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Preface to the Second Edition

The second edition builds on the first in several ways. There are three new chapters
which survey recent directions and extensions of the theory, and there are two new
appendices. Then there are numerous additions to the original text. For example, a
very elementary addition is another parametrization which the author learned from
Don Zagier y2 = x3 − 3αx + 2β of the basic cubic equation. This parametrization
is useful for a detailed description of elliptic curves over the real numbers.

The three new chapters are Chapters 18, 19, and 20. Chapter 18, on Fermat’s Last
Theorem, is designed to point out which material in the earlier chapters is relevant
as background for reading Wiles’ paper on the subject together with further devel-
opments by Taylor and Diamond. The statement which we call the modular curve
conjecture has a long history associated with Shimura, Taniyama, and Weil over the
last fifty years. Its relation to Fermat, starting with the clever observation of Frey
ending in the complete proof by Ribet with many contributions of Serre, was already
mentioned in the first edition. The proof for a broad class of curves by Wiles was suf-
ficient to establish Fermat’s last theorem. Chapter 18 is an introduction to the papers
on the modular curve conjecture and some indication of the proof.

Chapter 19 is an introduction to K3 surfaces and the higher dimensional Calabi–
Yau manifolds. One of the motivations for producing the second edition was the
utility of the first edition for people considering examples of fibrings of three dimen-
sional Calabi–Yau varieties. Abelian varieties form one class of generalizations of
elliptic curves to higher dimensions, and K3 surfaces and general Calabi–Yau mani-
folds constitute a second class.

Chapter 20 is an extension of earlier material on families of elliptic curves where
the family itself is considered as a higher dimensional variety fibered by elliptic
curves. The first two cases are one dimensional parameter spaces where the family is
two dimensional, hence a surface two dimensional surface parameter spaces where
the family is three dimensional. There is the question of, given a surface or a three
dimensional variety, does it admit a fibration by elliptic curves with a finite number
of exceptional singular fibres. This question can be taken as the point of departure
for the Enriques classification of surfaces.



viii Preface to the Second Edition

There are three new appendices, one by Stefan Theisen on the role of Calabi–
Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves
in computing theory and coding theory. In the third appendix we discuss the role of
elliptic curves in homotopy theory. In these three introductions the reader can get a
clue to the far-reaching implications of the theory of elliptic curves in mathematical
sciences.

During the final production of this edition, the ICM 2002 manuscript of Mike
Hopkins became available. This report outlines the role of elliptic curves in homo-
topy theory. Elliptic curves appear in the form of the Weierstasse equation and its
related changes of variable. The equations and the changes of variable are coded in
an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to
a cohomology theory called topological modular forms. Hopkins and his coworkers
have used this theory in several directions, one being the explanation of elements
in stable homotopy up to degree 60. In the third appendix we explain how what we
described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with
Hopkins’ paper.

Max-Planck-Institut für Mathematik Dale Husemöller
Bonn, Germany



Preface to the First Edition

The book divides naturally into several parts according to the level of the material,
the background required of the reader, and the style of presentation with respect to
details of proofs. For example, the first part, to Chapter 6, is undergraduate in level,
the second part requires a background in Galois theory and the third some complex
analysis, while the last parts, from Chapter 12 on, are mostly at graduate level. A
general outline of much of the material can be found in Tate’s colloquium lectures
reproduced as an article in Inventiones [1974].

The first part grew out of Tate’s 1961 Haverford Philips Lectures as an attempt to
write something for publication closely related to the original Tate notes which were
more or less taken from the tape recording of the lectures themselves. This includes
parts of the Introduction and the first six chapters. The aim of this part is to prove,
by elementary methods, the Mordell theorem on the finite generation of the rational
points on elliptic curves defined over the rational numbers.

In 1970 Tate returned to Haverford to give again, in revised form, the original
lectures of 1961 and to extend the material so that it would be suitable for publication.
This led to a broader plan for the book.

The second part, consisting of Chapters 7 and 8, recasts the arguments used in
the proof of the Mordell theorem into the context of Galois cohomology and descent
theory. The background material in Galois theory that is required is surveyed at the
beginnng of Chapter 7 for the convenience of the reader.

The third part, consisting of Chapters 9, 10, and 11, is on analytic theory. A
background in complex analysis is assumed and in Chapter 10 elementary results on
p-adic fields, some of which were introduced in Chapter 5, are used in our discus-
sion of Tate’s theory of p-adic theta functions. This section is based on Tate’s 1972
Haverford Philips Lectures.

Max-Planck-Institut für Mathematik Dale Husemöller
Bonn, Germany
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Introduction to Rational Points on Plane Curves

This introduction is designed to bring up some of the main issues of the book in an
informal way so that the reader with only a minimal background in mathematics can
get an idea of the character and direction of the subject.

An elliptic curve, viewed as a plane curve, is given by a nonsingular cubic equa-
tion. We wish to point out what is special about the class of elliptic curves among all
plane curves from the point of view of arithmetic. In the process the geometry of the
curve also enters the picture.

For the first considerations our plane curves are defined by a polynomial equation
in two variables f (x, y) = 0 with rational coefficients. The main invariant of this f
is its degree, a natural number. In terms of plane analytic geometry there is a curve
C f which is the locus of this equation in the x, y-plane, that is, C f is defined as the
set of (x, y) ∈ R2 satisfying f (x, y) = 0. To emphasize that the locus consists of
points with real coordinates (so is in R2), we denote this real locus by C f (R) and
consider C f (R) ⊂ R2.

Since some curves C f , like for example f (x, y) = x2 + y2 + 1, have an empty
real locus C f (R), it is always useful to work also with the complex locus C f (C)

contained in C2 even though it cannot be completely pictured geometrically. For
geometric considerations involving the curve, the complex locus C f (C) plays the
central role.

For arithmetic the locus of special interest is the set C f (Q) of rational points
(x, y) ∈ Q2 satisfying f (x, y) = 0, that is, points whose coordinates are rational
numbers. The fundamental problem of this book is the description of this set C f (Q).
An elementary formulation of this problem is the question whether or not C f (Q) is
finite or even empty.

This problem is attacked by a combination of geometric and arithmetic argu-
ments using the inclusions C f (Q) ⊂ C f (R) ⊂ C f (C). A locus C f (Q) can be
compared with another locus Cg(Q), which is better understood, as we illustrate for
lines where deg( f ) = 1 and conics where deg( f ) = 2. In the case of cubic curves
we introduce an internal operation.

In terms of the real locus, curves of degree 1, degree 2, and degree 3 can be
pictured respectively as follows.
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degree 1 degree 2 degree 3

or

§1. Rational Lines in the Projective Plane
Plane curves C f can be defined for any nonconstant complex polynomial with com-
plex coefficients f (x, y) ∈ C[x, y] by the equation f (x, y) = 0. For a nonzero con-
stant k the equations f (x, y) = 0 and k f (x, y) = 0 have the same solutions and de-
fine the same plane curve C f = Ck f . When f has complex coefficients, there is only
a complex locus defined. If f has real coefficients or if f differs from a real poly-
nomial by a nonzero constant, then there is also a real locus with C f (R) ⊂ C f (C).
Such curves are called real curves.

(1.1) Definition. A rational plane curve or a curve defined over Q is one of the form
C f where f (x, y) is a polyomial with rational coefficients.

This is an arithmetic definition of rational curve, and it should not be confused
with the geometric definition of rational curve or variety. We will not use the geo-
metric concept.

In the case of a rational plane curve C f we have rational, real, and complex points
C f (Q) ⊂ C f (R) ⊂ C f (C) or loci.

A polynomial of degree 1 has the form f (x, y) = a + bx + cy. We assume the
coefficients are rational numbers and begin by describing the rational line C f (Q).
For c nonzero we can set up a bijective correspondence between rational points on
the line C f and on the x-axis using intersections with vertical lines.

The rational point (x, 0) on the x-axis corresponds to the rational point

(x,−(1/c)(a + bx))

on C f . When b is nonzero, the points on the rational line C f (Q) can be put in
bijective correspondence with the rational points on the y-axis using intersections
with horizontal lines. Observe that the vertical or horizontal lines relating rational
points are themselves rational lines.
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Instead of using parallel lines to relate points on two lines L = C f and L ′ = C f ′ ,
we can use a point P0 = (x0, y0) not on either L or L ′ and relate points using the
family of all lines through P0. The pair P on L and P ′ on L ′ correspond when P ,
P ′, and P0 are all on a line.

If L and L ′ are rational lines, and if P0 is a rational point, then for two corresponding
points P on L and P ′ on L ′ the point P is rational if and only if P ′ is rational, and
this defines a bijection between C f (Q) and C f ′(Q).

Observe that there are special cases of lines through P0, i.e., those parallel to L
or L ′, which as matters stand do not give a corresponding pair of points between L
and L ′. This is related to the fact that the two types of correspondence with parallel
lines and with lines through a point are really the same when viewed in terms of the
projective plane, for parallel lines intersect at a point on the “line at infinity.” As we
see in the next paragraphs, the projective plane is the ordinary Cartesian or affine
plane together with an additional line called the line at infinity.

(1.2) Definition. The projective plane P2 is the set of all triples w : x : y, where
w, x , and y are not all zero and the points w : x : y and w′ : x ′ : y′ are considered
equal provided there is a nonzero constant k with

w′ = kw, x ′ = kx, y′ = ky.

As with the affine plane and plane curves we have three basic cases

P2(Q) ⊂ P2(R) ⊂ P2(C)

consisting of triples proportional to w : x : y, where w, x, y ∈ Q for P2(Q), where
w, x, y ∈ R for P2(R), and where w, x, y ∈ C for P2(C).

Note w : x : y ∈ P2(C) is also in P2(Q) if and only if w, x, y ∈ C can be
rescaled to be elements of Q.

(1.3) Remarks. A line C f in P2 is the locus of all w : x : y satisfying the equation
F(w, x, y) = aw + bx + cy = 0. The line at infinity L∞ is given by the equation
w = 0. A point in P2 − L∞ has the form 1 : x : y after multiplying with the
factor w−1. The point 1 : x : y in the projective plane corresponds to (x, y) in the
usual Cartesian plane. For a line L given by aw + bx + cy = 0 and L ′ given by
a′w + b′x + c′y = 0 we have L = L ′ if and only if a : b : c = a′ : b′ : c′ in the
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projective plane. In particular the points a : b : c in the projective plane can be used
to parametrize the lines in the projective plane.

From the theory of elimination of variables in beginning algebra we have the
following geometric assertions of projective geometry whose verification is left to
the reader.

(1.4) Assertion. Two distinct points P and P ′ in P2(C) lie on a unique line L in
the projective plane, and, further, if P and P ′ are rational points, then the line L
is rational. Two distinct lines L and L ′ in P2(C) intersect at a unique point P , and
further, if L and L ′ are rational lines, then the intersection point P is rational.

The projective line L with equation L : aw + bx + cy = 0 determines the line
a + bx + cy = 0 in the Cartesian plane. Two projective lines L : aw+ bx + cy = 0
and L ′ : a′w + b′x + c′y = 0 intersect on the line at infinity w = 0 if and only
if b : c = b′ : c′, that is, the pairs (b, c) and (b′, c′) are proportional. Hence the
corresponding lines in the x, y-plane given by

a + bx + cy = 0 and a′ + b′x + c′y = 0

have the same slope or are parallel exactly when the projective lines intersect at
infinity. Now the reader is invited to reconsider the correspondence between rational
points on two rational lines L and L ′ which arises by intersecting L and L ′ with all
rational lines through a fixed point P0 not on either L or L ′.

To define more general plane curves in projective space, we use nonzero homo-
geneous polynomials F(w, x, y) ∈ C[w, x, y]. Then we have the relation

F(qw, qx, qy) = qd F(w, x, y),

where q ∈ C and d is the degree of the homogenous polynomial F(w, x, y). The
locus CF is the set of all w : x : y in the projective plane such that F(w, x, y) = 0.
The homogeneity of F(w, x, y) is needed for F(w, x, y) = 0 to be independent
of the scale for w : x : y ∈ P2. Again the complex points of CF are denoted by
CF (C) ⊂ P2(C), and, moreover, CF (C) = CF ′(C) if and only if F(w, x, y) and
F ′(w, x, y) are proportional with a nonzero complex number. This assertion is not
completely evident and is taken up again in Chapter 2.

(1.5) Definition. A rational (resp. real) plane curve in P2 is one of the form CF

where F(w, x, y) has rational (resp. real) coefficients.
As in the x, y-plane for a rational plane curve CF , we have rational, real, and

complex points CF (Q) ⊂ CF (R) ⊂ CF (C).

(1.6) Remark. The above definition of a rational plane curve is an arithmetic notion,
and it means the curve can be defined over Q. There is a geometric concept of rational
curve (genus = 0) which should not be confused with (1.5).

§2. Rational Points on Conics
Now we study rational points on rational plane curves of degree 2 which in x , y-
coordinates are given by
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0 = f (x, y) = a + bx + cy + dx2 + exy + f y2

and in homogeneous form for the projective plane are given by

0 = F(w, x, y) = aw2 + bwx + cwy + dx2 + exy + f y2.

Observe that the two polynomials are related by f (x, y) = F(1, x, y) and F(w, x, y)
= w2 f (x/w, y/w). More generally, if f (x, y) has degree d, then F(w, x, y) =
wd f (x/w, y/w) is the corresponding homogenous polynomial, and the curve C f in
x, y-space is the curve CF minus the points on the line at infinity. We will frequently
pass between the projective and affine descriptions of conics and plane curves.

Returning to the conic defined by a polynomial f of degree 2, we begin by ex-
cluding the case where f factors as a product of two linear polynomials, i.e., C f is
the union of two lines or a single double line. These are exactly the singular conics,
and we return later to the general concept of singularity on a curve. One example of
such a conic is xy = 0, the locus for the x and y axis.

(2.1) Remark. Let C = C f be a nonsingular rational conic. There are two questions
related to the determination of the rational points on C :

(1) Is there a rational point P0 on C at all? If not, then C f (Q) is the empty set!
(2) Given a rational point P0 on C , determine all other rational points P on C in

terms of P0.

The second problem has a particularly simple elegant solution in terms of the
ideas introduced in the previous section. To carry out this solution, we need the fol-
lowing intersection result.

(2.2) Remark. If one of the two intersection points of a rational conic with a rational
line is a rational point, then the other intersection point is rational.

To see this, we use the equation aw + bx + cy = 0 of the line to eliminate one
variable in the second-order equation F(w, x, y) = 0 of the conic. For intersections
off the line at infinity, given by w = 0, one is left with a quadratic equation in the
x coordinate or in the y coordinate of the intersection points. The equation of the
line comes in again here to recover the other coordinate. Thus the intersection points
will be rational if and only if the roots of the quadratic equation are rational. In
general they are conjugate quadratic irrationalities for rational lines and conics, and
an intersection point is rational if and only if its x coordinate is a rational number.
Thus (2.2) reduces to the algebraic statement: if a quadratic polynomial with rational
coefficients has one rational root, then the other root is rational.

Let C be a rational conic with a rational point O on it. Choose a rational line L
not containing O , and project the conic C onto the line L from this point O .

For every point Q on the line L by joining it to O one gets a point P on the
conic C , and in the other direction, a line meets the conic C in two points, so to
every point P on the conic C there corresponds a point Q on the line L . This sets up
a correspondence between points on the conic and points on the line L . Since O is
assumed to be rational, we see from (2.2) that the point P is rational if and only if
the point Q is rational.



6 Introduction to Rational Points on Plane Curves

(2.3) Assertion. Assume that L intersects the tangent line T to C at O at a point
R. Then the rational points on the conic C different from the rational point O are
in one-to-one correspondence with the rational points on the line L different from
R. We complete the correspondence between C(Q) and L(Q) by letting O on C
correspond to R on L .

Now we return to the first question of whether there is a rational point at all on a
rational conic. For example, clearly the circles x2 + y2 = 1 and x2 + y2 = 2 have
rational points on them. On the other hand, x2 + y2 = 3 has no rational point; that
is, it is impossible for the sum of the squares of two rational numbers to equal three.

To see that there are no rational points on x2 + y2 = 3, we can introduce ho-
mogeneous coordinates w : x : y and clear denominators of the rational numbers x
and y to look for integers satisfying x2 + y2 = 3w2, where x, y, and w have no
common factor. In this case 3 does not divide either x or y. For if 3|x , then 3|y2, and
hence 3|y. From this it would follow that 9 divides x2 + y2 = 3w2. This would mean
that 3|w2 and thus 3|w which contradicts the fact that x , y, and w have no common
factor. This means that x, y ≡ ±1 (mod 3). This implies that x2 + y2 ≡ 1 + 1 = 2
(mod 3), so that the sum x2 + y2 cannot be divisible by 3. We conclude that
x2 + y2 = 3w2 has no solutions. Hence there are no two rational numbers whose
squares add to 3.

The argument given for x2 + y2 = 3 gives an indication of the general method
which can also be applied directly to show that there are no rational points on the
circle x2 + y2 = n for any n of the form n = 4k + 3. The reader is invited to carry
out the argument.

More generally there is a test by which, in a finite numbers of steps, one can
determine whether or not a given rational conic has a rational point. It consists in
seeing whether a certain congruence can be satisfied, and the theorem goes back to
Legendre.

(2.4) Legendre’s Theorem. For a conic ax2 + by2 = w2 there exists a certain
number m such that ax2 + by2 = w2 has an integral solution if and only if the
congruence

ax2 + by2 ≡ w2 (mod m)

has a solution in the integers modulo m.
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There is a more elegant and general way of stating the theorem which is due to
Hasse in its final form and uses p-adic numbers.

(2.5) Hasse–Minkowski Theorem. A homogeneous quadratic equation in several
variables is solvable by rational numbers, not all zero, if and only if it is solvable
in the p-adic numbers for each prime p including the infinite prime. The p-adic
numbers at the infinite prime are the real numbers.

From this result the theorem of Legendre about the congruence follows in a very
elementary way. The p-adic theorem is the better statement, and for the interested
reader a proof can be found in Chapter 4 of J.-P. Serre, Course in Arithmetic, or
in Appendix 3 of Milnor and Husemöller, Symmetric Bilinear Forms (both from
Springer-Verlag).

§3. Pythagoras, Diophantus, and Fermat
The simple conic with equation x2 + y2 = 1 or x2 + y2 = w2 has a long history
stretching back to Pythagoras in the sixth century B.C. It started with the relation
between the lengths of the three sides of a right triangle

The relation c2 = a2 + b2 is attributed to Pythagoras, but it seems to have been
known in Babylon at the time of Hammurabi and to the Egyptians, besides to the
members of Pythagoras’ school in Cortona in southern Italy.

Triples of whole numbers (a, b, c) satisfying c2 = a2+b2 are called Pythagorean
triples. Some of the first examples known from the time of Pythagoras were (3, 4, 5),
and (5, 12, 13), and (9, 40, 41). Of course, if (a, b, c) is a Pythagorean triple, then
so is (ka, kb, kc) for any whole number k. Thus it suffices to determine primitive
Pythagorean triples where the greatest common divisor of a, b, and c is 1. The above
examples are primitive. The determination of all primitive Pythagorean triples goes
back to Diophantus of Alexandria, about 250 A.D.

(3.1) Theorem. Let m and n be two relatively prime natural numbers such that n−m
is positive and odd. Then (n2−m2, 2mn, n2+m2) is a primitive Pythagorean triple,
and each primitive Pythagorean triple arises in this way for some m, n.

This theorem follows from the considerations of the previous section where a
conic was projected onto a line in (2.3). Consider the conic x2 + y2 = 1. Project
from the point (−1, 0) the points on this circle onto the y-axis. The line Lt through
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(−1, 0) and (0, t) on the y-axis has equation y = t (x + 1). If the line Lt intersects
the circle x2 + y2 = 1 at the points (−1, 0) and (x, y), then we have

x = 1 − t2

1 + t2
and y = 2t

1 + t2
.

Observe that t is rational if and only if (x, y) is a rational point on the circle. The
value infinity corresponds to the base of the projection (−1, 0).

In order to prove the theorem of Diophantus, we consider for any primitive
Pythagorean triple (a, b, c) the number t = m/n, reduced to lowest terms, giving
the point on the y-axis corresponding to the rational point (a/c, b/c) on the circle
x2 + y2 = 1. The above formulas yield the relations

a = n2 − m2, b = 2mn, c = n2 + m2.

The first assertion of the theorem follows from the computation(
n2 − m2

)2 + (2mn)2 =
(

n2 + m2
)2
.

The above projection of the circle on the y-axis is also related to the following
trigonometric identities, left to the reader as an exercise,

tan

(
θ

2

)
= sin θ

1 + cos θ
, cos θ = 1 − tan2

(
θ
2

)
1 + tan2

(
θ
2

) , sin θ = 2 tan
(
θ
2

)
1 + tan2

(
θ
2

) .
If
∫

R(sin θ, cos θ, tan θ, cot θ, sec θ, csc θ) dθ is an integral whose integrand is a ra-
tional function R of the six trigonometric functions, then it transforms into an integral
of the form

∫
S(t) dt , where S(t) is a rational function of t under the substitution

t = tan(θ/2). These classical substitutions of calculus come from the previous cor-
respondence between points on the y-axis and on the unit circle x2 + y2 = 1.

There is a natural generalization of the unit circle.

(3.2) Definition. The Fermat curve Fn of order n is given by the equation in affine
x , y-coordinates
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xn + yn = 1,

or in projective coordinates by wn = xn + yn .

While F2 has infinitely many rational points on it as given above, Fermat, in
1621, conjectured that the only rational points on Fn for 3 ≤ n were the obvious
ones. This is called Fermat’s last theorem.

(3.3) Fermat’s Last Theorem. For 3 ≤ n, the only rational points on Fn lie on the
x-axis and y-axis.

Fermat stated the theorem in the following form:

Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-
quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in
duas ejusdem nominis fas est dividere; cujus rei demonstrationem mirabilem
sane detexi. Hanc marginis exiguitas non caperet.

It is the last comment that has puzzled people for a long time. Proofs were given
for special values of n by many mathematicians: For n = 4 by Fermat using (3.1), for
n = 3 by Euler in 1770, for n = 5 by Legendre in 1825, and for n = 7 by G. Lamé
in 1839. The conjecture of Fermat, that is, Fermat’s last theorem, had been checked
for all n up to a very large six-digit number, and Kummer proved it for all n a regular
prime. Only in 1983 as a solution to the more general Mordell conjecture was given
by Gerd Faltings, did we know that Fn(Q) has at most finitely many points. We will
return to the Mordell conjecture in §6. Finally in 1995 through the effort of A. Wiles
and others can we say Fermat’s Last Theorem is established, see Chapter 18.

Again we return to a problem related to the unit circle. Recently J. Tunnell has
considered the problem of the existence of Pythagorean triples (a, b, c) of positive
rational numbers where the area A = (1/2)ab of the right triangle is given.

For example, for (3, 4, 5) the area is 6 and for (3/2, 20/3, 41/6) the area is 5. It
can be shown that there are no right triangle with rational sides and area 1, 2, 3, or 4.
Thus the problem is not as elementary as it would appear at first glance. We will see
that it reduces to the question of rational points on certain cubic curves.

Observe that if A is the area of the right rational triangle with sides (a, b, c),
then m2 A is the area of the rational right triangle (ma,mb,mc). Hence the question
reduces to the case of right rational triangles with square-free integer area A. Further,
we can order the triple so that a < b < c.

(3.4) Proposition. For a square-free natural number A there is a bijective corre-
spondence between the following three sets:

(1) Triples of strictly positive rational numbers (a, b, c) with a2+b2 = c2, a < b <
c, and A = (1/2)ab.

(2) Rational numbers x such that x, x + A, and x − A are squares.
(3) Rational points (x, y) on the cubic curve y2 = x3 − A2x such that x is a square

of a rational number, the denominator of x is even, and y > 0.
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The sets (1) and (2) are related by observing that for x = c2/4, we have

[(a + b)/2]2 = x + A and [(a − b)/2]2 = x − A.

Hence x , x + A, and x − A are all squares. Conversely, for x as in (2) we define
c = 2

√
x and a and b with a < b by the requirement that [(a ± b)/2]2 = c2/4 ± A.

Then (a, b, c) is a Pythagorean triple with A = 1/2 ab.
The sets (2) and (3) are related by assuming first that x , x + A, and x − A are

squares. Then x = u2 and the product (x + A)(x − A) = x2 − A2 = u4 − A2 is a
square denoted v2. Hence (uv)2 = u6 − A2u2. Setting y = uv and using u2 = x , we
obtain y2 = x3 − A2x , i.e., (x, y) is a point on the cubic curve given by the equation
y2 = x3 − A2x . From x = c2/4 we see that x is a square with denominator divisible
by 2.

Conversely, if x = u2 = (c/2)2, i.e., x is a square with denominator divisible
by 2, and if x3 − A2x is a square y2, then v2 = (y/u)2 = y2/x = x2 − A2 =
(x + A)(x − A), and we have a Pythagorean triple v2 + A2 = x2. The denominators
of x2 and v2 are the same t4 and t is even by assumption. Thus the Pythagorean
triple of integers (t2v)2 + (t2 A)2 = (t2x)2 is primitive, and, hence, it is of the form
t2v = M2 − N 2, t2 A = 2M N , and t2x = M2 + N 2. By (3.1) this in turn yields a
Pythagorean triple (

2N

t

)2

+
(

2M

t

)2

= 4x = (2u)2

determining a right triangle of area 2M N/4t2 = t2 A/t2 = A. This establishes the
equivalence between the various sets and proves the proposition.

§4. Rational Cubics and Mordell’s Theorem
Cubics have come up in two places in the previous section. Firstly, there is the Fermat
cubic x3 + y3 = 1 which Euler showed had only two rational points, (1,0) and (0,1).
Secondly, there is the cubic y2 = x3 − A2x whose rational points tell us about the
existence of right rational triangles of area A. These are special cases of the general
cubic which has the following form in projective coordinates w : x : y:

0 = c1w
3 + c2x3 + c3 y3 + c4w

2x + c5wx2

+ c6x2 y + c7xy2 + c8w
2 y + c9wy2 + c10wxy.

The coefficients are determined only up to a nonzero constant multiple, and, hence,
the cubic is given by c1 : c2 : c3 : c4 : c5 : c6 : c7 : c8 : c9 : c10, a point in a nine-
dimensional projective space. This line of ideas is followed further in Chapter 2.

As in the case of conics, our main interest is to describe the rational points on a
rational cuic relative to a given rational point O on the cubic. Again we use a geomet-
ric principle concerning the intersection of a line and a cubic. The difference in this
case is that we do not compare the cubic with another curve as we did for the conic
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with a line, but, instead, we move between rational points within the cubic to give
the cubic an algebraic structure. This is called the chord-tangent law of composition.

The intersection result needed for a line and a cubic, which is related to (2.2), is
the following.

(4.1) Remark. If two of the three intersection points of a rational cubic with a ra-
tional line are rational points, then the third point is rational.

To see this, we use the equation aw + bx + cy = 0 of the line to eliminate one
variable in the third-order equation F(w, x, y) = 0 of the cubic. For intersections
off the line at infinity, given by w = 0, one comes up with a cubic equation in the
x-coordinate or in the y-coordinate of the intersection points. Thus the intersection
points will be rational if and only if the roots of the cubic equation are rational.
Thus (4.1) reduces to the algebraic statement: if a cubic polynomial with rational
coefficients has two rational roots, then the third root is rational.

(4.2) Definition. An irreducible cubic is one which cannot be factored over the com-
plex numbers. A point O on a irreducible cubic C is called a singular point provided
each line through O intersects C at, at most, one other point. An irreducible cubic
without a singular point is called a nonsingular cubic curve, and one with singular
points is called a singular cubic.

The description of rational points on rational cubics, which are either reducible
or singular cubics follows very much the ideas used for conics. First we consider a
cubic with a singular rational point O . A typical example is given by y2 = x2(x +a)
and O = (0, 0), the origin.

Since O is a singular point, each rational line L through O cuts the cubic at a second
point P , and P is rational because its x-coordinate is the solution of a cubic equation
in x or in y with a double rational root correspondingto the x- or y-coordinate of O .
Thus, as with conics, we can project the singular cubic onto any fixed rational line
M in such a way that rational points on the cubic correspond to rational points on the
line M .

Next we consider a nonsingular cubic. A line meets these cubics in three points in
general, and if we have one rational point, one cannot project the cubic in the naïve
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manner onto a line to obtain a description of the rational points. Under projection
two points on the cubic correspond to one point on the line, and one rational point
on the line does not necessarily correspond to a pair of rational points on the cubic.

This leads to a new approach to the description of the rational points. Observe
that given two rational points on a rational nonsingular cubic C , we can construct a
third one. Namely, you draw the line connecting the two points P and Q. This is a
rational line since P and Q are rational, and this line meets the cubic at one more
point, denoted P Q, which must be rational by (4.1). The formation of P Q from P
and Q is some kind of law of composition for the rational points on a cubic.

Even if you have only one rational point P , you can still find another, in general,
because you draw a tangent to that point, i.e., you join the point to itself.

The tangent line meets the cubic twice at P , that is, it corresponds to a double
root in the equation of the x-coordinate. By the above argument the third intersection
point is rational. Thus, from a few rational points, one can, by forming compositions
successively, generate lots of other rational points. The function which associates to
a pair P and Q the point P Q is called the chord-tangent composition law.

(4.3) Primitive Form of Mordell’s Theorem. On a nonsingular rational cubic curve
there exists a finite set of rational points such that all rational points on the curve
are generated from these using iterates of the chord-tangent law of composition.

In other words there is a finite set X of rational points on the nonsingular rational
cubic such that every rational point P can be decomposed in the form,
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P = (. . . ((P1 P2) P3) . . . Pr ) ,

where P1, . . . , Pr are elements of the finite set X with repetitions allowed.
The chord-tangent law of composition is not a group law, because, for example,

there is no identity element, i.e., an element 1 with 1P = P = P1 for all P . However
it does satisfy a commutative law property P Q = Q P .

(4.4) Remark. There are infinitely many rational points on a rational line, and there
are either no rational points or infinitely many on a rational conic. The Mordell the-
orem points to a new phenomenon arising with curves in degree 3, namely the possi-
bility of the set of rational points being finite but nonempty. This would be the case
when only a finite number of chord-tangent compositions give all natural points. This
theorem introduces the whole idea of finiteness of number of rational points on a ra-
tional plane curve. This fits with the Fermat conjecture where xn + yn = 1 has two
points, (1,0) and (0,1), for n odd and four points, (1, 0), (−1, 0), (0, 1), and (0,−1),
for n even where n > 2.

Finally, there is the question of the existence of any rational points on a rational
cubic curve. For conics one could determine by Legendre’s theorem (2.4) in a finite
number of steps, whether a rational conic had a rational point on it or not. For cubics,
there is no known method for determining, in a finite number of steps, whether there
is a rational point. This very important question is still open, and it seems like a very
difficult problem. The idea of looking at the cubic equation over the p-adic numbers
for each prime p is not sufficient in this case, for, in the 1950s, Selmer gave the
example

3x3 + 4y3 + 5z3 = 0.

This is a cubic with a p-adic solution for each p, but with no nontrivial rational
solution. The proof that there is no rational solution is quite a feat.

For the early considerations in this book we will leave aside the problem of the
existence of a rational point and always assume that the cubics we consider have a
given rational point O . Later, in 8 on Galois cohomology, the question of the exis-
tence of a rational point on an auxiliary curve plays a role in estimating the number
of rational points on a given curve with a fixed rational point.

§5. The Group Law on Cubic Curves and Elliptic Curves
It was Jacobi [1835] in Du usu Theoriae Integralium Ellipticorum et Integralium
Abelianorum in Analysi Diophantea who first suggested the use of a group law on
a projective cubic curve. As we have already remarked the chord-tangent law of
composition is not a group law, but with a choice of a rational point O as zero element
and the chord-tangent composition P Q we can define the group law P + Q by the
relation

P + Q = O(P Q).
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This means that P + Q is the third intersection point on the line through O and P Q.

Clearly we have the commutative law P + Q = Q + P since P Q = Q P . From
the fact that O, P O , and P are the three intersection points of the cubic with the
line through O and P , we see that P = P O = P + O , and thus O is the zero
element. To find −P given P , we use the tangent line to the cubic at O and its third
intersection point O O . Then we join P to O(O O) = 0 with a line and −P is the
third intersection point.

Note that P + (−P) = O(O O) which is O in the above figure. The associative law
is more complicated and is taken up in 2. It results from intersection theory for plane
curves. Observe that if a line intersects the cubic in three rational points P, Q, and
R, then we have P + Q + R = O O . We will be primarily interested in cubics where
O = O O , i.e., the tangent to the cubic O has a triple intersection point. These points
are called flexes of the cubic and are considered in 2.

In the next definition we formulate the notion of an elliptic curve over any field
k, but, in keeping with the ideas of the introduction, we have in mind the rational
field Q, the real field R, or the complex field C.

(5.1) Definition. An elliptic curve E over a field k is a nonsingular cubic curve E
over k together with a given point O ∈ E(k). The group law on E(k) is defined as
above by O and the chord-tangent law of composition P Q with the relation P+Q =
O(P Q).
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In all cases the first question is what can be said about the group E(k) where
E is an elliptic curve over k. The first chapter of the book is devoted to looking at
examples of groups E(k). Now we can restate Mordell’s theorem in a more natural
form.

(5.2) Theorem (Mordell 1921). Let E be a rational elliptic curve. The group of
rational points E(Q) is a finitely generated abelian group.

A rational elliptic curve is an elliptic curve defined over the rational numbers.
The proof of this theorem will be given in Chapter 6 and is one of the main results
in this book. The result was, at least implicitly, conjectured by Poincaré [1901] in
Sur les Properiétes Arithemétiques des Courbes Algébriques, where he defined the
rank of an elliptic curve over the rationals as the rank of the abelian group E(Q).
He studied the properties of the rank in terms of which elements are of the form 3P .
Mordell in his proof looked at the rank in terms of which elements are of the form 2P
and then substracted off from a given element R elements of the form 2P to arrive at
a finite set of generators. This is a descent procedure which goes back to Fermat.

In order to perform calculations with specific elliptic curves, it is convenient to
put the cubic equation in a standard form. In 2 we show how, by changes of variable,
we can eliminate three terms, y3, xy2, and wx2, from the ten-term general cubic
equation given at the beginning of §4 and further normalize the coefficients of x3

and wy2 to be one. The resulting equation is called an equation in normal form (or
generalized Weierstrass equation)

wy2 + a1wxy + a3w
2 y = x3 + a2wx2 + a4w

2x + a6w
3.

It has only one point of intersection with the line at infinity namely (0,0,1). In the x ,
y-plane the equation takes the form

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6,

and it is this equation which is used for an elliptic curve throughout this book. If
x has degree 2 and y has degree 3 in the graded polynomial, then the equation has
weight 6 when ai has weight i . The point at infinity (0,0,1) is the zero of the group
and the lines through this zero in the x , y-plane are exactly the vertical lines. This
zero has the property that O O = O in terms of the chord-tangent composition so
that three points add to zero in the elliptic curve if and only if they lie on a line in
the plane of the cubic curve. In Chapter 1 we use this group law to calculate with an
extensive number of examples.

For an elliptic curve E over Q we can apply the structure theorem for finitely gen-
erated abelian groups to E(Q) to obtain a decomposition E(Q) = Zg ⊕ Tors E(Q),
where g is an integer called the rank of E and Tors E(Q) is a finite abelian group
consisting of all the elements of finite order in E(Q).

In 5 we study the torsion subgroup Tors E(Q) and see that it is effectively com-
putable. From elementary consideratons related to the implicit function theorem one
can see that the group of real points E(R) is either a circle group or the circle group
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direct sum with the group of order 2. Since Tors E(Q) embeds into E(R) as a finite
subgroup, we have from this that Tors E(Q) is either finite cyclic or the direct sum
of a finite cyclic group with the group of order 2.

The question of a uniform bound on Tors E(Q) as E varies over all curves E
defined over Q was studied from the point of view of modular curves by G. Shimura,
A. Ogg, and others, see Chapter 11, §3. In 1976 Barry Mazur proved the following
deep result which had been conjectured by Ogg.

(5.3) Theorem (Mazur). For an elliptic curve E defined over Q the group Tors E(Q)
of torsion points is isomorphic to either

Z/mZ for m = 1, 2, 3, . . . , 10, 12

or

Z/mZ ⊕ Z/2Z for m = 2, 4, 6, or 8.

In particular there is no element of order 11, 13, or 14 in the group of rational
points on an elliptic curve over Q. There are examples which show that all above
cases can occur.

This leaves the question of the rank g. There are examples of curves known with
rank up to at least 24. It is unknown whether or not the rank is bounded as E varies
over curves defined over Q. Such a bound is generally considered to be unlikely.
With our present understanding of elliptic curves the rank g is very mysterious and
difficult to calculate in a particular case. See also Rubin and Silverberg [2002].

(5.4) Remark. Let E be an elliptic curve defined over Q by the equation y2 =
x3 + ax + b. In fact, after a change of variable every elliptic curve over the rational
numbers has this form. There is no known effective way to determine the rank of
E from these two coefficients, a and b. In fact, there is no known effective way of
determining whether or not E(Q) is finite. Of course E(Q) is finite if and only if the
rank g = 0.

This is one of the basic problems in arithmetic algebraic geometry or diophantine
geometry. In 16 we will associate an L-function L E (s) to E . Conjecturally it has an
analytic continuation to the complex plane. This L-function was first introduced by
Hasse and was studied further by A. Weil.

(5.5) Birch, Swinnerton–Dyer Conjecture. The rank g of an elliptic curve E de-
fined over the rational numbers is equal to the order of the zero of L E (s) at s = 1.

Birch and Swinnerton–Dyer gathered a vast amount of supporting evidence for
this conjecture. Coates and Wiles in 1977 made the first real progress on this con-
jecture for curves with complex multiplication and recently R. Greenberg has shown
that the converse to some of their statements also holds. This subject has exploded
in the last twenty years and we will not treat any of these developments. The reader
should consult the book by K. Rubin, Euler Systems, Annals of Math Studies. The
final part of the book is devoted to an elementary elaboration of this conjecture.

A refinement of their conjecture explains the number lims→1(s − 1)−g L E (s).
The final part of the book is devoted to an elementary elaboration of this conjecture.
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§6. Rational Points on Rational Curves. Faltings and the Mordell
Conjecture

The cases of rational points on curves of degrees 1, 2, and 3 have been considered,
and we were led naturally into the study of elliptic curves by our simple geomet-
ric approach to these diophantine equations. Before going into elliptic curves, we
mention some things about curves of degree strictly greater than 3.

(6.1) Mordell Conjecture (For Plane Curves). Let C be a smooth rational plane
curve of degree strictly greater than 3. Then the set C(Q) of rational points on C is
finite.

This conjecture was proved by Faltings in 1983 and is a major achievement in
diophantine geometry to which many mathematicians have contributed. Some of the
ideas in the proof simplify known results for elliptic curves and we will come back
to the subject later.

For curves other than lines, conics, and cubics, it is often necessary to consider
models of the curve in higher dimensions and with more than one equation. This
leads one directly into algebraic geometry and general notions of algebraic varieties.
The topics in elliptic curves treated in detail in this book are exactly those which use
only a minimum of algebraic geometry, namely the theory of plane curves given in
2.

From a descriptive point of view the complex points X (C) of an algebraic curve
defined over the complex numbers C have a local structure since X (C) is homeomor-
phic to an open disc in the complex plane with change of variable given by analytic
functions. Topologically X (C) is a closed oriented surface with some number of g
holes.

(6.2) Definition. The invariant g is called the genus of the curve.

There are algebraic formulations of the notion of genus, and it is a well-defined
quantity associated with any algebraic curve. Lines and conics have genus g = 0,
singular cubics have genus g = 0, and nonsingular cubics have genus g = 1.

(6.3) Assertion. A nonsingular plane curve of degree d has genus

g = (d − 2)(d − 1)

2
.
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(6.4) Remark. The Mordell conjecture and Faltings’ proof of it are really for curves
of genus strictly greater than 1. The curve must be nonsingular but not necessarily a
plane curve.

Finally, a closely related subject is the study of integral points on rational curves.
In terms of an equation f (x, y) = 0 we can ask if there are finitely many (x, y)
with f (x, y) = 0 and x , y rational integers. With the solution of the Mordell conjec-
ture this problem has less interest, but historically it was Siegel who established the
finiteness result.

(6.5) Theorem of Siegel. The number of integral points on a nonsingular curve of
genus strictly greater than 0 and defined over the rational numbers is finite.

In particular this applies to nonsingular cubic curves, but not to the singular cubic
y2 = x3 which has infinitely many integral points of the form (n2, n3), where n is
any integer.

(6.6) Remark. For certain explicit elliptic curves there are bounds on the size of the
integral points. For exmaple, for y2 = x3 − k one has:

max(|x |, |y|) ≤ exp
(

27·24
k109·23

)
.

(6.7) Example. The only integral solutions of y2 + k = x3 for k = 2 occur when
y = ±5 and for k = 4 occur when y = ±2,±11. This question goes back to
Diophantus and was taken up by Bachet in 1621. For the case k = 2 we will give an
argument based on properties of the ring Z[

√−2]. We factor(
y + √−2

) (
y − √−2

)
= x3.

For the equation to hold mod 4, x and y must both be odd. If a prime p divides x , then
p3 divides (y +√−2)(y −√−2). If p divides both factors, then it would divide the
sum 2y, and this is impossible since y2 + 2 = x3. Since this holds for each p, both
factors y+√−2 and y−√−2 must be perfect cubes. Thus y+√−2 = (a+b

√−2)3,
from which we deduce that

y = a3 − 6ab2 = a
(

a2 − 6b2
)
, 1 = b

(
3a2 − 2b2

)
.

The last equation gives b = +1 and a = ±1, and hence y = ±(−5) as was asserted.
We have used that p has to be a prime of the unique factorization domain Z[

√−2].

Finally we return to Remark (1.6) concerning the definition of a rational curve. A
rational curve in the sense of geometry is a curve of genus 0. This definition makes
sense over any field and has nothing to do with the rational numbers. The concept of
genus is also extended to singular curves where it is called the arithmetic genus. The
singular cubic y2 = x3 is a curve of arithmetic genus = 0.
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§7. Real and Complex Points on Elliptic Curves
Let E be an elliptic curve over the real or complex numbers. The structure of the
groups E(R) and E(C) as continuous groups or Lie groups is completely understood
with a little background on the subject of Lie groups. Using E for either the real or
the complex points of E , we point out several properties of these groups which allow
us to determine their structure from a general result.

(1) There is a topology (or notion of convergence) on E such that E is locally Eu-
clidean of dimension 1 in the real case and dimension 2 in the complex case.
This locally Euclidean property comes from the implicit function theorem since
E is nonsingular.

(2) The group operations are continuous, in fact, they are algebraic.
(3) The group E is a closed subspace of the projective plane and, since the projective

plane is compact, the group E is compact (every sequence has a convergent
subsequence).

Lie groups, which can be taken as locally Euclidean groups, have the following
structure under suitable assumptions.

(7.1) Assertion. An abelian, compact, and connected Lie group is isomorphic to a
product of circles. The number of factors is equal to the dimension of the locally
Euclidean space.

To check whether or not this applies to E , we graph E to check its connectivity.
Consider the elliptic curve given by the equation in normal form y2 + a1xy + a3 y =
f (x), where f (x) = x3 + · · · is a cubic poynomial. Completing the square(

y + a1x + a3

2

)2

= f ∗(x),

where f ∗(x) = x3+· · · is also a cubic polynomial. Hence the graph of this equation
for real coefficients is symmetric around the line 2y + a1x + a3 = 0, so that is has
one of the following two forms:

In the case of one real root, the group E(R) has one connected component, and in
the case of three real roots, the group E(R) has two connected components. From
this observation and (7.1), we deduce the following result.
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(7.2) Proposition. Let E be an elliptic curve defined by an equation in the form
(y + ax + b)2 = g(x), where g(x) is a cubic polynomial over the real numbers.
If g(x) has only one real root, then E(R) is isomorphic as a Lie group to a circle,
and if g(x) has three real roots, then E(R) is isomorphic to a circle direct sum with
Z/2Z.

Over the complex numbers every elliptic curve is connected so that the corre-
sponding situation is easier to describe.

(7.3) Proposition. Let E be an elliptic curve defined over the complex numbers.
Then E(C) is isomorphic as a Lie group to the product of two circles, hence, it is a
torus.

In the chapter on elliptic functions we will give a proof of this result using
complex analysis and an explicit mapping using elliptic functions. Moreover, E(C)
will appear as C/L , where L is a lattice in the plane having a basis of two ele-
ments. In other words E(C) is isomorphic to R/Z × R/Z, as asserted above, and
L = Zω1 + Zω2 with Im (ω2/ω1) �= 0.

(7.4) Remark. From this we see that the kernel of multiplication by n is isomor-
phic to Z/nZ × Z/nZ. By contrast the finite subgroups of E(R) are of the form a
cyclic group or a cyclic group direct sum with the group of order 2, i.e., of the form
Z/nZ or Z/nZ × Z/2Z up to isomorphism. Since for an elliptic curve E over the
rational numbers E(Q) ⊂ E(R), the same holds for finite subgroups of E(Q), and
in particular for the torsion subgroup Tors E(Q) of E(Q) as remarked in (5.3).

Finally there is the question of why projective space over the real numbers or over
the complex numbers is compact. This follows because they are separated quotient
spaces of spheres.

(7.5) Remark. Each point in the real or complex projective plane has homogeneous
coordinates w : x : y where |w|2 + |x |2 + |y|2 = 1. The real projective plane P2(R)

is a quotient of the 2-sphere S2 in R3 where (w, x, y) and (w′, x ′, y′) give the same
point in P2(R) if and only if w′ = uw, x ′ = ux , and y′ = uy, where u = ±1.
The complex projective plane P2(C) is a quotient of the 5-sphere S5 in C3 where
(w, x, y) and (w′, x ′, y′) give the same point in P2(C) if and only if w′ = uw, x ′ =
ux , and y′ = uy, where |u| = 1.

§8. The Elliptic Curve Group Law on the Intersection of Two
Quadrics in Projective Three Space

The content of this section is only sketched and not used in the rest of the book.
Supplying the details is a serious exercise.

In Sections 4 and 5 we introduced elliptic curves as certain cubic curves in the
projective plane, and using the intersection properties of lines and cubics, we defined
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T(O)

O

A

B = −A π

a group law. The zero point corresponded to a flex point of which the tangent line
has a triple intersection point.

There is another classical picture of an elliptic curve as the smooth intersection
of two quadric hypersurfaces in projective three space. The geometric construction
of the group law, which was explained to me by Gizatulin, is outlined here.

(8.1) Zero Point and Negative of an Element. The intersection curve � of the two
quadric hypersurfaces H ′ and H ′′ can be shown to have a hyperflex point, denoted
0 ∈ �. If T (0) denotes the tangent line to � at 0, then every plane π containing T (0)
intersects � in just two other points, i.e., π ∩ � = {0, A, B}. Or in terms of cycles
we have π ∩ � = 2.0 + A + B. With this choice of zero we will make a group law
with B = −A.

(8.2) Sum of Three Points Equal to Zero. Given 0 ∈ � = H ′ ∩ H ′′. We define the
group law by starting with P, Q ∈ �, forming the plane π(0, P, Q) containing the
three points 0, P, Q. Then there are four points of intersection π(0, P, Q) ∩ � =
{0, P, Q, R}. Since 0 is a hyperflex point, we have for cycles 0 + P + Q + R = 4.0
so that P + Q + R = 3.0. If π(P) is the plane through P containig T (0), then the
group law is given by the following cycle intersections:

π(0, P, Q) ∩ � = 0 + P + Q + (−(P + Q))

and

π(P) ∩ � = 2.0 + P + (−P).

These constructions should be compared with the intersection geometry of a plane
cubic curve C where

L(P, Q) ∩ C = P + Q + (−(P + Q)) and L(P) = P + (−P)+ 0
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T(O)

O

P R = −P − Q

B Q

π

for the line L(P, Q) through P, Q ∈ C and the tangent line L(P) to C through
P ∈ C .

We return in 10(3.5) to elliptic curves as intersections of two quadrics in projec-
tive three space, and as quartic curves in 4(3.2).



1

Elementary Properties of the
Chord-Tangent Group Law on a Cubic Curve

In this chapter we illustrate how, by using simple analytic geometry, a large number
of numerical calculations are possible with the group law on a cubic curve. The cubic
curves in x and y will be in normal form, that is, without x2 y, xy2, or y3 terms. In
this form the entire curve lies in the affine x, y-plane with the exception of 0:0:1
which is to be zero in the group law. The lines through O are exactly the vertical
lines in the x, y-plane, and all other lines used are of the form y = λx + β. We use
the definition of P + Q as given in §5 of the Introduction.

We will postpone several questions related to the group law until Chapter 3 where
they are dealt with using results from Chapter 2 on the general theory of algebraic
curves. These include the associativity of the group law and a detailed discriminant
criterion for a curve to be nonsingular. The procedure for transforming a general
cubic into one in normal form will be worked out there too.

In Theorem (4.1) of this chapter there is a condition for an element (x ′, y′) on an
elliptic curve E(k) to be of the form 2(x, y) = (x ′, y′) in the group E(k). This plays
an important role in the proof of the Mordell theorem in Chapter 6.

In this chapter k will always denote a general field. For the beginning reader this
can for most considerations be viewed as the rational numbers Q.

§1. Chord-Tangent Computational Methods on a
Normal Cubic Curve

A cubic equation in normal form, or generalized Weierstrass form, is an expression

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6,

where the coefficients ai are in the field k. Since there is no term of the form y3 in
the equation, a vertical line x = x0 intersects the locus of the normal cubic at two
points (x0, y1) and (x0, y2), where y1 and y2 are the roots of the quadratic equation
y2 + (a1x0 +a3)y − (x3

0 +a2x2
0 +a4x0 +a6) = 0. In the completed plane, that is, the

projective plane, we see that the cubic in normal form has one additional solution at
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infinity which we call O , and this O is the third point of intersection of the vertical
line with the locus of the cubic equation in normal form in the projective plane.

(1.1) Definition. The elliptic curve E corresponding to the cubic equation in normal
form is the locus of all solutions (x, y) ∈ k2 of the equation

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6

together with the point O which is on every vertical line.

When we wish to emphasize that we are looking at solutions (x, y) with x and y
in k, we write E(k) for E . Usually we use the term elliptic curve only for nonsingular
cubics. We return to criteria for nonsingularity in the next chapter. The choice of O
on cubic makes the nonsingular curve into an elliptic curve.

In the context of the normal form of a cubic equation for an elliptic curve E(k)
we give rules for the group law. Then O is the zero element in E(k) and addition is
carried out as in §5 of the Introduction.

(1.2) Assertion. Let E be an elliptic curve defined by an equation in normal form.
If P = (x, y) is a point on E(k), then the negative −P is (x, y∗), where y + y∗ =
−a1x − a3 or, in other words, −(x, y) = (x,−y − a1x − a3).

Observe that O , (x, y), and (x, y∗) are the points of intersection of the vertical
line through (x, 0) with E(k). As seen above, y and y∗ are two roots of a quadratic
equation over k where the sum of the roots is −(a1x + a3) in k and so, if y is in k,
then y∗ is also in k.

The operation P → −P defines a map E(k) → E(k) which is an involution of
the curve onto itself, i.e., −(−P) = P . Also it shows that the curve has a vertical
reflection symmetry with respect to the line

y = −a1x + a3

2

in the plane. For this we require 2 �= 0 in k, that is, the characteristic of k �= 2.

(1.3) Example. For E given by the equation

y2 + y − xy = x3

we have −(x, y) = (x,−y − 1 + x) and the curve is vertically symmetric about the
line y = (1/2)x − 1/2 .

In the diagram we have included for future reference two tangent lines to the
curve T at (1, 1) and T ′ at (1,−1). The slopes of tangent lines are computed by
implicit differentiation of the equation of the curve

(2y + 1 − x)y′ = 3x2 + y.
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(1.4) Addition of Two Points. Let E be an elliptic curve defined by the equation in
normal form

y2 + a1xy + a3 y = f (x) = x3 + a2x2 + a4x + a6.

In order to add two points P1 = (x1, y1) and P2 = (x2, y2) we first form the line
through P1 and P2 or the tangent line at P1 when P1 = P2. Consider the third point
of intersection denoted by P1 P2 = (x3, y3), so that

P1 + P2 = −P1 P2.

Case 1. If x1 �= x2 so that P1 �= P2, then the line through P1 and P2 has an
equation y = λx + β, where



26 1. Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve

λ = y1 − y2

x1 − x2
.

Case 2. If x1 = x2 but P1 �= P2, then the line through P1 and P2 is the vertical
line x = x1 and P2 = −P1 as in (1.2).

Case 3. If P1 = P2, then the tangent line to P1 has the equation y = λx + β,
where

λ = f ′(x1)− a1 y1

2y1 + a1x1 + a3

since (2y + a1x1 + a3)y′ = f ′(x) − a1 y after differentiating implicitly the normal
form of the cubic equation.

Now substituting y = λx + β into the normal form of the cubic equation, and
collecting all terms on one side, we have the following relations:

(λx + β)2 + a1x(λx + β)+ a3(λx + β) = x3 + a2x2 + a4x + a6

and

0 = x3 + (a2 − λ2 − λa1)x
2 + (a4 − 2λβ − a1β − λa3)x + (a6 − β2 − a3β).

The three roots of this cubic equation are x1, x2, and x3, the x-coordinates of the
three intersection points, either P1, P2, and P1 P2 in Case 1 or P1, P1, and P1 P1 in
Case 3. Since the sum of the roots is the negative of the coefficient of x2 in the cubic
equation for x , we have the following formula for x3:

x3 = λ2 + λa1 − a2 − x1 − x2 for Case 1, Case 2

= λ2 + λa1 − a2 − 2x1 for Case 3,

and the y-coordinate is given by the equation of the line

y3 = λx3 + β.
Finally,

(x1, y1)+ (x2, y2) = (x3,−y3 − a1x3 − a3) for Case 1, Case 2

and

2(x1, y1) = (x3,−y3 − a1x3 − a3) for Case 3.

(1.5) Example. Return to the elliptic curve E : y2 + y − xy = x3 of Example (1.3).
Denote by P the point (1, 1) on E , and observe that the tangent line T to P cuts
the cubic at (0,−1) = −(0, 0). Thus 2P = (0, 0) by the procedure in (1.4). Next
observe that y = x is the line through P = (1, 1) and 2P = (0, 0), and the third
point of intersection is (−1,−1) = −(−1,−1). Hence 3P = (−1,−1). Further



§1. Chord-Tangent Computational Methods on a Normal Cubic Curve 27

0 = 2(−1,−1) = 2 · 3P = 6P since the tangent at (−1,−1) is vertical, and we
deduce that P is a point of order 6. In particular

4P = −2P = −(0, 0) = (0,−1)

and

5P = −P = −(1, 1) = (1,−1).

Thus Pm = m P , and O together with the five points P , 2P , 3P , 4P , and 5P shown
on the cubic E form a cyclic subgroup of order 6 in E(Q) in (1.3).

If we study the question of when the product of three consecutive numbers y(y+
1) is the product of three consecutive numbers (x − 1)x(x + 1) = x3 − x , we are led
to the following example of an elliptic curve.

(1.6) Example. The elliptic curve E defined by the normal cubic equation y2 + y =
x3 − x has six obvious points on it (0, 0), (1, 0), (−1, 0), (0,−1), (1,−1), and
(−1,−1). If P = (0, 0), then these points are all in the subgroup generated by P as
with P = (1, 1) in (1.5), but in this case P generates an infinite cyclic group.

In general odd multiples of P are on the closed component of the curve which
contains P = (0, 0) and the even multiples of P are on the open component which
is closed up to a circle by adding O at infinity. We have the following values for a
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few multiples of P: 9P = (−20/72,−435/73), 16P = (a/652, b/653) for some
integers a and b, and 51P = (a′/N 2, b′/N 2), where the natural number N has 32
digits and a′, b′ are integers.

Exercises

1. Find 7P , −7P , 8P , −8P , 9P , −9P , 10P , and −10P on y2 + y = x3 − x in (1.6).
Using Mazur’s theorem in §5 of the Introduction, argue that P has infinite order where
P = (0, 0).

2. Show that P = (0, 2) is a point of order 3 on y2 = x3 + 4.
3. Show that P = (2, 4) is a point of order 4 on y2 = x3 + 4x .
4. Show that P = (2, 3) is a point of order 6 on y2 = x3 + 1.
5. Show that P = (−12, 108) is a point of order 5 on

y2 = x3 − 16 · 27x + 19 · 16 · 27.

6. Let E denote the elliptic curve defined by the cubic equation

y2 = x(x − 1)(x + 9).

Find a subgroup of order four in E(Q), show that (−1, 4) = P is on E(Q) and not in this
subgroup, and calculate n P for n between −7 and +7. Using Mazur’s theorem in §5 of
the Introduction, argue that P has infinte order.

Remark. The exercises will also illustrate results in Chapter 5.

§2. Illustrations of the Elliptic Curve Group Law
Before discussing some more examples, we make some remarks about special forms
of the normal form in which certain coefficients are zero. If 2 �= 0 in the field k, i.e.,
the characteristic of k is different from 2, then in the normal form

y2 + y(a1x + a3) = x3 + a2x2 + a4x + a6,

we can complete the square on the left-hand side

y2 + y(a1x + a3)+ (a1x + a3)
2

4
=
(

y + a1x + a3

2

)2

.

With a change of variable y to y − (a1x + a3)/2, we obtain the equivalent cubic
equation y2 = f (x), where f (x) is a cubic polynomial in x .

(2.1) Remark. If the equation for E is y2 = f (x), where f (x) is a cubic polyno-
mial, then the negative of an element is given by −(x, y) = (x,−y). Furthermore,
the cubic will be nonsingular if and only if f (x) has no repeated roots.

The reason that we might consider normal forms with terms a1xy and a3 y is that
the cubic might have a particularly simple form as in the case (1.3). These terms are
always necessary potentially for a theory in characteristic 2, e.g., over the field F2 of
two elements.
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(2.2) Remark. The point (0, 0) is on the curve with y2 = f (x) if and only if the
equation has the form y2 = x3 + ax2 + bx . If r is a root of f (x), then y2 =
f (x + r) has this form, and we will use the equation of the elliptic curve in this form
frequently. If 3 �= 0 in the field, i.e., the characteristic of k is different from 3, then in
the special normal form y2 = f (x) we can complete the cube in the right-hand side
and after translation of x by a constant we have the Weierstrass form of the cubic

y2 = x3 + ax + b.

Now we consider some examples of subgroups of points on E(Q) for elliptic
curves which arise frequently.

(2.3) Example. For the curve E defined by y2 + y = x3 − x2 we have four obvious
points, (1, 0), (0, 0), (0,−1) = −(0, 0) and (1,−1) = −(1, 0), on the curve. The
tangent line through (1, 0) intersects E at (0,−1) from which we deduce 2(1, 1) =
(0, 0) and thus also 2(1,−1) = (0,−1). The tangent line to (0, 0) intersects E at
(1, 0) from which we deduce 2(0, 0) = (1,−1).

From 2(1, 1) = (0, 0) and 2(0, 0) = (1,−1) = −(1, 1), we obtain 4(1, 1) =
(1,−1) = −(1, 1) or 5(1, 1) = O . Hence the set

{0, (1, 0), (0, 0), (0,−1), (1,−1)}
is a cyclic subgroup of E(Q) of order 5. In fact we will see later that E(Q) is exactly
this cyclic group of order 5.

The next example differs from the previous one by a single change in sign of the
coefficient of x2. The group of rational points is now infinite instead of finite as in
(2.3).

(2.4) Example. For the curve E defined by y2 + y = x3 + x2 we have four obvious
points (0, 0), (−1, 0) (0,−1) = −(0, 0) and (−1,−1) = −(−1, 0), on the curve.
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The point P = (0, 0) generates an infinite cyclic subgroup of E(Q). For example
one can calculate 2P = (−1,−1), −3P = (1, 1), 3P = (1,−2), 4P = (2, 3), and
5P = (−3/4, 1/8). This example is similar to that of (1.6).

The tangent line T at −2P goes through the cubic at 4P , the line L through 2P
and P goes through the cubic at −3P , and −5P is calculated either by L1 going
through P and 4P or by L2 going through 2P and 3P .

(2.5) Example. This example is related to the Fermat equation w3 = u3 + v3. It
is known that the only rational solutions of this equation are (u, v, w) = (0, 0, 0),
(1, 0, 1), (−1, 0,−1), (0, 1, 1), and (0,−1,−1). This cubic equation is not in normal
form, but under the transformation

x = 3w

u + v and y = 9

2

(
u − v
u + v

)
+ 1

2
,

we obtain the cubic curve E with equation in normal form

y2 − y = x3 − 7.
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The calculation is an exercise; it is helpful to note that y2 − y = z2 − 1/4 when
y = z + 1/2.

The transformation is not defined at the solution (0, 0, 0) of the Fermat equa-
tion, but the solutions (1, 0, 1) and (−1, 0,−1) map to (x, y) = (3, 5) on E(Q)
while (0, 1, 1) and (0,−1,−1) map to (x, y) = (3,−4) on E(Q). Thus E(Q) is
the cyclic group of three elements {0, (3, 5), (3,−4)}, for if E(Q) contained other
rational points (x, y) there would be corresponding (u, v, w) solutions to the Fermat
equation u3 + v3 = w3.

Now let us check the 3P = 0 for P = (3, 5) by calculating −2P from the
tangent line to E at P . From the derivative (2y − 1)y′ = 3x2 we calculate the slope
of the tangent line to E at (3, 5) to be 3 · 32/(2 · 5− 1) = 27/9 = 3. The tangent line
is y = 5 + 3(x − 3) = 3x − 4, and this line intersects the cubic y2 − y = x3 − 7 at
points whose x coordinates are roots of

x3 − 7 = (3x − 4)(3x − 5) = 9x2 − 27x + 20

or

0 = x3 − 9x2 + 27x − 27

= (x − 3)3.

Since the roots are the x-coordinates of the intersection of the tangent line to E at
(3, 5) with E at least two roots are equal to 3, and the third root, which is again 3,
is the x-coordinate of −2P . Hence we must have −2P = P , so that 3P = 0. The
graph of y2 − y = x3 − 7 has just two rational points (3, 5) and (3,−4).

(2.6) Example. The example is related to the fourth-power Fermat equation w4 =
u4 + v4. Again it is known that the only rational solutions of this equation are
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(u, v, w) = (0, 0, 0), (1, 0, 1), (−1, 0,−1), (0, 1, 1), and (0,−1,−1). This is not
even a cubic equation, but under the transformation

u2 = 2yw2

x2
and v = w

(
1 − 1

x

)
,

we obtain

w4 = 4w4 y2

x4
+ w4

(
1 − 1

x

)4

.

Dividing by w4 and multiplying by x4, we derive the cubic equation

y2 = x3 − 3

2
x2 + x − 1

4
.

The equation factors giving one point (1/2, 0) of order 2

y2 =
(

x − 1

2

)(
x2 − x + 1

2

)
.

Consider the lines y = λ(x−1/2) through (1/2, 0) and their other intersection points
with the cubic. They have x-coordinates satisfying

λ2
(

1 − 1

2

)
= x2 − x + 1

2

or equivalently

0 = x2 − (1 + λ2)x + 1

2
(1 + λ2).

The two other intersection points will coincide, that is, the line will be tangent to
curve if and only if

(1 + λ2)2 = 2(1 + λ2).

Since λ2 + 1 is nonzero, we can divide by it, and we obtain λ2 = 1 or λ = +1, −1.
Substituting back for

1. λ = 1, y = x − 1/2 so that 0 = x2 − 2x + 1 = (x − 1)2 and (1, 1/2) is a point
on the curve with 2(1, 1/2) = (1/2, 0), and

2. λ = −1, gives by the same argument (1,−1/2) with 2(1,−1/2) = (1/2, 0),
but this could have been deduced immediately from (1) by 2(1,−1/2) =
−2(1, 1/2) = −(1/2, 0) = (1/2, 0). It is an application of the group structure.

For this curve E with equation in normal form

y2 = x3 − 3

2
x2 + x − 1

4
,
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the group E(Q) is the cyclic group of four elements{
0,

(
1,

1

2

)
,

(
1

2
, 0

)
,

(
1,−1

2

)}
,

for if E(Q) contained other rational points (x, y) there would be corresponding
(u, v, w) solutions to the Fermat equation u4 + v4 = w4, see Exercise 2. This equa-
tion for the curve E takes a simplier form under the substitutions x/4 for x − 1/2
and y/8 for y. The new equations are( y

8

)2 = x

4

(
x2

16
+ 1

4

)
or

y2 = x3 + 4x .

This is the curve considered in Exercise 3 to §1 where the question was to show that a
certain point was of order 4; in fact, from the relation to the Fermat curve we deduce
that E(Q) is cyclic of order 4 for the curve defined by y2 = x3 + 4x .

Exercises

1. Find +6P , −6P , +7P , −7P , 8P , and −8P on y2+ y = x3+x2 in (2.4). Using Mazur’s
theorem in §5 of the Introduction, argue that P has infinite order.

2. In (2.5) and in (2.6) write u and v as functions of (w, x, y).
3. For u3 + v3 = c consider the change of variable

u + v = 12c

x
and u − v = y

3x
.

Show that

x = 12c

u + v and y = 36c
u − v
u + v ,

and that the curve is transformed into the cubic in normal form

y2 = x3 − 432c2.

Determine the group of rational points on this elliptic curve for c = 1, for c = 2.
4. Show that P = (3, 12) is a point of order 8 on

y2 = x3 − 14x2 + 81x .

5. Show that P = (1, 0) is a point of order 7 on

y2 + xy + y = x3 − x2 − 3x + 3.

6. Calculate all multiples n P of P = (3, 8) on

y2 = x3 − 43x + 166.

Find the order of (3, 8) and of (11, 32) on this curve.
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7. The Fermat curve u3 + v3 = 1 is mapped to y2 + y = x3 by the functions y = −u3

and x = −uv (or v = −x/u). Determine E(Q), where E is the elliptic curve defined by
y2 + y = x3.

8. Let E by the elliptic curve given in normal form by

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6.

A point P = (x, y) satisfies 2P = 0, or equivalently P = −P , if and only if x is a
solution of

0 = x3 +
(

a2 + a2
1
4

)
x2 +

(
a4 + a1a3

2

)
x +

(
a6 + a2

3
4

)

and y = −(a1x + a3)/2. Show that the subgroup of all P with 2P = 0 is isomorphic to
either 0, Z/2Z, or Z/2Z ⊕ Z/2Z.

§3. The Curves with Equations y2 = x3 + ax and y2 = x3 + a
We study two sets of curves each with a single nonzero parameter a. In order that the
curve be nonsingular, we need a �= 0 in both cases, otherwise the curve has a cusp at
the origin and is given by the equation y2 = x3. In Chapter 3 we will see that these
are exactly the two families of curves where each curve has more symmetries, or
automorphisms, than the obvious one (x, y) → −(x, y) = (x,−y). If ζ4 and ζ3 are
fourth and third roots of unity in k (unequal to −1 or +1), then (x, y) → (−x, ζ4 y)
is an automorphism of the curve defined by y2 = x3 + ax and (x, y) → (ζ3x, y)
is an automorphism of the curve defined by y2 = x3 + a. This topic is discussed in
detail in Chapters 3 and 4.

(3.1) Remark. If we substitute u2x for x and u3 y for y, we obtain u6 y2 = (u3 y)2 =
(u2x)3 + a(u2x) = u6(x3 + (a/u4)x) in the first equation. This means that we can
assume that a is a nonzero integer which is free of any fourth-power factor. In the
second equation we obtain u6 y2 = (u2 y)2 + a = u6(x3 + a/u6). This means that
we can assume that a is a nonzero integer which is free of any sixth-power factor.

Now we study points of finite order on the elliptic curves defined by y2 = x3+ax
and y2 = x3 + a. The significance of rational points on these curves in two special
cases of y2 = x3+4x and y2 = x3−432 was considered in its relation to the Fermat
curves u4 + v4 = w4 and u3 + v3 = w3, respectively, in the previous sections (2.6)
and (2.5) respectively.

(3.2) Theorem. Let E be the elliptic curve defined by the equation y2 = x3 + ax,
where a is a fourth-power free integer. The torsion subgroup of E(Q) is

Tors E(Q) =

⎧⎪⎨⎪⎩
Z/2Z ⊕ Z/2Z if −a is a square,

Z/4Z if a = 4,

Z/2Z if −a is not a square, or −4.
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Proof. In all cases (0, 0) is a point of order 2 because any point of order 2 has the
form (x, 0) where x is a root of the cubic equation 0 = x3 + ax . In particular, there
are three points of order 2 if and only if −a is a square.

Next consider the equation 2(x, y) = (0, 0) on E(Q). For such a point there
would be a line L: y = λx through (0, 0) tangent to E at (x, y). Thus

(λx)2 = x3 + ax or 0 = x(x2 − λ2x + a).

Since L is tangent to E at (x, y) the quadratic equation

0 = x2 − λ2x + a

would have a double root at R, and this condition is equivalent to the discriminant
being zero, or, 0 = λ4 −4a. Because a has no fourth-power factor, this has a rational
solution λ if and only if a = 4 and λ = +2 or −2. In this case the points (x, y)
satisfying 2(x, y) = 0 are (2, 4) and (2,−4). This discussion shows that the 2-
power torsion in E(Q) has the above form, and we are left to show that there is no
odd torsion.

Next we will show that there is no 3-torsion, that is, no points P = 0 on E(Q)
with 2P = −P . If there were such a point P , then the tamgent line y = λx + β to
E at P when substituted into

(λx + β)2 = x3 + ax

or

0 = x3 − λ2x2 + (a − 2βλ)x − β2

would be a perfect cube 0 = (x −r)3 with r the x-coordinate of P . This would mean
that 3r = λ2 and r3 = β2 given the relation β2 = λ6/27. Finally, the third relation
between coefficients 3r2 = a − 2βλ gives the following formula

3

(
λ4

9

)
= a − 2

(
λ4

3
√

3

)

which is impossible for a and λ rational numbers since
√

3 is irrational.
In this theorem and the next the nonexistence of p torsion for p > 3 will be taken

up later.

(3.3) Theorem. Let E be the elliptic curve defined by the equation y2 = x3 + a,
where a is a sixth-power free integer. The torsion subgroup of E(Q) is

Tors E(Q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/6Z if a = 1,

Z/3Z if a is a square different from 1, or a = −432 = −2433,

Z/2Z if a is a cube different from 1,

0 if a is not a cube, a square, or −432.
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Proof. A point of order 2 has the form (x, 0), where x is a root of x3 +a. This exists
on E(Q) if and only if a is a cube c3 of an integer c and then (−c, 0) is the point of
order 2. We consider the equation 2(x, y) = −(c, 0) to see if there is a point (x, y) of
order 4. If this were the case, the line y = λ(x +c) through (−c, 0) when substituted
into the equation of the curve yields

λ2(x + c)2 = x3 + c3 or λ2(x + c) = x2 − cx + c2.

The line through (−c, 0) is tangent at another point (x, y) on E if and only if the
following quadratic equation has a double root

0 = x2 − (λ2 + c)x + c(c − λ2),

that is, if the discriminant λ4 + 2λ2c + c2 − 4c(c − λ2) = 0. After completing the
square in this equation, we obtain the following equation for λ2:

(λ2 + 3c)2 = 12c2.

There are no rational solutions to this equation because 12 is not a square, and thus,
there are no points of order 4 on the curve. This proves that the 2-power torsion is
what is stated in the theorem.

A point (x, y) is of order 3, that is, 2(x, y) = −(x, y) if and only if there is a
line y = λx + β through (x, y) such that

(λx + β)2 = x3 + a

is a perfect cube. In other words

(x − r)3 = x3 − λ2x2 − 2λβx + (a − β2).

From the relations −3r = −λ2 and 3r2 = −2βλwe deduce the relation λ4 = −6βλ.
For λ = 0 we see that a is a square b2 and then (0,+b) and (0,−b) are the two

points of order 3.
For λ �= 0 we divide by λ to obtain λ3 = −6β. From 3r2 = −2βλ we derive the

relation 27r6 = −8β3(−6β) or 32r6 = 24β4, and this relation is satisfied only in
one case β = 2232m3 and r = 233m. In this case we calculate

a = β2 − r3 = 2434m6 − 2633m6 = (3 − 4)2433m6 = −2433m6 = −432m6,

where m = 1 since a is sixth-power free. This proves that the 3 torsion is what is
stated above.

Again the nonexistence of p torsion for p > 3 will be taken up later.
While the torsion for the curves defined by the equations y2 = x3 + ax and

y2 = x3 + a is completely understood, the rank g of the finitely generated abelian
group E(Q) is another matter. There is considerable numerical information which led
Birch and Swinnerton-Dyer [1963] to formulate their conjectures which are taken up
in Chapter 17. We quote some values of g for small a for each of the types of curves
from their paper. These values a played a role in a two-part discussion leading to the
conjectures relating the rank g with the zero of the L function at s = 1.

Included in Tables 1 and 2 are the cubics y2 = x3 + 4x and y2 = x3 − 432
with only a finite number of rational points from their relation to the Fermat curve
theorem. This is equivalent to g = 0.
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Table 1. Values of the rank g for E given by y2 = x3 + ax .

g = 0: a = 1 2 4 6 7 10 11 12 22

−1 −3 −4 −8 −9 −11 −13 −18 −19

g = 1: a = 3 5 8 9 13 15 18 19 20

−2 −5 −6 −7 −10 −12 −14 −15 −20

g = 2: a = 14 33 34 39 46 −17 −56 −65 −77

g = 3: a = 82

Table 2. Values of the rank g for E given by y2 = x3 + a.

g = 0: a = 1 4 6 7 13 14 16 20 21

−1 −3 −5 −6 −8 −9 −10 −14 −432

g = 1: a = 2 3 5 8 9 10 11 12 18

−2 −4 −7 −13 −15 −18 −19 −20 −21

g = 2: a = 15 17 24 37 43 −11 −26 −39 −47

g = 3: a = 113 141 316 346 359 −174 −307 −362

Exercises

1. Determine the five points in the (x, y)-plane which together with 0 form the group of six
torsion points on y2 = x3 + 1. Note that from (3.5) this is all of the group E(Q). Which
of these points are generators of this cyclic group of order 6?

2. Let E be the curve defined by y2 = x3 + ax2 + bx = x(x2 + ax + b) over a field k of
characteristic �= 2, e.g., k = Q, the rational numbers, with b �= 0 and the discriminant
a2 − 4b �= 0.
(a) Show that (Z/2Z)2 ⊂ E(k) if and only if a2 − 4b is a square.
(b) When a2 − 4b is not a square, show that Z/4Z ⊂ E(k) if and only if b = c2 is a

square and either a + 2c or a − 2c is a nonzero square.
(c) Show that (Z/4Z)× (Z/2Z) ⊂ E(k) with (0, 0) ∈ 2E(k) if and only if b = c2 is a

square and a+2c or a−2c are squares. Note that if two of the following are nonzero
squares, a + 2c, a − 2c, and a2 − 4b(b = c2), then the third one is also.

3. Find a point of infinite order on the elliptic curves with equations y2 = x3 + 3x ,
y2 = x3 − 2x , y2 = x3 + 2, and y2 = x3 − 2.

The next two problems are very difficult and the beginner in the subject should not expect
to carry them out completely.

4. Find two points P and Q of infinite order on the elliptic curve over Q defined by the
equation y2 = x3 − 11 such that n P �= m Q for all integers m and n.

5. On the curve y2 + y = x3 −7x +6 show that an integral combination a(0, 2)+b(1, 0)+
c(2, 0) = 0 only for a = b = c = 0.
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§4. Multiplication by 2 on an Elliptic Curve
Let E be an elliptic curve given by an equation y2 = f (x), where f (x) is a cubic
polynomial without repeated roots. We assume through this section that the field of
coefficients k has characteristic different from 2.

There is the homomorphism E(k)
2→ E(k) given by multiplication by 2 in the

abelian group E(k). We have already studied the kernel of this homomorphism; it
consists of 0 together with all (x, 0), where x is a root of f (x).

We wish to characterize the image 2E(k) of multiplication by 2. In Chapter 6
we will show that E(k) is a finitely generated abelian group when k is the rational
number field Q or more generally any number field. One step in the proof is the
demonstration that the index (E(k) : 2E(k)) is finite. It is clearly a necessary condi-
tion for E(k) to be finitely generated. In the next theorem we consider an elementary
criterion for a point Q in E(k) to be of the form Q = 2P for P in E(k), i.e., for
Q to be in 2E(k). This theorem is proved using only the elementary methods of this
chapter drawn from the classical theory of algebraic equations applied to analytic
geometry.

(4.1) Theorem. Let E be an elliptic curve defined over a field k by the equation

y2 = (x − α)(x − β)(x − γ ) = x3 + ax2 + bx + c, with α, β, γ ∈ k.

For (x ′, y′) ∈ E(k) there exists (x, y) ∈ E(k) with 2(x, y) = (x ′, y′) if and only if
x ′ − α, x ′ − β, and x ′ − γ are squares.

Proof. The equation 2(x, y) = (x ′, y′) has a solution on E(k) if and only if the
related equation 2(x, y) = (0, y′) has a solution on the curve defined by the normal
cubic

y2 = (x + x ′ − α)(x + x ′ − β)(x + x ′ − γ ).

Hence we are reduced to proving the assertion of the theorem for the special point
(0, y′). In this case y′2 = −αβγ .

If 2(x, y) = (0, y′), then substitute the equation of the tangent line y = λx + δ
to E at (x, y) into the cubic equation for E to obtain

(λx + δ)2 = x3 + ax2 + bx + c.

Since δ = y′ and δ2 = y′2 = −αβγ − c, this is equivalent to

0 = x(x2 + (a − λ2)x + (b − 2λδ)).

As y = λx + δ is tangent to E at (x, y) and the root giving the point of tangency is
a double root, the discriminant of the quadratic factor in the cubic in x must be zero.
Thus we have

(λ2 − a)2 = 4(b − 2y′λ)
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which is a quadratic equation for λ.
This quadratic equation in λ is solved by arranging the two sides into perfect

squares

(λ2 − a + u)2 = 2uλ2 − 8λy′ + (u2 + 4b − 2ua).

The right-hand side is a perfect square if and only if again the discriminant is zero,
that is,

0 = 82c − 4 · 2u(u2 + 4b − 2ua)

or

0 = u3 − 2au2 + 4bu − 8c.

To solve this cubic for u, we substitute u = −2v, and observe that the equation
becomes

0 = (−8)(v3 + av2 + bv + c).

This is the cubic term in the equation of the curve, and, hence, the roots are v = α,
β, γ , so that u = −2α, −2β, −2γ .

Now substitute u = −2α say (or −2β, −2γ ) into the quadratic equation for λ,
and use the relations

−a = α + β + γ, b = αβ + βγ + γα, and c = −αβγ.

Thus the equations for λ become

(λ2 + α + β + γ − 2α)2

= −4αλ2 − 8y′λ+ (4a2 + 4[αβ + βγ + γα] − 4α[α + β + γ ]),

or

(λ2 − α + β + γ )2 = −4αλ2 − 8y′λ+ 4βγ

= 4(α′λ− β ′γ ′)2,

where α′2 = −α, β ′2 = −β, and γ ′2 = −γ . Now we take the square root of both
sides to obtain two quadratic equations for

λ2 + β + γ − α = ±2(α′λ− β ′γ ′).

In these equations we complete the square to get

(λ2 ∓ 2α′λ− α) = −β ∓ 2β ′γ ′ − γ

or
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(λ∓ α′)2 = (β ′ ∓ γ ′)2.

Taking the square root of both sides of the last equation, we find four solutions for λ
proving the existence of λ in k and hence also of the point (x, y) since

x = 1

2
(λ2 + α + β + γ ) and y = λx + δ.

This proves the theorem.

Observe that the values of λ are given by the following:

λ1 = α′ + β ′ − γ ′, λ3 = −α′ + β ′ + γ ′,
λ2 = α′ − β ′ + γ ′, λ4 = −α′ − β ′ − γ ′,

for α′2 = −α, β ′2 = −β, and γ ′2 = −γ .

(4.2) Corollary. For an elliptic curve E defined over an algebraically closed field
the group homomorphism

E(k)
2→ E(k)

is surjective, that is, the group E(k) is 2 divisible.

The corollary gives rise to an exact sequence

0 → 2 E(k) = (Z/2Z)2 → E(k)
2→ E(k)→ 0

for an algebraically closed field k, where 2 E(k) is the kernel of multiplication by 2.
The points of order 2 form the noncyclic group of order 4, The “Viergruppe” since
the cubic equation for the x-coordinate of the nonzero P with 2P = 0 has three
roots, see Exercise 8, §2.

(4.3) Remark. For any n prime to the characteristic of an algebraically closed field
k and for any elliptic curve E over k we have an exact sequence

0 → n E(k) = (Z/nZ)2 → E(k)
n→ E(k)→ 0,

where n E(k) is the kernel of multiplication by n. this is discussed in further detail in
12(1.4) for k = C and in 12(3.6) over any algebraically closed k.

Exercises

1. Let A be an abelian group, and for an integer n, let n A denote the kernel of A
n→ A given

by multiplication by n. If P is one solution to the equation n P = Q for given Q, then
show that any other solution P ′ to n P ′ = Q is of the form P ′ = P + K , where K is in
n A.

2. Show that the condition in Exercise 2(c) to §3 is equivalent to the one in Theorem (4.1)
for a solution (x, y) to 2(x, y) = (0, 0) on the curve defined by y2 = x(x − α)(x − β).

3. Let E be an elliptic curve a field k of characteristic �= 2. In terms of the three possible
groups for 2 E(k) give all the possible groups 4 E(k) of points P with 4P = 0. In each
possible group give the number of points P of order 4, i.e., 4P = 0 and 2P �= 0.

4. Show that an elliptic curve E defined over the rational numbers cannot have a subgroup
(Z/4Z)2 contained in E(Q), its group of rational points.
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§5. Remarks on the Group Law on Singular Cubics
The two basic examples of singular points on cubic curves are:

(1) A double point (0, 0) on y2 = x2(x + a).
(2) A cusp (0, 0) on y2 = x3.

For a cubic in normal form

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6,

the derivative y′ satisfies

(2y + a1x + a3)y
′ = 3x2 − a1 y + 2a2x + a4,

and at (0, 0) we have

a3 y′ = a4.

The value of y′ is indeterminate here, and these are singular points. Thus, the curve
has a singularity at (0, 0) if and only if a3 = a4 = 0.

Before discussing the group law for points on singular cubics, we consider the
curve A of all (x, y) satisfying the cubic equation y = x3 + ax + b. This is not in
normal form since there is no y2 term.

If (x1, y1), (x2, y2), and (x3, y3) are three points on the cubic A and on a line y =
λx + β, then
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0 = x3 + (a − λ)x + (b − β)
= (x − x1)(x − x2)(x − x3)

and x1 + x2 + x3 = 0. Hence the set of points of A defined over k, denoted A(k),
has the structure of a group where (0, b) = 0 and −(x, y) = −(x, x3 + ax + b) =
(−x, (−x)3 −ax +b). Again three points add to zero if and only if they lie on a line.

(5.1) Remark. This example does not give rise to a new group with the group struc-
ture depending on the coefficients a and b as in the case of y2 = x3 + ax + b, or,
more generally, a cubic in normal form. In fact the function f (t) = (t, t3 + at + b)
is an isomorphism f : k → A(k) of the additive group of the line k onto A(k).

The above example can be used to study the group law on Ens(k), the set of
nonsingular points of y2 = x3, i.e., all (x, y) �= (0, 0) with y2 = x3. Making the
change of variable

x = u

v
, y = 1

v
, or u = x

y
, v = 1

y
,

the equation y2 = x3 is transformed into (u/v)3 = 1/v2 or v = u3. A line ax +by+
c = 0 is transformed into the line with equation au + b + cv = 0, and the point 0 at
infinity in the x , y-plane is transformed to (0, 0) in the u, v-plane. Thus we have:

(5.2) Proposition. The function g(t) = (1/t2, 1/t3) is an isomorphism g : k →
Ens(k) of the additive group k onto the group of nonsingular points of the cuspidal
cubic curve y2 = x3.

(5.3) Remark. The origin (0, 0) cannot be included in the set with the chord-tangent
group law on E(k) for E defined by y2 = x3 since any line y = λx through (0, 0)
intersects the cubic at only one other point (x, y) = (λ2, λ3). The chord-tangent
group law is defined with all lines not passing through (0, 0).

Consider the cubic y2 = x2(x + 1) = x3 + x2 with a double point (or node) at
the origin (0, 0). Using the substitution

u = y + x

y − x
and v = 1

y − x
,

and the calculations

u − 1 = 2x

y − x

and

(y − x)3(u − 1)3 = 8x3 = 8(y2 − x2) = 8uv(y − x)3,

we obtain the equation (u − 1)3 = 8uv, which is similar to the cubic in (5.1). Lines
in the x , y-plane are transformed into lines in the u, v-plane with some exceptions,
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and 0 at infinity in the extended x , y-plane transforms to 1. If (u1, v1), (u2, v2), and
(u3, v3) are three points on a line v = λu + δ, then

0 = (u − 1)3 − 8u(λu + δ) = (u − u1)(u − u2)(u − u3),

and thus we have u1u2u3 = 1. This means that (x, y) → (y + x)/(y − x) is a group
homomorphism of the nonsingular points of the cubic curve E given by y2 = x3+x2

into the multiplicative group k∗ = k − {0}.
Let E be the cubic curve y2 = x2(x+1) together with 0 at infinity, and let Ens(k)

denote E(k)− {0}. Given a nonzero u we define v by the equation 8uv = (u − 1)3.
From

y − x = 1

v
and y + x = u

v
,

we have the definition of

x = u − 1

2v
and y = u + 1

2v
.

These formulas require that 2 is nonzero in k, and with the above discussion yield
the following proposition.

(5.4) Proposition. With the above notations for E over a field k of characteristic
�= 2 the function f : Ens(k)→ k∗ given by f (0) = 1 and f (x, y) = (y − x)(y + x)
is a group isomorphism of the k-valued points on Ens onto the multiplicative group
of k.

Exercise

1. Show that (0, 0) is a singular point on

y2 + a1xy = x3 + a2x2

by change of coordinates. Determine conditions on a1 and a2 when it is a double point
and when it is a cusp.
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Plane Algebraic Curves

In the Introduction and Chapter 1 we considered several ways of studying properties
of rational points on curves using intersection theory, and we saw how modifications
had to be made for singular points. In this chapter we develop background material
on projective spaces, plane curves, and to a limited extent on hypersurfaces, and in
the next chapter we apply these results to cubic curves.

Elementary intersection theory and the theory of singular points, as given here,
is based on the resultant of two polynomials. This is a very classical and elementary
approach. In the Appendix to this chapter the theory of the resultant is worked out
and other background in algebra is supplied. In particular many aspects related to
foundational questions in algebraic geometry are not made explicit. Frequently the
same symbol is used for coordinates and for variables.

This chapter is used to give some details left open concerning the group law and
singular points on cubics. It will be used also in Chapter 5 for the reduction modulo
p of curves defined over the rational numbers.

§1. Projective Spaces
In the Introduction we considered the projective plane in order to have a satisfactory
intersection theory of lines in the plane. The result of the basic geometric assertion:

(P) Two distinct points determine, i.e., lie on, a unique line, and two distinct lines
determine, i.e., intersect at, a unique point.

The projective plane was modeled on the set of one-dimentional subspaces of
the vector space k3 over the field k. The lines in the projective plane were sets of
all one-dimentional subspaces contained in a given two-dimentional subspace. In
this context projective transformations are just induced by linear automorphisms by
taking direct image.

It will be useful to have higher-dimentional projective spaces, as we did in the
Introduction, in order to speak of the space of all cubic curves.
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(1.1) Definition. The r -dimensional projective space Pr (k) over a field k consists of
equivalence classes of (r + 1)-tuples y0 : · · · : yr , where the yi are not all zero. The
equivalence relation is defined by y0 : · · · : yr = y′

0 : · · · : y′
r provided there is a

nonzero constant a with y′
i = ayi for i = 0, . . . , r .

If k is a subfield of K , then there is an obvious inclusion Pr (k) ⊂ Pr (K ).

(1.2) Definition. A hyperplane in Pr (k) is the set of all y0 : · · · : yr in Pr (k) satis-
fying an equation

a0 y0 + · · · + ar yr = 0,

where not all ai are zero.
Two equations a0 y0 + · · · + ar yr = 0 and a′

0 y0 + · · · + a′
r yr = 0 determine the

same hyperplane if and only if there is a nonzero b with a′
i = bai for all i = 0, . . . , r .

Hence the set of hyperplanes form a projective space where the point a0 : · · · : ar

corresponds to the hyperplane given by the equation a0 y0 + · · · + ar yr = 0.

(1.3) Remark. Let Hi denote the hyperplane yi = 0 for i = 0, . . . , r . The subset
Pr (k) − Hi can be parametrized as kr where (x1, . . . , xr ) in kr corresponds to the
point x1 : · · · : xi : 1 : xi+1 : · · · : xr in Pr (k) − Hi . If yi �= 0 in y0 : · · · : yr or
y0 : · · · : yr ∈ Pr (k)− Hi , then it corresponds to (y0/yi , . . . , yi−1/yi , yi+1/yi . . . ,

yr/yi ) in kn . Observe that

Pr (k) = (Pr (k)− H0) ∪ · · · ∪ (Pr (i)− Hr ) .

We speak of H0 as the hyperplane at infinity.

There is a coordinate-free version of projective space where we assign to any
finite-dimensional vector space V of dimensional r + 1 the r -dimensional projective
space P(V ) of all one-dimensional subspaces P ⊂ V . An s-dimensional linear sub-
space M ⊂ P(V ) is determined by M+, an (s+1)-dimensional subspace of V where
for P ∈ P(V ) we have P ∈ M provided P ⊂ M+.

A point P ∈ P(V ) is represented P = kv where v ∈ P is nonzero vector in V
defined over the field k. Properties of sets of nonzero vectors in V can be transferred
to those of sets of points in P(V ).

(1.4) Definition. Let  be a set of points in P(V ). Let ′ be the set of representa-
tives of nonzero v ∈ V with kv ∈ . The set  is a general position provided any
subset �′ ⊂ ′ with #�′ ≤ dim(V ) is a linearly independent set.

Observe that for points P0 . . . , Pm in P(V ) with m ≤ r , the following conditions
are equivalent. We say they define the property of being in general position:

(1) No s + 1 of the points P0, . . . , Pm lie on an (s − 1)-dimensional plane M in
P(V ) for each s ≤ m.

(2) For nonzero vectors vi ∈ Pi the set of vectors v0 . . . , vm in V is linearly inde-
pendent.



§2. Irreducible Plane Algebraic Curves and Hypersurfaces 47

Exercises

1. For the finite field k of q elements determine the cardinality of the projective plane P2(k)
and more generally of the projective space Pr (k). How many points are there on a line and
how many lines are there in P2(k)? Determine the number of s-dimensional subspaces in
Pr (k).

2. If Mi is an si -dimensional subspace of Pr (k), where k is any field, then show that the
intersection M1 ∩ M2 is a subspace and determine its possible dimensions.

3. Show that a projective space of dimensional n−r−1 parametrizes the (r+1)-dimensional
subspaces in Pn(k) containing a fixed r -dimensional subspace M0.

§2. Irreducible Plane Algebraic Curves and Hypersurfaces
In (1.5) of the Introduction we considered a definition of a plane curve in the context
of the complex numbers. Now we define and study plane curves over any field k using
homogeneous polynomials f (w, x, y) ∈ k[w, x, y]. The polynomial has a degree d
and the fact that it is homogeneous of degree d can be expressed by the relation

f (tw, t x, t y) = td f (w, x, y).

Again we use the notation C f (K ) for the locus of all w : x : y in P2(K ) with
f (w, x, y) = 0, where K is any extension field of k.

Since f (w, x, y) = 0 if and only if f (w, x, y)2 = 0, the set of points C f (K )
does not determine the equation for any K . When f factors as f = f1 . . . fr , the
algebraic curve can be represented as a union C f = C f1 ∪ · · · ∪ C fr . Similarly if f
divides g, then the inclusion C f ⊂ Cg holds. Since the question of whether or not
f factors depends on the field k where the coefficients of f are taken from, we will
have to speak of curves over a given field k.

(2.1) Definition. An irreducible plane algebraic curve C f of degree d defined over a
field k is given by an irreducible homogeneous polynomial f (w, x, y) ∈ k[w, x, y]
of degree d. The points C f (K ) of C f in an extension field K of k consists of all
w : x : y in P2(K ) such that f (w, x, y) = 0.

A curve of degree 1 is called a line, 2 a conic, 3 a cubic, 4 a quartic, 5 a quintic,
and 6 a sextic. For two extensions K ⊂ K ′ of k, the inclusions P2(K ) ⊂ P2(K ′) and
C f (K ) ⊂ C f (K ′) hold. For the reader with a background in categories and functors,
it is now clear that C f is a subfunctor of the functor P2 defined on the category of
fields over k and k-morphisms to the category of sets.

If u : k3 → k3 is a nonsingular linear transformation with inverse v, and if
u, v : P2(K ) → P2(K ) are the associated projective transformations defined by
direct image on lines, then for each homogeneous f (w, x, y) ∈ k[w, x, y] of degree
d the composite f v is homogeneous of degree d and u(C f (K )) = C f v(K ). This
follows since ( f v)(u(w, x, y)) = 0 if and only if f (w, x, y) = 0. Thus projective
transformations carry algebraic curves to algebraic curves and preserve degree and
the property of irreducibility. In this way we can frequently choose a convenient
coordinate system for the discussion of properties of a curve.
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(2.2) Remark. The above discussion extends to hypersurfaces H f in Pn defined
by homogeneous polynomials f (y0 . . . , yn) of degree d in k[y0, . . . , yn]. For an
extension field K of k the set H f (K ) consists of all y0 : · · · : yn in Pn(K ) such that
f (y0, . . . , yn) = 0.

Observe that the hyperplane H0 given by y0 = 0, called the hyperplane at
infinity, is contained in H f if and only if y0 divides f . This is equivalent to
f (0, y1, . . . , yn) = 0 or to the relation deg(g) < deg( f ) where g(x1, . . . , xn) =
f (1, x1, . . . , xn). The two polynomials f and g have the same factorization into ir-
reducible factors except for the factor ya

0 , where a = deg( f )− deg(g). The affine
hypersurface Hg(K )aff is the set of all (x1, . . . , xn) in K n with g(x1, . . . , xn) = 0.
Observe that Hg(K )aff = H f (K ) ∩ K n . For some questions, as in the next theorem,
it is more convenient to use the affine picture.

Note that if f divides f ′ in k[y0, . . . , yn], then H f (K ) ⊂ H f ′(K ) and Hg(K )aff

⊂ Hg′(K )aff with the above notations for the relation between f and g and between
f ′ and g′.

(2.3) Theorem. Let H f and H f ′ be two hypersurfaces defined over k in Pn, where
f is irreducible. If for some algebraically closed extension field L of K we have the
inclusion H f (L) ⊂ H f ′(L), then f divides f ′, and so H f (K ) ⊂ H f ′(K ) for all
extension fields K of k.

Proof. We can consider the inclusion of hypersurfaces in some affine space where
Hg(L)aff ⊂ Hg′(L)aff. In affine coordinates we can write

g(x1, . . . , xn−1, xn) = a0(x1, . . . , xn−1)+ · · · + ad(x1, . . . , xn−1)x
d
n ,

where d ≥ 0 and ai (x1, . . . , xn−1) ∈ k[x1, . . . , xn−1].
If f ′ = 0, then clearly f divides f ′. Now consider the case where g′ ∈ k[x1, . . . ,

xn−1] with g′ nonzero. Since L is infinite, there exists a point (x1, . . . , nn−1) in Ln−1

with g′(x)a0(x) nonzero for x = (x1, . . . , xn−1). Since L is algebraically closed, the
polynomial equation g(x1, . . . , xn−1, t) has a root t = xn in L , and thus the point
(x1, . . . , xn−1, xn) lies in Hg(L)aff − H f ′(L)aff, which is a contradiction. Therefore,
if g′ is in k[x1, . . . , xn−1], then f ′ is zero.

Now suppose that g = b0 + b1xn + · · · + bexe
n , where e > 0 and bi ∈ k[x1,

. . . , xn−1]. By (4.2) in the Appendix, there is a relation R(x1, . . . , xn−1) = ug+vg′
in k[x1, . . . , xn−1][xn]. If g(x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ Ln , then

g′(x1, . . . , xn) = 0

by hypothesis and thus by the resultant formula, R(x1, . . . , xn−1) = 0. In other
words, as affine hypersurfaces in n-dimensional space H f (L)aff ⊂ HR(L)aff. Since
R is a polynomial in x1, . . . , xn−1, it follows that R = 0 by the special case treated
in the previous paragraph. By (4.2) in the Appendix again, g and g′ must have a
common prime factor which must be g itself since g is irreducible. Thus g divides g′
and, hence, f divides f ′. This proves the theorem.
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(2.4) Corollary. Let f and f ′ be two nonzero irreducible homogeneous polynomials
in k[y0, . . . , yn]. If for some algebraically closed field L the sets H f (L) = H f ′(L),
then f ′ = c f for some nonzero c in k, and H f (K ) = H f ′(K ) for all extension fields
K of k.

For k the rational numbers and f (w, x, y, ) = w2 + x2 + y2 and f ′(w, x, y) =
w2 + 2x2 + y2 the sets H f (R) = H f ′(R) are empty, but clearly f ′ is not a constant
multiple of f . So the hypothesis that L is algebraically closed is essential in (2.3)
and (2.4).

Let k[y0, . . . , yn]d denote the vector space of homogeneous polynomials of de-
gree d . Any nonzero element defines a hypersurface of degree d, and two nonzero
elements define the same hypersurface if and only if they are in the same one-
dimensional space. Thus the projective space P(k[y0, . . . , yn]d) parametrizes the
hypersurfaces over k of degree d in Pn .

(2.5) Notation. Let Hd
n(k) denote the projective space P(k[y0, . . . , yn]d) of hyper-

surfaces of degree d in Pn defined over k. The coordinates of this projective space
are just the coefficients of the corresponding equation.

For k algebraically closed, the space Hd
1(k) is just the d-dimensional projective

space of d points, repetitions allowed, on the projective line P1(k).

(2.6) Proposition. The dimension of k[w, x, y]d over k is [(d + 1)(d + 2)]/2, and
the dimension of the projective space Hd

2 is

d(d + 3)

2
= (d + 1)(d + 2)

2
− 1.

Proof. We have to count the number of monomials wa xb yc, where a + b + c = d
since they form a basis of k[w, x, y]d . For a fixed index a the number of monomials
wa xb yc is d − a + 1. To obtain the dimension of the vector space in question, we
must sum a from 0 to d . The dimension of the projective space is one less than the
dimension of the vector space. We leave the computation to the reader.

We have the following table of values for these dimensions:

1 2 3 4 5 6 7 8

dim Hd
2 (k) 2 5 9 14 20 27 35 44

(2.7) Remark. We can generalize the assertion that two points determine a line.
Since the requirement that a plane algebraic curve goes through a point in P2(k)
is a hyperplane in Hd

2(k), and since the intersection of m hyperplanes in Hd
2(k) for

m ≤ [d(d+3)]/2 is nonempty, it follows that there exists a curve of degree d through
m given points if m ≤ [d(d + 3)]/2.
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Exercises

1. Show that the dimension of Hd
n is the binomial coefficient

(
n+d

n
)− 1.

2. If P1, P2, and P3 are three points in P2 not on a line, then show that the set of conics
through P1, P2, and P3 form a two-dimensional subspace of the five-dimensional space
H2

2 of conics in P2. Show that the set S of conics through 1 : 0 : 0, 0 : 1 : 0, and 0 : 0 : 1
can be parametrized by the coefficiens a : b : c of the equations axy + bwy + cwx = 0.
Describe the subfamilies of S consisting of conics which also go through w′ : x ′ : y′ and
which also go through two distinct points w′ : x ′ : y′ and w′′ : x ′′ : y′′.

§3. Elements of Intersection Theory for Plane Curves
The following result gives some indication of the number of intersection points be-
tween two plane curves.

(3.1) Proposition. Let C f and Cg be two plane algebraic curves of degrees m and
n, respectively, defined over k. If for some extension K of k the set C f (K ) ∩ Cg(K )
has strictly more than mn points, then C f and Cg have an entire curve in common.

Proof. Suppose C f (K ) ∩ Cg(K ) contains mn + 1 points. Join these points by lines
and with a projective tranformation move the two curves so that the point (0, 0, 1) is
not on any of these lines. Decompose the polynomials f and g with respect to the
variable y:

f (w, x, y) = a0 ym + a1 ym−1 + · · · + am,

g(w, x, y) = b0 ym + b1 yn−1 + · · · + bn,

where ai (w, x) and b j (w, x) are homogeneous of degrees i and j , respectively. By
(4.3) of the Appendix the resultant R( f, g)(w, x) is homogeneous of degree mn.
Moreover, R( f, g)(w, x) = 0 for w, x ∈ K if and only if there exists y in K such
that w : x : y ∈ C f (C) ∩ Cg(K ). Since there exists mn + 1 points (wi , xi , yi ) in
C f (K ) ∩ Cg(K ) for i = 0, . . . ,mn, it follows that the polynomial∏

0≤i≤mn

(xiw − wi x)

of degree mn + 1 divides the polynomial R( f, g)(w, x) of degree mn. From this
we deduce that R( f, g) = 0, and, hence, f and g have a common factor h. Then
Ch ⊂ C f ∩ Cg , and this proves the theorem.

The above theorem is a corollary of Bezout’s theorem which says that over an
algebraically closed field the intersection of a plane curve of degree m with a plane
curve of degree n will have exactly mn points in common when the intersection mul-
tiplicity is assigned to each intersection point, or the two curves will have a common
subcurve. This is a more difficult result and requires both an analysis of singular
points and a good definition of intersection multiplicity.

In (2.5) we described the space Hd
n(k) of hypersurfaces of degree d over k in

Pn . For two plane curves C f and C f ′ of degree d over k we can speak of the line
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determined by these two points in Hd
2(k) and describe it with projective coordinates

a : a′ ∈ P1(k) as the set of curves of the form aC f + a′C f ′ = Ca f +a′ f ′ . This
one-dimensional family is called a pencil of curves of degree d over k. Classically
two-dimensional families are called nets and three-dimensional families are called
webs.

For example, two distinct lines L and L ′ have a point P in common and the pencil
aL + a′L ′ where a : a′ ∈ P1(k) is the pencil of all lines through P and defined over
k. Every line in the dual projective space P′

2 = H1
2 is a pencil, and it is determined

by the unique point in P2 contained in all members of the pencil.
As for intersection properties of conics, we consider two conics C and C ′ with

three intersection points on the line L . By (3.1) the conics have the line L in common
and C = L ∪ M,C ′ = L ∪ M ′, where M and M ′ are lines. The pencil aC + a′C ′
becomes L ∪ (aM + a′M ′) which is effectively a pencil of lines.

(3.2) Proposition. Let C and C ′ be two conics with exactly four distinct points,
P1, P2, P3, and P4 in common, all defined over an infinite field k. Then any other
conic C ′′ through P1, P2, P3, and P4 is the form aC + a′C ′.

Proof. Observe that no three of P1, P2, P3, and P4 lie on a line by the previous
argument. Since k is infinite, there is a fifty point P on C ′′ distinct from the P1
which can be taken to the intersection point if C ′′ is the union of two lines. Choose
a : a′ such that P is on the conic aC +a′C ′. Thus C ′′ and aC +a′C ′ have five points
in common. By (3.1) the equation of C ′′, even if it is reducible, divides the equation
of aC + a′C ′ so that C = aC + a′C ′. This proves the proposition.

This previous proposition has a version for cubics which is basic for the proof
that the group law on the nonsingular cubic satisfies the associative law.

(3.3) Theorem. Let D and D′ be two cubic curves intersecting at exactly nine points
in P2(k) all defined over an infinite field k. If D′′ is a plane cubic curve through eight
of the intersection points, then it goes through the ninth and has the form D′′ =
aD + a′D′.

Proof. First, observe that no four of the nine intersection points lie on a line, for
otherwise the line would be a common component of D and D′ by (3.1). No seven
of the nine intersection points lie on a conic, for otherwise a component of the conic
would be common to both D and D′ by (3.1). In either case the existence of such
a common component would contradict the fact that there are exactly nine points of
D ∩ D′.

If D′′ is not of the form aD+a′D′, then aD+a′D′ +a′′D′′ is a two-dimensional
family of cubics, and for any pair of distinct points, P ′ and P ′′ in the projective plane,
we can find a : a′ : a′′ in P2(k) such that aD + a′D′ + a′′D′′ goes through these
points. Now we will refine the statements in the previous paragraph.

Suppose that P1, P2, and P3 are intersection points which lie on a line L . Choose
P ′ on L , and choose P ′′ off L and off the conic C through P4, P5, P6, P7, and
P8. Then the cubic aD + a′D′ + a′′D′′ going through P ′, P ′′, and the eight points
P1, . . . , P8 has L and C as components by (3.1). This contradicts the choice of P ′′
off of L and C . Hence no three intersection points lie on a line.
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Suppose that P1, . . . , P6 are six intersection points which lie on a conic C .
Choose P ′ on C and choose P ′′ off of C and the line L through P7 and P8. Then the
cubic aD +a′D′ +a′′D′′ going through P ′, P ′′, and the eight points P1, . . . , P8 has
C and thus L as components by (3.1). This contradicts the choice of P ′′ off of L and
C . Hence no six intersection points lie on a conic.

Now choose P ′ and P ′′ both on the line L through P1 and P2 but not on the conic
C through P3, P4, P5, P6, and P7. Then the cubic aD+a′D′ +a′′D′′, going through
P ′, P ′′, and the eight points P1, . . . , P8, has L and thus C as components by (3.1).
This contradicts the fact that P8 is not on L or C by the analysis in the previous two
paragraphs. Thus we must have D′′ = aD + a′D′ for some point a : a′ ∈ P1(k), and
hence D will go through the ninth intersection point. This proves the theorem.

Exercises

1. If two curves of degree m intersect at exactly m2 points, and if nm of these points lie on
a curve of order n which is irreducible, then show that the remaining (m − n)m points lie
on a curve of degree m − n.

2. (Pascal’s theorem.) The pairs of opposite sides of a hexagon inscribed in an irreducible
conic meet in three points. Show these three points lie on a line.

3. (Pappus’ theorem.) Let P1, P2, and P3 be three points on a line L , and let Q1, Q2, and Q3
be three points on a line M with none of these points on L ∩ M . Let Li j be a line through
Pi and Q j , and let Rk be the intersection point of Li j ∩L ji for {i, j, k} = {1, 2, 3}. Show
that R1, R2, and R3 lie on a line.

§4. Multiple or Singular Points
In Theorem (3.1) we showed that two curves of degrees m and n, respectively, with-
out a common component have at most mn intersection points by observing that the
resultant between their equations was a homogeneous form of degree mn. Since the
linear factors of this resultant form of degree mn correspond to intersection points,
we must give a geometric interpretation of the repeated factors. Then we will be in
a position to state the basic intersection theorem of Bezout, namely that the num-
ber of intersections, counted with the appropriate multiplicities, is exactly mn. A
preliminary step is to consider the order of a hypersurface at a point.

(4.1) Definition. Let H f be a hypersurface of degree d, and let P be a point on
H f (k). We can choose affine coordinates such that P is the origin and the equation
of the hypersurface in affine coordinates becomes

0 = f (x1, . . . , xn) = fr (x1, . . . , xn)+ · · · + fd(x1, . . . , xn),

where fi (x1, . . . , xn) is a homogeneous polynomial of degree i and the forms where
r ≤ d and fr and fd are nonzero. Then P is called a point of order r on H f , and
fr (x1, . . . , xn) is called a leading form at P .
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The leading form is well defined up to a projective change of variables coming
from the subgroup of the projective linear leaving one point fixed.

(4.2) Definition. A point on a hypersurface is called simple or nonsingular provided
its order is 1 and is called multiple or singular provided the order is strictly greater
than 1.

For example all points on a multiple component, defined by a power of an ir-
reducible polynomial, are singular with order equal to an integral multiple of the
multiplicity of the multiple component. If H is a hypersurface of degree d consisting
of the union of d hyperplanes H1 ∪ · · · ∪ Hd , then P has order r on H if and only
if P is on exactly r of the hyperplanes Hi for i = 1, . . . , d. Thus every point on
Hi ∩ Hj for i �= j is singular.

(4.3) Definition. Let P be a point of order r on a plane algebraic curve C f (k) of
degree m where k is algebraically closed. The tangent cone to C f at P is the union
of the lines whose equations are the linear factors of the leading form of the point P .
If P is a nonsingular point, then the tangent cone reduces to a single line called the
tangent line.

If P is transformed by a projective tranformation to 1 : 0 : 0, then the leading
form is fr (x, y) = ∏

1≤i≤r (ai x + bi y) where the equation of the curve is

f (w, x, y) = wm−r fr (x, y)+ · · · + fm(x, y).

For f (w, x, y) a homogeneous polynomial of degree m, the following formula,
called Euler’s formula, holds:

m f (w, x, y) = w ∂ f

∂w
+ x

∂ f

∂x
+ y

∂ f

∂y
.

The reader can easily check that for a simple point (w0, x0, y0) on C f (k) the tangent
line is of the form

∂ f

∂w
(w0, x0, y0)w + ∂ f

∂x
(w0, x0, y0)x + ∂ f

∂y
(w0, x0, y0)y = 0.

Now we relate the order of a point to a special case of intersection multiplicities.
The line L determined by two distinct points y0 : · · · : yn and y′

0 : · · · : y′
n in

Pn(k), can be parametrized by the function which assigns to each s : t ∈ P1(k)
the point (sy0 + t y′

0) : · · · : (syn + t y′
n) in Pn(k). The function which assigns to

each t ∈ k the point (y0 + t y′
0) : · · · : (yn + t y′

n) parametrizes the affine line
L − {y′

0 : · · · : y′
n} = Laff.

If H f is a hypersurface of degree d , then the intersection set of Laff∩H f consists
of points Pt , where t is a root of the polynomial equation 0 = ϕ(t) = f (y0 +
t y′

0, . . . , yn + t y′
n). Observe that y0 : · · · : yn ∈ H f (k) if and only if ϕ(0) = 0, and

L �⊂ H f if and only if ϕ is not identically zero.



54 2. Plane Algebraic Curves

(4.4) Definition. With these notations, the intersection multiplicity of the line L
with the hypersurface H f at P = y0 : · · · : yn , denoted i(P; L , H f ), is the or-
der of the zero of ϕ(t) at t = 0. It is defined only when L �⊂ H f .

Now we can relate intersection multiplicity at P with the order of P on a hyper-
surface H f .

(4.5) Proposition. Let k be an infinite field. A point P = y0 : · : yn is of order r on
H f (k) if and only if i(P; L , H f ) ≥ r for all lines L through P not contained in H f

and i(P; L , H f ) = r for some line L through P.

Proof. After a projective change of coordinates, we can assume that y0 : · · · : yn =
1:0 : · · · :0, and, without changing the line L , we can assume that the point y′

0 : · · · : y′
n

has the property that y′
0 = 0, that is, the point lies on the hyperplane at infinity. By

definition of the order of 1 :0 : · · · :0 on H f , the polynomial f (1, x1, . . . , xn) has the
form

f (1, x1, . . . , xn) = fr (x1, . . . , xn)+ · · · + fd(x1, . . . , xn),

where f1(x1, . . . , xn) is homogeneous of degree i and fr �= 0. The polynomial ∂(t)
associated with f and the two points has the form

ϕ(t) = fr (t y′
1, . . . , t y′

n)+ · · · + fd(t y′
1, . . . , t y′

n)

= tr fr (y
′
1, . . . , y′

n)+ · · · + td fd(y
′
1, . . . , y′

n)

and ϕ(t) = 0 has t = 0 as a root of order ≥ r . For (y′
1, . . . , y′

n) with fr (y′
1, . . . , y′

n)

�= 0, such a point exists since k is infinite, the root t = 0 of ϕ(t) has multiplicity
equal to r . This proves the proposition.

For the case n = 2, that of a place curve f (w, x, y) = 0, the above relations for
L at the points 1 : 0 : 0 and 0 : a : b take the form

f (1, x, y) = fr (x, y)+ · · · + fd(x, y)

and

ϕ(t) = fr (ta, tb)+ · · · + fd(ta, tb)

= tr fr (a, b)+ · · · + td fd(a, b).

The condition fr (a, b) = 0 is equivalent to the condition that bx − ay divides
fr (x, y), that is, the line L through 1 : 0 : 0 and 0 : a : b given by the equation bx −
ay = 0 is part of the tangent cone. This leads to the following result extending (4.5).

(4.6) Proposition. Let k be algebraically closed. The point P = w : x : y is of
order r on the plane curve C f if and only if i(P; L ,C j ) ≥ r for all lines L through
P with L �⊂ C f , and i(P; L ,C f ) = r for some line through P. The line L through
P is part of the tangent cone if and only if L ⊂ C f or i(P; L ,C f ) > r .
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In the special case of a nonsingular point w : x : y on C f (k), the polynomial
ϕ(t), given above, will have a simple root for all lines L except the tangent line
(at, bt) where bx − ay is the leading form of f (1, x, y). In other words,

f (1, x, y) = (bx − ay)+ f2(x, y)+ · · · + fd(x, y).

Then in that case the order of the root t = 0 of ϕ(t) is ≥ 1. This leads to the following
definition which is used in the study of cubic curves.

(4.7) Definition. A point of inflection (or flex) is a nonsingular point P = w : x : y
on a curve C f such that i(P; L ,C f ) ≥ 3 for the tangent line L at P .

In other words, if 1 : 0 : 0 is a flex of the curve C f with a tangent line given by
the equation f1(x, y) = bx − ay = 0, then the polynomial f (1, x, y) has the fol-
lowing form:

f (1, x, y) = f1(x, y)+ · · · + fd(x, y),

where fi (x, y) is homogeneous of degree i with f1(x, y) dividing f2(x, y). Since
any flex, by projective transformation, can be moved to the origin 1 : 0 : 0, we see
that a nonsingular conic will have no flexes.

For a curve C f of degree d with f (w, x, y) ∈ k[w, x, y]d we consider the con-
dition of f that 1 : r : s is a flex on C f . We expand

f (1, x + r, y + s) = f0(r, s)+ f1(r, s)(x, y)+ · · · + fd(r, s)(x, y),

where fi (r, s)(x, y) ∈ k[r, s][x, y]i . Setting x = y = 0, we see that f (1, r, s) =
f0(r, s) and hence 1 : r : s ∈ C f if and only if f0(r, s) = 0.

Now assume that 1 : r : s ∈ C f . Then 1 : r : s is a nonsingular point if and only
if f1(r, s)(x, y) = b(r, s)x − a(r, s)y is nonzero in k[r, s][x, y]1. A smooth point
1 : r : s on C f is a flex if and only if f1(r, s)(x, y) divides f2(r, s)(x, y) in k[x, y].
In terms of the resultant R(r, s) = R( f1(r, s), f2(r, s)) ∈ k[r, s] we see that 1 : r : s
is a flex of C f if and only if f (1, r, s) = 0 and R(r, s) = 0. This resultant can
be calculated as a 3 by 3 determinant for f2(r, s)(x, y) = A(r, s)x2 + B(r, s)xy +
C(r, s)y2 as follows:

R(r, s) = A(r, s)a(r, s)2 + B(r, s)a(r, s)b(r, s)+ C(r, s)b(r, s)2.

Since for degree of f strictly bigger that 2 the curve C f given by f (1, x, y) = 0
and the resultant R(x, y) = 0 have an intersection point 1 : r : s we deduce the
following result.

(4.8) Proposition. Let C f be an algebraic plane curve without singularities of de-
gree d ≥ 3 over an algebraically closed field k. Then C f has at least one flex.
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Exercises

1. For k infinite prove that P is a point of order ≤ r on a hypersurface H f of degree n if
and only if there exists a line L through P intersecting H f at n − r additional points.

2. In the [m(m + 3)/2]-dimensional family Hm
2 of all curves of degree m, calculate the

dimension of the subfamily of all curves passing through a point P and having order ≥ r
at that point. Give a lower bound for the dimension of the subfamily of all curves in Hm

2
passing through the points Pi and having order ≥ ri at Pi for i = 1, . . . , t .

3. Let C f and Cg be two plane algebraic curves of degrees m and n, respectively, where
f (w, x, y) = a0 ym + · · · + am , g(w, x, y) = b0 yn + · · · + bn with ai = ai (w, x)
and b j = b j (w, x) homogeneous polynomials of degree i. j . If w : x : y is a point on
C f ∩ Cg with order r on C f and order s on Cg , then show that R( f, g)(W, X) has a
factor of the form (xW − wX)sr in its factorization as a product of linear forms.

4. Let C f and Cg be two plane algebraic curves of degrees m and n, respectively, without
common factors. If P1, . . . , Pt are the intersection points where ri is the order of C f at
Pi and si is the order of Cg at Pi , then show that the following relation holds∑

1≤i≤t

ri si ≤ mn.

5. Let C f be a curve of degree m with no multiple components and with orders ri of the
singular points Pi . Then show

m(m − 1) ≥
∑

ri (ri − 1).

Also, show that this is the best possible result of this kind by examining the case of n
lines through one point. Note that this shows that the number of singular points is finite.
Hint: Compare f with a suitable derivative of f which will have degree m − 1.

6. Let C f be a curve of degree m which is irreducible and with orders ri of the singular
points Pi . Then show

(m − 1)(m − 2) ≥
∑

ri (ri − 1).

Hint: Compare a suitable derivative of f having order ri − 1 at Pi with the [(m − 1)(m +
2)/2]-dimensional family of all curves of degree m − 1 and the subfamily of curves
having degree ri − 1 at Pi . Also, show that this is the best possible result of this kind by
examining the curve given by the equation Xn + W Y n−1 = 0.

7. Prove that in characteristic zero a conic C f is reducible if and only if the 3 by 3 matrix of
second partial derivatives of f has a determinant equal to zero. When does this assertion
hold in characteristic p?

8. For a plane curve C f and w0 : x0 : y0 on C f derive the equation of the tangent line
in terms of the first partial derivatives of f at w0 : x0 : y0. In characteristic zero prove
that w0 : x0 : y0 is a flex if and only if the linear form of first partial derivatives di-
vides the quadratic form of second partial derivatives. When does this assertion hold in
characteristic p?

9. Prove that in characteristic zero the flexes of C f are the intersections between C f and
the curve whose equation is the determinant of the matrix of second partial derivatives of
f . When does this assertion hold in characteristic p?

10. Prove that every nonsingular curve of degree 3 or more has at least one flex over an
algebraically closed field.
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Appendix to Chapter 2

Factorial Rings and Elimination Theory

Factorial rings, also called unique factorization domains, have most of the strong
divisibility properties of the ring of integers Z. These properties are used in Chapter
5 for the study of the reduction of a plane curve modulo a prime number. The concept
is also useful for the understanding of divisibility properties of polynomials over a
field. Included in our brief introduction to the theory of these rings is a discussion of
the resultant of two polynomials which was used in Chapter 2, §§2 and 3.

All rings considered in this appendix are commutative.

§1. Divisibility Properties of Factorial Rings
A unit in a ring R is an element u ∈ R such that there exists an element v ∈ R with
uv = 1. The units in R form a group under multiplication which we denote by R∗.
Note that R is a field if and only if R∗ = R − {0}.
(1.1) Definition. For a, b in R the element a divides b, denoted a|b, provided there
exists x in R with b = ax . In terms of ideals this condition can be written Ra ⊃ Rb.

Observe that u|a for any unit u and a|0 for all a in R. Moreover, Ra = Rb if and
only if b = ua, where u is a unit.

(1.2) Definition. A nonzero element p in R is an irreducible provided for each fac-
torization p = ab either a or b is a unit but not both.

Since each factorization of a unit is by units, an irreducible is not a unit. In a field
there are no irreducibles.

(1.3) Definition. A factorial ring R is an integral domain such that for any nonzero
a in R we can decompose a as

a = up1, . . . , pr ,

where u is a unit and p1 . . . , pr are irreducibles, and also this factorization is unique
in the following sense: for a second decomposition a = vqi , . . . , qs by irreducibles
we have r = s and after permutation of the qi ’s each pi = ui qi , where ui is a unit in
R.

(1.4) Alternative Formulations. Let R be a ring. The following remarks give con-
ditions under which unique factorization is possible.

(a) Every nonzero element of a ring R can be factored as a product of irreducible
elements if and only if every sequence of principal ideals

Ra1 ⊂ Ra2 ⊂ · · ·
is stationary, that is, there exists m with Ram = Ram+1 = · · · .
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(b) For an integral domain R such that every nonzero element is a product of irre-
ducible elements the following are equivalent:

(1) R is factorial.
(2) If p is an irreducible dividing ab, then p divides either a or b.
(3) If p is an irreducible, then Rp is a prime ideal.

(1.5) Example. Every principal ring is a factorial ring for example the integers Z,
the Gaussian integers Z[i], the Jacobi integers Z[ρ], where ρ = exp(2π i/3), and
k[X ], where k is a field.

For R a factorial ring with field of fractions F and an irreducible p in R, each
nonzero x in F can be represented as x = pr (a/b), where a, b are in R and not
divisible by p and r is an integer. Moreover, r and a/b are unique. We define the
order function ordp : F∗ → Z at the irreducible p by the relation ordp(x) = r .
Observe that it has the following properties:

ordp(xy) = ordp(x)+ ordp(y),

ordp(x + y) ≥ min{ordp(x), ordp(y)}.

Moreover, any nonzero a in F is in R if and only if ordp(a) ≥ 0 for all irreducibles
p in R. This leads to the following definition.

(1.6) Definition. A (discrete) valuation on a field F is a function v : F ′ → Z such
that

v(xy) = v(x)+ v(y) and v(x + y) ≥ min{v(x), v(y)},

where x, y are in F . By convention we set v(0) = +∞ so that the case x + y = 0 is
covered in the second relation. The value group of v is defined to be the image of v
in Z.

As for some elementary properties of valuations, observe that

v

(
x

y

)
= v(x)− v(y), v(1) = v(−1) = 0, v(xn) = nv(x),

and if v(x) < v(y), then it follows that v(x) = v(x + y). To see this, we have
v(x) ≤ v(x + y) from the definition, and from x = (x + y) + (−y), it follows that
v(x + y) ≤ v(x) too since v(y) = v(−y).

For a prime number p in Z the associated valuation ordp on Q is called the p-
adic valuation, and up to an integral multiple every valuation on the field of rational
numbers is a p-adic valuation for some p.

To each valuation we can associate a principal, hence factorial, ring with exactly
one irreducible up to multiplication by units.

(1.7) Definition. Let v be a valuation on a field F . The valuation ring Rv is the set
of all x in F with v(x) ≥ 0.
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Observe that the units R∗
v in Rv is the group of all x with v(x) = 0 and the

nonunits form the unique maximal ideal Mv which equals the set of all x in F with
v(x) > 0. The residue class field k(v) is the quotient ring Rv/Mv . If the valuation
is trivial, that is, if v(F∗) = 0, then Rv = F and Mv = 0. Otherwise Rv �= F and
Mv �= 0. If the value group is v(F∗) = mZ, then there exists an element t in Rv
with v(t) = m. Then it follows that Mv = Rvt and every x in F∗ can be represented
as x = tr u, where u is in R∗

v and r is the integer where v(x) = rm. Note that v is
m · ordt .

If k is a subfield of F with v(k∗) = 0, then k∗ ⊂ R∗
v and the restriction of the

residue class morphism Rv → k(v) to k → k(v) is a monomorphism of fields. In
this case we say that the valuation v is trivial on k.

§2. Factorial Properties of Polynomial Rings
Valuations are useful for discussing factorization properties of polynomial rings. Let
F be a field with a valuation v and define v+ on F[x1, . . . , xn] by the relation

v+
(∑

ai,...in xi1
1 . . . x

in
n

)
= min

{
v
(
ai1...in

)}
.

(2.1) Proposition (Gauss’s Lemma). Let F be a field with a valuation v. For f, g
in F[x1, . . . , xn] we have

v+( f g) = v+( f )+ v+(g).
Proof. Consider the case of one variable x . Since v+(c f ) = v(c) + v+( f ), we can
assume that v+( f ) = v+(g) = 0 so that f, g are in Rv[x]. If f (x) = am xm+· · ·+a0
and g(x) = bn xn + · · · + b0, then there exists indices i and j where ai and b j are
units and ap and bq are not units for p < i and q < j . From this we see that the
coefficient of xi+ j in f (x)g(x) is a unit since v(a) = v(a + b) if v(a) < v(b). Thus
we have v+( f g) = 0, and this proves the formula in the case of one variable.

For n variables choose d > deg( f g). Then substitute xi = xdi−1
for all i . This

maps

f (x1, . . . , xn) → f ∗(x) = f
(

x, xd , . . . , xdn−1
)

such that v+( f ) = v+( f ∗). In this way the n variable case is reduced to the 1
variable result which proves the proposition.

(2.2) Theorem. If R is a factorial ring, then R[x1, . . . , xn] is a factorial ring.

Proof. Since R[x1, . . . , xn] = R[x1, . . . , xn−1][xn], it suffices, by induction on n,
to prove the theorem for n = 1 and x1 = x . If F is the field of fractions of R, then
F[x] is a factorial ring since F[x] is a principal ring. Thus every f in R[x] ⊂ F[x] is
a product f = f1 . . . fr , where the fi are irreducibles in F[x]. For each irreducible
p in R, we have
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0 ≤ ord+
p ( f ) = ord+

p ( f1)+ · · · + ord+
p ( fr ).

We can assume that ord+
p ( fi ) ≥ 0 for all i and that p is irreducible in R. This means

that each fi is an irreducible in R[x].
Let f be an irreducible in R[x] with f (x) dividing a(x)b(x) in R[x]. If deg( f ) =

0, then f is an irreducible in R and

0 < ord+
f (a(x)b(x)) = ord+

f (a(x))+ ord+
f (b(x)).

Hence f divides a(x) when ord+
f (a(x)) > 0 or b(x) when ord+

f (b(x)) > 0. If
deg( f ) > 0, then ord+

p ( f ) = 0 for every irreducible p ∈ R and f is irreducible in
F[x] by the argument in the previous paragraph. Since F[x] is factorial, f (x) divides
a(x) or b(x) in F[x] and so a(x) = f (x)q(x) for example. Then 0 ≤ ord+

p (a(x)) =
ord+

p ( f (x))+ord+
p (q(x)) = ord+

p (q(x)) and q(x) ∈ R[x]. Hence f (x) divides a(x)
in R[x] with quotient q(x). This proves the theorem.

§3. Remarks on Valuations and Algebraic Curves
Let k be an algebraically closed field, and let V denote the set of valuations up to
equivalence on the field k(x) of rational functions in one variable over k which are
trivial on k. We map P1(k) → V by

(1, a) in P1(k) → v(1,a) = ordx−a for k[x] ⊂ k(x),

∞ = (0, 1) in P1(k) → v(0,1) = ord1/x for k[1/x] ⊂ k(x).

