternion division algebra 
over K, then A is isomorphie to (U;). The first step is to show that an 
unramified quadratie extension of K embeds in A. Recall that, for any 
a E A \ Z(A), K(a) I K is a quadratie field extension by Lemma 2.1.6. 
Thus we need to ehoose a such that the maximal prime ideal P of R is inert 
in the quadratie extension. To do this, we show that 0/ Q is a non-trivial 
finite field extension of R/P. 

For any x E A, n(nmx) = n 2mn(x) and this lies in R for m large 
enough so that nmx E O. It follows that A = K 0 and we ehoose a 
basis {Xl, X2, x3, X4} of A with Xi E O. If we define B' by B'(x, y) = 
n(x + y) - n(x) - n(y), then (A, B') is a quadratie space (see §2.3). As it is 
a regular spaee, there is a dual basis {xi,x2,x;,x4}. Let x E 0 and write 
x = L;aix;' Then since n(O) eR, ai = B'(x,xi) E R. Thus 

and 0 is a (neeessarily free) R-module of rank 4. 
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Thus O/7rO is a K-space of dimension 4, where R/P = K. Note that 
Q2 C 7rO C Q and that 0/ Q and Q/ Q2 are K -spaces. Indeed they have 
the same dimension, for if we let q E Q be such that w(q) is minimal, then 
it is easy to see that, for Yi E 0 chosen such that {Yi + Q} is a K-basis of 
O/Q, then {qYi + Q2} is a K-basis of Q/Q2. Thus dimk(O/Q) > 1. 

However, O/Q is a field, for if xE 0\ Q, then w(x) = O. Hence w(x- I ) = 
o and x-I E 0 \ Q. Thus O/Q is a division ring. However, as it is finite­
dimensional over the finite ring K, it is a finite division ring and so is a 
field, by a theorem of Wedderburn. 

Thus we choose a E 0 such that a + Q = a generates 0/ Q over K. 
Then F = K(a) is a quadratic extension field of K and by construction it 
is unramified since K (a) I K is non-trivial. Thus by the uniqueness of such 
extensions (see Theorem 0.7.13), we can take F = K(a), where a 2 = U 
with u E R*. 

The two roots ±a give two embeddings of the field F in A and so by the 
Skolem Noether Theorem (see Theorem 2.9.8), there is aß E A* such that 
ßaß-I = -a. Thus {1, a, ß, aß} is a basis of A. Since ß2 commutes with 
a, it lies in the centre of A and so this is a standard basis of A. 

Let ß2 = 7rmU', where u' E U. Since we can remove squares A = (u,~u') 
with E = 0,1. Now every unit u' E U is a norm of an element in F (see 

Theorem 0.7.13) and so by Theorem 2.3.1 (I), (u:') splits over K. Thus 

E = 1 and there exist a, b E K such that ua2 + u'b2 = 1. Thus b =1= 0 and 
we let 

(
1 0 

M = 0 b- I 

o ab- I 

Under M, the forms ux2 + 7ry2 - U7rZ 2 and ux2 + 7rU'y2 - U7rU'Z2 are 
equivalent. Thus by Corollary 2.3.5, A ~ (W). D 

Thus Theorem 2.1. 7 yields the consequence: 

Corollary 2.6.4 11 Ais a quaternion algebra over the P-adie field K, then 
A is isomorphie to exaetly one 01 M 2 (K) or the unique division algebra 
Crt)· 
Similar arguments to those employed in the proof of the above theorem 
will be used in the next result. 

Theorem 2.6.5 Let A = (7rkU) be as deseribed in Theorem 2.6.3. Let 
L I K be a quadratie extension. Then A splits over L. 

Proof: If L I K is an unramified extension, then L ~ F = K (vu) and A 
splits over L. 

Now suppose that L I K is ramified. Let F = K( vu) and set M = 
L(VU)· Considering residue fields, [1\1 : K] = [1\1 : L][L : K] = [1\1 : L] 
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sinee L I K is ramified. On the other hand, [M : R] = [M : F][F : R] = 
2[M: F]. SO [M : L] = 2 and M I L is unramified. Let 1[' be a uniformiser 
for L so that 7r = 7r/2 X, where x E Ri,. However, then 

(7r~U) = (7r/2;,u) = (X~U). 

By Theorem 0.7.13, x E NMIL(RM) and so it follows that (r) splits by 
Theorem 2.3.1. 0 

Just as Theorem 2.5.1 gives simple eriteria for deciding if a quaternion 
algebra over the loeal field lR is ramified, there are also simple eriteria for 
deciding if a quaternion algebra over a loeal field kp is ramified, at least in 
the eases where kp is non-dyadie. Reeall that in these eases, kp / kp 2 has 
order 4 with square classes represented by 1, u, 7r and U7r, where u E Rp is 
not a square (see Exereise 0.7, No. 6). 

Theorem 2.6.6 Let K be a non-dyadic P-adic jield, with integers Rand 
maximal ideal P. Let A = (7f), where a, b E R. 

1. If a, b f/- P, then A splits. 

2. If a f/- P, b E P \ p 2, then A splits if and only if a is a square mod P. 

3. If a, bE P\ p 2, then A splits if and only if -a-lb is a square mod P. 

Proof: Reeall from Hensel's Lemma that cER \ P is a square in R if and 
only if c is a square mod P. Thus if a is a square mod P, we ean eertainly 
solve ax2 + by 2 = 1 in K and so A splits in these cases. 
1. Assume that a is not a square mod P so that a is in the square class of 
u, where we ean ehoose u as in Theorem 2.6.3. But then, as in the proof of 
that theorem, A will split as b is a unit. 
2. Again assume that a is not a square mod P. But ax2 + by2 = 1 has a 
solution in K if and only ifax2 + by2 = z2 has a solution in R with z =f=. o. 
Redueing mod P, this cannot have a solution as ais not a square. 
3. Let a = 7rV, b = 7rW where v, w E R*. Then ax2 + by2 = 1 has a solution 
if and only if x 2 - (_v- l w)y2 = V- l 7r has a solution. If this has a solution 
then reducing mod P we see that -V-lW is a square mod P. On the other 
hand, if -V-lW is a square, then x 2 - (_V- lW)y2 is equivalent to x 2 _ y2, 
which in turn is equivalent to the quadratic form xy (e.f. Exercise 0.9 No. 
2). But this form is clearly universal; that is, represents all elements of K. 
Thus x 2 - (_v- l w)y2 = V- l 7r has a solution. 0 

The dyadic eases are more eomplieated. See Exereise 2.6, No. 3 for the 
ease of Q2. 
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Example 2.6.7 Decide for whieh fields Qp, where p is an odd prime, the 

quaternion algebra (-~~,5) splits. By part 1 of the Theorem 2.6.6, the 

quaternion algebra will eertainly split for all odd primes =F 3 and 5. Sinee 
5 is not a square mod 3, the quaternion algebra does not split over Q3. For 
p = 5, eonsider -(-15)/5 = 3, whieh is not a square mod 5 and so, again, 
the quaternion algebra does not split over Q5. 

Note that for p = 2, it ean be shown that Q2(}5) is the unique unramified 
quadratic extension of Q2 (see Exercise 2.6, No. 3) and so, by the proof of 
Theorem 2.6.3 the quaternion algebra will split over Q2. (See also §2.7.) 

Exercise 2.6 

1. Show that if L is the unique unramified quadratie extension of K, a 
P-adie field, then A = (7) has a faithful representation as 

{ (7l"~' !') I a, bEL and a', b' are the L I K eonjugates of a, b } . 

Show that 0 eonsists of all those elements where a, b E RL, the ring of 
integers in Land deduee that 0 is an order in A. Identify the ideal Q in 
this representation and show that Q2 = 7l"O. 

2. With A as in No. 1, show that A is loeally eompaet and that 0 (as in 
Corollary 2.6.2) is the maximal eompaet subring of A. Show also that 0* 
is eompaet. 

3. Show that u E Z2 is a square if and only if u == l(mod 8). Henee show 

that Q2/Q22 has order 8 (see Exereise 0.7, No. 6). Prove that (~) is the 

unique quaternion division algebra over Q2. Show that (-~;l) ~ (~). 

4. Let k = IQ(A). Show that (3+q~lA) splits when P is one of 
the prim es of norm 3 but not the other. Show also that it fails to split at 
both prim es of norm 7. 

5. Use Theorem 2.6.6 to show that, in any non-dyadie field K, the quad­
ratie form dlX~ + d2X~ + d3X~ with d i E R* is isotropie. (See §O.9.) 

2.7 Quaternion Algebras over N umber Fields 

The results of the two preeeding seetions give the classifieation of qua­
ternion algebras over the loeal fields whieh are eompletions of aglobai 
number field. The classifieation of quaternion algebras over a number field 
depends on these loeal resuIts. That proeess will be begun in this seetion 
and be eompleted in Chapter 7. 
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Let k be a number field and v a valuation on k. The completion of k at 
v, denoted by kv , or k p in the non-Archimedean case, is a local field and 
k embeds in kv for each v. Elements of kare usually identified with their 
images in k v . 

The following concepts and the related notation will feature prominently 
throughout. 

Definition 2.7.1 If A is a quaternion algebra over the n umber field k, let 
A v (resp. A p ) denote the quaternion algebra A@k kv (resp. A@k kp) over 
kv (resp kp ). Then A is said to be ramified at v (resp. at P) if A v (resp. 
Ap ) is the unique division algebra over kv (resp. kp ) (assuming that v is 
not a complex embedding). Otherwise, A splits at v or P. 

The local-global result which we now present follows directly from the 
Hasse-Minkowski Theorem on quadratic forms. 

Theorem 2.7.2 Let A be a quaternion algebra over a number field k. Then 
A splits over k if and only if A @k kv splits over kv for all places v. 

Proof: Let A = (akb). Then, by Theorem 2.3.1, A splits over k if and 

only ifax2 +by 2 = 1 has a solution in k. By the Hasse-Minkowski Theorem 
(see Corollary 0.9.9), ax2 + by 2 = 1 has a solution in k if and only if it has 
a solution in kv for all pI aces v. However, ax2 + by2 = 1 has a solution in 
kv if and only if A @k kv splits over kv . D 

The finiteness of the set of places at which ax2 + by 2 = 1 fails to have 
a solution, given in Hilbert's Reciprocity Law, will follow from Theorem 
2.6.6. For any a and b, which we can assume lie in Rk, there are only finitely 

many prime ideals so that a or b E P. Thus (akb) splits at all but a finite 

number of non-dyadic places. As there are only finitely many Archimedean 

places and finitely many dyadic places, then (akb) splits at all but a finite 

number ofplaces. Hilbert's Reciprocity Theorem 0.9.10 furt her implies that 
the number of places at which A is ramified is of even cardinality. 

Theorem 2.7.3 Let A be a quaternion algebra over the number field k. 
The number of places v on k such that A is ramified at v is of even cardin­
ality. 

Although the quaternion algebra A does not uniquely determine the pair 

a, b when A ~ (9:f), the set of places at which A is ramified dearly depends 

only on the isomorphism dass of A. Indeed the set of places at which A 
is ramified determines the isomorphism dass of A, as will be shown in 
Theorem 2.7.5. 
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Definition 2.7.4 The finite set of places at which A is ramified will be 
denoted by Ram(A), the subset of Archimedean on es by Ramoo(A) and the 
non-A rchimedean ones by Ram f (A). The places v E Ram f (A) correspond 
to prime ideals P, and the (reduced) discriminant of A, b.(A), is the ideal 
defined by 

b.(A) = II P. (2.9) 

Theorem 2.7.5 Let A and A' be quaternion algebras over a number field 
k. Then A ~ A' if and only ifRam(A) = Ram(A'). 

Proof: By Theorem 2.3.4, A and A' are isomorphie if and only if the 
quadratie spaces Ao and A~ are isometrie. However, by Theorem 0.9.12, 
Ao and A~ are isometrie if and only if (Ao)v and (A~)v are isometrie over 
kv for all places v on k. Now, sinee (Ao)v = (Av)o, it follows that A and 
A' are isomorphie if and only if A v and A~ are isomorphie for all v. For 
eaeh eomplex Arehimedean plaee v, Av ~ A~ and for all other v, there are 
precisely two possibilities by Theorem 2.5.1 and Corollary 2.6.4. However, 
Ram(A) = Ram(A') shows that Av ~ A~ for all v. 0 

Thus the isomorphism dass of a quaternion algebra over a number field 
is determined by its ramifieation set. By Theorem' 2.7.3, this ramifieation 
set is finite of even eardinality. To eomplete the dassifieation theorem of 
quaternion algebras over numbers fields k, it will be shown that for eaeh 
set of plaees on k of even eardinality, exduding the eomplex Arehimedean 
ones, there is a quaternion algebra with precisely that set as its ramifieation 
set. This will be earried out in Chapter 7. 

Examples 2.7.6 

1. Let A ~ (-lili-1). Then b.(A) = 2Z beeause A splits at all the odd 

primes by Theorem 2.6.6. It is established in Exercise 2.6, No. 3 that A is 
ramified at the prime 2. Alternatively, A is ramified at the Arehimedean 
plaee by Theorem 2.5.1 and so by Theorem 2.7.3 must also be ramified 
at the prime 2. 

2. Let t = v'(3 - 2y'5),k = Q(t) and A ~ (-~,t). We want to determine 
b.(A). Reeall some information on k from §0.2. Thus k = Q(u), where 
u = (1 + t)/2 and so u satisfies x 4 - 2x3 + x-I = O. Also Rk = Z[u]. 
Now k has two real plaees and sinee t is positive at one and negative at 
the other, A is ramified at just one of these Arehimedean plaees. Further 
NkIQ(t) = -11 so that tRk = P is a prime ideal. The quadratie form 
-x2 + t y 2 = 1 has no solution in k p sinee Cli) = -1. This follows from 
Theorem 0.9.5. Finally, modulo 2, the polynomial x4 - 2x3 + X + 1 is 
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irreducible, so, by Kummer's Theorem, there is just one prime in k lying 
over 2. Thus ~(A) = tRk by Theorem 2.7.3. 

Exercise 2.7 

1. Show that the following quaternion algebras split: 

( -1 + V5, (1 - 3V5)/2) . 
Q(V5) 

2. Let A be a quaternion division algebra over Q. Show that there are in­
finitely many quadratic fields k such that A ®IQI k is still a division algebra 
over k. 

3. Let k = Q(t), where t satisfies x 3 +x+ 1 = O. Let A = C,lt2t ). Show 
that ~(A) = 2Rk . 

4. (Norm Theorem for quadratic extensions) Let L I k be a quadratic 
extension and let a E k*. Prove that a E N(L) if and only if a E N(L®kkv ) 

for all places v. 

5. Let k be a number field and let L I k be an extension of degree 2. Let 
PI be an ideal in R k which decomposes in the extension L I k and let P2 be 
an ideal in R k which is inert in the extension. Let QI lie over PI and let 
Q2 lie over P2. Let A be a quaternion algebra over k and let B = L ®k A. 
Prove that A is ramified at PI if and only if B is ramified at QI. Prove 
that B cannot be ramified at Q2. 

2.8 Central Simple Algebras 

In our discussion of quaternion algebras so far in this chapter, two crucial 
results on central simple algebras have been used. These are Wedderburn's 
Structure Theorem and the Skolem Noether Theorem. The latter result, in 
particular, will playa critical role in the arithmetic applications to Kleinian 
groups later in the book. Thus, in this section and the next, an introduc­
tion to central simple algebras will be given, sufficient to deduce these two 
results. These seetions are independent of the results so far in this chapter. 

Let F denote a field. Unless otherwise stated, all module and vector space 
actions will be on the right. 

Definition 2.8.1 An F-algebra Ais a vector space over F, which is a ring 
with 1 satisfying 

(ab)x = a(bx) = (ax)b Va, bE A, x E F. 
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Throughout, all algebras will be finite-dimensional. 
If A' is a sub algebra of A, then the centraliser of A' 

GA(A') = {a E AI aa' = a'a Va' E A'} 

is also a subalgebra. In particular, the centre Z(A) = GA(A) is a subalgebra. 
Furthermore, F embeds as lA F as a subset of Z(A). 

If M is an A-module, then EndA(M) is the set of A-module endomorph­
isms cjJ : A -+ A. Under composition of mappings, EndA(M) is also an 
F -algebra with the identity mapping as 1. 

Lemma 2.8.2 The left regular representation A induces an isomorphism 
A ~ EndA(A). 

Proof: For a E A, Aa E EndA(A) and A : A ----> EndA(A) is an algebra ho­
momorphism. Since A has an identity element, the kernel of A is necessarily 
trivial. Furt her , if cjJ E EndA(A), then cjJ(a) = cjJ(1.a) = cjJ(l)a = A1>Cl)(a) so 
that A is surjective. D 

Definition 2.8.3 

• An F-algebra A is central if Z(A) = F . 

• An F -algebra A is simple if it has no proper two-sided ideals. 

We now investigate properties of tensor products of simple and central 
algebras. For any two F-algebras, the tensor product A ®F B is defined 
and is also an F-algebra with dimF(A ® B) = (dimFA) (dimFB). 

Proposition 2.8.4 Let A and B be F -algebras. 

1. If A' and B' are subalgebras of A and B, respectively, 

In particular, if A and Bare central, so is A ® B. 

2. If A is central simple and B is simple, then A ® B is simple. In 
particular, if A and Bare central simple, so is A ® B. 

Proof: Let E = A ® B. 

1. A routine calculation shows that 

Choose a basis {b j } of B. Then, if e E GE(A' ® B'), e has a unique 
expression as e = I: Ü'.j ® bj with Ü'.j E A. Let a' E A'. Then from 
e(a' ® 1) = (a' ® l)e and the uniqueness, we obtain Ü'.ja' = a'Ü'.j for each 
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j and all a' E A'. Thus erj E CA(A') and so e E CA(A') ®B. Now choose 
a basis {Cj} of CA(A') so that e has a unique expression e = L Cj ® ßj 
with ßj E B. For b' E B', e(1 ® b') = (1 ® b')e yields b'ßj = ßjb'. Thus 
each ßj E CB(B') and the result follows. 

2. Let 1 =I- 0 be an ideal of E. Let 0 =I- Z E 1 so that z = L~=l ai ® bi 
with ai E A and bi E Band chosen among elements of 1 such that 
r is minimal. Thus all ai and bi are non-zero and {al, a2, ... ,ar} is 
linearly independent. Otherwise, after renumbering, al = L~=2 aiXi and 
z = L~=2 ai ® (blXi + bi ), contradicting the minimality of r. In the same 
way, {bl , b2 , . .. ,br } is linearly independent. 

We now "replace" {al, a2, ... ,ar} by a set {1, a~, .. . ,a~}. The set AalA 
is a two-sided ideal and so Aa1A = A. Thus 1 = Lj cjaldj . So 

r 

Zl = 2:)Cj ® 1)z(dj ® 1) = 1 ® b1 + L a~ ® bi EI. 
j i=2 

Now repeat for bl to obtain an element 

r 

Z' = 1 ® 1 + L a~ ® b~ E 1. 
i=2 

From the equality 

r 

z'(a ® 1) - (a ® 1)z' = L(a~a - aaD ® b~ EI, 
i=2 

the choice of r shows that a~a = aa~ for i = 2,3, ... r. Thus all of these 
a~ E Z (A) = F. However, {1, a~, ... ,a~} is linearly independent. So 
r = 1 and 1 ® 1 E 1. Thus 1 = E. D 

Definition 2.8.5 For the F -algebra A, let AO denote the opposite algebra 
where multiplication 0 is dejined by 

a 0 b = ba 'Va, b E A. 

Corollary 2.8.6 If A is a central simple algebra, so is AO and A ® AO ~ 
EndF(A). 

Proof: The first part is obvious. Define e : A @ AO ---t EndF(A) by 
e( a ® b) (c) = acb for a, b, C E A. Then e defines an algebra homomorphism. 
By Proposition 2.8.4, A ® AO is simple and so e is injective. A dimension 
count shows that e is surjective. D 

We also take this opportunity to introduce the Brauer group. On the 
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set of central simple algebras over a field K, define A to be equivalent to 
B if there exist integers m and n such that A ® Mm(K) is isomorphie to 
B ® Mn(K). Since 

this is an equivalence relation and we denote the set of equivalence dasses 
by Br(K). 

If [A] denotes the equivalence dass of A in Br(K), then 

[A][B] = [A®B] 

is a well-defined binary operation by Proposition 2.8.4. The operation is 
associative, the identity element is represented by K and each element [A] 
has an inverse [AO] by Corollary 2.8.6. In this way, Br(K) is an abelian 
group, the Brauer Group of K. 

If A is a quaternion algebra, then it is straightforward to check that 
A ~ AO so that in the Brauer group, [A] has order 2. Later we will show 
that the subset of Br(K) of elements represented by quaternion algebras 
is a subgroup of exponent 2, in the cases where K is a number field. 

Exercise 2.8 

1. Let A be a finite-dimensional F -algebra and N a finite-dimensional 
A-module. Let M = (fmN. Prove that 

2. Let A be a finite-dimensional F -algebra. Prove that 

Deduce that if A is simple, then Mn(A) is also simple and, jurthermore, 
that Z(Mn(A)) =Z(A)In . 

3. Let A be a simple F -algebra. Prove that the centre of A is a field. 

4. Let V be a regular quadratic space of dimension 3 over F with orthogonal 
basis Vl, V2, V3 and discriminant d, where -d ~ F*2. Show that the Clifford 
algebra C of V (see Exercise 2.3, No. 6) is spanned by {Vl elV2e2V3e3}, 

where ei = 0,1. Show that z = VlV2V2 E Z(C). Assuming thatdim(C) = 8, 
prove that C is a simple F -algebra and deduce that C is a central simple 
algebra over F( R). 

5. Let A = (~) and B = (a1n have standard bases {I, i, j, k} and 
{1,i',j',k'}, respectively. By considering the spans of{I®I,i®l,j®j',k® 
j'} and of {I ® 1, 1 ® j', i ® k', -ci ® i'}, show that A ®F B ~ C ®F M 2 (F), 

where C = (~). Hence, find a quaternion algebra C such that the product 

of [( =ij&)] and [e~o)] in Br(Q) is [Cl. 
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2.9 The Skolem Noether Theorem 

We now return to the general situation of an F-algebra A and consider 
simple modules over A. 

Definition 2.9.1 A right module M over an algebra A is simple if it has no 
proper submodules. 1t is semi-simple if it is a direct sum of simple modules. 

The following is a useful basic result on simple modules. 

Lemma 2.9.2 (Schur's Lemma) Let M and N be A-modules and<p : M -t 

N a non-zero homomorphism. 

1. 1f M is simple, <p is injective. 

2. 1f N is simple, <p is surjective. 

Proof: The kernel and image of<p are submodules of M and N respect­
ively. 0 

Corollary 2.9.3 1f N is a simple A-module, then EndA(N) is a division 
algebra. 

Each right ideal of an algebra A is an A-module and will be a simple A­
module if and only if it is a minimal right ideal. Note that for an algebra A, 
there are two notions of "simple". When A is regarded as a right A-module, 
which, if necessary, we denote by AA, it is simple if it has no proper right 
ideals. In general, when A is a simple F-algebra, it need not follow that 
AA is simple. However, in the cases considered here, it turns out that AA 
is semi-simple and the minimal right ideals are all isomorphie. 

Lemma 2.9.4 Let M be a module such that M = E jEJ N j , where each 
N j is a simple submodule of M. Then if P is any submodule of M, there 
exists a subset I of J such that M = EB EiE! Ni EB P. 

Proof: By Zorn's Lemma, there is a subset I of J such that the collection 
{Ni; i E I} U {P} is maximal with respect to the property EiE! Ni + 
P = EB EiE! Ni EB P. Let MI = EB L:iE! Ni EB P. By the maximality of I, 
N j n MI =1= 0 for j E J. Since each N j is simple, Nj C MI for all j. Thus 
M=MI.o 

Note that from this result it follows that each submodule of such a module 
has a complement. 

Proposition 2.9.5 Let A be a finite-dimensional simple algebra over F. 
Then the following two conditions hold: 

1. AA is semi-simple. 
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2. All non-zero minimal right ideals of A are isomorphie. 

Proof: The finite-dimensionality shows that A will have a non-zero min­
imal right ideal N of finite dimension. Now AN = LXEA xN is a two-sided 
ideal of A and so AN = A. By Schur's Lemma, using Ax , each xN is either 
o or simple. Thus A is a sum of simple submodules and taking P = 0 in 
Lemma 2.9.4, A is semi-simple. 

If NI and N2 are two non-zero minimal right ideals of A, then, as above, 
ANI = AN2 = A. Thus A(NI N 2 ) = A and in partieular, N I N 2 i- O. 
Choose Xl E NI such that x l N2 i- O. Since x l N 2 C NI, the minimality 
of NI gives x l N 2 = NI. Then by Schur's Lemma, Ax ! : N 2 --+ NI is an 
isomorphism. 0 

Theorem 2.9.6 (Wedderburn's Strueture Theorem) Let A be a simple al­
gebra of finite dimension over the field F. Then A is isomorphie to the 
matrix algebra Mn(D), where D ~ EndA(N) is a division algebra with N a 
minimal right ideal of A. The integer n and division algebra D are uniquely 
determined by A. 

Proof: By Lemma 2.8.2, A ~ EndA(A), and by Proposition 2.9.5, AA is 
isomorphie to a direct sum of a number of copies, say n, of a minimal right 
ideal N. It thus follows that A ~ Mn(EndA(N)) (see Exercise 2.8, No 1). 
However, by Corollary 2.9.3, EndA(N) = D, a division algebra. 

We now establish the uniqueness of n and D. Suppose A ~ Mn,(D') 
for some division algebra D'. Let Ei denote the n' x n' matrix with 1 in 
entry (i, i) and zeros elsewhere. Then Ni = EiMn' (D') is a right ideal and 

A ~ EB L~~l Ni· Since D' is a division algebra, it is easy to see that Ni is 
minimal. Thus by Proposition 2.9.5, n' = n. 

For d' E D', Ad' E EndA(Ni ) and the mapping d' --+ Ad' is an injective 
homomorphism. Now suppose that cP E EndA(Ni ) and cp(Ei) = Eiß. Then 

cp(Ei) = cp(ET) = cp(Ei)Ei = EißEi· 

However, there exists d' E D' such that d' Ei = EißEi. Now let a E Ni. Then 

cp(a) = cp(Eia) = cp(Ei)a = d'Eia = d'a. 

Thus cP = Ad' and D' ~ EndA(Ni ) ~ D. 0 

We now investigate modules M over A. If M is a free A-module, it is 
semi-simple, as it is isomorphie to a direct sum of copies of A. Any A­
module M' will be an image of a free module M, M being a direct sum 
of simple submodules Ni. If K is the kernel of the natural map M --+ M', 
then K has a complement and M' ~ M / K ~ EB L Ni by Lemma 2.9.4. 
Thus M' is semi-simple. 

Now let M be a simple A-module and let 0 i- u E M. Then uA C M and 
so uA = M. The map Au : A --+ M is a surjective module homomorphism 
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and so its kernel K is a maximal right ideal of A. By Lemma 2.9.4, K will 
have a complement N in A which will be a minimal right ideal. So M ~ N. 

Proposition 2.9.7 If M l and M 2 are right A-modules, then M l and M 2 

are isomorphie if and only if they have the same F -dimension. 

Proof: By the remarks preeeding this proposition, M l and M 2 are semi­
simple, thus direct sums of simple A-modules and so isomorphie to direet 
sums of minimal right ideals of A. However, all these minimal right ideals 
N are isomorphie by Proposition 2.9.5. Thus the isomorphism classes of 
M l and M 2 will depend on the number of copies of N and, sinee N is 
finite-dimensional, on the dimensions of M l and M 2 over F. 0 

We are now in a position to prove a theorem whieh is partieularly useful 
in our applications. 

Theorem 2.9.8 (Skolem Noether Theorem) Let A be a finite-dimensional 
central simple algebra over Fand let B be a finite-dimensional simple al­
gebra over F. If cI>, 'IjJ : B ~ A are algebra homomorphisms, then there 
exists an invertible element c E A such that cI>(b) = cl'IjJ(b)c for all bEB. 

Proof: Suppose first that A is a matrix algebra over F [i.e., A = EndF(V) 
for a vector space V]. Using cl> , V becomes a right BO-module, V.p, by 
defining ab = cI>(b)(a) for a E V, bEB. In the same way, we obtain V..p. 
Thus by Proposition 2.9.7, V.p and V..p are isomorphie BO-modules. Let 
c : V.p ~ V..p be such an isomorphism so that c is an invertible element of 
A = EndF(V). Thus c(cI>(b)(a)) = 'IjJ(b)(c(a)) for all a E V and the result 
follows in this case. 

In the general ease, eonsider cl> Q91, 'IjJ Q91 : B Q9 AO ~ A Q9 AO ~ EndF(A) 
by Corollary 2.8.6. Now B Q9 AO is simple by Proposition 2.8.4 and so, 
as above, there exists c E A Q9 AO such that c- 1('IjJ(b) Q9 a)c = cI>(b) Q9 a 
for all b E B,a E A. Putting b = 1 gives c E CA®Ao(1 Q9 AO) and so 
c E A Q9 Z(AO) = A Q9 1 by Proposition 2.8.4. Thus c = c Q9 1 for some 
cE A. Similarily, c-1 E AQ91, so that cis an invertible element of A. Then 
putting a = 1 above gives cl'IjJ(b)c = cI>(b) for all bEB. 0 

Corollary 2.9.9 Every non-zero endomorphism of a finite-dimensional 
central simple algebra is an inner automorphism. 

In the sequel, both the theorem and the eorollary will be referred to as the 
Skolem Noether Theorem and both are frequently applied when the eentral 
simple algebra is a quaternion algebra. 
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Exercise 2.9 

1. If A and B are finite-dimensional central simple algebras over F, show 
that A and B are isomorphie if and only if they have the same dimension 
and represent the same element of the Brauer group Br(F). 

2. Show that Br(Q) has infinitely many elements of order 2. 

3. Let A be a finite-dimensional algebra over Fand let B be a subalgebra. 
Show that A is a right BO @ A -module under the action 

a(b @ a') = (ba)a' 

and that the left regular representation maps CA (B) isomorphieally onto 
EndBo@A(A). Deduee that if A is central and simple and B is simple, then 
CA(B) is also simple. 

4. Let A be a quaternion algebra over F. In the notation of Theorem 2.4.1, 
show that 

SO(Ao, n; F) ~ Aut(A). 

5. Let a E Mn(F) have an irredueible minimum polynomial over F. Show 
that a, ß E Mn(F) are eonjugate in Mn(F) if and only if they have the 
same minimum polynomial. 

6. Let Hamilton's quaternions 1{ be embedded in M2(Q. Prove that the 
normaliser of 1{1 in SL(2, Q is 1{1 itselj. 

2.10 Further Reading 

A complete treatment of the theory of quaternion algebras over number 
fields from a local-global point of view is given in Vigneras (1980a) and 
virtually all the results of Sections 2.1 to 2.7 are to be found there. We will 
return to a more detailed study of quaternion algebras and their orders in 
Chapters 6 and 7 and, again, most of that material is covered in Vigneras 
(1980a). Note that our proof of Theorem 2.7.5, describing the isomorph­
ism classes of quaternion algebras over number fields re lies on the Hasse­
Minkowski Theorem for quadratic forms, which was discussed and assumed 
in Chapter O. A similar approach is taken in Lam (1973), which is concerned 
with quadratic forms, but also discusses the structure of quaternion algeb­
ras from a local-global perspective. This is also pursued in O'Meara (1963). 
The role of quaternion algebras in studying quadratic forms via Clifford al­
gebras and Brauer groups is covered in Lam (1973). The general algebraic 
theory of central simple algebras is discussed, for example, in Pierce (1982) 
and Cohn (1991). Quaternion algebras make fleeting appearances there as 
special cases. More on the local-global treatment of central simple algebras 
over number fields appears in detail in Reiner (1975), where the arithmetic 
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theory of orders in these algebras is the focus of the study. To pursue the 
relationship to algebraic groups in a wider context, consult Platonov and 
Rapinchuk (1994). See also Eistrodt et al. (1987). 



3 
Invariant Trace Fields 

The main algebraic invariants associated to a Kleinian group are its in­
variant trace field and invariant quaternion algebra. For a finite-covolume 
Kleinian group, its invariant trace field is shown in this chapter to be a 
number field (Le., a finite extension of the rationals). This allows the in­
variants and the algebraic number-theoretic structure of such fields to be 
used in the study of these groups. This will be carried out in subsequent 
chapters. The invariant trace field is not, in general, the trace field itself 
but the trace field of a suitable subgroup of finite index. It is an invari­
ant of the commensurability dass of the group and that is established in 
this chapter. This invariance applies more generally to any finitely gener­
ated non-elementary subgroup of PSL(2, C). Likewise, the invariance, with 
respect to commensurability, of the associated quaternion algebra is also 
established. Given generators for the group, these invariants, the trace field 
and the quaternion algebra, can be readily computed and techniques are 
developed here to simplify these computations. 

3.1 Trace Fields for Kleinian Groups of Finite 
Covolume 

We begin with a basic definition: 

Definition 3.1.1 Let r be a non-elementary subgroup 0/ PSL(2, C). Let 
r = p- 1(r), where P : SL(2, q --+ PSL(2, q. Then the trace field 0/ r, 
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denoted Q(tr r), is the field: 

Q(tr1' : l' E t). 

Note that for any 'Y E P8L(2, C), the traces of any lifts to 8L(2, C) will 
only differ by ±. Note also that in the above definition, we take traces in 
t = p-l(r), so that we are not concerned with lifting the representation 
r -+ P8L(2, C) to a representation of r into 81(2, C). When there is a 
lifting p of the representation, then, of course, Q( tr p( 'Y) : 'Y E r) = Q( tr l' : 
l' E t). Thus we will frequently mildly abuse notation and simply write 
Q(trr) = Q(±tr'Y: 'Y E r). Of course, Q(trr) is a conjugacy invariant. 

The starting point for much of what follows in the book is the next result. 

Theorem 3.1.2 Let r be a Kleinian group 0/ finite eovolume. Then the 
field Q(tr r) is a finite extension 0/ Q. 

Later in this chapter, a number of useful identities on traces in 8L(2, C) 
will be given which are essential in calculations. For the moment, for the 
purposes of proving the above theorem, we prove one such identity which 
will also be used subsequently. 

Lemma 3.1.3 I/ X E 8L(2, C), then xn = Pn(tr X)X - qn(tr X)1, where 
Pn and qn are monie integral polynomials 0/ degrees n - 1 and n - 2, Te­

speetively. 

Proof: The result follows from repeated use of 

X 2 = (tr X)X - I, (3.1) 

Corollary 3.1.4 tr (xn) is a monie integral polynomial 0/ degree n in 
tr (X). 

Before commencing with the proof of Theorem 3.1.2, we prove a lemma, 
referring the reader to §1.6 for notation. 

Lemma 3.1.5 Let V be an algebraic variety defined over an algebraic num­
ber field k and let V have dimension O. Then V is a single point and its 
coordinates are algebraic numbers. 

Proof: In this case, C(V) = C since C is algebraically closed. Hence 
qV] = C. Let x = (Xl, X2, . .. ,Xn ) E V. The maximal ideal defined by 
m x = {f E qV]1 f(x) = O} must be the trivial ideal {O}. Now the function 
fi, obtained from the polynomial Xi - Xi, lies in m x and so Xi - Xi E 1(V). 
Thus 1(V) contains Xl -Xl, X 2 -X2, ... ,Xn -Xn and so its vanishing set is 
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a single point. However, for the algebraieally dosed field k = Q, k(V) = k. 
Thus as above, Xi - Xi E k[X] lies in I(V). Thus Xi E k. 0 

We now commenee with the proof of Theorem 3.1.2. 

Proof: Since r is of finite covolume it is finitely presented. We lift r 
to SL(2, C) and, by abuse, continue to denote it by r. Now by Selberg's 
Lemma, Theorem 1.3.5, r eontains a torsion-free subgroup r 1 of finite 
index. If all the traees in r 1 are algebraie, it follows fram Corollary 3.1.4 
that all traees in rare algebraie. It thus suffiees to assurne that r is torsion 
free. 

As in §1.6, we form the algebraie subset V(r) of Hom(r, SL(2, C)). We 
will show that the dimension of V(r) is O. This will eomplete the proof, for 
by Lemma 3.1.5 the entries of the matriees Ai will be algebraie numbers. 
However, sinee r is finitely generated, all matrix entries in r willlie in a 
finite extension F of Q, so that Q(tr r) c Fand the result follows. 

Thus suppose by way of eontradietion that the dimension of V (r) is 
positive. Thus there are elements of V(r) c Hom(r, SL(2, C)), arbitrarily 
dose to the indusion map, but distinct from it. By the Loeal Rigidity 
Theorem 1.6.2, these image groups must be finite-eovolume Kleinian groups 
isomorphie to r. By Mostow's Rigidity Theorem 1.6.3, these groups are all 
eonjugate in Isom(H3) to r. However the equations (1.14) imply that only 
four inner automorphisms of r, respecting this fix-point normalisation, are 
possible. This eompletes the proof. 0 

Sinee Mostow Rigidity implies that the hyperbolie strueture is a topologieal 
invariant of a finite-eovolume hyperbolie 3-manifold, we have the following 
eonsequenee: 

Corollary 3.1.6 Let M = H 3 Ir be a hyperbolic 3-manilold which has 
finite volume. Then Q( tr r) is a topological invariant 01 M. 

There are several methods and teehniques whieh simplify the eaIculation 
of these number fields deseribed in this section in various types of examples. 
These will be given in later seetions of this ehapter onee we have developed 
other related useful invariants of finite-eovolume hyperbolie groups. 

Exercise 3.1 

1. 11 H 3 Ir is the figure 8 knot complement, show directly (i. e., without 
using the Rigidity Theorems as in the prool 01 Theorem 3.1.2), that V(r) 
has dimension O. 

2. Let Pn (x) be the polynomials described in Lemma 3.1.3. 11 x is real and 
> 2, so that x = 2 eoshO, show that 

( ) _ sinhnO c 
Pn X - lor n:::: l. 

sinhO 



114 3. Invariant Thace Fields 

3.2 Quaternion Algebras for Subgroups of SL(2, C) 

Throughout this section, r is a non-elementary subgroup of SL(2, C). Here 
we associate to r a quaternion algebra over Q( tr r). Let 

(3.2) 

where only finitely many of the ai are non-zero. 

Theorem 3.2.1 Aar is a quaternion algebra over Q( tr r). 

Proof: It is clear that Aar is an algebra and so, by Theorem 2.1.8, we 
need to show that Aar is four-dimensional, central and simple over Q(tr r). 

Since r is non-elementary, it contains a pair of loxodromic elements, say 
9 and h, such that (g, h) is irreducible, and so the vectors I, g, hand gh 
in M 2(C) are linearly independent by Lemma 1.2.4. Now Aar C is a ring 
and, by the above, of dimension at least 4 over Co Thus Aar C = M 2(C). 
Note also that Aar is central for if a lies in the centre of Aar, then it lies 
in the centre of M 2 (C). Thus a is a multiple of the identity. It will now be 
shown that Aor is four dimensional over Q( tr r). 

Let T denote the trace form on M 2 (C) so that 

T(a, b) = tr (ab) (3.3) 

is a non-degenerate symmetrie bilinear form (see Exercise 2.3, No. 1). A 
dual basis of M2(C) , {I*, g*, h*, (gh)*}, is therefore well-defined. Since this 
spans, if 'Y Er, then 

'Y = xaI* + xlg* + X2 h* + X3(gh)*, Xi E Co 

If 'Yi E {I, g, h, gh}, then 

(3.4) 

Tb, 'Yi) = tr b'Yi) = Xj, for some jE {O, 1,2, 3}. (3.5) 

Hence as 'Y'Yi E r, tr'Y'Yi E Q(trr), and so we deduce from (3.5) that 
Xa, ••• ,X3 E Q(tr r). Thus 

Q(tr r)[I, g, h, gh] c Aar c Q(tr r)[I*, g*, h*, (gh)*]. 

Thus Aar is four dimensional over Q(tr r). 
Finally, we show that Aar is simple. For if J is a non-zero two-sided 

ideal, then JC is a non-zero two-sided ideal in M 2 (C). Thus JC = M 2 (C) 
and J has dimension 4 over Co Hence it must have dimension at least 4 
over Q( tr r) so that J = Aar. 0 

Note that multiplication in Aa (r) is just the rest riet ion of matrix multiplic­
ation in M 2 (C). Thus since the pure quaternions, and hence the reduced 
trace and norm, are determined by the multiplication (see §2.1), the re­
duced trace and norm. in Aa (r) coincide with the usual matrix trace and 
determinant: 
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Corollary 3.2.2 I/ r is a non-elementary subgroup 0/ SL(2, q and g, h E 
rare any pair 0/ loxodromic elements such that (g, h) is irreducible, then 
Aor = Ql(tr r)[l, g, h, gh]. 

Corollary 3.2.3 Let the subgroup r 0/ SL(2, q contain two elements 9 
and h such that (g, h) is irreducible. Then Aor is a quaternion algebra 
over Ql(tr r) and 

Aor = Ql(tr r)[I, g, h, gh]. 

Proof: Note that in Theorem 3.2.1, the assumption that the group r 
is non-elementary was only used to exhibit elements 9 and h such that 
{I, g, h, gh} is a linearly independent set over C. Given any such pair of 
elements in r, like those guaranteed by the conditions given in this corollary, 
the same conclusion follows. 0 

By normalising the elements 9 and h described in these corollaries, a 
fairly explicit representation of Aor can be obtained. Thus, assuming that 
9 is not parabolic, conjugate so that 

(3.6) 

If k = Ql(tr r), then the eigenvalue >. satisfies a quadratic over k and so K = 
k ( >') is an extension of degree 1 or 2 over k. Since a + d and >.a + >. -1 d E k, 
it follows that a, d and c = ad - 1 alllie in k(>'). Thus after conjugation, 
Aor c M 2 (k(>')). 

Corollary 3.2.4 With r, g, h, and >. as described above, r is conjugate to 
a subgroup 0/ SL(2, k(>')). 

It should be noted that since 9 satisfies the same minimum polynomial as 
>., the field k(>') embeds in Aor. The above is thus a direct exhibition of 
the result that k(>') splits the algebra Aor as given in Corollary 2.1.9. For 
more details, see Exercise 3.2, No. 2. 

These corollaries and various refinements of them will be frequently used 
in the determination of the quaternion algebras. 

The following particular case of the above corollary is worth noting. 

Corollary 3.2.5 I/ r is a non-elementary subgroup 0/ SL(2, q such that 
Ql(tr r) is a subset o/~, then r is conjugate to a subgroup 0/ SL(2,~). 

Proof: If we choose 9 to be loxodromic, then as it has real trace, 9 will 
be hyperbolic. Thus >. E ~ and the result follows from Corollary 3.2.4. 0 
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Exercise 3.2 

1. Let Aof be as described at (3.2). Assume, in addition, that alt traces in 
f are algebraic integers. Define 

(3.7) 

Show that Of is an order in Aof. 

2. Suppose in the normalisation given at (3.6) that A rt k. Prove that 
(a) a, d are k(A) I k conjugates and so c E k. 
(b) 

where x' and y' are the k(A) I k conjugates of x and y, respectively. 

(c) Hence show that Ao(r) = (ß:,c), where ß E k(A) is such that k(ß) = 

k(A) and ß2 E k. 

3. If f = 8L(2, Z), show that 

where a' and b' are the Q( J5) I Q conjugates of a and b. 

4. Iff is the (4, 4, 4)-triangle group, show that k = Q(trr) = Q(V2) and 

Ao(r) = ( -l,lk+v'2). Deduce that Ao(f) is a division algebra. 

5. If f 1, f are non-elementary Kleinian groups and f 1 Cf, show that 
Ao(r) ~ Ao(f1 ) @<Q(trr,) Q(trf). 

6. The binary tetrahedral group G is a central extension of a group of order 
2 by the tetrahedral group A 4 . Show that G can be embedded in 8L(2, <C) as 
an irreducible subgroup. Determine Q(tr G) and Ao(G). (See Exercise 2.3, 
No. 7.) 

3.3 Invariant Trace Fields and Quaternion 
Algebras 

Although the trace field is an invariant of a Kleinian group, it is not, in gen­
eral, an invariant of the commensurability dass of that group in P8L(2, C). 
As we shall show in this section, there is a field which is an invariant of 
the commensurability dass, but first we give an example to show that the 
trace field is not that invariant field. 
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Example 3.3.1 Let r be the subgroup of PSL(2, q generated by the 
images of A and B, where 

B = (1 0). 
-w 1 

Here w = (-1 + A) /2 so that the ring of integers 0 3 in the field Q( A) 
is Z[w]. Clearly all the entries of the matrices in r lie in 0 3 . Thus r is 
discrete and Q( tr r) = Q( A). If X = (b ~i)' then one easily sees that 
the image of X normalises rand its square is the identity. Thus r 1 = 
(r, PX) contains r as a subgroup of index 2. Now r 1 contains the image 
of X BA = (i~ -itiW) so that i lies in the trace field of r 1. 

It should also be remarked that r is, in addition, of finite covolume, as it 
is a subgroup of index 12 in the arithmetic group PSL(2, 0 3 ). (See §1.4.3.) 

Now let r be a finitely generated non-elementary subgroup of SL(2, C). 
We will next construct a subgroup of finite index in r whose trace field is 
an invariant of the commensurability class of the group. 

Definition 3.3.2 Let r(2) =<,,2 I " Er> . 

Lemma 3.3.3 r(2) is a finite index normal subg'f'Oup of r whose quotient 
is an elementary abelian 2-group. 

Proof: r(2) is obviously normal in rand such that all elements in the 
quotient have order 2. Since r is finitely generated, it follows that r /r(2) 
is a finite elementary abelian 2-group. D 

With this, we now prove one of the main results: 

Theorem 3.3.4 Let r be a finitely generated non-elementary subgroup of 
SL(2, q. The field Q(tr r(2)) is an invariant of the commensurability class 
ofr. 

Proof: It will be shown that if r 1 has finite index in r, then Q(tr r(2)) c 
Q(trrd. With this, the theorem will follow. To see this, suppose ß is 
commensurable with r. Hence by Lemma 3.3.3, r(2) and L~.c2) are commen­
surable and so r(2) n ß (2) has finite index in both rand ß. Thus assuming 
the above claim we have the following inclusions: 

• Q(trr(2)) C Q(trr(2) n ß(2)) 

• Q(trß(2)) C Q(trr(2) nß(2)) 

By definition, Q( tr r(2) n ß (2)) C Q( tr r(2)) and so the above inclusions are 
all equalities. In particular, Q( tr r(2)) = Q( tr ß (2)), as required. 

To establish the claim, first note that we can assume, in addition, that 
r 1 is anormal subgroup of finite index in r because, if C is the co re of 
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f 1 in f (i.e., the intersection of all conjugates of f 1 under f), then C is 
normal of finite index in f. Since Q( tr C) C Q( tr f l), it suffices to show 
that Q(tr f(2») C Q(tr C). 

Recalling (3.2), let 

Aofl = p~ail'i I ai E Q(tr f l ), ')'i E f l }. 

We next daim that given any 9 E f, g2 E Aofl . NotiCe that since f l 
is normal in f, any such ginduces by conjugation an automorphism of 
f l and hence an automorphism <Pg of Aofl . By Theorem 3.2.1, Aofl is a 
quaternion algebra over Q(tr f l ), and so <Pg is inner by the Skolem Noether 
Theorem (see Corollary 2.9.9). Thus there exists a E (Aofl )* such that 

(3.8) 

for all x E Aof l . Thus in AofC = M 2(C), g-la commutes with every 
element and so g-la = yI for some y E C. Consequently, 

y2 = det(g-la) = det(g-l)det(a) = det(a). (3.9) 

Now (det a)I = a2 - tr(a)a E Ao(f l ) so that y2 E Q(trfl ). Hence, g2 = 
y-2a2 E Aofl , as daimed. Since 9 was chosen arbitrarily from f, f(2) C 

Ao(f) and, hence, Q(trf(2») C Q(trf1). 0 

Corollary 3.3.5 If f is a finitely generated non-elementary subgroup of 
SL(2, C), then the quaternion algebra A of(2) is an invariant of the com­
mensurability class of f. 

Proof: If fand .D. are commensurable, then Q( tr f(2») = Q( tr .D. (2»). Now 
choose an irreducible pair of loxodromic elements in f(2) n .D. (2). Then by 
Corollary 3.2.2, the quaternion algebras A of(2) and Ao.D. (2) are equal. 0 

Of course, the field Q( tr f(2») is also an invariant of the wide commen­
surability dass of f, where fand .D. are in the same wide commensurability 
dass if there exists t E SL(2, <C) such that tfCl and .D. are commensurable 
(see Definition 1.3.4). Also, the quaternion algebras Af(2) and A.D.(2) will 
be isomorphie since conjugation by t will define an isomorphism, acting 
like the identity on the centre, from the quaternion algebra Af(2) to the 
quaternion algebra A.D. (2) . 

Definition 3.3.6 Let f be a finitely generated non-elementary subgroup 
of PSL(2, q. The field Q( tr f(2») will henceforth be denoted by kf and 
referred to as the invariant trace field of f. Likewise, the quaternion algebra 
A of(2) over Q( tr f(2)) will be denoted by Af and referred to as the invariant 
quaternion algebra of f. 

The cases of particular interest here occur when f has finite covolume. 
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Theorem 3.3.7 11 r is a Kleinian group 01 finite covolume, then its in­
variant trace field is a finite non-real extension 01 I!J.. 

Proof: That kr is a finite extension of I!J. follows from Theorem 3.1.2. 
Suppose that kr is areal field. By Corollary 3.2.5, r(2) is conjugate to a 
subgroup of SL(2, IR). However, r(2) cannot then have finite covolume. D 

We also note the fundamental relationship between the basic structure of 
quaternion algebras and the topology of the quotient space. 

Theorem 3.3.8 11 r is a non-elementary group which contains parabolic 
elements, then Aar = M 2 (CQl(trr)). In particular, ifr is a Kleinian group 
such that H 3 jr has finite volume but is non-compact, then Ar = M 2 (kr). 

Proof: If r has a parabolic element ,,(, then "( - I is non-invertible in 
the quaternion algebra. Thus Aar cannot be a division algebra. The result 
then follows from Theorem 2.1.7. D 

Given r as a subgroup of PSL(2, <C) means that its trace field is naturally 
embedded in C. Thus the invariant trace field is a subfield of C and so is 
not just defined up to isomorphism, but is embedded in C. 

Only in the first section of this chapter do we use the fact that the 
trace field is a number field. The results elsewhere in this chapter apply 
to any finitely generated non-elementary subgroup of SL(2, C) and so, in 
particular, apply to all finitely generated Fuchsian groups. 

It should be noted that even in the cases where the Kleinian groups are 
of finite covolume, the invariant trace field and quaternion algebra are not 
complete commensurability invariants. There are many examples of non­
commensurable manifolds with the same invariant trace field and, indeed, of 
cocompact and non-cocompact groups with the same invariant trace field. 
Examples will be given in the next chapter and more will emerge later, 
particularly in the discussion of arithmetic groups. There are also examples 
of non-commensurable manifolds with isomorphie quaternion algebras and 
these will be discussed later. 

Let r be a finitely generated non-elementary subgroup of SL(2, C) so that 
r(2) is anormal subgroup of finite index. Then, as in the proof of Theorem 
3.3.4, conjugation by gEr in duces an automorphism of r(2) and, hence, 
induces an automorphism of the quaternion algebra Ar which is necessarily 
inner. Thus using (3.8), the assignment 9 --+ a induces a homomorphism of 
r into Ar* j(kr)* and, hence, into SO((Ar)a, n) by Theorem 2.4.1. Thus 
any finite-covolume Kleinian group r in PSL(2, q admits a faithful rep­
resentation in the kr points of a linear algebraie group defined over kr, 
where kr is a number field. 
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Exercise 3.3 

1. Let r be a Kleinian group of finite covolume. Show that there are only 
finitely many Kleinian groups r 1 such that rf) = r(2) . 

2. Show that if H3/r is a compact hyperbolic manifold whose volume is 
bounded by c, then [r : r(2)] is bounded by a function of c. 

3. Let r be a Kleinian group such that every element of r leaves a fixed 
circle in the complex plane invariant. Prove that the invariant trace field 
kr c IR. 

4. Let Ad denote the adjoint representation of 8L2 to GL(C), where C is 
the Lie algebra of SL2 • Let r be a subgroup of finite covolume in 8L(2, C). 
Show that kr = Q( {tr Ad 'Y : 'Y E r}). 

5. Let r be a Kleinian group of finite covolume. Let a be a Galois em­
bedding of kr such that a(kr) is real and Ar is ramified at the real place 
corresponding to a. Prove that if T is a Galois embedding of Q( tr r) such 
that Tlkr = a, then T(Q(tr r)) is real. (See Exercise 2.9, No. 6.) 

6. Show that, if r is the (2,3, 8)-Fuchsian tri angle group, then Q(tr r) "I­
kr. Show that Ar does not split over kr. (See Exercise 3.2, No. 4.) De­
scribe the linear algebraic group G defined over kr such that r has a faithful 
representation in the kr points of G. Deduce that r has a faithful repres­
entation in 80(3, IR). 

7. Let r denote the orientation-preserving subgroup of index 2 in the 
Coxeter group generated by reftections in the faces of the (ideal) tetrahed­
ron in H 3 bounded by the planes y = 0, x = V3y, x = (1 + y'5)/4 and 
the unit hemisphere. Determine the invariant trace field and quaternion 
algebra of r. Let D. denote the orientation-preserving subgroup of index 2 
in the Coxeter group generated by reftections in the faces of a regular ideal 
dodecahedron in H3 with dihedral angles 1r /3. Find the invariant trace field 
and quaternion algebra of D.. 

3.4 Trace Relations 

There are a number of identities between traces of matrices in SL(2, C). 
These are particularly useful in the determination of generators of the trace 
fields, which is carried out in the next section. The most useful of these 
identities are listed below and many are established by straightforward 
calculation. 

Trace is, of course, invariant on conjugacy classes so that 

tr XY = tr ZXYZ- 1 for X, Y E M 2 (C), z E GL(2, C). (3.10) 
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In particular, 

tr XY = tr Y X and tr X IX 2 ··· X n = tr X"'(I)X"'(2) ... X".(n) (3.11) 

for any cyclic permutation a of 1,2, ... , n. 
Recall that for X E SL(2, q 

X 2 = (tr X)X - I, (3.12) 

from which we deduce 

(3.13) 

and other identities for higher powers of X, as given in Lemma 3.1.3. 
The other basic identities for elements X, Y E SL(2, q are 

tr XY = (tr X)(tr Y) - tr XY-l, tr X = tr X-I. (3.14) 

By repeated application of these relations, the following identities, which 
will be useful in the next two sections, are readily obtained. 

tr [X, YJ = tr 2 X + tr 2y + tr 2 XY - tr XtrYtr XY - 2 (3.15) 

tr XYXZ = tr XYtr XZ - trYZ-1 (3.16) 

tr XYX-IZ = tr XYtr X-IZ - tr X 2YZ- 1 (3.17) 

tr X 2yZ = tr Xtr XYZ - trYZ (3.18) 

trXYZ+trYXZ+trXtrYtrZ = trXtrYZ+trYtrXZ+trZtrXY 
(3.19) 

For this last identity, we argue as follows: 

tr XYZ = tr XtrYZ - tr XZ-Iy- I 

= tr XtrYZ - (tr XZ- I trY - tr XZ-Iy) 

= tr X tr Y Z - tr Y (tr X tr Z - tr X Z) + (tr Y X tr Z - tr Y X Z). 

Finally, we take combinations of this last identity: 

trXYZW +trYXZW = trXtrYZW +trYtrXZW +trZWtrXY 

- tr XtrYtr ZW, 

trWXYZ + trXWYZ = trWtrXYZ + trXtrWYZ + trWXtrYZ 

- trWtr XtrYZ, 

trXZWY+trZXWY=trXtrZWY+trZtrXWY+trXZtrWY 

- tr X tr Z tr WY. 
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By subtracting the last one from the sum of the first two and using the 
earlier identities we obtain 

2trXYZW = trXtrYZW +trYtrZWX +trZtrWXY 
+kWkXYZ+kXYkZW-kXZkYW 
+kXWkYZ-kXkYkZW-kYkZkXW 
-kXkWkYZ-kZkWkXY+kXkYkZkW 

(3.20) 

We now establish trace relations among tripie products ofmatrices, which 
will subsequently be useful. The method used in establishing these is less 
straightforward than the simple calculations used to establish the identities 
so far. 

In the quaternion algebra A = M2 (C), the pure quaternions Ao are the 
matrices of trace 0 and the norm form induces a bilinear form B on Ao 
given by 

-1 -1 
B(X, Y) = T(XY + YX) = TtrXY. (3.21) 

Thus, for X,Y,Z E Ao, trXYZ = tr([(trXY)I - YX]Z) = -trYXZ. 
Thus if we define F on A~ by F(X, Y, Z) = tr XYZ, then F is an altern­
ating trilinear form. Thus if X', Y' and Z' also lie in Ao, then 

(
B(X,X') 

tr XY Z tr X'y' Z' = c det B(Y, X') 
B(Z, X') 

B(X, Y') B(X, Z')) 
B(Y, Y') B(Y, Z') 
B(Z, Y') B(Z, Z') 

for some constant c. Using (3.21), and choosing suitable matrices [e.g., 
X = X' = (L~l)' Y = Y' = (~ Ö), Z = Z' = (..~\ Ö)], we obtain c = 4 and 

tr XY Z tr X'y' Z' = =-det tr Y X' tr yy' tr Y Z' . 
1 (tr XX' tr XY' tr XZ') 

2 tr ZX' tr ZY' tr ZZ' 
(3.22) 

Now if we take any matrices X, Y, Z, X', Y' and Z' in M2 (C), then their 
projections in Ao are of the form Xl = X - 1/2(tr X)I and so satisfy 
(3.22). Rearranging then gives that for any matrices X, Y, Z, X', Y' and Z' 
in M 2 (C), 

tr XY Z tr X'y' Z' + p' tr XY Z + P tr X'y' Z' + Q = 0 (3.23) 

where P', P and Q are rational polynomials in the traces of these six 
matrices and their products taken in pairs. 

Now choose X = X', Y = Y' and Z = Z', where X, Y,Z E SL(2,C). A 
tedious calculation using (3.22) shows that tr XY Z satisfies the following 
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quadratic polynomial: 

x 2 (tr XY tr Z + tr Y Z tr X + tr Z X tr Y - tr X tr Y tr Z)x 

+ tr XYtrYZtr ZX + (tr 2 XY + tr 2yZ + tr 2 ZX) 
(tr Xtr Y tr XY + trYtr ZtrYZ + tr Ztr Xtr ZX) 

+ (tr 2 X + tr 2y + tr 2 Z) - 4. (3.24) 

Notice, in particular, that the coefficients here are integral polynomials in 
the traces of the three matrices involved and their products taken in pairs. 

Exercise 3.4 

1. Establish (3.15). 

2. Prove that tr X 2 y 2 = tr 2 XY - tr [X, Y]. 

3. Let rjJ : M 2 (C) -* C be aC-linear function such that rjJ is a conjugacy 
invariant and rjJ(I) = 2. Prove that rjJ = tr . 

4. For X, Y E SL(2, C), let ß(X) = tr 2 X - 4 and ')'(X, Y) = tr [X, Y]- 2. 
(a) Prove that tr xn = (tr xtq(ß(x)), where q is an integral polynomial 
with (i) E = 0 if n is even and (ii) E = 1 if n is odd. 
(b) Prove that tr (xny X m y-1) = (tr X)Ep(')'(X, Y), ß(X)), where p is an 
integral polynomial in two variables with (i) E = 0 if n + m is even and (ii) 
E = 1 if n + m is odd. 
(c) Prove thattr(xn,yxn2y-1.··xn2ry-1) = (trX)Ep(,),(X,Y),ß(X)), 
where p is an integral polynomial in two variables with (i) E = 0 if L ni is 
even and (ii) E = 1 if L ni is odd. 
(d) Determine,),(X, (Xyxy-1)n) in terms of')'(X, Y) andß(X) forn = 1 
and 2. 

5. Establish (3.24). 

3.5 Generators for Trace Fields 

Let r be generated by ')'1, ')'2, ... ,')'n. The aim is to show, first of all, that 
Q(trr) is generated over Q by the traces of a small collection of elements 
in r. This will later be modified to obtain a small collection generating 
Q(trr(2l ). 

Let P denote the collection 

{')'h ... ')'j, I t ~ 1 and all ji are distinct}. 

Let Q denote the collection 

{ 'V .••• '"'I. Ir> 1 and 1 < i 1 < ... < i < n}. Pl It r _ _ r _ 
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Let R denote the collection 

We show successively that Q(tr r) is generated over Q by the traces of the 
elements in P, then in Q, and finally in R. 

For each "I E r, define the length of'Y [with respect to the generators 
"11, ... ,'YnJ 

s 

Rb) = min{ L laill "I = 'Y~11 ... 'Y~: } 
i=1 

where the minimum is taken over all representations of "I in terms of the 
given generators. 

Lemma 3.5.1 Let "I E r. Then tr'Y is an integer polynomial in {tr8 I 
8 E P}. 

Proof: We proceed by induction on the length of "I. From (3.13) and 
(3.14), the result is clearly true if Rb) = 1 or 2. So suppose Rb) 2: 3 and 
the result holds for all elements of length less than Rb). If "I ~ P, then 
either k i = kj for distinct i and j or some ai i=- 1. If k i = k j , then "I, after 
conjugation, has the form XYXZ or XYX- 1Z, and the result follows by 
induction from (3.16) to (3.18). In the same way, if some lail 2: 2, the result 
follows from (3.18). If some ai = -1, so that "I has the form X'Yk"/Y, then 

tr X'Yk;1y = trYX'Yk;1 = trYXtr'Yki - trYX'Yki. 

By repeated application of this and induction, the result follows. 0 

Lemma 3.5.2 Let "I E r. Then tr'Y is an integer polynomial in {tr8 
8 E Q}. 

Proof: For each permutation T of Sn, define 

so that P = UrESn T* (Q). Each T is a product of transpositions of the form 
(i i + 1) and we define the length of T to be the minimum number of such 
transpositions required. We need to show that if'Y E T*(Q), then "I is an 
integer polynomial in {tr 8 I 8 E Q}. Proceed by induction on the length of 
T. The result is trivial if the length is 0, so let T = T' (J", where (J" = (i i + 1) 
and the length of T' < length of T. Then using (3.19) and repeated use 
of (3.13), we obtain that "I E T*(Q) has trace an integer polynomial in 
{tr81 8 E T'*(Q)}. The result now follows by induction. 0 

This last result suffices for many of the calculations which will appear. 
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It certainly suffices where the group r can be generated by two or three 
elements. 

If r = (g, h), then 

Q(tr r) = Q(tr g, tr h, tr gh). (3.25) 

Ifr = (f,g,h), then 

Q(tr r) = Q(tr f, tr g, tr h, tr fg, tr fh, tr gh, tr fgh). (3.26) 

Remarks: Further use will be made of these results when we co me to 
consider arithmetic Kleinian groups. Note, for this reason, that in all of the 
above results of this section, we could replace Q by Z. 

Lemma 3.5.3 Let "I E r. Then tr'Y is a rational polynomial in {trJ I 
JE R}. 

Proof: This follows immediately from Lemma 3.5.2 and the identity 
(3.20). D 

Given r, a non-elementary subgroup of SL(2, C), we now want to determ­
ine the invariant trace field kr = Q( tr r(2»). From a presentation of r, a set 
of generators for r(2) can be obtained via, say, the Reidemeister-Schreier 
rewriting process. The above results can then be applied to r(2). However, 
note that if Fis a free group on n generators, then F(2) has 2n (n - 1) + 1 
generators, so that, in general, the number of generators of r(2) may in­
crease exponentially with the number of generators of r. We now give an 
elementary result which gives a considerable saving in this direction. 

Definition 3.5.4 Let r be a non-elementary subgroup of SL(2, C), with 
generators "11, "12, . .. ,"In. Define rSQ , with respect to this set of generators, 
by 

r SQ _ (2 2 2) 
- "11,"12'··· ,"In· 

Lemma 3.5.5 With r as above and tr 'Yi i- 0 for i 
kr = Q(trrSQ ). 

(3.27) 

1,2, ... ,n, then 

Proof: Clearly r SQ c r(2) so that Q(tr rSQ ) c kr. Now from (3.12), if 
tr'Y i- 0, then "I = (tr'Y)-lb2 + 1) in M 2 (C). Thus, let "I E r(2) so that 
"I = JrJ~ ... J; with J i E r. Now Ji = 'Yi1 "'!i2 ... 'Yiri • Thus 

Ti Ti 

Ji = II(tr 'Yi j )-l IIb7j +1), 
j=l j=l 
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It follows that tr l' E Q(tr rSQ ). D 

Note that, when r is finitely generated, in contrast to r(2), rSQ may well 
be of infinite index in r. However, under the conditions given, rSQ has the 
same number of generators as r. 

With this, we can obtain another description of kr in terms of traces 
which is applicable to methods of characterising arithmetic Kleinian and 
Fuchsian groups. 

Lemma 3.5.6 Let r be a finitely generated non-elementary subgroup of 
SL(2,<C). Let k = Q({tq 2: l' E r}). Then k = kr. 

Proof: Note that tr1'2 = tr 21' - 2 so that k c kr. Now choose a set of 
generators 1'1, ... ,1'n of r such that tr 1'i -=I=- 0, tr 1'l1'; -=I=- 0 for all i and j. 
Thus by Lemmas 3.5.3 and 3.5.5, it suffices to show that tr 1'h;, tr 1'h;1'~ E 
k for all i, j and k. This follows by a manipulation of trace identities: 

2 tr 1'i 1'j = tr 1'i tr 1'nj - tr 1'j. 

Squaring both sides gives that tr 1'i tr 1'j tr 1'nj E k and hence so does 
t 2 2 
r1'i 1'j' 

2 2 -1 2 2 2 2 
tr 1'i 1'j 1'k = tr 1'i 1'j tr 1'k - tr 1'i 1'j 1'k· 

Squaring both sides then gives that tr 1'k tr 1'l1';1'k E k since tr 1'h; -=I=- O. 
The result follows since 

D 

The cases where r has two generators deserve special attention, as there 
are numerous interesting examples of these. So suppose that r = (g, h) 
is a non-elementary group. Note that both 9 and h cannot have order 2. 
Suppose initially that neither has, so that tr g, tr h -=I=- O. Thus by the Lemma 
3.5.5 and (3.25), kr = Q(tr g2, tr h2, tr g2h2). Now 

tr g2 h2 = tr 9 tr h tr gh - tr 2 9 - tr 2 h + 2. (3.28) 

Hence, from (3.25) and (3.13), we have the following: 

Lemma 3.5.7 Let r = (g,h), with trg,trh -=I=- 0, be a non-elementary 
subgroup of SL(2, C). Then 

(3.29) 

Now suppose that trh = 0 so that h has order 2. Then r 1 = (g,hg- 1h-1 ) 

is a subgroup of index 2 in rand so kr1 = kr by Theorem 3.3.4. The 
following result is then an immediate consequence of Lemma 3.5.7. 



3.5 Generators für Trace Fields 127 

Lemma 3.5.8 Let r = (g, h), with tr h = 0, be a non-elementary subgroup 
of SL(2, q. Then 

kr = Q(tr 2g, tr [g, hl). (3.30) 

We note that the conjugacy dass of an irreducible Kleinian group r = (g, h) 
is determined by the three complex parameters 

ß(g) = tr 2g - 4, ß(h) = tr 2h - 4, ,(g, h) = tr [g, h] - 2. (3.31) 

It is of interest to note how these relate to the invariant trace field when r 
is non-elementary. In the case where tr h = 0, it is immediate from Lemma 
3.5.8 that 

kr = Q(,(g, h), ß(g)). (3.32) 

When tr g, tr h i- 0, then from (3.15), one sees that tr 9 tr h tr gh satisfies 
the monie quadratie polynomial 

x 2_(ß(g)+4)(ß(h)+4)x-(ß(g)+4)(ß(h)+4)(,(g, h)-ß(g) -ß(h)-4) = O. 

Thus from Lemma 3.5.7, 

[kr: Q(,(g,h),ß(g),ß(h))]::; 2. (3.33) 

Now consider the case where r has three generators. 

Lemma 3.5.9 Let r = (,1,'2,'3), with tr,i i- 0 for i = 1,2 and 3. Then 
kr is generated over Q by {tr 2,i, 1 ::; i ::; 3; tr,i/j tr,itr,j, 1 ::; i < j ::; 
3; tr,l/2,3 tr,l tr'2 tr'3}. 

Proof: From Lemma 3.5.5 and (3.26), kr is generated over Q by the traces 
of seven elements. Then using (3.28) and 

3 

,hh~ = II((tr,i),i - I), 
i=l 

it is immediate that these seven traces can be replaced by the seven ex­
pressions given in the statement of this lemma. 0 

There are many examples in the next chapter which illustrate the ap­
plication of the results in this section. 

Exercise 3.5 

1. Show that the invariant trace field of a Fuchsian (t, m, n)-triangle group 
is a totally real field. Suppose t = 2 and N is the least common multiple of 
m and n. Show that the invariant trace field has degree cjJ(N)j2 or cjJ(N)j4 
over Q according as (m, n) > 2 or not. 



128 3. Invariant Trace Fields 

2. Ifr = ('"Yl, ')'2, ')'3, ')'4), find the integer polynomial in {tr818 E Q} for 
tr b11';1')'2')'n4)' 

3. Show that for a standard set of 2g generators in a compact surface group 
r of genus g, r SQ has infinite index in r. 

4. If r = (x, y, z), show that [Q(tr r) : K] ::; 2, where K is generated over 
Q by the traces of the elements x, y and z and their products taken in pairs. 

5. Let r = \'1'1,')'2, ... ,')'n), with tr')'i =I- 0 for alt i. Let 

Show that kr = K(tr')'i')'j')'ktr')'itr')'jtr')'k) for one such triple product 
which does not lie in K. (See (3.23).) 

6. Let r be a finitely presented non-elementary subgroup of SL(2, <C) with 
generators ')'1, ')'2,··· ,')'n' Then the set Hom(r) of homomorphisms p : r ----> 

SL(2, q is an algebraic set in <C4n defined over Q as in §1.6. Let X(r) 
denote the set of characters Xp of such representations given by xpb) = 

tr pb). For each gEr, Tg : Hom(r) ----> <C defined by Tg(p) = Xp(g) is a 
regular function. Show that the ring T generated by alt such functions is 
finitely generated. Let 81 ,82 , ... ,8m be such that {T8i : 1 ::; i ::; m} generate 
T and define t : Hom(r) ----> <Cm by t(p) = (T81 (p), T82 (p), ... ,T8rn (p)). Show 
that X (r) can be identified with t(Hom(r)) and in this way becomes an 
algebraic set: the character variety of r. 

3.6 Generators for Invariant Quaternion Algebras 

Reeall from Corollary 3.2.3 that Ar is the algebra kr[I, g, h, gh], where 
(g, h) is an irreducible subgroup of r(2). The quaternion algebra ean be 
eonveniently deseribed by its Hilbert symbol and for this, we require a 
standard basis of Ar (i.e., a basis of the form {I, i, j, ij}, where i 2 , j2 E kr* 
and ij = -ji). Now Ar.<C = M2(q (see Theorem 3.2.1), so that the pure 
quaternions form the subspace s€(2, <C), whieh, as deseribed in §2.3, is a 
quadratie spaee with the rest riet ion of the norm or determinant form. Let 
the associated symmetrie bilinear form be B so that for C, D E s€(2, <C), 

-1 -1 
B(C,D) = T(CD+DC) = TtrCD. (3.34) 

Thus C and D are mutually orthogonal if and only if CD = -DC. Henee, 
{i, j, ij} must form an orthogonal basis of s€(2, q with respeet to the 
bilinear form B. 

Thus given 9 and h as above, let to = tr g, t1 = tr hand t2 = tr gh. 
Set g' = 9 - (to/2)I and h' = h - (tl/2)I, so that g', h' E s€(2, q. Also 
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g,2 = (t6 - 4)/4, h,2 = (t~ - 4)/4. Thus provided 9 and h are not parabolic, 
g,2, h,2 E kr*. Assuming that 9 is not parabolic, set 

h" = h' _ B(g', h') g' 
B(g',g') 

so that h" E s.e(2, C) and is orthogonal to g'. Now 

h,,2 __ t6 + t~ + t~ - totlt2 - 4 __ tr [g, h] - 2 
- t6 - 4 - t6 - 4 . (3.35) 

Note that since (g, h) is irreducible, the numerator is non-zero. Thus re­
moving squares (see Lemma 2.1.2), we have that 

Ar = (tr 2g - 4, -(tr 2g - 4)(tr [g, h]-, 2)) = (tr 2g - 4, tr [g, h]- 2) 
kr kr· 

(3.36) 

See §2.1 for the last equality. We have thus established the following: 
I,. 

Theorem 3.6.1 1f 9 and h are elements of the non-elementary group r(2) 
such that (g, h) is irreducible and such that 9 is not parabolic, then 

Ar = Cr 2g - 4':~[9' h]- 2) . (3.37) 

Now, it is convenient to describe the Hilbert symbol in terms ofthe elements 
of r rather than those of r(2) . 

Theorem 3.6.2 1f 9 and h are elements of the non-elementary group r 
such that (g, h) is irreducible, 9 and h do not have order 2 in PSL(2, q 
and 9 is not parabolic, then 

Ar = Cr 2g(tr 2g - 4), tr:~tr2h(tr [g, h]- 2)) . (3.38) 

Proof: The elements g2 and h2 satisfy the conditions stated in the previous 
theorem so we can apply the method used in the proof of that theorem. 
Thus in (3.35), replacing to by t6-2, tl by t~-2 and t2 by toht2-t6-t~+2 
(see (3.28)) gives 

-t6t~(tr [g, h] - 2) 
t6(t6 - 4) 

Since tr 2 g2 - 4 = t6 (t6 - 4), the result follows. 0 

Now if 9 is not parabolic and 9 and h generate a non-elementary sub­
group, then 9 and h cannot both be of order 2. If neither has order 2, then 
(g, h) is irreducible and we can apply the above result. If h has order 2, 
then (g, hgh-1 ) cannot be reducible and we can apply the above result to 
these elements. 
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Corollary 3.6.3 Let 9 and h genemte a non-elementary subgroup of r 
and be such that 9 is neither pambolic nor of order 2 in PSL(2, q and h 
has order 2. Then 

(3.39) 

Notice that if r = (g, h) in the above corollary, then the invariant trace 
field and the quaternion algebra are described in terms of the defining 
parameters given at (3.31). 

Corollary 3.6.4 Let r = (g, h) be a non-elementary subgroup where h has 
order 2 and 9 is not pambolic. Then 

Ar C>! ((ß(g) + 4)ß(g), /(g, h)(,(g, h) - ß(g))) 
- Q(ß(g), /(g, h)) . 

Exercise 3.6 

1. Establish (3.35). 

2. Let r, 9 and h be as in Theorem 3.6.2 with a areal embedding of kr. 
Prove that Ar is mmified at the real place corresponding to a if and only 
if a(tr 2g) < 4 and a(tr [g, h]) < 2. (See Exercise 3.3, No. 5.) 

3. Embed the group A 5 of symmetries of a regular icosahedron in PSL(2, C) 
and let G denote its lift to SL(2, q. Determine kG and AG (cf. Exercise 
3.2, No. 6). 

4. Let r be a non-elementary subgroup of PSL(2, q which is genemted by 
three elements /1, /2 and /3 of order 2. Let h = tr /2/3, t2 = tr /3/1, t3 = 
tr /1/2 and u = tr /1 ')'2/3. Prove that, after a suitable permutation of /1, /2 
and /3, 

kr = Q(t~, t~, t1t2t3), 

Ar = C~(t~ - 4),:;t~(U2 - 4)) . 

3.7 Further Reading 

The important Theorem 3.1.2 that the trace field is a number field for a 
Kleinian group offinite covolume is to be found in Thurston (1979) and also 
in Macbeath (1983). The connections between the matrix entries in finitely 
generated subgroups of GL(2, C) and the structure of the related groups 
was investigated in Bass (1980) and quaternion algebras constructed from 
the subgroups were employed in this. In the context of characterising arith­
metic Fuchsian groups among all Fuchsian groups, Takeuchi, in the same 
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way, used the construction of quaternion algebras from Fuchsian groups 
in Takeuchi (1975). This was extended to Kleinian groups in Maclachlan 
and Reid (1987). In Reid (1990), the invariance up to commensurability of 
the invariant trace field was established (cf. Macbeath (1983)). For discrete 
subgroups of semi-simple Lie groups, fields of definition were investigated 
in Vinberg (1971) and the invariance of the invariant trace field described 
here can be deduced from these results (see §1O.3). The invariance of the 
invariant quaternion algebra can be found in Neumann and Reid (1992a). 
The trace identities and the dependence of aH traces in a finitely gen­
erated group on the simple sets described in Lemmas 3.5.1 to 3.5.3 are 
mainly weH known and have been used in various contexts (Helling et al. 
(1995)). The energy-saving Lemma 3.5.5 appears in Hilden et al. (1992c). 
The simple formulas in terms of traces used to obtain the Hilbert sym­
bols for quaternion algebras given in §3.6 arose mainly in the context of 
investigations into arithmetic Fuchsian and Kleinian groups (e.g., Takeuchi 
(1977b), Hilden et al. (1992c)). The dependence of a two generator group 
up to conjugacy on the parameters discussed in (3.31) is given in Gehring 
and Martin (1989). 



4 
Examples 

In this chapter, the invariant trace fields and quaternion algebras of a num­
ber of classical examples of hyperbolic 3-manifolds and Kleinian groups 
will be determined. Many of these will be considered again in greater de­
taillater, to illustrate certain applications or to extract more information 
on the manifolds or orbifolds, particularly in the cases where the groups 
turn out to be arithmetic. However, already in this chapter, these examples 
will exhibit certain properties which answer some basic questions on hy­
perbolic 3-orbifolds and manifolds. Stronger applications of the invariance 
will be made in the next chapter. For the moment, we will illustrate the 
results and methods of the preceding chapter by calculating the invariant 
trace fields and quaternion algebras of some familiar examples. The meth­
ods exhibited by these examples should enable the reader to carry out the 
determination of the invariant trace field and quaternion algebra of the 
particular favourite example in which they are interested. 

4.1 Bianchi Groups 

Recall that the ring of integers Gd in the quadratic imaginary number 
field Q( v'( -d)), where d is a positive square-free integer, is a lattice in 
C with Z-basis {I, v'( -d)} when d == 1, 2(mod 4) and {I, l+V;(-d)} when 
d == 3(mod 4). The Bianchi groups PSL(2, Gd) are Kleinian groups of finite 
covolume (see §1.4.1). They are arithmetic Kleinian groups and will be stud­
ied more deeply in that context later in this book. For the moment, we make 
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the easy derivation of their arithmetie invariants. Let r d = P8L(2,Od). 
Note that, for every a E Od, (Ö ~) and (2~ ~) lie in r~2), and, henee, 
so does their produet. Thus a E kr d and so kr d = Q( v'( -d)). 8inee r d 

contains parabolie elements, it follows that Ar d = M2(Q( v'( -d))) (see 
Theorem 3.3.8). 

Exercise 4.1 

1. Let F = {(~ 2:) E 8L(2,C) I a,ß E 03}. Show that F has infinite 
index in 8L(2,03 ) and determine kF. Show that AF does not split over 
kF. Clearly 8L(2, Z) is also a subgroup of 8L(2, 0 3 ) of infinite index. Show 
that Fand 8L(2, Z) are not commensurable in the wide sense in 8L(2, C). 

2. Show that PGL(2, 0 5 ) is not a maximal discrete subgroup ofP8L(2, C). 

4.2 Knot and Link Complements 

The invariant traee fields and quaternion algebras of some specifie knot 
and link eomplements will be given later in this ehapter. Further eompu­
tations will be made in Chapter 5 and tables of these invariants are given 
in Appendix 13.4. However, for knot and link eomplements in general, the 
invariant trace field coincides with the traee field. As Theorem 4.2.1 shows, 
this holds in a more general class of manifolds. The orbifold example in 
§3.3 shows, however, that this is not universally true and examples of non­
eompaet manifolds where the traee field differs from the invariant traee 
field will appear in §4.6. This theorem also applies to eompaet manifolds, 
but in these eases, there are also examples where the traee field is not the 
same as the invariant traee field (see §4.8.2). 

Theorem 4.2.1 Let M = H3 jr be a hyperbolic manifold such that the 
cokernel of the map (H1(8M,Z) --t H1(M,Z)) is finite of odd order. Then 
kr = Q(trr). 

Proof: Let P denote the subgroup of r which is generated by parabolie 
elements. Then rjP is isomorphie to the Coker(H1 (8M,Z) --t H1(M,Z)). 
Now r jr(2) P has exponent 2and so, by assumption, r = r(2) P. 

Now ehoose a finite set of parabolie elements Pl,P2, ... ,Pn such that 
these generate r modulo r(2). Thus 

r = {p~lp~2 ... p~n r(2) I Ei E {O, 1 H. 

Now for a parabolic element p, p2 = 2p - I so that 
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Now from (3.14), we have 

tr (t 2 ')') = tr (t)tr (i')') - tr b)· 

Thus if')' E r(2) and tr(t) E kr \ {O}, then tr(i')') E kr. Thus Q(trr) = 
kr. 0 

Corollary 4.2.2 1f M = H3 Ir is the complement of a link in a 'lL/2-
homology sphere, then kr = Q(trr) and Ar = M 2 (Q(trr)). 

Proof: The first part follows from the theorem and the se co nd from the 
fact that M is non-compact (see Theorem 3.3.8). 0 

In the situation described in the corollary, it is immediate that r has a 
faithful discrete representation in PSL(2, Q(tr r)), but, in fact, this result 
holds more generally. 

Theorem 4.2.3 1f r is any Kleinian group of finite covolume which is 
non-cocompact, then r will have a faithful discrete representation in the 
group PSL(2,Q(trr)). 

Proof: Choose a lift of a cusp of r to be at 00 and normalise so that 
the parabolic element g = (Ö ~) lies in r. With further normalisation, let 
f Erbe such that f ( 00) = O. Thus r also contains an element of the form 
h = (; n. Now z E Q( tr (r)) and since g and h generate an irreducible 
subgroup of r, then 

Ao(r) = Q(tr (r))[I, g, h, gh] 

by Corollary 3.2.3. Thus Ao(r) = M 2 (Q(tr (r))) and the result follows. 0 

Exercise 4.2 

1. Show that the "sister" of the jigure 8 knot complement (i. e., H3 Ir 
where r is dejined by 

(X, Y, T I T XT- I = X-I y- I X-I, TYT- I = y- I X-I)), 

is such that kr = Q( tr r). 

4.3 Hyperbolic Fibre Bundles 

Recall from §1.5.1 that if r is the covering group of a finite-volume hy­
perbolic 3-orbifold which fibres over the circle with fibre a 2-orbifold of 
negative Euler characteristic, then we have a short exact sequence 

(4.1 ) 
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where F is isomorphie to the fundamental group of the 2-orbifold and F 
is geometrically infinite. A conjecture of Thurston is that all finite-volume 
hyperbolic manifolds are finitely covered by a hyperbolic surface bundle, as 
described above. Thus since the invariant trace field and quaternion algebra 
are commensurability invariants, it is worth making some general observa­
tions about these invariants for hyperbolic fibre bundles. The important 
feature is that these invariants are determined by the fibre. 

Theorem 4.3.1 11 A is a finitely generated non-elementary normal sub­
group 01 the finitely generated Kleinian group r, then kA = kr and also 
AA=Ar. 

Proof: The group A (2) is characteristic in .D. and thus normal in r. Also 

Choosing a pair of elements in A(2) generating an irreducible subgroup, it 
follows that Ar = AA.kr by Corollary 3.2.3. 

Now we argue as in Theorem 3.3.4. By conjugation, each "( E r induces 
an automorphism of AA which is necessarily inner, by the Skolem Noether 
Theorem. Thus 38 E AA* such that 8-1"( commutes with all the elements 
of A.D.. Thus "( = a8 for some a E C. Now detb) = 1, so that a2 = 
1/(det(8))2 E kA. Thus "(2 = a282 and tr ( 2) E k.D.. Thus kr = kA and 
then AA = Ar. 0 

Corollary 4.3.2 11 r is the covering group 01 a hyperbolic fibre bundle as 
at (4.1), then kF = kr and AF = Ar. 

Corollary 4.3.3 11 r is the covering group 01 a hyperbolic fibre bundle as 
at (4.1) and F1 is a subgroup 01 finite index in F, which lies in r(2), then 
kF = Q(tr F1 ) = kr and AF = AoFI = Ar. 

Proof: Since F1 C r(2), it follows as in the proof of the theorem that 
Ar = AoF1 .kr. Furthermore, 

and the result follows. 0 

Exercise 4.3 

1. Let rand F be as described at (4.1). Show that F cannot be a Fuchsian 
group. 
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4.4 Figure 8 Knot Complement 

That the figure 8 knot complement can be represented as a hyperbolic man­
ifold of finite volume was exhibited by Riley. He obtained a representation 
of the knot group in the Bianchi group PSL(2, 0 3 ) and constructed a fun­
damental domain for the action of the group on H3. From all of this, one 
can deduce that the image of the knot group is of finite index in PSL(2, 0 3 ) 

and much more information than is required to simply determine the in­
variant trace field and quaternion algebra (see §1.4.3). By §4.1, these will, 
of course, be Q(V - 3) and M2 (Q(V - 3)). 

However it is instructive to consider how to calculate these invariants 
directly from the various ways of constructing this well-studied manifold. 
It will be the overriding assumption here that wc know in advance that the 
figure 8 knot complement is a hyperbolic manifold of finite volume. 

4.4.1 Group Presentation 

A presentation for the knot group on a pair of meridional generators, ob­
tained, for example, from the Wirtinger presentation, is given by 

7Tl(S3 \ K) = (x, y I xyx-1y-1x = yxy-1x-1y). 

Under the complete faithful representation, the images of x and y are para­
bolic elements and by conjugation can be taken to be (ö t) and (; ~). Sub­
stituting in the defining relation for the group gives that z = e±7ri/3. Thus, 
modulo complex conjugation, we have a unique such representation with 
image r necessarily a finite-covolume group such that H 3/r is isometrie to 
the figure 8 knot complement by Mostow Rigidity. Thus kr = Q( V - 3) 
and Ar = M2 (Q(v - 3)). 

4.4.2 Ideal Tetrahedra 

The figure 8 knot complement can also be seen to be a finite-volume hy­
perbolic manifold by suitably gluing together two regular ideal hyperbolic 
tetrahedra with dihedral angles 7T /3 (see §1.4.4). If we locate the tetrahedra 
with their vertices at 1, e 27ri / 3, e-27ri / 3, 00 and 1, e 27ri / 3, e-27ri / 3, 0, then the 
face pairing transformations from the first tetrahedron to the second, carry, 
respectively, 

1, e 27ri / 3 , 00 to 0, e-27ri / 3, 1 

e 27ri / 3 e-27ri/ 3 00 , , to e 27ri / 3, 0, 1 

1, e-27ri/ 3, 00 to 0, e-27ri/ 3, e 27ri / 3. 

These identifications are carried out by the matrices 

T G e- 27ri / 3 ~ 2e27ri / 3) , T G 1-~;:~~~3 ) , T (e-2~i/3 -1 ) 
1 - 2e27ri / 3 
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where T = (e27ri / 3 - 1)-1. Since the group is generated by these matrices 
we see that the group lies in SL(2, Q( V - 3)) and, again, the result folIows. 

4.4.3 Once-Punctured Torus Bundle 

In both of these approaches, we have, by obtaining matrix representations 
of the fundamental group, gained considerably more information than is 
required to determine the invariant trace field. Although neither of these 
matrix representations are difficult to determine, we now give a third ap­
proach in which the invariant trace field is determined without first obtain­
ing a matrix representation. There are a number of features of this method 
which can be more widely applied, as we shall see in subsequent examples. 

Let M = H3/r denote the hyperbolic manifold of finite volume which is 
the figure 8 knot complement. Now M can be described as a fibre bundle 
over the cirde with fibre a once-punctured torus Ta. There is thus an exact 
sequence 

1 ----; 7r1(Ta) ----; r ----; Z ----; 1 

and the monodromy of the bundle is given by the element RL in the 
mapping dass group of Ta. This group is isomorphic to the orientation­
preserving subgroup of the outer automorphism group of 7r1 (Ta) = F = 
(X, Y), the free group on two generators, and so is isomorphic to SL(2, Z). 
Then R = (6 n is induced by the automorphism p where p(X) = X, 
p(Y) = Y X and L = (t ~) by A, where A(X) = XY, A(Y) = Y. The com­
mutator [X, Y] is represented by a simple dosed loop round the puncture 
of Ta so that [X, Y] is parabolic. From this, a presentation of r is obtained 
as 

r = (X, Y,T I TXT- 1 = XYX, TYT- 1 = YX). (4.2) 

Now r(2) = (X, Y, T 2 ). Let a = tr X, b = tr Y, c = tr XY. From the defining 
relations for r, we see that 

b = c and a = ac - b 

using (3.14). Furthermore, since [X, Y] is parabolic, it folIows, using (3.15), 
that 

a2 + b2 + c2 - abc - 2 = -2. 

From these three equations, we obtain a + b = ab and (ab)2 - 3(ab) = 

O. Thus a = (3 + V - 3)/2, b = (3 - V - 3)/2. From (3.25), we have 
that Q( tr F) = Q( V - 3). Since F has parabolic elements, it follows from 
Theorem 3.3.8 that AaF ~ M 2 (Q(V - 3)). 

Note from above that F is anormal subgroup of r(2) and so by Corollary 
4.3.3, 

kr = Q(tr(F)) = Q(V - 3) 

and Ar = Aa(F) = M 2 (Q(V - 3)). 
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Exercise 4.4 

1. The complement of the knot 74 in the knot tables is a hyperbolic mani­
fold. Show that the invariant trace field has discriminant -59 or 117. 

FIGURE 4.1. Knot 74. 

[We remark that the discriminant is actually -59. This can be determined 
using the tetrahedral parameters of a tetrahedral decomposition. See the 
discussion in §5.5.} 

2. The complement of the Borromean Rings can be obtained by identifying 
two regular hyperbolic ideal octahedra with dihedral angles 7r /2 according to 
the pattern shown in Figure 4.2. Locate these in H 3 , determine the identi­
fying matrices and, hence, the invariant trace field and quaternion algebra. 

FIGURE 4.2. Identification scheme for Borromean Rings complement 

3. Show that there are hyperbolic surface bundles whose invariant trace 
field is Q( A) and whose fibers are tori with an arbitrarily large number 
of punctures. 

4. In its representation as a two-bridge knot (see §1.4.3 and §4.5), the 
figure 8 knot group r has presentation 
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and so a character variety (see Exercise 3.5, No. 6) on Zl = Tu and Z2 = 
Tuv . By conjugation, any representation p of r can be taken to have 

so that Tuv(p) = r + Tu (p)2 - 2. Use this to show that the character variety 
X (r) is dejined by 

zi(2 - Z2) + z~ - Z2 - 1 = O. 

4.5 Two-Bridge Knots and Links 

A two-bridge knot is determined by a pair of relatively prime odd integers 
(p/q) with 0 < q < p. The pairs (p/q) and (p' /q') define the same knot if 
and only if p = p' and qq' == ±l(mod p). For q > 1, the knot complements 
of these knots have a hyperbolic structure. Indeed, Theorem 1.5.6 applied 
to two-bridge knots and links shows that their complements are hyperbolic 
if and only if, in the normal form, q > 1. 

Presentations of the knot groups on two meridional generators are ob­
tained as follows. Let 

Then 

The figure 8 knot is the two-bridge knot (5/3). So, just as for that knot 
complement, the meridians u and v map to parabolies und er the com­
plete representation. Thus map u to (6 t) and v to (;, ~), so that if 
S3 - (p/q) = H 3 /r, then Q(tr (r)) = Q(z) = kr by Corollary 4.2.2. 
Then substitute in the defining relation for the group and solve for z. 
The standard presentation for the knot group given above makes this a 
routine calculation as follows. Let p - 1 = 2n and w = (~: ~:). Then the 

entries are given below, where we use t to denote a summation over suf­
fixes i 1, i 2, ... ,ik where i 1 < i2 < ... < ik and the parity of the suffixes 
alternates. 

) 2 ( ) n-l e· e· e· e· z + ... + e2e3'" e2 1 z 1,1 1,1 1,3 t4 n-
1,1 even 21 even 

n A 

bn = L e2i + ( L eil ei2ei3)z + ... + (e2e3'" e2n)zn-l 
i=l il even 
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n A 

Cn = (L:e2i- 1)z+ (L: ei,ei2ei3)z2+ ... +(e1e2···e2n_1)Zn 
i=l i, odd 

dn = 1 + ( t ei,ei2)z + ... + (e1 e2··· e2n)Zn. 
i, odd 

Then uw = wv if and only if dn = 0 and zbn = Cn . Noting that 

(p - i)q = (q - ki - l)p + (p - Ti) 

gives that ki and kp- i have the same parity and so ei = ep-i. From this, 
one readily deduees that zbn = Cn holds in all eases. Thus z satisfies the 
integral monie polynomial equation dn = O. 

A. The two-bridge knot (7/3) 
The sequenee of ei is then {I, 1, -1, -1, 1, I}, from whieh one deduees 

that d3 = 1 + 2z + z2 + z3. Thus, if S3 - (7/3) = H3/r, then kr = Q(z). 
This field has one eomplex plaee and diseriminant -23. Also Ar = M 2 (kr). 
This is the knot 52 on the tables. 

B. The two-bridge knot (9/5) 
The sequenee in this ease is {I, -1, -1, 1, 1, -1, -1, I} so that d4 = 

1 - 2z + 3z2 - z3 + z4. This polynomial is irredueible and the invariant 
traee field Q(z) has two eomplex plaees and diseriminant 257. This is the 
knot 61 on the tables. Although there is just one field up to isomorphism 
with two eomplex pI aces and diseriminant 257, it is not a Galois exten­
sion of Q and so there are two non-real isomorphie subfields of C with this 
diseriminant. Our approach here does not distinguish whieh of the two iso­
morphie subfields is the aetual invariant traee field. For furt her diseussion 
on this, see §5.5 and §12.7. 

C. A similar analysis ean be applied to hyperbolie two-bridge link eom­
plements, (p/q), where p ean now be taken to be even, p = 2n. The main 
defining relation beeomes, in the above notation, uw = wu. Thus in the 

FIGURE 4.3. The knots 52 and 61. 
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same notation as above, uw = wu if and only if Cn = 0 and an = dn. 
In this case, an = dn always holds and, thus, z must satisfy Cn = o. The 
two-bridge link complement (8/3) is the Whitehead link and in that case, 
z = -1 + i so that the invariant trace field is Q( i) and the quaternion 
algebra is M 2 (Q(i)). 

For further examples, see Appendix 13.4. 

Exercise 4.5 

1. In the notation 0/ item C in this section, show that an = dn always 
holds. 

2. The two-bridge link (10/3) has a hyperbolic complement with covering 
group r. Determine the invariant trace field 0/ r. Prove that r is commen­
surable in PSL(2, q with the covering group 0/ the figure-8 knot comple­
ment. 

4.6 Once-Punctured Torus Bundles 

We retain the notation of §4.4.3, where we obtained the invariant trace field 
of the figure 8 knot complement from its description as a once-punctured 
torus bundle. Thus, if M = H3/r is a once-punctured torus bundle, then 
the fibre group F = (X, Y) is a free group. The monodromy of the bundle, 
as an element of the mapping dass group SL(2, Z), is a hyperbolic element 
and can be taken to have the form (- I)€ Rnl L n2 R n3 ••• Ln2k , where ni :::: 1 
and E E {O, 1}. This is induced by the automorphism 

where p and Aare as defined in §4.4.3 and i(X) = X-I, i(Y) = y- l . The 
group r then has presentation 

(X, Y, TI TXT- 1 = lJ(X), TYT- 1 = lJ(Y)). (4.3) 

If a = tr X, b = tr Y and c = tr XY, then since [X, Yj is parabolic 

a2 + b2 + c2 = abc. 

A. Monodromy - RL 

(4.4) 

It is easy to see that a, band c satisfy exactly the same equations as in 
the case of monodromy RL so that the invariant trace field is Q( V - 3) 
and the quaternion algebra is M 2 (Q(V - 3)). The manifold that arises 
is the "sister" of the figure 8 knot complement (see Exercise 4.2, No. 1) 
and is commensurable with the figure 8 knot complement as these two 
complements can be shown to have a common double cover. Thus the above 
deductions are immediate from the commensurability invariance. For the 
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same reasons, the bundles with monodromies of the form (RL)m have the 
same invariant traee field and quaternion algebra. 

B. Monodromy R 2 L 
In this ease, the fundamental group has presentation 

Furthermore, the subgroup F I = (X 2 , Y, XY X-I), of index 2 in F, lies in 
f(2). Thus from Corollary 4.3.3, kf = Q(tr FI ) and Af = M 2(Q(tr H)). 
Now, using Lemma 3.5.9, Q(tr FI) = Q(a2 , b, ae). From the information on 
traees eoming from the presentation (4.5), we have 

a2 
b= -2--' a - 2 

2a 
C=-­

a2 - 2 

so that Q(tr FI) = Q(a2 ). Then substituting in (4.4) yields 

a4 - 5a2 + 8 = o. 

Thus kf = Q(tr Fd = Q(vI - 7). For future referenee, we note that 
a2 , b, ae E 0 7 , the ring of integers of Q( vi - 7). 

Note that this furnishes an example of a non-eompaet manifold where 
the invariant traee field is not the traee field. Clearly a E Q(tr r), but it is 
easily shown that a tf. Q( vi -7). With referenee to Corollary 4.2.2, it is easy 
to deduee from (4.5) that HI(M, '2.) ~ '2.2 , so that M is not a '2.2-homology 
sphere. 

Exercise 4.6 

1. Let M = H3/f be the once-punctured torus bundle with monodromy 
R 3 L. Show that the invariant trace field has discriminant 697. 

2. If a, b, e is any triple satisfying (4.5) with c -=1= 0, define 

<I>(Y) = ~ (be - a -bale). 
e -be 

(4.6) 

Show that <I> is a representation of the free group F = (X, Y) in SL(2, C) 
such that tr <I>(X) = a, tr <I>(Y) = b, tr <I> (XY) = c and <I>([X, Y]) is para­
bolic. When f is the fundamental group of the once-punctured torus bundle 
with monodromy R 2 L, obtain a representation ofr in SL(2,C). 

4.7 Polyhedral Groups 

Many examples of hyperbolie 3-manifolds and orbifolds are eonstrueted us­
ing a fundamental domain in H3. Combinatorial and geometrie eonditions 
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provided by Andreev allow one to construct polyhedra in H 3 . If the poly­
hedron satisfies Poincare's requirements with respect to face pairing trans­
formations, then these transformations generate a discrete group whose 
fundamental domain is the polyhedron. Coxeter groups which are gener­
ated by refiections in the faces of suitable polyhedra are special cases of 
this. The index 2 subgroups consisting of orientation-preserving isometries 
in the groups generated by refiections in the faces of these polyhedra are 
referred to as polyhedral groups (see §1.4.2). 

