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Preface

A historical perspective

The subject matter of this book had its genesis in Riemann’s 1854 “habil-
itation” address: “Uber die Hypothesen, welche der Geometrie zu Grunde
liegen” (On the Hypotheses, which lie at the Foundations of Geometry).
Volume II of Spivak’s Differential Geometry contains an English translation
of this influential lecture, with a commentary by Spivak himself.

Riemann, undoubtedly the greatest mathematician of the 19th century,
aimed at introducing the notion of a manifold and its structures. The prob-
lem involved great difficulties. But, with hypotheses on the smoothness of
the functions in question, the issues can be settled satisfactorily and there
is now a complete treatment.

Traditionally, the structure being focused on is the Riemannian metric,
which is a quadratic differential form. Put another way, it is a smoothly
varying family of inner products, one on each tangent space. The resulting
geometry — Riemannian geometry — has undergone tremendous develop-
ment in this century. Areas in which it has had significant impact include
Einstein’s theory of general relativity, and global differential geometry.

In the context of Riemann’s lecture, this restriction to a quadratic dif-
ferential form constitutes only a special case. Nevertheless, Riemann saw
the great merit of this special case, so much so that he introduced for it
the curvature tensor and the notion of sectional curvature. Such was done
through a Taylor expansion of the Riemannian metric.

The Riemann curvature tensor plays a major role in a fundamental prob-
lem. Namely: how does one decide, in principle, whether two given Rie-
mannian structures differ only by a coordinate transformation? This was
solved in 1870, independently by Christoffel and Lipschitz, using different
methods and without the benefit of tensor calculus. It was almost 50 years
later, in 1917, that Levi-Civita introduced his notion of parallelism (equiv-
alent to a connection), thereby giving the solution a simple geometrical
interpretation.

Riemann saw the difference between the quadratic case and the general
case. However, the latter had no choice but to lay dormant when he re-
marked that “The study of the metric which is the fourth root of a quartic
differential form is quite time-consuming and does not throw new light to
the problem.” Happily, interest in the general case was revived in 1918
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by Paul Finsler’s thesis, written under the direction of Carathéodory. For
this reason, we refer to the general case as Riemann—Finsler geometry, or
Finsler geometry for short.

Finsler geometry is closely related to the calculus of variations. See §1.0.
As such its deeper study went back at least to Jacobi and Adolf Kneser. In
his Paris address in 1900, Hilbert formulated 23 unsolved problems. The
last one was devoted to the geometry of the calculus of variations. It is the
only problem for which he did not formulate a specific question/conjecture.
Hilbert gave praise to Kneser’s book, then new. He provided an account of
the invariant integral, and emphasized the importance of the problem of
multiple integrals. The Hilbert invariant integral plays an important role
in all modern treatments of the subject.

The geometrical data in Finsler geometry consists of a smoothly vary-
ing family of Minkowski norms (one on each tangent space), rather than
a family of inner products. This family of Minkowski norms is known as a
Finsler structure. Just like Riemannian geometry, there is the equivalence
problem: how can one decide (in principle) whether two given Finsler struc-
tures differ only by a transformation induced from a coordinate change? It
is not unreasonable to expect that the solution of the equivalence problem
will again involve a connection and its curvature, together with the proper
space on which these objects live.

In Riemannian geometry, the connection of choice was that constructed
by Levi-Civita, using the Christoffel symbols. It has two remarkable at-
tributes: metric-compatibility and torsion-freeness. Although we now know
that in Finsler geometry proper, these cannot both be present in the same
connection, such was perhaps not common knowledge during the turn of
the century. Even after reaching this realization, one still faces the daunting
task of writing down viable structural equations for the connection. Fur-
thermore, the Levi-Civita (Christoffel) connection operates on the tangent
bundle TM of our underlying manifold M. But the same cannot be said of
its Finslerian counterpart.

It was not until 1926 that significant progress was made by Ludwig
Berwald (1883-1942), from an analytical perspective. See the poignant and
informative obituary by Max Pinl in Scripta Math. 27 (1965), 193-203.

Berwald’s work stemmed from the study of systems of differential equa-
tions, and was very much rooted in the calculus of variations. He introduced
a connection and two curvature tensors, all rightfully bearing his name. See
Matsumoto’s appendix (“A History of Finsler Geometry”) in Proceedings
of the 33rd Symposium on Finsler Geometry (ed. Okubo), 1998, Lake Ya-
manaka. (A revised version is scheduled to appear in Tensor.) The Berwald
connection is torsion-free, but is (necessarily) not metric-compatible. The
Berwald curvature tensors are of two types: an hh- one not unlike the Rie-
mann curvature tensor, and an hv- one which automatically vanishes in
the Riemannian setting. Berwald’s constructions have, since their incep-
tion, been indispensable to the geometry of path spaces.
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Enthusiasts of metric-compatibility were not to be outdone. It is an amus-
ing irony that although Finsler geometry starts with only a norm in any
given tangent space, it regains an entire family (!) of inner products, one for
each direction in that tangent space. This is why one can still make sense
of metric-compatibility in the Finsler setting. In 1934, Elie Cartan intro-
duced a connection that is metric-compatible but has torsion. The Cartan
connection remains, to this day, immensely popular with the Matsumoto
and the Miron schools of Finsler geometry. Besides the curvature tensors
of hh- and hv- type, there is a third curvature tensor associated with the
Cartan connection. It is of vv- type. Curiously, this last tensor is numeri-
cally identical to the curvature of a canonical (albeit singular) Riemannian
metric on each tangent space.

Back in the torsion-free camp, the next progress came in 1948, when the
Chern connection was discovered. Its formula differs from that of Berwald’s
by an A term. In natural coordinates on the slit tangent bundle TM \ 0,
the Chern connection coefficients are given by

9 (59sj _ bgjk 5gks)
5 :

bx* bz 6z

To get those for the Berwald connection, one simply adds on the tensor
At jx- More importantly, replacing the operator % by % gives the familiar
Levi-Civita (Christoffel) connection of Riemannian metrics.

The connections of Berwald and Chern are both torsion-free. They also
fail, slightly but expectedly, to be metric-compatible. Of the two, the Chern
connection is simpler in form, while the Berwald connection effects a leaner
hh-curvature for spaces of constant flag curvature. These connections co-
incide when the underlying Finsler structure is of Landsberg type. They
further reduce to a linear connection on M, one which operates on T M,
when the Finsler structure is of Berwald type.

In the generic Finslerian case, none of the connections we mentioned
operates directly on the tangent bundle TM over M. Chern realized in his
solution of the equivalence problem that, by pulling back 7'M so that it
sits over the manifold of rays SM rather than M, one provides a natural
vector bundle on which these connections may operate. It is within this
geometrized setting that the equivalence problem and its solution admit a
sound conceptual interpretation.

The layout of the book

The Riemann-Finsler manifolds form a much larger class than the Rie-
mannian manifolds. Correspondingly, the former has a much more extensive
literature, connected with the names Synge, Berwald, E. Cartan, Buse-
mann, Rund, and many of our contemporaries. It is not the objective of
this book to provide a comprehensive survey. Rather, following the general
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outline of Riemann and Hilbert, our aim is to develop the subject some-
what independently, with Riemannian geometry as a special case. We hope
our attempt at least reflects some of the spirits of those two pioneers.

This book is comprised of three parts:

* Finsler Manifolds and Their Curvature: four chapters.
* Calculus of Variations and Comparison Theorems: five chapters.
* Special Finsler Spaces over the Reals: five chapters.

The key points of each chapter are detailed in our table of contents. Given
that, we refrain from discussing here the specific topics covered.

There are fourteen chapters with an average of 30 pages each. The
chapters are intentionally kept short. It seems that psychologically, one’s
progress through the Finsler landscape is more easily monitored this way.
Every chapter is devoted to (only) one or two major results. This con-
straint allows us to base each chapter on a single theme, thereby rendering
the book more teachable.

Regarding classroom use, the students we have in mind are advanced
undergraduates or first-year graduate students. They are assumed to have
had at least a small amount of tensor analysis, to the extent that they
are comfortable with the gymnastics of raising and lowering indices. It
would also help if they have had some exposure to manifolds in the ab-
stract, so that pull-backs and push-forwards are familiar operations. Some
computational experience with the Gaussian curvature of Riemannian sur-
faces would provide adequate motivation and intuition. This book contains
enough material for roughly three semester courses.

We have adopted a candid style of writing. If something is deemed simple
or straightforward, then it really is. If an omitted calculation is long, we say
so. Details, annotations, and remarks are provided for the harder or subtler
topics. Perhaps these gestures will help encourage the newly initiated to
stay the course and not give up too easily.

At the end of every chapter, one finds a list of references. Other than
a few books, these consist primarily of research papers mentioned in that
chapter. We have chosen to list them there for a reason. It is helpful to be
able to tell, at a glance, the research territories and boundaries with which
the chapter in question has made contact. We hope this feature helps foster
the book’s image as an invitation to ongoing research. Incidentally, a master
bibliography also appears at the end of the book.

We have compiled 393 exercises. Among those, there are 80 that prompt
the reader to fill in some of the steps that we have omitted. Nothing was left
out due to laziness on our part. Instead, the omissions are to be thought of
as casualties of the editorial process. Their inclusion would either prove to
be too distracting, or add unnecessarily to the size of the book. Those 80
problems aside, the remaining 313 exercises explore examples, touch upon
new frontiers, and prepare for developments in later chapters.
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If the purpose of the reader is to gain a nodding acquaintance of Finsler
geometry, then the exercises can be skipped without harm, until some spe-
cific ones are referred to later. If the reader plans to do research in Finsler
geometry, then practically all the exercises need to be carefully worked
out. And, to assist those in the second group, we have provided detailed
step-by-step guidance on the more challenging problems. The adventurous
reader can always restore as much challenge as he or she wants by blocking
out some of our suggestions. We simply want to ensure that no one feels
demoralized by any of the exercises.

A good number of explicit examples are presented in this book. Those
discussed in the sections proper include:

* Minkowski spaces: §1.3A, §14.1.

* Riemannian spaces: §13.3, especially §13.3B, §13.3C.
* Berwald spaces: §10.3, §11.6B.

* Randers spaces: §1.3C, §11.0, §11.6B, §12.6.

* Spaces of scalar curvature: §3.9B.

* Spaces of constant flag curvature: §12.6, §12.7.

Many more can be found among the exercises.

The above examples all involve y-global Finsler structures F', with the
exception of the Berwald—Rund example treated in §10.3. By y-global, we
mean that F' is smooth and strongly convex on TM \ 0. The said example
does not meet this stringent criterion, but is nevertheless included because
it illustrates some computation well. It also provides excellent motivation
for the rest of Chapter 10 and all of Chapter 11.

By no means have we exhausted the realm of interesting examples, y-
global or not. For instance, it is with great reluctance that we have omitted
Antonelli’s Ecological Models, Matsumoto’s Slope of a Mountain Metric,
and Models of Physiological Optics discussed by Ingarden. The interested
reader can consult the book The Theory of Sprays and Finsler Spaces with
Applications in Physics and Biology written by these three authors.

It is true that Finsler geometry has not been nearly as popular as its
progeny—Riemannian geometry. One reason is that deceptively simple for-
mulas can quickly give rise to complicated expressions and mind-boggling
computations. With the effort of many dedicated practitioners, this situa-
tion is slowly being turned around. Nonetheless, some intrinsic aspects of
the subject are suggesting bounds on what one can do with mere pencil
and paper.

Fortunately, we are in a technological age. Symbolic computations and
large-scale computations on the computer are readily accessible. We took
the first step in that direction by writing Maple codes for the Finslerian
analogue of the Gaussian curvature. Then we implemented those codes
on some explicit examples in Chapter 12. We hope this modest attempt
represents the start of a trend. This could also be the venue by which a
geometry-minded computer scientist helps advance the field significantly.



xii Preface

As we mentioned earlier, this book is not intended to be a comprehensive
survey. Furthermore, our choice of topics and examples is guided by an eye
towards the global geometry. The picture we paint can possibly be rather
idiosyncratic. In spite of that, the material covered here is fundamental
enough to be considered essential to all branches of Finsler geometry.

To our colleagues

In earlier versions of the manuscript, our definitions of the nonlinear
connection and related objects on T M \ 0 differed from those of our fellow
researchers by factors involving the Finsler function F. In this final ver-
sion, we have decided to match their notations exactly. It is hoped that by
removing an unnecessary accent, we have enhanced the book’s suitability
as a textbook or as a basic desk reference. Here are the specifics:

| | A | |
Ny o= vt = 20y = vt - Oy
5 d .y Z. o

We have not changed our philosophy of working, as much as possible, with
objects that are homogeneous of degree zero in y. Our reason for doing so
is that they make intrinsic sense on the manifold of rays SM. For instance,
we prefer to work with V ij /F rather than just N ij. But, unlike our earlier
notation, the IV *; here is identical to the N Y used by others.

Next, our convention on the wedge product does not contain the normal-
ization factors %, %, etc. For example, if 6, {, and £ are 1-forms, then:

0N == 0R¢ — (®0,
OACAE = 0Q(RE — 0RERC
+(RERI — (RIRE
+EROIBRE — EQR(RI.

Our placement of indices and sign convention on the curvature tensor
are adequately illustrated by what we do in the Riemannian case:

. g ( dgs; _ Ogjk n Ogks
L) azk oz® ozi )’

. o, v ; ;
Ry = Bzi - Ba:]l + ’th’)’hjl - ’Yhﬂhjk-

Finally, our G* := 7", y/y* is twice the G* of Matsumoto.

Houston, Tezas D. Bao
Berkeley, California S.-S. Chern
Indianapolis, Indiana Z. Shen
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Chapter 1

Finsler Manifolds and the
Fundamentals of Minkowski Norms

1.0 Physical Motivations
1.1 Finsler Structures: Definitions and Conventions
1.2 Two Basic Properties of Minkowski Norms

1.2 A. Euler’s Theorem
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1.3 C. Randers Spaces

1.3 D. Berwald Spaces

1.3 E. Finsler Spaces of Constant Flag Curvature
1.4 The Fundamental Tensor and the Cartan Tensor
References for Chapter 1

1.0 Physical Motivations

Finsler geometry has its genesis in integrals of the form
b 1
dz dz™
R Py
/a oo ® Ty dt

The function F(z?!,...,z"; y',...,y") is positive unless all the y* are zero.
It is also homogeneous of degree one in y. Let us single out some contexts
in which this integral arises.

* In certain physical examples, z stands for position, y for velocity.
Then F would have the meaning of speed, and ¢ would play the
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role of time. In these cases, the above integral measures distance
traveled. However, other interpretations are possible.

