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Preface

The Geometrization Program of Thurston has been the driving force for re-
search in 3-manifold topology in the last 25 years. This has inspired a surge
of activity investigating hyperbolic 3-manifolds (and Kleinian groups), as
these manifolds form the largest and least well-understood class of compact
3-manifolds. Familiar and new tools from diverse areas of mathematics have
been utilised in these investigations — from topology, geometry, analysis,
group theory and, from the point of view of this book, algebra and number
theory. The important observation in this context is that Mostow Rigidity
implies that the matrix entries of the elements of SL(2,C), representing
a finite-covolume Kleinian group, can be taken to lie in a field which is a
finite extension of Q. This has led to the use of tools from algebraic number
theory in the study of Kleinian groups of finite covolume and thus of hyper-
bolic 3-manifolds of finite volume. A particular subclass of finite-covolume
Kleinian groups for which the number-theoretic connections are strongest
is the class of arithmetic Kleinian groups. These groups are particularly
amenable to exhibiting the interplay between the geometry, on the one
hand and the number theory, on the other.

This book is designed to introduce the reader, who has begun the study of
hyperbolic 3-manifolds or Kleinian groups, to these interesting connections
with number theory and the tools that will be required to pursue them.
There are a number of texts which cover the topological, geometric and
analytical aspects of hyperbolic 3-manifolds. This book is constructed to
cover arithmetic aspects which have not been discussed in other texts. A
central theme is the study and determination of the invariant number field
and the invariant quaternion algebra associated to a Kleinian group of
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finite covolume, these arithmetic objects being invariant with respect to
the commensurability class of the group. We should point out that this
book does not investigate some classical arithmetic objects associated to
Kleinian groups via the Selberg Trace Formula. Indeed, we would suggest
that, if prospective readers are unsure whether they wish to follow the
road down which this book leads, they should dip into Chapters 4 and 5
to see what is revealed about examples and problems with which they are
already familiar. Thus this book is written for an audience already familiar
with the basic aspects of hyperbolic 3-manifolds and Kleinian groups, to
expand their repertoire to arithmetic applications in this field. By suitable
selection, it can also be used as an introduction to arithmetic Kleinian
groups, even, indeed, to arithmetic Fuchsian groups.

We now provide a guide to the content and intent of the chapters and
their interconnection, for the reader, teacher or student who may wish to
be selective in choosing a route through this book. As the numbering is in-
tended to indicate, Chapter 0 is a reference chapter containing terminology
and background information on algebraic number theory. Many readers can
bypass this chapter on first reading, especially if they are familiar with the
basic concepts of algebraic number theory. Chapter 1, in essence, defines the
target audience as those who have, at least, a passing familiarity with some
of the topics in this chapter. In Chapters 2 to 5, the structure, construction
and applications of the invariant number field and invariant quaternion al-
gebra associated to any finite-covolume Kleinian group are developed. The
algebraic structure of quaternion algebras is given in Chapter 2 and this is
further expanded in Chapters 6 and 7, where, in particular, the arithmetic
structure of quaternion algebras is set out. Chapter 3 gives the tools and
formulas to determine, from a given Kleinian group, its associated invariant
number field and quaternion algebra. This is then put to effect in Chapter
4 in many examples and utilised in Chapter 5 to investigate the geometric
ramifications of determining these invariants.

From Chapter 6 onward, the emphasis is on developing the theory of
arithmetic Kleinian groups, concentrating on those aspects which have geo-
metric applications to hyperbolic 3-manifolds and 3-orbifolds. Our defini-
tion of arithmetic Kleinian groups, and arithmetic Fuchsian groups, given
in Chapter 8, proceeds via quaternion algebras and so naturally progresses
from the earlier chapters. The geometric applications follow in Chapters 9,
11 and 12. In particular, important aspects such as the development of the
volume formula and the determination of maximal groups in a commen-
surability class form the focus of Chapter 11 building on the ground work
in Chapters 6 and 7.

Using quaternion algebras to define arithmetic Kleinian groups facilitates
the flow of ideas between the number theory, on the one hand and the
geometry, on the other. This interplay is one of the special beauties of
the subject which we have taken every opportunity to emphasise. There
are other, equally meritorious approaches to arithmetic Kleinian groups,
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particulary via quadratic forms. These are discussed in Chapter 10, where
we also show how these arithmetic Kleinian groups fit into the wider realm
of general discrete arithmetic subgroups of Lie groups.

Some readers may wish to use this book as an introduction to arithmetic
Kleinian groups. A short course covering the general theory of quaternion
algebras over number fields, suitable for such an introduction to either
arithmetic Kleinian groups or arithmetic Fuchsian groups, is essentially self-
contained in Chapters 2, 6 and 7. The construction of arithmetic Kleinian
groups from quaternion algebras is given in the first part of Chapter 8 and
the main consequences of this construction appear in Chapter 11. However,
if the reader wishes to investigate the role played by arithmetic Kleinian
groups in the general framework of all Kleinian groups, then he or she must
further assimiliate the material in Chapter 3, such examples in Chapter 4
as interest them, the remainder of Chapter 8, Chapter 9 and as much of
Chapter 12 as they wish.

For those in the field of hyperbolic 3-manifolds and 3-orbifolds, we have
endeavoured to make the exposition here as self-contained as possible, given
the constraints on some familiarity with basic aspects of algebraic number
theory, as mentioned earlier. There are, however, certain specific exceptions
to this, which, we believe, were unavoidable in the interests of keeping the
size of this treatise within reasonable bounds. Two of these are involved in
steps which are critical to the general development of ideas. First, we state
without proof in Chapter 0, the Hasse-Minkowski Theorem on quadratic
forms and use that in Chapter 2 to prove part of the classification theorem
for quaternion algebras over a number field. Second, we do not give the full
proof in Chapter 7 that the Tamagawa number of the quotient AL /A} is
1, although we do develop all of the surrounding theory. This Tamagawa
number is used in Chapter 11 to obtain volume formulas for arithmetic
Kleinian groups and arithmetic Fuchsian groups. We should also mention
that the important theorem of Margulis, whereby the arithmeticity and
non-arithmeticity in Kleinian groups can be detected by the denseness or
discreteness of the commensurator, is discussed, but not proved, in Chapter
10. However, this result is not used critically in the sequel. Also, on a
small number of occasions in later chapters, specialised results on algebraic
number theory are employed to obtain specific applications.

Many of the arithmetic methods discussed in this book are now available
in the computer program Snap. Once readers have come to terms with
some of these methods, we strongly encourage them to experiment with this
wonderful program to develop a feel for the interaction between hyperbolic
3-manifolds and number theory.

Finally, we should comment on our method of referencing. We have
avoided “on the spot” references and have placed all references in a given
chapter in the Further Reading section appearing at the end of each chapter.
We should also remark that these Further Reading sections are intended to
be just that, and are, by no means, designed to give a historical account of
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the evolution of ideas in the chapter. Thus regrettably, some papers crit-
ical to the development of certain topics may have been omitted while,
perhaps, later refinements and expository articles or books, are included.
No offence or prejudice is intended by any such omissions, which are surely
the result of shortcomings on the authors’ part possibly due to the some-
what unsystematic way by which they themselves became acquainted with
the material contained here.

We owe a great deal to many colleagues and friends who have contrib-
uted to our understanding of the subject matter contained in these pages.
These contributions have ranged through inspiring lectures, enlightening
conversations, helpful collaborations, ongoing encouragement and critical
feedback to a number of lecture courses which the authors have separately
given on parts of this material. We especially wish to thank Ted Chin-
burg, Eduardo Friedman, Kerry Jones, Darren Long, Murray Macbeath,
Gaven Martin, Walter Neumann and Gerhard Rosenberger. We also wish
to thank Fred Gehring, who additionally encouraged us to write this text,
and Oliver Goodman for supplying Snap Data which is included in the
appendix. Finally, we owe a particular debt of gratitude to two people:
Dorothy Maclachlan and Edmara Cavalcanti Reid. Dorothy has been an
essential member of the backroom staff, with endless patience and support
over the years. More recently, Edmara’s patience and support has been
important in the completion of the book.

In addition to collaborating, and working individually, at our home insti-
tutions of Aberdeen University and the University of Texas at Austin, work
on the text has benefited from periods spent at the University of Auckland
and the Instituto de Matematica Pura e Aplicada, Rio de Janiero. Fur-
thermore, we are grateful to a number of sources for financial support over
the years (and this book has been several years in preparation) — Engin-
eering and Physical Sciences Research Council (UK), Marsden Fund (NZ),
National Science Foundation (US), Royal Society (UK), Sloan Foundation
(US) and the Texas Advanced Research Program. The patient support
provided by the staff at Springer-Verlag has also been much appreciated.

Aberdeen, UK Colin Maclachlan
Austin, Texas, USA Alan W. Reid
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0

Number-Theoretic Menagerie

This chapter gathers together number-theoretic concepts and results which
will be used at various stages throughout the book. There are few proofs
in this chapter and it should be regarded as a synopsis of some of the main
results in algebraic number theory, the proofs and details of which can be
found in one of the many excellent texts on algebraic number theory. Being
labelled Chapter 0, the implication is that this is a reference section, and
key results given in this chapter will be referred back to subsequently as
required in the book. It is certainly not necessary for the reader to absorb
all the material here before proceeding further. The basic ideas in Sections
0.1,0.2 and 0.3 will arise frequently in the succeeding chapters. However,
until Chapter 6, only these basic ideas together with, in a couple of sections,
some ideas from Sections 0.6,0.7 and 0.9 are required to understand the
proofs and examples. Thus we suggest that the readers with a passing
familiarity with basic notions in algebraic number theory should return
to this chapter only when they encounter a concept with which they are
unfamiliar.

We assume that the reader is familiar with standard results on field
extensions and Galois theory. At the end of each section of this chapter,
we give some guidance to proofs of results contained in that section. These
results are all well established, so there are many possible sources which
could be referenced. For the reader’s convenience, and for this chapter only,
references are given at the end of each section. We have endeavoured to
make our choice of references as accessible as possible to the non-expert,
but it is simply our choice, and the interested reader may well want to seek
further advice in chasing down the details of these proofs.



2 0. Number-Theoretic Menagerie

Since we are to establish these number fields as invariants of Kleinian
groups, we initially place some emphasis on discussing the invariants of the
number fields themselves — in particular, their discriminants.

0.1 Number Fields and Field Extensions

The invariant fields which form the main topic of this book are defined to
be extensions of the rationals Q, generated by elements ¢; € C, ¢ running
through some index set 2. Thus

k=Q{t:: 1€ Q})

is the smallest subfield of C containing {t; : ¢ € Q}. The set 2 is usually
finite and the elements t; are frequently algebraic so that they satisfy poly-
nomials with rational coefficients. If both these conditions hold, then & is
a finite extension of Q (i.e., a number field) . Because Q has characteristic
0, k is a simple extension k = Q(t) where ¢ satisfies a monic irreducible
polynomial f(z) € Q[z], the minimum polynomial of ¢, where the degree
of f is the degree of the extension [k : Q] =d."

The roots of the minimum polynomial of ¢ are called the conjugates of t.
If they are denoted t = t1,t2,... ,t4, then the assignment ¢ — ¢; induces a
field isomorphism Q(¢) — Q(¢;). Conversely, if o : k = Q(t) — C is a field
monomorphism, then o(t) is a root of the minimum polynomial of ¢. There
are thus, exactly d field (or Galois) monomorphisms o : k — C. These will
usually be denoted 01, 09,...,04.

Since f has its coefficients in Q, the roots t; will either be real or fall into
complex conjugate pairs. Thus the monomorphisms ¢; will be designated as
real if o;(k) C R. Otherwise, they occur in complex conjugate pairs (o, 5;)
where o;(k) ¢ R. If we let 7y denote the number of real monomorphisms
and ro the number of complex conjugate pairs, then

d=r1r1+ 2rs.

We say that k has r; real places and ry compler places. Furthermore, we
refer to k as being totally real if ro = 0.

Examples 0.1.1

1. For quadratic extensions k = Q(+/d) where d is a square-free integer,
the parameters (r1,72) distinguish between the cases where d is positive
with (r1,72) = (2,0) and d is negative with (r1,72) = (0, 1).

2. If k = Q(t) where t satisfies the polynomial z3 + & + 1 = 0, then this
irreducible polynomial has one real root only. Thus k£ has one real and
one complex place.
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3. If t = /(3 —2V/5), t satisfies z* — 622 — 11 = 0, which has roots £+/(3 %
2v/5). Thus k£ = Q(t) has two real places and one complex place.

4. Ifk = Q(e2”/ ™) is a cyclotomic extension, then the roots of the minimum
polynomial are all primitive nth roots of unity. Thus for n > 2, this field
has no real places and ¢(n)/2 complex places, where ¢ is Euler’s function.

5. In a similar way, the real subfield Q(cos2n/n) of the cyclotomic field is
totally real.

If o € k, then the norm and trace of « are defined by
Nygla) = o1(a)oz(a) -+ o4(a); Tryg(e) = o1(e) +o2(a) + - - - + oq().

In the case where o = t and k = Q(¢), these are the product and sum,
respectively, of the conjugates of ¢. As such, they are, up to a sign, the
constant and leading coefficients of the minimum polynomial and so lie
in Q.

If K denotes a Galois closure of the extension & | Q, then K can be taken
to be the compositum of the fields 0;(k), i = 1,2,... ,d. For each ¢ in the
Galois group, Gal(K | Q), the set {o0;} is a permutation of the set {o;}.
Thus for each a € k, Nyjg(a), Tryg(e) are fixed by each such o and so lie
in the fixed field of Gal(K | Q) [i.e., Ny () and Tryp(a) lie in Q].

If[k:Q]=d, let {1,002, -+ ,aq} be any set of elements in k. If

T10¢1 + Toos + ...+ xgag =0
with z; € Q, then for each monomorphism o;,
z10:(a1) + z20i(a2) + . .. + z403(ag) = 0.
Thus one readily deduces that the set {a1,a2,... ,a4} is a basisof k | Q
if and only if det[o;(a;)] # 0.
The element § = det[o;(a;)] lies in K and for 0 € Gal(K | Q), o(6) is

the determinant of a matrix obtained from [o;(e;)] by a permutation of
the rows. Thus ¢(J) = £4.

Definition 0.1.2 If {a1,a2,... ,aq} is a basis of the field k | Q, then the
discriminant of {a1, az, ... 04} is defined by

discr{ai, as, ... ,aq} = det[o;(a;)]?. (0.1)
Alternatively, the discriminant of a basis can be defined as

discr{ay, oz, ... ,aq} = det[Tr(a;a;)].
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Note that discr{ai,a2,...,aq} is invariant under each ¢ € Gal(K | Q)
and so lies in its fixed field (i.e., in Q). Thus

diser{ay, a2, ... ,aq} € Q.
If {51, B2,...,8q4} is another basis of k | Q then
discr{B1, B2, - - . , Ba} = (detX)*discr{c, @z, ... , aq} (0.2)

where X is the non-singular change of basis matrix. If & = Q(¢), then
diser{1,t,... 471} = det[t!]? (0.3)

where, as before, t = t1,1s,... ,t4 are the roots of the minimum polynomial
of t. The calculation of the Vandermonde determinant at (0.3) gives

diser{1,t,... .ty = [ (t:i—t;)% (0.4)

1<i<j<d

This discriminant is a symmetric homogeneous polynomial in the roots and
as such, can be expressed in terms of the elementary symmetric homogen-
eous polynomials of degrees up to d in the roots. However, these elementary
polynomials are just the coefficients of the minimum polynomial of ¢. Thus
the discriminant at (0.4) can be computed directly from the coefficients of
the minimum polynomial. More generally, for any polynomial f of degree
d with roots t1,ts,... ,tq4, define

diser(f) = [ (i —t)* (0.5)

1<i<j<d

The value of this discriminant can be calculated directly from the polyno-
mial as is shown in Exercise 0.1, No. 6.

The above description refers to the discriminants of bases of extensions
k | Q, but can be extended to any finite extension of number fields ¢ | k.
Thus let {o; : £— C|i=1,2,...,d} run through the Galois embeddings
such that o; | k = 1d, and let {ay, a2, ... a4} be any basis of £ | k. Then

discrp {1, s, ... ,aq} = detlo;(a;)]°. (0.6)

These (relative) discriminants are related to the (absolute) discriminants
over Q as follows: Let (1, (2, ... , B be a basis of k | Q so that {8;c; : 1 <
i <e,1<j<d}isabasis of £| Q. Then

discraQ{ﬁiaj} = (discrk‘Q{ﬂi})de|Q(discrg|k{aj}). (07)

This can be seen as follows: With ¢; as defined above, let 7; denote the
Galois embeddings of k | Q. Let K be the normal closure in C of & | Q and
L the normal closure of ¢ | Q, so that K C L. Now each o; extends to an
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automorphism, denoted &;, of Gal(L | Q). Furthermore, choose 7; € Gal(L |
Q) such that 75|, = 75, j = 1,2,...,e. Then the elements {7;5;,1 < i <
e,1 < j < d} restricted to ¢ give all the Galois embeddings of £ | Q. Thus

diSCI‘g|Q{,@¢O&j} = det[ﬁa} (ﬁman)]Q.

Evaluating this determinant, we get

det[7(Bm) (i (05 (an)))] = det[7 (Bm))? [ | Fidetlo ()]

=1

and (0.7) follows from this.

For a discussion of conjugates and discriminants, see Chapter 2 of Stewart
and Tall (1987) or Chapter 2 of Ribenboim (1972)

Exercise 0.1

1. Let K be a number field which is a Galois extension of Q. Show that K
is either totally real or has no real places.

2. Let K be a field with exactly one complex place. Show that every proper
subfield of K is totally real.

3. Let K be a field of degree 4 over Q of the form K = Q(y/«&) where o
satisfies x° — tx — m = 0, where t,m € Z and t*> + 4m > 0. Determine the
number of real and complex places of K.

4. Let K be a number field and L a finite extension of K. Define the norm
Npx and trace Trp g . Show that

Nrjo = Nkjgo Nijk-

5. Buvaluate the Vandermonde determinant at (0.3) to obtain the formula
at (0.4): that is, if ©1,T2,... , Ty are n independent variables and X is the
nxn matriz [z}], 1 <i<n, 0<j<n-—1, then detX = Hi<]-(£17j — ;).

6. This exercise shows how to compute the discriminant of a polynomial
directly from its coefficients.

(a) Let x1,x2,. .. ,x, be indeterminates and let s; denote the ith elementary
symmetric polynomial in T1,x2,... ,z, for 1 <i<n. Thus

8 = E Ty Ty ** Ty

1<mi<ma<---<m;<n

Let po =n and p = z¥ + 2§ + - + 2% for k > 1. Show that the py can be
computed systematically from the s; as follows:

(i) If k < n, then

Pk — Pk—-151 + Pk—252 —+++ + (‘1)k_1p18k—1 + (-Ukksk =0.
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(i) If k> n, then
Pk —Pk-151+ -+ (=1)"Pr—nsn = 0.
(b) Let f(z) = z™+a12™ ' +azz® 2 +---+ay so that a; is (—1)° times s;,

the ith elementary symmetric polynomial evaluated at the roots of f. Prove
that

Do pPr - DPn-1
D1 b2 - Pn
discr(f) = det | | .- |
Pn—-1 DPn cec P2n-2

where the p; are evaluated at the roots of the polynomial.

7. (a) Find the discriminant of z* — 2% + z — 1.

(b) Let o satisfy > — x + (—1 + /5)/2 = 0. Taking the bases {1,a} of
Q(a) | Q(V5) and {1,(1+v5)/2} of Q(V5) | Q, use (0.7) to determine
the discriminant of the basis {1,a, (1++/5)/2, a(1++/5)/2}. Compare with

(a).

8. Let K = Q(t) and let f be the minimum polynomial of t (of degree n).
Show that

discr{1,t,12,... ,t""1} = (=1)"""D/2Ny o(Df(t)) (0.8)

where D f is the formal derivative of f.

9. (a) Let &€ = 2™i/?"  where p is an odd prime. Show that
diser{1,¢,€2,... ,£o@)=1} = (—1)#(")/2pp" 7 (k(p=1)-1) (0.9)
(b) Let p = 2cos(27/p*), where p is an odd prime. Show that

diser{1, p, 2, ... , p?®)/271} = " k(1)1 -1 (0.10)

0.2 Algebraic Integers

To carry the study of number fields farther, the field-theoretic concepts of
the preceding section are insufficient and the arithmetic nature of these
fields must be examined. In this section, the role of algebraic integers is
introduced.

Definition 0.2.1 An element a € C is an algebraic integer if it satisfies
a monic polynomial with coefficients in Z.
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From Gauss’ Lemma (see Exercise 0.2, No. 1), the minimum polynomial of
an algebraic integer will have its coefficients in Z. Also, an element a € C
will be an algebraic integer if and only if the ring Z[a] is a finitely generated
abelian group. Using this, it follows that the set of all algebraic integers is
a subring of C.

Notation Let k£ be a number field. The set of algebraic integers in k& will
be denoted by Ry.

Theorem 0.2.2 The set Ry is a ring.

In the next section, the ideal structure of these rings will be discussed.
For the moment, only the elementary structure will be considered.

To distinguish elements of Z among all algebraic integers, they may be
referred to as rational integers.

An algebraic integer is integral over Z in the following more general sense.

Definition 0.2.3

e Let R be a subring of the commutative ring A. Then o € A is integral
over R if it satisfies a monic polynomial with coefficients in R.

o The set of all elements of A which are integral over R is called the
integral closure of R in A.

Thus Ry is the integral closure of Z in k. If a € C satisfies a monic poly-
nomial whose coefficients are algebraic integers a;, as, ... , an, then Z[q]
is a finitely generated module over the ring Z[a1, ag, ... , ay], which is a
finitely generated abelian group. Thus Z[a] is a finitely generated abelian
group and so a is an algebraic integer. Thus if £ | k is a finite extension,
then Ry is also the integral closure of Ry in £. This also shows that Ry is
integrally closed in k; that is, if a € k is integral over Ry, then a € Ry.

Let k£ be a number field and let o € k£ have minimum polynomial f of
degree n. If N is the least common multiple of the denominators of the
coefficients of f, then Na is an algebraic integer. Thus the field k& can be
recovered from Ry, as the field of fractions of Rj. Since every number field
k is a simple extension Q(«) of Q, it also follows that « can be chosen to
be an algebraic integer. Thus the free abelian group Ry has rank at least
n.

Definition 0.2.4 A Z-basis for the abelian group Ry is called an integral
basis of k.

Theorem 0.2.5 Fvery number field has an integral basis.

If o is an algebraic integer such that £ = Q(«), then we have seen that
Zla]) C Ry. If § is the discriminant of the basis {1,a,a?,... ,a" !}, then
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it can be shown that Ry, C 3Z[a] (see Exercise 0.2, No. 4), so that Ry has
rank exactly n.

Not every number field has an integral basis which has the simple form
{l,a,0?,... ,a" '}. Such a basis is termed a power basis. (See Examples
0.3.11, No. 3 and Exercise 0.2, No. 11). In general, finding an integral basis
is a tricky problem.

The discriminant of an integral basis is an algebraic integer which also
lies in @, and hence its discriminant lies in Z. For two integral bases of
a number field &, the change of bases matrix, and its inverse, will have
rational integer entries and, hence, determinant +1. Thus by (0.2), any
two integral bases of k will have the same discriminant.

Definition 0.2.6 The discriminant of a number field k, written Ay, is the
discriminant of any integral basis of k.

Recall that the discriminant is defined in terms of all Galois embeddings
of k, so that the discriminant of a number field is an invariant of the
isomorphism class of k.

Examples 0.2.7

1. The quadratic number fields k& = Q(\/a), where d is a square-free integer,
positive or negative, have integral bases {1, a}, where o = Vd if d #
1(mod 4) and o = (1 4+ vd)/2 if d = 1(mod 4). Thus Ay = 4d if
d # 1(mod 4) and A, = d if d = 1(mod 4).

2. For the cyclotomic number fields £k = Q(&) where £ is a primitive pth
root of unity for some odd prime p, it can be shown with some effort
that 1,&,£2,... ,£6P~2 is an integral basis. Hence, Ay = (—1)(1"_1)/21)”“2
(see Exercise 0.1, No. 9).

The discriminant is a strong invariant as the following important theorem
shows.

Theorem 0.2.8 For any positive integer D, there are only finitely many
fields with |Ag| < D.

This theorem can be deduced from Minkowski’s theorem in the geometry
of numbers on the existence of lattice points in convex bodies in R™ whose
volume is large enough relative to a fundamental region for the lattice.

Considerable effort has gone into determining fields of small discrimin-
ant and much data is available on these. There do exist non-isomorphic
fields with the same discriminant, but they are rather thinly spread. (See
Examples 0.2.11). Thus in pinning down a number field, it is frequently
sufficient to determine its degree over QQ, the number of real and complex
places and its discriminant.
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One of our first priorities is to be able to compute the discriminant. Recall
that the discriminant of a polynomial, and, hence, of a basis of the form
{1,t,22,... ,t?"1} can be determined systematically (see Exercise 0.1, No.
6). Note also, that if {eq,@a,...,aq} is a basis of k consisting of algebraic
integers, then

discr{ai, az, ... ,aq} = m2Ag (0.11)

where m € Z by (0.2). Thus if the discriminant of a basis consisting of
algebraic integers is square-free, then that basis will be an integral basis
and that discriminant will be the field discriminant.

‘We may also use relative discriminants to assist in the computation. In
general, for a field extension ¢ | k, there may not be a relative integral basis,
since Ry need not be a principal ideal domain and Ry is not necessarily a
free Ri-module.

Definition 0.2.9 The relative discriminant oy of a finite extension of
number fields € | k is the ideal in Ry generated by the set of elements
{discr{a1,az, ... ,aq}} where {a1, @z, ... ,aq}runs through the bases of £ |
k consisting of algebraic integers.

The following theorem then connects the discriminants (cf. (0.7)).

Theorem 0.2.10 Let ¢ | k be a finite extension of number fields, with
[£:k]=d.

|Ae| = [N (8o) AGI- (0.12)

In this formula, N(I) is the norm of the ideal I, which is the cardinality of
the ring Ry /I. As we shall see in the next section, this is finite.

Examples 0.2.11

1. Let k = Q(t), where t satisfies the polynomial 23+ z+1. This polynomial
has discriminant —31. Thus this is the field discriminant and {1,,#%} is
an integral basis.

2. Consider again the example ¢ = Q(t), where t = /(3 — 2/5). From
(0.4) the discriminant of the basis {1,¢,t2,¢3} is 1,126,400. However,
u = (1 +1t)/2 satisfies 22 — x + (—1 + +/5)/2 = 0 and so is an algebraic
integer. The discriminant of the basis {1,u, u?,u?} is —275 (see Exercise
0.1, No. 7). Note that k = Q(v/5) C £ and so by (0.12), N () | 11.
In this case, Ry is a principal ideal domain, so that R, is a free Ry-
module and has a basis over Ry, which we can take to be of the form
{a1 + biu, as + bou} with a;, b; € k. The discriminant of this basis is the
ideal generated by (a2b; — a1b2)?(3 — 2v/5). It now easily follows that
8¢ cannot be Ry. Thus N(d,,) = 11 and so A, = —275.
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3. Let k1 = Q(t1), where t; satisfies 22 + 4z + 1 = 0, and k2 = Q(t2),
where t, satisfies z* — 222 + £ + 1 = 0. Both these polynomials are
irrreducible and have discriminant —283. As 283 is prime, the fields both
have discriminant —283 using (0.11). These fields will be encountered
later in our investigations.

4. For non-isomorphic fields of the same degree, same number of real and
complex places and the same discriminant, consider the following ex-
amples of degree 4 over Q. Let k1 = Q(t1), where t; satisfies fi(z) =
zt + 223 + 322 + 2z — 1, and k2 = Q(t2) where t satisfies fo(x) =
x* — 22% 4 222 — 2. Both polynomials are irreducible, have one complex
place and discriminant —1472 = —23 x 64. If either contains a subfield
other than Q, that subfield must be totally real (see Exercise 0.1, No. 2)
and, by (0.12), could only be Q(+/2). One then easily checks that fi(z)
factorises over Q(v/2) but that fa(x) does not. Thus k; and ky are not iso-
morphic. As in Example 0.2.11, No. 2, one can show that Ag, = —1472,
but one has to work harder to establish that Ay, is exactly —1472 (see
Exercise 0.2, Nos.4 to 6).

For integral bases and discriminants, see Ribenboim (1972), Chapters 5
and 6 or Stewart and Tall (1987), Chapter 2. For Minkowski’s theorem and
its consequence Theorem 0.2.7, see Ribenboim (1972), Chapter 9 or Lang
(1970), Chapter 5. See also Stewart and Tall (1987), Chapter 7.

In this section, we refer to available data on fields of small discriminant.
Data accrued over the years and the methods used in obtaining data have
developed into the area of computational number theory (Cohen (1993),
Pohst and Zassenhaus (1989)). The data can now be accessed via packages
such as Pari (Cohen (2001)).

Exercise 0.2

1. Prove Gauss’ Lemma; that is, if f(z) is a polynomial in Z[x] which is
reducible in Q(z), then f(zx) is reducible in Z|z].

2. Show that Z[\/5] is not integrally closed in its field of fractions.

3. Let £ |k be a finite extension. Prove that if a € Ry then Nyi(a) and
Trp (o) lie in Ry. If £ | k is quadratic, prove the converse; that is, if o € £
and Nyji(a) and Try (o) both lie in Ry then o € Ry.

For the next three questions, make the following assumptions: o is an al-
gebraic integer, k = Q(a) and the basis {1,a,a?,... ,a" 1} has discrim-
mant .

4. Prove that R C 1Z[a].

5. Among all integers of the form (ag +aja+aza® +---+a;a*) /8, choose
an x; such that |a;| is minimal (# 0), for ¢ = 0,1,... ,n — 1. Prove that
{zo,21,... ,Zn-1} is an integral basis of k.
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6. In No. 5, it clearly suffices to consider |a;| < §. Prove the following
simplifying version: If none of the elements

{ao +a1o+ -+ ap_1a™t

| 0_<_ai<p}
p

where p is a prime divisor of 8, are algebraic integers, then Ry = Z[a].
7. If a is a root of 23 — 2 = 0 and k = Q(a), show that Ry = Z|a].

8. Determine the discriminant of Q(c), where « satisfies 23 +2x —1=10
and show that Ry = Zla].

9. Given that {1,£,€2,... ,&P72} is an integral basis of Q(£), where £ =
e2™/P for p an odd prime, prove that {1,p,p?,...,p®P=3/2} where p =
2 cos(2m/p), is an integral basis of Q(p). (Cf. Exercise 0.1, No. 9).

10. Show that 1—\}%’ is an algebraic integer. Determine the discriminant of
Q(v2,1).

11. Let f(z) = 2® + 2% — 2z + 8.

(a) Compute the discriminant of f.

(b) Let t be a root of f and let u = 4/t. Show that u is an algebraic integer.
Prove that u & Z[t]. Deduce that {1,t,u} is an integral basis of k = Q(t).
(¢) Prove that k does not have a power basis.

0.3 Ideals in Rings of Integers

Although there is no unique factorisation at the element level in general in
these rings Ry, there is unique factorisation at the ideal level into products
of prime ideals. This holds in a more general setting and this will be our
starting point in describing the elegant ideal structure of the rings Ry.

Definition 0.3.1 Let D be an integral domain with field of fractions K.
Then D is a Dedekind domain if all the following three conditions hold:

(i) D is Noetherian.
(ii) D is integrally closed in K.
(ii) Every non-zero prime ideal of D is mazimal.

Note that, as observed in the last section, for a number field, k is the field of
fractions of Ry and Ry is integrally closed in k. Also, if I is any ideal in Ry,
then the abelian group I is free abelian of finite rank by Theorem 0.2.5.
Thus I is finitely generated and so Ry is Noetherian. Let P be a prime
ideal with a € P, o # 0. Then Ny g(a) € P and Nyjg(a) € Z, so that the
principal ideal Ny g(a)Ry C P. However, the quotient Ry /Ny q(a)Ry is a
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finitely generated abelian group in which every element has finite order. It
is thus finite, and as a quotient, so is Ry/P. However, any finite integral
domain is necessarily a field and so P is maximal. Thus Ry is a Dedekind
domain. Note that the above argument shows that, for any non-zero ideal
1, the quotient Ry /I is finite.

Theorem 0.3.2 Let Ry, be the ring of integers in the number field k. Then:
1. Ry is a Dedekind domain.
2. If I is a non-zero ideal of Ry, Ry /I is a finite ring.

Before stating the unique factorisation theorem for Dedekind domains,
we first note that the unique factorisation of ideals is closely related to the
existence of a group structure on a more general class of modules in %,
which we now introduce:

Definition 0.3.3 Let D be a Dedekind domain with field of fractions K.
Then a D-submodule A of K is a fractional ideal of D if there exists o € D
such that oA C D.

Every ideal is a fractional ideal and the set of ideals in D is closed under
multiplication of ideals. The fractional ideals are also closed under multi-
plication but can also be shown to be closed under taking inverses where
the identity element is the ring D itself. Indeed, it turns out that each ideal
I has, as its inverse,

I"'={a € K |al C D}.

Theorem 0.3.4 Let D be a Dedekind domain.
1. Let I be a non-zero ideal of D. Then

— a1 paz ar
I—‘Pl 2 Pr

where P; are distinct prime ideals uniquely determined by I, as are
the positive integers a;.

2. The set of fractional ideals of D form a free abelian group under
maultiplication, free on the set of prime ideals.

We now leave the general setting of Dedekind domains and return to the
rings of integers Ry to determine more information on their prime ideals.

Note that, from Theorem 0.3.2, for any non-zero ideal I, the quotient
Ry /1 is finite.

Definition 0.3.5 If I is a non-zero ideal of Ry, define the norm of I by
N(I) = |Rg/1].
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The unique factorisation enables the determination of the norm of ideals to
be reduced to the determination of norms of prime ideals. This reduction
firstly requires the use of the Chinese Remainder Theorem in this context:

Lemma 0.3.6 Let Q1,Qa,...,Q, be ideals in Ry such that Q; + Q; = Rk
fori#£j. Then

Q1Q2---Qr=N_1Q; and R /Qq - Qp = @ZRk/Qi-

For distinct prime ideals P, P, the condition P¢ + P35 = Ry, can be shown
to hold for any positive integers a, b (see Exercise 0.3, No. 3). Secondly, the
ring Ry /P? has ideals P*+?/P2 and each ideal of the form P¢/P! can
be shown to be a one-dimensional vector space over the field Ry/P. Thus
if

I =Pf1 512 ”_:Par
then

T

N(I) = (v (Pi)= (0.13)

i=1
and N is multiplicative so that
N({IJ)=N({I)N(J). (0.14)

The unique factorisation thus requires that the prime ideals in Ry be in-
vestigated. If P is a prime ideal of Ry, then Ry/P is a finite field and so
has order of the form p/ for some prime number p. Note that PN Z is a
prime ideal p’Z of Z and that Z/p'Z embeds in Ry /P. Thus p’ = p and

pRy = PPP§ ... Pl (0.15)

where, for each i, Ry/P; is a field of order p/¢ for some f; > 1. The primes
P; are said to lie over or above p, or pZ. Note that f; is the degree of the
extension of finite fields [Rx/P; : Z/pZ). If [k : Q] = d, then N(pRy) = p®
and so

g
d=> eifi. (0.16)
=1

Definition 0.3.7 The prime number p is said to be ramified in the exten-
sion k | Q if, in the decomposition at (0.15), some e; > 1. Otherwise, p is
unramified.

The following theorem of Dedekind connects ramification with the dis-
criminant.
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Theorem 0.3.8 A prime number p is ramified in the extension k | Q if
and only if p | Ag. There are thus only finitely many rational primes which
ramify in the extension k| Q.

If P is a prime ideal in Ry with |Rx/P| =q (= p™), and ¢ | k is a finite
extension, then a similar analysis to that given above holds. Thus in Ry,

PRy = Q3 Q% - - Q% (0.17)

where, for each i, Ry/Q; is a field of order g%i. The e;, f; then satisfy (0.16)
where [¢ : k] = d. Dedekind’s Theorem 0.3.8 also still holds when Ay is
replaced by the relative discriminant, and, of course, in this case, the ideal
P must divide the ideal d.

Now consider the cases of quadratic extensions Q(v/d) | Q in some de-
tail. Denote the ring of integers in Q(v/d) by Og4. Note that from (0.16),
there are exactly three possibilities and it is convenient to use some special
terminology to describe these.

1. pOg = P? (ie., g = 1,e; = 2 and so f; = 1). Thus p is ramified in
Q(+/d) | Q and this will occur if p | d when d = 1(mod 4) and if p | 4d
when d # 1(mod 4). Note also in this case that O4/P = F,, so that
N(P) =p.

2. pOg = PP, (i.e., g =2,e; = e3 = f1 = fo = 1). In this case, we say
that p decomposes in Q(v/d) | Q . In this case N(P;) = N(P2) = p.

3. pOg = P (ie, g = 1l,e; =1, f1 = 2). In this case, we say that p is
inert in the extension. Note that N(P) = p?.

The deductions here are particularly simple since the degree of the exten-
sion is 2. To determine how the prime ideals of Ry lie over a given rational
prime p can often be decided by the result below, which is particularly
useful in computations. We refer to this result as Kummer’s Theorem. (It
is not clear to us that this is a correct designation, and in algebraic num-
ber theory, it is not a unique designation. However, in this book, it will
uniquely pick out this result.)

Theorem 0.3.9 Let Ry, = Z[6] for some 6 € Ry with minimum polynomial
h. Let p be a (rational) prime. Suppose, over F,, that

ho=hSRS R

where h; € Z[z] is monic of degree f; and the overbar denotes the natural
map Z[z] — Fy[z]. Then P; = pRi+ hi(0) Ry is a prime ideal, N(P;) = p':
and

pRy = P P32 - - Prr.
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There is also a relative version of this theorem applying to an extension
¢ | k with Ry, = Ry[f] and P a prime ideal in Ry. As noted earlier, such
extensions may not have integral bases. Even in the absolute case of k | Q,
it is not always possible to find a § € Ry, such that {1,6,62,..., 641} is an
integral basis. Thus the theorem as stated is not always applicable. There
are further versions of this theorem which apply in a wider range of cases.

Once again we consider quadratic extensions, which always have such a
basis as required by Kummer’s Theorem, with # = v/d if d # 1(mod 4) and
6 = (14+/d)/2 if d = 1(mod 4). In the first case, p is ramified if p | 4d. For
other values of p, 22 — d € F,[z] factorises if and only if there exists a € Z

such that a? = d(mod p) [i.e. if and only if (%) = 1]. In the second case, if
pis odd and p [ d, then 22 — z + (1 — d)/4 € Fp[x] factorises if and only if
(2z — 1)2 — d € F,[z] factorises [i.e. if and only if (%) =1]. If p = 2, then
$2_x+1~d_ z? + z € Fa[z] if d = 1(mod 8)
4 | 2+z+1€Fy[z] if d=5(mod 8).

Thus using Kummer’s Theorem, we have the following complete picture of
prime ideals in the ring of integers of a quadratic extension of Q.
Lemma 0.3.10 In the quadratic extension, Q(vd) | Q, where the integer

d is square-free and p a prime, the following hold:

1. Let p be odd.
(a) If p | d, p is ramified.
(b) If (g) =1, p decomposes.
(c) If (g) = —1, p is inert.
2. Let p=2.

(a) If d # 1(mod 4), 2 is ramified.
(b) If d = 1(mod 8), 2 decomposes.
(¢) If d = 5(mod 8), 2 is inert.

Examples 0.3.11

1. The examples treated at the end of the preceding section will be con-
sidered further here. Thus let k¥ = Q(t) where ¢ satisfies 2% + = + 1.
This polynomial is irreducible mod 2, so there is one prime ideal P-
in Ry, lying over 2 and N(P2) = 23. Modulo 3, the polynomial factor-
ises as (x — 1)(z2 + = — 1), so that 3R, = PPy with N(P}) = 3 and
N(PY) = 32. Modulo 31, the polynomial factorises as (x — 3)(z — 14)? so
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that 31Ry = P4, P42, as required by Dedekind’s Theorem 0.3.8. Note
that all possible scenarios can arise, because modulo 67, the polynomial
factorises as (z + 4)(x + 13)(z - 9).

2. Now consider k = Q(y/(3 — 2v/5)), where, by the discussion in the pre-
ceding section Ry = Z[u], with u satisfying 2* — 22% +z — 1 = 0.
Again using Kummer’s Theorem, we obtain, for example, 2Ry = Pa,
3Ry, = P4PYJ and 5R; = P2. In cases like this one, where there is
an intermediate field, it may be easier to determine the distribution of
prime ideals in two stages using the relative version of Kummer’s The-
orem. Thus, for example, the rational prime 5 ramifies in Q(+v/5) | Q,
s0 5Rqy5 = Q3. Over the field Ry 5/Qs = Fs, the polynomial

22+ + (-1 4+ 5)/2 = 22 +  + 2 and is irreducible. Thus in the
extension k | Q(v/5), there is one prime Ps over Qs and so 5Ry, = P2.

3. Here we give an example of a number field which does not have a power
basis. Let k¥ = Q(v/—15,+/—7). The rational prime 2 splits completely
in k | Q into four distinct primes of norm 2. There are thus four distinct
homomorphisms of Ry onto Fo. If, however, Ry had a power basis so
that Ry = Z[1,v,v%,v3], then there can be at most two homomorphisms
onto Fs.

From Lemma 0.3.10, we see that for a quadratic extension Q(v/d) | Q
and a rational prime p, there are finitely many primes p which ramify in
the extension, infinitely many which decompose and infinitely many which
are inert. Of course, Q(v/d) | Q is Galois, even abelian, and the description
and distribution of the splitting types of prime ideals in general Galois
extensions will now be discussed. The proofs of the results presented here
involve an analysis of the zeta function and associated L-functions of the
fields involved. The resulting density theorems will only be used toward
the end of the book, where we need to establish the existence of certain
arithmetic Kleinian and Fuchsian groups with specialised properties.

Thus let £ | k be a Galois extension with Galois group G and P a prime
ideal of k. Then G acts transitively on the primes of £ lying over P (see
Exercise 0.3, No. 2) and (0.17) becomes

PRy = (Q1---Qg)°

with each Q; having the same ramification degree e and residual class degree
f. Thus [£: k] = efg and e > 1 only occurs for finitely many P. Thus for
the unramified primes P, we have [£ : k] = fg and (f,g) determines the
splitting type of P. For the absolute quadratic case, the splitting types are
(1,2) and (2,1) and there are infinitely many primes of each type. The
density theorems are concerned with generalising this.

Continue to assume that P is unramified in the Galois extension £ | k
and let G(Q;) = {0 € G| 0(Q;) = (Q;)}, the decomposition group of Q;.
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There is an obvious homomorphism : G(Q;) — Gal(R,/Q; | Rx/P) which
turns out to be an isomorphism. This latter group is cyclic of order f, as
it arises from a finite field extension and is generated by the Frobenius
automorphism x — zV7. Under the isomorphism, this pulls back to the
Frobenius automorphism o of G(Q;) determined by o(z) = zV* (mod Q;).

In these circumstances, o is denoted (%—k) and will be conjugate in G to
the Frobenius automorphism -Z—/—I? . In particular, when ¢ | k is abelian,
Qj )

the Frobenius automorphism simply depends on P and is denoted (%).

The density is a measure of the number of ideals in a set relative to
the total number of ideals. The Dedekind zeta function for a number field
K, (x(s), is defined for R(s) > 1 as X;1/N(I)*, where the sum is over all
ideals. It has a simple pole at s = 1 and admits an Euler product expansion
over the prime ideals as IIp(1 — NP~%)~!. For any set A of prime ideals
of K, the Dirichlet density d(A) is defined by

oy In(Tpea(l = NP~5)~Y)
s—1t In CK(S)

Thus if A has positive Dirichlet density, then it has infinitely many mem-
bers.

Theorem 0.3.12 (Dirichlet) Let £ | k be an abelian extension and let
cegG. If

A0) =P (%) =)
then A(o) has Dirichlet density 1/n, where n = [€: k].

We will be mainly concerned with the simple cases where ¢ | k is quad-
ratic, but the Tchebotarev density theorem extends the above theorem to
general Galois extensions, with individual elements in the Galois group be-
ing replaced by conjugacy classes of elements and the corresponding density
then being c¢/n, where c is the number of elements in the conjugacy class.

Corollary 0.3.13 Let £ | k be an abelian extension and (f,g) a splitting
type for £ | k. Then a necessary and sufficient condition that there are
infinitely many prime ideals in k with this splitting type is that G contains
an element of order f.

This is an immediate deduction from the theorem, for if ns is the number
of elements in G of order f, then the set of unramified primes P such

that <£7/7k has order f has density ny/n. However, when this Frobenius
automorphism has order f, the residue class degree is f.

Finally, in this section, we expand on the notions of norms of ideals. Note
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that any non-zero ideal I of Ry, is a subgroup of finite index in the additive
abelian group Ry of rank d = [k : Q]. Thus I also has rank d. Since Z is
a principal ideal domain, we can choose an integral basis {z1,z2,... ,24}
such that for suitable integers f1, f2,... , f4, the set {fi1z1, faza, ..., faxd}
is a basis of I. Thus it follows that, for any Z-basis {61, f2,...,84} of I,
(see Exercise 0.3, No.8)

_ discr{f1,..., 084} .

N(I1)? ~ (0.18)
If I is a principal ideal, with I = aRy, we can take §; = azx;.
Lemma 0.3.14 If I = aRy, is a principal ideal in Ry, then
N(I) = |Ngjo(a)|. (0.19)

Now, just as the norm Nyq was extended to a relative norm Ny (see
Exercise 0.1, No. 4) for a finite field extension £ | k, we now consider the
extension of the norms of ideals in Definition 0.3.5 to an extension ¢ | k.
We put this in the general language of Dedekind domains.

Let D be a Dedekind domain with field of fractions K and let L be a
finite extension of K. Let D’ denote the integral closure of D in L. It can
be shown that D’ is also a Dedekind domain. Let I be any ideal in D’ and
define

Nyx(I) = {ZNL|K(ai)ﬁi |z € 1,8 € D} (0.20)

so that Ny |k (I) is the ideal in D generated by the norms of the elements
in I. We summarise the main properties of this norm.

Theorem 0.3.15
1. Npyjk(IJ) = Nk (I)Np k(J) for ideals I,J € D'.
2. Npk(aD') = Npik(a)D for a € D'
3. Npjk o Ny = Nuk for fields K C LC M.
4. Npjo(I) = N(I)Z, where N(I) is given by Definition 0.3.5.
5. Npix(Qi) = P, with notation as at (0.16) and (0.17).

For unique factorisation and norms of ideals, see Stewart and Tall (1987),
Chapter 5, Ribenboim (1972), Chapter 7 or Janusz (1996), Chapter 1, §3
and §4. For Dedekind’s ramification theorem and Kummer’s theorem, see
Ribenboim (1972), Chapter 10, Janusz (1996), Chapter 1, §7 and Stewart
and Tall (1987), Chapter 10. For the density theorems, see Janusz (1996),
Chapter 5, §10, Lang (1970) Chapter 8 §4, or Goldstein (1971) Chapter 9.
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For relative norms of ideals, see Ribenboim (1972), Chapter 10 or Janusz
(1996), Chapter 1, §5. As in the preceding section, for fields of small discrim-
inant, the factorisation of ideals has been automated and can be obtained
using Cohen (2001).

Exercise 0.3
1. Prove the Chinese Remainder Theorem as stated in Lemma 0.3.6.

2. Let k| Q be a finite Galois extension. For a prime p € Z, let I1 denote
the set of ideals in k lying over p. Prove that the Galois group Gal(k | Q)
acts transitively on II. Deduce that all e; defined at (0.15) are equal and
also that all f; are equal. The formula (0.16) thus takes the form

d=efg. (0.21)

[This result also holds for a general finite Galois extension £ | k.]

3. Show that if P1,Ps are distinct prime ideals of Ry, then P{ + PS = Ry
for all integers a,b > 1.

4. We will see later that Ar, = 1 if and only if k = Q. This implies that
for every number field k # Q, there is always a prime ideal which ramifies

in k | Q. Show that this last statement is not true in general for relative
extensions £ | k by considering £ = Q(v/5,1) and k = Q(v/=5).

5. Let ky,ks be such that [k1 : Q] = ny and [ke : Q] = na. Let K be the
compositum of k1, ka. Assume, in addition, that

[K : k1] =ng and [K : kg] =nq. (0.22)

(a) Prove that a prime p is unramified in K | Q if and only if p is unramified
in k| Q and in ko | Q.
(b) Now, assume further that (A, , Ak,) = 1. Prove that:

(i) Ax = APAT.

(i) If {z1,22,... ,Zn, } and {y1,ya,... ,Yn,} are integral bases of k1 and
ko, respectively, then {z;y; : 1 < i < ny,1 < j < na} is an integral
basis of K.

[These results are actually true without the assumption (0.22).]

6. Let k = Q(a), where o satisfies z3 — 2 = 0. Investigate the distribution
of primes in Ry which lie over p for p = 2,3,5,7 (see Exercise 0.2, No.
7). Show that they are all principal by finding a generator for each one.
Deduce that k | Q is not a Galois extension. If k is the Galois closure of k,
determine the distribution of primes in R, over the primes 2,3,5,7.

7. Describe the distribution of prime ideals over the primes 2, 8 and 5 in

Q(v5,19).
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8. Let I be a non-zero ideal in Ry with Z-basis {51, B2, ... ,B4}. Prove that

_ diser{p1, B2,..., B4}
= A, .

N(I)?

Prove Lemma 0.3.14.

9. Let £ | k be an abelian extension. Show that there are infinitely many
primes P with splitting pattern ([€ : k], 1) if and only if G is cyclic.

10. Show that in any finite extension £ | k of number fields, there are
nfinitely many primes P of k which split completely in £.

11. Deduce from Dirichlet’s density theorem that there are infinitely many
rational primes in any arithmetic progression {an + d | (a,d) = 1}. (This
18, of course, a cart-before-the-horse deduction.)

0.4 Units

Although, in general, we will be concerned with the ideals themselves, it is

important to be able to work at the level of elements, and there, the units

play a crucial role. It should also be noted that principal ideals do not

uniquely determine their generator, but only up to a multiple by a unit.
The units in Ry, denoted by R} or U,

R; ={a € Ry | 38 € Ry such that o8 = 1}

form an abelian group under multiplication. The crucial result on the struc-

ture of this group is Dirichlet’s Unit Theorem, which is described in this

section and shows, in particular, that this group is finitely generated.
From the multiplicativity of the norm, it is easy to see the following:

Lemma 0.4.1 If a € Ry, then a is a unit if and only if Nyg(a) = 1.

Note that —1 € R for all k, so R} always has an element of order 2. The
cyclotomic fields k, = Q(e?™*/™) have the finite cyclic group of order n
generated by £ = ¢2™/™ as a subgroup of Rj, . More generally, any element,
o of finite order in R;, will be a root of unity and so, in particular, will
satisfy |a| = 1. In the cases of the cyclotomic fields k,, for n # 2,3,4,6,
the group of units Rj, can also be shown to have elements of infinite order.
For example, when n = 5, {+1 € R; has inverse —(34+¢&) and |€+1] #1
(see also Exercise 0.4, No. 2).

To state Dirichlet’s Unit Theorem, recall the definitions of r; and rs from
§0.1 as the number of real and complex places of k, respectively.

Theorem 0.4.2 For any number field k, the multiplicative abelian group
R,ZWXZXZX--X1Z (0.23)
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where W is a finite cyclic group of even order consisting of the roots of unity
and the rank of R}, which is the number of Z factors, is T =11 + 12 — 1.

A set of r elements in R}, {u1,u2,...,u,} is called a set of fundamental
units if these elements generate R} /W . For such a set, every unit in R;, can
be uniquely expressed in the form {u$*u3? - - - u® where £ is a root of unity
and a; € Z. Note, in particular, that R; is finitely generated and is finite
only for the fields Q and Q(v/—d). For these quadratic imaginary fields, R},
is cyclic of order 4 if d = 1, cyclic of order 6 if d = 3 and otherwise, it has
order 2.

Dirichlet’s Unit Theorem can, like Theorem 0.2.8, be proved using results
from the geometry of numbers. This gives the structure of the group R} as
indicated, but it is a difficult problem to determine, for a given field %, a
specific set of fundamental units.

In the case of real quadratic fields Q(v/d), then R} = W x Z, where
o(W) = 2, and we can choose a unique fundamental unit « such that
a > 1. It is not difficult to see that it can be characterised by the fact that
there is no other unit 8 with 1 < 8 < «. If, for example, a + bv/d is a unit,
then so are +(a + bv/d)*! = +a + bv/d. Precisely one of these is > 1 and
for that unit, a,b > 0. Thus, for example, 1 + /2 is a fundamental unit
in Q(v/2). More generally, one can determine a fundamental unit in the
cases of Q(v/d), where d # 1(mod 4) as follows: Run through the integers
b=1,2,... and choose the smallest by such that db?+1 is a perfect square,
a?. Then ag +boV/d is a fundamental unit. A similar argument applies when
d = 1(mod 4) (see Exercise 0.4, No. 4).

For other fields, the determination of fundamental units is not an easy
task. In some simple cases, elementary arguments will yield these units,
but, in general, more powerful techniques are required.

Example 0.4.3 Let k = Q(t), where t satisfies ° + z + 1 = 0. This field
has one complex and one real place so that R} = W xZ, where o(W) = 2 in
this case. Note that t is a unit. In fact, we will prove that it is a fundamental
unit. Suppose that p = a+ bt + ct?, where a, b, ¢ € Z, is a fundamental unit,
so that t = +p". Let k denote the Galois closure of k. Then " 4¢ must split
completely in k and so e2™¥/" ¢ k. If Q(e2”/”) Ck,thenn=1,2,34,6.If
n#1,2, k = Q(t,e?™") and x® + x + 1 will split completely in this field.
A direct calculation (e.g., using Exercise 0.3, No. 5), shows that this is not
possible. If n = 2 and assuming we choose ¢ to be the real root, then

—t = (a+ bt + ct?)?
from which we deduce the equations
a? —2bc=0; 2ab—2bc—c?=—-1; b*42ac—c=0.

The second gives that (b,¢) = 1 and so from the third, that ¢ = +1. The
third equation then forces b to be odd, which contradicts the first. Thus we
have that ¢ is a fundamental unit.
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For Dirichlet’s unit theorem, see Ribenboim (1972), Chapter 9 or Stewart
and Tall (1987), Chapter 12.

Exercise 0.4

1. Let k = Q(a), where a is an algebraic integer with minimum polynomial
f- Prove that

Nyela —a) = f(a). (0.24)
2. Recall that 2™ — 1 = Hd|n ®4(x) and that the cyclotomic polynomial
®,(z) is the minimum polynomial of & = ¢*™/™. Prove that £ 4+ 1 is a unit
unless n is a power of 2.
8. Dirichlet’s Unit Theorem shows, in particular, that the group of roots
of unity in Ry, is finite. Prove this directly.

4. Show that the method given‘ in this section for obtaining a fundamental
unit in Q(vd),d # 1(mod 4), d > 0, does indeed do that. Now give a
sitmilar method for the cases where d = 1(mod 4).

5. Find fundamental units in Q(v/7) and in Q(v/13).
6. Determine all the units in k = Q(a), where o satisfies 3 — 2 = 0.

7. Order the Galois embeddings of k such that 01,02,... 0. are real and
Ori4rati = Orqs for @ = 1,2,...,72. Let A be the mapping from R} to
R™+7"2 defined by

)‘(u) = (ln IUI(U)I, coesln IUT1 (u)iv 2In |0T1+1 (U)‘a cees2ln IUT1+T2(U)|)'

Show that A(R}) is a lattice in the r(= r1 + rp — 1)-dimensional subspace

V of R™%72, where
in = 0} .

The volume of a fundamental cell for this lattice times (r1+12)~/? is called
the Regulator of k. It is clearly an invariant of the isomorphism class of
k. If {ui,uz,...,ur} is a set of fundamental units for k, show that the
Regulator of k is the determinant of any r x r minor of U, where U is
the 7 + 1 x r matriz with entries {;|o;(u;)|, where £; =1 or 2 according to
whether o; is real or not.

Calculate the regulator for Q(v/3) and for the field Q(«r), where o satisfies
2 — 2 = 0.

V= {(371,332,.. . 7:1:T1+T2)

0.5 Class Groups

The class group of a number field gives a measure of how far the ring of
integers in that number field is from being a principal ideal domain, as
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the “class” refers to classes of ideals modulo principal ideals (see below).
This group has a role to play when we come to consider the structure
of arithmetic Kleinian groups. Additionally, further investigations into the
structure of arithmetic Kleinian groups lead to the consideration of certain
ray class groups. It is more natural to consider these after the introduction
of valuations and so we will defer the consideration of these ray class groups
until §0.6.

Let us denote the group of fractional ideals of k by I and recall that
it is a free abelian group on the set of prime ideals of Ry (Theorem 0.3.4)
We will call Iy the ideal group of k. The subset Py of non-zero principal
fractional ideals (i.e., those of the form aRy for o € k*), is a subgroup of
I.

Definition 0.5.1
e The class group, Cx, of k is the quotient group Iy /Pj.

o The class number, always denoted h, of k is the order of the class
group.

The second definition depends, of course, crucially on the following funda-
mental and important result:

Theorem 0.5.2 The order of the class group of a number field is finite.

The definition of class group can be formulated independently of frac-
tional ideals. If necessary, to distinguish ideals from fractional ideals, we
use the terminology integral ideals. Note that, by the definition of frac-
tional ideals, each coset of Py in Iy can be represented by an integral
ideal I of Ry. Define two integral ideals I, J to be equivalent if there exist
non-zero elements «, 3 € Ry such that ol = GJ. Thus in the group I,
IJ7' = (a"'B)Rx € Py so that I,J belong to the same coset of P in
I.. Defining multiplication of these equivalence classes of integral ideals by
[I][J] = [IJ] is well-defined and gives the class group.

Clearly, the class number is 1 if and only if Ry is a principal ideal domain.

Again, Minkowski’s Theorem can be used to prove the finiteness of the
class number. This is used to obtain relationships between the norms of
ideals and the discriminant. In particular, Theorem 0.5.2 will follow quite
readily from Theorem 0.5.3 below. The inequality in this result is some-
times referred to as Minkowski’s bound and it is used, in particular, in
computations in specific fields.

Theorem 0.5.3 In every class of ideals of the number field k, where the
degree [k : Q] = n, there exists a non-zero (integral) ideal J such that

N(J) < <%> %\/IAM- (0.25)
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Examples 0.5.4

1. Let k& = Q(v/6), so that Minkowski’s bound gives approximately 2.4.
Since 2 is ramified in the extension Q(+/6) | Q (see Lemma 0.3.10), there
is exactly one prime ideal of norm 2. However, the element 2 + /6 has
norm —2 and so this ideal is principal (see Lemma 0.3.14). Thus h = 1.

2. Let k = Q(+/10), so that Minkowski’s bound gives approximately 3.16.
Again, since 2 is ramified, there is a unique prime ideal Py of norm 2 and
10

since () = 1, there are two prime ideals P3, P3’ of norm 3 (see Lemma

0.3.10). However, one easily checks that a? — 1062 = 42,42 — 10b? =
+3 have no solution, so that the ideals Ps, P}, P4 are all non-principal.
However, P4P{ = 3Ry and since 22 — 10.1? = —6, there is a principal
ideal of norm 6. It thus follows that h = 2.

3. For k = Q(t) where t satisfies 23 +z + 1 = 0, Minkowski’s bound is < 1,
so that A = 1.

For Minkowski’s bound and the finiteness of class number, see Stewart
and Tall (1987), Chapter 10, Ribenboim (1972), Chapters 8 and 9 or Janusz
(1996), Chapter 1, §13.

Exercise 0.5

1. Show that the group Py of non-zero principal fractional ideals of k is
isomorphic to k*/ R},

2. In the number field k, define
kt ={a€k”|o(a) > 0 for all real o}.

Let Py 4 be the subgroup of Py consisting of principal fractional ideals aRy,
where o € k3. Show that the quotient group Iy/Py 1 is finite of order at
most 27~ k. If [Rf : R} N k3] = 2™ show that I/ Py 4 has order h. Find

the order of I/ Py + for k = Q(v/5) and k = Q(v/3).

8. Use Minkowski’s bound to prove that if |Ag| = 1, then k = Q.

4. Show that if k is a field of degree 8 over Q, then A, < —12 or Ay > 20.
Show that k = Q(a), where « satisfies > — 2 = 0 has class number 1.

5
6. Show that the class number of Q(v/5,1) is 1, but that of its subfield
Q(v/-5) is 2.

0.6 Valuations

As indicated in the Preface, it will be shown how to associate with a finite-
covolume Kleinian group a pair of invariants consisting of a number field
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and a quaternion algebra over that number field. So far, number fields have
been discussed and, in particular, their invariants. The general structure
of quaternion algebras will be discussed in Chapter 2. The classification
theorem for quaternion algebras over a number field is given in Chapters
2 and 7. It is a local-global result so that the structure over the number
(global) field is obtained by considering the structures over all of the asso-
ciated local fields. These local fields are the completions of the global field
at the valuations defined on the global field. The framework for this will
be introduced in this and the following two sections.
For the moment, let K be any field.

Definition 0.6.1 A valuation v on K is a mapping v : K — R, such
that

(i) v(z) > 0 for all x € K and v(z) = 0 if and only if x = 0.
(%) v(zy) = v(x)v(y) for all z,y € K.
(i) v(z +y) <v(z)+v(y) for all z,y € K.

There is always the trivial valuation where v(z) = 1 for all x # 0, so we
assume throughout that our valuations are non-trivial. A valuation v on K
defines a metric on K via d(z,y) = v(z — y) for all z,y € K and, hence,
defines K as a topological space.

Definition 0.6.2 Two valuations v,v' on K are equivalent if there exists
a € R such that v'(z) = [v(z)]* forz € K.

An alternative formulation of this notion of equivalence is that the valu-
ations define the same topology on K.

Definition 0.6.3
o If the valuation v satisfies in addition
() v(z + y) < max{v(z),v(y)} for all z,y € K,

then v s called a non-Archimedean valuation.

o If the valuation v is not equivalent to one which satisfies (iv), then v
is Archimedean.

Non-Archimedean valuations can be characterised among valuations as
those for which {v(n.lg) : n € Z} is a bounded set (see Exercise 0.6,
No. 1).

Lemma 0.6.4 Let v be a non-Archimedean valuation on K. Let

o R(v) = {a € Klo(a) <1},
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o PW) = {a € Ko(a) <1}.

Then R{v) is a local ring whose unique mazximal ideal is P(v) and whose
field of fractions is K.

Definition 0.6.5 The ring R(v) is called the valuation ring of K (with
respect to v).

Now let K = k be a number field. All the valuations on k£ can be determ-
ined as we now indicate. Let o : kK — C be any one of the Galois embeddings
of k. Define v, by v,(z) = |o(z)|, where |-| is the usual absolute value. It is
not difficult to see that these are all Archimedean valuations and that v,
and v, are equivalent if and only if (o, ¢”’) is a complex conjugate pair of
embeddings. Out of an equivalence class of valuations, it is usual to select
a normalised one. For real o, this is just v, as defined above, but for a
complex embedding o, choose v, (z) = |o(x)|2.

Now let P be any prime ideal in Ry and let ¢ be a real number such that
0 < c < 1. For z € Ry, \ {0}, define vp (and np) by vp(z) = P, where
np(x) is the largest integer m such that £ € P™ or, alternatively, such
that P™ | zRy. It is straightforward to show that vp satisfies (1), (i) and
(iv). Since k is the field of fractions of Ry, the definition extends to k* by
vp(z/y) = vp(x)/vp(y). This is well-defined and gives a non-Archimedean
valuation on k. Alternatively, the functions np can be defined by using the
unique expression of the fractional ideal x Ry, as a product of prime ideals:

zRy = [[ P ).
P

Changing the value of ¢ gives an equivalent valuation and a normalised
valuation is frequently selected by the choice (recall Definition 0.3.5) ¢ =
1/N(P) so that

vp(z) = N(P)~"P@),

On a number field k, all the valuations, up to equivalence, have been
described in view of the following crucial result:

Theorem 0.6.6 Let k be a number field. Any non-Archimedean valuation
on k is equivalent to a P-adic valuation vp for some prime ideal P in Ry.
Any Archimedean valuation on k is equivalent to a valuation v, as described
earlier for a Galois monomorphism o of k.

For prime ideals P; # P2, the valuations vp,,vp, cannot be equivalent.
Recall that P; + Py = Ry, so that 1 = z +y with £ € P; and y € Ps. Thus
np, () > 1. If np,(z) > 1, then np,(1 —y) and np,(y) > 1 so that 1 € Ps.
Thus np, (x) = 0 so that vp,, vp, cannot be equivalent.

An equivalence class of valuations is called a place, a prime or a prime
spot of k. There are r; + ro Archimedean places on k and these are referred
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to as the infinite places or infinite primes of k (recall §0.1). The classes of
non-Archimedean valuations are known as the finite places or finite primes
and these are in one-to-one correspondence with the prime ideals of Ry. To
avoid confusion, we will use p to denote any prime, finite or infinite, in k&,
but we will reserve P for a non-Archimedean prime or prime ideal in k.

For the valuations vp, the image of £* under vp is a discrete subgroup
of the positive reals under multiplication. It is isomorphic to the additive
group np(k*), which is Z. Let # € Ry be such that np(m) = 1. Such
an element is called a wuniformiser and will be used heavily in the next
section. Then the unique maximal ideal P(vp) = wR(vp) and the local
ring R(vp) will be a principal ideal domain, all of whose ideals are of the
form 7" R(vp). Since k is the field of fractions of Ry, the local ring R(vp)
can be identified with the localisation of R at the multiplicative set R\ P,
and k is also the field of fractions of R(vp). The unique maximal ideal in
R(vp) is PR(vp) = mR(vp) and the quotient field R(vp)/mR(vp), called
the residue field, coincides with Ry /P.

A principal ideal domain with only one maximal ideal is known as a
discrete valuation ring so that these rings R(vp) are all discrete valuation
rings. More generally, these can be used to give an alternative character-
isation of Dedekind domains (see Definition 0.3.1)

Theorem 0.6.7 Let D be an integral domain. The following are equival-
ent:

1. D is a Dedekind domain.

2. D is Noetherian and the localisation of D at each non-zero prime
ideal is a discrete valuation ring.

Example 0.6.8 Let k = Q. Then there is precisely one infinite place rep-
resented by the usual absolute value v(xz) = |z|. The finite places are in
one-to-one correspondence with the rational primes p of Z. For a fixed
prime p, the corresponding finite place can be represented by the normal-
ised p-adic valuation. Thus for z € Z, v,(z) = p~ "), where n,(x) is the
highest power of p dividing x. Then

R(vp) ={a/beQ[p [ b},

and since n,(p) = 1, the unique maximal ideal is the principal ideal pR(vp).
Note that the field of fractions of R(vp) is again Q and the quotient field
R(vp)/pR(vp) is the finite field F,,.

We conclude this section with a discussion of ray class groups, now that
the appropriate language is available to do this. A ray class group is defined
with respect to a modulus in k where the following definition holds.
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Definition 0.6.9 A modulus in k is a formal product

M= Hpm(p)
P

over all finite and infinite primes, with m(p) = 0 for all but a finite number,
m(p) = 0 if p is a complez infinite prime, m(p) = 0,1 if p is a real infinite
prime and m(p) is a positive integer otherwise.

