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Introduction 

... I was not able to write anything about it [bullfighting] for 
five years-and I wish I would have waited ten. However, if I 
had waited long enough I probably never would have written 
anything at all since there is a tendency when you really begin 
to learn something about a thing not to want to write about it 
but rather to keep on learning about it always and at no time, 
unless you are very egotistical, which, of course, accounts for 
many books, will you be able to say: now I know all about this 
and will write about it. Certainly I do not say that now; every 
year I know there is more to learn . .. . 

-Ernest Hemingway, from "Death in the Afternoon." 1 

It has seemed to me for a long time that commutative algebra is best 
practiced with knowledge of the geometric ideas that played a great role in 
its formation: in short, with a view toward algebraic geometry. 

Most texts on commutative algebra adhere to the tradition that says a 
subject should be purified until it references nothing outside itself. There 
are good reasons for cultivating this style; it leads to generality, elegance, 
and brevity, three cardinal virtues. But it seems to me unnecessary and 
undesirable to banish, on these grounds, the motivating and fructifying 
ideas on which the discipline is based. 

lReprinted with permission of Scribner, an imprint of Simon & Schuster, from 
Death in the Afternoon by Ernest Hemingway. Copyright 1932 by Charles Scribner's 
Sons. Copyright renewed © 1960 by Ernest Hemingway. 



2 Information for the Expert 

In this book I have tried to write on commutative algebra in a way 
that makes the heritage of the subject apparent. I have allowed myself 
many words and pictures with the vague and difficult aim of clarifying 
the "true meaning" of the results and definitions. For all this, I have tried 
not to compromise the technical perfection to which the subject has been 
brought by masters like Hilbert, Emmy Noether, Krull, Van der Waerden, 
and Zariski, to name only a few of those no longer living. 

Advice for the Beginner 

Because of my attempt to mix algebra and geometry, this text has a certain 
unevenness of level. Dear reader, unless you are unusually experienced, you 
will probably find some passages for which you are simply unprepared, a 
problem you would not encounter with a book written in a more linear style. 
You should feel free to skip lightly over, or "read for culture," explanatory 
material which seems difficult, or which uses ideas of which you have not 
yet heard. Perhaps when you do hear of them-and you will, as they come 
from the mainstream-you will feel a sense of recognition, knowing that 
they have something to do with this subject. I have taken some pains to 
make a thread of theorems and definitions that are stated without reference 
to these more obscure passages. You should think of them as something to 
return to when more of the pieces in the vast puzzle of mathematics have 
fallen into place for you. 

Information for the Expert 

I shall now describe some of the contents of this book, emphasizing its 
more novel features. From the beginning, my goal has been to cover at 
least the material that graduate students studying algebraic geometry
and in particular those studying Algebraic Geometry, the excellent book 
by Robin Hartshorne [1977]-should know (in fact the title of this book 
began as a pun). In particular, all the algebraic results referred to in that 
book without proof may be found here. 

The first chapter sets the stage: It surveys some of the prehistory of 
commutative algebra in number theory, the theory of Riemann surfaces, 
and invariant theory; and it concludes with a survey of Hilbert's amazing 
contributions near the end of the nineteenth century. I have done this to 
provide something interesting right at the beginning and to introduce the 
reader to the translation between commutative algebra and the geometry 
of affine and projective varieties. Much use is made of this translation 
later in the book, though mostly in a very elementary way. Chapter 1 also 
introduces graded rings, to which we return often. 
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The second chapter begins afresh, with that now indispensable operation, 
localization. The chapter includes an analysis of rings whose primes are all 
maximal-what are later called zero-dimensional rings. 

Chapter 3 on primary decomposition begins with the standard treatment, 
emphasizing associated primes. Symbolic powers and their connections with 
the order of vanishing of functions (the theorem of Nagata and Zariski) are 
discussed to provide a nontrivial application. I also discuss the geometric 
information hidden in the embedded components. The exercises include 
a complete treatment of primary decomposition for monomial ideals, a 
number of examples, and an exploration of the nonuniqueness of embedded 
components. 

Chapter 4 concerns the Nullstellensatz and integrality. I develop 
Nakayama's lemma here from the Cayley-Hamilton theorem, and study 
the behavior of primes in an integral extension-the relative version of the 
zero-dimensional theory treated in Chapter 2. Five different proofs of the 
Nullstellensatz are given in this book: The text of Chapter 4 contains the 
strongest, which is essentially due to Bourbaki. The exercises treat the 
proof by Artin-Tate and two "quick-and-dirty" methods, one due to Van 
der Waerden and Krull and one for which I don't know an attribution; 
I learned it from Artin. The fifth proof, using the Noether normalization 
theorem, is given in Chapter 13. 

Chapter 5 takes up some of the constructions of graded rings from a ring 
and an ideal: the associated graded ring and the "blowup algebra." The 
Krull intersection theorem is proved there. 

Chapter 6 is concerned with flatness. A number of simple geometric 
examples are intended to convey the notion that flatness is a kind of "con
tinuity of fibers." I then take up a number of characterizations of flatness, 
for example the one by equations, and the "local criterion." This chapter 
also contains a gentle introduction to the use of Tor. 

I next treat the concept of completion, emphasizing the good geometric 
properties that come from Hensel's lemma. I present completion as a sort 
of superlocalization that allows one to get at neighborhoods much smaller 
than a Zariski neighborhood. Hensel's lemma is presented as a version of 
Newton's method for finding solutions to equations. There is a thorough 
treatment of coefficient fields and the equicharacteristic part of the Cohen 
structure theorems. 

Chapter 8 begins the treatment of dimension theory. I begin with a sur
vey, to explain some history and bring forward the main points of the 
theory. I even give a set of axioms characterizing Krull dimension, hoping 
in this way to explain the central role of the theorems about the dimension 
of fibers. This chapter is somewhat more advanced than the ones around 
it and is meant to be read "for culture only" on a first pass through the 
subject. Nothing in it is required for the subsequent development. 

In the following chapter, therefore, I have repeated some of the most 
basic definitions and also collected the information about dimension that 
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was accumulated (without an appropriate language) in earlier parts of the 
book -essentially the theory of dimension zero and relative dimension zero. 

Chapter 10 handles the principal ideal theorem (I give Krull's proof) and 
its consequences. This is where regular local rings and regular sequences 
are introduced. The fact that a regular local ring is a domain is proved as 
an application. The exercises contain, among other things, a treatment of 
the co dimensions of determinantal ideals. 

Chapter 11 treats "dimension and co dimension one" -that is, essentially, 
normal rings (including discrete valuation rings and Serre's criterion) and 
the ideal class group. Dedekind domains are treated along the way. 

Chapter 12 introduces the Hilbert-Samuel function and polynomial; the 
easy case of the Hilbert function and polynomial was already presented in 
Chapter 1. Multiplicities naturally appear here. 

Chapters 13 and 14 take up a somewhat deeper side of dimension theory, 
examining affine rings and the dimensions of fibers of finitely generated 
algebras. I explain something of classical as well as modern elimination 
theory. 

In Chapter 15 I give an account ofthe theory of initial ideals and Grobner 
bases, including the theorems of Galligo, Bayer and Stillman on generic 
initial ideals. Relative to the other presentations available I take a rather 
mathematical approach to the subject. I feel that this leads to considerable 
simplification without sacrificing the power to "actually compute" that this 
theory affords. At the end of the chapter is a long series of applications 
and a set of computer algebra "projects" showing how the computational 
possibilities of this theory let one make new conjectures, hard and easy, 
trivial as well as significant. 

Chapter 16 is about modules of differentials. My goals are to explain 
the roles these play in linearizing problems, from the Jacobian criterion 
to infinitesimal automorphisms to deformation theory, and also to prove 
some of the technical results that intervene in the field theory necessary 
for the Cohen structure theorems and for various topics concerning finitely 
generated algebras (separability, p-bases, differential bases). 

The final chapters treat and use the homological tools in earnest. I begin 
with an elementary treatment of the Koszul complex of two elements. (This 
is adapted from the treatment by David Buchsbaum that first lured me into 
commutative algebra 25 years ago.) Next follows a technical account of the 
Koszul complex, using some multilinear algebra. In the exercises, among 
other things, are Priddy's generalized Koszul complex (an explicit form for 
the linear part of the resolution of the residue class field) and the Taylor 
complex (a resolution of monomial ideals). 

The notion of depth and the Cohen-Macaulay property occupy 
Chapter 18. After establishing the basic properties, such as localiza
tion, I explain applications of the Cohen-Macaulay property: Macaulay's 
unmixedness theorem; Hartshorne's theorem on connectedness in codimen
sion one; flatness over a regular base; and the application to proving that 
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an ideal is prime, using Serre's characterization of normality. 
The homological characterization of regular local rings as those of 

finite global dimension is presented in Chapter 19, along with the appli
cation to factoriality. This requires some talk of stable freeness, and I 
present the classic example of the tangent bundle to the real 2-sphere. 
The Auslander-Buchsbaum formula and the associated characterization of 
Cohen-Macaulay rings are here too. 

Chapter 20 examines a number of topics concerning free resolutions. 
Various criteria of exactness are presented. The material is approached 
through the Fitting invariants and their significance. I present the Hilbert
Burch theorem characterizing ideals of projective dimension 1, and apply 
this to finding the equation the cubic surface in p3 corresponding to six 
given points in the plane. The chapter closes with an algebraic treatment 
of Castelnuovo-Mumford regularity. The expert reader will recognize that 
the selection of material for this chapter has much to do with my personal 
taste and experience. 

Chapter 21 contains an account of the canonical module and duality for 
local Cohen-Macaulay rings, and some of the theory of Gorenstein rings. 
I have included more than the usual amount of material on the Artinian 
case (including "pictures" of the canonical module), with a view to giving 
the student some comfort in that case and motivating the use of injective 
dimension in the general case. The canonical module is defined as a mod
ule that reduces, modulo a regular sequence, to the canonical module of 
the associated Artinian ring. This treatment seems to me somewhat more 
concrete and accessible than the one found in most other expositions. As 
an application 1 explain something of linkage. The exercises contain a proof 
of the Cayley-Bacharach theorem in a modern formulation. 

Throughout the text I have tried to include illustrations of the power 
of the ideas on concrete examples provided by geometry. For example, I 
illustrate the Hilbert-Burch theorem not only with the application to cubic 
surfaces, but also, in Chapter 21 for the proof by Apery and Gaeta that 
Cohen-Macaulay ideals of co dimension two in a regular ring are linked to 
complete intersections. 

It is hard to do commutative algebra without knowing at least a small 
amount of field theory (separable extensions, p-bases), category theory 
(functors, natural transformations, adjointness, limits, and colimits), homo
logical algebra (projective and injective resolutions, Tor, Ext, and local 
cohomology), and multilinear algebra (symmetric and exterior algebras). 
I have provided appendices on these subjects that far exceed the actual 
requirements for this course. For example, the appendix on limits and col
imits contains a treatment of the Lazard-Govorov characterization of flat 
modules; and the appendix on multilinear algebra contains a treatment of 
the Eagon-Northcott "family" of complexes, sufficiently thorough to allow 
the reader to write down, for example, explicit minimal free resolutions for 
the ideals of elliptic normal curves. 
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The last appendix outlines enough local cohomology to explain the alge
braic interpretation of the cohomology of coherent sheaves on projective 
spaces. 

The exercises contain a large number of theoretical results, worked out 
as sequences of problems. I personally don't like hard exercises very much; 
why spend time on them rather than on doing research? So I have tried 
to break the problems down into fairly small pieces. Many basic geometric 
objects, such as toric varieties, are also illustrated. In general, I have used 
the exercises to expose some of the topics I have omitted from the text 
(the fact that the reader can have the fun of "inventing" these topics, with 
guidance, seems to me a positive effect of the inevitable lack of space). At 
the end of the book I have provided hints or sketches of solutions to quite a 
few of the exercises, indicated by a *. In those few cases where I have later 
used the result of an exercise, a reasonably full solution is given. 

Prerequisites 

The formal prerequisites for reading this book are rather modest, although 
because of the mixing of subjects a certain sophistication is necessary for 
reading it without the help of a teacher. I have presupposed a background 
in algebra on the level of a good undergraduate preparation: knowledge 
of groups, rings, fields, and abstract vector spaces. For the later sections 
of the part on dimension theory, a little Galois theory is required. All 
the necessary facts from homological algebra that are not included in the 
main text are developed from scratch in Appendix 3, but the reader who 
has never heard of Ext and Tor before may find this treatment rather 
compressed. It is not necessary to follow the more demanding sections on 
geometry in order to understand the rest of the book; but in order to 
enjoy them one needs to know such things as what a tangent space is 
and what the implicit function theorem says, and also something about 
analytic functions. I see the most natural reader of this book as one who 
has taken courses in algebra, geometry, and complex analysis at the level 
of a first-year graduate program. However, the actual knowledge required 
is much less, and it is possible to tackle most of the book with only an 
undergraduate preparation in algebra. 

Sources 

Standard references for some of the material treated here are the books of 
Zariski and Samuel [1958], Serre [1957], Bourbaki [1983, 1985], Atiyah and 
MacDonald [1969], Kunz [1985]' and Matsumura [1980, 1986]. I have often 
leaned on the extremely elegant but resolutely nongeometric treatment of 
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Kaplansky [1970], from whom I first heard about many of the theorems 
presented here, and on the deep and beautiful book of Nagata [1962]. The 
books of Matsumura are perhaps the best general references for the subject, 
but are difficult for beginners (and weakly motivated algebraic geometers). 
The books of Kunz [1980] and Peskine [in press] share a geometric slant with 
this one, but differ from it in content and style. The book of Stiickrad and 
Vogel [1986] contains extensive material on Buchsbaum rings and linkage 
not found in the other treatments mentioned, with a wealth of references 
to the literature. The new book of Bruns and Herzog [1993] contains an 
up-to-date treatment of the homological and module-theoretic aspects of 
commutative algebra. The undergraduate book by Reid (not yet out as of 
this writing) shares some of the spirit of this book, but covers much less 
material. The book of Cox, Little, and O'Shea [1992] does a particularly 
nice job of explaining, at an undergraduate level, the relation of geometry 
with the algebra of polynomial rings. It contains an excellent treatment of 
Grabner bases, more elementary than the one presented in Chapter 15 of 
this book. The early chapters of Fulton's book [1969] on algebraic curves is 
another excellent source for the connection between algebra and geometry. 
I am grateful to the authors of these books, having learned from them. 

For the history of the subject I have leaned heavily on the account of 
nineteenth-century number theory, invariant theory, and algebraic geom
etry given by Morris Kline [1972], and also on the historical summaries 
in the books of Krull [1968], Nagata [1962]' Bourbaki [1983, 1985], and 
Edwards [1977]. Some material on topological dimension theory comes from 
Hurewicz and Wallman [1941]. 

Courses 

There are at least two natural one-semester courses that can be made from 
this book, corresponding roughly to the first and second halves. Here are 
possible syllabi. The assignments are a plausible (though not canonical) 
minimum; I would expect any instructor to add, according to taste, and I 
would probably make a different minimum set myself each time I taught 
the book. 

A First Course 

For students with no previous background in commutative algebra, this 
course covers the basics through completions, some of Cohen structure 
theory, and a thorough treatment of dimension theory. 
Chapter 1: Roots of Commutative Algebra. Do 1.2-1.4 and 1.11; more 

depending on the experience of the students. (Assign the rest as reading.) 
Exercises: 1.1-1.4, 1.18, 1.19, 1.22, 1.23 
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Chapter 2: Localization. All but "Products of Domains." 
Exercises: 2.3, 2.4, 2.6, 2.11, 2.15, 2.19, 2.26 

Chapter 3: Associated Primes and Primary Decomposition. All but "Sym
bolic Powers ... " and "A Determinantal Example." 
Exercises: 3.1, 3.3, 3.4, 3.6 

Chapter 4: Integral Dependence and the Nullstellensatz. All. 
Exercises: 4.1, 4.3, 4.4, 4.9, 4.13, 4.20, 4.24, 4.29 

Chapter 5: Filtrations and the Artin-Rees Lemma. All. 
Exercises: 5.3, 5.5 

Chapter 6: Flat Families. Through Corollary 6.3. 
Exercises: 6.1, 6.4, 6.7, 6.9, 6.12 

Chapter 7: Completions and Hensel's Lemma. 7.1-7.6. Concentrate on 
Hensel's lemma. Do statement of Cohen structure theorem (7.7); do coef
ficient fields only in characteristic 0; skip the proof of the Cohen structure 
theorem. 
Exercises: 7.1, 7.5, 7.6, 7.8, 7.9, 7.19, 7.20, 7.25 

Chapter 8: Introduction to Dimension Theory. As much as will fit in one 
lecture, stressing fibers (Axiom D3) and Theorems A, B, and C. 

Chapter 9: Fundamental Definitions of Dimension Theory. All. 
Exercises: 9.1, 9.2 (prepares for the proof of Noether normalization), 9.3, 
9.4 

Chapter 10: The Principal Ideal Theorem and Systems of Parameters. All. 
Exercises: 10.1, 10.4, 10.5, 10.9, 10.10 

Chapter 11: Dimension and Co dimension one. Through 11.6. Sections on 
invertible modules, class group, Dedekind domains as time permits. Skip 
section on multiplicity of principal ideals. 
Exercises: 11.1, 11.7, 11.8, 11.10, 11.13 

Chapter 12: Dimension and Hilbert-Samuel Polynomials. All. 
Exercises: 12.1, 12.2, 12.5 

Chapter 13: The Dimension of Affine Rings. All. 
Exercises: 13.1, 13.2, 13.3, 13.6, 13.12, 13.13 

Chapter 14: Elimination Theory, Generic Freeness, and the Dimension of 
Fibers. As time permits. 
Exercises: 14.1, 14.5, 14.8 
If time permits one further topic, my choice would be Chapter 15: 

Grabner Bases, through Algorithm 15.9, as this allows the computation of 
dimension for affine (especially graded) rings. This chapter can also serve 
as the text of a short course in computational commutative algebra. For 
exercises, see below. 

A Second Course 

For students whose preparation includes something like the contents of 
Atiyah and MacDonald [1969] or a course like the first course just described 
and a small amount of homological algebra, here is a course covering 
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Grobner basis techniques of computation, homological methods, some the
ory of free resolutions, Gorenstein rings, and duality. Differentials and the 
Jacobian criterion would be an option. 
Review of multilinear algebra, as required: (Sections A2.I-A2.3). 

Exercises: A2.2, A2.7 
Review offree resolutions, Ext and Tor, as required: (Sections A3.9-A3.11). 

Exercises: A3.16, A3.17, A3.18, A3.23, A3.26 
Chapter 15: Grobner Bases. Through Corollary 15.11 (proof of the Hilbert

Syzygy theorem). 
Exercises 15.3, 15.4, 15.5, 15.14, 15.27, 15.29, 15.30 

Option: Chapter 16: Modules of Differentials. Through Theorem 16.19 
(Jacobian criterion). 
Exercises: 16.1, 16.2, 16.3, 16.7, 16.8 

Chapter 17: Regular Sequences and the Koszul Complex. Through Propo
sition 17.14. 
Exercises: 17.2, 17.7, 17.12, 17.15, 17.16 

Chapter 18: Depth, Co dimension , and Cohen-Macaulay Rings. Through 
18.15. 
Exercises: 18.2, 18.7, 18.8, 18.10, 18.12 (if the Jacobian criterion is 
known), 18.14, 18.15 

Chapter 19: Homological Theory of Regular Local Rings. All but Corollary 
19.11 (or go back to pick up the necessary material from Chapter 15). 
Exercises: 19.1, 19.2, 19.3, 19.14, 19.15, 19.16 

Chapter 20: Free Resolutions and Fitting Invariants. Through 20.15 
(Hilbert-Burch theorem). 
Exercises: 20.13, 20.15, 20.17, 20.22, 20.23 

Chapter 21: Duality, Canonical Modules, and Gorenstein Rings. As time 
permits. 
Exercises: 21.1, 21.6, 21.7, 21.8, 21.11, 21.18 
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o 
Elementary Definitions 

For the sake of establishing a common language, this chapter introduces 
some notation and elementary definitions such as would appear in many 
undergraduate algebra courses. 

Following the usage introduced by Paul Halmos we shall write "iff" for 
"if and only if." We use the symbol C to mean "contained in or equal to," 
and write ~ when equality is not an option. We write ~ for isomorphism, 
but often use = when the isomorphism is canonical. 

0.1 Rings and Ideals 

A ring is an abelian group R with a multiplication operation (a, b) 1-+ ab 
and an "identity element" 1, satisfying, for all a, b, c E R: 

a(bc) 
a(b + c) 
(b + c)a 

1a 

(ab)c 
ab+ac 
ba + ca 
a1 = a 

(associativity) 

(distributivity) 
(identity). 

A ring R is commutative if, in addition, ab = ba for all a, b E R. Nearly 
every ring treated in this book is commutative, and we shall generally omit 
the adjective. 

A unit (or invertible element) in a ring R is an element u such that 
there is an element v E R with uv = 1. Such a v is unique. It is denoted 
u-1, and called the inverse of u. A field is a ring in which every nonzero 
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element is invertible. We write Z, Q, R, and C respectively for the ring of 
integers and the fields of rational, real, and complex numbers. 

A zerodivisor in R is a nonzero element r E R such that there is a 
nonzero element S E R with rs = O. A nonzero element that is not a 
zero divisor is a nonzerodivisor. 

An ideal in a commutative ring R is an additive subgroup I such that 
if r E Rand s E I, then r s E I. An ideal I is said to be generated by a 
subset S c R if every element tEl can be written in the form 

n 

t = L riSi with ri in Rand Si in S. 
1 

We shall write (S) for the ideal generated by a subset S c R; if S consists 
of finitely many elements Sl,.'" Sn, then we usually write (Sl,"" sn) in 
place of (S). By convention, the ideal generated by the empty set is O. An 
ideal is principal if it can be generated by one element. 

An ideal I of a commutative ring R is prime if 1# R (we usually say 
that I is a proper ideal in this case) and if f, 9 E Rand fg E I implies 
f E I or gEl. Equivalently, I is prime if for any ideals J, K with J K c I 
we have J c lor K C I. It follows by induction on n that if I is prime and 
contains a product of ideals (or even a product of sets) Jd2'" I n , then 
I contains one of the J;. The ring R is called a domain if 0 is prime. A 
maximal ideal of R is a proper ideal P not contained in any other proper 
ideal. If PeR is a maximal ideal, then R/ P is a field, so P is prime. For 
reasons explained in Chapter 2, R is called a local ring if P is the unique 
maximal ideal. We sometimes indicate this by saying that (R, P) is a local 
ring. 

An element hER is prime if it generates a prime ideal--equivalently, 
h is prime if h is not a unit, and whenever h divides a product fg, then h 
divides f or h divides g. 

A ring homomorphism, or ring map, from a ring R to a ring S 
is a homomorphism of abelian groups that preserves multiplication and 
takes the identity element of R to the identity element of S. Generally we 
shall omit the adjective "ring" when it is clear from context. A subring of 
S is a subset closed under addition, subtraction, and multiplication, and 
containing the identity element of S. 

If Rand S are rings, then the direct product R x S is the set of 
ordered pairs (a, b) with a E Rand b E S made into a ring by defining the 
operations componentwise: 

(a,b)+(a',b') = (a+a',b+b') 
(a, b)(a', b') = (aa', bb'). 

Note that the map a I--> (a,O) makes R a subset of Rx S, and similarly with 
S; as subsets of R x S we have RS = O. Consider the elements e1 = (1,0) 
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and e2 = (0,1) of Rx8. They are idempotent in the sense that er = el and 
e~ = e2. Furthermore, they are orthogonal idempotents in the sense that 
el e2 = o. They are even a complete set of orthogonal idempotents 
in the sense that, in addition, el + e2 = 1. Quite generally, if el, ... , en is 
a complete set of orthogonal idempotents in a commutative ring R, then 
R = ReI x ... x Ren is a direct product decomposition. 

If R is a commutative ring, then a commutative algebra over R (or 
commutative R-algebra) is a commutative ring 8 together with a homo
morphism a : R ---+ 8 of rings. We usually suppress the homomorphism a 
from the notation, and write rs in place of a(r)s when r E Rand s E 8. 
Any ring is a Z-algebra in a unique way. A more interesting example of 
an R-algebra is a polynomial ring 8 = R[XI, ... , Xn] in finitely many vari
ables. A subalgebra of 8 is a subring 8 ' that contains the image of R. A 
homomorphism of R-algebras r.p : 8 ---+ T is a homomorphism of rings 
such that r.p(rs) = rr.p(s) for r E R, s E 8. Given an ideal 1 C 8 we shall 
often be interested in its preimage in R. We shall sometimes denote this 
preimage by R n 1, even though R need not be a subset of 8. 

The commutative algebras that are of greatest interest to us-the ones 
of which the reader should think when we say "let R be a commutative 
algebra" (or "let R be a ring")-are those of the form R = 8/1, where 8 
is a polynomial ring over a field or, at a more sophisticated level, over the 
integers, or the localization of such a ring at a prime ideal (see Chapter 2 
for localization). 

We establish some terminology about polynomials: If k is a commutative 
ring, then a polynomial ring over k in r variables Xl, ... ,Xr is denoted 
k[XI, ... , xr]. (We shall much less frequently be interested in polynomial 
rings in infinitely many variables.) The elements of k are generally referred 
to as scalars. A monomial is a product of variables; its degree is the 
number of these factors (counting repeats) so that, for example, xix~ = 
XIXIX2X2X2 has degree 5. By convention the element 1 is regarded as the 
empty product -it is the unique monomial of degree o. A term is a scalar 
times a monomial. Every polynomial can be written uniquely as a finite 
sum of nonzero terms. If the monomials in the terms of a polynomial f all 
have the same degree (or if f = 0), then f is said to be homogeneous. 
We also use the word form to mean homogeneous polynomial. 

If k is a field, and 1 C k[x] is an ideal, and f E 1 is an element of 
lowest degree, then Euclid's algorithm for dividing polynomials shows that 
f divides every element of 1. Thus k[x] is a principal ideal domain, a 
domain in which every ideal can be generated by one element. 

0.2 Unique Factorization 

Let R be a ring. An element r E R is irreducible if it is not a unit and 
if whenever r = st with s, t E R, then one of sand t is a unit. A ring R 
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is factorial (or a unique factorization domain, sometimes abbreviated 
UFD) if R is an integral domain and elements of R can be factored uniquely 
into irreducible elements, the uniqueness being up to factors which are units 
(this is the same sense in which factorization in Z is unique). Factoriality 
played an enormous role in the history of commutative algebra, and it will 
come up many times in this book. Here is an elementary analysis of the 
condition: 

If R is factorial, and if al, a2, ... is a sequence of elements such that ai is 
divisible by ai+1, then the prime factors of ai+l (counted with multiplicity) 
are among the prime factors of ai, so for large i the prime factorization 
is the same, and ai, ai+l differ only by a unit. In the language of ideals, 
any increasing sequence of principal ideals (ad c ... C (ai) C ... must 
terminate in the sense that for all large i we have (ai) = (ai+l)' This 
condition is called the ascending chain condition on principal ideals. 

Furthermore, if R is factorial then the irreducible elements of Rare 
prime, that is, they generate prime ideals. (Proof Suppose R is factorial 
and r is irreducible. If st E (r), then st = ru for some element u, and by 
the uniqueness of factorizations, r must divide one of sand t.) 

Conversely, if R has ascending chain condition on principal ideals, then 
any element of R can be factored into a product of irreducible elements: For 
suppose al E R admits no factorization into irreducibles (and is not a unit). 
As al is not irreducible, it can be factored as be with neither b nor e a unit. 
Clearly not both band e can have factorizations into irreducible elements, 
or putting them together would result in a factorization of al. Say b admits 
no factorization into irreducibles. Setting a2 = b, we have (at) £: (a2)' 
Repeating the argument inductively, we get a nonterminating sequence of 
principal ideals (ad ~ (a2) ~ "', contradicting our assumption. 

If, in addition, every irreducible element of R is prime, then factorization 
into products of irreducible elements is unique, so R is factorial. The key 
step in the proof is to show that if st = ru E R with r irreducible, then r 
divides one of sand t. Since (r) is prime, we must have s E (r) or t E (r), 
which amounts to what we want to prove. The remainder of the proof is 
exactly as in the case of the integers. 

Using these ideas, it is easy to show, for example, that any principal ideal 
domain R is factorial: First, if (ad C ... C (ai) C ... is an ascending chain 
of ideals, then the set Ui(ai) is again an ideal. Since R is a principal ideal 
domain, it can be generated by one element b E Ui(ai). Of course, then 
bE (ai) for some i, and it follows that (ai) = (ai+l) = .... This proves the 
ascending chain condition on principal ideals. 

To show that an irreducible element r E R is prime, note that the ideal (r) 
is a proper ideal, so (by Zorn's lemma or by the ascending chain condition 
just established) we may find a maximal ideal P containing r. Since P is 
principal, we may write P = (p) for some pER, and we see that r = sp for 
some s E R. Since r is irreducible, s is a unit, so (r) = P. Since maximal 
ideals are prime, this shows that r is prime. 
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The polynomial ring in any number of variables over a field or, indeed, 
over any factorial ring, is again factorial. This is proved in most elementary 
texts using a result called Gauss' lemma. See, for example, Exercise 3.4. 

0.3 Modules 

If R is a ring, then an R-module M is an abelian group with an action 
of R, that is, a map R x M ~ M, written (r, m) t--+ rm, satisfying for all 
r,s E Rand m,n E M: 

r(sm) 
r(m+n) 
(r + s)m 

1m 

(rs)m 
rm+rn 
rm+sm 
m 

(associativity) 

(distributivity, or bilinearity) 
(identity). 

The R-modules we shall be most interested in are the ideals I and the 
corresponding factor rings R/ I; but many others intervene in the study of 
these. 

If M is an R-module, we shall write ann M for the annihilator of M; 
that is, 

annM = {r E RlrM = O}. 

For example, ann R/ I = I. 
It is convenient to generalize this relation. If I and J are ideals of R, we 

write (I : J) = {f E Rlf J c I} for the ideal quotient. (The notation is 
supposed to suggest division, which it represents in case I = (i), J = (ij), 
and i is a nonzerodivisor.) It is useful to extend this notion to submodules 
M,N of an R-module P, and write (M: N) = {f E RlfN eM}. If Ie R 
is an ideal and M C P is a submodule, then we occasionally write (M : I) 
or (M:p I) for the submodule {p E PIIp eM}. 

A homomorphism (or map) of R-modules is a homomorphism of abelian 
groups that preserves the action of R. We say that a homomorphism is a 
monomorphism (or an epimorphism or an isomorphism) if it is an 
injection (or surjection or bijection) of the underlying sets. The inverse map 
to an isomorphism is automatically a homomorphism. 

If M and N are R-modules, then the direct sum of M and N is the 
module M EB N = {(m, n)lm E M, n E N} with the module structure 
r(m, n) = (rm, rn). There are natural inclusion and projection maps M C 

M EB Nand M EB N ~ M given by m t--+ (m,O) and (m, n) t--+ m (and 
similarly for N). These maps are enough to identify a direct sum: That 
is, M is a direct summand of a module P iff there are homomorphisms 
a : M ~ P and a : P ~ M whose composition aa is the identity map of 
M; then P ~ MEB (ker a). The simplest modules are the direct sums of 
copies of R: These are called free R-modules. 

Similar considerations hold for the direct sum of any finite set of modules, 
but for infinite sets of modules {M;}iEI we must distinguish the direct 
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product IIiMi, whose elements are tuples (mi)iE!, from the direct sum, 
ffiiMi C IIiMi, consisting of those tuples (mi) such that all but finitely 
many mi are O. 

A free R-module is a module that is isomorphic to a direct sum of 
copies of R. We usually write Rn for the direct sum of n copies of R, 
and think of it as a free module with a given basis, namely the set of 
"coordinate vectors" (1,0, ... ,0), (0,1,0, ... ,0), ... , (0, ... ,0,1). If M is 
a finitely generated free module, that is M ~ Rn for some n, then the 
number n is an invariant of M (in the case when R is a field this is just 
the dimension of M as a vector space). It is called the rank of M. For a 
somewhat unusual proof that the rank is well defined, see Corollary 4.5. 

If A, B, and Care R-modules, and a : A -+ B, {3 : B -+ C are homo
morphisms, then a pair of homomorphisms 

is exact if the image of a is equal to ker {3, the kernel of {3. In general, a 
sequence of maps between modules like 

is exact if each pair of consecutive maps is exact. 
For example, a short exact sequence is a sequence of maps 

such that each pair of consecutive maps is exact; that is, such that a is 
an injection, {3 is a surjection, and the image of a is the kernel of {3. The 
short exact sequence is split iff there is a homomorphism T : C -+ B such 
that {3T is the identity map of C; then B ~ A ffi C. (Reason: If a map T 
with the desired property exists, then im T, the image of T, is disjoint from 
the image of a, and together they generate B, so B = a(A) ffi T(C). But 
a( A) ~ A and T( C) ~ C.) Equivalently, the sequence is split iff there exists 
a homomorphism (j : B -+ A such that (ja is the identity map of A. (Reason 
for the equivalence: Given T such that {3T = 1, set (j' = 1 - T{3 : B -+ B. 
Since {3(j' = {3 - {3T {3 = {3 -1{3 = 0, the image of (j' is contained in the image 
of a, so we may factor (j' as (j' = a(j for some map (j : B -+ A. For any 
a E A we have a((ja(a)) = a(j(a(a)) = (j'a(a) = a(a) - T{3a(a) = a(a), 
and since a is an injection, this implies (ja( a) = a so (ja is the identity of 
A. Conversely, given a map (j with (ja = 1, a dual path leads back to a 
suitable map T.) 

Here are three common examples that may help make these things clear: 

1. If Ml and M2 are submodules of a module M, and Ml + M2 c M is 
the submodule they generated, then the two inclusion maps combine 
to give a map Ml n M2 -+ Ml ffi M2 , and with the "difference" map 



0.3 Modules 17 

MI ffiM2 ----+ MI +M2 given by (ml' m2) f-> mi -m2, this gives a short 
exact sequence 

as the reader may easily check. The case of vector spaces is probably 
already familiar, and this case is no different. 

2. If R is a ring, 1 c R an ideal, and a E R an element, then R/l maps 
onto R/(1 + (a)). The kernel is generated by the class of a modulo 
1. Since the kernel is generated by just one element, it has the form 
R/ J for some ideal J; in fact, J is the annihilator of a modulo 1, that 
is, J = (1 : a). Putting this together, we see that there is an exact 
sequence 

0----+ R/(I: a) -'!.. R/l ----+ R/(1 + (a)) ----+ 0, 

where the element a over the left-hand map indicates that it is mul
tiplication by a. 

3. One way to specify an R-module is by giving "generators and rela
tions": For example, if we say that a module has one generator g and 
relations fIg = hg = ... = fng = 0, for some elements h,···, fn E R, 
then the module is R/(h, ... , fn). Here is an exact sequence view: 

An element m of a module M corresponds to a homomorphism from 
R to M, sending 1 to m. Thus, giving a set of elements {ma} aEA E M 
corresponds to giving a homomorphism cp from a direct sum G := RA 
of copies of R, indexed by A, to M, sending the a;th basis element to 
mao If the ma generate M, then cp is a surjection. 

The relations on the ma are the same as elements of the kernel of 
the map G ----+ M. A set of relations {n,B} ,BEB E G corresponds to a 
homomorphism 7/J from a free module F := RB to the kernel of cpo 
The ma generate M and the n,B generate the kernel -that is, M may 
be described as the module with generators {ma}aEA and relations 
{n,B} ,BEB -iff the sequence 

is exact. This sequence is usually called a free presentation of M. 
In case A and B are finite sets, so that each of F and G is a finitely 
generated free module over R, it is called a finite free presentation. 
A module M is finitely generated if there exists a finite set of 
elements that generate M, and finitely presented if it has a finite 
free presentation. 



Part I 

Basic Constructions 



1 
Roots of Commutative Algebra 

This chapter describes the origins of commutative algebra and follows its 
development through the landmark papers published by David Hilbert 
in 1890 and 1893. Three major strands of nineteenth-century activity lie 
behind commutative algebra and are still its primary fields of application: 
number theory, algebraic geometry (the algebraic aspect really begins with 
Riemann's "function theory"), and invariant theory. We shall say a little 
about developments in each. 

Advice for the beginner: A complete understanding of this chapter 
would require more background than is necessary for the rest of this book, 
and you should feel free to read lightly over the more difficult parts. Most of 
the topics treated here are taken up again later, with greater generality and 
in greater detail. In order to go on, you need to master only Theorem 1.2 
and its Corollaries 1.3, 1.4, the definition of a graded ring in Section 1.5, 
and Theorem 1.11, the fact that the Hilbert function becomes a polynomial 
(this last is not actually needed until Chapter 12). 

1.1 Number Theory 

Interest in the objects that we now associate with commutative algebra 
probably first arose in number theory. After Z, Q, R, and C, perhaps 
the very first ring of interest was the ring of "Gaussian integers" Z[iJ, 
with i 2 = -1, introduced and exploited by Gauss in his 1828 paper on 
biquadratic residues. Gauss proved that the elements of Z[i] admit unique 
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factorization into prime elements, just as is the case for ordinary integers, 
and he exploited this unique factorization to prove results about the ordi
nary numbers. 

Number theorists soon appreciated how useful it was to adjoin solu
tions of polynomial equations to Z, and they found that in many ways 
the enlarged rings behaved much like Z itself. Euler, Gauss, Dirichlet, 
and Kummer all used this idea for the rings Z[(], with ( a root of unity, 
to prove some special cases of Fermat's last theorem (the insolubility in 
integers of the equation xn + yn = zn). Around 1847, Lame thought he 
had a proof in general based on this method, but Liouville was quick to 
point out problems. Kummer, who already knew the error, did succeed in 
proving the result for n < 100 in 1851. The idea behind these proofs is 
rather obvious, and obviously attractive: If ( is an nth root of -1, then 
xn + yn = IIi (x - (2i+1 y). If Z[(] has unique factorization into primes, it is 
profitable to compare the factorization of xn + yn as IIi (x - (2i+ ly) with the 
factorization as zn. It is a plausible conjecture that Fermat's unreported 
"proof" (the one that was too long to fit in the margin of his copy of 
Diophantus' book) was also based on this idea. 

The problem with these proofs is that for most n the ring Z[(] does 
not have unique factorization (the first example is n = 23). The search 
for some generalization of unique factorization that might be used instead 
guided a large proportion of early commutative algebra. Most significant 
for modern algebra is surely Dedekind's introduction of ideals of a ring; the 
name comes from the view that they represent "ideal" (that is to say, "not 
real") elements of the ring. The search for unique factorization culminated 
in two major theories, which we shall describe later: Dedekind's unique 
factorization of ideals into prime ideals in the rings we now call Dedekind 
domains; and Kronecker's theory of polynomial rings and Lasker's theory 
of primary decomposition in them. 

Dedekind's idea was to represent an element r E R by the ideal (r) of 
its multiples; arbitrary ideals might thus be regarded as ideal elements. 
The ideal (r) determines the element r only up to multiples by units u of 
R. Since "unique prime factorization" is only unique up to unit multiples 
anyway, this is just right for generalizing prime factorization. Dedekind 
sought and found conditions under which a ring has unique factorization 
of ideals into prime ideals-he showed that this occurs for the ring of all 
integers in any number field. Dedekind made these definitions, together 
with the definition of a ring itself, in a famous supplement to later editions 
(after 1871) of Dirichlet's book on number theory. 

Dedekind's ideas restored a kind of unique prime factorization-of ide
als in terms of prime ideals-to the rings with which Kummer was deal
ing; unfortunately, they did not rescue the proof of Fermat's last theorem. 
(Perhaps this was fortunate after all, given the immense amount of mathe
matics that this area of number theory has spawned.) The rings for which 
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Dedekind's theory works are now called Dedekind domains in his honor; 
they are treated in Chapter 11 of this book. 

Around the same time, Kronecker (who was incidentally Kummer's stu
dent; Dedekind had been Gauss' student) took a step that led to a differ
ent generalization of unique factorization. In his memoir [1881]' he put the 
notion of "adjoining a root of a polynomial equation f (x) = 0 to a field 
k" on a firm footing by introducing the idea of the polynomial ring k[x] 
in an "indeterminate" x over k; the desired ring is then k[x]/(J(x)), and 
the image of x in this ring is the desired root. He introduced a theory for 
these polynomial rings equivalent to Dedekind's theory of ideals. What we 
would call an ideal in the polynomial ring, he called a "modular system" or 
"module." (The origin of the term is an older usage, which survives today 
in statements such as, "7 is congruent to 3 modulo 4.") There is no way to 
factorize ideals in polynomial rings multiplicatively, as in Dedekind's the
ory, but Lasker [1905] showed how to generalize unique factorization into 
primary decomposition (treated in Chapter 3 of this book). 

Both Dedekind's and Lasker's theories were thoroughly reformulated and 
axiomatized by Emmy Noether in the 1920s, initiating the modern devel
opment of commutative algebra. 

1.2 Algebraic Curves and Function Theory 

L'algebre n'est qu'une geometrie ecrite; la geometrie n'est 
qu'une algebre figuree. 

(Algebra is but written geometry; geometry is but drawn alge
bra.) 

-Sophie Germain (1776-1831) 

The study of algebraic curves in the early nineteenth century is in ret
rospect very closely related to commutative algebra, but the connection 
hardly began to appear until the 1870s and 1880s. Conics had of course 
been studied since antiquity. The work of Fermat and Descartes on coordi
nate geometry made it possible to speak of the (real) plane curves of any 
degree represented by algebraic equations, and these were studied intensely 
in the eighteenth century (for example, Isaac Newton classified real plane 
cubics (curves in R2 defined by the vanishing of a polynomial f(x, y) of 
degree 3) into families-there are more than 90; and MacLaurin showed in 
1720 that a plane curve of degree d could have at most (d - 1)(d - 2)/2 
nodes), along with some curves and surfaces in three-space. However, the 
ideas necessary for associating rings to these objects were entirely absent. 
Indeed, until the introduction of complex numbers by Gauss and others, 
early in the nineteenth century, a close connection of the kind explained 
later in this chapter was out of reach. 
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About 1860 the work of Abel, Jacobi, and Riemann made an entirely 
new view of algebraic curves possible. Clebsch, around 1864, was the first 
to apply Riemann's ideas directly to plane curves. The new emphasis was 
mostly on the field of meromorphic functions on a curve. Kronecker, Weier
strass, Dedekind, and Weber discovered in the period from 1875 to 1882 
that many of the recently developed algebraic techniques for handling num
ber fields could be applied to these geometrically defined fields; they pio
neered what was then called the "arithmetic approach to function theory." 
This approach continued to develop through the end of the nineteenth cen
tury and is well represented by Hensel and Landsberg [1902]. The work of 
Dedekind and Weber might have been described at the time as the applica
tion of ideas from number theory to problems from analysis. It seems now 
to be the real beginning of the interaction of geometry with commutative 
algebra, the central theme of this book. 

1.3 Invariant Theory 

As all roads lead to Rome so I find in my own case at least 
that all algebraic inquiries, sooner or later, end at the Capitol 
of modern algebra over whose shining portal is inscribed the 
Theory Of Invariants. 

-J.J. Sylvester [1864, p. 380] 

The work on ideals done in the 1880s, both in number-theoretic and 
function-theoretic contexts, seems a trifle quaint to modern readers; but the 
work of Hilbert just a few years later seems quite modern. In two extraordi
nary papers [1890, 1893], which are still a pleasure to read, Hilbert greatly 
advanced the theory of ideals in polynomial rings. Hilbert's motivation 
comes from a subject we have not yet menttoned: the theory of invariants. 
We shall sketch a little of this theory. For systematic modern accounts, see 
Fogarty [1969], Kraft [1985]' and Sturmfels [1992]. 

Especially after the introduction of projective coordinates by Plucker 
around 1830, people became interested in the geometric properties of plane 
curves that were invariant under certain classes of transformations. One 
way to express such an invariant property is to give some sort of function 
that associates to a geometric configuration a number that is independent 
of the choice of coordinates. 

As time went on, mathematicians realized that the invariance under 
choice of coordinates was really the invariance under an action of a group, 
typically the special linear group SLn(k) of n x n matrices of determinant 1 
with entries in k, or the general linear group GLn(k) of all invertible matri
ces with entries in R, or a finite group. The functions studied were mostly 
polynomial functions of quantities defining the geometric objects, such as 
the coefficients of the equations of algebraic plane curves. Thus the general 
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problem of invariant theory came to be the following: Given a "nice" action 
of a group G as automorphisms of a polynomial ring S = k[Xl' ... ' Xr], find 
the elements of S that are left invariant by G. The set of invariant elements, 
written SG, forms a sub algebra of S. In many interesting cases people saw 
that they could find a finite set of invariants generating the ring SG, and 
in this way they could describe all the invariants in finite terms. 

Invariant theory has always been a subject of examples, and the following 
is a central one. 

Example 1.1. Let S = k[Xl, ... ,xrl be the polynomial ring, and let ~ be 
the symmetric group of all permutations of {I, ... , r}. The group ~ acts 
on S as follows: If (T E ~ and I E S, we define 

The group ~ then acts as a group of k-algebra automorphisms of S. The 
set of invariants 

which in this case is called the ring of symmetric functions, is therefore a 
subring of S. It obviously contains the elementary symmetric functions 

!I(Xl, ... ,Xr) :=Xl+···+ Xr, 

h(Xl, ... ,Xr):= L XiXj, 
l~i<j~r 

In fact, Sr. is generated as a k-algebra by 11, . .. , In and every symmetric 
function can be written uniquely as a polynomial in the Ii (see Exercise 1.6 
for a proof). Thus Sr. is isomorphic to a polynomial ring k[Yl, ... , Yrl by 
the map sending Yi to k 

A great deal of late nineteenth-century work was devoted to the problem 
of finding finite systems of generators for rings of invariants in similarly 
explicit cases. For example, if we let F = xosd + Xlsd-1t + ... + Xdtd be 
the "general" form of degree d in variables s, t, then for a, b, c, dEC a 
substitution s = as' + bt', t = cs' + dt' leads to an expression of F in 
terms of monomials in s' and t' with new coefficients x~, ... , x~ that are 
linear combinations of XQ, ... , Xd. Restricting to invertible substitutions of 
this type with determinant 1, we get an action of the group SL2(C) on 
the polynomial ring C[xQ, ... , xdl. The "Problem of invariants of binary 
forms of degree d" is to find the invariants of this action. This remains a 
hard problem: Systems of generators are still not known, when d is large. 
The fundamental problem of invariant theory was the problem of the 
existence of finite systems of generators. 



26 1. Roots of Commutative Algebra 

Hilbert solved this problem in a spectacular series of papers from 1888 
to 1893, showing that the ring of invariants is finitely generated in a wide 
range of cases, including the ones above. 1 The proof that we shall soon 
give parallels Hilbert's, though we have modernized it slightly. Hilbert's 
proof is quite nonconstructive and is said to have provoked Paul Gordan, 
the reigning "king of invariants," to remark: "This is not mathematics 
but theology!" Hilbert returned to the problem in a later paper [1893] 
and gave a proof that is constructive (see Sturmfels [1993] for a modern 
discussion). Gordan, for his part, was quick to understand and appreci
ate Hilbert's new idea; he simplified Hilbert's nonconstructive proof in 
a paper of his own, and remarked, "I have convinced myself that The
ology also has its advantages." (Nachrichten Konig. Ges. der Wiss. zu 
Gatt., 1899, 240-242; the story is from Kline [1972], p. 930. We shall give 
what is essentially Gordan's proof in Exercise 15.15.) Hilbert's work is 
often said to have killed invariant theory by solving its central problem. 
But mathematics seems to be immortal. After a period of relatively lit
tle activity, invariant theory has enjoyed a resurgence in our day, as the 
books quoted above indicate; and it has a whole new branch, geomet
ric invariant theory, of which we shall say a little after we introduce the 
Nullstellensatz. 

Aside from the invariant theory, Hilbert proved four major results in the 
papers of 1890 and 1893: the basis theorem (which leads directly to the 
finite generation of invariants), the "theorem of zeros" (traditionally called 
by its German name, the Nullstellensatz), the polynomial nature of what 
we call the Hilbert function, and the syzygy theorem. These results have 
played an enormous role in determining the shape of commutative algebra. 
There seems no better introduction to the subject than to discuss them in 
turn. 

1.4 The Basis Theorem 

The first step in Hilbert's proof of the finiteness of invariants was the Basis 
Theorem: If R is a polynomial ring in finitely many variables over a field or 
over the ring of integers, then every ideal in R can be generated by finitely 

1 Hilbert remained interested in the problem afterward. In 1900 he gave an 
address to the International Congress of Mathematicians containing a list of prob
lems that has since become quite celebrated. The fourteenth problem asks whether 
there is a finite basis for the invariants of any linear group acting on a polynomial 
ring by linear change of coordinates, or for still more general subrings. The first 
counterexample was found by Nagata in 1959. But a closely related problem first 
studied by Zariski remains central. Perhaps its most interesting avatar is the prob
lem of the "finite generation of the canonical ring of a variety of general type," 
whose solution in dimension three was one of the key steps in the work for which 
Mori won a Fields medal in 1986. 
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many elements (the word "basis" at the time simply meant "generators"). 
This key property is now named not after Hilbert, but after Emmy Noether, 
who realized its full importance. (Interestingly, Noether was a student of 
Gordan.) Noether showed in [1921] how to use the property as a basic 
axiom in commutative algebra. In particular, she showed that results such 
as Lasker's "primary decomposition," which had seemed to rest on the 
innermost nature of polynomial rings, could be derived very simply with 
just this axiom. See Exercise 1.2 for a central example. 

We say, then, that a ring R is Noetherian if every ideal of R is finitely 
generated; it is easy to see that this is equivalent to the ascending chain 
condition on ideals of R, which says that every strictly ascending chain 
of ideals must terminate. (Prool: If I c R is an ideal, then by successively 
choosing elements Ii of I, we get a chain of ideals (ft) C (ft, h) c ... that 
can be made to ascend forever unless one of them is equal to I. Thus if R has 
ascending chain condition, then I is finitely generated. Conversely, if It ~ 
h ~ ... is a strictly ascending chain of ideals of R, and the ideal UiIi has a 
finite set of generators, then these generators must all be contained in one 
of the Ij; and thus I j = I, and the ascending chain terminates at Ij .) The 
ascending chain condition may be restated by saying that every collection 
of ideals in R has a maximal element. See Exercise 1.1 for Hilbert's original 
statement. 

For example, any field is Noetherian (the only ideals are 0 and the whole 
field) and the ring Z of integers is Noetherian (each ideal is generated by 
a single integer, the greatest common divisor of the elements of the ideal). 
Hilbert originally showed that a polynomial ring in n variables over a field 
or over the ring of integers is Noetherian. The modern version is somewhat 
more general. (Hilbert's version is contained in Corollary 1.3.) 

Theorem 1.2 (Hilbert Basis Theorem). II a ring R is Noetherian, then 
the polynomial ring R[x] is Noetherian. 

The following notion will be useful in the proof and later: If I = anxn + 
an_lxn- l + ... + ao E R[x], with an =I- 0, we define the initial term of I 
to be anxn, and we define the initial coefficient of I to be an. 

Proof. Let I C R[x] be an ideal; we shall show that I is finitely generated. 
Choose a sequence of elements ft, 12, ... E I as follows: Let ft be a nonzero 
element of least degree in I. For i ;::: 1, if (fl,"" Ii) =I- I, then choose Ii+l 
to be an element of least degree among those in I but not in (fl,"" Ii). 
If (fl,"" Ii) = I, stop choosing elements. 

Let aj be the initial coefficient of /j. Since R is Noetherian, the ideal 
J = (aI, a2,"') of all the ai produced is finitely generated. We may choose 
a set of generators from among the ai themselves. Let m be the first integer 
such that al, ... , am generate J. We claim that 1= (ft,· .. , 1m). 
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In the contrary case, our process chose an element fm+l. We may write 
a m+l = 2:}=1 ujaj, for some Uj E R. Since the degree of fm+l is at least as 
great as the degree of any of the 11, ... , fm' we may define a polynomial 
9 E R having the same degree and initial term as fm+! by the formula 

m 

9 = L Uj!Jxdegfm+l-deg/j E (11,···, fm). 
j=1 

The difference fm+l - 9 is in I but not in (11,···, fm), and has degree 
strictly less than the degree of fm+!. This contradicts the choice of fm+l as 
having minimal degree. The contradiction establishes our claim. 0 

The basis theorem can be applied to any finitely generated algebra. 

Corollary 1.3. Any homomorphic image of a Noetherian ring is Noethe
rian. Furthermore, if Ro is a Noetherian ring, and R is a finitely generated 
algebra over Ro, then R is Noetherian. 

Proof. Given an ideal I in R/ J, with R Noetherian, the preimage of I in 
R is finitely generated, and the images of its generators generate I. 

Since R is a finitely generated algebra over Ro, R is a homomorphic image 
of S := RO[Xl, ... ,xrJ for some r. Using Theorem 1.2 and induction on r, 
we see that S is Noetherian. Since a homomorphic image of a Noetherian 
ring is Noetherian, we are done. 0 

We shall need a more general definition in the sequel, and we make it now: 
An R-module M is Noetherian if every submodule of N is finitely gener
ated. By the same argument as above, this is equivalent to the condition 
that M has ascending chain condition on submodules, or again that every 
collection of submodules of M has a maximal element. The importance of 
Noetherian modules comes from the following observation: 

Proposition 1.4. If R is a Noetherian ring and M is a finitely generated 
R-module, then M is Noetherian. 

Proof. Suppose that M is generated by 11, ... , ft, and let N be a submodule. 
We shall show that N is finitely generated by induction on t. 

If t = 1, then the map R --+ M sending 1 to 11 is surjective. The preimage 
of N is an ideal, which is finitely generated since R is Noetherian. The 
images of its generators generate N. 

Now suppose t > 1. The image ill of N in M/RI1 is finitely generated by 
induction. Let gl, ... ,g. be elements of N whose images generate ill. Since 
RI1 c M is generated by one element, its submodule N n RI1 is finitely 
generated, say by hI' ... ' hr· 

We shall show that the elements hI, ... ,hr and 91, ... ,g. together gen
erate N: Given n E N, the image of n in ill is a linear combination of the 
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images of the gi; so subtracting the corresponding linear combination of 
the gi from n itself, we get an element of N n R/t, that is a linear combi
nation of the hi by hypothesis. This shows that n is a linear combination 
of the gi and hi. 0 

1.4.1 Finite Generation of Invariants 

Hilbert's original application, the existence of finite bases of invariants, is 
a good illustration of the power of the basis theorem. We shall abstract 
what we need about the rings of invariants Hilbert considered, but for the 
interested reader, here are some details. 

Let k be a field of characteristic 0 (Hilbert would have taken C) and let 
G be a finite group or one of the "linear groups" SLn(k) or GLn(k). The 
ideas we shall present can be generalized to a much wider class of groups 
and fields, and the type of actions treated can be greatly extended, but the 
cases we shall treat remain central examples. See Kraft [1985]. 

Suppose that S = k[XI' ... ' xr ] is a polynomial ring, and that G is rep
resented as a group of linear transformations of the vector space of linear 
forms of S -that is, we are given a homomorphism of groups G ---+ GLr(k), 
where we regard the latter group as the group of invertible linear transfor
mations of the vector space with basis Xl, ... , X r. If Gis SLn(k) or GLn(k), 
then we restrict attention to the cases where the representation is rational 
in the following sense: Regarding elements of G as matrices, we require that 
the matrix by which an element 9 E G acts has entries that are rational 
functions in the entries of g. We extend the action of an element 9 E G 
to all of S by setting g(f)(XI, ... ,Xn ) = f(g-l(xd, ... ,g-I(Xr )), and G 
becomes in this way a group of automorphisms of S. An invariant of G is a 
polynomial left invariant by each element of G, and the set SG of invariants 
is a subring of S. 

Hilbert used two basic facts about the ring of invariants R = SG in 
the cases he considered. First, R may be written as a direct sum of the 
vector spaces Ri consisting of homogeneous forms of degree i that are 
invariant under G. This situation will occur so frequently, and plays such 
an important part in commutative algebra generally, that we pause here to 
abstract it. 

1.5 Graded Rings 

A graded ring is a ring R together with a direct sum decomposition 

R = Rn EB RI EB R2 EB . . . as abelian groups, 

such that 
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A homogeneous element of R is simply an element of one of the groups 
R;, and a homogeneous ideal of R is an ideal that is generated by homo
geneous elements. (Note that since the sum of homogeneous elements of 
different degrees is not homogeneous, homogeneous ideals contain lots of 
nonhomogeneous elements.) If fER, there is a unique expression for f of 
the form 

f = fo + !I + . . . with fi E R; and Ii = 0 for j; 

the fi are called the homogeneous components of f. (One can enlarge 
these definitions to allow components of negative degrees: We shall some
times call the result a Z-graded ring. More generally, one can imagine a 
ring graded by any semigroup with identity; we shall occasionally meet 
Zn-graded rings in the sequel, and Z/(2)-graded rings are also important.) 
Although it is the most important ideal of R, the ideal consisting of all 
elements of degree greater than 0 is called the irrelevant ideal (the rea
son will become clear when we come to the connection with projective 
geometry), written R+. 

The simplest example of a graded ring is the ring of polynomials S = 
k[X1, ... , xr ] graded by degree: that is, with grading 

S = So EEl Sl EEl ••• , 

where Sd is the vector space of homogeneous polynomials (also called forms) 
of degree d. 

Suppose that I is a homogeneous ideal of a graded ring R, and I is 
generated by homogeneous elements !I, ... , fs. If f E I is any homogeneous 
element, then we can write f = L gdi with each gi homogeneous of degree 
deg gi = deg f -deg J;. Indeed, if f = L Gdi is any expression with Gi E R, 
then we may take gi to be the homogeneous component of Gi of degree 
equal to deg f - deg fi; all the other terms in the sum must have cancelled 
anyway. This apparently innocuous fact about graded rings is actually quite 
powerful. The ungraded situation is far more complicated; see the remark 
after Corollary 1. 7. 

The second fact about invariants that we shall use is that, in the cases 
we are treating, there is a map of SG-modules i.p : S -+ SG, which preserves 
degrees and takes each element of SG to itself. In case G is a finite group, 
this is easy: If "( is the number of elements in G, then because k has char
acteristic 0, "( has an inverse 1/,,( E k, and the "averaging" map i.p taking 
f E S to i.p(f) = (lh) L<rEG a(f) has the desired properties. In the case 
where G = GLn(k) or SLn(k), acting rationally, i.p may be constructed by 
replacing the sum above with an integral; see Kraft [1985]. Hilbert him
self did not know the existence of the map i.p in the case of SLn (k) and 
GLn(k), and used a map with a weaker property, "Cayley's n-process." 
See Sturmfels [1993, Chapter 4.3]. 

Hilbert's finiteness result follows at once by taking R = SG in the fol
lowing: 
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Corollary 1.5. Let k be a field, and let S = k[XI' ... ,xr ] be a polynomial 
ring graded by degree. Let R be a k-subalgebra of S. If R is a summand of 
S, in the sense that there is a map of R-modules cp : S --+ R that preserves 
degrees and takes each element of R to itself, then R is a finitely generated 
k-algebra. 

Proof. Let meR be the ideal generated by the homogeneous elements 
of R of strictly positive degree. Since S is Noetherian, the ideal mS has a 
finite set of generators, which may be chosen to be homogeneous elements 
II, ... , fs of m. We shall show that these elements generate R as a k-algebra. 

To do this, let R' be the k-subalgebra of S generated by II,· .. ,f" and 
suppose fER. We shall show that fER' by induction on the degree of 
f. To start the induction, note that if degree f = 0, then f Eke R', as 
claimed. 

Now suppose deg f > 0, so that f E m. Since the fi generate mS as an 
ideal of S, we may write f = Lg;ji, where each gi is a homogeneous form 
of degree 

deg gi = deg f - deg fi < deg f. 
Applying cp, and using the fact that f and the fi are in R, we get f = 
L cp(gi)J;. Since CP(gi) has lower degree than f, we have CP(gi) E R' by 
induction. Thus fER' as required. 0 

For an analysis of the idea behind this surprising proof, see Exercises 1.4 
and 1.5. 

1.6 Algebra and Geometry: The Nullstellensatz 

Gauss' fundamental theorem of algebra establishes the basic link bet
ween algebra and geometry: It says that a polynomial in one variable over 
C, an algebra object, is determined up to a scalar factor by the set of its 
roots (with multiplicities), a geometric object. Hilbert's Nullstellensatz 
extends this link to certain ideals of polynomials in many variables. It is 
a formal consequence of the fundamental theorem of algebra in the sense 
that it holds for any algebraically closed field. We shall now sketch this very 
important connection. (For a more detailed treatment see Fulton [1969] or 
Cox, Little, and O'Shea [1992].) 