Take optics for instance. Keep in mind that in an anisotropic
medium, the speed of light depends on its direction of travel. At
each location z, visualize y as an arrow that emanates from z. Now
measure the amount of time it takes light to travel from z to the
tip of y, and call the result F(z,y). The hypothe51zed homogeneity
allows us to rewrite the displayed integral as f F(z,dz). This then
represents the total time it takes light to traverse a given (possibly
curved) path in this medium. See Ingarden’s exposition in [AIM].

There are many variations on the theme we just described. A par-
ticularly interesting one concerns the time it takes to negotiate any
given path on a hillside. It was originally mentioned by Finsler to
Matsumoto [M1]. The premise here is that one’s walking speed de-
pends heavily on the slope of the terrain, and hence on one’s direc-
tion of travel. See Matsumoto’s account in [AIM].

Mathematical ecology provides more esoteric examples. For in-
stance, = could stand for the state of a coral reef, and y the displace-
ment vector from the state z to a new state. The quantity F(z, dz)
represents the energy one needs in order to evolve from the state x
to the neighboring state = + dx. Hence the integral f F(z,dz) is
the total energy cost of a given path of evolution. See Antonelli’s
treatment in [AIM], as well as the book by Antonelli and Bradbury
[AB].

For explicit mathematical examples, see §1.3.

1.1 Finsler Structures: Definitions and Conventions

Let M be an n-dimensional C*° manifold. Denote by T,M the tangent
space at x € M, and by TM := U ¢ T, M the tangent bundle of M. Each
element of T M has the form (z,y), where x € M and y € T, M. The natural
projection 7w : TM — M is given by 7n(z,y) := z. The dual space of T, M
is T; M, called the cotangent space at . The union T*M := Uzen To M
is the cotangent bundle of M.

A (globally defined) Finsler structure of M is a function

F :TM — [0,00)
with the following properties:

(i) Regularity: F is C*™ on the entire slit tangent bundle TM \ 0.
(ii) Positive homogeneity: F(z, A y) = AF(z,y) forall A >0.
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Strong convexity: The n x n Hessian matrix

(9:3) = ([% Fz]y”y:‘)

is positive-definite at every point of TM \ 0 .

In some situations, the Finsler structure F' satisfies the criterion
F(z,—y) = F(z,y). In that case we have absolute homogene-
ity instead: F(z, A y) = |A| F(z,y) for all A € R. In general, we
find this property to be too restrictive, because it would immedi-
ately exclude some interesting examples such as Randers spaces (see
§1.3C).

Let us make sense of the y* in criterion (iii). Fix any basis {b;}
for T, M. Out of habit, one can take b; to be 5‘%7 , although this
restriction is unnecessary. Express y as y* b; . The Finsler structure
F is then a function of (z¢,'), and the partial derivatives of 3 F
are taken with respect to the y*. It can be checked that the positive-
definiteness stipulated in (iii) is independent of our choice of {b;}.

Given a manifold M and a Finsler structure F on T M, the pair (M, F)
is known as a Finsler manifold. See §1.3 for explicit examples of some
important Finsler manifolds.

Throughout the book, the rules that govern our index gymnastics are as
follows:

Let

Lower case Latin indices (except the alphabet n) run from 1 to n .
Lower case Greek indices run from 1ton—1 .
Vector indices are up; covector indices are down.

Any repeated pair of indices—provided that one is up and the other
is down—is automatically summed.

The lowering and raising of indices are carried out by the g;; defined
above, and its matrix inverse g%/.

(z!,...,2") = (z*) : U — R™ be a local coordinate system on

an open subset U C M. As usual, {32} and {dz'} are, respectively, the
induced coordinate bases for T, M and T M. The said z* give rise to local
coordinates (z%,3*) on 771U C TM through the mechanism

BT )
y_yaxz'

The 37 are fiberwise global. Whenever possible, let us make no distinction
between (z,y) and its coordinate representation (z*,y’). Functions F that
are defined on TM can be locally expressed as

F(z',...,z"; 9. .,9™) .
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We continue a convention employed in criterion (iii) above; namely, denote
by Fyi, Fyiys, ..., etc. the partial derivative(s) of F' with respect to the
coordinates y*. Adopt a similar notation for the partial derivatives with
respect to the coordinates x°.

We close this section with some cautionary remarks about our notation.
For the sake of concreteness, we focus our attention on the various objects

that the symbol % comes to represent throughout this book.

* When evaluated at the point z € M, "6% refers to a coordinate
vector on M.

* When evaluated at the point (z,y) € TM, the same notation a—z—i
stands for a coordinate vector on T'M. As such, it would be on the
same footing as the 6—2—1-, which are also coordinate vectors on the
tangent bundle TM.

* Later on, we use the restricted projection 7 : TM \ 0 — M to pull
the tangent bundle T'M back, producing a vector bundle n*TM
that sits over TM \ 0 . In that case, when % is evaluated at the
point (z,y) € TM \ 0, it will take on yet another meaning, namely,
as (the value of) a basis section of the bundle 7*T' M.

In short, we are using the same symbol 5% to denote objects that belong
to three different spaces. Furthermore, they do not obey the same trans-
formation law. Indeed, let

= (&, ..., 5")

be a local change of coordinates on M. Correspondingly, the chain rule
gives
; oz’
1.1.1 = Ta
(1.1.1) V' = 50 ¥

One can apply the chain rule carefully to deduce that:

* As coordinate vector fields on M, or as basis sections of 7*T M, the
5% transform like
0 ozt o
(1.1.2) 2z -z 2
ozp ozP Or’
* On the other hand, as coordinate vector fields on T'M, the 5%
transform like
0 ozt 0 ozt _, 0
ozp O0zP Oxt lolindesnd oy*

Nevertheless, we have decided that the inherent risks of this practice
do not outweigh its virtue, which is simplicity. We feel (or hope!) that it
is easier for the reader to ferret out the proper meaning of % from the
context of our discussion or computation, than to create a different symbol
for each of the three objects described.
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Exercises

Exercise 1.1.1: Recall that the definition of the g;; involves a choice of
basis for each T, M. Explain why the positive-definiteness of the matrix
(gi;) is a basis-free concept.

Exercise 1.1.2: Derive the induced transformation laws (1.1.1)—(1.1.3).

1.2 Two Basic Properties of Minkowski Norms

The restriction of a Finsler structure F to any specific tangent space T, M
gives what is known as a Minkowski norm on 7,, M. Thus a Finsler structure
of M may be viewed as a smoothly varying family of Minkowski norms.
Generically, this family has rather limited (to be precise, no more than C!)
differentiability along the zero section of the tangent bundle TM. Such
regularity issues are dealt with later. Here, let us concern ourselves with
certain geometrical aspects of Minkowski norms.

Every n-dimensional vector space is linearly isomorphic to R™, whose
elements y have the form (y!,...,y"). Thus there is no loss of generality
in confining our discussion to Minkowski norms on R™.

1.2 A. Euler’s Theorem

First, let us dispense with a technical ingredient that manifests itself repeat-
edly in our arguments. It is known as Euler’s theorem for homogeneous
functions.

Theorem 1.2.1. Suppose a real-valued function H on R™ is differen-
tiable away from the origin of R™. Then the following two statements are
equivalent:

e H is positively homogeneous of degree r. That is,

H(Ay) = AT H(y) forall A>0.
o The radial directional derivative of H is r times H. Namely,

y' Hy(y) = v H(y)

Proof.

* Suppose H satisfies H(Ay) = A" H(y) for all positive A. Fix y.
Differentiating this equation with respect to the parameter X gives

Yyt Hy(\y) = r AL H(y) .

Setting A equal to 1 gives the criterion sought.



6 1. Finsler Manifolds and the Fundamentals of Minkowski Norms

* Conversely, suppose y* H,:(y) = r H(y). Fix y and consider the
function H(Ay) with A > 0. By the chain rule, we have

L HOW) = ¥ By () = + () Hy(w)

Using our supposition, we see that the last term equals % rH(\y).
Since we have not assumed that H is nonzero away from the origin,
we cannot read the above as de logH(Ay) = § = _de log A". Instead,
we rewrite it as the ODE

d T
— H(\y) — — =0.
o HAY) - 5 H(Ay) =0
The integrating factor Xl; then gives H(Ay) = C A", where C is

some constant that depends on our fixed y. Setting A equal to 1
shows that C = H(y). O

In particular, if F is positively homogeneous of degree 1, then

_ i
(1.2.1) ¥ Fyi(y) = F(y), equivalently yf F:, =1,
(1.2.2) ¥ Fyii(y) = 0.

1.2 B. A Fundamental Inequality

The next theorem tells us that positivity and the triangle inequality are
actually consequences of the defining propertics of Minkowski norms. It also
calls our attention to a multifaceted fundamental inequality.

Theorem 1.2.2. Let F be a nonnegative real-valued function on R™ with
the properties:

* F is C* on the punctured space R™ \ 0 .
* F(Ay)=AF(y) forall XA>0.

* The n x n matrix (9i;), where g () =[5 F*lyiys(y) , is positive-
definite at all y # 0.

Then we have the following conclusions:
e (Positivity)
F(y) > 0  whenever y#0 .
e (Triangle inequality)
F(yi+y2) < F(y) + F(y2),

where equality holds if and only if y2 = ay, or y, = ay, for some
az=0.
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e (Fundamental inequality)

(1.2.3) w' Fu(y) < Flw) atall y#0 |,

and equality holds if and only if w = ay for some a 2 0.

Remarks:

** The hypotheses of the above theorem define what one means by a
Minkowski norm on R™. According to this theorem, there is no
need to hypothesize that F' be positive at y # 0; it is necessarily so.

** If the Minkowski norm satisfies F(—y) = F(y), then one has the
absolute homogeneity F'(A y) = |A| F(y). The simplest example of
an absolutely homogencous Minkowski norm on R™ is

F(y) == Jyey,

where o denotes the canonical inner product u e v := §;; u* v?. This
F' is called the standard Euclidean norm of R™.

** In view of the first two conclusions of this theorem, every absolutely

homogeneous Minkowski norm is a norm in the sense of functional
analysis.

In preparation for the proof of Theorem 1.2.2, we observe the following:

e One can check that
1
(1.2.4) Gij(y) = (-2- F2> . (y) = [F Fyiyj + Fyi ij](y) .
Yyl

The g;; are C* functions on R™\ 0 and, in typical examples (that
are not Riemannian), they cannot even be extended continuously to
all of R™.

e Applying the consequences (1.2.1), (1.2.2) of Euler’s theorem to the
above formula for g;; gives

J

(1.2.5) Gijp) Y'Y = F%(y), equivalently g;; gF_ yF_ = 1.
We now give a proof, adapted from Rund [R], of Theorem 1.2.2.

Proof of the theorem.

(i) Positivity:

Consider (1.2.5); namely, g;; ) ¥° 3’ = F*(y) . The hypothesized strong
convexity of F says that the left-hand side is positive whenever y # 0, thus
F is strictly positive on R \ 0 .
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(ii) The triangle inequality:
At each point y € R™ \ 0, the matrix (g;;) defines an inner product. So
we have the Cauchy—Schwarz type inequality

(12.6)  [gijw) €W < [9ij) €8 lgnw) 0] VENER™,

where equality holds if and only if £ = (£¢), n = (°) are collinear. Setting
n* = y* and using (1.2.5), we obtain

(1.2.7) (9i5w) €V 12 < F?(¥) [gij) €] VEER™,

where equality holds if and only if £ and y are collinear. On the other hand,
the formula (1.2.4) for g;; leads us to

igj 1 i gj igj
(128) F’yJ(y) § £J = Fg(y) {F2(y) [gij (y) é 61] - [gij v Y 51 ]2}
which, in conjunction with (1.2.7), gives
(1.2.9) Fu(y) €€ >0 VEeR™.

Here, equality holds if and only if £ and y are collinear.
Next we prove that

(1.2.10) 2F(y) < Fiy+¢) + Fly—-§ Vy&eR",

and equality holds if and only if £ = Ay for some |A| < 1.
Let us begin by analyzing all the linearly dependent cases:

* If £ = Ay for some |A] < 1, the (positive) homogeneity of F' implies
that both sides of (1.2.10) are equal to 2F(y).

* If € = Ay with [A] > 1, the right-hand side of (1.2.10) reduces to the
form (24 a)F(y) + 3, where a, 8 are positive. Hence the inequality
in question is strict as claimed.

* The case of £ = 0 is covered by the above. The only scenario left
is when £ # 0 but y = 0, for which the inequality is strict by the
positivity we just established.

Now suppose y, £ are linearly independent. Consider F(y +t£), which is
a C* function in the real variable t. By the second mean-value theorem,
we have

(1211)  Fy+6) = F) £ Fa@) & + 3 Fup(y+e) €6

for some 0 < € < 1. Since y + €£ and £ are linearly independent, (1.2.9)
tells us that the quadratic term in (1.2.11) is positive. Thus

(1.2.12) Fly+€) > F(y) + Fyi(y) &,
(1.2.13) F(y—€) > F(y) — Fu(y) €.
These add to yield the strict inequality part of (1.2.10).
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By setting y :=  (y1 +y2) and € := 3 (y1 — ¥2) in (1.2.10), we obtain the
triangle inequality stated in the theorem. The fact that (1.2.10) becomes an
equality only when £ = Ay for some |A| < 1 now implies that the triangle
inequality is strict except when y; = ays or yz = ay; for some a > 0.

Let us note in passing the following. We have seen that (1.2.10) implies
the triangle inequality. The converse is quite straightforward. So the two
are actually equivalent.

(iii) The fundamental inequality:
Finally, we ascertain (1.2.3):

w' Fi(y) < F(w) atall y#0,

where equality is supposed to hold if and only if w = ay for some a 2 0.
The consequences of Euler’s theorem, as described in (1.2.1) and (1.2.2), are
used repeatedly without mention. As before, we enumerate all possibilities:

* When w = ay for some a > 0, both sides equal aF(y).

* When w is a negative multiple of y, the inequality is strict because
its left-hand side becomes a negative multiple of F(y).

* The case w # 0 but y = 0 is disallowed.

* Lastly, suppose y,w are linearly independent; then so are y and
¢ := y — w. Inequality (1.2.13) now reads

(1.2.14) Flw) > F(y) - Fyly) 0 — ),
which readily reduces to the strict part of (1.2.3).