Thus a modulus is a finite product which can be split into two parts: the
infinite part My, where the product is over the real primes and the finite
part My, where the product is over a finite number of prime ideals.

Recall that the ideal group I is the free abelian group on the prime
ideals of k. Let I (M) denote the subgroup of those fractional ideals that
are relatively prime to all P, where P | My, so that I (M) is generated by
prime ideals not dividing M.

With respect to M, we introduce the following equivalence relation on
elements of k*.

Definition 0.6.10 Let o € k*. Then o = 1(mod* M) if

e o € R(vp) and a = 1{(mod (P(vp))™™P)) for all P with m(P) > 0,

e o(a) > 0if o is the real embedding corresponding to an infinite prime
p of M with m(p) = 1.

We denote by k73, the set of elements a € k* such that & = 1(mod* M).
This is a subgroup of k* and if P,(M) denotes the fractional ideals {aRy
a € k3, }, then Py(M) is a subgroup of Ix(M).

Definition 0.6.11 The ray class group (mod M) is defined to be the quo-
tient group Iy(M)/Pe(M).

These groups also have finite order and their orders are closely related to
h. We introduce some temporary notation to describe this relationship.
Let k*(M) denote the subgroup of k* consisting of those elements whose
ideals are prime to Mg and Py(M) denote the corresponding subgroup of
principal fractional ideals. It can be shown that the ideal class group Iy / Pk
is isomorphic to Ix(M)/P;(M). Thus if haq denotes the order of the ray
class group (mod M), then haq is h times the order of Py(M)/Py(M).
However, this group is obviously a factor group of k*(M)/k},. This last
group splits as a product of local factors corresponding to the primes in M.
If p is a real prime, the factor is R*/RY, whereas if p = P, then the factor
is the group of units (R(vp)/ P(Up)m(P))*, which is finite. By analogy with
rational primes, we denote the order of this group by ¢(P™")), generalising
Euler’s function. A detailed analysis yields the following:
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Theorem 0.6.12 The order of the ray class group (mod M) is given by

h ¢(Mg) 21Meel

0.26
[Ry : Ry Nkl ( )

where [Moo| denotes the number of real places in M.

Remark If we take M to be the product of all real places of k, then the
ray class group in that case is that described in Exercise 0.5 No. 2 so that
its order depends on which units in R}, are totally positive.

For valuations and results on valuations in number fields, see Janusz
(1996), Chapter 2, §1 and §3 or Artin (1968), Chapter 1. For discrete valu-
ation rings, see Janusz (1996), Chapter 1, §3. For ray class groups, see
Janusz (1996), Chapter 4, §1 or Lang (1970), Chapter 6.

Exercise 0.6

1. Let v be a valuation on the field K. If {v(n.1y),n € Z} is bounded by
L, prove that for all x,y € K and positive integers m,

v(z +y)" < (m+ 1) L(max(v(z),v(y)))™.
Hence show that the valuation v is non-Archimedean if and only if the set
{v(n.1g),n € Z} is bounded.

2. Let v be a non-Archimedean valuation on K. Show that U(v) := {a €
K | v(a) = 1} is the group of units in R(v). Hence prove the result of
Lemma 0.6.4 that P(v) is the unique mazimal ideal in R(v).

3. Prove that the P-adic function defined above does indeed satisfy (i), (ii)
and (iv). Indeed, prove that

vp(x +y) = max(vp(z), vp(y))

whenever vp(x) # vp(y).

4. Prove the product formula for the number field k; that is, if ¢ € k*,
then [, vp(z) = 1, where the product is over all primes of k, both finite
and infinite, and each v, is a normalised valuation as described in this
section.

5. Let k = Q(t) where t satisfies 2> + x+1=0. Let « = t + 2. Find all
primes p, both finite and infinite, such that vp(a) # 1.

0.7 Completions

Let K be a field with valuation v. Then as we have seen, defining d(z,y) =
v(z — y) makes K a metric space.
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Definition 0.7.1 The field K is said to be complete at v if every Cauchy
sequence in K converges to an element of K.

For a number field &k, we have indicated how to obtain all valuations. The
field & is not complete with respect to any of these valuations, but for each
valuation v, one can construct a field k&, in which k embeds, such that the
valuation v extends to k, and k, is complete with respect to this extended
valuation. These field are the completions of k.

For the moment, consider any field K with a valuation v. Let C be the set
of all Cauchy sequences in K and let A/ be the subset of null sequences, (i.e.,
those that converge to 0). Under pointwise addition and multiplication, C is
a commutative ring with 1 and A is an ideal of C. For x € K, the mapping
x — {x} + N, where {z} is the constant sequence, defines an embedding
of K in the quotient K := C/A. It can be shown that K is a field. (See
Exercise 0.7, No. 1).

If {a,} € C, then {v(a,)} is a Cauchy sequence in R and so it has a
limit. It then follows, defining ¢ on K by

({an} +N) = nan;o v{an),

that ¢ is well-defined. Note that 9|, = v. With some effort, the following
can then be proved:

Theorem 0.7.2 The field K is complete with respect to ©. Furthermore,
it is unique. More generally, if o : K — L is a field embedding, where L
has a valuation v1 with vi(o(x)) = v(z) for each x € K, then there is a
unique embedding & : K — L such that vy (6(x)) = 0(z) for all z € K and
the following diagram commutes:

K % L
1 1
K % L

Definition 0.7.3 The field K is called the completion of K at the valu-
ation v.

The above theorem justifies calling this field the completion, as it is
unique up to a valuation-preserving isomorphism. Equivalent valuations
on K determine the same field K and the valuations extend to equivalent
valuations on K. Furthermore, non-Archimedean valuations extend to non-
Archimedean valuations by Exercise 0.6, No.1 and Archimedean valuations
extend to Archimedean valuations.

For these Archimedean valuations, we have the following theorem of Os-
trowski:
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Theorem 0.7.4 Let K be a field with an Archimedean valuation. If K is
complete, then K is isomorphic to R or C and the valuation is equivalent
to the usual absolute value.

Thus consider again a number field k£ and the places on k, (i.e., the equi-
valence classes of valuations on k, as described in Theorem 0.6.6).

Definition 0.7.5 If v is a valuation on k, let k,, denote the completion of
k at v. If v corresponds to a prime ideal P, we will also write this as kp.
We use, if necessary, i, or ip to denote an embedding of k into k, or kp.

If v is Archimedean, then &k, =2 R or C, by Theorem 0.7.4. Furthermore,
if v belongs to the place corresponding to the embedding o, there will be
an embedding 7, such that 9(i,(x)) = |o(z)].

If v is non-Archimedean, then v belongs to a place corresponding to a
prime ideal P. The field kp is usually referred to as a P-adic field. The
valuation ring of kp with respect to the extended valuation vp is the ring
of P-adic integers and is denoted by Rp. Recall that the valuation ring
R(vp) of k with respect to vp is a discrete valuation ring whose unique
maximal ideal is generated by an element m € Ry. The same can be proved
for the ring Rp. More precisely, the following holds:

Theorem 0.7.6 The valuation ring Rp of the completion kp is a discrete
valuation ring whose unique mazximal ideal is generated by ip(w). Further-
more, Rp/ip(n)Rp = R(vp)/mR(vp), the residue field.

This result follows because the image of k% under ¢p is the same as the
image of k* under vp. For, if a € k3, then a = {an} + N. Hence

07 bp(@) = lim vp(an) = lim "=,

However, the sequence {c™ : n € Z} is a discrete sequence, so that p(a) =
c™ for some ng. Also Up(ip(m)) = vp(m) =c.

Notation Because we have given a number of constructions related to
the prime ideal P of Ry, we re-emphasise for clarity the notation for each
of these constructions. Thus vp is the valuation on the number field k and
R(vp) and P(vp) are the valuation ring and the unique maximal ideal,
respectively, of the valuation on k. The completion of & at vp is the P-
adic field kp and the unique extension of the valuation vp on k to kp is
denoted ¥p. Subsequently, we may drop the hat. An embedding of k£ in
kp is denoted by ip. The valuation ring of P-adic integers of ¥p in kp is
denoted by Rp. We will denote its unique maximal ideal by P and note
that P = mRp, where we have identified 7 and its image ip (7).
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Definition 0.7.7 Such an element m as described in the above theorem, is
called a uniformiser in kp. Thus a uniformiser in kp is an element of Ry,
(or R(vp), or Rp) such that vp(m) generates the group vp(k*) = 0p(k}).

We can use this to give an alternative description of the elements of the
P-adic field kp as power series. Let {c;} be a set of coset representatives of
the ideal P in Rp, which can be identified with a set of coset representatives
for the residue field. This set will thus have N(P) elements and is always
chosen so that 0 represents the zero coset.

Theorem 0.7.8 Fvery element o # 0 in kp has a unique expression in
the form

a=mn" (i Cin’ﬂ'n> (0.27)

n=0
where ¢;, # 0.

(See Exercise 0.7, No. 3.)

The finite prime P of a number field k£ gives rise to a complete field
kp. If Q is a prime in a finite extension ¢ | k& which lies over P, then
vg | k is readily shown to be equivalent to vp. Thus there is an embedding
i kp — £go by Theorem 0.7.2. Furthermore, the image in g of a basis for
£ | k will span £g over kp. Thus £g | kp is a finite extension.

In these circumstances, we have the following uniqueness result:

Theorem 0.7.9 Let K be a field which is complete with respect to a non-
Archimedean valuation v whose valuation ring R is a discrete valuation
ring. Let L be a finite extension of K of degree n. Then there is a unique
extension v’ of v to L such that L is complete with respect to v' and v’ is
determined for all y € L by

V'(y) = v(Ngx (@)™ (0.28)
The valuation ring R’ of v' is also a discrete valuation ring.

If M is the unique maximal ideal in R and M’ in R/, then, as these are
Dedekind domains, we have MR’ = M’® for some integer e. In addition,
if f=[R'/M':R/M)], then

n=I[L:K|=ef. (0.29)
Asin §0.3, we say that M is unramified in L | K if e = 1. Since the maximal

ideals are unique in these cases, we describe the extension L | K as being
unramified if e = 1.
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Consider, again, a finite extension of number fields ¢ | ¥ and a prime
ideal P of k with

PRe = Q4 QF - Q%. (0.30)

For each of the ideals Q; there is an embedding 7 : kp — £g,. By localising
at Q; in Ry, we see that we can choose a uniformiser 7’ in £g, such that
i(r) = 7'*, with 7 a uniformiser in kp. Thus if e; = 1, then the extension
is unramified. Also,

[lg, :i(kp)] =ni =eifi

where f; is the degree of the extension of residue fields, [Ry/Q; : Rix/P],
since, for example, Rp/P = Ry/P.

The notation used here can be extended to valuations. Thus if v is a
valuation corresponding to the prime ideal P, let w; be the valuation on ¢
corresponding to Q;. Thus we say w; | v and for the extension ¢ | k, there
will be exactly g valuations w; on £ such that w; | v. The completions of £
at these valuations, and also the Archimedean valuations, can be combined,
as the following result shows.

Theorem 0.7.10 Let ¢ | k be a finite extension of number fields and let v
be a valuation on k. Then

£®kky =[] lw. (0.31)
wlv

Example 0.7.11 In the field k¥ = Q(t) where t satisfies > +x+1 = 0, con-
sider the completions at the prime ideals lying over the rational primes 2, 3
and 31. These were discussed in §0.3 and again using Kummer’s Theorem,
we can obtain uniformisers in these completions. Since 2Ry, is a prime ideal
in Ry, 2 will be a uniformiser for kp, and [kp, : Q2] = 3. The two prime
ideals P4 and P4 are generated by ¢t —1 and 2+t — 1, respectively, so these
are uniformisers for kp; and kpy, respectively. Note that [kp; : Q3] = 1
and [k’pé/ : Q3] = 2. These extensions are all unramified. In the case of 31,

we have 31Ry, = P4, Py, * with P}, generated by ¢t — 3 and P3; generated
by t —14. Thus [kp;, : Qs1] = 1 and [kpy, : 3(Q31)] = 2. In the second case,
the extension is ramified.

Finally, we give a form of Hensel’s Lemma, which is critical for a detailed
discussion of P-adic fields.

Theorem 0.7.12 (Hensel’s Lemma) Let Rp be a ring of P-adic in-
tegers and let k denote the residue field. Let f(x) be a monic polynomial in
Rplz] such that

f(z) = g(z)h(z)
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where g, h € klx] are relatively prime polynomials. T hen there exist poly-
nomials g,h € Rplz] where g and h reduce mod P to g and h, with
deg g = deg g, deg h = deg h and f(z) = g(z)h(z).

For the moment, we will use this to prove the result below on unramified
quadratic extensions. We include a proof, as this is central to deducing the
structure of quaternion algebras over local fields (see §2.6).

Theorem 0.7.13 The field kp has a unique unramified quadratic exten-
sion L. Furthermore, there exists u € R} such that L = kp(y/u). Also
R} C Nipjke(Rr) and the group k3 /Npjk,(L*) has order 2 with cosets
represented by 1 and m.

Proof: To simplify notation, let K = kp and denote the residue field by K.
Note that K = F, for some g = p". Let  be an algebraic closure of K and
let L C Q be a splitting field of 29" — z over K. The residue field L is then
the field of q2 elements, [L : K] = 2 and 27 — = € L{z] has distinct roots.
Thus by Hensel’s Lemma, there is a primitive root a of 291 —1in L such
that L = K{(a). Now, the discriminant of 29°~1 — 1 is not divisible by p.
Dedekind’s Theorem 0.3.8 holds in any Dedekind domain and so we deduce
that the extension L | K is unramified. Thus from (0.29), [L : K] = 2.

If L | K is a quadratic unramified extension, then L is the unique quad-
ratic extension of F, and L = Ry, /PRr. Thus as earlier, L = K (a), where
« is a primitive root of e

Let L = K(B) where 82 € K. If 7 is a uniformiser of K, it can also
be taken to be a uniformiser of L. From Theorem 0.7.8, 32 = n"u, where
u € R%. In the discrete valuation ring Ry, this implies that r is even. Hence
L = K(y/u) with u € R}.

Suppose that ™ € Npx(L*). Then from (0.28), vp(7) = v'(y)* where v’
is the unique extension to L, for some y € L. However, this is impossible
as the extension is unramified and 7 is a uniformiser.

Finally, we show that R5 C Ny k(RL). Since K is finite, the norm and
trace maps L — K are onto. Let * € R%. Pick ag = by € R such that
Npk(bo) = z(mod P). Suppose we have constructed a, = by + b7+ +
bp_17™ ! such that Npk(an) = z(mod 75") Let ant1 = an + bpm™, by €
Ry, be a candidate for Np|g(an+1) = z(mod Pt1), Let o be the non-
trivial automorphism in Gal(L | K). Thus

NL|K(an+1) = (an + bn"rn)(a(an) + U(bn)ﬂ'n)
= Ny (an) + 7" (Trp ik (0(an)bn)) (mod 75"+1)
=z 4+ 7"(y + Trp k(0 (an)by)) (mod P,

Since Tr is onto at the residue ﬁpld level, we can choose b, € Ry such
that Trp x(o(an)bn) = —y(mod P). Thus we have constructed a Cauchy
sequence {an} and we let a = limay,.
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The last part of the theorem now follows from the representation of the
elements of K given in Theorem 0.7.8.0

For information on completions, on power series representations and
on Hensel’s Lemma, see Janusz (1996), Chapter 2. See also Lang (1970),
Chapter 2, §1, Artin (1968), Chapters 2 and 3 and O’Meara (1963), Chapter
1.

Exercise 0.7

1. Show that the set of Cauchy sequences C in a field with valuation is a
commutative ring, that N, the subset of null sequences, is an ideal of C and
that the quotient K = C/N is a field.

2. Let k = Q(v/2) and let a = {a,}, where an, = V2 + (2 + V/2)". Show
that a, is a Cauchy sequence with respect to v, and vp, where o is the
non-trivial automorphism in Gal(k | Q) and Py is the unique prime ideal
of norm 2. Show that if a is a Cauchy sequence with respect to any non-
trivial valuation v on Q(\/2), then v is equivalent to vy or vp,. Determine
Oy(a) and Op,(a).

3. Let u be a unit in Rp. Deduce that u has a unique expression in the
form >~ ¢;, 7", where ¢;, # 0. Hence deduce Theorem 0.7.8.

4. In the 3-adic numbers Qs, choose coset representatives to be 0, 1 and
2. Find the unique power series expressions for the 3-adic integers 1/2 and
1/4. Show that the 3-adic integer % "\ an3™, where an(ni1)/2 = 1 for all
n > 0 and a,, = 0 otherwise, is not a rational.

5. Let P1,Pa,..., Py be distinct prime ideals in k. Prove that there exists
an element m € Ry which is simultaneously a uniformiser for all kp, for
i=1,2,...,n. For k = Q(\/—5) and the prime ideals P2, P}, P§ of norms
2 and 3, find such an element.

6. If kp is a P-adic field, prove that there exists an exact sequence

———R;; k; —»—Z———>1.

1

A prime ideal P is called non-dyadic if N(P) is not a power of 2. Prove
that k;‘,/k;;z has order 4 if P is non-dyadic.

0.8 Adeles and Ideles

In the preceding section, we associated with each number field k an infinite
collection of completions {k,}. These are the local fields associated with
the global field k. Number fields will be the only global fields considered
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here. The additive and multiplicative groups of all these local fields can be
welded together to form adeles or ideles, and later, this process will also
be carried out for groups related to quaternion algebras. The key feature
is that these local fields give rise to locally compact topological groups and
so duality and Haar measures can be utilised. The Archimedean fields
are simply R and C and the topology is the usual one. Now consider the
topology on the fields kp. The operations of addition and multiplication
are continuous in the metric space so that kp is a topological field and
the additive and multiplicative groups k; and k3, are abelian topological
groups. Let 7 be a uniformiser of kp so that kp = Upczn™ Rp. Now Rp is
an open and closed set and the set {a + #"Rp : n > 0} is a fundamental
system of neighbourhoods of a. The topology is clearly Hausdorff. It is also
locally compact and we indulge ourselves by including a proof.

Theorem 0.8.1 The complete field kp is locally compact and its valuation
ring Rp is compact.

Proof: We first show that Rp is compact. As earlier, let {c;} be a (finite)
set of coset representatives of P in Rp. Let {Ux, A € Q} be an open cover
of Rp, which we suppose has no finite subcover. Now Rp = U;(¢c; + 7Rp),
so there is a ¢;, such that ¢;, + TRp has no finite subcover. Now

ciy +7Rp = Us(ciy + cim + T2 Rp)

so that the argument can be repeated.
The sequence {Z?:O‘cij 77} is Cauchy and so converges to 2;10 cy;m
in Rp. Now Z;’io ci;m € Uy for some A. As U, is open, there exists N

such that Z;O:O Ci, 7 + 7V Rp C Uy. However, then Z;V:O ci; 7w + xNt1Rp
has a finite subcover. This contradiction shows that Rp is compact. Since
kp = Un™Rp, it follows that kp is locally compact. O

This theorem shows that the additive topological group k';; is locally
compact and its subgroup Rp is compact. For the multiplicative group &,
the subgroup of units

U:R;):{Ci+7TR’P|Ci—_;éO}
is also compact.

Corollary 0.8.2
1. Rp is a compact subgroup of the locally compact topological group k;.
2. R} is a compact subgroup of the locally compact topological group k3.

Note also that since each element of Rp has the form )" ¢;, w7, it is a limit
of the partial sums {Z?:c) c;,m}, each of which lies in Ri. Thus Ry is
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dense in Rp and k is dense in kp.

For the moment, let G be any locally compact topological group. A
regular Borel measure y on G such that

e u(V)>0if V is an open set,
e u(F) < oo if F is a compact set,
e u(g.A) = u(A) for all g € G and Borel sets A

is a left Haar measure on G. A right Haar measure could equally well be
defined. The basic result is as follows:

Theorem 0.8.3 Let G be a locally compact topological group.

1. There exists a left Haar measure on G.

2. If p1 and po are left Haar measures on G, then there exists r € RT
such that pa = ry;.

Thus Haar measures are unique up to a scaling and by a suitable choice, a
normalised measure can frequently be chosen.

Let G = (kp,+), in which Rp is compact. Thus we can choose a normal-
ised Haar measure p such that pu(Rp) = 1. We note that this choice is com-
patible with our earlier choice of a normalised valuation on k in the follow-
ing sense. Consider u(7™ Rp). By left invariance, p(a+#"Rp) = u(nr" Rp).
Now

7" Rp = Us(n™¢c; + "1 Rp)
where this is a disjoint union running over the coset representatives of P in
Rp. Thus p(n"Rp) = N(P)u(n" "1 Rp). Hence u(r"Rp) = N(P)~™". Thus
for any y € kp, we have

w(yRp) = op(y) (0.32)

where the measure on the left is the normalised Haar measure and the
valuation on the right is the extension of the normalised valuation on k.
Further consideration of these normalised measures will arise later.

We now show how to form adelic groups. For later applications, we put
this in a general context.

In the following, we use the expression “almost all” to mean “all but a
finite number”. Let {G : A € 2} be a family of locally compact Hausdorff
topological groups and let £2p be a finite subset of ). For each A € O\ Qp,
there is a given compact open subgroup H) of G,.

Definition 0.8.4 The restricted direct product of the Gy with respect to
the Hy is the subgroup of the direct product defined by

G = {a: — {aa} € [T Ga| 22 € Ha for almost all A }. (0.33)
AEQ
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The group G is topologised by taking as a neighbourhood system of the
identity, the sets [[ Ux, where Uy is an open neighbourhood of the identity
in Gy for all X and Uy = H) for almost all A.

By Tychonov’s theorem, this defines G as a locally compact topological
group and the group and its topology is independent of the choice of finite
subset Q.

In all of the cases we will consider, the index set will be the set of all
places of a number field ¥ and 2y will always contain the finite subset of
Archimedean places, usually denoted Q.

Thus let k& be a number field and @ = {v : v a place of k}. Then the
completions k; are all locally compact and for the non-Archimedean places
R, is the designated compact open subgroup. The group of adéles is then
the restricted direct product of the k" with respect to the R,,. In this case,
the product is also a ring and is referred to as the ring of adeles. It will be
denoted k4.

For the same number field, take the multiplicative groups k;, as the loc-
ally compact groups and for v non-Archimedean, take the units R} as the
designated subgroups. From this, we obtain the idéle group of k, denoted
kY.

ANote that the ring k4 has zero divisors and that k% is the group of units
of k4. However, the topology on k% is not the subspace topology from k4.
In fact the relation is that the topology on k% agrees with the subspace
topology under the embedding z — (z,z ') of k% in ka X k4 (see Exercise
0.8, No. 4).

For each z € k, we know that vp(x) = 1 for all but a finite number of
P. Thus, since k embeds in k, for each v, there is an embedding of & in
k4. In the same way, each z € k* is a P-adic unit for almost all P, and
k* embeds in k%. Under this embedding, k inherits a topology from k4.
It is the discrete topology. For, let us choose the normalised valuations v,
at each place of k, so that we can use the product formula (see Exercise
0.6, No. 4). Let z € k. By the product formula, all v,(x) are bounded and
vp(x) = 1 for all but a finite number. However, x being arbitrarily close to
0 would contradict the product formula. Via the embedding z = (z,z71),
it follows that k* is also discrete in k7.

There are further important results concerning these structures, such as
the compactness of the quotient k 4/k, the denseness of k+k, in k4, and so
on, which have important number-theoretic ramifications. As we will have
to develop similar results in a wider context to obtain results on arithmetic
Kleinian and Fuchsian groups, further discussion of these topics will re-
emerge in Chapter 7.

For an initial introduction to adeles and ideéles, see Cassels and Frdlich
(1967), Chapter 2.
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Exercise 0.8
1. Prove that Rp is the unique mazimal compact subring of kp.

2. Let nZ be an integral ideal. Show that for all p such that p /n, the
closure of nZ in Qp is Zyp.

3. Let k and £ be number fields with ¢ | k a finite extension. Let Q be
a prime ideal of £ lying over a prime ideal P of k so that we have an
embedding i : kp — £g. Prove that i is continuous and deduce that i(kp)
is closed in £g.

4. Prove that k% is the group of units in k4 and that the topology on k%
is the subspace topology of k% embedded in ka X ka via z — (z,z71).

0.9 Quadratic Forms

Quadratic forms arise naturally in various guises throughout the subsequent
chapters and, indeed, large parts of the theory of quaternion algebras over
number fields and quadratic forms are closely intertwined. Throughout,
quadratic forms appear in mainly geometric contexts. It is thus appropri-
ate to introduce the basics of quadratic forms in a geometric, coordinate-
free manner. Throughout this section, all fields will be assumed to have
characteristic # 2.

Definition 0.9.1 Let V be a finite-dimensional vector space over a field
K and let B : V xV — K be a symmetric bilinear map. Then the pair
(V, B) is a quadratic space.

The bilinear map determines a quadratic map q : V. — K by g(v) =
B(v,v) so that g(av) = a®q(v), for all a € K. More generally, B and q are
related by

2B(v, w) = q(v +w) — q(v) — g(w) (0.34)
and so the quadratic space may also be denoted by (V q).
Choosing a basis vi,va,...,vn of V| we obtain a quadratic form, also
denoted here by ¢, on n variables z;,z2,... ,z, a8
9(z1,22,... ,xn) = »_ B(vi, vj)ziz; (0.35)
2%}

with associated symmetric matrix M = [B(vj, vj)]. A change of basis will
give rise to a congruent symmetric matrix and, more generally, two quad-
ratic forms over K with associated matrices M and M’ are equivalent if
there exists a non-singular matrix X € GL(n, K) such that

M =X'MX.
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In geometric language, this equivalence corresponds to isometric quadratic
spaces (V, B) and (V’, B’) where an isometry T is a K-linear isomorphism
7:V — V'’ such that

B'(1(v),7(w)) = B(v,w) Vv,weV. (0.36)

A quadratic space is regular if the dual map v — B(,v) from V to its dual
V* is an isomorphism and this corresponds to a non-singular quadratic
form where the matrix M is non-singular.

Lemma 0.9.2 Let (V, B) be a regular quadratic space and W a subspace
of V. Then

1. dim(W) + dim(W+) = dim(V);
2. (WHt=w.
Here W+ denotes the orthogonal complement of W; that is,
Wlt={veV|Bv,w)=0 VweW}

The restriction of B to W makes W a quadratic space, but note that V'
being regular does not imply that W need be regular. A vector v # 0 is
called isotropic if ¢(v) = B(v,v) = 0. A quadratic space is called isotropic
if it contains isotropic vectors and is called anisotropic otherwise. Note
that if (V, B) is an isotropic space with g(v) = 0, then the one-dimensional
subspace (v) is not a regular quadratic space.

Example 0.9.3 Let (V, B) be a four-dimensional quadratic space over Q.
With respect to a basis vi,va,vs,vq of V| let M be the diagonal matrix
with entries 2,1,1 and —1. Then V is regular and isotropic, as g(vs + v4) =
0. If Wi = (va+va), then Wit = (vy,va, v +va). If Wo = (vq,v2),
W3 = (vq,va), Wy = (v3,va) and W5 = (v + v2 + V3, Va), then Wy and
W3 are anisotropic subspaces whereas Wy and Wj5 are isotropic. Further-
more, Wy and W3 are not isometric whereas W, and Wy are isometric.

Quadratic spaces (V, B) may be decomposed into orthogonal summands
W1 and Wy, where V = W1 dW; and B(wy,wz) =0 forallw, € Wy, ws €
Wa. This is denoted W1 1 Ws,. In particular, if V' is not regular, then V =
rad(V) LW, where rad(V) is the kernel of the dual map and W is a regular
subspace.

If a € K* and (V, B) is a regular quadratic space over K, then (V, B) is
said to represent a if 3 v € V such that ¢(v) = a. In that case V = (v) LW,
where W is a regular subspace. Thus by repeating this, we obtain,

Lemma 0.9.4 If (V,B) is a quadratic space over K, then V has an or-
thogonal basis vi1,Va,..., vy such that the associated matriz M is diag-
onal. In other words, every quadratic form is equivalent to a diagonal form
d1z3 + daz + - + dpzl.
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We can also define the (external) orthogonal sum V; L Vs of two quadratic
spaces (V1, B1), (Va, B2) with bilinear map B the sum of B; and B via

B((v1,v2), (v1,v3)) = Bi(v1,Vv}) + Ba(va, v5).

The representation of an element a € K* by (V;, By) is then equivalent to
the existence of an isotropic orthogonal sum of the form Vi L(vsa), where
g2(v2) = —a.

An important invariant of a regular quadratic space is its determinant
or discriminant. This is an element of the quotient group K*/K *2 and it
is defined to be det(M)K*? where M is the symmetric matrix obtained
with respect to any basis of V. For an orthogonal basis as described above,
it will be dids...d,K*2. Note, in Example 0.9.3, that the subspaces W5
and W3 have determinants 2Q*? and —2Q*? respectively, and so cannot be
isometric.

A quadratic form over a field K can clearly be regarded as a quadratic
form over any extension field L. Alternatively, the scalars in a quadratic
space (V, B) can be extended to (V ® L, B), where B is now defined on
the extended vector space. If (V, B) and (V’, B') are isometric quadratic
spaces over K, then their extensions will be isometric quadratic spaces over
L. Of course, non-isometric spaces may become isometric over an extension
field and, in the same way, an anisotropic space may well become isotropic
under extension of scalars.

If k is a number field, then from the preceding section we can embed k& in
the completions k, for each finite and infinite place v of k. Thus if (V, B)
is a regular quadratic space over k, then it gives rise to regular quadratic
spaces over the local fields, C, R, and kp for each finite place P.

Regular quadratic spaces over C are classified up to isometry by their di-
mension and over R by their dimension and signature, which is the number
of positive eigenvalues minus the number of negative eigenvalues.

Over the P-adic fields, the classification is more complicated and we will
not go into it in detail. However, we make some important remarks in these
cases. Recall that a P-adic field kp is called dyadic if N(P) is a power of 2
and otherwise non-dyadic. For non-dyadic fields, reduction to the (finite)
residue field is enough to determine the isotropicity of quadratic spaces.
First note that a regular quadratic form over kp with uniformiser 7 will be
equivalent to one of the form dyx?+dsz3+- - -+dna2, where either d; € R}
or d; = wd; with dj € R}, since we can always adjust modulo squares. If
n = 2 for example, then such a form is isotropic if and only if —d1_1d2 is
a square in ;. However, an element a € R} is a square if and only if its
image a is a square in the residue field. This follows from Hensel’s Lemma,
the restriction to non-dyadic being implied by the requirement in Hensel’s
Lemma that 22 — @ factorises in the finite field into relatively prime factors.
More generally, we have the following result for quadratic forms.
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Theorem 0.9.5 Let kp be a non-dyadic field with residue field k. Let (V, q)
be an n-dimensional quadratic space over kp, where V. =V, 1V,, and q =
q1Lg2, where qi1(z1,z2,... ,2,) = d17? + dox3 + - - - + dra? with d; € R}
and QZ($T+17 cee 7wn) = qu(xr-i-l’ s 7-Tn) = "T(dr+1$%+1 + -+ dnx?z)
with d; € R},. Then (V,q) is anisotropic over kp if and only if (V1,q1) and
(Va, @) are both anisotropic over k.

Remark In applications later in the book, this result will only be required
for n = 3. A proof of this result for that case follows the discussion of
quaternion algebras over local fields in §2.6.

This theorem reduces calculations to quadratic spaces over finite fields.
If Fy is a field of odd order g, Fy is cyclic of even order so that Iy /]F;2
has order 2. Let 1 and s be coset representatives and consider any three-
dimensional form over F,. Up to a scalar, it will be equivalent to one of
the diagonal forms diag{1,1,1} or diag{1,1,s}. If —1 € ]F;z, then these
22, we can take s to be —1 and
so diag{1,1, —1} is isotropic. Also the sets ]F‘;2, 1+ F;z are unequal and
have the same cardinality. So, 3 z € F} such that 1 + 2% ¢ IFZZ, but then
—1 = (1+ 2?)y? and so diag{1, 1,1} is isotropic. Thus the following holds:

forms are clearly isotropic. If —1 ¢ F

Corollary 0.9.6 Let kp be a non-dyadic field. Then any quadratic form
diz? + doz} + d3z3 with d; € R} is isotropic.

The situation for dyadic fields is considerably more complicated.

Example 0.9.7 Consider the quadratic space over Q with diagonal form
z?+3x% +5z2. With the obvious embeddings of Q in Q,, we can regard this
as a quadratic form over the p-adic fields Q,. For p # 2, 3,5, this form is
isotropic by Corollary 0.9.6. For p = 3, we consider the summands (V7,¢1)
and (Vs, ¢5), where q1 = 2% + 5z% and ¢} = z%. Since z1 + 522 = 0(mod 3)
has a solution, the form is isotropic over Q3 by Theorem 0.9.5. For p = 5,
@1 = 7% + 3x3, ¢4 = x2, and these are both anisotropic mod 5, so the form
is anisotropic over Qs.

Clearly, if a quadratic space over a number field is isotropic, it remains
isotropic over any of its completions. The following powerful local-global
theorem gives the converse to this.

Theorem 0.9.8 (Hasse-Minkowski Theorem) Let k be a number field
and (V, B) a quadratic space over k. Then V is isotropic over k if and only
if V is isotropic over all k, where v ranges over all places of k.

Corollary 0.9.9 If V is a quadratic space over k and a € k*, then V
represents a in k if and only if V represents a in all k,, where v ranges over
all places of k.
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The corollary follows directly from the theorem in view of the remarks
following Lemma 0.9.4.

In Example 0.9.7, the space was shown to be anisotropic over Q5 and
hence is anisotropic over Q. This is more obvious, however, from the fact
that 2 + 3z3 + 5% is clearly anisotropic over the reals. There are thus at
least two places of Q at which this form is anisotropic and no more than 3
such places since we do not know what happens at the prime 2.

For certain cases, which are particularly relevant for later applications,
we can obtain information on the parity of the cardinality of the number
of places at which a form is anisotropic.

Let K be a field and let a,b € K*. We introduce a Hilbert symbol (a,b)
which takes the values £1 according as the quadratic form ax? + by? rep-
resents 1 or not.

Theorem 0.9.10 (Hilbert’s Reciprocity Law) Let k be a number field
and let a,b € k*. Then the set of places {v | (a,b) = —1 in ky} is finite and
of even cardinality.

Consider, again, the example 27 +373+5z%, rewritten as —3x3—5z2 = x2.

Thus z2 +3x3+5x3 is isotropic with 1 # 0 if and only if the Hilbert symbol
(=3,—5) = 1, where reference to a specific field has, for the moment, been
suppressed. It is not difficult to see that for all primes p # 2,5, there is a
solution to % + 322 4+ 5z% = 0 in Q, with z; # 0. At the infinite place and
p =5, (=3,—5) = —1. Thus by Hilbert’s Reciprocity Law, it follows that
x? + 3x% + 522 is isotropic in Qs.

We now make some brief comments on the orthogonal groups of quadratic
spaces. For a regular quadratic space (V,B) over a field K, the set of
isometries of V' forms a group O(V, B) or O(V'), the orthogonal group of the
space. If we choose a basis B = {v1,va,...,va} of V, then each 7 € O(V)
is represented by a matrix 1" so that we obtain a matrix representation

O0s(V) ={T € GL(n,K) | T"MT = M}

where, as before, M is the symmetric matrix [B(vi, va)]. The determinant
of T, which is independent of the choice of basis, will be +1 and SO(V)
will denote the subgroup of those with determinant +1. This representation
depends on the choice of basis and if X is the change of basis matrix from
B to B, then

X 10g(V)X = Op/(V).

For any anisotropic vector v € V, we can define a reflection 7, in the
hyperplane orthogonal to v. This is given by

2B(x,v)
—v.

e (0.37)

Tv(X) =x —
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Then 7, € O(V) fixes all vectors orthogonal to v and 7,(v) = —v. Thus
Tv has determinant —1. These reflections generate O(V) and indeed more
is true:

Theorem 0.9.11 If (V, B) is a regular quadratic space of dimension n,
then every isometry of O(V, B) is a product of at most n reflections.

Finally, the Hasse-Minkowski Theorem can be used to show that quad-
ratic spaces over a number field are isometric if and only if they are locally
isometric. Indeed, this result is also referred to as the Hasse-Minkowski
Theorem. If V is a quadratic space over k and v is a place of k, let V,,
denote the quadratic space obtained by extending the coefficients to k..

Theorem 0.9.12 Let U and V be regular quadratic spaces of the same
dimension over a number field k. Then U and V are isometric if and only
if Uy, and V,, are isometric over k, for all places v on k.

Proof: Any isometry from U to V clearly extends to one from U, to V,,.
The reverse implication is proved by induction on dim U. Let q and Q
denote the quadratic maps on U and V, respectively. Suppose that U =<
u > is one-dimensional with g(u) = a # 0. Thus U represents a locally
and, hence, so does V. Thus by Corollary 0.9.9, V represents a. Hence U
and V are isometric.

Now let U have dimension n > 2, u € U with ¢(u) = a # 0. As above, V
also represents a. Thus there exists v € V with Q(v) = a. Let U’ =< u >+
and V' =< v >1. By assumption, for each v there exits an isometry
oy : Uy — V. Furthermore, there exists 7 € O(V,) such that 7o,(u) = v
(see Exercise 0.9, No. 7). Thus 7o, gives an isometry from U}, to V.. Thus
by induction, there is an isometry U’ — V', which can be easily extended
to an isometry between U and V. O.

For basic results and results over P-adic fields, see Lam (1973), Chapters
1 and 6. For the Hasse-Minkowski theorem and Hilbert Reciprocity, also
see Lam (1973), Chapter 6, but for full proofs, using idéles as described in
preceding section, see O’Meara (1963), Chapters 6 and 7.

Exercise 0.9

1. Let V be a quadratic space (not necessarily reqular) and let W be a
reqular subspace. Prove that V. = W_1W>.

2. Let (V,q) be a two-dimensional regular quadratic space over K. Prove
that the following are equivalent:

(a) V 1is isotropic.

(b) The determinant of V is —1K*2.

(c) q has the diagonal form x? — z3.

(d) q has the form z1z-.
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[A space such as described by these equivalent conditions is called a hyper-
bolic plane.]

3. Let V = My(K) and define B and B’ by B(X,Y) = tr (XY) and
B'(X,Y) = tr (XY?"), respectively. Show that (V, B) and (V, B') are regular
quadratic spaces and find orthogonal bases for each. Show that they are
isometric if and only if —1 € K*2,

4. Let kp be non-dyadic.
(a) Prove that every regular quadratic space of dimension > 5 over kp is
isotropic.
(b) Show that if 1,u, m and um are the coset representatives in ki / kP given
in FErercise 0.7, No 6 with u € R}, then the four-dimensional quadratic
space with diagonal form z? — wx3 — ux + Tux3 is anisotropic.

[This result is also true for dyadic fields ; see §2.5.]

5. Show that the four-dimensional form
22 + 322 + (24 V10)22 + (2 — V10)z2

is anisotropic over Q(v/10).

6. Determine if the following quadratic forms represent 1 or not:
(a) 1522 — 21y? in Q.

(b) 2% + 5y* in Q.

(c) (4T )a? — (=) in Q(V=T),

(d) (t+ 1)x? + ty? in Q(t), where t satisfies z3 +z+ 1 = 0.

7. Let (V, B) be a quadratic space over a field K of characteristic # 2 and
leta € K*. Let A= {v € V| q(v) = a}. Prove that if v,w € A, then at
least one of v £ w is anisotropic. Deduce that O(V') acts transitively on A.
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Kleinian Groups and Hyperbolic
Manifolds

As indicated in the Preface, this book is written for those with a reasonable
knowledge of Kleinian groups and hyperbolic 3-manifolds, with the aim
of extending their repertoire in this area to include the applications and
implications of algebraic number theory to the study of these groups and
manifolds. This chapter includes the main ideas and results on Kleinian
groups and hyperbolic 3-manifolds, which will be used subsequently. There
are no proofs in this chapter and we assume that the reader has at least
a passing knowledge of some of the ideas expounded here. In the Further
Reading at the the end of the chapter, references are given for all the
results that appear here so that deficiencies in the presentation here may
be remedied from these sources.

1.1 PSL(2,C) and Hyperbolic 3-Space

The group PSL(2,C) is the quotient of the group SL(2,C) of all 2 x 2
matrices with complex entries and determinant 1 by its center {+7}. Ele-
ments of a subgroup I' of PSL(2,C) will usually be regarded as 2 x 2
matrices of determinant 1, so that the distinction between I' and its pre-
image in SL(2, C) is frequently blurred. In general, this is innocuous, but, if
necessary, we use the notation I' = P~1(TI") C SL(2,C) to distinguish these
groups.
Via the linear fractional action
az+b
cz+d’

Z =
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elements y = <Z Z) of PSL(2, C) are biholomorphic maps of C = Cu{oo}.

The action of each v € PSL{2,C) on C extends to an action on the upper
half 3-space
H® = {(z,y,t) e R® | £ > 0}

via the Poincaré extension. Each « is a product of an even number of
inversions in circles and lines in C. Regarding C as lying on the boundary
of H3 as t = 0, (i.e., the sphere at infinity), each circle C and line £ in C has
a unique hemisphere C or plane ?in H3, orthogonal to C and meeting C
in C or £. The Poincaré extension of v to H3 is the corresponding product
of inversions in C and reflections in Z.

When H?3 is equipped with the hyperbolic metric induced from the line
element ds defined by

dz? + dy? + di?

ds? 2 ,

(1.1)
then H® becomes a model of hyperbolic 3-space, (i.e., the unique three-
dimensional connected and simply connected Riemannian manifold with
constant sectional curvature —1). The line element induces a distance met-
ric d on H? and H? is complete with respect to this in that every Cauchy
sequence converges. The inversions in hemispheres and reflections in planes
as described above are isometries of H® with the hyperbolic metric and
generate the full group of isometries, Isom H3. Thus, under the Poincaré
extension, the group PSL(2, C) is identified with the subgroup Isom™ H? of
orientation-preserving isometries of H®:

PSL(2,C) = Isom™H3. (1.2)

The whole book is concerned with subgroups I" of PSL(2, C) which satisfy
various conditions, some of which are topological, but mainly these condi-
tions relate to the geometry of the action of I' on H3. The broad idea is to
relate the geometry, on the one hand, to the algebra and arithmetic of the
associated matrix entries, on the other. In this chapter, we collect together
the main geometrical ideas which will form the basis of this association.

Before embarking on a discussion of the conditions to be satisfied by
I' € PSL(2,C), we remark that, starting instead with PSL(2, R), the linear
fractional action of its elements on C restricts to upper half 2-space H? =
{(z,t) € R? | t > 0} so that PSL(2,R) becomes identified with Isom™H?
for this upper half-space model of hyperbolic 2-space with metric induced
by ds? = dZ2t_‘2_dt2:

PSL(2,R) = IsomTH?2, (1.3)

This metric on H? is the restriction of the hyperbolic metric on H3 to the
plane y = 0. Note that elements of PSL(2,C) are isometries of H3 and the
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group acts transitively on the set of circles and straight lines in C. Thus
the hemispheres and planes in H3, orthogonal to C, with the restriction of
the hyperbolic metric in H? are all models of hyperbolic 2-space and form
the set of all geodesic hyperplanes, or planes, in H3.

If two such planes intersect in H3, then there is a well-defined dihedral
angle between them. This angle degenerates to zero if the planes are tan-
gent on the sphere at infinity. In all other cases, two planes have a unique
common perpendicular and a well-defined distance between them.

The geodesic lines in H3 are circles and straight lines orthogonal to C.
The underlying geometry of points, lines and planes and their incidence
relationships in hyperbolic space is well understood. In addition, specific
computations can be made on geometric configurations in hyperbolic 3-
space. Indeed, there are many precise formulas governing the structure
of such configurations. Some of these concerning volumes will play a key
role in our later discussions. All volumes are computed with respect to
the hyperbolic volume element dV induced from the metric. For the upper
half-space model, this is given by

dx dy dt
dv = —?y—— (1.4)

Some of the formulas referred to above are most readily proved using
other models of hyperbolic 3-space. The only other model, apart from the
upper half-space model, which will play any direct role subsequently, is the
Lobachevski model A, which we now describe.

Let V be a four-dimensional space over R with a quadratic form ¢ of
signature (3, 1). Thus, with respect to a suitable basis of V,

q(x) = % + 23 + 23 — .

First consider one sheet of the hyperboloid defined by
{xeV|qx)=—-1,z4 > 0}.

The line element ds defined by ds? = dz? + dz2 + dz? — dz? yields a
Riemannian metric on the hyperboloid, making it a model of hyperbolic
3-space.

Alternatively, consider the positive cone in V' defined by

Ct={x€V|qg(x) <0 and x4 > 0}

and let A denote its projective image PC™T. There is an obvious bijection
with the hyperboloid and using this, one obtains that A is another model of
hyperbolic 3-space : the Lobachevski model. Points, lines and planes in this
model are the projective images of one-, two- and three-dimensional linear
subspaces of V' which intersect C*. In particular, such three-dimensional
subspaces will have a one-dimensional orthogonal complement in (V, ¢) and
so every hyperbolic plane in A is the image of a space v+ where g(v) > 0.
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The subgroup of the orthogonal group of (V,q) which preserves the
cone Ct,

OT(V,q) = {0 € GL(V) | q(c(v)) = q(v) for all v € V, and o(Ct) = (C'ﬂ;
1.5

induces an action on A, yielding the full group of isometries of this model
of hyperbolic 3-space. A reflection in a space v where g(v) > 0 lies in
O™ (V, q) and has negative determinant. Thus for A, we have the description
of the isometry groups as

Isom A 2 PO"(V,q), Isom* A = PSOT(V,q). (1.6)

Exercise 1.1

1. Show that stereographic projection from a point on the unit sphere in R*
is the restriction of an inversion in a sphere. Show that the upper half-space
H3 can be mapped conformally to the unit ball

B3 = {(z1,72,23) € R® | 2?2 + 22 + 22 < 1}

by a couple of stereographic projections. Use this to describe the hyperbolic
metric on the ball and the geodesic lines and planes in the B3 model of
hyperbolic space.

2. Show that inversions in hemispheres in H3 with centres on the sphere
at infinity are isometries of the hyperbolic metric in H3.

3. Find a formula for the hyperbolic distance between two points (x1,y1,%1)
and (z2,y2,t2) in H3.

4. Show that, in the Lobachevski model, if two planes P, and Py in A are
the images of vi+ and var, respectively, as described above, then

(a) if Pi and Py intersect in the dihedral angle 0, then cos8 = —B(vy,va),
where B is the symmetric bilinear form induced from q;

(b) if P, and P, do not intersect and are not tangent, then the hyperbolic
distance £ between them is given by coshf = —B(vy,va).

5. Prove that PSL(2,C) acts transitively on the set of circles and straight
lines in C.

1.2 Subgroups of PSL(2,C)

Now let us consider various subgroups of PSL(2,C) and the related geo-
metry. First, for individual elements v # Id, we have the following classi-
fication:

o v is elliptic if tr v € R and |tr 7| < 2.
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e « is parabolic if tr v = £2.
e « is loxodromic otherwise.

In the cases where « is loxodromic and tr v € R, then ~ is usually termed
hyperbolic.

In its action on C, ~ is parabolic if and only if it has exactly one fixed
point and in that case, it is conjugate to z — z + 1. In all other cases, =y
has a pair of fixed points and the unique geodesic in H? joining these is
called the azis of v, Ay. If v is elliptic, then v rotates H3 about A,. If
~ is loxodromic, then 7 is a screw motion translating along its axis and
simultaneously rotating about it. Note that only the elliptic elements have
fixed points in H3.

The group PSL(2,C) acts transitively on the points of H? so that the
stabiliser of any point in H? is conjugate to the stabiliser of (0,0, 1), which is
the compact subgroup PSU(2, C), which is isomorphic to SO(3, R). Indeed
H? and its geometry can be obtained from SL(2, C) as its symmetric space
as SU(2,C) is a maximal compact subgroup. Likewise, the action on the
sphere at infinity is transitive so that point stabilisers are conjugate to B,
the stabiliser of oo, which consists of upper-triangular matrices:

B:{(g aﬁl) |ae(C*,be<C}. (1.7)

Any finite subgroup of PSL(2,C) must have a fixed point in H? and so
be conjugate to a subgroup of SO(3,R). As such, it will either be cyclic,
dihedral or conjugate to one of the regular solids groups and isomorphic to
A4, 54 or A5.

Two notions of “smallness” for subgroups of PSL(2,C) are important in
the subsequent discussion.

Definition 1.2.1 Let I be a subgroup of PSL(2,C).

o The group T is reducible if all elements have a common fized point in
their action on C. Otherwise, I is irreducible.

o The group T' is elementary if it has o finite orbil in its action on
H3 UC. Otherwise, T’ is non-elementary.

Clearly, reducible groups are elementary, but the converse is not true. In
particular, any non-cyclic finite group is irreducible and elementary. Also
subgroups of finite index in non-elementary groups remain non-elementary.
The important feature of non-elementary groups is as follows:

Theorem 1.2.2 Every non-elementary subgroup of PSL(2, C) contains in-
finitely many lozodromic elements, no two of which have a common fized
point.
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Reducible groups can be characterised by a trace condition.

Lemma 1.2.3 Let z,y & PSL(2,C). Then (x,y) is reducible if and only if
tr[z,y] = 2.

Note that the trace of the commutator is well-defined, independent of the
choice of pre-images of  and y in SL(2, C). More generally, for any X,Y €
SL(2,C), let M(X,Y) denote the 4 x 4 matrix whose columns are the
matrices I, X,Y and XY . Then a simple calculation yields

det M(X,Y)=2—1tr[X,Y]. (1.8)
This yields the following elementary but important result:

Lemma 1.2.4 Let z,y € PSL(2,C). The group (z,y) is irreducible if and
only if the vectors I, X,Y and XY in My(C) are linearly independent.

Definition 1.2.5 A Kleinian group T' is a discrete subgroup of PSL(2,C).

This condition is equivalent to requiring that I' acts discontinuously on
H3, where this means that, for any compact subset K of H?, the set {vy €
' | vK N K # 0} is finite. Thus the stabiliser of a point in H? is finite.
The stabiliser of a point on the sphere at infinity can be conjugated to a
subgroup of B described at (1.7). The discrete subgroups of B fall into one
of the following classes:

e Finite cyclic

e A finite extension of an infinite cyclic group generated either by a
loxodromic element or by a parabolic element

e A finite extension of Z @ Z, which is generated by a pair of parabolics

A more precise classification of the discrete subgroups of B can be given.
One outcome of this is the following:

Lemma 1.2.6 IfI' is a Kleinian group, then a parabolic and lozodromic
element cannot have a fized point in C in common.

The last category of discrete subgroups of B described above is critical for
the description of hyperbolic manifolds.

Definition 1.2.7 A point ¢ € C, the sphere at infinity, is a cusp of the
Kleinian group I' if the stabiliser T'¢ contains a free abelian group of rank
2.

Since a Kleinian group acts discontinuously on H3, we can construct a
fundamental domain for this action of I" on H3. A fundamental domain is
a closed subset F of H3 such that
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L] U’YEF’Y‘F = H3
o FoN~F° = for every v # Id,v € I', where F° is the interior of F
e the boundary of F has measure zero.

The following construction of Dirichlet gives the existence of such a fun-
damental domain. Pick a point P € H3 such that y(P) # P for all
v € I', v # Id. Define

Fp(l) = {Q € H® | d(Q,P) < d(+(Q),P) forally € T}.  (L9)

The boundary of Fp(T') consists of parts of hyperbolic planes bounding
the half-spaces which contain Fp(I'). These fundamental domains are poly-
hedra so that the boundary is a union of faces, each of which is a polygon
on a geodesic plane. The following definition gives the most important fi-
niteness conditions on I':

Definition 1.2.8 A Kleinian group T' is called geometrically finite if it
admits a finite-sided Dirichlet domain.

Such groups are therefore finitely generated.
A Kleinian group I is said to be of finite covolume if it has a fundamental
domain of finite hyperbolic volume. The covolume of T" is then

Covol(T') = / av. (1.10)
F

The group I is said to be cocompact if I' has a compact fundamental do-
main. Implicit in the above definition is the result that the volume is inde-
pendent of the choice of fundamental domain. This is stated more precisely
as follows:

Lemma 1.2.9 Let F1 and F3 be fundamental domains for the Kleinian
group I'. Then, if | P dV is finite, so is |. F dV and they are equal.

Of course, cocompact groups are necessarily of finite covolume. This con-
dition has the following geometric and algebraic consequences.

Theorem 1.2.10 If T' has finite covolume, then there is a P € H® such
that Fp(I") has finitely many faces. In particular, T’ is geometrically finite
and so finitely generated.

Again, if we start instead with PSL(2,R), much of the above discussion
goes through, in particular with Kleinian replaced by Fuchsian.

Definition 1.2.11 A Fuchsian group is a discrete subgroup of PSL(2,R).
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Since a Fuchsian group is a Kleinian group, it is only when we consider
the actions on H? or H3 that differences arise. Thus a Fuchsian group will
be said to have finite covolume (or strictly finite coarea) if a fundamental
domain in H? has finite hyperbolic area.

Connecting the two, note that if a Kleinian group I'" has a subgroup F
which leaves invariant a circle or straight line in C and the complementary
components, then F' will be termed a Fuchsian subgroup of I'. Note that
F is conjugate to a subgroup of PSL(2, R). We will normally be interested
only in the cases where F' is non-elementary. There is a sharp distinction
between those Kleinian groups I' which contain parabolic elements and
those that do not, which is reflected in the related topology, geometry and,
as we shall see later, algebra. So let us assume that I" contains a parabolic
element whose fixed point, by conjugation, can be assumed to be at oc.
Then there is a horoball neighbourhood of oco; that is, an open upper-half
space of the form

Hoo(to) = {(z,y,t) € H3 | t > to} (1.11)

such that any two points of Hoo(tg) which are equivalent under the action
of ' are equivalent under the action of I'y,, the stabiliser of co. Now, I'
being a subgroup of B acts as a group of Euclidean similarities on the
horosphere bounding the horoball {i.e., {(x, y,to)}]. Thus we have a precise
description of the action of a Kleinian group in the neighbourhood of a
cusp. A horoball neighbourhood of a parabolic fixed point { € C is a
Euclidean ball in H3 tangent to C at (, as it is the image of some H(¢p)
at (1.11) under an element of PSL(2,C). It is then not difficult to see that
if I contains a parabolic element, then I' is not cocompact. However, under
the finite covolume condition, much more can be obtained:

Theorem 1.2.12 Let T be a Kleinian group of finite covolume. If T is not
cocompact, then I' must contain a parabolic element. If { is the fixed point
of such a parabolic element, then ( is a cusp. Furthermore, there are only
finitely many T -equivalence classes of cusps, so the horoball neighbourhoods
can be chosen to be mutually disjoint.

Exercise 1.2
1. Prove Lemma 1.2.3.
2. Establish the formula (1.8).

8. Determine the groups which can be stabilisers of cusps of Kleinian
groups.

4. LetT be a non-elementary Kleinian group. The limit set A(T') of T is
the set of accumulation points on the sphere at infinity of orbits of points
in H3. Show that the limit set is the closure of the set of fized points of
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loxodromic elements in I'. Show also that it is the smallest non-empty I'-
invariant closed subset on the sphere at infinity.

5. If K is a non-trivial normal subgroup of I' of infinite index where I is
a Kleinian group of finite covolume, show that K cannot be geometrically
finite.

6. Show that if the Kleinian group I' contains a parabolic element, then T’
cannot be cocompact.

1.3 Hyperbolic Manifolds and Orbifolds

A hyperbolic n-manifold is a manifold which is modelled on hyperbolic
n-space. More precisely, it is an n-manifold M with a Riemannian metric
such that every point on M has a neighbourhood isometric to an open
subset of hyperbolic n-space. If T' is a torsion-free Kleinian group, then
' acts discontinuously and freely on H? so that the quotient H3/T" is an
orientable hyperbolic 3-manifold. Conversely, the hyperbolic structure of
an orientable hyperbolic 3-manifold M can be lifted to the universal cover
M which, by uniqueness, will be isometric to H3. Thus the fundamental
group 71 (M) can be identified with the covering group which will be a
subgroup I' of PSL(2, C) acting freely and discontinuously.

Theorem 1.3.1 If M is an orientable hyperbolic 3-manifold, then M is
isometric to H3 /T, where T is a torsion-free Kleinian group.

Now let us suppose that the manifold M = H3/T" has finite volume.
This means that the fundamental domain for I" has finite volume and so T
has finite covolume. Thus I' is finitely generated. Furthermore, if M is not
compact, then the ends of M can be described following Theorem 1.2.12
and the remarks preceding it.

Theorem 1.3.2 If M is a non-compact orientable hyperbolic 3-manifold
of finite volume, then M has finitely many ends and each end (or cusp
neighbourhood) is isometric in a Euclidean sense, to T? x [0, 00), where T2
15 a torus.

Note that the classification of discrete subgroups of B gives that a torsion-
free cusp stabiliser is a lattice in Euclidean 2-space generated by a pair of
independent translations.

In order for the quotient H3/T" to be a manifold, I' must be torsion free.
In that case, if v is a loxodromic element of I, then its axis A, in H?
projects to a closed geodesic on the manifold M = H3/T". Conversely, for
the Riemannian manifold M, every essential non-peripheral closed curve
is freely homotopic to a unique closed geodesic. The length of this closed
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geodesic on M then coincides with the translation length of a corresponding
loxodromic element.

If I has torsion, then the elliptic elements have fixed axes and the image
of the fixed axes of all elliptic elements in I" forms the singular set in the
quotient space H3/I'. Away from the fixed axes, that action is free.

Definition 1.3.3 A hyperbolic 3-orbifold is a quotient H3 /T where T is a
Kleinian group.

For orbifolds H3 /T, closed geodesics also arise as the projection of the axes
of loxodromic elements in I'.

Many of the geometric properties we consider remain valid for finite cov-
ers of manifolds or orbifolds and the main invariants discussed throughout
this book are commensurability invariants.

Definition 1.3.4

o Let Ty and Ty be subgroups of PSL(2,C). Then 'y and 'z are directly
commensurable if 'y NT'y is of finite index in both T'y and I'y. Also,
T'1 andTe are commensurable in the wide sense if I'1 and a conjugate
of Ty are commensurable.

o If My and M» are two hyperbolic 3-manifolds or orbifolds, then M;
and M, are commensurable if they have a common finite hyperbolic
cover.

Note that in the manifold/orbifold definition of commensurable, the com-
mon cover will be defined up to isometry and so this corresponds to com-
mensurability in the wide sense for the corresponding covering groups. Sub-
sequently, commensurability will usually be taken to mean in the wide
sense.

One can pass from finitely generated Kleinian groups with torsion to
torsion-free Kleinian groups within a commensurability class thanks to Sel-
berg’s Lemma.

Theorem 1.3.5 If T is a finitely generated subgroup of GL(n,C), then I’
has a torsion-free subgroup of finite indez.

With appropriate modifications, much of the above discussion carries
through to hyperbolic 2-manifolds and orbifolds, with T" now a Fuchsian
group. Linking the two, note that if F' is a non-elementary Fuchsian sub-
group of a torsion-free Kleinian group TI', leaving invariant a circle C say,
then F acts on the geodesic plane € in H3. There is then an obvious map

HB

C
— —
F r
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which will, in general, be an immersion of this totally geodesic surface.
These surfaces may not be embedded and, as we shall see later, finite
volume hyperbolic 3-manifolds may not admit any totally geodesic im-
mersed surfaces. Away from the realm of totally geodesic, however, there
may well be other embedded surfaces (see §1.5).

Exercise 1.3

1. Let T be a Kleinian group of finite covolume. Show that I' cannot leave
a geodesic plane in H? invariant.

2. Let T be the subgroup of PSL(2,C) generated by the images of the

matrices :
G %) (A ) Gk o)

Use a Klein combination theorem to show that T is a Kleinian group. De-
scribe the quotient orbifold H®/T' and its singular set.

8. LetT be a Kleinian group of finite covolume, with cusp set C(I"). Show
that C(T') is a (narrow) commensurability invariant.

4. For a subgroup H of a group G, the commensurator, or commensurability
subgroup of H in G, is defined by

Comm(H,G) = {g € G| H and gHg™ ! are directly commensurable}.
Show that Comm(H, G) is indeed a subgroup.

5. LetT = PSL(2,Z[i]), the Picard group. Then T’ has finite covolume (see
§1.4). Determine Comm(I",PSL(2, C)).

1.4 Examples

Most of the groups to which our subsequent results apply are Kleinian
groups of finite covolume. To show that a given Kleinian group is of finite
covolume is, in general, a non-trivial task. Arithmetic Kleinian groups,
which are studied extensively in this book, form a class which have finite
covolume. Groups obtained by reflecting in the faces of a Coxeter polyhed-
ron of finite volume in H3, all of whose dihedral angles are submultiples of ,
furnish further examples. More generally, polyhedra with side-pairing trans-
formations that satisfy the requirements of Poincaré’s polyhedron theorem
will also yield examples. At least a partial construction of a fundamental
region would appear to be necessary, by its very definition, to show that
a group has finite covolume. This has been circumvented by the hyperbol-
isation results and Dehn surgery methods of Thurston. These methods are
discussed later in this chapter. For the moment, we consider some classical
examples and these, and many more, will be dealt with again in subsequent
chapters.



58 1. Kleinian Groups and Hyperbolic Manifolds

1.4.1 Bianchi Groups

Any discrete subring of C with 1 will give a discrete subgroup of PSL(2, C).
Thus the Bianchi groups PSL(2,O4), where Oy is the ring of integers in
the quadratic imaginary number field Q(v/—d), are Kleinian groups. As
arithmetic groups, they have finite covolume but for these groups this can
be shown directly via a description of a fundamental region. (The case
PSL(2,0;) is considered below.) Translations by 1 and w, where these
form a Z-basis of Oy, clearly lie in PSL(2, O4) so that oo always gives rise
to a cusp and these groups are not cocompact. Already here, the geometry
is related to the number theory as the number of cusps can be shown to
be the class number of O4. (Note the particular case of O; in Exercise 1.3,
No. 5.)

As indicated in §1.2, the Dirichlet region is a fundamental region for
Kleinian groups. Alternatively, we can take the Ford region consisting of
the exterior of all isometric spheres of elements in I' if ', = 1 or the

intersection of this region with a fundamental region for I's,. Recall that

for v = (Z 2), ¢ # 0,the isometric sphere is

{(z,y,t) € H® | |c(z + iy) + d|* + t* = 1}.

For I = PSL(2, O;), the Picard group, the region exterior to all isometric
spheres, is the region exterior to all unit spheres whose centres lie on the
integral lattice in C. The stabiliser ', is an extension of the translation
subgroup by a rotation of order 2 about the origin. We thus obtain the
fundamental region shown in Figure 1.1, which has the description

FT) ={(z,y,t) e B3 | 22 +92+t2 > 1, —1/2<2<1/2, 0<y<1/2}.

Using Poincaré’s polyhedral theorem, we can also obtain a presentation
for the group I' in terms of the side-pairing transformations which, here,

FIGURE 1.1.
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are represented by the matrices

() =G n) ) w6 ),

Apart from the order 2 elements, the relations come from the sets of equi-
valent edges in the fundamental domain. Thus in PSL(2, C), we obtain the
following presentation of the Bianchi group PSL(2,01):

2=y’ =uw?=1, (2z)%=(2y)?= (zw)? =1, (yzz:)2 =1, (wz)®=1.

1.4.2 Cozxeter Groups

Combinatorial conditions for the existence in H? of acute-angled convex
polyhedra have been given by Andreev. When such polyhedra have all their
dihedral angles submultiples of 7, then the Coxeter subgroup generated by
reflections in the faces is discrete with that polyhedron as its fundamental
region. Thus the index two subgroup I' consisting of orientation-preserving
elements will be a Kleinian group and if the polyhedron has finite volume,
then I" will be of finite covolume. If we restrict to tetrahedra, then it is
well known that there are nine such which are compact. If we allow ideal
vertices (i.e., vertices on the sphere at infinity), then there are a further
23 tetrahedra with at least one ideal vertex and finite volume. There are
further “tetrahedra” whose dihedral angles are submultiples of m but do not
have finite volume. For these tetrahedra, at least one of the vertices can
be thought of as lying beyond the sphere at infinity, and we refer to these
as super-ideal vertices. In the Lobachevski model, let the planes “meeting”
at such a super-ideal vertex, the projection of v, be the projective images
of vit,vet and vz*. Thus v € vit Nvat Nvst and ¢(v) > 0. However,
then the projective image of v+ is a hyperbolic plane which is orthogonal
to each of the v;*~. Thus the super-ideal vertex can be truncated by an
orthogonal hyperbolic plane so that the resulting prism has all dihedral
angles submultiples of 7. Using this further finite covolume, even cocompact
groups can be obtained.

1.4.3 Figure 8 Knot Complement

This classical example due to Riley was the first example of a knot or link
complement shown to have a complete hyperbolic structure and has been
a beacon leading to further developments and understanding. That is still
its status in this book. We briefly indicate this construction.

The complement in S3 of the figure 8 knot K is a 3-manifold M, whose
fundamental group has the presentation

1 (S3\ K) = (z1,72 | weyw™! =z where w = xflzgxlmgl).
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Defining w = z1x; 11‘1_ 145, we can distinguish a peripheral subgroup P =
(x1,v = W~ 'w), where 1 and 7 represent a meridian and longitude on the
boundary of a compact manifold which is the complement of an open tu-
bular neighbourhood of K in $3. The mapping p : 7K — SL(2,C) induced

by
pz) = A= (é }) . plaz) =B = <_1w (1))

where w = (—1 + 1/—3)/2 is easily seen to be a homomorphism for this
choice of w. If T' = (A, B), then, as a subgroup of SL(2,03), T is discrete.
A precise description of a Ford fundamental domain of finite volume for T
can be obtained. Again using Poincaré’s theorem, this yields a presentation
for the group I' from which it is deduced that the above representation p is
faithful. The image of v under p is a translation by —2+/=3 fixing co, from
which it follows that the quotient manifold H3/T" has the same peripheral
structure as the figure 8 knot complement. An important 3-manifold result
of Waldhausen then allows one to deduce that the knot complement S3\ K
and the quotient H3/T' are homeomorphic. The precise description of the
fundamental polyhedron also shows that I' has index 12 in the Bianchi
group PSL(2, 03).

1.4.4 Hyperbolic Manifolds by Gluing

Orientable hyperbolic manifolds can also be obtained by gluing hyperbolic
polyhedra together, always ensuring that the gluing pattern is consistent
with the geometry. Thus the sum of the dihedral angles around equivalent
edges must be 27, the link corrresponding to equivalent ideal vertices should
be a torus and for a manifold with hyperbolic totally geodesic boundary,
the link corresponding to equivalent truncated super-ideal vertices should
be a closed hyperbolic surface. We consider examples of these below.

Seifert-Weber Dodecahedral Space

Identifying opposite pairs of faces of a regular dodecahedron by a 37/5
twist yields a manifold, as the 30 edges of the dodecahedron fall into 6 sets
of 5 equivalent edges. Using a little geometry, it can be shown that there ex-
ists a compact hyperbolic regular dodecahedron with dihedral angles 27/5
and all vertices in H3. Thus the Seifert-Weber space has the structure of a
compact hyperbolic 3-manifold.