Then the function P1(k) → V given by P → vp, is a bijection. For it is clearly
an injection, and to show that each valuation v is of the form vp, consider the ideal
Mv ∩ k[x] in k[x] if x ∈ Rv or the ideal Mv ∩ k[1/x] if x ∈ Rv . The remainder of
the argument is left to the reader.

(3.1) Remark. Let C f be an irreducible plane curve defined over k. Then the inte-
gral domains

k[x, y]

f (1, x, y)
,

k[w, y]

f (w, 1, y)
,

k[w, x]

f (w, x, 1)

all have naturally isomorphic fields of fractions, denoted k(C f ), and called the func-
tion field of the curve. The subrings k[w], k[x], and k[y] all inject into k(C f ) except
when f is w, x, or y, respectively. Thus the field k(C f ) is a finite extension of
k(w), k(x), or k(y). The main assertion is: there is a natural map from C f (k) to val-
uations on k(C f ) trivial over k up to equivalence which is a bijection when C f is
nonsingular and k is algebraically closed. This map extends P1(k)→ V considered
above in the sense that for k(P1) = k(t) ⊂ k(C f ) the points of C f mapping onto
P ∈ P1 under t : C f → P1 correspond to the extensions to k(C f ) of the valuation
vp on k(P1).
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§4. Resultant of Two Polynomials
The considerations in the section were used in Chapter 2, §2 to determine to what
extent the sets H f (K ) determine the form f .

(4.1) Definition. For polynomials f, g in R[x] given by

f (x) = a0 + a1x + · · · + am xm and g(x) = b0 + b1x + · · · + bn xn

the resultant R( f, g) of f and g is the element of R given by the following (m +
n)× (m + n) determinant.

R( f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · am 0 · · · 0
0 a0 · · · am−1 am · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · a0 a1 · · · · · · am

b0 b1 · · · bn−1 bn 0 · · · 0
0 b0 · · · bn−1 bn · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · b0 b1 · · · · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎬⎪⎪⎭⎫⎪⎪⎬⎪⎪⎭

n rows

m rows

We denote the corresponding resultant matrix by [R( f, g)].

(4.2) Theorem. For a factorial ring R and polynomials f, g ∈ R[x], the following
statements are equivalent:

(1) The polynomials f and g have a common factor of strictly positive degree in
R[x].

(2) There exists nonzero polynomials a(x), b(x) in R[x] such that deg a < n =
deg g, deg b < m = deg f , and a f + bg = 0.

(3) R( f, g) = 0.

When R( f, g) �= 0 there exists polynomials a(x), b(x) in R[x] such that deg a < n,
deg b < m, and R( f, g) = a f + bg.

Proof. If u(x) is a common factor of strictly positive degree, then we can write
f (x) = b(x)u(x) and g(x) = −a(x)u(x) where a and b have the desired properties,
so that (1) implies (2). The converse (2) implies (1) follows from factoring of f and
g in R[x] since R[x] is factorial by (4.1).

For any polynomials of the form

a(x) = α0 + α1x + · · · + αn−1xn−1

and

b(x) = β0 + β1x + · · · + βm−1xm−1,

we see from the formulas for matrix multiplication that
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(c0, c1, . . . , cm+n−1) = (α0, . . . , αn−1, β0, . . . , βm−1)[R( f, g)],

where a(x) f (x)+b(x)g(x) = c(x) = c0+c1x +· · ·+cm+n−1xm+n−1. Now (2) and
(3) are equivalent because there exists a nonzero (α0, . . . , αn−1, β0, . . . , βm−1) for
c0, . . . , cm+n−1) = (0, . . . , 0) if and only if R( f, g) = det[R( f, g)] = 0. Moreover,
the second statement holds by choosing (c0, . . . , cm+n−1) = (R( f, g), 0, . . . , 0),
and using the cofactor formulas for the inverse of the matrix [R( f, g)]. This proves
the theorem.

(4.3) Proposition. Let f = am + am−1x + · · · + a0xm and g = bn + bn−1x +
· · · + b0xn be polynomials over the ring R[y0, . . . , yr ], where R is factorial. If ak

and bk are homogeneous of degree k, then R( f, g) ∈ R[y0, . . . , yr ] is homogeneous
of degree mn.

Proof. We calculate R( f, g)(t y) using the homogeneous character of a1(y0, . . . , yr )

and b j (y0, . . . , yr ) and at the time multiplying each row by a suitable power of t so
that each column contains a constant power of t .

tu R( f, g)(t y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tntmam tntm−1am−1 · · · tna0 0 · · · 0
0 tn−1tmam · · · tn−1ta1 tn−1a0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 t tmam ttm−1am−1 · · · ta0

tmtnbn tmtn−1bn−1 · · · tmb0 0 · · · 0
0 tm−1tnbn · · · tm−1tb1 tm−1b0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · t tnbm ttn−1b · · · tb0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since each column contains a fixed power of t , this determinant equals tvR( f, g)(y)
where

u = m(m + 1)

2
+ n(n + 1)

2

and

v = (m + n)(m + n + 1)

2
.

Since v − u = mn, we deduce that R( f, g)(t y) = tmn R( f, g)(y). Thus R( f, g)(y)
is homogeneous of degree mn and this proves the proposition.

Exercises to Appendix

1. Verify the elementary properties of valuations given in definition (1.6), and verify that
ordp is a valuation on the field F of fractions of R where p is an irreducible in a factorial
ring R.

2. In §3 carry out the details to show P → vP defining P1(k)→ V is a bijection.
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3. Let k[[x]] be the ring of formal series over the field k, that is, expressions of the form
a(x) = ∑

0≤n an xn . Let O(a(x)) = n, where an �= 0 and ai = 0 for i < n. Show that

O(ab) = O(a)+ O(b), O(a + b) ≥ min{O(a), O(b)}.
Show that the field of fractions k((x)) of k[[x]] is equal to k[[x]][1/x], and that v(a/b) =
O(a)− O(b) is a valuation on k((x)). Moreover, show that the elements c of k((x)) can
be written in the form c(x) = ∑

m≤i ci xi , and if cm �= 0, then v(c) = m.
4. The discriminant D( f ) of a polynomial f (x) is defined to be the resultant R( f, f ′),

where f ′ is the derivative of f . Prove that f in k[x] has a repeated root in an extension
field of k if and only if D( f ) = 0.

5. Calculate the discriminant D( f ) of the polynomials ax2 + bx + c and x3 + px + q.
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Elliptic Curves and Their Isomorphisms

Using the results of the previous chapter, we complete the unfinished business con-
cerning elliptic curves described as cubic curves, namely the associative law, the
transformation into normal form, and the discriminant criterion for nonsingularity or
smoothness. At the same time admissible changes of variables are introduced; these
are equivalent to isomorphisms given by a change of variable in the first equation
from an elliptic curve defined by one cubic onto another.

The special cases of characteristic 2 and 3 are considered in detail. All elliptic
curves over F2, the field of two elements, are described and their isomorphism re-
lations over extension fields are given. Finally, we return to the subject of singular
cubics and their group of nonsingular points.

§1. The Group Law on a Nonsingular Cubic
In the Introduction we described the chord-tangent group law on a nonsingular cubic
curve, and in Chapter 1 we made extensive calculations with this group law. Now
using the intersection theory of Chapter 2, we show that the group law satisfies the
associative law and point out how the intersection multiplicity i(P, L, C) enters into
the definition of the group law.

For the chord-tangent composition PQ of P and Q on a nonsingular cubic the
following assertions based on 2(3.1), 2(4.5), and 2(4.6) are used.

(1.1) Remarks. Let L be a line and C a cubic curve both defined over a field k. Let
k′ be an algebraically closed extension of k. One of the following situations hold for
the intersection L(k′) ∩ C(k′):

(a) L(k′) ∩ C(k′) = {P1, P2, P3}, three points where i(Pi , L ,C) = 1 for i =
1, 2, 3. The composition is given by Pi Pj = Pk , and if Pi and Pj are rational over
k, then so is Pk for {i, j, k} = {1, 2, 3}.

(b) L(k′)∩C(k′) = {P, P ′}, two points where i(P; L ,C) = 2 and i(P ′; L ,C) =
1. Either L is tangent to C at P or P is a singular point of C , and the compositions
are given by P P = P ′ and P P ′ = P . If P is rational over k, then so is P ′.



66 3. Elliptic Curves and Their Isomorphisms

(c) L(k′) ∩ C(k′) = {P}, one point where i(P; L ,C) = 3 and in this case
P P = P and P is either a point of inflection or a singular point.

In particular, the chord-tangent composition is a function C(k)× C(k)→ C(k).

(1.2) Theorem. Let C be a nonsingular cubic curve defined over a field k, and let
O be a point on C(k). Then the law of composition defined by P + Q = O(P Q) on
C(k) makes C(k) into an abelian group with O as zero element and −P = P(O O).
Moreover, O is a point of inflection if and only if P + Q + R = 0 whenever P, Q,
and R are the three intersection points of C with a line. In this case we also have
−P = P O and O O = O.

Proof. The above group law was introduced in §5 of the Introduction. All of the
group axioms were considered except for the associative law, and, in fact, they are
immediate from the definition. The statement about O being an inflection point was
also considered in the Introduction.

The associativity relation would follow if we knew that P(Q + R) = (P + Q)R
since composing this with O yields our composition law.

We begin with the case where P, Q, and R are distinct. To form P(Q + R), we
find first Q R, join that to O , and take the third intersection point Q + R. Now join
Q + R to P , which gives the point P(Q + R), and we need to show that it is the
same as (P + Q)R. In the figure each of the points O, P, Q, R, P Q, P + Q, Q R,
and Q + R lies on one dotted line and one solid line.

We have nine points, O, P, Q, R, P Q, P + Q, Q R, Q + R, and the intersection
T of the line joining P to Q + R and the line joining P + Q to R. We must show
that T is on the cubic.

For this, observe that there are two degenerate cubics which go through the nine
points, namely the union C1 of the three dotted lines and the union C2 of the three
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solid lines. By construction these three cubics go through the nine points. Since the
given cubic C goes through the first eight points, by Theorem 2(3.3) we deduce that
the ninth point T is also on C and thus (P + Q)R = P(Q + R).

When P, Q, and R are not all distinct, using the commutative law, we see that
one has only to check the case P + (P + Q) = (P + P) + Q. This comes from
a limiting position of the above diagram or can be proved using a special direct
argument. Hence P + Q is an abelian group law, and this proves the theorem.

With this theorem we complete the formulation of the notion of an elliptic curve
given in (5.1) of the Introduction as a nonsingular cubic plane curve, with a chosen
point, and the group law given by the chord-tangent composition. Observe that any
projective transformation preserving the zero point will also be a group homomor-
phism since it preserves the chord-tangent construction.

Let E be an elliptic curve over a field k. For each field extension K of k the
points E(K ) form an abelian group, and if K → K ′ is a k-morphism of fields, then
the induced function E(K )→ E(K ′) is a group morphism. Thus E is a functor from
the category of fields over k to the category of abelian groups.

Exercises

1. Verify completely the assertions in (1.1).
2. Carry out the details of the proof of the associative law for the ases P + (P + Q) =
(P + P)+ Q.

§2. Normal Forms for Cubic Curves
In the examples of Chapter 1 we always chose a cubic equation in normal form and
mentioned that any elliptic curve could be transformed into normal form. This can
be done in two ways. Transforming a flex, which exists by 2(4.8), to infinity with a
tangent line, the line at infinity gives the normal form after suitable rescaling of the
variables. For the reader with more background we sketch how it can be derived from
the Riemann–Roch theorem. Here the background reference is Hartshorne [1977],
Chapter 4.

(2.1) Remark. Any flex on a nonsingular cubic curve can be transformed to 0:0:1
in such a way that the tangent line to the transformed curve is w = 0, the line at
infinity. In this case the cubic equation has the form in the w, x-plane

f (w, x, 1) = w + f2(w, x)+ f3(w, x) = w + a1wx + a3w
2 + f3(w, x)

since w must divide f2(w, x) from the remarks following 2(4.7). Now normalize the
coefficient of x3 in f3(w, x) to −1, and we have the normal form f (w, x, y) = 0,
namely

0 = wy2 + a1wxy + a3w
2 y − x3 − a2wx2 − a4w

2x − a6w
3.

Away from the origin in the elliptic curve, we set w = 1 and consider the differential

0 = d f (1, x, y) = fx (1, x, y)dx + fy(1, x, y) dy.
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(2.2) Invariant Differential. For an elliptic curve E given by the equation 0 =
f (1, x, y) in normal form the invariant differential is given by the following two
expressions:

ω = dx

2y + a1x + a3
= dx

fy
= −dy

fx
= dy

3x2 + 2a2x + a4 − a1 y
.

Henceforth when we speak of an elliptic curve we will always mean a cubic curve
E with O at 0 : 0 : 1 and the equation in normal form. We still need to study to what
extend these forms are unique. This is related to transformations of an elliptic curve,
or from another point of view, changes of variable which preserves the normal form.
We make this precise with the next definition.

(2.3) Definition. An admissible change of variables in the equation of an elliptic
curve is one of the form

x = u2 x̄ + r and y = u3 ȳ + su2 x̄ + t,

where u, r, s, and t in k with u invertible, i.e., nonzero.

(2.4) Remark. Substitution by an admissible change of variables into the equation
0 = f (w, x, y) in normal form yields a new form of the equation in terms of the
variables x̄ and ȳ:

ȳ2 + ā1xy + ā3 ȳ = x̄3 + ā2 x̄2 + ā4 x̄ + ā6.

The invariant differential ω is changed to ω̄ and ω̄ = uω. Also,

uā1 = a1 + 2s,

u2ā2 = a2 − sa1 + 3r − s2,

u3ā3 = a3 + ra1 + 2t = fy(r, t),

u4ā4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st = − fx (r, t)− s fy(r, t),

u6ā6 = a6 + ra4 + r2a2 + r3 − ta3 − r ta1 − t2 = − f (r, t).

These relations are left to the reader who should keep in mind that a6 = − f (0, 0),
a4 = − fx (0, 0), and a3 = fy(0, 0).

(2.5) Remark. Consider two elliptic curves Ē and E defined by the equations in āi

and ai , respectively, in normal form. Then φ : Ē → E is an isomorphism such that
the functions x, y on E composed with φ are related to the functions x̄, ȳ on Ē by

xφ = u2 x̄ + r and yφ = u3 ȳ + su2 x̄ + t

as in an admissible change of variable. An easy calculation shows that the compo-
sition of two admissible changes of variable is again one and that the inverse of an
admissible change of variables is again one.

For an admissible change of variables with r = s = t = 0 we have ai =
ui āi , x = u2 x̄, y = u3 ȳ, and ω = u−1ω̄. Thus there is a homogeneity where x
has weight 2, y weight 3, ai weight i , and ω weight −1. The polynomial f (x, y) has
weight 6 where f (x, y) = 0 is the equation in normal form.
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Now for the second derivation of the normal form of the cubic equation for an
elliptic curve we use Hartshorne [1977], Chapter 4 as background reference. The
reader unfamiliar with this general curve theory can skip to the next section.

For the remainder of this section a curve C is a complete, nonsingular curve over
an algebraically closed field k and 0 is a point of C(k).

(2.6) Riemann–Roch for Curves of Genus 1. Let OC be the structure sheaf on C
of germs of regular functions. Let OC (m · 0) be the sheaf of germs of functions
having at most an mth order pole at 0. For the vector space of sections �(OC (m · 0))
the Riemann–Roch theorem gives the following formula when C is of genus 1:

dimk �(OC (m · 0)) =
{

m for m > 0,

1 for m = 0.

We can choose a basis for these spaces �(OC (m · 0)) for small m as follows
where we make use of the inclusions �(OC (m · 0)) ⊂ �(OC (m′ · 0)) for m ≤ m′:

�(OC (1 · 0)) = �(OC (0 · 0)) = k · 1,

�(OC (2 · 0)) = k · 1 ⊕ k · x,

�(OC (3 · 0)) = k · 1 ⊕ k · x ⊕ k · y,

�(OC (4 · 0)) = k · 1 ⊕ k · x ⊕ k · y ⊕ k · x2,

�(OC (5 · 0)) = k · 1 ⊕ k · x ⊕ k · y ⊕ k · x2 ⊕ k · xy.

Here x has a pole of order 2 and y of order 3 at 0. In �(OC (6 · 0)) there are seven
natural basis elements,

1, x, y, x2, xy, x3, and y2,

but the space is six dimensional. Hence there is a linear relation which is the defining
equation of the image under

(1 : x : y) : C → P2(k).

Further, given a local uniformizing parameter z at 0 generating the maximal idea
of the local ring OC of C at 0, we can specify that the formal analytic expansion of
x and y be of the form

x = 1

z2
+ · · · and y = − 1

z3
+ · · · .

Note that x is unique up to a constant and y up to a linear combination of x and a
constant. With this normalization the linear relation satisfied by 1, x, y, x2, xy, x3,
and y3 is exactly the normal form of the cubic.

(2.7) Remark. The origin of admissible changes of variables can be seen from the
point of view of changing z to a new local uniformizing parameter uz = z̄ by mul-
tiplying z by a nonzero element of the ground field. Then x and y are changed to
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new functions x̄ and ȳ satisfying x̄ = (z̄)−2 + · · · and ȳ = −(z̄)−3 + · · · . Since
x = u2(z̄)−2 + · · · , it follows that x = u2 x̄ up to a constant, i.e., x = u2 x̄ + r for r
in k. Since y = −u3(z̄)−3 + · · · , it follows that y = u3 ȳ up to a linear combination
of x and a constant, i.e., y = u3 ȳ + su2 x̄ + t .

We summarize (2.6) and (2.7) in the next theorem.

(2.8) Theorem. Any isomorphism between two elliptic curves is given by an admis-
sible change of variables relative to two given equations in normal form.

Exercises

1. Verify the formulas for ui āi , where i = 1, 2, 3, 4, and 6 in (2.4).
2. Show that the inverse and the composite of two admissible changes of variable are again

admissible changes of variable.

§3. The Discriminant and the Invariant j
We associate to a cubic equation in normal form

(N1) y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6,

two new sets of coefficients bi for i = 2, 4, 6, and 8 and c j for j = 4 and 6 which
arise first from completing the square and second from completing the cube.

(3.1) Notations. Associated to the coefficients a1 in the cubic (N1) are the coeffi-
cients

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a2

3 − a2
4 .

These quantities are related by 4b8 = b2b6 − b2
4. We also introduce the discriminant

in terms of the bi ’s:

 = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

With the discriminant we can decide whether or not the cubic is nonsingular. It
is nonsingular if and only if  �= 0. Firstly we study the bi and introduce the c j

coefficients.

(3.2) Remarks. Under an admissible change of variable as in (2.3) and (2.4) we
have, for the corresponding b̄i and ̄, the relations

u2b̄2 = b2 + 12r,
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u4b̄4 = b4 + rb2 + 6r2,

u6b̄6 = b6 + 2rb4 + r2b2 + 4r3,

u8b̄8 = b8 + 3rb6 + 3r2b4 + 3r4,

and u12̄ = . Moreover, if k is a field of characteristic different from 2, then for
y′ = y + (a1x + a3)/2 and x ′ = x the equation in normal form becomes

(N2) (y′)2 = (x ′)3 + b2

4
(x ′)2 + b4

2
x ′ + b6

4
.

(3.3) Notations. Associated to the coefficients ai in (N1) and b j in (3.1) are the
coefficients

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6.

For  invertible, we introduce the quantity

j (E) = j = c3
4


.

We have the following relation 123 = c3
4 − c2

6, and, therefore,

j = 123 c3
4

c3
4 − c2

6

.

(3.4) Remarks. Under an admissible change of variable as in (2.3) and (2.4) we
have for the corresponding c̄ j and j̄ the relations

u4c̄4 = c4 and u6c̄6 = c6 and finally j̄ = j.

For the j-invariant we have j = j̄ which means that j (E) is an invariant of an
elliptic curve E up to isomorphism. If E and Ē are isomorphic, as in (2.5) and (2.8),
then we have j (E) = j (Ē). Moreover, if k is a field of characteristic different from
2 and 3, then for y′′ = y′ and x ′′ = x ′ + b2/12 the equation in normal form becomes

(N3) (y′′) = (x ′′)3 − c4

48
x ′′ − c6

864

and ω = dx ′′/2y′′.

Now we take up the question of when the normal form defines a nonsingular
curve. First consider a cubic polynomial f (x) = x3 + px + q. The discriminant
D( f ) is the resultant R( f, f ′) where f ′(x) = 3x2 + p is the derivative of f (x). We
compute

D( f ) =

∣∣∣∣∣∣∣∣∣∣
q p 0 1 0
0 q p 0 1
p 0 3 0 0
0 p 0 3 0
0 0 p 0 3

∣∣∣∣∣∣∣∣∣∣
= 27q2 + 4p3.
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(3.5) Remarks. The polynomial f (x) = x3 + px + q ∈ k[x] has a repeated root
in some extension field of k if and only if D( f ) = 0. For a field k of characteristic
unequal to 2 the cubic curve given by the equation y2 = f (x) is nonsingular if
and only if D( f ) �= 0. This was already remarked in 1(2.1), and it is related to the
calculation 2yy′ = f ′(x) showing that there is a well-defined tangent line if and only
if f (x) and f ′(x) do not have a common solution See also (8.2).

Return now to

(N2) y2 = x3 − c4

48
x − c6

864
= f (x),

so that p = −c4/48 and q = −c6/864. Using 864 = 25 · 33 and 48 = 24 · 3, we see
that

−24 D( f ) = c3
4 − c2

6

123
= .

In conclusion we have the following result in characteristic different from 2 and 3.

(3.6) Proposition. Over a field k of characteristic different from 2 or 3, the cubic
equation

y2 = x3 − c4

48
x − c6

864

represents an elliptic curve if and only if  �= 0. Also ω − dx/2y.

(3.7) Remark. For j �= 0 or 123 the following cubic

y2 + xy = x3 − 36

j − 1728
x − 1

j − 1728

defines an elliptic curve with j-invariant equal to j over any field k. This is a straight-
forward calculation which is left to the reader to verify. The elliptic curve with equa-
tion y2 = x3 + a has j = 0, and the elliptic curve with equation y2 = x3 + ax has
j = 123 = 1728.

This topic is also taken up in §8.

Exercises

1. Derive the formula for the discriminant of the cubic polynomial f (x) = x3+ax2+bx+c.
2. Derive the formula for the discriminant of the cubic polynomial

f (x) = (x − α1)(x − α2)(x − α3).

3. Derive the formula for the discriminant of the quartic polynomial

f (x) = x4 + ax2 + bx + c.
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4. Calculate the discriminant for the following elliptic curves. Calculate the value of j .

(a) y2 + y = x3 − x2. (b) y2 + y = x3 + x2.

(c) y2 + y = x3 − x . (d) y2 + y = x3 + x .

(e) y2 − xy + y = x3. (f) y2 − y = x3 − 7.

5. Give the general formula for the discriminant for x3 + ax2 + bx and compare with the
discriminant of the cubic curve with equation y2 = x3 + ax2 + bx . Determine the
discriminant of the following elliptic curves.

(a) y2 = x3 + x2 − x . (b) y2 = x3 − x2 + x .

(c) y2 = x3 − 2x − x . (d) y2 = x3 − 2x2 − 15x .

§4. Isomorphism Classification in Characteristics �= 2, 3
In §4, §5, §6 we have a common approach to the isomorphism classification, and in
§8 there is an alternative approach to §4.

Let k be a field of characteristic �= 2, 3 in this section. For an elliptic curve E over
k we can choose coordinates x and y giving the Weierstrass model in the following
form:

y2 = x3 + a4x + a6 and ω = dx

2y
.

By (3.4) we see that

c4 = −48a4, c6 = −864a6, and  = −16(4a3
4 + 27a2

6).

(4.1) Conditions for Smoothness. For f = y2 − x3 − a4x − a6 the curve E is
smooth or nonsingular if and only if f, fx , and fy have no common zero. By (3.6)
the curve E is smooth if and only if  �= 0.

Further, j = j (E) is given by

j = c3
4


= 123 c3

4

c3
4 − c2

6

= −43123(a4)
3

−16(4a3
4 + 27a2

6)
= 123 4a3

4

4a3
4 + 27a2

6

.

(4.2) Isomorphisms Between Two Curves with the Same j-Invariant. Suppose E
and Ē are two elliptic curves defined over k with equations y2 = x3 + a4x + a6 and
y2 = x3 + ā4x + ā6 such that j = j (E) = j (Ē). If φ : Ē → E is an isomorphism,
or equivalently admissible change of variables, then

xφ = u2 x̄, yφ = u3 ȳ, a4 = u4ā4, and a6 = u6ā6.

These relations are now studied in three separate cases. Observe that 123 �= 0 in the
characteristics under consideration.
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Case 1. j �= 0 or 123, or equivalently a4a6 �= 0. Then we see that E and Ē
are isomorphic only if the quotient a4ā6/ā4a6 is a square u−2. Hence E and Ē are
isomorphic over any field extension of k containing the square root of the quotient
a4ā6/ā4a6. Further, specializing to E = Ē , we have that the automorphism group
Aut(E) = {+1,−1}, the group of square roots of 1.

Case 2. j = 123, or equivalently a6 = 0. The basic example is the curve y2 =
x3 − x . Then E and Ē are isomorphic if and only if the quotient a4/ā4 is a fourth
power u4. Hence E and Ē are isomorphic over any field extension of k containing a
fourth root of the quotient a4/ā4. Further, specializing to E = Ē , we have that the
automorphism group Aut(E) = {+1,−1,+i,−i}, the group of fourth roots of unity.

Case 3. j = 0, or equivalently a4 = 0. The basic example is the curve y2 =
x3 − 1. Then E and Ē are isomorphic if and only if the quotient a6/ā6 is a sixth
power u6. Hence E and Ē are isomorphic over any field extension of k containing
a sixth root of the quotient a6/ā6. Further, specializing to E = Ē , we have that the
automorphism group Aut(E) = {+1,−1,+ρ,−ρ,+ρ2,−ρ2}, the group of sixth
roots of unity where ρ2 + ρ + 1 = 0.

It is natural to ask (1) j (E) = j (Ē) implies E and Ē are isomorphic for k
algebraically closed, and (2) whether all values in k, besides 0 and 123, are j values
of some elliptic curve. When a4a6 �= 0 and k is algebraically closed, we can rescale
x and y so that the Weierstrass equation has the form y2 = 4x3 − cx − c. In terms
of c we calculate with (3.4)

j = 123 c3

c3 − 27c2
= 123 c

c − 27
= 123 J (123 = 1728).

From the relation J = c/(c − 27) we can solve for c in terms of j as

c = 27
J

J − 1
= 27

j

j − 1728
.

Thus we have the proposition.

(4.3) Proposition. Two elliptic curves E and Ē over k are isomorphic over k̄ if and
only if j (E) = j (Ē). The curve with classical Weierstrass equation

y2 = 4x3 − 27
j

j − 1728
x − 27

j

j − 1728

has j-invariant equal to the parameter j in the formula for the coefficients.

This is another version of the result (3.7) where for all j values unequal to 0 and
123 an elliptic curve E with given j = j (E). These curves are in a family of elliptic
curves over the twice punctured plane with fibre over j equal to an elliptic curve with
j value equal to the given j .
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§5. Isomorphism Classification in Characteristic 3
Let k be a field of characteristic 3 in this section. For an elliptic curve E over k we
can choose coordinates x and y giving the Weierstrass model in the form

y2 = x3 + a2x2 + a4x + a6 and ω = −dx

y
.

By (3.1) and (3.3) and using 3 = 0, we see that

b2 = a2, b4 = −a4, b6 = a6, b8 = −a2
4 + a2a6

and

c4 = a2
2, c6 = −a3

2,  = a2
2a2

4 − a3
2a6 − a3

4 .

(5.1) Conditions for Smoothness. As in (4.1) the curve E is smooth if and only if
the cubic polynomial g(x) = x3 + a2x2 + a4x + a6 and its derivative g′(x) have
no common zero. Since  and the discriminant of g(x) are equal up to a nonzero
constant, we deduce again that E is smooth if and only if  �= 0.

Further, j = j (E) is given by

j = c3
4


= a6

2

a2
2a2

4 − a3
2a6 − a3

4

.

(5.2) Isomorphisms Between Two Curves with the Same j-Invariant. Suppose E
and Ē are two elliptic curves defined over k with Weierstrass equations y2 =
x3 + a2x2 + a4x + a6 and y2 = x3 + ā2x2 + ā4x + ā6 such that j = j (E) = j (Ē).
If f : Ē → E is an isomorphism, then its form is determined by whether j �= 0 or
j = 0 = 123.

Case 1. j �= 0 or equivalently a2 �= 0. By completing the square in both Weier-
strass equations, we can assume that a4 = ā4 = 0. Then j (E) = −a3

2/a6 =
−ā3

2/ā6 = j (Ē), and the following hold:

x f = u2 x̄, y f = u3 ȳ, and a2 = u2ā2.

Thus E and Ē are isomorphic if and only if the quotient a2/ā2 is a square u2. Hence
E and Ē are isomorphic over any field extension of k containing the square root of
the quotient a2/ā2. Further, specializing to E = Ē , we have that the automorphism
group Aut(E) = {+1,−1}, the group of square roots of 1.

Case 2. j = 0, or equivalently a2 = 0. Then  = a4 and ω = dy/a4, and the
following hold for the isomorphism f :

x f = u2 x̄ + r, y f = u3 ȳ, a4 = u4ā4,

and
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u6ā6 = a6 + ra4 + r3.

Then E and Ē are isomorphic if and only if the quotient a4/ā4 is a fourth power u4

and u6ā6 − a6 is of the form r3 + ra4. Hence E and Ē are isomorphic over any field
where a4/ā4 is a fourth power and there is a solution for the cubic equation for r .
This can always be realized by going to a separable extension of degree dividing 12.

Further, specializing to E = Ē , we have that the automorphism group is a semi-
direct product Aut(E) = (Z/4) × (Z/3) where the cyclic group of order 4 acts
nontrivially on the normal subgroup of order 3. The only nontrivial action is for a
generator of Z/4 to carry every element to its inverse. The automorphisms of E are
parametrized by pairs (u, r ), where u is in +1,−1,+i,−i and r satisfies

(i) r3 + a4r = 0 if u = +1, −1,
(ii) r3 + a4r + 2a6 = 0 if u = +i , −i .

For the curve y2 = x3−x the automorphisms are given by (u, r)with u4 = 1 and
r3−r = 0, i.e., r in F3. The action of (u, r ) on the curve E is given by (u, r)(x, y) =
(x + r, uy) in terms of points on the curve.

The problem of realizing all j values, different from 0 = 123, has been solved in
(3.7). This is the case a2 �= 0 and when k is algebraically closed, we can rescale x
and y so that the cubic equation has the form y2 = x3 + x2 + a6 or in characteristic
3 the form y2 + xy = x3 + a6. In both cases j (E) = −1/a6.

(5.3) Proposition. The curves with normal cubic equations

y2 = x3 + x2 − 1

j
or y2 + xy = x3 − 1

j

have j-invariant equal to the parameter j appearing in the formula for the coefficient
for all nonzero j .

Exercises

1. Find the relation between  for the curve defined by the cubic equation y2 = g(x) =
x3 + a2x2 + a4x + a6, and the discriminant of the cubic polynomial g(x).

2. Find an elliptic curve in characteristic 3 with j value 0.

§6. Isomorphism Classification in Characteristic 2
Let k be a field of characteristic 2 in this section. For an elliptic curve E over k the
invariant differential has the form ω = dx/(a1x + a3) so that either a1 or a3 �= 0.
Also by (3.4) using 2 = 0, we see that b2 = a2

1 and c4 = b2
2, and therefore

c4 = a4
1 and j = a12

1 /.

In particular, a1 = 0 if and only if j = 0 = 123.
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(6.1) Conditions for Smoothness. Unlike characteristics different from 2 we have
to treat the two cases j = 0 and j �= 0 separately.

Case 1. j �= 0 or equivalently a1 �= 0. Under a change x to x + c, the term
y2 +a1xy +a3 becomes y2 +a1xy + (a1c+a3)y, and for a1 nonzero we can choose
a3 = 0. Changing x to a3

1 x and y to a3
1 y allows us to normalize a1 = 1, and a linear

change of the variable allows us to choose a4 = 0. The normal form becomes

y2 + xy = x3 + a2x2 + a6 and ω = dx

x
.

Then b2 = 1, b4 = b6 = 0, and b8 = a6, and, moreover, c4 = 1 and = a6 = 1/j .
The partial derivatives fx = y + x2 and fy = x have only x = y = 0 as a common
zero, and this lies on the curve if and only if a6 =  = 0. Hence E is smooth if and
only if  �= 0.

Case 2. j = 0 or equivalently a1 = 0. By completing the cube, we can choose
the normal form of the cubic to be

y2 + a3 y = x3 + a4x + a6 and ω = dx

a3
.

Then b2 = b4 = 0, b6 = a2
3 , and b8 = a2

4 , and, moreover,  = a4
3 and j = 0. Since

the partial derivative fx = x2 + a4 and fy = a3, it follows that the curve is smooth
if and only if a3 �= 0 or equivalently  �= 0.

(6.2) Isomorphisms Between Two Curves with the Same j-Invariant. Suppose E
and Ē are two elliptic curves defined over k such that j = j (E) = j (Ē). If
f : Ē → E is an isomorphism, then its form is determined for j �= 0 or j = 0 =
123.

Case 1. j �= 0 or equivalently a1 �= 0. Using the form of the Weierstrass equa-
tions in (6.1), Case 1 for E and Ē , we have

x f = x̄, y f = ȳ + sx̄,

and for the coefficients ā2 = a2+s2+s and ā6 = a6. Then E and Ē are isomorphic if
and only if the difference ā2−a2 is of the form s2+s. Hence E and Ē are isomorphic
over any field extension of k containing a solution to the quadratic equation

s2 + s = ā2 − a2.

Further, specializing to E = Ē , we have that the automorphism group Aut(E) =
{0, 1} under addition.

Case 2. j = 0 or equivalently a1 = 0. Using the form of the Weierstrass equa-
tions in (6.1), Case 2 for E and Ē , we have

x f = u2 x̄, y f = u3 y + su2 x̄ + t,
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and for the coefficients

u3ā3 = a3, u4ā4 = a4 + sa3 + s4,

u6ā6 = a6 + s2a4 + ta3 + s6 + t2.

Then E and Ē are isomorphic if and only if:

(1) the quotient a3/ā3 is a cube u3,
(2) the separable quartic equation s4 + a3t + a4 + u4ā4 = 0 in s has a solution, and
(3) the quadratic equation t2 +a3t + (s6 + s2a4 +a6 +u6ā6) = 0 in t has a solution.

Hence E and Ē are isomorphic over any field extension of k containing the roots
to the equations (1), (2), and (3). Further, specializing to E = Ē , we have that the
automorphism group Aut(E) is a certain group of order 24 provided that k contains
the roots of the above equations.

(6.3) Remark. The group Aut(E) can be described two ways either as SL2(F3) or
as the units in the integral quaternions ±1,±i,± j,±k, (±1 ± i ± j ± k)/2.

Now we consider the special case of k = F2, the field of two elements and write
down all the elliptic curves. There are five up to isomorphism (over F2) two with
j = 1 and three with j = 0.

Case 1. j = 1. Since y2 + xy = f (x) with f (x) = x3 and f (x) = x3 + x2

have a singularity at (0, 0), we have four equations related by replacing y by y + 1
pairwise:

E1 : y2 + xy = x3 + x2 + 1 ∼= E ′
1 : y2 + xy = x3 + x2 + x,

E2 : y2 + xy = x3 + 1 ∼= E ′
2 : y2 + xy = x3 + x .

We can “graph” the elliptic curves E1 and E2 over F2.

The groups E1(F2) = Z/2Z = {0, (0, 1)} and E2(F2) = Z/4Z = {0, (0, 1), (1, 0),
(1, 1)}.

Case 2. j = 0. Since the general form of such a curve is y2 + y = x3 +a4x +a6,
there are four possibilities of which two are isomorphic. Also we can replace y by
y + x or x by x + 1 to obtain forms up to isomorphism of the same elliptic curve.

E3 : y2 + y = x3 + x ∼= E ′
3 : y2 + y = x3 + x2,
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E4 : y2 + y = x3 + x + 1 ∼= E ′
4 : y2 + y = x3 + x2 + 1,

E5 : y2 + y = x3 ∼= E ′
5 : y2 + y = x3 + 1,

∼= E ′′
5 : y2 + y = x3 + x2 + x,

∼= E ′′′
5 : y2 + y = x3 + x2 + x + 1.

We can “graph” the elliptic curves E3, E4, and E5 over F2. The groups E3(F2) =
Z/5Z = {0, (0, 0), (1, 0), (0, 1), (1, 1)}, E4(F2) = 0 = {0}, and E5(F2) = Z/3Z

= {0, (0, 0), (0, 1)}. Observe that the five elliptic curves could not be isomorphic
over F2 in any sense preserving their structure as algebraic curves because all five
have different numbers of points over the field F2 of two elements. In summary we
have:

(6.4) Proposition. Up to isomorphism over F2 there are five elliptic curves defined
over F2. Two, namely E1 and E2 above, have j = 1 and three, namely E3, E4 and
E5 above, have j = 0.

Exercises

1. Show that the field of four elements F4 will be of the form 0,1, u, u′ where u2 = u′, uu′ =
1, 1 + u + u2 = 0, and 1 + u′ + u

′2 = 1. “Graph” the curves E1, . . . , E5 of (6.4) over
the field of four elements. Show that E1 and E2 are isomorphic and E3 and E4 are
isomorphic over F4. Show that E3 and E5 are not isomorphic over F4.

2. Show that there is a field F16 of 16 elements which is additively of the form F16 =
F4 + F4v where v2 + v = u. Show that every nonzero element is a square. Show that
there is a field F256 of 256 elements which is additively of the form F256 = F16 + F16w

where w2 + w = v3. Observe that we have the inclusions F2 ⊂ F4 ⊂ F16 ⊂ F256 and
Fq2 is a two-dimensional vector space over Fq .

3. Show that E3 and E5 are not isomorphic over F16, but that they are isomorphic over
F256.

4. Determine the automorphism groups Autk(Ei ) with i = 1, . . . , 5 as in (6.3) and k = Fq
for q = 2, 4, 16, 256.

5. Find all elliptic curves over F4 up to isomorphism over F4. Which curves become iso-
morphic over F16? Find their j-invariants.

6. Find all elliptic curves over F3 up to isomorphism over F3. Show there are four with
j = 1 or −1 and four with j = 0. Determine their groups of points over F9 and which
ones are isomorphic over F9.

7. For an elliptic curve E over F3 determine Autk(E), where k = F3 and F9.
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8. For each of the five curves Ei in (6.3) determine for which q = 2, 4, 8, 16, or 256 the
group E(Fq ) is noncyclic. Describe F8 as a cubic extension of F2.

9. Find all elliptic curves over the field F5 of five elements, determine the structure of their
group of points over F5, and find their j values.

§7. Singular Cubic Curves
Singular cubic curves will arise naturally in Chapter 5 when an elliptic curve is re-
duced modulo a prime. For this reason and as a rounding off of our discussion of
cubics in the plane, we study cubics over a field k wih irreducible equation

F(x, y) = y2 + a1xy + a3 y − x3 − a2x2 − a4x − a6 = 0

having a singular point which is rational.
The singular point can be transformed to the affine origin (x, y) = (0, 0) by an

admissible change of variables as discussed in (2.4). Observe that (0, 0) is on the
curve, i.e., F(0, 0) = 0 if and only if a6 = 0. To determine whether (0, 0) is a
singular point, we substitute into the partial derivatives

Fy = 2y + a1x + a3 and Fx = a1 y − 3x2 − 2a2x − a4.

(7.1) Remark. The point (0, 0) is a singular point on the Weierstrass cubic with
equation F(x, y) = 0 if and only if

a3 = a4 = a6 = 0.

This follows by just substituting Fy(0, 0) = a3 = 0 and Fx (0, 0) = −a4 = 0. With
reference to the formulas (3.1) we see that (0, 0) a singular point on the cubic curve
implies that

b4 = b6 = b8 = 0 and  = 0.

The Weierstrass form becomes

y2 = a1xy − a2x2 = x3,

and the discriminant of the quadratic form on the left is the coefficient b2 = a2
1 +4a2.

As in the Introduction, we go to the (t, s)-plane with t = −x/y and s = −1/y.
The singular Weierstrass equation becomes s = t3 + a1ts + a2t2s, and thus s is a
rational function of t , namely

s = t3

1 − a1t − a2t2
.

This means that a singular cubic C is a rational curve in the geometric sense, and the
set of nonsingular points Cns consists of all (t, s) with s = t3/(1 − a1t − a2t2) and
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1 − a1t − a2t2 �= 0. The discriminant of this quadratic is b2 = a2
1 + 4a2. In fact, we

can go further and put a group structure on Cns using the chord-tangent construction
considered in Chapter 1. Unlike the nonsingular cubics which give entirely new ob-
jects of study, singular cubics are isomorphic to the familiar multiplicative Gm and
additive Ga groups. This relation is carried out explicitly in the next theorem.

(7.2) Theorem. Let E be a cubic curve over k with equation y2+a1xy = x3+a2x2

which we factor as (y − αx)(y − βx) = x3 over the field k1 = k(α) = k(β).

(1) Multiplicative case, α �= β: The function (x, y) → (y − βx)/(y − αx) defines
a homomorphism Ens → Gm over k1.

(a) If k = k1, that is, α and β are in k, then the map Ens(k) → Gm(k) = k∗ is
an isomorphism onto the multiplicative group of k.

(b) If k1 is a quadratic extension of k, that is, α and β are not in k, then the map
defines an isomorphism Ens(k) → ker(Nk1/k), where Nk1/k : k∗

1 → k∗ is
the norm map and ker(Nk1/k) is the subgroup elements in k∗

1 with norm 1.

(2) Additive case, α = β: The function (x, y) → x/(y − αx) defines a homomor-
phism Ens → Ga over k1. The map Ens(k1) → Ga(k1) is an isomorphism onto
the additive group of k1. Observe that k = k(α) except possibly in characteristic
2.

Proof. In the multiplicative case we introduce the new variables

u = y − βx

y − αx
and v = 1

y − αx
.

Using the relation (y−αx)3(u−1)3 = (α−β)3x3 = (α−β)3(y−αx)(y−βx), we
obtain the equation for Ens in (u, v)-coordinates as (α−β)3uv = (u−1)3. Moreover,
lines in x, y with equations Ax + By +C = 0 are transformed into lines in u, v with
equations A′u + B ′v + C ′ = 0. If (u1, v1), (u2, v2), and (u3, v3) are three points on
the cubic Ens which lie on a line v = λu + δ, then we have the factorization

0 = (u − 1)3 − (α − β)3u(λu + δ) = (u − u1)(u − u2)(u − u3),

and hence the relation u1u2u3 = 1 in the multiplicative group. This means that the
function (x, y) → u carries the group law on Ens into the multiplicative group law
on k∗

1 .
Finally the elements u = (y − βx)/(y − αx) have norm one

Nk1/k(u) = uu′ = y − βx

y − αx
· y − αx

y − βx
= 1,

where α′ = β and β ′ = α are conjugates of each other in k1 over k. Conversely, if
z in k1 has norm 1, then for some c in k1 the element w = c + zc′ �= 0 and from
w′ = c′ + z′c we deduce that

zw′ = zc′ + zz′c = c + zc′ = w.
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Hence z = w/w′ = (y − βx)/(y − αx) for x, y in k.
In the additive case we introduce the new variables

u = x

y − αx
and v = 1

y − αx
.

Using the relation (y − αx)2 = x3 = (y − αx)3u3, we obtain the equation for Ens
in (u, v)-coordinates as v = u3. Moreover, lines in x, y are transformed into lines in
u, v. If (u1, v1), (u2, v2), and (u3, v3) are three points on the cubic Ens which lie of
a line v = λu + δ, then we have the factorization

0 = u3 − (λu + δ) = (u − u1)(u − u2)(u − u3),

and hence the relation u1 + u2 + u3 = 0 in the additive group. This means that the
function (x, y)→ u carries the group law on Ens into the additive group law on k1,
and Ens(k1)→ k+

1 is an isomorphism of groups. This proves the theorem.

(7.3) Remark. At the singular point (0, 0) on the cubic

x3 = y2 + a1xy − a2x2

= (y − αx)(y − βx)

the tangent lines are given by y = αx and y = βx . The discriminant of the quadratic
form factoring into the equations of the tangent lines is D = a2

1 +4a2 = b2. The two
cases considered in the previous theorem correspond to two kinds of singularities
and significantly for further questions to two kinds of j values:

(1) The singularity (0, 0) is a node (for simple double point) if and only if D =
b2 �= 0, i.e., α �= β. Observe that β2 �= 0, c4 �= 0, and c6 �= 0 are all equivalent
in this case and

j = c3
4


= ∞, where  = 0.

The tangents are rational over k if and only if b2 is a square in k, i.e., b2 ∈ (k∗)2.
(2) The singularity (0, 0) is a cusp if and only if D = b2 = 0, i.e., α = β. Observe

that β2 = 0, c4 = 0, and c6 = 0 are all equivalent in this case and j = 0/0 is
indeterminate.

§8. Parameterization of Curves in Characteristic Unequal to
2 or 3

In this section K is a field of characteristic �= 2, 3.

(8.1) Notation. For α, β ∈ K we denote the elliptic curve with cubic equation

y2 = x3 − 3αx + 2β

by E〈α, β〉.
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(8.2) Nonsingular Curves. E〈α, β〉. We study the question of when E〈α, β〉 is non-
singular using (d/dx)(x3 − 3αx + 2β) = 3x2 − 3α. Multiple roots of the cubic are
solutions of the two equations

0 = x3 − 3αx + 2β and 0 = 3x3 − 3αx .

Eliminating the x3 term, we obtain −6αx + 6β = 0 or x = β/α as the only possible
multiple root. Substituting this back into the multiple α2(3x2 −3α) of the derivative,
we obtain 3(β2 − α3), and hence E〈α, β〉 is nonsingular if and only if (α, β) =
 = α3 − β2 �= 0.

(8.3) Isomorphism Classification. We introduce the invariant

J (α, β) = α3

α3 − β2
= α3

(α, β)

for E〈α, β〉. Then the isomorphism classification given in (4.3) takes the form of the
following three equivalent statements:

(1) the elliptic curves E〈α, β〉 and E〈α′, β ′〉 are isomorphic,
(2) there exists λ ∈ K ∗ with λ4α = α′ and λ6β = β ′, and
(3) the J -invariants are equal J (α, β) = J (α′, β ′).

To construct a space with one point representing each isomorphism class of an
elliptic curve over K we use the following action.

(8.4) A Filtration of K2 Stable under the Action of the Multiplicative Group.
The multiplicative group K ∗ of K acts on K 2 by the formula λ·(α, β) = (λ4α, λ6β),
and J is equivariant by the above (8.3) (2) and (3), that is, J (λ · (α, β)) =
J (λ4α, λ6β) = J (α, β). We exhibit a K ∗-equivariant filtration of K 2 which maps
by J to a filtration of the projective line P1(K ) under J as follows

K 2 ⊃ K 2 − {(0, 0)} ⊃ K 2 − {α3 = β2} ⊃ (K ∗)2 − {α3 = β2}⏐⏐�J

⏐⏐�J

⏐⏐�J

P1(K ) ⊃ K ⊃ K − {0, 1}.
Now (8.3) can be summarized in terms of this filtration as follows:

(1) E〈0, 0〉 is the cuspidal singular cubic.
(2) J (α, β) = ∞ if and only if α �= 0 and α3 = β2, in which case E〈α, β〉 is

singular cubic with a double point at the origin.
(3) J (α, β) = 0 if and only if the curve is E〈0, β〉 : y2 = x3 + 2β, β �= 0, with an

automorphism group of order 6.
(4) J (α, β) = 1 if and only if the curve is E〈α, 0〉 : y2 = x3 − 3αx, α �= 0, with

automorphism group cyclic of order 4.
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Now we come to the construction of a family of elliptic curves, where each iso-
morphism class of curves is represented exactly once in the family. It begins with
a pair of coefficients. Although the concept of the moduli space of elliptic curves
is more involved in that automorphisms enter the picture, these next examples are
crude moduli spaces which are useful for explicit computations.

(8.5) Notation. In terms of equivalence classes of coefficients we introduce the fol-
lowing sets:

(1) isomorphism classes of elliptic curves E〈α, β〉 :

E��(K ) = (K 2 − {α3 = β2})/K ∗ and

(2) isomorphism classes of possible singular elliptic curves with at most a double
point E〈α, β〉 : E��′(K ) = (K 2 − {(0, 0)})/K ∗.

In both cases the action of K ∗ on K 2 is λ · (α, β) = (λ4α, λ6β). The J -function
is a bijection J : E��(K ) → K which extends to J : E��′(K ) → P1(K ) = K ∪
{∞}. The value J = ∞ corresponds to the curve with a double point E〈λ2, λ3〉 at
(λ, 0) and third root giving the point (−2λ, 0). Hence sets of isomorphisms classes
of elliptic curves are parametrized by quotients of subsets of K 2.

(8.6) A Family on the Diagonal Subset of K2. On the diagonal of all (α, α) ∈
(K 2 − {(α, β) : α3 = β2}) the J -function has the form

J = J (α, α) = α

α − 1
and solving for α it is α = J

J − 1
.

This means that the equation of the curve has the following form, but with J = 1
excluded, that is, J ∈ K − {0, 1}

E〈α, α〉 : y2 = x3 − 3J

J − 1
x + 2J

J − 1
where α = β = J

J − 1
.

The family of curves E is a subset of (K −{0, 1})×P2(K ) where (J : w : x : y) ∈ E
if and only if it satisfies the equation

E

〈
J

J − 1
,

J

J − 1

〉
in homogeneous form

wy2 = x3 − 3J

J − 1
w2x + 2J

J − 1
w3.

The family has a projection π : E → (K − {0, 1}) defined by the restriction of the
product projection on the first factor, that is, π(J ;w : x : y) = J . The fiber π−1(J )
is the elliptic curve

E

〈
J

J − 1
,

J

J − 1

〉
,

and it is the unique curve in the family with this J -value for J ∈ (K − {0, 1}).
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Families of Elliptic Curves and Geometric
Properties of Torsion Points

In this chapter we consider families of elliptic curves by studying cubics in normal
form with coefficients depending on a parameter. The most important example is
the Legendre family E : y2 = x(x − 1)(x − λ) over k(λ), where k is a field of
characteristic unequal to 2. The points {(0, 0), (1, 0), (λ, 0)} are the three 2-torsion
points on Eλ for each value of λ ∈ k − {0, 1}, and they are specified with a given
ordering.

There are families for points of order 3 and points of order 4. Then various fam-
ilies for higher-order points are considered. For example, there is the Tate normal
form of the cubic

E(b, c) : y2 + (1 − c)xy − by = x3 − bx2,

where with polynomial conditions on b and c the point (0, 0) has a given order n.
We close the chapter with an explicit isogeny, that is, a homomorphism of elliptic

curves given by algebraic change of coordinates. The curve in question is E[a, b] :
y2 = x3 + ax2 + bx which in characteristic unequal to 2 is nonsingular for b and
a2 − 4b different from 0. The isogeny is a morphism E[a, b] → E[−2a, a2 − 4b]
and has kernel of order 2 containing (0, 0). This isogeny when composed with its
dual is multiplication by 2, hence is called a 2-isogeny.

§1. The Legendre Family
Consider a normal cubic equation with ai (t) ∈ k[t]

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x + a6(t)

giving an elliptic curve E over k(t), then we can substitute in any value for t ∈ T , the
parameter space, and obtain a normal cubic equation, and, hence, an elliptic curve Et

over k at all points T where (Et ) �= 0. Each point P(t) = (x(t), y(t)) ∈ E(k(t))
can be viewed as a mapping t → P(t) ∈ E(k(t)) = Et (k) by substitution of specific
values of t , defining a map T → E . Such a map is called a cross-section.
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(1.1) Remark. The group E(k(t)) of points of E over k(t) is the group of rational
cross-sections of the algebraic family E → T of elliptic curves Et over k. One such
cross-section of the family is always the zero cross-section.

(1.2) Definition. For a field k of characteristic �= 2, the Legendre family of elliptic
curves is Eλ : y2 = x(x − 1)(x − λ).

The curve Eλ is nonsingular for λ �= 0, 1, so that over k − {0, 1}, it is a family of
nonsingular elliptic curves. There are four basic cross-sections:

0(λ) = 0, e1(λ) = (0, 0), e2(λ) = (1, 0), e3(λ) = (λ, 0).

The values in Eλ(k) of these four cross-sections give the group 2 Eλ(k) of 2-
division points in Eλ, and the four cross-sections as points in E(k(λ)) give the
group 2 E(k(λ)) of 2-division in E . The Legendre family Eλ of cubics over the
λ-line has two singular fibres which are nodel cubics E0 : y2 = x2(x − 1) and
E1 : y2 = x(x − 1)2. At λ = 0 the cross-sections e1 and e3 take the same value
equal to the double point (0, 0) and at λ = 1 the cross-sections e2 and e3 take the
same value equal to the double point (1, 0).

There are six possible orderings for the 2-division points on an elliptic curve E ,
or equivalently, six possible bases (e1, e2) for the subgroup 2 E . Now we consider
the effect of some of these permutations on the Legendre form where the basis is
implicitly given from the form of the cubic.

EXAMPLE 1. The effect of the transposition of (0, 0) and (1, 0) in this three-element
set in 2 E − {0} can be viewed as a mapping Eλ → Eλ′ , such that (0, 0) corresponds
to (1, 0), (1, 0) to (0, 0), and (λ, 0) to (λ′, 0) on Eλ′ . In this case λ′ = 1 − λ, and
the mapping is given by (x, y) → (1 − x, iy) in terms of a change of variable, since
(iy)2 = (1 − x)(1 − x − 1)(1 − x − λ), becomes

y2 = x(x − 1) (x − (1 − λ)) .

EXAMPLE 2. The effect of the transposition of (1, 0) and (λ, 0) can be viewed as
a mapping Eλ → Eλ′ such that (0, 0) corresponds to (0, 0), (λ, 0) to (1, 0), and
(1, 0) to (λ′, 0) on Eλ′ . In this case λ′ = 1/λ, and the mapping is given by (x, y) →
(λx, λ3/2 y) in terms of a change of variable, since (λ3/2 y)2 = (λx)(λx −1)(λx −λ),
becomes

y2 = x(x − 1)

(
x − 1

λ

)
.

These changes of variable generate the group G of order 6 acting on P1, which
is nonabelian and hence is isomorphic to the symmetric group on three letters. The
changes of variable are defined over the field k(λ1/2, i), and this field is an extension
field of k(λ), the field of definition of the Legendre curve.
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(1.3) Proposition. The orbit of λ under G acting on P1 − {0, 1,∞} is

λ, 1 − λ, 1

λ
,

1

1 − λ,
λ− 1

λ
,
λ

λ− 1
.

If s is an element in G, then s(λ) equals one of these expressions. The curves Eλ
and Eλ′ are isomorphic, in the sense that their equations differ by a linear change of
variable which preserves the group structure, if and only if there exists s ∈ G with
s(λ) = λ′.
Proof. When Eλ and Eλ′ are isomorphic in this sense, the three points of order 2 are
preserved, and, hence, the change of variable must be a composite of the two given
explicitly above. Remaining computations are left to the reader.

(1.4) Remark. The j-invariant j (λ) or j (Eλ) of Eλ : y2 = x(x − 1)(x − λ) is the
value.

j (λ) = 28 (λ
2 − λ+ 1)3

λ2(λ− 1)2
.

This j-invariant is a special case of the j-invariant of any cubic in normal form,
which was considered in detail in 3, §3, and the normalization factor 28 arises natu-
rally in the general context.

(1.5) Proposition. The j-invariant has the property that j (λ) = j (λ′) if and only if
Eλ and Eλ′ are isomorphic under changes of variable preserving the group structure.

Proof. This follows from (1.3) and the observation that j (λ) = j (λ′) if and only if
λ′ = s(λ) for some s ∈ G. This is a direct calculation coming from j (1− λ) = j (λ)
and j (1/λ) = j (λ).

(1.6) Remark. The orbit of λ ∈ P1 under G has six distinct elements, λ, 1/λ, 1−λ,
1/(1 − λ), λ/(λ− 1), and (λ− 1)/λ, except in these cases:

(a) j (λ) = ∞ where the orbit is {0, 1,∞}.
(b) j (λ) = 0 where the orbit is {−ρ, −ρ2} for ρ2 + ρ + 1 = 0, i.e., ρ is a primitive

third root of unity.
(c) j (λ) = 123 = 1728 where the orbit is {1/2, −1, 2}.

The mapping from λ to j (λ) is shown in the following diagram with the ramifi-
cation behavior.

Now we point out a few things about the two exceptional values j = 123 and
j = 0.

1. For j = 123 take λ = −1. Then the curve is the familiar

y2 = x(x − 1)(x + 1) = x3 − x

which is one of the family y2 = x3 + ax studied in (3.2). It is closely related to
the Fermat curve u4 + v4 = w4.
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2. For j = 0 take λ = −ρ. Then the curve has equation

y2 = x(x − 1)(x + ρ),
and make a change of variable x + (1 − ρ)/3 for x . This gives the equation

y2 =
(

x + 1 − ρ
3

) (
x + −2 − ρ

3

) (
x + 1 + 2ρ

3

)
.

Observe that this is just

y2 = x3 − i

3
√

3

which is one of the family y2 = x3 + a studied in (3.3). It is closely related to the
Fermat curve u3 + v3 = w3.

The discriminant for the family Eλ is given by λ = 24λ2(λ − 1)2. This is the
special case of the discriminant of an elliptic curve considered in (3.1).

Exercises

1. Verify the expression 24λ2(λ− 1)2 for the discriminant of Eλ.
2. Verify that j (λ) is the j-invariant of Eλ, see (1.4).

§2. Families of Curves with Points of Order 3:
The Hessian Family

Returning to the general normal form of the cubic defining an elliptic curve, we
observe that (0, 0) is a point on the curve if and only if a6 = 0. The family of these
cubics reduces to

E0 : y2 + a1xy + a3 y = x3 + a2x2 + a4x .

From the calculation of the derivative y′ in the relation

(2y + a1x + a3) y′ = 3x2a2x + a4 − a1 y

we see that the slope of the tangent line at (0, 0) is a4/a3 on E0.
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(2.1) Remark. For the cubic E0 in normal form with (0, 0) on the curve, the point
(0, 0) is singular if and only if a3 = a4 = 0. The point (0, 0) is nonsingular and of
order 2 in the group E if and only if a3 = 0 and a4 �= 0, the case of a vertical tangent
at (0, 0). The family of these cubics reduces to

E00 : y2 + a1xy = x3 + a2x2 + a4x .

Now we assume that (0, 0) is a nonsingular point which is not of order 2. By a
change of variable of the form

y = y′ +
(

a2

a3

)
x ′ and x = x ′.

the equation for E0 takes the form

E ′ : y2 + a1xy + a3 y = x3 + a2x2,

where the tangent line to the curve at (0, 0) has slope equal to 0.

(2.2) Remark. The point (0, 0) on E ′ has order 3 if and only if a2 = 0 and a3 �= 0.
This is the condition for the curve E ′ to have a third-order intersection with the
tangent line y = 0 at (0, 0). The family reduces to

E (a1, a3) : y2 + a1xy + a3 y = x3.

For these curves some of the basic invariants defined in 3(3.1) and 3(3.3) are the
following: b2 = a2

1, b4 = a1a3, b6 = a2
3 , and b8 = 0. Further we have  =

a3
1a3

3 − 27a4
3 and c4 = a1(a3

1 − 24a3) with j = c3
4/.

Since a3 �= 0 in the curve E(a1, a3), we can normalize a3 = 1, and we obtain an
important family of elliptic curves with given point of order 3.

(2.3) Definition. The Hessian family of elliptic curves Eα : y2 + αxy + y = x3 is
defined for any field of characteristic different from 3 with j-invariant j (α) = j (Eα)
of Eα given by

j (α) = α3
(
α3 − 24

)3

α3 − 27
.

The curve Eα is nonsingular for α3 �= 27, that is, if α is not in 3µ3, where µ3
is the group of third roots of unity. Over the line k minus 3 points, k − 3µ3, the
family Eα consists of elliptic curves with a constant section (0, 0) of order 3 where
2(0, 0) = (0,−1). The Hessian family Eα has three singular fibres which are nodal
cubics at the points of 3µ3 = {3, 3ρ, 3ρ2}, where ρ2 + ρ + 1 = 0.

Now we consider conditions on a1 and a3 in the cubic equation y2+a1xy+a3 y =
x3 such that both y = 0 and y = x + u intersect the cubic with points generating
distinct subgroups of order 3. The line y = x + u has a triple intersection point
(v, v + u) with the cubic if and only if
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x3 − (x + u)2 − (a1x + a3)(x + u) = (x − v)3.

Comparing coefficients of x2, x1, and x0 yields the relations

3v = 1 + a1,

−3v2 = 2u + a1u + a3,

v3 = u2 + a3u.

Multiply the second relation by u, we obtain

−3uv2 = 2u2 + a1u2 + a3u,

and subtracting it from the third relation yields

v3 + 3v2u = − (1 + a1) u2 = −3vu2 or just (v + u)3 = u3.

This means that the second point of order 3 has the form (v, v+u) where (v+u)3 =
u3. Since v �= 0, we must have v+u = ρu where ρ2+ρ+1 = 0. Thus v = (ρ = 1)u,
and u = (ρ−1)−1v. Since T 2+T +1 = (T −ρ)(T −ρ2), so that 3 = (1−ρ)(1−ρ2),
we have

u = (ρ − 1)−1v = 1

3

(
ρ2 − 1

)
v = −1

3
(ρ + 2)v

and

u + v = 1

3
(1 − ρ)v.

In terms of the parameter v with v �= 0 we have a basis

(0, 0),

(
v,

1

3
(1 − ρ)v

)
of the group of points of order 3 on the curve with equation y2 + a1xy + a3 y = x3.
Now solving for a1 and a3 in terms of the parameter which is the x-coordinate of the
second point of order 3, we obtain a one-parameter family of curves with a basis for
the 3-division points, i.e., the points of order 3 on the curve.

(2.4) Assertion. The family of cubic curves

Eγ : y2 + a1(γ )xy + a3(γ )y = x3,

where a1(γ ) = 3γ − 1 and a3(γ ) = γ (ρ − 1)(γ − 1/3(ρ + 1)) defines for (γ )
= (a1(γ )

3 − 27a3(γ ))a3(γ ) �= 0 a family of elliptic curves with a basis (0, 0),
(γ, 1/3(1 − ρ)γ ) for the subgroup of points of order 3 on Eγ .
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This assertion follows from the above calculations. There are other versions of
the Hessian family which in homogeneous coordinates take the form

Hµ : u3 + v3 + w3 = 3µuvw,

or in affine coordinates with w = −1, it has the form

u3 + v3 = 1 − 3µuv.

If we set y = −v3 and x = −uv, we obtain x3/y − y = 1 + 3µx , or

E3µ : y2 + 3µxy + y = x3.

This change of variable defines what is called a 3-isogeny of Hµ onto E3µ. There are
nine cross-sections of the family Hµ given by

(0,−1, 1), (0,−ρ, 1), (0,−ρ2, 1),
(1, 0,−1), (ρ, 0,−ρ2), (ρ2, 0,−ρ),
(−1, 1, 0), (−1, ρ2, 0), (1−, ρ, 0).

Again ρ is a primitive third root of unity satisfying ρ2 +ρ+1 = 0. The family Hµ is
nonsingular over the line minus µ3, and choosing, for example, 0 = (−1, 1, 0), one
can show that these nine points form the subgroup of 3-division points of the family
Hµ.

Exercise

1. Show that Et : y2 − 2t xy + t y = x3 + (1 − 2t)x2 + t x is a family of cubics with
s1(t) = (0, 0) and s2(t) = (0,−t) two cross-sections of order 3 inverse to each other.
Show that E0 is the nodal cubic y2 = x2(x + 1).

§3. The Jacobi Family
Finally we consider the Jacobi family, which along with the Legendre family and the
Hessian family, give the three basic classical families of elliptic curves. The Jacobi
family is given by a quartic equation and we begin by explaining how to transform a
quartic equation to a cubic equation.

(3.1) Remark. Let v2 = f4(u) = a0u4 + a1u3 + a2u2 + a3u + a4 be a quartic
equation. Let

u = ax + b

cx + d
and v = ad − bc

(cx + d)2
y.
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The idea is that v behaves like the derivative of u, and y like the derivative of x .
Substituting into the quartic equation we obtain

v2 = (ad − bc)2

(cx + d)4
y2 = f4

(
ax + b

cx + d

)
or

(ad − bc)2 y2 = f 4
(

ax + b

cx + d

)
(cx + d)4 =

4∑
i=0

ai (ax + b)4−i (cx + d)i

= c4 f 4
(a

c

)
x4 + f3(x),

where f3(x) is a cubic polynomial whose coefficient of x3 is c3 f ′
4(a/c). For a/c a

simple root of f4 and ad − bc = 1, we reduce to the equation y2 = f3(x) a cubic in
x .

(3.2) Definition. The Jacobi family of quartic curves is given by

Jσ : v2 =
(

1 − σ 2u2
)(

1 − u2

σ 2

)
= 1 − 2ρu2 + u4

over any field of characteristic different from 2. Here ρ = (1/2)(σ 2 + 1/σ 2) so that
ρ + 1 = (1/2)(σ + 1/σ)2.

We map Jσ → Eλ where Eλ : y2 = x(x − 1)(x − λ) is a Legendre family with
λ = (1/4)(σ + 1/σ)2 by the following change of variable

x = σ 2 + 1

2σ 2

(
u − σ

u − 1/σ

)
and y = σ 4 − 1

4σ 3

v

(u − 1/σ)2
.

The points on Jσ with u-coordinates

0,∞,±σ,± 1

σ
,±1,±i

map to the 16 = 42 points of order 4 on the elliptic curve Eλ.
The detailed calculations relating the Jacobi family to the Legendre family are

left as an exercise to the reader.

§4. Tate’s Normal Form for a Cubic with a Torsion Point
Now we return to the normal form of the cubic E ′. Assume that (0, 0) is on the curve
with tangent line of slope 0.

E ′ : y2 + a1xy + a3 y = x3 + a2x2.
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In particular, (0, 0) is not a point of order 2. By (2.2) the point (0, 0) has order 3 if
and only if a2 = 0 and a3 �= 0.

Assume that (0, 0) is not of order 2 or 3, that is , both a2 and a3 are each unequal
to 0. By changing x to u2x and y to u3 y, we can make a3 = a2 = −b, and we
obtain the following form of the equation of the curve which now depends on two
parameters. Observe that all of the above discussion is carried out in a given field k,
and the changes of variable did not require field extensions.

(4.1) Definition. The Tate normal form of an elliptic curve E with point P = (0, 0)
is

E = E(b, c) : y2 + (1 − c)xy − by = x3 − bx2.

Further a calculation, using the relations in 3(3.3), yields the following formula
for the discriminant  = (b, c) of E(b, c):

(b, c) = (1 − c)4b3 − (1 − c)3b3 − 8(1 − c)2b4

+ 36(1 − c)b4 − 27b4 + 16b5.

(4.2) Remark. The Tate normal form gives a description in terms of equations for
the set of pairs (E, P) consisting of an elliptic curve E together with a point P on E
where P , 2P , and 3P are all unequal to zero. These pairs correspond to pairs (b, c)
with both b �= 0 and (b, c) �= 0. The curve in the family corresponding to (b, c)
is E(b, c) and the point is P = (0, 0). In the two-parameter Tate family E(b, c)
there will be many cases where curves in different fibres E(b, c) are isomorphic, for
example, E(b, 1) and E(b,−1) are isomorphic curves.

If we require, further, that n P = 0 for some integer n > 3, then there is a
polynomial equation fn(b, c) = 0 over Z which b and c must satisfy. The result is
that the relations

Tn : fn(b, c) = 0, b �= 0, (b, c) �= 0

define an open algebraic curve with a family E(b, c) of elliptic curves over it together
with a given n division point P , i.e., a cross-section P in the family of order n. We
will determine fn explicitly in several cases, see (4.6).

(4.3) Remarks. Since this family contains, up to isomorphism, all elliptic curves E
with torsion point P of order n, the curve Tn maps onto the open curve Y1(n) which
is the parameter space for isomorphism classes of pairs (E, P) of elliptic curves E
together with a point P of order n. The curve Y1(n) has a completion X1(n) which
is nonsingular where the completing points, called cusps, correspond to degenerate
elliptic curves. We return to this later.

(4.4) Remark. There is an elliptic curve E over a field k with torsion point P of
order n over the field k if and only if the open algebraic curve Tn has k rational points,
or in other words, the set Tn(k) is nonempty. This is equivalent to the statement
that Y1(n)(k) is nonempty. This is also equivalent to X1(n)(k) having noncuspidal k
rational points. For further discussion of Y1(n) and X1(n) see Chapter 11, §2 and §3.
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In order to derive the equations fn(b, c) = 0 in special cases, we make use of the
following formulas.

(4.5) Calculations. On the curve E(b, c) we have the following:

P = (0, 0), 2P = (b, bc), 3P = (c, b − c), 4P = (
d(−1), d2(c − d + 1)

)
,

−P = (0, b),−2P = (b, 0), −3P = (c, c2), −4P = (
d(d − 1), d(d − 1)2

)
,

where d = b/c in the formulas for 4P and −4P . Finally, introducing e = c/(d −1),
we have

−5P =
(

de(e − 1), d2e(e − 1)2
)

and 5P =
(

de(e − 1), de2(d − e)
)
.

(4.6) Examples. We have the following formulas for fn(b, c) arising from the con-
dition that n P = 0.

(a) 4P = 0 is equivalent to 2P = −2P which by (4.5) reduces to the relation
c = 0. Thus f4(b, c) = c is the equation of a projective line. Moreover, the equation
for the family becomes

E(b, 0) : y2 + xy − by = x3 − bx2

with discriminant  = b4(1 + 16b) �= 0. For a given x , the y-coordinate of a point
(x, y) on E(b, 0) satisfies the quadratic equation y2 + (x − b)y + (bx2 − x3) = 0.
The point (x, y) has order 2 if and only if this equation in y has a double root, or, in
other words, the discriminant of the quadratic equation in zero.

(x − b)2 − 4x2(b − x) = 0.

One solution is 2P = (b, bc) = (b, 0) = −2P for c = 0. The other solutions are
points whose x-coordinates satisfy

0 = 4x2 + x − b = 4x2 + x + 1

16
−
(

b + 1

16

)
.

There are two other 2-division points on E(b, 0) over a field other than coming from
2P = −2P if and only if b + 1/16 is a square v2. Moreover, v can take on any value
except 0, 1/4, and −1/4 since b must be unequal to 0 and −1/16. The x values for
these two points are

x = −1

8
± v

2
.

(b) 5P = 0 if equivalent to 3P = −2P which by (4.5) reduces to the relation
b = c. Thus f5(b, c) = b − c is also the equation of a projective line. Moreover, the
equation for the family becomes

E(b, b) : y2 + (1 − b)xy − by = x3 − bx2
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with discriminant  = b5(b2 − 11b − 1) �= 0.
(c) 6P = 0 is equivalent to 3P = −3P which by (4.5) reduces to the relation

c2 + c = b. Hence f6(b, c) = 0 is a conic parametrized rationally by c. Also the
discriminant is

(b, c) = c6(c + 1)3(9c + 1) �= 0.

(d) 7P = 0 is equivalent to 4P = −3P which by (4.5) reduces to the relations
c = d(d −1) = d2−d and c2 = d2(c−d +1). The second relation is a consequence
of the first since c − d + 1 = d2 − 2d + 1. Then b = d3 − d2, c = d2 − d is the
rational parametrization of the cubic curve

c3 = b(b − c)

with a double point at the origin. In this case the discriminant is

(b, c) = d7(d − 1)7(d3 − 8d2 + 5d + 1) �= 0.

(e) 8P = 0 is equivalent to 4P = −4P which by (4.5) reduces to the relations
d2(c − d + 1) = d(d − 1)2. Since b �= 0 implies d �= 0, we can divide by d to obtain
d(c − d + 1) = (d − 1)2. Solving for c, we obtain

c = (d − 1)(2d − 1)

d
or b = cd = (d − 1)(2d − 1).

(f) 9P = 0 is equivalent to 5P = −4P which by (4.5) reduces to the relations
de(e − 1) = d(d − 1) or e(e − 1) = d − 1 since d = b/c �= 0. Thus d = e2 − e + 1
is the equation which for (b, c) becomes

c = de − e = e3 − e2,

b = cd =
(

e3 − e2
) (

e2 − e + 1
)
= e5 − 2e4′ + 2e3 − e2.

Then b = e5 − 2e4 + 2e3 − e2, c = e3 − e2 is the rational parametrization of the
fifth-order curve with singularity at the origin.

We return to this subject when we study elliptic curves over the complex numbers
and construct the curves Y1(n) and X1(n) along with related families.

§5. An Explicit 2-Isogeny
We consider an example of a 2-isogeny ϕ which is explicitly given by equations
and which we will use later to illustrate other ideas in the global theory. The dual
isogeny ϕ̂ is also given explicitly, and it is shown that ϕ̂ϕ is multiplication by 2. These
formulas work over any field k of characteristic �= 2. The curve for this isogeny ϕ is

E = E[a, b] : y2 = x3 + ax2 + bx,

and the kernel of ϕ is normalized to be {0, (0, 0)}.
Using the formulas of 6(2.1) for a2 = a, a4 = b, and a1 = a3 = a6 = 0, we

have b2 = 4a, b4 = 2b, b6 = 0, and b8 = −b2. This leads to the following relations.
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(5.1) Invariants of the Curve E[a, b]. For the curve E[a, b] defined by

y2 = x3 + ax2 + bx

the following hold:

c4 = 16
(

a2 − 3b
)
, c6 = 25

(
9ab − 2a3

)
,

 = 24b2
(

a2 − 4b
)
, j = c3

4


= 28

(
a2 − 3b

)3

b2
(
a2 − 4b

) .
The two basic special cases are:

(1) j = 123 if and only if a = 0 where we abbreviate the notation E[0, b] = E[b] :
y2 = x3 + bx .

(2) j = 0 if and only if 3b = a2 = (3c)2 for characteristic unequal to 3. This is
the curve E[3c, 3c2] where y2 = x3 + 3cx2 + 3cx2x , or E[3c, 3c2] : y2 =
(x + c)3 − c3. It has the form y2 = x3 − c3 after translation of x by c.

Before giving the formulas for the isogeny, we observe that the function h(a, b) =
(−2a, a2 − 4b) when iterated twice is h2(a, b) = (4a, 16b) since (−2a)2 − 4(a2 −
4b) = 16b. This means h : k2 → k2 is a bijection for char(k) �= 2, and it is its own
inverse up to the division of the coordinates by a power of 2, namely

h−1(a, b) = (−a/2, (a2 + 4b)/16).

Finally, note that a2 − 4b is the discriminant of the quadratic x2 + ax + b.

(5.2) Formulas for the 2-Isogeny. The 2-isogeny with kernel {0, (0, 0)} is given by
ϕ : E[a, b] → E[−2a, a2 − 4b] where

ϕ(x, y) =
(

y2

x2
,

y
(
x2 − b

)
x2

)
=
(

x + a + b

x
, y

(
1 − b

x2

))
.

The formula for the dual isogeny ϕ̂ : E[−2a, a2 − 4b] → E[a, b] is given by

ϕ̂(x, y) =
(

y2

4x2
,

y

8x2

(
x2 −

(
a2 − 4b

)))

=
(

1

4

(
x − 2a + a2 − 4b

x

)
,

y

8

(
1 − a2 − 4b

x2

))
.

Note that ϕ̂ is given by the same formulas as ϕ up to powers of 2 in the coordi-
nates which reflects the fact that the dual ϕ̂ maps E[−2a, a2 − 4b] to E[a, b] while
ϕ maps E[−2a, a2 − 4b] to E[4a, 16b]. Multiplying the equation for E[a, b] by 26,
we see that (x, y) → (4x, 8y) is an isomorphism of E[a, b] → E[4a, 16b]. Hence
any property that holds for ϕ will also hold for the dual example an easy calculation
shows that ϕ(x, y) = (x ′, y′) satisfies
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(y′)2 = y2
(

1 − b

x2

)2

= y2

x4

(
x4 − 2x2b + b2

)
,

x6

y2
(y′)2 = x6 − 2bx4 + b2x2,

and

f (x ′) = y6

x6
− 2a

y4

x4
+
(

a2 − 4b
) y2

x2
,

x6

y2
f (x ′) = y4 − 2ay2x2 +

(
a2 − 4b

)
x4,

which boils down to (x6/y2)(y′)2 using y2 = x3 + ax2 + bx .

(5.3) Remark. Next we calculate ϕ̂ϕ as follows:

ϕ̂(ϕ(x, y)) = ϕ̂
(

y2

x2
,

y(x2 − b)

x2

)

=
(

y2(x2 − b)2

4x4
· x4

y4
,

y(x2 − b)

8x2
· x4

y4

(
y4

x4
− (a2 − 4b)

))

=
(
(x2 − b)2

4y2
,

x2 − b

8x2 y3
·
(

y4 −
(

a2 − 4b
)

x4
))
.

In order to show that ϕ̂(ϕ(x, y)) = 2(x, y), we consider the tangent line to a point
(x, y) on the curve. To find the slope of the tangent line, we differentiate the equation
for E[a, b] and we obtain

2yy′ = 3x2 + 2ax + b = 2(x2 + ax + b)+ (x2 − b)

= 2y2

x
+ (x2 − b),

or, in other words,
dy

dx
= y

x
+ x2 − b

2y
.

If 2(x1, y1) = (x2, y2) on E[a, b], then the tangent line y = σ(x − x1) + y1 to
E[a, b] at (x1, y1) must intersect E[a, b] at (x2,−y2). In particular, x2 is a root and
x1 is a double root of the cubic equation

x3 + ax2 + bx = (σ (x − x1)+ y1)
2

or

0 = x3 +
(

a − σ 2
)

x2 + · · ·
from which we deduce that
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2x1 + x2 = σ 2 − a.

We just calculated σ above so that

x2 = σ 2 − a − 2x1

=
[

y2

x1
+ s2

1 − b

2y1

]2

− a − 2x1.

Dropping the subscript 1 on x1 and y1, we have

x2 =
(
x2 − b

)2

4y2
+ x3 − bx + y2 − ax2 − 2x3

x2

=
(
x2 − b

)2

4y2

using y2 = x3 + ax2 + bx . This is just the x-coordinate in the above calculation
of ϕ̂(ϕ(x, y)). For the y-coordinate we use y = σ(x − x1) + y1 and hence y =
(y1/x1 + (x2

1 − b)/2y1)(x2 − x1)+ y1. Again dropping the subscript 1 on x1 and y1
and substituting the above expression for x2, we obtain

y2 =
(

y

x
+ x2 − b

2y

)((
x2 − b

)2

4y2
− x

)
+ y

= x
(
x2 − b

)3 + 2y2
(
x2 − b

)2 − 4x2 y2
(
x2 − b

)
8xy3

=
(

x2 − b
) x

(
x2 − b

)2 + 2x2 y2 − 2by2 − 4x2 y2

8xy3

=
(

x2 − b
) x2

(
x2 − b

)2 − 2y2
(
y2 − ax2

)
8x2 y3

.

Now using x3 − bx = y2 − ax2 − 2bx , we have(
x3 − bx

)2 − 2y2
(

y2 − ax2
)

= y4 − 2y2
(

ax2 + 2bx
)
+
(

a2x4 + 4abx3 + 4b2x2
)
− 2y4 + 2ax2 y2

= −y4 − 4bx
(

x3 + ax2 + bx
)
+
(

a2x4 + 4abx3 + 4b2x2
)

= −
[

y4 −
(

a2 − 4b
)

x4
]
.

Hence we deduce that 2(x1, y1) = ϕ̂ϕ(x1, y1).

Although we have not checked directly that ϕ is a group homomorphism, the
previous relation ϕ̂(ϕ(x, y)) = 2(x, y) and the following useful results show that the
composite
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E
ϕ→ E ′ → E ′

{0, (0, 0)}
is a homomorphism of groups.

(5.4) Proposition. On the curve E[a, b] we have

(0, 0)+ (x, y) =
(

b

x
,−by

x2

)
.

Proof. For (x1, y1)+(0, 0) = (x2, y2) consider the line y = (x1/x1)x through (0, 0)
and (x1, y1). For the third point of intersection we compute(

y2
1

x2
1

)
x2 = x3 + ax2 + bx

0 = x3 −
(

y2
1

x2
1

− a

)
x2 + bx .

This means that

x2 = y2
1

x2
1

− a − x1 = y2
1 − ax2

1 − x3
1

x2
1

= bx1

x2
1

= b

x1
.

Moreover, y2 = −(y1/x1)x2 = −by1/x2
1 which proves the proposition.

(5.5) Remark. We can show that ϕ((x, y) + (0, 0)) = ϕ(x, y) by the direct calcu-
lation (−by/x2

)2

(b/x)2
=
(

b2 y2

x4

)(
x2

b2

)
= y2

x2

and (−by/x2
) (

b2/x2 − b
)

(b/x)2
= x2

b2
· by

x2

(
bx2 − b2

x2

)
= y

x2

(
x2 − b

)
.

In order to study the image of ϕ, we introduce the following homomorphism
from the curve to the multiplicative group of the field modulo squares.

(5.6) Proposition. The function α : E[a, b] → k∗/(k∗)2 defined by α(0) = 1,
α((0, 0)) = b mod(k∗)2, and α((x, y)) = x mod(k∗)2 is a group homomorphism.

Proof. For three points (x1, y1), (x2, y2), and (x3, y3) on a line y = λx + ν and on
the curve E[a, b] the roots of the cubic equation

(λx + ν)2 = x3 + ax2 + bx
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are x1, x2, and x3. The relation x1x2, x3 = ν2, a square, shows that α(x1,y1)α(x2,y2)·
α(x3, y3) = 1. This and the calculation

α ((0, 0)+ (x, y)) = α
(

b

x
,
−bx

x2

)
= b

x
mod(k∗)2 = bx mod(k∗)2

= α(0, 0)α(x, y)

shows that α is a group homomorphism.

(5.7) Proposition. The sequence

E[a, b]
ϕ→ E[−2a, a2 − 4b]

α→ k∗

(k∗)2

is exact.

Proof. First α(ϕ(x, y)) = α(y2/x2, ∗) = (y.x)2 mod(k∗)2 = 1 so that the compos-
ite is trivial. Next, if α(x, y) = 1, i.e., if α2 = t , then we choose two points (x+, y+)
and (x−, y−), where x± = 1/2(t2 − a ± y/t) and y± = x±t . We wish to show that
(x±, y±) is on E[a, b] and ϕ(x±, y±) = (x, y), where (x, y) is on E[−2a, a2 − 4b].

First we see that x+x− = b by the direct calculation

x+x− = 1

4

[
(x − a)2 − y2

x

]
= x3 − 2ax2 + a2x − y2

4x
= b

since y2 = x3 − 2ax + (a2 − 4b)x .
Now a point (x±, y±) is on E[a, b] if and only if(

y±
x±

)2

= x± + a + b

x±
= x± + a + x∓.

This is just the relation t2 = x+ + a + x−, where x+ + x− = t2 − a immediately
from the definition of x±.

Finally we must show that ϕ(x±, y±) = (x, y). For this, we calculate

ϕ(x±, y±) =
((

y±
y±

)2

, y±

(
1 − b

x2±

))
=
(

t2, x±t

(
1 − b

x2±

))

=
(

x, t

(
x± − b

x±

))
= (x, t (x± − x∓))

=
(

x, t
(
± y

t

))
= (x,±y) .

This proves the proposition.

In 8, §2, see 8(2.3), we give a second interpretation of the homomorphism α in
terms of Galois cohomology.
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§6. Examples of Noncyclic Subgroups of Torsion Points
Under the curve E[a, b] studied in the previous section, we look for examples of
subgroups of E(k) of the form Z/nZ ⊕ Z/2Z. We start with the cases n = 2, 4, and
8 always assuming that k is of characteristic different from 2.

(6.1) Example. For n = 2 we have Z/2Z ⊕ Z/2Z ⊂ E(k) for E = E[a, b] if and
only if the quadratic polynomial x2 + ax + b factors, that is, y2 = x3 + ax2 + bx =
x(x − r1)(x − r2) and {0, (0, 0), (r1, 0), (r2, 0)} is the subgroup of 2-division points.

Now assuming that x2 + ax + b factors, we go on to n = 4 by applying 1(4.1) to
see when there exists a point P ∈ E(k) with 2P = (0, 0).
(6.2) Example. For n = 4 we have Z/4Z ⊕ Z/2Z ⊂ E(k) for E = E[a, b] =
E[−r1 − r2, r1r2] with some P satisfying 2P = (0, 0) if and only if y2 = x3 +
ax2 + bx = x(x + r2)(x + s2), that is, −r1 and −r2 are squares in k. The four
solutions to the equation 2P = (0, 0) are (rs,±rs(r − s)) and (−rs,±rs(r + s)).

Assuming that 2P = (0, 0) has a solution as in (6.2), then 2P = (−r2, 0) has a
solution by (4.1) if and only if the elements −r2 − 0 = −r2, −r2 − (−r2) = 0, and
−r2 − (−s2) = s2 − r2 are all squares in k. This cannot happen in Q or even R, as
we know, but over Q(i), the Gaussian numbers, we need only choose s and r such
that s2 = r2 + t2, and this takes us back to Pythagorean triples again.

Continuing with the curve given in (6.2), we ask when is it true that

(rs,±rs(r − s)) ∈ 2E(k) or (−rs,±rs(r + s)) ∈ 2E(k)?

Again we apply 1(4.1) to see that 2P = (rs, rs(r − s)) has a solution if and only if
rs, rs + r2 = r(r + s), and rs + s2 = s(r + s) are all three squares in k. This is the
case when r = u2, s = v2, and r + s = t2 for t2 = u2 + v2.

(6.3) Example. For n = 8 we have Z/8Z⊕Z/2Z ⊂ E(k) for E = E[r2+s2, r2s2]
when r = u2, s = v2, and u2 + v2 = t2 in k. This is equivalent to E is a curve
of the form E[u4 + v4, u4v4]. In particular, over the rational numbers such curves
correspond to Pythagorean triples (u, v, t).

Applying 1(4.1) to the equation 2P = (−rs, rs(r + s)), we obtain almost the
same result, that is, −rs,−rs + r2, and −rs + s2 must be squares. This can be
realized for r = u2, −s = v2, and r − s = t2 = u2 + v2.

For the question of a point of order 3 on E[a, b] we recall from (5.3) that if
(x2, y2) = 2(x1, y1), then x2 = (x2

1 − b)2/4y2
1 . The case 2(x1, y1) = (x1,−y1)

occurs for x = x1 = x2, that is, 4xy2 = (x2 − b)2. For x = t2, y = st2 we see that
b = t3(t − 2s) and from ax2 = y2 − x3 − bx , we obtain

a = (s − t)2 − 3t2 and b = t3(t − 2s).
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(6.4) Example. The point (t2, st2) is the order 3 on E = E[(s−t)2−3t2, t3(t−2s)]
and the point (

3t2 + 2st − 2s2, 3t3 + 2st2 − 2s2t
)

is of order 6. We do the calculations (s2, s2t)+ (0, 0) = (x, t x) where

t2x2 = x3 +
(
(s − t)2 − 3t2

)
x2 + t3(t − 2s)

and

0 = x3 −
(

4t2 − (s − t)2
)

x2 + · · · .

The three roots which add up to 4t2−(s−t)2 are 0, s2, and x . Thus x = 3t2+2st−2s2

holds as asserted.

Some of the above examples were brought to our attention by Hans Peter Kraft
and were worked out in a seminar in Basel, October 1984 by him, Friedrich Knopp,
Gisela Menzel, and Erhar Senn. The reader can find further examples by combining
the above results with the statements in 1(3, Ex. 2).
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Reduction mod p and Torsion Points

The reduction modulo p morphism Z → Z/pZ = Fp is a fundamental construc-
tion for studying equations in arithmetic. A basic advantage of projective space over
affine space is that the entire rational projective space can be reduced modulo p,
yielding a map Pn(Q) → Pn(Fp), in such a way that rational curves (curves de-
fined over Q) and their intersection points also reduce modulo p. The first task is to
study when the reduced curve is again smooth and when intersection multiplicities
are preserved. This is an extension of the ideas in Chapter 2 to arithmetic.

Turning to the special case of an elliptic curve E , we need to choose a “mini-
mal” cubic equation for E . These have the best possible reduction properties, and
reduction is a group homomorphism when the curve E reduces to a nonsingular E p

modulo p. We say E has a good reduction at p in this case, and we look for criterions
for good reduction.

Finally we turn to the global arithmetic of elliptic curves, and prove the Nagell–
Lutz theorem which says that for the reduction at p homomorphism E(Q) →
E p(Fp) the restriction to

Tors(E(Q))→ E p(Fp)

is injective for p odd and has kernel at most of order 2 at 2. Combining this arithmetic
study with the structure of the group of real points E(R), we deduce that the torsion
subgroup Tors(E(Q)) of an elliptic curve E over the rational numbers is either finite
cyclic or finite cyclic direct sum with the group of order 2. Moreover, it is effectively
computable.

§1. Reduction mod p of Projective Space and Curves
(1.1) Notations. We will use the following notation in the next three sections. Let R
be a factorial ring with field of fractions k. For each irreducible p in R we form the
quotient ring R/p = R/Rp and denote its field of fractions by k(p). Each element
a in k can be decomposed as a quotient
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a = pn · u

v
,

where p does not divide either u or v and n is an integer uniquely determined by a.
Let ordp(a) = n denote the order function associated with p. Let rp(a) = ā denote
the canonical reduction mod p defined R → k(p). If R(p) denotes the subring of
all a in k with ordp(a) ≥ 0, then the mod p reduction function is well defined on
R(p) → k(p).

The order function satisfies the following properties:

(V1) ordp(ab) = ordp(a)+ ordp(b)

and

(V2) ordp(a + b) ≥ min{ordp(a), ordp(b)}.
The second property can be refined in the case where ordp(a) < ordp(b) in which
case ordp(a) = ordp(a + b). This refinement can be deduced directly from the
second property of ordp(a) using an elementary argument. The function is a special
case of a discrete valuation (of rank 1) and R(p) is the valuation ring associated to
ordp. It is a principal ring with one irreducible p and one maximal ideal R(p) p where
rp induces an isomorphism R(p)/R(p) p → k(p).

There are some cases, especially over a number field, where it is confusing to use
p for the irreducible or local uniformizing element of R, in those cases we will tend
to use t or π .

The reduction mod p function rp : R(p) → k(p) can be defined on affine space
by taking products

kn ⊃ Rn
(p) → k(p)n,

but it is only defined on the points x = (x1, . . . , xn) all of whose coordinates x j

have positive ordp. Then the formula is rp(x1, . . . , xn) = (x̄1, . . . , x̄n). On the other
hand, reduction mod p is defined on the entire projective space.

(1.2) Definition. The reduction mod p function rp : Pn(k) → Pn(k(p)) is defined
by the relation

rp(y0 : · · · : yn) = (ȳ0 : · · · : ȳn),

where (y0 : · · · : yn) is the homogeneous coordinates of a point in Pn(k) with all
yi in R and without a common irreducible factor. Such a representative of a point is
called reduced.

Observe that rp(y0 : · · · : yn) = (ȳ0 : · · · : ȳn) is defined when each ordp(yi ) ≥
0 and some ordp(y j ) = 0 so that ȳ j �= 0. Such a representative (y0 : · · · : yn)

of a point in Pn(k) is called p-reduced. The reduced representatives are unique up
to multiplication by a unit in R, and the p-reduced representatives are unique up to
multiplication by a unit in R(p).

We saw in Chapter 2 that a good intersection theory had to be formulated in pro-
jective space. The above construction of mod p reduction shows another advantage
of projective space over affine space which is arithmetic instead of geometric.
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(1.3) Remark. Let F(y0, . . . , yn) ∈ k[y0, . . . , yn] and multiply the polynomial by
an appropriate nonzero element of k such that the coefficients of the new polynomial,
also denoted f , are all in R and have no common irreducible factor. Then we denote
by f̄ (y0, . . . , yn) the polynomial over k(p) which is f with all its coefficients re-
duced modulo p. Observe that f̄ is nonzero and homogeneous of the same degree
as f .

(1.4) Definition. Let C be an algebraic curve of degree d in P2 defined over k.
Choose an equation f = 0 for C of degree d over R with coefficients not having a
common irreducible factor. The reduction mod p of C = C f is the plane curve C f̄
of degree d in P2 defined over k(p).

The modulo p reduction function rp : P2(k) → P2(k(p)) restricts to a function
rp : C f (k)→ C f̄ (k(p)), for if (w, x, y) ∈ C f (k), then f (w, x, y) = 0, and we can
apply rp to obtain

0 = rp( f (w, x, y)) = f̄ (w̄, x̄, ȳ) = f̄ (rp(w, x, y)).

Observe that the same construction and definition holds for hypersurfaces in n vari-
ables over k.

(1.5) Examples. The nonsingular conic defined by wx + py2 = 0 reduces to the
singular conic equal to the union of two lines defined by wx = 0, and the conic
defined by pwx + y2 = 0 reduces to y2 = 0 which is a double line. This exam-
ple shows that there are some subtleties related to reduction modulo p concerning
whether y2 = 0 defines a line or a conic. These questions are taken care of in the
context of schemes, but we do not have to get into this now since a cubic in normal
form reduces to another cubic in normal form.

In order to see what happens with the group law of a cubic under reduction re-
call from 2(4.4) that the intersection multiplicity i(P; L ,C f ) of P on L and C f is
defined by forming the polynomial

ϕ(t) = f (w + tw′, x + t x ′, y + t y′),

where P = (w, x, y) and (w′, x ′, y′) ∈ L − C f . The intersection points L ∩ C f are
of the form (w + tw′, x + t x ′, y + t y′) where ϕ(t) = 0, and the order of the zero is
the intersection multiplicity. Further the order of P on C f is always ≤ i(P; L ,C f ).

Now we reduce all of the above constructions including the extra polynomial
ϕ(t) mod p from k to k(p). We obtain

ϕ̄(t) = f̄ (w̄ + tw̄′, x̄ + t x̄ ′, ȳ + t ȳ′),

where now we must use further care in choosing (w′, x ′, y′) such that (w̄′, x̄ ′, ȳ′) ∈
L̄ − C f̄ . This is possible provided L̄ �⊂ C f̄ .

(1.6) Remark. With the above notations we have the following inequalities:

i(P; L ,C f ) ≤ i(P̄; L̄,C f );
order of P on C f ≤ order of P̄ on C f̄ .
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For P = (1, 0, 0) and (w′, x ′, y′) = (0, a, b) the polynomial ϕ(t) takes the
form ϕ(t) = fr (ta, tb) + · · · + fd(ta, tb), where r is the order of P on the curve
C f . Recall from 2(4.6) that L is part of the tangent cone to C f at P if and only if
r < i(P; L ,C f ). For P ′ on L where P ′ = (at0, bt0) we have P ′ ∈ C f if and only
if ϕ(t0) = 0.

(1.7) Proposition. With the above notations let P, P ′ ∈ L ∩ C f where P �= P ′ and
P̄ = rp(P) = rp(P ′). If the order of P on C f equals the order of P̄ on C f̄ , then the

reduced line L̄ is part of the tangent cone of C f̄ . If P̄ has order 1 on C f̄ , then L̄ is

the tangent line to C f̄ at P̄.

Proof. Since P is on L ∩ C f of order ≥ r , the polynomial tr divides ϕ(t). Since P ′
is on L ∩ C f , the polynomial t − t0 divides ϕ(t). Thus the product tr (t − t0) divides
ϕ(t). Since rp(P) = rp(P ′), we have t̄0 mod p and therefore tr+1 divides ϕ̄(t). Now
the proposition follows from the criterion in 2(4.6).

In Exercise 1 we give an example which shows that the hypothesis that the order
of P on C f equals the order of R̄ on C f̄ is necessary in the proposition.

Exercise

1. Let C be the conic defined by wx − p3 y2 = 0 and show that C is nonsingular over Q.
The reduction mod p is wx = 0, and show that the reduction C̄ has a singular point at
(0, 0, 1). Find two distinct points P and P ′ on C whose reduction is in both cases (0, 0, 1)
and such that the reduction L̄ of the line L through P and P ′ is different from either the
line defined by w = 0 or by x = 0.

§2. Minimal Normal Forms for an Elliptic Curve
(2.1) Proposition. Let k be the field of fractions for an integral domain R, and let
E be an elliptic curve over k. Then there is a cubic equation for E in normal form
with all ai ∈ R.

Proof. Choose any normal form for E over k with coefficients āi in variables x̄ and
ȳ. Let u be a common denominator for all āi , in particular all uāi ∈ R, and make the
change of variable x = u2 x̄ and y = u3 ȳ. Then the coefficients ai = ui āi is in R for
all i . This proves the proposition.

In the previous proposition, observe that once all a j are in R, all the related
constants b j , c j , and , defined in 3(3.1), are also in R. Assume now that R is a
discrete valuation ring, that is, R is principal with one nonzero prime ideal Rp and
the order function ordp is a valuation denoted by v. Then R is the set of all a in K ,
the field of fractions of fractions of R, such that v(a) ≥ 0.

(2.2) Definition. Let K be a field with a discrete valuation v, and let E be an elliptic
curve over K . A minimal normal form for E is a normal form with all a j in the
valuation ring R of K such that v() is minimal among all such equations with
coefficients a j in R.
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Since the valuation v takes positive integer values on the discriminant of a given
equation in normal form over R, it is clear that every elliptic curve has a minimal
model. In the next proposition we see in what sense they are unique. Following the
literature, we use the terminology minimal model, minimal normal form, and mini-
mal Weierstrass model interchangeably.

(2.3) Proposition. Let E and E ′ be two elliptic curves over K with minimal models
having coefficients a j and a′

j , respectively. Let f : E ′ → E be an isomorphism with

x f = u2x ′ + r and y f = u3 y′ + su2x ′ + t . Then v() = v(′), u is in R∗, and r,
s, and t are in R. The differential ω is unique up to a unit in R.

Proof. The equality v() = v(′) follows from the definition of minimal, and hence
v(u) = 0. So u is a unit in R from u12′ = . The relation u8b′

8 = b8 + · · · in R
implies that 3r is in R, and the relation u6b′

6 = b6 + · · · in R implies that 4r is in R.
Hence the difference r is in R. The relation u2a′

2 = a2 + · · · in R implies that s is in
R and the relation u6a′

6 = a6 + · · · implies that t is in R. The last assertion follows
from the formula ω f = u−1ω′.

Now we look for estimates on v() ≥ 0 which hold for minimal models and
which further might characterize those equations over R corresponding to minimal
models. With f : E ′ → E as above x f = u2 x̄ + · · · and y f = u3ū + · · · , we can
change the valuation of the discriminant by

v() = v(u12̄) = 12 · v(u)+ v(̄).

Therefore, we see that the following assertion holds.

(2.4) Proposition. If all a j are in R, and if 0 ≤ v() < 12, then the model is
minimal.

Observe that if π4 | A and π6 | B in R, then the equation y2 = x3 + Ax + B is
not minimal. Since all elements of K equal j (E) for some E over K , we will not
have j (E) in R for all E , that is, v( j (E)) may be arbitrary, even with coefficients ai

in R. In terms of v( j) we can obtain estimates on v() for a minimal model.

(2.5) Proposition. Let E be an elliptic curve over K , and assume that the charac-
teristic of K is not 2 or 3. For a minimal model the valuation of the discriminant
satisfies

v()+ min{v( j), 0} < 12 + 12v(2)+ 6v(3).

In addition, assuming that the residue class characteristic is different from 2 and 3,
it follows that a model over R is minimal if and only if v()+ min{v( j), 0} < 12.

Proof. Since c3
4 =  j and c2

6 = ( j − 123), we have the relations v() + v( j) =
3v(c4) and v()+ V ( j − 123) = 2v(c6). By 3(3.4) the equation of the cubic can be
transformed into the form
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y2 = x3 −
( c4

48

)
− c6

864
.

By the above remark, if 48p4 | c4 and 864p6 | c6, then the equation is not minimal.
Since the equation is minimal and since 48 = 24 · 3 and 864 = 25 · 33, it follows that

v()+ v( j) = 3v(c4) < 12 + 3v(48) = 12 + 12v(2)+ 3v(3),

or

v()+ v( j − 123) = 6v(c6) < 12 + 2v(864) = 12 + 10v(2)+ 6v(3).

Since v()+min{v( j), 0} ≤ v()+ v( j) or v()+ v( j − 123), we obtain the first
inequality.

For the second statement observe that for v(2) = v(3) = 0, the minimal model
satisfies v() + min{v( j), 0} < 12. The converse holds by Remark (2.4) since 0 <
v() + min{v( j), 0} and the relation between two valuations of the discriminants
given above (2.3). This proves the proposition.

Now we return to the notations of (1.1) where R is a factorial ring with field
of fractions k. Two normal forms of equations for E with coefficients a j in R are
related by an admissible change of variables 3(2.3) where x = u2 x̄ + r and y =
u3 ȳ + su2 x̄ + t . The discriminants are related by u12̄ =  by 3(3.2). For an
irreducible element p in R we have

ordp() = 12 ordp(u)+ ordp(̄).

This leads to the global version of (2.2) since by a change of variable we can always
choose an equation where ordp() is minimal for all irreducibles p in R.

(2.6) Definition. Let k be the field of fractions of a factorial ring R, and let E be
an elliptic curve over k. A minimal normal form for E is a normal form with all
a j in R such that all ordp() is minimal among all equations in normal form with
coefficients a j in R.

By the above discussion a minimal normal form for an elliptic curve E always
exists.

Unfortunately we are interested in rings R, namely the ring of integers in a num-
ber field k, which are not always factorial. In the case there is only a minimal model
of an elliptic curve E locally at valuations v of k with valuation ring R(v) associ-
ated with prime ideals of R. For questions of reduction mod v it is good enough to
work locally with coefficients in R(v). We return later to the more general case of a
Dedekind ring R to define the conductor of an elliptic curve. In any case the present
theory includes curves defined over Q.

Exercise

1. Over the rational numbers Q under what conditions on the constant a are the normal
forms y2 = x3 + ax and y2 = x3 + a minimal.
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§3. Good Reduction of Elliptic Curves
Continuing with the notations (1.1), we have for an irreducible p a canonical reduc-
tion homomorphism rp : R(p) → k(p) denoted by rp(a) = ā.

(3.1) Definition. Let E be an elliptic curve over k with minimal normal form y2 +
a1xy + a3 y = x3 + a2x2 + a4x + a6. The reduction Ē of E modulo p is given by

y2 + ā1xy + ā3 y = x3 + ā2x2 + ā4x + ā6.

It is a plane cubic curve over k(p). The curve Ē is also denoted E(p).

Note that the normal form of the equation for E only has to be minimal at p for
this definition. Observe that an admissible change of variable between two minimal
normal forms of E at p given by x = u2x ′ + r and y = u3 y′ + su2x ′ + t over R(p)
reduces to x = ū2x ′ + r̄ and y = ū3 y′ + s̄ū2x ′ + t̄ an admissible change of variable
for Ē over k(p). Hence the reduction Ē is well defined up to isomorphism.

(3.2) Remarks. With the above notations the discriminant of the reduced curve Ē
is ̄, the reduction mod p of the discriminant  of E . Clearly Ē is nonsingular if
and only if ̄ �= 0, or equivalently, if and only if ordp() = 0.

(3.3) Definition. An elliptic curve E defined over k has a good reduction at p pro-
vided Ē , the reduced curve at p, is nonsingular. When Ē is singular, we say E has
bad reduction at p.

In general the reduction function rp : P2(k) → P2(k(p)) restricts to rp : E(k)
→ Ē(k(p)), and in the case of good reduction we have the following result.

(3.4) Proposition. Let E be an elliptic curve over k with good reduction at p. Then
the reduction function rp : E(k)→ Ē(k(p)) is a group morphism.

Proof. Clearly rp(0 : 0 : 1) = 0 : 0 : 1 so that zero is preserved. For P, Q ∈ E(k)
let L be the line through P and Q when P �= Q and the tangent line to E at P
when P = Q. Then L reduces to L̄ , the line through rp(P) and rp(Q). Again L̄ is
tangent to Ē at rp(P) when rp(P) = rp(Q) by (1.7). If P Q denotes, as usual, the
third intersection point of L with Ē , then we have rp(P Q) = rp(P)rp(Q). Since the
third intersection point of L̄ with Ē for the x-coordinate is given by reduction mod
p of the equation giving the x-coordinate of P Q. Thus we calculate

rp(P + Q) = rp((P Q)0) = (rp(P)rp(Q))rp(0) = rp(P)+ rp(Q),

and thus rp is a group morphism. This proves the proposition.

(3.5) Remark. Since 0 = 0 : 0 : 1 on both E and the reduced curve over k(p), we
see that the p-reduced w : x : y on E(k) is in ker(rp) if and only if ordp(y) = 0,
ordp(w) > 0, and ordp(x) > 0. In fact, we can divide by y and assume that the point
is of the form w : x : 1, where w and x have strictly positive ordinal at p.
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(3.6) Example. If the minimal normal form of E over k is y2 = f (x), where f (x)
is a cubic polynomial, then E has bad reduction at all p where k(p) has characteristic
2 and at all irreducibles p which divide the discriminant D( f ) of the cubic f (x).

(3.7) Example. If the minimal normal form of E over k is

y2 = (x − α)(x − β)(x − γ ),

then no p2 divides all roots α, β, and γ for any irreducible p. The elliptic curve E
has good reduction at p > 2 if and only if p does not divide any of the differences
α − β, β − γ , and γ − α.

(3.8) Example. The curve E defined by y2 + y = x3 − x2 has good reduction at
2 since over F2 it is the curve E ′

3 of (4.2). Denoting the curve mod p by E(p) and
the reduction modulo p by rp : E(Q) → E(p)(Fp), we have in this case a cyclic
subgroup of order 5 mapping isomorphically onto E(2)(F2). In order to determine
whether E(p) has a singularity for odd primes p, we calculate the derivative y′, that
is, (2y+1)y′ = 3x2−2x , and look for points where it is indeterminate, i.e., 0·y′ = 0.

Mod 3. The tangent slope (2y + 1)y′ = −2x is indeterminate for (0, 1), but the
point (0, 1) is not on the curve. Now reduction modulo 3 is defined r3 : E(Q) →
E(3)(F3) and is an isomorphism of the cyclic group of order 5 generated by (0, 0)
onto the group E(3)(F3).

Mod 11. The point (−3, 5) is a point on the curve E(11) which is singular so that
E has bad reduction at 11. Substituting x − 3 for x and y + 5 for y, we obtain the
equation y2 = x3 + x2 with a node at (0, 0) over F11. The reduction r11 is defined
on the cyclic group of order 5 generated by (0, 0) mapping into E(11)(F11)ns which
is a cyclic group of order 10.

Exercises

1. For which rational odd primes do the following curves have bad reduction?
a) y2 = x3 + ax .
b) y2 = x3 + a.
c) y2 = x3 − 43x + 166.
d) y2 = x3 − 16 · 27x + 19 · 16 · 27.

2. For which rational odd primes do the following curves have bad reduction?
a) y2 = x3 + x2 − x .
b) y2 = x3 − x2 + x .
c) y2 = x3 − 2x2 − x .
d) y2 = x3 − 2x2 − 15x .

3. For which rational primes do the following curves have bad reduction? If the curve has
good reduction at 2, then identify the curve reduced at 2 in the list 3(6.4), and if one
has the list of curves over F3 as asked for in 3(6, Ex.6), then identify the curve reduced
modulo 3 in the list when it has good reduction at 3.

a) y2 + y = x3 − x .
b) y2 + y = x3 + x2.
c) y2 + y = x3 + x .
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d) y2 − y = x3 − 7.
e) y2 + xy + y = x3 − x2.
f) y2 + xy = x3 − x2 − 5.

4. Which of the following curves have good reduction at p = 2, p = 3, p = 5, and p = 7?
a) y2 + xy + y = x3 − x .
b) y2 + xy = x3 − x2 − 2x − 1.
c) y2 + xy + y = x3 − x2 − 3x + 3.
d) y2 + xy = x3 + x2 − 2x − 7.
e) y2 + xy + y = x3 + x2 − 4x + 5.

5. The curves y2 + y = x3 − x2 and y2 + y = x3 + x2 have good reduction at 2 and the
same reduced curve mod 2. Determine r2 on the subgroup generated by (0, 0)with values
in the points over F2 of the reduced curve in each case, see 1(2.3) and 1(2.4).

6. Find the discriminant of y2 + y = x3 − 7x + 6 and show that it is a prime.

§4. The Kernel of Reduction mod p and the p-Adic Filtration
Following (1.1), we use the notations of the previous section where R is a facto-
rial ring, p is an irreducible, and k is its field of fractions. Recall from (3.5) that
the inverse image of (0, 0, 1) under the reduction mapping rp : E(k) → Ē(k(p))
consists of all (w, x, 1) ∈ E(k) such that ordp(w), ordp(x) > 0. These conditions
are analyzed further in the next two propositions using the normal form of the cubic
equation.

(4.1) Proposition. Let E be an elliptic curve over k, and (w, x, 1) ∈ E(k). If
ordp(w) > 0, then we have ordp(x) > 0, and the relation ordp(w) = 3 ordp(x)
holds.

Proof. For y = 1, the projective normal form of the cubic equation for E has the
form

w + a1wx + a3w
2 = x3 + a2wx2 + a4w

2x + a6w
3.

We assume that ordp(w) > 0 and ordp(x) ≤ 0, and we derive a contradiction. If R
is the right-hand side of the normal cubic, then

ordp(R) = ordp(x
3) = 3 ordp(x) ≤ 0,

and if L is the left-hand side of the normal cubic, then

ordp(L) = min{ordp(w), ordp(x)+ ordp(w)+ ordp(a1)}.
Since ordp(w) > 0, we would derive the relation

3 ordp(x) ≥ ordp(x)+ ordp(w) or 0 ≥ 2 ordp(x) ≥ ordp(w).

This is a contradiction.
Next observe that ordp(w) = ordp(w + a1wx + a3w

2) since ordp(w) <

min{ordp(a1wx), ordp(a3w
2)}. Thus we obtain the second assertion
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ordp(w) = ordp

(
x3 + a2wx2 + a4w

2x + a6w
3
)
= 3 ordp(x)

where we have checked the four possible minima in

ordp(w) ≥ min
{

ordp(x
3), ordp(a2wx2), ordp(a4w

2x), ordp(a6w
3)
}
.

This proves the proposition.

The converse to (4.1) does not hold; it is possible to have ordp(x) > 0 and
ordp(w) ≤ 0. For example, if all ai = 0 except a6 in the normal form, then the cubic
reduces to

w = x3 + a6w
3,

and we would have only the relation 0 = ordp(a6)+ 2 ordp(w).
The next definition leads to a sequence of subgroups of E(k) which are used to

analyse ker(rp : E(k)→ Ē(k(p))).

(4.2) Definition. Let E be a elliptic curve over k defined by a cubic in normal form.
The p-adic filtration on E is the sequence of subgroups E (n)(k) defined by the condi-
tion thatw : x : 1 ∈ E (n)(k) provided ordp(w) > 0 and ordp(x) ≥ n, or equivalently
provided ordp(w) ≥ 3n for n ≥ 1.

The equivalence of the two conditions for a point to be in E (n)(k) follows from
(4.1). Observe that E (1)(k) = r−1

p (0), where 0 = 0 : 0 : 1 in Ē (n)(k(p)). We extend

the definition to one other term E (0)(k) = r−1
p (Ē(k(p))ns). The curve E has good

reduction at p if and only if E(k) = E (0)(k). The subset E (0)(k) is a subgroup of
E(k) since a line L intersecting E(k) at one point of E(k) − E (0)(k) must intersect
it twice or at another point. We leave it to the reader to check in Exercise 3 that the
restriction rp : E (0)(k)→ Ē(k)ns is a group morphism.

(4.3) Proposition. Let P = w : x : 1, P ′ = w′ : x ′ : 1, and P ′′ = w′′ : x ′′ : 1 be
three points on the intersection E ∩ L over k, where E is an elliptic curve defined by
a cubic in normal form and L is a line. If P, P ′ ∈ E (n)(k) for n ≥ 1, then we have

ordp(x + x ′ + x ′′) ≥ 2n and ordp(w
′′) = 3 ordp(w

′′) ≥ 3n.

Proof. Let w = cx + b be the equation of the line L through the three points P , P ′,
and P ′′. Now we calculate c and ordp(c) using the equation of the cubic.

Case 1. P �= P ′. Then c = (w−w′)/(x −x ′) is the slope of the line. Subtracting
the normal form of the cubic

w + a1wx + a3w
2 = x3 + a2wx2 + a4w

2x + a6w
3

for P ′ from the equation for P on the curve, we get

(w − w′)+ · · · = (x − x ′)(x2 + xx ′ + x ′2)+ · · · .
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Each term in the previous relation is of the form

wa xb − w′a x ′b = (wa − w′a)xb + w′a(xb − x ′b).

Hence the difference of the two normal forms has the form

(w − w′)(1 + u) = (x − x ′)(x2 + xx ′ + x ′2 + v), for u, v ∈ k,

where ordp(u) > 0 so that ordp(1 + u) = 0. Further, each term of v is divisible
by some w or w′ so that ordp(v) ≥ 3n. Since ordp(x) and ordp(x ′) ≥ n, we have
ordp(x2 + xx ′ + x ′2 + v) ≥ 2n. Thus we obtain the following inequality:

ordp(c) = ordp

(
w − w′

x − x ′

)
≥ ordp(x

2 + xx ′ + x ′2 − v)− ordp(1 + u)

≥ 2n.

Case 2. P = P ′. Then c = dw/dx . Differentiate the normal form of the cubic
implicitly

dw

dx
+ a1

(
w + x

dw

dx

)
+ 2a3w

dw

dx

= 3x2 + a2

(
2wx + x2 dw

dx

)
+ a4

(
w2 + 2wx

dw

dx

)
+ 3a6w

2 dw

dx
,

and collecting the terms we obtain(
1 + a1x + 2a3w − a2x2 − 2a4wx − 3a6w

2
) dw

dx
= 3x2 + 2a2xw + a4w

2 − a1w.

The coefficient of dw/dx has the form 1+ u where ordp(u) > 0 and this means that
ordp(1 + u) = 0. The right-hand side has the form 3x2 + v where ordp(3x2 + v) ≥
ordp(3x2) ≥ 2ordp(x) since ordp(w) = 3n, and thus we have the inequality

ordp(c) = ordp

(
dw

dx

)
= ordp(3x2 + v) ≥ 2n.

Therefore in both cases ordp(c) ≥ 2n. As for the coefficient b in the equation of
the line through P and P ′, we use b = w − cx to obtain the inequality

ordp(b) ≥ min{ordp(w), ordp(c)+ ordp(x)} ≥ 3n.

In order to estimate ordp(x + x ′ + x ′′), we substitute the equation for the line
w = cx + b through P and P ′ in the normal form for the equation of the cubic to
obtain an equation in x

(cx + b)+ a1(cx + b)x + a3(cx + b)2
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= x3 + a2(cx + b)x2 + a4(cx + b)2x + a6(cx + b)3.

Collecting coefficients of powers of x , we have the following first two terms:

0 = x3
(

1 + a2c + a4c2 + a6c3
)

+ x2
(

a2b + 2a4bc + 3a6bc2 − a1c − a3c2
)
+ · · · .

The sum of the roots of this cubic equation in x is x + x ′ + x ′′ the x-coordinates of
P , P ′, and P ′′ and is given by the following expression:

x + x ′ + x ′′ = −a2b + 2a4bc + 3a6bc2 − a1c − a3c2

1 + a2c + a4c2 + a6c3
.

Since the denominator is of the form 1 + u where ordp(u) > 0, we see that

ordp(1 + a2c + a4c2 + a6c3) = 0.

From the relations ordp(b) ≥ 3n and ordp(c) ≥ 2n, we deduce that ordp(x + x ′ +
x ′′) ≥ 2n.

For the last statement of the proposition observe that

ordp(x
′′) ≥ min

{
ordp(x + x ′ + x ′′), ordp(−x), ordp(−x ′)

} ≥ n.

Since w = cx + b, or from (4.1), it is now clear that ordp(w
′′) ≥ 3n and the point

(w′′, x ′′, 1) is in E (n)(k). This proves the proposition.

(4.4) Remark. At the end of the proof of the previous proposition, we see that
ordp(x + x ′ + x ′′) ≥ 3n whenever a1 = 0, so that the term a1c is not in the nu-
merator of the expression for x + x ′ + x ′′.

(4.5) Theorem. Let E be an elliptic curve over k defined by a cubic in normal
form with p-adic filtration E (n)(k) on E(k). The subsets E (n)(k) are subgroups.
The function P = (w, x, 1) → x(P) = x defined E (n)(k) → pn R composed with
the canonical quotient morphism pn R → pn R/p2n R defines a group morphism
E (n)(k) → pn R/p2n R with kernel in E (2n)(k) and it induces a monomorphism
E (n)(R)/E (2n)(k)→ pn R/p2n R for n ≥ 1.

Proof. For the first statement observe that the condition on P = (w, x, 1) where
ordp(w) ≥ 3n and ordp(x) ≥ n is equivalent for the coordinates P(1, x, y) to the
condition ordp(x) ≤ −2n and ordp(y) ≤ −3n. Since

−(1, x, y) = (1, x,−y − a1x − a3),

it follows that the sets E (n)(k) are stable under taking inverse of elements. This to-
gether with (4.3) implies that E (n)(k) is a subgroup for n ≥ 1.

For the second statement, consider P Q = T . By (4.3) we have
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x(P)+ x(Q)+ x(T ) ≡ 0 mod p2n R,

and this means that

x(P + Q)+ x(T ) ≡ x(P)+ x(Q) mod p2n R.

For the last statement note that x(P) ∈ p2n R if and only if P ∈ E (2n)(k). This
proves the theorem.

(4.6) Remark. The above result can be modified when a1 = 0 to give an injection

E (n)(k)

E (3n)(k)
→ pn R

p3n R
.

In the next section we will see one case where this modification is useful.

Exercises

1. Carry out the proofs of the modifications indicated in (4.4) and (4.6).
2. Using the notations in (2.1), show that R is a valuation ring with maximal ideal Rp if and

only if R(p) = R. Then show that Rp is the unique maximal ideal in R. Show that the
following is a filtration by subgroups of the multiplicative group k∗:

k∗ ⊃ R∗ ⊃ 1 + Rp ⊃ 1 + Rp2 ⊃ · · · ⊃ 1 + Rpn ⊃ · · · .
In this case show that ordp induces an isomorphism ordp : k∗/R∗ → Z, reduction mod p
induces an isomorphism R∗/(1 + Rp)→ k(p)∗ = (R/Rp)∗, and 1 + apn → a induces
an isomorphism (1 + Rpn)/(1 + Rpn+1)→ k(p) = R/Rp as additive groups.

3. Let Ē(k)ns denote the subgroup of nonsingular points of Ē(k). Show that E(0)(k) =
r−1

p (Ē(k)ns) is a subgroup of E(k) with zero equal to 0 : 0 : 1. Show that the restriction

r p : E(0)(k)→ Ē(k(p))ns is a group homomorphism.

§5. Torsion in Elliptic Curves over Q: Nagell–Lutz Theorem

Let Tors(A) or Ators denote the torsion subgroup of an abelian group A. In this sec-
tion we will see that E(Q)tors is a group that can be determined effectively from the
equation of the curve E , and is in particular a finite group.

(5.1) Theorem (Nagell–Lutz). Let E be an elliptic curve over the rational numbers
Q.

(1) The subgroup E(Q)tors ∩ E (1)(Q) is zero for each odd prime p and

E(Q)tors ∩ E (2)(Q)

is zero for p = 2.



116 5. Reduction mod p and Torsion Points

(2) The restriction of the reduction homomorphism rp|E(Q)tors : E(Q)tors →
E(p)(Fp) is injective for any odd prime p where E has good reduction and
r2|E(Q)tors : E(Q)tors → E(2)(F2) has kernel at most Z/2Z when E has good
reduction at 2.

Proof. The function T → x(T ) defines a monomorphism E (n)(Q)/E (2n)(Q) →
Zpn/Zp2n ∼= Z/Zp by (4.5), and this implies that there is no torsion prime to p in
E (1)(Q) prime to p. Assume that pT = 0 where T ∈ E (r)(Q) − E (r+1)(Q) and
r ≥ 1. If p is odd, then we can use (4.5) and (4.6) to show that

0 = x(pT ) ≡ px(T ) mod p3r .

Hence x(T ) ∈ p3r−1Z, and this means that T ∈ E (3r−1)(Q). This implies that
r ≤ 3r −1 or 2r ≤ 1 so that r = 0. If p = 2, then we can only use (4.5) to show that

0 = x(2T ) ≡ 2x(T ) mod 22r .

Hence x(T ) ∈ 22r−1Z, and this means that T ∈ E (2r−1)(Q). This implies that
r = 2r − 1 r = 1. Hence E(Q)tors has zero intersection with E (1)(Q) for p odd and
with E (2)(Q) for p = 2.

For the second assertion recall that ker(rp) = E (1)(Q) at any prime p. The first
assertion implies that for good reduction at p the restriction rp|E(Q)tors has zero
kernel for p odd and kernel isomorphic to E(Q)tors ∩ E (1)(Q)/E (2)(Q) for p = 2.
The group E(Q)tors ∩ E (1)(Q)/E (2)(Q) injects into 2Z/4Z = Z/2Z by (4.5). This
proves the second assertion and the theorem.

(5.2) Remark. If C is a cubic curve defined by an equation over Fq in normal form,
then for each x in Fq we have at most two possible (x, y) on the curve C(Fq) and so
the cardinality #C(Fq) ≤ 2q + 1.

(5.3) Corollary. Let E be an elliptic curve over Q. If E has good reduction at an odd
prime p, then the cardinality of the torsion subgroup satisfies #E(Q)tors ≤ 2p + 1.
If E has good reduction at 2, then #E(Q)tors ≤ 10.

(5.4) Corollary. For an elliptic curve E over Q, the torsion subgroup E(Q)tors of
E(Q) is finite and is either cyclic or cyclic direct sum with Z/2Z.

Proof. Every elliptic curve has good reduction at some p giving the finiteness asser-
tion. Since E(Q)tors is a finite subgroup of E(R), we can apply (7.2) of the Intro-
duction and the structure of such finite subgroups of the cicle or the circle direct sum
with Z/2Z.

In the first few sections of Chapter 1, we introduced some elliptic curves in order
to see how the group law works, and now we return to these curves to illustrate the
use of Theorem (5.1) and some other general ideas.

(5.5) Example. The curve E : y2 + y− xy = x3 was considered in 1(1.6) where we
saw that (1, 1) generated a subgroup of order 6 in E(Q)tors. Reducing this curve mod
2, we apply the ideas in 3(6.4) to see that the curve is isomorphic to y2+xy = x3+x2
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over F2 which is singular. Hence it has bad reduction at 2. Modulo 3 the situation is
better. From the derivative

(2y + 1 − x)y′ = 3x2 + y = y,

we see that (1, 0) is the only indeterminate value for y′, but (1, 0) is not on E(F3).
We have the following “graph”

0

+1 ∗
0 ∗

−1 ∗ ∗ ∗
−1 0 +1

and from this we see that E(3)(F3) is cyclic of order 6. Applying (5.1), we deduce that
E(Q)tors is cyclic of order 6 generated by (1, 1). The question of points of infinite
order is still pending.

(5.6) Example. In, respectively, 1(1.6), 1(2.3), and 1(2.4), we introduced three
curves

E : y2 + y = x3 − x, E ′ : y2 + y = x3 − x2, E ′′ : y2 + y = x3 + x2.

On E and E ′′ the point (0, 0) has infinite order and on E ′ it has order 5. Mod 2 all
three curves reduce to the same curve up to isomorphism, namely the curve called
E3 in 3(6.4), and E3(F2) is cyclic of order 5. Mod 3 we leave it to the reader to check
that all three curves are nonsingular and they have the following graphs:

E :

0

+1

0 ∗ ∗ ∗
−1 ∗ ∗ ∗

−1 0 +1

E ′ :

0

+1

0 ∗ ∗
−1 ∗ ∗

−1 0 +1

E ′′ :

0

+1 ∗
0 ∗ ∗

−1 ∗ ∗
−1 0 +1

Hence E(F3) = Z/7Z, E ′(F3) = Z/5Z, and E ′′(F3) = Z/6Z. Any torsion in E(Q)
would have to inject into both the cyclic group of order 5, mod 2, and the cyclic group
of order 7, mod 3. Hence E(Q)tors = 0, and by the same principle, E ′′(Q)tors = 0,
while E ′(Q)tors is cyclic of order 5.
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Exercises

1. For the elliptic curve E : y2 − y = x3 − 7, see 1(2.5), show that E is nonsingular mod
2. Show that E(Q) has no point of order 2, and deduce that E(Q)tors is cyclic of order 3.

2. Study E : y2 + xy + y = x3 − x2 both modulo 2 and modulo 3. Determine E(Q)tors.
3. Study E : y2+xy = x3−x2−2x−1 both modulo 2 and modulo 3. Determine E(Q)tors.
4. In 1(2. Ex.5) we noted that (1, 0) has order 7 on E : y2 + xy + y = x3 − x2 − 3x + 3.

Show that E is nonsingular modulo 3 and determine E(Q)tors.
5. Let Mn(R) denote the algebra of n by n matrices over the ring R. Reduction modulo q

of integral matrices defines a ring homomorphism rq : Mn(Z)→ Mn(Z/qZ), and show
that it restricts to rq : GLn(Z)→ GLn(Z/qZ) on the invertible matrices. For X ∈ Mn(Z)

such that r p(X) = 0 show that

(In + pa X)n ≡ In + npa X mod pa+b+1,

where b = ordp(n) and p > 2 or a ≥ 1. Prove that for a finite subgroup G of GLn(Z)

that G ∩ ker(r p) = 1 for p > 2 and G ∩ ker(r4) = 1 at p = 2. Compare with (5.1).
6. Show that the curve y2 + y = x3 − 7x + 6 has no torsion in its group of rational points.

§6. Computability of Torsion Points on Elliptic Curves from
Integrality and Divisibility Properties of Coordinates

The first theorem says that when looking for torsion points we have only to look at
integral points.

(6.1) Theorem. Let E be an elliptic curve defined over Q with an equation in nor-
mal form with integer coefficients. If (x, y) ∈ E(Q)tors, then the coordinates x and y
are integers.