A polynomial f E k[XI, ... , xn] with coefficients in a field k defines a 
function, f : kn --+ k; the value of f at a point (al, ... , an) E kn is obtained 
by substituting the ai for the Xi in f. The function defined by f is called a 
polynomial function on the n-dimensional vector space kn over k, with 
values in k. If k is infinite, then no polynomial function other than ° can 
vanish identically on kn. (Reason: The case of one variable is the statement 
that a polynomial in one variable can have only finitely many roots, and 
follows from Euclid's algorithm for division. In the general case we think 
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of a nonzero polynomial f (Xl, ... , xn) in n variables as a polynomial in 
n - 1 variables with coefficients that are polynomials in one variable. By 
the preceding case we can specialize this one variable to a scalar in such a 
way that the polynomial remains nonzero, and we are done by induction 
on the number of variables.) 

If follows that if k is infinite, then distinct polynomials define distinct 
functions. Thus we may regard the polynomial ring k[XI, ... , xn] as the ring 
of polynomial functions on kn. Viewed with its ring of polynomial functions, 
kn is usually called affine n-space over k, written An(k) or simply An. 
(If k is not algebraically closed, it is useful and customary in algebraic 
geometry to make a distinction between An (k) and kn; see Eisenbud and 
Harris [1992]. This will not concern us here.) 

Given a subset J c k[XI, ... , xn], we define a corresponding algebraic 
subset of k n to be 

Such algebraic sets are sometimes called an affine algebraic sets to dis
tinguish them from the "projective" objects we shall define later. 

From the definition of the algebraic subset Z(I), it is clear that J may 
be replaced by the ideal that it generates in k[XI, ... , xn] without changing 
Z(J). 

If X = Z(I) is an algebraic set, then an algebraic subset Y C X 
is a set of the form Y = Z(J) that happens to be contained in X. An 
algebraic set is called irreducible if it is not the union to two smaller 
algebraic subsets. Irreducible algebraic sets are called algebraic varieties 
(this name is used by some authors for all algebraic sets, but we shall 
maintain the distinction). 

If k = R or k = C, then kT is naturally a topological space (as a product 
of copies of k), and an algebraic subset X C AT inherits the subspace 
topology, called the classical topology. But there is another, coarser, 
topology on X that is defined over any field. Polynomial functions on X 
will play the role of continuous functions, even when the fields we are 
working over have no topology, and by analogy with the continuous case it 
is natural to think of an algebraic subset Y as a closed subset of X. Since 
we obviously have niZ(Ji) = Z(U;)i), the intersection of any collection of 
algebraic subsets is algebraic. Furthermore, if we define II~=1 Ji to be the set 
consisting of all products of one function from each Ji , then Ui=l Z (Ji ) = 

Z(IIi=1 Ji ), so any finite union of algebraic subsets is algebraic. Thus we may 
define a topology on X by taking the closed sets to be the algebraic subsets 
of X. This topology is called the Zariski topology in honor of Oscar 
Zariski, one of the pioneers of work with algebraic varieties over arbitrary 
fields. The Zariski topology is much coarser than the classical topology 
when k = R or C, but it is still quite useful. Some additional information 
and an important extension of the idea will be found in Exercise 1.24. 
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There is a sort of inverse to the construction of an algebraic set: Given 
any set X c kn , we define 

I(X) = {f E k[Xl, ... , xnJlf(al, ... , an) = 0 for all (al, ... , an) EX}. 

It is clear that I(X) is an ideal. A polynomial function (or regular 
function) on X is by definition the restriction of a polynomial function 
on kn to X. Identifying two polynomial functions if they agree at all the 
points of X, we get the coordinate ring A(X) of X (so called because it 
is the k-algebra of functions on X generated by the "coordinate functions" 
Xi). Clearly we have A(X) = k[Xl, ... , xnJII(X). 

Not every homomorphic image A = k[Xl, ... , xnJI I could be the coor
dinate ring of a set. For suppose an element f E A satisfies r = O. If f 
were a function on some set X, then because evaluation at a point p E X 
is a ring homomorphism, we would have 0 = fd(p) = f(p)d; that is, f(p) is 
nilpotent for all p E X. But the values of f are elements of k, a field; so 
they are all 0, and f itself is the zero element of A(X). In general, a ring is 
said to be reduced if its only nilpotent element is 0; we have just shown 
that A(X) is reduced. 

It is easy to formulate the corresponding condition on I(X): If R is a 
ring and I c R is an ideal, then the set 

rad I := {f E Rlfm E I for some integer m} 

is an ideal. (Reason: If fm and gn = 0, then (af + bg )n+m = 0, since it 
is a sum of polynomials each divisible by either r or gm.) It is called the 
radical of I. An ideal I is called a radical ideal if I = rad I. It follows 
at once that RI I is a reduced ring iff I is a radical ideal. Thus, the ideals 
I(X) are all radical ideals. 

Not even every radical ideal in S can occur as I(X): For example, the 
ideal I = (x2 + 1) c R[xJ is radical because R[xJI(x2 + 1) ~ C is reduced. 
But Z(I) = 0, so I is not of the form I(Xy for any X. If k is algebraically 
closed, however, the situation is better. For example, every polynomial 
in one variable is a product of linear factors, and a polynomial f E k[xJ 
generates a radical ideal iff it has no multiple roots. In this case if X is the 
set of roots of f, then I(X) = (I). Hilbert's Nullstellensatz [1893J extends 
this to polynomial rings with many variables. 

Theorem 1.6 (Nullstellensatz). Let k be an algebraically closed field. If 
Ie k[Xl, ... , xnJ is an ideal, then 

I(Z(I)) = radIo 

Thus, the correspondences I f---t Z(I) and X f---t I(X) induce a bijection 
between the collection of algebraic subsets of Ak = kn and radical ideals of 
k[Xl, ... ,XnJ. 

We shall later give five different proofs offorms of the Nullstellensatz. The 
strongest and most general version is that given in Theorem 4.19. Three 
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more proofs are given in the exercises to Chapter 4, and the fifth is given in 
Chapter 13. It is worth emphasizing at the outset that the only difficult part 
of the Nullstellensatz as we have stated it here is the identification of ideals 
of the form I(X) as being exactly the radical ideals; see Exercise 1.8. 

We now present a sequence of remarkable consequences of the Nullstel
lensatz, Corollaries 1.7-1.10. (In fact, each is a statement from which the 
Nullstellensatz could be easily deduced.) The first gives a remarkable cri
terion for the solvability of a family of polynomial equations. 

Corollary 1.7. A system of polynomial equations 

over an algebraically closed field k has no solution in kn iff 1 can be 
expressed as a linear combination 

with polynomial coefficients Pi. 

Proof. By the Nullstellensatz, if Z(h, ... ,fm) = 0, then 1 is in the radical 
of (11, ... , fm). The converse is obvious. 0 

Remark: To make this an effective criterion, it is necessary to know bounds 
on the degrees of the polynomials Pi that may be needed, and to know 
bounds on the "sizes" of their coefficients. Some bounds are known, and 
this is an area of active research; see, for example, Kollar [1988J and Teissier 
[1990J. 

The Nullstellensatz can be used to transfer the geometric study of alge
braic varieties into algebra. First, it gives us a description of the k-algebras 
of the form A(X). 

Corollary 1.8. If k is an algebraically closed field and A is a k-algebra, 
then A = A(X) for some algebraic set X iff A is reduced and finitely 
generated as a k-algebra. 

Proof. If A = A(X) for some X c kn, then A = k[XI, ... ,xnl/I(X) is 
generated as a k-algebra by Xl, ... , xn . Since I(X) is a radical ideal, A is 
reduced. 

Conversely, if A is a finitely generated k-algebra, then after choosing 
generators we may write A = k[XI, ... , xnl/ I for some ideal I. Since A is 
reduced, I is a radical ideal. Thus I = I(Z(I)) by the Nullstellensatz, and 
we may take X = Z(I). 0 
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Because of the result of Corollary 1.8, reduced finitely generated k
algebras are often called affine k-algebras, or, when it is not necessary 
to refer explicitly to the field k, simply affine rings. 

To get X from A(X) with the idea of Corollary 1.8 we must choose a set 
of k-algebra generators for A(X). But it turns out that X is in a certain 
sense independent of this choice. First, note that for any field the ideal of 
polynomials in k[XI, ... ,xnl vanishing at the point p = (al, ... ,an) E An 
is tllp := (Xl - al,"" Xn - an). (Reason: It is obvious that the given ideal 
is in I(p); but, on the other hand, factoring out mp identifies the variables 
Xi with the scalars ai, so k[XI,"" xnl/tllp = k, and we see that tllp is a 
maximal ideal.) The Nullstellensatz shows that every maximal ideal has 
this form. 

Corollary 1.9. Let k be an algebraically closed field and let X cAn 
be an algebraic set. Every maximal ideal of A(X) is of the form 
mp := (Xl - al, ... ,Xn - an)/I(X) for some p = (al, ... ,an) EX. In par
ticular, the points of X are in one-to-one correspondence with the maximal 
ideals of the ring A(X). 

Proof. The maximal ideals of A(X) correspond to the maximal ideals of 
k[XI, ... ,xnl containing I(X), so it suffices to treat the case X = An, 
A(X) = k[XI"'" xnl. To prove the first statement, note that any maximal 
ideal m--even any prime ideal -is a radical ideal, and thus I (Z (m)) = m 
by the Nullstellensatz. But if p E Z(m), then m c mp , and since m is 
assumed maximal, m = mpo The second statement follows at once. 0 

Given a reduced affine algebra A over an algebraically closed field, Corol
lary 1.8 tells us that A = A(X) for some algebraic set X, and Corollary 1.9 
gives us X as a set. But having X as a set is not enough; we would like to 
show that A reflects all the "structure of X as an algebraic set." For this 
we must know when two algebraic sets should be considered isomorphic or, 
better, what the natural maps are between algebraic sets. For simplicity, 
we shall assume throughout the following discussion that the ground field 
k is algebraically closed. 

The natural maps of one algebraic set X c kn to another, Y c km are 
those that are the restrictions of polynomial maps 

F: (al, ... ,an) f---t (!I(al, ... ,an), ... ,fm(al, ... ,an )) 

from kn to km, and such maps are called morphisms (or polynomial 
maps, or regular maps) from X to Y. We can use the same polynomials 
fi to define a map of rings 

F# : k[YI, ... , Yml ~ k[XI"'" xnl 

sending Yi to fi(XI, ... , xn). To say that F restricts to a map carrying X 
to Y is to say that if 9 E I(Y), then 

F#(g) = g(!I(XI, ... , Xn), ... , fm(xI, ... , xn» 
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vanishes on X; equivalently, p#(g) E I(X). Thus p# induces a map of 
k-algebras, which we also call P#, 

p# : A(Y) = k[Yl, ... , Yml/ I(Y) ----. k[Xl, ... , xnl/ I(X) = A(X). 

If we regard A(X) and A(Y) as rings offunctions on X and Y, then the map 
p# is simply "composition with P." This shows that two maps P and pI 
with the same restriction to X induce the same map p# : A(Y) ----. A(X). 

This process can be reversed: Given any map of k-algebras rp : A(Y) ----. 
A(X), we may choose representatives Ii in k[Xl, ... ,xn] of the elements 
rp(Yi) and thus get a set of m polynomials that define a map P : kn ----. km 

carrying X to Y, and such that rp = p#. In terms of the description of X 
and Y as sets given in Corollary 1.9, the map P acts as follows: If p E X, 
then p corresponds to a maximal ideal mp c A(X), and from the form of 
mp given in Corollary 1.9 we see that A(X)/mp = k. The composite map 
A(Y) ----. A(X) ----. A(X)/mp = k is a surjection because there is a copy 
of k in A(Y) that maps to the copy of k in A(X) that already surjects to 
k = A(X)/mp. Thus, the kernel of the composite map is a maximal ideal 
of A(Y). By Corollary 1.9 again, this maximal ideal corresponds to a point 
q of Y. The map P takes p to q. 

The beauty of this description of the morphisms from X to Y is that it is 
independent of the description of A( X) and A(Y) as quotients of particular 
polynomial rings~that is, it is independent of the particular embeddings 
of X c kn and Y c km ! In particular, we see that X and Yare isomorphic 
by polynomial maps iff A(X) and A(Y) are isomorphic as k-algebras. 

In sum, the Nullstellensatz gives us: 

Corollary 1.10. The category of affine algebraic sets and morphisms (over 
an algebraically closed field k) is equivalent to the category of affine k
algebras with the arrows reversed. 

Here the notion of equivalence of categories is just that the objects corre
spond to one another, and the morphisms do too (a formal definition may 
be found in Appendix A5). Using Corollary 1.10 we recapture the whole 
geometric picture of varieties and their maps in algebra, and at the same 
time we have a whole wealth of geometric ideas to bring into the study of 
rings, at least rings without nilpotent elements. Some further steps are out
lined in Exercises 1.24 and 1.25. (Starting in the 1950s Grothendieck took 
the step to arbitrary rings by generalizing the geometric side of the equiv
alence, the affine algebraic sets, to affine schemes; but we shall leave this 
to a course on algebraic geometry. See, for example, Eisenbud and Harris 
[1992] and Hartshorne [1977].) 
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Example. The ring represented by the following figure 

might be 

Of course it is hard to tell from the picture exactly which curve tangent 
to the given line is meant, and we have simply chosen one-the parabola 
tangent to the x-axis-for the purpose of writing down a definite example. 
This is typical: The picture captures some qualitative aspect of a ring, but 
generally does not specify it completely. After a little experience, this will 
cause the reader no trouble. Further examples for the reader to try are 
given in the exercises to this chapter. 

1.7 Geometric Invariant Theory 

Let G be a group acting on a set X. The quotient space X/G is by 
definition the set of orbits of G in X, and there is a natural projection 
map 7f : X ----'> X/G taking each element x E X to its orbit Gx E X/G. If 
X is a topological space, then X / G is naturally a topological space too, if 
we define an open set of X / G to be a set whose preimage in X is open. 

If X is an algebraic variety over a field k, and G acts by polynomial maps, 
one might hope that X / G could be made into an algebraic variety in such 
a way that 7f is a morphism. In general, however, this is not possible. For 
example, if X is the affine line and G is the multiplicative group of nonzero 
elements in k, then G has only two orbits on X -the set of nonzero elements 
and the set {o}. But 0 is in the closure of the set of nonzero elements in 
the Zariski topology! The quotient space X/G thus consists of two points, 
and one of them is in the closure of the other. But any finite algebraic set 
has the discrete topology, where every point is closed. Thus X/G cannot 
be made into an algebraic variety in such a way that 7f is a morphism. 
However, if we restrict our attention to the open set of nonzero elements in 
X, then the quotient, consisting of just one point, is a perfectly nice affine 
algebraic variety. It turns out that this trivial example is rather typical. 

If A(X) is the affine coordinate ring of X, then G will act on A(X) by 
composition (if 9 E G, and / E A(X) is a polynomial function, then /g 
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is a polynomial function). Since the invariant functions, the elements of 
A(X)G, are exactly those polynomial functions that are constant on the 
orbits, we can regard A(X)G as a ring of functions on the quotient X/G. If 
X/G or some large subset of it is to be an affine algebraic variety in a way 
compatible with the quotient map 7f, then A(X)G should be its coordinate 
ring. Geometric invariant theory, as developed by David Mumford (see 
Mumford and Fogarty [1982]), is the study of such quotients X/G and the 
algebraic varieties that "approximate" them. Here is how it begins: 

Suppose that we are in a situation, such as the ones given by Corol
lary 1.5, where R := A(X)G is a finitely generated k-algebra. The algebra 
R is a subring of A(X), so R is reduced. Suppose further that k is alge
braically closed. By the Nullstellensatz, R = A(Y) for some algebraic set 
Y, which may be identified with the set of maximal ideals of R. Further
more, there is a natural map 7f : X -+ Y determined as follows: A point 
x E X corresponds to a maximal ideal mx of A(X). By Corollary 1.9, the 
composite map k -+ A(X) -+ A(X)/mx is an isomorphism. It follows that 
the composite map k -+ R -+ R/(Rnmx) is an isomorphism, so that Rnmx 
is a maximal ideal of R. Let y E Y be the point corresponding to R n mx . 

We set 7f(x) = y. As shown in the discussion preceding Corollary 1.10, 7f is 
actually a polynomial map. 

In addition, we claim that 7f factors through the set X/G. Indeed, since 
R is invariant under g, we have R n mx = g(R n mx) = R n g(mx). Since 
g(mx) = mg-lx, this says that 7f(g-lX) = 7f(x); that is, 7f : X -+ Y factors 
through a map X/G -+ Y. 

Under good circumstances, the map X/G -+ Y is surjective. If we are in 
situation where R is a summand of A(X), as in the cases Hilbert treated, 
then for any maximal ideal n of R we have nA(X) =I- A(X). Thus there 
is a maximal ideal m of A(X) containing nA(X) and with it n. Since n is 
maximal, we must have m n R = n. 

Now suppose that G is a finite group acting by linear transformations on 
X = AT, over an algebraically closed field of characteristic O. We have seen 
that A(X)G is finitely generated and a summand of A(X), so 7f induces an 
epimorphism AT /G -+ Y as above. We shall prove in Chapter 13 that the 
map 7f identifies AT /G with Y, giving the quotient a natural structure of 
an algebraic variety. The same would be true, by a more careful analysis, 
even without the assumption that k is of characteristic O. 

The cases of greatest interest in invariant theory are those where k = C 
and G is a group such as SLn(C) or GLn(C)-not a finite group. Such cases 
arise when one wants to make a "moduli" space, a space whose points cor
respond to the isomorphism classes of certain algebraic sets. (The idea is 
that one finds some "canonical" embedding for the algebraic sets, so that 
the isomorphisms between the embedded objects become the linear auto
morphisms of the ambient space.) Again, in these cases A(X)G is finitely 
generated, but X/G may not be an algebraic variety, and the set corre
sponding to A(X)G may be a further quotient, as in the example of the 
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multiplicative group acting on the affine line. This delicate and important 
phenomenon is the subject of geometric invariant theory. 

1.8 Projective Varieties 

Kepler in 1604 and Desargues in his book in 1639 realized that the introduc
tion of imaginary points could substantially simplify Euclidean geometry. 
Each line in the plane was given one new point, "at infinity," in such a 
way that two parallel lines would meet at their points at infinity. In this 
way many geometric results became simpler (for example, the statement 
that every two distinct lines meet in exactly one point), and a remarkable 
duality between points and lines was introduced. For example, the paren
thetical statement in the last sentence is dual to the statement that through 
every pair of distinct points-including points at infinity-passes exactly 
one line. Of course, this makes unavoidable the idea that the set of points 
at infinity form a line. 

Although this development came at almost the same time as the intro
duction of coordinates in geometry by Fermat and Descartes (Descartes' 
book was published in 1637), it was nearly 200 years later, in the works 
of Mobius (1827) and especially Plucker (1830), that the plane with these 
additional points was coordinatized. Plucker's system for coordinatization 
is the one in use today. By means of it we Can define algebraic sets in the 
projective plane. It turns out that the Nullstellensatz can be used to make 
these correspond to homogeneous ideals in the polynomial ring in three 
variables. We turn now to this correspondence. 

If k is a field, then the projective r-space over k, written pr(k) or 
simply pr, is the set of one-dimensional subspaces (meaning lines through 
the origin) of an (r + 1 )-dimensional vector space over k. A one-dimensional 
subspace L C kr+1 may be represented by a point (ao, ... ,ar) =I- (0, ... ,0) 
of L, the representation being unique up to a nonzero scalar multiple. The 
elements ao, ... , ar are called homogeneous coordinates of the point L. 
Via this representation, pr(k) may be regarded as the set of (r + I)-tuples 
(ao, ... , ar) of elements of k, modulo the equivalence relation (ao, ... , ar) rv 

(bao, ... ,bar) for b =I- 0 in k. 
Given a polynomial in r + 1 variables f(xo, ... ,xr ), and a point L repre

sented by an (r + I)-tuple (ao, ... , ar), it makes no sense to "evaluate f at 
L," because the value f(ao, ... ,ar) depends on the representative chosen. 
But if f is a homogeneous polynomial of degree d, then for b E k we have 

so the statement that f(ao, ... , ar) = 0 is independent of the representative, 
and it makes sense to say whether or not f vanishes at L. 
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Let 5 = k[xo, ... , xr ], and let 5d be the vector space of all forms of degree 
d, so that we have k = So, and 

Since 5i5j C 5i+j for i, j 2': 0, we may regard 5 with this decomposition as 
a graded ring, graded "by degree." Given any homogeneous ideal I of 5, 
we define the projective algebraic set Z(I) associated to I to be 

Z (I) = {( ao, ... , ar) E pr ( k ) I I ( ao, ... , ar) = 0 

for all homogeneous I E I}. 

The irrelevant ideal corresponds to the empty set-whence its name. 
Again, there is a sort of inverse operation: Given any subset X C pr(k), 

we define I(X) to be the homogeneous ideal in 5 generated by all forms 
vanishing on X. If k is algebraically closed, then, just as in the affine case, 
the Nullstellensatz gives a bijection between the set of radical homogeneous 
ideals of 5 other than the irrelevant ideal and the set of projective algebraic 
sets in pr (k); the only additional observation required is that the radical of 
a homogeneous ideal is homogeneous. (Reason: Suppose I is a homogeneous 
ideal, and I = Id + Id+1 + ... + Ie E rad I, where each Ie is a homogeneous 
form of degree c. If rEI, then since I is homogeneous, the homogeneous 
components of r are in I too. The lowest degree component is I:J. Thus 
Id E rad I. Subtracting Id from I and repeating the argument, we see that 
each homogeneous component of I is in rad I, so rad I is homogeneous). 
Note that if we included the irrelevant ideal, we would not get a one-to
one correspondence: Both the irrelevant ideal and the "unit ideal" (1) = 5 
would correspond to the empty set. 

The graded ring 5jI(X) is called the homogeneous coordinate ring 
of X. It is an invariant not of X alone (as in the affine case), but of X 
together with its embedding into projective space. 

One way to view projective algebraic sets is as conical algebraic sets 
in affine (r + 1 )-space--that is, sets Y such that (ao, ... , ar) E Y implies 
(aao, ... , aar) E Y for all scalars a E k. It is not hard to show, conversely, 
that if k is infinite then the ideal of any such cone is a homogeneous ideal 
(this shows that the correspondence between projective algebraic sets and 
homogeneous ideals may be regarded as a special case of the Nullstellensatz 
in Theorem 1.6 rather than a parallel theorem). 

Projective space may be viewed as affine space "completed" by adding 
some "points at infinity" (in case the ground field k is C, we can take 
"completed" to mean "compactified"). We now describe this view. 

Consider the complement U in pr of the hyperplane H defined by the 
equation Xo = 0, that is, U = {(ao, ... ,ar) E prlao -I o}. Since the coor
dinates are defined up to multiplication by a nonzero scalar, every point 
(ao, ... , ar) E U can be represented uniquely in the form (1, b1, ... , br ), 
with bi = ai/ao. The association (ao, ... ,ar) f-+ (b1, ... ,br) is a bijection 
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between U and Ar, so we have expressed pr as a union: pr = U u H = 
Ar u H. We call H the hyperplane at infinity. Note that H may be 
identified with pr-l, so we may continue this decomposition and obtain 
pr = Ar II Ar-l II ... II AO, where we have written II for disjoint union. 
Alternately, since we could have started with any variable Xi in place of Xo, 
we have defined a covering of pr by copies of Ar (not disjoint), each the 
complement of one of the hyperplanes Xi = O. 

For these identifications to be useful, we must see that an algebraic 
set in pr meets U in an affine algebraic set. To this end note that if 
X c pr is an algebraic set defined by homogeneous polynomial equations 
Fi(xo, ... , xr) = 0, then xnu may be described by the polynomial equations 
!i(XI, ... , xr) = Fi(l, Xl, ... , Xr) = 0; thus X n U is naturally an algebraic 
set in Ar. 

Every polynomial ! (Xl, ... , Xr) may be written in the form 
F(l, xl, . .. , xr) for some homogeneous polynomial F(xo, ... , xr). For exam
ple, let d be the degree of !, and let F be the result of multiplying each 
homogeneous component of ! by a power of Xo to bring up its degree to d. 
More formally, we may write 

It follows that F(l,XI, ... ,Xr) = !(XI, ... ,Xr). The form F is called the 
homogenization of f with homogenizing variable Xo. The existence 
of such homogenizations shows that every algebraic set in Ar is the inter
section of U with an algebraic set in pr. 

These remarks show that it is reasonable to identify U with Ar. They 
also suggest a natural operation: Given an affine algebraic set X c Ar, 
define the projective closure X of X in pr to be the smallest algebraic 
set intersecting U = Ar in X. The homogeneous ideal of the set X is gen-
erated by the homogeneous forms F(xo, ... , xr) such that !(XI, ... , xr) := 

F(l,XI, ... ,Xr) E J(X). Since F(xo, ... ,xr) is a power of Xo times the 
homogenization of !, it follows that J (X) is generated by the homogeniza
tions of all the elements of J(X). Some caution must be exercised here: It 
is not enough to take the homogenizations of a set of generators of J(X). 
See Exercise 1.17 for an example. 

1.9 Hilbert Functions and Polynomials 

It is interesting to look for numerical invariants of a projective algebraic set 
X = Z(J) c Pk. The next major result of Hilbert concerns a particularly 
simple and important class of such invariants, given by the dimensions of 
the spaces of forms Jd of degree d vanishing on X for various d. Since the 
space of all forms of degree d has known dimension C~d), knowing the 
dimension of Jd is equivalent to knowing the dimension of the degree d 
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part of the homogeneous coordinate ring k[xo, ... , xrJI I. Hilbert's original 
motivation for studying these numbers came again from invariant theory: 
Given the action of a group on the linear forms of a polynomial ring, he 
wanted to understand how the dimension of the space of invariant forms of 
degree d can vary with d. 

The natural context is that of graded modules: 

Definition. If R = Ro EB RI EB ... is a graded ring, then a graded module 
over R is a module M with a decomposition 

00 

M = EB Mi as abelian groups 
-00 

such that R;Mj C Mi+j for all i, j. 

Definition. Let M be a finitely generated graded module over k [Xl, ... , Xr J, 
with grading by degree, as in the preceding definition. The numerical func
tion 

HM(S) := dimk Ms 

is called the Hilbert function of M. (These dimensions are all finite; if 
Ms were not finite dimensional, then the submodule EB~ Mi would not be 
finitely generated, contradicting Proposition 1.4.) 

Hilbert's insight was that all the information encoded in the infinitely 
many values of the function HM can be read off from just finitely many of 
its values, and in a simple way: 

Theorem 1.11 (Hilbert). If M is a finitely generated graded module over 
k[XI"" ,Xr ], then HM(S) agrees, for large s, with a polynomial of degree 
::;r-l. 

Definition. This polynomial, denoted PM (s), is called the Hilbert poly
nomial of M. 

Before proving the theorem, we need a notation to indicate that we have 
altered a graded module M by "shifting" its grading d steps. We define 
M(d) to be this graded module; more formally, M(d) is isomorphic to M 
as a module and has grading defined by 

M (d) is sometimes referred to as the dth twist of M. Many natural maps 
of graded modules take the grading of one to the grading of the other with 
a shift of degrees. Using our notation, we can write them as maps of degree 
o (so that they take homogeneous elements to homogeneous elements of 



1.9 Hilbert Functions and Polynomials 43 

the same degree) between one of the modules and a shift of the other. 
This makes it is easy to keep track of graded components. For example, 
multiplication by a linear form on a module M as above raises the degrees 
by 1. Thus it can be thought of as a map of degree 0 from M ( -1) to M. We 
shall use this idea in the following proof. We shall also use an elementary 
result about integer-valued functions. 

Lemma 1.12. Let H(s) E Z be defined for all natural numbers s. If the 
"first difference" H'(s) = H(s) - H(s - 1) agrees with a polynomial of 
degree s:; n - 1 having rational coefficients for s ::::: so, then H (s) agrees 
with a polynomial of degree s:; n having rational coefficients for all s ::::: so. 

Proof. Suppose that Q( s) is a polynomial of degree s:; n - 1 with rational 
coefficients such that H'(s) = Q(s) for s ::::: so. For any integer s set P(s) = 
H(so)+ 2::=80+1 Q(t), where the sum is taken over all integers between so+l 
and s whether s ::::: so+ lor s s:; so+ 1. For s ::::: So we have P(s) = H(s). For 
all s we have P( s) - P( s - 1) = Q( s). It follows that P( s) is a polynomial 
of degree s:; n with rational coefficients; see Exercise 1.21a and its hint for 
a~~~~ 0 

Proof of Theorem 1.11. We do induction on r, the number of variables. If 
r = 0, then M is simply a finite-dimensional graded vector space. In this 
case H M (s) = 0 for all large s, and this is a polynomial of degree -1. 

In the general case, if we let K c M be the kernel of multiplication by Xr, 

we get an exact sequence of graded vector spaces, with maps of degree 0 : 

0--> K( -1) --> M( -1) ~ M --> M/xrM --> O. 

Taking the component of degree s of each term in this exact sequence, we 
see that 

HM(S) - HM(S - 1) = HM/xcM(S) - HK(S - 1). 

Now both K and M/xrM are finitely generated modules over k[Xl, .. " 
xr~Il. By induction, the terms on the right-hand side agree for large s with 
polynomials of degree less than or equal to r - 2, and we are done by 
Lemma 1.12. 0 

The Hilbert function actually includes all the invariants of modules that 
are additive in a certain sense, and the Hilbert polynomial includes all 
additive invariants that vanish on modules of finite length. See Exercises 
19.15 and 19.16. 

In the case of greatest interest, M is the homogeneous coordinate ring 
of a projective algebra set X C pr~l. Here the Hilbert function is a rich 
source of discrete invariants of X and its embedding. We shall see that 
the degree d of the Hilbert polynomial P( s) is the dimension of X in a 
suitable sense, and the initial coefficient of P( s), multiplied by d factorial, 
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is what is called the degree of X -the number of points in which X meets 
a general plane of complementary dimension in pr-l. See Exercise 1.18 for 
an illustration. 

One may well wonder what the values PM(S) are for small values of 
S when they are not the values of HM(S). We shall provide an answer in 
terms of free resolutions. There is a different answer in terms of cohomology 
groups: The function that is really a polynomial is an Euler characteristic, 
made from the Hilbert functions of the module and all its cohomology 
groups. The cohomology groups have geometric interpretations, and this 
expression is quite useful in geometric applications. 

We mention in passing two further geometric contexts in which the 
Hilbert polynomial appears: First, the Riemann-Roch theorem is a 
computation of the Hilbert polynomial (for a certain class of modules) 
that plays an enormously important role in algebraic geometry. Second, a 
graded module over a polynomial ring corresponds to a "coherent sheaf" 
on a projective space. The information contained in the coefficients of the 
Hilbert polynomial is usually presented in algebraic geometry by giving 
the Chern classes of this sheaf-a different set of integers, which can be 
deduced from the coefficients, and from which the coefficients can also be 
deduced. See Exercise 19.18. 

1.10 Free Resolutions and the Syzygy Theorem 

The members of any group of functions, more than two in num
ber, whose nullity is implied in the relation of double contact 
. .. must be in syzygy. 

-J.J. Sylvester, 1850 (First mathematical use of the term syzygy, 
according to the Oxford English Dictionary) 

The word syzygy, (from the Greek word for pairing (or copulation)) has long 
been used in English as an astronomical term for conjunctions of planets. 
But since the middle of the last century, and in particular since the work 
of Hilbert at the end of the century, its meaning has had to do with the 
solutions to a system of homogeneous linear equations over a ring. 

The proof we have given for Theorem 1.11 is quite different from the one 
Hilbert gave. In place of our induction, he used free resolutions. We shall 
now sketch his ideas, postponing proofs until Chapters 15 and 19. 

If R is a graded ring, then we shall define a graded free R-module 
to be a direct sum of modules of the form R(d), for various d. Note that 
the nice mnemonic definition of M(d) by the formula M(d)e = Md+e has 
the at first rather annoying consequence that R(d)-d = Ro, so R(d) has its 
generator in degree -d, not d. 
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Definition. A complex of R-modules is a sequence of modules Fi and 
maps Fi --> Fi- l such that the compositions Fi+l --> Fi --> Fi- l are all zero. 
The homology of this complex at Fi is the module 

ker(Fi --> Fi-d/ im(Fi +1 --> Fi). 

A free resolution of an R-module M is a complex 

of free R-modules such that coker <PI = M and :r is exact (sometimes we 
add "--> 0" to the right of:r and then insist that :r be exact except at Fa). 
We shall sometimes abuse this notation and say that an exact sequence 

:r: ... --> Fn ~ ... --> FI ~ Fa --> M --> 0 

is a resolution of M. The image of the map <Pi is called the ith syzygy 
module of M. A resolution :r is a gmded free resolution if R is a graded 
ring, the Fi are graded free modules, and the maps are homogeneous maps 
of degree O. Of course only graded modules can have graded free resolutions. 
If for some n < 00 we have Fn+l = 0, but Fi -I=- 0 for 0 ::; i ::; n, then we 
shall say that :r is a finite resolution of length n. 

It is easy to see that every module has a free resolution and, if R is graded, 
that every graded module has a graded free resolution. To construct one, 
begin by taking a set of generators for M and map a free module onto M 
sending the free generators of the free module to the given generators of M. 
Let MI be the kernel of this map, and repeat the procedure, now starting 
with MI. 

Exercises 1.22 and 1.23 give two special cases in which free resolutions 
are not difficult to compute "by hand" ; we shall eventually give far-reaching 
generalizations of both. 

We can finally state, in the following theorem, the last of the four great 
results on commutative algebra in Hilbert's papers. 

Theorem 1.13 (Hilbert syzygy theorem). If R = k[XI, ... , xr], then every 
finitely generated graded R-module has a finite graded free resolution of 
length::; r, by finitely generated free modules. 

We shall give a constructive proof of the syzygy theorem in Chapter 15, 
and a different, nonconstructive proof in Chapter 19. Here we apply it to 
its original purpose: 

Hilbert's Proof of Theorem 1.11. Let R = k [Xl, ... , xr]' If M = R( d) for 
some d, then 
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which agrees for s ~ -(d + r - 1) with the polynomial 

Q(s) = (l/(r - l)!)[s + (d + r - 1)] . [s + (d + r - 2)] ..... [s + d] 
= sr-1/(r - I)! + (lower order terms). 

If F is a finitely generated graded free module, then F is a direct sum of 
various R(d), so HF(S) is a finite sum of functions of the form HR(d) (s). 

The Syzygy theorem shows that any finitely generated graded module 
over R = k[X1, ... ,xr ] has a finite graded free resolution:r 

:r: 0 ---- Fr ---- . . . ---- Fo ---- M ---- o. 

Thus 

is a linear combination of functions that are eventually equal to polynomials 
of degree :; r - 1. D 

Note that this proof yields a simple computation for the value of H M (s) 
for every s, not just for large s. It also shows that the deviation from being 
a polynomial comes about because Rd = 0 for all d < O-of course no 
nonzero polynomial has this property. 

In Chapter 15 we shall see that free resolutions can be computed effec
tively, and this yields an effective computation of HM and PM (in the same 
chapter we shall give a much simpler method of computation). 

1.11 Exercises 

Noetherian Rings and Modules 

Exercise 1.1:* Prove that the following conditions on a module M over a 
commutative ring R are equivalent (the fourth is Hilbert's original formu
lation; the first and third are the ones most often used). The case M = R 
is the case of ideals. 

1. M is Noetherian (that is, every submodule of M is finitely generated). 

2. Every ascending chain of submodules of M terminates ("ascending 
chain condition"). 

3. Every set of submodules of M contains elements maximal under inclu
sion. 

4. Given any sequence of elements 11,12, ... E M, there is a number m 
such that for each n > m there is an expression In = 2::::1 adi with 
ai E R. 
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Exercise 1.2 (Emmy Noether): Prove that if R is Noetherian, and 
I c R is an ideal, then among the primes of R containing I there are 
only finitely many that are minimal with respect to inclusion (these are 
usually called the minimal primes of I, or the primes minimal over I) 
as follows: Assuming that the proposition fails, the Noetherian hypothesis 
guarantees the existence of an ideal I maximal among ideals in R for which 
it fails. Show that I cannot be prime, so we can find elements f and 9 in 
R, not in I, such that fg E I. Now show that every prime minimal over I 
is minimal over one of the larger ideals (I, f) and (I, g). 

With Hilbert's basis theorem and the Nullstellensatz (see Exercise 1.9), 
Exercise 1.2 gives one of the fundamental finiteness theorems of algebraic 
geometry: An algebraic set can have only finitely many irreducible com
ponents. Originally the result was proved by difficult inductive arguments 
and elimination theory. For a further discussion of the significance of this 
result see the beginning of Chapter 3, and particularly example 2 there. 
The result of this exercise is strengthened in Theorem 3.1. 

Exercise 1.3: Let M' be a submodule of M. Show that M is Noetherian 
iff both M' and M / M' are Noetherian. 

An Analysis of Hilbert's Finiteness Argument 

Exercise 1.4:* We have seen from Corollary 1.3 that any finitely generated 
algebra over a field is Noetherian. The converse is quite false, and we shall 
see many important examples of rings that are Noetherian but not finitely 
generated (for instance localizations and completions). But the converse is 
true for graded rings R where Ro is a field, as the following result shows. 

Let R = Ro EB Rl EB ... be a graded ring. Prove that the following are 
equivalent: 

1. R is Noetherian. 

2. Ro is Noetherian and the irrelevant ideal Rl EB R2 EB ... is finitely 
generated. 

3. Ro is Noetherian and R is a finitely generated Ro-algebra. 

Exercise 1.5:* Although the Noetherian property does not usually pass 
from a ring to a subring, it does when the subring is a summand: 

Let ReS be rings, and assume that R is a summand of S as an R
module, that is, there is a homomorphism 'P : S -t R of R-modules fixing 
every element of R. Prove that if S is Noetherian, then R is Noetherian. 

Some Rings of Invariants 

Exercise 1.6: The following proof of the assertions of Example 1.1 is from 
Van der Waerden [1971J. We shall systematically develop this method in 
Chapter 15. Let Land 11, ... , fr be as defined in Example 1.1. 
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Order the monomials of the polynomial ring S = k[Xl, ... , xr] according 
to the degree-lexicographic order, defined as follows: Let A = Xr;'l ... x;:'r 
and B = X~l ... x~r be two monomials. We say that A > B if either deg A > 
deg B, or else deg A = deg B and the sequence of exponents (ml' ... , m r ) 

is greater than the sequence (nl' ... , nr ) in the lexicographic order; that is, 
the difference mi - ni > 0 for the first index i for which it is not zero. 

Given any polynomial P(XI' ... ,xr ), we define the initial term of P to 
be the term involving the greatest monomial in the order >. 

a. Show that for each monomial A there are only finitely many mono
mials B such that A > B. 

b. * Show that if P is invariant under 2:, then the initial term of P is an 
element of k times a monomial Xr;'l ... x;:'r with ml ;:::: m2 ;:::: ... ;:::: mr • 

c. Show that the initial term of the product fil ... Ifr is Xr;'l ... x;:'r , 
where mi = 2:j2:i /-Lj. 

d. Show that the function zr ---+ zr defined by 

r 

(/-Ll,'" ,/-Lr) f--? (ml,'" ,mr) with mi = L/-Lj 
j2: i 

is a monomorphism. Conclude that a monomial Xr;'l ... x;:'r with mi ;:::: 

m2 ;:::: ... ;:::: mr is the initial monomial of a unique product of k 
e.* Now show that any element of SE can be written uniquely as a poly

nomial in the k 

Exercise 1.7:* a. (The simplest group action whose ring of invariants is 
not a polynomial ring) Suppose that k is a field of characteristic =I 2. Let 
the generator 9 of the group G := Z /2 act on the polynomial ring k[x, y] 
in two variables by sending x to -x and y to -yo Show that the ring of 
invariants is k[X2,xy,y2]. Prove that k[x2,xy,y2] ~ k[u,v,w]/(uw - v2). 
Show that this is not isomorphic to any polynomial ring over a field. (A 
theorem of Shepard, Todd and Chevalley shows that if a finite group acts by 
linear transformations of the variables on a polynomial ring, then the ring 
of invariants is isomorphic to a polynomial ring iff the group is generated 
by "pseudo-reflections," where an element is a pseudo-reflection if it acts 
as the identity on a hyperplane. See Sturmfels [1992]' Section 2.4.) 

b. More generally, let G be any finite abelian group, acting linearly on 
the space of linear forms of the ring S = k[Xl,"" xr]' Assume that G acts 
by characters; that is, assume that there are homomorphisms Di : G ---+ k X , 

and g(Xi) = Di(g)Xi for all 9 E G, where k X is the multiplicative group of 
the field k. (As long as the characteristic of k does not divide the order of G, 
this could be achieved, by a suitable choice of variables, for any action of G.) 
Show that the invariants of G are generated by those monomials rrx~i whose 
exponent vectors (aI, ... , ar ) are in the kernel of a map from zr to a certain 
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finite abelian group. Conclude that the quotient field of SG is isomorphic 
to a field of rational functions in r variables. (Emmy Noether asked, in a 
famous paper, whether the last statement is true for finite nonabelian groups 
as well. It is not; see, for example, Saltman [1982] for a survey.) 

Algebra and Geometry 

Exercise 1.8 (A formal Nullstellensatz): Let X and a be partially 
ordered sets, and suppose that I : X ----+ a and Z : a ----+ X are functions such 
that 

i) I and Z reverse the order in the sense that x < y E X implies 
I(x) 2: I(y), and i ::::; j E a implies Z(i) 2: Z(j). 

ii) ZI and IZ are increasing functions, in the sense that x E X imples 
ZI(x) 2: x, and i E a imples IZ(i) 2: i. 

a. Show that I and Z establish a one-to-one correspondence bet
ween the subsets I(X) c a and Z(a) eX. 

b. Let k be a field. Call an ideal I c k[Xl' ... ,xn ] formally radical 
if it is of the form Z (X) for some set X c kn. Use part a to prove 
that there is a one-to-one correspondence between formally rad
ical ideals and algebraic subsets of kn. (Hilbert's Nullstellensatz 
identifies the formally radical ideals with the ordinary radical 
ideals when k is algebraically closed.) 

Exercise 1.9: Let S = k[Xl,"" x r ], with k an algebraically closed field. 
Show that under the correspondence of radical ideals in S and algebraic 
subsets of Ar, the prime ideals correspond to the algebraic sets that cannot 
be written as a proper union of smaller algebraic sets. 

Exercise 1.10: Find rings to represent the following figures. 

x 
The first represents the union of a circle and a parabola in the plane, and 
the second shows the union of two skew lines in 3-space. (You may use the 
Nullstellensatz to prove that your answer is right.) 

Exercise 1.11:* When we draw pictures representing algebraic sets, we 
often draw the same picture for all ground fields k, although by rights it 
generally represents best the case k = R. In fact, we are usually interested 
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in the case of an algebraically closed field k, such as k = C, where the Null
stellensatz applies. The main way in which the pictures can be misleading 
is illustrated by the following examples. 

a. If k = R then the ring k[x, yJl(x2 + y2 -1) n (y - 2 - x2) corresponds 
to the union of a circle and a parabola. 

o 
If k = C, show that there are four points in the intersection of these 
two components. Show that there is a bijection given by polynomial 
maps between the parabola and the line x = o. Show further that 
"projection from the north pole" gives a bijection (given by rational 
functions) between the circle minus one point and the line minus two 
points. (Can you find such a bijection between the circle and the line 
minus one point?) 

b. Show that the polynomial f(x, y) = y2 - (x -1)x(x + 1) is irreducible 
over any field k. Thus X = Z(f) C A2 is an irreducible algebraic set. 
This is not so obvious from the real picture, which approximately 
resembles the following image. 

o 
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Exercise 1.12: Find equations for a parabola meeting a circle just once 
in the complex plane, represented by the following picture: 

Exercise 1.13: Suppose that I is an ideal in a commutative ring. Show that 
ifrad I is finitely generated, then for some integer N we have (rad I)N C I. 
Conclude that in a Noetherian ring the ideals I and J have the same 
radical iff there is some integer N such that IN C J and IN C I. Use the 
Nullstellensatz to deduce that if I, J c S = k[Xl, ... , x r ] are ideals and k is 
algebraically closed, then Z(I) = Z(J) iff IN c J and IN C I for some N. 

Exercise 1.14:* Not all interesting graded rings are generated by forms of 
degree 1, as are the homogeneous coordinate rings of projective varieties. 
For example, k[x, y]j(y2 - x3), the ring corresponding to the cusp becomes 

a graded ring if we give x degree 2 and y degree 3. Prove that the map 
k[x, y] -+ k[t] sending x to t 2 and y to t3 induces an isomorphism 

k[x, y]/ (y2 - x3 ) ~ k[t2, t3] C k[t]. 

Graded Rings and Projective Geometry 

Exercise 1.15 (Classification of conics and quadrics): Here is an 
example of the simplification brought to geometry by the idea of projective 
space. As the reader probably remembers from high school, a conic in the 
affine real plane R2 (that is, the locus defined by a quadratic equation in 
two variables x and y with real coefficients) belongs to one of the following 
eight types: 

a. The empty set (as with x2 + y2 + 1 = 0) 
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b. A single point (as with x2 + y2 = 0) 

c. A line (x2 = 0) 

d. The union of two coincident lines (xy = 0) 

e. The union of two parallel lines (x(x - 1) = 0) 

f. A parabola (y - x2 = 0) 

g. A hyperbola (xy - 1 = 0) 

h. An ellipse (x2 + 2y2 - 1 = 0) 

Any two examples of one of these types differ only by an invertible linear 
transformation of the coordinates. 

a. Show that in the complex affine plane C 2 there are only five types of 
loci defined by equations of degree 2: Types a and b disappear, and types 
g and h coincide. 

b.* Show that in the complex projective plane P2(C) there are only three 
types of loci represented by quadratic equations; they are represented by 
types c, d, and h on the above list. More generally, there are exactly n 
types of nonzero quadratic forms in n variables, classified by rank (where 
the rank of a quadratic form Li<j aijXiXj is defined to be the rank of the 
symmetric matrix (aij)). 

c. Show that the different types in part (a) correspond to the relative 
placement of the conic and the line at infinity, in the sense that a parabola 
is a rank-3 conic tangent to the line at infinity, while an ellipse/hyperbola 
is a rank-3 conic meeting the line at infinity at two distinct points. The 
classification over the real numbers may be recovered from the position of 
these points: A real rank-3 conic meeting the line at infinity in two points 
is a hyperbola if the points are real, and an ellipse if the points are nonreal 
(they are then conjugate complex points). If the affine plane is represented 
by points (x, y, z) E p2 with z = 1, the ellipse is a circle iff it meets the 
line at infinity in the points (1, i, 0) and (1, -i, 0), the "circular points at 
infinity." 

Exercise 1.16: a. Let I be a homogeneous ideal in S = k[xo, ... ,Xr ], and 
suppose that the projective algebraic set corresponding to I is nonempty. 
Let Y c kr+1 be the affine algebraic set associated to I. Show that Y is a 
union of one-dimensional subspaces of k r +1 , and that these one-dimensional 
subspaces are precisely the points of the projective algebraic set associated 
to I. 

b.* Show also that if k is an infinite field and X C Ar(k) is a union of 
lines through the origin, then leX) is a homogeneous ideal. 

Exercise 1.17:* Let I c k[Xl,X2,X3] be the ideal (xi + x2,xi + X3), and 
let X C A3 be the affine algebraic set Z(I). Let X C p3 be the projective 
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closure of X. Show that the homogeneous ideal I(X) is not generated by 
the homogenizations of x? + X2 and x? + X3. We shall return to this subject 
in Chapter 15. 

Hilbert Functions 

Exercise 1.18: Let k be a field. Compute the Hilbert function and poly
nomial for the ring 

k[x,y,z,w]/(x,y) n (z,w) 

corresponding to the disjoint union of two lines in projective 3-space. Com
pare these to the Hilbert function and polynomial of the ring corresponding 
to one projective line, k[x, y]. 

Exercise 1.19: Let k be a field. Let I c k[x, y, z, w] be the ideal generated 
by the 2 x 2 minors of the matrix 

(
X y z) 
y z w ' 

that is, 1= (yw - Z2,XW - yz,xz _ y2). 
Show that R = k[x, y, z, wJl I is a finitely generated free module over S = 
k[x, w]. Exhibit a basis for R as an S-module. Show that there is a ring 
homomorphism R --+ k[s, t] such that x t---7 s3, Y t---7 s2t, Z t---7 st2, W t---7 t3. 
Use the basis you constructed to show that it is a monomorphism. Conclude 
that I is prime. From the rank of R as a free S-module, and the degrees 
of the generators, deduce the Hilbert function of R. Show that R is not 
finitely generated as a module over k[x, y]. 

Exercise 1.20:* Given a number so, find an example of a graded 
k[XI, ... ,xr]-module M generated by elements of degree 0 for which the 
function HM(S) is not equal to the Hilbert polynomial PM(S) for any s < so. 
If you find this too easy, can you find torsion-free k [Xl, ... , Xr ]-modules of 
this sort? 

Exercise 1.21: Consider the subring T C Q[n] of rational polynomials 
that take integral values at sufficiently large integers. T is of interest to us 
because it contains all the Hilbert polynomials discussed in this chapter. 
The ring T obviously contains Z[n], but it is larger: It contains things like 
(~) = (n2 - n)/2. 

a.* Let F(n) be a function defined for sufficiently large integers n,and 
set G(n):= F(n+l)-F(n). Show that F(n) E Q[n] iffG(n) E Q[n], 
and that if these conditions are satisfied then deg F = 1 + deg G. 
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b. Show by induction on the degree that T is a free abelian group with 
basis given by the functions 

H= (~) =n(n-l)···(n-k+l)/k! 0::::: k::::: 00, 

where Fk is a polynomial function in n of degree k. 

c. Although Q IZiz T = Q[n], the ring T itself is not finitely generated 
as an algebra over Z; show that T is not even Noetherian. We shall 
meet T again as a free divided power algebra in Appendix A2. 

Free Resolutions 

Exercise 1.22: Let R = k[x]. Use the structure theorem for finitely gen
erated modules over a principal ideal domain to show that every finitely 
generated R-module has a finite free resolution. 

Exercise 1.23: Let R = k[x]/(xn ). Compute a free resolution of the R
module R/(xm ), for any m ::::: n. Show that the only R-modules with finite 
free resolutions are the free modules. 

Spec, max-Spec, and the Zariski Topology 

An ideal I c R is called a prime ideal if R/ I is an integral domain. I is 
a maximal ideal if R/ I is a field, so maximal ideals are prime. The set of 
all prime ideals of a ring R is called the spectrum of R, written Spec R, 
and the set of all maximal ideals is usually denoted by the typographically 
awkward but reasonably descriptive name max-Spec R. 

Exercise 1.24: In the text we defined the Zariski topology on an algebraic 
set over any algebraically closed field k. We may identify X with the set 
max-Spec A(X). The subset Z(I) is identified with the set of maximal 
ideals containing I. This suggests a way of defining a topology on the set 
of maximal ideals of any ring. The corresponding idea can also be applied 
to the set of all prime ideals, and it turns out to be even more useful there. 
These ideas were first pursued by Oscar Zariski, and the resulting topology 
bears his name. 

Definition. Let R be any ring. The subsets of Spec R of the form 

Z(I) := {p a prime ideal of Rip ::J I}, 

for ideals I of R are called Zariski-closed subsets. When there is no 
danger of confusion, we shall simply call them closed subsets. 

a. Prove that finite unions and arbitrary intersections of closed subsets 
are closed, and therefore the closed subsets define a topology, called 
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the Zariski topology, on Spec R. The induced topology on the 
subset max-Spec R is also called the Zariski topology. 

If k = R or C (or some other topological field), then we have 
two topologies on kn : the topology induced from the topology of k, 
called the classical topology, and the Zariski topology. The Zariski 
topology has many fewer closed sets than the classical topology. 

b. Suppose for simplicity that k is an algebraically closed field, in the 
Zariski topology on Al(k) (that is, on the maximal ideals of k[x]) 
show that the open sets are exactly the complements of finite sets. 
In particular this topology is not Hausdorff. Show that the Zariski 
topology on An (k) = kn is not the product topology, even for n = 2. 

c. We define a distinguished open set of Spec R to be an open set of 
the form U(f) := {p a prime ideal of RII rJ. p} for some I E R. Show 
that the distinguished open sets form a basis for the Zariski topology, 
in the sense that every open set is a union of distinguished open sets. 
Show that Spec R = UiU(J;) for some collection Ii of elements of R 
iff the ideal generated by all the Ii is the unit ideal (1). 

d. Show that if R is any ring then Spec R is compact in the Zariski 
topology (that is, every open covering has a finite refinement). 

Exercise 1.25 (max-Spec for rings of continuous functions): (From 
the formulation of Atiyah and MacDonald [1969], Chapter I, Exercise 26.) 
Let X be a compact Hausdorff space and let R = C(X) be the ring of 
continuous real-valued functions on X. Let p : X ---. max-Spec R be the 
map taking a point x E X to the maximal ideal mx of all continuous 
functions vanishing at x. Prove that p is a homeomorphism, so that X can 
be reconstructed algebraically from C(X), as follows: 

a. p is surjective: Let m be a maximal ideal of C(X). We wish to prove 
that m = mx for some x. Let V = V(m) be the set of common zeros 
of the functions in m. If V is empty, then for each x E X there exists 
Ix Em such that Ix(x) =I- O. Since Ix is continuous, there is an open 
neighborhood U(x) of x such that Ix does not vanish on U(x). By 
compactness, X is the union of finitely many of these neighborhoods, 
say 

X = U(xd U··· U U(xn). 

Use these ideas to construct a function I E m that does not vanish 
anywhere on X. Derive a contradiction. 

It now follows that m C mx for some x. Since m is maximal, the 
ideals are equal. 

b. p is injective: Use Urysohn's lemma (see Kelly [1955], Lemma 4.4; 
this is the only nontrivial fact required in the proof) to show that if 
x =I- y, then there is a continuous function vanishing at x but not y. 
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c. JL is a homeomorphism: A subbasis for the topology of X is given by 
the sets 

Uj = {x E XIJ(x) i O}, J E C(X) 

while a subbasis for the topology of max-Spec R is given by the sets 

Vj = {m E max-Spec RIJ tf- m}, J E C(X). 

Show that JL(Uj) = Vj. 



2 
Localization 

A local ring is a ring with just one maximal ideal. Ever since Krull's paper 
[1938], local rings have occupied a central position in commutative algebra. 
The technique of localization reduces many problems in commutative 
algebra to problems about local rings. This often turns out to be extremely 
useful: Most of the problems with which commutative algebra has been 
successful are those that can be reduced to the local case. 

Despite this, localization as a general procedure was defined rather late: 
In the case of integral domains it was described by Grell, a student of 
Noether's, in [1927]' and it was not defined for arbitrary commutative rings 
until the work of Chevalley [1944] and Uzkov [1948]' long after the basic 
ideas of commutative algebra were established. Perhaps this is because 
interest was focused on finitely generated algebras on the one hand, and 
power series rings on the other, and neither of these classes of rings is closed 
under localization. Instead of passing to a localized ring, as we would now, 
people often used ideal quotients as a substitute. (We shall explain how 
this is done in Exercise 2.3.) 

The idea of localization, as well as the name, comes from a geometric 
special case: Given a point p in an algebraic set X c A;;, we might wish 
to investigate the nature of X "near" p. That is, we wish to investigate 
arbitrarily small open neighborhoods of p in the Zariski topology. The 
Zariski open neighborhoods of p are sets of the form X - Y, where Y 
is an algebraic subset of X not containing p. Now X - Y is generally not 
isomorphic to an affine algebraic set-for example, the plane minus a point 
is not (see, for example, Hartshorne [1977], Exercise 3.5). However, small 
neighborhoods of p in X correspond to large algebraic subsets Y, so we 
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may assume that Y is the set defined by the vanishing of a single function 
J, which does not vanish at p. In this case we shall see that X - Y is 
isomorphic to an algebraic set embedded in Ak+1, and for this reason we 
refer to such a set X - Y as an open affine neighborhood of p. The affine 
ring A(X - Y) is obtained from A(X) by adjoining a multiplicative inverse 
for J; we call this inverting J. If we in.vert all the functions in A(X) not 
vanishing at p, then the corresponding object, though no longer a finitely 
generated k-algebra, is a good algebraic representative of the "germ of X 
at p": It is the local ring of X at p. 

In this chapter we shall explain how to construct new rings from old 
by inverting arbitrary sets of elements. To motivate the constructions, we 
return to the problem of removing an algebraic subset Y defined by one 
equation J = 0 from an algebra set X. The points of X - Yare the points 
x at which J(x) =I=- 0, so they are the points x such that there is a number, 
z(x) say, with z(x)J(x) = 1. The idea is that z(x) should be a regular 
function on X - Y. If X c Ak corresponds to the ideal 

then the points of X - Y will correspond-by projection onto the first r 
coordinates -to the subset of Ar+l defined by the ideal 

J = 1+ (zJ - 1) C k[Xl, ... , xr , z]. 

We may thus define X - Y to be the affine algebraic set in Ar x A 1 = Ar+ 1 

corresponding to J, with the inclusion X - Y C X given as above by 
projection to Ar. The following picture gives the simplest case, where we 
have subtracted Y = {O} from X = A 1, and the set X - Y is embedded as 
a hyperbola in the plane: 

z 

• 
Y = {O} 



In terms of rings, we may write 

A(X - Y) = k[Xl, ... ,Xr,Z]/J 
= A(X)[z]/(zf - 1). 
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Thus we may describe A(X - Y) as the effect of adjoining an inverse of f 
to A(X) in the "freest" possible way. 

2.1 Fractions 

In general, we want to be able to put in inverses of many polynomials at 
once. The product of the inverses of two elements f and g is an inverse for 
fg, so we shall actually be adjoining the inverses of all the elements of a 
set U that is multiplicatively closed: that is, such that any product of 
elements of U is in U -including the "empty product" = 1. The definition 
is motivated by the idea of introducing fractions r / u, with r E Rand u E U 
(or similarly for elements of a module) as ordered pairs (r, u) modulo the 
relations that would be satisfied automatically if the elements of U were 
units and we interpreted r /u as ru- 1. There is a mild complication coming 
from the fact that if f g = 0 in R and we adjoin an inverse for f, then we 
had better make g = O. 

Given a ring R, an R-module M, and a multiplicatively closed subset 
U c R, we define the localization of M at U, written as M[U-1] or 
U-1 M, to be the set of equivalence classes of pairs (m, u) with m E M 
and u E U with equivalence relation (m, u) rv (m', u') if there is an element 
v E U such that v(u'm - um') = 0 in M. The equivalence class of (m, u) is 
denoted m/u. We make M[U-l] into an R-module by defining 

m/u + m' /u' = (u'm + um')/uu' and r(m/u) = (rm)/u 

for m, m' E M, u, u' E U, and r E R. Note that u'm/u'u = m/u, and the 
additive inverse of m/u is (-m)/u, as one would expect. The localization 
comes equipped with a natural map of R-modules M -> M[U- 1] carrying 
m to mil. 

It is convenient to extend the notation a little further: If U c R is an 
arbitrary set, and U c R is the multiplicatively closed set of all products 
of elements in U, then we set M[U-1] := M[U-1]. 

If we apply the definition in the case M = R, the resulting localization 
is a ring, with multiplication defined by 

(r/u)(r'/u') = rr'/uu', 

and in fact M[U-1] is an R[U-1]-module with action defined by 

(r/u)(m/u') = rm/uu' for r E R,m E M and u,u' E U. 
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It is useful to have a simple description of when an element localizes to 0: 

Proposition 2.1. Let U be a multiplicatively closed set of R, and let M be 
an R-module. An element mE M goes to 0 in M[U-l] (that is, m/1 = 0) 
iff m is annihilated by an element u E U. In particular, if M is finitely 
generated, then M[U- 1] = 0 iff M is annihilated by an element of u. 
Proof The first statement is immediate from the definition. For the second, 
note that if generators mi E M are annihilated by elements Ui E U, then 
M is annihilated by the product of the Ui. D 

As a first example, the quotient field of an integral domain R, which 
we shall denote by K(R), is the localization R[U-1] where U = R - {O}. 
Perhaps the most useful analogue for an arbitrary ring R is to take U to 
be the set of nonzerodivisors of R, and define the total quotient ring 
K(R) of R by K(R) := R[U-1]. By Proposition 2.1, K(R) is the "biggest" 
localization of R such that the natural map R -+ R[U-1] is an injection. 