Figure 8 Knot Complement Again
Take two regular tetrahedra all of whose vertices are ideal and whose di-

hedral angles are 7/3. Glue them together according to the pattern of
matching faces given in Figure 1.2 such that the directed edges match up.
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/\ D’

FIGURE 1.2.

There are then two equivalence classes of six edges and all ideal vertices are
equivalent. The link of this is easily checked to be a torus. The resulting
manifold of finite volume of this well-worked example is the Figure 8 knot
complement.

Knotted Y

Once again we take two regular tetrahedra, viewed in Figure 1.3, already
glued together along one face and seen in stereographic projection. Now
match up the faces according to the pattern shown by the dots. There is
then one equivalence class of edges and one equivalence class of vertices.
The tetrahedra thus have dihedral angles 7/6 and the vertices of such a
hyperbolic tetrahedron are necessarily super-ideal. Truncating these ver-
tices by orthogonal planes, we obtain a hyperbolic manifold with totally
geodesic boundary a compact surface of genus 2.

FIGURE 1.3.
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Exercise 1.4

1. Obtain a fundamental polyhedron for the group PGL(2, O3) and deduce
that this group is of index 2 in a Coxeter group for a tetrahedron with one
ideal vertex. Identify matrices generating PGL(2, O3) and obtain a present-
ation for the group.

2. Another classical example of a link complement which admits a com-
plete hyperbolic structure of finite covolume is that of the Whitehead link
in Figure 1.4. Prove this by completing the details below. In this case, the
representation is onto the subgroup of the Picard group generated by the

matrices
1 2 1 ¢ 1 0
0o 1)’ 0 1)’ —1-7 1/)°

Show that this group has a fundamental domain with oo as a vertex, con-
sisting of two square “chimneys” whose projection onto the complex plane
is given in Figure 1.4. Deduce from Poincaré’s theorem that this does give a
discrete faithful representation of the fundamental group of the complement
of the Whitehead link. Deduce, finally, that the Whitehead link complement
has a complete hyperbolic structure of finite volume.

3. With reference to the hyperbolic tetrahedra used in the figure 8 knot
complement and the knotted Y examples above, show that regular hyperbolic
tetrahedra with super-ideal vertices exist with dihedral angles 8 where 0 <
0 < w/3 and that regqular compact hyperbolic exist with dihedral angles 0
where m/3 < 6 < cos™!(1/3).

1.5 3-Manifold Topology and Dehn Surgery
A major contribution of Thurston has been in showing that so many 3-
manifolds are indeed hyperbolic and frequently of finite covolume. This is

the thrust of this section and the role of embedded surfaces in this devel-
opment is discussed.

<_\ ),
(1,0)

FIGURE 1.4.
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1.5.1 8-Manifolds

We will only use some very basic 3-manifold topology, and we recall what
is needed here for completeness. Throughout this section, M will denote
a compact orientable 3-manifold (possibly with boundary). It is a con-
sequence of the Scott core theorem (also proved by Shalen) that such M
have 71 (M) finitely generated and finitely presented.

Let S be a compact connected orientable surface, and f : S — M an
embedding. If 85 # 0, we insist that M # 0 and f(8S) C OM. We define
F(S) (or sometimes, by abuse, simply S) to be compressible if one of the
following holds:

(a) S is a 2-sphere and f(.S) bounds a 3-ball in M.
(b) S is not a 2-sphere and f, : m1(S) — 71 (M) is not injective.

If neither of these conditions hold, f(S) (or, again, S) is called incompress-
ible in M. We also allow the map f to be an immersion, and since we will
only be interested in surfaces other than S?, we define, in this case, f(.5)
to be incompressible if f, is injective.

When M has a non-empty boundary, an incompressible surface S (not
necessarily embedded) in M is called boundary parallel if 71(S) is conjugate
to a subgroup of m (Op M) where Jg M is a component of the boundary of M.

M is called irreducible if every embedded 2-sphere in M compresses.
M is called atoroidal if every immersion f : T? — M of a torus into M
which is incompressible is boundary parallel. M is Haken if it is irreducible
and contains an embedded incompressible surface. Otherwise, M is called
non-Haken.

Examples 1.5.1

1. Tt is a famous theorem of J. W. Alexander that S® is irreducible. With
the obvious extension of the definition, R? is also irreducible.

2. Let p and ¢ be coprime positive integers with p > 1. The Lens Space
L(p, q) is non-Haken. Examples of non-Haken 3-manifolds with infinite
fundamental group are discussed later in the examples.

3. Let V denote a solid torus. Then 0V is compressible.

4. Let K C S2 be a non-trivial knot, and N(K) a regular neighbourhood
of K. Then X(K) = 8%\ Int(N(K)) is irreducible (by a theorem of
Papakyriakopoulos) and Haken—3dX (K') is a torus which is incompress-
ible. A surface in X (K') which is not boundary parallel is a Seifert surface
for the knot.

5. Suppose M is a compact orientable irreducible 3-manifold with m (M)
admitting a surjection to Z. Then M is Haken.
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6. As a particular example of a manifold given by No. 5, consider M a
fiber bundle over the circle with fiber a surface of Euler characteristic
< 0. Such manifolds can be constructed as follows. Let X be a com-
pact orientable surface (possibly with boundary). Let ¢ : ¥ — X be a
homeomorphism. We define the mapping torus of ¢ to be the compact
orientable 3-manifold obtained as the identification space:

Mq_', =¥ x [0,1]/ ~,
where ~ is the equivalence relation identifying (x,0) ~ (é(z), 1)

It is an easy consequence of Van Kampen’s theorem that if M contains an
embedded incompressible surface that is not boundary parallel, then 71 (M)
decomposes as a free product with amalgamation, or HNN-extension. An
important theorem in 3-manifold topology, which combines work of Epstein,
Stallings and Waldhausen gives a converse to this:

Theorem 1.5.2 Let M be a compact orientable irreducible 3-manifold for
which m (M) splits as a non-trivial free product with amalgamation, or
HNN-extension. Then M contains an embedded incompressible surface that
is not boundary parallel.

Following the work of Bass and Serre, the splittings of the group given in
Theorem 1.5.2 can be interpreted in terms of group actions on trees. Thus
in this language, we have the following:

Theorem 1.5.3 Assume that M is as above and that w1 (M) acts non-
trivially on a tree without inversions. Then M contains an embedded in-
compressible surface. Furthermore, if C is a connected subset of OM for
which the image of m1(C) in w1 (M) is contained in a vertex stabiliser, then
the surface may be taken disjoint from C.

Remark The hypothesis that m (M) acts non-trivially on a tree without
inversions is equivalent to saying that m (M) decomposes as the funda-
mental group of a graph of groups.

1.5.2 Hyperbolic Manifolds

As yet we have not connected 3-manifold topology and hyperbolic struc-
tures. This is not really germane to the main thrust of this book however,
the following result of Thurston is the motivation behind much of the study
of arithmetic methods in 3-manifold topology that lies behind this book.

We call a compact orientable 3-manifold hyperbolizable if the interior
of M admits a complete hyperbolic structure [i.e., Int(M) = H3/T for a
torsion-free Kleinian group I'].
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Theorem 1.5.4 Let M be a Haken 3-manifold which is atoroidal and for
which w1 (M) contains no abelian subgroup of finite index. Then M is hy-
perbolizable.

The following particular corollary of this is most relevant to us.

Corollary 1.5.5 Let M be an atoroidal Haken 3-manifold which is either
closed, or if OM is non-empty, then all boundary components are tor:.
Assume w1 (M) contains no abelian subgroup of finite index. Then IntM
admits a complete hyperbolic structure of finite volume.

In particular, this theorem says “most” compact 3-manifolds with non-
empty boundary are hyperbolic. For example, most links in S® have com-
plements admitting complete hyperbolic structures of finite volume. For
knots, the following precise result holds:

Theorem 1.5.6 Let K be a non-trivial prime knot. Then S®\ K is hyper-
bolic with finite volume if and only if K is not a torus knot or a satellite
knot.

1.5.3 Dehn Surgery

A basic operation in 3-manifold topology is Dehn surgery. By this we mean
the following: Let M be a compact orientable 3-manifold and 7" an incom-
pressible torus boundary component of M. Let a be an essential simple
closed curve on T, V be a solid torus and r be a meridional curve of V.
We attach V to M by gluing 8V to T along their boundaries so that « is
identified with r. The result is a 3-manifold obtained by a-Dehn surgery
on T. By specifying a framing {M, ¢}, for T (i.e. a choice of generators for
71(T)) « can be described as MP£? and a-Dehn surgery is referred to as
(p, q)-Dehn surgery on T'.

Example 1.5.7 When M = X is a knot exterior in 5% and « is meridian
for K, then with the canonical co-ordinates, X (1,0) = S3.

Another beautiful idea of Thurston was to introduce geometric techniques
into the theory of Dehn surgery; this he called hyperbolic Dehn surgery. His
hyperbolic Dehn Surgery Theorem states the following:

Theorem 1.5.8 Let M be a compact orientable 3-manifold with incom-
pressible toroidal boundary components T1,...,Ty. If Int(M) admits a
complete hyperbolic structure of finite volume, then for all but finitely many
(pi, @;)-Dehn surgeries on the torus T;, the result is a complete hyperbolic
3-manifold of finite volume.
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Remarks

1. For the exterior of the figure 8 knot in S3, the exceptional surgeries

- {(1,0),(0,1),£(1,1), £(2,1), £(3,1), £(4, 1) }-

For all other surgeries in this case, closed hyperbolic 3-manifolds are
obtained. Furthermore, in contrast to Theorem 1.5.3, it can be shown
that these hyperbolic manifolds are all non-Haken.

2. In the context of hyperbolic Dehn surgery, one may also perform
(p, ¢)-Dehn surgery, where p and ¢ are not necessarily coprime in-
tegers. This allows one to speak of orbifold Dehn surgery. For ex-
ample, performing (p,0)-Dehn surgery on a knot K in S3 gives rise
to an orbifold with base S? and singular set K with cone angle 27/p.
The hyperbolic Dehn surgery theorem is also valid in this setting.

3. One can also extend the notion of Dehn surgery to include torus and
pillow cusps of orbifolds, where by a pillow cusp we mean an end
that has a cross-section which is a two sphere with four cone points
of cone angle w. More details can be found in the articles listed in the
Further Reading.

Thurston also shows that for those (p;, ¢;) which yield hyperbolic Dehn
surgeries (not necessarily manifolds), the volume of the (p;,g;)-surgered
manifold or orbifold is less than Vol(M) and the volumes of the surgered
manifolds accumulate to Vol(M).

The computation of volumes is described later in this chapter, but the
overall structure of the set of volumes of hyperbolic 3-manifolds and 3-
orbifolds is itself very interesting. We will not discuss this here; the following
result gives the only facts to which we will have recourse.

Theorem 1.5.9

1. There is a lower bound to the volume of a hyperbolic 3-orbifold. Fur-
thermore there are only finitely many hyperbolic 3-orbifolds of the
same volume.

2. Given an infinite sequence of hyperbolic 3-manifolds and 3-orbifolds
{M;} of bounded volume, there is a finite collection of cusped hyper-
bolic 8-orbifolds X1,...,Xm such that M, is obtained by (possibly
orbifold) Dehn surgery on a set of cusps of some X;.

Exercise 1.5

1. Let W be the compact 3-manifold with boundary obtained by drilling
tubes out of the solid 3-ball as shown below in Figure 1.5. If ¥ is the 4-
punctured sphere on the boundary of the 3-ball, show that ¥ is compressible.



1.6 Rigidity 67

Q/

FIGURE 1.5.

2. Let X be a closed orientable surface, ¢ an essential simple closed curve
on ¢ and ¢ a homeomorphism of ¥ such that ¢(c) = c. Prove directly that
the mapping torus of ¢ is not hyperbolic.

3. Let¥ denote the torus with one boundary component and 71 (X) have free
basis a,b. Let ¢ : £ — ¥ be a homeomorphism inducing the automorphism
a ab 1,b s b%2a~t. Show that w1 (My), where My is the mapping torus of
@, is isomorphic to the fundamental group of the figure 8 knot complement
and deduce that Int(My) admits a complete hyperbolic structure of finite
volume.

1.6 Rigidity

So far we have been concerned with the existence of hyperbolic structures
of finite volume. Here we address uniqueness.

We begin by recalling some algebraic geometry. By a complex algeb-
raic set we mean a subset of C" which is the vanishing set of a sys-
tem S of polynomials in C[X;, Xs,...,X,]. By Hilbert’s basis theorem,
the ideal generated by these polynomials, I(S), is finitely generated. If
I(S) C k[X4, Xa,...,X,], where k is a subfield of C, then S is said to be
defined over k. When S is irreducible (i.e., not the union of two non-trivial
algebraic subsets), then S is a variety V and I(V) is a prime ideal. The
quotient C[X]/I(V) = C[V] is an integral domain and its field of quotients
is the function field C(V'), which is an extension of C embedded as the
constant polynomials.

Definition 1.6.1 Let V be an algebraic variety. The dimension of V is
the transcendence degree of its function field C(V) over C.

Now let I" be a finitely generated group, generated by 1,72, ... ,Vn- The
group I' need not be finitely presented nor torsion free, but since this is the
case of interest to us, we simply assume this. Let a set of defining relations
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be
R1(717"' 7777,) = =Rm(717 7’7‘n) =1
Let

Hom(I",SL(2,C)) ={p : p:T — SL(2,C) a homomorphism}.

Given p € Hom(T',SL(2, C)), p(vi) is a 2 x 2 matrix

T .
Ai - ( 1 yz,)a
Zi  Ws

with z;w; — yiz; = 1. Thus the relations R;(v1,... ,7vn) = I determine 4m
polynomial equations in the quantities x;, y;, z; and w;, with coefficients
in Z. Thus Hom(T', SL(2,C)) has the structure of an algebraic set defined
over Q.

Assume now that the group T is a torsion-free Kleinian group of finite
covolume. So as remarked, it is finitely generated and finitely presented.
Let Ay, As, ..., A, be a set of generators for I' and

Ri(A1,...,Apy) = =Rm(A1,... , An) =1 (1.12)

be a set of defining relations for I'. Since I' is non-elementary, it will have a
pair of loxodromic elements, and we can assume that (A;, As) is irreducible.

As above, let
A = (T Y
7 2z w; ’

Tiw; —yiz; =1, for i=1,2,...,n. (1.13)

with

By conjugation, assume that A; fixes 0 and oo and A fixes 1. Therefore,
y1 =21 =0 and zy + y2 = 25 + wa. (1.14)

We obtain a further 4m polynomial equations, with coefficients in Z,
in the quantities z;, v;, z; and w;. These determine an algebraic subset
in Hom(T, SL(2,C)). In the case where I" contains parabolic elements, we
include additional equations determined by the finite number of cusps as
follows. Since I' is assumed to be torsion free, the ends of H3/T" are of
the form T2 x [0, 00). Therefore for each cusp Ci,...,C; of H3/T, fix a
pair of parabolic generators U; = P;(A1,...,A4), Vi = Qi(A1,... , Ay) for
m1(C;). This leads to additional equations in the indeterminates z;, y;, 2;
and w;:

tr2U;, —4 =0, U;V; — V;U; = 0. (1.15)
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Choose an irreducible subset of the algebraic set determined by the equa-
tions (1.12), (1.13) and (1.14) together with (1.15) in the cusped case, which
contains the inclusion map of I' and denote this variety by V (T).

The following two theorems, the first a combination of the work of
Weil (the cocompact case) and Garland (the non-cocompact case) and the
second by Mostow (cocompact) and Prasad (non-cocompact), give local
and global rigidity theorems that are critical in later developments (see
Theorem 3.1.2).

Theorem 1.6.2 Let ¢ denote the inclusion homomorphism T" — SL(2,C).
Then for p € V(') sufficiently close to i, p is an isomorphism and p(T')
has finite covolume.

Theorem 1.6.3 Let I'y and T’y be finite covolume Kleinian groups and
¢ : Ty — Ty an isomorphism. Then there exists g € Isom(H?) such that

¢(v1) =gng™t, Vel

There are various equivalent statements of Mostow-Prasad rigidity, but
the most succinct is that given a compact orientable 3-manifold whose
interior supports a hyperbolic structure of finite volume, then this structure
is unique. This is the biggest distinction in the theory of surface groups and
hyperbolic 3-manifold groups of finite volume.

Exercise 1.6

1. LetT be a subgroup of SL(2,C). Let R(T') be the set of conjugacy classes
of representations ¢ in Hom(T',SL(2,C)) where ¢ preserves parabolic ele-
ments. Then V(T'), as described in this section is the component of this
algebraic set which contains the identity representation.

(a) If T is a Schottky group which is free on n generators, determine
dim(V(T")).

(b) If T is such that H? /T is a hyperbolic once-punctured torus, determine
dim(V(T")).

1.7 Volumes and Ideal Tetrahedra

So far we have stressed the requirement that hyperbolic manifolds and or-
bifolds have finite volume. In that case, the hyperbolic volume itself is a
topological invariant, even a homotopy invariant as follows from Mostow’s
Rigidity Theorem given in the preceding section. In this section, we indicate
how volumes and numerical approximations to volumes may be computed.
In later applications, the results of such calculations serve, in particular, to
distinguish manifolds and as a guide to possible degrees of commensurab-
ility between Kleinian groups or the associated manifolds or orbifolds.
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FIGURE 1.6.

Finite-volume fundamental polyhedra whose combinatorial structure is
not too complicated can be decomposed into a union of tetrahedra (see
Exercise 1.7, No 1). In turn, these tetrahedra can be expressed setwise as
a sum and difference of tetrahedra with at least one ideal vertex. Finally,
locating such a tetrahedron so that the ideal vertex in the upper half-space
model of H? is at co and the remaining vertices lie on the unit hemisphere
centred at the origin, that tetrahedron can be decomposed into a sum
and difference of tetrahedra of the standard form we now describe: Let
T, denote the tetrahedron in H® with one vertex at co and the other
vertices on the unit hemisphere such that they project vertically onto C
to form the Euclidean triangle T' as shown in Figure 1.6 with acute angle
B'A'C’ = o and the dihedral angle along BC is 4. Note that the length
of A’B’ is cosv. These acute dihedral angles o,y determine the isometry
class of the tetrahedron 7, . The volume of this tetrahedron is thus given
by the convergent integral

dz dy dt
Vol(Tq,4) =// / "_tg—
T Jt>/1-(22+4+y2)

which, after a little manipulation reduces to

2sin(f — @)

o) de. (1.16)

1 /2
VOI(TO,”Y) = Z/ In
vy

This integral can be conveniently expressed in terms of the Lobachevski
function whose definition we now recall.

For 0 # nr, define

0
L(9) = —/ In |2 sin u|du. (1.17)
0
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It is not difficult to see that this integral converges for § € (0,7) and
admits a continuous extension to 0 and 7 with £(0) = L(x) = 0. By
further extension, the above definition allows one to extend £ in such a
way that it admits a continuous extension to the whole of R. On (0, ),
L(0 + nm) — L(0) is differentiable with derivative 0 and so is constant on
[0, 7]. Thus we obtain the following:

Lemma 1.7.1 The Lobachevski function L is periodic of period m and is
also odd.

The function £ has a uniformly convergent Fourier series expansion which
can be obtained via its connection with the complex dilogarithm function

$(2) =Zf7 2| < 1.

For |z| < 1, z¢)/(z) = — In(1 — z), where we take the principal branch of log,
so that ¢(z) = — [ ln(l ) dw. Indeed this definition can also be extended
to |z| = 1. Then comparlng imaginary parts of 1¥(e??) — (1) for the two
expansions of the dilogarithm function yields this next result.

Lemma 1.7.2 £(0) has the uniformly convergent Fourier series expansion
1 & sin(2n6)
n=1

Returning to the calculation of volumes, it readily follows from (1.16) and
(1.17) that

Vol(Ta ) = £+ )+ £(a— ) +26(5 - )] (1.18)

4

Example 1.7.3 The Coxeter tetrahedron with Coxeter symbol given in
Figure 1.7 is the difference of two tetrahedra each with one ideal vertex as
shown in Figure 1.8. The number n labelling an edge indicates a dihedral
angle of w/n. The tetrahedron with vertices A, B,C and oo is of the type
T, described earlier, where o = m/3 and, via some hyperbolic geometry,
~ is such that siny = 3/(4cos7/5). Thus by (1.18), the volume of Ty, 4
is approximately 0.072165.... The tetrahedron with vertices D, B,C and
oo is not of the type T, but can be shown to be the union of two such
tetrahedra minus one such tetrahedron and so the volume of the compact
tetrahedron in Figure 1.8 can be determined (see Exercise 1.7, No. 4).

O =0 O

FIGURE 1.7.
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If in the tetrahedron described by Figure 1.6, the vertex C' was also ideal,
then it would lie on the unit circle in C and « = . In that case,

1
Vol(Ty,a) = §£(a). (1.19)
(See Exercise 1.7, No. 5.)

Definition 1.7.4 An ideal tetrahedron in H? is a hyperbolic tetrahedron
all of whose vertices lie on the sphere at infinity.

For such a tetrahedron, the dihedral angles meeting at each vertex form
a Euclidean triangle from which it is easy to deduce that opposite angles
of an ideal tetrahedron must be equal. Locating the ideal tetrahedron with
dihedral angles «, 8 and « (with sum =) such that one vertex is at oo
and the others on the unit circle centred at the origin, if the angles are all
acute, then the ideal tetrahedron can be decomposed into the union of six
tetrahedra, two each of the forms T, o, T3, and T, , as described above.
Thus the volume of an ideal tetrahedron with angles «, 8 and + is

L(a) + L(B) + L(7). (1.20)

This formula still holds if not all angles are acute. These ideal tetrahedra
can be used to build non-compact manifolds obtained by suitable gluing, as
discussed in §1.4.4, the particular example of the figure 8 knot complement
appearing there. Furthermore, the procedure of hyperbolic Dehn surgery
on a cusped manifold built from such tetrahedra can be described by de-
forming the initial tetrahedra to further ideal tetrahedra before completing
the structure.

The key to calculations involving these is an appropriate parametrisation
for such oriented tetrahedra. Normalise so that three of the vertices lie at
0,1 and oo and the fourth is a complex number z with $(z) > 0. Such
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FIGURE 1.9.

a z = z1 is not uniquely determined by the oriented tetrahedron because
it depends on the choice of normalisation, but the other possibilities are
cyclically related to it as zo = z;1 and z3 = 1—i;, as shown in Figure 1.9.
From (1.20), the volume of such a parametrised ideal tetrahedron is

,C(arg(z))—i—ﬁ(arg(zz 1>)+£<arg(1 lz)) (1.21)
This parametrisation of ideal tetrahedra allows the geometric structure
of manifolds built from ideal tetrahedra to be systematically determined.
In the classic example of the figure 8 knot complement, suppose initially
that we just took two ideal tetrahedra parametrised by z and w and glued
them together according to the pattern given in Figure 1.2. Then the glu-
ing consistency conditions around the two edges yield the single equation
zw(l — z)(1 — w) = 1. The link L of the vertex consists of eight triangles
from whose arrangement we deduce the derivative of the holonomy of L
as H'(z) = (z/w)? and H'(y) = w(1l — z). For the complete structure,
these must both be 1 so we deduce that z = w = €>™*/3, Thus the volume
of the hyperbolic manifold that is the complement of the figure 8 knot is
6L(m/3) = 2.029.. . (See §5.5 for another example.)

The volume of a hyperbolic manifold obtained by Dehn surgery on a torus
boundary component can also be computed in terms of tetrahedral para-
meters. The complete structure is obtained from the incomplete structure
by adjoining a set of measure zero. The incomplete structure is described
by tetrahedral parameters that satisfy the gluing consistency conditions
together with conditions on the holonomy determined by the Dehn surgery
coefficients. Thus returning to the familiar figure 8 knot complement, a
meridian and longitude pair can be chosen to have holonomy derivatives
w(1 — 2) and z%(1 — 2)? respectively. The generalised Dehn surgery equa-
tion then requires that plog(w(l — z)) + 2Alog(z(1 — 2)) is a multiple of
27 for the correct branch of log. Solving this, for example, in the case of
(1, A) = (5, 1) then yields values for z and w from which the computation of
the volume of the resulting compact hyperbolic manifold can be obtained
as 0.9813... using (1.21).



74 1. Kleinian Groups and Hyperbolic Manifolds

Exercise 1.7

1. Let P be the polyhedron in H3 = {(z,y,t) | t > 0} bounded by the
hyperbolic planes given by x = £1,y = +1, 22+y?+t?> = 4 and 2°+y?+1% =
8. Decompose P into tetrahedra and hence determine the volume of P.

2. Deduce (1.16).
8. Complete the proof of Lemma 1.7.2.

4. The tetrahedron BCDoo in Figure 1.10 is that described in Figure
1.8. Let T, , be the tetrahedron BCEoo, Ty, y, = CEFoo and Ty, oy =
DEFoo, so that setwise

BCDoo = Ta, 7 UTagys \ Taz,ye-

Use the relationships between dihedral angles and face angles to determine
the a; and ~y;. Hence, using (1.18), show that the volume of the compact
tetrahedron in Figure 1.8 is approximately 0.03905... .

FIGURE 1.10.

5. Prove that L(2a) = 2L(a) — 2L(7w/2 — ). (See Exercise 11.1, No. 5 for
a generalisation of this.).

1.8 Further Reading

Most of the material in this chapter has appeared in a variety of styles in a
number of books. Since we are taking the viewpoint that our readership will
have some familiarity with the main concepts here, in this reference section,
we will content ourselves with listing references section by section which
cover the relevant material. These lists are not intended to be proscriptive
and, indeed, the reader may well prefer other sources. We trust, however,
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that any obscurities which do arise in this brief introductory chapter can
be clarified by consulting at least one of the sources given here.

§1.1 See Anderson (1999), Beardon (1983), Thurston (1979), Thurston
(1997), Ratcliffe (1994), Vinberg (1993a) and Matsuzaki and Tanigu-
chi (1998).

§1.2 See Thurston (1997), Thurston (1979), Vinberg (1993b), Ratcliffe
(1994), Maskit (1988), Harvey (1977)and Matsuzaki and Taniguchi
(1998).

§1.3 See Thurston (1997), Thurston (1979), Matsuzaki and Taniguchi
(1998), Ratcliffe (1994) and Elstrodt et al. (1998).

§1.4 See Elstrodt et al. (1998), Vinberg (1993b), Ratcliffe (1994), Thurston
(1997), Thurston (1979), Maskit (1988) and Epstein and Petronio
(1994).

§1.5 See Gromov (1981), Hempel (1976), Jaco (1980), Morgan and Bass
(1984), Thurston (1979), Benedetti and Petronio (1992), Ratcliffe
(1994), Dunbar and Meyerhoff (1994), Neumann and Reid (1992a)
and Matsuzaki and Taniguchi (1998).

§1.6 See Thurston (1979), Ratcliffe (1994), Benedetti and Petronio (1992),
Matsuzaki and Taniguchi (1998), Weil (1960), Garland (1966), Mum-
ford (1976), Mostow (1973) and Prasad (1973).

§1.7 See Vinberg (1993a), Ratcliffe (1994) and Thurston (1979).



2
Quaternion Algebras I

Throughout this book, the main algebraic structure which plays a major
role in all investigations is that of a quaternion algebra over a number
field. In this chapter, the basic theory of quaternion algebras over a field of
characteristic # 2 will be developed. This will suffice for applications in the
following three chapters, but a more detailed analysis of quaternion algebras
will need to be developed in order to appreciate the number-theoretic input
in the cases of arithmetic Kleinian groups. This will be carried out in a later
chapter. For the moment, fundamental elementary notions for quaternion
algebras are developed. In this development, use is made of two key results
on central simple algebras and these are proved independently in the later
sections of this chapter.

2.1 Quaternion Algebras

For almost all of our purposes, and certainly in this chapter, it suffices to
consider the cases where F is a field of characteristic # 2. A modification
of the definition is required in the case of characteristic 2 (see Exercise 2.1,
No. 1).

Definition 2.1.1 A guaternion algebra A over F is a four-dimensional
F-space with basis vectors 1,4,7 and k, where multiplication is defined on
A by requiring that 1 is a multiplicative identity element, that

i’=al, j2=0bl, ij=—ji=k (2.1)
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for some a and b in F* and by extending the multiplication linearly so that
A is an associative algebra over F'.

The algebra so constructed can be denoted by the Hilbert symbol

(%) . (2.2)

k% = (ij)* = —ab

Note that

and that any pair of the basis vectors ¢, 7 and k anti-commute. Thus this
quaternion algebra could equally well be denoted by the Hilbert symbols

ba a, —ab etc
F )’ F ’ )

Thus it should be noted that the quaternion algebra does not uniquely
determine a Hilbert Symbol.
If K is a field extending F, then

a,b . [ab
(F)erre=(%)

Familiar examples of quaternion algebras are Hamilton’s quaternions

= (55)

and, for any field F',

with generators

Lemma 2.1.2

1. (“Tb) & (&;’bﬁ) for any a,b,x,y € F*
2. The centre of (aTb) is F1.

3. <“Tb> is a simple algebra (i.e., has no proper two-sided ideals).
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Proof:

i
respectively. Define ¢ : A" — A by ¢(1) =1, ¢(i') = i, ¢(j') = yj and
¢(k') = xyk and extend linearly. Since (xi)? = az?, (yj)? = by?, and
(zi)(yj) = (zy)ij = —(zy)ji = —(yj)(x?), it follows that ¢ is an F-
algebra isomorphism.

1. Let A= (a—b> and A’ = (%ﬁ) have bases {1, 1, j, k} and {1,7, 5/, k'},

2. Let F' denote an algebraic closure of F'. Then, extending the coefficients
(“Tb) Qp F = (%’3) Every element in Fisa square so by part 1,

(an) = (171-) >~ My(F'), whose centre is F'1. Thus the centre of (“Tb)

is F'1.

3. If I is a non-zero ideal in A, then I ®F F is a non-zero ideal in My(F).
However, M>(F’) is simple. As a vector space over F, I will then have
dimension 4 and so I = A. O

Thus quaternion algebras are central and simple. They can be character-
ised in terms of central simple algebras and this will be shown later in
this section, modulo some results on central simple algebras which will be
discussed later in this chapter.

Like Hamilton’s quaternions, every quaternion algebra admits a “con-
jugation” leading to the notions of trace and norm. To discuss these, we
first introduce the subspace of pure quaternions.

Let A = (“Tb) as above with basis {1,4, j, k} satisfying (2.1). This is

referred to as a standard basis.

Definition 2.1.3 Let Ag be the subspace of A spanned by the vectors i,j
and k. Then the elements of Ay are the pure quaternions in A.

This definition does not depend on the choice of basis. For, let £ = ag +
a1t + azj + azk. Then

z? = (aj + aa? + ba3 — aba?) + 2a¢(a1i + azj + azk).

Lemma 2.1.4 ¢ € A (x # 0) is a pure quaternion if and only if ¢ & Z(A)
and 2 € Z(A).

Thus each x € A has a unique decomposition as * = a + «a, where a €
Z(A) = F and « € Ag. Define the conjugate T of £ by & = a — . This
defines an anti-involution of the algebra such that (z + y) = z+v, Ty = ¥z,
Z =z and 7T = rZ for r € F. On a matrix algebra My (F),

(o=
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Definition 2.1.5 For x € A, the (reduced) norm and (reduced) trace of x
lie in F' and are defined by n(z) = 2T and tr (x) = x + T, respectively.

Thus on a matrix algebra, these coincide with the notions of determinant
and trace. o
The norm map n : A — F is multiplicative, as n(zy) = (zy){zy) =
zyyZ = n(x)n(y). Thus the invertible elements of A are precisely those
such that n(zx) # 0, with the inverse of such an z being Z/n(z).
Thus if we let A* denote the invertible elements of A, and

Al ={z € A|n(z) =1},

then A C A*.
This reduced norm 7 is related to field norms (see also Exercise 2.1, No.
7). An element w of the quaternion algebra A satisfies the quadratic

z? — tr (w)z + n(w) =0 (2.3)

with tr (w),n(w) € F. Let F(w) be the smallest subalgebra of A which
contains F'1 and w, so that F'(w) is commutative. If A is a division algebra,
then the polynomial (2.3) is reducible over F if and only if w € Z(A).
Thus for w & Z(A), F(w) = E is a quadratic field extension E | F. Then
Ngirp = nlg-

Lemma 2.1.6 If the quaternion algebra A over F is a division algebra
and w & Z(A), then E = F(w) is a quadratic field extension of F' and

IfA= (“—Fb) and x = ag + a1? + azj + ask, then

n(z) = a2 — aa? — ba3 + aba3.

In the case of Hamilton’s quaternions (_1]1’{1), n(z) = a3 +a? + a3 + a3
so that every non-zero element is invertible and H is a division algebra.
The matrix algebras M;(F') are, of course, not division algebras. That
these matrix algebras are the only non-division algebras among quaternion
algebras is a consequence of Wedderburn’s Theorem.

From Wedderburn’s Structure Theorem for finite-dimensional simple al-
gebras (see Theorem 2.9.6), a quaternion algebra A is isomorphic to a
full matrix algebra M, (D), where D is a division algebra, with n and
D uniquely determined by A. The F-dimension of M, (D) is mn?, where
m = dimg(D) and, so, for the four-dimensional quaternion algebras there
are only two possibilitiess m=4,n=1;m=1,n= 2.

Theorem 2.1.7 If A is a quaternion algebra over F, then A is either a
division algebra or A is isomorphic to Ma(F).
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We now use the Skolem Noether Theorem (see Theorem 2.9.8) to show that
quaternion algebras can be characterised algebraically as follows:

Theorem 2.1.8 FEvery four-dimensional central simple algebra over a field
F of characteristic # 2 is a quaternion algebra.

Proof: Let A be a four-dimensional central simple algebra over F. If A
is isomorphic to M2(F"), it is a quaternion algebra, so by Theorem 2.1.7
we can assume that A is a division algebra. For w ¢ Z(A), the subalgebra
F(w) will be commutative. As a subring of A, F(w) is an integral domain
and since A is finite-dimensional, w will satisfy an F-polynomial. Thus
F(w) is a field.

Since A is central, F(w) # A. Pick w’' € A\ F(w). Now the elements
1, w,w’ and ww' are necessarily independent over F' and so form a basis of
A. Thus

w? = ap + ayw + asw’ + asww’, a; € F.
Since w' ¢ F(w), it follows that w? = ag + ajw. Thus F(w) = E is
a quadratic extension of F. Choose y € E such that y> = ¢ € F and
E = F(y).

The automorphism on F induced by y — —y will be induced by conjug-
ation in A by an invertible element z of A by the Skolem Noether Theorem
(see Theorem 2.9.8). Thus zyz~! = —y. Clearly z ¢ E and 1,y,2z and
yz are linearly independent over F. Also z%yz~2 = y so that 22 € Z(A)
(i.e., 22 = b € F). However, {1,y, z,yz} is then a standard basis of A and

A (‘ITZ’) i

Corollary 2.1.9 Let A be a quaternion division algebra over F. If w €
A\ F and E = F(w), then AQp E = M,(E).

Proof: As in the above theorem, F is a quadratic extension field of F.
Furthermore, there exists a standard basis {1,y, z,yz} of A with E = F(y)
and 2 = a € F. Thus there exists € A®p E such that 2 = 1. However,
then A ®  E cannot be a division algebra and so must be isomorphic to
MQ(E) O

Deciding for a given quaternion algebra (%,9) whether or not it is iso-

morphic to M2(F') is an important problem and, as will be seen later in
our applications, has topological implications. For a given a and b, the
problem can be re-expressed in terms of quadratic forms, as will be shown
in §2.3.
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Exercise 2.1

1. Let A be a four-dimensional central algebra over the field F' such that
there is a two-dimensional separable subalgebra L over F and an element
c € F* with A= L + Lu for some u € A with

w?=c¢ and um =1mu

where m € L and m — 1 is the non-trivial F'-automorphism of L. Prove
that if F' has characteristic # 2, then A is a quaternion algebra. Indeed,
this is a definition of a quaternion algebra wvalid for any characteristic.
Show that, under this definition, conjugation can be defined as: that F-
endomorphism of A, denoted x — T, such that 4 = —u and restricted to L
is the non-trivial automorphism. Prove also that Theorem 2.1.8 is valid in
any characteristic.

2. Show that the ring of Hamilton’s quaternions H = (=%=1) is isomorphic

R
to the R-subalgebra
a B
{(5 &)1esech

Hence show that H' = {h € H | n(h) = 1} is isomorphic to SU(2).

3. Let
1= {( &) 1esean).

Prove that A is a quaternion algebra over Q. Prove that it is isomorphic
to M2(Q) (cf. Ezercise 2.7, No.1).

4. Let A be a quaternion algebra over a number field k. Show that there
ezists a quadratic extension field L | k such that A has a faithful represent-

ation p in Ma(L), such that p(Z) = p(z) for all x € A.

5. Let F be a finite field of characteristic # 2. If A is a quaternion algebra
over F, prove that A = M,(F).

6. For any quaternion algebra A and x € A, show that
tr (x?) = tr (z)? — 2n(x).

7. Let X denote the left reqular representation of a quaternion algebra A.
Prove that, for z € A, n(z)? = det\(z).

2.2 Orders in Quaternion Algebras

Throughout this chapter, we are mainly concerned with the structure of
algebras, particularly quaternion algebras, over a field. However, in this
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section, we briefly introduce orders, which are the analogues in quaternion
algebras of rings of integers in number fields. These play a vital role in
developing the arithmetic theory of quaternion algebras over a number field
and all of Chapter 6 is devoted to their study. Only some of the most basic
notions associated to orders which are required in the following chapters
will be discussed here.

Throughout this section, the ring R will be a Dedekind domain (see §0.2
and §0.6) whose field of quotients k is either a number field or a P-adic
field. In applications, it will usually be the case that when k is a number
field, R = Ry, the ring of integers in k. Recall that a Dedekind domain is
an integrally closed Noetherian ring in which every non-trivial prime ideal
is maximal.

Definition 2.2.1 If V is a vector space over k, an R-lattice L in V is a
finitely generated R-module contained in V. Furthermore, L is a complete
R-lattice if Lrk = V.

Lemma 2.2.2 Let L be a complete lattice in V and M an R-submodule of
V. Then M is a complete R-lattice if and only if there exists a € R such
that aL C M C a~'L.

(See Exercise 2.2, No. 1.)

Definition 2.2.3 Let A be a quaternion algebra over k. An element o € A
is an integer (over R) if R[a] is an R-lattice in A.

Lemma 2.2.4 An element o € A is an integer if and only if the reduced
trace tr (o) and the reduced norm n(a) lie in R.

Proof: Any « in A satisfies the polynomial
z? —tr (a)z + n(a) = 0.

Thus if the trace and norm lie in R, then « is clearly an integer in A.

Suppose conversely that « is an integer in A. If o € k, then, since «
is integral over R, it will lie in R. Thus tr (a),n{e) € R. Now suppose
that & € A\ k. If k(«) is an integral domain, necessarily the case when
A is a division algebra, then k(a) is a quadratic field extension L of k, as
in Lemma 2.1.6. Note that & is the field extension conjugate of a. Now
a,@ € Ry, the integral closure of R in L, which is also a Dedekind domain.
However, then tr (), n(a) € Ry Nk = R. If k(«) is not an integral domain,
then A = M, (k) and « is conjugate in My(k) to a matrix of the form (g ?),
a,b,c € k. But then o™ = (% % ). Thus since « is an integer in A, then
a,c € R and the result follows. O

In contrast to the case of integers in number fields, it is not always true
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that the sum and product of a pair of integers in a quaternion algebra are

%) with standard

basis {1,4,7,4j}, then @ = j and 3 = (3j + 4¢j)/5 are integers, but neither
«a + B nor af are integers. The role played by the ring of integers R in a
number field is replaced by that of an order in a quaternion algebra.

necessarily integers. For example, if we take A =

Definition 2.2.5
e An ideal I in A is a complete R-lattice.
e An order O in A is an ideal which is also a ring with 1.

o An order O is mazimal if it is maximal with respect to inclusion.

Examples 2.2.6

1. If {z1, x2, T3, 24} is any k-base of A, then the free module R[x1, z2, T3, Z4]
is an ideal in A.

2. If A (a—’b), then by adjoining squares, if necessary, we can assume that

a,b € R. The free module R{1,4,j,ij], where {1,4,j,ij} is a standard
basis, is an order in A.

3. The module M3(R) is an order in M (k). Indeed it is a maximal order.
If not, then there exists an order O containing Ma(R) and an element
(“z” }{,) € O where at least one of the entries is not in R. By suitably
multiplying and adding elements of M3(R), it is easy to see that O must
contain an element a = (&9), where a ¢ R. However, R[o] then fails to
be an R-lattice, which as submodule of an R-lattice, is impossible.

4. If I is an ideal in A, then the order on the left of I and the order on the
right of I, defined respectively by

Ol)={acA|lalCI}, O(I)={acA|lacClI} (2.4)
are orders in A. (See Exercise 2.2, No.2.)

Lemma 2.2.7

1. O is an order in A if and only if O is a ring of integers in A which
contains R and is such that kO = A.

2. Ewvery order is contained in a maximal order.

Proof: Let o € O, where O is an order in A. Since O is an R-lattice,
R[] will be an R-lattice and so « is an integer. The other properties are
immediate.
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For the converse, choose a basis {z1,z2, 3,24} of A such that each z; €
©. Now the reduced trace defines a non-singular symmetric bilinear form on
A (see Exercise 2.3, No. 1). Thus d = det(tr (z;iz;)) # 0. Let L = {>_ a;x; |
a; € R}. Thus L C O. Now suppose a € O so that o = ) b;x; with b; € k.
For each j, az; € O and so tr (az;) = Y bitr (z;2;) € R. Thus b; € (1/d)R
and O C (1/d)L. Thus O is finitely generated and the result follows.

Using a Zorn’s Lemma argument, the above characterisation shows that
every order is contained in a maximal order. O

Let us consider the special cases where A = My(k). If V is a two-
dimensional space over k, then A can be identified with End(V). If L is a
complete R-lattice in V, define

End(L) = {o € End(V) | o(L) C L}.

If V has basis {e;, e2} giving the identification of Ma(k) with End(V'), then
Lo = Rei + Res is a complete R-lattice and End(Ly) is identified with the
maximal order Ms(R). For any complete R-lattice L, there exists a € R
such that aLly € L C a~'Lg. It follows that a? End(L¢) € End(L) C
a2 End(Ly). Thus each End(L) is an order.

Lemma 2.2.8 Let O be an order in End(V). Then O C End(L) for some
complete R-lattice L in V.

Proof: Let L = {£ € Ly | O £ C Lo}. Then L is an R-submodule of
L. Also, if @ End(Lg) C O C a=! End(Lg), then a Lo C L. Thus L is a
complete R-lattice and O C End(L). O

A simple description of these orders End(L) can be given by obtaining a
simple description of the complete R-lattices in V.

Theorem 2.2.9 Let L be a complete R-lattice in V. Then there exists a
basis {z,y} of V and a fractional ideal J such that L = Rx + Jy.

Proof: For any non-zero element y € V, LNky = Iy, where I, = {a €
k| ay € L}. Since L is a complete R-lattice, there exists 8 € R such that
BI, C R so that I, is a fractional ideal.

We first show that there is a basis {z,y} of V such that L = Iz + I, y
for some fractional ideal I. Let {e1,e2} be a basis of V and define

I={a€k|ae €L+key}.

Again it is easy to see that I is a fractional ideal. Since I I~! = R, there
exist a; € I and B; € I7! such that 1 = Y a;0;. Now a;e1 = £; + viea
where ¢; € L,v; € k. Thus e; = > B:4; + ~vea, where v = > B;y;. Let
x =e; —ves,y = e2. I claim that L = Iz + I, y. First note that

Ix+Iyy:I(el—762)+Lﬂky:I(Zﬂi&-)+LﬂkyCL.
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Conversely, suppose that z = a(e; + Bez) € L for some «,8 € k. Now
ae; = z — affe; € L + kep so that o € I. Thus a(Bez + ve2) = ale; +
Be2) — aer —vez) € L. Hence z = a(e; —yez) + aBes +ves) € Iz + 1, y.

It remains to show that we can choose y such that I, = R. Suppose L =
Iz+1,y, as above. Then there exist d1, 62 € k such that 61I_1+621y_1 = R.

Let y’ = d12+082y. Then Iy = (I67 )N(I6; ") = (117 +6I;1) 1 =R. O

Thus if End(V) is identified with M2(k), then for any complete R-lattice
L, End(L) is a conjugate of

My (R; J) ::{(Z Z) | a,dER,bEJ_l,CEJ} (2.5)

for some fractional ideal J. Note that if R is a PID and so J = zR for some
x € k, then M>(R;J) is conjugate to M2(R) and from Lemma 2.2.8 and
Theorem 2.2.9, we obtain the following:

Corollary 2.2.10 If R is a PID, all mazimal orders in Ma(k) are conjug-
ate.

Exercise 2.2

1. Complete the proof of Lemma 2.2.2.

2. Establish the result in Examples 2.2.6, No. 4 ; that is, if I is an ideal
of A, then the sets O¢(I) and O.(I) are, indeed, orders in A.

3. In the special case where R = Z, show that

0= {(‘; Z) € My(Z)| a = d(mod 2),b = c(mod 2)}

s an order in M2(Q).
4. Show that

{(g 55) | a,ﬂe@(\/—_3)}

15 a quaternion algebra A over Q and that A = (%53) Show that the order
Z[1,1,j,1j] is not a mazimal order in A.

5. Let A= (%ﬁ) and let R be the ring of integers in Q(+/5). Let

O = R[1,1,j,ij] + Ra, where a = (1 +i)((1 — v/5)/2 + j)/2. Show that O
is an order in A.
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2.3 Quaternion Algebras and Quadratic Forms

Let A be a quaternion algebra over F. From the norm map on the vector
space A, define a symmetric bilinear form B on A by

B(z,y) = 3ln(z +3) - n(z) — n(y)] = 37+ 7]

so that A becomes a quadratic space (see §0.9). If A has a standard basis
{1,4, 4, k}, then it is easy to see that these vectors constitute an orthogonal

basis of A. If A = (‘ZT’I’), then the quadratic space has the quadratic form
7?2 — az% — bx3 + abz? and so is obviously regular. The restriction of n,
and hence B, to the pure quaternions Ag makes Ap into a regular three-
dimensional quadratic space. The forms n and B have particularly simple
descriptions on Aq since, for x € Ag, Z = —x. Thus n(z) = —z? and
B(z,y) = —%—(my—l—yx). The norm map will be referred to as the norm form
on both A and Ay. Recall that a quadratic space V with a quadratic form
q:V — F is said to be isotropic if there is a non-zero vector v € V such
that gq(v) = 0. Otherwise, the space, or the form, is said to be anisotropic.

Theorem 2.3.1 For A = (“T’b), the following are equivalent:

(a) A= (3) (= Ma(F)).

(b) A is not a division algebra.

(¢) A is isotropic as a quadratic space with the norm form.

(d) Ao is isotropic as a quadratic space with the norm form.

(e) The quadratic form ax® + by? = 1 has a solution with (z,y) € F x F.
(f) If E = F(V/b), then a € Ngr(E).

Proof: The equivalence of (a) and (b) is just a restatement of Theorem
2.1.7.

(b) = (c¢). If A is not a division algebra, it contains a non-zero non-
invertible element x. Thus n(z) = 0 and A is isotropic.

(¢) = (d). Suppose x = ag + a1i + asj + asij is such that n(x) = 0. If
ag = 0, then z € Ag and Ay is isotropic. Thus assume that ag # 0 so that
at least one of ay,as and as must be non-zero. Without loss, assume that
a1 # 0. Now from n(z) = 0, we obtain a3 — baZ = a(a? — ba?). Let

y = b(apas + a1a2)i + a(a% - bag)j + (apa1 + bagag)ij.

A straightforward calculation gives that n(y) = 0. Now suppose that Ag is
anisotropic. Thus y = 0 and, in particular, —aa? +aba? = 0. Thus n(z) = 0
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where z = a1i + azij. Again, if Ay is anisotropic, this implies that a; = 0.
This is a contradiction showing that Ay is isotropic.

(d) = (e). An equation of the form —aa? — ba2 + aba? = 0 holds with
at least two of a1, a2 and as non-zero. If az # 0, then the pair z,y, where
x = az/aas, y = a1 /basz satisfy ax?+by? = 1. If a3 = 0, then z = (1+a)/2a
and y = az(1 — a)/2aa; satisfy az? + by? = 1.

(e) = (f). Let ax}+bys = 1. Iz = 0, then vb € F and E = F, in which
case the result is obvious. Assuming then that zg # 0, a rearrangement
shows that N r(1/Z0 + Vbyo/z0) = a.

(f) = (). I vb=cc F,then ¢ = b = j2. So (c+j)(c—3j) =0
and A has zero divisors. Now suppose that v/b ¢ F. Then a € Ngp(E)
shows that there exist z1,y; € F, not both 0, such that a = 22 — by?. Then
n{z1 + ¢+ y1j) = 0 so that A has non-zero non-invertible elements. O

Definition 2.3.2 If the quaternion algebra A over F is such that A =
M5 (F), then A is said to split over F.

Remark Recall that in §0.9, a Hilbert symbol (a,b) was defined for the
quadratic form az?+by?. This theorem relates the two definitions of Hilbert

symbol. Thus (%) splits if and only if (a,b) = 1.

Corollary 2.3.3 The quaternion algebras (Lﬁ) and (

F
to Mz(F)

a,—a

=) are isomorphic

Proof: For (42), the result follows immediately from (e). For (252), the
norm form on Ag is —az? + ay? + a?22, which is clearly isotropic. O

The above results give several criteria to determine when a given qua-
ternion algebra is isomorphic to the fixed quaternion algebra M;(F'). Now
consider some examples which are not isomorphic to My(F'). Let k be a
number field and A = (%’) By Lemma 2.1.2, it can be assumed that

a,b € Ry, the ring of integers in k. Now the form az? + by? = 1 has a
solution in & if and only if the form az? + by? = 22 has a solution in Ry
with z # 0. If the form has a solution in Rg, then for any ideal I of Ry,
there will be a solution in the finite ring Ry /I. This enables us to construct
many examples which are not isomorphic to Ma(F'). Take, for example,
(%), where p is a prime = —1(mod 4). Then choosing I, as above, to be
pZ, the congruence —z2 +py? = 22(mod p) clearly has no solution. Thus by

Theorem 2.3.1(e), (—TSE) is not isomorphic to M2(Q). On the other hand,

noting that Pell’s equation
o® —py® = -1

has an integral solution if p = 1(mod 4), in these cases (ll—’l) >~ M>(Q).
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More generally, it is necessary to decide when two quaternion algeb-
ras over the same field are isomorphic by an isomorphism which acts like
the identity on the centre. The important classification theorem, which
precisely describes the isomorphism classes of quaternion algebras over a
number field, will be given in §2.7 and Chapter 7, but for the moment we
recast the problem in terms of quadratic forms.

Theorem 2.3.4 Let A and A’ be quaternion algebras over F. Then A
and A’ are isomorphic if and only if the quadratic spaces Ag and A} are
isometric.

Proof: With norm forms n and n/, this last statement means that there
exists a linear isomorphism ¢ : Ay — A, such that n’(¢(z)) = n(x) for all
T € Ao.

Thus suppose that ¥ : A — A’ is an algebra isomorphism. Then by the
characterisation of the pure quaternions in terms of the centre (Lemma
2.1.4), ¥ must map Ay to Ah. Then for x € Ao, n'(¢(z)) = —¢(z)? =
P(—z?) = (n(x)) = n(z). Thus Ay and A} are isometric.

Now suppose ¢ : Ag — A{ is an isometry with {1,4,j,¢j} a standard
basis of A. We will show that {¢(i), ¢(j), ¢(¢)p(4)} is a basis of Afy. Let A =
<%b) First note that ¢(i)? = —n/(¢(4)) = —n(i) = i2 = a and ¢(5)* = b.
Since 4 and j are orthogonal in Ap, ¢(i) and ¢(j) are orthogonal in Aj
[ie., ¢(i)p(7) + #(5)$(i) = 0]. Now ¢(i)(¢(i)¢(s)) = —&(i)(¢(5)¢(2)) =
—(¢(1)0(4))¢(7) so that ¢(i)¢(s) ¢ Z(A). Also (8(i)¢(4))> = —ab € Z(A).
Thus ¢(i)¢(j) € Ag. Now consider a1¢(z) + a2¢(j) + azd(i)@(j) = 0. Left
multiplication by ¢(¢) forces a; = 0 and, in the same way, as = a3 = 0.
Thus {1, ¢(i), #(5), #(i)¢(j)} forms a standard basis of A’ so that A’ =

(“T”) =A. O

Corollary 2.3.5 If A = (‘—IF—IZ) and A’ = (a/];b,>, then A and A’ are iso-

morphic if and only if the quadratic forms az® 4 by? — abz? and a’z? +
b'y? — a'b' 2% are equivalent over F.

Proof: The norm form on Ay with respect to the restriction of the stand-
ard basis is —ax? — by? 4+ abz2. Thus the equivalence of the quadratic forms
in this corollary is a restatement of the fact that Ag and Aj, are isometric
(see §0.9). O

Consider again the examples (%’3), where p = —1(mod 4). By this
corollary, it can be shown that no two of these are isomorphic. For, sup-
pose A = (%ﬂ) and A’ = <_é’q> are isomorphic so that A’ = M*AM,
where A = diag{1, -p, —p}, A’ = diag{1, —¢, ~¢}. The matrix M will have
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rational entries and determinant +¢/p. Let p®n be the least common mul-
tiple of the denominators of the entries of M so that p*nM = [m;;| with
m;; € Z, and o > 1. The first of the nine equations obtained from equating
the entries of the matrices is

2 2 2 (oo \2
mi; — pmy; — pmz; = (pn)”.

Thus my; = O(mod p) and m%, + m%, = 0(mod p). Since —1 is not a
square mod p, this forces mo; = m3; = 0(mod p). In the same way, all
entries of p®nM are divisible by p. Thus p®* 'nM € M3(Z) contradicting
the choice of p®n. Thus A and A’ cannot be isomorphic. In particular, there
are infinitely many isomorphism classes of quaternion algebras over Q. This
is true more generally over any number field and all of these results will be
trivial consequences of the classification theorem for quaternion algebras
over a number field (see Theorem 2.7.5). :
The elementary argument given above, which uses quadratic forms to
distinguish quaternion algebras, is, in some senses, the wrong approach.
For, in distinguishing equivalence classes of quadratic forms, use can be
made of the Hasse invariant, which is a product of quaternion algebras
in the Brauer group (see §2.8). Thus, counter to the above approach, it
uses non-isomorphic quaternion algebras to distinguish quadratic forms.
In the case of the two-dimensional form ax? + by? over F, the associated

Hasse invariant is the class of the quaternion algebra (%;9) (For a related

discussion, see Exercise 2.3, No. 6.)

Exercise 2.3

1. Let A be a quaternion algebra over F. Show that, for any x,y € A,

B'(z,y) = tr (zy)

defines a non-singular symmetric bilinear form on A and on Ag. Show
that (Ao, B') and (Ao, B), where B is obtained from the norm form, are
isometric if and only if —2 is a square in F'.

2. Show that if a # 0,1 then (23=2) is isomorphic to Ma(F).

3. Let K be a field extension of F, where [K : F| is odd. Let a,b € F*.
Prove that (%g,ﬁ) splits if and only if (%) splits.

4. Determine if the quaternion algebra (ZT"?’) splits over k, where (i) k =

Q, (i) k = Q(), (ii) k= Q(5), (w)k = Q(t), wheret satisfies x> = 2.

5. Show that (%) does not split when t satisfies 23 +x+1=0
(See §0.3).
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6. The Clifford algebra of a quadratic space (V,q) is an associative algebra
C with 1, where V C C and for every x € V, 2° = q(z) 1. Furthermore,
it is universal with this property in that if D is any algebra with the above
properties, then there exists a unique algebra homomorphism = : D — C
such that 7|, is the identity. This ensures that C is an invariant of the
isometry class of (V,q). For the case of a two-dimensional space (V, q) with

* =~ —,2
q = az?® + by?, where a,b € F*, show that C = (aF)

7. Show that the binary tetrahedral group has a faithful representation in

A, where A = (%)

2.4 Orthogonal Groups

This section continues the connection of the preceding section between
quaternion algebras and quadratic forms. Here we discuss the relationship
between the group of invertible elements of the quaternion algebra and the
orthogonal group of the related quadratic form.

Let A be a quaternion algebra over the field F. The group A* can be
regarded as a linear algebraic subgroup of GL(4) defined over F' via the left
regular representation A. The orthogonal group O(A4p,n) of the quadratic
space (Ag,n) is defined by

O(Ao,n) ={T: Ag — Ao | T is linear, n(Tz) = n(z) Yz € Ao}.
The mapping ¢ defined on A* by,

c(a)(z) =ara™, a€A*, z€ Ay (2.6)
is a group homomorphism into O(Ag,n). Its kernel is clearly the centre
of A*.

Recall that the orthogonal groups O(Ag, n) are generated by reflections,
where, for an anisotropic vector y € Ay, the reflection 7, is defined by

2B(z,y) Ty +yz 1
)=z - —y=xr— ——-"—y=—yxy . (2.7
@ n() % )
(See (0.37) and Theorem 0.9.11.) Thus 7, = —c(y). Now det(r,) = —1
and so SO(Ag,n) is generated by products 7y, 7,,, where y; and yo are
anisotropic vectors in Ag. However, 7, 7y, = c(y1y2), with y1y2 € A*. Thus
SO(Ap, n) lies in the image of c.

We now show that SO(Ag, n; F') is precisely the image of c. If not, then
every reflection in O(Ag, n) lies in the image of ¢. Suppose that 7; = c(«)
for some o € A* and 7 is one of the standard basis vectors. However, then
—1Id lies in the image of ¢; say ¢(8) = —Id. However, then ¢(3?) = Id and
B2 € Z(A). Clearly 8 ¢ Z(A) so that g € Ay. Now Bz = —zf for all
x € Ag. Choosing x = [ gives a contradiction.
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Theorem 2.4.1 Let A be a quaternion algebra defined over a field F'. The
homomorphism ¢ defined at (2.6) induces an isomorphism

A*/Z(A%) = SO(Ag,n; F).

A well-known example of this result shows, by taking A = M>(R), that
PGL(2,R) is isomorphic to the group SO(2, 1;R).

If we restrict to A! = {z € A | n(z) = 1}, then the kernel of c is +1. If A
is such that n(A*) C F*?, then c again maps onto SO(A4y, n), for, if « € A*
and n(a) = t2, then c¢(t"la) = c(a) and n(t~1a) = 1. If we take A = H,
then since H! = SU(2) (sec Exercise 2.1, No.2), this gives the isomorphism
SU(2)/{£1} 2 SO(3,R).

Exercise 2.4

1. Let (V,q) be a three-dimensional quadratic space over F with q¢ =

z? — ax? — bxZ, a,b € F*. Find a quaternion algebra A over F such that

A*)Z(A*) 2 SO(V,q; F).

2. Show that PGL(2,Z) 2 SO(2,1;Z), recalling that PGL(2,Z) is a maz-
imal discrete subgroup of PGL(2,R).

3. Let L | k be a field extension with [L : k] = 2. Define 7 on Ma(k) Q) L =
M>(L) to be induced by T(a®b) = a® b, where, in the first component, the
overbar is conjugation in the quaternion algebra M»(k), and in the second,
it is conjugation in the field extension L | k. Show that 7 is an involutive
k-linear anti-automorphism of Ma(L). Let V = {z € My(L) | 7(z) = z}.
With the restriction of the norm (determinant) form, show that (V,n) is
a four-dimensional k-quadratic space and obtain an orthogonal basis. For
a € SL(2,L) and x € V define

d(a)(z) = azT(a).

Show that d is a homomorphism d : SL(2,L) — O(V,n;k). Use this to
prove that PGL(2,C) 2 SO(3,1;R)%, where this last group is the identity
component of SO(3,1; R).

2.5 Quaternion Algebras over the Reals

Since every positive real number is a square in the reals, it follows from
Lemma 2.1.2 that the Hilbert symbol of a quaternion algebra over R can
have one of the forms (%), (1) or (=%=1). By Theorem 2.3.1, the first
two are isomorphic to M2(R) and the third, which is Hamilton’s quaternions

‘H, is not isomorphic to Ma(R).

R
of H and M32(R), according to whether both a and b are negative or not.

Theorem 2.5.1 A quaternion algebra (“—b) is isomorphic to exactly one
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Now let k be a number field with [k : Q] = n. Recall that there are n
(Galois) field embeddings of k into C where n = r; + 2ry. Here ry is the
number of embeddings o such that o(k) C R (the number of real places)
and rg is the number of pairs (g,5), where o(k) ¢ R (the number of
complex places).

Recall that if £ C L, so that L is a field extension of k, then

a,b o [ab
(%) er=(%)

More generally, let o : K — L be a field embedding. Then, with respect to
that embedding, we obtain an isomorphism

() (2222)

(ap + a1i1 +azj1 + a3i1j1) Qs a — alo(ag) +o(a1)is +0’(a2)j2 + U(ag)igjz)

induced by

where {1,41, 71,4151} is the standard basis of (%}) and {1,142, j2,i2j2} is

the standard basis of 5@1—3"—(—(’—)— .

We now consider this for the real and complex embeddings of a number
field k. For any complex embedding o,

(gl;—b) ®y C (70((1 (E:U(b)) >~ M,(C).

However, for a real embedding o : k — R,

a,b a),o(b
(7) ®o R = (%) =~ N or My(R).
Definition 2.5.2 If o : kK — R is a real embedding of a number field k,

then (“Tb) is said to be ramified at o if (%‘l) ~H.

It is more natural to think of this in terms of the valuation on k induced
by the embedding o. Recall that v : k¥ — Rt defined by v(z) = |o(z)|
defines an (Archimedean) valuation on k. Then k embeds naturally in the
completion k, and, if o is a real embedding, then k, = R. The composition
of this natural embedding with the isomorphism gives ¢ : kK — R. We thus

obtain a.b o(a),a(b)
() ore> (957).

We thus speak of (%) being ramified at k, or ramified at the real place

corresponding to o. Conversely, the quaternion algebra (“—b> is unramified

k
or split at k, if (aTb) ® ky =2 Mo (R).
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Example 2.5.3 Let k = Q(1/(2—+/5)) so that k has one complex place and
two real places corresponding to the embeddings given by o(/(2 —v/5)) =

+/(2 +V/5). Let A = (i—“;{@——\@)) Then A is ramified at both the

real embeddings since —1 is negative and —5 + /(2 + v/5) is negative for
both choices of sign.

Exercise 2.5

1. Let k = Q(t) where t satisfies z° + z + 1 = 0. Show that A = (LLE2)
does not split.

2. Let k be a totally real extension of Q of degree n. Show that for any set
S of r Archimedean places of k, where 0 < r < n, there is a quaternion
algebra over k which is ramified at the real places in S and unramified at the

real places not in S. If k = Q(cos(27/11)), find a,b € k* such that (‘—’k—b>
is ramified at the real places corresponding to cos(2mw/11) and cos(107/11)

but is unramified at the other real places. (This is a special case of a very
general result on quaternion algebras to be proved in Theorem 7.3.6.)

2.6 Quaternion Algebras over P-adic Fields

In the preceding section, it was shown that a quaternion algebra over the
local field R is isomorphic to precisely one of M3(R) and the division ring H
of Hamilton’s quaternions. In this section, we consider quaternion algebras
over the local P-adic fields and show that a similar dichotomy arises.

Recall the results of §0.7 on P-adic fields K, with ring of integers R,
uniformiser m, P = 7R the unique maximal ideal and K = R/P, the
finite residue field. If the non-Archimedean valuation v : K — R™ takes its
values in {¢" | n € Z}, we let v : K* — Z denote the logarithmic valuation
v =log,owv.

Let A be a quaternion division algebra over K. Let us define

w: A" =17 (2.8)

by w(z) = v(n(z)), where n is the norm on A.

Lemma 2.6.1 The function w just defined has the following properties:
(a) w(zy) = w(z) + w(y) for all x,y € A*.
(b) w(z + y) > Min{w(z), w(y)} with equality when w(z) # w(y).

Thus w defines a valuation on A.
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Proof: The equation (a) follows immediately from the definition of v since
n is multiplicative. Now consider the inequality (b). Let € A\ K so that
K (z) is a quadratic extension of K by Lemma 2.1.6 and the restriction
of n to K(z) is the norm N of the field extension K(z) | K. Now v o N
is a discrete valuation on the local field K (x) by Theorem 0.7.9. Thus w
restricted to such a quadratic extension satisfies (b) (see Exercise 0.6, No.
3). Thus for z,y € A*, we have

w(z +y) —w(y) = wxy™ +1) > Min{w(zy™*),w(1)}

with equality if w(zy™!) # w(1) using the quadratic extension K (zy~1).
Thus using (a) again, w satisfies (b). O

Extending the definition of w so that w(0) = oo, yields this result:

Corollary 2.6.2 The set O = {z € A | w(x) > 0} is a ring (the valuation
ring of A) and Q = {z € A | w(z) > 0} is a two-sided ideal of O.

The main result of this section is that, for each P-adic field, there is a
unique quaternion division algebra over K. Recall that the P-adic field K
has a unique unramified quadratic extension F' = K(3/u), where u € R*,
the group of units of R. From Theorem 0.7.13, the group K*/N(F*) has
order 2 with the non-identity element represented by m. Thus if we define
A= (%F), then by Theorem 2.3.1(f), A is a division algebra.

Theorem 2.6.3 There is a unique quaternion division algebra over K and
u,mT

it is isomorphic to (%F), where F = K(y/u) is the unique unramified
quadratic extension of K.

Proof: It remains to show that if A is any quaternion division algebra
over K, then A is isomorphic to (“7(73) The first step is to show that an
unramified quadratic extension of K embeds in A. Recall that, for any
a € A\ Z(A), K(a) | K is a quadratic field extension by Lemma 2.1.6.
Thus we need to choose « such that the maximal prime ideal P of R is inert
in the quadratic extension. To do this, we show that O/Q is a non-trivial
finite field extension of R/P.

For any z € A, n(n™z) = 7?"n(z) and this lies in R for m large
enough so that 7™z € O. It follows that A = K O and we choose a
basis {z1, T2, 73,74} of A with z; € O. If we define B’ by B'(z,y) =
n(z +y) —n(x) —n(y), then (A4, B') is a quadratic space (see §2.3). As it is
a regular space, there is a dual basis {z}, z%, 23,24 }. Let z € O and write
x =Y a;z}. Then since n(O) C R, a; = B'(z,z;) € R. Thus

Rlzy,22,%3,24) C O C Rz}, 23, x5, T}]

and O is a (necessarily free) R-module of rank 4.
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Thus @©/70O is a K-space of dimension 4, where R/P = K. Note that
Q? c 7O C Q and that O/Q and Q/ Q? are K-spaces. Indeed they have
the same dimension, for if we let ¢ € Q be such that w(q) is minimal, then
it is easy to see that, for y; € O chosen such that {y; + Q} is a K-basis of
0/Q, then {qy; + 9%} is a K-basis of Q/0Q2. Thus dimgz(0/Q) > 1.

However, O/ Q is a field, for if z € O\ Q, then w(z) = 0. Hence w(z™!) =
0and z7! € O\ Q. Thus O/Q is a division ring. However, as it is finite-
dimensional over the finite ring K, it is a finite division ring and so is a
field, by a theorem of Wedderburn.