Proof. If y = 0, then x is a solution of the cubic equation

0 = x3 + a2x2 + a4x + a6

with integer coefficients. Since x is rational, it is also an integer, for x = m/n re-
duced to lowest terms satisfies

0 = m3 + a2m2n + a4mn2 + a6n3,

and any prime dividing n must divide m. Thus x = m is an integer.
If y �= 0, then the point with homogeneous coordinates has the form (w : x ′ :

1) = (1 : x : y), where w = 1/y and x ′ = x/y. By Theorem (4.1), we have that
(w : x ′ : 1) ∈ r−1

p (0) for p odd and (w : x ′ : 1) ∈ E (2)(Q) at 2. In other words
we have ordp(w) ≤ 0 for p odd and ord2(w) ≤ −1 at 2. This condition becomes
for y the relation ordp(y) ≥ 0 for all odd p and ord2(y) ≥ −1 at 2. Thus y has
the form y = h/2 for an integer h. Again write x = m/n, and x satisfies a cubic
equation with coefficient of x3 one, coefficient of x2 an integer, coefficient of x an
integer over 2, and constant coefficent an integer over 4. A modification, using 2, of
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the above argument showing x = m shows again that x = m and h is even. This
proves the theorem.

The last step in our analysis of torsion points, which we now know must have
integer coordinates, is to obtain a divisibility requirement on the y-coordinate.

(6.2) Theorem. Let E be an elliptic curve over Q, and let y2 = f (x) be a Weier-
strass equation for E where f (x) has integer coefficients. If (x, y) is a torsion point
on E, then the integer y is zero or y divides D( f ), the discriminant of the cubic
polynomial f (x).

Proof. If y = 0, then (x, 0) is of order 2 and 0 divides the discriminant. Otherwise,
2(x, y) = (x̄, ȳ) unequal to 0 on E(Q). The tangent line to E at (x, y) has slope
f ′(x)/2y, and when its equation y = λx + β is substituted into the Weierstrass
equation y2 = f (x) = x3 + ax2 + bx + c, we obtain a cubic equation with x as
double root and x̄ as a single root. This equation has coefficient a − ( f ′(x)/2y)2 of
x2, and hence the sum of the roots of the cubic in x is the negative of this coefficient,
so

2x + x̄ = a −
(

f ′(x)
2y

)2

.

Since x , x̄ , and a are integers, it follows that f ′(x)/2y is an integer, and 2y divides
f ′(x).

By (4.2) in the Appendix to Chapter 2, we can write the discriminant D( f ) of
f (x) as a linear combination D( f ) = u(x) f (x) + v(x) f ′(x), where u(x), v(x) ∈
Z[x]. Since y = f (x) and y divides f ′(x) for the point (x, y) on E , we deduce that
y divides D( f ). This proves the theorem.

(6.3) Remark. The effectively computable method for finding E(Q)tors is to take
for E a Weierstrass equation y2 = f (x), where f (x) = x3 + ax2 + bx + c and a, b,
and c are integers. Consider the finite set of all divisors y0 of D( f ), the discriminant
of f (x). Solve the cubic f (x) = y2

0 for integer solutions x0. Among these (x0, y0)

are all points of E(Q)tors which are unequal to 0.

(6.4) Example. For a cubic in the form x3 + ax2 + bx the discriminant is D(x3 +
ax2 + bx) = b2(4b − a2). In the case of E : y2 = x3 + x2 − x we have D =
−4 − 1 = −5. The divisors of 5 are +1, −1, +5, and −5. For y = 0 we have the
point (0, 0), for y = +1 we have the points (1, 1) and (−1, 1), for y = −1 we
have the points (1,−1) and (−1,−1), and for y = 5 we obtain the cubic equation
0 = x3 + x2 − x − 25. It has a root strictly between 2 and 3 which is not integral,
and, in fact, it is not rational. The same applies to y = −5. Thus we have six rational
torsion points on E(Q), and E(Q)tors is cyclic of order 6. Although not all points
need be torsion points in general.

(6.5) Remark. If (x, y) is a point E(Q) such that some multiple n(x, y) has nonin-
tegral coefficients, then (x, y) is not a torsion point. This applies to (0, 0) on E and
E ′′ in (5.6) by the calculations in 1(1.6) and 1(2.4).
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Exercises

1. Find all torsion points on E : y2 = x3 − x2 + x by the method using (6.1) and (6.2). Show
that the curve has good reduction modulo 5 and compare with E(F5).

2. Find all torsion points on E : y2 = x3 − 2x2 − x by the method using (6.1) and (6.2).
Show that the curve has good reduction both modulo 3 and modulo 5, and compare with
E(F3) and E(F5).

3. Show that E : y2 = x3 + x2 − x has good reduction modulo 3 and compare E(Q)tors with
E(F3).

4. Let (x, y) be a point on E(Q) defined by a normal cubic over the integers. If the slope
of the tangent line of E at (x, y) is not an integer, then show that (x, y) is not a torsion
point.

§7. Bad Reduction and Potentially Good Reduction
We continue with the notations of (1.1) and recall that an elliptic curve E over k with
discriminant has good (resp. bad) reduction at p if and only if ordp() = 0 (resp.
ordp() > 0). Bad reduction divides into two cases using the description of singular
cubic curves in Chapter 3, §7.

(7.1) Definition. An elliptic curve E over k has:

(1) multiplicative reduction (or semistable reduction) at p provided the reduction
E(p) has a double point (or node), or

(2) additive reduction (or unstable reduction) at p provided the reduction E(p) has a
cusp.

Multiplicative reduction is divided into split or nonsplit depending on whether or not
E(p)(k(p)) is isomorphic to the multiplicative group of k(p) or to the elements of
norm one in a quadratic extension of k(p).

(7.2) Remark. Let E be an elliptic curve E over k with discriminant  and having
bad reduction at p, that is, ordp() > 0 or ̄ = 0. The reduction is:

(1) multiplicative reduction if and only if ordp(c4) = 0 or, equivalently, ordp(b2) =
0, or

(2) additive reduction if and only if ordp(c4) > 0 or, equivalently, ordp(b2) > 0.

Observe that ordp( j (E)) is positive if E has good reduction and can be either
positive or negative if E has bad reduction since it is a quotient of elements in R.

(7.3) Remark. Let E be an elliptic curve over k with good reduction at p. Then the
reduction modulo p of j (E) is given by rp( j (E)) = j (E(p)) and ordp( j (E)) ≥ 0.
We also have two congruences:

ordp( j (E)) ≡ 0 (mod 3) and ordp( j (E)− 123) ≡ 0 (mod 2)
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since j (E) = c3
4/, j (E) − 123 = c2

6/, and 123 = c3
4 − c2

6. Conversely, if
ordp( j − 123) = 0 = ordp( j), then the equation

y2 + xy = x3 − 123

j − 123
x − 1

j − 123

shows that the curve E with j (E) = j can be defined over k.

(7.4) Remark. If E has multiplicative reduction at p, then ordp( j (E)) < 0 since
j (E) = c3

4/ and ordp(c4) = 0 for multiplicative reduction by (7.2(1)).

Now we consider an elliptic curve E over k with j (E) ∈ R, that is, with
ordp( j (E)) ≥ 0 for all p even at those irreducibles p where E has bad reduction.

Case 1. If k has characteristic unequal to 2, then E can be defined by an equation
of the form y2 = f (x). If we extend the field k to k′ including the roots of f (x),
then E becomes isomorphic to a curve with equation in Legendre form Eλ: y2 =
x(x − 1)(x − λ) where the j-invariant in this case is

j (Eλ) = j (λ) = 28 (λ
2 − λ+ 1)3

λ2(λ− 1)2

by 4(1.4). Given a value j = j (E), we can solve for one of the values of λ such that
j (λ) = j . In general there are six possible λ. If ordp(λ) < 0, then

ordp( j (λ)) = 3 ordp(λ
2)− 2 ordp(λ)− 2 ordp(λ) < 0,

and hence ordp( j) ≥ 0 implies that ordp(λ) ≥ 0. Furthermore, the curve Eλ has
good reduction since λ̄ is not 0 or 1 because it is a solution of j̄ = j (λ) over the
residue class field k(p).

Case 2. If k has characteristic unequal to 3, then E can be transformed into an
equation of the form Eα: y2 + αxy + y = x3 where the j-invariant in this case is

j (Ea) = j (α) = α3(α3 − 24)3

α3 − 27

by 4(2.2) and 4(2.3). Given a value j = j (E), we can solve for one of the values of
α such that j (α) = j . If ordp(α) < 0, then

ordp( j (α)) = 3 ordp(α)+ 3 ordp(α
3)− 3 ordp(α

3) < 0,

and hence ordp( j) ≥ 0 implies that ordp(α) ≥ 0. Furthermore, the curve Eα has
good reduction since ᾱ3 is unequal to 27 because it is a solution of j̄ = j (α) over
the residue class field k(p).

The above discussion is a proof of Deuring [1941] characterizing potentially
good reduction. We formulate the concept and theorem for fields K with a discrete
valuation in terms of finite extensions L of K and prolongations w of v to L . Recall
that these extensions w of v always exist.
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(7.5) Definition. An elliptic curve E over K has potential good reduction provided
there exists a finite extension L and an extension w of v to L such that E over L has
good reduction at the valuation w.

Be extending the ground field from K to L , the minimal equation of E can change
to one with good reduction, or, in other words, E can become isomorphic over L to
a curve E ′ with good reduction at w. In the above case E ′ was the Legendre or
Hessian form of the equation. In general the discriminant of E over K is different
from the discriminant ′ of E ′ over L and in this case of potential good reduction
v() > 0 and w(′) = 0 while j (E) = j (E ′). Since any curve E ′ with good
reduction has v( j (E ′)) ≥ 0, it follows immediately that if E has potential good
reduction, then j (E) is a local integer, i.e., v( j (E)) ≥ 0. The above argument with
Legendre or Hessian forms of the equations shows that the converse holds, and this
is the theorem of Deuring.

(7.6) Theorem. An elliptic curve E defined over K has potential good reduction if
and only if j (E) is a local integer, i.e., v( j (E)) ≥ 0.

§8. Tate’s Theorem on Good Reduction over the Rational
Numbers

Tate’s theorem says that over the rational numbers there are no elliptic curves with
good reduction everywhere. We give a proof using formulas for coefficients follow-
ing Ogg [1966].

(8.1) Theorem. Every elliptic curve E over the rational numbers Q has bad reduc-
tion at some prime, i.e.,  cannot be equal to ±1.

Proof. Assume that  = ±1. Recall from 3(3.1) that

 = −b2
2b8 − 8b3

4 − 27b2
6 − 9b2b4b6

and

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4.

If a1 is even, then 4|b2 and 2|b4 so that b6 will have to be odd, and in fact, ±1 =
 ≡ 5b2

6 (mod 8). Since any square modulo 8 is conguent to 0, 1, 4 (mod 8), this is
impossible.

Now consider the case where a1 is odd, and hence b2 is also odd. Then the co-
efficient c4 = b2

2 − 24b4 ≡ 1 (mod 8). We write c4 = x ± 12 from the relation
c3

4 − c2
6 = 123 = ±123, and thus

c2
6 = x(x2 ± 36x + 3 · 123) ≡ x2(x + 4) (mod 8).

This means that x ≡ 5 (mod 8). Now 3|x , for otherwise any p|x with p > 3, it would
follow that p2|x and ±x would be a square. This would contradict x ≡ 5 (mod 8).
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Let x = 3y so that y ≡ 7 (mod 8), and hence c6 = 9c. This gives the equation

3c2 = y(y2 ± 12y + 4 · 122) = y((y ± 6)2 + 540).

Now y > 0 since y((y ± 6)2 + 540) is positive. If p is unequal to 3 and divides y, it
does so to an even power. Also the relation for 3c2 shows that if 3 divides y, then 27
divides 3c2. In this case let y = 3z and c = 3d which leads to

d2 = z(z2 ± 4z + 64)

from the relation for 3c2. If an odd prime p divides z, then p2|z and z is a square. But
y ≡ 7 (mod 8) implies z ≡ 5 (mod 8) which contradicts the fact that z is a square.
This proves the theorem.

(8.2) Example. The following curve

y2 + xy + ε2 y = x3, where ε = 5 + √
29

2

over K = Q(
√

29) was shown by Tate to have good reduction at all places of K , see
Serre [1972, p. 320]. The norm of ε is −1, and the group of totally positive units in
R = Z[ε] is generated by ε2. The reader can check that  = −ε10 and verify the
good reduction properties.

(8.3) Example (Unpublished example of R. Oort).

y2 + xy = x3 − εx

where ε = 32 + 5
√

41 the fundamental unit in Z[(1/2)+ (1/2)√41]. Here  = ε4

and the curve has good reduction at all places of Q(
√

41).
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Proof of Mordell’s Finite Generation Theorem

In this chapter we prove that the rational points E(Q) on an elliptic curve E over the
rational numbers Q form a finitely generated group. We will follow a line of argu-
ment which generalizes to prove A. Weil’s extension to number fields: The Mordell–
Weil group E(k) of points over a number field k on an elliptic curve E is a finitely
generated group.

There are two conditions on an abelian group A which together are equivalent
to A being finitely generated. First the index (A : n A) is finite for some n > 1,
usually one shows that (A : 2A) is finite, and second the existence of a norm on the
group. This last metric property allows a descent procedure to take place similar to
the descent arguments first introduced by Fermat.

The proof of the finiteness of (E(k) : 2E(k)) is done over any number field. The
argument uses the equation of E in factored Weierstrass form

y2 = (x − α)(x − β)(x − γ ).
A factored form of the equation is always possible after at most a ground field ex-
tension of degree 6. Thus we are led to number fields even if our interest is elliptic
curves over Q.

The norm is constructed from the canonical height function of projective space.
The subject of heights comes up again in considerations related to the Birch and
Swinnerton–Dyer conjectures in Chapter 17.

§1. A Condition for Finite Generation of an Abelian Group
Multiplication by a natural number m on an abelian group A is a homomorphism
A

m→ A with a kernel m A and a cokernel A/m A. The order of A/m A is also the
index (A : m A) of the subgroup m A in A. If A is finitely generated, then (A : m A)
is finite for all nonzero m.

(1.1) Definition. A norm function | | on an abelian group A is a function | | :
A → R such that:
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(1) |P| ≥ 0 for all P ∈ A, and for each real number r the set of P ∈ A with
|P| ≤ r is finite.

(2) |m P| = |m||P| for all P ∈ A and integers m.
(3) |P + Q| ≤ |P| + |Q| for all P, Q ∈ A.

Observe that from these axioms P is a torsion point if and only if |P| = 0. By
the first axiom the torsion subgroup Tors(A) of A is therefore finite.

(1.2) Examples. The restriction of the Euclidean norm on Rn to Zn is a norm on Zn .
The zero norm is a norm on any finite abelian group, and, in fact, it is the only norm.
If Ai is an abelian group with norm | |i for i = 1, . . . , n, then A1 ⊕ · · · ⊕ An = A
has a norm given by |(P1, . . . , Pn)| = |P1|1 + · · · + |Pn|n . In particular, any finitely
generated abelian group A has a norm since A is isomorphic to Zn × Tors(A). The
converse is the next proposition.

(1.3) Proposition. An abelian group A is finitely generated if and only if the index
(A : m A) is finite for some m > 1 and the group A has a norm function.

Proof. The direct implication is contained in the above discussion. Conversely,
let R1, . . . , Rn be representatives in A for the cosets modulo m A, and let c =
maxi |Ri | + 1. Let X denote the finite set of all P ∈ A with |P| ≤ c, and let G
be the subgroup of A generated by X . In particular, each Ri ∈ X ⊂ G.

If there exists P ∈ A − G, then there exists such a P with minimal norm by the
first axiom. Since P ≡ Ri (mod m A) for some coset representative of A/m A, we
have P = Ri + m Q or m Q = P + (−Ri ), and

m|Q| = |m Q| ≤ |P| + |Ri | < |P| + c ≤ m|P|.
From the minimal character of P ∈ A − G, we see that Q ∈ G, and hence the
sum P = Ri + m Q is also in G. This contradicts the assumption that A − G is
nonempty and, therefore, A = G, because G is finitely generated by X . This proves
the proposition.

(1.4) Remark. The above argument has a constructive character and is frequently
referred to as a descent procedure. For a given P ∈ A we can choose a sequence

P = Ri(0) + m P1, P1 = Ri(1) + m P2, . . . , Pj = Ri( j) + m Pj+1, . . .

with

|P| > |P1| > |P2| > · · · > |Pj | > |Pj+1| > · · ·
and the descent stops when some |Pj | ≤ c. Thus P is a sum of chosen coset repre-
sentatives.

In the next section we show how descent was first used by Fermat to show the
nonexistence of solutions to x4 + y4 = 1, where x and y are rational numbers both
nonzero. The program for the remainder of this chapter is to check the two conditions
of (1.3) for A = E(k) the rational points on an elliptic curve over a number field.

(1.5) Remark. If the index (A : p A) = pr for a prime number p, then r is an upper
bound for the rank of A. This principle is used frequently in obtaining information
on the rank of the group of rational points on an elliptic curve especially for p = 2.
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§2. Fermat Descent and xxx4 + yyy4 = 1
This section is a short detour away from the main purpose of the chapter and is not
used in the rest of the book. We wish to explain the context in which the Fermat
descent first arose.

We consider the equation x4 + y4 = z2, where x , y, and z are integers without
common factors.

Step 1. We apply (3.1) of the Introduction to the primitive Pythagorean triple
x2, y2, z, where z2 = (x2)2 + (y2)2 giving a representation

x2 = m2 − n2, y2 = 2mn, z = m2 + n2.

Step 2. Now look at the relation x2 + n2 = m2 which says that n, x,m is a
Pythagorean triple which is again primitive, for otherwise x2, y2, z would not be
primitive. Applying (3.1) of the Introduction again, we can write

x = t2 − s2, n = 2ts, m = t2 + s2,

where s and t have no common prime factor.

Step 3. Substituting into y2, we obtain y2 = 2mn = 4st (s2 + t2). Since s and
t have no common prime factor, we deduce that both s and t are squares, that is,
s = a2 and t = b2 and hence

c2 = (a2)2 + (b2)2

for some c.
Step 4. We started with a primitive z2 = x4 + y4 and we produced c2 = a4 + b4

with the additional feature that z > c. To see that this inequality holds, we calculate

z = m2 + n2 = (t2 + s2)2 + 4t2s2

= (a4 + b4)+ 4a4b4 > (a4 + b4)2 = c4.

This establishes the inequality which is the core of the Fermat descent procedure.

(2.1) Theorem (Fermat, 1621). The equation x4+y4 = t2 has no integral solutions
with both x and y nonzero. The only rational points on the Fermat curve

F4 : x4 + y4 = 1

are the intersection points with the axes (±1, 0) and (0,±1).

Proof. If the first equation had an integral solution x , y, t , then we could choose x ,
y, and t strictly positive and consider a solution with t a minimum among all such
solutions. By the Fermat descent procedure there would be a solution a4 + b4 = c2

with c strictly smaller than t contradicting the minimal property of t . Hence there is
no integral solution.

For the second assertion, consider a rational solution and clear the denominators
of x and y to obtain a relation between integers of the form u4 +v4 = t2. By the first
result either u = 0 or v = 0. This proves the theorem.
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§3. Finiteness of (EEE(Q) : 2EEE(Q)) for EEE = EEE[aaa,bbb]

Using the factorization of multiplication by 2 on the elliptic curve E = E[a, b] con-
sidered in 4(5.3), we will show by relatively elementary means that (E(Q) : 2E(Q))
is finite for an elliptic curve of this form over the rational numbers. Note E[a, b] is
defined by y2 = x3 + ax2 + bx for a, b ∈ k.

Recall from 4(5.6) the function α : E[a, b] → k∗/(k∗)2 defined by

α(0) = 1,

α((0, 0)) = b mod(k∗)2,

α((x, y)) = x mod(k∗)2 for x �= 0,

and having the property, see 4(5.7), that the sequence

E[a, b]
ϕ→ E[−2a, a2 − 4b]

α→ k∗/(k∗)2

is exact. In the case k = Q, the field of rational numbers, the quotient group
Q∗/(Q∗)2 is additively an F2-vector space with a basis consisting of −1 and all
the positive prime numbers p.

(3.1) Proposition. Let E = E[a, b] be an elliptic curve over the rational numbers
Q. The homomorphism

α : E[a, b] → Q∗/(Q∗)2

has image im(α) contained in the F2-vector subspace generated by −1 and all
primes p dividing b. If r distinct primes divide b, then the cardinality of im(α) is
less than 2r+1.

Proof. Let x = m/e2 and y = n/e3 be the coordinates of (x, y) on E[a, b] with
rational coefficients where the representations are reduced to lowest terms. Note we
can always choose denominators in this form. The equation of the curve gives

n2 = m3 + am2e2 = bme4

= m(m2 + ame2 + be4).

If m and m2 + ame2 + be4 are relatively prime, then it follows that m is a square up
to sign and α(x, y) = ±1.

More generally, let d be the greatest common divisor of m and m2 +ame2 +be4.
Then d divides be4, and since m and e are relatively prime, the integer d also divides
b. Moreover, m = M2d up to sign, and α(x, y) = d mod Q∗/(Q∗)2. This proves the
proposition.

(3.2) Theorem. Let a and b be two integers with  = 24b2(a2 − 4b) unequal to
zero, and let r be the number of distinct prime divisors of b and s the number of
a2 − 4b. Then for E = E[a, b] we have

(E(Q) : 2E(Q)) ≤ 2r+s+2.
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Proof. We factor multiplication by 2 as

E = E[a, b]
ϕ→ E ′ = E[−2a, a2 − 4b]

ϕ′→ E .

By 4(5.7) two different maps α induce isomorphisms E(Q)/ϕ′E ′(Q) → im(α)
and E ′(Q)/ϕE(Q) → im(α). Also ϕ′ induces an isomorphism E ′(Q)/ϕE(Q) →
ϕE ′(Q)/ϕ′ϕE(Q). Since we have two-stage filtration ϕ′ϕE(Q) = 2E(Q) ⊂
ϕ′E ′(Q) ⊂ E(Q), it follows that the index (E(Q) : 2E(Q)) is the product of the
orders of the two im(α) where in one case α is defined on E(Q) and on E ′(Q) in the
other case. Now we apply the previous proposition, (3.1), to derive the theorem.

(3.3) Remark. With the notations of the previous theorem we see that r + s + 2 is
an upper bound on the rank of E(Q). Since “most” curves over Q have rank 0 or 1,
this is not a very good upper bound. Using the methods of the next chapter we will
derive improved bounds.

§4. Finiteness of the Index (EEE(kkk) : 2EEE(kkk))

Throughout this section, we use the notations of 5(1.1) where R is a factorial ring
with field of fractions k. Observe that if c is a square in k, then ordp(c) is an even
number for all irreducibles p, and, conversely, if ordp(c) is an even number for all
irreducibles p, then c is a square times a unit in R.

Let (x, y) be a point on the elliptic curve E(k) defined by a factored Weierstrass
equation y2 = (x − r1)(x − r2)(x − r3). By Theorem 1(4.1) we know that (x, y) ∈
2E(k) if and only if all x − ri are squares for i = 1, 2, 3. In particular, ordp(x − ri )

is even for such points. For an arbitrary point on E(k) we have the following 2-
divisibility property.

(4.1) Proposition. Let E be an elliptic curve defined by

y2 = (x − r1)(x − r2)(x − r3),

where r1, r2, and r3 are in R. If (x, y) is a point on E(k), then ordp(x − ri ) is even
for all irreducibles p not dividing any elements ri − r j for i �= j .

Proof. Let p be an irreducible not dividing ri − r j , or, equivalently p such that
ordp(ri − r j ) = 0 for i �= j . If ordp(x − ri ) < 0 for one i , then for all j = 1, 2, 3,
we have ordp(x) = ordp(x − ri ) = ordp(x − r j ) since each ordp(r j ) ≥ 0. Thus it
follows that

2 ordp(y) = ordp(y
2) = ordp((x − r1)(x − r2)(x − r3)) = 3 ordp(x),

and hence ordp(x) = ordp(x − r j ) is even for each j .
We cannot have both ordp(x − ri ) > 0 and ordp(x − r j ) > 0 for i �= j since

r j − ri = (x − ri )− (x − r j ) and ordp(ri − r j ) = 0. Hence, if ordp(x − ri ) > 0, for
one root ri , then we have the relation



130 6. Proof of Mordell’s Finite Generation Theorem

2 ordp(y) = ordp(y
2) = ordp(x − ri ),

and thus all ordp(x − r j ) are even. This proves the proposition.

(4.2) Notations. Let E be an elliptic curve defined by the equation

y2 = (x − ri )(x − r2)(x − r3)

where each ri ∈ R.
(a) Let P(E) denote the set of all irreducibles p (defined up to units in R) such

that p divides some ri − r j , where i �= j . Then P(E) is a finite set. Let A(E) denote
the subgroup of all cosets a(k∗)2 in k∗/(k∗)2 such that ordp(a) is even for p /∈ P(E).

(b) Let θ1, θ2, θ3 : E(k) → A(E) ⊂ k∗/(k∗)2 be three functions given by the
relations:

(1) θi (0) = 1;
(2) θi ((ri , 0)) = (r j − ri )(rk − ri ) mod (k∗)2 for {i, j, k} = {1, 2, 3};
(3) θi ((x, y)) = (x − ri ) mod (k∗)2 otherwise.

Observe that the set P(E) is close to the set of irreducibles P where the curve E
has bad reduction and where k(p) has characteristic 2.

(4.3) Proposition. With the notations of (4.2) the functions θi : E(k) → A(E) are
group homomorphisms and

ker(θ1) ∩ ker(θ2) ∩ ker(θ3) ⊂ 2E(k).

Proof. Consider three points Pi = (xi , yi ) on E(k) ∩ L , where L is a line and show
that θi (P1), θi (P2), θi (P3) ∈ k∗/(k∗)2. The line is vertical if and only if some Pj =
0, and then by inspection θi (P1)θi (P2)θi (P3) = 1 in k∗/(k∗)2. Otherwise the line is
of the form y = λx +β, and x1, x2, and x3 are the roots of the equation (λx +β)2 =
f (x), where f (x) = (x − r1)(x − r2)(x − r3). Hence x1 − ri , x2 − ri , x3 − ri are
roots of the equation

(λ(x + ri )+ β)2 = f (x + ri ) = x3 + ax2 + bx,

where f (ri ) = 0. Collecting terms, we obtain

0 = x3 + (a − λ2)x2 + (b − 2λ(λri + β))x − (λri + β)2,
and this leads to the following cases.

Case 1. All Pj = (r j , 0) for j = 1, 2, 3. Then we calculate

θi (P1)θi (P2)θi (P3) = (x1 − ri )(x2 − ri )(x3 − ri ) = −[−(ri + β)2]

≡ 1 mod(k∗)2.

Case 2. Some Pj = (ri , 0), which we can take to be Pi = (ri , 0). Then 0, x2 −
r1, x3 − r1 are the roots of the cubic which means β = −λri , and the equation
becomes 0 = x3 + (a − λ2)x2 + bx . Now we have
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(x2 − r1)(x3 − r1) = b = (r2 − r1)(r3 − r1),

and, using this, we calculate for {i, j, k} = {1, 2, 3}

θi (Pi )θi (Pj )θi (Pk) = (r j − ri )(rk − ri )(x j − ri )(xk − ri )

= (r j − ri )
2(rk − ri )

2

≡ 1 mod(k∗)2.

Hence each θi is a group morphism.
The last statement follows from 1(4.1), and this proves the proposition.

(4.4) Remark. The three morphisms of the previous proposition collect to define a
group homomorphism

θ = (θ1, θ2, θ3) : E(k)→ A(E)3,

where ker(θ) ⊂ 2E(k) by the previous proposition. Thus E(k)/2E(k) is a subquo-
tient of A(E)3, and (E(k) : 2E(k)) is finite whenever A(E) is finite.

(4.5) Remark. The group A(E) is finite for any principal ring R where each k(p)
and R∗/(R∗)2 are finite. For example, if R = Z and k = Q, then the cardinality
of A(E) is 2m+1, where m is the number of primes in P(E). Hence we have the
following assertion which we will generalize immediately.

(4.6) Assertion. Let y2 = (x − r1)(x − r2)(x − r3) define an elliptic curve E over
Q where each ri ∈ Z. Then the index (E(Q) : 2E(Q)) is finite.

To prove this assertion for y2 = f (x) where the cubic f (x) does not necessarily
factor over Q, we will extend the ground field to k a number field, and factor the
cubic in this field k. An extension of degree 6 will be sufficient. Thus the following
more general result would be necessary even if our primary interest is elliptic curves
over Q.

(4.7) Theorem. Let E be an elliptic curve over an algebraic number field k. Then
the index (E(k) : 2E(k)) is finite.

Proof. We can assume that E is defined by an equation y2 = f (x), where f (x) is a
cubic with three integral roots in k. We take for R in k the principal ideal ring equal
to the ring of integers in k with a finite set of primes in k localized. By the finiteness
of the ideal class group we could localize those primes which divide a finite set of
representatives of the ideal class group. With a zero ideal class group the ring is
principal.

The group of units R∗ is finitely generated by the Dirichlet unit theorem, and
thus, R∗/(R∗)2 is finite. Now A(E) is finite by (4.6) and we can apply (4.4) to obtain
the proof of the theorem.
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Exercises

1. Let f (x) be a monic polynomial of degree n over k, and let ( f ) denote the ideal generated
by f in k[x]. Show that R f = k[x]/( f ) is an algebra of dimension n over k generated by
one element. If f (x) factors into distinct linear factors, then show that R f is isomorphic to
kn as algebras over k. When f (x) factors with repeated linear factors, describe a structure
theorem for R f as a direct sum of indecomposible algebras.

2. Let y2 = f (x) = (x −e1)(x −e2)(x −e3) with distinct ei , and let E be the elliptic curve
over k defined by this equation. Show that we can define, using the notation of Exercise
1, a homomorphism g : E(k)→ R∗

f /(R
∗
f )

2 by the relation for 2P = 0,

g(P) = x(P)− e mod(R∗
f )

2, where e ≡ x mod( f ).

Define g(P) for 2P = 0 in such a way that g is a group morphism. Show that ker(g) ⊂
2E(k), and im(g) ⊂ R∗

f,1/(R
∗
f )

2, where R∗
f,1 consists of all a ∈ R∗

f with N (a) ⊂ (k∗)2.
Finally relate these results with (4.3).

§5. Quasilinear and Quasiquadratic Maps
This is a preliminary section to our discussion of heights on projective space and on
elliptic curves. From heights we derive the norm function on the group of rational
points on an elliptic curve.

(5.1) Definition. For a set X a function h : X → R is proper provided h−1([−c,+c])
is finite for all c ≥ 0.

In general a map between two locally compact spaces is proper if and only if the
inverse image of compact subsets is compact. Thus a function h : X → R is proper
if and only if h is a proper map when X has the discrete topology and R the usual
topology.

(5.2) Definition. Two functions h, h′ : X → R are equivalent, denoted h ∼ h′,
provided h − h′ is bounded, that is, there exists a > 0 such that |h(x)− h′(x)| ≤ a
for all x ∈ X .

(5.3) Remark. Equivalence of real valued functions on a set is an equivalence re-
lation. If two functions are equivalent, and if one function is proper, then the other
function is proper.

Using this equivalence relation, we formulate quasilinearity, quasibilinearity, and
quasiquadratic and then relate them to the usual algebraic concepts.

(5.4) Definition. Let A be an abelian group.
(1) A function u : A → R is quasilinear provided u(x + y) and u(x) + u(y)

are equivalent functions A × A → R, i.e., u(x, y) − u(x + y) − u(x) − u(y) is
bounded on A × A.
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(2) A function β : A × A → R is quasibilinear provided the pairs of functions
β(x + x ′, y) and β(x, y) + β(x ′, y) and β(x, y + y′) and β(x, y) + β(x, y′) are
equivalent functions A × A × A → R.

(3) A function q : A → R is quasiquadratic provided q(x, y) is quasibilinear
and q(x) = q(−x). Moreover, q is positive provided q(x) ≥ 0 for all x ∈ A. Again
q(x, y) = q(x + y)− q(x)− q(y).

We will construct a norm on a group from a quasiquadratic function. First we
need a characterization of quasibilinearity.

(5.5) Lemma. Let f : A → R be a function on an abelian group A satisfying
f (x) = f (−x). Then  f : A × A → R is quasibilinear (resp. bilinear) if and only
if the weak (resp. ordinary) parallelogram law holds, i.e., for (x, y) ∈ A × A

f (x + y)+ f (x − y) ∼ 2 f (x)+ 2 f (y)

(resp. f (x + y)+ f (x − y) = 2 f (x)+ 2 f (y)).

Proof. We form the following real valued function on A × A × A:

g(x, y, z) = f (x + y + z)− f (x + y)− f (x + z)− f (y + z)

+ f (x)+ f (y)+ f (z).

The function  f is quasibilinear (resp. bilinear) if and only if g(x, y, z) is bounded
(resp. zero). The parallelogram law is easily seen to be equivalent to the relation
g(x, y,−z) ∼ −g(x, y, z) (resp. g(x, y,−z) = −g(x, y, z)). Since f (x) = f (−x)
implies that g(−x,−y,−z) = g(x, y, z), and since g(x, y, z) is symmetric in
x, y, z, we see that the parallelogram law is equivalent to 2g(x, y, z) ∼ 0 (resp.
g(x, y, z) = 0). This proves the lemma.

In connection with Definition (5.4)(3) we recall that a function q : A → R is
quadratic provided q is bilinear on A × A.

(5.6) Proposition. A function q : A → R is quadratic if and only if q(x) =
q(−x), q(2x) = 4q(x), and q is quasiquadratic.

Proof. The direct implication is immediate. Conversely, suppose that q(x, y) and
q(x,−y) are bounded. Then the sum of the two

s(x, y) = q(x + y)+ q(x − y)− 2q(x)− 2q(y)

is bounded in the absolute value by a constant A, and since the hypothesis implies
that 2−2ns(2n x, 2n y) = s(x, y), we have zero in the limit as n → +∞, |s(x, y)| =
2−2n|s(2n x, 2n y)| ≤ 2−2n A → 0. Hence the function s(x, y) = 0 for all (x, y) and
the parallelogram law holds. Thus by (5.5) the function q(x) is quadratic, and this
proves the proposition.

(5.7) Theorem. If q : A → R is a quadratic function satisfying q(x) = q(−x),
then q∗(x) = limn→∞2−2nq(2n x) exists and the function q∗(x) is quadratic.
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Proof. By (5.5) the function q is quasiquadratic if and only if the weak parallelogram
law holds q(x + y) + q(x − y) ∼ 2q(x) + 2q(y). Setting x = y we have q(2x) ∼
4q(x), that is, |q(2x)− 4q(x)| ≤ A for positive constant A. Replacing x by 2n x , we
obtain the inequality

|2−2(n+1)q(2n+1x)− 2−2nq(2n x)| = 2−2n A

which leads to the following estimate for all n and p

|2−2(n+p)q(2n+px)− 2−2nq(2n x)| = 2−2n · 4A

3
.

Thus the sequence defining q∗(x) is Cauchy, and, therefore, it is convergent. The last
assertion follows now from the previous proposition since the condition q∗(2x) =
4q∗(x) follows from the defining limit and the conditions that q∗(x) = q∗(−x) and
q∗(x) be quasiquadratic are preserved in the limit. This proves the theorem.

Another important situation where an equivalence can be modified to become an
equality is contained in the next proposition.

(5.8) Proposition. Let f : X → X be a function, let d > 1, and let h : X → R

be a function such that h f ∼ d · h. Then the limit h f (x) = limn→∞d−n · h( f n(x))
exists uniformly on X and:

(1) h f ( f (x)) = dh f (x) and |h f (x)− h(x)| ≤ cd2/(d − 1)2 where

|h( f (x))− d · h(x)| ≤ c

for all x ∈ X.
(2) If h is proper, then h f is proper.
(3) If g : X → X with hg ∼ d ′ · h for a constant d ′, then h f g ∼ d ′ · h f holds on X.

Proof. From the inequality |h( f (x)− d · h(x)| ≤ c, we have

|d−n−1h( f n+1(x)− d−nh( f n(x))| ≤ cd−n−1,

and, therefore, we have the estimate

|d−(n+p)h( f n+p(x))− d−nh( f n(x))| ≤ c

1 − (1/d)
(

1

d

)n

.

Thus d−nh( f n(x)) is a Cauchy sequence, and it converges uniformly to h f .
As for assertion (1), the relation h f ( f (x)) = d · h f (x) follows since the two

sides are rearrangements of the same limit. The second part results from the above
estimate by letting p → ∞ and taking n = 0. Assertion (2) follows from (1) and
(5.3). As for (3), we calculate the difference

h f (g(x))− d ′ · h f (x)

= [h f (g(x))− h(g(x))] + [h(g(x))− d ′ · h(x)] + [d ′ · h(x)− h f (x)],

and see that each of the three terms is bounded. This proves the proposition.
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§6. The General Notion of Height on Projective Space
A height on projective space is a proper, positive real valued function with a certain
behavior when composed with algebraic maps of projective space onto itself.

(6.1) Definition. Let k be a field. A k-morphism f : Pm(k)→ Pm(k) of degree d is
a function of the form

f (y0 : · · · : ym) = f0(y0, . . . , ym) : · · · : fm(y0, . . . , ym),

where each fi (y0, . . . , ym) ∈ k[yo, . . . , ym] is homogeneous of degree d and not all
are equal to zero at any y0 : · · · : ym ∈ Pm(k̄). Here k̄ denotes an algebraic closure
of k.

(6.2) Definition. A height h on Pm(k) is a proper function h : Pm(k)→ R such that
for any k-morphism f : Pm(k)→ Pm(k) of degree d the composite h f is equivalent
to d · h, that is, there is a constant c with |h( f (y))− d · h(y)| ≤ c for all y ∈ Pm(k).

There is a canonical height function on projective space over a global field which
is basic in many considerations in diophantine geometry. We will consider some
special cases which are used to construct a norm on the rational points of an elliptic
curve over the rational numbers.

(6.3) Notations. For a point in Pm(Q) we choose a Z-reduced representative
y0 : · · · : ym and denote by

H(y0 : · · · : ym) = max{|y0|, . . . , |ym |} and h(P) = log H(P),

where P = y0 : · · · : ym . Recall that a Z-reduced representative of P is integral and
without common divisor, and so unique up to sign. This h(P) is called the canonical
height on Pm(Q).

In the one-dimensional case there is a bijection u : Q∪ {+∞} → P1(Q) defined
by u(m/n) = n : m and u(∞) = 0 : 1. The composite hu restricted to Q is given by
h(m/n) = log max{|m|, |n|}, where m/n is reduced to lowest terms.

(6.4) Remark. Since h(y0, . . . , ym) = log(max{|y0|, . . . , |ym |}) is a proper map of
Rm+1−{0} → R and since Zm+1 is a discrete subset of Rm+1, the map h : Pm(Q)→
R is proper where Pm(Q) has the discrete topology.

To obtain a norm on an elliptic curve from a height, we will make use of the
following function s : P1(k) × P1(k) → P2(k) given by s(w : x, w′ : x ′) = ww′ :
(xw′ + x ′w) : xx ′. It has the following elementary property related to heights.

(6.5) Proposition. For s : P1(Q)× P1(Q) → P2(Q) the difference h(s(w : x, w′ :
x ′)) − h(w : x) − h(w′ : x ′) has absolute value less than log 2 on the product
P1(Q)× P1(Q).
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Proof. It suffices to show that (1/2)M · M ′ ≤ M ′′ ≤ 2M · M ′, where M ′′ =
max {|ww′|, |wx ′ + xw′|, |xx ′|}, M = max {|w|, |x |}, and M ′ = max {|w′|, |x ′|}.
If |w| ≤ |x |, |w′| ≤ |x ′|, then M · M ′ = |x | · |x ′| ≤ M ′′. If |w| ≤ |x | = M and
|x ′| ≤ |w′| = M ′, then for M/2 ≤ |w| we have M M ′/2 ≤ |w||w′| ≤ M ′′ and
for M ′/2 ≤ |x ′| we have M M ′/2 ≤ |x ′||x | ≤ M ′′. Finally, if |x ′| ≤ M ′/2 and
|w| ≤ M/2, then |wx ′| ≤ (1/4)|w′x | = M M ′/4, and (3/4)M M ′ ≤ |wx ′ + w′x | ≤
M ′′. The other cases result from these by switching variables. The other inequality
results from |wx ′ + xw′| ≤ 2 max {|wx ′|, |xw′|}. The proposition itself follows now
by applying the log to the above inequality.

Now we return to showing that the canonical height satisfies the basic property
with respect to Q-morphisms.

(6.6) Lemma. Let ϕ be a form of degree d in y0, . . . , ym. Then there exists a positive
constant c(ϕ) such for Z-reduced y ∈ Pm(Q) we have |ϕ(y)| ≤ c(ϕ)H(y)d .

Proof. Decompose ϕ(y) = ∑
aαmα(y), where the index α counts off the monomi-

als mα(y) of degree d. Then clearly we have

|ϕ(y)| ≤
∑
α

|aα| · |mα(y)| ≤
(∑

α

|aα|
)
(max {|y0|, . . . , |ym |})d = c(ϕ)H(y)d ,

where c(ϕ) = ∑
α |aα|. This proves the lemma.

This lemma will give an upper estimate for H( f (y)) or (h( f (y)), but for a lower
estimate we need the following assertion which is a consequence of the Hilbert Null-
stellensatz.

(6.7) Assertion. A sequence of forms ( f0, . . . , fm) of degree d in Z[y0, . . . , ym]
defines a Q-morphism, i.e., they have no common zero in Pm(Q̄), if and only if there
exists a positive integer s, and integer b, and polynomials gi j (y) ∈ Z[y0, . . . , ym]
such that ∑

0≤ j≤m

gi j f j = bys+d
i for all i = 0, . . . ,m.

The Nullstellensatz says that f0, . . . , fm have no common zeros in Pm(Q̄) if and
only if the ideal I generated by f0, . . . , fm contains a power (y0, . . . , ym)

s of the
ideal generated by y0, . . . , ym , that is, if and only if there exist forms gi j (y) over Q

such that ∑
0≤ j≤m

gi j f j = ys+d
i for all i = 0, . . . ,m.

The integer b is a common denominator of the gi j (y).
For m = 1 the condition on ( f0(y0, y1), f1(y0, y1)) to be a Q-morphism is that

f0 and f1 be relatively prime. In this case (6.7) can be verified directly without the
Nullstellensatz.
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(6.8) Theorem. For the canonical height h on Pm(Q) and a Q-morphism f :
Pm(Q)→ Pm(Q) of degree d the difference

h( f (y))− d · h(y)

is bounded on Pm(Q). In particular, h is a height on Pm(Q).

Proof. Using (6.6), we have an upper estimate for H( f (y)) where

H( f (y)) = max
i

| fi (y)| ≤
(

max
i

c( fi )

)
H(y)d = c2 H(y)d .

To obtain a lower estimate, we use (6.7)

|b| · |yi |s+d =
(

max
i, j

c(gi j )

)
H(y)s

∑
j

| f j (y)|

≤
(

max
i, j

c(gi j )

)
(m + 1)H(y)s

(
max

j
| f j (y)|

)
.

Since any common factor among the f j (y) divides b, by (6.7), it follows that
max j | f j (y)| = |b|H( f (y)). Using this inequality and taking the maximum over
i of the above inequality, we have

|b| · H(y)s+d ≤
(

max
i, j

c(gi j )

)
(m + 1)H(y)s |b|H( f (y)).

After cancellation, we have for some c1 > 0 the inequality

c1 · H(y)d ≤ H( f (y)).

Thus for all y in Pm(Q) it follows that

c1 · H(y)d ≤ H( f (y)) ≤ c2 · H(y)d ,

and after taking the logarithm of both sides, we see that log(H( f (y))/H(y)d) =
h( f (y))− d · h(y) is bounded on Pm(Q). This proves the theorem.

§7. The Canonical Height and Norm on an Elliptic Curve
Using the canonical height h on Pm(Q) for k a number field which is defined in §8
for k �= Q, we can define a height hE on E(k) the group of k-valued points on an
elliptic curve E over k. First, we need another lemma about multiplication by 2 on
an elliptic curve.

(7.1) Lemma. Let E be an elliptic curve defined by y2 = f (x) = x3 +ax2 +bx +c
over a field k. Define the function q : E(k)→ P1(k) defined by q(x, y) = (1, x) and
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q(0) = (0, 1). Then there is a k-morphism g : P1(k)→ P1(k) of degree 4 such that
the following diagram is commutative:

E(k)
2−−−−→ E(k)

q
⏐⏐� ⏐⏐�q

P1(k)
g−−−−→ P1(k).

Proof. The relation between (x, y) and 2(x, y) = (x ′, y′) is given by considering
the tangent line y = λx + β to E at (x, y). This line goes through (x ′,−y′) and as
in 1(1.4) we have

2x + x ′ = λ2 − a and λ = f ′(x)
2y

.

Using the relation y2 = f (x), we obtain

λ2 = (3x2 + 2ax + b)2

4(x3 + ax2 + bx + c)
,

and

x ′ = λ2 − a − 2x = x4 − 2bx2 − 8cx + (b2 − 4ac)

4x3 + 4ax2 + 4bx + 4c
.

Thus g(w, x) = (g0(w, x), g1(w, x)) is given by the forms

g0(w, x) = 4wx3 + 4aw2x2 + 4bw3x + 4cw4,

g1(w, x) = x4 − 2bw2x2 − 8cw3x + (b2 − 4ac)w4.

This proves the lemma.

Observe that for the map q : E(k)→ P1(k) the inverse image q−1(1, x) is empty
when y2 = f (x) has no solution in k and q−1(1, x) = {(x,±y)} when ±y are the
solutions of y2 = f (x). Now we can easily describe the height function hE on an
elliptic curve over a number field in terms of the canonical height h on P1(k).

(7.2) Theorem. Let E be an elliptic curve over a number field k in Weierstrass form
y2 = f (x) = x3 + bx + c. Then there is a unique function hE : E(k) → R such
that:

(1) hE (P)− (1/2)h(x(P)) is bounded, where x(P) = q(P) is the x-coordinate of
P and h is the canonical height on P1(k), and

(2) hE (2P) = 4hE (P) and hE (P) = hE (−P).

Moreover, hE is proper, positive, and quadratic.
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Proof. Since we must have hE (P) = hE (−P), we consider the proper map
(1/2)hq = h′ : E(k)→ R. Then h′(P) = (1/2)h(q(P)) satisfies h′(−P) = h′(P).
Now form the limit hE (P) = limn→∞ 2−2nh′(2n P) which exists by (5.8) and (7.1).
Then by (7.1), it follows that hE satisfies (1) and (2). Moreover, hE is proper ince h′
is proper and it is positive.

To prove that hE is quadratic on E(k), we have only to check the weak parallelo-
gram law by (5.5) and (5.6) in view of (2). For this we use the following commutative
diagram:

P1 × P1

�
��

q × q
E × E

�
��s �

θ

P2

�u E × E
�

��
q × q

�
θ

P2
�f

P1 × P1

�
�� s

where s((w, x), (w′, x ′)) = (ww′, wx ′ + w′x, xx ′), u(P, Q) = (P + Q, P − Q),
and f (α, β, γ ) = ( f0(α, β, γ ), f1(α, β, γ ), f2(α, β, γ )) such that

f0(α, β, γ ) = β2 − 4αγ, f1(α, β, γ ) = 2β(bα + γ )+ 4cα2,

f2(α, β, γ ) = (γ − bα)2 − 4cαβ.

To check the commutativity of the above diagram we consider P = 1 : x : y and
Q = 1 : x ′ : y′ with x and x ′ unequal. Then we have

θ(P, Q) = s(q × q)(P, Q) = s(1 : x, 1 : x ′) = 1 : (x + x ′) : xx ′.

From 1(1.4) we calculate

P + Q = (x − x ′)2 : (y − y′)2 − (x + x ′)(x − x ′)2 : ∗,
P − Q = (x − x ′)2 : (y + y′)2 − (x + x ′)(x − x ′)2 : ∗,

and hence the composite with the upper arrow in the diagram takes the following
form:

θu(P, Q) = (x − x ′)4 : 2(x − x ′)2(y2 + y′2 − (x + x ′)(x − x ′)2) :

(y2 − y′2)2 + (x − x ′)4(x + x ′)2 − 2(x − x ′)2(x + x ′)(y2 + y′2)

= (x − x ′)2 : 2(xx ′2 + x2x ′ + b(x + x ′)+ 2c) :

((xx ′ − b)2 − 4c(x + x ′))
= f0(1, x + x ′, xx ′) : f1(1, x + x ′, xx ′) : f2(1, x + x ′, xx ′),

where as homogeneous forms of degree 2 in three variables f0(α, β, γ ) = β2 −
4αγ, f1(α, β, γ ) = 2βγ + 2bαβ + 4cα2, and f2(α, β, γ ) = (γ − bα)2 − 4cαβ.

From this commutative diagram we calculate
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hE (P + Q)+ hE (P − Q) = h(θ(P + Q, P − Q)) = h(θ(u(P, Q)))

= h( f (θ(P, Q))) ∼ 2h(θ(p, Q)).

The last expression can be studied using (6.5), and we have

2h(θ(P, Q)) = 2h(s(q(P), q(Q))) ∼ 2h(q(P))+ 2h(q(Q))

= 2hE (P)+ 2hE (Q).

Now we apply (5.5) to see that hE is quasiquadratic and further (5.6) to see that hE

is a quadratic function.
Finally, the function hE is unique since two possible functions would be quadratic

by the above argument and equivalent to h′, and hence they are equivalent to each
other. If two quadratic functions differ by a bounded function, then they are equal.
This proves the theorem.

(7.3) Corollary. With the hypothesis and notations of the previous theorem, the
function |P| = √

hE (P) is a norm on E(k).

Now we assume Theorems (3.2) and (7.2) to deduce the following theorem of
Mordell. This theorem was generalized to number fields by A. Weil and is one of the
main results of this book.

(7.4) Theorem (Mordell–Weil). Let E be an elliptic curve over a number field k.
Then the group E(k) is finitely generated.

Proof of (7.4) for k = Q where E = E[a, b]. By (3.2) the index (E(Q) : 2E(Q))
is finite. By (7.2) and (7.3) the function |P| = √

hE (P) is a norm on E(Q). The
criterion (1.3) applies to show that (E(Q) is a finitely generated abeian group. This
proves the theorem in this case.

Sketch of proof for k any number field and any E over k. In the general case we
extend k to k′ so that the equation of E has the form y2 = (x −α)(x −β)(x −γ ). By
(4.7) the index E(k′) : 2E(k′)) is finite. Again by (7.3) the function |P| = √

hE (P)
is a norm on E(k′); here we assume there is a height function on projective space
over k, and (6.5) holds in order to carry out the proof of (7.2) for a number field.
Finally, E(k) is then a subgroup of a finitely generated group E(k′), and thus, it is
finitely generated.

§8. The Canonical Height on Projective Spaces over Global
Fields

In order to formulate the notion of height in the case of number fields and more gen-
erally global fields, we reformulate the definition over the rational numbers without
using Z-reduced coordinates of a point but using instead all the valuations or absolute
values on Q. Up to equivalence, each absolute value on Q is either of the form:
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(1) (Archimedian case) |x | = |x |∞, the ordinary absolute value, or
(2) (non-Archimedian case) |a/b|p = (1/p)ordp(a)−ordp(b), the p-adic absolute

value where a and b are integers and p is a prime number in Z.

Let V (Q) denote the totality of these absolute values on Q. The product formula for
Q is ∏

v∈V

|x |v =
{

1 for x �= 0,
0 for x = 0,

or ∑
v∈V

log |x |v = 0 for x �= 0.

(8.1) Definition. A number field k is a finite extension of Q, a function field in one
variable over a field F is a finite separable extension of F(t), and a global field is
either a number field or a function field in one variable over Fq , a finite field.

A global field k is a number field if and only if it has characteristic zero and is a
function field if and only if it has positive characteristic.

(8.2) Remark. Global fields have several things in common which can be used to
axiomatically characterize them. The most important feature is a family V (k) of
absolute values | |v such that the product formula holds∏

v∈V (k)

|x |v =
{

1 if x �= 0,
0 if x = 0.

It is this product formula generalizing the product formula for Q which leads to a
height function on Pm(k) for a global field k.

(8.3) Notation. For y = (y0, . . . , ym) ∈ km+1 − {0}, we introduce

h∗(y0, . . . , ym) =
∑
v∈V (k)

max{log |y0|v, . . . , log |ym |v}

This is a finite sum.

(8.4) Lemma. For a nonzero a in k and (y0, . . . , ym) ∈ km+1 − 0, we have
h∗(ay0, . . . , aym) = h∗(y0, . . . , ym).

Proof. We calculate∑
v∈V

max{log |ayo|v, . . . , log |aym |v}

=
∑
v∈V

[log |a|v + max{log |yo|v, . . . , log |ym |v}]

=
∑
v∈V

max{log |yo|v, . . . , log |ym |v} = h∗(y0, . . . , ym).

This lemma says that h∗ induces a function, also denoted h∗, on the projective
space Pm(k).
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(8.5) Lemma. For (y0, . . . , ym) ∈ Zm+1 − {0} without common factors, i.e., a Z-
reduced representative of a point in Pm(Q), the height

h(y0, . . . , ym) = h∗(y0, . . . , ym).

Proof. Since each y j is in Z, it follows that a p-adic valuation satisfies |y j |p ≤ 1 or
log |y j |p ≤ 0. Since at least one y j is not divisible by p, this means that |y j |p < 1
or log |y j |p < 0, and, hence, we obtain max{log |yo|p, . . . , log |ym |p} = 0. We
conclude that the p-adic valuations in the sum defining h∗ do not contribute anything,
and, therefore,

h∗(y0, . . . , ym) =
∑

p∈V (Q)

max{log |yo|p, . . . , log |ym |p}

= max{log |y0|∞, . . . , log |ym |∞}.

This proves the lemma.

In view of the above two lemmas the next definition is a natural extension of
(6.3).

(8.6) Definition. For a global field k the canonical height h on Pm(k) is defined by

h(P) =
∑
v∈V (k)

max{log |yo|v, . . . , log |ym |v},

where P = (y0, . . . , ym).

Since P1(k) = k ∪ {(0, 1)} where ∞ = (0, 1) and a in k is identified with (l, a),
the canonical height on k is the function h(a) = ∑

v∈V (k) max{0, log |a|v}. The proof
that h is a height in the technical sense of (6.2) follows the lines of (6.8).
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Galois Cohomology and Isomorphism Classification of
Elliptic Curves over Arbitrary Fields

In Chapter 3 we saw that j (E) is an isomorphism invariant for elliptic curves defined
over algebraically closed fields. In this chapter we describe all elliptic curves over a
given field k which becomes isomorphic over ks the separable algebraic closure of k,
up to k isomorphism. This is done using the Galois group of ks over k and its action
on the automorphism group of the elliptic curve over ks. The answer is given in terms
of a certain first Galois cohomology set closely related to quadratic extensions of the
field k.

We introduce basic Galois cohomology which is used to analyse how a group
G acts on a group E . The zeroth cohomology group H0(G, E) is equal to EG , the
subgroup of E consisting of all elements of E left fixed by the action of G. The
first cohomology set H1(G, E) is a set with base point, i.e., H1(G, E) is a pointed
set, and it has an abelian group structure when E is an abelian group. For an exact
sequence of G-groups there is a six-term exact sequence involving the three zeroth
cohomology groups and the three first cohomology sets. This six-term sequence is
used for most of the elementary calculations of Galois cohomology.

§1. Galois Theory: Theorems of Dedekind and Artin
We give a short resume of the basic properties of Galois groups and extensions which
are used in the study of elliptic curves. For details the reader should consult the book
of E. Artin, Galois Theory, Notre Dame Mathematical Lectures.

If K is an extension field of a field F , then K is a vector space over F from
the multiplication on K , and we denote the dimension dimF K of K over F by
[K : F]. For a group G of automorphisms of a field K , we denote by Fix(G) the
fixed elements of K under G, i.e., the set of a ∈ K with s(a) = a for all s ∈ G.
Then Fix(G) is a subfield of K .

(1.1) Definition. A field extension K over F is Galois provided there is a group of
automorphisms G of K such that F = Fix(G). The group G is denoted by Gal(K/F)
and is called the Galois group of the extension K over F .
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The following result is the basic property of Galois extensions, and it leads im-
mediately to the Galois correspondence between subfields of K containing F and
subgroups of Gal(K/F).

(1.2) Theorem. (1) (Dedekind) Let u1, . . . , un be field morphisms K → L over
F, and suppose that there is an L-linear relation a1u1 + · · · + anun = 0 where
the u1 are distinct. Then all coefficients ai = 0 for i = 1, . . . , n.

(2) (Artin) If � ⊂ Aut(K ) is a finite subsemigroup, and if F is the set of all x ∈ K
with u(x) = x for all u ∈ �, then n = #� = [K : F], K is separable over F,
and � is a subgroup of Aut(K ).

Proof. (1) Choose an element y ∈ K with un−1(y) �= un(y). Evaluate the L-linear
relation at x times un(y) and at xy, and we obtain

0 = a1u1(x)un(y)+ · · · + anun(x)un(y)

and also

0 = a1u1(xy)+ · · · anun(xy)

= a1u1(x)u1(y)+ · · · + anun(x)un(y).

Subtracting the two resulting formulas, we eliminate one term

0 = a1u1(x) [u1(y)− un(y)] + · · · + an−1un−1(x)
[
un−1(y)− un(y)

]
where not all coefficients are zero. With this algebraic operation we reduce the num-
ber of nonzero terms in an L-linear relation by at least one, and inductively this
means that u1, . . . , un is L-linearly independent.

As an application of (1), the sum u1 + · · · + un : K → L is nonzero. If K is
separable over F , that is, for some L ⊃ K the set E of field morphisms K → L
over F has the property that x ∈ K satisfies u′(x) = u′′(x) for all u′, u′′ ∈ E implies
x ∈ F . Then the trace

trK/F (x) =
∑
u∈E

u(x)

is defined trK/F : K → F , and it is a nonzero F-linear form.
(2) Show that any set α0, . . . , αn ∈ K is F-linearly dependent. Consider n equa-

tions in x0, . . . , xn of the form
∑n

j=0 x j u−1(α j ) = 0 for u ∈ �. Thus there exists
elements c0, . . . , cn ∈ K with T rK/F (c0) �= 0 and

n∑
j=0

c j u
−1 (α j

) = 0 for u ∈ �.

Applying u to the relation, we have
∑n

j=0 u(c j )α j = 0 for u ∈ �, and summing
over u ∈ �, we have

∑n
j=0 T r(c j )α j = 0 over F . Hence [K : F] ≤ n, and therefore

we have #� = n = [K : F] using Dedekind’s theorem.
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(1.3) Remark. Let K be a finite Galois extension of F with Galois group Gal(K/F).
The function which assigns to a subgroup H of Gal(K/F) the subfield Fix(H) of K
containing F is a bijection from the set of subgroups of Gal(K/F) onto the set of
subfields L of K which contain F . The inverse function is the function which assigns
to such a subfield L of K the subgroup GL of all s in Gal(K/F) which restrict to
the identity on L . These functions are inclusion reversing, and K over L is a Galois
extension with GL = Gal(K/L). Further, the extension L over F is a Galois exten-
sion if and only if Gal(K/L) is a normal subgroup of Gal(K/F), and in this case the
quotient group Gal(K/F)/Gal(K/L) is isomorphic to the Galois group Gal(L/F)
by restriction of automorphism from K to L .

Now we are led to the basic problem of determinig all Galois extensions K of a
given field F .

An element x of K is algebraic over a subfield F provided P(x) = 0 for some
nonzero polynomial P(X) in F[X ]. Associated to x over F is a (unique) minimal
polynomial which has minimal degree and leading coefficient one among the poly-
nomials P �= 0 with P(x) = 0. An extension K over F is algebraic provided every
x in K is algebraic. Every finite extension K over F is algebraic.

(1.4) Definition. An extension K over F is normal provided it is algebraic and for
every x in K the minimal polynomial of x over F has all its roots in K .

A finite extension K over F is normal if and only if K is generated by the roots
of a polynomial with coefficients in F . Every Galois extension K of F is seen to
be normal, because for x in K the conjugates s(x), where s ∈ Gal(K/F), are finite
in number and the minimal polynomial for x divided Q(X) = ∏

(X − s(x)). Note
Q(X) has coefficients in F since they are invariant under Gal(K/F).

(1.5) Definitions. A polynomial P(X) over a field F is called separable provided
its irreducible factors do not have repeated roots, An element x in an extension field
K over F is separable provided it is the root of a separable polynomial over F . An
extension K over F is separable provided every element of K is separable over F .

With our definition a separable extension is an algebraic extension. In character-
istic zero every algebraic extension is separable.

(1.6) Remark. An algebraic field extension is Galois if and only if it is normal and
separable. Over a field F , which is of characteristic zero or is finite, an algebraic
extension is Galois if and only if it is normal.

(1.7) Definition. A field F is algebraically closed provided any algebraic element x
in an extension K of F is in F . An algebraic closure F of F is an algebraic extension
F which is algebraically closed.

The algebraic closure F over F is a normal extension which is a Galois extension
if F is either a field of characteristic zero or a finite field. The extension is usually
infinite but it is the union of all finite subextensions, and indeed all finite normal
subextensions, and is also the direct (inductive) limit
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F = lim−→
K/F finite normal

K .

The union of all finite separable subextensions is a subfield Fs of F which is a Galois
extension of F contained in F . This is also the direct limit

Fs = lim−→
K/F finite Galois

K .

The Galois group Gal(Fs/F) maps to each Gal(K/F), where K is a finite Galois
subextension of Fs , and we have an isomorphism onto the projective limit of finite
groups

Gal(Fs/F)→ lim←−
K/F finite Galois

Gal(K/F).

This projective limit has the limit topology in which it is compact and this compact
topology is transferred to Gal(Fs/F)making the Galois group a compact topological
group.

(1.8) Remark. The Galois correspondence of (1.3) becomes the assertion that the
function which assigns to a closed subgroup H of Gal(Fs/F) the subfield Fix(H) of
Fs containing F is a bijection from the set of closed subgroups of Gal(Fs/F) onto
the set of subfields of Fs containing F .

(1.9) Example. For F = Fq the finite field of q elements there exists exactly one
extension (up to isomorphism) of degree n over Fq , namely Fqn . It is a Galois ex-
tension with cyclic Galois group Z/n with 1 in Z/n corresponding to the Frobenius
automorphism a → qq . The Galois group Gal(Fq/Fq) is Ẑ topologically gener-
ated by the Frobenius automorphism, and Ẑ is lim←− nZ/n, the completion of Z for the
topology given by subgroups of finite index.

§2. Group Actions on Sets and Groups
We consider three types of objects: (1) sets, (2) pointed sets, i.e., sets with base point
∗, or (3) groups. For such an object E we have the group Aut(E) of automorphism
which:

(1) for a set E consists of all bijections E → E , i.e., permutations of E ;
(2) for a pointed set E consists of all bijections preserving the base point; and
(3) for a group E consists of all group automorphisms.

(2.1) Definition. Let G be a group, and let E be an object, i.e., a set, a pointed set,
or a group. A left group action of G on E is a homomorphism G → Aut(E).



§2. Group Actions on Sets and Groups 147

For s ∈ G we denote the action of s on x ∈ E by sx . Then the group homomor-
phism condition becomes

1x = x and s(t x) = (st)x for all s, t ∈ G, x ∈ E .

For a pointed set we also require sx0 = x0, where x0 is the base point. When E is an
additive group, we have s(x + y) = sx + sy, and when E is a multiplicative group,
we write frequently s x instead of sx and the automorphism condition has the form
s(xy) = s xs y.

A right G action on E is an antihomomorphism G → Aut(E), and the action of
s ∈ G on x ∈ E is written xs or xs . The antihomomorphism condition is x1 = x
and (xs)t = x(st) so that sx = xs−1 is a left action associated with the right action.

Let G be a group. We can speak of left and right G-sets, pointed G-sets, and
G-groups, i.e., the corresponding object a set, a pointed set, or group together with
the corresponding G action.

(2.2) Definition. A morphism f : E → E ′ of G-objects is a morphism of objects
E → E ′ together with the G-equivariance property f (sx) = s f (x) (or f (xs) =
f (x)s) for all s ∈ G, x ∈ E .

(2.3) Example. Let D be a G-subgroup of a G-group E , so s D = D for all s ∈
G. Then D has by restriction a G-group structure and the inclusion D → E is a
morphism of G-groups. Now form the quotient pointed sets D\E of all right D-
cosets Dx and E/D of all left D-cosets x D, where x ∈ E . The base point is the
identity coset D. The G action on E induces a G action on the quotient pointed sets
D\E and E/D such that the projections E → D\E and E → E/D are morphisms
of pointed G-sets. When D is a normal subgroup of E , then E/D = D\E is a
G-group, and E → E/D is a morphism of G-groups. We write

1 → D → E → D\E → 1 and 1 → D → E → E/D → 1

as short exact sequences of pointed sets, where D → E is injective and im(D → E)
is the kernel of the surjection E → D\E or E → E/D.

(2.4) Definition. Let E be a G-object. The subobject of fixed elements EG consists
of all x ∈ E with sx = x (or xs = x) for all s ∈ G.

If E is a G-set (resp. pointed G-set, G-group), then EG is a subset (resp. pointed
subset, subgroup) of E . We denote EG also by H0(G, E) meaning the zeroth co-
homology object of G with values in E . With this notation we anticipate the first
cohomology set H1(G, E), where E is a G-group.

(2.5) Examples. Let k′/k be a Galois extension with Galois group G =Gal(k′/k).
Then the additive group k′ is a G-group and (k′)G = H0(G, k′) = k. The matrix
groups GLn(k′) and SLn(k′) are also G-groups, and the subgroups fixed by the action
are GLn(k′)G = GLn(k) and SLn(k′)G = SLn(k). Also det: GLn(k′) → GL1(k′) is
a morphism of G-groups. Finally, if E is an elliptic curve defined over k, then E(k′)
is a G-group with E(k′)G = E(k). This can be seen directly with affine coordinates
or from the fact that Pn(k′)G = Pn(k) which is also checked by looking on each
affine piece defined by y j �= 0.
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(2.6) Proposition. Let G be a group, and let E be a G-group with a G-subgroup A.
Applying the fixed element functor to the exact sequence 1 → A → E → E/A → 1,
we obtain an exact sequence of pointed sets

1 → AG → EG → (E/A)G .

Proof. Since AG → EG is the restriction of a monomorphism A → E , it is a
monomorphism. Next, we calculate

ker
(

EG → (E/A)G
)
= ker(E → E/A) ∩ EG

= im(A → E) ∩ EG = im
(

AG → EG
)
.

This proves the proposition.

The above simple proposition brings up the question of the surjectivity of EG →
(E/A)G . If we try to establish surjectivity, we would consider a coset x A fixed by G,
that is, s(x A) = x A for all s ∈ G. Then we must determine whether or not x A can
be represented by x ∈ E with s x = x . All we know is that s x ∈ x A for all s which
means that s x = xa for some a ∈ A. We can view any coset X in E/A as a right A-
set with the multiplication E × E → E on E inducing the action X × A → X which
is G-equivariant, that is, on which s(xa) = s xsa. Observe that X has the property
that for two points x, x ′ ∈ X there exists a unique a ∈ A with xa = x ′. This
property says that X is a right A-principal homogeneous G-set, and these objects are
considered in the next section. Returning to the question of the exact sequence (2.6),
we will study the question of when the right A-set X has a G-invariant point in this
context.

§3. Principal HomogeneousGGG-Sets and the First Cohomology Set
HHH1(GGG, AAA)

In this section G denotes a group. Following our analysis at the end of the previous
section on cosets relative to a G-subgroup A, we make the following definition.

(3.1) Definition. Let A be a G-group. A principal homogeneous G-set X over A is
a right A-set X with a left G-set structure such that:

1. The right A action on X defined X×A → X is G-equivariant, i.e., s(xa) = s xsa
for all s ∈ G, x ∈ X , and a ∈ A.

2. For any two points x, x ′ ∈ X there exists a ∈ A with xa = x ′, and further a ∈ A
is unique with respect to this property.

If A is a G-subgroup of a G-group E , then any coset X ∈ E/A which is G-
invariant, that is, s(X) = X for all s ∈ G, is an example of a principal homogeneous
G-set over A as we observed at the end of the previous section. In particular, A acting
on itself by group multiplication is a principal homogeneous G-set, and in this case,
there is at least one fixed element, the identity.
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(3.2) Definition. Let A be a G-group, and let X and X ′ be two principal homoge-
neous G-sets over A. A morphism f : X → X ′ of principal homogeneous sets is a
function which is both G- and A-equivariant.

Since for f (x) = x ′ with x ∈ X , x ′ ∈ X ′ in (3.2), we can write any y ∈ X
as y = xa for a unique a ∈ A, the morphism f is given by the formula f (y) =
f (xa) = f (x)a = x ′a, and hence f is completely determined by one value f (x) =
x ′. Moreover, f is a bijection with inverse f −1 : X ′ → X , and f −1 is a morphism
of principal homogeneous spaces. Since every morphism is an isomorphism which
is determined by its value at one point, it seems sensible to try to classify principal
homogeneous sets by looking at the G action on one point.

(3.3) Remarks. Let X be a principal homogeneous G-set over the G-group A.
Choose x ∈ X , and for each s ∈ G consider s x ∈ X . There is a unique as ∈ A
with s x = xas . Then s → as defines a function G → A, but it is not in general
a group morphism. Instead it satisfies a “twisted” homomorphism condition. To see
what it is, we make explicit the associativity of the G action. The relation s(t x) = st x
shows that

s(t x) = s(xat ) = sx(sat ) = xas
s(at ) = xast ,

and thus this function as must satisfy

(CC) ast = as
s(at ) for all s, t ∈ G,

which is the cocycle formula or cocycle condition. Observe the (CC) implies that
a1 = 1.

Next, choose a second point x ′ ∈ X , and write s x ′ = x ′a′
s . For a unique c ∈ A

we have x ′ = xc, and we have the calculation

s x ′ = s xsc = xas
(sc

) = x ′
(

c−1as
sc
)
.

Thus as for x and a′
s for x ′ are related by the coboundary formula

(CB) a′
s = c−1as(

sc) for all s ∈ G.

Now we formally consider functions satisfying (CC) and relations (CB) between
these functions, and this leads us to the pointed sets H1(G, A).

(3.4) Definition. Let A be a G-group. An A-valued G-cocycle is a function as from
G and A satisfying

(CC) ast = as
sat for all s, t ∈ G.

Let Z1(G, A) denote the pointed set of all A-valued G-cocycles with base point the
cocycle as = 1 for all s ∈ G.

Note that by putting s = t = 1 in (CC), we obtain a1 = a1
1a1 = a2

1 or a1 = 1
as with a homomorphism.
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(3.5) Definition. Two A-valued G-cocycles as and a′
s are cobounding (or cohomol-

ogous) provided there exists c ∈ A with

(CB) a′
s = c−1as(

sc) for all s ∈ G.

Let H1(G, A) denote the quotient of Z1(G, A) under this equivalence relation. This
is the first cohomology set of G with values in A.

If a′
s = c−1as(

sc) and a′′
s = d−1a′

s(
sd) for all s ∈ G, then a′′

s = (cd)−1as
s(cd)

and as = ca′
c

s(c−1) show that cobounding is an equivalence relation. Moreover, a
cocycle as ∈ Z1(G, A) represents the base point of H1(G, A) if and only if there
exists c ∈ A with as = c−1(sc) for all s ∈ G. Let [as] denote the cohomology class
of as in H1(G, A).

Observe that Z1(G, A) is a right A-set under (as, c) → c−1as(
sc), and H1(G, A)

is just the quotient of Z1(G, A) under this right A action.

(3.6) Remark. If A is an abelian G-group written additively, then cocycles, as are
functions satisfying

ast = as + sat ,

and they form an abelian group Z1(G, A) by adding their values. The group Z1(G, A)
has a subgroup B1(G, A) of all coboundaries bs = s(c)− c for c ∈ A. The quotient
group is the first cohomology group

H1(G, A) = Z1(G, A)

B1(G, A)
.

Further, if G acts trivially on A, then B1(G, A) = 0, and a cocycle is just a homo-
morphism so that H1(G, A) = Hom(G, A).

Now we relate the pointed set H1(G, A) to the pointed set Prin(G, A) of isomor-
phism classes of principal homogeneous G-sets over A.

(3.7) Proposition. Let X and X ′ be two principal homogeneous G-sets with points
x ∈ X and x ′ ∈ X ′ where s x = xas and s x ′ = x ′as. Then there exists an isomor-
phism f : X → X ′ with f (x) = x ′ if and only if as = a′

s for all s ∈ G. Further, X
and X ′ are isomorphic if and only if as and a′

s are cohomologous.

Proof. If f is an isomorphism, then it follows that f (s x) = s f (x) = s x ′ = x ′a′
s

and f (s x) = f (xas) = f (x)as = x ′as . Thus as = a′
s follows whenever f exists.

Conversely, we can define f by the formula f (xc) = f (x)c from X to X ′ as an
A-mosphism. Since as = a′

s , the A-morphism f is also a G-morphism.
For the second assertion we compare f (x) and x ′ where s f (x) = f (x)as and

s x ′ = x ′a′
s as in (3.3). This proves the proposition.

(3.8) Corollary. A principal homogeneous space X over A is isomorphic to A over
A if and only if X G is nonempty, that is, if X has a G-fixed point. This is also equiv-
alent to the cocycle as for X being a coboundary, namely as = c−1(sc) for some
c ∈ A.
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Proof. We apply (3.7) noting that s1 = 1 for all s ∈ G. For the second assertion
observe that as = 1 when s x = xas for a fixed point x of X .

(3.9) Theorem. The function which assigns to a principal homogeneous space X
the cohomology class of as where s x = xas for some x ∈ X defines a bijection
Prin(G, A)→ H1(G, A).

Proof. By (3.7) this is a well-defined injection. For surjectivity we have to prove that
a class of a cocycle as in H1(G, A) defines a principal homogeneous set X . For given
as we require X = A as a right A-set, but we “twist” the action of G on X . Namely 1
in A = X has image s1 = as by definition in X . Hence, in X the action su must equal
s(1u) = s1su = as

su, where the second su is calculated in A. Clearly, in X we have
s(ua) = as

s(ua) (as
su)sa = susa and X × A → X is G-equivariant. Since as is a

cocycle, the action satisfies st u = s(t u) in X . This completes the construction of X
giving the cocycle as and proves the theorem.

(3.10) Definition. The principal homogeneous G-set X constructed from A and the
cocycle as is called the twisted form of A by as .

§4. Long Exact Sequence in GGG-Cohomology

Now we return to the exact sequence (2.6) at the end of §2 and show how to extend
it two or three terms. To do this, we need some definitions. In this section G denotes
a group.

(4.1) Definition. Let f : A → A′ be a morphism of G-groups. Then f∗ = H0( f ) :
H0(G, A) = AG → A′G = H0(G, A′) is the restriction of f and f∗ = H1( f ) :
H1(G, A)→ H1(G, A′) is given by f∗[as] = [ f (as)]. These are called the induced
coefficient morphism in cohomology.

Now we will relate H0 and H1 in a short exact sequence.

(4.2) Definition. Let E be a G-group with G-subgroup A ⊂ E . The boundary func-
tion δ : H0(G, E/A) = (E/A)G → H1(G, A) is defined by

δ(X) =
{

cohomology class associated to the coset X viewed as a

principal homogeneous G-set over A.

Hence for X = x A and s x = xas , it follows that δ(X) = [as].

(4.3) Theorem. Let E be a G-group with G-subgroup A ⊂ E and corresponding
short exact sequence

1 → A
i→ E → E/A → 1.

Then the five-term sequence of pointed sets is exact
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1 → H0(G, A)
i∗→ H0(G, E)→ H0(G, E/A)

δ→ H1(G, A)
i∗→ H1(G, E).

Further, if A is a normal subgroup of E, then

H1(G, A)→ H1(G, E)→ H1(G, E/A)

is an exact sequence of pointed sets so that the entire six-term sequence is exact.

Proof. We have already shown that the image equals the kernel in AG and EG , see
(2.6). For exactness at (E/A)G = H0(G, E/A) observe that δ(X) = 1 in H1(G, A)
is equivalent to the coset X having the form x A with s(x) = x for all s ∈ G by (3.8).
In other words, it is equivalent to the principal homogeneous G-set X being in the
image of H0(G, E)→ H0(G, E/A).

To show exactness at H1(G, A), we consider [as] ∈ H1(G, A) whose image in
H1(G, E) is trivial. This means for A ⊂ E that there exists e ∈ E with as = e−1(se)
for all s ∈ G. Then se = eas and we have [as] = δ(eA), where eA ∈ H0(G, E/A) =
(E/A)G . Clearly δ(eA) in H1(G, A) has trivial image in H1(G, E).

When A is a normal subgroup of E , we prove exactness at H1(G, E). Let [as] ∈
H1(G, E) have trivial image in H1(G, E/A), that is, suppose there exists e ∈ E
with as = e−1(se)bs with bs ∈ A for all s ∈ G. Since (se)A = A(se), we have
cs ∈ A with

as = e−1(se)bs = e−1cs
se for all s ∈ G.

Then cs ∈ Z−1(G, A) defining [cs] ∈ H1(G, A) which maps to [as] under i∗. This
proves the theorem.

(4.4) Remark. When A is commutative, it is possible to define Hi (G, A) for all
i ≥ 0 algebraically. The six-term sequence of (4.3) becomes seven term for A abelian
and normal in E . It has the form

1 → H0(G, A)
i∗→ H0(G, E)→ H0(G, E/A)

δ→ H1(G, A)
i∗→

H1(G, E)→ H1(G, E/A)
δ→ H2(G, A).

If both A and E are commutative we have an exact triangle or long exact sequence
for all Hi of A, E , and E/A of the form

H∗(G, A)
i∗−→ H∗(G, E)

H∗(G, E/A)

where δ has degree +1.

(4.5) Remark. Let f : G ′ → G be a group homomorphism. If E is a G-group
with action s x , then E is also a G ′-group with action s′x = f (s′) x and f induces a
natural morphism H0(G, E) = EG → EG ′ = H0(G ′, E) denoted f ∗ and a natural
morphism H1(G, E)→ H1(G ′, E) also denoted f ∗([as]) = [a f (s′)].
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§5. Some Calculations with Galois Cohomology
Our interest in H1(G, A) will be for G = Gal(k′/k) for some Galois extension k′/k,
and in this case we will speak of Galois cohomology groups especially in the case of
H1.

(5.1) Proposition. For a finite Galois extension k′/k we have

H1 (Gal(k′/k),GLn
(
k′)) = 0.

Proof. Let as be a 1-cocycle, and for any u ∈ Mn(k′) form the “Poincaré series”

b =
∑
t∈G

at t (u) ∈ Mn
(
k′) for G = Gal

(
k′/k

)
.

We calculate for s ∈ Gal(k′/k) using the cocycle relation

s(b) =
∑
t∈G

s (at ) st (u) = a−1
s

∑
t∈G

ast st (u) = a−1
s b.

Hence as is a coboundary if we can choose u such that b is invertible. For n = 1 the
linear independence of automorphisms gives an element u with b �= 0.

For n > 1 we consider the linear transformation B : k′n → k′n defined by the
matrix equation B(x) = ∑

t∈G at t (x).

Assertion: The B(x) generate the k′-vector space k′n . For otherwise, there exists a
linear form f with f (B(x)) = 0 for all x , then for all scalars c, we have

0 = f (B(x)) =
∑
t∈G

at f (t (c)t (x)) =
∑
t∈G

t (c) f (at t (x)) .

This is a linear relation between all t (c), t ∈ G as c varies over k′. The linear inde-
pendence of the elements t of G implies that each f (at t (x)) = 0, and since the at

are invertible, we deduce that f = 0 which is a contradiction.
Choose x1, . . . , xn ∈ k′n such that the B(x1), . . . , B(xn) are linearly indepen-

dent, and choose u ∈ Mn(k′) with uei = xi for i = 1, . . . , n. For the matrix
b = ∑

t∈G at t (u), it follows that b(ei ) = B(xi ) which implies that b ∈ GLn(k′).
This proves the proposition.

For a cyclic group G of order n with generator s and x ∈ A, the function G → A
defined inductively by the relations

a1 = 1, as = x, . . . , asi = x
(
asi−1

)
, . . .

is a 1-cocycle on G with values in the abelian group A if and only if

1 = N (x) = x · s(x) · s2(x) . . . sn−1(x).

This observation and previous proposition leads to the next corollary.
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(5.2) Corollary (Hilbert’s “Theorem 90”). Let k′/k be a finite cyclic extension
with generator s of Gal(k′/k). For x ∈ k′∗ the norm Nk′/k(x) = 1 if and only if there
exists y ∈ k′∗ with x = y/s(y). In other words, the following sequence is exact

1 → k∗ → k′∗ f→ k′∗ Nk′/k→ k∗,

where f (y) = y/s(y).

(5.3) Corollary. For a finite Galois extension k′/k we have

H1 (Gal(k′/k),SLn(k
′)
) = 0.

induces the exact sequence

GLn(k) = H0 (Gal,GLn(k
′)
) det−→ k∗ = H0 (Gal,GL1)

δ→ H1 (Gal,SLn)→ 1.

Since det : GLn(k) → k∗ is surjective and H1(Gal,GLn) = 0, we deduce that
H1(Gal(k′/k),SLn(k′)) = 1.

Let µn(k) denote the nth roots of unity contained in k∗, and observe that µn(k′)
is a Gal(k′/k) submodule of k′∗ for any Galois extension k′/k. For n prime to the
characteristic of k and k′ separably algebraically closed, the following sequence is
exact

1 → µn(k
′)→ k′∗ n→ k′∗ → 1.

Applying the exact cohomology sequence, using (4.5), and using

H0(Gal(k′/k), k′∗) = k∗,

we have the next proposition.

(5.4) Proposition (Kummer Sequence). For k′ a separably algebraically closed
Galois extension of k and n prime to the characteristic of k the sequence

1 → µn(k)→ k∗ n→ k∗ → H1(Gal(k′/k), µn(k
′/k))→ 1

is exact, and we have an isomorphism

k∗/(k∗)n → H1(Gal(k′/k), µn(k
′)).

Further, if k contains the nth roots of unity, then

k∗/(k∗)n → H1(Gal(k′/k), µn(k
′)) = Hom(Gal(k′/k), µn(k

′)).

is an isomorphism.

For example, in characteristic different from 2, the nonzero elements of k∗/(k∗)2
correspond to the subgroups of index 2 in Gal(k′/k), that is to quadratic extensions
of k.
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Finally, we make a remark about infinite Galois extensions K/k. The Galois
group Gal(K/k) is the projective limit of all finite quotients Gal(k′/k), where k′/k
denotes a finite Galois extension contained in K . In this way GalK (K/k) is a com-
pact totally disconnected topological group with Gal(K/k′) forming an open neigh-
borhood basis of the identity. The only G(K/k)-modules that we consider are those
A such that A = ∪k′/k AGal(K/k′) as k′ goes through finite extensions of k and
where Gal(K/k′) is the kernel Gal(K/k) →Gal(k′/k). Then one can prove that
H∗(Gal(K/k), A) is the inductive limit of H∗(Gal(k′/k), AGal(K/k′). We use the
notation H∗(k, A) for H∗(Gal(ks/k), A), where ks is a separable algebraic closure
of k.

§6. Galois Cohomology Classification of Curves with Given
jjj-Invariant

In 3, §2, the invariant j (E) of an elliptic curve E was introduced. In 3(3.2), 3(4.2),
3(5.2) and 3(8.3), we saw that two curves E and E ′ are isomorphic over an alge-
braically closed field k if and only if j (E) = j (E ′). Now we take up the question of
the classification of elliptic curves over a perfect field k in the following form. For E
an elliptic curve over a perfect field k, we wish to describe all elliptic curves E ′/k, up
to isomorphism over k, which become isomorphic to E over the algebraic closure k,
or in other words, all E ′ over k, up to isomorphism over k, with j (E) = j (E ′). The
answer given in the next theorem is in terms of the first Galois cohomology group of
Gal(k/k) with values in the automorphism group of the elliptic curve.

(6.1) Theorem. Let E be an elliptic curve over a perfect field k. We have a base
point preserving bijection⎧⎨⎩

Isomorphism classes over k
of elliptic curves, E ′/k with

j (E) = j (E ′).

⎫⎬⎭ → H1 (Gal
(
k/k

)
, Autk(E)

)
defined by choosing any isomorphism u : E → E ′ over k and assigning to the class
of E ′ over k the cohomology class determined by the cocycle as = u−1(su).

Proof. The 1-cocycle as = u−1(su) is a cocycle by the calculation

ast = u−1 (st u
) = u−1 (su

) [(su
)−1 (st u

)] = u−1 (su
) [(

u−1
) (t u

)]
= as · sat for all s, t in Gal(k/k).

If v : E → E ′ is a second isomorphism over k, then h = v−1u in Autk(E)
and from the relation vh = u we have a coboundary relation as = u−1(su) =
h−1v−1(sv)(sh) = h−1bs(

sh), where bs is the cocycle bs = v−1(sv). Thus the
cohomology class [as] ∈ H1(Gal(k/k),Autk(E)) is well defined. Conversely, if
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as = h−1bs(
sh), where as = u−1(su) and bs = v−1(sv), then the coboundary rela-

tion leads to vhu−1 = svshs(u−1) = s(vhu−1) and vhu−1 : E ′ → E ′′ is an iso-
morphism over k between the two elliptic curves compared with E by u : E → E ′
and v : E → E ′′ both isomorphisms over k.

For t = [as] ∈ H1(Gal(k/k),Autk(E)) we define a twisted curve t E by the
requirement that t E(k) is the set of all (x, y) in E(k) satisfying (s x,s y) = s(x, y) =
as(x, y). The difficulty is in showing that t E(k) really is the set of k-points on an
elliptic curve over k. We work out in detail that case where the cocycle has values
in the subgroup {+1,−1} contained in Autk(E). Note it is equal to Autk(E) for
j (E) �= 0, 123. In this case t is a homomorphism t : Gal(k/k) → Z/2Z. Such
homomorphisms are in one-to-one correspondence with quadratic extensions kt =
k(
√

a) of k with nontrivial automorphism s satisfying s(x + √
ay) = x − √

ay. If
E is given by y2 = f (x), a cubic polynomial f (x) over k, then t E is given by the
equation ay2 = f (x), and the isomorphism u : E → tE is given by

u(x, y) =
(

x,
y√
a

)
.

In terms of the general construction the relation

− (
x ′ + √

ax ′′, y′ + √
ay′′) = as(x, y) =s (x, y) = (

x ′ − √
ax ′′, y′ − √

ay′′)
becomes in this case x ′′ = 0 and y′ = 0 since −(x, y) = (x,−y). Finally,
(x ′,

√
ay′′) is on t E(k) if and only if (x ′, ay′′) is on E(k). The other cases, including

characteristic 2, are left to be checked by the reader.

(6.2) Summary. If E and E ′ are two elliptic curves over k with j (E) = j (E ′) �=
0, 123, then there is a quadratic extension k′ of k with E and E ′ isomorphic over k′.

(6.3) Remark. In 3(6.3) we found that there are five elliptic curves over F2 up to
isomorphism of which two have j = 1 and three have j = 0. The two curves with
j = 1 are isomorphic over a quadratic extension and Aut(E) is the two element
group. These are the curves E1 and E2, see 3(6, Ex. 1). We leave it to the reader to
explain in terms of Galois cohomology the results in Exercises 1–5 of 3, §6 concern-
ing over which field the pairs of curves over F2 are isomorphic.
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Descent and Galois Cohomology

Central to the proof of the Mordell theorem is the idea of descent which was present
in the criterion for a group to be finitely generated, see 6(1.4). This criterion was
based on the existence of a norm, which came out of the theory of heights, and the
finiteness of the index (E(Q) : 2E(Q)), or more generally (E(k) : nE(k)). In this
chapter we will study the finiteness of these indices from the point of view of Galois
cohomology with the hope of obtaining a better hold on the rank of E(Q), see 6(3.3).
These indices are orders of the cokernel of multiplication by n, and along the same

lines, we consider the cokernel of the isogeny E[a, b]
ϕ→ E[−2a, a2 − 4b].

There is a new version of the descent procedure when the index is studied for
larger and larger n, that is, n equals mi , powers of a fixed number m which is usually
a prime. We are missing an important result at this stage of the book, namely that
multiplication by n is surjective on E(k) for k separable algebraically closed and n
prime to the characteristic of k. In the case of m = 2 we know by 1(4.1) that multi-
plication by 2 is surjective for certain fields k, in particular, separable algebraically
closed fields in characteristic different from 2.

We begin by considering some examples of homogeneous curves over an elliptic
curve E .

§1. Homogeneous Spaces over Elliptic Curves
Let E be an elliptic curve over k, and let ks be a separable algebraic closure of k with
Galois group Gal(ks/k). By 7(3.9) we have a natural bijection

Prin (Gal(ks/k), E(ks))→ H1 (Gal(ks/k), E(ks)) .

In the context of elliptic curves E over k, a homogeneous space X is a curve over
k together with a map X × E → X over k defining a principal action. Over the
separable algebraic closure ks there is an isomorphism E → X , and this means that
we are considering certain curves X over k which become isomophic to E over ks.
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(1.1) Galois Action on the Homogeneous Space. Following 7(3.9) we can de-
scribe the action s(x, y) of Gal(ks/k) on X (ks). This can be identified with E(ks)

the locus of a cubic equation in normal form. The action is given by the formula

s(x, y) = (sx, sy)+ as,

where (sx, sy) is the action of s ∈ Gal(ks/k) on (x, y) a point of the defining cubic
equation and [as] is the cohomology class corresponding to X . Finally, we remark
that the homogeneous space X corresponds to the zero cohomology class if and only
if X (k) = H0(Gal(ks/k), X (ks)) is nonempty.

(1.2) Notations. Since cohomology for the group G = Gal(ks/k) arises so fre-
quently, we introduce a special notation, namely Hi (k, ) for Hi (Gal(ks/k), ). Im-
plicitly, a choice has been made for a separable algebraic closure, and in the case of
a perfect field the separable algebraic closure ks is the algebraic closure.

(1.3) Notations. Let T be any group of order 2 with trivial Gal(ks/k) action, the
only action possible. A morphism u is defined on H1(k, T ) = Hom(Gal(ks/k), T )
with values in k∗/(k∗)2 with the property the quadratic extension corresponding to
ker(t) in Gal(ks/k) is generated by the square root of the image u(t). This construc-
tion was used in 7(6.1).

If E(k) has an element of order 2, then we have a morphism T → E(ks) of
Gal(ks/k)-groups. This induces a morphism

H1(k, T ) = Hom (Gal (ks/k) , T )→ H1 (k, E (ks)) .

Hence to each quadratic extension kt of k corresponding to a nonzero element t ∈
H1(k, T ) = Hom(Gal(ks/k), T ) there is a curve Pt with Pt (kt ) = E(kt ).

(1.4) The Case of the Curve E = E[a, b]. When E(k) has an element of order 2,
we might as well transform the curve by translation so that (0,0) is the point of order
2 and the curve has the form E = E[a, b] which we have studied at length explicitly.
The two-element group in question is T = {0(0, 0)}, and for t ∈ H1(k, T ) we
denote the corresponding quadratic extension by kt again. The quotient Gal(kt/k)
of Gal(ks/k) has two elements 1 and s where we write frequently x for sx . The
image of t in the cohomology group H1(k, E(ks)) corresponds to a curve Pt where
Pt (kt ) = E(kt ) with Galois action given by the following formula where we employ
4(5.4):

sPt (x, y) = (x, y)+ (0, 0) =
(

b

x
,−by

x2

)
.

(1.5) Remarks. The element corresponding to Pt in H1(k, E(ks)) is zero if and
only if sPt has a fixed point by 7(3.8), or, equivalently, Gal(kt/k) has a fixed point
on Pt (kt ) or Gal(ks/k) has a fixed point on Pt (ks). This is also equivalent to the
assertion that Pt (k) is nonempty.
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Explicitly in terms of coordinates, a fixed point (x, y) in E(kt ) is a point satis-
fying the relation (x, y) = (b/x,−by/x2). This fixed point relation is equivalent
to

(FP) xx = b, x y = by

x
= −x y.

Now we analyze these fixed-point relations further with the notations kt = k(c),
where c is a square root of u(t), and x = x ′ + cx ′′, y = y′ + cy′′, and x y = cz
with z ∈ k since x y = −x y. Setting d2 = c, we observe that xx = b if and only if
b = x ′2 − dx ′′2. Next, we calculate using the equation of the curve E = E[a, b]

dz2 = (cz)2 = (x y)2 = x2
(

x3 + ax2 + bx
)

= b2x + b2a + b2x = b2 (2x ′ + 2a
)
.

This yields the first relation between x and z

(1) x ′ = d

2b2
z2 − a

2
.

Further for x ′′ we have

dx ′′2 = x ′2 − b = 1

4

(
d

b2
z2 − a

)2

− b.

From x y = (x ′ − cx ′′)(y′ + cy′′) = (x ′y′ − dx ′′y′′) + (x ′y′′ − x ′′y′)c, we deduce
the relations

(2) x ′y′ = dx ′′y′′ and z = x ′y′′ − x ′′y′.

(1.6) Assertion. Let t ∈ H1(k, T ) be given by the quadratic extension kt and let Pt

be the corresponding curve as above. The curve Pt over k can be described as the
locus of the quartic equation

dx ′′2 = 1

4

(
d

b2
z2 − a

)2

− b.

In terms of (x, y) we recover x ′ from the relation (1) in terms of z, and we recover
y′ and y′′ from the two linear relations (2) in terms of the other variables.

(1.7) Remark. In (1.6) substitute M = z/b, N = 2x ′′, d ′ = d, and d ′′ = a2 − 4b.
Then the quartic equation for Pt becomes

N 2 = d ′M4 − 2aM2 + d ′′

with d ′d ′′ = a2 − 4b.

(1.8) Remark. Returning to (1.5), we point out that the statement: the element Pt in
H1(k, E(ks)) is zero if and only if Pt (k) is nonempty is related to the transformation
in 4(3.1) of a quartic y2 = f4(x) to a cubic y2 = f3(x) given a simple root of f4(x).
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§2. Primitive Descent Formalism
As indicated in the chapter introduction, the descent procedure will come from the
long exact sequence in Galois cohomology. It is applied to an isogeny ψ : E →
E ′ all defined over a field k such that over a Galois extension k1 of k the group
homomorphism ψ : E(k1) → E ′(k1) is surjective leading to the following exact
sequence of Gal(k1/k)-modules:

0 → P → E(k1)
ψ→ E(k1)→ 0.

where P is the kernel of ψ .

(2.1) Remark. An application of the six-term long exact sequence in Galois coho-
mology 7(4.3) yields the exact sequence of pointed sets

0 → H0(G, P)→ H0(G, E(k1))
ψ→ H0(G, E(k1))

δ→ H1(G, P)→
H1(G, E(k1))

ψ→ H1(G, E(k1)).

where G = Gal(k1/k).

Here the symbol ψ is used for H0(ψ) and H1(ψ). The middle term is con-
tained in a short exact sequence where ψH1(G, E(k1)) denotes the kernel of ψ :
H1(G, E(k1))→ H1(G, E(k1)), namely

0 → E(k)

ψE(k)
δ→ H1(G, P)→ψ H1(G, E(k1))→ 0.

In most applications k1 = ks the separable algebraic closure of k, and then G =
Gal(k1/k) is the full Galois group and Hi (G, E(ks)) is denoted by Hi (k, E(ks))

and H1(G, P) by H1(k, P).

(2.2) Examples. We make use of two examples ofψ . Firstly, we considerψ equal to
multiplication by n prime to the characteristic of k where P is isomorphic to (Z/nZ)2

with trivial Galois action exactly when n E(ks) ⊂ E(k). Secondly, we consider ψ
equal to ϕ : E[a, b] → E[−2a, a2 − 4b] as in 4(5.2) with P = T = {0, (0, 0)}. The
two related short exact sequences are

0 → E(k)/nE(k)
δ→ H1(k, n E(ks))→n H1(k, E(ks))→ 0

and

0 → E ′(k)/ϕE(k)
δ→ H1(k, ϕE(ks))→ϕ H1(k, E(ks))→ 0.

Now we return to the analysis started in 6(3.1) with the curve E[a, b] over the
rational numbers Q and relate it to the Galois cohomology formalism above. The
isogeny appears in exact two sequences for E = E[a, b] and E ′ = E[−2a, a2 − 4b]
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E(Q)
ϕ→ E ′(Q)

H1
(
Q, ϕE

(
Q

))
= Hom

(
Gal

(
Q/Q

)
,Z/2Z

)
Q∗/ (Q∗)2 .

The homomorphism α is given in 4(5.6) and considered further in 6(3.1) in this
context, and the homomorphism δ is defined in 7(4.2).

Again let x = m/e2 and y = n/e3 be the coordinates of (x, y) on E[a, b] with
rational coefficients in lowest terms. For n = 0 we have x values given by roots of
x(x2 + ax + b) = 0, and for x = 0 the value α(0, 0) = b(mod Q∗2), but otherwise
there is a second root x ′ with xx ′ = b.

For n �= 0 we have m �= 0 and are led to the study of the congruence properties
of m, n, and e. From the equation

n2 = m3 + am2e2 + bme4 = m
(

m2 + ame2 + be4
)

we introduce the greatest common divisor b1 = (m, b) and factor m = b1m1 and
b1b2 = b where (m1, b2) = 1. The equation becomes

n2 = b1m1

(
b2

1m2
1 + ab1m1e2 + b1b2e4

)
= b2

1m1

(
b1m2

1 + am1e2 + b2e4
)
.

Thus b2
1 divides n2 and so b1 divides n giving a factorization n = b1n1. Putting this

relation into the equation and dividing out b2
1, we obtain the relation

n2
1 = m1

(
b1m2

1 + am1e2 + b2e4
)
,

where the two terms m1 and b1m2
1 + am1e2 + b2e4 in the factorization of n2

1 are
relatively prime since (b2,m1) = 1 and (e,m1) = 1.

We can always choose the sign of b1 so that m1 is positive, and the above form of
the equation implies that m1 is a square which we write m1 = M2. Then M divides
n1 from the above equation, and we can write n1 = M N , with all factorizations
taking place in the integers Z.

(2.3) Assertion. We can summarize the above discussion for a rational point (x, y)
on E[a, b] with y �= 0 in terms of a representation as a quotient of integers in the
form

x = b1 M2

e2
and y = b1 M N

e3
.

For x and y reduced to lowest terms we have (M, e) = (N , e) = (b1, e) = 1. Also,
since (b2,m1) = 1, we have (b2,M) = (M, N ) = 1. The equation for M and N is

N 2 = b1 M4 + aM2e2 + b2e4.
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Conversely, any solution of this quartic equation yields a rational point on E[a, b].
This quartic equation came from a down to earth factorization of the coordinates

of a rational point on E[a, b], but in §1 we also derived quartic equations used to de-
scribe principal homogeneous spaces representing elements in a Galois cohomology
group. The Galois cohomology theory is contained in the following exact sequence:

0 → E ′(Q)
ϕE(Q)

→ H1(Q, T )→ ϕH1
(
Q, E

(
Q

))
→ 0

considered in (2.2), where E = E[a, b] and E ′ = E[−2a, a2 − 4b]. Elements t in
H1(Q, T ) correspond to quadratic extensions of Q and their image in H1(Q, E(Q))
is described by a homogeneous space Pt , a curve of genus 1, defined by the quartic
given in (1.7)

N 2 = d ′M4 − 2aM2 + d ′′,

where d ′d ′′ = a2 − 4b. This curve associated with E[−2a, a2 − 4b] is exactly the
same curve as the quartic above

N 2 = b1 M4 + aM2e2 + b2e4

associated with E[a, b]. The element t in H1(Q, T ) comes from a point in E ′(Q)/
ϕE(Q) if and only if this quartic in (1.7) has a rational point, i.e., the principal
homogeneous space is trivial.

The methods described above do allow one to calculate the rank of certain elliptic
curves over Q.

(2.4) Example. Consider the curve E = E[0, p] with equation y2 = x3 − px for p
a prime number. Then E ′ is E[0, 4p] with equation y2 = x3+4px . For the first curve
the divisors of b = −p are b′ = ±1,±p, and the corresponding quartic equations
are

N 2 = M4 − pe4, N 2 = −M4 + pe4, N 2 = pM4 − e4, N 2 = −pM4 + e4.

For p ≡ 3 (mod 4), −1 is not a square mod p so that the second and third equations
have no solution mod p, and, hence, no solution in the integers. This means that for
p ≡ 3 (mod 4)

im(α on E) = {1,−p} mod
(
Q∗)2

.

For the second curve the divisors of b = 4p are b′ = ±1,±2,±4,±p,±2p, ±4p,
and the corresponding quartic equations are

N 2 = M4 + 4pe4, N 2 = 2M4 + 2pe4, N 2 = 4M4 + pe4,

where we excluded the cases where both factors of 4p are negative since N 2 is
positive. For p ≡ ±3 (mod 8), 2 is not a square mod p so that the second equation
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has no solution mod p in this case, and, hence, no solution over the integers. This
means that for p ≡ ±3 (mod 8)

im(α on E ′) = {1, 4p} mod
(
Q∗)2

.

The above discussion together with the exact sequence in 4(5.7) shows that cer-
tain curves have only finitely many rational points, and with the theory of 5 we are
able to determine completely the Mordell group of rational points.

(2.5) Theorem. For a prime number p ≡ 3 (mod 8) the groups of rational points
on the elliptic curves with equations

y2 = x3 − px and y2 = x3 + 4px

are all equal to the group with two elements {0, (0, 0)}. In particular, the rank of
these groups is zero.

Proof. The fact that the groups are finite follows from the above analysis of the quar-
tic curves and their rational points together with 4(5.7) showing that E(Q)/2E(Q)
is a group of two elements with nonzero element of the class of (0, 0).

It remains to show that there is no odd torsion in E(Q). For this we use the
Nagell–Lutz theorem, 5(5.1). Since the discriminant of y2 = x3 + bx is −26b3,
the above curves have bad reduction only at the primes p and 2. Mod 3 the curves
become either the curve given by y2 = x3 − x or by y2 = x3 + x . In both cases
there are exactly four elements on these curves over F3. Thus by 5(5.1) there is no
odd torsion, for it would have to map injectively into a group with four elements.
We are left only with the case p = 3. The curves with equations y2 = x3 − 3x
and y2 = x3 + 12x both reduce to y2 = x3 + 2x mod 5, and this curve has only
two points over F5. Again there is no odd torsion. This completes the proof of the
theorem.

§3. Basic Descent Formalism
In this section we return to the Mordell–Weil theorem asserting that E(k) is finitely
generated for an elliptic curve E over a number field k. We use the notations of
6(8.2) for the family V (k) of absolute values v of k, and we also use the fact that
multiplication by any m is surjective E(k)→ E((k), see 12(3.6). By (2.1) and (2.2)
the short exact sequence of Gal(k/k)-modules

0 → m E(k̄)→ E(k̄)→ E(k̄)→ 0

leads to the long exact sequence for G = Gal((k/k)

E(k)
m→ E(k)→ H1(k, m E(k̄)

) → H1(k, E(k̄)
) m→ H1(k, E(k̄)

)
which reduces to the short exact sequence

0 → E(k)/m E(k)→ H1(k, m E(k̄)
) → m H1(k, E(k̄)

) → 0.
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(3.1) Notations. Let E be an elliptic curve over a number field k. For each place v
of k choose an embedding k → kv , and, hence, the decomposition subgroup Gv =
Gal(kv/kv) inside G = Gal(k/k). This induces a morphism of the short exact se-
quence associated with cohomology

0 → E(k)

m E(k)
→ H1

(
G, m E(k̄)

) f ′−−−−→ m H1
(
G, E(k̄)

) → 0⏐⏐� ⏐⏐� f ′′

0 →
∏
v

E (kv)

m E (kv)
→

∏
v

H1(Gv, m E(k̄)
) −−−−→

∏
v

m H1(Gv, E(k̄)
)→ 0.

(3.2) Definition. The Selmer group for m-descent S(m) = S(m)(E) is the kernel of
f defined H1(G, m E(k)) → ∏

v m H1(Gv, E(k)), and the Tate–Šarafevič group
for m-descent Xm = Xm(E) is the kernel of f ′′ defined m H1(G, E(k)) →∏
v m H1(Gv, E(k)).

The group E(k)/m E(k), which is our main interest, is the kernel of f ′, and
the following proposition is the exact sequence for the three kernels of the three
morphisms in a composite f = f ′′ f ′.

(3.3) Proposition. The mapping between the cohomology short exact sequences in
(3.1) yields the short exact sequence

0 → E(K )

m E(K )
→ S(m)(E)→ Xm(E)→ 0

The finiteness of E(k)/m E(K ) will follow from the finiteness of S(m)(E) and
the group S(m)(E) can be computed in some important cases. Consider the situation
where K is large enough so that m E(K ) = m E(K̄ ). Then we have

H1 (G, m E
(
K̄
)) = Hom

(
G, m E

(
K̄
)) = Hom

(
G,

(
Z

mZ

)2
)
,

and each element corresponds to an abelian extension Lx/K .

(3.4) Assertion. Let x in H1(G, m E(K )) have as corresponding abelian extension
Lx/K . If x is in the Selmer group S(m)(E), then Lx is unramified outside the set S
of places v where either E has bad reduction or v(m) > 0.

Proof. Let x project as in (3.1) to (xv) in
∏
v H1(Gv, m E(Kv)). Since f (x) = 0,

there exists Pv mod m E(K ) mapping to xv . Let Pv = m Qv in E(K̄ ) and form the
cocycle s → s(Qv) − Qv to obtain a representative in the cohomology class of
xv . The field Lx is generated by the coordinates of Qv and the inertia group Iv acts
trivially on Lx for v outside S. Hence Lx is unramified outside of S, and this proves
the assertion.

Now we appeal to a basic finiteness result in algebraic number theory.
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(3.5) Theorem. Let K be an algebraic number field, and let S be a finite set of
places of K . Then the set of isomorphism classes of extensions L of K of degree less
than some fixed n and unramified outside of S is finite.

Proof. By Lang [1970, p. 121, Theorem 5] there are only finitely many number fields
with given discriminants dL . At all places v outside S we have v(dL) = v(dK ), and
for places v inside S the order of ramification in the discriminant is bounded by n.
This proves the finiteness assertion.

With (3.4) and (3.5) we have the weak Mordell–Weil theorem again from these
homological considerations.

(3.6) Theorem. The Selmer group S(m)(E) and, hence, also E(K )/m E(K ) is finite
for an elliptic curve E over a number field.

Now consider the descent sequence (3.3) for m and powers mn of m and make
the comparison between the two sequences.

(3.7) Assertion. We have the following commutative diagram which compares the
m and mn descent sequences:

E(K )
mn

−−−−→ E(K ) −−−−→ S(m
n)(E) −−−−→ Xmn (E) −−−−→ 0⏐⏐�mn−1

⏐⏐�id

⏐⏐�αn

⏐⏐�mn−1

E(K )
m−−−−→ E(K )

α−−−−→ S(m)(E)
mn

−−−−→ Xm(E)
mn

−−−−→ 0

Moreover, we have the inclusions

im(α) ⊂ · · · ⊂ im (αn) ⊂ · · · ⊂ im (α2) ⊂ im (α1) = S(m)(E),

and there is equality im(αn) = im(α) if and only if mn−1Xmn (E) = 0.

The construction of S(m)(E) approximating E(K )/m E(K ) ⊂ S(m)(E) is some-
times called the “first m-descent”, the construction of S(m

2)(E) and E(K )/m E(K ) ⊂
im(α2) ⊂ S(m)(E) is called the “second m-descent”, and, more generally, the con-
struction of S(m

n)(E) and E(K )/m E(K ) ⊂ im(αn) ⊂ S(m)(E) is called the “nth
m-descent”. The question of whether or not the nth m-descent gives E(K )/m E(K )
is regulated by Xmn (E) from the last assertion of (3.7), and hence we turn to prop-
erties of the Tate–Šafarevič group. Since Xm ⊂ m H1(G, E(K̄ )), we have an in-
ductive system Xm ↪→ Xm′ for m | m′.

(3.8) Definition. The Tate–Šafarevič group X = X(E) of an elliptic curve E over
a number field K is lim−→ mXm(E).

From the total Tate–Šafarevič group X(E) we can recover the corresponding
Xm(E) as the m torsion elements in X(E). The condition of (3.7) for the nth m-
descent to give E(K )/m E(K )would be assured if we had the following fundamental
conjecture.
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(3.9) Conjecture. The group X(E) is finite for every elliptic curve over a number
field.

See 17(8.2) for recent developments.

(3.10) Remark. The Selmer group and the Tate–Šafarevič group can be defined for
any nonzero homomorphism or isogeny ϕ : E → E ′ with kernel T and correspond-
ing exact sequence

0 → T → E
(
K̄
) → E ′ (K̄ ) → 0.

For by 7(4.3) for G = Gal(K̄/K ) we obtain

0 → E ′(K )
ϕE(K )

→ H1(G, T )→ ϕH1 (G, E
(
K̄
)) → 0.

As in (3.1), we have a commutative diagram

0 → E ′(K )
ϕE(K )

−→ H1(G, ϕE(K̄ ))
f ′−−−−→ ϕH1(G, E(K )) −→0⏐⏐� ⏐⏐� ⏐⏐� f ′′

0 →
∏
v

E ′(K )
ϕE(Kv)

−→
∏
v

H1(Gv, ϕE(K̄v)) −→
∏
v

ϕH1(Gv, E(K̄ )) → 0.

(3.11) Definition. The Selmer group for the ϕ-descent S(ϕ)(E) is the kernel of f
defined H1(G, ϕE(K̄ )) → ∏

v ϕH1(Gv, E(K̄ )), and the Tate–Šafarevič group
for ϕ-descent Xϕ = Xϕ(E) is the kernel of f ′′ defined ϕH1(G, E(K̄ )) →∏
v ϕH1(Gv, E(K̄ )).

(3.12) Proposition. The mapping between the cohomology short exact sequences in
(3.10) yields the short exact sequence

0 → E ′(K )
ϕE(K )

→ S(ϕ)(E)→ Xϕ(E)→ 0.

(3.13) Remark. It is possible to describe the Selmer group S(ϕ)(E) and Xϕ(E) in
terms of the quartic in (1.7) or (2.3) too. An element t in H1(k, T ) determines an
element in the Selmer group S(ϕ)(E) if and only if the corresponding quartic

N 2 = d ′M4 − 2aM2 + d ′′

has a solution in each completion kv of the global field k. It determines a nonzero
element in Xϕ(E) if and only if it does not have a global solution in k.
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Elliptic and Hypergeometric Functions

For an elliptic curve E over the complex numbers C we have already observed in
(7.3) of the Introduction that the group E(C) is a compact group isomorphic to the
product of two circles. This assertion ignores the fact that the complex structure on
E(C) comes from a representation of E(C) as a quotient group C/L where L is
a lattice in the complex plane, that is, a discrete subgroup on two free generators
L = Zω1 + Zω2.

In the first part of this chapter we start with a lattice L in the complex plane
and, using the theory of elliptic functions, construct an elliptic curve E over C and
an analytic isomorphism C/L → E(C). In the remainder of the chapter we treat
the inverse problem. Starting with the elliptic curve in Legendre form Eλ : y2 =
x(x − 1)(x − λ), and using hypergeometric functions, we construct a lattice Lλ
and an analytic isomorphism Eλ(C) → C/Lλ. In this way the group of complex
points on an elliptic curve is isomorphic, in the sense of complex analysis, to a one-
dimensional complex torus.

§1. Quotients of the Complex Plane by Discrete Subgroups
Recall that all discrete subgroups of R are of the form Za for a ≥ 0. When a is
nonzero, it is the minimal strictly positive element in the discrete group. In the next
proposition we have the analogous result for the complex numbers C.

(1.1) Proposition. A discrete subgroup � of C is of the form Zω for some complex
number ω or Zω1+Zω2, where ω1 and ω2 are nonzero complex numbers with ω1/ω2
a nonreal complex number.

Note that R-linear independence of ω1 and ω2 in C is equivalent to ω1 and ω2
nonzero with the quotient ω1/ω2 nonreal.

Proof. If � = 0, then � = Z · 0. Otherwise for r large enough the compact disc
|z| ≤ r contains elements of �−{0} and only a finite number since � is discrete. Let
ω1 be a nonzero element of � with minimal absolute value.
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We are left with the case where there exists ω ∈ � − Zω1. Among these ω,
let ω2 be one with a minimal absolute value. Observe that ω2/ω1 is not real, for if
it were, there would exist an integer n such that n < ω2/ω1 < n + 1, and hence
|ω2 − nω1| < |ω1| contradicting the minimal character of |ω1|. This is the argument
which shows that discrete subgroups of R are generated by one element as remarked
above.

It remains to show that � = Zω1 + Zω2. Since ω2/ω1 is nonreal, it follows that
C = Rω1 + Rω2. For ω ∈ � we can write ω = aω1 + bω2 with a, b ∈ R and find
integers m, n with |a − m| ≤ 1/2 and |b − n| ≤ 1/2. Since ω,ω1, ω2 ∈ �, we have

ω′ = ω − mω1 − nω ∈ �,
where |ω′| ≤ (1/2)|ω1| + (1/2)|ω2| ≤ |ω2|, and the first inequality is strict since
ω2 is not a real multiple of ω1. From the minimal character of |ω2| we deduce that
ω′ ∈ Zω1 and, hence, ω ∈ Zω1 + Zω2. This proves the proposition.

(1.2) Definition. A lattice L in the complex numbers C is a discrete subgroup of the
form L = Zω1 +Zω2, where ω1 and ω2 are linearly independent over R. A complex
torus T is a quotient group C/L of the complex plane C by a lattice with projection
usually denoted p : C → T = C/L .

A function f on a complex torus T = C/L is equivalent to a function g on C

which is L-periodic, that is, g(z + ω) = g(z) for all ω ∈ L . Such an L-periodic g
corresponds to f on T = C/L where g = f p.

(1.3) Definition. Two lattices L and L ′ in C are equivalent provided there exists
λ ∈ C∗ = C−{0} with λL = L ′, that is, L and L ′ are homothetic. Multiplication by
λ defined C → C induces an isomorphism T = C/L → C/L ′ = T ′, also denoted
by λ, defined by the commutative diagram

C
λ−−−−→ C⏐⏐� ⏐⏐�

T = C/L
λ−−−−→ C/L ′ = T ′.

(1.4) Remark. Any complex number λ satisfying λL ⊂ L ′ induces a homomor-
phism, also denoted λ : T = C/L → T ′ = C/L ′ as in (1.3). Either λ = 0 or
λ : T → T ′ is surjective with kernel isomorphic to λ−1L ′/L or L ′/λL . Such a
nonzero morphism is called an isogeny, see 12(3.3) also.

(1.5) Example. Let L = Zω1 + Zω2 be a lattice where Im(ω1/ω2) > 0. Then L is
equivalent to (1/ω2)L = Zτ + Z = Lτ , where τ = ω1/ω2 is in the upper half plane
H of z ∈ C with Im(z) > 0. Observe that for each integer k we have Lτ = Lτ+k .

Exercises

1. Let � be a subgroup of Rn . Prove that � is discrete if and only if � = Zω1 + · · · + Zωr ,
where ω1, . . . , ωr are R-linearly independent (so r ≤ n). Further prove that Rn/� is
compact if and only if r = n.
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2. Let � be a subgroup of Rn . Prove that � is discrete if and only if the canonical R-linear
map R ⊗z � → Rn is an injection.

3. Show that the analytic homomorphisms of the complex numbers C to itself are given by
multiplication by a complex number, that is, they have the form f (z) = λz.

§2. Generalities on Elliptic Functions
In this section L is a lattice in C.

(2.1) Definition. An elliptic function f (with respect to L) is a meromorphic func-
tion on C such that f (z + ω) = f (z) for all z ∈ C, ω ∈ L .

For L = Zω1 + Zω2 the L-periodicity condition f (z) = f (z + ω) for all ω ∈
L , z ∈ C is equivalent to f (z) = f (z + ω1) and f (z) = f (z + ω2) for all z ∈ C.

(2.2) Remark. A holomorphic elliptic function f is constant. For f factors by con-
tinuous functions C → C/L → C, and since C/L is compact, f if bounded. By
Liouville’s theorem a bounded holomorphic function on C is constant.

We will study elliptic functions by integration around a fundamental parallel-
ogram, i.e., a set consisting of all elements of the form z0 + aω1 + bω2 where
0 ≤ a, b < 1, a, b ∈ R, and L = Zω1 + Zω2.

For a fundamental parallelogram P its boundary is denoted ∂P , and it is given a
counterclockwise orientation.

(2.3) Theorem. Let f (z) be an elliptic function with no poles on the boundary of
the fundamental parallelogram P. Then the sum of the residues in P is zero.

Proof. We calculate by Cauchy’s theorem

1

2π i

∫
∂P

f (z)dz =
∑

Res( f ).

The integrals on the opposite sides of ∂P cancel each other since

f (z)dz = f (z + ω1)dz, f (z)dz = f (z + ω2)dz

and the directions of integration are reversed. Thus the integral, and hence, also the
sum are zero.
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(2.4) Corollary. An elliptic function cannot have only one simple pole mod L.

For a meromorphic function f (z) we denote m = orda f (z) when f (z) =
(z − a)m g(z), where g(z) is holomorphic near a and g(a) �= 0. When orda f (z) > 0
the point a is a zero of f and when orda f (z) < 0, it is a pole of f .

(2.5) Theorem. Let f (z) be an elliptic function with no zeros or poles on the bound-
ary of the fundamental parallelogram P. Then∑

a∈P

orda f (z) = 0,

and ∑
a∈P

a · orda f (z) ≡ 0 (mod L).

Proof. The zeros and poles of f are the simple poles of f ′/ f , and the multiplicities
are the residues of f ′/ f counted positive for zeros and negative for poles. The first
relation follows from (2.3) applied to the elliptic function f ′/ f which is an elliptic
function.

The second relation follows by considering the integral

1

2π i

∫
∂P

z
f ′(z)
f (z)

dz, where
f ′(z)
f (z)

=
∑ orda f

z − a
+ holomorphic function.

By the residue calculus this integral equals the sum
∑

a∈P a · orda( f ). Consider the
part of P from z0 to z0 + ω1 and from z0 + ω2 to z0 + ω1 + ω2, and calculate this
part of the integral around a

1

2π i

∫ z0+ω1

z0

−
∫ z0+ω1+ω2

z0+ω2

z
f ′(z)
f (z)

dz = ω2

2π i

∫ a+ω1

a

f ′(z)
f (z)

dz.

Except for the factor ω2 the right-hand expression is the winding number around 0
of the closed curve parametrized by f (a + tω1) for 0 ≤ t ≤ 1. Hence this part of
the integral is in Zω2 and by a similar argument the other part is in Zω1. Hence the
above integral around ∂P representing the sum of a · orda( f ) over P is in L . This
proves the theorem.

(2.6) Remarks. The set of all elliptic functions ML associated with the lattice L
forms a field under the usual operations of addition and multiplication of functions.
The field of complex numbers is always the subfield of the constant elliptic functions
ML , and at this point these are the only examples of elliptic functions. In view of the
previous two theorems the simplest nonconstant elliptic functions would have either
a single double pole with residue zero in 1/2L or two simple poles whose sum is
in the lattice with two residues adding to zero. There are constructions for elliptic
functions having such simple singularities which are due to Weierstrass and Jacobi,
respectively.
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(2.7) Remark. An elliptic function f (z) associated with L is a function on the com-
plex plane C, but the periodicity condition is equivalent to f defining a function f ∗
on the quotient torus T = C/L where for the projection p : C → C/L f ∗ p = f . In
this way we view ML as the field of meromorphic functions on the torus T = C/L
with quotient complex structure under the bijection which assigns to f the quotient
function f ∗.

(2.8) Remark. If λ is a complex number, satisfying λL ⊂ L ′, then λ defines a
morphism λ : T = C/L → T ′ = C/L ′, the function which assigns to f ∈ ML ′ the
elliptic function f (λz) ∈ ML is an embedding of ML ′ as a subfield of the field ML

of elliptic functions on T = C/L . When λ is an isomorphism, then this map ML ′ →
ML is an isomorphism of fields. We will see later that T and T ′ are isomorphic if and
only if ML and M ′

L ′ are isomorphic fields. For the above embedding iλ : ML ′ → ML

the degree of the field extension is given by the following formula

[ML : ML ′ ] = deg(λ) = [
L ′ : λL

]
.

§3. The Weierstrass ℘-Function

In order to prove the convergence of certain infinite expressions defining elliptic
functions, we will need the following lemma.

(3.1) Lemma. For a lattice L and a real number s > 2, the following infinite sum
converges absolutely ∑

ω∈L−0

1

ωs
.

Proof. Let L = Zω1 +Zω2 where ω2/ω1 is nonreal. Since L is discrete, there exists
c > 0 such that for all integers n1, n2 we have |n1ω1 + n2ω2| ≥ c(|n1| + |n2|).
Considering the 4n pairs (n1, n2) with |n1| + |n2| = n, we obtain∑

ω �=0

1

|ω|s ≤ 4

cs

∑
1≤n

1

ns−1
< +∞

for s − 1 > 1.
We wish to construct an elliptic function f (z)with the origin as the only pole and

z−2 as singular part. Since f (z)− f (−z) is an elliptic function with no singularities,
we see that f (z) will be an even function. Up to a constant, it will have a Laurent
development of the form z−2 + a2z2 + a4z4 + · · · + a2k z2k + · · · . Also it is zero at
ω1/2 for L = Zω1 + Zω2.

(3.2) Definition. The Weierstrass ℘-function and ζ -function associated with a lat-
tice L are given by the infinite sums with and without notation for L
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℘(z; L) = ℘(z) = 1

z2
+

∑
ω∈L−0

[
1

(z − ω)2 − 1

ω2

]
,

ζ(z; L) = ζ(z) = 1

z
+

∑
ω∈L−0

[
1

z − ω + 1

ω
+ z

ω2

]
.

Since

1

(z − ω)2 − 1

ω2
= 2ωz − z2

ω2(z − ω)2

and

1

z − ω + 1

ω
+ z

ω2
= z2

ω2(z − ω)
both expressions behave like 1/ω3 for |ω| large. Thus by Lemma (3.1) the above
infinite sums converge uniformly on compact subsets of C− L and define meromor-
phic functions on C with, respectively, a simple double pole and a simple first-order
pole at each ω ∈ L . Observe that the derivative ζ ′(z) = −℘(z), and we have the
following expression

℘′(z; L) = ℘′(z) = −2
∑
ω∈L−0

1

(z − ω)3

for the derivative of the ℘-function. It is clear from the formula that ℘′(z) is an
elliptic function with a third-order pole at each ω ∈ L having zero residue. From
the formula for ℘(z) it follows that ℘(z) is an even function, i.e., ℘(z) = ℘(−z),
and ℘′(z) is clearly an odd function. Since also ℘′(z + ωi ) = ℘′(z) we deduce that
℘(z+ωi ) = ℘(z)+ci for i = 1, 2, where ci are constant, and by setting z = −ωi/2,
we calculate

℘
(ωi

2

)
= ℘

(−ωi

2
+ ωi

)
= ℘

(−ωi

2

)
+ ci = ℘

(ωi

2

)
+ ci .

Thus each ci = 0 and ℘(z) is an elliptic function. The Weierstrass zeta function,
which should not be confused with the Riemann zeta function, is not an elliptic
function by (2.4). See the exercises for further properties.

With the elliptic functions ℘(z) and ℘′(z) we obtain all others in the sense made
precise in the next theorem.

(3.3) Theorem. For a lattice L the field ML of elliptic functions is

C(℘ (z, L), ℘′(z, L)),

the field generated by ℘ and ℘′ over the constants, and the field of even elliptic
function is C(℘ (z, L)).
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Proof. Every elliptic function f (z) is the sum of an even and an odd elliptic function

f (z) = f (z)+ f (−z)

2
+ f (z)− f (−z)

2
.

Since ℘′(z) times an odd elliptic function is an even elliptic function, it suffices to
show that C(℘ (z)) is the field of even elliptic functions.

If f (z) is an even elliptic function, then ord0 f (z) = 2m is even and f (z) =
℘(z)−m g(z), where g(z) is an even elliptic function with no zeros or poles on the
associated lattice L . If a is a zero of ℘(z)− c, then so is ω− a for ω ∈ L , and if a is
a zero or pole of g(z), then so is ω − a. If 2a ∈ L , then the zero (or pole) is of order
at least 2 since g′(−z) = −g′(z) and so g′(a) = g′(−a) = −g′(a). Thus

g(z) = c ·
∏

i (℘ (z)− ℘ (ai ))∏
i (℘ (z)− ℘ (bi ))

,

where {ai , ω − ai } are the zeros of g(z) and {bi , ω − bi } are the poles of g(z) in a
fixed fundamental domain. This proves the theorem.

Let ML denote the field of elliptic meromorphic functions for the lattice L . This
can be viewed as the field of meromorphic functions on the complex torus C/L = T
as in (2.7).

(3.4) Definition. A divisor D on C/L is a finite formal integral linear combination
D = ∑

u nu(u) of points u in C/L , and its degree deg(D) = ∑
u nu is an integer.

The group Div(C/L) of all divisors on C/L is the group of all divisors. A principal
divisor D is one of the form ( f ) = ∑

u ordu( f )(u), where f is a nonzero meromor-
phic function in ML . We denote by Div0(C/L) and Divp(C/L), respectively, the
subgroups of divisors of degree zero and principal divisors.

We have an exact sequence

0 → Div0(C/L)→ Div(C/L)
deg→ Z → 0,

and Divp(C/L) is a subgroup of Div0(C/L) by (2.5).

(3.5) Theorem (Abel–Jacobi). The function f (
∑

u nu(u)) = ∑
u nu · u from

Div(C/L) to C/L induces a function also denoted f : Div0(C/L)/Divp(C/L) →
C/L which is an isomorphism of groups.

Proof. Since u = f ((u)−(0)) for any u in C/L , the group homomorphism is surjec-
tive. The subgroup Divp(C/L) is carried to zero by f from (2.5). The construction
following the proof of Theorem (3.3) above shows that

∑
u nu · u = 0 in C/L is suf-

ficient for the existence of an elliptic function f with ( f ) = ∑
u nu(u). This proves

the theorem.

Another proof that Divp(C/L) is the kernel of f results by using the σ -function
introduced in Exercises 3, 4, and 5 at the end of this section.
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Exercises

1. Show that ζ(z + ω) = ζ(z)+ η(ω), where η(ω) are constants.
2. For η(ωi ) = ηi derive Legendre’s relation

η1ω2 − η2ω1 = 2π i

by considering
∫
∂P ζ(z)dz, where P is a fundamental parallelogram whose boundary is

disjoint from L .
3. Show that the following infinite product converges and represents an entire function:

σ(z) = z
∏

ω∈L−0

(
1 − z

ω

)
· exp

[
z

ω
+ 1

2

( z

ω

)2
]
.

Show also that ζ(z) = σ ′(z)/σ (z) = (d/dz) log σ(z).
4. For L = Zω1 + Zω2 and ζ(z + ωi ) = ζ(z)+ ηi show that

σ (z + ωi ) = −σ(z)exp
[
ηi

(
z + ωi

2

)]
.

5. Show that any elliptic function can be written as

c
n∏

i=1

σ(z − ai )

σ (z − bi )
.

where c is a constant.

§4. The Differential Equation for ℘(z)

Since ℘′(z) is an odd elliptic function, its square ℘′(z)2 is an even elliptic function,
and by (3.3) it is a rational function in ℘(z). In this section we will prove that this
rational function is a cubic polynomial. To do this, we consider the Laurent develop-
ment of ζ(z, L), ℘ (z, L), and ℘′(z, L) at the origin.