The very definition of a prime ideal says that an ideal PeR is prime iff 
R - P is a multiplicatively closed set. Localization at such a multiplicative 
set is used so often that it has its own notation: If P is a prime ideal and 
U = R - P, then we write Rp for R[U-1]. Similarly, for any R-module M, 
we write Mp for M[U- 1]. We write r;,(P) for the ring Rp/Pp, the residue 
class field of Rat P. For example if R is a domain, so that 0 is a prime 
ideal, then the quotient field of R is K(R) = Flo = r;,(0). 

The local ring of an affine variety X at a point x E X mentioned at 
the beginning of this chapter may now be defined as follows: If R is the 
affine coordinate ring of X, and PeR is the ideal of functions vanishing 
at x, then the local ring of X at x, obtained from R by inverting all the 
functions that do not vanish at x, is the ring Rp. 

If <p : M -+ N is a map of R-modules, then there is a map of R[U-1]

modules <p[U-1] : M[U- 1] -+ N[U- 1] that takes m/u to <p(m)/u, called 
the localization of cpo This makes localization into a functor from the 
category of R-modules to the category of R[U-1]-modules. Later we shall 
show (Proposition 2.10) that if M is finitely presented, then every homo
morphism M[U- 1] -+ N[U- 1] is a localization. With Exercise 2.10 this 
establishes a very tight connection between modules over a ring and mod
ules over a localization. Many constructions, such as the direct sum of 
modules, are preserved by localization (this may be proved directly, and 
it also follows at once from Lemma 2.4, since tensoring preserves direct 
sums). 

If <p : R -+ S is any homomorphism of rings with the elements of U going 
to units, then the elements <p(r)<p(u)-l E S must satisfy the same relations 
as those imposed on the fractions r /u above. Thus, for any such <p there 
is a uniquely defined extension to a homomorphism <p' : R[U-1] -+ S. This 
is called the universal property of localization; see Figure 2.1. It makes 
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q>' 

FIGURE 2.1. Universal property: The extension <p' exists (uniquely) iff <p carries 
elements of U to units. 

precise a sense in which R[U-1] is the result of adjoining inverses of elements 
of U to R in the freest possible way. Another is given in Exercise 2.9. 

Notation: For the remainder of this section, R will be a ring, U a multi
plicatively closed subset, and M an R-module. 

The ideal theory of R[U-1] is a simplified version of the ideal theory of R: 

Proposition 2.2. Let rp : R --+ R[U-1] be the natural map r f-7 r/l. 

a. For any ideal Ie R[U-1] we have I = rp-l(I)R[U-1]. Thus the map 
I f-7 rp-l (1) is an injection of the set of ideals of R[U-1] into the set 
of ideals of R. It preserves inclusions and intersections, and takes 
prime ideals to prime ideals. 

b. An ideal J c R is of the form rp-l(I) for some ideal I c R[U-1] 

iff J = rp-l(JR[U-1]). This is the case iff each element u E U is a 
nonzerodivisor mod J in the sense that if r E Rand ru E J, then 
r E J. In particular, the correspondence I f-7 rp-l(I) is a bijection 
between the primes of R[U-1] and the primes of R not meeting U. 

A similar result holds for submodules of an arbitrary module. We leave 
this easy generalization to the interested reader. 

Proof. 

a. The inclusion I :=) rp-l(I)R[U- 1] is obvious and the reverse inclusion 
follows because for any element r/u E I, with r E Rand u E U, 
the element r is in rp-l(I). It follows at once that I f-7 rp-l(1) is an 
injection. 

If rp : R --+ S is any map of sets, then the operation taking subsets 
of S to subsets of R by I f-7 rp-l(I) preserves inclusions and intersec
tions. If rp is a map of rings and I c S is an ideal, then rp-l (1) is an 
ideal of R. Moreover, rp induces an injection R/rp-l(I) C S/ I. If, in 
addition, I is prime then S is a domain, and it follows that R/rp-l(1) 
is a domain, so rp-l(I) is prime. 

b. If J = rp-l(1) then JR[U- 1] C I, so J = rp-l(JR[U-1]). Since the 
elements of U act as units on R[U-1]/ I, they act as nonzero divisors on 
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the R-submodule R/ J, so J satisfies the given condition. Conversely, 
suppose that the elements of U act as nonzero divisors on R/ J. If r E 
<p-1(JR[U-1]), then r/1 E JR[U-1], so r/1 = j/u for some j E J and 
u E U. It follows that uu'r = u'j E J for some u' E U. Since u and u' 
are nonzerodivisors mod J, we have r E J. Thus J = <p-1(JR[U-1]), 
and we are done. The last statement follows because any element not 
in a prime ideal is a nonzero divisor modulo that ideal. 0 

Corollary 2.3. A localization of a Noetherian ring is Noetherian. 

This is one way in which the Noetherian condition on rings behaves 
"better" than the condition of being finitely generated over a field. 

Proof If Ie R[U-1] is an ideal, then by Proposition 2.2, I = <p-1(1)R[U-1], 
so I is generated by the images in R[U-1] of a set of generators of <p-1(1). 
If R is Noetherian, then <p-1(1) is finitely generated, so I is too. 0 

2.2 Hom and Tensor 

It is useful and suggestive to express the localization in terms of a more 
general construction, the tensor product. There is a brief treatment of 
this notion in Appendix A2 (Multilinear Algebra), but we pause here to 
state some of its main properties. We will often use it along with a closely 
related construction, the module of homomorphisms between two modules, 
and we discuss this first. 

If M and N are R-modules, then we write HOIDR(M, N) for the abelian 
group of all homomorphisms from M to N. It is itself an R-module by the 
definition 

(r<p)(m) := r<p(m) = <perm) for r E Rand <p E HomR(M, N). 

The following properties of Hom are very easy to prove from the definition; 
the reader who is not familiar with these ideas should probably pause and 
check them as an exercise: 

1. HomR(R, N) ~ N by the map <p f-> <p(1). 

2. Hom is functorial in the sense that if a: M' -+ M and (3 : N -+ N' 
are homomorphisms (note their directions!), then there is an induced 
homomorphism 

<p f-> (3<pa. 

This homomorphism is often denoted by HomR(a,(3); or if (3 is the 
identity map of N, by HomR(a, N) (and similarly when a is the 
identity map of M). 
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3. Hom takes direct sums in the first variable and direct products in the 
second variable to direct products, in the sense that 

HomR(EBiMi, N) = IIi Hom(Mi, N) 
HomR(M, IIjNj ) = IIj Hom(M, Nj ); 

this just says that giving a map from the direct sum EBiMi to N is 
the same thing as giving a map from each Mi to N, and similarly for 
maps from M to IIjNj . 

4. If M is an R-module, then the functor HomR(M, -) preserves kernels 
in the sense that if A = ker(4' : B -+ C), then HomR(M, A) = 
ker(HomR(M,4') : HomR(M, B) -+ HomR(M, C)). This is usually 
expressed by saying that Hom is a left-exact functor, which means 
that if 

O-+A-+B-+C 

is an exact sequence (such a thing is sometimes called a left-exact 
sequence) and M is any module, then the sequence of maps 

obtained because HomR(M, -) is a functor, is exact. (Interpretation: 
Regarding A as a submodule of B, and BIA as a submodule of C, a 
nonzero map M -+ A composes with the monomorphism A -+ B to 
give a nonzero map M -+ B; and a map M -+ B composed with the 
map to MIA c C gives 0 iff the image of M is contained in A C B.) 
Similarly, if 

is an exact sequence (sometimes called a right-exact sequence), 
then 

0-+ HomR(C,N) -+ HomR(B,N) -+ HomR(A,N) 

is exact. These two properties are immediate from the definitions. 

It is often necessary to work with bilinear maps: If M, N, and Pare 
R-modules, then a bilinear map from M x N to P is defined to be a map 
of sets (not a map of modules!) '¢ : M x N -+ P satisfying the condition 
of bilinearity: 

'¢((am + a'm') x (bn + b'n')) = ab'¢(m x n) + a'b,¢(m' x n) 

+ab',¢(m x n') + a'b',¢(m' x n'). 

Bilinear maps may be interpreted in terms of ordinary maps of R-modules 
by introducing a new module, the tensor product M®RN, which may 
be defined roughly as the module with just enough relations to define a 
bilinear map M x N -+ M ®R N. 
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More formally, we define M 0R N to be the module with generators 
{m 0 n/m E M, n E N} and relations 

(am+a'm')0(bn+b'n') = ab(m0n)+a'b(m'0n)+ab'(m0n')+a'b'(m'0n'), 

mimicking the condition of bilinearity. Note that in particular we have 
r(m 0 n) = (rm) 0 n = m 0 (rn). When the ring R is clear from context, 
we sometimes write M 0 N for M 0R N. 

It is obvious from the definition that the map m x n I-t m0n is a bilinear 
map from MxN to M0RN. Thus, if cp : M0RN ---7 P is a homomorphism, 
then the map 'IjJ : M x N ---7 P defined by 'IjJ(m x n) = cp(m 0 n) is 
bilinear. Conversely, since no relations other than the bilinear relations 
were imposed on M 0 R N, if 'IjJ : M x N ---7 P is bilinear then there 
is a unique homomorphism cp : M 0R N ---7 P satisfying 'IjJ(m x n) = 
cp(m 0n). 

One point about this construction requires some care: Not every element 
of M 0 R N may be written in the form m 0 n. Rather, every element is 
expressible (generally in many ways) as a finite sum L mi 0 ni for some 
mi E M and ni E N. 

Though brief, the definition of the tensor product is somewhat opaque
for example, it is not easy to tell when two elements L mi 0 ni and 
L mj 0 nj are equal (though a general criterion is given in Chapter 6). 
In practice, the following facts are often used to get information about 
M 0R N. The reader will note that they are in a certain sense dual to the 
preceding facts about Hom. There is a very close relationship between 0 
and Hom, called adjointness, explained in Appendix 5. The properties 
below can be deduced from this relationship, or directly by using the char
acterization of maps from M 0 R N as bilinear maps from M x N, given 
above. 

1. For any module M we have M0RR = R0RM = M by isomorphisms 
sending 10m and m 0 1 to m. Also, M 0 R N ~ N 0 R M by a map 
sending m 0 n to n 0 m. 

2. The tensor product is functorial in the sense that if a : M' ---7 

M and (3 : N' ---7 N are homomorphisms, then there is an induced 
homomorphism called a0(3: M'0RN' ---7 M0RN that sends m'0n' 
to a(m') 0 (3(n'). 

3. The tensor product preserves direct sums in the sense that if M = 
EBiMi, then M 0R N = EBi(Mi 0R N). 

4. The tensor product preserves cokernels in the sense that if a : M' ---7 

M is a map with cokernel coker(a) = M", then for any module N the 
cokernel of the induced map a01: M'0RN ---7 M0RN is M"0RN. 
This is usually expressed by saying that the tensor product is right 
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exact in the sense that the functor - ®R N takes an exact sequence 
of the form 

M' ---7 M ---7 Mil ---7 0 

(that is, a right-exact sequence) to an exact sequence 

These ideas are often used together. For example, to compute the mod
ule M ® R N we first find a free presentation of M: That is, we write M 
as the cokernel of a map of free R-modules 0: : ffiiEIR ---7 ffijEJR, where 
I and J are sets indexing the bases of the two modules. Giving such a 
presentation is equivalent to giving generators and relations for M as an 
R-module. From facts 1 and 3 we see that (ffiiEJ R) ®R N = ffiiEI N is 
simply a direct sum of copies of N, and similarly for (ffijEJR) ®R N. (In 
fact, if 0: is written as a matrix using the given bases of the free mod
ules ffiiEI Rand ffijEJ R, then the map 0: ® 1 is given in a natural sense by 
the same matrix.) Thus we get an explicit map 0: ® 1 : ffiiE1N ---7 ffijEJN 

whose cokernel is M ®R N. Of course, similar constructions are possible 
with Hom. 

The tensor product is extremely useful in relating the properties of a ring 
and an algebra over it. If M is an R-module and S is an R-algebra, then 
S®RM is not only an R-module, it is also an S-module with multiplication 
given by the rule s(t ® m) = st ® m for s, t E Sand m E M. (In the case 
where S is a localization R[U-1], we shall prove below that S ®R M = 
M[U- 1].) 

Carrying this one step further, if A and B are both R-algebras, then 
the A-module A ®R B is naturally an R-algebra too, with multiplication 
(a ® b)(c ® d) = (ac) ® (bd). There are natural maps of algebras A ---7 

A ®R Band B ---7 A ®R B sending a f-+ a ® 1 and b f-+ 1 ® b. The algebra 
A ®R B is the "freest" way to put the algebras A and B together into 
a commutative algebra: Given any commutative R-algebra C and maps 
0: : A ---7 C and (3 : B ---7 C of algebras, the map A x B ---7 C sending 
a x b to o:(a)(3(b) is bilinear, so there is a unique map A ®R B ---7 C of 
modules, which turns out to be a map of algebras too, sending a ® b to 
o:(a)(3(b). 

The reader who has not seen such things before would do well to pause 
and try to work out a few examples, such as those given in Exercise 2.4. 

There is an amazingly useful geometric interpretation of the tensor prod
uct of algebras: If R, A, and B are the coordinate rings of affine varieties 
X, Y, and Z over an algebraically closed field, then the maps R ---7 A 
and R ---7 B corresponding to the algebra structures correspond to maps 
0: : Y ---7 X and (3 : Z ---7 X. It turns out that A ® RBis then the coordinate 
ring of the "fiber product" {(y, z) E Y x Zlo:(y) = (3(z)}. See, for example, 
Hartshorne [1977, Chapter 2]. 
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The localization of modules can be described in terms of tensor products: 

Lemma 2.4. The natural map R[U-1]®RM ----+ M[U- 1] defined by sending 
r/u ® m to rm/u is an isomorphism. 

Proof. It is enough to give a map of sets that is inverse to the given map. We 
define first a map 0: : M xU ----+ R[U-1] ®RM by sending (m, u) to l/u®m. 
We claim that this induces a map f3: M[U- 1]----+ R[U-1] ®RM. To see that 
f3 is defined, suppose that (m', u') is another pair, with m/u = m' /u'. 
This means that there is an element v E U such that vu'm = vum'. Thus 
1/(vuu')®vu'm = 1/(vuu')®vum'. But 1/(vuu')®vu'm = vu' /(vu'u)®m = 
1/ u®m by the definition ofthe tensor product. Similarly, 1/ (vuu') ®vum' = 
l/u' ®m'. Putting these together gives the desired equality. It is immediate 
that f3 is the inverse of the map r /u ® m = l/u ® rm f--+ rm/u. 0 

We next turn to a central property of localization called flatness. We say 
in general that an R-module F is flat if for every monomorphism M' ----+ M 
of R-modules, the induced map F ®R M' ----+ F ®R M is again a monomor
phism. Since tensor products always preserve right-exact sequences, this is 
the same as saying that tensoring with F preserves all exact sequences-in 
particular, it preserves kernels and cokernels. In Chapter 6 we shall explain 
something of the geometric meaning and uses of this condition. The most 
interesting case occurs when F is an R-algebra. An example of how this 
condition is used is given in Proposition 2.10. The next result shows that 
the condition is satisfied by localizations of R: 

Proposition 2.5. For any multiplicatively closed subset U c R, the ring 
R[U-1] is fiat as an R-module; that is, localization takes sub modules to 
submodules, and thus preserves kernels and cokernels. 

Proof. Given an injection M' eM, we must show that 

is an injection. To do this, we use the other description of the localization, 
and it is enough to prove that the natural map 

extending the composite 

is an injection. But if, for some m EM', the element m/u goes to zero in 
M[U- 1], then there must be an element v E U such that vm = 0 in M, 
and this will hold in M' as well. Thus m/u = 0 already as an element of 
M'[U- 1], and we are done. 0 
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Here is a useful consequence: 

Corollary 2.6. Localization preserves finite intersections: That is, if 
M I , ... , Mt eM are submodules, then (njMj)[U- I] = nj(Mj[U-I]). 

Proof. The point is that intersections can be defined in terms of 
kernels. Explicitly: The submodule niMi is the kernel of the map 
M -t ffiiM j Mi. Since localizing preserves kernels, quotients, and direct 
sums, we see that (njMj)[U- I] is the kernel of the map M[U- I] -t 

(ffiiMjMi) [U- I] = ffii((MjMi) [U- 1] = ffiiM[U-I]j(M;[U- I]); that is, 
(njMj)[U- I] = nj(Mj[U-I]). D 

Unfortunately, localization generally does not preserve infinite intersec
tions (see Exercise 2.5). 

We reemphasize the last statement of Proposition 2.1 with a definition: 
The support of M, written Supp M, is defined to be the set of prime 
ideals such that Mp i=- O. The last statement of Proposition 2.1 immediately 
gives: 

Corollary 2.7. If M is a finitely generated R-module, and P is a prime 
of R, then P E Supp M iff P contains the annihilator of M. D 

For those who know about sheaves, the terminology can be explained as 
follows: In algebraic geometry modules over R are treated as sheaves on 
Spec R. The stalk of the sheaf corresponding to the module M at the point 
P E Spec R is the localization Mp. Support is a well-defined notion for 
any sheaf; it is the set of points where the stalk of the sheaf is nonzero. 

We have already mentioned the geometric interpretation of localization: 
If X is an affine algebraic set over an algebraically closed field, R = A(X) 
is its coordinate ring, and m = mp is the maximal ideal corresponding to 
a point p EX, then Rm is the ring of "polynomial function germs" on 
the "germ" of X at p. Here we interpret a germ just as in the theory of 
manifolds: The germ of a function on the germ of a space X at a point p 
is by definition the equivalence class of a function defined on some open 
neighborhood of p, two functions being equivalent if they agree on some 
(perhaps smaller) open neighborhood on which both are defined. We have 
already seen that any "polynomial function defined on a neighborhood of 
p" is of the form f ju for f, u E Rand u not vanishing at p (that is, 
u tf. mp). Two such polynomial functions f ju and gjv represent the same 
germ if they agree on some small neighborhood of p, which means that they 
agree on the set wherever some function w E R - mp is nonzero, that is, 
uvw(f ju - gjv) = 0 as a function on X; this matches exactly the criterion 
for f j u and 9 j v to be equal in Rm. (In the theory of schemes it is convenient 
to let the definitions go the other way: The germ of X at p is defined in terms 
of the local ring Rm; see Hartshorne [1977] or Eisenbud and Harris [1992].) 
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The statement that a function is zero iff it is zero locally at any point 
has as its analogue the following extremely useful lemma. 

Lemma 2.8. Let R be a ring and let M be an R-module. 

a. If mE M, then m = 0 iff m goes to zero in each localization Mm of 
M at a maximal ideal m of R. Similarly, 

b. M = 0 iff Mm = 0 for each maximal ideal m of R. 

Proof m goes to zero in a localization Mm iff the annihilator I of m is 
not contained in m. But m = 0 iff I = R iff I is not contained in any 
maximal ideal of R (this last step uses Zorn's lemma, in general, though 
for Noetherian rings the existence of a maximal ideal containing a given 
ideal is of course axiomatic). This proves statement a. 

To deduce statement b, note that M = 0 iff every element of M is 0; using 
part a, we see that this happens iff every element of M goes to zero in every 
localization Mm at a maximal ideal iff every such Mm is O. D 

This lemma can be used with Proposition 2.5 to reduce many questions 
to the local case. Here is a typical step in the reduction process: 

Corollary 2.9. If cP : M ---7 N is a map of R-modules, then cP is a 
monomorphism (or epimorphism, or isomorphism) iff for every maximal 
ideal m of R the localized map 

is a monomorphism (or epimorphism, or isomorphism). 

Proof cP is a monomorphism iff ker cp = O. Because localization is flat, 
(kercp)m = ker(cpm). Applying the lemma, we get the first version. The 
statement about epimorphism is similar (but does not require flatness). The 
statement about isomorphism is made by putting the first two statements 
together. D 

An easy but useful application is the general form of the "Chinese remain
der theorem" given in Exercise 2.6. 

We next turn to a more sophisticated bond between a ring and its 
localizations: Homomorphisms between localizations of nice modules all 
come from homomorphisms between the original modules. In fact this 
relation depends only on flatness. The hypothesis we need involves a certain 
R-module M being finitely presented. In the cases of primary interest to us, 
R will be Noetherian. In this case M is finitely presented iff M is finitely 
generated, since if cP : G ---7 M is a surjection from a finitely generated free 
module G, then ker cP, as a submodule of G, is also finitely generated, so 
M has a finite free presentation. 
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Proposition 2.10. Let R be a ring and let S be an R-algebra. If M and 
N are R-modules, then there is a unique S -module homomorphism 

that takes an element 1 @ cp E S @R HomR(M, N) to the S-module homo
morphism 1 @R cp : S @R M ----* S @R N in Homs(S @R M, S @R N). If 
S is flat over Rand M is finitely presented, then aM is an isomorphism. 
In particular, if M is finitely presented, then HomR(M, N) localizes in the 
sense that the map a provides a natural isomorphism 

for any subset U c R. 

Proof. By Proposition 2.5, the last statement is a special case of the first 
statements. 

The map of sets a' : HomR(M, N) ----* Homs(S @ M, S @ N) taking a 
homomorphism cp to the homomorphism 1 @ cp is easily seen to be a map 
of R-modules. Since the target is an S-module, a' extends to a unique map 
a = aM of S-modules with the desired property. 

Now we suppose that S is flat and M is finitely presented, and prove 
that aM is an isomorphism. First suppose that M = R. We may identify 
HomR(R, N) with N by taking a map cp to the element cp(l). Also, S@RR = 
S, and the same remark shows that Homs(S @R R, S @R N) = S @R N. It 
is easy to see that the map aR : S @R N ----* S @R N is the identity map. 

Next suppose that M = EBi" R is a free module of finite rank, the direct 
sum of m copies of R. The functors Hom and @ both commute with finite 
direct sums, and the map aM also decomposes as a direct sum, ae/['R = 
EBi"aR. Since each aR is an isomorphism, so is aM. 

Finally, suppose M is any finitely presented module. Choose a finite free 
presentation 

F!:"'G~M----*O. 

If we tensor with S, then because tensoring preserves right-exact sequences, 
and because S @R F and S @R G are finitely generated free S-modules, we 
get a finite free presentation of S @R M as an S-module. 

To simplify the notation, we denote the tensor product S @R M by 
M', and similarly for other modules and maps. Applying HomR( -, N) to 
the free presentation of M and Homs( -, N') to that of M', we obtain 
exact sequences 0 ----* HomR(M,N) ----* HomR(G,N) ----* HomR(F,N) and 
o ----* Homs(M',N') ----* Homs(G',N') ----* Homs(F',N'). Because S is 
flat over R, we may tensor the first of these with S and still have an 
exact sequence, 0 ----* HomR(M,N)' ----* HomR(G,N), ----* HomR(F,N)'. 
The map defined in the proposition is, with this notation, a map aM : 
HomR(M, N)' ----* Homs(M', N'); we wish to show that aM is an isomor
phism. By the arguments above, ap and ac are isomorphisms. Putting 
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these maps together, we get a commutative diagram with exact rows 

o ----> HomR(M,N)' 
I{!VI 

HomR(G,N)' 
1/;VI 

HomR(F, N)' ----> ----> 

laM 1 aa 1 aF 
o ----> Homs(M',N') ----> Homs(G', N') ----> Homs(F', N'), 

I{!IV 1/;" 

where 'Pv, and 'Ipv' are the maps induced by 'P and 'IjJ, and 'PIV and 'ljJ1V are 
the maps induced by 'P' and 'IjJ'. 

It now follows formally that aM is an isomorphism, for example, from 
the "Five-Lemma" of Appendix 3, Exercise A3.11 (one adds another 0 ----> 

to the left of each of the rows above to make each one a five-term exact 
sequence). Here is a direct proof: 

First we prove that aM is a monomorphism. Suppose that x E ker aM. 
Since the diagram commutes, we have ac'PV'(x) = 'PlVaM(x) = O. Since ac 
is an isomorphism, 'PV'(x) = O. Since 'Pv, is a monomorphism, x = O. 

Finally, we show that aM is an epimorphism. Suppose that y E 
Horns (M', N'). Since ac is an epimorphism, we may choose z E 
HomR(G, N)' so that ac(z) = 'P1V(y). To show that z comes from an ele
ment of HomR(M, N)', it suffices, since the first row of the diagram is 
exact, to show that 'ljJv'(z) = o. By commutativity, aF'ljJv,(z) = 'ljJlVac(Z) = 
'ljJ1V'PIV(y) = O. Since aF is an isomorphism, we see that 'ljJv'(z) = 0, 
so z = 'PV'(x) for some x E HomR(M, N)'. Furthermore, 'PIV aM(x) = 
D'.C'PV'(x) = D'.c(z) = 'P1V(y). Since 'PIV is a monomorphism, we see that 
D'.M(X) = Y as required. 0 

We shall apply this result often, starting in Theorem 2.13 below. See 
Exercises 3.3, 4.11-4.13, and 19.4 for some surprising applications beyond 
the ones in the text. 

2.3 The Construction of Primes 

The complement of a prime ideal is, as we have already mentioned, a mul
tiplicatively closed subset. There is a sort of converse: 

Proposition 2.11. If R is any commutative ring, U eRa multiplicatively 
closed subset, and I c R an ideal maximal among those not meeting U, 
then I is prime. 

Quite generally, ideals maximal with respect to some property have an 
uncanny tendency to be prime-see the problems for some more examples, 
one of which is at the center of the theory of primary decomposition, treated 
in Chapter 3. 
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Proof. If f, g E R are not in I, then, by the maximality of I, both I + (f) 
and I + (g) meet U. Thus, there are elements of the form af + i and bg + j 
in U with i, j E I. If fg were in I, then the product of af + i and bg + j 
would be in I, contradicting the fact that I doesn't meet U. D 

Here is a variant of the proof just given that makes the relation to local
ization obvious: Since distinct ideals of R[U-1] contract to distinct ideals 
of R, the ideal I R[U-1] must be a maximal ideal, and thus prime. If P is 
the preimage of I R[U-1] in R, then P is prime. But I c P, and P does 
not meet U, so I = P. 

Note that, for any given U, we can use Zorn's lemma to produce an ideal 
I as in the proposition. 

This simple idea is extremely fruitful. For example, it gives a formula for 
the radical of an ideal (recall from Chapter 1 that if I c R is an ideal, then 
rad I = {f E Rlr E I for some n}): 

Corollary 2.12. If I is an ideal in a ring R, then radI = {fir E I 
for some n} = nPa prime containing I P. In particular, the intersection of all 
primes of R is the radical of (0), which is the set of all nilpotent elements 
of R. 

Proof. The set rad I is obviously contained in the right-hand side. Con
versely, if f is not in rad I, then an ideal maximal among those containing 
I and disjoint from {r In ~ I} is prime, so f is not contained in the 
right-hand side. D 

2.4 Rings and Modules of Finite Length 

Recall that a ring is called Artinian if it satisfies a condition dual to the 
Noetherian condition: the descending chain condition on ideals. That is, R 
is Artinian if every descending chain of ideals is finite. We shall see below 
that any Artinian ring is automatically Noetherian. 

We shall show in particular that all the prime ideals in a Noetherian ring 
R are maximal iff R is Artinian, and in this case there are only finitely 
many maximal ideals. As a consequence, we shall see that an algebraic 
set whose coordinate ring is Artinian has only finitely many points (the 
converse is easy). This is the germ of a fundamental finiteness principle in 
algebraic geometry. 

We shall analyze the structure of Artinian rings and modules over them 
in terms of localization. Consider a simple example, the ring Z/(12). It is 
Artinian (as is every finite ring!) and has maximal ideals (2) and (3). From 
an elementary course in algebra the reader will know that Z/(12) ~ Z/(4) x 
Z/(3)-this is a case of the "Chinese remainder theorem," known to Sun
Tsu in the first century A.D. We may give a sophisticated description of the 
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isomorphism as follows: If we localize at the prime (2), then all the integers 
not divisible by 2 become units. Thus (12)(2) = (4)(2). On the other hand, 
the odd numbers are already units in Z/(4), so (Z/(12))(2) = (Z/(4))(2) = 
Z/(4). The localization map Z/(12) ---; (Z/(12))(2) = Z/(4) sending n E 
Z/(12) to n/1 is the same as the projection map sending n = n + (12) 
to n + (4). Similarly, (Z/(12))(3) = Z/(3) by the projection map. Putting 
these maps together, we get the isomorphism Z/(12) ---; Z/(4) x Z/(3). We 
shall prove that something similar happens for any Artinian ring. 

We begin with a general study of modules with finite composition series: 
If M is a module, then a chain of submodules of M is a sequence of 
submodules with strict inclusions 

Such a chain is said to have length n (the number of links). The chain is said 
to be a composition series if each Mj/Mj+1 is a nonzero simple module 
(that is, has no nonzero proper submodules). Equivalently, a composition 
series is a maximal chain of submodules of M. We define length M to 
be the least length of a composition series for M, or 00 if M has no finite 
composition series. We shall prove that every composition series for M has 
the same length. 

Of course, a simple module must be generated by any nonzero element, 
so each M j/Mj+1 ~ R/P for some ideal P, which may be described by 
P = ann Mj/Mj+1• Again because Mj/Mj+1 is simple, P must be a maximal 
ideal. 

The next result, which tells something of the structure of modules of finite 
length, includes the Jordan-Holder theorem for modules and the Chinese 
remainder theorem. (A more usual form of the Chinese remainder theorem, 
proved with the same methods, is given as Exercise 2.6.) 

Theorem 2.13. Let R be a ring, and let M be an R-module. M has a 
finite composition series iff M is Artinian and Noetherian. If M has a 
finite composition series M = Mo :) Ml :) ... :) Mn = 0 of length n, then: 

a. Every chain of submodules of M has length :S n, and can be refined 
to a composition series. 

b. The sum of the localization maps M ---; M p, for P a prime ideal, 
gives an isomorphism of R-modules 

where the sum is taken over all maximal ideals P such that some 
M;/Mi+l ~ R/P. The number of M;/Mi+1 isomorphic to R/P is the 
length of Mp as a module over Rp, and is thus independent of the 
composition series chosen. 

c. We have M = Mp iff M is annihilated by some power of P. 
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Proof. First suppose that M is Artinian and Noetherian, so that it sat
isfies both ascending chain condition and descending chain condition on 
submodules. By the ascending chain condition we may choose a maximal 
proper submodule M1, a maximal proper subrp.odule M2 of M1 , and so 
on. By the descending chain condition this sequence of submodules must 
terminate, and it can only terminate when some Mn = O. In this case 
M = Mo :J Ml :J ... :J Mn = 0 is a composition series for M. 

a. Suppose that M' c M is a proper submodule. We shall show that 
length M' < length M. The idea is simple: We intersect the terms of the 
given composition series for M with M' and derive a shorter composition 
series for M'. 

The quotient (M' n Mi)/(M' n Mi +1) is isomorphic to ((M' n Mi) + 
Mi+d/Mi+l c MdMi+l' Since MdMi+l is simple, we have either (M' n 
Mi)/(M' n Mi+d = 0 or else (M' n Mi)/(M' n Mi+d is simple, and (M' n 
Mi) + Mi+l = Mi' 

We claim that the latter possibility cannot happen for every i. Assum
ing on the contrary that it did, we prove by descending induction on i 
that M' :J Mi for every i, and we get a contradiction from the statement 
M' :J Mo = M. If i = n then clearly M :J Mi. Supposing by induction 
that M' :J Mi+l' we see that M' n Mi = (M' n Mi) + M i +1 = Mi, and it 
follows that M' :J Mi' 

From these facts we see that the sequence of submodules M' :J M' nM1 :J 

... :J M' n Mn = 0 can be changed, by leaving out the terms M' n Mi such 
that M' n Mi = M' n Mi, to a composition series for M' whose length is 
< n. Since we could do this for any composition series for M, we get length 
M' < length M as claimed. 

Suppose now that M = No :J Nl :J ... :J Nk is a chain of submodules. 
We shall show by induction on length M that k:::; length M. This is obvious 
if length M = 0, since then M = O. By the argument above, length Nl < 
length Mj so by induction, the length of the chain Nl :J ... :J Nk, is k - 1 
:::; length N 1• Since length Nl < length M, it follows that k :::; length M. 

From the definition of length it now follows that every maximal chain of 
submodules has length n, and every chain of submodules can be refined to a 
maximal chain. Further, n is a uniform bound on the lengths of all ascending 
or descending chains of submodules, so that M has both ascending chain 
condition and descending chain condition. 

b. By Corollary 2.9 it suffices to show that the given map becomes 
an isomorphism after localizing at any maximal ideal Q of R. This will 
be easy once we understand what happens when we localize a module of 
finite length. 

We begin with the case when M has length 1, that is, when M is a 
simple module. In this case M ~ R/P for some maximal ideal P = annM. 
If P = Q, then since R/Q is a field, the elements outside of Q act as units 
on R/Q, and we see that (R/Q)Q = R/Q. If on the other hand P ¥= Q, 
then since P is maximal, P rt Q, so PQ = RQ. Thus (R/ P)Q = RQ/ PQ = O. 
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It follows in particular from this that if Q and Q' are distinct prime ideals, 
then (MQ)Q' = O. 

We now return to the general case, length M = n < 00. The composition 
series for M localizes to a sequence of submodules 

The modules M;/Mi+l have length 1, so the case already treated shows 
that (M;/Mi+l)Q = M;/Mi+l if Q = annM;/Mi+l' and (M;/Mi+dQ = 0 
otherwise. Thus MQ has a finite composition series corresponding to the 
subseries of the one for M, obtained by keeping only those (Mi)Q such 
that M;/Mi+l ~ RIQ. In particular, if none of the modules M;/Mi+l is 
isomorphic to RIQ, then MQ = 0; and if Q and Q' are distinct maximal 
ideals, then (MQ)Q' = O. 

Now consider the map 0: : M --+ ffiMp , the sum of the localization maps, 
where P ranges over those maximal ideals such that some M;/ Mi+ 1 ~ RIP. 
We see from the above that we could harmlessly extend the sum to all 
maximal ideals; the new terms are all O. For any maximal ideal Q and any 
module M we have (MQ)Q = MQ, so the identity map is one part of the 
localization of 0:: 

O:Q : MQ --+ (ffiPa maximal ideal Mp)Q = ffiPa maximal ideal ((Mp)Q). 

But if P -I- Q and M has finite length, then we have seen that (Mp)Q = O. 
Thus O:Q is the identity map for every maximal ideal Q, and it follows that 
0: is an isomorphism. 

c. Suppose that M is annihilated by a power of a maximal ideal P. If 
Q -j. P is another maximal ideal, then P contains an element not in Q. 
This element acts as a unit on MQ. Since a power of the element acts as 
o on M, we must have MQ = O. Thus by part b, M ~ Mp. Conversely, 
suppose that M ~ Mp. The preceding description of localization shows 
that every factor M;/Mi+l ~ RIP. By induction, we see that pdM C Md, 
and in particular pn M = O. 0 

We now return to Artinian rings. The result that an Artinian ring is 
Noetherian, which is part of the next theorem, is true even for noncommu
tative rings (with unit); in the more general setting it is due to Hopkins 
[1939]. The proof in the commutative case is somewhat simpler. We follow 
the presentation of Altman and Kleiman [1970]. 
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Theorem 2.14. Let R be a ring. The following conditions are equivalent: 

a. R is Noetherian and all the prime ideals in R are maximal. 

b. R is of finite length as an R-module. 

c. R is Artinian. 

If these conditions are satisfied, then R has only finitely many maximal 
ideals. 

Proof. a =} b: If R is Noetherian and not of finite length, let I c R be an 
ideal maximal with respect to the property that R/ I is not of finite length. 
We claim that I is prime. Indeed, if ab E I and a rt I, then we may form 
an exact sequence 

o ~ R/(I: a) ~ R/I ~ R/(I + (a)) ~ o. 

Since I + (a) properly contains I, the module R/(I + (a)) has finite length. 
If b rt I, then (I : a) properly contains I as well, so by assumption R/(I : a) 
also has finite length. Putting together composition series for R/ (I + (a)) 
and R/(I : a) we get a composition series for R/ I, so it has finite length 
too, contrary to our assumption. The contradiction shows that bEl. Thus 
I is prime. 

Now suppose in addition that all the prime ideals in R are maximal. 
If R were not of finite length, then the prime I just constructed would 
be a maximal ideal and R/ I would be a field, contradicting the defining 
property of I and showing that R is of finite length after all. 

b =} c: This is clear from Theorem 2.13. 
c =} a: Suppose that R is Artinian. Our first goal is to show that 0 is a 

product of maximal ideals of R. Since R is Artinian, we may choose from 
among all ideals that are products of maximal ideals of R, a minimal such 
ideal, J. We wish to show that J = o. 

For every maximal ideal M of R, the minimality of J implies that M J = 
J; in particular, J c M. Since J2 is also a product of maximal ideals, we 
have J2 = J. If J -I- 0, we can choose an ideal I minimal among ideals not 
annihilating J. Since (I J)J = I J2 = I J -I- 0, and I J c I, we must have 
IJ = I. 

Some element f E I must satisfy f J -I- 0, and since I is minimal, we 
must have I = (1). Since I J = I, there is an element 9 E J such that 
f = fg, or equivalently (1 - g)f = O. Since 9 is in every maximal ideal, 
1 - 9 is in none; that is, 1 - 9 is a unit. Thus f = O. This contradiction 
shows that indeed J = O. 

We now have 0 = M1M2 ··· M t for some maximal ideals Mi of R. For 
each s, the quotient M1M2 ··· M s /M1M 2 ·•• MS+l is a vector space over 
R/ Ms +1 . Any subspace is a submodule, corresponding to a certain ideal of 
R containing M1M2 ••• Ms +1. Similarly, any descending chain of subspaces 
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corresponds to a descending chain of ideals of R, and since R is Artinian, 
any such chain must be finite. Thus M1M2 ··· Ms/M1M2··· Ms+l is finite 
dimensional over R/Ms+l and has in particular a finite composition series. 
Putting these composition series together, we see that R has finite length. 
By Theorem 2.13, R is Noetherian. 

Suppose that P is a prime ideal of R. Since P :J 0 = MIM2 ... Mt , we 
see that P :J Mi for some i. Since Mi is a maximal ideal, P = Mi, and P 
is maximal. In particular, every maximal ideal is one of the M i , so there 
are only finitely many. 0 

Applying this result in the geometric context, we get: 

Corollary 2.15. Let X be an affine algebraic set over a field k. The fol
lowing are equivalent: 

a. X is finite. 

b. A(X) is a finite dimensional vector space over k, whose dimension is 
the number of points in X. 

c. A(X) is Artinian. 

Proof. a '* b: If X is finite, then since A(X) is the ring of polynomial 
functions restricted to X, we have A(X) = ITxEXA(X) = ITxEXk, a direct 
product of as many copies of the residue field as there are points in X. 

b ==} c: If R is a k-algebra that is finite dimensional as a k-vector 
space, then any descending chain of subvector spaces is finite, and thus 
any descending chain of ideals is necessarily finite. 

c '* a: If A(X) is Artinian, then by Theorem 2.14 it has only finitely 
many maximal ideals. Since the points of X correspond to maximal ideals, 
we are done. 0 

Combining Theorem 2.14 with Theorem 2.13b, we deduce a sort of struc
ture theorem for Artinian rings: 

Corollary 2.16. Any Artinian ring is a finite direct product of local 
Artinian rings. 

Proof. Since R has finite length as a module over itself, we see from Theo
rem 2.13 that the sum of the finitely many localization maps, R -+ tIJiRMi is 
an isomorphism of R-modules. The R-algebra ITi RMi' which is the direct 
product of the localizations, is nothing but tIJiRMi when regarded as an 
R-module. Since each map R -+ RMi is a map of rings, the isomorphism 
of R-modules R -+ ITi RMi is actually an isomorphism of rings, and we see 
that R is the direct product of finitely many local Artinian rings. 0 

We can also characterize modules of finite length over Noetherian rings. 
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Corollary 2.17. Let R be a Noetherian ring, and let M be finitely generated 
R-module. The following are equivalent: 

a. M has finite length. 

b. 50me finite product of maximal ideals IIi=l P; annihilates M. 

c. All the primes that contain the annihilator of M are maximal. 

d. R/ ann(M) is an Artinian ring. 

Proof. a=} b: If M has finite length, then by Theorem 2.13b and c, M is a 
direct sum of modules, each of which is annihilated by a power of a certain 
prime. The product of these powers annihilates M. 

b =} c: If a product of maximal ideals IIi=l Pi annihilates M and a prime 
P contains the annihilator of M, then P :J IIi=lPi and thus P = P; for 
some i. 

c =} d: Immediate from Theorem 2.14. 
d =} a: Set S = R/ ann(M), and suppose that 5 is Artinian. By The

orem 2.14, 5 has finite length as an 5-module (or equivalently as an R
module). Since M is a finitely generated 5-module, it is a homomorphic 
image of a finite direct sum of copies of 5, and is thus a module of finite 
length. 0 

Using Corollary 2.17, we see that every finitely generated module can be 
made into a module of finite length by localization at a prime minimal over 
its annihilator. 

Corollary 2.18. Let R be a Noetherian ring, 0 -I- M a finitely generated 
R-module, I the annihilator of M, and P a prime ideal containing I. The 
Rp-module Mp is a nonzero module of finite length iff P is minimal among 
primes containing I. 

Proof. If P is a prime ideal minimal among primes containing I, then Pp 
is nilpotent in Rp/ Ip by Corollary 2.12. Thus, a power of Pp annihilates 
Mp, and Corollary 2.17 shows that Mp has finite length. 

Conversely, suppose that Mp has finite length over R p. The annihilator 
of Mp is Ip. Thus, by Corollary 2.17, every prime of Rp/Ip is maximal. 
Since the primes of Rp/Ip correspond to the primes of R containing I and 
contained in P, we see that P is minimal in the desired sense. 0 

The most useful special case of these results is where M = R/ I (so that 
in particular I = ann M). 

Corollary 2.19. Let I be an ideal in a Noetherian ring R. The following 
are equivalent for a prime P containing I: 

a. P is minimal among primes containing I. 
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b. Rp/Ip is Artinian. 

c. In the localization Rp we have Pp C Ip for all n :» o. 
Proof. 

a :::} b: If P is minimal among primes containing I, then Pp is the 
unique prime of Rp/Ip. Corollary 2.17 shows that Rp/Ip is 
Artinian. 

b:::} c: Suppose that Rp/Ip is Artinian. By Theorem 2.14 Rp/Ip has 
finite length, and by Theorem 2.13c it is annihilated by a power 
of Pp-that is, Pp C Ip for large n. 

c:::} a: Suppose that Pp C Ip. If Q is a prime of R such that I C 
Q C P, then after localizing we see that Pp C Q p, so Pp = 
Qp. It follows that P = Q. Thus P is minimal among primes 
containing I. 0 

2.5 Products of Domains 

In a different direction we may use localization to characterize the Noethe
rian rings that are direct products of domains. 

Proposition 2.20. If R is a Noetherian ring, then R is a finite direct 
product of domains iff for every maximal ideal P of R, the local ring Rp is 
a domain. 

Proof. Suppose R = ITi R; is a direct product of domains R;. A prime 
ideal P of R cannot contain the unit element ei of each of the R;. But 
if ei (j. P then since ei annihilates Rj for j 1:- i we have Rp = (R;)p, a 
domain. 

Conversely, suppose that every localization of R at a maximal ideal is a 
domain. Let {Qi} be the set of minimal primes of R. Since an intersection 
of primes in a descending sequence is again prime, this set is nonempty. 
By the result of exercise 1.2 (or see Theorem 3.1a) there are only finitely 
many Qi. We must show that the map 'P : R ---+ IIiR/Qi is an isomorphism. 
By Corollary 2.9 it is enough to show that 'P becomes an isomorphism 
after localizing at a maximal ideal P of R. The minimal primes of Rp are 
the localizations of the minimal primes of R contained in P. Since Rp is 
a domain by hypothesis, there is only one of these, say Q1, and we have 
(Q1)P = 0, (Qi)P = R for i i= 1. It follows that (IIiR/Qi)p = (R/Ql)P = 
Rp and 'P localizes to an isomorphism as required. 0 

In trying to prove that a given ring is a domain, using methods of local 
algebra, one often proves in fact that the ring is locally a domain in the 
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sense above. Using Proposition 2.20 it is then enough to eliminate the 
possibility that the ring contains idempotent elements other than 0 and l. 
We shall return to these ideas much later, in Theorem 18.15. 

2.6 Exercises 

Exercise 2.1: Check that the definitions really do make R[U-1] into a ring 
and M[U-l] into an R[U-1]-module (and thus also an R-module). Check 
that the map R -t R[U-1] sending r to r II is a ring homomorphism, and 
the map M -t M[U-l] sending m to mil is a homomorphism of R-modules. 

Exercise 2.2 (An alternate construction of localization): Let R be 
a ring and let U be any subset of R. Show that R[U-1] is the result of 
adjoining inverses of elements of U to R in the freest possible way, in the 
sense that 

Exercise 2.3 (How to localize without admitting it): Here is a col
lection of results that allow one to do many things in a localization with
out having to admit that there is any such thing. Suppose U c R is a 
multiplicatively closed subset of a ring. Show that there is a one-to-one 
correspondence, preserving sums and intersections, between the ideals in 
R[U-l] and the ideals 1 in R such that (1: f) = 1 for all fEU (recall from 
Chapter 0 that (I: f) := {r E Rlfr E I}). Show that this correspondence 
respects the property of being prime. Show that for any ideal J c R we 
have R n JR[U-1] = "£!EU(J : fOO) where (J : fOO) := U~=l(J : r). Show 
that the ideals I C R such that (I : f) = I are exactly the image of the 
map J 1--+ R n JR[U-1]. Historically, constructions like (I : f) were used 
before localizations were defined, to accomplish the same ends. 

Exercise 2.4 (Practice with Hom and ®): Let k be a field, and let 
Z denote (as usual) the ring of integers. Let m, n be integers. Describe as 
explicitly as possible: 

a. Homz(Z/(n), Z/(m)) and Homk[x] (k[xJl(xn ), k[xJl(xm ». 

b. Z/(n) ®z Z/(m) and k[xJl(xn ) ®k[x] k[xJl(xm ). 

c. k[x] ®k k[x] (describe this as an algebra). 

Exercise 2.5: Suppose k is an infinite field, and let U be the set of 
nonzero elements of the polynomial ring k[x] in one variable. Show that 
(naEk(X - a))[U-1] =I naEk((X - a)[U-l]). Thus, Corollary 2.6 would be 
false for infinite intersections. 
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Exercise 2.6 (General form of the Chinese remainder theo
rem): Let R be a ring, and let Ql, ... , Qn be ideals of R such that 
Qi + Qj = R for all i #- j. Show that R/(niQi) ~ ITiR/Qi as follows: 

a. Consider the map of rings cp : R ---- ITiR/Qi obtained from the n 
projection maps R ---- R/Qi. Show that ker cp = niQi. 

b. Let m be a maximal ideal of R. Show that the hypothesis that Qi + 
Qj = R for all i #- j means that at most one of the Qi is contained 
in m. Now use Corollary 2.9 to show that cp is surjective. 

Exercise 2.7: Show that the universal property of the localization given 
in the text characterizes R ---- R[U-1j up to unique isomorphism in the sense 
that if another map R ---- S has the same property, then there is a unique 
isomorphism R[U-1j ---- S making the diagram commute. 

Exercise 2.8: Show that the following universal property similarly char-
acterizes M ____ M[U-1j: Given a map cp from M to an R-module N on 
which the elements of U act by multiplication as automorphisms, there is a 
unique extension cp' : M[U-1j ---- N. In particular, if M and N are R[U-1j
modules, then the maps of R-modules from M to N are the same as the 
maps of R[U-1j-modules. 

Exercise 2.9: One way of describing the ring R[U-1j is to say what its 
modules are: Show that an R[U-1j-module is the same thing as an R
module on which the elements of U act as automorphisms. In particular, 
the map M ____ M[U-1j is an isomorphism iff the elements of U act as 
automorphisms on M. 

Exercise 2.10: Show that every finitely generated module over R[U-1j is 
the localization of a finitely generated module over R. Here is a truly trivial 
statement that sounds deeper: The same is true without the condition 
finitely generated. 

Exercise 2.11:* Let N' C M[U-1j be an R[U-1j-submodule, and let N c 
M be the preimage of N'. Show that N' = N[U-1j. 
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Exercise 2.12: Show that Proposition 2.10 is sharp in the following sense: 
Consider the ring R = Z of integers. Let U be the set of powers of 2. 
Consider the statement of the proposition with M = EB~l R, N = R, 
S = R[U-1j. 

a. If N = R, show that element (~) i=l, ... ,oo is not in the image of the 
map Q: (II~lR)[U-lj---+ II~l(R[U-l]) of the proposition. 

b. Now suppose N = EB~lR/(2i), with M and S as before. Show that 
the map sending the generator of the ith factor of M to the generator 
of the ith factor of N is nonzero in HomR(M,N)[U-1j, but goes to 0 
under Q. 

Exercise 2.13 (Splitting criteria for a short exact sequence): Sup
pose that 

is a short exact sequence of R-modules. 

a. Show that (*) is split iff the map HomR( C, B) ---+ HomR( C, C) 
induced by the right-hand map of (*) is an epimorphism. 

b. Suppose that (*) is locally split in the sense that for each maximal 
ideal PeR the localized sequence 0 ---+ Ap ---+ Bp ---+ Cp ---+ 0 is split. 
If C is finitely presented, show that (*) is split by using part a and 
Proposition 2.10. 

Z-graded Rings and Their Localizations 

If we invert an element of a graded ring, even a homogeneous element, 
we usually do not get a graded ring in the sense of Chapter 1: Negative 
degrees will occur in the obvious grading. Thus we introduce the notion of 
a Z-graded ring: 

Definition. A Z-graded ring is a ring R such that 

as abelian groups and RiRj C R i+j . The elements of Ri are called homo
geneous elements of degree i. A homogeneous ideal in a Z-graded ring 
is simply an ideal generated by homogeneous elements. 

The case of ordinary graded rings is the case where Ri = 0 for i < o. 

Exercise 2.14 (Characterization of homogeneous ideals): Show that 
an ideal I of a Z-graded ring R is homogeneous iff for every element f E I, 
all the homogeneous components of f are in I. 
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Exercise 2.15: Many basic operations on ideals, when applied to homoge
neous ideals in Z-graded rings, lead to homogeneous ideals. For example, 
let I be a homogeneous ideal in a Z-graded ring R. Show that: 

a. The radical of I is homogeneous; that is, the radical of I is generated 
by all the homogeneous elements 1 such that rEI for some n. 

b. If I and J are homogeneous ideals of R, then 

(I : J) := {f E RII J c I} 

is a homogeneous ideal. 

c. Suppose that for all I, 9 homogeneous elements of R such that Ig E I, 
one of 1 and 9 is in I. Show that I is prime. 

See Section 3.5 for further results in this direction. 

Exercise 2.16: Let R be a Z-graded ring and let M be a graded R-module. 
Show that if x is a homogeneous element of nonzero degree, then u := 1- x 
is a nonzerodivisor on M. The element u is a unit iff x is nilpotent. 

Given a projective variety X C PA" it is very useful to be able to write 
the localizations of the affine coordinate rings of the affine open pieces of X 
directly in terms of the homogeneous coordinate ring of X. The following 
exercise explains how to do this, in a form that works for arbitrary Z-graded 
rings. 

Exercise 2.17 (Localization of graded rings): Suppose R is a Z-graded 
ring and 0 =I- 1 E RI . Show that R[/- I ] is again a Z-graded ring. Let 
S = R[/-I]o. 

a. Show that R[/- I ] ~ S[x, X-I], where x is a new variable. (The ring 
S[x, X-I] is called the ring of Laurent polynomials over S. We make 
the convention that if S is the zero ring, then S[x, X-I] is also the zero 
ring.) 

b. Show that S = R[rl]o ~ R/U - 1). 

c. Let U c R be a multiplicatively closed set of homogeneous elements 
containing at least one nonzero element of RI . Show that R[U-I ] ~ 
(R[U-I])o[x,X- I ], where x is an indeterminate of degree 1. 

d. Now let P be a homogeneous prime ideal of R, and let U be the mul
tiplicative set of homogeneous elements not in P. Note that R[U- I ] 

is naturally a Z-graded ring. We define R(p) to be the degree-O com
ponent R[U-I]o of R[U-I ]. If P does not contain RI , then by part c, 
R[U-I ] ~ R(p) [x, X-I]. 
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Suppose 1 E R1, but 1 (j. P. Write Q for the ideal that is the image 
of Pin R/U - 1). Show that Q is a prime ideal and that 

R(p) = (R/U - 1))Q. 

If R is the homogeneous coordinate ring of a projective variety X, and 
P is the ideal of a subvariety Y, then these objects have a geometric 
meaning: If V is the affine open subset x = 1, for some linear form 
x, and V meets Y nontrivially, then R(p) is the ordinary localization 
of the affine coordinate ring of V at the prime ideal Q = I(V n Y). 

Exercise 2.18: Show that if R is a graded ring with no nonzero homoge
neous prime ideals, then Rv is a field and either R = Ro or R = Rv[x,x-1]. 

Partitions 01 Unity 

Exercise 2.19 (Partition of unity): Let R be a ring and let M be an 
R-module. Suppose that {Ii} is a set of elements of R that generate the 
unit ideal. Prove: 

a.* If mE M goes to 0 in each M[Ji-1J, then m = O. 

b.* If mi E M[/i- 1] are elements such that mi and mj go to the same 
element of M[/i-1/j-1J, then there is an element m E M such that m 
goes to mi in M[Ji-1] for each i. Note that by part a, the element m 
is unique. 

This result is the essential point in establishing that R-modules are 
sheaves on Spec R. It plays the role of the classical "partition of unity 
argument" in geometry. For example, in the case M = R it allows one to 
piece together global functions from functions defined on each open set of 
a covering and agreeing on the overlaps. See, for example, Eisenbud and 
Harris [1992]. 

Exercise 2.20: There are other collections of localizations that have the 
property of the set of localizations at all maximal ideals described in Corol
lary 2.9. Perhaps the most important type is the following, which gen
eralizes the covering of an affine set by open affine subsets: Show that 
for a collection of elements h, ... , 1m E R, the following properties are 
equivalent: 

a. The ideal generated by h, .. . ,1m is R. 

b. An R-module M is zero iff each of the modules M[/i- 1] is zero. 
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Gluing 

An important use of localization in geometry is to construct new algebraic 
sets by gluing together old ones along open subsets, just as in the classical 
theory of manifolds. For example, take two copies X and Y of the affine line 
Al over k, corresponding to the affine algebras k[s] and k[t]. Let X' c X 
and Y' c Y be the origins, so the open affine subsets X - X' and Y - Y' 
correspond to the algebras k[s, s-l] and k[t, r1], respectively. Clearly, X -
X' ~ Y - Y' in.( at least) two different ways. We write 

<p: X - X' --t Y - Y' X I-t X 

'¢: X - X' --t Y - Y' X I-t x-1 

for two isomorphisms. If we glue together X - X' and Y - Y' by <p, we get 
a strange, rather nongeometric space, a line with the origin doubled. But 
if we use '¢ as the gluing map, we get the projective line, as the following 
picture suggests and Exercise 2.21 proves. 

X X' 
• 

• Y Y' 

X X' 
• 

Y 

Exercise 2.21: 

Glue outside 
X'and Y' 
to get: ¢>-____ _ 

Xu Y/(X - X') "'q> (Y - Y'), 

a line with "doubled" origin 

Glue outside 
X'and Y: 
reversing 0 
and 00, to 
get: 

Xu Y/(X - X') "'IjI (Y - Y'), 

the projective line 

a. Show that p1 is obtained by gluing two copies of A l as follows: 
Consider the two open subsets Uo = {(aO,a1) E p11ao i= O} and 
U1 = {(ao, a1) E p11a1 i= O}, as described in Chapter 1. Each of these 
is identified with an affine space: With notation as above we may 
write the identifications as Uo ~ X by (ao, ad I-t at/ao and U1 ~ Y 
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by (ao, al) 1-+ ao/al' Show that Uo n UI is taken by these two identifi
cations to X - X' and Y - Y', respectively. Show that the composite 
identification X - X' -+ Uo n UI -+ Y - Y' is the map s 1-+ rl. 

b. Formulate a corresponding "gluing" description of pn. 

Constructing Primes 

The next exercises exemplify the tendency of ideals maximal with respect 
to some property to be prime (see also Proposition 2.11). Exercise 2.24 
gives an application. 

Exercise 2.22:* (Cohen [1950]): An ideal maximal with respect to not 
being finitely generated is prime; thus a ring whose primes are finitely 
generated is Noetherian. 

Exercise 2.23: (M. Isaacs): An ideal maximal among those that are not 
principal is prime. 

Exercise 2.24: Let R be a Noetherian ring, and let n be a natural num
ber. Show that there are only finitely many primes P of R such that the 
cardinality of R/ P is :::; n as follows: 

a. Suppose that R has infinitely many such primes. Let I c R be an 
ideal maximal among those for which R/ I has infinitely many such 
primes. Show that I must be prime. Replacing R by R/l, we may 
assume from the outset that R is a domain and that every proper 
homomorphic image of R satisfies the desired statement. 

b. Note that R must be infinite (otherwise R has only finitely many ide
als!). Let al,"" an+l be distinct elements of R, and let p = IIi<j(ai
aj) be the product of their differences. Because R is a domain, p "# o. 
If PeR is a prime ideal, and p ~ P, show that the cardinality 
of R/ P is greater than n. Using the hypothesis at the end of step 
a, show that there are only finitely many primes P containing p for 
which the cardinality of R/ P is n or less than n. 

ldempotents, Products, and Connected Components 

Exercise 2.25 (Idempotents and connectedness):* If R is a ring, then 
as in Exercise 1.25 we write Spec R for the topological space whose points 
are the prime ideals of R and whose closed sets are the sets of prime ideals 
containing a given ideal of R. Show that Spec R is disconnected -that 
is, Spec R is the disjoint union of two nonempty closed sets, say Xl, X 2, iff 
R contains a nontrivial idempotent-that is, an element e "# 0, 1 such 
that e2 = e, as follows. 
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First, if e is a nontrivial idempotent, show that l-e is also a nontrivial 
idempotent, and e(1 - e) = o. Take Xl and X 2 to be the sets of primes 
containing e and l-e, respectively. Show that Spec R is the disjoint union 
of Xl and X 2 and that these sets are nonempty. 

For the converse, suppose that Spec R is the disjoint union of nonempty 
closed sets Xl and X 2• 

a. Since Xj is closed, there is an ideal I j such that P E Xj iff P ::) I j . 
Show that h + h = R and every element of hh is nilpotent. 

b. Write 1 = al + a2 with aj E I j . By part a, ala2 is nilpotent, say 
(ala2)n = o. By splitting up the right-hand side of the expression 
1 = (al + a2?n = ain + ... + a~n suitably, show that al and a2 may be 
replaced with elements el and e2 such that el + e2 = 1 and ele2 = o. 

c. Show that el and e2 are nontrivial idempotents. 

Exercise 2.26 (Idempotents and products): Show that R can be writ
ten as a direct product of two or more (nonzero) rings iff R contains a non
trivial idempotent. Show that if e is an idempotent, then R = Re x R(I-e), 
and that Re may be realized as a localization, Re = R[e- l ]. 

Exercise 2.27 (Products and their modules):* If Ry, 'Y E r, are rings, 
then the direct product of rings Il.yErRy is the direct product of the sets 
Ry, with componentwise ring operations. If R is a Noetherian ring all of 
whose primes P y are maximal, then by the Chinese remainder theorem, 
Proposition 2.14, we have R = IlyRy, and the product is finite. In this case 
Ry = Rp7 is a localization of R. We have seen in Proposition 2.17 that the 
modules over R are made by taking a direct product of modules, one over 
each Rpi • These phenomena are somewhat more general: 

a. Suppose that R = II')'ErRy is a finite direct product of rings. Write 
e')' E R for the element whose 'Yth component is 1 and whose 8th 
component is 0 for 8 =f. 'Y. Show that every R-module M is uniquely 
expressible as a direct product M = II')'ErM,)" where M')' is an Ry
module and the action is componentwisej show in fact that M')' 
e')'M = M[e.:yl]. Show that any homomorphism 

of R-modules is a direct product of homomorphisms 'P')' : M')' -t N')' 
of Ry-modules. 

b. Show that if R = II')'ErRy is an infinite direct product, then not every 
module is the product of Ry-modules as above. 



3 
Associated Primes and Primary 
Decomposition 

As we have suggested in Chapter 1, the earliest impulse toward the devel
opment of what is now commutative algebra came from the desire of the 
number theorists to make use of unique factorization in rings of integers in 
number fields other than Q. When it became clear that unique factoriza
tion did not always hold, the search for the strongest available alternative 
began. The theory of primary decomposition is the direct result of that 
search. Given an ideal I in a Noetherian ring R, the theory identifies a 
finite set of "associated" prime ideals of R, and tells how to "decompose" 
I as an intersection of "primary" ideals that are closely connected with 
these prime ideals. More generally, the theory produces such a set of asso
ciated primes and a decomposition of any sub module of a finitely generated 
R-module. 