Thus we choose o € O such that a + Q = & generates O/Q over K.
Then F = K(a) is a quadratic extension field of K and by construction it
is unramified since K (&) | K is non-trivial. Thus by the uniqueness of such
extensions (see Theorem 0.7.13), we can take F = K(«a), where a? = u
with u € R*.

The two roots +a give two embeddings of the field F' in A and so by the
Skolem Noether Theorem (see Theorem 2.9.8), there is a 3 € A* such that
Baf~! = —a. Thus {1,a,B3,a8} is a basis of A. Since 32 commutes with
@, it lies in the centre of A and so this is a standard basis of A.

. [
Let 32 = 7™/, where v’ € U. Since we can remove squares A = (u

with € = 0,1. Now every unit v’ € U is a norm of an element in F' (see
Theorem 0.7.13) and so by Theorem 2.3.1(f), (EI’%) splits over K. Thus

€ = 1 and there exist a,b € K such that ua? + u'b?> = 1. Thus b # 0 and
we let

1 0 0
M=1|0 b1 wab!
0 ab! b1

Under M, the forms ux? + my? — unz? and uz? + mu'y? — unu'2? are

equivalent. Thus by Corollary 2.3.5, A = (E;{ﬂ) O

Thus Theorem 2.1.7 yields the consequence:

Corollary 2.6.4 If A is a quaternion algebra over the P-adic field K, then
A is isomorphic to exactly one of Ma(K) or the unique division algebra

(52).
Similar arguments to those employed in the proof of the above theorem
will be used in the next result.

Theorem 2.6.5 Let A = (1’7{3) be as described in Theorem 2.6.3. Let
L | K be a quadratic extension. Then A splits over L.

Proof: If L | K is an unramified extension, then L = F = K(y/u) and A
splits over L.

Now suppose that L | K is ramified. Let F = K(y/u) and set M =
L(y/u). Considering residue fields, [M : K] = [M : L][L : K] = [M : L]
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since L | K is ramified. On the other hand, [M : K] = [M : F|[F : K] =
2[M : F].So [M : L] =2 and M | L is unramified. Let 7’ be a uniformiser
for L so that = = n'*z, where = € R}. However, then

(5= (Fet) - (5.

By Theorem 0.7.13, € N (Rar) and so it follows that (%) splits by
Theorem 2.3.1. O

Just as Theorem 2.5.1 gives simple criteria for deciding if a quaternion
algebra over the local field R is ramified, there are also simple criteria for
deciding if a quaternion algebra over a local field kp is ramified, at least in
the cases where kp is non-dyadic. Recall that in these cases, k% /k%> has
order 4 with square classes represented by 1,u, 7 and um, where u € R} is
not a square (see Exercise 0.7, No. 6).

Theorem 2.6.6 Let K be a non-dyadic P-adic field, with integers R and

mazximal ideal P. Let A = (%{’2), where a,b € R.

1. If a,b & P, then A splits.
2. Ifa € P,b & P\ P2, then A splits if and only if a is a square mod P.
3. Ifa,b € P\'P?, then A splits if and only if —a='b is a square mod P.

Proof: Recall from Hensel’s Lemma that ¢ € R\ P is a square in R if and
only if ¢ is a square mod P. Thus if a is a square mod P, we can certainly
solve az? 4+ by? = 1 in K and so A splits in these cases.

1. Assume that a is not a square mod P so that a is in the square class of
u, where we can choose u as in Theorem 2.6.3. But then, as in the proof of
that theorem, A will split as b is a unit.

2. Again assume that a is not a square mod P. But az? + by?> = 1 has a
solution in K if and only if az? + by? = 22 has a solution in R with z # 0.
Reducing mod P, this cannot have a solution as a is not a square.

3. Let a = mv, b = mw where v, w € R*. Then az? + by? = 1 has a solution
if and only if 2 — (—v~'w)y? = v~7 has a solution. If this has a solution
then reducing mod P we see that —v~!w is a square mod P. On the other
hand, if —v~lw is a square, then 2% — (—v~'w)y? is equivalent to 22 — y2,
which in turn is equivalent to the quadratic form zy (c.f. Exercise 0.9 No.
2). But this form is clearly universal; that is, represents all elements of K.
Thus z2 — (—v~!w)y? = v~ has a solution. O

The dyadic cases are more complicated. See Exercise 2.6, No. 3 for the
case of Q.
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Example 2.6.7 Decide for which fields Q,, where p is an odd prime, the

quaternion algebra (%) splits. By part I of the Theorem 2.6.6, the

quaternion algebra will certainly split for all odd primes # 3 and 5. Since
5 is not a square mod 3, the quaternion algebra does not split over Q3. For
p =5, consider —(—15)/5 = 3, which is not a square mod 5 and so, again,
the quaternion algebra does not split over Qs.

Note that for p = 2, it can be shown that Q2 (1/5) is the unique unramified
quadratic extension of Q2 (see Exercise 2.6, No. 3) and so, by the proof of
Theorem 2.6.3 the quaternion algebra will split over Q3. (See also §2.7.)

Exercise 2.6

1. Show that if L is the unique unramified quadratic extension of K, a
P-adic field, then A = (leE) has a faithful representation as

a/ b, | a,b € L and a’,b" are the L | K conjugates of a,b » .
b’ a

Show that O consists of all those elements where a,b € Ry, the ring of

integers in L and deduce that O is an order in A. Identify the ideal Q in

this representation and show that Q* = 1O.

2. With A as in No. 1, show that A is locally compact and that O (as in
Corollary 2.6.2) is the mazimal compact subring of A. Show also that O*
is compact.

3. Show that u € Z3 is a square if and only if u = 1{mod 8). Hence show
that Q%5/Q3%2 has order 8 (see Exercise 0.7, No. 6). Prove that (%f) is the

unique quaternion division algebra over Qz. Show that (_—82_—1> = (%—25)

4. Let k = Q(v/-5). Show that (M) splits when P is one of

the primes of norm 8 but not the other. Show also that it fails to split at
both primes of norm 7.

5. Use Theorem 2.6.6 to show that, in any non-dyadic field K, the quad-
ratic form d122 + d2z3 + d3z? with d; € R* is isotropic. (See §0.9.)

2.7  Quaternion Algebras over Number Fields

The results of the two preceding sections give the classification of qua-
ternion algebras over the local fields which are completions of a global
number field. The classification of quaternion algebras over a number field
depends on these local results. That process will be begun in this section
and be completed in Chapter 7.
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Let k be a number field and v a valuation on k. The completion of k at
v, denoted by k,, or kp in the non-Archimedean case, is a local field and
k embeds in k, for each v. Elements of k are usually identified with their
images in k,.

The following concepts and the related notation will feature prominently
throughout.

Definition 2.7.1 If A is a quaternion algebra over the number field k, let
A, (resp. Ap) denote the quaternion algebra AQyk, (resp. A®y kp) over
k, (resp kp). Then A is said to be ramified at v (resp. at P) if A, (resp.
Ap) is the unique division algebra over k, (resp. kp) (assuming that v is
not a complex embedding). Otherwise, A splits at v or P.

The local-global result which we now present follows directly from the
Hasse-Minkowski Theorem on quadratic forms.

Theorem 2.7.2 Let A be a quaternion algebra over a number field k. Then
A splits over k if and only if A Qy k, splits over k, for all places v.

Proof: Let A = (ik—lz) Then, by Theorem 2.3.1, A splits over k if and

only if az? + by? = 1 has a solution in k. By the Hasse-Minkowski Theorem
(see Corollary 0.9.9), az? + by? = 1 has a solution in k if and only if it has
a solution in k, for all places v. However, ax? + by? = 1 has a solution in
k, if and only if A ®g k, splits over k,. O

The finiteness of the set of places at which az? + by? = 1 fails to have
a solution, given in Hilbert’s Reciprocity Law, will follow from Theorem
2.6.6. For any a and b, which we can assume lie in Ry, there are only finitely

many prime ideals so that a or b € P. Thus (“—ké) splits at all but a finite

number of non-dyadic places. As there are only finitely many Archimedean
places and finitely many dyadic places, then (aTb) splits at all but a finite

number of places. Hilbert’s Reciprocity Theorem 0.9.10 further implies that
the number of places at which A is ramified is of even cardinality.

Theorem 2.7.3 Let A be a quaternion algebra over the number field k.
The number of places v on k such that A is ramified at v is of even cardin-
ality.

Although the quaternion algebra A does not uniquely determine the pair
a,bwhen A = (“T’b), the set of places at which A is ramified clearly depends

only on the isomorphism class of A. Indeed the set of places at which A
is ramified determines the isomorphism class of A, as will be shown in
Theorem 2.7.5.
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Definition 2.7.4 The finite set of places at which A is ramified will be
denoted by Ram(A), the subset of Archimedean ones by Ramq,(A) and the
non-Archimedean ones by Ramy(A). The places v € Ramyf(A) correspond
to prime ideals P, and the (reduced) discriminant of A, A(A), is the ideal
defined by

A= I =~ (2.9)

PcRamy(A)

Theorem 2.7.5 Let A and A’ be quaternion algebras over a number field
k. Then A= A" if and only if Ram(A) = Ram(A’).

Proof: By Theorem 2.3.4, A and A’ are isomorphic if and only if the
quadratic spaces Ag and Aj are isometric. However, by Theorem 0.9.12,
Ao and Aj are isometric if and only if (Ag), and (Af), are isometric over
k, for all places v on k. Now, since (Ag)y, = (Ay)o, it follows that A and
A’ are isomorphic if and only if A, and A/ are isomorphic for all v. For
each complex Archimedean place v, A, = A/ and for all other v, there are
precisely two possibilities by Theorem 2.5.1 and Corollary 2.6.4. However,
Ram(A) = Ram(A’) shows that A, = A} for all v. O

Thus the isomorphism class of a quaternion algebra over a number field
is determined by its ramification set. By Theorem 2.7.3, this ramification
set is finite of even cardinality. To complete the classification theorem of
quaternion algebras over numbers fields k, it will be shown that for each
set of places on k of even cardinality, excluding the complex Archimedean
ones, there is a quaternion algebra with precisely that set as its ramification
set. This will be carried out in Chapter 7.

Examples 2.7.6

1. Let A = (%@i) Then A(A) = 2Z because A splits at all the odd
primes by Theorem 2.6.6. It is established in Exercise 2.6, No. 3 that A is
ramified at the prime 2. Alternatively, A is ramified at the Archimedean
place by Theorem 2.5.1 and so by Theorem 2.7.3 must also be ramified

at the prime 2.

2. Let t = /(3—2v5),k = Q(t) and A = (=1L). We want to determine
A(A). Recall some information on k from §0.2. Thus k = Q(u), where
u = (1+t)/2 and so u satisfies z? — 22° + 2 — 1 = 0. Also Ry, = Z[u].
Now k has two real places and since t is positive at one and negative at
the other, A is ramified at just one of these Archimedean places. Further
Nijg(t) = —11 so that tRy = P is a prime ideal. The quadratic form
—z? 4+ ty? =1 has no solution in kp since (_—1) = —1. This follows from

11
Theorem 0.9.5. Finally, modulo 2, the polynomial z* — 223 + z 4 1 is



2.8 Central Simple Algebras 101

irreducible, so, by Kummer’s Theorem, there is just one prime in k lying
over 2. Thus A(A) = tRy by Theorem 2.7.3.

Exercise 2.7

1. Show that the following quaternion algebras split:

(g) —14++/5,(1 —3v5)/2
Q /)’ Q(V5) '

2. Let A be a quaternion division algebra over Q. Show that there are in-
finitely many quadratic fields k such that A ®q k is still a division algebra
over k.

3. Let k = Q(t), where t satisfies 3 +x+1=0. Let A= (%2’5) Show
that A(A) =2R;.

4. (Norm Theorem for quadratic extensions) Let L | k be a quadratic
extension and let a € k*. Prove thata € N(L) if and only if a € N(L®ky)
for all places v.

5. Let k be a number field and let L | k be an extension of degree 2. Let
P1 be an ideal in Ry which decomposes in the extension L | k and let P2 be
an ideal in Ry which is inert in the extension. Let Q1 lie over P1 and let
Q> lie over Py. Let A be a quaternion algebra over k and let B =L ® A.
Prove that A is ramified at P1 if and only if B is ramified at Q1. Prove
that B cannot be ramified at Q3.

2.8 Central Simple Algebras

In our discussion of quaternion algebras so far in this chapter, two crucial
results on central simple algebras have been used. These are Wedderburn’s
Structure Theorem and the Skolem Noether Theorem. The latter result, in
particular, will play a critical role in the arithmetic applications to Kleinian
groups later in the book. Thus, in this section and the next, an introduc-
tion to central simple algebras will be given, sufficient to deduce these two
results. These sections are independent of the results so far in this chapter.

Let F denote a field. Unless otherwise stated, all module and vector space
actions will be on the right.

Definition 2.8.1 An F'-algebra A is a vector space over F', which is a ring
with 1 satisfying

(ab)z = a(bzx) = (ax)b Va,be A,z € F.
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Throughout, all algebras will be finite-dimensional.
If A’ is a subalgebra of A, then the centraliser of A’

Ca(AY={a€Alad =da Va' € A}

is also a subalgebra. In particular, the centre Z(A) = C4(A) is a subalgebra.
Furthermore, F' embeds as 14 F as a subset of Z(A).

If M is an A-module, then End 4 (M) is the set of A-module endomorph-
isms ¢ : A — A. Under composition of mappings, End4(M) is also an
F-algebra with the identity mapping as 1.

Lemma 2.8.2 The left regular representation A induces an isomorphism
A= End4 (A)

Proof: Fora € A, A\, € Ends(A) and A: A — End4(A) is an algebra ho-
momorphism. Since A has an identity element, the kernel of A is necessarily
trivial. Further, if ¢ € End4(A), then ¢(a) = ¢(1.a) = ¢(1)a = Ay1)(a) so
that A is surjective. O

Definition 2.8.3
e An F-algebra A is central if Z(A) = F.
e An F-algebra A is simple if it has no proper two-sided ideals.

We now investigate properties of tensor products of simple and central
algebras. For any two F-algebras, the tensor product A ® p B is defined
and is also an F-algebra with dimp(A ® B) = (dimpA)(dimgrB).

Proposition 2.8.4 Let A and B be F-algebras.
1. If A’ and B’ are subalgebras of A and B, respectively,
Cragp)(A' ® B') = Ca(A") ® Cp(B').
In particular, if A and B are central, so is A® B.

2. If A is central simple and B is simple, then A ® B is simple. In
particular, if A and B are central simple, so is A® B.

Proof: Let F = AQ® B.
1. A routine calculation shows that
Ca(AY®C(B') c Cg(A' ® B').

Choose a basis {b;} of B. Then, if e € Cg(A’ ® B’), e has a unique
expression as e = Y a; ® b; with a; € A. Let o’ € A’. Then from
e(a’ ® 1) = (a’ ® 1)e and the uniqueness, we obtain aja’ = a’«; for each
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jandall a’ € A’. Thus a; € C4(A’) and so e € C4(A’) ® B. Now choose
a basis {c;} of Ca(A’) so that e has a unique expression e = Y ¢; ® §;
with 3; € B. For b’ € B', e(1® V) = (1 ® V')e yields b'3; = B;b’. Thus
each §; € Cp(B’) and the result follows.

. Let I # 0 be an ideal of E. Let 0 # 2 € I so that z = >,_, a; ® b;
with @; € A and b; € B and chosen among elements of I such that
r is minimal. Thus all a; and b; are non-zero and {ai,az,...,ar} is
linearly independent. Otherwise, after renumbering, a1 = > _;_, a;z; and
z =Y _5a; R (biz; +b;), contradicting the minimality of r. In the same
way, {b1, b2,...,b,} is linearly independent.

We now “replace” {a1,az,...,a,} by aset {1,a},...,al}. The set Aa; A
is a two-sided ideal and so Aa1A = A. Thus 1=}, cja1d;. So

n=) (®D2d®1)=10b+y aj@b el
J i=2

Now repeat for by to obtain an element

T
Z =101+ a;®@bcl
=2

From the equality

ka
Z(a®1)—(a®1)z = Z(a;a —aa) @b €1,

=2

the choice of r shows that ala = aa} for i = 2,3,...7r. Thus all of these
a, € Z(A) = F. However, {1,a5,... ,a,} is linearly independent. So
r=1land1®1€l ThusI=F. O

Definition 2.8.5 For the F-algebra A, let A° denote the opposite algebra
where multiplication o is defined by

aob=ba Va,be A.

Corollary 2.8.6 If A is a central simple algebra, so is A° and A ® A° =
Endp(A).

Proof: The first part is obvious. Define § : A ® A° — Endr(A) by
f(a®b)(c) = acb for a,b,c € A. Then 6§ defines an algebra homomorphism.
By Proposition 2.8.4, A ® A° is simple and so # is injective. A dimension

count shows that 6 is surjective. O

We also take this opportunity to introduce the Brauer group. On the
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set of central simple algebras over a field K, define A to be equivalent to
B if there exist integers m and n such that A ® M,,,(K) is isomorphic to
B® M,(K). Since

M (K) @ Mn(K) = My (K)

this is an equivalence relation and we denote the set of equivalence classes
by Br(K).
If [A] denotes the equivalence class of A in Br(K), then

[A][B] = [A® B]

is a well-defined binary operation by Proposition 2.8.4. The operation is
associative, the identity element is represented by K and each element [A]
has an inverse [A°] by Corollary 2.8.6. In this way, Br(K) is an abelian
group, the Brauer Group of K.

If A is a quaternion algebra, then it is straightforward to check that
A = A° so that in the Brauer group, [A] has order 2. Later we will show
that the subset of Br(K) of elements represented by quaternion algebras
is a subgroup of exponent 2, in the cases where K is a number field.

Exercise 2.8

1. Let A be a finite-dimensional F-algebra and N a finite-dimensional
A-module. Let M = &nN. Prove that

Enda(M) 22 M,(End4(NV)).
2. Let A be a finite-dimensional F'-algebra. Prove that
M, (F)®Fr A= M,(A).
Deduce that if A is simple, then M, (A) is also simple and, furthermore,
that Z(My(A)) = Z(A)I,.
8. Let A be a simple F-algebra. Prove that the centre of A is a field.

4. LetV be a regular quadratic space of dimension 8 over F with orthogonal
basis v1, vz, vs and discriminant d, where —d & F*2. Show that the Clifford
algebra C of V (see Ezercise 2.3, No. 6) is spanned by {v1'v2®2vg®3},
where e; = 0, 1. Show that z = vivave € Z(C). Assuming that dim(C) = 8,
prove that C is a simple F-algebra and deduce that C is a central simple
algebra over F(v/—d).

5 Let A = (“T’b) and B = (%) have standard bases {1,i,j,k} and

{1,7, ', k'}, respectively. By considering the spans of {1®1,i®1,j®5,k®
J'}Yand of {1®1,1®5,i®k,—ci®i'}, show that AQr B~ C ®p Ma(F),

a,bc

where C' = ( = ) Hence, find a quaternion algebra C such that the product
of [(:{j’é)] and [(25—0)} in Br(Q) s [C].
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2.9 The Skolem Noether Theorem

We now return to the general situation of an F-algebra A and consider
simple modules over A.

Definition 2.9.1 A right module M over an algebra A is simple if it has no
proper submodules. It is semi-simple if it is a direct sum of simple modules.

The following is a useful basic result on simple modules.

Lemma 2.9.2 (Schur’s Lemma) Let M and N be A-modules and ¢ : M —
N a non-zero homomorphism.

1. If M is simple, ¢ is injective.
2. If N is simple, ¢ is surjective.

Proof: The kernel and image of ¢ are submodules of M and N respect-
ively. O

Corollary 2.9.3 If N is a simple A-module, then Ends(N) is a division
algebra.

Each right ideal of an algebra A is an A-module and will be a simple A-
module if and only if it is a minimal right ideal. Note that for an algebra A,
there are two notions of “simple”. When A is regarded as a right A-module,
which, if necessary, we denote by A4, it is simple if it has no proper right
ideals. In general, when A is a simple F-algebra, it need not follow that
A, is simple. However, in the cases considered here, it turns out that A4
is semi-simple and the minimal right ideals are all isomorphic.

Lemma 2.9.4 Let M be a module such that M =}, ; N;, where each
N; is a simple submodule of M. Then if P is any submodule of M, there
exists a subset I of J such that M = @3, ;, N; ® P.

Proof: By Zorn’s Lemma, there is a subset I of J such that the collection
{Nyi € It U {P} is maximal with respect to the property > ,.; N; +
P=®) ,c;Ni®P. Let My = @Zz’el N; & P. By the maximality of I,
N;N M, # 0 for j € J. Since each IV; is simple, N; C M, for all j. Thus
M=M.D

Note that from this result it follows that each submodule of such a module
has a complement.

Proposition 2.9.5 Let A be a finite-dimensional simple algebra over F.
Then the following two conditions hold:

1. A4 is semi-simple.
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2. All non-zero minimal right ideals of A are isomorphic.

Proof: The finite-dimensionality shows that A will have a non-zero min-
imal right ideal IV of finite dimension. Now AN = }___ , N is a two-sided
ideal of A and so AN = A. By Schur’s Lemma, using A, each zN is either
0 or simple. Thus A is a sum of simple submodules and taking P = 0 in
Lemma 2.9.4, A is semi-simple.

If N7 and N; are two non-zero minimal right ideals of A, then, as above,
AN; = ANy = A. Thus A(N1N3) = A and in particular, N1Ny # 0.
Choose z; € N; such that 1Ny # 0. Since x3 N2 C Nj, the minimality
of Ny gives £; Ny = Nj. Then by Schur’s Lemma, A, : No — Np is an
isomorphism. O

Theorem 2.9.6 (Wedderburn’s Structure Theorem) Let A be a simple al-
gebra of finite dimension over the field F'. Then A is isomorphic to the
matriz algebra M, (D), where D = End4(N) is a division algebra with N a
minimal right ideal of A. The integer n and division algebra D are uniquely
determined by A.

Proof: By Lemma 2.8.2, A = End4(A4), and by Proposition 2.9.5, A4 is
isomorphic to a direct sum of a number of copies, say n, of a minimal right
ideal N. It thus follows that A = M, (End4(N)) (see Exercise 2.8, No 1).
However, by Corollary 2.9.3, End4(N) = D, a division algebra.

We now establish the uniqueness of n and D. Suppose A = M,/ (D’)
for some division algebra D’. Let ¢; denote the n’ x n/ matrix with 1 in
entry (4,4) and zeros elsewhere. Then N; = ¢;M,,/(D’) is a right ideal and
A= @ Z?;l N;. Since D’ is a division algebra, it is easy to see that N; is
minimal. Thus by Proposition 2.9.5, n’ = n.

For d' € D', Ay € Enda(N;) and the mapping d — Ay is an injective
homomorphism. Now suppose that ¢ € End4(NV;) and ¢(g;) = €;8. Then

p(e) = d(€2) = p(ei)es = eife:.
However, there exists d' € D’ such that d'e; = ¢;8¢;. Now let a € N;. Then
d(a) = ¢(eia) = ¢p(e)a = d'e;a = d'o.
Thus ¢ = Ay and D' 2 Ends(N;) = D. O

We now investigate modules M over A. If M is a free A-module, it is
semi-simple, as it is isomorphic to a direct sum of copies of A. Any A-
module M’ will be an image of a free module M, M being a direct sum
of simple submodules N;. If K is the kernel of the natural map M — M/,
then K has a complement and M’ = M/K = &Y N; by Lemma 2.9.4.
Thus M’ is semi-simple.

Now let M be a simple A-module and let 0 # u € M. Then uA C M and
so uA = M. The map A\, : A — M is a surjective module homomorphism
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and so its kernel K is a maximal right ideal of A. By Lemma 2.9.4, K will
have a complement N in A which will be a minimal right ideal. So M = N.

Proposition 2.9.7 If My and My are right A-modules, then My and M,
are isomorphic if and only if they have the same F-dimension.

Proof: By the remarks preceding this proposition, M; and My are semi-
simple, thus direct sums of simple A-modules and so isomorphic to direct
sums of minimal right ideals of A. However, all these minimal right ideals
N are isomorphic by Proposition 2.9.5. Thus the isomorphism classes of
M; and M5 will depend on the number of copies of N and, since N is
finite-dimensional, on the dimensions of M; and M, over F. O

We are now in a position to prove a theorem which is particularly useful
in our applications.

Theorem 2.9.8 (Skolem Noether Theorem) Let A be a finite-dimensional
central simple algebra over F and let B be a finite-dimensional simple al-
gebra over F. If ¢, : B — A are algebra homomorphisms, then there
ezists an invertible element c € A such that ¢(b) = ¢~ (b)c for all b € B.

Proof: Suppose first that A is a matrix algebra over F' [i.e., A = Endp(V)
for a vector space V]. Using ¢, V becomes a right B°-module, V4, by
defining ab = ¢(b)(a) for @ € V,b € B. In the same way, we obtain V.
Thus by Proposition 2.9.7, V4 and V,, are isomorphic B°-modules. Let
¢ : V4 — Vi be such an isomorphism so that c is an invertible element of
A = Endp(V). Thus c(¢(b)(a)) = 9(b)(c(e)) for all @ € V and the result
follows in this case.

In the general case, consider ¢ ®1,9v®1: B A° - A® A° =2 Endr(A)
by Corollary 2.8.6. Now B ® A° is simple by Proposition 2.8.4 and so,
as above, there exists ¢ € A ® A° such that e71(¥(b) ® a)c = ¢(b) @ a
for all b € B,a € A. Putting b = 1 gives ¢ € Caga-(l ® A°) and so
c € A® Z(A°) = A® 1 by Proposition 2.8.4. Thus ¢ = ¢ ® 1 for some
¢ € A. Similarily, 2! € A®1, so that c is an invertible element of A. Then
putting a = 1 above gives ¢~ 119 (b)c = ¢(b) for all b € B. O

Corollary 2.9.9 FEvery non-zero endomorphism of a finite-dimensional
central simple algebra is an inner automorphism.

In the sequel, both the theorem and the corollary will be referred to as the
Skolem Noether Theorem and both are frequently applied when the central
simple algebra is a quaternion algebra.
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Exercise 2.9

1. If A and B are finite-dimensional central simple algebras over F', show
that A and B are isomorphic if and only if they have the same dimension
and represent the same element of the Brauer group Br(F').

2. Show that Br(Q) has infinitely many elements of order 2.

3. Let A be a finite-dimensional algebra over F' and let B be a subalgebra.
Show that A is a right B° ® A-module under the action

a(b®ad’) = (ba)a’

and that the left regular representation maps Ca(B) isomorphically onto
Endpoga(A). Deduce that if A is central and simple and B is simple, then
Ca(B) is also simple.

4. Let A be a quaternion algebra over F. In the notation of Theorem 2.4.1,
show that
SO(Ag,n; F) = Aut(A).

5. Let a € M,(F) have an irreducible minimum polynomial over F. Show
that o, 3 € Mu(F) are conjugate in M, (F) if and only if they have the
same mingmum polynomial.

6. Let Hamilton’s quaternions H be embedded in Ma(C). Prove that the
normaliser of H' in SL(2,C) is H* itself.

2.10 Further Reading

A complete treatment of the theory of quaternion algebras over number
fields from a local-global point of view is given in Vignéras (1980a) and
virtually all the results of Sections 2.1 to 2.7 are to be found there. We will
return to a more detailed study of quaternion algebras and their orders in
Chapters 6 and 7 and, again, most of that material is covered in Vignéras
(1980a). Note that our proof of Theorem 2.7.5, describing the isomorph-
ism classes of quaternion algebras over number fields relies on the Hasse-
Minkowski Theorem for quadratic forms, which was discussed and assumed
in Chapter 0. A similar approach is taken in Lam (1973), which is concerned
with quadratic forms, but also discusses the structure of quaternion algeb-
ras from a local-global perspective. This is also pursued in O’Meara (1963).
The role of quaternion algebras in studying quadratic forms via Clifford al-
gebras and Brauer groups is covered in Lam (1973). The general algebraic
theory of central simple algebras is discussed, for example, in Pierce (1982)
and Cohn (1991). Quaternion algebras make fleeting appearances there as
special cases. More on the local-global treatment of central simple algebras
over number fields appears in detail in Reiner (1975), where the arithmetic
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theory of orders in these algebras is the focus of the study. To pursue the
relationship to algebraic groups in a wider context, consult Platonov and
Rapinchuk (1994). See also Elstrodt et al. (1987).
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Invariant Trace Fields

The main algebraic invariants associated to a Kleinian group are its in-
variant trace field and invariant quaternion algebra. For a finite-covolume
Kleinian group, its invariant trace field is shown in this chapter to be a
number field (i.e., a finite extension of the rationals). This allows the in-
variants and the algebraic number-theoretic structure of such fields to be
used in the study of these groups. This will be carried out in subsequent
chapters. The invariant trace field is not, in general, the trace field itself
but the trace field of a suitable subgroup of finite index. It is an invari-
ant of the commensurability class of the group and that is established in
this chapter. This invariance applies more generally to any finitely gener-
ated non-elementary subgroup of PSL(2, C). Likewise, the invariance, with
respect to commensurability, of the associated quaternion algebra is also
established. Given generators for the group, these invariants, the trace field
and the quaternion algebra, can be readily computed and techniques are
developed here to simplify these computations.

3.1 Trace Fields for Kleinian Groups of Finite
Covolume

We begin with a basic definition:

Definition 3.1.1 Let I' be a non-elementary subgroup of PSL(2,C). Let
I' = P7Y(T"), where P : SL(2,C) — PSL(2,C). Then the trace field of T',
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denoted Q(trT'), is the field:
Q(tr¥ : 4 D).

Note that for any v € PSL(2,C), the traces of any lifts to SL(2,C) will
only differ by +. Note also that in the above definition, we take traces in
I' = P~1(I), so that we are not concerned with lifting the representation
I' — PSL(2,C) to a representation of I" into SL(2,C). When there is a
lifting p of the representation, then, of course, Q(trp(y) : y € I') = Q(tr ¥ :
¥ € f‘) Thus we will frequently mildly abuse notation and simply write
Q(trT) = Q(£tr~y : v € T'). Of course, Q(trI') is a conjugacy invariant.

The starting point for much of what follows in the book is the next result.

Theorem 3.1.2 Let I' be a Kleinian group of finite covolume. Then the
field Q(trT) is a finite extension of Q.

Later in this chapter, a number of useful identities on traces in SL(2,C)
will be given which are essential in calculations. For the moment, for the
purposes of proving the above theorem, we prove one such identity which
will also be used subsequently.

Lemma 3.1.3 If X € SL(2,C), then X" = p,(tr X)X — gn(tr X)I, where
pn and g, are monic integral polynomials of degrees n — 1 and n — 2, re-
spectively.

Proof: The result follows from repeated use of
X?=(tr X)X —1I, (3.1)
from which we see that p,(z) = zpp—1(x) —gn—1(x) and g, () = pp—1(z). O

Corollary 3.1.4 tr(X™) is a monic integral polynomial of degree n in
tr (X).

Before commencing with the proof of Theorem 3.1.2, we prove a lemma,
referring the reader to §1.6 for notation.

Lemma 3.1.5 Let V be an algebraic variety defined over an algebraic num-
ber field k and let V have dimension 0. Then V is a single point and its
coordinates are algebraic numbers.

Proof: In this case, C(V) = C since C is algebraically closed. Hence
C[V] = C. Let x = (z1,%2,... ,&n) € V. The maximal ideal defined by
mx = {f € C[V] | f(x) = 0} must be the trivial ideal {0}. Now the function
fi, obtained from the polynomial X; —z;, lies in my and so X; —z; € I(V).
Thus I(V) contains X; —x1, Xo—x3, ... , X, —, and so its vanishing set is
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a single point. However, for the algebraically closed field k=Q, k(V)=k.
Thus as above, X; — z; € k[X] lies in I(V'). Thus z; € k. O

‘We now commence with the proof of Theorem 3.1.2.

Proof: Since I' is of finite covolume it is finitely presented. We lift T"
to SL(2,C) and, by abuse, continue to denote it by I'. Now by Selberg’s
Lemma, Theorem 1.3.5, " contains a torsion-free subgroup I'y of finite
index. If all the traces in I'; are algebraic, it follows from Corollary 3.1.4
that all traces in [' are algebraic. It thus suffices to assume that I is torsion
free.

As in §1.6, we form the algebraic subset V(I') of Hom(T",SL(2,C)). We
will show that the dimension of V(T') is 0. This will complete the proof, for
by Lemma 3.1.5 the entries of the matrices A; will be algebraic numbers.
However, since I is finitely generated, all matrix entries in ' will lie in a
finite extension F' of Q, so that Q(trT") C F and the result follows.

Thus suppose by way of contradiction that the dimension of V(I') is
positive. Thus there are elements of V(I') € Hom(T', SL(2,C)), arbitrarily
close to the inclusion map, but distinct from it. By the Local Rigidity
Theorem 1.6.2, these image groups must be finite-covolume Kleinian groups
isomorphic to I'. By Mostow’s Rigidity Theorem 1.6.3, these groups are all
conjugate in Isom(H?3) to I'. However the equations (1.14) imply that only
four inner automorphisms of ', respecting this fix-point normalisation, are
possible. This completes the proof. O

Since Mostow Rigidity implies that the hyperbolic structure is a topological
invariant of a finite-covolume hyperbolic 3-manifold, we have the following
consequence:

Corollary 3.1.6 Let M = H3/T be a hyperbolic 3-manifold which has
finite volume. Then Q(trI') is a topological invariant of M.

There are several methods and techniques which simplify the calculation
of these number fields described in this section in various types of examples.
These will be given in later sections of this chapter once we have developed
other related useful invariants of finite-covolume hyperbolic groups.

Exercise 3.1

1. If H3/T is the figure 8 knot complement, show directly (i.e., without
using the Rigidity Theorems as in the proof of Theorem 3.1.2), that V(T")
has dimension 0.

2. Let pp(x) be the polynomials described in Lemma 3.1.8. If x is real and
> 2, so that x = 2cosh 8, show that

(z) = sinh né
PnlZ) = sinh 0

for n>1.
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3.2 Quaternion Algebras for Subgroups of SL(2, C)

Throughout this section, I' is a non-elementary subgroup of SL(2, C). Here
we associate to I' a quaternion algebra over Q(trI"). Let

Aol = {Eai'yz- i a; € Q(tl‘ F),’}’z S F} (32)

where only finitely many of the a; are non-zero.

Theorem 3.2.1 Aol is a quaternion algebra over Q(trT).

Proof: 1t is clear that Apl" is an algebra and so, by Theorem 2.1.8, we
need to show that AgI is four-dimensional, central and simple over Q(tr I").

Since I is non-elementary, it contains a pair of loxodromic elements, say
g and h, such that (g, h) is irreducible, and so the vectors I, g, h and gh
in M3(C) are linearly independent by Lemma 1.2.4. Now A¢I'C is a ring
and, by the above, of dimension at least 4 over C. Thus A¢I' C = M>(C).
Note also that Agl is central for if a lies in the centre of AgI', then it lies
in the centre of M3(C). Thus a is a multiple of the identity. It will now be
shown that AT is four dimensional over Q(trT').

Let T denote the trace form on M5(C) so that

T(a,b) = tr (ab) (3.3)

is a non-degenerate symmetric bilinear form (see Exercise 2.3, No. 1). A
dual basis of M2(C), {I*, g*, h*, (gh)*}, is therefore well-defined. Since this
spans, if v € T, then

v =xol* + 219" + 2™ + 23(gh)*, =z; € C. (3.4)
If i € {I7gvh7 gh}? then
T(v,7) = tr (yv) = zj, for some j € {0,1,2,3}. (3.5)

Hence as yy; € T, tryy; € Q(trT), and so we deduce from (3.5) that
Zg,...,x3 € Q(trI'). Thus

Q(trT)[I, g, h, gh] C Aol C Q(trT)[I*, g*, h*, (gh)*].

Thus AT is four dimensional over Q(trI).

Finally, we show that Ayl is simple. For if J is a non-zero two-sided
ideal, then J C is a non-zero two-sided ideal in M3(C). Thus J C = M,(C)
and J has dimension 4 over C. Hence it must have dimension at least 4
over Q(trI") so that J = AI'. O

Note that multiplication in Ag(I") is just the restriction of matrix multiplic-
ation in My(C). Thus since the pure quaternions, and hence the reduced
trace and norm, are determined by the multiplication (see §2.1), the re-
duced trace and norm.in A¢(T') coincide with the usual matrix trace and
determinant.
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Corollary 3.2.2 IfT is a non-elementary subgroup of SL(2,C) and g, h €
I’ are any pair of lozodromic elements such that {g,h) is irreducible, then
Aol = Q(tr)[I, g, h, gh].

Corollary 3.2.3 Let the subgroup T' of SL(2,C) contain two elements g
and h such that (g, h) is irreducible. Then Aol' is a quaternion algebra
over Q(trT") and

AOF = Q(trF)[I, g9, h’: gh]

Proof: Note that in Theorem 3.2.1, the assumption that the group T’
is non-elementary was only used to exhibit elements g and h such that
{I,g,h,gh} is a linearly independent set over C. Given any such pair of
elements in I, like those guaranteed by the conditions given in this corollary,
the same conclusion follows. O

By normalising the elements g and h described in these corollaries, a
fairly explicit representation of Agl" can be obtained. Thus, assuming that
g is not parabolic, conjugate so that

g:(é A(ll), h:(‘z clz) ¢ #0. (3.6)

If k = Q(tr I'}, then the eigenvalue A satisfies a quadratic over k and so K =
k() is an extension of degree 1 or 2 over k. Since a +d and Aa+A7'd € k,
it follows that a,d and ¢ = ad — 1 all lie in k(\). Thus after conjugation,
Al C Mz(k()\))

Corollary 3.2.4 With T, g,h, and A as described above, I" is conjugate to
a subgroup of SL(2,k(X)).

It should be noted that since g satisfies the same minimum polynomial as
A, the field k(A) embeds in AgT'. The above is thus a direct exhibition of
the result that k(\) splits the algebra AgI" as given in Corollary 2.1.9. For
more details, see Exercise 3.2, No. 2.

These corollaries and various refinements of them will be frequently used
in the determination of the quaternion algebras.

The following particular case of the above corollary is worth noting.

Corollary 3.2.5 If T is a non-elementary subgroup of SL(2,C) such that
Q(trT) is a subset of R, then T is conjugate to a subgroup of SL(2,R).

Proof: If we choose g to be loxodromic, then as it has real trace, g will
be hyperbolic. Thus A € R and the result follows from Corollary 3.2.4. O
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Exercise 3.2

1. Let Aol be as described at (3.2). Assume, in addition, that all traces in
T’ are algebraic integers. Define

o = {Z aiv;

Show that OT is an order in Apl.

ai € Rotrry i € r} . (3.7)

2. Suppose in the normalisation given at (8.6) that A\ &€ k. Prove that
(a) a,d are k()\) | k conjugates and so c € k.

(t)
@ ={ (4 L) lowerm}],

where ' and y' are the k()\) | k conjugates of x and y, respectively.

(¢) Hence show that Ag(T) = (ﬂZ’C), where B € k(X) is such that k(8) =
k(\) and B2 € k.

3. IfT' =SL(2,Z), show that

an =@ = { (5 L) avears)

where @’ and b are the Q(v/5) | Q conjugates of a and b.

4. IfT is the (4,4,4)-triangle group, show that k = Q(trT") = Q(v/2) and
Ao(T) = (—_1—1,;———4'\/5) Deduce that Ag(T") is a division algebra.

5. If I'1,T" are non-elementary Kleinian groups and I'y C T, show that
Ao(r) = Ao(rl) ®Q(tr 1) Q(tr I‘)

6. The binary tetrahedral group G is a central extension of a group of order
2 by the tetrahedral group A4. Show that G can be embedded in SL(2,C) as
an irreducible subgroup. Determine Q(tr G) and Ao(G). (See Exercise 2.3,
No.7.)

3.3 Invariant Trace Fields and Quaternion
Algebras

Although the trace field is an invariant of a Kleinian group, it is not, in gen-
eral, an invariant of the commensurability class of that group in PSL(2, C).
As we shall show in this section, there is a field which is an invariant of
the commensurability class, but first we give an example to show that the
trace field is not that invariant field.
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Example 3.3.1 Let T' be the subgroup of PSL(2,C) generated by the
images of A and B, where

1 1 1 0
=0 1) o= (L)

Here w = (—14+/—3)/2 so that the ring of integers O3 in the field Q(+/—3)
is Z[w]. Clearly all the entries of the matrices in I' lie in Oz. Thus I is
discrete and Q(trI') = Q(v/=3). If X = (§ 2;), then one easily sees that
the image of X normalises I' and its square is the identity. Thus I'y =
(T, PX) contains T as a subgroup of index 2. Now I'; contains the image
of XBA = (i _;t,,) so that i lies in the trace field of I'y.

It should also be remarked that I' is, in addition, of finite covolume, as it
is a subgroup of index 12 in the arithmetic group PSL(2, O3). (See §1.4.3.)

Now let T" be a finitely generated non-elementary subgroup of SL(2, C).
We will next construct a subgroup of finite index in I" whose trace field is
an invariant of the commensurability class of the group.

Definition 3.3.2 Let T® =< 42 | yeT >.

Lemma 3.3.3 T'® is a finite index normal subgroup of T' whose quotient
is an elementary abelian 2-group.

Proof: T'® is obviously normal in T' and such that all elements in the
quotient have order 2. Since I is finitely generated, it follows that I'/ r
is a finite elementary abelian 2-group. O

With this, we now prove one of the main results:

Theorem 3.3.4 Let T’ be a finitely generated non-elementary subgroup of
SL(2,C). The field Q(trT'?) is an invariant of the commensurability class
of T.

Proof: It will be shown that if I'; has finite index in T, then Q(trI'®) C
Q(trT'y). With this, the theorem will follow. To see this, suppose A is
commensurable with T'. Hence by Lemma 3.3.3, T® and A® are commen-
surable and so I'® N A®) has finite index in both I' and A. Thus assuming
the above claim we have the following inclusions:

e Q(trI'®@) Cc Q(trT® N A®)
o Q(trA®) c Q(trT'® N A?)

By definition, Q(tr I N A®) ¢ Q(trT'®) and so the above inclusions are
all equalities. In particular, Q(trI'®) = Q(tr A®), as required.

To establish the claim, first note that we can assume, in addition, that
T'; is a normal subgroup of finite index in I' because, if C is the core of



118 3. Invariant Trace Fields

Iy in T (i.e., the intersection of all conjugates of I'; under TI'), then C is
normal of finite index in I'. Since Q(tr C) C Q(trI'1), it suffices to show
that Q(trI'?) C Q(tr C).

Recalling (3.2), let

Aol ={Za;v; | a; € Q(trT1),v; € T'1}.

We next claim that given any g € T', g € AgI';. Notice that since I'y
is normal in I', any such g induces by conjugation an automorphism of
I'1 and hence an automorphism ¢4 of Agl'1. By Theorem 3.2.1, Agl'; is a
quaternion algebra over Q(trI'1), and so ¢g is inner by the Skolem Noether
Theorem (see Corollary 2.9.9). Thus there exists a € (4pI'1)* such that

¢g(z) = aza™ (3.8)

for all x € Aol';. Thus in A)I'C = M>(C), g~'a commutes with every
element and so g~ 'a = yI for some y € C. Consequently,

y? = det(g™'a) = det(g')det(a) = det(a). (3.9)

Now (det a)I = a? — tr(a)a € Ag(T1) so that y? € Q(trI'y). Hence, g% =
y~2a? € Aol'y, as claimed. Since g was chosen arbitrarily from I', T'(® ¢
Ao(T") and, hence, Q(trT®) c Q(trTy). O

Corollary 3.3.5 If I" is a finitely generated non-elementary subgroup of
SL(2,C), then the quaternion algebra AoT'® is an invariant of the com-
mensurability class of T'.

Proof: IfT and A are commensurable, then Q(tr I'?) = Q(tr A®). Now
choose an irreducible pair of loxodromic elements in I'® N A(?). Then by
Corollary 3.2.2, the quaternion algebras AoI'® and AgA® are equal. O

Of course, the field Q(tr T'®) is also an invariant of the wide commen-
surability class of I', where I and A are in the same wide commensurability
class if there exists t € SL(2, C) such that tI't~! and A are commensurable
(see Definition 1.3.4). Also, the quaternion algebras AT and AA(?) will
be isomorphic since conjugation by ¢t will define an isomorphism, acting
like the identity on the centre, from the quaternion algebra AT to the
quaternion algebra AA(?).

Definition 3.3.6 Let T’ be a finitely generated non-elementary subgroup
of PSL(2,C). The field Q(trT'®) will henceforth be denoted by kT’ and
referred to as the invariant trace field of I'. Likewise, the quaternion algebra
Aol oyer Q(trI'®) will be denoted by AT and referred to as the invariant
quaternion algebra of T.

The cases of particular interest here occur when I' has finite covolume.



3.3 Invariant Trace Fields and Quaternion Algebras 119

Theorem 3.3.7 IfI' is a Kleinian group of finite covolume, then its in-
variant trace field is a finite non-real extension of Q.

Proof: That kI’ is a finite extension of Q follows from Theorem 3.1.2.
Suppose that kI" is a real field. By Corollary 3.2.5, I'® is conjugate to a
subgroup of SL(2,R). However, I'® cannot then have finite covolume. O

We also note the fundamental relationship between the basic structure of
quaternion algebras and the topology of the quotient space.

Theorem 3.3.8 IfT' is a non-elementary group which contains parabolic
elements, then Agl' = M2(Q(trT)). In particular, if I' is a Kleinian group
such that H3 /T has finite volume but is non-compact, then AT = My(kT").

Proof: If T has a parabolic element v, then v — I is non-invertible in
the quaternion algebra. Thus Agl' cannot be a division algebra. The result
then follows from Theorem 2.1.7. O

Given I' as a subgroup of PSL(2,C) means that its trace field is naturally
embedded in C. Thus the invariant trace field is a subfield of C and so is
not just defined up to isomorphism, but is embedded in C.

Only in the first section of this chapter do we use the fact that the
trace field is a number field. The results elsewhere in this chapter apply
to any finitely generated non-elementary subgroup of SL(2,C) and so, in
particular, apply to all finitely generated Fuchsian groups.

It should be noted that even in the cases where the Kleinian groups are
of finite covolume, the invariant trace field and quaternion algebra are not
complete commensurability invariants. There are many examples of non-
commensurable manifolds with the same invariant trace field and, indeed, of
cocompact and non-cocompact groups with the same invariant trace field.
Examples will be given in the next chapter and more will emerge later,
particularly in the discussion of arithmetic groups. There are also examples
of non-commensurable manifolds with isomorphic quaternion algebras and
these will be discussed later.

Let I be a finitely generated non-elementary subgroup of SL(2, C) so that
'@ is a normal subgroup of finite index. Then, as in the proof of Theorem
3.3.4, conjugation by g € T" induces an automorphism of I'® and, hence,
induces an automorphism of the quaternion algebra AI' which is necessarily
inner. Thus using (3.8), the assignment g — a induces a homomorphism of
I' into AT'*/(kT')* and, hence, into SO((AT')g,n) by Theorem 2.4.1. Thus
any finite-covolume Kleinian group I' in PSL(2,C) admits a faithful rep-
resentation in the kI' points of a linear algebraic group defined over kI,
where kI is a number field.
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Exercise 3.3

1. Let T be a Kleinian group of finite covolume. Show that there are only
finitely many Kleinian groups I'y such that l"§2) =T®,

2. Show that if H3/T is a compact hyperbolic manifold whose volume is
bounded by c, then [T : T'?)] is bounded by a function of c.

8. Let T be a Kleinian group such that every element of T' leaves a fized
circle in the complex plane invariant. Prove that the invariant trace field
kI C R.

4. Let Ad denote the adjoint representation of SLa to GL(L), where L is
the Lie algebra of SLo. Let ' be a subgroup of finite covolume in SL(2,C).
Show that kI = Q({tr Ad v: v €T}).

5. Let T be a Kleinian group of finite covolume. Let o be a Galois em-
bedding of kI such that o(kI') is real and AT is ramified at the real place
corresponding to o. Prove that if T is a Galois embedding of Q(trT") such
that 7|, = o, then T7(Q(trT')) is real. (See Ezercise 2.9, No. 6.)

6. Show that, if T is the (2,3, 8)-Fuchsian triangle group, then Q(trI") #
kT'. Show that AT does not split over kI'. (See Exercise 3.2, No. 4.) De-
scribe the linear algebraic group G defined over kI such that T has a faithful
representation in the kI' points of G. Deduce that T' has a faithful repres-
entation in SO(3,R).

7. Let T' denote the orientation-preserving subgroup of index 2 in the
Cozeter group generated by reflections in the faces of the (ideal) tetrahed-
ron in H3 bounded by the planes y = 0,z = 3y, z = (1 + V/5)/4 and
the unit hemisphere. Determine the invariant trace field and quaternion
algebra of T'. Let A denote the orientation-preserving subgroup of index 2
in the Cozeter group generated by reflections in the faces of a regular ideal
dodecahedron in H3 with dihedral angles 7/3. Find the invariant trace field
and quaternion algebra of A.

3.4 Trace Relations

There are a number of identities between traces of matrices in SL(2,C).
These are particularly useful in the determination of generators of the trace
fields, which is carried out in the next section. The most useful of these
identities are listed below and many are established by straightforward
calculation.

Trace is, of course, invariant on conjugacy classes so that

tr XY =tr ZXYZ™ ! for X,Y € My(C), Z € GL(2,C). (3.10)
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In particular,
tr XY =trYX and terXz--‘Xn =trXU(1)XU(2) er(n) (3.11)

for any cyclic permutation o of 1,2,... ,n.
Recall that for X € SL(2,C)

X? = (tr X)X — I, (3.12)
from which we deduce
tr X? =tr?X —2 (3.13)

and other identities for higher powers of X, as given in Lemma 3.1.3.
The other basic identities for elements X,Y € SL(2,C) are

tr XY = (tr X)(trY) —tr XY™ !, tr X =tr X L. (3.14)

By repeated application of these relations, the following identities, which
will be useful in the next two sections, are readily obtained.

tr[ X, Y] =tr?X +tr2Y + tr2XY —tr X tr Y tr XY — 2 (3.15)
tr XYXZ =tr XYtr XZ —trYZ ! (3.16)

tr XY X ' Z=tr XYtr X '1Z -tr X%y Z7! (3.17)

tr X?YZ =tr Xtr XYZ —txrYZ (3.18)

tr XYZ+trYXZ+tr XtrYtrZ=tr XtrYZ+trYtr XZ+tr Ztr XY
(3.19)

For this last identity, we argue as follows:

trXYZ =tr XtrYZ —tr XZ7'y ™!
=trXtrYZ— (tr XZ 'trY —tr XZ7'Y)
=tr XtrYZ —trY(tr XtrZ —tr XZ)+ (tr YXtr Z —tr Y X 2).

Finally, we take combinations of this last identity:

tr XYZW +tr YXZW =tr X tr YZW +tr Y tr XZW +tr ZW tr XY
—tr XtrY tr ZW,

trtWXYZ+tr XWYZ =trWtr XYZ+tr Xttt WYZ +tr WXtrYZ
—trWitrXtrYZ,

tr XZWY +tr ZXWY =tr Xtr ZWY +tr Ztr XWY +tr XZtr WY
—tr Xtr Ztr WY.
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By subtracting the last one from the sum of the first two and using the
earlier identities we obtain

2r XYZW =tr X trYZW +trY tr ZWX +tr Ztr WXY
+trWtr XYZ +tr XY tr ZW —tr XZtr YW
+tr XWitrYZ —tr XtrYtr ZW —trY tr Ztr XW

—tr XtrWerYZ —tr Ztr Wtr XY +tr XtrYtr Ztr W.
(3.20)

We now establish trace relations among triple products of matrices, which
will subsequently be useful. The method used in establishing these is less
straightforward than the simple calculations used to establish the identities
so far.

In the quaternion algebra A = M>(C), the pure quaternions Ag are the
matrices of trace 0 and the norm form induces a bilinear form B on Ag
given by

-1 -1
B(X,Y) = (XY +YX) = —t XY. (3.21)

Thus, for X,Y,Z € Ao, tr XYZ = tr ([(tr XY)I — Y X|Z) = —trYXZ.
Thus if we define F on A3 by F(X,Y,Z) = tr XY Z, then F is an altern-
ating trilinear form. Thus if X', Y’ and Z’ also lie in A, then

B(X,X') B(X,Y') B(X,Z')
tr XYZ tt X'Y'Z' =cdet | B(Y,X') B(Y,Y') B(Y,Z')
B(z,X') B(Z)Y') B(ZZ')

for some constant c¢. Using (3

.21), and choosing suitable matrices [e.g.,
X=X'"=(6%),Yy=Y"= (9}

),Z=2"=(21§)], we obtain ¢ = 4 and

1 tr XX' tr XY' ttXZ'
tr XYZ 1 X'Y'Z' = —det | tr YX' trYY' +trYZ']. (3.22)
trZX' trZY' +trZ7

Now if we take any matrices X,Y, Z, X', Y’ and Z’ in M,(C), then their
projections in Ag are of the form X; = X — 1/2(tr X)I and so satisfy
(3.22). Rearranging then gives that for any matrices X,Y,Z, X', Y’ and Z’
in Mz (C),

tr XYZ e X'Y'Z' + Pt XYZ+Ptr X'Y'Z +Q=0 (3.23)

where P, P and @ are rational polynomials in the traces of these six
matrices and their products taken in pairs.

Now choose X = X' Y =Y’ and Z = Z’, where X,Y,Z € SL(2,C). A
tedious calculation using (3.22) shows that tr XY Z satisfies the following
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quadratic polynomial:

2 — (W XYtrZ4trYZtr X +tr ZXtrY —tr X trY tr Z)z

+ trXYtrYZtrZX 4 (tr2XY +tr’YZ + tr2ZX)
rXtrYtr XY +trYtr ZerYZ +tr Ztr X tr ZX)
+  (tr2X +trly +tr22) — 4. (3.24)

Notice, in particular, that the coefficients here are integral polynomials in
the traces of the three matrices involved and their products taken in pairs.

Exercise 3.4
1. Establish (3.15).
2. Prove that tr X2Y? = tr2XY —tr[X,Y].

3. Let ¢ : Ma(C) — C be a C-linear function such that ¢ is a conjugacy
invariant and ¢(I) = 2. Prove that ¢ = tr.

4. For X,Y € SL(2,C), let B(X) =tr?X ~4 and v(X,Y) = tr [X,Y] - 2.
(a) Prove that tr X™ = (tr X)q(B(x)), where q is an integral polynomial
with (i) e =0 if n is even and (i) e =1 if n is odd.

(b) Prove that tr (X"Y X™Y ~1) = (tr X)p(v(X,Y), B(X)), where p is an
integral polynomial in two variables with (i) e = 0 if n+m is even and (i)
e=1ifn+m is odd

(c) Prove that tr (X™Y Xn2Y~1... X"rY=1) = (tr X)p(v(X,Y), B(X)),
where p is an integral polynomial in two variables with (i) e =0 if Y n; is
even and (%) e =1 if > n; is odd.

(d) Determine v(X, (XY XY ~1)") in terms of v(X,Y) and B(X) forn =1
and 2.

5. FEstablish (3.24).

3.5 Generators for Trace Fields

Let T’ be generated by ¥1,72,... ,¥n. The aim is to show, first of all, that
Q(trT") is generated over Q by the traces of a small collection of elements
in T'. This will later be modified to obtain a small collection generating

Q(tr @),
Let P denote the collection
{¥j1 -7 |t > 1 and all j; are distinct}.
Let @ denote the collection

Voo, [r>1land 1 <4y < - < i, < m}.
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Let R denote the collection
{Vi,7j17j2»7k17k27k3 | 1 S 1 S 'I’L,l S jl < j2 S n, 1 S kl < k2 < k3 S n}

We show successively that Q(trT') is generated over Q by the traces of the
elements in P, then in @, and finally in R.
For each v € T, define the length of v [with respect to the generators

Yo s Ynl

8
{) = min{ D el | v =ty }
i=1
where the minimum is taken over all representations of v in terms of the
given generators.

Lemma 3.5.1 Let v € T'. Then trv is an integer polynomial in {trd |
6 € P}

Proof: We proceed by induction on the length of . From (3.13) and
(3.14), the result is clearly true if £(y) = 1 or 2. So suppose £() > 3 and
the result holds for all elements of length less than £(y). If v ¢ P, then
either k; = k; for distinct ¢ and j or some «; # 1. If k; = k;, then ~, after
conjugation, has the form XY XZ or XY X~'Z, and the result follows by
induction from (3.16) to (3.18). In the same way, if some |o;| > 2, the result
follows from (3.18). If some «; = —1, so that « has the form X'yk'ilY, then

trX’yk_ilY = trYX'yk_i1 =trY X tryg, —tr Y Xqyy,.
By repeated application of this and induction, the result follows. O

Lemma 3.5.2 Let v € T. Then trvy is an integer polynomial in {trd |
de Q}.

Proof: For each permutation 7 of S, define

Q) = {Vr(ir) -+ Vo) |1 <1 < -+ <dp <}

so that P = U,cg,,7*(Q). Each 7 is a product of transpositions of the form
(i i + 1) and we define the length of 7 to be the minimum number of such
transpositions required. We need to show that if v € 7*(Q), then v is an
integer polynomial in {trd | § € Q}. Proceed by induction on the length of
7. The result is trivial if the length is 0, so let 7 = 7’0, where 0 = (i i + 1)
and the length of 7/ < length of 7. Then using (3.19) and repeated use
of (3.13), we obtain that v € 7*(Q) has trace an integer polynomial in
{tré | é € 77(Q)}. The result now follows by induction. O

This last result suffices for many of the calculations which will appear.
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It certainly suffices where the group I' can be generated by two or three

elements.
If T = (g, h), then

Q(trI') = Q(tr g, tr h, tr gh). (3.25)
IfT = {f,g,h), then
Q(trT) = Q(tr f,tr g, tr h, tr fg,tr fh, tr gh,tr fgh). (3.26)

Remarks: Further use will be made of these results when we come to
consider arithmetic Kleinian groups. Note, for this reason, that in all of the
above results of this section, we could replace Q by Z.

Lemma 3.5.3 Let v € T'. Then trvy is a rational polynomial in {trd |
5 € R}.

Proof: This follows immediately from Lemma 3.5.2 and the identity
(3.20). O

Given T, a non-elementary subgroup of SL(2, C), we now want to determ-
ine the invariant trace field kT' = Q(tr I'®). From a presentation of I', a set
of generators for I'(®) can be obtained via, say, the Reidemeister-Schreier
rewriting process. The above results can then be applied to I'®. However,
note that if F is a free group on n generators, then F(?) has 2"(n —1) +1
generators, so that, in general, the number of generators of I'® may in-
crease exponentially with the number of generators of I'. We now give an
elementary result which gives a considerable saving in this direction.

Definition 3.5.4 Let I' be a non-elementary subgroup of SL(2,C), with
generators ¥1,7z, - - - »Yn. Define I'S?, with respect to this set of generators,

by

T2 = (4,73, ,72)- (3.27)
Lemma 3.5.5 With I' as above and trvy; # 0 for i = 1,2,... ,n, then
kT = Q(trT99).

Proof: Clearly I'S? ¢ T'® so that Q(trI'9?) C kI'. Now from (3.12), if
try # 0, then v = (try)~'(y% + I) in M3(C). Thus, let v € T(® so that
7y = 6163 --- 62 with &; € T'. Now &; = 73, %, - - * Vi, - Thus

Ti

8 = [Jtrvi;)™" ﬂ(vi +1),
j=1

=1

T4 T4

62 = H(tr2’7ij)_1<[[(’yi2j +I)>2.

j=1 =1
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It follows that try € Q(tr'?). O

Note that, when T is finitely generated, in contrast to I'®, I'SQ may well
be of infinite index in I". However, under the conditions given, I'’? has the
same number of generators as I'.

With this, we can obtain another description of kI' in terms of traces
which is applicable to methods of characterising arithmetic Kleinian and
Fuchsian groups.

Lemma 3.5.6 Let T' be a finitely generated non-elementary subgroup of
SL(2,C). Let k = Q({try?: v € T'}). Then k = kI.

Proof: Note that tr fyé = tr2y — 2 so that £ C kI'. Now choose a set of
generators 71, ...,V of T such that tr-y; # 0,tr~7y; # 0 for all 4 and j.

1

Thus by Lemmas 3.5.3 and 3.5.5, it suffices to show that tr 7.27]2, tr 'y?'yjz'y,% €

k for all 7, j and k. This follows by a manipulation of trace identities:

tr 7y = tryi tryey; — tro.

Squaring both sides gives that try;trv;trv;y; € k and hence so does
tr 73
LB e e P e e 0 o P O B e e 8

Squaring both sides then gives that try tr v2y?yx € k since try?y3 # 0.
The result follows since

tr’yf’y?y,% = tryg tr ’yiz'yjzwc —tr 'yizfyjz.
O
The cases where I' has two generators deserve special attention, as there
are numerous interesting examples of these. So suppose that T' = (g, h)
is a non-elementary group. Note that both ¢ and A cannot have order 2.

Suppose initially that neither has, so that tr g, tr A # 0. Thus by the Lemma
3.5.5 and (3.25), k' = Q(tr g2, tr h?, tr g?h?). Now

trg?h? = trgtrhtrgh — tr2g — tr 2h + 2. (3.28)
Hence, from (3.25) and (3.13), we have the following:

Lemma 3.5.7 Let ' = (g,h), with trg,trh # 0, be a non-elementary
subgroup of SL(2,C). Then

kT’ = Q(tr2g, tr 2h, tr g tr htr gh). (3.29)

Now suppose that tr A = 0 so that h has order 2. Then I'; = (g, hg~'h™1)
is a subgroup of index 2 in I' and so kI'y = kI' by Theorem 3.3.4. The
following result is then an immediate consequence of Lemma 3.5.7.
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Lemma 3.5.8 LetI' = (g, h), with tr h = 0, be a non-elementary subgroup
of SL(2,C). Then

kI = Q(tr2g, tr [g, h)). (3.30)

We note that the conjugacy class of an irreducible Kleinian group I = {g, h)
is determined by the three complex parameters

Blg) =tr’g—4, B(h)=tr®h—4, ~(g,h)=tr[g,h]—2. (3.31)

It is of interest to note how these relate to the invariant trace field when I'
is non-elementary. In the case where tr A = 0, it is immediate from Lemma
3.5.8 that

When trg,trh # 0, then from (3.15), one sees that tr gtr htr gh satisfies
the monic quadratic polynomial

z?—(B(g)+4)(B(h)+4)z—(B(g) +4)(B(R)+4)(v(9, k)~ B(g) — B(h) —4) = 0.

Thus from Lemma 3.5.7,

(kT : Q(v(g,h),B(g),B(h))] < 2. (3.33)

Now consider the case where I' has three generators.

Lemma 3.5.9 Let I' = (y1,72,73), with try; #0 for i =1,2 and 3. Then
kT is generated over Q by {tr 24,1 <0< 3 trysy trystryy, 1 <4< j <
3; tr 123 try try2 trys )

Proof: From Lemma 3.5.5 and (3.26), kI is generated over Q by the traces
of seven elements. Then using (3.28) and

3
157 = [[((te )y — 1),

i=1

it is immediate that these seven traces can be replaced by the seven ex-
pressions given in the statement of this lemma. O

There are many examples in the next chapter which illustrate the ap-
plication of the results in this section.

Exercise 3.5

1. Show that the invariant trace field of a Fuchsian (£, m,n)-triangle group
15 a totally real field. Suppose £ =2 and N is the least common multiple of
m and n. Show that the invariant trace field has degree ¢(N)/2 or ¢(N)/4
over Q according as (m,n) > 2 or not.
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2. If T = (v1,72,73,74), find the integer polynomial in {trd | 6 € Q} for
tr (173 v27174)-

8. Show that for a standard set of 2g generators in a compact surface group
T of genus g, T'S? has infinite index in T.

4. IfT = (x,y,2), show that [Q(trT") : K] < 2, where K 1is generated over
Q by the traces of the elements x,y and z and their products taken in pairs.

5 LetT = (v1,72y - yYn), with try; # 0 for all i. Let
K=Q{tr?y,1<i<n: try; trye try;ve, 1 < j < k <n}).

Show that kI' = K (tr~;y;vktry;try;tryg) for one such triple product
which does not lie in K. (See (3.23).)

6. LetT' be a finitely presented non-elementary subgroup of SL(2,C) with
generators 1,7z, - - - ,¥n. Then the set Hom(T') of homomorphisms p: T —
SL(2,C) is an algebraic set in C*" defined over Q as in §1.6. Let X (I)
denote the set of characters x, of such representations given by x,(v) =
trp(7y). For each g € T, 74 : Hom(I') — C defined by 74(p) = x,(g) is a
reqular function. Show that the ring T generated by all such functions is
finitely generated. Let 61,02, ... ,0m be such that {75, : 1 <i < m} generate
T and define t : Hom(I') — C™ by t(p) = (15,(p), 75, (0), - - - , 75, (p)). Show
that X (T') can be identified with t¢(Hom(T')) and in this way becomes an
algebraic set: the character variety of T.

3.6 Generators for Invariant Quaternion Algebras

Recall from Corollary 3.2.3 that A" is the algebra kT'[I, g, h, gh], where
(g,h) is an irreducible subgroup of I'®). The quaternion algebra can be
conveniently described by its Hilbert symbol and for this, we require a
standard basis of AT (i.e., a basis of the form {1,1, j, 45}, where i2, j2 € kI'*
and 7j = —ji). Now AI.C = M3(C) (see Theorem 3.2.1), so that the pure
quaternions form the subspace s¢(2,C), which, as described in §2.3, is a
quadratic space with the restriction of the norm or determinant form. Let
the associated symmetric bilinear form be B so that for C, D € s£(2,C),

B(C,D) = —_2—1(01) +DC) = l;tr . (3.34)

Thus C and D are mutually orthogonal if and only if CD = —DC. Hence,
{4,7,1j} must form an orthogonal basis of s¢(2,C) with respect to the
bilinear form B.

Thus given g and h as above, let tg = trg, t1 = trh and t2 = trgh.
Set ¢' = g — (to/2) and ' = h — (¢1/2)I, so that ¢’,h’ € s£(2,C). Also
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g% = (12 —4)/4, W? = (t2 — 4) /4. Thus provided g and h are not parabolic,
g2, h'? € kI'*. Assuming that g is not parabolic, set

B(g', 1) ,

B(g,q)’

so that A" € s£(2,C) and is orthogonal to g’. Now

hl/ — h/ _

B2 = _t(2)+t%+t%—tot1t2—4 __tr[g,h] -9
t5—4 24

(3.35)

Note that since (g, h) is irreducible, the numerator is non-zero. Thus re-
moving squares (see Lemma 2.1.2), we have that

AT — (trzg—4,—(tr2g§€; 4)(tr [g, h] —2)) _ (trzg—4,]:;[g,h] —2>'

(3.36)
See §2.1 for the last equality. We have thus established the following:

Theorem 3.6.1 If g and h are elements of the non-elementary group T'(?
such that {g, h) is irreducible and such that g is not parabolic, then

_ (tr2g—4,tr[g,h] -2
AT = ( - . (3.37)

Now, it is convenient to describe the Hilbert symbol in terms of the elements
of T rather than those of T'(®,

Theorem 3.6.2 If g and h are elements of the non-elementary group T
such that {g,h) is irreducible, g and h do not have order 2 in PSL(2,C)
and g is not parabolic, then

2 0402 2,002 —
AT — (tr g(tr?g 4),trkgtr h(tr[g, h] 2)) (3.38)

Proof: The elements g2 and h? satisfy the conditions stated in the previous
theorem so we can apply the method used in the proof of that theorem.
Thus in (3.35), replacing to by t3 —2, t; by t2—2 and t3 by tot1ta—t3—t3+2
(see (3.28)) gives
—#3t2(tr [g, h] — 2)
t5(t5 — 4)
Since tr2g? — 4 = t3(t3 — 4), the result follows. O

Now if g is not parabolic and g and h generate a non-elementary sub-
group, then g and h cannot both be of order 2. If neither has order 2, then
{g, h) is irreducible and we can apply the above result. If A has order 2,
then (g, hgh™!) cannot be reducible and we can apply the above result to
these elements.
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Corollary 3.6.3 Let g and h generate a non-elementary subgroup of T'
and be such that g is neither parabolic nor of order 2 in PSL(2,C) and h
has order 2. Then

AT — (tr g(tr?g —4), (tr g, h]k; 2)(tr[g,h] —tr*g + 2)> . (3.39)

Notice that if ' = (g, h) in the above corollary, then the invariant trace
field and the quaternion algebra are described in terms of the defining
parameters given at (3.31).