We have completely proved Theorem 1.2.2. [I

1.2 C. Interpretations of the Fundamental Inequality

In this subsection, let us explore the many different faces of the fundamental
inequality (1.2.3).

o At face value, (1.2.3) says that

wt F(y) < F(w)

And, the latter becomes an equality if and only if w = ay for some
a > 0. Note that the said equality, after cancelling off a (if > 0),
is none other than Euler’s theorem (1.2.1): y* Fy: (y) = F(y). Hence
(1.2.3) may be viewed as an extension of Euler’s theorem, from an
equation to an inequality.

e Adding the equation F(y) — y* F,:(y) = 0 to (1.2.3) gives

(1.2.15) Fy) + Fu(y) (w—1vy)' < Fw) |,




10

(1.2.16) gijw) W'Y < F(w) F(y)
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where equality holds only when w = ay with & > 0. Think of y
as fixed and w as the independent variable. The left-hand side is
then the linear approximation of the value F(w). So, at any fixed
(y, F(y)) on the graph of F, the tangent hyperplane touches the
graph only along the ray (ay,aF(y)), a = 0. Everywhere else, the
tangent hyperplane lies below the graph of F. This is depicted in
Figure 1.1. In this way, (1.2.3) tells us that the graph of F is a
convez cone with its vertex at the origin of our Minkowski space.

Since F(y) > 0 for y # 0, we can multiply (1.2.3) by F(y) to
get w' F(y) Fyi(y) < F(y) F(w). Now, (1.2.4), (1.2.2), and (1.2.1)
together give y’ g;; = FF,:. Thus (1.2.3) is equivalent to

Consider first the case in which F' is the norm associated with an
inner product on R". Here, F(y) = /gi; ¥*y’, where the g;; are
constants. Almost by inspection, we see that the fundamental ten-
SO gij(y) = (3F?)ysys is simply given by the inner product g;;.
Also in this case, F(—y) = F(y). These observations allow us to
deduce that (1.2.16) is equivalent to |g;; w'y?| < F(w) F(y), which
is the standard Cauchy—Schwarz inequality. So, in the general case,
we may view (1.2.16) [equivalently (1.2.3)] as a generalization of
the Cauchy-Schwarz inequality, from inner products to Minkowski
norms. Note however that, when spelled out, (1.2.16) implies that

(965 W'Y 1? < [gpg(wy WP 0] [grsy) ¥ ¥°] -

We emphasize that in the first term on the right, it is gpq () and
not gpq (y)- As such, this last inequality is distinctly different from,
and much more subtle than, the Cauchy-Schwarz type inequality
(1.2.6) encountered during the proof of Theorem 1.2.2.

Finally, the fundamental inequality (1.2.3) plays a pivotal role in the
proof (Theorem 6.3.1) that short Finslerian geodesics are minimal.
Upon this edifice rests the Hopf-Rinow theorem (see §6.6) and the
enterprise of cut versus conjugate loci (treated systematically in
Chapter 8). As we show, the fundamental inequality comes to the
rescue when the Riemannian proof of Theorem 6.3.1 breaks down
in the generic Finsler case. The same technique saves the day again
in Proposition 9.2.2, when we prove that for (forward geodesically)
complete connected Finsler manifolds of nonpositive flag curvature,
the exponential map is a covering projection.

We have interpreted the fundamental inequality (1.2.3) in several con-

texts. In each case, something interesting and important emerges. This is
a testimonial to the inequality’s depth and significance.
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Graph of F

Indicatrix F =1

Minkowski plane

Figure 1.1

The graph of a Minkowski norm is a convex cone with its vertex
at the origin. The one shown here “tilts to the right.”

Exercises

Exercise 1.2.1: Let F be positively homogeneous of degree 1 on R™. Use
Euler’s theorem to show that

(a) y'F:=F.
(b) o Fyi =0.
(©) ¥* Fyiysye = = Fyays .
(@) ¥ Fyiyiyryt = —2Fyiyiy -
Here, all formulas are supposed to be evaluated at y.

Exercise 1.2.2: Let F be the standard Euclidean norm on R™. Show that
its g;; is simply the Kronecker delta 6;; .

Exercise 1.2.3: Derive (1.2.5).

Exercise 1.2.4: A Minkowski norm F on R" is said to be Euclidean if it
arises from an inner product ( , ) through F(y) = \/(y, y). Prove that
the following three criteria are equivalent:

(a) The Minkowski norm F is Euclidean.
(b) The functions g,; defined in (1.2.4) are constant.
(c) The functions A;j (y) := £ (F? )yiyiyk are all zero.
Exercise 1.2.5: Let F be a Minkowski norm on R”.
(a) Explain why its Hessian matrix ( F,s,; ) is positive semidefinite.
(b) Prove that its rank isn — 1 .
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(¢) Verify that its 1-dimensional null space at any point y # 0 is spanned
by the vector y* 621‘ .

Hint: you may want to review the discussions that center around (1.2.9).
Exercise 1.2.6: A domain D in R" is said to be strictly convex if it
contains the interior ¢ of every line segment joining any two points of the
topological closure D. Let F' be a Minkowski norm. Given any r > 0,
define the ball B*(r) and the sphere S~ !(r) of radius r (centered at the
origin) as follows:
B*(r) == {yeR": F(y)<r},

S*(r) = {yeR": F(y)=r}.

Show that:

(a) Each B™(r) is a strictly convex domain with C* boundary S™~!(r).
(b) Explain what it means to say that strong convexity implies strict
convexity.

Exercise 1.2.7: Suppose B is a strictly convex open domain “centered” at
the origin, with smooth boundary S := dB. Define a nonnegative function
F on R" as follows:

1
F(y) := 70 where t > 0 issuch that ty € S.

(a) Check that Fi(y) >0 forally #0.

(b) Verify that F(Ay) = X F(y) for all positive numbers A. Also, ascer-
tain that if the domain B satisfies y € B & —y € B, then we have
F(Ay)=|AF(y) for all A e R.

(c) Show that
< 1 ifandonlyif ye B
F(y) is =1 ifandonlyif ye S
> 1 ifandonlyif y¢ B .

(d) Prove that F satisfies the triangle inequality.
(e) Then check that
F(y+t§) + F(y—t§) — 2F(y) > 0.

(f) Explain why F is C* on R™ . 0, but is typically not differentiable
at the origin.

(g) Fix y # 0 and divide the inequality in part (e) by ¢2. Then take the
limit as ¢ — 0%. Show that the result is

Fuu(y) &€ > 0.



Exercises 13

In other words, the Hessian of F is positive-semidefinite. Hint: ex-
pand the terms F(y +t€) using the second mean-value theorem.

(h) Use formula (1.2.4) and part (g) to help you deduce that the Hessian
gij := [ 5 F?)ys, is typically only positive-semidefinite. Can you
exhibit a nonzero ¢ such that g;; &' &7 = 0? Hint: see Exercise 1.2.9.

The moral here is that:

There are homogeneous functions F' with strictly convex
unit balls but fail (just barely) to be strongly convex.
Hence they do not define Minkowski norms.

Exercise 1.2.8:

(a) Let S be some smooth hypersurface in R™ that is defined by an
equation P(v) = 0. Suppose we want to find a function F on R™ that
has the constant value 1 on S. Explain why F(y) is characterized
by the equation

Y
Pl ] =0
F(y)
Occasionally, such an equation can be solved to give an explicit

formula for F(y). The method we have just described is known af-
fectionately as Okubo’s technique.

(b) As a concrete example, let S be the convex limacon in R2. In polar
coordinates, it has the description

p=3+cosdp, 0oL 2m.
Sketch S and check that its Cartesian description is
(¥")2 + (9°)° = 3V (¥1)2 + (¥2) + ¢ .

(¢) Apply Okubo’s technique to show that the function F which has
constant value 1 on S is

Fly) =

(¥")* + (¥°)°
3V (Y2 + (92)? + ¢
(d) Can you prove that this F' has all the defining properties (especially
strong convexity) of a Minkowski norm?

Exercise 1.2.9: Let
B = {(#"¢) eR*: (y")* + (4*)* < 1}.

(a) Check that B is strictly convex (as defined in Exercise 1.2.6) and
has a smooth boundary.

(b) Consider the F defined in Exercise 1.2.7. Use Okubo’s technique to
deduce that here, it has the explicit formula

Fly) = [(g")* + ()4
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(c) Calculate the matrix (g;;) and check that it is singular (that is, not
invertible) on the y' and y? axes. As a result, it cannot possibly be
positive-definite at these points. Show that these are the only points
at which it fails to be positive-definite.

(d) Explain what it means to say that strict convexity does not imply
strong convexity.

Exercise 1.2.10: In R?, abbreviate y', y? as p, g, respectively. Define
F(p,q) == a (P +¢*)/* + B (p*+¢")"/*,
where a > 0, (8 > 0 are constants.

(a) Calculate the functions g;; and check that they are homogeneous of
degree zero.

(b) Identify all constants a and 3 for which F defines a Minkowski norm
on R?.

Exercise 1.2.11: Let F be a Minkowski norm on R™.

(a) Show that if two vectors y and w satisfy g;; () ¥’ = gij () W, then
Y =w.

(b) Decide whether anything can be concluded if those two vectors sat-
isfy the following identity instead: F:(y) = Fy:(w).

1.3 Explicit Examples of Finsler Manifolds

1.8 A. Minkowski and Locally Minkowski Spaces

A Finsler manifold (M, F) is said to be locally Minkowskian if, at every
point z € M, there is a local coordinate system (z*), with induced tangent
space coordinates 3¢, such that F' has no dependence on the z¢.

In order to construct locally Minkowskian manifolds, one might intu-
itively begin with a smooth manifold M and try to put the “same” Min-
kowski norm on each of its tangent spaces. However, a good amount of
caution should be exercised, because there are topological obstruction(s)
that one must overcome. For example, if M is compact and boundaryless,
then having a locally Minkowskian structure will force its Euler character-
istic to vanish. See [BC2].

The simplest locally Minkowskian manifolds are of the following type:

* We start with a Minkowski norm F on R”.
* We change our perspective and regard R™ as a manifold, albeit a
linear one.

* Given any tangent vector v based at y € R™, we slide it (without
twisting) until it emanates from the origin “o” instead. Then we
evaluate F' at the tip of this translated vector.
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* In terms of a formula, we have

i 0 - i 0
F(y,v) = F(y,v Byi|y> = F(v Byik,) .

One is certainly justified in saying that the locally Minkowskian examples
we just cited are actually Minkowski norms in trivial disguise! Yet, this
does not detract from the fact that such examples are among the most
important ones in practice.

For numerical explorations, a particularly instructive family of Minkow-
ski norms is the following. Here, A can be any nonnegative constant.

F(o',0%) =/ VOO + () + A[(0)2 + (82)7]

This may be viewed as a perturbation of the quartic metric. See
also Exercise 1.2.11. Let us demonstrate that the perturbation serves to
regularize the singularity in the quartic metric. To this end, we first relabel
v! as p and v? as q in order to avoid clutter. Straightforward computations
then give

A4+ 2t +3dY) -2 p® ¢*
g1t 12} _ (p% + q%)3/2 (7* + 2 )3/2
(o 5) - (T 2™ L i)
Hence
2 243 2 2
det(g:;) = X + A ((p{’l :;)g/z + pip+qq4 ,
(r* + ¢*)°

trace(g;;) = 2X + W

Note that

e If A = 0, then det(g;;) vanishes on the p and ¢ axes in each tan-
gent plane. In that case, the Finsler function F', whose fundamental
tensor is called the quartic metric, fails to be a Minkowski norm
because strong convexity is violated at some nonzero y.

e If A > 0, then both the determinant and the trace of (g;;) are
positive away from the origin in each tangent plane. In that case,
g:; is positive-definite because both its eigenvalues are positive. The
Finsler structure F' is then a Minkowski norm. In this sense, the
perturbation has regularized the quartic metric.

1.3 B. Riemannian Manifolds

Let M be an n-dimensional C*® (smooth) manifold. A smooth Riemannian
metric g on M is a family {g, }zen of inner products, one for each tangent
space T, M, such that the functions g;; ;) := gz( % , %) are C°. Since
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each g, is an inner product, the matrix (g;;) is positive-definite at every
z € M. We can write
9 = Gij(z) dz' ® dz? .
This g defines a symmetric Finsler structure F' on TM by the mechanism

F(SL',y) =V gz(yay) .

Every Riemannian manifold (M,g) is therefore a Finsler manifold. A
Finsler structure F is said to be Riemannian if it arises from a Riemann-
ian metric g in the manner we just described. In practice, one ascertains
this by showing that the fundamental tensor computed from F via (1.2.4)
has no y dependence. As a matter of fact,

g = (%Fz)yiyj = Gij(z) -

Let us describe some fundamental Riemannian metrics. To this end, let
s (t) be the unique solution to the ODE

sy + Asy = 0, withinitial data s,(0) = 0, s3(0) = 1.

Here, A is an arbitrary but fized real number. Explicitly, we have

sin(VAt) .

——\/X if A>0

(1.3.1) sx(t) = t if A=0
sinh(v/—=Xt) .

—\/—__—/\———— if A<0

Let (%) denote the natural coordinates of R™. At any point z € R”,
introduce the abbreviations

2
|lz| = V bij =tz and ¢ = |:5)‘?:E|Tl):|

to avoid clutter. Define

5 %) (612"
(13.2) g = (1-9) (—’““Ifc%m—) s

One can verify that:

* These g;; can be extended smoothly to the origin z = 0.
* 9= 0ij(a) dx* ® dz’ is a Riemannian metric on R™ if A < 0.

* If A >0, our g is a Riemannian metric on the open ball

{xGR”: lz] < %}



1.3 Explicit Examples of Finsler Manifolds 17

As we show in §13.3, these Riemannian metrics have constant sectional
curvature A. They are the Riemannian space forms.

1.3 C. Randers Spaces

In 1941, G. Randers [Ra] studied a very interesting class of Finsler mani-
folds. Let M be an n-dimensional manifold. A Randers metric is a Finsler
structure F' on T'M that has the form

(1.3.3) F(z,y) = alz,y) + B=,y),
where

(1.3.4) a(z,y) = \/ &ij(w) Yyl
(1.3.5) B(z,y) = bi) ¥ -

* The a;; are the components of a Riemannian metric and the I;i are
those of a 1-form. Both objects live on M, and are understood to
be fixed throughout the discussion.

* Due to the presence of the 8 term, Rander’s metrics do not sat-
isfy F(z,—y) = F(z,y) when b # 0. In fact, the Finsler function
of a Randers space is absolutely homogeneous if and only if it is
Riemannian.

The indices on certain objects are lowered and raised by
(@;;) and its inverse matrix (a"). Such objects are deco-
rated with a tilde.

Since (B(z,y) is linear in y, it cannot possibly have a fixed sign. Thus, in
order for F' to be positive on T'M \ 0, the size of the components b; must
be suitably controlled. It can be shown (see §11.1) that the said positivity
holds if and only if

(1.3.6) o) = v b;b¢ < 1,
where
(1.3.7) bt = @9 b, .