Besides the search for an analog of unique prime factorization, there 
is another reason why primary decomposition is historically important in 
commutative algebra. Lasker, who first formulated primary decomposition 
in [1905], was able to do it only for affine rings and convergent power series 
rings. His proofs used complicated arguments from elimination theory to 
make an induction on the number of variables. Emmy Noether rewrote the 
subject in her brilliant paper [1921]. Here she developed the general theory 
of primary decomposition from the ascending chain condition alone. In 
this way she enormously simplified the theory and extended its reach. This 
paper and her subsequent paper on Dedekind domains [1927] showed the 
importance of the ascending chain condition. It is this work we honor with 
the name Noetherian. 
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To help the reader digest the theory that follows, we begin with three 
examples. 

1. Corresponding to the unique prime factorization 

± dl d, n = Pl·· ·Pt 

of an integer in Z into powers of distinct primes, we may write the 
ideal (n) as 

(n) = (pfl) n ... n (pt). 

(Proof: By induction on t we have J := (p~2 ... p~') = (p~2)n ... n(p~'), 
and it suffices to show that if I = (pfl) then I J =c In J. If I, J c R 
are ideals in any commutative ring, then I J c I n J, but generally 
the containment may be strict. However, if I + J = R, as in our case, 
we can write 1 = i + j with i E I and j E J. Thus if f E In J, then 
f = If = if + jf E I J +JI = I J, so InJ = I J. For a generalization, 
see Exercise A3.1 7. ) 

In this case we shall see that the associated primes of (n) are 
the primes (Pi), and the primary components of (n) are the ideals 
(pti). This is the sense in which the theory of primary decomposition 
generalizes the unique factorization of integers. 

2. Consider the geometric setting, where R = k[Xl, ... , Xr 1 is a poly
nomial ring over an algebraically closed field. An algebraic set X in 
affine r-space over k is called irreducible if it cannot be expressed as 
the union of two properly smaller algebraic sets. If I C k[Xl, ... , xrl 
is the ideal of X, then X is irreducible iff I is prime. 

(Proof: If X is irreducible and fg E I, then Z(I, j)UZ(I, g) = X, so f 
or g must vanish on X and be in I. Conversely, suppose X = Xl UX2. 
If each Xi is an algebraic set smaller than X, then there is a function 
fi vanishing on Xi but not X. Since fth vanishes on X, we have 
fth E I though neither fi is in I.) 

If X is any algebraic set, then the ideal I of X is a radical ideal 
so, by Corollary 2.12, I is an intersection of prime ideals. We shall 
see that I may be written in a unique minimal way as a finite inter
section of primes. The primary decomposition of I is this expression. 
It correspond~ to writing X in a unique minimal way as the union 
of irreducible algebraic sets Xi. We may think of the decomposition 
as specifying I to be the set of polynomials that vanish on each of 
the Xi. 

3. The ideal I:= (x2,xy) C k[x,yl may be written as 
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and described as the ideal of polynomials vanishing along the line 
x = 0 and vanishing to order at least two at the point x = y = O. 
Note that the given decomposition is not unique: We could also write 
I = (x) n (x2 , y), which corresponds to saying that a polynomial f 
is in I if it vanishes along the line x = 0 and its derivative a f / ax 
vanishes at the point x = y = O. 

In this case we shall see that the associated primes of I are the 
primes (x) and (x, y). The primary component of I corresponding 
to the prime (x) is (x), while the primary component correspond
ing to (x, y) is not uniquely defined, but may be taken to be either 
(x2, xy, y2) or (x2, y). 

Quite generally, given any ideal I c k[Xl"" ,xrJ with k alge
braically closed, primary decomposition theory produces a finite set 
of irreducible algebraic sets Xi-possibly with some embedded in 
others-and says that I can be specified as the set of polynomial 
functions satisfying certain "vanishing conditions" on the Xi. 

3.1 Associated Primes 

Let R be a ring and let M be an R-module. 

Definitions. A prime P of R is associated to M if P is the annihilator of 
an element of M. The set of all primes associated to M is written AssRM 
or simply AssM when there can be no confusion. 

Tradition dictates one exception to this terminology: If I is an ideal of R, 
then the associated primes of the module Rj I are called associated primes 
of I. Confusion rarely arises in this way, since the associated primes of I 
as a module are usually not interesting. For example, if R is a domain and 
I is a nonzero ideal, then the only associated prime of the module I is O. 

From the definition we see that P is an associated prime of M iff R/ P 
is isomorphic to a submodule of M. Note that all the associated primes of 
M contain the annihilator of M. 

The next Theorem gathers the central results about associated primes. 

Theorem 3.1. Let R be a Noetherian ring and let M be a finitely generated, 
nonzero R-module. 

a. Ass M is a finite, nonempty set of primes, each containing ann M. 
The set Ass M includes all the primes minimal among primes con
taining ann M. 

b. The union of the associated primes of M consists of 0 and the set of 
zerodivisors on M. 
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c. The formation of the set Ass M commutes with localization at an 
arbitrary multiplicatively closed set U, in the sense that 

AssR[u-1) M[U- 1] = {PR[U-1]IP E AssM and P n U = 0.} 

The proof will be given after a series of preliminary results and corollaries. 
Essentially because of the second part of conclusion a, the primes minimal 

among those primes containing a given ideal I appear rather often in what 
follows. To simplify our language, we usually call them primes minimal 
over [. 

The primes in Ass M that are not minimal are called embedded primes 
of M. If M = R/ I corresponds to a subscheme X = Spec R/ I of Spec R, 
then the varieties associated to minimal primes over I are called isolated 
components of X, and the varieties associated to other associated primes 
are called embedded components of X (geometrically, they are "embed
ded in" the isolated components). 

If R is a graded Noetherian ring and M is a finitely generated, graded R
module, then the associated primes of R are homogeneous, as we shall see in 
Proposition 3.12. This allows one to make graded versions of Theorem 3.1 
and all the other results in this chapter. 

One important consequence of Theorem 3.1 is as follows. 

Corollary 3.2. Let R be a Noetherian ring and let M be a finitely gener
ated, nonzero R-module. Every ideal consisting entirely of zerodivisors on 
M actually annihilates some element of M. 

To prove this we need to know that an ideal contained in a union of primes 
is contained in one of them. This somewhat surprising but elementary fact 
often goes under the name prime avoidance. 

3.2 Prime Avoidance 

Lemma 3.3 (Prime Avoidance). Suppose that h, ... , In, J are ideals of a 
ring R, and suppose that J C Ujlj . If R contains an infinite field or if at 
most two of the I j are not prime, then J is contained in one of the I j . 

If R is graded, J is generated by homogeneous elements of degree> 0, 
and all the I j are prime, then it is enough to assume that the homogeneous 
elements of J are contained in Uj I j • 

Despite the odd hypotheses, the lemma is rather sharp; see Exercise 3.17. 
The name "prime avoidance" comes from the following typical application: 
If an ideal I is not contained in any of a finite number of primes Pj , then 
there is an element of I that "avoids" being contained in any of the Pj . 

In the geometric setting we can translate this by saying that if a finite 
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number of subvarieties Xj of a variety X are given, along with polynomial 
functions !I, ... ,Is on X, not all vanishing on any of the X j , then there 
is some polynomial linear combination I = 'L,gdi that does not vanish on 
any of the Xj. The last part will be used in Chapter 14. In fact, the first 
of the gi can often be chosen to be 1; see Exercise 3.19 for this and a 
refinement, and see McAdam [1974] for further refinements and a history 
of the ring-theoretic formulations of this result. 

Proof of Lemma 3.3. If R contains an infinite field, the result is trivial: No 
vector space over an infinite field can be a finite union of proper subspaces. 

In the other case, we do induction on n; the case n = 1 is trivial. By 
induction we may suppose that J is not contained in any smaller union 
of the I j , so we can find elements Xi E J, Xi not in Ujf-;Ij. Supposing that 
J C UIj , we must have Xi E 1;. 

If n = 2, then Xl +X2 is in neither h nor h, contradicting the supposition. 
If on the other hand n > 2, then we may assume that h is prime, and 
Xl + X2X3 ... is not in any of the I j , again a contradiction. 

For the graded case we can use the same proof after raising the Xi to a 
power, chosen so that Xl and the product X2X3'" have the same degree. 
We need the hypothesis that each I j is prime to ensure that for each j the 
powers of Xi are not in I j for j =I i. 0 

Note that in Lemma 3.3 we did not assume that R was Noetherian; we 
shall have occasion to use the result in a (possibly) non-Noetherian case in 
Proposition 13.10. Also, in the cases not involving a ground field, the proof 
just given uses only that J is a subring-without unit---of R. 

Proof of Corollary 3.2. By Theorem 3.1 an ideal consisting of zerodivi
sors on M is contained in the union of the associated primes of M. By 
Lemma 3.3, it is in one of them. 0 

Theorem 3.1 clearly implies that if M is nonzero, then AssM is 
nonempty. For example, since the intersection of a descending chain of 
primes is certainly prime, there are (even without Noetherian hypotheses) 
always primes minimal over a given ideal. The first step in the proof is to 
establish the existence of an associated prime directly. 

Proposition 3.4. Let R be a ring and let M be an R-module. If I is an 
ideal of R maximal among all ideals of R that are annihilators of elements 
of M, then I is prime (and thus belongs to Ass M). In particular, if R is 
a Noetherian ring, then Ass M is nonempty. 

Proof. If r8 E I and 8 tj. I, then we must show that rEI. If m E M is 
an element with ann m = I, then r8m = 0 but 8m =I O. Thus (r, I) is 
contained in the annihilator of 8m, and since I was maximal, (r) + I = I. 
Thus rEI. 0 
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Proposition 3.4 is the basis for one of the characteristic applications of 
the theory of associated primes. If x E M is an element of any module over 
any (not necessarily Noetherian) ring R, then by Lemma 2.8 we can test 
whether x = 0 by seeing whether x goes to 0 in the localization Mp for each 
prime, or even each maximal ideal P. Now we see that if R is Noetherian we 
can restrict our attention to the associated primes. If M is finitely generated 
there will be only finitely many of these, a great improvement. 

Corollary 3.5. Suppose that M is a module over a Noetherian ring R. 

a. Ifm E M, then m = 0 iffm goes to 0 in Mp for each of the maximal 
associated primes of M. 

b. If K c M is a submodule, then K = 0 iff Kp = 0 for all P E AssM. 

c. If <p : M -+ N is a homomorphism from M to an R-module N, 
then <p is a monomorphism iff the localization <pp : Mp -+ N p is a 
monomorphism for each associated prime P of M. 

Proof. 
a. Suppose m -=I- O. Since R is Noetherian, there is a prime maximal 

among the annihilators of elements of M that contain ann m, and 
this prime is an associated prime of M by Proposition 3.4. Thus ann 
m is contained in a maximal associated prime P, so mil -=I- 0 in Mp. 

b. If K = 0 then clearly Kp = 0 for all P. If K -=I- 0, choose 0 -=I- mE K 
and apply part a. 

c. By Proposition 2.5, (ker<p)p = ker(<pp). The result follows by putting 
K = ker<p in part b. D 

Proposition 3.4 makes the proof of part b of Theorem 3.1 immediate: If 
r annihilates a nonzero element of M, then r is contained in a maximal 
annihilator ideal. 

To prove part a we shall apply the following tool: 

Lemma 3.6. 

a. If M = M' EB Mil, then AssM = (AssM') U (Ass Mil). 

b. More generally, if 0 -+ M' -+ M -+ Mil -+ 0 is a short exact sequence 
of R-modules, then AssM' C AssM c (AssM') U (Ass Mil). 

Proof. 

a. Given part b, it is enough to observe that Ass Mil C Ass M. 

b. The first containment is clear from the definition. For the second, 
suppose that P E Ass M - Ass M'. If x E M has annihilator P, so 
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that Rx 2:' R/ P, then since P is prime every nonzero submodule of 
Rx also has annihilator P. It follows that Rx n M' = 0, so Rx is 
isomorphic to its image in Mil. Thus P E Ass Mil as required. 0 

The first exact sequences on which we shall use Lemma 3.6 are produced 
as follows: 

Proposition 3.7. If R is a Noetherian ring and M is a finitely generated 
R-module, then M has a filtration 

o = Mo C MI C ... C Mn = M 

with each Mi+I! Mi 2:' R/ Pi for some prime ideal p;,. 
Proof. If M i=- 0 then by Proposition 3.4, M has at least one associ
ated prime, say H, so that there is a submodule MI 2:' R/ H. Applying 
this reasoning again to M/MI' we produce M 2 , and continue in this way. 
The process must come to an end because the sub modules of M satisfy 
the ascending chain condition, and this means that some Mn = M, as 
required. 0 

Using Lemma 3.6 inductively, we see that the associated primes of M 
are among the primes Pi appearing in Proposition 3.7. This proves the 
finiteness statement of Theorem 3.l. 

One might ask which modules M admit a filtration as in Proposition 3.7, 
where in addition every Pi is an associated prime of M. Such modules are 
called clean. For example, when R is a domain and M is torsion-free but 
not free, M is not clean, as the reader may verify. As of this writing I know 
of no interesting characterization of cleanliness-perhaps the reader will 
find one! Proposition 3.13 provides an interesting class of filtrations where 
the associated primes do split up nicely. 

Conclusion of the Proof of Theorem 3.1. We first prove part c: If P E 
Ass M, then there is an inclusion R/ P eM. Localizing, we get an injection 
R[U- I]/ PR[U- I] c M[U- I]. Thus if PR[U- I] is a prime ideal of R[U-1]
that is, if P n U = 0 so P R[U-I] is still a proper ideal-then P R[U-I] E 
AssM[U- I]. 

Conversely, suppose Q is a prime of R[U-Ij that is associated to M[U- I]. 
We may write Q = P R[U-I] with P a prime of Rand P n U = 0. There is 
an injection <p: R[U-1l/PR[U-I]-+ M[U- I]. Since P is finitely generated, 
we have 

by Proposition 2.10, so we may write <p = u-If for some f E 

HomR(R/ P, M) and u E U. Since u is a nonzero divisor on R/ P, it fol
lows that f is an injection, concluding the proof of part c. 
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It remains to show that if P is any prime minimal over ann M, then 
P E Ass M. By part c, we may localize and suppose that R is local with 
maximal ideal P. By Proposition 3.4 the set Ass M is nonempty, and since 
P is the only prime that contains ann M, it follows that P E Ass M. D 

3.3 Primary Decomposition 

To avoid endlessly repeating the hypotheses, we shall assume throughout 
the rest of this chapter that R is a Noetherian ring, and we shall assume 
that M is a finitely generated R-module. 

As often happens, it is advantageous to work with modules instead of 
ideals, and we shall define primary decompositions for a submodule M' of 
a finitely generated module M: That is, we shall write M' as the intersec
tion of certain submodules Mi that correspond to the prime powers above. 
These are defined as follows: A submodule N of a module M is primary 
if Ass(MjN) consists of just one prime; if Ass(MjN) = {P}, we say that 
N is P-primary. Since this is really a condition on MjN, it is convenient 
to say that a module M is coprimary if 0 is a primary submodule--that 
is, if Ass(M) consists of just one prime ideal. From Lemma 3.6 we easily 
see that an intersection of P-primary submodules is P-primary. 

Corollary 3.8. Suppose that P is a prime ideal of a ring R, and N I , ... , Nt 
eM are R-modules. If each Ni is a P-primary submodule of M, then niNi 
is P -primary. 

Proof. By induction it suffices to do the case t = 2. By hypothesis M j NI and 
MjN2 are P-coprimary. Lemma 3.6a shows that P is the only associated 
prime of MjNI EB MjN2. Since Mj(NI n N2) injects into MjNI EB MjN2, 
Lemma 3.6b shows that Mj(NI n N2) is also coprimary. D 

The results of Theorem 3.1 lead to the following description of coprimary 
modules. 

Proposition 3.9. Let P be a prime ideal of R. The following statements 
are equivalent: 

a. M is P-coprimary. 

b. P is minimal over ann M, and every element not in P is a nonzero
divisor on M. 

c. A power of P annihilates M, and every element not in P is a nonze
rodivisor on M. 
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Proof. 

a =? b: Since P is the only associated prime of M, Theorem 3.1a shows 
that P is minimal over ann M, and Theorem 3.1b shows that 
every element not in P is a nonzero divisor on M. 

b =? c: Since the elements not in Pare nonzero divisors on M, it suffices 
to prove the statement after localizing at P, so we may assume 
that R is a local ring with maximal ideal P. Since P is minimal 
over ann M, it follows by Corollary 2.12 that P is the radical of 
ann M, so P is nilpotent modulo ann M. 

c =? a: Since P is nilpotent modulo ann M, it is certainly minimal 
among primes containing ann M and is an associated prime 
of M by Theorem 3.1a. Since every element outside of P is a 
nonzero divisor , every associated prime of M is contained in P 
by Theorem 3.1b. Thus P is the only associated prime of M.o 

The most important case is the one where M = R/ I for some ideal I of 
R. In this setup, Proposition 3.9c shows that I is P-primary iff I contains 
a power of P, and for every r, s E R, the conditions rs E I and r rf. Pimply 
s E I. This is the classical definition. 

It is often convenient to think of these definitions above in terms of local
izations: Proposition 3.9b shows that M is P-coprimary iff P is minimal 
over the annihilator of M and M injects into M p. In general, if M is any 
module and P is a minimal prime over the annihilator of M, then the 
submodule M' C M defined by 

M' = ker(M ---> Mp) 

is P-primary because MIM' injects into (MIM')p = M p . In this situation, 
M' is called the P-primary component of 0 in M. Note that it depends 
only on M and on P. 

Primary decomposition consists of writing an arbitrary submodule M' 
of M as the intersection of primary submodules. 

Theorem 3.10. Let R be a Noetherian ring, and let M be a finitely gen
erated R-module. Any proper submodule M' of M is the intersection of 
primary submodules. Furthermore, if PI, ... ,Pn are prime ideals and we 
write M' = n7=1 Mi with Mi a Pi-primary submodule, then 

a. Every associated prime of M / M' occurs among the Pi. 

b. If the intersection is irredundant (meaning no Mi can be dropped), 
then the P; are precisely the associated primes of M / M'. 

c. If the intersection is minimal, in the sense that there is no such 
intersection with fewer terms, then each associated prime of M / M' 
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is equal to Pi for exactly one index i. In this case, if Pi is minimal 
over the annihilator of MIM', then Mi is the Pi-primary component 
ofM'. 

d. Minimal primary decompositions localize in the following sense: Sup
pose that M' = n~=l Mi is a minimal primary decomposition. If U 
is any multiplicatively closed set of R, and H, ... ,Pt are the primes 
among the Pi that do not meet U, then 

t 

M'[U- 1] = nMdU- 1j 

i=l 

is a minimal primary decomposition over R[U-1j. 

Proof We first prove the existence of a slightly finer but less canonical 
decomposition. We shall say that a submodule N c M is irreducible if N 
is not the intersection of two strictly larger submodules. We first claim-and 
this is Emmy Noether's fundamental observation-that every submodule 
of M can be expressed as the intersection of irreducible submodules. Oth
erwise, by the ascending chain condition on submodules of M, we could 
choose a submodule N c M maximal among those submodules that are 
not the intersection of irreducible submodules. In particular, N itself is not 
irreducible, so it is the intersection of two strictly larger submodules N1 and 
N 2 • By the maximality of N, both the N; are intersections of irreducible 
submodules, and it follows that N is too. The contradiction proves our 
claim and shows that there is an irreducible decomposition M' = n;M; 
with each M; irreducible. 

We next show that every irreducible decomposition is a primary decom
position. That is, we show that any irreducible submodule N c M is 
primary, or equivalently that MIN is coprimary. Otherwise, MIN would 
have at least two associated primes, P and Q say, so it would contain a 
submodule isomorphic to RIP and another isomorphic to RIQ. The anni
hilator of every nonzero element of RIP is P, and similarly for Q, so these 
two submodules of MIN can only meet in O. Thus 0 is reducible. Taking 
preimages of these submodules in M, we see that N is reducible: a con
tradiction. This proves that MIN is coprimary, and thus that irreducible 
decompositions are primary decompositions. 

Statements a through d are really statements about M I M'. To simplify 
the notation, we begin by factoring out M', and we assume henceforward 
that M' = O. 

a. Now suppose that 0 = n Mi is a primary decomposition. Note that 
Me (J}MIMi , so by Lemma 3.6 every prime in AssM occurs among 
the primes Pi' This proves assertion a. 

b. Next suppose that the given decomposition is irredundant, so that 
for each j, ni'i M; f- O. Note that because M j n nh Mi = 0, we 
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have 

nMi= (QM') / (MjnQM,) 
~ (QM,+Mj ) IMj C MIMj . 

As this module is Prcoprimary, so is n#j Mi. By Lemma 3.6, Pj is 
an associated prime of M. Together with a, this proves part b. 

c. Finally, suppose that the given decomposition is minimal. By Corol
lary 3.8 the intersection of P-primary submodules is P-primary, so 
minimality implies that the primes Pi are distinct. With part b, this 
proves the first statement of c. 

For the last statement, suppose that Pi is minimal over the anni
hilator of M. We must show that Mi is the kernel of the localization 
map 0: : M --+ M pi . Consider the commutative diagram 

where (3 is the projection map, {j is the localization map, and "I is the 
projection of Mpi to MpjMiPi = (MIMi)?;. The kernel of (3 is Mi. To 
show that the kernel of 0: is also M i , it suffices to show that both "I 
and {j are monomorphisms. Since Mi is Pi-primary, this is immediate 
for {j. 

Since njMj = 0, the natural map 'P : M --+ ffiMIMj is a monomor
phism. By Proposition 2.5, localization preserves monomorphisms, so 
'P?; : Mpi --+ ffi(MIMj)pi is a monomorphism. The map "I is the ith 

component of 'PPi. Because Pi is minimal over the annihilator of M, 
we know that Pj is not contained in Pi for j -I- i. Since M I Mj is 
Pj-coprimary, we have (MIMj)?; = 0 for j -I- i, so the jth component 
of 'PPi vanishes, and we see that "I is a monomorphism as required. 

d. If Un Pi = 0, then ~[U-1] is a prime ideal of R[U-1], and by Theo
rem 3.1c, MdU- 1] is PdU-1]-primary. If unPi -I- 0 then we see from 
Proposition 3.9c that MdU- 1] = M[U- 1]. Thus 

t 

0= nM;[U-1] 
i=l 
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is a primary decomposition. To see that it is minimal, it suffices by 
part b to show that the associated primes of M[U-1] are the asso
ciated primes of M that do not meet U, and this also follows from 
Theorem 3.1c. 0 

In Exercise A3.6 we present a different view of primary decomposition: 
It is the reflection, in M, of the fact that the injective envelope of M 
decomposes in a nice way. This point of view also explains the meaning of 
the irreducible decompositions defined in the preceding proof. 

3.4 Primary Decomposition and Factoriality 

It is easy to express the relationship between primary decomposition and 
unique factorization in the classical sense. 

Proposition 3.11. Let R be a Noetherian domain. 

a. If fER and f = ullpfi, in such a way that u is a unit of R, the Pi are 
primes generating distinct ideals (p;), and each ei is a positive integer, 
then (1) = n(pfi) is the minimal primary decomposition of (1). 

b. R is factorial iff every prime ideal minimal over a principal ideal is 
itself principal. 

Proof. 

a. First we show that (pfi) is a (Pi)-primary ideal. If Q is an associated 
prime of (p~i), then since Q contains a power of p we have Q :J (Pi). 
If q is any element of Q, then q annihilates some element of R/(pfi); 
that is, for some f rt. (pfi) we have qf = pfi g. Since pfi divides qf 
but not f, and since Pi is prime, we see that Pi divides q. This shows 
Q C (Pi) as required. 

Clearly, we have (1) C n(pfi); we wish to show equality. By induc
tion on the number of primes Pi involved, it suffices to show that if g 
is not divisible by a prime p, then (g) n (pe) = (gpe). But if hg E (pe) , 
then since p does not divide g and p is prime, p must divide h, and 
(h / p) g E (pe-l). Repeating this argument, we eventually see that pe 
divides h, so hg E (gpe). 

We now see that (1) = n(pfi) is a primary decomposition. Thus 
every prime of Ass R/(1) is one ofthe (Pi). Each (Pi) is contained in an 
associated prime of (1) because Pi is a zero divisor modulo (1): for Pi 
divides f and Pi (1 /Pi) E (1). Thus, the given primary decomposition 
is minimal. 

b. Suppose R is factorial. If f = ullpfi is the prime factorization of an 
element, then by part a the associated primes of (1), and thus in 
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particular the minimal primes of R that contain f, are the principal 
primes (pi). 

Conversely, suppose that every prime ideal minimal over a princi
pal ideal is itself principal. To prove that R is factorial, the argument 
given in Section 0.2 shows that since R is Noetherian it is enough 
to check that any irreducible element fER is prime. But if P is a 
prime minimal over (f), then by hypothesis we may write P = (p) 
for some pER, and f E P becomes f = rp for some r E R. Since f 
is irreducible, r must be a unit, so (f) = (p) = P is prime. D 

We shall sharpen this result a little in Corollary 10.6. 

3.5 Primary Decomposition in the Graded Case 

If R is a graded Noetherian ring and M is a finitely generated graded 
R-module, then the associated primes of M are homogeneous, a primary 
decomposition of 0 in M can be made in terms of homogeneous modules, 
and M has a filtration as in Proposition 3.7 where the Mi and Pi are 
homogeneous. The proofs of these things involve only one new idea, given 
in Proposition 3.12, and we leave the details to the reader. We state the 
proposition here for ordinary graded rings R = Ro EB R1 EB . ", but in fact 
it holds (with the same proof!) for Z-graded rings and modules, and much 
more generally. See Exercise 3.5. 

Proposition 3.12. Suppose that R = RoEBR1 EB··· is a graded ring, and M 
is a graded R-module. Let m E M be any element, and set P = ann m C 

R. If P is prime, then P is homogeneous and P is the annihilator of a 
homogeneous element. 

Proof. Any fER may be expressed in a unique way as a sum f = 2::=1 J;, 
where each fi is nonzero and homogeneous of some degree di , and d1 < 
... < ds' We may prove that P is homogeneous by showing that if f E P 
then fi E P for each i. By induction on s it suffices to show that 11 E P. 
Thus we suppose that fm = 0 and we wish to prove that 11m = O. 

We may also write m = 2:;=1 mi in a unique way so that each mi is 
nonzero and homogeneous of some degree ei, and e1 < ... < et. We do 
induction on the number of terms t. Since fm = I1m1 + (terms of higher 
degree), we see that I1m1 = O. Thus, if t = 1 we are done. Suppose t > 1 
and that the result has been proven for all smaller values of t. 

The element 11 m = 2:;=2 11 mi is a sum of fewer homogeneous terms than 
is m. Set I = ann 11m. Note that Pel. If P = I then P is homogeneous 
by the induction, and we are done. Otherwise, we may choose an element 
gEl such that g rt. P. We have gl1m = 0, so gil E ann m = P. Since 
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g 1-- P, and P is prime, we have II E P as claimed, proving that P is 
homogeneous. 

From the fact that P is homogeneous it follows that Pmi = 0 for each 
i. Since P = ann m ~ ni(ann mi) ~ P, we see that P = ni(ann mi) ~ 
IIi (ann mi). Since P is prime, we have P ~ ann mi for some i, whence 
P = ann mi, and we are done. 0 

3.6 Extracting Information from 
Primary Decomposition 

We maintain the assumptions that R is a Noetherian ring, and we shall 
assume that M is a finitely generated R-module. 

We have already seen that if 0 = niMi is the minimal primary decompo
sition, then the Mi corresponding to minimal primes of Ass M are uniquely 
determined by M, and thus might be expected to shed some light on the 
structure of M, whereas the Mi corresponding to embedded primes gen
erally are not uniquely determined (we shall analyze this phenomenon in 
a moment). The same mechanism that leads to the uniqueness of the Mi 
corresponding to the minimal primes carries us a little further and shows 
that certain intersections of primary components are well defined. It turns 
out that these intersections correspond to the sets of associated primes not 
containing a given ideal-that is, to the closed subsets of Spec A in the 
Zariski topology introduced in Chapter 1. 

To express the intersections above, we shall make a definition: For any 
ideal I c R, we set 

H~(M) = {m E M I Inm = 0 for n» O} 

the set of elements annihilated by some power of I. The notation comes 
from local cohomology; see Appendix A4, in which functors H}(M) are 
defined for all i. (Pursuing the analogy with sheaf theory from which local 
cohomology arises, some authors write rI(M) for what we have called 
HJ(M).) 

The set HJ(M) is easily seen to be a submodule of M. It actually depends 
only on the radical of I, in the sense that HJ(M) = H~(M) if rad(I) 
rad(J). 

Proposition 3.13. Let I be an ideal of R, and let 

A = {P E AssMIP ~ I}. 

a. Let 0 = niMi be a primary decomposition of 0 eM, and suppose Mi 
is Pi-primary. The submodule HJ(M) is the intersection of those Mi 
such that Pi rt A. In particular, this intersection is independent of 
the primary decomposition chosen. 
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b. There is an element 1 E I such that PEA iff P E Ass M and 1 E P. 
For any such 1 we have 

c. We have Ass HJ(M) = A, and Ass MI HJ(M) = (Ass M) - A. These 
properties characterize HJ(M) uniquely. 

Proof. 

a. We may write HJ(M) = (0 :M 1(0
) := Un(O :M In), where (0 :M In) = 

{m E MIInm = O}. Using the given primary decomposition, we get 

A power of P; annihilates MIMi, so if Pi :::) I then (Mi :M 1(0
) = M, 

and we may drop this component from the intersection. On the other 
hand, if Pi 1J I then I contains a nonzero divisor on MIMi, so (Mi :M 

1(0
) = Mi. The desired formula for HJ(M) follows. 

b. By prime avoidance we may choose 1 E I not in any of the finitely 
many primes Q E (AssM) - A. Set N = ker(M -t M[J-l]). By 
Proposition 2.1 we have N = (0 :M 1(0

). By the argument of part a, 
applied to the ideal (I) in place of I, this is the intersection of those 
Mi such that P 1J I, the same as HJ (M). 

c. By part a, the primary decomposition of HJ (M) in M is 

HJ(M) = n Mi' 
i such that F\ otA 

If we choose the primary decomposition 0 = niMi to be irredundant, 
then we get an irredundant primary decomposition of HJ(M), and it 
follows from Theorem 3.10 that AssMIHJ(M) = (AssM) - A. Fur
ther, by Lemma 3.6b we see that Ass HJ(M) is a subset of primes of 
Ass M that contains A. Since every element of HJ (M) is annihilated 
by a power of I, it follows that the primes of Ass HJ(M) all contain 
I. Thus Ass HJ(M) = A. 

Conversely, let N be any submodule of M such that Ass N = A 
and Ass MIN = Ass M - A. If we choose 1 as in part b, then a power 
of 1 annihilates Nand 1 is a nonzero divisor on MIN. If follows that 
N = ker(M -t M[J-l]), so N = HJ(M) by part b. D 

The mechanism of part b could be applied with any localization, but it 
does not yield any submodules other than the HJ(M). See Exercise 3.12. 
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A typical application of part a of the proposition is to show that the 
intersection of all primary components corresponding to primes of dimen
sion greater than or equal to some number d is well defined. (See Chapter 9 
for the definition of dimension.) 

The most interesting case of Proposition 3.13 occurs when the ideal I is a 
prime P. The module H~(M)p c Mp is then the unique largest submodule 
of finite length. Its length is called the multiplicity of P in M. We see 
from the proposition (or directly from Theorem 3.1) that P is associated 
to M iff the multiplicity of P in M is nonzero. In general, one may think 
of the multiplicity as measuring "how associated" P is to M. 

Somewhat surprisingly, there seems no general way to extract "invariant" 
information about M from a primary decomposition that is not covered 
by Proposition 3.13 (but in some special circumstances there is-see, for 
example, Exercise 3.11). This has led some people to the view that one 
should ignore primary decomposition entirely; localization and the set of 
associated primes together are sufficient for many purposes. 

3.7 Why Primary Decomposition Is Not Unique 

We take a moment to explain why the terms in a primary decomposition 
corresponding to embedded primes are not unique, and to explore some 
related ideas. Assume for simplicity that R is a local Noetherian ring, and 
that the finitely generated module M has two associated primes, a minimal 
prime Q and the maximal ideal P itself. If we write a minimal primary 
decomposition 0 = M'nM", where M' is Q-primary and Mil is P-primary, 
then by Theorem 3.10c, M' = ker(M -+ MQ) is uniquely determined. 
However, as the reader may easily check, Mil may be taken to be any 
submodule such that 

a. For some integer d, Mil ~ p d M. 

b. M"nM'=O. 

In particular, we could simply take Mil = p d M for any sufficiently large d. 
One may try to avoid the problem by taking Mil maximal satisfying 

properties a, b. However, uniqueness is prevented even then, essentially by 
the fact that the complement of a vector space is not unique. For example, 
let k be a field and let R = k[xj(x) be a localization of the polynomial ring 
in one variable. Let M = RffiR/(x), and let e be a generator for the second 
summand. With notation as above, Q = 0, P = (x), and M' = Re, the 
second summand. Here Mil may be any nonzero submodule meeting Re in 
O. The maximal choices for Mil are precisely the complements of the second 
summand, Re; these are the modules generated by elements of the form (1, 
ue), with u E k. Since any two such elements are carried into one another 



3.8 Geometric Interpretation of Primary Decomposition 103 

by an automorphism of M, there is no distinguished choice for Mil. (Some 
more examples are given in Exercise 3.10.) 

In situations where "nice" subspaces have distinguished complements (for 
example, in the presence of a suitable group action) there are sometimes 
distinguished primary decompositions, however. See Exercise 3.11. 

3.8 Geometric Interpretation of Primary 
Decomposition 

If k is an algebraically closed field and I c S = k[Xl, ... , x r ] is an ideal, 
we can hope to "see" some of the meaning of a primary decomposition of 
I. Let I = nj I j be a minimal primary decomposition. It follows of course 
that Z(I) = UjZ(Ij). If I is a radical ideal, then each of the I j is a prime 
ideal minimal over I, and the primary decomposition simply expresses the 
algebraic set Z(I) as the union of the irreducible algebraic sets (algebraic 
varieties) Z (Ij ). But in more general cases the algebra suggests more. What 
we shall do here informally is formalized in the theory of schemes; see, for 
example, Eisenbud and Harris [1992] for an expository treatment in the 
spirit of this text, and Hartshorne [1977, Chapter 2] for more technical 
detail. 

Let us begin with the case of an ideal I c S = k[x, y] that is primary to 
the maximal ideal (x, y) so that Z(I) is the origin in the affine plane. For 
example, what geometric object X should be associated with the primary 
ideal (x2 ,y)? The idea is that X should be that geometric object that 
determines the coordinate ring S j I. If 

is a polynomial, then from the class of f modulo (x2 , y) we can read off the 
scalars ao = f(O, 0) and al = of jox(O, 0). That is, if we restrict a function 
to X, then we "see" the value of the function at the origin-so the point 
(0, 0) should be "in" X -and the value of the first derivative of f in the 
horizontal direction. There is a standard geometric object of this kind: It 
is the origin plus the horizontal tangent vector at the origin! 

x ... 
I = (x2 , y) corresponds to X, a point with tangent vector. 
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In a similar way, if we take I = (X2, xy, y2), then the class of f modulo I 
reveals the value of f at 0 and the value of the first derivative of f in any 
direction. Thus, it is natural to think of the corresponding X as the whole 
first-order infinitesimal neighborhood of the origin in the plane. 

J x 

1= (x2, xy, y2) corresponds to X, the first-order infinitesimal neighborhood of (0,0). 

If we replace I by, for example, the nth power (x, y)n, then all the deriva
tives of f up to order n - 1 are visible modulo I, so the corresponding 
geometric object X is the (n - 1 )st infinitesimal neighborhood. 

Similar considerations are suggestive in higher dimensional cases, too. 
For example, the ideal (x) C k[x,y] corresponds to Z((x)), the vertical 
line in the plane, while modulo (x2) one can see the values of a function 
f (x, y) at every point on the vertical line together with the values of its first 
derivatives in the horizontal direction at any point of the line. Thus (x2 ) 

corresponds to the vertical line with all the horizontal tangent vectors at 
points of the line-that is, the first-order neighborhood of the vertical line: 

x 

1= (x2 ) corresponds to X, the first-order infinitesimal neighborhood of the vertical 
line. 

From these ideas it is easy to see how to interpret more-or-Iess arbitrary 
primary decompositions. For example, I = (x) n (x2, xy, y2) corresponds to 
the vertical line together with the first-order neighborhood at the origin. 
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x 

I = (x) n (X2, xy, y2) corresponds to X, the vertical line plus the first-order infinites
imal neighborhood of (0, 0). 

Here the primary decomposition is not unique, and we could also write 
I = (x2 , xy) = (x) n (x2 , y), corresponding to the fact that the only infor
mation about a function j that is available on the first-order infinitesimal 
neighborhood of the origin but not on the vertical line is the derivative of 
the function in the horizontal direction. 

3.9 Symbolic Powers and Functions Vanishing to 
High Order 

If P is a maximal ideal of R and I is any proper ideal containing a power 
of P, then I is P-primary: For in this case P is the only prime containing 
the annihilator I of R/ I, so Theorem 3.1a shows that Ass R/ 1= {Pl. This 
generalizes the fact that any power of a prime in the integers is primary. 

In particular, the powers of a maximal ideal are all primary. One would 
be tempted to hope that a power of any prime ideal P would be P-primary, 
but this is not the case. In general, the P-primary component of the nth 
power of P is called the nth symbolic power of P, and is written p(n). 

In the geometric case, the symbolic powers of P have a nice geometric 
description as follows, due to Zariski and Nagata. 

Suppose that k is an algebraically closed field of characteristic 0 and 
S = k[Xl' ... ' xrl is a polynomial ring. Let X be the variety corresponding 
to the prime ideal PeS, so that P is the set of all polynomials vanishing 
on X. For n :2: 1, let 

p(n) = {J E Slj vanishes to order :2: n at every point of X}. 

The condition that j vanishes to order n at a point x E Ar means that if 
mx is the maximal ideal of S consisting of functions vanishing at x, then 
j E m~; equivalently, the Taylor expansion of j around x begins with terms 
of order greater than or equal to n. Thus we may also write 

p(n) = n m~. 
XEX 

If the characteristic of k is 0, then p(n) can be defined in another way as 
well: It is the set of polynomials that vanish together with their partial 
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derivatives of orders less than n at all the points of X. (In characteristic p, 
this is a weaker condition, and not so interesting: the derivatives of order 
~ p of the function xl are identically 0.) 

Theorem 3.14 (Zariski, Nagata). Suppose that k is an algebmically closed 
field and S is a polynomial ring over k. If P is a prime ideal of S, then 
p(n) = p(n), the nth symbolic power. 

Theorem 3.14 is true (with suitable interpretation) in a much broader 
setting. See Eisenbud and Hochster [1979J for history and details. 

Partial Proof. We shall prove in characteristic 0 that p(n) is P-primary and 
contains pn. It follows that p(n) contains p(n). We only sketch the opposite 
inclusion; for a full proof see Eisenbud and Hochster [1979J and its references. 
It is obvious that p(n) is an ideal and that p(n) ::J pn. To show that p(n) is 
P-primary, we must show that if r f/. P, but rs E p(n), then s E p(n). 

If m is a maximal ideal of S containing P such that r f/. m, then since 
rs E mn and mn is m-primary, we must have s E mn. It follows that the 
derivatives of order less than n of s all vanish on the set Y = {x E Xlr(x) "# 
o}. Let g be such a derivative. Since rg vanishes at every point of X, we 
have rg E P by the Nullstellensatz. Since r f/. p by hypothesis, it follows 
that 9 E P. Under the hypothesis that k has characteristic 0 we deduce 
that s vanishes to order ~ n on X, proving that p(n) is P-primary. 

Here is the idea of the proof that p(n) c p(n): Since p(n) is P-primary, it 
is enough to show that (p(n))[U-1J c (p(n))[U-1J for some multiplicatively 
closed set U not meeting P. We shall later show that there exists an element 
u f/. P such that for any point x E X with u(x) "# 0, with corresponding 
maximal ideal m = mx , there is a set of generators Yl, ... , Yr of mm such 
that Pm is generated by a subset of the Yi. Under these circumstances the 
Yi act like a set of "variables" (see Corollary 10.14 and Exercise 17.13). 

To see how the argument should go, we shift to the simpler case where 
p is generated by a subset of variables: P = (Yl, ... , Yc) C k[Yl,"" YrJ. 
The polynomials f(Yl,"" Yr), all of whose derivatives of order less than 
n are in (Yl, ... , Yc), are precisely the polynomials whose terms are all of 
degree at least n in Yl, ... , Yc-that is, they are the polynomials in the nth 
power of P, and p(n) = pn. The nth power of (Yl, ... , Yc) is also primary 
by Exercise 3.6, so pn = p(n). The analogous statements are also true in 
the original case. In particular, after inverting u we have p(n) = pn = p(n). 

o 

3.9.1 A Determinantal Example 
These ideas suggest an explicit example of a prime whose square is not 
equal to its symbolic square (and we shall check the example directly). A 
good general reference for the material that follows is the book of Bruns 
and Vetter [1988], and the example we shall give is very close to the paper 
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of DeConcini, Eisenbud, and Procesi [1982]; in particular, all the unproved 
assertions encountered below are proved in these sources. 

Consider the polynomial ring in 9 variables S = k[{ Xij h~i,j~3] and the 
generic 3 x 3 matrix G = (Xij) over S. Let P be the radical of the ideal 
I2(G) generated by the 2 x 2 minors of G. The algebraic set X defined by 
h (G) in the set M3 = A 9 of all 3 x 3 matrices is the set of 3 x 3 matrices of 
rank:::; 1. This set is irreducible, so that P is prime, as the following very 
typical geometric argument shows. 

First, the algebraic set 

Y:= GL(3,k) = {(g,y) c A 9 x Alig a 3 x 3 matrix and (detg)y = I} 

is irreducible because the corresponding ring is k[{xijh~i,j9][(detg)-l], 
a localization of the polynomial ring in 9 variables. The same is true of 
the algebraic set Y x YeA 20; its ring is a localization of the ring of 
polynomials in 18 variables. Let M3 = A 9 be the set of 3 x 3 matrices 
over k. Choose any matrix m of rank exactly 1, and consider the morphism 
Y x Y ~ M3 defined by (g, h) f---* gmh. Because any two nonzero matrices 
of rank 1 differ only by a change of basis in source and target, the image 
of cp is exactly X. If X = Xl U X 2 , with Xl and X2 algebraic subsets of 
X, then cp-l(Xd U cp-l(X2 ) = Y x Y. Since Y x Y is irreducible, either 
cp-l(Xl ) = Y x Y or cp-l(X2 ) = Y x Y, and thus Xl = X or X2 = X, 
showing that X is irreducible, too. 

It is obvious that no linear form vanishes on all rank-l matrices, so P 
contains no linear form. In fact, I2 (G) is prime, so P = I2 (G) is the prime 
ideal of functions vanishing on the set of rank-l matrices, but we shall not 
need this here. 

Let 9 = det G, the determinant of G. We claim that 9 E p(2). Since P 
contains no linear forms, p 2 is generated by forms of degree ::::: 4 and 9 is 
of degree 3, so this will show that p 2 i=- p(2). 

Checking Theorem 3.14 against this example, we note that the partial 
derivatives of 9 with respect to the variables Xij are 2 x 2 minors of G, so 
9 E p(2). If k has characteristic 0, then Theorem 3.14 applies to show that 
9 E p(2) as claimed. 

We now give a direct proof. We must show that 9 becomes an element 
of p2 after we localize at P. Now X11 rt P, so it suffices to show that 
x11g E h( G)2. This is easy to check: After multiplying the second and 
third columns of G by X11, which changes the determinant to xIlg, we may 
add multiples of the first column to the two other columns (not changing 
the determinant) to make the 1, 2 and 1, 3 elements of the matrix 0, as in 
Figure 3.1: 
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e" 
X12 x" ) C" 

XU X 12 XliX" ) 
X21 X22 X23 f-t X21 XU X 22 XU X 23 f-t 

X31 X32 X33 X31 XU X 32 XU X 33 

Cl1 0 

X"X23 ~ X"X21 ) . X21 XUX22 - X12X21 

X31 Xu X32 - X12 X 31 XU X33 - X13 X 31 

FIGURE 3.1. 

Thus the determinant Xilg is the product of Xu and the determinant of 
the lower 2 x 2 submatrix 

so that xug = det G'. Since the entries of G' are 2 x 2 minors of the original 
matrix, det G' E 12 (G?, and thus 9 E p(2). 

In fact, it is known that p(2) = (p2, g), and that a primary decomposition 
of p2 is p2 = p(2) n m4 , where m is the ideal generated by all the Xij' 

Here is a geometric proof that 9 vanishes to order ;::: 2 at any point 
a EX. Since we are in characteristic 0, it suffices to show that the partial 
derivative og / OXij vanishes at a for every i, j. If we write eij for the matrix 
which has all its entries equal to 0 except for the i, j entry, and whose i, j 
entry is 1, then og / OXij = dg( a + teij) / dt, where t is a new variable. But 
since both a and eij have rank 1, every matrix of the form a + teij has rank 
::; 2. Thus 9 vanishes identically on matrices of the form a + teij, and we 
see that the derivative is 0 as required. 

More generally, we might ask for the primary decomposition of any power 
of any "determinantal" ideal. To be specific, if G = (Xij) is the "generic" 
p x q matrix over the ring S = k[{ Xij h:Si:sp,l:Sj:Sq] then for each n the ideal 
Pn generated by the n x n minors of G is prime. If 1 < n < min(p, q), 
then the powers of Pn are not primary; however, the symbolic powers of 
Pn are known-they are generated by certain products of minors of various 
orders-and a primary decomposition of the powers has the form 

(*) pm = p,(m) n p(2m) n ... n p(nm) 
n n n-l l' 

The decomposition (*) can be made minimal by taking only the first 
a(m, n) terms for a certain function a(m, n)-see DeConcini-Eisenbud 
and Procesi [1982] for a precise statement, proof, and history of these mat
ters. 

3.10 Exercises 

Exercise 3.1: Let R = Z, the ring of integers. Identify the associated 
primes of a finitely generated abelian group (Z-module) in terms of the 
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usual structure theory of finitely generated abelian groups. 

Exercise 3.2: If M' = Ml n M2 are submodules of a module M, show that 
AssM/M' C AssM/Ml UAssM/M2 . 

Exercise 3.3:* If R is Noetherian and M and N are finitely generated 
R-modules, show that 

Ass HomR(M, N) = SuppM n AssN, 

where Supp M is the set of all primes containing the annihilator of M. 
(Hint: Show that it suffices to assume R is local and prove that the maximal 
ideal is in the set on the left-hand side iff it is in the set on the right-hand 
side. You will need to use Nakayama's lemma, Corollary 4.8.) Taking M = 
R/l, and setting (O:N I) = {n E Niln = O}, show that HomR(M,N) = 
(0 :N I), and thus 

ASS(O:N I) = AssN n {P c RIP is a prime ideal and I C P}. 

Exercise 3.4 (Gauss' Lemma):' Let R be any ring, and set S = R[Xl' 
... , x r ], the polynomial ring in r variables. If f E S is a polynomial, write 
Content (f) for the ideal of R generated by the coefficients of f. 

a. If f, 9 E S then 

Content(fg) C Content(f) Content(g) C rad(Content(fg)). 

Deduce that if Content (f) contains a nonzero divisor of R, then f is a 
nonzero divisor of S. 

b. If R is Noetherian and f is a nonzero divisor of S, show conversely 
that Content (f) contains a nonzero divisor of R. 

c. We say that f is primitive if Content (f) = (1). Gauss proved, in 
the case R = Z and r = 1, that the product of primitive polynomials is 
primitive, essentially to prove that if a primitive polynomial is irreducible 
in Z[x] then it is irreducible in Q[x]. Prove that if R is a factorial domain 
with quotient field K, and if f is irreducible in R[x], then f is irreducible in 
K[x]. Then show that R[x] is again factorial. If R is an arbitrary factorial 
domain, then the natural analogue of a primitive polynomial is a polynomial 
f such that Content(f) is not contained in any principal ideal. Use part a 
to show that if R is a factorial domain then R[x] is a factorial too. Deduce 
that if K is the quotient field of R and a polynomial f E R[x] is irreducible 
in K[x] then f is irreducible in R[x]. 

General Graded Primary Decomposition 

Exercise 3.5: Let r be an abelian monoid (that is, a set with a commuta
tive associative addition operation possessing an identity element 0), and 
let R = ffi,ErRy be a ring graded by r, in the sense that each R, is an 



110 3. Associated Primes and Primary Decomposition 

abelian group and R,R" C R,+y" We say that r acts on a set A if we 
are given a map r x A -+ A, denoted b,).) f---4 "I + ). and the associative 
law "I + b ' + ).) = b + "I') + ). holds. We say that r acts freely on A if 
"I +). = ). only when "I = O. If M is an R-module, we say that M is graded 
by A if M = ffi)..EAM).. as abelian groups and R,M).. C M-y+).. for any "I E r, 
). E A. An element of R is called homogeneous if it belongs to one of the 
R" and similarly for M. Every element of R or M can be written as a 
sum of nonzero homogeneous elements in a unique way; these are called its 
homogeneous components. An ideal I C R is called homogeneous if it can 
be generated by homogeneous elements. Show that I is homogeneous iff I 
contains the homogeneous components of each of its elements. 

If r and A are totally ordered then we say that the action of r on 
A is compatible with the order if "I ::; "I' and ). ::; X together imply 
"I + ). ::; "I' + X. We say that r acts freely if, under these circumstances, 
"I + ). = "I' + X implies "I = "I' and), = X, and also that "I + ). -I=- ). unless 
"I = O. 

a. Suppose that r is a totally ordered abelian monoid and R is a ring 
graded by r. Suppose also that M is an R-module graded by a totally 
ordered set A on which r acts freely in a way compatible with the 
orders. If PeR is a prime ideal that is the annihilator of an element 
of M, adapt the argument of Proposition 3.12 to show that P is 
homogeneous and that P is in fact the annihilator of a homogeneous 
element of M. 

b. Suppose that R is a Noetherian ring, M is a finitely generated R
module, and Rand M are graded as in part b. Show that Ass M 
consists of homogeneous prime ideals. Show that 0 C M has a pri
mary decomposition into homogeneous submodules. Show that in the 
filtration of Proposition 3.7 the Mi and the Pi may be taken to be 
homogeneous. 

c. Let R = k[x, y], and let r be the abelian group Z/(2) with elements 
written 0 and 1. We give R a grading by r, letting Ro be the set of 
polynomials whose terms all have even degree in y, and Rl the set 
of all polynomials whose terms have odd degree in y. The element 
x2 - y2 is homogeneous of degree O. Let M = R/(x2 - y2). Show that 
M is also graded by r. Show that the prime ideal P = (x - y) is the 
annihilator of an element of M, but that P is not homogeneous. (By 
part b, this shows that Z/(2) cannot be ordered in such a way that 
the action of Z/(2) on itself is compatible with the order. Prove this 
directly.) Show that 0 C M does not have a primary decomposition 
by homogeneous submodules of M. 
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Primary Decomposition of Monomial Ideals 

Computing the primary decomposition of the ideal generated by an arbi
trary set of polynomials is quite difficult. See for example Eisenbud, Huneke 
and Vasconcelos [1992] for algorithms and references. But for monomial ide
als the job is relatively easy. See Heinzer, Ratliff, and Shah [in press] and 
Sturmfels, Trung, and Vogel [in press] for further information on monomial 
primary decomposition. See Eisenbud and Sturmfels [in press] for the case 
of binomial ideals. 

Let k be a field (or any domain). A monomial ideal is an ideal I C 

k[xo, ... , xr] generated by monomials in the variables Xo, ... , Xr. 

Exercise 3.6:* Which monomial ideals are prime? Irreducible? Radical? 
Primary? 

Exercise 3.7:* Find an algorithm for computing the radical of a monomial 
ideal. 

Exercise 3.8:* Find an algorithm for computing an irreducible decompo
sition, and thus a primary decomposition, of a monomial ideal. 

Exercise 3.9:* Products of linear primes 

a. Let I = (xo) . (xo, xd ..... (xo, ... , xr). Show that the associated 
primes of I are (xo), (XO, Xl)"'" (XO,·" ,Xr)' 

b. More generally, for any subset J c {O, ... , r}, let P(I) be the prime 
ideal generated by {Xi Ii E I}. Let II, ... , It be subsets of {O, ... , r}, 
and set 1= IIjP(Ij ). Let r be the "incidence graph," whose vertices 
are the sets I j , with an edge joining Ii and I j iff Ii n I j =1= 0. Show 
that the associated primes of I are precisely those primes that may 
be expressed as P(Ijl U ... U I j ,) where I j" ••• , I j , forms a connected 
subgraph of r. (It may not be easiest to use the general algorithm 
above.) 

The Question of Uniqueness 

Exercise 3.10: 

a.* Let R = k[a,bl/I where I = (a) n (a,b)2 = (a2,ab). Show that (bn ) is 
(a, b)-primary in R, and that 

is a minimal primary decomposition of 0 in R for any n ~ l. 

b. Show that (a + )'bn ) is also (a, b) primary for any nonzero), E k, and 
that 

o = (a) n (a + )'bn ). 
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Show that each (a + >"bn ) is maximal among those ideals J C R with 

o=(a)nJ; 

thus the length of the rings Rj J, for J a "maximal (a, b)-primary 
component of 0," is actually unbounded. 

c. It may be objected that example b is unnatural in the sense that 
it gives an inhomogeneous primary decomposition of a homogeneous 
ideal. However, it can be "homogenized" as follows: Let S = R[cJ. 
Show that 0 = (a) n (acn - l + >"bn ) are primary decompositions of 0 
in S, and that (acn - l + >"bn ) is maximal among homogeneous ideals 
that can be used as primary components. 

d.* (Huneke): For maximal associated primes in the homogeneous case 
there is a small positive result: Let I C k[XI, ... ,Xr J be a homogeneous 
ideal and suppose that R = k[XI, .. " Xr l/ I has the maximal ideal 
(Xl, ... , X r ) as an associated prime. Show that there exists a number 
B such that if 

is a primary decomposition of I by homogeneous ideals, and J I 

is maximal among the homogeneous ideals that can appear as an 
(Xl"'" xr)-primary component, then the length of the ring Rj JI is 
bounded above by B. 

Exercise 3.11 (Uniqueness of maximal monomial primary 
decomposition):* (Bayer, Galligo, Stillman): Show that if I C 

k[XI,'" ,xrJ is a monomial ideal, then there is a unique minimal primary 
decomposition I = nIj of I for which each Ij is a monomial ideal, primary 
to an ideal Pj generated by a subset of the variables, and I j is maximal 
among the possible monomial Prprimary components. 

Exercise 3.12: Let M be a finitely generated module over the Noetherian 
ring R. Given any multiplicatively closed set U c R, show that the inter
section of the primary components of 0 in M corresponding to those primes 
of Ass M not meeting U is the kernel of the localization map M -7 M[U- l ], 

and is thus independent of the primary decomposition chosen. Show that 
any such kernel may be written as HJ(M) for some ideal I c R. 

Determinantal Ideals 

Exercise 3.13: 

a. Let Mr = Ar2 be the affine space of r x r matrices over an algebraically 
closed field k. Show that if a polynomial f vanishes on all the matrices 
of rank s in M r , then it must vanish on all matrices of rank s - 1. 
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b. Use part a and the idea of the proof given in the text for the case of 
3 x 3 matrices of rank 1 to show that the set of r x r matrices of rank 
::::; s is irreducible. (In fact, the ideal of (s + 1) x (s + 1) minors of the 
generic r x r matrix is prime -but this is somewhat harder to prove; 
see for example Bruns and Vetter [1988J.) 

c. Now show that if P is the radical of the ideal of (s + 1) x (s + 1) 
minors of the generic r x r matrix, then the (s + 2) x (s + 2) minors 
are in the symbolic square of P. 

Total Quotients 

Exercise 3.14: Use the finiteness of the set of associated primes of a 
Noetherian ring R to show that the total quotient ring K(R) has only 
finitely many maximal ideals -they are the localizations of the maximal 
associated primes. 

Exercise 3.15: The construction of the ring of total quotients K(R) of 
a ring R (obtained from R by inverting all the nonzero divisors of R) 
commutes with localization if the ring is reduced, but not in the general 
case. The problem has to do with embedded primes: 

a. * If R is a reduced ring, show that for any multiplicatively closed set 
U C R we have K(R[U-1]) = K(R)[U-1J. 

b. If R is any ring and U is any multiplicatively closed subset, show that 
K(R[U-1]) = K(K(R) [U-1]) is a localization of K(R)[U-1J. 

c. Let k be a field, let R = k[x,y,zJ/(x2,xy,xz), and let P = (x,y). 
Show that 

K(R) = R(x,y,z); 

Rp = k[y, zJ(y); 
K(Rp) = k(y,z); 

and thus K(Rp) =I- Rp @ K(R) = Rp. 

Exercise 3.16: Give an example of an extension of finitely generated 
abelian groups for which the second inclusion of Lemma 3.6b is proper. 

Prime A voidance 

Exercise 3.17: Here are two examples that show how the prime avoidance 
Lemma 3.3 cannot be improved. 

a. Show that if k = Z/(2) then the ideal (x, y) C k[x, yJ/(x, y)2 is the 
union of 3 properly smaller ideals. 
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b. Let k be any field. In the ring k[x, yJ/(xy, y2), consider the ideals 
II = (x), h = (y), and J = (x2 , y). Show that the homogeneous 
elements of J are contained in II U h, but that J rt. hand J rt. h 
Note that one of the I j is prime. 

Exercise 3.18: Prime avoidance usually fails for infinite sets of primes, 
but not always. 

a. Show that in k[x,y] the ideal (x,y) is contained in an infinite union 
of primes ~ such that no Pi contains (x, y). 

b.* Suppose that R = k[{Xj}jEA] is a polynomial ring with infinitely 
many variables indexed by a set A. Let {Ai };EB be a (possibly) infinite 
collection of mutually disjoint subsets of A, and for each i E B let 
~ be the prime ideal generated by {Xj hEAi' Show that any ideal 
contained in the union of the ~ is contained in one of them. Conclude 
that if U is the multiplicative set U = R - UiEBPi, then the maximal 
ideals of S = R[U-1] are precisely the ideals SPi . See Exercise 9.6 for 
more about this example. 

Exercise 3.19 (Refinements of prime avoidance):* Prove the follow
ing useful variants of prime avoidance: 

a. Suppose R is a ring containing a field k, and let h, ... , In be ideals of 
R. If (h, ... , In) rt. Ii for i = 1, ... , s, then there is a nonzero homoge
neous polynomial g(t1 , ... , tn) E k[tl, ... , tn] with the property that 

(*) 'Ladi ~ UjIj for all (al," .,an) E kn such that g(al, ... ,an) -=I- O. 

In particular, If k is infinite, then there is an element (a2,"" an) E 

kn- 1 so that h + 'L~=2 adi ~ UjIj . 

b. Suppose R is a ring, and let h, ... ,In be prime ideals of R. If 1 E R 
and J is an ideal of R such that 1 + J rt. Ii for i = 1, ... , n, then 
there is an element g E J with the property that 

In particular, if (h, .. . , Is) rt. Ii for i = 1, ... , n, then there is an 
element (a2,"" an) E Rn- 1 so that h + I:~=2 adi ~ UjIj . 

Exercise 3.20: Let M be a finitely generated module M over a Noetherian 
ring R. Proposition 3.4 immediately implies that the set of elements of R 
that are zero divisors on M is a union of primes. Here is a method, due to 
Kaplansky, for showing directly that this set is a finite union of primes: 
Consider 

p = {( P, m) I P is a maximal annihilator ideal and P = ann m}. 
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Let M' c M be the submodule generated by all the m that occur as 
second members of pairs in p. Let mi, ... , mn be a finite set of these mi 
that generate M', and let Pi' ... ' Pn be the corresponding primes. Show 
that the set of zerodivisors on M is Pi U··· U Pn . 



4 
Integral Dependence and the 
Nullstellensatz 

The problem of solving equations and saying something about the solutions 
is a fundamental motivation and goal of commutative algebra. In pursu
ing this goal, it is often important to adjoin a solution of a polynomial 
equation in one variable: Given a ring R and a polynomial p(x) E R[x], 
the ring R[xJl(p) may be thought of as the result of adjoining a root 
of p to R as freely as possible; the root adjoined is of course the image 
of x. 