From the geometric series we have

1

z − ω = − 1

ω

∑
0≤n

( z

ω

)n

and
1

z − ω + 1

ω
+ z

ω2
= − 1

ω

∑
2≤n

( z

ω

)n

which converge for |z| ≤ |ω|. Thus

ζ(z, L) = 1

z
+

∑
ω∈L−0

[
1

z − ω + 1

ω
+ z

ω2

]
= 1

z
−

∑
ω∈L−0,2≤n

zn

ωn+1



§4. The Differential Equation for ℘(z) 175

= 1

z
−
∑
2≤k

Gk(L)z
2k−1,

where Gk(L) =
∑
ω∈L−0 ω

−2k converges for k ≤ 2 by (3.1). Observe that the odd
powers for k ≥ 2 sum to zero ∑

ω∈L−0

ω−2k+1 = 0.

Since ℘(z) = −ζ ′(z) we derive the Laurent series expansions for ℘(z) and ℘′(z) by
differentiation.

(4.1) Laurent Series Expansions.

ζ(z, L) = 1

z
−
∑
2≤k

Gk(L)z
2k−1,

℘ (z, L) = 1

z2
+
∑
2≤k

Gk(L)(2k − 1)z2k−2,

℘′(z, L) = −2

z3
+
∑
2≤k

Gk(L)(2k − 1)(2k − 2)z2k−3,

where Gk(L) =
∑
ω∈L−0 ω

−2k .

In order to derive the differential equation for ℘(z), we write out the first few
terms of the expansions at 0 for the elliptic functions ℘(z), ℘′(z), and various com-
binations of these functions:

℘(z) = 1

z2
+ 3G2z2 + 5G3z4 + · · · ,

℘′(z) = − 2

z3
+ 6G2z + 20G3z3 + · · · ,

℘′(z)2 = 4

z6
− 24G2

z2
− 80G3 + · · · ,

4℘(z)3 = 4℘(z)

(
1

z4
+ 6G2 + 10G3z2 + · · ·

)
= 4

z6
+ 36G2

z2
+ 60G3 + · · · ,

60G2℘(z) = 60G2

z2
+ 180 (G2)

2 z2 + · · · ,

Hence the following equation

℘′(z)2 = 4℘(z)3 − 60G2℘(z)− 140G3
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is a relation between elliptic functions for the lattice L with all poles at points of L .
The relation is an equality because the difference between the two sides is an elliptic
function without poles which is zero at 0, and, hence, the difference is zero.

(4.2) Differential Equation for ℘(z).

℘′(z, L)2 = 4℘(z, L)3 − g2(L)℘ (z, L)− g3(L),

where g2(L) = 60G2(L) and g3(L) = 140G3(L). Thus the points (℘ (z), ℘′(z)) ∈
C2 lie on the curve defined by the cubic equation with g2 = g2(L) and g3 = g3(L)

y2 = 4x3 − g2x − g3.

For a basis L = Zω1 +Zω2 and ω3 = ω1 +ω2, let ei = ℘(ωi/2), where i = 1, 2, 3.
Then the elliptic function ℘(z) − ei = f (z) has a zero at ωi/2 which must be of
even order by (2.5), and thus

f ′
(ωi

2

)
= ℘′

(ωi

2

)
= 0

for i = 1, 2, 3. By comparing zeros and poles, we obtain the factorization of (4.2):

℘′(z)2 = 4 (℘ (z)− e1) (℘ (z)− e2) (℘ (z)− e3) ,

where e1, e2, and e3 are the roots of 4x3 − g2x − g3. Since ℘(z) takes the value ei

with multiplicity 2 and has only one pole of order 2 modulo L , we see that ei �= e j

for i �= j . We are led to the following result since the cubic 4x3 − g2x − g3 has
distinct roots.

(4.3) Theorem. The function h : C/L → E(C), where E is the elliptic curve over
C with equation

wy2 = 4x3 − g2(L)w
2x − g3(L)w

3

and h(z mod L) = (1, ℘ (z), ℘′(z)) for z /∈ L, h(0 mod L)= (0, 0, 1), is an analytic
group isomorphism.

Proof. Clearly h(z mod L) = (0, 0, 1) ∈ E(C) is the zero element of E(C) if and
only if z mod L = 0 ∈ C/L , and h(z mod L) = (z3 : z3℘(z) : z3℘′(z)) is analytic
at 0 ∈ C/L with values in the projective plane.

To see that h : C/L − 0 → E(C) − 0 is an analytic isomorphism, we consider
(x, y) ∈ E(C)−0. There are two zeros z1, z2 of the function ℘(z)−x with ℘′(z1) =
−℘′(z2) = ±y from the equation of E . Thus h(−z mod L) = −h(z mod L) since
z1+z2 ∈ L by (3.5). Note further that z1 ≡ z2 mod L if and only if ±℘′(z1) = y = 0.
Hence h is an analytic isomorphism commuting with the operation of taking inverses.

Finally, to see that h or equivalently h−1 preserves the group structure, we study
the intersection points of the line y = λx + ν with the cubic curve E as in 1, §1. The
elliptic function f (z) = ℘′(z) − (λ℘ (z) + ν) has a pole of order 3 at each point of
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L , and by (2.5) there are three zeros z1, z2, and z3 of f (z) with z1 + z2 + z3 ∈ L .
Thus under h−1 the three intersection points of y = λx + ν, which add to zero on E ,
are transformed to three points z1 + L , z2 + L , and z3 + L ∈ C/L which add to zero
on C/L . This proves the theorem.

Using the above considerations in proving h−1 is a group morphism and the
techniques of 1, §2, we can derive the addition formulas for ℘(z). For ℘′(zi ) =
λ℘(zi )+ ν, where i = 1, 2, 3, the equation

4x3 − (λx + ν)2 − g2x − g3 = 0

has three roots, and the sum of the roots is related to the coefficient of x2 by the
relation

λ2

4
= ℘(z1)+ ℘(z2)+ ℘ (z3) .

Given z1, z2, choose z3 = −(z1 + z2) mod L , and for ℘(z1) �= ℘(z2), we have
℘′(z1) − ℘′(z2) = λ(℘ (z1) − ℘(z2)). Since ℘ is an even function, this gives the
following first division formula. The second formula is obtained by letting z1 and z2
approach z in the limit so z3 becomes −2z.

(4.4) Addition Formulas for the Weierstrass ℘-Function.

(1) ℘ (z1 + z2) = −℘(z1)− ℘(z2)+ 1

4

(
℘′(z1)− ℘′(z2)

℘ (z1)− ℘(z2)

)2

.

(2) ℘(2z) = −2℘(z)+ 1

4

(
℘′′(z)
℘′(z)

)2

.

In 3(2.3) we introduced the notion of an admissible change of variable carrying
one normal form of the equation of an elliptic curve into another or equivalently
defining an isomorphism between two elliptic curves.

(4.5) Remark. An admissible change of variable defining an isomorphism f :
E ′ → E , where E is given by y2 = 4x3−g2x−g3 and E ′ by y′2 = 4x ′3−g′

2x ′−g′
3,

has the form x f = u2x ′ and y f = u3 y′. Moreover, we have by 2(2.4) the relations
g2 = u4g′

2 and g3 = u6g′
3.

In (1.3) we considered the equivalence between two lattices L and L ′ together
with the corresponding isomorphism defined between their related tori T = C/L
and T ′ = C/L ′. Under this isomorphism there are transformation relations for the
Weierstrass ℘-function and its related coefficient functions.

(4.6) Proposition. For two equivalent lattices L and L ′ = λL the following rela-
tions hold:

℘(z, L) = λ2℘(λz, λL), ℘′(z, L) = λ3℘′(λz, λL),

G2k(L) = λ2k G2k(λL), g2(L) = λ4g2(λL), and g3(L) = λ6g3(λL).
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Proof. These formulas follow easily from the definitions. For example, calculate

℘′(λz, λL) = −2
∑

λω∈λL−0

1

(λz − λω)3 = λ−3(−2)
∑
ω∈L−0

1

(z − ω)3

= λ−3℘′(z, L).

Now we can make precise how the isomorphism h in (4.3) relates to isomor-
phisms between complex tori and the corresponding elliptic curves.

(4.7) Theorem. For two equivalent lattices L and L ′ = λL we have the following
commutative diagram where h is defined in (4.3):

C/λL
λ−1

−−−−→ C/L

h

⏐⏐� h

⏐⏐�
E ′(C)

f−−−−→ E(C).

The curve E is defined by y2 = 4x3−g2x−g3, the curve E ′ by y′2 = 4x ′3−g′
2x−g′

3,
and the isomorphism f by the admissible change of variable with u = λ.

Proof. The relation ℘(λ−1z, L) = λ2℘(z, λL) corresponds to x f = λ2x ′ under
f , the relation ℘′(λ−1z, L) = λ3℘′(z, λL) corresponds to y f = λ3 y′ under f , the
relation g2(L) = λ4g2(λL) corresponds to g2 = λ4g′

2, and the relation g3(L) =
λ6g3(λL) corresponds to g3 = λ6g′

3. This proves the theorem.

(4.8) Remark. From 3(3.5) the discriminant of the cubic x3 + ax + b is Disc(x3 +
ax + b) = 27b2 + 4a3 and it is also the discriminant of (2x)3 + a(2x) + b or
4x3 + ax + b/2. Hence Disc(4x3 − g2x − g3) = 4(27g2

3 − g3
2). For a lattice L

the corresponding elliptic curve defined by y2 = 4x3 − g2(L)x − g3(L) we defne
(L) = g2(L)3 − 27g3(L)2 and

j (L) = 123 g2(L)3

(L)
.

Then j (L) = j (E) where E is the elliptic curve defined by the Weierstrass equation
y2 = 4x3 − g2(L)x − g3(L). Since g2(L)3 = (λ4g2(λL))3 = λ12g2(λL)3 and
(L) = λ12(λL), we have j (L) = j (λL).

(4.9) Summary Remark. The j-function has the very basic property that it clas-
sifies elliptic curves up to isomorphism, that is, two curves E and E ′ over C are
isomorphic if and only if j (E) = j (E ′). This function will also come up in an
essential way in Chapter 11 on modular functions.
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Exercises

1. Prove the following determinantal relation∣∣∣∣∣∣
℘(z1) ℘′(z1) 1
℘(z2) ℘′(z2) 1

℘(z1 + z2) −℘′(z1 + z2) 1

∣∣∣∣∣∣ = 0.

2. For σ(z) as introduced in Exercise 3, §3, show that

℘(z1)− ℘(z2) = −σ(z1 − z2)σ (z1 + z2)

σ (z1)
2σ(z2)

2

and

℘′(x) = −σ(2z)

σ (z)4
.

3. Next derive the relation

℘′(z1)

℘ (z1)− ℘(z2)
= ζ(z1 − z2)+ ζ(z1 + z2)− 2ζ(z1).

4. Derive the addition formula

ζ(z1 + z2) = ζ(z1)+ ζ(z2)+
1

2

℘′(z1)− ℘′(z2)

℘ (z1)− ℘(z2)
.

From this formula derive the addition formulas in (4.4).

§5. Preliminaries on Hypergeometric Functions
In order to find the complex torus associated with an elliptic curve, we will use some
special functions which we introduce in this section.

(5.1) Definition. The gamma function �(s) is defined for Re(s) > 0 by the follow-
ing integral:

�(s) =
∫ ∞

0
xse−x dx

x
.

Due to the exponential factor e−x the integral at ∞ converges for all s and for
Re(s) > 0 the factor xs−1 is integrable near 0.

(5.2) Remark. For Re(s) > 1 an easy integration by parts, which we leave as an
exercise, gives the relation

�(s) = (s − 1)�(s − 1).

Since �(1) = ∫∞
0 e−x dx = 1, we prove inductively that for a natural number n we

have
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�(n) = (n − 1)!.

Hence �(s) is a generalization or analytic continuation of the factorial. The ana-
lytic function �(s) defined for Re(s) > 0 can be continued as a meromorphic func-
tion in the entire plane C with poles on the set −N of negatives of natural numbers.
Using (5.2), we derive the relation

�(s) = �(s + n)

s(s + 1)(s + 2) · · · (s + n − 1)

for Re(s) > 0, but the right-hand side is a meromorphic function for Re(s) > −n,
and it defines a meromorphic continuation of �(s) to the half plane Re(s) > −n.
This works on all half planes Re(s) > −n and hence on all of C.

(5.3) Remark. By change of variable x = t2, dx = 2t dt , and dx/x = 2(dt/t), we
have the following integral formula for the gamma function:

�(s) = 2
∫ ∞

0
t2se−1 dt

t
.

(5.4) Proposition. For a, b > 0 we have

2
∫ π/2

0
cos2a−1θ · sin2b−1θ dθ = �(a)�(b)

�(a + b)
.

Proof. We calculate

�(a)�(b) = 4
∫ ∞

0

∫ ∞

0
ξ2a−1η2b−1 exp

[
−
(
ξ2 + η2

)]
dξ dη

= 2
∫ ∞

0
r2a+2be−r2 dr

r
· 2
∫ π/2

0
cos2a−1 θ sin2b−1 θ dθ

using the transformation dξ dη = r dr dθ to polar coordinates. This proves the
proposition.

As a special case a = b = 1/2, we have 2
∫ π/2

0 dθ = �(1/2)�(1/2)/�(1) and
hence �(1/2) = √

π . The gamma function prolongs the factorial, and the binomial
coefficient is prolonged by the formula( s

n

)
= s(s − 1) · · · (s − n + 1)

n!
.

The corresponding binomial series is

(1 + x)s =
∑
0≤n

(
s

n

)
xn

which converges for |x | < 1 and Re(s) > 0.
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(5.5) Proposition. The relation

2
∫ π/2

0
sin2m θ dθ = π(−1)m

(−1/2

m

)
holds for every natural number m.

Proof. By (5.4) we have

2
∫ π/2

0
sin2m θ dθ =

�
(

1
2

)
�
(

m + 1
2

)
�(m + 1)

=
�
(

1
2

) (
m − 1

2

) (
m − 3

2

)
· · · 1

2�
(

1
2

)
m(m − 1) · · · 2 · 1

= π(−1)m
(− 1

2
m

)
.

This proves the proposition.

In order to define the hypergeometric series, we will need the following notation:
(a)n where (a)0 = 1 and (a)n = a(a + 1) · · · (a + n − 1) = (a + n − 1)(a)n−1.

(5.6) Definition. The hypergeometric series for a, b ∈ C and c ∈ C−N is given by

F(a, b, c; z) =
∑
0≤n

(a)n(b)n
n!(c)n

zn .

An easy application of the ratio test shows that F(a, b, c; z) is absolutely conver-
gent for |z| < 1 and uniformly convergent for |z| ≤ r < 1, and, hence, it represents
an analytic function on the unit disc called the hypergeometric function.

(5.7) Elementary Properties of the Hypergeometric Series.

(1) F(a, b, c; z) = F(b, a, c; z).

(2) F(a, b, b; z) = (1 − z)−a .

(3) F(a, a, 1; z) =
∑
0≤n

(−a

n

)2

zn .

We use the relations (1)n = n! and (a)n/n! = (−1)n
(−a

n

)
to verify (2) and (3).

We will make use of (3) for the case a = 1/2.

F

(
1

2
,

1

2
, 1; z

)
=
∑
0≤n

(− 1
2

n

)2

zn .



182 9. Elliptic and Hypergeometric Functions

(5.8) Hypergeometric Differential Equation. The hypergeometric function F sat-
isfies the following differential equation called the hypergeometric differential equa-
tion:

z(1 − z)
d2

dz2
F + [c − (a + b + 1)z]

d

dz
F − abF = 0.

For the case of F(1/2, 1/2, 1; z) = ∑
0≤n

(1/2
n

)2
zn this function satisfies

z(1 − z)
d2

dz2
F + (1 − 2z)

d

dz
F − 1

4
F = 0.

This hypergeometric function can be used to evaluate the following elliptic inte-
gral.

(5.9) Theorem. For a complex number λ with |λ| < 1

2
∫ π/2

0

(
1 − λ sin2 θ

)−1/2
dθ = πF

(
1

2
,

1

2
, 1; λ

)
.

Proof. Using the binomial series, we have(
1 − λ sin2 θ

)−1/2 =
∑
0≤n

(− 1
2

n

)
(−λ)n sin2n θ.

By (5.5) and integrating term by term, we obtain

2
∫ π/2

0

(
1 − λ sin2 θ

)−1/2
dθ =

∑
0≤n

(− 1
2

n

)
(−1)nλn

[
π(−1)n

(− 1
2

n

)]

= π
∑
0≤n

(− 1
2

n

)2

λn = πF

(
1

2
,

1

2
, 1; λ

)
.

This proves the theorem.

Exercises

1. Show that �(s)�(1 − s) = π/ sin πs for 0 < Re(s) < 1, and prove that �(s) prolongs
to a mermorphic function on C using this functional equation.

2. Show that the following formulas hold for |z| < 1.

(a) zF(1, 1, 2;−z) = log(1 + z).
(b) zF(1/2, 1, 3/2;−z2) = tan−1(z).
(c) zF(1/2, 1/2, 3/2; z2) = sin−1(z).

3. Show that (d/dz)F(a, b, c; z) = (ab/c)F(a + 1, b + 1, c + 1; z).

4. Show that Tn(z) = F(n,−n, 1/2; (1 − z)/2) is a polynomial of degree n.
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§6. Periods Associated with Elliptic Curves: Elliptic Integrals
Let E be an elliptic curve defined over the complex numbers by an equation
y2 = f (x), where f (x) is a cubic equation in x . We wish to determine a complex
torus C/L with L = Zω1 + Zω2 such that (℘, ℘′) : C/L → E(C) is an analytic
isomorphism. The lattice L is determined by generators ω1 and ω2. Our goal is to
describe ω1 and ω2 in terms of E using the fact that these generators are examples
of periods of integrals

ω1 =
∫

C1

θ and ω2 =
∫

C2

θ,

where C1 and C2 are suitably chosen closed curves on E(C) and

θ = dx

f ′(x)
= dx

2y
= 1

2
dz (x = ℘(z))

is the invariant differential on the cubic curve. In terms of the period parallelogram
these integrals are just the integral of dz over a side of the parallelogram, hence
a period of the lattice. The suitably chosen closed paths on E(C) are determined
by considering x(z) = ℘(z) mapping a period parallelogram onto the Riemann
sphere and looking at the four ramification points corresponding to the half periods
ω1/2, ω2/2, (ω1 + ω2)/2, and 0.

Implicit in the above construction is a basis of the 2-division points (r1, 0), (r2, 0)
corresponding to ω1, ω2. For explicit calculations we normalize the roots of f (x) by
transforming r1 to 0, r2 to 1, and r3 to some λ. The equation for the elliptic curve is
in Legendre form Eλ : y2 = x(x − 1)(x − λ) for λ ∈ C − {0, 1}. We know from
1(6.3) that there are six possible choices of λ, namely



184 9. Elliptic and Hypergeometric Functions

λ, 1 − λ, 1

λ
,

1

1 − λ,
λ− 1

λ
,

λ

λ− 1
,

and we will choose the one of these six λwith the property |λ|<1 and |λ−1|<1. We
will calculate ω1(λ) and ω2(λ) for λ in this open set. For this consider the invariant
differential on E

θ = dx

2y
= dx

2
√

x(x − 1)(x − λ) .

The period integrals take the following form:

ω1(λ) =
∫

C1

θ =
∫

L1

dx

2
√

x(x − 1)(x − λ) .

ω2(λ) =
∫

C2

θ =
∫

L2

dx

2
√

x(x − 1)(x − λ) .

Now move ω0 in the figure to 0 so that x(ω0) goes to ±∞ on the real axis. The
paths L1 and L2 are along the real axis −∞ to near 0 for L1 and from near 1 to
+∞. The cubic in the complex integrand of θ changes argument of 2π while turning
around 0 for ω1(λ) or 1 for ω2(λ)which means that as the path L1 deforms down to 0
becoming two integrals between −∞ and 0 both integrals give half the contribution
to the period. The same assertion applies to L2 as it deforms down to 1 becoming
two integrals between 1 and +∞. This analysis leads to the following expression for
the periods:

ω1(λ) =
∫ 0

−∞
dx√

x(x − 1)(x − λ) and ω2(λ) =
∫ ∞

1

dx√
x(x − 1)(x − λ) .

(6.1) Theorem. For a complex number λ satisfying |λ|, |λ − 1| < 1 the periods
have the following form in terms of the hypergeometric function

ω1(λ) = iπF

(
1

2
,

1

2
, 1; 1 − λ

)
, ω2(λ) = πF

(
1

2
,

1

2
, 1; λ

)
.

For the lattice Lλ = Zω1(λ) + Zω2(λ) the complex tori C/Lλ and Eλ(C) are iso-
morphic by a map made from an affine combination of the Weierstrass ℘-function
and its derivative.

Proof. The second statement will follow from the first and the above diagram and
discussion. It remains to calculate the above integral expression for the periods. We
do the integral for ω2(λ) by changing variables x = 1/t, t = s2, and s = sin θ

ω2(λ) =
∫ ∞

1

dx√
x(x − 1)(x − λ) =

∫ 0

1

−dt/t2

√
(1/t)(1/t − 1)(1/t − λ)

=
∫ 1

0

dt√
t (1 − t)(1 − λt)

= 2
∫ 1

0

ds√
(1 − s2)(1 − λs2)
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=
∫ π/2

0

dθ√
1 − λ sin2 θ

= πF

(
1

2
,

1

2
, 1; λ

)
by (5.9).

Next we calculate the integral for ω1(λ) using the change of variable y = −x + 1 or
x = 1 − y

ω1(λ) =
∫ 1

−∞
dx√

x(x − 1)(x − λ)
=
∫ ∞

1

dy√−(y − 1)(−y)((y − (1 − λ))
= i

∫ ∞

1

dy√
y(y − 1)(y − (1 − λ))

= iπF

(
1

2
,

1

2
, 1; 1 − λ

)
by the first change of variable used to calculate ω2(λ). This proves the theorem.

Thus we have shown how to pass from tori to elliptic curves with the elliptic
function ℘ and from elliptic curves over C to tori with the hypergeometric function
F(1/2, 1/2, 1; λ).

There is one case where the calculations of the periods are particularly agreeable,
namely λ = 1/2, −1, or 2. Since for λ = 1/2, 1 − λ = 1/2, we have ω1(1/2) =
iω2(1/2) and the lattice is of the form Z[i] ·� = (Z · i +Z) ·�. To determine � for
one of these curves all isomorphic over C, we calculate

ω2(−1) = � =
∫ 1

0

dt√
t (1 − t2)

=
∫ π/2

0

dθ√
sin θ

=
∫ π/2

0
sin2(1/4)−1 θ cos2(1/2)−1 θ dθ

=
�
(

1
4

)
�
(

1
2

)
�
(

3
4

) by (5.4).

(6.2) Proposition. The period lattice for the elliptic curve given by y2 = x3 − x is
Z[i] ·�, where

� = √
π
�
(

1
4

)
�
(

3
4

) .
As we have remarked before, with elliptic functions we map from a torus to a

cubic curve, and with the hypergeometric function we can assign to a cubic y2 =
x(x − 1)(x − λ) the corresponding torus. The projection w : x : y to w : x from the
cubic curve given by
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wy2 = (x − e1w)
(

x − e2w
)
(x − e3w)

to the projective line is a 2 to 1 map, in general, which can be pictured roughly with
the following

The projection mapping has four values over which there is double ramification
e1, e2, e3, and ∞.

If the elliptic curve is viewed as the parallelogram identified on the opposite
edges with certain paths on the curve represented in the parallelogram, then we can
draw two images in the complex plane C contained in the Reimann sphere P1(C).

The first image is of the left-hand parallelogram under ℘(z) and the second of
the right-hand parallelogram under ℘(z).
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The torus can be obtained by opening up the slits ∞, e1 and e3, e2 in the two planes
and identifying opposite edges of the slits.
The left-hand parallelogram maps to the bottom half of the torus, the right-hand
parallelogram to the top half of the torus, the bottom half parallelogram to the front
of the torus, and the top half paralellogram to the back of the torus.

The reader is invited to express the arclength of the ellipse in terms of the inte-
grals in this section.
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Theta Functions

Quotients of theta functions provide another source of elliptic functions. They are de-
fined for a lattice L of the form Lτ = Zτ +Z with Im(τ ) > 0. This is no restriction,
because every lattice L is equivalent to some such Lτ . Since these functions f (z) are
always periodic in the sense f (z) = f (z + 1), we will consider their expansions in
terms of qz = e2π i z where f (z) = f ∗(qz) and f ∗ is defined on C∗ = C − {0}. In §1
we consider various expansions in the variable q = qz of functions introduced in the
previous chapter.

Under the change of variable z to z + τ theta functions are not periodic but
periodic up to a specific factor. On the other hand they are holomorphic on the entire
plane. There are four specific theta functions which will give an embedding of a torus
into P3(C) such that the image of the torus is the locus of intersection of two quadric
surfaces in this three-dimensional space. This is another representation of an elliptic
curve as a curve in three space, see §8 of introduction.

An important feature of the theta-function picture of elliptic curves is that this
approach extends to the p-adic case while the Weierstrass definitions do not. This
was discovered by John Tate, and we give an introduction to Tate’s theory of p-adic
theta functions.

The basic reference for the first four sections is the first chapter of the book by
D. Mumford, Theta Functions I (Birkhäuser Boston).

§1. Jacobi q-Parametrization: Application to Real Curves
(1.1) Remark. For a lattice L with basis ω1 and ω2 with τ = ω1/ω2 where Im(τ ) >
0 we have L = ω2Lτ where Lτ = Zτ + Z. Now multiplication by ω2 carries C/L
onto C/Lτ isomorphically and substitution f (z) → f (ω2z) carries elliptic functions
for L isomorphically onto the field of elliptic functions for Lτ . These considerations
were taken up in greater detail in 9(1.5) and 9(2.8).

In 11(1.4) we will determine how unique the invariant τ is among the lattices
Lτ equal to a given L up to a nonzero complex scalar, but for now it suffices to
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observe that Lτ = Lτ+k for any integer k. Hence the exponential e2π iτ = q or qτ ,
has importance for elliptic functions associated with the lattice Lτ .

(1.2) Remark. Under the exponential map z → e2π i z = w defined C → C∗ with
kernel Z, the lattice L = Zτ + Z in C is mapped to qZ in C∗, the infinite cyclic
subgroup generated by q = e2π iτ with |q| < 1. Hence, by passing to the quotient
torus, we have an analytic isomorphism Eτ = C/Lτ → C∗/qZ.

Now we study the form of the Weierstrass equation and the elliptic functions in
terms of w = e2π i z and q = e2π iτ . These expressions in the new parameters are
derived by using the following expansion from complex analysis∑

n∈Z

1

(ζ + n)2
= π2

sin2 πζ
.

For T = e2π iζ this becomes∑
n∈Z

1

(ζ + n)2
= (2π i)2

1

(einζ − e−inζ )2
= (2π i)2

e2π iζ

(1 − e2π iζ )2

= (2π i)2
T

(1 − T )2
= (2π i)2

∑
1≤n

nT n .

From the chain rule we have d/dζ = 2π iT (d/dT ) and hence (d/dζ )k−2 =
(2π i)k−2(T (d/dT )k−2. Applying this to the previous relation, we obtain the fol-
lowing power series relation.

(1.3) Remark. For T = e2π iζ we have the follwing expansion related to the series
gk(T ) =

∑
1≤n nk−1T n :

(k − 1)!(−1)k
∑

n

1

(ζ + n)k
= (2π i)k

∑
1≤n

nk−1T n = (2π i)k gk(T ).

Note that gk+1(T ) = (T [d/dT ])gk(T ) and gk(1/T ) = (−1)k gk(T ). Two important
special cases used later are

g2(T ) = T

(1 − T )2
and g3(T ) = T

1 + T

(1 − T )3
.

(1.4) q-Expansion of Eisenstein Series. The following modular functions, called
Eisenstein series, arose previously as coefficients of the differential equation for the
Weierstrass ω-function

G2k(τ ) =
∑

(m,n)�=(0,0)

1

(mτ + n)2k

= 2
∑
1≤n

1

n2k
+ 2

∑
1≤m

∑
n

1

(mτ + n)2k
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which for q = e2π iτ becomes, by (1.3),

2ζ(2k)+ 2
(2π i)2k

(2k − 1)!

∑
m,n<1

n2k−1qmn

where ζ(s) = ∑
1≤n(1/ns) is the Riemann zeta function. For σs(n) =

∑
d|n ds this

formula takes the more precise form, called the q-expansion of the Eisenstein series,

G2k(τ ) = 2ζ(2k)+ 2
(2π i)2k

(2k − 1)!

∑
1≤n

σ2k−1(n)q
n

= 2ζ(2k)+ 2
(2π i)2k

(2k − 1)!

∑
1≤n

n2k−1qn

1 − qn
.

We introduce E2k(τ ) by G2k(τ ) = 2ζ(2k)E2k(τ ). The cases 2k = 4 and 6 are
considered in greater detail using

ζ(4) = π4

90
= π4

2 · 32 · 5
and ζ(6) = π6

945
= π6

33 · 5 · 7
,

reference J.-P. Serre, Course in Arithmetic, p. 91. We have

G4(τ ) = π4

45
+ 2(2π i)4

3!

∑
1≤n

σ3(n)q
n

= (2π i)4

24 · 45

{
1 + 240

∑
1≤n

σ3(n)q
n

}
= (2π i)4

720
E4(τ )

hence, g2(τ ) = 60G4(τ ) = [(2π i)4/12]E4(τ ), and also

G6(τ ) = 2π6

945
+ 2(2π i)6

5!

∑
1≤n

σs(n)q
n

= − (2π i)6 · 2

26 · 945

{
1 − 504

∑
1≤n

σ5(n)q
n

}
= −(2π i)6 · 2

26335 · 7
E6(τ )

hence, g3(τ ) = 140G6(τ ) = −[(2π i)6/2333]E6(τ ).

(1.5) q-Expansions of Elliptic Functions. For q = e2π iτ and w = e2π iτ we have
the following expansions using (1.4):

℘(z, τ ) = 1

z2
+

∑
(m,n)�=(0,0)

{
1

(z − mτ − n)2
− 1

mτ + n)2

}

=
∑

n

1

(z − n)2
− 2

∑
1≤n

1

n2
+
∑
m �=0

∑
n

{
1

(z − mτ − n)2
− 1

(mτ + n)2

}
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= (2π i)2
[

w

(1 − w)2 − 2ζ(2)

(2π i)2
+
∑
m �=0

{
wqm

(1 − wqm)2
− qm

(1 − qm)2

}]
.

℘ (z, τ ) = (2π i)2
{∑

m

wqm

(1 − wqm)2
+ 1

12
−
∑
m �=0

qm

(1 − qm)2

}
,

and

℘′(z, τ ) = −2
∑
(n,m)

1

(z + mτ + n)3

= −2
∑

n

1

(z + n)3
− 2

∑
m �=0

1

z + mτ + n)3

= (2π i)3
{
w + w2

(1 − w3)
+
∑
m �=0

wqm(1 + wqm)

(1 − wqm)3

}
,

℘′(z, τ ) = (2π i)3
∑

m

wqm(1 + wqm)

(1 − wqm)3
.

Now we take the equation for the Weierstrass function and divide it by 4(2π i)6

to obtain (
℘′(z)

2(2π i)3

)2

=
(
℘(z)

(2π i)2)

)3

− g2(τ )

4(2π i)4

(
℘(z)

(2π i)2

)
− g3(τ )

4(2π i)6
.

In summary we have the following result.

(1.6) Theorem. The Weierstrass equation divided by 4(2π i)6 in terms of the vari-
ables w = e2π i z and q = e2π iτ is

Eq : Y 2 = X3 − e2(q)X − e3(q),

where

X = X (w, q) =
∑

m

wqm

(1 − wqm)
+ 1

12
− 2

∑
1≤m

qm

(1 − qm)2
,

Y = Y (w, q) = 1

2

∑
m

wqm(1 + wqm)

(1 − wqm)3
,

e2(q) = 1

48
E4(τ ) = 1

48

{
1 + 240

∑
1≤n

σ3(n)q
n

}
,

e3(q) = − 2

123
E6(τ ) = − 2

123

{
1 − 504

∑
1≤n

σ5(n)q
n

}
.
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(1.7) Remark. If q is real, then E4 is defined over the real numbers R in the sense
that the cubic equation has real coefficients. Observe that the following are equivalent
for q = e2π iτ :

(1) q is real.
(2) Re(τ ) is a half integer.
(3) τ + τ̄ is an integer.
(4) Zτ + Z is stable under complex conjugation.

Finally we have the discriminant, see sec 9(4.8),

(τ) = g2(τ )
3 − 27g3(τ )

2

with (τ) �= 0 for τ in the upper half plane, and the j-function j (E) of a complex
torus j (C/Zτ + Z) = j (τ ), where

j (τ ) = 123 g2(τ )
3

(τ)
.

(1.8) q-Expansions of (τ) and j(τ ). The following expansions are given in J. P.
Serre, Course in Arithmetic, pp. 90 and 95:

(τ) = (2π)12q
∞∏

n=1

(1 − qn)24,

j (τ ) = 1

q
+ 744 +

∞∑
n=1

c(n)qn,

where q = e2π iτ and c(1) = 22 · 33 · 1823 = 196884, c(2) = 211 · 5 · 2099 =
21493760. The coefficients c(n) are integers which can be seen from the above ex-
pression of j as a quotient of g2 and .

§2. Introduction to Theta Functions
Implicit in the formalism of the previous section is the Jacobi theory of theta func-
tions. The Weierstrass theory shows that a complex torus is the locus of solutions of
a cubic equation in P2(C). The Jacobi theory shows that a complex torus is the inter-
section of two quadrics (degree 2 surfaces) in P3(C). We sketch this theory which is
carried out in detail in Mumford, Theta Functions (Birkhäuser Boston), Chapter 1.

Just as the Weierstrass theory revolves around the function ℘(z), the Jacobi the-
ory centers on the basic theta function.

(2.1) Definition. The basic theta function θ(z, τ ) defined on C × h is given by the
series

θ(z, τ ) =
∑
n∈Z

exp(2π inz + π in2τ).



194 10. Theta Functions

For |Im(z)| < c and Im(τ ) > ε, we have the following inequality

| exp(2π inz + π in2τ)| < (e−πε)n2
(e2πc)n .

If n′ is chosen such that

(e−πε)n
′
e2πc < 1,

then the inequality

| exp(2π inz + π in2τ)| < (e−πε)n(n−n′)

shows that the series is uniformly majorized on this set by a convergent geometric
series. Thus θ converges on C × H.

Unlike the meromorphic function ℘(z, τ ) of z, which is periodic with respect to the
lattice Zτ + Z, the holomorphic function θ(z, τ ) of z is only quasiperiodic. This is
made precise in the next proposition which is proved by a straightforward change of
variable.

(2.2) Proposition. For two integers a and b we have

θ(z + aτ + b, τ ) = exp(−π ia2τ − 2π iaz)θ(z, τ ) and θ(−z, τ ) = θ(z, τ ).
In particular θ(z + 1, τ ) = θ(z, τ ) and θ(z + τ, τ ) = exp(−π iτ − 2π i z)θ(z, τ ).

Thus the zeros of the function θ(z, τ ) in the variable z form a periodic set with
respect to the lattice Zτ + Z which is symmetric around 0. To count these zeros,
we apply the previous proposition to deduce (θ ′/θ)(z + 1, τ ) = (θ ′/θ)(z, τ ) and
(θ ′/θ)(z + τ, τ ) = (θ ′/θ)(z, τ ) − 2π i , and to apply the argument principle to the
period parallelogram, we use the following result.

(2.3) Proposition. The integral (1/2π i)
∫
(θ ′/θ)(z, τ ) dz = 1.

Thus by the argument principle there is one zero and, due to symmetry about 0,
it is at one of the following points: 0, 1/2, τ/2, or (τ + 1)/2. We return to this in
(2.7).

(2.4) Remark. The two periodicity conditions

θ(z + 1, τ ) = θ(z, τ ) and θ(z + τ, τ ) = exp(−π iτ − 2π i z)θ(z, τ )

lead to two q-expansions for q = e2π i z and qτ = eπ iτ , namely

θ(z, τ ) =
∑

n

(eπ in2τ )qn and θ(z, τ ) =
∑

n

(e2π i z)qn2

τ .

Now using suitable translates of θ(z, τ ), we will be able to embed the complex
torus C/L into projective space such that the image is an intersection of algebraic
hypersurfaces.
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(2.5) Definition. For two rational numbers a, b we define

θa,b(z, τ ) = exp[π ia2τ + 2π ia(z + b)]θ(z + aτ + b, τ )

=
∑
n∈Z

[2π i(n + a)(z + b)+ π i(a + n)2τ ].

For a strictly positive integer N we define a space VN (τ ) as the vector space of all
entire functions f (z) such that

f (z + N ) = f (z) and f (z + τ) = exp(−2π i N z − π i N 2τ) f (z).

(2.6) Proposition. The vector space VN (τ ) has dimension N 2 over the complex
numbers and a set of θa,b(z,τ )where (a,b) runs over representatives of {[1/N )Z]/Z}2

is a basis of VN (τ ). Each f (z) in VN (τ ) has N 2 zeros in the period parallelogram
N (Zτ + Z).

Proof. For f (z) ∈ Vn(τ ) the condition f (z) = f (z + N ) is equivalent to the exis-
tence of an expansion of the form

f (z) =
∑
n∈Z

an exp

(
2π i

N
nz

)
=
∑
n∈Z

bn exp[(2π i Nnz + iπn2τ)/N 2], where bn = bn(τ ).

Since f (z) = f (z+τ) exp(2π i N z+iπN 2τ) by definition a straight-forward change
of variable shows that bn = bn+N 2 for all n and is independent of τ . Hence the
dimension of VN (τ ) is at most N 2.

For nonzero f (z) ∈ VN (τ ) the assertion about the number of zeros follows as in
(2.3) using f (z + N ) = f (z) and f (z + τ) = c · exp(−2π i N z) f (z), where c is a
constant.

Finally the remainder of the assertions follow from the linear independence of the
functions θa,b(z, τ ) as given in the proposition. In Mumford’s book, see Chapter 1,
§3, this is provided by showing that the first N 2 Fourier coefficients of f (z) ∈ VN (τ )

can be realized as the Fourier coefficients of linear combinations of 0a,b(z, τ ). This
completes the sketch of the proof of the proposition.

(2.7) Example. For N = 1, the space V1(τ ) is one dimensional and has θ(z, τ )
as a basis element. The zero of θ(z, τ ) is at the center point of the fundamental
parallelogram (1/2)τ + 1/2 since θ(z, τ ) = θ(−z, τ ), see Mumford’s book.

§3. Embeddings of a Torus by Theta Functions
(3.1) Notations. For any basis f0(z), . . . , fm(z) of VN (τ ) we define a map f(N ) :
C/N (Zτ + Z) → Pm(C) by the relation f(N )(z) = f0(N z) : · · · : fm(N z), where
m = N 2 − 1.
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The map f(N ) is well defined by N up to a linear change of variable correspond-
ing to a linear relation between the two bases of the vector space VN (τ ).

(3.2) Proposition. For N > 1 the map f(N ) is an embedding.

Proof. If there is a pair of points where f(N ) has the same value or if there is a point
where d f(N ) has a zero, then there is a second by the translation with some element of
(1/N 2)Lτ . Take q = N 2 −3 points all distinct and distinct from these points z j mod
N Lτ . By solving linear equations in ci for f = ∑

i ci fi , we can find f ∈ VN (τ ),
f �= 0, with f (z j ) = 0 and f = 0 at the double points. Then either f = 0 at N 2 + 1
points or f = 0 at N 2 − 1 points with two double zeros. Thus f = 0 which is a
contradiction from which we deduce that f(N ) is injective and d f(N ) is nonzero at all
points. This proves the proposition.

(3.3) Remark. The image of f(N ) is a closed complex curve in complex projective
space. By a theorem of Chow this image is an algebraic curve. Note that the inter-
section of im( f(N )) with a plane z j = 0 for the basis of translates of the basic theta
function is on the N 2 images of the N -division points Lτ /N Lτ under f(N ).

This we explain in the case of N = 2. We have the following table for the
functions θa,b(z, τ ) together with the set of zeros described in terms of the lattice
Lτ .

(3.4) Example. The 2-division point theta functions consist of the following four
functions:

θ0,0(z, τ ) = θ(z, τ ), zeros = τ + 1

2
+ Lτ ,

θ0,1/2(z, τ ) = θ(z + 1

2
, τ ), zeros = τ

2
+ Lτ ,

θ1/2,0(z, τ ) = exp

(
1

4
π iτ + π i z

)(
z + τ

2
, τ
)
, zeros = 1

2
+ Lτ ,

θ1/2,1/2(z, τ ) = zeros = Lτ .

exp

[
1

4
π iτ + π i

(
z + 1

4

)]
θ

(
z + τ + 1

2
, τ

)
,

With the 2-division theta functions we obtain an embedding of the complex torus
into the three-dimensional projective space where the image is the intersection of
two quadratic surfaces whose equations are given precisely in the next theorem.

(3.5) Theorem. The curve im( f(N )) in P3(C) is the intersection of the two quadratic
surfaces with equations

A2x2
0 = B2x2

1 + C2x2
2 ,

A2x2
3 = C2x2

1 − B2x2
2 ,

where the mapping function is given by
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x0 = θ0,0(2z, τ ), x1 = θ0,1/2(2z, τ ), x2 = θ1/2,0(2z, τ ), x3 = θ1/2,1/2(2z, τ ),

and the coefficients are given by

A = θ0,0(0, τ ) = θ3(τ ) =
∑

n

qn2
,

B = θ0,1/2(0, τ ) = θ4(τ ) =
∑

n

(−1)nqn2
,

C = θ1/2,0(0, τ ) = θ2(τ ) =
∑

n

q(n+1/2)2 ,

with q = eiπτ = qτ . We have the additional relation A4 = B4 + C4.

This last relation is called Jacobi’s identity between the “theta constants” A, B,
and C .

The proof of this theorem is contained in §5 of the first chapter of Mumford’s
book. The derivation of the relations is rather involved. Knowing that im( f(2)) is
contained in the curve E defined by the two quadratic equations, we can show that
im( f(2)) = E . First, by 2(3.1) a plane a0x0 + · · · + a3x3 = 0 intersects E in at most
four points, but this plane intersects im( f(2)) at points where

a0θ0,0(2z, τ )+ a1θ0,1/2(2z, τ )+ a2θ1/2,0(2z, τ )+ a3θ1/2,1/2(2z, τ ) = 0.

There are four such points mod 2Lτ by (2.6). This completes our remarks on the
proof of the theorem.

§4. Relation Between Theta Functions and Elliptic Functions
(4.1) Remark. If f (z) is a holomorphic function satisfying for Lτ the two condi-
tions f (z) = f (z + 1) and f (z) = eaz+b f (z + τ), then the second logarithmic
derivative (d2/dz2) log f (z) is a doubly periodic function for the lattice Lτ and is
meromorphic on the plane. In particular, it is an elliptic function. For example, there
is a constant c such that the Weierstrass ℘-function is given by

℘(z, Lτ ) = − d2

dz2
log θ1/2,1/2(z, τ )+ c.

Referring to 9(3.2) and the exercises at the end of the section, we see that
θ1/2,1/2(z, τ ) is essentially the sigma function σ(z, Lτ ) and the logarithmic deriva-
tive is the zeta function ζ(z, Lτ ). This leads to two constructions for elliptic functions
related to the exercises in Chapter 9, §3 using holomorphic f (z) satisfying the theta
periodicity conditions of (4.1).

(4.2) Remark. For a1 + · · · + ak = b1 + · · · + bk in C, the function f (z) satisfying
the theta periodicity conditions of (4.1) gives an elliptic function
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k∏
j=1

f (z − a j )

f (z − b j )
.

If f = θ , then this elliptic function has zeros at a j + (1/2)(1 + τ) and poles at
b j + (1/2)(1 + τ), and if f = θ1/2,1/2, then this elliptic function has zeros at a j

and poles at b j . For f = θ or θ1/2,1/2 we can represent every elliptic function in the
above form.

This representation should be compared with the factorization

f (z0 : z1) =
k∏

i=0

a j z1 − a′
j z0

b j z1 − b′
j z0

of a meromorphic (rational) function on P1(C) with zeros a′
j/a j and poles b′

j/b j .

(4.3) Remark. For a1, . . . , ak in C and c1+· · ·+ck = 0 the function f (z) satisfying
the theta periodicity conditions of (4.1) gives an elliptic function

k∑
j=1

c j
d

dz
log f (z − a j ).

If f = θ , then this elliptic function has simple poles at a j + (1/2)(1 + τ) with
residues c j , and if f = θ1/2,1/2, then this elliptic function has simple poles at a j

with residues c j for j = 1, . . . , k.

§5. The Tate Curve
We begin by referring to (1.6) where the curve

Eq : Y 2 = X3 − e2(q)X − e3(q)

was derived from the Weierstrass differential equation by change of variable w =
e2π i z and q = e2π iτ , and for |q| < 1 the mapping

w → (X (w, q), Y (w, q)) = ϕ(w)
defines an isomorphism ϕ : C∗/qZ → Eq(C), where ϕ(qZ) = 0. We wish to see
that the formulas which described the curve Eq over the complex numbers works for
a general local field K . To do this, we introduce a small change of variables from
those used in (1.6)

x = x(w, q) = X (w, q)− 1

12
and y = Y − 1

2
x .

(5.1) Proposition. In terms of x(w, q) and y(w, q) the equation of the cubic be-
comes
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Eq : y2 + xy = x3 − h2(q)x − h3(q),

where

x = x(w, q) =
∑

m

wqm

(1 − wqm)2
− 2

∑
m≥1

qm

(1 − qm)2

y = y(w, q) =
∑

m

(wqm)2

(1 − wqm)3
+
∑
m≥1

qm

(1 − qm)2

h2(q) = 1

48
(E4(τ )− 1) = 5

∑
1≤n

σ3(n)q
n = 5

∑
1≤n

n3qn

1 − qn

h3(q) = 1

123
(1 − 3E4(τ )+ 2E6(τ )) = − 1

12

∑
1≤n

(5σ3(n)+ 7σ5(n))q
n

= − 1

12

∑
1≤n

(5n3 + 7n5)qn

1 − qn

Proof. The previous equation from (1.6) becomes(
y + x

2

)2 =
(

x + 1

12

)3

− 1

48
E4(τ )

(
x + 1

12

)
+ 2

123
E6(τ )

or

y2 + xy = x3 + 1

48
x + 1

123
− 1

48
E4(τ )x − 3

123
E4(τ )+ 2

123
E6(τ ).

The remainder of the calculation is left to the reader.
Observe that

T

(1 − T )2
= 1

T − 2 + T −1
= T −1

(1 − T −1)2

and that

T
d

dT

(
T

(1 − T )2

)
= T + T 2

(1 − T )3

so that

T + T 2

(1 − T )3
= −T −1 + T −2

(1 − T −1)3
.

(5.2) Remark. Let K be a non-Archimedian field and |q| < 1. The series expan-
sions for x(w, q) and y(w, q) can be rewritten as

x(w, q) = w

(1 − w)2 +
∑
1≤n

(
wqn

(1 − wqn)2
+ qnw−1

(1 − qnw−1)2
− 2

qn

(1 − qn)2

)
,
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y(w, q) = w2

(1 − w)3 +
∑
1≤n

(
(wqn)2

(1 − wqn)3
+ (qnw−1)2

(1 − qnw−1)3
− qn

(1 − qn)2

)
.

Comparing with the geometric series, we see that these two series converge ab-
solutely for any w in the multiplicative group K ∗ and uniformly on any annulus
0 < r ≤ |w| ≤ r ′. An examination of the series expansions yields the functional
equations

x(qw, q) = x(w, q) = x(w−1, q),

and

y(qw, q) = y(w, q) and y(w−1, q)+ y(w, q) = −x(w, q).

The series giving h2(q) and h3(q) converge since the coefficents are integers.

(5.3) Remark. The modular invariant is given by

 = 123(g3
2 − 27g2

3) = 123

[
(4h2 + 1

12
)3 − 4

(
4h3 + 1

3
h2 + 1

63

)2
]

= h2
2 − h3 − 72h2h3 − 432h2

3 + 64h3
2

= q − 24q2 + 252q3 + · · · .

Since  ≡ q(mod q2), it follows that (q) �= 0 for any q �= 0. The absolute j-
invariant is given by

j = (12g2)
3


= (1 + 48h2)

3


= 1 + 240q + 2160q2 + · · ·

q − 24q2 + 252q3 + · · ·
= 1

q
(1 + 744q + 196884q2 + · · · ).

(5.4) Lemma. Let K be a complete discrete value field, and let f (t) = a0+a1t+· · ·
be a power series with |a j | ≤ 1 for all j . Then the map q → j (q) = 1/q + f (q) is
a bijection of the set of q with 0 < |q| < 1 onto the set of all j in K with | j | > 1.

Proof. Since xn−yn = (x−y)(xn−1+xn−2 y+· · ·+yn−1), we have | f (q)− f (q ′)| ≤
|q − q ′|. Clearly | j (q)| = |1/q + f (q)| = |1/q| > 1, and j (q) is injective because

| j (q)− j (q ′)| =
∣∣∣∣q ′ − q

q ′q
+ f (q)− f (q ′)

∣∣∣∣ = |q ′ − q|
|q ′q| > |q ′ − q|.

To show that j (q) is surjective, we consider | j | > 1 and solve for q in the relation
j = 1/q + f (q) = [1 + q f (q)]/q or q = [1 + q f (q)]/j = T (q). The function T
is defined X → X , where X is the complete metric space of all q with 0 < |q| < 1.
Since
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|T (q)− T (q ′)| = |q f (q)− q ′ f (q ′)|
| j | ≤ 1

| j | |q − q ′|

with 1/| j | < 1, the elementary contraction fixed point theorem applies, and there is
a solution to the equation q = T (q) which in turn maps to the given j . This proves
the lemma.

Observe that j = 1/q + f (q) with f (q) in R[[q]] as above can be inverted with
a formal series g(x) in R[[x]] in the sense that q = 1/j + g(1/j). This observation
can also be used to prove the lemma.

(5.5) Definition. The Tate curve Eq over a local field K is defined for all q in K
with 0 < |q| < 1 by the equation

y2 + xy = x3 − h2(q)x − h3(q),

where the coefficients h2(q) and h3(q) are given by the convergent series

h2(q) = 5
∑
1≤n

n3qn

1 − qn
and h3(q) = − 1

12

∑
1≤n

(5n3 + 7n5)qn

1 − qn
.

Of course the formulas were derived from other formulas over the complex num-
bers, see (5.1), and we noted that they converge as series in a non-Archimedean field
K .

(5.6) Remark. By (5.3) the curve Eq is an elliptic curve with bad reduction since
 ≡ q(mod q2) and |q| < 1. The reduced curve Ēq is given by y2 + xy = x3 since
the series expansions have the form

h2(q) = 5q + · · · and h3(q) = −q + · · · ,
and (Ēq)ns is the multiplicative group, see 3(7.2). Since | j (Eq)| > 1, the singularity
is not removed by ground field extension, and this is related to the terminology of
semistable reduction, see 5(7.1). By (5.4) for each nonintegral j in K , so | j | > 1,
there is a unique Tate curve Eq with j = j (Eq). If E is an elliptic curve over K with
| j (E)| > 1, then E is isomorphic to the Tate curve Eq over a quadratic extension of
K where q is chosen such that j (E) = j (Eq).

The remarkable and useful feature of these curves Eq of Tate is that, as in the
case of the complex numbers, the group of points Eq(K ) can be viewed as a “torus,”
namely Eq(K ) is isomorphic to the p-adic torus K ∗/qZ. One proof of this result is
sketched in the next theorem, and another version is a consequence of the study of
the p-adic theta functions contained in the next section.

(5.7) Theorem (Tate). The function ϕq : K ∗/qZ → Eq(K ) defined by

ϕq(w) =
{

0 = the origin of Eq(K ) for w in qZ,

(x(w, q), y(w, q)) for w in K ∗ − qZ,

where x(w, q) and y(w, q) are given in (5.1) or (5.2) is an isomorphism of groups.
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Remarks. The first point of the proof is that ϕq(w) is on the curve Eq(K ) in the
plane. From the classical theory ϕq(w) is on the curve with equation y2 + xy =
x3 − h2(q)x − h3(q) so that we have a formal identity over the ring of power series
in q with rational coefficients by varying q and keeping |q| < |w| < |q|−1. In
particular, the formal identity specializes to the conclusion that ϕq(w) is on Eq(K )
for all w ∈ K ∗/qZ.

If ww′ = 1 in K ∗/qZ, then x(w, q) = x(w′, q) and

y(w, q)+ y(w′, q) = −x(w, q)

by (5.2). Thus ϕq(w
′) = −ϕq(w) since both points are on the vertical line x =

x(w, q) where it intersects Eq(K ).
Even though the argument can be worked out directly, we postpone now the

remainder of the proof of the theorem to the next section where we use some of the
theory of q-periodic meromorphic functions on K ∗, see (6.11).

The reader can check that the isomorphism ϕq carries the quotient of the p-adic
filtration on K ∗/qZ coming from K ∗ onto the canonical p-adic filtration on Eq de-
fined in (4.1). Also, for an algebraic field extension L over K we have a commutative
diagram of morphisms with the horizontal morphism being isomorphisms

L∗/qZ
ϕq−→ Eq(L)

∪ ∪

K ∗/qZ
ϕq−→ Eq(K ).

(5.8) Remark. Restricting ϕq to the N -torsion elements or N -division points, we
obtain an isomorphism

ϕq : N (K
∗/qZ)→ N Eq(K ).

Observe that these isomorphic groups are isomorphic to (Z/NZ)2 if and only if K
contains a primitive N th root of unity and an N th root of q. In this case one primitive
N th root of unity and one N th root of q forms a basis of N (K ∗/qZ) over Z/NZ and
their image under ϕq is a basis of N Eq(K ) over Z/NZ.

(5.9) Remarks. If u is an automorphism of the field K with u(q) = q, then u acts
on the quotient K ∗/qZ and thus on Eq(K ), and the isomorphism ϕq is u-equivariant,
i.e., ϕq(u(x)) = u(ϕq(x)). In terms of the N th root of unity, N th root of q basis, the
automorphism u will have a matrix representation(

a b
0 1

)
,

where a is in the automorphism group of N th roots of unity contained in (Z/NZ)∗
and b is in Z/NZ viewed as the group of N th roots of unity with a chosen N th root
of unity. For the separable algebraic closure Ks of K the action
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ϕN : Gal(Ks/K )→ Aut(N Eq) ∼= GL2(Z/NZ)

is through the subgroup of matrices of the form(∗ ∗
0 1

)
.

In particular it is never surjective.

This property of the Galois action plays an important role in the global case.

(5.10) Remark. Let N be prime to the characteristic of K . The field K (N Eq) gen-
erated over K by the coordinates of the N -division points is exactly K (ζN , q1/N ) the
field generated by a primitive N th root ζN of 1 and an N th root q1/N of q.

Returning to 5(7.4), we summarize the situation with the following statement.

(5.11) Remark. For E over K with v( j (E)) < 0, we form Eq for q ∈ K ∗ such that
v(q) = −v( j (E)) from the q-expansion of j (q), and j (q) = j (E). Then E and Eq

are isomorphic over a quadratic extension of K . Ogg [1967, p. 5] shows that E and
Eq are isomorphic over K if and only if the reduced curve Ē is the multiplicative
group. Otherwise it is the additive group in the case where k is algebraically closed
corresponding to a cusp.

§6. Introduction to Tate’s Theory of p-Adic Theta Functions
Over the complex numbers analytic functions are defined by convergent power series
locally. The same is true for a complete non-Archimedian field K as considered in
5(1.1), but there is no analytic continuation since every triangle is isosceles. For K ∗
we use the following special definition of holomorphic function.

(6.1) Definition. A K -valued function f on K ∗ is holomorphic provided it is of the
form f (z) = ∑

n∈Z anzn , where an ∈ K and the series converges absolutely for all
z in K ∗.

The convergence condition is equivalent to saying that |an|rn is bounded in n for
each real r > 0. These functions form a ring which we denote by HK . In order to
study f near a point c in K ∗ we consider fc(w) = f (c(1 + w)) and expand this
function of w as power series which converges for small |w|

fc(w) = f (c)+ b1w + b2w
2 + · · · .

We can define ordc( f ) the order of the zero of f at c by the relations ordc( f ) = 0
provided f (c) �= 0 and n = ordc( f ) provided f (c) = 0, bn �= 0, and bi = 0 for
i < n. For each c the function that assigns to f (z) in HK the power series fc in
K [[w]] is an embedding of rings.
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(6.2) Remarks and Notations. The ring HK is an integral domain, and we can form
the field of fractions MK of meromorphic functions on K ∗. A nonzero f (z) in HK

has only a finite number of zeros in any annulus r1 ≤ |z| ≤ r2. The only functions
f (z) with no zeros on K̄ ∗ are monomials of the form anzn . This is a result which
one proves by looking at the Newton polygon of the f (z) and studying the corners in
this polygon. The method is explained in the book by E. Artin, Algebraic Numbers
and Algebraic Functions (1968).

Now fix an element q in K with 0 < |q| < 1. The object is to form the quotient
Aq = K ∗/qZ of K ∗ by the discrete subgroup qZ and find an elliptic curve Eq with
Aq = Eq(K ). This we did with specific equations in the previous section from the
Weierstrass theory of elliptic functions. Now we outline a theta function approach to
the problem.

(6.3) Notations. Let MK ,q denote the subfield of f (z) in MK satisfying the condi-
tion that f (z) = f (qz).

Then MK ,q is the field of meromorphic functions on Aq . Analogously, if F(u) is
a complex elliptic function with periods 1 and τ , then the function f (z) = F(e2π i z)

is a complex valued meromorphic function on C∗ satisfying f (z) = f (qz), where
q = e2π iτ . As with elliptic functions we see that HK ∩ MK ,q is the field of constants.

Again by analogy with the classical case over the complex numbers we consider
functions which are holomorphic on C∗, almost periodic under multiplication by q,
and with periodic set of zeros.

(6.4) Definition. A theta function f (z) of type czr is a holomorphic f (z) in HK

satisfying f (z) = czr f (qz) for z in K ∗.

A theta function is always defined relative to a given quasiperiod q and type czr .
We denote by HK ,q(czr ) the vector space over K of all theta functions relative to q
of type czr . Observe that elements of MK ,q can be constructed as quotients of two
elements of HK ,q(czr ). Hence the dimension of this space is important.

(6.5) Proposition. We have

dimK HK ,q(czr ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r if r > 0,

0 if r < 0,

0 if r = 0 and c /∈ qZ,

1 if r = 0 and c ∈ qZ.

Proof. Let f (z) = ∑
n anzn be holomorphic on K ∗. Form the function

czr f (qz) =
∑

n

canqnzn+r

and use

f (z) =
∑

n

an+r zn+r .
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Then we see that f (z) = czr f (qz) if and only if an+r = canqq for all integers n.
Check the case r = 0 directly. For r �= 0 we see that we can pick the coefficients
a0, . . . , ar−1 arbitrarily. As for convergence, the quasiperiodicity condition becomes

an+mr = ancmqmn+r(m2−m)/2 → 0 f or r > 0

since the m2 term dominates, and we have convergence in this case and no conver-
gence for r < 0. This proves the proposition.

(6.6) Notation. A basic theta function of type −z−1 with zeros exactly q Z is

ϕ(z) = (1 − z)
∏
1≤m

(1 − qm z)
∏
1≤m

(
1 − qm

z

)
.

The fact that −zϕ(qz) = ϕ(z) is an easy shuffling of the terms. As an expansion in
powers zn of z, the function ϕ(x) has the form

ϕ(z) =
∑

n

(−1)nq(n
2−n)/2zn .

Observe that ϕ(z, c) = ϕc(z) = ϕ(z/c) is a theta function of type −c−1z with zeros
the set cqZ.

(6.7) Remark. If
∏

1≤i≤k ai = ∏
1≤i≤k bi in the field K , then the quotient∏

1≤i≤k ϕ(z, ai )∏
1≤i≤k ϕ(z, bi )

is a theta function of type (−1)k(
∏

1≤i≤k ai )zk/(−1)k(
∏

1≤i≤k bi )zk = 1, thus it
is an elliptic function in MK ,q . The zeros are the ai ’s and the poles are the bi ’s.
Conversely, from the fact that HK ∩ MK ,q is the field of constants, we deduce that
for any f in MK ,q with zeros ai · qZ with i = 1, . . . , k and poles b j · qZ with
j = 1, . . . ,m, then k = m and for suitable representatives ai and b j the quotient
(
∏

1≤ j≤k ai )/(
∏

1≤i≤k b j ) equals 1. This is the Abel–Jacobi theorem in this context.

The previous remark, the Abel–Jacobi theorem, is a multiplicative criterion for
the existence of a q-periodic meromorphic function with given zeros and poles.
The additive description of q-periodic meromorphic functions with prescribed po-
lar expansions is the Riemann approach to the existence of q-periodic meromorphic
functions and the Riemann–Roch theorem is the answer in the form of a dimen-
sion formula. An important special case for the K -vector space L(n) of f ∈ MK ,q

with only poles on qZ and having order at most n is studied by observing that
f (z) → ϕ(z)n f (z) is an isomorphism L(n) → HK ,q((−1)nzn) with inverse
g(z) → ϕ(z)−ng(z). Hence from (6.5) we deduce the following dimension formula.

(6.8) Proposition (Riemann–Roch). The vector space L(n) of q-periodic func-
tions with pole of order at most n on qZ has dimension given by

dimK L(n) =
{

1 for n = 0,

n for n ≥ 1.
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The one-dimensional spaces L(0) and L(1) reduce to constant functions K , and
hence there is no q-periodic meromorphic function with only a simple pole on qZ,
i.e., a simple pole at each point of qZ. Then L(2) has dimension 2 over K and is,
for example, a direct sum K ⊕ K x(w, q) where x(w, q) was introduced in (5.1)
and (5.2). Any function in L(2) − K must have a double pole on qZ which can
be seen directly from the expansion for x(w, q). The function x(w, q) also satisfies
the evenness condition of x(1/w, q) = x(w, q). By (6.7) any nonconstant f (z) and
L(2) has two zeros in the region |q| < |z| ≤ 1, and they are of the form

(1) z0, q/z0 if |q| < |z0| < 1, or
(2) z0, 1/z0 if |z0| = 1.

Using a multiplicative version of the argument in 5(3.3), we establish as in the clas-
sical case the following for the subfield H of even f (z) in MK ,q , i.e., f (z) satisfying
f (z) = f (1/z) the following theorem.

(6.9) Theorem. The subfield H of even functions in MK ,q is a rational function field
in one variable K (x(w, q)) over K generated by x(w, q) and MK ,q is a quadratic
extension of H.

The inclusions of K = L(0) = L(1) ⊂ L(2) ⊂ L(3) ⊂ · · · ⊂ L(n) ⊂ · · ·
together with the dimension formula used in 6(1.1) to derive the normal form of the
cubic equation for an abstract curve E of genus 1 embedded into P2. Implicit in the
normal form is the fact that the function field k(E) of E is a quadratic extension
of a rational function field in one variable over k. The same considerations apply
to the p-adic torus, as they did for the complex torus, to yield an embedding into
P2. In fact, for any x in L(2) − L(1) and y in L(3) − L(2) we have an embedding
(1 : x : y) : K ∗/qZ → P2(K ). Looking at it in terms of any basis f0, f1, f2 of
HK ,q(−z3), we also have an embedding ( f0 : f1 : f2) : K ∗/qZ → P2(K ). The
two approaches can be related by choosing, for example, f0 = ϕ3, f1 = ϕ3x, and
f2 = ϕ3 y.

(6.10) Remark. Returning to the functions x(w, q) and y(w, q) in (5.1) and (5.2)
where x is in L(2) − L(1) and y in L(3) − L(2), we can apply the above consider-
ations. The function y will generate the quadratic extension MK ,q over H = K (x),
but, further, by (5.2) we have the relation y(w, q) + y(1/w, q) = −x(w, q), and
an easy check shows that y(w, q)2 + x(w, q)y(w, q) is invariant under w changing
to 1/w. Since this expression has a pole of at most order 6 and since it is in K [x],
we deduce that y2 + xy is a cubic polynomial in x with leading coefficient 1. This
almost recovers the equation which was derived by classical expansions.

(6.11) Remark. Finally we complete the proof of Theorem (5.7) concerning ϕq :
K ∗/qZ → Eq(K ), where ϕq(w) = (1 : x(w, q) : y(w, q)) and the assertion that
( f0 : f1 : f2) : K ∗/qZ → P2(K ) is an embedding is contained in the argument. To
show that ϕq is bijective, consider (x̄, ȳ) in Eq(K ) and recall by (6.7) that x(w, q)−x̄
has two zeros w and w′ in K ∗/qZ with ww′ in qZ and ϕq(w

′) = −ϕq(w). Now
y(w, q) − ȳ has three zeros v, v′, and v′′ none in qZ with vv′v′′ in qZ. Hence only
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one w or w′ is a zero of y(w, q) − ȳ, and this is the unique w̄ in K ∗/qZ with
ϕq(w̄) = (x̄, ȳ). Therefore ϕq is bijective.

The last step is to show that ϕq(w) is a group homomorphism. We saw in (5.7)
that it preserved inverses. Now consider w1w2w3 = 1 in K ∗/qZ. By (6.7) there
exists f (w) in L(3) with a triple pole on qZ and three zeros w1, w2, and w3. More-
over, f (w) = ay(w, q) + bx(w, q) + c with a, b, and c in K and a �= 0. If
(xi , yi ) = ϕq(wi ), then we have relations

a(y1 − y2)+ b(x1 − x2) = 0 and a(y2 − y3)+ b(x2 − x3) = 0.

These relations of proportionality show that (x1, y1), (x2, y2), and (x3, y3) are on a
line, and, hence, they add to zero on Eq(K ). This completes the proof of Theorem
(5.7).

(6.12) Remark. There is an isogeny cyclic of degree m defined Eqm → Eq with
induced field morphism K (Eq)→ K (Eqm ) given by the inclusion of the q-periodic
meromorphic functions into the field of qm-periodic meromorphic functions. This is
clear in the context of p-adic tori just as questions of isogenies of complex elliptic
curves reduce to inclusion properties of lattices.

A general reference for p-adic theta functions is the book by Peter Roquette,
Analytic Theory of Elliptic Functions over Local Fields.
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Modular Functions

Every elliptic curve E over the complex numbers C corresponds to a complex torus
C/Lτ with Lτ = Zτ+Z and τ ∈ H, the upper half plane, where C/Lτ is isomorphic
to the complex torus of complex points E(C) on E . In the first section we show easily
that C/Lτ and C/Lτ ′ are isomorphic if and only if there exists(

a b
c d

)
∈ SL2(Z)

with

τ ′ = aτ + b

cτ + d
.

Then for this action of SL2(Z) on H we see that SL2(Z) \ H can be identified with
isomorphism classes of elliptic curves over C. Such a space is called a moduli space
for elliptic curves, and this and related moduli spaces, called modular curves, are
considered in §2. These modular curves are closely related to the existence of torsion
points on elliptic curves over Q.

Modular functions are functions on the upper half plane H satisfying certain
transformations laws under the action of SL2(Z). They include j (τ ), g2(τ ), g3(τ ),
and (τ) considered in 9(4.8), 10(1.4), and 10(1.8).

§1. Isomorphism and Isogeny Classification of Complex Tori

(1.1) Remark. Let

(
a b

c d

)
be a 2 by 2 real matrix and z a complex number. The

imaginary part of the transform is given by

Im
(

az + b

cz + d

)
= (ad − bc)Im(z)

|cz + d|2 .
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In particular, the group GL+
2 (R) of all real nonsingular

(
a b

c d

)
with ad − bc > 0

acts on the upper half plane H. By restriction any subgroup of GL+
2 (R) also acts on

H. We will be especially interested in the cases of SL2(Z) and GL+
2 (Q).

Recall from 9(1.3) and 9(1.4) the definition of isomorphism and isogeny. This
leads to an equivalence relation.

(1.2) Definition. Two complex tori T = C/L and T ′ = C/L ′ are isomorphic (resp.
isogenous) provided there exists an isomorphism (resp. isogeny) λ : T → T ′ in-
duced by multiplication λ : C → C for λ ∈ C with λL = L ′ (resp. λL ⊂ L ′).

(1.3) Remark. For an isogeny λ : T → T ′ with λL ⊂ L ′ the index N= [L ′ : λL] is
finite and (N/λ)L ′ ⊂ L defines an isogeny N/λ : T ′ → T showing that the isogeny
relation is reflexive.

(1.4) Theorem. For τ, τ ′ in the upper half plane H we have:

(1) The tori Tτ and Tτ ′ are isomorphic if and only if there exists s ∈ SL2(Z) with
s(τ ) = τ ′.

(2) The tori Tτ and Tτ ′ are isogenous if and only if there exists s ∈ GL+
2 (Q) with

s(τ ) = τ ′.
Proof. For an isomorphism we need a complex number λwith λLτ ′ = Lτ and for an

isogeny we need a λ with λLτ ′ ⊂ Lτ . Then there exists an integral matrix

(
a b

c d

)
with λτ ′ = aτ+b and λ = cτ+d , and by division we obtain τ ′ = (aτ+b)/(cτ+d).
Since τ, τ ′ are in the upper half plane,

ad − bc = det

(
a b

c d

)
> 0,

and further

det

(
a b

c d

)
= 1

if and only if λLτ ′ = Lτ .
Conversely, the relation can be written, after clearing denominators in the entries

of s if necessary, as

τ ′ = aτ + b

cτ + d
,

where a, b, c, and d are integers. Let λ = cτ + d so that λτ ′ = aτ + b. Then
λLτ ′ ⊂ Lτ with λLτ ′ = Lτ if and only if

det

(
a b

c d

)
= 1.

This completes the proof of the theorem.
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(1.5) Remark. From 9(4.8) we know that j (L) = j (λL), and denoting again
j (τ ) = j (Lτ ), we have

j (τ ) = j

(
aτ + b

cτ + d

)
for all

(
a b

c d

)
∈ SL2(Z)

in view of 1.4. In 10(1.8) we have an expansion of the function j (τ ) in terms of

q = e2π iτ since j (τ ) = j (τ + 1) = j

((
1 1

0 1

)
τ

)
.

Now we return to 3(4.2) where the isomorphism of an elliptic curve were de-
termined and make explicit these isomorphisms in terms of the complex torus
Tτ = C/Lτ .

(1.6) Remark. There are two special values of j (E) where Aut(E) is larger than
(±1):

(1) j (E) = 123. In this case Aut(E) = {±1,±i}. This is the case where τ = i ,
g3(i) = 0, E(C) is isomorphic to C/Zi +Z, and y2 = 4x3 − g2(i)x is the cubic
equation for E .

(2) j (E) = 0. In this case Aut(E) = {±1,±ρ,±ρ2}, the group of sixth roots of
unity where ρ2 + ρ + 1 = 0. This is the case where τ = ρ, g2(ρ) = 0, E(C) is
isomorphic to C/Zρ + Z, and y2 = 4x3 − g3(ρ) is the cubic equation for E .

These cases play a special role in the next two sections.

(1.7) Summary Remarks. For two values τ and τ ′ in the upper half plane the fol-
lowing are equivalent:

(1) There exists s in SL2(Z) with s(τ ) = τ ′.
(2) The tori Tτ and Tτ ′ are isomorphic.
(3) j (τ ) = j (τ ′).

§2. Families of Elliptic Curves with Additional Structures
In (1.4) we saw that every elliptic curve E over C viewed as a complex torus is
isomorphic to Tτ = C/Lτ where Lτ is the lattice Zτ ⊕ Z, and, further, Tτ and Tτ ′
are isomorphic if and only if s(τ ) = τ ′ for some s ∈ SL2(Z). Therefore, the points
of the quotient SL2(Z) \ H parametrize the isomorphism classes of elliptic curves.
In a situation like this, it is natural to try and define a family p : X → B of elliptic
curves over B = SL2(Z) \ H where for each b = τ (mod SL2(Z)) ∈ B, the fibre
p−1(b) is an elliptic curve isomorphic to E(τ ). The natural place to start is with the
family q : Y → H where q−1(τ ) is E(τ ). This family is the quotient of H×C → H
by the relation: (τ, z) and (τ ′, z′) are equivalent if and only if τ = τ ′ and z−z′ ∈ Lτ .
Clearly q−1(τ ) = {τ } × (C/Lτ ) is isomorphic to E(τ )(C). But if we try to identify
further (τ, z) and (τ ′, z′) where s(τ ) = τ ′ for s ∈ SL2(Z) so as to obtain the desired
family over B, we run into difficulty relating z and z′ because there is not a unique
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isomorphism E(τ ) → E(τ ′). In fact, the number of isomorphisms E(τ ) → E(τ ′)
is usually two but can be four or six.

This leads us to consider elliptic curves together with an additional structure.
When the identity is the only automorphism, we will be able to construct a fam-
ily over a quotient of H such that each isomorphism class appears exactly once in
the family. We say then that the additional structure rigidifies the elliptic curve (or
complex torus).

(2.1) Additional Structures. For an integer N ≥ 1 and an elliptic curve E = C/L ,
the subgroup N E of points x ∈ E with N x = 0 is given by

N E(C) = ker
(

E
N→ E

)
=
(

1

N
L

)
/L ⊂ C/L .

This group N E is isomorphic to (Z/NZ)2. In fact, we can remark that this holds
over any field of characteristic prime to N . This leads to three kinds of additional
structures on E :

(1) A cyclic subgroup C of order N in E . An isomorphism u : (E,C) → (E ′,C ′)
is an isomorphism of elliptice curves u : E → E ′ such that for the cyclic
subgroups u(C) = C ′.

(2) A point P of order N on E . An isomorphism u : (E, P) → (E ′, P ′) is an
isomorphism of elliptic curves u : E → E ′ such that u(P) = P ′ for the points
of order N .

(3) A basis (P, Q) of N E as a Z/NZ module. An isomorphism u : (E, P, Q) →
(E ′, P ′, Q′) is an isomorphism of elliptic curves u : E → E ′ such that u(P) =
P ′ and u(Q) = Q′ for the basis elements.

(2.2) Examples. For the elliptic curve E(τ ) = C/Lτ , where Lτ = Zτ⊕Z, consider
the special examples:

(1) The set C(τ ) = (Zτ + (1/N )Z)(Zτ +Z) ⊂ C/Lτ = E(τ ) is a cyclic subgroup
of order N equal to the image of {0, 1/N , 2/N , . . . , (N − 1)/N } along the real
axis into C/Lτ .

(2) The point P(τ ) = (1/N ) mod Lτ ∈ C/Lτ = E(τ ) is of order N . Moreover,
the point P(τ ) generates the cyclic group C(τ ).

(3) The points P(τ ) = (1/N ) mod Lτ , Q(τ ) = (τ/N ) mod Lτ is a basis for the
subgroup N E(τ ).

In order to compare (E(τ ),C(τ )), (E(τ ), P(τ )), and (E(τ ), P(τ ), Q(τ )) for
different values of τ in the upper half plane, we will use the following congruence
subgroups of SL2(Z) introduced by Hecke.

(2.3) Definition. For an integer N ≥ 1 the subgroups �(N ) ⊂ �1(N ) ⊂ �0(N ) ⊂
SL2(Z) are defined by the following congruences on entries of an element(

a b

c d

)
∈ SL2(Z) :
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(1)

(
a b

c d

)
∈ �0(N ) if and only if c ≡ 0 (mod N ).

(2)

(
a b

c d

)
∈ �1(N ) if and only if c ≡ 0 (mod N ) and a ≡ d ≡ 1 (mod N ).

(3)

(
a b

c d

)
∈ �(N ) if and only if b ≡ c ≡ 0 (mod N ) and a ≡ d ≡ 1 (mod N ).

The subgroup �(N ) is called the full congruence subgroup of level N and �0(N ) the
“Nebentypus” congruence subgroup of level N .

The canonical group morphism SL2(Z) → SL2(Z/NZ) induced by Z →
Z/NZ, reduction mod N , has kernel equal to �(N ). The subgroup �0(N ) is the in-

verse image of the subgroup of matrices of the form

(∗ ∗
0 ∗

)
in SL2(Z/NZ) under

the canonical reduction morphism, and �1(N ) is the inverse image of the subgroup

of matrices of the form

(
1 ∗
0 1

)
in SL2(Z/NZ). In the next section we take up the

question of the calculation of the indices of these subgroups in SL2(Z) and will use
these remarks at that time.

(2.4) Theorem. We use the notations of (2.2) for the subgroup C(τ ) and the points
P(τ ) and Q(τ ) of the elliptic curve E(τ ).

(1) Let (E,C) be an elliptic curve E over C and C a cyclic subgroup of order N.
There exists an isomorphism u : (E,C) → (E(τ ),C(τ )) for some τ in the
upper half plane. There is an isomorphism u : (E(τ ),C(τ )) → (E(τ ′),C(τ ′))
for τ, τ ′ ∈ H if and only if there exists s ∈ �0(N ) such that s(τ ) = τ ′.

(2) Let (E, P) be an elliptic curve E over C and P a point of order N on E. There
exists an isomorphism u : (E, P) → (E(τ ), P(τ )) for some τ in the upper
half plane. There is an isomorphism u : (E(τ ), P(τ )) → (E(τ ′), P(τ ′)) for
τ, τ ′ ∈ H if and only if there exists s ∈ �1(N ) such that s(τ ) = τ ′.

(3) Let (E, P, Q) be an elliptic curve E over C and (P, Q) a basis of N E. There
exists an isomorphism u : (E, P, Q) → (E(τ ), P(τ ), Q(τ )) for some τ in
the upper half plane. There is an isomorphism u : (E(τ ), P(τ ), Q(τ )) →
(E(τ ′), P(τ ′), Q(τ ′)) for τ, τ ′ ∈ H if and only if there exists s ∈ �(N ) such
that s(τ ) = τ ′.

Proof. For an elliptic curve E = C/L we can choose a basis of the lattice L =
Zω1 + Zω2 such that C = (Zω1 + Zω2/N )/L for case (1). P = ω2/N (mod L)
for case (2), and P = ω2/N (mod L) and Q = ω1/N (mod L) for case (3). If u is
multiplication by ω−1

2 and τ = ω1/ω2, then u : E → E(τ ) defines an isomorphism
u : (E,C) → (E(τ ),C(τ )) for case (1), u : (E, P) → (E(τ ), P(τ )) for case (2),
and u : (E, P, Q)→ (E(τ ), P(τ ), Q(τ )) for case (3).

For the second part of each of the assertions (1), (2), and (3) we know by 9(1.3)
that there is an isomorphism u : E(τ ) → E(τ ′) if and only if u−1τ ′ = aτ + b · 1
and u−11 = cτ + d · 1 where (

a b

c d

)
∈ SL2(Z).
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This is just the condition u−1 = Lτ ′ = Lτ . For assertion (1) observe that uC = C ′
if and only if for u−1(1/N ) = (c/N )τ + d/N the difference

u−1(1/N )− d/N = (c/N )τ ∈ Lτ , i.e., c ≡ 0 (mod N ).

For assertion (2) observe that u P(τ ) = P(τ ′) if and only if c ≡ 0 (mod N ) and
d ≡ 1 (mod N ). Further, these two conditions imply a ≡ 1 (mod N ) for a matrix in
SL2(Z). For assertion (3) consider also u−1(τ/N ) = (a/N )τ+b/N , and we deduce
that u P(τ ) = P(τ ′) and uQ(τ ) = Q(τ ′) if and only if a ≡ d ≡ 1 (mod N ) and
b ≡ c ≡ 0 (mod N ). This proves the theorem.

Since an automorphism u : E → E with u �= ±1 is either u = ±i for E isomor-
phic to E(i) or u = ±ρ,±ρ2 for E isomorphic to E(ρ), we deduce immediately
the following proposition and see how elliptic curves are rigidified with these extra
structures.

(2.5) Proposition. For N ≥ 2 we have:

(1) Aut(E,C) = {±1} for all N ≥ 2 and Aut(E, P) = Aut(E, P, Q) = {±1} for
N = 2.

(2) Aut(E, P) = Aut(E, P, Q) = {1} for N ≥ 3.

In the cases where the automorphism group reduces to the identity, the construc-
tion mentioned at the end of the first paragraph works. In fact, when all automor-
phism groups reduce to {±1} the construction goes through on a twofold covering of
the base space. We carry this out after introducing the open modular curves.

(2.6) Definition. The affine modular curves are orbit spaces defined as the following
quotients of the upper half plane

Y0(N ) = �(N ) \ H, Y1(N ) = �1(N ) \ H, Y (N ) = �(N ) \ H.

Since we have the subgroup relations �(N ) ⊂ �1(N ) ⊂ �0(N ) ⊂ SL2(Z), we
have natural mappings of quotient Riemann surfaces

Y (N )→ Y1(N )→ Y0(N )→ SL2(Z) \ H.

(2.7) Universal Family of Elliptic Curves with a Point of Order N > 2.
Let Ȳ1(N ) denote the quotient of the subset of (τ, z, p) ∈ H×C×C, where P(τ ) =
p (mod Lτ ) is of order N , by the equivalence relation:

(τ, z, p) and (τ ′, z′, p′) are equivalent if and only if s(τ ) = τ ′ for s ∈ �1(N )

and

uz (mod Lτ ) = z′ (mod Lτ )

where

u : (E(τ ), P(τ ))→ (E(τ ′), P(τ ′)) is the unique isomorphism.
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The projection (τ, z, p) → τ induces a projection π : Ȳ1(N ) → Y1(N ) where
the fibre π−1 (τ mod �1(N )) = (E(τ ), P(τ )). For each elliptic curve (E, P) with a
point P of order N , there is a unique fibre π−1 (τ mod �1(N )) isomorphic to (E, P).
The family π is in this sense the universal family of elliptic curves together with a
point of order N .

(2.8) Universal Family of Elliptic Curves with a Basis of the N -Division Points
for N > 2. Let Ȳ (N ) denote the quotient of the subset of (τ, z, p, q) ∈ H × C ×
C×C, where p mod L = P(τ ) and q mod L = Q(τ ) form a basis of the N -division
points, by the equivalence relation:

(τ, z, p, q) and (τ ′, z′, p′, q ′) are equivalent if and only if s(τ ) = τ ′ for s ∈ �(N )
and

uz (mod Lτ ) = z′ (mod Lτ ′ )

where

u : (E(τ ), P(τ ), Q(τ ))→ (E(τ ′), P(τ ′), Q(τ ′)) is the unique isomorphism.

The projection (τ, z, p, q) → τ induces a projection π : Ȳ (N ) → Y (N ) where the
fibre π−1 (τ mod �(N )) = (E(τ ), P(τ ), Q(τ )). For each elliptic curve (E, P, Q)
with a basis (P, Q) of the N -division points, there is a unique fibre π−1 (τ mod
�(N )) isomorphic to (E, P, Q). The family π : Ȳ (N )→ Y (N ) is, in this sense, the
universal family of elliptic curves together with a basis of the N -division points.

§3. The Modular Curves X(N), X1(N), and X0(N)
In this section we will see that we can systematically add a finite set of points to
the open modular curves Y (N ), Y1(N ), and Y0(N ) to obtain complete curves. In the
language of Riemann surfaces these completed Riemann surfaces are compact. The
new points added are called cusps and are special points on the completed curves.

This completion process for the complex plane C is achieved by adding one
point at ∞ to obtain C ∪ {∞} = P1(C), the Riemann sphere. The group GL2(C)

acts naturally on the Riemann sphere by fractional linear transformations(
a b

c d

)
(z) = az + b

cz + d
.

and, in fact, the quotient GL2(C)/C
∗ is the full automorphism group of P1(C) as a

Riemann surface.

(3.1) Remarks. The j-function j : H → C where j (τ ) is the j-value of the elliptic
curve with complex points C/Lτ induces functions on certain quotients of H. Let

� ⊂ SL2(Z) denote the subgroup ±
(

1 b

0 1

)
, that is, the subgroup of elements with

c = 0. The horizontal maps in the following diagram are quotient maps:
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H −→ � \ H −→ SL2(Z) \ H

C

In this case � \ H
q→ U0, the set of all q in C with 0 < |q| < 1 where q(τ ) = e2π iτ .

Then j (q) has a first-order pole at 0, and hence it extends to the unit disc U → P1(C).
This completion of � \ H from A0 to A induces a completion of the modular curve
SL2(Z) \ H.

(3.2) Assertion/Definition. There is a unique topology on H∗ = H ∪ P1(Q) such
that the action of SL2(Z) is continuous, H is an open subset of H∗, and the neigh-
borhoods of ∞ are supersets of sets consisting of ∞ together with all τ ∈ H with
Im(τ ) > t for some t . This topology is called the horocycle topology and the quo-
tient space SL2(Z) \ H∗ is the Riemann sphere as a space. The SL2(Z) action on
P1(Q) is the restriction from P1(C).

Just as we completed C to the Riemann sphere, we can now complete open mod-
ular curves Y0(N ), Y1(N ), and Y (N ).

(3.3) Definition. The modular curves as spaces are defined to be quotients of H∗
with the horocycle topology

X0(N ) = �0(N ) \ H∗, X1(N ) = �1(N ) \ H∗, X (N ) = �(N ) \ H∗.

The natural mappings

X (N )→ X1(N )→ X0(N )→ SL2(Z) \ H∗ = P1(C)

exhibit the modular curves as ramified coverings and define a unique structure as a
compact Riemann surface on each curve. The points �0(N ) \ P1(Q) = X0(N ) −
Y0(N ), �1(N ) \ P1(Q) = X1(N ) − Y1(N ), and �(N ) \ P1(Q) = X (N ) − Y (N )
are called the cusps of the respective modular curve. For more details, see Shimura’s
book [1971], Chapter 1, §(1.1), (1.3).

Since the ramification of H∗ → P1(C) = X (1) is all over the points with j-
values ∞, 123, and 0 corresponding to the orbits P1(Q),SL2(Z)i , and SL2(Z)ρ,
the ramification of any of the maps or their composites X (N ) → X1(N ) →
X0(N ) → X (1) is over ∞, 123, and 0. If we can calculate the number of sheets
of these coverings and the ramification numbers, then the Riemann–Hurwitz re-
lation will give the Euler number and genus of the modular curves. The number
of sheets of the coverings is given by the index of the various modular groups in
PSL2(Z) = SL2(Z)/{±I }.
(3.4) Proposition. The homomorphism SL2(Z)→ SL2(Z/NZ) induced by reduction
mod N of the coefficients of matrices is surjective.
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Proof. We begin with an assertion: if c, d, and N are integers without a common
prime factor, then there exists an integer k with c and d + Nk relatively prime, i.e.,
(c, d + Nk) = 1.

To prove the assertion, we write c = c′c′′ where (c′, N ) = 1, (c′, c′′) = 1, and
if p divides c′′, then p divides N . There are integers u and v with 1 = uc′ + vN ,
so that 1 − d = (1 − d)uc′ + (1 − d)vN , or 1 = [(1 − d)u]c′ + (d + k N ) where
k = (1 − d)v. This means that (c′, d + Nk) = 1 and finally (c, d + Nk) = 1 since
if p divides c′′, then p divides n and p does not divide d + Nk where (c, d, N ) = 1.

Now given (
ā b̄

c̄ d̄

)
∈ SL2(Z/NZ)

we can lift c̄ and d̄ to integers c and d such that (c, d, N ) = 1 from the determinant
condition mod N . By the above assertion we can replace d by d + Nk such that
(c, d) = 1 where (c, d) reduces to (c̄, d̄). Now lift ā and b̄ to a and b and look for
a + uN and b + vN such that

det

(
a + uN b + vN

c d

)
= 1,

i.e., ud − vc = (1 − ad + bc)/N which is an integer. Since (c, d) = 1, there is a
solution u, v and we change a to a + Nu and b to b + Nv to obtain a matrix(

a b

c d

)
∈ SL2(Z)

projecting to the given matrix SL2(Z/NZ). This proves the proposition.
From the previous proposition we see that the indices

(�(1) : �(N )) = # SL2(Z/NZ), (�0(N ) : �(N )) = # B2(Z/NZ),

and (�1(N ) : �(N )) = # B ′
2(Z/NZ), where B2 and B ′

2 are, respectively, the sub-

groups of elements of the form

(∗ ∗
0 ∗

)
and

(
1 ∗
0 1

)
in SL2. For (N ′, N ′′) = 1

the isomorphism Z/N ′N ′′Z → Z/N ′Z ⊕ Z/N ′′Z given by the Chinese remainder
theorem induces an isomorphism

SL2(Z/N ′N ′′Z)→ SL2(Z/N ′Z)⊕ SL2(Z/N ′′Z)

which restricts to a corresponding isomorphism for the subgroups B2 and B ′
2.

Hence the three indices are multiplicative for relatively prime values of N . This
reduces calculations to prime powers N = pa . Since the number of bases in F2

q is

(q2 − 1)(q2 − q) and is also # GL2(Fq), it follows that # SL2(Fq) = q(q2 − 1),
# B2(Fq) = q(q − 1), and # B ′

2(Fq) = q . Since I + pM2(Z/paZ) is the kernel of
the morphism GL2(Z/paZ)→ GL2(Z/pZ) under reduction Z/paZ → Z/pZ, we
deduce that # ker(SL2(Z/paZ) → SL2(Z/pZ)) = (pa−1)3, # ker(B2(Z/paZ) →
B2(Z/pZ)) = (pa−1)2, and also # ker(B ′

2(Z/paZ) → (B ′
2(Z/pZ)) = pa−1. Now

we can summarize the above calculations with the following formulas for indices
between related modular groups.
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(3.5) Proposition. For the modular groups �(N ) ⊂ �1(N ) ⊂ �0(N ) all contained
in �(1) = SL2(Z), we have:

(1) (�(1) : �(N )) = N 3 ∏
p|N (1 − 1/p2),

(2) (�(1) : �1(N )) = N 2 ∏
p|N (1 − 1/p2),

(3) (�(1) : �0(N )) = N
∏

p|N (1 + 1/p),

Note that ±I is the only part of �(1) acting as the identity on the upper half plane.
With this small modification we can calculate the order of the coverings arising with
modular curves from this previous proposition.

(3.6) Proposition. For the ramified coverings of modular curves X (N )→ X1(N )→
X0(N )→ P1(C) = X (1) the indices of the coverings are given by the following for-
mulas:

(1) [X (N ) : X (1)] =

⎧⎪⎨⎪⎩
6 for N = 2,

1

2
N 3

∏
p|N
(1 − 1/p2) for N > 2,

(2) [X1(N ) : X (1)] =

⎧⎪⎨⎪⎩
3 for N = 2,

1

2
N 2

∏
p|N
(1 − 1/p2) for N > 2,

(3) [X0(N ) : X (1)] =

⎧⎪⎪⎨⎪⎪⎩
3 for N = 2,

N
∏
p|N
(1 + 1/p) for N > 2.

Finally we use the calculation of the order of coverings to show how to calculate
the genus g(X) of the Euler number e(X) of a modular curve X , where e(X) =
2 − 2g(X). For a ramified covering of compact Riemann surfaces with m sheets
p : X → Y with m sheets and ramification numbers ex for x ∈ X . This means that
locally p maps x to p(x) in Y and in local coordinates p(z) = zex . Except for a
finite number of x we know that ex = 1. Using a triangulation of Y with vertices at
ramification points of Y , one can lift the triangulation to X and deduce rather quickly
the following relation.

(3.7) Hurwitz’s Relation. For a ramified covering p : X → Y of compact Riemann
surfaces with m sheets the Euler numbers of X and Y are related by e(X) = me(Y )−∑

x∈X (ex − 1). In the case where ex is independent of the x with p(x) = y it is
denoted ey , and the relation takes the following form:

e(X) = m

(
e(Y )−

∑
y∈Y

(
1 − 1

ey

))
.

The Euler number e(X) = 2 − 2g(X) where g(X) is the genus of X .
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For the three types of modular curves X → S2 = P1(C) = Y we have e(S2) = 2
and all the ramification is over the three points ∞ = j (∞), 0 = j (ρ), and 123 =
j (i). There is a major difference between the ramified coverings X (N )→ X (1) and
either X1(N ) → X (1) or X0(N ) → X (1). For in the first case all x projecting to a
given y in X (1) has the same ex value ey while this is not the case for the other two
coverings. For X (N ) → X (1) the ramification indices are e0 = 3, e1728 = 2, and
e∞ = N , and therefore we obtain, using the Hurwitz relation,

e(X (N )) = [X (N ) : X (1)]

(
2 −

(
1 − 1

e0

)
−
(

1 − 1

e1728

)(
1 − 1

e∞

))
= [X (N ) : X (1)]

(
1

3
+ 1

2
+ 1

N
− 1

)
= [X (N ) : X (1)]

(
1

N
− 1

6

)
.

This leads to the following proposition.

(3.8) Proposition. The genus of X (N ) is given by the following formula

g(X (N )) = 1 + [X (N ) : X (1)]

(
N − 6

12N

)
.

The corresponding results for X0(N ) and X1(N ) are more difficult, and we just
quote the results, referring the reader to the related literature, see Ogg [1969] and
Shimura [1971].

(3.9) Assertion. The genus of the curves X1(N ) and X0(N ) is given in the follow-
ing formulas:

g(X1(N )) = 1 + [X1(N ) : X (1)] − 1

2
σ ∗(N ),

where

σ ∗(N ) =

⎧⎪⎨⎪⎩
1

2

∑
d|n
ϕ(d)ϕ(N/d) for N > 4,

3 for N = 4.

g(X0(N )) = 1 + [X0(N ) : X (1)] − 1

2
σ(N )− 1

4
µ1728(N )− 1

3
µ0(N ),

σ (N ) =
∑
d|n
ϕ(d)ϕ(N/d),

µ1728(N ) =
{

0 for 4 | N ,∏
p|N (1 + (−4/p)) otherwise

µ0(N ) =

⎧⎪⎨⎪⎩
0 for 2 | N or 9 | N ,∏
p|N
(1 + (−3/p)) otherwise.
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§4. Modular Functions
The subject of modular functions is treated in the book by Koblitz, Chapter III [1984]
and there is an excellent introduction in the book by Serre, Chapter 7 [1977]. We will
just give an introduction to show the relation with functions that have already arisen
in the theory of elliptic curves.

Modular functions are holomorphic functions on the upper half plane H which
have certain periodic properties under the substitution

z → az + b

cz + d
for

(
a b

c d

)
contained in a certain subgroup of SL2(Z).

As with elliptic functions and theta functions this invariance condition will include
a periodicity under translation z to z + N . This leads to a replacing of the variable
in the upper half plane with an exponential q as in the first section of the previous
chapter.

(4.1) Remark. If f (z) is a holomorphic function on the upper half plane H (resp. the
complex plane C) satisfying the periodicity relation f (z) = f (z + N ) for N positive
real, then f (z) = f ∗(qN ), where qN = exp(2π i z/N ) and f ∗(q) is holomorphic for
0 < |q| < 1 (resp. q �= 0). For a periodic f (z) = f (z + N ) holomorphic on H, we
will speak of its behavior at ∞ in terms of the behavior of f ∗ at 0.

The function f ∗(q) has a Laurent or Fourier expansion

f ∗(q) =
∑
n∈Z

cnqn .

(4.2) Definition. A holomorphic function f (z), which is periodic f (z) = f (z + N )
is meromorphic at ∞ provided it has a pole at ∞, that is, cN = 0 for n < n0 and
is holomorphic at ∞ provided cn = 0 for n < 0. In this case the value f (∞) =
f ∗(0) = c0.

(4.3) Definition. A modular function f (z) for the group SL2(Z) of weight m is a
meromorphic function on the upper half plane H satisfying

f

(
az + b

cz + d

)
= (cz + d)m f (z) for all

(
a b

c d

)
∈ SL2(Z),

and f (z) is meromorphic at ∞. A modular form is a modular function which is
holomorphic on H and at ∞, and it is a cusp form provided f (∞) = 0 also.

(4.4) Examples. The Eisenstein series (2k ≥ 4)

G2k(z) =
∑

(m,n)�=(0,0)

1

(mz + n)2k

satisfying the relation
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G2k

(
az + b

cz + d

)
= (cz + d)2k

∑
(m,n)�=(0,0)

1

[(ma + nc)z + (mb + nd)]2k

= (cz + d)2k G2k(z),

and having q-expansions given in 10(1.4), are modular forms of weight 2k. Since
g2(z) = 60G4(z) has weight 4 and g3(z) = 140G6(z) has weight 6, the modular
form (z) = g2(z)3 − 27g3(z)2 has weight 12 and is a cusp form from 10(1.8). The
function

j (z) = 123 g2(z)3

(z)

is a modular function of weight zero with a simple pole at ∞.

(4.5) Remarks. Since

(−1 0

0 − 1

)
is in SL2(Z) and

f (z) = f

(−z + 0

0 − 1

)
= (−1)k f (z),

we have modular forms only for even weight. In the first section, Chapter 7 of Serre

[1977] it is proven that the two elements

(
1 1

0 1

)
and

(
0 1

−1 0

)
generate SL2(Z).

Thus a holomorphic function f (z) on the upper half plane is a modular form of
weight 2k if and only if f (z) = f (z + 1), f (−1/z) = z2k f (z), and f (z) is holo-
morphic at ∞.

(4.6) Remark. Let Mk be the complex vector space of modular forms of weight 2k.
This space has a basis consisting of Ga

4Gb
6 where 4a + 6b = 2k. This is proved by

both Serre [1977] and Koblitz [1984] using a relation between 2k and the number of
zeros of f (z) in a fundamental domain.

The following growth property of Fourier coefficients of modular forms is due to
Hecke, see Serre [1977, p. 94].

(4.7) Assertion. Let f (z) be a modular function of weight 2k having q-expansion
f (z) = ∑

n≥0 anqn . If f (z) is a cusp form, then there is a constant C such that
|an| ≤ Cnk , and if f (z) is not a cusp form, then there are constants A and B with

An2k−1 ≤ |an| ≤ B2k−1
n .

The result for Eisenstein series follows from the q-expansions given 10(1.4). For
a cusp form we have an inequality of the form | f (z)| ≤ My−k on the upper half
plane which gives the estimate. The case of a general modular form follows from the
decomposition f (z) = cG2k(z)+ f ∗(z), where f ∗(z) is a cusp form.
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The concept of a modular form for SL2(Z) generalizes to any subgroup of
SL2(Z), see §8. We will only be interested in congruence subgroups �, i.e., sub-
groups � such that for some N the inclusions �(N ) ⊂ � ⊂ SL2(Z) hold. Examples
arise naturally in the theory of theta functions, see Mumford, Chapter 1, Theorem
7.1, for a formula for θ [z/(cτ + d), (aτ + b)/(cτ + d)] in terms of θ(z, τ ) up to fac-
tors of the square root of cτ + d . The theta functions θ0,0, θ1/2,0, θ1,1/2, and θ1/2,1/2
are modular forms for �(4), see Mumford again.

(4.8) Remark. A modular function f (z) of weight zero for a congruence subgroup
� defines a meromorphic function on X (�) = �\(H∪P1(Q))which is holomorphic
on � \ H away from the cusps. A modular function f (z) of weight 2 for � has an
interpretation on X (�) as a differential since

d

(
az + b

cz + d

)
= dz

(cz + d)2
,

and hence f (z) dz is invariant by the action of the group � on H. It is the cusp forms
which extend to holomorphic differentials on the compactified space X (�). This is
seen by looking in local coordinates near the cusp, see Shimura’s book.

§5. The L-Function of a Modular Form
Recall from 9(5.1) that the gamma function is given by the integral

�(s) =
∫ ∞

0
xse−x dx

x
,

and hence we have by change of variable∫ ∞

0
yse−2πny dy

y
=
∫ ∞

0

( x

2πn

)s
e−x dx

x
= (2π)−s �(s)

ns
.

(5.1) Notations. Holomorphic functions f (z) on the upper half plane satisfying
f (z) = f (z + 1) and holomorphic at ∞ have a q-expansion f (z) = ∑

n≥0 anqn ,
where q = e2π i z . We form the Dirichlet series

L f (s) =
∑
1≤n

an

ns
.

(5.2) Remarks. If |an| ≤ Anc−1 for constants A and c, then the Dirichlet series
L f (s) converges for Re(s) > c, and the related function has an integral representa-
tion

L∗
f (s) = (2π)−2�(s)L f (s) =

∫ ∞

0
ys( f (iy)− a0)

dy

y

for Re(s) > c. This arises by multiplying the r -integral by an and summing up.
The bijection between functions f (z) as in (5.1) and certain Dirichlet series L f

or L∗
f is elementary, but Hecke went further and showed how the modular form
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symmetry condition f (−1/z) = z2k f (z) corresponds to a functional equation for
L∗

f . This arises by dividing the line of integration in two parts and applying the

relation f (i/y) = (−1)k y2k f (iy) where Re(s) > 2k.

L∗
f (s) =

∫ ∞

1
t s( f (i t)− a0)

dt

t
+
∫ 1

0
t s( f (i t)− a0)

dt

t

=
∫ ∞

1
t s( f (i t)− a0)

dt

t
+
∫ ∞

1
t−s

(
f (

(
i

t

)
− a0

)
dt

t

=
∫ ∞

1
(t s + (−1)k t2k−s)( f (i t)− a0)

dt

t

− a0

∫ ∞

1
t−s dt

t
+ a0(−1)k

∫ ∞

1
t2k−s dt

t
.

We have used the convergence of
∫∞

1 t−s(dt/t) = 1/s for Re(s) > 0. We deduce
the formula

L∗
f (s) =

∫ ∞

1
(t s + (−1)k t2k−s)( f (i t)− a0)

dt

t
− a0

s
− (−1)ka0

2k − s

which holds for Re(s) > 2k.

(5.3) Theorem (Hecke). For a modular form f (z) of weight 2k the L-function
L∗

f (s) extends to meromorphic function on the entire plane C satisfying the func-
tional equation

L∗
f (2k − s) = (−1)k L∗

f (s)

and having poles only at most at s = 0 and s = 2k with residues −a0 and −(−1)ka0,
respectively.

Proof. The verification of all assertions follow directly from the above formula pre-
ceding the theorem. Observe that the integrals converge for all values of s from the
exponential decay of the terms in f (i t)− a0 = ∑

n≥1 ane−2πnt .

(5.4) Remark. There is a converse theorem which says that if f (z) as in (5.1) has an
L-function satisfying the conclusions of 5.3 for related twisted L-functions together
with a certain growth condition, then f (z) is a modular form.

Unfortunately, the most interesting L-functions for the theory of elliptic curves
do not come from modular functions over SL2(Z) but from modular functions of

weight 2 over �0(N ). The above analysis does not apply directly because

(
0 1

−1 0

)
is not in �0(N ). For X0(N ) and the group �0(N )we do have an important substitute.

(5.5) Remark. Conjugation by

(
0 1

−N 0

)
is seen to carry �0(N ) to itself and in-

duces a map wN : X0(N ) → X0(N ) preserving the cusps and Y0(N ). It is an
involution, i.e., w2

N = I . In terms of the description in (2.4) of points of Y0(N ) the
involution wN carries the pair of an elliptic curve E and cyclic subgroup C on order
N to the pair (E/C, N E/C).
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(5.6) Remark. On the space of modular forms M2k(N ) of weight 2k for the group
�0(N ) we have an operator WN given by

WN ( f )(z) = N−k z−2k f

(
− 1

N z

)
with W 2

N = I . Hence there is a corresponding ± eigenspace decomposition

M2k(N ) = M2k(N )
+ ⊕ M2k(N )

−.

For eigenfunctions of WN in M2k(N ) we define an L-function with the Mellin trans-
form and a power of N as follows:

L∗
f (s) = (2π)−s�(s)N s/2L f (s)

=
∫ ∞

0
N s/2t s( f (i t)− a0)

dt

t
.

By dividing the path of integration at 1/
√

N , we prove, using an argument similar to
the one in (5.3), the following extension of (5.3) which reduces to (5.3) for N = 1.

(5.7) Theorem. For a modular form f (z) of weight 2k for �0(N ) with WN ( f ) = ε f
(ε = ±1) the L-function L∗

f (s) extends to a meromorphic function on the entire
plane C satisfying the functional equation

L∗
f (2k − s) = ε(−1)k L∗

f (S)

and having poles only at most at s = 0 and s = 2k with residues multiples of a0.

(5.8) Remark. For applications to elliptic curves it is weight 2 modular forms which
play a basic role, and by (4.8) these forms f (z) which are cuspidal correspond to
holomorphic differentials f (z)dz on X0(N ). For WN ( f ) = ε f the L-function satis-
fies

L∗
f (2 − s) = −εL∗

f (s).

§6. Elementary Properties of Euler Products
This section is designed to give background material on Dirichlet series which have
product decompositions generalizing the classical Euler product of ζ(s), the Rie-
mann zeta function ∏

p

1

1 − p−s
= ζ(s) =

∑
1≤n

1

ns
.
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(6.1) Definition. An Euler product of degree n is a formal Dirichlet series of the
form ∑

1≤n

an

ns
=
∏

p

1

Pp(ps)
,

where Pp(T ) ∈ 1 + T C[T ] is a polynomial of degree ≤ n, defined for each rational
prime number p. The coefficients an are complex numbers.

When we speak of an Euler product of degree n, it is usually the case that all
but a finite number of Pp(T ) have degree exactly n. In the case of the Riemann zeta
function Pp(T ) = 1 + T for all primes p. We will be primarily interested in linear
and quadratic Euler products, that is, those of degree 1 and 2.

(6.2) Remark. Euler products are defined to be indexed by rational primes p. These
include products indexed by the places v of a number field F in the following sense.
For polynomials Qv(T ) ∈ 1 + T C[T ] of degree ≤ m we can form∏

v

1

Qv(q
−s
v )

,

where qv is the number of elements in the residue class field at v. By defining the
polynomial Pp(T ) = ∏

p|v Qv(T n(v)) where qv = pn(v), we see that this product
decomposition can be rearranged into an Euler product∏

v

1

Qv(q
−s
v )

=
∏

p

1

Pp(p−s)

as formal Dirichlet series. The degree of the polynomials Pp(T ) is at most m[F : Q].
These products defined by polynomials Qv(T ) could be called Euler products over
the number field F , and the above discussion together with elementary decomposi-
tion properties of primes in number fields shows that an Euler product of degree m
over F can be assembled into an Euler product of degree m[F : Q] (over Q).

Now we consider convergence properties of Euler products. By analogy with the
classical case, we expect a convergence assertion in some right half plane.

(6.3) Remark. If the coefficients an satisfy |an| ≤ cnb, then the Dirichlet series∑
1≤n(an/ns) converges absolutely in the right half plane Re(s) > 1 + b. This is

essentially Proposition 8 in Chapter 6 of J.-P. Serre, Course in Arithmetic. In fact,
§§2 and 3 of this chapter in Serre’s book give a general background for this section
on Euler products.

In the case of a linear Euler product∏
p

1

1 − ap p−s
=
∑
1≤n

an

ns
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there is a formula for the nth coefficient an in terms of the prime factorization n =
p(1)m(1) · · · p(r)m(r) of n, namely

an = am(1)
p(1) · · · am(r)

p(r) .

Hence, if each |ap| ≤ pb for all primes where b is a real number, then |an| ≤ nb and
the previous remark applies, that is, we have absolute convergence of the Dirichlet
series and the Euler product expansion is the half plane Re(s) > 1 + b.

A convergence assertion for Euler products of degree n can be formulated in
terms of the factorization into linear factors

Pp(T ) = (1 − αp(1)T ) · · · (1 − αp(n)T )

with each αp( j) equal to either the reciprocal of a root of Pp(T ) or to 0 which
happens in the case when deg Pp(T ) < n.

(6.4) Proposition. An Euler product of degree n∏
p

1

Pp(p−s)

converges absolutely forRe(s) > 1+b if the absolute values of each of the reciprocal
roots in bounded |αp( j)| ≤ pb where

Pp(T ) = (1 − αp(1)T ) . . . (1 − αp(n)T ).

The proof results immediately by applying the above discussion for the absolute
convegrence of the linear Euler products.

(6.5) Corollary. A quadratic Euler product∏
p

1

1 − ap p−s + pc−2s

converges for Re(s) > 1 + c/2 when |ap| ≤ 2pc/2 for each p.

Proof. The inequality on the absolute values of the coefficients is equivalent to the
assertion that the roots of the quadratic polynomials are purely imaginary, and, equiv-
alently, have the same absolute value pc/2. Now the proposition applies.

(6.6) Proposition. An Euler product of degree n over a number field K of degree
[K : Q] ∏

v

1

Qv(q
−s
v )

converges absolutely forRe(s) > 1+b if the absolute values of each of the reciprocal
roots is bounded |αv( j)| ≤ qb

v where Qv(T ) = (1 − αv(1)T ) . . . (1 − αv(n)T ).
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Proof. This assertion reduces to 6.4 by using the observation that all of the terms
with q−s

v factors and qv = pm , where m = n(v), decompose

1

1 − aq−s
=

∏
αm=a

1

1 − αp−s

and the fact that the inequality |a| ≤ qb is equivalent to |α| ≤ pb.
We can ask which Dirichlet series

∑
1≤n(cn/ns) have an Euler product de-

composition. One necessary condition is that it is multiplicative in the sense that
cmn = cmcn whenever (m, n) = 1, i.e., the natural numbers are relatively prime.
Necessary and sufficient conditions are in general more difficult to formulate, but we
will do the cases of linear and quadratic Euler products.

(6.7) Remark. A Dirichlet series
∑

1≤n(cn/ns) has a linear product decomposition
if and only if it is strictly multiplicative, i.e., the relation cmcn = cmn holds for all
natural numbers m, n. This assertion was taken up when we considered the conver-
gence properties of linear Euler products.

(6.8) Remark. A Dirichlet series
∑

1≤n(cn/ns) has a quadratic Euler product de-
composition if and only if:

(1) It is multiplicative.
(2) There constants bp for each rational prime p such that

cpn+1 = cpcpn − bpcpn−1 for n ≥ 1.

In particular, c1 = cp0 = 1. Note that we are reduced to the previous example if
and only if all bp = 0. The degree 2 Euler factors are defined by the quadratic
polynomials

Pp(T ) = 1 − cpT + bpT 2.

§7. Modular Forms for �0(N), �1(N), and �(N)
The aim of this section is to organize the various relations between modular forms for
these three classes of groups, and then introduce the concept of new forms and state
some basic properties. In order to describe modular forms for subgroups of SL2(Z)

or more generally of SL2(R) we use the following notation.

(7.1) Notation. Let f be a function on the upper half plane H, and let γ =(
a b

c d

)
∈ SL2(R). We define the function f |kγ by the formula ( f |kγ )(τ ) =

(cτ + d)−k f (γ (τ )) where γ (τ) = (aτ + b)/(cτ + d).

(7.2) Definition. Let � be a subgroup of SL2(Z) containing �(N ) for some N . A
modular form (resp. cusp form) of weight k for � is a complex valued homomorphic
function on H satisfying:
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(1) For all γ ∈ � we have f |kγ = f , and
(2) The function is homomorphic at certain points of the boundary of the upper half

plane in the following sense: for all σ ∈ SL2(Z) the function f |kσ is periodic
( f |kσ)(τ ) = ( f |kσ)(τ + N ), and Fourier series ( f |kσ)(z) = ∑

n∈Z an(qN )
n

where qN = exp(2π iτ/N ) has coefficients an = 0 for n < 0 (resp. n ≤ 0).

For the groups �(N ) ⊂ �1(N ) ⊂ �0(N ) ⊂ SL2(Z) introduced in (2.3) we
denote the corresponding complex vector spaces of modular forms of weight k and
their inclusions by

Mk(�0(N )) ⊂ Mk(�1(N )) ⊂ Mk(�(N )).

and the corresponding subspaces of cusp forms of weight k by

M0
k (�0(N )) ⊂ M0

k (�1(N )) ⊂ M0
k (�(N ))

where M0
k (�) ⊂ Mk(�).

The �(N ) modular forms which are �1(N ) modular forms are characterized in
the following assertion.

(7.3) Assertion. Let f be a modular form of weight k for�(N ). Then f is a modular
form for �1(N ) if and only if f (τ ) = f (τ + 1) and the Fourier series reduces to
f (τ ) = ∑

0≤n anqn where q = q1 = e2π iτ .

This follows from the fact that �1(N ) is generated by �(N ) and the single matrix(
1 1

0 1

)
.

For the characterization of the �1(N ) modular forms which are �0(N ) modular
forms we use the following description of cosets.

(7.4) Proposition. The function ψ

(
a b

c d

)
= d (mod N ) induces a bijection ψ :

�0(N )/�1(N )→ (Z/NZ)∗.

Proof. This follows from the formula

(
a b

0 d

)(
1 x

0 1

)
=
(

a ax + b

0 d

)
where it is

clear that d (mod N ) is an invariant.

(7.5) Definition. Let G(N ) denote the multiplicative group of units (Z/NZ)∗, and
let Ĝ(N ) denote the group of Dirichlet characters mod N , that is, morphism ε :
G(N ) → C∗. A character ε is called even (resp. odd) provided ε(−1) = +1 (resp.
−1).

(7.6) Remark. The group �0(N ) acts on Mk(�1(N )) by f |kγ for γ ∈ �0(N ), and
using (7.4), we see that this depends only on ψ(γ�1(N )) = d (mod N ). We write
f |kγ = f |Rd for d (mod N ) ∈ G(N ). In particular the group G(N ) acts on the
complex vector space Mk(�1(N )). For example f |R−1 = (−1)k f .
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(7.7) Assertion. For the action of G(N ) on Mk(�1(N )) there is a Fourier decompo-
sition parametrized by the characters

Mk(�1(N )) =
⊕

ε∈Ĝ(N )

Mk(�1(N ))ε

where Mk(�1(N ))ε is the space of f ∈ Mk(�1(N )) such that f |Rd = ε(d) f for
all d ∈ G(N ). For the unit Dirichlet character ε = 1 we have Mk(�1(N ))1 =
Mk(�0(N )).

This condition for f ∈ Mk(�(N )) to be in Mk(�1(N ))ε can be formulated as
follows that f satisfies the formula

f

(
aτ + b

cτ + d

)
= ε(d)(cτ + d)k f (z) for all γ =

(
a b

c d

)
∈ �0(N ).

(7.8) Definition. The elements of Mk(�1(N ))ε for ε ∈ Ĝ(N ) are called modular
forms of type (k, ε) for �0(N ).

Every modular form f of weight k for �1(N ) has a unique sum decomposition
of modular forms fε of type (k, ε) for �0(N ).

§8. Hecke Operators: New Forms
For the role of Hecke operators in this context of modular forms for �0(N ) we rec-
ommend the treatment in Deligne and Serre [1974]. Also Serre [1977, Chapter 7] for
N = 1 and Koblitz [1982, Chapter III] for the general case.

(8.1) Definition. Let p be a prime number. For a modular form f (q) = ∑
n≥0 anqn

of type (k, ε) for �0(N ), the Hecke operator Tp has the following effect on the q-
expansion at ∞:

f |Tp =
∑

apnqn + ε(p)pk−1
∑

anq pn if p � N ,

f |Up =
∑

apnqn if p | N .

These operators preserve cusp forms. There is also the notion of “new form”
which means roughly that it does not come from a modular form for �0(N ′) with
N ′|N but N ′ < N .

Since the operators can be shown to commute with each other there is the pos-
sibility of a simultaneous eigenform for all Tp and Up. In this case we state the
following theorem.

(8.2) Theorem. Let f be a new cusp form of type (k, ε) for �0(N ) normalized so
a1 = 1, and assume that f is an eigenform for Tp and Up with corresponding
eigenvalues ap. Then the related Dirichlet series L f (s) =

∑
n≥1 ann−s has an Euler

product expansion of the form

L f (s) =
∏
p|N

1

(1 − ap p−s)
·
∏
p�N

1

(1 − ap p−s + ε(p)pk−1−2s)
.
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This leaves the broader question of whether or not there exist simultaneous eigen-
functions for infinitely many operators T (p). We sketch the argument that these func-
tions exist.

(8.3) Petersson Inner Product. This inner product is defined on M0
2k(N ) by the

integral

( f |g)2k =
∫ ∫

Y0(N )
f (z)g(z)y2k dxdy

y2
.

Each T (p) for p not dividing N is Hermitian with respect to this inner product,
and hence M0

2k(N ) has a basis of simultaneous eigenfunctions for all but a finite
number of T (p). In the case N = 1 we deduce that the entire space M0

2k(1) has
an orthonormal basis of functions which are eigenfunctions for all Hecke operators
T (p).

(8.4) Remarks. The operators T (p) or Up for which p|N are not even necessarily
normal. There is a subspace M0

2k(N )
old generated by f (N2z), where N = N1 N2

and f is a simultaneous eigenfunction for all T (p) on M0
2k(N1), where p does not

divide N1. On the orthogonal complement M0
2k(N )

pr of M0
2k(N )

old in M0
2k(N ) there

is a simultaneous basis of eigenfunctions for all T (p). For a proof of this see either
Koblitz [1984] or Li [1975]. The elements of M0

2k(N )
pr are called “new forms.”

(8.5) Definition. The orthogonal complement M0
2k(N )

pr of M0
2k(N )

old is called the
space of new forms.

§9. Modular Polynomials and the Modular Equation
In this section we consider briefly a polynomial related to families of elliptic curves.
It is the modular polynomial �N (x, y) with integral coefficients which serves in
some sense as an equation for X0(N ) as a scheme. It is symmetric in x and y, that
is, �N (x, y) = �N (y, x), of degree N

∏
p|N (1 + 1/p) = ψ(N ) = (� : �0(N )) in

each variable, for ψ(N ) = (� : �0(N )) see 11(3.5).

(9.1) Notation. We define the following sets of matrices in M2(Z) the set of two by
two integral matrices. Denote by

D(N ) the set of

(
a b

c d

)
∈ M2(Z) with ad − bc = N and g.c.d.(a, b, c, d) = 1,

and

S(N ) the set of

(
a b

0 d

)
∈ D(N ) with d > 0 and 0 ≤ b < d.

(9.2) Remark. The inclusion S(N )→ D(N ) induces a function

S(N )→ SL2(Z) \ D(N )

which is a bijection. As another exercise for the reader, check that #S(N ) =
N
∏

p|N (1 + 1/p) = ψ(N ).
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With this set S(N ) we define the modular polynomial as a norm as follows in
terms of the modular j-function on the upper half plane.

(9.3) Definition. The modular polynomial�N (x) ∈ Z[ j][x] is given by the follow-
ing product

�N (x) =
∏

w∈S(N )

(x − jw)

where the composite jw is a function on the upper half plane.

(9.4) Remark. It is an exercise to show that �N (x) is a polynomial function in j
and x . We also use the notation�N (x, j) or just�N (x, y) with y instead of j . It has
the property that �N (x, y) = �N (y, x), and its degree is the cardinality #S(N ).

Now we restrict ourselves to N = � a prime number.

(9.5) Assertion. The polynomial ��(x, y) = 0 is an equation for the curve X0(�),
and this polynomial has the property that��( j (τ ), j (�τ )) = 0 for the transcendental
function j (τ ). We can interpret the zeros of��( j (E), y) as the j-invariants j (E/C)
indexed by pairs (E,C) associated the � + 1 different cyclic subgroups C ⊂ E of
order �. Multiply roots of ��( j (E), y) correspond to isomorphic E/C ′ and E/C ′′
for two pairs (E,C ′) and (E,C ′′).

In other terms the E/C are the �+ 1 isogeny classes E → E ′ with kernel cyclic
of order �.
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Endomorphisms of Elliptic Curves

The isomorphism classification of elliptic curves was previously carried out com-
pletely in terms of the Weierstrass equation with a minimum of algebraic geometry.
This was possible because an isomorphism between two curves with equation in nor-
mal form is given by simple formulas. The situation with homorphisms is not so easy
and more algebraic geometry is needed. The exception to this is multiplication by 2
and the 2-isogeny, see 4(5.2).

In this chapter we will just sketch the basic results and leave the reader to study
the details in the general context of abelian varieties as explained in D. Mumford’s
book on the subject. Homomorphisms are very elementary in the case of complex
tori and there all details will be supplied.

The ring of endomorphisms contains the integers as a subring, and the two are
usually equal. In exceptional situations it is larger than the ring of integers; this is the
case of complex multiplication. The term complex multiplication comes from the
classical setting of complex tori where homomorphisms are induced by multiplica-
tion with a complex number, see 9(1.4). In characteristic zero, e.g., over the complex
numbers, the endomorphism ring of a curve with complex multiplication is a subring
of finite index in the ring of integers of an imaginary quadratic number field. Com-
plex tori of dimension one having complex multiplication are isomorphic to a torus
with a period lattice contained in an imaginary quadratic number field.

In the next chapter we consider curves with complex multiplication in character-
istic p. These are exactly the curves defined over a finite field.

The reader should refer to Silverman [1981], Chapters III and IV.

§1. Isogenies and Division Points for Complex Tori
For two complex tori T = C/L and T ′ = C/L ′ the set if isogenies (resp. isomor-
phisms) λ : T → T ′ can be identified with the set of complex numbers λ with
λL ⊂ L ′ (resp. λL = L ′), see 9(1.4).
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(1.1) Remarks. A nonzero analytic homomorphism λ : C/L → C/L ′ is surjective,
and ker(λ) = λ−1L ′/L ∼= L ′/λL is a finite subgroup of order n = [L ′ : λL], the
index of λL in L ′. Note that nL ′ ⊂ λL ⊂ L ′ and (n/λ) : T ′ = C/L ′ → C/L = T
is an isogeny which composed with λ gives n : T → T , i.e., multiplication by the
integer n.

(1.2) Definition. An isogeny between two complex tori, or elliptic curves, is a
nonzero analytic homomorphism. For complex tori the degree, denoted deg(λ), is
the index [L ′ : λL] for λ : T = C/L → C/L ′ = T ′. The dual isogeny λ̂ of λ is
defined to be λ̂ = n/λ : T ′ → T . The dual of 0 is defined to be 0. See also 9(1, Ex.
3).

(1.3) Proposition. The function λ → λ̂ is a group morphism Hom(T, T ′) →
Hom(T ′, T ) satisfying ˆ̂

λ = λ, deg(λ) = deg(λ̂) = n, λ̂λ = n in End(T ), and λλ̂ = n
in End(T ′). For λ ∈ Hom(T ′, T ) and µ ∈ Hom(T, T ′) we have (µ̂λ) = λ̂µ̂. The
involution λ → λ̂ of the ring End(T ), called the Rosati involution, satisfies n̂ = n.
Finally, deg(n) = n2 and the function deg : End(T ) → Z is a positive quadratic
function where deg(λ) = λλ̂ = |λ|2.

Proof. Let a(L) denote the area of a period parallelogram associated with the lat-
tice L . Then we have a(λL) = |λ|2a(L) and for L ′′ ⊂ L ′ the index [L ′ : L ′′] =
a(L ′′)/a(L ′). Hence for an isogeny λ : C/L → C/L ′ the degree n = deg(λ) =
[L ′ : λL] equals |λ|2[a(L)/a(L ′)] which shows that the dual isogeny is given by the
formula

λ̂ = a(L)

a(L ′)
λ̄

from which the proposition follows directly.
There is a formula for a(L) when L = Zω1 + Zω2, namely

a(L) = 1

2
|ω1ω̄2 − ω2ω̄1| .

If ω1, ω2 is changed to ω′
1 = aω1 + bω2, ω′

2 = cω1 + dω2, then

∣∣ω′
1ω̄

′
2 − ω′

2ω̄
′
1

∣∣ = ∣∣∣∣det

(
a b
c d

)∣∣∣∣ · |ω1ω̄2 − ω2ω̄1| ,

and, therefore, this expression for a(L) is independent of a basis of L . From this
formula a(λL) = |λ|2a(L). Finally, for Lτ we calculate directly that a(Lτ ) =
(1/2)|τ − τ̄ | = |Im(τ )|, which is height times base, namely the area.

(1.4) Definition. For a natural number N and N -division point on an elliptic curve
E(k) or a complex torus T is a solution x to the equation N x = 0. The N -division
points of E (resp. T ) form a subgroup denoted by N E (resp. N T ).
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In the case of a complex torus T = C/L this subgroup N T = [(1/N )L]/L is
isomorphic to L/N L . If ω1, ω2 is a basis of L over Z, then N T is isomorphic to
(Zω1/N + Zω2/N )/L . Thus the group of N -division points on a complex torus T
has order N 2 and is the direct sum of two cyclic groups of order N . The group N T
is also the kernel of the isogeny N : T → T , and Lλ is the lattice with

λL/L = ker(λ : C/L → C/L ′).

(1.5) Remark. If λ : T = C/L → T ′ = C/L ′ is an isogeny of degree N , then
ker(λ) ⊂ N T and ker(λ = λL/L where L ⊂ λL ⊂ (1/N )L , [λL : L] = N , and

[(1/N )L : λL] = N . Further, λ : T → T ′ factors by T = C/L
l→ C/λL

λ→
C/L ′ = T , where C/λL

λ→ C/L ′ is an isomorphism. Thus up to isomorphism, each
isogeny of T = C/L of degree N is given by a lattice L∗ ⊃ L with [L∗ : L] = N

and has the form C/L
l→ C/L∗. A cyclic isogeny is one with the kernel a cyclic

group.

§2. Symplectic Pairings on Lattices and Division Points
Let L be a lattice in C, and choose a basis such that L = Zω1 + Zω2 satisfies
Im(ω1/ω2) > 0. The determinant gives rise to a symplectic pairing e or eL defined

e : L × L → Z

which is given by the formula

e(aω1 + bω2, cω1 + dω2) = ad − bc = det

(
a b
c d

)
.

A change of basis from ω1, ω2 to ω′
1, ω′

2 is given by a 2 by 2 matrix of determinant
1, and the pairing associated with the second basis is the same as the pairing defined
by the first basis.

(2.1) Remark. The function e : L × L → Z is uniquely determined by the require-
ments that:

(1) e is biadditive, or Z-bilinear,
(2) e(x, x) = 0 for all x in L ,
(2)′e(x, y) = −e(y, x) for all x, y in L , and
(3) for some basis ω1, ω2 of L with Im(ω1/ω2) > 0 we have e(ω1, ω2) = 1. This

holds then for any oriented basis of L .

Note that under (1) the two assretions (2) and (2)′ are equivalent. The assertion (3)
will hold for any such basis when it holds for one, and by (1), (2), (2)′ the above
formula for e in terms of the determinant is valid and shows the uniqueness.
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Observe that e : L × L × Z defines by reduction modulo m a symplectic pairing
em : L/mL×L/mL → Z/m, and for m dividing n, we have a commutative diagram

L/nL × L/nL
en−−−−→ Z/n⏐⏐� ⏐⏐�

L/mL × L/mL
em−−−−→ Z/m.

(2.2) Remark. The symplectic pairings e and em are nondegenerate. This means
for example that for any linear map u : L → Z there exists a unique y in L with
u(x) = e(x, y) for all x in L .

Using the definitions going into the formula for the dual isogeny in (1.2), we
can obtain a useful formula for e(x, y). First, let sgn(x, y) equal +1, 0, −1 when
Im(x/y) is > 0, = 0, and < 0, respectively. Then it is easy to check that

e(x, y) = sgn(x, y) · a(Zx + Zy)

a(L)
.