Corollary 3.6.4 LetI' = (g, h) be a non-elementary subgroup where h has
order 2 and g is not parabolic. Then

~ [ (B(g) +4)B(g),v(g, h)(v(g,h) — B(g))
A= ( Q(B(9),7(g,h)) ) ‘

Exercise 3.6
1. FEstablish (3.35).

2. LetT',g and h be as in Theorem 3.6.2 with o a real embedding of k.
Prove that AT is ramified at the real place corresponding to o if and only
if o(tr2g) < 4 and o(tr (g, h]) < 2. (See Ezercise 3.3, No. 5.)

3. Embed the group As of symmetries of a regular icosahedron in PSL(2, C)
and let G denote its lift to SL(2,C). Determine kG and AG (cf. Ezercise
3.2, No. 6).

4. Let T be a non-elementary subgroup of PSL(2,C) which is generated by
three elements ~v1,7v2 and 3 of order 2. Let t; = tr vo7ys, to = trysy1, ts =
try1ye and u = try1y27y3. Prove that, after a suitable permutation of v1,7y2
and Y3,

kT = Q(t3, 12, t1tats),

t2(t3 — 4),t3t3(u? — 4)
AT = [ B3 » taly )
( kT

3.7 Further Reading

The important Theorem 3.1.2 that the trace field is a number field for a
Kleinian group of finite covolume is to be found in Thurston (1979) and also
in Macbeath (1983). The connections between the matrix entries in finitely
generated subgroups of GL(2,C) and the structure of the related groups
was investigated in Bass (1980) and quaternion algebras constructed from
the subgroups were employed in this. In the context of characterising arith-
metic Fuchsian groups among all Fuchsian groups, Takeuchi, in the same
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way, used the construction of quaternion algebras from Fuchsian groups
in Takeuchi (1975). This was extended to Kleinian groups in Maclachlan
and Reid (1987). In Reid (1990), the invariance up to commensurability of
the invariant trace field was established (cf. Macbeath (1983)). For discrete
subgroups of semi-simple Lie groups, fields of definition were investigated
in Vinberg (1971) and the invariance of the invariant trace field described
here can be deduced from these results (see §10.3). The invariance of the
invariant quaternion algebra can be found in Neumann and Reid (1992a).
The trace identities and the dependence of all traces in a finitely gen-
erated group on the simple sets described in Lemmas 3.5.1 to 3.5.3 are
mainly well known and have been used in various contexts (Helling et al.
(1995)). The energy-saving Lemma 3.5.5 appears in Hilden et al. (1992c).
The simple formulas in terms of traces used to obtain the Hilbert sym-
bols for quaternion algebras given in §3.6 arose mainly in the context of
investigations into arithmetic Fuchsian and Kleinian groups (e.g., Takeuchi
(1977b), Hilden et al. (1992c)). The dependence of a two generator group
up to conjugacy on the parameters discussed in (3.31) is given in Gehring
and Martin (1989).
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Examples

In this chapter, the invariant trace fields and quaternion algebras of a num-
ber of classical examples of hyperbolic 3-manifolds and Kleinian groups
will be determined. Many of these will be considered again in greater de-
tail later, to illustrate certain applications or to extract more information
on the manifolds or orbifolds, particularly in the cases where the groups
turn out to be arithmetic. However, already in this chapter, these examples
will exhibit certain properties which answer some basic questions on hy-
perbolic 3-orbifolds and manifolds. Stronger applications of the invariance
will be made in the next chapter. For the moment, we will illustrate the
results and methods of the preceding chapter by calculating the invariant
trace fields and quaternion algebras of some familiar examples. The meth-
ods exhibited by these examples should enable the reader to carry out the
determination of the invariant trace field and quaternion algebra of the
particular favourite example in which they are interested.

4.1 Bianchi Groups

Recall that the ring of integers Oy in the quadratic imaginary number
field Q(y/(—d)), where d is a positive square-free integer, is a lattice in
C with Z-basis {1,/(—d)} when d = 1,2(mod 4) and {1, li‘—/z(—_—@} when
d = 3(mod 4). The Bianchi groups PSL(2, O4) are Kleinian groups of finite
covolume (see §1.4.1). They are arithmetic Kleinian groups and will be stud-
ied more deeply in that context later in this book. For the moment, we make
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the easy derivation of their arithmetic invariants. Let I'y = PSL(2, Oq).
Note that, for every a € Oq, (3%) and (., 9) lie in F((f), and, hence,
so does their product. Thus « € kI'y and so kT'y = Q(1/(—d)). Since I'y
contains parabolic elements, it follows that ATy = M2(Q(1/(—=d))) (see
Theorem 3.3.8).

Exercise 4.1

1. Let F = {(g 25?) € SL(2,C) | o, 8 € Os}. Show that F has infinite
index in SL(2,03) and determine kF. Show that AF does not split over
kF. Clearly SL(2,Z) is also a subgroup of SL(2,O3) of infinite index. Show
that F and SL(2,Z) are not commensurable in the wide sense in SL(2,C).

2. Show that PGL(2, O5) is not a mazimal discrete subgroup of PSL(2,C).

4.2 Knot and Link Complements

The invariant trace fields and quaternion algebras of some specific knot
and link complements will be given later in this chapter. Further compu-
tations will be made in Chapter 5 and tables of these invariants are given
in Appendix 13.4. However, for knot and link complements in general, the
invariant trace field coincides with the trace field. As Theorem 4.2.1 shows,
this holds in a more general class of manifolds. The orbifold example in
83.3 shows, however, that this is not universally true and examples of non-
compact manifolds where the trace field differs from the invariant trace
field will appear in §4.6. This theorem also applies to compact manifolds,
but in these cases, there are also examples where the trace field is not the
same as the invariant trace field (see §4.8.2).

Theorem 4.2.1 Let M =1 H3/T be a _hyperbolic manifold such that the
cokernel of the map (H1(0OM,Z) — H1(M,Z)) is finite of odd order. Then
kT = Q(¢rT).

Proof: Let P denote the subgroup of I' which is generated by parabolic
elements. Then I'/ P is isomorphic to the Coker(H(0M,Z) — H1(M,Z)).
Now TI'/T'® P has exponent 2 and so, by assumption, I' = re@p.

Now choose a finite set of parabolic elements p1,p2,...,p, such that
these generate I' modulo I'®. Thus

L= {pi'p5 -2 T® | & € {0,1}}.

Now for a parabolic element p, p? = 2p — I so that

1
(o pE) = oot (B3 + D% - (9 + 1)) € BT
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Now from (3.14), we have

tr (£2y) = tr ()t (ty) — tr (7).
Thus if v € T® and tr (t) € kT \ {0}, then tr (ty) € k. Thus Q(trT) =
k. O
Corollary 4.2.2 If M = H3/T is the complement of a link in a Z/2-
homology sphere, then kI' = Q(trT') and AT = M,(Q(trT)).
Proof: The first part follows from the theorem and the second from the

fact that M is non-compact (see Theorem 3.3.8). O

In the situation described in the corollary, it is immediate that I'" has a
faithful discrete representation in PSL(2, Q(trI")), but, in fact, this result
holds more generally.

Theorem 4.2.3 If T is any Kleinian group of finite covolume which is
non-cocompact, then T will have a faithful discrete representation in the
group PSL(2,Q(trI')).

Proof: Choose a lift of a cusp of T to be at co and normalise so that
the parabolic element g = (1) lies in I'. With further normalisation, let
f € T be such that f(oo) = 0. Thus I' also contains an element of the form
h=(19). Now z € Q(tr (T')) and since g and h generate an irreducible
subgroup of I, then

AO(F) = Q(tr (F))[Ia g h, gh]
by Corollary 3.2.3. Thus Ag(I") = M2(Q(tr (I"))) and the result follows. O

Exercise 4.2

1. Show that the “sister” of the figure 8 knot complement (i.e., H3/T
where T' is defined by

(X,Y,T|TXT '=X"Yy7'x7', TyT'=Y"'x1),
1s such that kI’ = Q(trT).

4.3 Hyperbolic Fibre Bundles

Recall from §1.5.1 that if I' is the covering group of a finite-volume hy-
perbolic 3-orbifold which fibres over the circle with fibre a 2-orbifold of
negative Euler characteristic, then we have a short exact sequence

1-F->TI—->7Z—1 (4.1)
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where F' is isomorphic to the fundamental group of the 2-orbifold and F
is geometrically infinite. A conjecture of Thurston is that all finite-volume
hyperbolic manifolds are finitely covered by a hyperbolic surface bundle, as
described above. Thus since the invariant trace field and quaternion algebra
are commensurability invariants, it is worth making some general observa-
tions about these invariants for hyperbolic fibre bundles. The important
feature is that these invariants are determined by the fibre.

Theorem 4.3.1 If A is a finitely generated non-elementary normal sub-
group of the finitely generated Kleinian group I', then kA = kI" and also
AA = AT.

Proof: The group A is characteristic in A and thus normal in T. Also
EA = Q(tr A®) c Q(trI'®) = kT

Choosing a pair of elements in A(?) generating an irreducible subgroup, it
follows that AT' = AA.kKT" by Corollary 3.2.3.

Now we argue as in Theorem 3.3.4. By conjugation, each v € " induces
an automorphism of AA which is necessarily inner, by the Skolem Noether
Theorem. Thus 3§ € AA* such that 614 commutes with all the elements
of AA. Thus v = ad for some a € C. Now det(y) = 1, so that a? =
1/(det(8))? € kA. Thus v* = a26? and tr (v?) € kA. Thus k" = kA and
then AA = AT'. O

Corollary 4.3.2 IfT is the covering group of a hyperbolic fibre bundle as
at (4.1), then kF = kI’ and AF = AT.

Corollary 4.3.3 IfT' is the covering group of a hyperbolic fibre bundle as
at (4.1) and Fy is a subgroup of finite index in F, which lies in T, then
kF = Q(trFl) = kI"' and AF = A()F1 = AT.

Proof: Since F; C I'®, it follows as in the proof of the theorem that
Al' = Ay F; .kT'. Furthermore,

kF =Q(tr F®) c Q(tr Fy) C kT = kF

and the result follows. O

Exercise 4.3

1. LetT and F be as described at (4.1). Show that F' cannot be a Fuchsian
group.
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4.4 Figure 8 Knot Complement

That the figure 8 knot complement can be represented as a hyperbolic man-
ifold of finite volume was exhibited by Riley. He obtained a representation
of the knot group in the Bianchi group PSL(2,03) and constructed a fun-
damental domain for the action of the group on H3. From all of this, one
can deduce that the image of the knot group is of finite index in PSL(2, O3)
and much more information than is required to simply determine the in-
variant trace field and quaternion algebra (see §1.4.3). By §4.1, these will,
of course, be Q(y/ — 3) and M2(Q(v/ — 3)).

However it is instructive to consider how to calculate these invariants
directly from the various ways of constructing this well-studied manifold.
It will be the overriding assumption here that we know in advance that the
figure 8 knot complement is a hyperbolic manifold of finite volume.

4.4.1  Group Presentation

A presentation for the knot group on a pair of meridional generators, ob-
tained, for example, from the Wirtinger presentation, is given by

fzTly).

Under the complete faithful representation, the images of x and y are para-
bolic elements and by conjugation can be taken to be (§ 1) and (1 ¢). Sub-
stituting in the defining relation for the group gives that z = e*™/3, Thus,
modulo complex conjugation, we have a unique such representation with
image T necessarily a finite-covolume group such that H2/T is isometric to
the figure 8 knot complement by Mostow Rigidity. Thus &T' = Q(y/ — 3)
and AT" = Mo (Q(/ — 3)).

T (S*\ K) = (z,y | zyz 'y 'z = yzy~

4.4.2 Ideal Tetrahedra

The figure 8 knot complement can also be seen to be a finite-volume hy-
perbolic manifold by suitably gluing together two regular ideal hyperbolic
tetrahedra with dihedral angles 7/3 (see §1.4.4). If we locate the tetrahedra
with their vertices at 1,e2™/3 ¢=27/3 oo and 1, e?™/3 e=27i/3 (), then the
face pairing transformations from the first tetrahedron to the second, carry,
respectively,
1,e2™/3 oo to 0,e"2m/3 1
23 =23 o to 2T/3 () 1

1, 6727”-/3, o~ to 0, 6—27”/37 627”/3.

These identifications are carried out by the matrices

1 1 1 —e 2mi/3 1 -1
T\ e—2mi/3 _9e2mi/3 | > T\ 1 | _ 9e2mi/3 1 T\ g—2mi/3 | _ 9g2mi/3
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where 7 = (e?™/3 — 1)~1. Since the group is generated by these matrices
we see that the group lies in SL(2, Q(1/— 3)) and, again, the result follows.

4.4.8 Once-Punctured Torus Bundle

In both of these approaches, we have, by obtaining matrix representations
of the fundamental group, gained considerably more information than is
required to determine the invariant trace field. Although neither of these
matrix representations are difficult to determine, we now give a third ap-
proach in which the invariant trace field is determined without first obtain-
ing a matrix representation. There are a number of features of this method
which can be more widely applied, as we shall see in subsequent examples.

Let M = H3/T denote the hyperbolic manifold of finite volume which is
the figure 8 knot complement. Now M can be described as a fibre bundle
over the circle with fibre a once-punctured torus 7. There is thus an exact
sequence

1-m(Toy) > T —-Z—>1

and the monodromy of the bundle is given by the element RL in the
mapping class group of Tp. This group is isomorphic to the orientation-
preserving subgroup of the outer automorphism group of 1 (Tp) = F =
(X,Y), the free group on two generators, and so is isomorphic to SL(2, Z).
Then R = (}1) is induced by the automorphism p where p(X) = X,
p(Y)=YX and L = (19) by A, where A\(X) = XY, A(Y) =Y. The com-
mutator [X,Y] is represented by a simple closed loop round the puncture
of Ty so that [X, Y] is parabolic. From this, a presentation of I" is obtained
as

I'=(X,Y,T|TXT'=XYX, TYT'=YX). (4.2)

Now I'® = (X,Y,T?). Let a = tr X, b = tr Y, ¢ = tr XY From the defining
relations for I', we see that

b=c and a=ac—b

using (3.14). Furthermore, since [X, Y] is parabolic, it follows, using (3.15),
that
a4+ b2+ —abc—2=-2.

From these three equations, we obtain a + b = ab and (ab)? — 3(ab) =
0. Thus a = 3+ —3)/2, b = (3—+/— 3)/2. From (3.25), we have
that Q(tr F') = Q(4/ — 3). Since F' has parabolic elements, it follows from
Theorem 3.3.8 that AgF = M2(Q(y/ — 3)).
Note from above that F is a normal subgroup of I'® and so by Corollary
4.3.3,
kL = Q(tr (F)) = Q(v - 3)



4.4 Figure 8 Knot Complement 139

Exercise 4.4

1. The complement of the knot 74 in the knot tables is a hyperbolic mani-
fold. Show that the invariant trace field has discriminant —59 or 117.

o

FIGURE 4.1. Knot 74.

[We remark that the discriminant is actually —59. This can be determined
using the tetrahedral parameters of a tetrahedral decomposition. See the
discussion in §5.5.]

2. The complement of the Borromean Rings can be obtained by identifying
two regular hyperbolic ideal octahedra with dihedral angles 7/2 according to
the pattern shown in Figure 4.2. Locate these in H3, determine the identi-
fying matrices and, hence, the invariant trace field and quaternion algebra.

v VA

FIGURE 4.2. Identification scheme for Borromean Rings complement

3. Show that there are hyperbolic surface bundles whose invariant trace
field is Q(v/—3) and whose fibers are tori with an arbitrarily large number
of punctures.

4. In its representation as a two-bridge knot (see §1.4.3 and §4.5), the
figure 8 knot group T' has presentation

(u,v | wtuw = v, w=v tuvut)
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and so a character variety (see Fzercise 3.5, No. 6) on z1 = 7, and zo =
Tuv- By conjugation, any representation p of I' can be taken to have

o= (5 L) o =(7 )

50 that Tuy(p) = 7+ Tu(p)? — 2. Use this to show that the character variety
X (T) is defined by

22(2—29)+ 22— 20— 1=0.

4.5 Two-Bridge Knots and Links

A two-bridge knot is determined by a pair of relatively prime odd integers
(p/q) with 0 < g < p. The pairs (p/q) and (p’/q’) define the same knot if
and only if p = p’ and g¢’ = £1(mod p). For ¢ > 1, the knot complements
of these knots have a hyperbolic structure. Indeed, Theorem 1.5.6 applied
to two-bridge knots and links shows that their complements are hyperbolic
if and only if, in the normal form, q > 1.

Presentations of the knot groups on two meridional generators are ob-
tained as follows. Let

ig=kip+r;, 0<r;,<p and ei:(—l)k".
Then
7r1(5’3 - (p/9) = (u,v | vw =wv, w=0vu. .. yr-2ycr-1),

The figure 8 knot is the two-bridge knot (5/3). So, just as for that knot
complement, the meridians © and v map to parabolics under the com-
plete representation. Thus map u to (§}) and v to (19), so that if
S3 — (p/q) = H3/T, then Q(tr(I")) = Q(z) = kI' by Corollary 4.2.2.
Then substitute in the defining relation for the group and solve for z.
The standard presentation for the knot group given above makes this a

routine calculation as follows. Let p — 1 = 2n and w = (‘Z: ZZ)‘ Then the

entries are given below, where we use > to denote a summation over suf-

fixes 41,12,...,4x where i; < i < --- < ix and the parity of the suffixes
alternates.
- - 2 -1
an = l—i—( Z eilei2)2+( Z €i16i16i36i4)z +---+(eges - -eap_1)z"
11 even i1 even

b, = 2627; + ( Z eileigeig)z + -+ (e2e3--- €2n)2’"_1
=1

i1 even
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n ~

2

Cp = ( E 62i~1>2+ ( E €i16i26i3>2 +--+(e1e2---e2p-1)2"
i=1 i1 odd

dn =1+ ( Z ei16i2)z+ o+ (162 - €2n)2™.
i1 odd

Then uw = wv if and only if d,, = 0 and 2b,, = ¢,. Noting that

(p—i)g=(g—ki—Lp+(p—1s)

gives that k; and kp—; have the same parity and so e; = e,—;. From this,
one readily deduces that zb, = ¢, holds in all cases. Thus z satisfies the
integral monic polynomial equation d,, = 0.

A. The two-bridge knot (7/3)

The sequence of e; is then {1,1,—1,—1,1,1}, from which one deduces
that d3 = 1 4 2z + 22 + 23. Thus, if 3 — (7/3) = H3/T, then k' = Q(2).
This field has one complex place and discriminant, —23. Also AT’ = M»(kT).
This is the knot 53 on the tables.

B. The two-bridge knot (9/5)

The sequence in this case is {1,—1,-1,1,1,~1,—1,1} so that dy =
1 — 2z + 322 — 2% + 2% This polynomial is irreducible and the invariant
trace field Q(z) has two complex places and discriminant 257. This is the
knot 6, on the tables. Although there is just one field up to isomorphism
with two complex places and discriminant 257, it is not a Galois exten-
sion of QQ and so there are two non-real isomorphic subfields of C with this
discriminant. Our approach here does not distinguish which of the two iso-
morphic subfields is the actual invariant trace field. For further discussion
on this, see §5.5 and §12.7.

C. A similar analysis can be applied to hyperbolic two-bridge link com-
plements, (p/q), where p can now be taken to be even, p = 2n. The main
defining relation becomes, in the above notation, uw = wu. Thus in the

NG, o)

FIGURE 4.3. The knots 52 and 6;.
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same notation as above, uw = wu if and only if ¢, = 0 and a, = d,.
In this case, a, = d,, always holds and, thus, z must satisfy ¢, = 0. The
two-bridge link complement (8/3) is the Whitehead link and in that case,
z = —1 + 1 so that the invariant trace field is Q(¢) and the quaternion
algebra is M3(Q(7)).

For further examples, see Appendix 13.4.

Exercise 4.5

1. In the notation of item C in this section, show that a, = d, always
holds.

2. The two-bridge link (10/3) has a hyperbolic complement with covering
group I'. Determine the invariant trace field of T'. Prove that T is commen-
surable in PSL(2,C) with the covering group of the figure-8 knot comple-
ment.

4.6 Once-Punctured Torus Bundles

‘We retain the notation of §4.4.3, where we obtained the invariant trace field
of the figure 8 knot complement from its description as a once-punctured
torus bundle. Thus, if M = H3/T" is a once-punctured torus bundle, then
the fibre group F = (X,Y’) is a free group. The monodromy of the bundle,
as an element of the mapping class group SL(2, Z), is a hyperbolic element
and can be taken to have the form (—I)*R™ L"2R"3 ... L™ where n; > 1
and € € {0, 1}. This is induced by the automorphism

g = iprIA"2 ... N2k

where p and X are as defined in §4.4.3 and (X) = X1, i(Y) =Y. The
group I' then has presentation

(XY, T |TXT ' =6(X), TYT ' =46(Y)). (4.3)
Ifa=trX,b=1trY and ¢ = tr XY, then since [X,Y] is parabolic
a® 4+ b? + c* = abe. (4.4)

A. Monodromy —RL

It is easy to see that a,b and c satisfy exactly the same equations as in
the case of monodromy RL so that the invariant trace field is Q(y/ — 3)
and the quaternion algebra is M2(Q(y/ — 3)). The manifold that arises
is the “sister” of the figure 8 knot complement (see Exercise 4.2, No. 1)
and is commensurable with the figure 8 knot complement as these two
complements can be shown to have a common double cover. Thus the above
deductions are immediate from the commensurability invariance. For the
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same reasons, the bundles with monodromies of the form (RL)™ have the
same invariant trace field and quaternion algebra.

B. Monodromy R?L
In this case, the fundamental group has presentation

(XY, T |TYT ' =YX? T 'XT=XY"1). (4.5)

Furthermore, the subgroup F; = (X2,Y, XY X !), of index 2 in F, lies in
I'®. Thus from Corollary 4.3.3, kI' = Q(tr Fy) and AT = M,(Q(tr F1)).
Now, using Lemma 3.5.9, Q(tr F1) = Q(a2, b, ac). From the information on
traces coming from the presentation (4.5), we have

a? 2a

b= —— -
a? -2’ ¢ a? -2

so that Q(tr F1) = Q(a?). Then substituting in (4.4) yields
a* — 50> +8 =0.

Thus k' = Q(tr F1) = Q(v/ — 7). For future reference, we note that
a?,b,ac € Oy, the ring of integers of Q(/ — 7).

Note that this furnishes an example of a non-compact manifold where
the invariant trace field is not the trace field. Clearly a € Q(trT'), but it is
easily shown that a ¢ Q(y/— 7). With reference to Corollary 4.2.2, it is easy
to deduce from (4.5) that H;(M,Z) = Zs, so that M is not a Z-homology
sphere.

Exercise 4.6

1. Let M = H3/T be the once-punctured torus bundle with monodromy
R3L. Show that the invariant trace field has discriminant 697.

2. Ifa,b,c is any triple satisfying (4.5) with ¢ £ 0, define
1 fac—b a/c 1 (bc—a —b/c
(X) = - < ) , ®(Y)= p ( be ) . (4.6)

ac b a

Show that ® is a representation of the free group F = (X,Y) in SL(2,C)
such that tr ®(X) = a, tr®(Y) = b, tr &(XY) = ¢ and ®([X,Y]) is para-
bolic. When T is the fundamental group of the once-punctured torus bundle
with monodromy R2L, obtain a representation of I' in SL(2,C).

4.7 Polyhedral Groups

Many examples of hyperbolic 3-manifolds and orbifolds are constructed us-
ing a fundamental domain in H3. Combinatorial and geometric conditions



144 4. Examples

provided by Andreev allow one to construct polyhedra in H3. If the poly-
hedron satisfies Poincaré’s requirements with respect to face pairing trans-
formations, then these transformations generate a discrete group whose
fundamental domain is the polyhedron. Coxeter groups which are gener-
ated by reflections in the faces of suitable polyhedra are special cases of
this. The index 2 subgroups consisting of orientation-preserving isometries
in the groups generated by reflections in the faces of these polyhedra are
referred to as polyhedral groups (see §1.4.2).

Examples of particular interest arise when the polyhedron is a tetrahed-
ron. There are 9 compact hyperbolic tetrahedra whose dihedral angles are
submultiples of 7 and there are a further 23 with at least 1 ideal vertex
(i.e., vertex on the sphere at co), which have finite volume. We represent
these tetrahedra schematically in Figure 4.4. The edge labelling (e.g., p)
indicates the dihedral angle (e.g., 7/p) along that edge. The tetrahedral
group then has presentation

(@,y,2 |am =y =P = (271 = (zz )" = @y ) =1).  (47)

These groups may also be described by the Coxeter symbol for the tetra-
hedron.

In this section, the invariant trace fields and quaternion algebras of a
number of these tetrahedral groups will be obtained. The link between the
geometry of the tetrahedron and the arithmetic invariants is not particu-
larly transparent. Later, from results to be proved in §10.4, a slightly more
direct method of determining the invariants for any polyhedral Coxeter
group of finite covolume from the geometry of the associated polyhedron
will be obtained. This method will be seen to be particularly applicable to
tetrahedral groups (see §10.4.2 and Appendices 13.1 and 13.2).

4.7.1 Non-compact Tetrahedra

In §1.4.4, the figure 8 knot complement is described as the union of two
regular ideal tetrahedra with dihedral angles 7/3 by suitable face pairing.

D

FIGURE 4.4.
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O—O0— 0

FIGURE 4.5.

These tetrahedra have all of their vertices on the sphere at co and H® ad-
mits a tesselation by such regular tetrahedra. The full group of symmetries
of this tesselation is the group generated by reflections in the faces of a
tetrahedron which is a cell of the barycentric subdivision of the regular
ideal tetrahedron. This has one ideal vertex and Coxeter symbol given in
Figure 4.5. The face-pairing transformations which give rise to the figure 8
knot complement lie in the full group of symmetries of the tesselation, so
that the tetrahedral group associated with Figure 4.5 and the figure 8 knot
group are commensurable. Thus this tetrahedral group’s invariant trace
field is Q(+/—3) and quaternion algebra is M2(Q(+/—3)). Several other tet-
rahedra with ideal vertices whose dihedral angles are submultiples of 7 can
be obtained as unions of this tetrahedron (see discussion in §1.7), so that
their associated tetrahedral groups have the same invariant trace field and
quaternion algebra (see Exercise 4.7, No. 1). The tetrahedral group whose
Coxeter symbol is at Figure 4.5 is isomorphic to PGL(2, O3) (see Exercise
1.4, No. 1). It will be noted that all of this discussion stemmed from the
connection between the figure 8 knot complement, the regular ideal tetra-
hedron with dihedral angles 7/3 and the fact that PGL(2, O3) is the full
group of symmetries of the tesselation of H? by regular ideal tetrahedra
(see also Exercise 4.4, No. 2 and for further discussion, see §9.2).

In an analogous way, H3 can be tesselated by regular ideal dodecahedra
whose dihedral angles are /3. If we take the barycentric subdivision of one
such regular ideal dodecahedra, we obtain the ideal tetrahedron in Figure
4.6. We can locate this tetrahedron in H® such that D is at oo and ABC
lies on the unit hemisphere centred at the origin with A the north pole and
B = (cos/5,0,sin7/5). If we let x denote the rotation about AD, y the
rotation about BD and z the rotation about AB, then

FIGURE 4.6.
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emi/s i —(1+ %) 0 i
.’L':(O e—wi/6)7 y:<0 —i2 )7 Z_<i O)

To calculate the invariant trace field of I' using Lemma 3.5.9, we change
generators to y; = x, v2 = zy and 3 = Yz, and obtain kI' = Q(1/5, v/ — 3),
which is a Galois extension with two complex places. Also A" = M (kT).

4.7.2 Compact Tetrahedra

The leading candidate for an orientable hyperbolic orbifold of minimal
volume is obtained from one of the compact tetrahedra and this important
example will be discussed here and later in Chapter 9 at some length (see
Example 1.7.3 and Exercise 1.7, No. 4). This orbifold is known to be the
orientable arithmetic orbifold of minimal volume (see Chapter 11). We
obtain its invariant trace field and quaternion algebra without having to
locate the tetrahedron in H® and hence without having to obtain matrix
generators for the group. This group has the Coxeter symbol given at Figure
4.7 and its tetrahedron is shown in Figure 4.8. Let T denote the associated
tetrahedral group, so that T has presentation

(@y,2|2* =y* = 2° = (y2) = (22)° = (zy)’ = 1).

The tetrahedron clearly admits a rotational symmetry of order 2 about the
geodesic which is the perpendicular bisector of the edges AC and BD. This
is reflected in the symmetry of the Coxeter symbol. Denoting this rotation
by w, the extended group I' has the presentation

@y, 5w 2?=y"=2%=(y2)* = (22)° = (xp)® = 1,

w? = 1, wyw = y, wrw = yz, wzw = yI).

The quotient H3/T is the orbifold of minimal volume referred to earlier.
This presentation can be greatly simplified so that T" is a two-generator
group by setting a = wy and b = z.

I'={a,bla®=bt=1,c=(ab)?(ab™ 1), =1,(b"cH)? =1). (4.8)

By Lemma 3.5.8, since I" is generated by elements of orders 2 and 3, kI’
Q(tr [a, b]). Some care is required in lifting to SL(2,C). Thus let A, B
SL(2,C) map onto a and b respectively, chosen so that tr A = 0, A2
—I,trB=1and B3 =—1I.

m |l

O == O

FIGURE 4.7.
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D
3 2
5
2
A C
9 3
B
FIGURE 4.8.

We now employ the trace relations from §3.4 to determine ¢ = tr[a, b].
Let s = tr AB, so that, from (3.14) and (3.15),

trAB™'=—s and t=s°-1.
Again using (3.14), we obtain
trC = (s2-2)(s>=1)=t(t - 1)
trB71C? = trBCtrC—trB~!=—trCtr(AB)*AB™! —1

—tr C(tr (AB)®>tr AB™ — tr BABAB?) — 1
= —trC(—s*+3s>-1)~1=trC(trC —1)—1=0.

Il

Here we have used Corollary 3.1.4, (3.10) and (3.14). Thus ¢ satsfies
tt—2t®+t-1=0.

This irreducible polynomial has two real roots and so Q(#) is a field of degree
4 with one complex place. Its discriminant is —275 and, up to isomorphism,
there is one such field.

To determine a Hilbert symbol for the quaternion algebra, we could apply
Corollary 3.6.3 using the generators a and b in (4.8). However, note that the
stabiliser of one of the vertices of the tetrahedron contains an irreducible
subgroup isomorphic to A4 and so is generated by two elements of order 3.
Thus using Theorem 3.6.2, we obtain

—-3,-2
AFE( - ).
Q)
There will be a more general discussion on the structure of A" when T
contains a subgroup isomorphic to A4 later (see §5.4). For the moment, we
note that AT is ramified at both real places (sec §2.5).

Since —2 = 1(mod 3) and 3 is unramified in the extension Q(¢) | Q, it
follows from Theorem 2.6.6 that AL splits at the primes lying over 3 and
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also at all other non-dyadic primes. Using the information from §0.2 on
the field Q(t) = kT, there is only one prime lying over 2 in kI'. Thus by
Theorem 2.7.3, AL is only ramified at the two real places. It will be shown
later that T is arithmetic and further investigations of this case will be
made (see also §4.8.2).

We briefly also consider the compact tetrahedron with Coxeter symbol
shown in Figure 4.9 whose tetrahedral group I' has the presentation

(@,y,2| 2% =y° = 2" = (y2)° = (22)* = (2y)* = 1).

Locate the tetrahedron so that the octahedral group S4 = (y, 2) fixes the
point (0,0,1) in H3. We thus have

1+i 1+ 1ti
x:<a b)a y:( ?—z 1—;—-_;>7 z = V2 191' .
c —a —(T) 5 0 72—
Taking 71 = y,72 = 2z and 73 = 2z~ 'z as generators of I" which do not have
order 2 and using Lemma 3.5.9, we can then calculate the invariant trace
field to be Q(/ — 7).

Note that this cocompact group has the same invariant trace field as
the once-punctured torus bundle with monodromy R?L described in §4.6.
These groups are clearly not commensurable.

Using the irreducible subgroup (z,y) in Theorem 3.6.2 gives that

-1,—-1
AF%<——L——).
Qv -1)
Now the prime 2 splits in the extension Q(v/—7) | Q so that 207 = PP’,
where P and P’ are distinct prime ideals. The completion &, of Q(y/ — 7)

at the valuation corresponding to either of these primes is thus isomorphic
to the 2-adic numbers Q. Thus

~1,-1
A @ _mz(’ )
Q(v/-T7) Q>

One can check directly that the equation —22 — 2 = 22 has no solution in
the ring of 2-adic integers. Thus by Theorem 2.3.1(e), the above quaternion
algebra is isomorphic to the unique quaternion division algebra over Qg
discussed in Exercise 2.6, No. 3. Thus AT is ramified at v and so AT" cannot
be isomorphic to M2(Q(/ — 7)), which, of course, splits at all valuations.

[

FIGURE 4.9.
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Thus the invariant quaternion algebras in the cases of the tetrahedral
group described here and the R2L once-punctured torus bundle are not
isomorphic, although the invariant trace fields are the same. We will later
see that both of these groups are arithmetic, in which case the invariant
trace field and the invariant quaternion algebra are complete commensur-
ability invariants, so that the fact that they are non-commensurable will
force the algebras to be non-isomorphic.

4.7.8 Prisms and Non-integral Traces

In all of the examples which have been explicitly computed so far, the traces
of the representative matrices have all been algebraic integers. This need not
be so, but detecting non-integral traces is no easy matter. Their existence
in a group, however, has important consequences for the structure of that
group, as the work of Bass, which will be discussed in the next chapter,
shows.

In this section, we construct an infinite family of examples in which there
is an infinite subfamily whose members contain elements whose traces are
not algebraic integers.

For any integer q¢ > 7, the triangular prisms with dihedral angles which
are submultiples of 7, shown schematically in Figure 4.10, satisfy the con-
ditions of Andreev’s theorem and so exist in H3. Indeed, we will construct
these explicitly below. These prisms can be obtained from the infinite
volume tetrahedron with Coxeter symbol at Figure 4.11 by truncating the
tetrahedron by a face orthogonal to faces numbered 2, 3 and 4 in Figure
4.11 (see §1.4.2). If K, is the discrete group generated by reflections in the
faces of the tetrahedron, then K, has non-empty ordinary set in its action
on C = OH3. Thus the convex hull in H3, C(K,), of the limit set of K, gives
rise to the hyperbolic orbifold C(K,)/ K, , whose universal covering group
is I'q, the group of orientation-preserving isometries in the group generated
by reflections in the faces of the prism. Truncating infinite-volume poly-

2

2

4

FIGURE 4.10.
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FIGURE 4.11.

hedra by orthogonal faces applies in more general situations than those
described here.

To calculate the invariant trace fields, the triangular prisms will be con-
structed directly in H3. A neater method of obtaining the invariant trace
field avoiding this construction is to use the Lobachevskii model of H? and
the associated Gram matrix. This, however, requires a translation from the
Gram matrix entries, which are necessarily real, to the required trace field.
This will be carried out in §10.4.

Of the five faces of the prism, two will be planes P; and P, orthogonal
to C, two will be hemispheres S; and S3 centred at the origin and the last
a hemisphere S3 with centre on the x-axis. The bases of these and their
relative positions are shown in Figure 4.12. The hemisphere S; is the unit
hemisphere and P;, P, and S3 meet S; orthogonally and bound a hyper-
bolic triangle on S; with angles 7/2,7/3 and n/q. Thus P, = {(x,y, 2) |
ycosm/q = xsinw/q} and S3 = {(z,9,2) | (x — a)? + y% + 22 = 2}, where
a? = t% + 1. Furthermore, choosing t = 2a sin 7/q ensures that S3 meets P
at /3. Finally we truncate the region lying outside S; and S3 and bounded
by Pi and P by the hemisphere Sy = {(z,y, 2) | 22 + y? + 2% = 5%}, where
52 +ts — 1 = 0, which guarantees that S, meets S3 at /3.

It is not difficult to see that the polyhedral group I'; is generated by the
three elements X = pg,ps,, Y = pp,pp, and Z = pg,ps,, where p denotes
a reflection. We thus obtain

_(—1/ts as/t _ (exp(mi/q) 0 (s 0
X= (—a/ts s/t) Y = ( 0 exp(—mni/q) /)’ Z= 0 1/s/)’
Now tr2Z —3=(s+1/s)2-3=t*+1=a? =1/(2cos2r/q—1). Thus Z
will have integral trace precisely when 2 cos 2r/q — 1 is a unit in the ring of

So
P,
S1

- ;
NI

FIGURE 4.12. The five faces of the prism.
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integers in Q(cos 27 /q). For any g of the form ¢ = 6p, where p is a prime
# 2,3, then 2 cos27/q — 1 fails to be a unit (see Exercise 4.7, No. 4). Thus
for these values of g, the groups I'; have elements whose traces are not
algebraic integers. Note furthermore, that since Z is a hyperbolic element
in I'y, every subgroup of finite index in I'y will have elements whose traces
are not algebraic integers; for if the trace of Z™ were to be an algebraic
integer, then the trace of Z would also be an algebraic integer (see Corollary
3.1.4).

Exercise 4.7

1. Determine the invariant trace fields of the tetrahedral groups whose
Cozeter symbols are as follows:

AN AN

oo @ @0l 00— C==——"7->0

/ /

2. Show that the regular ideal octahedron with dihedral angles w/2 has a
barycentric subdivision whose cell is a tetrahedron with one ideal vertex and
the following Cozeter symbol:

O—CO—(O—O

Determine the invariant trace field and quaternion algebra of this tetrahed-
ral group (see Ezercise 4.4, No. 2).

3. Show that the tetrahedron with the following Coxeter symbol admits a

o=—— O

rotational symmetry of order 2. Show that the extended tetrahedral group
has a two-generator presentation as

I'={a,b|c=(ab)?d=(ab"1)?,a®> =0 =1,

(cd)® = (cdc)? = (dcb)? = 1).

Hence determine the invariant trace field of the tetrahedral group, showing
that it has degree 4 over Q and discriminant —475. Obtain a Hilbert symbol
for the invariant quaternion algebra of this tetrahedral group.

4. (a) Let Ty be as defined in §4.7.3. Show that kI'y = Q(cos2m/q, @),
where o = (1 + cos27/q)(1 — 3cos2n/q). Deduce that there are infinitely
many commensurability classes of compact Cozeter groups in H3.
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(b) If ®4(x) denotes the cyclotomic polynomial, show that
| NQ(cos 2 /q)@(2 cos 2 /g — 1)| = | @4 (exp(mi/3)].
(c) If p is a prime # 2,3, show that

(@ + 1) (z + 1)
(3 +1)(zP + 1)

(I)6p(5’3) =

and deduce that, in these cases, 2cos2n/q — 1 is not a unit.
(d) Show that if g = q1q2, where (q1,q2) = 1 and q1 and g2 are not divisible
by 2 or 3, then 2cos2w/q— 1 is a unit.

4.8 Dehn Surgery Examples

As described in §1.5.3, hyperbolic manifolds and orbifolds can be obtained
by carrying out suitable Dehn surgery (or Dehn filling) on knot and link
complements, or, more generally, on knot and link complements in an ap-
propriate 3-manifold. The presentation of the fundamental group of the
resulting manifold or orbifold is then determined by the knot or link com-
plement together with the Dehn surgery parameters. In this section, some
key examples of this are examined.

4.8.1 Jgrgensen’s Compact Fibre Bundles

Jorgensen first showed that there are compact hyperbolic manifolds which
fibre over the circle. The manifolds, M,,, were obtained as finite covers of
orbifold bundles over the circle with fibre the 2-orbifold which is a torus
with one cone point of order n, n > 2. Thus by §4.3, for the invariant
trace field and quaternion algebra, it suffices to consider these orbifold
bundles. Again, in Jgrgensen’s original paper, a matrix representation is
given. With suitable normalisation, the analysis which follows would yield
this representation.

Although not originally described in these terms, these orbifolds can
be obtained by surgery on M, the figure 8 knot complement. With the
notation as in that example, considered as a once-punctured torus bundle
(see §4.4.3), take the meridian to be represented by T and the longitude
to be represented by [X,Y] and carry out (0,n) surgery. From (4.2), we
obtain a presentation of the orbifold fundamental group:

r,=(X,Y, 7| [X,)Y]" =1, TXT '=XYX, TYT != YX). (4.9)
Let F,, denote the fundamental group of the orbifold fibre so that

Fp= (X,Y | [X,Y]" =1).



4.8 Dehn Surgery Examples 153

Asin §4.4.3,let a =tr X, b=trY and ¢ = tr XY, so that we obtain
b=c¢, a=ac—b, a?+b>+c®—abc—2=—2cos7w/n.
From these, we obtain

(ab)® — 3(ab) — (2 — 2cosm/n) =0, (4.10)

a? — (ab)a + (ab) = 0. (4.11)

Thus ab = (3+ /(17 —8cosw/n))/2 so that ab is real and 0 < ab < 4. The
discriminant of (4.11) is (ab)? — 4(ab), so that a is not real. Thus if

kn = Q(cosm/n,ab,a),

then b, c € k, and so Q(tr F,) = ky,.
Since F,, C st), we obtain from Corollary 4.3.3 that kI',, = k, and
ATy, = AoF,. Furthermore, using (3.37), we obtain that

2_4. -9
AT, = (a 4, 2k 20037r/n> ‘ (4.12)
n

Note that [k, : Q] = u¢(n), where p = 1 or 2. For all n, ¢(n) > (v/n)/2,
so that, as n — 00, ¢(n) — oco. Thus the manifolds M, fall into infinitely
many commensurability classes:

Theorem 4.8.1 There exist infinitely many commensurability classes of
compact hyperbolic 3-manifolds.

For n = 2, solving (4.10) and (4.11) gives a = (3+\2/1_7)(1+\/(42—‘/ﬁ)).
Thus kI's = Q(a) has degree 4 over QQ, one complex and two real places. By
a direct calculation on determining when z + y+/(4 — v/17) is an algebraic
integer for z,y € Q(+/17), one obtains that {1,a} is a relative integral
basis of kI'y | Q(+v/17). Thus {1, a,a?, a®} is an integral basis of kT, and so
Agr, = —4(17)%. From the Hilbert symbol description at (4.12), it follows
that AI'; is ramified at both real places.

4.8.2  Fibonacci Manifolds

The Fibonacci manifolds NV, are compact orientable 3-manifolds whose
fundamental groups are isomorphic to the Fibonacci groups Fy,, (frequently
referred to in the literature by the symbol F3 2,,). These manifolds were
originally obtained by face-pairing on a polyhedral 3-cell. For n > 4, the
polyhedron can be realised in H® to give a tesselation of hyperbolic 3-space
and, hence, a hyperbolic 3-manifold. These manifolds turn out to be n-fold
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cyclic covers of S3 branched over the figure 8 knot, and that is the link to
the description we now give.

Recall that the figure 8 knot complement is the once-punctured torus
bundle with monodromy RL. The manifold N,, for n > 4 is obtained by
carrying out (1,0) Dehn filling on the once-punctured torus bundle with
monodromy (RL)™. Alternatively, carrying out (n, 0) filling on the figure 8
knot complement yields a hyperbolic orbifold O,, whose n-fold cyclic cover
is the manifold N,,. (The framing used here is as described in §4.8.1.) Thus
if we let H,, denote the fundamental group of the orbifold O,, then

H,=(X,Y,T|T"=1,TXT '= XYX,TYT"' = Y X).

The normal torsion-free subgroup of index n in H,, containing X and Y
is then the fundamental group of N, and is isomorphic to the Fibonacci

group:
For, = (x1,22,... ,T2n | Ti%Tiy1 = 2442 for all ¢ (mod 2n)).

The invariants of N, are thus the invariants of H,. As noted in Chapter
3, calculations are simplified for two generator groups and we can achieve
that in these cases as follows: Let K,, be the Z,-extension of H,, with the
presentation

K,=(X,Y,T,8 | T"=1,TXT'=XYX, TYT'=YX, §?=1
SXS'=X"1 8YyS™! = XY, STS ' =T71).

From this it follows that Y = [T}, X7!] and X = [(SX)"1T(SX),T)
so that K, can be generated by the two elements T,V = SX with the
presentation

K,=(T,V|T'=1,V?=1,((TV)3(T7'V)>)?2 =1). (4.13)

This is actually a generalised triangle group which is the fundamental group
of the orbifold whose singular set in S3 (see §1.3) is the graph shown in
Figure 4.13. In Figure 4.13, the integers 2 and n indicate that the cone
angle about that segment of the singular set is = and 27 /n, respectively.
As a two-generator group with one generator of order 2, it follows that
kK, = Q(tr 2T, tr [V, T]). (See (3.30).) Now tr2T = 2cos(27/n) + 2 and

@)

FIGURE 4.13. The singular set of the orbifold described at (4.13).
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tr [V, T] = tr?T + 72 — 2, where 7 = tr TV. Furthermore, by a standard
trace calculation (see §3.4),

tr (TV)}(T~V)?) = 7° + (2cos(2n/n) — 3)7° — (2cos(2n/n) — 3)7 = 0.

Thus kK, = Q(72?) is a quadratic extension of Q(cos27/n) so that we
have infinitely many examples of cocompact groups where the invariant
trace field is not the trace field.

The Hilbert symbol for the quaternion algebra can also be deduced from
(3.39) as

(4.14)

29 _ 2(+2 —
AKn=(4(COS w/n—1),7%(1% + 2cos 21 /n 2))

kK,

We remark on a couple of special cases. When n = 5, then a = 72 satisfies

s [7T-V5 T-V5)\ _
o= (155) o (50 o

Thus k = kK5 = Q(+/(3 — 2v/5)). This field was commented on in §0.2 and
we now make use of these observations. Thus k has discriminant —275 and
{1,u,u? v} is an integral basis, where u = (1 +t)/2 with t = /3 — 21/5.
Now a = (u— (2—+5))(1+v5)/2, so that {1,a,a?,a?} is also an integral
basis. It is straightforward using (4.14) to show that AKjy is ramified at
the two real places. Rearranging, we obtain

Ak — ((—5 —VB)/2,a— (T — \/5)/2> '

k

To determine the finite ramification of this quaternion algebra, we note
the following ideal structure, resulting from Kummer’s Theorem: 5R; =
(V5Rk)? = P2, where N(Ps) = 5% 11R, = PP}, where N(Py) =
11, N(P{,) = 11%; P11 = aRy and P} = (7 — v/5)/2Rk. There is a unique
dyadic prime in Ry. We wish to employ Theorem 2.6.6, so that AKj splits at
all non-dyadic primes, apart possibly from P5 and P11. Now Ry /Ps = F5(6)
where 6 can be taken to be the image of . Since

T-V5
o —
2

= a — 1(mod Ps)

and 6 — 1 = 62, it follows that AKj5 splits at Ps. A similar argument gives
that it also splits at Py1. Thus by Theorem 2.7.3, AK5 splits at the dyadic
prime and so its only ramification is at the two real primes.

Note that the first tetrahedral group discussed in §4.7.2 has the same
invariant trace field and its quaternion algebra is ramified at exactly the
same places. By Theorem 2.7.5, these quaternion algebras are isomorphic.
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In addition, it will be shown that these two groups are arithmetic, in which
case the invariants are complete commensurability invariants (see Theorem
8.4.1). Thus this Fibonacci group Fio will be commensurable with the
leading candidate for the minimum covolume Kleinian group.

The case n = 10 is also interesting. In that case, 72 — 1 = —e2™/5 g0 that
kK1 is the cyclotomic field Q(e™*/5), which has two complex places. Also,
from (4.14), we see that AK g & M, (Q(e™/?)) since

2 ) )
4 (cos2 % — 1) = (em/s _ e—7rz/5)2'

Theorem 4.8.2 The Fibonacci manifold N1y gives an example of a com-
pact manifold whose invariant quaternion algebra is a matriz algebra [viz.

M (Q(exp(mi/5)))].

4.8.8 The Weeks-Matveev-Fomenko Manifold

This well-studied compact manifold is the leading contender for the ori-
entable hyperbolic 3-manifold of minimal volume. It is known to be the
arithmetic orientable hyperbolic 3-manifold of minimal volume, the arith-
meticity being a consequence of the calculations in this section and dis-
cussed later (see §9.8.2 and §12.6).

In this description, we make use of some of the examples discussed earlier
in this chapter. The methods of calculation can be applied to a wide range
of examples and makes use of symbolic computational packages such as
Mathematica or Maple. We include enough details so that the computation
can be readily reproduced for this example and extended to others.

The Weeks manifold M, as we shall refer to it, is obtained by (5,2)
surgery on the boundary component of the one-cusped manifold M, which
is the “sister” of the figure 8 knot complement. It is known that M is a
compact hyperbolic manifold of volume 0.9427... (see §1.7).

Recall (see §4.6 and Exercise 4.2, No. 1) that My, is a once-punctured
torus bundle with monodromy —RL. Let a and b generate the fundamental
group of the once-punctured torus so that [a,b] is homotopic to a simple
closed loop round the puncture and forms the longitude £ of the boundary
component of Ms,. The monodromy —RL is induced by the automorphism
0 = ipA, which is adjusted by an inner automorphism so that

m1(Moo) = (a,b,t | tat™' =727, tht™! =babla™27t).  (4.15)

Then ¢ can be taken to be the meridian for a peripheral subgroup since
t¢ = ¢t. The manifold M will correspond to a point on the character variety
of m (M) (see Exercise 3.5, No. 6 and Exercise 4.4, No. 4, for the figure
8 knot group). We thus first determine the character variety. Note that we
can eliminate b from the presentation above to obtain the two-generator
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presentation
71 (Ms) = (a,t | a®tat™ = o't 'a " ta). (4.16)

Normalise any representation ¢ : m1(Ms) — SL(2,C) so that

o= (5 L) s@=( )

From the relation in 7, (M), given in (4.16), the (1,2) matrix entry yields
A+y)lray(y' —° +9* —y+ D+ (@*° -y -1)=0.  (417)

For the compact manifold M, y cannot be —1, nor can y be a 10th root
of unity. Thus from (4.17), r can be expressed in terms of z and y. Thus
in each of the equations obtained from the other matrix entries, we can
eliminate r using resultants. One then observes in the resulting equations
that they are simultaneously zero, for any point corresponding to a compact
manifold, if and only if a certain polynomial in x,y is zero. Converting this
into a polynomial in t; = tr(t),t2 = tr(a), then yields (a component of)
the character variety of m1 (M) as

p(ti,t2) = 1 — 3 + 2ty + tot? — t3 — 2t5 + t5. (4.18)

The meridian and longitude are t and £ = [a,b] = [a,t][a™!, t], respectively.
Thus with this framing, we obtain M by (5, 2) surgery, yielding the relation
t5¢2 = 1. Eliminating r from the trace polynomial of this relation gives a
further polynomial in x,y which can also be converted into a polynomial
q(t1,t2). Eliminating ¢; from p(t1,t2) and q(t1,t2) using resultants shows
that to must satisfy

> —z2*+1=0. (4.19)

From (4.18), it is obvious that t? € Q(t2) and a little work shows that
t; = (t2 + 1). Furthermore, (4.17) can be recast in terms of traces and
yields in this case, that t3 = tr(ta) = t2(1 — t2). Note that the three
generating traces are all algebraic integers. It is straightforward to show
that m (M)® = 7, (M) so that the invariant trace field k is Q(t2), which
has one complex place and discriminant —23.

We now determine the invariant quaternjon algebra A which, by (3.37),
has Hilbert symbol (Z-(al=4trltel=2)

moving squares, this yields

((t2 —2)(t2+2), —(t2 + 1)> . (4.20)

. After a small calculation and re-

k

The real conjugate of t2 lies in the interval (—1,0) so that A is ramified at
the real place. In Ry, t2+1 is a unit and t2—2 and t3+2 generate prime ideals
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Ps and P13 of norms 5 and 11, respectively. Now —(t2+1) = 1(mod (t2+2))
and —3(mod (¢t —2)) so that A is ramified at Ps but not at Py1. The prime
2 is inert in the extension k | Q, so for parity reasons, A is ramified at
precisely the real place and at Ps.

Exercise 4.8

1. Determine the invariant number field and quaternion algebra of the
compact manifold M3 of Jorgensen which fibres over the circle.

2. Determine the invariants of the Fibonacci group Fio.

3. A hyperbolic orbifold obtained by Dehn filling (5/3) gives a point on
the character variety of the figure 8 knot group (see Exercise 4.4, No. 4).
Determine the point corresponding to the orbifold Og arising in §4.8.2.
Compare with question 2.

4. The orbifold (S3,G(p,q;r)) whose singular set in S3 is the graph shown
at Figure 4.14, where the labels p, ¢ and r indicate the order of the stabiliser,
is a compact hyperbolic orbifold in the case where (p,q;r) = (2,3;4). Show
that the orbifold fundamental group is the generalised triangle group with
presentation

(x,y | 2® =y* = (ayz~lyay ™) = 1).
Determine the invariant number field and quaternion algebra (cf. §4.8.1).

5. The compact hyperbolic 3-manifold obtained by (5,1) surgery on the
once-punctured torus bundle with monodromy RL (i.e., the figure 8 knot
complement), has the second smallest known volume for an orientable hy-
perbolic 3-manifold at 0.9813.. . (see §1.7). Show that its invariant trace
field is quartic of discriminant —283 and that the invariant quaternion al-
gebra is unramified at all finite places.

6. Performing (—1,2) surgery on the once-punctured torus bundle with
monodromy —R?L with framing as described above yields a compact hyper-

FIGURE 4.14.



4.9 Fuchsian Groups 159

bolic manifold. Show that its invariant trace field is Q(~/—3) and determine
the invariant quaternion algebra.

4.9 Fuchsian Groups

In Chapter 3, crucial use was made of Mostow’s Rigidity Theorem to prove
that the traces, indeed the matrix entries, of representative matrices of a
Kleinian group of finite covolume were algebraic numbers. As Mostow’s
Rigidity Theorem does not hold in hyperbolic space of dimension 2, this
result does not hold for Fuchsian groups. Nonetheless, although the trace
field of a Fuchsian group may not be a number field, the remaining results of
Chapter 3 still apply to show that to each non-elementary Fuchsian group
I' there is an associated field kI' and a quaternion algebra AI' over kI’
which are commensurability invariants. The general theory of quaternion
algebras over fields of characteristic # 2 as given in Chapter 2 applies.

In this section, we consider kT" and AT for some Fuchsian groups. If ' is a
fixed Fuchsian group of finite coarea (i.e., H?/T has finite hyperbolic area),
then the Teichmiiller space T(I') can be described as the space of faithful
representations I' — PSL(2,R) with discrete finite coarea images, mod-
ulo conjugation, where the representations preserve the types of elliptic,
parabolic and hyperbolic elements. The space T(I') can be parametrised
by traces and is homeomorphic to R™, where the dimension n depends on
the signature of I". If I is torsion free, the subspace of T(I') consisting of
representations whose images have their matrix entries in Q is a dense sub-
space of T'(T'). More generally, if all the torsion in I' divides N, a similar
result applies with Q replaced by Q(cosn/N), apart, possibly, from the
cases where T is a triangle group. Thus the invariant trace fields of many
Fuchsian groups will be number fields.

The cases of Fuchsian triangle groups are similar to those of finite-
covolume Kleinian groups. In these triangle group cases, the Teichmiiller
space is a singleton and the invariant trace field is always a number field.
In more detail, suppose that T is a (¢,m,n)-triangle group where 1/¢ +
1/m+ 1/n < 1 so that I' has the presentation

(z,y |z =y™ = (zy)" = 1).

Then Q(tr ') = Q(cos w/¢, cosm/m, cosw/n) (see (3.25)), and the invariant
trace field is a subfield of this totally real number field (see Exercise 4.9,
No. 1). A similar result will hold if I" is not cocompact and one or more
of the elements =,y and xy is parabolic. Of course, the classical modular
group PSL(2, Z) has invariant trace field Q and quaternion algebra M>(Q).

The case where I is the (2,3, 7)-triangle group will now be considered
in some detail. First note that kI' = Q(cos2n/7) by Lemma 3.5.8, which
is the real subfield of the cyclotomic field Q(&7), where & = e2™/7. Now



160 4. Examples

{1,&,...,&8} is an integral basis of Q(¢7) and so, if a = 2cos27/7, then
{1,a,a?} is an integral basis of Q(cos27/7). Now « satisfies f(x) = 2> +
x? — 2z — 1 =0 and Ag(cos2/7) = 49. By Corollary 3.6.3,

—3.2c0827/7 —
AF:( 3,2cos2m/7 1)‘

kI

The real places of kI' correspond to the roots f(z) = 0 and so AT is
ramified at the two real places corresponding to the roots 2cos4w/7 and
2 cos 67 /7. We will now show that AT is not ramified at any prime ideals.
Since f(1) = -1 = N(2cos2x/7—1), 2cos 2w /7 — 1 is a unit and AT splits
at all primes apart possibly from those lying over 2 and 3 by Theorem
2.6.6. The polynomial f is irreducible mod 2 and mod 3, so, by Kummer’s
Theorem, there are unique ideals P3 and Ps in kT" over 2 and 3, respectively.
Furthermore, from f we obtain that

z—1=(2* + 2 — 1)*(mod Ps)

so that AT splits at Pz by Theorem 2.6.6. Thus by the parity theorem
2.7.3, AT also splits at P-.

Some interesting Fuchsian groups arise as subgroups of finite-covolume
Kleinian groups and, hence, their invariant trace fields will be real num-
ber fields. This situation will arise when totally geodesic surfaces immerse
in compact hyperbolic 3-manifolds and the consequences of this will be
examined in later chapters.

For the moment, let us consider two simple types of example. Consider
any of the tetrahedral groups I dealt with in §4.7. Any face & of such a
tetrahedron will lie on a hyperbolic plane Hs. Let 75 be the reflection of H3
in Hs and Cr(rs) be the group of elements of I" which centralise 5. Then
Cr(rs) leaves H; invariant and the subgroup Cj (r5), which preserves the
orientation of Hy, is a Fuchsian group. The orbifold Hs/ C’lf (rs) immerses
in H3/T.

Consider the particular tetrahedron given in Figure 4.6. If F is one of
these groups Cjf (rs) just described, then kF ¢ kT NR = Q(+/5). If §
is the face ABD, then the face angles at A, B and D are 7/2,7/5 and 0,
respectively. Furthermore, the rotations around AB and BD and the cube of
the rotation around AD all preserve the plane Hs and act as reflections on
H in the sides of the triangle. Thus F is a triangle group. Since it contains
elements of order 5, kF' = Q(v/5) and since it contains parabolic elements,
AF = M>(Q(V/5)). For the other faces of this tetrahedron, F is not a
triangle group and need not contain parabolic elements. The deduction of
kF and AF is consequently more complicated.

As another class of examples, consider the Bianchi groups PSL(2,0y).
Whereas these clearly all contain the Fuchsian subgroup PSL(2,Z), they
also contain many other Fuchsian subgroups (see Exercise 4.1, No. 1). For
example, take d = 3. Then the elements of PSL(2,O3) which leave the
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circle {z | |z|? = 2} invariant form

F= P{(% ?) € SL(2,03)}.

Thus kF = Q. Take any pair of elements g and h which generate an irre-
ducible subgroup of F', for example,

i3 g V32
g=p(0 6_2”/3)’ h=P{"y _3)

so that, by (3.38), AF = (%) The quadratic form —3z2 + 6y? = 1
does not have a solution in Q since it does not have a solution (mod 3)
(use Theorem 0.9.5). Thus AF does not split over Q. It will follow from
later arguments involving arithmetic groups that F' is a Fuchsian group
of finite coarea. Note that the fact that AF does not split over QQ shows
that F' cannot contain parabolic elements (see Theorem 3.3.8) and so F
must be cocompact. Recall that the figure 8 knot group I' is of index 12
in PSL(2, O3). For the group F, FNT is a torsion-free subgroup of F' and
hence, the fundamental group of a compact surface. Thus a totally geodesic
compact surface of genus g > 2 immerses in the figure 8 knot complement.

Exercise 4.9

1. Let F be a Fuchsian (¢, m,n)-triangle group. Show that
kF = Q(cos 2w /£, cos 2w /m, cos 27 /n, cosm/LcosT/mcosT/n).

2. Show that there are exactly four cocompact Fuchsian triangle groups
whose invariant trace field is Q. Show directly that all four are commensur-
able and determine the set of places of Q at which the invariant quaternion
algebra is ramified.

8. Consider the Saccheri quadrilateral shown in Figure 4.15 where the
angle A is /3. Let F be the Fuchsian subgroup of the group generated by

A

FIGURE 4.15.
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reflections in the sides of the quadrilateral. If ¢ = 2 cosh® L, where L is the
hyperbolic length of the side BC, show that kF = Q(c) and

AP o (C(c —4), —(a((cc)— 3)(c— 4)) .

(a) Show that there exist Fuchsian groups F such that kF is a transcend-
ental extension of Q.

(b) Show that, for any real number field k, there exists a Fuchsian group F
such that kF = k.

(c) Show that there exist infinitely many commensurability classes of Fuch-
stan groups F with kF = Q each having non-integral traces.

(d) If Fy is any of the groups described in No. 2, show that there exists a
quadrilateral group F such that kF' = kFy and AF is isomorphic to AFy.

4.10 Further Reading

The Bianchi groups form the most obvious collection of discrete subgroups
of PSL(2, C) and have been widely studied. A systematic approach to ob-
taining fundamental regions is given in Swan (1971), which, via Poincaré’s
theorem, gives presentations. An alternative approach to obtaining present-
ations and further group theoretic information is in Fine (1989). For more
discussion see Elstrodt et al. (1998). The two theorems in §4.2 were proved
in Neumann and Reid (1992a). The dependence of the invariants of a fi-
nitely generated Kleinian group on a non-elementary subgroup as expressed
in Theorem 4.3.1 is implicit in Reid (1990). The early ground-breaking work
on hyperbolic structures on 3-manifolds and, in particular, on knot com-
plements gained much from the representation of the figure 8 knot group in
Riley (1975) and other related papers (Riley (1979) and Riley (1982)). Ob-
taining the figure 8 knot complement and other knot and link complements
by identifying faces of regular polyhedra as described in §4.4.2 is given in
Thurston (1979) and discussed more widely in Hatcher (1983). See also Cre-
mona (1984). The classification of two-bridge knots and links is to be found
in a number of standard texts on knots (e.g., Burde and Zieschang (1985)).
Throughout, references to tables of knots and links, refer to the tables in
Rolfsen (1976). Numerous investigations on once-punctured torus bundles
have been carried out (Floyd and Hatcher (1982), Culler et al. (1982)) and
specific investigations into the invariant trace field occur in Bowditch et al.
(1995). The combinatorial conditions and inequalities on dihedral angles
for the existence of polyhedra in H® are due to Andreev (1970) (see also
Hodgson (1992)). They appear in a more algebraic context in the work of
Vinberg (1985) using Gram matrices (see Chapter 10). With these meth-
ods, the cocompact tetrahedral groups are studied in Maclachlan and Reid
(1989). The family of prisms discussed in §4.7.3 are mentioned in Vinberg
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(1985), discussed in detail in Conder and Martin (1993) and their invariant
trace fields in Maclachlan and Reid (1998). Other families of polyhedra,
including those obtained by truncating “super-ideal” vertices are discussed
in Vinberg (1985). The existence of hyperbolic structures on fibre bundles
was first established in Jgrgensen (1977), where presentations and matrix
representatives of these groups were obtained. Further general discussion of
the invariant trace field of these was given in Bowditch et al. (1995) mainly
in the context of arithmetic groups. The existence of hyperbolic structures
on the Fibonacci manifolds of §4.8.2 was obtained by a direct construc-
tion via face pairing a suitable hyperbolic polyhedral 3-cell in Helling et al.
(1998). The representation of these manifolds as branched covers branched
over the figure 8 knot is in Hilden et al. (1992a). Subsequent further in-
vestigations and generalisations appear in Maclachlan and Reid (1997),
Mednykh and Vesnin (1995) and Mednykh and Vesnin (1996) . The con-
venient representation of the group K, at (4.13) is taken from the survey
article of Thomas (1991). The family of generalised triangle groups, origin-
ally studied for algebraic (Fine and Rosenberger (1986)) and topological
(Baumslag et al. (1987)) reasons, furnishes interesting hyperbolic examples
which are touched upon in §4.8 (see Jones and Reid (1998), Helling et al.
(1995), Hagelberg et al. (1995) and Maclachlan and Martin (2001)). The
Week’s manifold was constructed in Weeks (1985) and in Matveev and
Fomenko (1988). That it is the arithmetic manifold of minimal volume is
due to Chinburg et al. (2001). The arithmetic invariants of the compact
manifold of Exercise 4.8, No. 5 were discussed in Chinburg (1987).

For Fuchsian groups, the subspaces of Teichmiiller space corresponding to
groups with their matrix entries in number fields are discussed in Takeuchi
(1971) and Maclachlan and Waterman (1985). The invariant trace field of
triangle groups is given in Takeuchi (1977a). The Fuchsian subgroups which
arise from faces of polyhedral Kleinian groups are investigated in Baskan
and Macbeath (1982). The structure of maximal Fuchsian subgroups of
Bianchi groups is detailed in Maclachlan and Reid (1991). The quadrilateral
groups of Exercise 4.9, No. 3 appear as illustrative test cases in Schmutz
Schaller and Wolfart (2000).



D
Applications

The invariant trace field and quaternion algebra of a finite-covolume Klein-
ian group was introduced in Chapter 3 accompanied by methods to enable
the computation of these invariants to be made. Such computations were
carried out in Chapter 4 for a variety of examples. We now consider some
general applications of these invariants to problems in the geometry and
topology of hyperbolic 3-manifolds. Generally, these have the form that
special properties of the invariants have geometric consequences for the
related manifolds or groups. In some cases, to fully exploit these applica-
tions, the existence of manifolds or groups whose related invariants have
these special properties requires the construction of arithmetic Kleinian
groups, and these cases will be revisited in later chapters.

5.1 Discreteness Criteria

In general, proving a subgroup of PSL(2,C) is discrete is very difficult. In
this section, we prove a result that guarantees discreteness under certain
conditions on the invariant trace field. This result can be thought of as a
generalization of a classical result in number theory.