The study of localization and its cousin, primary decomposition, which 
has occupied us for the last two chapters, may be regarded as the study 
of the case where p is a linear polynomial with unit constant coefficient, 
which we might as well write as p(x) = ax - 1. In this chapter we shall 
take up another central case, in which p is a monic polynomial, that is, a 
polynomial p(x) = xn +rlxn- 1 + ... + rn whose leading coefficient is 1. This 
case may be distinguished by the following fundamental remark, whose 
proof we give later as an application of the Cayley-Hamilton theorem. (See 
Exercises 3.4b and 6.5 for related results.) 

Proposition 4.1. Let R be a ring and let J c R[x] be an ideal in the 
polynomial ring in one variable over R. Let S := R[xJl J, and let s be the 
image of x in S. 

a. S is generated by ~ n elements as an R-module iff J contains a monic 
polynomial of degree ~ n. In this case S is generated by 1, s, ... ,sn-l. 
In particular, S is a finitely generated R-module iff J contains a 
monic polynomial. 
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b. S is a finitely generated free R-module iff J can be generated by a 
monic polynomial. In this case S has a basis of the form 1, s, ... , sn-l. 

If S is an R-algebra, and p(x) is a polynomial with coefficients in R, 
then we say that an element s E S satisfies p if p(s) = O. The element 
s is called integral over R if it satisfies a monic polynomial with coeffi
cients in R. The equation p( s) = 0 is then called an equation of integral 
dependence or an integral equation for s over R. If every element of 
S is integral over R, we say that S itself is integral over R. The following 
result is the second key fact that makes this theory interesting. 

Theorem 4.2. Let R be a ring and let S be an R-algebra. The set of all 
elements of S integral over R is a subalgebra of S. In particular, if S is 
generated by elements integral over R, then S is integral over R. 

In particular, Theorem 4.2 shows that the algebra obtained by adjoining 
the solutions to any set of integral equations is integral. The proof of The
orem 4.2 will also be given later as an application of the Cayley-Hamilton 
theorem. 

Given an R-algebra S, the ring of all elements of S integral over R is 
called the integral closure, or normalization of R in S. The most 
important examples occur when R is an integral domain and S is its quo
tient field. In this case the subalgebra of elements of S integral over R is 
simply called the normalization of R. A domain equal to its own nor
malization is called a normal dOInain. 

Generalizing the normalization of a domain in its quotient field, an R
algebra S containing a copy of R as R . 1 is called an integral extension 
of R if every element of S satisfies a monic polynomial with coefficients 
in R. 

Integral extensions and normalization appear naturally in many contexts. 
For example: 

• Geometrically, integral extensions of affine rings correspond to the 
maps of affine algebraic sets that are finite and proper. (Over the 
complex numbers, this means that the preimage of every set that is 
compact in the classical topology is again compact; in general it has 
a formulation that we shall explain in Chapter 14). If i.p : X ---+ Y is a 
morphism of algebra varieties, then the set of connected components 
of fibers of i.p form an algebraic set Y' mapping to Y through which 
i.p factors (the "Stein factorization of a morphism"; see Grothendieck 
[1961]) . 

• By an important finiteness result of Emmy Noether (Corollary 13.13), 
normalization is an operation that takes affine rings to affine rings. 
Since it also commutes with localization, it extends easily to an oper
ation on any algebraic variety. It has the effect of "improving" certain 
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irregularities in a variety, and it is an important step toward resolu
tion of singularities . 

• There is a criterion, due to Serre, to test when a ring is equal to its 
normalization in terms of certain geometric and homological proper
ties of the ring. A natural extension gives one of the most important 
tests for the primeness of an ideal. See Theorem 18.15 and the dis
cussion following it . 

• To return to our roots (pun intended), both the rings Z[xl/(x2 + 1) ~ 
Z[i] C Q[i] and Z[x]/(x2 + 4) ~ Z[2i] C Q[i] are interesting because 
they reflect the arithmetic in Z. But the ring Z[i] is "nicer" than the 
ring Z[2i]. For example, the first ring has unique prime factorization 
whereas the second does not, since (2i)(2i) = -(2)(2). It will turn 
out that the ring Z[i] is the normalization of Z[2i]. 

As a slightly less obvious example, consider the ring R = Z[J5] = Z[l + 
J5] C Q and the larger ring S = Z[l/2 + 1/2J5]. In the first ring the 
equation (1 + J5)(1 - J5) = -4 = -(2)(2) suggests that R does not 
have unique factorization. An easy check shows that this is true (one must 
show that 1 + J5, 1 - J5, and 2 cannot be factored further, and that 
they do not differ by units of R). However, in S we see that 1 + J5 = 
2(1/2 + 1/2J5) and 1 - J5 = 2(1/2 - 1/2J5) = 2(1/2 + 1/2J5 - J5). Also, 
(1/2+ %J5)(1/2- %J5) = -1, so both 1/2+ 1/2J5 and 1/2- 1/2J5 are units. 
Thus the two factorizations are essentially the same in S; in fact, one can 
show that S has unique factorization into primes. Again, the reason that 
S is "better" than R is that S is the normalization of R. Although even 
normal rings of algebraic integers may fail to have unique factorization, 
we shall see that they always have it locally, whereas non-normal ones do 
not. 

In general, if K is a number field (that is, a finite extension field of Q), 
then the set of elements of K that satisfy monic equations with coefficients 
in Z is called the ring of algebraic integers in K. As we remarked in 
Chapter 1, these are the rings whose study started commutative algebra. 

4.1 The Cayley-Hamilton Theorem and 
Nakayama's Lemma 

The classical Cayley-Hamilton theorem says that a linear transformation 
on a finite-dimensional vector space satisfies its characteristic polynomial. 
Hamilton proved this for linear transformations of R3 in 1853, and Cayley 
announced the general case in 1858, though he too seems only to have 
checked the cases up to 3 x 3 matrices. For purposes later in this chapter, 
we shall need a more general version. 
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Theorem 4.3 (Cayley-Hamilton). Let R be a ring, Ie R an ideal, and M 
an R-module that can be generated by n elements. Let i.p be an endomor
phism of M. If 

i.p(M) elM, 

then there is a monic polynomial 

p(x) = xn + P1Xn- 1 + ... + Pn 

with Pj E Ij for each j, such that p( i.p) = 0 as an endomorphism of M. 

Despite the generality, the proof is virtually the same as for the classical 
case. 

Proof. Let ml, ... , mn be a finite set of generators of M. We may write 
each i.p(mi) in terms of the mj, using coefficients in I: 

with aij E I. 

We regard M as a module over the polynomial ring R[x] by letting x act 
as i.p. Let A be the n X n matrix with entries aij, and let I be the n x n 
identity matrix. If we write m for the column vector whose entries are the 
mj, then the equations above say that 

(xl - A) . m = O. 

Multiplying the left-hand side by the matrix of cofactors of xl - A, we get 

[det(xl - A)]l . m = 0, 

that is, det(xl - A)mi = 0 for all i; thus 

[det(xl - A)]M = O. 

It follows that the polynomial p(x) = det(xl- A) has the desired property 
p( i.p) = O. It is easy to see directly that the /h coefficient Pj is in the /h 
power of I; from a high-brow point of view, this is because Pj is the trace 
of the /h exterior power of A, the sum of certain j x j minors of A. 0 

Before returning to the application to integral elements, we give a useful 
and surprising application in another direction. 

Corollary 4.4. Let R be a ring, and let M be a finitely generated R-module. 

a. If a : M -+ M is an epimorphism of R-modules, then a is an iso
morphism. 

b. If M ~ Rn, then any set of n elements of M that generate M forms 
a free basis; in particular, the rank n of M is well defined. 
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Proof. 

a. We may regard M as a module over R[t], letting t act by tm = o:(m) 
for m E M. If we set 1 = (x) c R[t], then since 0: is an epimorphism, 
1M = M. Thus we may apply the Cayley-Hamilton theorem with r.p 
the identity endomorphism of M. It follows that there is a polynomial 
q(t) such that (1- q(t)t)M = 0, or equivalently 1- q(o:)o: = O. From 
this we see that q(o:) is the inverse to 0:, and 0: is an isomorphism. 

b. A set of n generators of M corresponds to a surjection f3 : Rn ---+ M 
sending the basis elements of Rn to the given generators of M. Since 
M is free of rank n, we may choose an isomorphism 'Y : M ---+ Rn. 
The map f3'Y : M ---+ M is a surjection, and thus an isomorphism. It 
follows that f3 = (f3'Yh-1 is an isomorphism, so the given generators 
for M are a free basis. 

To prove that the rank of a finitely generated free module is well 
defined, suppose that Rm ~ Rn. If m =f. n, suppose that m < n. We 
can extend a basis of length m by adjoining some elements equal to 
zero, to obtain a set of n generators that do not form a free basis, 
contradicting the first statement of part b. Thus m = n, and we see 
that the rank is well defined. (One could prove this last statement 
directly: If p is a maximal ideal of R then (R/ P)0R~ = (R/ p)m is a 
vector space of dimension m. By the same argument it has dimension 
n, so m = n). 0 

The criterion of Corollary 4.4a is often useful when one can "approxi
mate" a homomorphism in some way; see Exercises 4.13 and 7.5 for exam
ples. Corollary 4.4b is, of course, fundamental. See Exercise 4.10 for a differ
ent proof. This statement is not so trivial as it might seem: The rank is not, 
in general, a well-defined invariant of a free module over a noncommutative 
ring (although it is well defined in the Noetherian case). For example if an 
abelian group A satisfies A ~ AEBA, as does for example any infinite dimen
sional vector space, and r := Hom(A, A) is its ring of endomorphisms, then 
r = Hom(A, A) = Hom(A,A EB A) = rEB r as right-r-modules. The trick 
used here is sometimes called the "Eilenberg Swindle" . 

Next we use these results to prove Proposition 4.1. 

Proof of Proposition 4·1. 

a. The powers of x generate R[x] as an R-module, so their images, the 
powers of s, generate S. Suppose that J contains a monic polynomial 
p of degree n. Any power sd of s with d 2: n may be written in terms of 
smaller powers by means of the equation 0 = sd-np( s) = Sd + Tl sd-l + 
... , so the first n powers of s generate S. 

Conversely, suppose that S can be generated as an R-module by n 
elements. We regard multiplication by s as an endomorphism of the 
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R-module 5. Taking 1= R, the Cayley-Hamilton theorem shows that 
s satisfies a monic polynomial p( x) of degree n. Since p( s) = 0, the 
polynomial p(x) is in J. 

b. Suppose that J is generated by a monic polynomial p of degree n. We 
know from part a that the first n powers of s generate 5. To show they 
are linearly independent, suppose L~~l aisi = ° for some elements 
ai E R. It follows that the polynomial q(x) = L~~l aixi is in J = (p). 
Since p is monic, any nonzero multiple of p has degree equal to n or 
greater than n, and we see that q = 0. This shows that 5 is a free 
R-module having the first n powers of s as free basis. 

Conversely, suppose 5 is a free R-module, and let n be its rank. As an 
R-module, 5 can generated by n elements, so by part a there is a monic 
polynomial p of degree n in J. It follows by part a that 5 is generated 
as an R-module by 1, ... , sn~l. Since 5 is free of rank n, Corollary 4.4b 
shows that these powers form a basis of 5 as an R-module. 

We claim that p generates J. If f E J is any polynomial, let q be the 
remainder of f on division by p, so that q E J and degree q < n. As 
above, the polynomial q can be interpreted as a linear relation among 
some of the first n powers of s. Since these form a free basis of 5, it 
follows that q = 0, so f is divisible by p as required. 0 

In general we shall say that an R-algebra 5 that is finitely generated as 
an R-module is finite over R. This is stronger than being integral. The 
following result extends the connection given in Proposition 4.1 to rings 
generated by more than one element. 

Corollary 4.5. An R-algebra 5 is finite over R iff 5 is generated as an 
R-algebra by finitely many integral elements. 

Proof. First suppose that 5 is finite over R. If s E 5, then multiplication 
by s is an endomorphism of 5, and the Cayley-Hamilton theorem shows 
that s satisfies an integral equation. 

For the converse, suppose 5 is generated by t elements, and let 5' be the 
subalgebra of 5 generated by t - 1 of the generators. We may assume by 
induction that 5' is finite over R. Suppose 5' is generated as an R-module 
by a finite set of elements {Si}. The last generator, s, is integral over R 
and thus also integral over 5'; by Proposition 4.1 there is a finite set of 
generators of 5 as an 5 '-module, say {tj}. It is easy to check that the set 
of products {Sitj} generates 5 as an R-module. 0 

For the natural generality of the idea in the second part of the proof, see 
Exercise 4.l. 

Here is the application of the Cayley-Hamilton theorem, Theorem 4.3, 
to integral elements. 
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Corollary 4.6. If 5 is an R-algebra and s E 5 then s is integral over 
R iff there exists an 5 -module N and a finitely generated R-submodule 
MeN, not annihilated by any nonzero element of 5, such that sM c M. 
In particular, s is integral iff R[s] is a finitely generated R-module. 

Proof. Suppose first that s is integral over R. Take N = 5. By Proposi
tion 4.1, M = R[s] c 5 is finitely generated as an R-module. 

Conversely, we may regard multiplication by s as an endomorphism of 
M. Applying the Cayley-Hamilton theorem we see that there is a monic 
polynomial p having coefficients in R with p(s)M = O. From our hypothesis 
it follows that p( s) = 0 as an element of 5, and thus s is integral as required. 

The last statement, which may also be regarded as a restatement of 
Proposition 4.1, follows because 1 E R[s] is not annihilated by any nonzero 
element of 5. D 

It would be natural to prove Theorem 4.2 by starting with the equations 
satisfied by two integral elements and simply writing down the equations 
satisfied by their sum and product. In a sense, this is what we shall do. But 
in general the necessary polynomials are complicated. The Cayley-Hamilton 
theorem gives them implicitly. 

Proof of Theorem 4.2. Let s, s' be elements of 5 that are integral over 
R. We must show that s + s' and ss' are integral over R. Suppose that 
M = R[s], and M' = R[s'] c 5. By Proposition 4.1 both M and M' 
are finitely generated modules. We define M M' to be the module spanned 
by all the pairwise products of elements of M and M'. Since it would be 
enough to take pairwise products of generators of M and M', the module 
M M' is also a finitely generated module. We have 

ss'MM' = sMs'M' c MM' 

(s + s')MM' c sMM' + Ms'M' c MM' + MM' = MM', 

so both ss' and s + s' are integral by Corollary 4.6. This shows that the 
integral elements form a subring. D 

If R is Noetherian, then in fact Theorem 4.2 follows directly from Corol
lary 4.5. Replacing 5 by the algebra generated by the elements integral 
over R, it suffices to show that every element of 5 is integral over R. If 
s E 5, then s is in a subring 5' generated by just finitely many integral 
elements, which is finite by Proposition 4.5. Since R is Noetherian the sub
algebra R[s] C 5' is finite over R, so s is integral by the other implication 
of Corollary 4.5. 

We now give two further consequences of the Cayley-Hamilton theorem 
that will be of great importance in the next chapters. 
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Corollary 4.7. If M is a finitely generated R-module and I is an ideal 
of R such that 1M = M, then there is an element rEI that acts as the 
identity on M; that is, such that (1- r)M = O. 

Proof. Take <p to be the identity in Lemma 4.3; the resulting equation 
p(l)M = 0 becomes 

(1 + PI + ... + Pn)M = 0, 

with Pj in Ij c I, so we may take r = -(PI + ... + Pn). D 

The next result, called Nakayama's lemma (see the history in Nagata 
[1962] p. 212-213), is an extraordinarily useful tool in the theory of local 
rings. To state it in maximal generality we use the following definition. 

Definition. The Jacobson radical of a ring R is the intersection of all 
the maximal ideals of R. 

Corollary 4.8 (Nakayama's Lemma). Let I be an ideal contained in the 
Jacobson radical of a ring R, and let M be a finitely generated R-module. 

a. IfIM=M, thenM=O. 

b. If ml, ... ,mn E M have images in M / I M that generate it as an 
R-module, then ml, ... ,mn generate M as an R-module. 

Proof. 

a. We apply Corollary 4.7 to get rEI such that (1 - r)M = O. Since r 
is in every maximal ideal, 1 - r is in no maximal ideal; that is, 1 - r 
is a unit. It follows that M = O. 

h. Let N = M/C'£.iRmi). We have N/IN = M/(IM + CLiRmi)) = 
M/M = 0, so IN = N. We now apply part a to get N = 0, that is, 
M = (L:i Rmi)' D 

Warning: It is tempting, but in general wrong, to use Nakayama's lemma 
to prove that a module M is finitely generated by exhibiting finitely many 
generators for M / 1M. But in some favorable cases this argument is correct; 
see Exercises 4.6 and 7.2. 

Nakayama's Lemma says in particular that if (R, P) is a local ring 
and M is a finitely generated R-module such that M / PM = 0, then 
M = O. Since M / P M = R/ P ® M, the following result extends this 
remark. 

Corollary 4.9. If M and N are finitely generated modules over a ring R, 
and M ®R N = 0, then annM + annN = R. In particular, if R is local, 
then either M or N is O. 
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Proof. It suffices to prove the local case, since if ann M + ann N -# R, 
we could localize at a prime ideal containing both ann M and ann N, and 
apply the local result to get a contradiction. Assuming that (R, P) is local, 
and M -# 0, Nakayama's lemma implies that M/PM -# O. Since this is an 
R/ P vector space, it projects onto R/ P and so there is a surjection from 
M itself onto R/ P. Thus 0 = M ® N surjects onto R/ P ® N = N / P N. By 
Nakayama's lemma, N = o. 0 

4.2 Normal Domains and the 
Normalization Process 

We have already hinted that there is a connection between normality and 
unique factorization. The following proposition gives the relation. 

Proposition 4.10. Let R be a ring. If R is factorial, then R is normal. 

Proof. Suppose that R is factorial, and that r / s with r, s E R, is a fraction 
that is integral over R. We may assume that rand s are relatively prime, 
and we wish to show that r / s E R. If the integral equation satisfied by r / s 
is 

(r/st + an-l (r/st- 1 + ... = 0, 

then multiplying by sn gives 

Thus rn is divisible by s, contradicting the relative primeness of rand s.O 

Proposition 4.10 shows immediately that the domain Z is normal. If k 
is a field then k[Xl' ... xr ] and Z[Xb ... , xr ] are factorial, so these rings are 
normal too. In fact more is true: A ring R is normal iff the polynomial ring 
R[x] is normal-see Exercise 4.18. 

If ReS are rings and f(x) E R[x] is a monic polynomial with a root 
in S, then by definition the root is integral over R. Having a root 0: is 
the same as having a linear factor (x - 0:). The following result shows 
that something similar is true for any factor, linear or not. Given that 
Z is normal, as we have just shown, it generalizes the statement that a 
monic polynomial with integer coefficients that is irreducible in Z[x] is 
also irreducible in Q[x]. (This is usually proved from Gauss' lemma; see 
Exercise 3.4.) 

Proposition 4.11. Let ReS be rings, and suppose that f E R[x] is a 
monic polynomial. If f factors in S[x] as f = gh, with 9 and h monic, then 
the coefficients of 9 and h are integral over R. 
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Proof. Adjoining a root a1 of g to S and using long division in the ring 
S[a1] = S[xJl(g), we see that g factors as (x - adg1, where the degree of 
gl is one less than the degree of g. Repeating this process inductively, we 
may find an extension ring T of S and elements ai and (3j of T such that 
g = IT(x - ai), h = IT(x - (3j) in T[x]. Since each ai and {3j is a root of 
the monic polynomial f, the subring T' of T generated as an R-algebra by 
the ai and {3j is integral over R. Since the coefficients of g and h are the 
elementary symmetric functions in the ai and the (3j, respectively, they too 
are integral over R. 0 

If R is a domain and f :;::: gh E R[x] is a factorization of a monic poly
nomial into nonmonic polynomials, then because f is monic the leading 
coefficients of g and h are units of S, inverse to one another. Multiplying 
each of g and h by the leading coefficient of the other produces a factoriza
tion to which Proposition 4.11 applies. 

As a consequence we get a weak converse of Proposition 4.10, tighten
ing the connection of normality and factoriality and generalizing another 
standard consequence of Gauss' lemma. It is useful with such results as 
Eisenstein's criterion, Exercise 18.11. 

Corollary 4.12. If R is a normal domain, then any monic irreducible 
polynomial in R[x] is prime. 

Proof. Let f be a monic irreducible polynomial. Write Q for the quotient 
field of R. By Proposition 4.11, f remains irreducible in Q[x]. Since Q[x] 
is factorial, P = fQ[x] is prime. Since R[x]/(J) is free over R, the map 
R[xJl(J) --+ Q ®R R[x]/(J) = Q[xJlP is a monomorphism; thus (J) is 
prime in R[x]. 0 

Normalization commutes with localization. 

Proposition 4.13. Let ReS be rings, and let U be a multiplicatively 
closed subset of R. If s' is the integral closure of R in S, then S'[U-1] is 
the integral closure of R[U-1] in S[U-1]. 

Proof. An element of S integral over R is certainly integral over R[U-1], 
so S'[U-1] is integral over R[U-1]. For the other inclusion we must show 
that if s/u E S[U-1] is integral over R[U-1] then s times an element of U 
is integral over R. If 

(s/u)n + (rdud(s/u)n-1 + ... = 0 

is an equation of integrality for s / u, then we can clear denominators by 
multiplying by (UU1 ... un)n, to get a relation of integrality for SU1 ... Un: 
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If R is a Noetherian domain then one might hope that the integral closure 
S of R (in its quotient field or perhaps some finite extension field) would be 
Noetherian. If S is finitely generated as an R-algebra, then this will true by 
Corollary 4.5. In general, an integral algebra over a ring R is a possibly infi
nite union of finite algebras. If this union is really infinite, then S might not 
be Noetherian; this can really happen, as an example due to Nagata [1962, 
Example 8, p. 211] shows. However, in the case of affine rings, all is well. 

Theorem 4.14 (Emmy Noether). If R is a finitely generated domain over 
a field or over the integers, and L is a finite extension field of the field of 
fractions of R, then the integral closure of R in L is a finitely generated 
R-module. 

We shall give the proof of Theorem 4.14 in the case of affine rings as 
an application of the Noether normalization theorem in Corollary 13.13 
(for the general case see the references given there). In a similar vein, the 
Krull-Akizuki theorem (Theorem 11.13) shows that the normalization of a 
"one-dimensional" Noetherian ring is again Noetherian. In general, rings R 
satisfying the conclusion of Theorem 4.14 were named Japanese rings by 
Grothendieck [1965] in honor of the contributions of the Japanese school. 

Theorem 4.14, especially together with Proposition 4.13, is useful in 
geometry: Theorem 4.14 says essentially that the normalization of an affine 
variety is again an affine variety, and it is generally somewhat simpler. 
Proposition 4.13 shows that a general reduced, irreducible variety made 
by patching together affine pieces (for example, a projective variety) has a 
nice normalization: We may normalize each affine piece separately, and then 
glue together along the open sets (see the discussion in Chapter 2), which 
are the normalizations of the open sets along which the original pieces were 
glued. 

= 
each piece 
separately, 
and gluing 
still works! 
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4.3 Normalization in the Analytic Case 

There is a beautiful interpretation of integrality for rational functions on an 
affine variety over C that comes from complex analysis. We shall sketch a 
special case, referring the reader to Gunning and Rossi [1965] for the general 
case. For simplicity, we assume that the variety is regular except for one 
singular point (see Chapter 10 and Theorem 16.19 for the definition, or 
just look at the pictures below). In this case a rational function is integral 
over the ring of polynomial functions localized at the singular point iff 
it stays bounded in a neighborhood of the singular point in the classical 
topology. For example, consider the coordinate rings C[x, y]j(y2 - x3) and 
C[x, y]j(y2 - x2(x + 1)) of the plane curves 

and 

respectively. In each case the singular point is the origin (0,0). In each 
case the function y/x, though not regular in the sense that it is in the 
coordinate ring (and not bounded in a neighborhood of the singular point 
in the plane), does stay bounded along the curves. (For the real points of 
the curves one sees this plainly from the pictures: It just means that the 
distance from a point on the curve to the x-axis is never too much greater 
than the distance of the point to the y-axis. For the complex points a little 
algebra is necessary, as usual.) 
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In each of these cases, it is easy to see the integral equation satisfied by 
this bounded function: In the first case it is (y / x? - x = 0, in the second 
(y/x? - (x -1) = o. The "reason" why y/x is not in the coordinate ring is 
that while all polynomial functions are restrictions of polynomial functions 
on the plane, the function y/x does not even extend to a continuous (in 
the classical sense) function on the plane. In the second case, y / x is not 
even continuous on the curve: Along one "branch" of the curve, y / x has 
limit 1 at (0,0), whereas along the other branch it has limit -1. Thus it 
"separates" the two branches; see Exercise 4.24. 

4.4 Primes in an Integral Extension 

Suppose that Rand S are affine k-algebras corresponding to varieties X 
and Y, respectively. A homomorphism R -+ S corresponds to a morphism 
Y -+ X. The homomorphism R -+ S is an inclusion iff no polynomial 
function on X pulls back to 0 on Y -that is, iff the image of Y -+ X is not 
contained in any proper closed subset of X or, in fancier language, iff the 
image is dense in the Zariski topology. 

What does it mean for S to be integral over R? The full answer, which we 
shall not completely explain here, is that the map Y -+ X is proper with 
finite fibers. If the ground field is C, then this means that the preimage in 
Y of a compact subset of X (in the classical topology) is a compact subset 
of Y; over a general ground field, properness is a good replacement for 
this sort of relative compactness. We shall meet properness again when we 
come to elimination theory in Chapter 14; the interested reader can find a 
technical account of the general notion in Hartshorne [1977, Chapter 2]. For 
now we shall prove three facts, formulated by Cohen and Seidenberg [1946]' 
that reflect part of this geometric constellation. Their main use is to show 
that if ReS is an integral extension, then chains of prime ideals in Rand 
in S are closely related; such information will be necessary when we come 
to dimension theory. We shall also use Corollary 4.17 in the proof of the 
Nullstellensatz at the end of this chapter. All three results are essentially 
corollaries of Nakayama's lemma. 

Proposition 4.15 (Lying Over and Going Up). Suppose that ReS is 
an integral extension of rings. Given a prime P of R, there exists a prime 
Q of S with R n Q = P, and in fact Q may be chosen to contain any given 
ideal Ql that satisfies the (obviously necessary) condition R n Ql c P. 

The first statement of the proposition is called Lying Over because it 
asserts the existence of a prime of S "lying over" a given prime of R. The 
second statement is called Going Up because it constructs a prime Q "up" 
from Ql (see Figure 4.1). There is also a somewhat deeper going down 
result that holds under stronger hypotheses (Theorem 13.9). 
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Proof. Factoring out QI and R n QI, we may suppose that QI = 0, and we 
need only prove the existence of a prime Q of S with R n Q = P. Let U be 
the multiplicatively closed set R - P. Replacing R by Rp = R[U-I] and S 
by S[U- l ], we may assume that R is local with maximal ideal P. 

With these hypotheses, any maximal ideal of S containing P S has preim
age containing P, and therefore equal to P; so we need only prove that 
PS:f- S. But if PS = S then 1 E S can be expressed as an S-linear combi
nation of finitely many elements of P. If we let S' be the subalgebra of S 
generated by these elements, then 1 E PS' so PS' = S'. Since S and thus 
S' are integral over R, Corollary 4.5 shows that S' is a finitely generated 
R-module. By Nakayama's lemma, S' = 0, a contradiction. 0 

Even if we only assume that the quotient field of S is algebraic over 
that of R, the following lemma shows that there is some relation between 
the ideal theory of S and that of R. Recall from Chapter 2 that if R is a 
domain, then K(R) denotes the quotient field of R. 

Lemma 4.16. Let ReS be domains. If K(S) is algebraic over K(R) then 
any nonzero ideal of S intersects R nontrivially. 

Proof. It suffices to treat a principal ideal bS. Now b satisfies an equation 
of the form anbn + ... + alb + ao = 0, with each ai E K(R). Multiplying 
by a common denominator of the ai in R, and dividing by a power of b if 
necessary, we may suppose all ai E R and ao :f- o. Clearly, ao E bS. 0 

With a hypothesis as in Lemma 4.16, suppose that R is a field. By the 
lemma, any nonzero ideal of S contains a nonzero element of R, and this 
is a unit; thus S is a field. If we assume that S is integral over R, then the 
converse is true as well. 

Corollary 4.17. If ReS is an integral extension of domains, then S is 
a field iff R is a field. Equivalently, if S is an integral R-algebra and P is 
a prime of S, then P is a maximal ideal of S iff P n R is a maximal ideal 
ofR. 

R S 

P -----3Q 

RnQ,---

FIGURE 4.1. 
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Proof. We have already seen that if R is a field then S is too. For the 
converse, if m is a maximal ideal of R, then by Lying Over there is a prime 
Q of S intersecting R in m. If S is a field, then Q = 0, so m = R n Q = 0, 
and R is a field. The second statement of the corollary may be reduced to 
the first by factoring out P and P n R. 0 

For a direct proof of Corollary 4.17, see Exercise 4.3. 
The hypothesis of Lemma 4.16 may be spoiled if we pass to factor rings 

of Rand S, since the equations that make the elements of S algebraic over 
R may become trivial. However, integral equations cannot become trivial 
in such a factor ring, and this makes the lemma particularly potent with 
a hypothesis of integrality. Here is a typical application; for another, see 
Theorem 11.13. 

Corollary 4.18 (Incomparability). Suppose ReS is an integral extension 
of rings. Two distinct primes of S having the same intersection with Rare 
incomparable. 

Proof. If Q C Ql C S are primes, with R n Q = R n Ql = PeR, then 
factoring out P in Rand Q in S reduces to a situation where S is a domain, 
Q = 0, and Ql n R = O. Since integral equations persist modulo P, S is 
still integral over R, and thus K(S) is algebraic over K(R). Lemma 4.16 
shows that Ql = 0 = Q, as required. 0 

Sometimes more is true: We shall show in Proposition 3.10 that if R 
is normal and K(S)jK(R) is Galois, then any two primes with the same 
preimage in R are conjugate under an automorphism of S. 

4.5 The Nullstellensatz 

The original Nullstellensatz, explained in the Introduction, deals with poly
nomials in n variables over a field. The version below is much more general: 
It deals with a property that fields (trivially) possess and that is preserved by 
every polynomial extension. It does not even need a Noetherian hypothesis. 
At the end of this chapter we shall show explicitly how to derive the version 
of the Nullstellensatz given in Chapter 1 from the version given here. The 
exercises contain three further proofs; a fifth will be given in Chapter 13. 

We say that a ring R is a Jacobson ring if every prime ideal of R is the 
intersection of maximal ideals l . It is obvious that any field is a Jacobson 
ring. The version of the Nullstellensatz that we shall now prove, shows that 

lThis name, bestowed by Krull, honors Nathan Jacobson's studies of the inter
section of the maximal ideals of a ring, which is now called the Jacobson radical. 
The name "Hilbert ring" also appears in the literature. 
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any finitely generated algebra over a field is also a Jacobson ring. Recall 
that if S is an R-algebra by some homomorphism a: R -+ S, and I c Sis 
an ideal, then for simplicity we write In R for a-I (I), just as if a were an 
inclusion. 

Theorem 4.19 (Nullstellensatz-General form). Let R be a Jacobson ring. 
If S is a finitely generated R-algebra, then S is a Jacobson ring. Further, 
if n c S is a maximal ideal, then m := n n R is a maximal ideal of R, and 
Sin is a finite extension field of Rim. 

The conclusion of the second statement can easily fail if R is not Jacobson 
(the conclusion of the first statement fails trivially!). For example, let R = 
k[t](t). The unique maximal ideal of R is (t), so the prime ideal 0 is not an 
intersection of maximal ideals of R, and R is not Jacobson. If n = (xt-l) C 

S := R[x], then Sin ~ k(t), so n is a maximal ideal of S, but n n R = O. 
The proof will make use of a reformulation of the Jacobson property, 

variants of which go under the name "Rabinowitch's trick" (Rabinowitch 
[1929]). 

Lemma 4.20. Let R be a ring. The following are equivalent: 

a. R is Jacobson. 

b. If P is a prime of R and if S := RIP contains an element b 'I- 0 such 
that S[b- 1] is a field, then S is a field. 

Proof. a ::::} b: Since R is Jacobson, S is Jacobson, and since S is a domain, 
it follows that the intersection of the maximal ideals of S is O. The primes 
of S[b-1] correspond to the primes of S that do not contain b, as illustrated 
in the beginning of Chapter 2. Since S[b-1] is a field, b is contained in all 
the nonzero prime ideals that S may have. Thus the ideal (0) must be a 
maximal ideal-that is, S is a field. 

b ::::} a: Let Q be a prime ideal of R, and let I be the intersection of all the 
maximal ideals containing Q. We must show that I = Q. If, on the contrary, 
I 'I- Q, choose an element f E 1- Q. By Zorn's lemma we may choose a 
prime P maximal among the primes of R containing Q but not containing 
f. By hypothesis, P is not a maximal ideal of R, so S = RIP is not a field. 
Nevertheless, P generates a maximal ideal of R[J-l], so RI P[f-l] is a field. 
This contradicts hypothesis b, so I = Q as required. 0 

Proof of Theorem 4.19. We begin with an easy special case. Suppose that 
R is a field, and S = R[x], the polynomial ring in one variable over R. 
The ring S is a principal ideal domain. Any nonzero prime ideal n of S 
is generated by an irreducible monic polynomial f. Since one irreducible 
polynomial cannot divide another, n is a maximal ideal. Of course nnR = 0, 
the unique maximal ideal of R, since otherwise n would not be proper. The 
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dimension of Sin over R is equal to the degree of I, and is in particular 
finite. Thus the second statement of Theorem 4.19 is satisfied. 

It now suffices to show that S is Jacobson, and since the nonzero primes 
are maximal it only remains to show that 0 is the intersection of prime ideals 
of S. Since no polynomial can have infinitely many irreducible factors it 
suffices to show that S has infinitely many distinct prime ideals. For this 
we may use Euclid's famous old argument: If there were only finitely many 
prime polynomials Ii then 11 Ii + 1 (which is not a unit because it has 
positive degree) would have no prime factors. Thus S is a Jacobson ring, 
and we have proved the special case of Theorem 4.19. 

Now let R be any Jacobson ring, and suppose that S is generated as an 
R-algebra by just one element. For the first statement, we use the charac
terization of Lemma 4.20, and we must show that if P is a prime of Sand 
if S':= SIP contains an element b such that S'[b-1] is a field, then S' is a 
field. Replacing S by S', and factoring out the preimage of P from R, we 
may assume that R is a domain contained in S, and that b E S is such that 
S[b-1] is a field, and we must show that S is a field. We shall actually show 
that R is also a field, and S is a finite extension of R in this case. For the 
second statement of the theorem, we may make the same reduction and 
assume that S itself is a field. The desired conclusion is exactly that R is a 
field and S is finite over it, so the same proof will prove both statements. 

Since S is generated over R by a single element t, we may write S = 
R[xJlQ for some prime ideal Q of R[x], in such a way that t is the image 
of x. We first claim that Q -=F O. In the contrary case, we would have 
b E R[x] such that R[x] [b-1] is a field. If we write K for the quotient field 
of R, then K[x][b-1] would of course also be a field. Since we already know 
that K[x] is Jacobson, this contradicts Lemma 4.20. Thus Q -=F 0, and 
S[b-1] = K[xJlQK[x] is a field, finite dimensional over K. 

Let p(x) E Q be a nonzero polynomial with coefficients in R, so that 

p(t) = Pntn + ... + Po = 0 

in S. If we invert Pn, then we can multiply p(t) by p;;l and we see that S[P;;l] 
is integral over R[P;;l]. The element b will satisfy an algebraic equation with 
coefficients in R too, say 

q(b) = qmbm + ... + qo = O. 

Since S is a domain, we may divide by a power of b if necessary and assume 
that qo -=F O. Multiplying q by 1/(qobm) and writing 13 for b-1, produces 

13m + (qt!qo)f3m- 1 + ... + (qmlqo) = o. 
Thus the field S[f3] is integral over the ring R[(PnqO)-l]. By Corollary 4.17, 
R[(PnqO)-l] is a field. Since R is a Jacobson ring, R itself is a field. Thus S 
is integral over R. Again by Corollary 4.17, S is a field. This completes the 
proof of Theorem 4.19 in the case where S is generated by one element. 

The general case may be done by induction on the number of generators 
r of S as an R-algebra. We may suppose that r > 1 and that the result has 
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been proved for algebras with::; r - 1 generators. Let S' be the subalgebra 
of S generated by r -1 of the generators of S. By induction S' is a Jacobson 
ring, so, by the case r = 1, S is a Jacobson ring too. Similarly, if n is a 
maximal ideal of S, then S' n n is a maximal ideal by the case r = 1, and 
R n n = R n (S' n n) is maximal by the induction step. Since the extensions 
RI(R n n) C S'/(S' n n) and S'/(S' n n) C Sin are finite by the inductive 
hypothesis, RI(R n n) C Sin is finite, completing the proof. D 

Before proving the version of the Nullstellensatz from Chapter 1, it is con
venient to prove Corollary 1.9. For convenience, we recall the statements. 

Corollary 1.9. Let k be a field. For each p = (al, ... ,ar) E Ar(k) the 
ideal mp := (Xl - al,"" Xn - an) C k[XI, ... , xrl is a maximal ideal. If k is 
algebraically closed and Xc Ar(k) is an algebraic set, then every maximal 
ideal of A(X) is of the form mpII(X) for some p E X. In particular, the 
points of X are in one-to-one correspondence with the maximal ideals of 
the ring A(X). 

Proof. It is clear that k[XI"'" xrl/mp = k, so mp is a maximal ideal. The 
natural map k[xI, ... ,xrl ---+ k[xI, ... ,xrl/mp = k may be described as 
evaluation at p. Thus mp :l I(X) iff p E X. Since the maximal ideals of 
A(X) are the maximal ideals of S := k[XI, ... , xrl containing I(X), taken 
modulo I(X), it only remains to show that every maximal ideal of S has 
the form mp for some p. 

Suppose n is a maximal ideal of S. By Theorem 4.19 applied with R = 
k, Sin is algebraic over kl(nnk) = k. Since k is algebraically closed, Sin = 
k. Let ai be the image of Xi under the map S ---+ Sin = k, and let p = 
(aI, ... , ar ). It follows that mp is contained in n. Since mp is maximal, 
mp =n. D 

Theorem 1.6. Let k be an algebraically closed field. If Ie k[XI, ... , xnl is 
an ideal, then 

I(Z(I)) = rad I. 

Thus the correspondences I ~ Z(I) and X ~ I(X) induce a bijection 
between the collection of algebraic subsets of An (k) and radical ideals of 

k[xI, ... ,xnl· 

Proof. Corollary 1.9 shows that the points of Z(I) correspond to the maxi
mal ideals of k[XI, ... ,xnl containing I. Thus I(Z(I)) is the intersection of 
all the maximal ideals containing I. By Theorem 4.19, this is the same as 
the intersection of all the prime ideals containing I, which is rad I by Corol
lary 2.12. Since the equality Z(I(X)) = X is automatic for an algebraic 
set X, the last statement follows. D 
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4.6 Exercises 

Exercise 4.1: Let R be a ring, San R-algebra, and M an S-module. The 
structure map from R to S makes M an R-module. If S is finite over R, and 
M is finitely generated as an S-module, show that M is finitely generated 
as an R-module. 

Exercise 4.2: Let R be a domain containing a polynomial ring in one 
variable over a field, say R :::) S = k[tl. Show that if R is a finitely generated 
S-module, then R is free as an S-module. Show by giving a basis that if 
R = k[x, Y1/(x2 - y3) and t = xmyn, then the rank of R as an S-module 
is 3m + 2n. Assuming again only that R is a finitely generated S = k[tl
module, let R be the integral closure of R. By Noether's theorem 4.14, R 
is again finitely generated and thus free as an S-module. Show that it has 
the same rank as R. 

Exercise 4.3: Suppose that S is a ring, and that an element 8 E S satisfies 
an equation 

T08n + T18n - 1 + ... + Tn = 0 

with coefficients Ti E S. Show that if Tn is a unit then 8 is a unit. Use this 
to deduce Corollary 4.17 without using Lemma 4.16; and then derive the 
latter from the former. 

Exercise 4.4:* Let k be a field and let R = k[tJl(t2 ). Set 

p(x) = tx3 + tx2 - x2 - x E R[xl. 

Show that S = R[xl/(p) is a free R-module of rank 2, even though p is not 
monic (its leading coefficient is not even a unit). How do you reconcile this 
with Proposition 4.1? 

Nakayama '8 Lemma 

Exercise 4.5: Let R = k[xl(x) be the ring of polynomials in one variable 
x over a field, localized at the prime (x). Find an R-module M that is not 
finitely generated but such that M I xM is finitely generated. 

Exercise 4.6: Here are two cases where Nakayama's lemma works without 
the finiteness condition; a third will be found in Exercise 7.2: Let R be a 
ring, I an ideal, and M an R-module such that 1M = M: 

a. If R is graded (by the positive integers), I is homogeneous and consists 
of elements of strictly positive degree, and M is a graded module with 
Mn = 0 for n « 0, show that M = O. 

b. If I is nilpotent, show that M = O. 
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Exercise 4.7: Show that the Jacobson radical of R is 

J = {r E Rl1 + rs is a unit for every s E R}. 

Exercise 4.8: Give a proof of Nakayama's lemma, 4.8a, without using 
determinants, as follows: Do induction on the number of generators required 
for M, and use the equation M = IM to write a unit times one of the 
generators in terms of the others. 

Exercise 4.9: The following is valid either in a local ring (R, P) or a pos
itively graded ring R such that Ro is local (in which case we take P to be 
the maximal homogeneous ideal). 

Let I c R be an ideal, and suppose x E P is an element such that x is 
a nonzero divisor on R/ I. Show that any minimal set of generators for I 
reduces mod x to a minimal set of generators for the image of I in R/(x). 
Show by example that this can fail if x is a zero divisor on R/ I. 

Exercise 4.10: Give a proof of the assertions of Corollary 4.4a and b in 
the special case where M is free of finite rank by showing that the nth 

exterior power of a surjection is a surjection. 

Projective Modules and Locally Free Modules 

Exercise 4.11:* Let R be a ring. Projective modules over R are defined 
in section A3.3. One description (Proposition A3.1) is that an R-module is 
projective iff it is a direct summand of a free R-module. 

a. Use Nakayama's lemma to show that if R is local and M is a finitely 
generated projective module, then M is free. (This is also true with
out finite generation; see Kaplansky [1958] or Lam [1978].) If R is 
a positively graded ring, with Ro a field, and M is a finitely gen
erated graded module that is projective, then M is a graded free 
module (that is, a direct sum of the form EBR(ai) for some integers 
a;.) 

b. Use Proposition 2.10 to show that a finitely presented module M is 
projective iff M is locally free in the sense that the localization Mp 
is free over Rp for every maximal ideal of R (and then of course Mp 
is free over Rp for every prime ideal P of R). 

Exercise 4.12: 

a. * Show that if M is a finitely presented R-module, then M is projective 
iff M is locally free in the stronger sense that there is a finite set of 
elements h, ... , in E R such that (h, ... , in) = R, and M[ji-1] is a 
free R[ii-1]-module for every i. (Hint: Here is a useful intermediate 
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step: Show that if M and N are finitely presented R-modules, and 
Mp ~ N p for some prime P, then there is an element fER, f rJ. P 
such that M[r1] ~ N[rl].) 

b. Any projective module is fiat. Show that if R is an integral domain 
but not a field, then the quotient field K(R) is a fiat R-module that 
is not projective by showing that the only map K(R) ----; R is O. (In 
Corollary 6.6 we shall show that every finitely presented fiat module 
is projective.) 

Exercise 4.13:* A ring is called semilocal if it has only finitely many 
maximal ideals. Prove that if R is a semilocal ring and M, N are finitely 
presented R-modules such that Mp ~ N p for every maximal ideal P of 
R, then M ~ N. (Hint: Use Proposition 2.10 to produce maps, combine 
them using coefficients selected according to prime avoidance, Lemma 3.3, 
and prove that the result is an isomorphism using Corollaries 4.4 and 2.9.) 
This result can fail for rings with infinitely many maximal ideals, such as 
Z[A] or k[x, yl/(x3 + y3 - 1); we shall see in Chapter 11 that, more 
generally, if I is an ideal in a Dedekind domain R then Ip ~ Rp for every 
prime p of R, but we may have I ~ R. 

Integral Closure of Ideals 

Exercise 4.14: If R is a domain and I is an ideal of R, we define the 
integral closure of I in R to be the set of elements s E R satisfying an 
equation of the form 

sn + rlsn- 1 + ... + rn = 0 

with r j E Ij, the i h power of I, for each j. Show that s is integral over I iff 
there is a finitely generated R-module N, not annihilated by any element 
of R, such that 

sN c IN. 
Use this to show that the integral closure of I in R is an ideal. 

Exercise 4.15: If R is a domain, show that every radical ideal is integrally 
closed in R. Show that in a principal ideal domain, every ideal is integrally 
closed. 

Exercise 4.16: Let R be a domain, K its quotient field, and R the integral 
closure of R in K. If I c R is an ideal, show that I R n R is contained in 
the integral closure of I in R. (In general, the integral closure of I in R is 
bigger; we shall see examples with ideals of monomials, below.) 

Normalization 

Exercise 4.17:* Let ReS be rings. Show that R is integrally closed in 
S iff R[x] is integrally closed in S[x]. 
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Exercise 4.18:* Let R be a domain. Show that R is normal iff R[x] is 
normal. 

Exercise 4.19: This exercise extends the elementary result that a monic 
polynomial over Z that can be factored over Q can already be factored over 
Z: Let R c 8 be rings with R integrally closed in 8. Suppose that h(x) 
is a polynomial in R[x] that factors in 8[x] as the product of two monic 
polynomials h(x) = f(x)g(x). Show that f and 9 are each in R[x]. (This 
result leads to a solution of Exercise 4.17 different than the one given in 
the hint. See Atiyah and Macdonald [1969, Chapter 5, Exercise 8-9].) 

Exercise 4.20: For each nEZ, find the integral closure of Z[Vnl as 
follows: 

a. Reduce to the case where n is square-free. 

b. y'n is integral, so what we want is the integral closure R of Z in 
the field Q[Vnl. If 0: = a + by'n with a, b E Q, then the minimal 
polynomial of 0: is x 2 - Trace(o:)x + Norm(o:), where Trace(o:) = 2a 
and Norm(o:) = a2 - b2n. Thus 0: E Riff Trace(o:) and Norm(o:) are 
integers. 

c. Show that if 0: E R then a E l/2Z. If a = 0, show 0: E Riff b E Z. If 
a = 1/2 and 0: E R, show that b E I/2Z. Thus, subtracting a multiple 
of y'n, we may assume b = 0 or 1/2. b = 0 is impossible. 

d. Conclude that the integral closure is Z[y'n] if n ¢ l(mod4), and is 
Z[I/2 + I/2Vnl if n == l(mod4). 

Exercise 4.21 (The graded case): 

a. * Show that the integral closure of a graded domain in its quotient 
field is graded, as follows: First, the degree 0 part of the graded ring 
obtained by inverting all nonzero homogeneous elements of 8 is a 
field. Next, show that a domain 8 is normal iff the ring of Laurent 
polynomials 8[x, X-I] is normal. Finally, show that if 8 c Tare 
graded domains (T can even be Z-graded), with 8 Noetherian, then 
the integral closure of 8 in T is again graded. 

b. If 8 is a graded Noetherian domain, show that for any homogeneous 
prime ideal P of 8 not containing 81, the integral closure of S(P) is 
the degree 0 part of a localization of the integral closure of S. 

Normalization and Convexity 

The operation of normalizing has many similarities to the operation of 
taking convex hulls, and indeed there is more than an analogy between 
these ideas. Here are two cases where the correspondence is very tight. 
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Exercise 4.22: Let f c N n be a finitely generated subsemigroup (with 
identity) of the nth power of the semigroup of natural numbers under addi
tion. Let k be a field, and define 

to be the subring that is spanned as a vector space by all the monomials 
with exponents in f; that is, by all 

We define R+f to be the convex cone spanned by f; that is, R+f is 
the set of all positive real linear combinations of elements of f. We define 
G(f) c zn to be the group generated by f. Let 

f' = [R+f] n N n = [R+f] n G(f), 

the semigroup of all integral points in the cone spanned by f. Show that 
k[f'] is the integral closure of k[f] in its quotient field as follows: 

a. Show that 

f' = b E Nnlml' E f for some positive integer m.} 

To do this, first prove 

Caratheodory's Theorem. Let VI,"" Vm ERn be points. The set 
R+ VI + ... + R+ Vm is the union of the sets R+ vh + ... + R+ Vi, where 
ViI' ... ,Vi, are linearly independent. 

Use this to show that any rational point of R+f is a positive rational 
linear combination of elements of r. 

p 

E Yi = 1 

• = generator or 
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b. Show that any monomial in k[f] is integral over k[f]: Make an integral 
equation from a relation of the form ma = 'Y E f with mEN. 

c. Given any element f of the quotient field of k[f], integral over k[f], 
show that f E k[G(f)] n k[Nn]: In fact, G(f) is a free abelian group, 
so both the rings k[G(f)] and k[Nn] are normal. Thus any element of 
the integral closure of k[f] can be written as a polynomial f whose 
monomials lie in k[G(r)]. It remains to show that all the monomials 
of f lie in R+f. 

d. Let f' be the semigroup generated by f and the monomials of f. 
Let P be the set bl, ... ,'Yn) E RnlL:i'Yi = I}, as in the figure. If 
not all the exponents of monomials of f are in f, then one of these 
exponents, say a, lies on the ray through an extremal vertex of the 
convex set R+f n P. Thus we may find a linear functional L on Rn 
with value> 0 on a and < 0 on all the other exponents of monomials 
in f and on all monomials in f. 

e. Let r + an_dn- 1 + ... + an = 0 be the integral equation satisfied by 
f, with all the ai E k[f]. Evaluating L on the exponents of monomials 
that occur in each term on the left-hand side, we find that the max
imum value is taken on only at na, and thus xna occurs only once. 
Thus the left hand side cannot be 0 as claimed. The contradiction 
shows that f E k[f]. 

Exercise 4.23: Let Ie k[Xl, ... , xnl be an ideal generated by monomials in 
a polynomial ring over a field k. Let f be the set of exponents of monomials 
in I, so that I is the linear span of the monomials x '"Y for'Y E f. Regarding 
f as a subset of Nn c R~, we let A be the convex hull of R~ + f, as in 
the figure, and we let f* be the set of integral points in A. Show that the 
integral closure of I is the ideal generated by f*. 

R~+ r 

• = generator of I 
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Exercise 4.24: Let R be either of the domains C[x, y]/(y2 - x3 ), or 
C[x, y]/(y2 - x2(x + 1)), and let t = y/x, an element of the quotient field. 
Show that in each case, R[t] = C[t]. Pictorially, the normalization maps 
are as follows: 

and 

Exercise 4.25: Let X be an affine variety over C, and let R = 
C[XI,'" ,xnl/I be its coordinate ring. Show that if p(x)/q(x) is an ele
ment of the quotient field of R that is integral over R, then for each point 
x E X there is a neighborhood U of x and a real constant B such that the 
absolute value Ip(x)/q(x)1 is bounded by B at all the points of U where q is 
nonzero. (The converse is also true, but requires a deeper characterization 
of the integral closure.) 

Nullstellensatz 

Exercise 4.26: Suppose that the additive group of the ring R is a finitely 
generated abelian group. If P is a maximal ideal of R, show that R/ P is 
a finite field. Show that every prime ideal of R that is not maximal is a 
minimal prime ideal. 

Exercise 4.27 (Maximal ideals of a polynomial ring): Let k be a field 
and let R = k [Xl, ... , xr ] be a polynomial ring. Show that any maximal 
ideal of R may be generated by r elements J;, where Ii is a polynomial 
depending only on Xl, ... , xi. See also Exercise 13.6. 
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Exercise 4.28: Suppose that k is an algebraically closed field, and let m 
be a maximal ideal of the polynomial ring R = k[Xl,"" xr]' Show that 
there is a k-algebra automorphism of R taking m to the ideal (Xl, ... , Xr). 

Three More Proofs of the Nullstellensatz 

We now give three further proofs of the form of the Nullstellensatz given 
in Theorem 1.6. The following provides what I think is the fastest proof of 
the Nullstellensatz in case the ground field is C. 

Exercise 4.29 (Quick and dirty proof of the Nullstellensatz): Let 
K be an algebraically closed field of infinite transcendence degree over a 
prime field k(= Q or = Z/(p)), such as C. 

Show that each prime P of K[Xl,"" xr ] is the intersection of maximal 
ideals of the form mp = (Xl - a1, ... , Xr - ar ) by showing that given any f tJ
P, there is a point p E Z(P) such that f(p) -I- 0 (this proves Corollary 1.9 
immediately, and with Corollary 2.12 it proves Theorem 1.6) as follows: 

Show that there are elements a1, ... ,an E K such that writing K' for 
k(a1,"" an), and pI = P n K ' [X1,"" Xr], we have P = pI K[X1, ... , xr]. 
Show that pI is a prime ideal. 

Show that the quotient field L of K' [Xl, ... , X r ] / pI may be embedded 
in K. (This is field theory: First embed the transcendental part, then the 
algebraic part. This is where you need the transcendence degree of K to be 
large---;:::: r would do.) Let ai be the image of Xi in K under this embedding. 

Now show that p = (al' ... ,ar ) has the desired property. 

(Remark for those who know some model theory: The only drawback of 
this amazingly easy proof is that it requires K to have large transcendence 
degree. This may be overcome by using some logic. If we start with any 
field K, we may begin by replacing it with a nontrivial ultrapower to get 
an "elementarily equivalent" field of infinite transcendence degree (see, for 
example, Bell and Slomson [1969] for unexplained terminology). The truth 
of the statement we need to prove can be transferred from this ultrapower 
back to K.) 

The next two proofs of the Nullstellensatz depend on a classic localization 
argument that is another version of "Rabinowitch's trick" . 

Exercise 4.30: Suppose that k is a Noetherian ring such that 

*) for every finitely generated k-algebra R and maximal ideal PeR 
the k-algebra R/ P is finite over k. 

Show that for every reduced finitely generated k-algebra R and prime ideal 
Q c R we have Q = np, where the intersection runs over all primes P of 
R such that R/ P is finite over k. (Hint: If fER, f tJ- Q, we must find a 
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prime P such that Rj P is finite over k and f (j. P. Consider a maximal 
ideal in the k-algebra R[j-l] and its intersection with R.) 

Deduce in particular that Theorem 1.6 (for a given field k) follows if we 
prove that *) holds for k. 

Exercise 4.31 (Nullstellensatz for uncountable fields): The following 
simple argument of Krull and Van der Waerden is the fastest way to check 
the hypothesis *) of Exercise 4.30 for the complex numbers. Unfortunately, 
it works only for uncountable fields. 

Show that if k is a field and k(x) is the field of rational functions in 
one variable over k, then the elements of the set {lj(x - a) la E k} C k(x) 
are linearly independent, so dimkk(x) ::::: cardk. Deduce that if K is an 
extension field of k, and dimk K < card k, then K is algebraic over k. 

On the other hand, show that if R is a finitely generated k-algebra, then 
dimk R is at most countable. 

Deduce that hypothesis *) of Exercise 4.30, and thus also Theorem 1.6, 
holds for uncountable fields. 

Exercise 4.32 (Artin-Tate Proof of the NUllstellensatz): E. Artin 
and J. Tate in [1951] (reprinted in Artin [1965]) found a remarkable result 
that implies hypothesis *) of Exercise 4.30 for any field: 

Theorem (Artin-Tate). Suppose R is a Noetherian ring and S is a finitely 
generated R-algebra. If T C S is an R-algebra such that S is a finitely 
generated T -module, then T is a finitely generated R-algebra. 

Prove the Artin-Tate Theorem. Suppose Xl, ... ,Xr generate S as an R
algebra. The fact that just finitely many elements Sl, ... ,Sq generate S as 
a T-module can be written down in terms of finitely many elements of T 
as follows. There exist elements tij and t;jk in T such that 

Xi = LtijSj 

SiSj = L t;jk Sk . 

Let To be the subalgebra of T generated over R by the tij and the t;jk' Show 
that S is finitely generated as a To-module. Conclude that T is finitely 
generated as a To-module. Use the fact that To is finitely generated over R 
to finish the proof of the theorem. 

Deduce that hypothesis *) of Exercise 4.30 holds for any field k: 

1. Show that the fields that could appear as Rj P in the statement are 
exactly those extension fields of k that are finitely generated as alge
bras. Thus, *) amounts to saying that if K is a field that is finitely 
generated as a k-algebra, then K is finitely generated as a k-module 
(that is, K is a finite field extension of k). 
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2. Note that it is enough to prove that K is algebraic over k. Sup
pose that Xl, ... , Xr E K is a transcendence base for Kover k. Use 
the Artin-Tate theorem to show that the field of rational functions 
k( Xl, ... , x r ) is a finitely generated k-algebra. Show that this implies 
that k (Xl, ... , Xr ) = k [Xl, ... , Xr HI-I] for some polynomial f. Con
clude that every prime of k[Xl' ... ,xr ] must divide f. But if r > 0, 
the following exercise shows that there are infinitely many primes, so 
r = 0. 

Exercise 4.33: Let k be a field. Exhibit infinitely many maximal ideals of 
k[x]. If k is infinite, show that there are infinitely many maximal ideals with 
residue field k; if k is finite, one must consider finite extension fields of k. 



5 
Filtrations and the 
Artin-Rees Lemma 

In this chapter we shall describe two constructions-the associated graded 
ring and the blowup algebra-that are made from a descending multi
plicative filtration of a ring R; that is, from a sequence of ideals 

R = 10 :::::> h :::::> h :::::> ••• satisfying IJj C Ii+j for all i, j. 

A third such construction, the Rees algebra, is treated at the end of the 
next chapter, and sheds some light on the results we shall prove about the 
associated graded ring. Chapter 7 will be devoted to a fourth example, the 
completion. Each is used to get information about R by comparing it with 
a closely related ring that is simpler in some way. 

These constructions are most often used in the case where the I j are the 
powers of a single ideal, I j = Ij; this is called the I-adic filtration. In 
applications I is often taken to be the maximal ideal of a local Noetherian 
ring R, and the reader will not lose too much by imagining this to be the 
case throughout. 

It is quite useful to generalize to the case of modules, so we also study 
the I-adic filtration of a module M, say M :::::> 1M:::::> 12M:::::> .... But if 
we intersect the terms of the I-adic filtration of M with some submodule 
M' C M, we do not generally get the I-adic filtration of M'. A key result 
of the theory, the Artin-Rees lemma1 , shows that the induced filtration is 
often stable in the following sense: 

IThe paper of Rees [1956] contains a special case. According to Nagata, who 
seems to have coined the name, Artin lectured on the general case in 1955. 
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Definitions. Let R be a ring, let I c R be an ideal, and let M be an 
R-module. A filtration M = Mo :J Ml :J ... is called an I -filtration if 
I Mn C Mn+l for all n ~ O. An I -filtration is called I -stable if in addition 
I Mn = Mn+ 1 for all sufficiently large i. When the ideal I is understood, we 
speak simply of stable filtrations. 

An I-stable filtration is determined if one knows a sufficiently large finite 
number of the Mi; in this sense it is a finitely generated filtration. 

Lemma 5.1 (Artin-Rees). Let R be a Noetherian ring, let I C R be an 
ideal, and let M' C M be finitely generated R-modules. If M = Mo :J Ml :J 
. .. is an I -stable filtration, then the induced filtration M' :J M' n Ml :J 

M' n M2 :J ... is also I -stable. That is, there exists a number n such that 
for all i ~ 0, M' n Mi+n = Ii(M' n Mn). 

We shall give the proof later in this chapter after having defined some 
basic constructions. For an interesting recent development in this theory, 
see Huneke [1992]. 

5.1 Associated Graded Rings and Modules 

Let I be an ideal of a ring R. We define the associated graded ring of R 
with respect to I, written grj R to be the graded ring 

grj R := R/ I EEl 1/12 EEl .... 

Here the multiplication in grj R is given as follows: If a E 1m /Im+1 and 
b E In / r+l, then taking representatives a' and b' of a and b in 1m and In, 
respectively, we define ab E Im+n /Im+n+l to be the image of a'b'. Note that 
this is well-defined modulo Im+n+l. 

More generally, let J : M = Mo :J Ml :J ... be an I-filtration of an 
R-module M. Let 

We make gr3 M into a graded grj R-module as follows: If a E 1m /Im+l and 
bE Mn/Mn+1 have representatives a' E 1m and b' E Mn, then ab is the class 
of a'b' in Mm+n/Mm+n+l' The assumption that J is an I-filtration ensures 
that this is well defined. When there is no danger of confusion, we shall 
simply write gr M for gr3 M. 