We also need to address the issue of strong convexity. The g,; associated
with F' can be computed according to formula (1.2.4). One finds that

F

(1.3.8) gi; = = (85 — L&) + (& + b)) (& + b)),
o
where
) G
(1.3.9) b = oy = Y

(8]
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Equivalently,

F_ o . . -
(1.3.10) gij = — Qi — g l; EJ‘ + ¢; bj + éj b, + b; bj .

It turns out (see §11.1) that the criterion || || < 1, which guarantees the
positivity of F, also ensures strong convexity. And the crux of the argument

involves the following computational fact:
F \nt+l1 ~
(1.3.11) det(gi;) = (Z) det(a;; ) -

Its derivation can be found in [M2], albeit in the more general context of
(o, B) metrics. A direct and expository account of (1.3.11) is given in
§11.2.

Let us borrow an explicit example of a Randers metric from [AIM]. Set
M := R2\ 0. At each z € M, the indicatrix is to have the following
properties:

* Tt is an ellipse with eccentricity e, possibly depending on z, in the
tangent plane T, M.
* One of its foci is located at the orgin y = 0 of T, M.

* The directrix (corresponding to the above focus) passes through the
deleted point 0 of M, and is perpendicular to the line segment from
0 to x.

Using Okubo’s technique (see Exercise 1.2.8), it can be shown that the
formula for F' is

1 1 2 .
(1.3.12) F(z',a% ¢, y%) = - \ llzllz - :!Exlgzj

Here, we have introduced some temporary abbreviations

lyl = vV (¥1)? + (¥2)2

zeoy = ztyl 4+ 2242

in order to avoid clutter.

1.3 D. Berwald Spaces

Berwald spaces are just a bit more general than Riemannian and locally
Minkowskian spaces. They provide examples that are more properly Fins-
lerian, but only slightly so. The most easily described characteristic of a
Berwald space is that all its tangent spaces are linearly isometric to a
common Minkowski space. One might say that the Berwald space in ques-
tion is modeled on a single Minkowski space. For a precise definition of
Berwald spaces, see Chapter 10.
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We shall focus on Finsler structures F' that are smooth and strongly con-
vex on all of TM \ 0. Let us refer to these F as y-global for emphasis. As
we show, it takes some work to explicitly locate a y-global Berwald space
that is neither Riemannian nor locally Minkowskian. In fact, according to
a rigidity result (see §10.6) of Szabé’s, these do not even exist in dimension
two. Fortunately, examples of the desired vintage can be found in dimension
three or higher. The ones we know had their genesis in a result of Mat-
sumoto [M4], Hashiguchi-Ichijyo [HI], Shibata—Shimada-Azuma—Yasuda
[SSAY], and Kikuchi [Ki]. By contrast, y-local Berwald surfaces do exist,
and an explicit example of such is analyzed in §10.3.

Let us quote (from §11.6) an example of a 3-dimensional y-global
Berwald space that is neither Riemannian nor locally Minkowsk-
ian. It is given by a Randers metric constructed with the following data:

e The underlying manifold is the Cartesian product
M = §%x5§t.

It is compact and boundaryless. As local coordinates, one can use
the usual spherical §, ¢ on S?, and t for S!. For concreteness,
we measure ¢ from the positive z axis down. Also, t is such that
(cost,sint,0) parametrizes S*.

e The Riemannian metric @ is the product metric on S? x S'. Here,
52 and S! are given the standard Riemannian metrics that they
inherited as submanifolds of Euclidean R3. Explicitly, one finds that

i = (sinpdI®dI + dpdp) + dt®dt .

This metric is not flat because it has nonzero curvature tensor.

e The 1-form we need is

b= edt ,
where ¢ is any (fixed) positive constant less than 1. This b is glob-
ally defined on M, even though the coordinate ¢ is not. It is non-
vanishing by inspection, and has Riemannian norm ||b|| =e < 1. A
straightforward calculation shows that it is parallel with respect to
the Levi-Civita (Christoffel) connection of a.

We now write down the resulting Randers metric. Let z be any point on
M, with coordinates (@, ¢,t). Let the arbitrary tangent vector y € T, M be
expanded as y° 95 +y® 93 + 4 8; . Then

(1313) | F(z,y) = y/sin (3°)2 + (92)® + (48)2 + eyt

Since this F is of Randers type, its fundamental tensor is in principle given
by (1.3.8) or (1.3.10), although a direct computation is probably more
efficient. The reader is asked to do this calculation in Exercise 1.3.6.
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1.8 E. Finsler Spaces of Constant Flag Curvature

An extensive discussion of Finsler spaces with constant (flag) curvature
is given in Chapter 12.

There are non-Riemannian Finsler structures on R? with negative con-
stant Gaussian curvature. These are discussed in [Br3]. In §12.6, we con-
struct one (known to Okada [Ok]) using the Yasuda-Shimada theorem [YS]
as an inspiration (because we do not prove that theorem in this book). We
then directly verify that it has constant negative Gaussian curvature

K = —%. The explicit formula for the Finsler function is

1 T
1.3.14) | F(z,y) = —— Jyey + dr(y
GO | Few = T VI ey Y

Here, 72 := (z!)? + (22)2, where z = (z!,2?) is any point on the Poincaré
disc M := {z € R? : r < 2}. And y is an arbitrary vector in the tangent
plane T, M.

This is a very special Randers metric:

* Tt has constant negative (Finslerian) Gaussian curvature —31.

* It violates some completeness assumption in Akbar-Zadeh’s [AZ]
rigidity theorem.

* The Finslerian metric distance from the origin to the rim of the disc
is infinite. But that coming back from the rim to the origin has the
finite value log 2!

* Its geodesics are, trajectorywise, the same as the geodesics of the
Riemannian Poincaré disc.

For these reasons, we would like to view it as the Finslerian analogue of
the Poincaré disc.

Next, we turn to positive flag curvatures. In two dimensions, we have
explicit non-Riemannian examples with constant positive Gaussian curva-
ture K = 1, due to Bryant [Brl, Br2]. Here, we focus on a 2-parameter
family from [Br2|. Each Finsler structure in this family has K = 1 and is
projectively flat. In [Br2], it is explained how these are related to some of
Funk’s earlier works [F1, F2].

Let V be a 3-dimensional real vector space with basis {b1, b2, b3}. Let p,
v be two fixed angles satisfying

*) l’Yl<p<g.

Define a p and « dependent, complex-valued quadratic form @ on V by
Q(u,v) = e utovl + e u?v? + et

In the above exponentials, s means /—1 . Also, u = u’b; ; v = v'b;.
Let S? denote the set of rays in V. Equivalently, we are identifying X
and X* in V whenever X* = X\ X for some A > 0. Each point of S? can
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thus be denoted as an equivalence class [X], with 0 # X € V. A moment’s
thought shows that every tangent vector at the point [X] on S2 is the initial
velocity to a curve of the form [X +tY], for some Y € V. Each such curve is
half of a great circle on S?. And it makes sense to denote the said tangent
vector by [X,Y]. Note that [X’,Y’] = [X,Y] if and only if X’ = A X and
Y'=AY +puX,forsome A>0and p e R .

The Finsler function F : T'S% — [0, 0c0) for Bryant’s family of metrics,
indexed by p and v, is
(1.3.15)

F([X,Y]) = Re

Q*(X, X) "QX, X)

¢mxmmxm—@wm) Q(X,Y)

where “Re” means taking the real part. The complex square root function
is taken to be branched along the negative real axis, and to satisfy v/1 = 1.
In other words,

2 12
Re VaTTE = ] YD
It is not difficult to check that when p = 0 = «, the above F is Riemannian.
It is also instructive to work out a manifestly real formula of F' for specific
choices of p and +. See §12.7 for a sample.
Bryant assures us that his methods in [Br2] give the following:

* The above F is indeed a Finsler structure in the sense of §1.1. Unless
p = 0 = ~, this Finsler function is non-Riemannian and is only
positively homogeneous.

* Each great semicircle [ X +tY] is a geodesic of the Finsler structure.
(Incidentally, such curves are not yet parametrized to have constant
speed. Nevertheless, the Finslerian length of each great circle is 27.)

* The Gaussian curvature of the Finsler surface (S2, F) has the con-
stant positive value 1.

Exercises

Exercise 1.3.1: Show that the Minkowski spaces arising from the Min-
kowski norms

are all nonisometric for different values of A > 0.

Exercise 1.3.2: Recall the g;; defined in (1.3.2). Prove that they can be
smoothly extended to the origin z = 0 of R™.
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Exercise 1.3.3: This again concerns (1.3.2). Show that

(a) For A <0, the matrix (g;;) is positive-definite at every z € R™.

(b) For A > 0, the matrix (g;;) is positive-definite if || < 7
Exercise 1.3.4: Verify formula (1.3.8) for the g;; of Randers metrics.
Exercise 1.3.5: (Borrowed from [AIM].) Let M := R? \ 0. Suppose at
each z € M, we want the indicatrix to have the following properties:

* Tt is an ellipse with eccentricity e in the tangent plane T, M.

* One of its foci is located at the origin y = 0 of T, M.

* The directrix (corresponding to the above focus) passes through the
deleted point 0 of M, and is perpendicular to the line segment from
0 to z.

(a) Draw a picture of what we have just described.

(b) Use Okubo’s technique to derive formula (1.3.12) for F.

(c) For this Randers metric, identify d;; and b;.

(d) Directly compute the fundamental tensor and its determinant.
Exercise 1.3.6: For the 3-dimensional Berwald space given in (1.3.13),
compute directly the fundamental tensor and its determinant.

Exercise 1.3.7: Show that the Finsler function F, given in (1.3.15), is well

defined on T'S2. In other words, that expression for F' remains unchanged
upon replacing X by AX and Y by AY + uX, where A\>0and p €R .

1.4 The Fundamental Tensor and the Cartan Tensor

Let F' be a Minkowski norm on R™. We have seen the utility of the functions

1
(1.4.1) g = (3 Fz)yiyj = F Fyy + Fy Fy

in §1.2. Next define

_F_ 39:']'
2 Oyk

F
(142) Az’jk(y) = = Z (F2 )yiyjyk

which are manifestly symmetric in the three indices i, j, k. All these func-
tions are homogeneous of degree zero. In other words, they are invariant
under the rescaling y — Ay. In a context that we postpone describing
until Chapter 2, the g;; and the A,j; are, respectively, the components of
two important tensors, called the fundamental tensor and the Cartan
tensor. Incidentally, some authors have chosen to call

1
Cijk = 7 Ak
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the Cartan tensor instead.
Exercise 1.2.1 enumerated some specific consequences of Euler’s theorem.
Using these, one gets the following identities:

Y

(1.4.3) 9 7 = Fy |,
¥y
(1.4.4) 9% 77 = 1>
- Ogs . Bg;; 0g:;

1.4.5 L (| L | k294
(1.4.5) Y By Y By Y gy
The last one can be re-expressed as
(1.4.6) Y Ak = ¥ Ak = ¥ Aigrw) = 0.

The g;; define a natural Riemannian metric
9ii () Y ® Ay’
on the punctured linear manifold R™ \ 0 . Here, we use dy® ® dy’ instead
of dz* ® dz7 because, throughout our discussions of Minkowski norms, the
natural coordinates on R™ have been denoted by y* and not z*. Some

features of this punctured Riemannian manifold are worth noting. We list
them here and refer the details to the exercises at the end of this section.

e Its volume form is chosen to be /g dy' A---Ady™, where \/g stands
for \/det(g;;)-

o It admits the hypersurfaces S(r) := {y € R" : F(y) = r} as smooth
Riemannian submanifolds.

e Each S(r) is the boundary of a strictly convex domain and, with
respect to g;; dy* ® dy?, its outward-pointing unit normal [Y] is

3 y* 0
1.4. at = S -
( 7) Tout F Byl

e The volume form of the Riemannian submanifold S(r) is

n o . _
(148) g >, (-1y! yf dy' A---Ady TEAdyTTEA - A dy™ .
j=1

The significance of the A4;;; lies in the fact that their vanishing charac-
terizes Euclidean norms among Minkowski norms.

Theorem 1.4.1 (Deicke) [D]|. Let F be a Minkowski norm on R". The
following three statements are equivalent:

(a) F is Euclidean. That is, it arises from an inner product.
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(b) Aijk: =0 for all i, j, k.
(c) A := g Aijr =0 for all k. Here, (g') denotes the inverse matrix
of (gi;)-

Remarks:

* The equivalence between the first two statements comes directly
from (1.4.2). Namely, A;;x is proportional to the vertical derivative
of g;;. Thus this derivative vanishes if and only if g;; has no y-
dependence (which means that F comes from an inner product).
This equivalence between (a) and (b) constitutes the easy part of
Theorem 1.4.1, and is used without mention.

* It is clear that (b) implies (c). Thus it remains to prove the converse
or, equivalently, that (c) implies (a). Such is a result of Deicke’s.
However, the proof that we give for (¢) = (a) is due to Brickell
[B1]. It involves tools that we have yet to learn. For this reason,
the proof is postponed until Chapter 14, which studies Minkowski
spaces. Needless to say, the implication (c) = (a) is never used
before that proof.

Exercises

Exercise 1.4.1: Let F be a Minkowski norm on IR”._ Show that under a
change of coordinates of the special type §* = ¢, y*, where the ¢, are
constants, the g;; and A;;x transform like:

gij = e, i qu Jpq >
Aijk = cpi cqj Crk /ipqr .
Exercise 1.4.2: On S(r), the function F has the constant value .

(a) Take the directional derivative of the above statement along an ar-

bitrary vector v? 5%; which is tangent to S(r).

(b) Re-express your answer with the help of the identity (1.4.3).

(c¢) Interpret what you obtain in order to conclude (1.4.7). Be sure to
explain why that 75,4 has unit length.

Exercise 1.4.3: Suppose we have an ambient Riemannian manifold (M, g)
with volume form dV, and a submanifold S with outward-pointing unit
normal field 7ioy. By simply restricting g to vectors tangent to S, one
induces a Riemannian metric on S, whose volume form can be obtained
by contracting 7.yt into the first slot of dV. Use this procedure to derive
formula (1.4.8).
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Exercise 1.4.4: Refer to Exercise 1.3.1, where we introduced a family of
Minkowski norms, indexed by a parameter A. At each y € R" \ 0, define

Uiul Uk

A = sup A, .
“ ||y Up Jk?(y) ( /gpq(y) Up Uq )3

Also, set || A || ;= sup,.4, || Ally - Show that there is a constant ¢, depending
only on the dimension n, such that

Al 2 c(A-1).
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The Chern Connection
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* References for Chapter 2

2.0 Prologue

The Chern connection that we construct is a linear connection that acts
on a distinguished vector bundle n*T M, sitting over the manifold TM ~\ 0
or SM. It is not a connection on the bundle T'M over M. Nevertheless,
it serves Finsler geometry in a manner that parallels what the Levi-Civita
(Christoffel) connection does for Riemannian geometry. This connection is
on equal footing with, but is different from, those due to Cartan, Berwald,
and Hashiguchi (to name just a few).