Examples of particular interest arise when the polyhedron is a tetrahed­
ron. There are 9 compact hyperbolic tetrahedra whose dihedral angles are 
submultiples of 7f and there are a furt her 23 with at least 1 ideal vertex 
(i.e., vertex on the sphere at 00), which have finite volume. We represent 
these tetrahedra schematically in Figure 4.4. The edge labelling (e.g., p) 
indicates the dihedral angle (e.g., 7f/p) along that edge. The tetrahedral 
group then has presentation 

These groups may also be described by the Coxeter symbol for the tetra­
hedron. 

In this section, the invariant trace fields and quaternion algebras of a 
number of these tetrahedral groups will be obtained. The link between the 
geometry of the tetrahedron and the arithmetic invariants is not particu­
larly transparent. Later, from results to be proved in §10A, a slightly more 
direct method of determining the invariants for any polyhedral Coxeter 
group of finite covolume from the geometry of the associated polyhedron 
will be obtained. This method will be seen to be particularly applicable to 
tetrahedral groups (see §10A.2 and Appendices 13.1 and 13.2). 

4.7.1 N on-compact Tetrahedra 
In §1.4A, the figure 8 knot complement is described as the union of two 
regular ideal tetrahedra with dihedral angles 7f /3 by suitable face pairing. 

D 

A c 

B 

FIGURE 4.4. 
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FIGURE 4.5. 

These tetrahedra have all of their vertices on the sphere at 00 and H3 ad­
mits a tesselation by such regular tetrahedra. The full group of symmetries 
of this tesselation is the group generated by reflections in the faces of a 
tetrahedron which is a cell of the barycentric subdivision of the regular 
ideal tetrahedron. This has one ideal vertex and Coxeter symbol given in 
Figure 4.5. The face-pairing transformations which give rise to the figure 8 
knot complement lie in the full group of symmetries of the tesselation, so 
that the tetrahedral group associated with Figure 4.5 and the figure 8 knot 
group are commensurable. Thus this tetrahedral group's invariant trace 
field is Q(.;=3) and quaternion algebra is M 2 (Q( .;=3)). Several other tet­
rahedra with ideal vertices whose dihedral angles are submultiples of 7f can 
be obtained as unions of this tetrahedron (see discussion in §1.7), so that 
their associated tetrahedral groups have the same invariant trace field and 
quaternion algebra (see Exercise 4.7, No. 1). The tetrahedral group whose 
Coxeter symbol is at Figure 4.5 is isomorphie to PGL(2, 0 3 ) (see Exercise 
1.4, No. 1). It will be noted that all of this discussion stemmed from the 
connection between the figure 8 knot complement, the regular ideal tetra­
hedron with dihedral angles 7f /3 and the fact that PGL(2,03 ) is the full 
group of symmetries of the tesselation of H3 by regular ideal tetrahedra 
(see also Exercise 4.4, No. 2 and for further discussion, see §9.2). 

In an analogous way, H 3 can be tesselated by regular ideal dodecahedra 
whose dihedral angles are 7f /3. If we take the barycentric subdivision of one 
such regular ideal dodecahedra, we obtain the ideal tetrahedron in Figure 
4.6. We can locate this tetrahedron in H3 such that D is at 00 and ABC 
lies on the unit hemisphere centred at the origin with A the north pole and 
B = (cos7f/5,O,sin7f/5). If we let x denote the rotation about AD, y the 
rotation about BD and z the rotation about AB, then 

D 

A~ ___ _ c 

B 

FIGURE 4.6. 
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(
e 7ri/ 6 0) 

x = 0 e-7ri/6' 
= (i -(1 + 4)i) 

y 0 -i ' ( 0 i) z = i 0 . 

To calculate the invariant trace field of r using Lemma 3.5.9, we change 
generators to ')'1 = X, ')'2 = xy and ')'3 = yz, and obtain kr = Q( y'5, y' - 3), 
which is a Galois extension with two complex places. Also Ar = M2 (kr). 

4.7.2 Compact Tetrahedra 
The leading candidate for an orientable hyperbolic orbifold of minimal 
volume is obtained from one of the compact tetrahedra and this important 
example will be discussed here and later in Chapter 9 at some length (see 
Example 1.7.3 and Exercise 1.7, No. 4). This orbifold is known to be the 
orientable arithmetic orbifold of minimal volume (see Chapter 11). We 
obtain its invariant trace field and quaternion algebra without having to 
locate the tetrahedron in H 3 and hence without having to obtain matrix 
generators for the group. This group has the Coxeter symbol given at Figure 
4.7 and its tetrahedron is shown in Figure 4.8. Let T denote the associated 
tetrahedral group, so that T has presentation 

The tetrahedron clearly admits a rotational symmetry of order 2 about the 
geodesic which is the perpendicular bisector ofthe edges AC and BD. This 
is reflected in the symmetry of the Coxeter symbol. Denoting this rotation 
by w, the extended group r has the presentation 

(x, y, z, w I x 2 = y2 = z3 = (yzf = (zx)5 = (xy)3 = 1, 

w2 = 1, wyw = y, wxw = yz, wzw = yx). 

The quotient H 3 Ir is the orbifold of minimal volume referred to earlier. 
This presentation can be greatly simplified so that r is a two-generator 

group by setting a = wy and b = z. 

By Lemma 3.5.8, since r is generated by elements of orders 2 and 3, kr = 
Q(tr [a, b]). Some care is required in lifting to SL(2, C). Thus let A, B E 

SL(2, C) map onto a and b respectively, chosen so that tr A = 0, A2 
-I, tr B = 1 and B 3 = -I. 

0--0=0--0 

FIGURE 4.7. 
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D 

A~--- c 

B 

FIGURE 4.8. 

We now employ the traee relations from §3.4 to determine t = tr [a, b]. 
Let 8 = tr AB, so that, from (3.14) and (3.15), 

tr AB-1 = -8 and t = 82 - 1. 

Again using (3.14), we obtain 

trC = (82 - 2)(82 -1) = t(t -1) 

tr B-1CtrC - tr B-1 = -trCtr (AB)3 AB-1 - 1 

-tr C(tr (AB)3 tr AB-1 - tr BABAB2 ) - 1 

-trC(-84 + 382 -1) -1 = trC(trC -1) -1 = O. 

Here we have used Corollary 3.1.4, (3.10) and (3.14). Thus t satsfies 

t 4 - 2t3 + t - 1 = O. 

This irredueible polynomial has two real roots and so Q(t) is a field of degree 
4 with one eomplex plaee. Its diseriminant is -275 and, up to isomorphism, 
there is one sueh field. 

To determine a Hilbert symbol for the quaternion algebra, we eould apply 
Corollary 3.6.3 using the generators a and b in (4.8). However, note that the 
stabiliser of one of the vertiees of the tetrahedron eontains an irredueible 
subgroup isomorphie to A4 and so is generated by two elements of order 3. 
Thus using Theorem 3.6.2, we obtain 

(-3 -2) 
Ar ~ Q(t) . 

There will be a more general diseussion on the strueture of Ar when r 
eontains a subgroup isomorphie to A4 later (see §5.4). For the moment, we 
note that Ar is ramified at both real plaees (see §2.5). 

Sinee -2 == l(mod 3) and 3 is unramified in the extension Q(t) I Q, it 
follows from Theorem 2.6.6 that Ar splits at the primes lying over 3 and 
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also at all other non-dyadie primes. Using the information from §0.2 on 
the field Q(t) = kr, there is only one prime lying over 2 in kr. Thus by 
Theorem 2.7.3, Ar is only ramified at the two real places. It will be shown 
later that r is arithmetic and furt her investigations of this case will be 
made (see also §4.8.2). 

We briefly also consider the compact tetrahedron with Coxeter symbol 
shown in Figure 4.9 whose tetrahedral group r has the presentation 

Locate the tetrahedron so that the octahedral group 8 4 = (y, z) fixes the 
point (0,0,1) in H3. We thus have 

l+i) T 
\;-' , 

( 
l+i 

Z = y'2 
o 

Taking ')'1 = y, "(2 = z and "(3 = z-l x as generators of r which do not have 
order 2 and using Lemma 3.5.9, we can then calculate the invariant trace 
field to be Q( V - 7). 

Note that this cocompact group has the same invariant trace field as 
the once-punctured torus bundle with monodromy R 2 L described in §4.6. 
These groups are clearly not commensurable. 

Using the irreducible subgroup (z, y) in Theorem 3.6.2 gives that 

( -1 -1 ) 
Ar ~ Q(J -7) . 

Now the prime 2 splits in the extension Q( vi - 7) I Q so that 207 = PP', 
where P and p' are distinct prime ideals. The completion kv of Q( vi - 7) 
at the valuation corresponding to either of these primes is thus isomorphie 
to the 2-adic numbers Ql2. Thus 

(-1 -1) Ar @iQI(y'-7) kv ~ Q2 . 

One can check directly that the equation _x2 - y2 = z2 has no solution in 
the ring of 2-adic integers. Thus by Theorem 2.3.1(e), the above quaternion 
algebra is isomorphie to the unique quaternion division algebra over Ql2 
discussed in Exercise 2.6, No. 3. Thus Ar is ramified at v and so Ar cannot 
be isomorphie to M2 (Ql(V - 7)), whieh, of course, splits at all valuations. 

D 
FIGURE 4.9. 
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Thus the invariant quaternion algebras in the cases of the tetrahedral 
group described here and the R 2 L once-punctured torus bundle are not 
isomorphie, although the invariant trace fields are the same. We will later 
see that both of these groups are arithmetic, in which case the invariant 
trace field and the invariant quaternion algebra are complete commensur­
ability invariants, so that the fact that they are non-commensurable will 
force the algebras to be non-isomorphie. 

4.7.3 Prisms and Non-integral Traces 
In all ofthe examples which have been explicitly computed so far, the traces 
of the representative matrices have all been algebraic integers. This need not 
be so, but detecting non-integral traces is no easy matter. Their existence 
in a group, however, has important consequences for the structure of that 
group, as the work of Bass, which will be discussed in the next chapter, 
shows. 

In this section, we construct an infinite family of examples in which there 
is an infinite subfamily whose members contain elements whose traces are 
not algebraic integers. 

For any integer q :::=: 7, the triangular prisms with dihedral angles which 
are submultiples of 7r, shown schematically in Figure 4.10, satisfy the con­
ditions of Andreev's theorem and so exist in H3. Indeed, we will construct 
these explicitly below. These prisms can be obtained from the infinite 
volume tetrahedron with Coxeter symbol at Figure 4.11 by truncating the 
tetrahedron by a face orthogonal to faces numbered 2, 3 and 4 in Figure 
4.11 (see §1.4.2). If K q is the discrete group generated by reflections in the 
faces of the tetrahedron, then K q has non-empty ordinary set in its action 
on rt = ßH3 . Thus the convex hull in H 3 , C(Kq), ofthe limit set of K q gives 
rise to the hyperbolic orbifold C(Kq)j K:, whose universal covering group 
is r q, the group of orientation-preserving isometries in the group generated 
by reflections in the faces of the prism. Truncating infinite-volume poly-

2 

2 
2 

q 
2 

2 

2 

FIGURE 4.10. 
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0--0----0- i. -0 
2 3 4 

FIGURE 4.11. 

hedra by orthogonal faces applies in more general situations than those 
described here. 

To calculate the invariant trace fields, the triangular prisms will be con­
structed directly in H3. A neater method of obtaining the invariant trace 
field avoiding this construction is to use the Lobachevskii model of H 3 and 
the associated Gram matrix. This, however, requires a translation from the 
Gram matrix entries, which are necessarily real, to the required trace field. 
This will be carried out in §10.4. 

Of the five faces of the prism, two will be planes PI and P2 orthogonal 
to C, two will be hemispheres 8 1 and 8 2 centred at the origin and the last 
a hemisphere 8 3 with centre on the x-axis. The bases of these and their 
relative positions are shown in Figure 4.12. The hemisphere 8 1 is the unit 
hemisphere and Pt, P2 and 8 3 meet 8 1 orthogonally and bound a hyper­
bolic triangle on 8 1 with angles 7f/2,7f/3 and 7f/q. Thus P2 = {(x,y,z) I 
YCOS7f/q = xsin 7f/q} and 8 3 = {(x, y, z) I (x - a)2 + y2 + z2 = t2}, where 
a2 = t 2 + 1. Furthermore, choosing t = 2a sin 7f / q ensures that 8 3 meets P2 

at 7f /3. Finally we truncate the region lying outside 8 1 and 8 3 and bounded 
by PI and P2 by the hemisphere 8 2 = {(x, y, z) I x2 + y2 + z2 = S2}, where 
s2 + ts - 1 = 0, which guarantees that 8 2 meets 8 3 at 7f /3. 

It is not difficult to see that the polyhedral group r q is generated by the 
three elements X = PS2PSa , y = PPIPP2 and Z = PSaPSll where P denotes 
arefleetion. We thus obtain 

X = (-I/ts as/t) y = (exP(7fi/q) 0 ) Z (s 0) 
-alts s/t ' 0 exp(-7fi/q)' = 0 l/s . 

Now tr 2 Z - 3 = (s + l/s)2 - 3 = t 2 + 1 = a2 = 1/(2cos27f/q -1). Thus Z 
will have integral trace precisely when 2 cos 27f / q - 1 is a unit in the ring of 

82 

FIGURE 4.12. The five faces of the prism. 
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integers in Ql(cos271"/q). For any q of the form q = 6p, where pis a prime 
i- 2,3, then 2 cos 27f/q -1 fails to be a unit (see Exercise 4.7, No. 4). Thus 
for these values of q, the groups r q have elements whose traces are not 
algebraic integers. Note furthermore, that since Z is a hyperbolic element 
in r q, every subgroup of finite index in r q will have elements whose traces 
are not algebraic integers; for if the trace of zn were to be an algebraic 
integer, then the trace of Z would also be an algebraic integer (see Corollary 
3.1.4). 

Exercise 4.7 

1. Determine the invariant trace fields of the tetrahedral groups whose 
Coxeter symbols are as follows: 

2. Show that the regular ideal octahedron with dihedral angles 7f /2 has a 
barycentric subdivision whose cell is a tetrahedron with one ideal vertex and 
the following Coxeter symbol: 

Determine the invariant trace field and quaternion algebra of this tetrahed­
ral group (see Exercise 4.4, No. 2). 

3. Show that the tetrahedron with the following Coxeter symbol admits a 

rotational symmetry of order 2. Show that the extended tetrahedral group 
has a two-generator presentation as 

r = (a,b I c = (ab)2,d= (ab- 1 )2,a2 = b5 = 1, 

(cd)3 = (cdC)2 = (dcb)2 = 1). 

Hence determine the invariant trace field of the tetrahedral group, showing 
that it has degree 4 over Ql and discriminant -475. Obtain a Hilbert symbol 
for the invariant quaternion algebra of this tetrahedral group. 

4. (a) Let r q be as defined in §4.7.3. Show that krq = Ql(cos27f/q,a), 
where a 2 = (1 + eos 27f / q) (1 - 3 eos 27f / q). Deduce that there are infinitely 
many commensurability classes of compact Coxeter groups in H 3 . 
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(b) 1f fP q (x) denotes the cyclotomic polynomial, show that 

INQ(cos 211" /q)IQ(2 cos 27r / q - 1) I = IfPq( exp( 7ri/3)1· 

(c) 1f p is a prime =1= 2,3, show that 

(x3p + l)(x + 1) 
fP6p (x) = (x3 + 1)(xp + 1)· 

and deduce that, in these cases, 2 cos 27r / q - 1 is not a unit. 
(d) Show that if q = ql q2, where (ql, q2) = 1 and ql and q2 are not divisible 
by 2 or 3, then 2 cos 27r / q - 1 is a unit. 

4.8 Dehn Surgery Examples 

As described in §1.5.3, hyperbolic manifolds and orbifolds can be obtained 
by carrying out suitable Dehn surgery (or Dehn filling) on knot and link 
complements, or, more generally, on knot and link complements in an ap­
propriate 3-manifold. The presentation of the fundamental group of the 
resulting manifold or orbifold is then determined by the knot or link com­
plement together with the Dehn surgery parameters. In this section, some 
key examples of this are examined. 

4.8.1 JrJrgensen's Compact Fibre Bundles 

J0rgensen first showed that there are compact hyperbolic manifolds which 
fibre over the circle. The manifolds, Mn, were obtained as finite covers of 
orbifold bundles over the circle with fibre the 2-orbifold which is a torus 
with one cone point of order n, n 2: 2. Thus by §4.3, for the invariant 
trace field and quaternion algebra, it suffices to consider these orbifold 
bundles. Again, in J0rgensen's original paper, a matrix representation is 
given. With suitable normalisation, the analysis which follows would yield 
this representation. 

Although not originally described in these terms, these orbifolds can 
be obtained by surgery on M, the figure 8 knot complement. With the 
notation as in that example, considered as a once-punctured torus bundle 
(see §4.4.3), take the meridian to be represented by T and the longitude 
to be represented by [X, Y] and carry out (0, n) surgery. From (4.2), we 
obtain a presentation of the orbifold fundamental group: 

r n = (X, Y, T I [X, Yt = 1, TXT- 1 = XYX, TYT- 1 = YX). (4.9) 

Let Fn denote the fundamental group of the orbifold fibre so that 

Fn = (X,Y I [X,Yt = 1). 
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As in §4.4.3, let a = tr X, b = tr Y and c = tr XY, so that we obtain 

b=c, a=ac-b, a2 +b2 +c2 -abc-2=-2cos7r/n. 

From these, we obtain 

(ab)2 - 3(ab) - (2 - 2cos7r/n) = 0, (4.10) 

a2 - (ab)a + (ab) = o. (4.11) 

Thus ab = (3 + V(17 - 8 cos7r/n))/2 so that ab is real and 0< ab< 4. The 
discriminant of (4.11) is (ab)2 - 4(ab), so that a is not real. Thus if 

kn = Q(cos7r/n, ab, a), 

then b, cE kn and so Q(tr Fn ) = kn . 

Since Fn C r~2), we obtain from Corollary 4.3.3 that kr n 

Ar n = AoFn . Furthermore, using (3.37), we obtain that 

Ar n ~ (a2 - 4, -2k: 2COS7r/n) . 

kn and 

(4.12) 

Note that [kn : Q] = wp(n), where 11 = 1 or 2. For all n, cp(n) ~ (vn)/2, 
so that, as n ----t 00, cp(n) ----t 00. Thus the manifolds Mn fall into infinitely 
many commensurability classes: 

Theorem 4.8.1 There exist infinitely many commensurability classes of 
compact hyperbolic 3-manifolds. 

For n = 2, solving (4.10) and (4.11) gives a = (3+F)( 1+y'(~-v"i7)). 
Thus kr2 = Q(a) has degree 4 over Q, one complex and two real places. By 
a direct calculation on determining when x + YV(4 - v'I7) is an algebraic 
integer for x, y E Q( v'I7), one obtains that {I, a} is a relative integral 
basis of kr2 I Q( v'I7). Thus {I, a, a2 , a3 } is an integral basis of kr2, and so 
.D.kr 2 = -4(17)2. From the Hilbert symbol description at (4.12), it follows 
that Ar2 is ramified at both real places. 

4.8.2 Fibonacci Manifolds 

The Fibonacci manifolds N n are compact orientable 3-manifolds whose 
fundamental groups are isomorphie to the Fibonacci groups F2n (frequently 
referred to in the literat ure by the symbol F2 ,2n). These manifolds were 
originally obtained by face-pairing on a polyhedral 3-cell. For n ~ 4, the 
polyhedron can be realised in H3 to give a tesselation of hyperbolic 3-space 
and, hence, a hyperbolic 3-manifold. These manifolds turn out to be n-fold 
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cyclic covers of S3 branched over the figure 8 knot, and that is the link to 
the description we now give. 

Recall that the figure 8 knot complement is the once-punctured torus 
bundle with monodromy RL. The manifold N n for n ;::: 4 is obtained by 
carrying out (1,0) Dehn filling on the once-punctured torus bundle with 
monodromy (RL)n. Alternatively, carrying out (n,O) filling on the figure 8 
knot complement yields a hyperbolic orbifold On whose n-fold cyclie cover 
is the manifold N n . (The framing used here is as described in §4.8.1.) Thus 
if we let Hn denote the fundamental group of the orbifold On then 

H n = (X, Y,T I T n = 1,TXT-I = XYX,TYT- I = YX). 

The normal torsion-free subgroup of index n in H n containing X and Y 
is then the fundamental group of N n and is isomorphie to the Fibonacci 
group: 

The invariants of N n are thus the invariants of H n . As noted in Chapter 
3, calculations are simplified for two generator groups and we can achieve 
that in these cases as folIows: Let K n be the Z2-extension of H n with the 
presentation 

K n = (X,Y,T,S T n = 1, TXT- I = XYX, TYT- I = YX, S2 = 1 

SXS-I = x-I, SYS-I = XY, STS- I = T- I ). 

From this it follows that Y = [T-l, X-I] and X = [(SX)-IT(SX), T] 
so that K n can be generated by the two elements T, V = SX with the 
presentation 

(4.13) 

This is actually a generalised triangle group whieh is the fundamental group 
of the orbifold whose singular set in S3 (see §1.3) is the graph shown in 
Figure 4.13. In Figure 4.13, the integers 2 and n indieate that the cone 
angle about that segment of the singular set is 7f and 27f In, respectively. 

As a two-generator group with one generator of order 2, it follows that 
kKn = Q(tr 2T,tr[V,T]). (See (3.30).) Now tr 2T = 2cos(27fln) +2 and 

FIGURE 4.13. The singular set of the orbifold described at (4.13). 
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tr [V, Tl = tr 2T + T 2 - 2, where T = trTV. Furthermore, by a standard 
trace calculation (see §3.4), 

Thus kKn = Q(T2) is a quadratic extension of Q(cos271'/n) so that we 
have infinitely many examples of cocompact groups where the invariant 
trace field is not the trace field. 

The Hilbert symbol for the quaternion algebra can also be deduced from 
(3.39) as 

AK = (4(COS2 271' /n - 1), T 2 (T 2 + 2 cos 271'/n - 2)) 
n kKn . (4.14) 

We remark on a couple of special cases. When n = 5, then a = T 2 satisfies 

Thus k = kK5 = Q(-j(3 - 2y'5)). This field was commented on in §O.2 and 
we now make use of these observations. Thus k has discriminant -275 and 
{I, u, u 2 , u 3 } is an integral basis, where u = (1 + t)/2 with t = -j3 - 2y'5. 
Nowa = (u - (2 - y'5))(1 + y'5)/2, so that {I, a, a 2, a 3 } is also an integral 
basis. It is straightforward using (4.14) to show that AK5 is ramified at 
the two real places. Rearranging, we obtain 

AK5 = ((-5 - y'5)/2,~ - (7 - ~)/2). 

To determine the finite ramification of this quaternion algebra, we note 
the following ideal structure, resulting from Kummer's Theorem: 5Rk = 

(y'5Rk )2 = Pg, where N(P5) = 52; 11Rk = PrlP~l where N(Pu ) = 
11, N(P~l) = 112; Pu = aRk and Prl = (7 - y'5)/2Rk' There is a unique 
dyadic prime in Rk. We wish to employ Theorem 2.6.6, so that AK5 splits at 
all non-dyadic primes, apart possibly from P5 and Pu. Now Rk/P5 ~ lF5 (0) 
where 0 can be taken to be the image of a. Since 

and 0 - 1 = 02 , it follows that AK5 splits at P5. A similar argument gives 
that it also splits at Pu. Thus by Theorem 2.7.3, AK5 splits at the dyadic 
prime and so its only ramification is at the two real primes. 

Note that the first tetrahedral group discussed in §4.7.2 has the same 
invariant trace field and its quaternion algebra is ramified at exactly the 
same places. By Theorem 2.7.5, these quaternion algebras are isomorphie. 
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In addition, it will be shown that these two groups are arithmetic, in which 
case the invariants are complete commensurability invariants (see Theorem 
8.4.1). Thus this Fibonacci group F lO will be commensurable with the 
leading candidate for the minimum covolume Kleinian group. 

The case n = 10 is also interesting. In that case, 7 2 -1 = _e27ri/ 5 so that 
kKlO is the cyclotomic field Q(e"'i/5), which has two complex places. Also, 
from (4.14), we see that AKlO ~ M 2 (Q(e7ri/ 5 )) since 

4 (cos2 ~~ -1) = (e7ri/ 5 _ e-7ri/ 5 )2. 

Theorem 4.8.2 The Fibonacci manifold N lO gives an example of a com­
pact manifold whose invariant quaternion algebra is a matrix algebra [viz. 
M2 (!Q( exp( 7ri/5)))J. 

4.8.3 The Weeks-Matveev-Fomenko Manifold 

This well-studied compact manifold is the leading contender for the ori­
entable hyperbolic 3-manifold of minimal volume. It is known to be the 
arithmetic orientable hyperbolic 3-manifold of minimal volume, the arith­
meticity being a consequence of the calculations in this section and dis­
cussed later (see §9.8.2 and §12.6). 

In this description, we make use of some of the examples discussed earlier 
in this chapter. The methods of calculation can be applied to a wide range 
of examples and makes use of symbolic computational packages such as 
Mathematica or Maple. We include enough details so that the computation 
can be readily reproduced for this example and extended to others. 

The Weeks manifold M, as we shall refer to it, is obtained by (5,2) 
surgery on the boundary component ofthe one-cusped manifold M oo , which 
is the "sister" of the figure 8 knot complement. It is known that M is a 
compact hyperbolic manifold of volume 0.9427 ... (see §1. 7). 

Recall (see §4.6 and Exercise 4.2, No. 1) that M oo is a once-punctured 
torus bundle with monodromy - RL. Let a and b generate the fundamental 
group of the once-punctured torus so that [a, b] is homotopic to a simple 
closed loop round the puncture and forms the longitude f of the boundary 
component of M oo . The monodromy -RL is induced by the automorphism 
() = ip>.., which is adjusted by an inner automorphism so that 

(4.15) 

Then t can be taken to be the meridian for a peripheral subgroup since 
tf = ft. The manifold M will correspond to a point on the character variety 
of 7rl(Moo) (see Exercise 3.5, No. 6 and Exercise 4.4, No. 4, for the figure 
8 knot group). We thus first determine the character variety. Note that we 
can eliminate b from the presentation above to obtain the two-generator 
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presentation 

7I"1(Moo ) = (a, tl a3tat-1 = a-1r 1a-1ta). (4.16) 

Normalise any representation cP : 71"1 (Moo ) ----+ SL(2, q so that 

Prom the relation in 71"1 (Moo ), given in (4.16), the (1,2) matrix entry yields 

(1 + y)(rxy(y4 - y3 + y2 - Y + 1) + (x2y5 - l)(y - 1)) = O. (4.17) 

For the compact manifold M, y cannot be -1, nor can y be a 10th root 
of unity. Thus from (4.17), r can be expressed in terms of x and y. Thus 
in each of the equations obtained from the other matrix entries, we can 
eliminate r using resultants. One then observes in the resulting equations 
that they are simultaneously zero, for any point corresponding to a compact 
manifold, if and only if a certain polynomial in x, y is zero. Converting this 
into a polynomial in t1 = tr (t), t2 = tr (a), then yields (a component of) 
the character variety of 71"1 (Moo ) as 

(4.18) 

The meridian and longitude are t and f = [a, b] = [a, t][a-t, t], respectively. 
Thus with this framing, we obtain M by (5,2) surgery, yielding the relation 
t 5 f2 = 1. Eliminating r from the trace polynomial of this relation gives a 
further polynomial in x, y which can also be converted into a polynomial 
q(t1, t2). Eliminating tt from p(t1, t2) and q(tt, t2) using resultants shows 
that t2 must satisfy 

(4.19) 

Prom (4.18), it is obvious that t~ E Q(t2) and a little work shows that 
t1 = (t2 + 1). Furthermore, (4.17) can be recast in terms of traces and 
yields in this case, that t3 = tr (ta) = t2(1 - t2). Note that the three 
generating traces are all algebraic integers. It is straight forward to show 
that 7I"1(M)(2) = 7I"1(M) so that the invariant trace field k is Q(t2), which 
has one complex place and discriminant -23. 

We now determine the invariant quaternion algebra A which, by (3.37), 
has Hilbert symbol Cr 2(a)-4ktr [t,aJ-2). After a small calculation and re­

moving squares, this yields 

(4.20) 

The real conjugate of t2 lies in the interval (-1,0) so that A is ramified at 
the real place. In Rk, t2+ 1 is a unit and t2 - 2 and t2+ 2 generate prime ideals 
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P5 and Pu ofnorms 5 and 11, respectively. Now -(t2+1) == l(mod (t2+2)) 
and -3(mod (t2-2)) so that A is ramified at P5 but not at Pu. The prime 
2 is inert in the extension k I Q, so for parity reasons, A is ramified at 
precisely the real place and at P5. 

Exercise 4.8 

1. Determine the invariant number field and quaternion algebra of the 
compact manifold M3 of Jf1rgensen which fibres over the circle. 

2. Determine the invariants of the Fibonacci group F12 . 

3. A hyperbolic orbifold obtained by Dehn filling (5/3) gives a point on 
the character variety of the figure 8 knot group (see Exercise 4·4, No. 4). 
Determine the point corresponding to the orbifold 0 6 arising in §4.8.2. 
Compare with question 2. 

4. The orbifold (83,Q(p,q;r)) whose singular set in 8 3 is the graph shown 
at Figure 4.14, where the labels p, q and r indicate the order of the stabiliser, 
is a compact hyperbolic orbifold in the case where (p, q; r) = (2,3; 4). Show 
that the orbifold fundamental group is the generalised triangle group with 
presentation 

(x,y I x 2 = y3 = (xyx- 1 yxy-l)4 = 1). 

Determine the invariant number field and quaternion algebra (cf. §4.8.1). 

5. The compact hyperbolic 3-manifold obtained by (5, 1) surgery on the 
once-punctured torus bundle with monodromy RL (i. e., the figure 8 knot 
complement), has the second smallest known volume for an orientable hy­
perbolic 3-manifold at 0.9813 .. . (see §1.7). Show that its invariant trace 
field is quartic of discriminant -283 and that the invariant quaternion al­
gebra is unramified at all finite places. 

6. Performing (-1,2) surgery on the once-punctured torus bundle with 
monodromy - R 2 L with jraming as described above yields a compact hyper-

r 

FIGURE 4.14. 
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bolic manifold. Show that its invariant trace field is Q( H) and determine 
the invariant quaternion algebra. 

4.9 Fuchsian Groups 

In Chapter 3, erueial use was made of Mostow's Rigidity Theorem to prove 
that the traees, indeed the matrix entries, of representative matriees of a 
Kleinian group of finite eovolume were algebraie numbers. As Mostow's 
Rigidity Theorem does not hold in hyperbolie spaee of dimension 2, this 
result does not hold for Fuehsian groups. Nonetheless, although the traee 
field of a Fuchsian group may not be a number field, the remaining results of 
Chapter 3 still apply to show that to each non-elementary Fuehsian group 
r there is an associated field kr and a quaternion algebra Ar over kr 
which are eommensurability invariants. The general theory of quaternion 
algebras over fields of charaeteristic i- 2 as given in Chapter 2 applies. 

In this section, we consider kr and Ar for some Fuehsian groups. If r is a 
fixed Fuchsian group of finite coarea (i.e., H 2 /r has finite hyperbolic area) , 
then the Teiehmüller space T(r) can be deseribed as the space of faithful 
representations r -> PSL(2, IR) with discrete finite coarea images, mod­
ulo conjugation, where the representations preserve the types of elliptie, 
parabolic and hyperbolic elements. The space T(r) can be parametrised 
by traces and is homeomorphic to IRn , where the dimension n depends on 
the signature of r. If r is torsion free, the subspace of T(r) consisting of 
representations whose images have their matrix entries in Q is a dense sub­
space of T(r). More generally, if all the torsion in r divides N, a similar 
result applies with Q replaced by Q( COS 7r / N), apart, possibly, from the 
cases where r is a tri angle group. Thus the invariant traee fields of many 
Fuehsian groups will be number fields. 

The cases of Fuchsian triangle groups are similar to those of finite­
covolume Kleinian groups. In these triangle group cases, the Teiehmüller 
space is a singleton and the invariant trace field is always a number field. 
In more detail, suppose that r is a (C,m,n)-triangle group where I/C + 
l/m + l/n < 1 so that r has the presentation 

Then Q(trr) = Q(COS7r/C,cos7r/m,eos7r/n) (see (3.25)), and the invariant 
trace field is a subfield of this totally real number field (see Exereise 4.9, 
No. 1). A similar result will hold if r is not cocompaet and one or more 
of the elements x, y and xy is parabolic. Of course, the dassical modular 
group PSL(2, Z) has invariant trace field Q and quaternion algebra M 2 (Q). 

The case where r is the (2,3, 7)-triangle group will now be considered 
in some detail. First note that kr = Q( eos 27r /7) by Lemma 3.5.8, which 
is the real subfield of the cydotomic field Q(6), where 6 = e27fi / 7 . Now 



160 4. Examples 

{l, 6, ... ,~n is an integral basis of Q(6) and so, if 0: = 2 cos 27f /7, then 
{I, 0:, 0:2} is an integral basis of Q( cos 27f /7). Now 0: satisfies f(x) = x3 + 
x 2 - 2x - 1 = 0 and ~1QI(cos27r/7) = 49. By Corollary 3.6.3, 

The real places of kr correspond to the roots f (x) = 0 and so Ar is 
ramified at the two real places corresponding to the roots 2 cos 47f /7 and 
2 cos 67f /7. We will now show that Ar is not ramified at any prime ideals. 
Since f(l) = -1 = N(2 cos 27f /7 - 1), 2 cos 27f /7 - 1 is a unit and Ar splits 
at all primes apart possibly from those lying over 2 and 3 by Theorem 
2.6.6. The polynomial f is irreducible mod 2 and mod 3, so, by Kummer's 
Theorem, there are unique ideals P2 and P3 in kr over 2 and 3, respectively. 
Furthermore, from f we obtain that 

so that Ar splits at P3 by Theorem 2.6.6. Thus by the parity theorem 
2.7.3, Ar also splits at P2. 

Some interesting Fuchsian groups arise as subgroups of finite-covolume 
Kleinian groups and, hence, their invariant trace fields will be real num­
ber fields. This situation will arise when totally geodesic surfaces immerse 
in compact hyperbolic 3-manifolds and the consequences of this will be 
examined in later chapters. 

For the moment, let us consider two simple types of example. Consider 
any of the tetrahedral groups r dealt with in §4.7. Any face <5 of such a 
tetrahedron willlie on a hyperbolic plane H8. Let r8 be the reflection of H 3 

in H8 and Cdr8) be the group of elements of r which centralise r8. Then 
Cdr8) leaves H8 invariant and the subgroup Ct(r8), which preserves the 
orientation of H8, is a Fuchsian group. The orbifold H8/Ct(r8) immerses 
in H3/r. 

Consider the particular tetrahedron given in Figure 4.6. If F is one of 
these groups Ct(r8) just described, then kF c kr n lR = Q(V5). If <5 
is the face ABD, then the face angles at A, Band D are 7f /2, 7f /5 and 0, 
respectively. Furthermore, the rotations around AB and BD and the cube of 
the rotation around AD all preserve the plane H8 and act as reflections on 
H8 in the sides of the triangle. Thus F is a triangle group. Since it contains 
elements of order 5, kF = Q( V5) and since it contains parabolic elements, 
AF = M 2 (Q(V5)). For the other faces of this tetrahedron, F is not a 
triangle group and need not contain parabolic elements. The deduction of 
kF and AF is consequently more complicated. 

As another class of examples, consider the Bianchi groups PSL(2,Od)' 
Whereas these clearly all contain the Fuchsian subgroup PSL(2, Z), they 
also contain many other Fuchsian subgroups (see Exercise 4.1, No. 1). Für 
example, take d = 3. Then the elements of PSL(2, 0 3 ) which leave the 
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circle {z 1 1 Z 12 = 2} invariant form 

Thus kF = Q. Take any pair of elements 9 and h which generate an irre­
ducible subgroup of F, for example, 

(
e27ri / 3 

g=P o (R 2) 
h=P 1 -R' 

so that, by (3.38), AF = (-~,6). The quadratic form -3x2 + 6y2 = 1 

does not have a solution in Q since it does not have a solution (mod 3) 
(use Theorem 0.9.5). Thus AF does not split over Q. It will follow from 
later arguments involving arithmetic groups that F is a Fuchsian group 
of finite coarea. Note that the fact that AF does not split over Q shows 
that F cannot contain parabolic elements (see Theorem 3.3.8) and so F 
must be cocompact. Recall that the figure 8 knot group r is of index 12 
in PSL(2, 0 3 ). For the group F, F n r is a torsion-free subgroup of Fand 
hence, the fundamental group of a compact surface. Thus a totally geodesic 
compact surface of genus 9 2: 2 immerses in the figure 8 knot complement. 

Exercise 4.9 

1. Let F be a Fuchsian (e, m, n)-triangle group. Show that 

kF = Q( cos 27r I e, cos 27r Im, cos 27r In, COS7r I e cos 7r Im cos 7r In). 

2. Show that there are exactly Jour cocompact Fuchsian triangle groups 
whose invariant trace field is Q. Show directly that alt Jour are commensur­
able and determine the set oJ places oJ Q at which the invariant quaternion 
algebra is ramified. 

3. Consider the Saccheri quadrilateral shown in Figure 4.15 where the 
angle A is 7r 13. Let F be the Fuchsian subgroup oJ the group generated by 

A 

D 

c B 

FIGURE 4.15. 
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reftections in the sides of the quadrilateral. If C = 2 cosh2 L, where L is the 
hyperbolic length of the side Be, show that kF = Q( c) and 

. ~ (C(C-4),-C(C-3)(C-4») 
AF - Q(c) . 

(a) Show that there exist Fuchsian groups F such that kF is a transcend­
ental extension of Q. 
(b) Show that, for any real number field k, there exists a Fuchsian group F 
such that kF = k. 
(c) Show that there exist infinitely many commensurability classes of Fuch­
sian groups F with kF = Q each having non-integral traces. 
(d) If Fo is any of the groups described in No. 2, show that there exists a 
quadrilateral group F such that kF = kFo and AF is isomorphie to AFo. 

4.10 Further Reading 

The Bianchi groups form the most obvious collection of discrete subgroups 
of PSL(2, <C) and have been widely studied. A systematic approach to ob­
taining fundamental regions is given in Swan (1971), which, via Poincare's 
theorem, gives presentations. An alternative approach to obtaining present­
ations and further group theoretic information is in Fine (1989). For more 
discussion see Elstrodt et al. (1998). The two theorems in §4.2 were proved 
in Neumann and Reid (1992a). The dependence of the invariants of a fi­
nitely generated Kleinian group on a non-elementary subgroup as expressed 
in Theorem 4.3.1 is implicit in Reid (1990). The early ground-breaking work 
on hyperbolic structures on 3-manifolds and, in particular, on knot com­
plements gained much from the representation of the figure 8 knot group in 
Riley (1975) and other related papers (Riley (1979) and Riley (1982)). Ob­
taining the figure 8 knot complement and other knot and link complements 
by identifying faces of regular polyhedra as described in §4.4.2 is given in 
Thurston (1979) and discussed more widely in Hatcher (1983). See also Cre­
mona (1984). The classification of two-bridge knots and links is to be found 
in a number ofstandard texts on knots (e.g., Burde and Zieschang (1985). 
Throughout, references to tables of knots and links, refer to the tables in 
Rolfsen (1976). Numerous investigations on once-punctured torus bundles 
have been carried out (Floyd and Hatcher (1982), Culler et al. (1982) and 
specific investigations into the invariant trace field occur in Bowditch et al. 
(1995). The combinatorial conditions and inequalities on dihedral angles 
for the existence of polyhedra in H3 are due to Andreev (1970) (see also 
Hodgson (1992). They appear in a more algebraic context in the work of 
Vinberg (1985) using Gram matrices (see Chapter 10). With these meth­
ods, the cocompact tetrahedral groups are studied in Maclachlan and Reid 
(1989). The family of prisms discussed in §4.7.3 are mentioned in Vinberg 
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(1985), discussed in detail in Conder and Martin (1993) and their invariant 
trace fields in Maclachlan and Reid (1998). Other families of polyhedra, 
including those obtained by truncating "super-ideal" vertices are discussed 
in Vinberg (1985). The existence of hyperbolic structures on fibre bundles 
was first established in J0rgensen (1977), where presentations and matrix 
representatives of these groups were obtained. Further general discussion of 
the invariant trace field of these was given in Bowditch et al. (1995) mainly 
in the context of arithmetic groups. The existence of hyperbolic structures 
on the Fibonacci manifolds of §4.8.2 was obtained by a direct construc­
tion via face pairing a suitable hyperbolic polyhedral 3-cell in Helling et al. 
(1998). The representation of these manifolds as branched covers branched 
over the figure 8 knot is in Hilden et al. (1992a). Subsequent further in­
vestigations and generalisations appear in Maclachlan and Reid (1997), 
Mednykh and Vesnin (1995) and Mednykh and Vesnin (1996) . The con­
venient representation of the group K n at (4.13) is taken from the survey 
article of Thomas (1991). The family of generalised triangle groups, origin­
ally studied for algebraic (Fine and Rosenberger (1986» and topological 
(Baumslag et al. (1987» reasons, furnishes interesting hyperbolic examples 
which are touched upon in §4.8 (see Jones and Reid (1998), Helling et al. 
(1995), Hagelberg et al. (1995) and Maclachlan and Martin (2001». The 
Week's manifold was constructed in Weeks (1985) and in Matveev and 
Fomenko (1988). That it is the arithmetic manifold of minimal volume is 
due to Chinburg et al. (2001). The arithmetic invariants of the compact 
manifold of Exercise 4.8, No. 5 were discussed in Chinburg (1987). 

For Fuchsian groups, the subspaces of Teichmüller space corresponding to 
groups with their matrix entries in number fields are discussed in Takeuchi 
(1971) and Maclachlan and Waterman (1985). The invariant trace field of 
tri angle groups is given in Takeuchi (1977a). The Fuchsian subgroups which 
arise from faces of polyhedral Kleinian groups are investigated in Baskan 
and Macbeath (1982). The structure of maximal Fuchsian subgroups of 
Bianchi groups is detailed in Maclachlan and Reid (1991). The quadrilateral 
groups of Exercise 4.9, No. 3 appear as illustrative test cases in Schmutz 
Schaller and Wolfart (2000). 



5 
Applications 

The invariant trace field and quaternion algebra of a finite-covolume Klein­
ian group was introduced in Chapter 3 accompanied by methods to enable 
the computation of these invariants to be made. Such computations were 
carried out in Chapter 4 for a variety of examples. We now consider some 
general applications of these invariants to problems in the geometry and 
topology of hyperbolic 3-manifolds. Generally, these have the form that 
special properties of the invariants have geometrie consequences for the 
related manifolds or groups. In some cases, to fully exploit these applica­
tions, the existence of manifolds or groups whose related invariants have 
these special properties requires the construction of arithmetic Kleinian 
groups, and these cases will be revisited in later chapters. 

5.1 Discreteness Criteria 

In general, proving a subgroup of PSL(2, q is discrete is very difficult. In 
this section, we prove a result that guarantees discreteness under certain 
conditions on the invariant trace field. This result can be thought of as a 
generalization of a classical result in number theory. 

Recall from Exercise 0.1, No.6 that if pis a monic irreducible polynomial 
over Z of degree n with roots al, ... ,an, then 

n 

p(z) = II(z - ai) = zn - SIZn-1 + ... (-l)k skzn-k + ... + (-l)n sn 
i=l 
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where Si is the ith symmetrie polynomial in a1, ... ,an' As a consequence, 
we deduce the following easy lemma whose proof is left as an exercise below 
(Exercise 5.1, No.l). 

Lemma 5.1.1 There are only jinitely many algebraic integers Z of bounded 
degree such that Z and all Galois conjugates of Z are bounded. 

In what follows, c denotes complex conjugation. 

Theorem 5.1.2 Let r be a jinitely generated subgroup of PSL(2, q such 
that the following three conditions all hold. 

1. r(2) is irreducible. 

2. tr (r) consists of algebraic integers. 

3. For each embedding 0" : kr -----+ C such that 0" -# Id or c, the set 
{O"( tr (J)) : f E r(2)} is bounded. 

Then r is discrete. 

Proof: Note that since r is finitely generated, so is r(2) and so from §3.5, 
all traces in r(2) are obtained from integral polynomials in a finite number 
of traces. Thus kr is a finite extension of Q. 

It suffices to prove that the finite index subgroup r(2) is discrete. Suppose 
that this is not the case and let f n be a sequence of distinct elements 
converging to the identity in r(2). Since r(2) is irreducible, choose gl and 
g2 in r(2) such that gl and g2 have no common fixed point in their action 
on C. If Zn = tr (Jn) and Zn,i = tr ([fn, gi]), then 

ß(Jn) = z; - 4 -----+ 0 and "((Jn, gi) = Zn,i - 2 -----+ 0 

for i = 1,2 as n -----+ 00. Hence we may assurne that IZnl < K for some 
fixed constant K. Next by condition 3, 100(Zn) I < Ku for each embedding 
0" -# Id or C of kr, where Ku is a constant which depends only on 0". 

Let R = maxi K, Ku}, where 0" ranges over all embeddings 0" -# Id or C of 
kr. Then the algebraic integers Zn are of bounded degree and they and all 
of their Galois conjugates are bounded in absolute value by R. By Lemma 
5.1.1, the Zn assurne only finitely many values. Thus for large n, ß(Jn) = 0 
and f n is parabolic with a single fixed point W n . 

Next we can apply the above argument to the algebraic integers Zn,i to 
conclude that "((Jn, gi) = 0 for i = 1,2 and large n. This then implies that 
gl and g2 each have W n as a common fixed point for large n, contradicting 
condition 1. D 

To apply Theorem 5.1.2 to specific examples, we give an equivalent con­
dition to condition 3, which, in view of the Hilbert symbol representation 
of Ar in §3.6, can be readily checked. This is the content of the following 
lemma. 
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Lemma 5.1.3 With r as described in Theorem 5.1.2 satisfying conditions 
1 and 2, condition 3 is equivalent to the following requirement: 

3'. All embeddings tJ, apart from the identity and c, complex conjugation, 
are real and Ar is ramified at all real places. 

Proof: If condition 3 ' holds and tJ : kr --+ ~, then there exists T : Ar --+ 

H, Hamilton's quaternions, such that tJ( tr 1) = tr (T(f)) for each f E r(2). 

Since det(f) = 1, T(f) E H l , so that tr(T(f)) E [-2,2]. 
Conversely, suppose condition 3 holds and tJ : kr --+ C. Let f E r(2) 

have eigenvalues >. and >.-1 and p, be an extension of tJ to kr(>.). Then 
tJ(tr r) = p,(>.)n + p,(>.)-n. Thus 

So, if tJ(tr r) is bounded, then Ip,(>.) I = 1 so that a(tr 1) = p,(>.) + p,(>.)-l 
is areal number in the interval [-2,2]. Now choose an irreducible subgroup 
(gI, g2) of r(2) such that gl is not parabolic. Then 

by (3.38). Since tJ(tr f) E [-2,2] for all f, it follows that Ar is ramified at 
all real places (see Theorem 2.5.1). 0 

Exercise 5.1 

1. Prove Lemma 5.1.1. 

2. State and prove the corresponding result to Theorem 5.1.2 fOT" finitely 
generated subgroups of PSL(2, ~). 

3. Let r = (f, g) be a subgroup of PSL(2, q where 9 has order 2 and f has 
order 3. Let'"Y = tr [f, g] - 2 be a non-real algebraic integer, with minimum 
polynomial p(x) all of whose roots, except'"Y and ;ylie in the interval (-3,0). 
Prove that r is a discrete group. 

4. Let r = U, g), where f has order 6 and 9 has order 2, with '"Y = 

tr [f, g] - 2 satisfying the polynomial x 3 + x 2 + 2x + 1. Prove that r is 
discrete. 

5. Let r = (Xl, X2, X3) be a non-elementary subgroup of PSL(2,~) such 
that O(Xi) = 2 for i = 1,2,3 and O(XIX2X3) is odd (=1= 1). Let X = tr XlX2, 
y = tr X2X3, Z = tr X3Xl. If x, y and z are totally real algebraic integers with 
x,y =1= 0,±2, and for every embedding tJ ofQ(trf) such that tJlkr =1= Id, 
then ItJ(x)1 < 2, prove that r is discrete and cocompact in PSL(2, ~). 
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5.2 Bass's Theorem 

One of the first applications of number-theoretic methods in 3-manifold 
topology arises directly from Bass-Serre theory of group actions on trees. 
To state Bass's theorem, we introduce the following definition. 

Definition 5.2.1 Let Q denote the algebraic closure of Q in ce and let 
r < SL(2, Q). Then r is said to have integral traces if for all 'Y E r, tr ("() 
is an algebraic integer. Otherwise, we say r has non-integral trace. We also 
use this terminology for r a subgroup of PSL(2, Q). 

It is not difficult to show that the property of having integral traces is 
preserved by commensurability (see Exercise 5.2, No. 1). The following 
theorem of Bass is the main result of this section. 

Theorem 5.2.2 Let M = H3 Ir be a finite-volume hyperbolic 3-manifold 
for which r has non-integral trace. Then M contains a closed embedded 
essential surface. 

Before embarking on the proof of this theorem, we deduce a succinct 
version of Theorem 5.2.2 in the closed setting (see §1.5). 

Corollary 5.2.3 1f M = H 3 Ir is non-Haken, then r has integral traces. 

We also remark that having integral traces is equivalent to having an "in­
tegral representation" in the following sense. Let Adenote the ring of all 
algebraic integers in Q. 

Lemma 5.2.4 Let r be a finitely generated non-elementary subgroup of 
SL(2, <C). Then r has integral traces if and only ifr is conjugate in SL(2, <C) 
to a subgroup of SL(2, A). 

Proof: One way is obvious, so we assume that r has integral traces. Since 
r is finitely generated, the trace field of r is a finite extension k of Q. Let 
Aar be the quaternion algebra generated over k by elements of rand or 
the Rk-module generated by the elements of r. Then or is an order of 
Aar (see Exercise 3.2, No. 1). By choosing a suitable quadratic extension 
L, Aa(r) ®k L ~ M 2 (L) (Corollary 2.1.9, Corollary 3.2.4), and so by the 
Skolem Noether Theorem, we may conjugate so that Aar c M 2 (L). The 
order or ®Rk RL is then conjugate to a sub order of M 2 (RL; J) where J is 
a fractional ideal as defined at (2.5) (see Lemma 2.2.8 and Theorem 2.2.9). 
Now pass to a finite extension H say, of L to make the ideal J principal. 
There is always such a finite extension and the Hilbert Class field is such an 
extension. A further conjugation of M 2 (RH; J) shows that r is contained 
in SL(2, RH). This completes the proof. 0 

In light of this lemma, a reformulation of Theorem 5.2.2 is as follows: 



5.2 Bass's Theorem 169 

Theorem 5.2.5 Let M = H 3 Ir be a finite-volume hyperbolic 3-manifold 
not containing any closed embedded essential surface. Then r is conjugate 
to a subgroup of PSL(2, A). 

The proof of Theorem 5.2.2 requires some information about the tree of 
SL(2) over a P-adic field K, as developed by Serre. This tree can alternat­
ively be described in terms of maximal orders and, in this vein, is discussed 
in Chapter 6. The actions of the groups SL(2, K) and GL(2, K) on this tree 
playa critical role in obtaining the description of maximal arithmetic Klein­
ian and Fuchsian groups via local-global arguments and So a comprehensive 
treatment of these actions is given in §11.4. Thus the basic results recalled 
in the next subsection will be developed more fully later as indicated. 

5.2.1 Tree ojSL(2,Kp ) 

Let K be a finite extension of Qlp with valuation v and uniformizing para­
meter 'Ir, valuation ring Rand unique prime ideal P. Let V denote the 
vector space K 2 . Recall from §2.2 that a lattice L in V is a finitely gen­
erated R-submodule which spans V. Define an equivalence relation on the 
set of lattices of V : L rv L' if and only if L' = xL for some x E K*. 
Let Adenote the equivalence dass of L. These equivalence dasses form 
the vertices of a combinatorial graph T where two vertices A and A' are 
connected by an edge if there are representative lattices Land L', where 
L' c Land LI L' ~ RI 'Ir R. Serre proved that T is a tree; that is, it is 
connected and simply connected (see Theorem 6.5.3 for a proof), and each 
vertex has valency NP + 1 (see Exercise 5.2, No. 3). 

The obvious action of GL(2, K) on the set of lattices in V determines 
an action on T, which is transitive on vertices (see Corollary 2.2.10). The 
action of SL(2, K) on T is without inversion and the vertices fall into 
two orbits. Thus the stabiliser of a vertex under the action of SL(2, K) is 
conjugate either to SL(2, R) or to 

{ ( 'Ir~lC 'Ir:) E SL(2, K) I a, b, c, dER} . 

Lemma 5.2.6 1f G is a subgroup of SL(2, K) which fixes avertex then the 
traces of the elements of G lie in R. 

With this, we state the following version of the arboreal splitting theorem 
of Serre: 

Theorem 5.2.7 Let G be a subgroup of SL(2, K) which is not virtually 
solvable and contains an element 9 for which v(tr g) < o. Then G has a 
non-trivial splitting as the fundamental group of a graph of groups. 
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Note that if G satisfies Theorem 5.2.7 and the centre Z(G) is non-trivial, 
then since the centre of an amalgamated product is contained in the amal­
gamating group, it follows that GjZ(G) also splits as a free product with 
amalgamation. 

5.2.2 Non-integral Traces 

The proof of Theorem 5.2.2 can now be completed. The trace field, k, of 
r is a finite extension of Q. By Corollary 3.2.4, we can assume that r is a 
subgroup of SL(2, L), where [L : k] :::; 2. Having non-integral traces means 
that there is an L-prime P and an element l' Ersuch that vp(tr1') < o. 
By using the injection ip : L ---- Lp = K, we inject r into SL(2, K), and 
we are in the situation of Theorem 5.2.7. Thus rand, hence, r split as 
described there. By Theorem 1.5.3, we deduce the existence of an embed­
ded incompressible surface. Furthermore, in the case when M has toroidal 
boundary components, since the traces of parabolic elements are ±2, we 
see that any Z E9 Z subgroup willlie in a vertex stabilizer. Prom this, we 
deduce from Theorem 1.5.3 that the incompressible surface may be chosen 
to be closed and not boundary parallel. 0 

Examples 5.2.8 1. In §4.7.3, we calculated the trace field of the polyhed­
ral groups of prisms obtained by truncating a super-ideal vertex of a 
tetrahedron. Further we also calculated the traces of certain elements in 
these groups and showed that the groups r 6p , p a prime, as described 
in §4.7.3, had non-integral traces. Since this is preserved by commensur­
ability, any hyperbolic 3-manifold arising from a torsion-free subgroup 
of such a group is therefore Haken. (For other examples of this type, see 
Exercise 5.2, No. 6 and §10.4.) 

2. Here we consider a Dehn surgery example, the details of which require 
machine calculation. The surgery will be carried out on a two-bridge 
knot complement and we first collect some general information from the 
discussion in Chapter 4. Recall that for odd coprime integers p and q, 
the knot complement (pjq) has fundamental group r with presentation 
on two meridional generators 

where ei are defined in §4.5. Prom the two-bridge representation, we can 
take u and € = WW- 1u-2a as meridian and longitude of a peripheral 
subgroup where W = v-e1 u-e2 •• ·u-ep - 1 and a = I:ei. 

Any representation p of r into SL(2, C) can be conjugated so that 

p(u) = (~ X~l)' p(v) = (~ x~l). 
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The group relation in r determines a single polynomial equation in x, r 
from which the character variety of r can be determined since tr (p( u)) = 
x + x-1 and tr (p(uv)) = r + tr 2 (p(u)) - 2 (see Exercise 3.5, No 6 and 
4.4, No. 4 for the figure 8 knot group). 

Now consider the knot 52, which has the two-bridge representation (7/3) 
as discussed in §4.5. With the framing defined by u and l, performing 
(10,1) surgery on 52 produces a compact hyperbolic 3-manifold M whose 
volume is approximately 2.362700793 (see §1.7). 

This manifold will correspond to a point on the character variety which 
will, in addition, satisfy a furt her polynomial in x, r given by the trace 
of the Dehn surgery equation (cf. §4.8.3). From the resultant of the two 
two-variable polynomials, we obtain that the trace field of M is Q(s), 
where s = tr p( uv) satisfies 

S4 - 4s3 + 5s2 + S - 5. 

This field Q(s) has one complex place, and so is the invariant trace field, 
and has discriminant -2151. Again the resultant shows that the square 
of the trace of the image of the meridian, which is the core curve of the 
Dehn surgery, is non-integral, as it satisfies 

2x4 -17x3 + 46x2 - 40x + 8. 

Thus it follows from above, that M is Haken. In addition, since 52 is two­
bridge, it is known that there is no closed embedded essential surface in 
its complement. It follows that (10,1) is a boundary slope for 52, which 
means that there is an incompressible surface in the complement of 52 
whose boundary consists of curves parallel to the (10,1) curves on the 
boundary torus. 

Remark The phenomena discussed in the preceding example fits into the 
following general theorem of Co oper and Long, which is proved using the 
A-polynomial, which will not be discussed here. 

Theorem 5.2.9 Let N be a compact 3-manifold with boundary a torus. 
Suppose that a is an essential simple closed curve on the boundary torus 
which is not a boundary slope, and let N(a) denote the result of Dehn 
surgery along a. Let p be any irreducible representation of 11"1 (N (a)) into 
SL(2, q, such that p is non-trivial when restricted to the peripheral sub­
group. Let ( be the eigenvalue of the core curve'Y of the attached solid torus. 
Then ( is an algebraic unit. 

5.2.3 Free Product with Amalgamation 

With a little more technology, one can prove a stronger algebraic result on 
the group r in Theorem 5.2.2. This technology involves using some results 
on P-adic Lie groups. 
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As described in the proof of Theorem 5.2.2, r injects into 8L(2, K), 
where K is a P-adic field, such that the image G has non-integral traces. 
A stronger version of 8erre's splitting theorem states the following: 

Theorem 5.2.10 If G C 8L(2, K) where K is a P-adic field, and G is 
dense in 8L(2,K), then G splits as a free product with amalgamation. 

Suppose that K as above is such that Qp C K and i = Qp ( {tr g : g E G}). 
As in Chapter 3, let 

Now r contains infinitely many loxodromic elements Xi such that, for i # j, 
tr[xi,Xj] # 2. This then implies that the images of I,Xi,Xj and XiXj in G 
are linearly independent over i so that A is a quaternion algebra over i. 

By Corollary 2.6.4, there are two possibilities for A. If A is a division 
algebra, the valuation ring 0 in A, defined in Corollary 2.6.2, is the unique 
maximal order in A (see Exercise 2.6, No. 1 and §6.4). Furthermore, from 
the definition of 0, it is clear that 0 1 = Al so that Ge Al would have all 
traces being integers. Thus we conclude that A ~ M 2 (i). 

By conjugating in GL(2, i) using the 8kolem Noether Theorem, we can 
assurne that A = M 2 (i) and so G C 8L(2, i). Now 8L(2, i) is a P-adic 
Lie group and we can form G, the closure of G. The subgroup G cannot 
be discrete. Otherwise, let GI be a torsion-free subgroup of finite index. 
Then GI acts on the tree of 8L(2, i), whose vertex stabilisers are compact. 
Thus being torsion free, GI would act freely on the tree and so be free. 
Thus G, and hence r, would be virtually free, which is not possible for a 
finite-covolume group. 8ince G is then not discrete, the theory of P-adic Lie 
groups ensures that G has a unique structure as a P-adic Lie group. The 
theory furt her characterises G as containing an open subgroup H which is 
a uniform pro-p group. It is not necessary to expand on the definition of 
uniform here, but it suffices to note that, as a profinite group, H is compact 
and its open subgroups form a basis of the neighbourhoods of the identity. 
By its action on the tree of 8L(2, i), H will have a fixed point and so 
can be conjugated to an open subgroup of 8L(2, Re). It is straightforward 
to see that such open subgroups have, as a basis, the principal congruence 
subgroups r i (see Exercise 5.2, No. 2). Thus, by conjugation, we can assurne 
that G :) r j for all j ~ i and an element with non-integral trace. The 
groups r j are normal in 8L(2, Re) and a further conjugation by an element 
in 8L(2, Re) allows us to assurne that G contains r j for j ~ i and an 
element 9 = (11'on 11'~n) for some n # 0, since it has non-integral traces. 

Now 8L(2, i) is generated by the subgroups 
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(See Exercise 5.2, No. 5.) Let (ö ~) E U, so that a = 1ftu , where u is a 
unit. Choose m such that 2mn + t ~ i. Then gm (ö ~ ) g-m E r i. Applying 
a similar argument to elements of L, this yields G = SL(2, f). Thus from 
Theorem 5.2.10, we obtain the following extension to Theorem 5.2.2. 

Theorem 5.2.11 Let r be as in Theorem 5.2.2. Then r splits as a free 
product with amalgamation. 

Exercise 5.2 

1. Let rand r' be commmensurable groups contained in SL(2, Q). Show 
that r has integral traces if and only ifr' has (see §3.1). 

2. Let K be a P-adic field with ring of integers R. Show that the principal 
congruence subgroups r i form a basis for the open subgroups of SL(2, R). 

3. Prove that the tree T described in § 5. 2.1 has valency NP + 1. 

4. Show that there exist hyperbolic Haken manifolds whose trace field has 
arbitrarily large degree over Q. 

5. Prove that the subgroups U and L defined at (5.1), generate SL(2,f). 

6. Let r be the group generated by refiections in the faces of the prism 
obtained by truncating the infinite-volume tetrahedron with Coxeter symbol 
shown in Figure5.1 (m ~ 7) by a face orthogonal to faces 2, 3 and 4. Let r+ 
be the polyhedral subgroup. Show, for m = 6p where p is a prime ~ 5, that 
r+ is a free product with amalgamation. (See §4.7.3, in particular Exercise 
4.7, No. 4. See also §10·4)· 

2 3 4 

FIGURE 5.1. 

5.3 Geodesics and Totally Geodesie Surfaces 

The aim of this section is to prove several theorems relating the geometry 
of geodesics, and totally geodesic surfaces in finite-volume hyperbolic 3-
manifolds, to the invariant trace field and quaternion algebra. We remind 
the reader that for Kleinian groups of finite covolume, the invariant trace 
field is always a finite non-real extension of Q. 

5.3.1 Manifolds with No Geodesie Surfaces 

Theorem 5.3.1 Let r be a Kleinian group of finite covolume which satis­
fies the following conditions: 
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(a) kr contains no proper subfield other than Q. 

(b) Ar is ramified at at least one infinite place of kr. 

Then r contains no hyperbolic elements. 

Proof: Note that r eontains a hyperbolie element if and only if r(2) 

eontains a hyperbolie element. Let us suppose that 'Y E r(2) is hyperbolie, 
and let t = tr ("(). By assumption, tE kr n R = Q and Itl > 2. 

Now Ar is ramified at an infinite plaee v of kr, whieh is neeessarily real. 
Let eJ : kr ~ R be the Galois embedding of kr assoeiated to v, and let 
1/J : Ar ~ Hextend eJ, where 1i denotes Hamilton's quaternions. Thus 

Sinee t E Q, 

t = eJ(t) = 1/J("( + 'Y) = 1/J("() + 1/J("() = tr 1/J("(). 

Sinee tr1i1 C [-2,2] we obtain a eontradietion. 0 

We reeord the most important geometrie eorollary of this. This follows from 
the diseussion in §1.2. 

Corollary 5.3.2 Let M = H 3 Ir be a finite-volume hyperbolic 3-manifold 
for which r satisfies the conditions of Theorem 5.3.1. Then M contains no 
immersed totally geodesic surface. 

We also give the group theoretic version of this. 

Corollary 5.3.3 Let r be a Kleinian group of finite covolume which sat­
isfies the conditions of Theorem 5.3.1. Then r contains no non-elementary 
Fuchsian subgroups (i. e., no non-elementary subgroups leaving a disc or 
half-plane invariant). 

As will follow from our later diseussions on arithmetie Kleinian groups 
in §9.5, many Kleinian groups satisfy the eonditions of Theorem 5.3.1. In 
§4.8.3, the Weeks manifold was shown to satisfy these eonditions, as does 
the manifold eonstructed in Exereise 4.8, No. 5. 

5.3.2 Embedding Geodesic Burfaces 

In §5.2, we eonsidered eonditions whieh gave rise to embedded surfaees in 
hyperbolie 3-manifolds. On the other hand, the eorollaries of the preeed­
ing subseetion give obstruetions to the existenee of immersions of totally 
geodesie surfaees. Conneeting these results, we have the following result 
due to Long: 
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Theorem 5.3.4 Let M be a closed hyperbolic 3-manifold containing a 
totally geodesic immersion of a closed surface. Then there is a finite cov­
ering of M which contains an embedded closed orientable totally geodesic 
surface. 

To prove this theorem, we first recall the notion of subgroup separability. 

Definition 5.3.5 Let G be a group and H a finitely generated subgroup. 
Then G is said to be H -subgroup separable if given any element 9 E G \ H, 
there .is a finite index subgroup K of G with H < K and 9 rJ. K. 

G is subgroup separable, if it is H -subgroup separable for all such H. 

To prove the theorem, we first establish the following: 

Lemma 5.3.6 Let C be a circle or straight line in C U 00 and M = H3 /r, 
a closed hyperbolic 3-manifold. Let 

Stab(C, r) = hEr: 'YC = Cl. 
Then Stab( C, r) is separable in r. 

Proof: Let H denote Stab( C, r). We mayassume without loss of generality 
that H =ll-because 1 is separable since r is residually finite. Note that 
H is either a Fuchsian group or a Z2-extension of a Fuchsian group. To 
prove the lemma, we need to show that, given 9 rJ. H, there is a finite index 
subgroup of G containing H but not g. By conjugating, if necessary, we 
can assurne that H stabilises the real line. If e is the complex conjugate 
map, then e extends to SL(2, C) and is well-defined on PSL(2, C). The 
stabiliser of IR in PSL(2, C) is then characterised as those elements 'Y such 
that e("() = 'Y. Let r be generated by matrices gl, g2, . .. , gt. Let R be the 
subring of C generated by all the entries of the matrices gi, their complex 
conjugates and 1. Then R is a finitely generated integral domain with 1 
so that for any non-zero element there is a maximal ideal which does not 
contain that element. Note that rand e(r) embed in PSL(2, R). 

If 'Y E r \ H, then 'Y = P(g), where 9 = (gij) with at least one element 
from each set {e(gij) - gij} and {e(gij) + gij}, i, j = 1,2, being non-zero. 
Call these x and y and choose a maximal ideal M such that xy f/. M. Let 

p : PSL(2, R) --+ PSL(2, R/ M) x PSL(2, R/ M) 

be the homomorphism defined by p("() = (7f("() , 7f( eh))), where 7f is in­
duced by the natural projection R --+ R/ M. The image group is finite 
since R/ M is a finite field. By construction, the image of 'Y is a pair of 
distinct elements in PSL(2, R/ M), whereas the image of H lies in the di­
agonal. This proves the lemma. 0 

The connection between the group theory and topology is given by the 
following lemma (which holds in greater generality than stated here). 
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Lemma 5.3.7 Let M = H 3 Ir be a finite-volume hyperbolic 3-mani/old 
and / : 8 Co......+ M be an incompressible immersion 0/ a closed sur/ace. Let 
H = / * ('TrI (8)) er. I/ r is H -subgroup separable, there is a finite covering 
Mo 0/ M to which / lifts so that /(8) is an embedded sur/ace in Mo. 

Proof: Let p denote the cover H 3 ~ M. Since 8 is compact, standard 
covering space arguments imply that there is a compact set D C H3 with 
p(D) = /(8). Since r acts discontinuously on H3, there are a finite number 
of elements /1, ... "n E r with liD n D =f 0. Since r is H -subgroup sep­
arable, there is a finite index subgroup K in r containing H, but none of 
the li 'so The covering H 3 I K is the covering required in the statement. 0 

Proof: (of Theorem 5.3.4) Let i : 8 ~ M be a totally geodesic immersion 
of a closed surface. Let r be the covering group of M in PSL(2, q and let 
H = i*('Trl(8)). Then H is Fuchsian and preserves some circle or straight 
line C in Cu 00. Thus by Lemma 5.3.6, the group Stab(C, r) is separable 
in r. Let K denote a finite index subgroup achieving this (recall the defin­
ition). By Lemma 5.3.7, since Stab(C, r) is separable, the covering MK of 
M determined by K will contain an embedded orientable totally geodesie 
surface, as required. 

If Stab(C, r) is not Fuchsian, we obtain, in the same way, a closed non­
orientable hyperbolic surface 8' embedded in the cover M K of M corres­
ponding to K. Now pass to the index 2 orientable double cover 8" of 8'. 
Now construct a double cover of MK by taking two copies of M K \ 8' and 
doubling to obtain a covering of MK and, hence, M in which the orientable 
totally geodesie surface 8" embeds. 0 

Theorem 5.3.4 answers a special case of the conjecture due to Wald­
hausen and Thurston that every closed hyperbolic 3-manifold has a finite 
cover which is Haken. Indeed more is conjectured: that every closed hyper­
bolic 3-manifold has a finite cover with positive first betti number. In the 
totally geodesie case as described in Theorem 5.3.4, the separability can be 
used to promote the embedded surface to an embedded non-separating ori­
entable surface in a finite cover, as the reader may wish to prove. In general, 
although the evidence is overwhelmingly for a positive answer to both of 
these conjectures, at present, there are no general methods for approaching 
a solution. The reader should consult the Further Reading section. 

5.3.3 The Non-cocompact Gase 

Note that any finite-covolume Kleinian group satisfying the conditions of 
Theorem 5.3.1 is necessarily cocompact since Ar must be a division al­
gebra (see Theorem 3.3.8). We will next address the non-cocompact case. 
First recall that, in §4.9, it was noted that some Bianchi groups contain 
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eoeompaet Fuehsian subgroups and, indeed, it will be shown in §9.6 that 
this is true of all Bianehi groups. In eontrast, we have the following result: 

Theorem 5.3.8 Let r be a non-cocompact Kleinian group which has jinite 
covolume and satisjies the follwing two conditions: 

• k = Ql(tr r) is of odd degree over Ql and contains no proper subjield 
other than Ql . 

• r has integral traces. 

Then r contains no cocompact Fuchsian subgroups. 

Proof: We argue by eontradietion, and so assume that r eontains a eoeom­
paet Fuchsian group F say. Sinee r has integral traees, F has integral traees, 
and by the first assumption, tr FeZ. Next eonsider the quaternion algebra 
AF, defined over Ql, and OF, as defined at (3.7) is an order of AF. We claim 
that AF is isomorphie to M(2, Ql). Assuming this and using the Skolem No­
ether Theorem, we ean eonjugate in GL(2, C), so that AF = M(2, Ql). Now 
all maximal orders in M 2 (Ql) are eonjugate to M2 (Z) (see Corollary 2.2.10). 
Thus by furt her eonjugation, we ean take OF to be a suborder of M(2, Z). 
However, this means F is a subgroup of SL(2, Z), which is a eontradietion 
sinee F is assumed eoeompaet. 

Thus it remains to establish the isomorphism between AF and M 2 (Ql). If 
AF is not isomorphie to M(2, Ql), it is a division algebra over Ql and henee 
ramified at at least one finite plaee (see Theorem 2.7.3). Let p E Z be 
the assoeiated prime. Furthermore, a simple dimension eount implies that 
AF 01Qi k = Ar, and sinee r is non-cocompaet, Ar ~ M(2, k) by Theorem 
3.3.8. 

Let PI, ... , Pg be the k-prime divisors of p, and eonsider the loealization 
of AF. Sinee Ar is unramified at every plaee of k, we must have 

for eaeh i = 1, . .. ,g. On the other hand, AF is ramified at p, so AF 01Qi Qlp 
is a division algebra over Qlp. Note that 

(AF 01Qi k) 0k kPi ~ (AF 01Qi Qlp) ®lQip kPi 

for each i = 1, ... ,g. Now as noted, the left-hand side is simply M(2, kp ,}. 

Thus (AF ®1Qi Qlp) is split by the extension field kpi . By assumption, the 
degree [k : Ql] is odd, and sinee 

9 

[k : Ql] = L edkpi : Qlp] 
i=1 

(see §O.3), at least one of the loeal degrees [kpi : Qlp] is odd. However, by 
Exereise 2.3, No. 3, an odd-degree extension eannot split the division al­
gebra over Qlp- This eontradietion eompletes the proof. D 
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FIGURE 5.2. 

From the remarks preceding this theorem and the fact, to be shown in 
Theorem 8.2.3, that all non-cocompact arithmetic Kleinian groups are com­
mensurable with the Bianchi groups, examples having the properties given 
in Theorem 5.3.8 will necessarily be non-arithmetic. 

Example 5.3.9 Twist Knots: Certain twist knots as shown in Figure 5.2 
furnish examples which satisfy the conditions of Theorem 5.3.8 (see The­
orem 1.5.6). These twist knots are two-bridge knots of the form (plp - 2) 
(see §4.5). If we choose p to be of the form 4m + 3, then we obtain a 
symmetrie sequence 

{el,e2, ... ,e4m+2} = {1,-1,1,-1, ... ,-1,1,1,-1,1,-1, ... ,-1,1}. 

The polynomial described in §4.5, determining the trace field, then has 
degree 2m + 1, is monic and integral. If 2m + 1 is prime and the polynomial 
is irreducible, then the conditions of Theorem 5.3.8 hold. In the cases m = 
1,2, we obtain, respectively, the polynomials 

which are irreducible over Q. 

5.3.4 Simple Geodesics 

We now turn our attention to relationships between the geometry of closed 
geodesics and the properties of the related invariant trace field and qua­
ternion algebra. Let M = H3 Ir. A closed geodesic in M is called simple if it 
has no self-intersections. Otherwise, a closed geodesie is called non-simple. 
The following lemma (see Exercise 5.3, No.3) will prove useful. 

Lemma 5.3.10 Let M = H3 Ir be a hyperbolic 3-manifold. Then M con­
tains a non-simple closed geodesic if and only if there exists a primit­
ive loxodromic element 'Y with axis AI' and an element 8 Ersuch that 
8AI' n AI' t- 0 and 8AI' t- AI'. 

With this lemma, we can develop obstructions to the existence of non­
simple closed geodesics in closed hyperbolic 3-manifolds. Note that (see 



5.3 Geodesics and Totally Geodesic Surfaces 179 

Exercise 5.3, No. 4) any finite-volume hyperbolic 3-manifold which contains 
an immersion of a totally geodesic surface contains a non-simple closed 
geodesic. 

Let M = H3/r be a closed hyperbolic 3-manifold and assurne 9 is a 
non-simple closed geodesie in M. We begin with a few basic geometrie 
observations. By definition, there exists a loxodromic element "( E rand 
a geodesie in H 3, namely the axis A of ,,(, such that under the canonical 
projection map to M, the image of A is freely homotopic to g. As 9 is 
non-simple, by Lemma 5.3.10 there is an element 8 Ersuch that 8A #- A 
and 8A nA#- 0. Then 8A is the axis of the element 1] = 8,,(8-1. 

Let the fix points of"( be al and a2; these are just the endpoints in Cu 00 

of the geodesie A in H 3. Let the images of al and a2 under 8 be b1 and b2 . 

Lemma 5.3.11 The points al, a2, b1 and b2 lie on a circle in C U 00. The 
cross-ratio [al, a2, b1 , b2 ) is areal number lying in the interval (0,1). 

Proof: By an element of PSL(2, C), we can map al -+ 0, b1 -+ 1 and 
b2 -+ 00. Assume that a2 maps to w. Because 8A #- A and 8A nA#- 0, 
w must be areal number greater than 1. Since elements of PSL(2, C) map 
circles to circles, this proves the first statement. The cross-ratio is also 
preserved by elements of PSL(2, C). Therefore the cross-ratio we require is 
[0, w, 1, 00], which is simply l/w, hence real and lies in (0,1). 0 

Expanding on the proof of Lemma 5.3.11, note that "( and 1] have the same 
trace since they are conjugate. The mapping described in the proof has the 
effect of conjugating r so that 

Let t = (A- 1 - A). With this notation, the fix point w of Lemma 5.3.11 is 
-t/r. Thus by Lemma 5.3.11, -t/r is real and greater than 1. 

Lemma 5.3.12 With notation as above, t2 , rt E kr and, hence, so does 
t/r = -[al, a2, b1 , b2)-I. 

Proof: Since t2 = tr 2"( - 4 = tr 21] - 4, t2 E kr. Also, the element "(1]-1 is 
a commutator in rand so lies in r(2). Thus rt = 2 - tr ("(1]-1) E kr. The 
last part follows since, by Lemma 5.3.11, t, r #- 0. 0 

Theorem 5.3.13 If M has a non-simple closed geodesie, then Ar ~ (7J) 
for some a E kr and b E kr n lR.. 

Proof: Assume that M has a non-simple geodesie g. We shall compute 
the expression for Ar using the elements 1] and ,,(-I described above, which 

generate an irreducible subgroup. Thus Ar ~ (~), where a = tr (1])2 - 4 
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and b' = tr [17, "(-1]-2 by Theorem 3.6.1. Now a = t 2 and b' = r 2t2+(rt)t2 = 
(t2 (rlt))2(1 + (tlr)). Removing squares, we conclude that Ar ~ (~;), 
where b = 1 + (tlr) E kr n R 0 

Note that, if r is not cocompact, there are always elements a and b (equal 
to 1) satisfying the conditions of Theorem 5.3.13. This result can now be 
stated from the contrapositive viewpoint. 

Corollary 5.3.14 With the notation of Theorem 5.3.13, suppose that there 
are no elements a E kr and b E kr n lR such that Ar is isomorphie over 

kr to the quaternion algebra (~;). Then all of the closed geodesics of the 

closed hyperbolic 3-manifold M = H3 Ir are simple. 

It will be shown in §9.7, that there exist number fields k with exactly 
one complex place and quaternion algebras over k such that there are no 
elements a E k, b E k n lR as described in this corollary. The arithmetic 
groups r which arise from these, furnish examples of manifolds all of whose 
closed geodesics are simple. 

Exercise 5.3 

1. Let r be a finite-covolume Kleinian group such that [kr: kr n lR] = n 
and [kr n lR : Q] = 2. Show that if Ar is ramified at at least n + 1 real 
places, then r has no hyperbolic elements. 

2. (a) Show that Theorem 5.3.4 holds when M has finite volume. 
(b) Show that PSL(2, Z) is separable in PSL(2, Gd). 

3. Pmve Lemma 5.3.10. 

4. Show that if a finite-volume hyperbolic manifold M contains an immersed 
totally geodesie non-boundar·y parallel surface, then it contains a non-simple 
closed geodesie. 

5. Show that if r is as described in Theorem 5.3.8, then it can contain 
at most one wide commensurability class of non-cocompact finite-covolume 
Fuchsian groups. Show that the twist knot gmups discussed in Example 
5.3.9 do contain non-cocompact finite-covolume Fuchsian subgroups. 

5.4 Further Hilbert Symbol Obstructions 

As we have already seen, the Hilbert symbol appears naturally as an ob­
struction to certain geometrie phenomena. In this section, we give furt her 
applications of the Hilbert Symbol in this role. As discussed in §1.2 and 
1.3, if Q = H3 Ir is a hyperbolic 3-orbifold whose singular set contains at 
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least one vertex, then the vertex stabilizer is a finite group isomorphie to 
one of Dn , A4 , 84 or A5 . We now diseuss how the presenee of a subgroup 
isomorphie to A 4 , 8 4 and A 5 manifests itself in the Hilbert Symbol of the 
invariant quaternion algebra. 

Let 1t denote the Hamiltonian quaternions. Let adenote the embedding 
a : 1t1 --t SL(2, q given by 

where 1t1 is the group of elements of norm l. 
If n denotes the norm on 1t, then there is an epimorphism 

<I> : 1t1 --t SO(3, lR) 

where SO(3, lR) is represented as the orthogonal group of the quadratie 
subspace V of1t spanned by {i,j, ij}, (Le., the pure quaternions), equipped 
with the restrietion of the norm form, so that n(x1i + x2j + X3ij) = x~ + 
x~ + x~. The homomorphism <I> is defined by <I>(a) = epo" where 

epcAß) = aßa-l, a E 1t1, ß E V. 

The kernel of <I> is {± 1 } . 
Let the tetrahedron in V have vertiees 

i + j + ij, i - j - ij, -i + j - ij, -i - j + ij. 

If al = i and a2 = (1 + i + j + ij)/2, then epQ l is a rotation of order 2 
about the axis through the edge mid-point i and epQ2 is a rotation of order 
3 about the axis through the vertex i + j + ij. Note that a~ = a~ = -1 and 
so we obtain a faithful representation of the binary tetrahedral group, BA4 

in 1t1 (see Exercise 2.3, No. 7). This is also true for the binary oetahedral 
group and the binary ieosahedral group (see Exercise 5.4, No. 1). 

The group Pa(BA4 ) ~ A 4 is said to be in standard form and we note 
that it fixes the point (0,0, 1) in H3. If r is a Kleinian group eontaining 
a subgroup isomorphie to A 4 , then r ean be eonjugated so that A 4 is in 
standard form. Of course, if r contains an 8 4 or an A5 , it will eontain a 
subgroup isomorphie to A 4 . 

Lemma 5.4.1 Let r be a Kleinian group of finite eovolume with invari­
ant quaternion algebra A and number field k. If r eontains a subgroup 
isomorphie to A 4 , then 

A~ , . (-1 -1) 
k 

(5.2) 

In partieular, the only finite primes at whieh A ean be ramified are the 
dyadie primes. 
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Proof: Suppose that r eontains a subgroup isomorphie to A4 . Then sinee 
A 4 is generated by two elements of order 3, A 4 = A~2) c r(2). Thus by 
eonjugation, we ean assume that a(BA4 ) c g where Pg = r(2), g c 
SL(2, <C). Now 

Let 
Ao = (-lQ-1). 

Then 
Ao ~ {I:aigi : ai E Q, gi E a(BA4 )} 

sinee 1, i, j, ij E BA4 . Now the quaternion algebra 

lies in A, is isomorphie to Ao ®IQ k and is four-dimensional. Thus 

A~ , . (-1 -1) 
k 

Finally, by Theorem 2.6.6, A splits over all 'P-adie fields kp , where 'P is 
non-dyadic. 0 

Lemma 5.4.2 Let r be a finite-eovolume Kleinian group whieh eontains a 
subgroup isomorphie to A 5 • Ij, furthermore, [kr: Q] = 4, then Ar has no 
finite ramifieation. 

Proof: As above, let k = kr and A = Ar. Now A can, at worst, have 
dyadie finite ramifieation. Also, by Lemma 5.4.1, A is ramified at all real 
plaees of whieh there are either 0 or 2. Sinee r must eontain an element of 
order 5, Q( Y5) c k. There is a unique prime 'P in Q( v'5) sueh that 'P I 2. 
So if'P ramifies or is inert in k I Q( v'5), then there will only be one dyadie 
prime in k at whieh A eannot be ramified for parity reasons. Suppose then 
that 'P splits as 'PI 'P2 so that kPl ~ kP2 ~ Q( v'5)p. For parity reasons, 

the quaternion algebra (Q~~~) splits in the field Q( v'5)p. Henee (-leI) 

splits in kP1 and kp2' and A has no finite ramifieation. 0 

Exercise 5.4 

1. (a) Show that the binary oetahedral group BS4 has a faithful represent­
ation in 1{1. 

(b) Taking the regular dodeeahedron to have its vertiees in V at 

±i ± j ± ij, ±ri ± r- l j, ±rj ± r-lij, ±rij ± r-li 

where r = (1 + v'5)/2, show that the binary ieosahedralgroup BA5 has a 
faithful representation in 1{1. 
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2. Let f be a cocompact tetrahedral group as described in §4.7.2. 
(a) Show that the jinite ramijication oi Af is at most dyadic. 
(b) Show that in alt cases except one, Af has no jinite ramijication. [To 
cut short lengthy calculations, see Theorem 10.4.1.} 

5.5 Geometrie Interpretation of the Invariant 
Traee Field 

In this section, we give a geometrie description of the invariant trace field 
kf in the case M = H3/f is a cusped hyperbolic manifold. 

Let M be a finite-volume hyperbolic 3-manifold with a triangulation by 
ideal tetrahedra: 

M = SI U 8 2 U ... U Sn, 

where each 8 j is an ideal tetrahedron in H 3 . As discussed in § 1. 7, the 
tetrahedron 8 j is described up to isometry by a single complex number Zj 

with positive imaginary part (the tetrahedral parameter of 8 j ) such that 
the Euclidean triangle cut off at any vertex of 8 j by a horosphere section 
is similar to the triangle in C with vertices 0, 1 and Zj. Alternatively, Zj 

is the cross-ratio of the vertices of Sj (considered as points of Cpl = 

C U {oo} ). This tetrahedral parameter depends on a choice (an edge of Sj 
or an oriented ordering of its vertices); changing the choice replaces Zj by 
1/(1- Zj) or l-l/zj . Denote the field Q(Zj : j = 1, ... ,n) by k,6.M or 
k,6.f. Apriori k,6.f might depend on the choice of triangulation, but this is 
not the case. 

Theorem 5.5.1 k,6.f = kf. 

Proof: Denote k,6.f by k,6. for short. If we lift the triangulation of M to 
H3, we get a tesselation of H 3 by ideal tetrahedra. Let V be the set of 
vertices of these tetrahedra in the sphere at infinity. Let k l be the field 
generated by all cross-ratios of 4-tuples of points of V. Position V by an 
isometry of H 3 (upper half-space model) so that three of its points are at 
0, 1, and 00, and let k 2 be the field generated by the remaining points of 
V. This k2 does not depend on which three points we put at 0, 1, 00; in 
fact the following holds: 

Proof: k l <:;;; k2 since k l is generated by cross-ratios of elements of k 2 

while k2 <:;;; k l because the cross-ratio of 0, 1, 00, and Z is just z. The 
inclusion k,6. <:;;; k l is straightforward (see Exercise 5.5, No. 1). Finally, put 
three vertices of one tetrahedron of our tesselation at 0, 1, and 00, and 
then k2 <:;;; k,6. is a simple deduction on noting that, for any field l, if three 
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vertiees and the tetrahedral parameter of an ideal tetrahedron S ~ H 3 are 
in l U { 00 }, then so is the fourth vertex. D 

Now suppose we have positioned V as above. Any element, E r maps 
0,1, and 00 to points Wl, W2, and W3 of V ~ ku {oo}. Thus, is given by 
a matrix (~ ~) whose entries satisfy 

b - dWl = 0, 

a + b - CW2 - dW2 = 0, 

a - CW3 = 0. 

We ean solve this for a, b, c and d in kL:;. and then ,2 is represented by the 
element 

1 (a 
ad-bc c 

b)2 d E PSL(2, kL:;.). 

By definition, kr = Q(tr r(2)), so we see that kr ~ kL:;.. 
For the reverse indusion, we shall use Theorem 4.2.3, which says that r 

may be eonjugated to lie in PSL(2, Q(tr r)). Given this, the points of V, 
whieh are the fixed points of parabolie elements of r, lie in Q(trr), sinee 
the fixed point of a parabolie element (~ ~) is (a - d) /2c. Thus, by Lemma 
5.5.2 kL:;. ~ Ql(trr). On the other hand, kL:;. is dearly an invariant of the 
eommensurability dass of r, so we ean apply this to r(2) to see kL:;. ~ kr. D 

U sing the tetrahedral parameters to determine the invariant traee field 
as in Theorem 5.5.1 is a simple tool to apply onee the data (Le., the tet­
rahedral parameters), are known. When a eusped hyperbolie manifold is 
triangulated by ideal tetrahedra, the gluing pattern of the tetrahedra dic­
tates the gluing eonditions around eaeh edge, which are equations in the 
tetrahedral parameters. Furthermore, for the strueture to yield a eomplete 
hyperbolie structure, it is neeessary and sufficient that the geometrie strue­
ture of the eusps must be a Euelidean strueture which yields the holonomy 
eondition pinning down the precise values of the tetrahedral parameters. 
This proeess was set out by Thurston and for the figure 8 knot eomplement, 
given in §4.4.2 as a union of two ideal tetrahedra, it leads to the faet that 
the tetrahedra in that ease are regular (see §1.7), thus determing the tetra­
hedral parameter field to be Q( A). A further example, the eomplement 
of the knot 52, is eonsidered next. 

Conversely, starting with a fixed small number of ideal tetrahedra, the 
number of possible gluing patterns which yield a manifold, is finite and ean 
be expressed as gluing eonsisteney equations on the tetrahedral paramet­
ers which must further satisfy the holonomy eonditions at the eusps. In 
this way, SnapPea (a program of Jeff Weeks) ereated a eensus of eusped 
manifolds obtained from small numbers of ideal tetrahedra and the data so 
obtained lends itself readily to the ealculation of the invariant traee field. 
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In fact, an exact version of SnapPea, called Snap, has been created by 
Coulson, Goodman, Hodgson and Neumann, and here the number fields 
can be read off very easily. (See furt her discussion bel~w). Tables of such 
are presented in the Appendix to this book. 

Example 5.5.3 Here we illustrate the above discussion using the com­
plement of the knot 52, whose invariant trace field as a two-bridge knot 
complement we have already calculated in §4.5. 

Regard the knot as lying essentially in the plane P given by z = 0 in ]R3. 

The complement can then be regarded as the union of two polyhedra with 
their faces identified and vertices deleted. To describe the two polyhedra, 
they consist of two balls filling the upper half-space Z 2 0 and the lower 
half-space Z ~ O. At each crossing, we adjoin small oriented 1-cells as shown 
in Figure 5.3 with end points on the knot K. Let two such cells be equivalent 
if one can be obtained from the other by sliding along the knot. Now take 
regions in the plane bounded by the· knot and three or. more 1-cells, as 
the two cell faces of the polyhedra, one for upper half-space and the other 
for lower half-space, with appropriate gluing given by the equivalence of 
1-cells. This yields two polyhedra as depicted in Figure 5.4. If we further 
subdivide the polyhedron on the left as shown in Figure 5.5 to split C into 
two cells Cl and C2 , the 1-cell on the polyhedron in the lower half-space, 
shown on the right, is determined by the identifications already specified. 
This results in two tetrahedra in the upper half-space and two in the lower 
half-space, but one of these has 'degenerated' into a triangle. Identifying D 
and D', we obtain the polyhedron shown in Figure 5.6. The upshot is that 
we obtain the knot complement as a union of three tetrahedra and we can 
now calculate the gluing consistency equations. Thus using the notation 

Z -1 1 
Zl = Z, Z2 = --, Z3 = --

Z 1- Z 

and similarily for u and w, the gluing consistency conditions require that 
the sum of the dihedral angles round an edge is 27f. These can be expressed 

FIGURE 5.3. 
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D D' 

FIGURE 5.4. 

D D' 

FIGURE 5.5. 

by the logarithmic gluing equations requiring that the sum of the logar­
ithmic parameters be 27ri. Exponentiating gives the multiplicative gluing 
equations, which can be read off directly from Figure 5.7, one for each edge. 
These equations are 

UIU3Z1Z2WIWIW2 = 1, 

Ul U2Z2Z3W3W3 = 1, 

U2U3Z1Z3W2 = 1, 

l~U(Z -1)w(w -1) = 1, 

(u - 1) ~l (1_lw)2 = 1, 
-l_z_w-l -1 
U l-z w - . 

(5.3) 

(5.4) 

(5.5) 

As a l-cusped manifold, the link of the vertex is made up of 12 triangles 
arranged as in Figure 5.8. For a complete hyperbolic 3-manifold, the cusp 
must have a horospherical torus cross section. This can be determined from 
the holonomy of the similarity structure on the boundary torus which can 
be read off from Figure 5.8 as 

H'(x) 
H'(y) 

Wl U3U2Z2W3W2U3Wl Z2Z1 U3Z3Z2U2W3W2Z3Z2, 

U3 W I W 2· 

One then determines from these equations that W is a solution to 

x3 - X + 1 = 0 

(5.6) 

with positive imaginary part, U = wand Z = 1/(1 - u), thus providing a 
solution to the gluing equations with positive imaginary parts. 
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FIGURE 5.6. 

FIGURE 5.7. 

This whole process, and more, has been automated. Starting with a knot 
or link complement, SnapPea will produce numerical values for the tet­
rahedral parameters. Then Snap, combining this with the number theory 
package Pari, yields polynomials satisfied by these tetrahedral parameters 
(provided the degree is not too large). This then yields the arithmetic data 
and, in particular, the invariant trace field. This applies not only to knot 
and link complements but also to other cusped manifolds which can be 

FIGURE 5.8. 
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constructed from ideal tetrahedra in such a way that the gluing conditions 
referred to earlier are satisfied. A census of such manifolds is available with 
the above packages. All of this has been extended to include manifolds and 
orbifolds obtained by Dehn filling cusped manifolds. Again the determin­
ation of the associated parameters yields the arithmetic data, describing, 
in particular, the invariant trace field and the the invariant quaternion al­
gebra. Note also, with reference to §5.2, that Snap also yields information 
about integral traces. For future reference, it also indicates whether or not 
the manifold or orbifold is arithmetic. Once again, these packages provide 
censuses of closed manifolds and their details. 

Returning to the cusped case and the example 52, we note that for a com­
plete structure to be guaranteed, the method described with reference to 
the knot 52, and these packages, not only produce a polynomial satisfied by 
a tetrahedral parameter but also the specific root of that polynomial which 
gives the appropriate tetrahedral parameter. Thus the invariant trace field 
is identified, not just up to isomorphism, but as a subfield of C. In the case 
of the knot 52, where the invariant trace field has just one complex place, 
this yields nothing new. However, recall that, for the knot 61 , discussed 
in Example B in §4.5, the invariant trace field has degree 4 over Q, two 
complex places and discriminant 257. Obtaining a tetrahedral decomposi­
tion of the complement of 61 gives the associated tetrahedral parameters 
as elements of C and hence identifies the invariant trace field as a sub­
field of C. Following the procedure set out for 52, the complement of 61 

yields initially two pentagonal regions which, on further subdivision, shows 
that the complement of 61 is a union of four ideal tetrahedra in the up­
per half-space and one in the lower half-space together with adegenerate 
quadrangle. Computing the gluing and holonomy equations from this then 
exhibits the tetrahedral parameters. Alternatively, the package Snap will 
return, for the knot 61 , the identifying polynomial and the specific root. 
For the record, the polynomial is 

and the root, with positive imaginary part is approximately 0.547423 + 
0.585652i. For many other examples, see Appendix 13.4. 

Exercise 5.5 

1. Prove that kt:;. ~ k1 (in the notation of Lemma 5.5.2). 

2. Generalize Lemma 5.5.2 to the following setting. Say a subset V C 
Cu { oo} is defined over a subfield k C C if there is an element of PSL(2, q 
transforming V into a subset of k U { 00 }. Show that the following are equi­
valent: 

• V is defined over k. 
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• All cross-ratios of 4-tuples of points of V are in k U {oo} . 

• If, after transforming V by an element of PSL(2, q, three of its points 
lie in k U { 00 }, then they all are. 

3. In the notation of the previous question, suppose V is defined over k, 
lVI ;::: 3 and r c PGL(2, q is non-elementary and satisfies; rv = V. 
Prove that r may be conjugated into PGL(2, k). 

5.6 Constructing Invariant Trace Fields 

For a finite-covolume Kleinian group, the invariant trace field is a finite non­
real extension of Q by Theorem 3.3.7. Through the examples discussed in 
Chapter 4, we produced an array of fields which are the invariant trace 
fields of finite-covolume Kleinian groups. These do not yield, however, any 
clear picture of the nature of those fields which can arise, and this is, 
indeed, a wide open question. Via the Bianchi groups, we note that every 
quadratic imaginary field can arise and, more generally by the construction 
of arithmetic Kleinian groups, to be considered in subsequent chapters 
(see, in particular, Definition 8.2.1), any number field with exactly one 
complex place can also arise. In this section, we show how it is possible to 
build on known examples using free products with amalgamation and HNN 
extensions. We observe in passing that the answer to the corresponding 
question for finite-covolume Fuchsian groups is: all fields with at least one 
real place. Indeed for a torsion-free Fuchsian group, the set of all such 
groups with representations in a fixed field is dense in the Teichmüller 
space (cf. §4.9). 

The main result in this section is the following: 

Theorelll 5.6.1 Let r be a finitely generated Kleinian group expressed as 
a free product with amalgamation or HNN-extension r o *H r 1 or rO*H, 
where H is a non-elementary Kleinian group (where all groups are assumed 
finitely generated). Then kr = krQ'kr 1 or kro, respectively, where· denotes 
the compositum of the two fields. 

Proof: We deal with the HNN-extension case first. By definition of the 
HNN-extension, r is generated by r o and a stable letter t say, where 
tHor 1 = H 1 and H i ~ H for i = 0,1. Furthermore, this stable letter 
is of infinite order, and by changing the generating set, if necessary we can 
assume that r o is finitely generated by elements of infinite order. 

Now, by Lemma 3.5.5, kr coincides with the trace field of the group 
r 1 = (t2,r~2)1' We claim that this latter field K is simply kro. Certainly 
K contains kr o. 

To establish this claim, we argue as follows. Since Ho is non-elementary, 
there exist go, ho E H62) such that (gO, hOl is irreducible. Then, if gl = 
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tgar1 and h1 = tharl, the subgroup (gI, h1) is also irreducible and 

Conjugation by tinduces an automorphism () of Ara and so by the Skolem 
Noether Theorem, there exists y E Arü such that ()(a) = yay-l for all 
a E AHa. By the argument of the proof of Theorem 3.3.4, we deduce 
that t differs from y by a non-zero element in kra. Again, as in the case 
of Theorem 3.3.4, squaring and taking traces, we deduce that t 2 E AfÖ' 
Hence, (t 2 , f62)) is contained in AfÖ, and so traces lie in kfa as is required. 

The proof in the free product with amalgamation case is similar. The 
structure theory of free products with amalgamation means that we have 
f = (fa, f 1 ) and f a n f 1 = H. By Lemma 3.5.5, we need to show that 
the trace field K of the group (f62) , fi2)) coincides with kfa . kf1 . One 
inclusion is obvious; thus it remains to establish that K c kf a . kf 1. 

Since H is non-elementary, by tensoring over kH, we see that H(2) con­
tains a kra-basis for Afa and kf1-basis for Af1 . The key observation in 
this case is the following: 

This follows since 

From this, we see that f62) and fi2) are subgroups of AI , and hence the 
field K is a subfield of the field of definition of A, namely kfa . kf1 . The 
proof is now complete. 0 

Application 

Let M be a hyperbolic 3-manifold, By a mutation of M we mean cutting M 
along an embedded incompressible surface ~ and regluing via an isometry 
T of ~ giving a new manifold MT. The manifold MT is called a mutant 
of M. Mutants are well-known to be hard to differentiate. In this setting, 
Theorem 5.6.1 yields the first application: 

Corollary 5.6.2 Mutation preserves the invariant trace fleld. 

