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Preface 

A historical perspective 

The subject matter of this book had its genesis in Riemann's 1854 "habil­
itation" address: "Uber die Hypothesen, welche der Geometrie zu Grunde 
liegen" (On the Hypotheses, which lie at the Foundations of Geometry). 
Volume II of Spivak's Differential Geometry contains an English translation 
of this infiuentiallecture, with a commentary by Spivak himself. 

Riemann, undoubtedly the greatest mathematician of the 19th century, 
aimed at introducing the notion of a manifold and its structures. The prob­
lem involved great difficulties. But, with hypotheses on the smoothness of 
the functions in question, the issues can be settled satisfactorily and there 
is now a complete treatment. 

Traditionally, the structure being focused on is the Riemannian metric, 
which is a quadratic differential form. Put another way, it is a smoothly 
varying family of inner products, one on each tangent space. The resulting 
geometry - Riemannian geometry - has undergone tremendous develop­
ment in this century. Areas in which it has had significant impact include 
Einstein's theory of general relativity, and global differential geometry. 

In the context of Riemann's lecture, this restriction to a quadratic dif­
ferential form constitutes only a special case. Nevertheless, Riemann saw 
the great merit of this special case, so much so that he introduced for it 
the curvature tensor and the notion of sectional curvature. Such was done 
through a Taylor expansion of the Riemannian metric. 

The Riemann curvature tensor plays a major role in a fundamental prob­
lem. Namely: how does one decide, in principle, whether two given Rie­
mannian structures differ only by a coordinate transformation? This was 
solved in 1870, independently by Christoffel and Lipschitz, using different 
methods and without the benefit of tensor calculus. It was almost 50 years 
later, in 1917, that Levi-Civita introduced his notion of parallelism (equiv­
alent to a connection), thereby giving the solution a simple geometrical 
interpretation. 

Riemann saw the difference between the quadratic case and the general 
case. However, the latter had no choice but to lay dormant when he re­
marked that "The study of the metric which is the fourth root of a quartic 
differential form is quite time-consuming and does not throw new light to 
the problem." Happily, interest in the general case was revived in 1918 
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by Paul Finsler's thesis, written under the direction of CaratModory. For 
this reason, we refer to the general case as Riemann-Finsler geometry, or 
Finsler geometry for short. 

Finsler geometry is closely related to the calculus of variations. See §1.0. 
As such its deeper study went back at least to Jacobi and Adolf Kneser. In 
his Paris address in 1900, Hilbert formulated 23 unsolved problems. The 
last one was devoted to the geometry of the calculus of variations. It is the 
only problem for which he did not formulate a specific question/conjecture. 
Hilbert gave praise to Kneser's book, then new. He provided an account of 
the invariant integral, and emphasized the importance of the problem of 
multiple integrals. The Hilbert invariant integral plays an important role 
in all modern treatments of the subject. 

The geometrical data in Finsler geometry consists of a smoothly vary­
ing family of Minkowski norms (one on each tangent· space), rather than 
a family of inner products. This family of Minkowski norms is known as a 
Finsler structure. Just like Riemannian geometry, there is the equivalence 
problem: how can one decide (in principle) whether two given Finsler struc­
tures differ only by a transformation induced from a coordinate change? It 
is not unreasonable to expect that the solution of the equivalence problem 
will again involve a connection and its curvature, together with the proper 
space on which these objects live. 

In Riemannian geometry, the connection of choice was that constructed 
by Levi-Civita, using the Christoffel symbols. It has two remarkable at­
tributes: metric-compatibility and torsion-freeness. Although we now know 
that in Finsler geometry proper, these cannot both be present in the same 
connection, such was perhaps not common knowledge during the turn of 
the century. Even after reaching this realization, one still faces the daunting 
task of writing down viable structural equations for the connection. Fur­
thermore, the Levi-Civita (Christoffel) connection operates on the tangent 
bundle T M of our underlying manifold M. But the same cannot be said of 
its Finslerian counterpart. 

It was not until 1926 that significant progress was made by Ludwig 
Berwald (1883-1942), from an analytical perspective. See the poignant and 
informative obituary by Max Pinl in Scripta Math. 27 (1965), 193-203. 

Berwald's work stemmed from the study of systems of differential equa­
tions, and was very much rooted in the calculus of variations. He introduced 
a connection and two curvature tensors, all rightfully bearing his name. See 
Matsumoto's appendix ("A History of Finsler Geometry") in Proceedings 
of the 33rd Symposium on Finsler Geometry (ed. Okubo), 1998, Lake Ya­
manaka. (A revised version is scheduled to appear in Tensor.) The Berwald 
connection is torsion-free, but is (necessarily) not metric-compatible. The 
Berwald curvature tensors are of two types: an hh- one not unlike the Rie­
mann curvature tensor, and an hv- one which automatically vanishes in 
the Riemannian setting. Berwald's constructions have, since their incep­
tion, been indispensable to the geometry of path spaces. 
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Enthusiasts of metric-compatibility were not to be outdone. It is an amus­
ing irony that although Finsler geometry starts with only a norm in any 
given tangent space, it regains an entire family (!) of inner products, one for 
each direction in that tangent space. This is why one can still make sense 
of metric-compatibility in the Finsler setting. In 1934, Elie Cartan intro­
duced a connection that is metric-compatible but has torsion. The Cartan 
connection remains, to this day, immensely popular with the Matsumoto 
and the Miron schools of Finsler geometry. Besides the curvature tensors 
of hh- and hv- type, there is a third curvature tensor associated with the 
Cartan connection. It is of vv- type. Curiously, this last tensor is numeri­
cally identical to the curvature of a canonical (albeit singular) Riemannian 
metric on each tangent space. 

Back in the torsion-free camp, the next progress came in 1948, when the 
Chern connection was discovered. Its formula differs from that of Berwald's 
by an A term. In natural coordinates on the slit tangent bundle T M " 0, 
the Chern connection coefficients are given by 

To get those for the Berwald connection, one simply adds on the tensor 
Aijk • More importantly, replacing the operator {j~ by tx gives the familiar 
Levi-Civita (Christoffel) connection of Riemannian metrics. 

The connections of Berwald and Chern are both torsion-free. They also 
fail, slightly but expectedly, to be metric-compatible. Of the two, the Chern 
connection is simpler in form, while the Berwald connection effects a leaner 
hh-curvature for spaces of constant flag curvature. These connections co­
incide when the underlying Finsler structure is of Landsberg type. They 
further reduce to a linear connection on M, one which operates on T M, 
when the Finsler structure is of Berwald type. 

In the generic Finslerian case, none of the connections we mentioned 
operates directly on the tangent bundle T Mover M. Chern realized in his 
solution of the equivalence problem that, by pulling back T M so that it 
sits over the manifold of rays 8M rather than M, one provides a natural 
vector bundle on which these connections may operate. It is within this 
geometrized setting that the equivalence problem and its solution admit a 
sound conceptual interpretation. 

The layout of the book 

The Riemann-Finsler manifolds form a much larger class than the Rie­
mannian manifolds. Correspondingly, the former has a much more extensive 
literature, connected with the names Synge, Berwald, E. Cartan, Buse­
mann, Rund, and many of our contemporaries. It is not the objective of 
this book to provide a comprehensive survey. Rather, following the general 
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outline of Riemann and Hilbert, our aim is to develop the subject some­
what independently, with Riemannian geometry as a special case. We hope 
our attempt at least reflects some of the spirits of those two pioneers. 

This book is comprised of three parts: 

* Finsler Manifolds and Their Curvature: four chapters. 
* Calculus of Variations and Comparison Theorems: five chapters. 
* Special Finsler Spaces over the Reals: five chapters. 

The key points of each chapter are detailed in our table of contents. Given 
that, we refrain from discussing here the specific topics covered. 

There are fourteen chapters with an average of 30 pages each. The 
chapters are intentionally kept short. It seems that psychologically, one's 
progress through the Finsler landscape is more easily monitored this way. 
Every chapter is devoted to (only) one or two major results. This con­
straint allows us to base each chapter on a single theme, thereby rendering 
the book more teachable. 

Regarding classroom use, the students we have in mind are advanced 
undergraduates or first-year graduate students. They are assumed to have 
had at least a small amount of tensor analysis, to the extent that they 
are comfortable with the gymnastics of raising and lowering indices. It 
would also help if they have had some exposure to manifolds in the ab­
stract, so that pull-backs and push-forwards are familiar operations. Some 
computational experience with the Gaussian curvature of Riemannian sur­
faces would provide adequate motivation and intuition. This book contains 
enough material for roughly three semester courses. 

We have adopted a candid style of writing. If something is deemed simple 
or straightforward, then it really is. If an omitted calculation is long, we say 
so. Details, annotations, and remarks are provided for the harder or subtler 
topics. Perhaps these gestures will help encourage the newly initiated to 
stay the course and not give up too easily. 

At the end of every chapter, one finds a list of references. Other than 
a few books, these consist primarily of research papers mentioned in that 
chapter. We have chosen to list them there for a reason. It is helpful to be 
able to tell, at a glance, the research territories and boundaries with which 
the chapter in question has made contact. We hope this feature helps foster 
the book's image as an invitation to ongoing research. Incidentally, a master 
bibliography also appears at the end of the book. 

We have compiled 393 exercises. Among those, there are 80 that prompt 
the reader to fill in some of the steps that we have omitted. Nothing was left 
out due to laziness on our part. Instead, the omissions are to be thought of 
as casualties of the editorial process. Their inclusion would either prove to 
be too distracting, or add unnecessarily to the size of the book. Those 80 
problems aside, the remaining 313 exercises explore examples, touch upon 
new frontiers, and prepare for developments in later chapters. 
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If the purpose of the reader is to gain a nodding acquaintance of Finsler 
geometry, then the exercises can be skipped without harm, until some spe­
cific ones are referred to later. If the reader plans to do research in Finsler 
geometry, then practically all the exercises need to be carefully worked 
out. And, to assist those in the second group, we have provided detailed 
step-by-step guidance on the more challenging problems. The adventurous 
reader can always restore as much challenge as he or she wants by blocking 
out some of our suggestions. We simply want to ensure that no one feels 
demoralized by any of the exercises. 

A good number of explicit examples are presented in this book. Those 
discussed in the sections proper include: 

* Minkowski spaces: §I.3A, §14.I. 
* Riemannian spaces: §13.3, especially §13.3B, §13.3C. 
* Berwald spaces: §1O.3, §II.6B. 
* Randers spaces: §I.3C, §II.O, §II.6B, §12.6. 
* Spaces of scalar curvature: §3.9B. 
* Spaces of constant flag curvature: §12.6, §12.7. 

Many more can be found among the exercises. 
The above examples all involve y-global Finsler structures F, with the 

exception of the Berwald-Rund example treated in §10.3. By y-global, we 
mean that F is smooth and strongly convex on T M ,,0. The said example 
does not meet this stringent criterion, but is nevertheless included because 
it illustrates some computation well. It also provides excellent motivation 
for the rest of Chapter 10 and all of Chapter II. 

By no means have we exhausted the realm of interesting examples, y­
global or not. For instance, it is with great reluctance that we have omitted 
Antonelli's Ecological Models, Matsumoto's Slope of a Mountain Metric, 
and Models of Physiological Optics discussed by Ingarden. The interested 
reader can consult the book The Theory of Sprays and Finsler Spaces with 
Applications in Physics and Biology written by these three authors. 

It is true that Finsler geometry has not been nearly as popular as its 
progeny-Riemannian geometry. One reason is that deceptively simple for­
mulas can quickly give rise to complicated expressions and mind-boggling 
computations. With the effort of many dedicated practitioners, this situa­
tion is slowly being turned around. Nonetheless, some intrinsic aspects of 
the subject are suggesting bounds on what one can do with mere pencil 
and paper. 

Fortunately, we are in a technological age. Symbolic computations and 
large-scale computations on the computer are readily accessible. We took 
the first step in that direction by writing Maple codes for the Finslerian 
analogue of the Gaussian curvature. Then we implemented those codes 
on some explicit examples in Chapter 12. We hope this modest attempt 
represents the start of a trend. This could also be the venue by which a 
geometry-minded computer scientist helps advance the field significantly. 
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As we mentioned earlier, this book is not intended to be a comprehensive 
survey. Furthermore, our choice of topics and examples is guided by an eye 
towards the global geometry. The picture we paint can possibly be rather 
idiosyncratic. In spite of that, the material covered here is fundamental 
enough to be considered essential to all branches of Finsler geometry. 

To our colleagues 

In earlier versions of the manuscript, our definitions of the nonlinear 
connection and related objects on T M " 0 differed from those of our fellow 
researchers by factors involving the Finsler function F. In this final ver­
sion, we have decided to match their notations exactly. It is hoped that by 
removing an unnecessary accent, we have enhanced the book's suitability 
as a textbook or as a basic desk reference. Here are the specifics: 

N i "'/jk yk 
Ai Ok 

'Yijk yk Ci k r s .- j. "/rs yr yS -
J jk 'Y rs Y Y , 

8 8 
N i 

8 8yi dyi Nio dxj 
8xj -

8xj J 8yi 
, .- + J 

We have not changed our philosophy of working, as much as possible, with 
objects that are homogeneous of degree zero in y. Our reason for doing so 
is that they make intrinsic sense on the manifold of rays SM. For instance, 
we prefer to work with N i j / F rather than just N ij . But, unlike our earlier 
notation, the N'j here is identical to the N'j used by others. 

Next, our convention on the wedge product does not contain the normal­
ization factors :h, ~, etc. For example, if (), (, and € are I-forms, then: 

() 1\ (.- () ® (, - (® () , 

() 1\ ( 1\ €.- () ® ( ® € () ® € ® (, 

Our placement of indices and sign convention on the curvature tensor 
are adequately illustrated by what we do in the Riemannian case: 

i gis (8gsj _ 8gjk + 8gks ) 
'Y jk'- 2 8xk 8xs 8xj , 

8'Yijk i h i h 
8xl + 'Y hk 'Y jl - 'Y hl'Y jk 

Finally, our Gi := 'Yijk yjyk is twice the Gi of Matsumoto. 

Houston, Texas 
Berkeley, California 
Indianapolis, Indiana 

D. Bao 
S.-S. Chern 

Z. Shen 
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Finsler Manifolds and the 
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1.4 The Fundamental Tensor and the Cartan Tensor 
* References for Chapter 1 

1.0 Physical Motivations 

Finsler geometry has its genesis in integrals of the form 

lb F ( xl, ... , xn; ~l, ..• , d:t
n ) dt . 

The function F(x1 , .. . ,xn ; yl, ... ,yn) is positive unless all the yi are zero. 
It is also homogeneous of degree one in y. Let us single out some contexts 
in which this integral arises. 

* In certain physical examples, x stands for position, y for velocity. 
Then F would have the meaning of speed, and t would play the 



2 1. Finsler Manifolds and the Fundamentals of Minkowski Norms 

role of time. In these cases, the above integral measures distance 
traveled. However, other interpretations are possible. 

* Take optics for instance. Keep in mind that in an anisotropic 
medium, the speed of light depends on its direction of traveL At 
each location x, visualize y as an arrow that emanates from x. Now 
measure the amount of time it takes light to travel from x to the 
tip of y, and call the result F(x, y). The hypothesized homogeneity 
allows us to rewrite the displayed integral as J: F(x,dx). This then 
represents the total time it takes light to traverse a given (possibly 
curved) path in this medium. See Ingarden's exposition in [AIM]. 

* There are many variations on the theme we just described. A par­
ticularly interesting one concerns the time it takes to negotiate any 
given path on a hillside. It was originally mentioned by Finsler to 
Matsumoto [MI]. The premise here is that one's walking speed de­
pends heavily on the slope of the terrain, and hence on one's direc­
tion of traveL See Matsumoto's account in [AIM]. 

* Mathematical ecology provides more esoteric examples. For in­
stance, x could stand for the state of a coral reef, and y the displace­
ment vector from the state x to a new state. The quantity F(x, dx) 
represents the energy one needs in order to evolve from the state x 
to the neighboring state x + dx. Hence the integral J: F(x,dx) is 
the total energy cost of a given path of evolution. See Antonelli's 
treatment in [AIM], as well as the book by Antonelli and Bradbury 
[AB]. 

For explicit mathematical examples, see §1.3. 

1.1 Finsler Structures: Definitions and Conventions 

Let M be an n-dimensional Coo manifold. Denote by TxM the tangent 
space at x E M, and by TM:= UxEM TxM the tangent bundle of M. Each 
element ofTM has the form (x, y), where x E M and y E TxM. The natural 
projection 7r : TM ~ M is given by 7r(x, y) := x. The dual space of TxM 
is T;M, called the cotangent space at x. The union T* M := UxEM T;M 
is the cotangent bundle of M. 

A (globally defined) Finsler structure of M is a function 

F : TM ~ [0,00) 

with the following properties: 

(i) Regularity: F is Coo on the entire slit tangent bundle T M " O. 

(ii) Positive homogeneity: F( x, A y) = A F(x, y) for all A > 0 . 
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(iii) Strong convexity: The n x n Hessian matrix 

is positive-definite at every point of T M ...... 0 . 

* In some situations, the Finsler structure F satisfies the criterion 
F(x, -y) = F(x, y). In that case we have absolute homogene­
ity instead: F(x, A y) = IAI F(x,y) for all A ERIn general, we 
find this property to be too restrictive, because it would immedi­
ately exclude some interesting examples such as Randers spaces (see 
§1.3C). 

* Let us make sense of the yi in criterion (iii). Fix any basis {bi } 
for TxM. Out of habit, one can take bi to be a~i , although this 
restriction is unnecessary. Express y as yi bi . The Finsler structure 
F is then a function of (xi, yi), and the partial derivatives of ~ F2 
are taken with respect to the yi. It can be checked that the positive­
definiteness stipulated in (iii) is independent of our choice of {bd. 

Given a manifold M and a Finsler structure F on TM, the pair (M, F) 
is known as a Finsler manifold. See §1.3 for explicit examples of some 
important Finsler manifolds. 

Throughout the book, the rules that govern our index gymnastics are as 
follows: 

• Lower case Latin indices (except the alphabet n) run from 1 to n . 

• Lower case Greek indices run from 1 to n - 1 . 

• Vector indices are up; covector indices are down. 

• Any repeated pair of indices-provided that one is up and the other 
is down-is automatically summed. 

• The lowering and raising of indices are carried out by the gij defined 
above, and its matrix inverse gij . 

Let (xl, ... ,xn ) = (Xi) : U ---4 IRn be a local coordinate system on 
an open subset U c M. As usual, {a~i} and {dXi} are, respectively, the 
induced coordinate bases for TxM and T; M. The said x· give rise to local 
coordinates (Xi, yi) on 'IT-I U c T M through the mechanism 

i a 
y=y-a·· x' 

The yj are fiberwise global. Whenever possible, let us make no distinction 
between (x, y) and its coordinate representation (Xi, yi). Functions F that 
are defined on T M can be locally expressed as 

F( In. In) X , •.. ,X ,y , ... ,y . 
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We continue a convention employed in criterion (iii) above; namely, denote 
by Fyi, Fyiyj, ... , etc. the partial derivative( s) of F with respect to the 
coordinates yi. Adopt a similar notation for the partial derivatives with 
respect to the coordinates Xi. 

We close this section with some cautionary remarks about OUr notation. 
For the sake of concreteness, we focus our attention on the various objects 
that the symbol a~i comes to represent throughout this book. 

* When evaluated at the point x EM, a~i refers to a coordinate 
vector on M. 

* When evaluated at the point (x, y) E T M, the same notation a~i 
stands for a coordinate vector on T M. As such, it would be on the 
same footing as the a~i' which are also coordinate vectors on the 
tangent bundle T M. 

* Later on, we use the restricted projection n : T M " 0 ----> M to pull 
the tangent bundle T M back, producing a vector bundle n*T M 
that sits over T M " 0 . In that case, when a~i is evaluated at the 
point (x, y) E TM" 0 , it will take on yet another meaning, namely, 
as (the value of) a basis section of the bundle n*T M. 

In short, we are using the same symbol a~i to denote objects that belong 
to three different spaces. Furthermore, they do not obey the same trans­
formation law. Indeed, let 

i i(-l -n) X =X x, ... ,x 

be a local change of coordinates on M. Correspondingly, the chain rule 
gives 

(1.1.1) 

One can apply the chain rule carefully to deduce that: 

* As coordinate vector fields on M, Or as basis sections of n*T M, the 
a~i transform like 

(1.1.2) 
a 

axP 

* On the other hand, as coordinate vector fields on T M, the 
transform like 

(1.1.3) 
a 

axP 

Nevertheless, we have decided that the inherent risks of this practice 
do not outweigh its virtue, which is simplicity. We feel (or hope!) that it 
is easier for the reader to ferret out the proper meaning of a~i from the 
context of our discussion or computation, than to create a different symbol 
for each of the three objects described. 
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Exercises 

Exercise 1.1.1: Recall that the definition of the gij involves a choice of 
basis for each TxM. Explain why the positive-definiteness of the matrix 
(gij) is a basis-free concept. 

Exercise 1.1.2: Derive the induced transformation laws (1.1.1)-(1.1.3). 

1.2 Two Basic Properties of Minkowski Norms 

The restriction of a Finsler structure F to any specific tangent space TxM 
gives what is known as a Minkowski norm on TxM. Thus a Finsler structure 
of M may be viewed as a smoothly varying family of Minkowski norms. 
Generically, this family has rather limited (to be precise, no more than C 1 ) 

differentiability along the zero section of the tangent bundle T M. Such 
regularity issues are dealt with later. Here, let us concern ourselves with 
certain geometrical aspects of Minkowski norms. 

Every n-dimensional vector space is linearly isomorphic to Rn, whose 
elements y have the form (yl, ... , yn). Thus there is no loss of generality 
in confining our discussion to Minkowski norms on Rn. 

1.2 A. Euler's Theorem 

First, let us dispense with a technical ingredient that manifests itself repeat­
edly in our arguments. It is known as Euler's theorem for homogeneous 
functions. 

Theorem 1.2.1. Suppose a real-valued function H on Rn is differen­
tiable away from the origin of Rn. Then the following two statements are 
equivalent: 

• H is positively homogeneous of degree r. That is, 

H(>. y) = AT H( y ) forall A>O . 

• The radial directional derivative of H is r times H. Namely, 

Proof. 

* Suppose H satisfies H(AY) = AT H(y) for all positive A. Fix y. 
Differentiating this equation with respect to the parameter A gives 

yiHyi(>.Y) = rAT- 1 H(y). 

Setting A equal to 1 gives the criterion sought. 
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* Conversely, suppose yi Hyi(Y) = r H(y). Fix y and consider the 
function H(>" y) with>" > O. By the chain rule, we have 

d . 1· 
d>" H(>..y) = y' Hyi(>..Y) = >: (>..y)' Hyi(>"y) . 

Using our supposition, we see that the last term equals * r H(>.. y). 
Since we have not assumed that H is nonzero away from the origin, 
we cannot read the above as A log H (>.. y) = X = d~ log>.. r. Instead, 
we rewrite it as the ODE 

d r 
d>" H(>..y) - >: H(>"y) = O. 

The integrating factor ;r then gives H(>.. y) = C >..r, where C is 
some constant that depends on our fixed y. Setting>.. equal to 1 
shows that C = H(y). D 

In particular, if F is positively homogeneous of degree 1, then 

(1.2.1) equivalently 1 , 

(1.2.2) 

1.2 B. A Fundamental Inequality 

The next theorem tells us that positivity and the triangle inequality are 
actually consequences of the defining properties of Minkowski norms. It also 
calls our attention to a multifaceted fundamental inequality. 

Theorem 1.2.2. Let F be a nonnegative real-valued function on IRn with 
the properties: 

* F is Coo on the punctured space IRn '" 0 . 

* F( >.. y) = >.. F(y) for alI >.. > o. 
* The n x n matrix (gij), where gij(y) := [~F2)yiyj(y) ,is positive­

definite at all y -1= O. 

Then we have the folIowing conclusions: 

• (Positivity) 

F(y) > 0 whenever y -1= 0 . 

• (Triangle inequality) 

F( Yl + Y2) ~ F( yd + F( Y2) , 

where equality holds if and only if Y2 = a Yl or Yl = a Y2 for some 
a ~ O. 
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• (Fundamental inequality) 

(1.2.3) at all y t- 0 I, 
and equality holds if and only if w = 0: Y for some 0: ~ o. 

Remarks: 

** The hypotheses of the above theorem define what one means by a 
Minkowski norm on ]Rn. According to this theorem, there is no 
need to hypothesize that F be positive at y t- 0; it is necessarily so. 

** If the Minkowski norm satisfies F( -y) = F(y), then one has the 
absolute homogeneity F( A y) = IAI F(y). The simplest example of 
an absolutely homogeneous Minkowski norm on ]Rn is 

F(y) := ..,ryey, 
where. denotes the canonical inner product u. v := Dij ui vj . This 
F is called the standard Euclidean norm of ]Rn. 

** In view of the first two conclusions of this theorem, every absolutely 
homogeneous Minkowski norm is a norm in the sense of functional 
analysis. 

In preparation for the proof of Theorem 1.2.2, we observe the following: 

• One can check that 

(1.2.4) gij(y) := (~F2) .. (y) = [F Fyiyi + Fyi Fyi J(y) . 
y'yJ 

The gij are Coo functions on ]Rn" 0 and, in typical examples (that 
are not Riemannian), they cannot even be extended continuously to 
all of ]Rn. 

• Applying the consequences (1.2.1), (1.2.2) of Euler's theorem to the 
above formula for gij gives 

(1.2.5) 
i . _ 2 

gij(y) Y if - F (y) , 
yi yj 

equivalently gij F F = 1. 

We now give a proof, adapted from Rund [RJ, of Theorem 1.2.2. 

Proof of the theorem. 

(i) Positivity: 
Consider (1.2.5); namely, gij (y) yi yj = F 2(y) . The hypothesized strong 

convexity of F says that the left-hand side is positive whenever y t- 0, thus 
F is strictly positive on ]Rn " 0 . 
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(ii) The triangle inequality: 
At each point y E ]Rn ....... 0 , the matrix (gij) defines an inner product. So 

we have the Cauchy-Schwarz type inequality 
i . 2 i . k l 

(1.2.6) [gij (y) e 'If] ~ [gij (y) e eJ ] [gkl (y) "I "I] V e, "I E lRn , 

where equality holds if and only if e = (ei ), "I = ("Ii) are collinear. Setting 
"Ii = yi and using (1.2.5), we obtain 

. . 2 2 . . 
(1.2.7) [gij(y) e'yJ] ~ F (y) [gij(y) e'eJ ] VeElRn , 

where equality holds if and only if e and y are collinear. On the other hand, 
the formula (1.2.4) for 9ij leads us to 

(1.2.8) Fyiyj(Y) eiej = F31(y) {F2(y) [gij(y) eiej ] - [gij(y) yi ej ]2} 

which, in conjunction with (1.2.7), gives 

(1.2.9) 

Here, equality holds if and only if e and yare collinear. 
Next we prove that 

(1.2.10) 

and equality holds if and only if e = AY for some IAI ~ 1. 
Let us begin by analyzing all the linearly dependent cases: 

* If e = AY for some IAI ~ 1, the (positive) homogeneity of F implies 
that both sides of (1.2.10) are equal to 2F(y). 

* If e = AY with IAI > 1, the right-hand side of (1.2.10) reduces to the 
form (2 + o:)F(y) + (3, where 0:, (3 are positive. Hence the inequality 
in question is strict as claimed. 

* The case of e = 0 is covered by the above. The only scenario left 
is when e i=- 0 but y = 0, for which the inequality is strict by the 
positivity we just established. 

Now suppose y, e are linearly independent. Consider F(y+te), which is 
a Coo function in the real variable t. By the second mean-value theorem, 
we have 

(1.2.11) 

for some 0 < € < 1. Since y ± €e and e are linearly independent, (1.2.9) 
tells us that the quadratic term in (1.2.11) is positive. Thus 

(1.2.12) 

(1.2.13) 

F(y+e) > F(y) + Fyi(Y) ei , 

F(y - e) > F(y) Fyi (y) ei . 

These add to yield the strict inequality part of (1.2.10). 
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By setting y := ~ (Yl + Y2) and ~ := ~ (Yl - Y2) in (1.2.10), we obtain the 
triangle inequality stated in the theorem. The fact that (1.2.10) becomes an 
equality only when ~ = AY for some IAI ~ 1 now implies that the triangle 
inequality is strict except when Yl = a Y2 or Y2 = a Yl for some a ~ O. 

Let us note in passing the following. We have seen that (1.2.10) implies 
the triangle inequality. The converse is quite straightforward. So the two 
are actually equivalent. 

(iii) The fundamental inequality: 
Finally, we ascertain (1.2.3): 

Wi Fyi(Y) ~ F(w) at all Y 1:- 0, 

where equality is supposed to hold if and only if w = a Y for some a ~ O. 
The consequences of Euler's theorem, as described in (1.2.1) and (1.2.2), are 
used repeatedly without mention. As before, we enumerate all possibilities: 

* When w = ay for some a ~ 0, both sides equal aF(y). 

* When w is a negative multiple of y, the inequality is strict because 
its left-hand side becomes a negative multiple of F(y). 

* The case w 1:- 0 but Y = 0 is disallowed. 

* Lastly, suppose y, ware linearly independent; then so are y and 
~ := y - w. Inequality (1.2.13) nOw reads 

(1.2.14) 

which readily reduces to the strict part of (1.2.3). 

We have completely proved Theorem 1.2.2. 0 

1.2 C. Interpretations of the Fundamental Inequality 

In this subsection, let us explore the many different faces of the fundamental 
inequality (1.2.3) . 

• At face value, (1.2.3) says that 

And, the latter becomes an equality if and only if w = ay for some 
a ~ O. Note that the said equality, after cancelling off a (if> 0), 
is none other than Euler's theorem (1.2.1): yi Fyi(Y) = F(y). Hence 
(1.2.3) may be viewed as an extension of Euler's theorem, from an 
equation to an inequality . 

• Adding the equation F(y) - yi Fyi(Y) = 0 to (1.2.3) gives 

(1.2.15) F(y) + Fyi(Y) (w - y)i ~ F(w) I, 
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where equality holds only when w = ay with a ~ o. Think of y 
as fixed and w as the independent variable. The left-hand side is 
then the linear approximation of the value F(w). So, at any fixed 
(y, F(y)) on the graph of F, the tangent hyperplane touches the 
graph only along the ray (ay, aF(y)), a ~ o. Everywhere else, the 
tangent hyperplane lies below the graph of F. This is depicted in 
Figure 1.1. In this way, (1.2.3) tells us that the graph of F is a 
convex cone with its vertex at the origin of our Minkowski space . 

• Since F(y) > 0 for y i- 0, we can multiply (1.2.3) by F(y) to 
get Wi F(y) Fyi (y) ~ F(y) F(w). Now, (1.2.4), (1.2.2), and (1.2.1) 
together give yj gij = FFyi. Thus (1.2.3) is equivalent to 

(1.2.16) I gij (y) Wi yi ~ F(w) F(y) I· 

Consider first the case in which F is the norm associated with an 
inner product on ]Rn. Here, F(y) = vi gij yiyj, where the gij are 
constants. Almost by inspection, we see that the fundamental ten­
sor gij (y) := (~F2)yiyj is simply given by the inner product gij. 
Also in this case, F( -y) = F(y). These observations allow us to 
deduce that (1.2.16) is equivalent to Igij wiyjl ~ F(w) F(y), which 
is the standard Cauchy-Schwarz inequality. So, in the general case, 
we may view (1.2.16) [equivalently (1.2.3)] as a generalization of 
the Cauchy-Schwarz inequality, from inner products to Minkowski 
norms. Note however that, when spelled out, (1.2.16) implies that 

[gij(y) wi yj]2 ~ [gpq(w) wpwq] [grs(y) yrys]. 

We emphasize that in the first term on the right, it is gpq (w) and 
not gpq (y). As such, this last inequality is distinctly different from, 
and much more subtle than, the Cauchy-Schwarz type inequality 
(1.2.6) encountered during the proof of Theorem 1.2.2 . 

• Finally, the fundamental inequality (1.2.3) plays a pivotal role in the 
proof (Theorem 6.3.1) that short Finslerian geodesics are minimal. 
Upon this edifice rests the Hopf-Rinow theorem (see §6.6) and the 
enterprise of cut versus conjugate loci (treated systematically in 
Chapter 8). As we show, the fundamental inequality comes to the 
rescue when the Riemannian proof of Theorem 6.3.1 breaks down 
in the generic Finsler case. The same technique saves the day again 
in Proposition 9.2.2, when we prove that for (forward geodesically) 
complete connected Finsler manifolds of nonpositive flag curvature, 
the exponential map is a covering projection. 

We have interpreted the fundamental inequality (1.2.3) in several con­
texts. In each case, something interesting and important emerges. This is 
a testimonial to the inequality's depth and significance. 
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Indicatrix F = 1 

Minkowski plane 

Figure 1.1 

The graph of a Minkowski norm is a convex cone with its vertex 
at the origin. The one shown here "tilts to the right." 

Exercises 

Exercise 1.2.1: Let F be positively homogeneous of degree 1 on ]Rn. Use 
Euler's theorem to show that 

(a) 

(b) 

(c) 

(d) 

yi Fyi = F . 

yj Fyiyi = 0 . 

yk Fyiyiyk = - Fyiyi 

yl Fyiyiykyl = - 2 Fyiyiyk 

Here, all formulas are supposed to be evaluated at y. 

Exercise 1.2.2: Let F be the standard Euclidean norm on ]Rn. Show that 
its 9ij is simply the Kronecker delta bij . 

Exercise 1.2.3: Derive (1.2.5). 

Exercise 1.2.4: A Minkowski norm F on ]Rn is said to be Euclidean if it 
arises from an inner product ( , ) through F(y) = vi ( y, y). Prove that 
the following three criteria are equivalent: 

(a) The Minkowski norm F is Euclidean. 

(b) The functions 9ij defined in (1.2.4) are constant. 

(c) The functions Aijk(y) := t (F2 )yiyiyk are all zero. 

Exercise 1.2.5: Let F be a Minkowski norm on ]Rn. 

(a) Explain why its Hessian matrix (Fyiyi ) is positive semidefinite. 

(b) Prove that its rank is n - 1 . 
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(c) Verify that its I-dimensional null space at any point y =I- 0 is spanned 
by the vector yi a~' . 

Hint: you may want to review the discussions that center around (1.2.9). 

Exercise 1.2.6: A domain D in JRn is said to be strictly convex if it 
contains the interior of every line segment joining any two points of the 
topological closure D. Let F be a Minkowski norm. Given any r > 0, 
define the ball Bn(r) and the sphere sn-l(r) of radius r (centered at the 
origin) as follows: 

Show that: 

Bn(r) ._ {y E JRn: F(y) < r} , 

sn-l(r) ._ {y E JRn: F(y) = r} . 

( a) Each Bn (r) is a strictly convex domain with Coo boundary sn-l (r). 

(b) Explain what it means to say that strong convexity implies strict 
convexity. 

Exercise 1.2.7: Suppose B is a strictly convex open domain "centered" at 
the origin, with smooth boundary S := aBo Define a nonnegative function 
F on JRn as follows: 

F(y) := ~, where t > 0 is such that ty E S. 

(a) Check that F(y) > 0 for all y =I- 0 . 

(b) Verify that F( >. y) = >. F(y) for all positive numbers >.. Also, ascer­
tain that if the domain B satisfies y E B {:} -y E B, then we have 
F( >. y) = 1>'1 F(y) for all >. E JR. 

(c) Show that 

{
<I if and only if y E B 

F(y) is = 1 if and only if yES 

> 1 if and only if y ¢:. B 

(d) Prove that F satisfies the triangle inequality. 

(e) Then check that 

F(y+tO + F(y-tO - 2F(y) ~ O. 

(f) Explain why F is Coo on JRn " 0, but is typically not differentiable 
at the origin. 

(g) Fix y =I- 0 and divide the inequality in part (e) by t2 . Then take the 
limit as t ---t 0+. Show that the result is 

Fyiyi (y) f"i f"j ~ O. 
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In other words, the Hessian of F is positive-semidefinite. Hint: ex­
pand the terms F( y ± t e) using the second mean-value theorem. 

(h) Use formula (1.2.4) and part (g) to help you deduce that the Hessian 
gij := [~F2]yiyj is typically only positive-semidefinite. Can you 
exhibit a nonzero ~ such that gij ~i ~j = o? Hint: see Exercise 1.2.9. 

The moral here is that: 
There are homogeneous functions F with strictly convex 
unit balls but fail (just barely) to be strongly convex. 
Hence they do not define Minkowski norms. 

Exercise 1.2.8: 

(a) Let S be some smooth hypersurface in IRn that is defined by an 
equation P( v) = O. Suppose we want to find a function F on IRn that 
has the constant value 1 on S. Explain why F(y) is characterized 
by the equation 

Occasionally, such an equation can be solved to give an explicit 
formula for F(y). The method we have just described is known af­
fectionately as Okubo's technique. 

(b) As a concrete example, let S be the convex lima<.;on in 1R2 • In polar 
coordinates, it has the description 

p = 3 + cos ¢ , 0 ~ ¢ ~ 21f . 

Sketch S and check that its Cartesian description is 

( yl)2 + (y2)2 = 3 vi (yl)2 + (y2)2 + yl . 

(c) Apply Okubo's technique to show that the function F which has 
constant value 1 on S is 

F(y) = 
3 vi ( yl)2 + (y2)2 + yl 

(d) Can you prove that this F has all the defining properties (especially 
strong convexity) of a Minkowski norm? 

Exercise 1.2.9: Let 

B := {(y\ y2) E 1R2 : (yl)4 + (y2)4 < I}. 

(a) Check that B is strictly convex (as defined in Exercise 1.2.6) and 
has a smooth boundary. 

(b) Consider the F defined in Exercise 1.2.7. Use Okubo's technique to 
deduce that here, it has the explicit formula 

F(y) = [( yl)4 + (y2)4 jI/4 . 
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(c) Calculate the matrix (gij) and check that it is singular (that is, not 
invertible) on the yl and y2 axes. As a result, it cannot possibly be 
positive-definite at these points. Show that these are the only points 
at which it fails to be positive-definite. 

(d) Explain what it means to say that strict convexity does not imply 
strong convexity. 

Exercise 1.2.10: In 1R2, abbreviate yl, y2 as p, q, respectively. Define 

F(P, q) := Q (p2 + q2 )1/2 + (3 (p4 + q4 )1/4 , 

where Q > 0, (3 ~ 0 are constants. 

(a) Calculate the functions gij and check that they are homogeneous of 
degree zero. 

(b) Identify all constants Q and (3 for which F defines a Minkowski norm 
on 1R2 • 

Exercise 1.2.11: Let F be a Minkowski norm on IRn. 

(a) Show that if two vectors y and w satisfy gij (y) yi = gij (w) wi, then 
y=w. 

(b) Decide whether anything can be concluded if those two vectors sat­
isfy the following identity instead: Fyi (y) = F wi (w). 

1.3 Explicit Examples of Finsler Manifolds 

1.3 A. Minkowski and Locally Minkowski Spaces 

A Finsler manifold (M, F) is said to be locally Minkowskian if, at every 
point x E M, there is a local coordinate system (Xi), with induced tangent 
space coordinates yi, such that F has no dependence on the Xi. 

In order to construct locally Minkowskian manifolds, one might intu­
itively begin with a smooth manifold M and try to put the "same" Min­
kowski norm on each of its tangent spaces. However, a good amount of 
caution should be exercised, because there are topological obstruction(s) 
that one must overcome. For example, if M is compact and boundaryless, 
then having a locally Minkowskian structure will force its Euler character­
istic to vanish. See [BC2j. 

The simplest locally Minkowskian manifolds are of the following type: 

* We start with a Minkowski norm F on IRn. 

* We change our perspective and regard IRn as a manifold, albeit a 
linear one. 

* Given any tangent vector v based at y E IRn, we slide it (without 
twisting) until it emanates from the origin "0" instead. Then we 
evaluate F at the tip of this translated vector. 
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* In terms of a formula, we have 

F( y, v) = F ( y, Vi 8~i IY) := F ( vi 8~i 1
0

) • 

One is certainly justified in saying that the locally Minkowskian examples 
we just cited are actually Minkowski norms in trivial disguise! Yet, this 
does not detract from the fact that such examples are among the most 
important ones in practice. 

For numerical explorations, a particularly instructive family of Minkow­
ski norms is the following. Here, >. can be any nonnegative constant. 

This may be viewed as a perturbation of the quartic metric. See 
also Exercise 1.2.11. Let us demonstrate that the perturbation serves to 
regularize the singularity in the quartic metric. To this end, we first relabel 
VI as p and v2 as q in order to avoid clutter. Straightforward computations 
then give 

( 911 912) = ( >. 
921 922 

Hence 

trace(gij) 2>' + 

Note that 

>. + 

(r + q2)3 
(p4 + q4)3/2 

(p2 + q2)3 

(p4 + q4 )3/2 

). 

• If >. = 0, then det(gij) vanishes on the p and q axes in each tan­
gent plane. In that case, the Finsler function F, whose fundamental 
tensor is called the quartic metric, fails to be a Minkowski norm 
because strong convexity is violated at some nonzero y . 

• If >. > 0, then both the determinant and the trace of (gij) are 
positive away from the origin in each tangent plane. In that case, 
9ij is positive-definite because both its eigenvalues are positive. The 
Finsler structure F is then a Minkowski norm. In this sense, the 
perturbation has regularized the quartic metric. 

1.3 B. Riemannian Manifolds 

Let M be an n-dimensional Coo (smooth) manifold. A smooth Riemannian 
metric 9 on M is a family {9x}XEM of inner products, one for each tangent 
space TxM, such that the functions 9ij (x) := 9x( a~i , a~j ) are Coo. Since 
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each gx is an inner product, the matrix (gij) is positive-definite at every 
x E M. We can write 

g = gij (x) dx i ® dx j . 

This g defines a symmetric Finsler structure F on T M by the mechanism 

F(x,y) := ..jgx(Y,Y) . 

Every Riemannian manifold (M, g) is therefore a Finsler manifold. A 
Finsler structure F is said to be Riemannian if it arises from a Riemann­
ian metric g in the manner we just described. In practice, one ascertains 
this by showing that the fundamental tensor computed from F via (1.2.4) 
has no y dependence. As a matter of fact, 

gij := (~F2) .. = gij (x) . 
2 y'yJ 

Let us describe some fundamental Riemannian metrics. To this end, let 
5>.(t) be the unique solution to the ODE 

5~ + ..\ 5>. = 0, with initial data 5>. (0) = 0, 5~ (0) = 1. 

Here, ..\ is an arbitrary but fixed real number. Explicitly, we have 

sin(~t) 
if ..\>0 

~ 
(1.3.1) 5>.(t) t if ..\=0 

sinh( Ff.. t) 
if ..\<0 

Ff.. 
Let (Xi) denote the natural coordinates of ]Rn. At any point x E ]Rn, 

introduce the abbreviations 

and 

to avoid clutter. Define 

(1.3.2) gij (x) 

One can verify that: 

* These gij can be extended smoothly to the origin x = o. 
* g:= gij (x) dx i ® dx j is a Riemannian metric on ]Rn if ..\ ~ o. 
* If"\ > 0, our g is a Riemannian metric on the open ball 

{ x E ]Rn: Ixl < ~}. 
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As we show in §13.3, these Riemannian metrics have constant sectional 
curvature A. They are the Riemannian space forms. 

1.3 C. Randers Spaces 

In 1941, G. Randers [Raj studied a very interesting class of Finsler mani­
folds. Let M be an n-dimensional manifold. A Randers metric is a Finsler 
structure F on T M that has the form 

(1.3.3) 

where 

(1.3.4) 

(1.3.5) 

F(x,y) := a(x,y) + (3(x,y) , 

a(x, y) V iiij (x) yi yj 

(3(x,y) .- bi(x) yi . 

* The iiij are the components of a Riemannian metric and the bi are 
those of a I-form. Both objects live on M, and are understood to 
be fixed throughout the discussion. 

* Due to the presence of the (3 term, Rander's metrics do not sat­
isfy F(x, -y) = F(x, y) when b i=- O. In fact, the Finsler function 
of a Randers space is absolutely homogeneous if and only if it is 
Riemannian. 

The indices on certain objects are lowered and raised by 
(iiij) and its inverse matrix (iii j ). Such objects are deco­
rated with a tilde. 

Since (3(x, y) is linear in y, it cannot possibly have a fixed sign. Thus, in 
order for F to be positive on T M " 0 , the size of the components bi must 
be suitably controlled. It can be shown (see §11.1) that the said positivity 
holds if and only if 

(1.3.6) II b II .- Vbi bi < 1 , 

where 

(1.3.7) bi .- -ij b. a J' 

We also need to address the issue of strong convexity. The gij associated 
with F can be computed according to formula (1.2.4). One finds that 

(1.3.8) gij = F (iiij - £i £j) + (£i + bi ) (£j + bj ) , 
a 

where 

(1.3.9) 
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Equivalently, 

(1.3.10) 

It turns out (see §11.1) that the criterion II b II < 1, which guarantees the 
positivity of F, also ensures strong convexity. And the crux of the argument 
involves the following computational fact: 

(1.3.11) ( F )n+l 
det( gij) = ~ det( iiij ) . 

Its derivation can be found in [M2J, albeit in the more general context of 
( a, (3) metrics. A direct and expository account of (1.3.11) is given in 
§11.2. 

Let us borrow an explicit example of a Randers metric from [AIM]. Set 
M := R2 ,,0 . At each x E M, the indicatrix is to have the following 
properties: 

* It is an ellipse with eccentricity e, possibly depending on x, in the 
tangent plane TxM. 

* One of its foci is located at the orgin y = 0 of TxM. 

* The directrix (corresponding to the above focus) passes through the 
deleted point 0 of M, and is perpendicular to the line segment from 
o to x. 

Using Okubo's technique (see Exercise 1.2.8), it can be shown that the 
formula for F is 

(1.3.12) ( 1 2 1 2 1 [I;i2 xey 
F x ,x ; y ,y ) = e V /Xj2 - ~ 

Here, we have introduced some temporary abbreviations 

I y I .- vi ( yl)2 + (y2)2 

X e y ._ Xl yl + x2 y2 

in order to avoid clutter. 

1.3 D. Berwald Spaces 

Berwald spaces are just a bit more general than Riemannian and locally 
Minkowskian spaces. They provide examples that are more properly Fins­
lerian, but only slightly so. The most easily described characteristic of a 
Berwald space is that all its tangent spaces are linearly isometric to a 
common Minkowski space. One might say that the Berwald space in ques­
tion is modeled on a single Minkowski space. For a precise definition of 
Berwald spaces, see Chapter 10. 
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We shall focus on Finsler structures F that are smooth and strongly con­
vex on all of T M ,,0. Let us refer to these F as y-global for emphasis. As 
we show, it takes some work to explicitly locate a y-global Berwald space 
that is neither Riemannian nor locally Minkowskian. In fact, according to 
a rigidity result (see §10.6) of Szabo's, these do not even exist in dimension 
two. Fortunately, examples of the desired vintage can be found in dimension 
three or higher. The ones we know had their genesis in a result of Mat­
sumoto [M4], Hashiguchi-Ichijyo [HI], Shibata-Shimada-Azuma-Yasuda 
[SSAY], and Kikuchi [Kil. By contrast, y-Iocal Berwald surfaces do exist, 
and an explicit example of such is analyzed in §10.3. 

Let us quote (from §11.6) an example of a 3-dimensional y-global 
Berwald space that is neither Riemannian nor locally Minkowsk­
ian. It is given by a Randers metric constructed with the following data: 

• The underlying manifold is the Cartesian product 

M := 8 2 x 8 1 . 

It is compact and boundaryless. As local coordinates, one can use 
the usual spherical (), ¢ on 8 2 , and t for 8 1. For concreteness, 
we measure ¢ from the positive z axis down. Also, t is such that 
(cos t, sin t, 0) parametrizes 8 1 . 

• The Riemannian metric a is the product metric on 8 2 x 8 1 . Here, 
8 2 and 8 1 are given the standard Riemannian metrics that they 
inherited as submanifolds of Euclidean ]R.3. Explicitly, one finds that 

a := (sin2¢ d() 0 d() + d¢ 0 d¢) + dt 0 dt . 

This metric is not flat because it has nonzero curvature tensor. 

• The I-form we need is 

b := Edt, 

where E is any (fixed) positive constant less than 1. This Ii is glob­
ally defined on M, even though the coordinate t is not. It is non­
vanishing by inspection, and has Riemannian norm II Ii II = E < 1. A 
straightforward calculation shows that it is parallel with respect to 
the Levi-Civita (Christoffel) connection of a. 

We now write down the resulting Randers metric. Let x be any point on 
M, with coordinates ((), ¢, t). Let the arbitrary tangent vector y E TxM be 
expanded as yO 80 + y'" 8", + yt 8t . Then 

(1.3.13) 

Since this F is of Randers type, its fundamental tensor is in principle given 
by (1.3.8) or (1.3.10), although a direct computation is probably more 
efficient. The reader is asked to do this calculation in Exercise 1.3.6. 
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1.3 E. Finsler Spaces of Constant Flag Curvature 

An extensive discussion of Finsler spaces with constant (flag) curvature 
is given in Chapter 12. 

There are non-Riemannian Finsler structures on ]R2 with negative con­
stant Gaussian curvature. These are discussed in [Br3]. In §12.6, we con­
struct one (known to Okada [Ok]) using the Yasuda-Shimada theorem [YS] 
as an inspiration (because we do not prove that theorem in this book). We 
then directly verify that it has constant negative Gaussian curvature 
K = - ~. The explicit formula for the Finsler function is 

(1.3.14) F(x,y) := 
1 

1-r.: ~ + 
4 

Here, r2 := (XI)2 + (X2)2, where x = (xl, x2) is any point on the Poincare 
disc M := {x E ]R2 : r < 2}. And y is an arbitrary vector in the tangent 
plane TxM. 

This is a very special Randers metric: 

* It has constant negative (Finslerian) Gaussian curvature -i. 
* It violates some completeness assumption in Akbar-Zadeh's [AZ] 

rigidity theorem. 

* The Finslerian metric distance from the origin to the rim of the disc 
is infinite. But that coming back from the rim to the origin has the 
finite value log 2! 

* Its geodesics are, trajectorywise, the same as the geodesics of the 
Riemannian Poincare disc. 

For these reasons, we would like to view it as the Finslerian analogue of 
the Poincare disc. 

Next, we turn to positive flag curvatures. In two dimensions, we have 
explicit non-Riemannian examples with constant positive Gaussian curva­
ture K = 1, due to Bryant [Br1, Br2]. Here, we focus on a 2-parameter 
family from [Br2]. Each Finsler structure in this family has K = 1 and is 
projectively flat. In [Br2], it is explained how these are related to some of 
Funk's earlier works [F1, F2]. 

Let V be a 3-dimensional real vector space with basis {bI, b2 , b3 }. Let p, 
'Y be two fixed angles satisfying 

7r 
(*) 1"11 ~ p < 2". 
Define a p and 'Y dependent, complex-valued quadratic form Q on V by 

Q(u, v) := eip u l VI + ei'r u2 v2 + e- ip u3 v3 • 

In the above exponentials, i means R . Also, u = u i bi ; V = Vi bi . 

Let 8 2 denote the set of rays in V. Equivalently, we are identifying X 
and X* in V whenever X* = A X for some A > O. Each point of 8 2 can 
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thus be denoted as an equivalence class [X], with 0 i X E V. A moment's 
thought shows that every tangent vector at the point [X] on 8 2 is the initial 
velocity to a curve of the form [X +tY], for some Y E V. Each such curve is 
half of a great circle on 8 2 • And it makes sense to denote the said tangent 
vector by [X, Y]. Note that [X', yl] = [X, Y] if and only if X' = AX and 
Y' = A Y + J.LX, for some A > 0 and J.L E IR . 

The Finsler function F: T82 -+ [0, (0) for Bryant's family of metrics, 
indexed by p and 'Y, is 
(1.3.15) 

F( [X, Y]) := Re [ 
Q(Y, Y) Q(X, X) - Q2(X, Y) . Q(X, Y) 1 

Q2 (X, X) - Z Q(X, X) , 

where "Re" means taking the real part. The complex square root function 
is taken to be branched along the negative real axis, and to satisfy v'I = 1. 
In other words, 

R ~b .1 a + Ja2 + b2 
e va + Z 0 := + V 2 . 

It is not difficult to check that when p = 0 = 'Y, the above F is Riemannian. 
It is also instructive to work out a manifestly real formula of F for specific 
choices of p and 'Y. See §12.7 for a sample. 

Bryant assures us that his methods in [Br2] give the following: 

* The above F is indeed a Finsler structure in the sense of § 1.1. Unless 
p = 0 = 'Y, this Finsler function is non-Riemannian and is only 
positively homogeneous. 

* Each great semicircle [X + tY] is a geodesic of the Finsler structure. 
(Incidentally, such curves are not yet parametrized to have constant 
speed. Nevertheless, the Finslerian length of each great circle is 211".) 

* The Gaussian curvature of the Finsler surface (82 , F) has the con­
stant positive value 1. 

Exercises 

Exercise 1.3.1: Show that the Minkowski spaces arising from the Min­
kowski norms 

n n 

F(y) := I) yi)4 + A L ( yi )2 
i=l i=l 

are all nonisometric for different values of A ;;:: O. 

Exercise 1.3.2: Recall the gij defined in (1.3.2). Prove that they can be 
smoothly extended to the origin x = 0 of IRn. 
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Exercise 1.3.3: This again concerns (1.3.2). Show that 

(a) For A ::;; 0, the matrix (gij) is positive-definite at every x E lln. 

(b) For A > 0, the matrix (gij) is positive-definite if Ixl < :Ix . 
Exercise 1.3.4: Verify formula (1.3.8) for the gij of Randers metrics. 

Exercise 1.3.5: (Borrowed from [AIM].) Let M := 112 ...... O. Suppose at 
each x EM, we want the indicatrix to have the following properties: 

* It is an ellipse with eccentricity e in the tangent plane TxM. 

* One of its foci is located at the origin y = 0 of TxM. 

* The directrix (corresponding to the above focus) passes through the 
deleted point 0 of M, and is perpendicular to the line segment from 
o to x. 

(a) Draw a picture of what we have just described. 

(b) Use Okubo's technique to derive formula (1.3.12) for F. 

(c) For this Randers metric, identify iiij and bi . 

(d) Directly compute the fundamental tensor and its determinant. 

Exercise 1.3.6: For the 3-dimensional Berwald space given in (1.3.13), 
compute directly the fundamental tensor and its determinant. 

Exercise 1.3.7: Show that the Finsler function F, given in (1.3.15), is well 
defined on T 8 2 . In other words, that expression for F remains unchanged 
upon replacing X by AX and Y by AY + J.LX, where A > 0 and J.L Ell. 

1.4 The Fundamental Tensor and the Cartan Tensor 

Let F be a Minkowski norm on lRn. We have seen the utility of the functions 

(1.4.1) I gij := 

in §1.2. Next define 

(1.4.2) A F 8gij F ( 2) 
ijk (y) := 2" 8yk = "4 F yiyiyk 

which are manifestly symmetric in the three indices i, j, k. All these func­
tions are homogeneous of degree zero. In other words, they are invariant 
under the rescaling y 1----+ A y. In a context that we postpone describing 
until Chapter 2, the gij and the Aijk are, respectively, the components of 
two important tensors, called the fundamental tensor and the Cartan 
tensor. Incidentally, some authors have chosen to call 
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the Cartan tensor instead. 
Exercise 1.2.1 enumerated some specific consequences of Euler's theorem. 

Using these, one gets the following identities: 

(1.4.3) yi I gij F = Fyi, 

(1.4.4) 

(1.4.5) i Ogij 0 
Y oyk = , 0, k 0% 0 

y oyk = . 

The last one can be re-expressed as 

(1.4.6) o. 
The gij define a natural Riemannian metric 

gij (y) dyi ® dyj 

on the punctured linear manifold ]Rn " 0 . Here, we use dyi ® dyi instead 
of dx i ® dx j because, throughout our discussions of Minkowski norms, the 
natural coordinates on ]Rn have been denoted by yi and not xi. Some 
features of this punctured Riemannian manifold are worth noting. We list 
them here and refer the details to the exercises at the end of this section. 

• Its volume form is chosen to be J9 dyl/\ ... /\ dyn , where J9 stands 
for v'det(gij). 

• It admits the hypersurfaces S(r) := {y E]Rn : F(y) = r} as smooth 
Riemannian submanifolds. 

• Each S(r) is the boundary of a strictly convex domain and, with 
respect to gij dyi ® dyj, its outward-pointing unit normal [Y] is 

(1.4.7) 
A yi 0 
nout := F Oyi . 

• The volume form of the Riemannian submanifold S(r) is 
n " 
~ " 1 yJ 1 "1"+1 ...;g f;;r (-1)3- F dy /\···/\dyl- /\dyJ /\···/\dyn. (1.4.8) 

The significance of the A ijk lies in the fact that their vanishing charac­
terizes Euclidean norms among Minkowski norms. 

Theorem 1.4.1 (Deicke) [D]. Let F be a Minkowski norm on ]Rn. The 
following three statements are equivalent: 

(a) F is Euclidean. That is, it arises from an inner product. 
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(b) A ijk = 0 for all i, j, k. 

(c) Ak := gij A ijk = 0 for all k. Here, (gij) denotes the inverse matrix 
of (gij). 

Remarks: 

* The equivalence between the first two statements comes directly 
from (1.4.2). Namely, Aijk is proportional to the vertical derivative 
of gij. Thus this derivative vanishes if and only if gij has no y­
dependence (which means that F comes from an inner product). 
This equivalence between (a) and (b) constitutes the easy part of 
Theorem 1.4.1, and is used without mention. 

* It is clear that (b) implies (c). Thus it remains to prove the converse 
or, equivalently, that (c) implies (a). Such is a result of Deicke's. 
However, the proof that we give for (c) =? (a) is due to Brickell 
[B1]. It involves tools that we have yet to learn. For this reason, 
the proof is postponed until Chapter 14, which studies Minkowski 
spaces. Needless to say, the implication (c) =? (a) is never used 
before that proof. 

Exercises 

Exercise 1.4.1: Let F be a Minkowski norm on Rn. Show that under a 
change of coordinates of the special type iiP = CI'i yi, where the CI'i are 
constants, the gij and A ijk transform like: 

gij = CI'i Cqj gpq , 

Aijk CI'i Cqj CTk ApqT . 

Exercise 1.4.2: On S(r}, the function F has the constant value r. 

(a) Take the directional derivative of the above statement along an ar­
bitrary vector Vi 8~' which is tangent to S(r). 

(b) Re-express your answer with the help of the identity (1.4.3). 

(c) Interpret what you obtain in order to conclude (1.4.7). Be sure to 
explain why that nout has unit length. 

Exercise 1.4.3: Suppose we have an ambient Riemannian manifold (M,g) 
with volume form dV, and a submanifold S with outward-pointing unit 
normal field nout. By simply restricting g to vectors tangent to S, one 
induces a Riemannian metric on S, whose volume form can be obtained 
by contracting nout into the first slot of dV. Use this procedure to derive 
formula (1.4.8). 
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Exercise 1.4.4: Refer to Exercise 1.3.1, where we introduced a family of 
Minkowski norms, indexed by a parameter ..\. At each y E ~n " 0 , define 

UiUjUk 

II Ally := s~ Aijk (y) CJ gpq (y) UP Uq )3 . 

Also, set II A II := SUPy#o II Ally. Show that there is a constant c, depending 
only on the dimension n, such that 

II A II ~ c (..\ - 1) . 
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2.0 Prologue 

The Chern connection that we construct is a linear connection that acts 
on a distinguished vector bundle 7f*T M, sitting over the manifold T M " 0 
or SM. It is not a connection on the bundle TM over M. Nevertheless, 
it serves Finsler geometry in a manner that parallels what the Levi-Civita 
(Christoffel) connection does for Riemannian geometry. This connection is 
on equal footing with, but is different from, those due to Cartan, Berwald, 
and Hashiguchi (to name just a few). 

In the exercise portion of §5.2, we use this linear connection to induce 
nonlinear covariant derivatives on M. These derivatives involve "correc­
tion" terms highlighted by certain connection coefficients. Our covariant 
derivatives are nonlinear in the generic Finsler setting because the said 
connection coefficients have a dependence on either the direction of differ­
entiation or the vector that is being differentiated. Such connection coef­
ficients reduce to the usual Christoffel symbols when the Finsler structure 
is Riemannian. In that case, the corresponding covariant derivative on M 
becomes the familiar one due to Levi-Civita (Christoffel). 
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2.1 The Vector Bundle 7r*TM and Related Objects 

Recall the fundamental tensor gij (x,y) that we introduced in (1.2.4) and 
revisited in (1.4.1). It is defined at all (x,y) E TM ....... O, and is invariant under 
positive rescaling in y. One could imagine the formal object gij dx i ® dx j . 

That would have behaved exactly like an inner product on the tangent 
space TxM, if it were not for the dependence on y =F O. Happily, this 
conceptual difficulty can be overcome without too much trouble. We first 
give a heuristic description of the resolution, followed by a more technical 
version. 

The collection of all (x, y), with y =F 0, constitutes the slit tangent bundle 
T M ....... O. Let us view it as a parameter space. Over each point (x, y) in this 
parameter space, we erect a copy of TxM. We then form gij (x,y)dx i ® 
dxj and declare it the inner product on this TxM. Note that the vector 
space TxM is determined solely by the position parameters x in (x, y). The 
directional parameters y have no say in this matter. Collectively, the vector 
spaces we have erected form a vector bundle (with fiber dimension n) over 
the parameter space T M ....... 0, which is 2n-dimensional. What we have just 
described is depicted schematically in Figure 2.l. 

There is, however, some redundancy in the above scheme. Consider all 
points in TM ....... 0 of the form (x,>.y), with x, y fixed and>' an arbitrary 
positive number. Over each such point, we have erected the same vector 
space TxM. Since gij (x,y) is invariant under the rescaling y ~ >'y, the 
inner products we assigned to these copies of TxM are also identical. This 
is the redundancy to which we referred. There is a simple way to restore 

I 
I 

I 

P 
I 

I 
I 

(7r*TM)(x,y) 

M 

Figure 2.1 

The pulled-back tangent bundle 7r*T M is a vector bundle over the 
slit tangent bundle TM ....... O. The fiber over a typical point (x,y) 
is a copy of TxM. The dotted part is the deleted zero section. 
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economy. First, we can treat the ray {(x, AY) : A > O} as a single point in 
the projective sphere bundle SM. Then over that point, we erect a single 
copy of TxM and endow it with the inner product gij (x,y)dxi ® dxj . The 
resulting vector bundle has fiber dimension n as before, but now it sits over 
the 2n - 1 dimensional sphere bundle SM. In case the Finsler structure 
is absolutely homogeneous rather than positively homogeneous, we can 
economize further by replacing SM with the projectivized tangent bundle 
PT M. The latter treats each line {(x, AY) : A E lR} as a single point. 

Now we give the technical equivalent of what has just been said. Over 
M, we have the tangent bundle TM and the cotangent bundle T* M. Much 
of Finsler geometry's tensor calculus can be handled in anyone of the 
following two environments . 

• For analytical and global purposes, it is often advantageous to 
work with a compact parameter space. In that case, the base man­
ifold of choice is the sphere bundle SM, or PTM when F happens 
to be absolutely homogeneous (of degree one). Let p : SM --+ M 
be the canonical projection map. A good number of our geometrical 
objects are sections of the pulled-back bundle p*T M or its dual 
p*T* M, or their tensor products. These bundles sit over SM and 
not M. 

• For ease of local computations, it is to our advantage to work 
on an affine parameter space, where natural coordinates are readily 
available. In that case, the preferred base manifold is the slit tan­
gent bundle T M ,,0. A good number of our geometrical objects are 
sections of the pulled-back bundle 7r*TM or its dual 7r*T* M, or 
their tensor products. These sit over TM" 0 and not M. 

There is no consensus among Finsler geometers as to which approach One 
should take in a book. And picking one instead of the other will inevitably 
render the book less useful to some. Happily, there is a way to retain the 
essence of both approaches. 

We work on T M " O. But, unlike other authors who prefer the 
slit tangent bundle, we rigidly use only objects that are invari­
ant under positive rescaling in all our important computations. 
For example, we use -fr N i j and -fr8yi instead of Nij and 8yi by 
themselves. This way, all calculations can be done in natural co­
ordinates. And, since all the steps are manifestly invariant under 
positive rescaling in y, one can correctly view them as having been 
carried out on the sphere bundle S M (or PT M) using homoge­
neous coordinates. 

Local coordinates (Xi) on M produce the basis sections {a~i} and {dxi}, 
respectively, for T M and T* M. Now, over each point (x, y) on the manifold 
T M" 0, the fiber of 7r*T M is the vector space TxM while that of 7r*T* M is 
the covector space T; M. Thus, the a~i and dxi give rise to sections of the 
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pulled-back bundles, in a rather simple-minded way. These transplanted 
sections are defined locally in x and globally in y. This global nature in 
y is automatic because once x is fixed, the transplanted sections do not 
change as we vary y. 

In order to keep the notation simple, we also use the 
symbols a~i and dXi to denote the transplanted sections. 

We hope this does not cause too much confusion. 
There is a distinguished section f of 7f*T M. It is defined by 

(2.1.1) f = f '= --.JL ~ = yi ~ =' fi ~ 
(x,y)· F(y) oxi F oxi . oxi 

Its natural dual is the Hilbert form w, which is a section of 7f*T* M. We 
have 

(2.1.2) 1 w = w(x,y) := Fyi (x, y) dxi = Fyi dxi I· 

Both f and ware globally defined on the manifold T M '- O. The asserted 
duality means that 

yi 
w( 0) - - F· - 1 {. - F y' - , 

which is a consequence of Euler's theorem. See (1.2.1). 
The pulled-back vector bundle 7f*T M admits a natural Riemannian met­

ric 

(2.1.3) 9 = 9ij dxi ® dx j . 

This is the fundamental tensor that we have alluded to before. It is 
a symmetric section of 7f*T* M ® 7f*T* M. Likewise, there is the Cartan 
tensor 

(2.1.4) 

which is a symmetric section of ®3 7f*T* M. In these formulas, we have 
suppressed the point of evaluation (x, y) in order to avoid clutter. The 
components 9ij and Aijk have already been defined in (1.4.1) and (1.4.2). 
We reproduce them here for convenience: 

(2.1.5) 

(2.1.6) A ._ F Ogij 
ijk .- 2 oyk 

As we mentioned before, the object 
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is called the Cartan tensor in the literature at large. But we prefer to work 
with quantities that are homogeneous of degree 0 because they make sense 
on the (projective) sphere bundle SM. 

By another consequence [see (1.2.5)] of Euler's theorem, we find that our 
distinguished section f has norm 1 with respect to the said Riemannian 
metric: 

(2.1.7) g(f., f) 1. 

Exercises 

Exercise 2.1.1: Consider the components fi .- V; of our distinguished 
section f. Show that 

1 fi := gij fj = Fyi I· 
Thus the Hilbert form is expressible as w = fi dXi. 

Exercise 2.1.2: Let u : [a, b] ---+ M be a piecewise Coo curve. Its integral 
length is defined as L(u) := J: F( u, ~~ ) dt . Prove that this length can 
be re-expressed as the line integral of the Hilbert form along u. Namely: 

L(u) = i w. 

The right-hand side is sometimes called Hilbert's invariant integral. 

Exercise 2.1.3: 

(a) Check that Aijk is totally symmetric on all its indices. 

(b) Show that fi Aij k = 0 . 

E . 2 1 4· Sh h ayii - 2 Aij xerClse ... ow t at ayk - - F k • 

2.2 Coordinate Bases Versus Special Orthonormal Bases 

We have described how the coordinate bases {a~.} and {dx i }, respectively, 
for T M and T* M, can be transplanted from M to the manifold T M ...... o. 
These transplants form basis sections of the bundles -rr*T M and -rr*T* M. 
We have also decided, in the name of keeping things simple, not to create 
new symbols for these sections. 

Occasionally, the exposition can benefit from the use of g-orthonormal 
basis sections. The ones we use are defined as follows: 

• For -rr*TM, the special g-orthonormal basis {ea } must satisfy 

g( ea , eb) Oab 

f. , the distinguished section. 
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• For 7r*T* M, the special basis {w b } is dual to {ea }, thus 

wb ( ea ) (}a 

w, the Hilbert form. 

Note that: 

* The special g-orthonormal bases we have just introduced make sense 
only on the manifold T M '- 0; in general they have no analogues on 
M. This is because the natural Riemannian metric 9 lives on 7r*TM 
and not T M, unless F is Riemannian. 

* Furthermore, we have unequivocally specified only the last member 
in each such basis. The residual "gauge" freedom is equal to the 
orthogonal group O(n - 1). 

The bases {a~i} and {ea } can be expressed in terms of each other. The 
same can be said of {dXi} and {w a }. That is, 

(2.2.1) ea 
i a 

Ua ~ x' 

(2.2.2) 
a 

vai ea 
axi 

(2.2.3) wa va dxi , 
(2.2.4) dxi u ai wa . 

• A basic relationship between (uai ) and (v ai ) is that they are matrix 
inverses of each other. Namely, 

• Since we have already specified that 

a 
en .- £ = £i -a . , 

x' 

we see that uni = £i and vi = £i . 

These, together with other identities of interest, are addressed in the exer­
cises below. 

Exercises 

Exercise 2.2.1: Verify the following statements: 

(a) v ai Ubi = {jab. 
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(b) 

(c) 
(d) 

u ai vaj = {jij . 

vi yi = 0 . 

U;. Fyi = o. 
Exercise 2.2.2: Show that 

(a) uai gij u/ = (jab. 

(b) v ai gij v bj = {jab . 

(C) g .. - Va i: Vb 
'J - i vab j. 

(d) gij = Uai {jab U/ . 
Exercise 2.2.3: Deduce the following identities. 

(a) u i = {j vb. gji a ab J . 

(b) va - {jab U j g .. 
i - b J'. 

(C) Vi v~ {jo.{3 = F Fyiyi 

(d) U;. uJ F Fyiyi = {jo.{3 . 

Hint: you may need to use the results of the above exercises. 

2.3 The Nonlinear Connection on the Manifold TM ......... 0 

The components gij [see (2.1.5)] of the fundamental tensor are functions 
on T M " 0, and are invariant under positive rescaling in y. We use them 
to define the formal Christoffel symbols of the second kind 

(2.3.1) 'Vi ._ gis 1 (8gsj 8gj k + 89kS) 
I jk·- "2 8 x k - 8xs 8xj 

and also the quantities 

(2.3.2a) 

Our preference for objects invariant under y 1---* >.y dictates that we work 
with 

(2.3.2b) 

instead. 
The transformation law for ~ Nij is quite elegant. Let 

Xi = xi( Xl, ... , xn) 

be a local change of coordinates on M. Correspondingly, the chain rule 
gives 

Yi 8xi _p 

8xp y 
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It can be shown, albeit with some tedium, that 

1 - aiP ax j N i aiP a2 Xi -= NP = __ . - __ J + js . 
F q ax' aiq Faxi aiqais 

Transformation laws of various geometrical objects are treated systemati­
cally elsewhere. 

We show momentarily why the above N i j are known in the trade as the 
nonlinear connection on T M " O. 

In order to set the stage for this realization, observe that: 

* The tangent bundle of the manifold T M has a local coordinate basis 
that consists of the a~j and the a~j . However, under the transfor­
mation on TM induced by a coordinate change on M, the vectors 
a~j transform in a somewhat complicated manner, as exhibited in 
(1.1.3). On the other hand, the a~j do not have this "problem." 

* The cotangent bundle of T M has a local coordinate basis {dxi, dyi}. 
Here, under the said transformation, the dx i behave simply while 
the dyi do not. See Exercise 2.3.1. 

The remedy lies in replacing a~j by 

(2.3.3) 
I 

8 a 
N i 

a I, .- -
8x j ax j J ayi 

and dyi by 

(2.3.4a) 8yi .- dyi + N i . dx j 
J I· 

As before, we prefer to work with 

(2.3.4b) 

which is invariant under rescaling in y. Note that 

8 natural 
dx j ---> 

(2.3.5) 
8x j dual 

F~ natural 8yi 
---> 

ayt dual F 

• These objects typically only make sense on T M" O. With the excep­
tion of the dx i , the rest are nonholonomic. That is, they are neither 
coordinate vector fields nor coordinate I-forms . 

• They indeed have simple behavior under transformations induced 
by coordinate changes on M. The verification of this claim though, 
is quite tedious. It is not pursued in the current book. 
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It turns out that the manifold T M ,0 has a naturailliemannian metric 

. . 8yi 8yj 
g .. dx' !O.dxJ + g" - ®-
'J '01 'J F F' 

known as a Sasaki (type) metric. With respect to this metric, the hori­
zontal subspace spanned by the o!J is orthogonal to the vertical sub­
space spanned by the F a~. . The manifold T M ,0 therefore admits 
an Ehresmann connection through this splitting, and the latter owes its 
existence directly to the quantities N ij . This is why the N ij are collectively 
known as the nonlinear connection. 

We have just introduced two new natural (local) bases that are dual to 
each other: 

* {O!i , F a~i } for the tangent bundle of T M , 0, 

* {dx i , ~ } for the cotangent bundle of T M , o. 
Since T M , 0 is a Riemannian manifold with the Sasaki (type) metric, the 
above bases have orthonormal analogues: 

* {ea , en +a } forT(TM,O), 

* {wa , wn +a } for T*(TM, 0). 

The relationship between the natural bases and the orthonormal ones can 
be readily written down, thanks to the "n-beins" u ai and vai we encoun­
tered at the end of §2.2 : 

(2.3.6) ea 
i 8 

ua ~ x' 

(2.3.7) en+a 
. a 

ua' F7}"' 
y' 

(2.3.8) wa va. dxi , 

(2.3.9) wn+a a 8yi 
Vi F· 

Recall that the n-beins were originally introduced to relate the natural and 
the g-orthonormal bases of the pulled-back bundle 7r*T M, which sits over 
the manifold T M, O. Surprisingly, they also serve as a go-between for the 
"natural" versus the Sasaki-orthonormal bases on T M , O. 

Exercises 

Exercise 2.3.1: Consider local coordinate changes on M, say 

i i(-l -n) X =x x, ... ,x , 

and their inverses i;P = i;P( xl, ... , xn). They induce transformations on 
the manifold T M, as described at the end of §l.l. Show that, as differential 
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forms on T M, the dxi and dyi behave as follows: 

dfl = 

aiP . -a . dx', 
x' 

a-p 
x d i 

axi y 

Exercise 2.3.2: Define the quantity 

j k 
"(ijk Y Y . 

Show that 

Exercise 2.3.3: Let 

k 
"(ijk Y . 

Gi := "(ijk yj yk I. 

This is twice the G i in [AIM]. By combining the above exercise with the 
conclusion of Exercise 2.1.4, prove that 

We later show that Finslerian geodesics are curves in M which obey the 
equation Xi + G i = 0, where in G i we set yi := Xi. Thus, if the geodesic 
equation is somehow known (say, through a shortcut), the nonlinear con­
nection N i j can be computed without having to first calculate the Cartan 
tensor A'jk and the formal Christoffel symbols "('jk' 

Exercise 2.3.4: Directly rewrite the Sasaki type metric on T M " 0 as 

Exercise 2.3.5: 

(a) Recall the fact Ci = Fyi. Prove that 

1 8yi £i F = d(log F) = 

(b) A curve in T M " 0 is said to be horizontal if all its velocity vectors 
are horizontal, in the sense defined near the end of this section. 
Explain why F is constant along all horizontal curves. Namely, 

8F 
8x i = 0 for all i I. 
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2.4 The Chern Connection on 7r*TM 

The distinguished section 

and the fundamental tensor 

9 := (F Fyiyj + Fyi Fyj ) dxi ~ dxj gij dxi ~ dxj 

are both sections of tensor bundles that sit over the manifold T M '- O. As 
one moves around on T M '- 0, not only do the components fi and gij vary, 
the basis sections a~' and dxi change as well. Thus, when measuring the 
rate of change VvE of any tensor field E, along a given direction v at the 
point p, we must invoke the product rule. For example: 

* Vvl= (dfj)(v) a~j +fjVv a~j . 

* Vv 9 = (dgij )(v) dx i ~ dxj + gij (Vv dxi ) ~ dxj + gij dxi ~ (Vv dxj ) . 

The terms on the right-hand sides of these formulas split into two groups: 

(1) The first group consists of (dfj)(v) a~j and (dgij)(v)dxi ~ dxj . 
They come from taking the ordinary directional derivative of the 
components, which are scalars, but leaving the basis sections alone. 

(2) In the second group, the components are left untouched, but we have 
yet to make sense of the quantities Vv a~j and Vv dXi. Intuitively~ 
this is done by tabulating the values of the basis section a~3 or dx' 
as we move away from p in the direction v. These are then compared 
to its value at p in order to produce the requisite rate of change. 

However, before a meaningful comparison can be carried out, the tabu­
lated values must first be transported back to p. In general, on a manifold 
there is no canonical way to carry out this transport. The best we can 
hope for is to specify one that does not run afoul of any a priori geomet­
rical or topological constraint. These specifications are usually spelled out 
in the form of so-called structural equations. One then solves these equa­
tions to obtain the connection I-forms w/, using which the covariant 
derivatives Vv a~j and Vv dx i can be explicitly written down: 

(2.4.1) I Vv ~ := w/(v) ~ I, 
(2.4.2) 

See Exercise 2.4.1 for an explanation of the minus sign. 
Suppose the structural equations have been proposed, and the connection 

forms have been solved for. (We carry out these steps momentarily, in the 
proof of Theorem 2.4.1 below.) Let us substitute (2.4.1), (2.4.2) into our 
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formulas for Vv i and Vv g, relabel some summation indices, and suppress 
v. The results read: 

(2.4.3) 

(2.4.4) k k" V g = (dgij - gkj wi - gik Wj ) ® dx' ® dxJ • 

The operator V, or the w/ collectively, defines what is called a lin­
ear connection on 7[*T M and its associated tensor products. Each linear 
connection, for example, the Chern connection that we introduce, is fully 
characterized by its structural equations. Nevertheless, there is a general 
set of axioms that all linear connections must satisfy. They are: 

* Vv(fE) = (df)(v)E+JVvE, 

* Vv (E1 + E2 ) = Vv E1 + Vv E2 , 

* V AV E = >. Vv E for all constants>. , 

* VV1 +V2 E = VV1 E + VV2 E . 

Theorem 2.4.1 (Chern) [ChI]. Let (M, F) be a Finsler manifold. The 
pulled-back bundle 7[*T M admits a unique linear connection, called the 
Chern connection. Its connection forms are characterized by the struc­
tural equations: 

* Torsion freeness: 

(2.4.5) - dx j 1\ w/ = O. 

* Almost g-compatibility: 

(2.4.6) dgij - gkj w/ - gik w/ 

In fact: 

• Torsion freeness is equivalent to the absence of dyk terms in w/; 
namely, 

(2.4.7) i i k I Wj = r jk dx , 

together with the symmetry 

(2.4.8) I r\j = ri jk I· 
• Almost metric-compatibility then implies that 

(2.4.9) 
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Equivalently, 

(2.4.10) 

Here: 

* 9 is the fiber Riemannian metric of 'Jr*TM. See §2.1. It is not to be 
confused with the Sasaki (type) metric that we encountered in §2.3. 

* 8y s was defined in (2.3.4a), and 8~. in (2.3.3). Namely, 

* The "ljk' defined in in (2.3.1), are the formal Christoffel symbols of 
the second kind, associated with the fundamental tensor. 

* The N ij were defined in (2.3.2a). They represent the nonlinear 
Ehresmann connection on the tangent bundle of T M " 0 . 

Remarks. Formula (2.4.10) is the raison d'€tre of the Chern connection. 
Note its structural similarity to the Christoffel symbols in (2.3.1). However, 
there are three famous connections in the literature, each with its own 
merit. We express them in terms of the Chern connection. 

• The Cartan connection is given by w/ + Aijk¥. It is metric­
compatible but has torsion. One of its merits is that it makes readily 
accessible a specific Bianchi identity for Landsberg spaces. See [M2] 
or [BCS1]. 

• The Hashiguchi connection is given by w/ +Aijk¥ + Aijkdxk 

Here, A = 'ViA is the horizontal covariant derivative of the Cartan 
tensor A along the distinguished (horizontal) direction i := li 8~;. 
See Exercise 2.5.5. 

• The Berwald connection is given by w/+Aijkdxk. Like the Chern 
connection, it has no torsion. The Berwald connection is particularly 
convenient when dealing with Finsler spaces of constant flag curva­
ture. It is most directly related to the nonlinear connection N i j , and 
most amenable to the study of the geometry of paths. See Exercises 
2.3.3, 3.8.3, 3.8.4, 3.8.5, and 3.10.7. 

For a systematic treatment of these connections, see [M2] and [AIM]. Prac­
titioners of Finsler geometry may wonder why the Rund connection is 
conspicuously absent from the above. The reason is that it coincides with 
the Chern connection, as pointed out by Anastasiei [A]. 
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Proof of Theorem 2.4.1. 

(A) The consequences of torsion freeness: 
A priori, we have wj i = r i jk dxk + Zijk dyk . . Subst~tuting this expression 

into the torsion freeness criterion, namely, dxJ 1\ wi' = 0, we immediately 
get 

ri jk dxj 1\ dxk + Zijk dxj 1\ dyk = O. 

Thus the Zijk must vanish. The ~ame applies to the antisymmetric part 
(in the lower indices j and k) of r t jk . That is, 

r\j = r i jk . 

(B) The explicit formula for r i jk: 
Let us substitute (2.4.7) and the formula (2.3.4a) for oyS into the criterion 

(2.4.6). Equating the coefficients of the dx k terms, we get 

8gij NS 
-- = gsj r Sik + gis rS

J' k + 2 Ajs Fk 
8xk 

In other words, 

(2.4.11) 8gij NS I 
rijk + r jik = 8xk - 2Aijs --f . 

Now we use the so-called Christoffel's trick. Namely, apply (2.4.11) to 
the combination 

(rrjk + rjrk) - (rjkr + r kjr ) + (rkrj + rrkj) , 

and impose the symmetry (2.4.8). After much cancellation, this will result 
in a formula for r rjk. Raising the index r will give (2.4.9) as desired. 

Finally, using the operators :x defined in (2.3.3), we can re-express the 
Chern connection coefficients in the elegant form (2.4.10). 0 

Let us describe the Chern connection for two important families of Finsler 
spaces: 

• Riemannian manifolds. These are characterized by F2 having only 
an explicit quadratic dependence on y. As a result, y dependence 
will be absent from the fundamental tensor, which then coincides 
with the Riemannian metric on the underlying manifold M. See §1.3. 
Since the Cartan tensor A vanishes in this case, formula (2.4.9) re­
duces to r i jk = 'Yijk' Thus, on Riemannian manifolds, the Chern 
connection coefficients r t jk are simply the Riemannian metric's 
Christoffel symbols of the second kind. 

• Locally Minkowski spaces. These are characterized by F having no x 
dependence in some privileged coordinate charts. Consequently the 
fundamental tensor vanishes and so do its formal Christoffel sym­
bols. A quick glance at (2.3.2) shows that the nonlinear connection 
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Nij is zero too. These reduce formula (2.4.9) to read ri jk = O. So, 
for locally Minkowski spaces, the Chern connection coefficients com­
pletely vanish in certain natural coordinates. Exercise 2.4.8 assures 
us that in arbitrary natural coordinates, these connection coeffi­
cients can have at most an x (but no y) dependence. 

Exercises 

Exercise 2.4.1: 

(a) Let E:= Ei a~' be an arbitrary section of 7r*TM. Show that 

. .' 0 
V E = (dE' + EJ w/) ® oxi . 

(b) Given any section 0 := ()i dxi of 7r*T* M, the quantity O(E) is a 
scalar. Insist that the following Leibniz rule holds: 

V[ O( E) 1 = (V 0) (E) + O(V E) . 

Prove that the above can be manipulated to yield the statement 

VO = (dOi - OJ w/ ) ® dxi . 

(c) Explain how you would deduce (2.4.2) from part (b). 

Exercise 2.4.2: Recall that torsion freeness forces the w/ to have the 
structure r i j k dxk . In other words, there are no dyk terms. 

(a) As in the proof of Theorem 2.4.1, substitute the above and (2.3.4a) 
(the formula for 8yS) into the almost g-compatibility criterion 
(2.4.6). Show that equating the coefficients of dy terms simply re­
covers the definition of the Cartan tensor. 

(b) Suppose, in the compatibility criterion (2.4.6), we replace the Aijs 

on the right-hand side by some other functions. Explain why the 
resulting structural equations have no solutions. 

(c) A connection is said to be g-compatible if 

dgij - gkj w/ - gik w/ = o. 
Prove that the following two statements are equivalent: 
• There exists a torsion free g-compatible linear connection on the 

pulled-back bundle 7r*T M . 

• The Finsler structure F is Riemannian. 

Exercise 2.4.3: The proof of Theorem 2.4.1 spelled out Christoffel's trick, 
but did not exhibit all the interesting cancellations that eventually led to 
(2.4.9). Supply the missing details of that computation. 
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Exercise 2.4.4: If we had discussed the connection V using the special 
g-orthonormal bases, we would have 

'I -V-v-eb-.---W-b-a-(-V-) -e-a-'I ' 

Vv w a .- - Wba(V) w b I. 
instead of (2.4.1) and (2.4.2). Recall the n-beins uai and vai of §2.2. 

(a) Apply V to both sides of eb = ubk ~ . Show that after relabeling 
a summation index, we have 

(b) In that equation, check that expanding out the ea and equating 
coefficients of ~ then leads to 

wba uak = dUbk + Ubi W/ 

(c) Invert away that Ua k to obtain 

I Wb a = (dUbi ) Vai + ubj w/ vai I. 
This expresses the connection forms for the orthonormal basis in 
terms of those for the natural basis. 

(d) Likewise, prove that 

I Wj i = (dvaj ) uai + vbj Wb a uai I. 

It expresses the connection forms for the natural basis in terms of 
those for the orthonormal basis. 

Exercise 2.4.5: Use the last formula in the above exercise, together with 
suitable items from §2.2 and §2.3, to re-express the structural equations of 
the Chern connection. 

(a) Check that torsion freeness (2.4.5) now reads 

1 dwa - w b 1\ Wb a = 0 I. 

(b) Show that the "almost g-compatibility" criterion (2.4.6) becomes 

1 Wab + Wba = - 2 Aabc w n+c I, 
where Wba abbreviates wb C 8ca • 

(c) Explain why 

Wnn o W n 
n 
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in a special g-orthonormal basis. Caution: this is not a statement 
about wn +n . 

Exercise 2.4.6: 

I Ni I (a) Deduce from (2.4.9) that L_r_iJ_"k_f_:i __ r_\_J_" f_j ___ F_k---l . 

(b) Use this to rewrite ¥ as 

I j; = (V'f)i + fi d(log F) I, 
where V'f = dfi + fj w/-

(c) Show that part (b) leads us to 

wn+a = wa ( V' f) + 8an d(log F) . 

Equivalently, 

wn +a ® ea = V'f + f d(1og F) . 

(d) Contract the formula in part (b) with fi . With the help of Exercise 
2.3.5, show that fi (V'f)i = O. In coordinate free notation: 

1 g(f, V'f) = 0 I· 
Exercise 2.4.7: 

(a) Check that V'f = wna ea . 

(b) Use part (d) of Exercise 2.4.6 to reduce this to V'f = wnQ eQ • 

(c) Substitute the above into part (c) of Exercise 2.4.6. Show that one 
obtains 

I wnQ = wn+Q 

in a special g-orthonormal basis. 

(d) Explain why 

1 wnn =I wn+n I· 
Exercise 2.4.8: Consider local coordinate changes on M, say 

i i(-l -n) X =X x, ... ,x , 

and their inverses i;P = i;P( Xl , ... , xn). Denote the Chern connection co­
efficients in the natural coordinates (Xi, yi) by ri j k' and their counterparts 

in the natural coordinates (i;P, fjP) by f'Pqr . 

(a) Imitate the technique in Exercise 2.4.4 to show that 

- 8i;P 8 2x i 8i;p" 8xj 8xk 
rp = - + - r t " 

qr 8xi 8i;q8i;r 8x i Jk 8i;q 8i;r . 
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(b) As explained at the end of this section, the Chern connection co­
efficients of a locally Minkowski space vanish in certain privileged 
natural coordinates. Explain why, in arbitrary natural coordinates, 
they can have at most an x (but no y) dependence. 

Exercise 2.4.9: 

(a) Derive formula (2.4.11) for the Chern connection coefficients. 

(b) Prove that dlog V9 = ~ gij dgij , where V9:= J det(gij). 

(c) Sh th t r i - r i - 1 ij §.JJ.ft - fi 1 In ow a ki - ik - "2 9 fixk - fixk og V 9 . 

Exercise 2.4.10: Derive formula (2.4.10) in detail. 

2.5 Index Gymnastics 

Let T := Tji a~j @ dxi be an arbitrary smooth local section of 7r*T M @ 

7r*T* M. It is a tensor field of rank G) on the manifold T M " O. Its 
covariant differential is 

where 

(2.5.1) j k j j k dT i + T i wk - T k Wi . 

2.5 A. The Slash ( ... )18 and the Semicolon ( ... );8 

The (\lTFi are I-forms on T M " O. They can therefore be expanded in 
terms of the natural basis {dx S , q; }: 

(2.5.2) (\IT)] - T j d S Tj {jyS 
i - * X + i;s F· 

In order to obtain formulas for the coefficients, we evaluate equation (2.5.2) 
on each individual member of the dual basis { fi~s , F a~s }. We also use the 

fact that the Chern connection forms for the natural basis have no fir 
terms, and are given by w/ = r i js dxs. The results are: 

(2.5.3) . ( ) j {jTj k· j k 
TJ I = \I 6 T = -{j , + T i r\s - T k r is 

~ s "6X5 i X S 

(2.5.4) 
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(2.5.5) 

(2.5.6) 
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F f:l0 is the homogenized usual partial derivative. 
uy8 

Note that with respect to the natural basis: 

• The horizontal covariant derivative T~18 is comprised of a hor­

izontal directional derivative ~~:i and correction terms . 

• The vertical covariant derivative T j i .8 consists merely of a ho­
mogenized partial derivative. There are r'to correction terms. 

The treatment for tensor fields of higher rank is similar. There will sim­
ply be more correction terms because of the additional indices. We ask 
the reader to provide the details. Instead, let us now illustrate the above 
formalism with two basic examples. 

2.5 B. Covariant Derivatives of the Fundamental Tensor g 

Criterion (2.4.6) says that the Chern connection is almost g-compatible: 

(2.5.7) 

This immediately gives: 

(2.5.8) gijl8 0 /. 

(2.5.9) gij;8 2 Aij8 /. 

Next, it can be shown (see Exercise 2.5.2) that 

(2.5.10) and 

Thus (gij gjk )18 = 0 and (gij gjk );s = o. These then yield: 

(2.5.11) 

(2.5.12) g ij 
;8 

The above statements say that the fundamental tensor (with all possible 
index configurations) is covariantly constant along horizontal directions. Its 
vertical derivatives are, as expected, proportional to the Cartan tensor. 
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2.5 C. Covariant Derivatives of the Distinguished l 

Part (b) of Exercise 2.4.6 says that 

t d(logF) . 

According to part (a) of Exercise 2.3.5, the d(1og F) term can be rewritten 
o§1L as <.s F . Thus 

(2.5.13) (Vf)i = (Ois _ fi fs) 0;8 . 
Hence 

(2.5.14) tis 0 I, 
(2.5.15) t·s = Oi fi fs I· , s 

These, together with (2.5.8) and (2.5.9), can then be used to deduce that 

(2.5.16) I fils = 0 I, 
(2.5.17) 

Our formulas show that the distinguished section f and the Hilbert form 
ware both covariantly constant along horizontal directions. Their vertical 
derivatives are equal to suitable configurations of the angular metric. 

Exercises 

Exercise 2.5.1: Instead of writing T := Tii 8~3 ® dxi , let us expand it in 
terms of a special g-orthonormal basis. Namely: T := Tba eb ® wa. Thus 
VT = (VT)b a eb ® wa, and the analogue of (2.5.2) is 

(VT)b a = T balc W C + Tba;c wn+c . 

Show that: 

b i k i v i Ua U c T ilk· 

b i k j 
V i U a U c T i;k • 

In particular, the formula for T ba.c is practically as simple as (2.5.4). This 
simplicity is unexpected because,' according to part (c) of Exercise 2.4.4, 
the Chern connection forms wb a for our orthonormal basis do contain wn+c 

terms. 

Exercise 2.5.2: 

(a) To what is dO/ - 0/ w/ + 8/ w/ equal? 
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(b) Explain why 0i jls = 0 and 0i j;s = 0 . 

Exercise 2.5.3: Derive (2.5.16) and (2.5.17). 

Exercise 2.5.4: The covariant differential of the Cartan tensor A is 

_ I I Ii· k V' A - (dAijk - A 1jk Wi - Ailk Wj - A ijl wk ) dx @ dxJ @ dx . 

The quantity inside the parentheses is (V' A)ijk. It can be expanded as 

oyS 
(V' A)ijk = Aijkls dx s + Aijk;s F . 

(a) Explain why Aijkls and Aijk;s are both symmetric in the first three 
indices i, j, k. 

(b) Show that Aijkls fk = 0 . 

(c) Show that Aijk;s fk = - A ijs . 

Exercise 2.5.5: Define the quantities 

Aijk := Aijkls fS , 

and set A:= Aijk dXi @ dxj @dxk. 

(a) Show that A = V'iA ,where i:= fi 8~i . 

(b) Check that Aijk fk = 0 . 

(c) Explain why the quantities Aijk;s fS are uninteresting. 

Exercise 2.5.6: With the help of (2.5.3) and part (a) of Exercise 2.4.6, 
show that: 

Exercise 2.5.1: Here is one practical use of Exercise 2.5.6. We learn from 
Exercise 3.3.4 that the expression 

. 0 j 0 Nk 
( 

N i i ) 
fJ oxk F - oxj F 

describes something of paramount importance. It is numerically equal to 
the predecessor Ri k of the flag curvature. Let us now use some material 
developed in §2.3 to rewrite that expression into a more computationally 
friendly form. 

(a) Manipulate the first term fj 8!k N;; as follows. Use Exercise 2.5.6 to 

move f past lx' This introduces a "correction" term (Nij Njk)/p2 

which, through Exercise 2.3.3, can be expressed as y derivatives of 
Gi . Next, (2.3.2b) shows that fj (Nij/P) = Gi /p2. Use part (b) of 
Exercise 2.3.5 to move the 1/ p 2 outside the 88x derivative. Finally, 
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(b) 

spell out /j~ with (2.3.3). These maneuvers should produce 

. /j N i 
Now work on the second term _f3 /jx j T: As in part (a), move the 
1/ F past /j~. Then spell out /j~ and use f3 N Sj = GS / F. Check that 
one obtains 

1[1 .. 1 .. ] 
F2 - "2 yJ ( G' )ykxj + "2 GJ ( G' )ykyj • 

In short, the expression we stated at the beginning is equal to 

~2 [2 ( ai )xk - (ai )yj (a j )yk - y3 ( ai )ykxj + 2 aj ( ai )ykyj ] 

where 
GS 

.- 2· 
The utility of this result is shown in §3.9B. 
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* References for Chapter 3 

3.1 Conventions and the hh-, hv-, vv-curvatures 

The curvature 2-forms of the Chern connection are 

(3.1.1) 

Our convention on the wedge product does not include any normalization 
factor. Thus, for example, the wedge product of two I-forms is 

(3.1.2) e A ( .- e ® ( - (® e , 
without the factor of ~. 
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Since the 0./ are 2-forms on the manifold T M ,0, they can be generically 
expanded as 

, 1, k I ' k 8yl 1 i 8yk 8yl 
0/ := '2 R/kl dx /\dx + P/k1 dx /\p + '2 Q j kl F/\F· 

The objects R, P, Q are respectively the hh-, hv-, vv-curvature tensors 
of the Chern connection. There is no loss in generality in supposing that 

(3.1.3) -R/ k1 I, 
(3.1.4) Q/lk -Q/kl· 

As we soon show, the vv-curvature Q actually vanishes for the Chern con­
nection. 

Exercises 

Exercise 3.1.1: Explain why it does not make sense to put a factor of ~ 

in front of the term P/k1 dxk /\ ~ . 
Exercise 3.1.2: Why is (3.1.3) an assumption instead of a consequence? 

3.2 First Bianchi Identities from Torsion Freeness 

The Chern connection is torsion free: dx j /\w/ = 0. Exterior differentiation 
then gives 

dxj /\ dJ.v/ = 0. 

Since the term dx j /\ w/ /\ W k i vanishes by torsion freeness, it can be sub­
tracted from the left-hand side of the above equation without affecting 
anything. Thus 

(3.2.1) dx j /\ 0/ = 0. 

Into this we substitute our expansion for OJ i, and obtain: 

o 

(*) 

~ R ,i dx j /\ dx k /\ dxl 
2 J kl 

, , k 8yl 
+ Pj \1 dxJ /\ dx /\ P 

1 i ,8yk 8yl 
+ 2' Q j kl dxJ /\ F /\ F . 

The three terms on the right are of completely different types. Therefore 
each must vanish. Let us discuss them in turn. 
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• One important consequence comes from the vanishing of the third 
term on the right. It says that Q must be symmetric in the indices 
k and t. Yet (3.1.4) tells us that there is antisymmetry in those two 
indices. So 

This simplifies the curvature 2-forms to 

(3.2.2) n , 1 R' d k d 1 P i d k 8yl 
H J ="2 J kl X 1\ x + j kl X 1\ F 

• The vanishing of the second term on the right of (*) uncovers a 
symmetry 

(3.2.3) 

of P, between its first and third indices. 

• Finally, the vanishing of the first term on the right of (*) gives the 
first Bianchi identity for R: 

(3.2.4) o I. 

Exercises 

Exercise 3.2.1: Consider the connection forms wba for our g-orthonormal 
basis sections. According to Exercise 2.4.5, in that situation the criterion 
for vanishing torsion reads dwa = wb 1\ Wb a • 

(a) Show that the analogue of (3.2.1) is 

where 0ba := dwba - wbc 1\ wca . 

(b) Check that 0b a has the structure 

Exercise 3.2.2: 

(a) Is the vv-curvature Q always zero for torsion-free connections? 

(b) Can it vanish for connections that have torsion? 
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3.3 Formulas for Rand P in Natural Coordinates 

The left-hand side of (3.2.2) is n/- We replace it by the defining expression 
given in (3.1.1): 

(3.3.1) 
o h iIi k 1 i k 6yl dJ..J/ - Wj AWh = "2 Rj kl dx Adx + Pj kl dx A F' 

* Note that dJ.J/ = clf'i jl A dxl. Since the differential clf'i jl is a I-form 

on T M ...... 0, it can be expanded in terms of dxk and ~. Carrying 
that out, we get 

6ri 
0 

dJ.J oi = __ Jl dxk A dxl 
J 6xk 

Relabeling the second term on the right then gives: 

i 6ri jl k 1 ari jk k 6yl 
dJ.Jj = 6xk dx A dx F ayl dx A F . 

* Also, - W/ A whi = whi A w/ = r i hk r hjl dxk A dxl. 

Substituting these into (3.3.1), we see that the expression 

( 
6rijl i h) 
6x k + r hk r jl 

k 1 ariJok k 6yl 
dx Adx - F dx A 

1\ ayl 1\ F 

is supposed to be equal to 

1 0 k 1 0 k 6yl 
"2 R/ kl dx A dx + P/kl dx A F . 

Hence the antisymmetric part (which involves a factor of 4) of ( ... ) must 
1 i equal 2 R j kl' In other words, 

(3.3.2) 

Also, 

(3.3.3) 

i _ 6ri jl 6ri jk 0 h 0 h 
Rj kl - 8ik - ~ + r\k r jl - r\l r jk 

ar i Ok _ F __ J_ 

ayl 

Note that (3.3.3) implies (3.2.3). As a reminder: 

6 a N i ~ 
6xk axk k ayi 

See §2.3. 
We conclude by discussing the curvatures Rand P of two important 

classes of Finsler spaces. This is a follow-up of the discussion we gave, at 
the end of §2.4, of their Chern connections. 
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• Riemannian manifolds. In natural coordinates, the Chern connec­
tion coefficients r i jk of Riemannian manifolds simply equal the un­
derlying Riemannian metric's Christoffel symbols 'Y'jk of the second 
kind. The latter do not have any y dependence. Therefore P = 0 by 
(3.3.3), and those 8~ in (3.3.2) reduce to :x. In other words, 

i 8'Yijl 8'Yijk i h i h 
Rj kl = 8xk - 8xl + 'Y hk 'Y jl - 'Y hi 'Y jk . 