Recall from Exercise 0.1, No.6 that if p is a monic irreducible polynomial
over Z of degree n with roots a1, ... ,an,, then
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where s; is the ith symmetric polynomial in a4, ... ,«a,. As a consequence,
we deduce the following easy lemma whose proof is left as an exercise below
(Exercise 5.1, No.1).

Lemma 5.1.1 There are only finitely many algebraic integers z of bounded
degree such that z and all Galois conjugates of z are bounded.

In what follows, ¢ denotes complex conjugation.

Theorem 5.1.2 Let I' be a finitely generated subgroup of PSL(2,C) such
that the following three conditions all hold.

1. T@ s irreducible.
2. tr (T') consists of algebraic integers.

3. For each embedding o : kI' — C such that o # Id or c, the set
{o(tr (f)) : f € T@} is bounded.

Then T is discrete.

Proof: Note that since I' is finitely generated, so is I'® and so from §3.5,
all traces in I'® are obtained from integral polynomials in a finite number
of traces. Thus kI' is a finite extension of Q.

It suffices to prove that the finite index subgroup I'®) is discrete. Suppose
that this is not the case and let f, be a sequence of distinct elements
converging to the identity in I'®. Since I'® is irreducible, choose g; and
g2 in I'® such that g; and g, have no common fixed point in their action
on C. If z, = tr (f,) and Zn,i =t ([fn, gi]), then

B(fr)=22-4—0 and (fn,9i) =2 —2—0

for i = 1,2 as n — oo. Hence we may assume that |z,| < K for some
fixed constant K. Next by condition 3, |o(z,)| < K, for each embedding
o # 1d or ¢ of kI", where K, is a constant which depends only on o.

Let R = max{K, K}, where o ranges over all embeddings o # Id or ¢ of
kI'. Then the algebraic integers z, are of bounded degree and they and all
of their Galois conjugates are bounded in absolute value by R. By Lemma
5.1.1, the z, assume only finitely many values. Thus for large n, 5(f,) =0
and f, is parabolic with a single fixed point w,,.

Next we can apply the above argument to the algebraic integers 2, ; to
conclude that vy(f,, ;) = 0 for i = 1,2 and large n. This then implies that
g1 and g2 each have w, as a common fixed point for large n, contradicting
condition 7. O

To apply Theorem 5.1.2 to specific examples, we give an equivalent con-
dition to condition 8, which, in view of the Hilbert symbol representation
of AT in §3.6, can be readily checked. This is the content of the following
lemma.
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Lemma 5.1.3 With T' as described in Theorem 5.1.2 satisfying conditions
1 and 2, condition 8 is equivalent to the following requirement:

8'. All embeddings o, apart from the identity and ¢, complex conjugation,
are real and AT is ramified at all real places.

Proof: If condition 3’ holds and ¢ : kI' — R, then there exists 7: A" —
H, Hamilton’s quaternions, such that o(tr f) = tr (r(f)) for each f € T,
Since det(f) =1, 7(f) € H', so that tr (7(f)) € [-2,2].

Conversely, suppose condition 3 holds and o : kI' — C. Let f € r®
have eigenvalues A and A~! and u be an extension of o to kI'(A). Then
o(tr f*) = u(A)™ + pw(A)~™. Thus

lo(tr f™) = ™ = ()"

So, if o(tr f™) is bounded, then |(\)| = 1 so that o(tr f) = p(A) + p(A) ™!
is a real number in the interval [~2, 2]. Now choose an irreducible subgroup
(g1,g92) of T'® such that g; is not parabolic. Then

- [tr2gi(tr?g1 —4),tr g1, g2] — 2
A= ( kT

by (3.38). Since o(tr f) € [—2,2] for all f, it follows that AI' is ramified at
all real places (see Theorem 2.5.1). O

Exercise 5.1
1. Prove Lemma 5.1.1.

2. State and prove the corresponding result to Theorem 5.1.2 for finitely
generated subgroups of PSL(2,R).

3. LetT = (f,g) be a subgroup of PSL(2,C) where g has order 2 and f has
order 3. Let v = tr [f,g] — 2 be a non-real algebraic integer, with minimum
polynomial p(x) all of whose roots, except vy and 7 lie in the interval (—3,0).
Prove that T is a discrete group.

4. LetT' = (f,g), where f has order 6 and g has order 2, with v =
tr[f, g] — 2 satisfying the polynomial z® + x* + 2z + 1. Prove that ' is
discrete.

5. LetT = (x1,T2,73) be a non-elementary subgroup of PSL(2,R) such
that o(x;) = 2 for i = 1,2,3 and o(x1x2x3) is odd (# 1). Let x = tr z122,
y = trzsxs, z = trzszy. If &,y and z are totally real algebraic integers with
x,y # 0,£2, and for every embedding o of Q(txrI') such that ol # Id,
then |o(x)| < 2, prove that T' is discrete and cocompact in PSL(2,R).
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5.2 Bass’s Theorem

One of the first applications of number-theoretic methods in 3-manifold
topology arises directly from Bass-Serre theory of group actions on trees.
To state Bass’s theorem, we introduce the following definition.

Definition 5.2.1 Let Q denote the algebraic closure of Q in C and let
I' < SL(2,Q). Then T is said to have integral traces if for all v € T, tr ()
is an algebraic integer. Otherwise, we say I' has non-integral trace. We also
use this terminology for T a subgroup of PSL(2,Q).

It is not difficult to show that the property of having integral traces is
preserved by commensurability (see Exercise 5.2, No. 1). The following
theorem of Bass is the main result of this section.

Theorem 5.2.2 Let M = H3/T be a finite-volume hyperbolic 3-manifold
for which T has non-integral trace. Then M contains a closed embedded
essential surface.

Before embarking on the proof of this theorem, we deduce a succinct
version of Theorem 5.2.2 in the closed setting (see §1.5).

Corollary 5.2.3 If M = H3/T' is non-Haken, then T has integral traces.

We also remark that having integral traces is equivalent to having an “in-

tegral representation” in the following sense. Let A denote the ring of all
algebraic integers in Q.

Lemma 5.2.4 Let T’ be a finitely generated non-elementary subgroup of
SL(2,C). ThenT has integral traces if and only if T is conjugate in SL(2, C)
to a subgroup of SL(2, A).

Proof: One way is obvious, so we assume that I" has integral traces. Since
T" is finitely generated, the trace field of I is a finite extension k of Q. Let
Aol be the quaternion algebra generated over k by elements of I' and O
the Ri-module generated by the elements of I'. Then OT is an order of
AoT" (see Exercise 3.2, No. 1). By choosing a suitable quadratic extension
L, Ay(T) @ L = M3(L) (Corollary 2.1.9, Corollary 3.2.4), and so by the
Skolem Noether Theorem, we may conjugate so that A" C M3(L). The
order OI' ® g, Ry, is then conjugate to a suborder of My(Ry; J) where J is
a fractional ideal as defined at (2.5) (see Lemma 2.2.8 and Theorem 2.2.9).
Now pass to a finite extension H say, of L to make the ideal J principal.
There is always such a finite extension and the Hilbert Class field is such an
extension. A further conjugation of My(Rp;J) shows that I is contained
in SL(2, Ry ). This completes the proof. O

In light of this lemma, a reformulation of Theorem 5.2.2 is as follows:
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Theorem 5.2.5 Let M = H3/T be a finite-volume hyperbolic 3-manifold
not containing any closed embedded essential surface. Then I" is conjugate
to a subgroup of PSL(2,A).

The proof of Theorem 5.2.2 requires some information about the tree of
SL(2) over a P-adic field K, as developed by Serre. This tree can alternat-
ively be described in terms of maximal orders and, in this vein, is discussed
in Chapter 6. The actions of the groups SL(2, K') and GL(2, K') on this tree
play a critical role in obtaining the description of maximal arithmetic Klein-
ian and Fuchsian groups via local-global arguments and so a comprehensive
treatment of these actions is given in §11.4. Thus the basic results recalled
in the next subsection will be developed more fully later as indicated.

5.2.1 Tree of SL(2, Kp)

Let K be a finite extension of @, with valuation v and uniformizing para-
meter 7, valuation ring R and unique prime ideal P. Let V denote the
vector space K2. Recall from §2.2 that a lattice L in V is a finitely gen-
erated R-submodule which spans V. Define an equivalence relation on the
set of lattices of V : L ~ L’ if and only if L' = zL for some z € K*.
Let A denote the equivalence class of L. These equivalence classes form
the vertices of a combinatorial graph 7 where two vertices A and A’ are
connected by an edge if there are representative lattices L and L', where
L' ¢ L and L/L' =2 R/mwR. Serre proved that T is a tree; that is, it is
connected and simply connected (see Theorem 6.5.3 for a proof), and each
vertex has valency NP + 1 (see Exercise 5.2, No. 3).

The obvious action of GL(2, K) on the set of lattices in V' determines
an action on 7, which is transitive on vertices (see Corollary 2.2.10). The
action of SL(2,K) on 7 'is without inversion and the vertices fall into
two orbits. Thus the stabiliser of a vertex under the action of SL(2, K) is
conjugate either to SL(2, R) or to

{(,5 7)estemlabader).

Lemma 5.2.6 If G is a subgroup of SL(2, K) which fizes a vertex then the
traces of the elements of G lie in R.

With this, we state the following version of the arboreal splitting theorem
of Serre:

Theorem 5.2.7 Let G be a subgroup of SL(2,K) which is not virtually
solvable and contains an element g for which v(trg) < 0. Then G has a
non-trivial splitting as the fundamental group of a graph of groups.
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Note that if G satisfies Theorem 5.2.7 and the centre Z(G) is non-trivial,
then since the centre of an amalgamated product is contained in the amal-
gamating group, it follows that G/Z(G) also splits as a free product with
amalgamation.

5.2.2 Non-integral Traces

The proof of Theorem 5.2.2 can now be completed. The trace field, k, of
T is a finite extension of Q. By Corollary 3.2.4, we can assume that Iisa
subgroup of SL(2, L), where [L : k] < 2. Having non-integral traces means
that there is an L-prime P and an element 4 € I" such that vp(tr4) < 0.
By using the injection ip : L — Lp = K, we inject I' into SL(2, K), and
we are in the situation of Theorem 5.2.7. Thus I’ and, hence, I' split as
described there. By Theorem 1.5.3, we deduce the existence of an embed-
ded incompressible surface. Furthermore, in the case when M has toroidal
boundary components, since the traces of parabolic elements are +2, we
see that any Z & Z subgroup will lie in a vertex stabilizer. From this, we
deduce from Theorem 1.5.3 that the incompressible surface may be chosen
to be closed and not boundary parallel. O

Examples 5.2.8 1. In §4.7.3, we calculated the trace field of the polyhed-
ral groups of prisms obtained by truncating a super-ideal vertex of a
tetrahedron. Further we also calculated the traces of certain elements in
these groups and showed that the groups I'ep, p a prime, as described
in §4.7.3, had non-integral traces. Since this is preserved by commensur-
ability, any hyperbolic 3-manifold arising from a torsion-free subgroup

of such a group is therefore Haken.(For other examples of this type, see
Exercise 5.2, No. 6 and §10.4.)

2. Here we consider a Dehn surgery example, the details of which require
machine calculation. The surgery will be carried out on a two-bridge
knot complement and we first collect some general information from the
discussion in Chapter 4. Recall that for odd coprime integers p and g,
the knot complement (p/q) has fundamental group T with presentation
on two meridional generators

(u,v | vw =wv, w=0vu?... y1)

where e; are defined in §4.5. From the two-bridge representation, we can
take u and £ = ww v 2% as meridian and longitude of a peripheral
subgroup where w = v™% "% ...y~ %-1 and 0 = > e;.

Any representation p of T into SL(2,C) can be conjugated so that

s =5 )e w0= (7 )
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The group relation in I'' determines a single polynomial equation in x, r
from which the character variety of I" can be determined since tr (p(u)) =
z + 2z~ ! and tr (p(uv)) = 7 + tr2(p(u)) — 2 (see Exercise 3.5, No 6 and
4.4, No. 4 for the figure 8 knot group).

Now consider the knot 55, which has the two-bridge representation (7/3)
as discussed in §4.5. With the framing defined by v and ¢, performing
(10, 1) surgery on 5, produces a compact hyperbolic 3-manifold M whose
volume is approximately 2.362700793 (see §1.7).

This manifold will correspond to a point on the character variety which
will, in addition, satisfy a further polynomial in x,r given by the trace
of the Dehn surgery equation (cf. §4.8.3). From the resultant of the two
two-variable polynomials, we obtain that the trace field of M is Q(s),
where s = tr p(uv) satisfies

st — 483 + 552+ s — 5.

This field Q(s) has one complex place, and so is the invariant trace field,
and has discriminant —2151. Again the resultant shows that the square
of the trace of the image of the meridian, which is the core curve of the
Dehn surgery, is non-integral, as it satisfies

2z* — 172° + 4622 — 40z + 8.

Thus it follows from above, that M is Haken. In addition, since 55 is two-
bridge, it is known that there is no closed embedded essential surface in
its complement. It follows that (10, 1) is a boundary slope for 52, which
means that there is an incompressible surface in the complement of 55
whose boundary consists of curves parallel to the (10,1) curves on the
boundary torus.

Remark The phenomena discussed in the preceding example fits into the
following general theorem of Cooper and Long, which is proved using the
A-polynomial, which will not be discussed here.

Theorem 5.2.9 Let N be a compact 3-manifold with boundary a torus.
Suppose that « is an essential simple closed curve on the boundary torus
which is not a boundary slope, and let N(a) denote the result of Dehn
surgery along a. Let p be any irreducible representation of m1(N(a)) into
SL(2,C), such that p is non-trivial when restricted to the peripheral sub-
group. Let & be the eigenvalue of the core curve v of the attached solid torus.
Then £ is an algebraic unit.

5.2.8 Free Product with Amalgamation

With a little more technology, one can prove a stronger algebraic result on
the group I' in Theorem 5.2.2. This technology involves using some results
on P-adic Lie groups.
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As described in the proof of Theorem 5.2.2, T' injects into SL(2, K),
where K is a P-adic field, such that the image G has non-integral traces.
A stronger version of Serre’s splitting theorem states the following:

Theorem 5.2.10 If G C SI(2,K) where K is a P-adic field, and G is
dense in SL(2, K), then G splits as a free product with amalgamation.

Suppose that K as above is such that Q, C K and £ = Q,({trg: g € G}).
As in Chapter 3, let

= {Zaigi:aieﬁ,gieG}.

Now I contains infinitely many loxodromic elements x; such that, for ¢ £ 7,
tr [x;, x;] # 2. This then implies that the images of I, z;,z; and z;z; in G
are linearly independent over £ so that A is a quaternion algebra over £.

By Corollary 2.6.4, there are two possibilities for A. If A is a division
algebra, the valuation ring O in A, defined in Corollary 2.6.2, is the unique
maximal order in A (see Exercise 2.6, No. 1 and §6.4). Furthermore, from
the definition of O, it is clear that O! = A! so that G C A! would have all
traces being integers. Thus we conclude that A = My (¥).

By conjugating in GL(2,¢) using the Skolem Noether Theorem, we can
assume that A = M3(¢) and so G C SL(2,£). Now SL(2,¢) is a P-adic
Lie group and we can form G, the closure of G. The subgroup G cannot
be discrete. Otherwise, let G; be a torsion-free subgroup of finite index.
Then G acts on the tree of SL(2, ¢), whose vertex stabilisers are compact.
Thus being torsion free, G; would act freely on the tree and so be free.
Thus G, and hence T', would be virtually free, which is not possible for a
finite-covolume group. Since G is then not discrete, the theory of P-adic Lie
groups ensures that G has a unique structure as a P-adic Lie group. The
theory further characterises G as containing an open subgroup H which is
a uniform pro-p group. It is not necessary to expand on the definition of
uniform here, but it suffices to note that, as a profinite group, H is compact
and its open subgroups form a basis of the neighbourhoods of the identity.
By its action on the tree of SL(2,¢), H will have a fixed point and so
can be conjugated to an open subgroup of SL(2, Ry). It is straightforward
to see that such open subgroups have, as a basis, the principal congruence
subgroups T'; (see Exercise 5.2, No. 2). Thus, by conjugation, we can assume
that G D I for all j > ¢ and an element with non-integral trace. The
groups I'; are normal in SL(2, R,) and a further conjugation by an element
in SL(2, R[) allows us to assume that G contains I'; for j > i and an
element g = (" ©,.) for some n # 0, since it has non—mtegral traces.

Now SL(2,¢) is generated by the subgroups

o-{(s Pocd {0 Yrocd
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(See Exercise 5.2, No. 5.) Let (é ‘f) € U, so that o = wtu, where u is a
unit. Choose m such that 2mn 4 ¢ > ¢. Then gm((l) ¢ )g“m e I';. Applying
a similar argument to elements of L, this yields G = SL(2,¢). Thus from
Theorem 5.2.10, we obtain the following extension to Theorem 5.2.2.

Theorem 5.2.11 Let T be as in Theorem 5.2.2. Then T splits as a free
product with amalgamation.

Exercise 5.2

1. Let T and I be commmensurable groups contained in SL(2,Q). Show
that T' has integral traces if and only if T has (see §3.1).

2. Let K be a P-adic field with ring of integers R. Show that the principal
congruence subgroups U; form a basis for the open subgroups of SL(2, R).

8. Prove that the tree T described in §5.2.1 has valency NP + 1.

4. Show that there exist hyperbolic Haken manifolds whose trace field has
arbitrarily large degree over Q.

5. Prove that the subgroups U and L defined at (5.1), generate SL(2,¥¢).

6. Let T' be the group generated by reflections in the faces of the prism
obtained by truncating the infinite-volume tetrahedron with Cozeter symbol
shown in Figure5.1 (m > 7) by a face orthogonal to faces 2, 8 and 4. Let 't
be the polyhedral subgroup. Show, for m = 6p where p is a prime > 5, that
't is a free product with amalgamation. (See §4.7.3, in particular Ezercise
4.7, No. 4. See also §10.4).

o—Oo0—O0——=0
1 2 3 4
FIGURE 5.1.

5.3 Geodesics and Totally Geodesic Surfaces

The aim of this section is to prove several theorems relating the geometry
of geodesics, and totally geodesic surfaces in finite-volume hyperbolic 3-
manifolds, to the invariant trace field and quaternion algebra. We remind
the reader that for Kleinian groups of finite covolume, the invariant trace
field is always a finite non-real extension of Q.

5.3.1 Manifolds with No Geodesic Surfaces

Theorem 5.3.1 Let I be a Kleinian group of finite covolume which satis-
fies the following conditions:
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(a) kT contains no proper subfield other than Q.
(b) AT is ramified at at least one infinite place of kI'.
Then T' contains no hyperbolic elements.

Proof: Note that I' contains a hyperbolic element if and only if T'?®
contains a hyperbolic element. Let us suppose that v € I'® is hyperbolic,
and let ¢ = tr (). By assumption, t € k' "R = Q and [¢]| > 2.

Now AL is ramified at an infinite place v of kI', which is necessarily real.
Let ¢ : kI’ — R be the Galois embedding of kI' associated to v, and let
¢ : AT — H extend o, where H denotes Hamilton’s quaternions. Thus

Y@ c p(ATY) ¢ H.
Since t € Q,

t=o(t) = (v +7) =) +¥() = tr(y).

Since tr' H! C [~2, 2] we obtain a contradiction. O

We record the most important geometric corollary of this. This follows from
the discussion in §1.2.

Corollary 5.3.2 Let M = H3/T be a finite-volume hyperbolic 3-manifold
for which T satisfies the conditions of Theorem 5.3.1. Then M contains no
immersed totally geodesic surface.

We also give the group theoretic version of this.

Corollary 5.3.3 Let " be a Kleinian group of finite covolume which sat-
isfies the conditions of Theorem 5.3.1. Then I' contains no non-elementary
Fuchsian subgroups (i.e., no non-elementary subgroups leaving a disc or
half-plane invariant).

As will follow from our later discussions on arithmetic Kleinian groups
in §9.5, many Kleinian groups satisfy the conditions of Theorem 5.3.1. In
84.8.3, the Weeks manifold was shown to satisfy these conditions, as does
the manifold constructed in Exercise 4.8, No. 5.

5.3.2 Embedding Geodesic Surfaces

In §5.2, we considered conditions which gave rise to embedded surfaces in
hyperbolic 3-manifolds. On the other hand, the corollaries of the preced-
ing subsection give obstructions to the existence of immersions of totally
geodesic surfaces. Connecting these results, we have the following result
due to Long:
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Theorem 5.3.4 Let M be a closed hyperbolic 3-manifold containing a
totally geodesic immersion of a closed surface. Then there is a finite cov-
ering of M which contains an embedded closed orientable totally geodesic
surface.

To prove this theorem, we first recall the notion of subgroup separability.

Definition 5.3.5 Let G be a group and H a finitely generated subgroup.
Then G is said to be H-subgroup separable if given any element g € G\ H,
there is a finite index subgroup K of G with H < K and g ¢ K.

G is subgroup separable, if it is H-subgroup separable for all such H.

To prove the theorem, we first establish the following:

Lemma 5.3.6 Let C be a circle or straight line in CUco and M = H3/T,
a closed hyperbolic 3-manifold. Let

Stab(C,T)={y €T :vC =C}.
Then Stab(C,T') is separable in T.

Proof: Let H denote Stab(C,T'). We may assume without loss of generality
that H # 1—because 1 is separable since I is residually finite. Note that
H is either a Fuchsian group or a Zs-extension of a Fuchsian group. To
prove the lemma, we need to show that, given g ¢ H, there is a finite index
subgroup of G containing H but not g. By conjugating, if necessary, we
can assume that H stabilises the real line. If ¢ is the complex conjugate
map, then ¢ extends to SL(2,C) and is well-defined on PSL(2,C). The
stabiliser of R in PSL(2,C) is then characterised as those elements v such
that c(y) = 7. Let I' be generated by matrices g1,gz, ... ,g:. Let R be the
subring of C generated by all the entries of the matrices g;, their complex
conjugates and 1. Then R is a finitely generated integral domain with 1
so that for any non-zero element there is a maximal ideal which does not
contain that element. Note that I and ¢(T") embed in PSL(2, R).

If v eT'\ H, then v = P(g), where g = (g;;) with at least one element
from each set {c(gi;) — gi;} and {c(gi;) + g5}, ¢,j = 1,2, being non-zero.
Call these z and y and choose a maximal ideal M such that zy & M. Let

p: PSL(2, R) — PSL(2, R/M) x PSL(2, R/ M)

be the homomorphism defined by p(v) = (7 (v),m(c(v))), where 7 is in-
duced by the natural projection R — R/M. The image group is finite
since R/M is a finite field. By construction, the image of v is a pair of
distinct elements in PSL(2, R/ M), whereas the image of H lies in the di-
agonal. This proves the lemma. O

The connection between the group theory and topology is given by the
following lemma (which holds in greater generality than stated here).
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Lemma 5.3.7 Let M = H3/T be a finite-volume hyperbolic 3-manifold
and f : S — M be an incompressible immersion of a closed surface. Let
H = f.(m1(S)) CT. IfT is H-subgroup separable, there is a finite covering
My of M to which f lifts so that f(S) is an embedded surface in My.

Proof: Let p denote the cover H> — M. Since S is compact, standard
covering space arguments imply that there is a compact set D C H? with
p(D) = f(S). Since I acts discontinuously on H?, there are a finite number
of elements 71,... ,v, € I' with v,D N D 3 (. Since I' is H-subgroup sep-
arable, there is a finite index subgroup K in I' containing H, but none of
the 7;’s. The covering H3/K is the covering required in the statement. O

Proof: (of Theorem 5.3.4) Let i : S — M be a totally geodesic immersion
of a closed surface. Let T’ be the covering group of M in PSL(2,C) and let
H = i,(m1(S)). Then H is Fuchsian and preserves some circle or straight
line C in CU co. Thus by Lemma 5.3.6, the group Stab(C,I") is separable
in T'. Let K denote a finite index subgroup achieving this (recall the defin-
ition). By Lemma 5.3.7, since Stab(C,T') is separable, the covering Mg of
M determined by K will contain an embedded orientable totally geodesic
surface, as required.

If Stab(C,T") is not Fuchsian, we obtain, in the same way, a closed non-
orientable hyperbolic surface S’ embedded in the cover Mg of M corres-
ponding to K. Now pass to the index 2 orientable double cover S of 5.
Now construct a double cover of Mg by taking two copies of Mg \ S’ and
doubling to obtain a covering of Mg and, hence, M in which the orientable
totally geodesic surface S” embeds. O

Theorem 5.3.4 answers a special case of the conjecture due to Wald-
hausen and Thurston that every closed hyperbolic 3-manifold has a finite
cover which is Haken. Indeed more is conjectured: that every closed hyper-
bolic 3-manifold has a finite cover with positive first betti number. In the
totally geodesic case as described in Theorem 5.3.4, the separability can be
used to promote the embedded surface to an embedded non-separating ori-
entable surface in a finite cover, as the reader may wish to prove. In general,
although the evidence is overwhelmingly for a positive answer to both of
these conjectures, at present, there are no general methods for approaching
a solution. The reader should consult the Further Reading section.

5.3.8 The Non-cocompact Case

Note that any finite-covolume Kleinian group satisfying the conditions of
Theorem 5.3.1 is necessarily cocompact since AI' must be a division al-
gebra (see Theorem 3.3.8). We will next address the non-cocompact case.
First recall that, in §4.9, it was noted that some Bianchi groups contain



5.3 Geodesics and Totally Geodesic Surfaces 177

cocompact Fuchsian subgroups and, indeed, it will be shown in §9.6 that
this is true of all Bianchi groups. In contrast, we have the following result:

Theorem 5.3.8 LetI' be a non-cocompact Kleinian group which has finite
covolume and satisfies the follwing two conditions:

o k= Q(trT") is of odd degree over Q and contains no proper subfield
other than Q.

o ' has integral traces.

Then T' contains no cocompact Fuchsian subgroups.

Proof: We argue by contradiction, and so assume that I contains a cocom-
pact Fuchsian group F say. Since I" has integral traces, F' has integral traces,
and by the first assumption, tr F' C Z. Next consider the quaternion algebra
AF, defined over Q, and OF, as defined at (3.7) is an order of AF. We claim
that AF is isomorphic to M (2, Q). Assuming this and using the Skolem No-
ether Theorem, we can conjugate in GL(2,C), so that AF = M(2,Q). Now
all maximal orders in M3(Q) are conjugate to M2(Z) (see Corollary 2.2.10).
Thus by further conjugation, we can take OF to be a suborder of M (2,Z).
However, this means F' is a subgroup of SL(2,Z), which is a contradiction
since F is assumed cocompact.

Thus it remains to establish the isomorphism between AF and M2(Q). If
AF is not isomorphic to M(2,Q), it is a division algebra over Q and hence
ramified at at least one finite place (see Theorem 2.7.3). Let p € Z be
the associated prime. Furthermore, a simple dimension count implies that
AF ®q k = AT, and since I' is non-cocompact, AT' = M (2, k) by Theorem
3.3.8.

Let P1,..., P4 be the k-prime divisors of p, and consider the localization
of AF. Since AT is unramified at every place of k, we must have

(AF ®q k)'P1 = (2a k’Pz)

foreachi =1,...,g. On the other hand, AF is ramified at p, so AF ®¢ Q)
is a division algebra over Q5. Note that

(AF ®q k) @ kp, = (AF ®q Qp) ®q, kp;

for each i =1,...,g. Now as noted, the left-hand side is simply M (2, kp,).
Thus (AF ®q Qp) is split by the extension field kp,. By assumption, the
degree [k : Q] is odd, and since

g
k:Ql=> ek, :
i=1

(see §0.3), at least one of the local degrees [kp, : Qp] is odd. However, by
Exercise 2.3, No. 3, an odd-degree extension cannot split the division al-
gebra over Q. This contradiction completes the proof. O
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From the remarks preceding this theorem and the fact, to be shown in
Theorem 8.2.3, that all non-cocompact arithmetic Kleinian groups are com-
mensurable with the Bianchi groups, examples having the properties given
in Theorem 5.3.8 will necessarily be non-arithmetic.

Example 5.3.9 Twist Knots: Certain twist knots as shown in Figure 5.2
furnish examples which satisfy the conditions of Theorem 5.3.8 (see The-
orem 1.5.6). These twist knots are two-bridge knots of the form (p/p — 2)
(see §4.5). If we choose p to be of the form 4m + 3, then we obtain a
symmetric sequence

{e1,€2,... eamea}y ={1,-1,1,-1,...,-1,1,1,-1,1,-1,...,—1,1}.

The polynomial described in §4.5, determining the trace field, then has
degree 2m -+ 1, is monic and integral. If 2m + 1 is prime and the polynomial
is irreducible, then the conditions of Theorem 5.3.8 hold. In the cases m =
1,2, we obtain, respectively, the polynomials

1422-322+23 1432—-13224162%— 724 + 2°,

which are irreducible over Q.

5.3.4 Simple Geodesics

‘We now turn our attention to relationships between the geometry of closed
geodesics and the properties of the related invariant trace field and qua-
ternion algebra. Let M = H3/T. A closed geodesic in M is called simple if it
has no self-intersections. Otherwise, a closed geodesic is called non-simple.
The following lemma (see Exercise 5.3, No.3) will prove useful.

Lemma 5.3.10 Let M = H3/T be a hyperbolic 3-manifold. Then M con-
tains a mnon-simple closed geodesic if and only if there exists a primit-

we lozodromic element v with azis A, and an element § € I' such that
0A, N A, #0 and A, # A,.

With this lemma, we can develop obstructions to the existence of non-
simple closed geodesics in closed hyperbolic 3-manifolds. Note that (see
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Exercise 5.3, No. 4) any finite-volume hyperbolic 3-manifold which contains
an immersion of a totally geodesic surface contains a non-simple closed
geodesic.

Let M = H3/T be a closed hyperbolic 3-manifold and assume g is a
non-simple closed geodesic in M. We begin with a few basic geometric
observations. By definition, there exists a loxodromic element v € T' and
a geodesic in H3, namely the axis A of v, such that under the canonical
projection map to M, the image of A is freely homotopic to g. As g is
non-simple, by Lemma 5.3.10 there is an element § € I" such that 64 # A
and AN A # (. Then 6A is the axis of the element 1 = 55~ 1.

Let the fix points of v be a1 and as; these are just the endpoints in CUoco
of the geodesic A in H2. Let the images of a; and as under § be b; and b,.

Lemma 5.3.11 The points a1, a2, by and bs lie on a circle in CUoo. The
cross-ratio [a1,az, b1, ba] is a real number lying in the interval (0, 1).

Proof: By an element of PSL(2,C), we can map a3 — 0, by — 1 and
by — oco. Assume that as maps to w. Because 64 # A and AN A # (),
w must be a real number greater than 1. Since elements of PSL(2,C) map
circles to circles, this proves the first statement. The cross-ratio is also
preserved by elements of PSL(2, C). Therefore the cross-ratio we require is
[0,w, 1, 00], which is simply 1/w, hence real and lies in (0,1). O

Expanding on the proof of Lemma 5.3.11, note that v and n have the same
trace since they are conjugate. The mapping described in the proof has the
effect of conjugating I" so that

(X 0 (A (t=X)
v = <r )\_1) and n = (O \-1 .
Let t = (A\~! — )\). With this notation, the fix point w of Lemma 5.3.11 is
—t/r. Thus by Lemma 5.3.11, —t/r is real and greater than 1.

Lemma 5.3.12 With notation as above, t?,rt € kI' and, hence, so does
t/’f' = _[alv az, b17 b2]_1'

Proof: Since t?> =tr2y —4 = tr2n—4, 12 € kI". Also, the element yn~! is
a commutator in I and so lies in T'®). Thus 7t = 2 — tr (yn~!) € kI". The
last part follows since, by Lemma 5.3.11, t,7 # 0. O

Theorem 5.3.13 If M has a non-simple closed geodesic, then AI' = (Z—lf)
for some a € k" and b € kT NR.

Proof: Assume that M has a non-simple geodesic g. We shall compute
the expression for AT" using the elements 7 and v~ ! described above, which

generate an irreducible subgroup. Thus AI" = (“’Tbl), where a = tr (n)? — 4
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and b’ = tr [n,771]—2 by Theorem 3.6.1. Now a = t? and b’ = 212+ (rt)t? =
(t2 (r/t))%(1 + (t/r)). Removing squares, we conclude that AT 2 (Z—lf),
where b=1+ (¢/r) e kTNR. O

Note that, if I" is not cocompact, there are always elements a and b (equal
to 1) satisfying the conditions of Theorem 5.3.13. This result can now be
stated from the contrapositive viewpoint.

Corollary 5.3.14 With the notation of Theorem 5.8.13, suppose that there
are no elements a € kI" and b € kI' N R such that ATl is isomorphic over
a,b

kT" to the quaternion algebra (EF) Then all of the closed geodesics of the

closed hyperbolic 3-manifold M = H3 /T are simple.

It will be shown in §9.7, that there exist number fields k& with exactly
one complex place and quaternion algebras over k such that there are no
elements a € k,b € kN R as described in this corollary. The arithmetic
groups I" which arise from these, furnish examples of manifolds all of whose
closed geodesics are simple.

Exercise 5.3

1. Let T be a finite-covolume Kleinian group such that [kI' : kT NR] =n
and [k NR : Q] = 2. Show that if AT is ramified at at least n + 1 real
places, then T' has no hyperbolic elements.

2. (a) Show that Theorem 5.3.4 holds when M has finite volume.
(b) Show that PSL(2,Z) is separable in PSL(2,0y).

3. Prove Lemma 5.3.10.

4. Show that if a finite-volume hyperbolic manifold M contains an immersed
totally geodesic non-boundary parallel surface, then it contains a non-simple
closed geodesic.

5. Show that if I is as described in Theorem 5.3.8, then it can contain
at most one wide commensurability class of non-cocompact finite-covolume
Fuchsian groups. Show that the twist knot groups discussed in Erample
5.3.9 do contain non-cocompact finite-covolume Fuchsian subgroups.

5.4 Further Hilbert Symbol Obstructions

As we have already seen, the Hilbert symbol appears naturally as an ob-
struction to certain geometric phenomena. In this section, we give further
applications of the Hilbert Symbol in this role. As discussed in §1.2 and
1.3, if @ = H3/T is a hyperbolic 3-orbifold whose singular set contains at
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least one vertex, then the vertex stabilizer is a finite group isomorphic to
one of Dy, A4, S4 or As. We now discuss how the presence of a subgroup
isomorphic to A4, S4 and As manifests itself in the Hilbert Symbol of the
invariant quaternion algebra.

Let ‘H denote the Hamiltonian quaternions. Let o denote the embedding
o:H' — SL(2,C) given by

ap+ayt  as + a3i)

o(ag + a1i + asj + aszij) = <—a2 + a3t ag—ail

where H! is the group of elements of norm 1.
If n denotes the norm on H, then there is an epimorphism

®: H' — SO(3,R)

where SO(3,R) is represented as the orthogonal group of the quadratic
subspace V of H spanned by {i, j,ij}, (i.e., the pure quaternions), equipped
with the restriction of the norm form, so that n(zyi + z2j + x3ij) = =7 +
z3 + 2. The homomorphism @ is defined by ®(a) = ¢, where

da(B) =afa”t, acH!, BeV.

The kernel of ® is {£1}.
Let the tetrahedron in V have vertices

i+ j+ig, t—§—ij, —i+j—ij, —i—j+ij.

If oy =iand ap = (1 +4+ j +4j)/2, then ¢q, is a rotation of order 2
about the axis through the edge mid-point 7 and ¢,, is a rotation of order
3 about the axis through the vertex i +j +ij. Note that a3 = a3 = —1 and
so we obtain a faithful representation of the binary tetrahedral group, BA4
in H'® (see Exercise 2.3, No. 7). This is also true for the binary octahedral
group and the binary icosahedral group (see Exercise 5.4, No. 1).

The group Po(BAs) = A, is said to be in standard form and we note
that it fixes the point (0,0,1) in H3. If T is a Kleinian group containing
a subgroup isomorphic to Ay, then I' can be conjugated so that Ay is in
standard form. Of course, if I contains an Sy or an As, it will contain a
subgroup isomorphic to Ay.

Lemma 5.4.1 Let T be a Kleinian group of finite covolume with invari-
ant quaternion algebra A and number field k. If T contains a subgroup

isomorphic to A4, then
-1,-1
ax (20) 62

In particular, the only finite primes at which A can be ramified are the
dyadic primes.
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Proof: Suppose that I' contains a subgroup isomorphic to A4. Then since
Ay is generated by two elements of order 3, A4 = Af) C I'®. Thus by
conjugation, we can assume that o(BA4) C G where PG = I'® G ¢

SL(2, C). Now
A:{Zaigi:aiek, gieg}.
Let 11
0= (")
Then

Ap = {Zaigi ta; €Q, g€ U(BA4)}
since 1,1, j,ij € BA4. Now the quaternion algebra
{Zaigi ta; €k g€ cr(BA4)}

lies in A, is isomorphic to Ag ®g k and is four-dimensional. Thus

-1,-1
EES

Finally, by Theorem 2.6.6, A splits over all P-adic fields kp, where P is
non-dyadic. O

Lemma 5.4.2 Let I be a finite-covolume Kleinian group which contains a
subgroup isomorphic to As. If, furthermore, kT : Q| = 4, then AT has no
finite ramification.

Proof: As above, let k = kI' and A = AT'. Now A can, at worst, have
dyadic finite ramification. Also, by Lemma 5.4.1, A is ramified at all real
places of which there are either 0 or 2. Since I' must contain an element of
order 5, Q(v/5) C k. There is a unique prime P in Q(+/5) such that P | 2.
So if P ramifies or is inert in k | Q(+/5), then there will only be one dyadic
prime in k at which A cannot be ramified for parity reasons. Suppose then
that P splits as P1 Py so that kp, 2 kp, = Q(v/5)p. For parity reasons,

the quaternion algebra (&(1\’/%;) splits in the field Q(v/5)p. Hence (—lkz—l)

splits in kp, and kp,, and A has no finite ramification. O

Exercise 5.4

1. (a) Show that the binary octahedral group BSy has a faithful represent-

ation in H*.

(b) Taking the regular dodecahedron to have its vertices in V at
+itjdif, Lrikrlj, ity Erijrh

where T = (1+ v/5)/2, show that the binary icosahedral group BAs has a
fasthful representation in H*.
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2. Let T be a cocompact tetrahedral group as described in §4.7.2.

(a) Show that the finite ramification of AT is at most dyadic.

(b) Show that in all cases except one, Al' has no finite ramification. [To
cut short lengthy calculations, see Theorem 10.4.1.]

5.5 Geometric Interpretation of the Invariant
Trace Field

In this section, we give a geometric description of the invariant trace field
kT in the case M = H3/T is a cusped hyperbolic manifold.
Let M be a finite-volume hyperbolic 3-manifold with a triangulation by
ideal tetrahedra:
M=5USU---US,,

where each S; is an ideal tetrahedron in H3. As discussed in §1.7, the
tetrahedron S; is described up to isometry by a single complex number z;
with positive imaginary part (the tetrahedral parameter of S;) such that
the Euclidean triangle cut off at any vertex of S; by a horosphere section
is similar to the triangle in C with vertices 0, 1 and z;. Alternatively, z;
is the cross-ratio of the vertices of S; (considered as points of CP' =
C U {oo}). This tetrahedral parameter depends on a choice (an edge of S;
or an oriented ordering of its vertices); changing the choice replaces z; by
1/(1 — zj) or 1 — 1/z;. Denote the field Q(z; : j = 1,... ,n) by kaM or
kal. A priori kaT might depend on the choice of triangulation, but this is
not the case.

Theorem 5.5.1 kal' = kT.

Proof: Denote kal' by ka for short. If we lift the triangulation of M to
H3, we get a tesselation of H3 by ideal tetrahedra. Let V be the set of
vertices of these tetrahedra in the sphere at infinity. Let k; be the field
generated by all cross-ratios of 4-tuples of points of V. Position V by an
isometry of H3 (upper half-space model) so that three of its points are at
0, 1, and oo, and let ks be the field generated by the remaining points of
V. This k2 does not depend on which three points we put at 0, 1, oc; in
fact the following holds:

Lemma 5.5.2 k1 = ko = ka.

Proof: ki C ko since ki is generated by cross-ratios of elements of ks
while k3 C k; because the cross-ratio of 0, 1, oo, and z is just z. The
inclusion ka C k; is straightforward (see Exercise 5.5, No. 1). Finally, put
three vertices of one tetrahedron of our tesselation at 0, 1, and oo, and
then ks C ka is a simple deduction on noting that, for any field [, if three
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vertices and the tetrahedral parameter of an ideal tetrahedron S C H? are
in [ U {oo}, then so is the fourth vertex. O

Now suppose we have positioned V' as above. Any element v € I' maps

0, 1, and oo to points w1, we, and w3 of V' C kU {oc}. Thus v is given by

a matrix (%) whose entries satisf
cd y

b —dw1 :0,
a+b—cwy —dw; =0,
a — cws = 0.

We can solve this for a, b, c and d in ka and then ~? is represented by the

element )
1 a b
m <C d) € PSL(Q, kA).

By definition, kT' = Q(tr '), so we see that kI’ C ka.

For the reverse inclusion, we shall use Theorem 4.2.3, which says that '
may be conjugated to lie in PSL(2, Q(trT")). Given this, the points of V,
which are the fixed points of parabolic elements of T', lie in Q(trI'), since
the fixed point of a parabolic element (2 %) is (a —d)/2c. Thus, by Lemma
552 ka € Q(trI"). On the other hand, ka is clearly an invariant of the
commensurability class of I', so we can apply this to I'® to see ka C k. O

Using the tetrahedral parameters to determine the invariant trace field
as in Theorem 5.5.1 is a simple tool to apply once the data (i.e., the tet-
rahedral parameters), are known. When a cusped hyperbolic manifold is
triangulated by ideal tetrahedra, the gluing pattern of the tetrahedra dic-
tates the gluing conditions around each edge, which are equations in the
tetrahedral parameters. Furthermore, for the structure to yield a complete
hyperbolic structure, it is necessary and sufficient that the geometric struc-
ture of the cusps must be a Euclidean structure which yields the holonomy
condition pinning down the precise values of the tetrahedral parameters.
This process was set out by Thurston and for the figure 8 knot complement,
given in §4.4.2 as a union of two ideal tetrahedra, it leads to the fact that
the tetrahedra in that case are regular (see §1.7), thus determing the tetra-
hedral parameter field to be Q(v/—3). A further example, the complement
of the knot 59, is considered next.

Conversely, starting with a fixed small number of ideal tetrahedra, the
number of possible gluing patterns which yield a manifold, is finite and can
be expressed as gluing consistency equations on the tetrahedral paramet-
ers which must further satisfy the holonomy conditions at the cusps. In
this way, SnapPea (a program of Jeff Weeks) created a census of cusped
manifolds obtained from small numbers of ideal tetrahedra and the data so
obtained lends itself readily to the calculation of the invariant trace field.
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In fact, an exact version of SnapPea, called Snap, has been created by
Coulson, Goodman, Hodgson and Neumann, and here the number fields
can be read off very easily. (See further discussion below). Tables of such
are presented in the Appendix to this book.

Example 5.5.3 Here we illustrate the above discussion using the com-
plement of the knot 52, whose invariant trace field as a two-bridge knot
complement we have already calculated in §4.5.

Regard the knot as lying essentially in the plane P given by z = 0 in R3.
The complement can then be regarded as the union of two polyhedra with
their faces identified and vertices deleted. To describe the two polyhedra,
they consist of two balls filling the upper half-space z > 0 and the lower
half-space z < 0. At each crossing, we adjoin small oriented 1-cells as shown
in Figure 5.3 with end points on the knot K. Let two such cells be equivalent
if one can be obtained from the other by sliding along the knot. Now take
regions in the plane bounded by the knot and three or more 1-cells, as
the two cell faces of the polyhedra, one for upper half-space and the other
for lower half-space, with appropriate gluing given by the equivalence of
1-cells. This yields two polyhedra as depicted in Figure 5.4. If we further
subdivide the polyhedron on the left as shown in Figure 5.5 to split C into
two cells C7 and Cs, the 1-cell on the polyhedron in the lower half-space,
shown on the right, is determined by the identifications already specified.
This results in two tetrahedra in the upper half-space and two in the lower
half-space, but one of these has ‘degenerated’ into a triangle. Identifying D
and D', we obtain the polyhedron shown in Figure 5.6. The upshot is that
we obtain the knot complement as a union of three tetrahedra and we can
now calculate the gluing consistency equations. Thus using the notation

z—1 1

Z1 =z, 22 = ) 23 =
z 1-2

and similarily for © and w, the gluing consistency conditions require that
the sum of the dihedral angles round an edge is 27. These can be expressed

FIGURE 5.3.
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by the logarithmic gluing equations requiring that the sum of the logar-
ithmic parameters be 2wi. Exponentiating gives the multiplicative gluing
equations, which can be read off directly from Figure 5.7, one for each edge.
These equations are

U1U3RZ1R2WIWI Wy = 1, ﬁ(z - 1)10(71) - 1) = 1, (53)
uiuzzpzawsws =1,  (u—1)=L (1_1w)2 =1,
U2U3Z123We = 1, _Tl l_z_zw_w—__l_ = 1. (5.5)

As a 1-cusped manifold, the link of the vertex is made up of 12 triangles
arranged as in Figure 5.8. For a complete hyperbolic 3-manifold, the cusp
must have a horospherical torus cross section. This can be determined from
the holonomy of the similarity structure on the boundary torus which can
be read off from Figure 5.8 as

H'(z) = wiususzowswalawiz221Uaz3zaUsW3aW22322,
H'(y) = UuUzwiwsa. (5.6)

One then determines from these equations that w is a solution to
3 —x4+1=0

with positive imaginary part, v = w and z = 1/(1 — u), thus providing a
solution to the gluing equations with positive imaginary parts.
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This whole process, and more, has been automated. Starting with a knot
or link complement, SnapPea will produce numerical values for the tet-
rahedral parameters. Then Snap, combining this with the number theory
package Pari, yields polynomials satisfied by these tetrahedral parameters
(provided the degree is not too large). This then yields the arithmetic data
and, in particular, the invariant trace field. This applies not only to knot
and link complements but also to other cusped manifolds which can be
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constructed from ideal tetrahedra in such a way that the gluing conditions
referred to earlier are satisfied. A census of such manifolds is available with
the above packages. All of this has been extended to include manifolds and
orbifolds obtained by Dehn filling cusped manifolds. Again the determin-
ation of the associated parameters yields the arithmetic data, describing,
in particular, the invariant trace field and the the invariant quaternion al-
gebra. Note also, with reference to §5.2, that Snap also yields information
about integral traces. For future reference, it also indicates whether or not
the manifold or orbifold is arithmetic. Once again, these packages provide
censuses of closed manifolds and their details.

Returning to the cusped case and the example 52, we note that for a com-
plete structure to be guaranteed, the method described with reference to
the knot 52, and these packages, not only produce a polynomial satisfied by
a tetrahedral parameter but also the specific root of that polynomial which
gives the appropriate tetrahedral parameter. Thus the invariant trace field
is identified, not just up to isomorphism, but as a subfield of C. In the case
of the knot 55, where the invariant trace field has just one complex place,
this yields nothing new. However, recall that, for the knot 67, discussed
in Example B in §4.5, the invariant trace field has degree 4 over Q, two
complex places and discriminant 257. Obtaining a tetrahedral decomposi-
tion of the complement of 6; gives the associated tetrahedral parameters
as elements of C and hence identifies the invariant trace field as a sub-
field of C. Following the procedure set out for 53, the complement of 61
yields initially two pentagonal regions which, on further subdivision, shows
that the complement of 6, is a union of four ideal tetrahedra in the up-
per half-space and one in the lower half-space together with a degenerate
quadrangle. Computing the gluing and holonomy equations from this then
exhibits the tetrahedral parameters. Alternatively, the package Snap will
return, for the knot 61, the identifying polynomial and the specific root.
For the record, the polynomial is

2t —z+1

and the root, with positive imaginary part is approximately 0.547423 +
0.585652¢. For many other examples, see Appendix 13.4.

Exercise 5.5

1. Prove that ka C ki (in the notation of Lemma 5.5.2).

2. Generalize Lemma 5.5.2 to the following setting. Say a subset V C
CU{oo} is defined over a subfield k C C if there is an element of PSL(2,C)
transforming V into a subset of kU {oo}. Show that the following are equi-
valent:

o V is defined over k.



5.6 Constructing Invariant Trace Fields 189

o All cross-ratios of 4-tuples of points of V are in k U {oo}.

e If, after transforming V by an element of PSL(2, C), three of its points
lie in k U {oo}, then they all are.

8. In the notation of the previous question, suppose V is defined over k,
V| > 3 and I' C PGL(2,C) is non-elementary and satisfies; TV = V.
Prove that T may be conjugated into PGL(2, k).

5.6 Constructing Invariant Trace Fields

For a finite-covolume Kleinian group, the invariant trace field is a finite non-
real extension of Q by Theorem 3.3.7. Through the examples discussed in
Chapter 4, we produced an array of fields which are the invariant trace
fields of finite-covolume Kleinian groups. These do not yield, however, any
clear picture of the nature of those fields which can arise, and this is,
indeed, a wide open question. Via the Bianchi groups, we note that every
quadratic imaginary field can arise and, more generally by the construction
of arithmetic Kleinian groups, to be considered in subsequent chapters
(see, in particular, Definition 8.2.1), any number field with exactly one
complex place can also arise. In this section, we show how it is possible to
build on known examples using free products with amalgamation and HNN
extensions. We observe in passing that the answer to the corresponding
question for finite-covolume Fuchsian groups is: all fields with at least one
real place. Indeed for a torsion-free Fuchsian group, the set of all such
groups with representations in a fixed field is dense in the Teichmiiller
space (cf. §4.9).
The main result in this section is the following:

Theorem 5.6.1 Let T be a finitely generated Kleinian group expressed as
a free product with amalgamation or HNN-extension I'g g I't or Ioxgm,
where H is a non-elementary Kleinian group (where all groups are assumed
finitely generated). Then kI = kI'g-kI'1 or kL', respectively, where - denotes
the compositum of the two fields.

Proof: We deal with the HNN-extension case first. By definition of the
HNN-extension, I" is generated by I'g and a stable letter ¢t say, where
tHot™! = H, and H; = H for i = 0,1. Furthermore, this stable letter
is of infinite order, and by changing the generating set, if necessary we can
assume that I'g is finitely generated by elements of infinite order.

Now, by Lemma 3.5.5, kI coincides with the trace field of the group
r, = (tz,l"ém). We claim that this latter field K is simply kT'g. Certainly
K contains kT'g.

To establish this claim, we argue as follows. Since Hy is non-elementary,
there exist go, ho € H(()2) such that (go, ho) is irreducible. Then, if g; =
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tgot~! and h; = thot~!, the subgroup (g1, h1) is also irreducible and
AT = kT'o[1, go, ho, goho] = kT'0[1, g1, h1, g1ha].

Conjugation by t induces an automorphism 6 of AT'g and so by the Skolem
Noether Theorem, there exists y € Al such that 8(a) = yay~! for all
a € AHy. By the argument of the proof of Theorem 3.3.4, we deduce
that ¢ differs from y by a non-zero element in kI'g. Again, as in the case
of Theorem 3.3.4, squaring and taking traces, we deduce that t?> € AT}.
Hence, (t2, I‘(()2)) is contained in AT}, and so traces lie in kI as is required.

The proof in the free product with amalgamation case is similar. The
structure theory of free products with amalgamation means that we have
I' = (I'y,T1) and Ty N Ty = H. By Lemma 3.5.5, we need to show that
the trace field K of the group (F(()Z),I‘EQ)) coincides with kT'g - kT';. One
inclusion is obvious; thus it remains to establish that K C kI'g - kT';.

Since H is non-elementary, by tensoring over kH, we see that H(? con-
tains a kT'p-basis for ATy and kI';-basis for AT';. The key observation in
this case is the following:

ATlg Rkl kg - kI'y = A Rkl kLo - k' := A.
This follows since

AH Qg kl'g - kI = (AH QrH kl“l) Rkr; kg - kI'y = AT, Rkr; kT'o - kI';.

From this, we see that I‘(()z) and ng) are subgroups of A!, and hence the
field K is a subfield of the field of definition of A, namely kg - kT';. The
proof is now complete. O

Application

Let M be a hyperbolic 3-manifold, By a mutation of M we mean cutting M
along an embedded incompressible surface ¥ and regluing via an isometry
7 of ¥ giving a new manifold M7. The manifold M7 is called a mutant
of M. Mutants are well-known to be hard to differentiate. In this setting,
Theorem 5.6.1 yields the first application:

Corollary 5.6.2 Mutation preserves the invariant trace field.

For discussion of mutation invariants, see Further Reading.

Example 5.6.3 The classical setting of mutation is when M is a hyper-
bolic knot or link complement in S3, and ¥ is a Conway sphere (i.e., an
incompressible four-punctured sphere with meridional boundary compon-
ents). Figure 5.9 shows the Kinoshita-Terasaka and Conway mutant pair.
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The main application of Theorem 5.6.1 is in building certain invariant
trace fields.

Theorem 5.6.4 Let K = Q(v/—di,... ,vV/—d.), where the positive in-
tegers di,...d, are square-free. Then K is the invariant trace field of a
finite-volume hyperbolic 3-manifold.

The proof of this relies on the fact that a twice-punctured disc in a hyper-
bolic 3-manifold has a unique hyperbolic structure. More precisely, we have
(recall our convention that all immersions map boundary to boundary) the
following lemma:

Lemma 5.6.5 Let M = H3/T be a hyperbolic 3-manifold and f : D —
M an incompressible twice-punctured disc in M. Then, f.(m1(D)) C T is

conjugate in PSL(2,C) to the group F(2), the level 2 congruence subgroup
of PSL(2, Z).

Proof: Since f(D) is a hyperbolic twice-punctured disc in M, the funda-
mental group viewed as a subgroup F of PSL(2,C) is generated by a pair
of parabolic elements, a and b say, whose product is also parabolic. Now
by conjugating in PSL(2,C), we may assume

1 2 1 0
a-(o 1) andb-(T 1).

Since ab is also parabolic we must have that trab = +2. The case of
trab = 2 is easily ruled out, and we deduce that r = —2, which gives
the level 2 congruence subgroup as required. O

The Bianchi groups PSL(2, O,) are a collection of finite-covolume Klein-
ian groups whose invariant trace fields are Q(v/—d).

FIGURE 5.9.
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Lemma 5.6.6 For all d, PSL(2,04) contains a torsion-free subgroup Gg
such that H®/G4 contains an embedded totally geodesic twice-punctured
disc.

Proof: The groups of the complements of the Whitehead link and the
chain link with four components are subgroups in the cases d = 1 and
d = 3, respectively and as seen in Figure 5.10, these complements contain
obvious twice-punctured discs. Being totally geodesic follows from Lemma
5.6.5. Let these manifolds be denoted M; and M3 respectively. For d # 1,3,
we make use of a result of Fine and Frohman:

Theorem 5.6.7 Ifd # 1,3 then PSL(2,04) can be expressed as an HNN-
extension with amalgamating subgroup PSL(2,Z).

The theorem can be viewed topologically as asserting the orbifolds have em-
bedded incompressible sub-2-orbifolds which are non-separating copies of
H?2/PSL(2,Z). We can pass to manifold covers with twice-punctured discs
as follows. Let T'4(2) denote the level 2 congruence subgroup in the Bianchi
group PSL(2,0,). Then as is easy to see, I'4(2) N"PSL(2,Z) = F(2) (in the
notation above). Let M;(2) denote the manifold H3/T'4(2). Then from our
above remarks M4(2) contains an embedded twice-punctured disc. O

Proof of Theorem 5.6.3: These twice-punctured discs can be used to
cut-and-paste submanifolds of the manifolds constructed in Lemma 5.6.6.
Thus given a field K as in the hypothesis, we proceed by induction. The
details are left as an easy exercise using Theorem 5.6.1. O

See §10.2 for other applications of this method.

Since the invariant trace field is preserved by mutation, one could further
ask whether mutation preserves the property of having integral traces. In
complete generality, Bass’s Theorem says that we can amalgamate groups
with integral traces together and create non-integral traces. In Figure 5.11
we give a pair of mutant links for which mutation destroys integral traces.

o 0

IS

FIGURE 5.10.
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~

FIGURE 5.11.

The link in Figure 5.11(a) is commensurable with H3/PSL(2,03) and so
has traces in Oz. However, the mutant in Figure 5.11(b) has a non-integral
trace.

These can be checked using SnapPea and Snap, for example.

Exercise 5.6
1. Complete the proof of Theorem 5.6.4.

2. Use the truncated tetrahedra with a super-ideal verter, truncating a
(2, 3,n)-triangle group to obtain some further examples of invariant trace
fields (see §4.7.3 and Ezercise 5.2, No.6).

8. Use the knowledge of the trace fields of the Fibonacci groups to show
that, given n, there exists a field with at least n real places which is the
invariant trace field of a finite-covolume Kleinian group.
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5.7 Further Reading

Versions of Theorem 5.1.2 and Lemma 5.1.3 appeared as results giving an
intrinsic characterisation of finite-covolume Fuchsian and Kleinian groups
as arithmetic in Takeuchi (1975) and Maclachlan and Reid (1987). The
results given here were used in Gehring et al. (1997) to establish the exist-
ence of Kleinian groups with various extremal geometric properties. Special
cases from Gehring et al. (1997) appear as Exercise 5.1, Nos 3 and 4 and
Exercise 5.1, No. 5 is adapted from Maclachlan and Rosenberger (1983).

The proof of the Smith Conjecture (Morgan and Bass (1984)) had many
components, one of which produced the relationship between traces, am-
algam structures and embedded surfaces through the work of Bass (1980).
The format employed in Theorem 5.2.2. results from methods of Culler
et al. (1987). The tree associated to SL(2, K) for K a P-adic field is dealt
with in Serre (1980).

Following Thurston (Thurston (1979)), most Dehn surgeries on a hy-
perbolic knot complement produce complete hyperbolic manifolds, but de-
termining precisely those that do for any given knot is a detailed process
which can be more or less ascertained by machine calculation in the form
of the SnapPea program of Jeff Weeks (Weeks (2000)). Indeed, determining
the actual invariant trace field after Dehn surgery and whether or not it
has integral traces has also been mechanised as described in §5.5.

The work of Culler and Shalen contained in Culler and Shalen (1983) and
Culler and Shalen (1984) was seminal in the development of understanding
boundary slopes of hyperbolic cusped 3-manifolds from their representation
and character varieties. Further developments came in Culler et al. (1987)
and subsequently in the form of the A-polynomial in Cooper et al. (1994).
The result referred to as Theorem 5.2.9 appears in Cooper and Long (1997)
as a consequence of subtle properties of the A-polynomial.

The version of the splitting theorem 5.2.11 appears in Long and Reid
(1998) following earlier versions in Long et al. (1996) and Maclachlan and
Reid (1998). Tetrahedra in H? with a super-ideal vertex which can be trun-
cated as described in Exercise 5.2, No. 6 are enumerated in Vinberg (1985).
The non-existence of totally geodesic surfaces in certain finite-covolume
Kleinian groups as described in Theorems 5.3.1 and 5.3.8 were given in
Reid (1991b). Separability and its use in connecting group theory and to-
pology appears in Scott (1978) and Theorem 5.3.4 appears in Long (1987).
For a variety of results and techniques used in proving that many classes
of hyperbolic 3-manifolds have finite covers which are Haken, or have pos-
itive first Betti number, the reader should consult Millson (1976), Hempel
(1986), Baker (1989), Li and Millson (1993), Cooper and Long (1999),
Clozel (1987) and Shalen and Wagreich (1992). The twist knot examples
are discussed in Reid (1991b) (see also Hoste and Shanahan (2001)), mak-
ing use of earlier detailed descriptions in Riley (1974) and in Riley (1972).
Theorem 5.3.13 and further consequences of this to be discussed later are
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due to Chinburg and Reid (1993). The obstructions given in §5.4 appeared
in Gehring et al. (1997) and borrowed from descriptions of the representa-
tions of regular solid groups in Vignéras (1980a).

The description of the invariant trace field of a cusped manifold via tet-
rahedral parameters was given and utilised in Neumann and Reid (1992a)
and, as described in §5.5, has been combined with SnapPea to produce
an exact version called Snap (Goodman (2001), Coulson et al. (2000)),
by which the number fields can be quickly determined. For a given knot
complement, the methodology of determining the decomposition into ideal
tetrahedra was laid out in Thurston (1979) and expanded upon in Hatcher
(1983) and in Menasco (1983).

The denseness of the representations of Fuchsian groups in Teichmiiller
space follows from work in Takeuchi (1971) and Maclachlan and Waterman
(1985). An early version of Theorem 5.6.1 appears in Neumann and Reid
(1991). The difficulty of distinguishing mutant pairs by any means is illus-
trated in the works of Lickorish and Millet (1987), Thistlethwaite (1984)
and Ruberman (1987).

In his book, the structure of the Bianchi groups from a group present-
ational view point is discussed at length by Fine (1989), particularly con-
cerning Fuchsian subgroups. Various amalgam and HNN descriptions of
these groups are given there, including Theorem 5.6.7 which is taken from
Fine and Frohman (1986).
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Orders in Quaternion Algebras

The basic algebraic theory of quaternion algebras was given in Chapter 2.
That sufficed for the results obtained so far on deducing information on a
Kleinian group I" from its invariant trace field kI" and invariant quaternion
algebra AT". We have yet to expound on the arithmetic theory of quaternion
algebras over number fields. This will be essential in extracting more in-
formation on the quaternion algebras and, more importantly, in deducing
the existence of discrete Kleinian groups of finite covolume. These will be
arithmetic Kleinian groups about which a great deal of the remainder of
the book will be concerned. All of this is based around the structure of
orders in quaternion algebras which encapsulate the arithmetic theory of
quaternion algebras. These were introduced in Chapter 2, but we now give
a more systematic study, particularly from a local-global viewpoint.

6.1 Integers, Ideals and Orders

Throughout this chapter, the ring R will be a Dedekind domain whose field
of quotients k is either a number field or a P-adic field. In later applications,
it will usually be the case that, when k is a number field, R = Ry, the ring
of integers in k. However, we also consider the situation where R = R(vp),
a discrete valuation ring associated to the valuation vp on the number field
k (see Lemma 0.6.4). In these cases, R satisfies the additional conditions
that R is a principal ideal domain and has a unique maximal ideal. This is
also true for R = Rp, the ring of P-adic integers in the P-adic field kp (see
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Theorem 0.7.6). When k is a number field, the ring R may also be taken to
be an S-arithmetic ring, where S is a finite set of non-Archimedean places.
In these cases,

Rs = {a € k| vp(a) <1 for all prime ideals P ¢ S}.

Recall that a Dedekind domain is an integrally closed Noetherian ring in
which every non-trivial prime ideal is maximal.

For convenience, we recall from §2.2 the elementary definitions and res-
ults on integers, ideals and orders in a quaternion algebra A over k.

An element o € A is an integer (over R) if R[] is an R-lattice in A. This
is equivalent to requiring that tr (o), n(a) € R.

A complete R-lattice in A is called an ideal I and an order O in A is
an ideal which is also a ring with 1. Orders in A can be characterised
as rings O of integers in A which contain R and are such that kO = A.
This characterisation shows that mazximal orders exist and every order is
contained in a maximal order.

In our applications, the maximal orders will play a pivotal role. Related
to these are Eichler orders.

Definition 6.1.1 An order O in A is an Eichler order if there exist distinct
mazimal orders O1 and Oy in A such that © = O1 N O,.

In the cases where A = My(k), M2(R) is a maximal order. If R is a
principal ideal domain, all maximal orders are conjugate to Ms(R). More
generally, since M3(k) = End(V'), where V is a two-dimensional space over
k, for every complete R-lattice L in V, End(L) is an order in End(V') and
every order is contained in some End(L). (For all of this, see §2.2). Later
it will be shown that each End(L) is a maximal order.

Now let us consider various special properties that ideals may have. Re-
call that for an ideal I in A, the orders on the left and right of I are defined
respectively by

Ou)={a€Alal I}, O.(I)={acA|lacClI}.

Definition 6.1.2 Let I be an ideal in a quaternion algebra A.
o [ is said to be two-sided if O¢(I) = O.(I).
e [ is said to be normal if Oy(I) and O,(I) are mazimal orders.
o [ is said to be integral if I lies in both O¢(I) and in O.(I).

It will be noted that if I is an integral two-sided ideal, it is an ideal in the
related ring O in the usual sense of an ideal in a non-commutative ring.

Just as one constructs a group of fractional ideals in k with respect to
R, one can start to construct a similar theory for ideals in A (see Exercise
6.1, No. 1 and §6.6).
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There is also the non-commutative analogue of the norm of an ideal in
the ring of integers (cf. (0.20)).

Definition 6.1.3 Let I be an ideal in the quaternion algebra A over a
field k. The norm of I, n(I), is the fractional ideal of R generated by the
elements {n(z) | z € I}.

Finally, since the orders in quaternion algebras are going to give rise to
arithmetic Kleinian and Fuchsian groups, we note three groups which arise,
naturally associated with an order O.

O! = Group of units of reduced norm 1 = {z € O | n(z) =1}, (6.1)

O* = Group of units of O = {x € O | 3 y € O such that zy =1}, (6.2)
N(O) = The normaliser of O = {z € A* | 20z = O}. (6.3)

Note that these groups are such that
o' c 0* c N(0).

Exercise 6.1

1. (a) Prove that the product of two ideals is an ideal.

(b) If I is an ideal in A, show that there exists § € R, B8 # 0, such that
BI C Op(I) C B7Y. If I is defined by I™' = {a € A | Ial C I},
show that I~ C 721 and deduce that I~ is an ideal. Show further, that
II7Y C Op(I) and I7'1 C O,(I).

2. Two orders Oy and O3 in A are said to be linked if 3 an ideal I such
that Oy(I) = Oy and O,(I) = Oq. Show that any two mazimal orders are
linked.

8. Use Theorem 2.2.9 to show that for any ideal J in R,

{(a b) |a,b,deR,ceJ}
c d

is an Eichler order in My(k).

4. If I and I are ideals in A, with I C Iy, show that Is/I; is an
R-torsion module. There is an invariant factor theorem for Dedekind do-
mains which can be used to describe this situation: There exist elements
T1,Z2,x3,%T4 € Io, fractional ideals of R, J1,Js,J3, J4 and non-zero integ-
ral ideals of R, F1, FEq, FE3, By such that

4 4
=1 =1

Then I/} = & Z?zl R/FE;. [The product of the ideals E1 ExEsEy is known
as the order ideal of the R-torsion module Is/I; and is written ord(I2/11).]
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Use this to show that, if O1 C O are orders in A, then the group index for
the groups [O% : O7F] is finite.

5. Give examples to show that the index [O* : O] can be infinite. Show
that [N (O) : O*] is always infinite.

6.2 Localisation

A fundamental technique in algebraic number theory, which will also be
used extensively in the remaining chapters, is the local-global method.
“Global” refers to the number fields being considered and “local” to the
fields obtained as the completions of these number fields at their valuations
as described in §0.7. A local-global technique applied to a problem consists
of first settling the local cases and then applying this information to the
global case. The Hasse-Minkowski Theorem (Theorem 0.9.8) is a power-
ful example of this which we have already applied to obtain a local-global
result on the splitting of quaternion algebras (Theorem 2.7.2) and the iso-
morphism classes of quaternion algebras (Theorem 2.7.5).