The following elementary result explains the importance of the stability 
property: 

Proposition 5.2. Let I be an ideal in a ring R, and suppose that M is 
a finitely generated R-module. If J : M = Mo :J Ml :J ... is an I -stable 
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filtration by finitely generated submodules of M, then grJ M is a finitely 
generated module over gr[ R. 

Proof. Suppose that IMi = Mi +1 for all i 2: n. Clearly, (I/I2)(M;/MHd = 
MHd MH2 for i 2: n. Thus the union of any sets of generators of the 
modules Ma/M1, ... , Mn/Mn+1 will generate gr M. Since each Mi is finitely 
generated, each of these sets of generators may be chosen to be finite. D 

See Appendix 3, particularly Theorem A3.22 and Exercise A3.42, for 
another use of stability. 

Let M be an R-module with filtration J : M = Ma :J Ml :J .... There 
is no interesting natural homomorphism from M to gr M, but there is an 
interesting natural map of sets defined as follows: Given f E M, let m be 
the greatest number such that f E M m , and define the initial form of f, 
denoted in(f) by 

in(f) = f modulo Mm+l E Mm/Mm+1 C gr M, 

or by 
in(f) = 0 if f E nr'Mm • 

See Exercise 5.1 for some of the properties of this map. 
Now suppose that I C R is an ideal that J is an I-filtration of M. Set 

G = gr[ R. If M' c M is a submodule, we define in(M') to be the G
submodule of gr M generated by in(f) for all f EM'. The submodule 
in(M') is generally not obtained as the submodule generated by the initial 
forms of a given set of generators of M'. For example, if 

and I = (x, y), then with respect to the I-adic filtration, in(x2) = x2 and 
in(xy + y3) = xy but x2 and xy do not generate in(J). For example, 

x(xy + y3) - y(x2) = xy3 E J, 

so 
y2(xy + y3) _ xy3 = y5 E J, 

and thus y5 E in(J). In fact, in(J) = (x2,xy,y5). In Chapter 15 we shall 
exhibit a general technique for handling such computations. See Exer
cise 5.2 for an easy special case. 

A first hint of why the associated graded construction is interesting is 
given by the fact that if I is a maximal ideal then gr[ R is a graded algebra 
over the field R/ I. It is even a finitely generated algebra if, as in nearly 
all cases of interest, I is a finitely generated ideal. Thus gr[ gives us a way 
of turning arbitrary local Noetherian rings into finitely generated graded 
rings, about which we know more. For example, we get a ready-made theory 
of Hilbert functions: 
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Definition. If R is a local ring with maximal ideal I, then the Hilbert 
function of R is the function 

HR(n) = dimR/Jr/r+ l . 

More generally, if M is an R-module, we can define 

HM(n) = dimR/JrM/r+lM. 

Since these are just the Hilbert functions of grJ Rand grJ M, and grJ M is 
a finitely generated grJ R-module, we already know that they agree for large 
n with polynomials PR(n) and PM(n) of degree::::; HR(l) - 1, and that HR 
and HM can be expressed exactly in terms of binomial coefficients. These 
functions are quite important in dimension theory, and we shall return to 
them in Chapter 12. 

One can sometimes derive nice properties of R from nice properties of 
grJ R. To do this we need to know that no elements of R have been "forgot
ten" by gr J R, as would be the case if an element of R were in every power of 
I. Fortunately, njlj = 0 in most cases of interest. The tool we need to prove 
this is the Artin-Rees lemma. The proof of the lemma uses another con
struction of great geometric and algebraic interest, to which we now turn. 

5.2 The Blowup Algebra 

Definition. If R is a ring and I c R is an ideal, then the blowup algebra 
of I in R is the R-algebra 

BJR:= R EEl I EEl 12 EEl··· ~ R[tI] C R[t]. 

Note that BJR/IBJR = R/I EEl 1/12 EEl··· = grJR, the associated graded 
ring. 

The geometric context in which the blowup algebra arises accounts for 
the name: If R is the coordinate k-algebra of an affine algebraic set X 
over k, and I is the ideal of an algebraic subset Y c X, then there is an 
algebraic set Z obtained by a process called blowing up YCX, defined 
as follows: Let aI, ... ,aT be k-algebra generators for R and let go, ... ,gs be 
generators of I as an ideal of R. The algebra BJ R is a homomorphic image 
of the ring k[Xl, ... , XT , Yo, ... , Ys] by the map sending Xi f-) ai and Yj f-) gj. 
The kernel of this map is an ideal that is easily seen to be homogeneous in 
the variables Yj. It thus corresponds to an algebraic subset Z c AT X ps. 
The projection map AT x ps ---t AT maps Z onto X and is an isomorphism 
away from the preimage of Y. The set Z is called the blowup2 of Y in 
X. The pre image of Y in Z corresponds to the ring B J R/ I B J R = gr J R. 

2The name "blowup" may come from the most commonly used special case: 
When one blows up a point on a smooth complex surface, one replaces the point 
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This preimage, which is called the exceptional set of the blowup, is the 
projective variety associated to the graded ring grl R. 

If M is an R-module and J : M = Mo =:) MI =:) ••• is an I-filtration, then 
the direct sum 

BJM:= M EB MI EB··· 
becomes a graded module over the blowup ring BlR in an obvious way. 
Using this construction, the connection between finitely generated modules 
and stable filtrations becomes even tighter. 

Proposition 5.3. Let R be a ring, let I c R be an ideal, and let M be a 
finitely generated R-module with I -filtration J : M = Mo =:) MI =:) ••• by 
finitely generated modules Mi. The filtration J is I -stable iff the B I R-module 
B J M is finitely generated. 

Proof. If BJM is finitely generated, then its generators must be contained 
in the direct sum of the first n terms for some n. Replacing them by their 
homogeneous components, we see that BJ M is generated by elements of 
the modules Mi for various i ::; n. Of course, then 

Mn EB Mn+1 EB ... 

is generated as a BJR-module by Mn-that is, 

Mn+i = liMn 

for all i 2: 0, so J is stable. 
Conversely, if J is stable, so that Mn+i = Ii Mn for some n and all i 2: 0 

say, then BJM is clearly generated by the union of any sets of generators 
for M o, M I, ... , Mn. D 

With this construction, the Artin-Rees lemma becomes a corollary of the 
Hilbert basis theorem. 

Proof of Lemma 5.1. Let 

J' : M' = M~ =:) M{ := M' n MI =:) M~ := M' n M2 ... 

be the induced filtration on M'. The module BJ,M' is naturally a graded 
BlR-submodule of BJM. If J is a stable filtration, then BJM is finitely 
generated by Proposition 5.3. Because B I R is a finitely generated R
algebra, it is Noetherian, so the submodule BJ,M' is finitely generated 
too. Proposition 5.3 now shows that J' is a stable filtration of M'. D 

by a copy of Pb-topologically a 2-sphere. Topologically, this corresponds to a 
surgery. But I like to think of this process as that of sticking a soda straw into 
the surface (topologically a 4-manifold) and blowing a little bubble (2-sphere) at 
the point; the antipodal points of the bubble must then be identified to get back 
a 4-manifold. The original German word, aufblasen, is consistent with this inter
pretation. A Frenchman once suggested to me that the French translation, eclater 
(explode), was chosen pour faire peur aux gens (to frighten people). 
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5.3 The Krull Intersection Theorem 

As a first application we get an important theorem of Krull [1938] (in the 
form given by Chevalley [1943]). 

Corollary 5.4 (Krull Intersection Theorem). Let I c R be an ideal in a 
Noetherian ring R. If M is a finitely generated R-module, then there is an 
element rEI such that (1 - r)(n'l Ij M) = O. If R is a domain or a local 
ring, and I is a proper ideal, then 

00 

Proof. By the Artin-Rees lemma, applied to the submodule n'lIj Me M, 
there is an integer p such that 

(~IjM) nIP+l M 
00 

n IjM 
1 

I ( (~Ij M ) n IP M ) 

I (~IjM). 
The first statement now follows from Corollary 4.7. To prove the second 
statement we take M = R. It is enough to show that in the given cases 
1 - r is a nonzero divisor. Since I is a proper ideal, we have at least r ¥- 1, 
so 1- r ¥- 0, and if R is a domain we are done. In the case where R is local, 
I must be contained in the maximal ideal, so r is too. Thus 1 - r is a unit 
in this case. 0 

A common theme, to some extent explained in the next chapter, is that 
good properties of gr[ R imply good properties for R. Here is a sample: 

Corollary 5.5. Let R be a Noetherian local ring and let I be a proper ideal 
of R. If gr[ R is a domain, then R is a domain. 

Proof. If fg = 0 in R, then in(J) in(g) = 0 in gr[ R, so in(J) or in(g) is O. 
By the Krull intersection theorem, n'l In = 0, so this implies that f or g is 
O. 0 

The converse of Corollary 5.5 fails dreadfully, and quite generally gr[ R 
can be "bad" in ways in which R is "good." See Exercise 5.8. 

Example. Both the Krull intersection theorem and Corollary 5.5 can fail 
in the non-Noetherian case. For example, let R be the ring of germs of eoo 

functions on (R,O), and let x be the coordinate function. Let 
1 

g(x) = e-~ E R, 
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whose graph is pictured in Figure 5.1. The ring R is local with maximal 
ideal I generated by the function x, and since g(x)jxn is eoo for every n, 
we see that 

00 

g(x) E nr. 
1 

y 
1 

x 

FIGURE 5.1. 

In this case nr In is the set of germs of functions vanishing at the origin 
that are flat in the sense that all their derivatives at the origin also vanish. 
It is true that I(nr In) = nr In-see Exercise 5.6. But the eoo functions of 
the form 1 - r with r E (x) are just the eoo germs with the value 1 at the 
point O. Thus g(x), for example, is not annihilated by any such function, 
so Corollary 5.4 fails. For the fate of Corollary 5.5, see Exercise 5.7. 

5.4 The Tangent Cone 

The fact that the associated graded ring corresponds to the exceptional set 
in the blowup has a simple and beautiful geometric consequence. Let 

R=k[Xl, ... ,XrJ/J, I=(Xl, ... ,Xr) 

where k is an algebraically closed field. Let X = Z(J) C Ar and suppose 
that J C I, so that 0 EX. The tangent cone of X at 0 is the cone com
posed of all lines that are the limiting positions of secant lines to X passing 
through the point O. One can show that the ideal inJ(J) C k[Xl'"'' xrl 
defines the tangent cone so that the coordinate ring of the tangent cone 
is gr(X\, ... ,x,) R; see Exercise 5.3. The pictures in Figure 5.2 illustrate this 
point. For a proof see, for example, Harris [1992]. 

5.5 Exercises 

Exercise 5.1: Let R be a ring and M an R-module. Suppose that ~ : 
M = Mo ::) Ml ::) ... is a filtration by submodules. Although the map 
M --t gr~ M sending f to in(f) is not a homomorphism of abelian groups, 
show that either in(f) + in(g) = in(f + g) or in(f) + in(g) = O. 
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The tangent 
cone at a 
smooth point 
is the tangent 
line. 

in (y2 -x2 (x + 1) = (y2 -x2 ); 

so the tangent cone is the 
union of the two tangent 
lines at the node, 

(y-x)(y +x) = 0 

o 

tangent cone 
taX at (0,0) 
defined by 
x 2 =0 ~ 

FIGURE 5.2. 

" " 
\\, nearby , , 
\ \, secant lines , , , , , , , , , , , , 

Suppose that M = R, and that :J is a multiplicative filtration, so that 
gr:J R is a ring. Show that either in(J) in(g) = in(Jg) or in(J) in(g) = O. 

Exercise 5.2: Let I be an ideal in a ring R. Suppose that gr[ R is a domain. 
Show that if Rf c R is a principal ideal, then in(Rf) C gr R is generated 
by in(J). Find an example of a local ring R with maximal ideal I and an 
element f E I such that in(Rf) is not generated by in(J). 

Exercise 5.3: Suppose J C I are ideals in a ring R. Show that 

Exercise 5.4: Taking the associated graded ring can also simplify some 
features of the structure of R. For example, let k be a field, and let 

be the rings of polynomials in r variables and formal power series in r 
variables over k, and write I = (Xl, . .. , xr ) for the ideal generated by the 
variables in either ring. Show that 

If k is the field of real or complex numbers, write R2 for the ring of con
vergent power series and R3 for the ring of eoo functions on kr , so that 
R C R2 C R3, and R3 maps to RI by sending each element to its Taylor 
series. Denote by I the ideal generated by the variables in any of these 
rings. Show that 
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Exercise 5.5: A converse to the Krull intersection theorem: Let I c R be 
an ideal in a Noetherian ring R and let M be a finitely generated R-module. 
Show that there is a largest submodule N C M such that N is annihilated 
by an element of the form 1 - r with rEI. Show that nl'Ii M = N. 

Exercise 5.6: Let R be the ring of germs of eoo functions on (R, 0), and let 
I = (x), where x is the coordinate function. Show by elementary calculus 
that if f is a eoo function that vanishes with all its derivatives at the origin, 
then fix is also such a function. Conclude that I (nl' r) = nl'r. 

Exercise 5.7:* Show that the ring R of germs of eoo functions on (R,O) 
is not a domain, although gr[ R = R[x] is a domain. 

Exercise 5.8: 

a. Let R = k[x, y]/(x2 _y3), and let I = (x, y). Show that R is a domain, 
but in(x)2 = 0 in gr[ R. 

b.* Let R = k[t4,t5 ,tll ] C k[t], and let I 
in(I) in( tIl) = o. 



6 
Flat Families 

Recall from Chapter 2 that a module M over a ring R is flat if for every 
inclusion N' C N of R-modules the induced map M ®R N' --+ M ®R N is 
again an inclusion. The notion of flatness was first isolated by Serre [1955-
56] and was then systematically developed and mined by Grothendieck. It 
is now a central theme in algebraic geometry and commutative algebra. 

We saw in Chapter 2 that the flatness of algebras of the form R[U-1] 

helps to connect their properties with the properties of R, and we shall 
exploit this idea again when we come to completions in Chapter 7. But 
flatness plays another important role as well: Flatness turns out to be a 
property possessed by many natural families of varieties or algebras, and 
it leads to good properties of these families. In this chapter we shall study 
flatness abstractly, but first we digress to explain the idea of flat families. 

First, what is a "family" of varieties or of algebras? One has in mind a 
collection of objects, "varying with parameters." A typical example, essen
tially the first one ever considered, is the family of curves of degree d in the 
affine plane over a field k. Algebraically, this corresponds to the family of 
k-algebras k[x,yl/(J), where f is a nonzero polynomial of degree d. Here 
the parameters are the coefficients of f. (To get the most from this example 
one should consider projective plane curves instead of the affine case, which 
we have taken for simplicity; see Exercise 6.6.) 

Perhaps the most inclusive and powerful way of making the notion of 
family precise is to say simply that a family is a morphism! For example, 
if cp : X --+ B is a morphism of varieties, then the preimages of points 
of B, which are called the fibers of cp, are varieties that vary in a family 
parametrized by the points of B. To see the family of plane curves above 
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from this point of view, we take B to be the affine space of polynomials 
f = L: aijxiyj of degree d, which is an affine space of dimension N := 

(d + 2)(d + 1)/2, with coordinates {aij}. We consider the affine (N + 2)
space with coordinates x, y and {aij}, and we take X C A N +2 to be the 
hypersurface with equation L: aijxiyj = O. The projection map A N+2 ---7 

AN = B restricts to a map X ---7 B, and it is easy to see that the fiber over 
a point of B is just the plane curve whose equation corresponds to that 
point. 

Bearing in mind that a morphism of affine varieties corresponds to a 
homomorphism of rings in the opposite direction, we see that a family of 
algebras should be defined simply as an algebra: If S is an algebra over 
R, then for every maximal ideal PeR we define the fiber over P to be 
the (R/P)-algebra SIPS. For arbitrary primes PeR we define the fiber 
of S over P to be the ti:(P)-algebra ti:(P) @R S, where ti:(P) = K(R/ P) 
denotes the quotient field of R/ P as usual. This is a family of algebras 
parametrized by the maximal ideals of R. The algebra corresponding to 
the family of plane curves above is the algebra over R : = k [{ aij } 1 defined 
by S = R[x, yl/(L: aijxiyj). 

The problem with this definition is that it is too inclusive. The different 
fibers may have nothing to do with one another. Already in the preceding 
example of plane curves, the fiber over the point 0 E B is the whole plane 
(the equation f = L: Oxiyj is identically O)-not a curve at all! Our family 
must satisfy some conditions if it is to be worth studying. 

In the geometry of manifolds, for example, one often restricts attention 
to families ({! : X ---7 B that are locally trivial, in the sense that for every 
point x E X there is a neighborhood U of x such that U is isomorphic to 
a product of cp(U) and one of the fibers, U ~ ({!(U). In algebraic geometry 
and commutative algebra this idea still leads to an interesting definition, 
though to be most useful it must be applied with "neighborhoods" smaller 
than the Zariski neighborhoods introduced in Chapter 1 (the necessary 
ideas are introduced in Chapter 7). But many natural families do not fit 
into this framework. 

If we look at the preceding example of plane curves, but exclude the fiber 
over 0, so that all the fibers are really curves, then it is reasonable to feel 
that the fibers have something to do with one another. Nevertheless, some 
fibers are singular curves while others are smooth. For instance consider 
the family of curves defined by equation xy - a = o. As a varies, the family 
goes from a smooth hyperbola to a union of two lines (at a = 0). Such a 
family cannot be locally trivial near the point at which the two lines meet; 
but in many respects these curves all do belong together. 

This suggests that there might be a more general notion of what a "good" 
family should be. The most inclusive in current use is that the family 
should be flat. In algebraic terms, where the family is represented by an R
algebra S, this means that S is flat over R (that is, flat as an R-module); In 
geometric terms, when the family is represented by a morphism cp : X ---7 B, 
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it means that for each point x E X there is an affine neighborhood U of 
X and an affine neighborhood V of 'P(x) such that 'P restricts to a map 
U ---> V, and the corresponding map of coordinate rings A(V) ---> A(U) 
makes A(U) into a flat A(V)-module. 

We now turn to some simple examples that give a feeling for flatness. 
Then we systematically investigate the algebraic properties of flatness. At 
the end of the chapter we explain the Rees algebra, a natural flat family 
that gives some insight into results such as Corollary 5.5, in which a good 
property of gr I R was seen to "propagate" to R. 

6.1 Elementary Examples 

We take R = k[t], the polynomial ring in one variable over an algebraically 
closed field, and look at some simple R-algebras to see which are flat. 

Example 1 (Figure 6.1). S = R[x]/(x-t). In this case S ~ R is as good an 
R-algebra as one could possibly have. Since R®RN = N for any R-module 
N, R is flat as an R-algebra. 

XCA2 

corresponds to 
S = k [t,x] / (x-t) 

r 
R = k [t] 

FIGURE 6.1. 

Example 2 (Figure 6.2). S = R[x]/(x2 - t). In this case the fiber over a 
prime P = (t - a), with a i=- 0 E k, is 

k[x]/(x2 - a) ~ k x k. 

The fiber over (t) is k[x]/(x2 ). The fiber over (0) is k(t) [xJl(x2 - t), a field 
of degree 2 over the residue field ,.,;((0)) = k(t). We see that for each prime 
P the fiber over P is a vector space of dimension 2 over its residue field 
,.,;(P). In fact S is a free R-module on the generators (1, x), as the reader 
may check. Thus, S ®R N = NEB N for any R-module N, and it follows 
that S is flat. 

Example 3 (Figure 6.3). S = R[xJl(tx-1). We may identify S with R[rl], 
so this example is obtained by localizing the algebra S in Example 1. As 
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XCA2 

corresponds to 
S = k [t,x]/(x2 - t) 

f 
R = k [t] 

FIGURE 6.2. 

we know from Proposition 2.5, localizations are flat, so this is again a 
flat family. The fiber over the prime PeR is the K(P)-algebra K(P), 
corresponding to one point, except when P = (t), when the fiber is the 
zero ring, corresponding to the empty variety. Note that S is not a free 
R-module in this case. 

XCA2 

corresponds to 
S = k [t,x]/(tx-l) 

f 
R = k [t] 

FIGURE 6.3. 

Example 4 (Figure 6.4). S = R[xJ/(tx - t). In this example, S in not flat; 
we see that t(x - 1) = 0 in S, so S has t-torsion, violating the criterion for 
flatness given in Corollary 6.3. It is also true that the fibers vary wildly: If 
the prime P does not contain t, then t is a unit in K(P) and thus also in 
K(P) ®R S, so 

K(P) ®R S = K(P)[XJl(tx - t) 

= K(P) [XJI(x - 1) 
~ K(P), 

but if P = (t) then tx - t = 0 in K(P) ®R R[x], so K(P) ®R S = R[xJ, corre
sponding to the vertical line in Figure 6.4. (More generally, a morphism of 
varieties cannot be flat in the neighborhood of a point p if the fiber through 
p has dimension greater than that of nearby fibers; see Exercise 6.9 for an 
example, and Theorems lD.lD, and 18.16 for more precise information. 



6.2 Introduction to Tor 159 

XCA2 

corresponds to 
S = k[t,x]/(tx-t) 

I 
R = k [t] 

FIGURE 6.4. 

For two further examples, see Exercises 6.8 and 6.9. 

6.2 Introduction to Tor 

We shall establish several criteria for the flatness of modules. Proposi
tion 6.1 is the key to these criteria. For the statement and proof we shall 
make use, for the first time in this book, of the functors Torf(M,N) (actu
ally only with i = 0 and 1). It is not hard to avoid the use of Tor in this 
proposition, and in this sense the proof can be made more elementary, but I 
feel that the elementary argument is more complicated and less transparent 
than the one with Tor. I have no doubt that those who are already familiar 
with Tor will agree; for the others, I think this is a good time to learn the 
elementary homological algebra required. It can be found, in a brief form, 
in Appendix 3. (For a more leisurely account the reader might consult Rot
man [1979] or Hilton and Stammbach [1971].) So that the reader may judge 
the merits of the case for Tor, we present a proof of Proposition 6.1 without 
Tor as well. 

For the purposes of this chapter, the reader needs to know the following 
about Tor: 

1. If··· --t Fi +1 --t Fi --t Fi - 1 --t ... --t Fa --t N --t 0 is a free resolution 
of N as an R-module, then Torf(M,N) is the homology at M0Fi of 
the complex M 0 Fi+l --t M 0 Fi --t M 0 Fi - 1 ; that is, it is the kernel 
of M 0 Fi --t M 0 Fi - 1 modulo the image of M 0 Fi +1 --t M 0 F;. 
This homology is independent of the resolution chosen. (We could 
also compute Torf(M, N) by tensoring N with a free resolution of 
M). From this it is very easy to deduce: 

a. Tor~(M, N) = M 0R N. 



160 6. Flat Families 

b. If M or N is free, then Torf(M, N) = 0 for i > 0 (the same is 
true for flat modules; see Exercise 6.1.). 

c. As in the case of Toro, Torf(M, N) is a covariant functor of 
two R-modules M and N that is R-bilinear in the sense that it 
is an R-module, and the map "multiplication by r E R" applied 
to either M or N induces "multiplication by r" on Torf(M, N). 

d. If R is Noetherian and M and N are finitely generated R
modules, then Torf(M, N) is a finitely generated module. 

e. If S is a flat R-algebra (such as a localization R[U-1J), then 
S 0R Torf(M, N) = Torf(S 0R M, S 0R N). 

2. For any short exact sequence 0 ---; M' ---; M ---; Mil ---; 0 of R-modules, 
and any R-module N, there is a long exact sequence of Tor: 

Torf(M', N) -+ Torf(M, N) -+ Torf(M", N) 

Torf(M', N) -+ Torf(M, N) -+ Torf(M", N) 

M' 0 RN -+ M 0 RN -+ Mil 0 RN -+ 0 

(With property lb, this property actually characterizes Tor. See Exer
cise A3.l5.) 

Here is a useful example of a computation of Tor: 
Suppose that x E R is a nonzerodivisor, and that M is an R-module. We 

shall compute the modules Torf(R/(x), M). The short exact sequence 

0---; R ~ R ---; R/(x) ---; 0 

is a actually a free resolution of R/(x), and we use it in the definition of 
Tor. Thus the module Torf(R/(x) , M) is the ith homology module of the 
complex 

and we find 

o ---; M ~ M ---; 0, 

Tor~(R/(x), M) = M/xM 

Torf(R/(x), M) = (0 :M x) 

Torf(R/(x) , M) = 0 for i > 1. 
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6.3 Criteria for Flatness 

The relevance of Tor to flatness in general is exhibited in Exercise 6.1. For 
our purposes, a more specific result is more interesting. 

Proposition 6.1. Let R be a ring, and let M be an R-module. If I is an 
ideal of R, then the multiplication map I ®R M -+ M is an injection iff 
Torf(R/ I, M) = o. The module M is fiat iff this condition is satisfied for 
every finitely generated ideal I. 

Proof. From the short exact sequence 0 -+ I -+ R -+ R/ I -+ 0, we get a 
long exact sequence containing 

Torf(R, M) -+ Torf(R/ I, M) -+ I ® M -+ R ® M. 

The left-hand term is 0 by property Ib, and the right-hand term is M. 
Additionally, the right-hand map is just the multiplication map I ® M -+ 

M. The equivalence in the first assertion follows. 
By definition, M is flat iff for every injection N' c N of R-modules, 

the induced map N' ®R M -+ N ®R M is an injection. Suppose that the 
condition of the proposition (which is simply the special case where N = R 
and N' = I is finitely generated) is satisfied. 

First we note that l' ® M -+ M is an injection for any ideal I' of R. 
Indeed, any element 0 i- x of I' ®R M is a finite sum of elements r' ® m 
for r' E l' and m EM. Thus x comes from a necessarily nonzero element 
of some I ®R M, with I finitely generated, so x goes to a nonzero element 
ofM. 

Similarly, the module N ®R M is generated by the elements {n®Rmln E 
N, m EM}, and the relations, which are the relations of bilinearity, each 
involve just finitely many elements of N. Thus, the statement that an 
x E N' ®R M goes to 0 in N ®R M involves only finitely many elements of 
N, and we may assume that N is finitely generated. 

Now we can find a sequence of submodules 

N' = No C Nl C ... c Np = N 

such that each Ni+dNi is generated by one element. Of course, it suffices 
to show that each Ni ® M -+ NiH ® M is injective, so we may assume from 
the outset that N / N' is a cyclic module, and write N / N' ~ R/ I. 

The short exact sequence 0 -+ N' -+ N -+ N / N' -+ 0 gives rise to a long 
exact sequence containing the terms 

Torf(N/N',M) -+ N' ® M -+ N ® M. 

Since Torf(N/N',M) = Torf(R/I,M) = 0 by hypothesis, we are done. 0 

We used Tor in this proof to show that if I c R is an ideal and I ® M -+ 

R ® M = M is an inclusion, then N' ® M -+ N ® M is an inclusion for any 



162 6. Flat Families 

modules N' c N such that N/N' ~ R/1. For purposes of comparison, we 
shall now prove just this point without using Tor. 

Choose an element n E N that maps to 1 mod 1 in N / N' ~ R/ 1, and 
let cp : R --4 N be the map sending 1 to n. The map cp carries 1 into N'; 
write cp' : 1 --4 N' for the induced map. The kernel of cp is contained in 1. 
Since the induced map of R/1 to N / N' is an isomorphism, the cokernels of 
cp and cp' coincide. Writing C for the cokernel, we thus get a commutative 
diagram with exact rows and columns: 

0 --4 1 --4 R--4 R/1 --4 0 
'1" 1 1'1' II 

0 --4 N' --4 N --4 R/1 --4 0 
1 1 
C C 
1 1 
0 0 

Tensoring with M, the upper row remains exact by hypothesis, and the 
columns remain exact by the right exactness of the tensor product. It fol
lows that the kernels of cp' ® M and cp ® M coincide-call them K. We thus 
have a diagram with exact columns: 

0 0 
1 1 
K K 
1 1 

0 --4 1®M --4 R®M --4 (R/I) ® M --4 0 
'1"011 1 '1'01 II 
N'®M --4 N®M --4 (R/I) ® M --4 0 

1 1 
C®M C®M 

1 1 
0 0 

If an element x E N' ® M goes to 0 in N ® M, then it also goes to 0 in 
C®M, and thus comes from an element y E 1®M. This element, regarded 
as an element of R ® M, goes to 0 under cp ® 1, and thus comes from K. 
Thus x = (cp' ® 1) (y) = O. This shows that the map from N' ® M to N ® M 
is a monomorphism as required. 

If the reader compares this last argument with the last paragraph of 
the proof of Proposition 6.1, it will be clear at least that a considerable 
compression has occurred even in this very simple case. I feel that there is 
also an increase in clarity. 

It seems natural to ask whether one could refine Proposition 6.1 by lim
iting the ideals 1 that must be tested. In the most common situation it is 
enough to check for all maximal ideals (Theorem 6.8). 
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Before deriving the general characterization of flatness that comes out of 
Proposition 6.1, we give the simplest-and most useful--special cases. 

Corollary 6.2. Let k be a field. If R = k[tJ/(t2 ), and M is an R-module, 
then M is flat iff multiplication by t from M to tM induces an isomorphism 
M/tM ~tM. 

Proof. The only nontrivial ideal of R is (t), which is isomorphic as an R
module to R/(t) by the map R/(t) ~ (t) sending 1 to t. Applying the 
criterion of Proposition 6.1, we see that M is flat iff the map 

M/tM ~ R/(t) @R M ~ (t) @R M ~ R@R M = M, 

sending the class in M/tM of an element mE M to tm E M, is a monomor
phism. But this map is the composition of an epimorphism M /tM ~ tM 
induced from multiplication by t with the inclusion tM C M. D 

Corollary 6.3. If a E R is a nonzerodivisor in R, and M is a flat R
module, then a is a nonzerodivisor on M. If R is a principal ideal domain, 
then the converse is also true: M is flat as an R-module iff M is torsion 
free. 

Proof. Let 1= Ra with a ERa nonzerodivisor. If M is flat, then for any 
I c R the map r.p : I @R M ~ R @R M = M is an injection. But I ~ R 
by an isomorphism sending a to 1. Identifying I @R M with R @R M = M 
by means of this isomorphism, the map r.p becomes multiplication by a. By 
definition, this is a monomorphism iff a is a nonzero divisor on M. 

If now R is a principal ideal domain, then every nonzero ideal is generated 
by a nonzerodivisor. The condition of Proposition 6.1 is trivial in the case 
1= 0, so we see from the computation of Torf(R/x, M) given at the end of 
section 6.2 that M is flat iff every nonzero element of R is a nonzero divisor 
on M. This is what it means for M to be torsion-free. D 

Before tackling the general case, we need an equational characterization 
of when an element of a tensor product of modules is zero. This is a trans
lation of the fact that tensor products preserve direct sums and right-exact 
sequences. 

Lemma 6.4. Let M and N be R-modules, and suppose that N is generated 
by a family of elements {nil. Every element of M@RN may be written as 
a finite sum I:i mi @ nj E M @R N. Such an expression is 0 iff there exist 
elements mj of M and elements aij of R such that 

L aijmj = mi for all i 
j 
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and 
L aijni = 0 in N for all j. 

Proof. If elements mj and aij with the specified properties exist, then 
l:i mi Q9 ni = l:i(l:j aijmj) Q9 ni = l:j(mj Q9l:i aijni) = O. 

To prove the converse, we begin with what amounts to a special case: If 
N is free and the ni are a basis, then l:i mi Q9 ni = 0 iff all the mi are O. 
This follows because N = ffiRni' so 

and l:i mi Q9 ni corresponds to the vector (ml' m2, .. . ). 
Passing to the general case, let F -+ G -+ N -+ 0 be a free presentation 

of N, chosen so that a basis {g;} of G maps to the set of elements {ni}, say 
gi f---> ni. By the right-exactness of the tensor product functor, the natural 
sequence 

M Q9R F -+ M Q9R G -+ M Q9R N -+ 0 

is exact, and of course l:i mi Q9 gi goes to zero. It follows that l:i mi Q9 gi = 
l:j mj Q9 Yj for some mj E M, with Yj in the image of F, that is, with 
Yj -+ 0 in N. We may write each Yj in terms of the basis gi, say Yj = 
l:~=1 aijgi· But using the special case above on the difference 0 = l:i mi Q9 
gi - l:j mj Q9 (l:i aijgi) , we see that mi = l:j aijmj, while Yj = l:i aijgi 
goes to 0 = l:i aijni, as required. 0 

It is crucial for the truth of each half of this lemma that the ni actually 
generate N. For example, consider a contrary case, where R = k[t] and 
N = k[t]/(t2 ), with nl = t. Taking M = k[t]/(t), and ml = 1, we see that 
the element ml Q9 nl = 1 Q9 t E k[t]/(t) Q9k[t] k[t]/(t2 ) is 0, but ml cannot be 
expressed as am~ in such a way that anI = o. Of course, the general reason 
is that if the same criterion held for a set of elements ni that generate 
only a submodule of N, then the inclusion map of this submodule into N 
would remain a monomorphism when tensored with M! This remark can 
be put to work to derive a characterization of flatness by equations that 
generalizes the preceding cases. 

Corollary 6.5 (Equational Criterion for Flatness). An R-module M is fiat 
iff the following condition is satisfied: 

For every relation 0 = l:i nimi with mi E M and ni E R there exist 
elements mj E M and elements aij E R such that 

L aijmj = mi for all i 
j 

and 
L aijni = 0 in R for all j. 
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Proof. The condition of Proposition 6.1 may be restated as saying that M 
is flat if for every ideal I, an element x = L:i ni ® mi E I ® R M goes to 0 in 
R ®R M iff L:i ni ® mi satisfies the criterion of Lemma 6.4 for being O. The 
image of x in R ®R M = M is just L:i nimi, so the desired result follows.D 

Finally, the characterization of flatness can be reformulated in terms of 
maps of modules in an appealing way. In the language of Exercise 4.11 
this even shows that finitely presented flat modules are the same as finitely 
generated projective modules. 

Corollary 6.6. Let R be a ring, and let M be an R-module. The following 
conditions are equivalent: 

a. M is fiat. 

b. For every map /3 : F ---* M from a finitely generated free module F, 
and for every submodule K of ker /3 generated by one element, there 
is a commutative diagram 

with G free such that K c ker 'Y. 

c. The same as statement b, but for arbitrary finitely generated submod
ules K of ker /3. 

In particular, if M is finitely presented, then M is fiat iff M is a sum
mand of a free module. 

Proof. a~b: This is a "diagrammatic" translation of Corollary 6.5. An 
element f in the kernel of a map from a free module F to M is a relation 
on the images mj E M of the basis elements of F. The elements mj of 
Corollary 6.5 correspond to a map from another free module, G, taking the 
generators of G to the mj. A matrix with entries aij such that L: j aijmj = 
mj corresponds to a map 'Y, making the diagram commute. The condition 
that L:i aijni = 0 in R for all j says that 'Y(f) = O. 
b~c: Suppose we can find a map 'Y whose kernel contains a given 

element of K. Composing 'Y with a map killing the image of another element 
of K, and continuing in this way, we finally arrive at a map whose kernel 
contains K. The other implication is trivial. 

For the last statement, note first that direct sums and direct summands 
of flat modules are flat. Since R itself is flat (tensoring with R is the identity 
functor), any summand of a free module is flat. 
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To say that M is finitely presented means that there is a surjection 
F --> M from a finitely generated free module having kernel K finitely 
generated. If M is fiat, let "Y be as in statement b. The image of"Y is carried 
isomorphically to M by the map from G. Thus the map G --> M splits, so 
M is a direct summand of G. D 

See Exercise 6.2 for another proof of the last statement of this corollary. 
We shall extend this criterion to the statement that a module is fiat iff it 
is the "filtered direct limit" of free modules (Govorov-Lazard theorem) in 
Appendix 6. 

If (R, P) is a local ring and 8 is a fiat R algebra, then good properties 
of the fiber 8/ P 8 over R/ P often imply good properties of 8. We shall see 
some dimension-theoretic versions of this statement in Chapters 10 and 14. 
For now we prove a result that is a generalization of Corollary 5.5. 

Corollary 6.7. Let k be a field, let R = k[t] be the polynomial ring in one 
variable, and let 8 be a Noetherian ring that is fiat over R. If the fiber 8/ t8 
over the prime (t) is a domain, and U is the set of elements of the form 
1 - ts for s E 8, then 8[U-1] is a domain. 

Proof. We may replace 8 by 8[U-1] at the outset and assume that all 
elements of the form 1 + st are units of 8. 

Suppose that I, J c 8 are ideals with I J = 0; we must show that either 
I or J is O. Enlarging I and J if necessary, we may assume that each is the 
annihilator of the other. Since I J == O(modulo t), and 8/(t) is a domain, 
we may suppose J c (t). Thus J = (J : t)t. Since t is a nonzero divisor 
and I(J : t)t = 0, it follows that (J : t) annihilates I. Thus (J : t) C J, 
and we have J = Jt. By Corollary 4.7 there is an element s E 8 such that 
(1 - ts)J = 0, so J = O. D 

It follows from primary decomposition that in the setting of Corollary 6.7 
we can find a single element fEU such that 8[f-l] is a domain. However, 
one may not be able to avoid localization completely, as one sees from the 
example R = k[t] --> 8 = k[x, t] x k[t, rl], where k is a field, pictured in 
Figure 6.5. The fiber over the maximal ideal (t-a) (for a E k) is 8/(t-a)8. 
When a = 0 this fiber is a domain since tk[t, rl] = k[t, t-1], but for all a 
other than 0 the fiber is not a domain. Such troubles can be avoided by 
working with graded rings-geometrically, working with projective maps, 
or, more generally, with proper maps. 

6.4 The Local Criterion for Flatness 

We have shown in Proposition 6.1 that an R-module M is fiat iff the maps 
I ® M --> M are injections for all ideals I of R. We shall now show that if 
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1 • o R = kit) 

FIGURE 6.5. 

R is a local ring and M satisfies some mild hypotheses, then it suffices to 
check this condition when I is the maximal ideal of R. 

Theorem 6.8 (Local Criterion for Flatness). Suppose that (R, m) is a local 
Noetherian ring, and let (S, n) be a local Noetherian R-algebra such that 
mS c n. If M is a finitely generated S -module, then M is flat as an R
module iffTorf(R/m,M) = O. 

The theorem is often applied with M = S, to establish the flatness of S. 
See Theorem 18.16 and Exercise 18.17 for typical cases. However, it is also 
interesting for the case R = S to test the flatness of a finitely generated 
module. In this case the result is both easier and sharper; see Exercise 6.2. 
For the necessity of the hypothesis, see Exercise 6.3. For a different-looking 
statement proved by almost the same argument, see Exercise 6.5. 

Proof. If M is flat then Torf(R/m, M) = 0, by Proposition 6.l. 
Now suppose that Sand M are as in the theorem, and that 

Torf(R/m, M) = O. As a preliminary step we shall show that if N is an 
R-module of finite length, then Torf(N, M) = O. We may prove this by 
induction on the length, the hypothesis being the case of length 1: If N' 
is any proper submodule of N, then the exact sequence 0 -> N' -> N -> 

N / N' -> 0 gives rise to an exact sequence of Tor containing the terms 

Torf(N', M) -> Torf(N, M) -> Torf(N/N', M). 

By induction on the length, Torf(N', M) = 0 = Torf(N/N', M), so 
Torf(N, M) = 0 as required. 

Now let I be an arbitrary ideal, and suppose that u E I 0R M is in the 
kernel of the multiplication map I 0R M -> M. We shall prove that u = o. 



168 6. Flat Families 

The S-module structure on M gives 1 ®RM the structure of an S-module 
too, and we have mn(I ®R M) c nn(1 ®R M). It is finitely generated as an 
S-module, so by the Krull intersection theorem (Theorem 5.4), nnnn(I ®R 
M) = 0, and we see that nnmn(I ®R M) = O. Thus it suffices to show that 
U E mn(I ®R M) for every n (this is the only use we shall make of the 
hypothesis on M). 

The module mn(I ®R M) is the image ih I ®R M of (mn I) ®R M. By 
the Artin-Rees lemma, mt n 1 c mn I for sufficiently large t, so it suffices to 
show that u is in the image of (mt n 1) ®R M for all t. Tensoring the short 
exact sequence 

o ----> mt n I ----> I ----> 1/ (mt n 1) ----> 0 

with M produces the exact sequence 

(mt n I) ®R M ----> I ®R M ----> I/(mt n 1) ®R M ----> o. 
It thus suffices to show that u goes to 0 in 1/( mt n 1) ® R M. The map 
I ® R M ----> 1/( mt n 1) ® R M is obtained by tensoring the top row of the 
commutative diagram 

with M to get 
I®RM---->I/(mtnl)®RM 

1 1~01 
M = R ®R M ----> R/mt ®R M. 

Since u goes to zero under the left-hand vertical map, we see that it suffices 
to show that the kernel of the right-1Hl,nd vertical map r.p ® 1 is O. 

Identifying I/(mt n 1) with (1 + mt)/mt, we see that r.p is the left-hand 
map in the short exact sequence 

0----> (I + mt)/mt ----> R/mt ----> R/(I + mt) ----> o. 
Applying Tor, we get a long exact sequence of which a part is 

Torf(R/(I + mt), M) ----> (I + mt)/mt ®R M ~1 R/mt ®R M, 

so it is enough to show that Torf(R/(I + mt), M) = O. Since R/(I + mt) is 
annihilated by mt, it is a module of finite length, and we are done. 0 

If R ----> R' is any homomorphism of rings and M is a flat R-module, then 
R' ®R M is flat as an R'-module because tensoring over R' with (R' ®R M) 
is the same as tensoring over R with M -that is, 

(R' ®R M) ®R' N = M ®R N 
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for any R'-module N. We can use the criterion to prove the converse in an 
important special case: 

Corollary 6.9. Suppose that (R, m) is a local Noetherian ring. Let (S, n) 
be a local Noetherian R-algebra such that mS c n, let x E m be a nonzero
divisor on R, and let M be a finitely generated S -module. If x is a nonze
rodivisor on M, then M is fiat over Riff M/xM is fiat over R/(x). 

Proof. If M is flat then M/xM = R/(x) 0R M is flat over R/(x) without 
any hypothesis, as we have just remarked, so we suppose that M / xM is flat 
over R/(x), and prove that M is flat over R. Let k = R/m be the residue 
class field of R. 

We have Tor~/(x)(k, M/xM) = 0 since M/xM is flat over R/(x). 
By Lemma 6.10, Torf(k, M) = 0, so M is flat by the local criterion, 
Theorem 6.8. D 

Lemma 6.10. If R is a ring, M is an R-module, and x E R is a 
nonzerodivisor on R and on M, then for any (R/(x))-module N we have 
Tor~/(x)(N, M/xM) = Torf(N, M). 

Proof. Let 
:.f: ... -+ F2 -+ FI -+ Fo 

be a free resolution of M as an R-module. We claim that R/(x) 0:.f is a free 
resolution of R/(x) 0 M. Given this, we may compute Tor~/(x)(N, M/xM) 
as the homology of N 0R/(x) R/(x) 0R :.f ~ N 0R :.f, and we see that it 
coincides with Torf(N, M), as required. 

The homology of the complex 

is TorR (R/(x) , M). As we have shown at the end of section 6.2, we 
have Tor~(R/(x),M) = M/xM, and since x is a nonzero divisor on R, 
Torf(R/(x), M) = 0 for all i > O. This is the same as saying that the 
complex R/(x) 0:.f is a resolution of M/xM. Since the modules F;/xFi are 
free over R/(x), we are done. D 

The corollary is often used in the following situation: Suppose that 

are maps of affine varieties over a field k, and that X and Yare flat over 
A I. We say that 'P is flat, or that X is flat over Y, if the corresponding 
map from the coordinate ring A(Y) of Y to the coordinate ring A(X) of 
X makes A(X) into a flat (A(Y))-module. For each point pEAl we have 
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a map of "fibers" Xp := ('l/Jep)-I(p) ----> 'l/J-I(p) =: Yp, as in Figure 6.6 where 
we have chosen points p' E Y mapping to p and pI! E X mapping to p'. We 
think of the whole setup as a family of maps of varieties. 

x 
FIGURE 6.6. 

y 

---I"~ t 
'II 

Let x be a coordinate function on A I that takes the value 0 at p, and 
let R = A(Y)p', M = A(X)plI, where pI and pI! are the maximal ideals 
corresponding to p' and pI!, respectively. If we assume that (as in the pic
ture) X and Y map onto an open set of AI, then the maps k[x]----> Rand 
k[x] ----> M corresponding to 'l/J and to 'l/Jep, respectively, are both injections 
from k[x] into the domains Rand M, so that x is a nonzero divisor on both 
Rand M. By Corollary 6.3, X and Yare fiat over AI. 

In this setting Corollary 6.9 may be interpreted as saying that if the map 
Xp ----> Yp is fiat in a neighborhood of pI! in Xp, then X ----> Y is fiat in a 
neighborhood of pI! in X. That is, if the fibers of Xp ----> Yp vary "nicely" 
near pI!, then the same is true of all the fibers of X ----> Y near pl!. 

6.5 The Rees Algebra 

One way of producing fiat families is through the technique of Rees alge
bras. Let R be a ring and let I c R be an ideal. We define the Rees 
algebra of R with respect to I to be the R-algebra 

00 

n=-oo 

where we take In = R if n ~ O. If R is a k-algebra, then we regard ~(R, 1) 
as a k[t]-algebra. It is then clear that 

~(R,I)/t~(R, I) = gr[ R 
~(R, I)/(t - a)~(R, I) = R for any 0 i= a E k; 
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that is, the Rees algebra defines a family of k-algebras over the line with 
parameter t having fiber grJ R at t = 0 and fiber R at t = a for every 
a i- o. We shall show that the Rees algebra is flat over k[tj. Combined with 
the second statement of the following result and Corollary 6.7, this gives 
an alternative proof of Corollary 5.5, much longer than the original to be 
sure, but suggesting a general technique. 

Corollary 6.11. If R is an algebra over a field k, then the Rees algebra 
S = J«R, 1) is fiat over k[tj. If n~l Id = 0, then every element of the form 
1 - ts with s E S is a nonzerodivisor on J« R, 1). 

Proof. For the first statement it is enough by Corollary 6.3 to show that 
J«R,1) is torsion-free as a k[tj-module. Since J«R,1) C R[t, ell, this is 
immediate. For the second statement, note that if p(l - ts) = 0 for some s 
in S, then, reading the equation modulo t, we must have P = qt for some 
q E S. But t is a nonzero divisor on S, so q(l - ts) = O. Repeating this 
argument, it follows that P E t n S for every n. Writing p = 'L{=-j Piti, with 
Pi E R, we see that Pi E r for each n, so P = 0 as required. 0 

6.6 Exercises 

Exercise 6.1 (Tor and flatness):* Here is the basic relation between Tor 
and flatness: 

a. Let R be a ring, and let M be an R-module. Show that M is flat 
iff Torf(M, N) = 0 for all R-modules N iff Torf(N, M) = 0 for all 
R-modules N. 

b.* Show that M is flat iff Torf(M, N) = 0 for all R-modules N and all 
i > O. 

Exercise 6.2 (Finitely presented flat modules are locally free):* Let 
R be a ring and let M be a finitely presented R-module. Show that the 
following statements are equivalent: 

1. M is flat over R. 

11. Mp is flat over Rp for all maximal ideals P of R. 

iii. Torf(M, R/ P) = 0 for all maximal ideals P of R. 

iv. Mp is a free module over Rp for all maximal ideals P of R. 

v. M is a projective R-module. 

Here are some steps that may help you: 
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a.* Let R, P be a local ring, and use Nakayama's lemma to show that 
if M is a finitely presented module, then M is flat iff M is free iff 
Torf(M, R/ P) = o. 

b. Prove the equivalence of statements i and ii by localizing; one way to 
do it is to show that if N is an Rp-module then M ®RN = M ®Rp N, 
and use Corollary 2.9; another is to show that Tor localizes. 

c. Use parts a and b with Exercise 4.11 to show that statements i, iv, 
and v are equivalent. Statement i implies ii by Exercise 6.1, and the 
converse comes by localizing and using part a. 

Exercise 6.3:* Let R = k[x](x), where k is a field, and let M be any R
module. Show that Torf(R/(x) , M) = 0 iff M is flat, so that Theorem 6.8 
holds for this ring without restriction on M. Show, however, that if R = 
k[x, yb,y) and M = k(x) (with y acting as 0), then Torf(R/(x, y), M) = 0 
but M is not flat. 

Exercise 6.4:* Let 8 = R[Xl, ... , xr ] be the polynomial ring in r vari
ables over a Noetherian ring R, and let f E 8 be a nonzero divisor (see 
Exercise 3.4). Show that 8/(f) is a flat R-module iff the coefficients of f 
generate the unit ideal of R. In case R = k[x], 8 = R[y], and f = 1 + xy, 
show that 8/(f) is not free as an R-module. 

Exercise 6.5 (Infinitesimal criterion of flatness): Prove the follow
ing by adapting the proof of Theorem 6.8: Suppose that (R, P) is a local 
Noetherian ring, and let (8, Q) be a local Noetherian R-algebra such that 
P8 c Q. If M is a finitely generated 8-module, show that M is flat as an 
R-module iff M / pn M is flat as an R/ pn-module for every n. 

Exercise 6.6 (The family of projective plane curves): The algebra in 
this exercise corresponds to the first flat family ever considered (implicitly, 
of course; to translate this exercise directly into geometry requires an alge
braically closed field, so the time we are speaking of is about 1830, when 
people were first seriously investigating projective plane curves over C). It 
is still an object of active research. Fix a degree d. For each 3-component, 
multiindex a = (ao, al, a2) of degree d (that is, the ai are nonnegative inte
gers with ao + al + a2 = d) let Xa be an indeterminate. Let R = k[{xa}] be 
the polynomial ring in the xa , and let 8 be the R-algebra 

R[yo, Yl, Y2]/ L xaya, 
a 

where we have written ya for the monomial ygOYrly~2. Geometrically, this 
corresponds to the family of all projective plane curves of degree d; of course 
one could replace 3 by any number r + 1 and get the family of hypersurfaces 
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of degree d in pr. Except for the fiber over the point where all the x" are 
zero, this family is "good": The geometric properties of two plane curves 
of degree d are closely related, and algebraically the fiber at a prime P is a 
polynomial ring over ,.,,(P) modulo an equation of degree d; certainly these 
have a strong "family resemblance." Show that if we invert any x,,, the 
family becomes fiat, that is, the family given by the R[x~l]-algebra S[x~l] 
is fiat, by showing that it is a free R-module (not finitely generated!). Show 
that S is an integral domain (that is, L,,, x"y" is prime) and contains R, 
so that S is torsion-free as an R-module. Show, however, that S itself is 
not fiat over R by proving and using the following facts: 

a. * If S is a fiat module over a ring R, and R ---t T is any map of rings, 
then S ®R T is fiat over T. 

b. There is a map of rings R = k[{x,,}] ---t k[t] = T such that T ®R S = 
k[t, Yo, YI, Y2]/tyg, and this is not a fiat T-algebra. 

Exercise 6.7 (Flatness and (almost) regular sequences): If R is 
not a principal ideal domain, then the condition of Corollary 6.3 is not 
sufficient for fiatness, as the example of Exercise 6.6 shows. However, the 
idea of part a of that exercise proves a much more powerful consequence 
that is the first hint of the important interaction of fiatness and regular 
sequences. Show that if S is a fiat R-module, and Xl, ... ,Xr is a sequence 
of elements of R such that for each i the element Xi is a nonzerodivi
sor on R/(XI,"" xi-d, then for each i the element Xi is a nonzerodivi
sor on S/(XI, ... , Xi-I). (This is not quite the condition that Xl,"" xr 
be a regular sequence (see Chapter 10), because we are not insisting that 
(Xl, ... ,xr)R i- R or that (Xl, ... ,xr)S i- S.) Although we are not ready 
to prove it, this condition is actually equivalent to fiat ness in many cases 
of interest, for example in the case where R is a polynomial ring and S is 
local, with maximal ideal containing Xl, ... ,Xr (see Exercise 18.18). 

Exercise 6.8: Let k be a field, and set R = k[t], S = R[x]/((x) n (x, tn 
should be ((x)n(x, t)2) (see Figure 6.7). Show that in this example, S is not 
fiat over R. (You may use the criterion for fiat ness given in Corollary 6.3.) 
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Exercise 6.9: Use Exercise 6.7 to show that the blowup of the plane is 
not flat over the plane: That is, if R = k[x, y] and S is the subring of 
the quotient field of R generated by the two elements x / y and y (crudely, 
S = k[x/y, yD, then S is not flat as an R-module. The inclusion ReS 
corresponds to the map from the plane to the plane suggested by Figure 6.8. 

FIGURE 6.8. Blowup of a point in the plane. 

Intuitively, flatness fails because the fiber over the origin is a curve, whereas 
nearby fibers are only points (see Theorem 10.10 and Exercise 10.5 for a 
more precise treatment). 

Exercise 6.10 (Flatness of graded modules):* Let R = I4J Ef) Rl Ef) ••• 

be a graded ring with I4J a field, and let M be a graded R-module. 

a. Show that M is flat over R iff I @ M ----> M is an injection for every 
homogeneous ideal I of R. 

b. Show that M is flat iff Mp is flat, where P = Rl Ef) R2 Ef) ••• is the 
homogeneous maximal ideal. 
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Flat Families of Graded Modules 

Exercise 6.11: Let R = ~ EB Rl EB ... be a graded ring such that ~ is 
a local Noetherian ring and that R is finitely generated as an ~-algebra 
by elements of degree 1. Let M be a finitely generated graded R-module, 
and let Md be the degree d part of M. We may think of M as a family of 
graded modules over the "base" Ro. If R = ~, then we have seen that M 
is flat over ~ iff M is free over ~. The general case, which arises often, 
can be analyzed in terms of this one: 

a. Show that each Md is finitely generated as an ~-module. 

b. Show that M is flat over ~ iff Md is free over ~ for all d. 

c. * (The following exercise may be interpreted as describing flatness 
for families of sheaves on projective space. See Hartshorne [1977J, 
Chapter II, for more information.) For every f E Rl the localization 
M[J-IJ is graded; we write M[rlJo for its component of degree O. 
Show that M[J-IJo is flat over ~ for all f E Rl iff Md is a free 
~-module for all d» O. 

d. For each prime P of ~ we may define a Hilbert function 

As in Chapter 1 we write P,,(P)0M(d) for the polynomial in d that agrees 
with H,,(P)0M(d) for large d (see also Chapter 12). Show that if M is flat over 
~, then the function H,,(P)0M(d) is independent of the prime P chosen in 
~. Show that if M[f-lJo is flat over Ro for all f E R 1, then the polynomial 
P,,(P)0M(d) is independent of P. 

As we shall see in Chapter 12, the Krull dimension (see Chapter 9 for 
the definition) of K,(P) ® M as a module over K,(P) ® R can be read off from 
this polynomial, so a consequence of flatness is that the Krull dimension of 
K,(P) ® M is constant. We shall further see, in Exercise 20.14, that in this 
situation the constancy of the Hilbert function (or polynomial) guarantees 
the flatness of M (or of all the M[f-lJO) as long as ~ is a reduced ring. 

Embedded First-Order Deformations 

Exercise 6.12: Let k be a field and let cp : S ---# R = S/1 be k-algebras. 
Let A be a k-algebra with a distinguished map p : A -... k such inducing 
the identity on k. Set S = A ®k S. We define an embedded deformation 
of R with base A to be an ideal j c S such that R := S / j is flat over A 
and such that p® 1: S -... S carries j onto 1. (Abusing the terminology, we 
sometimes say that R is an embedded deformation.) For any base algebra A 
there is at least one embedded deformation, called the trivial embedded 
deformation, obtained by setting j = A ®k 1. 
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If Rand S are affine domains over k, then the data S ...... R corresponds 
to an embedding variety X C Y. If A is also an affine domain over k, 
corresponding to a variety Z, and the map p : A --+ k corresponds to a 
point Z E Z, then an embedded deformation with base A is a flat family X
over Z, embedded in Y x Z, 

X c YxZ 
1C 1 ,/ 
Z 

such that 7[-1(z) = X. The family is trivial if X- = X x Z as a subvariety 
of Y x Z. The notion is useful, for example, when X is singular~one might 
hope to find a family in which other fibers 7[-1 (z') for z' E Z are smooth. 

It is in general quite hard to find embedded deformations, and most of 
the results about them relate to particular types of rings R or spaces X 
(determinantal rings, rings with rational singularities, and so forth). Nev
ertheless, there is a simple way of finding all nontrivial embedded deforma
tions in which the base ring is k[x]j(x2 ). We shall describe it here and in 
Exercise 16.8. We write k[t:J for k[x]j(x2), with t:2 = o. 

Any embedded deformation A ® S ...... R gives rise to embedded deforma
tions over k[t:], because if m is the kernel of the distinguished map A --+ k, 
and we choose any map mjm2 --+ k of k-vector spaces, with kernel m', say, 
then Aj(m' +m2) ~ k[t:]' and R®A Aj(m' +m2) is a deformation over k[t:J. 
The set of homomorphisms mjm2 --+ k is by definition the Zariski tan
gent space to A at the maximal ideal m. (If A corresponds to an affine 
variety, this is the tangent space at the point corresponding to m in a more 
geometric sense.) We shall see that the set of deformations of Rover k[t:J is 
naturally a k-vector space. Thus, in a certain natural sense this set is the 
Zariski tangent space to the space of all deformations--even if the latter 
doesn't exist! See Eisenbud and Harris [1992]' Chapter 4, for a more com
plete view of this idea, which is due to Grothendieck. In some cases there 
is actually a space of all deformations (the "versal deformation space"); 
see Schlessinger [1968], Artin [1976], and Sernesi [1986J for a treatment of 
some of these. 

Embedded deformations of S ...... Rover k[t:J are called first-order 
infinitesimal embedded deformations, in keeping with the idea from 
the theory of schemes that k[t:J is the affine ring of the first-order infinites
imal neighborhood of a point in a line. 

a. Suppose M is any k[t:J-module. Show that M is flat over k[t:J iff 
(0 :M t:), the annihilator of t: in M, is equal to t:M. (Note that the 
free resolution of k as a k[t:J-module is 

... --+ k[t:J ~ k[t:J ~ k[t:J ~ ... ~ k[t:J --+ k --+ o. 
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y 

FIGURE 6.9. A normal vector field. 

Thus, (0 :M E)/EM = Tor~[EJ(k, M), so the result in question is just 
the local criterion of flatness, with no hypothesis on M.) Show that 
this is equivalent to the condition that multiplication by E from M 
to EM induces an isomorphism M/EM ~ EM. 

b. Note that 1/12 , called the conormal module of R in S for reasons 
explained in Chapter 16, is an R-module. Given any homomorphism 
rp: 1/12 ~ R = S/I, define an ideal i C S[E] by i = d + (1 + Erp)I 
(here we regard Erp as a map from I to S / d sending gEl to Erp(g + 
12) E ES/d c Sid. Show that if a set of elements gi E I generates I 
and if g~ is a representative in S for rp(gi) in S/I, then i is generated 
by the elements gi + Eg;. Show that S/ i is flat over k[EJ, so that we 
have defined a first-order infinitesimal embedded deformation from 
an element of the module N := Hom(I/I2,R), called the normal 
module of R in S. 

c. Given a first-order infinitesimal embedded deformation R = S[e:l/ i, 
we may regard i as a subspace of S[e:] = SED SE. As such, show 
that i projects onto I C S. It follows that i contains Ie C Se:. Use 
the flatness of R to show that the image i / Ie of i in S ED Be/Ie is 
the graph of a homomorphism from I to SE/Ie ~ S/I = R; that is, 
I/Ie = {(g,'ljJ(g))lg E I} for some 'ljJ E Hom(I,R). Since I kills R, 'ljJ 
kills 12, and thus 'ljJ induces a homomorphism rp E Hom(I / 12, R) = N. 

d. Show that the correspondences defined in parts band c are inverse to 
one another. Thus they define a bijection between the set of first-order 
embedded deformations of S --# R = S / I and N = HomR (I/ 12, R). 
(As we shall see in Chapter 16, if S corresponds to a smooth affine 
variety Y, and R to a smooth subvariety X C Y, or a little more 
generally, then N is the set of normal vector fields in Y along X, 
such as the one in Figure 6.9.) The associated infinitesimal deforma
tion should be thought of as the flow moving each point of X in the 
direction determined by this vector field. 
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e. (Compare with Exercise 16.8f) Let S = k[x] and R = k[xJl(xn ) (the 
"n-fold point on a line"). Show that every first-order infinitesimal 
embedded deformation may be written in the form 

for a unique al,"" an E k. (Geometrically, this corresponds to a 
family of n points on a line approaching 0.) 

f. (Compare with Exercise 16.8g) Let S = k[x, y) and R = k[xJl(xy) 
(the "ordinary double point"). Show that each first-order infinitesimal 
embedded deformation may be written in the form 

S[cJl(xy + c(a + xp(x) + yq(y))) 

for unique a E k, p(x) E k[x], p(y) E k[y]. Note that the space of 
deformations is infinite-dimensional. 

g. If R and S are graded, show that N is graded and that the first
order infinitesimal embedded deformations of R as a graded S-algebra 
correspond to the homogeneous elements of degree 0 in N. 