• Locally Minkowski spaces. In certain natural coordinates, the Chern 
connection coefficients r i jk vanish identically. Thus (3.3.2) and 
(3.3.3) tell us that both Rand P must be zero in these privileged 
natural coordinates. But curvatures are tensorial objects, so they 
remain zero in all natural coordinates (and actually, in all bases). 

Exercises 

Exercise 3.3.1: Review part (b) of Exercise 3.2.1. Show that 

() R a - ja k IRi a b cd - U b V i U c U d j kl . 

(b) P a _ j a kip i 
b cd - U b V i U c U d j kl . 

Exercise 3.3.2: Explain how Euler's theorem can be used to deduce the 
statement 

I P/kl el = 0 I· 
Exercise 3.3.3: Let (M, F) be a locally Minkowski space, as defined in 
§1.3. Show that its R/ kl and P/kl are both identically zero in all natural 
coordinates. 

Exercise 3.3.4: The quantities (see §3.9) 

Ri .- ej Riel k·- j kl 

are of paramount importance in Finsler geometry. Prove that 

A viable strategy is as follows: 

* Start with the formula (3.3.2) for R/ kl in natural coordinates. 

* Use Exercise 2.5.6 to move ej and el past the appropriate lx. 
* Then refer to part (a) of Exercise 2.4.6. 

Exercise 3.3.5: Recall from Exercise 2.4.6 that 

8;i = dei + ej w/ + ei d(log F) . 
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Prove that its exterior differential is given by the formula 

Exercise 3.3.6: For our orthonormal frame, recall from Exercises 2.4.7, 
2.3.5, and 2.4.5 that: 

* 
* 
* 

W n +'" = W n'" , 

W n +n = d(log F) , 

wnn = 0 . 

Without doing any computation, explain why one immediately has: 

(a) dwn+", = nn'" +wnb I\wb'" = nn'" +wn+b 1\ (Wb'" - t'bWn+",) . 

(b) dwn +n = 0 . 

3.4 First Bianchi Identities from "Almost" g-compatibility 

The Chern connection is almost metric-compatible, in the sense that 

k 8ys 
dgij - gkj wik - gik Wj = 2 Aijs F . 

After exterior differentiation and some manipulations, we get 

8yk [ (8yk ) 8yl ] n 0 + n 00 = - 2 ('\7 A) 0 Ok 1\ - - 2 A Ok d - + WI k 1\ -
'J J' 'J F 'J F F 

The expansion of ('\7 A)ijk was considered in Exercise 2.5.4, and d(Ef) 
was computed in Exercise 3.3.5. These turn the above into the following 
fundamental identity: 

(3.4.1) 

nij + nji 

1 k I 2 (Rijkl + Rjikl ) dx 1\ dx 

(Aiju R Ukl ) dxk 1\ dxl 

2 (Aiju Pkl + Aijllk) dxk 1\ 8;l 

8yk 8yl 
+ 2 (Aijk;l - Aijk t'l) F 1\ F . 

Here, we have introduced the abbreviations 

(3.4.2) 

(3.4.3) 
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in order to reduce clutter. 
There is a wealth of information that one can uncover from this funda­

mental identity. We carry that out systematically below. 

3.4 A. Consequences from the dxk 1\ dx l Terms 

In (3.4.1), the coefficients of the dx k 1\ dxl terms tell us that 

(3.4.4) 

where we have introduced a temporary abbreviation 

B ijkl := - A iju R Ukl . 

It is symmetric in i, j but skew-symmetric in k, l. Thus Rjikl is in general 
not skew on its first two indices. Formula (3.4.4), together with the first 
Bianchi identity for R [namely (3.2.4)] and (3.1.3), can be used to deduce 
the following: 
(3.4.5) 

Rklji - Rjikl = (Bklji - B jikl ) + (Bkilj + B ljki ) + (Biljk + Bjkil) 

The procedure is spelled out in Exercise 3.4.2. 
In Exercise 3.3.4, we encountered the quantities 

(3.4.6) 1 ~k := £j Rjikl £l I· 

Using (3.4.4) and (3.4.5), we see that 
1 . 1 . 

£ R lkij £J = £ Rklji £J 
. 1 

£J Rjikl £ . 

In other words, 

(3.4.7) 

This symmetry was not apparent from the said exercise. 

3.4 B. Consequences from the dxk 1\ p8yl Terms 

The coefficients of the dx k 1\ Iii terms in our fundamental identity tell us 
that 

(3.4.8) 1 Pijkl + Pjikl = - 2 Aju Pkl - 2 Aijllk I· 
Let us use this to derive a constitutive relation for Pjikl : 

• Apply (3.4.8) three times to the combination 

(Pijkl + Pjikl ) - (Pjkil + Pkjil ) + (Pkijl + Pikjl ) . 

With the help of a temporary abbreviation 
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the result takes the form 

P jikl = -( Aijllk - Ajklli + Akillj ) + (Eijkl - Ejkil + E kijl ) . 

• Contract this with f) and [j [k, respectively, and use (2.5.14) (which 
says that the horizontal covariant derivative of [ is zero). One can 
check that the second contraction gives Pjikl[j [k = 0, which then 
reduces the first contraction to the important statement 

(3.4.9) 

Here, 

(3.4.10) 

• It follows that E ijkl = Ai/ AUkl . This updates the above interme­
diate formula for P jikl to the constitutive relation 

(3.4.11) 
P jikl = (Aijllk - Ajklli + A ki11i ) 

+ Aij U AUkl - Ajt AUil + A kiu A ujl . 

Therefore: 

The second Chern curvature tensor P is a functional of 
the Cartan tensor A ijk and its horizontal covariant deriva­
tives Aijkls' 

Formula (3.4.9) can be used to re-express (3.4.8) as 

(3.4.12) 
. 1 

Aijllk = Aij U AUkl - 2 ( P ijkl + P jikl ) 

which is a converse to the constitutive relation (3.4.11). In particular, we 
now see that 

(3.4.13) Pjikl = 0 if and only if Aijkll = o. 

3.4 C. Consequences from the *8yk 1\ *8yl Terms 

Finally, the coefficients of the ~ 1\ 2f terms in (3.4.1) tell us that 

(3.4.14) 

Exercises 

Exercise 3.4.1: Supply all the details that are involved in the derivation 
of our fundamental identity (3.4.1). 
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Exercise 3.4.2: Derive (3.4.5) as follows. 

(a) Cyclicly permute the first, third, and fourth indices of Rjikl. We 
simply get the first Bianchi identity Rjikl + Rkilj + Rlijk = O. Next 
do the same to ~klj, and likewise to Rklji and to Rljik. 

(b) Add the four resulting equations together; then use (3.1.3) and 
(3.4.4). Check that after some appropriate relabeling, one gets for­
mula (3.4.5) as claimed. 

Exercise 3.4.3: Derive the constitutive relation (3.4.11) by following the 
guidelines given in this section. 

Exercise 3.4.4: 

(a) Explain why Pikl := f) Pjikl is totally symmetric in all its indices. 
Also, explain why Pikl £1 = o. 

(b) Recall the statement P/kl £1 = 0 from Exercise 3.3.2. There, it was 
derived from first principles. Check that it is also a consequence of 
the constitutive relation (3.4.11). Does Pikl £1 = 0 follow immedi­
ately from the said statement? 

(c) Use (3.4.4) to help show that £j £i Rjikl = 0 = Rjikl £k £1. In partic­
ular, deduce that 

i k I £ ~k = 0 = Rik £ . 

Exercise 3.4.5: 

(a) Contract the fundamental identity (3.4.1) with £i. With the help of 
part (c) of Exercise 2.5.4, show that one gets 

£i nij = - n ji £i . 

(b) Explain why the above carries no more information than (3.4.4) and 
(3.4.8). 

Exercise 3.4.6: Consider the following two statements: 

(1) The Chern connection coefficients r i j k have no y-dependence, in 
which case the Finsler structure is said to be of Berwald type. 

(2) ay~~yq (yj r i jk ) = O. 

We surely have (1) * (2), and it would be intuitively appealing to have 
the converse as well. This is indeed the case. To demonstrate that, adopt 
the following strategy: 

( a) First show that 

Hint: use (3.3.3) and perhaps (3.4.11). 
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(b) Show that -Pp\q and A\p;q each produces a copy of -Akpq if we 
contract them with f+ 

(c) Now explain in detail why (2) * (1). 

3.5 Second Bianchi Identities 

Exterior differentiation of (3.1.1) gives the second Bianchi identity 

i k i i k (3.5.1) dnj - Wj !\ nk + wk !\ nj = O. 

Into this we substitute the expression (3.2.2) of n/ in terms of Rand P. 

• In the computation of d n/, let us use 

i. 8yi ) 
3 F 

whenever we encounter d(~). See Exercise 3.3.5. 

• The combination 

i itt i it it 
dRj kl - R t kl Wj + R j kl Wt - R j tl Wk - R j kt WI 

will show up. Being a I-form on T M '-.. 0, it can be re-expressed as 

i t i 8yt 
R j kilt dx + R j kl;t F . 

• Likewise, we replace the I-form 
. . t t . . t . t 

dPj \1 - P t \1 Wj + P j kl w t t - P j ttl wk - P j tkt WI 

with the expression 

The result is 

o = 
1 . 
"2 (R/ kllt P. i RU) dx k !\ dxl !\ dxt 

3 ku It 

(3.5.2) 
1 . 

+ "2 (R/kl;t 
i i'u k I 8yt 

2 P j ktll + 2 P j ku A It) dx !\ dx !\ F 
i k 8yl 8yt 

Pj kl id dx !\ F !\ F . 

This is a useful restatement of the master second Bianchi identity. It is 
equivalent to the following three identities: 
(3.5.3) 
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(3.5.4) 

(3.5.5) 

It can be shown that (3.5.4) embodies a constitutive relation for the 
fi~t Chern curvature tensor R. Namely, R j i kl is a functional of the tensor 
Rt k and its first and second vertical covariant derivatives, together with 
A and its first horizontal covariant derivatives. The tensor ~k becomes 
known in §3.9 as the predecessor of flag curvatures. Explicitly, the said 
constitutive relation reads: 

1 . 
3" (R'k;l;j 

(3.5.6) 2· . . . 
+ 3" (R'k;j f.1 - R'I;j f.k + R'k gjl - R'I gjk) 

- (Aij/lk - Aijkll + Aiuk AUjl - Aiul AUjk )· 

The derivation of this is somewhat tedious. It is carried out systematically 
in Exercises 3.5.5-3.5.7. 

Exercises 

Exercise 3.5.1: Note that of the four indices on R/ k/' i and j are bundle 
(that is, 1r*TM) indices while k, l are manifold (namely, TM '- 0) indices. 
The combination 

we encountered above suggests that all four indices have been treated as 
bundle indices, not by us willfully but by the exterior calculus. How does 
the bundle conne~tion w/ even know what to do with the manifold indices 
on R? 

Exercise 3.5.~: Use identity (3.5.3) to derive the following: 

R\/lt + R i lt1k + Ritkll = - A\u Rit - Ailu RUtk - Aitu RUk1 . 

Exercise 3.5.3: 

(a) By contracting (3.5.5) with f.i, prove that 
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(b) Using this and the constitutive relation (3.4.11), derive the intrigu­
ing formula 

A\jll - A\lli 

+ (AijU AUkl + AijU AUkl ) 

- (Ai lu A\j + A i lu A\j) . 

Exercise 3.5.4: Prove that the following three statements are equivalent: 

• A ijk = 0 (this is the definition of a Landsberg space). 

• Aijkl l is totally symmetric in all four of its indices. 

• Pjikl = -Ajikll . 

Hint: you will need to use (3.4.11) and Exercise 3.5.3. 

Exercise 3.5.5: 

(a) Show that pj R/ kl;t = R\l;t - R/kl + Pt R\l . 

(b) By contracting (3.5.4) with pj and relabeling, prove that 

R/ kl R\l;j + Pj R\l 

- (Aijllk - Aijkll + A\k AUjl - A\l AUjd . 

Note that the quantity inside the parentheses is like a curvature! 

Exercise 3.5.6: 

(a) Show that pu Ri ku;l = Ri k;l + Ri k PI - Ri kl . 

(b) Contract part (b) of Exercise 3.5.5 with pi to obtain 

iii i i ·i I 
Rj kl P = R k;j + 2 R k Pj + R jk + Aj kll P . 

(c) Without doing any more computation, explain how one could get 

. Iii i . i I 
Rkt lj P = - R j;k - 2 R j Pk + R jk - Ak jll P . 

Exercise 3.5.7: 

(a) How would one obtain R/ kl pi + Rki lj pi + Rijk = 0 ? 

(b) Into this, substitute parts (b) and (c) of Exercise 3.5.6. Show that 
one gets 

·1· ·2· . 
R\l = - (R\·l - Rtl·d + - (R\ PI - Rtl Pd 3 ' , 3 

(c) Using this and part (b) of Exercise 3.5.5, derive the constitutive 
relation (3.5.6) for R/ kl. 
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3.6 Interchange Formulas or Ricci Identities 

Let 

8 
TP -®dxq 

q 8xp 

be a smooth section of n*TM ® n*T* M. Its covariant differential VT can 
be written out two ways: 

dTP + Tj w.p 
q q J 

P 8yj 
T~ w/ = T~lj dxj + T q;j F . 

By taking the exterior derivative of this equation, one can deduce the fol­
lowing Ricci identities or interchange formulas: 

(3.6.1) 

(3.6.2) 

(3.6.3) 

The exercises provide some minimal guidance, should the reader decide to 
fill in the details. 

These are versatile formulas. In the Riemannian case, only (3.6.1) is non­
vacuous, and its right-hand side reduces to two terms. 

Exercises 

Exercise 3.6.1: 

(a) Explain why, when we encounter dTPqli ' we can replace it by the 
expression 

T i P TP i TP i TP d i TP 8yi 
- qlj Wi + iii Wq + qli Wj + qljli X + qlj;i F . 

(b) Likewise, explain why dTPq;j can be replaced by 

Exercise 3.6.2: Deduce the interchange formulas (3.6.1)-(3.6.3). 
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3.7 Lie Brackets among the 8~ and the F & 
Given any local vector fields X, Y on TM " 0, and any I-form w, the 
Cartan formula says that 

(3.7.1) 1 (dw)(X,Y) = d[w(Y)](X) - d[w(X)](Y) - w([X,y]) I· 
Let W := wj a~j be any local section of 7r*TM. Using the Cartan formula, 
one can prove that 

(3.7.2) / W j O/(X, Y) ~ = (V X Vi' - Vi' V x - Vrx,i'j) W /. 

Here, the covariant derivative operator V is the one we encountered in §2.4 
and §2.5. 

Recall from §2.3 that the :x span the horizontal distribution, and 
that the F ;y span the vertical distribution. These notions make sense 
with respect to the Sasaki (type) metric on T M ,,0. Their Lie brackets can 
be computed with the help of the Cartan formula. 

• Formula (3.7.2), together with the fact that land F are both co­
variantly constant along all horizontal directions, will show that 

(3.7.3) [ 0 0 1 .. f) 
-g;k'""iXi = - lJ R/ kl F 8i} . 

See Exercise 3.7.3. Since the Lie bracket of the horizontal vector 
fields b, b is strictly vertical, the horizontal distribution is not 
involutive, hence not integrable. 

• Next, (3.7.2) and primarily (3.4.10) can be used to deduce that 
(3.7.4) 

[
of) 1 {. i £i i Nkl } a -g;k' F8i1 = A kl + F (Flk )x1 - l Ii' F8i} 

This one involves considerable detail. See Exercise 3.7.4. 

• Finally, (3.7.2) and an appropriate interchange formula from §3.6 
will lead to 

(3.7.5) 

See Exercise 3.7.5. This, together with the identity 

[J X, gYJ = /g [X,YJ + / (dg)(X) Y - 9 (df)(Y) X, 

will show that the vertical distribution is involutive, hence inte­
grable. 
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Exercise 3.7.1: Verify the Cartan formula (3.7.1). 

Exercise 3.7.2: Derive (3.7.2) in detail. 
• ." 0 0 . ExercIse 3.7.3. Let X, Y be oxk' Oxl' respectIvely. 

(a) In (3.7.2), set W equal to f. Show that one obtains 

. . a 
'\7[_6_ ..L] f = - fJ R/ kl -a . . 

6xk 'exl X'l 
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Formula (2.5.14) says that f is covariantly constant in all horizontal 
directions. So the Lie bracket here cannot possibly be horizontal, 
unless it vanishes. 

(b) With the help of Exercise 2.3.5, check that F is constant along 

[O~k' O!l] . 

(c) Using the above, together with ~ = ('\7f)i +fi d(1og F) , show that 

( 8yi ) ([ 8 8] ) . i F 8xk ' 8xl = - fJ Rj kl . 

(d) In the Cartan formula, set w := dXi. Check that it gives 

We can now conclude that 

. . a 
- nJ R' F­

{. j kl ayi' 

In particular, the Lie bracket of O~k with O!l is strictly vertical! 

Exercise 3.7.4: Return to (3.7.2). This time, set 

• 8 
X := 8xk and 

(a) Show that the curvature formula (3.7.2), together with (3.4.10), 
gives 

.. a 
'\7[_6_ F a]f = A\I -a .. 

6xk' a;;r x'l 

(b) With the help of 
* ~~ = 0 (Exercise 2.3.5) and fllk = 0 (2.5.16), 
* the relationship (2.5.3) between O~k fl and fllk , 

* formulas (2.4.9), (2.3.2) twice, (2.3.1), (1.4.1) for r, N", g, 
* Euler's theorem (Theorem 1.2.1) applied to (~F2)yk , 
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show that: 

d(log F) ( [ 8~k ' F a~Z l) = ~ ( F £k )x1 - ;/ • 

(c) Using the above, together with 0f = (V£)i +£i d(log F) , show that 

(d) Deduce from the Cartan formula that 

(dxi) ( [ 8~k ' F a~Z 1 ) 0 . 

Now conclude that 

So, the Lie bracket of Ii~k with F a~l is vertical. 

Exercise 3.7.5: In (3.7.2), let us set 

A a 
x := F ayk ' 

oi N kZ 
-L F . 

We now complement Exercises 3.7.3 and 3.7.4 by computing the remaining 
Lie brackets. 

(a) With the help of an interchange formula on £i, show that 

(b) By applying an interchange formula to log F, check that it is con­
stant along [F~, F a~l J . 

(c) Use the Cart an formula to verify that 

(dxi) ( [ F a~k ' F a~Z l) = 0 . 

Imitate the trend of thought in Exercise 3.7.4 to conclude that 

[ F a~k ' F a~Z 1 = (£k 8iz - £z 8\) F a~i . 

Thus the Lie bracket of F a~k with F a~l is vertical. 
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3.8 Derivatives of the Geodesic Spray Coefficients Ci 

In Exercise 2.3.3, we introduced certain quantities 

(3.8.1) 

where the ,ijk are the formal Christoffel symbols of the fundamental tensor. 
(Our G' is twice that in [AIM].) In that exercise, it was shown that 

(3.8.2) 

where N i j is the nonlinear connection [see (2.3.2)]. 
Constant speed Finslerian geodesics are (see §5.3) curves in M that obey 

the coupled system of quasilinear second order ODEs xi + Gi = 0, where 
in Gi we set yi ;= Xi (that is, d,ft'). The vector field 

k 8 _ k (a N i 0) _ i 0 _ Gi~ 
Y 8xk - Y oxk - k oyi - Y OXi oyi 

on TM" 0 is called the geodesic spray (see [AIM], [AB]). In the second 
equality, we have used the fact that G i is homogeneous of degree two in y, 
and Euler's theorem (1.2.1); yj ~~; = 2Gi . 

As we have seen, the first y-derivative of ~Gi gives the nonlinear connec­
tion Nij • We show in the following exercises that successive y-derivatives 
continue to yield quantities which are both interesting and geometrically 
significant. The following is a quick summary. We have 

(3.8.3) /
1. ... / "2 (G' )yjyk = r'jk + A'jk . 

The quantity on the right is known as the Berwald connection bri jk . It 
has two a priori nonzero curvature tensors just like the Chern connection 
does. The "hv" one is given by 

(3.8.4) 

This has the consequence [part (c) of Exercise 3.8.5]; 

(3.8.5) 1 Ajkl = - ~ Yi (Gi )yjykyl I· 

Finally, the "hh" quantities R\ ;= f) R/ kl f.l are intimately related to 
the flag curvature. We make precise the relation in §3.9. Exercise 3.3.4 
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demonstrates that Ri k can be expressed rather simply in terms of the non­
linear connection N ij . Namely, 

(3.8.6) 

where {j~k := 8~k - N ik 8~i. Through (3.8.2), the curvatures Ri k can then 
be expressed entirely in terms of the x and y derivatives of the geodesic 
spray coefficients Gi . This was carried out in Exercise 2.5.7. The result 
reads: 

(3.8.7) 

where 

Exercises 

Exercise 3.8.1: 

(a) Check that 

(b) Then show that 

1j 2 .. 12. 
Gi = 2 y (F )XJy' - 2 (F )x' . 

Exercise 3.8.2: Verify that Gi = r i jk yj yk, where the r i jk are the Chern 
connection coefficients. 

Exercise 3.8.3: 

(a) With the help of Exercise 2.3.3, prove that 

1. . .. 
2 (G' )yjyk = r'jk + A'jk . 

Hint: review the derivation of (3.3.3) and (3.4.9). 

(b) Why is this statement potentially very useful? 

Exercise 3.8.4: Revisit part (a) of Exercise 3.8.3. There, the left-hand side 
of the equation defines another torsion-free linear connection on 7r*T M. 
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This connection is known as the Berwald connection. Its connection 
coefficients are 

b . 1. .. . 
r'jk := "2 (G' )yjyk = r'jk + A'jk . 

Note that it differs from the Chern connection by a simple A term. 

(a) Express the curvature tensors of the Berwald connection in terms 
of the R, P, Q of the Chern connection, together with suitable 
derivatives of the Cartan tensor. Show that one has: 

b . R/ kl + [ Aijllk + Aisk ASjl G:~) ] 'Rj ' kl -

b . 'P/kl P/kl Aijk;l , 

'rJ/ kl Q/kl = O. 

(b) Prove that 

Obri. F . 
bp/kl = - F Oyr = P/kl - Aijk;l = - "2 (G' )yjykyl 

Hint: you may want to borrow the strategy in §3.3. 

(c) Why is the Berwald' connection torsion-free? 

Exercise 3.8.5: So far, we have seen that taking 

* one y derivative of ~Gi yields the nonlinear connection, 

* two y derivatives gives the Berwald connection, and 

* three y derivatives produces j} times the Berwald hv-curvature bp. 

(a) Verify that Yi := gij yj = F£i = F Fyi. 

(b) Use (3.4.8) to show that £i Pjikl = - £i Pijkl . 

(c) Using part (b) of Exercise 3.8.4, together with the Bianchi identity 
(3.4.9), and (2.5.17), prove that 

. 1 . 
Ajkl = -"4 Yi (G' )yjykyl 

3.9 The Flag Curvature 

We now illustrate the usefulness of some of our Bianchi identities in the 
study of the flag curvature. This is a geometrical invariant that generalizes 
the sectional curvature of Riemannian geometry. Furthermore, the flag cur­
vature is insensitive to whether one is using the Chern-, Cartan-, Berwald-, 
or Hashiguchi-connection. 
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3.9 A. Its Definition and Its Predecessor 

We begin with the notion of a flag on M. The act of installing a flag at 
x E M necessitates a nonzero y E TxM which serves as the flagpole. The 
actual flag itself is described by one edge (for instance, £) along the flagpole 
and another transverse edge, say V := Vi 8~i. The flag curvature that 
we define does not depend on the actual "length" of the edge along the 
flagpole. This is made precise in (3.9.2). See also Exercise 3.9.1. . 

Now that we have a flag, we can associate with it a number K(y, V). It 
is obtained by carrying out the following computation at the point (x, y) E 

TM" 0, and viewing y, Vas sections of the pulled-back bundle 7r*TM: 

(3.9.1) K(y, V) .-
g(y, y) g(V, V) - [g(y, V)]2 

As a reminder, 

g := gij (x,y) dxi ® dxj := (~F2) . . dxi ® d,x3 
2 y'y3 

is a Riemannian metric on the pulled-back bundle 7r*T M. 

- -- -
-------------~ .. '. '. '. "flag" ........ '. '. '. '. r ..... - " base point x 

Figure 3.1 

\ 

\ 

\ 

flagpole y 

A typical flag, based at the point x on a Finsler manifold M. The 
flagpole is y, and the "cloth" part of the flag is £/\ V. The entire 
flag lies in the tangent space TxM. 
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The right-hand side of (3.9.1) is unchanged if we divide both numerator 
and denominator by F2(x, y). Thus 

(3.9.2) K(y, V) = K(£, V) , 

where 

K(£, V) 
Vi (£j Rjikl £l ) Vk 

.- ~~~~~~~~~~~ 
g(£, £) g(V, V) - [g(£, V)J2 

Vi ~k V k 
(3.9.3) 

g(V, V) - [g(£, V)J2 . 

Here, we have used the fact (2.1.7) that g(£,£) = 1. The number we have 
just defined is called the flag curvature for the flag y /\ V or £ /\ V. 

There is no loss of generality in choosing only those transverse edges V 
that are g-orthogonal to the flagpole y. Indeed, any arbitrary V can be 
decomposed as V = W + ~ £, where g(£, W) = 0 and ~ is a scalar multiple. 
Part (c) of Exercise 3.4.4 tells us that 

t ~k = 0 = ~k £k . 

Hence 

* Vi ~k vk = Wi Rik Wk. 

* g(V, V) - [g(£, V)J2 = g(W, W). 

There is no need for the [g(£, W)]2 term because it is zero. Consequently 

K(£, V) = K(£, W) . 

Although the above calculation was carried out on 7r*TM, it admits an 
interpretation on TxM as follows. The flagpole y E TxM singles out an inner 
product 9 as defined immediately after (3.9.1). That inner product may be 
viewed as living on TxM, and lets us make sense of the (n - 1 )-dimensional 
g-orthogonal complement of y. It is from this subspace in TxM that we 
should pick our transverse edges V. For further discussions, see Exercises 
3.9.4 and 3.9.5. 

The following object is algebraically a predecessor of the flag curva­
ture: 

K(£, V,W) 
Vi (£j Rjikl £l ) W k 

.- -g-:-=(v.-=-=, W=::O-) -_-g"-'o(£7-, =-=V-:--) g-:-(£-=-, w==-) 

Vi ~k wk 
(3.9.4) 

g(V, W) - g(£, V) g(£, W) 

• It is clear that K(£, V, V) = K(£, V) . 

• The fact (3.4.7) that ~k is symmetric tells us that 

(3.9.5) K(£, W, V) = K(£, V, W) . 
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• One can derive the polarization identity 

(3.9.6) 
1 1 

K(£, V, W) = "4 K(£, V + W) - "4 K(£, V - W) . 

3.9 B. An Interesting Family of Examples of Numata Type 

We now calculate the flag curvature for a family of examples that are 
valid in all dimensions. These examples are interesting because their flag 
curvatures do not depend on the transverse edges V at all. Moreover, the 
flag curvatures in question have a simple nonconstant dependence on the 
basepoint x and the flagpole y. 

To describe our family, begin with a smooth function f = f(x) defined 
on an open subset of IRn. We either require that f has at least one critical 
point, or scale it down so that the open subset 

M := {x E IRn : J 8i j fx' fx j < I} 

is nonempty. In other words, M is the open set on which the gradient of f 
has Euclidean length strictly less than 1. On T M, define 

(3.9.7) 1 F(x, y) := vi 8ij yi yj + fx' yi =: 0: + (df)(y) I· 

This is a Randers metric. Its underlying Riemannian metric is the Euclidean 
one on IRn, and its drift I-form is df. As stated in §1.3C, and proven in 
§11.1, the fact that II df II < 1 on M enables F to satisfy all the axioms of 
a Finsler structure. 

With the help of 

(3.9.8) 

one can check that 

(3.9.9) 

Hence 

. k 
Gi .- 'Yijk y1 Y 

i 

(3.9.10) i._ i j k _ Y j k 
G .- 'Y jk Y Y - F fxjx k Y Y . 

As always, our G i is twice that of [AIMj's. Formula (3.9.10) says that 

(3.9.11) 

where 

(3.9.12) 
1 . k 

P ;= F fx j xk yJ Y . 

Let us digress to point out something. Note that the analogous {ji of the 
Euclidean metric is zero. We may ([AIM], §3.3) thus interpret (3.9.11) as 

Gi _ {ji = P yi . 
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This says that the Finsler structure F is projectively related to the 
Euclidean structure. The function p is our projective factor. 

We turn to the calculation of F2 Ri k' Let us begin with formula (3.8.7). 
It reads: 

2 ((i )xk - ((Ji )yj (aj )yk 

- yj (ai )ykxj + 2 aj (ai )ykyj , 

where as := ~s. Into this formula we substitute (3.9.11). Since p is posi­
tively homogeneous of degree 1 in y, Euler's theorem (Theorem 1.2.1) says 
that 

These simplify the result to 

F2 R\ = (IP - yj Pxj ) 8\ + yi (2Pxk - P Pyk - y1 Pxjyk) , 

where P is the projective factor that [AIM] would have used: 

(3.9.13) / P := ~ p := -IF fxjxk yj yk /. 

We are now ready to compute the flag curvature. Formula (3.9.3) implies 
that 

Vi (F2 R\) V k 

F2 K(£, V) = g(V, V) - [g(£, V)J2 

In §3.9A, we explained why one only needs to use transverse edges V that 
are g-orthogonal to the flagpole y. Consequently, the g(£, V) term drops 
out, and we have 

F2 K(£, V) = Vi (F2 R\) V k 

g(V, V) 

Into this we substitute our formula for F2 R\, and use 

i k i 8 k Vi V = Vi V = g(V, V) , yi Vi = g(y, V) 

These maneuvers give 

K 
1 

F2 (p2 - yj Px j ) • 

Inputting formula (3.9.13) for P and computing briefly, we get 
(3.9.14) 

o. 

3 .. 2 1 ( .. k) 
K = K(x, y) = 4 F4 (Jxix j y" if) - 2 F3 fxixjxk y" yJ Y 

Here, the second- and third-order partials on f are functions of x only. As 
promised, the flag curvatures have no dependence on the transverse edges 
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V. Furthermore, they have an explicit simple dependence on the basepoint 
x and the flagpole y. That dependence on y is quite obviously variable. 

As a concrete example, take f to be a quadratic polynomial Cij xixj , 
where the Cij are constants. Formula (3.9.14) then simplifies to 

3 ( ")2 K = 4 F4 Cij y' yJ . 

In this case, the flag curvatures K are strictly positive if and only if the 
matrix (Cij) is positive-definite. 

Let us put our family of examples into the proper perspective. It is a 
theorem of Numata's [Nu] that the flag curvatures of 

(*) 

where b is a closed I-form, depend only on the basepoint x and the flagpole 
y E TxM, but not on the transverse edges V. See Matsumoto's account in 
[AIM]. We hasten to point out that the dominant term here is a Minkowski 
norm of a special type, rather than the norm of a Riemannian metric. The 
latter would look like .J aij(x) yiyj instead. Thus, the above [namely, those 
given by (*)] Finsler metrics of Numata type are in general not Randers 
metrics. However, the ones we considered in our calculations are of both 
Numata and Randers type because their qij are constants. For a companion 
investigation that focuses on Randers metrics rather than those of Numata 
type, see Exercise 3.9.8. 

Exercises 

Exercise 3.9.1: Show that as far as the flag curvature is concerned, the 
actual dimensions of the flag are irrelevant. In other words, neither the size 
of the edge along the flagpole, nor that of the transverse edge, matters. 
Mathematically, this means that 

K(ay, ,BV) = K(y, V) 

for all constants a and ,B. 

Exercise 3.9.2: Derive the polarization identity (3.9.6). 

Exercise 3.9.3: Check that 

(a) R;.i = (9ii - ii f i ) K(i, a~' ) . 

(b) R;.k = (9ik - ii f k) K(i, a~i , a~k ) . 

Exercise 3.9.4: Fix a flagpole 0 f=. y E TxM. There are n -1 linearly inde­
pendent transverse edges. Using the Riemannian metric 9ij (x,y) dxi ® dxj, 
we can normalize these transverse edges and require them to be perpendicu­
lar to each other, as well as to the flagpole. Denote the resulting collection 
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by {eQ }. Adding en := f to this collection produces a special g(x,y) or­
thonormal basis {ea} for TxM, exactly the type discussed in §2.2. Show 
that with respect to this basis: 

(a) RQQ = K(f, eQ ). 

(b) Rnn = o. 
Here, Rae equals uai ~k u/, a consequence of Exercise 3.3.I. 

Exercise 3.9.5: The Ricci scalar is defined as 

Ric := gik ~k . 

(a) Show that it is a sum of n - 1 appropriate flag cuvatures. 

(b) Identify the flags behind these flag curvatures. 

(c) Explain why Ric can actually be obtained from Rj i kl without ever 
using the fundamental tensor or its inverse. 

We would like to remark that: 

• In two dimensions, the Ricci scalar is the same as (the Finslerian 
analogue of) the Gaussian curvature. See §4.4 and especially Exer­
cises 4.4.7, 4.4.8. 

• The Ricci scalar plays a central role in the concept of Finsler­
Einstein structures. An elementary discussion of this scalar is given 
in §7.6. 

Exercise 3.9.6: Using (3.5.6), one can express Rjikl in terms of ~k' Aijk 
and their derivatives. In this exercise, let us derive an alternative formula 
in which the dependence on derivatives is eliminated. The price we pay is 
that the algebraic dependence on ~k, A ijk is made much more complicated 
than before. 

In Riemannian geometry, the full curvature tensor is expressible as a sum 
of sectional curvatures (each multiplied by the area of the corresponding 
parallelogram or "flag"). An explicit formula can be found in Cheeger-Ebin 
[CEI. It is the goal of this exercise to generalize such a statement to Finsler 
geometry, and to correct two typographical errors in the above reference. 

Let W, V, X, Y be local sections of 7r*T Mover T M ...... O. Define the 
quantities 

(W, V, X, Y) := wj Vi Xk yl Rjikl , 

(Y,X) := (Y,X, X, Y) = yj Xi xk yl Rjikl . 

(a) Let R(X, Y) W := wj Xk yl R/ kl a~i. Check that 

(W,V,X,Y) 

(Y,X) 

g(R(X, Y) W, V) , 

g( R(X, Y) Y , X) . 
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(b) In order to avoid clutter, let us introduce the abbreviation 

B(WV XV) := - A( W, V, R(X, Y) l) . 

This B is symmetric in its first two arguments, and skew-symmetric 
on the last two. It vanishes when the Finsler structure is Rie­
mannian, or when one of its first two arguments is proportional to 
the canonical global section l. Show that the symmetry properties 
(3.2.4), (3.1.3), (3.4.4), (3.4.5) of Rjikl can be re-expressed as 

(W, V, X, Y) + (X, V, Y, W) + (Y, V, W, X) = 0, 

(W,V,Y,X) = -(W,V,X,Y) , 

(V, W, X, Y) + (W, V, X, Y) = 2 B(WV XV) , 

(X, Y, W, V) - (W, V, X, Y) [B(XYWV) - B(WV XV) ] 

(c) Verify that 

+[B(XVYW) + B(YWXV)] 

+ [B(VYW X) + B(W XVY) 1 . 

(X, Y) - (Y, X) = - 2 B(YXXY) . 

Thus when the Finsler structure is of Riemannian type, we have 
(X, Y) = (Y, X). Nevertheless, for Finsler geometry in general, we 
still have (X, l) = (l, X). 

(d) Lastly, prove that 6 (W, V, X, Y) is equal to 

(X + V, Y + W) - (X + W, Y + V) 

+ (X + W, Y) + (X + W, V) + (X, Y + V) + (W, Y + V) 

- (X + V, Y) - (X + V, W) - (X, Y + W) - (V, Y + W) 

+ (X, W) + (V, Y) + (V, W) 

- (W, Y) - (X, V) - (W, V) 

+ 6 B(WVXY) 

+ 4 [B(YWV X) - B(YVW X) 1 
- 2 [B(XYWV) + B(XWVY) + B(XVYW) 1 . 

When the space is Riemannian, all B terms vanish and (X, Y) is 
symmetric. Then the above reduces to the formula intended by 
Cheeger-Ebin. Their typographical mistakes consist of the follow­
ing: instead of (X + W, Y) and -(X, V), they had (V + W, Y) and 
-(X,Y). 

(e) Rewrite that last formula as Rjikl = ... . 
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Exercise 3.9.7: Consider 

F(x, y) := J'-8'-j -yi-y-j + bi yi =: a + b(y) , 

where b is a closed I-form. Restrict to an open subset M of IRn , so that 
on M we have 

.J 8i j bi bj < 1. 

(a) Show that the flag curvatures of this F are given by 

K(x,y) = 4~4 ([bdxj yiyjf - 2~3 ([bdxjxk yiyjyk) 

(b) We insist that the F considered here is not more general than that 
studied in the section proper. Why? 

Exercise 3.9.8: Finsler metrics of Numata type were discussed at the end 
of §3.9. Let us now consider Randers metrics 

F(x, y) := .J iiij(X) yi yj + f bi(x) yi , 

where 0 < f < 1 is a constant. We assume that: 

* The Riemannian metric ii has constant sectional curvature. 

* The I-form b has Riemannian norm < 1 everywhere, and is closed. 

(a) Explain why, for sufficiently small f, the flag curvatures of F have 
the same sign as the sectional curvatures of ii. 

(b) Show that the flag curvatures of F do not depend on the transverse 
edges V of the flags. 

(c) Now suppose ii has constant positive sectional curvature, and b is 
not identically zero. For small enough f, and in dimension ~ 3, is it 
true that the flag curvatures of F are positive numbers that must 
depend on the flagpole? 

3.10 Schur's Lemma 

If rotation of the transverse edge V about the flagpole y leaves the flag 
curvature unchanged, we say that our Finsler space has scalar flag cur­
vature. In [M2] and [AIM], such spaces are said to be "of scalar curvature." 
Denote this scalar by ..\ = ..\(x, y). For instance, every Finsler surface has 
scalar flag curvature. We have also seen (§3.9B) examples of this vintage in 
higher dimensions. In those examples, the dependence of ..\ on the flagpole 
y is explicit and nonconstant. 

To effect a less cluttered presentation below, let us introduce two abbre­
viations: 

(3.10.1) 
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the so-called angular metric, and 

(3.10.2) 

Proposition 3.10.1. Let (M, F) be a Finsler manifold and let R be the 
hh-curvature tensor of the Chern connection. The following four statements 
are equivalent: 

(a) ~i = A(x,y) hii ; that is, (M, F) has scalar Bag curvature A(X, y). 

(b) Rik = A(x,y) hik . 

(c) ~kl = A(x,y) hikl + ~ (hik A;l - hi! A;k) . 

(d) The full curvature tensor Rjikl has the formula 

A(x,y) (gik gjl - gil gjk ) 

- (Aijllk - Aijkll + A isk ASjl A isl ASjk ) 

1 + A;j hikl + 3" [A;k (ii hjl + hijl) - A;l (ii hjk + hijk) 1 
1 

+ 3" (hik A;l;j - hi! A;k;j ) . 

And, given any of them, we have 

1 
(3.10.3) ..4.ijk + A(x,y) A ijk + 3" (A;i hjk + A;j hki + A;k hij ) 0 , 

where 

(3.10.4) 

Remark: In case the above A has no dependence on either x or y, the 
Finsler manifold in question is said to have constant flag curvature. We 
study such manifolds in Chapter 12. 

Proof. 

• The equivalence between (a) and (b) is a consequence of the polar­
ization identity (3.9.6). 

• Given the ~k in (b), we can reconstruct R\l using the formula in 
Exercise 3.5.7, and then lower the index i to get (c). Conversely, (c) 
and the fact that A;s is = 0 (see Exercise 3.10.2) gives (b). 

• Given (c), we use (3.5.6) to reconstruct Rjikl, thereby obtaining 
(d). The converse follows readily with the help of A;s is = 0 and 
A;r;s is = 0 (Exercise 3.10.2 again). 

As for (3.10.3), first compute Rjikl + Rijkl two ways, once using (3.4.4) 
and the other using formula (d) here. Then we compare the two answers 
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to deduce that 

Aijllk 

1 
+ 2' (A;i hjkl + A;j h ik1 ) 

1 + (3 [( hik ).;l;j + hjk A;l;i) - (hi! A;k;j + hjl ).;k;i)] . 

Finally, we contract this with pi to get (3.10.3). 0 

For n-dimensional Finsler manifolds of scalar flag curvature: 

* Let us contract the second Bianchi identity (3.5.3) with pj and pt, 
and lower the index i. We get 

* Into this we substitute formulas (b), (c) of the above proposition, 
and then use the fact that both h ij and h ijk have zero horizontal 
covariant derivatives (see Exercise 3.10.3). 

* Contract with gik and relabel. The result is: 

(3.10.5) 0, 

where 

(3.10.6) 

Within the class of Finsler manifolds whose flag curvature has no depen­
dence on the transverse edge, we now consider those for which there is no 
dependence on the flagpole y either. In that case, the flag curvature is sim­
ply a function ).(x) of x only. All Riemannian surfaces have this property, 
where ).(x) is simply the Gaussian curvature function. It turns out that the 
situation in higher dimensions is constrained by a good amount of rigidity, 
as described in the following Schur's lemma. Its proof is adapted from 
the one given in Matsumoto [M2]. We have also been informed by Lilia del 
Riego that this was proved in her thesis [delR]. 

Lemma 3.10.2. Suppose: 

• (M, F) is a connected Finsler manifold. 

• Its dimension n is at least 3. 

• Its flag curvature depends neither on the transverse edge nor on the 
flagpole; in other words, it is a function ). of x only. 

Then ). must in fact be constant. 
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Remarks: 

* In dimension two, the Gaussian curvature of every Riemannian met­
ric is a function K (x) of the position x only. And there are many 
Riemannian metrics for which this function is nonconstant. Thus, 
the second hypothesis in Schur's lemma is sharp. 

* In §3.9B, we have encountered a particular family of examples of 
Numata type, for all dimensions. In those examples, the flag cur­
vatures have no dependence on the transverse edges, but they do 
manifest a variable dependence on the flagpole. For this reason, the 
third hypothesis in Schur's lemma cannot be weakened. 

Proof. The key hypotheses here are A;i = 0 (namely, A has no dependence 
on y) and n ~ 3. They reduce (3.10.5) to 

(**) Ali = A li , 

which implies that 

Ali;j = A;j li + A hij . 

Since A is a scalar, and is independent of y, we see from (2.5.3), (2.5.5) that 

DA 8A 
Ali = DXi 8xi ' 

which is yet another function of x alone. Thus 

8 
Ali;j := F 8yj Ali = o. 

So the above becomes 

(***) 

Since M is higher than I-dimensional, in each fiber of 7r"TM there is at 
least one nonzero U which is g-orthogonal to i. Contracting (***) with Ui 

gives A Uj = O. That is, A U = O. Hence 

A = 0, 

which by (**) gives Ali = O. Since A = A(X), the vanishing of its horizontal 
derivatives is synonymous with 

8A 
8xi = O. 

So A is constant on the connected M. 0 

Exercises 

Exercise 3.10.1: Explain why every Finsler surface has scalar flag curva­
ture. 
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Exercise 3.10.2: Suppose (M, F) has scalar flag curvature A(X, y). 

(a) Check that \s £8 = O. 

(b) Apply vertical covariant differentiation to the above statement; then 
use a Ricci identity (§3.6). Show that A;r;s £$ = O. Explain why this 
conclusion can also be obtained through a much simpler way. 

Exercise 3.10.3: Verify the following statements: 

( a) his £s = 0 . 

(b) hij$ £s = h ij 

(c) gij hik = 8j
k - £j £k . 

(d) g ij h ij =n-1. 

(e) gij hijk = (n - 1) £k . 

(f) h ijlk = 0 . 

(g) hijkll = 0 . 

Exercise 3.10.4: We merely outlined the proof of Proposition 3.10.1. Give 
the details of the omitted computations. 

Exercise 3.10.5: For Finsler manifolds of scalar flag curvature, derive the 
important equation (3.10.5) by following the given guidelines. 

Exercise 3.10.6: In the proof of Lemma 3.10.2, we saw that if A depends 
only on x, then Ali;j = O. Now suppose A is a function of y only, does the 
quantity \jli have to vanish? 

Exercise 3.10.7: 

(a) Show that the concept of flag curvature does not depend on whether 
one is using the Berwald or the Chern connection. (Nor does it de­
pend on the Cartan and Hashiguchi connections mentioned in §2.4. 
Furthermore, it can be obtained through a Jacobi endomorphism 
in Foulon's [Fou] dynamical systems approach to Finsler geometry.) 

(b) In part (a) of Exercise 3.8.4, we encountered the hh-curvature bR 

of the Berwald connection. With the help of part (d) in Proposi­
tion 3.10.1, prove that whenever a Finsler space has constant flag 
curvature A, the Berwald curvature bR must have the form 

bRjikl = A (gik gjl - gil gjk) . 

For this reason, the Berwald connection is particularly suited for the study 
of Finsler spaces of constant flag curvature. 

Exercise 3.10.8: 

(a) Show that for a Riemannian manifold, the Berwald and Chern con­
nections both reduce to the Christoffel symbols of the Riemannian 
metric. 
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(b) A Riemannian manifold is said to have constant sectional curvature 
A if, as a Finsler space, it has constant flag curvature A. Explain 
why, in that case, the curvature tensor Rjikl (see the end of §3.3) of 
the Christoffel symbols -yijk has the form 

Rjikl = A (gik gjl - gil gjk) . 

Exercise 3.10.9: Here is an interesting result given in [AIM]. 

Suppose M is connected, F is of scalar curvature A(X, y), and 
Ali = O. Then A must in fact be constant. 

We may assume that A is not identically zero; otherwise there is nothing 
to prove. Note also that there is no restriction on the dimension of M. 

(a) Use the Ricci identity (3.6.1) to check that A;s RSij = O. 

(b) Prove, from part (a) here and part (c) of Proposition 3.10.1, that 

A;i (~A;j + A fj) - A;j (~A;i + A fi) = O. 

(c) Part (b) implies that two particular sections of '!r"T" M are linearly 
dependent at every point (x, y). Explain why there is a scalar field 
~ such that A;i = ~ (!A;i + Afd, and why contracting with fi gives 
~ A = o. 

(d) On the interior of the support of A, use part (c) to show that A 
has no dependence on y. Then use Ali = 0 to show that it has no 
dependence on x either. Finally, invoke the continuity of A. 
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* References for Chapter 4 

4.0 Prologue 

So far, our treatment has emphasized the use of natural coordinates. At 
the beginning of Chapter 2, we stated our policy that in important com­
putations, we only use objects which are invariant under positive rescaling 
in y. Consequently, our treatment using natural coordinates on T M " 0 
can be regarded as occurring on the (projective) sphere bundle SM, in the 
context of homogeneous coordinates. 

Nevertheless, it is also useful to learn to compute with orthonormal 
frames on SM. We would like to illustrate how that can be carried out 
for Finsler surfaces. In this relatively simple setting, all the important ge­
ometrical invariants manifest themselves as two pseudo-scalars and one 
scalar rather than tensors. 

Dealing exclusively with surfaces and not higher-dimensional manifolds 
has freed us from the sometimes cumbersome tensor calculus. Recall the 
orthonormal frame {w a , wn +a } for T*(TM" 0). We encountered that in 
§2.3. For T*(8M), we delete the last member wn+n := d(1ogF). In the 
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case where M is a surface, its sphere bundle S M is 3-dimensional, and the 
frame in question consists simply of three I-forms WI, w2 , w3 . We explicitly 
write down their formulas in a later section. 

The geometry of Finsler surfaces is completely controlled by two pseudo­
scalars (whose sign changes if we reverse the orientation of a certain basis) 
and one scalar, all living on SM. Specifically: 

• The Cartan (or Main) "scalar" I. This is the only a priori nonvan­
ishing component of the Cart an tensor, when the latter is expressed 
in terms of a special orthonormal basis. It is a pseudo-scalar. 

• The Landsberg "scalar" J. This is also a pseudo-scalar. We derive 
a Bianchi identity which says that J is simply the directional deriv­
ative of I along a distinguished horizontal direction on SM. 

• The Gaussian curvature K. Like I and J, this function a priori lives 
on SM. But unlike those two, K is a true scalar. It has a familiar 
analogue that goes by the same name in elementary differential ge­
ometry ([doCl], [On]). The main difference between the two is that 
the K here does not live on M in general. 

In order to simplify our prose, let us refer to all three as scalars. These 
appear prominently in the structural equations 

dw l -I wI Aw3 + w2 Aw3 

dw2 _WI Aw3 

dw3 K WI A w2 - J WI A w3 • 

We carry out a systematic review of these structural equations, together 
with their associated Bianchi identities and interchange formulas. The van­
ishing of I, J, K, respectively, characterizes Riemannian surfaces, Lands­
berg surfaces, and flat surfaces (in the Finslerian sense). 

4.1 Minkowski Planes and a Useful Basis 

A Minkowski plane is the number space ~2 equipped with a Minkowski 
norm F (§1.2). The strong convexity assumption, which says that 

gij := (~F2) 2 .. 
y'yJ 

is positive-definite at all 0 =I- y E ]R2, is included in our definition of 
Minkowski norms. As a result, the indicatrix 

(4.1.1 ) S := {y E ]R2: F(y) = 1 } 

is a closed, strictly convex, smooth curve that surrounds but never passes 
through the origin. Here, yl, y2 are the canonical coordinates on ]R2. See 
Figure 4.1. 
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The entire plot 
occurs in the tangent plane 

Tx M 

{ 1 a + 2 a 12m} Yaxr y7Jx2:y,y EJL'Io. 

Figure 4.1 

3 

-3 

yl = P cos¢ 
y2=psin¢ 

p=3+cos¢ 

A typical indicatrix: the convex lirna<;on. It is strongly convex, 
hence strictly convex. See §4.1B and Exercises 4.1.4, 1.2.6, 1.2.7. 

The Minkowskian norm F induces a Riemannian metric 9 on the punc­
tured plane ]R2 ,,0 by 

(4.1.2) 9 := 9ij dyi ® dyi . 

• One can check that the Gaussian curvature of 9 vanishes identically . 

• With respect to g, the vector F~~) a~. is t~e outwar? pointing unit 
normal to the level curves of F, as was pomted out m §1.4. 

4.1 A. Rund's Differential Equation and Its Consequence 

Let h denote the induced Riemannian metric of 9 on the indicatrix S. 
Let y(t) be a unit speed (with respect to h) parametrization of S. We have 

(4.1.3) 

where 

( 4.1.4) 

(4.1.5) 

9ij (y) yi yi F 2 (y) 1 , 

dyi dyi 
9ij(y) dt dt = 1. 

The Cartan scalar I : S ---+ ]R is provisionally defined here by 

(4.1.6) 
dyi dyi dyk 

I(y) := A ijk (y) dt dt dt . 

The definition is extended to all of ]R2 " 0 by requiring that I be con­
stant along each ray that emanates from the origin of]R2. Notice that F is 
Euclidean if and only if I = o. 
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Proposition 4.1.1 (Rund) [R]. Every unit speed parametrization y(t) 
of the indicatrix (8, h) must satisfy the following ODE: 

(4. 1. 7a) ii+ 1 y+y=ol· 

That is, 

(4.1.7b) for i = 1,2. 

Here, the abbreviations y = !fit and ii = ~ are used in order to avoid 
clutter. 

Remark: The quantity ~ is totally symmetric on all three indices. Recall 
from (1.4.5) that as a consequence of Euler's theorem, one has 

yi :~it = o. 

We use this basic fact without explicit mention. 

Proof. Differentiating (4.1.4) once with respect to t yields 

(4.1.8) 9ij(y) i/ yi = 0, 

which says that the position vector y and the velocity vector yare g­
orthogonal. Note that in (4.1.4), differentiating 9ij produces the term 

[ ~ p2] il yi yi = [~p2 ] yi yk yi . 
2 yiyjyk 2 ykyiyj 

This vanishes by Euler's theorem and the fact that [~P2]ykyi is homoge­
neous of degree zero. 

Next, differentiation of (4.1.8), followed by the unit speed condition 
[namely (4.1.5)], gives 

(4.1.9) 9ij (y) iii yi = -1. 

Likewise, differentiating (4.1.5) and using the definition (4.1.6) of 1 yields 

(4.1.10) 9ij(y) iii yj = -1. 

To make sure there is no misunderstanding: the right-hand side of (4.1.9) 
is minus one, whereas that of (4.1.10) is the negative ofthe Cartan scalar. 

Let us use the above to resolve the acceleration ii into two g-orthogonal 
components: 

ii=ay+fJY· 

* To determine a, we take the 9 inner product of this equation with 
y. With the help of (4.1.9), (4.1.4), and (4.1.8), we get a = -1. 

* Similarly, taking the 9 inner product with y and using (4.1.10), 
(4.1.5) yields fJ = -1. 
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Thus ii = (-1) y + (-I) iJ , which is the desired (4.1.7). 0 

The following corollary invokes the concept of the Riemannian arc 
length L of the indicatrix S. Recall that S is a submanifold of the punctured 
Riemannian manifold (]R2 , 0, 9 ), and has inherited a Riemannian metric 
h from the simple restriction of g. The said length of the simple closed 
curve S is measured with respect to this h. As mentioned in (1.4.8), an 
element of arc along S has length 

(4.1.11) 

Here, .j§:= Jdet(gij) and we have left the factor of F in the denominator 
for conceptual purpose only. Also, along S there is no distinction between 
the above ds and the form 

dO := 'f! (yl dy2 - y2 dyl) . 

Historically, the parameter 0 is called the Landsberg angle. 
Formula (4.1.11) is valid as long as the parametrization (4.1.3) traces S 

out in a direction deemed positive by ds. For a unit speed parametrization, 
(4.1.11) reduces simply to ds = dt because, in that case, we are supposed 
to have ~~ = 1. Anyway, the Riemannian arc length of the indicatrix is 

(4.1.12) L := is ds , 

and it is typically not equal to 27f. See §4.5. 

* In [BSJ, a 1-parameter family of absolutely homogeneous Minkowski 
norms was considered. The Riemannian arc length of the corre­
sponding indicatrices was found to decrease from 27f down to about 
5.4414. 

* In [BL1J, a 1-parameter family of positively homogeneous Minkowski 
norms was considered. Those were not absolutely homogeneous. In­
terestingly, the Riemannian arc length of the corresponding indica­
trices was found to increase from 27f to 00. 

See also the paper [M3] by Matsumoto. 

Corollary 4.1.2. Let F be a Minkowski norm on ]R2. (It is smooth and 
strongly convex on ]R2 ,0.) Then the average value of the Gartan scalar, over 
the indicatrix S, is zero. In particular, for any unit speed parametrization 
ofS, we have 

(4.1.13) I 1" 1(') cIt ~ 0 I, 
where I(t) := I[y(t)] and L is the length of (S, h). 
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Proof. As before, let y(t) = (yl(t), y2(t)), 0 :s:;; t :s:;; L be a unit speed 
parametrization of S. Since the indicatrix is a closed curve in ]R2 "' 0 , the 
functions yi(t) are periodic with period L. 

In components, (4.1.7) reads jji + Iii + yi = O. Using this, one checks 
that the L-periodic quantity 

X := yl iJ2 _ y2 iJl 

satisfies the ODE 

x + IX = O. 

Here, J(t) is continuous because F is (by hypothesis) smooth (hence at 
least C3 ) away from the origin. Thus 

X(t) = X(O) e [f~ J(T)dT] . 

Since our parametrization has unit speed, (4.1.11) tells us that 

v: (yl iJ2 - y2 il) = 1. 

In particular, X(t) is nowhere zero. Therefore the condition X(L) = X(O) 
implies (4.1.13). 0 

4.1 B. A Criterion for Checking Strong Convexity 

In the previous subsection, we have seen the efficacy of the basis {y, iJ}. 
Here, we further explore its versatility. We use it to help us derive an 
elegant criterion for checking the strong convexity, or the lack of such, of 
any given candidate F. 

So, let us be given a nonconstant F, defined on JR.2 • The associated in­
dicatrix S is the level curve on which F has constant value 1. We begin by 
parametrizing the indicatrix S as 

Here: 

• The parametrization does not have to have unit speed. 

• Also, it does not have to be counterclockwise. 

Since y(t) lies on the indicatrix, we have F(y) = 1. Equivalently, 

(*) 

Differentiating this with respect to t gives (4.1.8), which we reproduce here 
for convenience: 

(**) 9ij (y) iJi yi = O. 

As explained before, the term containing a derivative on 9ij is absent be­
cause of Euler's theorem. Yet another differentiation gives the analogue 
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of (4.1.9) for parametrizations that are not necessarily of unit speed. The 
result reads: 

(4.1.14) gij (y) ii yi = - gij (y) i/ iI . 
Again, the derivative on gij does not contribute on account of Euler's the­
orem. 

Let us turn to the main issue, which is the strong convexity, or the lack of 
such, of F. Being strongly convex means that at any y -# 0 (not necessarily 
on the indicatrix), we must have gij (y) wiwj > 0 whenever w is nonzero. 
Keep in mind that w is a tangent vector on the linear space ]R2, and that 
gij (y) is invariant under positive rescaling in y. A moment's thought then 
convinces us that nothing is missed by checking strong convexity only at 
points y which lie on the indicatrix. 

With this realization, we can make good use of the basis {y,y}, just 
as we did in the proof of Proposition 4.1.1. In view of (**), this basis is 
g-orthogonal. Let us express w as a linear combination of y and y, 

w=OI.y+{3Y· 

Using this and (*), (**), (4.1.14), we get 
i· 2 2 ··i· (4.1.15) gij (y) w W = 01. - (3 gij (y) y if . 

By applying Euler's theorem to the quantity [4F2]yi, which is homoge­
neous of degree 1, we have 

gij(y) yi = [~F2 Li 
Thus, at y on the indicatrix, 

gij (y) ii yi = Fyi ii = Fy' i/ + Fy2 i? . 
Now, 

y1 Fy' + y2 Fy2 = 1 

because F is homogeneous of degree one, and F(y) = 1. Also, one gets 

·1 F ·2 F 0 Y yl + Y y2 = 

by applying the chain rule to the statement F(y1, y2) = 1. Solving these 
two equations for Fy" Fy2 gives 

·2 -y 
Pl = 

Y y1 y2 _ y1 y2 ' 

These then lead to 

(4.1.16) - 9ij (y) ii yi = 
iP y2 - y1 i? 
y1 y2 _ y1 y2 

Note that according to (4.1.14), the right-hand side of (4.1.16) gives 
an explicit formula for the gij (y) length-squared of the velocity y of our 
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parametrization of S. We show below that the positive-definiteness of gij (y) 

is equivalent to iJ having a positive length-squared. In other words, it is 
neither null nor time-like, in the language of Lorentzian geometry. 

Substituting (4.1.16) into (4.1.15), we see that at any YES, 

(4.1.17) 
.. 2 2 

gij (y) W' w J = a + fJ 
il iJ2 - iJl iF 
iJl y2 _ yl iJ2 

where w = ay + fJiJ. It is now immediate that the following two statements 
are equivalent at any point y on the indicatrix of F: 

* gij (y) wiwj > 0 for every nonzero w. 

* iiI y2 _ ill jj2 _ .. • i . j 
iJ" y2 _ yl iP - g'J (y) Y Y is positive at y. 

In particular, given any parametrization (yl(t), y2(t)) of the indicatrix: 
(4.1.18) 

F is strongly convex {:} 
il iJ2 - iJl iF 
iJl y2 _ yl iJ2 > 0 everywhere on S 

This is the criterion we seek. We emphasize that it is applicable to an arbi­
trary parametrization of the indicatrix S. See Exercise 4.1.4 for a concrete 
illustration. 

Exercises 

Exercise 4.1.1: In (4.1.2), we defined a Riemannian metric 9 on the punc­
tured plane ]R2 " O. It induces the metric h on the indicatrix S. 

(a) Show that the Gaussian curvature of 9 is identically zero. 

(b) Suppose]R2" 0 is identified with (0,00) x S by 

y r---; (F(Y), F~Y)) . 

Verify that 9 admits the block decomposition 

9 = dr 0 dr + r2 h . 

Exercise 4.1.2: Suppose the indicatrix is not parametrized to have speed 
(relative to h) 1 but some nowhere zero function v = v(t). Show that the 
analogue of (4.1. 7) is 

ii + (I v - ~) iJ + v2 Y = O. 

Exercise 4.1.3: Suppose the Minkowski norm is given by 

F( yl, y2) := J ( yl)2 + (y2)2 + B yl , 
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where 0 ::;; B < 1 is a constant parameter. Introduce polar coordinates on 
~2,sothatyl=rcos¢ and y2=rsin¢. 

(a) Check that the polar equation of the indicatrix Sis r = 1+B1cos</> 

(b) This indicatrix is an ellipse of eccentricity B. Identify its center, the 
two foci, as well as the semimajor and semiminor axes. 

(c) Check that the differential d() of the Landsberg angle is given by 

d() = .)1+ ~ cos </> d¢. 

(d) With the substitution ¢ = 2J1" prove that the Riemannian arc length 
of S is given by 

4 
L = 

J1+B 

where k := J l~B· Note that the above involves a complete elliptic 

integral of the first kind. 

(e) Get numerical answers of L for the following values of the parameter 
B: 0.0, 0.3, 0.9, 0.999, 0.999999. As B ---+ 1-, what becomes of the 
value of L ? 

Exercise 4.1.4: This exercise uses criterion (4.1.18) to verify the strong 
convexity of the Finsler function, whose indicatrix is the convex lima~on. 
In polar coordinates for ~2, the convex lima~on is given by 

p = 3 + cos ¢ , 0 ::;; ¢ ::;; 21r . 

The explicit formula for F has been recovered using Okubo's technique; 
see Exercise 1.2.8. The power of criterion (4.1.18), however, is that what F 
explicitly looks like is totally irrelevant. All we need is some parametrization 
of the indicatrix. 

(a) Check that a parametrization at hand is 

(b) Show that 

i/iP-i/iF 
il y2 - yl i;2 

( [3 + cos t 1 cos t, [3 + cos t 1 sin t ) 

~ (6 cos t + cos 2t + 1 , 6 sin t + sin 2t ) 

_ 2 ( 11 + 9 cost ) 
- 19 + 12 cos t + cos 2t . 

(c) Explain why the above ratio is positive everywhere on the convex 
lima~on. 
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4.2 The Equivalence Problem for Minkowski Planes 

Consider two Minkowskian planes (]R.2, F) and (]R.2, F), with their corre­
sponding indicatrices S, S. Let yet) and yet) be unit speed parametrizations 
of the indicatrices Sand S, respectively. As in (4.1.6), we have the Cartan 
scalars J and 1. When restricted to the respective indicatrices, they give 
rise to functions J(t) and let) of the parameter t. The following result gives 
a criterion for the global equivalence between two Minkowski planes. 

Proposition 4.2.1. Suppose the unit speed parametrizations yet), yet) 
trace out the indica trices S, S in a positive manner with respect to 
the canonical orientation of]R.2. Then the following two statements are 
equivalent: 

(a) 

(b) 

• The two Minkowski planes are equivalent; that is, there exists a 
linear orientation-preserving map L : ]R.2 ~ ]R.2 such that 

FoL = F. 

• The Cartan scalars restricted to the corresponding indica trices sat­
isfy 

J(t) for some to' 

Proof. 

That (a) ::::} (b) 
Suppose the two Minkowski planes are equivalent in the sense (a). Then 

L maps S into S and therefore L[ y(t)] parametrizes the indicatrix S. Next, 
at all v := (yl,y2) E ]R.2, differentiating F2[L(v)] = F2(v) twice with 
respect to the natural coordinates yi gives 

{J2 F2 {)La aLb a2 F2 
--...,.. ----
ayaayb ayi ayj 

where we have dropped the term proportional to a~~~:j because the com­
ponents of L are (by hypothesis) linear functions of the yi. The above 
equation is equivalent to 

aLa aLb 
(4.2.1) gab [L(v)] 8yi ayj = gij (v) . 

We deduce from what has been said that L[ y(t)] is, just like yet), a unit 
speed parametrization of the indicatrix S. Moreover, both of them have the 
same orientation. Hence 

( 4.2.2) 

( 4.2.3) 

L[y(t)] 

L*[y(t) ] 

y( t + to) for some to, and 

yet + to) . 
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Differentiating (4.2.1) and using again the linearity of L, we obtain 

- au aLb au 
Aabc [L(v)] ~ J'l"'" !:I k = A ijk (v) . uy' uyJ uy 

Contracting both sides with iJ ® iJ ® iJ and using (4.2.2), (4.2.3) on the left, 
we get 

l(t + to) = J(t) , 

which is (b). 

That (b) =} (a) : 
Suppose (b) holds. Recall from (4.1.8) that the nonzero vectors y and 

iJ are 9 orthogonal at all times. In particular, they form a basis for ~2 at 
time t = O. We construct a linear map L : ~2 ~ ~2 by stipulating that 

(4.2.4) L[ y(O)] := y(to ) , 

where to is the "phase" promised by statement (b). Since the curves yet), 
yet) are both traced out in a positive manner, the canonical orientations 
of the domain ~2 and the range ~2 coincide, respectively, with those given 
by the ordered bases { y , iJ } and { fj, y}. Thus L is orientation preserving 
by construction. 

By Proposition 4.1.1, yet) satisfies the ODE jj + J iJ + y = o. Apply L to 
both sides of this equation and use the following: 

* L(O) = 0 

* L[iJ] = 1t(Loy) 

* L[jj] = it: (Loy) 

* l(t + to) = J(t) for some to . 

Here, the first three are due to the linearity of L, while the last one is our 
hypothesis (b). Consequently, Loy satisfies 

cP - d 
dt2 (L 0 y)(t) + J(t + to) dt (L 0 y)(t) + (L 0 y)(t) = 0, 

with initial data (4.2.4). But Proposition 4.1.1 tells us that this initial value 
problem already has a.' solution, namely, the map t f-+ y(t + to). Thus by 
uniqueness we must have 

L[y(t)] = fj(t+to). 

We have just shown that our linear L maps the indicatrix S into the 
indicatrix S. In particular, F[ L(y)] = F(y) for all yet) E S. Multiplying this 
by positive .x, and using the fact that F, F are both positively homogeneous 
of degree one, we conclude that 

F[L(v)] = F(v) 
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for all nonzero v E ~2. Of course such statement also holds at v = o. We 
have therefore obtained (a). D 

4.3 The Berwald Frame and Our Geometrical Setup on 8M 

Having studied Minlrowski planes, we turn our attention to orientable 
Finsler surfaces. A Finsler structure on a surface M is a function F : 
T M -+ [0, (0) that is Coo on T M '- 0 and whose restriction to each tangent 
plane TxM is a Minkowskian norm. 

Let 8M be the quotient of TM '- 0 under the following equivalence 
relation: (x, y) '" (x, y) if and only if y, yare positive multiples of each 
other. In other words, 8M is the bundle of all directions or rays, and is 
called the (projective) sphere bundle. A moment's thought shows that it 
is diffeomorphic to the indicatrix bundle ((x,y) E TM : F(x,y) = I}, 
which is a subbundle of T M '- 0 . They are in fact isometric to each other; 
see [BSj. So, no real harm is done even if one inadvertently confuses the 
two. 

Local coordinates Xl, x2 on M induce global coordinates y1, y2 on each 
fiber TxM, through the expansion y = yi a~' . Thus (Xi; yi) is a coordinate 
system on 8M, with the yi regarded as homogeneous coordinates (in the 
projective space sense). 

• The base manifold here is the sphere bundle 8M . 

• Using the canonical projection p : 8M -+ M, we pull the tangent 
bundle T M back so that it sits over 8M. This pulled-back bundle, 
denoted p*TM, is a vector bundle (of fiber dimension 2) over the 
3-manifold 8M. 

The vector bundle p*T M has a global section f.:= F~~) a~' . It also has 
a natural Riemannian metric 

9 := gij d,xi ® dxj . 

By Euler's theorem, e has norm 1. One can complete f. into a positively 
oriented g-orthonormal frame {e1,e2} for p*TM, with e2:= f.. Explicitly, 

(4.3.1) 
1 a 2 a 

- m ax! + m {)x2 

(4.3.2) 01 ~ 2 a I {, ax1 + f. ax2 • 

Here, 
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and, as usual, Fyi abbreviates the partial derivative g:, . It is a peculiarity 
of the 2-dimensional case that the Berwald frame {el, e2} is a globally 
defined g-orthonormal frame field for p*TM. Our mi in (4.3.1) are opposite 
in sign to those in [AIM] and [M2]. However, they list our e2 as their first 
vector in the basis. Consequently, our Berwald frame and theirs have the 
same orientation. 

The natural dual of f is the Hilbert form w := Fyi dXi, which is a global 
section of p*T* M. The coframe corresponding to {el, e2} is {wI, w2}, where 

(4.3.3) WI = YJ- (y2 dx l - yl dx2) =: ml dxl + m2 dx2 I, 
( 4.3.4) 

Recall that the formal Christoffel symbols of the fundamental tensor are 

I ._! Ii (89ij _ 8gjk + 89ki ) 
'Y jk .- 2 9 8xk 8xi 8xj · 

Let us also recall the nonlinear connection 

and 

N i . 
_1 

F 
i nk Ai k nr ns .- 'Y jk {. - jk 'Y rs {. {. , 

{8~i' F a~i } is a local field of bases for T(T M " 0); it is naturally dual to 

{dXi §Ji!..} where 
, F ' 

8yi := dyi + N is dxs . 

The sphere bundle SM is a 3-dimensional Riemannian manifold equipped 
with the Sasaki (type) metric 

(4.3.5) 

where 

(4.3.6) w3 := YJ- (y2 i:- - yl 1:-) = ml i:- + m2 1:- I· 
Here, we are exercising a slight abuse of notation by regarding WI, w2 as 
sections of p*T* M as well as I-forms on SM. 

The collection {wI,w2 ,w3 } is a globally defined orthonormal basis for 
T*(SM). Its natural dual is {el,e2,e3}, where 

(4.3.7) 
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(4.3.8) 

(4.3.9) e3 Fy2 F~ _ Fy' F~ I F a 2 F a 
yg ayl yg ay2 = m ayl + m ay2 

These three vector fields on 8M form a global orthonormal frame for 
T(8M). The first two are horizontal while the third one is vertical . 

• The objects wI, w2, w3 and el, e2, e3 are defined in terms of objects 
that live on the slit tangent bundle T M ,,0 . But the definitions are 
invariant under positive rescaling in y. Therefore they give bonafide 
objects on the sphere bundle 8M . 

• Conversely, any object on 8M can be viewed as objects on TM"O. 
They are then necessarily invariant under the rescaling y f-+ AY, 
with A > 0. 

Exercise 

Exercise 4.3.1: Show that {w l ,w2 ,W3 } and {el,e2,e3} consist of well 
defined objects on 8M, and that they are indeed naturally dual as claimed. 

Exercise 4.3.2: Use Exercise 2.3.5 to review why (dF)(ed = ° = (dF)(e2). 

(a) Check that (dF)( e3) = 0. 

(b) Explain why e3 must be tangent to each indicatrix. 

(c) In (4.1.11), we used the arc length form J-l := (yg/F)(yl dy2 -
y2 dyl) to obtain ds and its companion dB, where B is the Landsberg 
angle. Show that J-l( e3) = -1. This means that e3 points opposite 
to the direction which is deemed 'positive' by the arc length form. 

Exercise 4.3.3: Directly verify the following formulas. 

(a) mi = gij m j and fi = gij fj . 

(b) mimi = 1 = fifi . 

(c) mifi=O. 

(d) fifk +mimk = 8\. 

Exercise 4.3.4: 

(a) Let hij := gij - fi fj be the components of the angular metric h. 
Explain why g = WI Q9 WI + w2 Q9 w2 , h = WI Q9 WI. 

(b) How can one deduce that F Fyiyj = mi mj? 
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(c) Verify that 

gij 

det( gij ) 

i fJ + mi m j , 

(£1 m2 - £2 ml )2 . 

4.4 The Chern Connection and the Invariants I, J, K 

With respect to the special g-orthonormal basis {ea } for p* T M, the Cartan 
tensor takes the form 

We know that when A is contracted in any slot with the distinguished 
global section £, the answer is zero. Here, this means that the component 
Aabc vanishes whenever any of its three indices equals n, which is 2 in the 
case of surfaces. Thus the only a priori nonvanishing component of A is 
Alll . Let us call 

(4.4.1) 

the Cartan scalar. Here, el has the formula (4.3.1). 

• A provisional definition of I was given in (4.1.6). Although the two 
definitions are readily shown to be equivalent, the definition here is 
the preferred one. 

• The vanishing of I is equivalent to our Finsler structure being Rie­
mannian; that is, F(x,y) = y'gij(x)yiyj in some local coordinate 
system. 

• It was pointed out to us, in particular by Antonelli and Lackey, 
that I is not a true scalar. The reason is that if the orientation of 
the Berwald frame {el' e2} were reversed, our el would have to be 
replaced by -el. And (4.4.1) tells us that I would then undergo 
a sign change. Nevertheless, in order to simplify our prose, let us 
continue to call I a scalar. 

The Chern connection forms for the special g-orthonormal basis were 
considered in Exercise 2.4.5. In particular, the "almost" g-compatibility 
criterion (one of the structural equations) was re-expressed as 

Wab + Wba = - 2 Aabc wn +c . 

Now, our base manifold is the 3-dimensional sphere bundle 8M rather 
than the 4-dimensional T M " 0 . So conceptually we need to delete the 
form w4 := d(log F). Pragmatically, that term cannot contribute anyway 
because its coefficient -2Aab2 vanishes. No matter which viewpoint we 
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take, the above statement reduces to 

wab + Wba = - 2 Aabl w3 . 

We see immediately that: 

* Wu = -Iw3 • 

* 
* W22=O. 

Also, Exercise 2.4.7, which secretly invokes the Chern connection's torsion 
freeness, says that 

* 
where w3 is given by (4.3.6). Thus the Chern connection matrix has 
been completely determined, and it has the rather simple structure: 

(4.4.2a) 

Explicitly, 

(4.4.2b) WI2 = iff (yl ~ - y2 i:-) I, 
where oyi = dyi + N ij dxj. 

More information can be extracted from the torsion-freeness criterion 
among the structural equations. According to Exercise 2.4.5, it says that 

This and (4.4.2) then implies that 

(4.4.3) 

(4.4.4) 1 dw 2 = - WI /\ w3 I. 
Since {w\w2 ,w3} is an orthonormal basis for T*(SM), let us complete the 
above by taking the exterior differential of w3 . We get, a priori, 

dw3 = K wI /\ w2 - J WI /\ w3 + L w2 /\ w3 . 

Now, applying d to (4.4.4) gives 0 = Lwl /\ w2 /\ w3. Thus L vanishes and 

(4.4.5) 

The choice of a minus sign in front of J is strictly cultural. It is done here 
in order to agree with a convention in [Ch2]. 

The scalar K is called the Gaussian curvature of the Finsler surface. 
If our F happens to be Riemannian, K will reduce to the usual Gaussian 
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curvature (for example, that defined in [doC1]). We say a bit more about 
the Landsberg scalar J after we set up the following notation. 

Given any function f on 8M, we can expand its differential in terms of 
its directional derivatives along el, e2, e3, getting: 

(4.4.6) 

Let us now give the Bianchi identities that exhibit the relationships 
among the three scalars I, J, K. We remind ourselves that these are all 
functions on 8M, not M . 

• Differentiating (4.4.3) yields 

(4.4.7) 

Thus 

o - (dI) 1\ wI 1\ w 3 - J WI 1\ w 2 1\ w 3 

(I2 - J) WI 1\ w2 1\ w3 . 

J = 12 = ~ (yl :£ + y2 8) I. 
As observed at the beginning of this section, 1 changes sign under a 
change of orientation of p*TM. In view of (4.4.7), the same applies 
to J. Thus J is not a true scalar either, although we continue to 
refer to it as such . 

• Differentiating (4.4.5) gives 

So 

(4.4.8) o I. 

Exercises 

Exercise 4.4.1: Show that the two definitions of the Cartan scalar, given 
respectively in (4.1.6) and (4.4.1), are indeed equivalent. 

Exercise 4.4.2: Supply the details in the derivation of (4.4.5), (4.4.7), and 
(4.4.8). 

Exercise 4.4.3: Suppose 13 = 0 at all points of a particular indicatrix 

Sx := {y E TxM: F(x,y) = 1}. 

(a) Explain why 1 must then be constant on that Sx. 

(b) Use Corollary 4.1.2 to show that 1 must in fact vanish identically 
on that Sx. 
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Exercise 4.4.4: Show that exterior differentiation of (4.4.6) yields 

o ( - h2 + 121 + K h) Wi 1\ w2 

+ ( - h3 - I h - 12 + 131 - J /3 ) WI 1\ w3 

+ (h - 123 + /32 ) w2 1\ w3 . 

This then gives rise to the following Ricci identities: 

hl-h2 
132-123 
/31-h3 

-Kh, 
-h, 
Ih+h+Jh· 

In these identities, all indicated derivatives are directional derivatives. For 
example, h2 means first differentiate f along £'1 to get a new function h, 
whose directional derivative along £'2 is h2. See [BCS3] for applications. 

Exercise 4.4.5: The Cartan formula was given in (3.7.1). Using it and 
(4.4.5), show that 

Exercise 4.4.6: In our orthonormal coframe {WI, w2 , w3 }, the curvature 
2-forms are 

Dba = 1 Rae 1\ d + Rbaed we 1\ w n +d . 2 bed W W 

According to Exercise 3.3.1, Rb aed is related to the curvature R/ kl in the 
natural basis via 

R a _ j a k 1 Ri 
b cd - U b V i U e Ud j kl . 

The same relation holds between Pb aed and Pj \l . Now restrict to the case 
of Finsler surfaces. 

(a) With the help of Exercise 3.3.2, show that 

Dba = R ba12 WI /\ w 2 + Pb acl We /\ W3 . 

What happened to the factor of ~? 

(b) Using the symmetry (3.2.3) of P and the Bianchi identity (3.4.9), 
reduce the above further to 

(c) Check that in the surface case, 

Dba = dwba . 

In other words, the quadratic term wb e 1\ we a drops out. 
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Therefore: 

Exercise 4.4.7: All statements in this exercise are made with re­
spect to the orthonormal frame {ei,e2,e3} and its dual {wl,w2 ,w3 }. 

(a) Explain why, up to a sign, there are only two a priori nonvanishing 
components in Rbacd. They are RU12 and R 12i2. 

(b) Explain why, up to a sign, there are only two a priori nonvanishing 
components in Pbacl . They are P2Ui (which is -Aud and Puu. 
Hint: you will need to use (3.4.8) and Exercise 3.3.2. 

(c) Is AUi the only a priori nonzero component of A ? 

(d) Specialize the conclusion of Exercise 4.4.6 to chtJ2 i . By comparing 
with (4.4.5), show that 

K 

J 

R2ii2 = - R12i2 , 
1 ·1 . 

- P2 U = A U = AUi . 

(e) Specialize Exercise 4.4.6 to chtJ i i and apply exterior differentiation. 
Prove that 

Rll12 

PllU 

-I K, 

I J - h. 

Hence we have expressed all the components of Rand P in terms of I, J, 
K and a directional derivative (namely, that along ed of I. Also, let us 
not forget that, according to the Bianchi identity (4.4.7), J itself is equal 
to the directional derivative h. 
Exercise 4.4.8: Part (d) of Exercise 4.4.7 demonstrates that, with respect 
to the orthonormal frame {ei' e2, e3}, one has K = Rl12 . It can be checked 
that in this orthonormal frame, R 2ab2 is actually R ab , the predecessor of 
the flag curvature. In particular, K = R i i . Also, the same trend of thought 
gives R22 = 0 (and R12 = 0 = R2i). For the rest of this exercise, we 
turn our attention to the components Ri k in natural coordinates. 

(a) The Ricci scalar Ric is defined as the trace R\. With our automatic 
summation convention, there is an implied sum on the natural co­
ordinate index i. We first encountered Ric in Exercise 3.9.5, in the 
equivalent form gik R ik . Check that 

1 K = Ric = R\ + R22 I· 

(b) Show that Ri k yk = 0 and Ri k Yi = O. Here, Yi := gij yj. 
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(c) Where do the following five equations come from? 

R\ + R22 K (1) 

R\ yl + R12 y2 0 (2) 
R21 yl + R22 y2 0 (3) 

Rll Yl + R21 Y2 0 (4) 

R12 Yl + R22 Y2 o. (5) 

(d) Use (1) to express R\ in terms of R22' substitute that into (2), and 
pair the resulting equation with (5). This gives two equations for the 
two "unknowns" R12 and R22. Likewise, we can use (1) to express 
R22 in terms of R\, substitute that into (3), and pair the resulting 
equation with (4). That gives two equations for the two "unknowns" 
R\ and R21. Derive the following formulas for the components R\ 
in natural coordinates: 

(e) Using.c:= ~F2, re-express your conclusions in part (d) as 

Use Euler's theorem (Theorem 1.2.1) to verify that y1.cyl +y2.cy2 = 
F2, so that the diagonal entries are indeed consistent with part (a). 

Part (a), along with (d) or (e), offers five different formulas for machine 
computations of the Gaussian curvature K. For instance, 

F2 
1 .c R22 

y yl 
K= wherever yl i- 0 . 

The one in (a), namely, K = R\ + R22' may appear to be more efficient 
because it involves less symbolic division. Strangely, our actual experience 
indicates otherwise. In any case, these formulas are useful because each 
specific component of Ri k is fairly accessible through the following sequence 
of objects: 

• 9ij := .cyiyj. 

• "(ijk := ~ (9ij,x k - 9jk,xi + 9ki,x j ). 

• ",i ._ gis '" , jk .- ,sjk· 

• Gi := "(ijk yjyk. 

• N ij = ~ ( Gi )yj, derived in Exercise 2.3.3. 

R i - oj ( {j Ni j (j N\) d . d· E . 3 3 4 • k - {. {jxk ---p- - {jx j ---p- , enve In xerclse . . . 
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Here, 6!k := a~k - N i k a~i . See §12.5 for more on this matter. 

Exercise 4.4.9: (Suggested by Brad Lackey) 

(a) Show that (d logylg)(e3) = ~gij(dgij )(e3) = I. 

(b) Use this to give a new proof of the fact that I has zero average on 
each indicatrix (Corollary 4.1.2). 

4.5 The Riemannian Arc Length of the Indicatrix 

Let (]R2, F) be a Minkowski plane. We saw in §4.1 that F endows the 
punctured plane ]R2 " 0 with a natural Riemannian metric gij dyi is) dyj. 
We encountered the indicatrix 

S := {y E JR.2 : F(y) = 1 } 

in §4.1. It is a submanifold of the punctured plane. It was pointed out in 
§4.1 that the Riemannian arc length of the indicatrix S is 

(4.5.1) 

and the factor of F is left there for conceptual purpose. 
As we can see, the domain of integration depends on F. Out of curios­

ity, one might wonder whether the integration can be carried out on the 
standard unit circle 

I §l := {y E ]R2: (yl)2 + (y2)2 = 1} I 
instead, say at the expense of having to use a more complicated integrand. 
This can indeed be done and, happily, the new integrand is almost as simple 
as the original. Here are the steps involved: 

• Since F = 1 on S, we can divide the integrand in (4.5.1) by an 
additional factor of F without affecting the outcome. Thus 

(4.5.2) 1 L = Is ~ (yl dy2 - y2 dyl) I· 

• Note that the revised integrand 

f! (yl dy2 - y2 dyl ) 

is constant along any ray that emanates from the origin. In other 
words, it is invariant under positive rescaling in y. Given that, we 
might expect its integrals over Sand §l to give the same answer. 

• Our intuition is borne out by the fact that the new integrand is 
a closed I-form on ]R2 " 0, together with an application of Stokes' 
theorem. See Exercise 4.5.2 for more elaborations. 
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• This remarkable integrand is sometimes denoted by di). As we men­
tioned in §4.1, the quantity () is known as the Landsberg angle. 

Therefore 

(4.5.3) 

Each tangent plane TxM of a Finsler surface (M, F) is a Minkowski 
plane. The coordinates yl, y2 come from local coordinates xl, x 2, through 
the expansion y = yi a~i . At each x EM, we can calculate the Riemannian 
arc length L(x) of the indicatrix 

Sx:= {yETxM: F(x,y)=l}, 

using formula (4.5.3). A quick glance at (4.4.2b) (remember: 6yi = dyi + 
N ij dx j ) tells us that the integrand in (4.5.3) is none other than the dy 
terms of Wl2 • Thus, 

(4.5.4) L(x) = [ the pure dy part of W 12 

lSI 
If the Finsler surface (M, F) is Riemannian, L( x) has the constant value 

271" on M. In general, L(x) is nonconstant. With the help of an unexpected 
but useful technical formula (see Exercise 4.5.6), and the fact that dJ.v12 = 
0 12 (Exercise 4.4.6), we find that 

;~ = lsI the pure dy part of { 012( a~i ' . ) } . 

We simplify the above integrand to the pure dy part of P12c1 W C (a~i ) w3 , 

which can then be further reduced to 

- J WI ( a~i) 'f! (yl dy2 - y2 dyl ) . 

This is done with the help of parts (b) and (d) of Exercise 4.4.7. Hence 

(4.5.5) 

aL lsI J (i2 yg) 'f! (yl dy2 y2 dyl ) , - = - -
ax1 

aL lsI J (i1 yg) 'f! (yl dy2 y2 dy1 ) . - - + -
ax2 

-

On a locally Minkowskian surface, J vanishes because both Rand P 
do. (Again, see Exercise 4.4.7.) Thus on such a surface, the Riemannian 
arc length function L(x) is constant. However, unlike Riemannian surfaces, 
the value of that constant is typically not 271". We remarked about that 
right after (4.1.12), and referenced examples which are testimonial to this 
phenomenon. See Matsumoto [M2], [M3], and [BS], [BL1] for further dis­
cussions. 
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Exercises 

Exercise 4.5.1: Suppose the Minkowski norm F on JR.2 is derived from 
an inner product (, ), in the sense that F(y) = .JTii:ij). Prove that the 
Riemannian arc length L [defined in (4.5.1)] of the indicatrix must have 
the value 21T. 

Exercise 4.5.2: 

(a) Prove that 

I d y/g = ~ y/g gij dgij I· 

In particular a,;g = 1 Ing gij agij . 
'ayk 2 V:J ayk 

(b) Introduce the abbreviation Ak := gij A ijk . Check that 

oy'g _ y'g A 
oyk - F k· 

(c) Show that '/J (yl dy2 - y2 dyl) is a closed I-form on JR.2 ...... O. 

(d) Use Stokes' theorem to demonstrate that integrating this 1-form 
over Sand §l give the same answer. Explain why the same conclu­
sion holds if the standard unit circle §l is replaced by some simple 
closed curve with winding number I around the origin. 

Exercise 4.5.3: Suppose, instead of the indicatrix S, we want to compute 
the Riemannian arc length of an arbitrary level curve of F, say 

S(r):= {yEJR.2 : F(y)=r}. 

(a) By beginning with (1.4.8), show that the answer is 

r 1, 'f! (yl dy2 - y2 dyl ) . 

(b) Is the Riemannian arc length of S(r) simply r times that of the 
indicatrix? If so, is there a more elementary reason for that? 

Exercise 4.5.4: In this exercise, let us use the temporary abbreviations 

p := yl, q:= y2 . 

Parametrize the indicatrix S as t ~ (p(t) , q(t)). Abbreviate the compo­
nents of the velocity vector as p = i/ and q = fl. 

(a) Explain why pFp + q Fq = O. Then conclude that 

p = - 0: Fq , q = + 0: Fp 

for some function o:(t). 
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(b) With the help of det( Fyiyi ) = 0, show that 

det(gij) = F [Fpp (Fq? - 2Fpq Fp Fq + Fqq (Fp)2] . 

(c) With the help of Euler's theorem (§1.2) and (a), check that 

det(gij) (. .)2 _ det(gij) 2 _ d ( .. ) 2 
F4 P q - q p - F2 a - et g'J a . 

(d) By a direct computation and part (a), prove that 

9ij (y) ii ii = det(gij) a 2 . 

Thus 

~ (yl ii - y2 i/) = J gij (y) il yj I· 

This again explains why (4.5.3) is measuring the Riemannian arc length 
of the indicatrix. 

Exercise 4.5.5: The Finslerian arc length of the indicatrix S is given 
by the integral 

Is J gij (y) yi yj dt . 

Here, the indicatrix is treated as a parametric curve, and y is the instan­
taneous velocity vector. Note that unlike Exercise 4.5.4, the gij here is 
evaluated at y, not at y. 

(a) As a contrast, explain why its Riemannian arc length is given by 
Is vi gij (y) iJi iJj dt instead. 

(b) Show that the indicatrix's Finslerian arc length can be re-expressed 
as Is F(iJ) dt . 

(c) What condition must be imposed on the Minkowski norm F in order 
for the Riemannian and Finslerian arc lengths to coincide? 

Exercise 4.5.6: Suppose 

• w is any I-form on 8M, 

• br are functions of x only; that is, they live on M. 

Then: 

br aa r 1 the pure dy part of w 
x yES' 

= 1 the pure dy part of { (dw) ( br aa r' . )}. 
yES' X 

The proof amounts to a careful scrutiny of two cases: 
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(a) Let W be a I-form on 8M that is of the type Wi dyi. Check that both 
sides of our assertion reduce to fyESl br ~ dyi. 

(b) Next, let W be of the special type Wi dxi. The left-hand side of the 
asserted statement is of course zero. Show that its right-hand side 
equals 

1 _br 8wr dyS. 
YES1 8yS 

Verify that the integrand is an exact differential in the y variable. 
Then explain why the displayed integral vanishes. 

Exercise 4.5.7: Fill in the details in the derivation of (4.5.5). 

4.6. A Gauss-Bonnet Theorem for Landsberg Surfaces 

A Finsler surface (M, F) is said to be of Landsberg type if J = O. Both 
Riemannian and locally Minkowskian surfaces belong to this category. The 
reason is as follows. We observed at the end of §3.3 that Pj i kl = 0 (in 
natural coordinates) for these spaces. Since P is a tensor, we must have 
Pb aed = 0 (in any g-orthonormal basis) as well. By part (d) of Exercise 
4.4.7, J must therefore vanish. 

On a Landsberg surface, we see from (4.5.5) that the Riemannian arc 
lengths of its indicatrices are all equal to a constant value L. 

The theorem that we present below is the generalization of the classi­
cal Gauss-Bonnet theorem to Landsberg surfaces. Matsumoto informs 
us that a result of this vintage was first anticipated by Berwald [Berl]. 
However, our method of proof is through Chern's transgression, which is 
an intrinsic argument. See [Ch2] and [BC2]. It has the advantage that the 
Gauss-Bonnet theorem and the Poincare-Hopf index theorem are estab­
lished simultaneously. 

The proof of this Gauss-Bonnet theorem involves the concept of metric 
distance. We give a cursory definition of that here. A detailed study is 
undertaken in §6.2. Let u : [a, b] -+ M be a piecewise Coo curve with 
velocity ~~ = dXt: a~i E Ta(t)M. Its integral length L(u) is defined as 

L(u) := lb F( u, ~;) dt . 

For p, x E M, denote by r(p,x) the collection of all piecewise Coo curves 
u: [a, b]-+ M with c(a) = p and c(b) = x. Define the metric distance from 
ptoxby 

d(p, x):= inf L(u). 
r(p,x) 

Note that since F is typically positively homogeneous (of degree 1) but not 
absolutely homogeneous, d(P,x) is possibly not equal to d(x,p). 
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Theorem 4.6.1 (Gauss-Bonnet). Let (M, F) be a compact connected 
Landsberg surface without boundary. Denote the common value of the 
Riemannian arc lengths of all its indica trices by L. Then: 

~ 1M K ,f9 dx1 A dx2 = X(M) I· 

Here: 

• The product K.;g depends only on x, even though K and .;g indi­
vidually may have y dependences . 

• X(M) is the Euler characteristic of M. 

Proof. 
Fix any arbitrary continuous vector field V on M, and suppose its zeroes 

are all isolated. Since M is compact, the number of zeroes of such a V must 
be finite, possibly none. Denote each of its zeroes by a generic symbol 3. 

For each small f > 0, we remove the metric discs 

{x EM: d( 3 , x) < f} 

from M. The resulting compact connected manifold with boundary is de­
noted by ME. Its boundary consists of circles 

0";( -t), 0 ~ t ~ 271" 

of metric radius f. Each of them is centered at 3 and is parametrized in 
a clockwise manner (that's why we put that minus sign in front of t). 
Normalizing our vector field V produces a lift (Figure 4.2) of ME into SM: 

u 
X r----+ 

Vex) 
F( V(x» . 

For a Landsberg surface, (4.4.5) tells us that 

(4.6.1) 

where all quantities involved are globally defined on SM. Equivalently (see 
Exercise 4.6.1), 

(4.6.2) 

Exterior differentiation on SM (but treating yl, y2 as homogeneous coor­
dinates) then gives 

(4.6.3) 
a 
~ (K,f9) = o. 
uyt 

So the product K.;g depends only on x. In other words, the left-hand sides 
of (4.6.1) and (4.6.2) live on M whenever (M, F) is of Landsberg type. 
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jSx -------r --__ _ 

I U(M€) - - - - - - - I 
I ~ I 

I ~ ,U(x) I 
~---- , I 

Both "discs" have their interiors ~l~ed -1-
..... 

,------------------~ 

,IM€ ~ ~)/' 
I ~ I 
~-------------------

Figure 4.2 

U( M€) is a co dimension 1 submanifold of SM. The form W12 is 
globally defined on SM, but only makes sense locally on M. This 
is so because its definition requires an orthonormal frame, which 
may fail to be continuously extendible past certain points of M. 

Let us integrate (4.6.2) over the 2-dimensional submanifold U( M€) of 
SM, apply Stokes' theorem, and take the limit as EO --7 O. The result is: 

[M - K .,;g dx 1 /\ dx2 L lim 1 W 2 JA €-+O U[a1(-t)] 1 

In other words, 

(4.6.4) 

Here, the circles 

0"; ( t), 0 ~ t ~ 211" 

are manifestly traced out in a counterclockwise manner. Also, recall from 
(4.4.2b) that 

Ing ( 8y2 _ y2 8;1 ) , w12 = _V_Ii y1_ 
F F 

where 8yi = dyi + N ij dx j . 

Focus on a fixed zero 3: 

* Consider its corresponding integral 

lim 1 v0 (y1 8y2 _ y2 8F
y1 ) 

€-+O U[a~(t)] F F 
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on the right-hand side of (4.6.4). As we traverse the small circle u: (in a counterclockwise way), the dx terms in this integral keep 
track of our spatial displacements, while the terms (yl dy2 - y2 dyl) 
measure the net change in directions of the unit vector field U. 

* We are continually shrinking the metric radius of the circle centered 
at 3. So the dx terms in the above integrand do not contribute in 
the long run. Hence the integral is the same as 

Here, we have again used the fact that 6yi = dyi + N ij dx j • 

* As we walk once around an arbitrarily small counterclockwise circle u:, we note that the direction field U traces out the indicatrix S3 (in 
the tangent plane T3M) a number of times, counted algebraically. 
Namely, + 1 for each counterclockwise tracing of S3' and -1 for each 
clockwise tracing. This number 13 is called the index of V at the 
zero 3. See Figure 4.3. With this understanding, we realize that the 
above limit is equal to 

By (4.5.2), this is simply 13 L. 

Repeating the described procedure at every zero of V converts (4.6.4) to 

(4.6.5) 

Formula (4.6.5) is interesting: 

• It says that the sum of the indices of V gives a number which is 
independent of V. A creative choice of V reveals that this sum is 
simply the Euler characteristic of M. See Exercise 4.6.2. Thus, the 
Poincare-Hopf index theorem is a corollary of (4.6.5)! It says 
that on a compact manifold without boundary, the total index of any 
vector field with isolated zeroes is equal to a topological invariant, 
namely, the Euler characteristic . 

• Updating (4.6.5) with the above realization, it reads 

which is the Gauss-Bonnet theorem we seek. D 



Flow of 
U near 3 

Figure 4.3 
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Us 

The sample points Xl, ... , Xs are taken from a small counter­
clockwise metric circle centered at 3. The sample values Ui := 
U(Xi) E SXi ~ S3. Since the U(Xi) in this example trace out S3 
once clockwise, the index 13 is -1. If the sample values U(Xi) were 
to trace out S3 once counterclockwise, the index would be + 1. 

Exercises 

Exercise 4.6.1: 

(a) Show that WI /\ w2 = ...j9dx1 /\ dX2. 

(b) Explain carefully how (4.6.2) gives (4.6.3). 

(c) Attempt to find an explicit Finsler surface (M, F) for which K and 
...j9 do not live on M, but their product does. 

Exercise 4.6.2: Let V be a continuous vector field. 

(a) Prove that its indices at a source, sink, and saddle are, respectively, 
+1, +1, and -1. 

(b) Take any triangulation of a compact surface M. Show that there is 
a V on M which has a source at each vertex, a saddle at the mid­
point of each edge, and a sink at the barycenter of each face. Thus 
the sum of the indices of this V is #vertices - #edges + #faces, 
which is the Euler characteristic of M. 
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Chapter 5 

Variations of Arc Length, Jacobi 
Fields, the Effect of Curvature 

5.1 The First Variation of Arc Length 
5.2 The Second Variation of Arc Length 
5.3 Geodesics and the Exponential Map 
5.4 Jacobi Fields 
5.5 How the Flag Curvature's Sign Influences Geodesic Rays 
* References for Chapter 5 

5.1 The First Variation of Arc Length 

In this section, we use the method of differential forms to describe the first 
variation. There is another approach which uses vector fields and covariant 
differentiation. That is explored in a series of guided exercises at the end of 
§5.2. (Those exercises involve the second variation as well.) A systematic 
self-contained account can also be found in [BC 1]. 

Let u(t), 0 ~ t ~ r be a regular piecewise Coo curve in M. Let 0 =: to < 
t1 < ... < tk := r be a partition of [0, r] such that u is Coo on each closed 
subinterval [ts-l, ts]. The integral length of u is defined as 

kits du 
L(u) L F( dt ) dt. 

s=1 ts-l 

Consider the rectangle 

D := {(t, u): 0 ~ t ~ r , -E < u < +E} . 

A piecewise Coo variation of u(t) is a continuous map u(t, u) from D 
into M which is smooth on each [ts-l, ts] x (-E, E), and such that u(t, 0) 
reduces to the given "base" curve u(t). The object u(t, u = constant) is 
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known as a t-curve, while o-(t = constant, u) is called a u-curve. Their 
velocity fields give rise, respectively, to two vector fields: 

a ao- a ao-
(5.1.1) T := 0-* at = at' U:= 0-* au au . 

The quantity U is called the variation vector field, and is defined over 
all of D. On the other hand, note that at each (ts, u), we have two velocities 

T(t-;,u) := lim T(t,u) , T(t::-, u) := lim T(t, u) , 
t--->tt t--+t; 

and these may not coincide. Thus T is possibly not defined at the points 
ts x (-E, E) of D. 

The map o-(t,u) admits a canonical lift 8": 0 -t TM '-. 0, defined by 

(5.1.2) I 8"(t,u) := (o-(t,u), T(t,u)) I· 

The map 8" is possibly undefined at the points ts x (-E, E) of D. In order 
that & be well defined everywhere else, we assume from now on that all the 
t-curves in the variation o-(t, u) are regular; that is, they have nowhere zero 
velocity fields. 

Corresponding to 8", one gets the following vector fields that are defined 
over 0, except perhaps at the points (t s , u): 

(5.1.3) 

, , 

o-(t~,u) 

A a a& A a 
T := 8"* at = at' U:= &* au 

t-curves are solid 
u-curves are dotted 

Figure 5.1 

a8" 

" 

o-(t, ud 

o-(t~, u) 

A piecewise Coo variation: its t-curves, u-curves, together with 
the vector fields T and U. Note that the kinks (3 large solid dots) 
all occur at the same parameter value t = tl. Also, at the kinks, 
U is defined but T only has left and right limits. 
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Each T or U is a tangent vector of T M ,,0, based at the point u. On 
the other hand, each T or U is a tangent vector of M; as such, they are 
elements of TuM. Without being unreasonable, we can also regard T and 
U as elements in the fiber of 7r*T M over the point u. In other words, 
the vectors Tk blu' Uk a~k lu on M can be identified with the elements 

Tk bla' Uk a~k la of 7r*TM. In particular, note that 

(5.1.4) Tea) = F(T) f . 