The local fields considered in this chapter will be the P-adic fields. The
rings of integers in these P-adic fields are discrete valuation rings. The
non-Archimedean valuations on a number field give rise also to discrete
valuation subrings of the number fields and, in this section, the local-global
technique will go through an intermediate step using these local rings.

First recall the notation (see §0.6 and §0.7). Let R be a Dedekind domain
with field of fractions k. Let P be a prime ideal in R and let vp be the
associated valuation on k. The local ring R(vp) = {a € k | vp(a) < 1}
has a unique prime ideal P(vp) = {a € k | vp(a) < 1}. The ring R(vp)
can be identified with the localisation of R at the multiplicative set R\ P,
which is the ring of fractions {a/b | a € R,b € R\ P}. These local rings are
principal ideal domains and a generator 7 of the ideal P(vp) = mR{vp) is
a uniformizer.

The rings R(vp) are all subrings of £ and R can be recovered from them
as

R= () R(vp) (6.4)

{P prime}

where the intersection is over all non-zero prime ideals of R (see below).
Example 6.2.1 If R =Z and p is a prime, then
a
R(v) = {3 €Qlp f0}.

Thus if a/b € Q and p [ b for any prime p, then a/b € Z, which gives (6.4)
in this case.
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We need to extend this idea and the proof of (6.4) follows the same line of
argument as in this extension:

Lemma 6.2.2 Let V' be a finite-dimensional space over k and let L be
an R-lattice in V. Then L = [\ R(vp)L, where the intersection is over all
prime ideals of R.

Proof: Clearly L is contained in the intersection. Let z1,z2,... ,z, be a
generating set for L over R; thus it will also be a generating set for R(vp)L.
Suppose that z lies in the intersection. Define the ideal J by

J={ye€ R|yzxe L}

Now z = 22:1 arxr with ar = byx/ck, where bg,c, € R and ¢, ¢ P. Let
¢ = cica--- ¢ so that ¢ € P. However, ¢ € J. Thus J does not lie in any
prime ideal P andso J = R. Thusl1 € Jand x € L. O

This result will be applied in the situation where V is a quaternion algebra
over k and L is an ideal I or an order O.

In addition, ideals and orders in A over the global field k¥ can be con-
structed by specifying their local components in the following way:

Lemma 6.2.3 Let R be a Dedekind domain and let I be an ideal in the
quaternion algebra A over k. For each prime ideal P in R, let I(vp) be an
R(vp)-ideal in A such that I(vp) = R(vp)I for almost all P. Then

J = \(vp)
is an R-ideal in A such that R(vp)J = I(vp) for all P.

Proof: Let x1,x2,23,24 € I be linearly independent over k£ and let L =
R[x1, T2, x3,24). Then L is an R-ideal and L C I and so Ir € R such that
rI C L. It follows that, for almost all P, R(vp)L = R(vp)I and so, for
almost all P, R(vp)L = I(vp). Thus choose a,b € R such that

al(vp) C R(vp)L C bl(vp)
for all P. Then
J = ﬂ[(vp) Ca! ﬂR(’U’p)L =a 'L

by Lemma 6.2.2. Thus J is an R-lattice in A. Furthermore, in the same
way, L C bJ so J is an ideal in A.

Now R(vp)J C R(vp)I(vp) = I(vp). To obtain the reverse inclusion,
the Chinese Remainder Theorem (CRT) will be used (see Lemma 0.3.6).
Let j1,...,J» be a generating set for J. Let z € I(vp) so that z = > a;J;
with a; € k. Consider one coefficient at a time. Choose s; € R so that
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sia1 € R. Suppose s; R = P™ Q7' --- QFt, where ng > 0 and n; > 1 for
1 < i < t. By the CRT, choose z; such that z; = s;(mod Q;““Ll) for
1 <i<tandz; = sia; + s1(mod P™F1). Then b; = z1/s1 is such that
by — a1 € R(vp) and by € R(vp/) for all prime ideals P’ # P. Repeat for
each of the coefficients and let y = Y b;7;. Then y € R(vp:)J C I(vp/) for
all P #P. Alsoy —z =) (b; — a;)js € R(vp)J C I(vp). Thus y € I(vp)
andsoy€e J. Thusz=y— (y—x) € R(vp)J. O

Note that if O is an order in A, then R(vp)O is an R(vp)-order in A and
the above result holds with “ideal” replaced by “order”. Recall that every
order is contained in a maximal order. It will be shown that maximality is
a condition that depends on the local components.

Now ideals I and orders O are complete lattices so that kQgrl = kQr0 =
A. Identifying I with its image 1 ® I, this can be expressed as kI = A.
Similarily for O. Also the ideal I embeds in R(vp) ® g I which, as above,
is written R(vp).1.

Lemma 6.2.4 Let O be an R-order in a quaternion algebra A over k.
Then O is mazimal if and only if R(vp) ®r O is a mazimal R(vp)-order
for each prime ideal P of R.

Proof: Suppose that O is maximal and 7 is the mapping identifying O
with its image in R(vp) ®g O, via i(z) = 1 ® z. Suppose R(vp) ®g O is
contained in an R(vp)-order Q. Choose a € R such that a2 C R(vp)®rO.
Now i~} (a2) = A will be an ideal of A. Furthermore O C O,.(A) and since
O is maximal O = O,(A). This then gives that

R(vp) ®r O = R(vp) ®r Or(A) = Or(R(vp) ®r A) = O, (af)) = Q

(see Exercise 6.2, No. 4). Thus R(vp) ®g O is maximal.

If, conversely, each R(vp) ® g O is maximal and O C €, then clearly
R(vp) ®r O C R(vp) ®g Q. These must all be equalities by maximality
and the result follows from Lemma 6.2.2. O

As stated at the beginning of this section, we wish to obtain local-global
results where the local fields are the P-adic fields obtained by completing
k at the valuations vp. Thus the above results need to be extended from
the valuation rings R(vp) to the P-adic integers Rp. Recall the notation
that kp is the completion of k with respect to the valuation vp with ring
of integers Rp.

Lemma 6.2.5 There is a bijection between R(vp)-ideals (resp. orders) in
a quaternion algebra A over k and the Rp-ideals (resp. orders) in the qua-
ternion algebra kp @i A over kp given by the mapping I — Rp Qpg(vp) 1,
which has the inverse J — J N A.



6.2 Localisation 203

Proof: Since R(vp) is a principal ideal domain, I will have a free basis
{x1, 22,23, 24}. Then in kp @ A, (Rp ®pg(vp)I)NA consists of the RpNk =
R(vp) combinations of {z, 2,23, z4}. Thus (Rp ®p(vp) [) NA = I.

Now suppose J is an Rp-ideal in kp ®x A which will have a free basis
{v1,y2,Y3,ya}- Let A have basis {21, 22, 23, 24} so that z; = > b;y; and
B = [b;;] is an invertible matrix in My(kp). Since k is dense in kp, choose
cij € k such that the entries of C = [c;;] are close to those of B~'. This
then forces CB to be a unit in the ring My(Rp). Now let 2z, = > cijz; =
> cijbikYk.

Thus {21, 25, 25, 24} is a free basis of J and also a basis of A. Thus JN A
consists of the Rp Nk = R(vp) combinations of {2}, 25, 25, 24} and so is an
R(vp)-ideal in A such that Rp ®p(vp) (JNA)=J. O

The above lemmas will now be combined to allow direct interpretation
between Rj-ideals and orders in A and ideals and orders over the P-adics.
Using this, local-global properties, as applied to ideals and orders, are read-
ily identified. It is convenient to introduce some notation to express this
and this notation will be used consistently throughout.

Definition 6.2.6 Let A be a quaternion algebra over the number field k,
which has ring of integers R. As in Definition 2.7.1, Ap = kp Q1 A. If O
18 an R-order in A, let

Op=Rp®rO=Rp OR(vp) (R('Up) Rr O) (6.5)

so that, as shown above, Op is an order in Ap. Likewise, define Ip for an
ideal I in A.

Lemma 6.2.7 Let A be a quaternion algebra over a number field k, which
has ring of integers R. Let I be an R-ideal in A. There is a bijection between
R-ideals J of A and sequences of ideals {(Lp) : P € Qs(k),Lp an Rp-
ideal in Ap such that Lp = Ip for almost all P} given by J — (Jp).

Proof: If J is an ideal in A, then there exists a,b € k* such that aJ C I C
bJ. For almost all P, a and b are units in Rp so that Jp = Ip for almost
all P.

Now suppose we have a collection of ideals (Lp) as described in the
statement of the lemma. Let J(vp) = AN Lp, which is an R(vp)-ideal
in A by Lemma 6.2.5. Furthermore, J(vp) = IR(vp) for almost all P.
Then J = NJ(vp) is an R-ideal in A by Lemma 6.2.3 and the mapping
J — (Jp) is surjective. Now if ideals J and L have the same image, then
JR(vp) = LR(vp) for all P, so that, by Lemma 6.2.2, J = L and the map
is injective. O

Using Lemma 6.2.4 and the lemma just proved, we obtain the following
important result (see Exercise 6.2, No. 1):
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Corollary 6.2.8 Let R be the ring of integers in a number field k and let
O be an order in the quaternion algebra A over k. Then O is a mazrimal
order if and only if the orders Op are maximal orders in Ap for all prime
ideals P in R.

Example 6.2.9 Let A be the quaternion algebra <_1@_1) and O the order

Z[1,1,3,1j]. Recall that A splits at Q, for all odd primes p (see Theorem
2.6.6) so that A, = My(Q,), but A does not split at Q2 (Exercise 2.6,
No. 3). To investigate O,, recall how these splittings are obtained. If p =
1(mod 4), then —1 is a square mod p and so, by Hensel’s Lemma, is a
square in Zy. If p = 3(mod 4), then we can solve —1 = z% + y# in Z, by
Theorem 0.7.12. Then mapping

. I Y1 . 0 1

() ()
(where y; = 0 if p = 1(mod 4)) provides a splitting of A,. Under this
mapping, the element 1+ z17 — y14j in Op maps to (8 (2’) The image of O,
is then easily seen to be M3(Z,) so that O, is maximal for all odd p. The
order O, however, is not maximal as it is properly contained in the order
O = O+ aZ where « = (1 +i+j +14j)/2. By the above result, Oy cannot
be a maximal order in As. Note that by maximality, (’)1’0 = O, for all odd
primes p. We will shortly obtain a much more straightforward method of

tackling this problem. It will turn out also that ', in this example, is a
maximal order.

Exercise 6.2
1. Complete the proof of Corollary 6.2.8.

2. Show that being an Fichler order is a local-global property.

3. Let A= <3Q+2> and let O = Z[1,14, j,ij]. Prove that O, is mazimal for
all p # 2,3. (See Ezercise 2.6, No. 1.)
4. Let I be an ideal in A. Prove that Oy(Ip) = Ou(I)p and O,(Ip) =

Or(I)p for all prime ideals P in R. [Part of this was used in Lemma
6.2.4.]

5. Let I be an ideal in A. Prove that I is a two-sided integral ideal in A if
and only if I'p is a two-sided integral ideal in Ap for every P.

6. Recall the orders Ma(R;J) in My(k) defined at (2.5). Prove that these
are all mazimal orders.
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6.3 Discriminants

The relative discriminant for an extension of number fields L | k¥ is a use-
ful invariant providing information on that extension, as was seen in the
introductory chapter. It was defined in terms of algebraic integers in L
which were linearly independent over k. The discriminant of an order in a
quaternion algebra is a non-commutative analogue.

Definition 6.3.1 Let O be an R-order in the quaternion algebra A over
k. The discriminant of O, d(O), is the ideal in R generated by the set
{det(tr (z;x;)),1 <i,j <4}, where z; € O.

The elements z;z; all lie in O and so their traces lie in R. Furthermore,
since O is a complete R-lattice, there will always be some set of four ele-
ments which are linearly independent over k. Since the trace form is non-
degenerate (see Exercise 2.3, No. 1), this determinant for these elements is
non-zero, so the discriminant is a non-zero ideal in R.

Theorem 6.3.2 If O has a free R-basis {u1,uz,us,us}, then d(O) is the
principal ideal det(tr (u;u;))R.
Proof: Clearly det(tr (u;u;))R C d(O). Now let 1, x2, 23,24 € O so that
T; = Zi:1 aipug, aix € R. Thus

det(tr (z;z;)) = det(ak)det(tr (usuk))det{a)

and the result follows. O

Examples 6.3.3
1. If O = M2(R), then d(O) = R.

2. If O and @’ are the orders in A = (%) given in Example 6.2.9, then
d(0) = 16Z and d(O") = 4Z.

Let O be an order in a quaternion algebra A over the global field k. Then
it can readily be shown that d(R(vp)O) = d(O)R(vp) for any prime ideal
P in R (see Exercise 6.3, No. 1). Each evaluation ring R(vp) is a principal
ideal domain and we can then use Theorem 6.3.2 to compute d(R(vp)O).
However, by Lemma 6.2.2,

dO)= (] dR@p)O), (6.6)

{P prime}

where the intersection is over all prime ideals. Now if O; and Oy are two
orders in A with O; C Og, clearly d(Os) | d(O1). Suppose that d(0;) =
d(O3). Then d(R(vp)O1) = d(R(vp)Os) for each P. Let {u1,usz, us, us}
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be a free R(vp)-basis of R(vp)O; and let {v1,v2,v3,v4} be a free R(vp)-
basis of R(vp)Oz. Since R(vp)O1 C R(vp)Os, the transformation matrix
T expressing u1, U2, U3, U4 in terms of vy, v, v3, vy will have its entries in
R(vp). Now

(det T)*det(tr (viv;)) = det(tr (usu;)).
Thus T is an element of GL(4, R(vp)) and R(vp)O1 = R(vp)Os2. By
Lemma 6.2.2, O; = Q3. Thus we have proved the following:

Theorem 6.3.4 Let A be a quaternion algebra over a field k. Let Op and
Oy be orders in A with O1 C Oz. Then d(O3) | d(O1) and d(O;) = d(O2)
if and only if O1 = Os.

Now the ideal d(O) is a finitely generated R-module and each generator
is a finite linear combination of elements of the form det(tr (x;x;)), where
T1, T2, %3, T4 € O. Thus there is a finite set F of 4-tuples such that d(O) =
ideal generated by det(tr (z;x;)), {z1,z2, 23,24} € F. Thus for all but a
finite number of prime ideals, d( R(vp)O) = R(vp). Let the finite number
of exceptions be Py, ..., P,. In these cases, d(R(vp,)O) = P(vp,)™. Thus
(6.6) yields

r T T

d(0) = ([ Plp)™ [ Rvp) = RN [ Pwp)™ = [P/ = [ P
=1 {P} =1 i=1 =1
(6.7)

This can now be extended to the P-adic coefficients. For orders over prin-
cipal ideal domains, use can be made of Theorem 6.3.2 to obtain

d(Rp ®R(vp) R(vp)O) = Rp ®R(up) d(R(vp)O)

i.e., d(Op) = d(O)p] (see Exercise 6.3, No. 1). Recall that the unique prime
ideal P in Rp is PRp. Formula (6.7) can, with slight abuse of notation, be
expressed as

do)y= [ dop). (6.8)
{P prime}

As shown in the derivation of (6.7), the product on the right-hand side is
a finite product.

Exercise 6.3

1. Let O be an order in a quaternion algebra over a number field k. Show
that d(Op) = d(O)p.

2. Let k = Q(t), where t satisfies x> —2 = 0, and let L be the Galois

closure of k. Let
A:{(g t§)|a,ﬂeL}.
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Show that A is a quaternion algebra over k, that A =2 (%) and that A is
ramified precisely at Py and Ps, the unique prime ideals in k lying over 2
and 3, respectively. Let

0:{(% t§)|a,ﬂeRL}.

Show that O is an order in A. Determine d(O). Show that Op is mazimal
for P # Pa,Ps (As a consequence of results in the next section, it will
follow that Op is mazimal for all P.) [Hints: See Ezxercise 0.2, No. 7, 0.3,
No. 6 and 0.5, No. 5. Show that (1 —t + t2)(3 + /—3)/6 is an algebraic
integer.]

8. Let O be an Ry-order in a quaternion algebra A over the number field
k. Let L | k be o finite extension. Show that Ry ®g, O is an order in LRk A
and deduce that

d(Rr ®g, O) = Rrd(0O).

Show that if Ry, ®g, O is a mazimal order, then O is a mazximal order.

4. By allowing fractional ideals, one can, as in Definition 6.3.1, define the
discriminant of an ideal I in a quaternion algebra A. Show that if I C J
are ideals of A, then

d(I) = (ordJ/I)%d(J).

(See Ezercise 6.1, No. 4.)

6.4 The Local Case — 1

The preceding sections have shown that the consideration of maximal or-
ders over a global field can be reduced to considering their structure over
P-adic fields. Thus throughout this section, K will denote a P-adic field
and R the ring of integers in K. Recall from Corollary 2.6.4, that there are
precisely two quaternion algebras A over K.

In this section, we deal with the case where A is the unique division
algebra and recall the notation from §2.6. The field K has a unique un-
ramified quadratic extension F = K(y/u), where u is a unit in R. Also
A has a standard basis {1,14,7,9j}, where > = u and j? = 7 with 7 a
uniformiser in R.

If v : K — Z is the logarithmic valuation, then w = v on as at (2.8)
defines a valuation on A. The associated valuation ring

O={zeA|uw) >0} (6.9)

is indeed a ring and Q@ = {z € A | w(z) > 0} is a two-sided ideal of O.
In this case, O turns out to be the unique maximal order in A, as will
now be shown. If x € A is an integer, then n(z) € R so that w(z) > 0. Thus
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O contains all the integers in A. Conversely, if € O, then Z € O and so
z +Z € O. This implies that tr z € R so that z is an integer. Furthermore,
for any x € A, 3 r € R such that rx € O, so that KO = A. Thus O is the
unique maximal order in A. In the same way, Q is a two-sided integral ideal
as defined in §6.1 so that Q is an ideal of the ring O in the usual sense.

Let {1,4,7,ij} be the standard basis of A as just described. If z € O,
then w(zj) > 0 by Lemma 2.6.1. Conversely, if y € Q, then w(j~1y) > 0
so that Q@ = Oj. Note that Q% = Or. By a similar argument, Q is a prime
ideal.

Note that A = F' + Fj and n|r = Np|g. Since F' | K is unramified, = is
also a uniformiser for F' so that

Rr ={z € F | n{x) € R}.

Now let @ =z + yj € A. Then o € O if and only if n(a) € R. Further
n(a) = n(x) — n(y)n. Since n(z) and n(y) are of the form 7>z, where
z € R*, we have that n(a) € R if and only if n(x),n(y) € R. Thus O =
Rp+Rpj. From this it follows that d(O) = 6%|Kj4R = m?Rsince dpx = R
as F' | K is unramified.

Theorem 6.4.1 The valuation ring O defined at (6.9) is the unique maz-
imal order in A and has discriminant d(O) = m2R = (PR)2.

It has been shown here that Q is a two-sided integral ideal in O. Indeed
if I is any two-sided integral ideal in O, it is easy to see that I = Oj™
for some integer m > 0. Further if I is a normal ideal of A, then I will be
principal with I = Oj™ for some m € Z.

In this ramified case, the groups associated to the maximal order O have
neat descriptions, which we will utilise below to obtain group-theoretic in-
formation on a Kleinian group from the structure of the related quaternion
algebra.

From the definition of O at (6.9), it follows immediately that O! =
Al. Also, since O is the unique maximal order, the normaliser N(O) =
A*. From this we deduce that [N(O) : K*O*] = 2 since w(O*) = 0 and
w(K*) = 2Z.

Lemma 6.4.2 There exists a filtration of O*:
0*>1+0D1+Q°D1+Q%--
where O* /1 + Q= F* and 1+ Q'/1 + Q*+! =~ F+.

Proof: Here F is the residue class field Rp/mRp which has order N(P)2.
Elements of O have the form a =z + yj, z,y € R, and for o € O*, z €
R7%. The first isomorphism is then induced by « +— Z. The other isomorph-
isms are induced by 1+ (z +yj)j* — . O
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Let T be a finite-covolume Kleinian group, where I' C SL(2,C). Then
k = Q(trT") is a number field and A = Ay(T') is a quaternion algebra
over k.

Theorem 6.4.3 Suppose that A is ramified at the finite prime P and let p
be the rational prime which P divides, so that N(P) = pt for some t. Then
I' has a normal subgroup A with finite cyclic quotient of order dividing
p* — 1, which is residually p.

Proof: The group T has a faithful representation in A! and, hence, in A}.
Thus the image lies in O} and so we let A=TN(1+ Q)N OF. Then I'/A
is isomorphic to a subgroup of F*. The groups A; = I'N (1 4+ Q%) N O3
are normal subgroups of T' and the quotients A;/A;;; are p-groups. Since
M;A; is trivial, the result follows. O

Being a residually finite p-group is quite a strong property. In particular,
every non-abelian subgroup of such a group has a Z, x Z, quotient.

Exercise 6.4

1. Recall from Egxercise 2.6, No. 1 that the quaternion division algebra A
over the P-adic field K can be represented as

A= {(7:;), 5) | a,b € F,a’,b" are the F | K conjugates of a,b} )

(a) Show that taking a,b € R gives the unique mazimal order O in A.
(b) Show that forr >0

Th
O2p41 = {(,n.r-?-lbl ﬂ—a/ > | a,be RF}
is an order in A.

(c) Show that an order Q in A is isomorphic to Ozry1 if and only if Q
contains a subring isomorphic to Rp.

(d) Prove that [O* : O%.,1] = ¢°", where q is the order of the residue class
field.

2. LetT" C SL(2,C) be a finite-covolume Kleinian group such that T’ has a
non-integral trace (i.e., there exists v € T' such that vp(try) < 0 for some
prime ideal P). Prove that Ao(T) is unramified at P.

6.5 The Local Case — 11

We now consider the second possibility for a quaternion algebra A over the
P-adic field K [i.e., that A = M3(K)]. Thus, as in §2.2, A = End(V) where
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V is a two-dimensional space over K. Then all maximal orders are of the
form End(L), where L is a complete R-lattice in V.

Lemma 6.5.1

1. The mazimal orders of End(V') are the rings End(L), where L is any
complete R-lattice in V.

2. If I is an ideal such that O.(I) = End(L) is mazimal, then I =
End(L, M), where M is a complete R-lattice and so Oy(I) = End(M)
is also mazimal.

Proof: Part 1 is proved in Theorem 2.2.8 and Corollary 2.2.10. So let us
consider Part 2. Let L have R-basis {e1, e2}. Then identify I with the R-
lattice in V2 by f(h) = (h(e1), h(ez)) for h € I. Let M = I L. We claim that
f(I) =M x M. Clearly f(I) C M x M. Conversely, M x M is spanned by
{(h(el)7 0)7 (h(e2)a 0)’ (07 h(el))v (Oa h(e2)) the I}‘ Now (h(61)7 O) = f(hg)»
where g(e1) = e1,g(e2) = 0, so that ¢ € End(L) and hg € I. Likewise,
(h(ez2),0) == f(hxg), where z(e1) = ez, z(ez) = ey so that x € End(L). In
this way, we obtain that f(I) = M x M and M is a complete R-lattice.
Also if h € End(L, M) so that (h(e1),h(ez)) € M x M, then h € I. Thus
I =End(L,M). O

Lemma 6.5.2 Let K be a P-adic field with ring of integers R and uni-
formiser m. Let L and M be complete R-lattices in V such that M C L.
Then there erists an R-basis {v,w} of L and integers a and b such that
7%, wPw is an R-basis of M.

Proof: Since there is an z € R such that «L. C M, for each z € L, let n, be
such that 7R = {c € R | cz € L}. Over all generators of L (i.e., elements
v € L such that there is a w in L such that L = Rv + Rw), choose v such
that n, is minimal. For that v, choose w such that L = Rv+ Rw and n,, is
minimal. We claim that M = Rr"™v v+ Rr"vw. Clearly Rn™ v+ Rr"™w C
M. Let 8 € M so that 8 = 7% uv + 7°2usw, where uy,us € R*. Then
71'_“‘1“(51’32),8 is a generator of L so that Ny—min(s1,02)g = To- However,
Mp—min(s1,82)g = min(s1, s2). So n, < s1. Also 77%2(F — 7uv) is a v-
generator and so s3 > n,,. The result follows. O

With these results, the following theorem can now be proved:

Theorem 6.5.3

1. All mazimal orders in My(K) are conjugate to the mazimal order
M (R).

2. The two-sided ideals of Ma(R) form a cyclic group generated by the
prime ideal T My (R).
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3. The integral ideals I such that O.(I) = M2(R) are the distinct ideals

(o o)

where n,m € N and s belongs to a set of coset representatives of ™™ R
in R.

Proof: Part 1 is immediate from Lemma 6.5.1. For Part 2, let I be such
that O,(I) = O¢(I) = End(L). By Lemma 6.5.1, I = End(L, M) and
End(L) = End(M). Thus if {e;,e2} is a basis of L and {n%e1,m’e3} a basis
of M, we must have a = b. Hence I = End(L, 7%L) = 7~ *End(L).

Part 3 Now I = End(L, M), where M = IL. Since I C End(L), M C L.
Choose an invertible h such that h : L — M whence I = hEnd(L). Then h
is represented by H € M3(R) N GL(2, K). Now H can be replaced by HX
for any X € GL(2, R) so that we obtain the unique representative given in
the statement. O

Recall the tree used in §5.2.1 to obtain splittings of groups via the action
of groups on trees. The vertices were equivalence classes of complete R-
lattices L in V, where L and L’ were equivalent if there exists z € K*
such that L' = zL. Thus for any two equivalence classes, we can choose
representatives L and M with M C L. Then there exists a basis {e1, e2} of
L such that M has basis {n%;, 7’3} with a and b non-negative integers.
The distance between the equivalence classes is then well-defined as |a —b|.
The edge set in the graph are the pairs of equivalence classes at distance 1.
As proved by Serre, the graph is then a tree (see Theorem 6.5.4). This will
be utilised later when we come to discuss Borel’s results on the distribution
of groups in the commensurability class of arithmetic Kleinian and Fuchsian
groups in Chapter 11.

The tree can be easily described in terms of maximal orders. For any
z € K*, End(xL) = End(L) for L a complete R-lattice and so each vertex
of the tree is represented by a maximal order O in M3(K). Since each
maximal order O’ has the form End(L’) for some complete R-lattice L', we
can define the distance d(Q, Q') as the distance between L and L’ so that
edges are pairs (O, Q'), where d(O, O’) = 1. Note that if (O, O’) belongs to
an edge set, so does (O, O) and there are initial and end-point mappings
from the edge set to the vertex set. A path of length n in the graph will be
a sequence of vertices {Og, Oy, ... ,Op} such that for each i, (O;, 0;41) is
an edge and there is no backtracking [i.e., no adjacent pairs of edges of the
form (O, 0"), (0O, 0)].

Theorem 6.5.4 Let O be a mazrimal order. The maximal orders at dis-
tance n from O are also at distance n from O in the graph measured by
path length. In particular, the graph is a tree.
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Proof: Let O’ be a maximal order such that d(O,0’) = n. By a suitable
choice of basis, O = End(e1R + e2R) and O’ = End(e; R + ean™R). If we
set O; = End(e; R+eam'R), then {O, Oy, ... ,0,, = O’} is a path of length
n in the graph.

Conversely, suppose that {Og, O1, ... , Oy} gives a path of length n in the
graph. Then we have O; = End(L;), where L; is chosen such that L; D L;;1
so that L;11 D L;mw. Since the path has no backtracking, L;m # L;io
for each 4. (See Figure 6.1.) Since both L;+» and L;7 contain L; 17 and
Lit1/Lit1m is a two-dimensional space over K, the residue class field, it
follows that L;w+Li;2 = L;y, for all 4. Thus, by induction, L7+ Li4 42 =
Ly for 0 < j < n—i—2. In particular, Lo does not contain L; for any
1 so that d(0g, O;) =ifor 1 <i<n.0O

If we consider the geometric tree in which each pair of combinatorial edges
(0,0, (0,0) as described above, is drawn as a single edge, then we
obtain a tree in which every vertex has valency ¢ + 1, where ¢ is the order
of the residue class field. If a vertex is given by End(L), where L = e; R +
ez R, then the adjacent vertices correspond to End(L), where L, = (e3 +
aez)R + eam R, where « runs through a set of representatives of 7R in R
and End(L«) where Lo, = ;7R + eaR.

For O a maximal order in M3(K), the elements of norm 1 form a group
conjugate to SL(2, R). Let P denote the unique principal ideal of R so that
R/P is isomorphic to the finite field F of order N(P). The reduction map
R — F induces a homomorphism ¢p : SL(2, R) — SL(2,F).

Definition 6.5.5 The kernel of ¢p, T'(P), is the principal congruence sub-
group of level P.

Thus these principal congruence subgroups are normal subgroups of finite
index and, in many cases, are torsion free. This is clarified in the following
result.

Lemma 6.5.6
1. The homomorphism ¢p is surjective.

2. IfT'(P) contains an element of odd prime order p, then p is ramified
in R (i.e., p=7n"u for somen > 2).
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3. IfT'(P) contains an element of order 2, then P | 2.

Proof: (i) Let (: g) € SL(2,F), and choose a,b,c,d € R mapping onto
o, B, v, 6, respectively. Since ad — bc — 1 € P, at least one of a,b,c,d & P.
There is no loss in assuming that a ¢ P. Let f(z) = axz — (bc + 1). Then
in Flz], f(z) = a(z —a~*(By +1)). By Hensel’s Lemma, f(z) = g(z)h(z),
where h(z) = x—e is monic of degree 1. Then f(x) = az—(bc+1) = a(z—e).
Thus ae — bc = 1 and ¢p is surjective.

(i) Let X € I'(P) have order p. Then X = I + 7*M for some k > 1 and
the content of M, the greatest common divisor of the entries, is 1. Then
XP =1 = (I +7*M)P yields

-1
pM + 23(1)2—)71"“M2 = 0(mod 7).
If = f p this yields the contradiction that M = 0(mod =). If p = 7wu, where
u is a unit in R, the same contradiction is obtained.
(ili) If X has order 2, then, as above, we obtain 2M = 0(mod 7*). O

More generally, one can define the principal congruence subgroup of level
P, T(P™), in SL(2, R) as the kernel of the reduction map to the finite ring
R/7™R.

Exercise 6.5

1. Let A = Ms(K), where K is a P-adic field.

(a) Show that O = {(,%.%) | a,b,c,d € R} is an Eichler order in A.

(b) Show that any Eichler order in A is conjugate to some Oy,.

(¢) If O is an Fichler order in A, show that there is a unique pair of
mazximal orders {O1, 02} such that O = 01N Os.

(d) Show that the normaliser N(O) of a mazimal order O in A equals
K*O~.

(e) Show that the normaliser N(O,,) for n > 1 is such that the quotient
N(O,)/K*O}, has order 2.

2. Let A = My(K), where K is a P-adic field. Let I and J be two-sided
ideals for a maximal order in A. Show that

n(IJ) = n(I)n(J). (6.10)

3. Let A = My(K), where K is a P-adic field. Show that the number of
integral ideals I such that Oy(I) = Ma(R) withn(I) = R is 1 +q+ ¢ +
.-+ q%, where q is the order of the residue class field R/7R.

4. The groups PGL(2, K') and PSL(2, K') act by conjugation on the set of
mazimal orders in M2(K) and, hence, on the tree of maximal orders. Show
that PGL(2, K) acts transitively on the vertices. Show also that the orbit of
a mazimal order O under PSL(2, K) is the set of mazximal orders at even
distance from O.
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5. (a) Show that the set of all mazimal orders in M2(K), where K is a
P-adic field, are given by

—1
™ s T s
N(m7 n,s) = ( 0 ﬂ,n) M2(R)< 0 7.(.n)

where m,n € N and s runs through a set of coset representatives of T™ R
in R.
(b) Prove that N(m,n,s) = N(m/,n’,s') if and only if m —n =m' — n’
and st™™ —s'7™™ € R.
(¢) Show that d(N(m,n,s),N(0,0,0)) = |m + n — 2¢g|, where 79 is the
greatest common divisor of ™, ", s.

6.6 Orders in the Global Case

The results of the preceding sections can now be combined, using the local-
global principle and the local results, to consider maximal orders in qua-
ternion algebras over number fields.

Let A be a quaternion algebra over a number field k. Recall that the
(reduced) discriminant A(A), of A, introduced at Definition 2.7.4, is the
product of the finite primes P at which A is ramified.

Theorem 6.6.1 Let A(A) be the discriminant of a quaternion algebra A
over a number field k and let O be an order in A. Then O is a marimal
order if and only if d(O) = A(A)2. In particular, all mazimal orders have
the same discriminant.

Proof: By Corollary 6.2.9, O is a maximal order if and only if Op is max-
imal for every prime ideal P. By Theorems 6.4.1 and 6.5.3, the discriminant
of a maximal order in Ap is either (PRp)? or Rp according to whether Ap
is or is not a division algebra. Furthermore, orders with these discriminants
(PRp)? or Rp respectively are necessarily maximal by Theorem 6.3.4. The
result now follows from (6.8). O

Example 6.6.2 Consider again the Example 6.2.8 where A = (%

Then A, splits for all odd primes p but Ay is a division algebra. Thus
A(A) = 2Z. The discriminant of the order O’ = Z[1,14,j,1/2(1 +i+ j +1ij)]
is easily shown via Theorem 6.3.2 to be 4Z. Thus ¢’ is a maximal order.

The above theorem is the main result in this section, but the same meth-
ods can be used to prove a number of other results which will be used
subsequently.

Lemma 6.6.3 Let I be an ideal in A such that O.(I) = O is a mazimal
order. Then Ip = zpOp for some xp € A}.
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Proof: Recall that Op = O, (Ip) (see Exercise 6.2, No. 4) and that each
Op is maximal.

If A is ramified at P, then Op is the unique maximal order in Ap. In
the notation of §6.4, let m = min{w(z) | z € I»}. Then it is easy to obtain
that Ip = Opj™ = j™Op.

If A splits at P, then Op = End(L) and Ip = End(L, M), as in Lemma
6.5.1. Then, as in the proof of 8. in Theorem 6.5.3, I» = h(End(L)) =
(End(M))h for some non-singular h: L — M. O

Corollary 6.6.4 Let I be an ideal in A. Then Oy(I) is mazimal if and
only if Or(I) is mazimal.

Proof: From the lemma, it is immediate that if O,(I) is maximal, then
O¢(I) is maximal. Now suppose that Oy(I) is maximal. Now I~! is an ideal
(see Exercise 6.1, No. 1) and O(I) C O,(I71). Thus O,(I~1) is maximal.
Now the proof of the lemma shows that I, 1 — Opap for some maximal
order Op in Ap, for each P. Thus Ip = m;,l(’)p and O,.(Ip) = Op is
maximal for each P. O

We have just used the inverse of an ideal as introduced in Exercise 6.1,
No. 1. The proof of the lemma above shows that I = O(I)pap for each
P, so we can deduce the following:

Corollary 6.6.5 Let I be a normal ideal in A. Then I711 = O, (I),II7! =
Ou(1).

Recall that an Eichler order is the intersection of two maximal orders
(Definition 6.1.1) and that is a local-global property (see Exercise 6.2, No.
2). When P € Ramy(A), there is a unique maximal order in Ap and when
P & Ramy(A), then Ap = Ms(kp) and every maximal order is conjugate
to M2(Rp). In that case, an Eichler order in Ap has level P™ if it is the
intersection of two maximal orders at distance n (see Exercise 6.5, No. 1),
and so is conjugate to

a b
{(ﬂ-"c d) | a,b,c,deRp}.

Definition 6.6.6 Let O be an Fichler order in the quaternion algebra A
over the number field k. Then the level of O is the ideal N of Ry such that
Np is the level of Op for each prime ideal P.

Theorem 6.6.7 If O is an Fichler order of level N, then its discriminant
is given by d(O) = N2A(A)2.

It should be noted that the discriminant does not, in general, characterise
Eichler orders (see Exercise 6.6, No. 6).
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In the last section, we briefly discussed principal congruence subgroups
of the group SL(2, Rp) = O for O a maximal order in the cases where P
is unramified in A. Let us now consider principal congruence subgroups at
the global level.

Definition 6.6.8 Let O be a mazximal order in a quaternion algebra A
over a number field k. Let I be a two-sided integral ideal of A in O. The
principal congruence subgroup of O is

O')={ac O |a-1c1T}.

Thus O*(I) is the kernel of the natural map O' — (O/I)*. Since O/I is
a finite ring, the group O!(I) is of finite index in O. The groups can be
described locally as

O')={acO' |a-1€IpVPecy}

For all but a finite set S of primes P, Ip = Op. If P € S, and P is
unramified in A, then Ip = 7"" Op by Theorem 6.5.3. In that case, under
the embedding O' — O%, the image of O'(I) will lie in the principal
congruence subgroup of level P*7, as described in §6.5. If P is ramified in
A, then Ip = j77Op, as described in §6.4. In the particular case where
np = 1, the corresponding subgroup of (971, under the description of the
unique maximal order given in Exercise 6.4, No. 1 is the kernel of the
reduction map Op — (Rp/mRp)* given by (% b) — a+nRp.
Theorem 6.6.9 If O is a mazimal order in a quaternion algebra A over
a number field k, there are infinitely many principal congruence subgroups
OY(I) which are torsion free.

The proof of this is left as an exercise (see Exercise 6.6, No. 7).

Examples 6.6.10

1. Consider the Bianchi groups PSL(2, O4) where Oy is the ring of integers
in Q(v/—d). Since 2cos7/n € Oy if and only if n = 2,3, these groups
can only contain elements of order 2 and 3. Thus if J is an ideal of Oy
such that (J,2) = 1 and, in addition, (J,3) = 1 in those cases where 3 is
ramified in Q(v/—d) | Q, then the principal congruence subgroup of level
J is torsion free by Lemma 6.5.6. In the notation at Definition 6.6.8, this
is the group O'(I), where O = M2(O4) and I = JM3(Oy).

2. Let k denote the cyclotomic field Q(¢), where ¢ = €2™*/P with p prime,

and let A = Ms(k). Then o = (g 491) has order p and lies in the

principal congruence subgroup of level P =< ( —1 >.



6.7 The Type Number of a Quaternion Algebra 217

Exercise 6.6

1. Let A= (%) Obtain a Z-basis for a mazximal order in A.

2. Show that the order O described in FExercise 6.3, No. 2 is mazimal.

3. Show that being a principal ideal in o quaternion algebra over a number
field is not a local-global property.

4. Let I be a normal ideal in A. Prove that (I7')~' =1.

5. Let I and J be ideals in A such that Op(I) is mazimal and Op(I) =
O¢(J). Prove that

n(IJ) =n(I)n(J). (6.11)

6. Let P be a prime ideal in Ry such that P is relatively prime to A(A).
Show the following:

(a) For every integer n > 2, there are orders in A whose discriminant is
A(A)?P?™ but they are not Eichler orders.

(b) Every order of A with discriminant A(A)?P? is an Fichler order.

7. Complete the proof of Theorem 6.6.9.

6.7 The Type Number of a Quaternion Algebra

We have already seen that when R is a principal ideal domain, then all
maximal orders in the quaternion algebra M, (k) are conjugate to Ma(R).
This does not hold in general and in this section, we determine the number
of conjugacy classes of maximal orders, which is finite. The number is
measured by the order of a quotient group of a certain ray class group over
the number field k. The proof could be couched in terms of a suitable adele
ring. We have chosen not to do this, but these adeéle rings will be discussed
and used in the next chapter. Our proof, however, will require results to
be proved in the next chapter, namely the Norm Theorem and the Strong
Approximation Theorem.

Definition 6.7.1

o The type number of a quaternion algebra A is the number of conjugacy
classes of maximal orders in A.

e IfI and J are two ideals in A, then I is equivalent to J if there exists
t € A* such that J = It.

We first establish some notation. Let O be a maximal order. The set of
ideals I such that Og(I) = O (respectively O.(I) = O) will be denoted
L(O) (respectively R(O)). Likewise, the set of two sided ideals will be
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denoted by LR(O). Note that if I and J are ideals, then so is IJ. In
particular, by Corollary 6.6.5, LR(Q) forms a group under this operation.

If we denote the set of equivalence classes of ideals in £(O) by £L(O)/ ~,
then the action of LR(O) on L(O) by I +— XI for I € L(O) and X €
LR(O) preserves these equivalence classes.

Lemma 6.7.2 IfC denotes the set of conjugacy classes of mazimal orders
in A, there is a bijection from C to LR(O)N\(L(O)/ ~, where O is a fized
mazimal order.

Proof: Denote equivalence classes of ideals by square brackets and con-
jugacy classes of orders also by square brackets. If I € £(0), let O’ = O,.(I),
which is maximal. Define 6 : £(O)/ ~— C by 6([I]) = [O']. Note that
O,(It) = t~10O't, so that 0 is well-defined. Furthermore, any pair O, 0’ of
maximal orders are linked (see Exercise 6.1, No. 2) [i.e., there exists an
ideal I such that O,(I) = 0,0,.(I) = O (e.g., OO’ will do)]. Thus € is
onto.

Now suppose 6([I]) = 6([I']) so that there exists ¢ € A* such that
tO (It~ = O.(I"). Thus O,(It™1) = O.(I'). Let J = It~ 'I'""" so that
J € LR(O). Now JI' = It~1O,(I") = It~! by Corollary 6.6.5. O

By taking norms of ideals (see Definition 6.1.3), we relate these classes to
ideal class groups of the associated number field. Thus for an ideal I of A,
n(I) is the fractional ideal of k generated by the elements n(z),z € I. Let
Ram, be the set of real places of k at which A is ramified. Thus Ram is
a formal product of places in k and the corresponding ray class group can
be defined (see §0.6). Thus in this case, let

ki ={x€k|o(xz)>0forall 0 € Ramy,}.

For two fractional ideals J; and Js of k, define J; ~o, Jo if there exists
x € kY%, such that J; = Jox. The group of equivalence classes of fractional
ideals so obtained is Iy /Py 00, Where Py o is the subgroup of I generated
by principal ideals with a generator z € k%, .

Notation This is referred to as the restricted class group of k. Note that
the restriction depends on the quaternion algebra A.

In the notation used in Definition 0.6.10, this is the ray class group
I(M) /Py (M), where M = Ram,. We denote the order of the restricted
class group by heo, noting from (0.26) that it is finite.

We turn to the computation of the type number of A via the bijection of
Lemma 6.7.2. Now the norm mapping induces a mapping 7 from £(Q)/ ~
to It/ Py by f([I]) = [n(I)]. Note that n(It) = n(I)n(t) for t € A*. If
o € Ram,,, then there exists 7, : A — H, Hamilton’s quaternions such
that o(n(t)) = n(7,(¢)). Thus o(n(t)) > 0 and 7n is well-defined.
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To show that 71 is one-to-one, we need to assume a further condition on
the quaternion algebra. This is the condition given in the statement of the
following lemma. It is known as Eichler’s condition (see Definition 7.7.6)
and it enables us to apply a result which will be proved in the next chapter,
using the Norm Theorem and the Strong Approximation Theorem.

Lemma 6.7.3 Let A be a quaternion algebra over a number field k such
that there is at least one infinite place of k at which A is unramified. Then

7 L{O)] ~— It/ Pioco
18 injective.
Proof: Let I, > € L(O) be such that n(l;) = n(lz)x for some x € kX,.
Then I;'I; is a normal ideal and n(I;'1) = n(lx)"'n(l1) = Rix (see

Corollary 6.6.5 and Exercise 6.6, No. 5). By Theorem 7.7.7, I; 'I; = O'«
where o € A* and O’ = O,(I3). Hence OI; = I,O'w, so that [} = L. O

To show that 71 is onto, we first prove the following local result, which will
be used again in the proof of the Norm Theorem in the next chapter.

Lemma 6.7.4 If A is a quaternion algebra over a P-adic field K, then
n: A* — K* is surjective.

Proof: The result is clear if A = M3(K). Thus assume that A = (%F),
where F' = K (/u) is the unramified quadratic extension of K (see Theorem
2.6.3). Now n|p = Np|g and K*/N(F*) has order 2 generated by 7. From
Theorem 0.7.13, —1 € N(F*), so that m € n(A*) since n(j) = —w. O

Now let J be a fractional ideal of k. Then Jp = Rp for almost all P
and for a finite number of P, Jp = Rpap for some ap € k3. For each of
these P choose tp € A}, such that n(tp) = ap and n(tpOp) = Rpap.
Thus for each of this finite number of primes, we have chosen an ideal I'p
such that n(Ip) = Jp. For all the other primes, choose I» = Op. Then the
ideal O is such that Op = Ip for almost all P and, hence, there exists an
ideal I’ in A such that I}, = Ip for all P by Lemma 6.2.7. Furthermore, by
counstruction, n(l’) = J.

We conclude that 7 is a bijection. It follows that £(Q)/ ~ is a finite
set, and the number of elements in it is hs,, which is independent of the
choice of maximal order. By Lemma 6.7.2 and the above results, C is a finite
set and we can calculate its order from that of £(O)/ ~ for any maximal
order O.

Now C is obtained from £(O) as the set of classes under the action of
the group LR(O) on L(O)/ ~ via

X.[I] = [X1].
Note that n(X 1) = n(X)n(I) (see (6.11)).
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Lemma 6.7.5 Let D denote the subgroup of I generated by all ideals in
Ramy(A) and I the subgroup generated by the squares of all ideals in I.
Then

n: LR(O) — DI}

is an isomorphism.

Proof: If X is a two-sided ideal of O, then Xp is a two-sided ideal of
Op. If P is ramified in A, then in the standard representation of Ap given
in §6.4, Xp = Opj™ and n(Xp) = n™Rp. If P is unramified in A, then
Xp = Opap for some ap € kj. Thus n(Xp) = o%Rp and the image
of LR(O) lies in DI2. Conversely, just as above, for each fractional ideal
J € DIZ, we can construct a two-sided O-ideal by local assignment (see
Exercise 6.2, No. 5) such that its norm is J and it is uniquely determined
(see Exercise 6.7 No. 2). O

Thus 7 induces a bijection
LR(ONL(O)] ~— I/ Py.ooDIE. (6.12)
Thus from Lemma 6.7.2, we obtain the main result on type numbers:

Theorem 6.7.6 Let A be a quaternion algebra over a number field k such
that there is at least one infinite place of k at which A is unramified. Then
the type number of A is the order of the quotient group of the restricted
class group of k by the image of the subgroup generated by the prime ideals
of k that are ramified in A and the squares of all prime ideals of k.

Corollary 6.7.7 The type number is a power of 2.

Proof: This is immediate from (6.12), as it is the order of a finite factor
group of the abelian group Iy/IZ of exponent 2. O

Corollary 6.7.8 Let O be a fized maximal order in A, where A is as given
in Theorem. 6.7.6. Then every conjugacy class of maximal orders has a
representative order O’ such that there is a finite set S of primes, disjoint
from those in Ramy¢(A), such that Op = O% for P ¢ S and d(Op,0%) =1
forPeS.

Proof: Let I be an O-ideal such that Oy(I) = O and I represents the
conjugacy class of O = O,(I), as in Lemma 6.7.2. Now for all but a
finite set S’ of primes, Op = O%. Since O’ is maximal, this finite set
S’ of exceptions is disjoint from Ramgy(A). For P € S, Ip = Opzxp for
some zp € A% by Lemma 6.6.3, so that O = 25'Opzp. Note that
d(Op,0%) = |lvp(n(Ip))|(mod 2), where vp is the normalised valuation.
Let S C S’ consist of those P such that d(Op, O%) is odd. For each P € S,
choose yp € A% so that Jp = Opyp and d(Op,y5' Opyp) = 1. Then, by
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Lemmas 6.2.3. and 6.2.5, there is an ideal J in A which locally at P € S
agrees with Jp and for P ¢ S agrees with Op. Thus Oy(J) = O and
the image of J in I/ Pk DI, ,f coincides with the image of I. Thus by the
bijection at (6.12), O,(J) is a conjugate of O'. O

Recall that the type number is a divisor of hy, which is the order of the
restricted class group Ir/ Pk, oo, and

p 2/Ram|
hoo = o " (6.13)

(R Ry k)
where h is the class number of k (see Theorem 0.6.12). It thus depends
critically on the signs of the generators of Rj, at the real embeddings.

We now discuss some examples which will be relevant in later consider-
ations.

Examples 6.7.9

1. In the cases where A = My (k), where k is a number field, then the type
number of A is the order of the quotient group Ci/ C’,(f), where 0122) is
the subgroup generated by the squares of elements in Cy, the class group
of k. In particular, taking ¥ = Q(v/—d), for d = 1,2,3,7,11, the type
number is 1, but for d = 5, 6, 15, the type number is 2. (See calculations
in §0.5.)

2. For any quaternion algebra A over k = Q(v/—d), then ho, = h, so that
the type number will then depend on the choice of primes which are
ramified in A. For example, if d = 5 and A is ramified at the two primes
over 3, then the type number will be 1, whereas if A is ramified at the
two primes over 29, the type number will be 2.

3. Let k be a cubic field with one complex place and A be ramified at the
real place. Now R} = Z @ Z; is generated by u and —1. If o denotes
the real embedding, then one of o(u) and —o(u) is positive so that
[R : Ry Nk%,] = 2. Thus hoo = h. Thus if £ has odd class number, then
A has type number 1.

4. From the above examples, we note that for k non-real, the structure
of the unit group R;, only begins to affect the type number for fields
of degree at least 4 over Q. For example, consider £ = Q(«), where
a = /(3 — v/21)/2. Then k has signature (2, 1), discriminant —1323 and
an integral basis {1, u,u?,u3}, where u = (o + o — 1)/2 (see Exercise
6.7, No. 5). Minkowski’s bound shows that every ideal class contains an
ideal of norm at most 4 and by Kummer’s Theorem and the fact that
N(a) = —3, we deduce that the class number of k£ is 1. The group of
units Ry = Z ® Z ® Z and u,u + 1 can be taken to be a system of
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fundamental units, for example, by a computation using Pari. It follows
that heo = 2 Thus if a quaternion algebra A over k is only ramified at
the real places, then its type number is 2.

5. We now consider in detail an example over a totally real field of degree 3.
Let 7 = 2cos2r/7 and k = Q(7). Thus & is a totally real field of degree
3 over Q, and has discriminant 49. Let A = (=12T). We will show that
the type number of A is 1.

Since Minkowski’s bound (see §0.5) is less than 1, the class number A of k
is 1. It is clear by Theorem 2.5.1 that A is ramified at the two real places
corresponding to the roots 2 cos4m/7 and 2 cos 67/7. Also T satisfies the
cubic polynomial 23 + 22 — 2z — 1 = 0. Thus 7 is a unit and so for any
non-dyadic prime P such that —13 is a unit in Rp, Ap splits (Corollary
0.9.6 and Theorem 2.3.1). Now modulo 13, the minimum polynomial
of 7 factorises completely as (z + 3)(z + 5)(z + 6). Thus by Kummer’s
Theorem, there are three prime ideals P;, P2 and Ps3 in Ry of norm
13. Thus A splits at P; if and only if 792 = 2%(mod P;) has a solution
(see Theorem 0.9.5). Now, again, by Kummer’s Theorem, 7+ 3 € P; so
that the congruence has a solution mod P; if and only if —3 is a square
mod 13. Thus A splits at P; and in the same way, A is ramified at Ps
and Psz. Notice that the minimum polynomial of 7 is irreducible mod
2, so that there is only one dyadic prime in k. Thus by Theorem 2.7.3,
A(A) = P,P3 and |Ram| = 2.

By Dirichlet’s Unit Theorem, R} = Z & Z& < —1 >, so that [R} :
R; N k%] cannot be greater than 4. Note that 7 and 7 + 1 are units. It
is easy to check that —1,7 + 1, —(v + 1) € k%, so that the index of the
subgroup R} Nk, must be 4. Thus ho, = 1 from (6.13) and so the type
number which divides ho, must be 1 also.

Exercise 6.7

1. Show that if O is a mazimal order in A over the P-adic field K, then
n(0*) = R*.

2. Complete the proof of Lemma 6.7.5 by showing that n is injective.

8. Let A= (‘sz;f)‘@). Find the type number of A.

4. Let O be a mazimal order in a quaternion algebra A. A two-sided integral
ideal P of a mazximal order O is called prime if whenever IJ C P for I
and J two-sided integral ideals of O, then either I C P or J C P. Prove
that P is prime if and only if it is mazimal in the set of two-sided integral
ideals of O. Deduce that LR(O) is a free abelian group, free on the prime
ideals. Describe the prime ideals in the cases where K is a P-adic field.

5. From the definition of k = Q(a) where a = /(3 —v/21)/2 given in
Ezample 6.7.9, No. 4, show that k has the properties stated (i.e., signature
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(2,1), discriminant —1323 and integral basis {1,u,u? u3} where u = (a? +
a—1)/2].

6. Lett be a complex root of x> —x%2 +x+4=0.

(a) Show that {1,t,t%} is an integral basis and that Ax = —491.

(b) Prove that h = 2.

(c) Determine the type number of the quaternion algebra over k which is
ramified at the real place and at the unique place over 3.

7. The type number determination can alternatively be carried out as fol-
lows: Let O be a fired mazimal order. For any other maximal order O,
form the order ideal Z(O,0’) of O/ONQO’ (see Exercise 6.1, No. 4). Then
assign to the conjugacy class of the mazimal order O, the ideal class of
Z(0,0'") in the group I/PyooDIE. Use a local-global argument to show
that the image of [O'] coincides with the image of n(I), with I the linking
ideal of O and O’ as described in Lemma 6.7.2.

6.8 Further Reading

The general theory of ideals in central simple algebras over an algebraic
number field is the subject of the book by Reiner (1975) entitled Mazimal
Orders. Virtually all the results in this chapter are to be found in Reiner
(1975) as special cases and although he is obviously dealing with a more
general situation than the four-dimensional one, considerable parts of the
methodology used in this chapter have their counterpart in this book. This
applies in particular to the localisation methods, local results, the discus-
sion of discriminants and local-global techniques. Much of this can also be
found in Deuring (1935), and various parts in Weil (1967), Pierce (1982)
and O’Meara (1963).

For ideals and orders in the particular case of quaternion algebras, the
theory has been thoroughly developed in Vignéras (1980a). Much of it
is given a strong adelic flavour there and that will emerge again in the
next chapter. In the main, in this chapter and subsequently, we consider
maximal orders only, whereas in Vignéras (1980a), many results are set
in the more general context of Eichler orders. See also Eichler (1937) and
Eichler (1938b). For results over local fields, see Serre (1962). The tree of
maximal orders is fully explored in Serre (1980).

The discussion of the norms of ideals in Reiner (1975) proceeds via the
Invariant Factor Theorem, which is mentioned in Exercise 6.1, No. 4. A
proof of this theorem can be found in Curtis and Reiner (1966). We also
note here differences in the definition of the discriminant of an order. The
definition given in this chapter coincides with that given in Reiner (1975),
which turns out to be the square of that given in Vignéras (1980a). The
filtration and its application to Kleinian groups discussed in §6.4 is due
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to Neumann and Reid (1992a). Normalisers of maximal and Eichler or-
ders, which are touched upon in this chapter, will have a significant role
subsequently in Chapter 11 which follows the methods in Borel (1981) in
discussing maximal arithmetic Kleinian and Fuchsian groups. Type num-
bers for Eichler orders as well as maximal orders are obtained in Vignéras
(1980a).

Principal congruence subgroups play a crucial role in the study of Bianchi
groups and their related automorphic functions and forms (see Elstrodt
et al. (1998)). In the context of arithmetic Fuchsian and Kleinian groups,
they are discussed in Vignéras (1980a). The resuits on torsion in these
subgroups, as described in Lemma 6.5.6, hold more generally in n X n
matrix groups and stem from results of Minkowski over Z. See Newman
(1972) and the discussion in Vinberg (1993b).
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Quaternion Algebras II

One of the main aims of this chapter is to complete the classification the-
orem for quaternion algebras over a number field by establishing the ex-
istence part of that theorem. This theorem, together with other results in
this chapter, make use of the rings of adeles and groups of idéles associ-
ated to number fields and quaternion algebras. These rings and groups and
their component parts are locally compact groups so that some aspects
of their Haar measures, duality and abstract harmonic analysis go into
this study. The results on adéles and ideéles which are discussed here are
aimed towards their application, in the next chapter, of producing discrete
arithmetic subgroups of finite covolume. They will also enable us to make
volume calculations on arithmetic Kleinian and Fuchsian groups in sub-
sequent chapters. For these purposes and other applications subsequently,
there are two crucial results here. One is the Strong Approximation The-
orem, which is proved in the last section of this chapter. The other, which
is central in subsequent results giving the covolume of arithmetic Fuchsian
and Kleinian groups in terms of the arithmetic data, is that the Tamagawa,
number is 1. The Tamagawa number is the volume of a certain quotient
of an idele group measured with respect to its Tamagawa measure. The
Tamagawa measures can be invariantly defined on the local components of
the rings of adeles and groups of ideles and these are fully discussed here.
The relevant quotients are shown to be compact and so will have finite
volume. The proof that the Tamagawa volume, which is, by definition, the
Tamagawa number, is precisely 1, is not included.
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7.1 Adeles and Ideles

We recall the notation of §0.8 where these were first introduced. Thus
Q(= Q(k)) denotes the set of all places on the number field k, Qs the set
of infinite places and s the set of finite places. The groups of adeles and
ideles we consider are restricted products over §2. Thus for each v € €2, there
is a locally compact group G, and for all v not belonging to a finite set,
which always contains 2, there is a designated compact open subgroup
C, of G,. Then the adele group

Gyq= {:v = (x,) € HG” | z, € C, for almost all v}

and it is topologised by taking, as a fundamental system of neighbourhoods
of the identity, the restricted product [[U,, where U, is a neighbourhood
of the identity in G, and U, = C, for almost all v.

Let k£ be a number field with ring of integers R. Then for each v, k, is
a locally compact field and for each finite v = P, R, is an open compact
subring. (See Theorem 0.8.1.)

Examples 7.1.1

1. Take G, = k, for all v, regarded as an additive abelian group and
Cy = R, for each v &€ Q. Then we denote the associated ring of adeles
by k.. (See §0.8.)

2. Take G, =k, for all v and C, = R}, for each v ¢ (2. Then, as we noted
in Corollary 0.8.2, R} is an open compact subgroup and we can form the
group of ideles k%. As noted earlier, the topology on k% is the induced
topology obtained by embedding k* in k4 X ka4 via z — (z,271). (See
Exercise 0.8, No. 4.)

Now let us take A to be a quaternion algebra over £ and O an order in
A. As in Definitions 2.7.1 and 6.2.6, let A, = A ® k, and, for v € Q,,
O, =0®grR,.

3. Take G, = A, for all v with its additive structure, and C, = O, to form
the adele ring A4 (see Exercise 2.6, No. 2). We have assumed here that
O is an R-order, but choosing S D (2, the S-arithmetic ring

Rs = {z € k| z is integral at all v ¢ S}

is a Dedekind domain with field of fractions k. Taking O to be an Rg-
order in A, a ring of adeles can again be defined.

4. Take G, = A} and for v & Q, C, = O. Then G, is locally compact
and for v & Qu,, OF is a compact open subgroup (see Exercise 7.1, No.
1). This yields the idéle group A%.
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5. Take G, = A},, the elements of norm 1 in A, and for v € Q,, C, = (’)11,,
thus obtaining AY.

All these examples can be considered as special cases of the general situ-
ation where G is an algebraic group defined over k. Then, in essence, GG,
are the points of G with values in k, and C, are those with values in R,
for v € Qeo.-

There are obvious morphisms between adéle and idele groups defined
over the set of places Q of a number field. These will be defined by local
homomorphisms f, : G, — G such that, for all but a finite number of
places which includes Qoo, f,(Cy) C Ci. Thus for example, the reduced
trace will define a morphism t4 : A4 — k4, as will the reduced norm
ng: A% — k% by Lemma 2.2.4.

The first example, k4 above, can be extended to a finite-dimensional
vector space E over k. Thus let £ = {e1,e2,...,e,} be a finite set of
elements of E which contains a basis of E over k. For each v € €, let
E, = E® ky, and for v € Qu, let &, denote the R,-submodule of F,
spanned by £. We can thus form E 4, which will be a module over k4. Notice
that if we choose a different set £’, then for all but a finite number of v,
&y = &, (see Exercise 7.1, No. 3), so that, topologically, E 4 is independent
of the choice of elements in £. In particular, if £ is a basis of E over k,
then E4 = k7, where m = dimy, E. This also occurs in the example of A 4
above, which will be independent of the choice of order O in A.

Now suppose that L is a finite field extension of the number field k. Thus
the adele ring L 4 can be formed as in Examples 7.1.1, No.1. However, L is
also a finite-dimensional vector space over k so that, as above, the additive
adele group, which we denote by (L | k)4, can also be constructed with
respect to any set of elements £ of L containing a basis of L over k. Thus

La= {x = (zw) € HLw | we Q(L), zy € (RL)w for almost all w},

(L|k)a= {y = (yv) € H(L | &)y | v e Qk),yn € E for almost all v} .

Theorem 7.1.2 The additive adéle groups as described above are topolo-
gically isomorphic.

Proof: Note that (L | k), = L ®k ky = [] Lw, where this is the finite
product over the places w of L such that w | v (see §0.8). Denote this
isomorphism by ®,. Now choose £ C L such that Ry, is the Ry-span of £.
Then ®, maps &, onto the product Hw|v(RL)w and ® : (L | k)a — La
defined locally by ®, gives the required isomorphism. O

This result enables results on adeles over number fields to be deduced from
results on adéles over Q. Note also that traces and norms can be used to
define maps from L4 to k4 and L% to k%, respectively (see Exercise 7.1,
No. 4).
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Theorem 7.1.3 Let k be a number field and E a vector space of finite
dimension over k. Then E is discrete in E4 and E4/E is compact.

Proof: If [E : k] = n, then it suffices to prove the result for E = k since
E 4 =2 k7. However, by Theorem 7.1.2, we need only show that Q is discrete
in Q4 and that Q4/Q is compact.

Let Q) = {a/p™ € Q | m > 0,a € Z} so that Qp = Qw + Zp and
Q® N Zyp, = Z. Consider the open subring A, = R x Hp Zy, of Q4. Clearly
QNAy = Z. We now show that Q4 = Q+Aw. Suppose that z = (z,) € Qu
and let S be a finite subset of ¢ such that z, € Z, forp g€ S. For p € S,
let z, = z), + & with & € Q) and z, € Z,. For p € Qs \ S, xp =z, € Zp
and in these cases, let £, = 0. Let { = Y_§, € Q and y = z — & Thus
y = (y») and for each prime p,

yp:xp—ﬁp—zg,/:x;—ZSP/GZP.

p'#p p'#p

Thusy € A, and z € Q+ Ao.

Now let I =[-1/2,1/2] C R and C = I X [], Zp. Note that CNQ = {0},
Ay = C+Zso that Q4 = Q+ C. Thus the result follows since C contains
an open neighbourhod of zero and C' is compact. O

In this theorem, where F is discrete in E 4, this is, of course, the image
of E in the adeéle group E 4. To emphasise this, we frequently adopt the
following;:

Notation In the situation described in this theorem, let Ej denote the
image of E in F 4.

We should remark, however, that we usually avoid the peculiar notation
ki, and simply denote the image of k in k4 by k.

Exercise 7.1

1. Let A be a quaternion algebra over k and let O be an order in A. Let P
be a prime ideal of Ry. Show that O is a compact open subgroup of A% .
(See Ezercise 2.6, No. 2.)

2. Show that the topology on A% is that induced by embedding A% in
Aa X Ay viaz— (x,071).

3. Show that if £ and &' are as described in this section, then for all but a
finite number of v € Qf, & =&,

4. Let k be a number field and let L be a finite field extension of k. Let
K be a field containing k and let L = L ® K. Show that the norm Np
admits an extension to N : L — K. Hence show that Np; extends to a



7.2 Duality 229

norm N : La — ka so that, if ¢ = (xy) € L4, then N(x) = y, where

Y= (yYo) € ka with y, = lev Np, k. (Tw)-
Formulate and prove a similar result for the trace.

7.2 Duality

Since all the groups occuring in the adeles and ideles we have described are
locally compact and many of them are abelian, the basic ideas of duality,
Haar measures and harmonic analysis can be applied to them.

Let H be a locally compact abelian group. Then the dual group H is the
group of all characters on H; that is, continuous homomorphisms x : H —
T, the multiplicative group of complex numbers of modulus 1. Pointwise
multiplication is the operation on H and it is endowed with the topology of
uniform convergence on compact sets. In the sequel, we will make regular
use of the following basic results.

Theorem 7.2.1
1. The dual group H is also locally compact abelian.
2. The dual offl 18 topologically isomorphic to H.
8. The group H is compact if and only if the group H is discrete.

In addition, we will make use of the following results on duality for sub-
groups of the locally compact abelian group H.
Let K be a closed subgroup of H. The annihilator K, of K is defined to
be
K, = {x € H | x is trivial on K}.

Note that K, = }7}?( , so that K is discrete if and only if H/K is compact.
Furthermore, regarding H as identified with the dual of H, then K is the
group (K.).. Thus K is isomorphic to the dual of bil /K. and K is discrete
if and only if H/K, is compact.

Example 7.2.2 For a P-adic field K, R, the ring of P-adic integers, is
open and hence closed. Furthermore K/R is discrete so that R., in the
above notation, is compact.

We are going to make use of these notions, first in additive groups of
local fields, quaternion algebras over local fields and the associated adele
rings. If H denotes any one of these and x € H, then for any a € H, we
define x, € H by

Xa(z) = x(az), z¢€ H. (7.1)
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It turns out that, in the cases described above, there is a non-trivial char-
acter 1 such that all characters x are of the form 1, for some a € H. The
proof of this and some of its consequences will occupy the remainder of this
section. In later sections, it will be seen that this leads to a self-duality of
Haar measures.

First let us consider local fields and quaternion algebras over local fields,
all denoted by H. Recall that all of the local fields we consider are finite
extensions of R or Q,, for some prime p. A specific character will now
be chosen for each local field and referred to subsequently as a canonical
character.

o Let H =R and define 9, (z) = e~ 272,

e Let H = Q, and define 9,(z) = €2™<*>  where (z) is the unique
rational in the interval (0, 1] of the form a/p™ such that = — (z) € Z,,.

o If H = K is a field which is a finite extension of Q, or R, let T =
Tk : K — Qp, or R denote the trace of the field extension. If H
is a quaternion algebra over K, then Ty : H — @Q, or R is the
composition of the reduced trace with Tk. The canonical character
Yy is then defined to be Yy = 9, o Ty or ¥ 0 Ty according to
whether H contains , or R.

Theorem 7.2.3 Let H be a finite extension of Qp or R or a quaternion
algebra over such a finite extension. Then a — tbq, where ¢ is the canon-
ical character, defines a topological isomorphism H — H. Furthermore,

’l/)H(Rp) =1 ZfH = Kp and ’(/)H(Ofp) =1 ZfH e Ap.

Proof: We give the proof in the P-adic case only, the real case being
similar. Note that ¢,(Z,) = 1. Also, using a Z,-basis of Rp or Op, the
trace mapping restricted to Rp or Op has its image in Z, and the last part
follows.