In the exercise portion of §5.2, we use this linear connection to induce
nonlinear covariant derivatives on M. These derivatives involve “correc-
tion” terms highlighted by certain connection coefficients. Qur covariant
derivatives are nonlinear in the generic Finsler setting because the said
connection coefficients have a dependence on either the direction of differ-
entiation or the vector that is being differentiated. Such connection coef-
ficients reduce to the usual Christoffel symbols when the Finsler structure
is Riemannian. In that case, the corresponding covariant derivative on M
becomes the familiar one due to Levi-Civita (Christoffel).
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2.1 The Vector Bundle 7*T'M and Related Objects

Recall the fundamental tensor g;; () that we introduced in (1.2.4) and
revisited in (1.4.1). It is defined at all (z,y) € TM 0, and is invariant under
positive rescaling in y. One could imagine the formal object g;; dz* ® dz’.
That would have behaved exactly like an inner product on the tangent
space T, M, if it were not for the dependence on y # 0. Happily, this
conceptual difficulty can be overcome without too much trouble. We first
give a heuristic description of the resolution, followed by a more technical
version.

The collection of all (z,y), with y # 0, constitutes the slit tangent bundle
TM \ 0. Let us view it as a parameter space. Over each point (z,y) in this
parameter space, we erect a copy of T;M. We then form g;; (I,y)dxi ®
dx’ and declare it the inner product on this T, M. Note that the vector
space Ty M is determined solely by the position parameters  in (z,y). The
directional parameters y have no say in this matter. Collectively, the vector
spaces we have erected form a vector bundle (with fiber dimension n) over
the parameter space TM \ 0, which is 2n-dimensional. What we have just
described is depicted schematically in Figure 2.1.

There is, however, some redundancy in the above scheme. Consider all
points in TM \ 0 of the form (z, A\y), with z, y fixed and A an arbitrary
positive number. Over each such point, we have erected the same vector
space T, M. Since g;;(;,y) is invariant under the rescaling y — Ay, the
inner products we assigned to these copies of T, M are also identical. This
is the redundancy to which we referred. There is a simple way to restore

(W*TM)(Iyy) TIM

¢ & ,5 J»(o) p- T
z,y

TM N0 M

Figure 2.1

The pulled-back tangent bundle 7*T M is a vector bundle over the
slit tangent bundle TM \ 0. The fiber over a typical point (z,y)
is a copy of T, M. The dotted part is the deleted zero section.
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economy. First, we can treat the ray {(z, Ay) : A > 0} as a single point in
the projective sphere bundle SM. Then over that point, we erect a single
copy of T; M and endow it with the inner product g;; (Ly)dxi ® dz’. The
resulting vector bundle has fiber dimension n as before, but now it sits over
the 2n — 1 dimensional sphere bundle SM. In case the Finsler structure
is absolutely homogeneous rather than positively homogeneous, we can
economize further by replacing SM with the projectivized tangent bundle
PT M. The latter treats each line {(z, \y) : A € R} as a single point.

Now we give the technical equivalent of what has just been said. Over
M, we have the tangent bundle TM and the cotangent bundle 7* M. Much
of Finsler geometry’s tensor calculus can be handled in any one of the
following two environments.

e For analytical and global purposes, it is often advantageous to
work with a compact parameter space. In that case, the base man-
ifold of choice is the sphere bundle SM, or PT'M when F happens
to be absolutely homogeneous (of degree one). Let p : SM — M
be the canonical projection map. A good number of our geometrical
objects are sections of the pulled-back bundle p*T M or its dual
p*T™*M, or their tensor products. These bundles sit over SM and
not M.

e For ease of local computations, it is to our advantage to work
on an affine parameter space, where natural coordinates are readily
available. In that case, the preferred base manifold is the slit tan-
gent bundle TM \ 0. A good number of our geometrical objects are
sections of the pulled-back bundle 7*T M or its dual #*T*M, or
their tensor products. These sit over TM \ 0 and not M.

There is no consensus among Finsler geometers as to which approach one
should take in a book. And picking one instead of the other will inevitably
render the book less useful to some. Happily, there is a way to retain the
essence of both approaches.

We work on TM \ 0. But, unlike other authors who prefer the
slit tangent bundle, we rigidly use only objects that are invari-
ant under positive rescaling in all our important computations.
For example, we use +N*; and 6y instead of N%; and 6y’ by
themselves. This way, all calculations can be done in natural co-
ordinates. And, since all the steps are manifestly invariant under
positive rescaling in y, one can correctly view them as having been
carried out on the sphere bundle SM (or PT'M) using homoge-
neous coordinates.

Local coordinates (z*) on M produce the basis sections {52} and {dz'},
respectively, for TM and T* M. Now, over each point (z,y) on the manifold
TM~0, the fiber of #*T M is the vector space T, M while that of 7*T* M is
the covector space Ty M. Thus, the 5% and dz’ give rise to sections of the
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pulled-back bundles, in a rather simple-minded way. These transplanted
sections are defined locally in z and globally in y. This global nature in
y is automatic because once z is fixed, the transplanted sections do not
change as we vary y.

In order to keep the notation simple, we also use the

symbols a?ci and dz’ to denote the transplanted sections.

We hope this does not cause too much confusion.
There is a distinguished section £ of 7*T M. It is defined by
yt 0 yt 0 ; 0

2. . = = — .- = - = _
(2.11) 4 zy) F(y) 8zt F oz ¢ ozt

Its natural dual is the Hilbert form w, which is a section of 7*T* M. We
have

(2.1.2) W = Wz,y) = Fi(x,y) d:l)i = Fyi d:L'i

Both ¢ and w are globally defined on the manifold TM <\ 0. The asserted
duality means that

w(l) = %Fyi =1,

which is a consequence of Euler’s theorem. See (1.2.1).

The pulled-back vector bundle #*T M admits a natural Riemannian met-
ric
(2.1.3) g = gij dz' ® dz’ .

This is the fundamental tensor that we have alluded to before. It is
a symmetric section of 7*T*M ® ©n*T™*M. Likewise, there is the Cartan
tensor

(2.1.4) A = Ay dr* ® d2? @ dz*

which is a symmetric section of @3 7*T*M. In these formulas, we have
suppressed the point of evaluation (z,y) in order to avoid clutter. The
components g;; and A;j; have already been defined in (1.4.1) and (1.4.2).
We reproduce them here for convenience:

1
(2.1.5) gij = (- F2) = F Fyy + Fyu Fys |,
2 Yy
F Og;; F
(2.1.6) Agr = 5 5;—15 = 7 (F: )y
As we mentioned before, the object
1
Cijk == + Aijk

F
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is called the Cartan tensor in the literature at large. But we prefer to work
with quantities that are homogeneous of degree 0 because they make sense
on the (projective) sphere bundle SM.

By another consequence [see (1.2.5)] of Euler’s theorem, we find that our
distinguished section £ has norm 1 with respect to the said Riemannian
metric:

vy
(2.1.7) 9(€, L) = gy FF =~ 1
Exercises
Exercise 2.1.1: Consider the components £ := %—f of our distinguished
section £. Show that
= gi; ¥ = Fy

Thus the Hilbert form is expressible as w = ¢; dz?.

Exercise 2.1.2: Let o : [a,b] — M be a piecewise C™ curve. Its integral
length is defined as L(o) := f: F(o, % )dt . Prove that this length can
be re-expressed as the line integral of the Hilbert form along ¢. Namely:

L(o) =/aw.

The right-hand side is sometimes called Hilbert’s invariant integral.

Exercise 2.1.3:

(a) Check that A;j is totally symmetric on all its indices.
(b) Show that £ A;;x=0.

Exercise 2.1.4: Show that %% = - % AY k-

2.2 Coordinate Bases Versus Special Orthonormal Bases
We have described how the coordinate bases {3‘3;} and {dz'}, respectively,
for TM and T*M, can be transplanted from M to the manifold TM \ 0.
These transplants form basis sections of the bundles #*T'M and «*T™*M.
We have also decided, in the name of keeping things simple, not to create
new symbols for these sections.

Occasionally, the exposition can benefit from the use of g-orthonormal
basis sections. The ones we use are defined as follows:

e For 7*T'M, the special g-orthonormal basis {e,} must satisfy

g(eaa 66) = 6ab
e, = £, the distinguished section.
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e For m*T* M, the special basis {w®} is dual to {e,}, thus

Wi(ey) = &°

a

wh = w, the Hilbert form.
Note that:

* The special g-orthonormal bases we have just introduced make sense
only on the manifold TM \ 0; in general they have no analogues on
M. This is because the natural Riemannian metric g lives on 7*T'M
and not TM, unless F' is Riemannian.

* Furthermore, we have unequivocally specified only the last member
in each such basis. The residual “gauge” freedom is equal to the
orthogonal group O(n — 1).

The bases {%} and {e,} can be expressed in terms of each other. The
same can be said of {dz'} and {w?}. That is,

(2.2.1) ea = u, (,7";—1.
(2.2.2) 66;. = v% e,

(2.2.3) w* = v% dz'
(2.2.4) dz" = u, w®.

e A basic relationship between (u,’) and (v%) is that they are matrix
inverses of each other. Namely,

a i a

v u = 6%,
1,40 __ £

u, vy = 6.

e Since we have already specified that

0
n = L = Zi——.,
¢ oz*
Ww" = w = F,dgt = ¢ dit,
we see that u,'=¢" and v =4, .

These, together with other identities of interest, are addressed in the exer-
cises below.
Exercises

Exercise 2.2.1: Verify the following statements:

(a) v% ' =6%.
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(b) w, v =6
() v2yi=0.
(d) ul F;=0.
Exercise 2.2.2: Show that
@) ug gij uy’ =ba -
(b) v% g¥ ,Ubj — §ab
()  gij =v% ap 0% .
(d) g =u 8% u.
Exercise 2.2.3: Deduce the following identities.
(@) i = by o,
(b) % =6%ut g .
() v vﬁj bap=F Fyiy .
(d) ud uf FFuy=6ap -

Hint: you may need to use the results of the above exercises.
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The components g;; [see (2.1.5)] of the fundamental tensor are functions
on TM \ 0, and are invariant under positive rescaling in y. We use them

to define the formal Christoffel symbols of the second kind

i . is L [ 0gs; 09k O09ks
(2:3.1) R (azk aze T 8a:j)

and also the quantities

(2.3.2a) Nij = 'yijk - Cijk 'yk,.s y 1yt
Our preference for objects invariant under y +— Ay dictates that we work
with
Nt A .
(2.3.2b) FJ = 7k o — A’ S A
instead.

The transformation law for % N ij is quite elegant. Let

= (3, ..., 5")

be a local change of coordinates on M. Correspondingly, the chain rule

gives
y= g
ozr
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It can be shown, albeit with some tedium, that

1 o, _ 0% 80 Ny L 9 & g
F ¢ 08zt 939 F Ozt 0i10%°
Transformation laws of various geometrical objects are treated systemati-
cally elsewhere.

We show momentarily why the above N ij are known in the trade as the
nonlinear connection on TM \ 0.

In order to set the stage for this realization, observe that:

* The tangent bundle of the manifold T'M has a local coordinate basis
that consists of the 5% and the % . However, under the transfor-
mation on TM induced by a coordinate change on M, the vectors
% transform in a somewhat complicated manner, as exhibited in
(1.1.3). On the other hand, the 5‘% do not have this “problem.”

* The cotangent bundle of T'M has a local coordinate basis {dz?, dy'}.
Here, under the said transformation, the dz* behave simply while
the dy® do not. See Exercise 2.3.1.

The remedy lies in replacing % by

6 0 . 0
2.3. — = — — N -
(2.3.3) bxI Ox7 N ayt |’
and dy® by
(2.3.4a) by’ = dy* + N*; do’
As before, we prefer to work with
5yi 1 i i J

which is invariant under rescaling in y. Note that

66]- natural d.’L‘j ,
T dual
2.3.5 )
( ) 0 natural 6:’!1
- — -_— .
ayl dual F

e These ob jects typically only make sense on TM \0. With the excep-
tion of the dz*, the rest are nonholonomic. That is, they are neither
coordinate vector fields nor coordinate 1-forms.

e They indeed have simple behavior under transformations induced
by coordinate changes on M. The verification of this claim though,
is quite tedious. It is not pursued in the current book.
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It turns out that the manifold TM \ 0 has a natural Riemannian metric

. . Syt Sy
gij Az ®dx? + gi; %@—%—,

known as a Sasaki (type) metric. With respect to this metric, the hori-
zontal subspace spanned by the % is orthogonal to the vertical sub-
space spanned by the Fa%i . The manifold TM ~ 0 therefore admits
an Ehresmann connection through this splitting, and the latter owes its
existence directly to the quantities N*;. This is why the N*; are collectively
known as the nonlinear connection.

We have just introduced two new natural (local) bases that are dual to

each other:

*{ %; , Faiyi } for the tangent bundle of TM \ 0,

* {dz*, %yi } for the cotangent bundle of TM \ 0.
Since TM \ 0 is a Riemannian manifold with the Sasaki (type) metric, the
above bases have orthonormal analogues:

* {éa, énye } for T(TM \0),

*{wr, wte } for T*(TM \0).
The relationship between the natural bases and the orthonormal ones can

be readily written down, thanks to the “n-beins” u/ and v?% we encoun-
tered at the end of §2.2 :

(2.3.6) éy = u} 3%
i .y
(2.3.7) bnta = U, Fayi
(2.3.8) w® = v% do*
&y
nt+a _ ,a Z9
(2.3.9) w =% 5 -

Recall that the n-beins were originally introduced to relate the natural and
the g-orthonormal bases of the pulled-back bundle 7#*T'M, which sits over
the manifold T'M ~ 0. Surprisingly, they also serve as a go-between for the
“natural” versus the Sasaki-orthonormal bases on TM \ 0.

Exercises

Exercise 2.3.1: Consider local coordinate changes on M, say
= £(F,...,3"),

and their inverses ? = ZP(z!,..., z"). They induce transformations on

the manifold T'M, as described at the end of §1.1. Show that, as differential
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forms on T'M, the dz* and dy® behave as follows:

ozP .
dz? = - dz*
T e zt

ozP . o%zr . .
dyg? = - dy’ — o7 dx* .
4 ozt dy' + oxtoxI y o

Exercise 2.3.2: Define the quantity
Gi = gis Vi ¥¥* = v ¥ ¥° .
Show that

Exercise 2.3.3: Let

G = vy

This is twice the G* in [AIM]. By combining the above exercise with the
conclusion of Exercise 2.1.4, prove that

1 8G? ;
20y ~

We later show that Finslerian geodesics are curves in M which obey the
equation #* + G* = 0, where in G* we set y* := i*. Thus, if the geodesic
equation is somehow known (say, through a shortcut), the nonlinear con-
nection N ij can be computed without having to first calculate the Cartan
tensor A’;; and the formal Christoffel symbols ~*}.