Take a special g-orthonormal frame field {ei} for 7r*TM, namely, one 
with en := f. Its coframe {Wi} then has wn equal to the Hilbert form. Let 
us digress to explain what it means to express T and U in terms of {ei}. 

* T and U are elements of the tangent space TuM. At the point u 
on TM" 0, we have the g-orthonormal basis {ei(u)} for the fiber 
of 7r*T M over that point. But the fiber in question is simply a 
transplanted copy of TuM, to which the ei (evaluated at u) belong. 
So we may regard {ei(u)} as living on M and expand T and U in 
terms of it. 

* Alternatively, think of T and U as belonging to the fiber of 7r*T M 
over the point u. That fiber has the g-orthonormal basis {ei(u)}. 
We use this basis to expand T and U. 

These two equivalent interpretations allow us to write, for later use, 

T = Tiei, U = Uiei. 

With respect to the coframe {wi}, we obtain the Chern connection 1-
forms w/' which are ?-ifferential forms on T M " 0. By our usual abuse of 
notation, the forms w' can also be regarded as differential forms on T M ,,0. 
Strictly speaking, they are sections of 7r*T* M. 

These I-forms can be pulled back to D by u*. We write 

(5.1.5) 

(5.1.6) 

Since Wi has no dy terms, 

ai = (o-*wi ) (:t) = wi(T) 

Hence 

(5.1. 7) aO'. 

Similarly, 

(5.1.8) 

0, 

bi 

ai dt + bi du , 

a/ dt + b/ du. 

an F(T) I· 

Ui I, 
(5.1.9) a·i J w/(T) , b .i 

J w/(U) I· 
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In order to avoid confusion with a·, a.· and b·, b.·, we 
are temporarily using i, j, k, etc. to denote indices with 
respect to our special g-orthonormal frame. Previously, 
these midrange lower case Latin indices were exclusively 
reserved for natural coordinate bases. Here, they are 
shared by both types of bases. For instance, we write 
{ed instead of {ea}, and continue to write {~}. 

Next: 

• The almost metric-compatibility of the Chern connection [part (b) 
of Exercise 2.4.5] implies that Wni = -Win, hence 

n-O d n_ 1': (3 wn - an Wo - - Uo{3 wn , 

where we remind ourselves that lower case Greek indices run from 
1 to n - 1. These are equivalent to the statements 

(5.1.10) I an = 0, b n = 0 I, n n 

(5.1.11) an = - 8o {3 a! , b n = - 8o {3 b! I· 0 0 

• Using &* to pull back the torsion-free criterion [part (a) of Exercise 
2.4.5] and plugging in (5.1.5), (5.1.6) give 

I aai Obi I 
(5.1.12) . - au + at = aj b/ - hi a/ . 

In particular, we have 

(5.1.13) 

and 

(5.1.14) aa n _ abn bO n I au - at + ao . 

The length L(u) of any t-curve in the variation aCt, u) is given by 

(5.1.15) 
kits kits 

L(u) = L F(T) dt = L 
8=1 ts-l 8=1 ts-l 

Differentiate this with respect to the parameter u and input (5.1.14). We 
get: 

(5.1.16) L'(u) 
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This is the formula for the first variation of arc length in Finsler ge­
ometry. See also Exercise 5.2.4. 

* The use of t; and t; is necessary in dealing with piecewise smooth 
paths. 

* Since bi = Ui (the components of the variation vector field U), we 
see that bn vanishes at both 0 and r if the variation of u(t) keeps 
its endpoints fixed. 

* It is also helpful to realize that 

(5.1.17) bn = gT ( U, FfT) ) , 

where 

(5.1.18) 

is an inner product induced on the tangent space Tu(t,u)M by the 
fundamental tensor. Consequently, the second group ofterms on the 
right-hand side of (5.1.16) is now better understood: 

(5.1.19) 

The difference ~(t;) - j;(t;) represents a sudden change in di­
rection at ts . In other words, it is a "kink" along the t-curve in 
question. Curves that are C 1 do not have kinks. 

Proposition 5.1.1. Let u(t), 0 ~ t ~ r be a regular piecewise Coo curve 
in a Finsler manifold (M, F). The following two statements are equivalent: 

(a) L'(O) = 0 for all piecewise Coo variations of u that keep its end­
points fixed. Any curve u with this property is called a Finslerian 
geodesic. 

(b) u is C 1 (that is, has no kinks) on the entire [0, r] and satisfies 

aon(t,O) = 0; equivalently, anO(t,O) = o. 

Remarks: 

• This proposition reaffirms the intuition that a curve (with fixed 
endpoints) cannot be critical in arc length unless all its kinks are 
eliminated. 

• There are other characterizations of geodesics besides part (b) of 
the above proposition. In the Exercise section of §5.2, we develop 
the concept of covariant differentiation, and deduce in Exercise 5.2.4 



116 5. Variations of Arc Length, Jacobi Fields, the Effect of Curvature 

the geodesic equation 

Dr [F~T)] = 0 with reference vector T := ~~ . 

For those interested in a a description using only ODEs, see Exercise 
5.3.1. There, we find that Finslerian geodesics are solutions of 

d2rri drr j dak . d drri 
dt2 + dt dt b'jk )(7,r) = dt [logF(T) 1 dt . 

None of the descriptions mentioned ever assumes that the parametri­
zation gives constant Finslerian speed. In other words, the quantity 
F(T) := F( ~~) need not be constant. 

Proof of Proposition 5.1.1. Consider only variations in which all the 
t-curves share the same endpoints. For these, the variation vector field 
vanishes at to = 0 and tk = T. After restricting (5.1.16) to the base curve, 
we get: 

(*) £'(0) ~ 9r ( U(ts), FrT) I:~) + 1; 1::, bQ aQn dt . 

That (b) ::::} (a) : 
This is immediate from the remarks we just made about kinks, together 

with formula (*) above. 

That (a) ::::} (b) : 
Suppose (a) holds. Construct a variation that has variation vector field 

UQ(t) = f(t) anQ and Un(t) = 0 along the base curve a(t). Here, f(t) is 
chosen to be zero at to, ... ,tk and positive on each (ts-l,ts). Since by 
hypothesis £'(0) = 0, formula (*) becomes 

Thus ann = 0 on each open subinterval (ts-l, ts). 
Given that, formula (*) reduces to 

This time, construct a variation of a with endpoints fixed, and such that 
the variation vector field satisfies 
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for s = 1, ... , k - 1. Again, L'(O) = 0 by hypothesis and we have 

k-1 (T t:; T t:;) 
o = - ~ gT F(T) It; , F(T) It; . 

Thus the kinks must all vanish, and cr is CIon the entire interval [0, r]. 
This implies that the coefficients ann are well defined at each ts, and vanish 
there too. D 

Exercises 

Exercise 5.1.1: The tangent space Tu(t,u)M has an induced inner product 

gT := gij (u,T) dxi 18) dx j . 

(a) Check that gT(T, T) = F2(T). 
(b) With the help of the fundamental inequality (1.2.3), show that 

2 . . 
gT(U, U) < F (U) + (F Fyiyj )(u,T) U' UJ . 

(c) Explain why that second term on the right is positive. Hint: try to 
obtain that through a careful Cauchy-Schwarz type argument on 
the inner product gT. Consult (1.2.9) only as a last resort. 

Exercise 5.1.2: Let w be any section of 1f*T* M. Regarding T and U as 
1f*T M-valued, the pairings w(T) and w(U) make sense. On the other hand, 
w can be viewed as a I-form of T M" 0, in which case w(T) and w(U) make 
sense. Explain why 

w(T) = w(T) and w(U) = w(U) . 

Hint: find out how T differs from T in natural coordinates, and keep in 
mind that w has no dy components. 

Exercise 5.1.3: 

(a) Give the details in the derivation of (5.1.12). 

(b) Establish the first variation formula (5.1.16), following the guidelines 
stated in the section proper. 

Exercise 5.1.4: Let cr(t, u) be any piecewise Coo variation of a geodesic 
cr(t), 0 :;:;; t :;:;; r, with velocity T. However, do not assume that the variation 
leaves the endpoints of cr(t) fixed. Show that 

L'(O) ~ gT ( U, F~~) ) I: 
Exercise 5.1.5: Let cr(t) be a C 1 regular curve in M, with velocity T. Let 
fr := (cr, T) denote its canonical lift into T M " O. Prove that the following 
three statements are mutually equivalent. 
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(a) The curve CT(t) is a geodesic. 

(b) Its canonical lift satisfies the exterior differential system: 

wO!(T) = wO!(T) = 0 , 

wn(T) F(T) , 

wnO!(T) = o. 

(c) The velocity T of its canonical lift is given by the formula 

T = F(T) [t ~] + [~logF(T)] (li F-/y; ) 

Hint: review part (a) of Exercise 2.3.5, and part (c) of Exercise 2.4.7. 

Exercise 5.1.6: As a continuation of Exercise 5.1.5, show that the following 
two statements are equivalent. 

(a) CT(t) is a geodesic parametrized to have constant speed. 

(b) Its canonical lift u := (CT, T) is an integral curve of F i. 
Here, i abbreviates li 6~'. Can you now explain why constant speed 
geodesics are necessarily COO? 

Exercise 5.1.7: The previous exercise shows that every constant speed 
geodesic of M generates, through the canonical lift, an integral curve of 
F i. It does not claim that every integral curve of F i must arise this way. 
Nevertheless, such is indeed the case. 

(a) Show that if (Xt, Yt) is an integral curve of F i, then it is equal to 
the canonical lift of its projection Xt. Hint: compute the velocity 
field of Xt. 

(b) Use Exercise 5.1.6 to explain why the curve Xt must be a constant 
speed geodesic. 

Exercise 5.1.8: Instead of using the route proposed in Exercise 5.1.7, there 
is a more direct way. Again, let (Xt, Yt), now abbreviated simply as (x, Y), 
be an integral curve of the vector field F i. 

(a) Where do the equations xi = yi and ii = - Nii come from? Here, 
N is the nonlinear connection introduced in §2.3. Hint: list the com­
ponents of i in terms of tx and ty • 

(b) Use part (a) of Exercise 2.4.6 to help show that xi = -riik yi Y\ 
where the r i ik are the components of the Chern connection in nat­
ural coordinates. Check that the right-hand side further reduces to 
-Yik yi yk, where the "{iik are the fundamental tensor's Christoffel 
symbols of the second kind. 
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Therefore, the projected curve Xt satisfies xj +Yik Xi Xk = O. As we show in 
§5.3, this second order system of ODEs describes the component functions 
of constant speed Finslerian geodesics. 

5.2 The Second Variation of Arc Length 

The setup is just like what we had in §5.1, except now the base curve 
IT(t) = IT(t, 0) in our piecewise Coo variation 

IT(t, u), with (t, u) E 0 := [0, r] x (-€, €) , 

is a geodesic. As before, the continuous map IT( t, u) is smooth on each 
[ts-l' ts] x (-€, E), and 0 =: to < tl < ... < tk := r. Also, all the t-curves 
in the variation are assumed to have nowhere zero velocity fields T(t, u). 
Thus the canonical lift u := (IT, T), a map from 0 into T M ....... 0, is well 
defined. 

Exercise 3.2.1 says that 

i k " 1 " k 1 . k +1 dJ..Jj - Wj /\wk = 2 R j kl W /\w + Pj'kl W /\wn . 

With the help of P j i kn = 0 (Exercise 3.3.2) and the relations w n+'" = w n"', 

wnn = 0 (see Exercise 2.4.7), the above becomes 

i k iii k 1 i k 1 dJ..J . - W· /\ Wk = - R· kl W /\ W + pJ' kl W /\ Wn . 
J J 2 J 

Use IT to pull this back to D. After some simplifications, we obtain 

(5.2.1) 

ob·i 
_J_ 

ot 
oa·i 
_J_ 

ou a kb i bkai 
j k - j k 

As always, n is not a summation index. Now specialize j to 0: and i to n. 
We also use the fact that p",nn(3 = -P~n(3 = A",n(3 = 0, which comes from 
some of the Bianchi identities in §3.4. The result is: 

oa n 
-"'-ou 

ob",n kb n b k n at - a", k + '" ak 

(5.2.2) 
- R",n nl an bl 

+ p",nk (3 bk aj1 . 

We are ready to compute the second variation of arc length. Begin with 
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Recall that 

aan _ abn b'" n 
au - at + a",. 

82 n () To calculate 8::2 , we use 5.2.2, followed by 

b'" ab",n = ~ (b'" b n ) 
at at '" 

and get the intermediate formula 

%t (~~ + b'" b",n) - (a:; b",n + b'" a",k bkn ) 

ab'" + a",n (au + b{3 bl - b{3 bk p{3nk'" ) 

- an b'" bl R",nnl . 

Our work in §5.1 tell us that 

_ (ab'" b n + b'" a k b n ) 
at '" '" k 

_ a~n bn l:",{3 ban + n l: bib j 
~ V " a Vij n n , 

and 

b'" b n - A .. bi b j 
'" - - Vt] n' 

Also, the R term can be rewritten: R",nnl = R",nnl = Rn",ln = R",l' Conse­
quently, 

These maneuvers improve the intermediate formula to: 
(5.2.3) 

Now: 

* Evaluate (5.2.3) at u = 0, 

* Use the fact that the base curve a(t) is a geodesic, so a",n(t,O) = 0. 

* Being a geodesic, a(t) has no kinks (Proposition 5.1.1), thus the 
quantity a:: - 8ij bi bj has no jump discontinuity at any ts' 
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These observations give 

(5.2.4) 
L"(O) ( abn _ D .. bi b j) It=r au tJ n 

t=o 
+ i r 

an (0" bib j - bi D .. 1Ji) dt tJ n n .L"iJ • 
o 

This is the formula for the second variation of arc length in Finsler 
geometry. 

• One should keep in mind that the base curve is a geodesic here. 

• According to (3.9.3), the term bi R;.j 1Ji is proportional to a flag cur­
vature. The flagpole in question is the velocity T, and the transverse 
edge of the flag is the variation vector field U. 

• Note that the second Chern curvature P is conspicuously absent. 

For the second variation of the energy functional in Finsler geometry, see 
Dazord [Daz] and Matsumoto [M2]. 

Exercises 

In these exercises, we explore the variational calculus using vector fields 
and covariant derivatives, instead of differential forms. We show that the 
covariant derivative approach has its merits too. 

Let u(t) be a smooth regular curve in M, with velocity field T. Let 
W(t) := Wi(t) a~i be a vector field along u. The expression 

[ dWi W j Tk ri ] a 
dt + jk axi Iu(t) 

would have defined the covariant derivative DT W, had r not had a direc­
tional y-dependence. This dilemma is resolved by defining two versions of 
the said covariant derivative: 

• If T is plugged into the direction slot y, we get 

[ dWi . k' ] a 
-d + WJ T (rtjk)(uT) -a' . t 'xt lu(t) 

We call it DTW with reference vector T. 

• If W is plugged into the direction slot y, we get 

[ dWi . k' ] a 
-d + WJ T (rtjk)(u W) -a' . t 'xt lu(t) 

We call it DTW with reference vector W. 
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Exercise 5.2.1: Let T and U be the vector fields defined in (5.1.1). They 
are associated with any piecewise Coo variation. Prove that 

1 DTU = DuT , both with reference vector T I· 

Exercise 5.2.2: Let O"(t) be a smooth regular curve in M, with velocity 
field T. Let t denote the velocity field of its canonical lift a- := (0", T). 
Recall the almost g-compatibility criterion (2.4.6) of the Chern connection. 
By evaluating this criterion on t, show that 

This is an important formula. Embodied in it are the special circumstances 
under which the derivative of gT(V, W) obeys a "product rule." Those are 
enumerated in Exercise 5.2.3. In the displayed formula: 

* gT := gij (u,T) dXi Q9 dx j ; see (5.1.18). 

* V and Ware two arbitrary vector fields along 0". 

* Both DTV and DTW are defined with reference vector T. 

* A is the Cartan tensor, evaluated at (0", T). 

* an'" := wn"'(T), as in (5.1.9). 

Exercise 5.2.3: As a continuation of Exercise 5.2.2, show that 

whenever one of the following three conditions is met: 

• V or W is proportional to T. 

• 0" is a geodesic. 

• A vanishes along our curve 0". 

In other words, the coveted product rule holds under these circumstances. 

Exercise 5.2.4: 

(a) Exploit the relationship between DT[p[T)J and Vtf. Do that in 
natural coordinates. 

(b) Write out V t f in our special g-orthonormal frame for 1f*T M. Check 
that it equals an"'e", (automatically summed on a from 1 to n - 1). 
In particular, there is no en := f component. With this information 
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at hand, rewrite the first variation (5.1.16) as 

L'(u) = gT( U, F~T) I:) -~ gT( U, F~T) I:~ ) 
-t, 1:~1 gT ( U , DT [ F~T) ] ) dt . 

(c) Recall that Finslerian geodesics are characterized by the condi­
tions anD< = O. Show that they are equally well described by the 
following equation: 

DT [~] = 0, with reference vector T . 

(d) Show that the constant speed geodesics are precisely the solu­
tions of 

1 DTT = 0, with reference vector T I· 
Exercise 5.2.5: Establish the following correspondence for the terms that 
appear in ~he second variation of arc length: 

abn .. ( T) au - Dij bt b.! = gT DuU, F(T) , 

Here: 

an Dij b; bj = FtT) [gT( DTU , DTU) - (a~) r 1 
1 

- an bi ~j bi = - F(T) gT{ R{U,T)T, U) . 

• All covariant derivatives have T as reference vector. 

• Exercise 5.2.1 is needed for the second statement. 

I . . l k a I • R(U,T)T := (T3 R/kl T ) U {}Xi. 

Exercise 5.2.6: Consider the component of U that is gT-orthogonal to the 
velocity T. Namely, 

I Ui ,~ U - Or ( U, ~) ~ I ~, U - A l . 

The abbreviations A and i are temporarily used to reduce clutter. 

(a) With the help of Exercises 5.2.3, 5.2.4, and 5.2.1, show that DTA is 
actually equal to - fuF(T). 
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(b) Next, show that 

gi(DTUl., DTUl.) = gT(DTU, DTU) - (DTA? 

Thus 

(c) Use the properties of R/ kl to check that 

gT(R(Ul.,T)T, Ul.) = gT(R(U,T)T, U). 

Exercise 5.2.7: 

(a) Show that the second variation can be expressed as 

and 

L"(O) J(U,U) + gT (DUU , F~T)) I: 
-ir _1 (aF(T))2 d 

o F(T) au t, 

where 

i r 1 
J(V, W).- 0 F(T) [ 

- gT( R(V,T)T, W) 1 dt 

is the index form. All covariant derivatives here use T as the ref­
erence vector. 

(b) In case the variation does keep the endpoints of CT fixed, explain why 
the formula for L"(O) reduces to 

L"(O) = J(Ul.' Ul.) 

and 

L"(O) = J(U,U) _ir_l_ (aF(T))2 dt. 
o F(T) au 

(c) Is the index form symmetric? Namely, is it true that 

J(W, V) = J(V, W) ? 
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5.3 Geodesics and the Exponential Map 

We assume that all our geodesics (T(t) have been parametrized to have 
constant Finslerian speed. That is, the length F(T) is constant, where 
T is the velocity field. According to Exercise 5.2.4, these geodesics are 
characterized by the equation 

DTT = 0, with reference vector T . 

Namely, they are autoparallels. Since 

d(Ti 8 
T = ill 8xi ' 

this equation says that 

(5.3.1) 
d2(Ti d(Tj d(Tk . 
dt2 + dt dt (r'jk )(a,T) = o. 

The second term on the left can be reduced, using the explicit formula 
(2.4.9) of the Chern connection coefficients r i jk . It turns out that only 
the formal Christoffel symbols ,'jk [see (2.3.1)] contribute to that double 
contraction. Thus the differential equations that describe constant speed 
geodesics are: 

(5.3.2) 

It turns out that the system of ODEs is equally elegant when the geodesic 
has variable speed. In that case, one begins with 

DT [ FTT)] = 0, with reference vector T . 

See Exercise 5.3.l. 
Let us now mention two analytical properties of constant speed geodesics: 

• At each point of M, we have a precompact coordinate neighborhood 
U and an (0 > 0 such that, given any x E U and y E TxM with 
o < F(x, y) < (0, there exists a unique geodesic (Tx,y(t), -2 < t < 2 
which passes through x at t = 0 with velocity y. Furthermore, (Tx,y(t) 
is Coo in t, and in its initial data x, y =f. O. 

The existence aspect can be seen as follows. Take any coordi­
nate neighborhood U that has compact closure. For each x in the 
closure U, consider the finite-dimensional vector space TxM. The 
coordinate basis {a~i} induces an x-dependent Euclidean norm 
Iyl := ..j8ij yiyj. The quotient F(y)/lyl is constant along rays that 
emanate from the origin of TxM. It defines a continuous positive 
function on the compact set given by the portion of the indicatrix 
bundle over U. Its absolute minimum m and absolute maximum M 
are both positive. Choose c > 1 such that one has ~ < m ~ M < c. 



126 5. Variations of Arc Length, Jacobi Fields, the Effect of Curvature 

Then ~Iyl ~ F(y) ~ c Iyl for all y = yi a~i E TxM and x E U. 
The asserted existence can now be obtained from standard ODE 
theory. 

• Suppose we are given the above ax,y(t) and any positive constant A. 

(5.3.3) 

The chain rule tells us that the curve ax,y(At), >.2 < t < ~ is also a 
geodesic which passes through x at time 0, but the velocity at that 
moment is Ay. By uniqueness, the said curve must be ax,Ay(t). We 
express this as 

a(t, x, AY) = a(>.t, x, y), A > 0 . 

Define the exponential map as follows: 

(5.3.4) () {
a(l,X,y) , 

exp X,y := 
x, 

yi=O 

y = O. 

The above properties have the following to say about the exponential map: 

• exp is defined on an open neighborhood of the zero section 
of T M, and is Coo away from the zero section. 

• Statement (5.3.3) implies that 

(5.3.5) 1 exp(x, AY) = a(A, x, y), A > 0 I· 
The derivative of exp exists at the zero section of T M, and is 

the identity map. In other words, 

(5.3.6) 
aexpi -a . (x,O) yJ 

{F 
J 

This follows from the following two facts: 

* 
* 

For the first one, we have 

1. expi(x, AV) - Xi 
1m 

A-'O- A 
1. expi(x, >.[-v]) - Xi 

+ 1m 
A-+O+ -A 

1. ai(A,x,-V) ai(O,x,-v) 
- 1m 

A-+O+ A 

aa i 
- -(0 x -v) at " 
_(_V)i = vi . 

The second limit can be established similarly. 
We would also like to show that the exponential map is C l at the 

zero section of T M. To this end: 
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* Relabel y as v in (5.3.5) and differentiate with respect to v. The 
chain rule gives 

That is, 

8expi k 
8yk (x,.xv) .x 8 j 

8ai 
-8 . (.x,x,v) . 

yJ 

8expi 
-8 . (x,.xv) = 

yJ 
1 8ai 

:x 8yj (.x, x, v) , .x> 0. 

* Note that a(O, x, v) = x for all v, hence g;: (0, x, v) = 0. Thus the 
above can be rewritten as 

8expi 1 [8ai 8ai ] 
8yj (x, .xv) =:x 8yj (.x, x, v) - 8yj (0, x, v) . 

* Letting .x -+ 0+, the right-hand side becomes %t~~ (O,x,v), which 

equals ::jO"~t(O,x,v). The latter, upon the use of ~~ = y, gives 8i j • 

Therefore 

1. 8expi ( ') £i 1m -8 . x, ",v = U j . 
.>. ..... 0+ yJ 

* Since the indicatrix F(x, v) = 1 is compact, it can be shown that the 
above limit is uniform in all v which have norm 1. In other words, 
for each EO > 0, there exists a 8 > ° independent of v [as long as 
F(v) = 1] such that 

1
8expi I 0< .x < 8 =} 8yj (x, .xv) - 8i j < EO • 

We have just demonstrated that 

(5.3.7) 
. 8expi 
hm-8 · (x,y) 
y ..... O yJ 

8expi 
-8 . (x,O) 

yJ 

This, together with the fact that exp is already Coo at all x, gives the 
asserted C l smoothness. 
Let us summarize what we have accomplished in this section: 

• We have shown that for Finsler manifolds in general, the exponen­
tial map exp is (only) C l at the zero section of T M (and 
Coo away from it). Its derivative at the zero section is the 
identity map. This is a result of Whitehead's [W] . 

• In Exercise 5.3.5, the analysis here is extended to derive a result of 
Akbar-Zadeh's [AZ]. It says that exp is C2 at the zero section 
if and only if the Finsler structure is of Berwald type (as 
defined in Exercise 5.3.3). In that case, the exponential map exp is 
actually Coo throughout TM. 
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Exercises 

Exercise 5.3.1: 

(a) Show that the system of differential equations which describes geo­
desics (not necessarily of constant speed) is: 

Hint: begin with part (c) of Exercise 5.2.4. 

(b) Using the theory of ordinary differential equations, show that geo­
desics (hence C 1 , according to Proposition 5.1.1) must in fact be 
Coo in t, in x, and in y i= O. Here, a(O) = x and ~~ (0) = yare the 
initial data of the geodesic. 

The formula in part (a) is useful because it is not always to our advantage to 
parametrize geodesics to have constant Finslerian speed. For example, we 
show in §11.3 that when a Randers space is of Douglas type, a parametriza­
tion with constant Riemannian speed is much more telling. 

Exercise 5.3.2: Let a(t), 0 ~ t ~ r be a geodesic in a Finsler manifold. 
Define «(s) := a(as + (3), where a, f3 are constants. 

(a) If a > 0, show that ( is again a geodesic. 

(b) If (ri jk )(x,-y) = (rijk )(x,y), show that ( is a geodesic for all values 
of a and f3. 

Exercise 5.3.3: Let a(t), 0 ~ t ~ r be a geodesic. Its reverse is the curve 
«(s) := a(r - s). Show that the reverse of a is again a geodesic if one of 
the following conditions is satisfied: 

• The Finsler structure F is absolutely homogeneous. For example, 
this is the case on Riemannian manifolds . 

• In natural coordinates, the Chern connection coefficients r i jk de-
pend only on x. Manifolds of this type are called Berwald spaces. 

Exercise 5.3.4: In a locally Minkowskian space, let a(t) be a geodesic that 
passes through the point x at t = 0 with velocity v. Prove that in some 
local coordinate system, our geodesic has the description a i (t) = Xi + t Vi . 

Exercise 5.3.5: This exercise characterizes the situation in which exp is 
C2 at the zero section of T M. It addresses a result of Akbar-Zadeh's [AZ]. 

(a) Suppose the exponential map is C2 at the zero section. Differentiate 
(5.3.5) with respect to t twice. Show that one gets 
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(b) Substitute this into the geodesic equation (5.3.1) and take the limit 
as >. ~ 0+. With the help of the C 2 hypothesis, show that 

(c) Note that since exp is C 2 at (x, 0), the first term inside the brackets 
is, like the Chern connection coefficients, symmetric in j, k. Differ­
entiate the above with respect to yl to get 

(d) Use (3.3.3) and (3.4.9) to help you show that yj yk a~~ik is in fact 
zero. Thus 

which says that the left-hand side depends only linearly on y. 

(e) Now use Exercise 3.4.6 to show that r i jk does not depend on y. 

That is, the Finsler structure is of Berwald type. 

(f) Conversely, check that if ri jk has no y-dependence, then the expo­
nential map is Coo (and in particular, C2 ) at the zero section of 
TM. 

5,4 Jacobi Fields 

Let a(t), 0 ~ t ~ r be a geodesic with velocity field T. To keep things 
simple, let us assume that a has been parametrized to have constant speed 
F(T) = c. The defining equation for a is then 

DTT = 0, 

the criterion for being an autoparallel. 

For the rest of this chapter, all covariant differentiations 
DT and Du are to be carried out with reference vector T. 

In Exercise 5.2.7, we have encountered the index form J(V, W), whose 
arguments V and Ware piecewise Coo vector fields along u. Let 0 =: to < 
tl < ... < tk := r be a partition of [0, r] such that V, Ware both Coo 
on each closed subinterval [ts-I, ts]. Using integration by parts, one can 
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re-express the index form as 

J(V, W) := 1 Ir - gT(DTV, W) 
C 0 

1 k-l t+ 

- - L gT(DTV, W) I ~ 
C 8=1 ts 

1 r - c io gT( DTDTV + R(V,T)T, W) dt. 

A vector field J along a is said to be a Jacobi field if it satisfies the 
equation 

(5.4.1) 1 DTDTJ + R(J,T)T = 0 I· 
The following abbreviation is customary: 

J" := DTDTJ. 

Standard ODE theory tells us that given the initial data 

there exists a unique Coo solution J(t) along the geodesic a(t). 
Jacobi fields naturally arise through geodesic variations. Namely: 

Given any piecewise Coo variation (not necessarily with 
fixed endpoints) in which all the t-curves are geodesics, 
the variation vector field U is necessarily a Jacobi field. 

A sketch of the proof is as follows: 

(*) 

• In (5.2.1), set j = n. With the help of ank(t, u) = 0, we obtain 

8b i k· . k 
----'!.- + b a' = - an R' b 8t n k k' 

• The left-hand side, when summed with ei , gives DT ( bni ei ). Now, 
b": ei = bnO! eO! , and it is straightforward to show that 

b O! 1 (DuT _ 8l0~:(T) T) . 
n eO! = F(T) 

• On the other hand, 

1 
( - an R\ bk ) ei = - F(T) R(U, T)T . 

• Substitute these into (*), and use the fact that 
* DTF(T) = 0 (constant speed), 
* DT T = 0 (all t-curves are geodesics), 
* DuT = DTU (Exercise 5.2.1). 
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We obtain 

DTDTU + R(U, T)T = 0, 

which says that the variation vector field satisfies the Jacobi equa­
tion. 

Let us now consider the case of "wedge-shaped" geodesic variations. 

• Restrict the exponential map exp to a fixed tangent space TxM, and 
denote it by expx . Take expx (tT), a ~ t ~ r as our base geodesic, 
where T E TxM. This geodesic emanates from the point x with 
initial velocity T. 

• Let Wi a~i be a tangent vector emanating from the point tT along 
the straight ray. Since TxM is a linear manifold, we can slide that 
tangent vector to the origin, thereby getting an element Wi a~i of 
TxM. Let us, by a slight abuse of notation, refer to both as W. 

• For conceptual clarity, we only think about those W that are trans­
verse to T. In the Minkowski space TxM, we have the variation 
t ( T + u W) of the straight ray t T. If the parameter u is kept small, 
say -E < u < +E, and if r is made smaller if necessary, the definition 

(5.4.2) I (T(t,u) := expx[ t (T + u W) 1 I 
makes sense. It gives a variation by geodesics of our base curve 
expx(tT), a ~ t ~ r. 

• For each value of u, the corresponding geodesic emanates from x at 
time t = 0, and has constant speed F( x, T + uW). 

The variation vector field U(t) of this (T(t, u) is, through the chain rule, 
given by 

(5.4.3) 1 U(t) = eXPx*(tT)(tW) I· 
For Finsler geometry in general, we learned in §5.3 that expx is only C 1 at 
the origin of TxM. Thus the U(t) here is a priori only continuous from the 
right at t = a and C= on a < t ~ r. Because it arises from a variation by 
geodesics, U(t) is a Jacobi field. Strictly speaking though, it is only one on 
(0, r], since Jacobi fields are supposed to be C= after all. 

In the following lemma, we contend that U(t) is actually C= at t = O. 
And its initial data are U(O) = 0, U'(O) = W. Keep in mind that by ODE 
theory, our base geodesic expx (tT), a ~ t ~ r always admits an extension 
to a (slightly) larger time interval. 

Lemma 5.4.1. Suppose 

* (M, F) is a Finsler manifold, where F is C= on T M " a but not 
necessarily symmetric. That is, F is positively (but perhaps not 
absolutely) homogeneous of degree one. 
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The straight ray t T and its variation in TxM. Exponentiating this 
gives the variation u(t, u), whose variation vector field is U(t) = 

expx*(tT) (tW). The straight ray, under expx, becomes the base 
geodesic u(t,O). 

* 'Y(t), -8 < t < r + 8 (with 8 > 0) is any extension of the base 
geodesic expx(tT), 0 :::;; t :::;; r. 

* W is a fixed (but arbitrary) element ofTxM. 

Then: 

* The Jacobi field U(t) = expx*(tT) (tW), 0 < t :::;; r extends uniquely 
to a Coo Jacobi field J(t), -8 < t < r + 8 (along 'Y)' 

* J has initial data J(O) = 0 and J/(O) := (DTJ)(O) = W. 

Proof. 
Fix an arbitrary ta E (0, r) and compute U(ta), U'eta). Let J(t), -8 < 

t < r + 8 be the unique Coo Jacobi field along the extended geodesic 'Y(t), 
satisfying the initial data J(ta) = U(ta), J'(ta) = u'eta). 

Since U(t) is Coo for 0 < t :::;; r, the uniqueness theorem in ODE theory 
tells us that J must agree with U on (0, r]. This agreement also holds at 
t = 0 because 

J(O) = lim J(t) = lim U(t) = U(O) = O. 
t--+O+ t--+O+ 

Thus J(t) is the unique Coo extension of U(t) to 'Y. 
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Abbreviate the velocity field T(t) of'Y as T. From the fact that J(O) = 0 
and J' := [d;!t' + Jj Tk (rijk)<-r,T) ] a~i , we see that 

J'(O) = dJi (0) ~ 
dt ax' Ix 

However, 

dJi (0) = lim Ji(t) - Ji(O) = lim Ji(t) = lim Ui(t) . 
dt t->O+ t t->O+ t t->O+ t 

Using (5.4.3), followed by the continuity of expx* at the origin 0 of TxM, 
and the fact that it is the identity map there, we have 

11'm U(t) 
t = lim eXPx*(tT) W = expx*(o) W W . 

t->O+ t->O+ 

So 

J'(O) = W. D" 

In view of this lemma, we can say that: 

• The U(t) given by (5.4.3), namely, expx* (tT) (tW), is truly a Coo 
Jacobi field on 0 ~ t ~ r. 

• It has initial data 

(5.4.4) U(O) 0, U'(O) wi· 
Exercises 

Exercise 5.4.1: 

(a) We gave an outline for the proof that geodesic variations give rise 
to Jacobi fields. Fill in all the details. 

(b) Does the converse hold? 

Exercise 5.4.2: Consider the geodesic ray expx(tT) , t E [0, r] that em­
anates from x with initial velocity T. ODE theory tells us that there exists 
a Coo extension 'Y(t), -8 < t < r + 8 (for some 8 > 0) of our geodesic ray. 

(a) Use the fact that expx is at least C l at the origin ofTxM to conclude 
that 'Y(t) = expx(tT) on [0, r + 8) . 

(b) For negative t, show that expx (tT), -8 < t < 0 is the reverse of a 
certain geodesic. Identify the initial velocity of that geodesic. Hint: 
consider the expression expx[( -t)( -T)]. 

(c) Explain why, if the Finsler structure F is absolutely homogeneous 
(which includes the Riemannian case) or of Berwald type, then 
'Y(t) = expx(tT) on the interval (-8,0) . 
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(d) Explain why expx( -tT), 0 ~ t ~ r is a geodesic for some r. What 
is its initial velocity? 

Exercise 5.4.3: Suppose J is a Jacobi field along the geodesic CT(t) with 
velocity T. 

(a) Use Exercise 5.2.3 to show that [yT(J, T)]" = yT(J", T) = o. 
(b) Explain why 9T(J',T) is constant. 

(c) Fix any to in the domain of CT(t). Show that 

1 9T(J, T) = 9T( J(to) , T(to)) + (t - to) 9T( J'(to) , T(to)) I· 

(d) Deduce that J is 9T-orthogonal to CT at two points if and only if it 
is 9T-orthogonal to CT everywhere. 

Exercise 5.4.4: Let CT(t) , 0 ~ t ~ r be a geodesic with velocity T in a 
Finsler manifold (M, F). Let J be a Jacobi field along CT. Prove that if any 
one of the following conditions holds, 

Here, E is obtained by parallel translation along CT, with reference 
vector T. It satisfies the equation DTE = 0 with reference T. 

(d) Let {Ei : i = 1, ... , n} be a moving basis of parallel vector fields 
(again, with reference vector T) along CT. Then J 1. can always be 
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expressed as JJ.. = fi Ei (with automatic summation on i). Suppose 
(M, F) has scalar flag curvature )..(x, y). Explain why each of the 
component functions fi must satisfy the scalar Jacobi equation. 
Namely, 

I ji + ).. c2 fi = 0 I for i = 1, ... ,n . 

Exercise 5.4.6: Let U, W be Jacobi fields along a geodesic (T(t) with 
velocity T. Prove that 

I gT(U', W) - gT(U, W') = some constant /. 

This is known as the Lagrange identity. 

5.5 How the Flag Curvature's Sign Influences Geodesic Rays 

The purpose of this section is simple. Imagine a family of geodesic rays 
emanating from the point x. We would like to show that: 

• If the flag curvature is positive at x, then these geodesic 
rays will appear to "bunch together." 

• If the flag curvature at x is negative, then these geodesic 
rays will appear to "disperse." 

But in order to prove these statements, we must first make precise what 
we mean by "bunching together" and "dispersing." 

Let us begin with the setup discussed in the last section. Take T, W E 

TxM, where W is transverse to T. In order to simplify things, let us choose 
T E TxM to have Finsler norm F(T) = 1, and use gij (x,T) dxi®dxj to ferret 
out those W E TxM that have length one and are orthogonal to T. Any 
such W would be a legitimate choice. Using T and W, we generate a family 
of geodesics that emanate from x at time t = O. This family is indexed by 
a parameter u E (-E, +E), and the "uth" member is expx[ t (T + u W)], 
t E [0, r]. These curves are viewed as variations of the base geodesic (T(t) := 

expx(tT), whose velocity field we abbreviate as T. 
The length squared 

(5.5.1) III U(t) 112 := gT( U(t) , U(t)) I 
of the variation vector field U(t) = eXPX*(tT)(tW) measures the rate (in 
units oflength squared per unit change in u) with which the "uth" geodesic 
is deviating from (T(t). If this function of t climbs to a maximum and then 
decreases, the geodesics in question must be showing a focusing behavior. 
On the other hand, if this function is monotonically increasing, then the 
geodesics must be diverging. This type of detailed information, however, 
is beyond the technical reach of the present chapter. What we do in this 
section is the next best thing. 
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Consider the situation in the tangent space TxM. There, the ray tT is 
the analogue of our base geodesic a. The map (t, u) 1--4 t( T + u W), with 
u E (-f,+f) and t E [O,r], is the variation of the ray tT. One can see by 
inspection that the corresponding variation vector field has the value tW at 
time t along the said ray. With respect to the inner product 9ij (x,r) dx i ® 
dx j on TxM, the length squared of this variation vector field is simply t 2 

because the length of W was stipulated to be 1. This t2 describes a rate 
with which the "uth" ray is deviating from the base ray tT. 

We now have two variation vector fields at hand. The one on TxM is tW, 
and the one on M is U(t). Let us compare the Riemannian length squared 
II U(t) 112 with that of tW, which is t2. 

* If II U(t) 112 < t2, we say that the geodesic rays emanating from x 
on M are bunching together. 

* If II U(t) 112 > t2, we say that the geodesic rays emanating from x 
on M are dispersing. 

This comparison need only be made for small t, which means that we can 
get by with the first few terms in the power series expansion of II U(t) 112. 
Information which is valid on long time intervals can also be obtained, but 
that requires a more delicate comparison technique. See Chapter 9. 

Let us calculate (as in [CE]) the first four t derivatives of the func­
tion II U(t) 112. To reduce clutter, we abbreviate that as 1(t) and suppress 
(whenever possible) the t dependence on U(t) and its successive covariant 
derivatives. Since the base curve a(t) along which U(t) is defined is a ge­
odesic with velocity T, and since the inner product in question is 9r , we 
can apply Exercise 5.2.3 repeatedly to get 

where 

1(1) (t) 2 9r ( U , U(I») , 

1(2) (t) 2 9T( U(1) , U(1) ) + 
1(3) (t) 6 9T( U(2) , U(1) ) + 
1(4) (t) 8 9T( U(3) , U(I) ) + 

+ 2 9T ( U , U(4)) , 

DTU, U(l) 

U(2) .- DTDTU = - R(U, T)T , 

2 9T( U, U(2) ) , 

2 9T( U , U(3) ) , 

6 9r ( U(2) , U(2) ) 

.- DTDTDTU = - [DTRJ(U, T)T - R(U', T)T , 

U(4) ._ DTDTDTDTU. 

All covariant derivatives here are taken with reference vector T. 
Now evaluate the derivatives of 1 at t = 0 with the help of (5.4.4). Note 

that we do not need U(4)(0) because, in 1(4)(0), it is paired with U(O) which 
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happens to be zero. Anyway: 

Therefore 

U(O) 

U(1) (0) 

U(2) (0) 

U(3) (0) 

1(0) 
1(1) (0) 

1(2) (0) 

1(3) (0) 

1(4)(0) 

0, 

U' (0) = W E TxM , 

0, 

- R(W,T)T. 

0, 

0, 

2 9T (W, W) , 

0, 

- 8 9T(R(W,T)T, W). 

So we have the following power series expansion in t: 

The curvature operator was introduced in Exercise 5.2.5. Definition chasing 
tells us that 9T( R(W, T)T, W) is equal to 

K(T, W) { 9T(T, T) 9T(W, W) - [9T(T, wW } , 
where K(T, W) is a flag curvature. Recall that at the outset, we have 
normalized T E TxM to have Finsler norm F(T) = 1, and have used 
9ij (x,T) dxi Q9 dxj to choose only those W E TxM that have length one and 
are orthogonal to T. Therefore (5.5.2) simplifies to 

(5.5.3) 

Note that: 

* If the flag curvature at x is positive, then II U(t) 112 < t2 for small 
t. Thus geodesic rays emanating from x are spreading apart more 
slowly than the corresponding rays in TxM. In other words, the said 
geodesic rays are bunching together. 

* If the flag curvature at x is negative, then II U(t) 112 > t2 for small 
t. Thus geodesic rays emanating from x are spreading apart more 
quickly than the corresponding rays in TxM. In other words, the 
said geodesic rays are dispersing. 

These conclusions are illustrated in Figure 5.3. 
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On M, for t ~ 0+ 

IIWI! = 1 = F(T) 
IIU(t)11 < t 

Figure 5.3 

The straight ray t T and its variation t( T + u W) in TxM. Ex­
ponentiating this gives the geodesic ray a(t) := expx(tT) and its 
variation expx[ t (T + u W) 1 on M. The two are compared by 
examining the length squared of the respective variation vector 
fields. If the flag curvature at x is positive, then geodesic rays 
emanating from x appear to bunch together. If the flag curvature 
at x is negative, then geodesic rays emanating from x appear to 
disperse. This "appearance" is gauged by comparing the variation 
vector field U(t) with its generator tWo Their Riemannian lengths 
squared are, respectively, II U(t) 112 and t 2 • 
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* References for Chapter 6 

6.1 The Gauss Lemma 

Fix x E M. In TxM, we define the tangent spheres 

(6.1.1) Sx(r) := {y E TxM: F(x, y) = r} 

and open tangent balls 

(6.1.2) Bx(r) := {y E TxM: F(x, y) < r} 

of radii r. The exponential map expx is a local diffeomorphism at the origin 
of TxM because its derivative there is the identity; see §5.3. Thus, for r 
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small enough, not only does expx [ Sx (r)] makes sense, it is also diffeomor­
phic to Sx(r). The image set 

is called a geodesic sphere in M centered at x. We later show why it can 
be said to have radius equal to r. 

The punctured tangent space TxM" 0 is a Riemannian manifold with 
metric 

gx := 9ij (x,y) dyi ® dyi . 

Fix Y E TxM " 0; say F(x, y) = r. 

• Since F is constant on Sx(r), we have 

. . yj 
o = w t Fyi = w t 9ij -

r 

for any Wi a~i tangent to Sx(r). In particular, any constant multiple 

of yi a~i is gx-orthogonal to Sx(r). 

• Consider the ray ty, t ~ O. What we have just said, together with 
a moment's thought, implies that at any instant t > 0, the (ray's) 
velocity yi a~i is always gx-orthogonal to the tangent sphere Sx(tr) 
that the ray has just pierced. We record that symbolically as 

1 ty .1 Sx(tr) with respect to gx I· 

6.1 A. The Gauss Lemma Proper 

Applyexpx to the above setup. Namely, for r small, we take y E Sx(r) and 
exponentiate the ray segment ty, 0 ~ t ~ 1. The resulting radial geodesic 
expx(ty), 0 ~ t ~ 1 has velocity field T(t), with T(O) = y. It intersects all 
geodesic spheres of radii not exceeding r and centered at x. The fact that 
T is 9T-orthogonal to all the geodesic spheres that expx(ty) pierces is the 
essence of the following lemma. 

Lemma 6.1.1 (The Gauss Lemma). 

• Fix y E TxM" 0 and set r := F(x, y). Suppose expxy is defined. 

• Let T denote the velocity field of the geodesic expx(ty), 0 ~ t ~ 1 
emanating from x. Call this a radial geodesic. 

Technical statement: Fix any instant t E [0,1]. Take any vector 
V in the tangent space of Sx (tr). Then, at the time t location of our 
radial geodesic, we have the orthogonality relation: 

9T (expx*V, T) = 0 I. 
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OnM 

""" 90° reI. 

') to gT 

F(x,y) = r expx[Sx(tr)] 

Figure 6.1 

For r small, take y E Sx (r). With respect to the "punctured" 
Riemannian metric 9x, the ray ty intersects the tangent sphere 
Sx(tr) at right angles. Next, exponentiate the ray segment ty, 
o ::;; t ::;; 1. The resulting radial geodesic expxC ty), 0 ::;; t ::;; 1 has 
velocity field T(t), with T(O) = y. It is gT-orthogonal to all the 
geodesic spheres of radii not exceeding r and centered at x. 

Geometric statement: Suppose y is short enough that it be­
longs to some open tangent ball on which the exponential map is 
a diffeomorphism. Then, at each instant t, our radial geodesic (or 
more precisely its velocity) is gT-orthogonal to the geodesic sphere 
expx [ Sx (tr)] that it is piercing. Symbolically: 

expx (ty) ..L expx [ Sx (tr) ] with respect to 9 T 

Remarks: 

* Recall that along any curve (J" with velocity field T, 

gT := gij (a,T) dxi 0 dxj . 

* In the tangent space, we have deduced that the ray ty is always Yx­
orthogonal to the tangent spheres Sx(tr). According to this lemma, 
the exponential image of this ray is gT-orthogonal to the geodesic 
spheres expx [Sx (tr) ]. This phenomenon is a bit of a surprise because 
the exponential map is not known to be a local isometry, even in 
the Riemannian setting. 

Proof. 
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For the technical statement: 
Fix an instant r E [0,1]. Then ry E Sx(rr). Let c(u), -f < u < +f be 

any curve on Sx (rr) that passes through the point ry at u = O. Denote its 
velocity at that moment by V. Consider the rectangle {(t, u): 0 ~ t ~ 
1, -f < u < +f}. Define a variation of the geodesic u(t) := expx (try) , 
O~t~lby 

u(t,u) := exPx[ tc(u)] . 

* Every t-curve in this variation is a geodesic which emanates from 
x and has constant speed rr. Thus their lengths are equal and we 
have L'(O) = O. 

* The variation vector field U has U(O) = 0, U(I) = expx* V, and the 
latter is tangent to the geodesic sphere expx [ SX( rr) ]. 

* Since the velocity of expx(ty) is T, that of u(t) := expx(tTY) must 
be rT. 

Exercise 5.1.4 deals with a special case of the first variation of arc length. 
The variation we have just described is of that type. Inputting the above 
observations leads to 0 = 9T (expx*V, rT), where we have used the fact 
that 9(u,rT) = 9(u,T)' Hence Tis 9T-orthogonal to expx* V, as asserted. 

For the geometric statement: 
When r is sufficiently small as described, expx is a diffeomorphism from 

each Sx(tr) onto its image. Thus, every tangent vector on the geodesic 
sphere expx [ Sx (tr) ] can be expressed as expx* V for some V that is tangent 
to Sx(tr). The conclusion now follows from the technical statement we have 
just established. 0 

6.1 B. An Alternative Form of the Lemma 

The Gauss lemma can be recast into a form that appears more general. 
As before, fix y E TxM '- 0 and suppose expxy is defined. Fix any instant 
t E [0,1]. Take any vector W in the tangent space Tty (TxM '- 0). Note that 
the velocity of the ray ty is y, which also belongs to Tty(TxM '- 0). Then: 

(6.1.3) 

Both expx* and 9x are evaluated at the point ty. But we suppress this 
dependence whenever possible, in order to reduce clutter. 

To derive (6.1.3), resolve W into V +ay, where V belongs to the tangent 
space of Sx(tr), and ay is along the straight ray. Since T is the velocity 
field of expx(ty), we have (exPx*)cty)y = T(t) and T(O) = y. Thus 

9T ( expx*ay, T) a 9T (T(t) , T(t)) 

(6.1.4) = a 9T ( T(O) , T(O) ) 9x(ay, y) . 
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Also, the Gauss lemma says that 

gT(exPX*V, T) = 0 = 9x(V,y). 

Adding the last two statements produces (6.1.3). 
Let us digress to point out a subtlety in the last step of (6.1.4). 

* In gT( T(O) , T(O)), that T(O) refers to the initial velocity y of 
our geodesic expx(ty). This y is a point in the punctured manifold 
TxM" o. Thus gT = gij (x,y) dxi ® dxj and y = yi a~i . 

* In 9x(Y, y), that y refers to the time t velocity of the straight ray 
ty. As such, it is given by the tangent vector yi a~i which emanates 

from the point ty. On the other hand, 9x means gij (x,ty) dyi ® dyj, 
which is numerically the same as gij (X,y) dyi ® dyj, and the y here 
denotes the point yi a~i of TxM " O. 

6.1 C. Is the Exponential Map Ever a Local Isometry? 

Now take any two vectors, say W 1 and W2 , from the same tangent space 
Tty(TxM " 0). One might wonder whether, for 0 < t :( 1, 

(6.1.5) 

To analyze this, decompose Wl as V1 +O:lY, and W2 as V2 +o:2 y, where V1 , V2 

are tangent to Sx(tr). With the help of the Gauss lemma and a calculation 
very much like (6.1.4), it can be checked that (6.1.5) is equivalent to the 
following question: for 0 < t :( 1, 

(6.1.6) 

The more general (in appearance only) statement of the Gauss lemma, 
namely (6.1.3), evidently prompted these questions. One can check that: 

* In the Riemannian setting: (6.1.5) makes sense and holds at t = 0; 
if it also holds for 0 < t :( 1 and all y, then the exponential map is 
a local isometry between TxM and M. 

* In the non-Riemannian case, even if (6.1.5) were to hold at all y 
and all 0 < t :( 1, the exponential map would still fail to be a local 
isometry between TxM" 0 and M" x. See Exercise 6.1.4. 

It turns out that for Finsler manifolds of constant flag curvature A, and 
tangent vectors V1 , V2 which are 9x-orthogonal to the straight ray ty in 
TxM ,,0, one has, for 0 < t :( 1: 
(6.1.7) 

r------------------------------------------------, 



144 6. The Gauss Lemma and the Hopf-Rinow Theorem 

Here, r := F(x, y) is the constant speed of the geodesic ray expx(ty), 0 ~ 
t ~ 1, and 

1 
sin( v'A rt) 

v'Ar 

t 

~ sinh(Hrt) 
v-Ar 

{A>O} 
resp., for A = 0 . 

A<O 

In particular, for the A = 0 case, (6.1.6) holds. The derivation of (6.1.7) is 
carried out in the guided Exercises 6.1.5 and 6.1.6. 

Exercises 

Exercise 6.1.1: 

(a) Explain why for small r, expp is a CI-diffeomorphism from Bp(r) 
onto expp[Bp(r)]. 

(b) What can you say about the Finsler structure if the said diffeomor-
phism is of class Ck> I? 

Exercise 6.1.2: Suppose F(x, y) = r and the exponential map expx is a 
diffeomorphism on some open tangent ball containing y. Let V E Ty(TxM). 
Explain why the following two statements are equivalent: 

(a) V is tangent to Sx(r). 

(b) expx* V is tangent to the geodesic sphere expx [ SX( r) ]. 

Exercise 6.1.3: Use the Gauss lemma to help show that (6.1.5) and (6.1.6) 
are equivalent questions. 

Exercise 6.1.4: 

(a) Suppose our Finsler structure is Riemannian. Explain why, if (6.1.5) 
holds, then the exponential map expx is a local isometry. 

(b) Suppose our Finsler structure is non-Riemannian. Explain why, even 
if (6.1.5) holds, the exponential map expx is still typically not a local 
Finslerian isometry between TxM ....... 0 and M ....... x. Hint: is the norm 
induced by gT the same as the Finslerian norm? 

Exercise 6.1.5: Fix a nonzero y E TxM at which expxy is defined. Set 
r := F(x, y). This fixed y singles out an inner product gij (x,y) dx i ® dx j on 
TxM. Use it to choose and fix any V := Vi a~i that is orthogonal to y. 

( a) At any instant t along the straight ray ty, construct the tangent 
vector Vi a~i and denote it also as V. For any t =f. 0, check that V 
is yx-orthogonal to the straight ray. What are the initial data of the 
Jacobi field eXPx*(ty) (tV)? 
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(b) Let T denote the velocity field of the geodesic ray expx (ty), 0 ~ 
t ~ 1. It has constant speed r := F(x, y). Use Exercise 5.4.3 to help 
show that our Jacobi field is everywhere gT-orthogonal to the said 
geodesic ray. 

(c) Now suppose that our Finsler manifold has constant flag curvature 
A. Parallel transport V := Vi a~i' with direction vector T, to gen­
erate a vector field V(t) along expx(ty). Use Exercise 5.2.3 to check 
that V(t) is everywhere gT-orthogonal to the geodesic ray. Then use 
part (b) of Exercise 5.4.5 to show that S>.r2(t) V(t) is a Jacobi field. 
Identify its initial data. 

(d) Explain why the two Jacobi fields discussed in parts (a) and (c) are 
equal. That is, on a Finsler manifold of constant flag curvature A, 
we have 

, eXPx*(ty)(tV) = S>.r2(t) V(t) ,. 

Here, V is orthogonal to y in the sense that gij (x,y) Viyj = O. 

Exercise 6.1.6: We now derive (6.1.7) for Finsler spaces of constant flag 
curvature A. In Exercise 6.1.5, choose and fix any two V, say VI and V2 . 

Using part (d) of Exercise 6.1.5, and then Exercise 5.2.3, show that 

t2 gT( (exPx*)(ty) VI ,(exPx*)(ty)V2 ) = S~r2(t) gT( VI(O) , V2(0)) . 

Now check that 

gT(Vi(O), V2(O)) = % (x,y) v;.i V! = gx(ty)(Vi,V2 ). 

In the term involving gx, VI means VIi a~i and likewise for V2. 

6.2 Finsler Manifolds and Metric Spaces 

Let (M, F) be a Finsler manifold, where F is positively homogeneous of 
degree 1. Let a : [a, bJ --+ M be a piecewise Coo curve with velocity ~~ = 
d;i a~i E T,,(t)M. Its integral length L(O') is defined as 

L(O') := lb F( a, ~~) dt. 

For xo, Xl E M, denote by r(xo, xd the collection of all piecewise Coo 
curves a : [a, bJ --+ M with c(a) = X o and c(b) = Xl' Define a map d : 
M x M --+ [0,00) by 

It can be shown that (M, d) satisfies the first two axioms of a metric 
space. Namely: 
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(1) d(xo, xd ~ 0 , where equality holds if and only if X o = Xl . 

(2) d(X o ,X2) ~ d(X o ,XI)+d(XI,X2). 

If the Finsler structure F is absolutely homogeneous, then one also has 

In that case, (M, d) is a genuine metric space. We emphasize that gener­
ically, the distance function d on a Finsler manifold does not have the 
symmetry property (3). 

6.2 A. A Useful Technical Lemma 

In order to establish (1), we need the following technical lemma. 

Lemma 6.2.1. Let (M, F) be a Finsler manifold. At every point p E M, 
there exists a local coordinate system rp : U --> ~n that has the following 
properties: 

• The closure of U is compact, rp( p) = 0, and rp maps U diffeomor­
phically onto an open ball of ~n. 

• There is a constant c > 1 such that 

I ~ I y I ~ F(y) ~ ely I I and F( -y) ~ c2 F(y) 

for all y = yi a~i E TxM and X E U. Here, I y I := J8ij yi yj . 

• Given any xo , Xl E U, we have 

• For every pair of points x o , Xl E U, we have 

Proof. Take any local coordinate system rp : W --> ~n at p with rp(p) = O. 
Let lBln (r) denote the standard open ball {(Vi) E ~n : J 8ij Vi v j < r}. 
Take any r > 0 such that lBln(r) c rp(W). Its corresponding inverse image 
rp-l[lBln(r)] is a precompact U that satisfies the first claim of our lemma. 

For each X in the closure (in the manifold topology) U, consider the 
tangent space TxM. On this finite-dimensional vector space, we have the 
Minkowski norm y f--+ F(x, y). It is positive-definite, continuous, and pos­
itively homogeneous of degree one. Using the coordinate basis {a~i}' we 
also obtain an x-dependent Euclidean norm y f--+ Iyl. The quotient F(y)/lyl 
is well defined for y =I=- 0, and is invariant under positive rescaling. 
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Consider the portion of the indicatrix bundle over u. It is a compact set 
because U and the indicatrix {y E TxM: F(x,y) = I} are both compact. 
The said quotient is a positive continuous function on this compact set. 
So its absolute minimum m and absolute maximum M exist and are both 
positive. Now choose c > 1 such that ~ < m ~ M < c. In particular, 

for nonzero elements y in TxM, with x E U, one has ~ < ~~r) < c. 

Equivalently, for all y E TxM, x E U, we have 

(*) I ~ / y / ~ F(y) ~ c / y / I, 
which immediately gives F( -y) ~ c2 F(y). The second conclusion of our 
lemma has thus been established. 

Before tackling the third statement, we digress to make two technical 
observations. 

(**) 

* Observation (I): 

For any xo, Xl E U, one has d(xo, Xl) ~ c /cp(X1) - cp(xo) / . 

Indeed, let "( be the path in U whose image under cp is the line 
segment joining cp(xo) and cp(X1). Abbreviate the velocity field of "( 
as "('. Then 

d(xo, xd ~ Lp("() = 101 F(,,(') dt 

~ c 101 
/"('/ dt = c / CP(X1) - cp(xo) / , 

where the second inequality follows from (*). 

* Observation (II): 

Let ro := ~, Eo := ;c' and Uo := cp-1(lmn(ro)] C U. Take 
any two points Xo,X1 E Uo . Let "( : [0,1] --+ M be a 
piecewise Coo curve with "((0) = x o , "((1) = Xl. Suppose 
Lp("() ~ d(xo, xd + Eo; then the curve "( is necessarily 
contained in U. 

This can be deduced as follows. Note that by Observation (I), 
d(xo, xd ~ ~: for all xo, Xl E Uo . Thus the described curve,,( must 
satisfy 

3r 
Lp("() ~ -. 

5c 

Suppose"( is not contained in U. Let 0 < to < 1 be the first instant 
"( reaches the boundary au, say, at the point q := "((to). Observe 
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that Icp(q)1 = r. Then: 

1 
?:: - (r - ro) , 

c 
where the second inequality follows from (*). But this lower bound 

equals (5c:;;;1)r which, since c > 1, is ?:: ~~. A comparison with (**) 
produces a contradiction. SO'Y must in fact be contained in U. 

We are now ready to examine the third assertion of the lemma. In view 
of the first technical observation, we only need to derive the lower bound 
on d(xo, Xl)' where xo, Xl E Uo. This is because the first two conclusions 
of our lemma remain valid when restricted to the smaller open subset Uo • 

So, at the end, we simply replace the old U by this Uo • 

By the definition of metric distance, given any 0 < E < Eo, the two points 
x o , Xl can be joined by a piecewise Coo curve 'Y : [0, 1] ---t M with integral 
length 

LFC"/) :::;; d(xo,xd + E. 

Our second technical observation assures us that this 'Y must lie in U. A 
calculation similar to the one above then yields 

1 
LFC"/) ?:: - I cp(xd - cp(xo) I . 

c 

Hence 
1 
- I cp(xd - cp(xo) I :::;; d(xo, Xl) + E . 
c 

Letting E ---t 0 gives the desired estimate. 
The final assertion now follows from what we have just shown, through 

the symmetry of the Euclidean norm. Specifically, 

I cp(xd - cp(xo) I = I cp(xo) - CP(Xl) I . 0 

One of the consequences of this lemma is that the topology defined by 
the distance d is equivalent to the original manifold topology of M. See 
§6.2C. 

6.2 B. Forward Metric Balls and Metric Spheres 

We defined the notion of a tangent ball Bp(r) and a tangent sphere Sp(r) 
in the beginning of §6.1. These objects have radii r and center p, and live in 
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the tangent space Tx M. Their counterparts on M are the forward metric 
balls Bt(r) and the forward metric spheres St(r): 

(6.2.1) B;;(r) .- {x EM: d(p, x) < r} , 

(6.2.2) S;;(r) .- {x EM: d(P,x) r}. 

They are said to have center p. As we show in §6.3, if r is small, Bt(r) and 
S; (r) have metric radii r. 

* The metric distance function is in general not symmetric in its two 
arguments. This mirrors the fact that generic Finsler structures F 
do not satisfy F(x, -y) = F(x, y). For example, non-Riemannian 
Randers spaces are positively homogeneous but not absolutely ho­
mogeneous. 

* Since the distances in the above definitions are always measured 
from p, we tagged on "forward" as an adjective. 

6.2 C. The Manifold Topology Versus the Metric Topology 

Our goal here is to show that the manifold topology coincides with that 
generated by the forward metric balls. For this purpose, the second last 
inequality of Lemma 6.2.1 is of direct relevance. It says that: 

* Given any p EM, there is a coordinate map cp defined on the closure 
of some precompact open subset U containing p. 

* cp maps U diffeomorphically onto the open Euclidean ball ~n(r), 
and sends p to the origin. 

* Furthermore, there is a constant c> 1, depending only on p and'U, 
such that 

1 - I cp(xo) - cp(xd I ~ d(xo, Xl) ~ c I cp(xo) - CP(XI) I 
c 

(6.2.3) 

for any x o , Xl in U. Here, I I denotes the Euclidean norm on lin . 

• The right half of (6.2.3) says that points which are close to each 
other in the manifold topology are also close in the metric topol­
ogy. Equivalently, the metric topology is contained in the manifold 
topology. The technical argument is given below, and is entirely 
straightforward . 

• The left half of (6.2.3) seems to say that points deemed close by 
the metric topology are also close in the manifold topology. We 
are sounding a bit tentative here because, in order to use (6.2.3), 
one must ascertain that the points in question actually lie inside 
the (possibly) small coordinate neighborhood U. This is indeed the 
case. But as we demonstrate next, the requisite technical argument 
is less straightforward than the other inclusion described above. 
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Every forward metric ball is an open set: 
Take any point p in the forward metric ball 8;%'(s). The number E given 

by s - d( x, p) is therefore positive. Associated with p is an open set U, a 
coordinate map cp, an open Euclidean balllffin(r), and a constant c > 1 with 
the properties described in (6.2.3). By passing to a larger c if necessary, we 
may assume without any loss of generality that ~ ~ r. This, together with 
the fact that cp is a diffeomorphism, implies that 

o := cp-l [lffin(~)] 

is a well-defined open set in the manifold topology. It contains the point p. 
For each q E 0, the right half of (6.2.3) implies that 

d(p,q) ~ c I cp(q) I < 
E 

C - = E. 
C 

Thus 

d(x,q) ~ d(x,p) + d(p,q) < (S-E) + E = S. 

In other words, 0 is contained in 8;%'(s). 
Carrying out the above procedure for every point p in the forward metric 

ball 8;%, (s) shows that the latter is expressible as 11 union of manifold open 
sets. This is the straightforward half. 

Every open set is a union of forward metric balls: 
Now the less straightforward half. Let 0 be any open set in the manifold 

topology of M. Take any p E O. Associated with p is a coordinate neighbor­
hood U, a coordinate map cp, an open Euclidean ball lffin(r) , and a constant 
c > 1 with the properties described in (6.2.3). Shrink r, if necessary, so 
that U is contained in O. Let us demonstrate that 

(***) 8: ( ;c) cU. 

Since we have already arranged to have U cO, the said metric ball will 
then be contained in O. Carrying out such a process for each p E 0 would 
imply that the latter is a union of forward metric balls. 

So, it suffices to establish (***). Suppose there is a point q in the said 
metric ball that lies outside U. We derive a contradiction by reasoning as 
follows: 

* Since d(p, q) < ;c' there is a continuous piecewise smooth curve 
"((t), 0 ~ t ~ 1 that goes from p to q, and which is shorter than fc. 
In particular, the entire curve "( must lie in the forward metric ball 
8;;( fc). 

* Now, "( starts at p but its destination q is outside U. Let "((to) be 
the point at which it first leaves U. Note that for 0 ~ t < to, "((t) 
lies in U and 8:(;J. Hence the left half of (6.2.3) is applicable. It 
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1 r 
-;,; 1'P(r(t)) I ~ d(p,'Y(t)) < 2c 

r 
I 'P(r(t) ) I < '2 

for 0 ~ t < to. 

* On the other hand, since 'Y(to) is at the boundary of U, we have 

These last two conclusions violate the continuity of the composite map 
'P 0 'Y. This is the contradiction we seek. 

Let us summarize: 

The topology generated by the forward metric balls co­
incides with the underlying manifold topology. 

6.2 D. Forward Cauchy Sequences, Forward Completeness 

• A sequence {Xi} in M is said to converge to X E M if, given any 
open set 0 containing x, there exists a positive integer N (depending 
on 0) such that 

i ~ N ===> Xi EO . 

• A sequence {Xi} in M is called a forward (resp., backward) 
Cauchy sequence if, for all E > 0, there exists a positive inte­
ger N (depending on the E) such that 

N ~ i < j ===> d(Xi,Xj) < E [resp., d(Xj,Xi) < E] . 

Consider the last inequality in Lemma 6.2.1. It says that for each fixed p, 
there is a coordinate neighborhood U containing p, together with a constant 
c > 1 depending only on p and U, such that 

(6.2.4) 

for all X o , Xl in U. 
Using (6.2.4), together with what we have just said about the manifold 

topology and the metric topology, one can show that the following three 
statements 

are equivalent. This is the subject of Exercise 6.2.5. 
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One can also use (6.2.4) to check that among the convergent Cauchy 
sequences, there is no distinction between forward Cauchy and backward 
Cauchy. See Exercises 6.2.6. 

A Finsler manifold (M, F) is said to be forward complete with respect 
to its metric distance function d if every forward Cauchy sequence converges 
in M. It is backward complete with respect to d if every backward 
Cauchy sequence converges. See our example in §12.6, especially §12.6D. 

• Exercise 6.2.11 shows that a compact Finsler manifold is at the same 
time both forward and backward complete, whether d is symmetric 
or not. 

• If the Finsler structure F is absolutely homogeneous of degree one, 
then d is symmetric. In which case, forward completeness is equiv­
alent to backward completeness. Thus, for example, one only needs 
to speak of completeness when dealing with Riemannian manifolds. 

• Absolute homogeneity of F (equivalently, symmetry of d) is not a 
prerequisite for having both forward and backward completeness. 
For instance, the Finsler functions of Minkowski spaces are in gen­
eral only positively homogeneous of degree one. Yet, these spaces 
are always forward and backward complete. This issue is addressed 
more leisurely in Exercise 14.1.1. 

Exercises 

Exercise 6.2.1: 

(a) Suppose the Finsler structure F is absolutely homogeneous; explain 
why we must then have d(xo, Xl) = d(Xl' xo). 

(b) Which fact about F correlates with the triangle inequality satisfied 
by the distance function d ? Is absolute homogeneity needed? 

Exercise 6.2.2: 

(a) In the proof of Lemma 6.2.1, we sketched the arguments for deriving 
the second and the third [namely (6.2.3)] conclusions. Fill in the 
details. 

(b) Use (6.2.3) to deduce inequality (6.2.4). 

(c) Show that d(xo,xd is positive unless Xo = Xl. 

Exercise 6.2.3: Given a closed subset of Euclidean ]Rn, we know from 
topology that it is compact if and only if it is bounded. Explain why Lemma 
6.2.1 does not imply this property for the "metric" space (M, d). 

Exercise 6.2.4: Suppose expp is defined on all of Bp(r). 

(a) Explain why expp[Bp(r)] c::;; Bt(r). 

(b) At this moment, can you tell whether the same relationship holds 
between expp[ Sp(r)] and S:(r)? 
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Exercise 6.2.5: Let {Xi} be any sequence in a Finsler manifold (M, F). 
Prove that the following three statements are equivalent. 

( a) {Xi} converges to X under the manifold topology of M. 

(b) d(x,xd~O. 

(c) d(Xi'X) ~ O. 

Exercise 6.2.6: Use (6.2.4) to prove the following statements. 

(a) A convergent sequence is at the same time both forward Cauchy 
and backward Cauchy. 

(b) {xd is a convergent backward Cauchy sequence if and only if it is 
a convergent forward Cauchy sequence. 

Exercise 6.2.7: Let M be a Coo manifold equipped with a metric distance 
function d. Suppose there is a map F : T M ~ [0,00) such that, given any 
two Cl curves aI, a2 which emanate from X with initial velocities Yl, Y2, 
we have 

d(al(t) , a2(t)) = It I F(x, Yl-Y2) + o(t). 

Show that this F must have the following properties: 

(a) F(x, ).. y) = 1)..1 F(x, y) for all real numbers )... 

(b) F(x, Yl + Y2) ~ F(x, Yl) + F(x, Y2). 
(c) For any C l curve a that emanates from X with initial velocity y, 

one has 

F( ) = Ii d( x, a(t) ) 
X,Y m II . t-+O t 

This is in essence the Busemann-Mayer theorem [BuMa] for absolutely 
homogeneous F. For its counterpart in the positively homogeneous (but not 
absolutely homogeneous) case, see Exercise 6.3.4. 

Exercise 6.2.8: In this exercise, we illustrate another application of the 
inequality (6.2.4). To this end, let c> 1 and U (a coordinate neighborhood 
centered at p) be as described in Lemma 6.2.1. Let € > 0 be such that the 
forward metric ball Bi;( [1 + c2] €) is contained in U. Prove that: 

If 'Y is any minimal geodesic that emanates from a point (say, 
z) in the small ball Bi;(€) and terminates at p, then it must be 
contained entirely in the larger ball Bi;( [1 + c2] €). In case the 
distance function is symmetric, the said geodesic 'Y must actually 
lie entirely in Bi; ( € ). 

Here, a geodesic from Xo to Xl is said to be minimal if its length equals the 
metric distance d(xo, Xl)' Also, whenever the distance function is symmetric 
(equivalently, wheri the Finsler function is absolutely homogeneous), the 
decoration + on Bi; will be superfluous. 
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Suppose there was a minimal geodesic 'Y from some z E B;(f) to p that 
violated our claim. Derive a contradiction as follows: 

(a) When the distance function is possibly nonsymmetric. 
Since 'Y started inside B;(f) and was supposed to have wandered 
out of the larger metric ball B;( [1 + c2J f), it must first cross the 
boundary of B; (f) at some point A, and then the boundary of 
B;( [1 +2J f) at some point B. Give the portion of'Y from A to B a 
name, say (T. By using a triangle inequality on d(p, B), explain why 
the length of the segment (T must be at least C2 f. Hence the length 
of 'Y must exceed C2 f. On the other hand, the length of 'Y equals 
d(z,p). Use (6.2.4) to show that this is in turn < C2 f. 

(b) When the distance function is symmetric. Show that if 'Y 
wandered outside B;(f), its length would have to exceed f. On the 
other hand, this length equals d(z,p); explain why it must therefore 
be < f. 

Exercise 6.2.9: Let us give yet another application of (6.2.4). As usual, 
the Finsler structure F is only assumed to be positively homogeneous of 
degree one. We want to show that: 

Each of the following two families of functions 

{ d( . , q): q EM} and {d( q, . ): q EM} 

is equicontinuous at every p E M. 

To this end, let f > ° be given. 

(a) Consider any p E M. Take the coordinate neighborhood U and 
the constant c > 1 guaranteed by Lemma 6.2.1. Explain why, by 
passing to a larger c if necessary, one may assume without any loss of 
generality that the forward metric ball B+ := B;( 1~c2) is contained 
in U. Hint: review §6.2C. 

(b) For x E B+, use a straightforward triangle inequality to deduce that 
d(p, q) < f + d(x, q). Also, using an appropriate triangle inequality, 
together with part (a) and (6.2.4), show that d(x, q) < f + d(p, q). 
Thus, given any f > 0, there exists a B+ (depending on f and p but 
not on q) such that 

x E B+ ~ I d(x, q) - d(p, q) I < f. 

(c) For x E B+, use an appropriate triangle inequality, together with 
part (a) and (6.2.4), to deduce that d(q,p) < d(q,X)+f. Next, using 
a straightforward triangle inequality, show that d(q, x) < d(q,p) +f. 
So, given any f > 0, there exists a B+ (depending on f and p but 
not on q) such that 

xEB+ ~ Id(q,x) - d(q,p) I < f. 
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Since we have seen in §6.2C that forward metric balls are open sets, we are 
done. We see that the "equi-" part of the continuity is directly attributable 
to the triangle inequality and the remarkable property (6.2.4). 

Exercise 6.2.10: Suppose (M, F) is a Finsler manifold, where F is pos­
itively (but perhaps not absolutely) homogeneous of degree one. Let us 
define the backward metric balls as 

B;:= {xEM: d(x,p) < r}. 

(a) Show that every backward metric ball is an open set of M. 

(b) Prove that every open set of M is a union of backward metric balls. 

In other words, the topology generated by the backward metric 
balls is precisely the underlying manifold topology. 

Exercise 6.2.11: Let d be the possibly nonsymmetric metric distance func­
tion of a Finsler manifold. Prove that: 

If M is compact, then all forward and backward Cauchy sequences 
(with respect to d) must converge in M. In other words, com­
pact Finsler spaces are automatically both forward complete and 
backward complete. This holds whether the Finsler structure is 
absolutely homogeneous or only positively homogeneous. 

6.3 Short Geodesics Are Minimizing 

We now give a substantive application of the Gauss lemma. Recall that 
geodesics are defined as critical points of the arc length functional. It is 
then a natural question to wonder whether any such critical point is an 
absolute minimum. As we show, the affirmative answer for short geodesics 
is a consequence of the Gauss lemma and a fundamental inequality [namely 
(1.2.3)] in Finsler geometry. So, every short geodesic indeed minimizes the 
arc length functional, among all piecewise Coo curves that share its end­
points. The precise statement carries much more information than that, 
and is given in the following theorem. 

Theorem 6.3.1. 

* Fix a point p in a Finsler manifold (M, F), where F is positively 
(but perhaps not absolutely) homogeneous of degree one in y. 

* Suppose for some r and to, both positive, exPp is a CI-diffeomorph­
ism, from the tangent ball Bp(r + to) onto its image. 

Then: 

(a) Each radial geodesic expp(tv), 0 ~ t ~ r, F(P, v) = 1, will minimize 
distance (which is r) among all piecewise Coo curves in M that share 
its endpoints. 
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(b) Any piecewise Coo curve in M that has the same arc length and 
endpoints as the geodesic expp(tv), 0::;: t ::;: r, F(p, v) = 1, must lie 
inside expp [ Bp (r) U Sp (r)] and is in fact a reparametrization of that 
geodesic. 

(c) The following hold: 

(6.3.1) 

Remarks: 

expp[ Bp(r)] 

expp[Sp(r) ] 

• The hypothesis is satisfied by small positive rand f, in view of the 
Inverse Function theorem and (5.3.6) . 

• The statement expp[Sp(r)] = st(r) justifies our calling the object 
expp[Sp(r)] a geodesic sphere ofradius r. 

Proof. 

A special case of (a): 
Let us first prove that, 

If c(u), 0 ::;: u ::;: 1 is a piecewise Coo curve with endpoints c(O) = p 
and c(l) = expp(rv), and if c lies inside expp[ Bp(r) U Sp(r)], then 
its arc length is at least r. 

Note that r is the arc length of the unit speed geodesic expp(tv), 0::;: t::;: r, 
F(p, v) = 1. The argument we present is directly fashioned after the one 
given by Bao and Chern in [BC1]. 

Since c lies inside expp [ Bp ( r) U Sp ( r)]' we can express it as 

(6.3.2) c(u) = expp[ t(u) v(u)] , with F(p, v(u)) = 1 . 

The endpoints of care c(O) = p and c(l) = expp(rv), thus 

(6.3.3) 

(6.3.4) 

t(O) = 0, t(l) = r , 

v(l) = v. 

For the moment, digress to consider the following variation of our geo­
desic expp ( tv) : 

O"(t,u) := expp[tv(u)] , 

where 0 ::;: t ::;: r, 0 ::;: u ::;: 1. As usual, employ the abbreviations 

T 
a 

-
0"* at , 

u a 
0"* au 
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For each fixed u, T represents the velocity vectors of the unit speed geodesic 
expp[tv(u)]. The chain rule also tells us that 

[ dv(u)] 
U = expp* t ---a;;;- , 

where d~Su) is tangent to the indicatrix F(p,v) = 1. By the Gauss lemma, 
we see that 

(6.3.5) gT(U, T) = O. 

Returning to the curve e, we relate its representation (6.3.2) to the above 
variation. One has 

e(u) = u( t(u) , u) 

which, through the chain rule, gives 

de au dt au 
du at du + au 

In other words (see Figure 6.2), 

(6.3.6) h 1 · de f t e ve OClty du 0 e dt T - + 
du 

u. 
With this decomposition, we can obtain a lower bound for the length of e. 

To this end, we use the fundamental inequality (1.2.3), namely, 

Wi Fyi(X,y) :(: F(x,w) at all y i- O. 

---------

/ ,. /' 

/ ...... _____ - - - - - - .J...' 

e(O) = p 

Figure 6.2 

, , , 

, , 

: e(l) 
, II 
.. expp(rv) 

, , , - , -, 

The curve e(u) := expp[ t(u) v(u) 1 gives a I-parameter family of 
(possibly repetitious) directions v( u). Those in turn define a ge­
odesic variation u(t,u):= expp[tv(u)], with velocities T for the 
t-curves, and velocities U for the u-curves. The velocity of the 
curve e( u) is ~~. By the chain rule, we find that ~~ = ~~ T + U. 
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It is an equality if and only if w = Q: y for some Q: ;;:: O. Recall from the 
discussion in §1.2.C that this can be interpreted as a kind of Cauchy­
Schwarz inequality for normed vector spaces. Anyway, into this inequality 
we substitute c(u) for x, ~~ for w, and T for y. In conjunction with (6.3.6), 
we obtain 

( de) dt i (6.3.7) F x, du ;;:: Fyi(e,T) du T 

By (1.4.3) and (6.3.5), we have 

. 1 . . 
Fyi(e,T) U' = F 9ij(c,T) TJ U' = O. 

Using Euler's theorem together with the fact that for fixed u, each geodesic 
expp[ tv(u)] has (constant) unit speed and initial velocity v(u), we get 

i dt dt dt dt 
Fyi(C,T) T du = F(c,T) du = F(p, v(u)) du = du . 

Inputting these last two statements into (6.3.7), we see that 

( dC) dt 
F x, du ;;:: du . 

Hence, 

(*) L(c) = 101 
F( x, :~) du ;;:: 101 

:: du = t(l) - t(O) = r. 

Thus we have shown that if e lies in expp [ Bp (r) U Sp (r)] and shares the 
same endpoints with the geodesic expp(tv) [0 ~ t ~ r, F(p, v) = 1], then it 
cannot be shorter than the geodesic in question. 

The rest of (a) and the first half of (b): 
What if c wanders outside expp[Bp(r) U Sp(r)J? Well, in that case, let 

uo < 1 be the first instant it intersects the geodesic sphere expp [ Sp (r) ]. 
The argument presented above shows that the portion e( u), 0 ~ u ~ uo 

already has arc length at least r, hence that of e must exceed r. Thus part 
(a) is completely proved, and so is the first half of part (b). 

The second half of (b): 
Since we now know that any e which has the same arc length and end­

points as the unit speed geodesic expp(tv), 0 ~ t ~ r must lie inside 
expp[Bp(r) U Sp(r)], the representation (6.3.2)-(6.3.4) holds. Also, by hy­
pothesis we have L(e) = r. Thus (*) becomes an equality. A bit of argument­
chasing shows that this can happen if and only if the fundamental inequality 
is actually an equality. Such is in turn valid if and only if 

de 
du = Q: T for some Q:;;:: 0 . 
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Comparing this with (6.3.6), we conclude that the "transverse" component 
U of ~~ must vanish. In view of our formula for U, this means that 

expp* [t(u) d~~U)] = O. 

But expp is by assumption nonsingular on Bp (r) U Sp (r), so this last state­
ment is equivalent to 

In other words, 

and 

dV(u) 
du 

O. 

v(u) vel) - v 

e(u) = expp[t(u)v] , 0 ~ u ~ 1, 

with 

teO) = 0 and tel) = r. 

This is manifestly a reparametrlzation of the geodesic expp (tv), 0 ~t ~ r. 
Part (b) is now completely proved. 

The first half of (c): 
By Exercise 6.2.4, we have expp[Bp(r)] ~ Bt(r). 

Suppose for the sake of argument that expp[Bp(r)] is a proper 
subset of the forward metric ball Bt (r). 

Then there exists a piecewise Coo curve e(u), 0 ~ u ~ 1 such that e(O) = p, 
e(l) = q, L(e) < r, and q ~ expp[Bp(r)]. Since the destination of e lies 
outside expp[ Bp(r)], it must intersect expp[ Sp(r)] at least once during its 
journey. Let U o ~ 1 be the first instant that happens. By part (a), we 
conclude that the portion e(u), 0 ~ u ~ U o must have arc length at least 
r, which contradicts the statement L(e) < r. Thus the above supposition 
is false and we have 

instead. 

The second half of (c): 
What we have just deduced says that expp [ Bp (r + 0)] = Bt (r + 0) for 

small o. In particular, every point on st (r) can be reached from p through a 
unit speed radial geodesic expp(tv), 0 ~ t ~ r. Thus st(r) ~ expp[Sp(r)]. 
A moment's thought shows that the inclusion in the other direction is a 
consequence of part (a). So 

expp[Sp(r)] = st(r). 0 
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Exercises 

Consider a piecewise Coo curve'Y : [a, bJ -> M. We say that short pieces 
of'Y are minimizing if, for every to E [a, b], there exists a subinterval 

[al ,blJ := [to - E, to + E J n [a, bJ 

such that 

Lhl[al,bl]) ~ L(c) 

for all piecewise Coo curves c which share the same endpoints with 'Y1[a"b, ], 

Exercise 6.3.1: Show that short pieces of a geodesic are indeed minimizing, 
as the title of this section asserts. 

Exercise 6.3.2: Show that if short pieces of a piecewise Coo curve 'Yare 
minimizing, then 'Y can in fact be reparametrized as a constant speed geo­
desic. Hint: your argument may depend on the smooth extension of curves 
that satisfy second order ODEs. 

Exercise 6.3.3: Analogous to the "forward" metric balls, we have also 
defined the "backward" metric balls 

B; := {XEM: d(x,p) < r}. 

See Exercise 6.2.10. Here, our goal is to show that: 

For every point p in a Finsler manifold (M, F), there exists a small 
r > 0 such that every pair of points qo, q1 in B: (r) n B; (r) can 
be joined by a unique minimizing geodesic from qo to q1. 

Note that it is the intersection that we want here, not the union. 

(a) First apply the Inverse Function theorem to the map 

(q,v) f---+ (q, expqv). 

Conclude that at every p E M, there exists an r > 0 (depending 
only on p) such that for all q close to p, the map expq is a C 1_ 

diffeomorphism from Bq(2r) onto Bt(2r). 

(b) By shrinking r if necessary, we assume without loss of generality 
that all points q in B: (r) n B; (r) may be considered close enough 
to p so that the aforementioned property of eXPq holds. Show that 
this neighborhood of p has the feature we are supposed to establish. 

(c) Also, check that the resulting minimizing geodesics all lie in B;(3r). 

Exercise 6.3.4: Let (M, F) be a Finsler manifold, where F is positively 
(but perhaps not absolutely) homogeneous of degree one. Let 0'( t), 0 ~ t < E 

be any short (hence E must be small) C 1 curve that emanates from p with 
initial velocity v := Vi a~i' 

(a) Show that 0' admits the representation O'(t) = expp(Yt) , where Yt is 
a curve in TpM that emanates from the origin with initial velocity 
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v. Strictly speaking, the local coordinates xi on M induce global 
coordinates yi on TpM. Therefore, we should have asserted that the 
initial velocity of Yt is Vi a~' rather than Vi a~'. However, this is a 
forgivable confusion on linear spaces, of which TpM is one. 

(b) Use Theorem 6.3.1 to explain why d(p, a(t» = F(p, Yt). 

(c) Check that v = limt-+o+ t Yt . 
(d) Finally, use the continuity of F to help you deduce that 

F(P,v) = lim d(p, a(t» . 
t-+O+ t 

This is the Busemann-Mayer theorem [BuMa] for positively homoge­
neous functions F. 

Exercise 6.3.5: The following argument seems to have bypassed the use 
of the fundamental inequality (1.2.3) in proving part (a) of Theorem 6.3.1. 

Begin with (6.3.6): ~~ = :~ T + U. By the Gauss lemma, gT(U, T) = o. 
So 

( dc dc) I dt 12 I dt 12 
gT du' du = du gT(T, T) + gT(U' U) ~ du 

Here, T is the velocity field of the unit speed geodesics expp [ t v( u) J, and 
we have used the fact that gT(T, T) = 1. Thus 

II~:II := 
( de dC) Idtl 

gT du' du ~ du . 

Upon integration, we get 

11 II ~: II du ~ 11 I ~: I du ~ 111 ~: dul = It(1) - t(O)1 r . 

Therefore L(c) ~ r. 

(a) Can you identify the flaw in this argument? 
(b) Explain why the above argument is valid in the Riemannian case. 

6.4 The Smoothness of Distance Functions 

6.4 A. On Minkowski Spaces 

We begin with a Minkowski space (l~n, F). The distance from the origin 
of any Y E ~n is simply F(y). Recall that the Minkowski norm F is by 
hypothesis Coo on ~n ,,0. As a matter of fact, its square F2 is differentiable 
and C 1 at y = 0, and the derivative there is zero. Indeed: 

* Note that 

F2(tV) 

F2(tV) 

t2 F2 ( v) , t > 0 , 

t2 F2( -v), t < 0 . 
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So all directional (hence partial) derivatives of F2 are zero at y = O. 
By contrast, those of F do not exist at the origin, even if F is 
absolutely homogeneous of degree one. 

* One can derive the identity 

8F2 . 
8yi (y) = 2 yJ 9ii (y), for all y i= 0 . 

Since the gij are constant along rays, we conclude that (gij) is a 

bounded positive matrix. Therefore ~~: (y) -> 0 as y -> O. 

In the Riemannian setting, F2 (y) = gij yi yj, where the gij are constants. 
Thus F2 is C2 (in fact, COO) at y = O. It turns out that the Riemannian 
case is the only scenario in which F2 can be C2 or smoother at the origin. 
To see this, suppose F2 is C2 at y = 0, which then enables us to do a 
second-order Taylor expansion. Since F2 and its derivative both vanish at 
y = 0, we have 

1 82F2 
F2(v) = - -8 '8 .(0) viv j + O(lv I3 ) . 

2 y' yJ 

But F2(v) is homogeneous of degree 2 in v, so all the higher-order terms 
must vanish, and our claim follows. 

Let us summarize: 

Lemma 6.4.1. Let (IRn, F) be a Minkowski space, where F is positively 
(but perhaps not absolutely) homogeneous of degree one. The square F2 
of the distance function is: 

(a) Coo away from the origin. 

(b) C 1 at the origin and has a zero derivative there. 

(c) C 2 at the origin if and only if F is Riemannian. 

6.4 B. On Finsler Manifolds 

Fix a point p EM. Let dp := d(p" ) be the distance function as measured 
from p, using the Finsler structure and integrating along curves. See the 
beginning of §6.2. 

* Note that for x close to p, we can write x = expp ( v). The corre­
spondence x ...... v is only Cl at p, although it is Coo away from p. 
We learned that in §5.3. 

* In view of Theorem 6.3.1, the geodesic expp(tv), 0 ~ t ~ 1 is mini­
mizing. It also has constant speed F(v). Hence 

dp(x) = d(p,x) = F(v) . 
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These, together with Lemma 6.4.1, now imply that d~ is Coo in a punctured 
neighborhood of p, is C 1 at p, and its derivative there is zero. 

If F happens to be Riemannian, then the correspondence x +-> v is Coo 
even at p. In that case, the function d~ is Coo (in particular, C 2 ) at p. 

Conversely, suppose d~ is C 2 at p. We perform a second-order Taylor 
expansion of ~ in an arbitrary (COO) coordinate chart 'P : U c M -+ ~n 
with 'P(p) = O. Since d~ vanishes at p and has a zero derivative there, 

2 _ 1 {P~ i j (3 ) 
dp(x) - 2 OXi{}xj (p) x x + D Ixl . 

Given any y = yi a~i E TpM, we can use the components yi to define 
a useful curve u(t) := 'P-l[t(yi)] in the coordinate patch U. This curve 
passes through the point p with initial velocity y. By Exercise 6.3.4, 

F(p, y) = lim ~ dp ( u(t)) . 
t-+O+ t 

Using our Taylor expansion, we have 

dp ( u(t) ) 1 V 1 (}2d:f, .. 3 
t = - -2 {} "8 .(p) ty'tyJ + D(ltyl ) . 

t x' xJ 

Therefore 

F(p, y) = 

which says that F is Riemannian in TpM. 
We have just derived the exact analogue of Lemma 6.4.1: 

Proposition 6.4.2. Let (M, F) be a Finsler manifold, where F is Coo on 
T M " 0, and is positively (but perhaps not absolutely) homogeneous of 
degree one. Fix any p EM. The function d~ that measures metric distance 
squared from pis: 

(a) Coo in a punctured neighborhood ofp. 

(b) C 1 at p and has a zero derivative there. 

(c) C2 at p if and only if F is Riemannian in TpM. 

Exercises 

Exercise 6.4.1: Let (~n, F) be a Minkowski space. This exercise concerns 
the strict convexity of the open balls 

B(r):= {YE~n: F(y)<r}. 

Namely, every line segment with endpoints in B(r) must be completely 
contained in B(r). 
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(a) Parametrize the line segment in question as 'Y(t) = Y + t~, a ~ t ~ 
b. If 'Y passes through the origin, deduce the conclusion from the 
homogeneity of F. 

(b) Suppose 'Y does not pass through the origin; that is, y =f 0 and ~ 
is not collinear with y. Consider the function h(t) := F(y + t~), 
a ~ t ~ b. By hypothesis, h(a) and h(b) are both less than r. Use 
the chain rule (which is applicable because y+t~ never goes through 
the origin) to show that 

hlf ( t) = a2 F . ~z ~J • 

ayZayJ l(yHe) 

Then explain, with the help of (1.2.9), why the graph of h(t) is 
concave up throughout [a, b]. Why is that relevant to the problem 
at hand? 

Exercise 6.4.2: Let p be any point in a Minkowski space (I~n, F). Define 

B(p,r) := {YE~n: F(y-p) < r}. 

Show that B(p, r) is strictly convex. 

Exercise 6.4.3: The above statements extend from Minkowski spaces to 
Finsler manifolds, and are results of Whitehead's [W]: 

Let K be a compact subset of a Finsler manifold (M, F). Then 
there exists a positive number t such that every Bt (r) with p E K 
and r ~ t is strictly convex. Namely, given any geodesic segment 
with endpoints in Bt(r), it must stay entirely in Bt(r). 

Would you attempt to give a proof of this theorem? 

Exercise 6.4.4: Let (M, F) be a Finsler manifold. Suppose F is Coo on 
T M ....... 0, and is possibly only positively homogeneous of degree 1. Fix q E M. 
Do the conclusions of Proposition 6.4.2 hold for the function cP( . , q) that 
measures metric distance squared towards q? 

6.5 Long Minimizing Geodesics 

In this section and the next, we study various characterizations of forward 
complete Finslcr manifolds (M, F) through the Hopf-Rinow theorem. Two 
rather striking features emerge. 

• We find that the behavior of geodesics controls, and is controlled 
by, the metric space structure. 

• It is shown that on a metrically forward complete Finsler manifold, 
any two points can be joined by a minimizing geodesic. The fact 
that a connecting geodesic exists at all, let alone a (possibly "long") 
minimizing one, is itself a surprising phenomenon. 
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The following proposition is the driving force behind what we just dis­
cussed. Since our Finsler structure is only assumed to be positively homo­
geneous of degree 1, the metric distance function d may not be symmetric. 
This introduces a subtle twist (which is happily resolved by Exercise 6.2.9) 
in the standard proof. Nevertheless, we owe our style of presentation to 
O'Neill [ON]. 

Proposition 6.5.1. Let p be any point in a Finsler manifold (M, F), 
where F is positively (but perhaps not absolutely) homogeneous of degree 
one. Suppose 

* M is connected, and 

* expp is defined on all of TpM. 

Then: 

• For any q E M, there exists a minimizing unit speed geodesic 
expp(tv) from p to q. 

• The direction of the unit initial velocity v is chosen in the following 
way. Among all points on a sufficiently small metric sphere st (r) 
centered at p, the point expp(rv) is closest, although perhaps not 
uniquely so, to the point q. 

Remark: We soon show that the hypothesis of "expp being defined on all 
ofTpM" is equivalent to the forward completeness of M, whether regarded 
as a "metric" space or as a topological space. 

Proof. Fix a sufficiently small r. Then (6.3.1) assures us that 

expp[Bp(r)] = Bt(r) and expp[Sp(r)] = St(r) . 

Here, Sp and Bp are specified by F = rand F < r in TpM, while st and 
Bt are defined by d( p , . ) = rand d( p , . ) < r. If q E B; (r), then Theorem 
6.3.1 ensures the desired conclusion. 

So suppose q ¢. B; (r). We seek the minimizing geodesic by learning how 
to aim properly from p towards q. The insight here is that the geodesic in 
question must cross the metric sphere st (r) at a point m that is closest 
to q. See Figure 6.3. The existence of this m follows from the continuity of 
d( . , q) (see Exercise 6.2.9) and the compactness of St(r). 

Since q lies outside B;(r), any curve c from p to q can be broken up 
into two segments Cl and C2, where Cl ends on St(r) and C2 emanates from 
S;(r). By part (a) of Theorem 6.4.1, the length of Cl will be at least r, 
which is d(p, m). Also, the definition of m implies that the length of C2 is 
at least d(m, q). Thus L(c) ~ d(p, m) +d(m, q), from which we deduce that 
d(p, q) ~ d(p, m) +d(m, q). On the other hand, the ":::;" statement is always 
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Figure 6.3 

The point m minimizes the function d( . ,q) on the forward metric 
sphere Sit"(r). Intuitively, we are minimizing over all possible di­
rections issued from p. And Sit" (r) can be viewed as parametrizing 
these directions. By going from p to m through the radial geodesic 
segment expp(tv), 0 ~ t ~ r, we have aimed properly towards q. 
Once past m, all one needs to do is to keep on going. Namely, keep 
on extending expp(tv) to t > r until one arrives at q. According to 
the analytical argument at the end of proving Proposition 6.5.1, 
the destination q will be reached in finite time. 

valid because of the triangle inequality. Therefore, proper aiming results in 

d(p,m) + d(m,q) = d(p,q) . 

Write m as expp (rv), with F(p, v) = 1. We claim that the unit speed 
geodesic a(t) := expp(tv) is precisely the minimizing geodesic being sought. 
Our hypothesis guarantees that a(t) is defined for all t. It remains to check 
that when t = d(p, q), we have a(t) = q. 

To this end, let T be the subset of all t E [0, d(p, q) 1 that satisfy 

t + d( at , q) = d(p, q) . 

Here, we have abbreviated a(t) as at to avoid excessive use of parentheses. 
Note that if d(p, q) E T, then the defining statement of T implies that 
d( ad(p,q) , q) = O. Hence the desired conclusion 

ad(p,q) := a[ d(p, q) 1 = q 

would immediately follow. 
Suppose for the sake of argument that d(p, q) f/. T. This, together with 

the fact that T is closed (by continuity; again, we need Exercise 6.2.9) and 
nonempty (because rET), tells us that to := Max T is strictly less than 
d(p, q). From p := a(to), we aim again at q. That is, q lies outside some 
forward metric ball Bt (f) with small f, and there exists a certain point in 
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on S; (r) such that 

d(p,rh) + d(rh,q) = d(p,q) . 

Since to E T, adding it to this equation yields 

(*) to + d(p, rh) + d(rh, q) = d(p, q) . 

Let (j be the geodesic from p to rh; it has length d(p, rh). Using this and 
d(p, q) ~ d(p, rh) + d(rh, q), equation (*) can be transformed to read 

L( O"I[O,to ]) + L( (j) ~ d(p, rh) . 

But the union of O"I[O,to ] with (j is itself a curve from p to rho This means 
that 

d(p, rh) ~ L( 0"1 [O,t o ] ) + L( (j) . 

So we actually have 

L( O"I[O,to ]) + L( (j) = d(p, rh) . 

The said union is therefore minimizing. By Proposition 5.1.1, it must be 
C 1 . Thus the two curves are joined together without kinks to form a single 
geodesic; namely, O"(t), 0 ~ t ~ to + r. Equation (*) now reads 

(to + r) + d( O"'o+i' , q) = d(p, q) , 

which says that (to + r) E T, a contradiction. This means that d(p, q) E T 
after all, and we are done. D 

Exercises 

Exercise 6.5.1: Consider the conclusion of the proposition we just estab­
lished. It is evident that we need connectedness. But where exactly did that 
hypothesis get used in the proof? 

Exercise 6.5.2: Proposition 6.5.1 asserts that there is a minimizing geo­
desic from p to q; but it never claims that there is only one such geodesic. 

(a) Give an example on the 2-sphere for which there are at least two 
minimizing geodesics joining p and q. 

(b) Can you think of another example, but not on the 2-sphere? 

(c) Is there an example in which that minimizing geodesic is always 
unique? 

Exercise 6.5.3: Consider the following statement: 

If M is connected and if expp is defined on all of TpM for some 
p EM, then any two arbitrary points q1, q2 in M can be connected 
by a minimizing geodesic. 
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Do you think it is true? Do keep in mind that the reverse of any geodesic 
from p to ql may not be a geodesic at all! This rather pathological issue 
was addressed in Exercise 5.3.3. 

6.6 The Hopf-Rinow Theorem 

A Finsler manifold (M, F) is said to be forward geodesically complete 
if every geodesic 'Y(t), a::::; t < b, parametrized to have constant Finslerian 
speed, can be extended to a geodesic defined on a ::::; t < 00. The Hopf­
Rinow theorem gives several characterizations of this completeness. For its 
proof, we again borrow the streamlined arguments from [ON]. However, we 
do have to exercise care because the metric distance in question may not be 
symmetric. Compare our exposition here with that given by Dazord [Daz]. 

Theorem 6.6.1 (Hopf-Rinow). Let (M, F) be any connected Finsler 
manifold, where F is positively (but perhaps not absolutely) homogeneous 
of degree one. The following five criteria are equivalent: 

(a) The "metric" space (M, d) is forward complete. 

(b) The Finsler manifold (M, F) is forward geodesically complete. 

(c) At every point p EM, expp is defined on all ofTpM. 

(d) At some point p EM, expp is defined on all ofTpM. 

(e) Every closed and forward bounded subset of (M, d) is compact. 

Furthermore, if any of the above holds, then every pair of points in M can 
be joined by a minimizing geodesic. More details about that geodesic are 
given in Proposition 6.5.1. 

Remarks: The following subtleties arise because the Finsler structure is 
generically only positively homogeneous of degree 1, hence its associated 
metric distance d is typically nonsymmetric. 

* Forward completeness as a metric space means that every forward 
Cauchy sequence (§6.2D) is convergent. Exercise 6.2.5 explains why 
there is no need to attach the adjective "forward" to the notion of 
convergence. Exercise 6.2.11 shows that compact Finsler mani­
folds are always forward complete (and backward complete). 