For discussion of mutation invariants, see Further Reading. 

Example 5.6.3 The classical setting of mutation is when M is a hyper­
bolic knot or link complement in 8 3 , and ~ is a Conway sphere (i.e., an 
incompressible four-punctured sphere with meridional boundary compon­
ents). Figure 5.9 shows the Kinoshita-Terasaka and Conway mutant pair. 
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The main applieation of Theorem 5.6.1 is in building eertain invariant 
traee fields. 

Theorem 5.6.4 Let K = Q(y'-d1 , ... ,y'-dr ), where the positive in­
tegers d1 , •• . dr are square-free. Then K is the invariant trace field of a 
finite-volume hyperbolic 3-manifold. 

The proof of this relies on the fact that a twice-punetured dise in a hyper­
bolie 3-manifold has a unique hyperbolie strueture. More precisely, we have 
(reeall our eonvention that all immersions map boundary to boundary) the 
following lemma: 

Lemma 5.6.5 Let M = H 3 Ir be a hyperbolic 3-manifold and f : D ~ 
M an incompressible twice-punctured disc in M. Then, f*(1rl(D)) er is 
conjugate in PSL(2, C) to the group F(2), the level 2 congruence subgroup 
of PSL(2, JE). 

Proof: Sinee f(D) is a hyperbolie twiee-punctured dise in M, the funda­
mental group viewed as a subgroup F of PSL(2, q is generated by a pair 
of parabolie elements, a and b say, whose produet is also parabolie. Now 
by eonjugating in PSL(2, C), we may assume 

Sinee ab is also parabolie we must have that tr ab = ±2. The ease of 
trab = 2 is easily ruled out, and we deduee that r = -2, whieh gives 
the level 2 eongruenee subgroup as required. 0 

The Bianehi groups PSL(2, Gd) are a eollection of finite-eovolume Klein­
ian groups whose invariant traee fields are Q( R). 

ßJ 
------ -----1------, 

([~j 

FIGURE 5.9. 
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Lemma 5.6.6 For alt d, PSL(2, Gd) contains a torsion-Iree subgroup Gd 
such that H 3 /Gd contains an embedded totally geodesic twice-punctured 
disco 

Proof: The groups of the complements of the Whitehead link and the 
chain link with four components are subgroups in the cases d = 1 and 
d = 3, respectively and as seen in Figure 5.10, these complements contain 
obvious twice-punctured discs. Being totally geodesic follows from Lemma 
5.6.5. Let these manifolds be denoted MI and M 3 respectively. For d =I=- 1,3, 
we make use of a result of Fine and Frohman: 

Theorem 5.6.7 II d =I=- 1,3 then PSL(2, Gd) can be expressed as an HNN­
extension with amalgamating subgroup PSL(2, Z). 

The theorem can be viewed topologically as asserting the orbifolds have em­
bedded incompressible sub-2-orbifolds which are nün-separating copies of 
H2 /PSL(2, Z). We can pass to manifold covers with twice-punctured discs 
as follows. Let r d(2) denote the level 2 congruence subgroup in the Bianchi 
group PSL(2, Gd)' Then as is easy to see, r d(2) n PSL(2, Z) = F(2) (in the 
notation above). Let Md(2) denote the manifold H3 /r d(2). Then from our 
above remarks Md(2) contains an embedded twice-punctured disco D 

Proof of Theorem 5.6.3: These twice-punctured discs can be used to 
cut-and-paste submanifolds of the manifolds constructed in Lemma 5.6.6. 
Thus given a field K as in the hypothesis, we proceed by induction. The 
details are left as an easy exercise using Theorem 5.6.1. D 

See §10.2 für other applications of this method. 
Since the invariant trace field is preserved by mutation, one could furt her 

ask whether mutation preserves the property of having integral traces. In 
complete generality, Bass's Theorem says that we can amalgamate groups 
with integral traces together and create non-integral traces. In Figure 5.11 
we give a pair of mutant links for which mutation destroys integral traces. 

G 
c; 0 

(; ~ 
FIGURE 5.10. 



5.6 Cünstructing Invariant Trace Fields 193 

) l 
(b) 

FIGURE 5.11. 

The link in Figure 5.11(a) is commensurable with H 3 /PSL(2, 03) and so 
has traces in 0 3 . However, the mutant in Figure 5.1l(b) has a non-integral 
trace. 

These can be checked using SnapPea and Snap, für example. 

Exercise 5.6 

1. Complete the proof of Theorem 5.6.4. 

2. Use the truncated tetrahedra with a super-ideal vertex, truncating a 
(2,3, n)-triangle group to obtain some funher examples of invariant trace 
fields (see §4.7.3 and Exercise 5.2, No. 6). 

3. Use the knowledge of the trace fields of the Fibonacci groups to show 
that, given n, there exists a field with at least n real places which is the 
invariant trace field of a finite-covolume Kleinian group. 
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5.7 Further Reading 

Versions of Theorem 5.1.2 and Lemma 5.1.3 appeared as results giving an 
intrinsic characterisation of finite-covolume Fuchsian and Kleinian groups 
as arithmetic in Takeuchi (1975) and Maclachlan and Reid (1987). The 
results given here were used in Gehring et al. (1997) to establish the exist­
ence of Kleinian groups with various extremal geometric properties. Special 
cases from Gehring et al. (1997) appear as Exercise 5.1, Nos 3 and 4 and 
Exercise 5.1, No. 5 is adapted from Maclachlan and Rosenberger (1983). 

The proof of the Smith Conjecture (Morgan and Bass (1984)) had many 
components, one of which produced the relations hip between traces, am­
algam structures and embedded surfaces through the work of Bass (1980). 
The format employed in Theorem 5.2.2. results from methods of Culler 
et al. (1987). The tree associated to SL(2, K) for K a P-adic field is dealt 
with in Serre (1980). 

Following Thurston (Thurston (1979)), most Dehn surgeries on a hy­
perbolic knot complement produce complete hyperbolic manifolds, but de­
termining precisely those that do for any given knot is a detailed process 
which can be more or less ascertained by machine calculation in the form 
of the SnapPea program of Jeff Weeks (Weeks (2000)). Indeed, determining 
the actual invariant trace field after Dehn surgery and whether or not it 
has integral traces has also been mechanised as described in §5.5. 

The work of Culler and Shalen contained in Culler and Shalen (1983) and 
Culler and Shalen (1984) was seminal in the development of understanding 
boundary slopes of hyperbolic cusped 3-manifolds from their representation 
and character varieties. Further developments came in Culler et al. (1987) 
and subsequently in the form of the A-polynomial in Cooper et al. (1994). 
The result referred to as Theorem 5.2.9 appears in Cooper and Long (1997) 
as a consequence of subtle properties of the A-polynomial. 

The version of the splitting theorem 5.2.11 appears in Long and Reid 
(1998) following earlier versions in Long et al. (1996) and Maclachlan and 
Reid (1998). Tetrahedra in H3 with a super-ideal vertex which can be trun­
cated as described in Exercise 5.2, No. 6 are enumerated in Vinberg (1985). 
The non-existence of totally geodesic surfaces in certain finite-covolume 
Kleinian groups as described in Theorems 5.3.1 and 5.3.8 were given in 
Reid (1991b). Separability and its use in connecting group theory and to­
pology appears in Scott (1978) and Theorem 5.3.4 appears in Long (1987). 
For a variety of results and techniques used in proving that many classes 
of hyperbolic 3-manifolds have finite covers which are Haken, or have pos­
itive first Betti number, the reader should consult Millson (1976), Hempel 
(1986), Baker (1989), Li and Millson (1993), Cooper and Long (1999), 
Clozel (1987) and Shalen and Wagreich (1992). The twist knot examples 
are discussed in Reid (1991b) (see also Hoste and Shanahan (2001)), mak­
ing use of earlier detailed descriptions in Riley (1974) and in Riley (1972). 
Theorem 5.3.13 and furt her consequences of this to be discussed later are 
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due to Chinburg and Reid (1993). The obstructions given in §5.4 appeared 
in Gehring et al. (1997) and borrowed from descriptions of the representa­
tions of regular solid groups in Vigneras (1980a). 

The description of the invariant trace field of a cusped manifold via tet­
rahedral parameters was given and utilised in Neumann and Reid (1992a) 
and, as described in §5.5, has been combined with SnapPea to produce 
an exact version called Snap (Goodman (2001), Coulson et al. (2000)), 
by which the number fields can be quickly determined. For a given knot 
complement, the methodology of determining the decomposition into ideal 
tetrahedra was laid out in Thurston (1979) and expanded upon in Hateher 
(1983) and in Menasco (1983). 

The denseness of the representations of Fuchsian groups in Teichmüller 
space follows from work in Takeuchi (1971) and Maclachlan and Waterman 
(1985). An early version of Theorem 5.6.1 appears in Neumann and Reid 
(1991). The difficulty of distinguishing mutant pairs by any means is illus­
trated in the works of Lickorish and Millet (1987), Thistlethwaite (1984) 
and Ruberman (1987). 

In his book, the structure of the Bianchi groups from a group present­
ational view point is discussed at length by Fine (1989), particularly con­
cerning Fuchsian subgroups. Various amalgam and HNN descriptions of 
these groups are given there, including Theorem 5.6.7 which is taken from 
Fine and Frohman (1986). 



6 
Orders in Quaternion Algebras 

The basic algebraic theory of quaternion algebras was given in Chapter 2. 
That sufficed for the results obtained so far on deducing information on a 
Kleinian group r from its invariant trace field kr and invariant quaternion 
algebra Ar. We have yet to expound on the arithmetic theory of quaternion 
algebras over number fields. This will be essential in extracting more in­
formation on the quaternion algebras and, more importantly, in deducing 
the existence of discrete Kleinian groups of finite covolume. These will be 
arithmetic Kleinian groups about which a great deal of the remainder of 
the book will be concerned. All of this is based around the structure of 
orders in quaternion algebras which encapsulate the arithmetic theory of 
quaternion algebras. These were introduced in Chapter 2, but we now give 
a more systematic study, particularly from a local-global viewpoint. 

6.1 Integers, Ideals and Orders 

Throughout this chapter, the ring R will be a Dedekind domain whose field 
of quotients k is either a number field or a P-adic field. In later applications, 
it will usually be the case that, when k is a number field, R = Rk, the ring 
of integers in k. However, we also consider the situation where R = R(vp), 
a discrete valuation ring associated to the valuation Vp on the number field 
k (see Lemma 0.6.4). In these cases, R satisfies the additional conditions 
that R is a principal ideal domain and has a unique maximal ideal. This is 
also true for R = Rp, the ring ofP-adic integers in the P-adic field kp (see 
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Theorem 0.7.6). When k is a number field, the ring R mayaIso be taken to 
be an S-arithmetic ring, where S is a finite set of non-Archimedean places. 
In these cases, 

Rs = {a E k I vp(a) :::; 1 for all prime ideals P r:J. S}. 

Recall that a Dedekind domain is an integrally closed N oetherian ring in 
which every non-trivial prime ideal is maximal. 

For convenience, we recall from §2.2 the elementary definitions and res­
ults on integers, ideals and orders in a quaternion algebra A over k. 

An element a E Ais an integer (over R) if R[a] is an R-Iattice in A. This 
is equivalent to requiring that tr (a), n(a) ER. 

A complete R-Iattice in A is called an ideal I and an order V in A is 
an ideal which is also a ring with 1. Orders in A can be characterised 
as rings 0 of integers in A which contain Rand are such that kV = A. 
This characterisation shows that maximal orders exist and every order is 
contained in a maximal order. 

In our applications, the maximal orders will play a pivotal role. Related 
to these are EichIer orders. 

Definition 6.1.1 An order V in A is an Eichler order if there exist distinct 
maximal orders VI and V 2 in A such that V = 0 1 n V 2 . 

In the cases where A = M 2 (k), M 2 (R) is a maximal order. If R is a 
principal ideal domain, all maximal orders are conjugate to M 2 (R). More 
generally, since M 2 (k) = End(V), where V is a two-dimensional space over 
k, for every complete R-Iattice L in V, End(L) is an order in End(V) and 
every order is contained in some End(L). (For all of this, see §2.2). Later 
it will be shown that each End(L) is a maximal order. 

Now let us consider various special properties that ideals may have. Re­
call that for an ideal I in A, the orders on the left and right of I are defined 
respectively by 

Ol(I) = {a E A I aI cI}, Or(I) = {a E A I Ia cI}. 

Definition 6.1.2 Let I be an ideal in a quaternion algebra A. 

• I is said to be two-sided if Vi (I) = Vr(I). 

• I is said to be normal if Vi (I) and Vr(I) are maximal orders. 

• I is said to be integral if I lies in both Vl(I) and in Vr(I). 

It will be noted that if I is an integral two-sided ideal, it is an ideal in the 
related ring V in the usual sense of an ideal in a non-commutative ring. 

Just as one constructs a group of fractional ideals in k with respect to 
R, one can start to construct a similar theory for ideals in A (see Exercise 
6.1, No. 1 and §6.6). 
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There is also the non-commutative analogue of the norm of an ideal in 
the ring of integers (cf. (0.20)). 

Definition 6.1.3 Let I be an ideal in the quaternion algebra A over a 
field k. The norm of I, n(I), is the [ractional ideal of R generated by the 
elements {n(x) 1 x E I}. 

Finally, since the orders in quaternion algebras are going to give rise to 
arithmetic Kleinian and Fuchsian groups, we note three groups which arise, 
naturally associated with an order O. 

0 1 = Group of units of reduced norm 1 = {x E 0 1 n(x) = I}, (6.1) 

0* = Group of units of 0 = {x E 0 13 y E 0 such that xy = I}, (6.2) 

N(O) = The normaliser of 0 = {x E A* 1 xOx-1 = O}. (6.3) 

Note that these groups are such that 

0 1 C 0* C N(O). 

Exercise 6.1 

1. (a) Prove that the product of two ideals is an ideal. 
(b) If I is an ideal in A, show that there exists ß E R, ß =I- 0, such that 
ßI C Ol(I) C ß- 1 I. If 1-1 is defined by 1-1 = {a E A 1 laI Cl}, 
show that 1-1 C ß-2 land deduce that 1-1 is an ideal. Show further, that 
n-1 C Ol(I) and 1-1 I C Or(I). 

2. Two orders 0 1 and O2 in Aare said to be linked if 3 an ideal I such 
that Ol(I) = 0 1 and Or(I) = O2 • Show that any two maximal orders are 
linked. 

3. Use Theorem 2.2.9 to show that for any ideal J in R, 

{ (~ ~) 1 a, b, dER, c E J} 
is an Eichler order in M 2 (k). 

4. If hand h are ideals in A, with h C 12 , show that 12 / h is an 
R-torsion module. There is an invariant factor theorem for Dedekind do­
mains which can be used to describe this situation: There exist elements 
Xl, X2, X3, X4 Eh, [ractional ideals of R, J1, h, h, J 4 and non-zero integ­
ral ideals of R, E 1 ,E2 , E 3 , E4 such that 

4 

12 = EB L JiXi, 

i=l 

4 

h = EB LEiJiXi. 

i=l 

Then 12 / h ~ EB E:=l R/ Ei· [The product ofthe ideals E 1 E 2 E 3 E 4 is known 
as the order ideal ofthe R-torsion module 12 /h and is written ord(h/h).} 
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Use this to show that, if 0 1 C O2 are orders in A, then the group index for 
the groups [02 : 0i] is finite. 

5. Give examples to show that the index [0* : 0 1 ] can be infinite. Show 
that [N(O) : 0*] is always infinite. 

6.2 Localisation 

A fundamental teehnique in algebraie number theory, whieh will also be 
used extensively in the remaining ehapters, is the loeal-global method. 
"Global" refers to the number fields being eonsidered and "loeal" to the 
fields obtained as the eompletions of these number fields at their valuations 
as deseribed in §0.7. A loeal-global teehnique applied to a problem eonsists 
of first settling the loeal eases and then applying this information to the 
global ease. The Hasse-Minkowski Theorem (Theorem 0.9.8) is a power­
ful example of this which we have already applied to obtain a loeal-global 
result on the splitting of quaternion algebras (Theorem 2.7.2) and the iso­
morphism classes of quaternion algebras (Theorem 2.7.5). 

The loeal fields eonsidered in this ehapter will be the P-adie fields. The 
rings of integers in these P-adic fields are diserete valuation rings. The 
non-Arehimedean valuations on a number field give rise also to diserete 
valuation subrings of the number fields and, in this seetion, the loeal-global 
teehnique will go through an intermediate step using these loeal rings. 

First reeall the notation (see §0.6 and §0.7). Let R be a Dedekind domain 
with field of fraetions k. Let P be a prime ideal in Rand let Vp be the 
associated valuation on k. The loeal ring R(vp) = {a E k I vp(a) :s: I} 
has a unique prime ideal P(vp) = {a E k I vp(a) < I}. The ring R(vp) 
ean be identified with the loealisation of R at the multiplieative set R \ P, 
whieh is the ring of fraetions {alb I a E R, b E R \ P}. These loeal rings are 
principal ideal domains and a generator 7r of the ideal P( vp) = 7r R( vp) is 
a uniformizer . 

The rings R( vp) are all subrings of k and R ean be reeovered from them 
as 

R= n R(vp) (6.4) 
{P prime} 

where the interseetion is over all non-zero prime ideals of R (see below). 

Example 6.2.1 If R = Z and pis a prime, then 

R(vp ) = {~ E Q I PA b} . 

Thus if alb E Q and P Ab for any prime p, then alb E Z, which gives (6.4) 
in this ease. 
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We need to extend this idea and the proof of (6.4) follows the same line of 
argument as in this extension: 

Lemma 6.2.2 Let V be a finite-dimensional space over k and let L be 
an R-lattice in V. Then L = n R( Vp )L, where the intersection is over all 
prime ideals of R. 

Proof: Clearly L is contained in the intersection. Let Xl, X2,' .. , Xr be a 
generating set for Lover R; thus it will also be a generating set for R( Vp )L. 
Suppose that X lies in the intersection. Define the ideal J by 

J = {y E R I yx E L}. 

Now X = L~=l akxk with ak = bk/Ck, where bk , Ck E Rand Ck rI. P. Let 
c = ClC2 ... Cr so that C rI. P. However, c E J. Thus J does not lie in any 
prime ideal P and so J = R. Thus 1 E J and X E L. D 

This result will be applied in the situation where V is a quaternion algebra 
over k and L is an ideal I or an order O. 

In addition, ideals and orders in A over the global field k can be con­
structed by specifying their local components in the following way: 

Lemma 6.2.3 Let R be a Dedekind domain and let I be an ideal in the 
quaternion algebra A over k. For each prime ideal P in R, let I ( vp) be an 
R( Vp ) -ideal in A such that I (vp) = R( vp)I for almost all P. Then 

is an R-ideal in A such that R( vp)J = I( vp) for all P. 

Proof: Let Xl, X2, X3, X4 EIbe linearly independent over k and let L = 

R[Xl,X2,X3,X4]. Then L is an R-ideal and LeI and so:3r ERsuch that 
rI c L. It follows that, for almost all P, R(vp)L = R(vp)I and so, for 
almost all P, R(vp)L = I(vp). Thus choose a,b ERsuch that 

aI(vp) c R(vp)L c bI(vp) 

for all P. Then 

by Lemma 6.2.2. Thus J is an R-Iattice in A. Furthermore, in the same 
way, L c bJ so J is an ideal in A. 

Now R(vp)J c R(vp)I(vp) = I(vp). To obtain the reverse inclusion, 
the Chinese Remainder Theorem (CRT) will be used (see Lemma 0.3.6). 
Let jl, ... , jr be a generating set far J. Let X E I( vp) so that X = L adi 
with ai E k. Consider one coefficient at a time. Choose SI E R so that 
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Slal E R. Suppose slR = pno Q~l ... Q~t, where no ~ 0 and ni ~ 1 for 
1 ::::; i ::::; t. By the CRT, choose Xl such that Xl == sl(mod Q~;+1) for 
1::::; i ::::; t and Xl == Slal + sl(mod pno+l). Then bl = Xl/Sl is such that 
b1 - al E R( vp) and b1 E R( vp') for all prime ideals P' =I=- P. Repeat for 
each of the coefficients and let y = "2:. bdi' Then y E R( Vp' )J c I (vp') for 
all P' =I=- P. Also y - x = "2:.(bi - ai)ji E R(vp)J c I(vp). Thus y E I(vp) 
and so y E J. Thus x = y - (y - x) E R(vp )J. 0 

Note that if 0 is an order in A, then R( vp)O is an R( Vp )-order in A and 
the above result holds with "ideal" replaced by "order". Recall that every 
order is contained in a maximal order. It will be shown that maximality is 
a condition that depends on the local components. 

Now ideals I and orders 0 are complete lattices so that kQ9 R I ~ kQ9RO ~ 

A. Identifying I with its image 1 Q9 I, this can be expressed as k I = A. 
Similarily for O. Also the ideal I embeds in R( Vp ) Q9 R I which, as above, 
is written R(vp).I. 

Lemma 6.2.4 Let 0 be an R-order in a quaternion algebra A over k. 
Then 0 is maximal if and only if R( Vp ) Q9 R 0 is a maximal R( Vp ) -order 
for each prime ideal P of R. 

Proof: Suppose that 0 is maximal and i is the mapping identifying 0 
with its image in R(vp) Q9R 0, via i(x) = 1 Q9 x. Suppose R(vp) Q9R 0 is 
eontained in an R( Vp )-order O. Choose a E R sueh that aO c R( Vp ) Q9 R O. 
Now i-1(aO) = ß will be an ideal of A. Furthermore 0 c Or(ß) and sinee 
o is maximal 0 = Or(ß). This then gives that 

(see Exercise 6.2, No. 4). Thus R(vp) Q9R 0 is maximal. 
If, eonversely, eaeh R(vp) Q9R 0 is maximal and 0 c 0, then clearly 

R(vp) Q9R 0 c R(vp) Q9R O. These must all be equalities by maximality 
and the result follows from Lemma 6.2.2. 0 

As stated at the beginning of this seetion, we wish to obtain loeal-global 
results where the loeal fields are the P-adie fields obtained by completing 
k at the valuations Vp. Thus the above results need to be extended from 
the valuation rings R( vp) to the P-adie integers Rp. Recall the notation 
that kp is the eompletion of k with respeet to the valuation Vp with ring 
of integers R p . 

Lemma 6.2.5 There is a bijection between R(vp)-ideals (resp. orders) in 
a quaternion algebra A over k and the Rp-ideals (resp. orders) in the qua­
ternion algebra kp Q9k A over kp given by the mapping I t-+ Rp Q9R(vp) I, 
which has the inverse J t-+ J n A. 
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Proof: Since R( vp) is a principal ideal domain, I will have a free basis 
{Xl, X2, X3, X4}. Then in kpQ!JkA, (Rp Q9R(vp) 1) nA consists of the Rpnk = 
R(vp) combinations of {XI,X2,X3,X4}. Thus (Rp r?9R(vp) 1) nA = I. 

Now suppose J is an Rp-ideal in kp Q9k A which will have a free basis 
{YI,Y2,Y3,Y4}. Let A have basis {ZI,Z2,Z3,Z4} so that Zi = 'EbijYj and 
B = [bij] is an invertible matrix in M 4(kp). Since k is dense in kp, choose 
Cij E k such that the entries of C = [Cij] are elose to those of B- I . This 
then forces CB to be a unit in the ring M 4(Rp). Now let z~ = 'E CijZj = 

'E cijbjkYk. 
Thus {z~, z~, z~, z~} is a free basis of J and also a basis of A. Thus J n A 

consists of the Rp n k = R( vp) combinations of {zi, z~, z~, z~} and so is an 
R(vp)-ideal in A such that R p Q9R(vp) (JnA) = J. D 

The above lemmas will now be combined to allow direct interpretation 
between Rk-ideals and orders in A and ideals and orders over the P-adics. 
Using this, local-global properties, as applied to ideals and orders, are read­
ily identified. It is convenient to introduce so me notation to express this 
and this notation will be used consistently throughout. 

Definition 6.2.6 Let A be a quaternion algebra over the number field k, 
which has ring of integers R. As in Definition 2.7.1, A p = kp Q9k A. If 0 
is an R-order in A, let 

(6.5) 

so that, as shown above, Op is an order in A p . Likewise, define Ip for an 
ideal I in A. 

Lemma 6.2.7 Let A be a quaternion algebra over a number field k, which 
has ring of integers R. Let I be an R-ideal in A. There is a bijection between 
R-ideals J of A and sequences of ideals {( Lp) : P E [2 f (k), Lp an R p -
ideal in A p such that L p = Ip for almost all P} given by J f---+ (Jp ). 

Proof: If J is an ideal in A, then there exists a, b E k* such that aJ eIe 
bJ. For almost all P, a and bare units in Rp so that Jp = Ip for almost 
all P. 

Now suppose we have a collection of ideals (Lp ) as described in the 
statement of the lemma. Let J (vp) = A n L p , which is an R( Vp )-ideal 
in A by Lemma 6.2.5. Furthermore, J(vp) = IR(vp) for almost all P. 
Then J = nJ( vp) is an R-ideal in A by Lemma 6.2.3 and the mapping 
J f---+ (Jp) is surjective. Now if ideals J and L have the same image, then 
J R( vp) = LR( vp) for all P, so that, by Lemma 6.2.2, J = Land the map 
is injective. 0 

Using Lemma 6.2.4 and the lemma just proved, we obtain the following 
important result (see Exercise 6.2, No. 1): 
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Corollary 6.2.8 Let R be the ring of integers in a number field k and let 
o be an order in the quaternion algebra A over k. Then 0 is a maximal 
order if and only if the orders Op are maximal orders in A p for all prime 
ideals P in R. 

Example 6.2.9 Let A be the quaternion algebra ( -IQ-I) and 0 the order 

Z[l,i,j,ij]. Recall that A splits at Qp for all odd primes p (see Theorem 
2.6.6) so that Ap ~ M 2 (Qp), but A does not split at Q2 (Exercise 2.6, 
No. 3). To investigate Op, recall how these splittings are obtained. If p == 
l(mod 4), then -1 is a square mod p and so, by Hensel's Lemma, is a 
square in Zp. If p == 3(mod 4), then we can solve -1 = xi + yi in Zp by 
Theorem 0.7.12. Then mapping 

(where YI = 0 if p == 1 (mod 4)) provides a splitting of A p . U nder this 
mapping, the element 1 + Xl i - YI ij in Op maps to (g g ). The image of Op 
is then easily seen to be M 2 (Zp) so that Op is maximal for all odd p. The 
order 0, however, is not maximal as it is properly contained in the order 
0' = 0 + oZ where a = (1 + i + j + ij)/2. By the above result, O2 cannot 
be a maximal order in A 2 . Note that by maximality, O~ = Op for all odd 
primes p. We will shortly obtain a much more straightforward method of 
tackling this problem. It will turn out also that 0', in this example, is a 
maximal order. 

Exercise 6.2 

1. Complete the proof of Corollary 6.2.8. 

2. Show that being an Eiehler order is a loeal-global property. 

3. Let A = (3'Q"2) and let 0 = Z[l, i, j, ij]. Prove that Op is maximal for 

all p -=I- 2,3. (See Exereise 2.6, No. 1.) 

4. Let I be an ideal in A. Prove that Oc(Ip ) = Op(I)p and Or(Ip ) = 
Or(I)p for all prime ideals P in R. [Part of this was used in Lemma 
6.2·4.} 

5. Let I be an ideal in A. Prove that I is a two-sided integral ideal in A if 
and only if Ip is a two-sided integral ideal in A p for every P. 

6. Reeall the orders M 2 (R; J) in M 2 (k) defined at (2.5). Prove that these 
are all maximal orders. 
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6.3 Discriminants 

The relative discriminant for an extension of number fields L I k is a use­
ful invariant providing information on that extension, as was seen in the 
introductory chapter. It was defined in terms of algebraic integers in L 
which were linearly independent over k. The discriminant of an order in a 
quaternion algebra is a non-commutative analogue. 

Definition 6.3.1 Let 0 be an R-order in the quaternion algebra A over 
k. The discriminant of 0, d(O), is the ideal in R generated by the set 
{det(tr(xixj)),l:::; i,j:::; 4}, where Xi E O. 

The elements XiX j all lie in 0 and so their traces lie in R. Furthermore, 
since 0 is a complete R-Iattice, there will always be some set of four ele­
ments which are linearly independent over k. Since the trace form is non­
degenerate (see Exercise 2.3, No. 1), this determinant for these elements is 
non-zero, so the discriminant is a non-zero ideal in R. 

Theorem 6.3.2 1f 0 has a free R-basis {Ul, U2, u3, U4}, then d(O) is the 
principal ideal det (tr (Ui U j ) ) R. 

Proof: Clearly det(tr(uiUj))R C d(O). Now let Xl,X2,X3,X4 E 0 so that 

Xi = L:!=1 aikUk, aik ER. Thus 

and the result folIows. 0 

Examples 6.3.3 

1. If 0 = M 2 (R), then d(O) = R. 

2. If 0 and 0' are the orders in A = ( -IQ-l) given in Example 6.2.9, then 

d(O) = 16Z and d(O') = 4Z. 

Let 0 be an order in a quaternion algebra A over the global field k. Then 
it can readily be shown that d(R(vp )0) = d(O)R(vp) for any prime ideal 
P in R (see Exercise 6.3, No. 1). Each evaluation ring R(vp) is a principal 
ideal domain and we can then use Theorem 6.3.2 to compute d(R(vp)O). 
However, by Lemma 6.2.2, 

d(O) = n d(R( Vp )0), (6.6) 
{P prime} 

where the intersection is over all prime ideals. Now if 0 1 and O2 are two 
orders in A with 0 1 c O2, dearly d(02) I d(OI)' Suppose that d(OI) = 
d(02)' Then d(R(vp)OI) = d(R(vp)02) for each P. Let {Ul,U2,U3,U4} 
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be a free R(vp)-basis of R(Vp)Ol and let {V1,V2,V3,V4} be a free R(vp)­
basis of R( Vp )02, SinceR( vp )01 C R( vp )02, the transformation matrix 
T expressing U1, U2, U3, U4 in terms of VI, V2, V3, V4 will have its entries in 
R(vp). Now 

(det T)2det( tr (ViVj)) = det(tr (UiUj)). 

Thus T is an element of GL(4, R(vp)) and R(vp )01 = R(vp )02, By 
Lemma 6.2.2, 0 1 = O2 . Thus we have proved the following: 

TheoreIll 6.3.4 Let A be a quaternion algebra over a field k. Let 0 1 and 
O2 be orders in A with 0 1 c O 2. Then d(02) I d(Od and d(Od = d(02) 
if and only if 0 1 = O2. 

Now the ideal d( 0) is a finitely generated R-module and each generator 
is a finite linear combination of elements of the form det(tr (XiXj)), where 
Xl, X2, X3, X4 E O. Thus there is a finite set :F of 4-tuples such that d(O) = 
ideal generated by det(tr (XiXj)), {X1,X2,X3,X4} E:F. Thus for all but a 
finite number of prime ideals, d(R(vp)O) = R(vp). Let the finite number 
of exceptions be PI, ... , Pr. In these cases, d(R(vp.)O) = p(vpJni • Thus 
(6.6) yields 

r r r r 

d(O) = n p(vp.)ni n R(vp) = Rn n p(vp.)ni = n P;'i = rr P;'i. 
i=1 {P} i=1 i=1 i=1 

(6.7) 

This can now be extended to the P-adic coefficients. For orders over prin­
cipal ideal domains, use can be made of Theorem 6.3.2 to obtain 

d(Rp ®R(v-p) R(vp )0) = Rp ®R(v-p) d(R(vp )0) 

[i.e., d(Op) = d(O)p] (see Exercise 6.3, No. 1). Recall that the unique prime 
ideal P in R p is P Rp. Formula (6.7) can, with slight abuse of notation, be 
expressed as 

d(O) = rr d(Op). (6.8) 
{P prime} 

As shown in the derivation of (6.7), the product on the right-hand side is 
a finite product. 

Exercise 6.3 

1. Let 0 be an order in a quaternion algebra over a number field k. Show 
that d(Op) = d(O)p. 

2. Let k = Q(t), where t satisfies x 3 - 2 = 0, and let L be the Galois 
closure of k. Let 
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Show that A is a quaternion algebra over k, that A ~ (~~,t) and that A is 
ramified precisely at P2 and P3, the unique prime ideals in k lying over 2 
and 3, respectively. Let 

Show that 0 is an order in A. Determine d(O). Show that Op is maximal 
for P i=- P2, P3 (As a consequence of results in the next section, it will 
follow that Op is maximal for all P.) [Hints: See Exercise 0.2, No. 7, 0.3, 
No. 6 and 0.5, No. 5. Show that (1 - t + t 2 )(3 + A)/6 is an algebraic 
integer.] 

3. Let 0 be an Rk-order in a quaternion algebra A over the number field 
k. Let L I k be a finite extension. Show that R L Q9RJ:J is an order in LQ9kA 
and deduce that 

d(RL Q9Rk 0) = RLd(O). 

Show that if RL Q9Rk 0 is a maximal order, then 0 is a maximal order. 

4. By allowing jractional ideals, one can, as in Definition 6.3.1, define the 
discriminant of an ideal I in a quaternion algebra A. Show that if I c J 
are ideals of A, then 

d(I) = (ordJ/ I) 2d(J). 

(See Exercise 6.1, No. 4.) 

6.4 The Local Case - I 

The preceding sections have shown that the consideration of maximal or­
ders over aglobaI field can be reduced to considering their structure over 
P-adic fields. Thus throughout this section, K will denote a P-adic field 
and R the ring of integers in K. Recall from Corollary 2.6.4, that there are 
precisely two quaternion algebras A over K. 

In this section, we deal with the case where A is the unique division 
algebra and recall the notation from §2.6. The field K has a unique un­
ramified quadratic extension F = K( ..jU), where u is a unit in R. Also 
A has a standard basis {l,i,j,ij}, where i 2 = u and j2 = 7r with 7r a 
uniformiser in R. 

If v : K -7 Z is the logarithmic valuation, then w = von as at (2.8) 
defines a valuation on A. The associated valuation ring 

0= {x E A I w(x) ~ O} (6.9) 

is indeed a ring and Q = {x E A I w(x) > O} is a two-sided ideal of O. 
In this case, 0 turns out to be the unique maximal order in A, as will 

now be shown. If xE Ais an integer, then n(x) E R so that w(x) ~ O. Thus 
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o contains all the integers in A. Conversely, if x E 0, then x E 0 and so 
x + x E o. This implies that tr x E R so that x is an integer. Furthermore, 
for any xE A, :3 r ERsuch that rx E 0, so that KO = A. Thus 0 is the 
unique maximal order in A. In the same way, Q is a two-sided integral ideal 
as defined in §6.1 so that Q is an ideal of the ring 0 in the usual sense. 

Let {l,i,j,ij} be the standard basis of Aas just described. If x E 0, 
then w(xj) > 0 by Lemma 2.6.1. Conversely, if y E Q, then W(j-ly) ~ 0 
so that Q = Oj. Note that Q2 = Olr. By a similar argument, Q is a prime 
ideal. 

Note that A = F + Fj and nlF = NFIK. Since F I K is unramified, 1f is 
also a uniformiser for F so that 

RF = {x E F I n(x) ER}. 

Now let a = x + yj E A. Then a E 0 if and only if n(a) E R. Further 
n(a) = n(x) - n(Y)1f. Since n(x) and n(y) are of the form 1f2mZ , where 
z E R*, we have that n(a) E R if and only if n(x), n(y) E R. Thus 0 = 
R F + RF j. From this it follows that d( 0) = <5~IK j4 R = 1f2 R since <5 FIK = R 
as F I K is unramified. 

Theorem 6.4.1 The valuation ring 0 defined at (6.9) is the unique max­
imal order in A and has discriminant d( 0) = 1f2 R = (P R)2 . 

It has been shown here that Q is a two-sided integral ideal in O. Indeed 
if I is any two-sided integral ideal in 0, it is easy to see that I = Ojm 
for some integer m ~ O. Further if I is a normal ideal of A, then I will be 
principal with I = Ojm for some mEZ. 

In this ramified case, the groups associated to the maximal order 0 have 
neat descriptions, which we will utilise below to obtain group-theoretic in­
formation on a Kleinian group from the structure of the related quaternion 
algebra. 

From the definition of 0 at (6.9), it follows immediately that 0 1 = 
Al. Also, since 0 is the unique maximal order, the normaliser N(O) = 
A*. From this we deduce that [N(O) : K*O*] = 2 since w(O*) = 0 and 
w(K*) = 2Z. 

Lemma 6.4.2 There exists a filtration 0/0* : 

where 0* /1 + Q ~ P* and 1 + Qi /1 + Qi+l ~ P+. 

Proof: Here P is the residue dass field RF/1fRF which has order N(p)2. 
Elements of 0 have the form a = x + yj, x, Y E R F , and for a E 0*, xE 
R'F. The first isomorphism is then induced by a 1-+ X. The other isomorph­
isms are induced by 1 + (x + yj)ji 1-+ X. 0 
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Let r be a finite-eovolume Kleinian group, where r c SL(2, C). Then 
k = Q( tr r) is a number field and A = Ao (r) is a quaternion algebra 
over k. 

Theorelll 6.4.3 Suppose that A is ramified at the finite prime P and let p 
be the rational prime whieh P divides, so that N(P) = pt for some t. Then 
r has anormal subgroup D. with finite eyclie quotient of order dividing 
p2t _ 1, whieh is residually p. 

Proof: The group r has a faithful representation in A l and, henee, in Aj,. 
Thus the image lies in Oj, and so we let D. = rn (1 + Q) n Oj,. Then r / D. 
is isomorphie to a subgroup of P*. The groups D.i = rn (1 + Qi) n Oj, 
are normal subgroups of rand the quotients D.d D.i+1 are p-groups. Sinee 
niD.i is trivial, the result follows. 0 

Being a residually finite p-group is quite a strong property. In partieular, 
every non-abelian subgroup of such a group has a 7l.p x Zp quotient. 

Exercise 6.4 

1. Reeall from Exereise 2.6, No. 1 that the quaternion division algebra A 
over the P-adie field K ean be represented as 

A = { ('IT~' :,) I a, b E F, a', b' are the F I K conjugates of a, b } . 

(a) Show that taking a, b E RF gives the unique maximal order 0 in A. 
(b) Show that for r 2': 0 

02r+l = {('ITr~lb' 'IT:,b) I a, bE RF } 

is an order in A. 
(e) Show that an order n in A is isomorphie to 02r+l if and only if n 
eontains a subring isomorphie to R F . 

(d) Prove that [0* : 02r+1] = q2r, where q is the order of the residue class 
field. 

2. Let r c SL(2, C) be a finite-eovolume Kleinian group sueh that r has a 
non-integral traee (i. e., there exists 'Y E r sueh that Vp (tr 'Y) < 0 for some 
prime ideal P). Prove that Ao (r) is unramified at P. 

6.5 The Local Case - II 

We now eonsider the seeond possibility for a quaternion algebra A over the 
P-adic field K [i.e., that A = M 2 (K)]. Thus, as in §2.2, A = End(V) where 
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V is a two-dimensional space over K. Then all maximal orders are of the 
form End(L), where L is a complete R-Iattice in V. 

Lemma 6.5.1 

1. The maximal orders oJEnd(V) are the rings End(L), where L is any 
complete R-lattice in V. 

2. IJ I is an ideal such that Or(I) = End(L) is maximal, then I = 
End(L, M), where M is a complete R-lattice and so Ol(I) = End(M) 
is also maximal. 

Proof: Part 1 is proved in Theorem 2.2.8 and Corollary 2.2.10. So let us 
consider Part 2. Let L have R-basis {eI, e2}. Then identify I with the R­
lattice in V 2 by J(h) = (h(el)' h(e2)) for hEl. Let M = IL. We claim that 
J(I) = M x M. Clearly J (I) c M x M. Conversely, M x M is spanned by 
((h(el), 0), (h(e2), 0), (0, h(el)), (0, h(e2)) : h E I}. Now (h(el), O) = J(hg), 
where g(el) = el,g(e2) = 0, so that 9 E End(L) and hg E I. Likewise, 
(h(e2), 0) = f(hxg), where x(el) = e2, x(e2) = el so that x E End(L). In 
this way, we obtain that J(I) = M x M and M is a complete R-Iattice. 
Also if h E End(L, M) so that (h(el), h(e2)) E M x M, then hEl. Thus 
1= End(L, M). D 

Lemma 6.5.2 Let K be a P-adic field with ring of integers Rand uni­
formiser 7r. Let Land M be complete R-lattices in V such that M c L. 
Then there exists an R-basis {v, w} oJ Land integers a and b such that 
7raV,7rbW is an R-basis of M. 

Proof: Since there is an xE R such that xL c M, for each z E L, let n z be 
such that 7rnz R = {c E R I cz E L}. Over all generators of L (i.e., elements 
v E L such that there is a w in L such that L = Rv + Rw), choose v such 
that nv is minimal. For that v, choose w such that L = Rv+Rw and n w is 
minimal. We claim that M = R7rn"v+R7rnw w. Clearly R7rn"v+R7rnw w C 

M. Let ß E M so that ß = 7rslUIV + 7rs2U2W, where Ul,U2 E R*. Then 
7r-min(sl,S2)ß is a generator of L so that n 7r -min(Bl>B2)ß 2: n v • However, 
n 7r -rnin(sl ,82) ß = min(s!, S2). SO nv ::; SI. Also 7r-S2 (ß - 7rS1 Ul v) is a v­
generator and so S2 2: n w . The result follows. D 

With these results, the following theorem can now be proved: 

Theorem 6.5.3 

1. All maximal orders in M 2(K) are conjugate to the maximal order 
M 2 (R). 

2. The two-sided ideals oJ M 2(R) form a cyclic group generated by the 
prime ideal7rM2(R). 
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3. The integral ideals I such that Or(I) = M 2(R) are the distinct ideals 

where n, m E N and s belangs to a set 0/ coset representatives 0/ 7rm R 
in R. 

Proof: Part 1 is immediate from Lemma 6.5.1. Für Part 2, let I be such 
that Or(I) = Ot(I) = End(L). By Lemma 6.5.1, I = End(L, M) and 
End(L) = End(M). Thus if {eI, e2} is a basis of Land {7rael, 7rbe2} a basis 
of M, we must have a = b. Hence I = End(L,7ra L) = 7r-aEnd(L). 

Part 3: Now I = End(L,M), where M = IL. Since I c End(L), M c L. 
Choose an invertible h such that h: L --+ M whence I = hEnd(L). Then h 
is represented by H E M 2 (R) n GL(2, K). Now H can be replaced by HX 
for any XE GL(2, R) so that we obtain the unique representative given in 
the statement. 0 

Recall the tree used in §5.2.1 to obtain splittings of groups via the action 
of groups on trees. The vertices were equivalence classes of complete R­
lattices L in V, where Land L' were equivalent if there exists x E K* 
such that L' = xL. Thus for any two equivalence classes, we can choose 
representatives Land M with M c L. Then there exists a basis {el, e2} of 
L such that M has basis {7ra el, 7rbe2} with a and b non-negative integers. 
The distance between the equivalence classes is then well-defined as la - bl. 
The edge set in the graph are the pairs of equivalence classes at distance 1. 
As proved by Serre, the graph is then a tree (see Theorem 6.5.4). This will 
be utilised later when we come to discuss Borel's results on the distribution 
of groups in the commensurability class of arithmetic Kleinian and Fuchsian 
groups in Chapter 11. 

The tree can be easily described in terms of maximal orders. For any 
xE K*, End(xL) = End(L) for La complete R-Iattice and so each vertex 
of the tree is represented by a maximal order 0 in M 2 (K). Since each 
maximal order 0' has the form End(L') for some cümplete R-Iattice L', we 
can define the distance d(O, 0') as the distance between Land L' so that 
edges are pairs (0,0'), where d(O, 0') = 1. Note that if (0, 0') belongs to 
an edge set, so does (0',0) and there are initial and end-point mappings 
from the edge set to the vertex set. A path of length n in the graph will be 
a sequence of vertices {0o, 0 1 , ... ,On} such that for each i, (Oi,OHd is 
an edge and there is no backtracking [i.e., no adjacent pairs of edges of the 
form (0,0'), (0',0)]. 

Theorem 6.5.4 Let 0 be a maximal order. The maximal orders at dis­
tance n from 0 are also at distance n /rom 0 in the graph measured by 
path length. In particular, the graph is a tree. 
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FIGURE 6.1. 

Proof: Let 0' be a maximal order such that d(O, 0') = n. By a suitable 
choice of basis, 0 = End(e1R + e2R) and 0' = End(e1R + e27fn R). If we 
set Oi = End(e1R+e27fiR), then {O, 0 1, ... ,On = O'} is a path oflength 
n in the graph. 

Conversely, suppose that {0o, 0 1 , ... ,On} gives a path oflength n in the 
graph. Then we have Oi = End(Li ), where Li is chosen such that Li :J LH1 
so that LH1 :J L i7f. Since the path has no backtracking, Li7f =F LH2 
for each i. (See Figure 6.1.) Since both L H2 and Li7f contain LHl 7f and 
LHd L Hl 7f is a two-dimensional space over K, the residue dass field, it 
follows that Li7f+LH2 = LH1 for all i. Thus, by induction, L i7f+LH j+2 = 
LH1 for 0 :::; j :::; n - i - 2. In particular, L 0 7f does not contain Li for any 
iso that d(OO,Oi) = i for 1:::; i:::; n. D 

If we consider the geometrie tree in which each pair of combinatorial edges 
(0,0'), (0',0) as described above, is drawn as a single edge, then we 
obtain a tree in whieh every vertex has valency q + 1, where q is the order 
of the residue dass field. If a vertex is given by End(L), where L = e1 R + 
e2R, then the adjacent vertiees correspond to End(La ), where La = (eI + 
a:e2)R + e27f R, where a: runs through a set of representatives of 7f R in R 
and End(Loo ) where L oo = el7fR+e2R. 

For 0 a maximal order in M 2(K), the elements of norm 1 form a group 
conjugate to SL(2, R). Let P denote the unique principal ideal of R so that 
R/P is isomorphie to the finite field IF of order N(P). The reduction map 
R -+ IF induces a homomorphism <pp : SL(2, R) -+ SL(2, IF). 

Definition 6.5.5 The kernel of <pp, r(p), is the principal congruence sub­
group of level P. 

Thus these principal congruence subgroups are normal subgroups of finite 
index and, in many cases, are torsion free. This is darified in the following 
result. 

Lemma 6.5.6 

1. The homomorphism <pp is surjective. 

2. If r(p) contains an element of odd prime order p, then p is ramified 
in R (i.e., p = 7fnU for some n ~ 2). 
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3. 1f r(p) contains an element of order 2, then P I 2. 

Proof: (i) Let (~n E SL(2, lF), and choose a, b, c, dER mapping onto 
a, ß, 'Y, 8, respectively. Since ad - bc - 1 E P, at least one of a, b, c, d (j. P. 
There is no loss in assuming that a (j. P. Let f(x) = ax - (be + 1). Then 
in lF[x], J(x) = a(x - a-1(ß'Y + 1)). By Hensel's Lemma, f(x) = g(x)h(x), 
where h(x) = x-e is monie of degree 1. Then f(x) = ax-(bc+1) = a(x-e). 
Thus ae - bc = 1 and <pp is surjective. 
(ii) Let X E r(p) have order p. Then X = 1 + n k M for some k 2: 1 and 
the content of M, the greatest common divisor of the entries, is 1. Then 
XP = 1 = (I + n k M)P yields 

p(p- 1) 
pM + n k M 2 = O(mod n2k ). 

2 

If n I p this yields the contradiction that M = O(mod n). If p = nu, where 
u is a unit in R, the same contradietion is obtained. 
(iii) If X has order 2, then, as above, we obtain 2M = O(mod n k ). 0 

More generally, one can define the principal congruence subgroup of level 
p n , r(pn ), in SL(2, R) as the kernel of the reduction map to the finite ring 
R/nnR. 

Exercise 6.5 

1. Let A = M 2(K), where K is a P-adic fleld. 
(a) Show that On = {( '/r'f. c ~) I a, b, c, dER} is an Eichler order in A. 
(b) Show that any Eichler order in A is conjugate to some On. 
(c) 1f 0 is an Eichler order in A, show that there is a unique pair of 
maximal orders {01 , 02} such that 0 = 0 1 n O2. 
(d) Show that the normaliser N(O) of a maximal order 0 in A equals 
K*O*. 
(e) Show that the normaliser N(On) for n 2: 1 is such that the quotient 
N(On)/K*O~ has order 2. 

2. Let A = M 2(K), where K is a P-adic fleld. Let 1 and J be two-sided 
ideals for a maximal order in A. Show that 

n(I J) = n(I)n(J). (6.10) 

3. Let A = M 2(K), where K is a P-adic fleld. Show that the number of 
integral ideals 1 such that Oe(I) = M 2(R) with n(I) = n d R is 1 + q + q2 + 
... + qd, where q is the order of the residue dass fleld R/nR. 

4. The groups PGL(2, K) and PSL(2, K) act by conjugation on the set of 
maximal orders in M 2(K) and, hence, on the tree of maximal orders. Show 
that PGL(2, K) acts transitivelyon the vertices. Show also that the orbit of 
a maximal order 0 under PSL(2, K) is the set of maximal orders at even 
distance from O. 
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5. (a) Show that the set of alt maximal orders in M 2(K), where K is a 
P-adic field, are given by 

(
7fm 

N(m,n,s) = 0 

where m, n E N and s runs through a set of coset representatives of 7fm R 
in R. 
(b) Prove that N(m,n,s) = N(m',n',s') if and only ifm - n = m' - n' 
and S7f-m - S'7f-m' ER. 
(c) Show that d(N(m, n, s), N(O, 0, 0)) = Im + n - 2gl, where 7fg is the 
greatest common divisor of 7r"m, 7fn, s. 

6.6 Orders in the Global Case 

The results of the preceding sections ean now be combined, using the local­
global principle and the loeal results, to eonsider maximal orders in qua­
ternion algebras over number fields. 

Let A be a quaternion algebra over a number field k. Reeall that the 
(reduced) discriminant .6.(A) , of A, introduced at Definition 2.7.4, is the 
product of the finite primes P at which A is ramified. 

Theorem 6.6.1 Let .6.(A) be the discriminant of a quaternion algebra A 
over a number field k and let 0 be an order in A. Then 0 is a maximal 
order if and only if d(O) = .6.(A) 2 • In particular, alt maximal orders have 
the same discriminant. 

Proof: By Corollary 6.2.9,0 is a maximal order if and only if Op is max­
imal for every prime ideal P. By Theorems 6.4.1 and 6.5.3, the diseriminant 
of a maximal order in A p is either (P Rp)2 or Rp aeeording to whether A p 
is or is not a division algebra. Furthermore, orders with these discriminants 
(P Rp )2 or Rp respectively are necessarily maximal by Theorem 6.3.4. The 
result now follows from (6.8). 0 

Example 6.6.2 Consider again the Example 6.2.8 where A = (-1«:li-1). 
Then Ap splits for all odd primes p but A2 is a division algebra. Thus 
..6.(A) = 2Z. The discriminant of the order 0' = Z[1, i, j, 1/2(1 + i + j + ij)] 
is easily shown via Theorem 6.3.2 to be 4Z. Thus 0' is a maximal order. 

The above theorem is the main result in this section, but the same meth­
ods can be used to prove a number of other results which will be used 
subsequently. 

Lemma 6.6.3 Let I be an ideal in A such that Or(I) = 0 is a maximal 
order. Then 11' = xpOp for some Xp E Ap. 
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Proof: Recall that Op = Or(Ip) (see Exercise 6.2, No. 4) and that each 
Op is maximal. 

If A is ramified at P, then Op is the unique maximal order in A p . In 
the notation of §6.4, let m = min{w(x) I x E Ip}. Then it is easy to obtain 
that Ip = Opjm = jmOp . 

If A splits at P, then Op = End(L) and Ip = End(L, M), as in Lemma 
6.5.1. Then, as in the proof of 3. in Theorem 6.5.3, I p = h(End(L)) = 
(End(M))h for some non-singular h : L - M. D 

Corollary 6.6.4 Let I be an ideal in A. Then Ol(I) is maximal if and 
only if Or(I) is maximal. 

Proof: Prom the lemma, it is immediate that if Or(I) is maximal, then 
Ol(I) is maximal. Now suppose that Ol(I) is maximal. Now I-I is an ideal 
(see Exercise 6.1, No. 1) and Ol(I) c Or(I-l). Thus Or(I-l) is maximal. 
Now the proof of the lemma shows that Li'! = Opxp for some maximal 
order Op in A p , for each P. Thus Ip = xr,lop and Or(Ip) = Op is 
maximal for each P. D 

We have just used the inverse of an ideal as introduced in Exercise 6.1, 
No. 1. The proof of the lemma above shows that 1= Ol(I)PXP for each 
P, so we can deduce the following: 

Corollary 6.6.5 Let I be a normal ideal in A. Then I-I 1= Or(I), II- 1 = 
Ol(I). 

Recall that an Eichler order is the intersection of two maximal orders 
(Definition 6.1.1) and that is a local-global property (see Exercise 6.2, No. 
2). When P E Ramf(A), there is a unique maximal order in A p and when 
P (j. Ramf(A), then A p ~ M 2(kp) and every maximal order is conjugate 
to M 2(Rp). In that case, an EichIer order in A p has level pn if it is the 
intersection of two maximal orders at distance n (see Exercise 6.5, No. 1), 
and so is conjugate to 

Definition 6.6.6 Let 0 be an Eichler order in the quaternion algebra A 
over the number field k. Then the level of 0 is the ideal N of Rk such that 
Np is the level of Op for each prime ideal P. 

Theorem 6.6.7 If 0 is an Eichler order of level N, then its discriminant 
is given by d(O) = N2~(A)2. 

It should be noted that the discriminant does not, in general, characterise 
EichIer orders (see Exercise 6.6, No. 6). 
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In the last section, we briefly discussed principal congruence subgroups 
of the group SL(2, Rp) = o~ for 0 a maximal order in the cases where P 
is unramified in A. Let us now consider principal congruence subgroups at 
the global level. 

Definition 6.6.8 Let 0 be a maximal order in a quaternion algebra A 
over a number field k. Let I be a two-sided integral ideal of A in O. The 
principal congruence subgroup of 0 1 is 

Thus 0 1 (I) is the kernel of the natural map 0 1 ~ (0/ I) *. Since 0/ I is 
a finite ring, the group 0 1 (I) is of finite index in 0 1 . The groups can be 
described locally as 

For all but a finite set S of primes P, Ip = Op. If PES, and P is 
unramified in A, then Ip = 7fnp Op by Theorem 6.5.3. In that case, under 
the embedding 0 1 ~ O~, the image of 0 1 (I) will lie in the principal 
congruence subgroup of level pnp , as described in §6.5. If P is ramified in 
A, then Ip = jnpOp , as described in §6.4. In the particular case where 
np = 1, the corresponding subgroup of O~ under the description of the 
unique maximal order given in Exercise 6.4, No. 1 is the kernel of the 
reduction map O~ ~ (Rp/7fRp )* given by (7r~';') f--+ a+7fRp. 

Theorem 6.6.9 If 0 is a maximal order in a quaternion algebra A over 
a number field k, there are infinitely many principal congruence subgroups 
0 1 (I) which are torsion free. 

The proof of this is left as an exercise (see Exercise 6.6, No. 7). 

Examples 6.6.10 

1. Consider the Bianchi groups PSL(2, Gd) where Gd is the ring of integers 
in Q(H). Since 2cos7f/n E Gd if and only if n = 2,3, these groups 
can only contain elements of order 2 and 3. Thus if J is an ideal of Gd 
such that (J,2) = 1 and, in addition, (J,3) = 1 in those cases where 3 is 
ramified in Q( H) I Q, then the principal congruence subgroup of level 
J is torsion free by Lemma 6.5.6. In the notation at Definition 6.6.8, this 
is the group 01(I), where 0 = M 2 (Gd) and I = JM2 (Gd). 

2. Let k denote the cyclotomic field Q((), where ( = e27ri/p with p prime, 
and let A = M 2 (k). Then a = (~(~1) has order p and lies in the 
principal congruence subgroup of level P =< (- 1 >. 
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Exercise 6.6 

1. Let A = (-tr). Obtain a Z-basis for a maximal order in A. 

2. Show that the order 0 described in Exercise 6.3, No. 2 is maximal. 

3. Show that being a principal ideal in a quaternion algebra over a number 
field is not a local-global property. 

4. Let I be a normal ideal in A. Prove that (I-I )-1 = I. 

5. Let land J be ideals in A such that Oc(I) is maximal and Or(I) 
Oe ( J). Prove that 

n(I J) = n(I)n(J). (6.11) 

6. Let P be a prime ideal in R k such that P is relatively prime to ~ (A) . 
Show the following: 
(a) For every integer n 2:: 2, there are orders in A whose discriminant is 
~(A)2p2n but they are not Eichler orders. 
(b) Every order of A with discriminant ~(A)2p2 is an Eichler order. 

7. Complete the proof of Theorem 6.6.9. 

6.7 The Type Number of a Quaternion Algebra 

We have already seen that when R is a principal ideal domain, then all 
maximal orders in the quaternion algebra M 2 (k) are conjugate to M 2 (R). 
This does not hold in general and in this section, we determine the number 
of conjugacy classes of maximal orders, which is finite. The number is 
measured by the order of a quotient group of a certain ray class group over 
the number field k. The proof could be couched in terms of a suitable adele 
ring. We have chosen not to do this, but these adele rings will be discussed 
and used in the next chapter. Our proof, however, will require results to 
be proved in the next chapter, namely the Norm Theorem and the Strong 
Approximation Theorem. 

Definition 6.7.1 

• The type number of a quaternion algebra A is the number of conjugacy 
classes of maximal orders in A . 

• If land J are two ideals in A, then I is equivalent to J if there exists 
tE A* such that J = It. 

We first establish some notation. Let 0 be a maximal order. The set of 
ideals I such that Oc(I) = 0 (respectively Or(I) = 0) will be denoted 
.c( 0) (respectively R( 0)). Likewise, the set of two sided ideals will be 
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denoted by 'cR( V). Note that if land J are ideals, then so is I J. In 
particular, by Corollary 6.6.5, 'cR( V) forms a group under this operation. 

If we denote the set of equivalence dasses of ideals in 'c(V) by 'c(V)/ rv, 

then the action of 'cR( V) on ,c( V) by I I-t X I for I E ,c( V) and X E 
'cR( V) preserves these equivalence dasses. 

Lemma 6.7.2 If C denotes the set of conjugacy classes of maximal orders 
in A, there is a bijection from C to 'cR(V)\('c(V)/ rv, where V is a fixed 
maximal order. 

Proof: Denote equivalence dasses of ideals by square brackets and con­
jugacy dasses of orders also by square brackets. If I E ,c( V), let V' = V r (I), 
which is maximal. Define () : 'c(V)/ rv-t C by ()([I]) = [V']. Note that 
Vr(It) = t-1V't, so that () is well-defined. Furthermore, any pair V, V' of 
maximal orders are linked (see Exercise 6.1, No. 2) [Le., there exists an 
ideal I such that Vt(I) = V, Vr(I) = V' (e.g., VV' will do)]. Thus () is 
onto. 

Now suppose ()([I]) = ()([I']) so that there exists t E A* such that 
tVr(I)t-1 = Vr(I'). Thus Vr(It- 1) = Vr(I'). Let J = Jt-1 I'-l so that 
JE 'cR(V). Now JI' = Jt-1Vr(I') = Jt-1 by Corollary 6.6.5.0 

By taking norms ofideals (see Definition 6.1.3), we relate these dasses to 
ideal dass groups of the associated number field. Thus for an ideal I of A, 
n(I) is the fractional ideal of k generated by the elements n(x),x E I. Let 
Ramoo be the set of real places of k at which A is ramified. Thus Ramoo is 
a formal product of places in k and the corresponding ray dass group can 
be defined (see §0.6). Thus in this case, let 

k':x, = {x E k I O"(x) > 0 for all 0" E Ramoo }. 

For two fractional ideals Jt and J2 of k, define Jt rvoo h if there exists 
xE k':x, such that J1 = J2x. The group of equivalence dasses of fractional 
ideals so obtained is I k / Pk,oo, where Pk,oo is the subgroup of h generated 
by principal ideals with a generator xE k':x,. 

Notation This is referred to as the restricted class group of k. Note that 
the restriction depends on the quaternion algebra A. 

In the notation used in Definition 0.6.10, this is the ray dass group 
I k (M) / Pk (M), where M = Ramoo . We denote the order of the restricted 
dass group by hoo , noting from (0.26) that it is finite. 

We turn to the computation of the type number of A via the bijection of 
Lemma 6.7.2. Now the norm mapping induces a mapping n from 'c(V)/ rv 

to I k / Pk,oo by n([I]) = [n(I)]. Note that n(It) = n(I)n(t) for t E A*. If 
0" E Ramoo , then there exists Tu : A -t Ti, Hamilton's quaternions such 
that O"(n(t)) = n(Tu(t)). Thus O"(n(t)) > 0 and fi is well-defined. 
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To show that n is one-to-one, we need to assurne a further eondition on 
the quaternion algebra. This is the eondition given in the statement of the 
following lemma. It is known as Eichler's condition (see Definition 7.7.6) 
and it enables us to apply a result which will be proved in the next ehapter, 
using the Norm Theorem and the Strong Approximation Theorem. 

Lemma 6.7.3 Let A be a quaternion algebra over a number field k such 
that there is at least one infinite place of k at which A is unramified. Then 

n: C(O)I '" -+ hl Pk,oo 

is injective. 

Proof: Let h, h E C(O) be such that n(h) = n(h)x for some x E k~. 
Then 1:;1 h is a normal ideal and n(I:;1 h) = n(I2)-ln (It) = RkX (see 
Corollary 6.6.5 and Exercise 6.6, No. 5). By Theorem 7.7.7, 1:;111 = O'a 
where a E A* and 0' = Or(I2). Henee Oh = hO'a, so that h = ha. 0 

To show that n is onto, we first prove the following loeal result, whieh will 
be used again in the proof of the Norm Theorem in the next chapter. 

Lemma 6.7.4 If A is a quaternion algebra over a P-adic field K, then 
n : A * -+ K* is surjective. 

Proof: The result is clear if A = M 2 (K). Thus assurne that A ~ CF)' 
where F = K( vu) is the unramified quadratic extension of K (see Theorem 
2.6.3). Now nlF = NFIK and K* IN(F*) has order 2 generated by 7r. Prom 
Theorem 0.7.13, -1 E N(F*), so that 7r E n(A*) since n(j) = -7r. 0 

Now let J be a fractional ideal of k. Then Jp = Rp for almost all P 
and for a finite number of P, Jp = Rpap for some ap E kp. For each of 
these P choose tp E Ap, such that n(tp) = ap and n(tpOp) = Rpap. 
Thus for each of this finite number of primes, we have chosen an ideal Ip 
such that n(Ip) = Jp . For all the other primes, choose Ip = Op. Then the 
ideal 0 is such that Op = I p for almost all P and, hence, there exists an 
ideal I' in A such that Ifp = Ip for all P by Lemma 6.2.7. Furthermore, by 
construction, n(I') = J. 

We conclude that n is a bijection. It follows that C( 0) 1 '" is a finite 
set, and the number of elements in it is hoo , whieh is independent of the 
choice of maximal order. By Lemma 6.7.2 and the above results, C is a finite 
set and we can calculate its order from that of C( 0) 1 '" for any maximal 
order O. 

Now C is obtained from C( 0) as the set of classes under the action of 
the group CR(O) on C(O)I '" via 

X.[I) = [XI). 

Note that n(XI) = n(X)n(I) (see (6.11)). 
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Lemma 6.7.5 Let V denote the subgroup of Ik generated by all ideals in 
Ramf(A) and I~ the subgroup generated by the squares of all ideals in Ik . 
Then 

n: CR(O) ~ VI~ 

is an isomorphism. 

Proof: If X is a two-sided ideal of 0, then X p is a two-sided ideal of 
Op. If Pis ramified in A, then in the standard representation of A p given 
in §6.4, X p = Opjm and n(Xp ) = 7rm R p . If P is unramified in A, then 
Xp = Opap for some ap E kp. Thus n(Xp) = a},Rp and the image 
of CR(O) lies in VIr Conversely, just as above, for each fractional ideal 
J E V I~, we can construct a two-sided 0-ideal by local assignment (see 
Exercise 6.2, No. 5) such that its norm is J and it is uniquely determined 
(see Exercise 6.7 No. 2). 0 

Thus n induces a bijection 

(6.12) 

Thus from Lemma 6.7.2, we obtain the main result on type numbers: 

Theorem 6.7.6 Let A be a quaternion algebra over a number field k such 
that there is at least one infinite place of k at which A is unramified. Then 
the type number of A is the order of the quotient group of the restricted 
class group of k by the image of the subgroup generated by the prime ideals 
of k that are ramified in A and the squares of all prime ideals of k. 

Corollary 6.7.7 The type number is apower of 2. 

Proof: This is immediate from (6.12), as it is the order of a finite factor 
group of the abelian group h/ I~ of exponent 2. 0 

Corollary 6.7.8 Let 0 be afixed maximal order in A, where Ais as given 
in Theorem. 6.7.6. Then every conjugacy class of maximal orders has a 
representative order 0' such that there is a finite set 8 of prim es, disjoint 
from those in Ramf(A), such that Op = O~ for P (j. 8 and d(Op, O~) = 1 
forP E 8. 

Proof: Let I be an O-ideal such that Ot(I) = 0 and I represents the 
conjugacy dass of 0' = Or(I), as in Lemma 6.7.2. Now for all but a 
finite set 8' of primes, Op = O~. Since 0' is maximal, this finite set 
8' of exceptions is disjoint from Ramf(A). For P E 8', Ip = Opxp far 
some Xp E Ap by Lemma 6.6.3, so that O~ = xi/Opxp. Note that 
d(Op,O~) == Ivp(n(Ip))l(mod 2), where Vp is the normalised valuation. 
Let 8 C 8' consist of those P such that d( Op, O~) is odd. For each P E 8, 
choose yp E Ai> so that Jp = Opyp and d(Op,y:plOpyp) = 1. Then, by 
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Lemmas 6.2.3. and 6.2.5, there is an ideal J in A which locally at PES 
agrees with Jp and for P rI- S agrees with Op. Thus OE(J) = 0 and 
the image of J in h/ Pk,ooVI~ coincides with the image of I. Thus by the 
bijection at (6.12), Or(J) is a conjugate of 0'. 0 

Recall that the type number is a divisor of h oo , which is the order of the 
restricted dass group h/ Pk,oo, and 

h 2 I Ramoo I 

hoo = [R;;' : R;;' n k~l (6.13) 

where h is the dass number of k (see Theorem 0.6.12). It thus depends 
critically on the signs of the generators of R;;' at the real embeddings. 

We now discuss some examples which will be relevant in later consider­
ations. 

Examples 6.7.9 

1. In the cases where A = M 2 (k), where k is a number field, then the type 

number of A is the order of the quotient group Ck/Ck2), where Ck2) is 
the subgroup generated by the squares of elements in Ck , the dass group 
of k. In particular, taking k = Q( H), for d = 1,2,3,7,11, the type 
number is 1, but for d = 5,6,15, the type number is 2. (See calculations 
in §0.5.) 

2. For any quaternion algebra A over k = Q( H), then hoo = h, so that 
the type number will then depend on the choice of primes which are 
ramified in A. For example, if d = 5 and A is ramified at the two primes 
over 3, then the type number will be 1, whereas if Ais ramified at the 
two primes over 29, the type number will be 2. 

3. Let k be a cubic field with one complex place and A be ramified at the 
real place. Now R;;' 9:! z EB Z2 is generated by u and -1. If adenotes 
the real embedding, then one of a(u) and -a(u) is positive so that 
[R;;' : R;;' n k~l = 2. Thus hoo = h. Thus if k has odd dass number, then 
A has type number 1. 

4. From the above examples, we note that for k non-real, the structure 
of the unit group R;;' only begins to affect the type number for fields 
of degree at least 4 over Q. For example, consider k = Q(a), where 
a = v'(3 - v'2I)/2. Then k has signature (2,1), discriminant -1323 and 
an integral basis {1,u,u2 ,u3 }, where u = (a2 +a -1)/2 (see Exercise 
6.7, No. 5). Minkowski's bound shows that every ideal dass contains an 
ideal of norm at most 4 and by Kummer's Theorem and the fact that 
N(a) = -3, we deduce that the dass number of k is 1. The group of 
units R;;' 9:! Z EB Z EB Z2 and u, u + 1 can be taken to be a system of 
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fundamental units, for example, by a computation using Pari. It follows 
that h CXJ = 2 Thus if a quaternion algebra A over k is only ramified at 
the real places, then its type number is 2. 

5. We now consider in detail an example over a totally real field of degree 3. 
Let T = 2 cos 21f /7 and k = Ql( T). Thus k is a totally real field of degree 
3 over Ql, and has discriminant 49. Let A = (-1;,7). We will show that 
the type number of A is 1. 

Since Minkowski's bound (see §0.5) is less than 1, the class number h of k 
is 1. It is clear by Theorem 2.5.1 that A is ramified at the two real places 
corresponding to the roots 2 cos 41f /7 and 2 cos 61f /7. Also T satisfies the 
cubic polynomial x 3 + x 2 - 2x - 1 = o. Thus T is a unit and so for any 
non-dyadic prime P such that -13 is a unit in Rp, Ap splits (Corollary 
0.9.6 and Theorem 2.3.1). Now modulo 13, the minimum polynomial 
of T factorises completely as (x + 3)(x + 5)(x + 6). Thus by Kummer's 
Theorem, there are three prime ideals PI, P 2 and P3 in R k of norm 
13. Thus A splits at Pi if and only if Ty2 == z2(mod Pi) has a solution 
(see Theorem 0.9.5). Now, again, by Kummer's Theorem, T + 3 E PI so 
that the congruence has a solution mod PI if and only if -3 is a square 
mod 13. Thus A splits at PI and in the same way, A is ramified at P2 
and P3. Notice that the minimum polynomial of T is irreducible mod 
2, so that there is only one dyadic prime in k. Thus by Theorem 2.7.3, 
~(A) = P2P3 and I Ramoo I = 2. 

By Dirichlet's Unit Theorem, Rk = Z EB ZEB < -1 >, so that [Rk : 
Rk n k~l cannot be greater than 4. Note that T and T + 1 are units. It 
is easy to check that -1, T + 1, - (T + 1) f/. k~ so that the index of the 
subgroup Rk n k~ must be 4. Thus hoo = 1 from (6.13) and so the type 
number which divides hoo must be 1 also. 

Exercise 6.7 

1. Show that if 0 is a maximal order in A over the P -adic field K, then 
n(O*) = R*. 

2. Complete the proof of Lemma 6.7.5 by showing that n is injective. 

3. Let A = (-IQ(~)y'3). Find the type number of A. 

4· Let 0 be a maximal order in a quaternion algebra A. A two-sided integral 
ideal P of a maximal order 0 is called prime if whenever I J c P for I 
and J two-sided integral ideals of 0, then either I C P 01' J c P. Prove 
that P is prime if and only if it is maximal in the set of two-sided integral 
ideals of o. Deduce that CR( 0) is a free abelian group, free on the prime 
ideals. Describe the prime ideals in the cases where K is a P-adic field. 

5. From the definition of k = Ql(o:) where 0: = v!(3 - V21)/2 given in 
Example 6.7.9, No. 4, show that k has the properties stated (i.e., signature 
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(2, 1), diseriminant -1323 and integral basis {I, u, u2 , u 3 } where u = (0:2 + 
0: - 1)/2}. 

6. Let t be a eomplex raot 0/ x 3 - x 2 + X + 4 = O. 
(a) Show that {I, t, t 2 } is an integral basis and that t1k = -49l. 
(b) Prove that h = 2. 
(e) Determine the type number 0/ the quaternion algebra over k whieh is 
ramijied at the real plaee and at the unique plaee over 3. 

7. The type number determination ean alternatively be earried out as /ol­
lows: Let ° be a jixed maximal order. For any other maximal order 0', 
form the order idealI(O, 0') %/ono' (see Exereise 6.1, No. 4). Then 
assign to the eonjugaey class 0/ the maximal order 0', the ideal class 0/ 
I(O,O') in the group h/ Pk, 00 1JI't- Use a loeal-global argument to show 
that the image 0/ [0'] eoineides with the image 0/ n(I), with I the linking 
ideal 0/ ° and 0' as deseribed in Lemma 6.7.2. 

6.8 Further Reading 

The general theory of ideals in central simple algebras over an algebraie 
number field is the subjeet of the book by Reiner (1975) entitled Maximal 
Orders. Virtually all the results in this ehapter are to be found in Reiner 
(1975) as special eases and although he is obviously dealing with a more 
general situation than the four-dimensional one, eonsiderable parts of the 
methodology used in this chapter have their counterpart in this book. This 
applies in partieular to the loealisation methods, loeal results, the diseus­
sion of diseriminants and loeal-global teehniques. Mueh of this ean also be 
found in Deuring (1935), and various parts in Weil (1967), Pieree (1982) 
and 0 'Meara (1963). 

For ideals and orders in the partieular ease of quaternion algebras, the 
theory has been thoroughly developed in Viglll3ras (1980a). Mueh of it 
is given a strong adelie flavour there and that will emerge again in the 
next ehapter. In the main, in this ehapter and subsequently, we consider 
maximal orders only, whereas in Vigneras (1980a), many results are set 
in the more general eontext of Eiehier orders. See also Eichler (1937) and 
Eiehier (1938b). For results over loeal fields, see Serre (1962). The tree of 
maximal orders is fully explored in Serre (1980). 

The diseussion of the norms of ideals in Reiner (1975) proceeds via the 
Invariant Faetor Theorem, whieh is mentioned in Exercise 6.1, No. 4. A 
proof of this theorem ean be found in Curtis and Reiner (1966). We also 
note here differences in the definition of the discriminant of an order. The 
definition given in this ehapter eoincides with that given in Reiner (1975), 
whieh turns out to be the square of that given in Vigneras (1980a). The 
filtration and its applieation to Kleinian groups diseussed in §6.4 is due 
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to Neumann and Reid (1992a). Normalisers of maximal and Eichler or­
ders, which are touched upon in this chapter, will have a significant role 
subsequently in Chapter 11 which follows the methods in Borel (1981) in 
discussing maximal arithmetic Kleinian and Fuchsian groups. Type num­
bers for Eichler orders as well as maximal orders are obtained in Vigneras 
(1980a). 

Principal congruence subgroups playa crucial role in the study of Bianchi 
groups and their related automorphic functions and forms (see Elstrodt 
et al. (1998)). In the context of arithmetic Fuchsian and Kleinian groups, 
they are discussed in Vigneras (1980a). The results on torsion in these 
subgroups, as described in Lemma 6.5.6, hold more generally in n x n 
matrix groups and stern from results of Minkowski over Z. See Newman 
(1972) and the discussion in Vinberg (1993b). 
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One of the main aims of this chapter is to complete the classification the­
orem for quaternion algebras over a number field by establishing the ex­
istence part of that theorem. This theorem, together with other results in 
this chapter, make use of the rings of adeles and groups of ideles associ­
ated to number fields and quaternion algebras. These rings and groups and 
their component parts are locally compact groups so that some aspects 
of their Haar measures, duality and abstract harmonie analysis go into 
this study. The results on adeles and ideles which are discussed here are 
aimed towards their application, in the next chapter, of producing discrete 
arithmetic subgroups of finite covolume. They will also enable us to make 
volume calculations on arithmetic Kleinian and Fuchsian groups in sub­
sequent chapters. For these purposes and other applications subsequently, 
there are two crucial results here. One is the Strong Approximation The­
orem, which is proved in the last section of this chapter. The other, which 
is central in subsequent results giving the covolume of arithmetic Fuchsian 
and Kleinian groups in terms of the arithmetic data, is that the Tamagawa 
number is 1. The Tamagawa number is the volume of a certain quotient 
of an idele group measured with respect to its Tamagawa measure. The 
Tamagawa measures can be invariantly defined on the local components of 
the rings of adeles and groups of ideles and these are fully discussed here. 
The relevant quotients are shown to be compact and so will have finite 
volume. The proof that the Tamagawa volume, which is, by definition, the 
Tamagawa number, is precisely 1, is not included. 
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7.1 Ad~ües and Ideles 

We recall the notation of §0.8 where these were first introduced. Thus 
0(= O(k)) denotes the set of all places on the number field k, 0 00 the set 
of infinite places and 0 f the set of finite places. The groups of adeles and 
ideles we consider are restricted products over O. Thus for each v E 0, there 
is a locally compact group Gv and for all v not belonging to a finite set, 
which always contains 0 00 , there is adesignated compact open subgroup 
Cv of Gv . Then the adele group 

GA = {x = (xv) E II Gv I Xv E Cv for almost all v} 
and it is topologised by taking, as a fundamental system of neighbourhoods 
of the identity, the restricted product TI Uv , where Uv is a neighbourhood 
of the identity in Gv and Uv = Cv for almost all v. 

Let k be a number field with ring of integers R. Then for each v, kv is 
a locally compact field and for each finite v = P, Rv is an open compact 
subring. (See Theorem 0.8.1.) 

Examples 7.1.1 

1. Take Gv = kv for all v, regarded as an additive abelian group and 
Cv = R v for each v ~ 0 00 • Then we denote the associated ring of adeles 
by kA. (See §0.8.) 

2. Take Gv = k~ for all v and Cv = R~ for each v ~ 0 00 • Then, as we noted 
in Corollary 0.8.2, R~ is an open compact subgroup and we can form the 
group of ideles k.:A. As noted earlier, the topology on k.:A is the induced 
topology obtained by embedding k.:A in kA x kA via x 1---+ (x, X-I). (See 
Exercise 0.8, No. 4.) 

Now let us take A to be a quaternion algebra over k and 0 an order in 
A. As in Definitions 2.7.1 and 6.2.6, let Av = A Q9k kv and, for v ~ 0 00 , 

Ov = o Q9R R v. 

3. Take Gv = Av for all v with its additive structure, and Cv = Ov to form 
the adele ring AA (see Exercise 2.6, No. 2). We have assumed here that 
o is an R-order, but choosing S :J 0 00 , the S-arithmetic ring 

Rs = {x E k I x is integral at all v ~ S} 

is a Dedekind domain with field of fractions k. Taking 0 to be an Rs­
order in A, a ring of adeles can again be defined. 

4. Take Gv = A~ and for v ~ 0 00 , Cv = O~. Then Gv is locally compact 
and for v ~ 0 00 , O~ is a compact open subgroup (see Exercise 7.1, No. 
1). This yields the idele group A.:A. 
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5. Take Gv = A;, the elements of norm 1 in A v and for v (j. !1oo , Cv = 0;, 
thus obtaining A~. 

All these examples can be considered as special cases of the general situ­
ation where G is an algebraic group defined over k. Then, in essence, Gv 

are the points of G with values in kv and Cv are those with values in Rv 
for v (j. !1oo . 

There are obvious morphisms between adele and idele groups defined 
over the set of places !1 of a number field. These will be defined by local 
homomorphisms fv : Gv -+ G~ such that, for all but a finite number of 
places which includes !1oo , fv(Cv ) C C~. Thus for example, the reduced 
trace will define a morphism tA : AA -+ kA, as will the reduced norm 
nA : AA -+ kA by Lemma 2.2.4. 

The first example, kA above, can be extended to a finite-dimensional 
vector space E over k. Thus let E = {eI, e2, ... ,en } be a finite set of 
elements of E which contains a basis of E over k. For each v E !1, let 
Ev = E ®k kv and for v (j. !1oo , let Ev denote the Rv-submodule of E v 
spanned by E. We can thus form EA, which will be a module over kA. Notice 
that if we choose a different set E', then for all but a finite number of v, 
Ev = E~ (see Exercise 7.1, No. 3), so that, topologically, EA is independent 
of the choice of elements in E. In particular, if E is a basis of E over k, 
then EA ~ kA, where m = dimk E. This also occurs in the example of AA 
above, which will be independent of the choice of order 0 in A. 

Now suppose that L is a finite field extension of the number field k. Thus 
the adele ring LA can be formed as in Examples 7.1.1, No.1. However, L is 
also a finite-dimensional vector space over k so that, as above, the additive 
adele group, which we denote by (L I k)A, can also be constructed with 
respect to any set of elements E of L containing a basis of Lover k. Thus 

LA = {x = (xw) E II Lw I W E !1(L), X W E (RL)w for almost all W } , 

(L I k)A = {Y = (Yv) E II(L I k)v I v E !1(k),yv E Ev for almost all v}. 
Theorem 7.1.2 The additive adele groups as deseribed above are topolo­
gieally isomorphie. 

Proof: Note that (L I k)v = L ®k kv ~ TI Lw, where this is the finite 
product over the places W of L such that w I v (see §O.8). Denote this 
isomorphism by <P v . Now choose E c L such that RL is the Rk-span of E. 
Then <Pv maps Ev onto the product TIw1v(RL)w and <P : (L I k)A -+ LA 
defined locally by <P v gives the required isomorphism. 0 

This result enables results on adeles over number fields to be deduced from 
results on adeles over Q. Note also that traces and norms can be used to 
define maps from LA to kA and LA to kA , respectively (see Exercise 7.1, 
No. 4). 
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Theorem 7.1.3 Let k be a number field and E a vector space 01 finite 
dimension over k. Then E is discrete in EA and EA/ E is compact. 

Proof: If [E : k) = n, then it suffices to prove the result for E = k since 
EA ~ kl· However, by Theorem 7.1.2, we need only show that Q is discrete 
in QA and that QA/Q is compact. 

Let Q(p) = {a/pm E Q I m :2: 0, a E Z} so that Qp = Q(p) + Zp and 
Q(p) n Zp = Z. Consider the open subring A CXl = lR x TIp Zp of QA. Clearly 
QnACXl = Z. We now show that QA = Q+ A CXl • Suppose that x = (xv) E QA 
and let S be a finite subset of nf such that x p E Zp for p f/. S. For PES, 
let xp = x~ +';P with ';p E Q(p) and x~ E Zp, For pE nf \ S, xp = x~ E Zp 
and in these cases, let ';p = O. Let.; = L:.;P E Q and y = x - .;. Thus 
y = (Yv) and for each prime p, 

YP = xp - ';p - L ';p' = x~ - L ';p' E Zp. 
p'i'P p'i'P 

Thus y E A CXl and xE Q + ACXl • 

Now let 1= [-1/2,1/2) C lR and C = I x TIp Zp, Note that CnQ = {O}, 
A CXl = C + Z so that QA = Q + C. Thus the result follows since C contains 
an open neighbourhod of zero and C is compact. D 

In this theorem, where E is discrete in EA, this is, of course, the image 
of E in the adele group EA. To emphasise this, we frequently adopt the 
following: 

Notation In the situation described in this theorem, let Ek denote the 
image of Ein EA. 

We should remark, however, that we usually avoid the peculiar notation 
kk, and simply denote the image of kin kA by k. 

Exercise 7.1 

1. Let A be a quaternion algebra over k and let 0 be an order in A. Let P 
be a prime ideal 01 Rk. Show that 0:;' is a compact open subgroup 01 A:;'. 
(See Exercise 2.6, No. 2.) 

2. Show that the topology on A A is that induced by embedding A A in 
AA x AA via x 1-+ (x, x-I). 

3. Show that il E and E' are as described in this section, then lor alt but a 
finite number 01 v E n f, Ev = E~. 

4. Let k be a number field and let L be a finite field extension 01 k. Let 
K be a field containing k and let .c = L Q9k K. Show that the norm N Llk 
admits an extension to N : .c ~ K. Hence show that NLlk extends to a 
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norm N : LA ----t kA so that, if x = (xw ) E LA, then N(x) = y, where 
y = (Yv) E kA with Yv = TIwlv NLwlkJxw ). 

Formulate and prove a similar result for the trace. 

7.2 Duality 

Sinee all the groups oeeuring in the adeles and ideles we have deseribed are 
loeally eompaet and many of them are abelian, the basic ideas of duality, 
Haar measures and harmonie analysis ean be applied to them. 

Let H be a loeally eompact abelian group. Then the dual group iI is the 
group of all eharaeters on H; that is, eontinuous homomorphisms X : H ----t 

T, the multiplieative group of complex numbers of modulus 1. Pointwise 
multiplieation is the operation on iI and it is endowed with the topology of 
uniform eonvergenee on eompaet sets. In the sequel, we will make regular 
use of the following basie results. 

Theorem 7.2.1 

1. The dual group iI is also loeally compaet abelian. 

2. The dual of iI is topologieally isomorphie to H. 

3. The group H is compaet if and only if the group iI is discrete. 

In addition, we will make use of the following results on duality for sub­
groups of the loeally eompaet abelian group H. 

Let K be a closed subgroup of H. The annihilator K* of K is defined to 
be 

K* = {X E iI I X is trivial on K}. 

-----Note that K* ~ H / K, so that K* is diserete if and only if H / K is eompact. 
Furthermore, regarding H as identified with the dual of iI, then K is the 
group (K*)*. Thus K is isomorphie to the dual of iI / K* and K is diserete 
if and only if iI / K* is eompaet. 

Example 7.2.2 For a P-adie field K, R, the ring of P-adie integers, is 
open and henee closed. Furthermore K / R is diserete so that R*, in the 
above notation, is eompaet. 

We are going to make use of these notions, first in additive groups of 
loeal fields, quaternion algebras over loeal fields and the assoeiated adele 
rings. If H denotes any one of these and X E iI, then for anya E H, we 
define Xa E iI by 

Xa(x) = x(ax), xE H. (7.1) 
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It turns out that, in the cases described above, there is a non-trivial char­
acter 'l/J such that all characters X are of the form 'l/Ja for some a E H. The 
proof of this and some of its consequences will occupy the remainder of this 
section. In later sections, it will be seen that this leads to a self-duality of 
Haar measures. 

First let us consider local fields and quaternion algebras over local fields, 
all denoted by H. Recall that all of the local fields we consider are finite 
extensions of IR or Qp, for some prime p. A specific character will now 
be chosen for each local field and referred to subsequently as a canonical 
character. 

• Let H = IR and define 'l/Joo(x) = e-27rix • 

• Let H = Qp and define 'l/Jp(x) = e27ri<x>, where (x) is the unique 
rational in the interval (0,1] ofthe form a/pm such that x- (x) E Zp. 

• If H = K is a field which is a finite extension of Qp or IR, let TH = 
TK : K -+ Qp or IR denote the trace of the field extension. If H 
is a quaternion algebra over K, then TH : H -+ Qp or IR is the 
composition of the reduced trace with TK. The canonical character 
'l/JH is then defined to be 'l/JH = 'l/Jp 0 TH or 'l/Joo 0 TH according to 
whether H contains Qp or IR. 

Theorem 7.2.3 Let H be a finite extension of Qp or IR or a quaternion 
algebra over such a finite extension. Then a f-t 'l/Ja, where 'l/J is the canon­
ical character, defines a topological isomorphism H -+ iI. Furlhermore, 
'l/JH(Rp) = 1 if H = Kp and 'l/JH(Op) = 1 if H = A p . 

Proof: We give the proof in the P-adic case only, the real case being 
similar. Note that 'l/Jp(Zp) = 1. Also, using a Zp-basis of Rp or Op, the 
trace mapping restricted to Rp or Op has its image in Zp and the last part 
follows. 

We first prove the result in the case of Qp; so, suppose XE Qp and X(I) = 
e27rih where we assume h E (0,1]. Now X(pn) = X(I)pn = e27rihpn. Since 
{pn} is a Cauchy sequence converging to 0, hpn must eventually be integral. 
Thus h = a/pm and 'l/Jp(h) = X(I). Then X(q) = 'l/Jp(hq) for all rationals q 
and since Q is dense in Qp, X(x) = 'l/Jp(hx) for all x E Qp. It follows that 
für'l/J = 'l/Jp, the mapping a f-t 'l/Ja is an isomorphism. Now Ker 'l/J = Zp, so 
that the restrietion to Zp -+ Zp* between compact subgroups is necessarily 
a topolügical isomorphism. The result now follows for Qp. 

Now consider the general case with {el, e2, ... ,en} a basis of H over Qp. 
For X E iI,x(Exiei) = TIX(Xiei). Then Xi defined by Xi(X) = X(xei) are 
characters on Qp. Thus Xi = 'l/Jhi for'l/J = 'l/Jp and some hi E Qp. Define 
ai E Qp by [ai] = T- 1 [hi], where T = [TH(eiej)]. Finally, let a = Eaiei. 
Then X = 'l/Ja where 'l/J = 'l/JH and, again, a f-t 'l/Ja defines a topological 
isomorphism. 0 
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We now want to show a similar property for the adele rings of number 
fields and quaternion algebras over number fields, using a character which is 
a product of local canonical characters. Suppose more generally that GA is 
an adele or idele group as described in this chapter and XA is any character 
on GA. Then by restrietion, this defines characters Xv on the groups G v so 
that for x = (Xv), 

v 

For X to be a character on an infinite product of compact sets, it is necessary 
and sufficient that X is trivial on almost all of them. Thus the group of 
characters on GA is isomorphie to the group (Xv), where Xv is a character 
on Gv such that Xv (Cv ) = 1 for almost all v. 

Notation Results and proofs in this chapter frequently consider a number 
field and a quaternion algebra over a number field together. We use X to 
denote either a number field k or a quaternion algebra A over a number 
field k. The corresponding adele ring is thus XA and X embedded in XA 
is denoted Xk. 

We return to considering the characters of XA. If v E o'j, then in the 
topology on Xv, those characters whieh are trivial on C v = R v or Ov form 
a compact subgroup Cv * (see Example 7.2.2). Thus the group of characters 
XA is also a group of adeles over 0, = o'(k). 

Furthermore, defining 'l/J = 'l/J A by 

(7.2) 
v 

where 'l/Jv are canonical characters then defines a character on ~ by The­
orem 7.2.3. 

Theorem 7.2.4 Let X denote a number jield k or a quaternion algebra 
over a number jield and let 'l/J = 'l/JA be the characte~n XA dejined above. 
Then a f--t 'l/Ja is a topological isomorphism XA --+ XA and maps Xk onto 
Xk*. 

Proof: Let us use C v to denote the compact subrings R v , Ov in Xv when 
v is a finit~ace of k. 

Let XE XA and x = (xv) E XA· Then X(x) = I1Xv(xv ), where Xv(Cv ) = 
1 for almost all v. By Theorem 7.2.3, Xv(xv ) = 'l/Jv(avxv ) for some av E Xv. 
When X = Q, then Ker 'l/Jp = Zp so that if Xp(Zp) = 1, then ap E Zp. In 
the other cases, the determinant of the matrix T described in that theorem 
will be a unit for almost all v and so 'l/Jv(avCv ) = 1 for almost all v implies 
that av E Cv for almost all v. !!:us a = (av ) E XA and a f--t 'l/Ja is a 
continuous bijective map XA --+ XA. 
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To show that its inverse is also continuous, we first consider the basic 
case where X = Q. Then 1/J, restricted to Q embedded in QA, is trivial (see 
Exercise 7.2, No. 2). 

Thus, under the mapping a f--+ 1/Ja, Q maps to Q*. It will now be shown 
that Q maps onto Q*. Suppose 1/Jb E Q* for some b E QA. Recall from 
Theorem 7.1.3 that QA = Q+C where C = I x TI 7Lp with I = [-1/2,1/2]. 
Thus b = .; + c, where .; E Q and C E C. Hence 1/Jc E Q*. Let c = (cv) so 
that cp E 7Lp for each prime p. Thus 

Thus Coo = 0 and 1/Jc is trivial on Aoo = lR x TI 7Lp and so on QA. Thus 
C = 0 and b E Q. 

Now, by Theorem 7.1.3, Q is discrete in QA and QA/Q is compact. 
Thus, by duality, Q* is discrete in ij; and QA/Q* is compact. Thus the 
map a f--+ 1/Ja induces a bijective map 

which must be a homeomorphism, as they are compact. The discreteness 
of Q in QA and of Q* in ij; then shows that the bijective map QA --+ ij; 
has a continuous inverse. Thus the theorem is established in the case where 
X=Q. 

We now use a bootstrap argument t~educe the general case. Thus for 
k = Q, we have an isomorphism kA --+ kA induced by the non-trivial char­
acter 1/J. Let E be a finite-dimensional vector space over k and let E' denote 
its algebraic dual. Then the above isomorphism induces an isomorphism 
EA --+ EA given by 

Here 1/Jv = 1/Jp or 1/J00. It is straight forward to show that this isomorphism 
is trivial on Ek and maps Ek onto E b . 

Now suppose that E = L a finite field extension of k and A : L --+ k is a 
linear map which we take to be A = tr = TL. Thus the vector space (L I k) 
and its algebraic dual (L I k)' can be identified via x f--+ (y f--+ A(XY)). Then, 
as noted earlier, A extends to a mapping A : LA --+ kA and also to give an 
identification (L I k)A --+ (L I k)A in the notation used above. Now 1/J 0 A 
is a non-trivial character which, via the identification <I> of Theorem 7.1.2, 
is the character 1/JA on LA. Using all these identifications, the mapping 
a f--+ (1/JA)a is just the isomorphism described above between (L I k)A and 

(~ so that it maps L onto L*. 
A similar argument now applies to quaternion algebras over L to get the 

complete result. 0 
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Corollary 7.2.5 Xk is the dual of XA/ Xk. 

Proof: The above proof shows that XA/ X k is topologically isomorphie to 
Jf4./ Xk., and by duality, the dual of this spaee is X k • 0 

Corollary 7.2.6 (Approximation Theorem) For every place v, X k + 
Xv is dense in XA. 

Proof: Let X E Jf4. and suppose X is trivial on Xk. Thus X E X k* and so 
X = 'l/Ja, where a E Xk by the theorem. However, if X is also trivial on Xv, 
then 'l/Jv (axv ) = 1 for all Xv E Xv. Thus a = 0 and so X is trivial. 0 

Exercise 7.2 

1. Let X be a character on Qp such that X(x) = 1 for all x E '1',p, and if 
X(xy) = 1 for all y E '1',p, then x E '1',p. Show that X(x) = 'l/Jp(ax) for all 
x E Qp and some a E '1',;. 

2. Let'l/J = 'l/JA be the canonical chamcter on QA defined at (7.2). Show 
that 'l/J restricted to Q embedded in QA is trivial. 

3. Let H denote a P-adic field K or a quaternion algebra over K. Show 
that any maximal compact subgroup of H* is of the form B*, where B is a 
maximal order in H. 

4. Show that every totally real field admits a quadmtic extension which has 
exactly one complex place. 

7.3 Classification of Quaternion Algebras 

If Ais a quaternion algebra over a number field k, we have already shown, 
using the Hasse-Minkowski Theorem, that the isomorphism dass of A is 
determined by the finite set of plaees at whieh A is ramified (see Theorem 
2.7.5). Furthermore, this set of plaees must be of even eardinality, as was 
shown in Theorem 2.7.3 using Hilbert Reeiproeity. In this seetion. we eom­
plete the dassifieation theorem for quaternion algebras over a number field 
by showing that for any finite set of plaees of even eardinality, exduding the 
non-real Arehimedean plaees, there is a quaternion algebra with that set 
as its ramifieation set. We also establish a numbcr of equivalent eonditions 
for a quaternion algebra to split over a quadratie extension of the field of 
definition. 

For all this, wc reeall the deseription of a quaternion algebra A as a 
four-dimensional eentral algebra over k with a two-dimensional separable 
extension L of k and an element () E k* sueh that A = L + Lu, where u 2 = () 
and uR = Cu for all R E L with C the L I k eonjugate of R (see Exereise 
2.1, No. 1). Furthermore, A splits over k if and only if () E NLldL*) (see 
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Theorem 2.3.1). This also holds loeally and sinee we know that A splits 
over k if and only if A v splits over kv for eaeh v E f2(k), then the norm 
theorem for quadratic extensions follows (see Exercise 2.7, No. 4) 

Theorem 7.3.1 If L I k is a sepamble quadmtic extension and (j E k*, 
then (j E NLlk(L*) if and only if (j E NCvlkJC~), where Cv = L ®k kv • 

The algebra A defined by {L, (j} as above will thus be ramified at precisely 
those plaees v where (j fails to be a loeal norm and the number of sueh 
plaees must be even. To study this further , eonsider the norm extended to 
the group of ideIes (see Exercise 7.1, No. 4). 

Theorem 7.3.2 Let L I k be a quadmtic extension of number fields and let 
N: L'A ---+ k'A denote the extension of the norm. Then [k.:A. : k* N(L'A)] = 2. 

Proof: Let X be a eharaeter on k.:A. whieh is trivial on k* N(L'A). Re­
eall that X = (Xv) and for eaeh v, X~ = 1 (see Exercise 7.1, No. 4 
and Theorem 0.7.13). Thus X2 = 1. Now k* N(L'A) = nvEozv, where 
Zv = k.:A. n {k* N(C~) Ilw;iv k;';,} and· sinee eaeh Zv is closed in K.:A., so 
is k* N(L'A). Thus [k.:A. : k* N(L'A)] ~ 2. 

We now show how to eonstruet elements whieh lie in k.:A. but not in 
k* N(L'A). These elements will also be used subsequently. Let v be sueh 
that Cv = L ®k kv is a field. 

. {1 ifw#v 
zv=(xw ) wherexw = h dN(r*)·f uv w ere uv '1" J.-v 1 W = v. 

(7.3) 

If i v E k* N(L'A), then there would exist an element x E k* sueh that, 
loeally, x fails to be a norm at exaetly one plaee. This eontradicts Theorem 
7.3.1 and the remarks following it, so that i v ~ k* N(L'A). 0 

It has already been seen that the splitting of a quaternion algebra over 
a number field is a loeal-global eondition (see Theorem 2.7.2) and that if a 
quadratie extension of the defining field embeds in the quaternion algebra, 
then it splits over that quadratic extension (see Corollary 2.1.9). We now 
give a number of neeessary and sufficient eonditions for the splitting of a 
quaternion algebra over a quadratic extension. 

Theorem 7.3.3 Let A be a quaternion algebm over a number field k and 
let L I k be a quadmtic extension. The following are equivalent: 

1. L embeds in A. 

2. A splits over L. 

3. L ®k kv is a field for each v E Ram(A). 
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Proof: 1 => 2 is Corollary 2.1.9. 
2 => 3. If L @k A ~ M 2 (L), then Lw @L (L @k A) ~ M 2 (Lw) for every 

W E O(L). Let w I v, where v E O(k). Then 

Lw @L (L @k A) ~ Lw @kv (kv ®k A). 

Now L @k kv ~ I1wlv Lw, whieh is a field if and only if the embedding 
kv -+ Lw is not an isomorphism. Thus if v E Ram(A) and L@k kv is not a 
field, then Lw @kv (kv @k A) is a division algebra. This contradiction shows 
that 2 => 3. 

3 => 1. By Theorem 7.3.2 and the fact that Ram(A) has even cardinality, 
we can choose () from 

k* n II 
vERam(A) 

where i v is defined at (7.3). Now the quaternion algebra A' over k defined 
by {L, ()} is ramified at exactly those places where () fails to be a local 
norm [i.e., at exactly the pI aces in Ram(A)]. However, A and A' are then 
isomorphie. Thus L, which embeds in A', embeds in A. 0 

Finally, we establish the full elassification theorem for quaternion algeb­
ras over a number field. This involves showing the existence of quaternion 
algebras with prescribed ramification sets whieh firstly requires the exist­
ence of quadratic extensions of the base field with prescribed properties. 