(2.3) Remark. With this formula for e, we show that for any isogeny λ : E =
C/L → E ′ = C/L ′ with λL ⊂ L ′ and dual isogeny λ̂ : E ′ → E that the relation
eL ′(λx, x ′) = eL(x, λ̂x ′) holds for x in L and x ′ in L ′. For we have the following
inclusions between lattices

λL ⊂ L ′

∪ ∪
Zλx + Znx ′ ⊂ Zλx + Zx ′.

Now calculate

eL ′(x, λ̂x ′) = sgn(x, λ̂x ′) · a(Zx + Z(n/λ)x ′)
a(L)

= sgn(λx, x ′) · a(Zλx + Znx ′)
a(λL)

= sgn(λx, x ′)[λL : Zλx + Znx ′]
= sgn(λx, x ′)[L ′ : Zλx + Zx ′]
= eL ′(λx, x ′).

This verifies the formula.

The above discussion takes place on latices. Now we reinterpret the pairing on
the division points N E(C) = (I/N )L/L ⊂ E(C) contained in the complex points
of the curve. This will lead later to the algebraic definition of the symplectic pairing
which is due to A. Weil. The results over the complex numbers are summarized in
the following proposition.
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(2.4) Proposition. Let E and E ′ be elliptic curves over C. The isomorphism N E(C)
= [(1/N )L]/L → L/N L, given by multiplication by N, transfers the symplectic
pairing on L to a nondegenerate pairing

eN : N E(C)× N E(C)→ Z/NZ.

For an isogeny λ : E → E ′ we have

eN (λx, x ′) = eN (x, λ̂x ′)

for x in N E(C) and x ′ in N E ′(C).

A final statement about the complex case for the reader with a background in
homology theory. On H1(E(C),Z) = L , where E(C) = C/L , the symplectic ho-
mology intersection pairing on the real surface E(C) is e : L × L → Z in (2.1).

§3. Isogenies in the General Case
(3.1) Remark. For a lattice L we denote by El(L) the field of elliptic functions on
C/L . If λ : C/L → C/L ′ is an isogeny, then f (z) → f (λz) defines an embedding
of El(L ′) into El(L) as a subfield. The group λ−1L ′/L acts on the field El(L) by
translation of variables in the function. The fixed field is equal to El(L ′), or, more
precisely, the image of El(L ′) in El(L). Hence El(L)/El(L ′) is a Galois extension of
fields with Galois group λ−1L ′/L = ker(λ), and by the theorem of Artin

[El(L) : El(L ′)] = #(λ−1L ′/L) = [L ′ : λL].

In fact, the embedding El(L ′) into El(L) determines λ : C/L → C/L ′, and this
gives us the clue as to how to formulate the notion of isogeny in the general case.
Further, note that although an isogeny C/L → C/L ′ is additive, it suffices for it to
be just analytic preserving 0 by the remarks preceding (1.1).

(3.2) Definition. For an elliptic curve E defined over a field k by the Weierstrass
equation f (X, Y ) = 0 the function field k(E) of E over k is the field of fractions of
the ring k[X, Y ]/( f ).

The field k(E) can also be described as the quadratic extension k(x, y) of the field
of rational function in one variables k(x) where y satisfies the quadratic equation
f (x, y) = 0 in y over k(x). In the case E(C) = C/L over the complex numers
we know there is an isomorphism between C(E) and El(L) by 9(3.3), for El(L) is
generated by ℘ and ℘′ and ℘′ satisfies a quadratic equation of Weierstrass type over
the rational function field C(℘).

Now we survey the theory of isogenies over an arbitrary field and suggest reader
go to Mumford, Abelian Varieties.
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(3.3) Definition. Let E and E ′ be two elliptic curves over k. An isogeny λ : E →
E ′ is a nonzero rational map over k with λ(0) = 0. This means λ is given by an
embedding k(E) ← k(E ′) which we usually view as an inclusion. The degree of λ,
denoted deg(λ), is [k(E) : k(E ′)].

In arbitrary characteristic, the degree of a field extension is the product of the
separable degree and the purely inseparable degree so that

deg(λ) = [k(E) : k(E ′)] = [k(E) : k(E ′)]s[k(E) : k(E ′)]i

= deg(λ)s deg(λ)i.

The separable degree deg(λ)s is the order of the group of geometric points in
ker(λ) = λ−1(0) as a variety while deg(λ)i is related to the scheme theoretical struc-
ture of ker(λ). Multiplication by p in characteristic p is always inseparable.

The condition λ(0) = 0 can be understood in terms of the function field k(E)
k(x ′, y′), where x ′, y′ satisfy a Weierstrass equation. On E the functions x ′ and y′,
i.e., viewed in k(E), must have a pole at 0 for λ(0) = 0 to hold.

In order to see that in isogeny λ is automatically additive and to define the dual
isogeny λ̂, we have to look at divisors on E . These are finite formal sums

∑
n P P of

points on E over an algebraically closed field k, and the degree of a divisor is given
by

deg
(∑

n P P
)
=
∑

n P , an integer.

If f is in the multiplicative group k(E)∗, then the divisor ( f ) of zeros and poles is
defined, and, as on the projective line, we have

deg( f ) = 0.

We have three groups Div(E) ⊃ Div0(E) ⊃ Div1(E) of all divisors, all divisors of
degree 0, and all divisors of fnctions. The sum function s : Div0(E)→ E(k) where
s(
∑

n P P) = ∑
n P P in E(k) has kernel Div1(E) and is surjective, see 9(3.5) for

the proof over the complex numbers. The function P → P − 0 is a cross-section of
s. Thus P1 + P2 + P3 = 0 in E(k) if and only if P1 + P2 + P3 = −3 · 0 is the divisor
of a function.

(3.4) Remarks/Definition. An isogeny λ : E → E ′ defines a group morphism
λ : Div(E) → Div(E ′) by λ(

∑
n P P) = ∑

n Pλ(P), and the following diagram is
commutative:

Div0(E)
λ−−−−→ Div0(E ′)⏐⏐�s

⏐⏐�s

E(k)
λ−−−−→ E ′(k)

showing that λ is additive. Further, λ defines λ−1 : Div0(E ′)→ Div0(E) by
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λ−1
(∑

n P P
)
=
∑

n Pλ
−1(P),

where λ−1(P) = m(Q1 + · · · + Qr ) for {Q1, . . . , Qr } = λ−1(P) set theoretically
and mr = deg(λ). This induces λ̂ : E ′ → E the dual isogeny such that the following
diagram is commutative:

Div0(E ′) λ−1

−−−−→ Div0(E)⏐⏐�s

⏐⏐�s

E ′(k) λ̂−−−−→ E(k).

Now the following extension of (1.5).

(3.5) Theorem. The function λ → λ̂ is a group morphism

Hom(E, E ′)→ Hom(E ′, E)

satisfying ˆ̂
λ = λ, deg(λ) = deg(λ̂), λ̂λ = n in End(E), and λλ̂ = n in End(E ′).

For λ in Hom(E, E ′) and µ in Hom(E ′, E ′′) we have µ̂λ = λ̂µ̂ and deg(µλ) =
deg(µ) · deg(λ). The involution λ → λ̂ of the ring End(E) satisfies n̂ = n where
deg(n) = n2. The degree functions deg : Hom(E, E ′) → Z is a positive quadratic
function.

The involution taking an isogeny to its dual is called the rosati involution on
End(E). The assertion that deg(λ) is a positive quadratic function on Hom(E, E ′)
means that

(a) deg λ ≥ 0 and by definition deg(λ) = 0 for λ = 0.
(b) deg(mλ) = m2 deg λ, and
(c) deg(λ + µ) = deg(λ) + (λ̂µ + µ̂λ) + deg(µ) where (λ, µ) → λ̂µ + µ̂λ is a

biadditive function defined

Hom(E, E ′)× Hom(E, E ′)→ Z.

The remarks following (1.1) have the following extension.

(3.6) Theorem. Let E be an elliptic curve over a field k.

(1) If k is separably closed and n is prime to the characteristic, then E(k) is divisible
by n, i.e., the map n : E(k)→ E(k) is surjective.

(2) If k is separably closed and n is prime to the characteristic, then the subgroup
n E(k) of n-division points is isomorphic to Z/n × Z/n.

(3) If k is algebraically closed of characteristic p > 0, then E(k) is divisible by p.
Moreover, the p-division points form a group p E(k) is isomorphic to either Z/p
or 0.
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The two possibilities for the group of p-division points will be considered further
in the next chapter. A curve is called supersingular provided its group of p-division
points over k̄ reduces to 0.

The proofs of Theorem (3.5) and (3.6) can be found in the book by Mumford,
Abelian Varieties. They are true for higher-dimensional complete group varieties, but
messy proofs for elliptic curves can be carried out using the Weierstrass equation.
The prevailing wisdom in the mathematics community is that the reader who has
gotten this far in the theory of elliptic curves should start with the theory of abelian
varieties. An other possibility is the see the books of Silverman. In this line our
discussion in this chapter from §3 on is only a sketch of results designed to give the
reader an overview of the results.

The pairing eN :N E × N E → Z/NZ of (2.4) has an algebraic meaning and
an algebraic definition can be given. In fact, for any isogeny λ : E → E ′ there is a
pairing eλ : ker(λ)× ker(λ̂)→ µN (k), where N = # ker(λ). This uses divisors as in
(3.4). Recall that associated to λ is an inclusion k(E ′) → k(E), and for x ′ ∈ ker(λ̂)
we have λ−1(x ′) = 0, or as divisors λ−1((x ′)− (0)) = ( f ′) for some f ′ ∈ k(E), and
thus ( f N ) = ( f ′λ). Now f N is invariant by translates by x ∈ E , and for a general
point y of E , we can define

eλ(x, x ′) = f (y + x)

f (y)
∈ µN (k).

(3.7) Remark. In the special case λ = N , there is another formula for the pairing.
We need the notation h(

∑
P n P P) = ∏

P h(P)n P for a divisor
∑

P n P P which
has no common prime factor with the divisor (h) of the function h. For x, x ′ ∈ N E
choose divisors D and D′ differing from (x)−(0) and (x ′)−(0) up to the divisor of a
function and having no prime factors in common. Since N D = ( f ) and N D′ = ( f ′),
it can be shown that eN (x, x ′) = f ′(D)/ f (D′).

This definition works because of the:

Reciprocity Law. When ( f ) and (g) have no common prime factors, then

f ((g)) = g(( f )).

This reciprocity law holds for functions on P1 by a direct calculation for f (x) =
(x − a)/(x − b) and g(x) = (x − c)/(x − d) and the multiplicative character of the
formula. Then it holds on any curve by mapping onto the projective line by a finite
ramified covering.

Now we summarize the basic properties of this pairing.

(3.8) Theorem. Let E and E ′ be elliptic curves over a perfect field k and λ : E →
E ′ an isogeny. The pairing eλ : ker(λ) × ker(λ̂) → µN (k) is biadditive and nonde-
generate, and for an automorphism σ of k we have

eλσ (x
σ , x ′σ ) = eλ(x, x ′)σ .
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The special case of eN : N E × N E → µN (k) is antisymmetric, and if M divides N,
then the following diagram is commutative:

N E × N E
eN−−−−→ µN (k)

N :M

⏐⏐� ⏐⏐�N :M

M E × M E
eM−−−−→ µM (k).

Here ker(λ) is a scheme which is étale for p � deg(λ).

(3.9) Remark. Observe that the relation eN (λx, x ′) = eN (x, λ̂x ′) shows that eN (λx,
λx ′) = eN (x, λ̂λx ′) = deg(λ)eN (x, x ′).

§4. Endomorphisms and Complex Multiplication
Now we study the ring End(E) = Hom(E, E) for an elliptic curve E over k. This
ring is equipped with the Rosati involution and the degree map which is possitive
and quadratic.

(4.1) Proposition. The ring End(E) has no zero divisors.

Proof. If µλ = 0, then 0 = deg(µλ) = deg(µ) deg(λ), and, therefore, either
deg(λ) = 0, so λ = 0, or deg(µ) = 0, so µ = 0.

For an alternative proof over C the ring End(E) is the set of complex numbers λ
with λL ⊂ L and, in particular, a subring of C, hence without zero divisors.

(4.2) Definition. For an element λ in End(E) the trace is T (λ = λ + λ̂ and the
characteristic polynomial is

cλ(t) = t2 − T (λ)t + deg(λ).

Note that in terms of the trace the quadratic condition (c) of (3.5) becomes
deg(λ+ µ) = deg(λ)+ T (λ̂µ)+ deg(µ).

(4.3) Proposition. The trace of λ in End(E) is in the subring Z of End(E) and cλ(t)
is in Z[t]. Further, cλ(λ) = 0.

Proof. We calculate that deg(1 + λ) = (1 + λ)(1 + λ̂) = 1 + (λ+ λ̂)+ λλ̂ is in Z,
and using the fact that deg(λ) is an integer, we deduce that T (λ) is an integer. Finally
we have cλ(λ) = λ2 − (λ+ λ̂)λ+ λλ̂ = 0.

By the previous proposition every element of End(E) satisfies a quadratic equa-
tion over the subring Z. This is a very strong restriction on End(E). Moreover, these
quadratic equations have the following additional positivity property.



242 12. Endomorphisms of Elliptic Curves

(4.4) Theorem (Hasse). For λ in End(E) the characteristic polynomial has values
cλ(r) ≥ 0 for any rational number and∣∣∣λ+ λ̂

∣∣∣ ≤ 2
√

deg(λ).

Proof. For r = n/m we see that

m2cλ(n/m) = n2 + nmT (λ)+ m2 deg(λ) = deg(n + mλ) ≥ 0.

Hence, the discriminant 4 deg(λ) − T (λ)2 is positive. Now take the square root of
T (λ)2 = (λ+ λ̂)2 ≤ 4 deg(λ) to obtain the result.

(4.5) Definition. An elliptic curve E over k has complex multiplication provided
Z �= End(E).

(4.6) Theorem. Assume that End(E) is commutative, then either End(E) = Z or
End(E)⊗Z Q is an imaginary quadratic extension of Q. In the second case End(E)
is an order in the imaginary quadratic field End0(E) = End(E)⊗Z Q.

Proof. Every element in End0(E) satisfies a quadratic equation over the subfield Q

by (4.3), and this means that either End0(E) has degree 1 over Q, that is End0(E) =
Q, or End0(E) has degree 2 over Q, that is, End0(E) = Q(α), where α is a quadratic
irrationality. From the positivity of the quadratic equation for α, see (4.4), the field
Q(α) is an imaginary quadratic number field. By (4.1) and (4.3) the endomorphism
ring embeds as a subring of the ring of integers in End(E). Moreover, it is of finite
index in the ring of integers and it contains Z, i.e., End(E) is an order in End0(E).
This proves the theorem.

(4.7) Proposition. Let E be an elliptic curve over the complex numbers with com-
plex points C/Lτ . Then End(E) is commutative. The curve has complex multiplica-
tion if and only if τ is an imaginary quadratic number. In the case of complex multi-
plication End(C/Lτ )⊗Q is Q(τ ) the imaginary quadratic number field obtained by
adjoining τ to Q, and as a subring of complex numbers End(E) is contained in Lτ .

Proof. Since End(E) is naturally isomorphic to the subring of complex numbers λ
satisfying λLτ ⊂ Lτ it is commutative. For such a λ with λLτ ⊂ Lτ = Zτ + Z we
see that λ = a + bτ is contained in Lτ and the relation c + dτ = λτ = aτ + bτ 2

holds for integers a, b, c, and d. This shows that τ satisfies a quadratic equation over
Q. Conversely aτ 2 = bτ+c with a, b, and c integers implies that (aτ)Lτ ⊂ Lτ , and
thus C/Lτ has complex multiplication. Finally, End(C/Lτ )⊗Q = Q(τ ) holds from
the quadratic relations for τ over the rational numbers. This proves the proposition.

(4.8) Remark. For an elliptic curve over the complex numbers we can see from the
above proposition that Aut(E) is {+1,−1} if and only if j �= 0 or 123. The case
j = 0 is E isomorphic to E(ρ) and Aut(E) = {±1,±ρ,±ρ̄}, and the case j = 123

is E isomorphic to E(i) and Aut(E) = {±1,±i}.
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Finally we consider the determination of all elliptic curves isogenous to a given
elliptic curve E with complex multiplication.

(4.9) Remarks. For an imaginary quadratic field K , let R denote the ring of integers
in K . For a subring A of R note that rk(A) = rk(R) = 2 if and only if as abelian
groups A is of finite index in R. Every such subring A has the form R f = Z + f R,
where f is an integer f ≥ 1 called the conductor of the order R f = A.

We denote by Pic(A) the projective class group. It consists of isomorphism
classes of projective modules L over A of rank 1 with abelian group structure
given by tensor product of projective modules of rank 1. There is an embedding
L → Q ⊗Z L = K ⊗A L = V , and V is a one-dimensional vector space over K .
A choice of basis element gives an embedding L → K as a fractional ideal, and two
such embeddings differ up to multiplication by an element of K . Hence a second
interpretation of Pic(A) is as fractional ideal classes of A in its field of fractions K
when A = R f .

For a number field K and an order A contained in the ring of integes R of K , the
group Pic(A) is finite and its cardinality is the class number of A or of K in the case
A = R. For the A = R f = Z+ f R we denote by hK , f = # Pic(R f ), the cardinality
of Pic.

(4.10) Theorem. Let K ⊂ C be a quadratic imaginary field. For each class [L] in
Pic(R f ), choose a representative L of [L] and an embedding L → K ⊂ C. The
function that assigns to [L] the elliptic curve EL with EL(C) = C/L is a bijection
of Pic(R f ) onto the set of isomorphism classes of elliptic curves E over C with
End(E) = R f .

Proof. Let E be an elliptic curve over C with E(C) = C/L where L can be chosen to
have a nonzero element in common with K . Since R f L = L , where R f = End(E),
we have L ⊂ K as a functional idea, and this ideal is defined up to scalar multiple.
This proves the theorem since EndR f (L) = End(C/L) = R f .

The ring R f = Z + f R is called the order with conductor f in an imaginary
quadratic field K .

(4.11) Proposition. The j-invariant of C/L for any [L] in Pic(R f ), denoted j (L) =
f (C/L), is an algebraic number of degree ≤ hK , f .

Proof. The group Aut(C) acts on the finite set JK , f of all j (L) for [L] ∈ Pic(R f ),
and this means that these numbers are algebraic numbers of degree less than the
cardinality of the finite set.

(4.12) Remark. The question of j values of complex multiplication curves will be
considered further in Chapter 13. For example j (L) is an algebraic integer of degree
exactly h f,K and Aut(C) acts transitively on the set JK , f . For further information
see Serre, “Complex Multiplication,” in the Cassels and Frohlich book [1967]. We
include a table of the j values of L = R f for the cases where hK , f = 1 from Serre
[1967]. Classically these values appear in Weber, Algebra III, see §§125–128 and
Tabelle VI.
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(4.13) Imaginary Quadratic Fields with Class Number 1.

K = Q(
√−1) R = Z[

√−1] j (τ ) = j (
√−1) = (22 · 3)3

R2 = Z[2
√−1] = j (2

√−1) = (2 · 3 · 11)3

= Q(
√−2) R = Z[

√−2] = j (
√−2) = (22 · 5)3

= Q(
√−3) R = Z

[
−1 + √−3

2

]
= j

(
−1 + √−3

2

)
= 0

R2 = Z[
√−3] = j (

√−3) = 24 · 33 · 53

R3 = Z

[
−1 + 3

√−3

2

]
= j

(
−3 + 3

√−3

2

)
= −215 · 3 · 53

= Q(
√−7) R = Z

[
−1 + √−7

2

]
= j

(
−1 + √−7

2

)
= −(3 · 5)3

R2 = Z[
√−7] = j (

√−7) = (3 · 5 · 17)3

= Q(
√−11) R = Z

[
−1 + √−11

2

]
= j

(
−1 + √−11

2

)
= −(25)3

= Q(
√−19) R = Z

[
−1 + √−19

2

]
= j

(
−1 + √−19

2

)
= −(25 · 3)3

= Q(
√−43) R = Z

[
−1 + √−43

2

]
= j

(
−1 + √−43

2

)
= −(26 · 3 · 5)3

= Q(
√−67) R = Z

[
−1 + √−67

2

]
= j

(
−1 + √−67

2

)
= −(25 · 3 · 5 · 11)3

= Q(
√−163) R = Z

[
−1 + √−163

2

]
= j

(
−1 + √−163

2

)
= −(26 · 3 · 5 · 23 · 29)3

(4.14) Remark. The class number of Q(
√−23) is three and

j

(
−1 + √−23

2

)
= −α1253(2α − 1)3(3α + 2)3,

where α3 − α − 1 = 0
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(4.15) Remark. In Gross and Zagier [1985], On Singular Moduli, other values of
j (τ ) are given, for example,

j

(
1 + √−163

2

)
= −26 · 36 · 72 · 112 · 192 · 1272 · 163.

§5. The Tate Module of an Elliptic Curve
Let � denote a prime number throughtout this section. We have a sequence of reduc-
tions of Z by powers of �, namely

· · · → Z/�n+1 rn→ Z/�n → · · · r2→ Z/�2 r1→ Z/�.

The projective limit of this sequence, denoted lim←− nZ/�n consists of all a = (an) in
the product

∏
1≤n Z/�n such that rn(an+1) = an for all n ≥ 1. This projective limit

is Z� the ring of �-adic integers. The field of fractions Z� ⊗Z Q is Q� the field of
�-adic numbers. This approach is carried out in detail in Serre, Course in Arithmetic,
Chapter II.

The sequence of reductions of Z can be described using subgroups of Q/Z rather
than quotients of Z. Let N (Q/Z) be the subgroup of all x in Q/Z with N x = 0. Then
the equivalent sequence is the following where all the morphisms are multiplication
by �:

· · · �→ �n+1(Q/Z)
�→ �n (Q/Z)

�→ · · · �→ �2(Q/Z)
�→ �(Q/Z).

A group having essentially the same structure as (Q/Z) is µ(k), the group of
roots of unity in an algebraically closed field k. The subgroup µN (k) of x in µ(k)
with x N = 1 consists of the N th roots of unity. It is cyclic and of order N when k is
algebraically closed and N is prime to the characteristic of k. Further, if ks denotes
the seperable algebraic closure of k, then the Galois group Gal(ks/k) operates on
µ(ks) and each µN (ks). As above we have a sequence of cyclic groups of order �n ,
where � is prime to the characteristic of k, namely

· · · �→ µ�n+1(k)
�→ µ�n (k)

�→ · · · �→ µ�2(k)
�→ µ�(k).

The inverse limit is denote Z�(1)(k) or simple Z�(1) and it is a Gal(ks/k)-module.

(5.1) Definition. Let ks be the separable algebraic closure of a field k of characteris-
tic prime to �. The Tate module of k∗

s is the inverse limit denoted Z�(1)(ks) or Z�(1)
together with its action of Gal(ks/k).

The Tate module, or as it is sometimes called the Tate twist, is just Z� as a limit
group, but it is more, namely a Galois module.

There is a corresponding construction for elliptic curves E over a field k of char-
acteristic different from � using the division points N E(ks) of E over the separable
algebraic closure ks of k. Again the Galois group Gal(ks/k) acts on E(ks) and each
N E(ks) from its action on the x-and y-coordinates of a point.
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(5.2) Definition. The Tate module T�(E) of an elliptic curve over k is the projective
limit where � is a prime unequal to the the characteristic �

· · · �→ �n+1 E(ks)
�→ �n E(ks)

�→ · · · �→ �2 E(ks)
�→ �E(ks)

together with the action of Gal(ks/s) on the limit group. We define V�(E) =
T�(E)⊗Z Q together with the extended Gal(ks/k) action.

Since each �n E(ks) is a free Z/�n-module of rank 2, the limit T�(E) is a free
Z�-module of rank 2, and V�(E) is a Q� vector space of dimension 2. The Galois
action can be described as a representation

Gal(ks/k)→ GL(T�(E)) ⊂ GL(V�(E))

which is referred to as the two-dimensional �-adic representation of Gal(ks/k) asso-
ciated to E over k.

In the case where E = C/L over C, we have N E(C) = (Z/ZN ) ⊗ L and
T� = lim←− n(Z/Z�

n)⊗ L = Z� ⊗ L .

(5.3) Remark. There is a symplectic structure on the Tate module of E . For N = �n

and passing to the inverse limit of the pairings e�n : �n E × �n E → µ�n (ks) as n
approaches ∞, we obtain a nondegenerate symplectic pairing, also denoted e�,

e� : T�(E)× T�(E)→ Z�(1)

using (3.8). Further tensoring with Q, we have a nondegenerate symplectic pairing

e� : V�(E)× V�(E)→ Q�(1).

For σ in Gal(ks/k) the Galois properties of e� are contained in the relation

e�(x
σ , x ′σ ) = e�(x, x ′)σ

which highlights the necessity of using the Tate twist Z�(1) instead Z� for the image
module of e�.

One of the great steps forward in the theory of elliptic curves came when it was
realized that this Galois representation on the Tate module T�(E) contains many
of the basic invariants of the isomorphism type of E . The isogeny invariants of E
are contained in the study of the Galois representation V�(E). This is based on an
understanding of how faithful an action End(E) has on T�(E) and End0(E) has on
V�(E). This is the subject of the next section.

§6. Endomorphisms and the Tate Module
Since every homomorphism λ : E → E ′ restricts to a group homomorphism
N E →N E ′ for every N commuting with multiplication in the inverse system defin-
ing the Tate modules, we have a canonical homomorphism of groups
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T� : Hom(E, E ′)→ HomZ� (T�(E), T�(E
′))

for each prime �. Tensoring with Z� we obtain homomorphism of Z�-modules also
denoted with the same letter

T� : Hom(E, E ′)⊗ Z� → HomZ� (T�(E), T�(E
′)).

The basic result is the following which holds also for abelian varieties and where the
proof follows the one in Mumford [1974, pp. 176–178].

(6.1) Theorem. For a prime � unequal to the ground field characteristic the natural
map

T� : Hom(E, E ′)⊗ Z� → HomZ� (T�(E), T�(E
′))

is injective. Moreover, the group Hom(E, E ′) is finitely generated and free abelian.

Proof. Since every nonzero E → E ′ is surjective, the group Hom(E, E ′) is torsion
free, and we can think of Hom(E, E ′) as a subgroup of in Hom0(E, E ′).

Assertion. For any finitely generated subgroup M of Hom(E, E ′) the subgroup

QM ∩ Hom(E, E ′) = {λ : E → E ′ with nλ in M for some n �= 0}

is again finitely generated.

To prove the assertion, we note that Hom(E, E ′) = 0 when E and E ′ are not
isogenous, and using the injection Hom(E, E ′) → End(E) induced by an isogeny
E ′ → E , we are reduced to the case E = E ′. The norm deg : End(E) → N where
deg(λ) > 0 if and only if λ �= 0 extends to deg : End0(E)→ Q. Now QM is a finite
dimensional space, and the set if λ in End0(E) with N (λ) < 1 is a neighborhood V
of zero in QM . Since U ∩ End(E) = (0), it follows that QM ∩ End(E) is discrete
in QM, and thus it is finitely generated.

By the above assertion it suffices to proove that for ant finitely generated M in
Hom(E, E ′) satisfying M = QM ∩ Hom(E, E ′), the restricted homomorphism is a
monomorphism

T� : M ⊗ Z� → HomZ� (T�(E), T�(E
′)).

Let λ1, . . . , λm be a basis of the abelian group M . Since the right-hand side is Z�-
free, we would have T�(c1λ1 + · · · + cmλm) = 0 where we may assume that one
c j a unit in Z� if T� were not injective. This would mean that there are integers
a1, . . . , am not all divisible by � such that for λ = a1λ1 + · · · + amλm we have
T�(λ)(T�(E)) ⊂ T�(E ′) and hence, f (�E) = 0 in E ′. Then λ = �µ, where µ is in
Hom(E, E ′), and, since

µ is in QM ∩ Hom(E, E ′) = M,
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we can decompose µ = b1λ1+· · ·+bmλm . Now
∑m

j=1 a jλ j = �∑m
j=1 b jλ j , which

implies that the prime � divides all a j which is a contradiction. This proves that T�
is injective.

Now HomZ� (T�(E), T�(E ′)) is of finite rank, in fact, of rank at most 4. By the
injectivity of T� on M ⊗ Z�, we see that Hom0(E, E ′) has dimension at most four
and finally that Hom(E, E ′) is finitely generated. This proves the theorem.

We can define V�(λ) = T�(λ) ⊗Z� Q�, and then the theorem has the following
immediate corollary.

(6.2) Corollary. For a prime � unequal to the ground field characteristic the natural
map

V� : Hom(E, E ′)⊗ Q� → HomQ� (V�(E), V�(E
′))

is injective.

For elliptic curves E and E ′ defined over k the Galois group Gal(ks/k) acts
on Hom(E, E ′) on the right by the formula λσ = σ−1λσ . The fixed subgroup
Hom(E, E ′)Gal(ks/k) = Homk(E, E ′) is the subgroup of homomorphisms defined
over k. For λ in Hom(E, E ′) and x in V�(E) we have the relation

(λx)σ = λσ xσ

for the right action xσ equal to σ−1x from the left action.

(6.3) Remark. The monomorphism of (6.1) and (6.2) restrict to monomorphisms

Homk(E, E ′)⊗ Z� → HomGal(ks/k)(T�(E), T�(E
′)),

Homk(E, E ′)⊗ Q� → HomGal(ks/k)(V�(E), V�(E
′)).

Hence homomorphisms and isogenies over k are distinguished by their action on
Tate modules viewed as Galois modules. In the next chapter we will see that there
are cases where these monomorphisms are isomorphisms.

(6.4) Remark. The cokernel of the monomorphism T� is torsion free. This follows
since every k-homomorphism f : E → E ′ equal to zero on the �-division points is
of the form �g for some k-homomorphism g : E → E ′.

§7. Expansions Near the Origin and the Formal Group
The formal group of an elliptic curve is used in the in the next two chapters, and
appendix III. We give now a brief introduction. In the equation for an elliptic curve E
in normal form we introduce new variables t = −x/y and s = −1/y. The equation
in the affine (t, s)-plane becomes

s = t3 + a1ts + a2t2s + a3s2 + a4ts2 + a6s3,
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where zero on E has coordonates (t, s) = (0, 0), and t is a local parameter at 0 on
E . This (t, s)-plane version of the cubic equation generates a formal series relations
for s as a function of t by iterated substitution of the six-term expression for s into
each term of s on the right-hand side of the above equation. The formal expansion
has the following form:

s = t3 + a1t4 + (a2
1 + a2)t

5 + (a3
1 + 2a1a2 + a3)t

6

+ (a4
1 + 3a2

1a2 + 3a1a3 + a2
2 + a4)t

7 + · · ·
= t3(1 + A1t + A2t2 + · · · ),

where An is a polynomial of weight n in the ai with positive integer coefficients.

(7.1) Proposition. In terms of the local uniformizing parameter t = −x/y at 0 on
E the following formal expansions hold in Z[a1, a2, a3, a4, a6][[t]]:

x = t−2 − a1t−1 − a2 − a3t − (a4 + a1a3)t
2 − · · · ,

y = − x

t
= −t−3 + a1t−2 + a2t−1 + a3 + · · · ,

ω =
[
1 + a1t + (a2

1 + a2)t
2 + (a3

1 + 2a1a2 + a3)t
3 + · · ·

]
dt.

The coefficients of t i are isobaric of weight i + 2, i + 3, and i , respectively, for x, y,
ω. Further, if the coefficients a j are in a ring R, then the expansions lie in R[[t]].

Proof. The formal expansions for x and y come from the expansion s = t3(1+A1t+
· · · ), y = −1/s, and x−t y, and it is clear that x and y are in Z[a1, a2, a3, a4, a6][[t]].
The formal expansion for ω is derived from this in two ways:

ω = dx

2y + a1x + a3
= −2t−3 + · · ·

−2t−3 + · · ·dt,

which has coefficients in Z[1/2, a1, a2, a3, a4, a6][[t]], and

ω = dy

3x2 + 2a2x + a4 − a1 y
= 3t−4 + · · ·

3t−4 + · · ·dt,

which has coefficients in Z[1/3, a1, a2, a3, a4, a6][[t]]. This proves the assertion
about the coefficients of the above expression.

The expansion x(t) and y(t) in the previous proposition are an algebraic analogue
of the complex analytic expansions of℘(u) and ℘′(u). In Chapter 13 we will see that
these formal expressions have p-adic convergence properties.

We can go further to analyze the group law near 0 formally also. The line joining
two points (t1, s1) and (t2, s2) in the (t, s)-plane has slope given by

λ = s2 − s1

t2 − t1
= t3

2 − t3
1

t2 − t1
+ A1

t4
2 − t4

1

t2 − t1
+ · · ·
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= t2
2 + t1t2 + t2

1 + A1

(
t3
2 + t2

2 t1 + t2t2
1 + t3

1

)
+ · · · ,

where the coefficients A j are determined in the above expansion of s in terms of t .
Now let v = s1 −λt1 = s2 −λt2, and substitute s = λt +v into the Weierstrass cubic
to obtain a cubic equation in t with roots t1 and t2. The negative of the coefficient of
t2 in the cubic is the sum of the three roots t1, t2, and t3 can be expressed as a power
series �E in t1 and t2 with coefficients in Z[a1, a2, a3, a4, a6]. A calculation, which
is left to the reader, yields the following result.

(7.2) Proposition. If (t1, s1)+ (t2, s2) = (t3, s3) on the elliptic curve E in the (t, s)-
plane, then formally t3 = �E (t1, s2) has the form

t3 = −t1 − t2 + a1λ+ a3λ
2 − a2ν − 2a4λν − 3a6λ

2ν

1 + a2λ+ a4λ2 + a6λ3

= t1 + t2 − a1t1t2 − a2

(
t2
1 t2 + t1t2

2

)
− 2a3

(
t3
1 t2 + t1t3

2

)
+

+ (a1a2 − 3a3)t
2
1 t2

2 + · · · ,
where �E (t1, s2) is in Z[a1, a2, a3, a4, a6][[t1, t2]].

Observe that if the coefficients a j of the model for E lie in a ring R, then t3 =
�E (t1, t2) is in R[[t1, t2]].

(7.3) Definition. A formal group law F(X, Y ) is a formal series F(X, Y ) in
R[[X, Y ]] satisfying:

(1) F(X, 0) = X , F(0, Y ) = Y ,
(2) (associativity) F(X, F(Y, Z)) = F(F(X, Y ), Z) in R[X, Y, Z ].

Further, F(X, Y ) is a commutative formal group law provided F(X, Y ) = F(Y, X).

There exists θ(X) ∈ X R[[x]] with F(X, θ(X)) = 0.
The formal series �E (t1, t2) arising from the group law on an elliptic curve is a

formal group law. The formal additive group law is F(X, Y ) = X +Y and the formal
multiplicative group law is F(X, Y ) = X + Y + XY .

Associated with the formal group F(X, Y ) over R is a sequence of formal series
[m](X) over R defined inductively by

[1](X) = X and [m](X) = F(X, [m − 1](X)) for m > 1.

In general [m](X) = m X+· · · (higher-order terms). This is the formal multiplication
by m in the formal group F(X, Y ). For example, if F = �E for an elliptic curve E ,
then we have

[2](X) = 2X − a1 X2 − 2a2 X3 + (a1a2 − 7a3)X
4 + · · ·

and

[3](X) = 3X − 3a1 X2 + (a2
1 − 8a2)X

3 + 3(4a1a2 − 13a3)X
4 + · · · .
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If pR = 0, i.e., R has characteristic a prime p, then it can be shown that

[p](X) = c1 X ph + c2 X2ph + c3 X3ph + · · · ,
when h ≥ 1 is an integer called the height of the formal group. When [p](X) = 0,
we set h = ∞. If R = k an algebraically closed field, then the height classifies the
formal group up to isomorphism.

In Chapter 13 we will see that the height of the formal group of an elliptic curve
in characteristic p is either 1, which is the usual case, or 2, which is called the su-
persingular case. This is related to the Hasse invariant which can be defined as the
coefficient of X p in [p](X) above.

(7.4) Remark. A formal group F(X, Y ) over R, like an elliptic curve, has an invari-
ant differential ω(Y )=(D1 F(0, Y ))−1dY . Observe that the derivative D1 F(X, Y )=
1+ higher-order terms, and hence the inverse power series is defined. The invariance
property for a differential A(X)d X means that for a variable T

A(X)d X = A(F(X, T ))D1 F(X, T )d X.

For A(Y ) = (D1 F(0, Y ))−1 we calculate from the associative law using the chain
rule the following relations:

(D1 F)(F(X, Y ), T ) · D1 F(X, Y ) = D1 F(X, F(Y, T )).

Setting X = 0

(D1 F)(Y, T ) · D1 F(0, T ) = D1 F(0, F(Y, T ))

which gives

D1 F(0, Y )−1dY = D1 F(0, F(Y, T ))−1(D1 F(Y, T ))dY.

(7.5) Example. The formal group �E (X, Y ) of an elliptic curve E is defined over
Z[a1, a2, a3, a4, a6] and the coefficients specialize to the field of definition k of E .
The invariant differential of the formal group �E is just the differential ω of E with
the expansion given in (6.1).

(7.6) Definition. A formal logarithm for a formal group F(X, Y ) over R is a power
series L(X) in R[[X ]] with L(X) = X+ higher-order terms and F(X, Y ) =
L−1(L(X)+ L(Y )).

In other words L(F(X, Y )) = L(X) + L(Y ) which says that L : F → Ga is
an isomorphism onto the formal additive group. Then [m]F (X) = L−1(mL(X)) and
from

L ′(Y ) · (D1 F)(0, Y ) = L ′(0) = 1,

we see that the invariant differential is given by
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ω(Y ) = L ′(Y )dY = d L(Y ).

Thus from an expansion for ω(T ) = (
∑∞

n=1 anT n)(dT/T ) we have an expansion
for the formal logarithm

L(T ) =
∞∑

n=1

an

n
T n, where a1 = 1.

Hence the formal logarithm exists if and only if given the coefficients an of the
invariant differential ω in R we can form an/n in R. In a Q-algebra R this is always
possible, and in general in characteristic zero it is possible in an extension ring R⊗Q

of R.
In characteristic p > 0 we can always form an/n for n < p, and thus the

coefficient ap plays a basic role especially for our applications in Chapter 13 to
elliptic curves. we will use:

(7.7) Proposition. The coefficient ap in the expansion of the invariant differential of
a formal group F(X, Y ) in characteristic p is the coefficent of X p in the expansion
of [p]F (X).



13

Elliptic Curves over Finite Fields

In this chapter we carry further the algebraic theory of elliptic curves over fields of
characteristic p > 0. We already pointed out that the p-division points in character-
istic p form a group isomorphic to Z/pZ or zero while the �-division points form a
group isomorphic to (Z/�Z)2 for p �= �. Moreover, the endomorphism algebra has
rank 1 or 2 in characteristic 0 but possibly also rank 4 in characteristic p > 0.

A key issue for elliptic curves in characteristic p is whether or not a curve can
be defined over a finite field. A basic result of Deuring is the E has complex multi-
plication if and only if E can be defined over a finite field. Thus the elliptic curves
E with rk(End(E)) equal to 2 or 4 are the curves defined over a finite field, and
among the curves E in characteristic p the case rk(End(E)) is equal to 4 occurs if
and only if the group p E(k̄) is zero. Curves E with these equivalent properties are
called supersingular, and we go further to give ten characteriszations for a curve to be
supersingular. Supersingular curves are all defined over Fp or Fp2 in characteristic
p, and they form a single isogeny class of finitely many curves up to isomorphism.
We derive a formula for the number of these curves for given p.

The number of rational points #E(Fq) on an elliptic curve E over a finite field
Fq is estimated by the Riemann hypothesis

|#E(Fq)− q − 1| ≤ 2
√

q.

This inequality is equivalent to the assertion that the zeros of the zeta function of an
elliptic curve E over Fq are all on the line Re(s) = 1/2. This is the first topic taken
up in this chapter.

The reader should refer to Silverman [1986], Chapter V in this chapter.

§1. The Riemann Hypothesis for Elliptic Curves over a Finite
Field

In part 1 the group E(Q) was studied for elliptic curves over the rational numbers
Q. A similar problem is the determination of E(Fq) for E an elliptic curve defined
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over a finite field Fq . We may view E(Fq) as a subgroup of E(k) where k is an
algebraically closed field containing Fq . Since E is taken to be defined by a cubic
equation with coefficients in Fq , the Frobenius map

π(x, y) = (xq , yq)

restricts to an endomorphism π = πE : E → E .

(1.1) Definition. Let E be an elliptic curve defined over a finite field Fq . The Frobe-
nius endomorphism πE : E → E is given by πA(x, y) = (zq , yq)

Then πE is in End(E), has degree q , and is purely inseparable. Moreover, (x, y)
is in E(Fq) if and only if πE (x, y) = (x, y). Since the differential of 1E − πE is the
identity idE , the difference endomorphism 1 − πE in End(E) is separable. Also, we
have that

(x, y) is in E(Fq) if and only if (x, y) is in ker(1E − πE ).

From the general theory of separable endomorphisms see 12(4) we know that

N1 = #E(Fq) = deg(1 − πE ) = deg(πE )− Tr(πE )+ 1 = 1 + q − Tr(πE ).

Further, since m2 − mn Tr(π) + n2q = deg(m − nπ) ≥ 0 for all m, n we see that
Tr(π)2−4 deg(π) ≤ 0, or |Tr(π)| ≤ 2

√
q . Hence, this simple argument, using prop-

erties of degrees of endomorpisms applied to the Frobenius endomorphism, leads to
the following result.

(1.2) Theorem (Riemann Hypothesis for Elliptic Curves). Let E be an elliptic
curve defined over a finite field Fq , and let Nm = #E(Fqm ). Then for all m ≥ 1 we
have

|1 + qm − Nm | ≤ 2 · qm/2.

This theorem was conjectured by Artin in his thesis and proved by Hasse [1934].
Since Fqm ⊂ Fqn if and only if m/n, we have in this case E(Fqm ) ⊂ E(Fqn ).

(1.3) Example. Consider the elliptic curve E defined by the equation y2 + y = x3.
Then

E(F2) = {∞ = 0, (0, 0), (0, 1)}
and

E(F4) = {∞ = 0, (0, 0), (0.1), (1, ω), (1, ω2), (ω, ω), (ω, ω2), (ω2, ω), (ω2, ω2)}.
where F4 = {0, 1, ω, ω2} with ω2 + ω + 1 = 0. The group E(F2) is isomorphic to
Z/3 and E(F4) is isomorphic to (Z/3)2. For q = 2 the difference N1 − 1 − q =
3 − 1 − 2 = 0 and N1 = 1 + q , while for q2 = 22, we have N2 − 1 − q2 =
9− 1− 4 = 4 = 2q2/2 = 2.2. Hence the inequality in the Riemann hypothesis is the
best possible for one power of q and Nm = 1 + qm for another power.
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(1.4) Example. The elliptic curve E defined by y2 + y = x3 + x has five points
over F2, namely

{∞ = 0, (0, 0), (0, 1), (1, 0), (1, 1)}.

Hence E(F2) is isomorphic to Z/5 and N1 = 5. Note that N1 −1−q = 5−1−2 =
2 ≤ 2

√
2.

(1.5) Definition. Let E be an elliptic curve defined over a finite field Fq . The char-
acteristic polynomial of Frobenius is

fE (T ) = det(1 − πE T ) = 1 − (Tr(π))T + qT 2 in Z[T ],

and the zeta function ζE (s) is the rational function in qs

ζE (s) = fE (q−s)

(1 − q−s)(1 − q1−s)
= 1 − (Tr(π))q−s + q1−2s

(1 − q−s)(1 − q1−s)
.

(1.6) Remark. The zeta function ζE (s) has poles at s = 0 and s = 1. The inequality
in (1.2), called the Riemann hypothesis, is equivalent to the assertion that the roots of
fE (T ) are complex conjugates of each other. These roots have absolute value equal
to 1/

√
q. In turn this condition is equivalent to the assertion that the zeta function

ζE (s) has zeros only on the line Re(s) = 1/2.

For fE (q−s) = 1− (Trπ)q−s + q1−2s , we replace s by 1− s, and we obtain the
relation

fE (q
−(1−s)) = 1 − (Trπ)qs−1 + q2s−1 = q2s−1(1 − (Trπ)q−s + q1−2s)

= q2s−1 fE (q
−s).

This functional equation for fE and the invariance of the denominator of the zeta
function under s changed to 1 − s yield the following immediately.

(1.7) Proposition. The zeta function ζE (s) of E over Fq satisfies the functional
equation

ζE (1 − s) = q2s−1ζE (s).

There is a far reaching generalization of this zeta function to zeta functions for
any projective variety over a finite field due to A. Weil. In fact, it is the focus of
a vast conjectural program announced by Weil [1949], carried out up to the Rie-
mann hypothesis primarily by Grothendieck and Artin [1963–64], and completed
with Deligne’s [1973] proof of the Riemann hypothesis for smooth projective vari-
eties. Note, for example, the generalization of (1.7) is a consequence of Poincaré du-
ality in �-adic cohomology theory. For a survey of the whole story, see Katz [1976].
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(1.8) Remark. The definition of fE (T ) extends to singular cubic curves C with
singularity c0.

fC (T ) =

⎧⎪⎨⎪⎩
1 − T if c0 is a node with rational tangents,

1 + T if c0 is a node with tangents quadratic over k,

1 if c0 is a cusp.

Then for C either singular or nonsingular cubic

#Cns(Fq) = q fC (q
−1).

We end this section by counting the points on a pair of elliptic curves E and Et

over Fq . Let g(x) ∈ k[x] be a cubic polynomial, and let t be a nonzero scaler in k.
Then denote by gt (x) = t3g(x/t) ∈ k[x]. We thank O. Foster for pointing this out
to us.

(1.9) Definition. let E be an elliptic curve defined by y2 = g(x) where g(x) is a
cubic polynomial over a field k. The twist by a nonzero t ∈ k is the elliptic curve Et

defined by the equation y2 = gt (x) or t−1(y/t)2 = g(x/t). It is isomorphic to curve
with equation t−1 y2 = g(x).

In characteristic > 3 by (3.8) the elliptic curves E and Et are isomorphic if and
only if t is a nonzero square, and further Et ′ and Et ′′ are isomorphic if and only if
t ′/t ′′ is a square.

(1.10) Proposition. Let E be an elliptic curve over a finite field Fq of characteristic
p > 3. Then up to isomorphism there is exactly one twist Et where t is any nonsquare
in Fq . Moreover

#E(Fq)+ #Et (Fq) = 2q + 2.

Proof. The first assertion follows from 3(8.3) and the fact that for a finite field k
the quotient k∗/(k∗)2 has two elements. Next we count the points (x, y) on the two
curves. Firstly, note that g(x) = 0 if and only if gt (x) = 0 giving one point on each
curve for such a value of x . Secondly, note that the element g(x) is a square (resp. a
nonsquare) in k if and only if gt (x) is a nonsquare (resp. square) in k = Fq , that is
giving two points in either E or Et for each such a value of x . When we add the two
points at infinity for zero of the curves, we have

#E(Fq)+ #Et (Fq) = 2(# of x ∈ P(Fq)) = 2(q + 1).

This proves the proposition.

§2. Generalities on Zeta Functions of Curves over a Finite Field
Let C be an algebraic curve over a field k1 = Fq . We wish to study the number of
points on C over kn = Fqn for every n. For every point P on C(k̄1) we have P in
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C(kn) for some n. For the minimal such n, we write k1(P) = kn and n = deg(P),
the local degree of P . If σ generates the cyclic Galois group Gal(kn/k1) of order n,
then p = P + Pσ +· · ·+ Pσ

n−1
is an example of a prime divisor over k1 on C which

is rational over k1. In fact, all prime divisors on C over k1 are of this form and the
norm of the divisor is defined Np = qn . Using multiplicative notation, in constrast
to Chapter 12, §3, we denote a positive rational divisor over k1 by

a = p
n(1)
1 . . . pn(r)

r ,

where n(1), . . . , n(r) are natural numbers and p1, . . . , pr are prime divisors rational
over k1. Then norm of this a is given by

Na = (Np1)
n(1) · · · (Npr )

n(r).

Through the above examples, we circumvent the general theory of rational divisors.

(2.1) Definition. Let C be an algebraic curve defined over k1 = Fq . The zeta func-
tion ζC (s) of C/k1 is defined as a sum or as a product involving divisors rational
over k1

ζC (s) =
∑

positive a

(Na)−s =
∏

prime p

(1 − (Np)−s)−1.

At this point these two formal expressions for the zeta function are equivalent
from the unique decomposition of divisors as products of prime divisors. Now we
begin a discussion which will show that this zeta function is the same zeta function
as in Definition (1.5) in the case of an elliptic curve. We will also outline its basic
properties for a general complete nonsingular curve.

Let Am denote the number of positive divisors a rational over k1 with norm qm

on C and let Pm denote the number of prime divisors y rational over k1 with norm
qm on C . The equality of the two expressions in the definition of the zeta function
leads to two expressions for the related function

ZC (u) =
∞∑

m=0

Amum =
∞∏

m=0

(1 − um)−Pm

and ZC (q−2) = ζC (s). If Nm is the number of points on C(km) where km = Fqm as
above, then

Nm =
∑
d|m

d Pd

from the above description of prime divisors rational over km . Now calculate

d

du
log ZC (u) = 1

u

∞∑
d=1

d Pdud

1 − ud
= 1

u

∞∑
d,d ′=1

d Pdudd ′ = 1

u

∞∑
m=1

Nmum .

Hence we have with the above notations the following result.
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(2.2) Proposition. For Nm = #C(km), where C is an algebraic curve over k1, the
zeta function satisfies the following relation

ζC (s) = exp

( ∞∑
m=1

Nm

m
q−ms

)
.

(2.3) Remark. Since Nm ≤ 1+qm+q2m = #P2(km) for all m, the previous formula
for the zeta function shows that it is a convergent series or convergent product for
Re(s) > 2. In fact, we can do much better and show that it is a rational function with
poles at s = 0 and s = 1, and its zeros are on the line Re(s) = 1/2.

Returning to the case of an elliptic curve E , we know that

Nm = 1 + qm − Tr(πm) = 1 + qm − αm − α−m,

where α and ᾱ are the two imaginary conjugate roots of the characteristic polynomial
det(1 − πE T ) as an element of End(E). There is also another interpretation where α
and ᾱ are the eigenvalues of the inverse of Frobenius endomorphism acting on any
Tate module V�(E) where � is any prime number different from the characteristic p.
This follows from the fact that the inverse of Frobenius has the same characteristic
polynomial on V�(E). Using the above expression for Nm , we calculate the log of
the zeta function

log ζC (s) =
∞∑

m=1

(1 + qm − αm − ᾱm)q−ms

=
∞∑

m=1

q−ms +
∞∑

m=1

q−m(s−1) −
∞∑

m=1

(αq−s)m −
∞∑

m=1

(ᾱq−s)m

= − log(1 − q−s)− log(1 − q1−s)+ log[(1 − αq−s)(1 − ᾱq−s)].

Hence the exponential is the zeta function as a rational function of q−s

ζC (s) = 1 − (α + ᾱ)q−s + q1−2s

(1 − q−s)(1 − q1−s)
= fE (q−s)

(1 − q−s)(1 − q · q−s)
,

where fE (T ) = det(1 − πE T ) = 1 − (α + ᾱ)T + qT 2 = (1 − αT )(1 − ᾱT ).

(2.4) Remark. From the above calculation we see that the two definitions (1.5) and
(2.1) for the zeta function of an elliptic curve yield the same function.

Further, the above discussion gives the framework for describing the result in the
general case of any curve.

(2.5) Theorem. Let C be a smooth projective curve of genus g over Fqm = km for
m = 1, and let Nm = #C(km). Then there are algebraic integers α1, α2, . . . , α2g

with |α j | = √
q and
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Nm = qm + 1 −
2g∑

i=1

αm
i .

Then zeta function is given by

ζC (s) = P(q−s)

(1 − q−s)(1 − q1−s)
,

where P(T ) = (1 − α1T ) . . . (1 − α2gT ). Further ζC satisfies a functional equation

qg(2s−1) · ζC (s) = ζC (1 − s)

which is equivalent to the assertion that the α j pair off such that after reordering
ᾱ2 j−1 = α2 j and so α2 j−1α2 j = q.

The above theorem is due to Weil [1948]. For other discussions see Monsky
[1970] and Bombieri [1973]. The article by Katz [1976] puts this result in the per-
spective of general smooth projective varieties and outlines how the above form of
the zeta function for curves has a natural general extension first conjectured A. Weil
and finally completely proven by P. Deligne.

Observe that the zeta function for a smooth projective curve is a rational function
of q−s . Its poles are at s = 0 and s = 1, and its zeros are on the line Re(s) = 1/2.
This last assertion is equivalent to |α j | = √

q and is called the Riemann hypothesis
for algebraic curves over a finite field. It is the most difficult statement in the above
theorem to demonstrate.

For elliptic curves there were three ways to obtain the quadratic polynomial fE

which is the nontrivial factor in the zeta function. First, it is a quadratic equation for
π−1

E with constant term 1 satisfied in End0(E) over Q. Second, it is the characteristic
polynomial of the inverse Frobenius of E acting on any Tate module V�(E), where
� is unequal to the characteristic p. Third, we can calculate N1 directly to obtain
Tr(πE ). In the case of general smooth curves C the nontrivial factor P(T ) of (2.5)
in the zeta function can be obtained from the theory of correspondences on C which
are certain divisors on the surface C × C . In this way Grothendieck reproved the
basic results for ζC (s) obtained earlier by A. Weil. Originally Weil looked at the Ja-
cobian J (C), an abelian variety of dimension g, and the corresponding Tate module
V�(J (C)). The charcteristic polynomial of π−1

C on V�(J (C)) with constant term 1 is
the factor P(T ) of (2.5). In a more general context this Tate module is the first �-adic
cohomology group and for higher-dimensional smooth varieties all �-adic cohomol-
ogy groups together with the action of Frobenius must be bought into the analysis of
the zeta function of the variety.

§3. Definition of Supersingular Elliptic Curves
In line with our general program of developing as much of the theory of elliptic
curves as possible via the theory of cubic equations, we use the following definition
of supersingular for elliptic curves.
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(3.1) Definition. An elliptic curve E defined by a cubic equation f (w, x, y) over a
field k of characteristic p is supersingular provided the coefficient of (wxy)p−1 in
f (w, x, y)p−1 is zero.

A supersingular elliptic curve is also said to have Hasse invariant 0 or height 2,
otherwise the curve has nonzero Hasse invariant or height 1. The origin of these other
terminologies will be clearer later. The concept was first studied by Hasse [1934] and
it was referred to as the invariant A.

(3.2) Example. For p = 2 the equation of any elliptic curve E can be put in the
following form relative to a point of order 3:

Eα : wy2 + w2 y + αwxy = x3.

Since p − 1 = 2 − 1 = 1, it follows that Eα is supersingular for exactly one curve
when α = 0, that is, the curve

y2 + y = x3.

This is the curve considered in (1.3) where the number of points is p + 1 = 2 + 1.
This property is characteristic of supersingular curves defined over the prime field as
we will see in §4.

(3.3) Example. For p = 3 the equation of E can be put in the form 0 = f (w, x, y) =
x3 +awx2 +bw2x +cw3 −wy2. Since p−1 = 3−1 = 2, we calculate f (w, x, y)2

and note that the coefficient of (wxy)2 is equal to −2a. Hence E is supersingular if
and only if a = 0, i.e., if it has the form y2 = x3 + bx + c. Changing x to αx + β,
we change x3 to α3x3 + β3 and with a suitable choice of α and β the equation be-
comes y2 = x3 − x . This is the only supersingular elliptic curve in characteristic 3.
Moreover, E(F3) = {∞ = 0(0, 0), (1, 0), (−1, 0)} and this is isomorphic to (Z/2)2.
The number of points is p + 1 = 3 + 1 = 4 as in (3.2).

(3.4) Lemma. The coefficient of xk in (x − 1)k(x − λ)k is

(−1)k
k∑

j=0

(
k

j

)2

λ j .

Proof. Expand both (x−1)k = ∑
a(

k
a )(−1)k−a xa and (x−λ)k = ∑

a(
k
b )(−λ)k−bxb.

Hence the product is given by

(x − 1)k(x − λ)k =
∑

i

∑
a+b=i

λk−b
(

k

a

)(
k

b

)
(−1)2k−i x i .

Hence the coeffiecient of xk is (−1)k
∑k

j=0(
k
j )

2λ j .
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(3.5) Proposition. In characteristic p > 2 the curve in Legendre form Eλ : y2 =
x(x − 1)(x − λ) is supersingular if and only if λ is a root of the Hasse invariant

Hp(λ) = (−1)m
m∑

i=0

(m

i

)2
λi , where m = p − 1

2
.

Proof. We must calculate the coefficient of (wxy)p−1 in f p−1 where

f (w, x, y) = wy2 − x(x − w)(x − λw).

In f (w, x, y)p−1 the term (wxy)p−1 will appear only in the middle of the binomial
expansion, i.e., the term (

p−1
m )(wy2)m[x(x −w)(x − λw)]m . Observe that ( p−1

m ) =
(−1)m (mod p) from the relation (x + y)p−1(x + y) = x p + y p (mod p). Since
2m = p − 1, the coefficient of (wxy)p−1 is just the coefficient of (xw)m in (x −
w)m(x − λw)m up to (−1)m and by Lemma (3.4) this is Hp(λ) which proves the
proposition.

In Chapter 9 we saw how the hypergeometric function F(1/2, 1/2, 1; λ) played
a basic role in describing the period lattice of an elliptic curve over C. This same
function is related to the Hasse invariant Hp(λ). To see this, observe that the coeffi-
cients(

− 1
2

k

)
=
(
− 1

2

) (
− 3

2

)
. . . (1 − 2k/2)

k!
=
(−1

2

)k 1 · 3 · 5 . . . (2k − 1)

k!

= (−1)k
(

1

2

)k (2k

k

)
are in Z

[
1

2

]
.

Hence reducing modulo p, we see that the formal series F(1/2, 1/2, 1; λ) in Fp[[λ]]
is defined, and moreover we denote by

G p(λ) =
m∑

i=0

(m

i

)2
λi ≡ F

(
1

2
,

1

2
, 1; λ

)
mod (p, λp)

The polynomial G p(λ) is called the Deuring polynomial. Since for m = (p − 1)/2,
we have the congruence

(m

k

)
=
(

1

2

)k
(p − 1)(p − 3) . . . (p − 2k + 1)

k!
≡
(−1

2

)k 1 · 3 · 5 · · · (2k − 1)

k!

=
(
− 1

2
k

)
(mod p) for k < p.

(3.6) Remark. In the ring of formal series Fp[[λ]] the following relation holds:

F

(
1

2
,

1

2
, 1; λ

)
= G p(λ) · G p(λ

p) · G p(λ
p2
) . . . .
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The function G p(λ) is a solution to the hypergeometric differential equation

λ(1 − λ)d
2w

dλ2
+ (1 − 2λ)

dw

dλ
+ 1

4
w = 0.

This can be seen by direct calculation or by using the assertion that all solutions of
the differential equation in Fp[[λ]] are of the form F(1/2, 1/2, 1; λ)u(λp), where
u is a formal series. Since the polynomial G p(λ) is the solution of a second-order
differential equation it follows from formal considerations that its roots are simple.
This follows from the corresponding recurrence formula for the coefficients of a
Taylor expansion around a root. Hence we have the following result.

(3.7) Proposition. The Deuring polynomial G p(λ) = (−1)m
∑
(

m
i )

2λi has m sim-
ple roots in the algebraic closure of Fp.

The difference between the regular and nonregular solutions of the hypergeomet-
ric differential equation is only a question of a sign since G p(λ) = (−1)m G p(1−λ).
There is only one period up to a constant modulo p and it is a scalar multipole of
G p(λ). In the supersingular case there are no nonzero periods. We will come back to
this when we consider the various formulations of the notion of supersingular curve.

In later sections, using the theory of isogenies and formal groups, we will have
as many as ten criterions for a curve to be supersingular. One of these can be derived
now using the relation to the Deuring polynomial.

(3.8) Proposition. An elliptic curve E is supersingular if and only if the invariant
differential ω is exact.

Proof. For p = 2 we see that ω = dx/(αx+1)when E has the form y2+ y+αxy =
x3. Then ω is exact if and only if α = 0, i.e., E is supersingular.

For p > 2 we have ω = dx/2y, and we put E into the form y2 = x(x−1)(x−λ).
Then ω is exact if and only if y p−1(dx/y p) or equivalently

y p−1dx = [x(x − 1)(x − λ)]mdx

is exact for m = (p−1)/2. This form is exact if and only if the coefficient of x p−1 in
[x(x − 1)(x − λ)]m is zero, but this is also the coefficient of xm in [(x − 1)(x − λ)]m

is zero. This coefficient is G p(λ) by (3.4). Now the proposition follows from (3.5).

These considerations can be used to count mod p the number of points on the
elliptic curve Eλ for λ ∈ Fp. For m = (p − 1)/2 recall that [x(x − 1)(x − λ)]m =
+1 or −1, an dx(x − 1)(x − λ) is a square, that is, of the form y2, if and only if
[x(x − 1)(x − λ)]m = +1. This leads to the formula

#Eλ(Fp) =
∑
x∈Fp

{1 + [x(x − 1)(x − λ)]m} mod p.

Separating out the contribution form x = 0, and using the elementary character sum
in Fp.
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∑
x∈Fp

xa =
{

0 if p − 1 does not divide a

−1 if p − 1 does divide a,

we obtain another version of the above formula

#Eλ(Fp) = 1 − {coefficient of x p−1 in [x(x − 1)(x − λ)]m}.
By (3.4) we have the following assertion.

(3.9) Proposition. For λ ∈ Fp and p > 3 the number of rational points on the
curve Eλ is given by

#Eλ(Fp) ≡ 1 − G p(λ) mod p.

In particular, Eλ is supersingular if and only if #Eλ(Fp) ≡ 1 mod p in which case,
we have #Eλ(Fp) = p + 1 by the Riemann hypothesis.

§4. Number of Supersingular Elliptic Curves
We already know from (3.7) that there are (p − 1)/2 values such that the curve Eλ :
y2 = x(x − 1)(x − λ) is supersingular in characteristic p �= 2 and in characteristic
2 there is just one supersingular curve y2 + y = x3 up to isomorphism. In order
to describe the number of supersingular curves up to isomorphism, we count the j
values of j (λ) as λ ranges over the points on the λ-line such that E is supersingular.
Recall the map from the λ-line to the j-line is given by

j (λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

This is a map of degree 6 with ramification precisely over the points {∞, 0, 123}.

If a supersingular curve Eλ0 has a j-value j0 = j (λ0), then all the points λ in
j−1( j0) correspond to supersingular curves E each isomorphic to Eλ0 . With two
possible exceptions there are six such curves isomorphic to Eλ0 . Starting with the
relation

p − 1

2
=

∑
Eλ supersingular

1,
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and dividing by 6, we obtain the relation

p − 1

12
=

⎛⎜⎜⎜⎝ ∑
supersingular E

up to isomorphism
with j (E)�=0.1728

1

⎞⎟⎟⎟⎠+ α

2
+ β

3
,

where α = 0 or depending on E with j (E) = 123, namely α = 1 if and only if
E is supersingular, and where β = 0 or 1 depending on E with j (E) = 0, namely
β = 1 if and only if E is supersingular. Dividing further by 2 and interpretating the
numbers in the denominators as orders of Aut(E), we obtain the following theorem.

(4.1) Theorem. For a prime p the following sum taken over supersingular curves
defined over F̄p up to isomorphism

p − 1

24
=

∑
E supersingular mod p

up to isomorphism

1

#Aut(E)

holds.

The above discussion proves the theorem for p > 3. The theorem predicts one
supersingular curve for p = 2 with an automorphism group having 24 elements and
one supersingular curve for p = 3 with an automorphism group having 12 elements.
This is the case by (2.2) and 3(6.2) for p = 2 and by (2.3) and 3(5.2) for p = 3.

To make the above theorem more explicit, we decompose (p − 1)/24 = m/2 +
α/4 + β/6, where α and β are 0 or 1 and m = [p/12]. Let n(p) denote the number
of supersingular curves in characteristic p.

Table 1. For supersingular curves in characteristic p > 3.

p (mod 12) p = 1(12) p = 5(12) p = 7(12) p = 11(12)

n(p) = number of
supersingular curves

p − 1

12

p − 5

12
+ 1

p − 7

12
+ 1

p − 11

12
+ 2

p (mod 4) p = 1(4) p = 1(4) p = −1(4) p = −1(4)

Hasse invariant of

y2 = x3 − x ( j = 123) 1 1 0 supersingular 0 supersingular

p (mod 3) p = 1(3) p = −1(3) p = 1(3) p = −1(3)

Hasse invariant of

y2 = x3 − 1 ( j = 0) 1 0 supersingular 1 0 supersingular
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§5. Points of Order p and Supersingular Curves
Recall that the degree of an endomorphism λ : E → E ′ is deg(λ) = [k(E) : k(E ′)]
coming from the induced embedding k(E ′) → k(E) factors into separable and
purely inseparable parts

deg(λ) = deg(λ)s deg(λ)i ,

where deg(λ)s = [k(E) : k(E ′)]s and deg(λ)i = [k(E) : k(E ′)]i . The purely
inseperable degree is always a power of p, deg(λ)i = ph , where h is called the
height of λ. The kernel ker(λ) of λ is a finite subgroup of E(ks).

(5.1) Remark. The number of elements in the kernel is the separable degree. Let
k = ks . Given a finite subgroup G in E(ks) there exists a unique separable isogeny
λG : E → E/G where k(E/G) = k(E)G , the subfield invariant by the action of G
on D(E) induced by translations of G on E . The isogeny and the quotient elliptic
curve are defined over an intermediate field k1 between k and its separable algebraic
closure ks . Then ker(λG) = G and deg(λG) = deg(λg)s = #G = [k(E) : k(E)G]
by Galois theory. This is an indication of how to construct all separable isogenies.
We do not supply the details of the construction of E/G except to give k(E/G) and
the interested reader can consult Mumford, Abelian Varieties, Section 7 for further
details.

(5.2) Definition. The iterated absolute Frobenius Frh
E : E → E (p

h) is defined by

Frh
E (x, y) = (x ph

, y ph
) where E (p

h) has Weierstrass equation with coefficients the
ph th power of the coefficients of E , i.e.,

y2 + a ph

1 xy + a ph

3 y = x3 + a ph

2 x2 + a ph

4 x + a ph

6 .

For k perfect Frh
E is purely inseparable of height h since k(E (p

h)) = k(E)ph
in

k(E). Observe that E is defined over the finite field Fph if and only if E and E (p
h)

are isomorphic and in this case Frh
E = πE .

(5.3) Lemma. Let K = k(x, y) be a separable algebraic extension of a purely tran-
scendental extension k(x) of the perfect field k. Then [K : K p] = p.

Proof. Since K = k(x, y) = k(x, y p), the element x generates K over K p =
k p(x p, y p) = k(x p, y p). Hence the degree is either p or 1. In the latter case x is in
K p and x = t p where t is both separable and purely inseparable over k(x), which is
impossible. Hence [K : K p] = p.

(5.4) Proposition. Let k be a perfect ground field, and let λ : E → E ′ be a purely
inseparable isogeny of height h. Then there exists an isomorphism u : E ′ → E (p

h)

with uλ = Frh
E .
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Proof. We have the inclusion of fields k(E) ⊃ k(E ′) ⊃ k(E)ph = k(E (p
h)). By

Lemma (5.3) we have [k(E) : k(E ′)] = [k(E) : k(E)ph
] and thus k(E ′) = k(E)ph

.
This defines the isomorphism E ′ → E (p

h) with the desired factorization property.
Now we wish to apply this discussion to multiplication by p, denoted pE : E →

E , on a curve E over a field k of positive characteristic p. The degree of pE is p2,
and it factors as

p2 = deg(pE ) = deg(pE )s · deg(pE )i .

Since pE is not separable, it follows that the height h of pE is 1 or 2, and # ker(pE )

is p or 1, respectively, i.e., #pi E(k̄) = (pi )2−h .

(5.5) Proposition. For an elliptic curve E over a perfect field k of positive charac-
teristic with formal group �E , the height h of pE equals the height of the formal
group �E .

Proof. Multiplication by p on �E , denoted by [p]E (t) = c1t p + c2t p2 + · · · is
induced by pE on E . The inseparable degree can be calculated in terms of the em-
bedding k[[t]] → k[[t]] given by sustitution f (t) → f ([p]E (t)). This is of degree
p for c1 �= 0 and of degree p2 otherwise.

(5.6) Theorem. Let E be an elliptic curve over a perfect field k of characteristic
p > 0 with formal group �E . The following are equivalent:

(1) p E(ks) = 0, i.e., the curve has no points of order p.
(2) pE is a purely inseparable isogeny.
(3) The formal group �E has height 2.
(4) The invariant differential ω is exact, i.e., E is supersingular.

Further, for a supersingular E we have an isomorphism E → E (p
2) and E is defined

over Fp2 .

Proof. The equivalence of (1) and (2) follows from the formula for the order of the
kernel of an isogeny in terms of its separable degree. The equivalence of (2) and (3)
is (5.5) and of (3) and (4) is 6(6.7). The last assertion follows from (5.4) and the
remarks preceding (5.3). This proves the theorem.

Since every supersingular elliptic curve is defined over Fp2 . This gives proof that

there are only finitely many up to isomorphism over F̄p.

§6. The Endomorphism Algebra and Supersingular Curves
It might happen that the Frobenius endomorphism πE of an elliptic curve E over Fq

might have some power in the subring Z of End(E). Now we study the implications
of this possibility. Recall πE is in Endk(E) (resp. End0

k(E)) Which is a subring (resp.
division subring) of Endk̄(E) (resp. End0

k̄
(E)).
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(6.1) Proposition. If no power πn
E of πE is in Z contained in End(E), then End0

k(E)
= End0

k̄
(E) = Q(πE ) is a purely imaginary quadratic field.

Proof. An element ϕ in Endk̄(E) is defined over some algebraic extension Fqn of the
ground field k = Fq and thus πn

Eϕ = ϕπn
E . Thus ϕ is in Q(πn

E ) from commutation
properties of algebras embedded in M2(Q), see Lang’s Algebra. In fact, End0

k̄
(E) is

necessarily two-dimensional over Q and equals Q(πE ). The rest follows from (1.2).

(6.2) Proposition. If some power of πE is in Z, then πn
E = pm

E for some m, E is
supersingular, and End0

k̄
(E) is a quaternion algebra.

Proof. Since πE is purely inseparable, deg(πE ) = pi and deg(πn
E ) = pni . From the

assumption that πn
E = cE ∈ Z and deg(πn

E ) = c2
E , we deduce that πn

E = pm
E , where

m = ni/2.
Next, pE is purely inseparable which by (5.5) means that E is supersingular.

So it is among a finite set of isomorphism classes of supersingular curves. For a
finite subgroup G of order prime to p, E/G is also supersingular as one can see by
looking at the points of order p. Let S be any infinite set of primes not including p.
Then there must exist a pair of distinct �, �′ is S with E/G and E/G ′ isomorphic,
where G and G ′ are cyclic subgroups of orders � and �′, respectively. Consider the
following commutative diagram which defined the isogeny ϕ of degree ��′, which is
not a square:

E/G
∼−−−−→ E/G ′4⏐⏐ ⏐⏐�

E
ϕ−−−−→ E

Since deg(nE ) = n2, we see that ϕ is not in Q which is always contained in
End0(E) = End0

k̄
(E). If End0(E) were commutative, it would be an imaginary

quadratic extension. In that case there would be an infinite set of primes S such
that they and products of distinct pairs are not norms of elements from End0(E), i.e.,
degrees of elements from End0(E). The above construction shows that no such infi-
nite set exists, and therefore we deduce that End0(E) must be a quaternion algebra
and is, in particular, noncommutative.

(6.3) Theorem. For an elliptic curve E over a field k the following assertions are
equivalent:

(1) p E(k2) = 0, i.e., the curve is supersingular.
(2) Endk̄(E) is noncommutative.
(3) E is defined over a finite field and there exist strictly positive m and n with πm

E =
pn

E .

Proof. That assertion (1) implies (2) was given in the last paragraph of the previous
proposition. Observe that in the argument only the condition that E is supersingular
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was used. Conversely, if p E(ks) is nonzero, then Tp(E) is a free Zp-module of rank
1, and the representation End(E) → End(Zp) is faithful into a commutative ring.
This proves that (2) implies (1). When (1) holds E is defined over a finite field and
now the same holds for (2) and of course (3).

By (6.2) we see that (3) implies (2) and (2) implies (3) follows from (6.1). This
proves the theorem.

Finally, we are also in a position to derive Deuring’s criterion for a curve to be
defined over a finite field in terms of complex multiplications of the curve.

(6.4) Theorem (Deuring). In characteristic p > 0 an elliptic curve E is defined
over a finite field if and only if dimQ End0(E) > 1, i.e., E has (nontrivial) complex
multiplications.

Proof. If E is defined over a finite field, then (6.1) and (6.2) tell us exactly what
End0(E) is, and it has the desired property.

Conversely, consider Eλ given by y2 + y + λxy = x3 in characteristic 2 and by
y2 = x(x − 1)(x − λ) in characteristic different from 2. Assume that λ is transcen-
dental over Fp, and assume there exists u in End(Eλ) with u2 = N < 0. For a prime
� not dividing pN we choose a nondivisible element x in T�(Eλ), and denote by Gn

the cyclic group generated by the image of x in zm� under T�(Eλ)→ �n E . Then the
separable quotient pn : Eλ/Gn = Eλ(n), where λ(n) is transcendental over Fp. If
un in End(Eλ(n)) corresponds to u under one of the two isomorphisms Eλ → Eλ(n),
then ±u = p−1

n un pn and u(ker(pn)) is contained in ker(pn) = Gn for all n. Hence
u(x) = ax is an eigenvector, and, therefore, u acts as a scalar on T�(E). This contra-
dicts u2 = N < 0. Hence if E is not defined over a finite field, then End(E) = Z,
and this proves the theorem.

§7. Summary of Criteria for a Curve To Be Supersingular
Before giving the table summarizing the previous results (Table 2) we add one more
criterion in terms of sheaf cohomology for a curve to be supersingular. The reader
with insufficient background can skip this result.

(7.1) Proposition. Let E be an elliptic curve over a field k in characteristic p > 0.
Then E is supersingular if and only if

π∗
E : H1(E,OE )→ H1(E,OE )

is nonzero, where π∗
E is induced by the Frobenius morphism πE E → E.

Proof. We have an commutative diagram using the fact that the ideal sheaf of E in
P2 is isomorphic to OP(−3) and the Frobenius F ′ on P = P2 maps OE to OE (p)
where E (p) is the subscheme of P defined by f p = 0.

0 −−−−→ OP(−3p) −−−−→ OP −−−−→ OE (p) −−−−→ 0⏐⏐� f p−1

⏐⏐� ⏐⏐�
0 −−−−→ OP(−3) −−−−→ OP −−−−→ OE −−−−→ 0.
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Table 2. Elliptic Curves in char p different from 0 (results mostly of Deuring and
Hasse).
E can be defined over a finite field if and only if E has complex multiplication, i.e.,
dimQ End0(E) > 1.

Elliptic curves E defined over a finite field divide into two classes:

ordinary (Hasse invariant H = 1; Supersingular† (Hasse invariant H = 0;

height = 1 height = 2

Characterization in terms of p-division points

1. p-Rank (E) = 1, i.e., the p division 1. p-Rank (E) = 0, i.e., the p-division

points are Z/pZ. points are 0.

2. Height of the formal group at 0 is 1. 2. Height of the formal group at 0 is 2.

3. Frob: E → E p2
does not factor through 3. Frob: E → E p2

factors through

p : E → E . p : E → E .

Corollary: E can be defined over Fp2 .

Characterization in terms of endomorphism rings

4. Frobn �= pm
E for all n,m. 4. Frobn = pm

E for some n,m.

5. dimQ End0(E) = 21 (= 2). End0(E) 5. dimQ End0(E) = 22 (= 4).

is an imaginary quadratic extension and End0(E) = h(p) is a quaternion algebra

End(E) is a maximal order of index with inv� = 0 for � �= p,∞ and

prime to p. inv� = 1/2 otherwise. End(E) is a

maximal order in the algebra.

Characterization in terms of f a cubic equation for E

6. Coefficient of (wxy)p−1 in 6. Coefficient of (wxy)p−1 in

f (w, x, y)p−1 is �= 0 f (w, x, y)p−1 is = 0

7. Frob on H1(OE ) is an isomorphism. 7. Frob on H1(OE ) is an zero.

Characterization in terms of the differential form ω = dx/y

8. ω = d logψ and is not exact. 8. ω = dϕ and is exact.

9. ω �= 0 is of the first kind with ap−1 �= 0. 9. ω �= 0 is of the first kind with ap−1 = 0.

ω = ∑
0≤i ai t i dt

Characterization in terms of number n p of points for q = p ≤ 3, i.e., only curves over Fp

10. Np �= 1 + p, 10. Np = 1 + p.

† Supersingular elliptic curves in characteristic p are defined over either the prime field Fp or
its quadratic extension Fp2 .
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This induces another commutative diagram in which the vertical morphisms are
cohomolgy boundary morphisms and F is the Frobenius on E inducing F∗ as the
top vertical composite

H1(E,OE )
F∗

1−−−−→ H1(E (p),OE (p)) −−−−→ H1(E,OE )⏐⏐�∼ ⏐⏐�∼ ⏐⏐�∼
H2(P,OP(−3))

F∗
1−−−−→ H2(P,OP(−3p))

f p−1

−−−−→ H2(P,OP(−3)).

The image of

F∗
1 ((wxy)−1) = (wxy)−p

has as image f p−1(wxy)−p, and H2(OP(−3)) has as basis (wxy)−1 times the co-
efficient of (wxy)p−1 in f p−1. This is the formulation of the Hasse invariant used in
(3.1).

§8. Tate’s Description of Homomorphisms
In 12(6.1) and 12(6.3), we saw that for each prime � different from the characteristic
of the ground field k, the induced homomorphisms

T� : Homk(E, E ′)⊗ Z� → HomGal(ks/k)(T�(E), T�(E
′)),

V� : Homk(E, E ′)⊗ Q� → HomGal(ks/k)(V�(E), V�(E
′)),

are injective. In the case of a finite field k which we have been considering in this
chapter, the Galois group Gal(ks/k) is topologically generated by Frobenius π = Frh

where #k = ph = q, and the symbol HomGal(ks/k) can be written Hom(Fr), namely
the module of homomorphisms commuting with the action of the Frobenius on the
modules T� or V�.

(8.1) Theorem (Tate). The homomorphisms T� and V�, defined above, are isomor-
phisms for � different from p the ground field characteristic.

This theorem was proved by Tate [1996] for an abelian varies over a finite field.
The assertion that T� is an isomorphism is equivalent to the assertion that V� is an
isomorphism since the cokernel of T� is torsion free by 12(6.3).

Recall that two elliptic curves E and E ′ are isogenous provided Hom(E, E ′) is
nonzero. Just from the injectivity of T� and V�, we have the following elementary
result using linear algebra.

(8.2) Proposition. If two elliptic curves E and E′ are isogenous, then their charac-
teristic polynomials fE = fE ′ are equal. Moreover,

rank Hom(Fr)(V�(E), V�(E
′)) =

{
2 if E is ordinary,

4 if E is supersingular.

The zeros of fE are distinct in the ordinary case and equal in the supersingular case.
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Proof. In an extension of Q� diagonalize the action of πE to

(
u 0
0 v

)
on V�(E) and

the action of πE to

(
u′ 0
0 v′

)
, where u, v are the conjugate roots of T 2 fE (1/T ) and

u′, v′ of T 2 fE ′(1/T ). For

(
a b
c d

)
to be in Hom(Fr)(V�(E), V�(E ′)) it is necessary

and sufficient that(
au

cu

bv

cu

)
=
(

a

c

b

d

)(
u

0

0

v

)
=
(

u′

0

0

u′

)(
a

c

b

d

)
=
(

au′

cv′
bu′

dv′

)
.

If one entry of

(
a b
c d

)
is nonzero, then one eigenvalue of πE is equal to one eigen-

value of πE ′ and since they are conjugate pairs, the sets {u, v} and {u′, v′} are equal.
When u = v, the supersingular case, we see that Hom(Fr) consists of all homo-
morphisms and has rank 4. When the eigenvalues are distinct, we cannot have both
a �= 0 and c �= 0 otherwise u = u′ and u = v′ contradicting u′ = v′ and, sim-
ilarly, we cannot have both b �= 0 and d �= 0 or it would contradict u �= v. Thus

Hom(Fr)(V�(E), V�(E ′)) consists of all

(
a 0
0 d

)
or all

(
0 b
c 0

)
and hence has rank 2.

This proves the proposition.

(8.3) Remark. For two isogenies u : E → E ′ and v : E ′ → E ′′ the composite
vu : E → E ′′ is an isogeny, in particular, nonzero. This means that the pairings

Endk(E)× Homk(E, E ′)→ Homk(E, E ′)

are nondegenerate. We know that rank Endk(E) = 2 for E ordinary (not su-
persingular) and rank Endk(E) = 4 for E supersingular. Hence we see that for
Homk(E, E ′) �= 0, it follows that rank Homk(E, E ′) = rank Hom(Fr)(T�(E), T�(E ′)),
and this proves Theorem (8.1) in the case where Homk(E, E ′) �= 0. In other words,

T� : Homk(E, E ′)⊗ Z� → Hom(Fr)(T�(E), T�(E
′))

is a monomorphism between two modules of the same rank with torsion free coker-
nel, and, therefore, T� is an isomorphism.

(8.4) Theorem. Let E and E′ be two elliptic curves over a finite field k=Fq . Then
the following are equivalent:

(1) E and E′ are isogenous over k.
(2) V�(E) and V�(E ′) are Gal(k/k)-isomorphic modules.
(3) #E(k) = #E ′(k), i.e., the two curves have the same number of elements over k.
(4) ζE (s) = ζE ′(s), the two curves have the same zeta functions.

Proof. The equivalence of (1) and (2) follows by Tate’s theorem, (8.1), since

Hom(E, E ′)⊗ Q� and HomGal(k̄/k)(V�(E), V�(E
′))
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are isomorphic. Since Gal(k̄/k) acts semisimply on V�(E) by (8.2), the Gal(k̄/k)-
module structure over Q� is determined by the trace of σ where σ(a) = aq or π ,
that is, by the cardinality of E(k). This gives the equivalence of (1), (2), and (3).
Finally, (3) and (4) are equivalent by (2.2) for N1 determines all the Nm . This proves
the theorem.

Consider integers a with |a| ≤ 2
√

q . We ask whether there is an elliptic curve
E/Fq with #E(Fq) = q + 1 − a or equivalently with Tr(πE ) = a. The problem was
solved more generally for abelian varieties by Honda [1968], see also Tate [1968].
We only state the result.

(8.5) Theorem. Let a be an integer with |a| ≤ 2
√

q. If a ≡ 0 (mod q), then a2 ≡ 0
(mod q). Then there exists an elliptic curve E over Fq with #E(Fq) = 1 + q − a or
equivalently Tr(πE ) = a.

(8.6) Example. For p = 2 and N = #E(F2a ) we have for s = 1, 2, 3

q = 2, q + 1 = 3 possible N = 1, 2, 3, 4, 5.

q = 4, q + 1 = 5 possible N = 1, 2, 3, 4, 5, 6, 7, 8, 9.

q = 8, q + 1 = 9 possible N = 4, 5, 6, 8, 9, 10, 12, 13, 14.

Observe that 9 − 2 = 7 and 9 + 2 = 11 are missing values for q = 8.

§9. Division Polynomial
The division polynomial is associated with multiplication by N on an elliptic curve
E over a field k. It is polynomial ψN (x) in the ring generated by the coefficients of
the equation for E and of degree (N 2 − 1)/2 when N is odd. We begin our sketch of
the theory with the statement of a general result for an elliptic curve over any field
giving a polynomial in two variables ψN (x, y), called the N th division polynomial.

(9.1) Proposition. Let E be an elliptic curve over a field k with coefficients ai , and
let N > 0 be an odd number. There exist polynomialsψN (x, y), θN (x, y), ωN (x, y) ∈
Z[x, y, ai ] such that multiplication by N on (x, y) ∈ E(k)− {0} is given by

[N ](x, y) =
(
θN (x, y)

ψN (x, y)2
,
ωN (x, y)

ψN (x, y)3

)
.

The polynomials θN and ωN are polynomials in ψN .

A general reference for this subject is Silverman [1994] GTM 151, for this asser-
tion see pp. 105.

Over a field of characteristic �= 2, 3 the situation simplifies to a single series of
polynomials ψN (x) describing [N ](x, y), for the dependence of ψN (x, y) simplifies
significantly. Here a reference is also Blake, Seroussi, and Smart [1999] LMS 265,
pp. 39–42.
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(9.2) Division polynomial over fields of characteristic unequal to 2 or 3. Let N
be an odd number, and consider the curve E = Ea,b defined by y2 = x3 + ax + b
over a field k of characteristic p �= 2. We introduce the polynomial

ψN (x) =
∏

P∈(E[N ]−{0})/{±1}
(x − x(P))

of degree (N 2 − 1)/2 which can be viewed as an element in Z[x, a, b]. When N is
even, y appears only with odd power in ψN (x, y). When N is odd, y appears only
with even power in ψN (x, y). If N is odd, then on the curve we can eliminate y so
that ψN (x, y) becomes ψN (x).

(9.3) Recurrence formulas. We have the following examples

ψ0 = 0, ψ1 = 1, ψ2 = 2y, ψ3 = 3x4 + 6ax2 + 12bx − a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b2 − a2),

and the following recurrence formulas

ψ2N+1 = ψN+2ψ
3
N − ψN−1ψN+1, N ≥ 2

ψ2N = (ψN+2ψ
2
N−1 − ψN−2ψ

2
N+1)

N

2y
, N > 2.

(9.4) Formula for multiplication by N. In terms of the division polynomials we
have

[N ](x, y) =
(

x − ψN−1ψN+1

ψ2
N

,
ψN+2ψ

2
N−1 − ψN−2ψ

2
N+1

4yψ3
N

)
.
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Elliptic Curves over Local Fields

We return to the ideas of Chapter 5 where the torsion in E(Q) was studied using
the reduction map E(Q) → Ē(Fp) at a prime p. Now we study reduction in terms
of E(Q) → E(Qp). This leads to elliptic curves over any complete field K with a
discrete valuation where the congruences of 5(4.3) are interpreted using the formal
group introduced in Chapter 12 §7. We obtain a more precise version of 5(4.5).

For the reduction morphism we use an equation in normal form which is minimal
as in 5(2.2), that is, such that the coefficients a j are in the valuation ring R and
the valuation of the discriminant v() is minimal among such equation. When the
reduced curve Ē is nonsingular, it can be studied within the theory of the cubic
equation, and the reduction map is a group homomorphism.

When the reduced curve Ē is singular, we study the possible singular behavior,
and for this it is useful to introduce a second minimal model, the Néron minimal
model E#. This concept depends on the notion of group scheme which we describe
briefly. Following Tate [1975, LN 476], we enumerate the possible singular reduc-
tions and the corresponding Néron models rather than embarking on a general theory
which would take us beyond the scope of this book. Included in the list of singular fi-
bres are various numerical invariants, like the conductor, which are used in the study
of the L-function of an elliptic curve over a global field.

Finally in this chapter we include an introduction to elliptic curves over R. This
is a treatment that I learned from Don Zagier which had been worked out for his
paper with B. Gross on the derivative of the L-function, see [1986].

The reader should refer to Silverman [1986], Chapter VII in this chapter.

§1. The Canonical p-Adic Filtration on the Points of an Elliptic
Curve over a Local Field

Using the notations 5(1.1) and a fixed uniformizing parameter π , we recall that the
is a filtration of the additive group of the local field K

K ⊃ R ⊃ Rπ ⊃ Rπ2 ⊃ · · · ⊃ Rπm ⊃ · · ·
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and one of the multiplicative group

K ∗ ⊃ R∗ ⊃ 1 + Rπ ⊃ 1 + Rπ2 ⊃ · · · ⊃ 1 + Rπm ⊃ · · · .
There are isomorphisms

Rπn/Rπn+1 → k+ for n ≥ 0, v : K ∗/R∗ → Z, r : R∗/1 + Rπ → k∗,

and

1 + Rπm/1 + Rπm+1 → k+ for m ≥ 1.

In 5(4.5) there are analogous results for the kernel E (1)(K ) of the reduction homo-
morphism. Using the formal group associated to E , we will be able to give a more
precise picture of this p-adic filtration.

(1.1) Definition. Let E be an elliptic curve over K with reduction mapping
r : E(K ) → Ē(k), and let Ē(k)ns the group of nonsingular points of E(k). The
canonical p-adic filtration of E is a sequence of subgroups of E(K )

E(K ) ⊃ E (0)(K ) ⊃ E (1)(K ) ⊃ · · · ⊃ E (n)(K ) ⊃ · · · ,
where E (0)(K ) = r−1(E(k)ns), E (1)(K ) = r−1(0), and for n ≥ 1 E (n)(K ) is the set
of all (x, y) satisfying v(x) ≤ −2n and v(y) ≤ −3n.

From the equation in normal form with v(a j ) ≥ 0 we have v(x) < 0 if and only
if v(y) < 0 and in this case v(x) = −2n and v(y) = −3n for some n. In particular,
the two definitions of E (1)(K ) are equivalent. It is also the case that these definitions
of E (m)(K ) are equivalent to those given in 5(4.1).

For the filtration E(K ) ⊃ E (0)(K ) ⊃ E (1)(K ) we have asserted that asserted
that E(K )/E (0)(K ) is finite and that E (0)(K )/E (1)(K ) is isomorphic to Ē(k)ns as
in 5(3.4). An analysis of the structure of the quotients E (1)(K ) was given in Chapter
5, §4 in terms of the structure of the quotients E (n)(K )/E (2n)(K ). Using the formal
group law�E of E where�E (t1, t2) is in R[[t1, t2]], under the assumption that K is
complete, we can define a second group structure on Rπ by a +E b = �E (a, b) in
Rπ , and this modified version of Rπ is isomorphic to E (1)(K ). More precisely we
have the following theorem which uses the considerations of Chapter 12, §7.

(1.2) Theorem. Let E be an elliptic curve over a field K with a complete discrete
valuation. The function t (P) = −x(P)/y(P) is an isomorphism of E (1)(K ) onto
Rπ where Rπ has the group structure given by a +E b = �E (a, b) in terms of the
formal group law �E of E.

Proof. The definition of �E (t1, t2) in 12(7.2) is in terms of the group law on the
elliptic curve E . Hence the function t (P) = −x(P)/y(P) is a group homomorphism
E (1)(K )/E (n)(K ) → Rπ/Rπn for each n, and hence also in the limit E (1)(K ) →
Rπ . By 5(4.5) it induces a monomorphism E (n)(K )/E (2n)(K ) → Rπn/Rπ2n for
each n, and this implies that E (1)(K ) → Rπ is a monomorphism. Finally the map
is surjective, for given a value t in R, we can substitute into the power series for x
and y in t , see 12(7.1), to obtain a point on E (1)(K ) having the given t value. This
proves the theorem.
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(1.3) Corollary. Let E be an elliptic curve over a field K with a complete discrete
valuation. The group E (1)(K ) is uniquely divisible by all integers m not divisible by
the characteristic of k.

Proof. For the formal group law �E (t1, t2), the series [m](x) = mx + · · · has an
inverse function in R[[x]] since m is invertible in R. Hence the map, which is multi-
plication by m on Rπ with group structure a+E b is an isomorphism. By the theorem
(1.2) it is an isomorphism on E (1)(K ). This proves the corollary.

§2. The Néron Minimal Model
Now we touch on concepts which go beyond the scope of the methods of this book.
The minimal model E over K is defined by an equation in normal form whose dis-
criminant has a certain minimality property. There is another minimal model E#, due
to A. Néron, which contains additional information about the reduced curve Ē . This
additional structure plays an important role in analyzing the entire p-adic filtration
on E(K ) and in defining the conductor of an elliptic curve in the global theory. The
basic references are Néron [1964], Ogg [1967], Serre–Tate [1968], and Tate [1975,
LN 476].

(2.1) Definition. Let E be an elliptic curve over K . The Néron minimal model E#

associated with E is a smooth scheme over R together with an isomorphism of curves
over K defined θ : E# ×R K → E such that for any smooth scheme X over Spec(R)
this isomorphism induces an isomorphism

HomR(X, E#)→ HomK (X ×R K , E)

given by f → θ( f ×R K ) for f in HomR(X, E#).

The minimal normal form of the cubic equation also defines a scheme E ! over
R which means that there is a map E ! → Spec(R). Since Spec(R) consists of two
points η and s, the general fibre E !

η, i.e., the fibre of E ! over η the open general point,

is just the given elliptic curve E over K , and the special fibre E !
s , i.e., the fibre E !

over s the closed or special point, is just the reduced curve Ē over k. We also use
the notation E !

η = E ! ×R K and E !
s = E ! ×R k for the general and special fibres.

Observe that the scheme theoretical language allows us to view E over K and Ē over
k as part of a single algebraic object.

(2.2) Remark. The two-dimensional scheme E ! over Spec(R) is regular if and only
if Ē is nonsingular. By resolving the possible singularities of E !, we obtain a new
scheme E+ over Spec(R). If E# denotes the subscheme of smooth points of the
map E+ → Spec(R), then there is a map E# × E+ → E+ which restricts to
a group structure on E# over Spec(R). This E# is the Néron model. In order to
check the universal property of E#, we consider a morphism of the general fibre
of a smooth scheme g : X ×R K = Xη → E into E over K . The graph Gg
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of g is a subscheme of the common general fibre Xη × Eη of all three schemes
X × E# ⊂→ X × E+ → X × E !. The key observation is that the closure of Gg

in X × E+ is in fact in X × E# and is the graph G f of a morphism f : X → E#

corresponding to g in the formulation of the universal property. For details the reader
should see Néron [1964].

(2.3) Remarks. The special fibre E#
s of the Néron model E# of E is a richer object

than the reduction Ē of E and the group Ē(k)ns ⊂ Ē(k). The reduction morphism
for the group scheme E# over Spec(R) defines an epimorphism for a complete R

E(K ) = E#(K )→ E#
s (k)

with kernel E (1)(K ). The original reduction Ē(k)ns is E# 0
s (k), where E# 0

s is the
connected component of the algebraic group E#

s . In particular, we have the isomor-
phisms

E(K )/E (1)(K )→ E#
s (k) and E(K )/E (0)(K )→ E#

s (k)/Ē(k)ns,

where E#
s (k)/Ē(k)ns is the finite group of connected components of E#

s (k).

Now we come to a basic invariant of an elliptic curve over a local field K .

(2.4) Definition. The conductor f (E) = π f in R of an elliptic curve E over K is
given by

f = v()+ 1 − n,

where n is the number of connected components of E#
s over k̄.

(2.5) Remark. The ordinal f of the conductor f (E) is a sum

f = f ′ + d, where f ′ =

⎧⎪⎨⎪⎩
0 if Ens is an elliptic curve,

1 if Ens is of multiplicative type, or

2 if Ens is of additive type,

and d is zero unless the residue class field k has characteristic 2 or 3, and it is given
in terms of the wild ramification of E(K ) as a Galois module, see Ogg [1967], where
the relation for f is considered.

Tate [1975] in LN 476, Antwerp IV gives a detailed version of an algorithm for
describing the special fibre of the Néron model. For the construction of the Néron
model following (2.2) in terms of the valuations (or orders of zero) v(ai ), v(bi ),
v(ci ), and v() of the standard coefficients and the discriminant  of the minimal
Weierstrass equation for E , see 5(2.2). In 5(7.2) we considered the three classes of
good, multiplicative, and additive reduction. It is the curves with additive reduction
that divide into seven different families when the special fibre of the Néron model is
studied. We now give a version of this classification and a table of the possibilities.
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(2.6) Special Fibre of the Néron Model. We preserve the notations of (2.3), and
we denote by c the order of � = E(K )/E (0)(K ) and n the number of connected
components of E#

s over k̄. We divide the classification of the special fibers into three
classes. The first is the good and multiplicative reduction cases, the second is three
cases of additive reduction controlled by the quadratic part of the Weierstrass qua-
tion, and the third is four cases of additive reduction controlled by the cubic part of
the Weierstrass equation.

Step I. We start with the coefficients ai , bi , and ci from a minimal model in
normal form.

(G) The curve E has good reduction which is equivalent to v() = 0. In this
case E = E#, and the special fibre is an elliptic curve Ē which is the reduction of E .

(M) The curve has multiplicative reduction which is equivalent to v() > 0
and v(b2) = 0. We change coordinates such that v(a3), v(a4), and v(a6) > 0, i.e.,
so that the singularity of the reduced curve is at (0, 0). Then v(b2) = 0 is equivalent
to v(c4) = 0 since v(b4) > 0, and we see that v( j (E)) = −v() = −n. In
Table 1 this is the Case In (or (bn) in Néron’s notation), where n is the number of
connected components of E#

s over k̄. Let k′ be the field of roots over k of the equation
T 2 + ā1T − ā2. There are two cases for the structure of the connected component
E# 0

s of the identity.
(M1) If k′ = k, then f = 1, E# 0

s (k) = k∗, and � is cyclic of order n = v().
In this case the curve is isomorphic to the Tate curve Eq , where q satisfies v(q) = n.

(M2) If k′ �= k, then f = 1, E# 0
s (k) = ker(Nk′/k), � is cyclic of order

c =
{

1 if v() is odd,

2 if v() is even.

(A) The curve has additive reduction. These are all the other cases and are
treated in the next two steps.

Step II. In this and the next step assume that v() > 0, v(b2) > 0, and after
change of variable v(a3), v(a4), and v(a6) > 0. Recall that b2 = a2

1 + 4a2 which is
the discriminant of the quadratic T 2 + a1T − a2. For local uniformizing parameter
π there is a useful notation ai,m = π−mai , xm = π−m x , and ym = π−m y for when
the quantities have a suitably high valuation (or order of zero). We distinguish three
cases assuming the above.

(A1) Assume v(a6) = 1. This is the cusp, Case II (or (c1)) in Table 1 with
c = 1, n = 1, and f = v() = 2. In this case the Weierstrass model is the Néron
model since m = (π, x, y) = (x, y) and A = R[x, y]m is regular.

(A2) Assume v(a6) ≥ 2 and v(b8) = 2. Observe that v(a6) ≥ 2 implies that
v(b6), v(b8) ≥ 2. This is Case III (or (c2)) in Table 1 with c = 2, n = 2, f = 2, and
v() = 3.

(A3) Assume v(a6) ≥ 2, v(b8) ≥ 3, and v(b6) = 2. This is Case IV (or (c3))
in Table 1 with n = 3, c = 1 or 3, f = 2, and v() = 4.

Under the assumptions of (A2) we can write the equation for the curve in the
form
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(a) y2
1 + a1,0x1 y1 + a3,1 y1 = πx3

1 + a2,0x2
1 + a4,1x1 + a6,2.

The singular point on the fibre, whose local ring is A = R[x, y]m , blows up into the
conic

(b) y2 + a1,0xy + a3,1 y = a2,0x2 + a4,1x + a6,2.

whose discriminant is b8,2 = −π−2b8 for (A2). Further, in (A3) the conic becomes

(c) t2 + a3,1t + a6,2 = 0,

where t = y−ax is given by (y−ax)2 = y2 +a1xy−a2x2. The discriminant of the
quadratic (c) is b6,2, and thus under the assumptions of (A3) the conic degenerates
into two distinct lines. Dividing (a) by x3

1 we obtain an equation F(u, v) = π which
modulo π factors into L1L2L3. Since the local ring generated by any two factors L1,
L2, or L3 is regular, equation (a) gives a regular scheme over R with fibre the three
lines L̄i = 0. Finally, c is the number lines rational over k. One line is rational over
k and the others are given by t2 + a3,1t + a6,2 = 0. Hence the value c = 1 or 3, but
it is 3 over a large enough k.

Step III. We assume that v(a6) ≥ 2, v(b8) ≥ 3, and v(b6) ≥ 3. With the sin-
gularity at (0, 0) on Ē this leads to the relations v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥ 2,
v(a4) ≥ 2, and v(a6) ≥ 3. For the cubic polynomial P(t) = t3+a2,1t2+a4,2t+a6,3,
the equation of the curve becomes

y2
2 + a1,1x1 y1 + a3,2 y2 = P(x1).

There are three cases depending on the multiplicity of the roots of P(t). If there is
a double root, there are two subcases depending on the multiplicity of the roots of
a quadratic polynomials y2 + a3,3 y − a6,4. If there is a triple root, there are three
subcases depending on the multiplicity of the roots of y2 + a3,2 y − a6,4 and the
divisibility of a4.

For details and a description of how Cases I∗0, I∗m , IV∗, III∗, and II∗ come up, see
Tate [1975, LN 476, pp. 50–52] and for a related analysis Ogg [1967]. We conclude
with Table 1.

§3. Galois Criterion of Good Reduction of Néron–Ogg–Šafarevič
Let K be a local field with valuation ring R and residue class field R → R/Rπ = k.
There is a criterion in terms of the action of Gal(Ks/K ) on E(Ks) and the subgroups
N E(Ks) for an elliptic curve E over K to have good reduction at k. The idea behind
this condition is that the N E(Ks) is isomorphic to (Z/ZN )2 for N prime to the
characteristic of K , and the following are equivalent:

(a) N Ē(ks)ns is isomorphic to (Z/ZN )2 for all N prime to char(k).
(b) Ē(ks)ns is complete, i.e., Ē = Ēns.
(c) E has good reduction.
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For the multiplicative group we have N Gm(ks) = µN (1)(ks) and for the additive
group we have N Ga(ks) = 0. Thus it is exactly the case of good reduction where the
reduction morphism E(Ks)→ Ē(ks) restricts to an isomorphism N E → N Ē , and it
is the case of bad reduction when it has a nontrivial kernel. Unfortunately the above
outline of ideas does not work for the Weierstrass model E over R, but we must use
the Néron model E# of E which has additional naturality properties.

The Galois group Gal(Ks/K ) → Gal(ks/k) maps surjectively and the kernel is
called the inertia subgroup I of Gal(Ks/K ).

(3.1) Definition. A set S on which Gal(Ks/K ) acts is called unramified provided
the inertia subgroup I acts as the identity on the set S.

In other words, in the unramified case, the action of Gal(Ks/K ) factors through
an action of the Galois group Gal(ks/k) of the residue class field. This definition can
apply to S = N E(Ks) or T�(E) associated with an elliptic curve E over K .

(3.2) Theorem (Criterion of Néron–Ogg–Šafarevič). Let K be a local field with
perfect residue class field k of characteristic p. Then the following assertions are
equivalent for an elliptic curve E over K :

(1) The elliptic curve E has good reduction.
(2) The N-division points N E(Ks) are unramified for all N prime to the character-

istic p of k.
(2)′ The N-division points N E(Ks) are unramified for infinitely many N prime to the

characteristic p of k.
(3) The Tate module T�(E) is unramified for some prime � unequal p.

Now we sketch the proof given in Serre–Tate [1968]; see also Ogg [1967]. The
line of argument that we give for elliptic curves works equally well for higher-
dimensional abelian varieties.

Proof. Since T�(E) is unramified if and only if each �n E(Ks) is unramified, it is clear
that (2) implies (3) and (3) implies (2)′. In order to see that (1) implies (2) and (2)′
implies (1), we introduce the notation L for the fixed field of the inertial subgroup I
of Gal(Ks/K ) and RL for the ring of integers in L . Then k̄ is the residue class field
of both RL and Rs of Ks. For the Néron model E# we have two isomorphisms and a
reduction morphism r in the sequence

E(Ks)
I → E(L)→ E#(RL)

r→ E#
s (k̄).

The basic properties of r are derived from the facts that RL is Henselian, i.e.,
Hensel’s lemma applies to it, and that E# is smooth. The morphism r is surjective
and Gal(Ks/K )→ Gal(k̄/k) equivariant, and the kernel ker(r) is uniquely divisible
by any N prime to p.

If E has good reduction, i.e., (1) is satisfied, then E#
s is an elliptic curve so that

N E#
s (k̄) is isomorphic to (Z/NZ)2. Thus the same is true for N E(Ks)

I so that I acts
trivially on N E(Ks) for all N prime to p. Thus (1) implies (2).
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If (2)′ is satisfied, then for infinitely many N the fixed subgroup N E(Ks)
I =

N E(Ks). For N strictly bigger than the index (E#
s : E#

s,0) there is a subgroup of E#
s

isomorphic to (Z/NZ)2, and hence, E#
s,0 has a subgroup isomorphic to (Z/NZ)2. In

particular, E#
s,0 is an elliptic curve and therefore proper. It suffices to show that the

scheme E# is proper over Spec(R), and for this we use the next lemma which will
complete the proof of the theorem.

(3.3) Lemma. Let X be a smooth scheme over Spec(R) whose general fibre Xη =
X ×R K is geometrically connected and whose special fibre X̄ is proper. Then X is
proper over Spec(R), and X̄ is geometrically connected.

For the proof of the lemma see Serre–Tate [1968, p. 496]. It follows from basic
results on properness and correctedness for schemes.

Finally we consider the characteristic polynomial in the ramified case in a form
to be used in the study of the L-function. Let K be a finite extension of Qp with
a valuation v extending ordp on Qp and with residue class field k(v) and Nv =
# k(v) = q = p f . Let I be the inertia subgroup of G = Gal(K̄/K ) = Gal(Q̄p/K )

and Fr the arithmetic Frobenius which generates G/I
∼→ Ẑ.

For each � �= p the element Fr has a well-defined action on T�(E)I independent
of the choice of representative in the coset modulo I , and its characteristic polyno-
mial

fE/K (T ) = det
(

1 −
(

Fr | T�(E)
I
)

T
)

has again integral coefficients independent of � and is of degree ≤ 2. Its degree
depends on whether the reduction is good, multiplicative, or additive.

(3.4) Remark. Let Ē denote the reduction of E over k(v). Then the cardinality
# E(k(v))ns = q fE/K (1/q). For the three cases:

(1) Good reduction, we have fE/K (T ) = 1 − Tr(π)T + qT 2.
(2) Multiplicative reduction, we have

fE/K (T ) =
{

1 − T for the split case,

1 + T for the nonsplit case.

(3) Additive reduction, we have fE/K (T ) = 1.

Observe the cases (1), (2), and (3) are respectively equivalent to the degree of
fE/K (T ) being of degree 2, 1, and 0.

§4. Elliptic Curves over the Real Numbers
We recall the notation for 3(8.5) for a parametrization of the family of elliptic curves
over a field K . We will eventually specialize K to the real numbers R.



§4. Elliptic Curves over the Real Numbers 285

(4.1) Notation. Let K be a field, and consider the curve E〈α, β〉: y2 = x3 − 3αx +
2β. We have seen that E〈α, β〉 and E〈α′, β ′〉 are isomorphic if and only if there
exists λ ∈ K ∗ with λ4α = α′ and λ6β = β ′. Since the J -value of E〈α, β〉 is
J (α, β) = α3/(α, β) where (α, β) = α3 − β2, we introduce the following two
orbit spaces

E��(K ) = K 2 − {α3 = β2}/K ∗ and E��′(K ) = K 2 − {(0, 0)}/K ∗.

In both cases the action of K ∗ on K 2 is by λ · (α, β) = (λ4α, λ6β). We have con-
structed a bijection from E��(K ) = K 2 − {α3 = β2}/K ∗ to isomorphism classes of
elliptic curves and a bijection from E��′(K ) = K 2 − {(0, 0)}/K ∗ to isomorphism
classes of possibly singular elliptic curves with at most a double point.

For K algebraically closed the J -function is a bijection J : E��(K )→ K which
extends to a bijection J : E��′(K )→ K ∪{∞} where P1(K ) = K ∪{∞}. The value
J = ∞ corresponds to the curve with a double point E〈λ2, λ3〉 at λ and third root at
−2λ.

(4.2) The Upper Half Plane and the Cubic Curve. Recall the bijection

� : H/SL(2,Z)→ E��(C)

where τ ∈ H is assigned to the curve �(τ) = E〈E4(τ ), E6(τ )〉 with cubic equation

y2 = x3 − 3E4(τ )x + 2E6(τ ),

see 10(1.6). We diagram both the smooth and the singular cubics for both C and R

Recall the classical j = 123 J . Now we study which points in H/SL(2,Z), or equiv-
alently, in the fundamental domain of H, map under � to E��(R) ⊂ E��(C). Then
we describe the behavior of J on these domains.

(4.3) Eisenstein Series Coefficients. The cubic equation in the Weierstrass theory
was originally derived in the form,

y2 = 4x3 − g2(τ )x − g3(τ ),
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see 9(4.1). In 10(1.4) other multiples of the basic Eisenstein series Gk(L) = G2k(τ )

for Lτ = Zτ + Z were introduced where g2(τ ) = 60G4(τ ) and g3(τ ) = 140G6(τ ).
Now we use another normalization with q-expansion having 1 as constant term,
namely,

G2k(τ ) = 2ζ(2k)E2k(τ ).

Then the two relevant functions of weights 4 and 6 are respectively

E4 = 1 + 240
∑
n≥1

σ3(n)q
n and E6 = 1 + 504

∑
n≥1

σ5(n)q
n

where σs(n)
∑

d|n ds . After suitable renormalization we have the equation of the

cubic as above y2 = x3 − 3E4(τ )x + 2E6(τ ).

(4.4) Fundamental Domain. The fundamental domain D of SL(2,Z) in H is given
by the inequalities D : −1/2 ≤ Re(τ ) ≤ 1/2 and |τ | ≥ 1,

P

−1 +1

Πm (τ) > 0

2

that is, the central strip outside the closed unit disc. When the strip −1/2 ≤ Re(τ ) ≤
1/2 is mapped into the unit disc |q| < 1 by the exponential function q = q(t) =
e2π iτ we see that q is real exactly for Re(τ ) = 0, ±1/2. In terms of the equation of
the cubic curve E(τ ): y2 = x3 − 3E4(τ )x + 2E6(τ ), we know that E4 and E6 have
expansions in q(τ ) with real coefficients. Furthermore the function j (τ ) of 9(4.8)
becomes j (τ ) = 123 J (τ ) where

J (τ ) = E4(τ )
3/(τ) and (τ) = E4(τ )

3 − E6(τ )
2.

Recalling 10(1.7), we have thus four equivalent conditions for the equation
E〈E4(τ ), E6(τ )〉 to be defined with real coefficients: (1) q is real, (2) Re(τ ) is a
half integer, (3) τ + τ̄ is an integer, and (4) Zτ +Z is stable under complex conjuga-
tion.

(4.5) Notation. Let ζn = exp(2π i/n), a special primitive nth root of unity. It satis-
fies the equation 1 + x + · · · + xn−1 = 0 like all nontrivial nth roots of unity.

The “corners” of the fundamental domain along the circle τ | = 1 are respectively
ζ3 where Re(ζ3) = −1/2, ζ4 = i where Re(ζ4) = 0, and ζ6 where Re(ζ6) = 1/2.
These are the intersections with the lines given real elliptic curves. We will use the
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following basic modular transformations S(τ ) = −1/τ and T (τ ) = −1/(τ − 1).
These two transformations have the following values on the corners.

(1) For S it preserves the line Re(τ ) = 0 and S(ζ4) = ζ4. Also S(ζ3) = ζ6 and
S(ζ6) = ζ3 interchanging the lines Re(τ ) = ±1.

(2) For T we have T (ζ6) = ζ6, T (ζ4) = (1/2)1/2ζ8, and T (ζ3) = (1/3)1/2ζ12
carries the circle |τ | = 1 to the line Re(τ ) = 1/2 in the upper half plane.

(4.6) The Modular Forms E4 and E6. The transformation law

E2k

(
aτ + b

cτ + d

)
= (cτ + d)2k E2k(τ ) for

(
a b
c d

)
∈ SL(2Z)

specializes for the two transformations S(τ ) and T (τ ) to the following: E2k(S(τ )) =
τ 2k E2k(τ ) and E2k(T (τ )) = (τ − 1)2k E2k(τ ). We have two cases for the lines
Re(τ ) = 0 and 1/2.

(1) ForRe(τ ) = 0: E6(ζ4) = 0 and J (ζ4) = 1. Moreover, τ = i t , t > 0, and q ≥
0 in this case, and the expansion E4 = 1+240

∑
n≥1 σ3(n)qn shows that E4(i t) ≥ 0

on this line. In particular J (q) ≥ 1 on this line. The relation S(i t) = i/t shows that
the two parts of the positive imaginary axis i[1,∞) in the fundamental domain and
i(0, 1] are interchanged. The coefficients of the curve �(i t) are transformed by the
modular relations to give

E4

(
i

t

)
= t4 E4(i t) and E6

(
i

t

)
= −t6 E6(i t).

(2) For Re(τ ) = 1/2: We have three distinguished values:

τ = T (ζ6) = ζ6 T (ζ4) = (1/2)1/2ζ8 T (ζ3) = (1/3)1/2ζ12
E4(τ ) = 0 E4(i) > 0 0
E6(τ ) = E6(ζ6) 0 −27 · E6(ζ6)

J (t) = 0 1 0

Here we use that E6(T (ζ3)) = (ζ3 − 1)6 E6(ζ6) = −27 · E6(ζ6) for the last entry
in the table. For τ = 1/2 + i t , t ≥ 0, we have −1 < q ≤ 0 and J (q) take values
(−∞, 1], that is, the values not coming from Re(τ ) = 0.

(4.7) Two Real Forms. The two equations

E〈α, β〉 : y2 = x3 − 3αx + 2β and E〈t4α,−t6β〉 : y2 = x3 − 3αt4x − 2t6β

over the real numbers are nonisomorphic, but over the complex numbers become
isomorphic under the substitution which carries (x, y) to (−t2x, i t3 y) followed by
dividing by −t6. We can see how this can be carried out with the modular property
of the coefficients.

(4.8) Notation. Let C(ev) denote iR+ compactified with a point, denoted 0 = i∞,
and C(od) denote (1/2)+ iR+ compactified with a point, denoted 1/2 = 1/2+ i∞.
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The two curves C(ev) and C(od) are treated as disjoint spaces with the com-
pactifying points also distinct. Returning to the diagram in (4.2), we describe J :
C(ev) ∪ C(od) = E��′(R)→ P1(R).

(4.9) Theorem. The function J : E��′(R)→ P1(R) is 2:1 and the separate restric-
tions of J to C(ev) and C(od) have the form:

(1) Jev = J |C(ev) : C(ev) → [1,∞] ⊂ P1(R) and corresponds to (τ) > 0.
Over (∞, 1) the function Jev is a smooth 2: 1 mapping with exactly on one point in
each of the inverse images of 1 and ∞.

(2) Jod = J |C(od) : C(od) → [∞, 1] ⊂ P1(R) and corresponds to (τ) < 0.
Over (∞, 1) the function Jod is a smooth 2: 1 mapping except over the point 0 ∈
[∞, 1]. There is exactly one point in each of the inverse images of ∞ and 1.

Proof. The 2:1 character of the restrictions of J follow from (4.7) applied to y2 =
x3 − 3E4(τ )x + 2E6(τ ). In the case (1) we have the relations E4(i/t) = t4 E4(i t)
and E6(i/t) = −t6 E6(i t) for τ = i t which up to rescaling give the two signs for
E6, and except for the two special points give a 2:1 mapping.

In the case (2) we have the two signs at ζ6 = T (ζ6) and T (ζ3) for τ = (1/2)+ t i .
By continuity this sign difference extends over pairs of points τ ′ = T (β ′) and τ ′′ =
T (β ′′) where β ′ and β ′′ are two boundary points on the fundamental domain giving
the same elliptic curve over C. since they are nonisomorphic at {β ′, β ′′} = {ζ3, ζ6},
they are nonisomorphic in general. This proves the theorem.

(4.10) Remark. At the two points over 0 where Jod is not smooth, we have vertical
tangents.

y2 = x3 + x

J

∆ > 0

∆ > 0

y2 = x3 − x

y2 = x3 + x2

y2 = x3 − x2

∆ < 0

∆ < 0
∆ < 0

c (ev)

c (od)c (od)

A (   )
0 1 ∞

y2 = x3 + 1
y2 = x3 − 1
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Table 2.
Table of Elliptic Curves. Sixteen Curves in Serre’s Inventiones article [1972], pp.
309, 310, 315–316, 318–319.

Semistable case

5.5.1 y2 + y = x3 − x2 N = 11  = −11 j = −212

11
∼ �1(11)

5.5.2 y2 + y n = 11  = −115 j = −212 · 313

115

∼ �0(11) = x3 − x2 − 10x − 20

5.5.6 y2 + y = x3 − x N = 37  = 37 j = 212 · 33

37

5.5.7 y2 + y = x3 + x2 N = 43  = −43 j = −212

43

5.5.8 y2 + xy + y = x3 − x2 N = 53  = 53 j = −33 · 53

53

5.5.3 y2 + xy + y = x3 − x N = 2 · 7  = −22 · 7 j = −56

22 · 7

5.5.4 y2 + xy + y N = 2 · 13  = −27 · 13 j = −33 · 433

27 · 13
= x3 − x2 − 3x + 3

5.5.5 y2 + xy + y N = 2 · 3 · 7  = −28 · 32 · 7 j = −1933

28 · 32 · 7
= x3 + x2 − 4x + 5

Not semistable; j nonintegral

5.7.1 y2 = x3 + x2 − x N = 22 · 5  = 24 · 5 j = 214

5

5.7.2 y2 = x3 − x2 + x N = 23 · 3  = −24 · 3 j = 211

3

5.7.3 y2 + xy = x3 − x2 − 5 N = 32 · 3  = −37 · 5 j = −1

3 · 5

5.7.4 y2 + xy + y N = 2 · 52  = −25 · 52 j = −5 · 293

25

= x3 + x2 − 3x + 1

Not semistable; j integral

5.9.1 y2 = x3 − 2x2 − x N = 27  = 27 j = 25 · 73

5.9.2 y2 = x3 + 6x − 2 N = 26 · 33  = −26 · 35 j = 29 · 3

5.9.3 y2 + xy N = 72  = −73 j = −33 · 53

= x3 − x2 − 2x − 1

5.9.4 y2 + xy N = 112  = −114 j = −112

= x3 − x2 − 2x − 7
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Elliptic Curves over Global Fields and �-Adic
Representations

In the previous two chapters we carried out the local study of elliptic curves, and
a substantial part of the theory was related to how the fundamental symmetry, the
Frobenius element, behaved on the curve modulo a prime. For an elliptic curve E
over a number field K (or more generally any global field), we have for each prime
a Frobenius element acting on the points of the curve. These Frobenius elements are
in Gal(Ks/K ), and this Galois group acts on the Ks-valued points E(Ks), on the
subgroup of N -division points N E = N E(Ks), and on the limit Tate modules T�(E)
where N and � are prime to the characteristic of K . In Chapters 12 and 13, the action
of Gal(Ks/K ) on the endomorphisms EndKs(E) and the automorphisms AutKs(E)
over Ks was considered in detail. As usual, Ks denotes a separable algebraic closure
of K .

In this chapter we analyse in greater detail the action of Gal(Ks/K ) on N E ,
T�(E) and V�(E) to give a general perspective and to relate to the general concept
of �-adic representation. Taniyama [1957] first defined and investigated the notion of
an �-adic representation. General properties of these representations have been used
by Faltings [1983] in the proof of the Mordell conjecture. Our aim is to give a brief
introduction to the theory.

§1. Minimal Discriminant Normal Cubic Forms over a Dedekind
Ring

Let R be a Dedekind ring with field of fraction K , and let v denote a finite place with
valuation ring R(v) ⊂ K and R ⊂ R(v). Then R is the intersection of all R(v) as v
runs over the places of R. Of special interest is R = Z, K = Q, and R(v) = Z(p) for
any prime p.

Any elliptic curve E defined over K has a normal cubic equation with coefficients
in R, hence also in each R(v). By the local theory considered in Chapter 10, we can
choose, as described in 10(1.2), a minimal equation

Fv(x, y) = y2 + a1,vxy + a3,v y − x3 − a2,vx2 − a4,vx − a6,v = 0
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for E with coefficients in R(v) having discriminantv , differential ωr and conductor
fv . The discriminant v has the minimal property: v(v) ≤ v(′), where ′ is the
discriminant of any other equation for E over R(v).

(1.1) Definition. With the above notations for an elliptic curve E over K , we de-
fine two divisors on R: DE = ∑

v v(v)v, called the discriminant of E , and
fE = ∑

v v( fv)v, called the conductor of E . When R is a principal ideal ring, for
example Z, these divisors are principal: DE = (dE ) and fE = (NE ), where dE in R
is the discriminant of E and NE = N in R is the conductor. These elements of R are
well-defined up to a unit in R, and in the case of the integers R = Z, we choose the
conductor always to be positive.

The conductor NE can only be defined from local data, while for the discriminant
dE , we have a discriminant F for each equation F of E over R

F(x, y) = y2 + a1xy + a3 y − x3 − a2x2 − a4x − a6 = 0

with which we can compare dE . The curve E given by equation F = 0 also has an
invariant differential ωF . Recall that, if F ′ = 0 is a second normal cubic equation
for E over R, then for some nonzero u we have u12F ′ = F and u−1ωF ′ = ωF .
From the relation u−1ωF ′ = ωF , we can define the valuation of the quotient of two
differentials by

v

(
ωF

ωF ′

)
= v(u−1) = −v(u).

This is related to the valuations of the corresponding discriminants by

12v(ωF/ωF ′) = v(F ′)− v(F ).

There is an obvious transitivity condition for three curves F = 0, F ′ = 0, and
F ′′ = 0

v

(
ωF

ωF ′

)
+ v

(
ωF ′

ωF ′′

)
= v

(
ωF

ωF ′′

)
.

ForωF and each localωv , we form a divisor which relates F = 0 to the local minimal
models

AF =
∑
v

v

(
ωF

ωv

)
v.

This satisfies AF + (u) = AF ′ from u−1ωF ′ = ωF and the transitivity formula.
Moreover, this and the relation

12v

(
ωF

ωv

)
= v(v)− v(F )

give the following result.
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(1.2) Proposition. The divisor AF is well-defined by E in the divisor class group
Cl(R) of R, and as a divisor it satisfies the relation

12AF + (F ) = DE =
∑
v

v(v)v

In the divisor class group DE is 12AF .

If 12 kills the divisor class group Cl(R) of divisors modulo principal divisors,
then DE equals (dE ) the divisor of a function. The class group Cl(R) is zero if and
only if R is a principal ideal ring, and in this case we have a globally minimal normal
cubic equation for an elliptic curve. The following theorem was already seen from
the discussion before 5(2.6), but it also follows from the discussion above.

(1.3) Theorem. Let R be a principal ideal ring, and let E be an elliptic curve over
the field of fractions K . There exists a normal cubic equation FE (x, y) = 0 for E
over K such that F = FE is minimal at all places v of R. Further, dE equals F up
to a unit in R.

Proof. Since AF = (u) for some nonzero u in K , we can use u to define an isomor-
phism of the curve with equation F = 0 onto the curve with AF = 0, that is, we can
make a change of variable to the case AF = 0. Then, for such an equation F over R,
we have

( f ) = DE = (dE ).

This proves the theorem.

We conclude this section with some notations concerning algebraic number
fields.

(1.4) Notations. Let K denote an algebraic number field with ring of integers R
and for each place v of K , we denote the completion of K at v by Kv . If v is
Archimedean, then Kv is isomorphic to R or C. For a non-Archimedean valuation
v, let Rv (resp. R(v)) denote the valuation ring of v in Kv (resp. K ) consisting of all
field elements a with v(a) ≥ 0. Let πv denote a local uniformizing parameter of v
which can be chosen to be in K satisfying v(πv) = 1, and let k(v) denote the residue
class field of v. Since Rvπv (resp. R(v)πv) is the unique maximal ideal of Rv (resp.
R(v)), the residue class field k(v) is either Rv/Rvπv or R(v)/R(v)πv . Finally, let Nv
be the order of k(v) and pv the characteristic of k(v) where pa

v = Nv.

§2. Generalities on �-Adic Representations
For a field k with separable algebraic closure ks, the Galois group Gal(ks/k) is given
the Krull topology where a neighborhood base of the identity consists of subgroups
fixing finite extensions K of k. With this topology, it is a compact and totally discon-
nected group.
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(2.1) Remark. If V is an n-dimensional complex vector space, then a continuous
homomorphism Gal(ks/k)→ GL(V ) = GL(n,C) factors through a finite quotient
of the form Gal(ks/k) → Gal(k′/k), where k′ ⊂ ks and k′/k is a finite Galois
extension. This follows from the fact that the only compact, totally disconnected
subgroups of GL(n,C) are finite subgroups.

If we replace the complex numbers C by the �-adic numbers Q�, then as usual
finite dimensional vector spaces V and their endomorphism algebras End(V ) have a
natural product topology, and GL(V ) has the subspace topology of End(V ) making
it into a locally compact, totally disconnected topological group. It is this fact which
makes �-adic representations more useful in studying the Galois group Gal(ks/k)
than complex representations.

(2.2) Definition. An n-dimensional �-adic representation of the Galois group
Gal(ks/k), or of the field k, is a continuous homomorphism ρ : Gal(ks/k) →
GL(V ) = GL(n,Q�), where V is an n-dimensional Q� vector space.

In this case, the image of ρ can be infinite as can be seen by the two basic exam-
ples of (2.3) and Tate modules.

(2.3) Example. For � prime to the characteristic of k, Q�(1)(ks) is a one-dimensional
�-adic representation, and for any elliptic curve E , the rational Tate vector space
V�(E) is a two-dimensional �-adic representation (of Gal(ks/k) or of k). For the
details, see (5.1), (5.2), and (5.3).

The Z�-submodules of the �-adic representation spaces in the examples Z�(1)(ks)

⊂ Q�(1)(ks) and T�(E) ⊂ V�(E) are stable under the action of Gal(ks/k), and
introducing a basis, we can factor the �-adic representation through the subgroup of
integral matrices

Gal(ks/k)→ GL(n,Z�) ⊂ GL(n,Q�),

where n = 1 in the first case and n = 2 in the case of T�(E) ⊂ V�(E). More
generally, a module T over Z� of a vector space V over Q� is called a lattice provided
the natural homomorphism T ⊗Z� Z� → V is an isomorphism. A basis of T is also
a basis of V yielding compatible isomorphisms

GL(T )
∼−−−−→ GL(n,Z�)

∩ ∩
GL(V )

∼−−−−→ GL(n,Q�)

(2.4) Proposition. If ρ is an �-adic representation of Gal(ks/k) on the vector space
V over Q�, then there exists a lattice T in V with ρ(s)T = T for all s in Gal(ks/k) =
G.
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Proof. Let T ′ be a lattice in V with generators x1, . . . , xm , and consider for j =
1, . . . ,m the function which assigns to each s in G the coset sx j + T ′ in V/T ′. This
is a finite valued function with all sx j in �−N T for some large N . The subgroup
H of all s in G with sx j ∈ T ′, for all j , sT ′ ⊂ T ′ is an open subgroup of finite
index in G. Let T be the submodule over Z� generated by sT ′ for s H ∈ G/H . Then
T ′ ⊂ T ⊂ �−N T ′ and T is a lattice with sT ⊂ T for all s in G. Hence sT = T for
all s ∈ G. This proves the proposition.