* The Hopf-Rinow theorem only involves forward geodesic complete­
ness. There are other theorems (see, for instance, §12.4) that also 
require the notion of backward geodesic completeness. Namely, 
every geodesic 'Y(t), a < t ::::; b, parametrized to have constant 
Finslerian speed, should be extendible to a geodesic defined on 
-00 < t ::::; b. In the Finslerian realm, these two notions are not 
equivalent, unlike Riemannian geometry. See §12.6 for an explicit 
example. 
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* If F is absolutely homogeneous of degree one, then for­
ward and backward geodesic completeness either both hold 
or both fail. This is the case for Riemannian metrics. How­
ever, the converse is false! Namely, forward and backward ge­
odesic completeness can both hold without F having to be abso­
lutely homogeneous. Such a phenomenon is illustrated by locally 
Minkowskian spaces. There, the geodesics with constant Finslerian 
speed are affinely parametrized straight lines in some suitable coor­
dinate systems (see Exercise 5.3.4). A moment's thought shows that 
these geodesics are indeed both forward and backward infinitely ex­
tendible. 

* A subset is said to be forward bounded if it is contained in some 
forward metric ball B:(r), defined in (6.2.1). That subset is back­
ward bounded if it is contained in some backward metric ball, 
defined in Exercise 6.2.10. In the Finsler setting, forward bounded­
ness and backward boundedness are two distinct concepts. This is 
also explicitly illustrated in §12.6. 

* The concept of a closed subset is best defined in terms of the un­
derlying manifold topology of M. According to §6.2C, the manifold 
topology coincides with that given by the forward metric balls. 

Proof. 

• Suppose (a) holds. Let "Y(t), a ~ t < b be a maximally forward 
extended geodesic. Without loss of generality, let us assume that 
it has unit speed. If b =1= 00, take an increasing sequence {ti} in 
[a, b) converging to b. The corresponding sequence ("(ti)} is forward 
Cauchy because, having unit speed implies that for i ~ j, we have 

Hence by (a) it converges to some q E M. Define "Y(b) as q. Now ODE 
theory tells us that "Y(t) must in fact be defined on a neighborhood 
of t = b, which is a contradiction. Thus b = 00 after all, and we have 
forward geodesic completeness. 

• Suppose (b) holds. Criterion (c) is then automatic. And of course 
(c) implies (d). 

• Suppose (d) holds. Let A be a closed and forward bounded subset 
of (M, d). For each q E A, Proposition 6.5.1 ensures that there 
exists a minimizing geodesic expp(tvq), 0 ~ t ~ 1 from p to q. The 
collection of all Vq is a subset A of TpM. This subset is bounded 
because F(p, vq ) = d(p, q) which, by the forward boundedness of A, 
is ~ some r independent of q. In other words, A is contained in the 
compact set Bp (r) U Sp (r) and exppA = A. By being closed and 
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sitting inside the compact set 

A must itself be compact. This establishes (e). 

• Finally, suppose (e) holds. Let {Pi} be a forward Cauchy sequence 
in M. By the triangle inequality (see §6.2), it must be forward 
bounded. The closure of its point set, with respect to the mani­
fold topology, is again forward bounded; see Exercise 6.6.2. This 
closure, denoted A, must then be compact, in view of the Heine­
Borel hypothesis (e). 

We claim that the sequence {Pi} therefore contains a convergent 
subsequence. To see this, suppose it has no convergent subsequence. 
Then at each pEA, there exists a small forward metric ball (cen­
tered at p) that contains no point of {Pi} except perhaps at its 
center. By §6.2C, these forward metric balls are open in the mani­
fold topology. Since they form an open cover for the compact A, we 
can extract a finite subcover. By construction, each forward ball in 
this finite subcover can contain at most one point of our sequence. 
Consequently, the point set of the said sequence is finite. In which 
case there surely is at least one convergent subsequence, and that is 
the contradiction we seek. 

In order to avoid subscripts upon subscripts, let us denote the 
convergent subsequence as {Po}. Say it converges to some q E A c 
M. We now check that {pd must converge to q as well. To this 
end, let to > 0 be given. Since the sequence {Pi} is forward Cauchy, 
there is an Nl such that if Nl ~ i < j, then d(Pi,Pj) < ~. Also, the 
subsequence {Po} converges to q. Thus there exists an N2 such that 
if a ~ N 2 , then d(q,Pa) < ~. 

Let N be the larger of Nl and N2 • By further increasing N if 
necessary, we may assume without loss of generality that it actually 
equals some index in the convergent subsequence. And, since N is 
at least as large as N2 , one sees that d(q,PN) < ~. Thus, whenever 
i ~ N, we have 

to to 
< 2 + 2 = to. 

Given (e), we have just demonstrated that every forward Cauchy 
sequence is convergent. Hence (M, d) is forward complete. 

This finishes the proof of the theorem. D 

Compare our treatment of completeness with that in Udriste lUll, [U2]. 
Keep in mind that, for generic Finsler metrics, there is a distinction between 
forward and backward completeness. 
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Exercises 

Exercise 6.6.1: This concerns the beginning of our proof of the Hopf­
Rinow theorem. 

(a) Suppose, instead of an increasing sequence, {td is any sequence 
in [a,b) that converges to b. Explain why d('Y(ti ) , 'Y(tj)) is not 
necessarily bounded above by 1 ti - t j I. 

(b) Is the definition of 'Y(b) in the proof independent of our choice of 
the convergent sequence? 

(c) Also, provide the precise ODE statements to which we alluded. 

Exercise 6.6.2: Let A be any subset of a Finsler manifold M, with distance 
function d induced by the Finsler structure F. A point x E M is said to be 
in the closure of A if there is a sequence {xd in A that, under the manifold 
topology of M, converges to x. 

(a) Suppose x is in the closure of A. Prove that for each E > 0, there 
exists an Xi E A such that d(Xi'X) < Eo Hint: you may need to 
consult Exercise 6.2.5. 

(b) Use part (a) and the triangle inequality (see §6.2) to show that the 
closure of a forward bounded subset is again forward bounded. 

Exercise 6.6.3: 

(a) Show that any two points p, q of a forward complete connected 
Finsler manifold can be joined by a minimizing geodesic. 

(b) Revisit Exercise 6.5.3 and make a better-informed decision. 

Exercise 6.6.4: Prove that: 

A compact Finsler manifold (M, F) is both forward and backward 
geodesically complete, whether F is absolutely homogeneous or 
only positively homogeneous. 

Hint: Exercise 6.2.11 may be helpful. 

Exercise 6.6.5: Let F be a Finsler structure that is positively (but perhaps 
not absolutely) homogeneous of degree one. Define 

F( x, y) := F( x, - y) . 

(a) Verify that F satisfies all the axioms (§1.1) of a Finsler structure. 

(b) Suppose (I is a geodesic of the Finsler structure F. Prove that the 
reverse of (I is a geodesic of the Finsler structure F. 

Exercise 6.6.6: Let (M, F) be a connected Finsler manifold, where F is 
positively (but perhaps not absolutely) homogeneous of degree one. Sup­
pose the exponential map of F (as described in Exercise 6.6.5) is defined on 
all of some tangent space TpM. Can you formulate and prove a companion 
version of Proposition 6.5.1? 
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Exercise 6.6.7: Can you prove the following companion of the Hopf-Rinow 
theorem? (Again, see Exercise 6.6.5 for the definition of F in terms of F.) 

Let (M, F) be any connected Finsler manifold, where F is positively 
(but perhaps not absolutely) homogeneous of degree one. The following 
five criteria are equivalent: 

(a) The "metric" space (M, d) is backward complete. 

(b) The Finsler manifold (M, F) is backward geodesically complete. 

(c) At every p E M, the exponential map of F is defined on all ofTpM. 

(d) At some p E M, the exponential map of F is defined on all ofTpM. 

(e) Every closed and backward bounded subset of (M,d) is compact. 
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Chapter 7 

The Index Form and the 
Bonnet-Myers Theorem 
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7.5 The Cut Point Versus the First Conjugate Point 
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7.6 A. The Ricci Scalar Ric and the Ricci Tensor Ricij 
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7.7 The Bonnet-Myers Theorem 
* References for Chapter 7 

7.1 Conjugate Points 

Let (M, F) be a Finsler manifold, where F is Coo on T M " 0 and is posi­
tively (but perhaps not absolutely) homogeneous of degree 1. Fix T E TpM. 
Consider the constant speed geodesic (Y(t) = expp(tT), 0 :::;; t :::;; r that em­
anates from p = (Y(O) and terminates at q = (Y(r). If there is no confusion, 
label its velocity field by T also. Let DT denote covariant differentiation 
along (J, with reference vector T. This concept was introduced in the Ex­
ercise portion of §5.2 . 

• Recall from §5.4 that a vector field J along (J is said to be a Jacobi 
field if it satisfies the equation 

DTDTJ + R(J,T)T O. 
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• We say that q is conjugate to p along a if there exists a nonzero 
Jacobi field J along a which vanishes at p and q. More precisely, 
J(t) vanishes at t = 0 and t = r. For such a Jacobi field J, Exercise 
5.4.6 tells us that J and J' = DTJ must both be 9T-orthogonal to 
T at all times. 

Proposition 7.1.1. Let aCt) = expp(tT), 0 :::; t :::; r be a constant speed 
geodesic from p = a(O) to q = a(r). The following five statements are 
mutually equivalent: 

(a) The point q is not conjugate to p along a. 

(b) Any Jacobi field that vanishes at both points p and q must be iden­
tically zero along a. 

(c) Take the variation field of any variation of a by geodesics. 1£ it 
vanishes at p and q, then it must be identically zero along a. 

(d) Given any v E TpM and W E TqM, there exists a unique Jacobi 
field J along a that equals vat p and w at q. 

(e) The derivative expp* of the exponential map expp is nonsingular at 
the location rT in TpM. 

Proof. By definition, (b) and (a) are equivalent. 

That (b) and (c) are equivalent: 
Suppose (b) holds. Consider any variation whose t-curves are all geode­

sics. According to §5.4, its variation vector field U is a Jacobi field. Thus, 
if U is zero at p and q, (b) will force it to vanish identically. This gives (c). 

Conversely, suppose (c) holds. Every Jacobi field J along a is the varia­
tion vector field of some variation of a by geodesics. (This fact was hinted 
at in Exercise 5.4.1. We now provide guidance for proving it in Exercise 
7.1.1.) Thus, if J is zero at p and q, (c) will guarantee that it is identically 
zero along a. (Incidentally, the vanishing of the variation field at p and q 
does not imply that the variation keeps the endpoints fixed.) 

That (b) and (d) are equivalent: 
It is quite transparent that (d) implies (b). So, let us concentrate on the 

converse. Suppose (b) holds. 
Take Jacobi fields {Vi} along a such that Vi(O) = 0 and {V;'(O)} are 

linearly independent. These are nonzero by ODE theory. We claim that 
{Vi(r)} must be linearly independent. Otherwise we have a Jacobi field 
ci Vi (for some constants ci , not all zero) that vanishes at both p, q and is 
nonzero because ci V;'(O) i= 0, thereby violating (b). Since Vi(O) = 0 and 
{Vi(r)} are linearly independent, we see that given any w E TqM, there 
exists a unique Jacobi field J (built out of a linear combination of the Vi) 
along a such that J(O) = 0 and J(r) = w. 
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The above conclusion has a "symmetrical" counterpart: given any v E 

TpM, there exists a unique Jacobi field J along a such that J(O) = v and 
J(r) = O. This, however, does not follow from considering the reverse of a 
because it may not even be a geodesic. Instead, take nonzero Jacobi fields 
{Vi} along a such that Vi(r) = 0 and {\ti'(r)} are linearly independent; 
then {Vi(O)} must be linearly independent by an argument that parallels 
the one above. Since {Vi(O)} are linearly independent and Vi(r) = 0, we 
see that given any v E TpM, there exists a unique Jacobi field J (again, a 
linear combination of the Vi) along a such that J(O) = v and J(r) = O. 

Adding the results of these two paragraphs tells us that there is a Jacobi 
field J along a such that J(O) = v and J(r) = w. The uniqueness of this J 
follows from yet another application of (b). We have just obtained (d). 

That (b) and (e) are equivalent: 
Suppose (b) holds. Let W be any element in the null space of expp*(rT)" 

Consider the Jacobi field U(t) := expp*(tT)(tW) discussed in §5.4. Since 
this U vanishes at both t = 0 and t = r, it must be identically zero by 
(b). Now, (5.4.4) tells us that U has initial data U(O) = 0 and U'(O) = W. 
Hence W must be zero, or else U(t) could not vanish identically. This gives 
criterion (e). 

Conversely, suppose (e) holds. Take any Jacobi field J along a that van­
ishes at both p and q. Let W := J'(O). In view of (5.4.3), (5.4.4), we know 
that U(t) := expp*(tT)(tW) has the same initial data as J(t). Thus they 
must be equal by uniqueness. In particular, 

o = J(r) = U(r) = expp*(rT)(rW) . 

This shows that rW is in the null space of expp*(rT)' By (e), we have 
W = O. Therefore U vanishes identically and so must J. 0 

Exercises 

Exercise 7.1.1: Prove that every Jacobi field J along a geodesic aCt) is 
the variation vector field of a variation by geodesics. Consider the following 
suggestions. 

(a) Find a curve u 1--+ I(U) with velocity V(u) such that l!iu=o = Jlt=o. 
(b) Explain why there are vectors Y(u) along I such that Yju=o = lIt=o 

and (Dv Y)lu=o = J(t=o' Here, J' := DTJ is, as usual, covariant 
differentiation along a with reference vector T. On the other hand, 
Dv Y is covariant differentiation along I with reference vector Y, 
not V. 

(c) Define the variation as a(t,u) := exp')'(u) [t Y(u)]. Draw a schematic 
picture of the t-curves in this variation. 

(d) Check that the variation vector field U satisfies Ult=o = Jlt=o and 
(DTU)(o,O) = (DuT)(o,O) = (DvY)lu=o = J(t=o' 
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(e) Why can you conclude that J is in fact equal to U ? 

Exercise 7.1.2: State the contrapositive of Proposition 7.1.1. What does 
criterion (d) become? 

Exercise 7.1.3: We proved Proposition 7.1.1 by checking that statements 
(a), (c), (d), (e) are individually equivalent to statement (b). Are you able 
to restructure the thinking to result in (b) => (c) => (d) => (e) => (b) 
instead? 

Exercise 7.1.4: Consider a geodesic u that goes from p to q. According 
to Proposition 7.1.1, the conjugacy of q to p is equivalent to: 

Whenever the variation field-of any variation of u by geodesics­
vanishes at p and q, it must be identically zero. 

(a) How does the existence of conjugate points relate to the focusing of 
geodesics issued from p? 

(b) Explain why geodesics in spaces with negative flag curvature do not 
admit conjugate points. 

(c) Do geodesics in spaces with positive flag curvature have to have 
conjugate points? 

(d) What about geodesics in spaces with non-positive flag curvature? 

Hint: for parts (b) and (c), review §5.5. 

7.2 The Index Form 

Suppose the geodesic u(t) = expp(tT), 0 :::;; t :::;; r has constant speed c. 
As before, let T denote its velocity field as well as its initial velocity. The 
index form was first introduced in Exercise 5.2.7. In the present setting, 
it reads: 

(7.2.1) 
J(V, W) 1 iT .- - [9T (DTV, DTW) 

C 0 

- 9T (R(V,T)T, W) 1 dt 

The vector fields V, W are assumed to be continuous and piecewise Coo 
along u. As always, all DT are calculated with reference vector T, and the 
curvature in 

I . . I k 8 I ~(V, T)T := (TJ R/kl T ) V {hi 

is evaluated at the point (u, T). 
It is a consequence of (3.4.6), (3.4.7) that the object yj Rjikl yl is sym­

metric in the indices i and k. That is, 
. I . I 

yJ Rjkil Y = y1 Rjikl Y . 
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Using this, it is almost immediate that 

(7.2.2) 1 I(W, V) = I(V, W) I· 
So the index form is a symmetric bilinear form. 

Let 0 =: to < tl < ... < tk := r be a partition of [0, r] such that V, 
Ware both Coo on each closed subinterval [ti-l, til. Integration by parts, 
which is made possible by Exercise 5.2.3, tells us that 

I(V, W) := ~ gT( DTV, W)I T 

C 0 

k-l + 

~ ~ gT(DTV, W)I:~ 

~ IT gT( DTDTV + R(V,T)T , w) dt. 

The sum 2::7:11 collapses to zero if V is CIon the entire interval [0, r]. So 

(7.2.3) I(J, W) = ~ gT(J', W)I T if J is a Jacobi field . 
C 0 

In particular: 

(7.2.4) 1 IT I(J,J) = - gT(J', J) for all Jacobi fields J . 
C 0 

Here, J' := DTJ, where T is the velocity field of our constant speed geo­
desic a. This covariant derivative is computed with reference vector T. See 
the exercises of §5.2. 

Exercises 

Exercise 7.2.1: Let a(t), 0 ~ t ~ r be a geodesic. In this exercise, all 
vector fields V(t), W(t) are a priori continuous and piecewise C= along 
a. Suppose V vanishes at the endpoints of a. Show that the following two 
statements are equivalent: 

(a) V is a Jacobi field. 
(b) I(V, W) = 0 for all fields W that vanish at the endpoints of a. 

Hint: imitate the spirit of Proposition 5.1.1's proof. 

Exercise 7.2.2: Restrict the index form I(V, W) to continuous piecewise 
Coo vector fields V, W that vanish at the endpoints of the geodesic a(t), 
o ~ t ~ r. Consider the space of continuous piecewise C= fields V such 
that I(V, W) vanishes for every W. Explain why: 

(a) This space is finite-dimensional. 
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(b) Its elements are globally Coo on [0, r]. 
(c) Does the dimension of this space have any geometrical significance? 

Exercise 7.2.3: Let J be a Jacobi field along the constant speed geodesic 
a(t), 0 ~ t ~ r with speed c. Suppose J(O) = O. Use Exercise 5.2.3 to 
explain why formula (7.2.4) can then be rewritten as 

1 d 
J(J, J) = -2 -d gT(J, J) 

c t It=r 

This says that J(J, J) controls a certain growth rate of the Jacobi field J, 
provided that the latter starts out with zero length. 

Exercise 7.2.4: Let W be any piecewise Coo vector field along a geodesic 
a(t), 0 ~ t ~ r. Suppose J is a Jacobi field along a that happens to have 
the same boundary values as W. Namely, 

J(O) = W(O) and J(r) = W(r) . 

Use (7.2.3) to show that 

J(J, W) = J(J, J) . 

Exercise 7.2.5: Let a(t), 0 ~ t ~ r be a constant speed geodesic with 
velocity T and speed c. Suppose W is a continuous piecewise Coo vector 
field that is gT-orthogonal to a. Show that 

J(W, W) := ~ for [ gT(DTW, DTW) 

- K(T, W) c2 gT(W, W) ] dt 

where K(T, W) is the flag curvature of the flag with flagpole T and trans­
verse edge W. 

Exercise 7.2.6: Assume throughout this exercise that (M, F) has scalar 
flag curvature >'(x, y). This holds, for example, whenever the flag curvature 
is constant, or if we are working with a Finsler surface. Let a(t), 0 ~ t ~ r 
be a constant speed geodesic with velocity T and speed c. Let E be a 
parallel vector field (constructed using reference vector T) along a such 
that gT(E, T) = 0 and gT(E, E) = l. 

(a) Suppose J is a Jacobi field that is gT-orthogonal to a and has the 
form FE. Recall from Exercise 5.4.5 that the function F satisfies 
the scalar Jacobi equation 

F" + >.c2 F = O. 

Show that 

J(J, J) ~ [F'(r) F(r) - F'(O) F(O)] . 
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(b) Let W be a continuous piecewise Coo vector field that is gT­
orthogonal to a and has the form f E. Show that 

J(W, W) = ~ r [(J')2 - >. c2 f2] dt . 
c io 

7.3 What Happens in the Absence of Conjugate Points? 

Consider the following technical setup: 

* Let a( t), 0 ~ t ~ r be a geodesic that emanates from p. Denote its 
velocity field by T. Suppose this geodesic contains no point that is 
conjugate to p. 

* Let {Ji}i=l be Jacobi fields along a such that Ji(O) = 0 and {JHO)} 
are linearly independent. Then {Ji(t)} must be linearly independent 
for each t E (0, r]. Otherwise, there would exist constants ci (not 
all zero) and to E (0, r] such that ci Ji(to) = O. The Jacobi field 
J(t) := ci Ji(t) would then vanish at both 0 and to, but is nonzero 
because J'(O) = ci JI(O) -=1= O. This would violate (see Proposition 
7.1.1) the hypothesis that a(to ) is not conjugate to p. 

* Let W be any piecewise Coo vector field along a. 

Our plan in this section is as follows: 

• Let us first work with the simpler situation in which W(O) = 0 so 
that we can enlist the help of the above {Ji }. There is an impor­
tant payoff. It says that among all piecewise Coo curves that share 
the same endpoints, geodesics (without conjugate points) are in a 
certain sense the "local" minima of the arc length functional. 

• After that, we bootstrap our way back up to the case of a general W. 
There, it is shown that among all piecewise Coo vector fields along 
a which share the same boundary values, Jacobi fields minimize the 
quadratic form of the index form. 

7.3 A. Geodesics Are Shortest Among "Nearby" Curves 

* Suppose W(O) = O. Expand W as 

W(t) = t(t) Ji(t) , 

where the component functions fi(t) are continuous and piecewise 
Coo, and P(O) = O. As in Cheeger-Ebin [CE], introduce the tem­
porary abbreviations A, B: 

W' := DTW = fi' Ji + fi J: =: A + B . 
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Note that 

gT(W',W') gT(A,A) + gT(B,B) 

+ gT(A, B) + gT(B, A) . 

* The Lagrange identity studied in Exercise 5.4.6 assures us that 

gT( J{ , Jj ) - gT( J i , Jj) = constant. 

Evaluating at t = 0 shows that the constant in question is zero. So 

gT(J: , J j ) = gT( J i , Jj) . 

This will be needed in the second last step of the calculation we are 
about to perform. 

Using the defining equation of Jacobi fields, Exercise 5.2.3, and the La­
grange identity we just discussed, we have 

gT(B,B) - gT(R(W,T)T, W) 

fi fj [gT( J:' Jj) + gT( J:' , Jj ) ] 

f ifjd (J'J) dt gT i' j 

! [ fi fj gT(J{ , Jj ) ] 

! [ fi fj gT( J{ , Jj ) ] 

! [ fi fj gT(J{ , Jj ) ] 

In the present notation, 

J(W,W) = ~ r [gT(W', W') - gT(R(W,T)T, W)] dt. 
c 10 

The above deliberations and computation therefore imply that 

J(W, W) 

(7.3.1) 1 lT + - gT(A,A) dt, 
c 0 

where A := fi' Ji. 
In particular, if W vanishes at t = r as well, so that p(r) = 0, then 

1 lT J(W, W) = - gT(A, A) dt ?: o. 
c 0 

Note that in this case J(W, W) can equal zero only when fi'(t) = 0, that 
is, when each fi(t) is constant. But fi(O) = 0 = fi(r), so every fi(t) must 
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vanish and hence W = O. We have just established the first part of the 
following proposition. 

Proposition 7.3.1. 

• Let aCt), 0::;; t ::;; r be a constant speed geodesic that emanates from 
some point p in a Finsler manifold (M, F). Denote its constant speed 
byc . 

• Suppose no point aCt), 0 < t ::;; r is conjugate to p. 

Then: 

(1) For all piecewise Coo vector fields Wet) along a such that W(O) = 
0= W(r), we have J(W, W) ~ O. Equality holds if and only ifW is 
identically zero. 

(2) The geodesic a is a minimum among all "nearby" piecewise Coo 
curves from p to q := a(r). 

Remarks: Being a geodesic, a is a critical curve of the length functional L. 
An obvious question is whether this critical a is a minimum or a maximum 
of L among "nearby" piecewise Coo curves from p to q. The comparison 
with "nearby" curves renders this notion of maximas and minimas a "local" 
one. Quantifying the meaning of "nearby" requires more work than what 
we are prepared to do here. 

Proof. It remains to prove the second assertion. 
Using the index form, the second variation of arc length is succinctly 

expressed as 

LI/(O) = J(U.L,U.d + ~9T(DuU,T)lr, 
c 0 

with U.L := U - -b gT(U, T) T. This was carried out in Exercise 5.2.7. 
Consider only piecewise Coo variations in which the t-curves begin at p 

and end at q. In that case, the variation vector field U satisfies: U(O, u) = 
o = U(r, u) for all u. Hence DuU vanishes at all (0, u) and (r, u), and the 
boundary term in LI/(O) drops out. In other words, 

LI/ (0) = J (U .L, U.L) if the variation has fixed endpoints. 

Let us work only with variations in which no two t-curves have the same 
trajectory. By reparametrizing these variations if necessary, we can ensure 
that U.L is not identically zero. In view of the first conclusion of our propo­
sition, the index J(U.L' U.L) must then be positive. Consequently, the above 
formula implies that LI/(O) > o. 

By the second derivative test, the function L(u) has a local minimum 
at the critical u = O. This means that for small u, the length L(u) of the 
corresponding t-curve is larger than that of a. 0 
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7.3 B. A Basic Index Lemma 

Return to formula (7.3.1). Since q := O"(r) is not conjugate to p, it can 
be checked that J(t) := fi(r) Ji(t), 0 :::; t :::; r is the unique Jacobi field 
along 0" which has the same boundary values as W. That is, J(O) = 0 and 
J(r) = W(r). Also, (7.2.4) helps us realize that 

1. . 
- J'(r)J1(r) gT(J{(r) , Jj(r)) J(J,J). 
c 

Thus (7.3.1) can be summarized as follows: 

• Suppose no point along 0" is conjugate to p. 

• Let W(t) = fi(t) Ji(t) be any piecewise Coo vector field along 0" 
that vanishes at t = O. 

• Let J(t) be the unique Jacobi field along 0" that has the same bound­
ary values as W(t). 

Then: 

(7.3.2) J(W,W) 

In particular, 

(*) J(W, W) ~ J(J, J) . 

We now generalize (*) to the case in which W(O) does not necessarily 
vanish. Of course, J still stands for the unique Jacobi field along 0" that 
has the same boundary values as W. The following is known as a "basic 
index lemma." 

Lemma 7.3.2. 

• Let O"(t), 0 :::; t :::; r be a geodesic in a Finsler manifold (M, F). 
Suppose no point O"(t), 0 < t :::; r is conjugate to p := 0"(0). 

• Let W be any piecewise Coo vector field along 0". 

• Let J denote the unique Jacobi field along 0" that has the same 
boundary values as W. That is, J(O) = W(O) and J(r) = W(r). 

Then 

(7.3.3) J(W, W) ~ J(J, J) I. 
Equality holds if and only if W is actually a Jacobi field, in which case the 
said J coincides with W. 

Proof. Since q := O"(r) is not conjugate to p along 0", Proposition 7.1.1 
guarantees the existence of the said J. Apply the first part of Proposition 
7.3.1 to the piecewise Coo vector field W - J. This requires the hypothesis 
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that no point along u is conjugate to p. We conclude that 

J(W - J, W - J) ~ 0, 

and J(W - J, W - J) = 0 if and only if W - J = O. 
To finish the proof, it suffices to note that 

J(W - J, W - J) = J(W, W) - J(J, J) . 

Indeed, J(W -J, W -J) = J(W, W)-2J(J, W)+J(J, J); but (7.2.3) and 
the defining properties of J tell us that J (J, W) is numerically the same as 
J(J, J). 0 

Exercises 

Exercise 7.3.1: The computation leading up to (7.3.1) could benefit from 
a few more details. Fill those in. 

Exercise 7.3.2: Consider formula (7.3.1). It was derived under the as­
sumption that no point u(t), 0 < t :::; r is conjugate to p. 

(a) Explain why J(t) := li(r) Ji(t), 0:::; t:::; r is the unique Jacobi field 
along u that has the same boundary values as W. That is, J(O) = 0 
and J(r) = W(r). 

(b) With the help of (7.2.4), show that for this Jacobi field, 

J(J, J) = ~ li(r) I j (r) gT ( JI(r) , Jj(r) ) . 

Exercise 7.3.3: Let u(t), 0 :::; t :::; r be a constant speed geodesic with 
velocity T and speed c. Suppose it contains no conjugate points. 

(a) Let W be any continuous piecewise Coo vector field that is gT­
orthogonal to u. Let J be the unique Jacobi field J that has the same 
boundary values as W. Explain why J must also be gT-orthogonal 
to u. 

(b) Now suppose (M,F) has scalar flag curvature >.(x,y). Restrict the 
basic index lemma to vector fields W that are gT-orthogonal to u. In 
conjunction with Exercise 7.2.6, deduce the following comparison 
result for functions: 

Let 1 be any continuous piecewise Coo function on [0, r]. Let F 
be the unique solution of F" + >. c2 F = 0 [here, >.( u, T) is a function 
of tJ, subject to the boundary data 

F(O) := 1(0), F(r):= I(r) . 

Then 
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with equality if and only if f is identical to :F. 

(c) Suppose, in part (b), we further demand that A be constant and 
f(O) = O. Check that the comparison function F is given as follows: 

A> 0: F 
f(r) 

sin( ~ct) 
sin( JX cr) 

A =0: F f(r) t 
r 

A < 0: F 
f(r) 

sinh( Nct) . 
sinh( v=-x cr) 

7.4 What Happens If Conjugate Points Are Present? 

The previous section provides us with a fairly good understanding of the 
quantity J(W, W) and its ramifications when no point O"(t), 0 < t :::;;; r is 
conjugate to p. We now investigate what happens when some point O"(to), 
o < to < r is conjugate to p. Note that we have specifically excluded the 
borderline case in which q := O"(r) is the first point conjugate to p along 
0". This special case is addressed in §7.5 and some of its accompanying 
exercises. 

Proposition 7.4. I. 

• Let 0"( t), 0 :::;;; t :::;;; r be a constant speed geodesic in a Finsler mani­
fold (M, F). Denote its constant speed by c . 

• Suppose some point O"(to), 0 < to < r is conjugate to p:= 0"(0). 

Then: 

(1) There exists a continuous piecewise Coo vector field U(t) along 0", 
with U(O) = 0 = U(r), such that J(U, U) < O. 

(2) Among the piecewise Coo curves from p to q := O"(r), there are some 
that are "near" 0" but have shorter lengths. 

Remark: The proof here mimics that in Cheeger-Ebin [CE]. 

Proof. 

The first assertion: 
Since O"(to) is conjugate to p, there exists a nonzero Jacobi field J(t), 

o :::;;; t :::;;; to along (a portion of) 0" such that J(O) = 0 = J(to). Extend J 
to a piecewise Coo vector field V(t), 0 :::;;; t :::;;; r by assigning V(t) = 0 on 
[to, r]. We have J(V, V) = O. This is seen by using (7.2.4) on [0, to] and 
inspection on [to, r]. We perturb V appropriately to give the desired vector 
field U. 
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Choose a small positive 8 such that there are no conjugate pairs on 
[to - 8, to+8]. By Proposition 7.1.1, there exists a unique Jacobi field K(t), 
to-8 ~ t ~ to+8 with the prescribed values K(to-8) = V(to-8) = J(to-8) 
and K(to + 8) = V(to + 8) = 0 at the endpoints. Since V is not smooth at 
to, we know that K has to be different from V. 

Define a continuous piecewise Coo vector field U(t), 0 ~ t ~ r as follows. 

* On [0, to - 8], set U(t) := V(t) = J(t). 

* On [to - 8, to + 8], set U(t) := K(t); thus on this portion, U is a 
Jacobi field having the same endpoint values as V. 

* On the remainder of the interval, namely, [to + 8, r], we simply 
prescribe U(t) := V(t) = O. 

This piecewise smooth U is the sought perturbation of V. See Figure 7.1. 
Note that: 

* On [0, to - 8], J(U, U) = J(V, V). 

* On [to - 8 , to + 8], in view of our basic index Lemma 7.3.2, we have 
the strict inequality J(U, U) < J(V, V). 

* Lastly, both J(U, U) and J(V, V) are trivially equal to zero on the 
subinterval [to + 8 , q]. 

Hence J(U, U) < J(V, V) = 0 on [0, r], which proves the first part of this 
proposition. 

The second assertion: 
Construct a piecewise Coo variation a(t, u) of the geodesic a(t), such 

that the latter's endpoints are kept fixed and that the variation vector field 
is precisely the U we have just described. 

According to Exercise 5.2.7, the second variation simplifies in the present 
setting to 

£"(0) = J(U,U) - ~ l r [:uF(T) r dt < O. 

This means that if the parameter u in a(t, u) is kept sufficiently small, 
then among the family of t-curves considered by that variation, our base 
geodesic a(t) is actually the longest! 0 

Exercises 

Exercise 7.4.1: In the above proof, £"(0) was shown to be negative for 
some variation, not for all variations. Yet, when establishing part (2) of 
Proposition 7.3.1, we checked that £"(0) was positive for all variations 
with U.L not identically zero. Can you explain why the strategies were so 
different for the two propositions? 
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o 

". '. '. '. '. 
'\ 

Figure 7.1 

r 

A nonzero Jacobi field J(t), 0 ~ t ~ to that has zero boundary 
data. It is graphed here as a thickened dotted arch. The vector 
field V (its graph is the entire thickened dotted pattern) extends 
J by prolongating the zero data from time to to time r. Its index 
l(V, V) is 0, essentially because of (7.2.4). A clever perturbation of 
V around the "kink," namely, on [to - 0 , to + 0], gives a piecewise 
smooth U (the entire thickened solid pattern). The basic index 
lemma is then used to check that leU, U) < O. 

Exercise 7.4.2: Use the standard 2-sphere to illustrate the message of 
Proposition 7.4.1. 

7.5 The Cut Point Versus the First Conjugate Point 

Using the index form as a tool, we have arrived at a reasonable answer to 
the question posed in §7.3.A. Namely: 

Any geodesic a from p to q is a critical curve of the length func­
tional L. How can one tell whether this critical a is a minimum 
or a maximum of L among "nearby" piecewise COC) curves from p 
to q? 

The essence of Propositions 7.3.1 and 7.4.1 answers this question as follows: 

Theorem 7.5.1. Let aCt), 0 ~ t ~ r be a geodesic from p := a(O) to 
q := a(r) in a Finsler manifold (M, F) . 

• IE no point aCt), 0 < t ~ r is conjugate to p, then a minimizes arc 
length among "nearby" piecewise COC) curves from p to q . 

• IE some point aCto), 0 < to < r is conjugate to p, then among the 
piecewise COC) curves from p to q, there are some that are "near" a 
but have shorter lengths. In particular, a no longer minimizes arc 
length among all, nearby or not, piecewise COC) curves from p to q. 
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Remarks: If q := a(r) is the first point conjugate to p along a, then the 
conclusion can lean either way. In other words, the above "conjugate point 
test" is inconclusive. 

* There are many examples in which the geodesic a from p to q still 
minimizes arc length among nearby piecewise Coo curves from p 
to q. We readily see that on a sphere or on an ellipsoid with two 
equal semi-axes. These situations are easy to visualize because they 
possess a lot of symmetry. 

* However, it is much harder to come up with examples in which 
a geodesic a connecting the conjugate pair p, q fails to minimize 
arc length among nearby curves from p to q. Ellipsoids (preferably 
those with distinct semi-axes) and the torus of revolution seem to 
be promising places to look for this phenomenon. 

Theorem 7.5.1 is about "long" geodesics whereas Theorem 6.3.1 is about 
"short" geodesics. Let us compare their messages. Let a(t) := expp(tT), 
o ~ t ~ r be a geodesic that emanates from p with initial velocity T. 
Generically, expp will map only small tangent Finsler balls centered at the 
origin of TpM diffeomorphically onto their images. The latter are aptly 
called "small" geodesic balls on M centered at p. Our geodesic is "short" if 
it is contained in one of these small geodesic balls centered at x. Otherwise 
it is said to be "long." 

• Theorem 6.3.1 says, without qualifications, that a "short" geodesic 
from p to q is always the shortest curve among all piecewise Coo 
curves from p to q. Suppose our Finsler manifold is forward geodesi­
cally complete, then the geodesic a can be continued forward indef­
initely. Eventually it will no longer be short, although it may still 
be minimizing. If a is minimal from p to a certain point p but not 
beyond, then p is called the cut point of p along the said geodesic. 
We emph~ize that the concept of minimality here is a global· one. 
Namely, our geodesic from p to its cut point p must minimize arc 
length among all piecewise Coo curves from p to p. 

• Theorem 7.5.1 has two parts. The second part tells us that the cut 
point of p along our geodesic must occur either before or at the first 
conjugate point of p, but not beyond. The reason is that beyond the 
first conjugate point, our geodesic cannot even minimize arc length 
among "nearby" curves that share its endpoints, so naturally it is 
no longer a global minimizer. 

• Now we come to the first part of Theorem 7.5.1. It concerns a "long" 
geodesic a from p to q. If q is before the first conjugate point of p, 
then a is definitely shortest among "nearby' piecewise Coo curves 
from p to q. This notion of minimality involves comparison with 
nearby curves only, and is local in a tubular neighborhood sense. 
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For such purpose, it is totally irrelevant whether q has gone past 
the cut point. 

In light of this discussion, one cannot help but get the impression that 
conjugate points concern the geometry near the given geodesic, whereas 
cut points embody geometrical/topological data far away. This is in fact 
the case. See Kobayashi's account [Ko] and references therein. 

A somewhat systematic study of the conjugate and cut loci is undertaken 
in Chapter 8. 

Let us summarize this section with a generic picture: 

• Any geodesic starts out, say from some point p, by being a global 
minimizer (Theorem 6.3.1). It enjoys this status up to and including 
the cut point p. 

• Once it passes the cut point p, it loses the global minimizer status. 
However, it still minimizes arc length among "nearby" curves before 
it gets to the first conjugate point. See part (2) of Proposition 7.3.1. 

A donut standing 
on its side: 

(0 = 71") 

z 

Figure 7.2 

Outer equator (T, 

generated by 
4>=0 

p(O=O) 

Generically, a geodesic (T emanates from p, reaches its cut point 
p, and then its first conjugate point q. Although q never precedes 
p, it can coincide with p. For example, on the standard 2-sphere, 
q and p are both equal to the antipodal point of p. As another 
example, take (T to be the outer equator on the torus of revolution. 
Given any p on this (T, its first conjugate point q occurs before (!) 
one is even halfway around (T. See Exercise 7.5.5. One learns from 
[BG] that this q is actually equal to the cut point p along (T. 
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• At the first conjugate point, it mayor may not minimize among 
"nearby" curves that share its endpoints. See Exercises 7.5.1 and 
7.5.3 . 

• Beyond its first conjugate point, our geodesic definitely cannot mini­
mize, even among "nearby" curves. See part (2) of Proposition 7.4.1. 

Exercises 

Exercise 7.5.1: 

(a) Fix any point p on the standard 2-sphere. Let (J' be any geodesic 
that emanates from p and terminates exactly at its first conjugate 
point q (which is antipodal to p). Show that (J' minimizes arc length 
among all (hence "nearby") piecewise Coo curves from p to q. 

(b) Formulate an analogous statement on an ellipsoid with two equal 
semi-axes. 

Exercise 7.5.2: In:IR3 , take a profile curve in the right xz-plane and revolve 
it around the z-axis. This generates a surface of revolution. 

(a) At any given moment during the revolution, the rotated profile curve 
is called a meridian. Show that all meridians are geodesics. 

(b) Under the revolution, any given point on the profile curve traces out 
a circle. Each such circle is called a parallel. Single out the ones 
whose arc lengths are critical when compared to "nearby" parallels. 
Show that among all parallels, only these are geodesics. 

Exercise 7.5.3: Consider ellipsoids with two unequal semi-axes. Decide if 
there are points p and q on such ellipsoids, and a geodesic (J' connecting 
them, with the following property: 

The point q is the first conjugate point of p along (J'. Yet, (J' fails 
to minimize arc length among "nearby" curves from p to q. 

Suggestion: as a first step, consult Spivak [Sp4] and doCarmo [doC2] for 
pictures of conjugate loci on ellipsoids. 

Exercise 7.5.4: Circular cylinders and cones are surfaces of revolution. 

(a) Identify all the geodesics and check that none contains any conjugate 
point. Hence every geodesic minimizes arc length among "nearby" 
curves that share its endpoints. 

(b) Produce a geodesic that is not a shortest curve joining its endpoints. 

(c) Which geodesics do not contain cut points? 

Exercise 7.5.5: Consider the torus of revolution. As in Figure 7.2, it is 
generated by revolving a specific circle around the z-axis. That circle is 
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located in the xz-plane, has radius a, and center (R, 0, 0), with R > a. The 
following parametrization, with 0 :::;; () :::;; 27r, 0 :::;; ¢> :::;; 27r, is natural: 

«(),¢» f-7 ([R+a cos¢>J cos() , [R+a cos¢>J sin() , a sin¢» . 

(a) By working with (4.4.2b) and (4.4.5), or by consulting [On], show 
that the Gaussian curvature is 

K = cos¢> 
a(R+acos¢» 

(b) The outside equator corresponds to ¢> O. Give it the defin-
ing parametrization O"«()) := ([R+a] cos() , [R+a] sin() , 0). Check 
that 0" is a geodesic with constant speed R+a. Show that the vector 
field 0</J is parallel along 0". 

(c) Let J«()) be any nontrivial Jacobi field along 0", with J(O) = 0 = 
J(r). Use Exercise 5.4.4 to explain why J«()) = f«()) o</J' where 
f(O) = 0 = fer) but f is not identically zero. 

(d) With the help of part (c) of Exercise 5.4.5, show that f satisfies the 
scalar Jacobi equation 

R+a 
f88 + -- f = O. 

a 

(e) Carefully prove that the first conjugate point q of p:= (R + a, 0,0) 
along 0" occurs at 

() = 7r J R:a . 

Explain why this is before one reaches the halfway point around 0". 

(f) Let p, q be as described in (e). Consider the geodesic segment from 
p to q. Can you explain why it does minimize arc length among 
nearby piecewise Coo curves from p to q? 

7.6 Ricci Curvatures 

There are two notions of Ricci curvature with equivalent mathematical 
content. We have the Ricci scalar Ric which is a real-valued function on 
T M " O. Then there is the Ricci tensor which is a symmetric covariant 
2-tensor on the vector bundle 7r*T M that sits over T M " o. We give a 
cursory treatment of these objects here. 

The single most important ingredient that enters into the definition of 
these two objects is the flag curvature, which we quickly review. In order 
to erect a flag at any given point x EM, we need a flagpole y that is a 
nonzero element of the tangent space TxM. This y singles out a particular 
inner product, namely, 

9(x,y) := 9ij (x,y) dxi ® dx' , 



7.6 Ricci Curvatures 191 

which we use to measure lengths and angles in TxM. To reduce clutter, 
suppose the actual "cloth" part of the flag is described by the unit vector 
f := ~ along the flagpole, together with another unit vector V (called 
the transverse edge) which is perpendicular to the flagpole. The flag cur­
vature is then given as 

(7.6.1a) 

If the transverse edge V is orthogonal to the flagpole but not necessarily 
of unit length, then 

(7.6.1b) i k g(x,y)(V,V) K(x,y,fAV) = V Rik V . 

The case in which V is neither unit length nor orthogonal to f was treated 
in §3.9. 

1.6 A. The Ricci Scalar Ric and the Ricci Tensor Ricij 

We next rotate V about our fixed flagpole. This generates n-1 orthonormal 
transverse edges, say {ea : a = 1, ... , n - I}. Augmenting these ea by 
en := f, we get a g-orthonormal basis for the fiber of 7[*T M over the 
point (x,y) E TM ....... O. With respect to this orthonormal basis, one has 
K(x, y, fA ea) = Raa (no sum). If we add up these n - 1 flag curvatures, 
the resulting quantity is a well-defined scalar on T M ....... O. It is positively 
homogeneous of degree zero (that is, invariant under positive rescaling) 
in y. If our Finsler structure F happens to be absolutely homogeneous, 
F(x, cy) = Icl F(x, y), then so is the scalar in question. 

The quantity we have just described is called the Ricci scalar. Let us 
denote it by Ric. So 

n-1 n-1 

(7.6.2a) Ric := L K(x,y,fAea) LRaa. 
a=1 a=1 

To put it simply, Ric is a sum of n -1 appropriately chosen flag curvatures. 
It is therefore n - 1 times the average of these flag curvatures. If the n -
1 linearly independent transverse edges, say {Va}, are orthogonal to the 
flagpole but are not necessarily of unit length, then 

(7.6.2b) 
n-1 n-1 

Ric := L K(x,y,f A ea) = L ~~a V;) . 
a=1 a=1 g(x,y) a, a 

For computational purposes, it is desirable to have a formula for Ric that 
is valid in any basis. Indeed, 

(7.6.3) 1 Ric = gik ~k = R$ $ I. 

This comes readily from (7.6.2a) if we note that Rnn = O. Thus the Ricci 
scalar is simply the trace of the predecessor of our flag curvature. 
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In the general Finslerian setting, the notion of a Ricci tensor was first 
introduced by Akbar-Zadeh [AZ]: 

. 82 (.! p2 Ric) 1 
R 2 = [_ p2 RiC] ZCik:= 8yi8yk 2 yiyk (7.6.4) 

which is manifestly symmetric and covariant. Compare this with the defi­
nition of the fundamental tensor, namely, gik := [ ~ P2]yiyk. 

Let us summarize: 

• We begin with Rik, the predecessor of the flag curvature. 

• Taking the trace of ~k gives the Ricci scalar Ric. 

• The transformation h 1--+ (~P2 h )yiyk generates the Ricci 
tensor Ricik from the Ricci scalar. 

7.6 B. The Interplay between Ric and RiCij 

We would like to express Ric in terms of RiCij. To this end, let us compute 
the double contraction [i [k Ricik. 

* First, use the fact that [~p2 Ric ]yi is homogeneous of degree one 
in y, together with Euler's theorem (1.1.5), to calculate the quantity 
yk [ ~ p2 Ric ]yiyk . 

* Next, use the fact that ~ p2 Ric is homogeneous of degree two in y, 
and again (1.1.5), to calculate yi [ ~ p2 Ric ]yi . 

These maneuvers yield the identity 

(7.6.5a) 

Equivalently, 

(7.6.5b) 

In Riemannian geometry, the Ricci tensor is defined as Ricjl := R/ sl , 
and Ric(U, V) := UJ Ricjl Vl. For the Riemannian case, a bit of definition­
chasing shows that 

(*) The Ricci scalar Ric = Ric ( II~II ' II~II ) . 

Here, Ilyll := Vg(y,y), where 9 is the Riemannian metric. Note that the 
Ricci scalar depends on y even in the Riemannian setting. The above real­
ization puts (7.6.5) in a favorable light, because it nOw stands out as the 
natural generalization of (*) to the Finslerian context. 
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Formula (7.6.5) expresses the Ricci scalar Ric in terms of the Ricci tensor 
Ricik. Conversely, one already has (7.6.4). But we can make the dependence 
more explicit. 

* Expand the two y derivatives in the defining formula, using the 
product rule and the notation ;i := F a~i . This will produce a useful 
(albeit not so esthetically pleasant) relation: 

(7.6.6) R · 1 R' 1 /J R' /J R' R' ZCtk ="2 ZC;k;t + "2 ~i ZC;k + ~k ZC;i + 9ik ZC. 

* Next, decompose ~ Ric;k;i into its symmetric and skew-symmetric 
parts. Then apply the Ricci identity or interchange formula (3.6.2) 
to the skew-symmetric part. 

This computation ultimately gives the explicit formula 

~ (Ric'i'k + Ric'k'i ) 4 " , , 

(7.6.7) + ~ (Ri Ric'k + Rk Ric'i ) 4 ' , 

+ 9ik Ric. 

Exercises 

Exercise 7.6.1: 

(a) Verify (7.6.3) and the asserted homogeneity of Ric. 

(b) Check that Ric has actually been obtained from the hh-curvature 
R/ kl without the use of the fundamental tensor 9ik. 

(c) Explain why the same Ric is obtained whether one is using the 
Chern, Cartan, or Berwald connection. 

Exercise 7.6.2: Show that if the Finsler structure is Riemannian, the Ricci 
tensor defined in (7.6.4) coincides with the Ricci tensor in Riemannian 
geometry. Hint: review the short discussion just before (*). 

Exercise 7.6.3: Show that if (M, F) is a Finsler manifold with constant 
flag curvature c, then: 

Ric (n-1)c, 

(n - 1) C 9ik . 

Compare the second statement with the predecessor ~k of the flag curva­
ture, which in this case is ~k = c(9ik - Ri Rk), according to Proposition 
3.10.1. 
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7.7 The Bonnet-Myers theorem 

Let (M, F) be a Finsler manifold, where F is positively (but perhaps not 
absolutely) homogeneous of degree one. Recall from §6.6 that (M, F) is said 
to be forward geodesically complete if every geodesic, when parametrized 
to have constant Finslerian speed, is indefinitely forward extendible. Also, 
recall from §6.2D that (M, F) is said to be forward complete if every for­
ward Cauchy sequence converges. According to the Hopf-Rinow theorem 
(Theorem 6.6.1), these two notions of completeness are equivalent. As we 
show in the proof below, geodesic completeness is more appropriate for us 
to use in the following theorem. 

Theorem 7.7.1 (Bonnet-Myers). Let (M, F) be a forward geodesically 
complete connected Finsler manifold of dimension n. Suppose its Ricci 
scalar has the following uniform positive lower bound 

Ric ~ (n - 1) A > O. 

Equivalently, suppose its Ricci tensor satisfies 
i . . 2 

Y if RZCjj (x,y) ~ (n -1) A F (x,y) , with A> 0 . 

Then: 

(1) Along every geodesic, the distance between any two successive con­
jugate points is at most :Ix. In other words, every geodesic with 
length :Ix or longer must contain conjugate points. 

(2) The diameter of M is at most :Ix. 
(3) M is in fact compact. 

(4) The fundamental group 7r(M,x) is finite. 

Remarks: 

(a) The equivalence between the hypothesis on Ric and that on RiCjj 
is a consequence of (7.6.5b). 

(b) Conceptually, it is more illuminating to rewrite our inequality on 
the Ricci scalar as 

Ric 
~ A > O. 

n-1 

The reason is that Ric(x,y) is obtained by summing the flag curva­
tures of n - 1 mutually g(x,y)-orthogonal "unit" flags, all based at 
x EM and sharing a common flagpole y E TxM. This was discussed 
in detail at the beginning of §7.6. The above inequality says that 
the average flag curvature, corresponding to each selection of base 
point and flagpole, has a uniform positive lower bound. 
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(c) The curvature hypothesis is satisfied if the flag curvatures are 
bounded below uniformly by the positive constant A. In that case, 
the result is known as Bonnet's theorem whenever dimM = 2. 

(d) The essence of our proof comes from that given in Cheeger-Ebin 
[CE] for the Riemannian case. Compare our treatment here with 
the ones given by Auslander [Au], Dazord [Daz], and Matsumoto 
[M2]. 

Proof . 

• Every geodesic of length ;? :h:. must contain conjugate points: 

Consider any unit speed geodesic a-(t) , 0 ~ t ~ L with velocity field 
T = T(t). As usual, abbreviate 9(a,T) by 9 T . Use parallel transport (with 
reference vector T) and Exercise 5.2.3 to generate a moving frame {ei(t)} 
along a- such that: 

Let 

* Each ei is a parallel vector field along a-. 
* {ed is a 9T-orthonormal basis. 

* en := T. 

1 . I­
S>.(t) .- .J5.. sm( Y At) 

and define 

Wa(t) := S>.(t) ea(t) , a = 1, ... ,n -1 . 

Fix a positive r ~ L and consider the index form for a-(t), 0 ~ t ~ r. 
Since each Wa is 9T-orthogonal to T, we can use the formula depicted in 
Exercise 7.2.5 to compute J(Wa, W a ): 

J(Wa , W a ) = for { II W~ 112 - II Wa 112 K(T, W a ) } dt . 

Here, we are using the temporary abbreviation 

in order to reduce clutter. 
Referring to the properties of ea , we see that 

* IIW~(t)112 = [S~(t)]2 = cos2(.J5..t). 

* II Wa(t) 112 = S~(t) = * sin2 (.J5.. t) . 
* K(T, Wa ) = K(T, ea) (see Exercise 3.9.1) . 

Substituting these into the formula for J(Wa, W a ) and then summing over 
the index a, we get 

n-1 r n-1 

L J(Wa, W a ) = 1 {(n - 1) [S~(t)]2 - S~(t) L K(T, ea) } dt. 
a=l 0 a=1 
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That sum of flag curvatures is precisely the Ricci scalar Ric (see §7.6). 
And we have hypothesized here that Ric;? (n -1) A . So the above becomes 

n-1 r 

~ J(Wa,Wa) ~ (n-1) 1 {[S~(t)l2 - ASI(t)}dt. 

Evaluating that integral explicitly, we get 

(7.7.1) ~ J(Wa,Wa) ~ (n_1)sin(2jir) 
a=l 2 A 

Now suppose the length L of our unit speed geodesic is at least J>. . In 
which case we choose our r to be J>., and (7.7.1) becomes 

n-1 

L J(Wa, Wa) ~ O. 
a=l 

Hence some J(Wa , Wa) must be nonpositive. Relabel this Wa as W to 
reduce clutter. 

Suppose for the sake of argument that O'(t), 0 ~ t ~ r := J>. contains no 
conjugate points. Then Proposition 7.1.1 tells us that our vector field W, 
being nowhere zero except at t = 0 and t = r, cannot possibly be a Jacobi 
field. The same proposition also tells us that the unique Jacobi field J(t) 
which vanishes at the endpoints of O'(t), 0 ~ t ~ r is none other than the 
identically zero field. So J(J, J) = O. By the basic index lemma (Lemma 
7.3.2), we must then have 

o = J(J, J) < J(W, W) ~ 0, 

which is a contradiction. Therefore O'(t), 0 ~ t ~ r := J>. must contain 
conjugate points. 

• The fact that diam( M) ~ J>. 
Fix a point x E M and consider all y in the indicatrix Sx' For each such 

y, issue the unit speed geodesic from x with initial unit velocity y. Since 
(M, F) is forward geodesically complete, the said geodesic is defined on 
o ~ t < 00. 

Let cy denote the moment this geodesic reaches the first conjugate point 
of x, and iy the moment it reaches the cut point of x. According to the 
discussion in §7.5, one has 

because the first conjugate point can never come before the cut point. 
Furthermore, what we have shown in the previous part may be paraphrased 
as 
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for all y. Thus 

sup iy ~ sup cy ~ 
yES x yES x 

Since (M, F) is connected and forward geodesically complete, the Hopf­
Rinow theorem says that the exponential map is defined on all of TxM. 
Proposition 6.5.1 then tells us that every point can be reached from x by 
a unit speed minimizing geodesic. Based on this fact, a moment's thought 
shows that 

diam(M) ~ sup iy 
yESx 

which, in conjunction with the above, gives 
1f 

diam( M) ~ ..,f5. . 

• The compactness of M: 
The manifold M is always closed in its own topology. Also, we have just 

shown that it is forwardly bounded from the above (arbitrarily) fixed x. 
Since (M, F) is by hypothesis forward geodesically complete, its compact­
ness therefore follows from the Hopf-Rinow theorem (Theorem 6.6.1) . 

• About the fundamental group of M: 
Let M be a simply connected covering space (that is, a universal cover) 

of M, with smooth projectionp: M -+ M. Using the smooth map p, we pull 
the Finsler structure F back to M. The resulting F is smooth and strongly 
convex on T M " 0 . Since (M, F) is locally isometric to (M, F), the Ricci 
scalar of F inherits the same uniform positive lower bound (n - 1) A . 

Our universal cover (M, F) is forward geodesically complete because 
(M, F) is. To see this, let u(t) be any geodesic emanating from some point 
x E M at t = O. Its projection on M, denoted aCt), is a geodesic because 
(M, F) and (M, F) are locally isometric. This aCt) emanates from some 
x E M at t = o. By the hypothesized forward geodesic completeness on 
(M, F), aCt) is extendible to all t E [0,(0). The said local isometry now 
implies the same for u(t). Hence the universal cover (M, F) is forward 
geodesically complete, as claimed. 

We now know that (M, F) is forward geodesically complete, and that 
its Ricci scalar has the uniform positive lower bound (n - 1) A. Also, its 
connectedness is part of the definition of being simply connected. Therefore 
we can apply part (3) of the present theorem to (M, F) to conclude that 
it is compact. 

By hypothesis, M is connected, so all its fundamental groups 1f(M, x), 
where the x denotes base points, are isomorphic. Since M is a universal 
cover, any specific 1f( M, x) is bijective with the collection of isolated points 
p-l(X). See [STl for a review. Finally, the compactness of M implies that 
the closed subset p-l(X) is also compact, hence finite. 0 
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Exercises 

Exercise 7.7.1: Verify (7.7.1). 

Exercise 7.7.2: 

(a) Explain in detail when and why diam(M) ~ SUPyES., iy is valid. 

(b) Does this fail to hold if (M, F) is not assumed to be forward geodesi-
cally complete? 

Exercise 7.7.3: Suppose (M, F) is forward complete. Can you deduce the 
forward completeness of its universal cover (lVI, F) directly, using forward 
Cauchy sequences? 
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Chapter 8 

The Cut and Conjugate Loci, and 
Synge's Theorem 

8.1 Definitions 
8.2 The Cut Point and the First Conjugate Point 
8.3 Some Consequences of the Inverse Function Theorem 
8.4 The Manner in Which Cy and iy Depend on y 
8.5 Generic Properties of the Cut Locus Cutx 

8.6 Additional Properties of Cutx When M Is Compact 
8.7 Shortest Geodesics within Homotopy Classes 
8.8 Synge's Theorem 
* References for Chapter 8 

8.1 Definitions 

In this chapter, the following assumptions are made throughout: 

• The Finsler structure F is positively (but perhaps not absolutely) 
homogeneous of degree one. Consequently, the associated metric 
distance function d may not be symmetric. 

• The Finsler manifold (M, F) is forward geodesically com­
plete. That is, all geodesics, parametrized to have constant Finsle­
rian speed, are indefinitely forward extendible. By the Hopf-Rinow 
theorem, this is equivalent to saying that all forward Cauchy se­
quences are convergent. See Theorem 6.6.1 and §6.2D. Also, accord­
ing to Exercise 6.6.4, the completeness hypothesis is automatically 
satisfied whenever M is compact. 

• Unless we specify otherwise, all geodesics are parametrized to 
have unit Finslerian speed. 
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Fix a point x in the Finsler manifold (M, F). Let O'y(t) be a unit speed 
geodesic that passes through x at time t = 0, with initial velocity y. Here, 
F(x, y) = 1, so y is an element of the unit tangent Finsler sphere in TxM. 
In other words, y E Sx, the indicatrix at x. 

• Define the conjugate value Cy of y by 

Cy := sup {r: no point O'y(t), 0 ~ t ~ r is conjugate to x} . 

Note that the positive number cy can equal 00. If Cy < 00, the 
point O'y (Cy) is known as the first conjugate point of x along O'y. 
Otherwise, x is said to have no conjugate point along O'y. 

* The conjugate radius at x is defined as 

ex := inf Cy , 
yES", 

while the conjugate locus of x is 

Conx := {O'y (cy): y E Sx with Cy < oo} . 

• Likewise, define the cut value iy of y by 

iy := sup { r: the segment O'y I [O,r] is globally minimizing} . 

The positive number iy can equal 00, in which case the cut point of 
x does not exist in the direction y. If iy < 00, the point O'y (iy) is 
called the cut point of x along 0' y. 

* The injectivity radius at x is defined as 

ix := inf iy , 
yES", 

whereas the cut locus of x is 

Cutx := {O'y (iy): y E Sx with iy < 00 } . 

Explicit examples of Conx and Cutx are scarce. See Spivak [Sp4] for 
those on the ellipsoid, and Berger-Gostiaux [BG] for those on the torus of 
revolution. 

Exercises 

Exercise 8.1.1: Given a geodesic expx(ty), 0 ~ t ~ r, show that the 
following two statements are equivalent: 

• The point expx(ry) is the first conjugate point of x along this geo­
desic. 

• The derivative expx* of the exponential map expx is nonsingular at 
all ty, t E [O,r), and singular at the point ry. 

Hint: consult the proof of Proposition 7.1.1. 
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Exercise 8.1.2: 

(a) Why are Cy and iy always positive? 

(b) Suppose M is compact; explain why Cy and iy are both finite, for 
every unit speed geodesic a y. 

8.2 The Cut Point and the First Conjugate Point 

As we discussed in §7.5, every geodesic a from x starts out by being "short" 
and therefore minimizing among all piecewise Coo curves that share its 
endpoints. However, the moment it gets past the first conjugate point of x, 
we see from Theorem 7.5.1 that it won't even minimize arc length among 
"nearby" piecewise Coo curves. So the cut point of x along a must occur 
either before, or exactly at, the first conjugate point. 

Also, we saw that even though a can no longer globally minimize arc 
length beyond the cut point of x, it can still continue to do so "locally" (that 
is, among "nearby" piecewise Coo curves) until it hits the first conjugate 
point of x. 

Let us now demonstrate another important property of the cut point. 
The first two parts of Theorem 6.3.1 assert that given any "short" unit 

speed geodesic ay from x, it is in fact the unique minimizer (up to repara­
metrization) of arc length among all piecewise Coo curves that share its 
endpoints. 

We show that the distinction of being the unique minimizer is 
actually sustained until, but perhaps not including, the moment 
ay hits the cut point of x. 

To this end, we sketch an argument presented in [Ko]. Let the geodesic 
in question be ay(t), 0 ~ t ~ r. It goes from x to a point x := ay(r) that 
is strictly before the cut point 'x := ay(iy). 

Suppose there exists another curve 'Y from x to x, having the same 
arc length as a y I[O,rJ. Suppose for the sake of argument that 'Y is 
genuinely different from (that is, not a reparametrization of) a y . 

* By first traveling along 'Y from x to x, and then along ay I[r, iyJ from 
x to x, we trace out a curve c from x to its cut point x. The defining 
property of 'Y implies that it must be a minimal geodesic. Thus c is 
piecewise Coo, and has arc length equal to the distance from x to 
x, which is iy . However, c is not a geodesic because it has a "kink" 
(perhaps an extremely slight one) at x. 

* Fix a point 'P on 'Y that is slightly before x, and a point Q on a y that 
is slightly beyond x. If 'P and Q are close enough, there is always a 
minimal geodesic connecting them, whether our manifold is forward 
geodesically complete or not. The triangle inequality for the distance 
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function can be used to check that this geodesic is shorter than the 
arc along "I from P to X, followed by that along a y from x to Q. 

* Therefore c can be replaced by another curve, also going from x to 
X, but which has shorter length. This is a contradiction because, as 
we have seen, the length of cis iy , which is the distance from x to 
the cut point x. 

This demonstrates that the supposed scenario is impossible. In other words, 
every geodesic from x retains its status as the unique minimizer of arc 
length, as long as it does not reach the cut point x. 

An immediate question is: what happens to its unique minimizer status 
if our geodesic ay goes from x to the cut point x? The following proposition 
claims that: 

* If the cut point x comes before the first conjugate point, then the 
unique minimizer status will definitely be lost when a y reaches x. 

* If the cut point x occurs right at the first conjugate point, then in 
general there is no definite conclusion when a y reaches x. 

Proposition 8.2.1. Let x be any point in a forward geodesically complete 
Finsler manifold (M, F), and y an arbitrary element in the indicatrix Sx' 
Let a y be a unit speed geodesic that passes through x with initial velocity 
y. Then: 

(1) iy :::;; cy ; hence ix:::;; ex . 

(2) The cut point of x along a y occurs either before, or exactly at, the 
first conjugate point. 

(3) For any r < iy , the geodesic ay I [O,rj is, up to reparametrization, the 
unique minimizer of arc length among all piecewise Coo curves that 
share its endpoints. 

(4) This "unique minimizer property" will definitely fail at the cut point 
if the latter occurs before the first conjugate point. Namely, when­
ever iy < Cy, there exists a geodesic that is distinct from (that is, not 
a reparametrization of) but has the same endpoints and arc length 
as ayi[O,iyj. 

Proof. Items (1) and (2) have been known since §7.5. And we have just 
deduced (3). It remains to establish (4). 

The portion of a y that concerns us has the description expx(ty), 0 :::;; t :::;; 
iy • Take a sequence of points {xd along a y that are beyond the cut point 
x and converging to x. For concreteness, set 

where the Ek are positive numbers that decrease monotonically to zero. 
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For each k, Proposition 6.5.1 gives a minimizing unit speed geodesic 
exPx(tYk), 0 ~ t ~ Lk of length Lk, from x to Xk. Since Xk is beyond the 
cut point X, we must have Yk #- y. The continuity of the distance function 
d(x, . ) assures us that Lk -+ iy. 

By construction, 

(8.2.1) 

The sequence {yd is contained in the indicatrix Sx, which is a compact 
set. Thus, by passing to a subsequence if necessary, we may assume that it 
converges to some Y E Sx. In particular, 

(8.2.2) Lk Yk -+ iy Y . 

Applying expx to this and comparing the result with (8.2.1) gives 

(8.2.3) expx(iy Y) = x = expxCiy y) . 

Thus expx(tY), 0 ~ t ~ iy and our original O"yl[O,iyj are both geodesics 
from x to x, and they have the same arc length. 

Now we impose the hypothesis that the cut point comes strictly before 
the first conjugate point. It remains to be checked that under such circum­
stance, we must have Y #- y. 

An almond standing 
on its side: 

Figure 8.1 

x 

An illustration of property (4) in Proposition 8.2.1. Consider for 
instance the ellipsoid analyzed in Spivak [Sp4j. Its semi-axes are 
all unequal, so the surface looks roughly like that of an almond. 
We take x to be the East Pole, and expxCty) (much thickened) to 
be the equator traversed clockwise. The cut point x is the West 
Pole. But the first conjugate point q is, somewhat surprisingly, 
"beyond" x rather than at x. Note that the equator traversed 
counterclockwise (slightly thickened) gives the "other" geodesic 
expx(tY) encountered in the proof of Proposition 8.2.1. Namely, 
for this example, an appropriate Y just happens to be -Yo 
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Indeed, iy < Cy implies (see Exercise 8.1.1) that expx* is nonsingular at 
iy y. The Inverse Function theorem then guarantees that expx is injective 
on a ball B centered at iy y. The element iy Y cannot be inside B, or else 
we would have Lk Yk E B for sufficiently large k, which would contradict 
the said injectivity because 

(8.2.4) 

and Yk =f. y. Since iy Y lies outside B (with center iy y), we see in particular 
that Y cannot possibly be the same as y. D 

Corollary 8.2.2. Let x be any point in a forward geodesically complete 
Finsler manifold (M, F), and y an arbitrary element in the indicatrix Sx' 
Let ay be a unit speed geodesic that passes through x with initial velocity 
y. Assume that iy is finite and abbreviate the cut point ay(iy y) as Xy. 
Then at least one of the following two scenarios must hold: 

• Xy is equal to the first conjugate point of x along ay' 

• There exist two distinct geodesics of the same length from x to xy . 

Exercises 

Exercise 8.2.1: Fill in the details in the proof of part (3) of Proposition 
8.2.1. 

Exercise 8.2.2: 

(a) Suppose the Finsler structure is either absolutely homogeneous (wh­
ich includes the Riemannian case) or is of Berwald type. Use Corol­
lary 8.2.2 to deduce that: x is the cut point of x along a if and only 
if x is the cut point of x along the reverse of a. 

(b) Why doesn't this statement hold in the general Finsler setting? Can 
you provide a counterexample? 

8.3 Some Consequences of the Inverse Function Theorem 

This section consists of four guided exercises. We use them to explore the 
fact that nonconjugate points are "stable" under suitable pertur­
bations. 

Exercises 

Exercise 8.3.1: Suppose expx* is nonsingular at the point toY E TxM, 
where F(x, y) = 1 and to ~ O. Show that one can find a neighborhood U 



Exercises 205 

of (x, y) in the indicatrix bundle S and a small E > 0 (both depending only 
on x, y, and to) with the following properties: 

(a) Whenever (x, fi) E U and i E [to - E, to + E], the derivative map 
expx* is nonsingular at the points ifi E TxM. 

(b) In a local trivialization of S, the neighborhood U is the Cartesian 
product of an open ball (for the positions x) in jRn with an open 
"disc" (for the directions fi) on the standard unit sphere §n-l. 

Hint: by hypothesis, (exPx*)(toY) has nonzero determinant or, equivalently, 
it has rank n. 

Exercise 8.3.2: This exercise uses the above but involves a bit more sub­
tlety. Let (x, y) E S and fix an r such that 0 < r < cy. Then expx* is 
nonsingular at all points along the ray ty, 0 ~ t ~ r. Show that there is a 
neighborhood U of (x, y) in S and a small E > 0 (depending only on x, y, 
and r) with the following properties: 

(a) Whenever (x, fi) E U, the derivative map expx* is nonsingular at all 
points along the ray tfi, 0 ~ t ~ r + E. Hence cy ~ r + E. 

(b) limr -.+cy E = O. 

Try the following strategy: 

• For each fixed t E [0, r], get a neighborhood Ut and an interval 
It := [t - Et, t + Ed with the properties stated in Exercise 8.3.l. 
Here, both Ut and Et also depend on the suppressed (x, y). 

• Explain why a finite number of the intervals, say Itl , ••• ,Itk , cover 
[0, r]. Order the ti so that tl < ... < tk. Include 0 and r among 
the ti, so that h = 0 and tk = r. What is the advantage of this 
ordering? Is there a real need for having tk = r? 

• Construct U as the intersection of Utl , ... ,Utk , and perhaps set E 

equal to Etk (that is, Er). Keep in mind that we have to produce 
property (b). Do you see why U must shrink as r approaches cy? 

Exercise 8.3.3: Here, we begin with the same hypothesis as that in Ex­
ercise 8.3.1, namely, expx* is nonsingular at the point toY E TxM, where 
F(x, y) = 1 and to ~ 0, but we extract information from a different per­
spective. 

Consider the map EXP : TM ----> M x M given by (x, v) I-> (x, expx[v]). 
Show that its derivative matrix EXP * at the point (x, v) E T M has the 
following structure: the two diagonal blocks are, respectively, the n x n 
identity matrix and (expx*) (v) , while the upper off-diagonal block is zero. 

If expx* is nonsingular at the point toY E TxM, demonstrate that: 

(a) The matrix (EXP *)(x, toY) is nonsingular. 

(b) There exists a neighborhood V of (x, toY) in TM on which EXP is 
a diffeomorphism. 
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Exercise 8.3.4: Formulate and prove the statement that an accumula­
tion point of conjugate points is a conjugate point. 

8.4 The Manner in Which Cy and iy Depend on y 

Let us now turn to the analytical properties of the conjugate and cut value 
maps. In the following, let S denote the indicatrix bundle; namely, 

S := {(x,y) E TM: F(x,y) = I}. 

Proposition 8.4.1. Let (M, F) be a forward geodesica1ly complete Finsler 
manifold. Let S be the indicatrix bundle. 

(1) The function (x, y) t-+ Cy is lower semicontinuous from S into (0,00]. 
That is, 

(8.4.1) liminf cy ~ Cy. 
(x,y)-+(x,y) 

(2) The function (x, y) t-+ iy from S into (0,00] is continuous. 

Remarks: 

• We have to use (0,00] instead of (0,00) because in some directions 
y, the quantities iy and Cy are both equal to 00. For instance, this 
is so for all y in Minkowski spaces . 

• Whenever Cy is finite, statement (1) means the following: 

Proof. 

Given any p > 0, we can find a neighborhood of (x, y) in 
which all the points (x, y) satisfy 

cy > Cy-p. 

The lower semicontinuity of (x, y) t-+ Cy : 

According to Exercise 8.3.2, for (x, y) close to (x, y) and any fixed r in 
(0, Cy), we have cy ~ r + E for some positive E. In particular, 

liminf cy ~ r + E • 
(x,y)-+(x,y) 

As r -+ Cy, we were told that E -+ O. So 

which is part (1). 

lim inf cy ~ Cy , 
(x,y)-+(x,y) 
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The continuity of (x, y) 1-+ iy : 
Let {(x k, Yk)} be any sequence in S that converges to (x, y) E S. Hence 

(8.4.2) lim expxk(tYk) = expx(ty) for all t ~ 0 . 
k-+oo 

The same holds for any subsequence of {(Xk' Yk)}. 
We want to show that limk-+oo iYk exists and equals iy . It suffices to check 

the following statement: 

(8.4.3) 

First consider the purported inequality on the far right. Without loss of 
generality, let iy < 00 (if iy = 00, there is nothing to prove). Given any 
E > 0, the number of iYk that exceed iy + E must be finite. Otherwise, for 
those Yk in question, relabeled as a subsequence {(Xj, Yj)}, we have 

d(xj,exPxj{[iy+E]Yj}) = iy+E. 

Upon letting j -> 00, this says that the distance from x to expx ([iy + E] y) is 
iy + E. (Taking that limit needs Exercise 6.2.9. Try to supply the steps.) In 
other words, the geodesic expx(ty) continues to minimize arc length beyond 
the cut point of x, which is a contradiction. Thus, for all but finitely many 
Yk, we must have iYk :::;; iy + Eo Hence limsuPk-+oo iYk :::;; i y. 

Next, we establish iy :::;; io . Suppose the contrary; then we have io < iy :::;; 
cy because the cut point never occurs beyond the first conjugate point. 
Since expx* is nonsingular at the point io Y E TxM, we see from Exercise 
8.3.3 that there exists a neighborhood V of (x, io y) in T M on which the 
map EXP, namely, (x, v) 1-+ (x, expx[v]), is a diffeomorphism. 

By the definition of io , there is a subsequence {(Xj,Yj)} such that iYj 
converges to io from above. Also, (8.4.1) tells us that Cy :::;; lim inf k---+oo Cyk' 

We can therefore choose our subsequence so that each (Xj , iYj Yj) is in V 
and 

(8.4.4) 

Since iYj < Cyj ' the last part of Proposition 8.2.1 guarantees a unit vector 
Yj #- Yj such that 

(8.4.5) 

Given what was said about EXP, we see that (Xj, iYj Yj) cannot be in V. 
Since Xj -> x, the points Xj are in some compact subset of M. Hence the 

sequence {(Xj, Yj)} is contained in a compact subset of S, even though S 
itself is not compact unless M is. By passing to a subsequence if necessary, 
we may assume that (Xj, Yj ) -> some (x, Y) E S. Using this and iYj -> io 
in (8.4.5), we get 

(8.4.6) expx(io Y) = expx(io y) . 

Since all the (Xj, iYj Yj) are outside V, so is their limit (x, io Y). But 
(x, io y) E V. Therefore Y #- y. 
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Beginning with the assumption io < iy , we arrived at (8.4.6). It says 
that there are two distinct unit speed geodesics expx(ty) and expx(tY), 
which emanate from x and meet at time t = i o• This contradicts part (3) of 
Proposition 8.2.1, which assures us that since io < iy , the geodesic expx(ty), 
o :::; t :::; io is the unique minimizer of arc length among all piecewise Coo 
curves which share its endpoints. Thus we must have iy :::; io in the first 
place, and the proof of (2) is complete. 0 

Exercises 

Exercise 8.4.1: Using the fact that an accumulation point of conjugate 
points is again a conjugate point, give an alternate argument for the state­
ment iy :::; io in Proposition 8.4.l. 

Exercise 8.4.2: 

(a) Explain intuitively why the map (x, y) t---t Cy is typically not (fully) 
continuous. 

(b) Can it ever be (fully) continuous? 

8.5 Generic Properties of the Cut Locus Cutx 

In this section, we enumerate some generic features of the cut locus. These 
are valid without having to assume that M is compact. Forward geodesic 
completeness, however, is presumed. 

First we list those that follow from our work in §8.2. 

Lemma 8.5.1. Fix a point x in a forward geodesically complete, connected 
Finsler manifold (M, F). Let x be any point that is not in the cut locus of 
x. Then there is exactly one minimizing geodesic from x to x. 

Define the following star-shaped "domain" in TxM: 

(8.5.1) Dx := {ty: F(x, y) = 1 and 0:::; t < iy } . 

Keep in mind that iy can equal 00. Correspondingly, in M we define 

(8.5.2) Vx := expx(Dx) . 

It is reasonable to expect that Vx is also star-shaped. This would certainly 
be the case if the exponential map expx, when restricted to Dx , is a diffeo­
morphism. Such is the thesis of the following proposition. 

Proposition 8.5.2. Fix a point x in a forward geodesically complete 
Finsler manifold (M, F) and let Dx , Vx be as defined above. Let Cutx 
denote the cut locus of x. Then: 
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(1) expx maps the connected open set Dx diffeomorphicallyonto the 
connected open set V x' Both Dx and Vx are star-shaped. 

(2) The boundary of Vx is Cutx' 

(3) Whenever M is connected, it is the disjoint union of Dx with Cutx' 

Proof. 

For (1), it suffices to check that expx is injective on Dx. Suppose not; 
then we have 

(8.5.3a) 

for certain unit vectors Yl, Y2 and tl < iY1 , t2 < iY2 . In fact, we must have 

(8.5.3b) tl = t2 = dist(x, x) . 

This is because, of the two geodesics expx(tYl), expx(tY2) in question, 
neither has reached its cut point when they meet at x, and hence must 
still be minimizing at that moment. Nevertheless, according to part (3) 
of Proposition 8.2.1, the situation we have just depicted in (8.5.3) is a 
contradiction. Thus expx is a diffeomorphism from Dx onto V x' Since Dx 
is connected and star-shaped, so is Dx. 

For (2), first note that Cutx c avx. Indeed, any neighborhood about a 
cut point Xy := expx(iy y) intersects both Dx (say at expx[(iy - E) y]} and 
its complement (say at Xy). 

Conversely, take any x E avx ; it must lie in the connected component 
of M that contains V x ' Proposition 6.5.1 says that there exists a minimal 
unit speed geodesic, say expx(ty), 0 :;:;; t :;:;; r, from x to X. Neither iy = 00 

nor r < iy is possible; for otherwise x and hence a neighborhood of x lies 
entirely inside the open set V x ' Also, since the said unit speed geodesic is 
minimizing, we cannot have r > iy either. Thus r = iy , and x is a cut 
point of x. 

For (3), suppose M is connected. Given any x E M, take as before a 
minimal unit speed geodesic expx(ty), 0 :;:;; t :;:;; r from x to X. If iy = 00, 

then of course r < iy and x must be in V x ' If iy is finite, then r :;:;; iy 
because our geodesic is minimizing; hence x is either in Dx (if r < iy) or 
in Cutx (if r = iy). D 

Since the boundary of Dx is Cutx, it follows from general point set topol­
ogy that the cut locus is a closed subset of M. In this trend of thought, the 
hard work is buried in Proposition 6.5.1. As an alternative, we can invoke 
the continuity of the function y 1-7 iy instead. Such is carried out in Ex­
ercise 8.5.3. Of course, hard work is also implicit in this second approach, 
as we can see from the proof of Proposition 8.4.1. Let us now state some 
consequences of that proposition. The proofs are relegated to the exercises 
at the end of this section. 
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Corollary 8.5.3. Let (M, F) be a forward geodesically complete Finsler 
manifold. Fix x E M. Let Sx denote the indicatrix at x. For any y E Sx 
with iy < 00, use Xy to abbreviate the cut point expx(iy y). 

(1) The function y -+ dist(x, Xy), with its value set equal to 00 when­
ever iy is infinite, is continuous from Sx into (0,00]. 

(2) The map y ~ Xy from Sx onto the cut locus Cutx of x is continuous 
wherever it is defined. 

Lemma 8.5.4. Let (M, F) be a forward geodesically complete Finsler 
manifold. For each x E M: 

• The cut locus Cutx is a closed subset of M . 

• Cutx has null Lebesgue (hence null Hausdorff) measure. 

Exercises 

Exercise 8.5.1: Prove Lemma 8.5.1. Hints: you will need to use Proposi­
tion 6.5.1, the definition of cut points, and part (3) of Proposition 8.2.1. 

Exercise 8.5.2: Establish Corollary 8.5.3. For part (2) in that corollary, 
recall that in order to define the cut point of x in the direction y, one must 
have iy < 00. 
Exercise 8.5.3: Prove Lemma 8.5.4. Here are some suggestions. 

(a) For the part about the Lebesgue measure, use the fact that given 
any continuous function into the one point compactified interval 
[0,00], its graph must have null measure. 

(b) As for the closure of the cut locus, fill in the details of the following 
two arguments. 

* One way is to use Cutx = 81Jx to represent Cutx as the intersection 
of two closed subsets of M. This was the point set topology argument 
we alluded to before. 

* Alternatively, one can use the sequential compactness of the in­
dicatrix Sx, the fact that every point in the cut locus has the form 
expAiy y) for some y E Sx, together with the continuity of the func­
tion y ~ iy . 

Exercise 8.5.4: Let (M, F) be a forward geodesically complete Finsler 
manifold. 

(a) Show that the function which sends x to the injectivity radius at x, 
namely, 

x ~ ix:= inf iy , 
yES", 
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is lower semicontinuous from Minto (0,00]. Explain why this func­
tion measures the metric distance from x to its cut locus Cutx • 

(b) Show that given any compact subset K eM, there is a point Ii E K 
such that 

o < ix = inf ix =: iK . 
xEK 

(c) Using this iK, Proposition 6.5.1, and part (3) of Proposition 8.2.1, 
conclude that: 

Given any two points p, q in a compact subset K 
such that d(p, q) < iK, there is one and only one 
globally minimizing geodesic that connects them. 

(d) Must that special geodesic lie entirely in the compact set K? 

Exercise 8.5.5: Let x be any point in a forward geodesically complete 
Finsler manifold (M, F). Show that: 

• Bx(ix) := {ty: F(x,y) = 1 and O:S;;; t < ix} is the largest open ball 
on which the exponential map expx is injective . 

• expx maps Bx(ix) diffeomorphically onto the forward metric ball 
Bt(ix ):= {x: d(x, x) < ix }. 

8.6 Additional Properties of Cutx When M Is Compact 

We begin this section with a simple but interesting statement from do­
Carmo [doC3]. 

Lemma 8.6.1. Let (M, F) be a forward geodesically complete Finsler 
manifold. 

(1) If M is compact, every geodesic contains a cut point. 
(2) If M is connected and if every geodesic emanating from some par­

ticular x contains a cut point, then M is compact. 

Proof. Actually, (1) has already been addressed in Exercise 8.1.2. If Mis 
compact, it must have finite diameter D. No geodesic longer than D can 
remain minimizing. Thus (1) holds. 

Consider (2). Our special x here guarantees that each iy is finite, hence 
Vx [see (8.5.2)] is forward bounded and so is M (because all points can 
be reached from x). Of course M is closed in its own topology. The Hopf­
Rinow theorem (Theorem 6.6.1) now tells us that M is compact. 0 

When M is compact, the significance of any specific cut locus Cutx is 
encapsulated in the following proposition. 
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Proposition 8.6.2. Fix a point x in a compact Finsler manifold (M, F). 
Let Cutx denote its cut locus. Then: 

(1) Cutx is a compact and connected subset of M. 

(2) The distance d(x, Cutx) is attained at some exPx(iy y) in Cutx' 

(3) Whenever M is connected, Cutx is a deformation retract of the 
punctured space M " x. 

Proof. Let Xy abbreviate the cut point expx (iy y) of x in the direction 
of y. Since M is compact, the map y f-? Xy is defined everywhere on the 
indicatrix Sx' This map is continuous in view of Corollary 8.5.3. Since 
Sx is both compact and connected, (1) follows. The continuity (again, see 
Corollary 8.5.3) of the function y f-? d(x, Xy) gives (2). 

Now suppose M is connected. Given any point x in M " x, we express 
it as expx(tx y) and define r(x) := expx(iy y). The map r : M" x -+ Cutx 
is a retraction because it is the identity on Cutx' 

Let i : Cutx -+ M " x be the inclusion. The map i 0 r : M " x -+ M " x 
is homotopic to the identity through 

h(x, €) := expx([tx + €(iy - tx)] y), 

with 0 ~ € ~ 1. So r is a deformation retraction of M " x onto the cut 
locus Cutx' 0 

This proposition implies that Cutx has the same homotopy type, hence 
the same cohomology, as the punctured space M " x. 

Exercises 

Exercise 8.6.1: Suppose M is compact, connected, and has dimension n 
at least 3. 

(a) Use a Mayer-Vietoris sequence [Spl] to relate the cohomology of 
Cutx with that of M. 

(b) Consult Kobayashi [Ko] for the argument that relates the homotopy 
groups of Cutx to that of M. 

Specifically, one has: 

Hi( Cutx ) !:>< Hi(M) for i ~ n - 2 , 

1l"i( Cutx ) !:>< 1l"i(M) for i ~ n - 2 , 

together with a homomorphism of 1l"n-l (Cutx ) onto 1l"n-l (M). 

Exercise 8.6.2: For the example depicted in Figure 8.2, draw the retrac­
tion from M" x onto the cut locus Cutx' 
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A donut standing 
on its side: 

Figure 8.2 

Outer equator 

Whenever M is connected, Cutx is a deformation retract of the 
punctured space M ...... x . Take for example the situation on the 
torus of revolution, as discussed in Berger-Gostiaux [BGJ. Here, 
x is a point on the outer equator. The cut locus Cutx is comprised 
of one arc (endpoints included) and two circles, all thickened. 

8.7 Shortest Geodesics within Homotopy Classes 

In this section, we present a theorem whose proof contains some ideas 
borrowed from the exposition in Spivak [Sp4]. The underlying trend of 
thought was, according to Spivak, first used by Hilbert to answer existence 
questions posed by some calculus of variations problems. The proof also 
relies on the notion of the injectivity radius of a compact set. This was 
treated in detail by Exercise 8.5.4. 

Theorem 8.7.1. Let (M, F) be a connected Finsler manifold. 

(1) Suppose (M, F) is forward geodesica1ly complete . 

• Fix any two points p and q in M. Then every homotopy class of 
paths from p to q contains a shortest (but perhaps not uniquely so) 
smooth geodesic within that class . 

• In particular, fix any p EM. Then every homotopy class of loops 
based at p contains a shortest (but perhaps not uniquely so) smooth 
closed geodesic within that class. 



214 8. The Cut and Conjugate Loci, and Synge's Theorem 

(2) Suppose M is compact. Then, in addition to the above, every free 
homotopy class of loops in M contains a shortest smooth closed 
geodesic within that class. 

Remarks: 

* Free homotopy classes of loops are elements of the space [SI; M], 
which is a groupoid. Homotopy classes of loops based at a fixed 
p are elements of the fundamental group 7r(M,p), which is a 
bonafide group. Only for some very special manifolds M are the 
two collections of homotopy classes bijective to each other. This 
is the case, for example, when M is a path-connected topological 
group. 

* In Chapter 9, we show that when the flag curvature of (M, F) is 
nonpositive, then those shortest smooth geodesics with designated 
endpoints are actually unique. So, within each homotopy class of 
paths from p to q, there is a unique shortest smooth geodesic. And, 
every homotopy class of loops based at p contains a unique shortest 
smooth closed geodesic within that class. 

* It is also interesting to compare Theorem 8.7.1, with or without the 
refinement afforded by nonpositive curvature, with the Hodge de­
composition theorem. This concerns Finsler manifolds that are 
smooth, compact, boundaryless, and orientable. One of the conclu­
sions of the Hodge theorem [BL2] says that each cohomology class of 
M contains a unique harmonic representative. Note also that, just 
as geodesics are extremals of the arc length functional on the space 
of paths, harmonic forms are extremals of certain energy functionals 
on the space of differential forms. The Euler-Lagrange equation for 
geodesics is a system of second-order quasilinear ODEs, while that 
for harmonic forms is a system of second-order linear elliptic PDEs. 
In this light, Theorem 8.7.1 may be viewed as a key component in 
the homotopy analogue of Hodge theory. 

Proof. 

Consider a specific homotopy class, say a, of piecewise smooth curves. 
[In case (1), these would be piecewise smooth curves from the fixed p to 
the fixed q.] The geometric length of this class is defined as 

lal := inf L(e) , 
cEQ 

where the infimum is taken over all piecewise smooth curves c in the class. 
A piecewise smooth path 0" in the homotopy class a is said to be shortest 
among curves in a if L(O") = lal. The existence of such a 0" is demonstrated 
momentarily. Let us now digress to check that if it exists, it must be a 
smooth geodesic. 
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• Regularity: 
Without loss of generality, let us suppose that O"(t) , 0 ~ t ~ r has 

been parametrized to have unit speed. Denote its velocity field by T(t). 
A priori, 0" is only piecewise smooth, so there is an associated partition 
o =: to < tl < ... < tk := r such that 0" is smooth on each closed 
subinterval [ti- 1 , til. 

Let DTT be defined with reference vector T. We construct a variation 
of 0" with variation vector field U(t) = f(t) DTT, where f(t) is zero at 
to, . .. ,tk and is positive on each (ti-l , ti). The t-curves of this variation 
are then necessarily homotopic to 0". Substituting this U(t) into the first 
variation (see Exercise 5.2.4) and using the fact that 0" is a shortest curve 
in the class a, we have 

- for f(t) gT(DTT, DTT) dt = L'(O) = o. 

So DT T (with reference vector T) must vanish identically. Therefore 0" is 
a unit speed geodesic. 

Given this, the first variation (Exercise 5.2.4 again) reads 

k-l 

L'(O) = - L gT( U(ti) , T(tt) -T(ti)) 
i=l 

for any variation of 0". Next, construct a variation such that the variation 
vector field satisfies U(ti) = T(tt) -T(ti) for i = 1, ... , k-l. The t-curves 
here are again homotopic to 0". Since 0" is shortest, we see that 

k-l 

- L gT( U(ti) , T(ti) - T(ti)) = L'(O) = 0 . 
i=l 

This implies that the "jumps" T(tt) - T(ti) must all vanish. Hence the 
geodesic 0" is C 1. By the discussion in Exercise 5.3.1, it must in fact be Coo 
(provided that our Finsler structure is Coo away from the zero section in 
TM). 

• Existence: 
We next turn to the existence of a shortest 0" in the given homotopy class 

a. Let c; be a sequence of paths in the class a such that L(Ci) --+ lal. Let 
us enumerate some information about these paths: 

(a) The number L:= supL(c;) is finite because the lengths L(c;) form 
a convergent sequence. 

(b) In the case that M is forward geodesically complete, the paths 
c; must all lie inside some sufficiently large "forward" metric ball 
Bt(R). Otherwise, some Ci always wanders outside any given Bt(r), 
no matter how large r may be; but then the lengths L(Ci) won't even 
be uniformly bounded, let alone convergent. The closure of Bt(R) 
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is forward bounded, hence a compact set by the Hopf-Rinow theo­
rem (Theorem 6.6.1). Call that compact set K. Thus, the fact that 
the paths in question have fixed endpoints enables us to confine the 
dynamics to a compact ball K. 

(c) In the case that M is compact, the analogue of the above K is simply 
M itself. Note that in this case, the homotopy classes in question 
are not assumed to have a fixed base point. Since free loops are 
not pinned down, there is a priori no builtin mechanism to prevent 
them from escaping to infinity. For instance, on the bugle surface 
(which is complete), the circular parallels are all homotopic to each 
other, and there is always a shorter one farther out. Replacing com­
pleteness by the considerably more stringent compactness rules out 
this phenomenon, and restores our analytical control of the situ­
ation. This is why compactness is needed when dealing with free 
homotopy groups. 

Exercise 8.5.4 assures us that 

iK := inf ix > o. 
xEK 

Part (c) of the same exercise says that: 

Given any two points in (the compact) K that are less than iK 
units apart (as measured by the metric distance function), there 
is one (by completeness) and only one [by part (3) of Proposition 
8.2.1] globally minimizing geodesic connecting them. 

Getting things set up: 
Using this observation, we cut up every Ci into arcs (say Ni of them) 

with lengths less than ~iK. In particular, the metric distance between the 
endpoints of each arc is less than ~iK. (That factor of ~ was introduced 
for technical reasons which later become clear.) A single large enough N 
can be used for all the Ci. Indeed, any integer N that satisfies 

N (~iK) > L 

will do. 
Replace each arc, say ci (s = 1, ... , N), by the corresponding globally 

minimizing geodesic discussed above. This move is not absolutely necessary. 
It is undertaken to streamline arguments at and after (*) below. Denote 
the resulting modified version of Ci as IJi. By construction, L(IJf) ~ L(cf) 
for each s, so 

Each of the newly constructed IJi is a piecewise smooth curve made up 
of N geodesic segments IJi, s = 1, ... , N. Let x:- 1 and xi denote the two 
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For each fixed s E {I, ... , N}: 
C~ 

.-,~, 
Xi~xi 

--__ ui /--
as -',_ ,/ as 

i-+oo\ :' i-+oo 

~\ :,' 
xs - 1 " • X S 

US 

Figure 8.3 

A sequence of paths Ci in the homotopy class a. They lie inside 
some common compact set K, and L(Ci) -+ \a\. We cut each Ci up 
into a large number N of short arcs, each with length < ~iK. Each 
short arc ci (s = 1, ... , N) is homotopic to a minimizing geodesic 
ui. The homotopy exists because ci and uf both lie inside some 
small forward metric ball, which is in turn diffeomorphic to a 
simply connected tangent Finsler ball. For each s, the endpoints 
of the arcs converge to a pair of points x s - 1 and xs. These are 
joined by a minimizing geodesic us. 

endpoints of each such segment. We digress to check that uf and ci are 
homotopic, through a homotopy that keeps their common endpoints fixed. 
This would tell us that Ui can be deformed to Ci by a piecewise smooth 
homotopy. 

Indeed, the statement 

L( S) L( S) 1. . 
ui ~ ci < 2"lK < lK 

implies that for any point z along ci or ui, we have d(x:-1,z) < iK • In 
order to avoid clutter, let us temporarily abbreviate x:-1 as x. Thus the 
two segments ci and ui are both contained in the forward metric ball 
Bt(iK). Using iK ~ ix, together with the first part of Proposition 8.5.2, 
we conclude that expx maps Bx(iK):= {ty: F(x,y) = 1 and 0 ~ t < iK} 
diffeomorphically onto the above metric ball. The sought homotopy now 
follows readily from the fact that the tangent Finsler ball Bx(iK) is simply 
connected. 

Since Ui is homotopic to Ci, the two belong to the same homotopy class 
a. In particular, \a\ ~ L(Ui). Combining this with our previous observation 
L(Ui) ~ L(Ci), we get 
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Given that L(Ci) ~ 10:1, one must have 

as well. 

The construction of a shortest geodesic: 
Let us resume the discussion proper. For each fixed s, the sequence of 

points {xi : i = 1, ... , oo} lies in the compact set K, and hence contains 
a convergent subsequence. There are only finitely many values for the su­
perscript s on xi. Namely, 0, ... , N. So, by passing to a subsequence (in 
the index i) if necessary, we can assume without loss of generality that for 
every value s, there exists some point x S E K such that 

lim d( XS , xf) = 0 . 
'---+00 

Also, 

d(x:-l, xf) - d(x s - 1 , x S ) [ d(x:- 1 , xf) 

+ [ d(x:- 1 , x S ) 

d(x:- 1 , x S ) 1 

d(x s - 1 , x S ) 1 . 
Thus the equicontinuity of the distance function, detailed in Exercise 6.2.9, 
can be used to deduce that 

Now 

lim d(X:-l, xI) = d(x S - 1 , XS ) • 

'---+00 

1 . 
d(x:- 1 , xI) < 2 tK 

which, upon taking the limit, gives 

1 . 
d(xS - 1 , X S ) :::;; 2 tK < iK . 

Therefore there exists a (unique) globally minimizing geodesic segment US 

from x s - 1 to xS. Denote by u the union of the segments u 1 , ... , uN. It is 
a priori a broken geodesic. Note however that 

N 

L(u) = L L(uS ) 

s=l s=l 

N 

~ lim d(xS - 1 X S ) 
~. 1,' Z 

'---+00 
s=l 

(*) 

N 

L lim L(uf) 
'---+00 

s=l 

(We will soon show that u belongs to the class 0:.) Hence u is shortest and, 
by the established regularity, it is actually a smooth geodesic. 
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Showing that our minimizer is indeed in the homotopy class 0: 

We must check that this U really lies in the homotopy class o. It suffices 
to show that u is homotopic to Ui (for some sufficiently large i) because we 
already know that Ui is homotopic to Ci. 

To 'this end, fix a large i such that for every s = 0, ... , N, we have 
d(xS,xf) < ~iK' This is possible because for every s (and there are only 
finitely many s), the sequence {x: : i = I, ... , oo} converges to xS. Since 
the exponential map at X S is a diffeomorphism from the tangent Finsler 
ball Bx.(~iK) onto the forward metric ball 8:.(~iK)' we can connect X S 

to x: by a unique globally minimizing radial geodesic 'Ys that lies entirely 
inside 8:. (~iK)' We construct our deformation of U to Ui by "sliding" along 
these "guideposts" 'Ys • 

Fix a large i. 
For each fixed s E {I, ... ,N}: 

cl! z 

ul! 
8-1~ ______________ ~z ____________ ~. xl! 

Xi Z 

Figure 8.4 

Our shortest geodesic U indeed belongs to the same homotopy 
class a as the intermediate Ui, each of which is comprised of ge­
odesic arcs. This is so because U is homotopic to some Ui, for i 
sufficiently large. The intuition behind this fact is fairly simple. In 
the forward metric ball 8:._1 (iK), we have a curvilinear rectan­
gle with geodesic edges. Here, the latter are drawn as "straight" 
segments to emphasize geodecity. The top and bottom edges are, 
respectively, given by ui and u8 • The left and the right edges 
are, respectively, the "guideposts" 'Ys - 1 and 'Ys • The latter are 
minimizing geodesics that join x:-1 and xi to x s - 1 and x S , re­
spectively. A homotopy (see those dotted lines) between ui and 
u8 is obtained by "sliding" the endpoints x s- 1 and X S along the 
said guideposts. This is made possible by the fact that the forward 
metric ball 8:.-1 (iK) is small, and is therefore diffeomorphic to a 
simply connected tangent Finsler ball. 
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Take any point X along ai, which has left endpoint xf- 1 and right end­
point xi. The triangle inequality tells us that 

d(xs- 1 x) ~ d(xs- 1 xS- 1) + d(xs- 1 x) < iK + iK = i ,,,, , , " 2 2 K· 

Also, d(xS- 1 , X S) ::::; !iK implies that every point x along as satisfies the 
criterion d(xs- 1 , x) ::::; !iK. Thus both segments ai and as are contained 
in the forward metric ball 8;S_1(iK). 

The left endpoints of as and ai, namely, x s- 1 and xf- 1 , are connected 
by the path ,s-l which lies in 8;S_1 (!iK ). Likewise, their right endpoints 
XS and xi are connected by,S, which lies in 8;ts (!iK)' Note that 

8;ts C;) c 8;S-1 (iK) . 

Indeed, let x be any point in 8;ts(!iK); then d(xs-\x) ::::; d(xs- 1 ,xs) + 
d(xS,x), which is < iK because the first term on the right is at most !iK, 
while the second is strictly less than !iK. 

Thus, in the forward metric ball 8;S_1 (iK), we have the two segments 
as and ui, together with the geodesic ,s-l which connects their left end­
points, and the geodesic ,S connecting their right endpoints. Since this 
metric ball is diffeomorphic to the (simply connected) tangent Finsler ball 
BX S-1 (iK), a homotopy hS between US and ui can be constructed, with the 
prescribed "boundary data" ,s-l and ,S. All the intermediate curves in 
this deformation are contained in 8;S-1 (iK)' 

We digress to elaborate on case (1), wherein (M, F) is forward 
geodesically complete and the homotopy classes concern paths 
with fixed endpoints p and q. In that case, the x? are equal to 
p and the xl( are equal to q, for i = 1, ... ,00. So, the very first 
guidepost ,0 and the very last guidepost ,N are both constant 
curves; they are equal to p and q, respectively. 

Let's return to the proof proper. The homotopies hS , with s = 1, ... , N, 
collectively produce a piecewise smooth homotopy from our (possibly non­
unique!) shortest geodesic u to the broken geodesic Ui. Furthermore, ai is 
by construction homotopic to the path Ci, which belongs to the homotopy 
class D!. This shows that our shortest smooth geodesic u indeed belongs to 
the class D!, and completes the proof of the theorem. 0 

Exercises 

Exercise 8.7.1: In the proof of Theorem 8.7.1, we have the sequence of 
broken geodesics {ad, together with the geodesic u which is a shortest 
curve in the homotopy class D!. Without loss of generality, let us suppose 
that the curves Ui, and u, have all been parametrized to have constant 
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speed and time domain [0,1]. By passing to a subsequence if necessary, 
show that as maps from [0,1] into the compact set K, the O"i converge 
uniformly pointwise to 0". 

Exercise 8.7.2: When setting things up to prove existence, we cut up each 
path Ci into N pieces of length < !iK. We mentioned that our use of that! 
was due to a technical reason. Pinpoint exactly where and how that factor 
of! was needed in the proof of Theorem 8.7.1. 