Lemma 7.3.4 Let K be a loeal field and let L = K(t) a separable quadratic 
extension so that t satisfies the minimum polynomial X 2 -tr (t)X +N(t). If 
a and bare close enough to tr (t) and N(t), respeetively, then the polynomial 
X2 - aX + b is irreducible over K and has a raot in L. 

Proof: If K = IR, the discriminant tr 2 (t) - 4N (t) < 0 and, hence, a2 - 4b 
will also be < 0, and the result follows. 

Now suppose K = kp , some P-adie field, and denote the valuation of x 
in K or its extensions by v(x). There exists an extension M of K whieh 
contains a root u of X 2 - aX + b = O. Now v(a) and v(b) are bounded, say 
by A, and from u 2 = au - b, it follows that v(u) ~ A. Recall that t and f 
are the roots of the minimum polynomial of t. Now 

(u - t)(u - f) = (a - tr (t))u - (b - N(t)). 

Thus v((u - t)(u - f)) can be made as small as we please by choosing 
a and b elose enough to tr (t) and N(t), respectively. Now t -=1= f so by 
making the above product small enough, we can obtain v(u - t) < E and 
v(u - f) > E. Now suppose [K(u, t) : K(u)] -=1= 1, so that there would 
be a K-automorphism T such that T(U) = u and T(t) = f. However, that 
contradicts the above inequalities. Thus tE K(u) and since [K(u) : K] ~ 2, 
K(u) = K(t). 0 
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Theorem 7.3.5 Let k be a number field and let S be a finite set of places 
of k such that, for each v E S, there is a quadratic field extension Lv of kv . 
Then there exists a quadratic field extension L of k such that L ®k kv = Lv 
for each v E S. 

Proof: Let w be a place of k, w rt S. Then by the Approximation Theorem 
(Corollary 7.2.6), k + k w is dense in kA. For each v E S, let Lv = kv(tv ). 
Then we can find a, b E k elose to tr (t v ) and N(tv ) for each v E S. The 
quadratic x 2 - ax + b then defines a quadratic extension field L of k such 
that L ®k kv = kv(tv) for each v E S as required. D 

This enables us to complete the proof of the elassification theorem which, 
for completeness, we state in full. 

Theorem 7.3.6 Let A be a quaternion algebra over the number field k 
and let Ram(A) denote the set of places at which A is ramified. Then the 
following hold: 

1. Ram(A) is finite of even cardinality. 

2. Let Al, A2 be quaternion algebras over k. Then Al ~ A 2 if and only 
ifRam(At) = Ram(A2 ). 

3. Let S be any finite set of places of O(k) \ {non-real places in O=} 
of even cardinality. Then there exists a quaternion algebra A over k 
such that Ram(A) = S. 

Proof: Parts 1 and 2were established in §2.7, so it remains to prove Part 3. 
Let S = {VI, V2, ... , V2r} be a set of pI aces as described in the statement. 
Then each such kVi admits a quadratic extension field LVi. By Theorem 
7.3.5, there exists a quadratic extension L I k such that L ®k kVi = LVi· 
Now as in Theorem 7.3.3, choose () E k* n TI;:1 iViN(L'A), where the 
iVi are defined at (7.3). Then () fails to be a norm locally at precisely 
the places Vi and so the quaternion algebra A determined by {L, ()} has 
Ram(A) = {VI, V2, ... , V2r} as required. D 

The first two parts of this theorem were sufficient when quaternion algeb­
ras were used as commensurability invariants for Kleinian groups of finite 
covolume as described in Chapters 3 to 5. However, as is shown in the 
next chapter, arithmetic Kleinian groups and arithmetic Fuchsian groups 
are constructed using quaternion algebras over number fields. For that, the 
third part of this theorem, the existence part, is crucial. 

Exercise 7.3 

1. Show that for any quaternion algebra A over Q, there is a Hilbert symbol 

of the form (-ij,q), where p is a prime and q E Z. 
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2. Show that for any number field k, the number of quaternion algebras A 
over k such that NkllQ!(ß(A)) is bounded is finite. 

3. Let A be any quaternion division algebra over k. Show that there ex­
ist infinitely many quadratic extensions L I k such that A ®k L is still a 
quaternion division algebra (cf. Exercise 2.7, No. 2). 

4. Let A be a quaternion algebra over a number field k and let L I k 
be a quadratic extension. Show that there are infinitely many quaternion 
algebras A' over k such that A' ® k L ~ A ® k L. 

The remaining exercises concern the structure of the subgroup of the Brauer 
group corresponding to quaternion algebras. 

5. Show that for any pair of quaternion algebras over the number field k, 
there exists a quadratic extension of k which embeds in both. 

6. Show that if the quadratic extension L I k embeds in the quaternion 
algebras Al and A 2 over k, then there exists a quaternion algebra B over 
k such that 

(7.4) 

(cf. Exercise 2.8, No. 5). 

7. If Al, A 2 and Bare as at (7.4), show that 

Ram(B) = (Ram(Ad U Ram(A2 )) \ (Ram(Ad n Ram(A2 )). 

8. Show that the set of elements of the Brauer group Br(k) of the form 
[Al, where A is a quaternion algebra over the number field k, is a subgroup 
ofBr(k). 

7.4 Theorem on N orms 

In the last chapter, we used the Theorem on Norms to describe the type 
number of a quaternion algebra over a number field in terms of a restricted 
dass group of the field k. We nowprove that theorem. 

We continue the notation of earlier sections. Thus 

k:x, = {x E k I u(x) > 0 for all u E Ramoo(A)}. (7.5) 

Note that, k:x, depends on the quaternion algebra A over k and not on k 
alone. 

Theorem 7.4.1 (Theorem on Norms) Let A be a quaternion algebra 
over the number field k. Then k~ = n(A*). 
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Proof: Let a E A* and v = (J E Ramoo(A). Then v(n(a)) = n1t(iv(a)) > 0 
where iv : A --t A v ~ 1i. 

Conversely, let x E k':x,. For each v E Ramf(A), there exists Zv E Av 
whose norm is 7rv by Lemma 6.7.4. Now A is dense in Av and any element 
of A dose enough to Zv will have norm a uniformiser of kv. Thus by the 
Approximation Theorem, we can choose z E A such that x' = xn(z) E k':x, 
and x' is a unit in R~ for v E Ramf(A). 

Now if v E Ramoo(A), let Lv = C and if v E Ramf(A), let Lv be the 
quadratic unramified extension of kv. Then for all v E Ram(A) , there 
exists Yv E Lv whose norm is x' (see Theorem 0.7.13). The minimum 
polynomial of Yv has the form X 2 - avX + x'. Again, by the Approximation 
Theorem, choose a E k dose enough to each av, v E Ram(A), such that 
the polynomial X 2 - aX + x' defines a quadratic extension L = k(y) with 
L ®k kv = Lv, as in Lemma 7.3.4. However, by Theorem 7.3.3, L embeds 
in A and niL = NLIK. So n(y) = x'. 0 

Exercise 7.4 

1. Show that if A is a quaternion algebra over a field k of characteristic 
0, then Al = [A*, A*], the commutator subgroup of A*. 1f k = K, a P-adic 
field, show that every character XA on A * is of the form XA = XK 0 n, 
where XK is a character on K* . 

2. 1f A is a quaternion algebra over a number field k, show that k* jn(A*) 
is an elementary abelian 2-group of rank at most rl. Show furthermore, 
that for every s, 0 ::; s ::; rl, there is a quaternion algebra A such that 
k* jn(A*) has order 28 • 

7.5 Local Tamagawa Measures 

So far, topological results on adele rings (Theorem 7.2.4 and its corollar­
ies ) have been used to obtain the full dassification theorem for quaternion 
algebras over number fields and the Theorem on Norms of elements in qua­
ternion algebras over a number field. These made use of the topological 
duals of the locally compact abelian groups given by the additive struc­
tures of the local fields, quaternion algebras and adele rings. These will 
also support Haar measures and this will be exploited. Indeed we will ob­
tain specific volume information which requires consistent normalisation of 
the Haar measures employed. This will be carried out first for these additive 
structures and then extended to the associated multiplicative structures. 

As earlier, alllocal fields are P-adic fields or extensions of the reals, and 
the blanket notation H will be used for either a local field Kor a quaternion 
algebra A over K. When :IR ct. H, we will also use B for a maximal order 
in H, so that B = R, the P-adic integers when H = K, B = 0, the 
unique maximal order in A when A is a quaternion division algebra and 
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13 = M 2 (R) or a conjugate, when A = M 2 (K). In all of these P-adic cases, 
let q = IR/1TRI, the order of the residue field. 

Let G be a locally compact group and J-L a Haar measure on G. Any 
automorphism CY of G transforms J-L to a Haar measure J-LD. where 

for any measurable function on G. Thus for any measurable subset B of G, 
J-LD.(B) = cJ-L(B), where the positive constant C depends only on CY. Then C 

is called the module of CY. 

When H = K or A as above and x E H*, left (or right) multiplication 
defines an automorphism of the locally compact additive group H. 

Definition 7.5.1 The module of the automorphism induced by x E H* is 
called the module of x and denoted by IlxiIH. 

It follows easily that IlxlhR = lxi and Ilxllc = Ix1 2 • When R cf- Hand 13 is a 
maximal order in H, then IlxIIHJ-L(13) = J-L(x13) so that IlxliH = o(13/x13)-l. 
Thus, in keeping with earlier notation, we define the norm of x, NH(X), to 
be IlxIIJ./, and note that NH(x) is equal to the norm ofthe ideal x13. When 
H = K, xR is a fractional ideal and when H = A, xO is a normal ideal 
(see Definition 6.1.2). 

Initially, Haar measures on Hand H* are normalised as follows. 

Definition 7.5.2 

• The additive Haar measure on H = R is Lebesgue measure, denoted 
dx. If H ~ R, letTH be as defined in §7.2 and choose anR-basis {ei} 
of H. Then for x = L: xiei E H, the additive Haar measure dXH is 
given by 

dXH = Idet(TH(ei ej)1 1/ 2 TI dXi. 

The multiplicative Haar measure on H*, denoted dx'H, is given by 
dx'H = IlxllH1dxH. 

• If R cf- H, the additive Haar measure on H, dx H, is chosen such that 
the volume of a maximal order 13 is equal to 1. The multiplicative 
Haar measure on H*, dx'H is (1- q-l)-lllxIIJ/dxH. 

Lemma 7.5.3 When R cf- H, the volume of 13* with respect to the multi­
plicative Haar measure is given by the following formulas: 

(a) Vol(13*) = Vol(R*) = 1 if H = K. 

(b) Vol(13*) = Vol(O*) = (1- q-l)-l(l_ q-2) if H = Ais a quaternion 
division algebra. 
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(c) Vol(B*) = Vol(GL(2, R)) = 1 - q-2 iJ H = A = M 2(K). 

Proof: When H = K, for the additive measure, 

Vol(R*) = Vol(R) - Vol(rrR) = 1-llrrll = 1- N(rr)-l = 1- q-1. 

When H = A, a quaternion division algebra, 

Vol(O*) = Vol(O) - Vol(Oj) = 1 - Iljll = 1 - N(j)-l = 1 _ q-2 

(see §6.4). In these two eases, for x E B*, Ilxll = 1, so the result follows for 
the multiplieative measure. 

When H = M 2 (K), the residue map R -+ R induees a surjeetion 
GL(2, R) -+ GL(2, R) whose kernel is the principal eongruenee subgroup 
of level rrR [i.e., 1+ rrM2 (R)]. For the additive measure, this has volume 
= Vol(rrR)4 = q-4. Sinee the order of the finite group GL(2, R) is (q2 -
1)(q2 - q), the multiplieative volume of GL(2, R) is thus q-4(q2 - 1)(q2 -
q)(l - q-1 )-1 = 1 _ q-2. D 

For the Archimedean eases, see Exereise 7.5, No 1. 
To normalise the measures on H in a uniform manner, we make use of 

the Inversion Theorem for Fourier transforms, whieh we now recal!. If G is 
a locally eompaet abelian group with Haar measure dx, then the Fourier 
transform 1 of a function J E L1 (G) is defined on C by 

I(x) = fc J(x)(x, x)dx 

where, as is usual, < x, x > denotes the value at x of the eharaeter x. The 
Inversion Theorem then shows that there is a normalisation of the Haar 
measure on C, d'x, sueh that the inverse Fourier transform of 1 is again J, 
that is, 

J(x) = fa (x, x)/(x) d'x. 

Now let G be the additive group of H so that H is isomorphie to its 
topological dual via the isomorphism x ~ (y ~ 'l/JH(XY)) given by the 
eanonieal eharacter 'l/JH (see Theorem 7.2.3). Thus the Fourier transform 1 
of the function J can be defined on H via 

I(x) = L J(Y)'l/JH(XY) dy 

where dy is the additive Haar measure on H defined above. Then the nor­
malised dual measure d'y is also defined on Hand the Inversion Theorem 
yields 

J(x) = L I(Y)'l/JH( -yx) d'y. 

There will thus be a normalisation of the Haar measure dx such that it 
coincides with this normalised dual measure d' x. 



7.5 Local Tamagawa Measures 241 

Definition 7.5.4 The Tamagawa measure on H is the additive measure 
on H which is self-dual in the sense described for the Fourier transform 
associated to the canonical character 'ljJ H . 

These Tamagawa measures can be related to the normalised Haar measures 
given in Definition 7.5.2 via the discriminant of H in the P-adic cases. 

Definition 7.5.5 Let K be a P-adic field and H = K or a quaternion 
algebra A over K. Suppose K is a finite extension of Qp and let B be a 
maximal order in H. Choose a Zp-basis {el, e2, ... ,en } of B. Then the 
discriminant of H = DH = Ildet(TH(eiej))IIQ~. 

Note that when H = K, this notion of discriminant agrees with the field 
discriminant K I Qp. (See Definition 0.1.2.) For the connection in the cases 
where H = A, see Exercise 7.5, No. 2. 

Lemma 7.5.6 

1. If ~ eH, then the Tamagawa measure on H is dx H, as given in 
Definition 7.5.2. 

2. If~ r:t. H, the Tamagawa measure on H is D"iIl/2dxH, where dXH is 
given in Definition 7.5.2. 

Proof: The first part is a straight forward calculation (see Exercise 7.5, 
No. 3). 

For the second part, consider first the case where H = Qp. Let <I> denote 
the characteristic function of Zp and let dx denote the additive Haar meas­
ure. Recall that 'ljJp(x) = e27ri<x> where < x> is the unique rational ofthe 
form a/pm in the interval (0,1] such that x- < x >E Zp- Now 

<l>(x) = r 'ljJp(xy) dy = 1 lzp if x E Zp. 

Now suppose that x rf. Zp and so < x >= a/pm E (0,1). Let Zp 
Ur:ül(i + pmZp) and let ~ = exp(27fi/pm). Then 

Thus <l> = <I> and so dx is the Tamagawa measure in this case. 
More generally, let B denote a maximal order in H with the Zp-basis 

{el' e2, ... ,en }. Take the dual basis with respect to the trace so that ei is 
defined by TH(eiej) = 6ij. Thus if 

13 = {x E H I TH(xy) E Zp V Y E B}, 
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then {ei, e2' ... ,e~} is a Zp-basis of 13 and fj = B. Let cI> be the character­
istic function of B. T?en in the same way as for Zp, ~ is the characteristic 

function of 13. Thus ~ = Vol(13)cI>, so that the Tamagawa measure will be 
Vol(13)-1/2dxH. Now if ei = 'E-qjiej, then Vol(13) = Ildet(Q)l!lQIp' where 
Q = (qij). However, Q-I = (TH(eiej)) and the result follows. 0 

This then normalises the Haar measure on the additive structures of local 
fields and quaternion algebras over these local fields. We now extend this to 
multiplicative structures and also to other related locally compact groups. 
Continuing to use our blanket notation H, the multiplicative Tamagawa 
measure dx'H on H* is obtained from the additive measure as in Definition 
7.5.2. 

For discrete groups Gwhich arise, the chosen measure will, in general, 
assign to each element the value 1. Exceptionally, in the cases where ]R ct. H 
and G is the discrete group 01 modules IIH*II, each element is assigned its 
real value. 

All other locally compact groups which will be considered both in this 
section and the following two are obtained from previously defined ones 
via obvious exact sequences. In these circumstances, it is required that the 
measures be compatible. Thus suppose that we have a short exact sequence 
of locally compact groups 

l-+Y~Z~T-d 

with Haar measures dy, dz and dt, respectively. These measures are said 
to be compatible if, for every suitable function I, 

l I(z) dz = Ir i I(i(y)z) dydt where t = j(z). 

It should be noted that this depends not just on the groups involved, but on 
the particular exact sequenee used. Given measures on two of the groups 
involved in the exaet sequenee, the measure on the third group will be 
defined by requiring that it be eompatible with the other two and the 
short exaet sequence. 

All volumes whieh are ealeulated and used subsequently are eomputed 
using the Tamagawa measures and otherwise using compatible measures 
obtained from these. These loeal volumes will be used to obtain eovolumes 
of arithmetie Kleinian and Fuchsian groups and so are key components 
going in to the volume calculations in §11.1. Some of the calculations are 
made here, others are assigned to Exercises 7.5. 

Lemma 7.5.7 Vol(HI) = Vol{x E H* I n(x) = I} = 471"2. 

Proof: For the usual measures on ]R4, the volume of a ball of radius r is 
7I"2r 4/2. Thus, for x = Xl + X2i + x3j + x4ij, n(x) = xi + x~ + x~ + x~, so 
that Ilxl! = n(x)2. 
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The volume of H I will be obtained from the short exact sequence 

Now the Tamagawa measure on H* is n(x)-24dxldx2dx3dx4 (see Exercise 
7.5, No.l), and on ffi.'t it is C 1dt. As a suitable function on H* choose, 

g(X) = { ~(x)2 

Now if t = n(x), we obtain 

if 1/2:::; n(x) :::; 1 
otherwise. 

o 

Lemma 7.5.8 Let 0 be a maximal order in the quaternion algebra A over 
the P - adic field K. Let D K denote the discriminant of K and q = I R/ 7f RI. 
Then 

if A is a division algebra 
if A = M 2 (K). 

Proof: Note that the reduced norm n maps 0* onto R* (see Exercise 6.7, 
No. 1) so there is an exact sequence 

Thus for the volume of 0 1 , we have 

Tamagawa Vol of 0* 
Tamagawa Vol of R* 

(1 - q-l )D-;.I/2 multiplicative Haar Vol. of 0* 

(1 - q-1 )D;;I/2 multiplicative Haar Vol. of R* 

by Lemma 7.5.6 and Definition 7.5.2. The result then follows by Lemma 
7.5.3 and Exercise 7.5, No 2. 0 

Exercise 7.5 

1. Show that the additive Haar measures on H, where H ::) ffi., are as 
follows: 
(a) H = C, x = Xl + iX2, dxc = 2dx1 dX2· 
(b) H = H, x = Xl + X2i + x3j + x4ij, dX}t = 4 dXI dX2 dX3 dX4. 
(c) H = M 2(ffi.),x = (~; ~n, dXM2C~) = dX1 dX2dx3dx4. 
(d) H - M (tr') - (X 1+iX2 X3+ ix4) d - d d - 2 I\..- , X - X5+ ix6 X7+ ixS ' XM2(C) - Xl'" Xs· 
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2. If A is a quaternion algebra over the P -adic field and 0 is a maximal 
order in A, show that the discriminant DA defined in Definition 7.5.5 and 
the discriminant D Kare linked by the equation 

where d( 0) is the discriminant of O. 

3. If H ::::> lR., show that the Tamagawa measure on H is the additive Haar 
measure on H given in Definition 7.5.2. 

4. For alt H described in this chapter, the module map x 1---+ Ilxll is a 
homomorphism on H*. Denote the kernel by H 1 . Show that, as a set, 
1il = 1i1, but that, with respect to the compatible measures described 
earlier, VOI(1il) = 27f2. 

5. Let A = M2 (K), where K is a P-adic field with ring of integers R, 
uniformiser 7f and q = IR/7fRI. Let Om be the Eichler order of level 7fm 
(see Exercise 6.5, No. 1), where 

Om = {(~ ~) E M 2 (R) I c == O(mod 7fmR) }. 

Show that Vol(O;') = D~3/2(1 _ q-2)(q + l)-lql-m. 

7.6 Tamagawa Numbers 

Having normalised the loeal measures in a uniform way in the preceding 
seetion, suitable measures ean now be defined on the adele and idele groups. 
Thus following the notation of §7.2, let X denote either a number field or 
a quaternion algebra over a number field. Then XA denotes the associated 
adele ring and X A the associated idele group. The other idele groups which 
we have eonsidered are linked to these by exaet sequenees and suitable 
measures will be obtained by the eompatibility of measures onee we have 
fixed the measures on XA and X A. 

Thus on XA, we define the measure dXA as the produet I1vEO dx~, where 

if v E n= 
ifvEnj. 

In this definition, dxv is the measure dXH, where H = Xv and D v = Dxv 
is the loeal diseriminant of the P-adie field kv or quaternion algebra A v as 
defined in Definition 7.5.5. 

Let the discriminant of X, Dx, be defined to be the product of the 
loeal diseriminants Dv . Thus when X is a number field k, Dx will be the 
diseriminant of an integral basis of Rk over Z, sinee the loealisations are 
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then maximal orders (cf. §6.2). Thus Dx will be the discriminant of the 
number field k (see (6.8)). When X = A, a quaternion algebra over k, then 
DA = D~ N(~(A)2) (see Exercise 7.5, No 2), where ~(A) is the reduced 
discriminant of A (see (2.9) and §6.6). 

Likewise on X A, define the measure dx'A as the product TIVEO dx~*, where 

with similar notation as above. (The "accents" used here will be dropped 
when no confusion can arise.) 

Then the measure dXA is self-dual with respect to the Fourier transform 
on XA associated with the canonical character 'l/JA (see Theorem 7.2.3). 

Now consider the exact sequence 

XA 
1 ----> Xk ----> XA ----> - ----> 1. (7.6) 

Xk 
The Tamagawa measure is defined above on XA and since X k is discrete, 
it has the standard counting measure. Note that XA/ Xk is compact (The­
orem 7.1.3) so that it will have finite volume with respect to the compat­
ible measure. In fact it has volume 1, as we will now prove and this is 
the Tamagawa number of XA/ Xk. Under the isomorphism induced by the 
canonical character 'l/JA, we have that XA/ Xk is the dual of Xk (Corollary 
7.2.5). Since the measure on XA is self-dual with respect to the Fourier 
transform associated to 'l/JA, the volume of XA/ Xk will be equal to the 
volume of Xk with respect to the normalised dual measure for which the 
Inversion Theorem holds. Now let X be the characteristic function of the 
identity element e of the discrete group X k . Then the Fourier transform 
X(x) = 1 for all x E Xk. Thus with respect to the dual measure dx, we 
have that 

1 = x(e) = (, x(x)< x, e > dx = Vol(Xk). JX k 

Theorem 7.6.1 The Tamagawa volume 01 XA/ Xk is 1. 

To obtain the existence of arithmetic Fuchsian and Kleinian groups using 
the Strong Approximation Theorem and to make covolume calculations 
for such groups, we require to show that other natural quotients of idele 
groups associated to quaternion algebras over number fields are compact 
and, furthermore, to determine their Tamagawa volumes. The results are 
stated in Theorem 7.6.3. The compactness is established in the next section 
in the cases where X has no divisors of zero, but the arguments to show 
that the Tamagawa number of the algebraic group A l is equal to 1, are not 
included here. These arguments make use of suitably defined zeta functions. 

Note that since Xk is discrete in XA, it follows that Xi:, is discrete in X A 
(see Exercise 7.1, No 2). Furthermore (see Exercise 7.6, No. 1), we have the 
following: 
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Lemma 7.6.2 Xl. is discrete in X A and Ai, is discrete in A ~. 

Now define XA,l to be the kernel of the module map on X A so that the 
exact sequence 

XA 1 X A 1 * 11 1 -t X~ -t X* -t 1 X A -t 1 
k k 

(7.7) 

is obtained (see §7.7). Thus a normalised measure can be defined on the 
quotient XA,I/ Xl. by compatibility. 

Now take X = A, a quaternion algebra over k. Locally we have (see 
Exercise 7.6, No.2) IIxvllAv = Ilnv(xv)llkv 2 so that the reduced norm map 
gives an exact sequence (cf. §7.7) 

1 -t A~ -t AA,l !; kA,l -t 1 
Ai, Ai; k* 

(7.8) 

and the volume of A~/Al can be determined with respect to the measure 
compatible with the short exact sequence and those already obtained. 

Theorem 7.6.3 With respect to the measures obtained above 

Vi I (XA,l) = 1 o X* , 
k 

This last volume is referred to as the Tamagawa number of the associated 
algebraic group A l . 

Exercise 7.6 

1. Prove that Al is discrete in A ~. 

2. Let A be a quaternion algebra over a loeal field K and let x E A *. Show 
that IlxilA = Iln(x)lIk' 

3. Prove that the mapping n in (7.8) is surjective. 

4. Show that ifthe Tamagawa volume ofXA,I/Xl. is 1, itfollows that the 
Tamagawa volume of A ~I Al is 1. 

7.7 The Strang Approximation Theorem 

The existence theorem for arithmetic Kleinian and Fuchsian groups will be 
given in the next chapter and makes use of the descriptions of adele and 
ideIe groups obtained in this chapter. In this section, these descriptions are 
further developed towards this end. 

Retaining our earlier notation, X denotes either a number field k or a 
quaternion algebra A over k. 
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Lemma 7.7.1 For each x E XI:, C XA, Ilxll = l. 

Proof: Recall that Xk is discrete in XA. Let dt denote the measure on 
X A / X k compatible with the exact sequence at (7.6), the Tamagawa meas­
ure dz on XA and the counting measure on Xk. Let Y be a measurable set 
of XA and let <I> be the characteristic function of Y. Then for x E XI:" 

Vol(xY) = r <I>(x-Iz)dz = r [L <I>(ax-Iz)] dt 
JXA JXA/Xk aEXk 

= r [L <I>(bZ)] dt = Vol(Y). 
JXA/Xk bEXk 

o 
Referring back to (7.7) in the preceding section, this shows that these 

maps are well-defined. 

Lemma 7.7.2 Let X = k or A, where A is a quaternion division algebra 
over k. For m, M E ~+, define 

Y = {y E X A I 0 < m :::; IlyliA :::; M}. 

Then the image of Y in X A/ XI:, is compact. 

Proof: Recall (§O.8 and Exercise 7.1, No. 2) that a compact set in X A 
has the form {x E X A I (x,x- l ) E C x C'}, where C and C' are compact 
sets in XA. Thus we need to find compact sets C and C' in XA such that, 
for each y E Y, there is an a E XI:, such that ay E C and y-Ia- l E C'. 

We know that XA/ Xk is compact. Thus choose C" in XA to be compact 
with volume exceeding VOl(XA/Xk) max(m-l,M) and let C = {Cl - C2 I 
CI,C2 E C"} so that Cis also compact. Now Vol(C"y-l) > Vol(XA/Xk ) so 
that there exist Cl, C2 E C" such that c2y-1 = Cly-l + a for so me a E Xk. 
Thus ay E C. Using yC", we likewise obtain b E Xk such that y-Ib E C. 
Since only 0 is non-invertible in X, we can ensure that a, bE XI:,. 

Now ab E C 2 nxk , which is necessarily a finite set {dl , d2 , .. . ,dn }. Thus 
if C' = Ui'=l Cdil, then ay E C and y-Ia- l E C'. 0 

Again referring back to the exact sequence (7.7), this lemma shows that 
XA,d XI:, is compact in the cases where X has no divisors of zero. Suppose 
that X = A, a quaternion division algebra, so that nA : A:A ----+ k'A. Now if 
x E Ak \ k*, then k(x) is a quadratic extension of k and nlk(x) = Nk(x)lk' 
Thus if xE Ak nKer(nA), then x E Al. This confirms that the sequence at 
(7.8) is exact in this case and that A~/Al is a closed subspace of AA,dAk 
and, hence, compact. 

Theorem 7.7.3 1f A is a quaternion division algebra, then A ~/ Al is com­
pact. 
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Lemma 7.7.4 For any v E 0 00 , there exists a compact set Gin X A such 
that X A = XkX~G. 

Proof: When X has no divisors of zero, this follows from Lemma 7.7.2. 
For in that case, IIX~II = lR.+ = IIXAII· 

Now suppose X = M 2 (k) so that X A is the restricted product of the 
groups GL(2, kv ) with respect to the compact subgroups GL(2, Rv ) for 
v E 0 f. When v E 0 f, multiplication by a suitable diagonal matrix carries 
a member of GL(2, kv ) into GL(2, R v ). When v E 0 00 , mutiplication by an 
upper-triangular matrix carries a member of GL(2, lR.) or GL(2, C) into a 
compact subgroup. Let G be the compact subgroup, which is the product of 
all these compact subgroups. The non-singular upper-triangular, diagonal 
and unipotent upper-triangular matrices yield idele groups denoted PA, DA 
and NA, respectively. By the above remarks, we have 

Now NA ~ kA and DA ~ k.A2 • So by the first part ofthis lemma and using 
Corollary 7.2.6, we have that 

since (0 g)(Öf) = (~aX;b)(o g) and G'" is a compact set in PA. 0 

Finally, in this section, we establish the Strong Approximation Theorem. 
Let A be a quaternion algebra over the field k. For any finite set of places 
S, let 

A1 = 11 A~. 
vE8 

It is critical in the theorem that A1 be non-compact, which is equivalent 
to requiring that for at least one v E S, v fj. Ram(A). If A1 were compact, 
then A},A1 would be a closed subgroup of A ~ since A}, is discrete in A ~ 
and, hence, a proper subgroup of A ~. 

Theorem 7.7.5 (Strong Approximation Theorem) Let A be a qua­
ternion algebra over the number field k and let S be a finite set of places of 
k such that Sn 0 00 i= 0 and, for at least one Va E S, Va fj. Ram(A). Then 
AIAI . d . Al k 8 zs ense zn A· 

Proof: We need to show that for any open set U in A~, A},A1 n U i= 0 
and for this, the S-component of U can be ignored. There exists a finite 
set SI of places where SI :J S U 0 00 such that 

U = 11 Uv x 11 av Vv x 11 O~ 
vE8 vE81 \8 v(j.81 
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where Vv is a neighbourhood of the identity in A~. We can assume that Vv 

is such that Vv2 c Vv . Since AlA1 is a subgroup of A~, it suffices to show 
that for every VI t/. Sand every neighbourhood U of a where 

a = (aw ) with aw = { ~v E A~ 

then AlA1 nU -I- 0 (Le., a E AlA1). 
Let T = tr a, where this is the extension of the reduced trace to adeles. 

Thus 
with tw = { ~w = tr (av ) if W = VI 

if w -I- VI· 

We can find, for V E Ram(A) , a v E A~ (av -I- 1) such that tr (av ) is 
arbitrarily dose to 2 and that x 2 - tr avx + 1 is irreducible. By the Ap­
proximation Theorem (Corollary 7.2.6), k + kvo is dense in kA, where Vo 
is as in the statement of the theorem. Thus there exists t E k and t' E kvo 
such that 

• t is arbitrarily dose to tr (av ) for v E Ram(A); 

• t is arbitrarily dose to tr (aVl ) and to 2 in kw for a finite set of 
w -I- VI,W t/. S. 

By the first condition, the polynomial x 2 - tx + 1 is irreducible for each 
v E Ram(A) and so defines a quadratic extension L of k which embeds in A 
by Theorem 7.3.3. Thus there exists x E Al such that tr (x) = t. Since tr is 
an open map, there exists b E U such that tr (b) = t + t'. Thus at all places 
not in S, band x have the same trace and norm and so are conjugate. Now 
recall that A.A = AkA:SC where C is a compact subset of A.A by Lemma 
7.7.4. Thus AlA1 meets a conjugate of U and we can take that conjugate 
to be by an element c E C. Thus AlA1 n cU c- l -I- 0. This holds for each 

neighbourhood U of aso that there exists d E C such that dad- l E AlA1. 
Now choose a sequence of elements Yn E Al such that Yn converges to d:;;/ 
in Al Then Y dad-Iy- l ~ a E Al Al D 

Vl' n n k S' 

There will be numerous important applications of the Strong Approx­
imation Theorem subsequently particularly to the cases where S = 0 00 , 

Thus it is useful to introduce the following standard notation to cover the 
circumstances under which the Strong Approximation Theorem will be ap­
plied. 

Definition 7.7.6 A quaternion algebra A. over a number field k is said to 
satisfy the Eichler condition if there is at least one infinite place of k at 
which A is not ramified. 

One immediate consequence is the following result, which we have already 
used in calculating the type number of a quaternion algebra in §6.7. 
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Theorem 7.7.7 (EichIer) Let A be a quaternion algebra over a number 
field k where A satisfies the Eichler condition. Let V be a maximal order 
and let 1 be an ideal such that Vi(I) = V. Then 1 is principal; that is, 
1 = Vo: for some 0: E A* if and only if n(I) is principal (i.e. n(I) = RkX 
for some x E k~). 

Proof: Clearly, if 1 = Vo:, then n(I) = Rkn(o:) and n(o:) E k~. Now 
suppose that n(I) = RkX, where x E k~. By the Norm Theorem 7.4.1, 
there exists 0: E A* such that n(o:) = x. Consider the ideal 10:-1. For 
all but a finite set S of prime ideals, (I0:-1)p = Op, and for PES, 
(10:- 1)p = Opßp by Lemma 6.6.3. Now n«10:-1)p) = Rp = n(ßp)Rp. 
So n(ßp) E Rp. Furthermore, since locally n( V p) = Rp (see Exercise 
6.7, No. 1), we can assume that n(ßp) = 1. By the Strong Approximation 
Theorem, there exists 'Y E Al such that 'Y is arbitrarily dose to ßp for 
PES and lies in O}, for all other P. Then (V'Y)p = Vp = (10:- 1)p for 
P ~ S. If PES, then (O'Y)p = Vpßp = (10:- 1)p. Thus since ideals are 
uniquely determined by their localisations, V'Y = 10:-1 and 1 = V'YO:. D 

Exercise 7.7 

1. Show that when X has no divisors of zero, then X'A/ Xk is a direct 
product of jR+ and a compact group. 

2. Prove the following extension of the Norm Theorem 7.4.1: Let A be a 
quaternion algebra over the number field k where A satisfies the Eichler 
condition. Let x E Rk n k~. Show that there is an integer 0: E A such that 
n(o:) = x. 

7.8 Further Reading 

The lines of argument throughout this chapter were strongly influenced by 
the exposition in Vigneras (1980a). The use of adele rings and idele groups 
in studying the arithmetic of algebraic number fields is covered in several 
number theory texts [e.g., Cassels and Frölich (1967), Hasse (1980), Lang 
(1970), Weiss (1963)]. The extensions to quaternion algebras are treated 
in Vigneras (1980a) and lean heavily on the discussion in Weil (1967). As 
a special case of central simple algebras, the adele method is applied to 
quaternion algebras in Weil (1982) in the more general setting of algeb­
raic groups. For this, also see the various articles in Borel and Mostow 
(1966) discussing adeles, Tamagawa numbers and Strong Approximation. 
The wider picture is weH covered in Platonov and Rapinchuk (1994). The 
elements of abstract harmonie analysis which are assumed here, notably in 
Theorem 7.2.1 and in §7.5, can be found, for example, in Folland (1995), 
Hewitt and Ross (1963) and Reiter (1968). 
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Tamagawa measures on loeal fields or quaternion algebras over loeal fields 
are deseribed in Vigneras (1980a) and the computations of the related loeal 
Tamagawa volumes are given in Vigneras (1980a) and Borel (1981). The 
details of the proof that the Tamagawa number of the algebraie group given 
by A l where A is a quaternion algebra over a number field, is one, stated 
in Theorem 7.6.3 can be found in Vigneras (1980a) and, in a more general 
setting, in Weil (1982). The Strong Approximation Theorem for the eases 
considered here was one of the foundational results, due to EiehIer (EiehIer 
(1938a)), in the general problem of establishing the Strong Approximation 
Theorem in certain algebraie groups, diseussed for example by Kneser in 
Borel and Mostow (1966). This result, and indeed many others partieularly 
in Chapters 8 and 10, have their natural setting in a wider context than 
is diseussed in this book, but ean be found in Platonov and Rapinehuk 
(1994). 



8 
Arithmetic Kleinian Groups 

In this ehapter, arithmetic Kleinian groups are deseribed in terms of qua­
ternion algebras. An almost identical deseription leads to arithmetie Fueh­
sian groups. Both of these are special eases of diserete groups whieh arise 
from the group of elements of norm 1 in an order in a quaternion algebra 
over a number field. Sueh groups are diserete subgroups of a finite produet 
of loeally eompaet groups, which will be shown, using the results of the 
preeeding ehapter, to give quotient spaees of finite volume. Suitable arith­
metie restrietions on the quaternion algebras then yield diserete subgroups 
of SL(2, C) and SL(2, IR) of finite eovolume and in this way, the existenee 
of arithmetic Kleinian and arithmetic Fuehsian groups is obtained. 

The general definition of diserete arithmetic subgroups of semi-simple 
Lie groups will be diseussed in Chapter 10, where it will also be shown 
that in the eases of SL(2, C) and SL(2, IR), the classes of diserete arithmetic 
groups which arise from this general definition eoincide with those which 
are deseribed here via quaternion algebras. 

It will be shown in this and subsequent ehapters that for these classes of 
arithmetie Kleinian groups and arithmetie Fuehsian groups, many import­
ant features - topologieal, geometrie, group-theoretie - ean be determ­
ined from the arithmetic data going into the definition of the group. Thus it 
is important to be able to identify, among all Kleinian groups, those that are 
arithmetie. This also holds for Fuehsian groups. This is earried out here and 
the result is termed the identifieation theorem. This theorem shows that 
for an arithmetie Kleinian group, the number field and quaternion algebra 
used to define the arithmetic strueture eoineide with the invariant traee 
field and the invariant quaternion algebra as defined in Chapter 3. Thus 
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the methods developed earlier to determine the invariant trace field and 
the invariant quaternion algebra of a Kleinian group can be employed and 
taken a stage farther to determine whether or not the group is arithmetic. 
Additionally, the identification theorem shows that for arithmetic Kleinian 
groups and arithmetic Fuchsian groups, the invariant trace field and the 
invariant quaternion algebra form a complete commensurability invariant 
of these groups. 

8.1 Discrete Groups from Orders In Quaternion 
Algebras 

Let A be a quaternion algebra over a number field k where k has Tl real 
places and T2 complex places so that n = [k : Q] = Tl + 2T2. Let the 
embeddings of k in <C be denoted 0"1,0"2, ••. ,O"n. Let kv denote the com­
pletion of k at the Archimedean place v which corresponds to 0". Then 
Av = A ®k kv ~ M2(<C) if 0" is complex and ~ 'H or M2(1R) if 0" is real. 

Theorem 8.1.1 If A is ramified at SI Teal places, then 

Proof: Let A = (~) with standard basis {I, i, j, ij}. Let us order the 

embeddings so that the first SI corrrespond to the real ramified places, the 
next Tl - SI to the remaining real places and the remainder to complex 

. t . L t A (O"i(a)'O"i(b») h K l1)) C • 1 2 conJuga e pairs. e i = K ' W ere = .Il"I.. lor z = , , ... , Tl 

and <C otherwise. If we denote the standard basis of Ai by {I, ii, ji, idd, 
then defining 6 i : A -+ Ai by 

gives a ring homomorphism extending the embedding O"i : k -+ K. Then 
define 

n 

cjJ:A®lQ!lR-+EB LAi (8.1) 
i=l 

by cjJ(a ® b) = (bd'l(a), ... ,bd'n(a)) so that cjJ is bilinear and balanced and 
preserves multiplication. 

Consider a pair of complex embeddings, say 0" rl + 1, 0" rl +2. Then the pro­
jection on Arl +! EB Arl +2 of the image of cjJ lies in ~(M2(<C)), where ~ : 
M2(<C) -+ M2(C) EB M2(<C) is the diagonal embedding ~(x) = (x,x). Thus 
the image of cjJ lies in sl'HEB (Tl - sl)M2(1R) EBT2(~(M2(<C)). This space has 
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dimension 4n over lR, as does A®lQilR. If we choose a basis {I, t, t 2 , ••• , tn - 1 } 

of k over Q, then 

{tE ® 1, tEi ® 1, tEj ® 1, tEij ® 1; t' = 0, 1, ... , n - I} 

is a basis of A ®1Qi lR. Writing the images of these vectors with respect to 
the right-hand side of (8.1) yields the matrix I ® D, where I is the 4 x 4 
identity matrix and D = [O"i(tj )]. Since D is non-singular, <P has rank 4n 
and so <p is injective. 0 

Let Pi denote the composition of the natural embedding A -+ A ®1Qi lR 
with a projection onto one ofthe factors at (8.1). Ifthe factor is real, then 
tr (pi(a)) = O"i(tr (a)) and n(pi(a)) = O"i(n(a)) for each a E A. If the 
factor is complex, then tr (pi(a)) = O"i(tr (a)) or O"i(tr (a)) and similarily 
for norms. 

Now assume that A satisfies the Eichler condition (see Definition 7.7.6) 
so that there is at least one place v E 0 00 at which A is unramified. Thus 
if 

G=EB 
vEOoo \Ramoo(A) 

then the above description gives an embedding 

'ljJ :A-+G. 

In the cases in which we will be mainly interested, which give rise to arith­
metic Fuchsian and Kleinian groups, the set 0 00 \ Ramoo(A) consists of 
just one infinite place. In these cases, any other such embedding will differ 
from this by an inner automorphism by an element of G* . 

Theorem 8.1.2 Let 0 be an order in a quaternion algebra A satisfying 
the Eichler condition and let 0 1 = {a E 0 I n( a) = I}. Under the em­
bedding 'ljJ described above, 'ljJ(01) is discrete and of finite covolume in 
GI = L: SL(2, kv ). Furthermore, if A is a quaternion division algebra, 
then 'ljJ(01) is cocompact. Also, if G' = L: SL(2, kv ) is a factor of GI with 
1 =1= G' =1= GI, then the projection of 'ljJ( 0 1) in G' is dense in G'. 

Proof: Let A.\ denote the group of ideles obtained from the product 
TI A~ with respect to the compact subgroups O~, v E 0 f. Let U be the 
open subgroup of A.\ defined by U = GI xC, where 

C = II A~ x II O~. 
vERamoo(A) vEOf 

Note that C is compact. 
First note that Al n U = 0 1 . Clearly 0 1 C Al n u. If, conversely, 

x E Al n U, then xE Ov for all v E Of. Thus as in §6.2, x E O. 
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Second, A~ = AlU. To show this, let x = (xv) E A~. Then there exists 
a finite set of places S ::) noo such that Xv E O~ if v ~ S. Let S = noo U T. 
Let 

v = 11 A~ x 11 xvO~ x 11 O~. 
vEnoo vET vEnf\T 

Now V is open so that A1Aboo n V "# 0 by the Strong Approximation The­
orem. Thus let Xo E Al, y E Aboo be such that xoy E V. By construction, 
X01x E U so that AlU = A~. 

We thus obtain a natural homeomorphism 

Al AlU U U --..A = _k_ ~ = _ 
Al Al U n Al 0 1 . 

Thus 0 1 is discrete in U by Lemma 7.6.2 and of covolume 1 by Theorem 
7.6.3. Furthermore, the quotient is compact if A is a division algebra by 
Theorem 7.7.3. 

Finally, suppose that G1 = G' EB G", where 1 "# G', G" "# G1 , and let 
II1 : G1 .C ~ G'.C be induced by the projection. Let V be an open set in 
G'.C. By Theorem 7.7.5, A1G" n V"# 0, so there exists Xo E ALy" E G" 
such that xoY" E V. Thus Xo E y,,-lV C U so that Xo E Al n U = 0 1 . 

Then II1(xo) = II1 (xoY") E V and so II1(01) is dense in G'.C = U' . 
Note that U and U' are direct products of the locally compact groups 

G1 and G' with the compact group C. The result now follows by applying 
the following lemma. 0 

Lemma 8.1.3 Let Z be the direct product 0/ a locally compact group X 
and a compact group Y. Let W be a subgroup 0/ Z whose projection on X 
is the subgroup V. Then the /ollowing hold: 

1. I/ W is discrete in Z, then V is discrete in X. Furthermore, W is 0/ 
finite covolume (respectively cocompact) in Z i/ and only i/ V has the 
same property in X. 

2. I/ W is dense in Z, then V is dense in X. 

Proof: Let p : Z ~ X denote the projection. Let D be a compact 
neighbourhood of the identity in X. Then V nD = p(W n p-1(D)). Now 
p-1(D) = D x Y is a compact neighbourhood of the identity in Z. Thus, 
since W np-1(D) is finite, so is V n D and V is discrete in X. 

Suppose that W has finite covolume in Z so that there exists a funda­
mental set Fw for W in Z, where Fw has finite measure. The set p(Fw) 
then contains a fundamental set for V in X so that V has finite covolume. 
If, conversely, V has finite covolume, let Fv be a fundamental set for V in 
X of finite measure. Thus Fv x Y contains a fundamental set for W in Z 
and the result follows. 

The results concerning cocompactness and denseness are straightforward 
(see Exercise 8.1, No. 3). 0 
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Exercise 8.1 

1. Show that for any positive integers a and b, there exists discrete cocom­
pact subgroups of SL(2, qa x SL(2, IR)b which are not products of discrete 
cocompact subgroups of SL(2, q and SL(2, IR) for a + b > l. 

2. Let k be a totally real field -=I- Q. Prove that SL(2, Rk) is dense in 
SL(2,IR). 

3. In the notation of Lemma 8.1.3, prove the following: 
(a) IfW is discrete in Z, then W is cocompact if and only ifV is cocompact. 
(b) If W is dense in Z, then V is dense in X. 
(c) IfW is discrete of finite covolume in Z, then, with respect to compatible 
measures on X, Y and Z 

Vol ( ~) x Vol(Y) = Vol ( ~ ) . 

4. In Theorem 8.1.2 and the preceding discussion, all orders considered 
have been R-orders, where R is the ring of integers in the number field k. 
Let S be a non-empty finite set of primes in Rand let T = S u noo • Let A 
be a quaternion algebra over k which is unramified at at least one place in 
T and let 

G=$ 
VET,v~Ram(A) 

Show that GI contains discrete finite-covolume groups by considering an 
Rs-order in A. In particular for Qp, deduce the existence of discrete finite­
covolume subgroups of SL(2, Qp). Show that every such discrete arithmetic 
subgroup of SL(2, Qp) is cocompact. 

8.2 Arithmetic Kleinian Groups 

The results of the preceding section establish, in particular, the existence of 
discrete finite-covolume subgroups of SL(2, <C) by arithmetic methods using 
number fields and quaternion algebras. The resulting groups are arithmetic 
Kleinian groups, which will now be defined. Likewise, we will also define 
arithmetic Fuchsian groups in this section. 

Definition 8.2.1 Let k be a number field with exactly one complex place 
and let A be a quaternion algebra over k which is ramified at all real places. 
Let p be a k-embedding of A into M2(q and let 0 be an (Rk-)order of A. 
Then a subgroup r of SL(2, q (or PSL(2, q) is an arithmetic Kleinian 
group if it is commensurable with some such p( ( 1 ) (or P p( ( 1 )). Hyperbolic 
3-manifolds and 3-orbifolds, H 3 Ir, will be referred to as arithmetic when 
their covering groups rare arithmetic Kleinian groups. 
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With k and A as described in this definition, 

(8.2) 

(Theorem 8.1.1) and there is an embedding P1 : A ---+ M 2 (<C) such that 
trp1(a) = a1(tra) and detp1(a) = adn(a)), where a1 embeds k in <C. 
Regarding k as a subfield of <C, we can assume that a1 = Id so that P1 is a 
k-embedding. Note that there will also be a k-embedding. As noted earlier, 
any other k-embedding will differ from this by an inner automorphism by 
an element of GL(2,q. If 0 is an order in A, then P1(01) is a discrete 
subgroup of SL(2, q which is of finite covolume (Theorem 8.1.2). Addi­
tionally, if A is a quaternion division algebra, then P1 (01 ) is cocompact 
(Theorem 8.1.2). 

Note that if 0 1 and O2 are two orders in A, then 0 1 n O2 is also an 
order in A. Furthermore the corresponding discrete groups are all of finite 
covolume and so are commensurable with each other. Thus in Definition 
8.2.1, the arithmeticity of r is independent of the choice of order in the 
quaternion algebra. 

Note also that there is no ambiguity about the terminology "of finite cov­
olume" . For the groups P1 (0 1) = r defined arithmetically from quaternion 
algebras, finite covolume refers to the measure of SL(2, C)jr obtained 
from the Tamagawa measure on SL(2, C). However, the compact subgroup 
SU(2, q has finite volume and so the quotient of SL(2, qjSU(2, q = H 3 

by r will have finite covolume. However, the hyperbolic measure on H 3 is 
also obtained from SL(2, C). Thus the two not ions of "of finite covolume" 
coincide. However, we shall later make use of local Tamagawa measures 
(see, e.g., Lemma 7.5.8) to obtain explicit hyperbolic volume calculations 
for the group P1 (0 1 ). This will require a more careful analysis of the inter­
relationship between the Tamagawa volume and the hyperbolic volume (see 
Chapter 11). 

We remark that using the methods of §8.1 to obtain discrete finite­
covolume subgroups of SL(2, C), the field k must certainly have at least 
one complex place. If it had more than one, the quaternion algebra would 
necessarily be unramified at two Archimedean pI aces and so the projection 
of 0 1 on either one would be dense by Theorem 8.1.2. The same would 
apply if A was unramified at any of the real places; therefore, the condi­
tions imposed on k and A in the definition of arithmetic Kleinian groups 
are necessary. This implies the following result: 

Theorem 8.2.2 Let k be a number field with at least one complex embed­
ding a and let A be a quaternion algebra over k. Let P be an embedding of A 
intoM2(q suchthatplz(A) =a andO anRk-orderofA. ThenPp(Ol) is 
a Kleinian group of finite covolume if and only if k has exactly one complex 
place and A is ramified at alt real places. 
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Thus for each number field with one complex place and each quaternion 
algebra ramified at the real places of that field, we obtain a wide commen­
surability class of Kleinian groups of finite covolume. From the classification 
theorem for quaternion algebras (Theorem 7.3.6), we see that for each field 
k with one complex place, there are infinitely many quaternion algebras 
A over k ramified at all the real places by specifying that Ram(A) is any 
finite set of places of even cardinality containing all real places. 

Recall that A ~ M 2 (k) if and only if Ram(A) = 0, which can only 
occur in the above cases for [k : Q] = 2. These special cases have the 
following important topological significance for arithmetic Kleinian groups 
(cf. Theorem 3.3.8). 

Theorem 8.2.3 Let r be an arithmetic Kleinian group commensurable 
with pp(Ol), where 0 is an order in a quaternion algebra A over k. The 
following are equivalent: 

1. r is non-cocompact. 

2. k = Q(H) and A = M 2 (k). 

3. r is commensurable in the wide sense with a Bianchi group. 

Proof: If r is non-cocompact, then so is Pp(Ol), and so A cannot be a 
division algebra. So A ~ M 2 (k) (see Theorem 2.1.7). If [k : Q] ~ 3, then k 
has at least one place at which A will be ramified. Thus A would not split 
and so [k : Q>] = 2. Thus k = Q( H). 

Now M2(Od) is an order in M 2 (Q( H)). Hence r is commensurable 
with Pp(SL(2, Od)) for some representation p and this will be conjugate to 
PSL(2,Od). 

Every Bianchi group contains parabolic elements and, hence, so does r. 
Thus r is non-cocompact. 0 

Example 8.2.4 

The figure 8 knot complement is arithmetic since we know from §4.4.1 that 
its covering group has a faithful representation as a subgroup of PSL(2, 0 3 ) 

and is of finite covolume. 

We now consider arithmetic Fuchsian groups for wh ich very similar res­
ults and remarks to those made above hold. 

Definition 8.2.5 Let k be a totally real field and let A be a quaternion 
algebra over k which is ramified at all real places except one. Let p be a 
k-embedding of A in M 2 (lR) and let 0 be an order in A. Then a subgroup 
F of SL(2, lR) (or PSL(2, lR)) is an arithmetic Fuchsian group if it is com­
mensurable with some such p( 0 1 ) (or P p( 0 1 )). 
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With k and A as described in this definition, 

(8.3) 

and there is an embedding PI : A -t M 2 (IR) which we can take to be a 
k-embedding. Then, as earlier, PI (0 1 ) is a discrete subgroup of SL(2, IR) of 
finite covolume which is cocompact if A is a division algebra. Again this 
definition is independent of the choice of order in A and arithmetic Fuchsian 
groups necessarily have finite covolume in H 2 . By similar arguments to 
those given in Theorems 8.2.2 and 8.2.3, we obtain the following two results: 

Theorem 8.2.6 Let k be a number field with at least one real embedding 
a and let A be a quaternion algebra over k which is unramified at the 
place corresponding to a. Let P be an embedding of A in M 2 (IR) such that 
PIZ(A) = a and let 0 be an Rk-order in A. Then Pp(OI) is a Fuchsian 
group of finite covolume if and only if k is totally real and A is ramified at 
all real places except a. 

Theorem 8.2.7 Let F be an arithmetic Fuchsian group commensurable 
with P p( 0 1 ), where 0 is an order in a quaternion algebra A over a field 
k. The following are equivalent: 

1. F is non-cocompact. 

2. k = Q and A = M 2 (k). 

3. F is commensurable in the wide sense with PSL(2, Z). 

Exercise 8.2 

1. Let PI (0 1 ) be an arithmetic Fuchsian group, where 0 is an order in a 
quaternion algebra over a number field k. Show that PI (0 1 ) is contained 
in an arithmetic Kleinian group (cf. Exercise 7.3, No. 3 and Exercise 6.3, 
No. 3). 

2. Show that there are no discrete S -arithmetic subgroups of SL(2, C) or 
SL(2,IR) obtained via an Rs-order as in Exercise 8.1, No. 4, where S =I- 0. 

3. Define discrete arithmetic subgroups of SL(2, IR) x SL(2, IR) and give 
necessary and sufficient conditions as in Theorem 8.2.3 for these groups to 
be non-cocompact. 

4. Let k = Q(t), where t satisfies x 3 + x + 1 = O. Show that the quaternion 

algebras (t~t)t) and (t-~(;;-I) give rise to the same wide commensur­

ability class of arithmetic Kleinian groups (cf Exercise 2.7, No. 3). 



8.3 The Identification Theorem 261 

8.3 The Identification Theorem 

This identification theorem will enable us to identify when a given finite­
covolume Kleinian group is arithmetic. As has already been discussed in 
Chapter 3, to any finite covolume Kleinian group f there is associated a 
pair consisting of the invariant trace field kf and the invariant quaternion 
algebra Af which are invariants of the wide commensurability dass of f. 
Recall that kf = Q(trf(2») and 

Af = Aof(2) = {I:: Xi'Yi : Xi E kf, 'Yi E f(2)} . 

If f is arithmetic, then it is commensurable with some p(OI), where 0 is 
an order in a quaternion algebra A over a number field k with exactly one 
complex place and p is a k-embedding. Thus kf = kp(C:Y). As remarked 
in the preceding section, if Cl! E 0 1 , then tr p( Cl!) is the reduced trace of Cl! 

and so lies in Rk. Thus kf c k. Now kf cannot be real (Theorem 3.3.7) so 
that kf = k since k has exactly one complex place (see Exercise 0.1, No. 
2). Note that Q(tr p(OI)) = k and so by choosing g, hE f(2) n p(OI) such 
that (g, h) is irreducible, we see that 

Since both Af and p(A) are quaternion algebras over k, they coincide. We 
have thus established the following: 

Theorem 8.3.1 1f f is an arithmetic Kleinian group which is commen­
surable with p( 0 1 ), where 0 is an order in a quaternion algebra A over the 
field k and p is a k-embedding, then kf = k and Af = p(A). 

Note that this result already imposes two necessary conditions on f if it 
is to be arithmetic; namely, that kf has exactly one complex place and 
that Af is ramified at all real places. In Chapter 3, a variety of methods 
were given to calculate kf and Af and then applied to diverse examples in 
Chapter 4. Thus the methodology to check these two conditions is already 
in place. 

We add one further condition. If f is commensurable with p( 0 1 ) and 
"I E f, then "In E p(OI) for some n E Z. Now the trace of "In is a monie 
polynomial with integer coefficients in tr "I. However, tr "In E R k so that 
tr'Y satisfies a monic polynomial with coefficients in Rk and so tr'Y is an 
algebraie integer. In essence, the main ingredients of the following proof 
have appeared earlier in the book, but we give them again in view of the 
central nature of this result. 

Theorem 8.3.2 Let f be a finite-covolume Kleinian group. Then f is 
arithmetic if and only if the following three conditions hold. 
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1. kr is a number field with exactly one complex place. 

2. tr'Y is an algebraic integer for all "I Er. 

3. Ar is ramified at all real places of kr. 

Proof: We have just shown that if r is arithmetic, then it satisfies these 
three conditions. 

Now suppose that r satisfies these three conditions. We already know 
that Ar is a quaternion algebra over kr (see §3.2 and §3.3). Now set 

(8.4) 

We show that or is an order (see Exercise 3.2, No. 1). Clearly or is an 
Rkr-module which contains a basis of Ar over kr and is a ring with 1. 
We show that or is an order in Ar by establishing that it is a finitely 
generated Rkr-module. To do this, we use a dual basis as in Theorem 
3.2.1. Thus let g, h E r(2) be such that (g, h) is an irreducible subgroup. 
Let {I*, g*, h*, (gh)*} denote the dual basis with respect to the trace form 
T. Let "I E r(2); thus 

If 'Yi E {I, g, h, gh}, then 

T(,,(, 'Yi) = tr ("("li) = Xj for some j E {O, 1,2, 3}. 

NOW'Y'Yi E r(2) and so tr ("("li) is an algebraic integer in kr. Thus Xj E Rkr 
and 

or c Rkr [I* , g*, h*, (gh)*] := M. 

Since each of the dual basis elements is a linear combination of {I, g, h, gh} 
with coefficients in kr, there will be an integer m such that mM c or. 
Now M/mM is a finite group and mM is a finitely generated Rkr-module. 
Thus or is an order. 

By the conditions imposed on kr and Ar, there is an isomorphism 

and so a kr-representation p : Ar ~ M 2 (C). Now Ar c M 2 (C) so that 
p(a) = gag- 1 for all a E Ar and some 9 E GL(2, C). Thus r(2) c 
g-1 p( (Or) l)g as a subgroup of finite index since both have finite covolume. 
Thus r is arithmetic. 0 

Corollary 8.3.3 If r is an arithmetic Kleinian group, then r(2) c p( 0 1 ) 

for some order 0 in a quaternion algebra A over k and a representation 
p:A~M2(C). 
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Later we will study in detail the distribution of groups in the commen­
surability dass of an arithmetic Kleinian group. Note that in the above co­
rollary, there is no loss in assuming that 0 is a maximal order. Thus every 
arithmetic Kleinian group is an extension of a subgroup of some p( ( 1 ) for 
o a maximal order, by an elementary abelian 2-group. Thus subsequently, 
particular emphasis is placed on the groups p(OI), where 0 is a maximal 
order. 

It is of interest to know when an arithmetic Kleinian group actually lies 
in a P p( ( 1 ) for some order 0 and for this, we introduce the following 
terminology: 

Definition 8.3.4 A finite-covolume Kleinian group is said to be derived 
from a quaternion algebra if it is arithmetic and lies in P p( ( 1 ) for some 
(maximal) order O. 

Corollary 8.3.5 Let r be a finite-covolume Kleinian group. Then r is 
arithmetic if and only if r(2) is derived from a quaternion algebra. 

The following deduction is immediate from the proof of Theorem 8.3.2. 

Corollary 8.3.6 Let r be a finite covolume Kleinian group. Then r is 
derived from a quaternion algebra if and only if it satisfies conditions 1 
and 3 of Theorem 8.3.2 and also 
2 '. tr 'Y is an algebraic integer in kr for all 'Y Er. 

The three conditions in Theorem 8.3.2 featured in Theorem 5.1.2 and 
Lemma 5.1.3 where they were used to prove that any non-elementary group 
satisfying these conditions is discrete. This result now proves that such a 
group is a subgroup of an arithmetic Kleinian group. 

Corollary 8.3.7 Any non-elementary Kleinian group satisfying the three 
conditions given in Theorem 8.3.2 is a subgroup of an arithmetic Kleinian 
group. 

Examples 8.3.8 

1. The two-bridge knot (7/3) is not arithmetic, as it is non-cocompact, but 
its invariant trace field has degree 3 over Q (see §4.5). Likewise, the knots 
61 and 74 , discussed in §4.5 and §5.5, are not arithmetic. Indeed, it will 
be shown more generally that the figure 8 knot is the only arithmetic 
knot. (For more examples, see Appendix 13.4.) 

2. The Whitehead link, which is the two bridge link (8/3), is arithmetic 
since, (i) kr = Q(i), (ii) Ar = M 2 (Q(i)) and (iii) r has two generators 
u and v with tr u = 2, tr v = 2 and tr uv = 1 + i. 
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FIGURE 8.1. 

3. The cocompact tetrahedral group with Coxeter symbol given at Figure 
8.1 is arithmetie (see §4.7.2). This group is commensurable with the 
two-generator group r defined at (4.8). Now, with the notation from 
that subsection, kr = Ql(t) has exactly one complex place and since 

Ar ~ (-~1~2), Ar is ramified at the two real places. Note that r = 

(A, B), where tr A = 0, tr B = 1 and tr AB = s. Now t is an algebraie 
integer and s satisfies a monie polynomial whose coefficients are algebraie 
integers. Thus all traces are algebraic integers. 

4. Consider the prismatic examples r q considered in §4.7.3. By the analysis 
at the end of that section, for q = 6p where p is a prime =I 2,3, the group 
r q contains non-integral traces and so certainly cannot be arithmetie. 

Consider the case where q = 8. Note that r q has three generators X, Y 
and Z defined in §4.7.3. Then for q = 8, in the notation used in that 
subsection, tr X = 1, trY = V2, tr Z = s+l/s, tr XY = [(s-l/s)-i(s+ 
1/ s)]/V2t, tr X Z = 0, tr YZ = [(s+ 1/ s) +i(s-l/ s)l/v'2 and tr XYZ = 
-V2i/t, where t2 = V2, (s + 1/ s)2 = 4 + V2. From this ,we obtain that 
kr8 = Ql(J(l- 2V2)). Now r 8 has a finite subgroup isomorphie to A4 

so that Ar8 ~ ( -1r~1) by §5.4. Thus Ar8 is ramified at both real places 

of kr 8. Finally, each of the elements X, Y, Z, XY, X Z, Y Z and XY Z can 
be shown to have integral trace and, hence, so do all elements of r 8 by 
Lemma 3.5.2. Thus r 8 is arithmetic. 

By such methods, the arithmeticity or otherwise of many examples, like 
those considered in Chapter 4, can be determined. 

Fuchsian groups of finite covolume which are arithmetie can also be iden­
tified by similar methods, whieh we will now discuss (see §4.9). Thus let F 
be a Fuchsian group of finite covolume with invariant trace field kF and in­
variant quaternion algebra AF. As noted earlier, kF need not be a number 
field. 

Let us suppose that F is arithmetic so that kF is commensurable with 
some PI (01), where 0 is an order in a quaternion algebra A over a totally 
real number field k. Here PI : A -+ M2(~) and Pi : A -+ H, where the rep­
resentation Pi extends the embedding O"i : k -+ ~. We regard k as a subfield 
of ~ and take 0"1 = Id so that PI is a k-embedding. Now kF = kpl(Ol) 
and tr(Pl(01)(2)) C tr(Pl(Ol)) C tr(Ol) C Rk. Thus kpl(Ol) c k. 

Note that O"i(tr(Al)) = tr(pi(Al)) C tr(Hl ) = [-2,2] for i =I 1. Thus if 
k is a proper extension of k PI ( 0 1), then there exists some 0" i : k -+ ~, i =I 1, 
such that O"ilkPl(Ol) = Id. Then all elements in Pl(Ol )(2) have traces in the 
interval [-2,2] and so none of them can be hyperbolic. This is impossible 
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for a non-elementary group, so kpl(CY) = k. The arguments now proceed 
as for Kleinian groups to yield the following analogues of Theorems 8.3.1 
and 8.3.2. 

Theorem 8.3.9 If F is an arithmetic Fuchsian group which is commen­
surable with PI (0 1 ), where 0 is an order in a quaternion algebra A over 
the jield k and PI is a k-embedding, then kF = k and AF = Pl(A). 

Theorem 8.3.10 Let F be a jinite-covolume Fuchsian group. Then F is 
arithmetic if and only if the following three conditions hold. 

1. kF is a totally real jield. 

2. tr'Y is an algebraic integer for every 'Y E F. 

3. AF is ramijied at all real places of kF except one. 

Fuchsian Triangle Groups 

Let ~ be a Fuchsian triangle group (f, m, n), where f < m < n. It has 
already been shown that 

k~ = Q cos -, cos -, cos -, cos - cos - cos-( 27r 27r 27r 7r 7r 7r) 
f m n f m n 

(8.5) 

(see Exercise 4.9, No. 1). This field is clearly totally real. Since the two 
generators and their product necessarily have integral traces, every 'Y E 
~ has integral trace. Thus the arithmeticity of ~ depends on the real 
ramification of A~. A Hilbert symbol for A~ is easily determined from 
§3.6, so that, when f = 2, 

A~= m' n" ( 
4(COS2 271" - 1) 4 cos2 1!: >'(f m n)) 

k~ , 

and when f > 2, 

A~ = R' R m" (
4(COS2 271" - 1) 4 cos2 1!:4 cos2 .1!:. >'(f m n)) 

k~ , 

where 

In all cases, A~ is unramified at the identity real place. Thus, from the 
Hilbert symbols above and Theorem 2.5.1, we deduce the following result 
of Takeuchi. 
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Theorem 8.3.11 (Takeuchi) The (f, m, n) Fuchsian tri angle group ß 
is arithmetic if and only if for every u E Gal(kß I Q), u =F Id, then 
u('\(f, m, n)) < O. 

If n is large enough, there always exists an element u in the Galois group 
such that the inequality in this theorem fails. This was established by 
Takeuchi. It follows that there can be only finitely many arithmetic Fuch­
sian triangle groups. We will show that there are finitely many arithmetic 
Fuchsian triangle groups in §11.3.3 using bounds on the volume and we will 
outline how to enumerate them using Theorem 8.3.11. The finiteness will 
also be a consequence of a more general result on arithmetic Fuchsian and 
Kleinian groups with bounded covolume to be discussed §11.3.1. 

At this stage, we note some particular cases. If kß = Q, then condition 3 
of Theorem 8.3.10 is automatically satisfied. Thus all four groups described 
in Exercise 4.9, No. 2 are necessarily arithmetic. In the discussion in §4.9, it 
was shown that for the triangle group (2,3,7), kß = Q(COS21T/7) and that 
A~ was ramified at the non-identity real places. Thus the (2,3,7) triangle 
group is arithmetic. 

Exercise 8.3 

1. Let r be ajinite-covolume Kleinian group and let (g, h) be an irreducible 
subgroup such that neither 9 nor h have order 2 and 9 is not parabolic. Show 
that r is arithmetic if and only if the foltowing three conditions hold. 

• kr has exactly one complex place. 

• tr r consists of algebraic integers. 

• For every real u: kr ---+ lR, the inequalities u(tr 2g(tr 2g-4)) < 0 and 
u(tr 2 gtr 2 h(tr [g, h]- 2)) < 0 must hold. 

Formulate and prove a similar result when o(g) = 2. 

2. Prove that every arithmetic Fuchsian group is contained in an arithmetic 
Kleinian group. (This completes Exercise 8.2, No. 1. See also §9.5.) 

3. Let r be a jinite-covolume Kleinian group which contains a jinitely 
generated non-elementary normal subgroup ß. Suppose that kß has exactly 
one complex place, Aß is ramijied at alt real places and tr ß consists of 
algebraic integers. Show that r is arithmetic (see Theorem 4.3.1). Deduce 
that the once-punctured torus bundle with monodromy R 2 L is arithmetic 
(see §4.6). 

4· Let Mn denote Jf1rgensen's compact jibre bundle in the notation of 
§4·8.1. Show that if n ?: 4, kn has more than one complex place. Deduce 
that Mn is arithmetic if and only if n = 2,3. 
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o 
FIGDRE 8.2. 

5. Let r be a finitely generated non-elementary subgroup of PSL(2, iC) 
which contains a subgroup isomorphie to A 4 . Suppose that kr has exactly 
one complex place and that tr (r) consists of algebraic integers. Deduce that 
r is a subgroup of an arithmetic Kleinian group (see §5.4). Deduce that the 
Coxeter group r with symbol shown in Figure 8.2 is arithmetic and that Ar 
must be ramified at both places over 2 (see §4.7.2; in particular, the final 
comments). 

6. Let r be arithmetic and let 0 be a fixed maximal order in Ar. Show 
that if the type number of Ar is 1, then a conjugate of r(2) lies in 0 1 . 

Deduce that if r is commensurable with PSL(2, Od) for d = 1,2,3,7,11, 
then a conjugate of r(2) lies in PSL(2, Od) (see §6.7). 

7. 1f H 3 Ir is the complement of the Borromean rings, show that a con­
jugate of r lies in PSL(2, 0 1 ), 

8. Let F be a finite-covolume Fuchsian group with rational entries, so that 
it is contained in SL(2, Q). Prove that F is directly commensurable with 
SL(2, IZ) if and only if tr f E IZ for every f E F. 

9. Let A be a quaternion algebra over a totally real number field k, such that 
A is ramified at exactly r places. Let 0 be an order in A so that the image 
of 0 1 in the product SL(2, lRY is a discrete finite-covolume group acting 
on (H2 y. Let PI be an embedding of A in M 2 (lR). 1f r is a subgroup of 
SL(2, lR) commensurable with PI (0 1 ), then r is called, by abuse of language, 
an arithmetic group acting on (H2 y. 

On the other hand, a non-elementary finitely generated subgroup r of 
SL(2, lR) is said to be semi-arithmetic if kr is a totally real field and tr (r) 
consists of algebraic integers. 

For a Fuchsian group r of finite covolume, show that r is semi-arithmetic 
if and only if r is a subgroup of an arithmetic group acting on some (H2 y. 

8.4 Complete Commensurability Invariants 

For any finite-eovolume Kleinian group r, the pair (kr, Ar) is an invariant 
of the eommensurability dass of r. For arithmetie Kleinian groups r 1 and 
r 2 , it will be shown in this seetion that r 1 and r 2 are eommensurable 
in the widc sense if and only if the pairs (kr 1, Ar 1) and (kr 2, Ar 2) are 
isomorphie. 
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Theorem 8.4.1 Let r l and r 2 be subgroups of PSL(2, C) which are arith­
metic Kleinian groups. Then r 1 and r 2 are commensurable in the wide 
sense in PSL(2, C) if and only if krl = kr2 and there exists a krl-algebra 
isomorphism cjJ: Ar1 ~ Ar2 • 

Proof: Let 9 E SL(2, C) be such that gr1g- l and r 2 are commensurable. 
Then krl = kr2 and the mapping cjJ : Ar1 ~ Ar2 given by cjJC'E. ani) = 
'E.ai(g1'ig-l), where ai E krl = kr2 is a kr1-algebra isomorphism. 

Suppose, conversely, that cjJ : Arl ~ Ar2 is a krl-algebra isomorph­
ism with krl = kr2 • Then by the Skolem Noether Theorem, there exists 
gE Aq such that cjJ(a) = gag- l for all a EArl. Now cjJ(orI) is an order 
in Ar2 . Since r i is commensurable with Ort, i = 1,2, gr1g-1 is commen­
surable with r 2 • 0 

Note that in this result, the arithmetic Kleinian groups are regarded as 
being embedded in PSL(2, C). However, they arise from quaternion algeb­
ras over number fields which admit a complex conjugate pair of embeddings 
into C so that some care needs to be exercised as follows: Let A be a qua­
ternion algebra over a number field k with exactly one complex place such 
that A is ramified at all real places. Let a : k ~ C be one of the complex 
embeddings so that the other is coa, where c denotes complex conjugation. 
Let 0 be an order in A and let p: A ~ M 2 (C) be an embedding such that 
pIZ(A) = a. Let e denote the extension of c to M 2 (C) so that the embed­
ding e 0 p extends co a. Then the groups Pp(Ol), Pe p(Ol) are Kleinian 
groups of finite covolume and each gives rise to a wide commensurability 
dass of arithmetic Kleinian groups. These commensurability dasses need 
not coincide. However, if we extend the definition of wide commensurabil­
ity to include conjugacy in Isom H 3 , rather than just PSL(2, C), this wide 
commensurablilty dass will be the union of the two just described, because 
z f-4 Z induces an orientation-reversing isometry l' of H 3 and conjugation 
by l' yields e on PSL(2, C). 

Applications of these results on arithmetic Kleinian groups frequently use 
the simple facts that there are infinitely many number fields with exactly 
one complex place or that, for any such field, there are infinitely many 
suitable quaternion algebras. The following result is a basic example of 
this. 

Corollary 8.4.2 There exist inflnitely many commensurability classes of 
compact hyperbolic 3-manifolds H3 Ir such that the groups r have the same 
trace fleld. 

Proof: Let k be a number field with exactly one complex place. There are 
infinitely many isomorphism dasses of quaternion algebras A over k such 
that Ram(A) -j. 0, which are ramified at all real places of k by Theorem 7.3.6 
and for each one, a representation p : A ~ M 2 (C). Let 0 be an order in A 
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and let f be a torsion free subgroup of finite index in p( ( 1 ) (2). Then H 3 /f 
is a compact hyperbolic 3-manifold such that Q(tr f) = kp( 0 1 )(2) = k. 
Furthermore, Af = p(A) and so no two such f can be commensurable. D 

0----0 0----0 

FIGURE 8.3. 

Example 8.4.3 Consider again the tetrahedral group f 1 whose Coxeter 
symbol is shown in Figure 8.3 (see §4.7.2) and the Fibonacci group f 2 = F lO 

(see §4.8.2). It was shown in §8.3 that f 1 is arithmetic with defining field 
Q(t) of degree 4 over Q wh ich has discriminant -275 and Af1 is ramified 
at the two real places only. N ow t satisfies the polynomial x 4 - 2x2 + X - 1 
and Q(t) =::l Q( V5). In the notation of §4.8.2, kf2 = kK5 and K 5 is a 
two-generator generalised tri angle group. Now kK5 = Q(T2 ), where T 2 = 
(t - (2 - V5))(1 + V5)/2 with t as above. Thus kf 1 = kf 2 . It is shown in 
§4.8.2 that Af2 is also ramified at both real places only. Thus Af1 and Af2 

are isomorphie. Now for 'Y E K 5 , tr'Y is an integer polynomial in tr T, tr V 
and tr TV which have traces 2 cos 11) n, 0 and T, respectively. Thus Af 2 is 
arithmetic and f 1 and f 2 are commensurable in the wide sense. Thus the 
group with presentation 

is commensurable with the group with presentation 

(Xl, X2,··· ,XlO I XiXi+1 = Xi+2 for all i(mod 10)). 

Recall that for these cocompact Kleinian groups, the isomorphism dass 
coincides with the conjugacy dass. 

In examples like this one, it is of interest also to determine more precisely 
how these groups are related: for example, to know their generalised index 

(8.6) 

Covolume calculations and the distribution of groups in the commensur­
ability class of an arithmetic Kleinian group, which will be discussed in 
Chapter 11, will enable these relationships to be determined. 

Finally, recall that the commensurator of f C PSL(2, C) or the commen­
surability subgroup of f is defined by 

Comm(f) = {x E PSL(2,C) I xfx- 1 is commensurable with r}. 

For the arithmetic Kleinian groups, a very explicit description of its com­
mensurator is obtained. 
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Theorem 8.4.4 Let f C PSL(2, C) be an arithmetic Kleinian group. Then 
Comm(f) = P(Af*). 

Proof: Clearly, iff1 and f 2 arecommensurable, Comm(f1 ) = Comm(f2). 
Thus if 0 is an order in Af and x E Af*, xOx-1 is also an order and 0 1 
and X01X- 1 are commensurable. Hence P(Af*) C Comm(r). Conversely, 
if x E Comm(r), then choose a non-elementary subgroup f o of f(2) such 
that f o, xfox-1 c f(2). Then conjugation by x defines an automorphism 
of Af, which, by the Skolem Noether Theorem, is an inner automorphism 
bya E Af*. Thus xa-1 E Z(GL(2,C)) and so x = Aa for A E C*. So in 
PSL(2, C), x E P(Af*). 0 

Corollary 8.4.5 1f f is an arithmetic Kleinian group, then f is of infinite 
index in Comm(f). 

The converse of this result, due to Margulis, is discussed in Chapter 10. 

Now let us consider the corresponding results as described in this section 
for arithmetic Fuchsian groups. 

Theorem 8.4.6 Letf1 andr2 be subgroups ofPSL(2,:IR) which are arith­
metic Fuchsian groups. Then f 1 and f 2 are commensurable in the wide 
sense if and only if kf1 = kf2 and there exists a kf1-algebm isomorphism 
c/J: Af1 --t Af2. 

The proof ofthis is identical to that given for Theorem 8.4.1. Note further, 
that we can take the wide commensurability class in the Fuchsian case to 
mean up to conjugacy in Isom H 2 = PGL(2,:IR) since such conjugacy leaves 
the traces invariant. 

However, for an arithmetic Fuchsian group, the defining quaternion al­
gebra A is unramified at any one of the real places of the totally real 
field k. In the above theorem, the pair (kf, Af) comes equipped with a 
specified embedding of k in :IR. However, the isomorphism class of A is 
described in terms of the places of k (see Theorem 7.3.6), irrespective of 
a particular embedding, so that, once again, some care needs to be ex­
ercised as follows: Let Ai (i = 1,2) be quaternion algebras defined over 
totally real fields k i , unramified at the real embeddings (7i and ramified 
at all other real embeddings. Let Pi : A --t M 2(:IR) be embeddings such 
that pilz(Ai ) = (7i. Let f 1 and f 2 in the above theorem be in the wide 
commensurability classes of Pp1(0i) and Pp2(0~), respectively where 0 1 
and O2 are orders in Al and A2, respectively. Now if f 1 and f2 are com­
mensurable, then (71 (k1) = kr1 = kf2 = (72(k2). Thus the quaternion 
algebras Al and A2 are defined over a field k = k1 ~ k2 and k admits 
an automorphism T = (72"1(71. Suppose furthermore, that Al is ramified at 
the finite places corresponding to the primes PI, P2 , .•. ,Pn of k and A2 

at Q1, Q2, ... , Qn. The isomorphism c/J : Af1 --t Af2 as described in the 
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proof of Theorem 8.4.1, then shows that A2 must be ramified at the finite 
places corresponding to the ideals T(Pi). Thus we conclude the following: 

Theorem 8.4.7 Let r l and r 2 be arithmetic Fuchsian groups obtained 
from quaternion algebras Al and A 2 as described above. If r l and r 2 are 
in the same wide commensurability class in PGL(2,lR), then Al and A 2 are 
defined over a field k which admits an automorphism T such that T maps 
the ramification set of Al to the ramification set 01 A 2 . 

Examples 8.4.8 

1. Let r l and r 2 be as described in Theorem 8.4.7 and let us suppose that 
[k : Q] is prime and k I Q is not Galois. Then Al and A 2 are isomorphie 
sinee the only such automorphism of k is the identity. 

2. Let k = Q(t), where t satisfies x 4 + x 3 - 3x2 - X + 1 = 0, so that 
k I Q( V5) has degree 2 and k I Q is not Galois. Let A be a quaternion 
algebra over k, whieh is ramified at three real places and at one finite 
prime ofnorm 19. There are two primes PI and P2 ofnorm 19 in k and so 
there are eight isomorphism classes of such quaternion algebras over k. 
If a- is the non-trivial element of Gal(k I Q( V5)), then a-(PI) = P2. Thus 
these quaternion algebras give rise to four commensurability classes of 
arithmetic Fuchsian groups. 

Finally, Theorem 8.4.4 and its corollary, hold with Kleinian replaeed by 
Fuchsian. 

Exercise 8.4 

1. Let r be a finite-covolume Kleinian group. Let k l = Q( {tr I' : I' Er}) 
and k2 = Q( {tr 21' : I' E r}). Prove that r is arithmetic if and only if the 
set {trI' : I' E r} consists of algebraic integers, and for every T : k l ----; C 
such that T I k2 -=I- Id or complex conjugation, the set T( {tr I' : I' Er}) is 
bounded in Co 

2. Show that the two-bridge knot (5/3) group is commensurable with the 
two-bridge link (10/3) group (see Exercise 4.5, No. 2). 

3. The orbifold with singular set shown in Figure 8.4 is a finite-volume 
hyperbolic orbifold with orbifold fundamental group r l . Ifr2 = (g, h), where 
o(g) = 2, a(h) = 4, and z = tr [g, h]- 2 E C satisfies z3 + 2z2 + 2z + 2 = 0, 
it turns out that r 2 is also a finite-covolume group. Assuming that r l and 
r 2 have finite covolume, show that r land r 2 are commensurable in the 
wide sense. 

4. Show that the Fuchsian triangle groups (4,6,6) and (2,4,8) are com­
mensurable. 

5. Show that, ifr is arithmetic, either Fuchsian or Kleinian, then the com­
mensurator, Comm(r), is dense in PSL(2,lR) orPSL(2,C), respectively. 
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FIGURE 8.4. 

8.5 Algebraic Integers and Orders 

The methods developed in Chapter 3 enable one to determine kr and Ar 
for a finite-covolume Kleinian group r. From these, it can be decided if kr 
has exactly one complex place and if Ar is ramified at aH real places. The 
remaining ingredient for arithmeticity is to decide if the set {tr "( : "( E r} 
consists of algebraic integers. Recalling results from Chapter 3, we give 
some methods which can be used in this task. 

Lemma 8.5.1 1f r = bl,"(2, ... ,"(nI, then, for each "( E r, tr"( is an 
integer polynomial in {tr "(i1 "(i2 ... "(ir I r 2 1, 1::; i 1 < i 2 < ... < i r ::; n}. 

This is Lemma 3.5.2. However, this can be improved on by using the quad­
ratic polynomial at (3.24). 

Lemma 8.5.2 1f r = bl, "(2, ... , "(nI and the set {tr"(i, tr,,(i'Yj : i,j = 

1,2, ... ,n} consists of algebraic integers, then {tr"( : "( E r} consists of 
algebraic integers. 

Proof: Since x = tr XY Z satisfies a mo nie polynomial whose coefficients 
are algebraic integers in the traces of X, Y and Z and their products in 
pairs (see (3.24)), the result foHows for tr,,(i'Yj"(k. However, we can use the 
polynomial again for x = tr XY(ZW) in the same way. Now repeat. 0 

To decide if a given Kleinian group r is arithmetie, we do not need to 
determine the fuH ramification set of Ar, but merely to show that Ar is 
ramified at the real places. However, in deciding if two arithmetie groups 
are commensurable, the fuH ramification set is required. As so me of the 
examples in Chapter 4 show, this may involve some tricky calculations. We 
now discuss one method which may simplify these calculations. 

If 0 1 is an order in A, then 0 1 is contained in a maximal order O 2 , 

d(02) I d(Od and d(02) = ~(A)2, where ~(A) is the product ofthe prime 
ideals at which A is ramified (see §6.6). Thus for any order 0, those primes 
P at which A is ramified necessarily divide the discriminant d(O). Thus we 
obtain information on possible finite ramification of A by considering the 
discriminant of an order. Discriminants of orders are most easily computed 
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when the order is a free module. Thus if 0 = Rk [Ul, U2, U3, U4], then d( 0) = 

det (tr ( Ui U j )) R k (see Theorem 6.3.2). The following result is then useful in 
calculations and holds under quite general assumptions on r. 

Lemma 8.5.3 Let r be a jinitely generated non-elementary subgroup 0/ 
SL(2, q such that {tr "I : "I E r} consists 0/ algebraic integers. Let R denote 
the ring 0/ integers inQ(tr r). I/ (g, h) is a non-elementary subgroup 0/ r, 
then R[/, g, h, gh] is an order in Ao(r). 

Proof: Recall that {1,g,h,gh} spans Ao(r) over Q(trr). It is dear that 
R[/, g, h, gh] is a complete R-Iattice containing 1, so that it remains to show 
that it is a ring. This can easily be ascertained by checking the products of 
basis elements, making use of the following less familiar identities as weIl 
as the obvious ones: 

g2h=(trg)gh-h 

ghg = (tr h) 1 + (tr gh) 9 + h 
gh + hg = (tr gh - tr 9 tr h)1 + (tr h) 9 + (tr g) h. 

o 

Example 8.5.4 Recall that a non-elementary two-generator subgroup r = 
(g, h) of PSL(2, q is determined up to conjugation by the three complex 
parameters ß(g) = tr 2g - 4, ß(h) = tr 2h - 4 and 'Y(g, h) = tr [g, h] - 2 
(see (3.31)). Consider the case where o(g) = 2, o(h) = 3 and "I satisfies the 
polynomial z3 + 3z2 + 2z + 1 = O. This group arises in the study of groups 
with short simple elliptic axes, but there is no apriori reason why it should 
even be discrete. In fact it is a subgroup of an arithmetic group and we 
determine the isomorphism dass of the quaternion algebra. 

By (3.25), kr = Qb) and the minimum polynomial of'Y has exactly 

one real root in the interval (-3, -2). Also Ar = (-3'd(~)3)) by Corollary 

3.6.4. Thus kr has exactly one complex place and Ar is ramified at the real 
place. Now "I = tr 2gh - 3 so that tr gh is an algebraic integer and, hence, 
so are all the traces in r. Thus r is a subgroup of an arithmetic Kleinian 
group and so, in particular is discrete. 

Now let 0 = Rkdl,ghg-l,h-1 ,ghg-1h-1]. Since h has order 3, hand 
ghg- 1 E r(2), so by Lemma 8.5.3,0 is an order in Ar. As a free module, its 
discriminant is readily calculated to be bb + 3)Rkr)2. Now NkrllQbb + 
3)) = -5. Thus 'Yb + 3)Rkr is a prime ideal which is divisible by ~(Ar). 
Since Ar must be ramified at one finite place at least, by the parity require­
ment, then ~(Ar) = 'Yb + 3)Rkr. This then determines the isomorphism 
dass of Ar. Note also that since d(O) = ~(Ar)2, this order 0 is a maximal 
order. 
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Exercise 8.5 

1. Let r be a cocompact tetrahedral group. Show that kr is arithmetic if 
and only if kr has one complex place (cf. Exercise 8.3, No. 5). 

2. Let r q be a prismatic group as described in §4. 7.3 with q = pn, where p 
is a prime. Show that r q is arithmetic if and only if q = 7,8, 9. 

3. Let r = (g, h) C PSL(2, C), where o(g) = 2, o(h) = 3 and z = tr [g, hJ-2 
satisjies z3 + 4z2 + 5z + 3 = O. Show that r is a subgroup of an arithmetic 
Kleinian group and determine the ramijication set of the quaternion al­
gebra. 

8.6 Further Reading 

As in the last chapter, the initial discussion in §8.1 and §8.2 has been 
infiuenced by the presentation in Vigw§ras (1980a). The identification the­
orem for arithmetic Fuchsian groups appeared in Takeuchi (1975) and was 
modified for Kleinian groups in Maclachlan and Reid (1987). The con­
venient forms in which these are stated in §8.3 are the result of mutation 
through a number of stages, including those given in Hilden et al. (1992c). 
These results have been used to decide the arithmeticity within various spe­
cial families of Kleinian groups [e.g., Neumann and Reid (1992a), Hilden 
et al. (1985), Hilden et al. (1992a), Helling et al. (1998), Bowditch et al. 
(1995), Gehring et al. (1997)J. As mentioned in the Preface, the arithmet­
icity of many specific examples can be decided using the computer pro­
gram Snap (Goodman (2001)). The identification theorem for arithmetic 
Fuchsian groups was used in Takeuchi (1977a) to enumerate the arith­
metic triangle groups. He later established the complete invariance result 
(Theorem 8.4.6) and used this to place these tri angle groups (Takeuchi 
(1977b)) and, subsequently, other arithmetic Fuchsian groups (Takeuchi 
(1983)), into commensurability classes. See also Maclachlan and Rosenber­
ger (1983, 1992a). The semi-arithmetic not ion introduced in Exercise 8.3, 
No. 9 appears in Schmutz SchaUer and Wolfart (2000). The denseness ofthe 
commensurator of an arithmetic Fuchsian or Kleinian group as described in 
Theorem 8.4.4 contrasts strongly with its discreteness in the non-arithmetic 
cases (Margulis (1974)). (See Zimmer (1984) and the discussion in Borel 
(1981)). This result will be diseussed, but not proved, in Chapter 10. Early 
examples in Vigneras (1980a,b) of isospeetral, but non-isometrie hyperbolic 
2-manifolds used arithmetie Fuehsian groups and applied Theorem 8.4.1. 
These will be further examined in Chapter 12. Example 8.5.4 and other 
examples oeeuring in Exercises 8.4 and 8.5 arose in the investigations in 
Gehring et al. (1997). 



9 
Arithmetic Hyperbolic 3-Manifolds 
and Orbifolds 

In the preeeding ehapter, arithmetic Kleinian groups were defined and 
identified amongst aH Kleinian groups. Thus several examples from earlier 
ehapters ean be reassessed as being arithmetie, thus enhaneing their study. 
Moreover, the existenee part of the classifieation theorem for quaternion 
algebras (Theorem 7.3.6) gives the existenee of arithmetic Kleinian groups 
satisfying a variety of eonditions, whieh, in turn, give the existenee of hyper­
bolie 3-manifolds and orbifolds with a range of topologieal and geometrie 
properties. These aspeets will be explored in this chapter. 

9.1 Bianchi Groups 

As shown in Theorem 8.2.3, a non-cocompaet arithmetie Kleinian group is 
eommensurable with some Bianchi group PSL(2, Gd)' Thus these groups 
have a key role in the study of arithmetie Kleinian groups. However, as a 
traetable interesting family of groups, they have a long history and have 
been weH studied from different viewpoints, particularly number-theoretie 
and group-theoretie. Deseriptions of fundamental regions ean be given 
which lead to the geometrie eonstruction of fundamental regions and strue­
tural information. Thus splittings of the groups have been investigated, as 
has their eohomology, non-eongruence subgroups, their role in studies of 
modular functions and forms, their relationship to binary hermitian forms 
and so on. Mueh of this is outwith the scope of what will be eonsidered 
here, where we eoneentrate on eertain geometrie features. 
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Let us denote PSL(2, Gd) by r d. A Ford fundamental domain for r d is 
the intersection of the region B d exterior to all isometrie spheres which can 
be described as 

Bd = {(z, t) E H 3 I h'z - (W + t 2 1'Y12 :::: 1 for all 1',8 E Gd 

such that (,},,8) = Gd} 

and a fundamental region for the stabiliser of 00, (r d)oo. This has already 
been discussed in the cases d = 1,3 (see §1.4) and the groups PGL(2, Gd 
and PGL(2, G3 ) have been shown to be polyhedral groups as they are 
subgroups of index two in the Coxeter reflection groups with symbols given 
in Figure 9.1 (see §4. 7). We now consider the cusp set C(r d) of r d. Let Kd = 

o---o-----<;p;;;;;;;() 

FIGURE 9.1. 

Q( R) and denote its dass number by hd. As an arithmetic Kleinian 
group, r d is of finite covolume. Thus every parabolic fixed point will be a 
cusp and the orbifold H 3 Ir d will have a finite number of ends (see Theorem 
1.2.12). 

Theorem 9.1.1 The cusp set 0/ r d is C(r d) = lP'Kd C lP'C, where lP'C 
is identified with 8H3 = C U {oo} and the number 0/ ends 0/ H 3 Ir d = 
IlPKd/rdl = hd. 

Proof: Clearly every cusp of r d can be identified with an element [x, y] E 

lP'Kd. Conversely, for [x,y] E IP'Kd, with x,y E Gd, the parabolic element of 

r d given by (1+~Y l- x2 ) fixes [x, y]. 
y -xy 

Let C denote the dass group of K d [Le., the group of fractional Gd-ideals 
modulo principal ideals (see §O.5)]. The mapping cjJ : C(rd) -+ C, defined 
by cjJ[x, y] = [< x, y >], the equivalence dass of the ideal< x, y > generated 
by x, y, is well-defined. Since every ideal in Gd can be spanned by a pair of 
elements, cjJ is onto. It is straightforward to check that cusps are equivalent 
under the action of PSL(2, Gd) if and only if their images agree in C(see 
Exercise 9.1, No. 1). 0 

Of course, the cusp set is a commensurability invariant (see Exercise 1.3, 
No. 3), so for any group r commensurable with r d, then the number of 
ends of H 3 Ir is IIP'Kd/r!. 

As is well-known, the determination of dass number, even for quadratic 
fields, is not at all easy. We remind the reader that the rings Gd for d = 
1,2,3,7,11 are Euclidean domains and, furthermore, that hd = 1, for, in 
addition, d = 19,43,67,163. 

The Bianchi groups arise, of course, as the groups P( ( 1), where 0 = 
M 2 (Gd ) is a maximal order in the quaternion algebra M 2 (Q( R)). The 
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number of conjugacy classes of maximal orders is the type number which, in 
these cases, is C /C(2) with the classes represented by the orders M 2(Od; J), 
where J is a non-principal ideal in Od (see (2.5) and §6.7). Thus, although 
the Bianchi groups single out the maximal orders M2 (Od) up to conjugacy, 
these are not the only ones to be considered (see §9.2). Also, as will be 
shown in §11.1, for all maximal orders 0, the covolumes of p(OI) are the 
same. 

Exercise 9.1 

1. Show that for [x, y], [x', y'] E JP> K d, there exists 'Y Erd such that 'Y[X, y] = 
[x',y'] if and only if [< x,y >] = [< x',y' >]. 

2. Let hd > 1 and let J be a non-principal ideal in Od. Let 0 denote the 
maximal order M 2 (Od; J). Show that 0 and 00 are inequivalent cusps of 
P(OI). 

9.2 Arithmetic Link Complements 

As noted in Chapter 1, most link complements and many knot comple­
ments are hyperbolic 3-manifolds of finite volume. For some examples, we 
computed the invariant trace fields in Chapters 4 and 5. Now let us con­
sider the additional requirement that these are arithmetic. Further families 
which are arithmetic will be exhibited here, but also restrietions on the 
occurence of arithmetic knot and link complements will be obtained. 

By Theorem 8.2.3, any arithmetic link complement has its fundamental 
group commensurable with some Bianchi group r d. Some examples have 
already been noted, which we now briefly recall. The fundamental group 
of the figure 8 knot complement has been shown to be a subgroup of r 3 . 

Furthermore, as discussed in Chapter 1 and subsequently, the figure 8 knot 
complement can be realised as the union of two regular ideal tetrahedra 
with dihedral angles 7f /3. The barycentric subdivision of that tetrahedron is 
the tetrahedron ofPGL(2, 0 3 ) shown in Figure 9.1, so that the fundamental 
group is of index 12 in r 3 . 

In Exercise 4.5, No. 2, the fundamental group of the complement of 
the two-bridge link (10/3) was shown to be generated by the matrices 
(A t ), (; ~), where z satisfies z2 + 3z + 3 = O. Thus this group is also 
arithmetic, with a representation inside r 3 . 

In Exercise 4.4, No. 2, the complement of the Borromean rings is given 
as the union of two regular ideal octahedra with dihedral angle 7f /2 and 
the identifying matrices for the fundamental group can be calculated to lie 
in PGL(2, 0 1 ). Since the barycentric sub division of these octahedra is the 
tetrahedron of PGL(2, 0d shown in Figure 9.1, it follows that the funda­
mental group has index 24 in PGL(2, Od. In §4.5, the fundamental group 
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of the Whitehead link complement was also shown to be an arithmetie 
subgroup of r 1. More generally, we have the following: 

Theorem 9.2.1 There are infinitely many links whose complements are 
arithmetic hyperbolic 3-manijolds. 

Proof: Let L denote the Borromean rings so that none of the components 
are knotted and linking numbers are zero. Thus if we take cyclic covers 
of S3 \ L branched over one component of L, then the cover is still a link 
complement in S3. The corresponding fundamental groups are then all 
commensurable with r 1. D 

We now sketch a method developed by Thurston and Hateher which ex­
hibits examples in r d for the Euclidean cases d = 1,2,3,7,11. There is a 
tesselation '4, of H3 by congruent ideal polyhedra which is invariant under 
PGL(2, Gd)' This is constructed as follows: Recall that the Ford funda­
mental region for PGL(2, Gd) can be obtained as the region Bd exterior to 
all isometrie spheres Sah for (~ n E GL(2, Gd), 'Y -I- 0, intersected with a 
fundamental region for the stabiliser of 00. The boundary of B d consists 
of polygons on certain isometrie spheres bounded by geodesics which are 
interseetions of pairs of neighbouring isometrie spheres of 8Bd. For the Eu­
clidean values of d, only the isometrie spheres of radius 1 contribute to the 
boundary which can be conveniently exhibited by its vertical projection 
onto C (see Figure 9.2 for d = 7). To construct '4" we take its I-skeleton 
T.t1 to be the orbit under the action of PGL(2, Gd) on the vertical geodesies 
in Bd lying above the cent res 'Y / (j of isometrie spheres contributing to 8Bd. 
The 2-skeleton Tl is the orbit of the vertical geodesie plane segments in 
Bd above the line segments in C joining centres of neighbouring isometrie 
spheres of 8Bd . In these Euclidean cases, Tl consists of the orbit of the 
geodesie from 0 to 00 under PGL(2, Gd) and so consists of all geodesies 

C' 

FIGURE 9.2. 
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c 

o 1 

FIGURE 9.3. 

with end points ah and ß/J where P(~~) E PGL(2,Gd ). It follows that 
'Li is a tesselation by congruent ideal polyhedra. 

The portion of such a polyhedron in Bd can be constructed in each of 
the cases d = 1,2,3,7,11 and, for d = 7 is shown in Figure 9.3, where the 
vertex labelling corresponds to that in Figure 9.2 and w = (1 + yC7{)/2. 
An ideal polyhedron in the tesselation 'Li is then a union of images of 
this portion, and in the case d = 7, the portion is a fundamental region 
and the ideal polyhedron is a union of six images and has ideal vertices 
A', B', C', D' , E' and 00 of Figure 9.2. Combinatorially, it is a tri angular 
prism. For the other values of d, the combinatorial structure is shown in 
Figure 9.4. In addition, the cycle of faces of 'Li round an edge of 'Li is 
uniquely determined and, again in the case d = 7, it is TQQTQQ, where 
T is a triangle and Q a quadrilateral. 