In the previous proof, we used the usual convention that sx denotes ρ(s)x when
ρ is clear from the context.

(2.5) Remarks. If ρ : G → GL(V ) is a representation of a group on a finite di-
mensional vector space V over a field F , then the character χρ of ρ is the func-
tion χρ(s) = Tr(ρ(s)). A particular value of χρ is χρ(1) = dimF V . If F is of
characteristic zero and if G is finite, then we know that two representations ρ and
ρ′ : G → GL(V ′) are isomorphic if and only if χρ = χρ′ .

There is a similar assertion for infinite groups and semisimple representations.
This can be viewed in terms of the group algebra A = F[G] of G over F consisting
of (finite) linear combinations

∑
s∈G ass with scalars as ∈ F and algebra structure

given by (∑
s

ass

)(∑
t

bt t

)
=
∑
s,t

(asbt )st.

Then a representation ρ : G → GL(V ) defines an A = F[G] module struc-
ture on V by (

∑
s ass)v = ∑

s asρ(s)v and, conversely, A-modules restrict to G-
representations. Two A-modules V and V ′ are isomorphic if and only if the repre-
sentations are isomorphic. The A-module V is simple if and only if the representa-
tion V is irreducible or simple. In either case, the term semisimple means a direct
sum of simple modules or representations. The following proposition shows that χρ
determines ρ up to isomorphism in the case of finite dimension, semisimple repre-
sentations over a field F of characteristic 0.

(2.6) Proposition. Let F be a field of characteristic zero, let A be an algebra over
F, and let M and N be two semisimple A-modules which are finite dimensional over
F. If TrM (a) = TrN (a) for all a in A, then M and N are isomorphic.

Proof. Let I be the set of isomorphism classes of simple A-modules, and let E(i) be
a representative module in the class i ∈ I . Then M is isomorphic to

∑
i E(i)m(i) and

N to
∑

i E(i)n(i) for some m(i), n(i) ∈ N . For each a in A and j ∈ I there exist
by the density theorem (see Lang, Algebra) elements a( j) ∈ A with scalar action on
E(i) given by

a( j)E(i) =
{

0 for i �= j ,

aE( j) for i = j .
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The hypothesis TrM (a) = TrN (a) for a( j) becomes simply the relation

m(i)TrE( j)(a) = n(i)TrE( j)(a).

Specialize to a = 1, and we obtain the relation m(i) = n(i) since TrE( j)(a) =
dimE( j) �= 0 in the field F ⊂ A. This shows that M and N are isomorphic and
proves the proposition.

(2.7) Corollary. Let G be a group, and let ρ and ρ′ be two semisimple finite dimen-
sional representations defined over a field F of characteristic zero. Then ρ and ρ′
are isomorphic if and only if Tr(ρ(s)) = Tr(ρ′(s)) for all s ∈ G.

The proof of the corollary of (2.6) follows from the discussion at the end of (2.5).
Later, we will also consider characteristic polynomials of ρ(s) in GL(V ) for

a representation ρ : G → GL(V ), where V is finite dimensional over F . These
polynomials are defined by

Pρ(s)(T ) = det(1 − ρ(s)T ) ∈ F[T ].

Then Pρ(s)(0) = 1 and the derivative at T = 0 is Pρ(s)′(0) = −Tr(ρ(s)) since
Pρ(s)(T ) = 1 − Tr(ρ(s))T + . . . . In fact, from the traces of elements, one can
recover the characteristic polynomial.

The following formula comes up frequently in the context of �-representations.

(2.8) Proposition. Let u : V → V be a linear transformation of a finite dimensional
vector space V over a field of characteristic zero. Then the characteristic polynomial
satisfies

det(1 − uT )−1 = exp

( ∞∑
n=1

Tr(un)T n

n

)
.

Proof. We can choose a basis of V so that u is upper triangular. Then det(1−uT ) =
(1−c1T ) . . . (1−cm T ) where the c1, . . . , cm , are the eigenvalues with multiplicities
of u and m = dimF V . Now use the classical expansion

log
1

1 − cT
=

∞∑
n=1

cnT n

n

to prove the proposition.

§3. Galois Representations and the Néron–Ogg–Šafarevič
Criterion in the Global Case

We keep the notations introduced in (1.4) for an algebraic number field K , in partic-
ular, for each place v of K , the valuation ring R(v) in K , the local field Kv with its
valuation ring Rv , the residue class field k(v) of either R(v) or Rv , and Nv equal to
the cardinality of k(v). We consider algebraic extensions L of K in a fixed algebraic
closure K̄ = Q̄ and extensions w to L of places v of K . The fact that w extends v is
denoted w|v.
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(3.1) Notations. Let L be a Galois extension of K with Galois group Gal(L/K ),
and let w be a place of L extending a place v of K . The decomposition subgroup Dw
of Gal(L/K ) consists of all s in Gal(L/K ) with ws = w. By reduction modulo the
maximal ideal, we have an epimorphism of groups

Dw → Gal(k(w)/k(v))

with kernel the inertia subgroup Iw of the place w. There is also an isomorphism
given by extension to the completed fields

Dw → Gal(Lw/Kv)

An element s of the decomposition group Dw belongs to the inertia subgroup Iw of
Dw if and only if w(s(a) − a) > 0 for all a in R(w), or equivalently, in Rw. When
the maximal ideal of R(w) or Rw is generated by an element π , then an element s in
Dw is also in Iw if and only if w(s(π)− π) > 0.

Let E be an elliptic curve over K . Then Gal(K̄/K ) acts on E(K̄ ), on N E(K̄ ),
and on T�(E) for all rational primes �. Further, for any place w of K̄ extending a
place v of K , the decomposition group Dw acts on E(K̄ ), on N E(K̄ ), and on T�(E).
Under the isomorphism Dw → Gal(K̄w/Kv), the following natural homomorphisms
are equivariant morphisms of groups

E(K̄ )→ E(K̄w), N E(K̄ )→ N E(K̄w), and T�(E/K )→ T�(E/Kv),

where the second two are isomorphisms. With these remarks, we can translate the
local Néron–Ogg–Šafarevič criterion 14(3.2) into a global assertion using the fol-
lowing definition.

(3.2) Definition. A set S on which Gal(L/K )) acts is called unramified at a place
v of K provided the inertia subgroups Iw act as the identity on the set S for all w|v,
that is, places w of L dividing v.

(3.3) Theorem. Let K be an algebraic number field, and let v be a place of K with
residue class field of characteristic pv . Then the following assertions are equivalent
for an elliptic curve E over K :

(1) The elliptic curve E has good reduction at v.
(2) The N-division points N E(K̄ ) are unramified at v for all N prime to pv .
(2)′ The N-division points N E(K ) are unramified at v for infinitely many N prime

to pv .
(3) The Tate module T�(E) is unramified at v for some prime � unequal to pv .
(3)′ The Tate module T�(E) is unramified at v for all primes � unequal to pv .

In addition, the vector space V�(E) = T�(E)⊗Z� Q� could be used in conditions (3)
and (3)′ in place of T�(E).

This theorem suggest that a systematic study of Q� vector spaces with a Gal(K̄/K )
action should be undertaken. This is the subject of the next sections. It was first done
by Taniyama [1957] and extended considerably by Serre.
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(3.4) Corollary. Let u : E → E ′ be an isogeny of elliptic curves over K . For a place
v of K , the curve E has good reduction at v if and only if E ′ has good reduction at
v.

Proof. The isogeny u is a group homomorphism, and it induces an isomorphism
V�(E) → V�(E ′) for all �. Hence the result follows immediately from the previous
theorem.

In the previous corollary, if � is prime to the degree of u, then u already induces
an isomorphism T�(E)→ T�(E ′) as Galois modules.

§4. Ramification Properties of �-Adic Representations of
Number Fields: Čebotarev’s Density Theorem

We begin by summarizing the notations of (1.4) and (3.1) relative to a number field
K .

(4.1) Notations. Let K be a number field, and for each place v of K , we have the
valuation ring R(v) in K , the local field Kv with its valuation ring Rv , and the residue
class field k(v). The cardinality Nv of k(v) is of the form pa

v . Let L be a Galois exten-
sion of K with Galois group Gal(L/K ), and let w be a place of L extending a place
v of K . The decomposition subgroup in Gal(L/K ) of w is denoted Dw, and the in-
ertia subgroup is denoted by Iw. The natural epimorphism Dw → Gal(k(w)/k(v))
induces an isomorphism Dw/Iw → Gal(k(w)/k(v)). The group Gal(k(w)/k(v))
is generated by Frw, where Frw(a) = aNv is the Frobenius automorphism. If
k(w)/k(v) is an infinite extension, then Frw generates Gal(k(w)/k(v)) as a topo-
logical group, i.e., the powers of Frw are dense.

(4.2) Definition. Let K be a number field, and let ρ : Gal(K̄/K ) → GL(V ) be an
�-adic representation. The representation ρ is unramified at a place v of K provided
for each place w of K̄ over K we have ρ(Iw) = 1, i.e., the inertia group Iw acts
trivially on V .

(4.3) Examples. For the one-dimensional Galois representation Q�(1)(K̄ ), the rep-
resentation is unramified at v if and only if v does not divide �, i.e., v(�) = 0. For an
elliptic curve E over K , the two-dimensional Galois representation V�(E) is unram-
ified at v if and only if E has good reduction at v, see 14(3.3).

(4.4) Remark. Let H = ker(ρ) where ρ : Gal(K̄/K )→ GL(V ) is an �-adic repre-
sentation. Let L be the fixed subfield of K̄ corresponding to H . Then ρ is unramified
at v if and only if the extension L/K is unramified at the place v.

(4.5) Remark. If ρ : G → GL(V ) is unramified at v, then ρ|Dw : Dw → GL(V )
induces a morphism Dw/Iw → GL(V ) which, composed with the inverse of the
natural isomorphism from (3.1), yields a canonical �-adic representation of the field
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ρw : Gal(k(w)/k(v))→ GL(V ).

The canonical (possibly topological) generator Frw has image denoted Frw,ρ in
GL(V ). Two places w and w′ extending v are conjugate under the Galois group,
and thus Frw,ρ and Frw′,ρ are conjugate in GL(V ). Hence they have the same char-
acteristic polynomial which depends only on v and the representation ρ. We use the
notation

Pv,ρ(T ) = det(1 − Frw,ρT )

for this polynomial. Then Pv,ρ(T ) is in 1 + T Q�[T ] and has degree equal to the
dimension of V .

(4.6) Definition. The polynomials Pv,ρ(T ) = det(1−Frw,ρT ) are called the charac-
teristic polynomials of the �-adic representation ρ of the number field K . Following
Deligne, the characteristic polynomials Pv,ρ(T ) can be defined at the ramified primes
v too by

Pv,ρ(T ) = det(1 − ρw(Frw)T ),

where ρw : Gal(k(w)/k(v))→ GL(V �w ) is the �-adic representation constructed as
above on the fixed part V �w of V under the inertia subgroup.

We will see in the next few sections that these polynomials are basic for the anal-
ysis of �-adic representations. For this we need two types of results, namely that
there are sufficiently many unramified places and that Frobenius elements are suffi-
ciently numberous in the Galois group. This is the case for finite Galois extensions,
i.e., �-adic representations with kernel of finite index.

(4.7) Remark. If an �-adic representation has a kernel of finite index in Gal(K̄/K ),
then there are only finitely many ramified places. Those places which are ramified in
the finite extension of K correspond to the kernel of the representation by 4.4. For a
general �-adic representation, it is not true that all but a finite number of places are
unramified, although the examples Z�(1) and T�(E) are the ones that we study in
detail will have this property.

The question of which elements in the Galois group are Frobenius elements leads
directly to one of the basic results in algebraic number theory, the Čebotarev density
theorem, which we state after some preliminary definitions. Let �K denote the set
of places of the number field K . For each subset X of �K , we denote by N (t, X) the
number of v ∈ X , Nv ≤ t .

(4.8) Definition. A subset X of�K has a density provided the following limit exists:

d = lim
t→+∞

N (t, X)

N (t, �K )

and the value d of the limit is called the density of the subset X .
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The prime number theorem says that N (t, �K ) ∼ t/ log t so that a subset X has
a density d if and only if

N (t, X) = d
t

log t
+ O

(
t

log t

)
Further, if X and X ′ are two subsets with X − X ′ and X ′ − X both finite sets, and if
one has a density, then so does the other and the two densities are equal.

(4.9) Theorem (Čebotarov Density Theorem). Let L/K be a finite Galois exten-
sion of number fields with G = Gal(L/K ). For each subset C of G stable under
conjugation, let XC denote the set of places v of K unramified in L such that the
Frobenius element Frw is in C for any w|v. Then XC has a density and it equals

#C

#G
.

In particular, for each element s of Gal(L/K ), there are infinitely many unramified
places w of L such that Frw = s.

(4.10) Corollary. Let L be an algebraic Galois extension of a number field K which
is unramified outside a finite number of places of K . Then the Frobenius elements of
the unramified places of L are dense in Gal(L/K ).

Proof. By (4.9), the set of Frobenius elements maps subjectively onto every finite
quotient of Gal(L/K ), and , thus, every element of Gal(L/K ) is arbitrarily close to
a Frobenius element.

For the proof of the Čebotarov density theorem, see either Serre [1968; Appendix
to Chapter 1], E. Artin, Collected Works, or S. Lang, Algebraic Number Theory,
1970, p. 169, where Lang records a simple proof due to M. Deuring.

In order to illustrate the use of these density results for the Frobenius elements,
we have the following result for semisimple �-adic representations.

(4.11) Theorem. Let ρ : G → GL(V ) and ρ′ : G → GL(V ′) be two semisimple
�-adic representations of a number field K . Assume that ρ and ρ′ are unramified
outside a finite number of places S of K , and that Pv,ρ(T ) = Pv,ρ′(T ) for all v
outside S. Then ρ and ρ′ are isomorphic.

Proof. The equality of characteristic polynomials gives Tr(ρ(Frw)) = Tr(ρ′(Frw))
for allw|p, where v is a place outside of S. Since the elements Frw are dense by (4.9),
and since s → Tr(ρ(s)) is continuous on G, we deduce that Tr(ρ(s)) = Tr(ρ′(s))
for all s in G. Hence by (2.7), the representations ρ and ρ′ are isomorphic. This
proves the theorem.
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§5. Rationality Properties of Frobenius Elements in �-Adic
Representations: Variation of �

In this section we continue with the notations of (4.1) and for an �-adic representation
ρ : Gal(K̄/K )→ GL(V ) the notation of (4.6) for the characteristic polynomials

Pv,ρ(T ) = det(1 − ρw(Frw)T ).

(5.1) Definition. An �-adic representation ρ : Gal(K̄/K ) → GL(V ) of a number
field K is integral (resp. rational) provided there is a finite set of places S of K such
that ρ is unramified at all v outside of S and such that Pv,ρ(T ) ∈ Z[T ] (resp. Q[T ])
for those v.

(5.2) Examples. For a number field K , the one-dimensional �-adic representation
Q�(1)(K̄ ) is unramified at all v not dividing �. The characteristic polynomial for v
unramified is

Pv,ρ = 1 − (Nv)T
since Frw(z) = zNv on �th power roots of unity, in particular on the �th power roots
of unity for w|v. Observe that Pv,ρ(T ) is in 1 + T Z[T ], so that the representation is
integral and is independent of � in this case.

For an elliptic curve E over a number field K , the two-dimensional �-adic rep-
resentation V�(E) is unramified at all v not dividing � where E has good reduction.
The characteristic polynomial for v unramified is

Pv,ρ(T ) = 1 − avT + (Nv)T 2

where av is a rational integer with |av| ≤ 2
√

Nv by the Riemann hypothesis. Here
1 − av + Nv = Pv,ρ(1) is the number of points on the reduced curve Ev with
coordinates in k(v). Observe that Pv,ρ(T ) is in 1 + T Z[T ], is independent of �, and
for the factorization Pv,ρ(T ) = (1 − αvT )(1 − α′vT ), we have |αv|, |α′v| ≤ (Nv)1/2.
The representation V�(E) is in particular integral.

The importance of the notion of rational representations lies in the fact that it is
possible to compare �-adic representations for different rational primes � using the
fact that the Pv,ρ(T ) are independent of �, see Examples (5.2).

(5.3) Definition. A rational �-adic representation ρ : Gal(K̄/K )→ GL(V ) is com-
patible with a rational �′-adic representation ρ′ : Gal(K̄/K ) → GL(V ′) provided
there exists a finite set of places S such that ρ and ρ′ are unramified outside S and
Pv,ρ(T ) = Pv,ρ′(T ) for all v outside S.

Examples of compatible pairs of representations are contained in (5.2) by using
different rational primes. Compatibility is clearly an equivalence relation.

(5.4) Proposition. Let ρ : Gal(K̄/K ) → GL(V ) be a rational �-adic representa-
tion and �′ a rational prime. There exists at most one semisimple rational �′-adic
representation �′ compatible with ρ up to isomorphism.
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Proof. This is an immediate corollary of Theorem (4.11).

The next definition describes Examples (5.2) where there is a representation for
each rational prime. For a number field K , let [�] denote the set of places of K
dividing a rational prime �, i.e., the set of v with pv = �.
(5.5) Definition. Let K be an algebraic number field, and for each rational prime
� let ρ� : Gal(K̄/K ) → GL(V�) be a rational �-adic representation of K . The
system (ρ�) is called compatible provided ρ� and ρ�′ are compatible for any pair of
primes. The system (ρ�) is called strictly compatible provided there exists a finite
set S of places of K such that ρ� is unramified outside S ∪ [�], Pv,ρ�(T ) has rational
coefficients, and

Pv,ρ�(T ) = Pv,ρ�′ (T ) for all v outside S ∪ [�] ∪ [�′]

When a system (ρ�) is strictly compatible, there is a smallest finite set S hav-
ing the strict compatibility properties of the previous definition. This S is called the
exceptional set of the system.

(5.6) Remark. By (4.6), the characteristic polynomials Pv,ρ(T ) can be defined even
for ramified places. In (5.1), (5.3), and (5.5), it is interesting to consider systems
where all Pv,ρ(T ) have rational coefficients or integral coefficients as is the case in
Examples (5.2).

Observe that for a characteristic polynomial Pv,ρ(T ) over Q, the expression
Pv,ρ(Nv)−s equals P(p−s

v ) for some polynomial P(T ) ∈ Q[T ].
Now we come to the notion of an Euler factor, which is an expression of the form

for the representation ρ at the place v

1

Pv,ρ((Nv)−s)
= 1

(1 − c1 p−s
v ) . . . (1 − cm p−s

v )
.

Here m is dim ρ times a where Nv = pa
v .

(5.7) Definition. Let (ρ�) be a strictly compatible family of �-adic representations
of a number field K with exceptional set S. The formal Dirichlet series below is the
L-function of (ρ�).

Lρ(s) =
∏
v /∈s

1

Pv,ρ((Nv)−s)
where choose �, v|�.

This definition can be used for a single �-adic representation as well without ref-
erence to compatibility. Also, the polynomials Pv,ρ(T ) are independent of which
representation from the compatible family is used to determine them.

The question of the convergence of these Euler products was discussed in Chap-
ter 11, §6, and the conditions considered in the next section lead to convergence
properties.
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§6. Weight Properties of Frobenius Elements in �-Adic
Representations: Faltings’ Finiteness Theorem

(6.1) Definition. An n-dimensional integral �-adic representation ρ : G → GL(V )
of an algebraic number field K has weight w provided there exists a finite set S of
places of K such that, for all places v outside S, the integral polynomials

Pv,ρ(T ) = det(1 − ρw(Frw)) = (1 − α1T ) . . . (1 − αnT )

have reciprocal roots α j with complex absolute value |α j | = (Nv)w/2.

There is another convention were |α j | = (Nv)−w/2.

(6.2) Examples. The examples in (5.2) are integral and they have weights. For
Q�(1)(K̄ ) we see from Pv,ρ(T ) = 1 − (Nv)T that this one-dimensinal represen-
tation has weight 2. For V�(E) where E is an elliptic curve over K , we see from

Pv,ρ(T ) = 1 − av(T )+ (Nv)T 2 = (1 − αvT )(1 − α′vT )

with |αv|,|α′v| = (Nv)1/2 that this representation has weight 1.

There are some finiteness properties implicit in the weight condition which can
be formulated as follows.

(6.3) Assertion. For given n, q , and w, the number of integral polynomials of the
form

P(T ) = 1 + a1T + · · · + anT n = (1 − c1T ) . . . (1 − cnT )

with all c j algebraic integers having absolute value |c j | = qw/2 is a finite set.

The absolute value conditions on the roots translate into boundedness conditions
on the integral coefficients of the polynomials P(T ).

(6.4) Proposition. Let K be an algebraic number field, let S be a finite set of places
of K , and let m be an integer. There exists a finite Galois extension L of K such that
every extension K ′ of K unramified outside S and with [K ′ : K ] ≤ m is isomorphic
to a subextension of L.

Proof. By 8(3.5) up to isomorphism the number of K ′ as above is finite. Let L be
the Galois closure of the composite of these extensions. This proves the proposition.

This proposition is another version of 8(3.5) used to prove the weak Mordell the-
orem. Now we have one more preliminary result before Falting’s finiteness theorem.

(6.5) Proposition (Nakayama’s Lemma). Let E be a Z�-algebra of finite rank, and
let X be a subset of E whose image in E/�Egenerates E/�E as an algebra. Then X
generates E as an algebra.
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Proof. Let E ′ be the subalgebra of E generated by X . Then E = E + �E so that the
finitely generated E/E ′ satisfies �(E/E ′) = E/E ′. Thus from the structure theorem
for modules over Z� we have E/E ′ = 0 or E = E ′. This proves the proposition.

(6.6) Theorem (Faltings). Let � be a prime. Let S be a finite set of places in an
algebraic number field K , and let n and w be natural numbers. Then the set of
isomorphism classes of n-dimensional, semisimple, integral �-adic representations
of weight w unramified outside S is finite.

Proof. Extend S to S(�) by adding the finite number of places dividing �. Now apply
(6.4) to S(�) and m = �2n2

to obtain a finite Galois extension L of K with G =
Gal(L/K ). Let S∗ be a finite set of places v outside of S(�) such that G is the union
of all Frw with w|v and v ∈ S∗. This is possible by (4.9).

Assertion. Let ρ : Gal(K̄/K ) → GL(V ) and ρ′ : Gal(K̄/K ) → GL(V ′)
be two n-dimensional, semisimple, integral �-adic representations of weight w un-
ramified outside S. If Tr(ρ(Frv)) = Tr(ρ′(Frv)) for all v ∈ S∗, then ρ and ρ′ are
isomorphic.

Proof of the assertion. By (2.4) we can choose Galois stable lattices of V and
V ′ and further a basis of these lattices so that we can view ρ, ρ′ as morphisms
Gal(K̄/K ) → GLn(Z�). For s ∈ G, let ρ∗(S) = (ρ(s), ρ′(s)), and let E be the
subalgebra over Z� of Mn(Z�)

2 generated by the elements ρ∗(s), s ∈ G. By (4.11),
it suffices to show that for each x = (x1, x2) ∈ E ,

Tr(x1) = Tr(x2)

since the representations are semisimple. By hypothesis, we know that Tr(ρ(Frw)) =
Tr(ρ′(Frw)) for allw|v and v ∈ S∗, and thus it suffices to show that these ρ∗ generate
E over Z�.

Let ρ̄∗ denote ρ∗ followed by reduction GLn(Z�) → GLn(F�). If we can show
that the set of ρ̄∗(Frw) for all w|v and v ∈ S∗ generates E/�E , then by Nakayama’s
lemma (6.5) we have established the assertion. For this, observe that ρ̄∗ factors
through Gal(K̄/K ) = Gal(L/K ) = G and all elements of Gal(L/K ) are of the
form Frw with w|v and v ∈ S∗. Hence im(ρ̄∗) generates E/�E and E is generated
by ρ∗(Frw) where w|v and v ∈ S∗. This proves the assertion.

Finally, returning to the proof of the theorem, we see by (6.3) that there are
only finitely many choices for Pv,ρ(T ) at each v ∈ S∗. Since Pv,ρ(T ) determines
Tr(ρ(Frv)), there are by the assertion only finitely many representations ρ up to
isomorphism of the type in the statement of the theorem. This proves the finiteness
theorem.

(6.7) Remark. It is this finiteness theorem which Faltings uses to deduce the Šafare-
vič conjecture, see (7.1) or Satz 5 in Faltings [1983], from the assertion of the
Tate conjecture, see (7.2) or Satz 3 and Satz 4. The Galois modules V�(A) for a g-
dimensional abelian variety over K satisfy the hypotheses of the finiteness theorem
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(6.6) with n = 2g and weightw = 1 with the case of elliptic curves being g = 1. The
Tate conjecture allows one to reconstruct an abelian variety up to isogeny from its V�
for suitable � among the representations satisfying the hypotheses of the finiteness
theorem.

The other application of weight properties arises with the convergence assertion
of the L-function Lρ(s) associated with (ρ�) in (5.7).

(6.8) Remark. Let (ρ�) be a compatible family of �-adic representations of a num-
ber field K with exceptional set S. If all ρ� have weightw, then the L-function Lρ(s)
of (5.7) converges for Re(s) > 1 + w/2 by 11(6.6).

§7. Tate’s Conjecture, Šafarevič’s Theorem, and Faltings’ Proof
In Corollary (3.4) we saw how the Galois modules T�(A) and V�(A) could give
information about isogenies, but actually this is only the beginning. In fact, the ideas
are related with the Mordell conjecture, solved by Faltings [1983], and they are part
of a broader story which was considered in part in Chapter 12, §6 and Chapter 13,
§8. Recall the following commutative diagram for any field k and � prime to char(k):

Homk(A, A′)⊗ Z�
T�−−−−→ HomGal(ks/k)(T�(A), T�(A′))

∩ ∩
Homk(A, A′)⊗ Q�

V�−−−−→ HomGal(ks/k)(V�(A), V�(A′))

where A and A′ are elliptic curves, or more generally abelian varieties, over the field
k and the endomorphisms are defined over k. We know that for any field k the maps
T� and V� are injective and that T� has a torsion-free cokernel by 12(6.1) and 12(6.4).
For the case of abelian varieties, see also Mumford [1970, Theorem 3, p. 176].

Tate’s theorem, 13(8.1) says that T� and hence V� are isomorphisms for k a finite
field, and, moreover, that the action of Gal(k̄/k) is semisimple on V�(A). For the
case of abelian varieties, see also Tate [1966].

In Tate [1974], the following conjecture appears as Conjecture 5, p. 200, for
elliptic curves and it is a natural extension of Tate’s work over finite fields.

(7.1) Conjecture of Tate. For an algebraic number field K , the homomorphisms T�
and V� are isomorphisms for all abelian varieties A and A′ over K . The action of
Gal(K̄/K ) on V�(A) is semisimple.

As a special case, Serre [1968] showed, for elliptic curves over a number field,
that if V�(E) and V�(E ′) are isomorphic Galois modules and if j (E) is not an integer
in K , then E and E ′ are isogenous over K . This was proved using the Tate model for
the curve.

Faltings [1983] has shown that the Tate conjecture is true not just for elliptic
curves but, in fact, also for all abelian varieties over a number field. This work of
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Faltings is part of his proof of the Mordell conjecture, which he uses in the proofs
of his basic finiteness theorems on abelian varieties and curves of higher genus. One
such result that Faltings generalizes is the following.

(7.2) Theorem (Šafarevič). Let S be a finite set of places of a number field K . The
number of isomorphism classes of elliptic curves over K with good reduction at all
v outside S is finite.

We give an argument due to Tate which reduces the result to Siegel’s theorem on
the finiteness of integral points on curves which was mentioned in the Introduction.
Faltings proves two generalizations to abelian varieties, one of which was conjec-
tured by Šafarevič on the finiteness of isogeny classes of abelian varieties with good
reduction outside a finite set S.

Returning to the reduction of the assertion of (7.2) to Siegel’s theorem, we first
extend S if necessary to include all places dividing 2 and 3 and so that R, the ring
of S-integers in K , is principal. Recall that c in K is an element of R if and only if
v(c) = 0 for all v outside S. For each E over K we can, by (1.3), choose a minimal
model of the form

y2 = 4x3 − ux − v

withE = u3−27v2 in R∗, the group of units in the ring R. If E has good reduction
outside S, then v(E ) = 0 for all places outside of S. Now, for a given E , the class
E in R∗/(R∗)12 is well defined by the isomorphism class of E from 3(3.2). This
group R∗/(R∗)12 is finite by the Dirichlet unit theorem for number fields. Thus there
is a finite set D in R∗ such that any curve E over K with good reduction outside of
S can be written in the form y2 = 4x3 − ux − v with d = u3 − 27v2 in D.

For a given d, the affine elliptic curve

27v2 = u3 − d

has only a finite number of integral points (u, v) on it, i.e., points (u, v) in R2. This
is a generalization of a theorem of Siegel, see Lang [1962, Chapter VII].

We close with the statements of Faltings’ two generalizations of (7.2) to abelian
varieties. For the proofs, see his basic paper Endlichkeitssätze für abelsche Varietäten
über Zahlkörpern [Faltings, 1983].

(7.3) Theorem (Satz 5). Let S be a finite set of places in an algebraic number field
K . In a given dimension, there are only finitely many isogeny classes of abelian
varieties over K with good reduction outside S.

(7.4) Theorem (Satz 6). Let S be a finite set of places in an algebraic number field
K and d > 0. In a given dimension n there are only finitely many isomorphism
classes of d-fold polarized abelian varieties over K with good reduction outside S.
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§8. Image of �-Adic Representations of Elliptic Curves: Serre’s
Open Image Theorem

In this section, let E denote an elliptic curve defined over a number field K . The
action of G = Gal(K̄/K ) on the N -division points of E yields a homomorphism

�n : G = Gal(K̄/K )→ GL(N E) ∼= GL2(Z/NZ).

and the inverse limit over all N is

ρ : G = Gal(K̄/K )→ lim←−
N

GL(N E) = GL(T̂ors E) ∼=
∏
�

GL(T�(E)).

This yields the following diagram of projections and quotients of ρ:

G = Gal(K̄/K )

∏
�GL(T�(E)) ∼=

∏
�GL2(Z�)⏐⏐�

GL(T�(E)) ∼= GL2(Z�)⏐⏐�
GL(�(E)) ∼= GL2(F�)

The main theorem of Serre is that im(ρ) is an open subgroup of the product group
when E does not have complex multiplication. Before discussing this result, we have
the following remark on the contrasting case when E has complex multiplication.

(8.1) Remark. If the elliptic curve E has complex multiplication by an imaginary
quadratic number field F , then F acts on each V�(E) and embeds as a subfield of
End(V�(E)) which commutes with the action of Gal(K̄/K ). Hence im(ρ�) com-
mutes with every element of F∗ ⊂ GL(V�(E)) = GL2(Q�). Since the image of
F∗ contains nonscalar elements, im(ρ�) will not be open in GL(T�(E)) = GL2(Z�)

and, hence, im(ρ) will not be open in the product group. In the next chapter, we will
study this action of the complex multiplication and its relation to the Galois action
further.

The following theorem is the main result in the book by Serre [1968] and the
Inventiones paper by Serre [1972].

(8.2) Theorem (Serre). Let E be an elliptic curve without complex multiplication
defined over a number field K . Then the image of ρ : Gal(K̄/K )→ ∏

�GL(T�(E))
is an open subgroup.

The proof of this theorem would take us beyond the scope of this book, and, in
any event, it is difficult to improve on the exposition and methods of Serre. We will
be content to simply observe that the following result from the book, see p. IV–19, is
the criterion used by Serre to show the image is open.
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(8.3) Proposition. Let G be a closed subgroup of
∏
�GL2(Z�) and denote by G�

its projection to GL2(Z�) and the reduction of G� into GL2(F�) by Ḡ�. Then G is
open in the product

∏
�GL2(Z�) if the following three conditions hold:

(a) For all �, the subgroup G� is open in GL2(Z�).
(b) The image of G under det :

∏
�GL2(Z�)→

∏
� Z∗

� is open.
(c) For all but a finite number of �, the subgroup G� contains the subgroup SL2(Z�)

of GL2(Z�).



16

L-Function of an Elliptic Curve and Its Analytic
Continuation

We introduce the L-function of an elliptic curve E over a number field and derive
its elementary convergence properties. L-functions of this type were first introduced
by Hasse, and the concept was greatly extended by Weil. For this reason, they are
frequently called the Hasse–Weil L-function.

There are two sets of conjectural properties of the L-function with the second
depending on the first. The first conjecture, due to Hasse and Weil, asserts that the
L-function L E , defined as a Dirichlet series for Re(s) > 3/2 has an analytic con-
tinuation to the complex plane and satisfies a functional equation under reflection s
to 2 − s. The second conjecture, due to Birch and Swinneton-Dyer, ties up the arith-
metic of the curve E with the behavior of L E at s = 1 which is the fixed point under
s to 2 − s. This conjecture clearly depends on the first and is discussed in the next
chapter.

The Hasse–Weil conjecture has been verified for two general classes of ellip-
tic curves. First, the L-function of an elliptic curve with complex multiplication is
related to the L-function of Hecke Grossencharacters by a theorem of Deuring. In
this case, the conjecture is deduced from the analytic continuation and functional
equation of Hecke L-functions. Second, if an elliptic curve E over the rational num-
bers is the image of a map of curves X0(N ) → E , then the L-function L E is the
Mellin transform of a modular form of weight 2 for �0(N ). In this case, the conjec-
ture follows from the functional equation of the modular form. The general case is
considered in §8 and Chapter 18.

§1. Remarks on Analytic Methods in Arithmetic
In Chapters 9, 10, and 11, analytic methods were considered to describe the complex
points on an elliptic curve. This led to elliptic functions, theta functions, and in order
to describe all elliptic curves up to isomorphism, also modular functions.

In these last two chapters, we sketch some of the flavor of the use of analytic
methods in the arithmetic of elliptic curves, that is, for elliptic curves over number
fields. The idea is to assemble the modulo p information about the elliptic curve into
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an Euler factor and form the product of these Euler factors into a Dirichlet series. The
study of Euler products was started in Chapter 11 where they arose in connection
with modular forms.

A remarkable feature of the theory is that certain of these L-functions associated
to modular forms by the Mellin transform, and which have Euler product decompo-
sitions, also arise as the L-functions of elliptic curves, which are defined as Euler
products from the local arithmetic data of the elliptic curve defined over the rational
numbers. This is the theory of Eichler–Shimura.

§2. Zeta Functions of Curves over Q

In Chapter 13, §2, we discussed the zeta function ζC of a smooth curve over Fq . It
took two forms, (2.2) and (2.5) respectively

ζC (s) = exp

(∑
i≤m

Nm

m
q−ms

)
,

where Nm = #C(Fqm ) the number of points of C over Fqm , and

ζC (s) = P(q−s)

(1 − q−s)(1 − q1−s)
,

where P(T ) = (1 − α1T ) · · · (1 − α2gT ) and the reciprocal roots α1, . . . , α2g are
paired off in such a way that α2 j−1 = α2 j so that |αi | = √

q and α2 j−1α2 j = q. The
numbers of points Nm and the reciprocal roots, which are all algebraic integers, are
related by

Nm = qm + 1 −
2q∑

i=1

αm
i .

The number g is the genus of C .
Since q = pa , the terms (1 − q−s), (1 − q · q−s) and P(q−s) are the kinds of

expressions used to make Euler products provided we are given these expressions
for all primes. This comes up in the study of smooth curves C over a number field
of genus g. Roughly, as in Chapter 5, we wish to choose equations of C over Z in
such a way that the reduction C p modulo p of C is a smooth curve of genus g for all
primes p not in a finite set S. The curve C is said to have good reduction at p /∈ S.
More precisely, we extend C to a smooth scheme over Z[1/n] where n = ∏

p/∈S p.
Then the curves C p are the special fibres. As with elliptic curves, good reduction can
be described in terms of a projective model over Q.

(2.1) Definition. Let C be a curve over Q extending to a smooth scheme over
Z[1/n] such that the reduction C p (mod p) is smooth over Fp for p /∈ S, where
S is the set of prime divisors of n. The crude Hasse–Weil zeta function of C is
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ζ ∗C =
∏
p/∈S

ζC p
(s) =

∏
p/∈S

Pp(p−s)

(1 − p−s)(1 − p1−s)

and the crude Hasse–Weil L-function of C is

L∗
C (s) =

∏
p/∈S

Pp(p
−s)−1.

We know what the reduction mod p of an elliptic curve is in terms of the normal
form. For a general curve C , one needs scheme theoretical techniques. For C over
Q, it has good reduction outside a finite set S.

The Hasse–Weil zeta and L-functions are the analytic objects which store the
diophantine data of C related to congruences modulo p. In this definition, we have
referred to the crude zeta and L-functions because the zeta function and L-function
will have factors associated with p ∈ S. In this form, we can make some elementary
assertions about convergence which also apply to the more precise versions of these
functions.

(2.2) Remark. For each finite set of primes S, we can consider a modified Riemann
zeta function ζS(s) defined by

ζS(s) =
∏
p/∈S

1

(1 − p−s)
=
∏
p∈S

(1 − p−s) · ζ(s)

=
∑

1≤n, (S,n)=1

1

ns
,

where ζ(s) is the ordinary Riemann zeta function corresponding to empty S. In terms
of the modified zeta function ζS , we have the relation

L∗
C (s) · ζ ∗C (s) = ζS(s) · ζS(s − 1).

Since the Riemann zeta function, and therefore also the modified versions, are fairly
well understood relative to convergence and functional equation, we consider the
elementary study of the Hasse–Weil zeta function ζ ∗C (s) and L-function L∗

C (s) as
effectively equivalent. The L-function L∗

C (s) is an Euler product∏
p

1

(1 − α1(p)p−s) · · · (1 − α2g(p)p−s)
,

where we take all α j (p) = 0 for p ∈ S, j = 1, . . . , 2g. For an elliptic curve E over
Q as in the previous definition,

L∗
E (s) =

∏
p

1

(1 − α(p)p−s)(1 − β(p)p−s)

since g = 1. Now the considerations of 13(1.7) apply because the Riemann hypoth-
esis asserts that
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|α(p)| = |β(p)| ≤ √
p

holds for elliptic curves, 13(1.2) and 13(1.6) by Hasse, and also for general smooth
curves

|α j (p)| ≤ √
p

by Weil, see 13(2.5). Hence we have the following convergence result as a direct
application of 11(6.6).

(2.3) Proposition. The Hasse–Weil L-function L∗
C (s) for a curve C over Q con-

verges for Re(s) > 1 + 1/2 = 3/2.

(2.4) Remark. When Q is replaced by a number field K , we consider products over
all but a finite set S of valuations (or places) v of K , and the finite field Fp is replaced
by Fqv where qv is the number of elements in the residue class field of v. The crude
Hasse–Weil L-function takes the form

L∗
C (s) =

∏
v

1

(1 − α1(p)q
−s
v ) . . . (1 − α2g(p)q

−s
v )

,

and there is a similar expression for the Hasse–Weil zeta function. This is an Euler
product of degree 2g · [K : Q] since all v with qv = pn(v) for given p combine to
give the p-Euler factor in the product. Thus by the Riemann hypothesis, 13(1.2) and
13(2.5), we see that 11(6.6) applies to show that 2.3 is true for curves over a number
field.

(2.5) Remark. For a discussion of the proof by Deligne of the Riemann hypothesis
for smooth projective varieties, together with references, see Katz [1976]. In the last
section of his paper, Katz considers the Hasse–Weil zeta function for varieties.

§3. Hasse–Weil L-Function and the Functional Equation
Now we concentrate on the case of an elliptic curve E over a number field k. For
many considerations k can be taken to be the rational numbers. We know that for all
valuations v of k such that v(E ) = 0, the curve E has an elliptic curve Ev for re-
duction over k(v), the residue class field of v. In the previous section, we considered
a quadratic polynomial fv(T ) that we defined using Ev , giving an Euler factor in the
L-function L∗

E (s) of E . Next we introduce the Euler factors for the other primes v
where E has bad reduction.

Let Ev denote the reduction of E at any v, a curve over k(v) = Fqv , let Ev,0(k(v))
be the group of nonsingular points, and let Nv = #Ev,0(k(v)) be the number of points
in this group curve.

(3.1) Notations. For an elliptic curve E over a number field k and a non-Archimedean
valuation v of k, we denote by fv(T ) the polynomial:
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(1) fv(T ) = 1 − avT + qvT 2, where av = qv + 1 − Nv , if E has good reduction at
v.

(2) fv(T ) = 1 − evT , where

ev =

⎧⎪⎨⎪⎩
−1 If E has split multiplicative reduction at v,

+1 if E has nonsplit multiplicative reduction at v,

0 if E has additive reduction at v.

Observe that in all cases

Nv = qv fv

(
1

qv

)
.

The complete non-Archimedean part of the L-function is
∏
v 1/Lv(s), where Lv(s) =

fv(q−s
v ).

(3.2) Definition. Let E/K be an elliptic curve over a number field K . The Hasse–
Weil L-function of E over K is

L E/K (s) =
∏
v

1

Lv(s)
,

where the local factor Lv(s) is given in the previous section (3.1). Other notations
for L E/K (s) in current use are L E (s), L(s, E/K ), and L(E/K , s).

The question of the local factors at infinity is taken up by J.-P. Serre in Fac-
teurs locaux des Fonctions Zêta des Variétés algébriques: Séminaire Delange-Pisot-
Poitou, 11 mai 1970. Serre in this 1970 DPP seminar gives a general definition for
any smooth projective variety over a global field.

(3.3) Definition. Let E/K be an elliptic curve over a number field K . The modified
Hasse–Weil L-function of E over K is

�E/K (s) = As/2�K (s)L E/K (s),

where A = AE/K and �K (s) are defined as follows:

(1) The constant AE/K is given by

AE/K = NK/Q( fE/K ) · d2
K/Q,

where dK/Q is the absolute discriminant of K and fE/K is the conductor of E
over K , see 14(2.4) and Serre, DPP, pp. 19–12.

(2) The gamma factor for the field K where n = [K : Q] is

�K (s) = [(2π)−s�(s)]n .
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The functions L E/K (s) and�E/K (s) are defined as Dirichlet series and Dirichlet
series multiplied with elementary factors which converge to holomorphic functions
on the half plane

Re(s) >
3

2
.

This leads to one of the main conjectures of the subject.

(3.4) Conjecture (Hasse–Weil). Let E be an elliptic curve over a number field K .
The modified Hasse–Weil L-function �E/K (s) has an analytic continuation to the
entire complex plane as an analytic function, and it satisfies the functional equation

�E/K (2 − s) = w�E/K (s)

with w = ±1.

If�E/K has an analytic continuation to the complex plane, then so will L E/K (s)
and further from the gamma factor �(s)n and its poles we see that L E/K (s) will have
zeros of order at least n at all the negative integers. The order of the possible zero of
�E/K (s) at s = 1 is related to the sign w = 1 or −1 in the functional equation. If
w = −1, then �E/K (1) = −�E/K (1) and �E/K (s) has a zero at s = 1. In fact, the
parity of ords=1�E/K (s) is even for w = 1 and odd for w = −1.

(3.5) Remark. Elliptic curves over Q will be of special interest, and in the case of
E/Q, the modified Hasse–Weil L-function becomes

�E (s) = N s/2(2π)−s�(s)L E (s).

This conjecture has been established in two cases. First, if E/K has complex mul-
tiplication, then the Hasse–Weil L-function is related to the L-functions of type
L(s, χ), where χ is a Hecke Grossencharacter. The functional equation for L-
functions with Hecke Grossencharacters implies the functional equation for elliptic
curves. The object of this chapter is primarily to explain this result. Second, if E is
an elliptic curve over the rational numbers which is the image of a certain modular
curve related to its conductor, then L E (s) is the Mellin transform of a modular from
and the functional equation follows from this fact. These topics are taken up in the
last two sections.

In the next section we review the functional equation of the classical zeta and L-
functions and lead into the theory of algebraic Hecke Grössencharakters, see Hecke,
Mathematische Werke, No. 14. We define algebraic Hecke characters as extensions
of algebraic group characters over Q to algebraic valued characters on an idèle class
group. The Grössencharakters in the sense of Hecke, which we are interested in, are
Archimedean modifications defined on the idèle class group. From this perspective,
there are also �-adic modifications related to �-adic representations and the Hecke
characters coming from elliptic curves with complex multiplication.
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§4. Classical Abelian L-Functions and Their Functional
Equations

The classical zeta and L-functions were defined and studied by Riemann, Dirichlet,
Dedekind, and Hecke. The Dedekind zeta function of an algebraic number field is
the generalization of the Riemann zeta function for the rational numbers, and Hecke
L-functions for a number field are generalizations of the Dirichlet L-functions of
characters on the rational integers. We give the definition of each of these functions as
a Dirichlet series, give the Euler product expansion, and state the functional equation.
Of special interest is the Hecke L-function with “Grossencharakter” for it is this L-
function which is related to the Hasse–Weil L-function of an elliptic curve with
complex multiplication.

(4.1) Riemann Zeta Function. The Dirichlet series expansion of the Riemann zeta
function is for Re(s) > 1

ζ(s) =
∑
1≤n

1

ns
.

The Euler product, which is the analytic statement that natural numbers have a unique
factorization into primes, is given by

ζ(s) =
∏

p

1

1 − p−s
for Re(s) > 1.

The Riemann zeta function has a meromorphic continuation to the entire complex
plane, and it satisfies a functional equation which is most easily described by in-
troducing the function ξ(s) = π−s/2�(s/2)ζ(s) related to the zeta function. The
functional equation for the zeta function is simply

ξ(s) = ξ(1 − s).

One proof of the functional equation results from using the elementary theta function
θ(t) = ∑

n e−πn2t and the integral for the �-function . Then

ξ(s) =
∫ ∞

0
xx/2θ(x)

dx

x
= 1

s
+ 1

1 − s
+
∫ ∞

1

(
x (1−s)/2 + xs/2

)
θ(x)

dx

x
.

This follows by dividing the first integral into two integrals at x = 1. The above
representation holds because the theta function satisfies θ(1/t) = √

tθ(t), which is a
modular type relation. The subject of modular forms was considered in Chapter 11.
The theta-function relation is proved by applying the Poisson summation formula to
e−π t x2

and using the fact that e−πx2
is its own Fourier transform.

In the rational integers Z, each nonzero ideal a is principal a = (n) where n ≥ 1,
the absolute norm Na = n, and a is a prime ideal if and only if a = (p) for a prime
number p. These remarks lead to Dedekind’s generalization of ζ(s) to a number field
K using the ideals a in O, the ring of algebraic integers in K , and the absolute norm
Na = #(O/a), the cardinality of the finite ring O/a.
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(4.2) Dedekind Zeta Function. The Dirichlet series expansion of the Dedekind
zeta function for the number field K is

ζK (s) =
∑
a�=0

1

Nas
for Re(s) > 1.

If the degree [K : Q] = n, then there are at most n ideals a with Na equal to a given
prime p, and this is the reason why the Dirichlet series for ζK (s) has the same half
plane of convergence os the Riemann zeta function. The Euler product, which is the
analytic statement that ideals in the ring of integers in a number field have unique
factorization into prime ideals, is given by

ζK (s) =
∑
p

1

Nps
for Re(s) > 1.

The Dedekind zeta function has a meromorphic continuation to the entire complex
plane, and it satisfies a functional equation. For the functional equation we need
d = dK the absolute discriminant of K and the decomposition of the degree [K :
Q] = n = r1 + 2r2, where r1 is the number of real places of K and r2 is the number
of conjugate pairs of complex places of K . In 1917, Hecke proved for

ξK (s) =
( √|d|

2r2πn/2

)s

�
( s

2

)r1
�(s)r2ξK (s)

the functional equation

ξK (s) = ξK (1 − s).

The zeta functions contain information about the distribution of prime numbers
and prime ideals. In an L-function this information is further organized by weight-
ing the primes via character values. On a finite abelian group, a character is just a
homomorphism into C∗. If χ is a character of the finite abelian group (Z/mZ)∗ of
units in the ring Z/mZ, then we extend the complex valued function χ to be zero on
Z/mZ outside of (Z/mZ)∗, and we compose it with the quotient map Z → Z/mZ

to define a function on Z also denoted χ . On Z we have χ(nn′) = χ(n)χ(n′) and
χ(n) = 0 if and only if the greatest common divisor (n,m) > 1.

(4.3) Dirichlet L-Function. The Dirichlet series expansion of the Dirichlet L-func-
tion associated with a character χ mod m is

L(s, χ) =
∑
1≤n

χ(n)

ns
.

The Euler product is given by

L(s, χ) =
∏

p

1

1 − χ(p)p−s

and both the Dirichlet series and the Euler product converge absolutely for Re(s) >
1. For the trivial character χ = 1, L(s, 1) = ζ(s) the Riemann zeta function.
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As with the zeta function, there is a functional equation for the Dirichlet L-
function, but for this we need the notion of the conductor of a character. It is a natural
number.

(4.4) Definition. For a character χ modulo m, consider factorizations of χ = χ ′π
where

(Z/mZ)∗ π−−−−→ (Z/ f Z)∗
χ ′

−−−−→ C∗.

f divides m, χ ′ is a character modulo f , and π is reduction modulo f . The character
χ is imprimitive provided such a factorization exists with f unequal to m, otherwise
χ is called primitive. The conductor f of χ is the unique natural number f such that
there is a factorization χ = χ ′π and χ ′ is primitive.

In particular, if χ is a primitive character modulo m, then m is the conductor of
χ . If χ = χ ′π as above, then the L-functions are related by

L(s, χ ′) = L(s, χ)
∏
p|m

(
1 − χ ′(p)

ps

)
since L(s, χ ′) and L(s, χ) have the same Euler factors at all p not dividing m. Hence
L(s, χ ′) = L(s, χ) if and only if every prime dividing m also divides f .

(4.5) Functional Equation of the Dirichlet L-Function. Let χ be a primitive char-
acter with conductor f , and let

�(s, χ) = ( f/π)s/2�

(
s + a

2

)
L(s, χ),

where a = 0 for χ(−1) = 1 and a = 1 for χ(−1) = −1. Then �(x, χ) and L(s, χ)
have meromorphic continuations to the entire plane C with L(s, χ) holomorphic on
C for f > 1. Furthermore �(s, χ) satisfies a functional equation

�(s, χ) = W (χ)�(1 − s, χ),

where W (χ) = (−1)a[g(χ)/
√

f ] and g(χ) = ∑
n mod f χ(n)exp(2π i/ f )n , a

Gauss sum. We also have |W (χ)| = 1.

(4.6) Hecke L-functions. Let K be a number field. The Hecke L-function L K (s, χ)
for K and a character combine a sum over nonzero ideals of Na−s , as in the
Dedekind zeta function, with character values on ideals χ(a) as in the Dirichlet L-
functions. In all cases they have the form

L K (s, χ) =
∑
a�=0

χ(a)

Nas
=
∏
p

1

1 − χ(p)Nps
.

As in the case of a Dirichlet character , the character χ in a Hecke L-function
has a modulus m where χ is defined modulo m and χ(a) = 0 for (a,m) �= 1.
A primitive character is one which cannot be factored nontrivially as in (4.4). The
modulus is denoted by f and called the conductor in this case.



318 16. L-Function of an Elliptic Curve and Its Analytic Continuation

(4.7) Functional Equation of the Hecke L-Function. Let K be a number field with
discriminant d and degree n = [K : Q] = r1 + 2r2 with real monomorphisms
u1, . . . , ur1 : K → R. Let χ be a primitive character with conductor f and N (f) = f .
Let

�K (s, χ) = AK (χ)
s�K (s, χ)L K (s, χ),

where AK (χ) =
√|d| f /2r2πn/2 and the gamma factor has the form

�K (s, χ) =
r1∏

j=1

�

(
s + a( j)

2

)
�(s)r2

for numbers a(1), . . . , a(r1) equal to 0 or 1 such that

χ((x)) = (sgnu1(x))
a(1) . . . (sgnur ′(x))

a(r1)

for any x ≡ 1 (mod ) f . Then�K (s, χ) and L K (s, χ) have a meromorphic continu-
ation to the entire plane C with L K (s, χ) holomorphic on C for χ �= 1. Furthermore,
�K (s, χ) satisfies a functional equation

�K (s, χ) = W (χ)�K (1 − s, χ),

where W (χ) is given by Gauss sums and has absolute value 1.

§5. Grössencharacters and Hecke L-Functions
Hecke [1918, 1920] extended the notion of characters which give rise to L-functions,
and he called these Grössencharacters. Later, Iwasawa and Tate reformulated the no-
tion of Grössencharacter, and, using Fourier analysis on locally compact groups, they
derived the functional equation from the Poisson summation formula. Weil [1947]
discussed Grössencharacters with algebraic values. These characters, also referred to
as type (A0) Grössencharacters, are the ones with an arithmetic meaning in terms of
infinite abelian extensions of a number field, and, for us, in terms of elliptic curves
with complex multiplication. We introduce a version of these which are called alge-
braic Grössencharacters.

(5.1) Definition. The idèle group of a number field K is an inductive limit over finite
subsets S of places of K , that is

IK = lim−→ s

∏
v /∈S

O∗
v ×

∏
v∈S

K ∗
v .

In this discussion, Ov = Kv for all Archimedean places v. An element of IK has the
form (av), where av is a unit in Ov for all but a finite set of v. An idèle (av) ∈ IK

is principal provided there exists a ∈ K ∗ with av = a for all v. We decompose
IK = I f

K × I∞K where I∞K = ∏
v arch. K ∗

v and is the group I f
K of finite idèles formed

from the finite places as with IK .
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We embed K ∗ ⊂ IK as the subgroup of principal idèles. It is a discrete subgroup.
Grössencharacters are certain continuous homomorphisms IK /K ∗ → C∗. In order
to relate Grössencharacters to the characters considered in previous sections, we need
some definitions.

(5.2) Definition. Let K and F be two extension fields of k. An algebraic group
homomorphism β : K ∗ → F∗ over k is a function which assigns to each algebra A
over k a group homomorphism βA : (K ⊗k A)∗ → (F ⊗k A)∗ which is functorial in
A, that is, such that for all morphisms f : A → A′ of algebras over f the following
diagram is commutative:

(K ⊗k A)∗
βA−−−−→ (F ⊗k A)∗

(K⊗k f )∗
⏐⏐� ⏐⏐�(F⊗k f )∗

(K ⊗k A′)∗
βA′−−−−→ (F ⊗k A′)∗

(5.3) Remarks. When K and F are algebraic extensions of k, the algebraic group
homomorphisms β : K ∗ → F∗ can be described as a group homomorphism β such
that for each pair of embeddings ϕ : F → k, an algebraic closure of k, and for each
embedding σ : K → k, there exists an integer n(σ, ϕ) with

ϕβ(x) =
∏
σ(x)n(σ,ϕ) for all x ∈ K ∗

where the product is taken over all embeddings σ : K → k. The fact that β is
defined over k is the extra condition that n(τσ, τϕ) = n(σ, ϕ) for all automorphisms
τ ∈ Gal(k/k).

(5.4) Examples. The zero (or one) homomorphism K ∗ → F∗ is algebraic where
all integers n(σ, ϕ) = 0. In the case where K is a finite extension of F , the norm
NK/F : K ∗ → F∗ is algebraic with all n(σ, ϕ) = 1.

(5.5) Notations. For two algebraic number fields K and F , we consider algebraic
group homomorphisms β : K ∗ → F∗ over Q. For A, as in (5.2), equal to Q, Q�, or
R, we denote K� = Q�⊗Q K , F� = Q�⊗Q F , K∞ = R⊗Q K , and F∞ = R⊗Q F ,
and the corresponding group homomorphisms as β0 : K ∗ → F∗, β� : K ∗

� → F∗
� ,

and β∞ : K ∗∞ → F∗∞. We can embed K ∗
� ⊂ IK and K ∗∞ ⊂ IK , and, in fact,

K ∗∞ = I∞K . The subgroup of finite idèles I f
K is contained in

∏
� K ∗

� where the product
is taken over all rational primes �. For an element x ∈ IK , we denote by x� the �-
component of x and by x∞ the ∞-component of x .

(5.6) Definition. Let β : K ∗ → F∗ be an algebraic group homomorphism over Q

of number fields. An algebraic Hecke character of type β is a homomorphism of
groups ψ : IK → F∗ such that the restriction ψ |K ∗ = β0 and ψ is continuous in
the sense that ker(ψ) is an open subgroup of IK .
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Let H be an open subgroup of IK , for example H = ker(ψ) for an algebraic
Hecke character ψ . Then H∞ = H ∩ I∞K is an open subgroup of IK of index 2r ,
where r is less than r1, the number of real places of K , and Hv = H ∩ Kv is of the
form O∗

v for all finite places v outside a finite set S and of the form (1 + mv)k(v) for
v ∈ S with h(v) ≥ 1. We define h(v) = 0 for v /∈ S. The product group

∏
v Hv ⊂ H

has finite index in the original group H . Now suppose that H = ker(ψ). With these
notations, we make the following definition.

(5.7) Definition. The conductor fψ of an algebraic Hecke character ψ of type β is

fψ = ∏
v m

h(v)
v . The �-twist ψ� : IK → F∗

� and the ∞-twist ψ∞ : IK → F∗∞ are
defined by the relations

ψ�(x) = ψ(x)β�(x�)−1 and ψ∞(x) = ψ(x)β∞(x∞)−1.

The twists satisfy ψ�(K ∗) = 1 and ψ∞(K ∗) = 1, and thus they can be de-
fined on the group CK = IK /K ∗ of idèle classes. This follows from the relation
ψ(x)β0(x)−1 = 1 for x ∈ K ∗.

(5.8) Remarks. Let ψ be algebraic Hecke character IK → F∗. The �-twist ψ� :
CK → F∗

� defined on the idèle class group CK = IK /K ∗ carries the connected
component C0

K of the identity in CK to 1 in F∗
� since F∗

� is totally discontinuous. The
quotient character also denotedψ� : CK /C0

K → F∗
� . This can be composed with the

reciprocity homomorphism of global class field theory η : Gal(K/K ) → CK /C0
K .

In this way, the family of all �-twists ψ� of an algebraic Hecke character defines
a family (ψ, η) of abelian �-adic representations of the Galois group Gal(K/K ) of
dimension [F : Q].

(5.9) Remarks. Let ψ be an algebraic Hecke character IK → F∗, and let ϕ : F →
C be a complex embedding of F . Then the twist ψ∞ composed with ϕ : F∗∞ → C∗
defines a Grössencharacter of the type (A0) considered by Weil [1955]. Now defini-
tion (4.6) applies to these compositions ψϕ = ϕψ∞ = χ . We have only considered
Grössencharacters, that is, characters χ : CK → C∗ which come from algebraic
Hecke characters. The continuity of the character implies that χ(O∗

v) = 1 for all v
outside a finite set S, and hence χ(πv) is well defined also called χ(pv) giving the
linear Euler factor.

1

1 − χ(pv)(Npv)−s

Again, πv is a local uniformizing element in Ov . A version of (4.7) for s to 2 − s
also holds for this L-function of a Grössencharacter.

In the next section, the field F will be an imaginary quadratic number field, and
there are two embeddings into C which differ by complex conjugation so we will
have two complex valued Grössencharacters from the algebraic Hecke character of
the form χ and χ .
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§6. Deuring’s Theorem on the L-Function of an Elliptic Curve
with Complex Multiplication

For an elliptic curve E over a number field, the L-factor Lv(s) at a place v has the
form Lv(s) = fv(q−s

v ) where the quadratic polynomial factors

fu(T ) = 1 − avT + qvT 2 = (1 − αvT )(1 − αvT ).

Let E over K be a curve with complex multiplication by an imaginary quadratic field
F . Deuring’s theorem asserts roughly that the function v → αv can be interpreted
as an algebraic Hecke character χE/K on K with values in F , and the L-function
L E/K (s) of E factors as a product of two Hecke L-functions

L E/K (s) = L(s, χE/K )L(s, χ E/K ).

The essential point is not that the αv are all in a fixed quadratic field F , indeed,
they are always imaginary quadratic numbers by the Riemann hypothesis. Complex
multiplication allows us to make a choice αv among two conjugate numbers at each
prime v, namely the one corresponding to Frobenius as we see in the next propo-
sition. These are the αv which are assembled together continuously to an algebraic
Hecke character.

(6.1) Proposition. Let E be an elliptic curve over a number field K such that E has
good reduction Ev at a place v of K with residue class field k(v). Then the reduction
homomorphisms

EndK (E)
r−−−−→ Endk(v)(Ev) and EndK (E)⊗ Q

rv−−−−→ Endk(v)(Ev)⊗ Q

are injective. If EndK (E) ⊗ Q = F, a quadratic imaginary field, then there exists
an element αv in F with rv(αv) = πv , the Frobenius endomorphism of Ev over the
field k(v).

Proof. The injectivity of the reduction homomorphism r follows from the isomor-
phism V�(E)→ V�(Ev) for � a prime different from the characteristic of k(v). Since
the endomorphism algebras act faithfully on the V� spaces by 12(6.1) and 12(6.2),
the map r is an injection.

For the second statement, there are two cases. Either r is an isomorphism be-
tween quadratic imaginary fields where the statement is clear, or r is an injection
of a quadratic imaginary field into a quaternion algebra. In this case by 13(6.3) the
Frobenius endomorphism is in the center of the algebra, hence in the image of r . The
first case is ordinary reduction Ev , and the second is supersingular reduction. This
proves the proposition.

(6.2) Remark. The quadratic imaginary field F = EndK (E) ⊗ Q, where E has
complex multiplication over K , has a natural embedding θ : F → K in K given by
the action of F on an invariant differential ω. For a in F we have a∗(ω) = θ(a)ω.
Corresponding to each place v where E has good reduction, we have an element
av ∈ F ⊂ K corresponding to the Frobenius element of the reduced curve E(v) over
the residue class field k(v).
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In the next theorem, essentially due to Deuring, we state a result which describes
how all the elements αv fit together globally. For a proof, see Shimura [1971].

(6.3) Theorem. Let E be an elliptic curve defined over a number field K with
complex multiplication by F = EndK (E) ⊗ Q. There exists a unique algebraic
Grössencharacter χE : IK → F∗ such that for all idèles a = (av) with av ≡ 1
at v where E has bad reduction or v Archimedean

χE (a) =
∏
v good

aordv(av)
v .

The conductor fE/K of χE is concentrated at places of bad reduction. This character
has the properties:

(1) The �-twists χE,(�) composed with the reciprocity epimorphism ν are the �-adic
representations of Gal(K/K ) acting on the F�-module V�(E) of rank 1.

(2) The ∞-twists define L-functions and the Hasse–Weil L-function of E over K
can be recovered by the formula

L E/K (s) = L(s, χE,(∞))L(s, χ E,(∞)).

(6.4) Corollary. Let E be an elliptic curve defined over a number field K with com-
plex multiplication. The L-function L E/K (s) has an analytic continuation to the com-
plex plane and satisfies a functional equation by (5.5).

For examples of L E (s) see the book by Koblitz [1984], Chapter 2. For further
properties of Grössencharacters and the L-functions associated with them, see S.
Lang, Algebraic Number Theory.

§7. Eichler–Shimura Theory
The complex points on the modular curve X0(N ) were discussed in Chapter 11, see
(3.3).

(7.1) Remarks. The algebraic curve X0(N ) can be defined over Q using the fact
that it is a moduli space. By Igusa [1959] the curve X0(N ) has good reduction at
all primes p not dividing N , and for such p the smooth reduced curve X0(N )p has
a Frobenius correspondence Frp of the curve to itself. The Hecke operator on mod-
ular forms, defined in 11(7.1), also defines a correspondence of the reduced curve
X0(N )p to itself.

Recall that correspondences of one algebraic curve to another are defined as di-
visors on the product of the two curves, i.e., in terms of their graphs. By inverting the
order of the factors, every correspondence has a transpose, and it is possible to add
correspondences by adding divisors.
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(7.2) Theorem (Eichler–Shimura). In the group of correspondences of X0(N )p,
the following relation holds

Tp = Frp + Fr′p

where Fr′p is the transpose of Frobenius Frp.

For a proof of this result, see Shimura [1971, §7.2]. This book has a complete
discussion of the ideas centering around this result.

The meaning of this fundamental congruence relation of Eichler–Shimura is that
the eigenvalues of Tp are the same as the eigenvalues of Frp together with their
conjugates coming from Fr′p. Now we use the eigenvalues of Frp to construct L-
functions of elliptic curves as Euler products, and the eigenvalues of Tp appear in
the Euler product decompositions of the L-function of certain modular forms. This
leads naturally to the following result of Eichler–Shimura.

(7.3) Theorem. Let E be an elliptic curve over Q for which there is a surjective
map over Q defined by X0(N )→ E. Then there is a cusp form f for �0(N ), which
is an eigenfunction for all Tp where p does not divide N, such that the p factor in
the Mellin transform of f is equal to the p Euler factor in the L-function L E/Q(s)
of the elliptic curve for all p not dividing N.

In fact, the papers of Langlands and Deligne in the Antwerp conference 1972,
see LN 349, show that the factors for p dividing N can also be handled. The result is
dependent on representation theory and brings in the relation of the theory of elliptic
curves to the Langlands Ansatz.

(7.4) Theorem. Let E be an elliptic curve over Q for which there is a surjective
map over Q defined by X0(N ) → E. Then there is a normalized cusp form f for
�0(N ) of weight 2 whose L-function L f (s) = L E/Q(s), the L-function of the elliptic
curve E over Q.

As in the case of complex multiplication where the L-function of an elliptic curve
is identified with another L-function having analytic continuation and a functional
equation, we have the following result. First, we introduce a definition suggested by
the previous results.

(7.5) Definition. A modular parameterization at N of an elliptic curve E over Q is
a surjective map X0(N ) → E defined over Q. Such a curve E is called a modular
elliptic curve.

(7.6) Theorem. The L-function L E/Q(s) of a modular elliptic curve E over Q sat-
isfies the Hasse–Weil conjecture, that is, it has an analytic continuation to the plane
with a functional equation.
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§8. The Modular Curve Conjecture
The modular curve conjecture goes under the name of the Taniyama–Weil conjec-
ture or the Shimura–Taniyama–Weil conjecture in various places in the mathematical
literature.

(8.1) Conjecture (Shimura–Taniyama–Weil). Let E be an elliptic curve over the
rational numbers with conductor N and L-function L E/Q(s) =

∑
1≤n ann−s .

(1) The function f (z) = ∑
1≤n anzn is a cusp form of weight 2 for the group �0(N ).

It is an eigenfunction for all Hecke operators Tp with p not dividing N. More-
over,

f

(
− 1

N z

)
= −w f (z),

where w is the sign in the conjectural functional equation (3.4).
(2) There is a rational map over Q giving a modular parameterization X0(N ) →

E such that the canonical differential on E pulls back to a constant times the
differential form f (z) dz on X0(N ) defined by the cusp form f (z) of weight 2.

It is difficult to point to a place in the literature where this conjecture is stated as
a conjecture. It seems to have matured in the minds of people around the time of the
International Symposium on Algebraic Number Theory in Tokyo, September 1955.
It is alluded to in the paper by Weil [1967] where he discusses an important extension
of Hecke’s work on modular forms or where the Dirichlet series which are Mellin
transforms of modular forms are characterized. Hecke did the case of SL2(Z), and
Weil extended it to �0(N ). Using these results of Weil, one can see the following.

(8.2) Remark. Conjectures (8.1) and (3.4) are equivalent for elliptic curves over the
rational numbers.

Henceforth, we call this conjecture the modular curve conjecture.

(8.3) Remark. Shimura [1971] showed that elliptic curves defined over the rational
numbers with complex multiplication have a modular parameterization as in (8.1).

The modular curve conjecture is taken up further with the work of Andrew Wiles
in Chapter 18.



17

Remarks on the Birch and Swinnerton–Dyer
Conjecture

Let E be an elliptic curve over a number field K , and assume that E satisfies the
Taniyama-Weil conjecture for L E . The first assertion in the Birch and Swinnerton–
Dyer conjecture is that L E (s) has a zero of order r = rk(E(K )) at s = 1. The rank
of the Mordell-Weil group was the invariant of E that was completely inaccessible
by elementary methods unlike, for example, the torsion subgroup of E(K ). In the
original papers where the conjecture was made, Birch and Swinnerton–Dyer checked
the statement for a large family of curves of the form y2 = x3−Dx and y2 = x3−D,
which, being curves with complex multiplication, have an L-function with analytic
continuation.

The conjecture goes further to describe the leading term

lim
s→1

(s − 1)−r L E (s)

in terms of the determinant of the height pairing, the conductor, and the order of
the group XE introduced in Chapter 8, §3. This expression in the full conjecture is
formed by analogy with a similar formula of Dirichlet in algebraic number theory. In
1986, there was not a single curve E known for which XE is proven finite, so that
the conjecture was not verified for a single case, (see §8). Now the the situation has
changed completely.

In this chapter, we only state the main results and give a guide to the recent
literature on the subject. The subject has grown very far in the last fifteen years.

§1. The Conjecture Relating Rank and Order of Zero
In the previous chapter, the L-function L E/K (s) of an elliptic curve E over a number
field K was considered in terms of its analytic properties. No explicit reference to
invariants of the curve were involved in the discussion. Now we take up the discovery
of Birch and Swinnerton–Dyer that the L-function plays a basic role in the arithmetic
of E over K as given by the group E(K ).
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(1.1) First Birch and Swinnerton–Dyer Conjecture. Let E be an elliptic curve
over a number field K with L E/K (s) having an analytic continuation to the com-
plex plane. Let gE/K = g denote the rank of E(K ). Then g is equal to the order of
the zero of L E/K (s) at the point s = 1.

There is extensive numerical evidence in favor of this conjecture which is
recorded in the papers of Birch and Swinnerton–Dyer, for example. J. Coates has
a weaker formulation of the conjecture which brings in the question of the structure
of XE/K . We will sometimes refer to (1.1) as the rank conjecture.

(1.2) Remark. Coates conjectures in his H. Weyl lectures at the IAS,

ords=1L E/K (s) ≥ gE/K

with equality if and only if XE/K is finite. It is conjectured that in fact XE/K is
finite for all E . As mentioned above, there is not a single example of a curve E for
which this is known to be true before 1986. This is still one of the very difficult
problems in diophantine geometry.

(1.3) Remark. Recall that the Dedekind zeta function ζK (s) of a number field K of
degree r1 + 2r2 = [K : Q] has zeros at negative integers of the following orders:

(1) r1 + r2 − 1 at zero,
(2) r2 at negative odd integers,
(3) r1 + r2 at strictly negative even integers.

The unit theorem implies that the rank of the group O∗
K of units in the ring OK of

integers of K equals the order of the zero of ζK (s) at s = 0. Lichtenbaum conjectures
that the orders of zeros at 1 − 2m and 2m are to be related to ranks of the Quillen
algebraic K groups of OK .

In fact, at s = 0, we have

ζK (s) = −hK RK

wK
sr1+r2−1 +O(sr1+r2)

where hK is the class number of K , wK is the number of roots of unity, and RK is
the regulator of K . This is the Dirichlet class formula.

§2. Rank Conjecture for Curves with Complex Multiplication I,
by Coates and Wiles

The first general result related to the conjecture of Birch and Swinnerton–Dyer is the
following assertion due to Coates and Wiles [1977].

(2.1) Theorem. Let E be an elliptic curve over K with complex multiplication. As-
sume that K is either the rational numbers or the field of complex multiplication.
If gE/K is nonzero, then the L-function of E over K has a zero at s = 1, that is,
L E/K (1) = 0.
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First observe that L E/K (s) has an analytic continuation to the entire plane by the
theorem of Deruing, and, in particular, the value at s = 1 has a meaning.

The idea of the proof is that one can factor from L E/K (1) a well-determined al-
gebraic number L∗

E/K (1). Then, the strategy is to show that under the hypotheses of
the theorem, L∗

E/K (1) is divisible by infinitely many primes. Like so much progress
recently in the theory of elliptic curves, there is an analogy with results in the the-
ory of cyclotomic fields and many constructions are motivated by those in Iwasawa
theory. The result in question is the following: let U ′

0 be the group of local units
in Qp(µp) which are ≡ 1 and have norm 1 in the p-adic numbers Qp, and let C0
be the class group of cyclotomic units in Q(µp) which are ≡ 1 modulo the unique
prime p0 dividing p. Let χ be the canonical character on G0 = Gal(Qp(µp)/Qp)

giving the action of G0 on the pth roots of unity µp. Coates and Wiles use an ana-
logue for elliptic units of the following classical result: for each even integer k with
1 < K < p − 1, the χk th eigenspace for the action of G0 on U ′

0/C0 is nontrivial if
and only if p divides (1/2π i)ζ(k).

(2.2) Remark. Arthaud [1978] extended the Coates–Wiles result of (2.1) to fields
K which are abelian extensions of F and satisfy some extra assumptions.

(2.3) Remark. K. Rubin refined the result (2.1) to give more precise information
about the order of vanishing of L E/K (s) at s = 1, see Rubin [1981].

§3. Rank Conjecture for Curves with Complex Multiplication II,
by Greenberg and Rohrlich

The following theorem of Ralph Greenberg is a partial converse of the Coates and
Wiles theorem. Here Greenberg shows really the nontriviality of the Selmer group.

(3.1) Theorem. Let E be an elliptic curve over the rational numbers with complex
multiplication. If L E/Q(s) has a zero of odd multiplicity at s = 1, then either gE/Q >

0 or the Tate–Šafarevič group XE contains a subgroup isomorphic to Qp/Zp for
each prime p strictly bigger than 3 where E has good ordinary reduction.

The results of Greenberg underscore the interest in showing that the Tate–
Šafarevič group is finite. It is also related to the modification (1.2) of the rank conjec-
ture (1.1). Rohrlich [1984], following along the lines of Greenberg’s work, considers
more general towers of field extensions and an infinite set X of Hecke characters
transferred to characters of Gal(K/K ) by class field theory. For each such character
χ , there is a sign W (χ) in the functional equation of the related L-function L(s, χ).

(3.2) Theorem (Rohrlich). For all but finitely many χ is the set X, we have

ords=1L(s, χ) =
{

0 if W (χ) = 1,

1 if W (χ) = −1.
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§4. Rank Conjecture for Modular Curves by Gross and Zagier
Modular elliptic curves (so defined over Q) and elliptic curves over a number field
with complex multiplication are the two families of elliptic curves for which L E/K is
known to have an analytic continuation. Shimura [1971] showed that elliptic curves
defined over the rational numbers with complex multiplication are modular elliptic
curves. The following assertion is similar in nature to Greenberg’s result.

(4.1) Theorem. Let E be a modular elliptic curve defined over the rational num-
bers. If L E (s) has a simple zero at s = 1, then the group E(Q) is infinite, i.e., the
rank gE is nonzero.

This assertion says there is a rational point of infinite order which is the trace of
a Heegner point. This is the first result of this nature.

The proof of this result is part of the entire discussion of the work of Gross and
Zagier. We will say a little about it when their formula for the derivative of the L-
function at s = 1 is considered in §7. We just state another result that also comes out
of their work starting with Heegner points.

(4.2) Example. There exists a modular elliptic curve E/Q with rank 3 over Q and
L E/Q(s) has a zero of odd order ≥ 3 at s = 1. The curve comes from X0(37) with a
twist related to 139. The equation is −139y2 = x3 + 10x2 − 20x + 8 and conductor
37 · 1392 = 714877.

§5. Goldfeld’s Work on the Class Number Problem and Its
Relation to the Birch and Swinnerton–Dyer Conjecture

In a remarkable paper Goldfeld [1976] discovered a relation between an effective
lower bound of Siegel for the class number hF of an imaginary quadratic field F in
terms of the discriminant dF and the existence of an L-function L(s) with a zero of
order ≥ 3 at s = 1. In other words, Goldfeld reduced the effective bound question to
the existence of such a function which should be the L-function of an elliptic curve
over Q of rank 3. The curve in (4.2) discovered by Gross and Zagier yields such an
L-function.

The classical formula of Dirichlet on the class number was a starting point for
Goldfeld and is related to the formula for the derivative of the L-function considered
in the next two sections due to Gross and Zagier.

(5.1) Dirichlet’s Class Number Formula. Form the Dirichlet L-function L(s, χ) =∑
1≤n χ(n)n

−s for a real primitive character χ mod d, and denote by Fχ =
Q(

√
χ(−1)d) a quadratic number field with class number h, w roots of unity, and

ε0 > 1 the fundamental unit in the real quadratic case. The value of the Dirichlet
L-function at s = 1 is given by the formula
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L(1, χ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2πh

w
√

d
if χ(−1) = −1,

2h log ε0√
d

if χ(−1) = +1.

The Dirichlet formula transferred the problem of a lower bound for hF in terms
of dF into a problem of a lower bound for L(1, χ) in terms of dFχ . In terms of
L(1, χ), Siegel [1935] or Goldfeld [1974] showed that for all 0 < ε there was a
constant cε with L(1, χ) ≥ cεd

ε−1/2
F . Unfortunately, if one wanted to make a list of

all Q(
√−d) = F with, for example, hF ≥ 5, this result would not help.

It was Dorian Goldfeld who made the spectacular connection between this prob-
lem of an effective constant cε and elliptic curves. He proved the following theorem.

(5.2) Theorem. For all real numbers 0 < ε < 1 there exists an effective cε > 0
such that for all imaginary quadratic fields F

hF ≥ cε(log |dF |)ε

if there exists an elliptic curve E over Q with gE = 3 and L(s, χ) having a zero of
order at least 3 at s = 1.

Putting together the theorem of Goldfeld (5.2) and one of the by-products of the
work of Gross–Zagier (4.2), we can assert the following theorem.

(5.3) Theorem. There exists an effective lower bound for the class numbers hF of
imaginary quadratic fields F in terms of an arbitrary positive power of log |dF | and
an effective positive constant.

See also the report of Oesterlé in the Séminaire Bourbaki, 1983–84, exposé 631.

§6. The Conjecture of Birch and Swinnerton–Dyer on the
Leading Term

If the L-function of an elliptic curve has a zero of order g at s = 1, then there is a
power series expansion

L E/K (s) = cg(s − 1)g + . . .
assuming as usual for these questions that L E/K has an analytic continuation to the
plane, or at least to a neighborhood of s = 1. The second part of the Birch and
Swinnerton–Dyer conjecture gives a formula for the value of cg . There are several
factors in the formula reflecting different aspects of the arithmetic of the curve.

(1) The order of the Tate–Šafarevič group XE , which itself was only conjec-
turally finite.
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(2) In Chapter 6, in the proof of the Mordell theorem, the canonical height was
used, see (7.2), along with the associated bilinear pairing 〈P, Q〉. We introduce
the following number V∞(E) by choosing P1, . . . , Pg independent elements of the
group E(Q) of rank g:

V∞(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

#E(Q
for g = 0,

det〈Pi , Pj 〉
(E(Q) : B)2

otherwise,

where B is the subgroup of finite index in E(Q) generated by P1, . . . , Pg .
(3a) Let cp = (E(Qp) : E0(Qp)), where E0 is defined to be the subgroup of

points mapping to nonsingular points mod p, see (1.1) where the notation was E (0)

for E0. It is also the number of components of multiplicity 1 rational over Fp on the
special fibre of the Néron’s minimal model for E at p.

(3b) Let c∞ = ∫
E(R) |ω| where ω is the differential form associated with a global

minimal model for E . It is unique up to sign, i.e., units in Z.

The number c∞ is the number of components of E(R) times the positive real
period of ω. The numbers cp = 1, except possibly for p, where E has bad reduction,
see Table 1 in Chapter 14. The above definitions were formulated for K = Q. For
the general case see, for example, the article by Bloch [1980] where there is a gen-
eral formulation and the conjecture is interpreted as a conjecture about Tamagawa
numbers. Now we can state the full conjecture over Q.

(6.1) Birch and Swinnerton–Dyer Conjecture Over Q. Let E be an elliptic curve
over Q such that L E/Q(s) has an analytic continuation to the entire plane and XE is
finite. Then the order of L E/Q(s) at s = 1 is g, the rank of E(Q), and the coefficient
of (s − 1)g in the Taylor expansion is given by

#(XE ) · V∞(E)c∞
∏

p

cp.

For numerical and theoretical evidence see Birch [1971], Birch and Swinnerton–
Dyer [1965], and Swinnerton–Dyer [1967]. For a modular curve it is not too hard to
show that the leading coefficient is c∞ times a rational number.

§7. Heegner Points and the Derivative of the L-function at s = 1,
after Gross and Zagier

Let E be a modular elliptic curve over Q such that L E (1) = 0 where, for example,
the sign in the functional equation is −1. In (5.1) there is a conjecture for L ′

E (1)
when the order of the zero at s = 1 is 1. Gross and Zagier proved a formula for
L ′

E (1) involving the height of a Heegner point on X0(N ) associated with E . This
formula is related to (6.1) , but it avoids the question of whether or not XE is finite.
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The proof of (4.1) requires the construction or the proof of the existence of a point
of infinite order. The method is to construct points on the modular curves X0(N ) and
with the modular parameterization map these to points on E . These special points
on certain X0(N ) were introduced by Heegner [1952], and they were first studied
intensively by Birch. He defined them as pairs of N -isogenous elliptic curves E and
E ′ with the ring End(E) = End(E ′) and having complex multiplication. If d < 0
is the discriminant of the complex multiplication field, then the Heegner points are
images of roots z ∈ H of quadratic equations

αz2 + βz + γ = 0

where β2 − 4αγ = d, α ≡ 0 (mod N ), and β ≡ δ (mod 2N ), where δ is a square
root of d (mod 4N ).

For a point y on the curve X0(N ), we can consider yσ , the conjugate under an
automorphism of C and Tm(yσ ) its image under a Hecke correspondence Tm . The
divisors Tm(yσ )− (∞) were studied by Gross [1985], and the local heights of these
points were calculated. The main results, see Gross and Zagier [1986], are formulas
for the derivative of an L-function at s = 1 where the L-function is made from a
cusp form of weight 2, so corresponding to a certain elliptic curve, and data from
a Heegner point. In their paper, Theorem 6.1 is a formula for L ′(1) in terms of an
inner product of the cusp form with a cusp form of weight 2 built out of data from
the Tm(yσ ) terms mentioned above. The second formula, Theorem 6.3 in their paper
[Gross and Zagier, 1986], is a formula for L ′(1) in terms of the inner product of
the original cusp form with itself times the canonical height of the Heegner point
together with certain general constants. The proof involves an understanding of about
a dozen height terms with corresponding terms related to modular expressions.

§8. Remarks On Postscript: October 1986
In the first edition of Elliptic Curves, we had the good luck to be in a position to report
on three recent developments in the theory of elliptic curves. They were results by
K. Rubin, by N. Elkies, and by G. Frey and K. Ribet.

The work of G. Frey and K. Ribet is considered in Chapter 18, §1 and §2. As for
the results of Elkies, we reported the following:

(8.1) Infinitude of Primes with Supersingular Reduction by N. Elkies. From the
results of Table 1, p. 264, we know that the curve defined by y2 = x3 − x has
supersingular reduction for primes p ≡ 7, 11 (mod 12) and the curve defined by
y2 = x3 − 1 has supersingular reduction for primes p ≡ 5, 11 (mod 12). This
means that each curve reduces to a supersingular curve at infinitely many primes.
Further analysis shows that any elliptic curve with complex multiplication has su-
persingular reduction at infinitely many primes, and it was conjectured to be true for
all elliptic curves over the rational numbers, or more generally over a number field.
In a letter to B. Mazur in July 1986, N. Elkies proved this result for all elliptic curves
over Q. He assumes that there is supersingular reduction at primes p1 < · · · < pr ,



332 17. Remarks on the Birch and Swinnerton–Dyer Conjecture

and using the result for curves with complex multiplication, he deduces that there is
a prime pr+1 > pr with supersingular reduction.

The reference to the article which has since appeared is Elkies [1987].

(8.2) Progress on the Finiteness ofW(E) by K. Rubin. This was published in the
same issue of Invent. math. 89 (1987) in two articles. These articles were only the
beginning, for they came at the same time as the methods of Kolyvagin on Euler
Systems. There are four very useful surveys of Kolyvagin’s work by Gross [1991],
McCallum [1991], Perrin-Riou [1990], and Rubin [1989].

Later, we have the book by Karl Rubin, Euler Systems, Annals of Math. Studies
[2000] based on his H. Weyl lectures. Here the general notion of Euler systems is
studied and applied to bounds on Galois cohomology which in turn lead to finiteness
properties of W(E) and relations between cases where rkE(Q) = 0, 1 and where
order of the pole at s = 1 of L(s, E/Q) is equal to 0, 1.

The subject of the Birch and Swinnerton–Dyer conjecture merits a very extended
treatment which lies outside the purpose of this book. It is a subject for a separate
book.
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Remarks on the Modular Elliptic Curves Conjecture
and Fermat’s Last Theorem

A modular elliptic curve is an elliptic curve over the rational numbers which has a
finite covering by a modular curve of the form X0(N ). Using the theory of molular
functions for �0(N ), we deduce that the Hasse–Weil Zeta function of a modular
elliptic curve has two basic properties: it has an analytic continuation to the complex
plane, and it satisfies a functional equation for the interchange between s and 2 − s,
see 16(3.4).

The modular elliptic curve conjecture, or simply modular curve conjecture, is a
conjecture growing out of the work of Shimura and Taniyama in the period 1950–
1965. It asserts that every elliptic curve over Q is modular. In Weil [1967] conceptual
evidence for the conjecture was given, and the conjecture became widely known
from this paper. For this reason the modular curve conjecture goes under the name of
the Shimura–Taniyama–Weil conjecture or the earlier name of the Taniyama–Weil
conjecture. If an elliptic curve over Q is modular, then also any elliptic curve with
the same j-value is modular. Such j-values are thus called modular. Before Wiles
[1995] only a finite number of j-values over Q were known to be modular.

Ten years earlier Frey made the remarkable observation that the modularity con-
jecture should imply Fermat’s Last Theorem. The program of Frey, relating the two
conjectures, was reformulated by Serre as the ε-conjecture, and as mentioned in the
first edition of this book, it was proved by Ribet in the summer of 1986, see Ribet
[1990]. In fact, Ribet’s result required only that the modular curve conjecture be true
for semistable curves in order to deduce Fermat’s Last Theorem.

In his 1995 Annals paper Wiles was able to prove the modular curve conjecture
for sufficiently many curves to establish Fermat’s Last Theorem by completing the
above program. One basic point in Wiles’ proof was carried out jointly with Richard
Taylor in Taylor and Wiles [1995]. The proof was completed in the Fall of 1994.

As outlined in the last section §9, the entire modular curve conjecture was proved
at the end of 1999 by Breuil, Conrad, Diamond, and Taylor.

In this chapter we begin by reviewing some of the material in earlier chapters
which have a direct bearing on the modular curve conjecture starting with the role of
the Tate module of an elliptic curve. In terms of the Tate module with its structure as
an �-adic Galois module, we are able to give an alternate formulation of the modular
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curve conjecture. We illustrate the main idea with the following diagram of the basic
sets of objects connected by two functions α and β together with reduction mod � of
a sublattice of a vector space representation.

⎧⎨⎩
elliptic curves
over Q with
conducteur

⎫⎬⎭ α−−−−→
⎧⎨⎩

�-adic
representations
of Gal(Q̄/Q)

⎫⎬⎭ β←−−−−

⎧⎪⎪⎨⎪⎪⎩
modular forms of

weight 2 for �0(N )
which are Hecke
eigenfunctions

⎫⎪⎪⎬⎪⎪⎭⏐⏐�reduction mod �⎧⎨⎩
mod �

representations
of Gal(Q̄/Q)

⎫⎬⎭ .
By a result of Faltings [1984] the function α, which assigns to an elliptic curve E

over Q the �-adic representation on the Tate module T�(E), is injective up to isogeny.
In other words, if T�(E ′) and T�(E ′′) are isomorphic Galois representations, then E ′
and E ′′ are isogenous over Q. For general abelian varieties this was conjectured by
Šafarevič and proved by Faltings.

The function β assigns to a modular form f associated with �0(N ), which is an
eigenform for the Hecke algebra, an �-adic representation β( f ) with the property
that the eigenvalue λp for the Hecke operator Tp( f ) = λp f associated to a modular
form f has a Frobenius trace tr(Fp) at p on β( f ) equal to λp. In fact to each weight
2 modular Hecke eigenform such that the eigenvalues are rational numbers there is
an elliptic curve E with conductor |N and a map of the modular curve X0(N )→ E
onto E . These are the modular elliptic curves, and the function β is injective. The
modular elliptic curve conjecture is equivalent to the observation that every �-adic
representation coming from Tate modules of E/Q has this form.

The strategy of Wiles. Let V ′ and V ′′ be two irreducible 2-dimensional �-adic
representations of Gal(Q̄/Q) which are isomorphic modulo �. Under suitable con-
ditions if either V ′ or V ′′ is a modular representation, then so is the other of weight
two and expected level.

In the application of this strategy a modular form of weight one will be the start-
ing point coming from Langlands and Tunnell. We go on to outline some of the main
results and ideas in the proof.

We conclude with a guide to the recent literature on the subject.

§1. Semistable Curves and Tate Modules
We begin by recalling the notions of good reduction and semistable reduction. In
14(3.2) we introduced the criterion of Néron–Ogg–Šafarevič for an elliptic curve E
over a local field to have good reduction. The global version of the theorem is stated
in 15(3.3).
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Besides good reduction, we will also need to consider the weaker notion of
semistable reduction.

(1.1) Definition. Let E be an elliptic curve over Q. The curve E has good reduction
(resp. semistable reduction) at a prime p provided there exists a cubic equation over
Z for E with the reduction mod p a nonsingular cubic (resp. a cubic with at most a
double point as singular point). An elliptic curve E over Q is semistable provided it
has either good or semistable reduction at each prime number p.

(1.2) Example. At the end of chapter 14, Table 2 we have given a list of 16 elliptic
curves coming from an article of Serre. It is indicated which curves are semistable.
It is the case that all complex multiplication curves are not semistable.

In the semistable case the reduced curve will be either an elliptic curve over Fp

or a curve whose smooth points over a finite extension of Fp form the multiplicative
group.

(1.3) Remark. Among the cubic equations over Z for an elliptic curve E over Q

there is one with minimal discriminant D ∈ Z. There is also the conductor N of E
which is a natural number. The curve E has good reduction at a prime p if and only
if p � D, or equivalently if p � N . The curve E has semistable reduction at p if and
only if p2 � N , and hence, the semistable curves are exactly those with square free
conductor N . Recall that the conductor N is defined locally in 14(2.4) and globally
in 15(1.1), and the minimal discriminant in 5(2.6) and 15(1.3).

In 12(3.3) the definition of isogeny was given. We say that E and E ′ are isoge-
nous provided there exists an isogeny E → E ′. This is seen to be an equivalence
relation. Two isogenous elliptic curves have the same conductor, but the discrimi-
nants can be different. In the next theorem the direct implication is easy to show, but
the striking converse is due to Faltings [1984, §5].

(1.4) Theorem. Two elliptic curves E and E ′ over Q are isogenous if and only if E
and E ′ have the same good primes and #E(Fp) = #E ′(Fp) for each good prime p.

(1.5) Remark. Let G denote the absolute Galois group Gal(Q̄/Q) over Q. Then G
acts on the K -valued points E(K ) of E for any Galois extension K of Q contained
in the algebraic closure Q̄ of the rational numbers Q. As was described in 12(5.2),
G acts also on the Tate module T�(E) giving a two dimensional Z�-representation. It
has as a quotient E[�] = �E(Q̄), the �-division points of E , giving a two dimensional
F�-representation.

§2. The Frey Curve and the Reduction of Fermat Equation to
Modular Elliptic Curves over Q

Although the cubic curve y2 = x(x − a p)(x − cp) was studied by Hellyovarch in
the mid 70’s, its possible significance for Fermat’s Last Theorem was pointed out by
Gerhard Frey in an article in Annales Universitatis Saraviensis, Vol. 1, No. 1, 1986.
For this reason the next definition has come into common usage.
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(2.1) Definition. The Frey curve E(a, c; p) is defined for an odd prime p and for
two distinct integers a and c by the cubic equation: y2 = x(x − a p)(x − cp).

Frey had the idea that if a and c are related to third integer b satisfying the
Fermat equation a p + bp = cp, then we would have an elliptic curve E(a, c; p) =
E(a, b, c; p) over Q which was not modular. This would contradict the modular
curve conjecture.

(2.2) Remark. Note that E(a, b, c; p) has good reduction at a prime q if and only if
q does not divide the product abc. In particular it always has bad reduction at 2. On
the other hand this curve is semistable for relatively prime a, b, c having a suitable
order. In any case the early methods of Wiles could handle this curve even when it is
not semistable at 2.

(2.3) Fundamental Property of the Frey Curve. For G = Gal(Q̄/Q) and each
prime � > 2 the modular represention of G on E[�] would have a very special prop-
erty. It would be unramified at � �= p. At primes � where E(a, b, c : p) has good
reduction, by the Néron–Ogg–Šafarevič criterion, but it also holds for all odd primes
dividing abc from the special structure of the equation. At � = p it is crystalline.
This concept will be considered later.

(2.4) Basic Assertion. The curve E(a, b, c : p) with these properties can not be
modular. This is the content of the article of Ribet [1990]. It is a careful study of
raising and lowering the levels of modular Galois representations.

In other words the Fermat conjecture is reduced to the modular elliptic curve
conjecture for semistable curves.

§3. Modular Elliptic Curves and the Hecke Algebra
In chapter 11, §4, we introduced modular forms f (τ ) for subgroups of SL2(Z) and
their q-expansions at cusps. In 11(5.2) the Mellin transform of a modular form was
analytically continued to the entire plane, and in 11(5.3) for SL2(Z) and in 11(5.7)
for �0(N ), and the functional equation of the L-function which is the Mellin trans-
form up to a factor was explained. In 11(8.1) the Hecke operators Tp were introduced
acting on modular forms for the group SL2(Z), and their role with respect to Euler
expansions was indicated in 11(8.2). We need these operators on S(N ) the space of
cusp forms of weight 2 for �0(N ).

(3.1) Definition. The Hecke operators

Tp : S(N )→ S(N ) for p � N and Up : S(N )→ S(N ) for p | N

are defined by giving the q-expansion coefficients in terms of the q-expansion coef-
ficients an( f ) of f (τ ) as follows

an(Tp f ) = anp( f )+ pan/p( f ) and an(Up f ) = anp( f ).
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The Hecke algebra T(N ) is the commutative algebra generated by the Hecke opera-
tors acting on S(N ), the space of cusp forms for �0(N ) of weight 2.

Here ar ( f ) = 0 if r ∈ Q − Z.

(3.2) Definition. An eigenform f (τ ) is a cusp form for �0(N ) of weight 2 such that
f is a common eigenform for all Hecke operators normalized so that a1( f ) = 1.

(3.3) Remark. If f is an eigenform, then ap(F) = a1(Tp f ) for p � N and
ap( f ) = a1(Up f ) for p|N , or in other words the q-expansion coefficient ap(F)
is the eigenvalue of the related Hecke operator. The other coefficients an( f ) are de-
termined recursivelly, so that we see that eigenform f is determined by the prime
indexed set of eigenvalues ap(F) of f .

Conversely a prime indexed set of numbers (ap) determines a q-expansion
f (τ ) = ∑

1≤n ane2π iτ for a possible eigenform using the recursion relations aris-
ing from the fact it is an eigenform for Tp when p � N and Up when p|N .

(3.4) Definition. An L-prime indexed set of numbers ap is a prime indexed set of
numbers for which the related q-expansion f (τ ) = ∑

1≤n ane2π iτ and any Direchlet
character χ mod N has a related L-function

L f (s, χ) =
∑
1≤n

anχ(n)n
−s .

which has an analytic continuation to the entire s-plane bounded in vertical strips
and which satisfies a functional equation as in 11(5.7).

(3.5) Theorem (A. Weil [1968]). A prime indexed set of numbers ap corresponds
to a modular form f (τ ) as in (3.3) if and only if it is an L-prime indexed set.

(3.6) Assertion. An eigenform f for N or equivalently an L-indexed set of numbers
ap, which are all rational numbers, determines an isogeny class of elliptic curves
defined over Q with conductor N and good reduction at all p � N . Also at p where
there is good reduction, i.e., p � N , the number #E(Fp) of Fp rational points of the
reduced curve is #E(Fp) = p + 1 − ap where E is in the isogeny class. The class
contains a minimal elliptic curve E f with respect to the degree of the map from
X0(N ) → E f . The elliptic curves which arise in this way are exactly the elliptic
curves E over Q for which there is a non-constant map X0(N )→ E .

Now we can return to the modular curve conjecture in this context.

(3.7) Modular Curve Conjecture. If E is an elliptic curve over Q with the reduc-
tion properties given in (3.5) and with conductor N , then there is an eigenform f (τ )
with rational eigenvalues such that E and E f are isogenous. In particular we have

ap(F) = p + 1 − #E(Fp).
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§4. Hecke Algebras and Tate Modules of Modular Elliptic Curves
In general there are Galois representations associated with eigenforms f (τ ). We are
interested in eigenforms with rational coefficients or with rational eigenvalues.

(4.1) Notation. Now we return to the Hecke algebra T(N ). It is a finitely generated
Z-module. Consider a prime � and a suitable non-Eisenstein maximal ideal M(�)

such that the residue field T/M(�) has characcteristic �. Form the completion T̂ at
this ideal of T, that is, T = lim←− qT/M(�)q . For background, see B. Mazur, Modular
curves and the Eisenstein ideal, IHES no 47 (1977), especially p. 37 and Chap II. §9,
p. 95.

(4.2) Assertion. There is a basic two dimensional Galois representation ρ = ρM(�) :

Gal(Q̄/Q)→ GL2(T̂) with the following two properties:

(1) ρ is unramified at p � Nl; ρ is crystalline at p = � if � � N .

Unramified means that it is trivial when restricted to the inertial group at p. By
14(3.2) unramified Galois action on Tate modules is related to good reduction of
elliptic curves. A crystalline representation is more difficult to define, but for the
Tate module it is again related to good reduction.

(2) For p � Nl we have trace(ρ(Frobp)) = Tp and det(ρ(Frobp)) = p.

Eigenforms are related to this basic representation in the following way.

(4.3) Assertion. An eigenform f (τ ) with rational eigenvalues defines a morphism
θ f : T → Z�, and if θ f factors as θ f : T̂ → Z�, then applying the functor GL2 to
θ f and composing with ρM(�) we obtain a Galois module GL2(θ f )ρM(�) which is
isomorphic as a Galois module to the Tate module T�(E f ) of the associated elliptic
curve E f .

In this way we describe the action of the absolute Galois group on the �m-division
points of E f using the eigenform f .

(4.4) Assertion. Let E be an elliptic curve over Q such that E[�] is an irreducible
Galois representation. The elliptic curve E is modular if and only if the associated
Tate module can be constructed by such a morphism θ f and representation ρM(�) as
in the following diagrams where the functor GL2 is applied to θ f

T̂ −−−−→ T/M4⏐⏐ 4⏐⏐
Z� −−−−→ F�

T̂⏐⏐�θ f

Z�

Gal(Q̄/Q)
ρM(�)−−−−→ GL2(T̂)

ρ�,E

⏐⏐� ⏐⏐�GL2(θ f )=θ f

Aut(T�(E f )) GL2(Z�).
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§5. Special Properties of mod 3 Representations
Starting with the three division points E[3] of an elliptic curve E . We obtain a Ga-
lois representation Gal(Q̄/Q) → GL2(F3). The group GL2(F3) has as quotient
PGL2(F3) which is isomorphic to S4, the symmetric group on the four points of the
line P1(F3).

(5.1) Assertion. We assume that Gal(Q̄/Q) → GL2(F3) is surjective and that E
has good reduction at 3. When this is not the case, there is a related argument with
E[5] and the corresponding Galois representation Gal(Q̄/Q) → GL2(F5). For the
three division points the quotient symmetric group S4 = PSL2(F3) is solvable, and
lifting theorems of Langlands and Tunnell apply to show that the representation is
modular. The deep theory of lifting of Langlands yields a weight one cusp form g(τ )
for some �1(N ), which is an eigenfuction for all the ralted Hecke operators, such
that for almost all primes p the coefficient bp is related to the trace of Frobp on the
Galois representation.

Next, this cusp form is multiplied by the following weight one modular form E
for �1(3) defined with cubic character

χ(d) = 0,±1 where d ≡ 0,±1 (mod 3)

and having as q-expansion

E(τ ) = 1 + 6
∑
n≥1

∑
d|n
χ(d)e2π inτ .

The product g(τ )E(τ ) is a weight two cusp for �0(N ), and its coefficients are
congruent mod p to bn for any prime p in Q̄ containing 1 + 21/2. By the Deligne–
Serre [1974, lemma 6.11] it is possible to modify g(τ )E(τ ) to an eigenform for
�1(N ) such that its coefficients are congruent mod p to bn . Hence the representation
E[3] on the 3 division points is described by a modular form for �0(3N ). Using the
theory in Ribet [1990] and Carayol, we modify the conductor to obtain a form in
�0(N−

ρ ) where N−
ρ is the minimal level for which the representation can arise.

For further details see Wiles [1995, Chapter 5].

(5.2) Remark. Starting with the Galois representation on E[3], we can think of it
as a quotient of T3(E) the 3-adic Tate module. The core of the proof is the assertion
that the universal lifting of E[3] is modular. This is considered in the next section.

§6. Deformation Theory and �-Adic Representations
(6.1) Deformation Data. Let D denote a set of local conditions at all primes p �= �
on liftings of ρ̄ such that outside � a finite set of primes this condition is simply
being unramified, but at the primes of � there are conditions of being ordinary or
flat. For details see Wiles [1995, p. 458].
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There is a minimal such set of conditions D(min) consisting of properties of
liftings which are as unramified as possible.

The universal deformation ring R(D), depending on deformation data D, is con-
structed for anly prime �, but the main application is at the prime 3.

(6.2) Universal Galois Representation. There is an algebra R(D) over the �-adic
numbers Z� and a Galois representation ρ : Gal(Q̄/Q) → GL2(R(D)) satisfying
the following properties:

(1) as a Z�-algebra R(D) has the form R = Z�[[T1, . . . , Tr ]]/I where I is an
ideal in the formal series algebra and ρ� mod(�, T1, . . . , Tr ) is isomorphic to
the representation E[�],

(2) ρ is crystalline at � (which corresponds to the good reduction of E at �),
(3) ρ has local properties D at all primes p �= �,
(4) det(ρ(Frobp)) = p for p � N , and
(5) (universal property) any other representation Gal(Q̄/Q) → GL2(A) satisfying

(1)–(4) is conjugate to the representation GL2(θ)ρ for a unique algebra mor-
phism θ : R(D)→ A.

(6.3) Construction ofR(D). Starting with a finite set of generators of the Galois
group, we take 4 formal variables over Z� for each generator to make the ρ-image
2×2 matrix. Next, we divide the resulting formal series algebra by the minimal ideal
such that properties (1)–(4) of (6.2) are satisfied together with a GL(2) adjoint action
quotient.

(6.4) Remark. For each suitable class of deformation data D we can choose a level
N and the maximal ideal M(�, D) such that

ρM(�,D) : Gal(Q̄/Q)→ GL2(T̂)

is the maximal modular deformation f satisfying D in (5.1)(5). We will write T̂(D)
for the completion of the Hecke algebra M(�, D). Thus we have a commutative
diagram

R(D) −−−−→ T̂ (D) −−−−→ T/M4⏐⏐ 4⏐⏐
Z� −−−−→ F�.

We remark that (5.1) tells us that if � = 3 then T(D(min)) �= 0.

(6.5) Key Idea of Wiles. Show that the map R(D) → T̂ (D) coming from the uni-
versal property of R(D) for such a D is an isomorphism.

For suitably large D there is a map R(D) → Z3 giving rise to the Galois
representation T3(E). Thus we deduce that for such data D there is a morphism
T̂ (D)→ Z3 giving rise to T3(E), that is, E is modular.
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§7. Properties of the Universal Deformation Ring
We continue with the notation D for a choice of local data.

(7.1) Assumptions. For simplicity we will assume that there is a morphism

T̂(D(min))→ Z�.

In general there will be a morphism T̂(D(min)) → O for O the ring of integers in
some finite extension of Q�, and one can apply a similar argument. Let

ρn : Gal(Q/Q)→ GL2(Z/�
n)

be the Galois representation corresponding to this morphism T̂(D(min))→ Z�. Let
Wn denote the adjoint representation in SL2(Z/�

n) on GL2(Z/�
n) given by conju-

gation.

(7.2) Notation. Let H1
f,D(Q,Wn) denote the cohomology group with the local con-

ditions related to (6.2)(2) and (3). The definition consists of elements which are zero
when restricted to subgroups of Gal(Q̄/Q) which are Galois groups of Q̄p over max-
imal unramified extensions of Qp. For the definitions see Wiles [1995, pp. 460–462].

(7.3) Remark. This is a form of a Selmer group similar to those considered in
8(3.2).

(7.4) Assertion (M. Flach). The orders of the Selmer groups H1
f,D(Q,Wn) are uni-

formally bounded in n.
This order comes about from following numerical criterion for the morphism

R(D)→ T̂ (D) to be an isomorphism.

(7.5) Assertion. The ring T̂ = T (D) is Gorenstein, and this means that the dual
Hom(T̂ ,Z�) over Z� is a free T̂ -module. Thus the surjection T̂ → Z� has an adjoint
Z� → T̂ , and the composition of these morphisms is multipliccation by an element
ηD ∈ Z�. This element ηD is nonzero and is well defined up to a unit.

(7.6) Criterion forR(D)→ T̂(D) to Be an Isomorphism. Let pD denote the ker-
nel of the composite surjection R(D) → T̂ (D) → Z�. We have the follow-
ing inequalities of orders #(pD/p

2
D) ≥ #(Z�/ηDZ�) with equality if and only if

R(D)→ T̂ (D) is an isomorphism.

(7.7) Remark. The first attempt to prove this equality was with the Euler systems of
Kolyvagin. Only the fact that ηD annihilated pD/p

2
D could be shown, and this is the

content of theorem of M. Flach. At the time it seems to be very difficult to construct
higher Euler systems.

(7.8) Remark. The problem is reducing to a problem in the commutative algebra
properties of the two algebras R(D) and T̂ (D).
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§8. Remarks on the Proof of the Opposite Inequality
In the final stages of the proof of Wiles, subtle points in commutative algebra play a
very special role.

We continue with the notation D for a choice of local data for the minimal case
see Wiles [1995, p. 513]. Now there are two steps:

(1) R(D(min))→ T̂ (D(min)) is an isomorphism and this is discussed in (8.1),
(2) R(D)→ T̂ (D) is an isomorphism and this is discussed in (8.2) where we reduce

to the minimal case.

(8.1) Remark. In the minimal case all primes of bad reduction occur already mod
3 and not only mod 3i for i > 1. This is the content of Wiles [1995, Chapter 3].
Here he usees the estimates on the size of Selmer group, see especially Theorem 3.1
on p. 518. An important step in completing the proof was to use that T is not just a
Gorenstein algebra, but also a complete intersection, see Taylor and Wiles [1995]

(8.2) Reduction to the Minimal Case. Now we know that

#(pD(min)/p
2
D(min)) = #(Z�/ηD(min)Z�),

and we must deduce, as in (7.6), that

#(pD/p
2
D) ≤ #(Z�/ηDZ�).

(1) For the left hand side one notes that

#(pD/p
2
D) = #H1

f,D(Q,Wn)

for n � 0, and one can estimate (from above) the quotient

H1
f,D(Q,W ∗

1 )/H1
f,D(n)(Q,W ∗

1 ).

(2) The right hand side measures congruences between modular forms. Here a
method of Ribet and Ihara allows one to estimate #(pD/p

2
D)/#(pd(min)/p

2
D(min))

from below.

These bounds are the same as proving #(pD/p
2
D) ≤ #(Z�/ηDZ�). Hence R(D) →

T̂ (D) is an isomorphism, and this proves the theorem.

§9. Survey of the Nonsemistable Case of the Modular Curve
Conjecture

After the semistable case was finished in the main paper of Wiles and the Taylor–
Wiles article, progress on the general case of elliptic curves over Q continued with
various types of refinements along the lines of Wiles’ program by especially F. Dia-
mond between 1994 and 1997.
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In the paper of B. Conrad, F. Diamond, and R. Taylor [1999] the modular curve
conjecture was established expect for curves with very singular behavior at 3, that
is, any curve with conducctor not divisible by 33. Finally in C. Breuil, B. Conrad,
F. Diamond, and R. Taylor [2001] with preprint in 1999 the special problems at the
prime 3 were resolved, and the modular curve conjecture is established for all elliptic
curves over the rational numbers.
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Higher Dimensional Analogs of Elliptic Curves:
Calabi–Yau Varieties

In any discussion of higher dimensional analogs of elliptic curves, the first point
which has to be emphasized is that there are compact complex manifolds, which
are not algebraic. In the absence of an algebraic structure, a complex Kähler metric
becomes important. Deformations of these manifolds in a family can mean defor-
mations of either the complex structure or the Kähler metric. In particular, complex
differential geometry plays a crucial role in higher complex dimensions. The first
examples begin with tori Cg/�, where � is a discrete subgroup of rank 2g. Com-
plex tori and abelian varieties, which are algebraic tori, constitute the first obvious
extension of elliptic curves, and this subject is highly developed, see the books of
A. Weil and D. Mumford.

Our aim is to give an introduction to the study of another class of varieties X/k
with similar properties to elliptic curves. These varieties are smooth, projective, and
having zero canonical class K X = 0. The last condition can be stated that the canon-
ical line bundle ωX = �n

X is trivial for dimX = n. Such smooth varieties with
trivial canonical line bundle exist in all dimensions. For example, abelian varieties
and smooth hypersurfaces in Pn+1 of degree n + 2. Recall that in dimension one, an
elliptic curve is both a one dimensional abelian variety and can be represented as a
smooth cubic plane curve.

In dimension two, the smooth hypersurface of degree four in P3 is not an abelian
surface. For it is simply connected, and abelian varieties are never simply connected.
The smooth surface of degree four in projective three space is an example of a K3-
surface which is algebraic. A K3-surface has an everywhere nonzero holomorphic
2-form, like an abelian surface, but it is simply connected. K3-surfaces were named
after Kummer, Kähler, and Kodaira.

This condition points the way to the Calabi–Yau generalization of elliptic curves
as compact n-dimensional varieties with an everywhere nonzero holomorphic n-form
or trivial canonical bundle with the added condition that the fundamental group is
finite. In dimension three, the compact varieties with trivial ωX and with finite fun-
damental group are called Calabi–Yau 3-folds, and they include smooth quintic hy-
persurfaces in projective four space. Some complete intersections in toric varieties
are also important examples of Calabi–Yau varieties.
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A Calabi–Yau manifold takes its name from a conjecture about Kähler mani-
folds by Calabi [1955] which was proved by Yau [1978]. This is a result in complex
analytic geometry which is formulated in terms of a Ricci flat Kähler metric or in
terms of a Levi–Civita connection with SU(n) holonomy. In the context of complex
geometry these conditions are equivalent to a trivial canonical line bundle.

To survey this part of the theory, we introduce briefly some basic differential
geometry, some discussion of Calabi–Yau manifolds as Kähler manifolds, and then
move to the algebraic theory. The aim here is to give a relatively self-contained ac-
count of basic Kähler geometry in order to show clearly the basic concept of Calabi–
Yau manifold as a higher dimensional generalization of an elliptic curve. Here the
role of a conjecture of Calabi and the proof of the conjecture by Yau is taken up in
the context of Kähler geometry. This means we can use a Kähler structure to formu-
late geometric flatness type conditions for a smooth projective algebraic variety over
the complex numbers to be a Calabi–Yau manifold. These conditions are considered
in the context of algebraic geometry where they have a purely algebraic formulation
for smooth algebraic varieties. This extends even to varieties with mild singularities.
Some of the preliminary results on Calabi–Yau manifolds are mentioned, the main
source of examples from toric geometry is introduced, and a guide to the literature is
given.

As mentioned above, we make a quick survey of relevant topics in complex dif-
ferential geometry. The following remarks are a background to the point of view used
in these first sections.

Differential geometry is formulated in terms of smooth vector bundles where the
main examples are the tangent bundle and exterior powers of the cotangent bundle.
As was made precise by Serre and Swan, a vector bundle over M can be viewed as a
bundle p : E → M with the fibres Ex = p−1(x), x ∈ M , having smoothly varying
vector space structures. There is a principal bundle of frames in the background, and
also a finitely generated projective module over the algebra C∞(M) of smooth func-
tions on the manifold M . This related module is just �∞(M, E) the vector space of
smooth cross sections of E with the C∞(M)-module structure coming from multi-
plication of a scalar valued smooth function with a vector field. In the case of the
tangent bundle T (M) on M , it is the module of vector fields Vec(M) on M .

We formulate everything in terms of vector fields and differential forms with only
a passing word on the fibre bundle approach. The reader is invited to carry out this
approach and even fill in the discussion with coordinates and the resulting flood of
indices.

In the final four sections of this chapter, we survey the Enriques classification of
surfaces where the existence of an elliptic fibration of a surface plays a basic role.
The place of the two dimensional Calabi–Yau variety, namely the K3 surface, in this
classification is pointed out, and the chapter concludes with a general discussion of
K3 surfaces.



§1. Smooth Manifolds: Real Differential Geometry 347

§1. Smooth Manifolds: Real Differential Geometry
(1.1) Notation. Let M be a smooth real manifold, and let C∞

R
(M) denote the alge-

bra of smooth real valued functions on M . The extension of scalars C ⊗R C∞
R
(M)

is the algebra C∞(M) of smooth complex functions on M . A coordinate chart is a
pair of open sets U ⊂ V in M , with the closure U ⊂ V , and a system of real valued
functions x1, . . . , xn ∈ C∞

R
(M) equal to zero outside V and having the property that

every f ∈ C∞
R
(M) can be represented as a composite function f = φ(x1, . . . , xn)

on U by a unique smooth function φ defined on the open subset (x1, . . . , xn) ⊂ Rn .

We will describe the tangent bundle T (M), the cotangent bundle T ∗(M), and the
pth exterior powers �pT ∗(M) in terms of their smooth cross sections Vect(M) of
smooth vector fields for T (M) and Ap(M) of smooth p-forms for�P T ∗(M). Since
each germ of a smooth function, of a smooth vector field, or of a p-form is repre-
sented by a global section, we can recover the vector bundles from these C∞

R
(M)

modules. The same formulation will apply to complex structures and Riemannian,
Hermitian, and Kähler metrics.

(1.2) Definition. A real (resp. complex) vector field on a smooth real manifold M is
a derivation ξ : C∞

R
(M) → C∞

R
(M) (resp. ξ : C∞(M) → C∞(M)). Let VecR(M)

(resp. Vec(M)) denote the real (resp. complex) vector space of vector fields on M
where the formula (aξ+bη)( f ) = aξ( f )+bη( f ) defines the vector space structure
over the scalars R (resp. C).

The derivation property for ξ means that ξ is linear over the scalars and for two
functions f, g we have

ξ( f g) = f ξ(g)+ gξ( f )

(1.3) Remark. To derive assertions about real vector fields from assertions about
complex vector fields, we use the complex conjugate vector field ξ defined by
ξ( f ) = ξ( f ). Just as a function f ∈ C∞(M) has the property that f ∈ C∞

R
(M) if

and only if f = f , we have f ∈ VecR(M) if and only if ξ = ξ . From now on, we
state everything for complex valued functions and vector fields.

There are two additional operations on vector fields.

(1.4) Remark. Let h ∈ C∞(M) and ξ, η ∈ Vec(M). The C∞(M)-module structure
on Vec(M) is given by the formula (hξ)( f ) = h(ξ( f )), and the Lie bracket structure
on Vec(M) is given by the formula

[ξ, η]( f ) = ξ(η( f ))− η(ξ( f ))

We leave it to the reader to check that the resulting maps are derivations in each
case.



348 19. Higher Dimensional Analogs of Elliptic Curves: Calabi–Yau Varieties

(1.5) Remark. The complex vector space Vec(M) is a module over C∞ with the
operation hξ and a Lie algebra over C with the Lie bracket as in (1.4). It is not a Lie
algebra over C∞(M). Indeed, for ξ, η ∈ Vec(M) and f, g ∈ C∞(M),

[ f ξ, gη] = f g[ξ, η] + ξ(g)η − η( f )ξ.

(1.6) Definition. A p-form on a smooth manifold is a C∞-multilinear map
ω : Vec(M)p → C∞(M). Let Ap(M) denote the C∞(M)-module of p-forms. The
module A1(M) is the C∞(M)-dual of Vec(M) of cotangent vector fields or 1-forms,
and each function f defines a 1-form d f by d f (ξ) = ξ( f ).

The resulting morphism d : A0(M) = C(M)→ A1(M) also satisfies the deriva-
tion property d( f g) = f d(g)+ gd( f ).

(1.7) Remark. For a smooth function f on a manifold, the support of f , denoted
supp( f ), is the closure of all points x ∈ M where f (x) �= 0. For a vector field
ξ , we have supp(ξ( f )) ⊂ supp( f ). In terms of local coordinates x1, . . . , xn on a
coordinate chart U ⊂ V ⊂ M with corresponding partial derivatives ∂1, . . . , ∂n on
U , we have ξ = ξ(x1)∂1 + · · · + ξ(xn)∂n . Thus the partial derivatives are local cross
sections of the tangent bundle T (M) of M , and the local coordinate of ξ is the n-
tuple (ξ(x1), . . . , ξ(xn)). The 1-forms dx1, . . . , dxn are local cross sections of the
cotangent bundle T ∗(M) of 1-forms on M , and the exterior products dxi(1) ∧ · · · ∧
dxi(p), denoted dxi(∗) for all i(∗) : 1 ≤ i(1) < · · · < i(p) ≤ n, are a basis of local
cross sections of the bundle �pT ∗(M) of p-forms. In particular, a p-form ω can
be written in local coordinates as ω = ∑

i(∗) ωi(∗)dxi(∗) where the ωi(∗) are smooth
functions.

(1.8) Definition. In terms of local coordinates, we can define a map d : Ap(M) →
Ap+1(M) by the formula

dω =
∑
i(∗)

dωi(∗) ∧ dxi(∗).

Here we have used the exterior multiplication of forms which is defined Ap(M)×
Aq(M)→ Ap+q(M). We leave it to the reader to check that the map is independent
of local coordinates and satisfies d(ω′∧ω′′) = dω′∧ω′′+(−1)pω′∧ω′′ for ω′ ∈ Ap,
ω′′ ∈ Aq , and d(d(ω)) = 0.

Metric properties of manifolds come from the following concepts.

(1.9) Definition. A pseudo-Riemannian metric on M is a C∞
R
(M)-bilinear form

g : VecR(M)× VecR(M)→ C∞
R
(M) such that

(1) g(ξ, η) = g(η, ξ) for all ξ, η ∈ C∞
R
(M), and

(2) for each 1-form θ , there exists a unique vector field η ∈ VecR(M)with g(ξ, η) =
θ(ξ) for all ξ ∈ VecR(M).

Also, g is Riemannian provided g(ξ, ξ) ≥ 0 for ξ real, or ξ = ξ .
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(1.10) Remark. The function which assigns to η ∈ VecR(M), then element θ(ξ) =
g(ξ, η) with θ ∈ A1

R
(M) is an isomorphism

VecR(M) −−−−→ A1
R
(M) of C∞

R (M)-modules.

A pseudo-Riemannian or Riemannian metric g defines by extension of scalars a
C∞(M)-bilinear form g : Vec(M)× Vec(M)→ C∞(M).

(1.11) Remark. Returning to the local coordinates x1, . . . , xn of (1.7) on the coor-
dinate chart U ⊂ V ⊂ M , we can write a pseudo-Riemannian metric g(ξ, η) in local
coordinates using the local cross sections ∂1, . . . , ∂n by decomposing

g(ξ, η) = g(ξ(x1)∂1 + · · · + ξ(xn)∂n, η(x1)∂1 + · · · + η(xn)∂n)

=
∑

1≤i, j≤n

g(∂i , ∂ j )ξ(xi )η(x j )

=
∑

1≤i, j≤n

g(∂i , ∂ j )(dx1 ⊗ dx j )(ξ, η)

where ξ = ξ(x1)∂1 + · · · + ξ(xn)∂n and η = η(x1)∂1 + · · · + η(xn)∂n . Thus in local
coordinates we have

g =
∑

1≤i, j≤n

g(∂i , ∂ j ) dxi ⊗ dx j or simply g =
∑

1≤i, j≤n

gi, j dxi dx j

where gi, j = g(∂i , ∂ j ) = g j,i from the symmetry of g.

§2. Complex Analytic Manifolds: Complex Differential
Geometry

Complex differential geometry begins with the concept of a complex structure on a
real manifold which generalizes the complex structure on R2n making the complex
Euclidean space Cn . A real manifold with a complex structure is a complex analytic
manifold. A complex structure on X can be defined by returning to coordinate charts
U ⊂ X with complex valued coordinate maps

(z1, . . . , zn) : U → U ′ ⊂ Cn

where the change of coordinates is by holomorphic (or complex analytic) functions
in n variables.

A second approach is to speak of an almost complex structure on a real manifold
of even dimension 2n.

(2.1) Definition. An almost complex structure on a manifold X is a C∞
R
(X)-

morphism JR : VecR(X) → VecR(X) which satisfies J 2
R

= −1. This morphism
J = C⊗R JR induces an eigenspace decomposition which splits the complex vector
fields for eigenvalues +i and −i .
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C ⊗R VecR(X) = Vec(X) = Vec(X)(1,0) ⊕ Vec(X)(0,1)

called respectively the holomorphic and antiholomorphic parts. The elements of
Vec(1,0)X have the form v − i J (v) and those of Vec(X)(0,1) have the form v + i J (v)
for arbitrary v ∈ Vec(X).

(2.2) Example. Let X be a holomorphic manifold with local complex coordinate
charts with complex coordinate functions (z1, . . . , zn). Let (x1, . . . , xn, y1, . . . , yn)

be the corresponding real coordinate functions associated with the complex coordi-
nate functions z1 = x1 + iy1, . . . , zn = xn + iyn . Then

z1, . . . , zn, z1, . . . , zn

can also be used formally as local coordinates. The related almost complex structure
J has the following values on the local partial derivatives as complex vector fields:

J (∂x j ) = ∂y j , J (∂y j ) = −∂x j , J (∂z j ) = i∂z j , J (∂z̄ j ) = −i∂z̄ j

for j = 1, . . . , n. For this we use the following relations between real and complex
coordinate functions in a coordinate chart:

x = 1

2
(z j + z j ) and y j = 1

2i
(z j − z j ) for j = 1, . . . , n.

(2.3) Definition. An almost complex structure on a manifold is a complex structure
when it comes from a holomorphic structure as in example (2.2).

The splitting of Vec(X) under a complex structure induces a dual splitting on the
complex differential forms A1(X) and generally Ap(X).

(2.4) Definition. Let X be an almost complex manifold with splitting Vec(X) =
Vec(X)(1,0)⊕Vec(X)(0,1). The dual splitting is A1(X) = A1,0(X)⊕ A0,1(X) where

(1) ω ∈ A1,0(X) if and only if ω(Vec(X)(0,1)) = 0 and
(2) ω ∈ A0,1(X) if and only if ω(Vec(X)(1,0)) = 0

for ω ∈ A1(X).

This splitting can be carried through to all forms by

Ap,q(X) = �p A1,0(X)⊗�q A0,1(X).

For local coordinate functions z1, . . . , zn, z1, . . . , zn , as a module over the smooth
functions the forms Ap,q(X) has a basis

dzi(∗) ∧ dz j (∗) = dzi(∗) ⊗ dz j (∗)

for all i(∗) : 1 ≤ i(1) < · · · < i(p) ≤ n, and j (∗) : 1 ≤ j (1) < · · · < j (q) ≤ n.
When p = 0, the basis consists of dz j (∗), and when q = 0, the basis consists of
dzi(∗).
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(2.5) Remark. The operation cc of complex conjugation cc( f ) = f on complex
valued functions defines a complex conjugation cc : Vec(X) → Vec(X) and cc :
Ar (X) → Ar (X) which restricts to isomorphisms Vec(X)(1,0) → Vec(X)(0,1) and
Ap,q(X)→ Aq,p(X).

(2.6) Remark. The exterior differential on a complex manifold is a sum d = d ′+d ′′
also denoted ∂ = d ′ and ∂ = d ′′. They satisfy the relations (d ′)2 = 0, (d ′′)2 = 0,
and d ′d ′′ + d ′′d ′ = 0. Moreover, d ′ : Ap,q(X)→ Ap+1,q(X) and d ′′ : Ap,q(X)→
Ap,q+1(X) explain the fact that d ′ has bidegree (+1, 0) and d ′′ has bidegree (0,+1).

For an almost complex structure to come from a holomorphic complex struc-
ture, there is an integrability condition. We state the result, see also Kobayashi and
Nomizu [1969].

(2.7) Theorem. Let X be an almost complex manifold. Then the following are equiv-
alent:

(1) For ξ, η ∈ Vec(X)(1,0) the bracket [ξ, η] ∈ Vec(X)(1,0).
(2) For ξ, η ∈ Vec(X)(0,1) the bracket [ξ, η] ∈ Vec(X)(0,1).
(3) For the exterior differential on 1-forms we have

d(A1,0(X)) ⊂ A2,0(X)⊕ A1,1(X) and d(A0,1(X)) ⊂ A1,1(X)⊕ A0,2(X).

(4) For the exterior differential on (p, q)-forms, we have

d(Ap,q(X)) ⊂ Ap+1,q(X)⊕ Ap,q+1(X).

(5) The almost complex structure comes from a holomorphic structure on the mani-
fold.

We close this section by explaining the cohomological implications of the fact
that exterior differentiation d satisfies dd = 0 and the relations in (2.7) for a complex
manifold.

(2.8) Definition. The de Rham cohomology H∗
DR(M) is defined in degree m to be

the following quotient

Hm
DR(M) =

ker(d : Am(M)→ Am+1(M))

im(d : Am−1(M)→ Am(M))
.

There are two versions of de Rham cohomology, namely H∗
DR(M,R) and H∗

DR(M,C)
using real or complex valued differential forms.

(2.9) Remark. For a general smooth manifold M , the de Rham cohomology
H∗

DR(M) is naturally isomorphic to H∗
sing(M), the singular cohomology. This is ba-

sically a theorem in sheaf theory.
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(2.10) Remark. When M is a compact oriented manifold with a Riemannian matrix,
then there exists a prehilbert space structure on Am(M) with inner product

(α|β) =
∫

X
α ∧ β∗

.

There is an adjoint d∗ : A∗(M) → A∗(M) to the operator d. It has degree −1. The
combination  = dd∗ + d∗d is a Laplace operator generalizing the usual Laplace
operator as one sees in a local computation on Euclidean space. Using the norm
property

|(α|α)| = ‖dα‖2 + ‖d∗α‖2,

we can define a from α ∈ Am(M) to be harmonic provided α = 0 or equivalently
dα = 0 and d∗α = 0, that is α is harmonic if and only if it is closed and coclosed.