Exercise 2.3.4: Directly rewrite the Sasaki type metric on TM \ 0 as

§ab w® ®wb + 6ab wn+a ®wn+b .
Exercise 2.3.5:

(a) Recall the fact ¢; = F,: . Prove that

&yt
£;
F

= d(logF) = w"*"

(b) A curve in TM \ 0 is said to be horizontal if all its velocity vectors
are horizontal, in the sense defined near the end of this section.
Explain why F is constant along all horizontal curves. Namely,

6F

5 =0 forall 2
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2.4 The Chern Connection on #*T' M

The distinguished section
o} . 0

o = ¥ o

{ =

S

and the fundamental tensor
g = (FFuy; + FuiF,)ds'®ds’ = g do* ® da’

are both sections of tensor bundles that sit over the manifold TM ~\ 0. As
one moves around on 7'M \ 0, not only do the components ¢* and g,; vary,
the basis sections % and dz* change as well. Thus, when measuring the
rate of change V, E of any tensor field E, along a given direction v at the
point p, we must invoke the product rule. For example:

*V,l= (déj)(v)—a—‘%; + 4V, 527 .
* V, g = (dgi;)(v) dz* ® dz? + gi; (V, dz?) @ dz? + g, dz* ® (V, dz?) .
The terms on the right-hand sides of these formulas split into two groups:

(1) The first group consists of (d#)(v) 3% and (dg;)(v)dz* ® dz?.
They come from taking the ordinary directional derivative of the
components, which are scalars, but leaving the basis sections alone.

(2) In the second group, the components are left untouched, but we have
yet to make sense of the quantities V,, 5% and V, dz?. Intuitively,
this is done by tabulating the values of the basis section % or dr
as we move away from p in the direction v. These are then compared

to its value at p in order to produce the requisite rate of change.

However, before a meaningful comparison can be carried out, the tabu-
lated values must first be transported back to p. In general, on a manifold
there is no canonical way to carry out this transport. The best we can
hope for is to specify one that does not run afoul of any a priori geomet-
rical or topological constraint. These specifications are usually spelled out
in the form of so-called structural equations. One then solves these equa-
tions to obtain the connection 1-forms wji, using which the covariant
derivatives V, -2 and V, dz’ can be explicitly written down:

YV 9xI
0 ; 7]
(2.4.1) Vo 55 = w(0) 57 |,
2.4.2 V, dzt = — w(v) dz’
J

See Exercise 2.4.1 for an explanation of the minus sign.

Suppose the structural equations have been proposed, and the connection
forms have been solved for. (We carry out these steps momentarily, in the
proof of Theorem 2.4.1 below.) Let us substitute (2.4.1), (2.4.2) into our
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formulas for V, £ and V, g, relabel some summation indices, and suppress
v. The results read:

i j i 0
(2.4.3) Vi = (de* + ¢ w; )®5{i‘7 )
(24.4) Vg = (dg; — grj w;* — gux wjk)®dmi®dl'j .

The operator V, or the wji collectively, defines what is called a lin-
ear connection on 7T M and its associated tensor products. Each linear
connection, for example, the Chern connection that we introduce, is fully
characterized by its structural equations. Nevertheless, there is a general
set of axioms that all linear connections must satisfy. They are:

*Vo(fE) =YW E+fVLE,
*Vu(E1+E) =V, E1 +V, By,

* Vo E = AV, E for all constants X ,
* Vortv, B =V, E4+V,, E .

Theorem 2.4.1 (Chern) [Chl]. Let (M, F) be a Finsler manifold. The
pulled-back bundle m™*TM admits a unique linear connection, called the
Chern connection. Its connection forms are characterized by the struc-
tural equations:

* Torsion freeness:

(2.4.5) d(dz*) — dzj/\wji = - d:rj/\wji =0.

* Almost g-compatibility:

6 S

(2.4.6) dgi; — gk; wi* — g wF = 24y, %
In fact:

o Torsion freeness is equivalent to the absence of dy* terms in w,’;

namely,

(2.4.7) w;t = I da* |,

together with the symmetry

(2.4.8) Fikj = I
e Almost metric-compatibility then implies that
(2.4.9)
4 Ns N N,
Ty =7 — ¢° (Aijs 7& = Ajks =+ Aris _f’l)
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Equivalently,
; g | bgs; 0g;k Ogks
2.4.10 r., =2\ =2—= - -
(24.10) * = (mk so° T ba
Here:
*

g is the fiber Riemannian metric of #*T M. See §2.1. It is not to be
confused with the Sasaki (type) metric that we encountered in §2.3.

* §y° was defined in (2.3.4a), and <% in (2.3.3). Namely,

s

8y® = dy* + N°% dz’

6 I} .0
= — — N’L - .
bxs oz s Oyt
* The +';;, defined in in (2.3.1), are the formal Christoffel symbols of

the second kind, associated with the fundamental tensor.

The Nij were defined in (2.3.2a). They represent the nonlinear
Ehresmann connection on the tangent bundle of TM \ 0 .

Remarks. Formula (2.4.10) is the raison d’étre of the Chern connection.
Note its structural similarity to the Christoffel symbols in (2.3.1). However,
there are three famous connections in the literature, each with its own
merit. We express them in terms of the Chern connection.

e The Cartan connection is given by w; AL ik F . It is metric-
compatible but has torsion. One of its merlts is that it makes readily
accessible a specific Bianchi identity for Landsberg spaces. See [M2]
or [BCS1].

e The Hashiguchi connection is given by w, + A%, 6yk + A sxdzF.
Here, A = V;A is the horizontal covariant derlvatlve of the Cartan

tensor A along the distinguished (horizontal) direction i:=4 521'
See Exercise 2.5.5.

e The Berwald connection is given by wji+Ai p xdz". Like the Chern
connection, it has no torsion. The Berwald connection is particularly
convenient when dealing with Finsler spaces of constant flag curva-
ture. It is most directly related to the nonlinear connection N ij, and
most amenable to the study of the geometry of paths. See Exercises
2.3.3, 3.8.3, 3.8.4, 3.8.5, and 3.10.7.

For a systematic treatment of these connections, see [M2] and [AIM]. Prac-
titioners of Finsler geometry may wonder why the Rund connection is
conspicuously absent from the above. The reason is that it coincides with
the Chern connection, as pointed out by Anastasiei [A].
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Proof of Theorem 2.4.1.
(A) The consequences of torsion freeness:

A priori, we have w;* =T", dz* + YA dy*. Substituting this expression
into the torsion freeness criterion, namely, dz7 A wji = 0, we immediately
get

1"iJ-,C dz? AdzF + Zijk dei Ady* = 0.
Thus the Z*., must vanish. The same applies to the antisymmetric part
(in the lower indices j and k) of " ,. That is,

7 1
Iy, = Ty

(B) The explicit formula for I ;:
Let us substitute (2.4.7) and the formula (2.3.4a) for §y® into the criterion
(2.4.6). Equating the coefficients of the dz* terms, we get

09 N3
6—;': o gsj Fsik + gis stk + 2Aijs _l?_k- .

In other words,

N
F

9g;;
(2411) Fijk + Fjik: = (9le — 2Aijs

Now we use the so-called Christoffel’s trick. Namely, apply (2.4.11) to
the combination

(Trjk + Tjrk) — (Tjkr + Tijr) + (Tirj + Trij) s

and impose the symmetry (2.4.8). After much cancellation, this will result
in a formula for I';;x. Raising the index r will give (2.4.9) as desired.

Finally, using the operators 35; defined in (2.3.3), we can re-express the
Chern connection coefficients in the elegant form (2.4.10). O

Let us describe the Chern connection for two important families of Finsler
spaces:

e Riemannian manifolds. These are characterized by F? having only
an explicit quadratic dependence on y. As a result, y dependence
will be absent from the fundamental tensor, which then coincides
with the Riemannian metric on the underlying manifold M. See §1.3.
Since the Cartan tensor A vanishes in this case, formula (2.4.9) re-
duces to I, = 7';;. Thus, on Riemannian manifolds, the Chern
connection coefficients I, are simply the Riemannian metric’s
Christoffel symbols of the second kind.

e Locally Minkowski spaces. These are characterized by F' having no z
dependence in some privileged coordinate charts. Consequently the
fundamental tensor vanishes and so do its formal Christoffel sym-
bols. A quick glance at (2.3.2) shows that the nonlinear connection
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Nij is zero too. These reduce formula (2.4.9) to read I‘ij,C = 0. So,
for locally Minkowski spaces, the Chern connection coefficients com-
pletely vanish in certain natural coordinates. Exercise 2.4.8 assures
us that in arbitrary natural coordinates, these connection coeffi-
cients can have at most an z (but no y) dependence.

Exercises

Exercise 2.4.1:

(a) Let E := E* 2; be an arbitrary section of 7*T'M. Show that

VE = (dE' + E’ wji)®@.

(b) Given any section # := 6; dz* of #*T*M, the quantity 0(E) is a
scalar. Insist that the following Leibniz rule holds:

VIO(E)] = (VO)(E) + 6(VE) .
Prove that the above can be manipulated to yield the statement
Vo = (df; — 6; ) ®da’ .
(c) Explain how you would deduce (2.4.2) from part (b).

Exercise 2.4.2: Recall that torsion freeness forces the wji to have the
structure I', dz*. In other words, there are no dy* terms.

(a) As in the proof of Theorem 2.4.1, substitute the above and (2.3.4a)
(the formula for éy°) into the almost g-compatibility criterion
(2.4.6). Show that equating the coefficients of dy terms simply re-
covers the definition of the Cartan tensor.

(b) Suppose, in the compatibility criterion (2.4.6), we replace the A,;;s
on the right-hand side by some other functions. Explain why the
resulting structural equations have no solutions.

(c) A connection is said to be g-compatible if
dgi; — grj w;" — Gk wjk = 0.

Prove that the following two statements are equivalent:
e There exists a torsion free g-compatible linear connection on the
pulled-back bundle #*T M.

e The Finsler structure F' is Riemannian.
Exercise 2.4.3: The proof of Theorem 2.4.1 spelled out Christoffel’s trick,

but did not exhibit all the interesting cancellations that eventually led to
(2.4.9). Supply the missing details of that computation.
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Exercise 2.4.4: If we had discussed the connection V using the special
g-orthonormal bases, we would have

l Vo € = wp*(v) ea—i,

Vo w® = — w,(v) Wb

instead of (2.4.1) and (2.4.2). Recall the n-beins u,’ and v% of §2.2.
(a) Apply V to both sides of e, = u,* 6—2,; . Show that after relabeling

a summation index, we have
d
ozk
(b) In that equation, check that expanding out the e, and equating
coefficients of 6—2? then leads to

wy ea = (du + uy w*)

W uk = duf + ulwk

(c) Invert away that u,* to obtain

wp® = (duy' ) v + u) wit v

This expresses the connection forms for the orthonormal basis in
terms of those for the natural basis.

(d) Likewise, prove that

%
a

i a i b a
w;i' = (dv%)u, + v wtu

It expresses the connection forms for the natural basis in terms of
those for the orthonormal basis.

Exercise 2.4.5: Use the last formula in the above exercise, together with
suitable items from §2.2 and §2.3, to re-express the structural equations of
the Chern connection.

(a) Check that torsion freeness (2.4.5) now reads

dw® — W AW =0

(b) Show that the “almost g-compatibility” criterion (2.4.6) becomes

Dab + wWhe = —2 A wnte

where wy, abbreviates w,€ 6., .

b

(c) Explain why

lwnn=0=wn"|
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in a special g-orthonormal basis. Caution: this is not a statement
about W™,

Exercise 2.4.6:

Nt
F

(a) Deduce from (2.4.9) that I‘ijk o = Fikj ¢ o=

(b) Use this to rewrite %Li as

%_,y— = (V&' + ¢ d(log F)

where VE = df* + & w;’.
(c) Show that part (b) leads us to
Wt = Ww*(Ve) + 6% d(logF) .
Equivalently,
Wt ®e, = VL + Ld(logF) .

(d) Contract the formula in part (b) with ¢; . With the help of Exercise
2.3.5, show that ¢; (V£)* = 0. In coordinate free notation:

| g(e,ve) = 0.

Exercise 2.4.7:
(a) Check that V£ =w e, .
(b) Use part (d) of Exercise 2.4.6 to reduce this to V£ =w,* e, .

(c) Substitute the above into part (¢) of Exercise 2.4.6. Show that one
obtains

Lwna — wn—!—a ’

in a special g-orthonormal basis.

(d) Explain why

wnn ?é wn-}—n I

Exercise 2.4.8: Consider local coordinate changes on M, say

= 4(F,...,3"),

and their inverses Z? = #?(z!,..., z"). Denote the Chern connection co-
efficients in the natural coordinates (z*,y*) by I jk» and their counterparts
in the natural coordinates (ZP, §P) by qur'
(a) Imitate the technique in Exercise 2.4.4 to show that
-, _ 0@ 8’z ozr . O0x’ OzF
T 9zt 030 | Ozt IF 8ze &
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(b) As explained at the end of this section, the Chern connection co-
efficients of a locally Minkowski space vanish in certain privileged
natural coordinates. Explain why, in arbitrary natural coordinates,
they can have at most an z (but no y) dependence.

Exercise 2.4.9:

(a) Derive formula (2.4.11) for the Chern connection coefficients.
(b) Prove that dlog /g = 3 g*/ dg;; , where /g := /det(gs;) -
(c) Show that I'',, =T*, = 1 g" gi",; = 54 log /g .

Exercise 2.4.10: Derive formula (2.4.10) in detail.

2.5 Index Gymnastics

Let T := T, 52 ® dz* be an arbitrary smooth local section of m*TM ®

7*T*M. It is a tensor field of rank (i) on the manifold TM < 0. Its
covariant differential is

o— J _Z )
VT = (VIY; 5= ®ds'

where

(2.5.1) (VTY, = dT% + Thw) — T/, wr.

2.5 A. The Slash (...);s and the Semicolon (...);s
The (VT); are 1-forms on TM ~ 0. They can therefore be expanded in
terms of the natural basis { dz*, i% }

S

by
il
In order to obtain formulas for the coefficients, we evaluate equation (2.5.2)
on each individual member of the dual basis { :2; , Fggg }. We also use the
fact that the Chern connection forms for the natural basis have no %
terms, and are given by w;* =1"; dz®. The results are:

(2.5.2) (VTy, = T?

ils

dz® + Tji;s

, i 8T : ;
@53) | Ty, = (Ve T) =52+ 180, - T, T |,
s 1 o
(2.5.4) Ty = (Ve T) i o
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As a reminder:

6T, a1’ oT’,
2.5.5 o= t — NT tol
( ) bz Oxs s Gy |’
0
(2.5.6) F By is the homogenized usual partial derivative.