The importance of this construction is that PGL(2, Gd) is the full group 
of orientation-preserving combinatorial symmetries of the tesselation 'Li 
and contains the subgroups of all combinatorial symmetries of each poly­
hedral cello Thus if r is a torsion-free subgroup of PGL(2, Gd), no element 
of r can take a point of an open 1-, 2- or 3-cell of 'Li to another point of that 
cell so that the manifold H3/r admits a decomposition into 3-cells identi­
fied along 2-cells in such a way that around each 1-cell, the cyclic pattern 
of 2-cells for that particular value of d is maintained. Conversely, any ori­
entable 3-manifold admitting a cell decomposition as just described will be 

d=l d=2 d=3 d=7 d=ll 

FIGURE 9.4. 
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FIGURE 9.5. 

homeomorphic to H 3 Ir, where r is a torsion-free subgroup of PGL(2, Od), 
since lifting these cells to the universal cover gives a decomposition which 
is combinatorially isomorphic to the tesselation 'TcJ in H3. 

Thus, in particular, any link complement which admits such a decom­
position will be arithmetic. It has been shown in §5.5 how to obtain de­
compositions of knot and link complements. The case of the figure 8 knot 
complement being a l.wion of two regular ideal tetrahedra falls into this 
pattern. We can see that the link in Figure 9.5 has a complement which is 
a union of two ideal prisms by using the method described in §5.5. Thus, 
by the above discussion, its fundamental group will be arithmetic, being 
a subgroup of PGL(2, 0 7 ). Furthermore, as a union of two such 3-cells, it 
will be of index 12 in PGL(2, 0 7 ). For the Borromean rings, this proced­
ure leads to the description of their complement as a union of two ideal 
octahedra and this is the description given in Figure 4.2. The Whitehead 
link complement admits such a decomposition with just one cello There 
are variations on the method which show that other link complements are 
arithmetic. 

The method described above gives examples of arithmetic link comple­
ments in the groups PGL(2, Od) for d = 1,2,3,7,11. Indeed they must all 
be conjugate to subgroups of r das, more generally, the following result 
holds. 

Theorem 9.2.2 Let H3 Ir be an arithmetic link complement. Then r is a 
subgroup of p(OI), where 0 is a maximal order in M 2 (Q( .J=d)) for some 
d. 

Proof: By Corollary 4.2.2, kr = Q(tr r). Then if r is arithmetic, r must 
be derived from a quaternion algebra by Corollary 8.3.6. D 

As noted earlier, when the type number of M 2 (Q( .J=d)) is greater than 1, 
the maximal order need not be M 2 (Od) and so r need not be a subgroup of 
r d. Indeed, there are examples of arithmetic link complements H 3 Ir, where 
r c P( 0 1 ) for a maximal order 0 in M 2 (Q(.J=d)) and r is not conjugate to 
a subgroup of r d. The link L shown in Figure 9.6 has such a representation 
with 0 = M2 (015; J), where J is the non-principal ideal generated by 
2, (1 +w) where, as usual, w = (1 + V-15)/2. We omit the details, but the 
method is to find a subgroup of P(OI) with 0 = M 2 (015; J) and obtain a 
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FIGURE 9.6. 

fundamental region for this group thus determining a presentation for the 
group using Poincare's Theorem. Then obtain an isomorphism with the 
fundamental group of the link complement and hence establish, as in §1.4, 
that S3 \ L has a complete hyperbolic structure H 3 Ir, where r c P(OI). 
1fT were conjugate to a subgroup of r 15 , then conjugacy would be by 
an element in the commensuratar, which is PGL(2, Q( V-15)). The order 
O(r) would then be conjugate into 0(r I5 ) = M 2 (OI5). However, a direct 
calculation on the particular subgroup r of P( 0 1 ) shows that O(r) = 
M 2 (OI5; J). 

Exercise 9.2 

1. Describe the polyhedral cell decomposition T2. 

2. Show that the link complements in Figure 9.7 are arithmetic. 

3. Show that there are infinitely many arithmetic links with two compon­
ents. 

9.3 Zimmert Sets and Cuspidal Cohomology 

All of the examples of arithmetic link complements considered so far have 
been far sm all values of d. This is not just a matter of convenience. There 
are only finitely many values of d such that r d can contain an arithmetic 

FIGURE 9.7. 
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subgroup r such that H3 Ir is a link complement. The full proof of this 
goes beyond the scope of this book, but we sketch the underlying ideas. 

Let D = tJ.(Kd ). 

Definition 9.3.1 The Zimmert set Zd is the set of positive integers n such 
that the following conditions are satisfied: 

• 4n2 < IDI - 3 and n =I- 2. 

• D is a quadratic non-residue modulo all odd prime divisors of n. 

• n is odd if D ;f:. 5(mod 8). 

Let r(d) denote the cardinality of the set Zd. 

Note that r(d) = 0 if and only if d = 1,3 and, in all other cases, 1 E Zd 
(see Exercise 9.3, No. 1). 

The significance of this set is that, corresponding to the elements of the 
Zimmert set, there are disjoint slices of the fundamental region for r d from 
which homotopically independent closed paths in the quotient space H3 Ir d 

can be determined. We sketch the construction. For each n E Zd and mEZ 
such that (n, m) = 1 define 

where Bd is as described in §9.1 and w = H or (I+H)/2. For distinct 
pairs (n, m) these sets are disjoint and we further define cPn : Bd ----? SI by 

if (z, t) E Fn,m 

if (z, t) f/. UFn,m' 

Then cPn is well-defined. It requires extra work to show that it induces a 
continuous surjection fn : H 3 Ir d ----? SI and that these maps fn, for each 
n E Zd, can be combined to give a continuous map to a wedge of r(d) 
circles, thus inducing an epimorphism 

f: rd ----? Fr(d) (9.1) 

where Fr(d) is the free group on r(d) generators. 
Now let us consider how f behaves with respect to parabolic elements, 

which, from Theorem 9.1.1, fall into hd conjugacy classes of cusp stabilisers. 
The "horizontal" path in B d from (-i/IDI 2 , 1) to (-i/IDI 2 + w, 1) only 
meets the set FI,o except at the end point which lies in FI,I. The translation 
z ~ z+w in the stabiliser of 00 maps the initial point ofthis path to its end 
point. It follows that, under f, this parabolic element maps to a non-trivial 
element of Fr(d), which can be taken to be a generator. Now a parabolic 
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element (1;<> 120 ) in f d is easily shown to be conjugate to a translation 
in (f d)oo if and only if ooOd + ßOd is a principal ideal (see Exercise 9.3, 
No. 3). On the other hand, using the description of the sets Fn,m, it can 
be shown, but we omit the proof, that if ooOd + ßOd is not a principal 
ideal, with 00 and ß chosen such that ß I 002 , then (1;<> -t~~ß) lies in the 
kernel of the mapping J. By Theorem 9.1.1, these elements lie in thc cusp 
stabilisers corresponding to the non-identity elements of the dass group. 
Thus from J, we obtain an epimorphism 1: f d --+ zr(d)-l which vanishes 
on all parabolic elements of f d. 

For each i E lP' Kdjf d, let Pi (f d) denote the maximal parabolic stabiliser 
of a representative cusp. Then, by inclusion, we have a homomorphism 
oo(fd) : P(fd) --+ f db , where P(fd) = TIiEIP'Kd/rd Pi(fd) and f db is the 
abelianisation of f d. This induces 

(9.2) 

For Zimmert sets, the following theorem, which we will not prove, holds: 

Theorem 9.3.2 For alt but a finite number oJ d, red) :::: 2. 

Corollary 9.3.3 For alt but a finite number oJ d, oo(f d)iQI at (9.2) is not 
surjective. 

The corollary follows immediately from the theorem and the properties 
of 1 outlined above. The precise exceptions in this corollary have been 
determined and this is discussed, again without proof, below. 

Now suppose that f is a torsion-free subgroup of finite index in f d and 
define, as above, P(f) to be the product TIiEIP'Kd/r Pi(f). Likewise, we have 
amap 

(9.3) 

Since f is of finite index in f d, the mapping 

will be surjective. Thus whenever d is such that oo(f d)iQI at (9.2) fails to be 
surjective, so does oo(f)iQI at (9.3) since 7r 0 oo(r)iQI factors through oo(f d)iQI' 

We now re interpret this in cohomological terms. For the moment, let f 
be any non-cocompact torsion-free finite-covolume Kleinian group. Then 
there is a compact manifold M with boundary äM consisting of tori such 
that the interior MO is homeomorphic to H 3 jf. Consider the long exact 
cohomology sequence for the pair (M, äM): 



284 9. Arithmetic Hyperbolic 3-Manifolds and Orbifolds 

Definition 9.3.4 With rational (or complex) coefficients, the image of a* 
in (9.4) is called the cuspidal cohomology ofr. 

This definition is a little restrictive, as we have required r to be torsion 
free. More generally, with complex coeficients, these cohomology groups 
can be described for any such r without this restrietion, via the de Rham 
theory and the images of a* are then spaces of harmonie cusp forms. 

Returning to the situation where r is a torsion-free subgroup of r d, 

the mapping at (9.3) in the above terminology becomes the natural map 
H1(ßM) -t H1(M). This failing to be surjective implies, by duality in the 
cases considered here, that the map H1(ßM) -t H 2 (M,ßM) fails to be 
surjective. Thus the image of a 2 defined at (9.4) cannot be trivial and we 
deduce the following: 

Theorem 9.3.5 If r is a torsion-free subgroup of finite index in r d and 
a(r d)Q at (9.2) fails to be surjective, then r has non-trivial cuspidal co­
homology. 

Now suppose that r is a torsion-free non-cocompact finite-covolume 
Kleinian group such that H3 Ir is a link complement 8 3 \ L, where L 
has m components. Then a simple calculation, taking coefficients in Q, 
gives H 3(M) = 0, H 2 (M) ~ Qm-I, H 2 (ßM) ~ Qm and, by duality, 
H3(M, ßM) ~ Ho(M) ~ Q. Thus from (9.4), the image of a 2 is trivial 
(see Exercise 9.3, No. 4). Thus from Corollary 9.3.3 and the preceding dis­
cussion, we obtain the following restrictions on the existence of arithmetic 
link complements. 

Theorem 9.3.6 There are only finitely many values of d such that r d can 
contain a subgroup r of finite index such that H 3 Ir is the complement of 
a link in 8 3 . 

Our argument shows that whenever r d has non-trivial cuspidal cohomo­
logy (suitably interpreted), then r has non-trivial cuspidal cohomology. 
Thus the finite values of d such that r d can contain an arithmetic link 
complement group will be among those values of d for which r d has trivial 
cuspidal cohomology. This set of values has been determined precisely, us­
ing a different construction to the Zimmert set approach outlined above. 
The proof of this will not be discussed here. 

Theorem 9.3.7 The group r d has trivial cuspidal cohomology for precisely 
the values 

d = {-I, -2, -3, -5, -6, -7, -11, -15, -19, -23, -31, -39, -47, -71}. 

However, we should note that, as we have seen, arithmetic link complements 
may correspond to subgroups of P(Ol), where 0 is a different maximal 
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order to M 2 (Od) in M 2 (Kd). All ofthe above discussionjust concerns rd. 
However, Theorem 9.3.7 has been extended to the groups p(OI) for all 
maximal orders 0 in M 2 (Kd ) to show that the only values of d for which 
there are groups P( 0 1 ) with trivial cuspidal cohomology are those given 
in the theorem together with 

d = {-10 -14 -35 -55 -95 -119} , , , , , . 

For so me of these additional values, there are arithmetic link complements. 
There has been a great deal of work on cuspidal cohomology and the 

cohomology of arithmetic groups which goes beyond the scope of what 
is considered here. Some of this work has had a strong impact on the 
related topology and geometry along the lines which are being emphasised 
in this book. We state, without proof, the following result, which is one 
such illustration (cf. Exercise 9.5, No. 1). 

Theorem 9.3.8 (elozel) Let r be an arithmetic Kleinian group such that 
Ramf(Ar) = 0. Then r has a torsion-jree subgroup Ll of finite index such 
that b1 (H3 I Ll) > 0, where b1 is the first Betti number. 

Thus Theorem 9.3.8 gives a positive answer in this setting to the quest ions 
raised at the end of §5.3.2 concerning the virtual Haken conjecture. There 
are strengthenings of Clozel's result which involve other conditions on the 
invariant quaternion algebra. However, complete answers to the quest ions 
raised in §5.3.2, even in the arithmetic setting, are still unknown. 

Exercise 9.3 

1. Determine the Zimmert sets Zd for 5:::; d :::; 15. 

2. Prove that the groups r d are virtually indicable. An indicable group 
admits an epimorphism onto Z. Using the results stated in this section, 
show that all but a finite number of the groups r d are SQ-universal. (In 
fact, they are all SQ-universal.) 

3. Prove that the element (1~'" 12",) Erd is conjugate to a translation in 
r d if and only if aOd + ßOd is a principal ideal in Od. 

4. Show that, if H 3 Ir is a link complement, then r has trivial cuspidal 
cohomology (i.e., the image of an at (9.4) is trivial for all nj. 

9.4 The Arithmetic Knot 

In this section, it is shown that the figure 8 knot yields the only arithmetic 
hyperbolic knot complement. 
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Theorem 9.4.1 Let r be an arithmetic Kleinian group such that H 3 Ir is 
a knot complement 8 3 \ K. Then K is the figure 8. 

Proof: Let r be as given in the statement. Then by Theorem 9.2.2, we 
know that r c P(Ol), where 0 is a maximal order in M 2(Q(R)) for 
some d. By Theorem 9.1.1 and Exercise 9.1, No. 2, p(Ol) has more than 
one end if hd > 1. Thus hd = 1 and so the type number of M 2 (Q( R)) is 
1. Thus, up to conjugacy, it can be assumed that r erd. 

Let'"Y be a parabolic element in r, which is a meridian of K, fixing 00. 

Thus '"Y = (ö t), where x E Od. 
Suppose that x is not a unit in Od so that there is a prime ideal P 

in Od such that P I XOd. Reducing modulo P yields a homomorphism 
r d -+ PSL(2, OdIP) which vanishes on r since r is normally generated by 
'"Y. Thus r will be contained in r d(P), the principal congruence subgroup 
of level P in r d. However, the cusps 0 and 00 are inequivalent in r d(P) 
(see Exercise 9.4, No. 1), thus forcing r to have more than one end. 

Thus x must be a unit in Od. Now 0 is a cusp of r, so that there is a 
parabolic element 8 in r, conjugate to '"Y, which fixes O. Thus 8 = (~n 
where, as for x, y must be a unit in Od. Note that tr'"Y8 = 2 + xy and 
tr b, 8] = 2 + (xy)2. Thus for d f:. 3 and all possible choices of x, y E 0d' r 
will contain elements whose trace is 1. As r is torsion free, this is a contra­
diction. Also, when d = 3, the only possible choices for {x,y}, up to sign, 
are {1,w},{I,w},{w,w} and {w,w}. Conjugation by (~WC2.1) transforms 
{I, w} to {w, w} and complex conjugation defines an isomorphism. Thus, 
we can assurne that r contains '"Y and 8 with {x, y} = {I, w}. Thus r con­
tains the figure 8 knot group which is a maximal torsion-free subgroup of 
r 3 since it is of index 12 and r 3 contains the finite subgroup A4 of order 
12. Thus r coincides with the figure 8 knot group. 0 

This theorem and those in §9.3 show that the existence of cuspidal co­
homology places severe restrictions on a link complement in 8 3 being an 
arithmetic hyperbolic 3-manifold. In contrast to this, define a link L in 
a closed orientable manifold M to be arithmetic if M \ L is an arith­
metic hyperbolic 3-manifold. With this definition, every closed orientable 
3-manifold contains an arithmetic link, indeed one which is commensurable 
with 8 3 \ K, where K is the figure 8 knot. We will not prove this here, but 
simply remark that it follows from the fact that K is universal. In keeping 
with the topic of this section, interesting questions concerning the existence 
of arithmetic knots can then be posed. 
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Exercise 9.4 

1. Show that the cusps 0 and 00 are inequivalent modulo r d(P), the prin­
cipal congruence subgroup of level P in r d, where P is any prime ideal. 

2. Show that Theorem 9.4.1 holds with S3 replaced by a homotopy 3-sphere. 

9.5 Fuchsian Subgroups of Arithmetic Kleinian 
Groups 

In Corollary 8.4.2, we showed that for any number field with exactly one 
complex place, there are infinitely many commensurability classes of com­
pact hyperbolic 3-manifolds with that field as its trace field. This sterns 
from the existence theorem for quaternion algebras and various modifica­
tions to this basic result will be made to exhibit the existence of infinite 
families of hyperbolic 3-manifolds with specific properties. The first ex­
ample of this occurs in Theorem 9.5.1. 

We recall that, from Theorem 5.3.1 and Corollary 5.3.2, for any compact 
hyperbolic 3-manifold M = H 3 Ir such that the invariant trace field kr 
has no proper subfields other than Q and Ar is ramified at at least one 
real place, then M contains no immersed totally geodesie surfaces. Recall 
from Theorem 5.3.4 that if every closed hyperbolic 3-manifold contained an 
immersed totally geodesic surface, then every closed hyperbolic 3-manifold 
would have a finite cover which is Haken. Theorem 9.5.1 shows that there 
are many cocompact arithmetic hyperbolic 3-manifolds which satisfy the 
conditions of Theorem 5.3.1. Thus it is not sufficient to appeal to Theorem 
5.3.4 to settle the virtual Haken conjecture raised in §5.3.2, even in the 
restricted arithmetic case. 

Theorem 9.5.1 There exist injinitely many commensurability classes of 
compact hyperbolic 3-manifolds which have no immersed totally geodesic 
surfaces. These may be chosen to have the same trace jield. 

Proof: Let k be any field with one complex place and odd prime degree 
over Q. There are infinitely many isomorphism classes of quaternion algeb­
ras over k which ramify at all real places. Each such quaternion algebra 
yields a commensurability class of arithmetic Kleinian groups by Theorem 
8.4.1 and, hence, torsion-free Kleinian groups satisfying the conditions of 
Theorem 5.3.1. D 

For arithmetic Kleinian groups, there is a much more precise descrip­
tion of the containment of non-elementary Fuchsian subgroups and we will 
pursue that in this section. 
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Theorem 9.5.2 Let P be a non-elementary Puchsian subgroup of an arith­
metic Kleinian group r. Then P is a subgroup of an arithmetic Fuchsian 
group G. 

Proof: Let C denote the circle or straight line in C left invariant by P so 
that 

Pe G := hEr I 'Y(C) = C and l' preserves the components of t \ Cl. 

Let k = kr and A = Ar so that k has exactly one complex place. Thus 
R = kG c k n lR is totally real (see Exercise 0.1 No. 2). Since all traces in 
rare algebraic integers, the same is true for G. As P is non-elementary, 
there exist hyperbolic elements g, h E p(2) such that A = kr[I, g, h, gh] 

and A ~ (~) where a = tr 2g - 4 and b = tr [g, h]- 2 (see (3.36)). Note 

that AG = kG[I, g, h, gh] and AG ~ (:~). Let T be any real embedding 
of kG, T =I- Id. Then T will be the restriction of a Galois monomorphism 0' 

of kr, where 0' =I- Id or complex conjugation. Thus 0' is real and since A is 
ramified at all real places of kr, O'(a), O'(b) < O. Thus AG is ramified at T. 

Also AG cannot be ramified at the identity, otherwise p(2) C (AG)l c 1-[1. 
However, all elements of 1{l have traces in the interval [-2,2] which is false 
for the hyperbolic elements of F(2). Thus AG is a quaternion algebra over 
a totally real field which is ramified at all real places except one. Now VG 
is an order in AG, so that VG l is an arithmetic Fuchsian group. Since 
p(2) C VGl , VGl leaves C invariant and so VGl C G. Thus G is a finite 
covolume Fuchsian group and, by Theorem 8.3.10, is arithmetic. D 

Corollary 9.5.3 With rand G as in Theorem 9.5.2, 

1. [kr: kG] = 2 and kG = kr n lR. 

2. Ar ~ AG ®kG kr. 

Proof: If [kr: kG] > 2, the identity embedding of kG would be the 
restriction of an embedding 0' of kr, different from the identity and complex 
conjugation. Thus exactly as in the proof of the theorem, we would have 
p(2) C (AG)l c 1{l. Thus [kr: kG] = 2 and, hence, kG = kr n:IR. Part 2 
follows directly from the proof of the theorem. 0 

This procedure can be reversed to show the existence of arithmetic Fuchsian 
subgroups. 

Theorem 9.5.4 Let k be a field with one complex place and let A be a 
quaternion algebra over k which is ramified at all real places. Assume that 
(k, A) satisfy the additional two conditions: 

1. [k : R] = 2, where R = k n:IR. 
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2. There is an indefinite quaternion algebra B over I! [i. e., one which 
is unramified at at least one real place} such that B ®R k ~ A. 

Then every arithmetic Kleinian group obtained from A contains arithmetic 
Fuchsian subgroups obtained from B. 

Proof: Implicit in this statement is the fact that B does yield arithmetic 
Fuchsian groups. Note, first of all, that I! is totally real. Also, if v is any 
valuation on I! and w a valuation on k such that w I v, then 

(9.5) 

(see Theorem 0.7.2). Thus if w is areal Archimedean valuation, the left­
hand side of (9.5) is isomorphie to 7-{ and so B must be ramified at v. As 
B is indefinite, it is thus ramified at all real pI aces except one and does, 
indeed, yield arithmetic Fuchsian groups. 

Let 0 be an order in B so that 

O®R~ Rk = 0 

is an order in A (see Exercise 6.3, No. 3). Thus 0 1 embeds in 0 1 . If r is 
an arithmetic Kleinian group obtained from A, then r is commensurable 
with pp(Ol) and contains the arithmetic Fuchsian subgroup pp(Ol) n r. 
(For an extension of this result, see Exercise 9.5, No. 2.) 0 

Each isomorphism class of quaternion algebras B over I! supplies a dis­
tinct commensurability class of Fuchsian subgroups to such an arithmetic 
Kleinian group. So, given A, the distribution of these quaternion algebras 
B over I! will now be investigated. 

Theorem 9.5.5 Let k be a number field with one complex place and let A 
be a quaternion algebra over k which is ramified at all real places. Let k 
be such that [k : I!] = 2, where I! = k n lR. Let B be a quaternion algebra 
over I! which is ramified at all real places except the identity. Then A ~ 
B ®R k if and only if Ramf(A) consists of 2r distinct ideals, r possibly 
zero, {Pi, Pi, ... ,Pr, P;}, where Pi n RR = PI n RR = Pi and Ramf(B) => 
{Pi, ... ,Pr} with Ram f (B) \ {pi, ... ,Pr} consisting of primes in RR which 
are either ramified or inert in the extension k I I!. 

Proof: Note that Ramf(A) is empty when r = 0, and in that case, 
Ramf(B) mayaIso be empty. 

We make use of the isomorphism at (9.5). Suppose that P is an ideal in 
Rk and p = P n RR Thus, if A ~ B ®R k, then 

(9.6) 

Clearly, if B splits at p, then A splits at P. If P is either ramified or inert 
in the extension k I I!, then [kp : I!p] = 2. However, if B is ramified at p, 
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then B ®e f p splits under any quadratic extension by Theorem 2.6.5. Thus 
A cannot be ramified at any prime P such that P is inert or ramified in 
kif. If P decomposes in kif, then f p ~ kp is an isomorphism. It follows 
from (9.6) that A is ramified at P if and only if B is ramified at P if and 
only if A is ramified at pi, where P n Re = pi n Re = p. 

Suppose, conversely, that B is as described in the theorem and let A' = 
B ®e k. Since k has exactly one complex place, at all real valuations v of 
f, apart from the identity, the embeddings f v ~ kw at (9.5) are isomorph­
isms. Thus A' is ramified at all real places. By the argument used in the 
first part, A' is also ramified at all pairs Pi, PI as given in the statement 
and at no other finite places. Thus A' has the same ramification set as A 
and so A' ~ A. D 

The preceding results give a precise description of those arithmetic Klein­
ian groups which do not contain any non-elementary Fuchsian subgroups or, 
equivalently, arithmetic hyperbolic 3-manifolds which do not contain any 
totally geodesie surfaces. Thus there exist many more families than those 
outlined in the proof of Theorem 9.5.1. We can even produce infinitely 
many examples where the invariant trace field is any quadratic imaginary 
field Q( R) by simply requiring that A be ramified at some non-empty 
collection of even cardinality of primes P, where P = pOd for p a rational 
prime (see Exercise 9.5, No. 3). 

In the other direction, we have the following: 

Theorem 9.5.6 Let r be an arithmetic Kleinian group which contains a 
non-elementary Fuchsian subgroup. Then r contains infinitely many com­
mensurability classes of arithmetic Fuchsian subgroups. 

Proof: By Corollary 9.5.3, r contains an arithmetic Fuchsian group G 
where [k : f] = 2 with k = kr, f = kG = k n IR and Ar ~ AG ®e k. 
Thus Ramf(Ar) = {PI, PL ... ,Pr, P~} where Pi n Re = PI n Re = Pi by 
Theorem 9.5.5. Now let B be a quaternion algebra over f which is ramified 
at all real places except the identity, at the places {PI, ... ,Pr} and at any 
other set of primes p in Re which are inert or ramified in the extension 
kif, such that the ramification set has even cardinality. Note that there 
are infinitely many prime ideals p in Re which are inert in kif (Corollary 
0.3.13). Then B ®e k ~ A by Theorem 9.5.5. 

Each B then contributes an arithmetic subgroup of rand for different 
choices of the ramification set of B, the corresponding Fuchsian subgroups 
will be incommensurable. D 

In particular, we note that each Bianchi group r d will contain infinitely 
many commensurability classes of arithmetic Fuchsian subgroups. All but 
one of these classes will be cocompact. Thus arithmetic link complements 
contain infinitely many compact totally geodesie surfaces which are pair-
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wise non-commensurable. Furthermore, by Theorem 5.3.4 the link comple­
ments will have finite covers which admit closed embedded totally geodesic 
surfaces. However, the totally geodesic surfaces in the link complements 
themselves may weIl not be embedded, as the following general result shows. 

Theorem 9.5.7 Let L be an alternating link or closed 3-braid such that 
8 3 \ L is hyperbolic. I/ ~ is a closed embedded incompressible sur/ace in 
8 3 \ L, then ~ cannot be totally geodesic. 

Proof: This relies on the Meridian Lemma which asserts that with Land 
~ as in the statement, ~ contains a circle isotopic in 8 3 \ L to a meridian. 
This meridian would then arise from a parabolic element, which, if ~ were 
totally geodesie, would lie in a cocompact Fuchsian subgroup, which is 
absurd. 0 

In the converse direction to the discussion in this section, we have already 
noted that every arithmetic Fuchsian group is contained in some arithmetic 
Kleinian group (see Exercise 8.3, No. 2 and §10.2). 

Exercise 9.5 

1. Show that i/ an arithmetic Kleinian group contains a non-elementary 
Fuchsian subgroup, then it has a finite cover with positive first Betti number. 

2. Looking ahead to §11.4, every arithmetic Kleinian (or Fuchsian) group 
r is a subgroup 0/ finite index in some Pp(NA(E)), where E is an order 
in the quaternion algebra A, NA(E) is the normaliser 0/ E in A and p is 
a representation 0/ A into M 2 (C). Use this to show that i/ an arithmetic 
Fuchsian group F embeds in an arithmetic Kleinian group r, then any 
group commensurable with F embeds in a group commensurable with r. 

3. Let k be any number field with exactly one complex place. Show that 
there are infinitely many commensurability classes 0/ compact hyperbolic 3-
mani/olds which contain no immersed totally geodesic sur/aces and whose 
trace field is k. 

4. Show that the Fuchsian triangle group (2,5,5) embeds in the tetrahedral 
group with Coxeter symbol as shown in Figure 9.8 

0----0 0----0 

FIGURE 9.8. 
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9.6 Fuchsian Subgroups of Bianchi Groups and 
Applications 

We continue our investigations of non-elementary Fuchsian subgroups of 
arithmetic Kleinian groups by concentrating on the Bianchi groups and 
groups commensurable with them. As we discussed after Theorem 9.5.6, 
these groups all contain infinitely many commensurability classes of cocom­
pact arithmetic Fuchsian subgroups. It is our intention here to give a some­
what more geometrie description of these classes. We can also apply these 
results to deduce existence theorems about incompressible surfaces in 3-
manifolds obtained by Dehn surgery on arithmetic hyperbolic 3-manifolds. 

Lemma 9.6.1 Let F be a non-elementary Fuchsian subgroup of the Bian­
chi group r d. Then F preserves a circle or straight-line in Cu 00 

alzl 2 + Bz + Bz + e = 0, 

where a,e E Z and BE Gd. 

Proof: Since F is a non-elementary Fuchsian subgroup, it does preserve 
a circle or straight-line C in Cu 00. Assume this has equation alzl 2 + Bz + 
Bz + e = 0 with a and e real numbers and B complex. By conjugating in 
r d, we may assume that a =I=- 0 (see Exercise 9.6, No. 1). Hence, on further 
dividing, we can assume that a = 1. 

Since F is non-elementary, it contains a pair of non-commuting hyper­
bolic elements with distinct fixed points which lie on C (recall Theorem 
1.2.2). If one such element 9 is represented by (~ ~), then its fixed points 

are a-2~±)..' where ),2 = (a + 8)2 - 4 > O. An easy calculation shows that 
the perpendicular bisector of the line (in C) joining these fixed points has 
the equation ,z + ,z = ,IL + ,IL, 

where IL = a;;./'. Since the centre of C is the intersection of two such lines, 

we deduce, since all these coefficients are in Q( R), that B E Q( R). 
Rewriting the equation of the circle C as 

we find that since the fixed points of the hyperbolic element 9 lie on C, 
we can solve for e E Q. Clearing denominators completes the proof of the 
lemma. 0 

Referring to the circle C given in the above lemma (so a =I=- 0), note that 
the element T = (g f) E GL(2,Q(R)) and maps C to the circle CD, 
which is centred at the orgin and has radius .Ji5, with D = IBI 2 - ac E Z. 
Now by Theorem 8.4.4, T defines an element in the commensurator of r d 
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in PSL(2,C). Thus, for r = Stab+(C,rd), TrT- 1 is commensurable with 
the Fuchsian group FD = Stab + ( CD, r d), which is defined to be 

bE r d I ,,/(CD) = CD and preserves components of C \ CD}. 

Theorem 9.6.2 Let F be a maximal non-elementary Fuchsian subgroup of 
r d. Then F is conjugate in PSL(2, C) to a Fuchsian group commensurable 
with FD . D 

We now combine these results to give variations in this setting of Theorems 
9.5.4 and 9.5.5. 

Theorem 9.6.3 Every non-elementary Fuchsian subgroup of r d is con­
jugate in PSL(2, C) to a subgroup of an arithmetic Fuchsian group arising 

/rom a quaternion algebra A(d, D) = (-~D) for some positive DEZ. 

Proof: Let 0 denote the order Z[l, i,j, ij] in the algebra A(d, D). It is 
clear that Q( R) splits A(d, D) and a particular embedding is given by 

From this, we note that p( 0 1 ) C SL(2, Gd), and so it follows, by direct 
computation, that FD contains the group pp(OI) (see Exercise 9.6, No. 2). 
Theorem 9.6.2 completes the proof. D 

Corollary 9.6.4 Let C be a circle or straight line in Cu 00 with the equa-
ti on 

alzl 2 + Bz + Bz + c = 0 

where a, cE Z and B E Gd. Then Stab+(C, r d) is an arithmetic Fuchsian 
subgroup of r d. 

Example 9.6.5 If d = 3, then the arithmetic Fuchsian subgroups of r 3 

arise from the quaternion algebras A(3, D). In particular, if we choose D to 
be a prime such that -3 is not a square mod D, then the groups constructed 
will be cocompact. There are infinitely many such D (cf. Theorem 9.5.6). 

We now discuss how to apply the existence of these cocompact Fuchsian 
groups in non-cocompact arithmetic Kleinian groups to produce surface 
groups in non-arithmetic Kleinian groups. The motivation for this comes 
from the questions raised in §5.3.2 as to whether every closed hyperbolic 
3-manifold has a finite cover that is Haken. If this were the case, then all 
closed hyperbolic 3-manifolds, at the very least, contain an immersed in­
compressible surface (see §1.5). We show how to use these totally geodesie 
surfaces in a very explicit way to exhibit closed incompressible surfaces in 
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many closed hyperbolic 3-manifolds. We begin by introducing some addi­
tional results from 3-manifold topology. 

As discussed in Chapter 1, Thurston's hyperbolic Dehn Surgery Theorem 
(see Theorem 1.5.8) says that all but finitely many surgeries on a cusp of a 
finite-volume hyperbolic manifold produce hyperbolic manifolds. A weaker 
version of this is the so-called Gromov-Thurston 27r-Theorem, which we 
now discuss. Recall from §1.2 and §1.3 (see, in particular, Theorem 1.3.2) 
that a cusp end of an orientable non-compact finite-volume hyperbolic 3-
manifold has the structure of T 2 x [0, 00). Truncating all cusps of the man­
ifold gives a manifold with boundary consisting of tori where each of these 
tori comes with a Euclidean metric induced by the hyperbolic metric and 
which is weIl defined up to scaling (Le., a choice of cusp cross-section). The 
27r-Theorem says the following: 

Theorem 9.6.6 Let M be a finite volume hyperbolic 3-manifold with cusps 
Ci, for i = 1, ... ,n. Let Ti be a choice of horospherical cusp torus for 
i = 1, . .. ,n. If ai is an essential simple closed curve on Ti whose length (as 
measured on Ti) is at least 27r, then the manifold obtained by (al, ... ,an )­

Dehn surgery on M admits ametrie of negative curvature (some of the 
cusps are allowed to be unsurgered). 

In fact, one can say something more precise. The negative curvature metric 
referred to in this theorem is constructed from the hyperbolic metric on 
the 3-manifold M together with a particular choice of negatively curved 
metric on a solid torus. Briefly, after truncating via a choice of cusp tori 
as described above, we obtain a compact manifold M_, which carries a 
hyperbolic metric (coming from the metric on the cusped hyperbolic man­
ifold M). Now the surgered manifold is obtained by gluing on solid tori Vi 
so that the curve ai bounds a disc in Vi. The key point is that using the 
27r hypothesis one can carefully construct a negatively curved metric on 
each of these solid tori so that the result upon surgery carries a negatively 
curved metric. Some condition on the length of the surgery curve is clearly 
required, since 8 3 is obtained by the trivial surgery on every hyperbolic 
knot complement 8 3 \ K and 8 3 does not admit any metric of negative 
curvature. 

Of most importance to us, is the following implication: 

Theorem 9.6.7 Let M be a finite-volume hyperbolic 3-manifold with cusps 
Ci, containing a closed immersed totally geodesie surface 8. Then 8 re­
mains incompressible in all but a finite number of surgeries on any cusp 
Ci. 

Sketch Proof: For simplicity and because it carries all the important 
ideas, we assurne M has a single cusp. Let M = H3 Ir and arrange a lift of 
the cusp C to be at infinity in H 3 , so that the peripheral subgroup of r con­
sists of translations. Since 8 is totally geodesic, the preimage of 8 is a col-
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lection of totally geodesic hyperbolic planes in H 3 . The surface 8 is closed 
so that (under the normalization above) none of these hyperbolic planes 
are planes which pass through 00 in H 3 ; that is, the hyperbolic planes are 
geodesic hemispheres rather than planes (see Exercise 9.6, No. 1). We now 
claim that we can arrange a choice of horoball at 00 at height t which misses 
every preimage of 8. Suppose no such choice can be made; then, there are 
hemispheres Hi with radii ri ----; 00. Consider a Ford fundamental region F 
for r (see the discussion in §1.4.1). Since the radii are getting arbitrarily 
large, we can find translations Pi Ersuch that p/Hi n F i= 0. Since the Pi 
are translations, the radius of PiHi equals that of 'Hi . This contradicts the 
fact that Fis a fundamental polyhedron for r. This establishes the claim. 

We now choose a height to ~ t, as in the above discussion, and truncate 
M at height to. Let T be the cusp torus and choose 0: on T to meet 
the requirements of the 27f-Theorem. On performing o:-Dehn surgery, the 
resultant manifold M(o:) carries a metric of negative curvature. As in the 
discussion prior to Theorem 9.6.7, we view M(o:) = M_ u V and 8 is 
contained in M _ by choice of to. Since the metric on M _ agrees with 
the hyperbolic metric, the surface 8 is still totally geodesic in the new 
negatively curved metric, and therefore still incompressible. D 

One application of this is the following: 

Corollary 9.6.8 Let M denote the complement of the figure 8 knot in 
83. Then all but a finite number of Dehn surgeries on M contain a closed 
incompressible surface. 

This follows directly from Theorem 9.6.7. However, one can use the de­
scription of cocompact Fuchsian subgroups of PSL(2, 0 3 ) to obtain sharper 
estimates on the number of excluded surgeries. Looking at the proof of 
Theorem 9.6.7, one sees that it is the choice of horoball and the size of 
hemispheres that are important. For the figure 8 knot complement H3 Ir, 
with r c r 3 , Example 9.6.5 shows that the Fuchsian group arising as 
Stab + (C2 , r) is cocompact. It can readily be shown (see Exercise 9.6, No.5) 
that this hemisphere has the largest radius of all hemispheres r -equivalent 
to that raised on C2 • Hence for any horosphere at infinity of height V2 + E 

for all E > 0, we arrange a closed totally geodesic surface immersed in 
M = H3 Ir, disjoint from the cusp. A word of caution here; the surface 
may be non-orientable, but its fundamental group will contain the Fuch­
sian group above of index 2, and this is sufficient. 

To compute the length of an essential simple closed curve c on a cusp 
torus, on lifting to H 3 and arranging a cusp to be at infinity, the length 
of the curve can be measured on a horosphere. Now recall from §1.1 that 
the hyperbolic metric on H 3 is defined as d~E where dS E is the standard 
Euclidean metric and t is the height. Thus the length of the curve ein the 
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Euclidean metric on the horosphere induced by the hyperbolic metric will 
be PEt(C) , where pE(C) is the standard Euclidean length. 

Corollary 9.6.9 The figure 8 knot complement contains a closed totally 
geodesie surface that remains incompressible in all except possibly the fol­
lowing surgeries: 

±p/±q E {1/0, 0/1,1/1,2/1,3/1,4/1,5/1,6/1,7/1,8/1,1/2,3/2, 5/2}. 

Proof: Let K denote the figure 8 knot. We will consider the representation 
of 7r1 (83 \ K) into PSL(2,03 ) given in §1.4.3 in which a meridian and 
longitude are represented by the matrices 

-2A ) 1 . 

Hence for a surgery curve a = pP A q to have length > 27r on a horosphere 
at height v'2 + E we require 

Choosing E < 1/10, a simple calculation shows that for q = 1, [p[ > 8, for 
q = 2, [p[ > 6 and for q = 3 any value of p works. This gives the list in 
Corollary 9.6.9. 0 

The surface necessarily compresses in 1/0, since we get 8 3 , and there are 
no incompressible surfaces whatsoever. One can show, by various means, 
that for all the other excluded surgeries the resulting manifolds do contain 
an incompressible surface. For instance, (5, l)-Dehn surgery gives an arith­
metic hyperbolic 3-manifold (see Exercise 4.8, No. 5) whose invariant trace 
field is degree 4 and invariant quaternion algebra unramified at all finite 
places. Hence, in this case, one can apply Clozel's Theorem 9.3.8 to deduce 
the existence of an incompressible surface. 

Similar calculations can be made for other cusped arithmetic hyperbolic 
manifolds. 

Exercise 9.6 

1. (a) Let C and r be as in Lemma 9.6.1. Show that r is r d-conjugate to 
a Fuchsian group where the invariant circle has an equation with a -I- O. 
(b) Under the normalization given in the proof of Theorem 9.6.7, show that 
every lift of 8 is a geodesie hemisphere in H3. 

2. Prove that Stab+(CD, PSL(2, C)) can be represented as 

P { (~ b~) E SL(2, C) } . 
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3. Prove Corollary 9.6.4. 

4. Let F be an arithmetic Fuchsian group whose defining field is Q. 
(a) Show that there are infinitely many square-free d such that F embeds 
in a group commensurable with r d. 

(b) Show that for every d, F embeds in an arithmetic Kleinian group whose 
defining field is Q( H). 

5. Show that the hemisphere H raised on the circle Izl 2 = 2 has the largest 
radius of all hemispheres r -equivalent to H, where H 3 Ir is the figure 8 
knot complement. 

6. Obtain a similar set of excluded surgeries by redoing Corollary 9.6.9 for 
surgery on one component of the Whitehead link. 

9.7 Simple Geodesics 

In Theorem 5.3.13 and Corollary 5.3.14, we proved that if a eompaet hyper­
bolie manifold M = H3 Ir had a non-simple closed geodesie, then this had 

implieations for the invariant quaternion algebra; precisely, Ar ~ (%~) 
for some a E kr, b E kr n R In this section, it is shown that there are 
infinitely many quaternion algebras that eannot have this special form and 
so it will be established that there are infinitely many eompaet hyperbolie 
3-manifolds all of whose closed geodesies are simple. 

We first obtain an alternative eharaeterisation of this type of quaternion 
algebra in a slightly more general situation. 

Theorem 9.7.1 Let kiF be a finite extension of number fields and let 
A be a quaternion division algebra over k. The following statements are 
equivalent: 

1. A ~ (akb) for some a E k, bE F. 

2. For every finite place W of F which is ramified in kiF and which is 
divisible by some finite place v of k in Ramj(A), there is an element 
bw E Fw such that bw is not a square in any of the fields kv where 
v I wand v E Ramj(A). 

Proof: Suppose that eondition 1 holds and v E Ramj(A). Then A®kkv ~ 

(~':) is a division algebra. Thus k v ( Vb) is a quadratie extension of k v (see 

Lemma 2.1.6). Henee Fw(Vb) is a quadratie extension of Fw, whieh is not 
contained in kv . Taking bw = b, then eondition 2 is fulfilled. 

Before proceeding with the reverse implication, we note that for any finite 
plaee w of F which is unramified in kiF, such elements bw as described in 
condition 2 always exist since a uniformizer in Fw is a non-square in kv for 
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any v I w (see §O.7). Furthermore, condition 2 holds automatically in the 
cases where w is an infinite place. For, if v I wand v E RamCX)(A), then v 
must be real and we can choose bw = -1. 

Now suppose that condition 2 holds. Let S be the set of places of k, both 
finite and infinite, at which A is ramified. Note that S # 0. Let S(F) be 
the set of places of F lying below those in S. For each wES (F), choose 
bw E Fw such that it is not a square in each kv for v I wand v E S. For such 
v and w, kv (v'b;;;) is a quadratic extension field of kv. Thus F w (v'b;;;) is a 
quadratic field extension of Fw . Then, by Theorem 7.3.5, which uses the 
Approximation Theorem (Corollary 7.2.6), there is a quadratic extension 
F(Vb), where b E F such that Fw(Vb) = Fwhlli;;) for all w E S(F). Let 
L = k(Vb). Note that for all v E S, kv(Vb) is the compositum of Fw(v'b;;;) 
and kv and so is a quadratic extension of kv . Since S includes all primes at 
which A is ramified, L embeds in A (see Theorem 7.3.3). The automorph­
ism of L given by Vb I-t -Vb is, by the Skolem Noether Theorem, an inner 
automorphism of A induced by some element d E A *. Taking c = Vb, we 
have dcd- 1 = -c and the elements {1, c, d, cd} form a standard basis of A 
(see Theorem 2.1.8). Thus A ~ (aiob) , where d2 = a E k and c2 = b E F. 0 

Remembering that a quaternion algebra over k is determined up to iso­
morphism by its ramification set, this characterisation enables infinitely 
many isomorphism classes of quaternion algebras to be constructed in 
such a way that the equivalent conditions of Theorem 9.7.1 fail to hold 
for F = knR. 

We first construct a suitable field k. Let k = Ql(O), where 0 satisfies 
x4 - x 2 + 3x - 2 = O. Then [k : Ql] = 4 and k has exactly one complex place. 
Furthermore ßk = -2151 = -32 (239) and Rk = Z[O]. Let F = k nlR. Now 
if [F : Ql] = 2, then k would contain areal quadratic subfield and .ß~ I .ßk. 

This cannot occur and so F = Ql. 
The field k has class number 1. Using Kummer's Lemma, 3Rk = p 2 • A 

simple calculation yields 

(1 + (2)2 = 3[(1 + 0)2 - 30] = 3u (9.7) 

where u is easily checked to be a unit in Rk (see Exercise 9.7, No. 1). Thus 
P = (1 + (2)Rk and Rp/PRp is a field of nine elements identified with 
lF3 (ii), where ii satisfies x 2 + 1 = o. Since ü is a square in lF3 (ii), it follows 
from Hensel's Lemma that u is a square in Rp. Thus 3 is a square in Rp. 
Also -1 = lJ2 so that -1 is also a square in Rp. Now every element in 
Ql3 has the form 3° ( -1)ß y, where Cl, ß E Z and y E 1 + 3Z3. However, 
y = Z2 E Z3. Thus every element in Ql3 is a square in k p . Thus if we take 
any quaternion algebra A over k such that A is ramified at both real places 

and such that P E Ramf(A), then A cannot have the form (!!f) with 

bE k n lR. Thus torsion-free arithmetic Kleinian groups in such quaternion 
algebras yield the following: 
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Theorem 9.7.2 There are infinitely many eommensurability classes of 
eompaet hyperbolie 3-manifolds alt of whose closed geodesies are simple. 

Here we have constructed just one suitable field, hut it is possible, but by 
no means easy, to construct infinitely many such fields (see Exercise 9.7, 
No. 2). 

Exercise 9.7 

1. Prove that the element u defined at (9.7) is a unit in Rk. 

2. Show that the three eonditions 

• [k: Q] = 4 and k has exaetly one eomplex plaee, 

• kn~ = Q, 

• there exists an odd rational prime p and a plaee P I p of k such that 
kp is a biquadratie extension of Qp 

ensure that a quaternion algebra A over k, ramified at both real plaees and 
whieh has P in its ramification set, eannot be of the form (akb) for a E k 

and b E Q. 

9.8 Hoovering Up 

In Chapters 4 and 5, the invariant number fields and quaternion algebras 
were used to illustrate special properties of hyperbolic 3-manifolds or Klein­
ian groups. In many cases, this study can be enhanced if the manifolds or 
groups in quest ion turn out to be arithmetic. This is already manifest in 
this chapter and here we pick up on some other illustrations. * 

9.8.1 The Finite Subgroups A 4 ) 84 and A 5 

The presence of a finite subgroup isomorphie to A4 ,84 or A5 in a finite 
covolume Kleinian group r forced Ar ~ (-~'il) as shown in §5.4. In the 
arithmetic situation, we can obtain a partial converse to this: 

Lemma 9.8.1 If A ~ (-leI) where k has exaetly one eomplex plaee, 
then there is an arithmetie Kleinian group r in the eommensurability class 
defined by A whieh eontains a finite subgroup isomorphie to 8 4 . If, fur­
thermore, Q( v5) C k, then there is a finite subgroup in a group in the 
eommensurability class isomorphie to A 5 . 

*Using a vacuum cleaner in the United Kingdom is frequently referred to as "hoover­
ing up", the nomenclature coming from a prominent brand name. 
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Proof: Note that A is ramified at all real plaees. With {1, i, j, ij} as the 
standard basis, then 

0= Rk[1, i,j, (1 + i + j + ij)/2] 

is easily eheeked to be an order in A. Reeall from §5.4 that the binary 
tetrahedral group BA4 is generated by a1 = i and a2 = (1 + i + j + ij)/2 
so that BA4 C 0 1 . Furthermore, the element 1 + i E 0 normalises 0 1 so 
that if pis a representation of A into M 2 (C), then 

pp(Ol) C (Pp(Ol),Pp(1 +i)):= r 

as a subgroup of index 2. However, Pp(1 +i) also normalises Pp(BA4 ) and 
(Pp(BA4 ), Pp(1 + i)) ~ 84. 

In the eases where Q( V5) C k, let 

0= R k [1, i, (T + T- 1i + j)/2, (_T- 1 + Ti + ij)/2] 

where T = (1 + V5)/2. Again 0 is an order. Now the binary icosahedral 
group BA5 is generated by a2 and a3 = (T + T- 1i + j)/2. Sinee (T + 
T- 1i + j)/2 + (_T- 1 + Ti + ij)/2 = (1 + i + j + ij)/2 + T- 1 , it follows that 
BA5 C 0 1 • 0 

There is a non-eompact analogue of these results, as follows: 

Lemma 9.8.2 Let r be a Kleinian group of finite covolume which con­
tains one of the Euclidean tri angle groups (3,3,3), (2,3,6) or (2,4,4) as 
a subgroup. Then kr contains Q( A) or Q( H). In particular, if r is 
arithmetic, then Ar ~ M 2 (Q( H)) for the first two and M 2 (Q( A)) for 
the last. 

Proof: Clearly r has a eusp so that Ar ~ M 2 (Q(yCd)) for some d. 
If ~ is a torsion-free subgroup of r of finite index, then a eusp is a Hat 
torus isometrie to C/ A for some lattice A. The associated eusp parameter 
is the ratio of a pair of generators of A and the eusp field of ~ is the field 
generated by the eusp parameters. It is a eommensurability invariant and 
is well-defined. For the first two triangle groups deseribed above, it will 
eontain Q( H) and for the last, Q( A). An ideal tetrahedral triangu­
lation of H3 / ~ determines a triangulation of the eusp tori it eontains and 
the tetrahedral parameters determine the invariant traee field by Theorem 
5.5.1. Thus, in general, the eusp field will be a subfield of the invariant 
traee field. The result then follows in these partieular eases. 0 

9.8.2 Week's Manifold Again 

The Week's manifold M = H3/r was diseussed in §4.8.3 where the in­
variant traee field k and the invariant quaternion algebra A were determ­
ined. From the information in that subseetion, it is immediate that r is 
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an arithmetic Kleinian group. We review these results here with a view to 
extracting more information on the arithmetic structure. Recall that r has 
the presentation 

If 7 = tr a, then 7 satisfies x3 - x 2 + 1 = 0, tr t = 7 + 1 and tr ta = 7(1 - 7). 
Furthermore, r(2) = r so that k = Q(7) is a field with one complexplace 
and discriminant -23. The quaternion algebra A is ramified at the real 
place and also at P = (7 - 2)Rk, which is the unique prime ideal of norm 
5. We make use of the following additional information on the field k: The 
dass number of k is 1, Rk = Z[7] and R'k = (-1,7). From this, it follows 
that the type number of Ais 1 (see Theorem 6.7.6 and (6.12)), so there is 
only one conjugacy dass of maximal orders in A. 

From Lemma 8.5.3, the free Rk-module 0 = Rk[l, a, t, at] is an or­
der in A, and its discriminant is det(truiUj)Rk, where {Ul,U2,U3,U4} = 
{I, a, t, at} (see Theorem 6.3.2). It thus follows that the discriminant of 0 
is p 4 so that 0 is not a maximal order. Note that 0 fails to be maximal 
only at the one finite prime P, which is the only ramified prime in A. Let 
o c 0 where 0 is a maximal order in A. To make the discussion in this 
subsection self-contained, we make use of results to be proved in Chapter 
11. Clearly r c pp(Ol) C pp(Ol), where p is arepresentation of A into 
M 2 (C). The covolume of r is known to be 0.9427 .... On the other hand, 
the covolume of Pp(Ol) is given in Theorem 11.1.3 by (11.10), all ofwhose 
terms are explicitly computable except (k(2), the value of the Dedekind 
zeta nlllction for the field k at 2. However, as indicated in §11.2.4, good 
approximations to this can be determined from which we obtain that the 
covolume of Pp(CJ1) is approximately 0.3142. Thus [pp(Ol): r] = 3. 

Now A p = A Q9k K, where K = kp is the unique quaternion division 
algebra over K, which we can identify with F + jF, where F is the unique 
unramified quadratic extension of K and j2 = 7f (see §6.4). Then 01' 
is the unique maximal order RF + jRF . Let M = RK + 7fRF and let 
A = M + jRF , an order in Ap . Now A has discriminant 7f4RK and it 
is the unique order in 01' with this discriminant; for if A' is an order 
in 01', then A' n RF is an order in RF, which will thus be of the form 
RK + 7fn R F or RF. If it is the last of these, then A' = RF + j7fn RF (see 
Exercise 6.4, No. 1). Thus a discriminant calculation shows that we can 
identify A with 01'. Again referring forward to Chapter 11, we have, in 
this case, that [0 1 : 0 1] = [Oj, : Oj,] (see §11.2.2). We now show that 
this index is 3 by mapping onto the residue dass field of RF. In this case, 
RF = RK(W), where RK ~ Z5 and w2 is a non-square unit, which can be 
taken to be 2 in Z;. Thus the residue dass field is lF5 (0), where 02 = 2. 
Define</J: Oj, ---+ lF5 (0) bY</J(x+jy) = x. Since n(x+jy) = 1, if x = Xl +OX2, 
Xl, x2 E lF5 , then xy - 2x~ = 1. Such elements in lF5 (0)* define the cydic 
subgroup of order 6. Furthermore, </J maps Oj, onto this subgroup and Oj, 
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onto the subgroup of order 2. Notice that since n is determined locally (see 
§6.2), it is the unique sub order of 0 with this discriminant. 

It thus follows that r = pp(n1 ) and r is anormal subgroup of index 3 
in P p( 0 1 ). From this data, we can obtain a matrix representation for r. 
To do this, we take A = (-CT+!),T-2) with standard basis {I, i,j, ij}, thus 

ensuring that A is ramified at the real place of k and at the finite place 
corresponding to P. Let 

0= Rk[l, i, (1 + i + j)/2, (T + j + ij)/2]. 

Then 0 is an order and its discriminant is p 2 so that it is maximal. Fur­
thermore Rk[l,j, (T - 2)(1 + i + j)/2, (T + j + ij)/2] is a sub order of 0 of 
discriminant p4, which, by the uniqueness discussed above, can be identi­
fied with n. Since k( vi -(T + 1)) embeds in A, A splits over k( vi -(T + 1)) 
and so a matrix representation of A, and hence of r, is obtained with entries 
in k ( vi - (T + 1)). 

Exercise 9.8 

1. Let K n denote the fundamental group of the hyperbolic orbifold whose 
singular set is given in Figure 4.13. Alternatively, this generalised triangle 
group is commensurable with the Fibonacci group F2n . Show that K n is 
arithmetic if and only if n = 4,5,6,8,12. 

2. Show that the manifold H 3 /r obtained by (5,1) surgery on the figure 
8 knot complement, analysed in Exercise 4.8, No. 5, is arithmetic and use 
that analysis, as in §9.8.2, to describe r in terms of orders in the related 
quaternion algebra. (This is known as the Meyerhoff manifold and, as a 
manifold with small volume, will arise again in §12.6.) 

9.9 Further Reading 

Fundamental domains for the Bianchi groups, upon which many deduc­
tions about the group-theoretic structure depends, are considered in Swan 
(1971). This is used by Fine and Frohman (1986) to show that, apart from 
the case d = 3, the groups r d can be split as non-trivial free products 
with amalgamation. Of course, the Zimmert sets also depend on the funda­
mental domains as described in Zimmert (1973), Grunewald and Schwermer 
(1981b). The failure ofthe congruence subgroup property for r d was estab­
lished in Serre (1970) and extended to stronger results on profinite comple­
tions in Lubotzky (1982). In addition, each r dis shown to have a subgroup 
of finite index which maps onto a non-abelian free group in Grunewald and 
Schwermer (1981b). This is related to Theorem 9.3.2, which in this form 
appears in Mason et al. (1992). For furt her discusssion of these topics, see 
Fine (1989), Elstrodt et al. (1998) and the references included there. In 
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the cases where Od is Euclidean, presentations of the groups r d can be 
obtained by a method of Cohn (1968) and this is pursued in Fine (1979) to 
identify non-congruence subgroups by an extension of a method of Wohl­
fahrt (1964) involving the level of a subgroup. Other results also relate or­
ders and levels of subgroups of general Bianchi groups (e.g., Mason (1991), 
Grunewald and Schwermer (1999)). More generally, it has been shown that 
the congruence subgroup property fails for any arithmetic Kleinian group 
in Lubotzky (1983). See Dixon et al. (1991). 

The discussion using cuspidal cohomology of r d given in §9.3 follows 
Schwermer (1980), Grunewald and Schwermer (1981c) and Grunewald and 
Schwermer (1981a) and Theorem 9.3.7 is due to Vogtmann (1985). The 
extension referred to following that result is due to Blume-Nienhaus (1991). 
For many of the other areas in which Bianchi groups playa significant role, 
we refer the reader to the discussion and references in Elstrodt et al. (1998). 
Theorem 9.3.8 appears in Clozel (1987) and other results of this nature can 
be found in Millson (1976) and Lubotzky (1996). 

The examples which show that certain links have complements with an 
arithmetic structure appeared in Thurston (1979). More examples were 
discussed in Wielenberg (1978) and the more organised approach discussed 
in §9.2 is due to Hatcher (1983). This was further pursued in Cremona 
(1984). Other links whose complements are arithmetic and, in particular, 
do not arise from subgroups of a Bianchi group, appear in Baker (1992), 
Stephan (1996) and Baker (2001). 

That the figure 8 knot is the only arithmetic knot complement is due 
to Reid (1991a), the proof here being a simplified version. Arithmeticity of 
knots in other manifolds apart from 8 3 has been examined in Baker and 
Reid (2002). For a discussion of universal knots, see Hilden et al. (1985) 
and Hilden et al. (1992b). 

The discussion of Fuchsian subgroups of arithmetic Kleinian groups was 
the subject of Reid (1987) and appeared in Maclachlan and Reid (1987) 
and Reid (1991b). The Meridian Lemma is due to Menasco (1984) and 
Theorem 9.5.7 appears in Menasco and Reid (1992). 

Initial investigations into Fuchsian subgroups of Bianchi groups were 
pursued in Fine (1987), Harding (1985) and Maclachlan (1986) and a more 
detailed analysis is to be found in Maclachlan and Reid (1991), Vulakh 
(1991) James and Maclachlan (1996). The applications in this section make 
essential use of the 27r-Theorem, for which see Bleiler and Hodgson (1996) 
and Gromov and Thurston (1987). The results described here which make 
use of that theorem appear in Bart (2001). See also Co oper et al. (1997) 
and Co oper and Long (2001). 

The geometric consequences ofhyperbolic 3-manifolds having only simple 
geodesics arising from certain arithmetic groups is due to Chinburg and 
Reid (1993) and other related methods are to be found in Jones and Reid 
(1994). 



304 9. Arithmetic Hyperbolic 3-Manifolds and Orbifolds 

The presence of the subgroups A4 ,84 and A5 in an arithmetic Klein­
ian group appears in Gehring et al. (1997). These groups can also have 
cyclic or dihedral subgroups and the occurence of these in maximal arith­
metic Kleinian groups is fuHy detailed in Chinburg and Friedman (2000). 
Precisely which cocompact tetrahedral groups are arithmetic has long been 
known (e.g., Vinberg (1971)) and the fuH arithmetic details relating to these 
groups and their quaternion algebras is in Maclachlan and Reid (1989). Cer­
tain Fuchsian subgroups of these tetrahedral groups are discussed in Baskan 
and Macbeath (1982) and quest ions related to arithmeticity in Maclachlan 
(1996). The arithmetic details of the Week's manifold appears in Reid and 
Wang (1999) and also in Chinburg et al. (2001) where the minimum volume 
arithmetic hyperbolic 3-manifold is determined. 



10 
Discrete Arithmetic Groups 

The description of arithmetic Kleinian groups and arithmetic Fuchsian 
groups via quaternion algebras and their orders is convenient, as it links 
up with the earlier use of quaternion algebras and number fields as com­
mensurability invariants of general Kleinian groups. This description also 
clarifies the connections between the arithmetic, on the one hand, and the 
topological, geometrie and group-theoretic properties of the groups, on the 
other. This has been illustrated in Chapter 9 and further aspects will be 
pursued in the remaining chapters. 

Utilising quaternion algebras as we have done readily allows arithmetic 
Kleinian and Fuchsian groups to be represented as discrete subgroups of 
the groups PSL(2, C) and PSL(2, IR), respectively. However these ambient 
groups can be alternatively represented, essentially, as the complex or real 
points of certain linear algebraic groups, in particular orthogonal groups 
of quadratic spaces over number fields. This then opens the door to al­
low in furt her arithmetic subgroups as groups preserving lattices in these 
quadratic spaces. In particular, using the Lobachevski models of H 2 or 
H3, the groups of isometries have natural representations as orthogonal 
groups of real quadratic spaces. The families of discrete groups which arise 
from orthogonal groups turn out to be no more extensive than the families 
already obtained via quaternion algebras. Indeed, under the most general 
definition of discrete arithmetic subgroups of semi-simple Lie groups, no 
new arithmetic Kleinian or Fuchsian groups occur. These relationships will 
be discussed in this chapter. Some of the results in this general framework 
are beyond the scope of this book and their proofs are omitted. This ap­
plies in particular to the Borel-Harish-Chandra Theorem (Theorem 10.3.2) 
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and to the theorem of Margulis (Theorem 10.3.5) on the commensurator of 
arithmetic and non-arithmetic subgroups (cf. Theorem 8.4.4 and Corollary 
8.4.5) . 

The Lobachevski model of H3 allows one to relate the geometry of poly­
hedra to an algebraic description via the Gram matrix. From this, the 
invariant trace field of the Kleinian subgroup of the group generated by re­
fleetions in the faces of the polyhedron can be obtained directly and neces­
sary and sufficient conditions for this group to be arithmetic are deducible 
from the Gram matrix. This will also be examined in this chapter. 

10.1 Orthogonal Groups 

We have chosen to define arithmetic Kleinian and Fuchsian groups via qua­
ternion algebras. Alternatively, they can be defined via quadratic forms and 
the conditions to obtain discrete arithmetic subgroups described as special 
cases of those given by Borel and Harish-Chandra far semi-simple linear 
algebraic groups. We pursue the connection between the two approaches in 
this section. 

Recall that, in Chapter 2, it was shown that every quaternion algebra A 
over a number field k gave rise to a three-dimensional quadratic space Ao, 
the subspace of pure quaternions, with the restrietion of the norm form. 
In addition, the conjugation map c induced an isomorphism 

A* /k* ~ 80(Ao, n). (10.1) 

Note that, restricted to Al, this is the adjoint representation, as Ao can 
be identified with the Lie algebra of Al (see also Exercise 10.1, No.1). If 

A ~ (akb) , then Ao has orthogonal basis {i, j, ij} with n( i) = -a, n(j) = 

-b, n(ij) = ab. Thus, letting F = diag{ -a, -b, ab}, the linear algebraic 
group 

80(F) = {X E 8L3 I XtFX = F} (10.2) 

is defined over k. Thus 80(Ao, n) as described above is isomorphie to 
80(F)k = 80(F) n GL3 (k). 

Over the local Archimedean fields <C and lR the isomorphism at (10.1) 
yields, for A = M 2 (<C) , M2 (lR) and 1{, respectively, the isomorphisms 

PGL(2, <C) ~ 80(3, <C), PGL(2, lR) ~ 80(2,1; lR), 1{* /lR* ~ 80(3, lR). 
(10.3) 

8uppose that k is a number field and a : k ----+ <C is an embedding. From 
the quaternion algebra A, this gives rise to the algebraic group 80(" F), 
where "F = diag{ -a(a), -a(b), a(ab)}. Thus A will be ramified at areal 



10.1 Orthogonal Groups 307 

plaee a if and only if a F is definite or, equivalently, the group soca F)IR is 
eompaet. 

Let us choose a standard basis {I, i, j, ij} for A such that a, bE Rk. Then 
let 0 denote the order Rk [1, i, j, ij] in A and L = 0 n Ao = Rk [i, j, ij] is a 
lattiee in Ao. Then, defining 

SO(L) = {a E SO(Ao,n) I a(L) = L} (10.4) 

gives a natural representation of SO(L) as SO(F)Rk. Recall that the nor­
maliser of an order 0 is defined by 

N(O) = {a E A* I aO = Oa} 

and contains the centre k*. For 0 as deseribed abüve, its image under the 
isomorphism (10.1) indueed by c is precisely SO(L). Thus 

N(O)jk* ~ SO(L). (10.5) 

The groups 0 1 j ± 1,0* j R'k ean be embedded as subgroups of N( 0) j k*, 
neeessarily of finite index (see Exercise 10.1, No. 2). Using this, the ne­
cessary and sufficient conditions imposed upon the quaternion algebra A 
to obtain arithmetic Kleinian and arithmetic Fuehsian groups at Theor­
ems 8.2.2. and 8.2.6 can be translated into eonditions on the group SO(F). 
Furthermore, the image of 0 1 is cocompact if and only if the quaternion 
algebra Ais a division algebra. Now A fails to be a division algebra if and 
only if A ~ M 2 (k), which occurs if and only if Ao is isotropie (see Theorem 
2.3.1). However, Ao is isotropie if and only if the group SO(F)k has unipo­
tent elements (see Exercise 10.1, No. 4). Thus for the partieular matrices 
that arise in this way from these quaternion algebras, we have established 
that the following result holds. 

Theorem 10.1.1 Let F be a non-singular symmetrie 3 x 3 matrix with 
entries in a number field k. Then SO(F)Rk is discrete and of finite covolume 
in SO(F)c ~ SO(3, ce) if and only if k is a non-real number field with 
exactly one complex place and, for each real embedding a : k ---+ lR, soca F)IR 
is compact. In addition, SO(F)Rk is cocompact if and only if SO(F)k has 
no unipotent elements. 

In the same way, we obtain the equivalent result für Fuchsian groups. 

Theorem 10.1.2 Let F be a non-singular symmetrie 3 x 3 matrix with 
entries in a number field k C lR such that F is indefinite. Then SO(F)Rk 
is discrete and of finite covolume in SO(F)IR ~ SO(2, 1; lR) if and only if 
k is totally real and, for each embedding a : k ---+ lR, a #- Id, soca F)IR is 
compact. In addition, SO(F)Rk is cocompact if and only if SO(F)k has no 
unipotent elemnts. 



308 10. Discrete Arithmetic Groups 

We now show that all matrices F, as defined in these theorems, do actu­
ally arise from quaternion algebras as described above. In this way, Theor­
ems 10.1.1 and 10.1.2 will be completely established. First note that each 
non-singular symmetrie matrix F as described in these theorems gives rise 
to a quadratic space (V, q) over k. 

To show that each such F arises from a quaternion algebra, it is con­
venient to use Clifford algebras to trace back from quadratie spaces to 
quaternion algebras. We will also use Clifford algebras in the next section, 
so it is appropriate to discuss them in a general setting. 

Recall that the Clifford algebra C(V) of a non-degenerate quadratic space 
(V, q) over a field k (see Exercise 2.3, No. 6 and Exercise 2.8, No. 4) is 
an associative algebra with 1 which contains V and whose multiplication 
is compatible with (V, q) in the sense that for every x E V, x2 = q(x)1. 
Furthermore, it is universal with this property so that if D is any other such 
algebra, then there exists a unique k-algebra homomorphism <j; : C(V) -+ D 
such that <j;(x) = x for all x E V. If the dimension of V is n and it has 
orthogonal basis {Xl, X2,'" ,xn}, then C(V) has dimension 2n with basis 
{X~lX~2. ··x;n: ei = 0, 1} (see Exercise 10.1, No. 5). Clearly C(V) admits 
a Z2-grading with, for i = 0,1, Ci (V) spanned by {X~l ... x;n : E ej == 
i(mod 2)}. Note also that Co(V) is a subalgebra. 

Let B denote the bilinear form associated to q so that B(x, y) = q(x + 
y) - q(x) - q(y); hence, B(x, x) = 2q(x). The field k is assumed to have 
characteristie O. (This definition differs by a factor of 2 from that given 
earlier (see (0.34).) Then for x and y embedded in C(V), B(x,y) = xy+yx 
so that x, y E V are orthogonal if and only if xy = -yx in C(V). Consider 
the element z = X1X2 ... xn. If n is odd, Z E Cl (V) and lies in the centre 
of C(V). When n is even, Z E Co(V) and lies in the centre of Co(V). 
Also z2 = (-1)n(n-1)/2q(X1)q(X2)'" q(xn) = d which, modulo k*2, is the 
so-called signed discriminant of (V, q). 

Recall that the group O(V, q) is generated by reflections Tu, where u is 
an anisotropie vector in V (see §0.9). Embedding V in C(V), the action of 
Tu becomes 

(10.6) 

By the universal property of C(V), Textends uniquely to an automorphism 
of C(V). The special orthogonal group SO(V, q) is generated by products 
ofpairs ofreflections so that each a E SO(V,q) has the form a(x) = vxv-1 
for some v E Co(V), and all x E V. The automorphism a of C(V) defined 
by a(a) = vav-1 for all a E C(V) will be the unique extension of a. 

When V has dimension 3, then Co(V) has basis {1, X1X2, X1X3, X2X3} with 
(Xi Xj)2 = -q(Xi)q(Xj) and (X1X2)(X1X3) = -(X1X3)(X1X2). Thus Co(V) is 
a quaternion algebra over k. Note also that if Ais a quaternion algebra over 
k with standard basis {l, i, j, ij}, then Co(Ao) has basis {1, ij, aj, -bi} so 
that Co(Ao) ~ A. 
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For each IJ E SO(V, q), the unique extension er clearly preserves the 
grading on C (V) and so er E Aut (Co (V)) ~ Co (V) * j k*. N ow all this has 
been described using an orthogonal basis of (V, q), the quadratic space 
over k obtained using the matrix F. If D denotes the diagonal matrix 
corresponding to the orthogonal basis, then the change of basis obviously 
yields an isomorphism SO(F)k ~ SO(D)k induced by conjugation by a 
matrix X E GL3 (k). Under such a conjugation, the image of SO(F)Rk will 
be commensurable with SO(D)Rk' Thus Theorems 10.1.1 and 10.1.2 are 
completely established. 

Exercise 10.1 

1. For any regular quadratie spaee (V, q) over a number field k, the spinor 
map e is defined on SO(V, q) and takes its values in k* jk*2 by e(lJ) = 
q( uI)q( U2) ... q( U2r ), where IJ = Tu! TU2 ••• TU2r ' Show that for a quaternion 
algebra A, e(e(a)) = n(a), a E A, where eis the eonjugation map. Deduee 
that the spinor kernel, 0' (Ao, n), is isomorphie to Al j { ± 1 }. Deduee further 
that it is isomorphie to O(Ao, n), the eommutator subgroup of SO(Ao, n) 
(see Exereise 7.4, No. 1). 

2. Under the embedding 'ljJ of 0 1 in the finite sum 2:: SL(2, kv ) of The­
orem 8.1.2, N (0) j k* maps into the normaliser of 'ljJ( 0 1 ). Deduee that 
sinee 'ljJ( 0 1 ) is diserete, its normaliser must be diserete. Henee show that 
[N(O)jk*: 01j{±I}] is finite. 

3. Show that the norm map on 0* maps 0* j R'k into the finite abelian 
2-group RkiRi/ with kernel 01j{±I}. 

4. Let (V, q) be a regular quadratie spaee of dimension::::: 3 over a number 
field k. Show that (V, q) is isotropie if and only if0(V, q) eontains unipotent 
elements. 

5. Prove that C(V) has dimension 2n if V has dimension n. 

6. Show that the opposite algebra to C(V) has multiplieation whieh is eom­
patible with (V, q). Deduee that C(V) admits an algebra anti-automorphism 
E whieh fixes V. Deseribe E for the quaternion algebra Co (V) obtained when 
V has dimension 3. 

7. Let a E C be sueh that a 3 = 2. Let k = Ql(a). Show that SO(F)Rk is a 
diserete eocompaet subgroup of SO(3, q if 

F = (~ ~ ~) 
o 0 a 
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10.2 80(3, 1) and 80(2, 1) 

The Lobachevski model of H 3 (and of H 2 ) leads to furt her natural de­
scriptions of arithmetic Kleinian groups (respectively arithmetic Fuchsian 
groups) via quadratic forms. We pursue this in this section, concentrating 
on the Kleinian case. 

Let V be a four-dimensional space over lR with a quadratic form of sig­
nature (3,1). Thus, with respect to a suitable basis of V, q(x) = x~ + x~ + 
x~ - x~. Let 

C+ = {x E V I q(x) < 0 and X4 > O}. 

Then H 3 can be identified with the sphere of unit imaginary radius in C+ 
or, alternatively, the projective image of C+ (see §1.1). Further, 1som H 3 
can be identified with the induced action of 

O+(V,q) = {o' E O(V,q) I o'(C+) = C+}. (10.7) 

Each reflection in 1som H3 gives an element of negative determinant in 
0+ (V, q) so that we have 

PSL(2,q ~ 1som+ H 3 ~ SO+(V,q) ~ PSO(V,q). (10.8) 

(See Exercise 2.4, No. 3.) 
This description of 1som+H3 leads naturally to the following arithmet­

ically defined subgroups. Now let k c lR be a number field and (V, q) a 
four-dimensional quadratic space over k which has signature (3,1) over lR. 
Then the k-linear maps of SO+ (V, q) embed in the lR-linear maps and hence 
into 1som+ H3. Further, if L is an Rk-Iattice in V, then 

SO(L) = {o' E SO+(V, q)k I O'(L) = L} 

is an arithmetically defined subgroup embedding in 1som+ H 3 and the 
question arises as to when it is discrete and of finite covolume. Taking 
k = Q and V defined by the matrix diag{l, 1, 1, -1} yields the algebraic 
group SO(3, 1) with SO(3,1)z a discrete subgroup of SO(3, 1h~. 1ndeed, 
it is of finite covolume (see Theorem 10.3.2). More generally, referring to 
the results given in the next section, SO(L) will be discrete and of finite 
covolume in 1som+ H 3 if and only if k is totally real and, for all embeddings 
0' : k ---> lR, 0' =I- 1d, the quadratic space (0" V, 0" q) is positive definite over 
lR. (See comments preceding Definition 10.3.4.) 1t will be shown in this 
section that these groups can be described in terms of quaternion algebras 
and that the images in PSL(2, q of the groups SO(L) just defined coincide, 
up to commensurability, with the set of arithmetic Kleinian groups which 
contain non-elementary Fuchsian subgroups (see §9.5). 

To establish this relationship, we again use Clifford algebras. Thus, ini­
tiallyas above, let k c lR be a number field and (V, q) a four-dimensional 
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quadratic space over k with signature (3,1) over lR. Then the Clifford al­
gebra C(V) is a 16-dimensional central simple algebra over k and Co(V) 
has dimension 8. Let {Xl, X2, X3, xd be an orthogonal basis of V chosen 
such that q(XI) has the opposite sign to q(X2), q(X3) and q(X4). Let B be 
the k-span in Co(V) of {I, XIX2, XIX3, X2X3}. Then B is a quaternion al­
gebra over k. Furthermore, z = XIX2X3X4 lies in the cent re of Co(V) and 
Co(V) is a quaternion algebra over the field k(z). Note that [k(z) : k] = 2 
with k(z) non-real since Z2 = q(XI)q(X2)q(X3)q(X4) = d, the discriminant 
of (V, q). Also 

Co(V) ~ B Q9k k(z) ~ ( -q(XI)q(X2~(Z)q(xI)q(X3)) . 

The group O(V, q) of k-isometries of (V, q) is generated by reflections so 
that SO(V, q) is generated by products of pairs of reflections. Each isometry 
U of (V, q) admits a unique extension & to C(V), which is an automorphism. 
Clearly & preserves the grading on C(V) and, furthermore, for u E SO (V, q), 
&(z) = z (see Exercise 10.2, No. 1). Thus & is an automorphism of the 
quaternion algebra Co(V) over k(z), which is necessarily inner. We thus 
obtain a homomorphism 

SO(V, q) -+ Co(V)* jk(z)*. (10.9) 

Now consider the cases where k and (V, q) satisfy, in addition, the arith­
meticity conditions mentioned above. Thus, fix a totally real number field 
k and let Q'(k) denote the set of k-isometry classes of four-dimensional 
quadratic spaces (V, q) over k such that (V, q) has signature (3,1) over lR 
and, for each u : k -+ lR, u =/:. Id, ("V, 0 q) is positive definite over lR. On the 
other hand, let A(k) denote the set of k-isomorphism classes of quaternion 
algebras oft he form B0kk(z), where B is a quaternion algebra over k which 
is ramified at all real u =/:. Id and k(z) is a quadratic extension of k with 
exactly one complex place where Z2 < 0, Z2 E k. Thus it follows from above 
that (V,q) E Q'(k) if and only if Co(V) E A(k). Define (V,q) rv (V',q') 
if there exists t E k* such that (V, q) and (V', tq') are k-isometric, and let 
Q(k) denote the set of equivalence classes of Q'(k). 

We thus obtain a mapping 

8: Q(k) -+ A(k) (10.10) 

by setting 8([V, q]) = Co(V), noting that it is well-defined on equivalence 
classes. Note that if r is an arithmetic Kleinian group which contains a non­
elementary Fuchsian subgroup, then the associated quaternion algebra lies 
in A(k) for some totally real field k (see §9.5). 

We will show that 8 is bijective by obtaining an inverse mapping. Let 
A E A(k) so that A ~ B 0k k(z). Let p: A -+ A be induced by p(b 0 y) = 

b 0 y, where b is the conjugate of b in the quaternion algebra Band y is 
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the complex conjugate of y in k(z). Then p is k-linear and conjugate linear 
in the k(z)-space A. Furthermore, p2 = Id and p(xy) = p(y)p(x) for all 
x,y E A. Let 

Vp = {a E A I p( a) = a}. (10.11) 

If {1, i,j, ij} is a standard basis for B, then Vp is a four-dimensional k-space 
with basis {1, zi, zj, zij} and a quadratic space (Vp , n) with the restriction 
of the norm form n. Note that (Vp , n) has signature (3,1) at the identity 
place and is positive definite at all other real places. 

Recall that B is by no means uniquely determined by A, so that p and, 
hence, Vp are not unique. Suppose that p' : A -+ A is another such map. 
Then p' 0 p : A -+ A is a k(z)-linear map which preserves multiplication. 
Thus p' 0 P is an automorphism of A, which is the identity on the centre, 
and so there exists a E A* such that p'(x) = ap(x)a-1 for all xE A. Since 
p,2 = p2 = Id, 

Thus p(a) = wa for some w E Z(A). Let a = ao + a1i + a2j + a3ij, so 
that p(a) = ao - a1i - a2j - a3ij. We can assurne that a 9'. Z(A); so some 
ai =j:. 0 for i = 1,2,3. If we let c = zai, then from p(a) = wa we get 
cw = c. Replacing a by ca, we can ass urne that p(a) = a so that a E Vp 

and n (a) E k*. The map j : Vp -+ Vp' given by j (x) = ax then defines an 
isometry (Vp , n) -+ (Vp' , tn), where t = n(a)-l. This gives a well-defined 
mapping A(k) -+ Q(k) induced by 

(10.12) 

It is now straightforward to show that this is the inverse of e defined at 
(10.10) (see Exercise 10.2, No. 2). We have thus established the following: 

Theorem 10.2.1 The mapping e establishes a one-to-one correspondence 
between Q(k) and A(k). 

We now establish the relationship between the groups associated to ele­
ments of Q(k) and those associated to the related members of A(k) (see 
(10.9)). For A E A(k), define 

Ak = {ß E A I n(ß) E k*}. 

Note that the anisotropie veetors in Vp lie in Ak. For ß E Ak, define <Pß on 
Vp by 

Then <Pß E O(Vp , n) and we have a homomorphism 

<I> : Ak -+ O(Vp , n). (10.13) 
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If ß E Ker <P, then n(ß)-1 ßvp(ß) = v for all v E Vp . Sinee 1 E Vp , it follows 
that p(ß) = ß. This implies that n(ß)-l p(ß) = ß-1 so that ß E B. For 
v = zi, zj, zij, the equality ßvß-l = v then implies that ßbß-l = b for all 
bEB. Thus Ker <P = k*. 

The group O(Vp , n) is generated by refleetions and, in this ease, for u an 
anisotropie veetor in Vp 

TU(V) = -uiY/l- 1 for eaeh v E Vp . 

8inee SO(Vp , n) eonsists of produets of pairs of refleetions, eonsider 

TUl 0 TU2 (V) = UIUZ-lVU2Ull = n(ulu2)-I(UIU2)Vp(UIU2). 

Sinee Ul, U2 E Vp C Ak, then ß = Ul U2 E Ak and rPß = TUl 0 TU2 • Thus 
80(Vp , n) ::) <p(Ak) and it ean be shown that this is an equality (see Exereise 
10.2, No. 3). The following result is thus obtained: 

Theorem 10.2.2 With notation as above, the following sequence is exact 
for A E A(k): 

(10.14) 

Let .c be an order in B so that 0 = .c ®Rk Rk(z) is an order in A (see 
Exereise 6.3 No. 3). By eonstruction, p(O) = O. If L = 0 n Vp , then L 
is an Rk-lattice in Vp • Now if ß E 01, <p(ß) clearly lies in 80(L) so that 
<p(01) C 80(L). 

Tensoring up over 1P1., the exact sequence at (10.14) yields an isomorph­
ism M 2 (C)i/lP1.* ~ SO(Vp , n)lR. The quotient group deseribed here eontains 
PSL(2, C) as a subgroup of index 2, which, via <P, is mapped isomorph­
ically onto SO+(Vp , n)lR. 8inee (Vp , n) E Q(k), the groups 80(L) are dis­
crete of finite covolume in 80+ (Vp , n) by the results of Borel and Harish­
Chandra in §1O.3. Thus the discrete finite-covolume groups in P8L(2, C) 
which are images of 0 1 as described above, are mapped, via <P, into dis­
crete finite-covolume groups commensurable with the groups 80(L) in 
80(+(Vp , n)) ~ 80+(3, l)lR. Also, all such discrete finite-covolume groups 
in SO+(3, l)lR which arise from lattices in quadratic spaces (V,q) E Q(k) 
are commensurable with the images of groups 0 1 , where 0 is an order in a 
quaternion algebra A E A(k) by Theorem 10.2.1. This establishes the rela­
tionship between arithmetic Kleinian groups which contain non-elementary 
Fuchsian subgroups and orthogonal groups of lattices. 

Theorem 10.2.3 Let (V, q) E Q(k), L be a lattice in V and T be an 
isomorphism 80+ (V, q) ---+ P8L(2, C). Then T(SO(L)) is an arithmetic 
Kleinian group which contains non-elementary Fuchsian subgroups. Fur­
thermore, every such arithmetic Kleinian group is commensurable with 
some such T(80(L)). 



314 10. Discrete Arithmetic Groups 

It was shown by a sequence of exercises in Chapter 8 (see Exercise 8.3, 
No. 2) that every arithmetic Fuchsian group is a subgroup of some arith­
metic Kleinian group. The description given in this section provides a more 
natural approach to this. Indeed, by these methods, we can also show that 
in the commensurability dass of every arithmetic Fuchsian group, there 
are groups whieh are subgroups of non-arithmetic Kleinian groups of finite 
covolume. 

To see this, let k be a totally real field and let (W, q) be a three­
dimensional quadratic space over k which has signature (2, 1) and such 
that (O"W, (J" q) is positive definite for every 0' : k ---> IR, 0' =I- Id. Let L be an 
Rk-lattice in W. The group SO+ (W, q; IR) is isomorphie to PSL(2, IR) and 
the image of SO(L) is discrete and of finite covolume. Furthermore, every 
arithmetic Fuchsian group in PSL(2, IR) is commensurable with some such 
SO(L) (see Exercise 10.2, No. 6 and Theorem 10.3.2 and the discussion 
prior to Definition 10.3.4). 

As a quadratie space over IR, we can extend W to V = W..l(e) and 
q such that q(e) = l. The submodule L can likewise be extended in a 
variety of ways. Take a1 E k to be totally positive and form the Rk-lattice 
L 1 = LffiRky'ale in V1 = W ffikylale. Then V1 is a four-dimensional space 
over k with signature (3,1) and such that (O"V1 ,O"q) is positive definite for 
all 0' : K ---> IR, 0' =I- Id. Then SO(L 1 ) is an arithmetie Kleinian group which 
contains the arithmetic Fuchsian group SO(L), which can be identified with 
those<jJ E SO(L1 ) such that <jJ(L) = L, where L is regarded as a submodule 
of L 1 • 

We now vary this to obtain non-arithmetie Kleinian groups. This employs 
the techniques used in §5.6 to construct invariant trace fields of the form 
Q( vi -d1 , vi -d2 , •.• ,vi -dr ). In the above construction of SO( Ld, let us 
now choose an odd rational prime p such that p is not ramified in the 
extension k I Q, and consider the principal congruence subgroup r 1 in 
SO(L1) consisting of those <jJ E SO(L1) such that <jJ(x) - x E pL1 for all 
xE L 1 • Then r 1 is torsion free (see Exercise 10.2, No. 7). Likewise, define 
r o inside SO(L). Let T denote the reflection of Isom(H3 ) in the plane H 
defined by e-L, so that T normalises r 1 and r 0 = {<jJ E r 1 I T<jJT- 1 = <jJ}. 
This ensures that the surface H Ir 0 embeds in the 3-manifold H 3 Ir 1. 

Now let a2 E k also be totally positive and form L 2 and V2 as above, and 
hence the principal congruence subgroup r 2 . Now cutting and pasting the 
manifolds H 3 Ir1 , H 3 /r 2 along the isometrie surfaces Hlro as described 
in §5.6, we can form new manifolds and, hence, Kleinian groups r of finite 
covolume. The invariant trace field of r will contain the invariant trace 
fields of r 1 and r 2 . As described earlier in this section, kri = k(Vd(ii) , 
i = 1,2, where d is the discriminant of W. Thus kr :J k(y'da1,y'da2), 
which, provided al/a2 r%. k*2 S, has more than one complex place and so 
cannot be arithmetie. 
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Exercise 10.2 

1. Show that the unique extension & of each element (J E 80(V, q) with 
(V,q) as described in the lead up to (10.9) fixes the centre ofCo(V). Is this 
true for (J E O(V, q) ? 

2. Show that the mapping defined at (10.12) is indeed the inverse of () as 
defined at (10.10). 

3. (a) Show that the image of At, under<I> defined at (10.13) is the group 
80(Vp , n). 
(b) Show that the image of Al under<I> defined at (10.13) is the spinorial 
kernel O'(Vp , n). 

4. Show that in the case A = M 2 (Q(v'-I)), the mapping <I> maps the 
Bianchi group 8L(2,01 ) onto 80+(3, l)z. 

5. Use the exact sequence at (10.14) to establish the classical isomorphism 

P80(4, q ~ PGL(2, q x PGL(2, q. 

6. Prove the analogue of the results of this section for Fuchsian groups. 
More specifically, show that the set of arithmetic Fuchsian subgroups of 
P8L(2, IR) coincides with the set of images under suitable isomorphisms 
80+ (V, q)1R -+ P8L(2, IR) of subgroups of 80+ (V, q) commensurable with 
groups 80(L), where L is a lattice in the three-dimensional quadratic space 
V over a totally real field such that (V, q) has signature (2,1) and the spaces 
(eTV, eT q) are definite for all real embeddings (J i=- Id. In particular, obtain 
the relationship between P8L(2, Z) and 80+(2, l)z. 

7. Show that, if p is an odd rational prime which does not ramify in the ex­
tension k I Q, then the principal congruence subgroup of level p in 80(L l ), 

as described in this section, is torsion free. 

10.3 General Discrete Arithmetic Groups and 
Margulis Theorem 

In the preceding two sections, discrete subgroups of finite covolume in 
P8L(2, q and P8L(2, IR) have been obtained via arithmetically defined 
subgroups of algebraic groups arising from orthogonal groups. These have 
been shown to be included in the original classes of arithmetic Kleinian and 
arithmetic Fuchsian groups as defined in Chapter 8. All these, of course, 
arise as special cases in the general theory of discrete arithmetic groups. 
In this section, we survey some of the basic ideas in this general theory, 
without giving full details, and emphasise how they impinge on the partic­
ular cases in which we are interested. 
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Definition 10.3.1 Let G be a connected semi-simple algebraic group which 
is defined over Q. Then a subgroup r of GrQ is arithmetic if for a Q­
representation p : G -+ GLn , p(r) is commensurable with p(G)z. 

Theorem 10.3.2 (Borel and Harish-Chandra) If r is arithmetic as 
described above, then p(r) is discrete and of finite covolume in p( G)]R. 

It is neater to use the terminology that p(r) is a lattice in p(G)]R, but for 
consistency, we will retain our more cumbersome notation as stated in the 
theorem. 

One could extend the definition of arithmetic above by considering a 
number field k and a subgroup r of G k such that p(r) is commensurable 
with p( G) Rk. It turns out that this does not increase the supply of discrete 
arithmetic groups. To show this, we make use of the operation on algebraic 
groups over number fields called restrietion of scalars. The idea is to con­
struct from G defined over k, a group H defined over Q, compatibly with 
the extension k I Q. 

Let k be a number field with [k : Ql = d and embeddings O"i : k -+ C, 
with 0"1 = Id. Let K be the Galois closure of kin C so that K ::J O"i(k) for 
all i. We can obtain a d x d matrix representation of k and Rk by choosing 
an integral basis {Vi, V2, . .. ,Vd} of k I Q and letting a E k (or Rk) act by 
aVi = 'LßjiVj. Then p(a) = (ßij) has its entries in Q (resp. Z) if and only 
if a E k (resp. Rk). Let 8 = [siil, where Sij = O"i(Vj). Then the entries of 8 
lie in K and 8 is non-singular as the square of its determinant is D..k, the 
discriminant of the field k. Let 8-1 = [s~jl. 

Let 9 = Gal(Q I Q) and 91 = Gal(Q I k), where Q is the algebraic 
closure of Q in Co Now each O"i described above can be extended to lie 
in 9 so that we obtain 9 = Ut=l O"i91. Now if T E 9, then T acts on the 
left on the cosets {O"i91}, inducing a permutation, also denoted by T (Le., 
TO"i91 = O"r(i)(h). Then T(Sij) = Sr(i)j and it is straight forward to check 
that T(S~j) = s~r(j) (see Exercise 10.3, No. 1). 

Now let G be a linear algebraic group defined over k so that 

where the PM are polynomials in the Xij with coefficients in k. For each O"i we 
obtain a linear algebraic group Ui G defined over O"i (k). By restriction of scal­
ars, we construct a linear algebraic group H over Q with a representation in 
GLn.d. To do this, consider the matrices A of GLnd partitioned so that A = 
(Aij),whereAj is an nxn matrix and i,j E {1,2, ... ,d}.IfY1,Y2, ... ,Yd 
are n x n matrices, let (Y1, Y2, ... ,Yd) denote the nd x nd matrix Y where 
Yij = 0 if i =I- j and Yii = Yi. Now let 8 = [sijlnl and, so, 8-1 = [s~jlnl. 
Then A = (Aij ) lies in H if and only if 8A8-1 = (Yl, Y 2, ... ,Yd), where 

Yi E UiG. Now 8A8-1 = (Bij ), where B ij = 'L~=1 'L~=1 sies~jAek. Then 
H is the vanishing set in GLnd of the polynomials in X = (Xij ) given by 
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Pij (Xl1 , ... ,Xdd) = L~=I L~=I sU:S~jXek = 0 for i =1= j, i, j E {I, 2, ... ,d} 

and Q"",i(Xl1 , ... ,Xdd) = O"iP""(L~=1 L~=l SilS~jXek) = 0 for f.,L E I, 
i = 1,2, ... ,d. Note the T Pij = PT(i)T(j) and TQ"",i = Q"",T(i). Thus Q 
acts as apermutation group on these polynomials. Choose one polynomial 
from each orbit of this action, say PI, P2 , ... ,Pr and Q"", f.,L E I. Then 

H = {X E GLnd I T Pi(X) = 0, i = 1,2, ... r, TQ",,(X) = 0, f.,L EI, TE Q}. 

For each i = 1, 2, ... ,r, let ITil , ITi2 , ... ,ITie( i) denote the symmetrie poly­
nomials in {T Pi : T E Q} and n"",I, n"",2 ... ,n"",d denote the symmetrie 
polynomials in {TQJ.' : T E Q}. Then 

H = {X E GLn.d I ITij(X) = 0 for i = 1,2, .. . r,j = 1,2, .. . .e(i), 

and nJ.',i(X) = 0 for i = 1,2, ... ,d, f.,L EI}, 

Since these polynomials are invariant under the action of Q, their coeffi­
cients lie in Q and so H is defined over Q. 

Lemma 10.3.3 

HQ = {S-I(g, 0"2(g), ... ,O"d(9))S I gE Gk}, 

Hz = {S-l(g, 0"2 (g), ... ,00d(g))S I 9 E GRk}· 

(See Exercise 10.3, No. 2.) 
Note that, up to conjugation, H has the form G x lY2 G x ... x O"dG so 

that there is a morphism p : H ----t G obtained by mapping A onto the first 
factor of SAS-I. 

This, then, is the rest riet ion of scalars construction. Denote the group 
H by RkIQ(G) and for each gE Gk, let g' = (g, 0"2 (g), ... , O"d(g)). Then we 
have shown that (RkIQ(G))Q ~ G~ and (RkIQ(G))Z ~ Gkk • Furthermore 
the morphism p gives group isomorphisms p : (RkIQ(G))Q ----t Gk and p : 
(RkIQ(G))Z ----t GRk. 

Indeed the restrietion of scalars defines a functor from the category öf 
linear algebraie groups and morphisms over k to that over Q. Furthermore, 
it has the following properties, whieh we simply enumerate, clarifying the 
relationship between the objects in the two categories. Recall that if G is 
defined over k, then Gis k-simple if there are no proper connected normal 
k-subgroups of G and G is absolutely k-simple if for any field L such that 
k c Lek, G is L-simple . 

• If G is a linear algebraic group over k, then G is k-simple if and only 
if RkIQ(G) is Q-simple . 

• If H is a linear algebraic group over Q which is Q-simple, then there 
exists a finite extension k I Q and an absolutely k-simple group G 
such that Hand RkIQ(G) are isomorphie over Q. 
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• With H as above, the k and G so eonstrueted are essentially unique. 
More precisely, if k' I Q is a finite extension and G' is a k'-simple 
group such that nk'IIQ(G') is isomorphie over Q to H, then there is 
a field isomorphism (J" : k' --+ k inducing a k-regular isomorphism 
aG' --+ G. 

Consider again the ease where G is a semi-simple linear algebraie k-group. 
Then by Theorem 10.3.2, Gkk is isomorphie to a diserete subgroup of finite 
eovolume in (RkllQ(G))lR. By its eonstruetion, (RkllQ(G))lR is isomorphie to a 
produet of groups of the form (aiG)lR if (J"i is areal embedding and (aiG)c, 
regarded as areal Lie group, if (J"i is one of a pair of eomplex eonjugate 
embeddings. Taking as before, (J"l = Id, the image of G Rk in GlR or Ge will 
be diserete and of finite eovolume if and only if all the other eomponents 
in the product are compact (cf. Lemma 8.1.3 and Exercise 8.1, No. 3). 
In partieular, if L is an Rk-Iattiee in a four-dimensional quadratic space 
(V, q) over k C lR, which has signature (3,1) at the identity embedding as 
described earlier in §1O.2, then SO(L) will be discrete and of finite covolume 
in SO+(V, q) ~ Isom+H3 if and only if k is totally real and (av, a q) is 
positive definite for (J" : k --+ lR, (J" =I=- Id. 

Returning to the general situation, the preceding discussion using the 
restrietion of scalars functor motivates the following definition of discrete 
arithmetic subgroups of a fixed Lie group. 

Definition 10.3.4 Let G be a connected semi-simple Lie group with trivial 
centre and no compact factor. Let r c G be a discrete subgroup of finite 
covolume. Then r is arithmetic if there exists a semi-simple algebraic group 
H over Q and a surjective homomorphism q; : HR --+ G with compact kernel 
such that q;(Hz n HR) and rare commensurable. 

In this definition, H R denotes the component of the identity. 
Before returning to special cases, we briefly diseuss the remarkable result 

of Margulis characterising arithmeticity by the eommensurability subgroup. 
Recall that if G is as given in the above definition and r c G a discrete 
subgroup of finite eovolume, then the eommensurator of r is 

Comm(r) = {x E G Ir and xrx-1 are commensurable}. 

Clearly r c Comm(r) and commensurable subgroups have the same com­
mensurator . When r is an arithmetic Kleinian group or an arithmetie Fuch­
sian group, then the commensurator is described in Theorem 8.4.4. With G 
and r as described assume furt her that r is irreducible, which means that 
its image in any proper subproduct of factors of G is dense (cf. Theorem 
8.1.2). 

Theorem 10.3.5 (Margulis) Let G and r be as above with r irreducible. 
Then either r C Comm(r) of finite index or Comm(r) is dense in G. 
Furthermore, Comm(r) is dense in G if and only if r is arithmetic. 
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The proof of this theorem is not induded here. This result gives a strik­
ing diehotomy between arithmetic and non-arithmetic subgroups. In the 
next chapter, we examine the distribution of subgroups in the commen­
surability dass of an arithmetie Kleinian or Fuchsian group. By this the­
orem of Margulis, this complex distribution of groups will not arise in the 
non-arithmetie cases. Thus, for example, determining arithmeticity or non­
arithmeticity for a finite covolume Kleinian group is a win-win situation, as 
showing non-arithmeticity also has a positive outcome, as this remarkable 
theorem shows. 

Now let us return to considering arithmetie subgroups of PGL(2, C) and 
PGL(2, lR.). For arithmetie Kleinian or arithmetic Fuchsian groups, which 
have been described either by quaternion algebras as in Chapter 8 or via 
quadratic forms as in §1O.1, the restriction of scalars functor shows that 
such groups are arithmetic according to Definition 10.3.4. Suppose con­
versely, that r is an arithmetic subgroup of G = PGL(2, C) according to 
Definition 10.3.4. Then there exists an algebraic group H over Q and a 
surjective homomorphism <p : HR --t G. Since G is simple, H yields a finite 
extension k I Q and a simple group J over k such that H is isomorphie 
over Q to RklQ (J), using the properties of the restrietion of scalars functor. 
Then by construction, there is an isomorphism T : J --t G defined over 
some finite extension of k. 

Definition 10.3.6 Let G be an algebmie group defined over the number 
field k. Then G is a k-Iorm 01 the algebmie group PGL2 il there is an 
extension K 01 k sueh that G is isomorphie over K to PGL2 • 

Thus to determine all arithmetic Kleinian groups, it remains to determine 
all k-forms of PGL2 • We can, and will, define k-forms for other algebraic 
groups (e.g., SL2), and indeed, for other algebraic structures over k such 
as vector spaces, quadratic spaces and algebras. 

Theorem 10.3.7 Every k-Iorm 01 PGL2 is isomorphie over k to a quo­
tient A* jZ(A)*, where A is a quaternion algebra over k. 

This theorem then shows that all arithmetic subgroups of PGL(2, C) ac­
cording to the general Definition 10.3.4 are arithmetic Kleinian groups as 
described in Chapter 8. 

For the proof of Theorem 10.3.7, recall that every quaternion algebra A 
splits over some quadratie extension L of k so that over L, A* jZ(A)* is 
isomorphic to PGL2 • For the converse, we invoke some results from non­
abelian Galois cohomology. 