A de Rham cohomology class c ∈ Hm
DR(M) is a coset

c = ω + d Am−1(M)

determined by a closed form ω. A fundamental property of compact Riemannian
manifolds is that every cohomology class c is represented by a unique harmonic
form α, i.e. c = α + d Am−1(M).

(2.11) Remark. For a complex manifold X , the two exterior operators d ′ and d ′′
define a double complex which has an associated spectral sequence. The E1-term
of this spectral sequence has the following form E p,q

1 = Hq(X, �p
X ) converging

to de Rham cohomology. Here �p
X is the sheaf of holomorphic p-forms on X . This

provides H∗
DR with an additional structure F p H∗

DR(X) called the Hodge filtration.
We will return to this later for compact Kähler manifolds. As a reference, see Griffths
and Harris [1978].

§3. Kähler Manifolds
Consider a complex valued C∞

R
(X)-bilinear map

h : VecR(X)× VecR(X)→ C∞(X) ⊃ C∞
R (X)

with h = g − iω where

g : VecR(X)× VecR(X)→ C∞
R (X) and ω : VecR(X)× VecR(X)→ C∞

R (X)

are C∞
R
(X)-bilinear forms. A complex version of a Riemannian metric is formulated

using the complex structure J on the manifold X .
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(3.1) Definition. Let X be a complex manifold with complex structure J . A Hermi-
tian metric h on (X, J ) is a

C∞
R -bilinear map h : VecR(X)× VecR(X)→ C(X)

with real and imaginary parts h = g − iω satisfying either of the following two
equivalent conditions and the positivity axiom:

(1) h(η, ξ) = h(ξ, η), the condition of Hermitian symmetry, and h(J (ξ), η) =
ih(ξ, η) the condition of C-linearity in the first variable of h. The two condi-
tions imply h(ξ, J (η)) = −ih(ξ, η) which is antilinearity over C in the second
variable of h.

(2) ω(η, ξ) = −ω(ξ, η) is C∞
R
(X)-bilinear antisymmetric and g(ξ, η) = ω(ξ, J (η))

is C∞
R
(X)-bilinear symmetric and pseudo-Riemannian.

Positivity: The metric g is Riemannian or equivalently h(ξ, ξ) ≥ 0 for all ξ ∈
VecR(X).

To see that (1) gives (2), we write out

h(ξ, η) = g(ξ, η)+ iω(ξ, η) = g(η, ξ)− iω(η, ξ) = h(η, ξ)

and

h(ξ, J (η)) = g(ξ, J (η))−iω(ξ, J (η)) = (−i)(ω(ξ, η)−ig(ξ, J (η)) = −ih(ξ, η).

In turn, these expressions also show that condition (2) gives (1).

(3.2) Remark. For a Hermitian metric h = g − iω on a complex manifold (X, J ),
the condition of J -invariance of ω, that is, ω(J (ξ), J (η)) = ω(ξ, η) is equivalent to
ω ∈ A1,1(X). Also, for ξ ∈ Vec(X)(1,0) and η ∈ Vec(X)(0,1), we have h(ξ, η) = 0
since

h(ξ, η) = h(J (ξ), J (η)) = h(iξ, iη) = −h(ξ, η).

(3.3) Remark (Hermitian Form in Local Coordinates). Locally on the almost
complex manifold X , the holomorphic vector fields Vec(X)(1,0) have a basis ∂/∂z1,

. . . , ∂/∂zn and the holomorphic 1-forms A1,0(X) have the related dual basis denoted
dz1, . . . , dzn . The coefficients of the Hermitian form in these local coordinates are

h j,k(z, z) = h

(
∂

∂zi
,
∂

∂z j

)
,

and the differential form ω = −2i
∑n

j,k=1 h j,k(z, z) dz j ∧ dzk .

(3.4) Definition. A Kähler metric h on a complex manifold X is a Hermitian metric
h on X with h = g − iω where the related 2-form ω is J -invariant and closed. The
form ω associated with the Kähler metric h is called the Kähler form.
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Observe that the Kähler form ω(ξ, η) and J determine the Kähler metric by the
relation h(ξ, η) = ω(ξ, J (η))− iω(ξ, η).

(3.5) Remark. The condition that the Kähler form ω is closed is equivalent to the
complex structure J being parallel with respect to the connection ∇ associated with
g, see §4.

(3.6) Remark. To each Kähler metric h and Kähler form ω, there is a Kähler
cohomology class [ω] ∈ H2(X,R). Under the natural inclusion H2(X,R) ⊂
H2(X,C) = H2,0(X)⊕ H1,1(X)⊕ H0,2(X), the Kähler class [ω] ∈ H1,1(X). The
set K of all Kähler classes [ω] is a cone viewed in either real vector space H2(X,R)
or H1,1(X).

(3.7) Remark. The Kähler condition dω = 0 reduces to the differential equations
because (d ′ + d ′′)ω = 0 is locally

∂

∂z�
h j,k = ∂

∂z j
h�,k where j, k, � = 1, . . . , n.

Further, locally there exists function K called the Kähler potential satisfying ω =
id′d ′′K .

Kähler potentials defined on an open covering can lead to the Kähler form im-
mediately as in the case of complex projective space PN (C) with homogeneous co-
ordinates z0 : · · · : zN .

(3.8) Complex Projective Space. As a complex manifold PN (C) has N + 1 open
sets U j with z j �= 0 which are coordinate charts with coordinate functions taking
values in CN denoted either wi or

zi ( j) =
{

zi−1/z j for i ≤ j ,

zi/z j for i > j .

To see that PN (C) has a natural Kähler manifold structure, we introduce the follow-
ing functions which turn out to be Kähler potentials

K j = log

(
1 +

∑
k �= j

|zk/z j |2
)

= log

(
N∑

k=0

|zk |2
)

− log |z j |2

On the intersection of two coordinate charts U j ∩ Uk , the difference

K j − Kk = log |zk |2 − log |z j |2 = log
(
zk/z j

)− log
(
zk/z j

)
satisfies the equation d ′d ′′(K j − Kk) = 0, and hence there exists a global form ω on
PN (C) with ω|U j = id′d ′′K j .

To see that this form ω is the form associated with a Kähler structure, we consider
its coefficients hk,� in local coordinates where

ω|U j = id′d ′′K j = i
∑
k,�

hk,� dwk ∧ dw�

and wk = zk( j) = zk/z j .
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(3.9) Assertion. The coefficient matrix (hk,�) is positive definite and Hermitian
symmetric. For this we calculate with

K j = log

(
1 +

∑
k �= j

|zk/z j |2
)

= log

(
1 +

N∑
k=1

|wk |2
)

the differentials

d ′′K j =
(

1 +
N∑

k=1

|wk |2
)−1

·
N∑

k=1

wkdwk

and

d ′d ′′K j =
(

1 +
N∑

k=1

|wk |2
)−1

·
N∑

k=1

dwk ∧ dwk

−
(

1 +
N∑

k=1

|wk |2
)−2

·
N∑

k,�=1

wkdwk ∧ wldw�

=
(

1 +
N∑

k=1

|wk |2
)

·
N∑

k,�=1

[
δk,�

(
1 +

N∑
k=1

|wk |2
)

− wkw�

]
dwk ∧ dw�.

For a complex vector ζ = (ζ1, . . . , ζN ) ∈ CN , we study the positivity properties of
the following expression using the Hermitian inner product (ω|ζ ) = ∑N

k=1wkζ k to
obtain the inequality

N∑
k,�=1

{
δk,�

(
1 +

N∑
k=1

|wk |2
)

− w̄kw�

}
ζk ζ̄�

= (ζ | ζ )2(1 + (w | w)2)− |(w | ζ )|2 > 0 for ζ �= 0.

for ζ �= 0. Here we have used the Schwarz inequality |(w|ζ )|2 ≤ (ζ |ζ )2(w|w)2.

(3.10) Remark. A complex submanifold of a Kähler manifold is a Kähler manifold
so that all smooth projective algebraic varieties are Kähler manifolds. Conversely,
we have the following theorem.

Theorem of Chow. All closed submanifolds of PN (C) are the zero locus of a finite
number of homogeneous polynomial equations, that is, they are smooth projective
algebraic varieties.

In section (2.11) we gave a short indication of the fact that for a smooth, complex
analytic manifold the de Rham cohomology has a natural filtration, called the Hodge
filtration. For this we use the sheaf �p

X of holomorphic p-forms on X .
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(3.11) Betti Numbers and Hodge Numbers of Varieties. Let X be a smooth, com-
pact complex manifold. The singular cohomology groups are known to be finitely
generated, and over any field k with Q ⊂ k ⊂ C, the dimension bi = dimk Hi (X, k)
is independent of the field k and is called the i th Betti number of X . The cohomology
groups of X with values in these sheaves �p

X of forms are finite dimensional over
C, and the dimension h p,q = dimHq(X, �p

X ) is called the (p, q)-Hodge number.
This arose because the differential forms defining the cohomology have a bigraded
decomposition.

In (2.10) a Riemannian structure resulted in a unique harmonic form associated
to a cohomology class in a given degree. Now, the Kähler condition allows us to use
harmonic forms to give a bigraded decomposition of cohomology classes. The result
is the following which we only state and refer to Griffths and Haris [1978].

(3.12) Theorem. Let X be a compact Kähler manifold. The Hodge spectral se-
quence has the property that E1 = E∞, and the Hodge filtration splits so that
Hm

DR(X,C) = ⊕p+q=m Hq(X, �p
X ). Each cohomology class in degree m is rep-

resented by a harmonic form α, and it decomposes α = ∑
m=p+q αp,q where

αp,q ∈ Ap,q(X) is a harmonic (p, q)-form. Hence we have a second decomposition
Hm

DR(X,C) = ⊕p+q=m H p,q where H p,q is the subspace of Hm
DR(X,C) represented

by harmonic (p, q)-forms. Also, H p,q = Hq(X, �p
X ) as subspaces of H p+q

DR (X,C).

We return to this subject in section 6, where the low dimensional examples of
curves, surfaces, and threefolds are considered especially in the context of Calabi–
Yau manifolds. The Hodge numbers of a Calabi–Yau manifold are one of the first
basic invariants of the manifold.

§4. Connections, Curvature, and Holonomy
We consider the theory of affine connections and curvature for complex vector bun-
dles over both smooth and complex analytic manifolds. Characteristic classes defined
by connections and curvature are introduced. Connections associated to a Hermitian
metric are considered, especially in the case where the metric is Kähler. The metric,
curvature tensor, and Chern classes yield the following types of differential forms:

(1) Bilinear forms associated with a Kähler metric and the trace of the curvature
tensor, called the Ricci tensor. These are of type (2, 0).

(2) Differential (1, 1)-forms defining the first Chern class of a complex vector bun-
dle and as the anti-symmetrization of the forms associated with a Kähler metric.

It is the interplay between these forms which is central in the Calabi–Yau con-
siderations.

Recall that exterior differentiation d : Am(M) → Am+1(M) is defined for
smooth manifolds M and is split as a sum d = d ′ + d ′′ for a complex analytic
manifold X where
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d ′ : Ap,q(X)→ Ap+1,q(X) and d ′′ : Ap,q(X)→ Ap,q+1(X).

Connections are extensions of exterior differentiation to sections A0(M, E) of a
bundle vector E , and we denote by Am(M, E) = A0(M,�m(M) ⊗ E) the vector
valued forms in E .

(4.1) Definition. Let M be a smooth manifold. A connection on a real or complex
vector bundle E over M is a morphism ∇ : A0(M, E) → A1(M, E) satisfying the
Leibniz rule

∇( f σ) = f ∇(σ )+ d f ⊗ σ for f ∈ A0(M) and σ ∈ A0(M, E).

A connection on a complex vector bundle E over a complex analytic manifold
X is a splitting of a smooth connection into ∇′ : A0(X, E) → A1,0(X, E) and
∇′′ : A0(X, E) → A0,1(X, E) with ∇ = ∇′ + ∇′′ each satisfying the Leibniz rule
∇′( f σ) = f ∇′(σ )+d ′ f ⊗σ and ∇′′( f σ) = f ∇′′(σ )+d ′′ f ⊗σ for σ ∈ A0(M, E).

There is a second equivalent approach to the notation of a connection ∇ as a
bilinear map Vect(X) × A0(M, E) → A0(M, E) denoted ∇ξ η. It is defined by
pairing ξ ∈ Vect(X) = A(M, T (M)) with the form component of A1(M, E) =
A(M, T ∗(M)⊗ E) giving C∞(M)-linear morphism, also denoted ξ : A1(M, E)→
A0(M, E). With this notation we define ∇ξ (η) = ξ(∇(η)). This function of two
variables ∇ξ η is biadditive, and it satisfies

∇ f ξ (η) = f ∇ξ (η)
and the Leibniz rule which becomes

∇ξ ( f η) = f ∇ξ η + ξ( f )η

for ξ ∈ Vect(M), η ∈ A0(M, E), and f ∈ A0(M) = C∞(M).

(4.2) Example. If E is a complex analytic bundle on a complex manifold X , then
d ′′ : A0(X, E) → A0,1(X, E) ⊂ A1(X, E) is a well defined connection ∇ with
∇1,0 = 0 and ∇0,1 = d ′′. In effect, consider a frame s = (s1, . . . , sN ) ∈ A0(E)N

is a local trivialization of E on an open set U as in (1.11). Any σ ∈ �(U, E) has an
expansion σ = ∑N

i=1 fi si , and the formula d ′′(σ ) = ∑N
i=1 d ′′( fi ) ⊗ si defines the

connection.
To show it is well defined, consider a second frame s = gs′ or si = ∑

i gi, j s′j
and the representation of

σ =
N∑

i=1

fi si =
N∑

i, j=1

fi gi, j s
′
j =

∑
j=1

f ′
j s

′
j .

So

d ′′(σ ) =
N∑

i=1

d ′′( fi )⊗ si =
N∑

i, j=1

d ′′( fi gi, j ⊗ s′j ) =
N∑

i, j=1

d ′′( fi )gi, j ⊗ s′j

=
N∑

i=1

d ′′( f ′
i )⊗ s.
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(4.3) Definition. A connection ∇ on a complex vector bundle E over a complex
analytic manifold X is compatible with the complex structure on E provided ∇0,1 =
d ′′. It is also called a holomorphic connection.

Moreover, if ∇ is compatible with the complex structure, then ∇ξ η is holomor-
phic for ξ, η ∈ Vec(X)1,0.

(4.4) Remark. A connection ∇ : A0(M, E) → A1(M, E) on a bundle over a
smooth manifold extends to a map ∇ : Am(M, E) → Am+1(M, E) satisfying the
extended Leibniz rule

∇(α ⊗ σ) = dα ∧ σ + (−1)mα ∧ ∇(σ ) for σ ∈ A0(M, E) and α ∈ Am(M).

In the case of a complex manifold X and a connection ∇ on a complex bundle
E , the splitting ∇ = ∇′ + ∇′′

∇′ : A0(X, E)→ A1,0(X, E) and ∇′′ : A0(X, E)→ A0,1(X, E)

there are extensions on the (p, q)-forms defined as follows

∇′ : Ap,q(X, E)→ Ap+1,q(X, E) and ∇′′ : Ap,q(X, E)→ Ap,q+1(X, E)

satisfying the extended Leibniz rules

∇′(σθ) = ∇′(σ ) ∧ θ + (−1)pσ ∧ d ′θ and ∇′′(σθ) = ∇′′(σ ) ∧ θ + (−1)qσ ∧ d ′′θ

for σ ∈ A0(M, E) and θ ∈ Ap,q(M).
This extension of the differential calculus to forms with coefficients in a bundle

with connection leads to the notion of curvature.

(4.5) Proposition. The square ∇∇ : A0(M, E)→ A2(M, E) is A0(M)-linear, and
there is � ∈ A2(M,End(E)) such that ∇2(σ ) = �σ for all σ ∈ A0(M, E). In the
complex analytic case, the decomposition

∇∇ = ∇′∇′ + (∇′∇′′ + ∇′′∇′)+ ∇′′∇′′

induces a splitting of the curvature form � as a sum

� = �(2,0) +�(1,1) +�(0,2) where �(p,q) ∈ Ap,q(M,End(E)).

If ∇ is compatible with the complex structure, then d ′′d ′′ = 0 and �(0,2) = 0.

Proof. We calculate

∇2( f σ) = ∇( f ∇σ + d f ⊗ σ) = f ∇2(σ )+ d f ∧ ∇σ − d f ∧ ∇σ = f ∇2(σ ).

The second assertion is a property of A0(M)-linear operators which is seen locally.
This proves the proposition.
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For a local study of curvature consider a local trivialization of E given by a
frame s = (s1, . . . , sN ) ∈ A0(E)N over a suitable open set as (1.11). Applying the
connection to the frame, we obtain ∇si = ∑N

i=1 ωi, j ⊗ s j where ωi, j ∈ A1(E)
and ωi, j ∈ A1,0(E) in the case of ∇ compatible with a complex structure. In matrix
notation, ∇s = ωs where s and ∇s are column matrices and ω is a square matrix of
1-forms. Now we calculate the curvature form � locally

∇2s = ∇(ω ⊗ s) = dωs − ω ∧ ωs = (dω − ω ∧ ω)s = �s,

hence � = dω − ω ∧ ω. The exterior derivative has the following form

d� = −dω ∧ ω + ω ∧ dω = ω ∧�−� ∧ ω = [ω,�].

(4.6) Remark. Except in the abelian case of line bundles the curvature is not a
closed form, but suitable traces of it are closed forms from the formula d� = [ω,�].
Under change of frame of the form s′i = ∑N

j=1 ai, j s j or s′ = As in matrix notation,
we have two matrix 1-forms ω and ω′ where ∇s = ω⊗ s and ∇s′ = ω′ ⊗ s′ and two
related curvature matrix 2-forms� = dω−ω∧ω and�′ = dω′ −ω′ ∧ω′. In the Fi-
bre Bundles, pp. 284–285 we show that the two pairs of matrices of forms are related
ω′ = AωA−1 + (d A)A−1 and �′ = A�A−1. This is used to define characteristic
classes, see §5, in de Rham cohomology.

Associated with any Riemannian metric is a unique connection, called the Levi-
Cita connection, such that parallel transport preserves the metric.

(4.7) Theorem. Let g be a pseudo-Riemannian metric on TR(M) where M is a
smooth manifold. Then there exists a connection on TR(M) with the property that

2g(∇ξ η, ζ ) = ξ(g(η, ζ ))+ η(g(ξ, ζ ))− ζ(g(ξ, η))
+ g([ξ, η], ζ )+ g([ζ, ξ ], η)+ g(ξ, [ζ, η]).

The torsion of ∇ξ η given by the tensor T (ξ, η) = ∇ξ η − ∇ηξ − [ξ, η] is zero,
and this connection is unique among connections leaving g invariant and having
zero torsion. Moreover, the curvature of the connection ∇ξ η is given by R(ξ, η) =
[∇ξ ,∇η] − ∇[ξ,η].

Associated with any Hermitian metric on a complex vector bundle there is a
unique natural connection preserving the metric.

(4.8) Theorem. Let E be a Hermitian vector bundle on a complex manifold X.
There exists a unique connection ∇ which is compatible with the complex structure
and compatible with the metric h(ξ, η) in the sense that

dh(ξ, η) = h(∇ξ, η)+ h(ξ,∇η).

Proof. Let s = (s1, . . . , sN ) ∈ A0(E)N be a local frame of E over a suitable open set
as in (1.11). Let hi, j = h(si , s j ). If ∇ exists, then its matrix ω with respect to s must
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be of type (1, 0) forms, and hence dhi, j = dh(si , s j ) =
∑

k ωi,khk, j +
∑

k ω j,khi,k

decomposes into forms of type (1, 0) and (0, 1) as follows

d ′hi, j =
∑

k

ωi,khk, j and d ′′hi, j =
∑

k

ω j,khi,k .

In matrix notation these relations reduce simply to d ′h = ωh and d ′′h = htω. Then
ω = (d ′h)h−1 is the unique solution to both equations, and since ω is well deter-
mined by compatibility under change of frame, it is globally defined. This proves the
theorem.

(4.9) Remark. If the local frame of a Hermitian vector bundle E in the previous
theorem is unitary, that is, if h(si , s j ) = δi, j , then we have 0 = dh(si , s j ) = ωi, j +
ω j,i , and thus the matrix associated with a unitary frame is skew-Hermitian. In terms
of covariant differentiation parallel transport takes the following form.

(4.10) Parallel Transport. Let M be a smooth manifold with a connection ∇ on a
vector bundle q : E → M . A vector field v along a curve c : [a, b] → M is a lifting
v : [a, b] → E with qv = c. Let c′ : [a, b] → T (M) denote the tangent vector
lifting to c. The vector field v is a parallel transport (with respect to ∇) provided

∇c′(t)v = 0 for all t ∈ [a, b].

In local coordinates, this is a first order differential equation, and, as such, it has a
unique solution for given initial data. This initial data is a vector va ∈ Ec(a), and the
solution is a vector v(t) ∈ Ec(t) depending smoothly on t ∈ [a, b].

The parallel transport defined by these curves c is the linear transformation Tc :
Ec(a) → Ec(b) assigning to a vector w ∈ Ec(a) firstly the solution v(t) to the parallel
transport equation with v(a) = w and then the value v(b) = Tc(v(a)) = Tc(w) ∈
Ec(b).

We must remark that the theory of connections and vector fields was developed
only globally, and here we have used it for tangent vectors along a curve. The point-
wise properties are left to the reader to work out. For the product of two parame-
terized curves c.d, that is, c followed by d , we have also the transitivity property
Tc.d = Td Tc : E(c.d)(a) → E(c.d)(b) so that the product of curves gives composition
of parallel transport. Also, the parallel transport of the inverse path is the inverse
linear map.

(4.11) Holonomy Groups. Let M be a smooth manifold with a connection ∇ on
a vector bundle q : E → M . The holonomy group for (E,∇) at x ∈ M is the
subgroup of all parallel transport elements Tc ∈ GL(Ex ) for loops c at x . From the
composition of parallel transport property we know that Tc is an automorphism and
the set of these elements is closed under multiplication of linear automorphisms of
Ex . This is a closed subgroup of the linear group.

(4.12) Complex Holonomy Groups. Let X be a complex analytic manifold with
a holomorphic connection ∇ on a complex analytic vector bundle q : E → X
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preserving a Hermitian product on E . Then the holonomy group, which is con-
tained in GL(N ,C), the complex linear group for N = dimE . It is in the subgroup
U (N ) ⊂ GL(N ,C) in the case of a Kähler manifold where the complex analytic
tangent bundle is T (X)(1,0).

The holonomy group, being a closed subgroup of GL(N ,C), has a Lie alge-
bra which is a subalgebra of LieGL(N ,C) = MN (C). The restriction of exp :
MN (C) → GL(N ,C) to this Lie algebra maps into the holonomy group. Ambrose
and Singer describe this sub-Lie algebra with curvature.

(4.13) Curvature Generates the Lie Algebra of the Holonomy Group. An early
reference in this direction is the paper of Ambrose and Singer, TAMS, 75 (1953).

(4.14) Remark. The connection associated with a metric has the property that paral-
lel transport preserves the metric. A Hermitian metric is Kähler if and only if parallel
transport commutes with multiplication by i .

(4.15) SU(N)-holonomy and Ricci Curvature. A fundamental property of

exp : MN (C)→ GL(N ,C)

is that exp(tr(A)) = det(exp(A)). In particular, exp : su(N ) → SU(N ) is a local
surjection which restricts from exp : u(N )→ U (N ).

Here is where the Calabi–Yau theory starts from the complex differential geom-
etry perspective in the next sections.

§5. Projective Spaces, Characteristic Classes, and Curvature
For additional details to this sketch of the theory of Chern classes see the last chapters
of Husemöller, Fibre Bundles. The theory of characteristic classes begins with the
first Chern class of a line bundle. This is a topological theory starting with complex
projective space, and the fact that many considerations in complex geometry, Kähler
geometry, and algebraic geometry start with projective space suggests that Chern
classes are basic to many areas of geometry. This is the case.

(5.1) Remark. The finite and infinite complex projective spaces PN (C) ⊂ P∞(C)
have four aspects.

(1) The second cohomology group is infinite cyclic with a canonical generator
H2(PN (C),Z) = ZιN such that ι∞ restricts to ιN for all N . For the reader with a
little background in topology, this can be seen from the isomorphism

H2(PN (C),Z) = Hom(H2(PN (C),Z),Z)

→ Hom(π2(PN (Z)),Z) = Hom(Z,Z)
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which is the universal coefficient theorem followed by the dual of the Hurewicz
isomorphism. Then ιN maps to the identity on Z.

(2) The homotopy groups of the infinite projective space are

πi (P∞(C)) =
{

Z for i = 2,

0 for i �= 2.

Such spaces with exactly one nonzero homotopy group play a basic role in classify-
ing cohomology, and we say that such a space P∞(C) is a K (Z, 2)-space. For each
cohomology class c ∈ H2(X,Z) there exists a map f : X → P∞(C) such that
c = f ∗(ι∞), and f is unique up to homotopy with this property.

If X is finite dimensional, for example a manifold or if X is compact, then every
map f : X → P∞(C) factors by some inclusion PN (C) → P∞(C) giving a map
g : X → PN (C) with the property that c = g∗(ιN ).

(3) The projective space PN (C) with homogeneous coordinates z0 : · · · : zN has
an open covering of N +1 open coordinate domains given by z j �= 0. On the domain
z j �= 0, the coordinate function is

zk( j) = zk/z j for k �= j , 0 ≤ k ≤ N .

We have seen in (3.8) that the finite projective space PN (C) is a Kähler manifold of
complex dimension N .

(4) The projective spaces have canonical line bundles L(N ) → PN (C) where
L(∞) restricts to L(∞)|PN (C) = L(N ). The space L(N ) is the subspace of
PN (C) × CN+1 consisting of (z, λz) for λ ∈ C. For every topological C-line bun-
dle L → X over a space X there exists a map f : X → P∞(C) such that L and
f ∗(L(∞)) are isomorphic, and f is unique up to homotopy. If X is compact or finite
dimensional, then we can choose f : X → PN (C).

(5.2) First Chern Class of a Line Bundle. This is defined by observing that the set
of homotopy classes [X,P∞(C)] of mappings x → P∞(C) classify isomorphism
classes of topological complex line bundles L → X and also elements of H2(X,Z)
by (5.1) (1). The cohomology class c1(L) ∈ H2(X,Z) associated to the line bundle
L is called the first Chern class of L . The function

c1 : {isomorphism classes of complex line bundles/X} → H2(X,Z)

is a bijection satisfying the multiplication property

c1(L
′ ⊗ L ′′) = c1(L

′)+ c1(L
′′).

The higher Chern classes c j (E) of a complex vector bundle E have an axiomatic
characterization, due to Hirzebruch, based on the first Chern classes c1(L) of a com-
plex line bundle.

(5.3) Axioms for Chern Classes. The Chern class of a complex vector bundle E
over X is an element c(E) ∈ H ev(X,Z) = ⊕

i≥0 H2i (X,Z) satisfying the following
properties:
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(1) The Chern class is a sum c(E) = 1 + c1(E) + · · · + cn(E) where c0(E) = 1,
ci (E) = 0 for i > dim(E) and ci (E) ∈ H2i (X,Z).

(2) If f : X ′ → X is a map, and if E → X is a complex vector bundle over X , then
c( f ∗(E)) = f ∗(c(E)) in H ev(X ′,Z) where f ∗(E) is the induced bundle on X ′.

(3) The Chern class of the Whitney sum E ′ ⊕ E ′′ is the cup product

c(E ′ ⊕ E ′′) = c(E ′)c(E ′′)

in H ev(X,Z).
(4) For a line bundle L , the Chern class c(L) = 1+ c1(L) where c1(L) is defined in

(5.2).

(5.4) Remark. As Grothendieck observed in algebraic geometry, the existence and
uniqueness of the Chern classes E → X can be established by working with the
related bundle P(E) → X of projective spaces and the standard line bundle L E →
P(E) reducing to the canonical line bundle on each fibre. The class c = c1(L E ) is
in H ev(P(E),Z) and 1, c, c2, . . . , cn−1 is a basis H ev(P(E),Z) as a free H ev(X,Z)
module under the cup product preserving morphism H ev(X,Z) → H ev(P(E),Z)
induced by the projection P(E) → X . The Chern classes ci (E) are the coefficients
of the equation

cn − c1(E)c
n−1 + · · · + (−1)n−1cn−1(E)c + (−1)ncn(E) = 0.

For further details, see Fibre Bundles, pp. 249–252.

In chapter 19 of Fibre Bundles we described how to define the Chern classes of
a complex vector bundle using a connection and its curvature form. We sketch this
theory and extend it to holomorphic connections on complex bundles on complex
manifolds.

(5.5) Elementary Symmetric Functions. The elementary symmetric functions
σq(x1, . . . , xn) =

∑
i(1)<···<i(q) xi(1) . . . xi(q) are also encoded in the expression

Qx (t) =
∏

1≤ j≤n

(1 + x j t) =
∑

0≤q≤n

σq(x1, . . . , xn)t
q .

This leads to other polynomials eq which as polynomials of the symmetric function
σq(x1, . . . , xn) have the form

−t
d

dt
log Qx (t) =

∑
q≥1

eq(σ1, . . . , σn)(−t)q .

The ring of symmetric functions is the subalgebra of k[x1, . . . , xn] invariant under
the action of the symmetric group on the variables x1, . . . , xn . It is itself a polynomial
ring on σ1, . . . , σn and it contains the functions e1, . . . , en . If k is of characteristic
zero, then k[σ1, . . . , σn] = k[e1, . . . , en].

Let k be a field of characteristic zero in the next parts.
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(5.6) Conjugation Invariant Polynomials in Matrix Elements. The ring of
GL(n, k)-conjugation invariant polynomials in the polynomial ring k[x1,1, . . . , xn,n]
on n2-variables xi, j is k[c1(x), . . . , cn(x)] where the polynomial cq(x) is defined by
the following GL(n, k)-invariant formula

Rx (t) = det(I + [xi, j ]t) =
∑

0≤q≤n

cq(x)t
q .

In the case [xi, j ] is diagonal with xi, j = δi, jλi , we see that cq is an elementary
symmetric function

cq(x1,1, . . . , xn,n) =
∑

i(1)<···<i(q)

λi(1) . . . λi(q) = sq(λ1, . . . , λn).

Again we consider the logarithmic derivative

−t
d

dt
log(det(I + [xi, j ]t)) =

∑
q≥1

Tr(Xq)(−t)q .

Thus as in the case of symmetric functions, the subalgebra of GL(n, k)-conjugation
invariant functions has two forms

k[c1(xi, j ), . . . , cn(xi, j )] = k[Tr(X),Tr(X2), . . . ,Tr(Xn)]

where X denotes the matrix [xi, j ]. The intersection of this subspace and the homo-
geneous polynomials of degree q is denoted by Invq(n).

Let Inv(n) denote the direct sum over the homogeneous
⊕

q Invq(n).

(5.7) Definition. Let (E,∇) be a pair consisting of a complex vector bundle E over
a smooth manifold M with connection ∇ having a curvature form � locally well
defined up to the inner automorphism, see (4.6). For any φ ∈ Inv(n), we have a
well defined form φ(�) independent of the local coordinates of E . In particular, we
define the Chern forms cq(E,∇) = 1

(2π i) q
cq(�) using the invariant polynomial cq

introduced in (5.6). These Chern forms depend on the connection ∇ and the complex
vector bundle E .

(5.8) Remark. We can see that these forms φ(�) are closed by using the Bianchi
identity, see (4.6). In effect, d� = [ω,�] where ω is the corresponding connection
form related to ∇ for a local trivialization of E . Since it suffices to check that φ(�)
is closed on generators of

k[c1(xi, j ), . . . , cn(xi, j )] = k[Tr(X),Tr(X2), . . . ,Tr(Xn)]

we calculate

dTr(�q) =
∑

i+ j=q−1

Tr(�i (d�)� j ) =
∑

i+ j=q−1

Tr(�i [ω,�]� j ) = Tr([ω,�q ]) = 0.
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(5.9) Curvature Forms for the Kähler Case. For a complex vector bundle E →
X over a Kähler manifold X , the curvature form is given locally by a matrix of the
form

� =
(∑

k,�

�i, j,k,�dzk ∧ dz�

)
∈ MN (A

1,1(X)).

(5.10) First Chern Class. Returning to the calculation in (5.5), we see that c1(�) =
e1(�) = Tr(�). This trace is an other well known curvature form, the Ricci curvature
form,

Ric =
∑
j,k,�

� j, j,k,�dzk ∧ dz� ∈ A1,1(X).

In particular, the vanishing of the Ricci curvature form implies that the first Chern
class is trivial. If �′ = 1

2π i�, then we have also the following formula for the total
Chern class

c(X) = 1 +
∑

j

c j (X) = det(1 +�′) = 1 + tr(�′)+ tr(�′ ∧�′ − 2(tr(�′))2)+ . . . .

In each case the conjugation invariance leads to intrinsic quantities independent
of framings. Now we consider some special features of line bundles and their first
Chern class.

(5.11) Remark. The group of line bundles up to isomorphism, with multiplica-
tion given by tensor product, can be described as the Čech cohomology group
Ȟ1(X,O∗

X ). Here, a Čech cocycle

g = (ga,b) ∈ Ž1(U,O∗
X )

defines a line bundle L on X by gluing trivial bundles on Ua where U = (Ua) with
the invertible ga,b on the intersections Ua∩Ub. For ga,b = g−1

b,a we see that the lifting

σa,b = 1
2π i log(ga,b) ∈ C1(X,OX ) has a coboundary

(δσ )a,b,c = 1

2π i

(
log(gb,c)+ log(gc,a)+ log(ga,b)

) ∈ Ž2(U,Z).

This is a Čech cocycle for c1(L). We return to this subject in (7.4).

(5.12) Remark. For the local calculation in (4.8), we saw that a Hermitian metric h
on a complex analytic line bundle leads to a holomorphic connection ∇h with local
connection matrix ωa = (d ′ha)h−1

a where ha is the value of h on the frame over
Ua as in the previous paragraph (5.11). The curvature of a line bundle is the exterior
derivative of the connection form

�a = dωa = d ′(ha) ∧ d ′′(h−1
a ) = d ′d ′′ log(ha).

Hence the first Chern class is given by the following de Rham cohomology class:

c1(L , h) = 1

2π i
d ′d ′′ log(ha).
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On Ua ∩ Ub, the metric and change of frames functions are related by ha =
|gb,a |2hb or log(ha) = log(hb) + log(gb,a) + log(gb,a). For the connection form
ωa = (d ′ha)h−1

a = d ′ log(ha), we calculate its Čech coboundary

(δω)a,b = ωb − ωa = 1

2π i
d(log(hb/ha)) = 1

2π i
d(log(ga,bga,b))

= 1

2π i
d(log(ga,b) = dσa,b

Hence the closed two form associated with the cocycle δσ is the first Chern class
form derived from the Hermitian metric h, namely

c1(L , h) = 1

2π i
d ′d ′′ log(ha).

§6. Characterizations of Calabi–Yau Manifolds: First Examples
(6.1) Equivalent Definitions of Calabi-Yau Manifolds. Let X be a compact n di-
mensional complex manifold. Then X is a Calabi–Yau manifold provided it satisfies
any of the following equivalent conditions:

(1) X is a Kähler manifold with a vanishing first Chern class.
(2) X admits a Levi–Civita connection with SU(n) homology.
(3) X has a Ricci flat Kähler metric.
(4) X is a Kähler manifold with a nowhere vanishing holomorphic n-form.
(5) X is a Kähler manifold with a trivial canonical line bundle ωX , that is, ωX is

isomorphic to OX .

(6.2) Remark. The first Chern class is represented by the trace of the curvature
2-form, that is, the Ricci tensor. Hence (3) implies (1). The Calabi conjecture and
proven by Yau is the converse implication.

(6.3) Yau’s Theorem. If X is a complex Kähler manifold with Kähler form ω and
vanishing first Chern class, then there exists a unique Ricci-flat metric on X whose
Kähler form is in the same cohomology class as ω.

An early reference on Calabi–Yau 3-folds is Hirzebruch, Gesammelte Abhand-
lungen, T. II, no. 75, pp. 757-770, “Some examples of threefolds with trivial canoni-
cal bundle.”

The first indication of the importance of the Calabi–Yau variety concept is seen
in the many equivalent versions of the definition. Now for basic examples together
with their Euler numbers in low dimensions starting with curves of genus one.

(6.4) Example (dimension one). A Calabi–Yau in the extended sense in dimension
one can be either a smooth cubic curve in P2 or the complete intersection of two
smooth quadrics in P3. The Euler number is 0. Note that the fundamental group is
infinite.
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(6.5) Example (dimension two). Either a smooth quartic surface in P or the com-
plete intersection of a smooth quadric with a smooth cubic hypersurface in P4 is a
Calabi–Yau in dimension two. The Euler number is 24. There are two new consider-
ations not seen in dimension one.

(1) These examples are special cases of K3 surfaces, for unlike smooth cubic curves
in P2 giving all smooth curves of genus one, not every K3 surface is of this form.

(2) There are K3 surfaces over the complex numbers which are not algebraic sur-
faces. On the other hand, the Euler number is always 24.

These facts will be partly explained in the next two sections when the theory of
K3 surfaces is put in the general Enriques classification theory of surfaces.

(6.6) Example (threefolds). There are five cases of complete intersections of
smooth hypersurfaces in P3+m in general position with the resulting variety is a
Calabi–Yau

(1) A quintic in P4, and the Euler number is −200.
(2) The intersection of a quartic and quadratic in P5, and the Euler number is −176.

The intersection of two cubics in P5, and the Euler number is −144.
(3) The intersection of a cubic and two quadrics in P6, and the Euler number is

−144.
(4) The intersection of four quadrics in P7, and the Euler number is −128.

(6.7) Remark. More generally, the m dimensional complete intersection X of k
smooth hypersurfaces of degree d1, . . . , dk in Pm+k = P is a variety with trivial
first Chern class zero if and only if d1 + · · · + dk = m + k + 1. This follows from
the following exact sequence for the tangent sheaf

0 → TX → TP|X →
k⊕

i=1
OX (di )→ 0

giving the canonical sheaf K X = KP|X
(∑

i di
) = (OP(−m − k − 1)|X) (∑i di

)
so

that K X = OX
(−m − k − 1 +∑

i di
)
.

Cohomology provides the first invariants of varieties and Calabi–Yau manifolds
in particular. For this we look closer at the Hodge to de Rham spectral sequence
considered before in (2.11), (3.11), and (3.12) especially in low dimensions.

(6.8) The Hodge to de Rham Spectral Sequence. The Betti numbers and Hodge
numbers are related by bi = ∑

p+q=1 h p,q for the cohomology Hi (X,C) has a

decreasing filtration F p Hi (X,C) with Hq(X, �p
X ) isomorphic to F p H p+q(X,C)/

F p+1 H p+q(X,C). This is all related to a Hodge to de Rham spectral sequence where
the first differential

d1 : Ei, j
1 = H j (X, �i

X )→ Ei+1, j
1 = H j (X, �i+1

X )

is induced by the holomorphic differential
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0 −−−−→ OX
d ′

−−−−→ �1
X

d ′
−−−−→ . . .

d ′
−−−−→ �i

X
d ′

−−−−→ . . ..

The spectral sequence Ei, j
r is defined for all r ≥ 1 with differentials

dr : Ei, j
r → Ei+r, j−r+1

r

such that H(Er , dr ) = Er+1.

In dimension 1, we have the differential d1 : E p,q
1 → E p+1,q

1

H0(X,OX ) −−−−→ H1(X, �1
X )

H0(X,OX ) −−−−→ H1(X, �1
X )

In dimension 2, we have the differential d1 : E p,q
1 → E p+1,q

1

H2(X,OX ) −−−−→ H2(X, �1
X ) −−−−→ H2(X, �2

X )

H1(X,OX ) −−−−→ H1(X, �1
X ) −−−−→ H1(X, �2

X )

H0(X,OX ) −−−−→ H0(X, �1
X ) −−−−→ H0(X, �2

X ).

In dimension 3, we have the differential d1 : E p,q
1 → E p+1,q

1

H3(X,OX ) −−−−→ H3(X, �1
X ) −−−−→ H3(X, �2

X ) −−−−→ H3(X, �3
X )

H2(X,OX ) −−−−→ H2(X, �1
X ) −−−−→ H2(X, �2

X ) −−−−→ H2(X, �3
X )

H1(X,OX ) −−−−→ H1(X, �1
X ) −−−−→ H1(X, �2

X ) −−−−→ H1(X, �3
X )

H0(X,OX ) −−−−→ H0(X, �1
X ) −−−−→ H0(X, �2

X ) −−−−→ H0(X, �3
X ).

The differentials dr with r ≥ 1 are all zero for smooth algebraic varieties and
Kähler manifolds.

(6.9) Poincaré Duality and Serre Duality. For a complex manifold X of complex
dimension n we have a nondegenerate pairing

Hi
DR(X)× H2n−i

DR (X)→ C
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so that the Betti numbers satisfy the symmetry relation

bi = dimHi
DR(X) = dimH2n−i

DR (X) = b2n−i .

Serre duality is a nondegenerate pairing

Hi (X,L)× Hn−i (X, ωX ⊗ L(−1)⊗)→ k

for a line bundle L where ωX is the dualizing sheaf. For smooth manifolds, we have
ωX = �n

X . Hence the dimensions satisfy the symmetry

hi (L) = dimHi (X,L) = dimHn−i (X, ωX ⊗ L(−1)⊗) = hn−i (ωX ⊗ L(−1)⊗).

(6.10) Cohomology Properties of Calabi–Yau Manifolds. The fifth Calabi–Yau
condition that X is a Kähler manifold with a trivial canonical line bundle ωX im-
plies that

H0(X, �i
X ) =

{
0 for 0 < i < n,

k = C for i = 0, n.

This leads to vanishing of the Er terms. For example, the three dimensional diagram
becomes for the differential d1 and ground field k

k = H3(X,OX ) −−−−→ 0 −−−−→ 0 −−−−→ H3(X, �3
X ) = k

0 −−−−→ H2(X, �1
X ) −−−−→ H2(X, �2

X ) −−−−→ 0

0 −−−−→ H1(X, �1
X ) −−−−→ H1(X, �2

X ) −−−−→ 0

k = H0(X,OX ) −−−−→ 0 −−−−→ 0 −−−−→ H0(X, �3
X ) = k

The corresponding nonzero Hodge numbers are either one or h1,1, h2,1 = h1,2, and
h2,2 = h1,1 by Poincarè duality.

(6.11) Recommended Reading. We recommend that the reader consult now the
books of Cox and Katz [1999], Joyce [1998], and Voisin [1996].

§7. Examples of Calabi–Yau Varieties from Toric Geometry
The first examples of Calabi–Yau varieties were hypersurfaces or intersections of
hypersurfaces in projective space. For these examples the concrete description of the
canonical divisor is used. Projective spaces are special cases of weighted projective
spaces, and weighted projective spaces are special cases of toric varieties. In each
case hypersurfaces and complete intersections of hypersurfaces have a canonical di-
visor which is described in terms the combinatorial data of the toric variety. In many
cases it is trivial,and this gives many more examples of Calabi–Yau varieties.
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(7.1) Projective Spaces. The first examples of Calabi–Yau varieties in dimension m
were the complete intersections of multiple degree (d1, . . . , dk) in projective space
Pm+k satisfying

(CY )(d1, . . . , dk;m) : m + k + 1 = d1 + · · · + dk

which is the condition for a trivial canonical bundle. When m = 3, for example, we
have the following solutions of 4 + k = d1 + · · · + dk with di > 1:

5 = 5, 6 = 4 + 2 or 6 = 3 + 3, and 7 = 3 + 2 + 2

In looking for further three dimensional examples, we consider complete inter-
sections in weighted projective spaces.

(7.2) Weighted Projective Spaces. A weighted projective space PN (w) is a gener-
alization of PN . both are quotients of CN+1 −{0} by an action of C∗ = C−{0}. The
weights w are sequences of natural numbers w = (w(0), . . . , w(N )) ∈ NN+1 and
the action of λ ∈ C∗ on (z0), . . . , zN ) ∈ CN+1 − {0} is given by the formula

λ · (z0, . . . , zn) = (λw(0)z0, . . . , λ
w(N )zN ).

We assume that the greatest common divisor of the w(i) is 1.

For each subset S ⊂ {w(0), . . . , w(N )} we denote by q(S) the greatest common
divisor of the w(i) with i ∈ S. Let H(S) denote the subset of all (z j ) ∈ PN (w) with
zi = 0 for i /∈ S. The points in H(S) are cyclic quotient singularities for the group
Z/q(S)Z.

A general reference on weighted projective spaces is I. Dolgachev [1982, SLN
956].

The equations of hypersurfaces in the weighted projective space PN (w) of degree
d are given by polynomial equations f (z0, . . . , zn) = 0 where

f (λw(0)z0, . . . , λ
w(N )zN ) = λd f (z0, . . . , zN ).

(7.3) Complete Intersections in Weighted Projective Spaces. The complete inter-
sections of multiple degree (d1, . . . , dk) in the weighted projective space Pm+k(w)

with trivial canonical bundle are those satisfying the following condition

(CY )(d1, . . . , dk;w) : w(0)+ · · · + w(m + k) = d1 + · · · + dk .

This condition reduces to (CY )(d1, . . . , dk) in (7.1) for a projective space Pm+k .

The existence of singularities in a weighted projective space, which were not
present in the standard projective space, leads to examples with these quotient sin-
gularities. Of special interest are the hypersurfaces transverse to the singularities.

There is a complete classification of Calabi–Yau varieties arising from transverse
hypersurfaces in P4(w), see A. Klemm and R. Schimmrigk [1994] and M. Kreuzer
and H. Skarke [1992], where there are 7555 cases.
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In dimension one elliptic curves arise as cubic curves in the plane or as complete
intersections of two quadrics in 3-space. Elliptic curves also arise either as quartic
curves in P2(1, 1, 2) and sextic curves in P2(1, 2, 3). We can take for example w4 +
x4 + y2 = 0 and w6 + x3 + y2 = 0 respectively.

(7.4) General Toric Varieties. Toric varieties are varieties with an action of a torus
such that there is a dense orbit. They include weighted projective spaces, hence also
projective spaces. The affine pieces of a toric variety are defined by monomial equa-
tions, and the affine pieces are organized by a combinatorial configuration relating
the toric actions on the affine open sets. For a general reference we recommend the
book of Fulton [1993]. We give a guide to some of the sections in Fulton.

From the combinatorial description it is possible to know when a toric variety is
proper and nonsingular. For this, see p. 39 and p. 29 respectively of Fulton [1933]
and in section 2.6 the resolution of singularities of a toric variety can be prescribed
from the combinatorial data needed to prescribe a toric structure.

(7.5) Complete Intersections in Toric Varieties. In Fulton, chapter 3, divisors and
line bundles on a toric variety are studied. Of special importance are the T -invariant
divisors on a tori variety X where T is the torus acting on X . In section 4.3, the
canonical bundle is described using the T -invariant divisors. Then the complete in-
tersections with trivial canonical bundle can be determined. Hence there is a combi-
natorial description of which complete intersections are Calabi–Yau manifolds.

(7.6) Remark. For applications to string theory there is the notion of the mirror
Calabi–Yau manifold, and it can be very concretely determined in cases where the
Calabi–Yau is a complete intersection in a toric variety. A reference for this is Voisin
[1996, chapter 4].

§8. Line Bundles and Divisors: Picard and Néron–Severi Groups
In (5.2) we introduced the first Chern class of a line bundle in the setting of ho-
motopy classes [X,P∞(C)] of mappings X → P∞(C). Basic to this is the double
interpretation of P∞(C) leading to the bijection

c1 : {isomorphism classes of complex line bundles/X} → H2(X,Z) = [X,P∞(C)]

carrying the tensor product to the sum in the cohomology groups

c1(L
′ ⊗ L ′′) = c1(L

′)+ c1(L
′′).

(8.1) Analytic/Algebraic Line Bundles and Divisors. Let X/k be a proper scheme.
Let MX denote the sheaf of total rings of fractions of OX on the scheme X . The mul-
tiplicative structure of sheaves of rings leads to the following two diagrams relating
line bundles to closed subschemes of codimension one.
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1 −−−−→ O∗
X −−−−→ M∗

X −−−−→ DX = M∗
X/O∗

X −−−−→ 1

id

⏐⏐� id

⏐⏐� ord

⏐⏐�
1 −−−−→ O∗

X −−−−→ M∗
X

ord−−−−→ ∐
codim(x)=1 Zx −−−−→ 0

and for positive divisors

1 −−−−→ O∗
X −−−−→ OX − {0} −−−−→ D+

X −−−−→ 1

id

⏐⏐� id

⏐⏐� ord

⏐⏐�
1 −−−−→ O∗

X −−−−→ OX − {0}∗ ord−−−−→ ∐
codim(x)=1 Nx −−−−→ 0

where ord is the function which assigns to a germ the order of zero or pole.

For the first diagram we extract the following exact sequence of low dimensional
cohomology groups for X over k

1 → H0(O∗
X ) = k∗ → H0(M∗

X ) = k(X)∗

→ H0(DX ) = Div(X)→ H1(O∗
X ) = Pic(X)→ . . .

This leads to the exact sequence

1 → k(X)∗/k∗ = Divp(X)→ Div(X)→ H1(O∗
x ) = Pic(X)→ H1(M∗

X )→ . . .

with the first arrow mapping a germ of the nonzero function f to the principal divisor
( f ).

(8.2) Groups of Divisors and of Line Bundles. In terms of sheaf cohomology we
define divisors as elements of Div(X) = H0(DX ). Line bundles up to isomorphism
are described by elements of

H1(O∗
X ) = Pic(X)

Finally the group of divisor classes is the quotient group Div(X)/Divp(X) which
maps by an injection Div(X)/Divp(X)→ Pic(X) into the Picard group Pic(X).

In the algebraic case H1(M∗
X ) = 0 and we have an isomorphism

Div(X)/Divp(X)→ Pic(X)

from the group of divisors classes to the group of isomorphism classes of line bun-
dles.

(8.3) The Line Bundle of a Positive Divisor. For a divisor D ≥ 0 viewed as a
closed subscheme D → X , we have the exact sequence

0 → JD = O(−D)→ OX → OD → 0

of structure sheaves on X and D together with the ideal sheaf JD of the locus D in
X .
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The group Pic(X) is related to H2 by the exponential function.

(8.4) First Chern Class of Analytic/Algebraic Line Bundles. Consider the expo-
nential sequences

0 −−−−→ Z −−−−→ OZ
e−−−−→ O∗

X −−−−→ 1

where e( f ) = exp(2π i f ). The boundary morphism in the cohomology exact se-
quence

. . .→H1(X,OX )→ H1(X,O∗
X ) = Pic(X)

c1→ H2(X,Z)→ H2(X,OX )→ . . .

is the first Chern class c1 : Pic(X) → H2(X,Z) of line bundle classes. From the
exact sequence we see that this algebraic or analytic Chern class is an isomorphism
if H1(X,OX ) = H2(X,OX ) = 0.

(8.5) Definition. Let

Pic0(X) = ker(c1 : Pic(X)→ H2(X,Z))

contained in Pic(X). The Néron–Severi group of X is the quotient NS(X) =
Pic(X)/Pic0(X).

With the intersection form we will give another description of the Néron–Severi
group NS(X) as a quotient of Pic(X) in (7.7).

In the algebraic case there is a purely algebraic first Chern class in étale coho-
mology using the Kummer sequence instead of the exponential sequence.

(8.6) Degrees and Intersection Properties of Divisors. We consider the theory for
curves, surfaces, and threefolds.

(1) For a curve X , the deg : Div(X) → Z is a function which defines on the
quotient deg : Pic(X) = Div(X)/Divp(X) → Z by the first Chern class evaluated
on the top class [X ] ∈ H2(X,Z) in homology

deg(ϕ) = c1(ϕ)[X ] or deg(D) = c1((D))[X ].

It defines a quotient morphism on Pic(X) since deg(( f )) = 0, that is, the number of
zeros equals the number of poles of a function f .

(2) For a surface X , deg is replaced by the intersection pairing defined by the first
Chern class cup product and evaluated on the top class

L1 · L2 = c1(L1)c1(L2)[X ] or D1 · D2 = c1(D1)c1(D2)[X ].

The intersection pairings on surfaces are defined

Div(X)× Div(X)⏐⏐�
Pic(X)× Pic(X) −−−−→ Z⏐⏐�

H2(X,Z)× H2(X,Z)
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(3) For a threefold X the deg is replaced by a trilinear form on Pic(X)

L1 · L2 · L3 = c1(L1)c1(L2)c1(L3)[X ]

for line bundles, and

D1 · D2 · D3 = c1(D1)c1(D2)c1(D3)[X ]

for divisors.

Returning to the Néron–Severi group NS(X), we consider the following relation
between divisors.

(8.7) Definition. Two divisors D′ and D′′ are numerically equivalent provided D′ ·
E = D′′ · E for all divisors E on a surface X .

(8.8) Proposition. Let X be a surface such that the intersection form on Pic(X) is
nondegenerate. Then the Néron–Severi group NS(X) is the quotient Div(X)/Divn(X)
where Divn(X) is the subgroup of Div(X) consisting of divisors numerically equiv-
alent to zero.

By passing to the quotient, the intersection form D′ · D′′ is defined on NS(X)
with values in the integers.

Since every divisor of a function is numerically equivalent to zero, that is,
Divp(X) ⊂ Divn(X), we have a quotient mapping from the divisor classes to
NS(X) = Pic(X)/Pic0(X) = Div(X)/Divn(X) preserving the intersection form.

(8.9) Remark. The group NS(X) is finitely generated with rank ρ(X) which is
called the Picard number of the surface X . The intersection form extends to a bi-
linear pairing on the extension of scalars Q ⊗ NS(X) and R ⊗ NS(X). These are
vector spaces of dimension equal the Picard number ρ(X).

§9. Numerical Invariants of Surfaces
In this section we consider the invariants used in the Enriques classification of sur-
faces with a special emphasis on the surfaces satisfying the Calabi–Yau property.
This classification begins with cohomological invariants which extend the concept
of the genus of a curve to surfaces. Let k denote the algebraically closed ground
field.

(9.1) The Hodge to de Rham Spectral Sequence. It has the form

E p,q
1 = Hq(X, �p

X )

with differentials induced by the complex of holomorphic differential forms

0 −−−−→ OX
d ′

−−−−→ �1
X

d ′
−−−−→ · · · d ′

−−−−→ �i
X

d ′
−−−−→ · · · .

The terms E p,q
r and the differentials dr : E p,q

r → E p+r,q−r+1
r are defined for all

r ≥ 1, and H(Er , dr ) = Er+1. We compare X of dimension 1 and X of dimension
2.
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(1) Let X be a curve. There is a differential d1 : E p,q → E p+1,q
1 and the possible

nonzero groups are:

H1(X,OX ) −−−−→ H1(X, �1
X ) = k

k = H1(X,OX ) −−−−→ H1(X, �1
X )

Here, g(X) = g = h1,0 = h0,1 is the genus of the curve X .
(2) Let X be a surface. There is a differential d1 : E p,q

1 → E p+1,q
1 and the possible

nonzero groups are:

H2(X,OX ) −−−−→ H2(X, �1
X ) −−−−→ H2(X, �2

X ) = k

H1(X,OX ) −−−−→ H1(X, �1
X ) −−−−→ H1(X, �2

X )

k = H0(X,OX ) −−−−→ H0(X, �1
X ) −−−−→ H0(X, �2

X )

Here q = dimH1(X,Ox ) is the irregularity of X , and pg = dimH2(X,OX ) is the
geometric genus of the surface X .

As usual, the Betti numbers and Hodge numbers are related by bi = ∑
p+q=i h p,q

for the cohomology Hi (X,C) has a decreasing filtration

F p Hi (X,C) with Hq(X, �p
X )

isomorphic to the quotient F p H p+q(X,C)/F p+1 H p+q(X,C.

(9.2) Riemann–Roch. Riemann–Roch theorems have to do with the calculation of
the Euler–Poincaré characteristic

χ(L) =
n∑

i=0

(−1)i dimk Hi (X,L).

There are two parts, firstly, a relation between χ(L) or χ(O(D)) for a divisor D and
χ(OX ) and, secondly, a relation between χ(OX ) and Chern classes of the tangent
bundle.

For curves: χ(L) = χ(OX )+ deg(L) for a line bundle L, and

χ(O(D)) = deg(D)+ χ(OX ) = deg(D)+ 1 − g(X)

for a divisor D on the curve X . Here g = g(X) = dimH1(X,OX ) is the genus of
the curve X .

Moreover, χ(OX ) = (1/2)c1 = 1 − g(X) where c1 = c1(TX )[X ]. This implies
the integrality assertion: c1 is always an even integer.

For surfaces: χ(L) = χ(OX )+ (1/2)L ·
(
L⊗ ω(−1)⊗

X

)
for a line bundle L, and



376 19. Higher Dimensional Analogs of Elliptic Curves: Calabi–Yau Varieties

χ(O(D)) = 1

2
D · (D − K X )+ χ(OX ) = 1

2
D · (D − K X )+ 1 − q + pg

for a divisor D on the surface X . Here q = dimH1(x,OX ) is the irregularity and
pg = dimH2(X,OX ) is the geometric genus of the surface X .

Moreover, χ(OX ) = (1/12)(c2
1 + c2) = 1 − q + pg where ci = ci (TX )[X ] for

i = 1, 2. This implies the integrality assertion: c2
1 + c2 is always an integer divisible

by 12.

(9.3) Role of Serre Duality. Recall that Serre duality is a nondegenerate pairing

Hi (X,L)× Hn−i
(

X, ωX ⊗ L(−1)⊗
)
→ k

In particular, the two cohomology vector spaces have the same dimension. For divi-
sors, this takes the form

dimHi (X,O(D)) = dimHn−i (X,O(K − D)).

In the special case of curves, this leads directly to

deg(K ) = 2g − 2 and g = dimH1(OX ) = dimH0(ωX ).

As an application of the Riemann–Roch formula, Grothendieck gave an algebraic
proof of the following theorem.

(9.4) Theorem (Algebraic Index Theorem). On R⊗NS(X), the intersection form
is of signature (1, ρ(X)− 1).

(9.5) Index Theorem for Complex Surfaces. Let σ = b+−b− be the signature or
index of the cup product quadratic form on H2(X,R).

σ = b+ − b− = 1

3
(c2

1 − 2c2) = 1

3
(K 2 − 2e).

For nonalgebraic complex surfaces this and the Riemann–Roch formula are
proved by applying the Atiyah–Singer index formula.

(9.6) Genus Formula. Let D > 0 be a divisor, and let OD be the structure sheaf on
the scheme D defined by the ideal sheaf JD = O(−D). From the exact sequence

0 → JD = O(−D)→ OX → OD → 0.

we have the Euler–Poincaré characteristic relation

χ(OD) = χ(OX )− χ(O(−D))

which by Riemann–Roch is the genus formula

χ(OD) = −1

2
D · (D + K ).

For an irreducible curve C we recover the usual genus formula

2g(C)− 2 = C · K + C2.
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(9.7) Relation Between Numerical Invariants. From Poincaré duality the topo-
logical Euler number e(X) =  · on X × X is

c2 = e(X) = b0 − b1 + b2 − b3 + b4 = 2 − 2b1 + b2 = 2 − 2b1 + b+ + b−.

Combining the topological Euler number calculation with the Riemann–Roch
formula 12χ(OX ) = c2

1 + c2 we obtain the relation

12 − 12q + 12pg = K 2 + 2 − 2b1 + b2

which we rewrite in the form

10 − 8q + 12pg = K 2 + b2 + 2

where  = 2q − b1.

(9.8) Remark. For complex surfaces either b1 is even when  = 0 or b1 is odd
when  = 1. Furthermore, dimH0(�1) = q −  and b+ = 2pg + 1 − . he
following two assertions are used to prove this statement.

Firstly, every holomorphic 1-form is closed. This is false in dimensions strictly
greater than two and in characteristic p > 0. Secondly, if ω1, . . . , ωr is a basis
for H0(�1), then the set of forms ω1, . . . , ωr , ω1, . . . , ωr is linearly independent in
H1(C) and thus we have the inequality 2h1,0 ≤ b1.

For algebraic surfaces there is a quantity  in characteristic p > 0 with proper-
ties as in the previous paragraph.

§10. Enriques Classification for Surfaces
(10.1) Exceptional Curves and Minimal Surfaces. The Enriques classification the-
orem is for surfaces without exceptional curves, that is, without rational curves E
with E, E = −1. These curves on a surface X are the result of blowing up a smooth
point P on a another surface Y . This blowing up is a map X → Y such that the
restriction X − E → Y − P is an isomorphism. A surface is called minimal provided
there are no exceptional curves. Every surface can be mapped onto a minimal surface
with only exceptional curves mapping to points, and the process is unique with one
type of exception related to P2 and P1 × P1.

(10.2) Nature of the Classification of Minimal Surfaces. We can classify very
roughly curves into three classes by the genus g where g = 0, g = 1, and g ≥ 2.
In this classification, the subject of the book is in the middle g = 1. The Enriques
classification comes in four parts where the canonical divisor K with O(K ) = �2

X
again plays a basic role.

Step 1. For curves the first step is to identify genus g = 0 as P1 with a global
meromorphic function with one simple pole. For surfaces, the corresponding class
of minimal surfaces X consists of those with a curve C satisfying K · C < 0. These
are further classified by the irregularity q:
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(a) If q = 0, then either X is isomorphic to P2 so K · K = 9, or X is a ruled surface
over P1, i.e., a P1-bundle over P1.

(b) If q > 0, then X is a ruled surface over a curve of genus q with K ·K = 8(1−q).

Step 2. The analog of curves of genus g > 1 for surfaces are surfaces of general
type, that is, surfaces such that

(1) K · D ≥ 0 for all divisors D ≥ 0 and
(2) K · K > 0.

As with curves, these surfaces can be birational embedding in projective space using
sections from �(X, K m⊗) for large enough m.

Step 3. There are two broad classes of minimal surfaces which are the analogue
of genus g = 1 for curves, that is, elliptic curves. In both cases, K · D ≥ 0 for
all divisors D ≥ 0 and K · K = 0. The first class consists of those surfaces with
12K = 0 and the second class with 12K �= 0.

The second class where 12K �= 0 are the properly elliptic surfaces. These sur-
faces are fibred over a curve of genus q > 1 by elliptic curves with only a finite
number of exceptional fibres.

The first class where 12K = 0 contains the surfaces with K = 0. These are
the natural generalizations of elliptic curves, that is, the class of two dimensional
Calabi–Yau manifolds.

Step 4. The classification of minimal surfaces with 12K = 0 and K · D ≥ 0 for
all divisor D ≥ 0:

b2 b1 e(X) q pg χ(O)

K3 surfaces 22 0 24 0 1 2
Enriques surfaces 10 0 12 0 0 1
Abelian surfaces 6 4 0 2 1 0
Hyperelliptic surfaces 2 2 0 1 0 0

(10.3) Remark. Our main interest is in surfaces X with K X = 0 or equivalently
with �2

X = OX . Only K3 surfaces and abelian surfaces satisfy this condition. En-
riques surfaces satisfy K X �= 0, but 2K X = 0, and 12K X = 0 for hyperelliptic
surfaces. There are hyperelliptic surfaces with nK X = 0 for all divisors n of 12, but
n′K X �= 0 for a proper divisor n′ of n.

(10.4) Remark. Both complex K3 surfaces and complex tori can be nonalgebraic,
but if a surface has an embedding in a projective space, then by Chow’s lemma, it is
algebraic. The term abelian surface is usually reserved for algebraic tori.

§11. Introduction to K3 Surfaces
We begin by collecting some elementary data about K3 surfaces. Firstly, we start with
a definition which has a meaning for compact complex surfaces and for algebraic
surfaces.
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(11.1) Definition. A K3 surface is either a compact complex surface or an algebraic
surface over an algebraically closed field k with

(1) K X = 0 or equivalently �2
X/k and OX are isomorphic as OX -sheaves.

(2) b1(X) = 0 or in the algebraic case X is regular, that is, q = dimk H1(X,OX ) =
0.

(11.2) Numerical Invariants from Cohomology. The Betti numbers are b0 = b4 =
1, b1 = b3 = 0, b2 = 22 in the sense of singular cohomology for k = C or in étale
cohomology in general. Therefore,

24 = e(X) = 12χ(OX ) = 12(h0,0 − h0,1 + h0,2)

so that the other Hodge numbers are h2,0 = h0,2 = 1 and h1,1 = 22. In the Hodge
to de Rham spectral sequence E1 = E∞ where as usual E p,q

1 = Hq(X, �p
X/k)

converges to H p+q
DR (X/k). It is also the case that a K3 surfaces is simply connected.

(11.3) Tangent and Cotangent Sheaves. The tangent sheaf TX/k = (�1
X/k )̌ is by

definition the dual of the cotangent sheaf�1
X/k . Since (O)X and�2

X/k are isomorphic
as OX -sheaves, we deduce that TX/k and �X/k are isomorphic.

The main assertion about the tangent sheaf on a K3 surface is that there are no
nonzero tangent vector fields, or equivalently

H0(X, TX/k) = 0.

There are two references for this result.

(a) Rudakov and Shafarevitch, n0 6, Akad. Sc. SSSR 40 (1976), pp. 1264–1307.
(b) Nygaard, Annals 110 (1979), pp. 515–528.

Since H0(X, �X/k) = 0 by the above discussion, Serre duality gives

H2(X, �1
X/k) = 0,

an isomorphism between H2(X,OX ) and H0(X, �2
X/k) = 0 which is just k, and an

isomorphism between H2(X, �2
X/k) = 0 and H0(X,OX ) which is just k also. The

possible nonzero groups are:

H2(X,OX ) = k H2(X, �1
X ) = 0 H2(X, �2

X ) = k

H1(X,OX ) = 0 H1(X, �1
X ) = k20 H1(X, �2

X ) = 0

H0(X,OX ) = k H0(X, �1
X ) = 0 H0(X, �2

X ) = k

.

Here q = dimH1(X,OX ) is the irregularity of X , and pg = dimH2(X,OX ) is the
geometric genus of the surface X , and q = 0 and pq = 1.
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(11.4) Signature and Intersection Form. The intersection form on H2(X,Z) or its
dual the cup product form on H2(X,Z) is integral on this twenty-two dimensional
lattice. Since K X = 0, by (9.4) the signature

σ = (1/3)(K X · K X − 2e(X)) = (−2/3)(e(X)) = (−2/3) · 24 = −16

There is just one possibility for such an integral form, and it is

3

(
0 1
1 0

)
⊕ (−2)E8 = �(3, 19)

where

(
0 1
1 0

)
denotes the rank two hyperbolic form and E8 is the unique even

form of rank 8.

(11.5) Remark. We denote the symmetry group by � = �(3, 19) = Aut(�(3, 19))
⊂ SO(3, 19). Consider H = H2 = H2 the lattice of rank 22 with the cup product
or intersection form respectively. Then the set Isom(�(3, 19), H) is a right principal
homogeneous �-set with action given by right composition.

(11.6) Real Structure on H2(X,C). Consider the Hodge structure on H2(X,C) =
H2,0 ⊕ H1,1 ⊕ H0,2. Complex conjugation c : H2(X,C) → H2(X,C) satisfies
c2 = id and it interchanges the two summands H2,0 and H0,2. The intersection form
restricts to a positive definite form on the two dimensional subspace

P(X) = (H2,0 ⊕ H0,2) ∩ H2(X,R) ⊂ H2(X,R).

This implies that the restriction of the intersection form to H1,1
R

= H1,1 ∩ H2(X,R)

has signature (1, 19). In H1,1
R

, we denote by V (X) the subspace of elements of

strictly positive norm. Since the signature is (1, 19), V (X), the subset of all x ∈ H1,1
R

with (x |x) > 0, has two disjoint components V (X) = V +(X) ∪ V −(X) where
V +(X) denotes the component with Kähler class.

In (7.2) and (7.8) we introduced the general theory of the Picard lattice of line
bundles and the Néron–Severi group. The kernel of c1 : Pic(X) → H2(X) was
denoted Pic0(X) and the quotient Pic(X)/Pic0(X) = NS(X) is the Néron–Severi
group. Since H1(X,OX ) maps onto Pic0(X) and H1(X,OX ) = 0 for a K3 surface,
we see that the natural map Pic(X) → NS(X) is an isomorphism. We can in fact
bound the size of the Néron–Severi group using the real cohomology.

(11.7) Picard Lattice or Néron–Severi Group. The first Chern class monomor-
phism c1 : Pic(X) → H2(X) restricts to an isomorphism defined c1 : Pic(X) →
H2(X,Z)∩H1,1

R
⊂ H2(X,Z)∩H1,1. The assertion that c1 is an isomorphism in this

case is a theorem of Lefschetz. The Picard number or rank ρ(X) of Pic(X) satisfies
ρ(X) ≤ 20 and the Hodge algebraic index theorem (8.6) says that the signature is
(1, ρ(X)− 1).
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(11.8) Remark. For algebraic K3 surfaces 1 ≤ ρ(X) ≤ 20. In the case of the
Fermat surface 0 = y4

0 + y4
1 + y4

2 + y4
3 we have ρ = 20 while ρ = 1 for the generic

quadric surface. For generic complex K3 surfaces we have ρ = 0. The algebraic K3
surfaces have hyperplane sections, hence there exist curves on the surface, but they
are all homologous.

(11.9) Remark. Every complex K3 surface has a Kähler form. The Hodge data and
the Kähler form can be used to parameterize complex K3 surfaces. This is the Torelli
theorem, and for further details see the book by Barth, Peters, and van de Ven [1980],
Compact complex surfaces, Springer-Verlag, Ergebnisse der Mathematik und ihrer
Grenzgebiete, 3 Folge, Band 4.



20

Families of Elliptic Curves

The purpose of this chapter is to return to the concept of families of elliptic curves in
the context of scheme theory and to point out some of the many areas of mathematics,
and now also even of physics, in which families of elliptic curves play a role. The
idea of considering an elliptic curve over two related fields, for example, Q and Fp

arose in chapter 5 when studying torsion in E(Q) for an elliptic curve E over Q, and
in chapter 14 elliptic curves over a local field K were considered as objects over the
ring O of integers in K and over the residue class field k of K . Both of these cases
are included in the general concept of a morphism of schemes π : E → B having
the property that the fibres of π are elliptic curves, and we refer to π as a family of
elliptic curves.

To analyze the concept further, we could start with a morphism of schemes π :
X → B where all the fibres are curves, or with an eye towards elliptic curves, all
fibres are curves of genus one. For a family of genus one curves to be a family of
elliptic curves, we must be given a zero point on each fibre with the property that it
varies algebraically over the base scheme, that is, it is a section of the morphism π .
Since each fibre has a group law with the value of this section as zero, there must
be a morphism X ×B X → X inducing the group law on each fibre. Such a general
family is not of much use without some combination of conditions on π , that is,
flat, smooth, and proper. The Néron models in chapter 14, §2, is a first illustration of
such families; it is smooth, but not in general proper. In other contexts we require the
family to be flat and proper, but it is not necessary for it to be smooth.

The next direction where we restrict the problem is with the base B. The classical
literature on families of curves is very extensive for one dimensional B, for example
a curve over a field k or B = Spec(R) where R is a discrete valuation ring or more
generally any Dedekind ring. This means that X is a surface over the field k in the
first case, or X is an arithmetic surface over the Dedekind ring R. Chapters 14 and
15 can be thought of as introductions to arithmetic surfaces.

We saw in the previous chapter that the classification of surfaces X over a field
k is closely related to the existence of morphisms π : E → B onto a curve B with
given fibres. The two cases of fibres either of rational curves or elliptic curves are
especially basic. These morphisms are called fibrations when π satisfies suitable con-
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ditions. In the classification of surfaces, the role of the existence of elliptic fibrations
is central. The problem of whether or not an elliptic curve on a surface X over k can
be the fibre of some fibration π : X → B by curves of genus one or elliptic curves
is an important starting point in the theory, and we examine this problem further for
K3 surfaces.

Finally passing to three dimensional varieties X , we can, by extension of the
study of elliptic fibrations on surfaces, consider fibrations by K3 surfaces and abelian
surfaces. This we do only for three dimensional Calabi–Yau varieties where criteri-
ons for the existence of fibrations by elliptic curves and/or by K3 surfaces are given.

There are many questions in this direction that were raised by physicists working
on string theory. For this, see the appendix by S. Theisen.

§1. Algebraic and Analytic Geometry
In the previous chapters on elliptic curves we saw that there is an algebraic theory
and a closely related analytic theory. The concept used to include both theories is the
following.

(1.1) Definition. A local ringed space X is a pair (X,OX ) consisting of a topologi-
cal space X together with a sheaf of rings O = OX on X such that the stalks Ox are
local rings for each x ∈ X .

For each x ∈ X , we have the unique maximal ideal mx ⊂ Ox and the residue
class field K(x) = Ox/mx . For a cross-section s ∈ �(U,O) over an open set U ⊂ X ,
the value of s at x ∈ U is a germ denoted sx ∈ Ox and the value of s at x ∈ U in
the residue class field is the image s(x) ∈ K(x) of sx under the natural quotient
morphism Ox → K(x).

(1.2) Remark. Since the projection of a sheaf F to its base space is a local home-
omorphism, the set x ∈ U where two cross sections s′, s′′ ∈ �(U,F) are s′(x) �=
s′′(x) is a closed set. For a section s ∈ �(U,O), the set of points where sx �= 0 is a
closed set, while on the other hand, the set of points where s(x) �= 0 is an open set.
This is a special property of local ringed spaces for s(x) �= 0 means that sx is a unit
in Ox . Thus there exists an open set U (x) containing x and t ∈ �(U (x),OX ) with
sx tx = 1. Since s and t are sections of a sheaf, there exist an open set U ′(x) ⊂ U (x)
still containing x such that syty = 1 for all y ∈ U ′(x). This implies that s(y) �= 0 for
y ∈ U ′(x).

(1.3) Definition. A morphism f : (X,OX ) → (Y,OY ) of local ringed spaces is a
pair consisting of a continuous function f : X → Y together with a morphism of
sheaves of local rings f ∗ : (OY → OX ), so it preserves the maximal ideals in the
stalks.

The category of local ringed spaces is denoted (l/rg/sp), and its objects are those
defined in (1.1) and its morphisms are those defined in (1.2) with composition being
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given by composition of maps and suitable sheaf morphisms. We denote the cate-
gory of (commutative) rings by (rg) with morphisms of rings always preserving the
unit. The cross section functor is a contravariant functor with the following universal
property.

(1.4) Assertion. For each ring R in (rg), there is a local ringed space, denoted
Spec(R), such that there is a natural isomorphism between the morphism sets

Hom(rg)(T, �(X,OX ))→ Hom(l/rg/sp)(X,Spec(R)).

Moreover, the local ringed space Spec(R) has the set of prime ideals in R as the
underlying set.

Under the above bijection, a ring morphism φ : R → �(X,OX ) corresponds to
the morphism f : X → Spec(R) given by the following construction. We compose
the ring morphism φ with its evaluation on the fibre Ox to define a ring morphism
φ′

x : R → Ox and compose further with the reduction morphism πx to define a
second ring morphism φx : R → K(x). Since φx : R → K(x) is a ring morphism
into a field, the kernel p(x) is a prime ideal, and the corresponding function f :
X → Spec(R) is defined by the formula f (x) = p(x). The various morphisms
under consideration are displayed as follows

φx = πxφ
′
x and

p(x) = ker(φx ) ⊂ R
φ−−−−→ �(X,OX )⏐⏐� ⏐⏐�

Rp(x) −−−−→
φ∗x

Ox
πx−−−−→ K(x).

The closed sets Z(E) of Spec(R) are given by subsets E ⊂ R where Z(E) consists
of all p ∈ Spec(R) with E ⊂ p. Thus the open sets of Y = Spec(R) have a basis
consisting of set Y f for f ∈ R where Y f equals the set of all prime ideals p ∈
Spec(R) = Y with f /∈ p. The fibre of the structure sheaf OSpec(R) at p ∈ Spec(R) is
the local ring which is the localization Rp at the prime ideal p. Finally, the morphism
f ∗ : OY → OX on the germs at x ∈ X is the morphism φ∗

x : Rp(x) → Ox in the
above diagram.

Since with sheaf theory we can localize on open sets and glue local ringed space
over open sets, we can describe the basic structures in geometry as local ringed
spaces which are locally of certain type.

(1.5) Definition. An affine scheme X is a local ringed space isomorphic to some
Spec(R). A scheme X is a local ringed space locally isomorphic at each point to
an affine scheme, that is, for x ∈ X there exists an open set U with x ∈ U and
(U,OX |U ) is an affine scheme. The schemes define a full subcategory (sch) of
(l/rg/sp) called the category of schemes.

Smooth manifolds and complex analytic manifolds are local ringed spaces lo-
cally isomorphic to the local ringed spaces of germs of smooth functions on Rn and
analytic functions on open subset of Cn respectively.
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(1.6) Remark. If A is an algebra over a ring R, then the morphism R → A defines
a morphism Spec(A) → Spec(R). By definition, a scheme X over a ring R is a
scheme together with a morphism X → Spec(R). A scheme X over R is sometimes
denoted X/R, and in this case, every ring �(U,OX ) will have a given structure as
an R-algebra. For schemes over R, the sheaf OX and the rings �(U,OX ) of sections
are R-algebras.

(1.7) Remark. The natural extension of the ideas in the previous remark is to con-
sider the category (Sch/S) of schemes X with a morphism X → S to a fixed scheme
S. This is a general categorical construction also denoted (Sch)/S where the mor-
phisms X → Y are morphisms in (Sch) giving a commutative triangle with the two
structure morphisms over S. For an object X → S the ring �(X,OX ) is an algebra
over �(S,OS). This category has the fundamental property that the product, called
the fibre product and denoted X ×S Y exists for two objects X → S and Y → S in
(Sch/S). For affine schemes, we have Spec(A)×Spec(R) Spec(B) = Spec(A ⊗R B),
and this leads to the general existence theorem for products in (Sch/S) which are
fibre products of schemes.

For two fields F and K , the scheme Spec(F) has only one point, and a morphism
Spec(K ) → Spec(F) is equivalent to a morphism of fields F → K ; it is always
injective. The morphisms Spec(F) → X are given by point x ∈ X together with a
morphism Ox → F which factors as K(x)→ F . The geometric points of a scheme
are by definition the points x ∈ X where there is an algebraically closed field F and
a morphism Spec(F)→ X with image x .

(1.8) Remark. In remark (1.7), we pointed out that a morphism p : X → B of
schemes as giving a �(V,OB)-algebra structure on the rings �(p−1(V ),OX ) in a
functorial manner. But there is another basic interpretation of p : X → B as a family
of schemes Xb = {b} ×B X given by the fibres of the morphism p : X → B. This is
the picture of p : X → B as the family of the schemes Xb for b ∈ B.

One way to study special types of varieties or schemes, like curves, surfaces, 3-
folds, or abelian varieties, is to analyze how they form families. Before doing this,
we consider morphisms given by line bundles and divisors in the next section.

We conclude with a few further remarks about schemes. One very clear advantage
of working in the concept of scheme theory is that questions of families are well
defined. For example, the moduli space of elliptic curves should be a family p : X →
B where each elliptic curve under consideration should be isomorphic to exactly one
fibre Xb in the family. The isomorphism classes of elliptic curves are no longer a
discrete set, but they have the structure of a scheme on a set of representatives of
the isomorphism classes. In previous chapters various families of elliptic curves had
this structure of a scheme given in terms of coefficients of the equations defining the
curve.

(1.9) Remark. Most of the ideas and results in commutative algebra have an ana-
logue in scheme theory through local calculations in affine open neighborhoods. For
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example, a point x ∈ X is a prime ideal in any affine open Spec(R) containing x .
Prime ideals have invariants of dimension, height, and depth, which carry over to the
points on schemes. Ideal sheaves determine closed subschemes as an ideal I ⊂ R
determines Spec(R/I ) a closed subset of Spec(R). There are Noetherian conditions
and the concepts of irreducibility and Krull dimension.

For basic (commutative) ring theory, we recommend the following book: H. Mat-
sumura, Commutative Algebra, Second Edition, Benjamin, 1980. It covers those top-
ics most relavent to local scheme theory.

For general scheme theory in English we prefer: D. Mumford, Red Book, SLN
1358. We will make reference to this book though this chapter.

There is still just one very basic reference of scheme theory, namely EGA,
Grothendieck, A. and J. Dieudonné, Eléments de Géométrie Algébrique, Publ. Math.
I.H.E.S., 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967), and Springer-Verlag, Berlin, 1971.
The serious student can only look forward to many hours of encounter with this book.

§2. Morphisms Into Projective Spaces Determined by Line
Bundles, Divisors, and Linear Systems

In the previous section, we have characterized the morphisms Hom(l/rg/sp)(X,Spec(R))
from a local ringed space X into an affine scheme Spec(R) with a natural isomor-
phism

Hom(rg)(R, �(X,OX ))→ Hom(l/rg/sp)(X,Spec(R)).

Now, we try to characterize the set of morphisms Hom(Sh/R)(X/R,Pn
R) from a

scheme X over R to the scheme given by n-dimensional projective space Pn
R also

defined over a ring R.

(2.1) Remark. By using local isomorphisms with On
X , we can extend the assertion

of (1.2) to a locally free OX -sheaf E of finite rank, that is, a vector bundle. For a
section s ∈ �(X, E), the set Xs of points x ∈ X where s(x) �= 0 is an open set which
in turn is a subset of the closed set of points x ∈ X where sx �= 0. Consider the
case where E = L a line bundle, that is, an OX -sheaf locally isomorphic to OX and
s ∈ �(X,L). Then, for each t ∈ �(Xs,L), we can form t/s ∈ �(Xs,OX ) which is
uniquely described by the relation (t/s).s = t in �(Xs,L).

Returning to the description of Hom(Sh/R)(X/R,Pn
R), we will define Pn

R =
Proj(R[y0, . . . , yn]) and its canonical line bundle O(1) which is generated by sec-
tions y0, . . . , yn ∈ �(Pn

R,O(1)) as follows. The scheme Pn
R is covered by n+1 open

sets Wi where yi (x) �= 0 and as affine subschemes of Pn
R they are given by

Wi = Spec(R[y0/yi , . . . , yn/yi ]).

The covering condition Pn
R = W0 ∪ · · · ∪ Wn implies that the sections generate the

line bundle, which for the line bundle O(1)means that at least one section is nonzero
at each x of the space.
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(2.2) Proposition. For a local ringed space, let �(X) denote the set of pairs
(L; s0, . . . , sn) where L is a line bundle on X and s0, . . . , sn is a set of sections
generating L, all up to isomorphism. The function Hom(Sh/R)(X/R,Pn

R) → �(X)
which assigns to a morphism f : X/R → Pn

R∗ the pair of the line bundle f ∗(O(1))
and the generating sections f ∗(y0), . . . , f ∗(yn) is a bijection.

Proof. We prove the result by constructing an inverse to this function by starting with
L a line bundle on X with generating sections s0, . . . , sn . Denote by Xi the open set
of x ∈ X where si (x) �= 0. The related f is the result of gluing the compatible
morphism fi : Xi → Wi = Spec(R[y0/yi , . . . , yn/yi ]) defined by f ∗

i (yk/yi ) =
sk/si using the adjunction in (1.4). The rest is easily checked and left to the reader.

(2.3) Remark. For a section s ∈ �(X,L) of a line bundle on X the closed subset
Z(s) of zeros of s. It is defined by x ∈ Z(s) provided s(x) = 0 or equivalently
the germ sx ∈ mxLx . In fact, Z(s) is a closed subscheme of X with ideal sheaf J
generated by one element. Locally at each x ∈ X the line bundle L|U is isomorphic
to OX |U and the section s of L corresponds to f ∈ �(U,OX ) where the germ fx

generates the ideal Jx ⊂ Ox defining the closed subscheme Z(s).

For a nonzero section s ∈ �(X,L) the closed subscheme Z(s) has codimension
one and is called a divisor. Now we recall some elements of the theory of divisors
using the sheaf of germs of total rings of fractions KX on a scheme (X,OX ) which
is the general setting for zero and poles.

(2.4) Definition. Let (X,OX ) denote a local ringed space. The sheaf of rational
functions KX on X is the sheafification of the presheaf on X which assigns to each
open set U the total ring of fractions of the ring �(U,OX ).

Observe that KX is a sheaf of OX -algebras.

(2.5) Remark. For x ∈ X , the Ox -algebra Kx is the total ring of fractions of the
ring Ox since the operation of forming the total ring of fractions commutes with
direct limits. For a Noetherian scheme X and an affine open subscheme U the ring
�(U,KU ) is the total ring of fractions of the ring �(U,OU ).

(2.6) Notation. Let O∗
X denote the sheaf of invertible elements in OX , K∗

X the sheaf
of invertible elements in KX , and DX = K∗

X/O∗
X . We have a short exact sequence of

sheaves of abelian groups containing a short exact sequence of sheaves of monoids

1 −−−−→ O∗
X −−−−→ K∗

X −−−−→ DX −−−−→ 1

‖ ∪ ∪
1 −−−−→ O∗

X −−−−→ K∗
X ∩OX −−−−→ D∗

X −−−−→ 1.

The sheaf DX of abelian groups is called the sheaf of germs of divisors and the
subsheaf D∗

X is called the sheaf of germs of positive divisors. For a germ Dx ∈ Dx

a local equation is f ∈ �(U,Kx ) where U is a neighborhood of x and Dx = fx

mod O∗
X,x in the quotient. Compare with 19(8.1).
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(2.7) Remark. The group of divisors �(X,DX ) is written additively so that if f ′,
f ′′ are local equations of divisors D′, D′′, at x ∈ X respectively, then the prod-
uct f ′ · f ′′±1 is a local equation of D′ ± D′′. Also, if D′

x = D′′
x , then f ′/ f ′′ ∈

im(�(U,O∗
X )→ �(U,K∗

X )) in some open neighborhood U of x .

The short exact sequence

1 −−−−→ O∗
X −−−−→ K∗

X −−−−→ DX −−−−→ 1

leads to a long exact sequence of cohomology starting with the terms

0 → �(X,O∗
X )→ �(X,K∗

X )→ �(X,D∗
X )→ H1(X,O∗

X )→ H1(X,K∗
X )→ . . . .

(2.8) Definition. Associated to each rational function f ∈ �(X,K∗
X ) is a divisor

( f ) whose local equation at any x ∈ X is f . The divisor class [D] of D ∈ �(X,K∗
X )

is its image in H1(X,O∗
X ).

Hence in terms of the above additive notation we have [D] = [D′] if and only if
D = D′ + ( f ) for some f ∈ �(X,K∗

X ).

(2.9) Definition. To a divisor D ∈ �(X,DX ), we associate an OX -subsheaf OX (D)
⊂ KX by the condition that OX (D)x = Ox [ f −1]x where f is any local equation of
D on an open set U with x ∈ U .

Observe that OX (D)⊗ OX (D′) and OX (D + D′) are isomorphic, and in terms
of the homomorphism sheaf we have an isomorphism

OX (−D) = Hom ˇOX (D) = Hom(OX (D),OX ).

(2.10) Proposition. For two divisors D and D′, the divisor classes [D] = [D′] are
equal if and only if OX (D) and OX (D′) are isomorphic as OX -sheaves.

This is another way of looking at the second morphism in the following exact
sequence �(X,K∗

X ) → �(X,D∗
X ) → H1(X,O∗

X ), namely, to the divisor D we
assign the isomorphism class of the line bundle OX (D).

A divisor D is positive (or effective) provided OX ⊂ OX (D) ⊂ KX , and this is
equivalent to OX (−D) is an ideal sheaf in OX .

(2.11) Remark. For an effective divisor D with structure sheaf OD for the related
closed subscheme D we have the exact sequence 0 → OX (−D)→ OX → OD →
0 of sheaves. The closed subscheme D has OX (−D) as defining sheaf of ideals,
and the local equation f of D at x has the property that OX (−D)x = f · Ox . In
particular, the divisor D is determined by a codimension 1 closed subscheme D. For
an effective divisor D, the image s of 1 under the natural morphism �(X,OX ) →
�(X,OX (D)) ⊂ �(X,KX ) is like a global equation for D and Z(s) = D.

(2.12) Proposition. Let L be a line bundle. The sections s ∈ �(X,L), which are
nonzero divisors, up to multiplication by elements of �(X,O∗

X ) are in bijective cor-
respondence with effective divisors D such that OD is isomorphic to L. If OX (D)
and OX (D′) are isomorphic, then D = D′ + ( f ) where f ∈ �(X,K∗

X ).
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(2.13) Remark. Let X be a scheme over a field k, and consider a line bundle L
such that �(X,L) is a k-vector space of dimension n + 1. For any basis s0, . . . , sn ∈
�(X,L) we consider the open set U of x ∈ X where at least one si (x) �= 0. Ap-
plying (2.2), we have a morphism X ⊃ U → Pn(k) denoted φL. This morphism is
independent of basis, and we can denote it simply as

φL : U → P�(X,L)

Here P(V ) denotes the projective space on the vector space V , and if L = OX (D),
then the projective space P�(X,L) is also denoted |D|, and the mapping is denoted
φD : U → |D| = Pn . The projective space |D| is called the (complete) linear
system associated with the divisor in the classical terminology, and n = dim|D| is
its dimension.

The aim in the next sections is to construct morphisms φD : X → P a projective
space with image B, and then further the morphism φ : X → B whose fibres are
identified from properties of L or D in the total space X .

§3. Fibrations Especially Surfaces Over Curves
(3.1) Definition. A fibering or fibration p : X → B is a proper, flat morphism of
finite presentation. A fibration of curves of genus g (resp. K3-surfaces) is a fibration
p : X → B such that every fibre Xb is a curve of genus g (resp. a K3 surface).

For definitions of properties of morphisms, see Mumford, Red Book, SLN 1358,
pp. 121 and 215.

This brings up the first question related to the smoothness of a fibration p, for
where p is not smooth the fibre can have a singular point. In the case of genus 1
curves we understand these singular curves, but for K 3 surfaces the situation is more
complicated. In these two cases, we can “enrich” the fibration with additional struc-
tures.

(3.2) Definition. An elliptic fibration p : X → B is a fibration of genus one curves
together with a section e : B → X of p such that the geometric fibres are irreducible
reduced curves. A polarized fibration of K3 surfaces is K3 fibration p : X → B is a
fibration of surfaces such that the geometric fibres of p are K3 surfaces together with
a class ξ ∈ Pic(X) such that its restriction to each fibre ξb ∈ Pic(Xb) is the class of
an ample line bundle.

It is possible that all fibres over geometric points are singular rational curves of
genus 1 in a genus one fibration over a curve. This happens only in characteristic
p = 2 and 3, but in general, only a finite number of fibres are singular.

(3.3) General Fibre. If f : X → B is a fibration with general fibre F , then except
for a finite set of b ∈ B, the fibre Xb of f over b is an irreducible curve. We can
apply the genus formula (8.4) to obtain the genus q(F) as 2q(F)− 2 = Kx · F since
F · F = 0. We have an elliptic fibration if and only if K X · F = 0.
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In the case of a surface over a curve, the fibres are curves or more generally one
dimensional schemes of the form D = ∑

i ni Ei where the Ei are irreducible curves.
Hence the fibre is this divisor D. Now we study the intersection properties of D and
Ei with the following elementary result from linear algebra.

(3.4) Proposition. Let V be an inner product space over Q generated by vectors ei

for i ∈ I with (ei |e j ) ≥ 0 for all i �= j . If there exists a vector z = ∑
i ai ei with all

ai > 0 such that (z|e j ) = 0 for all j , then we have (z|x) = 0 and (x |x) ≤ 0 for all
x ∈ V .

Proof. Since any x is a linear combination of the e j and (z|e j ) = 0 for all indices j ,
it follows that (z|x) = 0. for the negative definite statement, we write any x ∈ V as
x = ∑

i ci ai ei where ci ∈ Q and calculate

(x |x)−
∑

i

c2
i a2

i (ei |ei ) =
∑
i �= j

ci c j (ai ei |a j e j ) ≤
∑
i �= j

1

2
(c2

i + c2
j )(ai ei |a j e j )

=
∑

i

1

2
c2

i (ai ei |z − ai ei )+
∑

j

1

2
c2

j (a j e j |z − a j e j )

= −
∑

i

c2
i a2

i (ei |ei ).

Thus the sequence of inequalities gives (x |x) ≤ 0. This proves the proposition.

(3.5) Remark. In the previous inequality (3.3) we can ask when is it true that
(x |x) = 0 as we already know one example (z|z) = 0. The inequality that we
used above is uv ≤ (1/2)(u2 + v2) which comes from the positivity of squares
0 ≤ (u − v)2. Clearly this inequality is an equality if and only if u = v. This means
that 0 = (x |x) if and only if for all i �= j we have either (ei |e j ) = 0 or ci = c j .
Let I be the set of indices, and define two indices i and j to be connected provided
there exists a sequence of indices i = i(0), . . . , i(q) = j with (ei(�−1)|ei(�)) > 0 for
all � = 1, . . . , q. This puts an equivalence relation of connectedness on I , and the
equivalence classes are called connected components of I . For a connected compo-
nent K of I , we form the part zK = ∑

i∈K ai ei of z, and observe that z = ∑
K zK

where the sum is over the connected components of z. With these notations, we have
the following assertion.

(3.6) Assertion. For x ∈ V , we have 0 = (x |x) if and only if we can write x =∑
K cK zK where the sum again is over the connected components of I and each

cK ∈ Q. This sum formula for x is just the condition that for i �= j we have either
(ei |e j ) = 0 or ci = c j . In the special case where I is connected, this becomes
0 = (x |x) if and only if x = cz for some c ∈ Q.

(3.7) Application I. Let f : X → B be a morphism of a surface onto a curve,
and consider a fibre D = ∑

i ni Ei where the Ei are distinct irreducible curves and
ni > 0. Then D · Ei = 0 because D is algebraically equivalent to any near by fibre,
and Ei · E j ≥ 0 for i �= j . Form the Q-vector space generated by the curves Ei

with the intersection form and apply (3.3) to obtain Ei · Ei ≤ 0. This is a necessary
condition for any divisor to be the fibre of a fibration to a curve.
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(3.8) Application II. Let X be a surface with K X · K X = 0 and K X · D ≥ 0 for
all divisors D ≥ 0. In the linear system of mK X for m > 0 consider D ∈ |mK X |
with D �= 0. Decompose D = ∑

i ni Ei with ni > 0, and hence, we have 0 =
(mK X ) · K X = D · K X = ∑

i ni (Ei · K X ). Since each Ei · K X ≥ 0, we see that
Ei · K X = 0 and Ei · D = 0 for all i . Apply (3.3) this time to the Q-vector space
generated by these Ei ’s, and we deduce that Ei · Ei ≤ 0 for D = ∑

i ni Ei ∈ |mK X |
on such a surface. This is a useful property of surfaces whose canonical divisor has
zero self intersection.

A general reference for this section is Barth, Peters, and van de Ven [1980].

§4. Generalities on Elliptic Fibrations of Surfaces Over Curves
In the carrying out of the Enriques classification of surfaces, an understanding of the
canonical divisor on an elliptic surface plays a basic role.

(4.1) Remark. For many considerations concerning a family f : X → B we can
reduce to the case of f∗(OX ) = OB by Stein factorization. Any proper morphism
f : X → Y between Noetherian schemes has a factorization

X
f ′−−−−→ B

q−−−−→ Y

where f ′ is proper and q is finite with B Spec( f∗(OX )). In this factorization,
f ′∗(OX ) = OB , and under a separability hypothesis on f , the morphism q is étale. In
general, a standard modification of a family of curves or surfaces over B is to induce
it by an étale map B ′ → B to a family over B ′.

(4.2) Remark. Let f : X → B be an elliptic fibration with f∗(OX ) = OB . Then
R1 f∗(OX ) = L ⊕ T where L is a line bundle and T is a torsion sheaf. This in-
cludes quasi-elliptic fibrations which are those nonsmooth fibrations arising only in
characteristic 2 and 3 mentioned in (3.2).

(4.3) Definition. With the previous notation for an elliptic fibration f : X → B
with f∗(OX ) = OB the exceptional points of f are b ∈ Supp(T ). A fibre D =
f −1(b) is exceptional provided it satisfies either of the following two equivalent
conditions:

(1) b is an exceptional point, i.e. b ∈ Supp(T ).
(2) dimH0(OD) ≥ 2.

Recall that a curve C is of the first kind provided C is rational and C · C = −1,
and a surface is minimal provided there are no curves of the first kind.

(4.4) Definition. A fibration f : X → B of a surface over a curve B is a relatively
minimal fibration provided there are no curves of the first kind contained in any fibre.
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(4.5) Theorem. Let f : X → B be a relatively minimal elliptic or quasi-elliptic
fibration of a surface over a curve B satisfying f∗(OX ) = OB. There is an enumera-
tion of the multiple fibres f −1(bi ) = mi Pi such that the Pi are indecomposable. With
the notation R1 f∗(OX ) = L ⊕ T we have the following formula for the canonical
line bundle on X

ωX = f ∗
(
L(−1)⊗ ⊗ ωB

)
⊗O

(∑
i

ai Pi

)
where

(i) 0 ≤ ai ≤ mi − 1, and
(ii) ai = mi − 1 if Pi is not exceptional.

Hence the length of T , denoted l(T ) is greater than or equal to the number of ai <

mi − 1. Moreover,

deg
(

L(−1) ⊗ ωB

)
= 2g(B)− 2χ(OX )+ l(T )

or

deg(L) = −χ(OX )− l(T ).

Proof (Sketch of parts of the proof).

(1) We show that the line bundle O(K X ) equals f ∗(M) ⊗ O
(∑

i ai Pi
)

where
0 ≤ ai < mi for some line bundle M on B. In the language of divisors, we show
that K X is linearly equivalent to f −1(M) +∑

i ai Pi for some divisor M on B. For
this, consider r nonsingular fibres C(i) of f . Then the structure sheaves OC(i) on
C(i) are isomorphic to OC(i) ⊗ O(K X + C(i)) because C(i) is an indecomposable
divisor of canonical type, see (4.5), and in fact they are curves with p(C(i)) = 1.

(4.6) Definition. An effective divisor D = ∑
i ni Ci on a surface X is of canonical

type provided K · Ci = D · Ci = 0 for all i . In addition, D is indecomposable of
canonical type provided D is connected and the greatest common divisor of the ni

equals 1.

Tensoring the following exact sequence with O(K X )

0 → O → O
(∑

i C(i)
) → ∐

i OC(i) ⊗O(C(i))→ 0,

we obtain the exact sequence

0 → O(K X ) = ωX → O
(
K +∑

i C(i)
) → ∐

i OC(i) → 0.

The cohomology sequence is the following exact sequence

0 → H0(O(K X )) −−−−→ H0(O (
K X +∑

i C(i)
)⏐⏐�∐

i H0(C(i),OC(i)) −−−−→ H1(O(K X ))→ . . .
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and from this we derive the inequality

dimH0(O
(

K X +
∑

i

C(i)

)
≥ r + pg − q = r − 1 + χ(OX )

or

dim

∣∣∣∣∣Kx +
∑

i

C(i)

∣∣∣∣∣ ≥ r − 2 + χ(Ox ).

When the number of fibres is large enough, we can thus find D ∈ |K X +∑
i C(i)|.

From (3.3) we see that D ·F = 0 for each fibre F of f , and hence, D is supported
in a union of fibres. This means that D can be decomposed as a sum

D = +
∑

j

m j� j +
∑

i

ai Pi

where 0 ≤ ai < mi and where  does not contain any fibres or multiples of Pi .
Each component ′ of  satisfies ′ · C = 0 and ′ ·′ = 0 = C · C for each

component C of a fibre. By (3.3), this means that ′ is a rational multiple of a fibre
containing it again, and therefore, it is zero. Thus we have

K X +
∑

i

C(i) =
∑

j

m j� j +
∑

i

ai Pi ,

and this proves the first assertion.
(2) The duality theorem for a map says that

M = f∗(ωX ) = Hom(R1 f∗(OX ),OB) = L(−1)⊗ ⊗ ωB,

because the dual of the torsion part is zero. This formula can be found in Deligne–
Rapoport [1973, LM 349] see pp. 19–20, (2.2.3). This means that

ωX = f ∗
(
L(−1)⊗ ⊗ ωB

)
⊗O

(∑
i

ai Pi

)

as asserted.
(3) From the spectral sequence of the map f we deduce

χ(OX ) = χ(OB − χ(R1 f∗(OX ))

= 1 − p(B)− χ(L)− length(T )

= 1 − p(B)− (deg(L)+ 1 − p(B))− length(T )

Hence we deduce the formula −deg(L) = χ(OX ) + length(T ) the last formula
asserted above.
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§5. Elliptic K3 Surfaces
The object of this section is to prove that a K3 surface with Picard number at least 5
has an elliptic fibration. Recall that a K3 surface X satisfies two conditions: OX and
�2

X are isomorphic (so K X = 0) and H1(X,OX ) = 0. We use two notations:

h(D) = dimH0(X,OX (D)) and l(D) = dimH0(X,OX (D))− 1.

(5.1) Remark. For a K3 surface X , the general Riemann–Roch formula χ(OD) =
(1/2)D · (D − K )+ χ(OX ) implies the following inequality

l(D)+ l(−D) ≥ 1

2
(D2)

The general genus formula χ(OD) = −(1/2)D · (D + K ) yields a formula for the
genus of an irreducible curve C ⊂ X of the following form

pa(C) = 1

2
(C2)+ 1.

If g denotes the genus of the normalization of C , then pa(C) = g + δ where δ ≥ 0
is an invariant depending on the singularities of C with δ = 0 if and only if C is
smooth.

(5.2) Proposition. Let X be a K3 surface.

(1) If C is an irreducible curve on X, then either (C2) ≥ 0 or (C2) = −2, in
which case C is a rational smooth curve.

(2) If D is a divisor on X with (D2) = −2, then either −D or D is equivalent to
an effective divisor (which may be reducible).

(3) If D is a divisor on X with (D2) = 0, then either −D or D is equiva-
lent to an effective divisor. If D is equivalent to an effective divisor, then l(D) =
dim(X,OX (D)) ≥ 1.

Proof. Assertion (1) is a result of the genus formula

pa(C) = 1

2
(C2)+ 1.

Assertion (2) results from the Riemann–Roch relation

χ(OD) = 1

2
D · (D − K )+ χ(OX ) = 1

2
(D2)+ 2 ≥ 2.

If H0(X,O(D)) �= 0, then there is an effective E equivalent to D, and if

H0(X,O(K − D)) �= 0,

then there is an effective E equivalent to K − D or equivalently −D since K is
equivalent to zero. Such an effective divisor is the zero locus of a nonzero section.
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Assertion (3) follows from (2). This proves the proposition.

(5.3) Proposition. If E is a smooth genus one curve on a K3 surface X, then (E2) =
0 and �(E) = dimH0(X,OX (E))− 1 = 1.

Proof. the first result comes from the genus formula. For the second assertion, we
use the exact sequence

0 −−−−→ OX −−−−→ OX (E) −−−−→ OX (E)|E −−−−→ 0.

We have the restriction OX (E)|E = OE since (E2) = 0. The related cohomology
exact sequence is

0 −−−−→ k −−−−→ H0(X,OX (E)) −−−−→ k −−−−→ 0

which implies that h(E) = dimH0(X,OX (E)) = 2. this proves the proposition.

Now we come to a key theorem of Pjatecň–Šapiro and Šafarev [1971].

(5.4) Theorem. If an effective divisor D on a K3 surface X satisfies the conditions
(D2) = 0 and D ·C > 0 for every curve C on X, then the linear system |D| contains
a divisor of the form m E where m > 0 and E is an elliptic curve.

Proof. We must show that |D| contains a divisor with only one component.

Step 1. Let D′ ∈ |D|, and consider decompositions D′ = ∑r
i=1 ai Ci where the

Ci are distinct and irreducible and ai > 0. Assume there are at least two indices i .
Then we have D · Ci ≥ 0 and Ci · C j ≥ 0 for i �= j , and this implies that C2

i = 0 by
(3.8).

We show that the self intersection C2
i = 0 for some D′ ∈ |D|. For this consider

an embedding X → PN with general hyperplane H ⊂ PN and hyperplane section
X ∩ H of X . In the intersection D · H = D′ · H = ∑r

i=1 ai (Ci · H) the terms Ci · H
are just the degrees of the embeddings Ci → PN . Hence the positive integers r and
ai are bounded. Therefore, the number of D′ ∈ |D| with all Ci · Ci < 0 is finite in
number, while the linear system |D| is infinite.

We have shown the existence of D′ ∈ |D| which decomposes as a sum of the
form D′ = m E + D′′ = m E +∑r

i=1 ai Ci where E · E = 0 and m ≥ 0.
Step 2. In the decompositions D′ = m E + D′′ as in step 1, we have two further

intersection properties: E · D′′ = 0 and D′′ · D′′ = 0. For we calculate 0 = D′ · D′ =
m E · D′ + D′′ · D′, and by (3.8) we have E · D′ = 0 so that D′′ · D′ = 0. Moreover,
E · D′′ ≥ 0 since they have no common components, and from the following two
relations

0 = D′ · D′′ = m E · D′′ + D′′ · D′′ and 0 = D′ · D′ = 2m E · D′′ + D′′ · D′′

we see that E · D′′ = 0 and D′′ · D′′ = 0.
Step 3. Among the D′ ∈ |D| decomposed as D′ = m E + D′′ with E · E = 0,

so that E · D′′ = 0, D′′ · D′′ = 0 by step 2, we choose the one with E ′′ · H minimal
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as a natural number for H a hyperplane section. It remains to show that D′′ = 0 to
complete the proof, and this we do by deriving a contradiction assuming D′′ �= 0. If
D′′ �= 0, then �(D) ≥ 2, and we can apply the above considerations in steps 1 and 2
for |D| to |D′′|. There exists D(1) ∈ |D′′| with the decomposition

D′′ linearly equivalent to D(1) = nE + D(2)

so that D′ is equivalent to (m + n)E + D(2). This means that intersecting this D(2)
with the hyperplane H we have

H · D(2) = H · D(1)− H · (m E) = H · D′ − H · (m E) < H · D′′

which contradicts the minimal character of K ′′. Hence D′′ = 0 for the minimal case
and thus D′ = m H . This proves the theorem.

(5.5) Theorem. Let X be a K3 surface with ρ(X) ≥ 5. Then there exists an elliptic
fibration.

Proof. The rational inner product space NS(X)Q is of rank greater than 5, and is
indefinite, so that there exists D′ ∈ NS(X)Q nonzero with

(D′)2 = 0

Then for some n we have D = nD′ ∈ NS(X) and also D · D = 0. Now we apply
the previous theorem to D, and we have m E ∈ |D| where E is an elliptic curve.
Applying (2.13) to D, we have a map φD : X → |D| = P1 with D a fibre over a
point p ∈ P1. If f : P1 → P1 is the m-fold ramified covering of P1 ramified at p
and one other point, then φ = f φD is a fibration φ : X → P1 with fibre E at f (p).
This proves the theorem.

§6. Fibrations of 3 Dimensional Calabi–Yau Varieties
In this section we survey the results on fibrations by elliptic curves and K3 surfaces of
Calabi–Yau 3-folds. the main reference is K. Oguiso [1993]. In the previous section
the fibering of a K3 surface by elliptic curves started with a divisor which was a
possible fibre for an elliptic fibration, that is, with an elliptic curve E with E · E = 0.

For a 3-fold, we can look for a fibration by either surfaces or curves. In the first
case, we would start with a divisor or line bundle with the intersection properties of
a fibre, and in the second case we would start with a divisor with the selfintersection
properties of a fibre of curves. The divisors in this picture would be numerically
effective divisors.
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(6.1) Definition. A divisor D on a variety is numerically effective, or nef, provided
D · C ≥ 0 for all curves C on X . A line bundle L is numerically effective provided
it is of the form L = O(D) where D is a numerically effective divisor.

While there are many refinements of the following result in terms of singularities,
the main result in the simple case reduces to the following assertion.

(6.2) Theorem. Let X be a smooth Calabi–Yau variety of dimension 3, and let D be
a numerically effective divisor on X. If the triple intersection D · D · D′ = 0 for all
divisors D′, then X has a fibration over P1 by K3 surfaces. If the triple intersection
D · D · D = 0 and another triple intersection D · D · D′ �= 0 for some divisor D′,
then X has a fibration by elliptic curves.

The reference for this result and following related remarks is Oguiso [1993]. He
uses the mapping associated with a line bundle or divisor, see (2.2). Under such
mappings sub-varieties can map to a point, and the image of such a variety can have
singularities. Thus we have the concept of a minimal Calabi–Yau variety which must
include varieties with very mild singularities.

(6.3) Definition. A minimal Calabi–Yau 3-fold is a normal projective complex 3
dimensional variety X with K X and OX isomorphic, πalg

1 (X) = 0, and c2(X) �= 0.
There is also a Q-factorial condition on the singularities which we do not go into..

This generalization is related to a possible minimal model theory of 3-folds, that
is, a 3-dimensional normal Q-factorial projective complex variety.

Associated with a divisor or line bundle L of X is a sequence of maps φn,L =
φn : X → P

(
�
(
X · Ln⊗))which are everywhere defined when for each point x ∈ X

there is a section of Ln⊗ which is nonzero at this point. In terms of a related divisor
D this is just the condition of being base point free.

In his article Oguiso organizes the proof in terms of the following numerical
invariants, following various notations of Kawamata.

(6.4) Notation. Consider a minimal 3-fold X with only terminal singularities and
whose canonical divisor is numerically effective. The D-dimension κ(X, D) of a
Q-Cartier divisor D on X is

κ(X, D) =
{

maxm>0 dimφ|m D|(X) if |m D| is nonempty for some m > 0,

−∞ otherwise.

The numerical D-dimension ν(X, D) of a numerically effective Q-Cartier divisor D
is

ν(X, D) = maximum natural n with nD not numerically equivalent to 0.
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(6.5) Table of Possible Fibrations.

Type ν(X,L) L · c2(X) —structure of φ : X → W

0 0 0 —L and OX are isomorphic and im(φ) is a point.
I+ 1 + —φ : X → P1 with general fibre a K3 surface.
I0 1 0 —φ : X → P1 with general fibre an abelian suface.

II+ 2 + —a general fibre of φ is an elliptic curve and W is a
rational surface with only quotient singularities.

II0 2 0 —a general fibre of φ is an elliptic curve and W is a
non-Gorenstein rational surface with only quotient
singularities.

III 3 ≥ 0 —φ is birational and W is a projective normal 3-fold
with KW equivalent to zero, so W is canonical of
index 1.

Related assertions to the above table:

(1) the rational surface W for type II+ has nKW equivalent to − for some effective
Cartier divisor  > 0 on W and some positive integer n.

(2) The rational surface W for type II0 has at least one quotient singularity other
than Du Val singularity, and nKW is equivalent to zero for some positive integer
n. Moreover, φ is a smooth fibration in codimension one on W , and there is a
non-Gorenstien pointw ∈ W such that dimφ−1(w) = 2. In particular, φ is never
equidimensional in this case.

(3) All six types occur.
(4) There exists a smooth Calabi–Yau 3-fold which has a type II0 fibration and in-

finitely many different fibrations of types I+, I0, and II+.

An important step is to relate a singular minimal Calabi–Yau 3-fold with its min-
imal resolution, which we sketch now.

(6.6) Remark. Let X be a minimal Calabi–Yau 3-fold.

(1) dim(Sing(X)) = 0 consists of isolated points.
(2) X is factorial so every Weil divisor on X is a Cartier divisor.
(3) χ(OX ) = 0 by Serre duality.
(4) h1(OX ) = 0, for if it were strictly positive, it would be incompatible with
π

alg
1 (X) being zero.

(6.7) Remark. We consider minimal Calabi–Yau 3-folds and resolutions ν : Y →
X . It follows that the numerical class ν∗c2(Y ) is independent of ν from the following
formula

χ(OX (D)) = 1

6
D3 + 1

12
D · ν∗c2(Y ).

This can be used as a definition of c2(X) = ν∗c2(Y ). Further, if D is a numerically
effective divisor with ν(X, D) ≥ 0, then we have the same formula
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χ(OX (D)) = 1

6
D3 + 1

12
D · ν∗c2(X)

where the vanishing theorem in the following is used: Y. Kawamata, K. Matsuda,
and K. Matsuki, Introduction to the minimal model problem, Adv. St. Pure Math. 10
(1987), pp. 283–360.

We close by indicating some references besides the main reference by Keiji Ogu-
iso, On algebraic fiber space structures on a Calabi–Yau 3-fold, International Journal
of Mathematics, Vol. 4, No. 3 (1993) 439–465. Article of Y. Kawamata, Abundance
Theorem for minimal Threefolds, Invent. Math. 108 (1992) pp. 229–246 was an im-
portant background article.

A slightly later paper than that of Oguiso is: P. M. H. Wilson, The existence
of elliptic fibre space structure on Calabi–Yau threefolds, Mathematische Annalen,
1994.

See also: N. Nakayama, Local Weierstrass models, Algebraic Geometry and
Commutative Algebra in Honor of M. Nagata, vol II, Kinokuniya and North-Holland,
1987, pp. 403–431 is used. U. Persson, On degenerations of algebraic surfaces,
Memoirs Amer. Math. Soc. 189 (1977).

§7. Three Examples of Three Dimensional Calabi–Yau
Hypersurfaces in Weight Projective Four Space and Their
Fibrings

In two early papers on mirror symmetry with authors P. Candelas, X. de la Ossa,
A. Font, S. Katz, and D. Morrison [1994] there are careful analyses of particular three
dimensional hypersurfaces in weighted projective spaces. We give a short sketch of
three of these examples and refer to the papers where the lively interest in fibred
Calabi–Yau manifolds arose among string theorists.

(7.1) Degree of the Hypersurface in theWeighted Projective Spaces Under Con-
sideration.

Case 1. Degree 8 hypersurface in P4(1, 1, 2, 2, 2) with equation

X : y8
0 + y8

1 + y4
2 + y4

3 + y4
4 = 0.

The degree 8 = 1 + 1 + 2 + 2 + 2 so the hypersurface in this degree is a Calabi–Yau
manifold.

The intersection with the codimension 2 linear space given by equations y0 =
y1 = 0 is quartic curve C : y4

2 + y4
3 + y4

4 = 0. Let L be the linear system generated
by the polynomials of degree one in y0 and y1. The divisors in L are the proper
transforms of the zero locus under a blow up of C of the hypersurface X . These
divisors can be described by y0 = λy1 for λ ∈ P1 and denoted D(λ). Setting y2

1 = x1
and yi = xi for i > 1, we obtain a surface of degree four in P3, and this means that
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L defines a pencil of K3-surfaces as fibres of φL : X → P1. Since any two distinct
members of L are disjoint, the intersection product L .L = 0.

Case 2. Degree 12 hypersurface in P4(1, 1, 2, 2, 6) with equation

y12
0 + y12

1 + y6
2 + y6

3 + y2
4 = 0.

The degree 12 = 1+1+2+2+6 so the hypersurface in this degree is a Calabi–Yau
manifold.

The intersection with codimension 2 linear space given by the equations y0 =
y1 = 0 is the singular curve C : y6

2 + y6
3 + y2

4 = 0 of genus 2. When the singularity
is blown up, we obtain a ruled surface over C . Let L be the linear system generated
by the polynomials of degree one in y0 and y1. The divisors in L are the proper
transforms of the zero locus under a blow up of C on the hypersurface X . These
are K 3 surfaces in P3(1, 2, 2, 6) which are isomorphic to surfaces of degree 6 in
P3(1, 1, 1, 3).

Case 3. Degree 18 hypersurface in P4(1, 1, 1, 6, 9) with equation

y18
0 + y18

1 + y18
2 + y3

3 + y2
4 = 0.

The degree 18 = 1 + 1 + 1 + 6 + 9 so that the hypersurface in this degree is a
Calabi–Yau manifold. For this equation the singularities occur along y1 = y2 =
y3 = 0 which is a curve in P4(1, 1, 1, 6, 9) intersecting the hypersurface at one point
0 : 0 : 0 : −1 : 1. Also, this weighted projective space has a quotient singularity
of order 3 along this curve from the weighted projective space. Next, the polynomial
y0 y1 y2, being invariant under this group of order 3, defines a divisor with a simple
intersection along the quotient curve.

The linear system L generated by y0, y1, y2 maps the hypersurface to P2 with
fibres y3

3 + y2
4 = constant, namely elliptic curves.

For further details and implications in string theory, see the articles in Nuclear
Physics, B416 (1994) 481–538 and B429 (1994) 626–674.



Appendix I: Calabi–Yau Manifolds and String Theory

Stefan Theisen

Calabi–Yau manifolds are not only of interest to mathematicians. They also play a
central role in an area of modern theoretical physics called string theory. This com-
mon interest in Calabi–Yau manifolds, both by mathematicians and by physicists, has
led to interesting new developments in both fields and has initiated fruitful collabo-
rations. The aim of this appendix is to explain the physicists’ interest in string theory
and in particular how Calabi–Yau manifolds enter. This touches upon a vast area of
current research and we can merely give a brief and qualitative overview of some as-
pects of string theory. A detailed reference, for all aspects which we will touch upon
and much more, is ‘Quantum Fields and Strings: A Course for Mathematicians’,
Vols. I & II, P. Deligne et al. (eds.), AMS publication 1999, where references to the
original literature can be found.

Why String Theory?

String theory is part of a wider area of theoretical physics, the theory of elementary
particles, whose main goal is to find a unifying theoretical framework to describe
matter and its interactions. Three of the known interactions—the electromagnetic,
and the weak and strong forces—are very successfully described by the so-called
standard model of elementary particle physics within the framework of a quantum
field theory with Yang–Mills gauge group U (1)×SU (2)×SU (3). These interactions
dominate at the atomic and subatomic level and are studied in present day acceler-
ator experiments. The fourth interaction—gravity—is much weaker in the micro-
scopic realm and can be safely neglected. However, the dynamics of stars, galaxies
and the universe as a whole are governed by the laws of gravity. The gravitational
interaction, at the classical (versus quantum) level, is described by Einstein’s theory
of general relativity. One of the hallmarks of this theory is the coupling of matter
and energy to the space–time geometry, described quantitatively by Einstein’s field
equations. However, at very small distances, much smaller than atomic scales, or,
equivalently, at very high energies, one expects that the classical concept of space-
time requires modification. Gravity, like matter and the other three interactions to
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which it couples, must obey the laws of quantum mechanics. The familiar concept of
a (four-dimensional) space–time continuum with a smooth metric is only meaning-
ful in an appropriate classical limit. All attempts to unify gravity with the other three
interactions within the framework of quantum field theory have so far been futile.
The nature of the problem can be heuristically understood as follows.

The basic constituents of matter are conventionally viewed as point-particles
which propagate through space–time along trajectories called world-lines. In this
picture interactions between elementary particles are described by graphs, the so-
called Feynman diagrams, which fail to be manifolds at the interaction points. This
is the reason why in the quantum theory the concept of point-particles leads to diver-
gent expressions when one computes physical quantities. In the case of Yang–Mills
interactions these divergences can be consistently dealt with in a well-defined pro-
cedure called renormalization. In this way, the standard model allows us to predict
the result of a large number of experiments after fixing the parameter (coupling con-
stants, masses, etc.) appearing in the theory by fitting the data of few experiments.
As such, it has proven very successful. However, once the gravitational interaction
is included, the renormalization program fails; the infinities cannot be dealt with in a
consistent way.

An intuitive cure of the infinities is to ‘thicken’ the Feynman diagrams into two-
dimensional surfaces with smooth junctions, as indicated by this simple diagram
which describes the decay of a particle into two particles:

The diagrams become manifolds but no longer represent the propagation and inter-
action of point-particles, but rather of one-dimensional objects.

Basic Properties

This is precisely the approach taken by string theory which departs from the no-
tion of point-like elementary constituents of matter and replaces them by a one-
dimensional object: a string. The world-line of a point-particle is now replaced by
the world-sheet of the string. The observed elementary particles are harmonic oscil-
lations of the string of which there are an infinite number with ever growing mass.
The analogy with a vibrating string of a harp—the overtones with increasing fre-
quency corresponding to the exitations of increasing mass—is useful. In both cases
the frequencies are determined by the tension of the string, denoted by T . But the
analogy is limited as the mass is only one of the several characteristic properties
of an excited fundamental string. Also, one distinguishes between open and closed
strings. A closed string has two kinds of excitations, left-moving and right-moving
waves, while on an open string a left-moving wave is reflected at the boundary and
returns as a right-moving wave. An open string can close if its two ends meet, turn-
ing it into a closed string. There are thus theories with open and closed strings but
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there are also theories where only closed strings exist. Furthermore, one also distin-
guishes between the bosonic and fermionic strings. The excitations of the bosonic
string are bosons, i.e., they transform in tensor representations (‘integer spin’) of the
space-time Lorentz group, while the excitation spectra of fermionic strings also con-
tain fermions (‘half-integer spin’), which transform in spinor representations. Phys-
ically bosons and fermions behave very differently and both types of particles are
observed in nature. The constituents of matter (electrons, neutrinos, quarks, etc.) are
fermions. They interact with each other by exchanging bosons (gauge bosons for the
U (1)× SU (2)× SU (3) gauge interactions and gravitons for the gravitational inter-
action.) Below we will return to the distinction between different string theories. Of
course a viable string theory must eventually reproduce the precise spectrum of the
observed particles and their interactions with the correct strength. While this has at
present not yet been achieved, an important and encouraging result is the fact that
the spectrum of the closed string always contains a massless mode with properties
which allow its identification with the graviton.

The general theory of relativity contains two fundamental constants of nature:
the speed of light c and Newton’s gravitational constant G N . A quantum theory of
gravity must also contain Planck’s constant �. As in any quantum theory, � enters via
a quantization procedure (path integral quantization or BRS-quantization, to mention
just two). From these three constants of nature one can build combinations with the
dimension of length, time and mass, called Planck length lP =

√
G N �/c3, Planck

time tP =
√

G N �/c5 and Planck mass m P = √
c�/G N . One can then express all

distances, time intervals and masses as multiples of these three fundamental units. In
string theory the string tension T replaces G N as the fundamental constant of nature
and the latter can be expressed in terms of T , c and �. With the help of the string
tension one can define a length scale ls = √

�/T c and an energy scale Es =
√

�c3T
which are characteristic for string theory. For example, the typical size of a string is
determined by ls and the masses of its excitations are integer multiples of Es/c2. The
natural value for the string tension is that such that ls ∼ lP ∼ 1.6 × 10−35 meters
(for comparison: the size of an atom is 10−10 meters). Within the framework of string
theory it now becomes evident why the classical theory of general relativity ceases to
be meaningful at distances l < ls ∼ lP or, equivalently, at energies E > Es . In this
length and energy range the classical concept of space–time, which is adequately
described by (pseudo)-Riemannian geometry, requires modification. The reason is
that a one-dimensional object, a string, probes a space very differently from a zero-
dimensional object at length scales of the order of and below the size of the probe.

The transition from zero-dimensional to one-dimensional fundamental building
blocks, or from world-lines to world-sheets, thus has far-reaching consequences. We
have already mentioned that the divergences which seem to render a quantum-field-
theoretic treatment of gravity impossible no longer appear. Furthermore, since now
all elementary particles arise as vibrations of a single fundamental object, the string,
one has achieved a unification of particles and their interactions which necessarily
includes gravity.
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Any complete theory of quantum gravity should explain the structure of space-
time. In other words, its dimension, topology, Riemannian structure, etc., which we
observe at length scales much bigger than the Planck length, should be derivable
consequences of the theory rather than inputs. In particular, the concept of a space–
time metric should only emerge in an appropriate limit. This ambitious goal has
not been reached yet. But even at the present stage of development there are many
aspects in which string theory differs significantly from quantum field theory in an
external gravitational field.

String Theories in Ten Dimensions

One indication of this incompleteness of string theory is the fact that its quantization
is presently only possible in à priori given classical space–time backgrounds through
which the string propagates. This was, for example, implicit above when we ap-
pealed to the intuitive picture of the world-sheet being embedded in space–time. The
simplest case is the quantization of a free string in flat Minkowski space–time, i.e.,
d-dimensional Rd with Minkowski metric. As in theories of point-particles, con-
sistent quantization must result in a positive-definite Hilbert space. Moreover, the
symmetries of the classical theory (space-time symmetries, gauge symmetries, dif-
feomorphism and scale invariance on the world-sheet) must survive the process of
quantization. This is the requirement of the absence of anomalies. One important re-
striction which follows from these requirements is that string theory cannot be quan-
tized in a Minkowski space–time of arbitrary dimension. Rather, we must be in the
so-called critical dimension which is dcrit = 26 for the bosonic string and dcrit = 10
for the fermionic string.

The excitation spectrum of the bosonic string contains, in addition to a finite num-
ber of massless states and an infinite number of massive states, a so-called tachyon
with (mass)2 < 0. Such a state signals an instability much in the same way as the
instability of a particle located at the top of a potential hill. Even though there might
be nearby minima of this potential into which the system could settle, this question
has, for the case of the bosonic string, not yet been answered. Also, the bosonic string
does not contain fermions and can thus not be considered for a realistic description
of nature, but the possibility that, once it has settled in a stable minimum fermionic
degrees of freedom will appear, has not been excluded yet. The spectrum of the
fermionic string can, via a suitable projection (GSO projection), be restricted in such
a way that tachyons are absent and that the resulting string theory is supersymmet-
ric. The projection also ensures that all anomalies are absent and is thus required for
consistency of the theory.

Supersymmetry is a symmetry between bosons and fermions. In addition to
the generators of the Poincaré symmetry—translations, rotations and Lorentz-trans-
formations—there are N fermionic generators, the supercharges. They transform as
spinors under the Lorentz group and, when acting on a boson (fermion) they turn it
into a fermion (boson). By adding additional fermionic fields, called superpartners,
the action functionals which govern the dynamics of Yang–Mills theory and general
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relativity can be extended in such a way that they are invariant under supersymmetry
transformations. The resulting theories are known as super-Yang–Mills and super-
gravity, respectively. Super-Yang–Mills theories and supergravity theories exist in all
space–time dimensions less than or equal to ten while a (unique) supergravity theory
can also be constructed in eleven dimensions. In string theory space–time supersym-
metry can be traced back to a supersymmetry on the two-dimensional world-sheet.

There are five consistent string theories with space–time supersymmetry which
one can construct in ten-dimensional Minkowski space-time. Non-supersymmetric
theories are also known, but they are unstable. The type I string theory, which is the
only one which possesses both open and closed strings, has N = 1 supersymmetry.
The massless sector of its spectrum corresponds to supersymmetric Yang–Mills the-
ory coupled to supergravity. The gauge fields are part of the excitation spectrum of
the open string while the graviton is a massless excitation of the closed string. Con-
sistency of the type I theory—the absence of gravitational and gauge anomalies—
requires that the gauge symmetry be SO(32).