We first prove the result in the case of Qp; so, suppose x € @p and x(1) =
e?™ where we assume h € (0,1]. Now x(p") = x(1)*" = €*>"**", Since
{p"} is a Cauchy sequence converging to 0, hp™ must eventually be integral.
Thus h = a/p™ and ¢p(h) = x(1). Then x(q) = ¥p(hq) for all rationals g
and since Q is dense in Qp, x(z) = ¥p(hz) for all x € Q,. It follows that
for 1 = 1, the mapping a — v, is an isomorphism. Now Ker ¢ = Z,, so
that the restriction to Z, — Z,, between compact subgroups is necessarily
a topological isomorphism. The result now follows for Q.

Now consider the general case with {e1,ez,... ,en} a basis of H over Q.
For x € H,x(3 zse;) = [] x(zies). Then x; defined by x:(x) = x(ze;) are
characters on Qp. Thus x; = ¥, for ¥ = ¢, and some h; € Qp. Define
a; € Qp by [a;] = T7[h;], where T = [Ty (e;e;)]. Finally, let a = 3 ase;.
Then x = v, where ¥ = ¥y and, again, a — ¥, defines a topological
isomorphism. O



7.2 Duality 231

We now want to show a similar property for the adele rings of number
fields and quaternion algebras over number fields, using a character which is
a product of local canonical characters. Suppose more generally that G 4 is
an adéle or idele group as described in this chapter and x 4 is any character
on G 4. Then by restriction, this defines characters x, on the groups G, so
that for z = (z,),

xa(z) = H Xo(Tv)-

For x to be a character on an infinite product of compact sets, it is necessary
and sufficient that x is trivial on almost all of them. Thus the group of
characters on G 4 is isomorphic to the group (x,), where x, is a character
on G, such that x,(C,) = 1 for almost all v.

Notation Results and proofs in this chapter frequently consider a number
field and a quaternion algebra over a number field together. We use X to
denote either a number field k or a quaternion algebra A over a number
field k. The corresponding adeéle ring is thus X 4 and X embedded in X 4
is denoted Xg.

We return to considering the characters of X 4. If v € Qy, then in the
topology on X,, those characters which are trivial on C,, = R,, or O, form
a compact subgroup C,, (see Example 7.2.2). Thus the group of characters
X 4 is also a group of adeles over Q = Q(k).

Furthermore, defining v = ¢4 by

wA = H¢v (7‘2)

where v, are canonical characters then defines a character on 5(; by The-
orem 7.2.3.

Theorem 7.2.4 Let X denote a number field k or a quaternion algebra
over a number field and let 1) = 1Y 4 be the character on X 4 defined above.
Then a — 1, is a topological isomorphism X4 — X 4 and maps X onto
Kiow-

Proof: Let us use C, to denote the compact subrings R,, O, in X, when
v is a finite place of k.

Let x € X4 and z = (z,,) € X 4. Then x(x) = [[ xv(xs), where x, (Cy) =
1 for almost all v. By Theorem 7.2.3, x,,{xy) = ty(ayvx,) for some a, € X,.
When X = Q, then Ker ¢, = Zj, so that if x,(Zp) = 1, then a), € Zp. In
the other cases, the determinant of the matrix 7" described in that theorem
will be a unit for almost all v and so ¥, (a,C,) = 1 for almost all v implies
that a, € C, for almost all v. Thus a = (ay) € X4 and a — 1, is a

continuous bijective map X 4 — X 4.
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To show that its inverse is also continuous, we first consider the basic
case where X = Q. Then %, restricted to Q embedded in Q 4, is trivial (see
Exercise 7.2, No. 2).

Thus, under the mapping a +— ¥,, Q maps to Q,. It will now be shown
that Q maps onto Q.. Suppose ¥p € Q. for some b € Q4. Recall from
Theorem 7.1.3 that Q4 = Q+C where C = I x[[Z, with I =[-1/2,1/2].
Thus b = £ + ¢, where £ € Q and ¢ € C. Hence 9, € Q.. Let ¢ = (¢;,) so
that ¢, € Z, for each prime p. Thus

1= (1) = 9(c) = hoo(Coo) = €720,

Thus ¢ = 0 and . is trivial on A, = R X [[Z, and so on Q4. Thus
c=0and bcQ.

Now, by Theorem 7.1.3, Q is discrete in Q4 and Q4/Q is compact.
Thus, by duality, Q, is discrete in @ and @/Q* is compact. Thus the
map a — 1Y, induces a bijective map

Qi Q4

Q Q.

which must be a homeomorphism, as they are compact. The discreteness
of Q in Q4 and of Q. in @: then shows that the bijective map Q4 — @;
has a continuous inverse. Thus the theorem is established in the case where
X =Q.

We now use a bootstrap argument to deduce the general case. Thus for
k = Q, we have an isomorphism k4 — la induced by the non-trivial char-
acter ¢. Let F be a finite-dimensional vector space over k and let E’ denote
its algebraic dual. Then the above isomorphism induces an isomorphism
E/y — E 4 given by

f=(fo) = x=(es = Yu(fu(er)))-

Here ¢, = 1, or 9. It is straightforward to show that this isomorphism
is trivial on Ej, and maps E;, onto E,.

Now suppose that E = L a finite field extension of k and A: L — k is a
linear map which we take to be A = tr = T. Thus the vector space (L | k)
and its algebraic dual (L | k)’ can be identified via z +— (y — A(zy)). Then,
as noted earlier, A extends to a mapping A : L4 — k4 and also to give an
identification (L | k)4 — (L | k)4 in the notation used above. Now 1 o A
is a non-trivial character which, via the identification ® of Theorem 7.1.2,
is the character 14 on L 4. Using all these identifications, the mapping
a :&p A)a is just the isomorphism described above between (L | k)’4 and

(L | k)4 so that it maps L onto L,.
A similar argument now applies to quaternion algebras over L to get the
complete result. O
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Corollary 7.2.5 Xy is the dual of X 4/ Xk.

Proof: The above proof shows that X 4/ X}, is topologically isomorphic to
X 4/ Xk, and by duality, the dual of this space is X;. O

Corollary 7.2.6 (Approximation Theorem) For every place v, Xy +
X, is dense in X 4.

Proof: Let x € X’; and suppose x is trivial on Xj. Thus x € Xk, and so
X = Ya, where a € X by the theorem. However, if x is also trivial on X,
then ¢, (az,) =1 for all z, € X,. Thus a = 0 and so yx is trivial. O

Exercise 7.2

1. Let x be a character on Qp such that x(z) =1 for all x € Zy, and if
x(zy) =1 for all y € Zp, then x € Zy. Show that x(x) = Yp(azx) for all
x € Qp and some a € Zj,.

2. Let Y = 1p4 be the canonical character on Q4 defined at (7.2). Show
that i restricted to Q embedded in Q4 is trivial.

3. Let H denote a P-adic field K or a quaternion algebra over K. Show
that any mazimal compact subgroup of H* is of the form B*, where B is a
maximal order in H.

4. Show that every totally real field admits a quadratic extension which has
ezactly one complex place.

7.3 Classification of Quaternion Algebras

If A is a quaternion algebra over a number field k, we have already shown,
using the Hasse-Minkowski Theorem, that the isomorphism class of A is
determined by the finite set of places at which A is ramified (see Theorem
2.7.5). Furthermore, this set of places must be of even cardinality, as was
shown in Theorem 2.7.3 using Hilbert Reciprocity. In this section. we com-
plete the classification theorem for quaternion algebras over a number field
by showing that for any finite set of places of even cardinality, excluding the
non-real Archimedean places, there is a quaternion algebra with that set
as its ramification set. We also establish a number of equivalent conditions
for a quaternion algebra to split over a quadratic extension of the field of
definition.

For all this, we recall the description of a quaternion algebra A as a
four-dimensional central algebra over k with a two-dimensional separable
extension L of k and an element 6 € k* such that A = L+ Lu, where u? =0
and uf = fu for all £ € L with £ the L | k conjugate of £ (see Exercise
2.1, No. 1). Furthermore, A splits over k if and only if 6 € Ny, (L*) (see
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Theorem 2.3.1). This also holds locally and since we know that A splits
over k if and only if A, splits over k, for each v € (k), then the norm
theorem for quadratic extensions follows (see Exercise 2.7, No. 4)

Theorem 7.3.1 If L | k is a separable quadratic extension and 8 € k*,
then 6 € Npji(L*) if and only if 0 € N |, (L), where L, = L ® k.

The algebra A defined by {L, 8} as above will thus be ramified at precisely
those places v where 0 fails to be a local norm and the number of such
places must be even. To study this further, consider the norm extended to
the group of ideles (see Exercise 7.1, No. 4).

Theorem 7.3.2 Let L | k be a quadratic extension of number fields and let
N : L — k% denote the extension of the norm. Then [k% : k*N(L%)] = 2.

Proof: Let x be a character on k% which is trivial on k*N(L%). Re-
call that x = (x») and for each v, x2 = 1 (see Exercise 7.1, No. 4
and Theorem 0.7.13). Thus x? = 1. Now E*N(L%) = MNyeaZy, where
Zy = Ky N {k*N(L3) 1,4, %.,} and since each Z, is closed in K7}, so
is k*N(L%). Thus [k% : k* N(L%)] < 2.

We now show how to conmstruct elements which lie in k% but not in
k*N(L%). These elements will also be used subsequently. Let v be such
that £, = L ® k, is a field.

1 fws#w

uy where u, € N(L}) if w=w. (7.3)

iy = (Tw) where z,, = {
If 4, € kK*N(L%), then there would exist an element z € k* such that,

locally, z fails to be a norm at exactly one place. This contradicts Theorem
7.3.1 and the remarks following it, so that 4, & k*N(L%). O

It has already been seen that the splitting of a quaternion algebra over
a number field is a local-global condition (see Theorem 2.7.2) and that if a
quadratic extension of the defining field embeds in the quaternion algebra,
then it splits over that quadratic extension (see Corollary 2.1.9). We now
give a number of necessary and sufficient conditions for the splitting of a
quaternion algebra over a quadratic extension.

Theorem 7.3.3 Let A be a quaternion algebra over a number field k and
let L | k be a quadratic extension. The following are equivalent:

1. L embeds in A.
2. A splits over L.

8. L ®y ky is o field for each v € Ram(A).
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Proof: 1 = 2is Corollary 2.1.9.
2= 8 If L ®, A= My(L), then L, ®, (L ®¢ A) = Mz(L,,) for every
w € Q(L). Let w | v, where v € (k). Then

Ly, ®p (L &k A) ¥ Ly, g, (ky ®r A).

Now L ®x k, = lev L., which is a field if and only if the embedding
ky, — Ly is not an isomorphism. Thus if v € Ram(A) and L ®y k, is not a
field, then L., ®, (k, ®k A) is a division algebra. This contradiction shows
that 2 = 4.

3 = 1. By Theorem 7.3.2 and the fact that Ram(A) has even cardinality,
we can choose 6 from

oo ] N
veRam(A4)

where i, is defined at (7.3). Now the quaternion algebra A’ over k defined
by {L,0} is ramified at exactly those places where 6 fails to be a local
norm [i.e., at exactly the places in Ram(A)]. However, A and A’ are then
isomorphic. Thus L, which embeds in A’, embeds in A. O

Finally, we establish the full classification theorem for quaternion algeb-
ras over a number field. This involves showing the existence of quaternion
algebras with prescribed ramification sets which firstly requires the exist-
ence of quadratic extensions of the base field with prescribed properties.

Lemma 7.3.4 Let K be a local field and let L = K(t) a separable quadratic
extension so that t satisfies the minimum polynomial X2 —tr ()X +N(t). If
a and b are close enough to tr (t) and N(t), respectively, then the polynomial
X? —aX + b is irreducible over K and has a root in L.

Proof: If K = R, the discriminant tr 2(t) — 4N (¢) < 0 and, hence, a? — 4b
will also be < 0, and the result follows.

Now suppose K = kp, some P-adic field, and denote the valuation of z
in K or its extensions by v(z). There exists an extension M of K which
contains a root u of X? —aX +b= 0. Now v(a) and v(b) are bounded, say
by A, and from u? = au — b, it follows that v(u) < A. Recall that t and ¢
are the roots of the minimum polynomial of ¢. Now

(u—t)(u—1) = (a—tr(t))u—(b-N()).

Thus v((u — t)(u — £)) can be made as small as we please by choosing
a and b close enough to tr(t) and N(t), respectively. Now ¢ # t so by
making the above product small enough, we can obtain v(u — t) < ¢ and
v(u — ) > e. Now suppose [K(u,t) : K(u)] # 1, so that there would
be a K-automorphism 7 such that 7(u) = u and 7(¢) = £. However, that
contradicts the above inequalities. Thus ¢ € K (u) and since [K (u) : K] < 2,
K(u)=K(t). O
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Theorem 7.3.5 Let k be a number field and let S be a finite set of places
of k such that, for each v € S, there is a quadratic field extension L, of k,,.
Then there ezists a quadratic field extension L of k such that L @y k, = L,
for each v € S.

Proof: Let wbe aplace of k, w € S. Then by the Approximation Theorem
(Corollary 7.2.6), k + k,, is dense in k4. For each v € S, let L, = ky(ty)-
Then we can find a,b € k close to tr (¢,) and N(¢,) for each v € S. The
quadratic £2 — az + b then defines a quadratic extension field L of k such
that L ®g k, = k,(t,) for each v € S as required. O

This enables us to complete the proof of the classification theorem which,
for completeness, we state in full.

Theorem 7.3.6 Let A be a quaternion algebra over the number field k
and let Ram(A) denote the set of places at which A is ramified. Then the
following hold:

1. Ram(A) is finite of even cardinality.

2. Let Ay, Az be quaternion algebras over k. Then A; =2 As if and only
if Ram(A;) = Ram(A4,).

3. Let S be any finite set of places of Q(k) \ {non-real places in Qoo }
of even cardinality. Then there exists a quaternion algebra A over k
such that Ram(A) = S.

Proof: Parts I and 2 were established in §2.7, so it remains to prove Part 3.
Let S = {v1,vs,...,v2-} be a set of places as described in the statement.
Then each such k,, admits a quadratic extension field L,,. By Theorem
7.3.5, there exists a quadratic extension L | k such that L ®k ky, = Ly,.
Now as in Theorem 7.3.3, choose 8 € k* N Hf;l iy; N(L%), where the
iy, are defined at (7.3). Then € fails to be a norm locally at precisely
the places v; and so the quaternion algebra A determined by {L,8} has
Ram(A) = {v1,vs,..., v} as required. O

The first two parts of this theorem were sufficient when quaternion algeb-
ras were used as commensurability invariants for Kleinian groups of finite
covolume as described in Chapters 3 to 5. However, as is shown in the
next chapter, arithmetic Kleinian groups and arithmetic Fuchsian groups
are constructed using quaternion algebras over number fields. For that, the
third part of this theorem, the existence part, is crucial.

Exercise 7.3

1. Show that for any quaternion algebra A over Q, there is a Hilbert symbol
of the form (:5—‘1>, where p is a prime and q € Z.
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2. Show that for any number field k, the number of quaternion algebras A
over k such that Ny g(A(A)) is bounded is finite.

8. Let A be any quaternion division algebra over k. Show that there ez-
ist infinitely many quadratic extensions L | k such that A ®y L is still a
quaternion division algebra (cf. Fzercise 2.7, No. 2).

4. Let A be a quaternion algebra over a number field k and let L | k
be a quadratic extension. Show that there are infinitely many quaternion
algebras A’ over k such that A’ @, L = AQy L.

The remaining exercises concern the structure of the subgroup of the Brauer
group corresponding to quaternion algebras.

5. Show that for any pair of quaternion algebras over the number field k,
there exists a quadratic extension of k which embeds in both.

6. Show that if the quadratic extension L | k embeds in the quaternion
algebras A1 and Ao over k, then there exists a quaternion algebra B over
k such that

Ay Qf Az = My (k) ® B. (7.4)
(¢f. Ezercise 2.8, No. 5).
7. If Ay, As and B are as at (7.4), show that
Ram(B) = (Ram(A;) URam(43)) \ (Ram(4;) N Ram(A,)).

8. Show that the set of elements of the Brauer group Br(k) of the form
[A], where A is a quaternion algebra over the number field k, is a subgroup
of Br(k).

7.4 Theorem on Norms

In the last chapter, we used the Theorem on Norms to describe the type
number of a quaternion algebra over a number field in terms of a restricted
class group of the field k. We now prove that theorem.

We continue the notation of earlier sections. Thus

kX, ={x €k|o(x)>0forall 0 € Ramy(A)}. (7.5)

Note that, k%  depends on the quaternion algebra A over k and not on k
alone.

Theorem 7.4.1 (Theorem on Norms) Let A be a quaternion algebra
over the number field k. Then kX, = n(A*).
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Proof: Let a € A* and v = ¢ € Ramy, (A). Then v(n(a)) = ny(iy(a)) >0
where i, : A — A, &2 H.

Conversely, let z € k% . For each v € Ramy(A), there exists z, € A,
whose norm is 7, by Lemma 6.7.4. Now A is dense in A, and any element
of A close enough to 2, will have norm a uniformiser of k,. Thus by the
Approximation Theorem, we can choose z € A such that ' = zn(z) € kX,
and 2’ is a unit in R} for v € Ramy(A).

Now if v € Ramy,(A), let L, = C and if v € Ramy(A), let L, be the
quadratic unramified extension of k,. Then for all v € Ram(A), there
exists ¥, € L, whose norm is =’ (see Theorem 0.7.13). The minimum
polynomial of y, has the form X2 —a, X +z'. Again, by the Approximation
Theorem, choose a € k close enough to each a,,v € Ram(A), such that
the polynomial X? — aX + ' defines a quadratic extension L = k(y) with
L ®k ky = L, as in Lemma 7.3.4. However, by Theorem 7.3.3, L embeds
inAandn|L=Npg. Son(y)=2". O

Exercise 7.4

1. Show that if A is a quaternion algebra over a field k of characteristic
0, then A' = [A*, A*], the commutator subgroup of A*. If k = K, a P-adic
field, show that every character xa on A* is of the form xa = Xk o n,
where xk s a character on K*.

2. If A is a quaternion algebra over a number field k, show that k* /n(A*)
is an elementary abelian 2-group of rank at most ri. Show furthermore,

that for every s, 0 < s < ry, there is a quaternion algebra A such that
k*/n(A*) has order 2°.

7.5 Local Tamagawa Measures

So far, topological results on adéle rings (Theorem 7.2.4 and its corollar-
ies) have been used to obtain the full classification theorem for quaternion
algebras over number fields and the Theorem on Norms of elements in qua-
ternion algebras over a number field. These made use of the topological
duals of the locally compact abelian groups given by the additive struc-
tures of the local fields, quaternion algebras and adéle rings. These will
also support Haar measures and this will be exploited. Indeed we will ob-
tain specific volume information which requires consistent normalisation of
the Haar measures employed. This will be carried out first for these additive
structures and then extended to the associated multiplicative structures.
As earlier, all local fields are P-adic fields or extensions of the reals, and
the blanket notation H will be used for either a local field K or a quaternion
algebra A over K. When R ¢ H, we will also use B for a maximal order
in H, so that B = R, the P-adic integers when H = K, B = O, the
unique maximal order in A when A is a quaternion division algebra and
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B = M3(R) or a conjugate, when A = M>(K). In all of these P-adic cases,
let ¢ = |R/mR|, the order of the residue field.

Let G be a locally compact group and p a Haar measure on G. Any
automorphism « of G transforms u to a Haar measure u® where

/ £(g) dulg) = / f(a(g)) du(g)
G G

for any measurable function on G. Thus for any measurable subset B of G,
p*(B) = cu(B), where the positive constant ¢ depends only on «. Then ¢
is called the module of a.

When H = K or A as above and & € H*, left (or right) multiplication
defines an automorphism of the locally compact additive group H.

Definition 7.5.1 The module of the automorphism induced by x € H* s
called the module of x and denoted by ||| a.

It follows easily that ||z||g = || and ||z|c = |z|*. When R ¢ H and B is a
maximal order in H, then ||z||gu(B) = u(zB) so that ||z||g = o(B/zB)~L.
Thus, in keeping with earlier notation, we define the norm of z, Ny (x), to
be ||z|| 5", and note that N (z) is equal to the norm of the ideal z13. When
H = K, zR is a fractional ideal and when H = A, O is a normal ideal
(see Definition 6.1.2).

Initially, Haar measures on H and H* are normalised as follows.

Definition 7.5.2

e The additive Haar measure on H = R is Lebesgue measure, denoted
dz. If H D R, let Ty be as defined in §7.2 and choose an R-basis {e;}
of H. Then for x = z,e; € H, the additive Haar measure dry is
given by

dryg = Idet(TH(eiej)|1/2 Hdmi.
The multiplicative Haar measure on H*, denoted dx3;, is given by

mutiphcative
dayy = ||zl 7 dz.

e IfR ¢ H, the additive Haar measure on H, dzgr, is chosen such that
the volume of a maximal order B is equal to 1. The multiplicative
Haar measure on H*, dz; is (1 — ¢~ 1) z|| 7 dz .

Lemma 7.5.3 When R ¢ H, the volume of B* with respect to the multi-
plicative Haar measure is given by the following formulas:

(a) Vol(B*) =Vol(R*)=1if H=K.

(b) Vol(B*) = Vol(O*) = (1 — ¢~ 1)~} (1 — ¢72) if H = A is a quaternion
division algebra.
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(c) Vol(B*) =Vol(GL(2,R)) =1—q 2 if H= A= Mx(K).
Proof: When H = K, for the additive measure,
Vol(R*) = Vol(R) — Vol(rR) =1 — ||z =1 = N(m)"' =1 - ¢ .
When H = A, a quaternion division algebra,
Vol(0*) = Vol(0) = Vol(0j) =1~ [ljl =1 - N =1-¢""

(see §6.4). In these two cases, for x € B*, ||z|| = 1, so the result follows for
the multiplicative measure.

When H = My(K), the residue map R — K induces a surjection
GL(2, R) — GL(2, K) whose kernel is the principal congruence subgroup
of level 7R [i.e., I + wM2(R)]. For the additive measure, this has volume
= Vol(mR)* = ¢q~*. Since the order of the finite group GL(2, K) is (¢ —
1)(¢? — q), the multiplicative volume of GL(2, R) is thus ¢~ 4(¢% — 1)(¢®> —
O(l-¢ ") '=1-¢2 O

For the Archimedean cases, see Exercise 7.5, No 1.

To normalise the measures on H in a uniform manner, we make use of
the Inversion Theorem for Fourier transforms, which we now recall. If G is
a locally compact abelian group with Haar measure dz, then the Fourier
transform f of a function f € LY(G) is defined on G by

f(@) = /G f (@), #)dz

where, as is usual, < x,Z > denotes the value at = of the character £. The
Inversion Theorem then shows that there is a normalisation of the Haar
measure on G, d'%, such that the inverse Fourier transform of f is again f,
that is,

f@) = [ i@ s
Now let G be the additive group of H so that H is isomorphic to its
topological dual via the isomorphism z +— (y +~ g (zy)) given by the
canonical character ¢y (see Theorem 7.2.3). Thus the Fourier transform f
of the function f can be defined on H via

f@) = /H F@)on(ey) dy

where dy is the additive Haar measure on H defined above. Then the nor-
malised dual measure d'y is also defined on H and the Inversion Theorem
yields

flz) = /H F @)y (—ya) d'y.

There will thus be a normalisation of the Haar measure dz such that it
coincides with this normalised dual measure d’z.
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Definition 7.5.4 The Tamagawa measure on H is the additive measure
on H which is self-dual in the sense described for the Fourier transform
associated to the canonical character V.

These Tamagawa measures can be related to the normalised Haar measures
given in Definition 7.5.2 via the discriminant of H in the P-adic cases.

Definition 7.5.5 Let K be a P-adic field and H = K or a quaternion
algebra A over K. Suppose K is a finite extension of Qp and let B be a
mazimal order in H. Choose a Zpy-basis {e1,ea,...,e,} of B. Then the
discriminant of H = Dy = ||det(TH(eiej))||6;.

Note that when H = K, this notion of discriminant agrees with the field
discriminant K | Qp. (See Definition 0.1.2.) For the connection in the cases
where H = A, see Exercise 7.5, No. 2.

Lemma 7.5.6

1. If R C H, then the Tamagawa measure on H is dry, as given in
Definition 7.5.2.

2. If R¢ H, the Tamagawa measure on H is D;/Qde, where dey is
given in Definition 7.5.2.

Proof: The first part is a straightforward calculation (see Exercise 7.5,
No. 3).

For the second part, consider first the case where H = Q. Let ® denote
the characteristic function of Z, and let da denote the additive Haar meas-
ure. Recall that v, (z) = €2™<*> where < z > is the unique rational of the
form a/p™ in the interval (0, 1] such that z— < & >€ Z,. Now

d(z) = /Z Yp(zy)dy =1 if x € Zyp.

Now suppose that ¢ ¢ Z, and so < z >= a/p™ € (0,1). Let Z, =
Uf:o_l(i + p™Zyp) and let £ = exp(2mi/p™). Then

<i>(x)=/ i (A+E+E+-+&" Ndy=o.
P Lp

Thus & = ® and so dz is the Tamagawa measure in this case.

More generally, let B denote a maximal order in H with the Z,-basis
{e1,e2,... ,en}. Take the dual basis with respect to the trace so that e} is
defined by Tr(efe;) = ;5. Thus if

B={zc H|Tu(zy) €Z, ¥ yecB},
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then {ef,e5,...,e5} is a Zy-basis of B and B = B. Let ® be the character-
istic function of B. Then in the same way as for Z,, ® is the characteristic

function of B. Thus & = Vol(B)®, so that the Tamagawa measure will be
Vol(B)~'/2dzy. Now if ef = 3 gjie;, then Vol(B) = ||det(Q)|lq,, where
Q = (gi;j)- However, Q™' = (Tg(e;e;)) and the result follows. O

This then normalises the Haar measure on the additive structures of local
fields and quaternion algebras over these local fields. We now extend this to
multiplicative structures and also to other related locally compact groups.
Continuing to use our blanket notation H, the multiplicative Tamagawa
measure dry; on H* is obtained from the additive measure as in Definition
7.5.2.

For discrete groups G which arise, the chosen measure will, in general,
assign to each element the value 1. Exceptionally, in the cases where R ¢ H
and G is the discrete group of modules ||H*||, each element is assigned its
real value.

All other locally compact groups which will be considered both in this
section and the following two are obtained from previously defined ones
via obvious exact sequences. In these circumstances, it is required that the
measures be compatible. Thus suppose that we have a short exact sequence
of locally compact groups

l1-YySz4r1to

with Haar measures dy, dz and dt, respectively. These measures are said
to be compatible if, for every suitable function f,

/Zf(z)dz=/T /Yf(i(y)z)dydt where £ = j(2).

It should be noted that this depends not just on the groups involved, but on
the particular exact sequence used. Given measures on two of the groups
involved in the exact sequence, the measure on the third group will be
defined by requiring that it be compatible with the other two and the
short exact sequence.

All volumes which are calculated and used subsequently are computed
using the Tamagawa measures and otherwise using compatible measures
obtained from these. These local volumes will be used to obtain covolumes
of arithmetic Kleinian and Fuchsian groups and so are key components
going in to the volume calculations in §11.1. Some of the calculations are
made here, others are assigned to Exercises 7.5.

Lemma 7.5.7 Vol(H!) = Vol{zx € H* | n(z) = 1} = 4n2.

Proof: For the usual measures on R*, the volume of a ball of radius r is
m?r* /2. Thus, for £ = z1 + 96 + 135 + 144, n(x) = 23 + 22 + 23 + 3, so
that ||z]| = n(z)?.
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The volume of H! will be obtained from the short exact sequence
1—»H SR LR -1

Now the Tamagawa measure on H* is n(z)?4dz1dzadrsdzs (see Exercise
7.5, No.1), and on R} it is t~1dt. As a suitable function on H* choose,

[ n(@)? ifl1/2<n(z)<1
9(z) = { 0 otherwise.

Now if t = n(z), we obtain

4r? 1 2
/ g(x)n(x) %4 dz; dey dzs dry = _721'_(1 - Z) = _?172r_

1 42
= / / gli(y)w)dydt = Vol(H) / t—%:-wml).
R JH!

Lemma 7.5.8 Let O be a mazimal order in the quaternion algebra A over
the P- adic field K. Let Dy denote the discriminant of K and q = |R/7R)|.
Then

_ _ — 1)1 if A is a division algebra
Vol(0") = DM (1 = 2){ v A ).

Proof: Note that the reduced norm n maps O* onto R* (see Exercise 6.7,
No. 1) so there is an exact sequence

150" 505 R 1.
Thus for the volume of O!, we have

Tamagawa Vol of O* (1 — q’l)Dzl/ 2 multiplicative Haar Vol. of O~

Tamagawa Vol of R* (1 — q‘l)D;{l/ ? multiplicative Haar Vol. of R*

by Lemma 7.5.6 and Definition 7.5.2. The result then follows by Lemma
7.5.3 and Exercise 7.5, No 2. O

Exercise 7.5

1. Show that the additive Haar measures on H, where H D R, are as
follows:

(a) H=C, x = z1 + ixs, dee = 2dz dzs.

(b) H=H,z=21x1+ T2t + x3] + 241, dry = 4dx1dzydrsdzy.

(C) H = MQ(R),.Q? = (;; ;2), dl‘M2(R) = d$1 dCEQ diL‘g d:l?4.

(d) H = MQ(C), T = (x1+iw2 T3+1iTq )’ dng(C) =dz;-- -d.’L‘g.

T5+ire T7+iTs
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2. If A is a quaternion algebra over the P-adic field and O is a mazimal
order in A, show that the discriminant D 4 defined in Definition 7.5.5 and
the discriminant Dy are linked by the equation

Dy= D%(NKIQ;J (d(0))

where d(O) is the discriminant of O.

8. If H D R, show that the Tamagawa measure on H is the additive Haar
measure on H given in Definition 7.5.2.

4. For oll H described in this chapter, the module map z — ||z| is a
homomorphism on H*. Denote the kernel by Hy. Show that, as a set,
Hy, = HY, but that, with respect to the compatible measures described
earlier, Vol(H,) = 2n2.

5. Let A = My(K), where K is a P-adic field with ring of integers R,
uniformiser m and ¢ = |R/wR|. Let Oy, be the Eichler order of level 7™
(see Exercise 6.5, No. 1), where

Om = {(‘C’ Z) € My(R)| ¢ = 0(mod 7™R) } .

Show that Vol(O})) = DI_(B/?(l - ) (g+ 1) g™,

7.6 Tamagawa Numbers

Having normalised the local measures in a uniform way in the preceding
section, suitable measures can now be defined on the adéle and idele groups.
Thus following the notation of §7.2, let X denote either a number field or
a quaternion algebra over a number field. Then X 4 denotes the associated
adele ring and X the associated ideéle group. The other idele groups which
we have considered are linked to these by exact sequences and suitable
measures will be obtained by the compatibility of measures once we have
fixed the measures on X 4 and X7.

Thus on X 4, we define the measure dz’, as the product ], cQ dz! , where

d’ dz, if v €& Qe
T = { T4z, if v e Q.
In this definition, dz, is the measure dzy, where H = X, and D, = Dx,
is the local discriminant of the P-adic field &, or quaternion algebra A, as
defined in Definition 7.5.5.

Let the discriminant of X, Dx, be defined to be the product of the
local discriminants D,. Thus when X is a number field k, Dx will be the
discriminant of an integral basis of Ry over Z, since the localisations are
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then maximal orders (cf. §6.2). Thus Dx will be the discriminant of the
number field k (see (6.8)). When X = A, a quaternion algebra over k, then
Dy = D{ N(A(A)?) (see Exercise 7.5, No 2), where A(A) is the reduced
discriminant of A (see (2.9) and §6.6).

Likewise on X%, define the measure dx’ as the product [[, ., d:c;,*, where

det — dzy if ve Qg
v T DyVdzr ifvey

with similar notation as above. (The “accents” used here will be dropped
when no confusion can arise.)
Then the measure dz’, is self-dual with respect to the Fourier transform
on X 4 associated with the canonical character ¥ 4 (see Theorem 7.2.3).
Now consider the exact sequence

1—>Xk——>XA—>—)§Vi4-—>1. (7.6)

Xk
The Tamagawa measure is defined above on X 4 and since X} is discrete,
it has the standard counting measure. Note that X 4/ X}, is compact (The-
orem 7.1.3) so that it will have finite volume with respect to the compat-
ible measure. In fact it has volume 1, as we will now prove and this is
the Tamagawa number of X 4/X}. Under the isomorphism induced by the
canonical character ¥ 4, we have that X 4/X}, is the dual of X (Corollary
7.2.5). Since the measure on X 4 is self-dual with respect to the Fourier
transform associated to 14, the volume of X 4/X; will be equal to the
volume of X, with respect to the normalised dual measure for which the
Inversion Theorem holds. Now let x be the characteristic function of the
identity element e of the discrete group Xj. Then the Fourier transform
%(#) = 1 for all # € X. Thus with respect to the dual measure dz, we
have that

hw@:/X@ZES%:W@”

X
Theorem 7.6.1 The Tamagawa volume of X 4/ Xy is 1.

To obtain the existence of arithmetic Fuchsian and Kleinian groups using
the Strong Approximation Theorem and to make covolume calculations
for such groups, we require to show that other natural quotients of idele
groups associated to quaternion algebras over number fields are compact
and, furthermore, to determine their Tamagawa volumes. The results are
stated in Theorem 7.6.3. The compactness is established in the next section
in the cases where X has no divisors of zero, but the arguments to show
that the Tamagawa number of the algebraic group A! is equal to 1, are not
included here. These arguments make use of suitably defined zeta functions.

Note that since X}, is discrete in X 4, it follows that X} is discrete in X
(see Exercise 7.1, No 2). Furthermore (see Exercise 7.6, No. 1), we have the
following:
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Lemma 7.6.2 X is discrete in X and A,lc is discrete in A}4.

Now define X 4,; to be the kernel of the module map on X7 so that the
exact sequence

X X%
A,l A

1—
X X

— | X4 —1 (7.7)

is obtained (see §7.7). Thus a normalised measure can be defined on the
quotient X 4,1/X} by compatibility.

Now take X = A, a quaternion algebra over k. Locally we have (see
Exercise 7.6, No.2) ||zy]la, = ||[nv(zv)]|z,” so that the reduced norm map
gives an exact sequence (cf. §7.7)

1
1l —2 - - = 1 (7.8)

and the volume of AY/A} can be determined with respect to the measure
compatible with the short exact sequence and those already obtained.

Theorem 7.6.3 With respect to the measures obtained above

X4 X441 A}4
O<Xk;) , VO(X,:) 1, VOI(AI19

This last volume is referred to as the Tamagawa number of the associated
algebraic group A'.

Exercise 7.6

1. Prove that A}, is discrete in AY.

2. Let A be a quaternion algebra over a local field K and let x € A*. Show
that ||z||a = |In(z)[|%-

3. Prove that the mapping n in (7.8) is surjective.

4. Show that if the Tamagawa volume of X 41/X} is 1, it follows that the
Tamagawa volume of AY/A; is 1.

7.7 The Strong Approximation Theorem

The existence theorem for arithmetic Kleinian and Fuchsian groups will be
given in the next chapter and makes use of the descriptions of adeéle and
idele groups obtained in this chapter. In this section, these descriptions are
further developed towards this end.

Retaining our earlier notation, X denotes either a number field k or a
quaternion algebra A over k.
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Lemma 7.7.1 For each z € X; C X4, ||z =1.

Proof: Recall that X; is discrete in X 4. Let dt denote the measure on
X 4/ X} compatible with the exact sequence at (7.6), the Tamagawa meas-
ure dz on X 4 and the counting measure on Xj. Let Y be a measurable set
of X 4 and let ® be the characteristic function of Y. Then for z € X,

Vol(zY) = /

Xa

Oz~ '2)dz =/

O(ax™12)| dt
Xa/Xe

a€ Xy
= ®(bz) | dt = Vol(Y).
meJg%( ﬂ (v)
]

Referring back to (7.7) in the preceding section, this shows that these
maps are well-defined.

Lemma 7.7.2 Let X = k or A, where A is a quaternion division algebra
over k. For m, M € R, define

Y ={yeX3|0<m< lyla<M}
Then the image of Y in X7/ X} is compact.

Proof: Recall (§0.8 and Exercise 7.1, No. 2) that a compact set in X7
has the form {z € X% | (z,z7') € C x C'}, where C and C’ are compact
sets in X 4. Thus we need to find compact sets C and C’ in X 4 such that,
for each y € Y, there is an a € X} such that ay € C and y laleC.

We know that X 4/ X} is compact. Thus choose C” in X 4 to be compact
with volume exceeding Vol(X 4/Xy) max(m™!, M) and let C = {¢1 — ¢z |
c1, ¢y € C"} so that C is also compact. Now Vol(C"y™1) > Vol(X 4/X}) so
that there exist ¢1,co € C* such that coy~! = c;y~ ! + a for some a € Xj.
Thus ay € C. Using yC”, we likewise obtain b € Xj such that y='b € C.
Since only 0 is non-invertible in X, we can ensure that a,b € X}.

Now ab € C?N X}, which is necessarily a finite set {d1,ds, ... ,dn}. Thus
if ¢’ =uUr ,Cd; !, thenay € C and y~la~t € C’. O

Again referring back to the exact sequence (7.7), this lemma shows that
X 4,1/ X} is compact in the cases where X has no divisors of zero. Suppose
that X = A, a quaternion division algebra, so that n4 : A% — k%. Now if
z € A} \ k*, then k(z) is a quadratic extension of k and 7|y = N(a) k-
Thus if z € Af NKer(n_4), then z € A}. This confirms that the sequence at
(7.8) is exact in this case and that A% /A} is a closed subspace of A 4,1/A},
and, hence, compact.

Theorem 7.7.3 If A is a quaternion division algebra, then Ai‘/A,lc 8 com-
pact.
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Lemma 7.7.4 For any v € s, there exists a compact set C' in X7 such
that X3 = X; X, C.

Proof: When X has no divisors of zero, this follows from Lemma 7.7.2.
For in that case, || X}| = Rt = || X%].

Now suppose X = My(k) so that X% is the restricted product of the
groups GL(2,k,) with respect to the compact subgroups GL(2, R,) for
v € Q0y. When v € Q, multiplication by a suitable diagonal matrix carries
a member of GL(2, k,) into GL(2, R,). When v € Q, mutiplication by an
upper-triangular matrix carries a member of GL(2,R) or GL(2,C) into a
compact subgroup. Let C be the compact subgroup, which is the product of
all these compact subgroups. The non-singular upper-triangular, diagonal
and unipotent upper-triangular matrices yield ideéle groups denoted P4, D 4
and N4, respectively. By the above remarks, we have

X% = P4C = D4NC.

Now N4 =2 ky and Dy = kj‘42. So by the first part of this lemma and using
Corollary 7.2.6, we have that

P4 = DyD.C' .NyN,C" = P,P,C"

since (29)(5%) = ({*/*)(89) and C" is a compact set in Py. O
Finally, in this section, we establish the Strong Approximation Theorem.
Let A be a quaternion algebra over the field k. For any finite set of places

S, let
Ay =[] 4.

vES

It is critical in the theorem that A} be non-compact, which is equivalent
to requiring that for at least one v € S, v € Ram(A). If A} were compact,
then A; A% would be a closed subgroup of Al since A} is discrete in AY
and, hence, a proper subgroup of Al,.

Theorem 7.7.5 (Strong Approximation Theorem) Let A be a qua-
ternion algebra over the number field k and let S be a finite set of places of
k such that SN Qe # O and, for at least one vy € S, vy & Ram(A). Then
ALAY is dense in Al

Proof: We need to show that for any open set U in AL, AfALNU # 0
and for this, the S-component of U can be ignored. There exists a finite
set Sy of places where S; D S U o such that

U:HU,, x H ayViy X HO},

vES veSI\S vE St
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where V,, is a neighbourhood of the identity in Al. We can assume that V,
is such that V,2 C V,,. Since A,chg is a subgroup of AY, it suffices to show
that for every v1 € S and every neighbourhood U of a where

. v €EAL fw=
a = (ay) with aw:{(ll ifw;aé:ji

then ALALNU # 0 (i.e., a € ALAY).
Let 7 = tra, where this is the extension of the reduced trace to adeles.

Thus (@)
. . _J tw=tr(a,) fw=mn
T = (ty) with tw—{ 9 if w o vy

We can find, for v € Ram(A4), a, € A) (a, # 1) such that tr(a,) is
arbitrarily close to 2 and that 2 — tra,z + 1 is irreducible. By the Ap-
proximation Theorem (Corollary 7.2.6), k + k,, is dense in k.4, where vg
is as in the statement of the theorem. Thus there exists t € k and t' € ky,
such that

e t is arbitrarily close to tr (o) for v € Ram(A);

e ¢ is arbitrarily close to tr(a,,) and to 2 in k, for a finite set of
w#v,weS.

By the first condition, the polynomial 22 — tz + 1 is irreducible for each
v € Ram(A) and so defines a quadratic extension L of k£ which embeds in A
by Theorem 7.3.3. Thus there exists z € A} such that tr (z) = t. Since tr is
an open map, there exists b € U such that tr (b) = ¢t+¢'. Thus at all places
not in S, b and = have the same trace and norm and so are conjugate. Now
recall that A% = A; A5C where C is a compact subset of A% by Lemma
7.7.4. Thus A; A} meets a conjugate of U and we can take that conjugate
to be by an element ¢ € C. Thus ALAL NcUc™! # 0. This holds for each
neighbourhood U of a so that there exists d € C such that dad ™! € AL AL.
Now choose a sequence of elements y,, € A} such that y, converges to d,jl1

in A} . Then ypdad 'y, ' —ae€ ALA;. O

There will be numerous important applications of the Strong Approx-
imation Theorem subsequently particularly to the cases where S = Q.
Thus it is useful to introduce the following standard notation to cover the
circumstances under which the Strong Approximation Theorem will be ap-
plied.

Definition 7.7.6 A quaternion algebra A over a number field k is said to
satisfy the Eichler condition if there is at least one infinite place of k at
which A is not ramified.

One immediate consequence is the following result, which we have already
used in calculating the type number of a quaternion algebra in §6.7.
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Theorem 7.7.7 (Eichler) Let A be a quaternion algebra over a number
field k where A satisfies the Fichler condition. Let O be a mazimal order
and let I be an ideal such that Oy(I) = O. Then I is principal; that is,
I = O« for some o € A* if and only if n(I) is principal (i.e. n(I) = Ryx
for some z € k%, ).

Proof: Clearly, if I = Oa, then n(I) = Rgn(a) and n(a) € kX,. Now
suppose that n(I) = Rpx, where x € k% . By the Norm Theorem 7.4.1,
there exists a € A* such that n(a) = z. Consider the ideal Ia~!. For
all but a finite set S of prime ideals, (la=!)p = Op, and for P € S,
(Ioz—l)p = OpBp by Lemma 6.6.3. Now TL((IOe_l)p) = Rp = n(ﬂp)RP.
So n(Bp) € Rp. Furthermore, since locally n(O}) = R} (see Exercise
6.7, No. 1), we can assume that n{Gp) = 1. By the Strong Approximation
Theorem, there exists v € A} such that v is arbitrarily close to 3p for
P € S and lies in OL for all other P. Then (Ov)p = Op = (Ia™!)p for
PgS. If Pe S, then (Oy)p = OpfBp = (Ia~!)p. Thus since ideals are
uniquely determined by their localisations, Oy = Ia~! and I = Ovya. O

Exercise 7.7

1. Show that when X has no divisors of zero, then X% /X[ is a direct
product of R and a compact group.

2. Prove the following extension of the Norm Theorem 7.4.1: Let A be a
quaternion algebra over the number field k where A satisfies the Eichler
condition. Let x € R, Nk},. Show that there is an integer o € A such that
n(a) = x.

7.8 Further Reading

The lines of argument throughout this chapter were strongly influenced by
the exposition in Vignéras (1980a). The use of adéle rings and idele groups
in studying the arithmetic of algebraic number fields is covered in several
number theory texts [e.g., Cassels and Frolich (1967), Hasse (1980), Lang
(1970), Weiss (1963)]. The extensions to quaternion algebras are treated
in Vignéras (1980a) and lean heavily on the discussion in Weil (1967). As
a special case of central simple algebras, the adele method is applied to
quaternion algebras in Weil (1982) in the more general setting of algeb-
raic groups. For this, also see the various articles in Borel and Mostow
(1966) discussing adeles, Tamagawa numbers and Strong Approximation.
The wider picture is well covered in Platonov and Rapinchuk (1994). The
elements of abstract harmonic analysis which are assumed here, notably in
Theorem 7.2.1 and in §7.5, can be found, for example, in Folland (1995),
Hewitt and Ross (1963) and Reiter (1968).
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Tamagawa measures on local fields or quaternion algebras over local fields
are described in Vignéras (1980a) and the computations of the related local
Tamagawa volumes are given in Vignéras (1980a) and Borel (1981). The
details of the proof that the Tamagawa number of the algebraic group given
by A! where A is a quaternion algebra over a number field, is one, stated
in Theorem 7.6.3 can be found in Vignéras (1980a) and, in a more general
setting, in Weil (1982). The Strong Approximation Theorem for the cases
considered here was one of the foundational results, due to Eichler (Eichler
(1938a)), in the general problem of establishing the Strong Approximation
Theorem in certain algebraic groups, discussed for example by Kneser in
Borel and Mostow (1966). This result, and indeed many others particularly
in Chapters 8 and 10, have their natural setting in a wider context than
is discussed in this book, but can be found in Platonov and Rapinchuk
(1994).
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Arithmetic Kleinian Groups

In this chapter, arithmetic Kleinian groups are described in terms of qua-
ternion algebras. An almost identical description leads to arithmetic Fuch-
sian groups. Both of these are special cases of discrete groups which arise
from the group of elements of norm 1 in an order in a quaternion algebra
over a number field. Such groups are discrete subgroups of a finite product
of locally compact groups, which will be shown, using the results of the
preceding chapter, to give quotient spaces of finite volume. Suitable arith-
metic restrictions on the quaternion algebras then yield discrete subgroups
of SL(2,C) and SL(2,R) of finite covolume and in this way, the existence
of arithmetic Kleinian and arithmetic Fuchsian groups is obtained.

The general definition of discrete arithmetic subgroups of semi-simple
Lie groups will be discussed in Chapter 10, where it will also be shown
that in the cases of SL(2, C) and SL(2, R), the classes of discrete arithmetic
groups which arise from this general definition coincide with those which
are described here via quaternion algebras.

It will be shown in this and subsequent chapters that for these classes of
arithmetic Kleinian groups and arithmetic Fuchsian groups, many import-
ant features — topological, geometric, group-theoretic — can be determ-
ined from the arithmetic data going into the definition of the group. Thus it
is important to be able to identify, among all Kleinian groups, those that are
arithmetic. This also holds for Fuchsian groups. This is carried out here and
the result is termed the identification theorem. This theorem shows that
for an arithmetic Kleinian group, the number field and quaternion algebra
used to define the arithmetic structure coincide with the invariant trace
field and the invariant quaternion algebra as defined in Chapter 3. Thus
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the methods developed earlier to determine the invariant trace field and
the invariant quaternion algebra of a Kleinian group can be employed and
taken a stage farther to determine whether or not the group is arithmetic.
Additionally, the identification theorem shows that for arithmetic Kleinian
groups and arithmetic Fuchsian groups, the invariant trace field and the
invariant quaternion algebra form a complete commensurability invariant
of these groups.

8.1 Discrete Groups from Orders in Quaternion
Algebras

Let A be a quaternion algebra over a number field &k where k£ has r; real
places and r; complex places so that n = [k : Q] = r; + 2rs. Let the
embeddings of k£ in C be denoted o1,02,...,0,. Let k, denote the com-
pletion of k£ at the Archimedean place v which corresponds to o. Then
Ay = A®y ky =2 M3(C) if o is complex and 2 H or M3(R) if o is real.

Theorem 8.1.1 If A is ramified at s; real places, then

A®qR = ®s1H & (r1 — s1)M2(R) & r2Ma(C).

k
embeddings so that the first s; corrrespond to the real ramified places, the
next r; — s1 to the remaining real places and the remainder to complex

Proof: Let A = (a—b) with standard basis {1,4,7,4j}. Let us order the

conjugate pairs. Let A; = (M), where K =R for:=1,2,...,m

and C otherwise. If we denote the standard basis of A; by {1,4;, i, %:7: },
then defining 4; : A — A; by

Gi(xo + m11 + 25 + x315) = 04(x0) + 0i(T1)ii + 04(x2)ds + oi(x3)iiji

gives a ring homomorphism extending the embedding o; : £k — K. Then
define

p: AR —-® Y A (8.1)

=1

by ¢(a ® b) = (bai(a),... ,bd,(a)) so that ¢ is bilinear and balanced and
preserves multiplication.

Consider a pair of complex embeddings, say oy, 41, 0r,+2. Then the pro-
jection on A, 1 ® A, 12 of the image of ¢ lies in A(M>(C)), where A :
M;(C) — M3(C) & M3(C) is the diagonal embedding A(x) = (x,Z). Thus
the image of ¢ lies in sy H @ (r1 — $1) Ma(R) & r2(A(M2(C)). This space has
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dimension 4n over R, as does A®gR. If we choose a basis {1,¢,¢2,... ,t"71}
of k over Q, then

{feol,ttiolLtti®1,t%j®1;4=0,1,... ,n—1}

is a basis of A ®g R. Writing the images of these vectors with respect to
the right-hand side of (8.1) yields the matrix I ® D, where [ is the 4 x 4
identity matrix and D = [0;(#/)]. Since D is non-singular, ¢ has rank 4n
and so ¢ is injective. O

Let p; denote the composition of the natural embedding A — A ®q R
with a projection onto one of the factors at (8.1). If the factor is real, then
tr(ps(@)) = oi(tr () and n(p;(a)) = oi(n(a)) for each o € A. If the
factor is complex, then tr (p;(@)) = oy(tr (a)) or o;(tr (o)) and similarily
for norms.

Now assume that A satisfies the Eichler condition (see Definition 7.7.6)
so that there is at least one place v € Q4 at which A is unramified. Thus

if
G=6 > A, 2 @Y Myky),

vEQ\Ram,, (4)

then the above description gives an embedding
Yv:A—G.

In the cases in which we will be mainly interested, which give rise to arith-
metic Fuchsian and Kleinian groups, the set 0, \ Ramy(A) consists of
just one infinite place. In these cases, any other such embedding will differ
from this by an inner automorphism by an element of G*.

Theorem 8.1.2 Let O be an order in a quaternion algebra A satisfying
the Eichler condition and let O = {a € O | n(a) = 1}. Under the em-
bedding 1 described above, ¥(O') is discrete and of finite covolume in
G' = > SL(2,k,). Furthermore, if A is a quaternion division algebra,
then (O) is cocompact. Also, if G' =Y SL(2,k,) is a factor of G' with
1 # G’ # G, then the projection of (O in G’ is dense in G'.

Proof: Let AY denote the group of ideéles obtained from the product
[T AL with respect to the compact subgroups O},v € Q. Let U be the
open subgroup of A defined by U = G' x C, where

c= ][] A x]]o.
veRam, (A4) veldy

Note that C is compact.
First note that AL NU = O Clearly O' C Al N U. If, conversely,
z € ALNU, then z € O, for all v € Q. Thus as in §6.2, z € O.
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Second, A, = ALU. To show this, let z = (z,) € AY. Then there exists
a finite set of places S D Qo such that z, € Ol if v € S. Let S = Qoo UT.

Let
v=J] 4 x][=0:x [] O
v€EQ o veT vEQ\T
Now V is open so that Ay Af, NV # @ by the Strong Approximation The-
orem. Thus let zg € A},y € Asllw be such that xzpy € V. By construction,
:cgla: € U so that A{U = A}4.
We thus obtain a natural homeomorphism

A, AU U U

AL T AL T UnAl T o

Thus O! is discrete in U by Lemma 7.6.2 and of covolume 1 by Theorem
7.6.3. Furthermore, the quotient is compact if A is a division algebra by
Theorem 7.7.3.

Finally, suppose that G = G’/ @ G”, where 1 # G',G"” # G, and let
II, : G'.C — G'.C be induced by the projection. Let V be an open set in
G'.C. By Theorem 7.7.5, ALG"” NV # 0, so there exists z¢ € A},y” € G”
such that zoy” € V. Thus 2o € y" 'V C U so that zop € ALNU = O
Then II;(z¢) = 1 (zoy”) € V and so II;(O1) is dense in G'.C = U".

Note that U and U’ are direct products of the locally compact groups
G* and G’ with the compact group C. The result now follows by applying
the following lemma. O

Lemma 8.1.3 Let Z be the direct product of a locally compact group X
and a compact group Y. Let W be a subgroup of Z whose projection on X
is the subgroup V. Then the following hold:

1. If W is discrete in Z, then V is discrete in X. Furthermore, W is of
finite covolume (respectively cocompact) in Z if and only if V has the
same property in X.

2. If W is dense in Z, then V is dense in X.

Proof: Let p : Z — X denote the projection. Let D be a compact
neighbourhood of the identity in X. Then V N D = p(W N p~}(D)). Now
p~1(D) = D x Y is a compact neighbourhood of the identity in Z. Thus,
since W N p~!(D) is finite, so is VN D and V is discrete in X.

Suppose that W has finite covolume in Z so that there exists a funda-
mental set Fyy for W in Z, where Fyy has finite measure. The set p(Fw )
then contains a fundamental set for V in X so that V has finite covolume.
If, conversely, V has finite covolume, let Fy be a fundamental set for V in
X of finite measure. Thus Fy X Y contains a fundamental set for W in Z
and the result follows.

The results concerning cocompactness and denseness are straightforward
(see Exercise 8.1, No. 3). O
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Exercise 8.1

1. Show that for any positive integers a and b, there exists discrete cocom-
pact subgroups of SL(2,C)® x SL(2,R)® which are not products of discrete
cocompact subgroups of SL(2,C) and SL(2,R) fora+b > 1.

2. Let k be a totally real field # Q. Prove that SL(2, Ry) is dense in
SL(2,R).

3. In the notation of Lemma 8.1.8, prove the following:

(a) If W is discrete in Z, then W is cocompact if and only if V' is cocompact.
(b) If W is dense in Z, then V is dense in X .

(¢) If W is discrete of finite covolume in Z, then, with respect to compatible
measures on X,Y and Z

Vol (%) x Vol(Y) = Vol (%) .

4. In Theorem 8.1.2 and the preceding discussion, all orders considered
have been R-orders, where R is the ring of integers in the number field k.
Let S be a non-empty finite set of primes in R and let T = SU Q. Let A
be a quaternion algebra over k which is unramified at at least one place in

T and let
G=9 > A,.
veT,vgRam(A)

Show that G contains discrete finite-covolume groups by considering an
Rg-order in A. In particular for Qp, deduce the existence of discrete finite-
covolume subgroups of SL(2,Q,). Show that every such discrete arithmetic
subgroup of SL(2,Qp) is cocompact.

8.2 Arithmetic Kleinian Groups

The results of the preceding section establish, in particular, the existence of
discrete finite-covolume subgroups of SL(2, C) by arithmetic methods using
number fields and quaternion algebras. The resulting groups are arithmetic
Kleinian groups, which will now be defined. Likewise, we will also define
arithmetic Fuchsian groups in this section.

Definition 8.2.1 Let k be a number field with exactly one complezx place
and let A be a quaternion algebra over k which is ramified at all real places.
Let p be a k-embedding of A into M3(C) and let O be an (Ry-)order of A.
Then a subgroup T of SL(2,C) (or PSL(2,C)) is an arithmetic Kleinian
group if it is commensurable with some such p(O') (or Pp(O%)). Hyperbolic
3-manifolds and 3-orbifolds, H3/T', will be referred to as arithmetic when
their covering groups I' are arithmetic Kleinian groups.
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With k and A as described in this definition,
AR M C)oHD---dH (8.2)

(Theorem 8.1.1) and there is an embedding p; : A — M;(C) such that
trp1(a) = o1(tra) and detpi(a) = o1(n(a)), where o1 embeds k in C.
Regarding k as a subfield of C, we can assume that o1 = Id so that p; is a
k-embedding. Note that there will also be a k-embedding. As noted earlier,
any other k-embedding will differ from this by an inner automorphism by
an element of GL(2,C). If © is an order in A, then p;(O!) is a discrete
subgroup of SL(2,C) which is of finite covolume (Theorem 8.1.2). Addi-
tionally, if A is a quaternion division algebra, then p;(O!) is cocompact
(Theorem 8.1.2).

Note that if @; and O, are two orders in A, then O; N O3 is also an
order in A. Furthermore the corresponding discrete groups are all of finite
covolume and so are commensurable with each other. Thus in Definition
8.2.1, the arithmeticity of T" is independent of the choice of order in the
quaternion algebra.

Note also that there is no ambiguity about the terminology “of finite cov-
olume”. For the groups p; (O!) = I defined arithmetically from quaternion
algebras, finite covolume refers to the measure of SL(2,C)/I’ obtained
from the Tamagawa measure on SL(2, C). However, the compact subgroup
SU(2,C) has finite volume and so the quotient of SL(2,C)/SU(2,C) = H3
by I' will have finite covolume. However, the hyperbolic measure on H3 is
also obtained from SL(2,C). Thus the two notions of “of finite covolume”
coincide. However, we shall later make use of local Tamagawa measures
(see, e.g., Lemma 7.5.8) to obtain explicit hyperbolic volume calculations
for the group p; (O!). This will require a more careful analysis of the inter-
relationship between the Tamagawa volume and the hyperbolic volume (see
Chapter 11).

We remark that using the methods of §8.1 to obtain discrete finite-
covolume subgroups of SL(2,C), the field k¥ must certainly have at least
one complex place. If it had more than one, the quaternion algebra would
necessarily be unramified at two Archimedean places and so the projection
of O! on either one would be dense by Theorem 8.1.2. The same would
apply if A was unramified at any of the real places; therefore, the condi-
tions imposed on k and A in the definition of arithmetic Kleinian groups
are necessary. This implies the following result:

Theorem 8.2.2 Let k be a number field with at least one complex embed-
ding o and let A be a quaternion algebra over k. Let p be an embedding of A
into Ma(C) such that p|; 4y = 0 and O an Ry-order of A. Then Pp(O!) is
a Kleinian group of finite covolume if and only if k has exactly one complex
place and A is ramified at all real places.
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Thus for each number field with one complex place and each quaternion
algebra ramified at the real places of that field, we obtain a wide commen-
surability class of Kleinian groups of finite covolume. From the classification
theorem for quaternion algebras (Theorem 7.3.6), we see that for each field
k with one complex place, there are infinitely many quaternion algebras
A over k ramified at all the real places by specifying that Ram(A) is any
finite set of places of even cardinality containing all real places.

Recall that A = Ms(k) if and only if Ram(A) = 0, which can only
occur in the above cases for [k : Q] = 2. These special cases have the
following important topological significance for arithmetic Kleinian groups
(cf. Theorem 3.3.8).

Theorem 8.2.3 Let I' be an arithmetic Kleinian group commensurable
with Pp(O'), where O is an order in a quaternion algebra A over k. The
following are equivalent:

1. T s non-cocompact.
2. k=Q(v—d) and A = My(k).
3. T is commensurable in the wide sense with a Bianchi group.

Proof: If I is non-cocompact, then so is Pp(O!), and so A cannot be a
division algebra. So A = My (k) (see Theorem 2.1.7). If [k : Q] > 3, then k
has at least one place at which A will be ramified. Thus A would not split
and so [k : Q] = 2. Thus k = Q(v/—d).

Now M3(Oy4) is an order in My(Q(v/—d)). Hence T' is commensurable
with Pp(SL(2,04)) for some representation p and this will be conjugate to
PSL(2,04).

Every Bianchi group contains parabolic elements and, hence, so does I'.
Thus I' is non-cocompact. O

Example 8.2.4

The figure 8 knot complement is arithmetic since we know from §4.4.1 that
its covering group has a faithful representation as a subgroup of PSL(2, O3)
and is of finite covolume.

We now consider arithmetic Fuchsian groups for which very similar res-
ults and remarks to those made above hold.

Definition 8.2.5 Let k be a totally real field and let A be a quaternion
algebra over k which is ramified at all real places except one. Let p be a
k-embedding of A in M2(R) and let O be an order in A. Then a subgroup
F of SL(2,R) (or PSL{2,R)) is an arithmetic Fuchsian group if it is com-
mensurable with some such p(O') (or Pp(O)).
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With k£ and A as described in this definition,
AR2MR)dHD---DdH (8.3)

and there is an embedding p; : A — M3(R) which we can take to be a
k-embedding. Then, as earlier, p; (O?!) is a discrete subgroup of SL(2,R) of
finite covolume which is cocompact if A is a division algebra. Again this
definition is independent of the choice of order in A and arithmetic Fuchsian
groups necessarily have finite covolume in H?. By similar arguments to
those given in Theorems 8.2.2 and 8.2.3, we obtain the following two results:

Theorem 8.2.6 Let k be a number field with at least one real embedding
o and let A be a quaternion algebra over k which is unramified at the
place corresponding to o. Let p be an embedding of A in M2(R) such that
Plzay = 0 and let O be an Ry-order in A. Then Pp(O') is a Fuchsian
group of finite covolume if and only if k is totally real and A is ramified at
all real places except o.

Theorem 8.2.7 Let F be an arithmetic Fuchsian group commensurable
with Pp(O), where O is an order in a quaternion algebra A over a field
k. The following are equivalent:

1. F' is non-cocompact.
2. k=Q and A = My(k).

3. F is commensurable in the wide sense with PSL(2,7Z).

Exercise 8.2

1. Let p;(OY) be an arithmetic Fuchsian group, where O is an order in a
quaternion algebra over a number field k. Show that p,(O!) is contained
in an arithmetic Kleinian group (c¢f. Ezercise 7.8, No. 8 and Ezercise 6.3,
No. 3).

2. Show that there are no discrete S-arithmetic subgroups of SL(2,C) or
SL(2,R) obtained via an Rg-order as in Ezercise 8.1, No. 4, where S # (.

3. Define discrete arithmetic subgroups of SL(2,R) x SL(2,R) and give
necessary and sufficient conditions as in Theorem 8.2.3 for these groups to
be non-cocompact.

4. Let k = Q(t), where t satisfies z3 +x + 1 = 0. Show that the quaternion
algebras (%) and (%) give rise to the same wide commensur-

ability class of arithmetic Kleinian groups (cf Ezercise 2.7, No. 3).
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8.3 The Identification Theorem

This identification theorem will enable us to identify when a given finite-
covolume Kleinian group is arithmetic. As has already been discussed in
Chapter 3, to any finite covolume Kleinian group I" there is associated a
pair consisting of the invariant trace field kI" and the invariant quaternion
algebra AT" which are invariants of the wide commensurability class of T
Recall that kT' = Q(tr ['®) and

AT = AT® = {Z Tyt x; € kL, € F(Q)}.

If T is arithmetic, then it is commensurable with some p(O!), where O is
an order in a quaternion algebra A over a number field k& with exactly one
complex place and p is a k-embedding. Thus kI" = kp(O'). As remarked
in the preceding section, if & € O, then tr p(«) is the reduced trace of
and so lies in Ry. Thus kI" C k. Now kT' cannot be real (Theorem 3.3.7) so
that k[’ = k since k has exactly one complex place (see Exercise 0.1, No.
2). Note that Q(tr p(O')) = k and so by choosing g, h € T'® N p(O') such
that (g, h) is irreducible, we see that

AT = AeT® C Ag(p(O")) C p(A).

Since both AT" and p(A) are quaternion algebras over k, they coincide. We
have thus established the following:

Theorem 8.3.1 If " is an arithmetic Kleinian group which is commen-
surable with p(O'), where O is an order in a quaternion algebra A over the
field k and p is a k-embedding, then kT’ = k and AT = p(4).

Note that this result already imposes two necessary conditions on I' if it
is to be arithmetic; namely, that kI" has exactly one complex place and
that AT is ramified at all real places. In Chapter 3, a variety of methods
were given to calculate kI' and AT and then applied to diverse examples in
Chapter 4. Thus the methodology to check these two conditions is already
in place.

We add one further condition. If I' is commensurable with p(O') and
v € T, then 4™ € p(O!) for some n € Z. Now the trace of 4™ is a monic
polynomial with integer coeflicients in try. However, try* € Ry so that
tr~y satisfies a monic polynomial with coeflicients in Ry and so tr~ is an
algebraic integer. In essence, the main ingredients of the following proof
have appeared earlier in the book, but we give them again in view of the
central nature of this result.

Theorem 8.3.2 Let T' be a finite-covolume Kleinian group. Then T is
arithmetic if and only if the following three conditions hold.
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1. kI is a number field with exactly one complex place.
2. try is an algebraic integer for all v € T'.
8. AT is ramified at all real places of k.

Proof: We have just shown that if I' is arithmetic, then it satisfies these
three conditions.

Now suppose that I' satisfies these three conditions. We already know
that AT is a quaternion algebra over kT (see §3.2 and §3.3). Now set

Oor = {Z.’L’i’yi | x; € Rxr,7vi € F(Q)} . (8.4)

We show that O is an order (see Exercise 3.2, No. 1). Clearly O is an
Ryir-module which contains a basis of AT over kI'" and is a ring with 1.
We show that OI' is an order in AI' by establishing that it is a finitely
generated Rir-module. To do this, we use a dual basis as in Theorem
3.2.1. Thus let g,h € I'® be such that (g, h) is an irreducible subgroup.
Let {I*, g*, h*,(gh)*} denote the dual basis with respect to the trace form
T. Let v € T®; thus

v=zol* +219* + z2h* + z3(gh)*, x; € kT
Ifv; € {I,g,h,gh}, then
T(v,v) =tr(yy) =z; for some j € {0,1,2,3}.

Now v7v; € I'® and so tr (v7;) is an algebraic integer in kT. Thus x; € RByr
and
O C Rir[I*, g%, h*, (gh)*] := M.

Since each of the dual basis elements is a linear combination of {I, g, h, gh}
with coefficients in kI, there will be an integer m such that mM c OT.
Now M /mM is a finite group and mM is a finitely generated Rir-module.
Thus OT is an order.

By the conditions imposed on kI" and AT, there is an isomorphism

Al @gR - My(C)dHS® - H

and so a kD-representation p : AT — M3(C). Now AI'' C M3(C) so that
p(a) = gag™! for all @ € AT and some g € GL(2,C). Thus I'® ¢
97 1p((OT)1)g as a subgroup of finite index since both have finite covolume.
Thus I' is arithmetic. O

Corollary 8.3.3 IfI" is an arithmetic Kleinian group, then I'? C p(O)

for some order O in a quaternion algebra A over k and a representation
p:A— My(C).
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Later we will study in detail the distribution of groups in the commen-
surability class of an arithmetic Kleinian group. Note that in the above co-
rollary, there is no loss in assuming that O is a maximal order. Thus every
arithmetic Kleinian group is an extension of a subgroup of some p(O?) for
O a maximal order, by an elementary abelian 2-group. Thus subsequently,
particular emphasis is placed on the groups p(O%), where O is a maximal
order.

It is of interest to know when an arithmetic Kleinian group actually lies
in a Pp(O!) for some order O and for this, we introduce the following
terminology:

Definition 8.3.4 A finite-covolume Kleinian group is said to be derived
from a quaternion algebra if it is arithmetic and lies in Pp(O!) for some
(mazimal) order O.

Corollary 8.3.5 Let T' be a finite-covolume Kleinian group. Then T' is
arithmetic if and only if '® is derived from a quaternion algebra.

The following deduction is immediate from the proof of Theorem 8.3.2.
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