Let K I k be a Galois extension and let g = Gal(K I k). Let V be a 
finite-dimensional vector space over k and let x be a tensor of type (p, q) 
on V. Let VK = V 0k K and XK denote the element x 01 of Tf(V) 0k K. 
Let E(K I k, V,x) denote the set of K I k-forms of (V,x); that is, the set of 
k-isomorphism dasses of pairs (V', x') such that (Vk, x~) is K-isomorphic 
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to (VK,XK). For any such isomorphism <jJ : Vk -t VK, we can define a 
g-action on <jJ by 

g<jJ = (1 ® g) 0 <jJ 0 (1 ® g-I). 

If A(K) denotes the group of all K-automorphisms of (VK, XK), then g acts 
on A(K). Also A(K) acts by composition on the set of all K-isomorphisms 
<jJ: (Vk,x~) -t (VK,XK). 

A l-cocycle of gin A(K) is a mapping g -t A(K) written 9 f-7 ag such 
that 

for all g, hE g. 

Two l-cocycles a, a' are then cohomologous if there exists b E A(K) such 
that a~ = b-1aggb. This is an equivalence relation and the equivalence 
classes form the first cohomology set of gin A(K), H 1 (g, A(K)). 

If (V', x') represents an element of E(K I k, V,x), then there is an iso­
morphism<jJ: Vk -t VK such that tensoring up it yields <jJ(x~) = XK. This 
gives rise to a mapping 9 f-7 ag, where ag E A(K) is defined by g<jJ = <jJoag. 
This is a l-cocycle and starting with a different isomorphism, we would 
obtain a cohomologous cocycle. We thus have a well-defined mapping 

(): E(K I k, V,x) -t H 1 (g,A(K)). (10.15) 

Theorem 10.3.8 () is bijective. 

It is easy to show that () is injective. To show surjectivity, we use the 
following result: 

Lemma 10.3.9 

Proof: Let a be a l-cocycle. For c E Mn(K), define b = :E9EQ aggc. Since 
the automorphisms {g} form a set of algebraically independent mappings, 
the equation det(b) = 0 can have only finitely many solutions. Thus there 
exists a c such that det(b) # O. In that case, 

hb = Lhaghgc = Lah"lah/gc = ah" l b. 
gEQ 

Thus b is a coboundary. 0 

We now complete the proof of Theorem 10.3.8 by showing that () is surject­
ive. Let a be a l-cocycle g -t A(K) C GL(VK)' By Lemma 10.3.9, there 
exists <jJ, a K-automorphism of VK, such that ag = <jJ-l 0 g<jJ for all gE g. 
Let x' = <jJ(x). Note that 

gx' = g<jJ(gx) = g<jJ(x) = <jJ 0 ag(x) = <jJ(x) = x' 

for all 9 E g so that (V, x') E E(K I k, V, x). 0 
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For our purposes, we only eonsider the eases where V = M 2 [Le., V 
is four dimensional and x is a tensor of type (1,2), thereby defining the 
multiplieation]. Thus E(K I k, V, x) eonsists of k-isomorphism classes of 
four-dimensional algebras whieh are isomorphie to M 2 over K (Le., qua­
ternion algebras over k whieh split over K. Note that in this ease, A(K) = 
PGL(2,K). 

Proof (of Theorem 10.3.7): Let G be a k-form ofPGL2 so that we have 
an isomorphism f whieh we ean take to be defined over a Galois extension 
of k. For eaeh 9 E g, f- 1 0 9 f glves an automorphism of PGL2 defined 
over K. However, every such automorphism is inner so that we obtain a 
mapping 9 -+ A(K), given by 9 t-+ ag , where ag induees f- 1 0 9 f. This 
mapping is readily eheeked to be a 1-eoeycle and so defines an element of 
H 1 (9, A(K)). Thus by Theorem 10.3.8, there exists a quaternion algebra 
A over k and an isomorphism </J : A -+ M 2 defined over K inducing the 
eoeycle a. This induees an isomorphism </J : A* jZ(A)* -+ PGL2 defined 
over K. The eomposition </J 0 f- 1 : A* jZ(A)* -+ G has the property that 
g(</J 0 f-l) = </J 0 f- 1 for all 9 E g. Thus </J 0 f- 1 is defined over k and the 
result follows. 0 

A similar argument shows that all k-forms of SL2 are of the form A I where 
A is a quaternion algebra over k. 

Theorem 10.3.7 shows that quaternion algebras arise naturally in the 
study of arithmetie Kleinian groups. Reeall that we have also used traee 
fields and quaternion algebras as invariants of eommensurability classes 
in studying arbitrary Kleinian groups of finite eovolume. These, too, arise 
naturally, as is shown by early work of Vinberg, who, in a wider eontext, was 
looking for natural fields of definition. More precisely, let G be a eonneeted 
semi-simple algebraie group over C with trivial eentre and let r be a Zariski 
dense subgroup. 

Definition 10.3.10 A field k C eisa field of definition ofr if there is a 
k-form H of G and an isomorphism p : G -+ H defined over some finite 
extension of k such that p(r) c Hk. 

Theorem 10.3.11 (Vinberg) There is aleast field of definition of r 
which is an invariant of the commensurability class of r. Furthermore, 
it is the field Q( tr Ad 'Y : 'Y E r), where Ad is the adjoint representation 
ofG. 

In the special ease where G = PGL2 and r is diserete of finite eovolume, 
then r is Zariski dense by Borel's density theorem. Furthermore, kr = 
Q(tr Ad'Y : 'Y E r) (see Exercise 3.3, No. 4). Using Theorem 10.3.7, one 
ean prove Vinberg's Theorem (see Exereise 10.3, No. 5) in this particular 
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case and the k-form which corresponds to the least field of definition is 
then the invariant quaternion algebra, as described in Chapter 3. 

Exercise 10.3 

1. In the notation used to describe the restriction of scalars functor, show 
that T( S~j) = S~T(j) . 

2. Complete the pmof of Lemma 10.3.3. 

3. Let M be a compact hyperbolie 3-manifold. Then M admits "hidden 
symmetries" if there is an isometry between two finite covers of M which is 
not the lift of an isometry of M. If M is non-arithmetie, show that there is a 
finite cover M' of M such that all hidden symmetries come fmm isometries 
of M'. If M is arithmetie, show that M always has hidden symmetries. 

4. Let (V, q) be a fixed non-degenemte three-dimensional quadmtic space 
over a number field k. Show that every k-form of SO(V, q) is of the form 
SO(V', q') where (V', q') is defined over k and is isometrie to (V, q) over 
some extension of k. 

5. If G = PGL2 (<C) and r is a finite-eovolume Kleinian gmup, pmve Vin­
berg's Theorem in this case and show that kr is the least field of definition. 

10.4 Reflection Groups 

If P is a polyhedron in H 3 whose dihedral angles are sub multiples of 7r, 

then the group r(P) generated by reflections in the faces of P is a discrete 
subgroup of Isom H3 and the orientation-preserving subgroup r+(p) is a 
Kleinian group. Clearly, if P is compact or of finite volume, then r+(p) 
is cocompact or of finite covolume, respectively. Several cases have been 
examined in Chapter 4 to determine their invariant trace field and qua­
ternion algebra. This was usually done by suitably locating the polyhedron 
in the upper half-space model of H 3 and specifically calculating generating 
matrices. Utilising the Lobachevski model of H 3 , such polyhedra can be 
conveniently described by their Gram matrix. This matrix then provides 
a link to determining the invariant trace field and quaternion algebra and 
arithmeticity or otherwise of such groups without specifically positioning 
the polyhedron in H 3 (cf. §4.7.1 and §4.7.2). We describe this in this sec­
tion, drawing on the work of Vinberg, which also applies, more generally, 
to Hn. 

Recall the Lobachevski model in the language used at the start of §10.2. 
A hyperbolic plane in H 3 is the projective image of a three-dimensional 
linear hyperbolic subspace S of V. The orthogonal complement in (V, q) 
of S will be a one-dimensional subspace spanned by a vector e such that 
q(e) > o. Thus for a polyhedron P, we choose a set of outward-pointing 
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normal vectors {eI, e2, ... ,en }, one for each face, and normalise so that 
each q( ei) = 1. The associated bilinear form B on V is defined by B (x, y) = 

q(x + y) - q(x) - q(y) and P is the image of 

{x E V I B(x,ei) ~ 0 for i = 1,2, ... ,n}. 

The Gram matrix G(P) of Pis then the n x n matrix G(P) = [aij], where 
aij = B(ei' ej). The diagonal entries ofthis matrix are 2. Ifthe faces Fi and 
Fj meet with dihedral angle Bij and Fi is the projective image of ef-, then 
B(ei,ej) = -2cosBij . If the faces do not intersect (and are not parallel), 
then they have a unique common perpendicular in H 3 whose hyperbolic 
length is eij . In that case, B (ei, ej) = -2 cosh eij . The matrix G(P) is n x n 
with n ~ 4 and n = 4 if and only if P is a tetrahedron. In all cases, the 
matrix G(P) has rank 4 and signature (3,1) over IR. Indeed, necessary and 
sufficient conditions for the existence of acute-angled polyhedra of finite 
volume in H 3 (and, more generally, in H n for n ~ 3) can be described in 
terms of the matrix G(P). For the moment, consider the following fields 
obtained from G(P): 

K(P) = Q({aij: i,j = 1,2, ... ,n}). (10.16) 

For any subset {i1 ,i2 , ... ,ir} C {1,2, ... ,n}, define the cyclic product by 

(10.17) 

and the field k(P) by 

(10.18) 

It is not difficult to see that the non-zero cyclic products biIi2 ... ir correspond 
to closed paths {i1, i2, ... ,ir, i1} in the Coxeter symbol for the polyhedron 
(see Exercise 10.4, No. 1). 

With {i1 , i 2 , ... ,ir} as defined above, also define 

(10.19) 

These vectors arise from paths starting at the vertex labelled 1 in the 
Coxeter symbol of the polyhedron. Let M be the k(P)-subspace of V 
spanned by all Vii i2 ... i r • Note that the value of the form on these spanning 
vectors lies in k(P), since B(viIi2"'ir ' Vjlh-·.jJ = blili2 ... irjsls-l···jl E k(P). 
Thus, with the rest riet ion of the quadratic form q on V, (M, q) is a quad­
ratic space over k(P). When P has finite volume, its Coxeter symbol is 
connected and so, for any i r , there exists a non-zero Vii i2" .i r as described 
at (10.19). Thus M @lR = V so that M will be four-dimensional over k(P) 
and have signature (3,1) over lR (see Exercise 10.4, No. 1). Let d be the 
discriminant of the quadratic space (M, q) so that d E k(P) and d < O. 

Recall that r+(p) is the subgroup of orientation-preserving isometries 
in the group generated by reflections in the faces of P and, as such, is a 
subgroup of PSL(2, C). The main purpose of this seetion is to prove the 
following: 
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Theorem 10.4.1 
kr+(p) = k(P)(v'd), 

to identify the invariant quaternion algebra Ar+(p) from the Gram matrix 
and to investigate when the group r+(p) is arithmetic. Thus the invariant 
trace field can be determined direct1y from the Gram matrix and, hence, 
directly from the geometry of P. 

Let Ti denote the refiection in the face F i for i = 1,2, ... ,n so that 
r(p) = (Tl, r2, ... ,Tn ). Let 1'ij = TiTj so that 1'ij E r+(p). Furthermore, 
regarded as an element of PSL(2, C), tr 1'ij = aij, at least up to sign. 

Lemma 10.4.2 

Proof: Note that bh i2' .. ir = tr 1'i1 i2 tr 1'i2i3 ... tr 1'i r i1 • For brevity, let 1'j = 
1'ij ij+l and note that 1'11'2" '1'r = 1. We can assurne that bili2· .. ir i=- 0 
so that tr1'j i=- 0 for j = 1,2, ... ,T. Recall that for l' E SL(2,Q, l' = 
b 2 + 1)/tr1' so that, at least up to sign, 

r-1 
-1 1 rr 2 

1'r = 1'1" '1'r-1 = t t t bi + 1). 
r1'l r1'2'" r1'r-1 i=l 

Thus biIi2 .. ·ir = tr rr~~;b; + 1) E kr+(p). (See Lemma 3.5.6.) D 

Now the space M is invariant under the refiections Ti since 

Thus Ti E O(M, q) and we obtain a representation of r+(p) in SO(M, q). 
Now as shown in §10.2, each a E SO(M, q) has a unique extension a to the 
Clifford algebra C(M) which defines an automorphism of the quaternion 
algebra Co(M), which is necessarily inner by the Skolem Noether Theorem. 
We thus obtain a representation 

r+(p) ~ Co(M)* / Z(Co(M))* (10.20) 

[i.e., into a k(P)( Vd)-form of PGL2]. Thus k(P)( Vd) is a field of definition 
of r+(p). Lemma 10.4.3 then follows from Exercise 10.3, No. 5 (and see 
the remarks following Theorem 10.3.11). 

Lemma 10.4.3 
kr+(p) c k(P)(v'd). 

Lemma 10.4.4 Let G be a finite-covolume Kleinian group normalised by 
an orientation-reversing involution. Then [kG : kG n IR] = 2. 
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Proof: Let r be the involution, which, by conjugacy if necessary, can be 
taken to be the extension of complex conjugation to H 3 . Choose a subgroup 
Go of finite index in G for which Q(tr Go) = kG and Go is normalised by 
r. Thus if gE Go, then 

tr gE Q(tr Go) = kG. 

It follows that complex conjugation preserves the non-real field kG. 0 

The proof of Theorem 10.4.1 now follows from these three lemmas, for 
k(P) c kr+(p) c k(P)( v'd) and kr+(p) n lR c k(P)( v'd) n lR = k(P). 0 

We can also determine the invariant quaternion algebra. From (10.20), 
note that r+(p)(2) embeds in Co(M)1/{±I} so that 

Ar+(p) = Co(M). 

10.4.1 Arithmetic Polyhedral Groups 

The above discussion concerns identifying the invariant trace field and qua­
ternion algebra of any polyhedral group, independent of whether it is arith­
metic or not. However, necessary and sufficient conditions for the group to 
be arithmetic can then readily be determined from the Identification The­
orem 8.3.2 and translated back into conditions on the Gram matrix. Thus 
the requirements that k(P)( v'd) have exactly one complex place and that 
Co(M) be ramified at all real places are, as seen in §10.2, equivalent to 
requiring that k(P) be totally real and that (0" M, 0" q) be positive definite 
at all real embeddings (J' -I- Id. Furthermore, we require that all elements 
of tr r+ (P) be algebraic integers. Thus certainly all aij = tr ')'ij must be 
algebraic integers. Suppose, conversely, that all aij are algebraic integers. 
Note that r+(p) = \1'12, ')'13, ... ,')'1n) so that by Lemma 8.5.2, we need 
to show that the traces of all products in pairs of these generators are 
algebraic integers. This follows since 

Finally, expressing all of these conditions in terms of the Gram matrix, we 
obtain a characterisation of arithmetic reflection groups as follows: 

Theorem 10.4.5 (Vinberg) Let P be a finite-volume polyhedron in H 3 , 

all of whose dihedral angles are submultiples of 1T and let r(P) be the group 
generated by refiections in the faces of P. Let G(P) = [aij] be the Gram 
matrix of P and let k(P) = Q({bili2"·ir})' Then r+(p) is arithmetic if and 
only if the following three conditions hold: 
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1. k (P) is totally real. 

2. All aij are algebraic integers. 

3. uG(P) = [a(aij)] is positive semi-definite for all a : K(P) --+ C such 
that CF I k(P) =I Id. 

(See Exercise 10.4, No. 6.) 
We note here, without proof, that, using this theorem, Nikulin has shown 

that if the degree of k(P) is bounded, then there are only finitely many 
maximal arithmetic polyhedral Kleinian groups. 

10.4.2 Tetrahedral Groups 

In this subsection, we discuss the tetrahedral groups. Some special cases 
have been already considered (see §4.7.2, Exercise 4.7, No. 3, Example 8.3.8, 
Exercise 8.3, No. 5 and Example 8.4.3) and the ingredients for examining an 
cases appear in various locations throughout the book (see §5.4, §8.3, §8.5 
and §1O.4). However, these groups are sufficiently pervasive in the general 
study of Kleinian groups and hyperbolic 3-manifolds to make it worthwhile 
to gather the information together in this section, the figures and tables 
appearing in Appendix 13.1. 

Thus let T denote a compact tetrahedron, an of whose angles are submul­
tiples of 7f. The methodology for handling the non-compact tetrahedra of 
finite volume is very similar (see Exercise 10.4, No. 2 and Appendix 13.2). 
There are nine compact tetrahedra and their Coxeter symbols are given 
in Figure 13.1 in Appendix 13.1. Let r+(T) be the associated tetrahedral 
group. 

First note that since the traces of an generators and an products of gen­
erators in pairs are algebraic integers, an traces in the group are algebraie 
integers by Lemma 8.5.2. 

From an nine Coxeter symbols, it is immediate that every tetrahedral 

group contains a subgroup isomorphie to A4 so that Ar+ (T) ~ (k~~(i)) 
by Lemma 5.4.1. Thus Ar+(T) must be ramified at an real places of 
kr+(T). 

Thus to establish arithmeticity or otherwise (see Theorem 8.3.2), it re­
mains to determine the number of complex places of kr+(T). This is readily 
calculated from the results in this section, partieularly Theorem 10.4.1. Let 
G(T) denote the Gram matrix of T, so that G(T) is the 4 x 4 symmetrie 
matrix [ad, where aii = 2 and aij = - 2 cos aij, where aij is the acute di­
hedral angle between faces i and j of T. Let K(T) and k(T) be as defined 
at (10.16) and (10.18). From an examination of the nine Coxeter sym­
bols, it fonows readily that K(T) = Q(cos7f/5) = Q(V5) for an T except 
T5 , T6 and Ts. In these cases, we have K(T5 ) = Q( )2), K(T6 ) = Q, and 
K(Ts) = Q( v/5, )2). In these tetrahedral cases, a non-singular diagonal 
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matrix X will effect the change of basis from {eI, e2, e3, e4} to a basis of 
M, as defined above. Thus the discriminant of the quadratic space d can 
be taken to be det(X)2 det(G(T)). Note that if K(T) = k(T), then d can 
simply be taken to be det(G(T)). Straightforward calculations then yield 
the fields kr+(T) (see the table in Appendix 13.1) and show that for all 
T !- Ts, kr+(T) has one complex place. Thus r+(T) is arithmetic if and 
only if Ti- Ts. 

Additionally, for T !- T5 , T6 , r+(T) contains a subgroup isomorphie 
to A5 and [kr(T) : Q] = 4. So, by Lemma 5.4.2, Ar+(T) has no finite 
ramification, and a similar argument as used in that lemma shows that 
Ar+(T5 ) has no finite ramification (see Exercise 10.4, No 3). From §4.7.2, 
kr+(T6 ) = Q( v'-7) and Ar+(T6 ) is ramified at the two finite places over 
2. 

10.4.3 Prismatic Examples 
We consider again the groups generated by reflections in the faces of prisms 
dealt with in §4.7.3. Thus, for q ~ 7, let Pq denote the triangular prism 
shown in Figure 10.1. The label n shown on an edge indicates a dihedral 
angle rr/n. The Gram matrix is 

Gq = (~c ~: 
o 0 
o 0 

o 
-1 
2 

-1 
o 

o 
o 

-1 
2 

-2cosrr/q 

where c = 2coshf12, with f 12 the hyperbolic distance between the triangu­
iar faces. Since the rank of Gq must be 4, we readily determine that 

c2 = 4(3cos2 rr/q - 2) = 3 + 1 
4 cos2 rr / q - 3 2 cos 2rr / q - 1 . 

(10.21) 

Retaining the notation used in Theorem 10.4.1, we calculate that k(Pq ) = 
Q(cos2rr/q). Also, in the numbering given by the matrix and used in the 

q 

FIGURE 10.1. 
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notation in (10.19), VI = 2el, V2 = -Ce2, V23 = Ce3, V234 = -Ce4, so that 
M is spanned by these over k(Pq ). Thus the bilinear form restrieted to M 
yields the symmetrie matrix 

G' = (2~2 
q 0 

o 

and d = det G~ = 4c6 (8 - 3c2 ). Thus by Theorem 10.4.1, kr+(Pq ) = 
Q( J(2 + 2 eos21f/q)(2 - 6 eos 21f/q)). Note that r+(Pq ) eontains a sub­

group isomorphie to the finite group A4 so that Ar+(Pq ) ~ (kr~'(p~)), 
thus having at worst real and dyadie ramifieation (see §5.4). 

Note that k(Pq ) is totally real, so the eonditions for arithmeticity give 
that r+(Pq ) is arithmetie if and only if c2 is an algebraie integer and (2 + 
2 eos 2t7r / q)(2 - 6 eos 2t1f / q) is positive for all (t, q) = 1 and t ;f:. ±l(mod q). 
Taking t as small as possible shows that 2 - 6 eos 2t1f / q < 0 in all eases 
exeept q = 7,8,9,10,12,14,18,24,30. However, the requirement that c2 is 
an algebraie integer [Le., that 2eos21f/q - 1 is a unit (see (10.21))] rules 
out'q = 12,18,24 (cf. §4.7.3). 

Note that from this family we have produeed infinitely many refl.eetion 
groups whieh are non-arithmetie. Furthermore, by suitable ehoiees of q, 
we ean ensure that they are pairwise non-eommensurable sinee we know 
kr+(Pq ). 

Exercise 10.4 

1. Establish the connections among the non-zero cyclic products defined 
at (10.17), the vectors viI i 2 •.• i r defined at (10.19) and paths in the corres­
ponding Coxeter symbol as stated in this section. Also show that when P 
has finite volume, then the Coxeter symbol is connected and this occurs iJ 
and only iJ the corresponding Gram matrix is indecomposable. Deduce that 
M, as defined Jollowing (10.19), is Jour-dimensional over k(P). 

2. Let T denote a non-compact tetrahedron oJ finite volume. Using the 
notation oJ §10.4.2, establish the Jollowing: 
(a) Show that K(T) = Q Jor all but 6 oJ the 23 tetrahedra T. Deduce that, 
in these six exceptional cases, r+ (T) Jails to be arithmetic. 
(b) Show, using Lemma 9.8.2, that iJr+(T) is arithmetic, then kr+(T) = 
Q(H) orQ(A). 
(c) Show that in the remaining 20 cases, r+(T) is arithmetic. 

[See Appendix 13.2 Jor more inJormation on these groups.] 

3. Prove that kr(T5 ) = Q(J-1- 2V2). 
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4. Determine the Gram matrix of the group generated by refiections in 
the faces of a regular ideal cube with dihedral angles 7r /3 and, hence, the 
invariant field and quaternion algebra. 

5. Under the conditions described in Theorem 10.4.5, find an Rk(p)- lattice 
in V which is invariant under r(p). 

6. Complete the proof of Theorem 10.4.5 using the argument sketched which 
relates the three conditions of the theorem to those of Theorem 8.3.2. 

10.5 Further Reading 

The seminal paper (Borel and Harish-Chandra (1962)) and the book (Borel 
(1969)) are two excellent sources for the general study of arithmetic groups. 
See also Platonov and Rapinchuk (1994). An account of the theorem of 
Margulis is given in Zimmer (1984) together with a number of results on 
the restriction of scalars functor, for which one should also see Weil (1982), 
Borel (1969) and Johnson (1994). The discussion on non-abelian cohomo­
logy can be found in Serre's books, Serre (1964) and Serre (1997), Platonov 
and Rapinchuk (1994) and in articles by Springer in Borel and Mostow 
(1966). A clear account of Clifford algebras appears in Lam (1973). 

On more specific points raised in this chapter: the normaliser of an or­
der in a quaternion algebra, particularly a maximal order, plays a central 
role (Borel (1981)) which will be discussed in Chapter 11. The relation­
ship between orthogonal groups and quaternion algebras is discussed in 
Hilden et al. (1992b). Producing arithmetic Kleinian groups via orthogonal 
groups of lattices has been carried out, for example, in Vinberg (1972) and 
in Scharlau and Walhorn (1992). The connection between quaternion al­
gebras giving rise to arithmetic Kleinian groups which contain Fuchsian 
subgroups and orthogonal groups of four-dimensional quadratic spaces is 
discussed in Maclachlan and Reid (1987) and Hilden et al. (1992b). The 
special cases of Bianchi groups and orthogonal groups of lattices was ex­
ploited in James and Maclachlan (1996). For the Fuchsian cases, see Mag­
nus (1974), Mennicke (1967) and Maclachlan (1981). The existence of non­
arithmetic discrete subgroups of Isom Hn for arbitrary n was established 
in Gromov and Piatetski-Shapiro (1988) and the particular application to 
the case n = 3 given in §10.2 can be found in Vinberg (1993b). 

In Chapter 3, we proved that the invariant trace field and the invariant 
quaternion algebra are commensurability invariants of a Kleinian group 
of finite covolume. In Vinberg (1971), the general problem of recognising 
fields and rings of definition of Zariski dense subgroups of semi-simple Lie 
groups was addressed. Applied to PGL2 , these results in Vinberg (1971) 
give an alternative approach to establishing these invariance theorems from 
Chapter 3 (Vinberg (1995)). The hidden symmetries of compact hyperbolic 
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3-manifolds which appear in the exercises in §10.3 are examined in Neu­
mann and Reid (1992a). 

Much of the material in §1O.4 is based on work of Vinberg, who gave 
necessary and sufficient conditions on a Gram matrix for the corresponding 
reflection group to be arithmetic (Vinberg (1967)). This was not restricted 
to three dimensions and his results importantly showed the existence of 
discrete non-arithmetic groups in higher dimensions. A good discussion of 
the geometrie connections is in the survey (Vinberg (1985)). The finiteness 
result remarked upon at the end of §10.4.1 appears in Nikulin (1981). The 
original proof of Theorem 10.4.1 was in Maclachlan and Reid (1998) but 
this is a simplified version. The arithmeticity Theorem 10.4.5 is in Vinberg 
(1967)(see also Hilden et al. (1992b)). The family of examples in §10.4.3 
have been considered in Vinberg (1967), Conder and Martin (1993) and 
Maclachlan and Reid (1998). Details on the arithmetic tetrahedral groups 
are given in Maclachlan and Reid (1989) (see also Maclachlan (1996)). For 
furt her information on simplex groups in Hn for n ?: 3, see Johnson et al. 
(1999). The enumeration of compact and non-compact tetrahedral groups 
is well-documented (e.g., Humphreys (1990) and Vinberg (1993b)). See also 
Appendices 13.1 and 13.2. 



11 
Commensurable Arithmetic Groups 
and Volumes 

In this chapter, we return to considering arithmetic Kleinian and Fuchsian 
groups and the related quaternion algebras. Recall that the wide com­
mensurability dasses of arithmetic Kleinian groups are in one-to-one cor­
respondence with the isomorphism dasses of quaternion algebras over a 
number field with one complex place which are ramified at all the real 
places. There is a similar one-to-one correspondence for arithmetic Fuch­
sian groups. Thus, for a suitable quaternion algebra A, let C(A) denote 
the (narrow) commensurability dass of associated arithmetic Kleinian or 
Fuchsian groups. In this chapter, we investigate how the elements of C(A) 
are distributed and, in particular, determine the maximal elements of C(A) 
of which there are infinitely many. Since these groups are all of finite cov­
olume, their volumes are, of course, commensurable. As a starting point to 
determining these volumes, a formula for the groups P p( e)1 ), where 0 is 
a maximal order in A, is obtained in terms of the number-theoretic data 
defining the number field and the quaternion algebra. This relies critically 
on the fact that the Tamagawa number of the quotient A)./ Al of the idele 
group A 1, is 1, as discussed in Chapter 7. From this formula, one can de­
termine the covolumes of the maximal elements of C(A) and show that all 
of these volumes are integral multiples of a single number. Much of this 
chapter is based on work of Borel. 
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11.1 Covolumes for Maximal Orders 

In this seetion, we determine a formula for the eovolumes of the groups 
Pp(OI), where 0 is a maximal order in A. 

First eonsider the Kleinian ease. Thus, k is a number field with exaetly 
One eomplex plaee and A a quaternion algebra over k whieh is ramified at 
all real plaees. Let 0 be a maximal order in A. Then in the group of ideles 
A~ as deseribed in Theorem 8.1.2, let U be the open subgroup 

SL(2, q x TI A~ x TI O~ ~ SL(2, q x TI 1{1 x. TI O~. 
vERamoo(A) vEO, v real PEO, 

(11.1) 

Note that by ehoosing 0 to be maximal, all Op are maximal by Corollary 
6.2.8. Now as we have seen in Theorem 8.1.2, following Theorem 7.6.3, the 
Tamagawa volume of U /0 1 is 1. All eomponents in U apart from the first 
are eompaet. Thus, if p is the projeetion of 0 1 into the first eomponent, 
then the Tamagawa volume of U /0 1 is the produet of the loeal Tamagawa 
volumes of SL(2, q/ p(OI) and of the faetors 1{1 and O~ (see Exercise 8.1, 
No. 3). In Chapter 7, we determined the loeal Tamagawa volumes of these 
faetors. Thus, VOI(1{I) = 471'2 and 

if P rf- Ramf(A) 

if P E Ramf(A) 

(see Lemmas 7.5.7 and 7.5.8). Here D kp is the diseriminant of the loeal 
field extension kp I Qp, where p I P and the produet I1p D kp = tlk , 

the absolute diseriminant of k. Also, as earlier, N(P) is the eardinality of 
I Rp/7I'pRp I = IR/PI· 

Thus for the Tamagawa measure, 

Vol(SL(2,q/p(01)) = TI (VOI(1{I))-1 TI(Vol(O~))-1 
v real P 

ItlkI 3 / 2(k(2) I1PIß(A)(N(P) - 1) 
(471'2) [k:IQI]-2 

(11.2) 

The Dedekind zeta function (k of the field k is defined, for ~(s) > 1, by 
(k(S) = LI N(~)8' where the sum is over all ideals I in Rk. It has an Euler 
produet expansion (k(S) = I1p(1 - N(P)-S)-l, where the produet is over 
all prime ideals, and this is used in deriving formula (11.2). Reeall also that 
tl(A) is the (redueed) diseriminant of the quaternion algebra, whieh is the 
ideal defined as the produet of those primes ramified in A. 

In the same way, for arithmetic Fuehsian groups, k is a totally real field, 
A is ramified at all real plaees exeept One and 0 is a maximal order in A. 
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Then for Tamagawa measures, 

(11.3) 

In both the Kleinian and Fuehsian eases, we need to determine the sealing 
faetor whieh relates the Tamagawa volume to the hyperbolie volume. This 
is done by measuring both volumes for a single suitable group, whieh, in 
the Fuehsian ease, is taken to be 8L(2, Z), so we start with that. 

The hyperbolie plane H 2 ean be identified with the symmetrie spaee 
80(2,~) \8L(2,~). 8peeifieally, taking the upper half-spaee model of H 2 , 

the eontinuous map cp: 8L(2,~) ~ H 2, given by cp(ry) = "((i), where "( is 
the image of 'Y in P8L(2, ~), maps the eompaet subgroup 80(2,~) onto 
the stabiliser of i. Thus taking the Tamagawa measure on 8L(2,~) and the 
hyperbolic measure on H 2, we obtain a eompatible measure, as deseribed 
in §7.5, on 80(2, ~), given by the volume of this compaet group. Then, if 
r is a torsion-free diserete subgroup of 8L(2,~) of finite eovolume, we have 

Vol(H2 /r) x Vol(80(2, ~)) = Vol(8L(2, ~)/r) (11.4) 

with respeet to these eompatible measures. 
Now let r be a torsion-free subgroup of finite index in 8L(2, Z) and note 

that 
[8L(2, Z) : rJ = 2[P8L(2, Z) : rJ. 

Thus from (11.4), 

Vol(H2 /P8L(2, Z)) x Vol(80(2,~)) = 2Vol(8L(2, ~)/8L(2, Z)). (11.5) 

The volume on the right-hand side here is the Tamagawa volume, whieh, 
from (11.3), is seen to be (1Q(2) = 7r2/6, whereas the hyperbolie volume, 
Vol(H2 /P8L(2, Z)) = 7r /3. Thus, 

Vol(80(2,~)) = 7r. 

More generally, this argument shows that for any arithmetic group r eon­
tained in 8L(2, ~), 

b 1· H 1 (H2/r~) Tamagawa Vol (8L(2, ~)/r) {I if - 1 \i r 
Hyper OIe vO = 7r X 2 if _ 1 E r. 

Orders always eontain -1, so we deduce the following: 

Theorem 11.1.1 Let k be a totally real number field, A be a quaternion 
algebra over k which is ramified at all real places except one and 0 be a 
maximal order in A. Then the hyperbolic covolume 01 the Fuchsian group 
pp(Ol) is 

87rß~/2(k(2) TIPI6.(A) (N(P) -1) 
(47r2) [k:lQ] 

(11.6) 
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The Kleinian case is similar using the Picard group PSL(2,01 ) (01 

Z[i]) to obtain the scaling factor. However, first we discuss some general 
connections between the values of (k(2), where k is quadratic imaginary, 
and the values of the Lobachevski function. Remember that the values of 
the Lobachevski function can be used to measure hyperbolic volumes in 
H3, particularly of polyhedra. 

Recall, from §1.7, the Lobachevski function I:- is defined for 0 i- mf by 

1:-(0) = -1(} In 12 sin ul du 

and admits a continuous extension to IR. Now I:- has period 1f and is an odd 
function. It then has a uniformly convergent Fourier series expansion 

1:-(0) = ~ ~ sin(2nO) . 
2~ n 2 

n=l 

There are rational linear relationships between the values of 1:-(0) which 
arise by using the following identity: 

n-l . 

2 sin nu = rr 2 sin ( u + ::'). 
)=0 

(11. 7) 

(See Exercise 11.1, No. 3). Thus in the integral definition, 

() n-l () . 

-n 1lnl2sinnuldu= - Ln 1InI2sin(u+ ::')1 du 
o )=0 0 

which yields, by a change of variable, 

n(} n-l ti+(} - r In 12sinul du = - L n [jn In 12sinul du. 
Jo j=O n 

Thus 
n-l . n-l . 

l:-(nO) = n LI:-(O+ ::,) -n LI:-(::')· 
j=O j=O 

Since I:- is odd of period 1f, the last term in this expression is zero. 

Lemma 11.1.2 

l:-(nO) = n L 1:-(0 + :;) 
j(mod n) 

where the sum is over a complete set of residues mod n. 
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Consider, on the other hand, the unique non-principal character X of the 
quadratic extension Q( R) I Q (see Exercise 11.1, No. 4). Thus X induces 
a mod IDI character, also denoted X : Z ~ lR, where D is the discriminant 
of Q( R). This X is of period IDI, is totally multiplicative and is defined 
on primes by X(p) = 0, ±1 according as to whether p ramifies, decomposes 
or is inert respectively, in the extension Q( R) I Q (see Lemma 0.3.10). 
Also note that X( -1) = -1. Thus X is areal character taking only the 
values 0 and ±1. The associated L-series is given by 

L(s,X) = L x(~), 
n 

which has an Euler product expansion TIp(l- X~~))-1 for ~(s) > 1. From 
the Euler product expansion for (IQ( yCd) (s), it follows easily that 

(11.8) 

Now let us return to determining the scaling factor in the volume formula 
for arithmetic Kleinian groups. Thus consider k = Q( i) so that D = -4 
and x(n) = 0 if 2 In, x(n) = ±1 according as to whether n == ±1(mod 4). 
Hence for all n, x(n) = sin(2mr/4). Thus, 

L(2,X) = ~ x(n) = ~ sin(2mr/4) = 2C(7f/4). 
~ n 2 ~ n 2 
n=1 n=l 

(11.9) 

This can be generalised (see Exercise 11.1, No. 5). Thus from (11.2), (11.8) 
and (11.9), the Tamagawa volume of SL(2, C)/SL(2, 0 1 ) can be expressed 
in terms of the Lobachevski function and we now turn to determining the 
hyperbolic volume. 

A fundamental region in H 3 for the action of PSL(2, OI) is 

{(x,y, t) E lR2 X lR+ I x 2 + y2 + t2 ~ l,x ~ 1/2,y ~ 1/2,x + y ~ O} 

whose projection on the (x, y)-plane is shown in Figure 11.1 (see §1.4.1 and 
Figure 1.1). This is made up of four congruent tetrahedra, each with one 
ideal vertex at 00. The tetrahedron with vertices 0, A, B, and 00 has three 
right dihedral angles at the edges OA, OB, and Aoo and other dihedral 
angles CI: = 7f/4 at the edge 000, 7f/2 - CI: = 7f/4 at the edge Boo and 
'Y = 7f /3 at the edge AB. The hyperbolic volume of such a tetrahedron (see 
(1.18)) is given by 

By Lemma 11.1.2, this equals H~Cen + C(%)] = iC(%). 
Now H 3 is the symmetrie space SU(2, C)\SL(2, q and SU(2, q has 

a measure compatible with the Tamagawa measure on SL(2, C) and the 
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FIGURE 11.1. 

hyperbolic measure on H3. Using SL(2,01) in this case, just as we used 
SL(2, Z) in the Fuchsian case, we obtain 

More generally, for arithmetic r c SL(2, C), 

H b r y, 1 (H3jf) Tamagawa Vol (SL(2, C)jr) {1 if - 1 ~ r 
yper 0 lC 0 = 87r2 X 2 if _ 1 Er. 

Theorem 11.1.3 Let k be a number field with exactly one complex place, 
A be a quaternion algebra over k ramified at all real places and 0 be a 
maximal order in A. Then if p is a k-representation of A to M 2 (C) then 

47r21~ 13 / 2 1" (2) I1 (N(P) 1) 
H b 1· "lT 1(H3jP (//"\1)) = k ."k 1'ILl(A) -

yper OlC vO P v (47r2) [k:lQl 

(11.10) 

It should be immediately noted that the volume formulas (11.6) and (11.10) 
for maximal orders depend only on the data defining k and A and not on the 
particular choice of maximal order. This will have important consequences 
for the distribution of arithmetic groups, which will be discussed in the 
next section along with several other consequences and examples. 

Exercise 11.1 

1. Let A be any quaternion algebra over Q which is ramified at 00. Let p be 
a finite prime at which A is not ramified and let 0 be a maximal Rs-order 
in A where S = {p}. Show that the Tamagawa volume of SL(2, Qp)jp(OI), . 

where p: A -t M 2 (Qp), is (1_~-2) I1qI Ll(A)(q-1). (See Exercise 8.1, No. 4.) 
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2. Hilbert Modular Groups. Let k be a totally real field with ring of integers 
Rand let A = M 2 (k). The group SL(2, R) is a Hilbert modular group. 
(a) Show that SL(2, R) embeds, via the diagonal map p, as a discrete sub­
group of finite covolume in SL(2, lR.)n, where n = [k : Q]. 
(b) Determine the Tamagawa volume ofSL(2,lR.)n/p(SL(2,R)). 

3. By factoring the polynomial zn - lover C, establish the identity at 
(11.7). 

4. Let Cf denote the cyclotomic field 'Ol(e 27ri / f ). It is known that the smal­
lest f such that 'Ol( R) C Cf is given by f = IDI, where D is the dis­
criminant of 'Ol( R). Since Cf is an abelian extension of 'Ol, there is a 
natural epimorphism f1 : Gal( Cf I 'Ol) ----t Gal( 'Ol( H) I Q). Thus the non­
trivial homomorphism X : Gal( 'Ol( H) I 'Ol) ----t {± I} C SI gives rise to 
a homomorphism X 0 f1 : Gal( Cf I 'Ol) ----t {± 1 }. Since the Galois group 
Gal( Cf I 'Ol) can be identified with the group of units Zj, we can extend 
X 0 f1 to a character, still denoted X : Z ----t lR., by requiring that X(d) = 0 
for (d, f) > 1. This is the mod(IDI) character described in this section. 
Prove that it has the properties stated; that is, it has period IDI, is totally 
multiplcative, X(p) = 0, ±1 according as to whether p ramifies, decomposes 
or is inert in 'Ol(R) I 'Ol and that X(-l) =-1. 

5. Following on from Exercise 4, define the Gauss sum 

Q(x, n) = L x(r)CT , 

T rnod IDI 

where ~ = e27ri/IDI. Assuming the result on Gauss sums that states that 
Q(X, n) = x(n)Q(x, 1), for all n, prove that 

L x(r)C( 1r;1) = VDL(2, X)· 
T mod IDI 

Deduce that the covolume of the Bianchi group PSL(2, Od) can be expressed 
in the terms of the Lobachevski function with the two expressions for the 
covolume being related via 

(iQI(v=<J,l(2)IDI 3/ 2 

41T2 
IDI" (r1T) 12 L..- x(r)C TDT . 

T mod IDI 

6. In this section, the scaling factor relating the hyperbolic volume measure 
to the Tamagawa measure for arithmetic Kleinian groups was established 
using the Picard gro'Up. Confirm that the Vol(SU(2, <C)) = 81T2 using, in­
stead, the Bianchi group SL(2, 0 3 ), 
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11.2 Consequences of the Volume Formula 

In this section, we give a variety of consequences of the volume formu­
las for arithmetic Kleinian groups P p( 0 1 ), where 0 is a maximal order, 
and discuss the computations involved in determining estimations for these 
volumes. 

11.2.1 Arithmetic Kleinian Groups with Bounded Covolume 

Theorem 11.2.1 (BoreI) Let K > O. There are only jinitely many con­
jugacy classes of arithmetic Kleinian groups r such that Vol(H3 jr) < K. 

Proof: We first obtain abound on the number of generators of such 
groups r. By the results of Thurston, each member of the set of hyperbolic 
3-orbifolds whose volume is bounded by K is obtained by Dehn surgery on a 
finite number of hyperbolic 3-orbifolds (see Theorem 1.5.9). Thus if n(K) 
is the maximum rank of those fundamental groups· of this finite number 
of orbifolds, then r can be generated by at most n(K) generators. Thus 
[r : r(2)] :::; 2n (K). Now r(2) C pp(OI) by Corollary 8.3.3, where 0 is a 
maximal order in a quaternion algebra A over a number field k and some k­
representation p : A --+ M 2(C). Thus Coval (pp(OI)) < K.2n (K). For each 
r(2), r is contained in the normaliser of r(2) in PSL(2, C) and so, for each 
r(2), there are finitely many possibilities for r. Since all k-representations 
of A in M 2 (C) are conjugate and there are finitely many conjugacy classes 
of maximal orders in A, it suffices to show that there are finitely many 
fields k and quaternion algebras A such that 

Clearly, for each k, there can only be finitely many quaternion algebras A 
over k such that this bound holds, since in these cases where A is ramified 
at all real places, A is determined by ß(A) by Theorem 7.3.6 and there are 
only finitely many ß(A) such that I1P1 .6.(A)(N(P) - 1) is bounded. Thus, 
since (k(2) 2": 1, it remains to show that there are finitely many fields k 
with one complex place such that Ißk13/2 j(47r2) [k:Ql is baunded. 

We now assume results of Odlyzko relating the magnitude of discrimin­
ants of number fields to their degree over Q. He has shown that if [k : Q] 
is large enaugh, then Ißkl 2": 192(50)[k:Ql -2. With this we have, 

Ißk13/2 > K (503/ 2) [k:Ql-2 
(47r2)[k:Ql-2 - 0 47r2 
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Thus the degree of the field must be bounded, so that the discriminants 
are bounded and there are only finitely many fields of bounded discriminant 
(see Theorem 0.2.8) D 

Note that a consequence of Theorem 11.2.1 is the following: 

Corollary 11.2.2 There are only finitely many arithmetic hyperbolic 3-
orbifolds obtained by Dehn surgery on a cusped hyperbolic 3-orbifold. 

In fact, the proof of Theorem 11.2.1 can be used to give a praetical way to 
determine which surgeries on a eusped hyperbolie 3-manifold yield arith­
metie orbifolds. In the remainder of this seetion we indicate how this goes 
in the case of a knot in 8 3 . Thus, let M = 8 3 \ K be a 1-eusped finite­
volume hyperbolic 3-manifold, where we fix a framing for a torus eusp eross­
section. Assume that M has volume V and that (p, q)-Dehn surgery, yield­
ing M(p, q), is arithmetie. Let k = kM(p, q) be the invariant traee field, and 
n its degree over Q. Sinee M is a knot eomplement in 8 3 , H 1 (M(p, q); Z) is 
eyclie. In partieular, ifr = 7ri>rb(M(p,q)), then [r: r(2)] S; 2. By Corollary 
8.3.5, r is arithmetie if and only if r(2) is derived from a quaternion algebra, 
with k eoineiding with the eentre of the invariant quaternion algebra. Thus 
putting these statements together with the fact that Vol(M(p, q)) < V (see 
§1.5.3), we deduee the existenee of a maximal order 0 in Ar with, 

2V > 2Covol(r)) ~ Covol(r(2)) ~ Covol(pp(Ol) 

Thus Theorem 11.1.3 yields 

47r2Iß%/21(k(2) I1PI~(A)(N(P) - 1) 
2V> (47r2)n . 

Now (k(2) I1PI~(A)(N(P) - 1) ~ 1, and so if r is arithmetie, we have 

27r2Iß%/21 
V> (47r2)n . 

We appeal onee more to bounds of Odlyzko relating diseriminant bounds 
to degree, where he has shown that 

where A = 24.987, B = 13.157 and E = 6.9334 for all n. Combining these 
estimates, we obtain 

V A 3 / 2 n 
27r2 > ( 47r2 ) (0.0000044), 
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which, on simplifying and taking natural logs, implies that, if M(p, q) is 
arithmetic, n satisfies 

8.11 + (0.87)10gV > n. 

Thus for example, if M is the figure 8 knot complement, so that V = 
2.029883 ... , and if M(p, q) is arithmetic, then the above estimate shows 
that the degree ofthe invariant trace field of M(p, q) is at most 9. From §4.8 
and Exercises 9.8, Nos. 1 and 2, the orbifolds M(4,0), M(5,0), M(6,0), 
M(8, 0) and M(12,0) are arithmetic with fields of degrees 2,4,2,4 and 4 
respectively, and the manifold M(5, 1) is arithmetic with degree 4. Also 
from Exercise 8.3, No. 4, the orbifolds M(0,2) and M(0,3), which are 
covered by J0rgensen's fibre bundles, are arithmetic with fields of degree 4. 

In fact other techniques can be brought to bear in getting even more 
control over which surgeries are arithmetic (see later in this chapter and 
§12.3). 

11.2.2 Volumes for Eichler Orders 

Let A be a quaternion algebra over a field k defining a commensurability 
dass C(A) of arithmetic Kleinian or Fuchsian groups. If r 1 , r 2 E C(A), then 
their generalised index [r1 : r2] E Q is well-defined by 

(11.11) 

Notice that if 0 is not a maximal order in A, it remains true that the 
Tamagawa volume of Uf01 is still 1 (see Theorem 8.1.2). For any order 0, 
Op is maximal for all but a finite number of P (see §6.3). Thus the same 
analysis as applied in the case of a maximal order, in particular (11.1), can 
be applied to any order. Thus if 0 1 and O2 are two orders in Athen 

[p (01) . P (01)] = Covol(O~) = II Vol((02)~) = II[(o )1 . (0 )1] 
P 1 . P 2 Covol(Oi) P V01((Ol)~) p 1 p. 2 P 

where these products, as noted above, are finite. 
Let 0 be an Eichler order of level N in A, so that 0 = 0 1 n O2 where 

0 1 and O2 are maximal orders (see §6.6). Suppose that pnlN so that, in 
A p ~ M 2 (kp ), we can take (Ol)P = M 2 (Rp) and 

Op = {(1l"~C ~) I a,b,c,d E Rp}. 

Then, 

[(Od~ : O~] = N(Pt- 1 (N(P) + 1) (11.12) 
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(see Exercise 11.2, No. 2). Thus if N = pr1p;:2 ... p;!,r, then 

r 

[Pp(oi) : pp(Ol)] = II N(Pit i - 1(N(Pi ) + 1). 
i=l 

11.2.3 Arithmetic Manifolds of Equal Volume 

In the Kleinian cases, arithmetic groups defined by quaternion algebras over 
the same field will have commensurable covolumes. However, by allowing 
the finite ramification of the quaternion algebras to vary, we can obtain 
families of mutually non-commensurable groups (see Theorem 8.4.1). Thus 
in particular, we can obtain cocompact and non-cocompact groups with 
identical covolumes and, indeed, compact and non-compact manifolds with 
identical volumes. 

For example, let d be a square-free integer such that d == -1(mod 8) 
and let k = Q(.J=d). Let Al = M 2 (k) and take the maximal order 0 1 = 
M 2 (Od) in Al. By our choice of d, 2 decomposes in k I Q so that there are 
two primes P~ and P!f. with N(P~) = N(P!f.) = 2. Let A 2 be the quaternion 
algebra over k which is ramified at P~ and P!f. and let O2 be a maximal 
order in A2 • Then Pp(O~) has the same covolume as the Bianchi group 
PSL(2, Od), but, of course, Pp(O~) is cocompact. 

These groups just considered will, in general, have torsion so that their 
quotients are orbifolds rather than manifolds. By dropping to suitable 
torsion-free subgroups of finite index we can obtain compact and non­
compact manifolds with identical volumes. More specifically, let P be a 
prime ideal in Od, where d is chosen as above and P is such that (P, 2d) = 1. 
Let the orders 0 1 and O2 in the quaternion algebras Al and A 2 be as 
described above. The groups O~ and O~ embed densely in the groups 
(Ot)p\ (02)P\ these latter groups both being isomorphic to SL(2, Rp). 
Let r 1 (p) and r 2 (p) be the images in P(Oi) and Pp(O~), respectively, 
of the principal congruence subgroups of level P. Then by Lemma 6.5.6, 
[P(Oi) : r 1 (p)] = [Pp(O~ : r 2 (p)] and, since P is unramified in k I Q, 
r 1 (p) and r 2 (p) are torsion free. Thus using the infinitely many choices 
of d, and for each d, the infinitely many choices of P, we have proved the 
following: 

Theorem 11.2.3 There are infinitely many pairs of compact and non­
compact hyperbolic 3-manifolds with the same volume. 

Alternatively, consider the following specific examples of manifolds con­
sidered in §4.8.2. These manifolds N n (n ~ 4) are the n-fold cyclic covers 
oft he hyperbolic orbifolds On obtained by (n,O) filling on the figure 8 knot 
complement: the Fibonacci manifolds. The hyperbolic structure can be ob­
tained by completing an incomplete hyperbolic structure on the union of 
two ideal tetrahedra which are parametrised by the complex numbers z, W 
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with positive imaginary parts (see § 1. 7). The parameters must satisfy the 
gluing consistency condition: zw(z - 1)(w - 1) = 1; and the filling con­
dition on the meridian gives (w(1 - z))n = 1. If Tz and Tw denote the 
tetrahedra parametrised by z and w respectively, then the volume of On is 
the sum of the volumes of Tz and Tw . Recall that the ideal tetrahedron Tz, 
with all vertices on the sphere at infinity, has volume given in terms of the 
Lobachevski function by 

C(argz) + C( arg z: 1) + C( arg 1 ~ J. 
For n ?: 5, let <P = 2rr/n and choose 'l/J such that 0 < 'l/J < rr and cos'l/J = 
cos<p - 1/2. Then the equations in z and w above admit the solution z = 
-e- i .p(1- eiC1/J-</») and w = (1- eiC.p-</»)-l. 

Consider the case n = 6, so that <p = rr /3 and 'l/J = rr /2. Then a simple 
calculation yields 

8 
Vol(06) = 2[C(rr/12) + C(5rr/12)) = "3C(rr/4) 

where the last equality is obtained using Lemma 11.1.2, with () = rr/12 and 
n = 3. Hence, Vol(N6) = 16C(rr/4). Note that the covolume of PSL(2, 0 1 ) 

has already been calculated to be 2C(rr/4)/3 (see §11.1). It is well-known 
that the Borromean rings complement is an arithmetic hyperbolic manifold 
whose fundamental group is of index 24 in PSL(2, 0 1 ) (see §9.2). Thus the 
volume of the compact manifold N 6 is the same as that of the non-compact 
hyperbolic manifold, which is the Borromean rings complement. This is 
just one case in an infinite family of examples. The Borromean rings arise 
from the closed 3-braid given by (0"10"2 1)3. By the methods given above of 
calculating tetrahedral parameters, it can be shown that the volume of the 
complement of the closed 3-braid (0"10"2 1)n is equal to the volume of the 
Fibonacci manifold N 2n for each n ?: 3. 

11.2.4 Estimating Volumes 

The formulas (11.6) and (11.10) can be used to obtain numerical estimates 
for the covolumes of these groups. From a knowledge of the invariants k 
and A, most of the terms are readily determined, but some estimation 
is necessary to evaluate (k(2). Via the Euler product, this depends on a 
knowledge of the prime ideals in Rk, and at a fairly crude level, the primes 
of "small" norm allow estimates to be obtained as follows: 

(k(2) = II (1- N(p)-2)-1 = II (II (1- N(P)-2)-1). 

Note that 

'P P 'Plp 

II (1 - N(p)-2)-1 ::; (1 _ p-2)-[k:Ql . 

'Plp 
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If Po is a fixed prime, take logs and do so me estimating to obtain 

(11.13) 

(see Exercise 11.2, No. 4). This then yields 

II (II(1- N(P)-2)-I) ::; (k(2)::; II (II(1- N(P)-2)-I)k(po). 
P<Po Plp P<Po Plp 

(11.14) 

In order to implement such estimates, a knowledge of the prime ideals in 
R k is necessary. These may be obtained via Kummer's Theorem (see The­
orem 0.3.9). Thus if k = Q(B) and Rk = Z[B], then the factorisation of the 
minimum polynomial of B mod p, p a prime in Z, reflects the decompos­
ition of the prime ideal pRk into prime ideals in Rk. If such an integral 
basis does not exist, more sophisticated vers ions of Kummer's Theorem or 
other methods may need to be applied. The literature contains tables from 
which this information may be obtained and there are expert systems, such 
as Pari, via which many number-theoretic computations, such as the evalu­
ation of (k(2), can be performed. For applications, see §11.2.5, §11.3.4 and 
§11.6. 

11.2.5 A Tetrahedral Group 

In this subsection, we consider, again, certain examples of arithmetic Klein­
ian groups to exhibit methods of obtaining yet more information on these 
groups, making use of the comparison between the numerical estimates 
as outlined above and volume estimates obtained by other means, not­
ably the Lobachevski function. Thus consider the tetrahedral group r 
whose related Coxeter symbol is given in Figure 11.2. This group is arith-

0----0 0----0 

FIGURE 11.2. 

metic (see Examples 8.3.8 and 8.4.3). The number field k = Q(t), where 
p(t) = t4 - 2t3 + t -1 = O. Thus [k : Q] = 4 and D..k = -275 (see Appendix 
13.1 for all tetrahedral groups). Furthermore, the quaternion algebra A 
is only ramified at the real places. Note that the Fibonacci group F lO , 

considered in §4.8.2, is also arithmetic with the same invariants and so is 
commensurable with r (see Example 8.4.3). 

Now suppose that 0 is a maximal order in this quaternion algebra A. 
To estimate the covolume of P p( 0 1 ), we need to find the approximate 
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value of (k(2). In this case, Rk = Z[t] so we can apply Kummer's Theorem 
to determine the prime ideals in k. Thus factorising the polynomial p(t) 
modulo primes such as 2, 3 and 5 we obtain 2Rk = 'P2, 3Rk = 'P~'P;, 
5Rk = 'Pg. Thus Rk has one prime of norm 16, two of norm 9, one of norm 
25, and so on, so that (k(2) can be evaluated. 

The upshot of this is that, by these methods or by using one of the 
packages which make such calculations, we obtain the evaluation (k(2) ~ 
1.05374. Thus from (11.10), the covolume of Pp(OI) ~ 0.07810. Now the 
tetrahedral group r has a simple presentation (given in §4.7.2) from which 
one deduces that r = r(2). By Corollar:y 8.3.3, r(2) c P p( 0 1 ) for some 
order 0 which can be taken to be maximal. On the other hand, the cov­
olume of r is twice the volume of the tetrahedron. The volume of a compact 
tetrahedron can be expressed as sums and differences of volumes of ideal 
tetrahedra, whose volumes, as we have already seen, can be expressed by 
values of the Lobachevski function (see §1.7). For the nine compact tet­
rahedra, these volumes have been computed and the volume of the one 
under consideration is 0.03905 (see §lOA.2 and Appendix 13.1). Thus we 
deduce that the tetrahedral group r = P p( 0 1), where 0 is a maximal 
order in A. Furthermore, up to conjugacy, it does not matter which max­
imal order we choose, as the type number of A is 1, for recall from The­
orem 6.7.6 that the type number divides hoo as defined at (6.13). For the 
field under consideration, the dass number h is 1 and the group of units 
R'k = (t, t - 1, -1) ~ 71} EB Z2. The two real embeddings correspond to the 
two real roots of the polynomial p and these He in the intervals (0,1) and 
(2,3). It follows that hoo = 1. 

What about the Fibonacci group F lO ? Recall that F lO is anormal sub­
group of index 5 in the orbifold fundamental group H 5 with presentation 

H 5 = (X, Y,T I T 5 = 1, TXT- 1 = XYX, TYT- 1 = YX), (see §4.8.2). 

Note that H~2) = H 5 so that, by the above remarks H 5 C pp(OI) = r. 
Thus FlO C rand one can determine the index as follows: Note that r 
contains a finite subgroup isomorphie to A5 as the stabiliser of a vertex. 
Hence H 5 has index at least 12 in r. Suppose [r : H 5 ] = n. Then H 5 de­
termines, via the action on cosets, apermutation representation of r onto 
a transitive subgroup of Sn so that the pull-back of the stabiliser of 1 is H5 . 

Conversely, by examining transitive permutation representations of r into 
subgroups of Sn, one can determine subgroups of index n. Presentations 
of such subgroups can then be deduced from that of rand the permuta­
tion representation. In this way, one can attempt to determine the index 
n. There are expert group theory systems such as Magma and Gap with 
routines that determine presentations of subgroups of low index by this 
method. Using this, we obtain [r : F lO] = 60. We present this as an al­
ternative to the method used in §11.2.4 for determining the relationship 
between rand pp(OI). Indeed using the methods of §11.2.4, it is possible 
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to calculate their volumes in terms of values of Lobachevski functions. One 
can then confirm the computed index by comparing these volumes. 

Exercise 11.2 

1. Obtain an estimate of the covolume of PSL(2, 07). 

2. Establish the formula at (11.12). 

3. Recall that the Fibonacci manifold N lO is not arithmetic (see Theorem 
4.8.2). Show that its volume is 10[3C(7r/5) + C(27r/5)]. 

4. Show how to obtain the estimate at (11.13). 

5. The tetrahedral group f whose associated Coxeter symbol is given Figure 
11.3 is arithmetic and the tetrahedron has volume approximately 0.22223 

o 
FIGURE 11.3. 

(see Appendix 13.1). Let 0 be a maximal order in the associated quaternion 
algebra. Determine the covolume of P p( 0 1 ) and, hence, the relationship 
between fand Pp(01). 

11.3 Fuchsian Groups 

As in the preceding section, we exhibit some consequences, this time for 
arithmetic Fuchsian groups, of the volume formula (11.6) for a maximal 
order defining an arithmetic Fuchsian group. 

11.3.1 Arithmetic Fuchsian Groups with Bounded Covolume 

Theorem 11.3.1 Let K > O. There are only finitely many conjugacy 
classes of arithmetic Fuchsian groups f such that Vol(H2/f) < K. 

Proof: For arithmetic Fuchsian groups, the same argument as that em­
ployed in Theorem 11.2.1 holds, except for the first part. For any finite 
covolume Fuchsian group f, Vol(H2/f) = 27rlx(r)l, where X(r) is the ra­
tional Euler characteristic of the group r. By the structure theorem for 
finitely generated Fuchsian groups, putting abound on Ix(r)1 bounds the 
number of generators of r. The remainder of the argument is the same. 
For these cases where k is totally real, Odlyzko has again given estimates 
relating the growth of il k to the degree [k : Q] for all degrees [k : Q] (see 
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discussion following Corollary 11.2.2). Precisely, Odlyzko has shown that 
for all such k, 

t:l.k 2: 2.439 X 10-4 X (29.099)[k:<Ql. 

D 

Corollary 11.3.2 For each signature of a Fuchsian group of finite cov­
olume, there are only finitely many points in the moduli space of that sig­
nature which represent arithmetic Fuchsian groups. 

Theorem 11.3.1 also shows that there can only be finitely many arithmetic 
Fuchsian triangle groups (see also §11.3.3). 

11.3.2 Totally Real Fields 

In the Fuchsian case, all hyperbolic volumes are rational multiples of 7r. 

Thus the volume formula (11.6) for maximal orders implies the following 
result, originally due to Klingen and Siegel: 

Theorem 11.3.3 If k is a totally real field, then 

t:l.~/\k(2) 
( 47[2) [k:<Ql 

is rational. 

We defined the Dedekind zeta function earlier for 1R(s) > 1, but it admits 
a meromorphic extension to the whole complex plane. It then satisfies a 
functional equation, which, in particular shows that 

The above theorem can thus be restated as follows: 

Theorem 11.3.4 If k is a totally real field, then (k( -1) is rational. 

11.3.3 Fuchsian Triangle Groups 

Let t:l. be an (eI, e2, e3)-Fuchsian triangle group. Recall that 

and §8.3, where we determined necessary and sufficient conditions for t:l. to 
be arithmetic. In §11.3.1, we used estimates due to Odlyzko to show that 
there are only finitely many arithmetic triangle groups, a result originally 
due to Takeuchi, who also enumerated them. In this subsection, we show, 
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without reference to Odlyzko's results, that there are only finitely many 
arithmetic triangle groups, and obtain bounds on the ei from which a search 
can be made to determine all arithmetic triangle groups. The steps of this 
search will be outlined and the results tabulated in Appendix 13.3. 

For any positive integer N, let 

RN = Q(cos27r/N) C Q(e27ri/ N ) = CN. 

Lemma 11.3.5 If(N,M) > 2, then Q(cos27r/N,cos27r/M) = R[N,Mj' 

Proof: Note that, Gal(qN,Mj I Q) ~ Z[N,Mj and R[N,Mj is the fixed field 
of the subgroup {±1}. The field Q(cos27r/N,cos27r/M) is the fixed field 
of the subgroup consisting of elements a E Z[N,Mj' where a == ±l(mod N) 
and a == ±l(mod M). The simultaneous congruences a == l(mod N) and 
a == -l(mod M) have a solution if and only if (N, M) I 2 and the result 
follows. 0 

The discriminant of a cyclotomic field is well-known and can be deduced 
from the discussion on discriminants given in Chapter ° (see Exercise 0.1, 
No. 9, and Exercise 0.3, No. 5). Recall also, from Theorem 0.2.10, that if 
k leis an extension of number fields, then 

Applying this to the extension CN I RN, we obtain 

N<!>(N)/2 rr p<!>(N)/2(p-l) 

plN 
(po:p"-l (p_l)_p,,-l_l )1/2 

2(0:-1)2,,-2- 1 

1 

if N = pO< , 2pO< ,p i=- 2 
ifN=20<,a~2 

if N = 2. 

Using (11.16), simple lower bounds for llRN of the form 

llRN ~ (aN)<!>(N)/4 

(11.15) 

(11.16) 

(11.17) 

for varying values of a and large enough values of N are readily obtained. 
With a view to the enumeration methods below, we state these results. 
Thus we list the values of a and the corresponding values of N for which 
(11.17) holds: 

a = 1 N i=- 2,3,4,6,10,14,18 

a = 3 N ~ 27, N i=- 30,60 

a = 4 N ~ 27, N i=- 28,30,36,42,54,60,84 

a = 5 N ~ 27, Ni=- 28,30,34,36,38,40,42,48,50,54,60,84,120. 
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Note that we include in these results the cases where N = 2N' with N' 
odd, in which case RN = RN'. 

Now consider the invariant trace field k6. which contains the subfield 
Q(cOS27fjel,Cos27fje2,Cos27fje3). Let e denote the least common multiple 
of el, e2 and e3, and split into three cases: 

Case A. At least two of (eI, e2), (e2, e3), (e3, ed is > 2. 
By Lemma 11.3.5, k6. ::J Re. 

Case B. Exactly one of (eI, e2), (e2, e3), (e3, ed is > 2. 
Suppose (ei, ej) > 2 and let j = [ei, ejJ. Let 9 denote the greater of j, ek. 
Then k6. ::J R g • 

Case C. All three of (eI, e2), (e2, e3), (e3, el) divide 2. 
Let h denote the biggest of el, e2, e3. Then k6. ::J Rh. 

Now suppose that 6. is arithmetic. The index [6. : 6..(2)J := i(el, e2, e3) = 
1,2,4 according as to whether at most one (respectively exactly two, re­
spectively three) of el, e2 and e3 are even. By Corollary 8.3.3, 6.(2) C 
P p( cJ1 ), where 0 is a maximal order in the quaternion algebra A. Thus 
from the formula for the covolume of a maximal order at (11.6), we have 

> 

> 
86.3/ 2 

k.:l 
( 47f2) [k.:l :Q] 

(11.18) 

since (k.:l (2) > 1 and (NP - 1) ~ 1. Furthermore, let N represent .any one 
of e, 9 and h as described in the three cases A, Band C above. Note that 
[RN: QJ = c/J(N)j2 unless N = 2. Then, 

6. > 6. [k.:l:RN] > (aN) <p(:) [k.:l:RN] = (aN) [k~'QJ 
k.:l - RN - (11.19) 

using (11.15) and (11.17) and subject to the restrictions on the values of N 
as listed following (11.17). Using all of the estimates in (11.18) we obtain 

( 
(aN)3/4) [k.:l:Q] 

4> 8 47f2 (11.20) 

for N ~ 19 when a = 1. However, if N 3 / 4 ~ 47f2, this inequality fails to 
hold and no such group can be arithmetic. This then implies that there are 
finitely many arithmetic Fuchsian triangle groups, and for these, N ::; 134. 

Theorem 11.3.6 There are jinitely many arithmetic Fuchsian triangle 
groups (eI, e2, e3) and all ei ::; 134. 
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We now make use of the other values of a to reduce the bound on N, so 
that a search for all arithmetic triangle groups can be made. The values 
a = 3,4,5 employed in (11.20) imply, respectively, that N ~ 44,33,26. 
Combined with the restrictions for which (11.17) holds, this yields that N 
must belong to the following set: 

L= {2,3, ... ,26,28,30,36,42,60}. 

From this, a complete list of all triangle groups which are eligible to be 
arithmetic can be determined and whether or not they are arithmetic, 
tested using the condition given in Theorem 8.3.11. This condition is that 
a(,X) < 0, where 

,X = 4 cos2 1f jel + 4 cos2 1f je2 + 4 COS2 1f je3 + 8 COS1f jel COS1f je2 COS1f je3 - 4 

and a is any non-identity element of Gal(k~ I Q). Not surprisingly, this 
has a simplifying geometric interpretation as follows. 

If a, ß and "I are three angles in the interval (0, 71") such that one of the 
tripies (0'., ß, "I), (a, 1f - ß,1f - "I), (71" - a, ß, 1f - "I) and (1f - a,1f - ß, "I) 
has angle sum less than 1f, then we say that the tripie (a,ß,'Y) satisfies the 
angle sum condition. In that case, we can construct a hyperbolic triangle 
whose angles are those in one of these tripies. This hyperbolic triangle will 
have inscribed radius R which satisfies 

h 2 R cos2 a + cos2 ß + cos2 "I + 2 cos a cos ß cos "I - 1 
tan = 2(1 ± cosa)(l ± cosß)(l ± cos'Y) , 

necessarily positive. Thus if there exists an element x in the appropriate 
Galois group ZN' x -I- ±1 such that the angle sum condition holds for 
±X1fjel, ±X1fje2 and ±X1fje3, with ± chosen so that, mod 21f, the angles 
He in the interval (0,1f), this will violate the condition of Theorem 8.3.11 
and the group will fail to be arithmetic. We also note that this is a necessary 
and sufficient condition, because if it fails to hold, then all four triples have 
angle sum greater than 1f so that this defines a triangle on the 2-sphere. The 
group generated by reflections in the sides is then a subgroup of SU(2, C), 
which is the required ramification condition for the quaternion algebra to 
define an arithmetic group. 

Testing some list of eligible triples eventually has to be done, but we can 
use the arithmetic data already employed, but more accurately, to reduce 
the list. This is illustrated here with the one case where N = 36. 

Case A. In these cases, k~ = Re or R 2e , so that using (11.16), the right­
hand side of (11.18) can be determined precisely for k~ = R 36 or R72 
as approximately 2.98 or (2.4)12. Thus for k~ = R72, (11.18) can never 
hold, and for k~ = R36 , we must have i(el, e2, e3) = 4. Thus the possible 
triangle groups which satisfy (11.18) have i(el, e2, e3) = 4, and k~ = R36 
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are (6,36,36), (12, 12, 18), (12, 18,36) and (18,36,36). For these four tripies, 
the angle SUll condition is easily seen to be satisfied for respectively x = 
11,11,11,5. 

Case B. In these cases, kß. :> Rf.Rek , the compositum of Rf and Rek • 

Furthermore, since (ß.Rf,ß.Rek ) = 1 by the description from (11.16), 

ß.R R = (ß.R )[Rek :1QI1(D..R ) [Rf:1QI1 
f· ek f ek 

(see Exercise 0.3, No 5). Now apart from the case where N = 2, D..RN 

A'tJN)/2 for some AN 2=': 1. If {N, M} = {f, ek}, we have for N = 36, 
A36 = 6y'3, and the right-hand side of (11.18) becomes 

( (6y'3AM )3/2) [kß:1QI1. 

47r2 

It follows that either M = 2 or AM = 1, in which case M = 3,4,6. 
Enumerating the relevant tripies as earlier yields the following six tripies: 
(2,4,36), (2,6,36), (2,12,36), (2,12,18), (2,18,36) and (2,36,36) all of 
which can be ruled out by the angle sum condition. 

Case C. One of el, e2 or e3 is 36 and, arguing as in the preceding case, 
shows that the other two must belong to the set {2, 3,4, 6}. However, then 
there are no such tripies satisfying the conditions of Case C. 

We thus condude that there are no arithmetic triangle groups (eI, e2, e3) 
where e, 9 and h, as defined in Cases A,B and C, are equal to 36. 

By these methods, all arithmetic Fuchsian triangle groups can be enu­
merated and the results are given in Appendix 13.3. Once the tripie is 
determined, the corresponding Hilbert symbol for the related quaternion 
algebra can be calculated as shown in §8.3 and, thus its isomorphism dass 
determined. This then enables the arithmetic Fuchsian triangle groups to 
be gathered together into commensurability dasses. These dasses and the 
arithmetic data are also given in Appendix 13.3. 

11.3.4 Signatures 0/ Arithmetic Fuchsian Groups 
For Fuchsian groups, all volumes are rational multiples of 27r, which sim­
plifies volume calculations. Furthermore, since the rational multiple is just 
the negative of the Euler characteristic, any prime power appearing in the 
denominator will be the order of an element in the group. Thus if the cov­
olume of Pp((J1), where 0 is a maximal order in a quaternion algebra over 
k, is 27rq, then the denominator of q can only be divisible by prime powers 
pn such that Q(cos27r/pn) C k. 

Consider the following example, which arises in the extremal examples to 
be considered in §12.3. Let k = Q(t), where p(t) = t5+t4 -5t3 -3t2+2t+1 = 
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O. This field is totally real. Let A be a quaternion algebra over k which has 
four real ramified places and no finite ramification. For a maximal order 0 
in A, we can estimate the covolume of Pp(Ol) and, in this case, determine 
the group's signature. Since k has degree 5 over Q, k contains no proper 
subfields other than Q. Furthermore, k has discriminant 36491, which is 
prime, and hence consideration of the traces of elements of finite order 
shows that the group P p( 0 1 ) can only contain elements of orders 2 and 3. 
Hence its covolume is of the form 21ra/b, where b I 6. Now Rk = Z[t], and 
applying Kummer's Theorem to p(t), we find that there are only two prime 
ideals in R k of norm ~ 17 and these have norms 3 and 13. Thus using the 
crude estimate at (11.14) with Po = 17 and substituting the upper and 
lower estimates in the volume formula (11.6) gives 

0.651r ~ Covol(pp(Ol)) ~ 0.8821r. 

Thus pp(Ol) has covolume 21r/3 and so must have signature (0;2,2,3,3). 
In this discussion, it is worth noting that we have actually defined five 

distinct quaternion algebras A. For, since k is not a Galois extension of Q 
the five real embeddings yield five different subfields of R Thus the five 
different choices of ramification set yield five distinct commensurability 
dasses of arithmetic Fuchsian groups (see the discussion in §8.4). For all of 
these, and for each maximal order 0, Pp(Ol) has signature (0;2,2,3,3). 
However, the type number in each case can, and indeed does, vary. To 
establish this, we again use (6.12) and Theorem 6.7.6. The dass number is 
1 and the free basis of R'k can be computed to be r1 = t, r2 = 1 + t, r3 = 
5 + 14t + 7t2 - 4t3 - 2t4 and r4 = 6 + 18t + 12t2 - 5t3 - 3t4. Each real 
embedding (Ti correspomds to a root ti of the minimum polynomial and we 
order these such that t1 < t2 < t3 < t4 < t5. We tabulate the signs of the 
basis elements at these embeddings. 

r1 r2 r3 r4 
(Tl 
(T2 + + 
(T3 + + + 
(T4 + + + + 
(T5 + + + 

From this it follows that if A is unramified at (Tl, then the type number is 
2, whereas if Ais unramified at (Ti, i = 2,3,4,5, then the type number is 1. 

Exercise 11.3 

1. Show, using the tri angle group (0;2,3,8), that (k(-l) = 1/12 for k = 
Q(J2). 

2. Use Odlyzko's estimate to show that for any arithmetic Fuchsian group 
of signature (1; 2; 0), the defining totally real field has degree no greater than 
8 over Q. 
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3. Let k = Q(t), where t4 + t 3 - 3t2 - t + 1 = O. Let A be a quaternion 
algebra over k which is ramified at three real places and at one non-dyadic 
prime ideal P. Let 0 be a maximal order in A. 1f it is known that P p( 0 1 ) 

has signature (0;2,2,5,5), determine N(P). 

11.4 Maximal Discrete Groups 

Let A be a quaternion algebra defining a eommensurability dass C(A) of 
either arithmetie Kleinian groups or arithmetie Fuehsian groups. In this 
seetion, a subset of C(A) is deseribed whieh almost eonsists of the maximal 
elements of C(A). Here, "almost" means that this subset certainly eontains 
all of the maximal elements but ean also eontain some other groups which 
may not be maximal. However, this subset is sufficiently elose to the set of 
all maximal groups that, from it, effeetive results on maximal groups ean 
be obtained, and detailed information on the distribution of the eovolumes 
of members of C(A) will be dedueed from it in the next seetion. 

This subset of mainly maximal groups is obtained via loeal-global ar­
guments, by preseribing that loeal groups should be maximal. Thus let us 
reeall the loeal cases. Let A be as above and let 0 be a maximal order in 
A. When P E Ramf(A), Op is the unique maximal order in Ap and so 
the normaliser N(Op) = Ap. Thus, at this prime, P(N(Op)) is eertainly a 
maximal subgroup of Ap. (Here, and throughout this seetion, P(G) denotes 
the factor group G / Z (G).) 

When P E Of \ Ramf(A), then Ap ~ M 2 (kp ) and Op is eonjugate to 
M 2 (Rp ). This situation was diseussed in §6.5 and we extend that diseussion 
here, in particular with respect to the tree Tp of maximal orders. 

Thus, for the moment, let K = kp and R = R p . Let V be a two­
dimensional spaee over K so that End(V) = M 2 (K). The vertiees of the 
tree T are represented by equivalenee dasses A of eomplete R-Iattiees L 
or by the eorresponding maximal orders End( L ). The geometrie edges are 
represented by pairs {Al, A2 } of vertiees at distanee 1. An edge ean also be 
represented by an EiehIer order of level P (see §6.1.1 and §6.6.6), whieh is 
End(Ll ) n End(L2 ) where LI and L 2 are representatives of the equivalenee 
elasses Al and A2 respectively of lattices. 

The group 8L(2, K) aets on the tree T by translating the lattiees or 
eonjugating the maximal orders, thus preserving distanees. Under this ac­
tion, there are two orbits of vertiees, as will now be shown. Take any pair 
of adjaeent vertices A and A' represented by lattiees Land L', respeet­
ively, where L has basis {eI, e2} and L' has basis {7rel, e2}. If LI is any 
other lattiee, then the proof of Theorem 2.2.9 shows that LI has a basis 
{7ra (el -/,e2), 7rbe2} for some a, bE Z and /' E K. Let a - b = 2n+ E, where 
E = 0,1. Then the element (~:~ ~n) E 8L(2, K) maps LI to a multiple of 
L or L' aeeording as to whether E = 0 or 1. Thus all vertiees in the same 
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orbit are an even distance from each other in the tree T (cf. Exercise 6.5, 
No. 4 and see also Exercise 11.4, No. 1). 

Now let us consider the action of GL(2, K) on the tree T. It acts transit­
ively on the vertices by Theorem 6.5.3 and an element of GL(2, K) is called 
even or odd according to whether it leaves the two orbits of vertices of T 
under 8L(2, K) invariant or interchanges them (see also Exercise 11.4, No. 
2). 8ince the centre of GL(2, K) acts triviallyon T, this terminology also 
applies to elements of PGL(2, K). Under this action, the stabiliser of a ver­
tex, given by a maximal order 0, can be identified with P(N(O)), which 
is P(O*) since N(O) = K*O* in this case (see Exercise 6.5, No. 1). Thus 
this group P(N(O)) is a maximal compaet open subgroup of PGL(2, K). 

The odd element (~g) maps the lattiee L with basis {el' e2} to the 
lattiee L' with basis {?fel, e2} and maps L' to ?f Land so lies in the stabiliser 
of the geometrie edge {A, N}. Identifying this edge with the Eiehler order 
E = End(L) n End(L'), its stabiliser under the action of PGL(2, K) will 
be P(N(E)), which is also a maximal compact open subgroup. Now sinee 
P8L(2, K) c PGL(2, K) and P8L(2, K) acts transitivelyon the edges of T, 
PGL(2, K) has two conjugacy classes of maximal eompact open subgroups. 
Also, any maximal eompact open subgroup of PGL(2, K) is conjugate to 
the stabiliser of an edge if and only if it eontains odd elements. It follows 
that the stabiliser of a vertex, P(N(O)), only fixes the vertex O. For, sinee 
it fixes 0 it must consist of even elements only. If it fixed another point 
of the tree, it would fix the unique path between these points, and henee 
would fix an edge. However, that would force this maximal compact open 
subgroup to contain odd elements. Thus it fixes a unique vertex. 

Now let us return to the global situation and suppose that r E C(A), 
where A is defined over the number field k and 0 is a maximal order in 
A. Thus r is eommensurable with pp(Ol), where p is a k-representation 
of A into M 2 (C) or M 2 (lR). Now Pp(N(O)) lies in the normaliser of the 
finite-eovolume group Pp(Ol) so that [Pp(N(O)) : Pp(Ol)] < 00. Thus r is 
eommensurable with P p( N (0)), and therefore r lies in the eommensurator, 
whieh is Pp(A*) (see Theorem 8.4.4). Therefore, we ean drop p and consider 
C(A) as eonsisting of the groups in P(A*) whieh are commensurable with 
P(N(O)). 

Lemma 11.4.1 Let V be any order in the quaternion algebra A. Then, 

N (V) = {x E A * I x E N (Vp ) V P E n f }. 

Proof: It is clear that for each x E N(V), x E N(Vp ) for all P. Now 
suppose that x E A* is such that x E N(Vp ) for all P. Let xVx- l = V'. 
Thus V~ = Vp for all P and therefore, V = V' by Lemma 6.2.7. D 

Now for rE C(A), the closure ofr in P(Ap) is a eompact open subgroup 
of P(Ap) whieh eoineides with P(N(Op)) for almost all P E nf and will 
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be contained in a maximal compact open subgroup of P(Ap) for each P. 
Thus consider the following family of groups in C(A): 

Let 0 be a maximal order in A and let S be a finite set of primes disjoint 
from Ram f (A). For each PES, choose a maximal order (Op)' such that 
d(Op, (Op)') = 1, where d is the distance in the tree Tp . Let 0' be the 
maximal order in A such that O~ = Op for P tj. S and O~ = (Op)' for 
PES (see Lemma 6.2.7). Let E = 0 n 0'. Thus E is an Eichler order 
except in the cases where S = 0 when E = 0, a maximal order. 

Definition 11.4.2 
rs,V = P(N(E)). 

Notice that, in this definition, E is not uniquely defined by the set S be­
cause of the choices involved. However, from Exercise 11.4, No. 1, O}, acts 
transitivelyon the edges of the tree adjacent to Op. Suppose then that 
the Eichler orders E' = 0 n 0' and E" = 0 n 0" are obtained from the 
two choices of orders (Op)' and (Op)", respectively, for each PES. There 
exist elements Xp E O}, such that Xp (Op)' xi;I = (Op)" for each PES. 
Now use the Strong Approximation Theorem 7.7.5 taking, in the statement 
of that theorem, S = n=. Then A~ is dense in the restricted product of the 
groups A}" P E n f, restricted with respect to the compact open subgroups 
O},. Thus there exists an element x E A~ which is arbitrarily elose to Xp 
for each PES and lies in O}, otherwise. Thus x E 0 1 and, by construction, 
xE'x-1 = E". Thus the group rs,V is defined, up to conjugacy, by 0 and 
the set S. 

Theorem 11.4.3 Let r E C(A). Let S(r) be the set of primes P such that 
r has an element which is odd at P. Then there exists a maximal order 
o such that r is conjugate to a subgroup of r S(r),o with equality if r is 
maximal. 

Proof: Let V be a maximal order so that the elosure of r in P(Ap) is a 
compact open subgroup which is equal to P(N(Vp )) for all PE nf \ T, 
where T is a finite set. Since all elements of P(N(Dp )) are even, S(r) will be 
a finite set. By default, it is disjoint from Ramf(A) since odd and even are 
not defined in these cases. For each PET, we choose a maximal compact 
open subgroup of P(Ap) containing the elosure of r. If PET \ S(r), 
choose P(N((Vp )')), where (Vp)' is a maximal order. If P E S(r), then 
the maximal compact open subgroup will be of the form P(N(Fp )), where 
Fp = (Dp )" n (Vp)'" is an Eichler order of level P, with (Vp)" and (Dp)'" 
maximal orders in A p . 

Let 0 (resp. 0') be the maximal order such that Op = V p (resp. O~ = 
Vp) for P tj. T, Op = (Vp)' (resp. O~ = (Dp)') for PET \ S(r) and 
Op = (Vp )" (resp. O~ = (Dp )"') for P E S(r). Let E = 0 n 0'. Then by 
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Lemma 11.4.1, r c P(N(E)). Since P(N(E)) is of finite covolume, there 
will be equality if r is maximal. D 

Note that if 0 and 0' are conjugate maximal orders, then r s,o and r s,O' 
are conjugate. Thus it suffices to consider only one maximal order from 
each type. As has already been shown in Theorem 6.7.6, the type number 
is finite. In fact, the groups r s,O described above for the conjugacy elasses 
of maximal orders can all be described in terms of a single maximal order 
o as follows. Fix a maximal order O. From a different conjugacy elass of 
maximal orders, we can choose a representative 0' such that there is a finite 
set ofprimes S' disjoint from Ramf(A) such that O~ = Op for P rf- S' and 
d(Op, O~) = 1 for PES' by Corollary 6.7.8. Thus a group of the form 
r s,O' can alternatively be described by the sets Sand S' relative to the 
fixed maximal order O. Again, using the Strong Approximation Theorem, 
this would depend, up to conjugation, only on the sets Sand S'. 

H, in Definition 11.4.2, S = 0, then the group r0,0 is maximal. To see 
this, applying the proof of Theorem 11.4.3 to the group r0,0, for each 
PET, yields a unique maximal compact open subgroup containing the 
elosure of P(N(O)) since P(N(Op)) has a unique fixed point in Tp . 

However, when S -=1= 0, the group rs,o may not be maximal. This could 
happen when, for so me PES, no element of rs,o is odd at P. Thus rs,o 
would be a proper subgroup of rs',o where S' = S \ {P} (see below and 
Exercise 11.4, No. 4). 

Nonetheless, we can establish that there are infinitely many conjugacy 
elasses of maximal elements in C(A). We first show that for each prime 
ideal P, there are groups in C(A) which contain an element odd at P. To 
do this, choose c E k such that c E P \ p 2 and c is positive at all real 
ramified pi aces of A. Such a c exists by the Approximation Theorem 7.2.6. 
By the Norm Theorem 7.4.1, let xE A* be such that n(x) = c. Let T be the 
finite set of primes such that P(x) rf- P(N(Op)). For each such P, choose 
(Op)' adjacent to Op and hence, as earlier, obtain the maximal order 0' 
and Eichler order E = 0 n 0'. For each PET, let hp E Aj, be such that 
hpx E N(Ep ). By the Strong Approximation Theorem, there exists hE Al 
such that h is arbitrarily elose to hp for all PET and h E oj, otherwise. 
Let 9 = hx E A *, and, by construction, P(g) lies in the arithmetic group 
P(N(E)) = rT,o. Also by construction, P(g) is odd at P (see Exercise 11.4 
No. 2). Thus for any prime P, we have constructed a group in C(A) which 
is odd at P. 

H r contains an element odd at P, then r cannot be conjugate to a 
subgroup of rs,o if P rf- S, because if P rf- S, rs,o C P(N(Op )), where 
Op is maximal and consists entirely of even elements. Hence, the following 
is readily shown (see Exercise 11.4, No. 3): 

Theorem 11.4.4 C(A) contains infinitely many non-conjugate maximal 
elements. 
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In the above construction of a group containing an element odd at P, 
that element may, of course, also be odd at other primes. This will depend 
(see Exercise 11.4, No. 2) on its norm, and, hence on the choice of cE k, as 
described in the discussion prior to Theorem 11.4.4. Thus to show that the 
group rs,o, where S = {P}, contains an element odd at P, it is necessary 
and sufficient that there exist an element c E k such that Vp (c) is odd, 
c is positive at all real ramified places of A, and vQ(c) is even for all 
Q E nf \ {Ramf(A), P}. Such elements may not exist and so rs,o will not 
be maximal, as rs,o C r0,o (see Exercise 11.4, No. 4). On the other hand, 
they will always exist when A = M 2 (Q( yCd)) and Od is a principal ideal 
domain (cf. Exercise 11.4, No. 5). 

Exercise 11.4 

1. If K is a P-adic field with ring of integers R, show that in the tree T 
of maximal orders in A = M2(K), the group 01, for 0 a maximal order, 
acts transitivelyon the edges of T adjacent to 0 and deduce that A I acts 
transitivelyon the edges of T. 

2. With notation as in No. 1, show that x E GL(2, K) is even or odd 
according as to whether v(det(x)) is even or odd, where v is the logarithmic 
valuation on K. 

3. Complete the proof of Theorem 11.4.4. 

4. Let k = Q( H) with ring of integers 06. Show that there is no element 
c E k such that vp(c) is odd for P = P2 and vQ(c) is even for alt other 
primes Q (here v denotes the logarithmic valuation). Deduce that for A = 
M 2 (Q( v'-6)) and 0 = M2(06), S = {P2}, the group rs,o is not maximal. 

5. In the case where A = M2 (Q), describe precisely the maximal elements 
in C(A) up to conjugacy. 

11.5 Distribution of Volumes 

The maximal elements of C(A) as described in the preceding section are 
among the groups P(N(O)) where 0 is either a maximal order or an Eichler 
order of level PI P2 ... Pr where these Pi are distinct primes, not belonging 
to Ramf(A). These groups are, of course, finite extensions of the groups 
P( ( 1 ) whose covolumes, in the case of maximal orders, have been determ­
ined in §11.1. For the case of Eichler orders, see §11.2.2. In thissection, the 
distribution of the covolumes of elements of C(A) will be determined. 

For groups r 1 , r 2 E C(A), we continue the practice of using generalised 
indices [r1 : r 2] introduced at (11.11). 
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Theorem 11.5.1 For 0 a maximal order in A, 

[r0,o : rs,ol = 2-m rr (N(P) + 1) (11.21) 
PES 

for some 0 S m S 181. Also, if 0' is another maximal order, 

(11.22) 

Proof: Let 0 and 0' be maximal orders of A such that 0 n 0' is an 
Eichler order of level TI P for P E 8. 

Now r 1 = r0,o n rs,o consists of those elements of r0,o = P(N(O)) 
whose action on Tp , P E 8, is to fix pointwise the edge (Op, O~). Thus 
the index [r0,o : r 1] is no greater than TIpEs(N(P) + 1). Thus, either by 
using the Strong Approximation Theorem or the result from §11.2.2 which 
gives [P(OI) : P((O n 0')1)] = TIpEs(N(P) + 1), we obtain 

[r0,o : r 1] = rr (N(P) + 1). (11.23) 
PES 

Note that r 1 c P(N(&)), where c = 0 n 0' and P(N(&)) rs,o. If 
'Y E P(N(&)) fixes the edge (Op, O~) pointwise für each P E 8, then 'Y E 
r 1. Thus [P(N(&)) : r 1] S 21sl . As discussed at the end of the preceding 
section, there may or may not be elements in r S,o which are odd only at 
P for each P E 8. Thus (11.21) follows. 

Recall from Corollary 6.7.8 that for any two maximal orders 0 and 0' 
we can assume that, up to conjugacy, for the groups r0,o and r0,o', the 
orders can be chosen so that 0 n 0' is an Eichler order of level P for 
P E some finite set 8'. Thus (11.22) follows from (11.23). 0 

Theorem 11.5.2 Let e be the number of primes in k dividing 2 and not 
contained in Ram f (A). Let 0 be a maximal order in A and let r E C (A). 
Then the covolume of r is an integral multiple of 2-e Covol(r 0,0). Further­
more, Covol(r) = Covol(r0,o) if and only if r is conjugate to r0,o' for 
some maximal order 0' and Covol(r) > Covol(r 0,0) in all other cases. 

Proof: By Theorem 11.4.3, Covol(r) is an integral multiple of Covol(r s,o) 
for some maximal order O. The right-hand side of (11.21) is a multiple 
of TIPES N(~)+I. If P is non-dyadic, then (N(P) + 1)/2 E Z and so 
Covol(rs,o) will be an integral multiple of 2-e Covol(r0,o). From (11.22), 
Covol(r 0,0) does not depend on the choice of maximal order. For all 
choices of P, dyadic or otherwise, (N(P) + 1)/2> 1, so that when 8 =I- 0, 
Covol(rs,o) > COVOI(r0,o). 0 

Exercise 11. 5 

1. Determine the covolume of the maximal Kleinian groups commensurable 
with PSL(2, 0 3 ). 
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2. Prove that there are two eonjugaey classes in PGL(2,~) of Fuehsian 
groups with signature (0; 2, 2, 2, 3) whieh are eommensurable with the Fueh­
sian triangle group r o of signature (0; 2, 3, 8) but are not conjugate to sub­
groups of ro· 
3. Let A be a quaternion algebra over a field k defining arithmetie Kleinian 
groups such that A has type number > 1. Let 0 and 0' be non-eonjugate 
maximal orders. Show that r0,o and r0,o' eannot be isomorphie. 

11.6 Minimal Covolume 

From the preceding section, the minimal covolume of an arithmetic Kleinian 
or Fuchsian group in C(A) is achieved by r0,o = P(N(O», where 0 is a 
maximal order. It should be noted here that in the Fuchsian case, the above 
discussion refers to subgroups of PGL(2,~) rather than PSL(2, ~), so that 
Fuchsian here should be interpreted as discrete in PGL(2, ~). Since the 
covolume of p(Ol) was computed in §11.1, it remains to determine the 
index 

Here, as earlier, the embedding p has been dropped. Following Borel, we 
introduce sorne intermediate groups and simplify our notation in order to 
analyse this index. First we gather together the necessary terminology: 

• Rio = Group of units of Rk 

• Rio 00 = Subgroup of units which are positive at all real ramified 
pla:ces of A 

• rf = Number of places in Ramf(A) 

• Rf = Ring of elements in k which are integral at all finite places of 
k not in Ramf(A) 

• Rj = Group of units of Rf 

• Rj,oo = Subgroup of units which are positive at all real ramified 
places of A 

• I k = Group of fractional ideals of k 

• Pk = Subgroup of principal fractional ideals 

• Pk,oo = Subgroup of principal fractional ideals which have a generator 
which is positive at all real ramified places of A 

• M 1 = Subgroup of Ik generated by Pk,oo and those ideals P E 
Ramf(A) 
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• J1 = h/M1 

• h = Image of Pk in J1 

• 2J1 = Kernel of the mapping y f---+ y2 in J 1 

Throughout the remainder of this section, 0 will be a fixed maximal 
order in the quaternion algebra A over k. Recall that A satisfies the Eichier 
condition. 

Theorem 11.6.1 (Eichler) 

n(O*) = Rk,oo' 

Proof: Clearly n(O*) C Rk 00' so suppose that t E Rk 00' By the Norm 
Theorem 7.4.1, there exists ~ E A* such that n(a) = t. For all but a finite 
set S of primes, a, a- 1 E Op. For PES, it is not difficult to see that 
there exists 'YP E Op such that n("(p) = t (see Exercise 6.7, No. 1). By the 
Strong Approximation Theorem, A~ is dense in the restricted product of 
the A~, P E [2 f. Thus there exists ß E A~ such that ß is arbitrarily elose 
to a-1'Yp for PES and lies in O~ otherwise. Thus n(aß) = t and both 
aß, ß- 1a- 1 E Op for all P. Thus aß E 0*. D 

By local-global arguments, one readily establishes that 

0 1 = {a E N(O) I n(a) = I}, 
0* = {a E N(O) I n(a) E Rk}. 

On the basis of this, we adopt the following: 

Notation 11.6.2 

• fo = f0,0 = P(N(O)) 

• f Rj = P(ARj ) where ARj = {a E N(O) I n(a) E Rj} 

• f o * = P(O*) 

• fO' = p(OI) 

Thus, from (11.24) and (11.25) 

(11.24) 

(11.25) 

(11.26) 

Now fO' is anormal subgroup of fo, and as an arithmetic Kleinian or 
Fuchsian group, we already know that fg) C f 0" 
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Theorem 11.6.3 

1. r 0 Ir CJ1 is an elementary abelian 2-group 

2. r R ,/ro1 ~ Rj,oo/(Rj)2 

Proof: For Part 2, let n : r R , ---+ Rj,oo/(Rj)2 be defined by n(P(a)) = 
n( a) (Rj)2. This is then a well-defined homomorphism. By a similar argu­
ment to that used in Theorem 11.6.1, n is onto (see Exercise 11.6, No. 1). 
The result then easily follows. 0 

Corollary 11.6.4 
[rR, : r 0 1] ::; 2r1+r2+rf. 

The Dirichlet Unit Theorem (see Theorem 0.4.2) can be extended to cover 
groups of S-units from which the above corollary follows. Thus this divisor 
of the index [r 0 : r 01] can be calculated starting from a knowledge of 
the group of units R'k. Finally, we need to determine [ro : r R,] and this 
depends on the dass number of k. 

For this, first of all recall some notation and results from §6.7. Thus 
CR( V) is the group of two-sided ideals of V in A and the norm maps 
this group isomorphically onto V 1~, the subgroup of fractional ideals of k 
generated by the the prime ideals P E Ramf(A) and the squares of all 
prime ideals in k, by Lemma 6.7.5. 

Now, a E N(V) if and only if the principal ideal Va is two-sided. Thus 
if PCR(V) denotes the subgroup of principal two-sided ideals of V, then n 
maps PCR(V) isomorphically onto Pk,oo n V1~ (see Exercise 11.6, No. 3). 

Theorem 11.6.5 With the notation as given in this section, 

(11.27) 

1f k has class number 1, then ro = rRr 

Proof: When a E N(V), then a E V:;' for all but a finite set S of primes. 
For PE S\Ramf(A), a E tpV:;' for some tp E k:;' (see Exercise 6.5, No. 1). 
Let M(a) be the ideal of k defined locally by requiring that M(a)p = Rp 
ifP (j. S or P E Ramf(A), and M(a)p = tpRp ifP E S\Ramf(A). Then 
M(a) is uniquely defined and n(a)Rk = M(a)2 L, where L E V. 

Define T : N(V) ---+ J1 by T(a) = M(a)M1. By the above, M(a)2 E M 1 

so that T(a) E 2Jl. Furthermore, if JM1 E 2J1, then there exists t E koo 

such that tRk = J2 L, where L E V. Thus since tRk E Pk,oo n V1~ by the 
remarks preceding this theorem, there exists a E N(V) such that T(a) = 
JM1 • 

Now if a = tß, where tE k* and ß E N(V) is such that n(ß) E Rj, then 
T(a) = tRkMl E J2. Conversely, if Cl! E N(V) is such that T(a) E h, then 
n(a)Rk = a2 RkL for a E k* and L E V. Thus a = a (a-1a), where a E k* 
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and a-1a E N(O) with n(a-1a) E Rj. Thus [N(O) : k* AR!J = bJ1 : hJ 
and (11.27) follows. If k has dass number 1, then J1 = J2 . D 

Corollary 11.6.6 The smallest covolume of a group in the commensurab­
ility class C(A) of an arithmetic Kleinian group is 

47f21~kI3/2(k(2) I1PILl(A) (N(P) -1) 

(47f2) [k:lQ!l [Rj,oo : (Rj)2)[2Jl : J2J 
(11.28) 

The above formula uses (11.10), and a similar formula holds for Fuchsian 
groups using (11.6). 

Examples 11.6.7 

1. Consider again the Coxeter group with symbol shown in Figure 11.4 We 

o 
FIGURE 11.4. 

have already seen that this tetrahedral group is arithmetie with qua­
ternion algebra A defined over Q( R) and ramified at the primes P2 
and P~ of norm 2 (see Exercise 8.3, No. 5). The volume of the tet­
rahedron can be calculated as discussed in §1. 7 and is approximately 
0.2222287, so that the covolume of the tetrahedral group is twice that. 
Also, an approximation to (k(2) for k = Q( R) can be obtained yield­
ing approximately (k(2) = 1.8948415 (see Exercise 11.2 No. 5). Thus 
from (11.10), the covolume of pp(Ol), for 0 a maximal order, is ap­
proximately 0.8889149. 

Now k has dass number 1 and [Rj : (Rj)2J = 8 so that the minimum cov­
olume in the commensurability dass is approximately 0.1111144. Note 
that the tetrahedron is symmetrie and so the tetrahedral group admits 
an obvious extension of order 4. As the type number of A is 1, this ex­
tended group must coincide with the group Pp(N(O)). In this way, all 
entries in the table in Appendix 13.1 can be completed (see Exercise 
11.6, No. 5). 