The remaining four theories have only closed strings. There are two type II the-
ories with N = 2 supersymmetry in ten dimensions. Two inequivalent GSO projec-
tions lead to the so-called type IIA and type IIB theories. In the type IIB theory one
imposes the same projection for the left- and the right-moving excitation while ‘op-
posite’ projections lead to the type IIA theory. Their massless spectra are those of the
ten-dimensional type IIA and type IIB supergravity theories, respectively. Finally, the
other two consistent string theories in ten-dimensional Minkowski space–time also
possess, as in the type I theory, N = 1 supersymmetry. The two possible gauge
groups are SO(32) and E8 × E8. These theories are called heterotic string theories.
They are constructed from a combination of the bosonic string and the fermionic
string, one for the left-movers and the other for the right-movers. The difference in
critical dimensions, sixteen, is equal to the rank of the two possible gauge groups.
The construction involves the only two even Euclidean self-dual lattices of dimension
sixteen, which enter as the weight lattices of the two possible gauge groups. Again,
the absence of anomalies is responsible for this very restrictive choice. The massless
spectrum of the two heterotic theories is again that of supersymmetric Yang–Mills
theory coupled to supergravity, but now with gauge groups SO(32) or E8 × E8. In
fact, one can show that in the limit of infinite tension, in which the string contracts
to a point and the masses of the excited, massive string states become infinite, the
dynamics of the massless modes of each of the five theories is governed by the appro-
priate ten-dimensional field theory. The full string theory is, however, much richer
and can, in contrast to their field theory limits, be consistently quantized.

Compactification

So far we have only discussed string theory in the simplest possible background
geometry, that of Minkowski space–time M10. The most striking result is that con-
sistency of the theory fixes the space–time dimension. The fact that it came out to be
ten rather than the observed four might, at first sight, render the theory useless as a
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physical theory. However, through the process of compactification one can hide the
six excess dimensions. It is in this process where string theory reveals many of its
characteristic features and its rich mathematical structure. This is also how Calabi–
Yau manifolds will enter.

The basic idea of compactification is to replace the Minkowski space–time by
a different ten-dimensional space–time which has only four dimensions of infinite
extent and the remaining six dimensions of finite extent. The simplest realization of
this idea is to start with the ansatz M4×K6 for the ten-dimensional space–time. Here
K6 is a six-dimensional compact manifold, hence the term compactification. If one
makes K6 small enough, the world effectively looks four-dimensional. The natural
size of K6 is ls , the only length scale which enters the theory and, in fact, this value
is far below the distances we can probe with our most powerful microscopes, the
high-energy particle accelerators.

A compactification which respects this ansatz is specified by a metric on K6 and
by additional tensor fields which occur in the massless spectrum of the string theory
which we want to compactify. Again, consistency requirements, for example, scale-
invariance on the world-sheet, restricts the allowed compactifications. The resulting
four-dimensional theory depends crucially on the choice of compactification; for ex-
ample, the compactification breaks supersymmetry unless K6 admits parallel spinors.
This is the case for manifolds with special holonomy Hol(K6) ⊂ SO(6). Here the
spinors may be parallel with respect to a connection which is not necessarily the Rie-
mannian connection, but it might involve other tensor fields which characterize the
chosen compactification; its precise form is fixed by supersymmetry. By an appro-
priate choice of background fields one can thus ‘engineer’ various four-dimensional
theories. Without further explanation we state that on physical grounds the favored
K6’s are those which admit exactly one parallel spinor field. One consequence of this
choice is that when compactifying the type II string the four-dimensional theory has
N = 2 supersymmetry whereas for the compactification of the heterotic string one
obtains N = 1 supersymmetry. (Compactification on a flat six-dimensional torus
would lead to N = 8 and N = 4 supersymmetry, instead.)

If the connection is simply the Riemannian one, and if no other other back-
ground fields are present, then the existence of precisely one parallel spinor implies
that K6 is a Calabi–Yau manifold, i.e., a compact six-dimensional Kähler manifold
with SU (3) holonomy. For the consistent compactification of the heterotic string
one also has to specify, in addition to the metric, a holomorphic stable vector bundle
with G ⊂ SO(32) or E8 × E8. Numerous Calabi–Yau manifolds have been explic-
itly constructed (the simplest one being the quintic hypersurface in CP4) and string
compactification on them has been studied in much detail. The specific choice of a
Calabi–Yau manifold determines the spectrum of the compactified string theory and
also its interactions. For example, the massless states can be determined from the
cohomology and topology of the Calabi–Yau manifold.

While, from a physical point of view, compactifications on six-dimensional
Calabi–Yau manifolds are the most relevant ones as they lead to a four-dimensional
world at long distances, other dimensions have also been considered, e.g., compacti-
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fication on K 3 surfaces, tori of various dimensions, or seven-dimensional manifolds
with G2 holonomy.

We have already mentioned that the simplest compactifications of type II string
theories only involves a non-trivial metric and that this is not the most general case.
In fact, compared to the heterotic theories compactified on the same manifold, the
type II theories always have twice as much supersymmetry. There is an interesting
class of compactifications of type IIB theory which leads to N = 1 supersymmetry
in four dimensions. The type IIB theory has in its excitation spectrum two real mass-
less scalar fields χ and φ which can be combined into a single complex scalar field
with positive imaginary part τ = χ + ie−φ . The type IIB string theory possesses
an exact SL(2,Z) symmetry under which the graviton is inert and which acts on τ
as τ → (aτ + b)/(cτ + d) where a, b, c, d ∈ Z with ad − bc = 1. Inequivalent
values of τ are thus parametrized by points in a fundamental domain of the modular
group F = H+/SL(2,Z) where H+ is the Siegel upper half plane. We can now
interpret τ as the complex structure of an (auxiliary) elliptic curve which varies over
the compact manifold in a way that is dictated by the coupled equations of motion
for τ and the metric on Kn . If one combines the requirements of non-constant τ
and supersymmetry of the compactified theory, one finds that Kn must be a Kähler
manifold with positive first Chern class and that τ must vary holomorphically in
such a way that we can view Kn as the base of an elliptically fibered 2n + 2 dimen-
sional Calabi–Yau manifold (which has vanishing first Chern class) where the fiber
is characterized by τ . The Calabi–Yau condition implies that the fiber degenerates
over (complex) co-dimension one loci. When transported around these loci, τ un-
dergoes SL(2,Z) monodromy transformations. The simplest example is n = 2 with
K2 = CP1. The total space is then an elliptic K 3 surface and in the generic case
the fiber degenerates (in an A1 singularity) over 24 points. These particular com-
pactifications of the ten-dimensional type IIB string theory can thus be viewed as
compactifications of a twelve-dimensional theory, which has been called F-theory.
We should point out, however, that there does not exist a string theory in twelve di-
mensional Minkowski space–time. What F-theory does is to interpret certain com-
pactifications of type IIB string theory, namely those with non-trivial metric and τ ,
in terms of twelve-dimensional geometries. It is through this interpretation that ellip-
tically fibered Calabi–Yau manifolds enter. Again, n = 6 is the most interesting case
for physical applications; this leads to the study of elliptically fibered four-complex-
dimensional Calabi–Yau manifolds. The physics of the four-dimensional world thus
constructed depends on the topology and cohomology of the particular Calabi–Yau
manifold chosen.

Duality

With the explanation of the importance of Calabi–Yau manifolds for string theory,
we have made contact with the main body of the book and have thus fulfilled the
purpose of this appendix. Nevertheless we want to mention one last issue which
presently dominates both the physical and the mathematical aspects of string theory:
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duality. We start with a simple illustrative example, namely the compactification of
the bosonic string on an circle. It emphasizes once more the importance of the fact
that strings are one-dimensional rather than zero-dimensional objects.

The mass-spectrum of a particle on a compact Riemannian manifold is deter-
mined by the eigenvalues of the Laplacian. Manifolds with different topologies and
Riemannian structures generally give different spectra. The simplest example is the
compactification on a circle of radius R. One finds the so-called Kaluza–Klein ex-
citations with (mass)2 = (n�/Rc)2, for all n ∈ Z. In the limit R → ∞ one ob-
tains a continuous spectrum which is the signal for an additional direction of in-
finite extent. The spectrum of a closed string on a circle differs from that of the
particle in an important way: the string not only moves on the circle, it can also
wrap it. Due to tension, stretching the string requires energy, which depends on
the winding number w and on the radius R. One now finds the allowed values
(mass)2 = (n�/Rc)2 + (wRT )2, for all n, w ∈ Z. This spectrum is symmetric under
the discrete Z2 duality transformation R → l2

s /R and n ↔ w, which exchanges
Kaluza–Klein excitations and winding states. One can show that this symmetry ex-
tends, beyond the spectra, to the complete theory, that is, also to its dynamics. The
important conclusion we draw from this example is that geometrically distinct com-
pactifications of string theory may correspond to physically identical theories. Both
for R → ∞ and for R → 0, one obtains a continuum of massless states which in
each of the two cases is interpreted as the decompactification of an additional di-
mension. That this also happens for R → 0 is at first surprising. It reveals a typical
‘stringy’ effect and demonstrates that strings probe space–time quite differently from
point-particles. If one wants to parametrize all physically distinct compactifications
on a circle, one has to choose one of the two fundamental domains of the Z2 duality
group, either R ≥ ls or, equivalently, 0 ≤ R ≤ ls . Note that the parameter space of
inequivalent compactifications of a point-particle is R ≥ 0. The bosonic string com-
pactified on a circle of radius R is dual to the bosonic string compactified on a circle
of radius l2

s /R. More generally, two theories are called dual if they describe exactly
the same physics. In many cases, the dual theories appear to be quite different; this
is the reason why dual pairs are difficult to find.

As a second example consider the compactification of the type II theories on a
circle. The naive expectation is that the compactification of each of the two type II
theories possesses its own parameter space. What one finds instead is that the two
theories are different limit points in a single space of compactified theories. For in-
stance, if we start with the ten-dimensional type IIA theory, compactifiy on a circle of
radius R, and then take the limit R → 0, we get the ten-dimensional type IIB theory.
It is thus appropriate to simply talk about type II theories. The distinction between A
and B simply refers to the two boundary points of their common parameter space of
compactifications on a circle.

This example has a very interesting generalization. Consider the compactifica-
tion of, say, the type IIA theory on a six-(real)dimensional CalabiYau manifold, X .
Is this dual to a compactification of the type IIB theory? The answer is yes. For any
X there exists a Calabi–Yau manifold X∗, such that the compactification of the type
IIB theory on X∗ is identical, that is, physically indistinguishable, from the compact-
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ification of the type IIA theory on X. The pair of Calabi–Yau manifolds (X, X∗) is
referred to as a mirror pair and this duality is called mirror-symmetry. Here X and X∗
are topologically distinct manifolds, for example, their Euler numbers χ are related
via χ(X) = −χ(X∗). As in the previous examples, mirror symmetry is a property of
the full string theory and does not hold for the corresponding supergravity theories.
There is a non-geometric formulation of string compactifications (in terms of confor-
mal field theory) where mirror syrnmetry appears as a triviality and where it was first
observed. However, when translated into geometry, it has far reaching implications
for the mathematics of Calabi–Yau manifolds.

One of the main advances in string theory after 1995 was the realization that
all known string theories (and their compactifications) can be parametrized by one
single parameter space. For instance, the two type II theories lie at the two boundaries
of a one-dimensional subspace, parametrized by R. The all-encompassing theory,
even though still unknown, has been named M-theory, where M might, for the time
being, stand for Mystery. The ten-dimensional string theories correspond to certain
points ‘close to the boundary’ of this parameter space. As a surprise one has found
that a particular corner of the parameter space of M-theory corresponds to a theory
whose massless fields and their interactions are precisely those of the unique eleven-
dimensional supergravity theory. It is not the field theory limit of a string theory but
rather of a theory whose fundamental constituents are believed to be membranes.

This example shows that whatever M-theory turns out to be, it will look like
a theory of strings only in some regions of its parameter space. These regions can
and have been thoroughly studied. For a complete description one certainly needs,
besides string, other objects, such as mernbranes and higher dimensional generaliza-
tions. The nature of M-theory is the big open question.

Summary

In this appendix we could only give a glimpse of some aspects of string theory. At the
present stage, the status of string theory, or perhaps more appropriately, M-theory, is
far from being a completely understood and developed theory. For instance, it does
not provide a mechanism for the process of compactification and thus cannot ex-
plain the dimension, the topology and the signature of the metric of our universe,
the observed spectrum of elementary particles and their interactions. No background
independent formulation of string theory is known. One instead considers strings
moving in a consistently but otherwise arbitrarily chosen (metric, etc.) background.
Ideally one would like to see this background emerge, at low energies or, equiva-
lently, at large distances—as compared to Es and ls , respectively—from a ‘dynar-
nical condensation process’. The precise meaning of this statement will hopefully
follow from further progress in our understanding of string theory. This requires the
joint effort of physicists and mathematicians.



Appendix II: Elliptic Curves in Algorithmic Number
Theory and Cryptography

Otto Forster

§1. Applications in Algorithmic Number Theory
In this section we describe briefly the use of elliptic curves over finite fields for
two fundamental problems in algorithmic number theory, namely factorization and
proving primality of large integers.

1.1 Factorization. The elliptic curve factorization method of H. Lenstra is a general-
ization of the so-called (p−1)-factorization algorithm of Pollard. The common setup
for both methods is the following: Suppose we want to find a factor of some large
integer N . Let there be given a functor that associates to N a group G(N ) and to any
prime divisor p | N a group G(p) and a group homomorphism βp : G(N )→ G(p)
with the following property: If x ∈ G(N ) \ {e} is a nontrivial element lying in the
kernel of one of the βp (for an unknown prime divisor p | N ), then a nontrivial di-
visor of N can be easily calculated. In the case of Pollard’s (p − 1)-method one sets
G(m) := (Z/m)∗ for all integers m > 0. If an element x̄ = x mod N ∈ (Z/N )∗ is
in the kernel of the natural homomorphism βp : (Z/N )∗ → (Z/p)∗ for some prime
divisor p | N and if x �≡ 1 mod N , then

d := gcd(x − 1, N )

is a nontrivial divisor of N . But how can we find a nontrivial element in the kernel of
βp if p is unknown? This is possible provided that the order of G(p) is a “smooth”
number, i.e. if

#G(p) = qk1
1 qk2

2 · · · · · qkr
r

with small prime powers qki
i , say qki

i ≤ B for all i and a given (relatively small)
bound B. One then calculates the number

Q(B) =
∏
q≤B

qα(q,B),

where α(q, B) := max{k ∈ N : qk ≤ B}. By the prime number theorem, Q(B) has
order of magnitude exp(B). Since by assumption #G(p) | Q(B), for every element
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ξ ∈ G(p) we have ξQ(B) = e. Therefore, if we calculate y := x Q(B) for an arbitrary
element x ∈ G(N ), then y ∈ ker(βp), because βp(y) = βp(x)Q(B) = e. If y �= e,
then by assumption a divisor of N can be calculated. Pollard’s method is efficient if
there is a prime divisor p | N such that p − 1 is a smooth number. But this is not
always the case. It was Lenstra’s idea to replace the multiplicative group F∗

p in Pol-
lard’s method by an elliptic curve G(p) = Ea,b(Fp). By varying the parameters a, b
of the elliptic curve, there is a better chance that the order #Ea,b(Fp) is a sufficiently
smooth number.

Lenstra’s algorithm works as follows: To start, we choose random elements a ∈
Z/N , P0 = (x0, y0) ∈ (Z/N )2 and determine a value b ∈ Z/N such that

y2
0 ≡ x3

0 + ax0 + b mod N .

In rare cases we will have gcd(4a3 + 27b2, N ) �= 1. Then we have either found a
nontrivial divisor of N and can stop the algorithm or else N | 4a3 + 27b2 and we
must start again with new random values a, x0, y0.

If gcd(4a3 + 27b2, N ) = 1, consider the equation

Y 2 = X3 + aX + b.

For every prime divisor p | N , we define the group G(p) := Ea,b(Z/p) as
the elliptic curve defined by this equation taken modulo p and set G(N ) :=∏

p|N Ea,b(Z/p). The homomorphisms βp : G(N ) → G(p) are the natural pro-
jections. If we denote by G(p)′ := G(p) \ {O} the affine part of G(p), then
G(N )′ := ∏

p|N G(p)′ is the complement of
⋃

p|N ker(βp). The points of G(N )′
can be represented by pairs (x, y) of integers satisfying our equation modulo N . We
have already constructed a point P0 = (x0, y0) of G(N )′. By the general principle
of the factorization algorithm explained above, we must now calculate the multiple
Q(B) · P0 (for some suitable choice of B). This can be done in O(log Q(B)) steps
by repeated doubling and adding. The group law to add two points P1 + P2 =: P3 is
given by the formulas

x3 := λ2 − x1 − x2, y3 := λ(x1 − x3)− y1,

where the “slope” λ is defined by

λ := y2 − y1

x2 − x1
if x1 �= x2 and λ := 3x2

1 + a

2y1
if P1 = P2.

The only problem in doing these operations in Z/N is the calculation of the inverses
of the denominators. These inverses, if they exist in Z/N , can be calculated by using
the extended Euclidean algorithm to calculate the gcd of the denominator and N . If
the gcd equals 1, the inverse can be calculated and we can go on. The exceptional
case is that the gcd is a number d �= 1. If d �= N , we are in a lucky case because we
have found a divisor of N . If one of the elliptic curves G(p) has an order dividing
Q(B), an exceptional case must necessarily occur during the calculation of Q(B)·P0,
because then Q(B) · P0 cannot be an element of G(N )′. If we do not encounter a
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lucky case we are not completely lost, because we can start again with new random
parameters a, x0, y0, i.e. with new elliptic curves G(p) with different orders. A nice
feature of the elliptic curve factorization algorithm is that it is easily parallelizable,
because we can let many computers work on the factorization of the same number N
using different elliptic curves.

1.2 Deterministic Primality Tests. There are some very efficient probabilistic pri-
mality tests for large integers. An example is the Solovay–Strassen test. This test
works as follows. Let N be a large odd integer to be tested for primality. Choose
a random integer a with 1 < a < N and check whether (1) gcd(a, N ) = 1, and
(2) a(N−1)/2 ≡ (

a/N
)

mod N , where
(
a/N

)
is the Jacobi symbol. Of course, if N

is prime, these conditions are satisfied (condition (2) is a theorem of Euler). Hence
if one of the conditions fails, we are certain that N is not prime. If both conditions
hold, we can assert the primality of N only with a certain error probability. Indeed
one can show that for composite N condition (2) is satisfied for less than N/2 values
of a. Hence the error probability is less than 1/2. (For most N the error probabilty
is much less.) By repeating the test m times with independent random values a, the
error probability will be less than 2−m . An integer N which has passed successfully
sufficiently often a probabilistic primility test is called a “probable prime”. For all
practical purposes we may assume that N is prime, but this is not a mathematical
certainty.

If the prime decomposition of N − 1 is known, there is a simple deterministic
primality test: N is prime if and only if there exists an integer a such that aN−1 ≡ 1
mod N and a(N−1)/q �≡ 1 for all prime divisors q | N − 1. An a with this property
is then a primitive root modulo N . If N is prime then there exist ϕ(N − 1) primitive
roots, hence by trying out some random numbers one can be found. But in general
N − 1 (which is the order of (Z/N )∗ in case N is prime) is difficult to factorize.
As in the case of Lenstra’s factorization method one can try to replace the group
(Z/N )∗ by an elliptic curve Ea,b. By varying the coefficients a, b, the orders of the
elliptic curves vary and there is a better chance that at least one of these orders can
be factorized. This was the idea of Goldwasser/Kilian. Their primality test is based
on the following proposition.

Proposition. Let N be a probable prime with gcd(6, N ) = 1 and let a, b be integers
with gcd(4a3 + 27b2, N ) = 1. Consider the elliptic curve with affine equation

E = Ea,b : Y 2 = X3 + aX + b.

Suppose there exists a prime q > (
4
√

N + 1)2 and an affine point P = (x, y) on
E(Z/N ) such that q · P = O. Then N is prime.

Remark. As in 1.1 we define E(Z/N ) = ∏
p|N E(Z/p). All calculations are done in

Z/N . In contrast to 1.1, here an exceptional case where we encounter a denomina-
tor, which is a nonzero noninvertible element of Z/N , will rarely occur in practice,
because N is a probable prime.

Proof. Assume that N is not prime. Then there exists a prime divisor p | N with
p ≤ √

N . The natural homomorphism
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E(Z/N ) −→ E(Z/p)

maps P to a point P = (x̄, ȳ) ∈ E(Z/p) of order q . By the theorem of Hasse (Chap.
13.1, Theorem (1.2)), the order of E(Z/p) satisfies

#E(Z/p) < p + 1 + 2
√

p ≤
√

N + 1 + 2 4
√

N = ( 4
√

N + 1)2.

Therefore it would follow that q > #E(Z/p), a contradiction!

The primality test of Goldwasser/Kilian uses this proposition in the following
way: Choose random numbers a, b and determine the order m := #Ea,b(Z/N ) by
Schoof’s algorithm (cf. 2.6), assuming N is prime. By trial division of m by small
primes write m as m = f · u, where f is the factored and u the unfactored part. If
f ≥ 2 and u > ( 4

√
N + 1)2, test whether q := u is a probable prime. If this is not

the case or if u is not of the required size, start again with new random values a, b. If
q is a probable prime, it is in general easy to find a point P = (x, y) on Ea,b(Z/N )
of order q. Then by the proposition N is prime provided q is prime. Since q ≤
1/2 #Ea,b(Z/N ), this can be tested recursively by the same method. The primality
test of Goldwasser/Kilian has expected polynomial running time (polynomial in the
number of bits of N ), but still is too slow in practice.

Atkin/Morain have devised an improvement which makes this primality test ef-
ficient in practice. Instead of choosing random elliptic curves and calculating their
order, they construct, using a complex multiplication method, elliptic curves whose
order is known a priori. Let −D be the discriminant of an imaginary quadratic num-
ber field. If N is prime and the equation 4N = t2+Ds2 has an integer solution (t, s),
then there exists an elliptic curve E over the field Z/N , whose endomorphism ring is
the ring of algebraic integers in Q(

√−D), and which has m = #E(Z/N ) = N+1±t
elements. As above, one can test whether m can be written as m = f · q, where q is
a probable prime with m/2 ≥ q > ( 4

√
N + 1)2. There exists an effective algorithm

of Cornacchia to decide whether the Diophantic equation 4N = t2 + Ds2 is solvable
and to find a solution in case of existence (of course

(−D/N
) = 1 is a necessary

condition). The equation of the elliptic curve E can be constructed in the following
way: We first calculate the j-invariant

jD := j
(−D + i

√
D

2

)
∈ C

with sufficiently high precision. This is an algebraic integer of degree equal to the
class number h of the field Q(

√−D). Its conjugates are j (τν), ν = 2, . . . , h, where
the lattices Z + Zτν represent the non-principal ideal classes of Q(

√−D). By cal-
culating also these conjugates of jD , we get its minimal polynomial HD(T ) ∈ Z[T ].
This polynomial, taken modulo N , has at least one zero j0 ∈ Z/N , which is the
j-invariant of the elliptic curve E(Z/N ). From this we can calculate the equation
of the elliptic curve. Up to isomorphism, there are only two possibilities, except for
D = −3 with 6, and D = −4 with 4 isomorphism classes.

Incorporating further improvements, the primality test of Atkin/Morain is very
efficient and has been used to prove the primality of numbers with more than 1000
decimal digits.
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§2. Elliptic Curves in Cryptography
The use of elliptic curves in cryptography is based on the discrete logarithm problem.
First we describe this problem in a general group.

2.1 The Discrete Logarithm. Let G be a finite abelian group (we will write it
multiplicatively) and let g ∈ G be a fixed element of known order q. Let G0 = 〈g〉
the cyclic subgroup of G generated by g. Then we have an isomorphism of groups

expg : Z/qZ −→ G0, k → gk .

The inverse map of expg is called the discrete logarithm (with respect to basis g)

logg : G0 −→ Z/qZ .

More concretely, given an element x ∈ G0 = 〈g〉, the discrete logarithm of x is the
unique number k mod q such that x = gk .

Popular choices for the group G are the multiplicative group of a finite field or
an elliptic curve over a finite field.

The crucial point for the cryptographical applications is that the exponential map
can be effectively calculated, whereas the calculation of the logarithm is in general
much more complicated. To give an idea of the orders of magnitude involved, the
bitsize of the number q (which should be a prime for reasons that we will explain
later) is typically between 160 and 1024 (i.e. q ≈ 2160 up to q ≈ 21024). The power
gk can be calculated by the repeated squaring algorithm: If

k =
r∑

i=0

bi 2
r , bi ∈ {0, 1}

then
gk =

∏
bi �=0

g2i

and g2i
requires i multiplications. Hence the complexity grows linearly with the

number of digits of q. The complexity of the discrete logarithm depends of course
on the particular group G. We will discuss this problem later, but we say at this point
only that for general elliptic curves the best known algorithms have a complexity
growing exponentially with the number of digits of q .

We will now describe two cryptographical applications of the discrete logarithm
in the context of a general group.

2.2 Diffie–Hellman Key Exchange. Suppose that two parties, say Alice and Bob,
want to take up a confidential communication over an unsecured channel like the
Internet. For this purpose they send their messages encrypted with a secret key that
is known only to Alice and Bob. But how can they agree on a common secret key
if this information must also be exchanged over the unsecured channel? This can be
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done by a public key system invented by W. Diffie and M.E. Hellman. First Alice
and Bob agree on a triple (G, g, q) consisting of a group G and an element g ∈ G
of order q as in (2.1). It is supposed that the discrete logarithm problem in G is
intractable. This (G, g, q) is a public key that need not to be kept secret. For every
particular session a new secret key is established in the following manner:

1. Alice chooses a random number α ∈ Z/qZ, calculates a := gα ∈ G and sends a
to Bob. The number α must be kept secret, but a may be known to an adversary.

2. Bob chooses a random number β ∈ Z/qZ, calculates b := gβ ∈ G and sends b
to Alice. Again β must be kept secret.

3. Alice calculates ka := bα ∈ G, and Bob calculates kb := aβ ∈ G. Of course

ka = gαβ = kb;
so they can use ka = kb as their common secret key. An adversary knows a = gα

and b = gβ . To calculate gαβ from gα and gβ is known as the Diffie–Hellman
problem. For this no better method is known than to calculate α or β by solving
the discrete logarithm problem for one of the equations a = gα or b = gβ . But
this was supposed to be practically impossible.

2.3 Digital Signatures. An electronic document can be easily copied and the copy
is completely identical to the original. Therefore, at first sight, it seems that a digital
signature can be forged even more easily than can handwritten signature. Therefore
it is surprising that a secure digital signature scheme can be established using public
key cryptography. The idea is to use signatures that depend on the signed document
and that can only be produced using a private (secret) key, whereas verification of
the signature is possible using the public key corresponding to the secret key.

There are several digital signature schemes; we will describe one that is a variant
of a scheme invented by T. ElGamal. This scheme uses the discrete logarithm and
can be formulated for an arbitrary finite abelian group (for example, an elliptic curve
over a finite field).

So let (G, g, q) be (as above) a triple where G is a group and g ∈ G an element
of known prime order q and suppose that the discrete logarithm problem in G is
intractable. Furthermore let there be given a map ϕ : G → Z/qZ. (For example, if
G is an elliptic curve over a prime field Fp, for a point A ∈ G, A �= O , we could
define ϕ(A) = x(A) mod q , where x(A) ∈ {0, 1, 2, . . . , p − 1} is the x-coordinate
of A.)

1. To set up a public/private key pair for digital signatures, Alice chooses a ran-
dom number ξ ∈ (Z/q)∗ and calculates

h := gξ ∈ G.

The public key is then (G, q, ϕ, g, h), whereas ξ serves as Alice’s private key and
must be kept secret. (An adversary can calculate ξ from the public data, provided he
can solve the discrete logarithm problem in G, which we supposed to be practically
impossible.)
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2. To sign a particular message m ∈ (Z/qZ)∗ (in practice m will be a so called
message digest or cryptographic check sum of a longer document), Alice chooses a
new random number α ∈ (Z/qZ)∗ and calculates

a := gα ∈ G,

and, using her private key ξ ,

m′ := m + ξϕ(a) ∈ Z/qZ.

If m′ = 0 (a case which in practice will never occur, because its probability is only
1/q), another random number α has to be chosen. Then Alice calculates

β := α−1m′ ∈ (Z/qZ)∗.

The signature of m is
σ := (a, β) ∈ G × Z/qZ,

and the signed message is the pair (m, σ ).
3. If Bob wants to verify that (m, σ ) was indeed signed by Alice, he does the

following calculations (which use only the public key)

γ := mβ−1 ∈ Z/qZ, δ := ϕ(a)β−1 ∈ Z/qZ,

and
c := gγ hδ ∈ G.

He accepts the signature if c = a. If the message m was properly signed, this is
indeed the case, because

gγ hδ = gmβ−1
gξϕ(a)β

−1

= g(m+ξϕ(a))β−1 = gm′β−1 = gα = a.

2.4 Algorithms for the Discrete Logarithm. Let G be a cyclic group of order q
with generator g and x ∈ G. We wish to determine a number ξ ∈ Z/qZ such that

x = gξ .

If q is not prime, but a composite with prime factorization

q =
∏

p
r j
j ,

it is easy to see that the problem can be reduced to cyclic groups of order p j . There-
fore the discrete logarithm problem is hardest if q is prime.

The baby step/giant step (BSGS) algorithm of Shanks proceeds in the following
way: Let k := �√q be the smallest integer ≥ √

q . The (unknown) discrete logarithm
ξ can be written as

ξ = nk + m, 0 ≤ n,m < k.
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The equation x = gξ is equivalent to

xg−m = gkn .

First, the “giant steps”
gkν, ν = 0, 1, . . . , k − 1

are calculated and stored in a hash table. Then the “baby steps”

xg−µ, µ = 0, 1, 2, . . .

are calculated one after the other and compared with the stored values until a collision

xg−m = gkn

is found. The discrete logarithm is then ξ = (kn + m) mod q. If efficient hashing
techniques are used for storing and searching, this algorithm requires roughly O(

√
q)

steps. The memory requirement (for the giant steps) is also O(
√

q). However there
exist probabilistic variants (Pollard’s rho and lambda method) which use only a small
constant amount of memory and have the same time complexity O(

√
q).

Remark. The complexity O(
√

q) is an exponential complexity considering it (as cus-
tomary) as a function of the number of binary digits of q.

To be safe against this algorithm (i.e. to make the discrete logarithm problem
intractable), q should be by today’s (2002) standards at least 2160. The number of
required steps would then be > 280 ≈ 1.2 · 1024.

For special groups there exist more efficient algorithms for the discrete loga-
rithm. For example, for the multiplicative group F∗

q of a finite field there exist subex-
ponential algorithms (index calculus method, number field sieve). Subexponential
complexity is between polynomial and exponential complexity.

For general elliptic curves over finite fields no better algorithms for the discrete
logarithm problem are known than the general purpose O(

√
q) algorithms. However,

for elliptic curves with special properties, one can do better. For example, let E be a
supersingular elliptic curve over Fp, so that E(Fp) has n = p + 1 elements. Using
the Weil pairing

E[n] × E[n] −→ µn

and the fact that µn = µp+1 is a subgroup of F∗
p2 , one can embed E(Fp) into the

multiplicative group F∗
p2 and use the more efficient algorithms in F∗

p2 to solve the
discrete logarithm problem. For several other special classes of elliptic curves algo-
rithms with complexity better than O(

√
q) are known. So the recommendation for

the application of elliptic curves in cryptography is to use “random” elliptic curves
(i.e. curves with random coefficients) in the hope that the special algorithms for the
discrete logarithm that have been found or may be found in the future do not apply
to them. As we have seen, to make the discrete logarithm problem difficult, the or-
der of the group should be a prime number or have at least a large prime factor. So
the problem arises of counting the number of points of the randomly chosen elliptic
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curves. If one has efficient algorithms for this purpose, one chooses random elliptic
curves and determines their order. If the order is not satisfactory, the curve is thrown
away and a new random curve is chosen, until a good one is found.

2.5 Counting the Number of Points. A straightforward way to determine the num-
ber of points of an elliptic curve E over the prime field Fp, (p an odd prime), given
by the equation

Y 2 = X3 + aX + b = P3(X)

is to use the Legendre symbol. For a given x ∈ Fp, the equation Y 2 = P3(x) has 2, 1
or 0 solutions in Fp if (P3(x)/p) equals +1, 0 or −1 respectively. Therefore, taking
into account also the point at infinity, it follows

#E(Fp) = 1 +
∑
x∈Fp

{
1 +

(
P3(x)

p

)}
= (p + 1)+

∑
x∈Fp

(
P3(x)

p

)
.

However, this method has complexity O(p) and can be used only for small primes
p (say up to 106).

A better method with complexity O( 4
√

q) is an adaption of Shanks’s baby
step/giant step algorithm. Let E be an elliptic curve over a finite field Fq . By the
theorem of Hasse, the order of E lies in the “Hasse interval”

H := {n ∈ N : |n − (q + 1)| ≤ 2
√

q}.
One chooses a random point P ∈ E(Fq) and determines by the BSGS algorithm an
integer N ∈ H such that N · P = O . Since H has 1 + 2!2

√
q" elements, this can

be done with about 2 4
√

q giant and baby steps. If N is the only element of the Hasse
intervall with N · P = O , this is the order of E(Fq). For orders up to 1024, this
method is effective in practice. But the elliptic curves used in cryptography are still
larger, so other methods are needed.

2.6 Schoof’s Algorithm. Recall that for an elliptic curve E defined over a finite field
Fq the Frobenius automorphism φ = φq : E → E satisfies a quadratic equation

φ2 − cφ + q = 0,

where the trace c is connected to the order N of the elliptic curve by

N = #E(Fq) = q + 1 − c.

The idea of Schoof is to calculate c� := c mod � for various small primes � by
restricting the Frobenius automorphism to the group of �-division points E[�] ⊂ E ,
which is invariant under φ. If the characteristic p of the field Fq is bigger than �, then

E[�] ∼= Z/�Z × Z/�Z = F2
�

is a 2-dimensional vector space over F� and the restriction φ | E[�], which we denote
again by φ, satisfies the characteristic equation
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φ2 − c�φ + q� = 0,

with q� = q mod �. The trace c� can be calculated by choosing a point P ∈ E[�]\{0}
and solving the equation

φ2(P)+ q�P = c�φ(P).

If c� is known for all � ∈ {�1, . . . , �r }, then by the Chinese remainder theorem we
can calculate c modulo L := ∏

�ν . If L is greater than the length 4
√

q of the Hasse
interval, c and therefore N = #E(Fq) is uniquely determined. Even if L < 4

√
q,

then there are at most �4
√

q/L possible values for N . Using an appropriate BSGS
method, one can then determine the correct value of N in about

√
4
√

q/L steps.
How can we find a point P ∈ E[�] \ {0} ? For odd �, the x-coordinates of

these points are the roots of the �-division polynomial  �(T ) ∈ Fq [T ], which is a
polynomial of degree (�2−1)/2 (because the �2−1 points of E[�]\{0} come in pairs
±P having the same x-coordinate), cf. Chap. 13.9. Using the recursion formulas, the
division polynomials can be easily calculated. In general, � neither has a zero in the
ground field Fq nor is it irreducible. Suppose we know an irreducible factor F(T ) of
degree r of the polynomial �(T ). Then the field K := Fq [T ]/(F(T )) is isomorphic
to Fqr and the element t := T mod F(T ) ∈ K is the x-coordinate of an �-division
point. If the element P3(t) is the square of an element s ∈ K , then (t, s) ∈ K 2

is an �-division point of the elliptic curve, otherwise one has to pass to a quadratic
extension of K . To avoid the case distinction it is convenient, instead of working
with the curve

E : Y 2 = X3 + aX + b =: P3(X),

to work with the twisted curve

Ẽ : P3(t)Y
2 = P3(X).

On this curve, (t, 1) is an �-division point. The points (ξ, η) on Ẽ correspond to
points (ξ,

√
P3(t)η) on E . Therefore the Frobenius automorphism φ : (x, y) →

(xq , yq) translates to (ξ, η) → (ξq , P3(t)(q−1)/2ηq) on Ẽ .
There exist standard algorithms to determine an irreducible factor F of  �; es-

sentially one has to calculate the greatest common divisor of T qr − T and  �(T )
for r = 1, 2, . . . . However these algorithms are too expensive compared with all
other operations, so it is better to leave  � unfactorized and work over the ring
R := Fq [T ]/( �(T )), which amounts to working simultaneously over all fields
Fq [T ]/(Fj (T )), where Fj are the irreducible factors of  �. Working with the ring
R instead of a field can cause only problems when inverses of elements ξ �= 0 have
to be calculated. The calculation of an inverse is done using the extended Euclidean
algorithm. If the inverse does not exist, one detects automatically a factor G of  �.
Hence this does not hurt but is rather useful because we can pass to the smaller ring
R′ = Fq [T ]/(G(T )).

The algorithm of Schoof we sketched so far was the first algorithm of polynomial
complexity for the point counting problem on elliptic curves. However it is still too
slow for the curves used in cryptography. Atkin, Elkies and others have contributed
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improvements, which make the algorithm practical. In the next section we will de-
scribe one such improvement.

2.7 Elkies Primes. As before let E be an elliptic curve defined over a finite field Fq

of characteristic p > 3, with trace c = (q + 1) − #E(Fq) and let � < p be a an
odd prime. Recall that the Frobenius automorphism restricted to the two dimensional
F�-vectorspace E[�] of �-division points of E satisfies the quadratic equation

φ2 − c�φ + q� = 0,

where c� = c mod � and q� = q mod �. Therefore the eigenvalues of φ
∣∣ E[�] are

λ1,2 = 1

2
(c� ±

√
c2
� − 4q�).

If c2
� − 4q� is a square in F�, which will be the case for about half of the primes �,

these eigenvalues belong to the field F�. Primes with this property are called Elkies
primes for the given elliptic curve. For such primes an eigenvector of φ spans a 1-
dimensional subspace C ⊂ E[�] invariant under the Frobenius automorphism. C is a
cyclic subgroup of E of order � defined over the ground field Fq , hence the isogeny
E → E/C is also defined over Fq . Furthermore

G(T ) :=
∏

P∈(C\0)/±1

(T − x(P)) ∈ Fq [T ]

is a factor of degree (�−1)/2 of the division polynomial �(T ). The important thing
about Elkies primes is that they can be determined without having to work explicitly
in E[�]. This is done using the modular polynomials ��(x, y) introduced in Chap.
11.9. These are polynomials of degree � + 1 with integer coefficients, hence they
can also be regarded as polynomials over Fq . If j (E) is the j-invariant of the elliptic
curve E then the zeroes of ��( j (E), y) are the j-invariants of curves E/C , where
C runs through the cyclic subgroups of E of order �. Therefore � is an Elkies prime
if and only if the polynomial ��( j (E), y) ∈ Fq [y] has a zero in Fq ; this can be
checked by computing the greatest common divisor of this polynomial and yq − y.
When a solution j ′ ∈ Fq of ��( j (E), j ′) = 0 has been found, there is also a pro-
cedure to calculate directly the factor G(T ) of the division polynomial  �(T ). With
this, a substantial gain in efficiency of Schoof’s point counting algorithm is achieved,
because for the elliptic curves used in cryptography primes � up to 100 or higher are
needed, so it makes a big difference whether one has to deal with polynomials of
degree (� − 1)/2 or (�2 − 1)/2. There exist still further improvements, for exam-
ple replacing the modular polynomials ��, whose coefficients grow rapidly with �,
by simpler polynomials. We refer to Blake/Seroussi/Smart and the references given
there. We have restricted our attention here to elliptic curves over finite fields with
large prime characteristic. For curves over fields of characteristic 2, other methods
exist.
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Appendix III: Elliptic Curves and Topological
Modular Forms

In LN 1326 [1988] we have some of the first studies into the subject of elliptic co-
homology, and this subject was considered further by Hirzebruch, Berger, and Jung
[1994]. The first steps in the theory centered around the characteristic classes de-
scribed by series arising either from classical elliptic functions as in Chapters 9 and
10 or classical modular function as in Chapter 11.

In his 1994 ICM address Michael Hopkins proposed the cohomology theory or
spectrum, denoted tmf, of topological modular forms [1994]. Since that time, the
concept has gone through a development with still many of the basic results unpub-
lished. Now the manuscript for the 2002 ICM talk of Hopkins is available, we can see
a theory which brings new methods to old problems in homotopy theory including
the description of the homotopy groups of spheres.

Topological modular forms start with the Weierstrass equation and its related
change of variable as considered in Chapter 3. The coefficients in the Weierstrass
equation become indeterminates in a polynomial algebra, and this polynomial al-
gebra is extended with new indeterminants corresponding to the coefficients in the
change of variables. These polynomial algebras are linked by a structure called a
Hopf algebroid. With this Hopf algebroid we can return and give a description of the
category of elliptic curves and their isomorphisms.

Associated with an elliptic curve is a formal group law, see Chapter 12, §7. For-
mal groups also control the multiplicative properties of the first Chern class in gener-
alized cohomology theories, and for the complex bordism theory MU Quillen proved
that the formal group was the universal one parameter formal group, see Quillen
[1969]. This led to the possibility of making generalized cohomology theories from
a given formal group.

Hopf algebroids were first studied by J. F. Adams LN 99 [1969] pp. 1–138. Hopf
algebroids consist of two algebras with connecting data such that one algebra corre-
sponds to the coefficients of the theory and the other to the stable cooperations in the
theory. If there is an Adams spectral sequence in the theory, then the E2-term should
be an Ext term over the operation algebra of the Hopf algebroid.

Hopf algebroids in a broader perspective are an example of a category object.
Categories as an organization of mathematical systems and their maps is a well es-
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tablished perspective in mathematics. The mathematicians differ on to what extent
the categorical framework should be made explicit, but almost everybody agrees that
it can be a useful way to look at certain phenomena.

Since Mumford’s study of Pic on the moduli of elliptic curves [1968], Quillen’s
work on algebraic K -theory [1972], and Adams’ work on generalized cohomology
theories [1969], people have studied categories as one studies groups, topological
spaces, or Hopf algebras. This led to such ideas as the category of small categories,
or more generally, the category Cat(C) of category objects in a category C. A spe-
cial case are groupoids, they are categories where all morphisms are isomorphisms.
This means that there is another concept of Grpoid(C) which denotes the category of
groupoids in the category C.

In the work of Mumford and further the work of Deligne and Mumford groupoids
were especially important. In the work of Adams we have the opposite concept of
a cocategory in the category of commutative algebras which is also called a Hopf
algebroid. Many of the considerations coming into the work of Mumford and Quillen
were already anticipated by Grothendieck.

The aim of this appendix is to reexamine the Weierstrass polynomial and its
change of variables introduced in Chapter 3, and to put the data into a Hopf algebroid.
This example becomes an algebraic motivation for the definition of Hopf algebroid.
We show how to describe the category of elliptic curves and isomorphisms and how
to determine the ring of modular forms in terms of the Weierstrass Hopf algebroid.

This Hopf algebroid plays a basic role in describing the new cohomology theory
tmf called topological modular forms. There is a spectral sequence with E0,∗

2 the
ring of modular forms, and it converges to π∗(tmf). Under the edge morphism to
E0,∗

2 the torsion in π∗(tmf) goes to zero and certain modular forms like  are not in
the image, but 24 is in the image. The edge morphism is a rational isomorphism.
Since the polynomials in coefficients of the Weierstrass equation generate the ring of
modular forms, we see the motivation for the term topological modular forms as a
name for the cohomology theory.

With this discussion the reader has some background for the study of all of these
new developments in homotopy theory related to topological modular forms.

This appendix is an elementary introduction to the bridge between elliptic curves
as defined in Chapter 3 by Weierstrass equations with changes of variable and the
Hopf algebroid picture used in studying cohomology theories. We begin with a dis-
cussion of categories and groupoids in a cateory and then consider the concept of
Hopf algebroid which is a cogroupoid in the category of commutative algebras. This
elementary material is included so to fix notation and the basic definitions. Then the
Weierstrass Hopf algebroid is introduced, and its relation to isomorphism classes of
elliptic curves is considered. The Weierstrass Hopf algebroid is used to compute the
homotopy of the spectrum topological modular forms, denoted tmf. The construc-
tions of tmf is still work in progress at this time.

Apart from a general sketch of ideas and suitable references to the literature, any
real development of this theory would be beyond the scope of this appendix.
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I wish to thank Tilman Bauer, Michael Joachim, and Stefan Schwede for the help
and encouragement in preparing this appendix.

§1. Categories in a Category
We begin by a short introduction to the concept of category object and consider the
axiomatic framework of categories in a category.

(1.1) Small Categories as Pairs of Sets. Let C be a small category which means
that the class of objects C(0) is a set. Form the set C(1) equal to the disjoint union of
all Hom(X, Y ) for X, Y ∈ C(0). These two sets are connected by several functions.
Firstly, we have the domain (left) and range (right) functions l, r : C(1) → C(0)
defined by the requirement that

l(Hom(X, Y )) = {X} and r(Hom(X, Y )) = {Y }

on the disjoint union. For f ∈ C(1) we have f : l( f ) → r( f ) is a notation for the
morphism f in C.

Secondly, we have an identity morphism for each object of C which is a function
e : C(0)→ C(1) having the property that le and re is the identity on C(0).

Thirdly, we have composition g f of the two morphisms f and g, but only
in the case where r( f ) = l(g). Hence composition is not defined in general
on the entire product C(1) × C(1), but it is defined on all subsets of the form
Hom(X, Y ) × Hom(Y, Z) ⊂ C(1) × C(1). This subset is called the fibre product
of r : C(1)→ C(0) and l : C(1)→ C(0) consisting of pairs ( f, g) ∈ C(1)× C(1)
where r( f ) = l(g). The fiber product is denoted C(1) ×

rC(0)l
C(1) with two projec-

tions r, l : C(1) ×
rC(0)l

C(1)→ C(0) defined by

l( f, g) = l( f ) and r( f, g) = r(g).

Then composition is defined m : C(1) ×
rC(0)l

C(1) → C(1) satisfying lm( f, g) =
l( f, g) = l( f ) and rm( f, g) = r( f, g) = r(g). Now the reader can supply the unit
and associativity axioms.

Fourthly, the notion of opposite category Cop where f : X → Y in C be-
comes f op : Y → X in Cop and (g f )op = f opgop can be described as Cop =
(C(0),C(1), e, lop = r, rop = l,mop = mτ ) where τ is the flip in the fibre product
τ : C(1) ×

rC(0)l
C(1)→ C(1) ×

lC(0)r
C(1).

(1.2) Definition. Let C be a category with fibre products. A category object C(∗)
in C is a sextuple (C(0),C(1), l, r, e,m) consisting two objects C(0) and C(1) and
four morphisms

(1) l, r : C(1)→ C(0) called domain (left) and range (right),
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(2) e : C(0)→ C(1) a unit morphism, and
(3) m : C(1) ×

rC(0)l
C(1) → C(1) called multiplication or composition satisfying

the following axioms:

(Cat 1) The compositions le and re are the identities C(0).
(Cat 2) Domain and range are compatible with multiplication.

C(1) ×
rC(0)l

C(1)
m−−−−→ C(1)

pr1

⏐⏐� ⏐⏐�l

C(1)
l−−−−→ C(0)

C(1) ×
rC(0)l

C(1)
m−−−−→ C(1)

pr2

⏐⏐� ⏐⏐�r

C(1)
r−−−−→ C(0)

(Cat 3) (associativity) The following diagram is commutative

C(1) ×
rC(0)l

C(1) ×
rC(0)l

C(1)
m×C(1)−−−−→ C(1) ×

rC(0)l
C(1)

C(1)×m

⏐⏐� ⏐⏐�m

C(1) ×
rC(0)l

C(1)
m−−−−→ C(1)

(Cat 4) (unit property of e) m(C(1), er) and m(el,C(1)) are each the identities
on C(1).

(1.3) Definition. A morphism u(∗) : C ′(∗) → C ′′(∗) from the category object
C ′(∗) in C to the category object C ′′(∗) in C is a pair of morphisms u(0) : C ′(0) →
C ′′(0) and u(1) : C ′(1) → C ′′(1) commuting with the four structure morphisms of
C ′(∗) and C ′′(∗). The following diagrams are commutative

C ′(0) e′−−−−→ C ′(1)

u(0)

⏐⏐� ⏐⏐�u(1)

C ′′(0) e′′−−−−→ C ′′(1)

C ′(1) l′−−−−→ C ′(0)

u(0)

⏐⏐� ⏐⏐�u(0)

C ′′(1) l′′−−−−→ C ′′(0)

C ′(1) r′−−−−→ C ′(0)

u(1)

⏐⏐� ⏐⏐�u(0)

C ′′(1) r′′−−−−→ C ′′(0)

and

C ′(1) ×
rC ′(0)l

C ′(1) m′
−−−−→ C ′(1)

u(1) ×
u(0)

u(1)
⏐⏐� ⏐⏐�u(1)

C ′′(1) ×
rC ′′(0)l

C ′′(1) m′′
−−−−→ C ′′(1).

(1.4) Example. A category C(∗) in the category of sets (set) is a small category as
in (1.1).
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(1.5) Example. A category object C(∗) with C(0) the final object in C is just a
monoidal object C(1) in the category C.

(1.6) Example. The pair of morphisms consisting of the identities u(0) = C(0) and
u(1) = C(1) is a morphism u(∗) : C(∗) → C(∗) of a category object called the
identity morphism on C(∗). If u(∗) : C ′(∗)→ C ′′(∗) and v(∗) : C ′′(∗)→ C(∗) are
two morphisms of category objects in C, then (vu)(∗) : C ′(∗) → C(∗) defined by
(vu)(0) = v(0)u(0) and (vu)(1) = v(1)u(1) is a morphism of category objects in C.

(1.7) Definition. With the identity morphisms and the composition of morphisms in
(1.5) we see that the category objects and the morphisms of category objects form
a category called cat(C). There is a full subategory mon(C) of cat(C) consisting of
those categories C(∗) where C(∗) is the final object in C. This is the category of
monoids over the category C.

(1.8) Remark. The category cat(set) of category objects over the category of sets is
the just the category of small categories where morphisms of categories are functors
between the categories and composition is composition of functors. Also mon(set) is
just the category of monoids. There is an additional structure of equivalence between
morphisms as natural transform of functors, and this leads to the notion of 2-category
which we will not go into here.

§2. Groupoids in a Category
In the case of a groupoid where each f is an isomorphism with inverse i( f ) = f −1,
this formula defines a map i : C(1) → C(1) with domain and range interchanged
r(i( f )) = il( f ) and l(i( f )) = r( f ). There is also the inverse property m( f, i( f )) =
e(l( f )) and m(i( f ), f ) = e(r( f )). In the next sections we have the axioms.

(2.1) Definition. Let C be a category with fibre products. A groupoid G(∗) in C is
a septuple (G(0),G(1), l, r, e,m, i) where the sextuple (G(0),G(1), l, r, e,m) is a
category object and inverse morphism i : G(1) → G(1) satisfying in addition to
axioms (cat1)–(cat4) the following axioms:

(grpoid1) The following compositions hold li = r and ri = l.

(grpoid2) The following commutative diagrams give the inverse property

of i : G(1)→ G(1)

G(1)
(G(1),i)−−−−→ G(1) ×

rG(0)l
G(1)

l

⏐⏐� ⏐⏐�m

G(0)
e−−−−→ G(1)

G(1)
(i,G(1))−−−−→ G(1) ×

rG(0)l
G(1)

r

⏐⏐� ⏐⏐�m

G(0)
e−−−−→ G(1).

Here the same symbol is used for an object and the identity on an object.
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(2.2) Example. In the category of sets a category object G(∗) is a groupoid when
every morphism u ∈ G(1), which is defined u : l(u) → r(u), is an isomorphism,
and in this case the morphism i is the inverse given by i(u) = u−1 : r(1)→ l(u).

(2.3) Remark. If i′ and ′′ are two groupoid structures on a category (C(0),C(1), l,
r, e,m) then i′ = i′′. To see this, we calculate as with groups using the associative
law

i′(u) = m(i′(u),m(u, i′′(u))) = m(m(i′(u), u), i′′(u)) = i′′(u).

This means that a groupoid is not a category with an additional structure, but a cat-
egory satisfying an axiom, namely i exists. Also we have ii = G(1), the identity on
G(1) by the same argument.

In general we can think of groupoids as categories where every morphism is
an isomorphism, and the process of associating to an isomorphism its inverse is an
isomorphism of the category to its opposite category which is an involution when the
double opposite is identified with the original category.

(2.4) Example. A groupoid G(∗) with G(0) the final object in C is just a group
object in the category C.

(2.5) Definition. A morphism u(∗) : G ′(∗) → G ′′(∗) of groupoids in C is a mor-
phism of categories in C.

(2.6) Remark. A morphism of groupoids has the additional groperty that i′′u(1) =
u(1)i′. This is seen as with groups from the relation m′′(i′′u(1), u(1)) = l′′e′′ =
m′′(u(1)i′, u(1)). We derive (2.3) by applying this to the identity functor.

(2.7) Definition. Let grpoid(C) denote the full subcategory of cat(C) determined by
the groupoids.

There is a full subcategory grp(C) of grpoid(C) consisting of those groupoids
G(∗) where G(0) is the final object in C. This is the category of groups over the
category C.

The category grpoid(set) of groupoids over the category of sets is the just the
category of small categories with the property that all morphisms are isomorphisms.
Also grp(set) is just the category of groups (grp) of sets.

(2.8) Example. Let G be a group object in a category C with fibre products. An
action of G on an object X of C is a morphism α : G × X → X satisfy two axioms
given by commutative diagrams

(1) (associativity)

G × G × X
G×α−−−−→ G × X

µ×X

⏐⏐� ⏐⏐�α
G × X

α−−−−→ X

where µ : G × G → G is the product on the group object G, and
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(2) (unit)

X = {∗} × X
e×X−−−−→ G × X

α

⏐⏐�
X.

(2.9) Remark. The related groupoid X〈G〉(∗) is defined by X〈G〉(0) = X and
X〈G〉(1) = G × X with structure morphisms

e = eG × X : X〈G〉(0)→ X〈G〉(1) = G × X,

l = pr2 : X〈G〉(1) = G × X → X = X〈G〉(0) and

r = α : X〈G〉(1)→ X = X〈G〉(0).

For the composition we need the natural isomorphism

θ : X〈G〉(1) ×
rX (G)(0)l

X〈G〉(1)→ G × G × X

given by pr1θ = prG pr1, pr2θ = pG pr2, and pr3θ = pX pr1. Then composition
m is defined by the following commutative diagram

X〈G〉(1) ×
rX (G)(0)l

X〈G〉(1) θ−−−−→ G × G × X

m

⏐⏐� ⏐⏐�µ×X

X〈G〉(1) ←−−→ G × X.

The unit and associativity properties of m come from the unit and associativity prop-
erties of µ : G × G → G.

(2.10) Definition. With the above notation X〈G〉(∗) is the groupoid associated to
the G-action on the object X in C. It is also called the translation category.

§3. Cocategories over Commutative Algebras: Hopf Algebroids
(3.1) Notation. Let (c\alg/R) be the category of commutative algebras over a com-
mutative ring R. The coproduct in this category is the tensor product over R and the
initial object is R. Let g : A → A′ and f : A → A′′ be two morphisms in (c\alg/R).

The cofibre coproduct in the category (c\alg/R) is A′ q ′
−→ A′ ⊗A A′′ q ′′

←− A′′ where
q ′(x ′) = x ′ ⊗1 and q ′′(x ′′) = 1⊗ x ′′. The tensor product over A defining the cofibre
coproduct is formed with the right A-module structure x ′a = x ′g(a) and the left
A-module structure ax ′′ = f (a)x ′′ for a ∈ A, x ′ ∈ A′, and x ′′ ∈ A′′.



432 Appendix III: Elliptic Curves and Topological Modular Forms

(3.2) Definition. A cocategory object in this category (C alg R) is a sextuple
(A, �, ηL , ηH , ε,) such that the sextuple (A, �, ηop

L , η
op
R , ε

op,op) is a category
object in the dual category (C alg R).op

In particular the category axioms (Cat1)–(Cat4) will correspond to commutative
diagrams of commutative algebras.

(3.3) Remark. In particular the objects A and � in the cocategory object (A, �, ηL ,

ηH , ε,) are commutative algebras over R. The first two structure morphisms
ηL , ηR : A → � define a left and right A-module structure on� by xa = xηR(a) and
ax = ηL(a)x in � for a ∈ A and x ∈ �. The third structure morphism ε : � → A
satisfies the augmentation relation εL(a) = a and εR(a) = a for a ∈ A. In particular
the following diagram is commutative

A
ηL−−−−→ �

ηR←−−−− A⏐⏐�ε
A

where the diagonal morphisms are identities. This is the dual to (Cat1).

The cocategory cocomposition, called the comultiplication on �, :�→�⊗A�

is a morphism of A-bimodules. Using the morphisms �
q ′
−→ � ⊗A �

q ′′
←− �, we see

that the composites q ′ηL : A → � ⊗A � and q ′′ηR : A → � ⊗A � define left and
right A-module structures on � ⊗A �.

In terms of elements z ∈ � we can write (z) = ∑
i z′i ⊗ z′′i and for a ∈ A the

left and right linearity has the form

(az) = a(z)
∑

i

(az′i )⊗ z′′i and (za) = (z)a =
∑

i

z′i ⊗ (z′′i a).

The opposite to (Cat3) is the associativity of comultiplication which satisfies the
following commutative diagram

�
−−−−→ � ⊗A �



⏐⏐� ⏐⏐�⊗�

� ⊗A �
�⊗−−−−→ � ⊗A � ⊗A �

The dual to (Cat4) is counit, called the counit ε of the Hopf algebroid which
satisfies the following commutative diagram

�⏐⏐�
A ⊗A � ←−−−−

ε⊗A�
� ⊗A � −−−−→

�⊗Aε
� ⊗A A
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where diagonal morphisms are natural isomorphisms. A cocategory (A, �) is a
cogroupoid provided there is a fifth structure morphism c : � → � satisfying the
additional commutative diagrams

(4)

� ⊗A �
c⊗�−−−−→ � ⊗A �



4⏐⏐ ⏐⏐�φ(�)
�

εηL−−−−→ �

� ⊗A �
�⊗c−−−−→ � ⊗A �



4⏐⏐ ⏐⏐�φ(�)
�

εηR−−−−→ �.

Another name for such a cocategory or cogroupoid object (A, �) is Hopf alge-
broid. We also speak of � as a Hopf algebroid over A. Usually we would require that
� is flat over A in order that the categories of comodules are abelian.

(3.4) Remark. We have defined a cocategory object in the category (c\alg/R),
however the same definition applies in any category C with finite colimits, in par-
ticular, an initial object is used and the cofibre coproduct construction.

A single cocategory object in a category C produce a category for each object in
C.

(3.5) Remark. Let (A, �) be a cocategory object in a category C, and let Z be any
object in C. Then the cocategory object defines a category (in the category of sets)
with objects HomC(A, Z) and morphism set HomC(�, Z).

(1) The function assigning to each object its identity is

e = HomC(ε, Z) : HomC(A, Z)→ HomC(�, Z).

(2) The domain and range morphisms are given by

l = HomC(ηL , Z) : HomC(�, Z)→ HomC(A, Z) and

r = HomC(ηR, Z) : HomC(�, Z)→ HomC(A, Z).

(3) composition morphism in the category corresponding to the object Z on the
morphism sets HomC(�, Z) is the inverse of the following isomorphism used to
define the cofibre coproduct

HomC(�, A) ×
rHomC(A,Z)l

HomC(�, Z)← HomC(� ⊗A �, A),

and the morphism HomC(, Z) : HomC(� ⊗A �, Z) → HomC(�, Z) induced
by .
In the case where (A, �) is a cogroupoid with additional structure morphism
c : � → � the resulting category with morphisms HomC(�, Z) is a groupoid
with the inverse map

i : HomC(�, Z)→ HomC(�, Z)

given by i( f ) = f c.



434 Appendix III: Elliptic Curves and Topological Modular Forms

(4) The above construction defines a functor C → (Grpoid) where for a morphism
Z ′ → Z ′′ composition on the left induces a morphism between groupoids.

The main example of these ideas will be the category of Weierstrass equations
and their transformations which leads to the category of elliptic curves over a field
k. This is discussed in the next sections.

§4. The CategoryWT(R) and the Weierstrass Hopf Algebroid
We consider a category W T (R) for each commutative ring R whose objects are
Weierstrass polynomials and morphisms are triangular changes of variables over the
ring R. The relation to elliptic curves is explained in 3(2.3)–3(2.7) where a Weier-
strass polynomial is called a cubic in normal form.

(4.1) Definition. Let R be a commutative ring. The objects of the category W T (R)
are polynomials F(a)(x, y) in R[x, y] of the form

F(a)(x, y) = y2 + a1xy + a3 y − x3 − a2x2 − a4x − a6

where (a) = (a1, a2, a3, a4, a6) ∈ R5.
The morphisms φr,s,t,v : F(a′) → F(a) are given by r, s, t ∈ R and v ∈ R∗

where the follow relation is satisfied

F(a′)(x ′, y′) = F(a)(v2x ′ + r, v3 y′ + v2sx ′ + t).

This is the triangular change of variable morphism where

x = v2x ′ + r and y = v3 y′ + v2sx ′ + t

so that F(a′)(x ′, y′) = F(a)(x, y) is the previous condition. Composition is given
by substitution of these variables.

(4.2) Remark. We can describe composition of two morphisms φr,s,t,v : F(a′) →
F(a) and φr ′,s′,t ′,v′ : F(a′′)→ F(a′) explicitly. It is given by a substitution within a
substitution which has the same triangular change of variable morphism

φr ′′,s′′,t ′′,v′′ = φr,s,t,v φr ′,s′,t ′,v′ : F(a′′)→ F(a)

To derive the rule of composition, we consider a substitution within a substitution
starting with the following two expressions

F(a′)(x ′, y′) = F(a)(v2x ′ + r, v3 y′ + v2sx ′ + t) = F(a)(x, y),

and

F(a′′)(x ′′, y′′) = F(a)(v
′2x ′′ + r ′, v

′3 y′′ + v′2s′x ′′ + t ′).
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Substituting, we have

x = v2x ′ + r = v2(v
′2x ′′ + r ′)+ r = (vv′)2x ′′ + (v2r ′ + r),

and

y = v3 y′ + v2sx ′ + t = v3(v
′3 y′′ + v′2s′x ′′ + t ′)+ v2s(v

′2x ′′ + r ′)+ t

= (vv′)3 y′′ + (v3v
′2s′ + (vv′)2s)x ′′ + (v3t ′ + v2sr ′ + t).

If we introduce the following three by three matrix

M(φr,s,t,v) =
⎛⎝1 r t

0 v2 v2s
0 0 v3

⎞⎠
with variables r, s, t, v ∈ R, then the substitution rule takes the form of the following
matrix identity⎛⎝1 r ′ t ′

0 v′ 2 s′v′ 2

0 0 v′ 3

⎞⎠⎛⎝1 r t
0 v2 sv2

0 0 v3

⎞⎠ =
⎛⎝1 r ′v2 + r t ′v3 + r ′sv2 + t

0 (vv′)2 s′′(vv′)2
0 0 (vv′)3

⎞⎠ .
where v′′ = v′v and three other relations

r ′′ = v2r ′ + r, v′′ 2s′′ = v3v′ 2s′ + (vv′)2s, and t ′′ = v3t ′ + v2sr ′ + t.

Here the matrix multiplication is in the opposite order from composition, but with
the transpose matrices we have a matrix formula for composition

Mtr (φr,s,t,v)M
tr (φr ′,s′,t ′,v′) = Mtr (φr ′′,s′′,t ′′).

Also the relation between the variables x, y and x ′, y′ can be expressed by the matrix
multiplication formula

(1, x, y) = (1, x ′, y′)M(φr,s,t,v) = (1, x ′, y′)

⎛⎝1 r t
0 v2 v2s
0 0 v3

⎞⎠ .
For v = v′ = 1 the transpose matrices satisfy the multiplicative relation in the
opposite order ⎛⎝ 1 0 0

r ′′ 1 0
t ′′ s′′ 1

⎞⎠ =
⎛⎝1 0 0

r 1 0
t s 1

⎞⎠⎛⎝1 0 0
r ′ 1 0
t ′ s′ 1

⎞⎠ .
(4.3) Remark. If there is a morphism φr,s,t,v : F(a′)→ F(a), then we can express
the constants a′

i in terms of the constants ai and r, s, t, v. For this we begin with the
relation
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F(a′)(x ′, y′) = F(a)(x, y) = F(a)(v2x ′ + r, v3 y′ + v2sx ′ + t)

= (v3 y′ + v2sx ′ + t)2 + a1(v
3 y′ + v2sx ′ + t)(v2x ′ + r)

+ a3(v
3 y′ + v2sx ′ + t)− (v2x ′ + r)3 − a2(v

2x ′ + r)2

− a4(v
2x ′ + r)− a6.

= v6(y′)2 + v5(a1 + 2s)x ′y′ + v3(a3 + a1r + 2t)y′ − v6(x ′)3

− v4(a2 + 3r − s2 − a1s)(x ′)2

− v2(a4 + 2ra2 + 3r2 − sa3 − a1(rs + t)− 2st)x ′

− (a6 + a4r + a2r2 + r3 − a3t − a1r t − t2).

Thus we can write vi a′
i = ai + δi (r, s, t, v) where δi (r, s, t, v) is a polynomial

over the integers in all a j with j < i . We have the relations where the polynomials
δi = δi (r, s, t, 1) are explicitly given by

a′
1 = a1 + 2s thus δ1 = 2s

a′
2 = a2 − a1s + 3r − s2 thus δ2 = −a1s + 3r − s2

a′
3 = a3 + a1r + 2t thus δ3 = a1r + 2t

a′
4 = a4 + 2a2r − a1(rs + t)− a3s + 3r2 − 2st

thus δ4 = 2a2r − a1(rs + t)− a3s + 3r2 − 2st

a′
6 = a6 + a4r + a2r2 + r3 − a3t − a1r t − t2

thus δ6 = a4r + a2r2 + r3 − a3t − a1r t − t2.

Given a cubic F(a)(x, y) and a four tuple (r, s, t, v) ∈ T 3 × R∗ there exists a unique
cubic F(a′)(x, y) with the morphism

φr,s,t,v : F(a′)→ F(a).

This means that the groupoid W T (R) is of the form of group object G(R) acting on
the set of W P(R) of Weierstrass polynomials over R by substitution, or as in (2.9)
we have W T (R) = W P(R)〈G(R)〉.
(4.4) Remark. Let w : R′ → R′′ be a morphism of commutative rings. There is an
associated functor W T (w) : W T (R′)→ W T (R′′) given by W T (w)(F(a)(x, y)) =
F(w(a))(x, y) and

W T (w)(φr,s,t,v) = φw(r),w(s),w(t),w(v).
For a second morphism v : R′′ → R of rings we have the composition of functors
W T (v)W T (w) = W R(vw).

We have constructed a functor from commutative rings to the category of small
categories, and now we show that it is representable by a Hopf algebroid, that is, a
cocategory in the category of commutative rings.
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(4.5) Definition. The Weierstrass Hopf algebroid with

A = Z[α1, α2, α3, α4, α6] and � = A[ρ, σ, τ, λ, λ−1].

The unit ε : � → A is defined by giving the values on generators ε(ρ) = 0, ε(σ ) =
0, ε(τ ) = 0, and ε(λ) = 1. The coaugmentation ηR is the natural inclusion A →
� of rings, and ηL is given by ηL(αi ) = λiαi + δi (ρ, σ, τ, λ). We return to the
comultiplication in section (4.8).

(4.6) Remark. A morphism in W T (R) is a ring morphism f : � → R assigning
to the variables ρ, σ, τ, λ the values r, s, t, v which determine a change of variable
morphism in W T (R)

φ f = φr,s,t,v : F( f ηL(α))→ F( f ηR(α)).

Also the identity morphisms correspond to ε : � → A where a morphism of rings
g : A → R determines an object F(g(α)) in W T (R) and the identity morphism on
this object F(g(α)), that is,

φgε(ρ),gε(σ ),gε(τ ),gε(λ) : F(g(α))→ F(g(α)).

(4.7) Remark. For the comultiplication on � we begin by noting that ηL , ηR : A →
� define a left and right A-module structure making � into a bimodule by the rela-
tions

ax = ηL(a)x and xa = xηR(s) for a ∈ A and x ∈ �.
Then the tensor product �⊗A � is defined with respect to the right module structure
on the first factor and the left module structure on the second, so that x ′a ⊗ x ′′ =
x ′ ⊗ ax ′′. It is an A-bimodule with the relations

a(x ′ ⊗ x ′′) = (ax ′)⊗ x ′′ and (x ′ ⊗ x ′′)a = x ′ ⊗ (x ′′a)
for a ∈ A and x ′, x ′′ ∈ �.

In addition we have the bimodule linearity of  expressed as follows. For (z) =∑
i z′i ⊗ z′′i and a scalar a ∈ A we have

(az) =
∑

i

(ax ′
i )⊗ z′′i and (za) =

∑
i

z′i ⊗ (z′′i a).

The comultiplication structure morphism : � → � ⊗A �, which we are about
to define, is an algebra morphism besides being an A-bimodule morphism. To see
how to define the comultiplication, we consider two morphisms f ′, f : � → R with
f ′ηR = f ηL . We expect that f and f ′ will define two morphisms in the category
W T (R)

φ f ′ : F( f ′ηL(α))→ F( f ′ηR(α)) and φ f : F( f ηL(α))→ F( f ηR(α))

which compose to φ f φ f ′ : F( f ′ηL(α)) → F( f ηR(α)), that is, we require the
comultiplication  : � → � ⊗A � give the relation

φ f φ f ′ = φ( f ′⊗ f )



438 Appendix III: Elliptic Curves and Topological Modular Forms

(4.8) Definition. The comultiplication : � → �⊗A � on generators of � over A
is given by

(λ) = λ⊗ λ (ρ) = ρ ⊗ λ2 + 1 ⊗ ρ,
(σ) = σ ⊗ λ+ 1 ⊗ σ (τ) = τ ⊗ λ3 + ρ ⊗ σλ2 + 1 ⊗ τ.

(4.9) Remark. It is easy to see that the relation v′′ = v′v translates into the relation
(λ) = λ× λ. From the matrix identity where v′′ = v′v⎛⎝1 r ′ t ′

0 v′ 2 s′v′ 2

0 0 v′ 3

⎞⎠⎛⎝1 r t
0 v2 sv2

0 0 v3

⎞⎠ =
⎛⎝1 r + r ′v2 t ′v3 + r ′sv2 + t

0 v′′ 2 s′′v′′ 2

0 0 v′′ 3

⎞⎠
we have three other relations

r ′′ = v2r ′ + r, v′′ 2s′′ = v3v′ 2s′ + (vv′)2s, and t ′′ = v3t ′ + v2sr ′ + t.

The matrix

M(φr,s,t,v) =
⎛⎝1 r t

0 v2 v2s
0 0 v3

⎞⎠
has an inverse given by the formula

M(φr,s,t,v)
−1 =

⎛⎝1 −rv−2 rsv−3 − v−3t
0 v−2 −v−3s
0 0 v−3

⎞⎠ .
In particular each morphism φr,s,t,v is an isomorphism. The process of carrying
a morphism to its inverse is represented in � by a morphism I : � → � with
IηL = ηR, IηR = ηL corresponding to interchanging the domain and range. For the
isomorphism inverse properties of I we use the algebra structure φ(�) : �⊗A� → �

given by φ(�)(z′ ⊗ z′′) = z′z′′. The inverse properties become the formulas
φ(�)(� ⊗ I ) = εηL and φ(�)(I ⊗ �) = εηR . On the generators of � over
A we have the formulas

I (λ) = λ−1, I (ρ) = −ρλ−2, I (σ ) = −σλ−1,

I (τ ) = ρσλ−3 − τλ−3.

(4.10) Assertion. The functor W T from the category of commutative rings to
groupoids is represented by the Weierstrass Hopf algebroid (A, �) defined above
in (4.5) and (4.8).

§5. Morphisms of Hopf Algebroids: Modular Forms
Additional properties of the Weierstrass Hopf algebroid result by studying mor-
phisms, especially localizations of cocategories. We begin with some generalities
on morphisms of Hopf algebroids.
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(5.1) Definition. A morphism of cocategories over a category C is just a functor
(A, �) → (B,�) between the category objects in the opposite category Cop. In
particular there are two morphisms f : A → B and g : � → � in C satisfying
various commutativity relations.

(5.2) Remark. A morphism ( f, g) : (A, �) → (B,�) of Hopf algebroids is a pair
of morphisms which satisfy the following commutative diagrams

A
ηL−−−−→ �,⏐⏐� f

⏐⏐�g

B
ηL−−−−→ �,

A
ηR−−−−→ �,⏐⏐� f

⏐⏐�g

B
ηR−−−−→ �,

�
ε−−−−→ A,⏐⏐�g

⏐⏐� f

�
ε−−−−→ B,

�
−−−−→ � ⊗A �,⏐⏐�g

⏐⏐�g⊗g

�
−−−−→ �⊗B �,

�
c−−−−→ �,⏐⏐�g

⏐⏐�g

�
c−−−−→ �.

If ( f, g) : (A, �) → (B,�) and ( f ′, g′) : (B,�) → (C, �) are morphism of
Hopf algebroids, then the composite ( f ′ f, g′g) : (A, �) → (C, �) is a morphism
of Hopf algebroids. In particular we have a category where the objects are Hopf
algebroids and the morphisms are defined in this section. We denote this category
by (h/a/oid). There is a subcategory (h/a/oid)/A of Hopf algebroids with fixed
algebra A and identity morphism on A. In this category the Hopf algebroid (A, A)
with all structure morphisms equal to the identity is the final object.

(5.3) Remark. Let ( f, g) : (A, �) → (B,�) be a morphism of Hopf algebroids.
For each algebra E the induced morphisms

f ∗ : Hom(c\rg)(B, E)→ Hom(c\rg)(A, E),

g∗ : Hom(c\rg)(�, E)→ Hom(c\rg)(�, E)

define a functor ( f ∗, g∗)

(Hom(c\rg)(B, E),Hom(c\rg)(�, E))→ (Hom(c\rg)(A, E),Hom(c\rg)(�, E)).

Here (c\rg) denotes the category of commutative rings.
If a group G acts on a set or module M , then we have H0(G,M) the set or

module of fixed elements x ∈ M , that is, sx = x for all s ∈ G. There is a notion
of fixed elements H0(�,M) for a coaction of � on a comodule M , and then these
elements are called primitive elements.

(5.4) Remark. The Weierstrass Hopf algebroid (W T0,W R1) or simply (A, �) is
A = Z[α1, α2, α3, α4, α6] and � = A[ρ, σ, τ, λ, λ−1]. There is the algebraic group
W G with affine coordinate ring

K [W G] = k[ρ, σ, τ, λ, λ−1].
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The coordinate ring Z [W G] of this algebraic group and A can be used to construct
�. As a groupoid we apply the construction in (2.9) to obtain W T1 = W R0(〈W G〉)
functorially in R.

There is another basic construction associated with the Weierstrass groupoid
which plays a role in the homotopic picture, namely modular forms. For this we
use the next definition.

(5.5) Definition. The ring of multidifferential forms over the curve C with Weier-
strass equation is a graded algebra A. over A where A0 = A,

A2n = H0(C, (�1
C/A)

n⊗),

and A2n+1 = 0.

(5.6) Remark. If ω = dx/(2y + a1x + a3) ∈ A2 is the invariant differential, then
the graded ring is A· = A[ω±1]. The A-module A2 is free of rank 1, and is also the
module of sections of the line bundle L = H0(OC ((−1)0)/OC ((−2)0)) isomorphic
to p∗(�1

C ) on Spec(A). Here p : C → Spec(A) is the structure morphism of C over
Spec(A), and 0 : Spec(A)→ C is the section at infinity (0:0:1).

(5.7) Definition. The algebraic group W G of substitutions in the Weierstrass equa-
tions acts on A., and the fixed subring under W G is H0(W G, A·) the ring of modular
forms.

For the structure of this ring we return to the article of Tate on formulas in the
theory of elliptic curves in LN 476. There is a version over the integers and in char-
acteristics 2 and 3. It is in characteristics 2 and 3 where the relation to homotopy
theory will be the most important.

In order to describe the ring of modular forms, we introduce the following nota-
tion from Tate LN 476 in terms of ai instead of the indeterminants αi .

(5.8) Notation. In terms of the Weierstrass coefficients ai (instead of the indetermi-
nants αi ) we have from 3(3.1)

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a2

3 − a2
4

and from 3(3.3)

c4 = b2
2 − 24b4 and c6 = −b3

2 + 36b2b4 − 216b6

 = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 and j = c3

4/.

(5.9) Rings of Modular Forms. The ring of modular forms is

M∗ = H0(W G, A·) = Z[c4, c6,]/(c3
4 − c2

6 − 123)

over the integers, and M∗[1/6] = Z[1/6][c4, c6].
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In characteristic 2 the ring of modular forms is F2[a1,] where c4 = a4
1 and

c6 = a6
1 .

In characteristic 3 the ring of modular forms is F3[b2,] where c4 = b2
2 and

c6 = −b3
2.

(5.10) Remark. The higher derived functors Hi (W G, A·) were apparently of little
interest in arithmetic. In December 1996, during a conversation, Michael Hopkins
expressed an interest in these derived functors, and in fact they became relevant in
the context of topological modular forms as we will report in §7.

§6. The Role of the Formal Group in the Relation Between
Elliptic Curves and General Cohomology Theory

Recall from 12(7.3) that a formal group law over a ring R is an element F(X, Y ) ∈
R[[X, Y ]] satisfying the three conditions:

F(X, 0) = F(0, X) = X, F(X, F(Y, Z)) = F(F(X, Y ), Z),

F(X, Y ) = F(Y, X),

the formal unit, associativity, and commutativity. These one parameter commutative
formal group laws F(X, Y ) arise in both the theory of elliptic curves, as explained
in Chapter 12, §7, and in general multiplicative cohomology theories from the work
of Quillen [1969] as elaborated by Adams [1974].

(6.1) Remark. For elliptic curves in Weierstrass form over k we consider functions
x and y with poles of order 2 and 3, respectively, at the origin. Then the function
t = −(x/y) has a zero of order 1 and can be used as a local parameter at the origin.
The group law on the elliptic curve E has an expansion t3 = FE (t1, t2) in terms of
the formal group fE of E over k, see 12(7.2).

(6.2) Remark. A spectrum is given by a positive sequence En of pointed spaces
together with maps εn : SEn → En+1 where SEn denotes the suspension of En .
The morphisms between spectra are certain sequences of maps, see Adams [1974].
A ring spectrum has an additional structure of pairing maps Em∧En → Em+n where
X ∧ Y = X × Y/X ∨ Y is called the smash product. Here X ∨ Y is the one-point
union.

(6.3) Definition. The homology theory E∗ associated with a spectrum (En, εn) is
defined on a pair of spaces by

Eq(X, A) = lim−→ m∗ [Sm+q , (X/A) ∧ Em] = π S
q ((X/A) ∧ E∗),

and the cohomology theory E∗ associated with a spectrum (En, εn) is defined on
pairs of finite CW -complexes

Eq(X, A) = lim−→ m[Sm−q(X/A), Em].
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(6.4) Remark. In the case that the adjoint maps δn : En → �En+1 to εn :
SEn → En+1 are homotopy equivalences, as is the case for K -theory by Bott
periodicity, then cohomology is just homotopy classes of map between spaces
Eq(X, A) = [(X/A), Eq ] for q ≥ 0.

(6.5) Example. The periodic K -theory spectrum BU (or KU ) has a connected ver-
sion bu where

π S
i (bu) =

{
πi (BU ) i ≥ 0

0 i < 0.

A similar relation between a modified connected theory tmf and a periodic theory
TMF exists with topological modular forms in the next section.

(6.6) Remark. For suitable cohomology theories E∗, called “complex oriented”,
there is a first Chern class

c1(L) ∈ E∗(P∞(C)) ∼= E0[[t]]

associated to line bundles L . The formal group gives a formula for the tensor product
of line bundles

c1(L
′ ⊗ L ′′) = F(c1(L

′), c1(L
′′)).

(6.7) Example. We have a fundamental example of a cohomology theory or spec-
trum which is multiplicative and has a first Chern class. Moreover, the associated
formal group has a universal property among formal groups, see (6.8). It is given by
the complex bordism spectrum where MU2n is the Thom space T (ξn) of the uni-
versal bundle n-dimensional complex vector bundle ξn on the classifying space BUn

and MU2n+1 = ST (ξn). Since the restriction to a subspace

ξn+1|BUn = τ ⊕ ξn,
we have a natural map of Thom spaces

T (τ ⊕ ξn) = S2T (ξn)→ T (ξn+1)

giving a spectrum. This is a multiplicative spectrum and the cohomology theory, as
well as K -theory, is a complex orientable theory with a canonical orientation.

(6.8) Theory of Quillen. The formal group law for MU is universal in the sense
that for any formal group law F over a ring R there exists a unique morphism of
rings φ : MU (∗)→ R such that F has coefficients equal to the image under φ of the
coefficients in MU of the formal group law for c1(L) in complex bordism theory.

This result led to the possibility of constructing cobordism theories and their
related spectra by starting with the morphism φ : MU∗ → R and forming the tensor
product MU∗(X)⊗MU∗ R. Under suitable conditions on the morphism φ we obtain a
homology theory, and hence, also a cohomology theory and a spectrum by Brown’s
representatibly theorem. The conditions are contained in the next theorem.
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(6.9) The Landweber Exact Functor Theorem. This is a criterion for the functor
X | → MU∗(X) ⊗MU∗ R = φ∗(X) to be exact or equivalently a homology theory.
For this we need the sequences of elements (p, v1, . . . , vn, . . . ) for MU localized
at each prime p. If these elements form regular sequences of elements in the MU∗-
module R at each prime p, then φ∗(X) is a homology theory.

(6.10) Definition. An elliptic cohomology theory is a theory which arises from the
formal group of an elliptic curve by applying the Landweber exact functor theorem
to the ring morphism φ : MU → A for an elliptic curve given by a Weierstrass
polynomial.

(6.11) Remark. It should be noted that not every formal group of an elliptic curve
yields a homology theory via the Landweber exact functor theorem. In LN 1326, and
p. 59 and also Theorem 2, p. 71 Landweber studies conditions leading to an elliptic
cohomology theory. Some of these considerations were carried further in:

Baker, A., A Supersingular congruence of modular forms. Acta Arithmetica, LXXXVI (1998),
p. 91.

§7. The Cohomology Theory or Spectrum tmf
Through the formal group, we see that certain elliptic curves give arise to a coho-
mology theory or spectrum, and all the cohomology theories which arise this way
are called elliptic cohomology. Elliptic curves can be assembled into a space called
the moduli space of elliptic curves, and the aim of current work in topology is to con-
struct a cohomology theory from data on the moduli of elliptic curves which maps in
a natural way to all elliptic cohomology theories. Due to the role of modular forms
with the moduli space of elliptic curves this theory is called topological modular
forms.

(7.1) Remark. The problem with constructing tmf begins with forming a represen-
tative spectrum for each elliptic cohomology theory with a higher homotopy ring
structure called an E∞-spectrum, and then organize these ring spectra into a dia-
gram in order to take an inverse limit. The inverse limit will be a homotopy inverse
limit. The result tmf, called topological modular forms, will also be a E∞-spectrum.
It is not an elliptic cohomology theory, but for each elliptic cohomology theory E
there should be a morphism tmf → E inducing E .

Returning to the notation of A· of multidifferential forms and H0(W G, A·) of
modular forms, we have the following basic calculation.

(7.2) Basic Computation of Coefficients. There is a spectral sequence with

E2
−s,t = Hs(W G, At )

converging to πt−s(tmf). In addition, the edge morphism π∗(tmf) → H0(W G, A·)
has kernel and cokernel annihilated by 24.
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(7.3) Remark. As of March 2003 the construction of tmf has not appeared in the
mathematics literature, but it is a topic of current research in topology. There is a
very sophisticated obstruction theory needed which uses the cotangent complex of
the moduli space of elliptic curves over the moduli space of formal groups.
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Appendix IV: Guide to the Exercises

Ruth Lawrence

The purpose of this appendix is to give, for each exercise, a comment, a hint, a sketch,
or in a few cases, a complete solution. Pure algebra has not been worked. Exercises
which are merely a matter of applying techniques given in the text to particular exam-
ples for the purpose of drill have not generally been solved fully here—the answers
only being given.

When there is a batch of somewhat similar questions a representative question
has been selected to be completely solved and answers only have been given to the
rest.

A few questions involve rather tedious numerical calculations not reducible by
technique. Readers who have carried these out can, by checking their answers against
the given ones, gain confidence. They may also be comforted to discover that they
have not missed some subtle point or ingeniously simple route to a solution.

In a few cases a link is suggested to connected problems which the interested
reader may like to pursue.

I hope that this appendix will fulfill its purpose of helping readers who experi-
ence any difficulties with the problems to overcome them; thus gaining the maximum
understanding and insight which the author intended by his carefully chosen incor-
poration into the text.

I wish to acknowledge the help received from Professor Husemöller whilst com-
piling this appendix, by way of some useful discussions and suggestions.

CHAPTER 1, §1

1. Tedious calculation gives:

7P = (−5/9, 8/27), 8P = (21/25,−69/125),

9P = (−20/49,−435/343), 10P = (161/16,−2065/64),

−7P = (−5/9,−35/27), 8P = (21/25,−56/125),

−9P = (−20/49, 97/343), −10P = (161/16, 2001/64).

Mazur’s theorem then implies P has infinite order. For 7P, 8P, 9P, 10P �= 0
and none of the above eight points coincide, i.e., P’s order does not divide any
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integer 14 to 20 inclusive. Thus P cannot have order 2, 3, 4, 5, 6, 7, 8, 9, 10, or
12 (the latter since 6P �= −6P).

2. Very straightforward. Here −2P = P · P = (0, 2), i.e., −2P = P as required.
3. As in Exercise 2, we work out −2P = P · P = (0, 0). Clearly, (0, 0) has order

2, and so P has order 4.
4. It is found that 2P = (0, 1), 3P = (−1, 0). Thus 3P has order 2. So P’s order

is 2 or 6 (divides 6 and does not divide 3). As 2P �= 0, thus P’s order is 6.
5. Here −2P = (24, 108), and 2P = (24,−108). From P, 2P we obtain −3P . It

is found that −3P = (24,−108) = 2P . So P has order 5.
6. A suitable subgroup is {0, (0, 0), (1, 0), (−9, 0)}. The calculations for n P (n =

−7, . . . ,+7) get very tedious! Here are the first few:

P = (−1, 4), 2P =
(

25

16
,

195

64

)
, 3P =

(−14161

1681
,
−466004

68921

)
,

4P =
(

14421367921

4090881600
,
−67387812533791

6381775296000

)
,

− P = (−1,−4), −2P =
(

25

16
,
−195

64

)
, −3P =

(−14161

1681
,

466004

68921

)
,

− 4P =
(

14421367921

4090881600
,

67387812533791

6381775296000

)
.

Now use Mazur’s theorem. Since P has infinite order, no finite subgroup con-
tains P . It helps in the calculations to realize that if P1, P2, P3 are collinear
points on the curve, then x1 + x2 + x3 = (slope of line)2 − 8, and thus for any
Q, R on the curve Q · R (and hence Q + R) can be determined.

CHAPTER 1, §2

1. Answers:

6P = (−2/9,−28/27), 7P = (21,−99), 8P = (11/49, 20/343),

−6P = (−2/9, 1/27), −7P = (21, 98), −8P = (11/49,−363/343).

Use Mazur’s theorem—very similar to §1, Exercise 1.
2. Straightforward algebra gives u = (w/3x)(y + 4), v = (w/3x)(5 − y).
3. For c = 1, the group is {0, (12, 36), (12,−36)}, i.e., Z/3Z. For c = 2, the

group is {0, (3, 0)}, i.e., Z/2Z. The complexity increases rapidly for c ≥ 8. The
interested reader may like to consider c = 3, 4, . . . .

4. Here 2P = (9,−18), 4P = (0, 0). So 4P = −4P , i.e., P has order 8.
5. One easily computes 2P = (−1,−2),−3P = (3, 6),−4P = (3,−6). Thus P

has order 7.
6. Multiples are 0, (3, 8), (−5,−16), (11,−32), (11, 32), (−5, 16), (3,−8) in that

order. Thus (3, 8), (11, 32) both have order 7, since (11, 32) = 4(3, 8) and 4, 7
are coprime.
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7. Here E(Q) = {(0, 0), (0,−1)} (i.e., Z/2Z).
8. The given cubic in P follows since P = (x, y) gives −P = (x, y′) where y, y′

are two roots, for Y , of

Y 2 + (a1x + a3)Y − (x3 + a2x2 + a4x + a6) = 0

and so −(y + y′) = (a1x +a3). Thus 2P = 0 iff y = −(1/2)(a1x +a3) and this
reduces to the given condition on x . Thus there are zero, one, or three solutions
for x . In every case 0 is a solution of 2P = 0.

So, the group consists of one, two or four elements. In the first two cases, the
groups must be 0,Z/2Z, respectively. In the last case, there are three elements
of order 2, and so we get (Z/2Z × Z/2Z).

CHAPTER 1, §3

1. We get (−1, 0) (order 2); (0, 1),(0, −1) (order 3); and (2, 3), (2, −3) (order 6).
The latter two are possible generators.

2. (a) The condition is that there are three points of order 2. Hence we need x2 +
ax + b to have two roots in k, i.e., a2 − 4b must be a square.

(b) The condition is that there exists a point, P , on the curve, of order 4. Thus
2P has order 2 and is thus (α, 0) some α. Since a2 − 4b is not a square, so
x2 + ax + b �= 0 for all x ∈ k. Therefore α = 0, and so 2P = (0, 0). This
gives us a condition that there exists λ such that y = λx intersects the cubic
curve in a double point. So

4b = (a − λ2)2

and so b = c2 with a − λ2 = ±2c. so one of a ± 2c must be a square.
(c) If a+2c, a−2c are squares (with b = c2), then from (b), (0, 0) = 2P some

P . Hence the group E(k) contains a subgroup generated by P and (αi , 0)
where αi are the two roots of x2 +ax +b = 0. Thus Z/4Z×Z/2Z ⊆ E(k).

Conversely, if Z/4Z × Z/2Z ⊆ E(k), then (0, 0) ∈ 2E(k) gives, from
(b), that one of a±2c must be a square. From (a), a2−4b = (a+2c)(a−2c)
is a square. So a + 2c and a − 2c are squares.

Note that in this question, the extra conditions, which are apparently
asymmetric, are required since the equation of the cubic curve has fixed
(0, 0) as a point of order 2.

3. Points of infinite order are (1, 2), (2, 3), (−1, 1), (3, 5), respectively. To check
this, use Theorem (3.2).

4. Consider the canonical map E(k)
θ−→ E(k)/2E(k). Then, if P, Q are linearly

dependent, say n P = m Q with m, n ∈ Z, we get

n′[P] = m′[Q],

where [P] is the equivalence class of P (i.e., θ(P)) and n′ ≡ n(mod 2). Thus, if
P = (3, 4), Q = (15, 58), then P, Q have infinite order. We thus only need to
check that [P], [Q], 0 are all distinct. In fact Q − P = (313/36,−5491/216).
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So, we now evaluate 2(x, y). The condition that 2(x, y) = (α, β) on y2 =
x3 − 11 is that 0 = x4 − 4αx3 + 88x + 44α. So we use α = 3, 15, 313/36
to show that P, Q, Q − P /∈ 2E(k).1 Thus [P], [Q], 0 are all distinct. Hence
n P �= m Q,∀m, n ∈ Z, not both zero.

5. This is similar to Exercise 4. If P = (0, 2), Q = (1, 0), R = (2, 0) then we
check:
(i) P , Q, R have infinite order.

(ii) [P], [Q], [R], 0 are all distinct.
(iii) [P + Q + R] �= 0.

CHAPTER 1, §4

1. This is very straightforward: define K = P ′ − P and then show that K ∈n A.
2. In (4.1) the conditions are that −α,−β are squares. In §3, 2(c) the conditions are

αβ = c2, some c,

and 2c − (α + β) or −2 − (α + β) is a square. Here

±2c − (α + β) = ±2c − α − c2/α = −(α ∓ c)2/α.

So −α (and hence also −β) is a square.
3. When 2 E(k) = 0, 4 E(k) = 0.

When 2 E(k) = Z/2Z × Z/2Z, 4 E(k) is Z/2Z × Z/2Z or Z/4Z × Z/2Z or
Z/4Z × Z/4Z. When 2 E(k) = Z/2Z, 4 E(k) is Z/2Z or Z/4Z. The numbers of
elements of order 4 are: 0; 0, 4, 12; 0, 2, respectively.

4. Suppose otherwise, that (Z/4Z)2 ⊆ E(Q), by an inclusion map j . Then the
elements of order 4 are j ((2, 0)), j ((0, 2)), j ((2, 2)). Thus in normal form we
get

y2 = (x − α)(x − β)(x − γ ),
where (α, 0) = j ((2, 0)), etc. Hence (α, 0) = 2P where

P = j ((1, 0)), j ((1, 2)), j ((3, 0)) or j ((3, 2)).

Thus α−β, α− γ are square. Similarly β−α, β− γ, γ −α, γ −β are squares.
This leads to −1 as a square, a contradiction.

CHAPTER 1, §5

1. A cusp occurs if a2 + a2
1/4 = 0. A double point occurs if and only if (a2 +

a2
1/4) > 0. These conditions are easily obtained from

y = x(−a1/2 ±
√

x + (a2 + a2
1/4)).

The graphs below indicate the forms of the curve for a1 < 0.

1 One checks that the quartic equation has no solution in Q, by Eisenstein’s irreducibility
criterion.
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CHAPTER 2, §1

1. There are (q + 1) points on a line and (q2 + q + 1) lines in P2(k). There are

(qr − 1) · · · (qr − qs−1)

(qs − 1) · · · (qs − qs−1)

s-dimensional subspaces in Pr (k).
2. Any dimensional from max(0, s1 + s2 − r) to min(s1, s2) can occur.
3. Each (r + 1)-dimensional subspace, M , of Pn(k) corresponds to M∗ ⊆ kn+1

containing M+
0 and of dimension (r + 2). Such a subspace is specified by that

vector v ∈ M+ ∩ (M+
0 )

⊥ (unique up to scalar multiplication). However (M+
0 )

⊥



450 Appendix IV: Guide to the Exercises

has dimension (n + 1) − (r + 1) = n − r . So, we parameterize the (r + 1)-
dimensional subspaces of Pn(k) containing M0 by vectors in kn−p up to scalar
multiplication, i.e., by elements of a projective space of dimension n = r − 1.

CHAPTER 2, §2,

1. This is a straightforward calculation.
2. From Exercise 1, H2

2 is five-dimensional. Conics which pass through P1, P2, P3
have equations with six coefficients (up to scalar multiplication) which must
satisfy three relations. This leaves us with two degrees of freedom. If (1, 0, 0),
(0, 1, 0), (0, 0, 1) are the given points, then the possible conics are

axy + bwx + cwy = 0

with a, b, c specifying the conic (up to scalar multiplication). The subfamily of
S containing w′ : x ′ : y′ is one-dimensional as long as at most one of x ′, y′, w′
is zero. The subfamily of S containing w′ : x ′ : y′ and w′′ : x ′′ : y′′ is:

two-dimensional if

(w′ : x ′ : y′), (w′′ : x ′′ : y′′) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)};

one-dimensional if precisely one of (w′ : x ′ : y′), (w′′ : x ′′ : y′′) has two
components zero or w = w′ = 0 or x = x ′ = 0 or y = y′ = 0;

zero-dimensional (i.e., one conic) otherwise.

CHAPTER 2, §3

1. Similar to Proposition (3.1).
2. We give a sketch of the proof. Suppose ABC DE F is the hexagon, and A =
(1, 0, 0), B = (0, 1, 0),C = (0, 0, 1). Let R = AB∩ DE, Q = AF ∩ DC, P =
BC ∩ E F . Then if D = (d1, d2, d3), etc.,

R = (d1e3 − d3e1, d2e3 − d3e2, 0),

P = (0, e1 f2 − e2 f1, e1 f3 − e3 f1),

and

Q = (d1 f2, d2 f2, d2 f3).

Since

d1 f2(e1 f3 − e3 f1)R + d2 f3(d1e3 − d3e1)P + (d1e3 − d3e1)( f1e3 − f3e1)Q

= 0

thus P, Q, R are collinear.
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3. The same techniques as in Exercise 2 are used. This is somewhat more straight-
forward than Exercise 2.

CHAPTER 2, §4

1. Follows from the definitions in a straightforward way.
2. Family of curves through P with order ≤ r in Hm

2 has dimension

1

2
(r + 1)(r + 2).

The subfamily of Hm
2 consisting of curves through Pi with order ≤ ri at Pi for

i = 1, 2, . . . , t has dimension at least

t∑
i=1

(1/2)(ri + 1)(ri + 2)− (1/2)m(m + 3).

3. Transform so that (w, x, y) is at (1, 0, 0). Then (1, 0, 0) has order r on C f

and s on Cg . Thus, am has terms of degree ≥ r + m′ − m only when m′ =
m − r + 1, . . . ,m. Similarly for the bi . So R( f, g) is homogeneous in w, x and
of degree mn and divisible by xrs . Hence result.

4. Use Exercise 3.
5. Apply Exercise 4 to f ′. For the last part, the case in which we get n lines through

one point, gives only one ri , namely n; and m = n.
6. Consider the family of curves of degree m−1 (containing f ′) and the subfamilies

of those curves of degree ri−1 at Pi . Thus subfamily has dimension (1/2)ri (ri+1)
and the original family has dimension (1/2)(m − 1)(m + 2).

7. If f is reducible, then f = gh where g, h are of degree 1. Recall the formula
∇ f = h∇g+g∇h. So ∇ f is a linear combination of ∇g,∇h. Note that ∇g,∇h
are constant vectors. Thus ∂ f/∂x1, ∂ f/∂x2, ∂ f/∂x3 satisfy a linear relation with
constant coefficients, namely ∇ f · (∇g ∧ ∇h) = 0. Hence ∂2 f/∂xi∂x j with
i = 1, 2, 3 satisfy a common relation for all j , and thus det(∂2 f/∂xi∂x j ) = 0.

Conversely, suppose det(∂2 f/∂xi∂x j ) = 0. Let βi j = ∂2 f/∂xi∂x j . Now
diagonalize βi j (possible since βi j = β j i ). One of the diagonal elements is zero,
since the determinant is zero. Thus we get a diagonal form⎛⎝β11 0 0

0 β22 0
0 0 0

⎞⎠
However, by a version of Euler’s theorem for second derivatives.

2 f =
∑
i, j

βi j xi x j = β11x2
1 + β22x2

2

= (
√
β11x1 +

√
−β22x2)(

√
β11x1 −

√
−β22x2).

This factorization shows that f is reducible.
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8. The assertion does not hold in general for characteristics p unless we impose a
condition on f , e.g., it has degree ≤ (p − 1).

9. Same answer as for Exercise 8.
10. If A is the matrix of ∂2 f/∂xi then det A is homogeneous of degree ≥ 3 (it cannot

be identically 0 by Exercise 7). Thus det A = 0, f = 0 has at least one common
solution, and hence we get at least one flex by Exercise 9.

APPENDIX TO CHAPTER 2

Exercise 1, 2, and 3 are straightforward verifications.

4. If f has a repeated root in an extension field k′ of k then f, f ′ have a common
root in k′ and so R( f, f ′) = 0 since f, f ′ have a common factor in k′(X). Thus
D( f ) = 0.

Conversely, if D( f ) = 0, then R( f, f ′) = 0 and so f, f ′ have a common
factor g ∈ k[X ] with ∂g > 0. Let k′ be an extension of k over which g splits
completely. Then f, f ′ have a common linear factor over k′[X ]. So f, g′ have a
common root in k′, i.e., f has a repeated root in k′.

5. A straightforward calculation gives

D(ax2 + bx + c) = −a(b2 − 4ac) and D(x2 + px + q) = 27q2 + 4p3.

CHAPTER 3, §1

These questions are quite tedious to do completely. They just consist of many cases.
For Exercise 2, we consider O, P, Q, P P, P Q + P, P + Q, P(P + Q), (P + P)Q.
The latter two are to be shown equal. Using Theorem (3.3), (P + P)Q is one
of the other eight points. We must eliminate all other possibilities. For example,
(P + P)Q = P implies P + P = P Q. Then

P(P + Q) = P(O · P Q) = P(O · (P + P)) = P(P P) = P, as required.

CHAPTER 3, §2

Both follow by straight algebra, Substitute the relations in (2.3) into the equation in
(2.4).

CHAPTER 3, §3

1. Discriminant is 27c2 − 18abc + 4a3c + 4b3 − a2b2 (obtained by evaluating a
5 × 5 determinant).

2. Discriminant is (α1 − α2)
2(α2 − α3)

2(α3 − α1)
2. This is obtained as follows. It

is a homogeneous polynomial of degree 6 which vanished whenever two of αi ’s
coincide. Thus it is divisible by (α1 − α2)(α2 − α3)(α3 − α1). It is zero only
if two αi ’s coincide, giving D( f ) = c(α1 − α2)

2(α2 − α3)
2(α3 − α1)

2 some
constant c. Use the special case f = x3 − x to get c = 1.
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3. Evaluation of a 7 × 7 determinant gives discriminant

256c3 − 51b4 − 20a3b2 + 80ab2c + 96a2c2 − 32a4c − 16a3c + 16ab3c

− 48a2bc2.

4. (a) j = −4906/11, = −11.
(b) j = 4096/43, = −43.
(c) j = (27/37)(4096), = 37.
(d) j = (27/91)(4096), = −91.
(e) j = (27 × 106/79634), = −28.
(f) j = 0, = −39.

5. General formula: 16b2(a2 −4b). So we get (a) 80; (b) −48; (c) 128; (d) 230400.

CHAPTER 3, §5

1.  = −16D. To simplify algebra, shifting to give a2 = 0 is convenient. Then
D = 27a2

6 + 4a3
4 and  = 9b2b4b6 − 27b2

6 − 8b3
4 − b2

2b8 reducing to −16D.
2. A suitable elliptic curve is y2 = x3 − x . It has  = −1, j = 0. In F3, it has

graph:

CHAPTER 3, §6

1. It is found that E3, E4 have four points while E5 has eight points. So E3 �∼= E5

while E3 ∼= E4 under a shift.
2. The only part that needs checking is inverses. In F16, the relation given leads to
(a + bv)−1 = (a′ + b′v) where

a′ = (b − 1)/(wb2 + ab − a2),

b′ = b/(wb2 + ab − a2),

and wb2 + ab − a2 �= 0, as can be easily verified. A slightly more complicated
version of this holds in F256.

3. Going back to (2.4) gives us that for an isomorphism between E3 and E5, t2 +
t + v3 = 0 must be soluble. In F256, t = w is a solution. In F16, there are no
such solutions.
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4. This question is best answered by writing down (2.4) with ai = āi in each of the
cases Ei (i = 1, 2, 3, 4, 5) separately. We then find that E1, E2 give automor-
phism groups Z/2Z over any field of characteristic 2, of the identity and

x = x̄
y = x̄ + ȳ

}
.

However E3, E4, E5 are more complicated, and the different k fields must be
considered separately. In fact, E3, E4 give an identical set of equations and thus
the same automorphism groups,

over F2,F4 : Z/4Z,

over F16,F256 : 24-element group.

Also E5 gives automorphism groups,

over F2 : Z/2Z,

over F4,F16,F256 : 24-element group, G.

In this latter case, (2.4) gives:

x = v x̄ + r,

y = ȳ + r2v x̄ + t,

where v = u2, s = r2. Here, u = 1, w,w′ and either

r = 0, t = 0, 1

or

r ∈ F∗
4, t = w,w′.

Let αv,r,t be the above transformation. Then

αv,r,t ◦ αvv′,vr ′+r,t+t ′+r2r ′v.

When v = 1, we get a subgroup of eight elements isomorphic to H (the quater-
nion group {±1,±i,± j,±k}). In this isomorphism:

1 → α1,0,0 −1 → α1,0,1

i → α1,1,w −i → α1,1,w′

j → α1,w,w − j → α1,w,w′

k → α1,w′,w −k → α1,w′,w′

and

α1,0,1 ◦ αv,r,t+1 = αv,r,t+1 = αv,r,t ◦ α1,0,1.
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In fact, the group of 24 elements in the E5 case is isomorphic to{
±1,±i,± j,±k,

1

2
(±1 ± i ± j ± k)

}
(all are units). This can be seen as follows. If

l = 1

2
(1 + i + j + k)

then l has order 6.
Also αu,0,0 ◦α1,r,t ◦α−1

u,0,0 = α1,ur,1. Thus the subgroup, H , of our 24-element
group G isomorphic to H, given by

H = {α1,r,t | r = 0, t ∈ {0, 1} or r ∈ F∗
4 and t ∈ {w,w′}}.

is a normal subgroup of G.
Now l−1il = −k can easily be verified. Thus conjugation by l2 permutes

i, j, k cyclically, and we can thus correspond

l2 ↔ αw′,0,0

and since α2
v2,(v+1)r,vr3 , thus l can correspond to αw,0,0 or to αw,0,1. Thus G is

a semidirect product of H with Z/3Z. There are four 3-Sylow subgroups of G,
namely those generated by

1

2
(−1 + i + j + k),

1

2
(−1 + i − j − k),

1

2
(−1 − i − j + k),

1

2
(−1 − i + j − k).

These are corresponded to

αw′,0,0 αw′,w,w αw′,1,w αw′,w′,w

and

1

2
(−1 − i − j − k),

1

2
(−1 − i + j + k),

1

2
(−1 + i + j − k),

1

2
(−1 + i − j + k)

are their squares (= conjugates) and are thus corresponded to

αw,0,0 αw,w′,w′ αw,w,w′ αw′,1,w′ .

So, in the full correspondence,

1 ↔ α1,0,0 −1 ↔ α1,0,1 i ↔ α1,1,w −i ↔ α1,1,w′



456 Appendix IV: Guide to the Exercises

j ↔ α1,w,w − j ↔ α1,w,w′ k ↔ α1,w′,w −k ↔ α1,w′,w′

1

2
(1 + i + j + k)↔ αw,0,1

1

2
(−1 − i − j − k)↔ αw,0,0

1

2
(1 + i + j − k)↔ αw′,1,w′

1

2
(−1 − i − j + k)↔ αw′,1,w

1

2
(1 + i − j + k)↔ αw′,w′,w′

1

2
(−1 − i + j − k)↔ αw′,w′,w

1

2
(1 + i − j − k)↔ αw,w′,w

1

2
(−1 − i + j + k)↔ αw,w′,w′

1

2
(1 − i + j + k)↔ αw′,w,w′

1

2
(−1 + i − j − k)↔ αw′,w,w

1

2
(1 − i + j − k)↔ αw,1,w

1

2
(−1 + i − j + k)↔ αw,1,w′

1

2
(1 − i − j + k)↔ αw,w,w

1

2
(−1 + i + j − k)↔ αw,w,w′

1

2
(1 − i − j − k)↔ αw,0,1

1

2
(−1 + i + j + k)↔ αw′,0,0

Thus, in the case of E5, the automorphism group (when it is not restricted by
the size of the field) over characteristic 2 is isomorphic to the group{

±1,±i,± j,±k,
1

2
(±1,±i ± j ± k)

}
of quaternions.

Since E3, E4, E5 are all isomorphic over F256, their automorphism groups are
all isomorphic over F256; i.e., the order 24 automorphism groups occurring over
fields F16,F256 are isomorphic to the above group of quaternions.

The interested reader might like to consider the case of elliptic curves with
j = 0 over fields of characteristic 3. In that case, we get a group of order 12 over
F9.

5. The elliptic curves over F4 up to isomorphism over F4 are:

j = 0 : y2 + y = x3,

y2 + y = x3 + w,
y2 + y = x3 + x + w,
y2 + y = x3 + x,

y2 + y = x3 + wx,

y2 + y = x3 + wx + w,
y2 + y = x3 + w′x,

y2 + y = x3 + w′x + w,
y2 + wy = x3,
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y2 + wy = x3 + w,
y2 + w′y = x3,

y2 + w′y = x3 + w′,

j = 1 : y2 + xy = x3 + 1,

y2 + xy = x3 + wx2 + 1,

j = w : y2 + xy = x3 + w′,

y2 + xy = x3 + wx2 + w′,

j = w′ : y2 + xy = x3 + w,
y2 + xy = x3 + wx2 + w.

Over F16, these reduce to:

j = 0 : y2 + y = x3 (isomorphic to all above curves with j = 0,

a3 = 1),

y2 + wy = x3,

y2 + wy = x3 + w,
y2 + w′y = x3,

y2 + w′y = x3 + w′.

j = 1 : y2 + xy = x3 + 1 (isomorphic to y2 + xy = x3 + wx2 + 1).

j = w : y2 + xy = x3 + w′ (isomorphic to y2 + xy = x3 + wx2 + w′).

j = w′ : y2 + xy = x3 + w (isomorphic to y2 + xy = x3 + wx2 + w).

6. The elliptic curves over F3 up to isomorphism over F3 are:

j = 0 :
y2 = x3 + x
y2 = x3 − x

}
isomorphic over F9 (16 elements),

y2 = x3 − x + 1
y2 = x3 − x − 1

}
isomorphic over F9 (7 elements),

j = 1 :
y2 = x3 − x2 + 1
y2 = x3 + x2 − 1

}
isomorphic over F9 (15 elements),

j = −1 :
y2 = x3 + x2 + 1
y2 = x3 − x2 − 1

}
isomorphic over F9 (12 elements),

7. We find that when k = F3,

Autk(E) =

⎧⎪⎨⎪⎩
Z/2Z for curves with j = 1,

Z/2Z for y2 = x3 + x ,

S3 for y2 = x3 − x + α, (α = 0,±1),
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and with the notation V4 = Z/2Z × Z/2Z

AutF9(E) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z/2Z for j �= 0,

Z/4Z for y2 = x3 + x ,

V4 × Z/3Z for y2 = x3 − x ,

Z/6Z for y2 = x3 − x + 1,

Z/6Z for y2 = x3 − x − 1,

8. We think of Fn as a cubic extension of F2 formed by adjoining w such that
w3 +w+1 = 0. We find that noncyclic groups occur only over F16, F256 in this
example. For

i = 1 : F8 gives Z/14Z

i = 2 : F8 gives Z/4Z

} F16 gives a 16-element group with a subgroup

Z/8Z of

{
0, (0, 1),

(
1,
w

w′
)
,

(
2,

1
w′
)
,

(
w′, 1
w

)}
for E .

i = 3 : F8 gives Z/5Z

i = 4 : F8 gives 0

}
F16 gives a 25-element group with subgroup of

order 5 given by {0, (0, 0), (0, 1), (1, 0), (1, 1)}.

i = 5 : F8 gives Z/9Z; F16 gives

⎧⎨⎩(0, 0), (0, 1),
⎛⎝1
w

w

,
w

w′

⎞⎠ , 0
⎫⎬⎭.

This exercise can become a bit tedious: we only need to check F8, F16 here.
9. The elliptic curves over F5 are:

j = 0 : y2 = x3 + 1(Z/6Z)

y2 = x3 + 2(Z/6Z)

j = 123 : y2 = x3 + x(Z/2Z × Z/2Z)

(= 3) y2 = x3 + 2x(Z/2Z)

y2 = x3 + 3x(Z/10Z)

y2 = x3 + 4x(Z/2Z × Z/2Z)

j = 1 : y2 = x3 + x + 2(Z/4Z)

y2 = x3 + 4x + 1(Z/8Z)

j = 2 : y2 = x3 + 4x + 2(Z/3Z)

y2 = x3 + x + 1(Z/9Z)

j = 4 : y2 = x3 + 2x + 4(Z/7Z)

y2 = x3 + 3x + 2(Z/5Z)

CHAPTER 4, §1

These exercises are routine algebra, using the definitions of the bi , ci , , and j .
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CHAPTER 4, §2

Here p, q are clearly inverses. Thus one only needs to check that q = 2p. This is
done by showing that the tangent at p cuts the elliptic curve at a triple point (namely
p).

CHAPTER 5, §1

1. It is easy to verify that C is nonsingular over Q and that C is singular. A suitable
pair P , P ′ is

P ≡ (p2, p, 1), P ′ = (p, p2, 1),

and then L is w + x = (p + p2)y. Thus l is w + x = 0 and all the conditions
are satisfied.

CHAPTER 5, §2

1. The required condition is that

ordp()+ min(0, ordp( j)) < 12 + 12δ2p + 6δ3p

for all primes p. It is easily verified that

 = −16(4a3 + 27b2),

j = (33 · 28)a3/(4a3 + 27b2)

for y2 = x3 + ax + b. Thus, for y2 = x3 + ax ,  = −26a3, and j = 33 · 26.
This gives the conditions for minimality:

ord2(a) < 6

ord3(a) < 6

ordp(a) < 4, ∀p �= 2, 3

⎫⎪⎬⎪⎭ .
For y2 = x3+a, = −24 ·33a2, j = 0. This gives the condition for minimality

ord2(a) < 10

ord3(a) < 8

ordp(a) < 6, ∀p �= 2, 3

⎫⎪⎬⎪⎭ .
CHAPTER 5, §3

The first four questions in this section are all very similar. We therefore give only
the answers, and in Exercise 4(c) we give a complete solution.

1. (a) Never get bad reduction at prime p, unless a ≡ 0 mod p. So the primes p
at which bad reduction occurs are those which divide a.
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(b) Bad reduction occurs at primes p �= 3 as long as p divides a, and occurs at
p = 3 always.

(c) Bad reduction occurs at p = 13.
(d) Bad reduction occurs at p = 3, 11.

2. (a) p = 5.
(b) p = 3.
(c) We never get bad reduction.
(d) p = 3, 5.

3. (a) p = 37. Modulo 2 gives E3 in 3(6.4) and modulo 3 gives y2 = x3 − x + 1.
(b) p = 43. Modulo 2 gives E ′

3 in 3(6.4) and modulo 3 gives y2 = x3 + x2 + 1.
(c) p = 91. Modulo 2 gives E3 in 3(6.4) and modulo 3 gives y2 = x3 + x + 1.
(d) p = 3. Modulo 2 gives E ′

5.
(e) p = 2, 53. Modulo 3 gives y′2 = x3 − x + 1.
(f) p = 5, 17, 31. Modulo 2 gives E1 and modulo 3 gives y2 = x3 + 1.

4. (a) p = 3, 7 give good reduction and p = 2, 5 give bad reduction.
(b) p = 2, 3 give good reduction and p = 5, 7 give bad reduction.
(c) Here, y2 + xy + y = x3 − x2 − 3x + 3. Thus

(2y + x + 1)y′ = 3x2 − 2x − 3 − y

and bad reduction at an odd prime p requires

2y + x + 1 = 0 i.e. y = −1

2
(x + 1)

and

3x2 − 2x − 3 = y.

This is never satisfied for odd p, and (x, y) on the curve. So, we consider
p = 2. This gives y2 + x ′y = x ′3 where x ′ = x + 1. Thus bad reduction
occurs at p = 2 and good reduction occurs for p = 3, 5, 7.

(d) p = 2, 5, 7 give good reduction and p = 3 gives bad reduction.
(e) p = 5 gives good reduction and p = 2, 3, 7 give bad reduction.

5. The subgroup, G, generated by (0, 0) has image under r2 which is

{(0, 0), (1, 1), (1, 0), (0, 1), 0}.
6. The discriminant is 5077 and this is easily seen to be prime.

CHAPTER 5, §4

1. These follow very simply from the relation for x + x ′ + x ′′ given in (4.3) since
ordp(x + x ′ + x ′′) ≥ 3n as a1 = 0.

2. It is quite clear that Rp is a maximal ideal in R iff R(p) forms an additive group,
and thus R(p) = R. Uniqueness of this maximal ideal follows by assuming I
and J = Rp to be two distinct maximal ideals. Thus I �⊆ J , J �⊆ I . So, there
exists a0 ∈ I such that ordpa0 = 0, and then ∀a ∈ k,
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ordp(aa0) ≥ 1 if and only if ordpa ≥ 1.

But,

aa0 ∈ I for all a ∈ R.

So, I = R because a0 is invertible, a contradiction. It is now easy to show that
I + Rp ⊆ R∗. We then get

k∗/R∗ → Z,

a + R∗ → max
r∈R∗{ordp(a + r)}.

Reduction mod p maps R∗ → k(p)∗ with kernel 1 + Rp. The canonical map
R → R/Rp composed with the map:

1 + Rpn → R
1 + apn → a

}
produces a map 1 + Rpn → R/Rp. The kernel consists of 1 + Rpn+1. Thus
(1 + Rpn)/(I + Rpn+1) ( R/Rp by the first isomorphism theorem.

3. This is very straightforward from the definitions.

CHAPTER 5, §5

1. For the last part, note that good reduction occurs mod p for all odd primes other
than 3. When E is reduced mod 5, we get a group of order 6. Since E(Q)tors has
no elements of order 2, all elements must be of order 3. Hence E(Q)tors ( Z/3Z.

2. Modulo 2 and modulo 3 give no singularities. So, there are injections from
E(Q)tors into Z/3Z, Z/7Z. Hence E(Q)tors = 0.

3. Modulo 2, E contains just 0. Modulo 3, we get no singularities and the group
is Z/4Z. So, E(Q)tors is thus 0 or Z/2Z. However, (2,−1) has order 2, and so
E(Q)tors = Z/2Z.

4. Here, E(Q)tors = Z/7Z since modulo 3 gives Z/7Z and (1, 0) has order 7.
5. Here GLn(Z denotes the group of n × n matrices with entries in Z and de-

terminant ±1. Thus GLn(Z maps into GLn(Z/qZ) under rq . Showing that
(In + pa X)n ≡ In + npa X mod pa+b+1. Thus we find that

( n
r par

)
is divisi-

ble by pa+b+1 whenever r ≥ 2.
If G ⊆ GLn(Z is finite and A ∈ G ∩ ker rp, then A has finite order. Thus, as

A ∈ ker rp, A = I + X , and Am = I + m X mod pb+1. So, X = 0 since the
Am cannot all be distinct. This gives G ∩ ker rp = 1, for all p > 2. For p = 2,
Am = In + 2m X mod pordp(m)+2 and so G ∩ ker r4 = 1 for p = 2.

6. It is easily seen that p = 3, 5 give good reduction, and groups Z/7Z (p = 3)
and a group of order 10 (p = 5). So E(Q)tors = 0.
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CHAPTER 5, §6

1. It is easily computed that E has discriminant 3. So, any torsion point has
y = 0,±1,±3. Thus 0, (0, 0), (1, 1), (1,−1) are the torsion points (Z/4Z).
The curve has good reduction modulo 5 and E(F5) is a group of eight points:

{0, (0, 0), (1,±), (2,±1), (−2,±2)}.
2. The torsion points are 0, (0, 0). The curve has good reduction both modulo

3 and modulo 5, and E(F3) = Z/6Z, E(F5) = Z/4Z. In fact, E(F3) =
{0, (0, 0), (±1,±1)}, E(F5) = {0, (0, 0), (−2,±1)}.

3. Here E(F3) = Z/6Z = {0, (0, 0), (±1,±1)}. Also, E(Q)tors = E(F3) and so
both are Z/6Z.

4. To prove this, we use the fact that −2P is not a torsion point, so that the tangent
line at P cuts the curve at an integer point. This is used to determine that the
slope of this line must be integral.

CHAPTER 6, §4

1. The first part is quite easy, as x + ( f ) generates R f as an algebra. If f factors as
distinct linear factors,

∏n
i=1(x − αi ), then we can map R f → k′′ by evaluating

at the αi . When f factors as
∏k

i=1(x − αi )
ri , we can map R f to a direct sum of

Rxr(i) where r(i) = ri . This then gives the structure of R f .
2. We use θi as our three maps which produce a triple for each P ∈ E . This triple

is converted into an element of R f using g(ri ). Thus, Im g ⊆ R∗
f,1/(R

∗
f )

2.

CHAPTER 9, §1

1. The proof is by induction on n, and so we assume that it holds for (n − 1). For
n = 2, it obviously holds. A discrete subgroup � of Rn gives �′ = �/(Rω1) ⊆
Rn/(Rω2) ( Rn−1 where ω1 ∈ � has minimal nonzero absolute value. (This
holds unless � = {0}). Thus � = Zω1 +· · ·+Zωr since �′ = Zω2 +· · ·+Zωr

by inductive assumption, and by discreteness of �.
The condition for compactness of Rn/� follows since Rn/� is Rn−r × Tr

where Tr is torus.
2. This follows from the last exercise.
3. Suppose that f is analytic, so that f, g : C → C and f ◦ g = g ◦ f = id. We

can extend to maps Ĉ → Ĉ where Ĉ = C ∪ {∞} by

f (∞) = g(∞) = ∞.
Hence f (z) = (az + b)/(cz + d).

Since f (∞ = ∞, c = 0, and so f (z) = az + b with a �= 0. Since f is a
homomorphism,

f (z1 + z2) = f (z1)+ f (z2).

Thus b = 0, and so f (z) = λz for some λ ∈ C.
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CHAPTER 9, §3

1. We consider d/dz(ζ(z + ω) − ζ(z)) and show it vanishes for all z. Thus
ζ(z + ω) − ζ(z) is constant, independent of z, and is η(ω) for some function
η of ω.

2. Integrate ζ around a rectangle from x0 to x0 + ω1, x0 + ω1 + ω2, and x0 + ω2.
Then we get 2π i by the calculus of residues. Integrating around pairs of opposite
sides will give the result (using Exercise 1).

3. To show that σ is entire, we only need to show that In(1− z/ω)+ z/ω+ z2/2ω2

forms a convergent sum over ω ∈ L − {0}.
4. In this exercise, σ(z +ωi ) = σ(z)eηi z Ai some constant Ai from Exercises 1 and

3. Also, σ is odd, and so Ai = −e−ηiωi /2. Hence the result.
5. Since any elliptic function has only a finite number of zeros and poles ai , bi , say,

we have

f (z) =
n∏

i=1

σ(z − bi )

σ (z − ai )

containing no zeros or poles and also periodic. Thus we get a constant function
as required.

CHAPTER 9, §4

1. Since h is a group isomorphism and A + B = −A · B, therefore

(1, ℘ (z1), ℘
′(z1)), (1, ℘ (z2), ℘

′(z2)),−(1, ℘ (z1 + z2), ℘
′(z1 + z2))

are collinear. This gives the result.
2. To check the first result, we note that both sides, as a function of z1 are periodic

with poles when z1 ∈ L . These poles are double poles with equal coefficients of
1/z2

1 near 0 (namely 1). So, they can differ at most by a constant. At z1 = z2,
both sides agree. Hence the result follows. As z2 → z1, we obtain the second
part.

3. Differentiate the first result in Exercise 2.
4. Apply Exercise 3 with z1, z2 interchanged, and add to the result of Exercise

3. Simplifying gives the result. To derive the addition formulae, we need only
derive (1).

CHAPTER 9, §5

1. We have

�(s)�(1 − s)

=
(∫ ∞

0
xs−1e−x dx

)(∫ ∞

0
x−se−x dx

)
=
(∫ ∞

0
2x2s−1e−x2

dx

)(∫ ∞

0
2y−2s+1e−y2

dy

)
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=
∫ ∞

0

∫ π/2

0
4e−r2

(cos θ)2s−1(sin θ)1−2sr dθ dr putting r2 = x2 + y2

= 2
∫ π/2

0
(tan θ)1−2s dθ

=
∫ ∞

0
u−s du/(1 + u) (u = tan2 θ).

Integrating u−s/(1 + u) around the contour below, since 0 < Re(s) < 1
so thus the integrals around circles of radii ε, R about 0 tend to 0 as ε → 0,
R → ∞. The only enclosed pole is at −1, with residue e−π is . Thus

2π ie−π is = �(s)�(1 − s)(1 − e−2iπs)

and so �(s)�(1 − s) = π/ sinπs. Q.E.D.

0 R−ε−1−R ε

Questions 2, 3, 4 follow straight from the definitions of the hypergeometric func-
tion.
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Notes in Mathematics, 317, Springer-Verlag, 1973.
Mazur, B.: Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47,

33–186 (1977).
Mazur, B.: Rational isogenies of prime degree, Invent. Math. 44, 129–162 (1978).
Mazur, B., Swinnerton-Dyer, H. P. F.: Arithmetic of Weil curves, Invent. Math. 25, 1–61

(1974).
Mazur, B., Tate, J.: Canonical height pairings via biextensions. In Arithmetic and Geometry,

Progress in Mathematics, 35, Birkhäuser, 1983, pp. 195–237.
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1983, 1984.
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Bourbaki, 306, 1966.

Tate, J.: Global classified theory. In Algebraic Number Theory, J. W. S. Cassels and A Fröhlich,
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Séminaire Bourbaki, 352, 1968.
Tate, J.: The arithmetic of elliptic curves, Invent. Math. 23, 179–206 (1974).
Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In Mod-

ular Functions of One Variable, IV, B. J. Birch and W. Kuyck, eds., Lecture Notes in
Mathematics, 476, Springer-Verlag, 1975, pp. 33–52.

Tate, J.: Variation of the canonical height of a point depending on a parameter, Amer. J. Math.
105, 287–294 (1983).

Van der Waerden, B. L.: Algebra, 7th ed., Ungar, 1970.
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Birkhäuser, 1981, pp. 331–356.

Vishik, M.: Nonarchimedean measures connected with Dirichlet series, Math. USSR-Sb. 28,
216–228 (1976).

Vojta, P.: A higher dimensional Mordell conjecture. In Arithmetic Geometry, G. Cornell and
J. Silverman, eds., Springer-Verlag, 1986.

Walker, R.J.: Algebraic Curves, Dover, 1962.
Waterhouse, W. C., Milne, J. S.: Abelian varieties over finite fields, A.M.S. Summer Institute

on Number Theory, Stony Brook, 1969, Proceedings of Symposia in Pure Mathematics,
Vol. XX, American Mathematical Society, 1971.

Weil, A.: L’arithmétique sur les courbes algébriques, Acta Math. 52, 281–315 (1928).
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Néron–Ogg–Šafarevič criterion, 336
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Tate–Šarafevič group, 164, 166



Index 487

Taylor, 333
the Hodge to de Rham spectral sequence,

374
the line bundle of a positive divisor, 372
theorem

Artin, 144
Dedekind, 144
Nagell–Lutz, 115

theorem of Chow, 355
theorem of Quillen, 442
theory of Eichler–Shimura, 310
theta function, 189
theta function f (z) of type czr , 204
threefolds, 367
topological modular forms, 425, 426, 443
Torelli theorem, 381
toric geometry, 346
toric varieties, 371
torsion point, 92
torsion subgroup, 15
Tunnell, 334
twist, 256
twisted form of A by as , 151
two imaginary conjugate roots, 258
two real forms, 287
two-dimensional �-adic representation, 294

unique factorization domain, 57
universal deformation ring, 341
unramified, 338

valuation, 58
valuation ring, 58
vector bundles, 346
vector field, 347

Weierstrass ℘-function, 171
Weierstrass Hopf algebroid, 426, 437
weight, 303
weight properties of Frobenius elements,

303
weighted projective spaces, 370
Weil, A., 16, 125
Wiles, 9, 324, 333, 334

Yang–Mills gauge group, 403
Yau, 346
Yau’s theorem, 366

Zeiger, Don, 275
zeros, 388
zeta function, 257–259
zeta function ζC (s) of C/k1, 257
zeta function ζE (s), 255