Note that with respect to the natural basis:
e The horizontal covariant derivative Téls is comprised of a hor-

8T, .
s-+ and correction terms.

e The vertical covariant derivative 77,  consists merely of a ho-
b
mogenized partial derivative. There are no correction terms.

izontal directional derivative

The treatment for tensor fields of higher rank is similar. There will sim-
ply be more correction terms because of the additional indices. We ask
the reader to provide the details. Instead, let us now illustrate the above
formalism with two basic examples.

2.5 B. Covariant Derivatives of the Fundamental Tensor g

Criterion (2.4.6) says that the Chern connection is almost g-compatible:
k k by*
(2.5.7) (Vg)ij = dgij - Gkj Wy T Gik Wy = 2 Aijs —-F-—- .

This immediately gives:
@8 oo 0],

Next, it can be shown (see Exercise 2.5.2) that

(2.5.10) 6. =0 and &7, =0

ils i ;8

Thus (g% gjr);s =0 and (g% g;x );s = 0. These then yield:

(2.5.11) gl =0

(2.5.12) gi, = —2 A,

3

The above statements say that the fundamental tensor (with all possible
index configurations) is covariantly constant along horizontal directions. Its
vertical derivatives are, as expected, proportional to the Cartan tensor.
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2.5 C. Covariant Derivatives of the Distinguished ¢
Part (b) of Exercise 2.4.6 says that

i
(Ve = 6% — £ d(logF) .

According to part (a) of Exercise 2.3.5, the d(log F) term can be rewritten
as £, @F—. Thus

i i i oy°
(2.5.13) (Ve = (&', — ¢ ZS)T .
Hence
(2.5.14) ¢, =0/,
(2.5.15) e, =8, - 04
These, together with (2.5.8) and (2.5.9), can then be used to deduce that
(2516) ei]s =0 y
(2517) I Zi;s = Qis — Zifs ]

Our formulas show that the distinguished section £ and the Hilbert form
w are both covariantly constant along horizontal directions. Their vertical
derivatives are equal to suitable configurations of the angular metric.

Exercises

Exercise 2.5.1: Instead of writing T := T7, 525 ® dz?, let us expand it in
terms of a special g-orthonormal basis. Namely: T := T% e, ® w®. Thus

VT = (VT)®, ey ® w?, and the analogue of (2.5.2) is
(VT), = T4 w° + T w'.

alc
Show that:
b b a0, kI
o T, = v uy u, Tilk.
b b i ki
o T%. = vusus T .

In particular, the formula for T%, is practically as simple as (2.5.4). This
simplicity is unezpected because, according to part (c¢) of Exercise 2.4.4,
the Chern connection forms w,® for our orthonormal basis do contain w™**
terms.

Exercise 2.5.2:

(2) To what is d6,” — 6 w,* +6,*w,’ equal?
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(b) Explain why 6ij[s =0 and (5Z-j;s =0.
Exercise 2.5.3: Derive (2.5.16) and (2.5.17).
Exercise 2.5.4: The covariant differential of the Cartan tensor A is
VA = (dAge — Ay w' — Aug wjt — Ay i) do* ® do? @ dz* .
The quantity inside the parentheses is (VA);;x. It can be expanded as
oy°
F
(a) Explain why Az, and Ajji,s are both symmetric in the first three
indices 1, j, k.
(b) Show that A;;;s£F =0 .
(c) Show that Ajjis €5 = — Ayjs .

(VA)ije = Ayjrs dz° + Agjss

Exercise 2.5.5: Define the quantities

Ayy = Ajjrys €0,
and set A := A dz’ ® do/ ® dz*.
(a) Show that A= VA, where £:= ¢ 2 .
(b) Check that A £ =0 .

(c) Explain why the quantities A,;jx.s ¢° are uninteresting.

Exercise 2.5.6: With the help of (2.5.3) and part (a) of Exercise 2.4.6,
show that:

Exercise 2.5.7: Here is one practical use of Exercise 2.5.6. We learn from
Exercise 3.3.4 that the expression

o BN 0Ny

bk F bz F
describes something of paramount importance. It is numerically equal to
the predecessor R*, of the flag curvature. Let us now use some material

developed in §2.3 to rewrite that expression into a more computationally
friendly form.

(a) Manipulate the first term # ;¢ NTz” as follows. Use Exercise 2.5.6 to

move £ past . This introduces a “correction” term (N*; N 7))/ F?
which, through Exercise 2.3.3, can be expressed as y derivatives of
G*. Next, (2.3.2b) shows that ¢ (N*;/F) = G*/F?. Use part (b) of

Exercise 2.3.5 to move the 1/F? outside the % derivative. Finally,
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(b)
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spell out &= w1th (2.3.3). These maneuvers should produce

% [(G"m - Z(G")yj(Gj)yk] -

Now work on the second term — %NT As in part (a), move the

1/F past £. Then spell out £ and use & N%, = G*/F. Check that

one obtains
1

1 1
ﬁ {—'éy'](G )ykxj + EG](G )ykyj] .

In short, the expression we stated at the beginning is equal to

1

where

25 [2(G e = (G (G = ¥ (G s + 267 (G |

The utility of this result is shown in §3.9B.
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Chapter 3

Curvature and Schur’s Lemma

3.1 Conventions and the hh-, hv-, vu-curvatures
3.2 First Bianchi Identities from Torsion Freeness
3.3 Formulas for R and P in Natural Coordinates
3.4 First Bianchi Identities from “Almost” g-compatibility
3.4 A. Consequences from the dz* A dz! Terms
3.4 B. Consequences from the dz* A +6y' Terms
3.4 C. Consequences from the %6yk A %63/[ Terms
3.5 Second Bianchi Identities
3.6 Interchange Formulas or Ricci Identities
3.7 Lie Brackets among the % and the F 6%
3.8 Derivatives of the Geodesic Spray Coefficients G*
3.9 The Flag Curvature
3.9 A. Its Definition and Its Predecessor
3.9 B. An Interesting Family of Examples of Numata Type
3.10 Schur’s Lemma
* References for Chapter 3

3.1 Conventions and the hh-, hv-, vv-curvatures

The curvature 2-forms of the Chern connection are

i i k i
(3.1.1) Q) = dw — w" Awy

Our convention on the wedge product does not include any normalization
factor. Thus, for example, the wedge product of two 1-forms is

(3.1.2) ONC == 0®( ~ (®0 ,

without the factor of %
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Since the ji are 2-forms on the manifold TM \. 0, they can be generically
expanded as
: 1. ; &yt 1, &F &
le = 5 jzkldibk/\diﬂl+ijld1'k/\—F-T+'§ jlkl-F_vAF'
The objects R, P, Q) are respectively the hh-, hv-, vv-curvature tensors
of the Chern connection. There is no loss in generality in supposing that

(3.1.3) Rjilk = _Rjikl )

(3.1.4) Q]'ilk = —jSkl .

As we soon show, the vv-curvature ) actually vanishes for the Chern con-
nection.

Exercises

Exercise 3.1.1: Explain why it does not make sense to put a factor of %
in front of the term P, dz* A sy

Exercise 3.1.2: Why is (3.1.3) an assumption instead of a consequence?

3.2 First Bianchi Identities from Torsion Freeness

The Chern connection is torsion free: dz? /\wji = 0. Exterior differentiation
then gives

de’ Ndwi® = 0.

Since the term dz? A wjk A w,® vanishes by torsion freeness, it can be sub-
tracted from the left-hand side of the above equation without affecting
anything. Thus

(3.2.1) de’ AL = 0.
Into this we substitute our expansion for jS, and obtain:

1 ) ;
0 = 3 Ry dz’ Ndz* A dd!
) ) Syt
() + P}y, dz? Ada A %

L NS
+‘2‘Qj;d dxj/\?/\7 .
The three terms on the right are of completely different types. Therefore

each must vanish. Let us discuss them in turn.
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e One important consequence comes from the vanishing of the third
term on the right. It says that ¢ must be symmetric in the indices
k and I. Yet (3.1.4) tells us that there is antisymmetry in those two
indices. So

jSkl =0

This simplifies the curvature 2-forms to

_ 1 . . &yt
(3.2.2) QJZ = 5 jzkl dl'k A dl'l + ‘lekl dmk A ‘ZZ‘“

e The vanishing of the second term on the right of (*) uncovers a
symmetry

(3.2.3) Py = P’y

of P, between its first and third indices.

e Finally, the vanishing of the first term on the right of (*) gives the
first Bianchi identity for R:

(3.2.4) Rjikl + Rkilj + Rlijk =0

Exercises

Exercise 3.2.1: Consider the connection forms w,* for our g-orthonormal
basis sections. According to Exercise 2.4.5, in that situation the criterion
for vanishing torsion reads dw® = w® A w,%.

(a) Show that the analogue of (3.2.1) is
(.(}b A Qba =20 )
where ,% 1= dw,* — w,° AW 2.
(b) Check that ,° has the structure

1

Qba = 5 Rbacd UJC A wd -+ Pbacd wc A w"+d .

Exercise 3.2.2:

(a) Is the vv-curvature @ always zero for torsion-free connections?

(b) Can it vanish for connections that have torsion?
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3.3 Formulas for R and P in Natural Coordinates

The left-hand side of (3.2.2) is jS. We replace it by the defining expression
given in (3.1.1):

X . 1 6
(83.1) dw - w'Aw = 5 Riydetnde! + Py do /\-1;’{—
* Note that dw;* = dI";; A dz'. Since the differential dI'* it is a 1-form
on TM ~ 0, it can be expanded in terms of dz* and %L . Carrying

that out, we get

T ar
dwi = —3L dgF ndet + F Jl‘sy/\d’

J ok oyk F
Relabeling the second term on the right then gives:
dwi = —L da* A da!
J ook *F “ By F
* Also, — wjh Awlt = wt /\wjh =TI, Phjl dz* A dz!.

Substituting these into (3.3.1), we see that the expression

1) . ort 5y
gl i h k ! Y gk oy

is supposed to be equal to

1 k 1 i k 5yl
ERjkld:L' /\d.’L' +‘F2'kld$ /\?.

Hence the antisymmetric part (which involves a factor of %) of (---) must

equal 3 R};;. In other words,

i TR ; i Tk
(3.3.2) Rjklzéw—k—v‘l“rhk l_Fthjk
Also,
; art .,

Note that (3.3.3) implies (3.2.3). As a reminder:

) 0 , 0

2= 2 N

bxk ok k gyt
See §2.3.

We conclude by discussing the curvatures R and P of two important
classes of Finsler spaces. This is a follow-up of the discussion we gave, at
the end of §2.4, of their Chern connections.
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e Riemannian manifolds. In natural coordinates, the Chern connec-
tion coefficients I'? ; jk of Riemannian manifolds sunply equal the un-
derlying Rlemanman metric’s Christoffel symbols v*;, of the second
kind. The latter do not have any y dependence Therefore P = 0 by
(3.3.3), and those = in (3.3.2) reduce to z;. In other words,

_ 0

i A h i R
pye 92l + VY5 — VY -

i
Rj kl

e Locally Minkowski spaces. In certain natural coordinates, the Chern
connection coefficients I' ;& vanish identically. Thus (3.3.2) and
(3.3.3) tell us that both R and P must be zero in these privileged
natural coordinates. But curvatures are tensorial objects, so they
remain zero in all natural coordinates (and actually, in all bases).

Exercises

Exercise 3.3.1: Review part (b) of Exercise 3.2.1. Show that
(d) Rfy = ubj v% uk udl Rjikl
(b) By = u) 04 ut udl Pjikl .

Exercise 3.3.2: Explain how Euler’s theorem can be used to deduce the
statement

Exercise 3.3.3: Let (M, F) be a locally Minkowski space, as defined in
§1.3. Show that its R;*;; and P;%, are both identically zero in all natural
coordinates.

Exercise 3.3.4: The quantities (see §3.9)
Ry = P Ry ¢

are of paramount importance in Finsler geometry. Prove that

. [ & N § Nt
i g J k
Ry ¢ (61:’“ F ézi F )

A viable strategy is as follows:

* Start with the formula (3.3.2) for R, in natural coordinates.
* Use Exercise 2.5.6 to move #/ and ¢ past the appropriate 35—
* Then refer to part (a) of Exercise 2.4.6.

Exercise 3.3.5: Recall from Exercise 2.4.6 that

6;{ = dl + £ w} + £ d(logF).
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Prove that its exterior differential is given by the formula
&y’ e X 5y’ i by’
i(F) =09+ Fa(e -6F)

Exercise 3.3.6: For our orthonormal frame, recall from Exercises 2.4.7,
2.3.5, and 2.4.5 that:

* n+o a
w _wn I

* Wt =d(log F) ,

*

w,r=0.

Without doing any computation, explain why one immediately has:
(a) dw™t*=Q2%+wlAw® = Q%+ WA (W, — Gw™t?) .
(b) dw™t"=0.

3.4 First Bianchi Identities from “Almost” g-compatibility

The Chern connection is almost metric-compatible, in the sense that

k k dy®
dgij — Gkj Wi — Gik Wi = 2 Az’js ? .
After exterior differentiation and some manipulations, we get
5y* sy* &yt
Qj + Qs = —2(VAu A o — 2Aijk[d(_p_) 4 wlk/\?] '

The expansion of (VA);;r was considered in Exercise 2.5.4, and d(é%f
was computed in Exercise 3.3.5. These turn the above into the following
fundamental identity:

Qi + Qi
1 k 1 e . Oy
=3 (Rijki + Rjix ) dz® Adz' + (Pijri + Pjiry ) dz A_F,
341) = — (Aiyu R%) dz* Ada'
P !
- 2(Aiju Pil + Aijllk) dl'k N —lg—

sy* &yt
U %Y
F F
Here, we have introduced the abbreviations

+ 2(Aijrg — Aijr &)

(342) Rikl = eJ Rjikl

(343) Pikl = EJ Ijjik.l
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in order to reduce clutter.
There is a wealth of information that one can uncover from this funda-
mental identity. We carry that out systematically below.

8.4 A. Consequences from the dz* A dx' Terms
In (3.4.1), the coefficients of the dz* A dz' terms tell us that

(3.4.4) I Rijii + Rjim = 2(—Aiju R'%) = 2 By |,

where we have introduced a temporary abbreviation
Bijkl = _'Aiju Rukl .