2. Illustrating the type of calculations involved in determining minimal 
volume orbifolds or manifolds globally within certain dasses, to be dis­
cussed in the next section, we consider here the problem of identifying 
the smallest volume orbifold arising from quaternion algebras A defined 
over the cubie field k = Q(t), where t3 + t + 1 = O. This field has 
discriminant -31. By Theorem 0.5.3, the dass number h = 1, so that 
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[2J1 : J2] = 1 by Theorem 11.6.5. As a cubic field with one real place, 
A will be ramified at an odd number of finite places. Furthermore, since 
-1 E Rj., the index [Rj,oo : Rj2] is precisely 21+rf. Thus the minimum 
volume for an orbifold in the commensurability dass defined by A i~ 

Vi I(H3/r ) = 313/ 2(k(2) I1 N(P) -1 
o 0 2(471'2)2 2' 

PI~(A) 

With t as described above, {I, t, t 2 } can easily be shown to be an integral 
basis. Thus using Kummer's Theorem, k has primes of norm 3,8,9 and 
11 but not of norms 5 or 7. It now follows that the minimum volume 
orbifold will be obtained by choosing Ramf(A) to consist of the prime 
of norm 3, yielding an orbifold of volume 

where Pari has been used to obtain a value for (k(2). 

3. We now consider one example of the application of these results in the 
Fuchsian case. Let k = Q( V3, V5) and let A be ramified at the three non­
identity real places and at the unique prime P2 over 2. We will determine 
the signature of r~, where r~ = ro n PSL(2, IR). Recall that ro is the 
maximal group in the commensurability dass in PGL(2, IR). We also 
define r~f = rRf n PSL(2, IR). Now k is the compositum of Q(V3) and 

Q( V5) which have coprime discriminants. Thus f::l.k = f::l.~( V3) x f::l.~( \1'5) 

(see Exercise 0.3, No. 5). Using this decomposition and the fact that k 
is a Galois extension, the small primes in kare readily determined so 
that we obtain an estimation of (k(2). Note also that N(P2 ) = 4. Thus 
from (11.6), we obtain that Covol(r 01) = 271'q where q is a rational dose 
to 1.2. Now, by arguing as in §11.3.4, we see that r 0 1 can only have 
elements of finite orders 2,3, or 5. Thus Covol(ro 1) = 271'(6/5). As k 
has dass number one, r~ = r~f' Also Rj = (-1, 2+V3, (1+V5)/2, 4+ 

y'ß,1 + V3). Thus [Rj,+ : (Rj)2] = 4. (For the definition of Rj,+ and 
its significance, see Exercise 11.6, No. 7.) Thus [r~f : r 0 1] = 4 and 

Covol(r~) = 271'(3/10). Now if r~ were to be an arithmetic triangle 
group defined over Q( V3, V5), then from the form of the invariant trace 
field of a triangle group given at Exercise 4.9, No. 1 it would have to 
have elements of orders 5 and 12 (alternatively see Appendix 13.3). Thus 
a simple calculation shows that r~ has signature (0; 2, 2, 2, 5). 

Exercise 11.6 

1. Prove that n in the prool 01 Theorem 11.6.3 is onto. 

2. Establish (11.24) and (11.25). 
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3. Prove that n maps PCR(O) isomorphically onto Pk,oo n VIf (see §6. 7 
and Theorem 11.6.5). 

4. Determine how the triangle group (0; 2, 4, 8) lies relative to the groups 
of minimal covolume in its commensumbility class. 

5. Show that among the groups commensurable with any of the cocom­
pact tetrahedral groups, the maximal group corresponding to the Coxeter 
symbol at Figure 11.4, is the group of minimal covolume; that is, es tab­
lish the information in column "Min Vol" of Appendix 13.1 /rom the other 
information in the table. 

6. Let k = Q( ~), A = M2 (k) and 0 = M2 (Od). Let C denote the class 
group of k and C2 the subgroup of exponent 2. Show that ro/ro. ~ C2 • 

Let t be the number of distinct rational primes dividing ßk. Show that 
C2 ~ Z~-l. If Pi I d and -d = Piqi, let ap ; = ('t: a;Ä) where aiqi = 
biPi = 1. If d == l(mod 4) and -1 - d = 2q, let a2 = (1+~ a(-l~yCd») 
where aq - 2b = 1. Prove that r 0 is generated by r o. and these elements 
Pap ;. 

7. In the case of Fuchsian groups, let r;!; = r n PSL(2, lR) and r~f = 
r Rf n PSL(2, lR). Prove that 

where Rj,+ is the group of totally positive units in Rf. 

11.7 Minimum Covolume Groups 

In the preceding section, the minimum covolume of a group within the 
commensurability dass of an arithmetic Kleinian or Fuchsian group was 
determined. This has been utilised to determine the minimum covolume 
arithmetic Kleinian group and the minimum volume arithmetic hyperbolic 
3-manifold. These results are too detailed to indude here, but in this sec­
tion, we give a flavour of the ideas behind the arguments by consider­
ing minimum covolume arithmetic Kleinian groups within some restricted 
dasses. 

The cocompact Kleinian group of smallest known covolume is the order 
2 extension of the the tetrahedral group with symbol given in Figure 11.5 
which is also known to be arithmetic (see Example 8.3.8). This group has 
covolume approximately 0.0390502 (see §11.2.5). In this case, if we restriet 
to the dass of arithmetic Kleinian groups, it has been proved that this 
is the arithmetic Kleinian group of minimal covolume. Below we discuss 
two results which establish the minimal volume arithmetic orbifolds within 
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0----0 0----0 

FIGURE 11.5. 

certain classes. The proofs of these results give an indication of the argu­
ments used in establishing that the group described above is, indeed, the 
arithmetic Kleinian group of minimal covolume. 

Let Q = H3 jr Q denote the orbifold obtained from the quotient of H3 
by the orientation-preserving subgroup, rQ, in the Coxeter group with 
diagram at Figure 11.5. As is easily seen from the presentation of rQ given 

in (4.7), rQ = rg), so that rQ is derived from a quaternion algebra (see 
Definition 8.3.4). 

Theorem 11. 7.1 r Q is the unique minimal covolume arithmetic Kleinian 
group derived from a quaternion algebra. 

Proof: Note that the volume of Q is approximately 0.0781 ... (see §11.2.5). 
We nOw assume that there exists a Kleinian group r, derived from a qua­
ternion algebra whose volume is less than 0.079. Thus there is a maximal 
order 0 in a suitable quaternion algebra A for which Theorem 11.1.3 gives 

0.079> Covol(H3 jPp(Ol)) = l~i/21(k(2) ~:~);~i(N(P) -1). (11.29) 

Following the discussion after Corollary 11.2.2, using the values for A, B 
and E given there, we get the following estimate: 

( A 3/ 2 )n 
0.079 > 4n2 (0.0000044) (4n2 ). 

Rewriting gives 

455 > ( ~~22) n , 

so that this gives (3.16)n < 455; that is, n ::; 5. 
Given this bound On degree, we nOw turn to bounding the discriminants 

for these degrees making use of tables of such discriminants in low degrees. 
Returning to the volume formula and the estimate (11.29), we have 

1~3/21 
0.079 > (4n2)n-l' 

In degree 5, the minimal discriminant of a field with exactly One complex 
place is -4511. However, 4511 3/ 2 j(4n2 )4 is approximately 0.12 and thus 
larger than 0.079. Hence this and therefore all degree 5 fields are eliminated. 

In degree 4, the three smallest discriminants are -275, -283 and -331, 
each of which corresponds to a unique field. The first case is the discrim­
inant of the invariant trace field of Q, and so we expect small volumes 
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there. In the third case, 3313 / 2/( 4n2)3 is approximately 0.098 and so can 
be eliminated. The estimate in the second case gives approximately 0.077. 
However, using the volume formula, with a value of (k(2) = 1.05694057 ... 
computed, say from Pari, we get that the volume of P p( ( 1 ) for a maximal 
order 0, is at least 0.08178735 ... , which again exceeds the bound. 

Thus we need to consider groups arising from algebras over the quartic 
field k of discriminant -275. We do this below, and uniqueness will also 
follow easily from this. 

In degree 3, the discriminant bound shows that we need only consider 
the fields of discriminants -23 and -31. The latter case was considered 
in Examples 11.6.7 and the minimal volume obtained was appraximately 
0.0659 .... However, from the analysis there, [ro : pp(Ol)] = 21+T f 2': 4, 
so that the covolume of pp(Ol) for any maximal order must exceed 0.079. 
The remaining field k in this case is the invariant trace field of the Weeks 
manifold and a generator of the field is a complex root of x 3 - x 2 + 1. As 
noted in §9.8.2, such a raot is a generator for the ring of integers. Hence 
we can apply Theorem 0.3.9 to determine primes of small norm in k. As is 
easily checked, the smallest such norm is 5. Arguing as in Example 11.6.7, 
we see that the volume of P p( 0 1 ) for a maximal order 0 is greater than 
233/ 2 x 4/(4n2)2 > 0.35, which eliminates this case. 

In degree 2, the only case for which the trivial estimate Iß~/21/(4n2) 
does not exceed 0.079 is k = Q( A). In this case, using a value (k(2) = 
1.285190955, we obtain a volume of pp(Ol) for a maximal order 0 of 
approximately 0.169156. 

It remains to consider groups arising fram algebras over the quartic field 
k of discriminant -275. In §11.2.5, we noted that k has no primes of norm 
::; 5, so that the only possible quaternion algebra over k yielding a group 
P p( 0 1 ) within the volume bound must have no finite ramification. This is 
the invariant quaternion algebra of rQ and Covol(pp(Ol)) = Vol Q. Ad­
ditionally, it was shown in §11.2.5 that the type number of this quaternion 
algebra is 1, so that there is only one such group up to conjugacy. 0 

As mentioned above, the smallest covolume arithmetic Kleinian group 
is the degree 2 extension of the group r Q. The bulk of the proof of this 
result, due to Chinburg and Friedman, is taken up in handling orbifolds 
not derived from quaternion algebras. Recall from §11.5 and §11.6, that for 
the minimum covolume group r 0 in a commensurability dass, 

Thus it is necessary to gain some general information on the magnitude of 
these indices. By Theorem 11.6.3, these indices are powers of 2 and patently 
involve the structure of the group of units and the dass group of k. The 
initial strategy in the general proof is similar to that in Theorem 11.7.1; 
roughly speaking, as the degree and discriminant increase, the volume is 
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expected to increase. Fields with primes of norm 2, candidates for belonging 
to the ramified set in the algebra, give particular problems. There are many 
other technical difficulties in the proof of Chinburg and Friedman. As a 
sampIe of some of the ideas employed, we indude the following result which 
deals with a restricted and, hence, simpler case. 

Theorem 11.7.2 The smallest covolume arithmetic Kleinian group which 
can be dejined over a quadratic jield is PGL(2, 0 3 ). The smallest covolume 
cocompact arithmetic Kleinian group dejined over a quadratic jield is the 
group which is the extension of the tetrahedral group described in Example 
11.6.7, No. 1. 

Proof: The group PGL(2,03 ) is an extension of PSL(2, 0 3 ) and so, for 
example, from calculations using Corollary 11.2.4, has covolume J.Lo = 
0.084578 approximately. The group described in Example 11.6.7 has the 
form Pp(N(O)), where 0 is a maximal order in the quaternion algebra 
A defined over Q( H) with ramification at the two primes P~ and P~ 
of norm 2. It is the minimum covolume group in C(A) and has covolume 
J.Ll = 0.1111144 approximately. 

Let r be an arithmetic Kleinian group defined over a quadratic field 
k = Q( R). Note that Tf is even. By Corollary 11.6.6, the minimum 
volume J.L in the wide commensurability dass of r is given by 

J.L= l.6.kI3/2(k(2)IlpIß(A)(NP-1) > 1~~:/2 II (NP
2
-1)(k

h
(2) 

4n2 2r t+1 [2 J l : hl k 
PIß(A) 

since, in these cases, [2Jl : hll hk, the dass number. Note that 

Thus 
l.6.k I3/ 2 (k(2) 

J.L;::: 32n2 hk· 

With a number of results of this type, it is necessary to appeal to some 
deep result from number theory to reduce the proof to manageable pro­
portions. This result is no exception and we now quote an estimate relat­
ing the discriminant, dass number and (k(2). The Brauer-Siegel Theorem 
gives asymptotic estimates over suitable sequences of number fields relating 
the dass number hk, discriminant and the regulator R. The regulator was 
defined in Exercise 0.4, No. 7 and is 1 for quadratic imaginary fields. The 
proof of the Brauer-Siegel Theorem proceeds by estimating the residues at 
poles of generalised zeta functions. In the process, the following inequality 
is obtained as a special case: 

(11.30) 



11.7 Minimum Covolume Groups 367 

where w is the order of the group of roots of unity in R'k. 
Now assume that I~kl ;::: 13, so that w = 2. Using the estimate at (11.30), 

~ we thus obtain that J.L ;::: ~2 > 0.112 > {LI· 

It remains to consider the cases where k = Q( A), Q( H), Q( H), 
Q( A), Q( J -11), all of which have dass number 1. If r is not cocompact, 

{L = lL!.kI3~;2(k(2) in these cases. 

Field 
Q(v'-I) 
Q(H) 
Q(H) 
Q(A) 
Q(J-11) 

(k(2) 
1.50670301 
1.75141751 
1.28519096 
1.89484145 
1.49613186 

Smallest norms of prime ideals 
2,5 
2,3 
3,4 
2,2 
3,3 

Using this table of values, a simple calculation in each of the five cases gives 
that the minimum occurs when k = Q( H). This minimum is achieved 
far the group PGL(2, 0 3 ). 

It thus suffices now to assume that r is cocompact, so that r f ;::: 2. The 
minimum values in the cocompact cases will then be attained by considering 
primes of small norm in each of the five cases. Again, a calculation using 
the above table gives that the minimum is attained when k = Q( A), 
with A ramified at the two primes of norm 2. The bound is achieved by the 
group described in Example 11.6.7, No. 1. D 

For hyperbolic 3-manifolds, the manifold of smallest known volume is the 
Week's manifold, which is arithmetic (see §9.8.2). It is given by a torsion­
free subgroup of index 3 in r 01 where 0 is a maximal order in the qua­
ternion algebra A defined over the degree 3 field of discriminant -23 with 
A ramified at the one real place and at the unique prime of norm 5. Its 
volume is approximately 0.94270736. It has been proved that this gives the 
arithmetic hyperbolic 3-manifold of minimal volume. To deal with mani­
folds, we must get control over torsion in arithmetic Kleinian groups; this 
will be discussed in Chapter 12. 

We dose this section by commenting more generally on the state of 
knowledge on small-volume hyperbolic 3-orbifolds amd manifolds. From 
Theorem 1.5.9, there is a smallest-volume hyperbolic 3-orbifold and hy­
perbolic 3-manifold. It is conjectured that the minimal-volume arithmetic 
hyperbolic 3-orbifold and 3-manifold are actually the minimal-volume hy­
perbolic 3-orbifold and 3-manifold. Much work has been done on this, and 
the current evidence strongly suggests that, indeed, this is the case. For 
example, recently, inspired by work of Gabai, Meyerhoff and Thurston, 
Przeworski has given the best current lower bound in the manifold case 
as > 0.27 .... In addition, the programme initiated by Culler and Shalen 
together with Hersonsky uses topological information to help in estimat­
ing the volume. At present, this work has culminated in showing that the 
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dosed hyperbolic 3-manifold of smallest volume has bl ::::: 2, where bl is the 
rank of the first homology with coefficients in Ql. In the orbifold case, the 
work of Gehring and Martin has shown that if there is a smaller orbifold 
than the minimal-volume arithmetic hyperbolic 3-orbifold, then it can only 
have at most 2- and 3-torsion (with some additional control on 3-torsion). 

In the cusped case, we have the following more complete results which 
are summarised in the following theorem. Note that all the examples are 
arithmetic. 

Theorem 11.7.3 

1. (M eyerhoff) The orientable eusped hyperbolie 3-orbifold of smallest 
volume is H3 /PGL(2, 0 3 ), 

2. (Cao and Meyerhoff) The smallest-volume eusped orientable hyper­
bolie 3-manifolds are the figure 8 knot eomplement and its sister man­
ifold. 

3. (Adams) The smallest-volume eusped hyperbolie 3-manifold is the 
Giesking manifold whieh is a twofold quotient of the figure 8 knot 
eomplement by an orientation-reversing involution. 

Exercise 1 L 7 

1. Let k = Ql(t), where t is a eomplex raot of x 3 - 7 = O. Compute the 
minimal eovolume in the eommensurability class of arithmetie Kleinian 
graups determined by the quaternion algebra A over k ramified at the unique 
real plaee and the plaee of norm 2. 

2. Let k = Ql(t), where t satisfies t 4 - 5t3 + 10t2 - 6t + 1 = O. 
(a) Show that dk = -331, that h = 1 and that k has units of all possible 
signatures. 
(b) Let A = (-leI). What is the minimal volume in the eommensurability 
class? 
(c) Show that there is a unique prime of norm 5 in k. Let v be the plaee 
assoeiated to this prime and let S = {v} . What is the covolume of the 
maximal graup r 8,0 ? 

11.8 Further Reading 

Most of the fundamental results in this chapter can be found in the seminal 
paper of Borel (1981) This applies to the volume formulas (11.6), (11.10), 
(11.28), the finiteness result in §11.2.1, the results on maximal groups in 
§11.4, the distribution of volumes in §11.5 and the minimal covolume in a 
commensurability dass in §11.6. The translation from Borel's description 
to one involving Eichler orders is straightforward and appears in Chinburg 
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and Friedman (1999). There is an extended discussion of Eichler orders and 
their normalisers and related groups in Vigneras (1980a). The derivation of 
the volume formula given in §11.1 follows that given in Vigneras (1980a). 
In the Fuchsian and other cases, it is derived in Shimizu (1965). For the 
particular cases of the Bianchi groups, various methods of derivation are 
possible (e.g., Elstrodt et al. (1998)). The main features ofthe Lobachevski 
function and its use in computing volumes of ideal tetrahedra are given by 
Milnor in Thurston (1979). 

From calculations on the conductor of the extension Q( H), it follows 
that the smallest cyclotomic field containing Q(R) is Q(eIDI) where D 
is the discriminant (e.g., Janusz (1996)), where the results on Gauss sums 
used in §11.1 can also be found. The proof ofTheorem 11.2.1 following Borel 
(1981) uses the geometric result of Thurston and Jorgensen, (Thurston 
(1979), Gromov (1981)), given in Chapter 1, on obtaining manifolds and 
orbifolds by Dehn surgery, and the number-theoretic results of Odlyzko 
giving lower bounds on discriminants in terms of the degree of the field 
(Odlyzko (1975), Martinet (1982)). The Fuchsian case was proved by a 
similar method in Takeuchi (1983). Finiteness within certain subclasses 
(e.g., two-generator groups), can be obtained without using bounds on the 
covolume, as was discussed in §11.2. See also Takeuchi (1977a), Takeuchi 
(1983), Maclachlan and Rosenberger (1983) and Maclachlan and Martin 
(1999). 

The existence of arithmetic compact and non-compact hyperbolic 3-
manifolds of the same volume and even non-arithmetic manifolds of the 
same volume as constructed at the end of §11.2.3 is given in Mednykh and 
Vesnin (1995) (see also Reid (1995)). 

The values of the zeta function for quadratic extensions of Q and also for 
quadratic extensions of quadratic extensions of Q can be obtained by using 
the Epstein-zeta function as in Zagier (1986). The detailed analysis of the 
tetrahedral groups in Maclachlan and Reid (1989) uses this. There are sub­
sequent applications to other groups having extremal geometrie properties 
in Gehring et al. (1997). 

The rationality of (k( -1) for k totally real was proved in Siegel (1969) 
following earlier work in Klingen (1961). Using triangle groups, specific 
values of (k(2) for certain totally real fields can be computed (see Takeuchi 
(1977b)). Extending these ideas to fields with one complex place is carried 
out in Zagier (1986). The first finiteness result for classes of Fuchsian groups 
referred to triangle groups and was obtained by Takeuchi (1977a), who 
enumerated them also and went on to classify them into commensurability 
classes (Takeuchi (1977b)). Other small covolume groups were considered 
in Takeuchi (1983), Maclachlan and Rosenberger (1983), Maclachlan and 
Rosenberger (1992b), Sunaga (1997a), Sunaga (1997b) and Nakinishi et al. 
(1999). 

As indieated above, determining the maximal groups in C(A) is carried 
out in Borel (1981), where an extended version of Theorem 11.4.4, requir-
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ing that the groups be torsion free, and so correspond to manifolds, is also 
proved. These results and the further discussion in §11.5 and §11.6 are 
widely used in the determination of arithmetic hyperbolic 3-orbifolds and 
manifolds of minimal volume noted below and also in analysing the smaller 
covolume groups in the commensurability classes of arithmetic Fuchsian tri­
angle groups (see Takeuchi (1977b), Maclachlan and Rosenberger (1992a)). 
The maximal extensions of the Bianchi groups described in Exercise 11.6, 
No. 6 have been used in Vulakh (1994), Vinberg (1990), Shaiheev (1990), 
Eistrodt et al. (1983) and James and Maclachlan (1996). 

The determination of the minimal covolume arithmetic Kleinian group 
is due to Chinburg and Friedman (1986). Their proof makes use, in par­
ticular, of the Brauer-Siegel Theorem, which is described in Lang (1970) 
where the inequality (11.30) can be found. The cocompact part ofTheorem 
11.7.2 appears in Maclachlan and Reid (1989). The determination of the 
arithmetic hyperbolic 3-manifold of minimum volume is due to Chinburg 
et al. (2001). 

The investigation of specific arithmetic Kleinian groups frequently leads 
to problems in computational algebraic number theory. Recent books by 
Cohen (1993) and Pohst and Zassenhaus (1989) discuss many aspects of 
this theory and indicate the availability and utility of packages such as Pari. 
As mentioned earlier, this package is incorporated into the program Snap 
to investigate the arithmetic invariants and the arithmeticity of specific 
hyperbolic 3-manifolds (Goodman (2001)). 

The proof of the first part of Theorem 11.7.3. appears in Meyerhoff 
(1986), the second in Cao and Meyerhoff (2001) and the last in Adams 
(1987). The middle part is in arecent preprint. The general case is, as in­
dicated, under active investigation and Przeworski's work is in a preprint 
based on Gabai et al. (2002). The foundational work of Culler and Shalen 
is in Culler and Shalen (1992) and is extended in Culler et al. (1998). 
The result ascribed to Gehring and Martin appears in Gehring and Martin 
(1998) and builds on earlier work of these authors. Indeed, these papers 
mentioned here are only a sampie of the many recent publications involved 
in attempts to settle these minimality problems. 



12 
Length and Torsion in Arithmetic 
Hyperbolic Orbifolds 

In this chapter, we will discuss the structure and properties of the set of 
closed geodesics, particularly in arithmetic hyperbolic 2- and 3-orbifolds. 
As discussed briefly in §5.3.4, this is closely connected to properties of 
loxodromic elements in Kleinian or Fuchsian groups, and in the case of 
arithmetic groups, the traces and eigenvalues of these loxodromic elements 
carry extra arithmetic data that can be used to help understand the set 
of geodesics in arithmetic hyperbolic 3-manifolds. We also consider torsion 
that arises in arithmetic Fuchsian and Kleinian groups. Although, on the 
face of things, this appears to have little to do with lengths, the existence 
of torsion and eigenvalues of loxodromic elements in arithmetic groups is 
closely tied to the algebra and number theory of the invariant trace field and 
quaternion algebra. In particular, their existence depends on the existence 
of embeddings into the quaternion algebra of suitable quadratic extensions 
of the defining field. Such embeddings were characterised in Chapter 7 and 
these results are refined in this chapter to consider embeddings of orders 
inside these quadratic extensions into orders in the quaternion algebras. 

12.1 Loxodromic Elements and Geodesics 

We begin by recalling briefly so me geometrie considerations. From §1.2, the 
non-trivial elements in PSL(2, C) are subdivided into elliptic, parabolic or 
loxodromic according to whether the traces of the elements are in (-2,2), 
equal to ±2, or otherwise. In the loxodromic case, ifthe trace is also real, the 
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elements are called hyperbolic. Given a non-trivial element "( E PSL(2, q, 
we shall abuse notation and consider the eigenvalues (up to sign) of a lift 
to SL(2, C). Hence, these are roots of the characteristic polynomial 

p.y(x) = x 2 - (tr"()x + 1 

that is, 
A _ (tr"() ± v(tr"()2 - 4 

'Y - 2 . 

Recall from Chapter 1 that a loxodromic element "( translates along its 
axis, and the translation length of "( is denoted by Ra ("(). 

Lemma 12.1.1 
Rob) = 2IogIA'YI· 

In the case when "( is loxodromic, "( also rotates around its axis as it trans­
lates along it. We encode this information in the complex translation length 
of ,,(, given by 

Rb) = Rob) + iOb) 

where Ob) is the angle incurred in translating along the axis by Rob). It 
is implicit in the definition of translation length (real and complex) that 
traces are related to lengths. The following will be useful in this regard; we 
leave the proof as an exercise (see Exercise 12.1, No. 2). 

Lemma 12.1.2 

1. Let"( be a hyperbolic element; then, cosh(Rob)/2) = ±tr,,(/2. 

2. Let"( be a loxodromic element; then, cosh(Rb)/2) = ±tr,,(/2. 

Now let Q = H 3/r be a complete orientable hyperbolic 3-manifold of 
finite volume. As discussed in Chapter 5, the axis of every loxodromic ele­
ment in r projects into Q as a closed geodesic. As a closed Riemannian 
manifold, every essential non-peripheral closed curve in Q is freely homo­
topic to a unique closed geodesic. Thus the lengths of geodesics coincide 
with translation lengths of loxodromic elements. In addition, we can further 
define the complex length of a closed geodesic 9 in Q as the complex transla­
tion length of the unique (up to conjugacy) loxodromic element whose .axis 
projects into Q and is freely homotopic to g. By Lemma 12.1.2, statements 
about lengths of geodesics can be translated into statements about traces. 
Likewise, in this language of traces, these notions can be extended to the 
cases where Q is an orbifold. These notions also have their counterpart in 
dimension 2 for Fuchsian groups. 

Exercise 12.1 

1. Show that A'Y is a unit if and only if tr "( is an algebraic integer. 
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2. Prove Lemma 12.1.2. 

3. Let r be an arithmetic Kleinian group derived from a quaternion algebra 
over Q(i). What is the shortest translation length possible in such a group? 

12.2 Geodesics and Embeddings m Quaternion 
Algebras 

In this seetion, we coneentrate on developing the relationship between the 
geometrie and algebraic viewpoints of lengths and geodesics, partieularly 
for arithmetie groups. Indeed, the connections are most readily seen for 
groups derived from a quaternion algebra, as will be clear shortly. For the 
most part, we discuss the Kleinian case and re mark on the ehanges needed 
for the Fuchsian ease. 

As noted in §12.1, the eigenvalues of loxodromic and elliptic elements lie 
in an extension of degree at most 2 over Q( tr r). The following elementary 
result is fundamental. 

Lemma 12.2.1 Let r be a non-elementary group and assume that kr = 

Q( tr r) and is a number field. For all non-trivial 'Y Er, kr (AI' ) embeds 
isomorphically as a subfield of Aar = ü= ai/'i I ai E Q( tr r), ')'i Er}. 

Proof: Consider the characteristic polynomial p')'(x). If this splits over 
kr, then AI' E kr and so trivially embeds in Aar. Thus assume p')'(x) is 
irreducible over kr. Let B be the subalgebra of Aar generated over kr by 
,)" so that 

B={a+b')': a,bEkr}cAar. 

Then the quadratic extension L = kr(A')') embeds in Aar via AI' -+ ')'. D 

More generally, without the assumption that kr = Q( tr r), used in the 
above lemma, tr')'2 E kr, so that kr(A;) defines an extension of degree at 
most 2 over kr. 

Examples 12.2.2 

1. Let 1-{ be the Hamiltonian quaternion division algebra over IR. Then, 
there is an element j E 1-{ with j2 = -1. Thus we ean embed <C in 1-{ by 
mapping i to i. 

2. If ')' E r is an elliptic element of order n and r satisfies the hypothesis of 
Lemma 12.2.1, then Q(eos7f/n) C kr and so kr(e7rijn ) embeds in Ar. 

3. If we let r = PSL(2, Z), then sinee r eontains elements of orders 2 and 
3, we see that Q(i) and Qh/=3) embed in M(2,Q). The element 0 U 
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has eigenvalues 3±2v'5, both giving an embedding of Q(V5) in M(2,Q). 
Indeed, any real quadratic extension embeds in M(2, Q). The proof of 
this will be discussed furt her (see Corollary 12.2.9). 

4. Let r = ?Tl (S3\K), where K is the two-bridge knot 52. This example was 
considered in §4.5, and maintaining the notation from there, Q(trr) = 
Q(z), where z3 + z2 + 2z + 1 = O. This field has one complex place. An 
eigenvalue of the commutator [u, v] of the meridional generators u and 
v, can then be shown to satisfy the equation x 3 - x 2 + 2x - 1 = 0 and 
so already lies in the base field Q(z). 

5. Let r =< 91,92 >, where 

_ (v'3 ~) 91 - Yf Yf and 92 = (~ 
2V2 

1 ) v!2 7 . 
2V2 

Now r is a Fuchsian group with fundamental region the ideal quadrilat­
eral with vertices 0,2/3,00 and -1 so that H 2 /r is a once-punctured 
torus. In this example, kr = Q, Q(trr) = Q(V2,v'3), while Q(Ag2 ) = 
Q( V2). 

Since it will be used repeatedly in this chapter, we recall for convenience, 
the fundamental result (Theorem 7.3.3) on embedding quadratic extensions 
in quaternion algebras. 

Theorem 12.2.3 Let A be a quaternion algebra over a number field k and 
L be a quadratic field extension of k. The following are equivalent: 

• L embeds in A. 

• L splits A. 

• L ®k kv is a field for each v E Ram(A). 

Corollary 12.2.4 With r as in Lemma 12.2.1, kr(AI') splits Aor. 

Proof: If Ao(r) is a division algebra, then kr(AI') is a quadratic extension 
and the result follows from Theorem 12.2.3. If Aor is not a division algebra, 
it is already split. 0 

Recall that if r is an arithmetic Kleinian group derived from a quaternion 
algebra, then r c P p( cJl ), where r:J is an order in a quaternion algebra A 
over k = kr = Q(trr) and Aor = Ar = A. 

Lemma 12.2.5 Let r be derived from a quaternion algebra and let 'Y be 
loxodromic. Then [k(AI') : k] = 2. 
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Proof: As noted earlier, this holds unless A splits, in which case A ~ 
M 2 (Q( R)) for so me d. Since tr" is an algebraic integer, .\, is a unit (see 
Exercise 12.1, No. 1) and it williie in k if [k(.\,) : k] = 1. However, the 
only units in the rings of integers Gd in Q( R) are roots of unity. Since 
" is loxodromic, this is a contradiction. D 

Note that applying this to Examples 12.2.2, No. 4 gives another proof that 
52 is not an arithmetic knot. We can now directly relate group elements of 
a group derived from a quaternion algebra to quadratic extensions. 

Theorem 12.2.6 Let A be a quaternion algebra defined over k, where k 
has exactly one complex place and A is ramified at alt real places. Let L be 
a quadratic extension of k. Then L embeds in A if and only if there is an 
order 0 in A and an element" E 0 1 of infinite order with L = k(.\,). 

Proof: This is immediate if such a " exists. For the converse, suppose that 
L embeds in A. Since k has one complex place, it follows from Dirichlet's 
Unit Theorem 0.4.2 that the Z-rank of R'L is strictly greater than that of 
Rh,. Thus there exists y E R'L such that yn tf. Rh, for all n -I=- O. Let (J 
denote the non-trivial automorphism of LI k and set u = (J(Y)Y-I, so that 
NL1k(u) = 1. Now we claim that un tf. k. Otherwise, (J(yn) = tyn for so me 
t E k. However, (J2 = Id then implies that t = ±1, which, in turn, forces 
(J(y2n) = y2n (i.e. y2n ERn. This shows that L = k(un ) for any n -I=- O. 

Since L embeds in A, A is a two dimensional space over L so that A = 

La + Lb for so me a, b E A. Let I = RLa + RLb so that I is an ideal in A. 
Then the order Op(I) on the left of I contains R L . As the reduced norm 
n restricted to L is N LI kl then u as constructed above lies in 0 R (I) 1, thus 
defining an element" = Pp(u) E Pp(OR(I)I) ofinfinite order. D 

Corollary 12.2.7 Let r be a Kleinian g'T'OUP derived f'T'Om a quaternion 
algebra A over k. Let L be a quadratic extension of k. Then L embeds in 
A if and only if r contains an element" of infinite order with L = k(.\,). 

Proof: Since r is commensurable with Pp(OI) as in Theorem 12.2.6, for 
so me integer m, "m E r, where " is as in the theorem. However, then 
L = k(um ) = k(.\,rn). D 

When r is arithmetic but not derived from a quaternion algebra, r(2) is de­
rived from a quaternion algebra. For a loxodromic element" Er, tr" = Vi' 
for some r E kr. This state of affairs can be reversed in a sense made pre­
eise by the following theorem, thus showing that information about traces 
and eigenvalues of loxodromic elements for arithmetic groups is essentially 
determined by groups derived from a quaternion algebra. 
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Theorem 12.2.8 Suppose that r is a Kleinian group derived from a qua­
ternion algebra and 'Y E r is loxodromic. Then there is a group r o com­
mensurable with r containing an element 'Yo with 'Y5 = 'Y in PSL(2, q. 

Proof: Let us assume that r = P p( 0 1 ) for some maximal order 0 in 
A = Ar. Let 'Y = Pp(u) for some u E 0 1 . Now 1 +u E 0 and (1 +U)2 = 
u(2 + tr 'Y) with 2 + tr'Y E R k n k*. Thus it suffices to find an arithmetic 
group commensurable with rand containing 'Yo = Pp(l + u). 

Let 0' denote the maximal order (1 + u)O(l + u)-I. Note that (1 + 
u)20(1+u)-2 = O. Let E = OnO' so that E is either 0 or an Eichler order. 
Furthermore 1 +u E N (E), the normaliser of E in A *, so that 'Yo E P p( N (E)) 
which is commensurable with r (see §1l.4). D 

These results just given are for arithmetic Kleinian groups, but they have 
their counterparts in the Fuchsian case. Lemma 12.2.5 holds with k totally 
real and 'Y hyperbolic. The statement of Theorem 12.2.6 needs to be modi­
fied to assume that L is not totally imaginary as this allows the application 
of Dirichlet's Unit Theorem to be made as earlier. Theorem 12.2.8 with 'Y 
hyperbolic holds provided we allow the group r o to be a discrete subgroup 
of PGL(2, IR). 

We conclude this section with so me consequences of these results; more 
appear in the next section. 

Corollary 12.2.9 If L is any real quadratic extension of Q, there is a 
hyperbolic element 'Y(L) in PSL(2, Z) such that L embeds in M 2 (Q) as 
Q(ry(L)). 

Proof: Since M 2 (Q) has no ramification, L embeds in M 2 (Q) by Theorem 
12.2.3 and the result is completed by Theorem 12.2.6 D 

Corollary 12.2.10 Let k be a number field which is either totally real or 
has exactly one complex place. Let a = u + U -1 E Rk where u is quadratic 
over k and satisfies the following hypotheses: 

(a) u is not a raot of unity. 

(b) If k is totally real, then a 2 - 4 > 0 and for all Galois monomorphisms 
a =f. Id, a(a)2 - 4 < O. 

(c) If k has one complex place, then a(a)2 - 4< 0 for all real a. 

Then there are infinitely many distinct commensurability classes of arith­
metic Fuchsian or Kleinian groups containing an element of trace a. 

Proof: We deal with the case where k has one complex place, the totally 
real case being handled similarily. Also assume that [k : Q] is even, the 
odd degree case being a slight variation (see Exercise 12.2, No. 3). Let 



12.3 Short Geodesics, Lehmer's and Salem's Conjectures 377 

VI, V2,.·· ,Vn denote the real places of k. For the quadratie extension k(u) I 
k, there exist infinitely many prime ideals P which do not split in k(u) I k 
by the Dirichlet Density Theorem 0.3.12. For any pair of distinct primes 
Pi and Pj whieh do not split in k(u), let Ai,j be the quaternion algebra 
over k whose ramification set is {VI, V2, ... ,Vn , Pi, Pj}. These exist and are 
pairwise non-isomorphie by Theorem 7.3.6. To complete the proof of the 
corollary, it suffices to show that k(u) embeds in A,j, for then the result 
follows from Theorem 12.2.6. By assumption, L ®k kv is a field for v real, 
and by construction, L ®k kp are fields for the chosen primes P. Thus k(u) 
embeds in A by Theorem 12.2.3. 0 

Exercise 12.2 

1. Show that if a Kleinian group r derived from a quaternion algebra 
contains an element of order n 2: 2, then there is a Kleinian group com­
mensurable with r which contains an element of order 2n. 

2. Show that there exist quaternion algebras A over totally real number 
jields k which are ramijied at all real places except one, and have quadratic 
extensions L which embed in A, but no maximal orders 0 with elements ,E 0 1 such that L = k(Al')' 

3. Complete the proof of Corollary 12.2.10. 

12.3 Short Geodesics, Lehmer's and Salem's 
Conjectures 

In this section, we discuss how the existence of short geodesies in arithmetie 
hyperbolic 2- and 3-orbifolds is related to some well-known conjectures in 
number theory on the distribution of the conjugates of certain algebraic 
integers. 

We begin by considering these conjectures. Let P(x) be an irreducible 
monic integral polynomial of degree n 2: 2 with roots (h, (h, ... ,(}n' The 
Mahler measure of Pis 

n 

M(P) = II max (1, I(}i/). 
i=1 

Cyclotomic polynomials have Mahler measure 1 and the following conjec­
ture, posed in 1933, is still open: 

Lehmer's Conjecture There exists m > 1 such that M(P) 2: m for all 
non-cyclotomic polynomial P. 

The smallest known Mahler measure for a polynomial is approximately 
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1.176280821 and is attained by the polynomial 

L(x) = x lO + x 9 - x 7 - x 6 - x 5 - x 4 - x 3 + X + 1 

found by Lehmer. This polynomial is symmetrie (that is, having degree 
10, L(x) = x lO L(x-1)) and it is known that any polynomial with smaller 
Mahler measure will also be symmetrie. The polynomial L(x) has one real 
root outside the unit circle, one inside and the remainder on the unit circle. 
One ean use L(x) to build an example of a polynomial with a eomplex root 
outside the unit circle, having the same Mahler measure as L(x). Namely, 
let B(x) = L( -x2 ), giving a polynomial of degree 20 having roots ±iv'Oi, 
where (}i, i = 1,··· ,10, are the roots of L(x). A simple ealeulation shows 
that M(B) = M(L). 

For Salem numbers, whieh are algebraie integers u > 1 such that u-1 

is a eonjugate and all other eonjugates lie on the unit circle, Lehmer's 
eonjeeture rest riets to: 

Salem's Conjecture There exists m s > 1 such that iJ u is a Salem 
number with irreducible polynomial Pu, then M(Pu) ;::: m s. 

As noted above, a root of the Lehmer polynomial L(x) is a Salem number 
so that this is the smallest known Salem number. 

We now show how these are related to geodesies in arithmetie hyperbolie 
2- and 3-orbifolds. Reeall from Lemma 5.1.3, the Identifieation Theorem 
8.3.2 and Exercise 8.3, No. 1, that, if"( is a loxodromie element in a Klein­
ian group derived from a quaternion algebra, then for all real embeddings 
a, a((tr"()2 - 4) < O. This has implieations for the eonjugates of the al­
gebraie integers whieh are the eigenvalues of"( as given by the following 
straight forward result (see Exercise 12.3, No. 1). 

Lemma 12.3.1 Let r be a Kleinian or Fuchsian group derived from a 
quaternion algebra. Let "( Erbe loxodromic or hyperbolic and write tr"( = 
u+u-1 with lul > 1. Then u is an algebraic integer and u-1 is a conjugate 
oJ u. Moreover, the Jollowing hold: 

(a) IJ"( is loxodromic (and not hyperbolic), then u is not real and exactly 
Jour conjugates oJ u lie off the unit circle. 

(b) IJ"( is hyperbolic, then u is real and exactly two conjugates oJ u lie 
off the unit circle. 

This lemma has a eonverse, in that all algebraie integers with these prop­
erties arise from arithmetic Kleinian or Fuehsian groups, as the following 
result shows. 

Lemma 12.3.2 Suppose that u is an algebraic integer such that lul > 1, 
u-1 is a conjugate oJ u, and u satisfies one oJ the conditions (a) or (b) 
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of Lemma 12.3.1. Then in case (a) (resp. (b}) , there is a Kleinian (resp. 
Fuchsian) group r derived from a quaternion algebra and a loxodromic 
(resp. hyperbolic) element "( E r with tr"( = u + u- 1 . Moreover, in case 
(b), we can take r to be a subgroup of a Kleinian group derived from a 
quaternion algebra. 

Proof: We only sketch this proof, as the details are similar to the proofs 
of Theorem 12.2.6 and Corollary 12.2.10. 

Suppose u is not real, so that the conjugates not on the unit circle are 
u, u-l, u and u-1 . Thus the only non-real conjugates of () = u + u-1 are 
() and B. Thus the field Lo = Q( ()) has exactly one complex place and 
L = Q(u) is totally imaginary, as u has no real conjugates. Now construct 
a quaternion algebra over Lo in which L embeds and a group P p( ( 1 ) 

containing the required element, as was done in Theorem 12.2.6. The hy­
perbolic case is similar and we note that in this case, by Exercise 8.2, No. 
1, any arithmetic Fuchsian group derived from a quaternion algebra is a 
subgroup of an arithmetic Kleinian group derived from a quaternion al­
gebra. 0 

With these results, we can relate the lengths of geodesics to Mahler meas­
ures as follows: 

Lemma 12.3.3 With"( as described in Lemma 12.3.1, Roh) = In M(P) 
or 2ln M (P) according to whether "( is loxodromic or hyperbolic, where 
P(x) is the minimum polynomial of u. 

Proof: In the loxodromic case, the conjugates u, u- 1 , U and u-1 lie off the 
unit circle so that M(P) = [U[2. Since Roh) = 2ln tut, the result follows. 
The hyperbolic case is similar. 0 

The following geometrie conjecture is similar to the above number theory 
conjectures. 

Short Geodesic Conjecture There is a positive universal lower bound 
for the lengths of geodesics in arithmetic hyperbolic 2- and 3-orbifolds. 

By Lemma 12.3.3, the Lehmer conjecture implies the Short Geodesie 
conjecture in the sense that if the Lehmer conjecture is true then so is 
the Short Geodesie conjecture; for, if loxodromic "( E r, an arithmetic 
Kleinian group, then "(2 lies in a group derived from a quaternion algebra 
and Ro( 2 ) = 2foh). On the other hand, one can construct irreducible 
symmetrie integral polynomials with more than four roots off the unit circle, 
so that these define algebraic integers which cannot be the eigenvalues of 
loxodromic or hyperbolic elements in any arithmetic Kleinian or Fuchsian 
group. Thus the Short Geodesie conjecture is not obviously equivalent to 
the Lehmer conjecture. 



380 12. Length and Torsion in Arithmetic Hyperbolic Orbifolds 

However, by Lemma 12.3.2 every Salem number is the eigenvalue of a 
hyperbolic element in an arithmetic Fuchsian group. Thus from Lemma 
12.3.3, we have the following: 

Theorem 12.3.4 The Salem conjecture is equivalent to the Short Geodesic 
conjecture in the two dimensional case. 

Note from the last part of Lemma 12.3.2 that settling the Short Geodesic 
conjecture positively for 3-orbifolds would automatically settle it for 2-
orbifolds. Thus we have 

Corollary 12.3.5 The Short Geodesic conjecture for 3-orbifolds implies 
the Salem conjecture. 

It should be noted that the Short Geodesic conjecture is known to hold 
under the additional assumption that the arithmetic 3-orbifolds are cusped, 
as will now be discussed. Being cusped implies that the quaternion algebra 
is of the form M2 (Q( R)) and, in particular, that the degree of the field 
kr over Q is 2. 

Returning to Mahler measures, lower bounds for M(P) when the degree 
of P is bounded have been obtained. Thus, for example, if degree P ~ 
d, then there exists D(d) > 0 such that In M(P) ~ D(d), with D(d) = 
(ln(ln(d))/ In(d))3 /4. This type ofresult would show that the short geodesic 
conjecture is true in the non-compact case. 

However, this can be obtained more directly and more precise informa­
tion can be elicited, as the following sketch shows: Recall that for '"Y lox­
odromic, cosh(lb)/2) = ±(tr'"Y)/2 from which we deduce that lob) ~ 
2 arccosh(ltr'"YI/2) if Itr'"Yl ~ 2. Now suppose '"Y E r, a non-cocompact 
arithmetic Kleinian group derived from a quaternion algebra. On the one 
hand, if Itr'"Yl ~ 3, then lob) ~ 2 arccosh(3/2); on the other, if Itr'"Yl < 3, 
then since tr'"Y E Od, the ring ofintegers in Q(R), there are only finitely 
many possibilities for tr'"Y which can be enumerated. For each of these, cal­
culate lob) and take the minimum of these and 2 arccosh(3/2). Finally, if 
r is any non-cocompact arithmetic Kleinian group, divide this number by 
2 (see Theorem 12.2.8) to obtain the result: 

Theorem 12.3.6 For any cusped hyperbolic 3-orbifold H3/r which con­
tains a geodesic of length less than 0.431277313, r is non-arithmetic. 

This theorem and variations on this can be used to get further control on 
which manifolds or orbifolds obtained by surgery on a cusped hyperbolic 
3-manifold are arithmetic (recall the discussion in §11.2.1). For example, 
Theorem 12.3.6 can be used in the following way: Start with a 2-cusped 
hyperbolic 3-manifold M and suppose we wish to decide which orbifolds 
and manifolds obtained by Dehn surgery on one cusp of Mare arithmetic. 
Corollary 11.2.2 tells us that there are only finitely many. It is a further 
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consequence of Thurston's Dehn Surgery Theorem (see Theorem 1.5.8) that 
sufficiently far out in the Dehn Surgery space (for the one cusp of M being 
surgered), the length of the shortest closed geodesic in the surgered orbifold 
or manifold decreases monotonically and, therefore, will eventually become 
smaller than 0.431277313. A computer can be used to get estimates on how 
far out this happens in particular examples. The details for the case of the 
Whitehead link, for example, can be found in the literature. 

We now turn to orbifolds associated to the extremal polynomials L(x) 
and B(x) mentioned above. By Lemmas 12.3.2 and 12.3.3, there exists a 
hyperbolic 3-orbifold MB with a loxodromic geodesic of length lnM(B). 
This orbifold is obtained using a group derived from a quaternion algebra, 
and by Theorem 12.2.8, there exists an arithmetic hyperbolic 3-orbifold 
with a loxodromic geodesic of length 1/2ln M(B) ~ 0.081178807. This is 
the conjectural lower bound for the Short Geodesic conjecture. 

Again from Lemma 12.3.2, there exists a hyperbolic 3-orbifold which 
contains a hyperbolic 2-orbifold M L with a hyperbolic geodesic of length 
2ln M (L) and hence a hyperbolic 2-orbifold with a hyperbolic geodesic of 
length lnM(L) ~ 0.162357614. By Theorem 12.3.4, this is, of course, the 
conjecturallower bound for the Short Geodesic conjecture in dimension 2. 

We now consider this 2-orbifold example in more detail. Let u be the 
Salem number defined by L( x) and let e = u + U -1. Then Q( e) = k is a 
totally real field of degree 5, and e satisfies the polynomial 

Note that e is approximately 2.02642 and the field k has discriminant 36497. 
We can construct a quaternion algebra A over k ramified at precisely the 
four real places defined by the roots of p different from e. Furthermore, 
there is a maximal order 0 in A such that H 2 / P p( ( 1 ) has a geodesic 
oflength 2lnM(L). This example has already been considered in §11.3.4, 
where we noted that the signature of the group Pp(Ol) is (0;2,2,3,3). 
The particular quaternion algebra A is isomorphic to the one which is 
unramified at the place 0'1 in the notation of §11.3.4. In that case, as shown, 
A has type number 2 and so there are two non-conjugate maximal orders 
O. Now pp(Ol) is contained in the maximal group Pp(N(O)). Note that 
this is maximal in PGL(2, IR), and the maximal group in PSL(2, IR), in this 
case, coincides with the group fii f , with [fii f : f 0 1 ] = [Rj,+ : (Rj)2] 
in the notation of §11.6 (see, in particular, Exercise 11.6, No.7.) In this 
case, Rj,+ = R'k,+ since Ramj(A) = 0, and the totally positive units R'k,+ 
can be determined from the table in §11.3.4. Thus Pp(Ol) is of index 
2 in a maximal discrete subgroup f o in PSL(2, IR). By the computations 
on triangle groups (see Appendix 13.3) there are no arithmetic tri angle 
groups whose defining fields have discriminant 36497. Thus f o has signature 
(0; 2, 2, 2, 3). We have not yet ascertained that this group has a hyperbolic 
geodesic ofminimallength lnM(L), as the 1'0 yielded by Theorem 12.2.8 in 
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the two-dimensional case may lie in PGL(2, lR) \ PSL(2, lR). However, from 
the proof of that result, note that 1'0 = Pp(l + u), where u is the real root 
> 1 of L(x). Now L(-l) = 1 so that u is a unit and n(l + u) = 2 + B, 
which, by calculating the roots of p(z), is totally positive. Thus 1'0 E f o. 

From the discussion in §11.4, if C\ and O2 are two non-conjugate max­
imal orders in A, then Pp(N(Od) and Pp(N(02)) are not conjugate. We 
know that, up to conjugacy, One of these two groups, say Pp(N(Od), con­
tains a geodesie of length InM(L) ~ 0.162357614, which is the minimal 
conjectured length for a geodesie in any arithmetic Fuchsian group. We do 
not yet know if the other group, P p( N (02 )) also contains a geodesie of this 
short length. In fact, it does not, as, in this situation, we have the property 
of selectivity, which will be discussed in §12.4 and §12.5. (See Exercise 12.5, 
No. 6.) 

We complete the discussion concerning Mahler measure with a geometrie 
proof of a result on Salem numbers. If u is a Salem number, then the 
minimum polynomial of u must be symmetrie, of even degree, and such 
that the field Q(B), where B = u + u- 1 , is totally real (see Exercise 12.3, 
No. 2). Let S(k) denote the set of Salem numbers such that Q(B) = k for 
a fixed totally real field k. The result which follows could be proved using 
the lower bounds D( d) for Mahler measures, mentioned in the discussion 
after Corollary 12.3.5, but we give here a proof using the geometry and 
arithmetic of arithmetic Fuchsian groups. 

Lemma 12.3.7 IJ[k : Q] is odd, there is a minimal Salem number in S(k). 

Proof: Let u E S(k) so that u determines areal place of k. Let A be 
a quaternion algebra over k which is ramified at all real places except 
the designated one and has no finite ramification. By the Classification 
Theorem 7.3.6, there are a finite number (:S [k : Q]) of isomorphism classes 
of such quaternion algebras. Now since the conjugates of u lie on the unit 
circle, L = k( u) embeds in A by Theorem 12.2.3. As in the proof of Theorem 
12.2.6, there exists a maximal order 0 in A such that u E 0 1 . There are 
only finitely many conjugacy classes of maximal orders 0 in A. Thus the 
minimal Salem number in S(k) is obtained by taking the shortest closed 
geodesic in the finite number of orbifolds H 3 / pp(OI), as A runs over the 
finite number of such quaternion algebras over k and für each One 0 runs 
through the conjugacy classes of maximal orders. 0 

Exercise 12.3 

1. Complete the proof of Lemma 12.3.1. 

2. Show that if u is a Salem number, then its minimum polynomial must 
be symmetrie, of even degree and k = Q(u + u- 1 ) must be totally real. 

3. Analyse the group which attains the conjectural shortest loxodromic 
geodesie coming from the polynomial B(x). 
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4. Show that there exists a cusped hyperbolie 3-orbifold H 3 Ir, where r 
is eommensurable with PSL(2,03 ) with a geodesie of length 0.431277313 
approximately. (See Theorem 12.3.6.) 

5. Let G(x) = xIS + x I7 + x 16 - x 13 - Xll - x 9 - x 7 - x 5 + x 2 + X + l. 
Compute M(G) and eonstruet an arithmetie Kleinian group containing a 
loxodromie element whose eigenvalue is a root of G(x). 

12.4 Isospectrality 

In this seetion, the whole speetrum of geodesie lengths and eomplex lengths 
ofhyperbolie 2- and 3-manifolds will be eonsidered. Although this speetrum 
is known to be a very strang invariant of the geometrie strueture of the man­
ifold, nonetheless there exist isospeetral 2- and 3-manifolds whieh are not 
isometrie. One method of exhibiting this, due to Vigneras, uses arithmetie 
Fuehsian and Kleinian groups. In this section, we prove this result by estab­
lishing a eertain invarianee of these lengths and their multiplieities. Sinee 
these results are ultimately in terms of traees, they apply equally weIl, with 
suitable modifieation, to elliptie elements and so to the existenee of torsion 
in these arithmetie graups. Thus applieations of the results in this seetion 
will be earried forward to the next seetion where torsion is diseussed. 

We remark that for a eompaet Riemannian manifold M, the eigenvalues 
of the Laplaee operator on the spaee L2 (M) form a diserete sequenee in 
lR and this eolleetion of values, together with their multiplieities, form the 
speetrum of the Laplaeian of M. In the eases where M is hyperbolie of 
dimemsions 2 or 3, and extended there to the non-eompaet finite volume 
eases, a great deal of work investigating this spectrum and involving the 
Selberg traee formula has been earried out. In the two dimensional ease, the 
speetrum of the Laplacian agrees with the length speetrum defined next. 
However, he re we make no use of this, nor do we touch upon this mass of 
work on the speetrum of the Laplaeian, as our aims are more modest. 

Definition 12.4.1 

• If M is a eompaet hyperbolie 2-orbifold, its length speetrum is the 
eolleetion of all lengths of closed geodesies in M eounted with their 
multiplieities. 

• If M is a eompaet hyperbolie 3-orbifold, its eomplex length speetrum is 
the eolleetion of all eomplex lengths of closed geode si es in M eounted 
with their multiplieities. 

• Two eompaet hyperbolie 2- (respeetively 3-) orbifolds are said to be 
isospeetral if their length (respeetively eomplex length) spectra are 
identieal. 
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The cases to be considered are of the form P p( 0 1 ), where 0 is a maximal 
order in a quaternion division algebra A over a number field giving rise 
to arithmetic Fuchsian or Kleinian groups. If "( E P p( 0 1 ) is loxodromic 
or hyperbolic, it yields, as we have seen, a closed geodesie of length or 
complex length fb), where cosh(fb)j2) = ±tr"(. The conjugacy dass of "( 
in P p( ( 1 ) contributes an entry to the length spectrum. 

If "( is the image of xE 01, then x satisfies x 2 - (tr"()x + 1 = 0, which 
defines a quadratic extension L = k(u) of k. Note that this also holds if "( 
is a non-trivial elliptic element of pp(Ol). The element x then yields an 
embedding a : L ---+ A induced by u f--7 x and, as in the proof of Theorem 
12.2.6 any such embedding gives rise to an embedding of the commutative 
order Rk[U] into some maximal order O. 

Thus we first examine when a given commutative order embeds into 
a given maximal order. To do this, we make use of the results of §6.7 
giving the type number of a quaternion algebra. Recall that the quaternion 
algebras A giving rise to arithmetic Fuchsian or Kleinian groups satisfy the 
Eichler condition that there is at least one Archimedean place of k which 
is unramified in A. The types of A (i.e., the conjugacy dasses of maximal 
orders in A), are parametrised by the group 

I k 
T(A) = 12 VP 

k k,oo 
(12.1) 

where Ik is the group of fractional ideals, V is the subgroup generated by 
all prime ideals which divide the discriminant .ß(A) and Pk,oo the principal 
ideals which have a generator in k~. Let 0 be a fixed maximal order. For 
any other maximal order 0', there is an ideal I of A such that Ot(1) = 0 
and Or (1) = 0'. The types of Aare then parametrised by the image of 
the fractional ideal n(I) in T(A). Since T(A) has exponent 2, it has a basis 
represented by prime ideals Pt, P2, ... ,Pr and each element T of T(A) 
is determined by {Tl, T2, . .. ,Tr }, where Ti = 0, 1 and T is represented by 
n;=l Pt· To obtain the result below, we make use of the Tchebotarev 
Density Theorem, which was discussed in §0.3. We also make critical use 
of some ideas from Class Field Theory. These have not been previously 
discussed in this book and we refer to the Further Reading section for 
references to these results. 

Theorem 12.4.2 (Chinburg and Friedman) Let A be a quaternion al­
gebra over a number field such that A is a division algebra and satisfies the 
Eichler condition. 

Let n be a commutative Rk-order whose field 0/ quotients L is a quadratic 
extension 0/ k such that L c A. Then every maximal order in A contains 
a conjugate 0/ n, except possibly when the /ollowing conditions both hold: 

(a) The extension L I k and the algebra Aare unramified at all finite 
places and ramified at exactly the same set 0/ real places. 
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(b) Any prime ideal of k which divides the relative discriminant ideal drllRk 
of 0, is split in L I k. 

Proof: Clearly it suffices to consider only one order from each type. Since 
0, C R L , the maximal commutative order in L, the proof of Theorem 12.2.6 
shows that there is a maximal order 0 which contains 0,. Take this as the 
fixed maximal order by which we parametrise the types, as described above. 
Note, from the description of T(A), that an basis primes Pi are necessarily 
unramified in A. The idea of the proof is, for each P = Pi, to choose a 
pair of maximal orders Mp, Mfp c A p ~ M 2 (kp ) which are adjacent in 
the tree Tp , in such a way that 0, c M p n Mfp. Then for each T E T(A), 
define a maximal order N by the local requirements that Np = Op if 
P -I Pi for an i = 1,2, ... ,r and Np = M p or Mfp for P = Pi, the choice 
being made so that d(Op, Np) == Ti(mod 2), where d denotes the distance 
in the tree. Then if I is an ideal such that Oc(I) = 0 and Or(I) = N, 
d(Op, Np) == vp(n(Ip ))(mod 2) (see Lemmas 6.5.3 and 6.6.3). Thus N lies 
in the dass represented by T and 0, c N. 

We begin by making a special choice of the prime ideals represent­
ing a basis of T(A). Now T(A) defines an ideal group of k and since 
Pk,oo C I~ 'D Pk,oo, the conductor of this ideal group will be a formal 
product of real infinite primes from Ramoo(A). From the fundamental the­
orem of Class Field Theory, there exists a unique abelian extension K (A) 
of k, the associated dass field, which is unramified at an prime ideals of k, 
and such that the kernel in h of the Artin map <PK(A)lk, which is defined 

on prime ideals by <PK(A)ldP) = (K(~)lk), the associated Frobenius auto­

morphism (see §O.3), is the subgroup I~ 'D Pk,oo. The extension K(A) I k 
is only ramified at the infinite primes dividing the conductor and since 'D 
is in the kernei, an prime ideals in Ramf(A) split completely in K(A) I k. 

Now let us assurne that (a) in the statement ofthe theorem fails to hold. 
This fore es L cl- K(A), as will now be shown. Suppose that L c K(A). 
Since L c A for every v E Ram(A), L @k kv is a field. So Ramf(A) = 0 
and as L c K(A), L is unramified at all finite primes. If v E Ramoo(A), 
L @k kv is a field so that L is ramified at all v E Ramoo(A). Furthermore, 
since L c K(A), it cannot be ramified at any other real places. However, 
the condition (a) then holds so that L is not a subfield of K(A). 

Now let O"i be an element of the Galois group of the Galois dosure of L 

and K(A) over k, chosen such that O"i IL= Id, O"i IK(A)= (Kc:,)lk). By the 

Tchebotarev Density Theorem (see §O.3) there are infinitely many primes 
corresponding to O"i and so we can assurne that the primes Pi representing 
a basis of T(A) are chosen such that they split completely in L I k. 

Thus for each such P, there is an isomorphism fp : A p ---t M 2 (kp ) such 
that fp(L) c (k; k~) with the obvious notation. With this, we obtain 

( R p 0) fp(rl) c 0 Rp := Ap . 
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Now let Np = M 2 (Rp) = N(O, 0, 0) and Nfp be its neighbour N(l, 0, 0) in 
the notation at (12.3) below (see Exercise 6.5, No. 5), so that Ap C Np n 
Nfp. Take Mp and Mfp to be the maximal orders j:pl(Np ) and j:pl(Nfp), 
respectively, so that these are adjacent and n c M p n Mfp. Thus if (a) fails 
to hold, the result is complete. 

N ow suppose that (a) holds but (b) fails to do so and apply a variation of 
the above argument. Since (a) holds, the conductor of L I k is Ramoo(A). So 
Ramoo (A) is a modulus for both Land K (A). Furthermore, V is now trivial 
and, clearly, hlk(P2 ) = 1 for all prime ideals in k. Thus I~ Pk,oo C Ker<PLlk. 
Thus by the uniqueness ofthe Class Field correspondence, L C K(A). Since 
(b) fails, there exists a prime ideal Q dividing dOI Rk such that Q is inert 
in L I k. Thus in this case, again using the Tchebotarev Density Theorem, 
there exists a basis of T(A) represented by primes PI = Q and P 2 ,··· ,Pr 
split in L I k. If P = Pi for i ~ 2, we pick adjacent maximal orders 
containing n, as above. For PI = Q, let LQ denote the completion of L 
at the unique prime above Q, so that LQ I kQ is an unramified quadratic 
extension. Since Q divides dolRk , then n c n ®Rk RkQ c R kQ + QRLQ . 
Now let MQ be a maximal order in A Q which contains RLQ and, hence, 
contains n. Any adjacent maximal order M Q is such that 

MQ '='" RkQ 
MQnMQ QRkQ 

so that QMQ c MQnMQ. Thus n c RkQ + QRLQ C M Q. The result now 
follows as in the case where (a) holds. D 

It should be pointed out that these exceptional conditions (a) and (b) 
are not just a function of the proof, but do indeed provide an obstruction 
to embedding a commutative order into every maximal order. In fact the 
Theorem 12.4.2 is the first part of a result which is completed in Theorem 
12.5.3. Orders n satisfying conditions (a) and (b) in Theorem 12.4.2 are 
said to be selective for A. This will be taken up again in the next section. 
For the rest of this section, we only make use of the failure of condition (a) 
in Theorem 12.4.2. 

This result will be used to investigate Fuchsian and Kleinian groups of 
the form P p( (Jl ), where 0 is a maximal order in a quaternion algebra A. 
If, for example, A has finite ramification, then condition (a) of Theorem 
12.4.2 cannot hold for any L. Thus the set of numbers, real or complex, 
which appear in the spectrum of P p( 0 1 ) will be independent of the choice 
of maximal order. However, we do not yet know that the multiplicities 
are independent of the choice of maximal order. We will now establish 
that, using a modification of the argument given in Theorem 12.4.2. More 
sophisticated methods yield the enumeration of these multiplicities in com­
putable number-theoretic terms. We will not give these methods here. 

Suppose that P p( 0 1 ) has an element ')'0 of trace to. Then to E R k and 
there exists an integer Uo in L = k(uo) satisfying x 2 - tox + 1 = O. (We 
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continue to assume that A is a division algebra.) Let 0 denote the com­
mutative order Rk + RkUo C L. The element 1'0 gives rise to an embedding 
(j : L ---+ A such that (j(0) C O. Conversely, any embedding (j : L ---+ A 
such that (j(0) C 0 yields an element in 0 1 oftrace to. Let us denote this 
set of embeddings by [0 (L). For x E 0 1 , let i x denote the automorphism 
given by ix(a) = xax- 1. The number of conjugacy classes of elements in 
0 1 oftrace to is then the cardinality of the set [o(L)/Ol, where 0 1 acts 
by conjugation. When 1'0 is loxodromic, this cardinality is the multiplicity 
ofthe term Rho) in the spectrum of pp(Ol). 

Let P be a prime such that P splits in L I k. Then over kp , we have 

x 2 - tox + 1 = (x - ad(x - (2) 

so that a1, a2 E R p . An isomorphism identifying L (Z)k k p with k p EB k p is 
induced by a+bu00ß 1---+ ((a+ba1)ß, (a+ba2)ß). Under this isomorphism 
Op = 00 Rk R p is identified with the commutative order {( a+ba1, a+b(2) I 
a, bE Rp}. So, under the isomorphism fp described in Theorem 12.4.2, 

fp(Op) = <Pp = { (a +Oba1 a +ob(2) I a, bE Rp } . (12.2) 

We need to investigate the maximal orders in M2(kp ) in which <Pp lies. 
Recall that all maximal orders of M 2 (kp ) are of the form 

(
7rm 

N(m,n,s) = 0 
s )-1 

7rn 
(12.3) 

where m, nE N and s is a coset representative of 7rm Rp in R p (see Exercise 
6.5, No. 5). 

Lemma 12.4.3 <Pp C N(m,n, s) if and only if S7r-m (a1 - (2) E R p . 

Proof: Since N(m,n,s) is an Rp-order containing 1, <Pp C N(m,n,s) if 
and only if (~l c?2) E N(m, n, s). This occurs if and only if 

s ) -1 (al 
7rn 0 

A simple computation then gives that this occurs if and only if S7r-m (a1 -

(2) E R p . D 

It is straight forward to show that the neighbours of N (m, n, s) in the tree 
Tp are the maximal orders N(m, n+ 1, S7r) and N(m+ 1, n, 7rm a+s), where 
a runs through a set of coset representatives of 7r Rp in Rp . 

Lemma 12.4.4 Let Op be a maximal order in M 2 (kp ) which contains 
<Pp. Then in the tree Tp of maximal orders in M 2 (kp ), either one, two or 
all neighbours of Op contain <Pp. 
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Proof: Suppose cI>p C N(m, n, s). Now suppose that al - a2 E Ri>. Then 
since S7r-m(al - (2) E Rp by Lemma 12.4.3, we must have m = 0 and 
S = O. In that case, the neighbours are N(O, n + 1,0), which contains cI>p 
and N(I, n, a), which contains cI>p if and only if a = 0 (see Exercise 12.4, 
No.l). 

Now suppose that al - a2 E 7rRp. Then since S7r-m (al - (2) E Rp, so 
does (S7r)7r-m(al - (2) so that the neighbour N(m, n+ 1, S7r) contains cI>p. 
The neighbour N(m + 1, n, 7rm a + s) will contain cI>p if and only if 

(7rma + s)7r-(m+l) (al - (2) = 7r- l [a(al - (2) + S7r-m(al - (2)] E R p 
(12.4) 

by Lemma 12.4.3. If S7r-m(al - (2) E 7rRp, then (12.4) holds for all a. On 
the other hand, if S7r-m(al - (2) E Rp, then (12.4) cannot hold for any a. 
(See Exercise 12.4, No.I.) D 

We now adapt and extend the first part of Theorem 12.4.2 to deal with 
multiplicities. 

Theorem 12.4.5 Let A be a quaternion division algebra over k which sat­
isfies the Eichler condition. Let L = k(uo) be a quadratic extension 01 k, 
where Uo satisfies x2 - tox + 1 = 0 with to E Rk and 0 = R k + RkUO. 
Let L embed in A and assume that condition (a) 01 Theorem 12.4.2 does 
not hold. Then the number 01 conjugacy classes in P p( eJ1) 01 elements in 
P p( VI) 01 trace to is independent 01 the choice 01 maximal order O. 

Proof: If 0 1 and O2 are conjugate, then the result obviously holds. It 
thus suffices to prove the result when 0 1 and O2 are in different types. 
Since condition (a) does not hold, we can, by the proof of Theorem 12.4.2 
(see also §6.7), choose 0 1 and O2 such that there is a finite set S of prime 
ideals P such that OlP = 02P for P (j. S, d(OlP, 02P) = 1 if PES and 
L I k split each PES. 

We construct a bijection between the sets &01 (L)/Oi and &02(L)/0~. 
Let a E &01 (L) so that a(O) C 0 1 . Now let N be a maximal order in A with 
the property that a(O) C N, Np = VIP for P (j. Sand d(Np , OlP) = 1 if 
PES. We use Lemmas 12.4.3 and 12.4.4 to show that such an N exists. 
Let PES. Then a(O)p C OlP C A p !!>. M 2(kp ) such that fp(a(L)p) = 
(k; k~). However, fp(a(O)p) = cI>p c fp(OlP), where cI>p is as described 
at (12.2). Then by Lemma 12.4.4, a(O)p will be contained in a neighbour 
Np of OlP. Then N is defined by these Np for PES and by requiring 
that Np = 01P if P (j. S. 

Now V 2p is also a neighbour of VIP for PES; thus there exists xp E 
otp such that xpNpx:;/ = 02P. By the Strong Approximation Theorem, 
there exists x E A l such that x is arbitrarily dose to Xp for PES and 
otherwise lies in OlP. Then x E 0i and xNx- l = O2. 

Now i x 0 a(O) C 02 so that i x 0 a E &02 (L). 
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We now show that the assignment a f---+ ixoa gives a well-defined mapping 
from eo1 (L)/oi to e02(L)/0~. First note that N as described above, is 
not unique, but, by again using the Strong Approximation Theorem, any 
other is of the form tNC l for some t E Oi. Likewise, for each N, the x 
is not uniquely determined, but any other such conjugating element differs 
by an element of Vi n O~. 

Now suppose that u E 0i and consider the embedding iu ° a. Then 
uNu-l is such that i u ° a(O) c uNu-1, (uNu-l)p = OIP for P fI- Sand 
(uNu-l)p is adjacent to OIP for PES. Thus, as above, there exists v E 0i 
such that v(uNu-l)v- l = O2. It follows that vux- l E N(02) n Al = O~ 
(see §11.6) in which case, vu = zx for some z E O~ and iv ° i u ° a = 
i z ° ix ° a. Thus the assignment a f---+ i x ° a gives a well-defined mapping 
from eo1 (L)/Oi to E02(L)/0~. 

The well-defined mapping in the opposite direction is easily checked to 
be the inverse of the above, and the result follows. D 

Most of the earlier discussion was directed towards information about 
length spectra and Theorems 12.4.2 and 12.4.5 show that under suitable 
conditions, the spectra are independent of the choice of maximal order. 
However, these results also apply to elliptic elements in the group P p( 0 1 ) 

and we obtain the following result: 

Theorem 12.4.6 Let 0 1 and O2 be maximal orders in a quaternion divi­
sion algebra A over the number jield k sueh that Pp(Oi) and Pp(O~) are 
arithmetie Fuehsian groups. Then Pp(Oi) and Pp(O~) are isomorphie. 

Proof: As the groups are cocompact, the isomorphism dass is determined 
by the signature which is determined by the covolume and the number of 
conjugacy dasses of primitive elements of finite order. For maximal orders, 
the covolumes are equal by Theorem 11.1.1. If either group contains an 
element of order n, then Q(cos7r/n) C k and k(e7ri / n ) embeds in A. Now 
the field k(e7ri / n ) is totally imaginary so that k(e7ri/ n ) I k is ramified at 
all real places, whereas A is ramified at all real places except one. Thus 
condition (a) of Theorems 12.4.2 and 12.4.5 does not hold. Thus by these 
theorems, the number of conjugacy dasses of primitive elements of order n 
in Pp(Oi) and Pp(O~) are equal. D 

This last result is a two-dimensional phenomenon, because in three dimen­
sions, Mostow's Rigidity Theorem would show that isomorphism of these 
groups would imply conjugacy of the groups and ultimately conjugacy of 
the orders, which need not hold. This is spelled out more precisely in the 
following result. 

Lemma 12.4.7 Let 0 1 and O2 be maximal orders in a quaternion algebra 
A over a number jield k and p be a k-representation in M2 (lR) (respeetively 
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M2(C)) such that Pp(Oi) and Pp(O~) are arithmetic Fuchsian (respect­
ively Kleinian) groups. Suppose that 

(12.5) 

for some 'Y E PGL(2, lR) (respectively PGL(2, C)). Then 0 1 and O2 are 
conjugate in A * . 

Proof: Let 'Y = P(c), where c E GL(2, lR) or GL(2, C). Now p(A) = 
A(p( Oi)) = A(p( O~)) and so eonjugation by cinduces a k-automorphism 
of A via 

for ai E k, 'Yi E p(Oi). By the Skolem Noether Theorem, this is an inner 
automorphism. Thus there exists a E A* such that aOia-1 = O~. Now 
eonsider 

whieh is an order in p(A). Let O~ be any maximal order in A such that 
O(p(Oi)) c p(Oi). If O~ =I- 0 1, then O~ n 0 1 is an Eichler order and 
[Pp(Oi)) : Pp(Ol n OD 1] > 1 by §11.2.2. However, p((h nOi)l :J p(Oi) n 
(O(p(Oi)))l :J p(Oi). Thus O~ = 0 1 and, likewise, O2 is the unique max­
imal order such that O(p(O~)) c p(02). Thus as p(a) eonjugates O(p(Oi)) 
to O(p(O~)), a will eonjugate 0 1 to O2. 0 

Remark Conjugating by an element 'Y as defined in Lemma 12.4.7, means 
that'Y E Isom(H2 ) or Isom+(H3). If 'Y E Isom(H3) \ Isom+(H3), one has 
to allow for variations up to eomplex eonjugation (see Exercise 12.4, No. 
2). 

We now eombine the results of this seetion to eonstruet examples of pairs 
of isospeetral hyperbolie 2- and 3-manifolds whieh are not isometrie. 

The examples are to be of the form Hn / P p( Oi) and Hn / P p( O~), n = 
2,3, where 0 1 and O2 are maximal orders. These pairs of examples will be 
eonstrueted such that the quotients have the following properties: 

(A) They are eompaet manifolds. 

(B) They are isospeetral. 

(C) They are non-isometrie. 

(A) To make sure of eompaetness, ehoose A to be a division algebra. To 
obtain manifolds, it suffiees to ehoose A such that pp(A1) is torsion 
free. If Pp(A1) eontained an element of order n, then eos7r/n E k and 
the extension k(e7ri / n ) embeds in A. Note that eos7r/2 and eos7r/3 
must lie in k, but we ean ehoose k so that these are the only two such 
and then eonstruet A in such a way that k( A) and k(.;=3) UO not 
embed in A, using Theorem 12.2.3. 
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(B) For isospectrality, we ehoose A so that it has some finite ramification. 
This ensures that condition (a) of Theorems 12.4.2 and 12.4.5 fails 
to hold for all L. 

(C) To show that the manifolds are non-isometrie, we ehoose A with type 
number > 1, using Theorem 6.7.6, so that Lemma 12.4.7 will show 
that the groups are non-eonjugate. 

Example 12.4.8 For the two-dimensional ease, let k = Q( VlO), whieh 
has dass number 2. Let A be defined over k such that it is ramified at 
the real place eorresponding to -VlO. Note that a fundamental unit in 
RZ is 3 + VlO. Thus h DO = 2. Let us take A to be ramified at the prime 
ideal 7Rk. Note that 7Rk E Pk,DO so that the type number of A is 2. 
Furthermore, the prime 7 R k splits in the extensions Q( VlO, A) I Q( VlO) 
and Q(VlO, A) I Q(VlO). Thus pp(Al) will be torsion free. It follows 
that if 0 1 and O 2 are maximal orders of different types, then the hyperbolie 
2-manifolds H 2 / P p( Oi), H 2 / P p( O~) are isospectral but not isometrie. 

As noted in Theorem 12.4.6, these groups will be isomorphie. As they are 
eoeompact and torsion free, their isomorphism dass is determined by their 
genus, whieh ean be deduced from a eomputation of the volume formula in 
Theorem 11.1.1, to be 19. 

We now eonsider the three-dimensional ease and using the methodology 
outlined at (A),(B), and (C) above, exhibit many isospeetral non-isometrie 
arithmetic hyperbolie 3-manifolds. If we ehoose k to be quadratie imagin­
ary, the term Pk,DO in the formula for T(A) at (12.1), whieh parametrizes 
the types of A, eoineides with Pk. Thus T(A) is a quotient of Ck/Cl, where 
Ck is the dass group of k. The order of Ck/Cl has already been determ­
ined, in a different guise, to be 2t - 1 , where t is the number of distinct prime 
divisors of ßk (see Exereise 11.6, No. 6). 

Theorem 12.4.9 For any integer n > 2, there are n isospeetml non­
isometrie hyperbolie 3-manifolds. 

Proof: For eaeh t, choose a quadratie imaginary number field k such that 
ßk has at least 4t distinet prime divisors. Then by the Dirichlet density 
theorem (Theorem 0.3.12), ehoose a prime ideal P of k such that P splits 
eompletely in k( A, A). Now let A be a quaternion algebra over k 
whieh is ramified at P and at one other prime ideal Q. As at (A), this 
ensures that pp(Al) is torsion free and, for any maximal order 0 in A, 
that H3 / P p( 0 1 ) is a eompaet manifold. 

From (12.1), the order of T(A) is at least ilCk/Cll 2: 24t - 3 . Thus 
ehoosing a maximal order from eaeh type, the groups P p( 0 1 ) will be non­
eonjugate and, henee, the manifolds will be non-isometrie, as diseussed at 
(C). 
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Furthermore, sinee Ramf(A) f. 0, eondition (a) of Theorem 12.4.2 fails 
to hold, thus ensuring that all such groups P p( e)l) are isospeetral. 0 

The volumes of the manifolds produeed by the above eonstruetion are large. 
This tends to be a feature of this eonstruetion, and of a more general 
eonstruetion due to Sunada, whieh will not be pursued here. At present, 
these are the only methods of eonstrueting isospeetral but non-isometrie 
hyperbolie manifolds. For example in dimension 2, at present there are no 
known examples of genus 2 surfaees that are isospeetral but non-isometrie. 
Examples exist in genus 4 and above (cf. Example 12.4.8). In dimension 3, 
we do not have any estimates on the smallest volume of a pair of isospeetral 
but non-isometrie hyperbolie 3-manifolds. 

Like the arithmetic eonstruction, the eonstruction of Sunada mentioned 
here whieh gives pairs of isospectral but non-isometrie manifolds also yields 
that the resulting manifolds are eommensurable. It is an intriguing open 
question as to whether this is always the ease. We show that this is indeed 
the ease for arithmetie hyperbolie 2- and 3-manifolds. Recall that pairs 
of arithmetie Fuehsian or Kleinian groups are eommensurable in the wide 
sense in PGL(2, IR) or PSL(2, q if and only if their defining subfields are 
the same and the quaternion algebras are isomorphie. For Kleinian groups, 
taking the wide sense to be in Isom H 3 , we must, in addition, allow for 
ehanges by eomplex eonjugation (see Exereise 12.4, No. 2). 

First let us consider the two-dimensional ease and two isospectral arith­
metie Fuchsian groups r 1 and r 2 with defining quaternion algebras Al and 
A 2 over totally real fields k1 and k2 , respeetively. Recall that ki = kr i = 
Q((tr')')2 : ')' E ri), i = 1,2. Sinee the groups are isospectral, the traces 
agree and so k1 = k2 = k. Define 

Ci = {L I L is a subfield of C whieh is a quadratie extension of k 

embedding in Ai but L is not totally imaginary}. 

Lemma 12.4.10 Let Al and A2 be quaternion algebras defined over the 
totally real field k such that Al and A 2 are ramified at exactly the same 
set of real places. Let Cl and C2 be as defined above. Then Al ~ A 2 if and 
only if Cl = C2 • 

Proof: If Al ~ A2 and L E Cl, then L ®v kv is a field for every v E 
Ram(Ad = Ram(A2 ) and so L E C2 • Thus Cl = C2 • 

Now suppose Cl = C2 and Al '1- A2 . Then there exists a prime ideal P of 
k such that Al is ramified at P but A2 is not, or viee versa. If v E Ram(A2), 
ehoose av, bv E kv such that x 2 - avx + bv is irreducible over kv and so 
defines a quadratie extension of kv . For v = P, ehoose av , bv E kv such 
that a~ - 4bv E 1 + 4P R p . If v is the unramified real place of Al and A2 , 

ehoose av and bv such that a~ - 4bv > O. Then, using the Approximation 
Theorem as it was applied in Theorem 7.3.5, we ean find a, bE k such that 
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a is arbitrarily close to the finite number of av specified and, likewise, for b 
and bv . Then if Ram(A2) -:/0, x 2 - ax + b defines a quadratic extension L 
of k which is not totally imaginary by construction at the real unramified 
place. Furthermore, Lv is a field for all v E Ram(A2) so that L embeds in 
A 2 • However, since a2 - 4b is a square in Rp (see Exercise 12.4, No. 3), 
L splits at P and so does not embed in Al. This contradiction shows that 
Al ~ A2, in the cases where Ram(A2) -:/0. 

If Ram(A2) = 0, every quadratic extension L of k embeds in A 2. Since 
Ramoo(Ad = 0, Al must be ramified at two prime ideals at least if Al ~ 
A 2 . For one such ideal, choose av and bv such that x 2 -av x+bv is irreducible 
and for the other, choose av and bv such that a~ - 4bv E 1 + 4P Rp. The 
argument as above now gives a quadratic extension L which is not totally 
imaginary and does not embed in Al. 0 

Theorem 12.4.11 1f MI and M 2 are a pair of isospectral arithmetic hy­
perbolic 2-manifolds, then MI and M 2 are commensurable. 

Proof: Let Mi = H 2 /fi , i = 1,2. As noted before Lemma 12.4.10, the 
defining fields are equal: kl = k2 = k. Now let L E Cl. Then by Theorem 
12.2.6 (see comments following Theorem 12.2.8), there is an order 0 in Al 
and an element "( in 0 1 of infinite order such that L embeds in Al as k("(). 
Then ppl("(m) E f l for some m. Since f l and r 2 are isospectral, there 
exists Pp2(W) E f 2 such that trw = tr"(m. Then k(Aw ) = k(A1'''') ~ L 
embeds in A 2. Thus Cl = C2. By Lemma 12.4.10, Al ~ A 2 and so r l and 
f 2 are commensurable by Theorem 8.4.1. 0 

We now discuss the three-dimensional version which actually is slightly 
simpler. 

Theorem 12.4.12 Let MI = H 3 /rl and M 2 = H 3 /r2 be isospectral 
arithmetic hyperbolic 3-manifolds. Then they are commensurable. 

Proof : As in the Fuchsian case, from the earlier discussion before Lemma 
12.4.10, we can assume that r l and r 2 share a common invariant trace field 
k say. Let Al and A 2 be the invariant quaternion algebras of f l and f 2 , 

respectively. We claim that if L is any quadratic extension of k that embeds 
in Al, then L embeds in A2, and conversely. If this is the case, a simpler 
version of Lemma 12.4.10 applies to guarantee that Al ~ A2 and so by 
Theorem 8.4.1, f l and r 2 are commensurable (at least up to conjugacy). 

To establish the claim made above, we shall make use of Theorem 12.2.6. 
Let L embed in Al. Then there is an order 0 C Al and element u E 0 1 of 
infinite order such that L embeds in Al as k(u). Since f l and pp(Ol) are 
commensurable, as in the Fuchsian case, Pp(um ) E f l for some integer m. 
By the isospectral assumption, there exists "( E r 2 with tr"( = ±tr(p(um ». 
Then k(A1') = k(Au ) = L embeds in A2 as required. 0 
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Exercise 12.4 

1. In the situation described in Lemma 12.4.4, let V be the set of vertices 
Op of the tree Tp of maximal orders in M 2(kp) such that <I»p cOp. Let 
9 be the subgraph of Tp obtained by joining two vertices of V if they are 
adjacent. 
(a) Show that if 0:1 - 0:2 E R p, then 9 is an infinite path. 
(b) Show that if 0:1 - 0:2 E 7r Rp, then 9 is eonneeted. 

2. Let 0 1 and 02 be maximal orders as in Lemma 12.4.7, where k has 
one eomplex plaee. Let T be the orientation-reversing element of Isom H 3 

indueed by Z t--t Z and suppose that 

(a) Show that k = k. 
(b) Let T* denote the IR-algebra automorphism of M 2(C) given by 

* (a b) = (ä ~) Ted cd· 

Show that T*(p(A)) = p(A). 
(e) Show that 0 1 = p-1T*p(Od is a maximal order in A and that O2 = 0 1. 
(d) Show that if'Y at (12.4) in Lemma 12.4.7 lies in Isom H 3 \lsom+H3, 
then O2 is eonjugate to 0 1. 

3. Let K be a P-adie field with ring of integers R, prime ideal P and 
uniformiser 7L Show, using Hensel's Lemma, that for every a E R, there 
exists b E R sueh that 1 + 47ra = (1 + 27rb)2. Deduee that 1 + 4P C R*2. 

4. Let k be the cubie field of diseriminant -491 given in Exereise 6. 7. No. 6. 
Construet isospeetral but non-isometrie hyperbolie 3-manifolds with invari­
ant traee field k. 

12.5 Torsion in Arithmetic Kleinian Groups 

Any torsion arising in arithmetic Kleinian (or Fuchsian) groups will neces­
sarily appear in the maximal groups of C(A). Thus to describe an torsion, 
a description of the torsion in the family of groups rs,o discussed in §11.4 
is required, as this family includes all maximal groups. Describing an of the 
torsion in an of the groups r S,0 requires intricate and detailed analysis. We 
will not give all these details here, but we will give a complete analysis of 
the occurrence of torsion in the groups P p( ( 1 ) for a maximal order O. Re­
call that for any arithmetic Kleinian group r, then r(2) C pp(Ol) = r 0 1, 

in the notation of §11.6.2. Thus an odd torsion will appear in the groups 
r 01, and all torsion, other than 2 torsion, will "persist" in these groups 
rol. 
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We will also deseribe the oeeurrenee of torsion in the groups roof min­
imal eovolume. The proof in these eases will be eomplete exeept when the 
torsion has order 2T or 2p T for p an odd prime. The detailed analysis of the 
torsion in the groups r 8,0 has been earried out by Chinburg and Friedman 
and in this seetion, we follow the lines of their analysis in these simpler 
eases. 

We have restrieted our statements here to the eases of Kleinian groups, 
although with suitable modifieation, they ean be adapted for Fuehsian 
groups. Note that in that ease, the maximal groups r 0 and r 8,0 are max­
imal in PGL(2, ffi.) and furt her adaptation is required to deal with maximal 
subgroups of PSL(2, ffi.) (see, e.g., Exercise 11.6, No. 7). 

In the preeeding section, we constructed torsion-free groups in C(A) by 
the simple expedient of ensuring that Pp(Al ) was torsion free (see (A) 
following Lemma 12.4.7). However, even when Pp(A l ) has torsion, pp(Ol) 
may or may not have torsion, as there may be obstructions to embedding 
eommutative orders in maximal orders, as noted in Theorem 12.4.2 and 
in the remarks following it eoncerning selective orders. We first establish 
that there are indeed obstruetions by completing the arguments begun in 
Theorem 12.4.2 in the cases where the commutative order D = R k [u], where 
tru E R k and n(u) E Rk. 

The loeal methods involved in the proofs require some preliminary res­
ults. 

Lemma 12.5.1 Let K be a P-adic field with ring of integers RK. Then 
u E GL(2, K) fixes an edge or avertex of the tree T if and only if the 
element dise(u)/det(u) E RK, where disc(u) = (tru)2 - 4det(u). 

Proof: The element P( u) fixes an edge or a vertex if and only if it is 
contained in a eompact subgroup of PGL(2, K). This will be true if and 
only if it is true when K is replaeed by a finite extension. Thus we ean 
normalise so that u = ( A01 At2) where Al, A2 E K* and t E K. Now P(u) = 

P ( A16 A2 t; ), where by furt her conjugation, we ean assume that t' E RK. 
Then the closure of the group generated by P( u) in PGL(2, K) is eompaet 
if and only if AdA2 E Rjc Finally observe that disc(u)/det(u) is invariant 
under conjugation and scaling so that 

dise(u) = Al + A2 _ 2 0 
det(u) A2 Al . 

Lemma 12.5.2 Let K be as in the preceding lemma. Let u E GL(2, K) 
be such that tru E RK, det(u) E R*K and P(u) is non-trivial. Then P(u) 
fixes an edge of T if and only if either K(u) c GL(2, K) is not a field or 
dise(u) E 1fRK . Thus P(u) fixes a unique vertex if and only if K(u) is a 
field and dise ( u) E R*K. 
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Proof: By Lemma 12.5.1, P(u) must fix an edge or a vertex. If K(u) is 
not a field, then u is conjugate in GL(2, K) to a scalar multiple of (6 7r~t' ), 

where A, t' E R'K and r :::: o. However, this element fixes all vertices repres­
ented by the orders N(m, n, 0) for n - m :::: -r (see (12.3)) and so fixes an 
edge. Thus we assume that K (u) is a quadratic extension field of K and 
prove that P(u) fixes an edge if and only if disc(u) E rrRK . Once this is 
established, the last part follows immediately, for if P(u) fixed more than 
one vertex, it would fix all of the edges in the unique path joining them. 

Suppose that u fixes a vertex represented by the lattice A so that uA = 
AA for some A E K*. Then A -1 U fixes A so that det (A -1 u) E R'K. Thus, 
since det(u) E R'K, A E R'K and u fixes A. There is then an induced action 
on A/rrA, a two-dimensional vector space over the residue field Rk/rrRK' 

Thus u will fix an edge of T if and only if there is a lattice 

with uA' = A'. This will arise if and only if there is an eigenvector for the 
action of u on A/rrA, which, in turn, occurs if and only if the minimum 
polynomial of u over K is reducible mod rrRK . Now we are assuming that 
L = K(u) is a field so that L I K is either ramified or unramified. If it is 
unramified, then RL = RK[u] if and only if the unit u is not congruent mod 
rr RL to an element of R K . Thus that mimimum polynomial of u over K is 
reducible mod rrRK if and only if either L I K is ramified or RL =I- RK[u]. 
This occurs if and only if disc(u) E rrRK. 0 

We now return to the continuation of Theorem 12.4.2 and resurne the 
notation and arguments used there. 

Theorem 12.5.3 (Chinburg and Friedman) Let k be a number jield 
and A a quaternion division algebra over k which satisjies the Eichler con­
dition. Suppose that u E A * is such that tr u E Rk, n( u) E R'k and u (j. k*. 
Let L = k( u) be the associated quadratic extension. Suppose further that 
the following conditions both hold: 

(a) Land Aare unramijied at all jinite places and ramijied at exactly the 
same set of real places of k. 

(b) All prime ideals P dividing (tru)2 - 4n(u) split in L I k. 

Then the type number of A is even and a conjugate of n = Rk[U] lies in 
0, where 0 is a maximal order belonging to exactly half the types of A. 

Remarks 

1. Note that condition (b) here is just arestatement of condition (b) 
of Theorem 12.4.2 since the relative discriminant ideal of the order 
Rk[u] is ((tru)2 - 4n(u))Rk' 
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2. The proof below gives a method of determining the types such that 
o c 0 for V of that type. 

3. The restriction that A is a division algebra is merely to ensure that L 
is a quadratic extension. With this added as a requirement, the result 
also holds for matrix algebras M 2 (k). 

4. In the notation introduced earlier, the orders Rk[U] described in the 
theorem are selective for A. More generally, if a conjugate of the 
commutative order 0 lies in the maximal order V, we say that 0 
selects O. 

Proof: Recall that A = La + Lb for some elements a, b E A, so that Rk [u] 
is contained in the order Oe(I), where 1= RLa+RLb. Thus let 0 be a fixed 
maximal order such that n = Rk[U] C O. Since condition (a) holds, L C 
K(A) (see proof of Theorem 12.4.2) so that 2 I o(Gal(K(A) I k)) = IT(A)I. 
To establish the last part of this result, we will show that if 0' is a maximal 
order in A, then n selects V' if and only if rfJLlk(n(I)) is the trivial element 
of Gal(L I k) = {±1}. Here rfJLlk is the Artin map and I is a linking ideal 
for 0 and 0'. In fact we will replace n( I) by the distance ideal p( 0, V') 
defined to be TIp pd'P(O'P,o~), where dp is the distance in the tree Tp . It 
was shown that n(I) and p(O,O') represent the same element of T(A) in 
Exercise 6.7, No. 7. 

Let P1 be a prime ideal which is inert in L I k and choose a basis of 
T(A) represented by the ideals P1, P2, ... ,Pr, where all Pi for i ~ 2 split 
in L I k. For i = 2,3, ... ,r, choose pairs of adjacent maximal orders Mpi 
and Mfpi as described in Theorem 12.4.2 and choose M p1 = V P1 and Mfpl 
to be any adjacent maximal order. 

For T = {Tl, T2, ... ,Tr } representing an element of T(A), choose a max­
imal order N in A by requiring that Np = Op for all P f:. Pi, N pi = Mpi 
or Mfpi for i = 2,3, ... , r chosen so that dPi (Npi' VpJ == Ti(mod 2) 
and Npl = OP1. If Tl = 0, then 0 C N. Those T with Tl = 0 repres­
ent exactly half the types of A which are those represented by an order 
0' such that the image of p(O, 0') in T(A) is in the subgroup spanned 
by the images of P2, P3, ... ,Pr. Since KerrfJLlk contains KerrfJK(A)lk' rfJLlk 
maps onto Gal(L I k) and P2, P3, ... ,Pr E Ker<PLlk' the span of the 
images of P2, P3, ... ,Pr in T(A) is precisely the kernel of <PLlk. Thus if 
rfJLlk(P(O, V')) = 1, then V' belongs to a type with Tl = 0 and so 0 se­
lects 0'. 

Now suppose that <PLlk(P(O, 0')) f:. 1. We assume that n selects V' and 
obtain a contradiction. On conjugating 0', we can assurne that 0 cO'. 
There must be a prime ideal Q inert in L I k such that 0 Q and OQ are 
at an odd distance apart, otherwise rfJLlk(P(O, 0')) = 1. So, in particular, 
OQ f:. OQ. Let OQ = 0 ®Rk RQ = RQ[u]. Now RQ[u] c OQ n OQ. Since u 
is a unit, u fixes both the vertices OQ and OQ. On the other hand, since 
Q does not divide (tru)2 - 4n(u) by condition (b), (tru)2 - 4n(u) E R'Q. 



398 12. Length and Torsion in Arithmetic Hyperbolic Orbifolds 

However, this contradicts Lemma 12.5.2. 0 

We now combine the preceding result with earlier theorems to investigate 
torsion in arithmetic Kleinian and Fuchsian groups. As earlier, (see §11.4), 
we can ignore the specific representation p and work with the groups p(AI), 
P(A*), p((]l) and so on. We also continue to use Borel's notation for the 
maximal discrete groups. Thus for a maximal order 0, fo = P(N(O)), 
fo* = P((]*) and f o ' = p(OI) (see §11.6). We maintain the policy of 
assuming that A is a division algebra, thus omitting discussion of groups 
commensurable with the Bianchi groups or the modular group. This enables 
us to make neater statements ab out torsion, but the omission is not serious 
and the methods we give apply also to Bianchi groups (see Remarks fol­
lowing Theorem 12.5.3). Elsewhere in the literat ure, these groups are more 
extensively investigated and more direct methods can be employed to dis­
cuss torsion. This is already possible for the groups fo, where 0 = M 2 (Od) 
using the results of Exercise 11.6, No. 6. 

Suppose, first, that P(AI) contains an element of order n. Then Al 
contains an element u of order 2n. Thus tr u E k so that k ::) Q( cos 7r / n). 
Furthermore, if ~n = e27fi / n , then k(6n) embeds in A. Note that if 6n E k, 
then (u - 6n)(u - Gnl ) = 0 so that A would not be a division algebra. 
If conversely, the quadratic extension k(6n) embeds in A, then P(AI ) 
contains an element of order n. By Theorem 7.3.3, k(6n) embeds in A if 
and only if k(6n) ®k kv is a field for every v E Ram(A). Since k(6n) is 
totally imaginary, this will hold automatically for all v E Ramoo(A). It will 
hold for P E Ramf(A) if P does not split in k(6n) I k. 

Assuming that L = k(6n) does embed in A, then f 0' has an element 
of order n if and only if D = Rk [6nl selects O. Thus if D is not selective 
for A, then D selects every maximal order and the groups f 0' all contain 
elements of order n. Now suppose that D is selective for A. Then there are 
an even number of conjugacy classes of maximal orders 0 in A and, hence, 
an even number of conjugacy classes of groups f 0' in P( A *) by Lemma 
12.4.7 and exactly half of them will have elements of order n. 

We have already seen in Theorem 12.4.6 that D cannot be selective for 
A in the Fuchsian case, so now assume that we are in the Kleinian case. 
Note that L is ramified at all real places of k. The relative discriminant 
ideal of Rk[6nl is (6n - ~2nl)2 Rk, which is Rk unless n = pr, where p is a 
prime. Thus, from Theorem 12.5.3, if n is not a prime power, Dis selective 
for A if and only if Ramf(A) = 0. If n = pr, then D is selective for A if and 
only if Ramf(A) = 0 and every prime P of k dividing (6n - ~2nl)2Rk = 

(2+6n +G';)Rk splits in LI k. Note that NQ(cos7f/n)IQ(2+6n +~2nl) = p, 

so that primes P dividing (2 + 6n + ~2nl )Rk are necessarily such that P I p. 
Thus we have established the following: 

Theorem 12.5.4 Let A be a quaternion division algebra over a number 
field k such that C(A) is a class 01 arithmetic Kleinian or Fuchsian groups. 
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The group P(Al ) contains an element of order n 
{o} 6n + ~2nl E k, 6n (j. k and L = k(6n) embeds in A 
{o} 6n + ~2nl E k, 6n (j. k and ifP E Ramf(A), then P does not split 

in LI k. 
Now assume that P(A 1 ) contains an element of order n. If the members 

of C(A) are Fuchsian groups, then, for every maximal order 0 in A, r O l 

contains an element of order n. If the members of C (A) are Kleinian groups, 
then, for every maximal order 0 in A, r 01 contains an element of order 
n unless 

(i) n #- pT, P a prime, and Ramf(A) = 0 

(ii) n = pr, Ramf(A) = 0 and if P is a prime in k such that P I (2 + 
6n + ~2~ ) R k , then P splits in L I k (necessarily, P I p). 

If (i) or (ii) holds, then there are an even number of conjugacy classes 
of maximal orders and exactly half the conjugacy classes of groups r 01 in 
P(A*) contain an element of order n. 

Subsequently, we will use this theorem to investigate torsion in so me specific 
arithmetic Kleinian groups, but it can also be used to construct groups 
containing elements of arbitrarily large order. 

Corollary 12.5.5 For every n, there are infinitely many arithmetic Fuch­
sian or Kleinian groups which contain an element of order n, and which 
are pairwise non-commensurable. 

Proof: We give the proof in the Kleinian case, leaving the necessary 
alterations for the Fuchsian case as an exercise (see Exercise 12.5, No. 
1). Let ko = Q ( COS 1T / n) and denote the distinct real embeddings of ko 
by (Tl = Id, (T2,' .. ,(Tr' Choose elements bl , b2 , ... ,br E ko such that 
(Tl (bI) < 0 and (Ti (bi) > 0 for i 2': 2. By the Approximation Theorem 
7.2.6, there exists b E ko such that (Ti(b) is arbitrarily elose to (Ti(bi ) for 
i = 1,2, ... ,r. Let k = ko( Vb) so that k has one complex place and [k : Q] 
is even. Let A be a quaternion algebra over k which is ramified at all real 
pI aces and at a pair of prime ideals which are inert in k(~n) I k. By the 
Tchebotarev Density Theorem, there are infinitely many such primes. Then 
for any maximal order 0 in A, r 01 contains an element of order n. D 

We now go on to discuss torsion in the groups roof minimal covolume, 
omitting any discussion of the groups r s,o for S #- 0. Following the ap­
proach used in Theorem 12.5.4 we first consider how torsion arises in P(A*). 