Exercise 8.7.3: Would the conclusions of Theorem 8.7.1 remain the same 
if (M, F) were backward geodesically complete (see §6.6) instead? 

8.8 Synge's Theorem 

Here's a result that makes pivotal use of part (2) of Theorem 8.7.1. It was 
first derived for Finsler manifolds by Auslander [Au]. See also [Daz]. 

Theorem 8.8.1 (Synge). Let (M, F) be a Finsler manifold. Suppose: 

• M is even-dimensional, oriented, and connected. 

• (M, F) is forward geodesically complete. 

• All flag curvatures are bounded below uniformly by some positive 
constant A. 

Then: 

(a) Every free homotopy class of loops in M is trivial. That is, every 
loop is freely homotopic in M to a point. 

(b) M is simply connected. That is, for any fixed x EM, every loop 
based at x can be deformed to the point x through a family of loops 
that are all based at x. 

Proof. 

Checking that conclusions (a) and (b) are equivalent: 

* Suppose (a) holds. Take any loop c(t), 1 :::;; t :::;; 2 based at x. By 
ignoring the base point x, we use (a) to obtain a free homotopy 
from c to a single point, say p. This free homotopy consists of a 
I-parameter family of loops c",(t), 1 :::;; t :::;; 2. Here, If, E [0,1] and, 
eo(t) = c(t), Cl(t) = p . 

As If, increases from 0 to 1, c",(I) [equivalently c",(2)] traces out 
an arc from x to the point p. This arc will help us define a family 
of loops that are all based at x, and which serves as a deformation 
of c to the point x. 
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To this end, for each K, E [0,1]' define 

{ 
ct,,(l) for 0 ~ t ~ 1 

h,,(t) .- c,,(t) for 1 ~ t ~ 2 

c3,,-t,,(2) for 2 ~ t ~ 3 . 

This h" heads from x to the starting point of c,,' goes around the 
loop c" once, and then returns from the final point of c" back to x. 
When K, = 0, h" is a reparametrized form of c. When K, = 1, h" goes 
from x to p along some arc during the first second, sits at p for a 
full second, and then returns from p back to x using the reverse of 
the said arc. Call this loop 'Y. A reparametrized version of c is thus 
homotopic to 'Y through loops that are all based at x. 

It is straightforward to deform 'Y to x using loops that are all 
based at x. Therefore we have demonstrated that (a) implies (b). 

* Suppose (b) holds. Take any loop c(t) and declare its starting point 
as our base point x. Then (a) immediately follows. 

Deducing (a) from the hypotheses of the theorem: 
It therefore suffices to establish (a). In view of the second and the third 

hypotheses, we see from the Bonnet-Myers theorem (Theorem 7.7.1) that 
M must be compact. 

Suppose, for the sake of argument, that there is a nontrivial free homo­
topy class a. We derive a contradiction. 

By part (2) of Theorem 8.7.1, a contains a shortest smooth closed geo­
desic a. Without loss of generality, we may assume that aCt), 0 ~ t ~ L 
has already been parametrized to have unit speed. Since the loops in a are, 
by the above supposition, not homotopic to a point, a cannot have zero 
length. In other words, L must be positive. 

Abbreviate a(O) as x, and the initial velocity of a as T. The unit velocity 
field T(t) of a is occasionally abbreviated as T also, when there is no danger 
of confusion. 

Parallel transport once around the geodesic loop a, with reference vector 
T(t), is an orientation preserving isomorphism Pc, : TxM ---t TxM. Let TJ.. 
denote the gT-orthogonal complement of the unit vector T in the tangent 
space TxM. Recall that gT refers to the inner product g(a,T)' By Exercise 
5.2.3, the map Pa preserves gr lengths and gT angles. So its restriction to 
TJ.., say P a : TJ.. ---t TJ.., is well defined. We know that: 

* TJ.. is odd-dimensional because M has even dimension. 

* Pais an orthogonal transformation with positive determinant (equal 
to 1) because its predecessor Pa is orientation preserving, and 
PaCT) = T. 

Observe that: 
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• The characteristic polynomial of P (7 has real coefficients. So its com­
plex eigenvalues must come in complex conjugate pairs. 

• That polynomial also has odd degree; hence there is necessarily an 
odd number of real eigenvalues. One of those real eigenvalues must 
be positive because det P (7 = l. 

• Since P (7 preserves lengths of vectors, all its eigenvalues have norm 
one. Hence that real positive eigenvalue must be equal to l. 

Consequently, there is a vector U E TxM that is gT-orthogonal to T and 
kept invariant by P(7. By rescaling u if necessary, we may assume that it 
has gT length one. 

Follow the evolution of u as it gets parallel transported (with reference 
vector T) once around a. It generates a parallel vector field U(t) along a 
before returning to itself. Produce a variation of a by piecewise smooth 
loops such that the resulting variation vector field is this U(t). Keep in 
mind that: 

* The base geodesic a in this variation is a closed curve of unit speed. 

* The variation vector field U(t) is gT-orthogonal to a at all times. 

* DTU = 0 all along a. 

* gT( U(t) , U(t)) = 1 for all t E [0, L]. 

Here, the second and the fourth items follow from Exercise 5.2.3. These 
observations reduce the second variation of arc length (see Exercises 5.2.7 
and 5.2.6) to 

L"(O) = 1L -K(T, U) dt . 

By hypothesis, all flag curvatures of (M, F) are bounded below by the 
positive constant A. Thus 

L"(O) ~ - A L < O. 

This implies that many loops (near a) in this variation are strictly shorter 
than a, contradicting the defining property of a as a shortest loop. So our 
original supposition must be wrong; there is no nontrivial free homotopy 
class after all. D 

Similar ideas are involved in the proof of an estimate (due to Klingen­
berg) on the injectivity radius of certain Riemannian manifolds. See [CE]. 

Exercises 

Exercise 8.8.1: For Synge's theorem, verify that 
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(a) Real projective space of dimension two is a counterexample if we 
drop the orient ability hypothesis. 

(b) Real projective space of dimension three is a counterexample if we 
drop the hypothesis that M is even-dimensional. 

See [Sp4] for more discussions. 

Exercise 8.8.2: Contemplate the following questions which complement 
Synge's theorem. See [Sp4J, [GHL], and also [Daz] for insights. 

Let (M, F) be a forward geodesically complete Finsler manifold 
whose flag curvatures are uniformly bounded below by a positive 
constant. 

• If M is even-dimensional and nonorientable, must its fun­
damental group be Z2? 

• If M is odd-dimensional, must it be orient able? 
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9.1 Estimating the Growth of Jacobi Fields 

In §5.5, we estimated the growth of certain Jacobi fields using the first few 
terms of a power series. That was valid only for a short time interval. In the 
present section, we use a more delicate approach-known as a comparison 
argument. The resulting estimate holds for long time intervals. 

The hypotheses here are as follows: 

• CT(t) , 0 ,,:;; t ,,:;; L is a unit speed geodesic with velocity field T. 

• J is a nonzero Jacobi field along CT such that J(O) = O. 

We do not assume a priori that our Finsler manifold is forward geodesically 
complete. 

Our goal is to estimate the growth of 
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We seek a lower bound on IIJ(t)11 when the flag curvature K(T, J) is uni­
formly bounded above by a constant ),. The result is used to help deduce 
the Cart an-Hadamard theorem in §9.4. It turns out that in order to derive 
this lower bound on IIJ(t)ll, we need to first estimate the index I(J, J) from 
below. 

The case wherein K is uniformly bounded below is not treated 
in the section proper. Instead, we relegate it to a much guided 
Exercise 9.1.3. In this case, we seek an upper bound (rather than 
a lower bound) on IIJ(t)lI. As we show in part (b) of Exercise 9.1.3, 
a key step calls for an upper bound on the index I(J, J). Thus 
the basic index lemma is happily relevant, thereby simplifying a 
technical portion of the argument. 

Note that J can be resolved into two components, one tangential to a and 
one which is 9T-orthogonal to it. In view of Exercises 5.4.3 and 5.4.5, the 
growth rate of the tangential component is well understood. As a matter of 
fact, it is linear in t. For this reason, there is no conceptual loss in assuming 
that: 

• J is everywhere 9T-orthogonal to a. 

We first dispense with two technical issues: 

* Since J vanishes at t = 0 but is nonzero, there must exist a positive 
l ~ L such that J is nowhere zero on (0, l]. Our analysis is carried out 
on [0, l]. Such caution is necessary because some of the iritermediate 
formulas below involve division by IPII. Later on, we explain why 
the estimate actually holds on [0, LJ, provided that 

L ~ .ix in the case of positive ), . 

* For each fixed r in (0, lJ, let Ir denote the index form in which the 
integration is carried out from 0 to r. 

Estimating the index form: 
According to Exercise 7.2.3, 

1 d 
-2 dt 9T (J, J) = Ir(J, J) . 

It=r 

Let us estimate Ir(J, J) under the curvature assumption 

K(T,J) ~ ),. 

As a preliminary step, we have: 

Ir(J,J) for [9T (J', J') - K(T, J) 1IJ112] dt 

;;;: for [ ( 1IJ11,)2 - ), IIJII2] dt. 
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Here, J' abbreviates the covariant derivative DTJ, taken with reference 
vector T. Also, a Schwarz inequality has been applied without mention: 

(1I JII')2 = [gT(J"J) ]2 (J' J') 
IIJII :::;; gT ' . 

Anyway, we have just shown that 

(9.1.1) 

A comparison argument on functions: 
In order to estimate that integral, we appeal to Exercise 7.3.3. Define 

IIJ(r)11 
sin( v'>. t ) 

sin( v>. r) r>D} F IIJ(r)11 t resp., for A = 0 . 
r 

IIJ(r)11 A<O 

sinh( ~r) 
sinh( Nt) 

Since our fixed r can be any number in (0, 1J, we must impose the constraint: 

in the case of A > 0 . 

The exercise in question says that: 

(9.1.2) 17" [ (1IJII,)2 - A 1IJI12] dt ~ F'(r) F(r) . 

Some calculus: 
Let us combine (9.1.1) with (9.1.2), and divide the resulting statement 

by IIJ(r)112. Since F(r) = IIJ(r)11 by construction, we have 

where 

1 P(r) s~(r) 
2 IIJ(r)112 (11J11 2 )'(r) ~ F(r) s),(r) , 

1 . " v>. sm( v At) 

(9.1.3) s),(t)·- t {
A>O} 

resp., for A = 0 . 

Thus 

~ sinh(Nt) 
V-A 

A<O 

(logllJII )'(r) ~ (logs),)'(r) at all r E (0,1]. 
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Equivalently: 

(lOg I~II)' ~ 0 on (0, l] . 

In particular, the quotient IIJII/SA is nondecreasing and 

0(t) ~ lim 0(r) . SA r-+O+ SA 
It turns out that the limit of IIJI12 /s~ is considerably easier to compute 
than that of PII/SA' Carrying out that calculation using L'H6pital's rule 
(see Exercise 9.1.1), we update the above inequality to 

(9.1.4) IIJ(t)11 ~ SA(t) IIJ'(O)II . 
Since J(O) = 0, we must have J'(O) =I- 0, otherwise our Jacobi field J would 
have to vanish identically. 

Showing that our estimate is actually valid on [0, L]: 
As of now, (9.1.4) is valid on all intervals [0, l] such that J(t),O < t ~ l 

is nowhere zero. 

* Because of (9.1.4), the first positive zero of J(t) cannot possibly 
come before the first positive zero of SA(t). (Prove it.) 

* For the A < 0 and A = 0 cases, SA(t) has nO positive zero. Therefore 
neither does J(t). This meanS we could have chosen l to be L. That 
is, (9.1.4) holds on [0, L]. 

* For the A > 0 case, the first positive zero of SA(t) occurs at 

7r 
t = V,X. 

In this case, let us impose the restriction 

7r 
L ~ V,X. 

Our proof tells us that (9.1.4) is valid On [O,L] if L < 7r/v'x . An 
inspection assures us that the validity persists even if L = 7r / J).. . 

Let us summarize: 

Theorem 9.1.1. Suppose: 

• (M, F) is a Finsler manifold whose flag curvature is bounded above 
by a constant A. 

• o-(t), 0 ~ t ~ L is a unit speed geodesic with velocity field T, and 
L ~ ;Ix in the case of positive A. 

• J is a Jacobi field that is gT-orthogonal to 0-, and we have J(O) = 0, 
J' (0) =I- O. 
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Then the norm IIJII := V9T(J, J) satisfies the inequality 

II J(t) II ~ SA(t) IIJ'(O)II on [O,L]. 

Remarks: 

* Here, SA is given explicitly by (9.1.3). 

* The said norm II II is induced by 9T , which is an inner product. It 
is not the Finsler norm F. Put another way, 9T (V, V) and F2(V) 
are typically different, unless V is a positive multiple of T. For this 
reason, the Jacobi field estimate is lamentably not a sharp one. Nev­
ertheless, it is still useful. This echoes similar sentiments expressed 
by Egloff [E]. 

* Exercise 9.1.3 deals with an analogue of this theorem when the flag 
curvature is bounded below. In that case, we seek an upper bound 
on IIJ(t)ll. It reads: 

IIJ(t) II ~ SA(t) IIJ'(O)II on (0, l) . 

The number l is made precise in that exercise. 

Proposition 9.1.2. On any Finsler manifold (M, F) of nonpositive Bag 
curvature, no geodesic can contain any conjugate points. 

Proof. This follows from Theorem 9.1.1 by setting>. = 0 there. Indeed, 
let CT(t), 0 ~ t ~ L be any geodesic with velocity T. Suppose there is a 
nonzero Jacobi field J along CT such that J(O) = 0 = J(r), with r E [0, L]. 
According to Exercise 5.4.4, J must be 9T-orthogonal to CT at all times. 
Furthermore, since J(O) = 0 but J is nonzero, we must have J'(O) =1= o. By 
Theorem 9.1.1, the following inequality holds on [0, L]: 

IIJ(t)11 ~ t IIJ'(O)II . 

In particular, J(r) cannot possibly be zero. Thus we have arrived at a 
contradiction, and there are no conjugate points after all. 0 

Exercises 

Exercise 9.1.1: Apply L'Hopital's rule twice to deduce that 

11'm IIJII2 . 9T(J', J) . 9T(J', J) 
hm , = hm 

r->O+ si r->O+ SA SA r->O+ SA 

= lim 9T (J", J) ~ 9T (J', J') 
r->O+ SA 
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Try to compute lim I~~II (namely, without first squaring) using L'H6pital's 
rule and see what happens. 

Exercise 9.1.2: Deduce the following conclusion from Theorem 9.1.1. Sup­
pose the flag curvature of our Finsler manifold is bounded above by a 
positive constant A. Then, given any unit speed geodesic a(t), the first 
conjugate point of a(O) cannot occur before t = ::Ix. Put another way: 

Given a constant positive upper bound A on the flag cur­
vature, successive conjugate points along a geodesic must 
be at least ::Ix units apart. 

Exercise 9.1.3: Suppose 

• (M, F) is a Finsler manifold whose flag curvature is bounded below 
by a constant A. 

• a(t), 0 ~ t ~ c is a unit speed geodesic with velocity field T. Here, 
c is chosen such that a(c) is the first conjugate point of a(O). If 
no conjugate point exists, set c equal to +00. In that case, replace 
O~t~cbyO~t<oo. 

• J is a Jacobi field that is gT-orthogonal to a, and J(O) = 0, 
J'(O) =f. O. This J is not identically zero. By the definition of conju­
gate points, J must be nowhere zero on the open interval (0, c). 

Our exercise deals with an estimate of IIJII := J gT(J, J) from above. It is 

the other side of the coin, so to speak, of Theorem 9.1.1. 

(a) Fix any r E (0, c). Explain why there exists a parallel vector field E 
along a such that E(r) = J(r). 

(b) Set 

for A> 0 , 

for A ~ 0 . 

Fix r E (0, l). Consider the vector field 

W(t) := s,X(t) E(t) 
s,X(r) 

along a(t), 0 ~ t ~ r. Check that 

~ ( IIJI1 2 )'(r) = Ir(J, J) ~ Ir(W, W) . 

(c) Explain why IIE(t)11 = IIE(r)11 = IIJ(r)11 . 

(d) Prove that under the said curvature assumption, we have 

Ir(W, W) ~ IIJ(r)112 (logs,X )'(r) . 
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(e) Put parts (b) and (d) together, and manipulate the result into the 
form 

( log I~;II)' ~ 0 on (0, l) . 

(f) Carry out a computation much like that in Exercise 9.1.1. Then 
show that 

IIIJ(t)11 :::;; s.x(t) IIJ'(O)II on (0, l) I· 

(g) Explain how you would deduce from this inequality that c:::;; J->. in 
the case of positive A. Note: somewhere in the arguments, one needs 
to acknowledge the conclusion of Exercise 5.4.4. 

Whenever the flag curvature has a constant positive lower 
bound, conjugate points must exist along every geodesic, 
and these are spaced at most J->. units apart. 

We have therefore derived, from a different perspective, conclusion (1) of 
the Bonnet-Myers theorem (Theorem 7.7.1). See also [M2]. No definite 
conclusion can be made however, if the uniform lower bound is either zero 
or negative. 

9.2 When Do Local Diffeomorphisms Become Covering Maps? 

Fix any point p in a Finsler manifold (M, F) . 

• In Proposition 9.1.2, we saw that if (M, F) has nonpositive flag 
curvature, then no geodesic can contain any conjugate points. In 
that case, Proposition 7.1.1 assures us that the exponential map 
expp is a local diffeomorphism wherever it is defined . 

• Now suppose that, in addition to being nonpositively curved, our 
Finsler manifold is also connected and forward geodesically complete 
(see §6.6). Proposition 6.5.1 then assures us that we can go from 
p to any point q E M by way of a globally minimizing geodesic 
a-(t) := expp(tv). In other words, expp maps TpM onto M. 

Thus, for any p in a forward geodesically complete, connected Finsler 
manifold of nonpositive flag curvature, the exponential map expp : TpM ---+ 

M is a globally defined surjective local diffeomorphism. It is C 1 at the 
origin and Coo elsewhere. Our goal in this section is to show that, under 
the stated circumstances, expp is also a covering projection. 

A map 'P : iII ---+ M is said to be a covering projection if the following 
holds. Take any fixed x E M together with the points xo. in its inverse 
image 'P-1(x). We must find a neighborhood 0 of x such that: 
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• cp-10 is a disjoint union of open neighborhoods Oa, one for each 
point xa E cp-l(X). This 0 is then said to be evenly covered. 

• cp is a homeomorphism from each 0 a onto O. 

Our basic tool is the following elegant result in doCarmo [doC2]: 

Let us be given a local homeomorphism cp : M -+ M that lifts 
continuous arcs. Suppose M is locally arcwise connected and M 
is locally simply connected. Then cp is a covering projection. 

Manifolds are locally both arcwise and simply connected. Our manifolds 
are smooth, and the cp that we consider are at least C1 . A study of the 
proof in [doC2] shows that the following variant holds: 

Proposition 9.2.0. 

• Let cp : M -+ M be a local C 1 diffeomorphism between manifolds. 

• Suppose every piecewise C 1 curve in M, defined on a closed interval 
[a, b], can be lifted to one in M. 

Then cp must be a covering projection. 

This proposition lets us generalize a theorem in [KNl] to the Finslerian 
category. Its original Riemannian version is useful in §13.4, when we discuss 
Hopf's classification of Riemannian space forms. 

Theorem 9.2.1. Let (M, F) and (M, F) be two Finsler manifolds of the 
same dimension. Here, the Finsler structures are positively (but perhaps 
not absolutely) homogeneous of degree one. Suppose: 

* Both Finsler manifolds are connected, and the domain (M, F) is 
forward geodesically complete. 

* cp : (M, F) -+ (M, F) is a smooth local isometry. That is, cp is a 
smooth local diffeomorphism and F = F 0 Cp* = cp* F. 

Then: 

• (M, F) must in fact be forward geodesica1ly complete as well. 

• cp must necessarily be surjective. 

• cp is a covering projection. 

The above Finsler structures are presumed smooth and strongly convex 
away from the zero section in the respective tangent bundles. 
Remarks: 

* According to the first conclusion, the forward geodesic complete­
ness of the domain (M, F) automatically implies that of the target 
(M, F). A certain converse [KNl] holds, but it is not as elegant. 
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* Suppose we do not care whether (M, F) is complete or not, and 
we hypothesize that cp is onto. Then the assumption on 'I' being 
a smooth local isometry can be weakened, and it would still be a 
covering projection. See [doC3] and Exercise 9.2.2. 

Proof. The completeness of the target and the surjectivity of 'I' both follow 
from a precise understanding of how short geodesics in the two spaces are 
related to each other. We relegate the proof to Exercise 9.2.1. 

It remains to deduce that cp is a covering projection. We accomplish this 
by checking that 'I' lifts piecewise C1 curves. Proposition 9.2.0 then delivers 
the said conclusion. 

Take a piecewise C1 curve in M. A typical C1 segment of it can be 
reparametrized as c(u), 0 :::;; U :::;; 1. At the endpoints, it has the one-sided 
velocities £:(0+) and c(l-). We want to show that c, together with the 
one-sided velocities, admits a C1 lift c( u), 0 :::;; u :::;; 1. 

Whenever the lift c exists, it must satisfy 'I' 0 c = c. Since 'I' is a local 
diffeomorphism and both it and c are at least C1, so is the lift. Further­
more, the derivative Cp* is continuous and i; = ('1'*)-1 C . So c has one-sided 
endpoint velocities, and they correspond properly to those of c. 

It suffices to show that the lift exists. Since cp is a surjective local dif­
feomorphism, we can at least lift a small beginning portion of c. Take the 
maximal subinterval C (containing 0) on which c can be lifted. A priori, 
there are three possibilities for C. It is either [0, J.L] or [0, J.L), with 0 < J.L < 1, 
or [0,1]. The first is not viable because the local diffeomorphism at c(J.L) 
always enables the lift to be extended past u = J.L, so [0, J.L] cannot be 
maximal. The third is what we want. Let us rule out the second scenario. 

Let {ud be a positive increasing sequence that converges to J.L. Note that 
we have 

where the equality comes from P = F 0 cp* . Thus the sequence of points 
{c( Ui)} is forward bounded in some forward d metric ball of M. By the 
Hopf-Binow theorem (§6.6), the closure of this ball is compact because P 
is assumed to be forward geodesically complete. Hence our sequence {C(Ui)} 
has an accumulation point x. 

By passing to a subsequence if necessary, we may suppose that c( Ui) -4 x. 
Applying 'I' to this statement, we see that C(Ui) -4 x =: cp(x). On the other 
hand, c(ud -4 c(J.L). So X = c(J.L). 

Since 'I' is a local diffeomorphism, it maps an open neighborhood [; of x 
diffeomorphically onto an open neighborhood U of 'I' (x) =: x = c(J.L). Also, 
the lifted portion on [0, J.L) "heads towards" x because c( Ui) -4 x. It is now 
apparent that c can be lifted on an interval larger than [0, J.L). Thus the 
latter cannot be maximal, thereby leaving [0,1] as the only possibility for 
C, as desired. 0 
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Proposition 9.2.2. Let (M, F) be any forward geodesically complete, 
connected Finsler manifold of nonpositive flag curvature. For any p E M, 
the exponential map expp : TpM -+ M is a covering projection. 

Proof. Given the hypotheses, our expp : TpM -+ M is a surjective C1 local 
diffeomorphism. If we had set if := TpM, r.p := expp, P := r.p* F = F 0 r.p*, 
and then tried to apply Theorem 9.2.1, we would be wrong. Finsler metrics 
are supposed to be smooth at all positions and in all nonzero directions. 
This P is typically only continuous at the origin (which is a position!) of 
if because r.p is generically only C1 (hence r.p* is only CO) there. 

What saves the day is the following general fact. Let 

c(u) := expp[ t(u) v(u)] , with Fp[ v(u)] = 1 , 

be a curve of the "liftable" form, defined on 0 ~ u ~ uo . The scalar t and 
the unit vector v are both C 1 in the parameter u. The endpoints of care 

c(O) = expp[t(O)v(O)] and c(uo) = expp[t(uo)v(uo)] . 

We claim that the length of c satisfies the estimate 

[ L(e) ~ t(uo) - teO) = Fp[ t(uo) v(uo)] - Fp[ teO) v(O)] [. 

The proof uses the Gauss Lemma (§6.1) and the fundamental inequality 
(1.2.3). It begins with the paragraph after (6.3.4) and is word-for-word the 
same, up to and including the quantity t(l) - teO) in the statement (*) in 
our proof of Theorem 6.3.1. After that we simply replace t(l) by t(uo). 

In view of Proposition 9.2.0, our local C 1 diffeomorphism expp is a cov­
ering projection if it lifts piecewise C 1 curves. We explained in the proof of 
Theorem 9.2.1 why one only needs to show that each C 1 segment can be 
lifted. The issue of one-sided endpoint velocities always resolves itself. 

A typical C 1 segment can be reparametrized as c( u), 0 ~ u ~ 1. The sur­
jectivity of our local C 1 diffeomorphism expp implies that a small beginning 
portion of c admits a lifting. Take the maximal subinterval .c (containing 
0) on which c can be lifted. Namely, there exists a C 1 curve in TpM, given 
by the "position vectors" 

C(u) := t(u) v(u) , u E .c, with Fp[ v(u)] = 1 , 

such that expp[c(u)] = c(u). As in the proof of Theorem 9.2.1, .c is a priori 
either [O,JL), with 0 < JL < 1, or [0,1]. We now rule out the former. 

Let {ud be a positive increasing sequence that converges to JL. The gen­
eral estimate stated above helps us conclude that 

Fp[C(Ui)] - Fp[c(O)] ~ L(cl[O,uil) ~ L(e) < 00. 

Therefore the sequence of points {c(uiH in TpM must be bounded in the 
Minkowski norm Fp , or else we would have a contradiction. 

By choosing a basis for the vector space TpM, it inherits the usual Eu­
clidean norm I I ofll~n. The second conclusion of Lemma 6.2.1 says that Fp 
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and I I are equivalent. The completeness of Euclidean space then implies 
that our bounded sequence {c(uiH has an accumulation point x E TpM. 
This occurs in the topology defined (by II, hence that defined) by Fp , which 
is what we use to make sense of "local" on TpM. The rest of the argument 
is identical to the last two paragraphs in our proof of Theorem 9.2.1. D 

Exercises 

Exercise 9.2.1: Let 'P : (M, F) ~ (M, F) be a local isometry between 
Finsler manifolds. Short geodesics in M and M then correspond to each 
other. This fact can be stated as a commutation relation: 

'P 0 exp = exp 0 'P* . 

Now suppose (M, F) is forward geodesically complete. Use that commuta­
tion relation to help in the following tasks. (See [KNl] only if necessary.) 

(a) Show that the target (M, F) must necessarily be forward geodesi­
cally complete. 

(b) Suppose, in addition to (M, F) being complete, we also assume that 
M is connected. Prove that 'P must necessarily be surjective. 

Exercise 9.2.2: Use Proposition 9.2.0 to help prove a result in [doC3]. 

Let 'P be a local C1 diffeomorphism from the Finsler manifold 
(M, F) onto the Finsler manifold (M, F). If (M, F) is forward 
geodesically complete, and F0'P* ~ F, then 'P is a covering map. 

Exercise 9.2.3: If (M, F) is a Berwald space, can Proposition 9.2.2 be 
deduced from Theorem 9.2.1? Hint: see §5.3. 

Exercise 9.2.4: Unlike [KNl], our proof of Theorem 9.2.1 does not begin 
with a geometrically chosen O. Study the Riemannian case in [KNl], then 
reprove Theorem 9.2.1 for absolutely homogeneous Finsler manifolds. Af­
ter that, modify (using Lemma 6.2.1) your proof to handle the positively 
homogeneous case. In both cases, make clear where completeness gets used. 

9.3 Some Consequences of the Covering Homotopy Theorem 

Fix any point p in a forward geodesically complete Finsler manifold (M, F). 
Recall from Theorem 8.7.1 that for each homotopy class of paths on M from 
our p to another fixed q, there is a shortest smooth geodesic within the same 
class. 

Now suppose that in addition to being forward geodesically complete, 
the Finsler manifold is also connected and has nonpositive flag curvature. 
Our goal in this section is to show that under these circumstances, there 
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is only one shortest smooth geodesic within each homotopy class of paths 
from p to q. 

We saw in §9.1 and §9.2 that given the hypotheses on (M, F), especially 
the fact that its flag curvature is nonpositive, the exponential map expp : 
TpM ---t M is a covering projection. A rather useful fact about any covering 
projection cp : M ---t M is the Covering Homotopy theorem described 
below. It is precisely the tool we need to accomplish the stated goal. 

Theorem 9.3.1. 

* Let cp : M ---t M be a covering projection. 

* Let O"(t), t E [a, b] be a curve in M. Let u(t), t E [a, b] be a lift of 0". 

That is, cp 0 u = 0". 

* Suppose h : [a, b] x [0,1] ---t M is a homotopy with h(t,O) = O"(t) for 
all t E [a, b]. 

Then: 

• There exists a unique lift h [a, b] x [0,1] ---t M of h such that 
h(t,O) = u(t). Here, cp 0 h = h. 

• Furthermore, if for some to E [a, b], h(to, u) happens to be constant 
for all u, then h(to, u) will also be constant in u. 

Remarks: There are two immediate corollaries of this theorem. 

* Let , be any curve in M that emanates from p. By performing a 
reparametrization and a relabeling if necessary, we may write , as 
,(u), with u E [0,1]. View, as a homotopy h(t,u) := ,(u) in which 
all the intermediate t-curves are constant curves. Fix any p E M 
such that cp(p) = p. Then the first conclusion of Theorem 9.3.1 
ensures that, admits a unique lift ;:y into M with ;:Y(O) = p. 

* Let h : [a, b] x [0,1] ---t M be a homotopy among paths with fixed 
endpoints p and q. That is, h(a, '1..) = P and h(b, u) = q for all 
u E [0, 1]. Then the second conclusion of Theorem 9.3.1 tells us that 
its lift h will also be a homotopy among paths with fixed endpoints. 

For a more general statement of the Covering Homotopy theorem and a 
detailed proof, see [ST]. 

We are ready to establish the following interesting fact. 

Lemma 9.3.2. Let (M, F) be a Finsler manifold. 

• Suppose that at some p EM, the exponential map expp : TpM ---t M 
is a covering projection. 

• Let O"o(t) := expp(tTo) and O"l(t) := expp(tT1 ) , 0 ~ t ~ L be any 
two (smooth) geodesics emanating from p and terminating at some 
common q E M. 
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The following conclusions hold: 

* If 0"0 is homotopic to 0"1 through a homotopy with fixed endpoints 
p and q, then To = T1 (equivalently, 0"0 = 0"1). 

* In particular, if 0"0 and 0"1 are not reparametrizations of each other, 
then they cannot be deformed to each other through a homotopy 
with fixed endpoints p and q. 

Proof. The contrapositive of the first conclusion encompasses the second 
conclusion. So it suffices to establish the first one. 

Suppose 0"0 is homotopic to O"l, through a homotopy h(t, u), 0 ~ t ~ L, 
o ~ u ~ 1 with fixed endpoints p and q. Using Theorem 9.3.1, we lift this 
h to a homotopy h : [0, L] x [0,1] -+ TpM with h(t, 0) = tTo. 

By hypothesis, every t-curve of the homotopy h begins at p and ends at 
q. Theorem 9.3.1 assures us that correspondingly, every t-curve of the lifted 
homotopy h begins _at the origin of TpM and ends at the tip of LTo E TpM. 

Note that both h(t,l) and tTl are lifts of 0"1 which emanate from the 
origin of TpM. So, by a corollary of Theorem 9.3.1, they must be the same. 
Consequently, h is a homotopy between the rays tTo and tTl, and all the 
intermediate t-curves share the same endpoints. However, the only way for 
the two rays tTo and tTl, 0 ~ t ~ L, to have the same endpoints would be 
To = T1• This is equivalent to saying that 0"0 is actually identical to 0"1. D 

Let us now fulfill the goal stated at the beginning of this section. 

Theorem 9.3.3. Let (M, F) be any forward geodesica1ly complete, con­
nected Finsler manifold of nonpositive Hag curvature. 

• Fix p, q EM. Then, within each homotopy class of paths from p to 
q, there exists a unique shortest smooth geodesic within that class. 

• In particular, fix p EM. Then, within every homotopy class of loops 
based at p, there exists a unique shortest smooth closed geodesic 
within that class. 

Proof. The existence has been ascertained in Theorem 8.7.1; it only re­
quires forward geodesic completeness and connectedness. 

We establish uniqueness here. Since (M, F) has, by hypothesis, non­
positive flag curvature, the exponential map expp : TpM -+ M is a covering 
projection. This was what we found in §9.2. 

Let a be any homotopy class of paths from p to q. Suppose O"o(t) := 
expp(tTo) and O"l(t) := expp(tT1 ), 0 ~ t ~ L are any two shortest geodesics 
in the class a. Being members of the same homotopy class, they are homo­
topic to each other through intermediate paths with endpoints p and q. By 
Lemma 9.3.2, we must have <To = 0"1. D 
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Exercises 

Exercise 9.3.1: 

(a) Give a proof of the Covering Homotopy theorem (Theorem 9.3.1). 
This is a standard result covered in every algebraic topology text. 
It is also treated in some geometry texts; see, for example, [ST]. 
However, consult an external reference only if absolutely necessary. 

(b) What is the intuitive message behind that theorem? 

Exercise 9.3.2: 

(a) In case the flag curvature of our compact connected Finsler manifold 
is nonpositive, do you suppose that every free homotopy class of 
loops in M contains a unique shortest geodesic loop? 

(b) Also, are there any compact, simply connected Finsler manifolds 
with nonpositive flag curvature? 

9.4 The Cartan-Hadamard Theorem 

Let us give another application of the Covering Homotopy theorem dis­
cussed in §9.3. 

Theorem 9.4.1 (Cartan-Hadamard). Let (M,F) be any forward goo­
desically complete, connected Finsler manifold of nonpositive flag curva­
ture. Then: 

(1) Geodesics in (M, F) do not contain conjugate points. 

(2) For any fixed p E M, the exponential map expp : TpM -+ M is a 
globally defined C 1 local diffeomorphism from TpM onto M. Fur­
thermore, this surjection is in fact a covering projection. 

(3) In case M happens to be simply connected, that exponential map 
expp is actually a Cl diffeomorphism from the tangent space TpM 
onto the manifold M. 

Remark: Recall from §5.3 that, in the general Finsler setting, the expo­
nential map is only Cl at the origin of TpM, although it is smooth away 
from the origin. Exercise 5.3.5 tells us that the exponential map is smooth 
on the entire TpM if and only if the Finsler structure is of Berwald type. 

Proof. The first two conclusions have already been established in Propo­
sitions 9.1.2 and 9.2.2. 

It remains to check that the covering projection expp is injective when­
ever the manifold M is simply connected. We give two separate and in­
dependent arguments. The first one depends on the Covering Homotopy 
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theorem discussed in §9.3. The second argument completely avoids the ma­
terial in that section, but uses the concept of deck transformations instead. 

* Suppose expp(vo) = q = expp(vd. Then O"o(t) := expp(tvo) and 
O"I(t) := expp(tvl), 0 ~ t ~ 1 are two geodesics in M from p to q. 
Since M is simply connected, it can be shown that 0"0 is homotopic to 
0"1 through a homotopy with fixed endpoints. See Exercise 9.4.1. By 
Lemma 9.3.2, which follows from the Covering Homotopy theorem, 
we must have Vo = VI. Thus expp is injective. 

* Alternatively, we can apply a standard result about covering pro­
jections to expp . Note that its domain TpM is simply connected 
and, its range M, being a manifold, is always locally simply con­
nected. Therefore the group of deck transformations at any x E M 
is isomorphic to the fundamental group 7r(M, x). However, M is 
by hypothesis simply connected. Thus 7r( M, x) contains only one 
element and consequently there is only one deck. That means ev­
ery x has exactly one preimage under expp. This again proves the 
injectivity of expp. 0 

Compare the treatment here with those in [Au] and [Daz]. 

Exercise 

Exercise 9.4.1: Let::) and C be any two curves from p to q, in a simply 
connected manifold. Prove that they are homotopic, through a homotopy 
with fixed endpoints p and q. Hints: visualize the following intuition. 

* Go from p to q along ::), then back to p along the reverse of c. This 
defines a loop based at p. Call it O. 

* Since M is simply connected, 0 can be shrunken down to the point 
p, using a I-parameter family (indexed by u E [0,1]) of loops Ou in 
M based at p. Here, 00 = 0 and 01 is the constant curve at p. 

* During this shrinking, the point q gives rise to a curve ~ = ~(u), 
where ~(O) = q and ~(1) = p. 

* Each intermediate loop Ou can be described in a convenient way 
as follows. Go from p to ~(u) along some ::)u, then back to p along 
the reverse of some CU' 

* For each u, we travel along ::Ju from p to ~(u), then to q along the 
reverse of a portion of ~. This defines a curve from p to q. The result­
ing u-indexed family of curves from p to q represents a homotopy, 
with fixed endpoints, between::) and the reverse of ~. Likewise, the 
use of C u gives a homotopy, again with fixed endpoints, between C 

and the reverse of ~. 



240 9. The Cartan-Hadamard Theorem and Rauch's First Theorem 

* Combine the two homotopies described above. 

Exercise 9.4.2: In the proof of the Cart an-Hadamard theorem, we gave 
two arguments for the injectivity of expp when M is simply connected. 
The second one invokes the fact that the group of deck transformations is 
isomorphic to n( M, x). Prove this fact without consulting [BTl. 

9.5 Prelude to Rauch's Theorem 

We now prepare to extend the comparison arguments in §9.1 and Exercise 
9.1.3 to a broader setting. The preparation involves two technical ingredi­
ents that are interesting and important in their own right. 

9.5 A. Transplanting Vector Fields 

Begin with an n-dimensional Finsler manifold (M, F). Denote the induced 
inner product on n*TM by 9. Let a(t), a ~ t ~ b be a unit speed geodesic 
in M, with velocity field T(t). 

We compare (M, F) with a Finsler space (Mo, Fo) of dimension ~ n, say 
= n + k. Denote the induced inner product on n;TMo by go . Let ao(t), 
a ~ t ~ b be a unit speed geodesic in Mo, with velocity field To(t). 

Let W(t) be a piecewise Coo vector field along a(t). In order to compare 
W with something in M o , we construct its transplant W(t), which is a 
certain piecewise Coo vector field along the geodesic ao(t). To avoid clutter, 
introduce the abbreviations 

W' := DTW, W' '= DT W' . 0' 

gT := 9(a,T) , 

We would like our W to have the following properties: 

(1) W'(t) and W'(t) have discontinuities (if any) at the same t values. 

(2) gTo (W, W) = 9T(W, W) . 

(3) gTo (W, To) = 9T (W, T) . 

(4) gTo (W', W') = 9T(W', W') . 

(5) If W(b) is nonzero and 9T-orthogonal to T(b), then W(b) can be 

arranged to be equal to (times J 9T( W(b) , W(b)), where (is any 

unit vector that is gTo -orthogonal to To(b). 

Remark: Admittedly, that bit of freedom in (5) is unmotivated; but it 
becomes useful in §9.6, during the proof of the Rauch comparison theorem. 
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To construct the W described, we proceed as in Spivak [Sp4]. 
Choose a 9T-orthonormal basis {Ei: i = 1, ... ,n} for Tu(a)M, with 

En := T(a). Parallel transport (with reference vector field T) the basis 
{Ei} along a to obtain {Ei(t)}. In view of Exercise 5.2.3, {Ei(t)} is a 9T-
orthonormal frame field along a. Being a geodesic with constant speed, a 
is an autoparallel, therefore 

En(t) = T(t) . 

Likewise, we carry out parallel transport (with reference vector field To) 
along 0'0 to find {Fj(t) : J = 1, ... , n, n + 1, ... , n + k}, a 9r. -orthonormal 
frame field with 0 

Fn(t) = To(t) . 

Whenever W(b) is nonzero and 9T-orthogonal to T(b), let us choose the 
initial data for El (t) appropriately in order to effect 

El(b) = W(b) . V9T(W(b), W(b)) 

This is always possible because parallel transport (with reference vector T) 
along a generates an isomorphism from Tu(a)M onto Tu(b)M. By the same 
token, we can arrange to have 

Fl(b) = ( , 

for any (freely specifiable) unit vector ( [by that we mean 9r. «(, () = 1] 
which is 9To -orthogonal to To(b). 0 

In any case, expand W (t) as 

W(t) = c/(t) Ei(t) 

and then use the coefficients 'Pi to define 

(9.5.1) 

It can be checked that this "transplant" W has the five desired properties 
mentioned earlier. 

9.5 B. A Second Basic Property of the Index Form 

For (M, F), the index form was defined in (7.2.1): 

J(V,W) := lb F~) [9T (DTV, DTW) - 9T (R(V,T)T, W)] dt. 

Here, our geodesics are unit speed, so F(T) = 1. Furthermore, we are 
concerned with the associated quadratic form 

(9.5.2) J(W, W) := lb [9T(DTW, DTW) - 9T (R(W,T)T, W)] dt. 
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All DT are calculated with reference vector T, and R is evaluated along 
the canonical lift (a, T). 

The flag curvature K(T, W) was described in §3.9. It is related to the 
quantity gT( R(W, T)T, W) as follows: 

gT( R(W, T)T, W) 
(9.5.3) K(T, W) = gT(W, W) - [gT(W, T)]2 

Substituting (9.5.3) into (9.5.2) gives 

J(W, W) lb [ gT(DTW, DTW) 

(9.5.4) - (gT(W, W) - [gT(W, TW) K(T, W) ] dt . 

A similar discussion holds for the unit speed geodesic ao (with velocity 
field To) in the comparison Finsler space (Mo, Fo). The quadratic form 
associated with the index form is 

lb [ gTo (DTo W o , DTo Wo) 

(9.5.5) - (gTo (Wo, Wo) - [gTo (Wo, ToW) K(To, Wo) ] dt , 

where DTo is calculated with reference vector To. 
One important property of the index form is given in Lemma 7.3.2, also 

known as the basic index lemma. It says that: 

In the absence of conjugate points, the index is typically 
decreased if we replace our vector field by the Jacobi field 
that shares its endpoint values. 

The following lemma (Lemma 9.5.1) brings out a second basic property: 

The index is typically decreased whenever we transplant 
our vector field into a space of higher flag curvature. 

This is quite evident if we compare the integrand of (9.5.4) with its counter­
part in (9.5.5). The following lemma makes precise that intuitive statement. 

Lemma 9.5.1. Let (M, F) be an n-dimensional Finsler manifold. Let a(t), 
a::;; t ::;; b be a unit speed geodesic in M, with velocity field T(t). Similarly, 
let (Mo, Fo) be a comparison Finsler space of dimension n + k, and let 
ao(t), a ::;; t ::;; b be a unit speed geodesic in Mo, with velocity field To(t). 
Take any piecewise Coo vector field W along a. Construct its "transplant" 
W onto a 0, in such a way that: 

(1) W'(t) and W'(t) have discontinuities (if any) at the same t values. 

(2) gTo (W, W) = gT(W, W) . 

(3) gTo (W, To) = gT(W, T) . 
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then I(W, W) ~ I(W, W) I. 

9.5 C. Flag Curvature Versus Conjugate Points 

Let us give some applications of this new property. 

Theorem 9.5.2. Let u(t), a ::;;; t ::;;; b be a unit speed geodesic, with 
velocity field T, in a Finsler manifold of dimension n. Let K abbreviate the 
collection of flag curvatures {K(T, W): W E Tu(t)M, a::;;; t ::;;; b }. 

(1) If K ::;;; 0, then u(t), a::;;; t < b contains no conjugate point of u(a). 

(2) If K ::;;; ~ and L(u) < 7rr, then u(t), a::;;; t < b contains no conjugate 
point of u(a). 

(3) If K ~ ~ and L(u) > 7rr, then u(t), a < t ::;;; b contains at least 
one point that is conjugate to u(a). 

Remarks: According to [Sp4J, 

* In the Riemannian case, items (2) and (3) are collectively known as 
the Morse-Schoenberg theorem. 

* However, when dimM = 2, they are considered parts of Bonnet's 
theorem. 

Proof. In the following proof, when we speak of piecewise Coo vector 
fields along a geodesic, we mean those that vanish at the endpoints of 
that geodesic. This omission effects a less cumbersome prose. Note that W 
vanishes at the endpoints of u if and only if its transplant W vanishes at 
the endpoints of uo. This is due to the second property of W. 

For (1), let M be the given Finsler manifold and let Mo be Euclidean IRn. 
The flatness of Mo implies that its index quadratic form is nonnegative. 
This, together with Lemma 9.5.1, tell us that I(W, W) ~ 0 for all piecewise 
Coo vector fields along u. Thus, in view of Proposition 7.4.1, u cannot 
contain any conjugate point in its "interior." 

Next consider (2). As above, let M be the Finsler manifold in question. 
We choose Mo to be the Euclidean n-sphere §n(r) of radius r in IRn+1, and 
specify uo(t), a::;;; t ::;;; b to be a unit speed arc along (but strictly less than 
half of) some great circle. Since U o has length b - a < 7rr, it contains no 
conjugate points. By Proposition 7.3.1, we must then have I(W, W) ~ O. 
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Our hypothesis says that K is bounded above by ;2' which is the constant 
flag (sectional) curvature of Mo. Substituting this and the conclusion of 
the above paragraph into Lemma 9.5.1, we see that J(W, W) ~ 0 for all 
piecewise Coo vector fields along a. Therefore (2) follows from Proposition 
7.4.1. 

As for (3), we let the M in Lemma 9.5.1 be the standard §n(r). Our 
given Finsler manifold now plays the role of Mo (!) in that lemma. The 
hypothesis K ~ ~ says that the flag curvatures of Mo dominate those 
of M. Hence Lemma 9.5.1 assures US that the index quadratic form (with 
argument W) of Mo is bounded above by that (with argument W) of M. 

On Our given Finsler manifold M o , we rename the geodesic (denoted by 
a in the statement of the theorem) as ao. On M := §n(r), let us take a 
unit speed arc aCt), a ~ t ~ b along (and covering definitely more than half 
of) some great circle. Since a has length b - a > 7r r, it must contain an 
"interior" point conjugate to a(a). As a result, by Proposition 7.4.1, there 
exists a piecewise Coo vector field W along a satisfying J(W, W) < o. 

Putting these last two paragraphs together, we get J(W, W) < 0 for 
some piecewise Coo vector field W [albeit one transplanted from §n(r)]. By 
Proposition 7.3.1, the geodesic on our given Finsler manifold must contain 
some point that is conjugate to a( a). 0 

Exercises 

Exercise 9.5.1: 

(a) Verify that the constructed W in (9.5.1) does indeed satisfy the five 
intended properties. 

(b) Deduce Lemma 9.5.1. 

Exercise 9.5.2: 

(a) Compare the third conclusion of Theorem 9.5.2 with the Bonnet­
Myers theorem (Theorem 7.7.1). 

(b) What is the common ingredient in the proofs of these two results? 

9.6 Rauch's First Comparison Theorem 

We are now ready to extend and unify the comparison arguments used 
in §9.1 and Exercise 9.1.3. Our goal here is the very basic first Rauch 
theorem. It relates the growth of Jacobi fields to flag curvature bounds. 
The geometrical setup is exactly as in Lemma 9.5.1. But instead of stopping 
at the conclusion J(W, W) ~ J(W, W), we probe deeper with a bit of 
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calculus. Loosely speaking, we find that: 

Raising (more positive or less negative) the flag curvature 
slows down the growth of Jacobi fields. In particular, Ja­
cobi fields grow fastest on negatively curved spaces, less 
so on flat spaces, and considerably slower on positively 
curved spaces. 

This is consistent with what we learned in §5.5. The method we use borrows 
from that in Spivak [Sp4] and Cheeger-Ebin [CE]. 

Theorem 9.6.1 (Rauch). 

• Geometrical setup. Let (M, F) be an n-dimensional Finsler mani­
fold. Let O'(t), 0:::;; t :::;; L be a unit speed geodesic in M, with velocity 
field T(t). Similarly, let (Mo, Fo) be a comparison Finsler space of 
dimension n + k, and let O'o(t), 0 :::;; t :::;; L be a unit speed geodesic 
in M o, with velocity field To(t). 

• Bound on curvature. Suppose the flag curvatures of M and Mo 
satisfy 

(9.6.1) 

for any W E T(7(t)M and Wo E To-o(t)Mo . 

• Data on Jacobi fields. Let J := (at + (3) T + Jl.. and Jo := 

(at + (3) To + J;; be two Jacobi fields, respectively, along 0' and 0'0' 
Note that it is the same a, f3 for J and Jo. These Jacobi fields are 
to satisfy 

(9.6.2) Jl..(O) = 0 , J;;-(O) = 0 

and 

(9.6.3a) 9T ( J'(O) , J'(O) ) 9To ( J~(O) , J~(O) ) . 

Equivalently, 

(9.6.3b) 

Statement proper. Assume the above setup, bound, and data. 

If O'o(t), 0 :::;; t :::;; L contains no conjugate point of 0'0(0), 

then: 

(1) 9y( (J-L)'(t) ,J-L(t)) ...... 9 TJ (J;-)'(t) ,J;-(t)) 
.--::; - for all t E (0, L]. 

9 y (J-L(t), J-L(t)) "" 9 TJ Ji-(t), Ji-(t)) 

(2) Hence 9T (J(t), J(t)) ~ 9TJJo(t),Jo(t)) for 0:::;; t ~ L. 
That is, the Jacobi field J grows no slower than Jo. 
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(3) In particular, u(t), 0 ~ t ~ L will not contain any conjugate points 
either. 

Notations: We have continued to use ( )' to abbreviate DT or DTo ' 

depending on whether one is dealing with vector fields on M or Mo. Other 
abbreviations include 9T := 9(u,T) and 9To := 90 (uo,To)' as well as the 
following that are used: 

II W II .- V gT(W, W) for WE Tu(t)M , 

II Wo 110 .- V9TJWO , Wo) for Wo E Tuo(t)Mo . 

Remarks: 

• It is somewhat lamentable that the norms II J(t) II and II Jo(t) 110 
involved in (2) are typically not equal to the squares of the Finsler 
norms F(J) and Fo(Jo) . 

• Quite often one is given a Jacobi field J := (at + (3)T + J.l.. on 
the Finsler space we are trying to study. In order to apply Rauch's 
theorem, we must build a Jacobi field Jo on the comparison space 
such that hypotheses (9.6.2), (9.6.3) are both satisfied. This can 
always be done. In fact, one first constructs Jf and then adds on 
(at + (3)To. See Exercise 9.6.2. 

Proof of Rauch's theorem. 

(A) Some technical concerns: 
Since 

(9.6.4a) 

(9.6.4b) 

the inequality 

(9.6.5) 

(at + (3)2 + II J.l.. 112 , 
(at + (3? + II J;;-II~ , 

II J.l..(t) 112 ~ II J;;-(t) II~ on [0, L] 

is equivalent to (2). Thus we work with J.l.., Jf instead of J, Jo . 
If (9.6.3b) reads 0 = 0, then in view of (9.6.2) both Jacobi fields J.l.., Jf 

are identically zero. In that case (9.6.5) is trivially true. So let us assume 
that neither (J.l..)'(O) nor (Jf)'(O) vanishes; then J.l.. and Jf are nonzero 
Jacobi fields. 

Since u 0 contains no conjugate points by assumption, and since J f al­
ready vanishes at 0"0(0), we know that Jf(t) must be nowhere zero on (0, L]. 
The same cannot yet be said about J.l..(t) on (0, L]. A priori, this nowhere 
vanishing criterion is needed in order to make sense of (1). Nevertheless, 
since one must travel along u at least for a short while before encountering 
the first conjugate point, and since J.l.. already vanished once [namely, at 
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the initial point a(O)], we are sure that there exists a positive l :::;; L such 
that J.L(t) is nowhere zero on (O,l]. 

Our next two steps are carried out on [0, l]. After that, we use a continuity 
argument to extend our conclusions from [0, l] to [0, L]. 

• gT((J-L)'Ct),J-LCt)) gT ((J;-)'Ct),J;-(t)) 
(B) Provmg that II J-L(t) 112 ? 0 II Ji"(t) II~ on (0, l] : 

For each fixed E in (0, l], let IE denote the index form in which the inte­
gration is carried out from ° to E. That is, 

IE(W, W) := 1E [ 9T(DTW, DTW) 

- (9T(W, W) - [9T(W, TW) K(T, W) ] dt 

and 

1E [ 9T)DTo Wo , DTo Wo) 

- { 9To (Wo, Wo) - [9To (Wo, To)]2) K(To, Wo) ] dt . 

Let J.L denote the transplant of J.L, with the five properties listed in 
§9.5.A. For the case at hand, these read: 

• J.L(t) is as smooth as J.L(t) . 

• 9To (J.L, J.L) = 9T (J.L,J.L). 

• 9To (J.L,To) = 9T(J.L,T). 

• 9To ((J.L)" (J.L)/) = 9T ((J.L)', (J.L)'). 

J .L( ) II J.L( ) II J;-(E) N 1 r J;-(E) • E = E II Ji"(E) 110' arne y, set ,,:= II Ji"(E) 110 

For the last property, recall that one has the freedom to specify J.L (E) 
to be II J.L(E) II times any unit vector (E TCTo(E)Mo , as long as the latter is 
9To -orthogonal to ao. Here, we have chosen that ( as indicated. 

The following calculation holds: 

1 
IE (J.L , J.L) II J-L(E) 112 

1 
IE (J.L , J.L ) ? II J.L(E) 112 

1 ( II J.L(E) II .L II J.L(E) II J.L) ? II J.L(E) 112 IE II Jf(E) 110 Jo , II Jf(E) 110 0 

1 
IE(J;;, J;;) . II Jf(E) II~ 
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The first inequality comes from Lemma 9.5.1, which is a second important 
(albeit straightforward) fact about the index form. Its validity requires the 

assumed curvature bound and the first four properties of the transplant J ~ . 
The second inequality is our so-called basic index lemma (Lemma 7.3.2). 
Here, we have used again the hypothesis that the geodesic u 0 contains no 
conjugate points. Also, we have invoked the fifth Rroperty of the transplant. 
It says that on the interval [0, EJ, the vector field J ~ has the same endpoint 

b'fi II J-L(€) II ~ values as the Jaco I eld II J~(€) 110 Jo . 

Since J~ and J(; are Jacobi fields, formula (7.2.4) applies and we get 

gT( (J~)'(E), J~(E)) , 

gTo ( (J;-)'(E) , J;-(E) ) . 

The hypothesis that u and U o are unit speed geodesics, as well as (9.6.2), 
have all been used without mention. 

Putting the last two paragraphs together, and relabeling East, we see 
that 

(9.6.6) 
gT( (J~)'(t), J~(t)) 

II J~(t) 112 
gTo ((J(;)'(t) , J(;(t)) 

~ II Jf(t) II~ 
on (0, l] , 

as desired. 

(C) Deducing II J(t) 112 ~ II Jo(t) II~ on [0, l] : 
Multiplying (9.6.6) by 2, we can re-express it as 

! [log IIJ~(t)112J ~ ! [log IIJ;-(t)II~J on (O,l]. 

That is, 

(9.6.7) d [ (II J~(t) 112 )] 
dt log II Jf(t) II~ ~ 0 on (0, l] . 

h ( ] II J-L (t) 112 
T is implies that on 0, l , the function II J~(t) II~ 
particular, 

(9.6.8) for 0 < t ~ l , 
II J~(t) 112 
II Jf(t) II~ 

~ lim 
t->O+ 

We calculate that limit by using Taylor's formula. 

is nondecreasing. In 

II J~(t) 112 
II Jf(t) II~ 

Since J~(O) = 0 = J(;(O), our remark right after the proof of Lemma 
5.4.1 tells us that 

J~(t) (expx)* [tT(O)] {t (J~)'(O)} , with x:= u(O) , 

J;-(t) (expxJ* [tTo(O)] {t (J;-)'(O)} , with Xo:= uo(O) . 
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With the help of these representations, formula (5.5.2) reduces to 

II J;;(t) II~ 

II(J~)'(0)112 [t2 

II(J;;)'(O)II~ [e 
; K (T(O), (J~)'(O))] + O(t5 ) , 

t; K(To(O), (J;;)'(O))] + O(t5 ). 

O 1 th t2 t tt· val t· 1· II Jl.(t) 112 B h h· n y e erms ma er m e ua mg lmt-+O+ II Jf{t) II~ . Y ypot eSls 
we have 

so 

(9.6.9) lim 
t-+O+ 

II J1.(t) 112 
II Jf(t) II~ 

1. 

Thus (9.6.8) says that, 

(9.6.10) for 0< t ~ 1 , 

Rearranging and using (9.6.2), followed by (9.6.4), we get 

(9.6.11) II J(t) 112 ~ II Jo(t) II~ on [0,1]. 

(D) Passing (bootstrapping) from [0,1] to [0, L]: 
Here, we could use an argument similar to the one we gave just before 

stating Theorem 9.1.1. But, for fun, let us try a totally abstract perspective. 
Consider the following subset of (0, L], 

C := {1 E (0, L]: J~(t) is nowhere zero on (0,1]}. 

What we said in (A) shows that C contains an interval of the form (0,1], 
for some positive 1. In particular, Cis nonempty. Next, if 1 E C, then the 
continuity of J~(t) implies that numbers near 1 again belong to C. In other 
words, C is an open set. 

It is also closed. To see this, let {li} be a sequence in C, converging to 
some 1 E [0, L]. Inequality (9.6.10) tells us that 

II J~(li) 112 ~ II J;;(li) II~ . 
Letting 1i ~ 1, we get 

II J1.(l) 112 ~ II J;;(l) II~ > 0, 
where the strict inequality follows from the assumption that a 0 contains 
no conjugate points [see the discussion in (A)]. By continuity, II J~(l) 112 
must remain positive in a neighborhood of 1, which in turn must capture 
some 1i. It is now clear that J~(t) is nowhere zero on (0,1]; hence 1 E C. 

We have demonstrated that our C is a nonempty subset which is both 
open and closed in the connected (0, L]. Thus C = (0, L]. Consequently, 
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(9.6.6) and (9.6.11) are in fact respectively valid on (0, L) and [0, L). These 
are precisely the first two conclusions in the statement of the theorem. 

(E) Why a cannot contain any conjugate points either: 
Assume the contrary. Equivalently (see Proposition 7.1.1), suppose there 

exists some nonzero Jacobi field along the unit speed geodesic aCt), 0 ::;; 
t ::;; L that vanishes at t equals 0 and again at some positive l ::;; L. We 
derive a contradiction. 

According to Exercise 5.4.4, this nonzero Jacobi field and its derivative 
must both be gT-orthogonal to a at all times. So, let us denote it by JJ... 
By Exercise 9.6.2, one can construct a Jacobi field J;;- along a o such that: 

(i) J;;- is gTo -orthogonal to a o at all times. 

(ii) J;;-(O) = 0 . 

(iii) II (JJ..)'(o) 112 = II (J;;-)'(O) II~ . 
(iv) J;;- is nonzero. 

The Jacobi fields JJ.. and J;;- satisfy all the hypotheses of the Rauch 
theorem; hence 

II JJ..(t) 112 ~ II J~(t) II~ on [0, L) . 

Since ao contains no conjugate points, the nonzero Jacobi field J;;- (which 
vanishes at t = 0) must be nowhere zero on (0, L). At the beginning of this 
discussion, we assumed that J J.. vanishes at t equals 0 and again at some 
positive l ::;; L. But this contradicts the above inequality. So our supposition 
was wrong and a contains no conjugate points after all. This proves the 
third and last conclusion of the theorem. D 

Exercises 

Exercise 9.6.1: Show that (9.6.3a) and (9.6.3b) are equivalent by first 
establishing the following formulas: 

J' o:T + (JJ..)' , 

II J' 112 0:2 + II (JJ..)' 112 ; 
J' 

0 o:To + (J~)' , 

II J~ II~ 0:2 + II (J~)' II~ . 
Exercise 9.6.2: This exercise concerns our proposed data on the Jacobi 
fields JJ.. and J;;-. Let the geometrical setup be as stated in Rauch's theo­
rem. Given any Jacobi field JJ.. that is gT-orthogonal to a, we claim that 
a Jacobi field J;;- along ao can always be constructed such that: 

(i) J;;- is gTo -orthogonal to a o . 

(ii) II JJ..(O) 112 = II J;;-(O) II~ . 
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(iii) II (J1.)'(O) 112 = II (J;-)'(O) II~ . 
(iv) J;- is nonzero if and only if J1. is nonzero. 

Use the following guidelines. Choose a gT-orthonormal basis {Ei : i = 
1, ... ,n} for Ta(O)M, with En := T(O). Parallel transport (with reference 
vector field T) the basis {Ed along a to obtain {Ei(t)}. In view of Exercise 
5.2.3, {Ei(t)} is a gT-orthonormal frame field along a. Since a is an auto­
parallel, we get En(t) = T(t). 

(a) Show that 

J1.(t) 

(J1.)'(t) 

II J1.(t) 112 

II (J1.)'(t) 112 

cp"'(t) E",(t) , 

(cp"')'(t) E",(t) , 

D"'!3 cp"'(t) cp!3(t) , 

D"'!3 (cp"'nt) (cp!3)'(t) , 

where the Greek summation indices a, (3 run from 1 to n - l. 

(b) Analogous to the definition of Ei(t), carry out parallel transport 
(with reference vector To) along ao to get a gr. -orthonormal frame 
field {FJ(t) : 1= 1, ... , n, n + 1, ... , n + k}, with Fn(t) = To(t). 

By ODE theory, there exists a unique Jacobi field J;- along a o 

with the initial data 

J;- (0) := cp'" (0) F", (0) , 

(J;-)'(O) := (cp"')'(O) F",(O) . 

The summation only runs from 1 to n - 1, so neither Jo(O) nor 
J~(O) has any component along FnCO) [which is To(O)], Fn+l(O), 
... , Fn+k(O). Use Exercise 5.4.3 to conclude that the Jacobi field 
J;- is indeed gTo -orthogonal to ao at all times. This justifies the 

superscript 1. and gives property (i). 

(c) Check that 

IIJ;-(O)II~ = D"'!3 cp"'(O) cp!3(O) , 

II (J~)'(O) II~ = D"'!3 (cp"')'(O) (cp!3)'(O) . 

Do these imply properties (ii) and (iii)? How about (iv)? 

9.7 Jacobi Fields on Space Forms 

Let (M, F) be a Finsler manifold of constant flag curvature >.. Let aCt), 
o ::::; t ::::; L be a unit speed geodesic in (M, F), with velocity field T. We 
learned from Exercises 5.4.3 and 5.4.5 that every Jacobi field J along a 
splits into two individual Jacobi fields JII and J1., respectively, tangent to 
and gT-orthogonal to a. As before, gT abbreviates g(a,T) , and (J1.)' means 
DTJI.. 
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The structure of JII is well understood. Indeed, Exercise 5.4.3 says that 
if JII (0) = 0, then JII (t) must be a constant multiple of tT . In this section, 
let us focus our attention on the 9T-orthogonal piece J.1., which we suppose 
is nonzero. Exercise 5.4.5 tells us that J.1. satisfies the ODE 

(J.1.)" + >.J.1. = O. 

In order to solve this equation, we let {Ei(t)} be a basis of parallel vector 
fields along u. This is obtained through parallel transport along u, with 
reference vector T. Carry out the expansion 

J.1.(t) = t(t) Ei(t) . 

Exercise 5.4.5 assures us that the coefficient functions must satisfy the 
scalar Jacobi equation 

(t)" + >.fi = O. 

Suppose J.1.(O) = O. Since J.1. is not identically zero, we must have 
(J.1. )'(0) f:. O. Let us arrange to have 

En(O) = (J.1.)'(O) = (fi)'(O) Ei(O) . 

Then the initial data for the coefficients fi are: 

reO) = 0, 

(fa)'(o) = 0, 

where a runs from 1 to n - 1, and 

reO) = 0, 

(r)'(O) = 1. 

Thus the first n -1 coefficient functions P (t), ... , r- 1 (t) are all identically 
zero. The expansion J.1. = fi Ei now reduces to 

(9.7.1) I J.1.(t) = 5>.(t) E(t) I, 
where we have relabeled fn as 5>. and En as E. Here, 

• J.1.(O) = O. 
• E(t) is the parallel transport along u (with reference vector T) of 

the nonzero vector (J.1.)'(O). 

• 5>.(t) is the solution of the ODE 5~ +>'5>. = 0, subject to the initial 
data 5>. (0) = 0, 5~ (0) = 1. It has been explicitly displayed in (9.1.3). 
We reproduce it here for convenience and for emphasis: 

Jx sin(.j), t) 

t 

;. sinh( At) 
v->. 

{
>'>O} 

resp., for >. = 0 

>'<0 
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Exercises 

Exercise 9.7.1: This concerns formula (9.7.1). 

(a) Explain why II E(t) 112 := 9T ( E(t) , E(t) ) is a positive constant. 

(b) By identifying that constant, check that 

II Jl.(t) 112 := 9T ( Jl.(t), Jl.(t)) = II (Jl.)'(O) 112 .5~(t) . 

Is this formula consistent with the Taylor expansion (5.5.3)? 

Exercise 9.7.2: For any t at which .5A(t) f- 0, demonstrate that 

9T ( (Jl.)'(t), Jl.(t) ) 

II Jl.(t) 112 

where 

.5~ (t) 

.5A(t) 

.5~(t) 

.5A(t) 
= 

.J5.. cot(.J5.. t) , 

1 

t' O<t 

7r 
O<t<VX 

.5~ (t) 
= 

.5A(t) 
N coth( Nt), 0 < t 

.5~(t) 
= 

.5A (t) , 

{
A>O 

resp., for A = 0 

A < 0 . 

Exercise 9.7.3: Fix any point x in a Finsler manifold of constant flag 
curvature A. Let a(t) be any unit speed geodesic that emanates from x 
with initial velocity T. Show that: 

• If A > 0, then the conjugate value in the direction T is :h . In other 
words, CT = :h . 

• If A:::::;; 0, then a contains no conjugate point. That is, CT = 00. 

9.8 Applications of Rauch's Theorem 

In this section, we specialize the Rauch theorem to the case in which one 
of the two spaces (M, F), (Mo, Fo) has constant flag curvature A. 

Using information we have just gathered about Jacobi fields on space 
forms, one can recover (not surprisingly!) the estimates obtained in Theo­
rem 9.1.1 and Exercise 9.1.3. However, this time they are obtained much 
more systematically. 

In order to state the results in question, let us use (as before) 

9
T 

} ( )' 

IIWI12 

to abbreviate { 

9(u,T) 

DT (with reference vector T) 

9T (W, W) . 
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Also as before, let 

5 A(t) .-

Jx sin( v'>.. t ) 

t 

. ~ sinh(Nt) 
V-A 

so that 

5~(t) 
5 A(t) 

v'>.. cot( v'>.. t) , 
7r 

O<t< .;>.. 

5~(t) 

5 A(t) 

5~(t) 
5 A(t) 

1 

t' O<t 

N coth( Nt), 0 < t 

{
A>O} 

resp., for A = 0 , 

A<O 

{
A>O 

resp., for A = 0 

A < 0 . 

Judicious use of Rauch's theorem (Theorem 9.6.1) and the discussion in 
§9.7 give the following two results. 

Corollary 9.8.1. Let (M, F) be an n-dimensional Finsler manifold. Let 
CT(t), 0 ~ t ~ L be a unit speed geodesic in M, with velocity field T(t). 
Suppose: 

• The Bag curvature K(T, W) ~ A for any W E Tu(t)M. 

• J.1. is a Jacobi field along CT that is 9T-orthogonal to CT. 

• J.1.(O) = O. 

• For simplicity, L ~ :Ix in case A is positive. 

Then: 

for 

for 

{
O<t< Jx if A>O 

O<t~L if A~O 

{ O~t~ Jx if A>O 

O~t~L if A~O . 

Corollary 9.8.2. Let (M, F) be an n-dimensional Finsler manifold. Let 
CT(t), 0 ~ t ~ L be a unit speed geodesic in M, with velocity field T(t). 
Suppose: 

• The Bag curvature K(T, W) ~ A for any W E Tu(t)M. 

• J.1. is a Jacobi field along CT that is 9T-orthogonal to CT. 

• J.1.(O) = O. 
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• For simplicity, L ~ CT, where O"(CT) is the first conjugate point of 
0"(0) along 0". 

Then: 

for 0 < t < CT . 

Exercises 

Exercise 9.8.1: Establish Corollaries 9.8.1 and 9.8.2 using the Rauch com­
parison theorem (Theorem 9.6.1), together with §9.7. 

(a) For Corollary 9.8.1: Let the comparison space (Mo, Fo) be an n­
dimensional complete Riemannian manifold of constant sectional 
curvature A. Fix any unit speed geodesic O"o(t), t ~ 0 in that Mo. 
If 0 < A = /2' let (Mo, Fo) be the standard n-sphere of radius 
r, whose geodesics are great circles. In this case, O"o(t) contains no 
conjugate points as long as 0 :::;: t < 'IT r = :h . If A :::;: 0, let (Mo , Fo) 
be either Euclidean Rn or hyperbolic space; hence 0"0 contains no 
conjugate points. 

(b) For Corollary 9.8.2: Let (Mo, Fo) be an n-dimensional complete 
Riemannian manifold of constant sectional curvature A. Fix any 
unit speed geodesic O"o(t), t ~ 0 in Mo . When we apply the Rauch 
theorem, be sure to let our given Finsler manifold (M, F) play the 
role of the "(Mo, Fo)" in the statement of Rauch's theorem. This 
means the space form we just defined now takes the place of the 
"(M, F)" in that theorem. One final hypothesis needs to be satisfied. 
Namely, our present geodesic 0" should contain no conjugate points. 
This explains the appearance of the parameter value CT' 

In both cases, one also needs to use Exercise 9.6.2 to construct a Jacobi 
field J,; along 0"0 such that J,; is gTo -orthogonal to 0"0, J,;(O) = 0, and 

II (J,;)'(O) II~ = II (J~)'(O) 112. 

Exercise 9.8.2: Derive the following consequence of Corollaries 9.8.1 and 
9.8.2. Let (M, F) be an n-dimensional Finsler manifold. Let O"(t), 0 :::;: t :::;: L 
be a unit speed geodesic in M, with velocity field T(t). Suppose the flag 
curvature has the following uniform bounds 

o :::;: A :::;: K(T, W) :::;: A 
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for any W E Ta(t)M. For simplicity, suppose L ~ Max{ CT, Jx.}, where 
O"(CT) is the first conjugate point of 0"(0) along 0". Then 

1f 1f 

..fA ~ CT ~ -..f>.. 

In other words, the distance between any two consecutive conjugate points 
along 0" is at least Jx. but no more than J>... (For a simpler statement, one 
can set A = 00.) How does this result compare with Theorem 9.5.2? 
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* References for Chapter 10 

10.0 Prologue 

In this chapter, we study Berwald spaces in some detail. Here are several 
reasons why such spaces are so important. These reasons are elaborated 
upon as the chapter unfolds. 

* Berwald spaces are just a bit more general than Riemannian and 
locally Minkowskian spaces. They provide examples that are more 
properly Finslerian, but only slightly so. 

* For Berwald spaces, the Chern connection (in natural coordinates) 
actually defines a linear connection directly on the underlying man­
ifold M. (For that matter, so does the Berwald connection.) A theo­
rem of Szabo's tells us that this linear connection also happens to be 
the Levi-Civita (Christoffel) connection of a (nonunique) Riemann­
ian metric on M. 
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* Given a Berwald space, all its tangent spaces are linearly isometric 
to a common Minlrowski space. One might say that the Berwald 
space in question is modeled on a single Minkowski space. 

Since we have an eye toward global theorems, we focus on Finsler struc­
tures F that are smooth and strongly convex on T M '- O. These F are 
y-global. Surprisingly, it takes some work to explicitly locate a y-global 
Berwald space that is neither Riemannian nor locally Minkowskian. In fact, 
according to a rigidity result (see §1O.6) of Szabo'S, such a creature does 
not even exist in dimension two. Happily, examples of the desired vintage 
do exist in dimension three or higher. But they won't materialize until we 
reach §11.6, after an excursion into the territory of Randers spaces. 

10.1 Berwald Spaces 

A Finsler structure F is said to be of Berwald type if the Chern connection 
coefficients r i jk in natural coordinates have no y dependence. We see from 
part (a) of Exercise 2.4.8 that this is a well-defined concept. For a Berwald 
space, the coefficients ri jk define a linear covariant derivative D directly 
on the underlying manifold M. 

** The derivative of a vector field W := Wi a~. in the direction of 
v:= Vk~ is 

DvW := vk (~~i + wj rijk) 8~i . 

** Let O"(t) be any curve in M with velocity field T(t) := ~~. Suppose 
W(t) := Wi(t) a~. is a vector field along 0". The covariant derivative 
of W along 0" is 

DT W := [dWi + wj Tk ri.] 8 
dt Jk 8Xi l<r(t) • 

The vector field W(t) is said to be parallel along 0" if DTW = O. 

Since we are dealing with a Finsler metric of Berwald type, there is by 
assumption no y dependence in r i jk . For this reason, the concept of a ref­
erence vector, first introduced amidst the exercises of §5.2 and used there­
after, is happily irrelevant here. 

Recall that each tangent space TxM of a Finsler manifold is a Minkowski 
normed linear space (TxM, Fx). In this context, a result of Ichijyo's [I] says 
the following. 

Proposition 10.1.1 (Ichijyo). Let (M, F) be a Berwald space. Then: 

• Given any parallel vector field W along a curve 0" in M, its Finslerian 
norm F(W) is necessarily constant along 0". 
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• Whenever M is connected, its Minkowski normed linear spaces, 
namely, (TxM, Fx), are all linearly isometric to each other. 

Proof. By (1.2.5), we can express the Finslerian norm of W as 

F(W) = Vgw(W, W) , 

where gw := gij (u,W) dxi ® dxj . Note that even though r i jk has no y 
dependence, the same cannot be said of gij' 

Proving the first assertion: 
We proceed analogous to Exercise 5.2.2. There, one worked with the 

canonical lift (0-, T), where T is the velocity field of 0-. But here let us use 
the lift (0-, W) instead. The almost g-compatibility criterion (2.4.6) of the 
Chern connection reads 

k 8y s 
dgij - gkj wi k - gik Wj = 2 Aijs F ' 

wh.ere w/ ~ rijkdxk. Restrict it to the lift (0-, W)(t). Then contract with 
W' and WJ. The A term promptly drops out because of (1.4.6). So we are 
left with 

Wi wj [dgij - gkj r kis dxs - gik r kjS dxS 1 = O. 

Next, contract this 1-form equation with the velocity of the lift (0-, W). The 
result is 

W i wj (d9ij rk T S rk TS) - 0 dt - gkj is - gik js -. 

Here, we have used the fact that in natural coordinates, the Chern connec­
tion forms w/ contain only dx terms. After some straightforward manipu­
lations and relabeling, the above becomes 

d 
dt gw(W, W) = 2 gw(DTW, W) . 

The first assertion of the proposition is now immediate. 

Proving the second assertion: 
To that end, we take any two points p, q in the connected M and a curve 

0- (with velocity field T) joining them. In an arbitrary Finsler space, the 
differential equation DTW = 0 is linear in W if the reference vector is T, 
and typically nonlinear in W if the reference vector is W. But presently 
we are dealing with a Berwald space, so reference vectors are irrelevant, 
and that ODE is always linear in W. It can therefore be used to define a 
linear map from TpM into TqM. Furthermore, we have ascertained above 
that this parallel transport preserves the Finsler norm of the vector being 
transported. Hence it must be an isomorphism as well. 0 
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Each tangent space TxM of an n-dimensional Riemannian manifold M 
is linearly isometric to ]R.n equipped with the dot product. This can be 
seen by taking an orthonormal basis for TxM. In this sense, one says that 
all n-dimensional Riemannian manifolds are modeled on a canonical inner 
product space, namely, Euclidean ]R.n. By contrast, the tangent Minkowski 
spaces (TxM, Fx) of an arbitrary Finsler manifold (M, F) are typically not 
isometric to each other. So, generic Finsler manifolds are not modeled on 
any single Minkowski space, let alone a canonical one. 

The result of Ichijyo's that we have just described puts Berwald spaces 
somewhere in between Riemannian manifolds and generic Finsler mani­
folds. In essence, it says that each connected Berwald space is modeled on 
precisely one Minkowski space, although the exact identity of the latter 
does vary from one Berwald space to another. So, while Euclidean ]R.n gives 
rise to the entire category of Riemannian manifolds, every single Minkowski 
norm (among an inexhaustible supply!) gives rise to a whole family of con­
nected Berwald spaces. Of course, when the Minkowski norm in question 
happens to be the norm associated with the usual dot product, the family 
it generates is comprised of all Riemannian manifolds. Viewed from this 
perspective, the category of Berwald spaces extends and unquestionably 
dwarfs that of Riemannian manifolds. 

Exercises 

Exercise 10.1.1: Let (M, F) be a Berwald space. Let 0" be a curve in M 
with velocity field T. Suppose V and Ware vector fields defined along 0". 

(a) Imitate the proof of Proposition 10.1.1 to show that 

d 
dt gw(V'W) = gw(DTV, W) + gw(V, DTW). 

(b) How does this result compare with that in Exercise 5.2.3? 

Exercise 10.1.2: Let us now work in the setting of an arbitmry Finsler 
manifold. Then the Chern connection coefficients in natural coordinates 
do (generically) have a directional y-dependence. By extrapolating slightly 
from the exercise portion of §5.2, one could define DTV and DTW, both 
with reference vector W. Explicitly: 

DTW 

DTV:= 
axi Icr(t) . 

(a) Show that we again have 

d 
dt gw(V'W) = gw(DTV, W) + gw(V, DTW). 
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Compare your arguments with that in Exercise 5.2.3. 

(b) Explain why the quantity DT W, with reference vector W, is non­
linear in W. 

(c) Define a nonlinear notion of parallel transport by solving DT W = 0 
(with reference vector W). Check that this process, though non­
linear, still preserves the Finsler norm F(W) of the vector being 
transported. 

Exercise 10.1.3: Given any Finsler manifold (M, F), one computes as 
usual the components gij := (~F2)yiyj of the fundamental tensor 

g := gij (x,y) dxi ® dxj . 

This tensor is a section of the pulled-back tensor bundle 7f*T* M ® 7f*T* M, 
which sits over the slit tangent bundle T M " O. 

On the other hand, we can also define the object 

9 := % (x,y) dyi ® dyj . 

For each fixed x EM, this represents a Riemannian metric gx on the punc­
tured space TxM" 0 . The indicatrix SxM therefore inherits a Riemannian 
metric, say 9x. We briefly pursued this type of thinking in §1.4, and then 
revisited it in §4.1, 4.5. 

(a) Suppose a is a curve in M from p to q. The nonlinear parallel 
transport (along a) discussed in part (c) of Exercise 10.1.2 uses, as 
reference vector, the one that's being transported. Explain why it 
gives rise to a map from (TpM, gp) to (TqM, gq), and also one from 
(SpM, 9p) to (SqM, 9q). 

(b) Prove that these maps are actually diffeomorphisms. Hints: let's say 
that a tangent vector Wp (at p) got parallel transported along a to 
a tangent vector Wq (at q). Explain why parallel transporting Wq 
along the reverse of a should give us back Wp • Equivalently, suppose 
W(t) is parallel along a(t), 0 ~ t ~ r. (Keep in mind that W is also 
the reference vector here !) Check that W(r - t) is parallel along 
the reverse of a, namely, a(r - t). 

(c) In case (M, F) is a Berwald space, the said diffeomorphisms come 
from restricting the linear isometry between the Minkowski spaces 
(TpM, Fp) and (TqM, Fq). Prove that in this case, the diffeomor­
phisms in question are also isometries between Riemannian mani­
folds. A map <p : (M, g) ~ (N, h) between Riemannian manifolds is 
a Riemannian isometry if h(<p*u;<p*v) = g(u,v). 

(d) Other than the Berwald case, can you think of any other setting in 
which the above diffeomorphisms are Riemannian isometries? How 
about Finsler spaces for which Aijk = O? 

Exercise 10.1.4: Let (M, F) be a Berwald space. The Chern connection 
coefficients r i j k in natural coordinates are then functions on M. They are 
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always symmetric in j and k. It is therefore natural to wonder whether they 
coincide with some (nonunique) Riemannian metric's Christoffel symbols of 
the second kind. As SzabO [Sz] demonstrated, this is indeed the case. Note 
that one's obvious guess-the fundamental tensor-does not work. This is 
because the gij for Berwald spaces typically depend on y, and hence do not 
live on M. 

Recall the covariant derivative D that we discussed in this section. Rel­
ative to a coordinate basis {a~i}' it is described by the Chern connection 
coefficients ri jk , which have the symmetry r\j = ri jk . As a result, the 
operator D is torsion-free: 

DxY - DyX = [X,Y] . 

To effect Szabo's claim, it suffices to construct a Riemannian metric h on 
M that satisfies 

Dh = O. 

In other words, D is compatible with h. We can then "deduce" from The­
orem 2.4.1 (or quote directly from §13.1) that D is the unique torsion­
free connection which is compatible with the constructed h. So, in natural 
coordinates, its connection coefficients must coincide with the Christoffel 
symbols (of the second kind) of h. 

Let us go through Szabo's construction below. Fix any Xo E M. Denote 
by G the group of all linear isomorphisms of Txo M that preserve the in­
dicatrix SXoM. Since the indicatrix is compact, this G is a compact Lie 
group. The strategy here is to define an appropriate inner product at Xo by 
G-averaging, and then use parallel translation to propagate it to all points 
of M that lie in the same connected component as Xo' 

(a) Begin with any inner product, say I, on TXoM. Since G acts on this 
tangent space, each 9 E G induces a new inner product which we 
denote by g* I. Define 

hxo := VOl~G) fa g*I J-tG , 

where J-tG denotes the Haar measure on the compact group G. Verify 
that the inner product hxo is G-invariant. That is, 

g* hxo = hxo 

for all 9 E G. 

(b) Consider any x E M that is in the same connected component as Xo. 

Connect x to Xo by a curve a. Let Pa denote the parallel translation 
operator from TxM to TXoM, along a. Define 

hx := P; hxo := hxo ( Pa . , Pa . ) . 

It must be checked that if a different path jj from x to Xo were 
chosen, one would still get the same answer for hx . To this end, let 
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a _ denote the reverse of a. By considering the loop iT 0 a_based at 
X O , check that 

( c) Show that h satisfies all the axioms of a Riemannian metric. How 
does its differentiability class depend on that of D? 

(d) It remains to show that D is compatible with h. Take any tangent 
vector v E TxM; it suffices to check that 

(Dvh)( Wi (X) , Wj(x)) = 0, 

where {Wi(x)} is a basis for TxM. Let us realize v as the initial 
velocity of a curve "((t) and parallel translate {Wi (X)} along "( to 
form a field of bases {Wd. Explain why the formula 

d 
dt[h(U, V)] 

- h ( D ~i U, V) - h ( U , D ~i V) 

reduces in our setting to 

Calculate h(Wi' Wj ) using a curve that runs from the point "((t) to 
x, and then from x to XO. Conclude that our h(Wi' Wj ) does not 
depend on t. Thus Dh = O. 

With the conclusion of this exercise, one can deduce a Gauss-Bonnet­
Chern theorem for Berwald spaces of arbitrary dimension. This was 
first observed by Shen. For more details, see the last section of [BCSIJ, and 
then [Ch3J, [Ch4]. 

10.2 Various Characterizations of Berwald Spaces 

In this section, we produce several characterizations of Berwald spaces. 
Some of these are particularly useful to us later. 

Proposition 10.2.1. Let (M, F) be a Finsler manifold. Then the following 
five criteria are equivalent: 

(a) The hv-part of the Chern curvature vanishes identically: P/k1 = O. 

(b) The Cartan tensor is covariantly constant along all horizontal direc­
tions on the slit tangent bundle TM" O. Namely: Aijkll = O. 

(c) The Chern connection coefficients ri jk in natural coordinates do 
not depend on the directional variable y. In other words, the Finsler 
structure F is of Berwald type. 
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(d) The quantities (rijk yjyk)ypyq do not depend on y. 

(e) The quantities (Gi)YPyq, with Gi := "(ijk yjyk, do not depend on y. 

Proof. Let us make a few preliminary observations: 

• The equivalence between (a) and (b) was established near the end 
of §3.4. See (3.4.13). The key consists of constitutive formulas that 
come from first Bianchi identities. These formulas express the cur­
vature P entirely in terms of the horizontal covariant derivatives of 
A, and vice versa. 

• Formula (3.3.3) says that in natural coordinates, 

P i _ ar i jk 
j kl - - F ----ayz . 

This immediately gives the equivalence between (a) and (c). 

• In (e), the "(ijk are the fundamental tensor's formal Christoffel sym­
bols of the second kind. See (2.3.1). Using the explicit formula (2.4.9) 
of theChern connection r, one can check that r i jk yjyk reduces to 
"('jk yJyk. The equivalence between (d) and (e) is now transparent. 

• Given (c), straightforward differentiation shows that (rijk yjyk)ypyq 

is equal to 2r'pq . Thus (c) indeed implies (d). 

In view of these remarks, it remains to prove that (d) =} (c). To this end, 
the first step is to establish that 

i j k _ 'i i (r jk y Y )YPyq - 2 (A pq + r pq) . 

This is accomplished by applying (3.3.3) and (3.4.9) twice, and (3.2.3) once. 
More detailed guidance can be found in Exercise 1O.2.l. 

Suppose (d) holds. Namely, the quantities (rijk yjyk)ypyq do not depend 
on y. The above identity then implies that, in natural coordinates, the 
Berwald connection Ai pq + r i pq is independent of y. So 

Aipq;s + ripq;s = 0, 

where each semicolon abbreviates the operation F :y . The use of (3.3.3) 
converts this to 

(*) 

Formulas (3.4.8), (3.4.9) together say that 

P;'jkl + Pjikl = 2 A iju AUkl - 2 Aijllk . 

Thus 
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In view of this, contraction of (*) with fi gives 

Apqs = fi Aipq;S = - fi;s Aipq • 

But (2.5.17) tells us that fi;s = gis - fifs . The above then simplifies to 

2 Apqs = 0, 

showing that the Berwald and Chern connections in fact coincide. We al­
ready know that the Berwald connection in natural coordinates is indepen­
dent of y, so the same holds for the Chern connection. D 

We close by highlighting a few facts: 

• For a Berwald space, the Chern connection coefficients in natural co­
ordinates have no y-dependence. This is the definition of a Berwald 
space. 

• Equivalent to this definition is the vanishing of the hv Chern curva­
ture. Namely, Pj i k1 = o. Also equivalent is the vanishing of the hv 
Berwald curvature bpj \1 introduced in Exercise 3.8.4. This can be 
seen by putting part (b) of that exercise together with criteria (a) 
and (e) of Proposition 1O.2.l. 

• The hh-Chern curvature of a Berwald space is given by 

i _ ari j1 ari jk . h . h 
R j kl - 7iXk - {f;l + r'hk r jl - r'hl r jk 

Note that these are ordinary partial derivatives with respect to x. 

Exercises 

Exercise 10.2.1: Let ri jk be the Chern connect~on of an arbitrary Finsler 
manifold. In this exercise, compute with r'jk yJyk as is. That is, do not 
reduce it first to "I' j k yJ yk • 

(a) Show that in spite of the fact that ri jk generically depends on y, 
one always has 

I i' k i k I (r jk if Y )yP = 2 r pk y • 

You will need to use the fact that (ri jk )yl = (-1/ F) P/ kl , namely 
(3.3.3). You will also need the Bianchi identity (3.4.9), which says 
that fj P/k1 = _Aikl • 

(b) In the same spirit, deduce the statement 

(ri jk yj yk )yPyq = 2 (Aipq + ripq) I. 
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Note that the right-hand side is twice the Berwald connection. As 
in part (a), you will need to use (3.3.3). But the symmetry property 

P/kl = Pk i jl , 

namely (3.2.3), will have to be invoked before (3.4.9) is relevant 
again. 

(c) Now suppose r i jk has no y dependence. The computational steps in 
parts (a) and (b) then simplify considerably. Check that they lead 
directly to the statement (rijk yjyk)ypyq = 2ripq instead. 

Exercise 10.2.2: Show that for a Berwald space, the hh part of the Chern 
curvature has the simple formula 

i _ ari jl ari jk i h i h 
Rj kl - axk - axl + r hk r jl - r hi r jk . 

Hint: you may want to review (3.3.2). Note that the right-hand side consists 
entirely of quantities defined on the underlying manifold M. This formula 
is symbolically the same as that for the curvature tensor of a Riemannian 
manifold. 

Exercise 10.2.3: Verify that on a Berwald space, the Chern connection 
r i jk and the Berwald connection r i jk + Aijk are identical. 

10.3 Examples of Berwald Spaces 

At the end of §2.4, we determined the Chern connection, in natural coor­
dinates, for Riemannian manifolds and locally Minkowski spaces. Let us 
review our findings: 

* Riemannian manifolds. In natural coordinates, the Chern con­
nection coefficients ri jk coincide with the underlying Riemannian 
metric's Christoffel symbols of the second kind. In particular, they 
are independent of y. 

* Locally Minkowski spaces. In certain natural coordinate charts, the 
Chern connection coefficients ri jk vanish identically. Hence, in arbi­
trary natural coordinates, they can have at most an x dependence. 

Thus all Riemannian manifolds and locally Minkowski spaces are examples 
of Berwald spaces. 

The rest of this section concerns an example described in Rund's book 
[R]. This example had its genesis in a work of Berwald's. We refer to it as 
the Berwald-Rund example. It is a Finsler surface with: 

• constant Cartan scalar I = ~, 

• vanishing Landsberg scalar J = 0, but 

• nonconstant Gaussian curvature K. 
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As we show below, this is indeed a Berwald space that is neither Riemann­
ian nor locally Minkowskian, albeit one with a lamentable fault. Namely, 
its Finsler function F is only positive and strongly convex on the upper 
half (and with a ray excluded) of each tangent plane TxM. 

In general, if F is only smooth and strongly convex on a proper subset of 
T M" 0, it is said to be y-Iocal. For example, the interesting 3-dimensional 
conformally flat Berwald spaces given by Matsumoto [M9] are y-Iocal be­
cause they do not have strong convexity on all of T M " o. 

We digress to recall something. Let (M, F) be an orient able Finsler sur­
face. Its sphere bundle SM was introduced in §4.3. When equipped with the 
Sasaki (type) metric, SM is a 3-dimensional Riemannian manifold. In §4.3, 
a globally defined orthonormal frame field {el' e2, e3} was constructed on 
the sphere bundle SM. The first two vectors are horizontal, and the third 
one is vertical. Given any scalar f on SM, the quantities h, 12, h denote, 
respectively, its directional derivatives along el, e2, e3. 

Lemma 10.3.1. Given any Finsler surface (M, F) which is either y-local 
or y-global, the following two statements are equivalent: 

(a) The Finsler structure F is of Berwald type. 

(b) Its Cartan scalar 1 is horizontally constant; that is, h = 0 = h. 

Proof. In Exercise 4.4.7, we enumerated the only two a priori nonvani­
shing components of the hv-curvature P, relative to the Berwald frame 
{el,e2} of the pulled-back bundle p*TM (which sits over SM). They are 
P21ll and P llll . The same exercise, together with the Bianchi identity 
(4.4.7), also shows that 

P2lll - 12 , 

P llll 1 12 - h . 

Thus P = 0 (so that F is Berwald by Proposition 10.2.1) if and only if 
h =O=h· D 

Remarks: 

* In the Berwald-Rund example that we present, 1 is equal to the 
constant 3/../2. Thus the Finsler surface in question is a Berwald 
space. Its Finsler structure is non-Riemannian since 1 =1= o. And it 
is not locally Minkowskian because we show that K, one of the two 
surviving components of R (see Exercise 4.4.7), is nonzero. 

* The y-Iocal feature that we lamented about is inevitable whenever 
1 is a nonzero constant. The reason for that is Corollary 4.1.2. It 
says that if the Finsler function is smooth and strongly convex on 
any given TxM" 0, then 1 must have zero average on the indicatrix 
in that TxM. Hence, for Finsler structures that are smooth and 
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strongly convex on TM" 0 (that is, y-global), the only way I can 
stay constant is by vanishing. 

* As we show in §1O.6, Szabo's rigidity theorem says that every con­
nected y-global Berwald surface is necessarily Riemannian or locally 
Minkowskian. Such a theorem puts the mandatory y-Iocality of the 
Berwald-Rund example in a broader context. In contradistinction to 
this, we show in §11.6 that for higher dimensions, there are indeed 
y-global Berwald spaces that are neither Riemannian nor locally 
Minkowskian. 

We now give some details on the Berwald-Rund example. The underlying 
manifold is M := ]R2, with coordinates (xl, x2). As usual, the coordinate 
basis {a~i} induces global coordinates (y1, y2) in each tangent plane of M. 
To avoid clutter, let us adopt the following abbreviations: 

a .- Xl , b .- x2 

P .- y1 , q .- y2 , r 

The Finsler metric he gave involves a function 

~ = ~(a,b) 

which is a nonconstant solution of the PDE 

~8~_8~=0 
.. 8a 8b . 

P .-
q 

Berwald [Ber2] found (and one can verify) that the solutions ~ of this PDE 
are implicitly given by 

a + ~ b = 1/J(~) , 

where 1/J is an arbitrary analytic function with 

1/J" f:. o. 
With this background, the Finsler function in question is defined as 

F(x,y) := q(~ + r)2. 

Note that F ~ 0 if q ~ o. Also, in the open upper half (where q > 0) plane, 
F = 0 along the ray r = -~ . By Theorem 1.2.2, this F can only be y-Iocal. 

Straightforward calculations give 

and 

r 

(~ + r)2 ' 
1 

(~ + r)2 ' 

£1 2 (~ + r) , 

£2 (~- r) (~ + r) . 



10.3 Examples of Berwald Spaces 269 

( Fpp 
Fqp 

Fpq) 
Fqq = ~ (-\ -r) 2 . r 

(911 
921 

912 ) 
922 

= (~ + r)2 (2[~~2r) 2[~-2r) ) 
2r2 + [~ - r)2 

Hence 

9 2 (~ + r)6 , yg = v'2 (~ + r)3 , 

( 911 9 12 ) _ 1 ( 2 r2 + [~ - r)2 - 2 [~ - 2 r ) ) 
921 922 - 2 (~ + r)4 - 2 [~ - 2 r) 6 

The Cartan tensor Aijk has the following components: 

A111 = 6 (~ + r)3 

A112 ( - r) 6 (~ + r)3 

A122 ( r2) 6 (~ + r)3 

A222 = (- r3 ) 6 (~ + r)3 . 

So far, all the formulas are in natural coordinates. But the scalars of 
interest, namely, 1, J, K, are more readily obtained through orthonormal 
frames. Specifically: 

* For 1 we only need the Berwald frame {e1,e2} for the pulled-back 
tangent bundle p*TM, and the formula 1 = A(eI, e1, e1). 

For the remaining invariants, we need to work with {eI, e2, e3}. This is 
a vector basis (orthonormal with respect to a Sasaki type metric) on the 
sphere bundle 8M, over which the pulled-back tangent bundle sits. 

* In that context, J = 12 • 

* And K can be obtained by exterior differentiation of w3 , the dual 
I-form of e3' 

This formalism was detailed in §4.3. 
We find that the e1 [see (4.3.1)) in the Berwald frame is given by 

e1 = v'2 (/ + r )2 [( ~ - r) :a - 2 !] . 
Using this, a straightforward computation gives 

as claimed. In particular, 

1 = ~ 
v'2 

J O. 
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We now turn to the Gaussian curvature K. To this end, let us first prolong 
our computations in natural coordinates. The fundamental tensor's formal 
Christoffel symbols of the first kind are: 

"1111 

"1211 

"1112 

"1212 

"1122 

"1222 = 

2(~+r)[3] 
1/;'(~) - b 

2 (~+ r) 
1/;'(~) - b [-3r] 

2 (~+ r) 
1/;'(~) - b [3~] 

2 (~ + r) [e _ ~ + r2] 
1/;'(~) - b r 

2(~+r) 2 2] 
1/;'(~) _ b [2~ - 2~r - r 

2(~+r) 2 2 
1/;'(~) - b [~( ~ - ~r + r )] . 

The quantity 1/;'(~) - b is never zero. Indeed, differentiating a + b~ = 1/;(~) 
with respect to a and rearranging, we get 1 = [1/;'(0 - b] ~a. 

In the following, a subscript n on "Iijk signifies contraction with £. Thus, 

We have 

"I11n 

"I12n 

"I21n 

"I22n 

Hence 

"lInn 

"I2nn 

"Iijn ._ "Iijk £k , 

"linn 
. k 

.- "Iijk £J £ . 

2 
b [3] 

1/;'(~) -

2 
b [2~ - r] 

1/;'(0 -
2 

b[~-2r] 
1/;'(~) -

2 [e - ~r + r2] 
1/;'(0 - b . 

( 1/;'(~) ~)(~+r)[2] 
2 

(1/;'(0 - b) (~ + r) [~ - r]. 

The formula for the nonlinear connection is 

lVij k F = "Iijn - Aij "Iknn· 
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It requires us to first calculate 

All1 

All2 

3 (~ r) 

-6 

All 

All 

A21 

A2l 

3 (~ - r) (-r) 

-6(-r) 

3(~-r)(r2) 

- 6 (r2) . 

Using these, one finds that 

Nij 

F 'Yijn . 

Consequently, 

N 1 
1 1 1 

F (1jJ'(~) - b) (~ + r)2 

N 1 
2 1 r 

F (1jJ'(~) - b) (~ + r)2 

N2 
1 0 

F 
N2 

2 1 2 
F (1jJ'(~) b) (~ + r)2 . 

The above computations lead to 

8p 

F 

8q 

F 

1 1 
q (~ + r )2 dp + (1jJ'(~) _ b) (~ 

1 1 
q (~ + r)2 dq + (1jJ'(~) - b) (~ 

1 
) 2 fda + r db] + r 

1 
) 2 [2db]. + r 

At the beginning of this section, we recalled (from §4.3) the global or­
thonormal frame field {Ih, €2, €3} for the Sasaki (type) metric on SM. The 
corresponding coframe {w\w2 ,w3 } has also been given explicit formulas 
in that section. In particular, 

w3 := Jg (p 8;1 _ .e1 8;2) . 
For the example at hand, and with p := y1, q := y2, we find that 

3 V2 [1 1 ] w = (~ + r) q (dp - r dq) + 1jJ'(O _ b (da - r db) 

In general, (4.4.5) says that dw3 = K w1 /\ w2 - J w1 /\ w3 . But J = 12 is 
zero here because our 1 is constant. Thus 

dw3 = K w1 /\w 2 = K.;g da/\db. 
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A somewhat tedious calculation indeed gives 

3 _ '1jJ"(~) 
dw - ('1jJ'(~) _ b)3 v2 da 1\ db . 

This and our formula for v0 then imply that 

'1jJ"(O 
K= 

(~+r)3('1jJ'(~) b)3' 

By hypothesis, '1jJ"(~) i 0, hence K is nonzero. 

Exercises 

Exercise 10.3.1: Denote partial differentiation by subscripts. 

(a) Verify that all functions ~ defined implicitly by the relation a+b~ = 
'1jJ(~) are indeed solutions of ~ ~a - ~b = O. 

(b) Prove that every solution of the above PDE can be characterized 
that way. 

(c) Check that the functions '1jJ' (~) - b and ~a are never zero. Hint: apply 
ta to the implicit relation. 

(d) Explain why the zeroes of ~ and ~b must coincide. Hint: apply tb to 
that relation. 

Exercise 10.3.2: For the Berwald-Rund example, derive the stated for­
mula of the Gaussian curvature K. 

10.4 A Fact about Flat Linear Connections 

In this section, let us describe a result about flat linear connections D on 
finite-dimensional manifolds M. It so happens that for the present purpose, 
the formalism based on differential forms is less intuitive than that which 
uses vector fields and covariant differentiation. Thus we adopt the latter 
approach. In that case, the torsion and curvature of D are, respectively, 
given by the operators 

T(X,Y) .- DxY - DyX - [X,Y], 

R(X, Y)Z .- (Dx D y - D y Dx - D[X,YJ) Z . 

Proposition 10.4.1. Let D be a torsion-free linear connection on a finite 
dimensional manifold M. Let p be any point in M. If the curvature of D 
vanishes in a neighborhood of p, then there is a local coordinate system 
(Xi) about p in which all the connection coefficients ri jk are zero. 
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Proof. We sketch an argument from Volume II of Spivak's book [Sp2]. 
Specifically, we focus On his "Test Case III" . 