7 
Completions and Hensel's Lemma 

In this section we shall study the completion of a ring R with respect to 
an ideal m, written Rm , or simply R if m is clear from the context. The 
construction is usually applied in the case where R is a local ring and m 
is the maximal ideal. If R is a polynomial ring R = k[XI, ... , xnJ over a 
field, and m = (Xl' ... ' Xn) is the ideal generated by the variables, then the 
completion is the ring k[[XI, ... , xnll of formal power series over k. More 
generally, if k is a field and R = k[XI, ... , xnJI I, then the completion of R 
with respect to m = (Xl, ... , Xn) is the ring k[[XI, ... , xnJJI Ik[[XI, ... , xnJJ. 
General completions can similarly be defined in terms of formal power series 
(Exercise 7.11), but we shall give an intrinsic development. 

Completions first appeared in number theory. Hensel worked out and 
refined the theory of p-adic numbers during a decade or so starting in 
[1897J. He saw the p-adic numbers as bringing analysis, similar to the local 
analysis of functions on a Riemann surface, to bear on number theory, and 
his idea has proved fantastically successful. 

7.1 Examples and Definitions 

The usefulness of completions can be stated geometrically as follows: A 
localization R of the affine ring of a variety at the maximal ideal m of a 
point on the variety represents and reflects the properties of Zariski open 
neighborhoods of the point; the completion Rm represents the properties 
of the variety in far smaller neighborhoods. For example, over the complex 
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numbers, the information available from Rm is (roughly speaking) infor
mation about arbitrarily small neighborhoods in the "classical topology" 
induced by the fact that the variety is a closed subspace of some en with 
its ordinary topology. 

A simple example may make this clearer. Consider the two-to-one map 
7r from the parabola to the horizontal line in Figure 7.1. 

klx, yl:r, I) A 

( 2 J) C ~%'V.I) Y -x-
y 

(1 

.'/ n' 

kl:z:1 
• • 

FIGURE 7.1. 

Algebraically, the map 7r# defined by composition with 7r is the inclu
sion of the coordinate ring S of the line into the coordinate ring R of the 
parabola, 

7r# : S = k[x] ....... R = k[x, yJ/(y2 - x-I) x f-t x. 

The derivative of 7r is nonzero near the point x = 0, y = -1 of the parabola. 
Thus the inverse function theorem tells us (at least in the cases k = R 
or k = e) that near the point x = 0 on the line there is an analytic 
function (1 from the line to the parabola that is a local inverse to 7r. But the 
inverse function theorem fails in algebraic geometry: There is no polynomial 
mapping (1 that is locally the inverse to 7r , because the element y would 
have to go to a square root of x + 1, and there is no such polynomial. 
However, v'xTI is represented by a power series, so that at the level of 
power series there is an inverse, 

(1# : R(x,y+l) = k[[x, yll/(y2 - x-I) ....... S(x) = k[[x]] 

x f-t x, Y f-t -v'xTI = -1 - xl2 + x2 /8 - .... 

If k = R or e, then this series converges for Ixl < 1 and represents a 
function, the inverse of 7r guaranteed by the inverse function theorem. If k 
is arbitrary, (of characteristic -=f. 2) we may still use it as a formal power 
series. As we shall see, such a thing is generally true for completions and 
is a variant of the result called Hensel's lemma. 
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We shall base our treatment of completions on the notion of the inverse 
limit, and we begin by reminding the reader about this useful piece of 
general algebra. The unproved assertions that follow are quite easy; the 
reader who has not seen the theory before should prove them as exercises! 
Appendix 6 contains further information on this construction. 

Let R be an abelian group, and let R = mo ::J m1 ::J m2 ::J ... be a 
sequence of subgroups (a descending filtration). We define the completion 
R of R with respect to the mi to be the inverse limit of the factor group" 
Rlmi' which is by definition a subgroup of the direct product: 

R:= I~Rlmi 

:= {g = (gl, g2,"') E I1 Rlmi I gj == gi(mod mi) for all j > i}. 

If R is a ring and all the mi are ideals, then each of the Rlmi is a ring, and 
it follows at once that R is also a ring. R has a filtration by ideals 

mi := {g = (gl,g2,"') E R I gj = 0 for all j :S i}, 

and it follows at once from the definition that Rlmi = Rlmi. 
The most important case is the one where R is a ring filtered by ideals of 

the form mi = mi for some ideal m of R; this is called the m-adic filtration 
of R. The completion of R with respect to m is defined to be the completion 
with respect to the m-adic filtration. It is denoted by Rm. We write m for 
m1 in this case. For simplicity, we shall now restrict ourselves to the case 
of the m-adic filtration, leaving the easy generalization to the interested 
reader. 

In case m is a maximal ideal, we claim that Rm is a local ring with maxi
mal ideal m. Indeed, RlmRm = Rim, a field. Moreover, if 9 = (91,92, ... ) E 

Rm C IIiRlmi is outside of m, then 91 =1= 0, and it follows that each gi is out
side of m(Rlmi). Thus each gi is a unit. From the condition gj == gi(mod mi) 
for j > i it follows that 9;1 == 9;1 (mod mi) for j > i, so the element 

h = (gIl, 921, ... ) is in Rm and is the inverse of g. Furthermore, Rlmi is 
equal to its localization (Rlmi)m = Rm/m:U, so we get the same comple
tion by first localizing R and then completing with respect to the localized 
maximal ideal mm. 

Example. If R = 5[X1, ... , xnl is a polynomial ring over the ring 5, and 
m = (Xl"'" xn ), then the completion with respect to m is the formal power 
series ring 

Indeed, from the maps 5[[X1' ... ,xnll -+ Rlmi sending f to f + mi, we get 
a map 
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sending 

I f-+ (f + m, 1+ m2 , ... ) E Am c II Rlmi. 

The inverse map is given by sending (11 + m, 12 + m2, ••• ) E Rm, where the 
Ii are polynomials and Ii = Ij + (terms of degree> min(i,j)) to the power 
series 11 + (12 - 11) + (13 - h) + .... This is a well-defined formal power 
series because the degree of li+1 - Ii is at least i + 1, and one checks at 
once that it is independent of the choice of Ii in Ii + mi. 

Here is a similar example from number theory, with a subtle difference: 

Example. Let P E Z be a prime number. The ring Z(p), which is usually 
written Zp, is called the ring of p-adic numbers. 

Elements of this ring, the p-adic numbers themselves, may be written, 
by a trick like the one above, as power series of the form 

ao + alP + a2p2 + . . . with 0 ::; ai < P, 

but addition is done by "carrying," not "termwise" as in the formal power 
series ring. For example, 

If you aren't already familiar with the p-adic numbers, you might pause to 
check, for example, the surprising formula 

1+2+4+8+"·=-1 

in the ring of 2-adic integers, by writing out the left-hand side as an element 
of IIiZ/(2i) and adding 1 = (1,1,1, ... ). 

When the natural map R -t Rm is an isomorphism, we shall say that R 
is complete with respect to m. When m is a maximal ideal, we simply 
say that R is a complete local ring. Note that the ideal njmj always goes 
to zero in Rm so that if R is complete with respect to m, then njmj = O. 
This last condition is sometimes expressed by saying that R is separated 
with respect to m (the terminology is the usual topological one if we give 
R the "Krull topology," explained later in this chapter). 

7.2 The Utility of Completions 

There are several reasons why the completion is useful, and we shall 
describe some of them before giving proofs. First, the completion is closely 
related to the original ring. For example, it inherits the Noetherian prop
erty: 
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Theorem 7.1. Let R be a Noetherian ring and let m be an ideal of R. Let 
R = Rm be the completion of R with respect to m. 

a. R is a Noetherian ring. 

b. R/mj R = R/mj . Thus R is complete with respect to mR, and 

grm- R = grm R. 
R 

The following result is one of the main results that help to transmit 
information between a ring R and its completion. 

Theorem 7.2. Let R be a Noetherian ring and let m be an ideal of R. Let 
R = Rm be the completion of R with respect to m. 

a. If M is a finitely generated R-module, then the natural map 

is an isomorphism. In particular, if S is a ring that is finite as an 
R-module, then R 0R S is the completion of S with respect to the 
powers of the ideal mS. 

b. R is fiat as an R-module. 

A second reason why the completion is useful is that it is better than the 
original ring in a crucial respect: Complete rings satisfy Hensel's lemma. 
The idea is very closely related, as we shall see, to Newton's method for 
solving equations, and to the implicit function theorem. A special case is 
suggested in the example at the beginning of this section. Here is the result, 
which is most often applied in the case where l' (a) is a unit. 

Theorem 7.3 (Hensel's Lemma). Let R be a ring that is complete with 
respect to the ideal m, and let f(x) E R[x] be a polynomial. If a is an 
approximate root of f in the sense that 

f(a) == O(modJ'(a)2m ), 

then there is a root b of f near a in the sense that 

f(b) = 0 and b == a(modJ'(a)m). 

If f' (a) is a nonzerodivisor in R, then b is unique. 

We shall see that if R is complete with respect to m then it is complete 
with respect to any power of m, so that Theorem 7.3 handles arbitrary 
degrees of approximation. 
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Like Newton's method, Hensel's lemma works for systems of equations 
in several variables, too. We give a multivariate version of the theorem in 
Exercise 7.26. Complete rings are not the only ones that satisfy Hensel's 
lemma. For example, the rings of convergent power series over R or C 
also satisfy it. Azumaya [1950] defined a local ring with maximal ideal m, 
to be Henselian if it satisfies Hensel's lemma. Given a local ring R with 
maximal ideal m, there is a smallest ring S containing Rand Henselian 
with respect to mS; it is called the Henselization of R with respect 
to S; its existence was proved by Nagata in the 1950s. The Henselization 
of R is much closer to R than is the completion because it is actually a 
union of rings finite over R (this is almost never true of the completion). 
It can thus be used to give the same microscopic view of a variety as the 
completion, but without passing out of the category of algebraic varieties. 
See, for example, Milne [1980, Section 1.4] for details and a geometric 
view. 

We shall deduce Theorem 7.3 from Theorem 7.16, which allows us to 
construct maps from a power series ring to a complete ring, and from 
Corollary 7.17, which gives a criterion for such a map to be an isomorphism 
analogous to the inverse function theorem in analytic geometry. 

Many statements of Hensel's lemma involve factoring equations; the ver
sion given here, in the case where f'(a) is a unit, is just the case where one 
of the factors is linear. The general factorization result may be deduced 
from Theorem 7.3 (or even the version in which f is assumed monic) in 
a page: See, for example, Nagata [1962]. Instead of deriving it this way, 
we invite the reader to prove it directly in Exercise 7.20. (It can also be 
deduced from Exercise 7.26 using resultants.) The lifting of idempotents, 
proved here in Corollary 7.5, is another equivalent version (we show how 
to deduce the case of Theorem 7.3 in which f is monic from it in Exer
cise 7.22). 

Here are two fairly typical examples of the use of Hensel's Lemma, one 
from number theory and one from algebraic geometry. 

Example (Square roots in the p-adic integers). Which elements c E Z(p) are 
perfect squares? Hensel's lemma (together with quadratic reciprocity) can 
be used to give a complete and easily computable answer to this question. 

First of all we may write c uniquely in the form c = pnb for some non
negative integer n and some element b not divisible by p. Thus c is a square 
iff n is even and b is a square. 

Next we must decide whether b is a square. If b = a2, then reducing mod 
p we see that the image Ii of b in the field ZpjpZp = Zj(P) is the square of 
the image a of a. (We could use quadratic reciprocity to check efficiently 
whether Ii is a square.) 

Now consider the polynomial f(x) = x2 - b E Zp[x]. Its derivative is 
f'(x) = 2x. If b is a square mod p, say b == a2(modp), then /(x) has a 
as a root. If p ::j:. 2, then f'(a) = 2(a) ::j:. 0 in the field ZjpZ, so we may 
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apply Hensel's lemma to conclude that b has a p-adic square root. Thus the 
apparently trivial condition that b have a square root is actually a sufficient 
condition for b to have a square root if p -1= 2. 

If p = 2, then f'(a) = 0 and the preceding argument fails. However, 
suppose that b == 1(mod8). Then we may take a = 1, and we have J'(a) = 
2, and J(a) = 1 - b == O(mod(22p = 8)). Thus, Hensel's lemma applies 
to show that b has a 2-adic square root. The hypothesis b == l(mod 8) 
seems restrictive until one notices that if b is a square, then, since b is odd, 
b = (1 + 2a)2 = 1 + 4(a + a2), and 2 divides a + a2, whence b == 1(mod8). 
Thus Hensel's lemma gives a complete result in this case too! 

Example (Branch of a plane curve). Consider the affine coordinate ring of 
a nodal plane cubic curve over a field k of characteristic -1= 2 (see Figure 7.2). 

R = k[x, y]/(y2 - x2(1 + x)) 

FIGURE 7.2. 

As the curve is irreducible, the ring R is a domain, and it follows at once 
that its localization at the maximal ideal m = (x, y), which corresponds to 
the node, is a domain. This says that every Zariski neighborhood of the 
node is irreducible-in this case, a Zariski neighborhood consists of the 
whole curve minus a finite set of points other than the node. (The picture 
over R, in Figure 7.3, looks like it might possibly become reducible if we 
leave out a point; but over the complex numbers a neighborhood of the 
omitted point will be a punctured disk, so the curve remains irreducible.) 

However, if we examine a really small neighborhood of the node, either 
by using convergent power series as functions in the case of the complex 
numbers or formal power series in general, we see (See Figure 7.3) that in 
this neighborhood the curve is reducible! This corresponds to the fact that 
the equation y2 - x2 (x + 1) can be factored in the power series ring; that 
is, x + 1 has a square root. This follows from Hensel's lemma, exactly as in 
the earlier example from number theory: The element 1 is a square root of 
(x + l)modx, and by Hensel's lemma it can be lifted to a square root in 
the power series ring. Of course, in this case we can write down the square 
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Spec k[x, Y](x,y)/(y2 - x 3 - x 2 ) 

C Spec k[x, Y](x,y) 
is irreducible; 

but its preimage, 
corresponding to 
k[[x, y]]/(y2 _ x3 _ x 2) 
is not. 

FIGURE 7.3. 

root directly, using the Taylor series 

vT+X = 1 + (1/2)x - (1/8)x2 + (1/16)x3 - (5/32)x4 - ... 

(which is even convergent for Ixl < lover the complex numbers). 

Further indications of the importance of Hensel's Lemma can be seen in 
the following corollaries. The first generalizes the example of the inverse 
function theorem given in the beginning of this section. 

Corollary 7.4. If f(t,x) is a polynomial in two variables over a field k, 
and x = a is a simple root of f(O, x), then there is a unique power series 
x(t) with x(O) = a and f(t,x(t)) = 0 identically. 

Proof. Use Theorem 7.3 with R = k[[t]], m = (t). D 

Since the condition that f(O, x) has a simple root is the condition of/ax 
(0, a) =I- 0, this is like the implicit function theorem for polynomials in two 
variables. More general versions of Hensel's lemma, such as those in the 
exercises, imitate more general versions of the implicit and inverse function 
theorems. 

7.3 Lifting Idempotents 

A striking algebraic consequence of Hensel's lemma is the lift ability of idem
potents, an idea due to Azumaya [1950]. If A is a (not necessarily commu
tative) algebra over a commutative ring R, and el, ... , en E A, then we say 
that the ei are idempotent if e; = ei' We say that the ei are orthogonal 
idempotents if in addition, eiej = ejei = 0 for i =I- j. The elements 0 and 
1 are called trivial idempotents. Elementary algebra shows that the sum 
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of any set of orthogonal idempotents is again an idempotent. The set of 
orthogonal idempotents {el, ... , en} is complete if L:: ei = 1. If the set is 
not complete, it can always be completed by adjoining f := 1- L:: eij again, 
elementary algebra shows that f is an idempotent, orthogonal to the ei. 

For example, suppose that M is an R-module with a direct sum decom
position M = EBi'=lMi . Let A = HomR(M,M), the endomorphism algebra 
of M. Let ei be the projection of M onto its submodule Mi, with kernel 
EBjf-iMj. Then the ei form a complete set of orthogonal idempotents of 
A. Conversely, if {el, ... ,en} is a complete set of orthogonal idempotents 
of A, then for any m E M we have m = 1m = L:: ei(m), so the ei(M) 
together generate M. Furthermore, if m E ei(M) n ej(M), then writing 
m = ei(n) for some n E M shows that ej(m) = ejei(n) = o. But writing 
m = ej(n') for some n' E M shows that ej(m) = ejej(n') = eAn') = m, 
so m = o. Thus ei(M) n ej(M) = 0 for each i -=1= j, and we see that 
M = EBei (M). Thus, complete sets of orthogonal idempotents of A are 
in one-to-one correspondence with direct sum decompositions of M. In 
the special case where M = A, we write ei(A) = eiA. If each ei is in 
the center of A (that is, the set of elements that commute with every 
element of A)-for example, if A is commutative-then the decomposi
tion A = EBeiA expresses A as a direct product of subalgebras, since 
(eia)(eib) = erab = eiab E eiA for any a, bE A, and (eia)(ejb) = eiejab = 
o for i -=1= j. 

A second important example concerns factorization. Suppose an element 
fER has a factorization f = gh and that 9 and h are relatively prime in the 
sense that (I, g) = R. Write 1 = ag + bh for some a, b E R. Set A = R/ (I) 
and let el, e2 be the images of ag and bh in A. Clearly el + e2 = 1 and 
el e2 = o. It follows that el = ell = el (el + e2) = ei, and similarly for e2, 
so {el' e2} is a complete set of orthogonal idempotents. Thus we have a 
direct product decomposition A = elA x e2A. It is easy to see what these 
rings are. First note that h annihilates el. On the other hand, if an element 
pEA annihilates el, then p = (el + e2)p = e2P = bhp, so p is in the ideal 
generated by h. Thus elA = A/(hA) = R/(h), and similarly e2A = R/(g), 
so the decomposition in question is R[xJl(l) = R[xJl(g) x R[xJl(h). (Under 
some circumstances we can go back from a direct sum decomposition of A 
to a product decomposition of fj see Exercise 7.22.) 

Corollary 7.5. Let R be a (commutative) Noetherian ring complete with 
respect to an ideal m. If A is an R-algebra, possibly not commutative, which 
is finite as an R-module, then any set of orthogonal idempotents of A/mA 
can be lifted to a set of orthogonal idempotents of A. If A is commutative, 
then the lifting is unique. 

Proof. Here is the central case: Suppose that e E R/m is an idempotent, 
and let e E R be any element whose image in R/m is e. Take f(x) to 
be the polynomial x2 - x E R[x] so that the roots of f are precisely the 
idempotents of R. The derivative f'(e) = 2e -1 is a unit since (2e - 1)2 == 
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4e2 - 4e + 1 == 1 mod m, and thus f'(e)m = m. Also, f(e) == Omod m. Thus 
by Hensel's lemma we may find a unique root el of x 2 - x in R that lifts 
el. (See Exercise 7.23 for a more direct proof.) 

To prove the corollary, let {el,"" en} be a set of orthogonal idempotents 
of A/mA. We do induction on n. 

First suppose that A is commutative. By Theorem 7.2a, the algebra A 
is itself complete with respect to mA, so we may also assume A = R. By 
the central case just treated, there is for each i a unique idempotent ej E R 
lifting ej. We must show that these are orthogonal. If i i=- j, then ejej = 0, so 
eiej Em. But for any positive integer d we have ejej = efe1 = (ejej)d E md. 
Thus, ejej E ndmd = 0 as required. 

We now drop the hypothesis that A be commutative. If n = 1, let e 
be any element of A that reduces to el. Replacing A by the R-subalgebra 
generated bye, we reduce to the commutative case. 

Next, suppose that n > 1 and that the corollary has been proven for 
sets of at most n - 1 orthogonal idempotents. Thus we may find a set of 
orthogonal idempotents el, .. " en-l lifting el, ... , en-l. Let e' be any lifting 
of en. Set f = 1-2:::11 ej . Note that f ei = e;J = 0 for all i :s: n -1. Further, 
if! denotes the image of fin A/mA, then fen = en! = en. 

Set e = fe' f. The element e reduces to en mod m and satisfies eje = 
eej = 0 for i :s: n - 1. We may replace A by the R-subalgebra generated by 
el,"" en-l, e again reducing to the commutative case. 0 

The lifting of idempotents can indeed by nonunique in the noncommu
tative case. See Exercise 7.24. 

Because of Corollary 7.5, algebras finite over a complete local ring behave 
like finite-dimensional algebras over a field. The following result is the 
extension of Corollary 2.16. 

Corollary 7.6. Let R be a complete local Noetherian ring. If A is a com
mutative R-algebra that is finite as an R-module, then A has only finitely 
many maximal ideals mj, each localization Ami is a complete local ring finite 
over R, and A = IIjAmi is the direct product of its localizations. 

Proof. Let m be the maximal ideal of R. The hypothesis implies that 
A/mA is a finitely generated module over the field R/m. By Theorems 2.14 
and 2.16, A/mA may be written as a product A/mA = Al x ... x An of 
local rings. If ej is the unit element of the subalgebra Aj , then the ej form a 
set of orthogonal idempotents of A/mA. By Corollary 7.5 we may lift them 
to a set of orthogonal idempotents {el' ... ,en} of A. Setting Ai = ejA, we 
see that A = Al X ... x An. Each Ai is finite over R since it is a direct 
summand of the R-module A. 

If nj is a maximal ideal of A j , then by Corollary 4.17, nj n R is a maximal 
ideal, so nj n R = m. We see from this that every maximal ideal of Aj 
contains mAj. Since A;jmAj is a local ring, it follows that Aj is local too, and 
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ni is its unique maximal ideal. The preimage mi of ni under the projection 
map A = ITAi ----> Ai is a maximal ideal of A. Just as for Ai, the maximal 
ideals of A must contain m, so they correspond to the maximal ideals of 
AlmA, and are all among the mi. 

In the localization Ami' the idempotent ei becomes a unit. Since eiej = 0 
for j =I- i, we have Ami = Aini = Ai, and we are done. 0 

7.4 Cohen Structure Theory and Coefficient Fields 

The Cohen structure theorem (Cohen [1946]) states, roughly speaking, 
that any complete local Noetherian ring R is a homomorphic image of a 
power series ring in finitely many variables over a "nice" ring. If R contains 
a field, this nice ring may be taken to be a field and the result is another 
consequence of Hensel's lemma. If R does not contain any field, the nice 
ring may still be taken to be a complete local principal ideal domain of a 
special form. Because complete local Noetherian rings are finitely generated 
in this sense over nice rings, they share certain properties with affine rings, 
and in this way they are much better behaved than arbitrary Noetherian 
local rings. We shall prove the structure theorem only for rings that contain 
fields (these are called equicharacteristic rings; see Exercise 7.15 for the 
reason), but we shall sketch some of the rest. 

Theorem 7.7 (Cohen Structure Theorem). Let R be a complete local 
Noetherian ring with maximal ideal m and residue class field K. If R con
tains a field, then R ~ K[[Xl' ... ' xnlll I for some n and some ideal I. 

The deepest part of the proof is to show what is obvious from the given 
isomorphism: that R contains a coefficient field, that is, a field that maps 
isomorphic ally onto the residue class field Rim. A more precise statement 
would be useful: Given a ground field k c R, it would be nice if there were 
a coefficient field in R containing k. Such coefficient fields do exist when 
Rim is a (possibly infinite) separable extension of k. We shall not only 
prove the existence of such coefficient fields, we shall describe them. 

For any ring R and maximal ideal meR one can ask whether R (or 
the localization Rm) contains a coefficient field-that is, a field K c R 
mapping onto the residue class field Rim. It is not hard to interpret this 
question geometrically in the case of affine rings over k. In brief, if X c Y 
is an irreducible algebraic subset of an algebraic set Y over a field k, then 
the local ring of Y along X has a coefficient field containing k if, after 
perhaps removing a closed set from X and Y, X is a neighborhood retract 
in Y. In this noncomplete case the question is subtle. For example if k 
is algebraically closed, Y = A k, and X is a curve, then the coefficient 
field exists iff X is rational (that is, the field of rational functions on X is 
isomorphic to k(t)). See Exercise 7.18. 
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To describe the coefficient fields containing a field k in a complete local 
ring R, we use a notion from general field theory; see Appendix 1 for def
initions. If k c K are fields, then certain sets of elements of K are called 
differential bases for Klk. The simplest definition uses the K-vector 
space of differentials DK/k' defined in Chapter 16. DK/k is generated by 
elements da with a E K. A differential basis for K I k is a set of elements 
{ad c K such that {dai} C DK/k is a vector space basis. We shall use 
this notion only when K is separable over k, a case that includes the case 
when k is perfect and Klk is an arbitrary extension. In this case differen
tial bases are easy to describe: If k has characteristic 0, then a differential 
basis is simply a transcendence basis. More generally, if K is separably 
generated over k (that is, K is a separable algebra extension of a purely 
transcendental extension of k; this is the case whenever K is separable and 
finitely generated over k), then a differential basis is a separating transcen
dence basis. In the general case, in characteristic p, with K separable but 
perhaps not finitely generated, a differential basis is a p-basis: a set of 
elements ai E K such that the monomials in the ai of degree < p form a 
vector space basis for K as a (k * KP)-vector space. See Theorem 16.14 for 
proofs. 

If R is a local ring with maximal ideal m and k C R is a subfield, then 
since k - {O} consists of units, it must be contained in R - m, and thus 
k maps isomorphically to a subfield of Rim. Let K := Rim. If B c K 
is a subset, then any coefficient field k C R contains a unique set B of 
representatives of the elements of B. If R is complete and B is a differential 
basis of Klk, then we shall show conversely that there is a unique coefficient 
field of R containing any set B of representatives for the elements of B. 

Theorem 7.8. Let R be a complete local Noetherian ring with maximal 
ideal m and residue class field K. Suppose that R contains a field k, and that 
K is separable over k. If B is a differential basis for Kover k, then there 
is a one-to-one correspondence between coefficient fields k C R containing 
k and sets B C R of representatives for B, obtained by associating to each 
k the set B of representatives for B that it contains. If k is perfect of 
characteristic p > 0, then k is contained in every coefficient field of R. 

If R contains any field, then it contains either Q or Z/(p) (the quotient 
field of the image of Z). These fields are all perfect. Since every extension of 
a perfect field is separable, Theorem 7.8 implies that every complete local 
ring containing a field contains a coefficient field. 

Theorem 7.8 would be false without the hypothesis that K is separable 
over k; see Exercise 7.17 for an example. 

We briefly sketch some of what Cohen proved about an arbitrary com
plete local ring R; see Cohen [1946], as well as Grothendieck [1961, EGA 
III Om 10.3] and [1964, EGA IV, part 1, Section 19], Matsumura [1986], 
and Bourbaki [1983] for more details. 
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If the residue class field K of R has characteristic 0, then every integer is 
invertible in R, so R contains the field Q. The structure of R is then given 
by Theorem 7.7. If K has characteristic p > 0, Cohen showed that there is a 
complete local domain W whose maximal ideal is generated by p and whose 
residue class field is K; in case K is perfect, there is a unique such ring 
W(K) (unique, in fact, up to a unique isomorphism that is the identity on 
K), which can be given explicitly (it is called the ring of Witt vectors, 
see Serre [1979]). For example, if K = Z/(p), then W(K) is the ring of 
p-adic integers Z(pl. Returning to our complete local ring R with residue 
class field K and assuming that the characteristic of K is p > 0, Cohen 
proved that one can write Rm in the form W[[Xl' ... ,xnll/ I for W as above, 
some n, and some ideal I of the power series ring. The ring W[[Xl' ... ,xnll 
has many properties in common with a ring of power series of the form 
K[[x, Xl, ... , xn]]-they are both regular local rings of dimension n + 1. 
We shall study such rings in Chapter 19. 

There is a recent reformulation and extension of a useful part of these 
results, due to Avramov, Foxby, and Herzog [1994]: If VJ : R -+ S is any 
homomorphism of local rings sending the maximal ideal m of R into the 
maximal ideal of S, then VJ has a factorization R -+ R' -+ S, where R' is 
complete and local, R' -+ S is a surjection, and R' /mR' is a regular local 
ring. Such a factorization is called a Cohen factorization. Cohen factor
izations are not unique, but any two have a sort of common refinement. 
In case S is a complete local ring with residue class field of characteristic 
p > 0, for example, the map Z -+ S induces a natural map Z(Pl -+ S; and 
we may then take the ring R' to be W(K)[[Xl' ... ,xnll, where K is the 
residue class field of S. 

Suppose X c An is an affine variety with coordinate ring A(X) and 
p is a point of X, with mp the maximal ideal of p. Let R = A(X)mp be 
the localization, the "local ring of X at p", and let m be its maximal 
ideal, the localization of mp. The completion Rm should be thought of as a 
ring of functions "defined on a very small neighborhood of p." Of course, 
one consequence of this view is that we would expect Rm not to have 
any nilpotent elements (functions with values in a field could hardly be 
nilpotent!). This is indeed true, though we shall not prove it here. 

Theorem 7.9. If R is a local ring with maximal ideal m that is a local
ization of a ring finitely generated over a field or the ring of integers Z, 
then the completion Rm has no nilpotent elements. (See Zariski and Samuel 
[1958, Vol. II, Chapter 8, Section 13].) 

No such result holds for arbitrary Noetherian rings. In fact a theorem of 
Larfeldt and Lech [1981] says that if A is any finite-dimensional algebra over 
a field k (for example k[xl/(x2)), then there is a Noetherianlocal integral 
domain R with maximal ideal m such that Rm ~ A[[Xl' ... ,xn]] for some n. 
(For more sophisticated versions, see Heitmann [1993] and the references 
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there.) This is one of the ways in which the Noetherian property is "too 
general." There have been attempts to define a more special class of rings 
that would not only be Noetherian but would also share other good prop
erties of affine rings, such as the one expressed by Theorem 7.9. Nagata's 
"pseudogeometric" is perhaps the first, and Grothendieck's "excellent" the 
most recent-perhaps even the definitive--example. 

7.5 Basic Properties of Completion 

In all of this section R will denote a commutative ring and meR will 
denote an ideal. We will consider the m-adic filtration mi of R, and the 
completion R = Rm. Let tUj be the kernel of the natural map R -+ R/mn. 
Thus tUn consists of all those elements of R c TIj R/mj whose component 

in R/mj lies in mn for every j (and are thus 0 if j ::; n). Note that mnR c 
tUn C (tUt)n; we shall see that in the Noetherian case they are all equal, 
although in general they may differ (see the example in Bourbaki [1985] 
Ex. III.2.12.) 

Before proving the Theorems above, we explain some useful elementary 
results. From the definitions we get R/tUn = R/mn. It follows that R = 

lim R/mn, so R is complete with respect to the filtration by the tUn. Further, 
if we write gr R for the associated graded ring of R with respect to this 
filtration, then the natural map R -+ R induces an isomorphism grm R = 
grR. 

It is convenient to define elements of it as limits of sequences or series 
of elements of R. We shall say that a sequence of elements al, a2, . .. E R 
converges to an element a E R if, for every integer n, there is an integer 
i(n) so that a - ai(n) E tUn. It follows that a sequence ai of elements of 
Rm converges in Rm iff it is a Cauchy sequence, in the sense that for every 
integer n there is an integer i(n) such that 

ai - aj E tUn for all i,j 2: i(n). 

If the ai are in R, this condition is clearly the same as the condition 

ai - aj E mn for all i,j 2: i(n). 

A convergent sequence of elements of R has a "limit" a E R defined by 
taking a to be the element of IInR/mn whose nth coordinate is the same 
as that of ai(n). We write a = limai. Because the tUn are ideals, both 
addition and multiplication are continuous in the sense that if a = lim ai 
and b = limbi then ai+bi and aibi are convergent sequences which converge 
to a + band ab, respectively. For example, to prove the second equation, if 
i(n) is chosen so that 

ai - aj E tUn for all i,j 2: i(n) 
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and 
bi - bj E mn for all i,j 2': i(n), 

then 

Note that condition (*) becomes the usual definition of a Cauchy 
sequence if, for each a E Rm , we take the sets a + mn to be a base for the 
open neighborhoods of a; the resulting topology is called the Krull topol
ogy, or the m-adic topology, on R. In fact, the whole theory of completions 
can be developed on this Cauchy sequence foundation, as the reader will 
see from Exercises 7.8-7.10. 

The simplest way to write down sequences of elements satisfying condi
tion (*) is as the partial sums of a series of elements of R whose ith term 
is in mi. 

i 

ai = Lbj , bi E mi. 
j=l 

In this case we define the infinite sum Ej:l bj to be the limit of the ai' Note 
that this is exactly what we do when we write down formal power series~in 
that case the ideal m is generated by the variables of a polynomial ring. 

We can use these ideas, for example, to make sense of the usual Taylor 
formula for 1/(1 + x) in the context of complete rings. 

Proposition 7.10. If R is complete with respect to an ideal m, then the 
elements of the multiplicatively closed set U := {1 + ala Em} are units 
in R. 

Proof. If a E m, then b = 1 - a + a2 - ... is a power series that converges 
in R; the product (1 + a)b is the limit of the series 

(1 + a) - (1 + a)a + (1 + a)a2 - .... 

The ith partial sum of this series is 1 + ai, so the series converges to 1. D 

Corollary 7.11. If R is a local ring with maximal ideal P, then the power 
series ring 

R[[Xl' ... , xnll 

in indeterminates Xi is a local ring with maximal ideal 

Proo]. An element f outside P + (Xl, ... ,xn) has constant term u outside 
of P~thus a unit of R. The element u- l f is of the form 1 + g(x), with 
g(x) E (Xl"'" xn). Thus, u- l f is a unit, so f is too. D 
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Given this result, it is interesting to ask which localization we get by 
inverting the elements of U := {I + ala Em}. See Exercise 7.3. 

Next we present a more serious application of the idea of convergence. 

Proposition 7.12. Suppose that R is a ring that is complete with respect 
to a filtration by ideals mi. Let gr R be the associated graded ring of R 
with respect to this filtration, and for a E R let in( a) denote the initial 
form with respect to this filtration. Suppose that I c R is an ideal, and 
aI, ... ,as E I. If in(at} ... ,in(as) generate in(I) as an ideal in gr R, then 
aI, ... ,as generate I. 

Proof. Let I' = (al, ... , as). We may as well assume that no ai = 0, and 
then we may choose a number d so large that none of the ai is contained 
in md. Given any f E I, with in(f) of degree e, say, we may write 

in(f) = L Gj in(aj), 
j 

with Gj E grm R homogeneous of degree equal to deg(in(f)) - deg(in(aj)). 
It follows that if we choose gj E R with in(gj) = Gj then f - Ej 9jaj lies 

in me+l. Repeating this procedure, we eventually get an element f' E I' such 
that f - f' E md+1. Thus we may assume from the outset that f E md+l. 

Under these circumstances, the Gj defined above are of degree greater 
than or equal to e - d > 0, and thus we may take 9j E me-d. Now repeating 
this procedure, we define elements g?) E me-d+i such that 

The series E~l gji) converges in R; we write hj for its limit. Because limits 
preserve finite sums and products, we get f = Ej hjaj E I' as required. 0 

Proof of Theorem 'l.la. With notation as in Proposition 7.12, gr Rm = 
grm R. Since R is Noetherian, Rim is Noetherian. The ring grm R is gener
ated over Rim by a basis for the finite-dimensional vector space m/m2, so 
grm R is Noetherian by the Hilbert basis theorem (Theorem 1.2). Thus for 
any ideal Ie R.n the ideal in(I) is generated by the initial forms of finitely 
many elements aI, ... ,as E I. It follows from Proposition 7.12 that the ai 
generate I, so I is finitely generated. 0 

Another consequence suffices to prove Theorem 7.1b. 
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Corollary 7.13. If R is Noetherian, then tUn = mnRm. In particular, 
R/mj R = R/mj , R is complete with respect to mR, and 

Proof. The inclusion R C Rm induces an isomorphism 

where gr Rm is the graded ring with respect to the filtration by the ideals 
mi· 

For the first statement, it suffices by Proposition 7.12 to show that the 
two ideals have the same initial ideals in gr Rm , and this is obvious because 
both initial ideals consist of all elements of degree ~ n. The other state
ments follow at once. D 

We now turn to the question of flatness. We first need a criterion for 
two filtrations (of an abelian group, say) to give the same completion. It is 
enough for the two filtrations to be comparable in a sense made precise in 
the following lemma. 

Let R = no :J nl :J ... be another filtration of R and write Rm and Rn 
for the respective completions. 

Lemma 7.14. If for each nj there is an mi such that mi C nj, and for each 
mj there is an ni such that ni C mj, then there is a natural isomorphism 
Rm ~ Rn. 

Proof. First, suppose that the nj are simply a subset of the mi; the condition 
of the lemma says in this case that infinitely many mi are among the nj. 

In this case the projection onto a subproduct 

II R/m; -t II R/nj 
j 

clearly induces a natural isomorphism Rm ~ Rn, so we are done. 
In the general case we may choose injective functions a, (3, '"Y : N -t N 

such that 
mj :J na(j) :J mf3(j) :J n"((j) , 

and these induce maps R/n"((j) -t R/mf3(j) -t R/na(j) -t R/mj for all j, 
and thus natural maps as in Figure 7.4. 
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Rn Rm Rn Rm 
II II II II 

I~R/n~ ~ I~R/m~ ~ limR/n~ ~ I~R/mj +--

FIGURE 7.4. 

Since the maps from the first to the third terms and from the second to 
the fourth terms are the isomorphisms treated in the special case above, 
we are done. 0 

The next step is to show that in suitable circumstances completions 
preserve exact sequences. This is very close to Theorem 7.2 and is a key 
result in making completions usable. The nontrivial part of the proof is a 
telling application of the Artin-Rees lemma. This is the most subtle step in 
the theory; in general taking limits is not right exact. See Exercise A6.11. 

Lemma 7.15. Let R be a Noetherian ring and let m be an ideal of R. If 

is a short exact sequence of finitely generated R-modules, then 

is exact. Thus, completion with respect to the m-adic filtration preserves 
exact sequences of finitely generated modules. 

Proof. The second statement follows from the first because any exact 
sequence 

A 'Pn+l A 'Pn A ... ~ n+l ~ n ~ n-l ~ ... 

can be written as a "composite" of short exact sequences 

To prove the first statement, we begin by showing that lim B /mj B ~ 
lim C /mj C is an epimorphism. This follows by an easy dia;r:-am chase: If 
rc; + mj C) E lim C / mj C, then we must show that there is an element 
(bj +mjB) E liiiB/mjB mapping to (Cj +mjC). That is, we must show 
that there is a sequence of elements bj E B such that 

a. bj f-+ Cj (mod mj C), and 

b. bj == bi(mod mi B) if i < j; it is of course enough to check this for 
i=j-l. 
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We choose these inductively: Having chosen b1, ••• , bj satisfying con
ditions a and b, we choose an arbitrary element bj+l mapping to 
Cj+l mod mj+1G. Both bj+l and bj map to the same element Cj mod mjG. 
But the sequence 

is exact since it is R/mj 0 {A ~ B ~ G ~ O}; so there is an element 
, . b b' aj+l E A such that aj+1 f--> bj -bj+l mod mJ • The element j+l:= j+l +aj+l 

satisfies both conditions. 
It remains to show that 

° ~ limA/mjA ~ limB/mjB ~ limG/mjG 
+-- +-- +--

is exact. To do this we wish to replace limA/mjA by limA/(AnmjB), 
because * is then replaced by the limit of the exact sequ;;:-ces 

° ~ A/(A n mj B) ~ B/mj B ~ G/mjG, 

and it is easy to show that such a limit is exact (that is, the inverse limit 
of left-exact sequences is left-exact). 

To make the replacement, we must show that the filtration of A by 
the submodules mj A gives the same completion as the filtration by the 
submodules A n mj B. Indeed, it is clear that A n mj B => mj A, and by the 
Artin-Rees lemma (Lemma 5.1) there is a number k such that An mj B = 
mj-k(AnmkB) C mj-kA. By the criterion of Lemma 7.14, the two filtrations 
give the same completion, so the desired replacement is legitimate. 

Now we must show that 

° ~ lim A/A n mj B ~ limB/mj B ~ limG/mjG 
+-- +-- +--

is left-exact. This follows directly from the definition of the inverse limit. 
If 

(bl'~' . .. ) E limB/mjB goes to (0,0, ... ) E limG/mjG, 
+-- +--

then each bj goes to ° in G/mjG. Thus bj E A/AnmjB, and 

(b1, b2 , ..• ) E lim A/A n mj B 
+--

as required. D 

Proof of Theorem 7.2a. The second statement follows at once from the first. 
To prove the first, we begin with the case M = R, where the result is sim

ply the definition of R = Rm. It follows at once from the definition that lim 
commutes with finite-direct sums. Thus the result is true for finitely g,®
erated free modules. Now let M be any finitely generated module, and let 

F~G~M~O 

be a free presentation of M. From the fact that lim preserves the exactness 
of sequences of finitely generated modules, it fcilows that the top row in 
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the diagram 

p -+ G -+ !VI -+ 0 

t t t 
R®RF -+ R®RG -+ R®RM -+ 0 

is right-exact. Of course, the bottom row is right-exact by the right
exactness of tensor products, and the two vertical maps on the left are 
isomorphisms by what we have already proved. A diagram chase now shows 
that the right-hand vertical map is also an isomorphism, as required. D 

7.2b. By Proposition 6.1 it is enough to show that the multiplication map 

I®RR-+IRcR 

is a monomorphism for finitely generated ideals. By part a, this is the same 
as showing that the map 

j -+ R 
is a monomorphism. This follows from Lemma 7.15. 

7.6 Maps from Power Series Rings 

Our next results concern homomorphisms of complete rings. One of the 
things that makes a polynomial algebra R[X1, ... , xnl nice is that a map 
from it to another R-algebra S may be specified by simply telling where to 
send each of the Xi' The power series ring has a similar property, but only 
with respect to complete rings S. 

Theorem 7.16. Let R be any ring and let S be an R-algebra that is com
plete with respect to some ideal n. Given II, ... , fn E n: 

a. There is a unique R-algebra homomorphism 

sending Xi to fi for each i. The map <p takes a power series 
g(X1, ... ,Xn) to g(f1, .. ·,fn) E S. 

b. If the induced map R -+ Sin is an epimorphism and II,···, fn gen
erate n, then <p is an epimorphism. 

c. If the induced map of associated graded rings 

gr <p : R[X1, ... , xnl ~ gr(Xl, ... ,Xn ) R[[X1"'" xnll -+ grn S 

is a monomorphism, then <p is a monomorphism. 
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Note that part b would follow at once from Nakayama's lemma if we knew 
in advance that B was a finitely generated module over R[[XI' ... ,xnll. In 
fact, the hypothesis of Nakayama's lemma can be weakened, in the case of 
complete rings, to include this case. See Exercise 7.2. 

Proof. 

a. The unique R-algebra map R[XI,"" xnl -7 Bjnt sending Xi to the 
class of Ii factors through 

R[[XI, ... , xnll/(XI, ... , xn)t = R[XI, ... , Xnl/(XI,"" xn)t -7 Bjnt 

and thus induces unique maps R[[XI, ... ,xnll -7 Bjnt sending Xi to 
the class of J;. Since B is the inverse limit of the Bjnt, there is a 
unique map cp : R[[XI' ... ,xnll -7 B sending Xi to Ii, as required. The 
image of g+(XI, ... ,Xn)t in Bjnt is g(/t, ... ,In)+nt for every t, so the 
image of gin B is g(/t, ... , In), which makes sense precisely because 
B is complete with respect to n. 

b. It follows from our hypothesis that the map 

(Xl, ... , Xn)j(XI, ... , Xn)2 -7 njn2 

is a surjection, so the induced map 

gr cp : gr(Xl,""Xn ) R -7 grn B 

is also a surjection. Now, given 0 =f. g E B, let i be the largest number 
such that g E ni-such an i exists because B is complete, so nnj = O. 
Since gr cp is a surjection we may find an gl E (Xl"'" xn)i whose 
initial form is carried to the initial form of g. It follows that g-cp(/t) E 
ni+l. 

Iterating this process, we obtain a sequence of elements gj E 

(Xl, ... ,xn)i+j such that g = ~~l cp(gj). Because cp preserves infi
nite sums, this yields g = CP(~~1 gj), and we are done. 

c. If 0 =f. g E R[[XI' ... , xnll, then in(g) is a nonzero form, say of degree 
d, and from our hypothesis we get 

gr cp(in(g)) =f. 0 

in the degree d part of grn B. But g == in(g) mod(xl, ... , xn)d+1, so 
cp(g) == gr cp(in(g)) mod nd+1, whence cp(g) =f. 0 as well. D 

To exploit the Theorem we introduce some notation. If I E R[[xll is a 
power series in one variable, we write I'(x) for the result of differentiating 
I term by term with respect to x. Thus for example I(x) = 1(0) + f'(O)x+ 
(higher order terms). 
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Corollary 7.17. Let f E xR[[xll be a power series. If <p is the endomor
phism 

<p: R[[xll ~ R[[xll; x 1-+ f, 

which is the identity on R and sends x to f, then <p is an isomorphism iff 
1'(0) is a unit in R. 

Proof. Suppose that <p is an isomorphism. The elements of R[[x]] not in (x) 
are those with nonzero constant term, and <p preserves this subset. Since 
<p is an isomorphism, it follows that <p((x)) = (x). In particular, the image 
<p(x) = f of the generator X of (x) is a generator of (x). We deduce that 
f + (x2) generates (x)j(x2). Since f == f'(0)x(mod(x2)), we see that f'(O) 
is a unit of R. 

Conversely, suppose that 1'(0) = u is a unit of R. We have gr(x) R[[xll = 
R[x], and 

gr<p : R[x] ~ R[x]; x 1-+ ux, 

is an isomorphism because u is a unit. By Theorem 7.16 <p is injective. We 
may write f = ux + hx2 = (u + hx)x for some h E R[[x]]. Since u + hx is 
a unit in R[[xll, we see that f generates (x). Again by Theorem 7.16, <p is 
surjective, and thus an isomorphism. 0 

We can use this to prove Hensel's lemma. 

Proof of Theorem 7.3. To simplify notation, set f'{a) = e. We may choose 
h(x) so that 

f(a + ex) = f(a) + f'(a)ex + h(x)(ex)2 
= f(a) + e2(x + x2h(x)). 

By Theorem 7.16 there is a ring homomorphism <p : R[[xll ~ R[[xll that 
is the identity on R and takes x to x + x2h(x). By Corollary 7.17, <p is an 
isomorphism. Applying <p-1 to the above equation, we obtain 

f(a + e<p-1(x)) = f(a) + e2x. 

By hypothesis, we may write f(a) = e2c with c E m. By Theorem 7.16 
there is an algebra homomorphism 'IjJ that is the identity on R and carries 
x to -c. Applying it, we get 

so b = a + e'IjJ<p-1(x) is the desired element. 
Suppose now that e is a nonzerodivisor. To prove the uniqueness of b, 

suppose that both band b1 are roots of f differing from a by elements of 
em, say b = a + er and b1 = a + er1, with r, r1 E m. By Theorem 7.16 
there are ring homomorphisms (3, (31 : R[[xll ~ R[[xll that are the identity 
on R and take x to r and to r1 respectively. Applying them to the above 
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formulas produces 

0= f(a + er) = f(a) + e2(r + r2h(r)), 
0= f(a + erd = f(a) + e2 (rl + rrh(rd)· 

Subtracting and using the assumption that e is a nonzero divisor we see that 
r+r2h(r) = rl +rrh(rd, that is, f3rp(x) = f31rp(X). By the uniqueness state
ment of Theorem 7.16, we get f3rp = f31rp, and since rp is an isomorphism, 
f3 = f31' Thus r = rl as required. 0 

We now turn to the proof of the Cohen structure theorem. First we deal 
with the existence of coefficient fields. We shall give separate proofs for 
each of two overlapping cases. We first treat the case where the residue 
class field has a separating transcendence basis (this includes all cases in 
characteristic 0 and the finitely generated case in characteristic p). The 
only tool that is necessary here is Hensel's lemma. Next we treat the case 
where the residue class field has characteristic p. Here the coefficient field 
can be described using the pth power map. 

Proof of Theorem 7.B. Let R be any local ring containing a field k, and let 
K be the residue class field of R. If B is a subset of K algebraically indepen
dent over k, and 13 is any set of !epresentatives for B, then every nontrivial 
polynomial in the elements of B with coefficients in K has nonzero image 
in K, and is thus invertible in R. It follows that R contains the field k(13) of 
rational functions in the elements of 13, and this field maps isomorphic ally 
to k(B). 

Now suppose that K is separable over k and that B is a differential 
basis for Kjk. In characteristic 0 the hypothesis is equivalent to B being 
a transcendence basis for K / k; in the case of characteristic p > 0, Theo
rem A1.3c shows that the elements of B are algebraically independent over 
k * KP=. In either case, if 13 c R is a set of representatives for B, then the 
field k(13) is contained in R. Under the hypothesis that R is complete and 
Noetherian, we shall show that there is a unique coefficient field K for R 
containing k(13). 

Suppose first that the characteristic of k is 0, or more generally that K is 
separably algebraic over k(B). By Zorn's lemma, we may choose a subfield 
K' of K, containing k(B) and maximal among subfields containing k(B) 
that have unique liftings to subfields of R containing k(13). Let K' c R be 
its lifting. We must show that K' = K. Let a E K be an element, and let 
f(t) be the monic irreducible polynomial with coefficients in K' such that 
f(a) = O. Using the inverse of the isomorphism K' ~ K', we may lift f to 
a monic polynomial j with coefficients in R. Since K' is separable over K 
the roots of f are distinct, so the derivative f'(a) =1= 0 in K. By Hensel's 
lemma (Theorem 7.3), there is a unique root a E R of j whose image in K 
is a. The field K'(a) is thus the unique field lifting K'(a) and containing 
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K'. Putting this together with the uniqueness of K', we see that K'(a) is 
in fact the unique field lifting K'(a) and containing k(B). Since K' was 
maximal, we must have a E K'; that is, K' = K as required. 

Now consider the general case where the characteristic of k is p > O. We 
shall show that 

K·- n k*Rq[B] 
q=pn,n?l 

is the unique coefficient field of R containing k and B. Here Rq denotes the 
ring of qth powers of elements of R, and k * Rq[B] is the smallest subring 
of R containing k, Rq, and B. If k' is a perfect field contained in R, then 
k' = k'q c Rq for every q = pn, so that k' C K. This proves the last 
statement of the theorem as well. 

We first show that any coefficient field K' C R that contains k and 
B must be contained in K. To see this, note that since K' ~ K by an 
isomorphism carrying B to B, the set B is a p-basis for K' over k. Thus 
by Theorem A1.4a, we have K' = k * K,q[B] c k * Rq[B] for every q = pn, 
as required. 

N ext we define a homomorphism <p : K ---f K c R. For a E K and for each 
q = pn, let aq be a representative of a in k * Rq [B]; such a representative 
exists because k * Kq[B] = K by Theorem A1.4a. If a~ is another such 
representative, we claim that aq - a~ E m q , where m is the maximal ideal 
of R. Once this is established, it follows that the sequence aI, ap , ap2, ••• 

converges in R to a limit a E nq=pn,n?lk * Rq[B] = K, independent of the 
representatives aq chosen. We set rp(a) = a. If r E K and r has image 
a E K, then we may take aq = r for all q, so <p(a) = r. Thus K = <p(K). Of 
course, the image of <p( a) in K is just a. The independence of choices shows 
immediately that <p(a + b) = rp(a) + rp(b) and similarly for multiplication, 
so rp is a homomorphism and K is the unique coefficient field containing B. 

It remains to show that with notation as above, aq-a~ E mq. By definition 
aq and a~ are polynomials in the elements of B with coefficients in k * Rq. 
Any qth power of an element of B can be absorbed into the coefficients, so 
we may write 

with U w , u~ E k and r w , r~ E R, where W is the set of monomials in some 
b1 , .•. , bs E B, with degree < q in each bi . Since aq - a~ E m, the fact 
that W is a basis for k * Kq [b1, •.. ,bs ] as k * Kq vector space shows that 
uwr~ - u~r~ Em for every w E W. 

Let fw and f~ be the images of rw and r~ in K. Since uw/u~ = (f~/fw)q E 

k q , and K contains no nontrivial purely inseparable extensions of k, we must 
have (f~/fw) = v E k. Thus 

(l/u' )(u rq - u' r'q) = vqrq - r'q w Ww ww w w 
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Since m is prime, (vrw - r~) Em, and thus (vrw - r~)q E mq. Multiplying 
by u~ we see that (uwr~ - u~r;;D E mq. From this we get aq - a~ E mq, as 
required. D 

Proof of Theorem 7.7. Choose a coefficient field K c R, and let aI, 
... ,an be a set of generators for the maximal ideal of R. Since R is com
plete, Theorem 7.16a shows that there is a map c.p : K[[Xl, ... , xnll -> R 
sending Xi to ai. Theorem 7.16b shows that this map is a surjection, so 
that if 1= ker c.p then R ~ K[[Xl, ... , xnJJ/ I. D 

7.7 Exercises 

Exercise 7.1: Let m be a maximal ideal of a ring R. Show that the map 
R -> Rm factors through the localization map R -> Rm. 

Exercise 7.2: Suppose that M is a module over a ring R that is complete 
with respect to an ideal m. We say that M is separated if nkmk M = O. 
This is the case, for example, if R is Noetherian and M is finitely generated. 
If M is separated and the images of ml, ... ,mn E M generate M /mM, 
show that ml, ... ,mn generate M. This is a version of Nakayama's lemma 
that works without assuming that M is finitely generated in advance. 

Exercise 7.3: Recall that the Jacobson radical of a ring R is defined 
to be the intersection of all maximal ideals of R. Let R be a ring, and let 
I c R be an ideal. Show that I is contained in the Jacobson radical of R 
iff all the elements of U = {1 + ala E I} are invertible in R. Use this to 
show that if R is complete with respect to an ideal m, then m is contained 
in every maximal ideal of R. 

Exercise 7.4: Suppose that ReS are Noetherian rings such that R 
is complete with respect to the ideal meR, and m is contained in the 
Jacobson radical of S. Let M be a finitely generated S-module. Show that 
if M/mM is finitely generated as an (R/m)-module, then M is finitely 
generated as an R-module. This result is most often used when M = S. 
Use it to give a different proof of the existence of the map (J' in the example 
at the very beginning of this chapter. 

Modules Whose Completions Are Isomorphic 

Exercise 7.5 Reflection of isomorphism from the completion: The 
following result shows the tight relationship between module theory over an 
arbitrary local ring and over its (in many ways much better behaved) com
pletion. Suppose M and N are finitely generated modules over a Noetherian 
local ring R whose completions if and if are isomorphic over k Show that 
M ~ N as follows: 
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a. Deduce from Proposition 2.10 that HomR(M, NY' ~ Homfl(M, in. 
b. Let P be the maximal ideal of R. Show that P Homfl(M, IV) consists 

of maps that take M to P IV. 

c. Let 'P E Homk(M, IV) be an isomorphism. Use Nakayama's lemma 
and part b to show that if 'P' E Homfl(M, IV) differs from 'P by an 
element of P Homfl(M, IV), then 'P' is an epimorphism. 

d. Show that there are elements 'P' E HomR(M, N) and 'PI! E 

HomR(N, M) that are epimorphisms. Apply Corollary 4.4a to 'P' 'PI! 
and to 'PI! 'P' . 

The Krull Topology and Cauchy Sequences 

Given a descending filtration R = mo ~ m! ~ m2 ~ '" of an abelian group 
R by subgroups mj, we define the Krull topology on R (with respect to 
the given filtration) by taking the subsets mj to be a base for the open 
neighborhoods of 0, and imposing the condition that addition should be 
continuous, so that the cosets r + mj, with r E R, form a base for the 
family of all open sets. 

Exercise 7.6:* Show that any subgroup m containing one of the mj is 
open. 

Exercise 7.7: Show that if R is a ring and the mj are ideals, then multi
plication is continuous. 

A Cauchy sequence with respect to the Krull topology is a sequence 
of elements ri E R such that for each open neighborhood U of 0 in R there 
is a number n with the property that for i, i' > n we have ri - ri' E U. Two 
Cauchy sequences ri and r; are equivalent if for each open neighborhood 
U of 0 in R there is a number n with the property that for i > n we have 
ri - r; E U. 

Exercise 7.8: Show that the set of Cauchy sequences forms a group under 
componentwise addition, and that two sequences are equivalent iff their 
difference is equivalent to O. 

Exercise 7.9:* Show that the set of sequences equivalent to 0 forms a 
subgroup, so that the set of Cauchy sequences modulo those equivalent to 
o is again a group. We shall temporarily denote it by k. Prove that R ~ k. 

Exercise 7.10: Show that under the hypotheses of Lemma 7.14, the topolo
gies on R defined by the filtrations mj and nj are the same. Use this to give 
a Cauchy sequence proof of the lemma. 
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Completions from Power Series 

Exercise 7.11:* Let R be a Noetherian ring, and let m = (al,"" an) be 
an ideal in R. Show that 

Rm ~ R[[XI,"" Xn]l/(XI - al,···, Xn - an). 

Exercise 7.12: If R is Noetherian, show that any element of the form 
x - a, with a E R, is a nonzero divisor on R[[x]]. This is trivial if we 
replace R[[xll by R[x], so it follows for R[[xll by the flatness of completion. 
Give a direct proof, without using the flatness of completion or the Artin
Rees lemma. Construct a counterexample to the statement without the 
Noetherian hypothesis. (Hint: The Noetherian hypothesis implies 

(0: am) = (0: am+l ) for large m.) 

Exercise 7.13: If I is a finitely generated ideal of R, show that IR[[x]] is 
the ideal of all power series having their coefficients in I. Find an example 
where I is not finitely generated and the conclusion fails. 

Exercise 7.14:* Taking the isomorphism of Exercise 7.11 as a definition, 
show directly that the completion is flat as an R-module. 

Coefficient Fields 

Exercise 7.15: The characteristic of a ring R is the positive integer that 
generates the kernel of the natural homomorphism Z ---t R. Let R be a local 
ring with residue class field K. Prove that R contains some field k, iff the 
characteristic of R is the same as that of K. In this case R is said to be an 
equicharacteristic local ring. 

Exercise 7.16: Let f E Q[x] be an irreducible polynomial of degree greater 
than 1 with rational coefficients, and let R be the local ring Q[x](f). Show 
that R has no coefficient field. If f(x) = x2 + 1, find the (unique) coefficient 
field in k 

Exercise 7.17 (Coefficient fields and maximal subfields): Any coef
ficient field in a local ring R is a maximal subfield (a subfield is a subring 
that is a field). By Zorn's lemma, every local ring contains maximal sub
fields. 

a. Show that if R is complete and contains a field of characteristic 0, 
then every maximal subfield is a coefficient field. 

b. Let R = k(t)[[x]], where k is a field of characteristic p > O. Show that 
k(tP+x) is a maximal subfield of R that is not a coefficient field. This 
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example shows that the hypothesis of separability cannot be deleted 
in Theorem 7.8. 

Exercise 7.18: Suppose X c Y is an irreducible algebraic subset of an 
algebraic set Y over a field k. Let R be the affine coordinate ring of X and 
let 8 be that of Y, so that R = 81 P, for some prime ideal P. The quotient 
field K := K(R) is the residue class field of 8p . 

a. Show that the local ring of Y along X has a coefficient field con
taining k if, after perhaps removing a closed set from X and Y, X 
is a neighborhood retract in Y. To restate the problem algebraically, 
suppose that there is a coefficient field of 8p containing k; that is, 
suppose that there is a map of k-algebras a : K ---> 8p splitting the 
surjection 8 p --* K. Show there is a single element f fj. P and a map 
a' : R ---> 8[f-l] of k-algebras such that a is the localization of a'. 
(This map a' corresponds to a map Y -{y E Ylf(y) = O} ---> X -{x E 
Xlf(x) = O} that is a retraction of the inclusion map.) 

b. Supposing that 8 = k[x, y], and P = (x2 - y3), show that there is a 
coefficient field, and a retraction 

c. If K ~ k(tl, ... , tn ), the field of rational functions in n variables, 
show that S has a coefficient field. Now assume that k is algebraically 
closed, that 8 = k[Xl, ... ,xr ], and that K has transcendence degree 1 
over k. If you know some algebraic geometry (say Hurwitz' theorem, 
Hartshorne [1977, Chapter IV, Section 2]), you may show that 8p has 
a coefficient field iff K ~ k(t). 