Lemma 12.5.6 Let n > 2 and let ~n be a primitive nth root of unity. Let 
A be a quaternion division algebra over k. Then P(A*) contains an element 
of order n if and only if ~n + ~;;l E k, ~n (j. k, and k(~n) embeds in A. Up 
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to conjugacy, there is a unique subgroup of order n in P(A*) generated by 
an image of 1 + ~n. 
Proof: Suppose that P(u) has order n so that un E k* but un/d f/. k for 
any divisor of d i- 1. Let CF be the non-trivial automorphism of k(u) I k 
and let ~ = CF(U)/U. Then ~ is a primitive nth root of unity. Also, from 
u = CF(CF(U)) = CF(~U) = CF{~)~U, we have CF(~) = ~-l. Since n > 2, ~ f/. k. 
Also Trk(u)lk(~) = ~ + ~-l E k and k(~) = k(u). 

If, conversely, ~n + ~;l E k, ~n f/. k and k(~n) embeds in A, let ~ be 
the image of ~n in A. Suppose that P(~) has order d in P(A*). Then 
Q(~n + ~;l, ~~) c k. Since ~n f/. k, then d = n if n is odd and d = n/2 if 
n is even. Thus (1 + ~)2~-1 = ~ + ~-l + 2 E k* and P(1 +~) has order 
n. Furthermore, by the Skolem Noether theorem, 1 + ~ is unique up to 
conjugation. 0 

We now investigate when this torsion lies in the groups r o. One import­
ant difference to the cases discussed in Theorem 12.5.4 is that the norms 
of the elements in ro need not be units in Rk. 

Lemma 12.5.7 Let A be a quaternion algebra over k such that C(A) con­
sists of arithmetic Fuchsian or Kleinian groups, and let u E A * \ k*. Then 
P(u) belongs to a maximal discrete group if and only ifdisc(u)/n(u) E Rk. 

Proof: Let p : A -t M 2(C) be a k-representation. Let p(u) = (~~) so 

that Pp(u) = p(a/v'~ b/v'~). If Pp(u) lies in an arithmetic group, 
c/yn(u) d/yn(u) 

then (a + d)/ Jn(u) is an algebraic integer and so (a + d)2/n (u) E Rk. 
Now suppose that disc(u)/n(u) E Rk and suppose, first, that tru i- O. 

Now u2/n(u) = z has norm 1 and tr z = ((tru)2 - 2n(u))/n(u) E Rk. Thus 
z lies in the order Rk[Z] C k(z), which embeds in A. Thus, by the standard 
argument, Rk[Z] lies in a maximal order O. In that case u normalises 0 n 
uOu- 1 and so lies in a maximal discrete group. 

Now suppose that tru = 0 so that u 2 E k*. However, there then exists 
v E A such that v2 E k and vuv- 1 = U = -u. (See Exercise 2.1, No. 1.) 
Scale so that u2, v2 E Rk and let 0 be the order Rk[1, u, v, uv]. Again u 
normalises this order. 0 

This lemma does not distinguish between elements lying in r ° and those 
in some rs,o with S i- 0. However, rs,o is distinguished by containing 
elements which are odd at the primes in S (see §11.4). Thus if u E A* is 
to be such that P(u) E ro, then u cannot be odd at any ofthe unramified 
primes of A. Thus the first part of Theorem 12.5.8 folIows. We omit the 
proof of the rest of this theorem. It involves an intricate modification of 
the proofs of Theorems 12.4.2 and 12.5.3. However, the cases where P( u) E 

ro" in the notation of §11.6, follow quite directly (see Exercise 12.5, No. 
3). 
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Theorem 12.5.8 Let k be a number field and A a quaternion algebra over 
k satisfying Eichler's condition. Let 0 be a maximal order in A. 1f the non­
trivial element P(u) E P(A*) lies in ro, then disc(u)jn(u) E R k and ifu is 
odd at a prime ideal P, then P E Ram(A). 11, conversely, these conditions 
on u hold then a conjugate of P( u) lies in r ° unless the following conditions 
both hold: 

(a) The extension k(u) and Aare unramified at all finite places of k and 
ramified at exactly the same set of real places. 

(b) All prim es P dividing disc(u)jn(u)Rk split in k(u) 1 k. 

1f conditions (a) and (b) hold, then the type number of A is even and 
P( u) E r ° for 0 belonging to exactly half these types. 

We will use this result to give a complete description of torsion of order 
n> 2 in the groups ro. Using Lemma 12.5.6, we apply the above result in 
the cases where u = 1 + ~n. Alternatively, in the cases where n -I 2pT, with 
pa prime, the result can be proved without the use of Theorem 12.5.8 (see 
Exercise 12.5, No. 2). 

Theorem 12.5.9 Let A be a quaternion division algebra over a number 
field k such that C(A) is a class of arithmetic Kleinian groups. Let n > 2. 
Then P(A*) contains an element of order n 

{o} ~n + ~;1 E k, ~n f/. k, and L = k(~n) embeds in A 
{o} ~n + ~;1 E k, ~n f/. k and no prime ideal P in Ramf(A) splits in 

LI k. 
Now assume that P(A*) contains an element of order n. Then for every 

maximal order 0, ro contains an element of order n unless one of the 
following occurs: 

(i) n -I pT, 2pT, p a prime, and Ramf(A) = 0. 

(ii) n = pT, P an odd prime, Ramf(A) = 0 and every prime ideal P 
(2 - (~n +~;l))Rk splits in LI k (necessarily PI p). 

(iii) n = 2T, Ramf(A) = 0, and every prime ideal in the factorisation of 
(2 + ~n + ~;1 )Rk has even exponent and splits in L 1 k (necessarily 
P 12). 

(iv) n = 2pT, p odd, Ramf(A) = 0, and every prime ideal in the factor­
isation of (2 + ~n + ~;1 )Rk has even exponent and is unramified in 
L 1 k (necessarily P 1 p). 

(v) n = 2pT, p a prime and there is a prime P f/. Ramf(A) which appears 
in the factorisation of (2+~n +~;1 )Rk with odd exponent (necessarily 
PI p). 



402 12. Length and Torsion in Arithmetic Hyperbolic Orbifolds 

If (i), (ii) , (iii) 01' (iv) holds, then the type number of A is even and for 
exactly half the conjugacy classes of maximal orders, r 0 contains an ele­
ment of order n. If case (v) holds, then none of the groups ro contain an 
element of order n. 

Proof: The equivalent statements concerning elements of order n in P( A *) 
follow from Lemma 12.5.6 and Theorem 7.3.3. 

For the computations below, we note that n(1 + ~n) = 2 + ~n + ~;I, 
disc(~n) = (~n - ~;I? and disc(1 + ~n)/n(1 + ~n) = 2 - (~n + ~;I). Let 
N(u) = INIQI(enH;;-llllQl(u)l. 

N(2 + ~n + c-I) = {1 ~f n -1= 2pT 
'>n p If n = 2pT, 

N(2-(~n+C-I))={ 1 ~fn-l=pT 
'>n p If n = pT, 

{ 
1 if n -1= pT, 2pT 

N((~n - ~;1)2) = P if n = pT, 2pT, p odd 
4 if n = 2T (1' > 1). 

Thus by Theorem 12.5.8, at least some ro contains an element of order n 
except in the cases where n = 2p T and there is a prime ideal P tf- Ramf(A) 
such that P I (2 + ~n + ~;I )Rk with odd exponent. This is case (v). 

So now suppose that case (v) does not hold so that all ro contain an 
element of order n unless the conditions (a) and (b) of Theorem 12.5.8 hold 
for u = 1 + ~n' Since k(~n) is totally imaginary, k(~n) I k is ramified at all 
real places, as is A. Also, if n -1= pT, 2pT, the relative discriminant 6k(enllk 
is trivial so that k(~n) I k is unramified at all finite places. Also, in these 
cases, condition (b) is vacuous since disc(1 + ~n)/n(1 + ~n) is a unit. This 
is case (i). 

Now suppose that n = pT, where p is odd. Then any prime ideal which 
divides 6k(enll k will divide (2 - (~n + ~;I ))Rk. Thus if such primes split in 
L I k, then L I k is unramified at all finite pI aces and case (ii) follows. Then 
case (iii) follows in the same way keeping in mi nd that we are assuming 
that case (v) does not hold. 

In the case that n = 2pT, p odd, disc(1 + ~n)/n(1 + ~n) is a unit and the 
primes which divide 6k(enll k will be precisely those which divide (2 + ~n + 
~;I)Rk' Thus case (iv) follows. 0 

Finally we consider elements of order 2. Suppose that u E A * is such that 
P(u) has order 2. Then u2 = w E k* and k(y'W) embeds in A. Assuming, 
as earlier, that A is not a matrix algebra then, the subgroup generated 
by P(u) will be uniquely determined up to conjugation by the coset Wk*2 
in k* /k*2. Thus, if necessary, we can ass urne that wERk. If far a given 
w, such a subgroup exists, let us denote it by Cw . Then precisely as in 
Theorem 12.5.9, using Theorem 12.5.8, we obtain the following: 
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Theorem 12.5.10 Let A be a quaternion division algebra over the number 
field k such that C(A) is a class of arithmetic Kleinian groups. Then there 
is a subgroup Cw in P(A*) corresponding to the coset Wk*2 in k* /k*2 if 
and only if no place in Ram(A) splits in k(VW) I k. In parlicular, w is 
negative at all real places of k. 

Now assume that Cw lies in P(A*). Then there is some maximal order 
CJ such that a conjugate of Cw lies in r 0 if and only if every prime ideal P 
of odd exponent in the factorisation OfwRk lies in Ramf(A). Furlhermore, 
if this holds then every r 0 contains a conjugate of Cw unless 

(i) Ramf(A) = 0, k(vw) I k is unramified at all finite places and every 
prime P I 2Rk splits in k( VW) I k. 

If condition (i) holds, then the type number of A is even and exactly half 
the conjugacy classes of r 0 contain a conjugate of Cw · 

Examples 12.5.11 

1. Let k = Q(x), where x satisfies x 3 - x -1 = 0 so that k has one complex 
place. Then 6.k = -23, Rk = Z[x], x is a fundamental unit for k which is 
positive at the real embedding of k (being approximately 1.3247179 ... ), 
the primes 2 and 3 remain inert in k, and there is a unique prime P of 
norm 5. Note that the only subfield of k of the form Q(~n + ~;;1) is Q. 
Thus for any quaternion algebra A over k, P(A*) can contain an element 
of order n only for n E {2, 3, 4, 6}. Let A be the quaternion algebra over 
k ramified at the real place of k and the place v associated to P. It is 
easily checked that IT(A)I = 1 (recall Examples 6.7.9, No.3). 

Let us now turn attention to the groups r 0 1 and ro in C(A). Since 5 
splits in Q(i), it follows by analysis of possibilities for splitting types of 
P in k(i) that P splits in k(i). Hence by Theorems 12.2.3 and 12.5.4, 
r 01 has no element of order 2. A similar reasoning shows that r 01, and 
hence r o , does contain an element of order 3. 

The prime P is principal, generated by 2 - x, which, from above, is 
positive at the real embedding of k. We leave as an exercise for the 
reader to show that A ~ (-3,;-2), and so k( Jx - 2) embeds in A. Let 
w = x - 2. Then by construction, Theorem 12.5.10 applies to obtain 
Cw c P(A*). Furthermore, WRk = P and so Theorem 12.5.10 applies to 
give an element of order 2 in ro. 

2. In this example, as with many examples arising in the next section, 
we make extensive use of Pari. Let k = Q(x), where x 6 - x 5 - 2x4 -

2x3 + x 2 + 3x + 1 = O. Then 6.k = -215811, k has one complex place 
and Rk = Z[x]. Now 215811 = 33 (7993), so if k had a proper subfield 
different from Q, by Exercise 0.1.2, any such subfield is totally real of 
degree 2 or 3. However, there are no cubic fields or real quadratic fields 
of discriminant 3. Applying Theorem 0.2.9 establishes that Q is the only 
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proper subfield. Thus as in No. 1, the only subfield of k of the form 
Q(';n + .;~l) is Q. Now let A be the quaternion algebra over k ramified 
at only the four real places of k. Consider the field L = k( A). By 
Theorem 12.2.3, L embeds in A. Let w denote a primitive cube root of 
unity and let n = Rk[W] cL be embedded in A as Rk[U]. We claim that 
n is selective for A, which will imply, by Theorem 12.5.4, that half the 
types of maximal orders give rise to groups r 01 having elements of order 
3. Since 3 divides the discriminant, 3 ramifies in kj indeed, 3R k = p2 for 
a prime ofnorm 33 in Rk. Condition (ii) in Theorem 12.5.4 requires that 
p split in L/k. This is not at all obvious but does indeed hold and the 
selectiveness follows. The algebra A ~ (-li,-l) and so k(i) embeds in A, 
and using the results above, all types of maximal order can be shown to 
give rise to groups r 01 having elements of order 2. 

Exercise 12.5 

1. Show that there exist infinitely many pairwise non-commensurable arith­
metic Fuchsian groups which have an element of order n, for each n. 

2. Deduce Theorem 12.5.9 for the cases n =I- 2pT from Theorem 12.5.3 and 
12.5.4 (i.e., without using Theorem 12.5.7). 

3. State and prove the corresponding result to Theorems 12.5.4 and 12.5.8 
for the groups r O' . 

4. Let k = Q(t), where t is a complex root of t 3 + t2 + t + 2 = o. 
(a) Prove that {I, t, t 2 } is an integral basis for k. Show there is a unique 
prime of norm 2 in Rk. 
(b) Let A be a quaternion algebra over k ramified at the real place and the 
unique place of norm 2. Show that r 01 contains an element of order 3 for 
all maximal orders o. 
5. (a) Let k be a cubic field with one complex place and a unique dyadic 
prime P. Let A be the quaternion algebra over k ramified at the real place 
and the dyadic place, and 0 any maximal order of A. Show that r 01 con­
tains elements of orders 2 and 3. 
(b) Apply this to the cubic k = Q(t), where t satisfies t 3 + t2 - t + 1. Show 
in this case that every maximal order in the algebra A contains A4 . 

6. Let A be the quaternion algebra over the totally real number field k 
discussed at the end of § 12. 3, giving a maximal Fuchsian group roof sig­
nature (Oj 2, 2, 2, 3) with a geodesic of minimal conjectured length In(M(L)) 
for arithmetic Fuchsian groups. With u the Salem number described there, 
show that n = Rk[U] is selective for A. 
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12.6 Volume Calculations Again 

In §11.7, we discussed the methods used to identify the arithmetic Kleinian 
group of minimal covolume or arithmetic hyperbolic 3-orbifold of minimal 
volume. In this section, we extend this discussion to hyperbolic 3-manifolds, 
making use of the results of the preceding section on torsion in arithmetic 
Kleinian groups. 

The Week's manifold, Mw, was first discussed in §4.8.3 and then shown 
to be arithmetic and furt her investigated in §9.8.2. Its volume is approxim­
ately 0.942707 and has been shown by Chinburg, Friedman, Jones and Reid 
to be the unique arithmetic hyperbolic 3-manifold of smallest volume. It is 
also the prime candidate for the hyperbolic 3-manifold of smallest volume. 
The complete proof that Mw is the smallest-volume arithmetic hyperbolic 
3-manifold will not be given. However, as in §11.7 with orbifolds, we dis­
cuss the methodology of the proof of this result and give some force to 
this by sketching the proof of a weaker result which identifies M w as the 
minimum-volume hyperbolic 3-manifold among those wh ich are derived 
from a quaternion algebra (cf. Theorem 11.7.1). 

First, however, we make some comments on the proof of the complete 
result. The general approach used gives a way of listing alt arithmetic hy­
perbolic 3-manifolds of volume less than some given constant. Taking the 
constant to be 1, let M = H 3 Ir be arithmetic of volume at most 1 and let 
Q = H3/rl be a minimal orbifold covered by M. Thus r is a torsion-free 
subgroup of finite index in the maximal arithmetic Kleinian group r land 

The advantage of passing from a torsion-free r to a maximal, but not 
necessarily torsion-free r l , is that we have a formula for the volume of Q. 
As in Theorem 11.7.1, this formula and number-theoretic methods can be 
used to show that the degree oft he defining field k ofr satisfies [kr: <Q] :::; 8. 

When [k : <Q] is smalI, there are abundantly (but finitely) many arith­
metic 3-orbifolds of volume smaller than 1. Thus one also has to look for 
lower bounds on the index [r l : r]. Results such as Theorems 12.5.4 and 
12.5.9 show the existence of torsion in the groups r l and the method is to 
find finite subgroups H in r l and note that the order of H must divide the 
index [r l : r] (see Exercise 12.6, No. 1). The hardest cases to deal with, as 
indicated in the preceding section, concern the existence of 2-torsion and 
dihedral sugroups with no elements of odd order (cf. also Lemma 9.8.1). 
However, by purely number-theoretic arguments, it is possible to narrow 
the list of candidate r 1 's to just nine groups. This is recorded, without 
proof, in the following theorem. 

Theorem 12.6.1 If Mo is an arithmetic hyperbolic 3-manifold such that 
Vol(Mo) :::; 1, then Mo covers one of the nine orbifolds H 3 1Gi described 
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below. In these descriptions, we assume the follwing: the ramijication of the 
quaternion algebra A always includes all real places of k; 0 is any maximal 
order of A in the cases 1 :::; i :::; 8; when i = 9, 0 is a maximal order 
of A not containing a primitive cube root of unity; Pj denotes the unique 
prime of k of norm j. Furthermore, the restrietion on the covering degree 
is stated. 

1. k = Q(x), where x 4 -3x3 +7x2 -5x+l = O,ßk = -283, Ramf(A) = 
0, GI = f o , Vol(H3 JGI) = 0.0408903 ... and 12 divides the covering 
degree [Mo: H 3 jG l ]. 

2. k = Q(x), where x 4 -5x3 +10x2 -6x+l = 0, ßk = -331, Ramf(A) = 
0, G2 = fo, Vol(H3 jG2 ) = 0.0526545 ... and 12 divides [Mo : 
H 3 jG2 ]. 

3. k = Q(x), where x3+x+l = 0, ßk = -31, Ramf(A) = P3, G3 = f o , 
Vol(H3 jG3) = 0.06596527 ... and 12 divides [Mo: H3 jG3]. 

4. k = Q(x), wherex3 -x+l = 0, ßk = -23, Ramf(A) = P5 , G4 = fo, 
Vol(H3 jG4 ) = 0.0785589 ... and 12 divides [Mo: H3 jG4 ]. 

5. k = Q(x), where x 3 -x+l = 0, ßk = -23, Ramf(A) = P7, G 5 = fo, 
Vol(H3jG5 ) = 0.1178384 ... and 4 divides [Mo: H3jG5 ]. 

6. k = Q(x), where x 4 -5x3 +lOx2 -6x+l = 0, ßk = -331, Ramf(A) = 
0, S = P 5 , G6 = fs,o, Vol(H3 jG6 ) = 0.1579636 ... and 4 divides 
[Mo: H 3 jG6 ]. 

7. k = Q(x), where x 5 + x 4 - 3x3 - 2x2 + x-I = 0, ßk = -9759, 
Ramf(A) = P3, G7 = fo, Vol(H3jG7 ) = 0.2280430 ... and 4 di­
vides [Mo: H 3 jG7 ]. 

8. k = Q(x), where x 4 -3x3 +7x2 -5x+ 1 = 0, ßk = -283, Ramf(A) = 
0, S = Pu, Gs = fs,o, Vol(H3 jGs ) = 0.2453422 ... and 4 divides 
[Mo: H 3 jGs]. 

9. k = Q(x), where x 6 - x 5 - 2x4 - 2x3 + x 2 + 3x + 1 = 0, ßk = 

-215811, Ramf(A) = 0, Gg = fo, Vol(H3 jGg ) = 0.27833973 ... 
and 2 divides [Mo: H 3 j Gg ]. 

To complete the proof which identifies M w as the minimal-volume arith­
metic hyperbolic 3-manifold involves studying these nine orbifolds and is 
assisted by a package of computer programs developed by Jones and Reid 
for studying the geometry of arithmetic hyperbolic 3-orbifolds. This is used 
to obtain presentations for these maximal groups and then investigate the 
existence or otherwise of torsion-free subgroups of the appropriate index. 
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To put some flesh on this skeletal outline, we will now give more details 
on the result which identifies M w as the minimal-volume arithmetic 3-
manifold among those which are derived from quaternion algebras. First, 
note that it has already been established in §9.8.2 that M w is derived from 
a quaternion algebra. Also note that all discussion of torsion in these cases 
will, in essence, relate to torsion in the groups r 01, where 0 is a maximal 
order and all necessary results here are covered completely by Theorem 
12.5.4. 

First let us consider the following illustrative: 

Example 12.6.2 Let k denote the field Q(x), where x 5 + x4 - 3x3 - 2x2 + 
x-I = O. Then tlk = -9759 and {1,x,x2 ,x3 ,x4 } is an integral basis. We 
will show that the minimal-volume manifold derived from any quaternion 
algebra over k has volume exceeding 0.94271. 

Using Kummer's Theorem, one can identify the primes of small norm and 
thus obtain an approximation (k(2) ~ 1.149. Let 0 be a maximal order in 
a quaternion algebra A defined over k so that 

Now k has no prime ofnorm 2, but N((x-1)Rk) = 3. Thus, to be within the 
bound 0.94271, we can assume that A is ramified at this one finite prime P3 
ofnorm 3 and consider torsion in r 0 1(This is case 7. ofTheorem 12.6.1.) 
Since 3 is inert in Q( v'-I)/Q, it follows that P3 does not split in k( A)/k. 
Thus P(A1 ) contains elements of order 2 and, by Theorem 12.5.4, so does 
r 01. It is not difficult to show that, in this case, A has type number 1 so 
that the full force of Theorem 12.5.4 is not required. However, any torsion 
free subgroup in this r 01 will then necessarily have covolume in excess of 
4 times 0.456. 

Theorem 12.6.3 The manifold M w = H 3 jrw is the minimal-volume 
hyperbolic 3-manifold such that rw is derived from a quaternion algebra. 

Sketch of Proof: Arguing exactly as in the case of orbifolds in the proof 
of Theorem 11.7.1, this time with abound of 0.94271 on the covolume of 
r 01 shows that if k is the defining field, [k : Q] :::; 7. As in the orbifold 
case, we work through the degrees, this time with the added complication 
of handling torsion. Initially the bound 

0.94271 > /tlk/ 3 / 2(k(2) TI(N(P) - 1) 
- (47r2 )n-l 

with (k(2), TI(N(P) - 1) 2 1 yields for 2 :::; n :::; 7 that 

/tlk / :::; 11,129,1498,17373,201427,2335380, 
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respeetively. 
In the following arguments, we make extensive use of data on number 

fields of small degree and small diseriminant. This data is, for example, 
available on Pari. 

For n = 7, there is only one field of signature (5,1) whose diseriminant" 
-2306599, satisfies the bound. Having odd degree over Q, the quaternion 
algebra must have some finite ramifieation. This field with the smallest 
diseriminant has no primes of norm 2 and so the eovolume of r 01 exeeeds 
0.94271. 

Continuing with the odd-degree eases, note that they will all be ramified 
at at least one finite plaee. In addition to giving information via the factor 
(N(P)-I) in the volume formula, it also follows from Theorem 12.5.4 that if 
P(AI ) eontains elements offinite order, so does rOl. For fields ofsignature 
(3,1), there are 29 fields with diseriminants running from -4511 to -17348, 
to be eonsidered. For the smallest of these, (4511 )3/2 j (47r2)4 ~ 0.1247 and 
8 times 0.1247 exeeeds 0.95. The field has no primes of norm less than 9 so 
that the volume bound is exeeeded. For the field of diseriminant -9759, this 
method does not suffiee, but one ean then make use of torsion as exhibited 
in Example 12.6.2. The remaining fields of signature (3, 1) are treated in 
the same way. 

A similar analysis applies, up to a point, to fields of signature (1,1). For 
example, for the field of diseriminant -83, we have (83)3/2(k(2)j(47r2)2 ~ 
0.736; thus the only possible finite ramifieation oeeurs at the unique prime 
of norm 2. However, as shown in Exercise 12.5, No.4, r 01 neeessarily has 3-
torsion. For the field of diseriminant -44 the bound as above gives 0.2648. 
Furthermore, k has a prime of norm 2. As in Exercise 12.5, No. 5(a), r O l 

eontains elements of orders 2 and 3. This is not quite enough, but in this 
ease, r 01 eontains a subgroup isomorphie to A4 (see Exercise 12.5, No. 
5(b)). The two fields with the smallest diseriminants -23 and -31 eannot 
be ruled out by these arguments and in these eases, one has to resort to 
invoking the geometrie eonstruetions as diseussed following Theorem 12.6.1. 
We will not go farther into that here. 

Now let us consider fields of even degree over Q where we ean no longer 
assume any finite ramifieation in the quaternion algebra. In the ease of 
degree 4, there are 32 fields to be eonsidered. As an example, eonsider 
the unique field of diseriminant -491. In this ease, (491)3/2(k(2)j(47r2)3 ~ 
0.2056. There is a unique prime of norm 24 , one of norm 3 and one of 
norm 33 . Thus as IRamf(A) I is even, A eannot have any finite ramifieation 
and A 9:! (-leI). By the proof of Lemma 9.8.1, A has a maximal order 
o sueh that r 01 eontains a subgroup isomorphie to A4 . The group T(A) 
parametrising the types of A has order dividing hoo whieh can be shown, by 
determining the fundamental units of k, to be 1 (see (6.13)). Thus this ease 
ean be ruled out. Still with fields of signature (2,1), let k have diseriminant 
-283. An analysis precisely as above shows that for small volume, we must 
have A 9:! (-leI). Again the type number is 1 so that r 01 eontains a 
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subgroup isomorphie to A4 . This shows that a torsion-free subgroup must 
have eovolume ?: 12(283)3/2(k(2)j(41f2)3 :::::J 0.9813, thus exeeeding 0.94271. 
However, there is a manifold of this volume obtained by (5,1) surgery on 
the figure 8 knot eomplement (see Exercise 4.8, No. 5 and Exercise 9.8, No. 
2). For k with diseriminant -275, the analysis again gives A ~ (-lic-1), 
but the faetor 12 does not give a volume exeeeding 0.94271. However, in 
this ease, Q(.J5) c k and, by the proof of Lemma 9.8.1, r 0 1 eontains a 
subgroup isomorphie to A5 • Again the type number is 1 so that this ease 
ean be eliminated. The other eases of degree 4 are similar. 

In the ease of degree 6, there are 19 fields to be eonsidered. Similar 
analyses apply in all of these eases. 

Various examples impinging on the degree 2 eases have been eneountered 
throughout the book and we set the eompletion of this as an exercise (see 
Exercise 12.6 No. 3). o. 

Before closing this seetion, we make some eomments on the orbifolds 
whieh appear in the list in Theorem 12.6.1. It will be noted, in items 6 
and 8, that the groups Gare of the form rs,o with S i=- 0. Consider, for 
example, G6 , whieh is eommensurable with G2 • This arises, sinee, although 
the eovolume of G6 is greater than the eovolume of G2 , there may be "less 
torsion" in rs,o than in ro (but also see Exereise 12.6, No. 4). In this ease, 
we know that P(A 1) eontains elements of order 3 and, henee, that r 01 also 
eontains elements of order 3. However, there eannot be any elements of 
order 3 in rs,o, as kp((3), where P = P5 , is a field and (3 E Hk". Thus 
by Lemma 12.5.2, the element (3 eannot fix an edge of the tree Tp and so 
eannot lie in r s.o. 

In item 9., it has already been noted in Example 12.5.11, No. 2 that 
Rk[(3] is seleetive for A and so halfthe eonjugaey classes of orders are such 
that ro has no 3-torsion. These are the ones given in the theorem. 

Exercise 12.6 

1. Suppose r is a group having a finite subgroup B c rand a torsion-free 
subgroup r' c r of finite index. Show that [r : r'] is divisible by the order 
ofB. 

2. Show that the degree 6 field of discriminant -92779 has units of all 
possible signatures and use this to show that the type number of (-leI) 
is 1. 

3. Let Vo denote the volume of the regular ideal tetrahedron in H 3 . Show 
that any closed hyperbolic 3-manifold derived from a quaternion algebra 
defined over a quadratic imaginary field has volume ?: 2vo. Show, jurther, 
that this bound is attained (see §4.8.2). 

4. We have remarked above that rs,o may have "less torsion" than ro. 
Jt may also have "more torsion". Show that if A is the quaternion algebra 
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associated to the Week's manifold and 0 is a maximal order in A, then the 
following hold: 
(a) r 0 has no elements of order 6. 
(b) rs,o has an element of order 6 where S = {3Rd. 

12.7 Volumes of Non-arithmetic Manifolds 

As has been shown in Chapters 11 and 12, the arithmetic data supplied 
by the invariant trace field and the invariant quaternion algebra of arith­
metic Kleinian groups carry powerful information about the volumes of the 
associated 3-orbifolds and manifolds. Since all finite-volume hyperbolic 3-
manifolds co me equipped with an invariant trace field, which is a number 
field, and an invariant quaternion algebra, it is natural to wonder about 
their input in the non-arithmetic cases. We briefly discuss this in this sec­
tion, which is included to encourage the diligent reader who has progressed 
this far with a glimpse of furt her interesting channels to explore. As this is 
only a snapshot, no proofs are included and reference to Further Reading 
will be essential for a full understanding. 

Results from Chapter 11 show that if k is a number field with exactly one 
complex place, then there exists a number v E lR such that every arithmetic 
hyperbolic 3-orbifold or manifold whose defining field is k has volume wh ich 
. . l 1· 1 f I h k lD.kI 3 / 2 (k(2) Th lS a ratwna mu tIp e 0 v. nt ese cases we can ta e v = (47l"2)([k'QJ 1). e 
main result that generalises this to the non-arithmetic cases follows from a 
result of Borel and can be stated in broad terms as follows: 

Theorem 12.7.1 For any number field k with r complex places, there are 
real numbers VI, V2, ... ,Vr such that for any finite-volume hyperbolic 3-
manifold M whose invariant trace field is k, there are r rational numbers 
al, a2, ... ,ar such that 

First note that even in the cases where k has one complex place, this is 
a strengthening of the result on arithmetic 3-manifolds to include non­
arithmetic ones. In retrospect, we see that we have encountered so me ex­
amples of this already, at least up to numerical approximation. For example, 
the manifold constructed in Examples 5.2.8, No. 2, has non-integral trace 
and so is certainly not arithmetic. Its invariant trace field is Ql(t), where t 
is a complex fOot of x 4 - x 2 - 3x - 2 = O. This field has one complex place 
and discriminant -2151. An estimate for its volume obtained from Snap­
Pea is 2.362700793 .... If, on the other hand, we take a quaternion algebra 
over Ql(t) , ramified only at the real pi aces and a maximal order 0, then an 
estimate for the covolume of the arithmetic Kleinian group r 01, obtained 
using Pari, is 2.362700793 .... As a second example, consider the knot 52 
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whose complement has invariant trace field, the cubic field of discriminant 
-23 (see Example A of §4.4 and §5.5). This is also the field of definition 
of the arithmetic Week's manifold as discussed in §9.8.2. Obtaining estim­
ates for the volumes indicates that the volume of the complement of 52 is 
apparently three times the volume of Mw . We re mark that, although one 
can often compute this rational coefficient to hundreds of decimal places, 
proving that it is exactly the rational number it appears to be can be very 
difficult. 

To discuss an example where the number of complex places r > 1, we 
make so me further comments on Theorem 12.7.1, introducing the Bloch 
group to help with this. Recall from § 1. 7 that the volume of an ideal tet­
rahedron parametrised by z depends on the Lobachevski function. To give 
the precise formulation that we require here, first recall that, as discussed 
in §1.7, the Lobachevski function is closely related to the complex dilogar­
ithm function which we denoted by 'Ij;(z) in §1.7. Define the Bloch- Wigner 
dilogarithm function D2 : C \ {O, I} ~ IK by 

D2(z) = '.S'Ij;(z) + loglzl arg(1 - z). 

The volume of an ideal tetrahedron in H3 parametrised by z is simply 
D 2 (z). 

If k is any field, the pre-Bloch group P(k) is the quotient of the free 
Z-module Z(k \ {O, I}) by all instances of the following relations: 

[Y] [1-X-l] [I-X] [x] - [y] + - - -1 + -- = 0, 
x l-y l-y 

[x] = [1-~] = [1~X] =-[~] =_[X:l] =-[I-x]. 
The first of these relations is the so-called jive-term relation and has the 
following geometrie meaning. Let aa, al, a2, a3, a4 E Cu 00. Then the con­
vex hull of these points in H 3 can be decomposed into ideal tetrahedra 
in two ways; either as the union of three ideal tetrahedra {al, a2, a3, a4}, 
{ aa, al, a3, a4}, and {aa, al, a2, a3} or as the union of two ideal tetrahedra 
{aa, a2, a3, a4} and {aa, al, a3, a4}. Normalising so that (aa, al, a2, a3, a4) = 

(0,00,1, x, y), then the five terms in the first relation occur exactly as the 
five cross-ratios of the corresponding ideal tetrahedra. The important point 
for us is that D 2 satisfies the five-term relation, in addition to satisfying 
the remainder of the relations. 

The Bloch group of k, denoted B(k), is the kernel of the map P(k) ~ 
k* I\z k* defined by 

[z]1-7 2(z 1\ (1 - z)). 

If now k is a number field with r complex places and (Tl, (T2, ... ,(T rare 
inequivalent complex embeddings (with (Tl the identity embedding), this 
gives a mapping into IKr defined by 
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Defining D 2 ([z]) = D 2 (z), it follows from the above discussion that we can 
extend this map to obtain a well-defined map c on B(k) so that its kernel 
is the torsion of B(k) and its image is a fulllattice in jRT (this is normally 
how Theorem 12.7.1 is stated). 

Suppose now that we have a hyperbolic 3-manifold M decomposed into 
ideal tetrahedra and the tetrahedral parameters ZI, ... ,Zm lie in the invari­
ant trace field (this is always possible if M is non-compact). Then it can be 
shown that the parameters define a well-defined element ß(M) = E[ZiJ of 
B(k(M)), independent oft he decomposition. Thus if 0'1: k ----> IC is the iden­
tity embedding and ZI, Z2, ... ,Zm E k(M) are the tetrahedral parameters 
of M, then the first component of ß(M) under the mapping c described 
above will give the volume D 2 (ZI) + ... + D 2 (zm) of M, whereas the jth 
component is the number D 2 (O'j(zd) + ... + D 2 (O'j(zm)), which is simply 
so me real number, possibly negative. In the compact case, one cannot guar­
antee that the tetrahedral parameters lie in k(M), so one generally gets an 
element of B(K) for some larger field K. However, one can show that it 
"lies in" B(k(M)) up to 2-torsion. 

Consider the following example, where the field k = Q(t), where j(t) = 
t4 + t2 - t + 1 = O. This field has two complex places and discriminant 257. 
This example arose in our examination of the invariant trace field of the 
complement of 61 (see Example B in §4.5 and the discussion at the end of 
§5.5). As pointed out in §5.5, the invariant trace field of the complement 
of 61 corresponds to the root tl = O'I(t) = 0.547423 + 0.585652i, approx­
imately, of j(t). This cusped manifold has volume VI = 3.16396322 .... 
Making essential use of Snap, one finds a number of other manifolds, both 
cusped and compact, with the same invariant trace field generated by 
tl. For our purposes here, we select one of these, M (census description 
s594( -3,4)) and note that Vol(M) = 4.3966728019" .. On the other hand, 
there are other manifolds, in particular, the complement of the knot 77, 
whose invariant trace field is that generated by t2 = 0'2 (t), so it is the same 
abstract field but with a different embedding in IC. (See Appendix 13.4.) 

The decomposition of the complement of the knot 77 then gives a set of 
parameters which are functions of t2, and these, evaluated by the dilogar­
ithm function at 0'1 (t) = tl, give the first component of the image under 
the mapping c as V2 = -1.3970881655" .. A bit of numerical calculation 
then suggests the following rational dependency as described in Theorem 
12.7.1: 

3 1 
Vol(M) = "2Vl + 4V2. 

We can also turn this example around in the following way. The volumes 
VI and V = Vol( M) are experimentally rationally independent, so ß( 8 3 \ 61) 
and ß(M) are presumably a rational basis of B(k). Therefore, we expect 
the O'I-component of c(ß(83 \ 77)) (which is not the component that gives 
volume) to be a rational linear combination of VI and V and, indeed, it 
is -6Vl + 4V. We then expect its 0'2-component (which is its volume) to 
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be the same linear combination of the second components of c(ß(6d) and 
c(ß( M)) and this is, indeed, experimentally true to hundreds of decimal 
places. 

Recall that in §5.6 we discussed the construction of fields which can be 
invariant trace fields and gave some families there and in §10.2. Whether or 
not every field with at least one complex place is the invariant trace field of 
a finite-volume hyperbolic 3-manifold is an open question. This problem is 
also related to interesting quest ions about the Bloch group and K-theory of 
number fields. These topics can be explored with the help of some pointers 
in the Further Reading section. 

12.8 Further Reading 

As mentioned in the Preface, the "arithmetic" which many number the­
orists would associate with hyperbolic 3-manifolds concerns the spectrum 
of the Laplace operator and its connections with automorphic forms, Sel­
berg's trace formula and Poincare series. As indicated in §12.4, we do not 
touch upon this vast subject and for the three-dimensional case, we would 
suggest consulting the excellent book by Elstrodt et al. (1998) and its com­
prehensive bibliography. In the two-dimensional case, the two tomes by 
Hejhal (Hejhal (1976) and Hejhal (1983)) give an all-embracing essentially 
self-contained treatment of Selberg's trace formula. 

Having first remarked on topics wh ich are not in this chapter, let us now 
comment on topics that do appear in this chapter. Small Salem numbers 
are discussed in Boyd (1977) and a more complete treatment is to be found 
in Bertin et al. (1992). Likewise, good coverage of the Lehmer conjecture 
is to be found in the monograph by Bertin and Delefosse (1989). The lower 
bounds for the Mahler measure M(P) depending on the degree of the poly­
nomial P appear in Dobrowolski (1979) and Voutier (1996). The connection 
with short geodesics were investigated in Neumann and Reid (1992a), where 
the result characterising arithmetic cusped hyperbolic 3-orbifolds also ap­
pears. For properties on the distribution of the trace set (i.e., without 
counting multiplicities) of arithmetic hyperbolic 2-manifolds, see Luo and 
Sarnak (1994) and Schmutz (1996). For much more on geodesics in the 
two-dimensional case, see Buser (1992). 

The main result of §12.4 showing how to construct isospectral but non­
isometric hyperbolic 2- and 3-manifolds can be found in Vigneras (1980b). 
In Vigneras (1980a), detailed results counting multiplicities of geodesics of 
a given length and elliptic elements in arithmetic groups are given. How­
ever, so me of these need modification, as they do not take into account the 
selective condition exposed in Chinburg and Friedman (1999). The neces­
sary results from Class Field Theory used in the proofs in this section, can, 
for example, be found in Janusz (1996) and Cohn (1978). The more general 
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group-theoretic method, which can be used to eonstruet isospeetral non­
isometrie Riemannian manifolds is due to Sunada (1985). The examples 
of genus 4 appear in Brooks and Tse (1987) (cf.Haas (1985) and Buser 
and Semmler (1988)). The theorems showing that isospeetral arithmetic 
hyperbolie 2- and 3-orbifolds are necessarily eommensurable are simplified 
versions of those in Reid (1992). 

The main results on torsion in §12.5 are to be found in Chinburg and 
Friedman (2000), where a complete account of the existenee of finite sub­
groups in maximal arithmetie Kleinian groups is given. Counting the num­
ber of eonjugacy clases of elements of finite order can be determined from 
the methods in Vigneras (1980a). Very detailed formulas for these numbers 
in special cases for arithmetie Fuehsian groups appear in Schneider (1977). 

The determination of the arithmetic hyperbolic 3-manifold of smallest 
volume is proved in Chinburg et al. (2001). Recall that details of the arith­
metic structure of the Week's manifold appear in Reid and Wang (1999) 
and the arithmetic manifold of next smallest volume in Chinburg (1987). 

A general discussion of arithmetic invariants of hyperbolic 3-manifolds, 
going beyond the discussion in this book, and explaining the automation of 
the determination of some of these invariants by Snap (Goodman (2001)), 
is given in Coulson et al. (2000). This, in partieular, introduces the Bloch 
group and has a useful bibliography. More details on the results on volumes 
of non-arithmetie manifolds and the application of Borel's result are given 
in Neumann and Yang (1995) and Neumann and Yang (1999). 
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Appendices 

13.1 Compact Hyperbolic Tetrahedra 

~ ~ ~ ~ 
Tl T2 T3 ~ 

D bJ D D er 
T5 T6 T7 T8 Tg 

FIGURE 13.1. Coxeter symbols for compact hyperbolic tetrahdra. 

In the following table, the label corresponds to the numbering in Figure 
13.1. The column headed "Ram" gives the ramification set of the invariant 
quaternion algebra; "Arith" indicates if the tetrahedral group is arithmetic; 
"Tet Vol" and "Min Vol" give approximations to the volume of the tetra­
hedron and the minimum covolume of a Kleinian group in the commensur­
ability dass of the tetrahedral group, respectively. (For the tables in this 
section and the next, see §4.7 and §10.4). 
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Arithmetic Data für Cücümpact Hyperbülic Tetrahedral Grüups 

Invariant Trace Field Discrim Ram Arith Tet Vol Min Vol 

TI IQ( V3 - 2V5) -275 Real Yes 0.03905 0.03905 

T2 IQ(J(1- V5)/2) -400 Real Yes 0.03588 0.07176 

T3 IQ( V-I - 2V5) -475 Real Yes 0.09333 0.09333 

T4 IQ( J (1 - V5)/2) -400 Real Yes 0.07176 0.07176 

T5 IQ( V-I - 2V2) -448 Real Yes 0.08577 0.08577 

T6 1Q(-F'7) -7 P2,P~ Yes 0.22223 0.11111 

T7 IQ( J (-1 - 5V5)/2) -775 Real Yes 0.20529 0.20529 

T 8 IQ( J -(1 + V2)( V2 + y5)) 2304000 Real No 0.35865 0.35865 

Tg IQ( V -5 - 4y5) -1375 Real Yes 0.50213 0.25106 

13.2 Non-compact Hyperbolic Tetrahedra 

13.2.1 Arithmetic Groups 

FIGURE 13.2. Coxeter symbols for non-compact hyperbolic tetrahedra whose 
groups are commensurable with PSL(2, 03). The diagram shows the commensur­
ability relationships, the figures giving the indices of the groups. 
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FIGURE 13.3. Coxeter symbols for non-compact hyperbolic tetrahedra whose 
groups are commensurable with PSL(2, OI). The diagram shows the commensur­
ability relationships, the figures giving the indices of the groups. 

13.2.2 Non-arithmetic Groups 

DDDD 
FIGURE 13.4. Coxeter symbols for non-cocompact non-arithmetic hyperbolic 
tetrahedral groups. 

In the following table, the label corresponds to the numbering in Figure 
13.4. 

Data for Non-cocompact Non-arithmetic Hyperbolic Tetrahedral Groups 

Invariant Trace Field Tet Vol 

U1 Q(v'5, vG) 0.171424 

U2 Q(v'5, vG) 0.342848 

U3 Qcj -2(2 + V3)) 0.363884 

U4 Q( J -(5 + 2v6)) 0.525596 

U5 Q(V2,v=T) 0.556035 

U6 Q(Je+2V5 )(1- 2v'5 - 2V3)) 0.672726 
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13.3 Arithmetic Fuchsian Thiangle Groups 

In the following table, all arithmetic triangle groups are listed in their 19 
commensurability dasses, determined by the defining field and the set of 
primes which are ramified in the defining quaternion algebra. Here we as­
sume that the quaternion algebra is ramified at all real places except one, 
so that, since the defining fields here are all Galois extensions of Q, the set 
of finite ramified primes uniquely determines the commensurability dass. 
(See §4,9, §8.3, §8.4 and §11.3). 

I Field I Ram 

1 (2,3,00),(2,4,00),(2,6,00), (2,00,00), Q 0 
(3,3,00), (3, 00, 00), (4,4,00), 
(6,6,00),(00,00,00) 

2 (2,4,6),(2,6,6), (3,4,4), (3,6,6) Q 2,3 
3 (2,3,8),(2,4,8),(2,6,8),(2,8,8),(3,3,4), Q(V2) P2 

(3,8,8),(4,4,4), (4,6,6), (4,8,8) 
4 (2,3,12),(2,6,12),(3,3,6), (3,4, 12), Q(v'3) P2 

(3,12,12),(6,6,6) 
5 (2,4,12),(2,12,12),(4,4,6),(6,12,12) Q(v'3) P3 
6 (2,4,5),(2,4,10),(2,5,5),(2,10,10), Q(J5) P2 

(4,4,5),(5,10,10) 
7 (2,5,6),(3,5,5) Q(J5) P3 
8 (2,3,10),(2,5,10), (3,3,5),(5,5,5) Q(J5) P5 
9 (3,4,6) Q(V6) P2 

10 (2,3,7),(2,3,14),(2,4,7),(2,7,7), Q(cos7r/7) 0 
(2,7,14),(3,3,7),(7,7,7) 

11 (2,3,9),(2,3,18),(2,9,18),(3,3,9), Q(cos7r/9) 0 
(3,6,18),(9,9,9) 

12 (2,4,18),(2,18,18), (4,4,9), (9,18, 18) Q(cos7r/9) P2,P3 
13 (2,3,16), (2,8,16), (3,3,8), Q(cos7r/8) P2 

(4,16,16),(8,8,8) 
14 (2,5,20),(5,5,10) Q(cos7r/lO) P2 
15 (2,3,24),(2,12,24),(3,3,12),(3,8,24), Q( cos 7r /12) P2 

(6,24,24),(12,12,12) 
16 (2,5,30),(5,5,15) Q( cos 7r /15) P3 
17 (2,3,30),(2,15,30),(3,3,15), Q(cos7r/15) P5 

(3,10,30),(15,15,15) 
18 (2,5,8), (4,5,5) Q(V2,J5) P2 
19 (2,3,11) Q(cos7r/11) 0 
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13.4 Hyperbolic Knot Complements 

In this section, we list those knots with eight or fewer crossings which are 
hyperbolic, the minimum polynomial of a field generator over Q for the 
invariant trace field, the root of that polynomial corresponding to its em­
bedding in C and the field discriminant. (See §4.5 and §5.5). 

41 

minimum polynomial: x 2 - x + 1 
numerical value of root: 0.5000000000000000 + 0.8660254037844386 * i 
discriminant: -3. 

52 
minimum polynomial: x3 - x 2 + 1 
numerical value of root: 0.8774388331233463 - 0.7448617666197442 * i 
discriminant: -23 

61 
minimum polynomial: x 4 + x 2 - X + 1 
numerical value of root: 0.5474237945860586 - 0.5856519796895726 * i 
discriminant: 257 

62 

minimum polynomial: x 5 - x 4 + x 3 - 2x2 + x-I 
numerical value of root: 0.2765110734872844 - 0.7282366088878579 * i 
discriminant: 1777 

63 
minimum polynomial: x 6 - x 5 - x 4 + 2x3 - X + 1 
numerical value of root: 1.073949517852393 + 0.5587518814119368 * i 
discriminant: -10571 

72 

minimum polynomial: x 5 - x 4 + x 2 + x-I 
numerical value of root: 0.9355375391547716 + 0.9039076887509032 * i 
discriminant: 4409 

73 
minimum polynomial: x 6 - x 5 + 3x4 - 2x3 + 2x2 - x-I 
numerical value of root: 0.4088024801541706 + 1.276376960703353 * i 
discriminant: 78301 
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74 
minimum polynomial: x 3 + 2x - 1 
numerical value of root: -0.2266988257582018 + 1.467711508710224 * i 
discriminant: -59 

75 

minimum polynomial: X S - x 7 - x 6 + 2x5 + x 4 - 2x3 + 2x - 1 
numerical value of root: 1.031807435034724 + 0.6554697415289981 * i 
discriminant: -4690927 

76 

minimum polynomial: x 9 - XS + 2x 7 - x 6 + 3x5 - x 4 + 2x3 + X + 1 
numerical value of root: 0.7289655571286424 + 0.9862947000577544 * i 
discriminant: 90320393 

77 
minimum polynomial: x 4 + x 2 - X + 1 
numerical value of root: -0.5474237945860586 - 1.120873489937059 * i 
discriminant: 257 

81 

minimum polynomial: x 6 - x 5 + x 4 + 2x2 - X + 1 
numerical value of root: 0.9327887872637926 + 0.9516106941544145 * i 
discriminant: -92051 

82 

minimum polynomial: XS - x 7 + 3x6 - 2x5 + 3x4 - 2x3 - 1 
numerical value of root: 0.4735144841426650 - 1.273022302875877 * i 
discriminant: -21309911 

83 

minimum polynomial: X S - x 7 + 5x6 - 4x5 + 7 x 4 - 4x3 + 2x2 + 1 
numerical value of root: 0.1997987161331217 + 1.513664037530055 * i 
discriminant: 60020897 

84 

minimum polynomial: x 9 - X S - 4x7 + 3x6 + 5x5 - x 4 - 2x3 - 2x2 

+x -1 
numerical value of root: 1.491282033723026 - 0.2342960256675659 * i 
discriminant: 1160970913 

85 

minimum polynomial: x 5 - x 4 + 2x3 + x 2 + 2 
numerical value of root: 0.1955670593924672 + 1.002696950053226 * i 
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discriminant: 8968 

86 

minimum polynomial: x11_X10+2x9-xs+4x7 -2x6+4x5-x4+3x3+x2+1 
numerical value of root: 0.7832729376220480 - 0.9737056666570652 * i 
discriminant: -303291012439 

87 

minimum polynomial: x 11 - x 10 - 2x9 + 3xs + 2x7 - 4x6 + 3x4 - x 3 - x 2 + 1 
numerical value of root: 1.081079628832155 - 0.6317086402157812 * i 
discriminant: -121118604943 

8s 
minimum polynomial: x 12 - x 11 - x 10 + 2x9 + 3xs - 4x7 - 2x6 + 4x5 

+ 2x4 - 3x3 - x 2 + 1 
numerical value of root: 0.9628867449383822 - 0.8288503082039515 * i 
discriminant: 2885199252305 

89 

minimum polynomial: x 12 - x 11 - 4x lO +x9 + 10xs + 2x7 -12x6 - 6x5 + 7x4 
+4x3 - 2x2 + 1 

numerical value of root: -0.8475379649643470 + 0.8120675343521135 * i 
discriminant: 421901335721 

810 
minimum polynomial: x 11 - 2x10 + 4xs - 2x7 - 4x6 + 5x5 + 2x4 - 5x3 + x 2 

+3x-1 
numerical value of root: 1.126054788892813 + 0.7113551926043732 * i 
discriminant: -170828814392 

811 
minimum polynomial: x lO -2x9+3xs-4x7 +4x6_5x5+5x4-3x3+3x2-x+1 
numerical value of root: 0.3219944529118927 + 0.7144205683007117 * i 
discriminant: -2334727687 

812 
minimum polynomial: X14 - 2x13 + 3X12 - 4xll + 4x10 - 5x9 + 7xs 

- 7 x 7 + 7 x 6 - 5x5 + 4x4 - 4x3 + 3x2 - 2x + 1 
numerical value of root: 0.3846305385170291 + 0.9230706088052528 * i 
discriminant: -15441795725579 

813 

minimum polynomial: x 14 - x 13 - 3x12 + 4xll + 4x10 - 7x9 - xS + 6x 7 - 2x6 
- 2x5 + 2x4 - X + 1 

numerical value of root: 1.142594143553751 + 0.5467624949107860 * i 
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discriminant: -759929100364387 

814 

minimum polynomial: X15 - x 14 + 4x13 - 3x12 + 8xll - 6xlO + lOx9 

- 7 x 8 + 8x 7 - 6x6 + 6x5 - 4x4 + 4x3 - 2x2 + 2x - 1 
numerieal value of root: 0.5940318154659677 + 1.095616780826736 * i 
discriminant: -26196407237223439 

815 

minimum polynomial: x 7 - x 6 - x 5 + 2x4 + x 3 - 2x2 + X + 1 
numerical value of root: 1.139457724988333 + 0.6301696873026072 * i 
discriminant: -1172888 

816 
minimum polynomial: x 5 - 2x4 + 2x2 - X + 1 
numerical value of root: 1.417548120931355 - 0.4933740092574883 * i 
discriminant: 5501 

817 

minimum polynomial: x 18 -4x17 + 7 X16 _4x15 - 2X14 +x13 +6X12 -5xll +5xlO 

-21x9 + 36x8 - 30x7 + 22x6 - 23x5 + 18x4 - 7x3 + 2x2 - 2x + 1 
numerieal value of root: 0.98923482976437496 + 1.00826028978435916 * i 
discriminant: - 25277271113745568723 

818 

minimum polynomial: x 4 - 2x3 + x 2 - 2x + 1 
numerical value of root: -0.2071067811865475 + 0.9783183434785159 * i 
discriminant: -448 

820 

minimum polynomial: x 5 - x 4 + x 3 + 2x2 - 2x + 1 
numerieal value of root: 0.4425377456177971- 0.4544788918731118 * i 
discriminant: 5864 

821 

minimum polynomial: x 4 - x 3 + X + 1 
numerical value of root: 1.066120941155950 + 0.8640541908597383 * i 
discriminant: 392 

The only arithmetic knot is 41 (see §9.4). Furthermore, note that the 
fields for the knots 61 and 77 are isomorphie; however, the roots given 
generate different subfields of the complex numbers (see §12.7). 
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13.5 Small Closed Manifolds 

We include the list of 50 known smallest volumes of closed hyperbolic 3-
manifolds. For each volume, we list only one manifold of that volume, and 
some arithmetic data compiled using Snap (Goodman (2001)). There is 
some repetition of volumes in the Snap data and we have chosen not to 
include them all. We do include arepetition if the volumes arise for both 
arithmetic and non-arithmetic manifolds. The list requires some explana­
tion. All of the manifolds can be obtained by filling a one-cusped manifold 
using the census supplied by Snap Pea (Weeks (2000)). There are many 
such descriptions and we list just one choice of such a description. A min­
imal polynomial of a primitive element of the invariant trace field is listed 
together with a root that generates the embedding arising from a choice 
of oriented manifold. This is described by a root number which is given as 
follows. The convention of listing the roots is that given in Coulson et al. 
(2000). The roots are ordered beginning with the real roots in their natural 
order, followed by the complex roots having positive imaginary part. These 
are arranged in increasing order of real part and increasing absolute value 
of imaginary part (if the real parts are equal). We then assign the root 
number; if the root has non-negative real part, we give its position in the 
list, otherwise we give the negative of its position, this corresponding to 
the conjugate root. We list the discriminant and signature of the invariant 
trace field, the real and finite places that ramify the invariant quaternion 
algebra and finally, if the manifold has integral traces and is arithmetic. 
Primes dividing the rational prime p are denoted by vp and v;. 
1: Manifold m003( -3,1); Volume 0.94270736277692772092. 
Minimum Polynomial: x 3 - x 2 + 1; Root: -2. 
Discriminant: -23; Signature (1,1). 
Real Ramification [1]; Finite Ramification V5. 

Integral Traces; Arithmetic. 

2: Manifold m003( -2,3); Volume 0.9813688288922320880914. 
Minimum Polynomial: x4 - x-I; Root: 3. 
Discriminant: -283; Signature (2,1). 
Real Ramification [1,2]; Finite Ramification 0. 
Integral Traces; Arithmetic. 

3: Manifold m010( -1,2); Volume 1.01494160640965362502120. 
Minimum Polynomial: x 2 - x + 1; Root: 1. 
Discriminant: -3; Signature (0,1). 
Real Ramification 0; Finite Ramification V2, V3· 

Integral Traces; Arithmetic. 

4: Manifold m003( -4,3); Volume 1.263709238658043655884716. 
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Minimum Polynomial: x4 - x3 + x 2 + X - 1; Root: -3. 
Discriminant: -331; Signature (2,1). 
Real Ramification [1,2]; Finite Ramification 0. 
Integral Traces; Arithmetic. 

5: Manifold m004(6, 1); Volume 1.2844853004683544424603370. 
Minimum Polynomial: x3 + 2x - 1; Root: 2. 
Discriminant: -59; Signature (1,1). 
Real Ramification [1]; Finite Ramification V2. 

Integral Traces; Arithmetic. 

6: Manifold m004(1, 2); Volume 1.39850888415080664050959. 
Minimum Polynomial: x 7 - 2x6 - 3x5 + 3x4 + 5x3 - x 2 - 3x + 1; 

Root: 6. 
Discriminant: -7215127; Signature (5,1). 
Real Ramification [2,3,4,5]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

7: Manifold m003( -3,4); Volume 1.414061044165391581381949. 
Minimum Polynomial: x 3 - x 2 + 1; Root: 2. 
Discriminant: -23; Signature (1,1). 
Real Ramification [1]; Finite Ramification V19. 

Integral Traces; Arithmetic. 

8: Manifold m003( -4,1); Volume 1.42361190029282524980994. 
Minimum Polynomial: x5 - x3 - x 2 + X + 1; Root: 2. 
Discriminant: 1609; Signature (1,2). 
Real Ramification [1]; Finite Ramification V13. 

Integral Traces; Non-arithmetic. 

9: Manifold m004(3, 2); Volume 1.440699006727364875282370. 
Minimum Polynomial: x6 - x 5 - 2x4 - 3x3 + 3x2 + 3x - 2; Root: 5. 
Discriminant: -365263; Signature (4,1). 
Real Ramification [1,3,4]; Finite Ramification V2. 

Integral Traces; Non-arithmetic. 

10: Manifold m004(7, 1); Volume 1.4637766449272387733756940. 
Minimum Polynomial: x6 - x 5 + x 4 + 2x3 - 4x2 + 3x - 1; Root: 3. 
Discriminant: 50173; Signature (2,2). 
Real Ramification [1,2]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

11: Manifold m004(5, 2); Volume 1.5294773294300262628249286. 
Minimum Polynomial: x 7 - x 6 - 2x5 + 5x4 - 6x2 + X + 1; Root: 6. 
Discriminant: -3998639; Signature (5,1). 
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Real Ramification [1,3,4,5]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

12: Manifold m003( -5,3); Volume 1.54356891147185507432847. 
Minimum Polynomial: x 5 - x3 - 2x2 + 1; Root: 4. 
Discriminant: -4511; Signature (3,1). 
Real Ramification [1,2,3]; Finite Ramification V13. 

Integral Traces; Arithmetic. 

13: Manifold m007(4, 1); Volume 1.583166660624812836166028. 
Minimum Polynomial: x 3 + x-I; Root: 2. 
Discriminant: -31; Signature (1,1). 
Real Ramification [1]; Finite Ramification V13. 

Integral Traces; Arithmetic. 

14: Manifold m006(3, 1); Volume 1.588646639300162988176913. 
Minimum Polynomial: x 3 - x 2 + X + 1; Root: -2. 
Discriminant: -44; Signature (1,1). 
Real Ramification [1]; Finite Ramification V2. 

Integral Traces; Arithmetic. 

15: Manifold m006( -3,2); Volume 1.64960971580866412079839. 
Minimum Polynomial: x 7 - x 6 - x 5 + 4x4 - 2x3 - 4x2 + X + 1; Root: 6. 
Discriminant: -3685907; Signature (5,1). 
Real Ramification [1,2,3,4]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

16: Manifold m015(5, 1); Volume 1.7571260291884513628747465. 
Minimum Polynomial: x 5 - x 4 - x3 + 2x2 - x-I; Root: -4. 
Discriminant: -4903; Signature (3,1). 
Real Ramification [1,2,3]; Finite Ramification V13. 

Integral Traces; Arithmetic. 

17: Manifold m007( -3,2); Volume 1.82434432220291196127495. 
Minimum Polynomial: x 5 - 2x4 + x 2 - 2x - 1; Root: -4. 
Discriminant: -9759; Signature (3,1). 
Real Ramification [1,2,3]; Finite Ramification V3. 

Integral Traces; Arithmetic. 

18: Manifold m009(5, 1); Volume 1.8319311883544380301092070. 
Minimum Polynomial: x 2 + 1; Root: 1. 
Discriminant: -4; Signature (0,1). 
Real Ramification 0; Finite Ramification V2, V5. 

Integral Traces; Arithmetic. 
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19: Manifold m007( -5,1); Volume 1.84358597232667793872045. 
Minimum Polynomial: x 5 - 2x4 - 2x3 + 4x2 - X + 1; Root: 4. 
Discriminant: -29963; Signature (3,1). 
Real Ramification [1,2]; Finite Ramification V2, V5. 

Integral Traces; Non-arithmetic. 

20: Manifold m017( -3,2); Volume 1.885414725553855441842599. 
Minimum Polynomial: x 3 - x 2 + 1; Root: 2. 
Discriminant: -23; Signature (1,1). 
Real Ramification [1]; Finite Ramification V7. 

Integral Traces; Arithmetic. 

21: Manifold m006(3, 2); Volume 1.8859142560190604837396337. 
Minimum Polynomial: x6 - x 5 + 2x3 - 2x2 + 1; Root: -3. 
Discriminant: 31709; Signature (2,2). 
Real Ramification [1,2]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

22: Manifold mOlO( -1,3); Volume 1.910843793089988869555461. 
Minimum Polynomial: x4 + x2 - X + 1; Root: 1. 
Discriminant: 257; Signature (0,2). 
Real Ramification 0; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

23: Manifold m011(2, 3); Volume 1.912210250052432112134089. 
Minimum Polynomial: x 8 - 2x5 - 2x4 - x 3 + 2x + 1; Root: 6. 
Discriminant: 30731273; Signature (4,2). 
Real Ramification [1,2,3,4]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

24: Manifold m006(4, 1); Volume 1.92229710954883008932256. 
Minimum Polynomial: x 8 - 3x6 - x 5 + 3x4 + x 3 - 2x2 + X + 1; Root: -4. 
Discriminant: 23229037; Signature (4,2). 
Real Ramification [1,2,4]; Finite Ramification V19. 

Integral Traces; Non-arithmetic. 

25: Manifold m009(3, 2); Volume 1.9415030840274677937303201. 
Minimum Polynomial: x 5 - x 4 - 2x3 - x 2 + 2x + 2; Root: -4. 
Discriminant: -17348; Signature (3,1). 
Real Ramification [2,3]; Finite Ramification V2, v~. 
Integral Traces; Non-arithmetic. 

26: Manifold m006( -2,3); Volume 1.95370831542187458562306. 
Minimum Polynomial: x 8 - 2x 7 + 3x6 - x 5 - 2x4 + 5x3 - 2x2 - 2x + 1; 

Root: 5. 
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Discriminant: 56946989; Signature (4,2). 
Real Ramification [1,2,3, 4J; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

27: Manifold m006(2, 3); Volume 1.962737657784464176182904. 
Minimum Polynomial: x4 - x - 1; Root: 3. 
Discriminant: -283; Signature (2,1). 
Real Ramification [1, 2J; Finite Ramification 0. 
Integral Traces; Arithmetic. 

28: Manifold m023( -4,1); Volume 2.014336583776842504278826. 
Minimum Polynomial: xS - x4 - 3x3 + 3x - 1; Root: 4. 
Discriminant: -10407; Signature (3,1). 
Real Ramification [1,2, 3J; Finite Ramification V3. 

Integral Traces; Arithmetic. 

29: Manifold m007(5, 2); Volume 2.025945281864896308551124. 
Minimum Polynomial: x6 - xS + 2x3 - 2x2 + 2x - 1; Root: 3. 
Discriminant: 46757; Signature (2,2). 
Real Ramification [1, 2J; Finite Ramification Vs, V43. 

Integral Traces; Non-arithmetic. 

30: Manifold m006( -5,2); Volume 2.028853091473884. 
Minimum Polynomial: x lO -4x8 -5x7 +5x6+19xs-2x4_21x3+x2+6x-1; 

Root: -9. 
Discriminant: -271488204251; Signature (8,1). 
Real Ramification [2,3,4,5,6, 7J; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

31: Manifold m036( -3,2); Volume 2.02988321281930725004240. 
Minimum Polynomial: x 2 + x + 1; Root: 1. 
Discriminant: -3; Signature (0,1). 
Real Ramification 0; Finite Ramification V2, V3. 

Integral Traces; Arithmetic. 

32: Manifold m007( -6,1); Volume 2.05554674885534. 
Minimum Polynomial: x lO - x 9 - 4x8 + 4x 7 + 8x6 - 13xs - 8x4 + 24x3 - 5x2 

-6x + 1; Root: -7. 
Discriminant: 370242019941; Signature (6,2). 
Real Ramification [1,2,3,4, 5J; Finite Ramification V3. 

Integral Traces; Non-arithmetic. 

33: Manifold mOlO(3, 2); Volume 2.058484368193033362456050. 
Minimum Polynomial: x4 - 2x3 + x 2 - 2x + 1; Root: 3. 
Discriminant: -448; Signature (2,1). 
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Real Ramification [2]; Finite Ramification 1/41. 

Integral Traces; Non-arithmetic. 

33(a): Manifold m0l6( -4,1); Volume 2.058484368193033362456050. 
Minimum Polynomial: x4 - 2x3 + x 2 - 2x + 1; Root: 3. 
Discriminant: -448; Signature (2,1). 
Real Ramification [1,2]; Finite Ramification 0. 
Integral Traces; Arithmetic. 

34: Manifold m009(6, 1); Volume 2.0624516259038380777529499. 
Minimum Polynomial: x5 - x4 + x 3 + 2x2 - 2x + 1; Root: 2. 
Discriminant: 5864; Signature (1,2). 
Real Ramification [1]; Finite Ramification 1/2, I/~, 1/19. 

Integral Traces; Non-arithmetic. 

35: Manifold m007( -5,2); Volume 2.065670838488258. 
Minimum Polynomial: x ll - 3xlO - 5x9 + 20xs + 3x7 - 42x6 + 14x5 

+28x4 - 17x3 - x 2 + 4x - 1; Root: -10. 
Discriminant: -21990497831723; Signature (9,1). 
Real Ramification [1,2,3,4,6,7,8]; Finite Ramification 1/5. 

Integral Traces; Non-arithmetic. 

36: Manifold m015( -5,1); Volume 2.103095290703935. 
Minimum Polynomial: x lO - 3x9 - 3xs + 14x 7 - 2x6 -15x5 + 5x4 + 2x2 + X + 1; 

Root: -8. 
Discriminant: 230958840977; Signature (6,2). 
Real Ramification [1,2,3,4,5]; Finite Ramification 1/5. 

Integral Traces; Non-arithmetic. 

37: Manifold mOlO(l, 3); Volume 2.108636128286059392787413. 
Minimum Polynomial: x5 + x3 - x2 + 2x + 1; Root: 2. 
Discriminant: 9412; Signature (1,2). 
Real Ramification [1]; Finite Ramification 1/2, I/~, 1/41. 

Integral Traces; Non-arithmetic. 

38: Manifold m0l6(3, 2); Volume 2.1145676931102222380902130. 
Minimum Polynomial: x 5 - x4 - x 3 + 3x2 - 1; Root: -4. 
Discriminant: -5519; Signature (3,1). 
Real Ramification [2,3]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

38(a): Manifold m0l5(3, 2); Volume 2.1145676931102222380902130 
Minimum Polynomial: x 5 - x4 - x 3 + 3x2 - 1; Root: 4. 
Discriminant: -5519; Signature (3,1). 
Real Ramification [1,2,3]; Finite Ramification 1/13. 
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Integral Traces; Arithmetic. 

39: Manifold m010( -5,1); Volume 2.114713711330965505635458. 
Minimum Polynomial: x 6 + 4x4 - x 3 + 4x2 - 3x - 1; Root: 3. 
Discriminant: 497748; Signature (2,2). 
Real Ramification [1,2]; Finite Ramification 1/2, 1/3. 

Integral Traces; Non-arithmetic. 

40: Manifold m011(4, 1); Volume 2.124301757308229. 
Minimum Polynomial: x 9 - x S - X 7 + 3x6 - 3x4 + 3x3 + 2x2 - 2x - 1; 

Root: 5. 
Discriminant: -325738151; Signature (3,3). 
Real Ramification [1,2,3]; Finite Ramification 1/257. 

Integral Traces; Non-arithmetic. 

41: Manifold m010( -5,2); Volume 2.128012461182608700964932. 
Minimum Polynomial: x 6 - x 5 + 4x4 - 3x3 + 4x2 - 2x - 1; Root: -4. 
Discriminant: 357908; Signature (2,2). 
Real Ramification [1,2]; Finite Ramification 1/2, I/~. 
Integral Traces; Non-arithmetic. 

42: Manifold m016(4, 1); Volume 2.1340163368014021507860454. 
Minimum Polynomial: x 5 - 3x3 - 2x2 + 2x + 1; Root: 4. 
Discriminant: -8647; Signature (3,1). 
Real Ramification [1,2,3]; Finite Ramification 1/13. 

Integral Traces; Arithmetic. 

42(a): Manifold m009( -5,2); Volume 2.1340163368014021507860454. 
Minimum Polynomial: x 5 - 3x3 - 2x2 + 2x + 1; Root: 4. 
Discriminant: -8647; Signature (3,1). 
Real Ramification [1,3]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

43: Manifold m017(1, 3); Volume 2.1557385676357967157672453. 
Minimum Polynomial: xs

o- x 7 - x 6 + x 5 - x 4 - 2x3 + x 2 + 2x - 1; 
Root: -6. 

Discriminant: 33587693; Signature (4,2). 
Real Ramification [1,2,4]; Finite Ramification 1/41. 

Integral Traces; Non-arithmetic. 

44: Manifold m034(4, 1); Volume 2.1847555750625883970263246. 
Minimum Polynomial: x 6 - x 5 - 4x4 + 4x3 + 4x2 - 2x - 1; Root: -5. 
Discriminant: -238507; Signature (4,1). 
Real Ramification [2,3,4]; Finite Ramification 1/13. 

Integral Traces; Non-arithmetic. 
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45: Manifold mOlO( -5,3); Volume 2.19336432051392027334516l. 
Minimum Polynomial: x 6 + 3x4 - x 3 + 2x2 - 2x - 1; Root: 3. 
Discriminant: 182977; Signature (2,2). 
Real Ramification [1,2]; Finite Ramification 1/2, I/~. 
Integral Traces; Non-arithmetic. 

46: Manifold m034( -4,1); Volume 2.195964118694024514602807. 
Minimum Polynomial: x 8 - x 7 - x 6 + 3x5 - 3x4 + 3x3 - x 2 - X + 1; Root: 3. 
Discriminant: -14174503; Signature (2,3). 
Real Ramification [1,2]; Finite Ramification 1/2, 1/7. 

Integral Traces; Non-arithmetic. 

47: Manifold mOlO( -3,4); Volume 2.20041625806152305072060l. 
Minimum Polynomial: x 5 - x 4 + x 3 - 2x2 + X - 1; Root: 3. 
Discriminant: 1777; Signature (1, 2). 
Real Ramification [1]; Finite Ramification 1/2. 

Integral Traces; Non-arithmetic. 

48: Manifold m034( -3,2); Volume 2.207666238726932912474919. 
Minimum Polynomial: x3 - x2 + X - 2; Root: 2. 
Discriminant: -83; Signature (1,1). 
Real Ramification [1]; Finite Ramification 1/2. 

Integral Traces; Arithmetic. 

49: Manifold mOll ( -3,2); Volume 2.208282359706008. 
Minimum Polynomial: x 10 - 2x8 - 2x7 + 2x6 + 3x5 - 3x3 - x 2 + 2x + 1; 

Root: 4. 
Discriminant: 971820341; Signature (2,4). 
Real Ramification [1,2]; Finite Ramification 1/37, 1/113. 

Integral Traces; Non-arithmetic. 

50: Manifold m011(4,3); Volume 2.210244340857945. 
Minimum Polynomial: x 9 - 2x8 - X 7 + 4x6 - 3x5 + 2x3 - x 2 + 2x - 1; 

Root: -7. 
Discriminant: 1072103689; Signature (5,2). 
Real Ramification [1,2,3,5]; Finite Ramification 0. 
Integral Traces; Non-arithmetic. 

The first occurence of a non-integral trace in the Snap tables is the following 
example, which is the manifold considered in Examples 5.2.8, No. 2. 

Manifold m0l5(8, 1); Volume 2.362700792554500476496595823. 
Minimum Polynomial: x 4 - x 2 - 3x - 2; Root: -3. 
Discriminant: -2151; Signature (2,1). 
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Real Ramification [1,2]; Finite Ramification 0. 
Non-integral Traces; Non-arithmetic. 

13.6 Small Cusped Manifolds 

We include below a similar list to that produced in the preceding section, 
but this time for cusped manifolds. Thus this lists the 50 known smal­
lest volumes of cusped hyperbolic 3-manifolds and is compiled using Snap 
(Goodman (2001)). As in the closed case, there are some volumes for which 
there are more than one cusped manifold of that volume and we have only 
given one manifold for each volume. The manifolds are described using the 
cusped census supplied by Snap Pea (Weeks (2000)). The notation is as 
in the closed case, with the simplification that the invariant quaternion al­
gebra is always the matrix algebra (see Theorem 3.3.8) and so is suppressed. 
All manifolds in the list have integral traces and are non-arithmetic unless 
otherwise stated. 

1: Manifold m004; Volume 2.029883212819307250042405l. 
Minimum Polynomial: x 2 - x + 1; Root: l. 
Discriminant: -3; Signature (0,1). 
Arithmetic. 

2: Manifold m006; Volume 2.568970600936708884920674l. 
Minimum Polynomial: x 3 + 2x - 1; Root: 2. 
Discriminant: -59; Signature (1,1). 

3: Manifold m009; Volume 2.6667447834490597907967124. 
Minimum Polynomial: x 2 - x + 2; Root: l. 
Discriminant: -7; Signature (0,1). 
Arithmetic. 

4: Manifold mOll; Volume 2.7818339123960797918753378. 
Minimum Polynomial: x 4 - 2x3 + x 2 - x-I; Root: 3. 
Discriminant: - 751; Signature (2, 1). 

5: Manifold m015; Volume 2.8281220883307831627638988. 
Minimum Polynomial: x 3 - x 2 + 1; Root: -2. 
Discriminant: -23; Signature (1,1). 

6: Manifold m019; Volume 2.9441064866766962642743565. 
Minimum Polynomial: x 4 - x-I; Root: -3. 
Discriminant: -283; Signature (2,1). 
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7: Manifold m022; Volume 2.9891202829294849246373487 
Minimum Polynomial: x4 - x 3 + 2x2 - X + 2; Root: -2. 
Discriminant: 697; Signature (0,2). 

8: Manifold m026; Volume 3.0593380577789556733388096. 
Minimum Polynomial: x4 - x 3 + x 2 - x-I; Root: -3. 
Discriminant: -563; Signature (2,1). 

9: Manifold m027; Volume 3.1213347730122926381295249. 
Minimum Polynomial: x5 - 2x4 + 2x3 - x 2 + 1; Root: 2. 
Discriminant: 2209; Signature (1,2). 

10: Manifold m029; Volume 3.1485098264407279510236350. 
Minimum Polynomial: x5 + 4x3 + 3x - 1; Root: -3. 
Discriminant: 19829; Signature (1,2). 

11: Manifold m032; Volume 3.1639632288831439839910147. 
Minimum Polynomial: x4 + x 2 - X + 1; Root: -2. 
Discriminant: 257; Signature (0,2). 

12: Manifold m034; Volume 3.1663333212496256723320577. 
Minimum Polynomial: x3 + x-I; Root: 2. 
Discriminant: -31; Signature (1,1). 

13: Manifold m035; Volume 3.1772932786003259763538276. 
Minimum Polynomial: x3 - x 2 + X + 1; Root: 2. 
Discriminant: -44; Signature (1,1). 

14: Manifold m043; Volume 3.2529080484716459238073550. 
Minimum Polynomial: x5 - x4 - 2x + 1; Root: -4. 
Discriminant: -11243; Signature (3,1). 

15: Manifold m044; Volume 3.2756765600243763881611100. 
Minimum Polynomial: x6 - x5 + 2x3 - 3x2 + 3x - 1; Root: -3. 
Discriminant: 40277; Signature (2,2). 

16: Manifold m045; Volume 3.2758716439439339423695603. 
Minimum Polynomial: x 3 - x 2 + 3x - 2; Root: -2. 
Discriminant: -107; Signature (1,1). 

17: Manifold m047; Volume 3.2770621851339858863680909. 
Minimum Polynomial: x6 - 2x5 + 2x4 + x 2 + 3x + 1; Root: -3. 
Discriminant: 283593; Signature (2,2). 

18: Manifold m049; Volume 3.3002176285353907563032511. 
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Minimum Polynomial: x 7 - 3x6 + 3x5 - 2x4 - x3 + x 2 - 2x - 1; Root: 4. 
Discriminant: 8851429; Signature (3,2). 

19: Manifold m052; Volume 3.3082415547304194636788110. 
Minimum Polynomial: x 5 - 2x4 + 3x2 - 2x - 1; Root: -4. 
Discriminant: -7367; Signature (3,1). 

20: Manifold m053; Volume 3.33174423164111482391456910. 
Minimum Polynomial: x 5 - x 4 + x 2 + X - 1; Root: -3. 
Discriminant: 4409; Signature (1,2). 

21: Manifold m055; Volume 3.33719172000703222309345103. 
Minimum Polynomial: x 7 - 2x6 + x5 - 2x3 + x 2 - X - 1; Root: -4. 
Discriminant: 2368529; Signature (3,2). 

22: Manifold m058; Volume 3.3566928451414176316102905. 
Minimum Polynomial: x 6 - x 5 + 2x4 - x3 + 3x2 - X + 2; Root: 3. 
Discriminant: -237823; Signature (0,3). 

23: Manifold m060; Volume 3.36209320442704804370758927. 
Minimum Polynomial: x 6 - 2x5 - x4 + 5x3 - 3x2 - 3x + 2; Root: 5. 
Discriminant: -463471; Signature (4,1). 

24: Manifold m061; Volume 3.3667294204703574160838649. 
Minimum Polynomial: x 7 + 6x5 + 10x3 + 4x - 1; Root: 3. 
Discriminant: -18001271; Signature (1,3). 

25: Manifold m064; Volume 3.380505399201612047982829l. 
Minimum Polynomial: x 8 - x 7 - 2x6 - 3x5 + 3x3 + 5x2 + 4x + 1; Root: 6. 
Discriminant: 264881117; Signature (4,2). 

26: Manifold m066; Volume 3.3945405170616624346402719. 
Minimum Polynomial: x 7 - x 6 - 2x5 + 3x4 + 3x3 - 5x2 - 2x + 4; Root: -3. 
Discriminant: -12340403; Signature (1,3). 

27: Manifold m069; Volume 3.402991251166455752574894719. 
Minimum Polynomial: x 5 - 2x4 + x 3 - 2x + 1; Root: 4. 
Discriminant: -7463; Signature (3,1). 

28: Manifold m071; Volume 3.4179148372375219972869820. 
Minimum Polynomial: x 7 - 2x6 + 2x5 + x4 - 3x3 + 5x2 - 4x + 1; Root: -4. 
Discriminant: 1602761; Signature (3,2). 

29: Manifold m072; Volume 3.42450350877096859728196486. 
Minimum Polynomial: x 8 - x 6 - 3x5 - 2x4 + 2x2 + 3x + 1; Root: -6. 
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Discriminant: 89258893; Signature (4,2). 

30: Manifold m073; Volume 3.42720524627401621986353959. 
Minimum Polynomial: x6 - x5 + x4 + 2x2 - X + 1; Root: 3. 
Discriminant: -92051; Signature (0,3). 

31: Manifold m076; Volume 3.43959288934877660622175268. 
Minimum Polynomial: x 7 - x6 - x 5 + 2x4 + 2x3 - 3x2 - X + 2; Root: 4. 
Discriminant: -6198811; Signature (1,3). 

32: Manifold m078; Volume 3.46067584748177589496122928. 
Minimum Polynomial: x5 - 2x4 + 2x3 - 2x2 + 3x - 1; Root: -2. 
Discriminant: 7333; Signature (1,2). 

33: Manifold m079; Volume 3.46368855615276801479479802. 
Minimum Polynomial: x4 - x 3 + 4x2 - 3x + 2; Root: l. 
Discriminant: 1929; Signature (0,2). 

34: Manifold m081; Volume 3.464408817289579408816909859. 
Minimum Polynomial: x6 - x5 - 3x4 + 5x3 - 4x + 3; Root: -4. 
Discriminant: 665473; Signature (2,2). 

35: Manifold m083; Volume 3.4744027755531058033812418. 
Minimum Polynomial: x 8 -x7 +2x6+x5-2x4-x3-4x2-4x-1; Root: -5. 
Discriminant: 111886693; Signature (4,2). 

36: Manifold m084; Volume 3.47617398923898536118307523. 
Minimum Polynomial: x5 - x 3 - x 2 - 1; Root: 2. 
Discriminant: 7684; Signature (1,2). 

37: Manifold m087; Volume 3.48197089607299064859173757. 
Minimum Polynomial: x lO -3x9 +3x8 -x7 -3x6+4x5-3x4-x3+x2-2x-1; 

Root: 5. 
Discriminant: -88712355311; Signature (4,3). 

38: Manifold m089; Volume 3.4838985783324477290633185. 
Minimum Polynomial: x 9 _x8 -3x7 +4x6+6x5 -9x4 -7x3+ 12x2+4x-8; 

Root: 4. 
Discriminant: 24573719301; Signature (1,4). 

39: Manifold m093; Volume 3.48666014629504358980061289. 
Minimum Polynomial: x 7 - x6 + x4 + 2x3 - 2x2 + 1; Root: -4. 
Discriminant: -2518351; Signature (1,3). 

40: Manifold m095; Volume 3.48987016802784211616553439. 
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Minimum Polynomial: x 8 - 3x7 + 9x5 - 9x4 - 6x3 + 12x2 - X - 4; Root: -5. 
Discriminant: 531096997; Signature (4,2). 

41: Manifold m096; Volume 3.49713328778181591277044740. 
Minimum Polynomial: xlI - 5x10 + 9x9 - 8x8 + 2x7 + 6x6 - 8x5 + 5x4 + x 3 

-2x2 + 2x + 1; Root: -6. 
Discriminant: -20972337420899; Signature (5,3). 

42: Manifold m098; Volume 3.508917187076645195848693124. 
Minimum Polynomial: x 8 - 3x 7 + x 6 + 6x5 - 8x4 - x 3 + 6x2 - 2x - 1; 

Root: 6. 
Discriminant: 127122257; Signature (4,2). 

43: Manifold m099; Volume 3.51408291250353912551984801. 
Minimum Polynomial: xlI - x lO - 2x9 - 3x8 + x 7 + 5x6 + 7x5 + 3x4 

-2x3 - 5x2 - 4x - 1; Root: 8. 
Discriminant: -4711526008863; Signature (5,3). 

44: Manifold m100; Volume 3.5142520583769027257494931. 
Minimum Polynomial: x 5 - x 4 - x 3 + 2x2 - x-I; Root: 4. 
Discriminant: -4903; Signature (3,1). 

46: Manifold m102; Volume 3.52644883145564993814423145. 
Minimum Polynomial: x 9 - 2x8 + 3x7 - 4x6 - 3x5 - 2x3 + 3x2 + 4x + 1; 

Root: -6. 
Discriminant: 15697784801; Signature (5,2). 

47: Manifold m103; Volume 3.52850949673751745172306682. 
Minimum Polynomial: x 10 - x 9 - x 8 + 5x7 - 10x6 + 4x5 + 2x4 - 9x3 

+12x2 - 6x + 1; Root: -7. 
Discriminant: 587961146193; Signature (6,2). 

48: Manifold m104; Volume 3.53025964749141504271681060. 
Minimum Polynomial: x 9 - x 8 - x 7 + 2x6 + 3x5 - 4x4 - 2x3 + 4x2 + X - 2; 

Root: -5. 
Discriminant: 7052777153; Signature (1,4). 

49: Manifold m106; Volume 3.53095364250031966843849501. 
Minimum Polynomial: x 12 - 5xlI + lOx10 - 11x9 + 5x8 + 5x7 - 11x6 

+9x5 - 2x4 - 3x3 + 3x2 - x-I; Root: 5. 
Discriminant: 26204329541069; Signature (4,4). 

50: Manifold m108; Volume 3.53132832987156712651102213. 
Minimum Polynomial: X 12 -xlI -3xlO -4x9 +2x8 +10x7 + 14x6 +7x5 -5x4 

-13x3 - 13x2 - 6x - 1 ; Root: -9. 
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Discriminant: -1157136295598971; Signature (6,3). 

The first occurence of a non-integral trace for cusped manifolds in the Snap 
tables is the following example, which, we remark, has the same invariant 
data as an arithmetic cusped manifold. 

Manifold m137; Volume 3.66386237670887606021841405. 
Minimum Polynomial: x 2 + 1; Root: l. 
Discriminant: -4; Signature (0,1). 
Non-integral Traces; Non-arithmetic. 

13.7 Arithmetic Zoo 

In this appendix, we list various examples of Kleinian groups, hyperbolic 
3-manifolds and orbifolds, which are arithmetic. These are either familiar 
examples, stereotypical examples or examples illustrating some particular 
geometric feature. This is just a small selection and we restrict to defining 
fields of degree no greater than 4. Many appear in the body of the text. 
With each entry we give, if appropriate, a cross-reference to the section 
where these examples are investigated and, frequently, a reference to the 
literature. 

The examples are listed by commensurability dass, that, of course, being 
determined by the defining number field and the isomorphism dass of the 
defining quaternion algebra. For arithmeticity, these fields have only one 
complex place and the quaternion algebras are necessarily ramified at the 
real places of the field. Thus it suffices to give the finite ramification of the 
quaternion algebra. 

13. 7.1 N on-compact Examples 

In these cases, the commensurability dass is determined by a Bianchi group 
(see §4.1 and §9.1). 

(a) k = Q( H), fl k = -3, A = M 2 (k). 

(i) The figure 8 knot complement. §4.3 (Riley (1975), Thurston 
(1979)) 

(ii) The two-bridge link (10/3) complement. §4.5 (Gehring et al. 
(1998) ) 

(iii) Once-punctured torus bundles with monodromy ±(RL)n. §4.6 
(Bowditch et al. (1995)) 

(iv) Eleven of the non-cocompact hyperbolic tetrahedral groups (see 
Figure 13.2). §1O.4, §13.2 (Elstrodt et al. (1998)) 
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q 

FIGURE 13.5. Orbifold Gk(p,q;r). 

(v) The link complement of a chain link with four components. §5.6 
(Neumann and Reid (1992a)) 

(vi) Non-compact manifolds admitting regular tetrahedral decom­
position. §9.2 (Hateher (1983)) 

(vii) The cusped orbifold and manifold of smallest volume. §11.7 
(Meyerhoff (1986), Adams (1987)) 

(viii) Four of the six cusped orbifolds which have the smallest volume. 
(Adams (1992), Neumann and Reid (1992b)) 

(ix) The smallest-covolume arithmetic Kleinian group whose defining 
field is quadratic. §11.7 (Maclachlan and Reid (1989)) 

(x) The cusped arithmetic 3-orbifold which contains the geodesie of 
shortest length. §12.3 (Neumann and Reid (1992a)) 

(xi) Some non-cocompact groups generated by elements of orders 2 
and 5 with short distance between their axes. (Gehring et al. 
(1997)) 

(xii) Some generalised triangle groups with orbifold singular set of 
type Gk(p, q; r) [e.g., G4 (2, 3; 3), G5 (3, 6; 2)] (see Figure 13.5). 
(Helling et al. (1995), Hagelberg et al. (1995), Maclachlan and 
Martin (2001)) 

(xiii) Non-compact manifolds obtained by certain surgeries on one 
component of the Whitehead link. (Neumann and Reid (1992a)) 

(b) k = Q( v=I), ßk = -4, A = M 2 (k). 

(i) The Borromean rings complement. §4.4, §9.2 (Thurston (1979), 
Wielenberg (1978)) 

(ii) The Whitehead link complement. §4.5, §5.6, §9.2 (Thurston 
(1979), Neumann and Reid (1992a)) 

(iii) The once-punctured torus bundle with monodromy R 2 L 2 . §4.6 
(Bowditch et al. (1995)) 

(iv) Six of the non-cocompact hyperbolic tetrahedral groups. §1O.4, 
§13.2 (Elstrodt et al. (1998)) 
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(v) Non-compact manifolds admitting regular octahedral decompos­
ition. §9.2 (Hateher (1983)) 

(vi) Two ofthe six smallest volume cusped orbifolds. (Adams (1992), 
Neumann and Reid (1992b)) 

(vii) Some non-cocompact groups generated by elements of orders 2 
and 4 with short distance between their axes. (Gehring et al. 
(1997) ) 

(viii) Some generalised triangle groups with orbifold singular set of 
type Gk(p, q; r) [e.g., G4 (2, 4; 2) and G3 (4, 4; 2)] (see Figure 13.5). 
(Hagelberg et al. (1995), Maclachlan and Martin (2001)) 

(ix) Non-compact manifolds obtained by certain surgeries on one 
component ofthe Whitehead link. (Neumann and Reid (1992a)) 

(x) The principal congruence subgroup ofleve12+i, which is torsion 
free. §6.6. 

(c) k = Q(R), D.k = -7, A = M 2 (k). 

(i) The once-punctured torus bundle whose monodromy is R 2 L. 
§4.6 (Bowditch et al. (1995)) 

(ii) The link complement of the chain link with three components. 
§9.2 (Neumann and Reid (1992a)) 

(iii) The two-bridge link (12/5) complement. §4.5 (Gehring et al. 
(1998) ) 

(iv) Non-compact manifolds admitting tri angular prismatic decom­
position. §9.2 (Hateher (1983)) 

(v) Non-compact manifolds obtained by certain surgeries on one 
component ofthe Whitehead link. (Neumann and Reid (1992a)) 

(d) k = Q(H), D.k = -8, A = M 2 (k). 

(i) The third link complement shown in Figure 9.7. §9.2 (Hateher 
(1983)) 

(ii) Non-compact manifolds admitting a certain regular cell decom­
position. §9.2 (Hateher (1983)) 

(iii) Non-compact manifolds obtained by certain surgeries on one 
component ofthe Whitehead link. (Neumann and Reid (1992a)) 

(e) k = Q(r-IT), D.k = -11, A = M 2 (k). 

(i) The second link complement shown in Figure 9.7. §9.2 (Hateher 
(1983) ) 

(ii) Non-compact manifolds admitting a certain regular cell decom­
position. §9.2 (Hateher (1983)) 
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(f) k=Q(J-15), ~k=-15, A=M2 (k). 

(i) The link complement of the chain link with six components. 
(Neumann and Reid (1992a)) 

(ii) Non-compact manifolds obtained by certain surgeries on one 
component ofthe Whitehead link. (Neumann and Reid (1992a)) 

(iii) The quaternion algebra has type number 2 and so has non­
conjugate maximal groups. The link complement shown in Fig­
ure 9.6 is not a subgroup of the Bianchi group PSL(2, 0 15 ). 

§6.6, §9.2, §12.4 (Baker (1992), Stephan (1996)) 

(g) k = Q( A), D..k = -24, A = M 2 (k). 

(i) When 0 = M 2(06), and S = {P2}, the group rs,o is not max­
imal. §11.4 (Borel (1981)) 

13.7.2 Compact Examples, Degree 2 Fields 

(a) k = Q( N), Ramf(A) = {P2, P3}. 

(i) The Fibonacci group Fs or the 4-fold cyclic branched cover of 
the figure 8 knot. §4.8, §9.8 (Helling et al. (1998), Hilden et al. 
(1992a)) 

(ii) A non-Haken manifold covered by a surface bundle. §4.8 (Reid 
(1995) ) 

(iii) The third smallest known closed hyperbolic 3-manifold. §13.5 

(iv) A manifold branched over the closed 3-braid given by (afa24 )2. 
(Maclachlan and Reid (1997)) 

(v) A cocompact group generated by elements of orders 2 and 4 with 
short distance between their axes. (Gehring et al. (1997)) 

(b) k = Q( A), Ramf(A) = {P2, P3}. 

(i) The Fibonacci group F12 or the 6-fold cyclic branched cover of 
the figure 8 knot. §4.8, §9.8 (Helling et al. (1998), Hilden et al. 
(1992a)) 

(ii) A cocompact group generated by elements of orders 2 and 6 with 
short distance between their axes. (Gehring et al. (1997)) 

(c) k = Q( H), Ramf(A) = {P2 , P~}. 

(i) The cocompact tetrahedral group with Coxeter symbol given at 
Figure 4.9. §4.7, §8.3, §1O.4, §13.1. (Vinberg (1967), Maclachlan 
and Reid (1989)) 
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(ii) The smallest compact hyperbolic arithmetic 3-orbifold whose 
defining field is quadratic. §11.7 (Madachlan and Reid (1989)) 

(iii) A manifold branched over the dosed 3-braid given by (afa23)2. 
(Madachlan and Reid (1997)) 

13.7.3 Compact Examples, Degree 3 Fields 

(a) k = Q(x), x3 - X + 1 = 0, Ak = -23, Ramf(A) = {P5}. 

(i) The Week's manifold, which is also the arithmetic hyperbolic 
3-manifold of minimal volume. §4.8, §9.8, §12.6 (Matveev and 
Fomenko n988), Weeks (1985), Reid and Wang (1999), Chin­
burg et al. (2001)) 

(ii) The orbifold obtained by (3,0)-filling on the two-bridge knot 
(7/3). (Hilden et al. (1995)) 

(iii) Maximal groups in this commensurability dass and their torsion 
are analysed in §12.5 and §12.6. 

(iv) Groups generated by elements of orders 2 and 3 with short dis­
tance between their axes. (Gehring et al. (1997)) 

(b) k = Q(x), x3 - X + 1 = 0, Ak = -23, Ramf(A) = {P3 }. 

(i) The orbifold obtained by (6,0)-filling on the two-bridge knot 
(7/3). (Hilden et al. (1995)) 

(c) k = Q(x), x3 + X + 1 = 0, Ak = -31, Ramf(A) = {P3}. 

(i) The orbifold obtained by (4,0)-filling on the two-bridge knot 
(7/3). (Hilden et al. (1995)) 

(ii) The orbifold obtained by (3, O)-filling on both components of the 
two bridge link (10/3). (Hilden et al. (1995)) 

(iii) Groups generated by elements of orders 2 and 3, and 2 and 4, 
each with short distances between their axes. (Gehring et al. 
(1997) ) 

(iv) One of the smallest-volume arithmetic orbifolds, smallest over 
this field. §11.6, §12.6 (Chinburg et al. (2001)) 

(d) k = Q(x), x3 + x2 - X + 1 = 0, Ak = -44, Ramf(A) = {P2}. 

(i) The orbifolds obtained by (4,0)-filling on both components of 
the two-bridge link (10/3) and (6,0)-filling on the two-bridge 
knot (13/3). (Hilden et al. (1995)) 

(ii) The generalised triangle groups whose orbifold singular sets are 
G3 (3, 3; 2) and G3 (2, 3; 4), shown at Figure 13.5. (Helling et al. 
(1995) ) 
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(iii) Groups generated by elements of orders 2 and 3, and 2 and 4, 
each with short distances between their axes. (Gehring et al. 
(1997) ) 

(e) k = Q(x), x3 - x 2 + X + 4 = 0, ßk = -491, Ramf(A) = {P13}. 

(i) An example of a pair of compact isospectral manifolds which are 
not isometrie. §6.7, §12.4 (Vigneras (1980a), Vigneras (1980b)) 

13.7.4 Compact Examples, Degree 4 Fields 

(a) k = Q(x), x4 + x 3 - 2x - 1 = 0, ßk = -275, Ramf(A) = 0. 

(i) The cocompact tetrahedral group with Coxeter symbol given at 
Figure 4.7. §4.7, §8.3, §8.4, §1O.4, §11.2, §13.3 (Vinberg (1967), 
Maclachlan and Reid (1989)) 

(ii) The smallest-volume arithmetic orbifold. §11.7 (Chinburg and 
Friedman (1986)) 

(iii) The Fibonacci group FlO or the five-fold cyclic cover branched 
over the figure 8 knot. §4.8, §8.4 (Helling et al. (1998), Hilden 
et al. (1992a)) 

(iv) Groups generated by elements of orders 2 and 3, and 2 and 5, 
with short distances between their axes. (Gehring et al. (1997)) 

(v) The orbifold obtained by (3, O)-filling on both components of the 
two-bridge link (20/9). (Hilden et al. (1995)) 

(b) k = Q(x), x4 - 2x2 + X + 1 = 0, ßk = -283, Ramf(A) = 0. 

(i) The Meyerhoff manifold, the arithmetic manifold of second smal­
lest volume. §4.8, §9.8, §12.6, §13.5 (Chinburg (1987), Chinburg 
et al. (2001)) 

(ii) The orbifold obtained by (3, O)-filling the two-bridge knot (9/5). 
(Hilden et al. (1995)) 

(iii) Groups generated by elements of orders 2 and 3, and 2 and 4, 
with short distances between their axes. (Gehring et al. (1997)) 

(c) k = Q(x), x4 - x 2 - 1 = 0, ßk = -400, Ramf(A) = 0. 

(i) The Universal group obtained as the Borromean orbifold funda­
mental group with branch indices (4,4,4). §9.4 (Hilden et al. 
(1992b)) 

(ii) Two ofthe cocompact tetrahedral groups. §10.4, §13.3 (Vinberg 
(1967), Maclachlan and Reid (1989)) 

(iii) Groups generated by elements of orders 2 and 4, and 2 and 5, 
with short distances between their axes. (Gehring et al. (1997)) 
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(iv) The orbifold obtained by (5,0)-filling on the two-bridge knot 
(7/3). (Hilden et al. (1995)) 

(d) k = Q(x), x4 + 2x3 + x 2 + 2x + 1 = 0, ßk = -448, Ramf(A) = 0. 

(i) One of the cocompact tetrahedral groups. §10.4, §13.3 (Vinberg 
(1967), Maclachlan and Reid (1989)) 

(ii) One of the cocompact prism groups. §4.7, §8.3, §10.4 (Vinberg 
(1985), Conder and Martin (1993), Maclachlan and Reid (1998)) 

(e) k = Q(x), x4 + x3 - 2x2 + 2x - 1 = 0, ßk = -475, Ramf(A) = 0. 

(i) One of the cocompact tetrahedral groups. §10.4, §13.3 (Vinberg 
(1967), Maclachlan and Reid (1989)) 

(ii) A group generated by elements of orders 2 and 5 with short 
distance between their axes. (Gehring et al. (1997)) 

(iii) The orbifold obtained by (5, O)-filling on both components ofthe 
two-bridge link (10/3). (Hilden et al. (1995)) 

(f) k = Q(x), x4 - x2 + 3x - 2 = 0, ßk = -2151, Ramf(A) = {P2, P3}. 

(i) An example of a compact hyperbolic 3-manifold all of whose 
closed geodesics are simple. §9.7 (Chinburg and Reid (1993)) 
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