Let (u i) be any local coordinate system defined On some open set U that 
contains our point p. Without loss of generality, we may assume that 

(a) the coordinates of p are all zero, 

(b) the open set U is path-connected, and 

(c) the curvature of D vanishes on U. 

In order to avoid cumbersome prose, let us not distinguish the points in U 
from their coordinate representation (u i). 

Our first step is to demonstrate that any vector X (p) E TpM can be 
extended to a covariantly constant vector field X (that is, DX = 0) On U. 
Let /,(u1) := (u1 , 0, ... ,0) be the u1-coordinate curve that passes throughp. 
Parallel translate X (p) along /'. At each point along /" we nOw have a vector 
X(u\ 0, ... ,0) and a u2-coordinate curve CY. Parallel translate this vector 
along CY. We have thus extended X (p) to a vector field X (u 1, u 2 , 0, ... , 0) 
On the u 1u 2-coordinate surface 1: that passes through p. 

Since the curvature of D vanishes on U and hence on I;, we have 

(*) DaD a X - DaD a X = 0 On I;. 
Bu! 8u2 ~ au 1 

But by construction, D --L X = 0 On 1:. So (*) reduces to a statement which 
au2 

says that the vector field D --L X is parallel along the u2-coordinate curve 
au 1 

CY passing through the point /,( u 1). By construction, the said vector field 
vanishes at /,( u1 ). Therefore the linearity of parallel transport (which comes 
from the linearity of D) implies that it must be identically zero along CY. 

This holds for every u2-coordinate curve that traverses /'; thus D --L X = 0 
au 1 

On I;. This process of extension can be continued until one obtains a vector 
field X On U satisfying D ~X = 0 for all i. And this last property is 

au' 
equivalent to 

Dy X = 0 for all vector fields Y. 

Next, take any basis {Xi(p)} of TpM and, through the above procedure, 
extend it to a collection of covariantly constant vector fields {Xd on U. It 
is a consequence of the linearity of parallel transport by D that these vector 
fields form a basis at every tangent space in U. Also, the torsion-freeness 
of D implies that 

Using this information, One can construct local coordinates (xi) on U such 
that 
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On the surface ~: 
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Start with a single vector X(p). We parallel translate it along 
the u I-coordinate curve, through p. At each point ,( u 1) along 
" we now have a vector X. Parallel translate that along the u2_ 

coordinate curve a through ,(uI). This procedure generates a 
vector field X (solid arrows) defined on the u 1u 2-coordinate sur­
face ~ through p. As we explained in the proof of Proposition 
10.4.1, the vanishing of the curvature implies that this X is co­
variantly constant on the entire coordinate surface ~. Now, we 
could have first parallel translated X (p) along the u2 -coordinate 
curve if through p, and then along the u1-coordinate curve i. The 
vanishing of the curvature would again imply that the resulting 
vecto~ field X (dotted arrows) is covariantly constant on ~. Actu­
ally, X is identical to X! Note that their difference is covariantly 
constant on ~, and is zero at p. A moment's thought shows that 
it must remain zero everywhere. 

The statement DXkXj = 0 then implies that 

o = D a~k ( 8~j) = ri jk 8~i 
Therefore ri jk = o. D 

Exercises 

Exercise 10.4.1: 

(a) Continue the process of extension mentioned in the proof, until one 
obtains a vector field on U satisfying D ~ X = 0 for all i. 

au' 
(b) Explain why the above property is equivalent to D y X = 0 for all 

vector fields Y. 
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Exercise 10.4.2: 

(a) Show that it is a consequence of the linearity of parallel transport 
by D that the vector fields {Xd form a basis at every tangent space 
in U. 

(b) Deduce from the torsion-freeness of D that [Xi, Xj 1 = O. 

(c) Explain why there must exist local coordinates (xi) on U such that 
X - a 

i - axi' 

10.5 Characterizing Locally Minkowski Spaces by Curvature 

Let us review our nomenclature. A Finsler manifold (M, F) is called a 
locally Minkowski space if there exist certain privileged local coordi­
nates (Xi) on M which, together with coordinates on TM induced by 
y = yi a~.' render F dependent only on y and not on x. On the other 
hand, a Minkowski space consists of a vector space V and a Minkowski 
norm F (see §1.2), the latter inducing a Finsler structure on V by trans­
lation (see §1.3). A very little amount of definition-chasing will show that 
Minkowski spaces are always locally Minkowskian. 

Pr~position 10.5.1. Let (M, F) be a Finsler manifold. Let R/ kl and 
Pj 'kl be, respectively, the hh- and hv-curvatures of the Chern connection. 
Then the following three conditions are equivalent: 

(a) 

(b) 

(c) 

(M, F) is locally Minkowskian. 

R/ kl = 0 and P/kl = O. 
. l 

Rik := i J Rjikl i = 0 and Pjikl = O. 

Remark: In view of Proposition 10.2.1 and §3.1O, criterion (c) describes 
Berwald spaces with zero flag curvature. 

Proof. Let us make some preliminary observations. 

* Our discussions at the end of §2.4 and §3.3 show that (a) =} (b). 

* It is apparent that (b) =} (c). 

Thus it remains to check that (c) =} (a). 
Suppose (c) holds. By Proposition 10.2.1, the vanishing of P implies that 

in natural coordinates, the Chern connection coefficients r i jk have no y­
dependence. As described in §1O.1, they then define a linear connection D 
directly on the underlying manifold M. These r i jk are the components of 
D 8 aa 3 with respect to {aa.}. a;rc x x 

Since P vanishes, so does A. This follows from the first Bianchi identity 
(3.4.9). Using A = 0 and Ri k = 0 in the constitutive relation (3.5.6), which 
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in turn comes from a second Bianchi identity, we see that 

R/ kl = O. 

For the left-hand side of this equation, we substitute (3.3.2) for R, but with 
one important simplification. Namely, we use :x instead of 66x because the 
r i jk here have no y-dependence. The end result is 

ari jl ari jk . h . h 
axk - axl + r\k r jl - r\l r jk 0 . 

It says that the torsion-free connection D on M is flat. 
Proposition 10.4.1 now tells us that, by changing to a different coordinate 

system (on M) if necessary, we may assume without any loss of generality 
that the r i jk are zero. Hence Nik = 0 by part (a) of Exercise 2.4.6. These 
then give 

agij = 0 
axk 

by (2.4.10). So the gij have no x-dependence and, by (1.2.5), neither does 
the Finsler function F. We have finally obtained criterion (a). 0 

The above theorem shows that the definition of locally Minkowski spaces 
translates into a curvature criterion. Typically, there are topological ob­
structions to the fulfillment of any curvature condition. Here, one such 
obstruction is the vanishing of the Euler characteristic of the underlying 
manifold M. A derivation of this fact is through the use of a generalized 
Gauss-Bonnet Theorem; see [BC2]. 

Exercises 

Exercise 10.5.1: Verify that Minkowski spaces are locally Minkowskian. 

Exercise 10.5.2: Give all the details in our proof of Proposition 10.5.1. 

10.6 Szabo's Rigidity Theorem for Berwald Surfaces 

10.6 A. The Theorem and Its Proof 

The Berwald-Rund example (of a Berwald surface) was discussed in §1O.3. 
It has the merit of being neither Riemannian nor locally Minkowskian. 
Unfortunately, it also has a fairly serious fault. Namely, its Finsler structure 
F is only strongly convex on part of each punctured tangent plane. 

One might wonder if there is a Berwald surface in which the Finsler struc­
ture is smooth and strongly convex on T M ...... O. Szabo [Sz] addressed this 
question and found a surprisingly rigid picture. Namely, any such surface 
must necessarily be of the Riemannian or locally Minkowskian variety. 
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Given this fact, if we want an example of a Berwald space (M, F) that 
is neither Riemannian nor locally Minkowskian, and such that F is smooth 
and strongly convex on all of T M " 0, we must search for it in dimension 
three or higher. Our chapter on Randers metrics shows that this goal can 
be realized by searching instead for Riemannian manifolds which admit 
globally defined parallel vector fields. This is so thanks to the works of 
Matsumoto [M4]; Hashiguchi and Ichijyo [HI]; Shibata, Shimada, Azuma, 
and Yasuda [SSAy); and Kikuchi [Ki]. See §11.5 and then §11.6. 

We now give a proof of Szabo's rigidity theorem. To this end, let us first 
establish a fact about the Gaussian curvature K of Landsberg surfaces. 
These are the ones for which the Landsberg scalar J = 12 vanishes. We 
considered them in §4.6. The Landsberg family includes Riemannian sur­
faces, locally Minkowskian surfaces, and more generally, Berwald surfaces. 
The reason is that Berwald spaces have P = O. This holds in natural coor­
dinates and, since P is a tensor, remains so in the Berwald frame {el' e2}. 
By part (d) of Exercise 4.4.7, J must therefore vanish. 

Consider any fixed indicatrix SxM, which is a simple closed convex curve 
in our formalism . 

• As we discussed in §4.1, this curve has Riemannian arc length L. 
Give it a unit speed parametrization yet), 0 ~ t < L such that the 
velocity field is precisely the e3 defined in (4.3.9). This is done in 
order to effect 

d . 
h[y(t)] = dtJ[y(t)] =: f 

for any function f. Part (c) of Exercise 4.3.2 is of interest here, 
though not directly relevant . 

• To avoid clutter, let us also adopt the abbreviations 

l(t):= l[y(t)] , K(t):= K[y(t)]. 

Proposition 10.6.1. Let (M, F) be a Landsberg surface for which the 
Finsler structure F is smooth on T M ,,0. Then the value of K at any 
point yet) of the indicatrix SxM is determined by the Cartan scalar 1 
according to the following formula 

(10.6.1) K(t) = K(O) e [f~ J(T)dT] • 

Remarks: 

* As a consistency check, set t = L in (10.6.1). Since K(L) = K(O), 
we get JoL let) dt = 0 whenever K(O) -# O. This is consistent with 
(4.1.13), which says that the average of lover any indicatrix is 
unconditionally zero. 

* Formula (10.6.1) says that for a Landsberg surface, the way in which 
K varies on any given indicatrix is completely controlled by the 
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Cartan scalar in an explicit manner. In particular, on any SxM, K 
is either nowhere zero or vanishes identically. 

Proof. Since J = ° on a Landsberg surface, (4.4.8) reduces to 

K3 + I K = 0. 

Restricting this to SxM gives K(t) + I(t) K(t) = 0. Our hypothesis on F 
implies that I(t) is continuous; hence the solution is as claimed. 0 

As an application of Proposition 10.6.1, we now give a short proof of 
Szabo's rigidity theorem about Berwald surfaces. Recall from Lemma 10.3.1 
that a Berwald surface is one for which h = ° = 12 • That is, its Cartan 
scalar I does not vary in the horizontal directions. Since J = 12 , we see 
that Berwald surfaces are of Landsberg type. 

Theorem 10.6.2 (Szabo) [Sz]. Let (M, F) be a connected Berwald sur­
face for which the Finsler structure F is smooth and strongly convex on all 
ofTM,O. 

• If K vanishes identically, then F is locally Minkowskian everywhere. 

• If K is not identically zero, then F is Riemannian everywhere. 

Proof. According to Exercise 4.4.7, K vanishing identically implies the 
same of the hh-Chern curvature Rj i kl • And being Berwald is synonymous 
with P/kl = 0. Proposition 10.5.1 now tells us that (M, F) must be locally 
Minkowskian. This takes care of the first scenario. 

Next, suppose K is not identically zero on SM. Then there exists an 
indicatrix SpM on which K is nonzero at some point, and hence at all 
points (of that SpM) on account of Proposition 10.6.1. Applying a Ricci 
identity (from Exercise 4.4.4) to the Cartan scalar I, we get 

h2 - hl = - K 13 . 

Since our Finsler structure is of Berwald type, namely, h = 12 = 0, the 
left-hand side of this Ricci identity vanishes. The resulting equation, when 
restricted to SpM, reads 

K j = 0. 

But K is nowhere vanishing on the connected set SpM, so j = 0. This 
means that I must be constant along the indicatrix SpM. That constant 
is necessarily zero because I has zero average (see Corollary 4.1.2) on the 
indicatrix SpM. 

Since I vanishes on SpM, F(p, y) must have the form 

F(p, y) = J 9ij (p) yiyj 
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for all fj in TpM. Now, on a connected Berwald surface, every Minkowskian 
plane (TxM, Fx) is linearly isometric to (TpM, Fp). This is the essence of 
Proposition 10.1.1. Thus F(x, y) is equal to F(p, fj), where fj is related to 
y by a linear transformation that depends only on x and a path from x to 
p. It is then straightforward to check that F(x,·) inherits from F(p,·) the 
form 

F(x,y) = J gij(X) yiyj . 

In other words, the Finsler structure is Riemannian everywhere. 0 

10.6 B. Distinguishing between y-local and y-global 

We hasten to point out that the above theorem applies only to Finsler 
structures which are y-global. That is, those which are smooth and strongly 
convex on T M " 0 . It is perfectly consistent with the local treatment of 
Finsler surfaces by Matsumoto in the references [M2] and [AIM]. 

* In [M2] and [AIM], one reads that Berwald surfaces which are 
not locally Minkowskian are characterized by I being constant. In 
these references, the Finsler functions are typically only smooth and 
strongly convex on some open cone in each tangent plane. Thus the 
indicatrices are not necessarily closed curves, and our Corollary 4.1.2 
cannot be recklessly applied to conclude that the I in question is 
zero. As a result, the y-Iocal Finsler structures in question are spared 
the fate of having to be Riemannian. 

* The same references also give Berwald's classification of y-Iocal 
Finsler surfaces whose I is a function of the position x alone. 

Exercises 

In the two exercises below, we consider the Okubo metrics [Oku] 

F(x,y) = {[ A (yl)2 + J1.(y2)2] [J1.(yl)2 + A(y2)2] }1/4 , 

where A and J1. are positive functions of position x = (Xl, x2) EM := ~2. 

Exercise 10.6.1: Prove that the ratio AI J1. has the uniform bounds 

1 V2 = 3-2V2 < ~ < 3+2V2 
3+2 2 J1. 

if and only if F is smooth and strongly convex on m 2 " O. 

Exercise 10.6.2: Can A and J1. be chosen to produce a y-global Berwald 
structure (on any connected open domain of~2) that is neither Riemannian 
nor locally Minkowskian? Make a theoretical decision, then give some direct 
computational verifications. For the latter, recall the quantities Gi , i = 1, 2 
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given by (3.8.1). Formulas for their machine computation are given in §12.5. 
According to (3.8.4), taking three y derivatives of G i yields a multiple of 
the Berwald hv-curvature bp' As remarked after the proof of Proposition 
10.2.1, the vanishing of bp also characterizes Berwald spaces. 
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Randers Spaces and an Elegant 
Theorem 
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* References for Chapter 11 

11.0 The Importance of Randers Spaces 

In 1941, G. Randers [Raj studied a very interesting type of Finsler struc­
tures. These are called Randers metrics, and we first encountered them 
in §1.3. Randers metrics are important for six reasons. 

• They occur naturally in physical applications, most notably in elec­
tron optics. According to Ingarden's account in [AIM], the La­
grangian of relativistic electrons gives rise to the following Finsler 
function F(x, y) of Randers type: 

V<P(x) + ~<P2(X) J(yl)2 + (y2)2 + (y3)2 + ~(X)yi. 
Here, <P and A are respectively normalized versions of the electric 
( "scalar") and magnetic ("vector") potentials. The normalization 
involves the physical constants of the theory. 
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• They provide a rich source of y-global Berwald spaces, particularly 
those that are neither Riemannian nor locally Minkowskian. Re­
call (from §1O.6) that in dimension two, every y-global (smooth and 
strongly convex on T M " 0) Berwald structure is necessarily Rie­
mannian or locally Minkowskian. This is Szabo's theorem. Thus, to 
locate the examples described, we must look in dimensions three or 
higher. As we show in §11.5 and §11.6, an elegant result demon­
strates that Randers metrics are most relevant to our quest. 

• Thanks to the Yasuda-Shimada theorem [YSl, Randers metrics pro­
vide intriguing examples of non-Riemannian Finsler spaces with 
constant negative flag curvature. See §12.6 for the construction and 
the detailed analysis of one such example-the Finslerian Poincare 
disc. Also, we explain carefully in §12.6 why the said example is 
perfectly consistent with Akbar-Zadeh's rigidity theorem (Theorem 
12.4.1). Since we do not prove the Yasuda-Shimada theorem in this 
book, all assertions about that example are verified explicitly, either 
by hand or by symbolic computation on the computer. 

• More generally, Randers spaces represent a medium in which Rie­
mannian geometry interfaces with Finsler geometry proper. Study­
ing them induces a mind set that opens up many new possibilities. A 
bewildering plethora of Finsler spaces can be constructed with Rie­
mannian metrics satisfying certain Ricci curvature criteria, together 
with I-forms of geometrical or topological significance. For instance, 
using parallel I-forms gives Berwald spaces (see §11.5, §11.6), while 
using closed I-forms gives Douglas spaces (see Exercise 11.5.4 and 
especially Exercise 11.3.4). 

• Many new geometrical invariants are first explicitly computed for 
Randers spaces. This is the case for the geometric ratio introduced 
by Baa-Lackey [BLl], and for the S-curvature given by Shen [Shl. 
Also, Randers spaces (with drift term strictly less than 1) are in 
some sense invariant under the L:-duality proposed by Miron. This 
involves the Legendre transformation that we study in §14.8. See 
Hrimiuc-Shimada ([HSl], [HS2]) and Sabau-Shimada [SaSl for de­
tailed treatments. 

• Finally, from an axiomatic standpoint, Randers spaces form a self­
contained category. We say this because of the following. Every 
submanifold of a Randers space is itself a Randers space. This is 
explicitly illustrated in Exercise 11.1.4; see also Exercise 11.1.5. Fur­
thermore, any properly weighted Cartesian product of two Randers 
spaces is again a Randers space. This is made precise in Exercise 
11.1.6. Loosely speaking, the alleged self-containment comes about 
because Riemannian metrics and I-forms, the data that constitute 
Randers spaces, are both well behaved under pull-backs and direct 
sums. 
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11.1 Randers Spaces, Positivity, and Strong Convexity 

The given data of a Randers space consist of: 

• a Riemannian metric ii:= iiii d,xi ®dxi on a smooth n-dimensional 
manifold M, and 

• a I-form b:= bi d,xi on M. 

Together they define a Finsler structure F in a deceptively simple way: 

where 

F(x, y) := o:(x, y) + {3(x, y) I, 

o:(x, y) .- V iiii (x) yi yi 

{3(x,y) .- bi(x) yi 

For some explicit mathematical examples, see §1.3 and §11.6. 
By inspection, one sees that a Randers metric F is absolutely homoge­

neous of degree 1 [that is, F(x, AY) = IAI F(x, y) for all real A] if and only if 
the I-form b vanishes identically. This in turn is equivalent to F being Rie­
mannian. Therefore, by excluding the case b == 0, the remaining Randers 
metrics are non-Riemannian and only positively homogeneous in y. 

As in §1.3, the convention described below solves a good amount of book-
keeping problems: 

The indices on certain objects are lowered and raised by 
(iiii) and its inverse matrix (iiii). Such objects are deco­
rated with a tilde. 

Since {3(x, y) is linear in y, it cannot possibly have a fixed sign. Exercise 
11.1.1 explains how the size of b should be controlled, in order for F to be 
positive on T M " O. Namely, the said positivity holds if and only if 

II b II .- Vbibi < 1 I, 
where 

bi . - -ii b. a 3 • 

Let 

(11.1.1) li .- O:y' 
iiii yi 

0: 

One can check that 

(11.1.2) li .- Fyi = li + bi I· 
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The fundamental tensor can then be expressed as 

(11.1.3) F_ {3oo 0b- ob- b-b-
gij = - aij - -.r.i.r.j + q j + .r.j i + i j . 

a a 

Equivalently, 

(11.1.4) F - - I gij = ~ «(iij - fi fj) + fi fj . 

The issue of strong convexity needs to be addressed. This pertains to the 
positive-definiteness of the fundamental tensor gij. It turns out that the 
criterion II b II < 1, which guarantees the positivity of F, also ensures strong 
convexity! The crux of the argument involves the following computational 
fact: 

(*) ( 
F )n+l 

det( gij) = Q det( (iij ) . 

Its derivation can be found in [M2J, albeit in the more general context of 
(a, (3) metrics. A self-contained exposition is given in §11.2. 

Anyway, here's how we can establish strong convexity. Consider 

FE := J (iij yi yj + € bi yi , 

where II b II < 1 and 0 ::::; € ::::; 1. Note that: 

* FE is positive on T M ...... O. Let gE abbreviate the fundamental tensor 
of FE. Its determinant is given by the right-hand side of (*), with 
F replaced by FE. So det(gE) is positive. In particular, none of the 
eigenvalues of gE can vanish. 

* The eigenvalues of gE depend continuously on €. At € = 0, they are 
simply those of ( (iij ), and hence are all positive. As € changes from 0 
to 1, none of these eigenvalues can become negative. This is because 
doing so would necessitate crossing zero first, which is forbidden. 
Thus they stay positive. 

Setting € equal to 1 tells us that the fundamental tensor (gij) of F is 
positive-definite whenever II b II < 1. This is the conclusion we seek. See 
Exercise 11.1.4 for an explicit example, to which is applied what we have 
just established. 

We conclude now with two more formulas. A simple one for the angular 
metric 

hij := gij - fi fj , 

and a preliminary one for the Cartan tensor 

F 2 
Aijk := 4" (F )yiyiyk . 
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(11.1.5) 

(11.1.6) 
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Aijk = ~ [hij (bk - ~ lk) + hjk (bi - ~ li) + hki (bj - ~ lj ) 1 

Exercises 

Exercise 11.1.1: Fix x E M. The positivity of the Randers metric F on 
TxM" 0 means that 

(**) 

(a) Suppose positivity holds. If b =J 0, substitute 

yi = _ bi := _ iiij bj 

into (**). Show that one obtains the criterion II b II < 1. Of course, 
this same criterion is also trivially satisfied by the case b = O. 

(b) Conversely, suppose II b II < 1 holds. Use a Cauchy-Schwarz inequal­
ity to show that if y =J 0, then 

I bi yi I < J iiij yi yj . 

Hence (**) follows. 

Exercise 11.1.2: Explain why the positive-definiteness of (gij) is obvious 
if the pointwise Riemannian norm II b II is much smaller than 1. 

Exercise 11.1.3: Derive (11.1.6). 

Exercise 11.1.4: Let M be the manifold ffi.3, with Cartesian coordinates 
Xl, x 2 , x 3 . Denote arbitrary tangent vectors by y i 8x i. Define 

F(x, y) := J (yl)2 + (y2)2 + (y3)2 + oX. y3 , 

where oX. < 1 is some positive constant. (M, F) is a Randers space with 
Riemannian metric 

ii := Dij dxi 0 dxj = dx l 0 dx l + dx2 0 dx2 + dx3 0 dx3 

and I-form 

b := oX. dx3 . 

The assumption oX. < 1 is equivalent to II b II < 1. 
Now consider a surface of the form x 3 = f( xl, x2 ) in M := ffi.3. Call 

that surface iII, and parametrize it by 

( u, v) I---t (u, v, f( u, v) ) . 
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Denote partial derivatives of f by fu and fv. 

(a) Since u, v are local coordinates for £1, arbitrary tangent vectors of 
£1 have the form p au + q av . Check that 

au = axl + fu ax3, av = ax2 + fv ax3 • 

Hence 

v = p axl + q ax2 + (p fu + q fv) ax3 . 

(b) Show that when ii is pulled back to the surface £1, it yields a Rie­
mannian metric a whose explicit formula is 

[1 + (fu)2 J du ® du 

+ fu fv (du®dv + dv®du) 

+ [1 + (fv)2 J dv ® dv . 

Call this Riemannian metric a. Likewise, show that the pull-back of 
b to M gives the I-form 

b := ). (fu du + fv dv) . 

(c) Prove that the square of the Riemannian length of b with respect to 
a is 

).2 (fu)2 + (fv)2 

1 + (fu)2 + (fv)2 

Explain why we have lib" < 1 everywhere on M. 
(d) On each tangent plane of M, the Finsler norm F induces a function 

F. Check that F sends the tangent vector p au + q av to the number 

y'p2 + q2 + (pfu + qfv)2 +). (pfu + qfv). 

Verify that F is positive homogeneous of degree one. 

(e) Using parts (b), (c), and what we discussed in the section proper, 
explain why F is positive and strongly convex. Equivalently, ver­
ify that (M, F) is a Randers surface whose underlying Riemannian 
metric and I-form are, respectively, a and b. 

Exercise 11.1.5: Let (M, F) be a Randers space, with Riemannian metric 
ii and I-form b such that" b" < 1. Let M be any submanifold of M. 

(a) Let a denote the pull-back of ii, from M to £1. Check that a is a 
Riemannian metric on the submanifold M. 

(b) Let b denote the pull-back of b, from M to M. Prove that the Rie­
mannian length of b with respect to a is strictly less than 1. 

(c) On each tangent space of £1, F induces a function F. Check that 
F is positive homogeneous of degree one. Express F in terms of a 



(d) 

11.2 A Matrix Result and Its Consequences 287 

and b. Then use part (b) and the discussion proper of this section 
to explain why F must be positive and strongly convex. 

Conclude that (£1, F) is a Randers space with underlying Riemann­
ian metric a and I-form b. 

Thus, every submanifold of a Randers space is itself a Randers space. 

Exercise 11.1.6: Let us be given two Randers spaces CM, p) and eM, F): 
one with Riemannian metric ii and I-form b; the other with Riemannian 
metric a and I-form b. Recall that we must have II b II < 1 and II b II < l. 
This is to ensure that P and F are both positive and strongly convex. 

(a) Check that ii EEl a is a Riemannian metric on the Cartesian product 
MxM. 

(b) Check that (l/V2) (b EEl b) is a I-form on M x M. Prove that its 
pointwise norm with respect to iiEEla is strictly less than 1 on M x M. 

(c) On each tangent space of M x M, show that Jp2 EEl F2 is always 
positively homogeneous of degree one, positive, and strongly convex. 
On the other hand, explain why PEEl F may not be strongly convex. 

(d) There is no canonical way of inducing a Finsler structure on the 
Cartesian product M x M. Justify this statement. 

(e) Show that on M x M, if we declare the underlying Riemannian 
metric and I-form to be 

ii EEl a and 
1 - v 

V2 (b EEl b) , 

respectively, then it is indeed a Randers space. Express its Finsler 
function :F explicitly in terms of P and F. How does :F2 differ from 
p2 EEl F2? 

11.2 A Matrix Result and Its Consequences 

Our goal in this section is to present formulas for the determinant and 
the inverse of the fundamental tensor. To that end, the following standard 
matrix identity plays a central role. 

Proposition 11.2.1. Suppose: 

* (Qij) is a nonsingular n x n complex matrix with inverse (Qij). 

* Gj , with j = 1, ... , n, are n complex numbers. 

Let us define GS := Qsj Gj . Then: 

• det( Qij + GiGj ) = (1 + GSGs ) det(Qij) . 
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• Whenever 1 + CSCs =I- 0, the matrix ( Qij + CiCj ) is invertible. In 
that case, its inverse is 

Remarks: 

* In [M2J, the above proposition was stated for symmetric nonsingular 
matrices (Qij). This symmetry hypothesis on Q is removable. 

* Q certainly need not be positive-definite. 

Proof. The asserted formula for the inverse is correct, because multiplying 
that on the right by (Qjk + CjCk) indeed gives 8\. Thus it remains to 
compute the determinant of (Qij + CiCj ). 

Let C (resp., ct) stand for the column (resp., row) vector whose entries 
are Cs, s = 1, ... ,no Then 

Hence 

det{ Q + CCt } 

det{Q [J + (Q- 1C)C t ]} 

det Q det{ I + (Q- 1C) C t } . 

Now we invoke a matrix fact which is perhaps better known. It says that 
if v and ware column vectors, then 

(**) 

Suppose neither v nor w is identically zero, or else there is nothing to check. 
Given that, there are two cases to be analyzed. 

* vtw =I- 0 : One can find n - 1 linearly independent complex column 
vectors Wa such that vtwa = O. The vectors Wa , together with w, 
form a basis for en. Consider the matrix I + wvt . It has the Wa as 
eigenvectors, of eigenvalue 1. The vector W is also an eigenvector, 
but with eigenvalue 1 + vtw. This observation gives (**). 

* vtw = 0 : As agreed, we can suppose that both v and ware nonzero. 
Thus there is a complex column vector u such that utw =I- o. Abbre­
viate v + EU as v€. Note that v!w = EUtW =I- 0 for all nonzero E. And 
in that case, we already know that det{I +wv!} = 1 +v!w. Letting 
E --+ 0 gives (**). 

Let us substitute, into the above, Q- 1C for wand C for v. The said 
matrix fact then tells us that 
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which finishes the proof. D 

Two applications of Proposition 11.2.1 will produce formulas for det(gij) 
and gi j • These read: 

(11.2.1) 

(11.2.2) 

Here: 

Q -ij -a 
F 

det( gij ) ( F )n+l 
Q det( (iij ) 

((iij) = ((iij)-l , 

fi (iij bj and II b 112 bi bi , 

ii = 
yi 

Recall from (11.1.4) that 

F (_ 
gij = - aij 

Q 

However, this is not amenable for Proposition 11.2.1 because the matrix 
((iij - iij ) is singular. In fact, its null space is the line generated by ji. 
Happily, the rearrangement 

remedies the problem. Also, do keep in mind that we must work on the slit 
tangent bundle T M '- 0, or else the gij would not make sense. 

In the first application, we set 

Qij 
F 

(iij .- - , 
Q 

C i .- li 

Note that 

Q - - - -
C S Cs = F (is + bS )(is + bs ) ~ 0 

because both F and (i are positive-definite. In particular, the quantity 1 + 
CSCs is strictly positive. Further manipulations give 

(11.2.3) 
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Proposition 11.2.1 then assures us that 

det ( ~ (iij + li lj ) 

(11.2.4) 

and 

(11.2.5) 
(~ (iij 

( a -ij -a 
F 

Now we apply Proposition 11.2.1 again. This time, set 
F _ 

Qij .- - aij + lilj , 
a 

Ci .- yCI If ii . 
The inverse (Qij) of (Qij) exists, and is given by the right-hand side of 
formula (11.2.5). Using that, one can compute 

The answers are: 

(11.2.6) 

(11.2.7) 

Ci := Qij Cj and 1 + CS Cs . 

1 + csCs = (F) 1_ 
a 2 + rHo< IIbl1 2 

F 

In view of (11.2.3), the quantity 1 + CSCs here is strictly positive on 
TM" O. Thus Proposition 11.2.1 can indeed be applied. Straightforward 
calculations, with intermediate steps involving (11.2.4) and (11.2.5), will 
then give (11.2.1) and (11.2.2). 

The formulas for the determinant of (gij) and its inverse (gij) are rather 
useful. 

• Having formula (11.2.1) for det(gij), an argument given in §11.1 
tells us that Randers metrics satisfying IIbll < 1 are strongly convex. 
More precisely, if 

J (iij bi bj < 1 

at x E M, then F(x,y) is positive and (gij(x,y) is positive-definite 
at each nonzero y in TxM. 
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• Using (11.2.2) for (gij ), one can check that 

(11.2.8) .. n+1(- f3-) Ak := gtJ A ijk = -2- bk - a £k . 

This converts the preliminary formula (11.1.6) to 

(11.2.9) I A ijk = nh (hij Ak + hjk Ai + hki Aj) I· 
In the language of [M2], every Randers space thus has re­
ducible Cartan tensor. For n > 2, only Randers and Kropina 
spaces (the latter not treated in our book) have this property. See 
[M7H]. Incidentally, every Finsler surface, whether it is of Randers 
type or not, has reducible Cartan tensor. See Exercise 11.2.4. 

Exercises 

Exercise 11.2.1: Deduce (11.2.3)-(11.2.5) from Proposition 11.2.1. 

Exercise 11.2.2: Verify (11.2.6) and (11.2.7). Then use them, together 
with Proposition 11.2.1, to deduce (11.2.1) and (11.2.2). 

Exercise 11.2.3: Verify (11.2.8), which enables us to say that every Ran­
ders space has reducible Cartan tensor. 

Exercise 11.2.4: 

(a) Prove that every Finsler surface has reducible Cartan tensor, 

1 
Aijk = 3 (hij Ak + hjk ~ + hki Aj ) , 

whether it is of Randers type or not. Here, hij := gij - £i £j is the 
angular metric. 

(b) Explain in detail how the Ai, A j , Ak in the above formula are related 
to the Cartan scalar I. 

Suggestion: what does the above equation look like in the Berwald frame 
we studied in §4.3? 

Exercise 11.2.5: This exercise concerns the Cartan scalar I of a Randers 
surface. Our goal is to derive a specific formula in [AIM]. 

(a) Recall the definition of I from (4.4.1). Verify that it can be re­
expressed as Ak (e1)k, where e1 is one of the vectors in the Berwald 
frame, introduced in (4.3.1). 

(b) With the help of formulas (11.2.8) and (11.2.1), show that 

3 (Q)! 1 - - --
I = 2 F va (b1 £2 - b2 £1 ) . 
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(c) Square what we have just derived. For now, focus on the resulting 
1/0, and just one factor of (111£2 - b2£d. Express the £i here as o'ijii. 
Show that these maneuvers lead to 

~ (b1 £2 - b2 £1) = (b1 j2 - b2 j1) . 
a 

(d) Prove that 

Exercise 11.2.6: (Suggested by Brad Lackey) 

(a) Consider part (d) of Exercise 11.2.5. Using the Riemannian metric 
o'ij, we can introduce an angle cp between the arbitrary y and the 
fixed b (converted to a vector). Show that this gives 

[2 = ~ ( II b 112 _ sin2 cp ). 
4 1 + IIbll coscp 

(b) As the continuous and periodic [2 varies over the compact interval 
o ::;;; cp ::;;; 27r, it attains its absolute maximum. Use calculus to verify 
that the value of this absolute maximum is 

~ (1 - J 1 - II b 112 ) . 

(c) Conclude that at any point x on a Randers surface, one must have 

for all y E TxM ....... O. Is this upper bound sharp? 

(d) Explain why 

I [(x,y) I 

at all (x,y) E TM ....... o. 
Exercise 11.2.7: Let (M,F) be an arbitrary Finsler manifold. Let A de­
note its Cartan tensor. At each x E M, define 

II A IIx := max J Aala2a3 A a la2 a3 . 
yES", 

(a) Consider an arbitrary Finsler surface. Use the Berwald frame of §4.3 
to express A. Check that 

IIAllx = max III . 
yES", 
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(b) Identify IIAllx explicitly for every Randers surface. 

(c) Make precise the statement that: 

For every Randers surface, the norm of the Cartan tensor 
has ~ as a universal uniform upper bound. 

(d) In that regard, what can you say about the Cartan tensor of higher­
dimensional Randers spaces? 

11.3 The Geodesic Spray Coefficients of a Randers Metric 

In §5.3, we first encountered the equation for a Finslerian geodesic u, when 
it is parametrized to have constant speed. The equation reads DTT = 0, 
where T is the velocity field of u. In local coordinates, this translates into 
the system of equations 

d2 u i duj duk . 
dt2 + dt dt (''''ljk )(O',T) = o. 

Here, the 'Yijk are the formal Christoffel symbols (of the second kind) of 
the fundamental tensor 9ij. 

The main goal of this section is to write down the geodesic spray co­
efficients Gi of a Randers metric. We accomplish this by computing the 
following quantities in succession: 

* 
* 
* 
* 
* 

.-~. 
9ij,xk .- aXk , 

'Yijk := ~ (9ij,x k - 9jk,x i + 9ki,x j ) ; 

. k 
'Yijk lJ l ; 

'Yi. ljlk • 
Jk , 

G i := 'Yijk yjyk, which is twice that in [AIM]. 

Before the task proper, here are two preliminaries: 

• The Riemannian metric iiij has its own Christoffel symbols of the 
first and second kind. These are respectively denoted by iijk and 
iijk . In order to minimize clutter, let us use the following abbrevi­
ation scheme in the ensuing calculations. 

Whenever an index on iijk is contracted with the 
quantity is := 1f (not to be confused with lS, which 

is ~), we replace it by the letter n. 

For example: 

injk .- j;' iijk, 

iink .- i j iijk, 

etc. 
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• We use formula (11.1.4) for gij. Namely, 

F - -
gij = - (aij - ii i j ) + ii i j . 

o 
However, from time to time it would be advantageous to re-express 
the factor ~ as 

F 13 
-=1+-. 
o 0 

Begin with the fact that the Riemannian metric aij is covariantly con­
stant with respect to its Levi-Civita (Christoffel) connection. Equivalently, 

(11.3.1) 

where 
1 _ 

iijk := 2 (aij,x k ajk,x i + aki,xi ) . 

Substituting this into the last step of the following computation 

_ ~ _ /- _ 1 _ p q _ 0 - 'ip'iq 
°xk - oxk V a pq yP yq - 20 apq,xk y y - 2" apq,xk ~ ~ , 

we get 

(11.3.2) 

Also, 

(11.3.3) 

These two statements then imply that 

(11.3.4) ( 13) - -- =b kiP -o xk p,x 

Similarly, from 

we obtain 

(11.3.5) 

That and (11.1.2) then gives 

13 -
- 'Ynnk . 
o 

(11.3.6) ii,xk = iink + inik - li innk + bi,xk . 

Throughout, the subscript xk signifies partial differentiation. On tensors, 
it is preceded by a comma for clarity. 

Using what we have just established, it is straightforward to deduce the 
formulas for gij,xk and 'Yijk. For the sake of reducing clutter, we introduce 
the abbreviation 

(11.3.7) 
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Using fi = iJ}i, we can check that 

(11.3.8) o 
The said formulas now read: 

(11.3.9) 

And 

(11.3.10) 

where 

F 
gi)·,xk - ii·· k ex '),X 

+ (bp,xk fP - ~ 7nnk ) h ij 

+ bi,xk fj + bj,xk fi 

+ ~i (7jnk + 7njk) + ~j (7ink + 7nik) 

- ~i fj 7nnk - ~j fi 7nnk . 

"(ijk 
F 
- 7ijk 
ex 

- ~ (bp,x i fP - ~ 7nni) hjk 

1 
+ 2 ("ijk + "ikj) , 

"ijk.- hij (bp,x k fP - ~ 7nnk) 

+ fi b). xk - f)· bk xi - fk bi x j , , , 

+ ~i (7jnk + 7njk) - ~j (7kni + 7nki) + ~k (7inj + 7nij) 

_. ~i fj 7nnk + ~j fk 7nni - ~k fi 7nnj . 

With the help of (11.3.8) and (11.3.10), we find that 

. k 
"(ijk fJ f 

ex _ ex2 _ 

F "(inn + F2 ~i "(nnn 

+ fi bj,xk fj fk + (bi,x j - bj,xi) fj . 

The index i is now raised using formula (11.2.2) for g**. After a straight­
forward computation and some relabeling, one gets 

Here, 
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is the covariant derivative of the I-form b with respect to the Levi-Civita 
(Christoffel) connection i' of the Riemannian metric a. By inspection, 

bj,x k - bk,x j = bjlk - bklj . 

Thus the above, after some manipulation, becomes 

p 2 'Vi. ej ek -i 
a 2 f Jk "( nn 

+ bjlk (a ij Ik - aik Ij ) 

+ bjlk ei (Ij Ik + Ij bk - Ik bJ) . 

In other words, our G i (twice that of [AIM]'s) is given by: 

(11.3.11) 

ci .- "(ijk yj yk 

i'ijk yj yk 

+ bjlk [aij yk - aik yj] a 

+ bjlk £i ( yj yk + [yj b k - yk bJ] a ) . 

Sometimes the following equivalent version (given in [MlO]) is more useful: 

ci ._ "(ijk yj yk 

(11.3.12) 
. . - . k 

(i'tjk + et bjlk ) yJ Y 

.. . -. - - k + (a tJ - et b1 ) (bjlk - bklJ ) a y . 

That ei is not to be mistaken as Ii. Also, as a reminder, 

-i 
"( jk 

By contrast, 

i . gis 'V gis ( +) 
"( jk'= fsjk = 2 gSj,x k - gjk,x S gks,x j • 

Formula (11.3.12) immediately leads to the equation (j-i + Ci = 0 for au­
toparallels in a Randers space. Namely, a curve (ai(t) ) in M is a constant 
Pinslerian speed geodesic of the Randers metric P := a + (3 if 

where T := ~~. Unlike its counterpart in [AIM], our geodesic equation gives 
rise to curves that are parametrized to have constant Finslerian (rather 
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than Riemannian) speed. Put another way, F( ~~) is constant while a( ~~) 
is typically not. For a treatment in which the Riemannian speed is kept 
constant, see the guided Exercises 11.3.3 and 11.3.4. 

Exercises 

Exercise 11.3.1: Verify (11.3.8). 

Exercise 11.3.2: 

(a) Derive (11.3.11) in detail. 

(b) Re-express (11.3.11) as (11.3.12). 

Exercise 11.3.3: Let us suppose that the geodesics of Randers spaces were 
reparametrized to have constant Riemannian speed instead. Namely, 
a(T) is constant, where T := ~~. It is the objective of this exercise to 
show that the geodesic equation would then read 

d2(Ti . d(Tj d(Tk . . - - d(Tk 
di2 + 'Y'jk ---;It ---;It + iiY (bjlk - bklJ ) a(T) ill = 0 . 

In order to facilitate some later discussions in this exercise, let us abbreviate 
the left-hand side of this equation as *i. 

Recall from Exercise 5.2.4 that Finslerian geodesics, without any assump­
tion about their speed, are described by the equation 

DT [ F~T)] = 0 with reference vector T . 

In Exercise 5.3.1, we showed that this represents the following system of 
differential equations: 

(*) 

Note that on the left-hand side, it is "(ijk (the Randers metric's formal 
Christoffel symbols of the second kind) rather than 'Y'jk (that of the un­
derlying Riemannian metric). 

(a) Suppose (T(t) has been parametrized to have constant Riemannian 
speed. Show that 

d 1 [- d(Tj d(Tk - d2(Tj] 
dt [log F(T) 1 = F(T) bj,xk dt ill + bj dt2 . 

(b) Substitute part (a) into the right-hand side of (*), and use (11.3.12) 
on the left-hand side. After a cancellation, check that (*) can be 
rearranged to read 

1 d(Ti b *s 
F(T) dt S • 
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(c) By contracting part (b) with bi , show that one obtains the statement 

a(T) - s 

F(T) bs * = O. 

(d) How will part (c) lead to the desired geodesic equation? 

Exercise 11.3.4: Let (M, F) be a Randers space, where F is determined 
by a Riemannian metric ii and a I-form b, both globally defined on M. 

(a) Show that 

If b is a closed I-form, then the Finslerian geodesics 
have the same trajectories as the geodesics of the 
underlying Riemannian metric ii. 

Hint~: see ~xercise 11.3.3; also, how are the quantities bj,xk - bk,xi 
and bjlk - bkl j related to each other? 

(b) Is the converse to part (a) true? If not, can you provide a counter­
example? 

Exercise 11.3.5: Recall the Randers spaces (M, F) and CM, F) that we 
studied in Exercise 11.1.4. Briefly: 

* M := lR3 , with Cartesian coordinates Xl, x2, x3. Its underlying 
Riemannian metric ii is the Euclidean inner product, and the 1-
form in question is b := A dx3 . Here, A < 1 is a positive constant. 

* M is the graph of a function f(x l , x2 ). The data a and b for (M, F) 
are simply the pull-backs of ii and b. 

(a) Explain why the geodesics of (M, F) have the same trajectories as 
those of its underlying Riemannian metric ii. 

(b) Explain why the geodesics of (M, F) have the same trajectories as 
those of its underlying Riemannian metric a. 

(c) What do the geodesics of ii in M look like? 

(d) Write down the system of two coupled ODEs that describe the 
geodesics of a on M. Can you solve this system explicitly? Can 
you reduce it to one single equation? 

11.4 The Nonlinear Connection for Randers Spaces 

The nonlinear connection N i j was first defined in (2.3.2). But we found 
in Exercise 2.3.3 that it can be computed through N ij = ~ (Gi)yi . In 
(11.3.11), we have successfully obtained the formula for the geodesic spray 
coefficients G i of Randers spaces. Using it, one can show that the nonlinear 
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connection for Randers spaces has the following structure: 
(11.4.1) 

; ;yijn + ~ i)Tls contracted with the following terms: 

; [a iT (8Sj + is i j ) ais (8Tj + i: i j ) ] 

2 

+ ;2 { 8ij iT is + (8ij + ii i j ) (i: i)s - is i)T) 

+ ii 8Tj (is + i)S) + fi 8Sj (i: i)T) } 

3 - ;3 fi (ij + i)j) [iT is + (i: i)s - is i)T) ] . 

One explicit formula of the Chern connection in natural coordinates is 
given by (2.4.9). Namely, 

ri jk = "'/jk - gil (Aljs N Sk - Ajks Ni + Akls N Sj ) . 

For Randers spaces, we have already computed the following quantities: 

* 
* 
* 
* 

gij in (11.2.2); 

Aijk in (11.2.8), (11.2.9); 

'Yijk in (11.3.10); 

Nij in (11.4.1). 

In principle, the Chern connection ri jk can then be written down, as soon 
as one raises the index i on 'Yijk . But the resulting expression is not of 
manageable size. 

Alternatively, one can begin with the geodesic spray coefficients 

and the nonlinear connection 

. 1 . 
NZj = 2 (Gz )yi . 

For Randers spaces, Gi is explicitly given by (11.3.11), and N ij is F times 
the right-hand side of (11.4.1). Their successive y derivatives produce the 
Berwald connection and the tensor A. These can then be used to obtain 
the Chern connection. Specifically: 

** Formula (3.8.3) says that the Berwald connection r i jk + Aijk is 
1 ( i) ( i) equal to "2 G yiyk ,namely, N j yk . 

** Formula (3.8.5) tells us that A jkl = -~ Yi (Gi)yiyky! , which in turn 
is equal to -~ Yi (Nij)yky! . 
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Raise an index on A and subtract that from the Berwald connection. The 
resulting formula gives the Chern connection: 

(11 4 2) r i (Ni ) + 1 it (N S ) . • jk = j yk "2 9 Ys t y;yk . 

Now we turn to the curvatures. The hv-Chern curvature is given by 
(3.3.3), which says that 

P/kl = - F (rijk)y! • 

This is computationally reasonable. On the other hand, the full hh-Chern 
curvature R/ kl , though given by (3.3.2), that is, 

i _ c5ri jl c5ri jk . h . h 
Rj kl - 8Xk - 8"il + r t hk r jl - r t hi r jk , 

does not have a manageable expression in terms of the data o'ij and bi . 

In view of this, one might want to concentrate on the predecessor (see 
§3.9) 

R i .- f) R i £1 
k·- j kl 

of the flag curvature. After all, there is a constitutive relation (3.5.6) that 
expresses R/ kl in terms of R\, Aijk , and their covariant derivatives. Fur­
thermore, Exercise 3.3.4 gives an elegant statement: 

Ri = £j _U ___ 3 _ _ u_. N k • ( 
{; N i . {; i) 

k lixk F lix3 F 

The following references are also useful: Yasuda and Shimada [YS]; Mat­
sumoto [M5]; Shibata and Kitayama [SK]. See especially formula (1.10) in 
[M5] and formula (1.9) in [YS]. 

In this section, we have not been able to write down anything explicit, ex­
cept for the nonlinear connection. This is because the requisite calculations 
are quite formidable. The references cited above have made substantial 
strides in detecting useful structure among tedium. It is a worthwhile en­
deavor to understand them. Incidentally, Miron has also openly lamented 
about the computational hurdles presented by Randers metrics. See his 
treatment in [Mirl]. 

Exercises 

Exercise 11.4.1: Derive formula (11.4.1) for the nonlinear connection of 
Randers spaces. 

Exercise 11.4.2: Let (M, F) be a Randers space. Suppose the I-form b 
on M is parallel (or covariantly constant) with respect to the Riemannian 
metric 0,. That is, bjlk = O. 
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(a) Prove that bjlk = 0 implies r i jk = iijk . In other words, whenever 

b is parallel with respect to a, the Chern connection of F and the 
Levi-Civita connection of ii share the same Christoffel symbols of 
the second kind. Hint: use (11.3.11) and the discussion in the second 
half of this section. 

(b) Explain carefully why the same does not hold for Christoffel symbols 
of the first kind. 

Exercise 11.4.3: 

(a) Verify that 

holds for every Finsler space. 

(b) Now suppose we have a Randers space with bjlk = O. Part (a) here, 
together with that of Exercise 11.4.2, would then imply that 

1 N i -i ok 
F j = 'Y jk.(. . 

We emphasize that it is fk and not i k • On the other hand, our 
formula (11.4.1) says that 

1 N i a -i 
F j = F 'Y jn . 

How are these two conclusions in agreement with each other? 

11.5 A Useful and Elegant Theorem 

In this section, we describe a simple criterion that characterizes Berwald 
spaces among Randers spaces. This is later used in §11.6 to construct a 3-
dimensional y-global Berwald space that is neither Riemannian nor locally 
Minkowskian. 

Theorem 11.5.1. Let (M, F) be a Randers space. Denote 

* the underlying Riemannian metric by a := iiij dx i ® dxj , 

* the Levi-Civita (Christoffel) connection of ii by iijk , 

* the underlying I-form by b:= bi dx i , with 1/ b II < 1 everywhere. 

Abbreviate the covariant derivative of b with respect to ii as 

bjlk := bj,xk - bs iSjk . 

• [ bjlk ~ 0 as a sufficient condition] If bjlk = 0 , namely, the 
I-form b is parallel with respect to ii, then our Randers space (M, F) 
is of Berwald type. 
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• [bjlk = 0 as a necessary condition] Convll.rsely, if our Randers 
space is of Berwald type, then we must have bjlk = O. 

Remarks: Let us mention some history behind this elegant result. 

* In a 1974 paper [M4], Matsumoto showed that a Randers space is of 
Landsberg type (that is, Aijk = 0) if and only if bilk = O. We recall 
from (11.2.9) that the Cartan tensor of a Randers space is reducible. 
Whenever one has such reducibility in dimensions n ~ 3, the Finsler 
structure is of Landsberg type if and only if it is of Berwald type. 
See [M7H], then [M6J. A more recent account is given in [MI0]. 

* In a 1975 paper [HI], Hashiguchi and Ichijyo gave direct arguments 
to show that if bjlk = 0, then the Randers space in question will be 
of Berwald type. 

* In a 1977 paper [SSAY], Shibata, Shimada, Azuma, and Yasuda 
provided more concrete formulas for the connection coefficients and 
the curvatures in [M4J. They again proved the fact that a Randers 
space is of Landsberg type if and only if bjlk = O. Also, they ac­
knowledged that for Randers spaces of all dimensions, the notions 
of being Landsberg and being Berwald are equivalent. 

* Finally, in a 1979 paper [Ki], Kikuchi proved directly that given a 
Randers space of Berwald type, one must have bjlk = O. 

Proof of the theorem . 

• bjlk = 0 as a sufficient condition: 

Given that b is parallel with respect to a, formula (11.3.11) reduces to 
Gi = ;yijk yjyk. Taking two y derivatives of Gi then gives 2;yijk , which 

comes from a alone and therefore has no y-dependence. As a result, Ajkl = 
-i(Gi)yjykyl [see (3.8.5)] vanishes. In that case, (3.8.3) implies that the 
Chern connection r iik in natural coordinates is given by ~(Gi)yjyk , which 
is simply ;y'jk' So the coefficients r' jk have no y-dependence, and thus the 
Randers space in question is by definition a Berwald space. 

• bjlk = 0 as a necessary condition: 

Suppose our Randers metric is of Berwald type. Proposition 10.2.1 gives 
several characterizations of Berwald spaces. The one most useful to us says 
that the y-Hessian (Gi)yjyk of Gi must be independent of y. In (11.3.11), 
we have explicitly calculated the quantity G i for Randers metrics. It has 
the structure 

Gi =;Vi yr yS + b .I,irs 
I rs rls 'P , 

where 

'lj;irs ._ [air yS _ ais yr] a + ei (yr yS + [yr bS 
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This gives 

( C i )yjyk = :yijk + brls ('lj;irs )yjyk 

Thus, in order for (Ci)yjyk to be independent of y, one of the following two 
scenarios must hold: 

* either ('lj;irS)yjyk is independent of y, 

* or brls = o. 
We show that the first scenario is impossible unless b is identically zero (in 
which case certainly brls = Q). Thus both scenarios effect the conclusion 
sought; namely, the I-form b is parallel with respect to the Riemannian 
metric a . 

So, let us suppose that ('lj;irs)yjyk is independent of y, and b is not 
identically zero on M. We reach a contradiction momentarily. 

Since ars and bk depend only on x, our supposition implies that the func­
tion bk ('lj;irsars)yjyk has no y-dependence. A straightforward computation 
gives 

= (1 + n) ;2 [( a + 2(3) {3 - a 2 [[ b [[2 ] 

=: (l+n) •. 

By our supposition, there exists some x E M at which b is nonzero. Fix one 
such x. Within this TxM, the above. supposedly has no y-dependence. It 
is then equal to some constant C (which varies with our choice of the fixed 
x). That is, 

;2 [( a + 2(3) {3 - a 2 [[ b [[2] = C. 

Algebraic manipulations give the equation 

( C - 2) {32 + (2C - 1) a {3 + (C + [[ b [[2 ) a 2 = O. 

After considering the two cases C =1= 2 and C = 2 separately in the above 
equation, we find that they lead to similar conclusions. Namely, {3 = A a, 
where the proportionality factor A depends not on y but possibly on x. 
Hence F = a + {3 = (A + 1) a is Riemannian at our fixed x E M. This 
surely cannot be, since the I-form b is by assumption nonzero at this x. 
Thus we have finally reached a contradiction. 0 

Exercises 

Exercise 11.5.1: Derive the defining equation for the quantity •. Namely, 

-bk (.,,irs - ) 
'I-' ars yjyk = 
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Exercise 11.5.2: We asserted that the C =1= 2 and C = 2 cases both lead to 
the conclusion f3 = A a, where A has no y-dependence. Fill in the algebraic 
details that we omitted. 

Exercise 11.5.3: Suppose we want to use Theorem 11.5.1 to construct a y­
global Berwald space that is neither Riemannian nor locally Minkowskian. 
Attempt to answer the following questions without consulting §11.6. 

(a) 

(b) 

In order to guarantee success in this endeavor, what criteria must 
one impose on the Riemannian metric a and the I-form b? 
Wouldn't your success in part (a) contradict Szabo's rigidity theo­
rem (see §1O.6) about Berwald surfaces? 

Exercise 11.5.4: 

(a) Show that bi,xk - bk,x j = bilk - bkli . 

(b) Explain why parallel I-forms are automatically closed. 

(c) Are closed I-forms necessarily parallel? 

When the given b is a closed I-form, the resulting Randers space is known 
as a Douglas space. See [BM]. Also, recall from Exercises 11.3.4, 11.3.5 
that for any Randers space of Douglas type, the Finslerian geodesics have 
the same trajectories as the geodesics of the underlying Riemannian metric 
a. More precisely, when the Finslerian geodesics are parametrized to have 
constant Riemannian speed, their defining equation is exactly the geodesic 
equation of a. 

11.6 The Construction of y-global Berwald Spaces 

11.6 A. The Algorithm 

Let us take stock of the situation regarding explicit examples of Berwald 
spaces. Naturally, we would like to focus on those that are neither Rie­
mannian nor locally Minkowskian. 

In §10.3, one such example in dimension two was discussed. However, its 
Finsler structure F is not strongly convex on all of T M " 0 . Surprisingly, 
this y-Iocal feature turns out to be unavoidable among Berwald surfaces 
that are neither Riemannian nor locally Minkowskian. That is the message 
of SzabO's rigidity theorem, which we proved in §1O.6. 

So, y-global (F being smooth and strongly convex on T M" 0) Berwald 
spaces that are neither Riemannian nor Minkowskian can only be found in 
dimension three or higher. This is where the sufficiency part of Theorem 
11.5.1 becomes quite useful. Namely, if bilk = 0, then the Randers space in 
question is of Berwald type. Here's how we deduce the algorithm: 

* One constructs Randers metrics using Riemannian metrics a on M 
that admit globally defined parallel I-forms b which are not identi-
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cally zero. See also the article [Fult]. We must work only with those 
I-forms b whose Riemannian norm II b II is uniformly bounded. That 
way they can be normalized (if necessary) to satisfy II b II < 1, as 
per §I1.1. Using these b, the resulting Randers spaces will automat­
ically be of Berwald type, thanks to Theorem 11.5.1. They will also 
be y-global, a much desired feature. 

* Since we are using nonzero I-forms b, the said Berwald spaces are 
definitely not Riemannian. This is so because the Finsler structures 
formed using such b are positively homogeneous but not absolutely 
homogeneous. Incidentally, since the b in question here is parallel, it 
is nonzero (that is, not identically zero) if and only if it is nowhere 
zero. 

* Among these Berwald spaces, we need to ferret out those that are 
not locally Minkowskian. One way is to check whether there is no 
coordinate system in which the components of a and b are simulta­
neously constant. In principle, such nonexistence claims are difficult 
to establish. 

* A more direct route is through curvature. Since the spaces in ques­
tion are of Berwald type, the hv-Chern curvature P already vanishes 
(Proposition 10.2.1). A characterization of locally Minkowski spaces 
by curvature is given in Proposition 10.5.1. It tells us that among 
our Berwald spaces, the ones that are not locally Minkowskian will 
be singled out by having nonzero hh-Chern curvature tensors R. 

* Recall the first half of Theorem I1.5.I's proof. It says that for a 
Randers spac~ with bjlk = 0, the Chern connection coefficients ri jk 

are equal to i'jk' The latter are the Christoffel symbols of the second 
kind of the underlying Riemannian metric a. Since these have no y­
dependence, formula (3.3.2) for R simplifies to 

8- i 8- i 
R i _ 'jl , jk -i -h -i-h 

j kl - 8xk - axl +, hk 'jl - 'hI' jk . 

The right-hand side is none other than the curvature tensor of a. 
Therefore, among the Berwald spaces obtained above, the ones that 
are not locally Minkowskian arise precisely from nonfiat Riemannian 
metrics a. 

Let us summarize the algorithm we have just discussed, before using it 
in an explicit construction. 

Proposition 11.6.1. Let (M, F) be a Randers space constructed from 
a Riemannian metric a and a I-form b, both globally defined on M. The 
following two statements are then equivalent: 

• The Riemannian metric a is not Hat, and b is a nonzero (hence 
nowhere zero) parallel I-form with II b II < 1 everywhere. 
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• The Randers space (M, F) is a y-global Berwald space, and it is 
neither Riemannian nor locally Minkowskian. 

Remark: 
There is at least one topological obstruction involved when one 
tries to put this proposition to practical use. It can be seen by 
raising the index of that nonvanishing parallel b to form a nowhere 
zero vector field on M. If M is compact and boundaryless, or if 
this vector field should happen to be everywhere transversal to the 
boundary 8M, then the Euler characteristic X(M) must vanish in 
the first place. This is a consequence of the Poincare-Hopf index 
theorem. 

Incidentally, what does Theorem 11.5.1 produce when we apply it to 
surfaces? Let us restrict to compact oriented Riemannian surfaces without 
boundary. The only such surface that admits globally defined nonvanish­
ing parallel I-forms is the flat torus. (See Exercise 11.6.3.) Furthermore, 
although the resulting Randers metrics are indeed of Berwald type, they 
are at the same time all locally Minkowskian. (Exercise 11.6.3 again.) Thus 
there is no conflict with what's being predicted by Szabo's rigidity theorem. 

11.6 B. An Explicit Example in Three Dimensions 

Let us conclude this section with an example of a 3-dimensional y-global 
Berwald space that is neither Riemannian nor locally Minkowskian. It is 
given by a Randers metric constructed with the following data: 

• The underlying manifold is the Cartesian product 

M := §2 x §1 . 

It is compact and boundaryless. As local coordinates, one can use 
the usual spherical e, ¢ on §2, and t for §1. For concreteness, 
we measure ¢ from the positive z axis down. Also, t is such that 
(cos t, sin t, 0) parametrizes §1. 

• The Riemannian metric ii is the product metric on §2 x §1. Here, 
§2 and §1 are given the standard Riemannian metrics that they 
inherited as sub manifolds of Euclidean IR3. Explicitly, one finds that 

ii := (sin2 ¢ de Q9 de + d¢ Q9 d¢) + dt Q9 dt . 

This metric is not flat because it has nonzero curvature tensor. 

• The parallel 1-form is 

b := f dt , 

where f is any (fixed) positive constant less than 1. This I-form is 
globally defined on M, even though the coordinate t is not. It is non­
vanishing by inspection, and has Riemannian norm II b II = f < 1. 
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A straightforward calculation shows that it is indeed parallel with 
respect to the Levi-Civita (Christoffel) connection of a. 

We now write down the resulting Randers metric. Let x be any point on 
M, with coordinates (0, ¢, t). Let y E TxM be expanded as 

y = y(J 8(J + yt/> 8t/> + yt 8t . 

Then 

According to Proposition 11.6.1, (M, F) is a y-global Berwald space, and 
it is neither Riemannian nor locally Minkowskian. 

* In Exercise 11.6.6, we show that this example can be generalized to 
all higher dimensions. Specifically, we consider the Cartesian prod­
ucts §n X §1, where n ~ 2. It is to be endowed with the product 
Riemannian metric. The I-form in question again comes from the 
dt on §1. 

* There is a deeper reason why these examples work. It is through the 
theory of harmonic forms and the Bochner technique, for Riemann­
ian manifolds with nonnegative Ricci curvature. That is explained 
in a later chapter on Riemannian manifolds. See the second part of 
Theorem 13.6.1 and Exercise 13.6.5. 

As remarked in §1O.3, the 3-dimensional conformally flat Berwald examples 
given by Matsumoto [M9] are y-Iocal. This is because they only have strong 
convexity on proper subsets of T M ....... 0 . 

Exercises 

Exercise 11.6.1: 

(a) Let a be a Riemannian metric on M. Suppose it admits a parallel 
I-form b. Show that II b II must be constant. 

(b) Explain why a parallel I-form is not identically zero if and only if 
it is nowhere zero. 

Exercise 11.6.2: Let a be a Riemannian metric on M. 

(a) Show that a admits a parallel I-form b if and only if it admits a 
parallel vector field b#. 

(b) 

(c) 

Check that b is nonvanishing if and only if b# is nowhere zero. 

Suppose b# is nowhere zero. Explain why if M is compact and bound­
aryless, or if b# is everywhere transversal to the boundary 8M, then 
the Euler characteristic X(M) must vanish. 
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Exercise 11.6.3: Let us ponder the implications of Theorem 11.5.1 for 
Finsler surfaces. 

(a) Focus on compact oriented Riemannian surfaces without boundary. 
Explain why among such, only the torus (together with whatever 
Riemannian metrics we are able to put on it) can possibly admit 
globally defined nonvanishing parallel I-forms. 

(b) Prove that, whenever a Riemannian surface (M, a) admits a globally 
defined nonvanishing parallel I-form b, its Gaussian curvature must 
be identically zero. Here are some hints (from Exercise 6 on p. 333 
of [On]): raise the index on b to form a nowhere zero vector field b~ 
on M, and use that as one of the vectors in an orthonormal frame 
field. The covariant derivative of b~ is zero in every direction. What 
does that tell us about the connection forms? 

(c) Explain why the tori discussed in part (b) are all isometric to the 
so-called "flat torus." 

(d) In view of parts (a)-(c), the "flat torus" is the only Riemannian 
surface that admits globally defined nonvanishing parallel I-forms 
b. Check that there exists (suggestion: see §10.4) a coordinate system 
~n which the components of the metric are simply 8ij , and those of 
b are constants. Then explain why the resulting Randers metric is 
locally Minkowskian. 

Exercise 11.6.4: This exercise concerns the example we produced in 
§l1.6B. 

(a) Write down the matrix (aij) in the described coordinates. Show that 
the product metric a has the formula we asserted. 

(b) Explain why the I-form dt and the vector field %t are globally de­
fined on M. Check that they each have Riemannian norm 1. 

(c) Show that -ft is parallel with respect to the Levi-Civita (Christoffel) 
connection of a. Explain why the same can then be said of dt. 

(d) Compute the curvature tensor of a. 
Exercise 11.6.5: This again concerns that example encountered in §l1.6B. 

(a) Proposition 11.5.1 tells us that the example we described is a 
Berwald space. Double check this by directly computing the hv­
curvature P of the given Finsler structure F. 

(b) Proposition 11.6.1 assures us that this Berwald space is not locally 
Minkowskian. Verify this by a brute force computation of the hh­
curvature R of F. 

(c) Does our M satisfy the topological constraint x( M) = O? (We men­
tioned that immediately after the statement of Proposition 11.6.1.) 

(d) Within each tangent space of M, the indicatrix is a simple closed 
surface. Identify this surface with a detailed sketch. 
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Exercise 11.6.6: This exercise demonstrates that the example studied in 
§11.6B is actually part of a hierarchy. To this end, fix any n ~ 2, and 
prescribe the following data: 

• The underlying manifold is the Cartesian product M := §n X §l. It 
is compact and boundaryless. As local coordinates, one can use the 
usual spherical ()l, ... ,()n on §n, and the parameter t for §l. Let us 
agree that (cos t, sin t, 0, ... ,0) parametrizes §l, as a submanifold of 
Euclidean ]Rn+l. 

• The Riemannian metric a is the product metric on §n X §l. Here, 
§n and §l are given the standard Riemannian metrics that they 
inherited as submanifolds of Euclidean ]Rn+l. 

• The 1-form we have in mind is b := f. dt, where f. is any (fixed) 
positive constant less than 1. This 1-form is globally defined on M, 
even though the coordinate t is not. 

(a) Write down an explicit formula for the Riemannian metric a, in 
terms of the spherical coordinates ()l, ... , ()n, and t. 

(b) Calculate the Riemann curvature tensor of a. Your answer should 
be nonzero! 

(c) Check that our 1-form b has Riemannian norm II b II = f. < 1 every­
where. Is it nowhere zero on M? 

(d) Show that b is parallel with respect to the Levi-Civita (Christoffel) 
connection of a. 

(e) Verify directly that the Euler characteristic of §n X §l is zero by 
tabulating its cohomology. Explain how this also follows from the 
fact that the 1-form b is nowhere zero. 

(f) Write down the Finsler function F for the Randers space defined 
by a and b. Explain why this F is of Berwald type, but is neither 
Riemannian nor locally Minkowskian. 
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* References for Chapter 12 

12.0 Prologue 

In §3.9, we encountered the flag curvature. As the name suggests, this 
quantity (denoted K) involves a location x E M, a flagpole P := Fey) with 
Y E TxM, and a transverse edge V E TxM. The precise formula IS quite 
elegantly given by (3.9.3): 

K(P, V) := 

.. I k 
V' (PJ Rjikl P ) V 

g(P, P) g(V, V) - [g(P, V)J2 g(V, V) - [g(P, V)J2 
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Here, the tensor Rik is known as the predecessor of the flag curvature. 
In §3.10, we proved Schur's theorem about flag curvatures. It concerns 

connected Finsler manifolds of dimension at least three, and deals with the 
scenario in which K depends neither on the flagpole nor on the transverse 
edge. In other words, K is supposed to be a function of x only. In that case, 
the theorem asserts that K must actually be constant. 

The present chapter is, in its entirety, about Finsler manifolds with con­
stant flag curvature A. We take the somewhat arrogant attitude that these 
spaces are self-evidently important. As we show: 

• The forward geodesically complete A = 0 spaces are necessarily lo­
cally Minkowskian. The A < 0 spaces that are both forward and 
backward geodesically complete must be Riemannian. These re­
sults are established under growth constraints imposed on 
the Cartan tensor, and are due to Akbar-Zadeh [AZ]. They are 
treated in §12.3 and §12.4. 

• Tampering with the completeness hypothesis or the growth con­
straint revives many interesting examples. For instance, the clas­
sification theorem of Yasuda~Shimada [YS] predicts the existence 
of a non-Riemannian Poincare disc with K = -i. This fascinating 
Randers surface, known to Okada [Ok], is studied in §12.6. There is 
no contradiction with Akbar-Zadeh's result because, as we demon­
strate, this example fails to be geodesically backward complete. 

• The A > 0 case is the least understood. Bryant has produced many 
interesting non-Riemannian examples on 8 2 with K = 1. In §12.7, 
we present one from [Br2]. It is projectively flat (Exercise 12.7.3), 
and all its geodesics are the familiar great circles. They even have 
Finslerian length 27r. 

The existence of so many esoteric non-Riemannian examples renders the 
"space form problem" rather complicated in Finsler geometry. By contrast, 
the Riemannian situation is considerably simpler, thanks to Hopf's classi­
fication theorem. That result is given a detailed treatment in §13.4. 

12.1 Characterizations of Constant Flag Curvature 

As in §3.1O, let us use two abbreviations in order to reduce clutter. They 
are: 

hij := gij - fi fj , 

the so-called angular metric, and 

hijk := gij €k - gik €j . 

To regain a feel for these quantities, one could verify the following proper­
ties: 
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* 
* 
* 
* 
* 
* 
* 

his fS = 0 . 

hijs fS = h ij . 

gij hik = 8J k - fj fk . 

gij h ij = n - 1 . 

gij h ijk = (n - 1) fk . 

h ij1k = 0 . 

hijkll = 0 . 

We first encountered that list in Exercise 3.10.3. 
Specializing Proposition 3.10.1 to the case of constant flag curvature A, 

we get: 

Proposition 12.1.1. Let (M, F) be a Finsler manifold. Let R be the hh­
curvature of the Chern connection, for the portion of 7r*T Mover T M " O. 
The five statements listed below are mutually equivalent: 

• (M, F) has constant Bag curvature A . 

• Rii = A (gii - fi fi ) =: A h ii . 

• Rik = A(gik -fifd =: Ahik . 

• Rikl = A (gik fl - gil fk ) =: A hikl . 

• The full hh-curvature tensor has the formula 

Rjikl A (gik gjl - gil gjk ) 

- (Aijllk - Aijkll + A isk ASjl 

A (gik gjl - gil gjk ) 

- A (Aijk fl - A ijl fk ) 

And, given any of them, we have 

(12.1.1) o I, 
where 

The above two formulas for Rjikl are equivalent because, when the flag 
curvature is a constant A, we have 

Aijllk - Aijkll = A (Aijk fl - Aijl f k ) . 

See the second half of the proof of Proposition 3.10.1. 
We conclude with some remarks about Finsler manifolds that satisfy the 

condition A = O. These are known as Landsberg spaces. They include 
locally Minkowski spaces (R = 0 = P), Riemannian spaces (A = 0), and 
more generally, Berwald spaces (P = 0). 
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* For Landsberg spaces, formula (12.1.1) reduces to 

A Aijk = O. 

Thus A must vanish whenever A i= O. Consequently, 

All Landsberg spaces of nonzero constant flag cur­
vature must be Riemannian. 

This is a special case of Numata's theorem [Num]. 

* The statement of Proposition 12.1.1 implies that for Landsberg 
spaces of constant flag curvature A, the full hh-Chern curvature 
has the formula 

Rjikl = A (gik gjl - gil gjk) . 

In contradistinction to that, the full hh-Berwald curvature bRjikl 

has that form for every Finsler space of constant flag curvature A. 
See Exercise 12.1.1 below. 

Exercises 

Exercise 12.1.1: In Exercise 3.2.2, we related the Berwald's hh-curvature 
bR/ kl to that of Chern's. Using that relationship, explain why the following 
two statements are equivalent: 

• (M, F) has constant flag curvature A. 

• bRjikl = A (gik gjl - gil gjk ). 

This shows that the Berwald connection is particularly suited for studying 
generic Finsler manifolds of constant flag curvature. 

Exercise 12.1.2: 

(a) Suppose (M, F) is a Finsler manifold of nonzero constant flag cur­
vature with A = O. Show that it must be Riemannian. 

(b) We explained why Landsberg spaces of nonzero constant flag cur­
vature are necessarily Riemannian. Must Landsberg spaces of zero 
flag curvature be locally Minkowskian? 

12.2 Useful Interpretations of E and E 

On a Finsler manifold of constant flag curvature A, the equation 

A+AA=O, 

namely, (12.1.1), is one whose usefulness was noted by Akbar-Zadeh [AZ]. 
It would be a Jacobi equation if those dots on A were time derivatives 
along some curve. Since the solutions of Jacobi-type equations can usually 
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be written down explicitly, we might expect to obtain substantial informa­
tion about the Cartan tensor A. As it stands though, the dots on A have 
nothing to do with time derivatives. Happily, there is a simple construction 
of Akbar-Zadeh's that will bring fruition to the above trend of thought. 

In retrospect, it is even necessary to consider tensor fields more general 
than the Cartan tensor A. So, let us consider 

E := EI dxI , 

a section of the p-fold tensor product of the pulled-back bundle 7r*T* M. 
Here, I is a multi-index i1 ... ip , with 

dxI := dXi1 ® ... ® dx ip • 

We work out the proper context in which the equation 

E+)..E=O 

makes sense as a Jacobi differential equation. 
We digress to discuss the issue of invariance under positive rescaling in 

y. This has meaning for objects of the type 

I 1 J H := HIJ dx ® Fq 8y . 

The J here is, like the I, also a multi-index, namely, jl ... jq. And 

1 8 J 
Fq Y 

A typical H that we have in mind is 

" " k 8yl 
V'vertA := AiJ"k"1 dx' ® dxJ ® dx ® - . , F 

All H under consideration are presumed invariant under y f-+ )..y, with 
).. > O. Since the forms dx and ~ already have the said invariance, the same 
must also hold for the components of H. In other words, its components are 
positively homogeneous of degree 0 in y. Euler's theorem (Theorem 1.2.1) 
then tells us that 

s 8 H 
y 8yS IJ = O. 

Using the index gymnastics notation of §2.5, specifically (2.5.6), this reads 

(12.2.1) HIJ;s fS = o. 
Examples of such H include: 

* The fundamental tensor 9ij dx i ® dxj . 

* The Cartan tensor A ijk dxi ® dxj ® dxk. 

* The ubiquitous Aijk dx i ® dx j ® dxk, where Aijk := Aijkl l fl. 

* The horizontal covariant derivative Aijkll dxi ® dxj ® dxk ® dx l . 
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* The vertical covariant derivative Aijk;l dxi 0 dxj 0 dxk 0 ai. 
Exercises 12.2.1 and 12.2.2 explain why the last three have the asserted 
invariance. 

Let us now return to the tensor E ;= EI dxI , which we presume to be 
invariant under positive rescaling in y. By imitating the definition (Exercise 
2.5.5) of A ;= ViA, in which i ;= £s a~s, we define 

(12.2.2) 

(12.2.3) 

E 

E 

.- ViE 

ViE 

. I 
E I dx , 
.. I 
EI dx . 

The components EI and EI are given explicitly by 

(12.2.4) 

(12.2.5) EI (EIIT £1' )Is £s = Ell1'ls £1' £s , 

where in the second line we have made use of (2.5.14). It can be checked 
that both E and E are, like E, again invariant under positive rescaling in 
y. See Exercises 12.2.1 and 12.2.2. 

In order to interpret E and E as time derivatives of sorts, we must at 
the very least restrict them to curves. Globally defined on T M " 0 is the 
distinguished horizontal vector field i ;= £s a~s. Its integral curves (xt, yt} 
are all horizontal and, as we show, suit our purpose. Here, our notation is 
such that (xt, Yt) denotes the integral curve which passes through the point 
(x, y) at time t = O. 

Choose any g-orthonormal basis for 7f*T M at (x, y) and parallel-translate 
it along (Xt, yd. Call the resulting field of bases {ha(t)}. The almost g­
compatibility criterion (2.4.6) of the Chern connection reads 

k k {jyS 
dgij - gkj Wi - gik Wj = 2 A ijs F 

where 
i i k Wj = r jk dx . 

Restrict it to the integral curve (Xt, Yt), which has velocity i. The A term 
promptly drops out because §Jj-, when evaluated on the horizontal e, gives 
zero. The said criterion then becomes 

dgij k /JS k /JS dt - gkj r is {. - gik r js {. = O. 

Contract this equation with the components of two of our basis vectors, 
say ha and hb. The result can be manipulated into the form 

(*) 

But the right-hand side vanishes because ha, hb were obtained through 
parallel transport along (Xt, Yt). Therefore the entire field of bases {ha(t)} 
remains orthonormal at every point along the integral curve (Xt, Yt). 
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Let us suppress the t-dependence of {ha{t)} to minimize clutter. Form 
the components of E with respect to this new basis: 

(12.2.6) 

Using the chain rule, the Leibniz rule, and the fact that each ha is parallel 
along (Xt, Yt), it can be shown that 

(12.2.7) 

(12.2.8) 

Suppose E satisfies an equation of the type 

(12.2.9) 

for some constantA. For instance, when dealing with Finsler manifolds of 
constant flag curvature A, Proposition 12.1.1 assures us that the Cartan 
tensor A always satisfies such an equation. Now take the tensors E, jj; in 
the said equation and evaluate them on the parallel g-orthonormal frame 
field {ha } we have just constructed. With the help of (12.2.6) and (12.2.8), 
we obtain 

(12.2.10) (:2 + A) Ea1"'ap(t) = O. 

This is indeed a differential equation of the Jacobi type. So the goal of this 
section has been accomplished. However, two issues are worth recapitulat-
ing: 

• In order to obtain the Jacobi equation (12.2.1O), we have restricted 
E + AE = 0 to an (arbitrary) integral curve (Xt,Yt) of the vector 
field i on TM '- O . 

• The unknowns Eal ... ap in that Jacobi equation are typically not 
the components of E in natural coordinates. Rather, they are the 
components of E relative to a parallel g-orthonormal frame field 
along (Xt, Yt). 

Exercise 

Exercise 12.2.1: In this exercise, we ascertain that if E := Ei dx i is 
invariant under positive rescaling in y, then so are '\horizE and 'VvertE. 
As we mentioned in the section, the said invariance is equivalent to 

and one should expect to have to use this repeatedly. 
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(a) The tensor field V'horizE is defined as Ei1j dx i ® dxj . Select an ap­
propriate Ricci identity from Exercise 3.5.8 and use it to show that 

Ei1j;s fS = Ei;slj fS • 

Then compute the right-hand side with the help of (2.5.14). 

(b) The tensor field V'vertE is defined as Ei;j dx i ® ¥. Select an appro­
priate Ricci identity from Exercise 3.5.8 and use it to show that 

Then compute the right-hand side with the help of (2.5.15). 

Exercise 12.2.2: Generalize Exercise 12.2.1 to the case of E := EI dxI . 

Exercise 12.2.3: Although the flow of i does not project onto M, any 
specific integral curve (Xt, yd does. Denote its projection to M by Xt· 

(a) Show that the velocity field of Xt is fl(x.,y.) = Fr;.). Hence it has 
constant unit speed. 

(b) 

(c) 

(d) 

Is the canonical lift of Xt equal to (Xt, Yt)? 

Explain why the distance d(xa, Xb) (with b > a) from Xa to Xb is no 
more than b - a. 

Prove that Xt is a geodesic by using the following approach. Abbre­
viate (Xt, Yt) simply as (x, y). List the components of i with respect 
to tx and ty • Use that to write down the equations 

.. .. i 1 N j 
xJ = fJ (note: not if), il = - Y F i· 

Then derive the statement 

fjj + Yik Xi xk = o. 
Hint: imitate Exercise 5.1.8. 

Exercise 12.2.4: Derive equation (*) in detail. 

~xercise 12.2.5: As in the section, denote V'iE by E, and V' i(V' iE) by 
E, where V' is the Chern connection. Let hI = hl(t), ... , hp = hp(t) be 
any p parallel sections of 7r*T M. Define 

E t 

Et 

Et 

Prove that 

.- E( hI, ... , hp ) , 

.- E( hI, ... , hp ) , 

.- E( hI, ... , hp ) . 

d 
dt Et , 

In particular, one obtains (12.2.7) and (12.2.8). 
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Exercise 12.2.6: In this exercise, we use first principles to establish the 
following fact. 

Suppose M is forward complete with respect to the metric dis­
tance d induced by F, in the sense that every forward Cauchy 
sequence converges. (For example, this is so if M is compact.) 
Also, suppose our M is boundaryless as always. Then every inte­
gral curve (Xt, Yt) ofthe horizontal vector field i on TM, ° must 
be indefinitely forward extendible. 

Adopt the following guidelines. 

(a) Use the fact that i is defined at every point in TM,O, together with 
an existence theorem for first order ODEs, to show that if (Xt, Yt) 
is defined at t = T, then it is defined on an open time interval 
containing T. This is where the fact that M is boundaryless gets 
used. Thus every maximally extended integral curve is defined on a 
maximal time interval a < t < (3. 

(b) Suppose (3 =I- 00. Take a Cauchy sequence {ti } in IR such that ti /' (3. 
Check that {xtJ is a forward Cauchy sequence (see §6.2D). By the 
hypothesized forward completeness, it converges to some x EM. 
Show that 

lim Xt = x. 
t-+(3-

Hence we can define x(3 to be x. 

(c) Next, recall from Exercise 2.3.5 that F(Yt) has constant value (say c) 
for all t because (Xt, Yt) is a horizontal curve. Consider the collection 
of tangent Finsler spheres 

where E > ° is small. They form a compact subset of T M ,0 (but 
with respect to which topology?), and contain all Yti for sufficiently 
large i. Show that the latter admits a subsequence that converges 
to some Y E SX/l(c). Explain why one must then have 

limYt=Y· t-+(3-

So we can define Y(3 to be y. 

(d) There exists an integral curve of i that passes through the point 
(x(3, y(3). Again, the fact that Mis boundaryless has been used here. 
Explain why this integral curve's velocity field matches with that of 
our supposedly maximal curve (Xt, Yt), thereby furnishing a smooth 
extension of the latter to t = (3 and beyond. This then contradicts 
the assumed maximality of the time interval a < t < (3. 
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Exercise 12.2.7: Reformulate the result in Exercise 12.2.6 for the case in 
which (M, F) is backward complete (see §6.2D). Then prove it using first 
principles. 

Exercise 12.2.8: In this section, we have worked exclusively with the inte­
gral curves of the distinguished horizontal vector field i. Equally important 
is the horizontal vector field F i. Indeed, according to Exercise 5.1.6, the 
constant speed Finslerian geodesics on M are, through the canonical lift 
procedure, bijective with the integral curves of F i. 

Let us now rederive the results of Exercises 12.2.6 and 12.2.7 from an­
other perspective. Show that the following statements are equivalent: 

(a) The integral curves of i are indefinitely forward (resp., backward) 
extendible. 

(b) The integral curves of F i are indefinitely forward (resp., backward) 
extendible. 

(c) (M, F) is forward (resp., backward) geodesically complete. 

(d) Every forward (resp., backward) Cauchy sequence in (M,F) is con­
vergent. 

Hints: recall the Hopf-Rinow theorem (Theorem 6.6.1); also, how are the 
integral curves of F i related to those of i ? 

12.3 Growth Rates of Solutions of E + A E = 0 

In order to measure the growth rate of our tensor E, we need a norm. And 
to put that growth rate in perspective, we must stipulate the size of the 
domain on which that is being measured. 

First, recall from §6.2 that the positively homogeneous Finsler function 
F induces a metric distance d(p, q) on M which is positive-definite, satisfies 
the triangle inequality, but which may not be symmetric. In fact, it has the 
property d(q,p) = d(p, q) only when F(x, y) is absolutely homogeneous of 
degree one in y. 

Given any point p EM and a radius r > 0, we have defined in §6.2B the 
notion of forward metric balls: 

B:(r) := {x EM: d(p, x) < r} . 

Likewise, one also defines (Exercise 6.2.10) the backward metric balls: 

B;;(r) := {x EM: d(x,p) < r}. 

Let 

Bp(r) := B:(r) U B;;(r) . 

The three sets described above are neighborhoods in M containing the 
point p. They are not to be confused with the tangent Finsler balls Bp(r) 
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introduced in §6.1. The latter are neighborhoods in the tangent space TpM 
instead of M. 

The neighborhoods Bp(r) serve as domains on which we measure the 
growth rate (in terms of r) of certain tensors. In the definition of Bp(r), it 
is the union and not the intersection that we want. Let us indicate why. 
Take any integral curve (Xt, Yt) of the vector field i. on T M" O. According 
to Exercise 12.2.3, the projection of that integral curve onto M, denoted 
Xt, is a unit speed geodesic. It passes through the point x at time t = O. 
Define 

ro := maxi dee, x), d(x, e)} , 

which measures how far the point x is from a certain designate!i "origin" 
e. Let 7 be any positive number such that the curve Xt is defined on the 
time interval -7 < t ~ O. Then it can be shown (Exercise 12.3.2) that 

(12.3.1) {Xt: -7 < t ~ O} C Bx(7) ~ Be(ro + 7) . 

Likewise, if Xt is defined on 0 ~ t < 7, then 

(12.3.2) 

Therefore, neighborhoods of the form Be (r) do contain the important 
curves along which we measure the growth rates of the tensor field E. 

Next, we turn to norms. The pointwise norm of E on T M " 0 is simply 

J Eal ... a p Eal ... ap • 

This norm is independent of the choice of coframe, be it natural or g­
orthonormal. Given any punctured tangent space TxM" 0, our hypothesis 
on E says that it is constant along each ray which emanates from the 
origin. Thus maximizing the pointwise norm over TxM " 0 is the same as 
maximizing it over the indicatrix Sx' Let us then define 

1\ E 1\ := max . IE Eal ... ap 
x yES., V al.··ap 

Since Sx is compact, II E Ilx is well defined. 

* There is an advantage in using a g-orthonormal coframe to express 
E, for then its components satisfy the following inequality: 

(12.3.3) 

See Exercise 12.3.3. 

* Fix a point e E M once and for all. It will serve as a reference 
origin. We say that 

sup IIEllx = offer)] 
xEBe{r) 

if that supremum grows more slowly than fer) as r --+ 00. Note that 
this is the little ~'oh" notation. 
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We are now ready to prove a result of Akbar-Zadeh's [AZ]: 

Proposition 12.3.1 (Akbar-Zadeh). Let (M, F) be a connected bound­
aryless Finsler manifold. Let e be any designated "origin" in M. Let E be 
any section of the tensor products of the portion of 7r*T* Mover T M " O. 
Let's suppose that E is invariant under positive rescaling in y and obeys 
the equation 

E + >. E = 0, where >. is a constant . 

(a) Suppose>. = 0 and (M, F) is forward geodesically complete. 

If sup IIEllq = orr], then E = O. 
qEBe(r) 

(b) Suppose >. < 0 and (M, F) is both forward and backward geodesi­
cally complete. 

If sup II E or E Ilq = o[ev'=Xr] , then E = o. 
qEBe(r) 

Remark: Forward (resp., backward) geodesic completeness is equivalent 
to the hypothesis that every forward (resp., backward) Cauchy sequence 
converges. See §6.6 or Exercise 12.2.8. 

Proof. 
Fix an arbitrary (x, y) E TM" O. We show that the conclusions hold at 

that point. 
Recall the distinguished horizontal vector field i discussed in §12.2. Let 

(Xt, yd be the integral curve of i that passes through the point (x, y) at 
t = O. According to Exercise 12.2.8: 

• When (M, F) is forward geodesically complete, this integral curve 
on T M " 0 is defined at all t E [0,00) . 

• When (M, F) is backward geodesic ally complete, this integral curve 
on T M " 0 is defined at all t E (-00,0]. 

In §12.2, we constructed a field of bases {ha(t)} along the said integral 
curve. For each t, this is a g-orthonormal basis for the fiber of 7r*T Mover 
the point (Xl, yd. Furthermore, each ha(t) is parallel with respect to the 
Chern connection on 7r*T M. Using this field of bases, we defined in (12.2.6) 
the components of E: 

Eal···ap(t) := E( hal' ... ' hap) . 

Then we showed that the equation E + >. E = 0, where E means 'V i("\1 iE), 
is equivalent to 

(*) 
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Let ro := max{ d(8, x), d(x, 8) }. We see from (12.3.1), (12.3.2) that 

{Xt: -7 < t::::; O} c Be(ro + 7) , 

{Xt: 0::::; t < 7} C Be(ro + 7) . 

Together with (12.3.3), these give 

(**) sup IEa""ap(t)1 ::::; sup IIEllx, ::::; sup IIEllq 
~T<t";O ~T <t"; 0 qEBe(ro+T) 

and 

(***) sup IEa""ap(t)1 ::::; sup IIEllx, ::::; sup IIEllq· 
O";t<T O";t<T 

Case (a) oX = 0 : 
The solutions of the Jacobi type equation (*) are 

Ea, ... ap(t) = a + (3t . 

Using this and the hypothesis 

we infer from (***) that 

sup IIEllq 
qEBe(r) 

orr] , 

qEBe(ro+T) 

sup I a + (3 t I ::::; o[ r 0 + 7] . 
0"; t < T 

Since our integral curve is defined for all t E [0, (0), we can let 7 --t 00. 

Now, o[ ro+7] means slower than linear growth in 7, thus (3 must vanish. So 
Ea, ... ap(t) is constant. According to (12.2.8), the components of E:= ViE 
e~ual -!kEa, ... ap(t), which are then zero .. We have therefore deduced that 
E = 0 all along (Xt, Yt). In particular, E vanishes at our fixed (x, y), as 
desired. 

Case (b) A < 0 : 
In this case, the solutions of the Jacobi type equation (*) are 

Ea, ... ap(t) = ae~t + (3e~~t . 
• • d 

By (12.2.8), the components of E are given by diEa, ... ap(t). So, 

Ea, ... ap(t) = n ae~t - n (3e~~t . 

• Suppose 

sup IIEllq = o[e~r] . 
qEBe(r) 

Then (**) and (***) together tell us that 

sup lae~t + (3e~~t I ::::; o[e~(ro+T)]. 
~T <t< T 
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Note that eyC"X t exhibits exponential growth for t > 0 and e-yC"X t 

undergoes the same for t < O. In the above growth constraint, the 
hypothesized forward and backward geodesic completeness allows 
us to let T -? 00 and T -? -00. Since o[ eyC"X (ro+r) 1 means slower 

than exponential growth in T, we must have a = 0 = (3. Thus E = 0 
all along (Xt, Yt), and at (x, y) in particular . 

• Suppose 

sup IIEllq = o[ eyC"Xr 1 . 
qEBe(r) 

Applying (**) and (***) to the tensor E := V'iE, we have 

sup I ~ aeyC"Xt - ~ (3e-yC"Xt I ~ o[eyC"X(ro+r) 1. 
-r<t<r 

Again, letting T -? ±oo forces a and (3 to vanish. Thus E = 0 all 
along (Xt, yd, and at (x, y) in particular. D 

Exercises 

Exercise 12.3.1: 

(a) Produce an example in which the forward metric ball B;;(r) and the 
backward metric ball Bp (r) are different. 

(b) Draw a typical pair of forward and backward balls. 

Hint: consult §12.6 only if absolutely necessary. 

Exercise 12.3.2: Let (Xt, Yt) be any integral curve of the vector field i. 
Let Xt be its projection onto M. Review Exercise 12.2.3. 

(a) Let ro be as defined in the section. Check that 

Bx(T) t:;; Be(ro + T) 

for every positive number T. 

(b) Let T be any positive number such that Xt is defined on the time 
interval -T < t ~ O. Show that 

{Xt: -T<t~O} C Bx(T). 

(c) Let T be any positive number such that Xt is defined on the time 
interval 0 ~ t < T. Show that 

{Xt: 0 ~ t < T} C Bx(T) . 

Exercise 12.3.3: 

(a) Show that with respect to any g-orthonormal coframe, the compo­
nents of E satisfy the inequality 
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(b) Exemplify how such an inequality might fail in the natural coordi-
nate coframe {dXi}. 

Exercise 12.3.4: Let (M, F) be a complete Finsler manifold of constant 
flag curvature 1. Let aCt) be a unit speed geodesic with velocity field T. 
Denote by a the canonical lift (a, T) of a. Suppose U = U(t), V = Vet), 
W = Wet) are parallel sections of 7[*TM along the canonical lift a. Define 

At := A(U, V, W), At := A(u, V, W) . 

Show that 

At Ao cos t + Ao sin t , 

At - Ao sint + Ao cost. 

12.4 Akbar-Zadeh's Rigidity Theorem 

When the flag curvature is a nonpositive constant, one has rigidity under 
additional analytical hypotheses. §12.6 describes an example which shows 
that one of the said hypotheses is sharp. Also, for the case of constant 
positive flag curvature, there is no rigidity (see §12.7) unless one imposes 
additional curvature criteria [such as the one mentioned after (12.1.1)]. 

Theorem 12.4.1 (Akbar-Zadeh) [AZ]. Let (M, F) be a connected bo­
undaryless Finsler manifold of constant flag curvature A. Let 'V be the 
Chern connection on the portion of 7[*T Mover T M " O. Let e be any 
designated "origin" in M. 

(a) Suppose A < 0 and (M, F) is both forward and backward geodesi­
cally complete. If 

sup II A or A Ilx = o[ evCXr ], 
xE13e(r) 

then (M, F) must be Riemannian. 

(b) Suppose A = 0 and (M, F) is forward geodesica1ly complete. If 

sup IIAlix = orr] , 
xE13e(r) 

then A = 0 and hence F is of Landsberg type. If, in addition, 

sup lI'VvertAlix = o[ r] , 
xE13e(r) 

then (M, F) is locally Minkowskian. 

Remark: Forward (resp., backward) geodesic completeness is equivalent 
to the hypothesis that every forward (resp., backward) Cauchy sequence 
converges. See §6.6 or Exercise 12.2.8. 
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Proof. 
According to Proposition 12.1.1, given a Finsler manifold of constant flag 

curvature A, the Cartan tensor A always satisfies the equation 

(*) A+AA=O. 

• Suppose A < O. Imposing the said growth constraint on A or A, and 
using Proposition 12.3.1, we see that A = O. In other words, (M, F) 
must be Riemannian . 

• Next, suppose A = O. The first constraint 

sup II All x = o[ r 1 
xEBe(r) 

says that A has slower than linear growth. So Proposition 12.3.1 
tells us that A must vanish. That is, F is of Landsberg type. 

It remains to ascertain the following: 

Let us be given a Landsberg space (M, F) with zero flag 
curvature. If the tensor yo vert A has slower than linear 
growth, then (M, F) must be locally Minkowskian. 

This is the companion of a statement we made near the end of §12.1: 

All Landsberg spaces of nonzero constant flag curvature must be 
Riemannian. 

Note that for Landsberg spaces with A = 0, equation (*) reduces to 
o = 0, which gives no information. Remarkably, Akbar-Zadeh has found a 
new pair of equations that saves the day. 

A useful identity for Landsberg spaces: 
On any Landsberg space, we have the identity 

(12.4.1) I Aijk;lls is = - Aijkll I· 
This can be derived as follows: 

* Apply the Ricci identity or interchange formula (3.6.2) to A ijk and 
impose the Landsberg criterion A = O. The resulting formula reads 

Aijk;lls - Aijkls;l = - A vjk P; ~l - Aivk P j vsl - A ijv P k vsl . 

* Contract the above with is. Note that by the symmetry condition 
(3.2.3) and the Bianchi identity (3.4.9), we have 

is Pi ~l = is P s ~l = - AVil = o. 
Thus we get 

Aijk;lIs is = Aijkls;l is . 

With the help of (2.5.15), and the criterion A = 0, the right-hand 
side is found to be equal to -Aijkll. 
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Thus (12.4.1) is valid on Landsberg spaces, as claimed. 

Akbar-Zadeh's technique: 
For ease of exposition, let us introduce the temporary abbreviations 

(12.4.2) 

(12.4.3) 

Then the identity (12.4.1) looks like 

(12.4.4) v = -11. 

Observe that 

itijk1 = Aijkliis £s . 

By Proposition 12.1.1, the curvature Rjikl vanishes on a Landsberg space 
with zero flag curvature. Using this and the Ricci identity (3.6.1), we see 
that 

Aijkliis £s = Aijklsll £s . 

But the right-hand side is zero because of (2.5.14) and A = O. So, in the 
present setting one has 

Formula (12.4.4) then yields 

(12.4.5) 

it = O. 

v = O. 

Our next step is to "integrate" (12.4.5). Note that V is invariant under 
positive rescaling in y. Also: 

* Condition (12.4.5) is a Jacobi-type equation concerning V. 

* The abbreviation (12.4.3), together with our hypothesis about the 
quantity V'vertA, gives us a growth constraint on V. 

* Finally, we have the assumed forward completeness of M. 

Therefore all the hypotheses in Proposition 12.3.1 are met, and we can 
conclude that 

v = O. 

In view of (12.4.4), 11 vanishes as well. This means that 

Aijkll = O. 

Through the constitutive relation (3.4.11), which expresses the curvature 
P in terms of Aijkll, we see that P must vanish. (So our flat Landsberg 
space is actually of Berwald type.) 
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We have just shown that the hv-Chern curvature P is zero. It has been 
remarked above that >. = 0 effects the vanishing of the hh-Chern curva­
ture R (Proposition 12.1.1) as well. Therefore, by Proposition 10.5.1, the 
Landsberg space in question must be locally Minkowskian. D 

Suppose M is compact with respect to its manifold topology. By Exer­
cises 6.2.11 and 6.6.4, (M, F) is then both forward and backward geodesi­
cally complete. Furthermore, given compactness, the stated asymptotic 
growth constraints are automatically satisfied. In view of this, Theorem 
12.4.1 has a most elegant corollary. 

Corollary 12.4.2 (Akbar-Zadeh) [AZ]. Let (M, F) be a compact con­
nected boundaryless Finsler manifold of constant flag curvature >.. 

(a) If >. < 0, then (M, F) is Riemannian. 

(b) If>. = 0, then (M, F) is locally Minkowskian. 

Exercises 

Exercise 12.4.1: Prove in detail that on a Landsberg space, the identity 

Aijk;lls lS = - Aijkll 

holds. It was used crucially in the proof of Akbar-Zadeh's theorem (Theo­
rem 12.4.1). 

Exercise 12.4.2: Let (M, F) be a boundaryless simply connected Finsler 
manifold of zero flag curvature. Suppose it is forward complete with respect 
to the metric distance function d induced by F. Let e be some designated 
"origin" in M. Prove that if 

lim sup IIAlix = 0, 
r-+oo XEM,Be(r) 

then the Finsler structure F is Riemannian. 

Exercise 12.4.3: 

(a) Check that Finsler manifolds with R/ kl = 0 necessarily have zero 
flag curvature. Explain why the converse is false. That is, having 
zero flag curvature does not imply that the hh-Chern curvature has 
to vanish. 

(b) Recall the constitutive formula (3.5.6) for the hh-Chern curvature 
R, and Exercise 3.8.4 about the hh-Berwald curvature bR. Show that 
a Finsler manifold has zero flag curvature if and only if bR/ kl = o. 

(c) In view of the Akbar-Zadeh theorem, is it difficult to find a Finsler 
manifold with R = 0 but P =F O? Do such examples exist? 
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12.5 Formulas for Machine Computations of K 

12.5 A. The Geodesic Spray Coefficients 

The quantities 

'k 1( )'k C i = "(ijk y1 Y ="2 gij,x k - gjk,xi + gki,x j y1 Y 

have been introduced in Exercise 2.3.2. Define 

(12.5.1) 

Note that the fundamental tensor is given by 

gij = £yiyj . 

Since £yi is positively homogeneous of degree 1 in y, Euler's theorem (The­
orem 1.2.1) gives 

(12.5.2) 

With this, one can check that 

(12.5.3) £ .. yj £. y"'xJ - x'L· 

Raising the index i gives 

(12.5.4) 

Now we specialize to Finsler surfaces. In order to reduce clutter, let us re­
label the natural coordinates Xl, x2 as X, y. The induced global coordinates 
yl, y2 on each tangent plane are relabeled as u, v. That is: 

X f--7 Xl 

Y f--7 x2 
(12.5.5) 

yl u f--7 

V f--7 y2 

Strategic uses of Euler's theorem, together with 

(which are themselves consequences of Euler's theorem), lead to explicit 
formulas for our C l and C2 (twice those in [AIM]). These read: 

C l 
(£vv £x £vx £v) - (£uv £y £uy £v) 

det(g) 

C 2 
(£uu £y - £uy £u) - (£vu £x £vx £u) 

det(g) 
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Here, 

(12.5.6) 

It turns out that some curvature-related quantities look slightly simpler if 
expressed in terms of ~ai rather than ai. Thus we introduce 
(12.5.7a, 12.5. 7b) 

a ~ a1 (Lvv Lx Lvx Lv) - (Luv Ly Luy Lv) 
2 2 det(g) 

H ~ a2 (Luu Ly - Luy Lu) - (Lvu Lx Lvx Lu) 
2 2 det(g) 

12.5 B. The Predecessor of the Flag Curvature 

In Exercise 3.3.4, we gave a strategy for deriving the elegant formula 

(12.5.8) R\ = £j (8~k rv;j - 8!j ~k ) . 