It is symmetric in ¢, j but skew-symmetric in k, I. Thus R;;x; is in general
not skew on its first two indices. Formula (3.4.4), together with the first
Bianchi identity for R [namely (3.2.4)] and (3.1.3), can be used to deduce
the following:

(3.4.5)

| Riiji — Rjit = (Briyji — Bjirt) + (Braj + Bijki) + (Bijke + Bjrit) l .

The procedure is spelled out in Exercise 3.4.2.
In Exercise 3.3.4, we encountered the quantities

(3.4.6) Ry = ¥ Rjp ¢

Using (3.4.4) and (3.4.5), we see that
€ Riys; # = ' Ry & = 09 Ry €.
In other words,

@47 o= T

This symmetry was not apparent from the said exercise.

3.4 B. Consequences from the dz* A %6yl Terms

The coefficients of the dz* A 5—I’il terms in our fundamental identity tell us
that

(3.4.8) ‘ P + Pjikl = — 2Aiju Py, — 2Aijl|k |

Let us use this to derive a constitutive relation for P :
e Apply (3.4.8) three times to the combination
(Pijki + Pjire) — (Pjkir + Prjir) + (Priji + Pikjr) -
With the help of a temporary abbreviation
Eijii == — Aiju Py,
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the result takes the form
Pjiny = —( Ak — Ajriji + Arir)j ) + (Eijrt — Ejra + Egajt ) -

e Contract this with ¢ and #7£* respectively, and use (2.5.14) (which
says that the horizontal covariant derivative of ¢ is zero). One can
check that the second contraction gives Pj;x £ ¢% = 0, which then
reduces the first contraction to the important statement

(3.4.9) Pp = 0 Py = — A

Here,

(3.4.10) Agje = Agjr)s £

o It follows that E;;r; = Aij” Aygr . This updates the above interme-
diate formula for Pj;z; to the constitutive relation

Piiwi = — (A — Ajrpi + Awiy)j)

(3.4.11) , _ _
+ A" Auet — At Ava + At Augi

Therefore:

The second Chern curvature tensor P is a functional of
the Cartan tensor A;;; and its horizontal covariant deriva-
tiVeS Aijk[s'

Formula (3.4.9) can be used to re-express (3.4.8) as

. 1
(3.4.12) A = A" Aurl — i(ﬂjkl'f'})jikl) ,

which is a converse to the constitutive relation (3.4.11). In particular, we
now see that

(3.4.13 Py = 0 ifandonlyif Ay = 0.
f] gkl

3.4 C. Consequences from the %6@/’“ A %63/1 Terms
Finally, the coefficients of the %%i A %"l terms in (3.4.1) tell us that

(3.4.14) | At = Agir = Aigr e — At b |-

Exercises

Exercise 3.4.1: Supply all the details that are involved in the derivation
of our fundamental identity (3.4.1).
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Exercise 3.4.2: Derive (3.4.5) as follows.

(a) Cyclicly permute the first, third, and fourth indices of Rjir. We
simply get the first Bianchi identity Rjir + Rrij + Riijx = 0. Next
do the same to R;;;, and likewise to Ry;; and to Ryjik.

(b) Add the four resulting equations together; then use (3.1.3) and
(3.4.4). Check that after some appropriate relabeling, one gets for-
mula (3.4.5) as claimed.

Exercise 3.4.3: Derive the constitutive relation (3.4.11) by following the
guidelines given in this section.

Exercise 3.4.4:

(a) Explain why Pjg; := £7 P}y, is totally symmetric in all its indices.
Also, explain why P, & = 0.

(b) Recall the statement P;%, ¢ = 0 from Exercise 3.3.2. There, it was
derived from first principles. Check that it is also a consequence of
the constitutive relation (3.4.11). Does Py £ = 0 follow immedi-
ately from the said statement?

(c) Use (3.4.4) to help show that #7 £ R;;5; = 0 = Ry £ £'. In partic-
ular, deduce that

| € Ry = 0 = R £ .

Exercise 3.4.5:

(a) Contract the fundamental identity (3.4.1) with £. With the help of
part (c) of Exercise 2.5.4, show that one gets

(b) Explain why the above carries no more information than (3.4.4) and
(3.4.8).
Exercise 3.4.6: Consider the following two statements:

(1) The Chern connection coefficients I ;, have no y-dependence, in
which case the Finsler structure is said to be of Berwald type.

2 . .
(2) gyoaga (¥ T5) = 0.
We surely have (1) = (2), and it would be intuitively appealing to have

the converse as well. This is indeed the case. To demonstrate that, adopt
the following strategy:

(a) First show that
82

OyPoy1

Hint: use (3.3.3) and perhaps (3.4.11).

F

(yj Fzgk) = - Ppik:q + Aikp;q .
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(b) Show that —P,%  and A%, . each produces a copy of —Ap, if we
contract them with £;.

(c) Now explain in detail why (2) = (1).

kpiq

3.5 Second Bianchi Identities

Exterior differentiation of (3.1.1) gives the second Bianchi identity

(3.5.1) a9 — WA + wiAQ)f = 0.

Into this we substitute the expression (3.2.2) of Q;* in terms of R and P.
e In the computation of d€)%, let us use

W) = oai + (o - %)

whenever we encounter d( g%) See Exercise 3.3.5.

e The combination

[ 7 t t i 1 t i t
AR — R wi' + R’y w' — Rj'y w — Rj' g wy

will show up. Being a 1-form on TM \ 0, it can be re-expressed as
&yt

: . :
Ry dz® + Ry F

J

o Likewise, we replace the 1-form
i i t t i i t i t
dP% — Pl wi' + Pl w* — Py wi — Pl wy

with the expression

Pjikl[t dz* + Pjikl,t %g; .
The result is
0 = %(R;‘kl,t - Pj%, RY;) dz* Ada' Ado
(3.5.2) + %(R.iw — 2P/, + 2P, AY,) dzk/\dzl/\%—t
+ (Pl — Pilu b)) dz®a %‘l A %ﬁ .

This is a useful restatement of the master second Bianchi identity. It is
equivalent to the following three identities:
(3.5.3)

Rjikllt + Rjiltlk + Rjitk|l = Pjiku RY + }Djilu R%: + P;*, R% |,
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(3.5.4) Rjikl;t = Pjiktll - Pjiltlk - (Pjiku A4, - P, A%y)

(3.5.5) Py — Pi'yy = Py le — Py b

It can be shown that (3.5.4) embodies a constitutive relation for the
first Chern curvature tensor R. Namely, R; ‘1 is a functional of the tensor
R’ and its first and second vertical covariant derivatives, together with
A and its first horizontal covariant derivatives. The tensor R;;. becomes
known in §3.9 as the predecessor of flag curvatures. Explicitly, the said
constitutive relation reads:

i
Rty =

i (Rik;l;j - Ril;k;j + ¢; Rik;l 7 Ril;k)

1

3
2 . . .

(3.5.6) +3 (Ryj e — Ryl + Ry g — Ry gix)

- (Aijl|k - Aijk|l + Ay, .ujl — AT A%

The derivation of this is somewhat tedious. It is carried out systematically
in Exercises 3.5.5-3.5.7.

Exercises

Exercise 3.5.1: Note that of the four indices on RJ' w» ¢ and j are bundle
(that is, #*T M) indices while k, [ are manifold (namely, TM ~ 0) indices.
The combination

¢ i it i ¢
dR tklw "+ Ry w — Ry w — Rty wy

we encountered above suggests that all four indices have been treated as
bundle indices, not by us willfully but by the exterior calculus. How does
the bundle connection w;* even know what to do with the manifold indices
on R?

Exercise 3.5.2: Use identity (3.5.3) to derive the following:
Rikl|t + Rilt|k + Ritkll = - A", RY — A RY — A’ RY,.
Exercise 3.5.3:

(a) By contracting (3.5.5) with #7, prove that

i i At At
ijl - Plkj - Akj;l - Ak:l;j




60 3. Curvature and Schur’s Lemma

(b) Using this and the constitutive relation (3.4.11), derive the intrigu-
ing formula

Aikj;l_Aikl;j = Aikjll - Aik”j
+ (Aiju A% + Aiju A%)
- (A%, 'ukj + A, A%;) -

Exercise 3.5.4: Prove that the following three statements are equivalent:

e A;jx =0 (this is the definition of a Landsberg space).
e A is totally symmetric in all four of its indices.
® Pt =—Ajiy -
Hint: you will need to use (3.4.11) and Exercise 3.5.3.
Exercise 3.5.5:
(a) Show that ¢/ R?y,, = R'), — R+ & Ry, .
(b) By contracting (3.5.4) with # and relabeling, prove that
= Ry + 4 Ry
- (Aijl|k - Aijk]l + Aty Aujl —A'y, 'ujk) .
Note that the quantity inside the parentheses is like a curvature!
Exercise 3.5.6:
(a) Show that ¢*R* , = R', , + R' 6, — R', .
(b) Contract part (b) of Exercise 3.5.5 with £ to obtain
Riutll = Ry + 2R & + Ry + Aj 0.
(c) Without doing any more computation, explain how one could get
Ryl = Ry, —2R; & + Ry — Af,, 0.
Exercise 3.5.7:
(a) How would one obtain Ry, ' + R ;£ + R' ), =07

(b) Into this, substitute parts (b) and (c) of Exercise 3.5.6. Show that
one gets

i i ; 2 i i
Ry = (Rk;l_Rl;k)+§(Rk€l_Rlek)

Ll =

(c) Using this and part (b) of Exercise 3.5.5, derive the constitutive
relation (3.5.6) for R',,.
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3.6 Interchange Formulas or Ricci Identities

Let

0
p _Y_ q
T 4 57 ®dz
be a smooth section of T*TM ® #*T*M. Its covariant differential VT can
be written out two ways:

oy’

1% + T wf — Th wi = T* +

j P
q qlj dx? + Tq;j

By taking the exterior derivative of this equation, one can deduce the fol-
lowing Ricci identities or interchange formulas:

(36.1) | Ty — Thuy = TY RSy — T RSy — T B |,
(362) | Th,u — Thuy = Ty RY — TH Py + Th A% |,
(3.6.3) Tosi = Tqig = Ty s — T b

The exercises provide some minimal guidance, should the reader decide to
fill in the details.

These are versatile formulas. In the Riemannian case, only (3.6.1) is non-
vacuous, and its right-hand side reduces to two terms.

Exercises

Exercise 3.6.1:

(a) Explain why, when we encounter dTI; ;j » We can replace it by the
expression

p P /4 7 /4 i 7
= Ty w’ + Thwy + T wi’ + Tl da® + T 4 -

(b) Likewise, explain why dT’;; , can be replaced by

. . A byt
i 14 1 /4 ) /9
+ T wi’ + Tl da® + Ty — .

Exercise 3.6.2: Deduce the interchange formulas (3.6.1)—(3.6.3).

_ 7t P P
Tq;J Wi +Ti;j Wy
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3.7 Lie Brackets among the % and the Fg%

Given any local vector fields X, ¥ on TM ~ 0, and any 1-form w, the
Cartan formula says that

(3.7.1) [ ()X, ¥) = duw@)]X) - dwX)]¥) - w([X,¥])

Let W := W7 % be any local section of 7*T'M. Using the Cartan formula,
one can prove that

oo O
(3.7.2) | W7 Q(X,Y) 3 (V)‘(V}‘/ - VyVi — V[f(,f/]) w

Here, the covariant derivative operator V is the one we encountered in §2.4
and §2.5.

Recall from §2.3 that the % span the horizontal distribution, and
that the Fga— span the vertical distribution. These notions make sense
with respect to the Sasaki (type) metric on TM \ 0. Their Lie brackets can

be computed with the help of the Cartan formula.

e Formula (3.7.2), together with the fact that £ and F are both co-
variantly constant along all horizontal directions, will show that

6 é o )
LS - Rt =
(3.7.3) [6mk , &El} ¢ Ry Fc’)yi

See Exercise 3.7.3. Since the Lie bracket of the horizontal vector
fields 35;, 3% is strictly vertical, the horizontal distribution is not
involutive, hence not integrable.
e Next, (3.7.2) and primarily (3.4.10) can be used to deduce that
(3.7.4)

§ o] qau L F i Nuy 0
[W,Fa—y,] = {A% + Z(Fo)u - ¢ T}Fayi

This one involves considerable detail. See Exercise 3.7.4.

e Finally, (3.7.2) and an appropriate interchange formula from §3.6
will lead to

0

8y*

0 0] 4 .
(375) [Fa—y—k‘,F—a—y—l:] = (ek (511 - Zl 61k)F

See Exercise 3.7.5. This, together with the identity
[fX,9Y] = fglX,¥] + f(dg)(X) Y — g (d)(Y) X,

will show that the vertical distribution is involutive, hence inte-
grable.
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Exercises

Exercise 3.7.1: Verify the Cartan formula (3.7.1).
Exercise 3.7.2: Derive (3.7.2) in detail.
Exercise 3.7.3: Let X, ¥ be Mi,c, 5—;5;, respectively.

(a) In (3.7.2), set W equal to £. Show that one obtains

.8
Vige gt = = B’ g -

Formula (2.5.14) says that £ is covariantly constant in all horizontal
directions. So the Lie bracket here cannot possibly be horizontal,
unless it vanishes.

(b) With the help of Exercise 2.3.5, check that F' is constant along
5 b
(557 51 - |
(c) Using the above, together with isF},Lz = (VL)' + £ d(log F) , show that

(%)({%’%}) = — ¥ Ry

(d) In the Cartan formula, set w := dz®. Check that it gives

. 6 6
)

We can now conclude that

6§ & 0]
{am—ka—zz] = O R P
In particular, the Lie bracket of 5—2; with % is strictly vertical !
Exercise 3.7.4: Return to (3.7.2). This time, set
. § - o]
X = Ek‘:‘ and Y = F'a? .
(a) Show that the curvature formula (3.7.2), together with (3.4.10),
gives
.. 8
Vigge. it = A i -

(b) With the help of
* SE — 0 (Exercise 2.3.5) and £, = 0 (2.5.16),
* the relationship (2.5.3) between 6k ¢ and {y ,
* formulas (2.4.9), (2.3.2) twice, (2 3.1)7 (14.1) forT', N, v, g,
* Euler’s theorem (Theorem 1.2.1) applied to (3F2)« ,



64 3. Curvature and Schur’s Lemma

show that:

é d 1 N,
d(logF)qm,ng—,D = 5 (Fly)a — 75_’

(c) Using the above, together with —L = (V&) +£ d(log F) , show that
) G, Ny

Syt . o .
(F)< zk’FayD = At 5 (Fle)o — 0

(d) Deduce from the Cartan formula that

i é 0
Now conclude that

s 8] . L F . Nuy .0
[ xk’Fal] = {Ad'w + F(F