The N i s are the coefficients of the nonlinear connection (see §2.3). 

Let us manipulate the first term £j 15!k ~ on the right-hand side as 
follows: 

* We use Exercise 2.5.6 to move £ past 15~' thereby gaining a "correc­
tion" term 

1 N i j 
F2 jNk' 

This correction term can be expressed in terms of y derivatives of 
the geodesic spray coefficients ai, using Exercise 2.3.3. 

* It can be seen from (2.3.2b) that 

..!:.. £j Ni = _1_ Gi 
F J F2 . 

Since part (b) of Exercise 2.3.5 tells us that F is horizontally con­
stant, the factor 1/ F2 can be moved outside the 15~ derivative. 

* Finally, we use (2.3.3) to spell out the operator 15l5x ' 

These maneuvers give 

. 8 Nij 1 [. 1. .] 
£J 8x k F = F2 ( a' )xk - "4 (a' )yi (GJ )yk 

. 8 N i 
Less work is required on the second term _£J 15x i y: 

* We use the horizontal constancy of F to move the 1/ F past the tx' 
* Then we spell out 15~ and use £j N Sj = as / F. 
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The result is 

-(.3 ~ N i k = 1 
oxi F F2 

Together, they tell us that: 

(12.5.9) 

where 

as ._ ~s I. 

Specializing to two dimensions, and using the relabeling that we have 
introduced above, (12.5.9) gives: 

(12.5.10) 
F2R\ = (Gxv-Gyu)v+2GGuu+2HGuv-GuGu-GvHu, 

(12.5.11) 
F2 R22 = (Hyu - Hxv)u+ 2HHvv + 2GHvu - HvHv - HuGv , 

(12.5.12) 
F2 RI2 (Gyu - Gxv)u + 2HGvv + 2GGuv - GvHv - Gv Gu , 

(12.5.13) 
F2 R2I = (Hxv - Hyu) v + 2GHuu + 2HHvu - HuGu - HuHv . 

12.5 C. Maple Codes for the Gaussian Curvature 

Part (e) of Exercise 4.4.8 shows that, in natural coordinates, one has: 

( F2 R\ F2 R12) _ (y2 Cy2 _yl Cy2) 
F2 R2 F2 R2 - K _ y2 C 1 yl C 1 • 

I 2 y y 

These, together with (12.5.10)-(12.5.13), lead to the following computa­
tional formulas for the Gaussian curvature K: 
(12.5.14) 

K= 

(12.5.15) 

K= 

(12.5.16) 

K= 

(Gxv - Gyu )v+2GGuu +2HGuv - GuGu - GvHu 
v Cv 

(Hyu - Hxv) u + 2 H Hvv + 2 GHvu - HvHv - HuGv 
u Cu 

(Gyu - Gxv ) u + 2 HGvv + 2GGuv - GvHv - Gv Gu 
- u Cv 
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(12.5.17) 

K 
(Hxv - Hyu) v + 2 GHuu + 2 H Hvu - HuGu - HuHv 

- v £u 

Since 

U£u +v£v = 2£ = p2 

by Euler's theorem, we also have 

p2 K (Gxv - Gyu ) v + (Hyu - Hxv) U 

(12.5.18) + 2 (GGuu + HHvv) + 2 (HGuv + GHvu) 

- (Gu Gu + HvHv) - (GvHu + HuGv) . 

This is a rather symmetric looking formula for K. However, it turns out to 
be not as computationally friendly as we thought it would be. 

We conclude this section with the Maple code for implementing (12.5.14). 
For concreteness, we also include a specific example. Review (12.5.5). 

> K:=proc(F) 
> local L,Lx,Ly,Lu,Lv,Lxv,Lyu,Luu,Luv,Lvv,D, 

G,H,Gu,Gv,Guu,Guv,Gxv,Gyu,Hu,K; 
> L:=FA 2/2; 
> Lx:=diff(L,x); 
> Ly:=diff(L,y); 
> Lu:=diff(L,u); 
> Lv:=diff(L,v); 
> Lxv:=diff(Lx,v); 
> Lyu:=diff(Ly,u); 
> Luu:=diff(Lu,u); 
> Luv:=diff(Lu,v); 
> Lvv:=diff(Lv,v); 
> D:=simplify(2*(Luu*Lvv-Luv*Luv)); 
> G:=simplify(((Lx*Lvv-Ly*Luv)+(Lyu-Lxv)*Lv)/D); 
> H:=simplify(((Ly*Luu-Lx*Luv)+(Lxv-Lyu)*Lu)/D); 
> Gu:=diff(G,u); 
> Gv:=diff(G,v); 
> Guu:=diff(Gu,u); 
> Guv:=diff(Gu,v); 
> Gxv:=diff(Gv,x); 
> Gyu:=diff(Gu,y); 
> Hu:=diff(H,u); 
> K:=((Gxv-Gyu)*v+2*G*Guu+2*H*Guv-Gu*Gu-Gv*Hu)/(v*Lv); 
> simplify(K); 
> end: 
> F: =sqrt(uA 2+sinh(xr2*v'2) +tanh(x) *u: 
> K(F); 



12.6 A Poincare Disc That Is Only Forward Complete 333 

-1/4 
bytes used=129197548, alloc=11139080, time=125.06 

In the above code, the Finsler function is in arbitrary coordinates! See 
the abbreviation chart (12.5.5). At the end, the specific example entered is 

(12.5.19) F(x, y; u, v) := J u2 + sinh2(x) v2 + u tanh(x) . 

Its Gaussian curvature happens to be a negative constant, with value -~. 
We explain the origin of this example in §12.6. 

For further information about machine computations in differential ge­
ometry, see Oprea lOp] (which uses Maple) and Gray [Gr] (which uses 
Mathematica). 

Exercises 

Exercise 12.5.1: Derive formulas (12.5.7a,b) in detail. 

Exercise 12.5.2: 

(a) We sketched a derivation of (12.5.9). Fill in the details. 

(b) By specializing (12.5.9) to specific values of i and k, establish for­
mulas (12.5.10)-(12.5.13). 

Exercise 12.5.3: 

(a) Modify the given Maple code to implement (12.5.15), (12.5.16), and 
(12.5.17). Rerun your code with example (12.5.19) in each case. How 
do the four formulas (12.5.14)-(12.5.17) compare with each other in 
terms of computational efficiency? 

(b) Investigate what happens if you try to carry out the same program 
with formula (12.5.18). 

(c) For the Finsler function F given in (12.5.19), are you able to calcu­
late its Gaussian curvature K by hand? 

(d) Convert the given Maple code into a Mathematica code. 

12.6 A Poincare Disc That Is Only Forward Complete 

Our story begins with a theorem entitled "On Randers spaces of scalar 
curvature" by Yasuda and Shimada [YS], published in 1977. This theorem is 
stated for Randers spaces of dimension n ~ 2. A 1989 paper by Matsumoto 
[M5] corroborates the results of [YS] for n > 2. Shimada has assured us 
that the theorem remains valid for n = 2, as originally stated. See also the 
treatment in [SK]. 
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The proof of the Yasuda-Shimada theorem is difficult, and we do not 
give it in this book. However, we are free to use its conclusions as inspi­
rations for constructing examples. This attitude is logically fine, as long 
as one explicitly verifies that the constructed examples have the properties 
expected of them. We do just that. 

12.6 A. The Example and Its Yasuda-Shimada Pedigree 

The example we are going to construct is of Randers type (Chapter 11), 
and is also known to Okada [Ok]. It resides on the Euclidean open disc with 
radius 2 and center (0,0) in]R2. Denote the canonical Cartesian coordinates 
by X, Y. And introduce polar coordinates via 

X = r cosO, Y = r sinO. 

Then our underlying manifold is 

M := {(X, Y) E ]R2: r2 = X2 + y2 < 4} . 

In order to stipulate a Randers space, we need two other pieces of data 
besides M: a Riemannian metric a and a 1-form b, both globaiIy defined 
on M. For our example, a is the usual Poincare disc model of the hyper­
bolic metric with constant Gaussian curvature -1. See [On] for detailed 
discussions about this Riemannian metric. Explicitly, 

(12.6.1) I "'~ 1 [dr 0dr + r'd00d9ll-
. (1 _ r; )2 . 

The 1-form b in question is 

(12.6.2) 

Note that b is exact, hence closed in particular. The relevance of this feature 
is shown later in this section. 

We digress to describe the genesis of this 1-form b. The Yasuda­
Shimada theorem says, among other conclusions, that: 

A Randers space has constant negative flag curvature 

if and only if 

• The underlying Riemannian metric a has constant negative sectional 
curvature (see Exercise 3.10.8) _oX2 . 

• The drift 1-form b is exact (that is, has the form df) and satisfies 
the system of PDEs 

- - -k - -
bi,x j - bk 'Y ij = oX (aij - bi bj ) . 
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In our example, ). = 1. By limiting our choice of I to those with only an r 
dependence, we reduced the above PDE system to two ODEs. They are: 

2r 
Irr - -4 2 Ir -r 

16 r 
(4 + r2)(4 - r2) , 

16 
(4 _ r2)2 - Ir Ir . 

Solving the first one gives 

(12.6.3) [ 4 + r2] I (r) = log 4 _ r2 + an arbitrary constant . 

It is then checked that this I satisfies the second ODE identically. The drift 
I-form b is the exterior differential of this I, as stipulated in (12.6.2). 

12.6 B. The Finsler Function and Its Gaussian Curvature 

Let V be any tangent vector to M. The value of the Finsler function F on 
V is, in the abstract, 

F(V) := ..; a(V, V) + b (V) . 

In §11.1, we explained why a Randers F is positive and strongly convex 
(that is, has positive-definite fundamental tensor) on T M " 0 if and only if 
the Riemannian norm of b is uniformly less than 1 on M. For the example 
in question, one finds that 

(12.6.4) 

Straightforward calculus shows that since 0 ::::; r < 2 here, we indeed have 

II bll < 1. 

Thus our F is a y-global Finsler metric. It has also been obtained by Okada 
[Ok] through his study of Funk and Hilbert metrics. 

At any point in M, with polar coordinates (r,O), our arbitrary tangent 
vector V can be expanded as 

(12.6.5) 
a a 

V := p or + q 00 . 

The value of the Finsler function on this tangent vector is 

(12.6.6) F(V) := 
1 

1 _ ~ ..; p2 + r2 q2 + 
4 

pr 

(1 - r;) (1 + r;) 

The Yasuda-Shimada theorem says that this F should have constant neg­
ative Gaussian curvature - t. Since we have not proved the said theorem 
in this book, we verify their conclusion by direct calculation. 
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Let us convert the right-hand side into a form that is friendlier towards 
machine computations. To this end, define 

(12.6.7) S := log ~ . ( 1+ 1:) 
1-2" 

Since 0 ::;;; r < 2, we see that 0 ::;;; s < 00. One can check that: 

ds 
dr 

(12.6.8) a 
as 

1 _ r2 , 

4 

a 
ar . 

And 

(12.6.9) 

sinh(s) 
r 

1 _ r2 , 

4 

r 
tanh(s) = 1+.r: . 

4 

Our arbitrary tangent vector V then has the expansion 

(12.6.10) V = 1 ~ 'T :s + q :e =: P :s + q :e ' 
where p is p normalized as shown. And the Finsler function becomes 

(12.6.11) F( s, e; p, q) := J p2 + sinh2(s) q2 + P tanh(s) 

According to the Maple calculation just before (12.5.19), this Finsler 
structure does have constant negative Gaussian curvature - i. 
We have therefore explicitly verified, for the example under discussion, the 
prediction of the Yasuda-Shimada theorem. 

12.6 C. Geodesics; Forward and Backward Metric Discs 

The drift I-form b in our example is exact, hence closed. In that case, Ex­
ercises 11.3.3 and 11.3.4 tell us that the geodesics of our Randers space 
are trajectorywise the same as the geodesics of the underlying Riemann­
ian metric a. Those exercises demonstrate this fact by simply parametriz­
ing the Finslerian geodesics to have constant Riemannian speed. Now, 
the geodesics of a are well understood. See, for instance, [On]. So, the 
geodesics of our example have the following trajectories: 

• Euclidean circular arcs that intersect the boundary of the Poincare 
disc at Euclidean right angles. In view of the Pythagoras theorem, 
none of these can pass through the origin. See Figure 12.1. 

• Euclidean straight rays that emanate from the origin. 

• Euclidean straight rays that aim towards the origin. 
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M 
, 

Figure 12.1 

whose 
portion 

inside M 
gives a 

Finslerian 

The geodesic trajectories of our Randers space (M, F). The Eu­
clidean circle centered outside M intersects 8M at Euclidean right 
angles. By Pythagoras' theorem, we have C2 = 22 + R2. If the cir­
cular arc were to pass through the origin 0, we would have C = R, 
which would then lead to a contradiction. 

This is a remarkable feature. To put that in context, recall Exercise 5.3.3. 
There, it is shown that if the Finsler structure is absolutely homogeneous, 
or is of Berwald type, then the reverse of a geodesic is again a geodesic, the 
implication being that such conclusion does not hold for generic F. Our F 
under discussion is a Randers metric. It is neither absolutely homogeneous 
nor Berwald, so we do not expect the reverse of its geodesics to be geodesics. 
Nevertheless, this is valid on a trajectory level. Namely, if we reverse 
any given geodesic (say, from P to Q) in our example, then the 
trajectory of the resulting curve (from Q to P) coincides with 
that of a geodesic. 

Next, recall the discussion in §7.5 and §8.2. Namely, each geodesic starts 
out by globally minimizing the Finslerian arc length until it reaches the 
cut point. Beyond that, it loses the status as a global minimizer. However, 
it will continue to minimize among nearby curves that share its endpoints, 
until it reaches the first conjugate point. After that, there is no minimizing 
ability whatsoever. Long, globally minimizing, geodesics are therefore a rare 
commodity. We show, in the rest of this section, that the above Euclidean 
straight rays (to or from the origin) are global minimizers in their 
entirety! 

Fix a point P on the Euclidean circle of radius E < 2 and center at the 
origin O. Its polar coordinates are r = E and () = ~. Both E and ~ are fixed. 
Here is our plan: 
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* Take an arbitrary curve 

e(t) := (r(t) cos ()(t) , ret) sin()(t) ), 0:::;; t :::;; E 

from 0 to P. Here, reO) = 0, r(E) = E, and ()(E) = f We show that 
its Finslerian arc length is bounded below by that of the straight 
ray 

£T(t):= (tcos~,tsin~), O:::;;t:::;;E 

from 0 to P. 

* Take an arbitrary curve 

e( t ) : = (r ( t) cos () ( t) , r ( t) sin () ( t) ), 0:::;; t :::;; E 

from P to O. Here, reO) = E, r(E) = 0, and ()(O) = ~. We show that 
its Finslerian arc length is bounded below by that of the straight 
ray 

£T(t):= ([E-tlcos~,[E-tlsin~), O:::;;t:::;;E 

from P to O. 

Note that 

Thus the chain rule 

oe 
or 
oe 
o() 

( cos (), sin ()) = :r ' 
o 

r ( - sin (), cos () ) o() . 

de 8c dr oe d() 
dt or dt + o() dt 

yields the following decomposition of the velocity: 

de .0 ·0 
c .- dt = r or + () o() . 

Hence, by (12.6.6), we have 

1 fr 
F(c) J f2 r2 (J2 1 _ r2 + + 

(1- r;f)(1 + r;f) 4 

(12.6.12) 
1 

If I + 
r 

f ~ 1 _ r2 (1 - r;) (1 + r;) 4 

~ [ ± 1 
1- r; 

+ (1- r;)r(l + r;) 1 f. 
Integrating this inequality, and realizing that f dt = dr, gives: 
(12.6.13) 

r F( c) dt ~ l r
=r(E) [1±_1!:....2 + _-~r,----="":--l dr. 

Jo r=r(O) 4 (1- r;) (1 + r;) 
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The case of going from the origin 0 to P: 
In the ±1 on the right-hand side of (12.6.13), we take the plus sign. Also, 

since the curve c goes from 0 to P, we have reO) = 0 and ref) = f. Thus 

Lp(c) := l' F(c) dt 

l r=, [ 1 
~ 2 

r=O 1- r4 
+ -:--""-2 _r(.,..-------;:-2_] dr. 

(1 - r4 ) 1 + r4 ) 

Now, the velocity of the Euclidean straight ray u from 0 to P is :r. 
Using (12.6.6) to calculate its speed, we see that its Finslerian length is 

It=' [ 1 Lp(u) := t 2 + 
t=O 1-"4 

This integral is identical to the lower bound of L p ( c). Therefore 

Lp(c) ~ Lp(u) , 

which shows that the straight ray u is globally shortest among all curves 
from 0 to P. Furthermore, the method of partial fractions can be used to 
compute the said integral, leading to 

(12.6.14) [ 4+f2 ] d(O,P) = Lp(u) = log (2-f)2 . 

In particular, 

(12.6.15) d(O, aM) +00 . 

That is: 

The Finslerian metric distance from the origin to the rim 
of the Poincare disc is infinite. 

Using calculus, one checks that the above logarithm is a monotonically 
increasing (hence one-to-one) function of f, for 0 ~ f < 2. Based on this 
information, a moment's thought convinces us that 

(12.6.16) 

Here, Ba(f) is the Euclidean open disc of radius f and center O. Also, 
B;; denotes forward metric discs centered at 0, as defined in §6.2B. In 
particular , 

(12.6.17) 1 M = Ba(2) = B;;(oo) I· 
This finishes our analysis of the "outward bound" situation. 
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The case of going from P towards the origin 0: 
In the ±1 on the right-hand side of (12.6.13), we take the minus sign 

this time. Also, since the curve C goes from P to 0, we have r(O) = € and 
r(€) = O. Thus 

LF(C) := l' F(c) dt 

l r
=o [ 

- 1 r ] ~ 1- r2 + 
(1 - r;)( 1 + r;) 

dr. 
r=£ 4 

Equivalently, 

LF(C) ~ lr=, [ 1 
(1- r;)r(l + r;) ] 

dr. 1- r2 r=O 4 

The velocity of the Euclidean straight ray u from P towards 0 is - tr . 
Using (12.6.6) to calculate its speed, we see that its Finslerian length is 

It=' [ 1 LF ( u) := (,-t)2 -
t=O 1- -4-

Either by a change-of-variable or a graphical argument, one sees that 

l' f(€ - t) dt = 1< f(t) dt . 

Thus 

t=< [ 1 
Jt=o 1- ~ -:(-1 -_ -:-;;~c:-/-:-( l-+-L=; ):-] dt. 

This integral is identical to the lower bound of L F ( c). Therefore 

LF(C) ~ LF(U), 

which shows that the straight ray U is globally shortest among all curves 
from P to O. Now, the method of partial fractions can be used to calculate 
the said integral, giving 

(12.6.18) [ (2+€)2] 
d( P , 0) = L F ( u) = log 4 + €2 . 

In particular, 

(12.6.19) 

That is: 
Coming in from the rim of the Poincare disc to the center, 
the Finslerian metric distance has the finite value log 2! 
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It can be verified that the above logarithm is a monotonically increasing 
(hence one-to-one) function of 10, for 0 ~ 10 < 2. This information, together 
with a moment's thought, tells us that 

(12.6.20) 

Again, lffio(€) is the Euclidean open disc of radius 10 and center O. Also, 
B;; denotes the backward metric discs centered at 0, as defined in Exercise 
6.2.10. In particular, 

(12.6.21) 1 M = lffio(2) = B;;(log2) I· 
This finishes our analysis of the "inward bound" situation. 

Let us propose a model to help visualize the fact that 

d( 0, 8M) = 00, while d( 8M , 0) = log 2 . 

* Suppose water in a kitchen sink is draining towards a sink-hole 
located at O. Let's say that the walls of the kitchen sink are situated 
at 8M. To complete the picture, imagine a tiny bug swimming either 
from 0 to 8M, or from 8M to 0, along the straight rays that we 
called u. 

* Let F(u) dt = F(du) denote the physical time (which is distinctly 
different from the parameter increment dt) it takes the bug to tra­
verse a short portion du of its journey. Then the mathematical Fins­
lerian "arc length" J F(du) is actually measuring the total physical 
time of the journey. Revisit similar discussions in §1.0. 

* It is now conceivable that, swimming against a current, the bug 
might need an eternity to reach 8M. On the other hand, aided by 
a current, it can easily reach 0 in finite physical time. 

12.6 D. Consistency with Akbar-Zadeh's Rigidity Theorem 

By construction, our example is of Randers type, and is manifestly non­
Riemannian. It has also been verified explicitly to have constant negative 
Gaussian curvature -:!. Is this then somehow a counterexample to Akbar­
Zadeh's rigidity theorem (Theorem 12.4.1)? 

Happily the answer is no. There are two crucial hypotheses in that the­
orem: 

• The Cartan scalar I is supposed to have slower than exponential 
growth. 

• The Finsler surface is supposed to be both forward and backward 
geodesically complete. 

Let's examine them in turn. (Study Okada [Ok] in the same spirit.) 
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The Cartan scalar: 
We see from Exercise 11.2.6 that for Randers surfaces, the Cartan 

scalar has the uniform universal bound ~. Hence our I certainly 
grows more slowly than exponentially! 

Forward geodesic completeness: 
Take any unit speed Finslerian geodesic u(t) that passes through the 

origin 0, say at time t = O. In view of the discussion at the beginning 
of §12.6C, the trajectory of u must be part of a Euclidean straight line 
through the origin. Extend u(t) maximally forward, so that it is defined on 
an interval 0 ~ t < b. Since the Euclidean line reaches the boundary 8M, 
we must have 

lim u(t) E 8M. 
t-+b-

If b were finite, the Finslerian length of the unit speed geodesic u(t), 
o ~ t < b would be finite. The metric distance from 0 to 8M would 
then be finite as well, contradicting (12.6.15). Therefore b has to be 00. 

This means that (M, F) is forward geodesically complete at O. By 
the Hopf-Rinow theorem (Theorem 6.6.1), it is so everywhere. 

Backward geodesic completeness: 
We now demonstrate that our Randers metric is not backward geodesi­

cally complete. To this end, extend the above u(t) maximally backward, so 
that it is defined on an interval a < t ~ O. Since the trajectory of u is part 
of a Euclidean line that reaches the boundary 8M, we must have 

lim u(t) E 8M. 
t-+a+ 

If a were equal to -00, the Finslerian length of the unit speed u(t); 
a < t ~ 0 would be infinite. The metric distance from 8M to 0 would then 
be infinite as well, contradicting (12.6.19). This means that a cannot equal 
-00. Hence (M, F) is not backward geodesically complete. Given that, 
the negative curvature case in Akbar-Zadeh's theorem cannot be applied 
to our example. So all is well. 

Exercises 

Exercise 12.6.1: 

(a) Derive the ODEs that characterize the potential function f. 
(b) Solve one of them to obtain (12.6.3). 

Exercise 12.6.2: 

(a) Show that the Riemannian norm of the drift I-form is indeed given 
by formula (12.6.4). 
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(b) Prove that this norm is uniformly less than 1 on the Poincare disc. 

Exercise 12.6.3: 

(a) Start with (12.6.7). Derive the transformation formulas (12.6.8) and 
(12.6.9). 

(b) Check that our Finsler function F has the two equivalent descrip-
tions (12.6.6) and (12.6.11). 

Exercise 12.6.4: In (12.6.6), take the difference instead of the sum of the 
two terms. Does this destroy forward completeness and restore backward 
completeness? Can you physically interpret this new Finsler metric? 

12.7 Non-Riemannian Projectively Flat S2 with K = 1 

Let us turn to the case of positive flag curvatures. In [AZ], Akbar-Zadeh 
showed that if an n-dimensional Finsler manifold (M, F) has constant pos­
itive flag curvature, then its universal cover must be diffeomorphic to the 
standard sphere §n. Through the works of Bryant, we now know that 
(M, F) need not be isometric to §n. He has informed us that this holds 
for surfaces as well as for higher dimensions. 

12.7 A. Bryant's 2-parameter Family of Finsler Structures 

In two dimensions, Bryant [Br1, Br2] has published explicit non-Riemann­
ian examples with constant positive Gaussian curvature K = 1. Here, we 
focus on a 2-parameter family from [Br2]. Each Finsler structure in this 
family has K = 1. In [Br2], it is explained in detail how these are related 
to some earlier works of Funk's [F1, F2]. See also [Br3]. 

To describe that 2-parameter family, let V be a 3-dimensional real vector 
space with basis {bl, b2 , b3 }. Let p, "I be two fixed angles satisfying 

7r 
(12.7.1) 1"11 ~ p < "2. 

Define a p and "I dependent, complex-valued quadratic form Q on V by 

(12.7.2) 

In the above exponentials, 

i .- v'-I, 
and 

u = ui bi , V = Vi bi . 

Let 8 2 denote the set of rays in V. Equivalently, we are identifying X 
and X* in V whenever X* = >. X for some>. > O. Each point of 8 2 can thus 
be denoted as an equivalence class [X], with 0 #- X E V. As a manifold, 
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8 2 is a projective sphere. A moment's thought shows that every tangent 
vector at the point [X] on 8 2 is the initial velocity to a curve of the form 
[X + tY], for some Y E V. Each such curve is half of a great circle on 
8 2 • It makes sense to denote the said tangent vector by [X, Y]. Note that 
[X', Y'] = [X, Y] if and only if X' = AX and Y' = A Y + j.LX, for some 
A > 0 and j.L E IR. 

For each choice of p and "I satisfying (12.7.1), Bryant gives an explicit 
formula for the corresponding Finsler function F : T82 -+ [0,00). It reads: 
(12.7.3) 

F( [X, Y]) := Re [ 
Q(Y, Y) Q(X, X) - Q2(X, Y) . Q(X, Y) 1 

Q2(X, X) - Z Q(X, X) , 

where "Re" means taking the real part. The complex square root function 
is taken to be branched along the negative real axis, and to satisfy v'I = 1. 
In other words, 

. .1 a + ..j a2 + b2 
Re..ja+zb:= +y . 2 

For each F defined by (12.7.3), with p and "I constrained by (12.7.1), 
the method of exterior differential systems in [Br2] effects some interesting 
properties. We quote but do not attempt to prove them in this book. 

* The F given by (12.7.3) is indeed a Finsler structure in the sense 
of § 1.1. Unless p = 0 = "I, this Finsler function is non-Riemannian 
and is only positively homogeneous. 

* Each great semicircle [X + tY] is a geodesic of the Finsler structure. 
(Incidentally, such curves are not parametrized yet to have constant 
speed.) Furthermore, every Finslerian geodesic is part of a great 
circle, and hence traces out a curve of the form [X + tY]. 

* More technically, there exists a privileged coordinate system in 
which the Finslerian geodesics are defined by linear equations. In 
other words, the Finsler surfaces (82 , F) described by (12.7.3) are 
projectively flat. (See also Exercise 12.7.3.) 

* The Finslerian length of each great circle is 21r. The calculation for 
a special case, namely, p = ~ = "I, is not too difficult. The reader is 
asked to undertake a portion of that task in Exercise 12.7.2. 

* The Gaussian curvature K of each such Finsler surface (82 , F) has 
the constant positive value 1. 

* The 2-parameter (p and "I) family presented in (12.7.3) encompasses 
all projectively flat Finsler structures on 8 2 with K = 1. The 2-
dimensional moduli space is non-compact. 

We invite the reader to read Bryant's papers, especially [Br2], and to try 
to verify his first few claims. 
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12.7 B. A Specific Finsler Metric from That Family 

We next work out the manifestly real formula for one of the Finsler func­
tions described in (12.7.3). The case we are concerned with is 

As in (12.5.5), we use 

x ~ xl , 
y ~ x 2 , 
U ~ yl , 

V ~ y2. 

Take the 3-dimensional vector space to be 1R3 , with Cartesian coordinates 
x, y, z. For concreteness, we realize 8 2 as the unit sphere defined by the 
equation x2 + y2 + z2 = 1. As a graph, it admits a parametrization 

given by 

( x , y) f-+ X := (x, y, 8 ../ 1 - x2 - y2) with 8:= ±1 . 

We have omitted the equator, where x 2 +y2 = 1, because some subsequent 
quantities involve division by positive powers of 1 - x2 - y2. Here, 8 = ±1 
corresponds to the upper and lower hemispheres, respectively. It turns out 
that only 8 2 (which is 1) enters the crucial steps leading to the formula 
for F. Thus the Finsler structure on the upper hemisphere is the same 
as that on the lower hemisphere. We later see-from the "2C term" in 
{12.7.4)-that F is positively but not absolutely homogeneous. 

With the present graph parametrization, one finds that 

( 10 -X8 ) 
, '../1-x2 - y2 

= (0 1 -Y 8 ) , '../1- X2 _ y2 

Thus an arbitrary tangent vector to 8 2 at X is 

Y := u ax + v ay = (u, v, _--;8=:==,=[X=U=;;=+=,y,=v=;ff:] ) 
../1-x2 - y2 

Note that by construction, our X lies on 8 2 and Y is tangent to 8 2 . So 
there is no need to projectivize. 
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To minimize clutter, let us also introduce the following abbreviations: 

r2 .- x2 + y2 , 
p2 .- 1- r2 , 

B .- 2r2 - 1 , 

R2 .- u2 + v2 , 

0 .- xu + yv , 

a .- (1 + B 2)[(p2 R2 + 0 2) + B (p2 R2 - 0 2)] + 8 (1 + B) 0 2 p4 , 

b .- (1 + B 2)[(p2 R2 - 0 2) - B (p2 R2 + 0 2)] - 8 (0 + B) 0 2 p2 . 

We emphasize that in b, the very last term contains 0 2 p2 and not 0 2 p4. 
Straightforward computations yield: 

Q(X,X) 

Q(X,Y) 

Q(Y,Y) 

And 

Re [- i ~i~:~~] 20 
1 +B2 ' 

Q(Y, Y) _ [Q(X, Y) ] 2 

Q(X,X) Q(X,X) 
a + i b 

Consequently, the formula for the Finsler function is 

(12.7.4) F(X Y) = _1_ [~ .1 a+va2 +b2 + 20] 
, 1 + B2 P V 2 

Note that the quantity a is a quadratic, and that a2 + b2 is a quartic! Let 
us contrast (12.7.4) with the Riemannian metric induced on the graph 8 2 

by the Euclidean metric (dot product) of 1R.3 . The corresponding norm is 

(12.7.5) F(X, Y) = ~ J p2 R2 + 0 2 . 

We tried to use Maple to demonstrate symbolically that the Gaussian 
curvature of the Finsler metric in (12.7.4) is 1, but failed. However, we have 
succeeded in obtaining numerical evidence of K = 1 by plugging (randomly 
selected) specific positions X (with x2 + y2 « 1) and tangent vectors Y 
into the Maple expression for K. The answer is, up to many decimal places 
of accuracy, always 1. Here is a sample documentation: 
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> r:=sqrt(x"2+y"2): 
> P:=sqrt(1-r"2): 
> B:=2*r"2-1: 
> R:=sqrt(u"2+v"2): 
> C:=x*u+y*v: 
> a:=(1+B"2)*((P"2*R"2+C"2) +B*(P"2*K2-C"2)) 

+8*(1+B)*C"2*P"4: 
> b:=(1+B"2)*((P"2*R"2-C"2) -B*(P"2*R"2+C"2)) 

-8*(0+B)*C"2*P"2: 
> rt:=sqrt((a+sqrt(a"2+b"2))j2): 
> F:=(rtjP+2*C)j(1+B"2): 
> L:=F"2j2: 
> Lx:=diff(L,x): 
> Ly:=diff(L,y): 
> LU:=diff(L,u): 
> Lv:=diff(L,v): 
> Lxv:=diff(Lx,v): 
> Lyu:=diff(Ly,u): 
> Luu:=diff(Lu,u): 
> Luv:=diff(Lu,v): 
> Lvv:=diff(Lv,v): 
> DN:=2*(Luu*Lvv-Luv*Luv): 
> G:=((Lx*Lvv-Ly*Luv)+(Lyu-Lxv)*Lv)jDN: 
> H:=((Ly*Luu-Lx*Luv)+(Lxv-Lyu)*Lu)jDN: 
> Gu:=diff(G,u): 
> Gv:=diff(G,v): 
> Guu:=diff(Gu,u): 
> Gqv:=diff(Gu,v): 
> Gyx:=diff(Gv,x): 
> Guy:=diff(Gu,y): 
> Hu:=diff(H,u): 
> K: =((Qvx-Guy)*v+2*G*Guu+2*H*Guv-Gu*Gu-Gv*Hu)j (v*Lv): 
> x:=0.2: 
> y:=0.2: 
> u:=O.O: 
> v:=0.5: 
> K; 

1.000000089 
This Maple computation took almost 20 minutes! 

For choices of x, y such that x2 + y2 is close to the limiting value 1 (that 
is, for positions X near the equator), the computation time needed is con­
siderably longer. And the accuracy drops off sharply too. 

A much more efficient program can be had by changing to polar co­
ordinates r, () in parameter space. In that case, x = r cos (), y = r sin (), 
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and 
a a 

u- + v-
ax ay 

One can check that 

(12.7.6) u = pcos(} - qrsin(} , v 

Hence 

(12.7.7) 

(12.7.8) xu+yv=rp. 

p sin(} + q r cos(} . 

These are used to re-express the quantities Rand C that enter into the 
definition of F, so that F(x,YiU,V) = F(r,(}iP,q). 

Now comes a simple but conceptually important point. Recall formula 
(12.5.14), upon which our Maple code for K is built. In the code, beginning 
with the line "Lx:= ... " and ending with the line "K:= ... ," the x and Y are 
merely abbreviations of arbitrary coordinates Xl and x 2 on 8 2 , while u and 
v abbreviate the corresponding coordinates yl and y2 on the tangent planes. 
The point is, rand () are legitimate choices for Xl and x 2 • Consequently, p 
and q are perfectly fine as yl and y2. This freedom comes about because 
K is intrinsic. It does not depend on the coordinates used to calculate it. 

FUrthermore, the economy in using these new coordinates, as opposed to 
the Cartesian ones, is that our example has no (}-dependence whatsoever. 
Hence lines of code concerning () derivatives can be dropped. The new and 
simplified Maple code, together with a sample run, reads: 

> P:=sqrt(1-rA2): 
> B:=2*rA2-1: 
> R:=sqrt(pA2+rA2*qA2): 
> C:=r*p: 
> a:=(1+BA2)*((PA2*K2+CA2) +B*(PA2*K2_CA2)) 

+8*(1+B)*CA2*PA4: 
> b:=(1+BA2)*((PA2*K2_CA2) _B*(PA2*K2+CA2)) 

-8*(O+B)*CA2*PA2: 
> rt:=sqrt((a+sqrt(aA2+bA2))/2): 
> F:=(rt/P+2*C)/(1+BA2): 
> L:=FA2/2: 
> Lr:=diff(L,r): 
> Lp:=diff(L,p): 
> Lq:=diff(L,q): 
> Lrq:=diff(Lr,q): 
> Lpp:=diff(Lp,p): 
> Lpq:=diff(Lp,q): 
> Lqq:=diff(Lq,q): 
> DN:=2*(Lpp*Lqq-Lpq*Lpq): 



> G:=(Lr*Lqq-Lq*Lrq)/DN: 
> H:=(Lp*Lrq-Lr*Lpq)/DN: 
> Gp:=diff(G,p): 
> Gq:=diff(G,q): 
> Gpp:=diff(Gp,p): 
> Gpq:=diff(Gp,q): 
> Gqr:=diff(Gq,r): 
> Hp:=diff(H,p): 
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> K:=(Gqr*q+2*G*Gpp+2*H*Gpq-Gp*Gp-Gq*Hp)/(q*Lq): 
> r:=O.5: 
> p:=O.O: 
> q:=l.O: 
> K; 

.9999991812 
bytes used=89659664, alloc=80463472, time=48.15 

The runtime and accuracy begin to suffer only when r exceeds 0.95. 

Exercises 

Exercise 12.7.1: 

(a) Check that corresponding to the choice p = 0 = ,"(, Bryant's metric 
(12.7.3) is indeed Riemannian. 

(b) Deduce the formula for the Riemannian F of (12.7.5). How does it 
compare with that in part (a)? 

Exercise 12.7.2: Provide all the details in the derivation of (12.7.4). Then 
use it to show that every great circle which passes through the North Pole 
on Bryant's 2-sphere has Finslerian length 21[. 
Exercise 12.7.3: Recall formulas of G:= ~Gl, H:= ~G2 from (12.5.7). 

(a) Calculate the quantities G and iI for the Riemannian structure F 
on ff2, as described by (12.7.5). It gives the standard 2-sphere. 

(b) Compare these with the G and H for the Bryant metric depicted 
in (12.7.4). Specifically, use Maple to demonstrate symbolically that 
(G - G)/u = (H - H)/v . 

Two Finsler metrics (on a given surface) that satisfy the above criterion are 
said to be projectively related. The function common to the left-hand 
and right-hand sides is ~ times our projective factor. Part (b) shows 
that the Bryant metric defined by (12.7.4) is projectively related to the 
standard Riemannian metric, both living on the 2-sphere. 
Exercise 12.7.4: Consider the parametrization 

1 
( x, y) 1-+ ( x, y, ±1) . 

VI +x2 +y2 
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Use +1 (resp. -1) when parametrizing the upper (resp. lower) hemisphere. 

(a) Draw a picture to bring out the geometry behind this map. Show 
that it parametrizes each of the hemispheres (excluding the equator) 
with the entire plane ]R2. Explain why the equator corresponds to 
points at infinity in ]R2. 

(b) Carry out the analysis and Maple computations, as in §12.7B, for 
this parametrization. 
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Riemannian Manifolds and Two of 
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* References for Chapter 13 

13.1 The Levi-Civita (Christoffel) Connection 

A Riemannian metric 9 on a manifold M is a family of inner products 
{9xbEM such that the quantities 

9ij (x) := 9 ( {)~i ' {)~j ) 

are smooth in local coordinates. The Finsler function F(x, y) of a Riemann­
ian manifold has the characteristic structure 

F(x, y) = J 9ij (x) yi yj . 

In that case, the fundamental tensor (~F2)yiyj is simply 9ij(x), which is 
independent of y. 
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Let us recall a construction in the generic Finsler case, from §2.1. For 
each fixed x E M, we erected a copy of TxM over every point (x, y) in the 
parameter space T M ...... O. Then we assigned the inner product gij (x,y) dxi ® 
dx j to each such TxM. If we were to insist on this setup for the Riemannian 
case, the amount of redundancy would be embarrassing because all these 
inner product spaces corresponding to a fixed x are identical. For this 
reason, we work with one single copy of TxM over the point x, and endow 
it with the inner product gij (x) dx i ® dxj. Consequently, the vector bundle 
ofrelevance is the tangent bundle TM over M, rather than the pulled-back 
bundle 7r*T Mover T M " o. 

Under this simplification, the Chern connection of §2.4 reduces to the 
usual Levi-Civita (Christoffel) connection, described below. Take an 
arbitrary local frame {bi : i = 1, ... , n} of T M. Denote the corresponding 
(naturally dual) coframe of T* M by {Wi}. The structural equations of the 
Levi-Civita (Christoffel) connection w/ are: 

* Torsion-freeness: 

O. 

* Metric-compatibility: 

dgij - gkj w/ - gik w/ O. 

Here, 

gij := g(bi , bj ) . 

If the local frame happens to be orthonormal, then gab equals the Kronecker 
delta Dab, and the metric-compatibility criterion reads Wab+Wba = O. In that 
case, the connection forms, with both indices down, are skew-symmetric in 
those two indices. 

There are two other ways to describe these structural equations. The first 
one is coordinate-free, while the second one is not. In any case, we begin 
by defining the covariant directional derivative of bj along bk : 

"bkbj := w/(bk) bi =: rijk bi . 

Extending this by linearity and the product rule, one can define the covari­
ant derivative of any tensor field on M. As an example, for the rank G) 
tensor T:= Tij bi ® wj , we have 

"bk T = (dT i . + T S. W i J J S 

=: Tijlk bi ® wj , 

where 
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Using '\1, the coordinate-free description of the structural equations is: 

'\1xY - '\1y X 

'\1g 

[X , Y 1 for all vector fields X, Y , 

O. 

On the other hand, the description in terms of natural coordinates is 

This has its merits. To uncover that, rewrite metric-compatibility as 

(*) 
8gij 

f ijk + fjik = 8xk 

and use the so-called Christoffel's trick. Namely, apply (*) to the com­
bination 

(frjk + f jrk ) - (fjkr + fkjr) + (fkrj + frkj) , 

and impose the symmetry 

fsqp = fspq . 

After much cancellation and raising the index r, one finds that 

(13.1.1) 

Compare with formula (2.4.10). The right-hand side of (13.1.1) consists of 
the Riemannian metric's Christoffel symbols of the second kind. 

Exercises 

Exercise 13.1.1: 

(a) Use metric-compatibility to show directly that the following is al­
ways valid on a Riemannian manifold. Let V and W be vector fields 
along any smooth curve a(t) with velocity T, then: 

1 ~ g(V, W) = g( Dr V , W) + g( V , Dr W) I· 

(b) Explain how this could also have followed from Exercise 5.2.3. 

Exercise 13.1.2: Carry out the Christoffel trick to derive (13.1.1) in detail. 
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13.2 Curvature 

The curvature 2-forms of the Levi-Civita (Christoffel) connection are 

(13.2.1) 

Our convention on the wedge product does not include any normalization 
factor. Thus, for example, the wedge product of two I-forms is 

() /\ (, := () ® (, - (, ® () , 

without the factor of ~. 
Since the n/ are 2-forms on the manifold M, we can expand them as 

o 1 0 k I n/ := "2 R/ k1 W /\w . 

The quantities R j i kl are the components of the curvature tensor. In 
natural coordinates, it has the formula 

(13.2.2) 
a,ijk i h i h 
--1- + 'hk' JOI - 'hi' JOk ax 

Compare with formula (3.3.2). 

13.2 A. Symmetries, Bianchi Identities, the Ricci Identity 

Lowering the index i on R gives the Riemann tensor: 

Rjikl := gis R/ kl . 

The Riemann tensor has beautiful symmetry properties: 

Rjilk - Rjikl , 

(13.2.3-5) R;jkl - Rjikl , 

R k1ji + Rjikl . 

These are obtained by specializing (3.1.3), (3.4.4), and (3.4.5) to the Rie­
mannian setting. 

Next, we turn to the Bianchi identities. The first Bianchi identity is 
algebraic: 

(13.2.6) 

The second Bianchi identity involves covariant differentiation: 

(13.2.7) R/ k11m + R/1m1k + R/mkll = 0 I· 
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Here, the covariant differentiation I is as defined in §13.1. For example, in 
natural coordinates, we have 

R P .- 8Rlrs R P v + R v P R P v R P v 
q Tslt .-~ - v rs 'Y qt q rs 'Y vt - q vs 'Y rt - q rv 'Y st . 

The above Bianchi identities are the Riemannian versions of (3.2.4) and 
(3.5.3). 

The Ricci identity measures the difference between the double covari­
ant differentiation Ijli and its interchanged version, namely, liU. For this 
reason, it is sometimes known as the interchange formula. The formula 
below comes from restricting (3.6.1) to Riemannian manifolds. When ap­
plied to a tensor field T of rank G), it reads: 

(13.2.8) 

The above index correction pattern extends to tensors with any number of 
up and down indices. 

13.2 B. Sectional Curvature 

Restricting the concept of flag curvatures (§3.9) to Riemannian geometry, 
one gets sectional curvatures. As a review, let us begin with the notion of 
a flag on M. The act of installing a flag at x E M necessitates a nonzero 
U E TxM which serves as the flagpole. The actual flag itself is described 
by one edge along the flagpole and another transverse edge, say V := 

Vi 8~i. It is denoted by U 1\ V. As we show, the actual "length" of the edge 
along the flagpole plays no role in the sectional curvature. 

Now that we have a flag, we can associate with it a number K(U, V). It 
is obtained by carrying out the following computation at the point x E M: 

Vi (uj Rjikl U1 ) Vk 
(13.2.9) K(U, V) := 

g(U, U) g(V, V) - [g(U, V)J2 

The quantity K(U, V) is called the sectional curvature of the flag U 1\ V 
at the point x. It has certain basic properties: 

• K(U, V) = K(V, U). 
• K(U, V) remains unchanged if we multiply U or V by any nonzero 

number. 

• More generally, if U := a. U + /3 V and V := 'Y U + 8 V, where 
0'.8 - /3'Y =1= 0, then K(U, V) = K(U, V). 

In the Riemannian case, the quantities Rjikl and g depend only on x. 
This is unlike the generic Finslerian case, in which they depend on both 
the position x and the direction y E TxM. Consequently, the sectional 
curvature K(U, V) is a function of the position x and the flag U 1\ V, but 
has no separate dependence on the flagpole U. 
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* For Riemannian surfaces, there is only one sectional curvature 
K = K(x) at each point x. This function K is called the Gauss­
ian curvature function. It is computed as follows (see fOnD. Take 
a g-orthonormal frame field WI, w2 • The Levi-Civita (Christoffel) 
connection is comprised of a single I-form because Wl 1 = 0 = W22 

and W12 = -W21. Finally, 

&.;/ = K wl l\w2 • 

Compare this with our treatment of Finsler surfaces in Chapter 4, 
especially (4.4.5). 

* In dimensions n ~ 3, there are many different 2-planes within each 
tangent space. Thus the sectional curvature typically depends on 
both the position x and the choice of the 2-plane. Nevertheless, one 
might wonder whether there are situations in which K has no depen­
dence whatsoever on the 2-planes chosen. By specializing Schur's 
lemma (Lemma 3.10.2) to the Riemannian setting, we see that: 

The sectional curvature K has no dependence on the 2-
planes defining the flags if and only if it is a constant on 
each connected component of our Riemannian manifold. 

Sectional curvatures completely determine the full curvature 
tensor. If K has the constant value .x, such is apparent from Proposition 
3.10.1, which says that 

(13.2.10) 

See also Exercise 3.10.7. As for the general case, we need an abbreviation 
to minimize clutter. Set 

(U,V) 
.. l k 

.- V' (UJ Rjikl U ) V , 

so that (13.2.9) reads 

(U, V) = K(U, V) {g(U, U) g(V, V) - [g(U, vW } . 
In other words, the symbol (U, V) abbreviates the sectional curvature times 
the area squared of the flag in question. According to Exercise 3.9.6, 

.. k I 
6 WJ V' Rjikl X Y 

is equal to 

(X + V, Y + W) - (X + W, Y + V) 

+ (X + W, Y) + (X + W, V) + (X, Y + V) + (W, Y + V) 

- (X + V, Y) - (X + V, W) - (X, Y + W) 

+ (X, W) + (V, Y) - (W, Y) - (X, V) . 

(V,Y + W) 

This expression corrects two typographical errors in [CE], and agrees with 
the one given in [J]. 
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13.2 C. Ricci Curvature and Einstein Metrics 

The Ricci tensor is defined as 

(13.2.11) 

By (13.2.3)-(13.2.5), RiCij is symmetric in the indices i, j. Its trace is the 
scalar curvature S: 

(13.2.12) 

Do not confuse the scalar curvature with the Ricci scalar Ric defined in 
Exercise 3.9.5. The Ricci scalar is a scaling invariant function on the tangent 
bundle TM. Equivalently, it is a function on the unit tangent bundle. At 
any unit vector U, the value of Ric is Ui R/sj uj. Note that this is precisely 
a double contraction Ui uj RiCij, and is manifestly different from the trace 
gij Ricij' 

A Riemannian metric 9 is said to be an Einstein metric if 

RiCij = c gij for some constant c. 

The manifold (M, g) is then called an Einstein manifold. By tracing on 
the i and k indices in (13.2.10), we see that: 

If (M, g) is an n-dimensional Riemannian manifold of constant 
sectional curvature >., then it is also an Einstein manifold with 
constant c = (n - 1)>'. 

Conversely: 

• If (M,g) is an Einstein surface with constant c, then it must have 
constant Gaussian curvature c. This follows from the fact that 
RiCij = K gij' See Exercise 13.2.1. 

• If (M, g) is a 3-dimensional Einstein manifold with constant c, then 
it must have constant sectional curvature >. = ~. According to 
[KNl], this is a result of Schouten and Struik [SS]. Its proof 
uses only the hypothesized dimension and the symmetry proper­
ties of the Riemann tensor. The details are relegated to the guided 
Exercises 13.2.6 and 13.2.7. 

• Such a converse fails in higher dimensions. For example, in dimen­
sion four there are infinitely many (complete) Einstein metrics that 
do not have constant sectional curvature. See Exercise 13.2.8. 

We conclude with a Schur-type result. Suppose, instead of the above 
definition for Einstein metrics, we merely require the Ricci tensor to be 
a function multiple of g. Namely, Ricij = c(x) gij' Then all Riemannian 
surfaces satisfy this criterion. For higher dimensions, it turns out that the 
function c(x) must be constant on a connected Riemannian manifold. The 
derivation involves computations that center around the second Bianchi 
identity (13.2.7). See Exercise 13.2.9 for details. 
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Exercises 

Exercise 13.2.1: Let (M, g) be a Riemannian surface with Riemann cur­
vature tensor R jikl . Denote its Gaussian, Ricci, and scalar curvatures by 
K, RiCij, and S, respectively. 

(a) Explain why there is only one sectional curvature, and it is equal to 
the Gaussian curvature K. 

(b) Prove directly that Rjikl = K (gik gjl - gil gjk). 

(c) Show that Ricjl = K gjl. 

(d) Explain why (M,g) is an Einstein surface with constant c if and 
only if it has constant Gaussian curvature c. 

(e) Deduce that S = 2K. 

Exercise 13.2.2: 

(a) Explain why a Riemannian manifold is I-dimensional if and only if 
its metric has the form dO ® dO for some choice of coordinate O. 

(b) Show that the Gaussian curvature of the metric 

dr ® dr + r2 dO ® dO 

is identically zero. Here, r > O. 

(c) Let A be a positive constant. Consider the metric 

Show that this metric is Riemannian and has constant positive 
Gaussian curvature A. 

(d) Let A be a negative constant. Consider the metric 

1 . 
ds®ds - -:x- smh2(~s) dO®dO, 

where s > O. Show that this metric is Riemannian and has constant 
negative Gaussian curvature A. 

These describe model Riemannian surfaces. We will understand their ge­
ometry better by the end of §13.3. 

Exercise 13.2.3: On M := (0, 'If) X §l, let us define a family of Riemannian 
metrics as follows: 

This family is indexed by a positive constant A. Show that (M, g) has 
constant Gaussian curvature 1 for all A > o. 
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Exercise 13.2.4: At each point x in ~4, introduce the abbreviation p := 

Ixl. On ~4 ,,0, define the following global I-forms: 

1 
()l _ ( _ X4 dx l x 3 dx2 + x 2 dx3 + Xl dx4 ) , .- p2 

()2 1 
x 4 dx2 Xl dx3 x 2 dx4 ) , - - (+ x 3 dx l + p2 

()3 
1 

Xl dx2 x 4 dx3 x 3 dx4 ) . .- - (- x 2dx l + + p2 

(a) Explain why these ()i can be regarded as differential forms on the 
unit sphere §3. 

(b) Verify that 

d()l 2 ()2 1\ ()3 , 

d()2 2 ()3 1\ ()l , 

d()3 2 ()l 1\ ()2 . 

(c) Use part (b) to directly check that the metric E~=l ()i ® ()i on §3 

has constant sectional curvature l. 

(d) Show that the standard flat metric on ~4 can be re-expressed as 

3 

dp ® dp + p2 L ()i ® ()i . 

i=l 

Exercise 13.2.5: 

(a) Show that K(U, V) = K(V, U). 

(b) Suppose U:= aU +,6V and V:= ,,/U +8V, where 0.8 -,6,,/ =f. o. 
Check that K(U, V) = K(U, V). 

Exercise 13.2.6: 

(a) At any unit vector U, the value of the Ricci scalar Ric := Ui R/sj uj 
is precisely the double contraction U i uj Ricij. Use this fact to help 
show that: 

Given any fixed unit vector U on an n-dimensional Rie­
mannian manifold, the quantity Ui uj Ricij is the sum of 
(n - 1) sectional curvatures. 

Hint: consider U as a member in an orthonormal basis. 

(b) Let Ricij be the components of the Ricci tensor, relative to an arbi­
trary orthonormal basis {ei : i = 1, ... , n} at x. For any fixed index 
io, explain why 

Ricioio = L K( eio , ei) . 
i#io 
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Exercise 13.2.7: Let (M,g) be an Einstein manifold. Express the Ricci 
tensor with respect to an orthonormal basis. Write out RicH,"" RiCnn 
using part (b) of Exercise 13.2.6. 

(a) Suppose dimM = 3. Explain how the following equations come 
about: 

c K(el, e2) + K(el, e3) , 

c K(e2,ed + K(e2,e3) , 

c K(e3, el) + K(e3, e2) . 

In view of part (a) of Exercise 13.2.5, these equations involve only 
three unknowns. Solve them to show that the sectional curvatures 
are all equal to ~. 

(b) Suppose dimM ~ 4. In what way does the method in part (a) break 
down? 

Exercise 13.2.8: Let §2(3r) be the standard 2-sphere of radius 3r. Set 

(a) Define what should be meant by the product metric 9 on M. 

(b) Show that 9 is an Einstein metric with constant ~. 

Exercise 13.2.9: Let (M, g) be an n-dimensional connected Riemannian 
manifold. In this exercise, we prove the Schur-type theorem discussed at the 
end of the section. Let us begin with the second Bianchi identity (13.2.7), 
namely, 

R/ kllm + R/ lmlk + R/ mkll = O. 

(a) Contract with gjm, lower the index i, and then contract with gik. 
Demonstrate that the resulting equation is 

2 R · s S as 
zc lis = II = axl . 

Here, S is the scalar curvature defined in (13.2.12). 

(b) Suppose Ricij = c(x) gij' Check that one must have c(x) = ~ . 
(c) Substitute RiCij = ~ gij into the equation we obtained in part (a). 

Show that the result can be manipulated into the form 

(n - 2) Sil = O. 

(d) Explain why, if n ~ 3 and Ricij = c(x) gij, then the function c(x) 
must in fact be constant. 
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13.3 Warped Products and Riemannian Space Forms 

In this section, we discuss some special Riemannian manifolds. One of the 
most basic properties of Riemannian metrics, which general Finsler met­
rics do not have, is the splitting property. This feature is illustrated by 
examples here, under the guise of warped products. 

Let us be given two Riemannian manifolds (Ml ,9l) and (M2,92). Form 
the Cartesian product M = Ml X M2. The tangent space TxM at x 
(Xl, X2) has the natural decomposition 

Tx M = TXl Ml EB TX2 M2 . 

The canonical product metric 9 = 91 EB 92 on M = Ml X M2 is defined 
by 

9(U, v) := 9l(Ul,vd + 92(U2,V2) , 

where U = Ul EB U2, V = VI EB V2 are elements in TxM. More generally, 
suppose ¢ and 'IjJ are two real-valued Coo positive functions on M. Then 

9 := qi 91 EB 'ljJ2 g2 

is a Riemannian metric on M. It is called a warped product metric. 

13.3 A. One Special Class of Warped Products 

Many standard Riemannian metrics can be realized as warped products. 
Let us illustrate this phenomenon. Consider the Cartesian product M = 
(a, b) x M, where M is a smooth (n-1)-dimensional manifold. Let 9 be any 
Riemannian metric on M, and let rp: (a, b) ---+ (0, (0) be any Coo positive 
function. Define the following warped product: 

(13.3.1) 9 := dt®dt + rp2(t) g. 

Let us express the geometry of 9 in terms of that of 9 and the first two 
derivatives of the function rp. 

To this end: 

* Let {wc> : a = 2, ... ,n} be an arbitrary coframe on the (n - 1)­
dimensional M. Set 

WI := dt, wC>:= WC> (a = 2, ... , n) . 

Then {wa : a = 1, ... , n} is an adapted coframe on M. In this 
section, the lower case Greek indices run from 2 to n instead of the 
usual 1 to n - 1. Note that 

( 911 
9c>1 

gl{3 ) 

9c>{3 (~ 
(~ 
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In particular, if we begin with an orthonormal coframe on M, then 
the corresponding adapted coframe on M will only be orthogonal, 
but typically no longer orthonormal. 

* Denote the Levi-Civita (Christoffel) connection forms on M by 
{w,e"'}, and those on M by {Wb a}. They are characterized by torsion­
freeness and metric compatibility. Review §13.1. 

* The curvature forms of (M, g) are defined as 

n a ._ A,V. a v , 1\ v Cl 
f3 .- UWf3 - Wf3 w" 

and those on (M, g) are defined as 

nba := duJba - Wbc 1\ wca • 

We first compute the connection forms of M. This is most easily done 
by calculating the Christoffel symbols in natural coordinates. Set 

WI := dt, WCl:= wCl = dxCl (a=2, ... ,n), 

where the xCl are local coordinates on M. Together with Xl := t, they 
provide local coordinates on M. Straightforward computations give the 
connection forms: 

W I 
I 0 

W I 
<p' 

- -g w' f3 <p fh 

(13.3.2a-d) 
WCl 

<p' 
_WCl 

I <p 
I 

WCl = w,e'" + ~ 8,e'" dt. f3 
<p 

Upon exterior differentiation, we get the curvature 2-forms: 

(13.3.3a-d) 

n I 
f3 

o 
<p" 

- -- g dt I\w' <p /3'Y 

The components of the curvature tensors are contained in the above 
2-forms. 

n Cl 1 R Cl v, v~ 
f3 "2 f3,~ W 1\ W , 

f"lba 1 R a c d 
H "2 b cd W I\w . 
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In view of (13.3.3a-d), we find that: 

R/ed = 0 

Ried 
cp" 

= -:;;- (gfjC Old - gfjd Ole) 

(13.3.4a-d) " - ~ (OOe Old - OOd Ole) 

I 2 

Rled Rl,/; O'e Ot;d + (~) (gfjC OOd - gfjd O~) . 

Recall that the Ricci tensors are defined by 

Rico(:J := R: u(:J' Ricab:= Ras sb , 

in which the two automatic summations (one in u and one in s) are under­
stood. They are symmetric tensors. Formulas (13.3.4a-d) imply that: 

cp" 
Ricn - (n-1)-

cp 

(13.3.5a-c) = 0 = Ricl(:J 

v [ cp" ( cp' )2] = Rico(:J - -:;;- + (n - 2) --;-

Finally, the scalar curvature is the trace of the Ricci tensor: 

S := g0(:J Rico:(:J, S:= gab Ricab . 

Using (13.3.5a-c), one gets: 

(13.3.6) 1 v [ cp" (CPI)2] S = cp2 S - (n - 1) 2 -:;;- + (n - 2) --;- . 

Formulas (13.3.3)-(13.3.6) are tensorial. They are valid in any coframe 
on M, and in the corresponding adapted coframe on M. By specializing 
them to the case of 

cp(t) .- !i>.(t) .-

Jx sin( ~t) 

t 

.;. sinh( yC). t ) 
V-A 

one can deduce the following proposition. 

Proposition 13.3.1. 

{A>O} 
resp., for A = 0 , 

A<O 

* Let (M, g) be a Riemannian manifold of dimension n - l. 

* Set M := (0, r) x M, where r := 00 if A ~ 0 and r := Jx if A > O. 
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* On the n-dimensional M, consider the warped product metric 

9 := dt®dt + .5~(t) g. 

* Let k, Ri Co {3 , S be the sectional, Ricci, and scalar curvatures of 
(M,g). Denote their counterparts on (M,g) by K, Ricab, and S. 

Suppose dim M = 1. That is, n = 2. 

Then the warped product (M,g) is a Riemannian surface with 
constant Gaussian curvature K = >.. Equivalently, Ricab = >. gab 
orS=2>.. 

Suppose dim M ~ 2. That is, n ~ 3. 

(1) If (M,g) has constant sectional curvature i< = 1, then (M,g) has 
constant sectional curvature K = >.. 

(2) If Rico{3 = (n - 2) go{3, then Ricab = >. (n - 1) gab. 

(3) If S = (n - 1) (n - 2), then S = n (n - 1) >.. 

Remarks: 

• In the n = 2 case, the statements about K, Ricab, and S are equiv­
alent because of Exercise 13.2.1. The conclusion K = >. comes from 
Exercise 13.2.2. 

• As for the rest of the proposition, its proof involves direct applica­
tions of (13.3.4)-(13.3.6) and a keen awareness of go{3 = cp2 go{3. We 
omit the straightforward but tedious details. 

• For the n ~ 3 cases, conclusion (1) is most relevant to us. It shows us 
how to use induction to construct Riemannian space forms. And, for 
some special Riemannian metrics, it offers an elegant indirect way 
of getting the sectional curvature. We illustrate these techniques 
below. 

13.3 B. Spheres and Spaces of Constant Curvature 

Here are two applications of Proposition 13.3.1. The first one concerns the 
sectional curvature of the standard unit sphere §n. 

* Fix a pair of antipodal points on §n and call them the north and 
south poles. Orient the Cartesian axes of ]Rn+l such that the north 
pole has coordinates (0, ... ,0,1). In other words, it is along the 
positive xn +1 axis. 

* For each fixed choice of ° < ¢ < 7r, the n-dimensional hyperplane 
xn+ 1 = cos ¢ intersects §n at a standard (n - 1 )-sphere with radius 
sin ¢. In this light, the parameter 

¢ := cos-1(xn+l) 
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gives the colatitude of the said (n - 1 )-sphere. 

* This is the perspective of spherical coordinates. It gives a diffeo­
morphism p from §n" {the two poles} onto (0,71") X §n-l. One then 
finds that 

(13.3.7) 

except at the two poles. The metric, however, is smoothly defined 
(hence continuous) at these poles. The singularities are only of co­
ordinate nature. 

For n = 2, either Proposition 13.3.1 or Exercise 13.2.2 tells us that §2 

has Gaussian curvature 1 away from its two poles. By continuity, §2 must 
have K = 1 everywhere. Now apply Proposition 13.3.1 inductively to the 
recursion relation (13.3.7). We see that for n ~ 3, §n " {the two poles} has 
constant sectional curvature 1. By continuity again, the same holds for the 
entire unit sphere §n. 

As a second application of Proposition 13.3.1, we compute the curvature 
of some standard Riemannian metrics. In order to reduce clutter, let us 
introduce two abbreviations. At any point x = (Xl, ... ,Xn) E Rn, set 

Ixl .- J (x l )2 + ... + (Xn)2 

Xi .- 8ik Xk • 

For each constant >., the metric we are interested in is 9 := 9ij (x) dxi ®dx j , 

where 

(13.3.8) 

These gij can be extended smoothly to the origin x 

Riemannian metric 

{
the entire Rn : 

on V := 
the open ball : 

Ixl < 00 
71" 

Ixl < V>. 
} ""p., fo< 

o. And, 9 is a 

{ >.~o}. 
>'>0 

It is not difficult to deduce from (13.3.8) that, according to g, all points 
x at a fixed positive distance p(= Ixl) from the origin collectively take on 
the geometry of a standard sphere. But that sphere only has radius p if 
>. = O. For>. =I- 0, the radius in question is 5>.(p). To make this precise, 
consider the diffeomorphism 

p(x) := (lxI, ir ) 
from V" 0 onto (0,00) X §n-l. One can check that 

(13.3.9) 9 = p*[ dp®dp + 51(p) 9sn-l 1 
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except at the origin. Note that the origin is only a coordinate singularity 
because the metric g is smoothly (hence continuously) defined there. 

For n = 2, either Proposition 13.3.1 or Exercise 13.2.2 tells us that g has 
Gaussian curvature A away from the origin. By continuity, it must have 
K = A everywhere. Since we have shown that the standard unit spheres 
have constant sectional curvature 1, Proposition 13.3.1 immediately implies 
that, when n ~ 3, our Riemannian metric g has constant sectional curvature 
A away from the origin. By continuity, this must hold at the origin as well. 

13.3 C. Standard Models of Riemannian Space Forms 

Let us discuss the three cases A = 0, A > 0, and A < 0 in some detail. As 
in (13.3.9), P means Ixl· However, pull-back maps are suppressed. 

• For zero sectional curvature, the manifold in question is lRn. It is 
simply connected. The Riemannian metric at any point x away from 
the origin has the description 

dp ® dp + p2 gsn-l' 0 < P < 00 . 

This is none other than the usual Euclidean metric Oij dxi ® d,xj 
expressed in spherical coordinates (which has the origin as a coordi­
nate singularity). The resulting Riemannian manifold is complete, 
and is known as the flat or Euclidean model. 

• For constant positive sectional curvature A > 0, the manifold is 
technically the open ball of radius Jx, centered at the origin of 
Euclidean an, n ~ 2. It is simply connected. The Riemannian metric 
is 

7r 
O<P<v'X. 

It can be extended smoothly to the origin, where p = o. 
The above Riemannian metric is not complete. To find its com­

pletion, let us consider the standard n-sphere of radius Jx, centered 

at the origin of Euclidean an +!. As in the discussions leading up 
to (13.3.7), we introduce the colatitude </J which ranges from 0 to 
7r. These two values correspond to the north and the south poles, 
respectively. The ambient Euclidean structure induces a Riemann­
ian metric on this sphere. Parametrizing the sphere with spherical 
coordinates (of which </J is one), one finds that the induced metric 
looks like 

~ d</J ® d</J + ~ sin2 (</J) gsn-l' 0 < </J < 7r . 

Note that </J = 0,7r are coordinate singularities. 
Instead of the angular variable </J, let us use s := lx </J instead. 

The quantity s measures arc length along a longitude, from the 
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north pole down to the point with colatitude ljJ. The induced metric 
on our sphere then has the description 

ds®ds + ± sin2(V,Xs) gsn-l' 0 < s < :Ix 
away from the two poles. This is identical in form to the one on the 
open ball. 

Therefore the completion we seek is the n-sphere of radius Jx, 
together with its Riemannian structure induced by the Euclidean 
ambient space. Since n ;;:: 2, this standard sphere is simply con­
nected. It has constant positive sectional curvature .x, and is known 
as a spherical or an elliptical model. 

• For constant negative sectional curvature .x < 0, the manifold in 
question is again Rn, which is simply connected. The Riemannian 
metric in this case is 

1 . 
dp®dp - ~ smh2(Np)gsn_l' O<p<oo. 

It can be smoothly extended to the origin (where p = 0). The re­
sulting Riemannian manifold is complete. 

The above Riemannian manifold is isometric to the Poincare 
model of hyperbolic space. For simplicity, let us only demon­
strate this for a special case: n = 2 and .x = -l. 

The underlying manifold of the Poincare disc is the open disc of 
radius 2, centered at the origin of R2. See [On]. (For higher dimen­
sions and arbitrary negative constant .x, see [KN1].) Its Riemannian 
metric in polar coordinates r, () is 

1 
---;2'-- (dr ® dr + r2 d() ® d()), 0 < r < 2 . 
[1 - ':t J2 

The origin (where r = 0) is only a coordinate singularity. Set 

( 1+!: ) 
s := log 1- ~ . 

Straightforward calculations show that this converts the metric to 

ds®ds + sinh2(s) d()®d() , 0 < s < 00, 

as claimed. 

Any complete, simply connected Riemannian manifold of constant sec­
tional curvature .x is called a Riemannian space form. We have examined 
three specific models of Riemannian space forms: 

* Euclidean space lEn. 

* The standard spheres. For .x = 1, the standard sphere we need is 
simply the unit sphere §n. 
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* Hyperbolic spaces. For -\ = -1, the usual notation for the hyperbolic 
space in question is lHln. 

It is shown in the next section that every Riemannian space form is neces­
sarily isometric to one of these models. 

Exercises 

Exercise 13.3.1: Transform (13.3.2) from the adapted coordinate coframe 
into an arbitrary adapted coframe. Do the formulas remain unchanged in 
form? 

Exercise 13.3.2: Fill in the details in the derivation of (13.3.3)-(13.3.6). 

Exercise 13.3.3: Use (13.3.4)-(13.3.6) to prove Proposition 13.3.I. 

Exercise 13.3.4: 

(a) Show that the analogue of (13.3.7) for a sphere of radius cis 

ds ® ds + c2 sin2 ( : ) gsn-l . 

Here, s equals c times the colatitude ¢ introduced in (13.3.7). 

(b) Establish (13.3.9). 

Exercise 13.3.5: We claimed that the metric defined by (13.3.8) extends 
smoothly to the origin 0 of Rn. For each of the three cases -\ = 0, -\ < 0, 
-\ > 0, identify explicitly the inner product on the tangent space ToRn. 

Exercise 13.3.6: Let (M, g) be a Riemannian manifold. 

(a) Let, be a positive constant. Define a new Riemannian metric 9 := 
'g on M. Show that: 

gij 'gij , 

gij 
1 .. 
_ g'3 , 

~i 

'Y jk 
i 

'Y jk , 

R-/ kl R/ kl , 

Rjikl 'Rjikl' 

K(U,V) 
1 
- K(U, V), , 

Ricij Ricij , 

S = ~ S. , 



13.4 Hopf's Classification of Riemannian Space Forms 369 

(b) Suppose the positive constant c is replaced by a positive smooth 
function c(x) on M. What happens to the above transformation 
formulas? Hint: see pp. 183-184 of [SY] if necessary. 

13.4 Hopf's Classification of Riemannian Space Forms 

There are three technical ingredients that we need for proving Hopf's clas­
sification theorem. One holds only for complete Riemannian manifolds of 
constant sectional curvature, while the other two are valid on arbitrary 
Riemannian manifolds. Let us describe them in turn. 

Let (M, 9) be a complete Riemannian manifold of constant sectional 
curvature A. Fix p E M and consider the exponential map expp : TpM --+ 

M. Since we have hypothesized completeness, (6.1.7) is valid for all y. 
Namely, for all y and for all 0 < t ~ 1, we have 

(*) t2 9 ( (expp*)(ty) Vi , (expp*) (ty) V2) = Sir2 (t) gp (ty) (VI, V2) , 

where r denotes V9(y,y). Here, VI, V2 are tangent vectors on the linear 
manifold TpM that emanate from the point ty and are gp-orthogonal to 
the straight ray in question. And 

1 
sin( J:X rt) 

J:Xr 
t {A>O} 

resp., for A = 0 . 

~ sinh( v'-Xrt) 
v-Ar 

Let us simplify (*) a bit. 

A<O 

* On the right-hand side, gp (ty) is simply 9ij (p) dyi Q9 dyj because 
the 9ij depend only on p. Each tangent vector V := Vi a~i of the 
linear manifold TpM can be regarded as a "point" (again denoted 
V) Vi a~i of TpM. To keep pace with this change of perspective, we 
replace 9ij (p) dyi Q9 dyj by 9ij (p) dxi Q9 dxj , which is 9p. Thus 

gp (ty) (Vi, VS) = 9p(Vi, V2) . 

* Express y as rY, where Y has unit length, and abbreviate rt as 7. 

Note that S>..r2(t) = ~S>..(7). Then (*) becomes 

72 9( (expp*) (TY) VI, (expp*hTY) V2) = si (7) 9p(VI, V2) , 

where 0 < 7 < 00. 

Now relabel Y as y and 7 as t. We have just demonstrated that on a com­
plete Riemannian manifold of constant sectional curvature A, the following 
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holds: 

(13.4.1) 

for all (unit) directions y E TpM, all VI, V2 that are gp- orthogonal to y, 
and all positive t. Here, 

Jx sin( V>.. t ) 

5>.(t) .- {A>O} 
resp., for A = 0 . 

A<O 
t 

~ sinh( yC). t ) 
V-A 

As t -+ 0+, the left-hand side becomes gp(VI , V2 ). L'Hopital's rule shows 
that on the right, s>--/t) approaches 1. Therefore we may say that (13.4.1) 
is valid at t = 0 as well. 

Two more ingredients are needed in the proof of Hopf's classification 
theorem. Given an arbitrary Riemannian manifold: 

• The Gauss lemma (Lemma 6.1.1) tells us that 

(13.4.2) 

for all constants 0:, and for all V that are gp-orthogonal to y . 
• Also, observe that T(t) := (expp*)(ty)y is the velocity field of the 

autoparallel expp(ty) , and T(O) = y. Thus, by Exercise 5.2.3 or 
Exercise 13.1.1, we see that 

(13.4.3) 

for all constants 0: and {3. 

Theorem 13.4.1 (Hopf). Let (M, g) be a complete connected Riemann­
ian manifold of constant sectional curvature A. Denote by eM, g) the stan­
dard model of a simply connected complete Riemannian space with con­
stant sectional curvature A. It is hyperbolic space for A < 0, Euclidean 
space for A = 0, and the standard sphere of radius J>: for A > O. Then: 

(1) There exists a smooth local isometry 'P : (M,g) -+ (M,g). It is an 
onto map and a covering projection. 

(2) If M is also simply connected, that surjection 'P must necessarily 
be injective, hence a smooth diffeomorphism. In that case, (M,g) is 
isometric to CM, g). 

Remark: The essence of our proof comes from that given in Gallot-Hulin­
Lafontaine [GHL]. But our exposition is quite a bit more leisurely. 
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Proof. Here, both M and M are complete and connected. So, according 
to Theorem 9.2.1, every smooth local isometry cp : M -t M must be an 
onto map and a covering projection. 

Also, (2) follows from (1). Indeed, M is simply connected and M, 
being a manifold, is always locally simply connected. Therefore at 
any point p EM, the group of deck transformations is isomorphic 
to the fundamental group 7r{M,p). If M is hypothesized to be 
simply connected as well, then 7r{ M, p) is trivial and consequently 
there is only one deck. So the surjection cp is injective, and is thus 
a diffeomorphism. By (1), this diffeomorphism cp is presumed to 
be a smooth local isometry; therefore it is a smooth isometry. 

It suffices to construct the smooth local isometry cpo As we show, there 
are three levels of subtlety. The A = 0 case is the simplest. It is followed by 
the A < 0 case, in which we have to come to terms with a conformal factor, 
albeit straightforwardly. The same issue of a conformal factor resurfaces in 
the A > 0 case, but this time the peripheral arguments are complicated by 
a topological feature of the sphere. 

The A = 0 case: 
Fix any point p E M and consider the exponential map expp. It is smooth 

because we are in the Riemannian category. 
Since A = 0, we have .5>.{t) = t in (13.4.1). This, together with (13.4.2) 

and (13.4.3), tells us that expp is a local isometry between (TpM, gp) and 
(M,g). The domain (TpM, gp), being a finite-dimensional inner product 
space, is complete. Also, both the domain and the target space are con­
nected. By Theorem 9.2.1, the map expp must in fact be surjective, and 
is a covering projection. (Note: This last conclusion also follows from the 
Cart an-Hadamard theorem.) 

Now (TpM, 9p) is, upon the choice of an orthonormal basis, isometric 
to Euclidean ]Rn, which is the (M,g) in the A = 0 case. Call this linear 
isometry f : (M, g) -t (TpM , gp). 

Finally, define cp := expp 0 f and we are done. 

The A < 0 case: 
Again, fix p EM. We have the smooth exponential map expp : TpM -t 

M. Since the sectional curvatures are negative, Proposition 9.1.2 tells us 
that no geodesic can contain any conjugate points. Thus, by Proposition 
7.1.1, the exponential map expp is a local diffeomorphism. (As a matter of 
fact, the Cart an-Hadamard theorem says that in this case, the exponential 
map is a covering projection. But that is considerably more than what is 
relevant.) 

Let p be any point in hyperbolic space (M, g). Since M is simply con­
nected, the Cart an-Hadamard theorem (Theorem 9.4.1) assures us that 
the exponential map exPp : TpM -t M is a smooth diffeomorphism. Hence 
its inverse makes sense. 
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Choose an orthonormal basis for TpM and one for TpM. This gives rise 
to an isometry f : (TpM, gp) ---+ (TpM, 9p). 

Consider the composition 

f 
<{J : (M, g) ----+ (TpM , gp) ----+ (TpM , 9p) ----+ (M,9)· 

Observe that at the point p E M, the derivative <{J* is f*, which is a lin­
ear isometry. So, it is the behavior of <{J* away from p that we need to 
understand. 

* Take any point x E M different from p. Completeness implies (see 
Proposition 6.5.1) that there is a unit speed geodesic expp(ty) from 
p which reaches x when, say, t = r > O. Take any two tangent 
vectors at x that are g-orthogonal to this geodesic. Since expp 
is invertible, we can express these vectors as (expp*)(T)J) Vi and 

(expp*) (ry) V2 • The Gauss lemma (Lemma 6.1.1) then implies that 

Vi and V2 are both gp-orthogonal to y in TpM. Now use the fact 
that (expfi i )* = (expp*)-i, together with (13.4.1) applied to (M, g). 
After a slight rearrangement, we get 

This shows that on tangent vectors at x which are g-orthogonal to 
the said geodesic, the action of (expfii)* is conformal, with confor-

1 s: t ,f=xr rna lac or sinh(,f=x r ) 

* The map f : (TpM , gp) ---+ (TpM , 9p ) is a linear isometry between 
inner product spaces. Since f is linear, its derivative f* may be 
identified with f itself. Under the linear isometry f, the straight 
ray ty gets transformed to one, say ty, in TpM. The vectors Vi, V2 

that are gp-orthogonal to y become vectors Vi, Y2 in TpM that are 
9p-orthogonal to y. Furthermore, 

9p(Vi' V2 ) = gp(Vi' i2) . 
This last statement holds because f is an isometry. It remains valid 
even if the vectors V are not orthogonal to the straight rays in 
question. 

* Since the vectors Vi, V2 in TpM are 9p-orthogonal to y, (13.4.1) says 
that 

In other words, on vectors that are 9p-orthogonal to the straight 
ray ty in TpM, the action of the derivative map expp* is conformal, 
with conformal factor sinh(,f=x r ) 

,f=xr 
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These three observations together establish that, on tangent vectors at x 
which are g-orthogonal to the geodesic expp(ty), the derivative of'P is con­
formal, with conformal factor 1. It turns out that 'P* also has conformal 
factor 1 along other directions, primarily because of the Gauss lemma. Such 
can be deduced by decomposing arbitrary tangent vectors into components 
along and orthogonal to the geodesic in question, then following with ju­
dicious applications of (13.4.2), (13.4.3) to (M, g) and (£1, g). Therefore 'P 
is a smooth local isometry. 

The A > 0 case: 
As before, fix p E M and consider the smooth exponential map expp • 

Parts (2) and (3) of Theorem 9.5.2 say that the first conjugate point of 
p, in any direction y, occurs exactly at a distance of :h units along the 
geodesic expp(ty) emanating from p. Proposition 7.1.1, together with the 
Inverse Function theorem, then tells us that the map 

expp : Bp (:x) ~ M 

is a local diffeomorphism. 
Now fix p on the sphere £1. The antipodal point -p is the cut locus 

of p. So the injectivity radius at p is :h. This means that we have a 
diffeomorphism 

expp : Ep ( :x) ~ £1 ....... -p. 

Thus, on if ....... -p, the inverse expjj 1 makes sense. 

Choose an orthonormal basis for TpM and one for Tp£1. This gives rise 
to an isometry f : (Tp£1, gp) ~ (TpM, gp). In particular, the linear 
transformation f restricts to an isometry between the open tangent balls 
Ep(7r/v'A) and Bp(7r/v'A). 

Consider the composition 
--1 expp f 

'P : £1 ....... -p --+ M. 

At the point p E £1, the derivative 'P* is simply f*, which is a linear 
isometry. So, let us study instead the behavior of 'P* away from p. On 
arguments that are similar to those of the negative curvature case, we shall 
be brief. 

* Take any point x EM ....... -p that is different from p. Completeness 
implies that there is a unit speed geodesic expp( ty) from p which 
reaches x when t = r > O. Take any two tangent vectors at x that 
are g-orthogonal to this geodesic. Since expp maps diffeomorphically 

onto £1 ....... -p, we can express these vectors uniquely as (expp*) Cry) Vi 
and (expp*)Cry) iJ2. The Gauss lemma then assures us that both Vi 
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and V2 are gp-orthogonal to fj in TpM. Now apply (13.4.1) to (M, g). 
It leads to 

(v>. r )2 _ ( (_) - (-) T-T ) 
. 2 . f\ 9 expp* (ry) VI, expp* (ry) v2 • 

sm (VAr) 

Thus, on tangent vectors at x that are g-orthogonal to the said 
geodesic, the action of (expi I) * is conformal, with factor sinc3f r) . 

* The map f : (TpM, gp) ---7 (TpM, 9p) is a linear isometry be­
tween two inner product spaces. It transforms the straight ray tfj of 
Bp ( IT/v>.) into the straight ray ty of Bp ( IT/v>. ). The vectors Vi, 
f2 in TpM that are gp-orthogonal to fj become, under the derivative 
map f* (9:! 1), vectors VI, V2 in TpM that are 9p-orthogonal to y. 
Furthermore, 

This last statement remains valid even if the vectors V are replaced 
by vectors not necessarily orthogonal to the straight rays. 

* Since the vectors VI, V2 in TpM are 9p-orthogonal to y, (13.4.1) says 
that 

In other words, on vectors that are gp-orthogonal to the straight ray 

ty, the action of expp* is conformal, with factor sin~ r) 

The two nonunit conformal factors are reciprocals of each other. So, on 
tangent vectors at x that are g-orthogonal to the geodesic exr>p(tfj) , the 
derivative of <{J is conformal, with conformal factor 1. As in the negative 
curvature case, judicious applications of (13.4.2), (13.4.3) to (M, g) and 
(M,g) will show that <{J* also has conformal factor 1 along other directions. 
Therefore <{J is a smooth local isometry from the punctured sphere M " -p 
into M. 

We now extend the domain of definition of this <{J, so that it becomes a 
local isometry from the entire sphere Minto M. To this end: 

• First express the local isometry as a commutation relation: 

<{J 0 exp = exp 0 <{J* • 

This statement is valid everywhere on the punctured sphere M" -p. 
So we evaluate it at some fixed ij that is not -p, and get 

<(J 0 eXPq = expcp(q) 0 <{J* q . 

It is now ready to accept elements of TqM as inputs. 
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• Restrict the above to the open tangent ball 13q (7r / v:x) in Tq if. 
Then the inverse of eXPq exists, has domain if" -ij, and 

--1 
'P = exp",(q) 0 'P* q 0 eXPq . 

In order for both sides to make sense, the domain of this equation 
technically should not include the points -ij and -po 

• This is an interesting formula for 'P. It says that for every fixed 
choice of ij which is different from -p, our map 'P has the said 
representation on if" {-ij, -p}. Let us now agree to choose ij so 
that it is different from p as well. Then the right-hand side of our 
formula actually makes sense at the point -p ! 

• We have just discovered that the singularity -p in the original def­
inition of 'P is removable. And, we can extend 'P to -p by 

'P( -p) := [exp",(q) 0 'P* q 0 exp~l] (-p) . 

Since the extension was carried out solely with the commutation 
relation, one can check that the extended 'P retains its status as a 
local isometry. 

We have finally obtained a smooth local isometry from the standard sphere 
(if,g) into (M,g). This completes the proof of (1). Since we have already 
explained at the beginning how (2) follows from (1), the proof of Hopf's 
classification theorem is complete. D 

Exercises 

Exercise 13.4.1: Revisit the proof of Hopf's classification theorem for the 
A < 0 and A > 0 cases. There, we claimed that what was said, together 
with (13.4.2) and (13.4.3), implied that the constructed map <p was a local 
isometry. Fill in the details. 

Exercise 13.4.2: Recall our hyperbolic metric 

dp®dp - ~ sinh2(~p)g§n_l' O<p<oo 

on Rn. Here p means Ixl and, as pointed out before, this metric can be 
smoothly extended to the origin (where p = 0). 

(a) Write down the metric for the Poincare model, in dimension n, with 
constant negative sectional curvature A < O. Without doing any 
computation, explain why it is necessarily isometric to the above 
hyperbolic space. 

(b) Now calculate an explicit formula for this isometry. Hint: you might 
want to consult §13.3C. 
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13.5 The Divergence Lemma and Hopf's Theorem 

We begin with the fact that d..;g = ~ ..;g gij dgij . Equivalently, 

(13.5.1) a..;g _ ~. In ij agij 
axk - 2 v 9 9 axk 

For the purposes of this section, we rephrase this as 

(13.5.2) 1 'Y\k = 'Y\i = ~log yIg I· 

Using (13.5.2), a straightforward computation shows that 

(13.5.3) Viii yg =: ('VN i ) yg = ~ ( Vi yg) I. 
Here, 

V i . a Vi + Vk i li'= i 'Y ki 

is the divergence of the vector field V. 
We have the following divergence lemma: 

Lemma 13.5.1. Let V be any globally defined vector field on a compact 
Riemannian manifold (M, g) without boundary. Denote the volume form 
in natural coordinates by ..;g dx. Then 

1M (''ViVi) yg dx = o. 

Proof. Because M is compact, we can decompose it as a finite union of 
closed subsets Un whose interiors Uc. are mutually disjoint from each other. 
Furthermore, we may assume that each Un lies inside some coordinate 
neighborhood. 

Over each Un, we integrate (13.5.3) and get: 

l · l a . _ ('Vi V') yg dx = _ axi ( V' yg) dx . 
Ua Ua 

(*) 

To the right-hand side of (*), we apply the standard divergence theorem in 
Euclidean space. This converts (*) to the statement 

(**) C ('Vi Vi ) yIg dx = the outward flux of V through aUn . iVa 
Sum (**) over n . 

• Adding the left-hand sides produces IM ('Vi Vi )..;g dx. This is be­
cause the closed subsets have union equal to M, and their mutual 
intersections are either empty or have measure zero. 
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• Adding the right-hand sides gives zero. This is so because M is 
boundaryless, hence the oriented boundaries of the Uo. must cancel 
each other out algebraically. 0 

Let us apply the divergence lemma to deduce a theorem of Hopf's. Given 
any C2 function f on (M,g), define its Laplacian as 

(13.5.4) 

Equivalently: 

(13.5.5) 1 8 ( .. 8f ) 
l::l.f = ..f9 8xi ..f9 g23 8xi 

The function f is said to be harmonic if l::l.f = O. 

• Our definition of the Laplacian follows the tradition in analysis and 
geometry. There is no minus sign in front. However, when analysts 
and geometers speak about eigenvalues of the Laplacian, they use 
the equation (-l::l.)f = A f instead. This switch from l::l. to -l::l. 
ensures that the eigenvalues A are always nonnegative. See [SY]. 

• There is also the Laplace-Beltrami operator on differential forms, 
introduced in the next section. When that is applied to functions (0-
forms), one gets 8(dJ). Here, the codifferential 8 turns out to be the 
negative of the divergence. See (13.6.2). So, the Laplace-Beltrami 
operator and the Laplacian do differ by a sign. 

• In the literature, the above distinction is not so fastidiously main­
tained. Some may use the word "Laplacian" to abbreviate the phrase 
"Laplace-Beltrami operator." See, for instance, [BL1]. Others may 
use the symboll::l. to denote the Laplace-Beltrami operator. See, for 
example, [J]. 

Theorem 13.5.2 (Hopf). Let (M, g) be a compact connected Riemann­
ian manifold without boundary. Then every globally defined function f, 
with l::l.f ~ 0 everywhere or l::l.f ~ 0 everywhere, must be constant. In par­
ticular, there are no nonconstant globally defined harmonic functions on 
such M. 

Proof. By replacing f with - f if necessary, we may assume without loss 
of generality that l::l.f ~ 0 everywhere. 

In view of the divergence lemma and (13.5.4), we have 

1M l::l.f ..f9 dx = O. 

This integral makes sense because M is compact. Since l::l.f ~ 0 by assump­
tion, and f is C2 , we conclude that l::l.f =0 everywhere on M. 
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We now know that the said I is actually harmonic. In particular, 

1M I t11 V9 dx = o. 

Integrating by parts and using the divergence lemma again, we obtain 

- 1M gij Ili/lj V9 dx = o. 

Hence ad = Iii vanishes identically on M. Since M is connected, f must 
be constant. 0 

Exercises 

Exercise 13.5.1: 

(a) In the proof of the divergence lemma, explain in detail why the 
outward fluxes cancel out each other. 

(b) In the proof of Hopf's theorem, explain what is meant by "integrat­
ing by parts and using the divergence lemma." 

Exercise 13.5.2: Derive (13.5.5) from (13.5.4). 

Exercise 13.5.3: Suppose (M,g) is a compact Riemannian manifold with­
out boundary. Let f and <p be twice differentiable functions on M. Check 
that 

1M (f t1<p - <p t1/) V9 dx = O. 

This is a special case of Green's second identity. It shows that the 
Laplacian is a formally self-adjoint operator. 

13.6 The Weitzenbock Formula and the Bochner Technique 

In §13.5, we defined the Laplacian on functions. It is manifestly in diver­
gence form. Here, we extend that definition to differential k-forms. We show 
that the result can be manipulated into a divergence form plus corrections 
terms involving the curvature. Such is known as a Weitzenbock formula. 

Let (M,g) be an n-dimensional Riemannian manifold with volume ele­
ment dVg. A canonical one can be specified uniquely if Mis orient able. 

* In natural coordinates Xl, ... , x n , the volume element is taken to be 
V9 dx l /\ ... /\ dxn. 

* More generally, in an arbitrary coframe {Wi}, naturally dual to a 
frame {bj }, our dVg is given by Jdet[g(bi,bj )] WI /\ .•• /\wn. 
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Let us write generic k-forms () on M as 

(*) 
1 . . 

() = - (). . W'I A ... A WOk k! ·I····k , 

where each coefficient function ()il ... ik is totally skew-symmetric in all its 
indices. Our convention for the wedge product is as stipulated in §13.2. 
Thus, as a covariant tensor of rank k, the object () can be re-expressed 
as () = ()il ... ik wil ® ... ® wik without the fr. That factor is present in (*) 
because the spanning set {wil A ... A Wik } for k-forms is k!-fold redundant. 

The metric 9 defines an inner product on the k-forms and on the covariant 
tensors of rank k. These inner products are 

((), 1/J )corm .- ~! 1M ()il ... ik gidl ... gikik 1/Jil ... ik dVg , 

( () , 1/J hensor .-

They make sense, for example, on all objects with compact support. Not 
distinguishing these two inner products can lead to all sorts of paradoxes. 

Using the skew-symmetry of ()il ... ik' one can rewrite dO covariantly as 

(13.6.1) d() = (k ~ I)! (Vs ()il ... ik + cyclic perms.) W S AWil A··· AWik • 

Here: 

• Covariant differentiation of tensor components is denoted by Vs 
instead of Is' This choice of notation will bring out, in the simplest 
way, the nature of the combinatorics at hand. 

• Those additional terms inside the parentheses are all generated from 
the first by cyclic permutations on s, it, ... , ik. These terms all have 
plus signs when k is even, and alternating signs when k is odd. For 
example, 

k = 1 : d() = :! (Vs ()i - Vi ()s ) W S A Wi , 

k=2: d() 

Define the codifferential 6 [which converts a k-form into a (k - 1)­
form] to be the formal adjoint of d with respect to (, )corm, not (, hensor. 

Suppose () is a k-form and ifJ is a (k - I)-form, both compactly supported 
in the interior of Mj then 6() is implicitly given by 

(6(), ifJ )corm = ((), difJ )corm. 

Using (13.6.1) and integration-by-parts, we get the explicit formula 

(13.6.2) 
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* In this covariantized formula, Vi means gij V j. 

* Traditionally, the codifferential is defined as 6 := (_I)n(k+l)+l *d *, 
where * is the Hodge star operator. See, for example, [Wa]. 

On differential k-forms (), the analogue of the Laplacian is the Laplace­
Beltrami operator d 6 + 6 d. The zeroes of this operator are known as 
the harmonic k-forms. Using (13.6.1) and (13.6.2) judiciously, one finds 
that (d 6 + 6 d) () has the preliminary expression 

~ [_ 'r"7S'r"7 (). . + k ('r"7S'r"7. _ r7. 'r"7S) (). .] W il 1\ ... 1\ w ik k! v Vs .l ...• k V V' l V' l V S.2 ...• k • 

It is understood that the coefficients have to be explicitly antisymmetrized 
in the indices i l , ... ,ik. 

Applying the Ricci identity (13.2.8), followed by the first Bianchi iden­
tity (13.2.6), that preliminary expression can be converted to the following 
Weitzenbock formula: 
(13.6.3) 

(d6+6d)(} 
1· . 
- w'l 1\ .. ·I\w'k 
k! 

[ - VSVs (}il ... ik 

+ k RicilS (}Si2 ... i k + k(k;- 1) R/ili2 (}rSi3 ... ik] • 

We hasten to point out that: 

• The coefficients on the right-hand side must be explicitly antisymm­
etrized in the indices i l through ik . 

• Our Rlrs is written as RPqrs by some authors. 

As an application, consider the Weitzenbock formula for I-forms. The 
message in this case is particularly elegant, and reads: 

(13.6.4) 

Our application exemplifies the so-called Bochner technique. 

Theorem 13.6.1 (Bochner). Let () be a globally defined I-form on a 
compact boundaryless Riemannian manifold (M, g). 

* Suppose the quadratic form defined by the Ricci tensor of 9 is 
positive-definite. That is, RiCij Vi vj > 0 at x whenever V =/:-0 
at x. Then: () is harmonic if and only if it is identically zero. 

* Suppose the quadratic form defined by the Ricci tensor of 9 is non­
negative. That is, RiCij Vi vj ~ 0 for all V. Then: () is harmonic if 
and only if it is parallel; that is, V(} = o. 
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Proof. Take the inner product of (13.6.4) with (). All the integrals make 
sense because M is compact and () is globally defined. Carry out an 
integration-by-parts on the term involving the double covariant derivative. 
Since M is boundaryless, there is no subsequent boundary integral because 
of the divergence lemma (Lemma 13.5.1). The result reads: 

(13.6.5) { (), (d 8 + 8 d) () )corm = 1M ( Vs ()i V S ()i + RiCij ()i ()j ) dVg . 

Suppose the Ricci tensor is positive-definite: 
If () = 0, then it is trivially harmonic. Conversely, suppose (d 8+8 d) () = O. 

Then the left-hand side of (13.6.5) is zero. This means that two non­
negative integrals have a vanishing sum. Hence each must vanish. In par­
ticular, the integral of Ric((), ()) := RiCij ()i ()j is zero. Since Ric((), ()) is a 
continuous nonnegative function, it must vanish at each x. The hypothe­
sized positive-definiteness of RiCij now implies that () must be identically 
zero on M. 

Suppose the Ricci tensor is nonnegative: 
If V() = 0, then according to (13.6.1) and (13.6.2), () must be closed 

and coclosed, hence harmonic. Incidentally, if one had concentrated on 
(13.6.4) instead, then V() = 0 would seem to only imply that (d8 +8 d) () = 
Ric/ ()s wi. But that term on the right is actually expressible (see Exercise 
13.6.4) as a commutator of covariant derivatives on (). Thus it is zero after 
all, and we can again conclude that () is harmonic. 

Conversely, suppose (d8 + 8 d) () = O. Then the left-hand side of (13.6.5) 
is zero. Again, each integral must vanish. In particular, the integral of 
IIV()112 := Vs ()i VS ()i is zero. This implies that IIV()I! vanishes pointwise. 
Thus () is parallel. 0 

For matters such as Weitzenbock formulas in the Finslerian realm, see 
[BL3] and related articles in the monograph [ALl. 

Exercises 

Exercise 13.6.1: Derive the covariantized formulas (13.6.1) and (13.6.2). 

Exercise 13.6.2: 

(a) Let () be a globally defined k-form on a compact Riemannian mani­
fold without boundary. Prove that it is harmonic if and only if it is 
closed and coclosed. 

(b) Show that the Laplace-Beltrami operator is formally self-adjoint. 

Exercise 13.6.3: Establish the Weitzenbock formula (13.6.3) for the two 
simplest cases, namely, for I-forms and 2-forms. 
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Exercise 13.6.4: 

(a) Produce the origin of the formula 

0pljli - Oplilj = - Os R/ ij . 

(b) What do Ric/ Os and (VPVi - ViVP)Op have in common? 

Exercise 13.6.5: Consider the Cartesian product §in X §il, n ~ 2, endowed 
with the product metric g. 

(a) Use (13.3.5) to help show that the Ricci tensor of g is nonnegative. 
Specifically, along directions tangent to §in, it agrees with that of 
§in. And, along the direction tangent to §il, it's zero. 

(b) Let t denote the coordinate along §il. Is dt is a harmonic I-form of 
the metric g? Is there any other harmonic I-form of g that is not a 
constant multiple of dt? 
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Chapter 14 

Minkowski Spaces, the Theorems of 
Deicke and Brickell 
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14.9 A Mixed-Volume Inequality, and Brickell's Theorem 

* References for Chapter 14 

14.1 Generalities and Examples 

Let y 1--+ F(y) be a Minkowski norm on IRn. It is nonnegative and has the 
following defining properties. 

* RegUlarity: F is smooth at all y =t- o. 
* Positive homogeneity: F()"y) = ).. F(y) for all ).. > o. 
* Strong convexity: The fundamental tensor 

gij(y) := [~F2] .. 
y'y' 

is defined and positive-definite at all y =t- o. 
Given these, it follows from Theorem 1.2.2 that F(y) must be positive for 
all nonzero y. More important, review the fundamental inequality (1.2.3) 
and its myriad interpretations (§1.2C). 
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The restriction of a Finsler structure F to any specific tangent space TxM 
gives a Minkowski norm Fx. Thus, any Finsler manifold may be viewed as 
a smoothly varying family of Minkowski spaces { (TxM, Fx): x EM}. 

Every Minkowski space Cll~n, F) is at the same time a Finsler manifold, 
albeit a rather simple one. This is realized by assigning the same F to every 
tangent space of]Rn (which is identifiable with ]Rn itself). Review § 1.3A for 
explicit details. The resulting Finsler manifold is an example of a locally 
Minkowskian space. 

* As such, both the Chern curvatures R and P must vanish (see the 
end of §3.3). Therefore the only geometrical invariant is the Cartan 
tensor and its "vertical" derivatives. For instance, Minkowski planes 
are classified by the Cartan scalar alone (Proposition 4.2.1). 

* According to Exercise 5.3.4, all geodesics in locally Minkowskian 
spaces are straight lines. Hence these spaces are geodesically both 
forward and backward complete. This is true in spite of the fact 
that F may only be positively homogeneous of degree 1. See also 
Exercise 14.1.1. 

Let us list some important examples of Minkowski planes (]R2, F). In 
order to reduce clutter, we use the following abbreviations: 

p := yl, q:= y2 . 

• Minkowski planes of Randers type. Here, the Minkowski norm 
has the form 

F(y) := J Cij yiyj + bi yi , 

where bi and Cij are constants, and 

cij bi bj < 1. 

This last criterion is needed to ensure strong convexity and positiv­
ityat all nonzero y; see §11.1. These Minkowski norms can be put 
into normal form as follows. Choose an orthonormal basis for the 
inner product defined by Cij. Moreover, align the first vector of this 
basis with the vector whose components are bi := cij bj , so that they 
point in the same direction. In terms of the global linear coordinates 
defined by this carefully chosen basis, we have the normal form 

(14.1.1) F(y) = v' p2 + q2 + B p , 

where B < 1 is a positive constant. A moment's thought tells us that 
B is the length, with respect to Cij, of the covector bi . Compare the 
above with Matsumoto's treatment in [M8]. See Exercise 14.1.2 for 
details about the indicatrix, and [BL1] for a further restriction on 
B (namely B ~ 0.9139497) which has an analytical origin. 
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• Regularized quartic metrics. We encountered this family in 
§1.3A. The Minkowski norms in question have the formula 

(14.1.2) 

where E is a constant. This may be viewed as a perturbation of 
the quartic metric. As explained in §1.3A, strong convexity is vi­
olated at some nonzero y if E = O. See also Exercise 14.1.3. If 
E > 0, our treatment in §1.3A shows that the fundamental ten­
sor 9ij is positive-definite because both its eigenvalues are positive 
everywhere on ]R2 ,,0. The function F is then a bonafide Minkowski 
norm for each choice of the positive constant E. In this sense, the 
perturbation has regularized the quartic metric. We believe that 
the regularized quartic metric has considerable potential in physical 
applications . 

• Regularized quartics with drift term. The simplest one we have 
in mind is 

(14.1.3) F(y) = J V p4 + q4 + E [p2 + q2 J + B p , 

where E and B are both positive constants. It would be an interesting 
calculation (Exercise 14.1.4) to determine the restrictions (if any) 
on the positive constants E and B, so that the resulting F has all the 
defining attributes of a Minkowski norm. More generally, Bryant's 
example (§12.7) inspires us to consider 

F(y) = J VP4(P,q) + E Q2(p,q) + (b1P + b2q) . 

Here, P4 is a fourth order polynomial, Q2 is a quadratic, and E is a 
positive constant. However, the constants b1 , b2 need not be positive. 
They represent the components of the drift covector, in a Randers 
sense. There is much mathematics to be learned from this family. 

We conclude this section with two useful tools: 

* The Okubo technique. This was first introduced in Exercise 1.2.8, 
and is applicable to all dimensions. It is useful when the indicatrix 
S is specified by physical or geometrical concerns, and one wants to 
recover the candidate Minkowski norm F from the specified S. We 
say "candidate" because it is not guaranteed that the F obtained 
indeed satisfies the defining properties of Minkowski norms. For in­
stance, in Exercise 1.2.8, the indicatrix was a priori stipulated to be 
the convex limac;on p = 3 + cos cp. The Okubo technique produced, 
rather effortlessly, the explicit formula of the candidate F, which 
turns out to be a bonafide Minkowski norm (see Exercise 4.1.4). On 
the other hand, in Exercise 1.2.9, the technique (trivially) produced 
the unregularized quartic metric, which fails to be strongly convex 
along the coordinate axes. 
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* An elegant criterion for checking strong convexity. This was 
derived in §4.1B, and is applicable only to candidate Minkowski 
norms on R2. The exact criterion is spelled out in (4.1.18). It is 
precisely the method used to ascertain that the candidate F corre­
sponding to the convex lima<;on is indeed a Minkowski norm. See 
Exercise 4.1.4. Its power lies in the fact that any parametrization of 
the indicatrix will suffice. Its drawback is that in some cases, such 
as the families of examples described above, there is no obvious way 
to parametrize the indica trices in question. 

Exercises 

Exercise 14.1.1: Let (Rn, F) be a Minkowski space, where F is positively 
(but perhaps not absolutely) homogeneous of degree one. 

(a) Show that there exists a constant c> 1, depending only on F and 
a choice of basis for Rn, such that 

1 
- 1 y 1 ::;; F(y) ::;; ely 1 
c 

at every y. Hint: examine the proof of Lemma 6.2.1. 

(b) The distance from y to z is F(z - y), whereas that from z to y is 
F(y-z). Review §6.4A. Explain why these two numbers are typically 
different. 

(c) Check that every forward Cauchy sequence (see §6.2D) with respect 
to F is an ordinary Cauchy sequence with respect to 1 I. And, every 
convergent sequence in 1 1 is a convergent sequence in F. Show that 
all forward Cauchy sequences in (Rn, F) are convergent. 

(d) Repeat part (c) for backward Cauchy sequences. 

Thus, Minkowski spaces are both forward and backward complete, 
even though F may only be positively homogeneous of degree 1. 

Exercise 14.1.2: By passing to polar coordinates p, ¢, show that the 
normal form (14.1.1) can be re-expressed as 

F = p (1 + B cos¢) . 

Verify that the indicatrix is an ellipse with the following features: 

* Its eccentricity is B. 

* Its center is at the point (p, q) = ( - 1_BB2, 0). 

* The semimajor axis is horizontal and has length 1_lB2 . 

* Its right focus is at the origin (p, q) = (0,0). 

* Its left focus is at the point (p, q) = ( - 1:~2' 0). 
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* The semiminor axis is vertical and has length v'1~B2. 

Exercise 14.1.3: This exercise concerns the perturbed quartic metric that 
we defined in (14.1.2). Is there any value of € < 0 for which the stated F is 
smooth and strongly convex at every nonzero y? 

Exercise 14.1.4: Consider the 2-parameter family of F defined by (14.1.3). 
Determine all the positive values of € and B such that F is smooth and 
strongly convex on R2 " o. 
Exercise 14.1.5: Consider the following family of candidate Minkowski 
norms, 

F(y) := [p4 + 6 Ap2 q2 + q4 ]1/4, 

where A is a constant. Show that F is smooth and strongly convex away 
from the origin if and only if 0 < A < 1. 

14.2 The Riemannian Curvature of Each Minkowski Space 

Let (Rn, F) be a Minkowski space. Since the manifold in question is actually 
the vector space Rn, each choice of basis gives rise to a set of globally 
defined coordinates (y1, ... , yn) on Rn. Every change of basis is equivalent 
to a linear change of coordinates 

yi -+ cij yi , 

where (ci j) is a constant invertible matrix. Also, at each point y of Rn, the 
tangent space TyRn and the cotangent space T;Rn have the bases {a~;} 
and {dyi}, respectively. 

We define a Riemannian metric on the punctured space Rn ,,0, and com­
pute its Levi-Civita (Christoffel) connection and curvature. In the treat­
ment here, we define and calculate the said objects in the global coordi­
nates yi mentioned above. The metric and the curvature are then required 
to transform tensorially when we change from these privileged coordinates 
to arbitrary (possibly local) coordinates jjP, such as spherical coordinates. 
Likewise, the connection is required to transform like a connection under 
such coordinate changes. 

Let us begin with the Riemannian metric. The Minkowski norm F gives 
rise to the fundamental tensor 

9ij(y) := (~F2) .. = F Fy;yj + Fy; Fyj , 
y'y3 

which in turn defines a Riemannian metric 

(14.2.1) 

Typically, the 9ij are not even continuous at y = o. For this reason, the 
Riemannian metric 9 lives on the punctured space Rn " O. 
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Let .:yijk be this metric's Christoffel symbols of the second kind. Using 
the definition (1.4.2) of the Cartan tensor, we see that 

(14.2.2) 

Denote the corresponding Levi-Civita (Christoffel) connection by V, then 

(14.2.3) 
~ 8 
V' a -. = 

Iii?' 8yJ 

The curvature operator of V is 

R(U, V)W .- (Vu Vv 

(14.2.4) j k l~i 8 
W U V R j kl 8yi ' 

where U, V, Ware vector fields on IRn ...... O. That curvature tensor has 
components 

(14.2.5) R/kl 

~,i 
VI jl 

8yk 

A simple expression for R/ kl can be obtained as follows. Substitute (14.2.2) 
into (14.2.5). Now use the fact that 

8 ( 1 AP ) 
8yS F qr 

-1 8F ~ 8APqr 

F2 8yS APqr + F 8ys 

;2 (APqr;s - APqr fs) , 

followed by (2.5.12) and the Bianchi identity (3.4.14). After all that has 
been carried out, we get, as in Kikuchi [KikJ, 

(14.2.6) I R/ kl = -A (A/k Asil - A/I As\) I· 
This expression always reduces to zero whenever our Minkowski space is 2-
dimensional! Exercise 14.2.3 uses an indirect way to deduce this somewhat 
surprising fact. 

The expressions given for gij, .:yijk , and R/kl retain their forms if we 
decide to use a different basis for IRn. This is not difficult to verify. Now 
suppose, instead of a linear change of coordinates, we change from the 
global yi to arbitrary (and typically local) coordinates fjP. The components 
of the Riemannian metric g, the Levi-Civita (Christoffel) connection.:y, and 
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the curvature R in these new coordinates are defined to be: 

gpq .-
8yi 8yj 

8fjP 8fjq 9ij , 

Ap 
"Y qr 

8fjP 8yj 8yk Ai 8fjP 8 2yS 
8yi 8fjq 8fjr "Y j k + 8yS 8fjq 8fjr 

8yj 8fjP 8yk 8yl A i 

. - 8fjq 8yi 8fjr 8fjS Rj kl . 

We conclude with the sectional curvatures of (]Rn ....... 0, §). Take any two 
linearly independent tangent vectors U, V in Ty(]Rn ....... 0). They define a 
2-plane in that tangent space. The sectional curvature corresponding to 
this 2-plane is 

(14.2.7) K(U, V) .-
§(U, U) §(V, V) - [§(U, V)J2 

§(R(V, U)U, V) 

The sectional curvature depends only on the 2-plane in question. See Exer­
cise 14.2.4. Intuitively, it is the Gaussian curvature of the surface obtained 
by "exponentiating" the 2-plane. 

Exercises 

Exercise 14.2.1: 

(a) What does it mean to say that under a linear change of coordinates 
yi ~ Zi := ci j yj, an expression remains unchanged in form? 

(b) Show that the expressions for gij, iijk' and R/ kl share this property. 

Exercise 14.2.2: 

(a) Derive formula (14.2.2) for iijk . 

(b) Derive formula (14.2.6) for R/ kl. 

Exercise 14.2.3: In this exercise, we show that for every Minkowski 
plane, the metric § is flat. Fix any Yo E ]R2 ....... 0, let us check that R is 
zero at yo. 

(a) In the tangent plane Tyo]R2, consider the right-handed §(Yo) or­
thonormal basis {I'll, e2} with 

A ~ 8 ~ 8 
e2 .= -- - + -- -

. F(yo) 8yllyo F(yo) 8y2 1yo 

Write down I'll explicitly without first consulting the Berwald frame 
of §4.3. 

(b) Show that R(U, V)W vanishes whenever U or V or W is propor­
tional to e2. 
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(c) Explain why there exists a linear change of coordinates on ~2, say 
from yi to Zi := ci j Yj, such that at the point Yo we have a~i IYD = ei' 

(d) At the point Yo, demonstrate that the components of R with respect 
to the global coordinates Zi are all zero. 

Exercise 14.2.4: 

(a) Show that K(U, V) = K(V, U). 

(b) Check that if U := Q U +(3 V and V := "( U +8 V, where Q 8-(3"( i- 0, 
then K(U, V) = K(U, V). 

14.3 The Riemannian Laplacian in Spherical Coordinates 

We now get a technical ingredient ready for §14.4, when we prove Deicke's 
theorem. This concerns the Laplacian of 9, expressed in spherical coordi­
nates. Recall from §14.2 that 9 is the Riemannian metric on the punctured 
Minkowski space R n " 0. Its components are those of the fundamental 
tensor gij' 

Consider the diffeomorphism 

<I»(r, u) := r u 

from (0,00) x S onto Rn " O. Here, the indicatrix S is regarded as a subset 
of Rn " O. Let: 

* yi, i = 1, ... ,n be global coordinates on Rn, from a choice of basis; 

* ()o., Q = 1, ... ,n - 1 be local coordinates that are intrinsic to S. 

Some amount of definition-chasing will show that, at the image point ru in 
Rn " 0, we have 

(14.3.1) 
a i a 

<1»* ar u --
ayi 

(14.3.2) 
a au 

<1»* a()o. r a()o. . 

Our interpretation of the right-hand sides is as follows: 

* Take the "position vector" of the point u and slide it along the ray 
tu until the base reaches the point ru. The resulting tangent vector 
. i a h' h . 1 f rr lIDn IS U ayi' W lC IS an e ement 0 .L ru~ . 

* The quantity to"" is a vector tangent to S. And is none other than 
the realization in Rn of the tangent vector a~" intrinsic to S. We 
slide it along the ray tu until its base point is at ru. The resulting 
vector is tangent to r S. Multiplying that by r gives the right-hand 
side of (14.3.2). 
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In view of the discussion that immediately precedes §6.lA, we know that 

a a. 
(14.3.3) cI>* ar 1- cI>* a()o. wIth respect to 9· 

Let iJ denote the Riemannian metric induced by fJ on the indicatrix S, 
regarded as a submanifold of Rn ...... o. Our understanding of (14.3.1) and 
(14.3.2), together with (14.3.3), is enough to effect the statement 

(14.3.4) cI>* fJ = dr ® dr + r2 iJ . 

Equivalently, define the diffeomorphism W : Rn ...... 0 -t (0, 00) x S by 

w(y) := (F(Y) , Ffy)) . 

This is the inverse of cI>, and we have 

(14.3.5) fJ = w* ( dr ® dr + r2 iJ) . 

The message behind (14.3.4) or (14.3.5) is useful. It says that when ex­
pressed in terms of the spherical coordinates r, ()o., the metric fJ takes on 
the form of a warped product (see §13.3), with warping factor cp := r. 

Denote the Christoffel symbols (of the second kind) of 9 by 7i jk' and 
those of 9 as 70.,81<. Now use (13.3.2) and keep in mind that 

90.,8 
2 • 

= r gOl,8. 

The results are as follows: 
Al 
'Y11 0 
Al 
'Y ,81 0 

Al 
- r iJ,81< 

(14.3.6a-f) 
'Y ,81< 

711 0 
Ao. 
'Y ,81 

-1 80. r ,8 

AOI 
'Y ,81< 

·01 
'Y ,81< • 

Do not confuse the Greek /'i, with the Latin k. 
As in (13.5.4), we define the Laplacian of (Rn ...... 0, fJ) by 

!J..g f := gij ViVj f . 

More explicitly, 

(14.3.7) 

Likewise, the Laplacian of (8, iJ) is given by 

(14.3.8) !J..g f = iJOI,8 (ao.a,8f - 71<,80. al<f) . 

The definition of !J..g f is independent of the coordinate system we use. Let 
us then expand it out in terms of spherical coordinates, and use (14.3.6). 



392 14. Minkowski Spaces, the Theorems of Deicke and Brickell 

This straightforward calculation yields the formula 

(14.3.9) \ C1§1 = ~[r2/TT + r(n-1)ITl + ~C1g1 \. 

Here, IT and ITT abbreviate partial differentiation with respect to r. In 
particular, 

(14.3.10) 

Exercises 

1 
- C1. I whenever I is constant along rays. 
r2 9 

Exercise 14.3.1: Derive (14.3.4). 

Exercise 14.3.2: 

(a) Supply all the details leading to (14.3.9). 

(b) Is that formula consistent with what one finds in vector calculus 
texts? 

Exercise 14.3.3: 

(a) Deduce from (14.3.7) and (14.2.2) that 

\ C1§1 = gij IN}jl - ~ Ak okl I. 

Here, Ak := gij A ijk and Ak := gks As. 

(b) The definition of C1§ is independent of coordinates. Using this fact, 
show that if Ak = 0, then the natural coordinate functions yi are 
all fJ harmonic. 

Exercise 14.3.4: This exercise relates formula (14.3.9) with the subject of 
spherical harmonics. 

(a) Each y E ]R.n" 0 can be expressed as ru, where r := F(y) and u E S, 
the indicatrix. Explain why 

oyi yi 

or r 

(b) Suppose I is a positively homogeneous function of degree m in the 
natural coordinates y\ ... , yn. Use the chain rule, part (a), and 
Euler theorem (Theorem 1.2.1) to show that 

ITT 

1 
- m I, 
r 
1 

2" m (m -1) I . 
r 



14.4 Deicke's Theorem 393 

(c) Now, suppose in addition to being homogeneous of degree m in the 
coordinates yi, our function f is also g harmonic. Restrict this f to 
the indicatrix S and call the resulting function y. Use (14.3.9) to 
help prove that Y is an eigenfunction of t1g. Specifically, 

- m (m + n - 2) Y, or 

+m(m+n-2)Y. 

These eigenfunctions Yare known as spherical harmonics. 

14.4 Deicke's Theorem 

We now give Brickell's proof [Bl] of a theorem of Deicke's [D]. Recall that 
a Minkowski norm F is induced by an inner product on ]Rn if and only if 
the Cartan tensor A ijk vanishes. Define 

Ak := gij A ijk , 

where gij is the inverse of the fundamental tensor of F. Then Deicke's 
theorem states that F comes from an inner product if and only if Ak = O. 

Theorem 14.4.1 (Deicke). Let F be a Minkowski norm on ]Rn, smooth 
and strongly convex at all y i- O. Let 

gij := (~F2) .. ' A ijk := F (~F2) 
y'yJ 2 2 yiyjyk 

be its fundamental tensor and Cartan tensor, respectively. Then the fol­
lowing statements are equivalent: 

(1) The components gij are constant. 

(2) A ijk = O. 

(3) The determinant det(gij) is constant. 

(4) Ak=O. 

Proof. 

* Statements (1) and (2) are equivalent, and is local. This can 
be seen directly from the definition of the Cartan tensor. 

* Statements (3) and (4) are equivalent, and is local. Note that 
det(gij) is constant if and only if.;g is constant. And, we have 

1 .. 1 
(,;g )yk = 2 ,;g g"J (9ij )yk = F.;g Ak . 

Since (2) =} (4) is clear, it suffices to demonstrate that (4) implies (1). This 
is where we use the y-global assumption on F, through the application of 
Hopf's theorem to a certain Laplacian on the indicatrix. 
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Some linear algebra preliminaries: 
Denote by g(y) the matrix (gij) evaluated at arbitrary y in ]Rn ....... O. 

Denote by g-l(yo) the inverse matrix (gij) evaluated at any fixed nonzero 
Yo. Consider the matrix product g-l(yo) g(y). Our primary goal here is to 
show that all its eigenvalues are real and positive. 

Note that 

det[ g-l(yo) g(y) - A I] = det[ g-l(yo) ] det[ g(y) - A g(yo) ] , 

and that the inverse matrix g-l(yo) is positive-definite because g(yo) is. 
Therefore the eigenvalues of our special matrix product are precisely the 
solutions of the equation 

(*) det[ g(y) - A g(yo)] = 0 . 

Let A be any solution of (*). Then there exists a (possibly complex) 
nonzero column vector v such that [g(y) - Ag(yo)]v = O. That is, 

g(y) v = A g(yo) v . 

Taking the complex conjugate of this statement and using the fact that 
g(y), g(yo) are real, we have 

So 

g(y) v = X g(yo) v . 

A vT g(yo) V 

= vT[g(y)v] 

= [g(y) vf V 

= vT g(y) V 
T- -= V A g(yo) v 

= X [vT g(yo) vf 
- -T = A v g(yo) v . 

In this calculation, the fact that g(y), g(yo) are symmetric has been used 
without mention. Also, the symmetry of g(yo) implies that 

vT g(yo) v = Re(vf g(yo) Re(v) + Im(v)T g(yo) Im(v) . 

Since v is nonzero and g(yo) is positive-definite, we must have 

A = X. 
Hence the solutions of (*) are indeed real. Furthermore, observe that the 
matrix g(y) - A g(yo) would be positive-definite, and consequently would 
have to have a positive determinant, if A were ~ O. Therefore, in order for 
it to have a zero determinant, the real A must necessarily be positive. 

We have just ascertained that the eigenvalues of 

P := g-l(yo) g(y) 
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are real and positive. Its trace and determinant are, in view of its Jordan 
canonical form, respectively, the sum and the product of these positive 
eigenvalues. Thus the arithmetic-geometric mean inequality tells us that 

1 1 
(**) - trP ~ (det P ) n . 

n 

Proving that (4) implies (1): 
Let us now suppose that 

Ak = 0. 

We want to demonstrate that the quantities gij are constant functions . 

• As a function of the variable y, the quantity trP takes on its ab­
solute minimum value n at the point y = Yo. Indeed, since 
Ak = 0, the determinant of (gij) (and hence of its inverse) is inde­
pendent of the point of evaluation. This is so because (4) <=> (3). 
Consequently det P = 1 and, in view of (**), n is a lower bound of 
trP. Moreover, the value of trP at y = Yo is precisely n. 

• Let l:l.g denote the covariant Laplacian gij Vi Vj of the metric 

9 := gij(y) dyi ® dyi 

on ]Rn, 0. Then the matrix (l:l.g gpq ) is positive-semidefinite at 
every point of IRn , o. As we show below, this follows from the fact 
that trP has its absolute minimum at y = Yo. For then its Hessian 
matrix at y = Yo must be positive-semidefinite. Indeed, 

[trPlypyq 

[gij(yo) gji(y) lypyq 

gii(yo) [!F2] 
2 yiyiypyq 

= gij(yo) ayiayi gpq(Y) . 

According to Exercise 14.3.3, the difference between the operator 
gij (Yo) ayi a yi and the covariant Laplacian l:l.g is a term proportional 
to Ak(yo), which is by hypothesis zero here. Therefore 

[trP lypyq (Yo) = [l:l.g gpq ](Yo) . 

Our criterion on the Hessian of trP is tantamount to saying that 
the matrix (l:l.g gpq) is positive-semidefinite at every fixed Yo =f. 0. 

Since ( .6g gpq ) is positive-semidefinite, each of its diagonal entries l:l.g gpp 
must be ~ 0. Now each gpp is constant along rays through the origin of 
IRn, so it can be regarded as living on the indicatrix S. Formula (14.3.10) 
then implies that l:l.g gpp ~ 0, where l:l.g is the Laplacian on S. By Hopf's 
theorem (Theorem 13.5.2), gPP must be constant on S, and hence on IRn ,0. 
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Using (14.3.7), we then have I).g gpp = O. This says that the diagonal entries 
of our matrix (I).g gpq) are all zero. In particular, its trace vanishes. 

The matrix ( I).g gpq ) is real and symmetric, hence it can be diagonalized 
at every fixed Yo. Since it is positive-semidefinite, all the resulting diagonal 
entries are nonnegative. But we have just seen that it has vanishing trace, 
which is a basis independent criterion. So all the diagonal entries are in fact 
zero. This means that the matrix (dg gpq ) must have been identically zero 
in the first place, at every Yo. In other words, each gpq is a I).g harmonic 
function. By scale-invariance, each gpq is diJ harmonic as a function on the 
indicatrix S. The constancy of gpq on S again follows from Hopf's Theorem. 
Scale-invariance then gives its constancy on ]Rn ...... o. 0 

Remark: Instead of using the covariant Laplacian and Hopf's theorem, 
Brickell [B1] originally worked with the elliptic operator gij 8 yd}yj and the 
strong maximum principle ([GT], [Smo]), which is also due to Hopf. 

Exercises 

Exercise 14.4.1: The arithmetic-geometric mean inequality states 
that given any n positive numbers Cl, ••• , en, we have 

1 ~ (Cl + ... + en) ~ (Cl"· en ) ~ I· 

Furthermore, equality holds if and only if Cl = ... = en. 

(a) The n = 2 case says that 

Cl + C2 ~ 2.jCl y'C2 , 

with equality if and only if Cl = C2. Demonstrate this algebraically. 

(b) Now consider the function 

I( ) .- Cl + C2 + X 
X .- 1 

(Cl C2 X)3 

on the half interval (0,00), with positive constants Cl and C2. Using 
calculus and part (a), establish the n = 3 case of the inequality. 

(c) Use part (a), calculus, and mathematical induction to prove the 
general case. 

Exercise 14.4.2: The strong maximum principle for our operator 
gij 8i 8j says the following. 

Suppose gij 8i 8j I ~ 0 (resp., ~ 0) on a domain (not necessarily 
bounded) n of ]Rn. If I takes on its absolute maximum (resp., 
absolute minimum) at an interior point of n, then it must in fact 
be constant. 
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For an arbitrary elliptic operator, the boundedness of the domain is needed. 
We do not need that here because each gij is constant along rays emanating 
from the origin, and hence our operator satisfies the criterion of uniform 
ellipticity. See [GT] for details. 

(a) Instead of Theorem 13.5.2, use the strong maximum principle to 
prove Deicke's theorem. Does we still need F to be y-global ? 

(b) Can you give a proof of the strong maximum principle for our special 
operator gij OiOj ? 

14.5 The Extrinsic Curvature of the Level Spheres of F 

Let us now turn our attention to a family of submanifolds of Rn ....... o. These 
are the hypersurfaces 

S(r) := {y ERn: F(y) = r} 

that we first introduced in §1.4. This family of level spheres is indexed by 
the radius r > o. 

The metric 9 of the ambient space restricts (or pulls back) to a Riemann­
ian metric 9 on S(r), whose Levi-Civita (Christoffel) connection (character­
ized by torsion-freeness and g-compatibility) we denote by V. The resulting 
curvature tensor and sectional curvatures are, respectively, R, K. They are 
defined just like Rand K. 

For our purposes, it is advantageous to give an extrinsic description of 
V. This would eventually allow us to see, in §14.6, how R, K are related to 
R, K. First recall from §1.4 that at each point y E S(r), the radial vector 

(14.5.1) 
yi a 

v·= -
. F(x, y) oyi 

is the outward-pointing unit normal with respect to the metric g. It is also 
the g-gradient of F. In other words, 

(14.5.2) 

Since S(r) has codimension 1, this v spans its normal bundle. Thus we have 
the following g-orthogonal direct sum decomposition: 

(14.5.3) 

Given any two locally defined vector fields U, V of S(r), we can extend 
them to vector fields (also locally defined) on Rn ....... O. In order to keep the 
notation simple, we continue to denote the extended objects by U, V. In 
view of (14.5.3), we can decompose the covariant derivative VuV into two 
pieces: 

A A A 1. 
VuV = (VuV)1I + (VuV ) . 
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The two terms on the right-hand side are, respectively, tangential and g­
perpendicular to S(r). 

• By going through some definition-chasing, one can show that the 
tangential piece (VuV)u defines a connection on S(r) which is tor­
sion-free and g-compatible. Therefore, by the uniqueness of the Levi­
Civita (Christoffel) connection, it must actually be V. Put another 
way, we have an extrinsic formula for V: 

(14.5.4) 

• As for the piece that is g-orthogonal to sn-l(r), it is traditionally 
called (the value of) the second fundamental form II of S(r). In 
general, the second fundamental form of a Riemannian submanifold 
S takes values in the normal bundle of S. However, the normal 
bundle in our case is I-dimensional, and is being spanned by v. 
Thus we can write 

(14.5.5) (VuV)~ =: II(U, V) = IIII(U, V)v. 

This IIII is a symmetric bilinear form on S(r). 

Let us calculate an explicit formula for the IIII(U, V) of S(r). To begin, 
IIII (U, V) = g( VU V, v) which, by the g-compatibility of V and the fact 
that v is g-orthogonal to V, becomes -g( V, VU v). For a general U, we 
have 

8 
8yi . 

Note that the last of the three terms (on the right-hand side) vanishes 
because yj Aijk(X,y) = O. Now, let us restrict our U to those that are 
tangential to S(r), so that Vk Uk = o. The above computation then says 
that 

(14.5.6) 2. u 
F 

U 
r 

for U tangent to S(r) . 

Put another way, 

S(r) is umbilic with principal curvatures all equal to ~. 

Therefore 

(14.5.7) I IIII(U, V) = ~ g(U, V) = ~ g(U, V) I on S(r) . 

We digress to mention an interesting observation by Xinyue Chen (and 
possibly others as well). He pointed out to us that in Minkowski spaces: 
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* The level spheres S(r) do not look "round" intrinsically. Their vol­
umes can be computed using the induced volume form (1.4.8). See 
§4.1 for some cited references about the n = 2 (Minkowski plane), 
r = 1 (indicatrix) case. One finds that, unlike the level spheres of 
Euclidean norms, these volumes are not equal to rn - 1 multiplying 
universal constants which depend only on the dimension n. 

* However, extrinsically these S(r) do look "round." Indeed, as we 
have established above, they are umbilic with constant principal 
curvature, and hence constant mean curvature, equal to ~ . 

Exercises 

Exercise 14.5.1: Prove that the tangential piece (VuV)11 defines a con­
nection on S(r) that is torsion-free and g-compatible. 

Exercise 14.5.2: Show, without reference to (14.5.7), that the nv defined 
in (14.5.5) is a symmetric bilinear form on S(r). 

Exercise 14.5.3: Fill in the details leading to (14.5.6). 

Exercise 14.5.4: With the help of the volume form (1.4.8) and a rescaling, 
prove that in any n-dimensional Minkowski space, we have 

vol[S(r) 1 = rn - 1 vol[S(l) 1 . 

Note that S(l) is the indicatrix S. 

Exercise 14.5.5: 

(a) Consider any two norms F and F that arise from inner products on 
jRn. Prove that the volumes of their level spheres S(r), S(r) are the 
same for each value of r. Hint: what does an inner product look like 
in an orthonormal basis? 

(b) Suppose F(y) = J(yl)2 + ... + (yn )2. Then the level sphere S(l) 
is the standard unit sphere §n-l in Euclidean n-space. Show that 

{ 

27rn/2 

( !!. -1)' 1 §n-l 2· 
vo ( ) = 2(n+l)/2 7r(n-l)/2 

1·3··· (n - 2) 

for n even, 

for n odd. 

14.6 The Gauss Equations 

For each fixed r, (S(r), V) is a Riemannian submanifold of the punctured 
Riemannian manifold (jRn " 0 , fJ ). Let U, V be locally defined vector fields 
of S(r). Denote their extensions to jRn " 0 by the same symbols. Let V be 
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the Levi-Civita (Christoffel) connection of g, and ~ the one of g. One of 
the main points of §14.5 is the g-orthogonal decomposition 

(14.6.1a) VuV = ~uV + Il(U, V) , 

where II is the second fundamental form of S(r). Equivalently, 

(14.6.1b) ~uV = VuV - Il(U, V) , 

which expresses the Levi-Civita (Christoffel) connection on S(r) in terms 
of that for the ambient space, and the second fundamental form. 

Repeated use of (14.6.1a) in 

Vu V v W - V v Vu W - V (UYl W 

gives the Gauss curvature equation 
(14.6.2a) 

[R(U, V)WlII = R(U, V)W + [Vu Il(V, W)lll [Vv Il(U, W)lII . 

Here, U, V, Ware tangent to S(r). A rearrangement gives 
(14.6.2b) 

R(U, V)W = [R(U, V)Wlll + [Vv Il(U, W)lll - [Vu Il(V, W)lII . 

Note that (14.6.2) carries information only when the dimension n of the am­
bient manifold is at least 3. Ifn = 2, the submanifold S(r) is I-dimensional. 
In that case, (14.6.2) reduces to 0 = O. 

For Z tangent to S(r), note that 

This fact, together with (14.6.2b) and 

Vg = 0, 

will lead to 

g(R(U, V)W, Z) g(R(U, V)W, Z) 

(14.6.3) + g( II (V, W), Il(U, Z)) - g( Il(U, W), Il(V, Z)) . 

For n ~ 3, (14.6.3) immediately yields 

K(U, V) 

(14.6.4) 

k(u, V) 

g( Il(U, U), Il(V, V)) - g( Il(U, V), Il(U, V) ) 
+ g(U, U) g(V, V) - [g(U, V)j2 

Let us also refer to these as the Gauss equations. 
Formulas (14.6.1)-(14.6.4) are perfectly general. They could have been 

derived for any submanifold of an ambient Riemannian manifold. It is only 
now that we specialize them to the case at hand. 
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* The ambient curvature R(U, V)W in our case study is, according to 
(14.2.6), a very special vector: 

W j Uk Vi 1 (A S A i A S Ai) [) F2 j k S I - j I s k [)yi' 

A moment's reflection shows that it is always g-orthogonal to the 
outward unit normal v of S(r). Hence 

[R(U, V)W] II R(U, V)W 
1 

2" [A( V, A(W, U)) - A( U, A(W, V) )] . 
r 

* Next, (14.5.6) implies that 

[Vu II(V, W)]II 
-1 
2 g(V,W) U. 
r 

Therefore (14.6.2) becomes 

(14.6.5) 
• A 1 

R(U,V)W = R(U,V)W + 2" [g(V,W)U - g(U,W)V]. 
r 

Also, it follows from (14.6.4) and (14.5.6) that 

(14.6.6) 1 K(U, V) = K(U, V) + ~ I· 
Just like (14.6.4), this makes sense only when n ~ 3. Compare the treat­
ment here with that by A. Kawaguchi [Kawa]. 

We are ready to deduce the following: 

Proposition 14.6.1. Let (]In, F) be any Minkowski space of dimension 
n ~ 3. Here, F is typically only positively homogeneous of degree one. 
Then the following statements are equivalent: 

(a) The metric 9 := gij(Y) dyi ® dyj on]ln '- 0 is fIat. 

(b) Every level sphere (S( r), g) has constant sectional curvature f.. 
(c) Some level sphere (S( r 0), g) has constant sectional curvature ~. 

To 

Remarks: 

• For n ~ 3, whenever the level sphere (S(r), g) has constant sec­
tional curvature f., it is necessarily isometric to the standard sphere 
of radius r in Euclidean space ]In. This follows from Hopf's classi­
fication of Riemannian space forms, discussed in §13.4. 

• In that case, one might wonder if the Minkowski norm F arises from 
an inner product on ]In, for then the ambient Minkowski space is 
actually Euclidean. For those F that are absolutely homogeneous 
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of degree one, the answer is surprisingly yes! This is the theorem of 
Brickell's that we prove in §14.9. 

Proof. The Gauss equation (14.6.6) holds only when n ~ 3. It tells us 
that (a) =? (b). Also, (b) =? (c) is logically immediate. 

It remains to show that (c) =? (a). 

* Given (c), we conclude from (14.6.6) that all sectional curvatures k 
must vanish on the level sphere S(ro). It is not difficult to deduce 
from (14.2.6) and (14.2.7) that k is homogeneous of degree -2 in 
y. Therefore it vanishes everywhere in ffi.n " o. 

* Now specialize Exercise 3.9.6 to the Riemannian setting (or see 
§13.2B). It says that every value of the full curvature tensor R is 
expressible as a sum of sectional curvatures k (each multiplied by 
the area of the corresponding "flag"). 

Combining these two observations gives (a). 0 

Exercises 

Exercise 14.6.1: In (14.6.1), we have 

VuV = (VUV)II and II(U, V) = (VuV)l.. . 

The U and V on the left-hand sides are local vector fields tangent to the 
level spheres S(r). Those on the right-hand sides are local extensions of the 
said U, V to ffi.n ...... o. 

(a) Show that the value of VuV along S(r) does not depend on the 
extensions we just described. 

(b) Explain why V u V and II( U, V) are independent of the way by which 
one extends U, V from S(r) to ffi.n ,,0. 

Exercise 14.6.2: 

(a) Derive the Gauss equation (14.6.2), as well as (14.6.3). 

(b) Explain why, when n = 2, (14.6.2) reduces to 0 = o. 
(c) Why can't one derive (14.6.4) when n = 2? 

Exercise 14.6.3: Show that on S(r), we have 

• 1 
[V'u II(V, W) ]11 = - 2 g(V, W) U . 

r 

Exercise 14.6.4: Let (S, g) be a submanifold of an ambient Riemannian 
manifold (M, g). 
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(a) Let v be any smooth local section of the normal bundle N S. Let U 
be tangent to S. Define 

Vu v := ('~u v)i. . 

Verify that 1J satisfies all the axioms for a connection on a vector 
bundle (see §2.4). 

(b) The normal bundle N S has an induced metric h obtained by restrict­
ing g. Is the normal connection 1J torsion-free in any appropriate 
sense? Is it h-compatible? 

(c) For U, V, W all tangent to S, the Gauss equation addresses the 
part of R(U, V)W tangential to S. Show that the part which is 
g-orthogonal to S is 

[R(U, V)W]i. = (Vu II) (V, W) - (1Jv II)(U, W) , 

where the quantity (Vu II) (V, W) abbreviates 

Vu[II(V, W)] - II(VuV, W) - II(V, VuW) . 

This is the Codazzi-Mainardi equation. 

In view of the Gauss and Codazzi-Mainardi equations, one expects that 
the most interesting Riemannian submanifolds are to be found inside geo­
metrically simple ambient spaces. 

14.7 The BlaSchke--Santa16 Inequality 

Let K be a subset of lR.n . 

* K is said to be convex if, given any Yr, Y2 in K, the line segment 
(1 - t) Yl + tY2, 0 ~ t ~ 1 joining them also lies in K. 

* K is said to be centrally symmetric if, for each y E K, -y also 
belongs to K. 

* Let • denote the usual dot product on lR.n . The polar body KO of 
K is defined as follows: 

KO := {z E lR.n : Z. Y ~ 1 for all y E K} . 

As an example, the closed unit ball 

(14.7.1) jiB := {y E lR.n : y. y ~ 1} 

is convex and centrally symmetric. It is also equal to its polar body. 
Let yl, ... , yn denote Cartesian coordinates of lR.n. Namely, these are 

globally defined coordinates induced by an orthonormal basis with respect 
to the dot product. Given any closed subset K, we define its Euclidean 
volume by 

(14.7.2) vol(K) := idyl ... dyn . 
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Here, dyl ... dyn is the usual Lebesgue measure on jRn. See Royden [Roy] 
for a review of measure-theoretic issues. 

Let K be a closed, convex, centrally symmetric subset of 
Euclidean space jRn. Then 

1 vol(K) vol(KO) ~ vol(i) vol(io) = [vol(i)]2 I. 
Equality holds if and only if K is an ellipsoid. 

This is known as the Blaschk.e-Santal6 inequality. It was proved by 
Blaschke [Bla] in dimensions 2 and 3. Santal6 [San] established the in­
equality for higher dimensions. We defer to Schneider [Sch2] for a detailed 
methodical exposition, and to Meyer-Pajor [MP] for a short proof. 

For application to Finsler geometry, take K to be the indicatrix S to­
gether with the interior region of which it is the boundary. Namely, 

(14.7.3) 1 B := {y E jRn: F(y) ~ I} I, 

where F is the Minkowski norm under study. Although the polar body 13° 
still makes sense as defined above, it is nevertheless desirable to replace it 
by an object that is more akin to F than to the dot product e. 

To this end, let us define, as in functional analysis, the norm F* on the 
dual space jRn* . As we justify in the next section, it is appropriate to denote 
generic points in the dual space by p. Then F* is defined as follows: 

(14.7.4) F*(P) := sup p(v) = sup p [FY( )] . 
vES O#yERn y 

Take any nonzero element p E jRn*. It is a nonzero linear functional on jRn, 
so its level sets are parallel hyperplanes in jRn. Since S is the boundary of a 
(strictly) convex set, the above supremum is actually achieved at a unique 
v on the indicatrix S. That is, 

(14.7.5) F*(p) = p(v) for some unique v E S . 

More geometrically, the hyperplane on which p has the constant value F* (P) 
is tangent to S at v. And this v depends implicitly on the nonzero linear 
functional p. 

The F* we have defined turns out to have all three properties (see §1.1) 
of Minkowski norms, but on jRn* rather than on jRn. Of these properties, 
positive homogeneity is the most apparent; see Exercise 14.7.3. The remain­
ing two, namely, smoothness away from p = 0 and strong convexity, are 
discussed at the end of §14.8. Anyway, using F*, we introduce the following 
subset of jRn*: 

(14.7.6) 1 13* := {p E jRn*: F*(p) ~ I} I. 
Then we have the bijection 



Indeed, definition-chasing shows that the map 

z f-+ ze(.) 
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is a diffeomorphism from If onto B*. See Exercise 14.7.4. 
Let us digress to describe what is meant by vol(B*). Suppose yl, ... ,yn 

are Cartesian coordinates induced by some basis {ei} for Rn. Let Pl , ... ,Pn 
be the coordinates induced by the corresponding dual basis {e i } on Rn*. 
Then 

(14.7.7) vol( B*) := h. dPl'" dPn . 

Now, the above diffeomorphism z f-+ ze ( . ) from IS onto B* has Jacobian 
determinant equal to 1. Hence by the change-of-variables theorem, we have 

vol(B*) = vol(IS) . 

To conclude this section, we apply the Blaschke-Santal6 inequality 
to K:= B. Let F be an absolutely homogeneous Minkowski norm, so 
that B is closed, convex, and most important, centrally symmetric. Then 

(14.7.8) I vol(B) vol(B*) ~ [vol(B)]2 I, 
where equality holds if and only if B is an ellipsoid. Equivalently, equality 
holds if and only if F is the norm induced by an inner product on Rn. 

Exercises 

Exercise 14.7.1: Let B denote the closed unit ball in Rn. Show that: 

(a) It is convex and centrally symmetric. 

(b) The polar body of B is itself. 

Exercise 14.7.2: In the section, we have explained why given any nonzero 
P E Rn*, there exists a unique v E S such that p( v) = F* (P). 

(a) Along the ray AV, A ~ 0 generated by this v, explain why one has 

p(y) = F(y) F*(P) . 

(b) Prove that corresponding to the given nonzero p, there is a unique 
nonzero y E Rn such that 

p(y) = F(y) F*(P) and F(y) = F*(P) . 

(c) Equivalently, prove that there is a unique nonzero y E Rn at which 
one has 

p(y) = F 2(y) and F*(P) = F(y) . 
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Exercise 14.7.3: 

(a) Show that F*(p) is positively homogeneous of degree 1 in p. 

(b) Prove that F*(P) is absolutely homogeneous in p if and only if F(y) 
is absolutely homogeneous in y. 

Exercise 14.7.4: 

(a) Show that if Z E 13°, then the linear functional z • ( . ) is in 13* . 
(b) Conversely, suppose p E 13* is given. Explain why it must be of the 

form z • ( . ) for some z E lRn. Then show that such z must be in 
13°. 

(c) Check that the map z f--+ z. ( . ) has derivative matrix given by the 
Kronecker delta; hence its Jacobian determinant is equal to 1. 

14.8 The Legendre Transformation 

Given y E lRn " 0, define the element yO E lRn* " 0 by 

(14.8.1) 

So, with each nonzero y, we have associated a nonzero linear functional yO. 
Note, however, that the map y f--+ yO is typically nonlinear because of the 
presence of y in 9ij. 

Let us motivate the above definition. See also Miron [Mir2J, [Mir3]. 

* Start with the given Minkowski norm F. As in classical mechanics, 
we form the Lagrangian function 

1 
.c(y) := "2 F 2 (y) 

on the velocity phase space lRn. The coordinates yi are our velocity 
variables. 

* Next, we switch from the velocities-Lagrangian description to the 
momenta-Hamiltonian description. To this end, define the conju­
gate (or canonical) momenta Pj by 

a.c 
Pj := ayj = Yj . 

The last equality comes from (~F2)yi = F Fyi = F fj = yj. So the 
conjugate momenta of any nonzero yj is simply the Yj in (14.8.1). 

* The corresponding Hamiltonian 1t is a function on the momentum 
phase space lRn*. Its value at P = yO is given (via Euler's theorem) 
by 

1t(p) .- Pj y1 - .c(y) 2.c-.c 1 2 "2 F (y) , 
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which is numerically the same as C(y)! 

What we have just described is known as the Legendre transformation. 
Although it is true that the process y 1-+ y' maps Rn ,,0 onto Rn* ,,0, we 

have not established the said surjectivity yet. How then would one define 
the Hamiltonian 1i on all of Rn*? For that purpose, let us recall the dual 
norm F* defined in §14.7. By definition, we have 

F*( y') = sup Y'(v) . 
vES 

For each v in the indicatrix S, the fundamental inequality (1.2.16) says that 

Y'(v) = 9ij(Y) yi vj ~ F(y) F(v) = F(y) . 

Thus F(y) is an upper bound of {y'(v) : v E S}. This upper bound is 
actually attained at v := /(y). Therefore, 

(14.8.2) 1 F* (y') = F(y) I· 
Consequently, we can define the Hamiltonian on all of R n * as 

1i(p) := ~ F*2(p) , 

and that would be consistent with what we obtained through the Legendre 
transformation. 

Let us also set 

(14.8.3) 

Note that since [~F*2 (p) Jp; is homogeneous of degree 1 in p, Euler's theorem 
(Theorem 1.2.1) implies that 

(14.8.4) gij (p) Pj = [~F*2(p)] p; . 

We are now ready to state the following useful proposition. Some of our 
arguments are based on insights from the treatment in Rund [RJ. 

Proposition 14.8.1. Let F be a Minkowski norm on Rn that is possibly 
only positively homogeneous. Let F* denote the dual norm, in the func­
tional analysis sense, on Rm. Then: 

• The Legendre transformation y 1-+ y', namely, 

yj 1-+ Yj := gij(y) yi , 

is a smooth diffeomorphism from Rn " 0 onto Rn* " o . 
• It is norm preserving. That is, 

F*(y') = F(y). 
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• The inverse of the Legendre transFormation is given by 

P f-t pU, namely, Pi f-t pi := gij (P) Pj . 

• At P = yO, we have 

where gij (y) denotes the matrix inverse of gij (y). 

• The dual norm F* in the Functional analysis sense is actually a 
bonafide Minkowski norm on ]Rn* . 

Proof. 

• The Minkowski norm is by hypothesis smooth at all nonzero y. 
Hence the same holds for the fundamental tensor gij (y). This now 
gives the smoothness of the map yj f-t Yj := gij (y) yi. 

• According to (14.8.2), the said map is also norm preserving. That 
is, F*( yO) = F(y). 

We now turn our attention to the remaining assertions of the proposition. 

Establishing injectivity: 
Suppose y~ = P = y~ for nonzero Yb Y2 in ]Rn. In particular, 

P(YI) = F2(Yd and P(Y2) = F2(Y2) . 

The elements 

belong to the indicatrix S; they re-express the above equalities as 

(*) 

As remarked at the beginning of the proof, the map Y f-t yO is norm pre­
serving. So F(Yd = F*(p) = F(Y2), thereby converting (*) to read: 

(**) p(vd = F*(P) = P(V2) . 

The element P is nonzero. This is made manifestly so through (*). State­
ment (14.7.5) then guarantees a unique v in the indicatrix S such that 
p(v) = F*(p). This uniqueness forces VI and V2 to be equal, which im­
plies that Y2 = A YI for some positive A. Substituting such conclusion into 
y~ = y~, we get 

gij(YI) yi = gij(AYI) A yi . 
But gij(Y) is invariant under positive rescaling in y, thus the above becomes 

gij (Yd yl = gij (Yd A yl . 
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In other words, 

(1 - >.) y~ = (1 - >.) p = O. 

Since p =I- 0, we must have>. = 1. That is, Y2 = Yl. 

Establishing surjectivity: 
Let us be given any nonzero p E Rn*. By (14.7.5), there exists a unique 

v in the indicatrix S such that p(v) = F*(p). Define 

Then 

(***) 

y := F*(p) v . 

F(y) = F*(p) . 

We want to show that yD = p. To this end, fix any w E Rn. In view of 
(14.7.4) and (14.7.5), we have 

p ( Fry++t:w) ) :::; p(v) F*(P) . 

Therefore the function 

J(t) := p(y + tw) - F(y + tw) F*(p) 

is nonpositive for all t, and achieves its absolute maximum value of zero 
at t = o. In particular, J'(O) = O. Using the fact that p is linear, together 
with (***) above and formula (1.4.3) for Fyi, we have 

1'(0) = p(w) - F~~) Wi F*(p) = p(w) - yD(W) . 

This holds for any fixed w. Therefore p = y> as claimed. 

We have shown that: 

The Legendre transformation y I---t yD is a smooth, norm preserving 
diffeomorphism from (Rn '- 0 , F) onto (Rn* '- 0, F* ). 

The inverse of the Legendre transformation: 
We wish to demonstrate that 

gij (p) Pj = yi at p = y> . 

The computation consists of the following steps, all to be carried out at 
p= yD. 

* With the help of (14.8.4) and then (14.8.2), we have 

gij(p) Pj = [~F*2(p) Li = [~F2(y) Li . 
* Since the Legendre transformation is a smooth diffeomorphism, the 

relation p = y> can be inverted, albeit only implicitly at the moment, 
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to give y as a smooth function of p. In particular, the chain rule is 
applicable to the last term in the above. The result reads 

[ ~ F2(y)] ayj 
2 yi api 

[ -21 F2(y)]. yk ayj 
yJyk api 

k ayj 
gjk(Y) Y -a . 

Pi 

Here, the second last equality follows from Euler's theorem (Theo­
rem 1.2.1) and the fact that [~F2(Y)]yi is homogeneous of degree 1 
in y. 

* Differentiate the statement Pi = gij(y) yj with respect to Pk: 

agij(y) ays j ( ) ayj 
a s -a y + gij Y -a 

y Pk Pk 

[ ~F2(y)] 
2 yiY'yi 

ayj 
9ij(Y) -a . 

Pk 

The last equality comes from a direct application of Euler's theorem 
(Theorem 1.2.1) to the quantity [~F2 (y) ]yiys , which is homogeneous 
of degree zero in y. Hence 

ayj . 
-a = gJk(y) := the inverse of 9ij(Y) . 

Pk 

* Putting all these ingredients together, we have: 

gij(p) Pj = gjk(y) yk gji(y) = 8ki yk = yi , 

as desired. 

This proves that the map P f--+ P~, namely, Pi f--+ gij (p) Pj, is the inverse of 
the Legendre transformation. 

Showing that at P = yb, we have gij(p) = gij(y): 

* We have just shown that 

yi = gij (p) Pj = [~F*2 (p) ] Pi . 

Differentiating with respect to yk and using the chain rule, we get: 

8i = [~F*2(p)] apj = ij () apj 
k 2 PiPj ayk 9 P ayk . 
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* On the other hand, differentiating the relation Pj = gj8(y) y8 with 
respect to yk gives 

8p· 
8y~ = gjk(y) . 

The computation is similar to (but simpler than) that for !!]La a j , which 
Pk 

we carried out in detail a moment ago. 

* Therefore, 

8\ = gij(p) gjk(Y) . 

We have just shown that at p = yO, the matrix (gij (P)) is the inverse of 
the matrix (gjk(Y)). In other words, gij(p) = gij(y). 

That F* (p) is a Minkowski norm on ~M: 
At any nonzero p, we have p = yO. 

* The inverse p 1--+ Y of the Legendre transformation is a smooth 
diffeomorphism from ~n* '-.0 onto ~n '-. o. Also, F*(p) = F(y) and 
F is smooth at any nonzero y. Therefore, the chain rule tells us that 
F* is smooth at every nonzero p. 

* It can be checked from its definition (14.7.4) that F*(p) is positively 
homogeneous of degree 1 in p. See Exercise 14.7.3. 

* We have seen that 

[ ~F*2(p)] = gij(p) = gij(y). 
PiPj 

Since F is strongly convex, gij (y) is positive-definite. Thus so is its 
inverse gij(y). It follows that [~F*2(p)lpiPj is positive-definite. 

We now know that F* is regular, positively homogeneous of degree 1, and 
strongly convex. Therefore it is a Minkowski norm on ~n*. Note that given 
these three properties, its positivity is automatic, by Theorem 1.2.2. Such 
is also apparent from the statement F*(p) = F(y). D 

Exercises 

Exercise 14.8.1: Show that the Jacobian determinant of the Legendre 
transformation is simply det(gij(Y)). 

Exercise 14.8.2: By differentiating the relation Pj = gj8 (y) yS with respect 
to yk, show that 
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14.9 A Mixed-Volume Inequality, and Brickell's Theorem 

This section has two goals: 

* We first illustrate how the Blaschke-Santal6 inequality and the Le­
gendre transformation can join forces to produce a beautiful mixed­
volume inequality. 

* This mixed-volume inequality is then used, in conjunction with 
Hopf's classification of Riemannian space forms, to give an elegant 
proof of Brickell's theorem. 

The plan we have just outlined is due to Schneider [Sch1]. 
We begin with some preliminaries. Let F be any Minkowski norm on 

~n. Recall from §14.2 the Riemannian metric 9 := 9ij(Y) dyi ® dyj that it 
induces on the punctured space ~n ,,0. Worth emphasizing is the fact that 
these yi are global linear coordinates, discussed in detail in §14.2. This g, 
in turn, induces a Riemannian metric g on the indicatrix S. 

Those global linear coordinates, like Cartesian coordinates in Euclidean 
space, are sometimes not the most convenient to use. Such is the case in 
these preliminaries. So, as in §14.3, let us introduce the radial variable 
r := F(y). The coordinates ()a (a = 1, ... , n - 1) on S are then our an­
gular variables. Formula (14.3.5) tells us that, in terms of the spherical 
coordinates just described, the metric 9 takes the form 

dr ® dr + r2 g . 

In matrix language: 

(14.9.1) ( grr gr(3) _ (1 0) 
gar ga{3 - 0 r2 ga{3 . 

Formula (14.9.1) immediately gives 

which can equivalently be re-expressed as 

Consequently, we have the following relationship between volume forms: 

V§ dr /\ d() = r n - l dr /\ (yg d()) 

Here, d() := d()l /\ ... /\ d()n-l. In other words, 

(14.9.2) dVg = r n - l dr /\ dVg . 

We now use (14.9.2) to calculate the 9 Riemannian volume of 

B(r):= {YE~n: F(y)~r}. 
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This is to be distinguished from its· Euclidean volume. See Exercise 14.9.1. 
Anyway, we have 

volg[B(r)] = f dVg = lim f (iT pn-l dP) dVg . 
JO<F(Y)~T e--+O J s e 

It is necessary to have improper integrals here because 9 is typically singular 
at the origin of Rn. But the singularity is mild, and simple calculus gives 

(14.9.3) 
_ rn 

volg[B(r)] = - volg( S) , 
n 

where S is the indicatrix, not S(r). In particular, for r = 1, we have 

(14.9.4) 1 volg ( B ) = ~ volg ( S) I· 

There is a way to derive (14.9.4) without using spherical coordinates. See 
Exercise 14.9.3. Also, combining (14.9.3) with Exercise 14.5.4 gives some­
thing worth noting: vol[B(r)] = ~ vol[S(r)]. 

We have finished the requisite preliminaries. Now we turn to the first 
goal of this section, namely, the mixed-volume inequality. 

Proposition 14.9.1. Let (]Rn , F) be a Minkowski space. Suppose the 
Minkowski norm F is absolutely homogeneous of degree one. Then 

1 volg( B) :::; vol(lffi) I· 
Equivalently, 

volg ( S) :::; vol( §) I. 
In either case, equality holds if and only if F is the norm induced by an 
inner product on ]Rn. 

Remarks: 

* For emphasis, we reiterate that 

B .- {y E]Rn: F(y) :::; 1} 

iii .- {y ERn: y.y :::; 1} 

S .- {y ERn: F(y) 1} 
§ .- {y ERn: y.y = 1}, 

where. denotes the dot product. 

* The closed balls are n-dimensional, but the spheres are (n - 1)­
dimensional. 

* The upper bounds vol( i) and vol( §) are Euclidean volumes. See 
Exercise 14.5.5 for explicit formulas of vol( §). 
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* By contrast, the quantities they are bounding, namely, volg(13) and 
volg( S), are (typically non-Euclidean) Riemannian volumes. Hence 
the name "mixed-volume" inequality. 

Proof. Formula (14.9.4) say~ that volg(B) = ~volg(S). Specializing it 
to Euclidean space gives vol( lffi) = ~ vol( § ). The two asserted inequalities 
are thus equivalent. 

We prove the inequality for the closed balls. In order to reduce clutter, 
let us introduce the abbreviation 

dy := dy1 1\ ... 1\ dyn . 

We first write out the definition of volg (B) and apply the standard 
Cauchy-Schwarz inequality to it: 

volg(B) = lim 
<--->0 

(*) 

[ ]
1/2 

lim 1 det[9iJ(Y)] dy [vol(B)]1/2. 
<--->0 <:S;F:S;l 

Note that vol( B) is the Euclidean volume of the subset 13 of Rn. 
Next, recall from Proposition 14.8.1 that the Legendre transformation 

y f-> y~ is a norm preserving diffeomorphism from Rn "- 0 onto lR.n* "­
O. Hence it takes the subset E ~ F(y) ~ 1 diffeomorphically onto the 
subset E ~ F*(p) ~ 1. Also, Exercise 14.8.1 tells us that this map has 
Jacobian determinant equal to det[gij(Y)]. Therefore, by the change-of­
variables theorem, we can re-express the Euclidean volume of the dual 
closed unit ball 13* [see (14.7.6)] as follows: 

vol( 13*) = 

Consequently, we can rewrite (*) simply as 

(**) volg(B) ~ [vol( B*)]~ [vol(13)]~ 

By hypothesis, the Minkowski norm F is absolutely homogeneous of de­
gree 1. Thus the closed convex subset 13 is centrally symmetric. As a result, 
the Blaschke-Santal6 inequality (14.7.8) is applicable to the right-hand side 
of (**). It refines (**) to read: 

(***) volg(B) ~ [vol(B*)]~ [vol(B)]~ ~ voIOR). 
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This is the inequality we wanted to deduce. 
Finally: 

* Suppose volg(B) is equal to vol('iffi). This implies that in (***), the 
Blaschke-Santal6 inequality becomes an equality. As stated at the 
end of §14.7, such forces B to be an ellipsoid, and hence F must be 
the norm induced by an inner product on jRn. 

* Conversely, suppose our Minkowski norm arises from an inner prod­
uct on jRn. Say, F = vi Cij yiyj, where the Cij are constants. The 
fundamental tensor is then Cij, and 

Choose an orthonormal basis for this inner product and use the re­
sulting global linear coordinates za. Then F = vi {jab Za Zb = ..;z-ez. 
Express the y coordinates in terms of the z coordinates: 

This means that the y basis vectors are equal to the inverse matrix 
p-l acting on the z basis vectors. Linear algebra then gives C = 
(p-l)t I p-l because the fundamental tensor in the z coordinates 
is simply the identity matrix. In particular, Vdet c = (det P)-l. 
On the other hand, dyl 1\ ... 1\ dyn = (det P) dz l 1\ ... 1\ dzn . These 
maneuvers transform the above integral to 

r dz l 1\ ... 1\ dzn 
}O,;;;,rzez';;;l ' 

which is vol('iffi). We have thus shown that when the Minkowski 
norm comes from an inner product, (***) reduces to an equality. 

The proof of the proposition is therefore complete. 0 

We are now fully prepared to state and prove Brickell's theorem [B2]. 
The proof we give is due to Schneider [Schl]. 

Theorem 14.9.2 (Brickell). Suppose: 

• (jRn, F) is a Minkowski space, with F smooth and strongly convex 
on all of jRn " 0 . 

• n ~ 3. 
• F is absolutely homogeneous of degree one. 

• The curvature tensor of 9 := gij(y) dyi ® dyj is zero on jRn ,,0 . 

Then F must be the norm of some inner product on jRn. 
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Remarks: 

(a) The hypothesis n ~ 3 is essential, because the conclusion blatantly 
fails for Minkowski surfaces. As we can see from the 2-D examples 
given in §14.1, none of the Minkowski norms there is induced by 
any inner product. Yet, given any Minkowski norm F on ]R2 " 0, 
the curvature of 9 is always zero. This can be verified as in Exercise 
14.2.3. Or one can use part (b) of Exercise 4.1.1, followed by the 
same of Exercise 13.2.2. 

(b) There has been some speculation by a number ofresearchers (for ex­
ample, Matsumoto) that perhaps the absolute homogeneity hypoth­
esis can be weakened to positive homogeneity. This issue has yet to 
be settled. We feel that Brickell's original proof is more amenable to 
this purpose. However, a certain reference to Cartan in that proof 
needs to be closely scrutinized. 

Proof. The argument we describe involves three major ingredients: 

* The Gauss equation (14.6.6). 

* Hopf's classification of Riemannian space forms (Theorem 13.4.1). 

* The mixed-volume inequality (Proposition 14.9.1). This in turn 
comes from the Blaschke-Santal6 inequality (14.7.8) and a detailed 
understanding of the Legendre transformation (Proposition 14.8.1). 

The Riemannian metric 9 is defined by the fundamental tensor gij (y) of 
F. It induces a Riemannian metric 9 on the indicatrix S. In view of Propo­
sition 14.6.1, the hypothesized flatness of 9 is equivalent to the statement 
that (S, g) has constant sectional curvature 1. This is a direct consequence 
of the Gauss equation (14.6.6). 

Since n ~ 3, the indicatrix S has dimension at least two. It is therefore 
simply connected. It is also compact, hence complete. By Hopf's classifica­
tion theorem of Riemannian space forms (Theorem 13.4.1), (S, g) must be 
isometric to the standard sphere of radius 1 in Euclidean ]Rn. 

Because of the said isometry, the Riemannian volume of (S, g) is equal to 
the Euclidean value vol( §). This means that our mixed-volume inequality 
becomes an equality for the case in question. According to Proposition 
14.9.1, this can only happen when the Minkowski norm F is induced by an 
inner product on lRn. 0 

Exercises 

Exercise 14.9.1: The difference between the Riemannian and the Eu­
clidean volume ofB(r) is most easily seen in terms of global linear coordi­
nates yi (i = 1, ... , n). 
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(a) Let ..;g denote Jdet( gij ), where gij is the fundamental tensor of 
the Minkowski norm F, in the said global linear coordinates. Check 
that the g Riemannian volume of B(r) is 

r ..;g dy1 1\ ... 1\ dyn . 
JF(y)~r 

Hint: see §14.2. 

(b) On the other hand, explain why the Euclidean volume of B(r) is 
simply 

r dy1 1\ ... 1\ dyn . 
JF(y)~r 

Hint: see §14.7. 

Exercise 14.9.2: Prove that 

I (..;g )yk = ~..;g gij (gij )yk 

Exercise 14.9.3: Define 

S(r) := {y E lRn : F(y) = r} . 

Recall from (1.4.8) or Exercise 1.4.3 that the volume form of the Riemann­
ian manifold S(r) is 

n . 
'" . 1 yJ 1 . 1 .+1 ..;g ~ (-1)1- F dy 1\ ... 1\ dyJ- 1\ dyJ 1\ ... 1\ dyn , 
j=1 

where that F is actually equal to the constant value r. Introduce, for the 
sake of this exercise, the following (n - I)-form: 

n 

<I> := ..;g L (_1)j-1 yj dy11\···l\dyj-1I\dyj+11\··.l\dyn. 
j=1 

(a) Show that the integral of <I> over SeE) is En times its integral over 
S = S(l). 

(b) Prove that 

d<I> = n..;g dy1 1\ ... 1\ dyn 

Hint: use Exercise 14.9.2. 

( c) Identify the origin of the statement 

n dVg . 

r <I>- r <I>=nj dVg . 
J S (1) JS«) <~F~1 

(d) Let E ----> 0 in part (c). Check that (14.9.4) results. 

How would you modify the above strategy to deduce (14.9.3)? 



418 14. Minkowski Spaces, the Theorems of Deicke and Brickell 

References 

[Bl] 

[B2] 

[BLl] 

[Bla] 

[D] 

[GT] 

[Kawa] 

[Kik] 

[M8] 

[MP] 

[Mir2] 

[Mir3] 

[R] 

[Roy] 

[San] 

[Schl] 

[Sch2] 

[Smo] 

F. Brickell, A new proof of Deicke's theorem on homogeneous junctions, 
Proc. AMS 16 (1965), 190-19l. 

F. Brickell, A theorem on homogeneous junctions, J. London Math. Soc. 
42 (1967), 325-329. 

D. Baa and B. Lackey, Randers surfaces whose Laplacians have com­
pletely positive symbo~ Nonlinear Analysis 38 (1999), 27-40. 

W. Blaschke, Vorlesungen uber Differentialgeometrie, vol. II, Springer, 
1923. 

A. Deicke, Uber die Finsler-Raume mit Ai = 0, Arch. Math. 4 (1953), 
45-5l. 

D. Gilbarg and N. S. Tcudinger, Elliptic Partial Differential Equations 
of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 
224, Springer-Verlag, 1983. 

A. Kawaguchi, On the theory of non-linear connections II. Theory of 
Minkowski spaces and of non-linear connections in a Finsler space, Ten­
sor, N.S. 6 (1956), 165-199. 

S. Kikuchi, Theory of Minkowski space and of non-linear connections in 
Finsler space, Tensor, N.S. 12 (1962), 47-60. 

M. Matsumoto, The main scalar of a two-dimensional Finsler space with 
special metric, J. Math. Kyoto Univ. (Kyoto Daigaku J. Math.) 32(4) 
(1992), 889-898. 

M. Meyer and A. Pajor, On SantalO's inequality, Geometric Aspects 
of Functional Analysis, Lecture Notes in Mathematics, vol. 1376, J. 
Lindenstrauss and V. D. Milman, eds., Springer-Verlag, 1989. 

R. Miron, Cartan spaces in a new point of view by considering them as 
duals of Finsler spaces, Tensor, N.S. 46 (1987), 330-334. 

R. Miron, Hamilton geometry, Ann. §t. Univ. Al.l.Cuza, Ia§i 35 (1989), 
33-67. 

H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 
1959. 

H. L. Royden, Real Analysis, Macmillan, 1963. 

L. A. Santal6, Un invariante afin para los cuerpos convexos del espacio 
de n dimensiones, Portugal Math. 8 (1949), 155-16l. 

R. Schneider, Uber die Finslerriiume mit Sijkl = 0, Arch. Math. 19 
(1968), 656-658. 

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclo­
pedia of Mathematics and its Applications, vol. 44, Cambridge Univer­
sity Press, 1993. 

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundleh­
ren der Mathematischen Wissenschaften, vol. 258, 2nd ed., Springer­
Verlag, 1994. 



Bibliography 

Here, we consolidate all the cited references into one place. This is intended 
to give a sense of the book's scope. We ask that our readers not feel offended 
by any omission. 

References 

[A] M. Anastasiei, A historical remark on the connections of Chern and 
Rund, Cont. Math. 196 (1996), 171-176. 

[AB] P. L. Antonelli and R. H. Bradbury, Volterra-Hamilton Models in the 
Ecology and Evolution of Colonial Organisms, World Scientific, 1996. 

[AIM] P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of 
Sproys and Finsler Spaces with Applications in Physics and Biology, 
FTPH 58, Kluwer Academic Publishers, 1993. 

[AL] P. L. Antonelli and B. Lackey (eds.), The Theory of Finslerian Lapla­
cians and Applications, MAlA 459, Kluwer Academic Publishers, 1998. 

[AP] M. Abate and G. Patrizio, Finsler Metrics - A Global Approach, with 
applications to geometric junction theory, Lecture Notes in Mathemat­
ics, vol. 1591, Springer-Verlag, 1994. 

[AZ] H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles 
constantes, Acad. Roy. Belg. Bull. CI. Sci. (5) 74 (1988), 281-322. 

[AZas] P. L. Antonelli and T. J. Zastawniak, Jilundamentals of Finslerian Diffu­
sion with Applications, FTPH 101, Kluwer Academic Publishers, 1999. 

[Ant] P. L. Antonelli, Preface for Applications of Finsler Differential Geome­
try to Biology, Engineering, and Physics, Cont. Math. 196 (1996), 199-
202. 

[Asan] G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, FTPH 
12, D. Reidel and Kluwer Academic Publishers, 1985. 

[Au] L. Auslander, On curvature in Finsler geometry, Trans. AMS 79 (1955), 
378-388. 

[B1] F. Brickell, A new proof of Deicke's theorem on homogeneous junctions, 
Proc. AMS 16 (1965), 190-191. 

[B2] F. Brickell, A theorem on homogeneous junctions, J. London Math. Soc. 
42 (1967), 325-329. 

[BC1] D. Baa and S. S. Chern, On a notable connection in Finsler geometry, 
Houston J. Math. 19 (1993), 135-180. 



420 Bibliography 

[BC2] D. Bao and S. S. Chern, A note on the Gauss-Bonnet theorem for 
Finsler spaces, Ann. Math. 143 (1996), 233-252. 

[BCSl] D. Bao, S. S. Chern, and Z. Shen, On the Gauss-Bonnet integrand for 
4-dimensional Landsberg spaces, Cont. Math. 196 (1996), 15-25. 

[BCS2] D. Bao, S. S. Chern, and Z. Shen (eds.), Finsler Geometry, Joint Sum­
mer Research Conference on Finsler Geometry, July 16-20, 1995, Seat­
tle, Washington, AMS, Cont. Math. 196, 1996. 

[BCS3] D. Bao, S. S. Chern, and Z. Shen, Rigidity issues on Finsler surfaces, 
Rev. Roumaine Math. Pures Appl. 42 (1997), 707-735. 

[BG] M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, 
and Surfaces, Graduate Texts in Mathematics 115, Springer-Verlag, 
1988. 

[BLl] D. Bao and B. Lackey, Randers surfaces whose Laplacians have com­
pletely positive symbol, Nonlinear Analysis 38 (1999),27-40. 

[BL2] D. Bao and B. Lackey, A Hodge decomposition theorem for Finsler 
spaces, C.R. Acad. Sci. Paris 323 (1996), 51-56. 

[BL3] D. Bao and B. Lackey, A geometric inequality and a Weitzenbiick for­
mula for Finsler surfaces, The Theory of Finslerian Laplacians and Ap­
plications, P. L. Antonelli and B. Lackey (eds.), MAlA 459, Kluwer 
Academic Publishers, 1998, pp. 245-275. 

[BM] S. Bacso and M. Matsumoto, On Finsler spaces of Douglas type, a gen­
erolization of the notion of Berwald space, Publ. Math. Debrecen 51 
(1997), 385-406. 

[BS] D. Bao and Z. Shen, On the volume of unit tangent spheres in a Finsler 
manifold, Results in Math. 26 (1994), 1-17. 

[Bej] A. Bejancu, Finsler Geometry and Applications, Ellis Harwood, 1990. 

[Berl] L. Berwald, Atti Congresso Internal dei Mate., Bologna 3-10, Sept. 
(1928). 

[Ber2] L. Berwald, Two-dimensional Finsler spaces with rectilinear extremals, 
Ann. Math. 42 (1941), 84-112. 

[BI] R. G. Beil, Preface for Applications of Finsler Geometry to Relativistic 
Field Theory, Cont. Math. 196 (1996), 261-263. 

[Bla] W. Blaschke, Vorlesungen uber Differentialgeometrie, vol. II, Springer, 
1923. 

[Brl] R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Cont. 
Math. 196 (1996), 27-42. 

[Br2] R. Bryant, Projectively fiat Finsler 2-spheres of constant curvature, Se­
lecta Mathematica, New Series 3 (1997), 161-203. 

[Br3] R. Bryant, Finsler surfaces with prescribed curvature conditions, Aisen­
stadt Lectures, in preparation. 

[BuMa] H. Busemann and W. Mayer, On the foundations of the calculus of 
variations, Trans. AMS 49 (1941),173-198. 



References 421 

[CE] J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geom­
etry, North Holland/American Elsevier, 1975. 

[ChI] S. S. Chern, Local equivalence and Euclidean connections in Finsler spa­
ces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95-121; or Selected 
Papers, vol. II, 194-212, Springer 1989. 

[Ch2] S. S. Chern, Historical remarks on Gauss-Bonnet, Analysis et Cetera, 
volume dedicated to Jiirgen Moser, Academic Press, 1990, pp. 209-217. 

[Ch3] S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for 
closed Riemannian manifolds, Ann. Math. 45(4) (1944),747-752. 

[Ch4] S. S. Chern, On the curvatura integra in a Riemannian manifold, Ann. 
Math. 46(4) (1945),674-684. 

[D] A. Deicke, Uber die Finsler-Raume mit Ai = 0, Arch. Math. 4 (1953), 
45-51. 

[Daz] P. Dazord, Proprietes globales des geodesiques des Espaces de Finsler, 
Theses, Universite de Lyon, 1969. 

[delR] L. del Riego, Tenseurs de Weyl d'un spray de directions, Theses, Uni­
versite Scientifique et Medicale de Grenoble, 1973. 

[doCl] M. P. do Carmo, Differential Forms and Applications, Springer-Verlag, 
1994. 

[doC2] M. P. do Carmo, Differential Geometry of Curves and Surfaces, 
Prentice-Hall, 1976. 

[doC3] M. P. do Carmo, Riemannian Geometry, Mathematics: Theory and Ap­
plications, Birkhauser, 1992. 

[E] D. Egloff, Uniform Finsler Hadamard manifolds, Ann. Inst. Henri 
Poincare 66 (1997), 323-357. 

[Fl] P. Funk, Uber zweidimensionale Finslersche Riiume, insbesondere iiber 
solche mit geradlinigen Extremalen und positiver konstanter Kriimm­
ung, Math. Zeitschr. 40 (1936), 86-93. 

[F2] P. Funk, Eine Kennzeichnung der zweidimensionalen elliptischen Ge­
ometrie, Osterreichische Akad. der Wiss. Math., Sitzungsberichte Ab­
teilung II 172 (1963), 251-269. 

[Fou] P. Foulon, Geometrie des equations differentielles du second orore, Ann. 
Inst. Henri Poincare 45(1) (1986), 1-28. 

[Fult] C. M. Fulton, Parallel vector fields, Proc. Amer. Math. Soc. 16 (1965), 
136-137. 

[GHL] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Univer­
sitext, 2nd ed., Springer-Verlag, 1990. 

[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations 
of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 
224, Springer-Verlag, 1983. 

[GW] R. Gardner and G. Wilkens, Preface for Applications of Finsler Geom­
etry to Control Theory, Cont. Math. 196 (1996), 227-229. 



422 

[Gr] 

[HI] 

[HSl] 

[HS2] 

[I] 

[Ing] 

[J] 

[KNl] 

[Kawa] 

[Ki] 

[Kik] 

[Ko] 

[Ml] 

[M2] 

[M3] 

[M4] 

[M5] 

[M6] 

[M7H] 

Bibliography 

A. Gray, Modern Differential Geometry of Curves and Surfaces with 
Mathematica, 2nd ed., CRC Press, 1998. 

M. Hashiguchi and Y. Ichijyo, On some special (0, (3)-metrics, Rep. Fac. 
Sci. Kagoshima Univ. 8 (1975), 39-46. 

D. Hrimiuc and H. Shimada, On the C-duality between Lagrange and 
Hamilton manifolds, Nonlinear World 3 (1996), 613""{)4l. 

D. Hrimiuc and H. Shimada, On some special problems concerning the 
C-duality between Finsler and Cartan spaces, Tensor, N.S. 58 (1996), 
48""{)l. 

Y. Ichijyo, Finsler manifolds modeled on a Minkowski space, J. Math. 
Kyoto Univ. (Kyoto Daigaku J. Math.) 16-3 (1976), 639-652. 

R. S. Ingarden, On physical applications of Finsler geometry, Cont. 
Math. 196 (1996), 213-223. 

J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, 
Springer-Verlag, 1995. 

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 
vol. I, Wiley-Interscience, 1963 (1996). 

A. Kawaguchi, On the theory of non-linear connections II. Theory of 
Minkowski spaces and of non-linear connections in a Finsler space, Ten­
sor, N.S. 6 (1956), 165-199. 

S. Kikuchi, On the condition that a space with (0, (3)-metric be locally 
Minkowskian, Tensor, N.S. 33 (1979), 242-246. 

S. Kikuchi, Theory of Minkowski space and of non-linear connections in 
Finsler space, Tensor, N.S. 12 (1962), 47....{)0. 

S. Kobayashi, On conjugate and cut loci, Global Differential Geometry, 
S. S. Chern, ed., Math. Assoc. America, 1989, pp. 140--169. 

M. Matsumoto, A slope of a mountain is a Finsler surface with respect 
to a time measure, J. Math. Kyoto Univ. (Kyoto Daigaku J. Math.) 
29-1 (1989), 17-25. 

M. Matsumoto, Foundations of Finsler Geometry and Special Finsler 
Spaces, Kaiseisha Press, Japan, 1986. 

M. Matsumoto, Theory of curves in tangent planes of two-dimensional 
Finsler spaces, Tensor, N.S. 37 (1982), 35-42. 

M. Matsumoto, On Finsler spaces with Randers' metric and special 
forms of important tensors, J. Math. Kyoto Univ. (Kyoto Daigaku J. 
Math.) 14 (1974), 477-498. 

M. Matsumoto, Randers spaces of constant curvature, Rep. on Math. 
Phys. 28 (1989), 249-26l. 

M. Matsumoto, Remarks on Berwald and Landsberg spaces, Cont. Math. 
196 (1996), 79-82. 

M. Matsumoto and Hojo, A conclusive theorem on C-reducible Finsler 
spaces, Tensor, N.S. 32 (1978), 225-230. 



References 423 

[M8] M. Matsumoto, The main scalar of a two-dimensional Finsler space with 
special metric, J. Math. Kyoto Univ. (Kyoto Daigaku J. Math.) 32(4) 
(1992), 889-898. 

[M9] M. Matsumoto, Theory of Finsler spaces with m-th root metric II, Publ. 
Math. Debr. 49 (1996), 135-155. 

[MI0] M. Matsumoto, Berwald connection of a Finsler space with an (0, (3)­
metric, Tensor, N.S. 50 (1991), 18-2l. 

[Ml1] M. Matsumoto, A History of Finsler Geometry, Proc. of the 33rd Symp. 
on Finsler Geometry (ed. Okubo), Lake Yamanaka, 1998, pp. 71-97. 

[MA] R. Miron and M. Anastasiei, The Geometry of Lagmnge Spaces: Theory 
and Applications, FTPH 59, Kluwer Academic Publishers, 1994. 

[MP] M. Meyer and A. Pajor, On Santal6's inequality, Geometric Aspects 
of Functional Analysis, Lecture Notes in Mathematics, vol. 1376, J. 
Lindenstrauss and V. D. Milman, eds., Springer-Verlag, 1989. 

[Mirl] R. Miron, Geneml Randers spaces, Lagrange and Finsler Geometry, P. 
L. Antonelli and R. Miron (eds.), Kluwer Academic Publishers, 1996, 
pp. 123-140. 

[Mir2] R. Miron, Carlan spaces in a new point of view by considering them as 
duals of Finsler spaces, Tensor, N.S. 46 (1987), 330-334. 

[Mir3] R. Miron, Hamilton geometry, Ann. §t. Univ. Al.I.euza, Ia§i 35 (1989), 
33-67. 

[Nu] S. Numata, On the torsion tensors R jhk and Phjk of Finsler spaces with 
a metric ds = (gij(dx)dxidxj)1/2 + bi(x)dxi , Tensor, N.S. 32 (1978), 
27-3l. 

[Num] S. Numata, On Landsberg spaces of scalar curvature, J. Korean Math. 
Soc. 12 (1975), 97-100. 

[ON] B. O'Neill, Semi-Riemannian Geometry, with Applications to Relativity, 
Academic Press, 1983. 

[Ok] T. Okada, On models of projectively flat Finsler spaces of constant neg­
ative curvature, Tensor, N.S. 40 (1983), 117-124. 

[Oku] K. Okubo, Lecture at the Symposium on Finsler Geometry, 1977, un­
published (communicated to us by M. Matsumoto). 

[On] B. O'Neill, Elementary Differential Geometry, 2nd ed., Academic Press, 
1997. 

fOp] J. Oprea, Differential Geometry and its Applications, Prentice-Hall, 
1997. 

[P] M. Pinl, In memory of Ludwig Berwald, translated by P. Bergmann and 
M. Grumet, Scripta Math. 27 (1965), 193-203. 

[R] H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 
1959. 

[Ra] G. Randers, On an asymmetric metric in the four-space of geneml rel­
ativity, Phys. Rev. 59 (1941),195-199. 

[Roy] H. L. Royden, Real Analysis, Macmillan, 1963. 



424 Bibliography 

[SK] C. Shibata and M. Kitayama, On Finsler spaces of constant positive cur­
vature, Proceedings of the Romanian-Japanese Colloquium on Finsler 
Geometry, Br8.§ov, 1984, pp. 139-156. 

[SS] J. Schouten and D. Struik, On some properties of general manifolds 
relating to Einstein's theory of gravitation, Amer. J. Math. 43 (1921), 
213-216. 

[SSAY] C. Shibata, H. Shimada, M. Azuma, and H. Yasuda, On Finsler spaces 
with Randers' metric, Tensor, N.S. 31 (1977), 219-226. 

[ST] 1. M. Singer and J. A. Thorpe, Lecture Notes on Elementary Topology 
and Geometry, Undergraduate Texts in Mathematics, Springer-Verlag, 
1976. 

[SY] R. Schoen and S. T. Yau, Lectures on Differential Geometry, Confer­
ence Proceedings and Lecture Notes in Geometry and Topology, vol. I, 
International Press, 1994. 

[saS] S. Sabau and H. Shimada, Classes of Finsler spaces with (el, (3) -metrics, 
1999 preprint. 

(San] L. A. Santal6, Un invariante afin para los cuerpos convexos del espacio 
de n dimensiones, Portugal Math. 8 (1949), 155-161. 

[Sch1] R. Schneider, Uber die Finslerriiume mit Sijkl = 0, Arch. Math. 19 
(1968), 656-658. 

(Sch2] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclo­
pedia of Mathematics and its Applications, vol. 44, Cambridge Univer­
sity Press, 1993. 

(Sh] Z. Shen, Curvature, distance and volume in Finsler geometry, unpub­
lished. 

(Smo] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundleh­
ren der Mathematischen Wissenschaften, vol. 258, 2nd ed., Springer­
Verlag, 1994. 

(Sp1] M. Spivak, Differential Geometry, vol. I, Publish or Perish, 1975. 

(Sp2] M. Spivak, Differential Geometry, vol. II, Publish or Perish, 1970. 

(Sp4] M. Spivak, Differential Geometry, vol. IV, Publish or Perish, 1975. 

(Sz] Z. Szab6, Positive definite Berwald spaces (structure theorems on Ber­
wald spaces), Tensor, N.S. 35 (1981), 25-39. 

(U1] C. Udriste, Appendix 4. Completeness and convexity on Finsler man­
ifolds, Convex Functions and Optimization Methods on Riemannian 
Manifolds, MAlA 297, Kluwer Academic Publishers, 1994, pp. 318-330. 

(U2] C. Udriste, Completeness of Finsler manifolds, Publ. Math. Debrecen 
42 (1993), 45-50. 

(W] J. H. C. Whitehead, Convex regions in the geometry of paths, Quarterly 
J. Math. Oxford, Ser. 3 (1932), 33-42. 

[Wa] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, 
Scott-Foresman, 1971. 



References 425 

[Yj H. Yasuda, On the indica trices of a Finsler space, Tensor, N.S. 33 
(1979), 213-22l. 

[YSj H. Yasuda and H. Shimada, On Randers spaces of scalar curvature, Rep. 
on Math. Phys. 11 (1977), 347-360. 



Index 

A ijk ,22, 30 
Aijk ,47 
Aijkls , 44, 45, 47 
Aijk;s , 44, 45, 47 
Aijk ,313 
Akbar-Zadeh's theorem, 325, 328 
almost g-compatibility, 38 
angular metric hij , 75, 76, 284, 312 
arith.-geom. mean inequality, 396 
autoparallel, 125 

Base curve, 111 
base manifold, 29 
basic index lemma, 182 
basic property of index (2nd), 242 
n-beins, 35 
Berwald frame {el' e2}, 93 
Berwald space, 18, 128, 258 

explicit y-global example, 304, 
306, 309 

Berwald-Rund example, 266 
Bianchi identities for I, J, K, 97 
Bianchi identity jidentities, 

first, 51 
for Riemannian spaces, 354 

second,58 
for Riemannian spaces, 354 

Big "Oh" notation, 137 
Blaschke--Santal6 inequality, 404 
Bochner 

result of, 380 
technique, 380 

Bonnet-Myers theorem, 194 
Bonnet's theorem, 195, 243 
bootstrapping, 249 
bounded, 

backward, 169 
forward, 169 

Brickell's theorem, 415 
Bryant's family of metrics, 21, 343 

specific member of, 346 
Busemann-Mayer theorem, 

absolutely homogeneous, 153 
positively homogeneous, 161 

Cijk , 22 
canonical lift, 112 
canonical momenta, 406 
canonical (Cartesian) product, 361 
Cartan formula, 62 
Cartan scalar I, 82, 83, 95 
Cartan tensor, 22, 30 
Cartan-Hadamard theorem, 238 
Cauchy sequence, 



428 Index 

Cauchy (continued) 
forward, 151 
backward, 151 

centrally symmetric, 403 
Chern connection matrix, 96 
Christoffel connection, 352 
Christoffel symbols, 

of the 1st kind hijk), 36, 270 
"(ijk , of the 2nd kind, 33, 353 

Christoffel's trick, 40, 353 
Codazzi-Mainardi equation, 403 
codifferential, 379 
commutation relation, 235 
comparison result for functions, 183 
g-compatible, 41 
complete, 

forward, 152, 333 
backward, 152 

conjugate, 
locus, 200 
point, 174, 200 
radius, 200 
value, 200 

conjugate momenta, 406 
connection, 

I-forms w/ , 37 
Berwald, 39, 65, 67 
Cartan,39 
Chern ri jk , 38 
Hashiguchi, 39 
nonlinear, 34 
Rund,39 

constant flag curvature, 
Finsler spaces of, 20, 76, 313 

const. sectional curvature, 364, 365 
constitutive relation, 56, 59 
covariant, 

derivatives, 37 
horizontal ( ... )1. , 44, 45 
vertical ( ... );. , 44, 45 

differential, 44 
convergence of sequences, 151 
convex limac;;on, 83 
convex subset, 403 
convexity, 

strict, 12, 13 
strong, 3, 383 

criterion for, 88, 386 
covering homotopy theorem, 236 

covering projection, 231 
curvature, 

P of type hv- , 50, 67 
Q of type vv- , 50, 67 
R of type hh- , 50, 67 

curvature 2-forms 0/ , 49, 354 
curvature tensor(s) of, 

Berwald spaces, 263, 265 
locally Minkowskian spaces, 53 
Riemannian manifolds, 53, 354 

cut, 
locus, 200 
point, 187, 200 
value, 200 

6yi ,34 

6!i ,34 
Deicke's theorem, 393 
distinguished section £ , 30 
distribution, 

horizontal, 35, 62 
vertical, 35, 62 

divergence lemma, 376 
divergence of vector fields, 376 
Douglas space, 304 

el, e2, e3, 93, 94 
i, 30 

Ii, 30 
ii, 31 

Einstein metric/manifold, 357 
equicontinuous families, 154 
Euclidean volume, 403 
Euler characteristic X(M), 108, 109 
Euler's theorem, 5 
evenly covered, 232 
exponential map, 126 

Finsler structure, 2 
flag, 68 

transverse edge of, 68 
flag curvature, 68, 69, 311 

predecessor of, 69, 312, 330 
flagpole, 68 
flat linear connections, 272 
fundamental group, 214 
fundamental identity, 54 
fundamental inequality, 7, 9, 10 
fundamental tensor gij , 22, 30 



g,30 
g,83 
9 , 397, 412 

gT ' 115, 141 
Gauss curvature equation, 400 
Gauss lemma, 140 
Gauss-Bonnet theorem, 105 
Gaussian curvature K, 96, 336 

Maple codes for, 331, 332, 347, 
348 

of Riemannian surfaces, 356 
geodesic, 

constant Finslerian speed, 123, 
125,296 

const. Riemannian speed, 297 
Finslerian, 115, 123, 336, 337 
minimal, 153 
radial, 140, 155 
short pieces, 155, 160 

geodesic completeness, 
backward, 168, 342 
forward, 168, 342 

geodesic sphere, 140 
geodesic spray, 65 

coefficients C i , 36, 47, 48, 65, 70, 
264, 293, 296, 298, 299, 329, 
330, 331 

geodesics, 
bunching together, 136, 138 
dispersing, 136, 138 

global equivalence, 90 
Green's second identity, 378 

Hamiltonian, 406 
harmonic 

forms, 380 
functions, 377 

Hilbert form w , 30 
Hilbert's invariant integral, 31 
Hodge decomposition theorem, 214 
Hodge star, 380 
homogeneity, 

absolute, 3, 405 
positive, 2, 383 

Hopf-Rinow theorem, 168 
Hopf's classification theorem, 370 
Hopf's result on tl!, 377 
horizontal subspace, 35 

Ichijyo's result, 258 
index form, 176 

Index 429 

index of vector fields, 108, 109 
indicatrix, 82, 101 

Finslerian arc length of, 104 
Riemannian arc length L of, 85, 

101, 104 
indicatrix bundle, 92 
induced Riemannian metric 

9 , 397, 412 
h,83 

injectivity radius, 200 
integral length of curves, 105, 111, 

145 
interchange formulas, 61 

for Riemannian spaces, 355 
isometry, 

Finslerian, 197, 232 
of Minkowski spaces, 259, 260 
Riemannian, 261, 370 

Jacobi endomorphism, 79 
Jacobi equation, 130 

scalar, 134 
Jacobi field, 130, 173 
Jacobi-type equation, 320, 322 

Lagrange identity, 135 
Lagrangian, 406 
Landsberg angle, 85, 102 
Landsberg scalar J, 97 
Landsberg space, 60, 105, 313 

useful identity for, 326 
Laplace-Beltrami operator, 380 

on O-forms, 377, 380 
Laplacian, 377 

eigenvalues of, 377 
Legendre transformation, 407 
Leibniz rule, 41 
Levi-Civita connection, 352, 353 
Lie brackets, 62 
linear connection, 38 
little "oh" notation, 321 
locally Minkowskian, 14, 275 
lower semicontinuity, 206 

Main scalar I, 82, 83, 95 
meridian, 189 
metric ball, 



430 Index 

metric (continued) 
backward, 155, 320 
forward, 149, 320 

metric distance d, 145, 146 
metric sphere, 

forward, 149 
metric-compatibility, 352 
metrics of Numata type, 72 
Minkowski 

norms of Randers type, 384 
normal form, 384 

plane, 82 
space, 275 

mixed-volume inequality, 413 
Morse-Schoenberg theorem, 243 

Nonconjugate points, 204 
nonlinear connection N i j , 34, 271 
norm, 

Euclidean, 7, 11 
Minkowski, 7 

Numata type metrics, 72 

w1 , w2 , w3 , 93 
Okubo metrics, 279 
Okubo's technique, 13, 385 

Parallel (noun), 189 
parallel translation/transport, 134, 

258 
parallel vector field, 134, 258 
piecewise Coo variation, 111 
Poincare disc, 

Finslerian analogue of, 20, 333, 
339,340 

Poincare-Hopf index theorem, 108 
polar body KO , 403 
polarization identity, 70 
product metric 

canonical, 361 
warped,361 

projective factor, 71, 349 
projectively flat, 344 
projectively related, 71, 349 
pulled-back bundle, 28, 29, 92 

Quartic metric, 15 
perturbation of, 15 

Randers metric, 17, 281 
Rauch theorem (first), 244, 245 
reducible Cart an tensor, 291 
reference origin, 321 
reference vector, 121 
regularity, 2, 383 
regularized quartics, 385 

with drift term, 385 
generalized, 385 

reverse of curves, 128 
Ricci identities, 61, 98 

for Riemannian spaces, 355 
Ricci scalar, 73, 191 

for Riemannian metrics, 357 
Ricci tensor, 192, 193 

for Riemannian metrics, 357 
Riemann curvature tensor, 354 
Riemannian metric, 351 
Riemannian space forms, 17, 366, 

367 
Rund's ODE, 84 

Sasaki (type) metric, 35, 93 
scalar curvature (of), 75 
scalar flag curvature (has), 75 
Schouten and Struik (result of), 

357 
Schur-type result, 357 
Schur's lemma, 77 

for Riemannian spaces, 356 
second fundamental form, 398 
sectional curvature, 355 

underlying flag of, 355 
underlying flagpole of, 355 
underlying transverse edge of, 

355 
slit tangent bundle T M " 0, 2, 29 
special g-orthonormal basis, 31 
sphere bundle 8M, 29, 92 
spherical harmonics, 393 
splitting property, 361 
standard unit circle §l, 101 
std. models of Riem. space forms, 

elliptical/spherical model, 367 
flat/Euclidean model, 366 
hyperbolic/Poincare md!., 367 

strictly convex domain, 12 
strong convexity, 3, 88, 383, 386 
strong maximum principle, 396 



Synge's theorem, 221 
SzabO's rigidity theorem, 278 

Tangent, 
ball, 139 
sphere, 139 

tensor field of type G), 44, 352 
torsion-freeness, 38, 352 
transplant of vector fields, 240 
transverse edge, 68 

Uniform ellipticity, 397 
unique minimizer, 202 

Variation of arc length, 
first, 115 
second,121 

Index 431 

variation vector field, 112 
velocity variables, 406 
vertical subspace, 35 

Warped products, 361 
wedge-shaped variation, 131 
WeitzenbOck formula, 378, 380 

y-global, 19, 258, 279, 304 
y-Iocal, 19, 267, 279 
Yasuda-Shimada theorem, 334 



Graduate Texts in Mathematics 
(continued from page ii) 

62 KARGAPOLOvIMERLZIAKOV. Fundamentals 93 DUBROVIN/FOMENKO/NOVIKov. Modem 
of the Theory of Groups. Geometry-Methods and Applications. 

63 BOLLOBAS. Graph Theory. Part I. 2nd ed. 
64 EDWARDS. Fourier Series. Vol. I 2nd ed. 94 WARNER. Foundations of Differentiable 
65 WELLS. Differential Analysis on Complex Manifolds and Lie Groups. 

Manifolds. 2nd ed. 95 SHIRYAEV. Probability. 2nd ed. 
66 WATERHOUSE. Introduction to Affine 96 CONWAY. A Course in Functional 

Group Schemes. Analysis. 2nd ed. 
67 SERRE. Local Fields. 97 KOBLITZ. Introduction to ElIiptic Curves 
68 WEIDMANN. Linear Operators in Hilbert and Modular Forms. 2nd ed. 

Spaces. 98 BROcKERITOM DIECK. Representations of 
69 LANG. Cyclotomic Fields II. Compact Lie Groups. 
70 MASSEY. Singular Homology Theory. 99 GRoVEiBENSON. Finite Reflection Groups. 
71 F ARKAslKRA. Riemann Surfaces. 2nd ed. 2nded. 
72 STILLWELL. Classical Topology and 100 BERG/CHRrsTENSENiRESSEL. Harmonic 

Combinatorial Group Theory. 2nd ed. Analysis on Semigroups: Theory of 
73 HUNGERFORD. Algebra. Positive Definite and Related Functions. 
74 DAVENPORT. Multiplicative Number 101 EDWARDS. Galois Theory. 

Theory. 2nd ed. 102 V ARADARAJAN. Lie Groups, Lie Algebras 
75 HOCHSCHILD. Basic Theory of Algebraic and Their Representations. 

Groups and Lie Algebras. 103 LANG. Complex Analysis. 3rd ed. 
76 IITAKA. Algebraic Geometry. 104 DUBROVIN/FOMENKO/NOVIKov. Modem 
77 HECKE. Lectures on the Theory of Geometry-Methods and Applications. 

Algebraic Numbers. Part II. 
78 BURRJS/SANKAPPANAVAR. A Course in 105 LANG. SL2(R). 

Universal Algebra. 106 SILVERMAN. The Arithmetic ofElIiptic 
79 WALTERS. An Introduction to Ergodic Curves. 

Theory. 107 OLVER. Applications of Lie Groups to 
80 ROBINSON. A Course in the Theory of Differential Equations. 2nd ed. 

Groups. 2nd ed. 108 RANGE. Holomorphic Functions and 
81 FORSTER. Lectures on Riemann Surfaces. Integral Representations in Several 
82 Borr/Tu. Differential Forms in Algebraic Complex Variables. 

Topology. 109 LEHTO. Univalent Functions and 
83 WASHINGTON. Introduction to Cyclotomic Teichrniiller Spaces. 

Fields. 2nd ed. 110 LANG. Algebraic Number Theory. 
84 IRELAND/ROSEN. A Classical Introduction III HUSEMOLLER. ElIiptic Curves. 

to Modem Number Theory. 2nd ed. 112 LANG. ElIiptic Functions. 
85 EDWARDS. Fourier Series. Vol. II. 2nd ed. 113 KARATZAS/SHREVE. Brownian Motion and 
86 VAN LINT. Introduction to Coding Theory. Stochastic Calculus. 2nd ed. 

2nded. 114 KOBLITZ. A Course in Number Theory and 
87 BROWN. Cohomology of Groups. Cryptography. 2nd ed. 
88 PIERCE. Associative Algebras. 115 BERGERlGoSTIAUX. Differential Geometry: 
89 LANG. Introduction to Algebraic and Manifolds, Curves, and Surfaces. 

Abelian Functions. 2nd ed. 116 KELLEy/SRINIVASAN. Measure and Integral. 
90 BR0NDSTED. An Introduction to Convex Vol. I. 

Polytopes. 117 SERRE. Algebraic Groups and Class Fields. 
91 BEARDON. On the Geometry of Discrete 118 PEDERSEN. Analysis Now. 

Groups. 119 ROTMAN. An Introduction to Algebraic 
92 DIESTEL. Sequences and Series in Banach Topology. 

Spaces. 



120 ZIEMER. Weakly Differentiable Functions: 149 RATCLIFFE. Foundations of 
Sobolev Spaces and Functions of Bounded Hyperbolic Manifolds. 
Variation. 150 EISENBUD. Commutative Algebra 

121 LANG. Cyclotomic Fields I and II. with a View Toward Algebraic 
Combined 2nd ed. Geometry. 

122 REMMERT. Theory of Complex Functions. 151 SILVERMAN. Advanced Topics in 
Readings in Mathematics the Arithmetic of Elliptic Curves. 

123 EBBINGHAuslHERMES et al. Numbers. 152 ZIEGLER. Lectures on Polytopes. 
Readings in Mathematics 153 FuLTON. Algebraic Topology: A 

124 DUBROVINlFoMENKolNovIlWV. Modem First Course. 
Geometry-Methods and Applications. 154 BROWN/PEARCY. An Introduction to 
Part III. Analysis. 

125 BERENSTEIN/GAY. Complex Variables: An 155 KASSEL. Quantum Groups. 
Introduction. 156 KECHRIS. Classical Descriptive Set 

126 BOREL. Linear Algebraic Groups. 2nd ed. Theory. 
127 MASSEY. A Basic Course in Algebraic 157 MALLIAVIN. Integration and 

Topology. Probability. 
128 RAUCH. Partial Differential Equations. 158 ROMAN. Field Theory. 
129 FULTONIHARRIs. Representation Theory: A 159 CONWAY. Functions of One 

First Course. Complex Variable II. 
Readings in Mathematics 160 LANG. Differential and Riemannian 

130 DOOSON/POSTON. Tensor Geometry. Manifolds. 
131 LAM. A First Course in Noncommutative 161 BORWEINIERDEL Yr. Polynomials and 

Rings. Polynomial Inequalities. 
132 BEARDON. Iteration of Rational Functions. 162 ALPERINIBELL. Groups and 
133 HARRIs. Algebraic Geometry: A First Representations. 

Course. 163 DIXONIMORTIMER. Permutation 
134 ROMAN. Coding and Information Theory. Groups. 
135 ROMAN. Advanced Linear Algebra. 164 NATHANSON. Additive Number Theory: 
136 AOKINsIWEINTRAUB. Algebra: An The Classical Bases. 

Approach via Module Theory. 165 NATHANSON. Additive Number Theory: 
137 AxLER/BOURDONlRAMEy. Harmonic Inverse Problems and the Geometry of 

Function Theory. Sumsets. 
138 COHEN. A Course in Computational 166 SHARPE. Differential Geometry: Cartan's 

Algebraic Number Theory. Generalization of Klein's Erlangen 
139 BREDON. Topology and Geometry. Program. 
140 AUBIN. Optima and Equilibria. An 167 MORANDI. Field and Galois Theory. 

Introduction to Nonlinear Analysis. 168 EWALD. Combinatorial Convexity and 
141 BECKERIWEISPFENNINGIKREOEL. Grilbner Algebraic Geometry. 

Bases. A Computational Approach to 169 BHATIA. Matrix Analysis. 
Commutative Algebra. 170 BREDON. Sheaf Theory. 2nd ed. 

142 LANG. Real and Functional Analysis. 171 PETERSEN. Riemannian Geometry. 
3rd ed. 172 REMMERT. Classical Topics in Complex 

143 DooB. Measure Theory. Function Theory. 
144 DENNIs/F ARB. Noncommutative 173 DIESTEL. Graph Theory. 2nd ed. 

Algebra. 174 BRIDGES. Foundations of Real and 
145 VICK. Homology Theory. An Abstract Analysis. 

Introduction to Algebraic Topology. 175 LICKORISH. An Introduction to Knot 
2nded. Theory. 

146 BRIDGES. Computability: A 176 LEE. Riemannian Manifolds. 
Mathematical Sketchbook. 177 NEWMAN. Analytic Number Theory. 

147 ROSENBERG. Algebraic K-Theory 178 CLARKEILEDY AEV/STERNIWOLENSKI. 
and Its Applications. Nonsmooth Analysis and Control 

148 ROTMAN. An Introduction to the Theory. 
Theory of Groups. 4th ed. 179 DOUGLAS. Banach Algebra Techniques in 

Operator Theory. 2nd ed. 



180 SRIVASTAVA. A Course on Borel Sets. 192 HIRSCHILACOMBE. Elements of Functional 
181 KREss. Numerical Analysis. Analysis. 
182 WALTER. Ordinary Differential 193 COHEN. Advanced Topics in 

Equations. Computational Number Theory. 
183 MEGGINSON. An Introduction to Banach 194 ENGELINAGEL. One-Parameter Semigroups 

Space Theory. for Linear Evolution Equations. 
184 BOLLOBAS. Modem Graph Theory. 195 NATHANSON. Elementary Methods in 
185 COxiLITTLElO'SHEA. Using Algebraic Number Theory. 

Geometry. 196 OSBORNE. Basic Homological Algebra. 
186 RJuMAKJUSHNANtvALENZA.Fourier 197 EISENBuol HARRIs. The Geometry of 

Analysis on Number Fields. Schemes. 
187 HARRIslMORRISON. Moduli of Curves. 198 ROBERT. A Course in p-adic Analysis. 
188 GOLDBLATT. Lectures on the Hyperreals: 199 HEDENMALM!K.ORENBLUMIZHU. Theory 

An Introduction to Nonstandard Analysis. of Bergman Spaces. 
189 LAM. Lectures on Modules and Rings. 200 BAO/CHERN/SHEN. An Introduction to 
190 ESMONDEIMURTY. Problems in Algebraic Riemann-Finsler Geometry. 

Number Theory. 201 HINDRY/SILVERMAN. Diophantine 
191 LANG. Fundamentals of Differential Geometry. 

Geometry. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