Other Versions of Hensel's Lemma 

The following theorem is the classic version of Hensel's lemma, a criterion 
for the factorization of a polynomial into relatively prime factors over a 
complete local ring. 

Theorem 7.18. Let R be a Noetherian ring, complete with respect to an 
ideal m. Let F(x) E R[x] be a polynomial in one variable with coefficients 
in R, and let f(x) be the polynomial over Rim obtained by reducing the 
coefficients of f mod m. If f factors as 

f = glg2 E (Rlm)[x] 

in such a way that gl and g2 generate the unit ideal, and gl is monic, then 
there is a unique factorization 



F = G1G2 E R[x] 

such that G1 is monic and Gi reduces to gi mod m. 

The next two exercises give a proof for this theorem. 
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Exercise 7.19:* Suppose that S is a ring, that gl, g2 E S[x] are polynomials 
such that gl, g2 together generate the unit ideal, and that gl is monic of 
degree d. Show that: 

a. If h E S[x] is any polynomial, then there is a unique expression 

h = h1g1 + h2g2 for polynomials hI, h2 with deg h2 < d. 

(Note that the usual division with remainder is the case g2 = 1.) 

b. If S = Rim for some ring R and ideal m with m in the Jacobson 
radical of R, and G1 , G2 E R[x] are any polynomials such that Gi 

reduces mod m to gi and G1 is monic, then G1, G2 together generate 
the unit ideal of R[x]. 

Exercise 7.20:* Prove Theorem 7.18 by making a convergent sequence 
of approximate factorizations, as follows: For the first approximation, take 
any polynomials G~, G~ E R[x] with G~ monic that reduce to gl and g2 
mod m. Show that G~ and G~ generate the unit ideal. 

By part a of Exercise 7.19 we may write the difference between F and 
G~ G~ in the form 

F - G~G; = G~Hl + G;H2 with Hi E R[x],degH2 < degG~. 

As the second approximation, take G~ = G~ + H2 and G~ = G~ + HI. 
Show that these polynomials give a factorization of F mod m2 • Show that 
both HI and H2 have coefficients in m, so that G7 agrees with G~ mod m. 

Since R is also complete with respect to m2 , we may now replace m by m2 

in the previous argument, which results in a third approximation G~' and 
G~' congruent to the second mod m2. Continuing this way, show that the 
sequence of approximations G;, G;', ... converges to polynomials Gi with 
the desired properties. 

Exercise 7.21: Prove that Theorem 7.18 implies Theorem 7.3 in the special 
case where f'(a) is a unit, as follows: Writing - for reduction mod m, show 
that we may write 

/(x) = (x - a)g(x). 

Now show that 

g(x) == l'(x) == l'(a) mod (x - a). 

Use the fact that l'(a) is a unit in Rim, to show that g(x) and x - a 
generate the unit ideal in Rlm[x]. Now lift to a factorization of f(x). 
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Exercise 7.22 (Lifting idempotents and factorization): Here is a 
generalization of the case of . Theorem 7.18 where F is monic, proved by 
lifting idempotents: 

Let R be a Noetherian ring, complete with respect to an ideal m. Let S 
be an R-algebra, and F E S an element. Suppose that A = SI(F) is finite 
as an R-algebra (that is, finitely generated as an R-module). 

Let I E S := Rim 0R S be the image of F, and suppose that I factors 
as I = glg2, where (gl,g2) = (1). Show that SI(f) = SI(gd x SI(g2), so 
that there are orthogonal idempotents el, e2 E S I (f) such that (S I (f) )ei = 

SI(gi). Lift the ei to orthogonal idempotents Ei of SI(F) so that SI(F) = 

Al x A2 with Ai = (SI(F))Ei. 
Deduce that (with an obvious abuse of notation) (F) = (F, Ed n (F, E2) 

= (F, Ed(F, E2), and that the ideals (F, El ), (F, E2) reduce mod m to the 
ideals (g2), (gl), respectively. If (F, E2) is a principal ideal, generated say 
by an element Gl E S, then FE (Gl ), so we may write F = Gl G2 for some 
G2 E S. If gl is a nonzerodivisor, it follows that G2 maps to g2 mod m, and 
we have thus lifted the given factorization of f. 

Now suppose that S IF is free over R. Show that S I (F, E2) is pro jec
tive over R. Suppose further that S I (gl) is free over Rim. Show using 
Nakayama's lemma that SI(F, E2) is free over R of the same rank. 

To deduce Theorem 7.18 when F is monic, take S = R[x]. By Proposi
tion 4.1, SI(F) is finite and free over R. Also by Proposition 4.1, the ideal 
(F, E2) is principal and generated by a monic polynomial if SI(F, E2) is 
finite and free over R. 

Exercise 7.23 (Direct proof of lifting idempotents):* Suppose m2 = 
0, and let e E Rim be an idempotent. Find a polynomial p(x) such that 
if e E R is any element that maps to e in Rim, then p( e) is the unique 
idempotent lifting e whose existence is guaranteed by Corollary 7.5. 

Exercise 7.24: Let k be a field and let R be either k[[tll or k[t]/(t2 ). Show 
that the ring of 2 x 2 matrices over R contains many distinct idempotents 
reducing mod t to the idempotent 

Exercise 7.25: Using the proof of Corollary 7.17 as a guide, prove the 
inverse function theorem, which says: 
Let 11, ... , In E (Xl, .. " Xn)R[[Xl, ... , xnll be n power series. If 'P is the 
endomorphism 

'P : R[[Xl,"" xnll -. R[[Xl,"" xnll, Xl,···, Xn ~ 11,···, In, 

and J(x) is the Jacobian matrix 
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then cp is an isomorphism iff det J(O) is a unit in R. 

Exercise 7.26: With notation as in Exercise 7.25, suppose det J(a) is a 
unit in R. Follow the outline of the proof of Theorem 7.3 to show that if 
(al, ... , an) E Rn is an approximate solution to the system of equations 
J;( x) = 0 in the sense that 

!i(al, ... , an) Em for i = 1 to n, 

then there is an actual solution (b l , ... ,bn ) E Rn of the equations such that 
each bi differs from ai by an element of m. If you feel ambitious, do the 
same without assuming that det J(a) is a unit, but assuming instead that 
each !i(al, ... , an) is in the ideal 

(det J(a))2m. 

See Bourbaki [1985, sect 4.6, Theorem 2] if you get stuck. (Most of the 
above treatment is taken from this source.) 

Exercise 7.27:* Give a criterion for a p-adic unit u to be an nth power 
for any n. 



Part II 

Dimension Theory 

In Chapter 8 I have given an introduction to dimension theory from an 
historical point of view, and I have tried to explain the geometry behind 
some of the most important results and definitions. This chapter could 
logically be skipped, or postponed until later. 

Chapters 9 through 14 present a unified treatment of classical dimension 
theory. By contrast, Chapter 15, Grabner Bases, is a general introduc
tion to that subject, which could be read independently of the preceding 
chapters; indeed, it may be read independently of the rest of this book. I 
have included it in this part because the technique it contains allows one 
to compute dimensions explicitly (it is not obvious from the definition of 
dimension that effective computation is possible at all). Chapter 16 presents 
the technique of differentials. Related to the tangent bundle, this is another 
fundamental technique for handling dimension. 



8 
Introduction to Dimension Theory 

Of all the theorems of analysis situs, the most important is that 
which we express by saying that space has three dimensions. It 
is this proposition that we are about to consider, and we shall 
put the question in these terms: When we say that space has 
three dimensions, what do we mean? 

-Henri Poincare, quoted by Hurewicz and Wallman [1941] 

As with Chapter 1, the material presented in this chapter is rather 
advanced compared to the rest of this book. If you have never studied 
dimension theory before, you may find it difficult to understand the mate
rial in detail. I suggest that you browse through Chapter 8 without worrying 
about the details during the first reading; I hope that it will tell you some
thing of what is significant in the theory. In Chapter 9 I have begun the 
subject again, with a self-contained and more elementary account. None of 
the actual results and definitions in Chapter 8 will be required for under
standing the rest of the book. 

Arguably the most fundamental notion in geometry and topology is that 
of dimension. In this part of the book we shall take up its algebraic ana
logue, which plays an equally fundamental role in commutative algebra 
and algebraic geometry. In this section we shall sketch a little of the his
tory that led to the modern algebraic notion, called Krull dimension, and 
explain some of the reasons for accepting it as the "right" definition, at 
least for Noetherian rings. (This explanation, beginning with the Axioms 
D1-D4 leads us into rather advanced territory, and will not be used in the 
sequel.) We then outline some of the central results of the theory. In the 
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following chapters we shall start again and give a self-contained and more 
elementary account. 

To help understand the differences as well as the similarities between the 
algebraic and topological notions, we begin by discussing the topological 
one. It was an idea of the ancient Greek mathematicians that a curve (we 
would say a curve segment) was something bounded by points; that a sur
face was something bounded by curves; and that a volume was something 
bounded by surfaces. In nineteenth-century geometry, the idea of dimension 
was used intuitively. Euclidean n-space was, by agreement, of dimension n; 
and in general an object was said to be n-dimensional if the least number 
of parameters needed to describe its points, in some unspecified way, was 
n. Knowledge of set theory, necessitated by the increasing sophistication 
of analysis, caused the geometers to be driven from this paradise near the 
end of the century: Cantor's one-to-one correspondence between the points 
of a line and the points of a plane (1875), and the space-filling curves of 
Peano (1890) and Hilbert, showed decisively that more subtle ideas were 
necessary. These developments must have been quite unsettling: Cantor 
himself wrote of the one-to-one correspondence in a letter to Dedekind in 
1877: 

Your latest reply about our work was so unexpected and so 
novel that in a manner of speaking I will not be able to attain 
a certain composure until I have had from you, my very dear 
friend, a decision on its validity. As long as you have not COn
firmed it, I can only say: I see it but I don't believe it. [ ... J the 
distinction between domains of different dimensions must be 
sought for in quite another way than by the characteristic num
ber of independent coordinates. (The translation is from Fauvel 
and Gray [1987], or see Purkert and Ilgauds [1935] pp. 32-35Y 

A precise topological definition of dimension was first given by 
L.E.J. Brouwer (1913), working from ideas of Poincare. In 1922, Menger 
and Urysohn independently found a similar definition, which coincided with 
Brouwer's for most spaces: Dimension is a local property of a space at a 
point and is defined inductively to be the smallest number n for which 
arbitrarily small neighborhoods of the point have boundary of dimension 
less than n, To start things off, the empty set is defined to have dimension 
-1. (A beautiful exposition of the topological theory may be found in the 
classic Hurewicz and Wallman [1941], from which the quotation at the head 
of this chapter is borrowed.) 

In algebraic geometry the notion of dimension has some special peculiar
ities. From the study of the conic sections in antiquity until about 1800, 

lReprinted from The History of Mathematics: A Reader by J. Fauvel, J. Gray 
(1987), by permission of MacMillan Press Ltd., London, England. 
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algebraic geometry concerned itself with real algebraic curves. After the 
introduction of coordinates by Descartes, such curves were defined by one 
equation on the coordinates of the two-dimensional Euclidean plane and 
had dimension 1 in every sense. (Since the curve rather than the equation 
was fundamental, the fact that some equations, like x 2 + y2 = 0, do not 
define a curve in the real plane was unimportant.) The introduction of 
complex numbers and the complex projective plane in the first third of the 
nineteenth century changed the nature of the objects considered, but not 
the view that they were one-dimensional. Curves now had complex points 
(for example, a circle r = xI + x~, thought of as a subset of the projective 
plane with equation rX6 = xi + x~, contained the famous "circular points 
at infinity" (0,1, ±i) in the complex projective plane-see Exercise l.15c). 
Thus the idea was born that dimension had a meaning independent of what 
field is used for the coordinates of points. 

As far as I am aware, the early workers were not concerned with the 
collection of all complex points of a plane curve as a single geometric object, 
a surface. But that concern took the spotlight in the work of Riemann, as 
understood by Clebsch [1864] and later authors, where algebraic curves, 
interpreted as "Riemann surfaces," arose as coverings of C = R2 or better 
of the complex projective line, or "Riemann sphere" CU{oo}. Now C could 
reasonably be called either the complex plane (from a topological point of 
view) or the complex line (from a complex-analytic point of view). Thus 
algebraic curves had reasonable claims to being called either one- or two
dimensional. Even the names, Riemann surfaces and algebraic curves, 
suggest a certain schizophrenia. We have grown used to the confusion, and 
speak happily in general of an n-dimensional complex manifold, which, as 
a topological space, has dimension 2n. 

In the study of a Riemann surface X, the field K(X) of meromorphic 
functions on X was important from the start, as was the result that this 
field has transcendence degree 1 as an extension of C. The field K(X) 
coincides with what we would call the field of rational functions on X; if 
X is given as an affine plane curve with equation f(x, y) = 0, then K(X) 
is the quotient field of the domain C[x, yl!(f). 

In the last third of the nineteenth century, a good deal of attention 
was also given to spaces Y described as the zero loci of single equations 
in complex three-space; these were considered to be surfaces by algebraic 
geometers, although they are four-dimensional in the topological sense. 
Again, the field of rational functions K(Y) took center stage. The fact that 
K (Y) has transcendence degree 2 over C was interpreted by saying that it 
takes two complex-valued algebraic functions to parametrize the points of 
Y (up to finite ambiguity), and thus that Y has dimension 2. 

From these beginnings, and from the axiom, like that of the topologists, 
that affine d-space has dimension d, came the algebraic definition of dimen
sion that was used early in this century: The dimension of an irreducible 
variety in affine r-space over a field k (initially C) is the transcendence 



216 8. Introduction to Dimension Theory 

degree over k of the field of rational functions on X. This is by definition 
the quotient field of the domain R = k[Xl, ... , xrl/ I, where I is the ideal 
of all functions vanishing on X. It was only natural to define the dimen
sion of R to be this same transcendence degree. This definition was still 
the accepted standard as late as 1935, as one may see from Krull's famous 
book Idealtheorie, published in that year. 

The definition of dimension as transcendence degree over a ground field k 
agrees with our modern notion as long as one sticks to the coordinate rings 
of affine algebraic varieties over k: that is, to domains finitely generated over 
k. However, it is inadequate for other fundamental examples. For instance, 
rings of algebraic numbers (finite extensions of the ring of integers) do 
not even contain fields. Also, geometric examples involving reducible alge
braic sets, such as that of Figure 8.1 make it clear that dimension is most 
interesting as a local property of a space at a point. Unfortunately, the 
localization of the coordinate ring of a variety, which might be hoped to 
be the carrier of this local information, is almost never finitely generated 
over the ground field. If one passes to power series rings, which represent 
the variety in a local analytic sense, the situation is still worse; k[[xll has 
uncountable transcendence degree over k, although its dimension should, 
on geometric grounds, be 1. 

Although the definition by transcendence degree is useless in the case 
of rings of algebraic numbers, there is an analogy that suggests what the 
dimensions of these rings should be. As we saw in Chapter 1, some of 
the very earliest algebraic work on lliemann surfaces was done by exploit
ing the amazing analogy between Riemann surfaces and rings of algebraic 
numbers. On the basis of this analogy one might well imagine that the 
dimension of any ring of algebraic numbers should be defined to be 1. In 
other cases where the definition by transcendence degree is not the right 
thing, other ad-hoc arguments could be made. For the local ring of a point 
on an algebraic variety, for example, the definition of the dimension can be 
taken from that of the variety itself. The same reasoning could be made 

dimension 2 here 

d·/. ImenSlOn 
1 here 

FIGURE 8.1. 
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for power series rings and their factor rings, which correspond to points on 
analytic varieties. 

As increasingly complex constructions were made in commutative alge
bra, such ad-hoc definitions became unsatisfactory. In 1937 Krull proposed 
the following definition. For justification he quoted geometric evidence 
accumulated by Emmy Noether [1923] for factor rings of polynomial rings 
and by W. Ruckert [1932] for factor rings of power series rings. He also 
mentioned the arithmetic analogy given in the previous paragraph. The 
definition now bears his name. 

Definition. The Krull dimension (or simply the dimension) of a ring 
R, written dim R, is the supremum of the lengths of chains of distinct 
prime ideals in R. 

Here the length of the chain Pr ::) Pr - 1 ::) ... ::) Po involving r + 1 distinct 
prime ideals is taken to be r; we remind the reader that the ring itself is not 
considered a prime ideal. The supremum may in fact be infinity even for 
Noetherian rings (see Exercise 9.6), although in the case of a Noetherian 
local ring or an affine ring we shall see that it is finite. 

This definition gains plausibility from the familiar fact that the dimension 
of a vector space over a field k is the length of the longest chain of proper 
subspaces; algebraically, an n-dimensional vector space corresponds to a 
polynomial ring R = k[Xl, ... , x r ], and an increasing sequence of subspaces, 
starting with 0, corresponds to the decreasing sequence of prime ideals 

We shall see in Theorem A that no chain of greater length exists. 
As first examples, we see that any field k has dimension 0, white the 

polynomial ring k[x] has dimension 1: (x) ::) 0 is a chain of primes oflength 
1, and since every ideal is principal, there are no longer chains of primes. 
(Reason: If (p) :2 (q) ~ 0 with (q) a prime ideal, then q is a prime element. 
Since p divides q, the elements p and q differ by a unit, whence (p) = (q).) 
The same argument applies in any principal ideal domain that is not a 
field, so, for example, the ring Z of integers has dimension l. 

It is interesting to compare Krull's definition with Menger's, given ear
lier, although this is unhistorical in the sense that Krull does not mention 
the topological case or its pioneers. Krull's definition exploits the simple 
structure of algebraic varieties and replaces the closed sets that are the 
boundaries of small neighborhoods of p that occur in Menger's definition 
by maximal closed sets not containing any component and containing p. If 
we regard the set of primes of a ring as a topological space in the Zariski 
topology and apply Menger's definition, we get the same thing in many, 
but not all, cases; Krull's definition is in a certain sense more local. 

Is Krull's definition the "right" definition of dimension? We offer two 
kinds of responses to this vague question: 
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First, we shall give a few axioms satisfied by the definition, correspond
ing to simple geometric properties. The axioms determine the notion of 
dimension uniquely. (The proof of this fact depends on the Cohen structure 
theorems, and we shall only sketch it.) We give them in order to orient the 
reader toward the central properties of dimension--especially its behavior 
under ring extensions, of which Axiom D3 is the simplest part. The axioms 
themselves will not be used in the remainder of this book. 

Second, we shall list some characterizations of dimension that serve to 
connect the notion with other geometric ideas and make the concept fruit
ful. These characterizations play a major role in the rest of this book, and 
some of the succeeding sections will be organized around proofs of them. 

We shall assume for the rest of this section, and in nearly all of Part II, 
that all rings considered are Noetherian. In the non-Noetherian case the 
Krull dimension exhibits various pathologies. For example, if R is Noethe
rian, then dimR[xJ = (dimR) + 1 (Corollary 10.13). Geometrically, if R is 
the ring of functions on some space, then R[xJ is the ring of functions on 
the product of that space and the affine line, so this formula is forced. But 
in the non-Noetherian case one can have dimR[xJ = (dimR) + 2. See, for 
example, Gilmer [1974J for a study of this phenomenon. 

8.1 Axioms for Dimension 

1. Just as in the topological definition of dimension given above, dimension 
should be a local property. This means, in particular, that the dimension 
of a ring should be the maximum of the dimensions of its localizations; but 
also, since passing to the completion corresponds geometrically to taking a 
smaller neighborhood, that dimension at a point is preserved by completion. 

Axiom Dl (Dimension is a local property). 

dimR = supp is a prime of RdimRp, 

and 
dimRp = dimRp. 

2. If X is an affine algebraic set then the ring of functions on X has 
no nilpotent elements; nilpotent functions are not apparent in ordinary 
geometry. On the other hand, if R is the affine ring of an algebraic set X, 
and p E X corresponds to the maximal ideal P in R, so that R/ P = k 
is the "ring of functions on {p} ," then it is possible to regard an element 
f E R/ p2 as a function with a value at p together with a linear func
tional on the tangent space to X at p. Thus as a ring, R/ p 2 describes 
first-order jets of functions on X at p (this will be explained further in 
Chapter 16). We may think of it as the ring of functions on a first-order 
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infinitesimal neighborhood of p. In the theory of schemes (see, for example, 
Eisenbud and Harris [1992]) nilpotent elements of an affine ring R are quite 
generally interpreted as describing some infinitesimal neighborhood of the 
variety defined by Rred = R/(nilpotent elements). Thus it is geometrically 
reasonable to pose as an axiom: 

Axiom D2 (Nilpotents do not affect dimension). If I is a nilpotent ideal 
of R, then dimR = dimR/I. 

3. For a eoo surjective map f : M ---+ N of manifolds, Sard's theorem 
implies that the general fiber of f (fiber == preimage of a point) is again a 
manifold, and the dimension of M is the dimension of N plus the dimension 
of the general fiber. Such a principle also holds, under mild assumptions, 
for the Krull dimension, but all we need here is the case corresponding to 
a surjective map with finite fibers (in which the dimension of M will equal 
the dimension of N). To see what the algebraic content of this condition 
is, consider a map 

r.p: R = k[Xl,"" xrJ/ J ---+ k[Xl,"" xsJl J' = S 

corresponding to a map 't/J : Y ---+ X of algebraic varieties. The image 
of 't/J is dense in X (in the Zariski topology; but if k = C, also in the 
classical topology) iff r.p is a monomorphism. We shall show that if r.p makes 
S a finitely generated R-module, then the fibers of 't/J are all finite sets 
(Corollary 9.3). Under these circumstances, we shall have dim X = dim Y. 
We take such behavior as the third axiom. 

Axiom D3 (Dimension is preserved by a map with finite fibers). If ReS 
are rings such that S is a finitely generated R-module, then dim R = dim S. 

4. Finally, in examples where we have some reason to know what the 
dimension should be, we should get the expected answer. First, since the 
polynomial ring k[Xl,'" ,xrJ in r variables over a field k corresponds to 
affine r-space, it should have dimension r; as the formal power series ring 
k[[Xl' ... ,xrll is its completion at the maximal ideal (Xl, ... ,xr), this ring 
should have dimension r. The converse implication works too: If k is alge
braically closed, then a consequence of the Nullstellensatz (Exercise 4.28) 
shows that any maximal ideal of k[Xl, ... ,XrJ can be transformed by an 
automorphism into (Xl, ... ,xr), and thus k[Xl"" ,xrJ has dimension r if 
k[[Xl' ... ,Xr II does. Thus, to cover both examples, we need only make an 
assumption about one. To emphasize that dimension is a local property, 
we choose the power series ring. 

Axiom D4a (Calibration-algebras over a field). If k is a field, then 
dimk[[xl"" ,xrll = r. 
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This suffices if we only want to work with rings containing a field. To 
include the arithmetic case we need a slightly more sophisticated version, 
one that includes the idea that rings of algebraic integers have dimension 1. 
Since we have taken dimension to be a local property, we only need to 
assert this for the localizations, or even the completions, of such rings. 
These have the property that they are local Noetherian integral domains in 
which every ideal is principal, but not fields; such rings are called discrete 
valuation rings. A complete discrete valuation ring that contains a field 
is isomorphic to a formal power series ring in one variable over a field (see 
Proposition 10.16), and thus is certainly of dimension 1. A part of the 
Cohen structure theorems that we do not treat in this book shows that 
all other examples look a lot like the ring Zp of p-adic integers, or a finite 
extension of such a ring. Now since 

we may think of a power series ring in r variables as a power series ring in 
r - 1 variables over a discrete valuation ring, and if we take the position 
that all discrete valuation rings should have analogous dimension-theoretic 
properties then we arrive at the following stronger version of Axiom D4a. 

Axiom D4b (Calibration-general case). If R is a complete discrete val
uation ring, then 

dim R[[X2, ... , xrll = r. 
These properties suffice to characterize a function "dim" on the class of 

Noetherian rings, and this function is equal to the Krull dimension. Since 
we shall not return to these axioms, it seems worthwhile to sketch the proof 
(which may only be intelligible after this book has been read): By Axiom D1 
and the fact that the completion of a Noetherian ring is Noetherian (see 
Theorem 7.1), we need only consider complete local Noetherian rings. By 
Axiom D2 we may assume that they have no nilpotent elements. But as 
we shall see (Exercise 13.9), a complete Noetherian ring containing a field 
is a finite module over some subring isomorphic to a power series ring in 
finitely many variables over a field. Its dimension is thus determined by 
Axioms D3 and D4a; a similar result that we have not proved (references 
are given in Chapter 7) shows that a complete local ring without nilpotent 
elements that does not contain a field is a finitely generated module over a 
subring isomorphic to a power series ring over a complete discrete valuation 
ring. Its dimension is thus determined by Axioms D3 and D4b. 

8.2 Other Characterizations of Dimension 

At the heart of dimension theory are three further characterizations of 
dimension that are useful in different contexts. We shall return to these in 
later chapters. 
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8.2.1 Affine Rings and Noether Normalization 

We may characterize dimension for affine rings as follows: 

Theorem A. If R is an affine domain over a field k, then 

dim R = transcendence degreekR. 

This is the common length of all maximal chains of prime ideals of R. 

In particular, this shows that the dimension of an affine domain is finite. 
The first part of this statement is an avatar of the idea that the dimension 

of a variety is the number of independent functions on it. In this sense the 
algebraic geometers have never left paradise: There is no snake (that is, 
Peano curve) in the garden. The reason is that algebraic geometers work 
with such a restricted class of functions. The second part is a uniformity 
result, a strengthening of the idea that the dimension of an irreducible 
variety is the same at each of its points. It implies for example that if an 
affine ring contains a chain of four primes P ~ PI ~ P2 ~ Q and a prime pI 
between P and Q as in Figure 8.2, then it contains either a prime strictly 
between P and pI or between pI and Q. In technical language we say that 
an affine ring is catenary. Not every Noetherian ring is catenary; this 
is one of the important "nongeometric" pathologies that Noetherian rings 
exhibit (see Nagata [1962] for an example). But the catenary condition 
holds for virtually any ring that one could meet in algebraic geometry. We 
shall prove a general result along these lines in Corollary 18.10. 

We shall prove Theorem A using the Noether normalization theorem 
(13.3), which says that any affine ring of dimension r and any chain 
of primes in it are comparable, via a finite map, to a polynomial ring 
k[XI, ... , x r ] and a chain whose members are primes generated by subsets 
of the variables. More precisely, 

Theorem Al (Noether Normalization). If R is an affine ring over a field 
k (that is, R is a finitely generated k-algebra) and Pr ~ Pr - I ~ ... ~ Po is 
a chain of prime ideals of R, maximal in the sense that no further prime 

FIGURE 8.2. 
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ideals can be inserted into the chain, then there is a subring 8 of R with 
8 ~ k[XI,"" xrl such that R is a finitely generated 8-module and p; n 8 = 
(Xl"'" Xi). 

The Noether normalization theorem is a touchstone for results on affine 
rings. We apply it to give another proof of Hilbert's Nullstellensatz, to prove 
the finiteness of the integral closure of an affine domain, and to prove some 
results on the behavior of the fibers of a map. 

8.2.2 Systems of Parameters and Krull's 
Principal I deal Theorem 

Krull's principal ideal theorem (Krull [1928]) may be expressed as a char
acterization of dimension: 

Theorem B. If R is a Noetherian local ring with maximal ideal m, then 
dim R is the minimal number n such that there exist n elements II, ... ,fn E 
m not all contained in any prime other than m. 

To understand the geometric content of this result, consider first the case 
where m is a maximal ideal of an affine ring 8, corresponding to a point p 
on some algebraic variety M, and R = 8m . Considering the fi as functions 
on M defined near p, the condition that no smaller prime contains all the 
fi becomes the condition that the point p is singled out (in some small 
neighborhood of p) by the vanishing of all the k Parallel in a certain sense 
to the characterization of dimension by transcendence degree, Theorem B 
is a second avatar of the idea that the dimension of R is "the least number 
of parameters needed to describe the points of M." 

Among the many algebraic corollaries of Theorem B, one of the most 
striking is that there are no infinite descending chains of primes in a Noethe
rian ring. In fact, the number of generators of a prime ideal P gives an a 
priori bound for the lengths of chains of primes descending from P. In 
particular, this shows that if R, m is a local ring then 

dim R ::; the number of generators of m < 00. 

Another appreciation of Theorem B may be had from the (leading) spe
cial case where P is minimal among primes containing a principal ideal 
(I) -lOin a ring R. Localizing at P, the result says that dim Rp ::; 1 (and 
if f is a nonzero divisor the dimension is exactly 1). Thus, there is no chain 
of primes of length greater than 1 descending from P. This is the original 
form of the principal ideal theorem from which the name derives. 

To understand the geometric content in this case, suppose that R is an 
affine domain over C, corresponding to a variety M that is a complex 
manifold. Suppose that N is the subvariety of points X such that f(x) = o. 
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By the second statement of Theorem A, the statement dim Rp = 1 shows 
that dim M - dim N is equal to 1. To prove this "by geometry," we may 
pick a point p On N and claim that there is a point p' near p On N (see the 
following figure) where the derivatives of f do not all simultaneously vanish. 
At p', the implicit function theorem asserts that N looks analytically like 
a coordinate hyperplane-and is thus co dimension 1. 

By Theorem A an affine variety has the same dimension at each of its 
points, so the dimension is 1 at p too. (To prove the claim, we may as well 
pass to a local analytic neighborhood of p and assume that R is a power 
series ring. We may further replace f by one of its factors and assume that 
f is irreducible in this power series ring. Of course, not all the derivatives of 
f can vanish identically, or f would be a constant. If g # 0 is the derivative 
of f in some direction, then g is a power series whose initial term is of lower 
degree than that of f-so g is not in the ideal generated by f. Since (I) was 
supposed to be prime, this and an analytic version of the Nullstellensatz 
show that g(p') # 0 for some p' near p in N, as claimed.) 

8.2.3 The Degree of the Hilbert Polynomial 

The characterizations of dimension given in Theorems A and B are both of 
the form that the dimension is the maximum number of functions with a 
certain independence property, or the minimal number with a certain suffi
ciency property. The following characterization avoids individual functions 
altogether. 

Theorem C. Let R be a Noetherian local ring with maximal ideal m, and 
let H (n) be the Hilbert function 

For large n, H(n) agrees with a polynomial P(n), and 

dim R = 1 + degree P. 

Here dimR/m denotes the ordinary vector space dimension over the field 
Rim. This result shows that the dimension of R depends only On the asso
ciated graded ring of R (geometrically, we recall from Chapter 5 that if R is 
the local ring of a point p on a variety M, then the associated graded ring 
grm R corresponds to the tangent cone of M at p). Since grm R = grm R, 
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where il is the completion of R at m, Theorem C implies that the dimension 
of R is the same as that of il, as demanded by Axiom D l. 

Geometrically, Theorem C is loosely an analogue of the fact that the 
dimension of a variety near a point measures how fast the volume of a 
neighborhood of the point grows with the diameter of the neighborhood. 
One way to formulate this result, due to Thie [1967] is as follows. Suppose 
p is a point on a complex analytic variety M c C r , and Be is the c:-ball 
around p in cr. The dimension of M is the unique integer d such that if Ve 
is the integral over the smooth points of M in M n Be of the d-dimensional 
volume form on C r , then lime--+o Ve/c:d is a finite nonzero number. (In fact, 
if We is the volume of Cd n Be' then limc:-+o Ve/We is the multiplicity of M 
at p; see Chapter 12 for the definition.) If M is algebraic, R is the local ring 
of p on M, and m is the maximal ideal of R, then the ring R/mn should be 
seen as the coordinate ring of the "nth-order infinitesimal neighborhood" 
of pin M, and the number dime R/mn = L:~=l H(n) is a measure of the 
size of this neighborhood-some sort of infinitesimal volume. Theorem C 
implies that 

has a finite nonzero limit as n -+ 00 iff d = dim M. 
Though one might suspect the opposite, Theorem C actually opens the 

best avenue to the algorithmic computation of the dimension of an affine 
ring: One first homogenizes the equations defining the ring to reduce to 
the graded case, say R = k[Xl' ... ,xrl/ I, with I homogeneous. The theory 
of Grabner bases then shows how to construct a monomial ideal I' such 
that k[Xl, ... , xrl/ I and k[Xl, ... , xrl/ I' have the same Hilbert function, 
and thus the same dimension. Simple combinatorial ideas then suffice to 
compute the dimension for I'. For all of this, see Chapter 15. 



9 
Fundamental Definitions of 
Dimension Theory 

In this chapter we collect the fundamental definitions and notation we shall 
use. We also harvest the statements on dimension theory that have been 
proved earlier in this book, before we had the language to describe them: 
the characterization of dimension zero from Chapter 2 and the properties 
of integral maps (relative dimension zero) from Chapter 4. To make this 
chapter and what follows independent of the introductory Chapter 8, we 
repeat a few definitions. 

Definition. The Krull-dimension (or simply the dimension) of a ring 
R, written dim R, is the supremum of the lengths of chains of prime ideals 
in R. 

Here the length of the chain Pr ~ Pr- 1 ~ ••• ~ Po of prime ideals is taken 
to be rj we recall that the ring itself is not considered a prime ideal. 

Now let R be a ring, and I ~ R an ideal. We define the dimension of 
I, written dim I, to be dimR/I. The name corresponds to the fact that if 
R is the ring of functions on an algebraic set, then dim I is the dimension 
of subset corresponding to I j that is, the subset on which the "functions" 
in I vanish. 

If I is prime then the co dimension of I, written codim I (also called 
height I and rank I by various authors), is by definition the dimension of 
the local ring RJ. Equivalently, it is the supremum of lengths of chains of 
primes descending from I. If I is not assumed prime, then we define codim I 
to be the minimum of the codimensions of the primes containing I. (Our 
terminology follows that of Krull, who called this the Dimensionsdefekt. He 
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remarks that he chose this name in place of the name "rank," which had 
already been used in the case of polynomial rings by Lasker and Macaulay, 
to emphasize the geometric content of the idea.) 

If N is any R-module, then we define the dimension and co dimension of N 
to the be the dimension and codimension, respectively, of the annihilator of 
N. Unfortunately, if N is an ideal, this standard definition conflicts with the 
equally standard definition of the dimension of an ideal I as the dimension 
of the ring R/ I. For example, if R is a domain, then the annihilator of any 
nonzero ideal is trivial, so the dimension of the ideal as a module is equal 
to the dimension of R. Perhaps because these two definitions give such 
different answers, their simultaneous use does not seem to cause confusion. 
When we write dimI, for an ideal I, we shall always mean the dimension 
of the ring R/ I. 

If R is a domain, finitely generated over a field, and I c R is an ideal, 
then from the definitions, with Theorem A described in Chapter 8, it follows 
that codim I = dim R - dim I. But we have not used this as the definition, 
because when R is not a domain, the quantity dim R - dim I is not local in 
the sense that we want dimension theory to be local. To see this, consider 
the example portrayed in Figure 9.1 of a plane M and a line L containing 
a point N. Algebraically, we may represent this by 

R k[XI' X 2 , X 3l!(XI )(X2 , X 3 ) ...... M U L, 
I (Xl + 1,X2 ,X3 ) ...... N. 

Here dim M = dim R = 2, whereas codim I = 1 and dim N = dim R/ I = 0, 
so 

dim I + codim I -=I- dim R. 

Instead, co dim I is the co dimension of N in the component of M in which 
N lies. 

M 

L 

FIGURE 9.1. 
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9.1 Dimension Zero 

We now interpret some of the earlier results of this book in terms of dimen
sion. Theorem 2.14 and Corollary 2.15 characterize rings of dimension O. 

Corollary 9.1. If R is Noetherian, then dimR = 0 if and only if R is 
Artinian, in which case R is a direct product of local Artinian rings. An 
affine algebraic set has dimension 0 iff it is a finite set. 

We shall analyze affine rings by exhibiting them as finitely generated 
modules over polynomial rings. For this reason we need a "relative" version 
of Corollary 9.1. We need to understand the behavior of prime ideals with 
respect to a homomorphism of rings cp : R -+ 5 that makes 5 a finitely 
generated R-module. It is technically convenient to work with the more 
general condition that 5 is integral over R. 

Proposition 9.2. If 'ljJ : R -+ 5 is a map of rings that makes 5 integral 
over R, then every prime ideal of R containing ker 'ljJ is the preimage of a 
prime ideal of 5. Furthermore, if I is an ideal of 5, then 

dim I = dim 'ljJ-l I. 

Proof. We may replace R by its image in 5, and thus assume that R c 5, so 
that we can apply Proposition 4.15 and Corollary 4.18. The first statement 
is immediate from Proposition 4.15. 

For the dimension equality, consider a chain of primes of R ascending 
from 'ljJ-II. By going up (Proposition 4.15), there is a chain of primes of 5 
ascending from I and having as preimage the given chain of primes of R. 
Thus dim I ~ dim 'ljJ-l I. 

On the other hand, by incomparability (Corollary 4.18), a chain of dis
tinct primes containing I has as preimage a chain of distinct primes con
taining 'ljJ-II, and thus dim I :S dim'ljJ-II, whence the equality. 0 

Here is the geometric version. 

Corollary 9.3. If cp : X -+ Y is a morphism of affine algebraic sets such 
that A(X) is a finitely generated A(Y)-module, then: 

1. The fibers of cp are finite sets. 

2. If X' C X is a Zariski closed subset, then cp(X') C Y is a Zariski 
closed subset with the same dimension as X'. In particular, if A(Y) c 
A(X), then cp is surjective. 

Maps cp satisfying the hypothesis of the corollary are called finite maps. 
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Proof. Replacing X by X' and Y by the closure of 'P(X' ), we may assume 
A(Y) c A(X) and we must show that 'P is surjective and that X and Y have 
the same dimension. These things are immediate from Proposition 9.2. Fur
thermore, we see from Proposition 9.2 that 'P has zero-dimensional fibers. 
By Corollary 9.1, zero-dimensional algebraic sets are finite. 0 

The same proof would prove the corollary with the weaker hypothesis 
that A(X) is integral over A(Y), but since A(X) is finitely generated as 
a ring, this makes no difference here. However, it would also prove the 
same statement for the map Spec S ---; Spec R for any rings Rand S as in 
Proposition 9.2. In the context of schemes, the result is useful in this more 
general form. 

9.2 Exercises 

Exercise 9.1: Show that a principal ideal ring (one whose ideals are each 
generated by ::::: 1 element) has dimension ::::: 1. 

Exercise 9.2: Let k be a field. 

a. Let f(x, y) E k[x, y] be any polynomial, and consider the "variable" 
x' = x - yn. Show that k [x, y] = k [x', y], and that if n is sufficiently 
large, then as a polynomial in x' and y, f is monic in y. Deduce 
that k[x, yl/ f is integral over its subring k[x' ]. Use this to prove that 
dim k[x, y] = 2. 

b. Show that the same things are true for x' = x - ay for all but finitely 
many a E k. (If k is finite, this could be all a E k.) 

Exercise 9.3: Suppose that a ring S is integral over the image of a ring 
homomorphism R ---; S. Show that the Krull dimension of M as an S
module is the same as the Krull dimension of M as an R-module. 

Exercise 9.4: Suppose that U is a multiplicatively closed subset of R, 
and let S = R[U- I ] be the localization. Let P be a prime of S. Show that 
codimP = codim(P n R). 

Exercise 9.5 (Dimension of Veronese subrings): Let R = ~ EB RI EB 
... be a graded Noetherian ring, and let R(d) = ~ EB Rd EB R2d EB "', 
the Veronese subring. Show that R is integral over R(d); conclude that 
dimR = dimR(d)' Show that there is a one-to-one correspondence between 
the homogeneous primes of R and the homogeneous primes of R(d) defined 
by R :J P f--+ P n R(d)' Also, show that if x E R is a homogeneous element 
of strictly positive degree, then R[X-I](d) = R(d) [x-d]; thus, in particular, 
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(R[x-l])o, the degree 0 part, is equal to (R(d)[X-d])o. (For geometers: This 
says that Proj(R) = Proj(R(d)) as schemes.) Taking R = k[x], where k is 
a field, show by example that the correspondence P f-+ P n R(d) may be 
many-to-one for nonhomogeneous prime ideals. 

Exercise 9.6 (An infinite-dimensional ring):' One of the pathologies 
that Noetherian rings can have is that they can be infinite-dimensional 
(although as we shall later prove, a Noetherian local ring must be finite
dimensional). Here is an example due to Nagata [1962] (Appendix, exam
ple E1): Let R = k[XI, ... ,Xr , ..• ] be a polynomial ring in infinitely 
many variables over a field k, and let PI = (Xl' ... ' Xd(l)), P2 = 
(Xd(l)+l, ... , Xd(2)), ... , Pm = (Xd(m-l)+l, ... , Xd(m)), ... be an infinite col
lection of prime ideals made from disjoint subsets of the variables. Let 
U = R - U~=l Pm be the complement of the union of the primes Pm, and 
let S = R[U- I ]. By Exercise 3.18 the maximal ideals of S are precisely the 
ideals Pm[U- I ]. Conclude that dim S = sup{d(m) - d(m -1)11 :S m :S oo}. 
Thus if the d( m) - d( m - 1) are unbounded, then S has infinite dimension. 

Show that S is Noetherian by proving the following lemma and checking 
its hypotheses. 

Lemma 9.4. Let S be a ring such that for every maximal ideal PeS 
the local ring Sp is Noetherian. If for every element s E S there are only 
finitely many maximal ideals containing s, then S is Noetherian. 



10 
The Principal Ideal Theorem and 
Systems of Parameters 

In this chapter all rings will be assumed to be Noetherian. 

It is elementary that a principal prime ideal in a Noetherian ring can have 
co dimension at most 1. A sharper statement is this: Any prime properly 
contained in a proper principal ideal has co dimension O. Proof: If on the 
contrary, Q ~ P ~ (x) in a ring R, with P and Q prime, then factoring out 
Q we can assume that Q = 0, and thus that R is a domain. If yEP, then 
y = ax for some a, and since x tf- P it follows that a E P; thus P = xP. 
By Corollary 4.7, (1 - b)P = 0 for some b E (x). Since R is a domain, we 
must have b = 1, so (x) is not proper, a contradiction. 

The mainspring of the above argument is Nakayama's lemma, here in the 
guise of Corollary 4.7. A subtler application of Nakayama's lemma yields 
Krull's principal ideal theorem (PIT) [1928]' a cornerstone of dimension 
theory for Noetherian rings. Krull's theorem extends the above remark 
from principal ideals to primes minimal over principal ideals. Geometrically, 
the result encapsulates and generalizes the dimension-theoretic side of the 
implicit function theorem in complex analysis, as we noted in Chapter 8. 
The principal ideal theorem says that even the most complex polynomial 
condition on the points of an algebraic variety is satisfied in co dimension 
1 if it can be satisfied at all. 

Krull was the first to show that not only primary decomposition, but 
also a great deal of the geometric theory of the polynomial ring, could 
be carried over to the general Noetherian case. He deserves credit, after 
Emmy Noether, for making the theory of Noetherian rings viable. We 
give his beautiful proof of the principal ideal theorem; the result had 
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been proved by Kronecker in the 1880s for polynomial rings by a difficult 
elimination-theoretic argument, and a geometric version was known (if not 
proved) well before that, as part of the method of proof known in enumer
ative geometry as "counting constants." 

Theorem 10.1 (First version of the Principal Ideal Theorem). If x E R, 
and P is minimal among primes of R containing x, then codim P ::; 1. 

Note that this result is vacuous if the element x is a unit, since then no 
primes contain it. 

For the proof we shall freely use the equivalences in Corollary 2.19, which 
characterizes primes minimal over a given ideal. The proof uses an idea from 
primary decomposition. Recall from Chapter 3 that if Q c R is a prime 
ideal, then the nth symbolic power Q(n) = {r E Rlsr E Qn for some 
s E R, s ~ Q} is the preimage in R of the nth power of the localized ideal 
QQ in RQ. The elements outside Q are nonzero divisors mod Q(n), and on 
localization we get (Q(n))Q = (QQ)n. 

Proof. We shall show that if Q is any prime ideal with Q ~ P, then RQ has 
dimension 0, so codim Q = O. This shows that codim P ::; 1. 

Replacing R by Rp we may assume that P is maximal, and we have 
ideals as in Figure 10.1. Since P is minimal over (x), the ring R/(x) is 
Artinian by Theorem 2.14. Thus the descending chain (x) +Q(n) stabilizes, 
say with Q(n) C (x) + Q(n+l). It follows that for any f E Q(n) we may write 
f = ax+g with g E Q(n+1). This implies that ax E Q(n). Since P is minimal 
over (x), we have x ~ Q, so a E Q(n). 

From this we see that Q(n) = (x)Q(n) + Q(n+l). Since x E P, Nakayama's 
lemma, Corollary 4.8a, implies Q(n) = Q(n+1). A second application of 
Nakayama's lemma, this time in RQ, yields (QQ)n = 0, so RQ has dimension 
o as claimed. D 

This version of the principal ideal theorem can serve as the first step in 
an induction, yielding a result about primes minimal over an ideal with 
many generators. 

R 

I 
p 

QjL) \ 
(x) Q 

FIGURE 10.1. 
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Theorem 10.2 (Final version of the Principal Ideal Theorem). If 
Xl, ... ,Xc E R, and P is minimal among primes of R containing Xl, ... , Xc, 
then codim P ~ c. 

Proof. We may suppose by localizing that P is the unique maximal ideal of 
R. By Corollary 2.17, P is nilpotent modulo the ideal (Xl, ... ,Xc). Let PI 
be a prime such that P ::J H, with no prime between. We shall show that 
H is minimal over an ideal generated by c - 1 elements. By the inductive 
hypothesis, codim H ~ c - 1, and this suffices. 

By hypothesis, PI cannot contain all the Xi; for definiteness, suppose 
Xl f/- Pl' Thus P is minimal over (PI, Xl), so P and in particular all the 
Xi are nilpotent mod (PI, Xl)' This means that for suitable n we can find 
elements ai E Rand Yi E PI such that 

Xi = aiXI + Yi, i = 2, ... , c. 

We claim that H is minimal among primes containing Y2, ... ,Yc' Indeed, 
P is nilpotent mod (Xl, Y2,"" Yc) so, by Theorem 10.1 the image of P 
in R/(Y2, ... , Yc) has co dimension at most 1. Thus the image of H m 
R/(Y2,"" Yc) has codimension 0, the desired result. D 

As a first consequence we have a strong descending chain condition on 
prime ideals in a Noetherian ring. 

Corollary 10.3. The prime ideals in a Noetherian ring satisfy the descend
ing chain condition, with the length of a chain of primes descending from 
a prime P bO'/Lnded by the number of generators of P. 

This allows us to take a major step toward Theorem A of Chapter 8. 

Corollary lOA. The ideal (Xl"'" Xc) C k[XI,"" xrl has codimension c. 

But note that it does not quite suffice to compute the dimension of the 
polynomial ring (we shall finish the job in Corollary 10.13). 

There is a useful converse to the PIT, as follows. 

Corollary 10.5 (Converse of the PIT). Any prime P of codimension c is 
minimal over an ideal generated by c elements. 

Proof. Inductively, with 0 ~ r < c, having chosen Xl, ... ,Xr E P to generate 
an ideal of codimension r, it suffices to choose Xr+l E P but not in any of 
the finitely many primes minimal over (Xl, ... , xr); this is possible by prime 
avoidance, Lemma 3.3, and Theorem 10.2. D 

Another easy consequence of the principal ideal theorem is an improved 
characterization of factoriality. 
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Corollary 10.6. A domain R is factorial if every codimension 1 prime of 
R is principal. 

Proof. By the principal ideal theorem and its converse, the co dimension 1 
primes are precisely the primes minimal over principal ideals, so we may 
apply Proposition 3.11b. 0 

The principal ideal theorem is a first assertion giving an interesting geo
metric conclusion from some hypothesis on the form of the generators of 
an ideal. There have been many extensions of this way to extract geometry 
from algebra. For example, there are similar bounds on the co dimension of 
determinantal ideals (see Exercise 10.9). 

A very general question in this direction is: Given an ideal I in a ring 
R, what is the maximal possible co dimension for ideals of the form <p(I)S, 
where <p : R -+ S is a ring homomorphism such that <p(I)S i= S? The supre
mum of such co dimensions is called the "superheight" of I (see Hochster 
[1976]; to understand the name, recall that "height" is a synonym for "codi
mension"). The principal ideal theorem may be restated by saying that if 
I = (x) c Z[x] = R, then superheight I = 1. It is known (Serre [1957]) 
that the superheight of I is equal to the co dimension of I when I is prime 
and R is a regular local ring (the definition is given later in this chapter) 
or when R/ I has a projective resolution over R whose length is codim I 
(see, for example, Hochster [1987]). The restriction to prime ideals must 
be made only to avoid rather trivial phenomena. However, there are many 
prime ideals in more complicated rings for which the superheight is strictly 
larger than the codimension; see Exercise 10.6, for one such instance, and 
Koh [1988] for further work on this idea. 

10.1 Systems of Parameters and Parameter Ideals 

Summarizing much of what we have done, we get another characterization 
of the dimension of a local ring: 

Corollary 10.7. If R is a local ring with maximal ideal m, then dim R is 
the smallest number d such that there exist d elements Xl, ... ,Xd E m with 
mn C (Xl, ... ,Xd) for n» O. 

Proof. If mn C (Xl"'" Xd) C m, then m is minimal among primes over 
(Xl"'" Xd) and dimR ~ d by the PIT. 

On the other hand, we may find elements Xl, ... , Xd with d = dim R 
such that m is a minimal prime containing (Xl, ... , Xd) by the converse of 
the PIT. But then R/(Xl,'" ,Xd) has only one prime ideal, which must be 
nilpotent by Corollary 2.12, and we are done. 0 
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FIGURE 10.2. The functions y, x2 - y form a system of parameters for k[x, Y](x,y)' 

Only finitely many points lie on the intersection of the level sets x 2 - y = 8, y = € 

for small 8 and €. 

Corollary 10.7 turns out to be so important that we codify the notions it 
uses: An ideal q em such that R/q has finite length (equivalently, mn c q 
for n » 0) is called a parameter ideal for R, and a sequence of elements 
Xl, ... ,Xd as in Corollary 10.7 is called a system of parameters for R. 

Geometrically, if R is the local ring of a point p on an algebraic variety 
X, a system of parameters in R is a sort of local coordinate system for X 
around p, in the sense that the values of the functions Xi determine points 
near p up to a finite ambiguity, as in Figure 10.2. Systems of parameters 
can be characterized as the smallest sets of elements with this sufficiency 
property, or as those sets having a certain algebraic independence property 
(see Exercise 14.8). 

More generally, if M is any finitely generated module over the local ring 
(R, m), then we say that an ideal q em is a parameter ideal for M if M/qM 
has finite length. By Corollary 2.17, this is true iff a power of m annihilates 
M/qM. Recalling that ann M denotes the annihilator of M, and using 
Nakayama's lemma, we may write this condition as rad(ann(M/qM)) = m. 

The next result shows that parameter ideals for modules are connected 
with dimension theory in the general case just as in the special case above. 

Proposition 10.8. If M is a finitely generated R-module, and q is any 
ideal of R then rad(ann(M/qM)) = rad(q + annM). In particular, if R is 
a local ring with maximal ideal m, then: 

a. q is a parameter ideal for M iff (q + ann M) :J m n for n » 0 iff q is 
a parameter ideal for R/ (ann M). 

b. Given a short exact sequence of modules 

o -> M' -> M -> Mil -> 0, 

an ideal q is a parameter ideal for M iff q is a parameter ideal for 
M' and !vI". 

c. dim M is the least number d such that there is a parameter ideal for 
M generated by d elements. 

Proof To prove the equality on radicals it suffices, by Corollary 2.12, to 
show that a prime P of R contains ann(M/qM) iff P contains q + annM. 
By Proposition 2.1, P :J ann(M/qM) iff (M/qM)p i= O. By Nakayama's 
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lemma (M/qM)p = Mp/qpMp -# 0 iff Mp -# 0 and qp c Pp. By Propo
sition 2.1 these conditions are satisfied iff P contains both ann M and q; 
that is, iff P ~ q + annM. 

a. Note that the annihilator of R/(annM)/q(R/(annM)) is q+annM. 
Also, since m is the unique maximal ideal of R, we have rad( q + 
ann M) = m iff q + ann M contains a power of m. The radical formula 
just established thus proves the equivalence of the three assertions. 

b. If q is a parameter ideal for M, then it is for M' and M" because 
their annihilators contain the annihilator of M. The converse follows 
from the induced exact sequence 

M'/qM' -+ M/qM -+ M"/qM" -+ 0 

which shows that if M' / qM' and M" / qM" have finite length then 
M/qM does also. 

c. By definition dimM = dim R/(ann M), so conclusion c follows from 
a and Corollary 10.7. D 

The principal ideal theorem deals with co dimension rather than dimen
sion, and this is occasionally a nuisance. However, a version with dimension 
follows in the local case. The local assumption is necessary for fairly trivial 
reasons; see Exercise 10.8. 

Corollary 10.9. If (R, m) is a local ring and M is a finitely generated 
R-module, then for any x E m we have 

dimM/xM ~ dimM-1. 

Proof. To say that dimM/xM = d means that dimR/ ann(M/xM) is 
a ring of dimension d. By Proposition 1O.8a, there is a parameter ideal 
for M / xM generated by d elements Xl, ... , Xd. But this means that 
M / (x, Xl, ... , Xd) M has finite length, so (x, Xl, ... , Xd) is a parameter ideal 
for M, and dim M :s; 1 + d as required. D 

10.2 Dimension of Base and Fiber 

Corollary 10.7 also yields a "superheight" result: If R is local with maximal 
ideal m and S is an R-algebra with mS -# S, then codim mS :::; codim m. 
(Proof: If Xl, ... , Xd is a system of parameters in R, then any prime minimal 
over mS is minimal over (Xl, ... ,Xd)S.) The inequality in the following 
theorem, which corresponds to part of Axiom D2 from Chapter 8, gives an 
extremely useful extension of this idea. 
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Theorem 10.10. If (R, m) --t (8, n) is a map of local rings, then 

dim 8 ::; dimR + dim8/m8, 

with equality if 8 is fiat as an R-module. 

Equality in Theorem 10.10 is a much weaker condition than flatness, as 
the example in Figure 10.4 (which is not flat) shows. However, under strong 
hypotheses on Rand 8, flatness is equivalent to a statement about fiber 
dimensions; see Theorem 18.16. Some strengthenings of Theorem 10.10, in 
the case where 8 is a localization of a finitely generated R-algebra, that let 
one compute the dimension of 8 without a flatness hypothesis, are given 
in Corollary 13.5 and Theorem 13.8. 

Proof. Write d = dimR, and e = dim8/m8. By Corollary 10.7 there exist 
Xl, ... ,Xd E m such that mS C (Xl, ... ,Xd) for s» 0 and Yl'''',Ye E 8 
such that nt C m8 + (Yl, ... , Ye) for t » o. Thus 

nst C (m8+(Yl, ... ,Ye))S 

C mS 8 + (Yl, ... ,Ye) 

C (Xl"'" Xd, Yl,···, Ye)8, 

and by the principal ideal theorem dim 8::; d + e. 
Now suppose that 8 is flat as an R-module. We must show that dim 8 ?: 

dim R + dim 8/ m8. Let Q be a prime of 8, minimal over m8, such that 
dimQ = dim8/m8. We have 

dim8?: dimQ + codimQ = dim8/m8 + codimQ, 

so it suffices to show that co dim Q ?: dim R. Writing r.p for the given map 
R --t 8, we have r.p-lQ = m. Thus it suffices to show that given a chain of 
primes m ::J PI ::J ... of R, descending from m, there is a chain of primes 
Q ::J Ql ::J ... of 8 with r.p-lQi = Pi. This is the content of the following 
"going down" lemma. 0 

Lemma 10.11 (Going Down for flat extensions). 8uppose that r.p : R --t 8 
is a map of rings such that 8 is fiat as an R-module. If P ::J pI are primes 
of Rand Q is a prime of 8 with r.p-lQ = P, then there exists a prime Q' of 
8 contained in Q such that r.p-lQ' = pI as in Figure 10.3. In fact Q' may 
be taken to be any prime of 8 contained in Q and minimal over P '8. 

The proof uses a fundamental lemma from the theory of primary decom
position. An alternative (giving a slightly weaker result) is described in 
Exercise 10.7. 

Proof. Since P'8 C Q, we may find a prime Q' contained in Q and min
imal over P'8 (here we use the fact that the intersection of a descending 
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chain of primes is prime). Since tensoring preserves flatness (Exercise 6.6a), 
SIP'S = S0RIP' is flat over RIP'. Replacing R by RIP' and S by SIP'S, 
we may reduce to the case P' = O. Since S is flat over R, every nonzerodi
visor in R-that is, every nonzero element of R-is a nonzero divisor on S 
(Corollary 6.3). Since Q' is a minimal prime of S, it consists of zerodivisors 
on S by Theorem 3.1, proving that cp-l(Q') = 0 as required. 0 

For another case in which "going down" holds, see Theorem 13.9. 
It is not hard to translate "going down" into an interesting geometric 

statement: Suppose that 'ljJ : X ---7 Y is a map of affine varieties over an 
algebraically closed field with induced map cp : R = A(Y) ---7 S = A(X). 
Suppose the prime Q corresponds to a subvariety Z of X, and that W is a 
subvariety of Y with 'ljJ(Z) c W. If "going down" holds between Rand S, 
there must be a subvariety V ~ Z in X whose image under 'ljJ is dense in 
W. An example where this fails is given in Figure 10.4. 

A slightly more careful analysis leads to a geometric result extending this 
one: If 'ljJ : X ---7 Y is a map of affine varieties such that the induced map 
cp : R := A(Y) ---7 S := A(X) makes S a flat R-module, then the map 'ljJ is 
open in the sense that it carries open sets to open sets. See, for example, 
Hartshorne [1977, III, Ex. 9.1]. This is one of several ways in which flat 
morphisms behave like submersive maps of manifolds. 

The next two corollaries are applications of Theorem 10.10. 

Corollary 10.12. If R, m is a local ring and R its completion at m, then 

dimR = dimR. 

Proof. R is flat over R by Theorem 7.2, and the fiber RlmR is the residue 
class field, which has dimension O. 0 

Corollary 10.13. 

a. If k is a field, then 

b. More generally, if R[x] is the polynomial ring in one variable over R, 
then 

dimR[x] = 1 + dimR. 
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FIGURE lOA. '/fi-1(W) has components W', Z, and Z'. No irreducible variety con
taining Z maps to a dense subset of W. 

c. Furthermore, if P is a prime ideal of R then there are prime ideals 
Q of R[x] contracting to P, and for a maximal such ideal we have 

dimR[x]Q = 1 + dimRp. 

Proof. Part a follows from part b by induction on r. 
For part b, first note that given a chain of primes Pt c ... C Pd of R we 

get a longer chain of primes PIR[x] c ... c PdR[X] c PdR[X] + (x) in R[x], 
so dim R[x] ~ 1 + dim R. The other inequality follows from part c, since a 
maximal ideal Q of R[x] is certainly maximal among primes meeting R in 
P = Q n R. Thus, it suffices to prove part c. 

First we check the result in the case where R is a field and P = O. In 
this case any prime ideal of R[x] contracts to 0 in R, so we take Q to be 
any maximal ideal of R[x]. Since 0 is not a maximal ideal of R[x], we have 
Q ¥- 0, and codim Q ~ 1. On the other hand, R[x] is a principal ideal 
domain, so Q is principal and codim Q :::; 1 by the principal ideal theorem 
(or by the elementary argument given at the beginning of this chapter). 
Thus, dim R[x]Q = 1 = 1 + dim Rp, as required. 

In the general case, PRix] is a prime ideal of R[x] and PRix] n R = P, 
proving the first statement of c. We may replace R by Rp and assume 
that R is local with maximal ideal P. Let Q be a maximal ideal of R[x] 
containing P; it follows that Q n R = P, and we must show that codim 
Q = 1 + codimP. 

If Po C ... C Pd = P is a chain of primes in R, then PoR[x] C ... c 
PdR[X] is a chain of primes in R[x] of the same length. By the previous 
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case, the maximal ideal Q / P R[x] in 

R[x]/PR[x] = (R/P)[x] 

has co dimension 1, so co dim Q ::::: d + 1. 
Let k = Rp/PRp be the residue class field of R at P. We may apply 

Theorem 10.10 to get 

dimR[x]Q ~ dimRp + dimR[x]Q/PR[x]Q 

~ dimRp + dimk[x] 

~ dimRp + 1, 

completing the proof. 

For more on primes in polynomial rings, see Exercises 10.2 and 13.6. 

10.3 Regular Local Rings 

D 

The principal ideal theorem gives us an interesting inequality connecting 
the co dimension of an ideal with the number of its generators. It is often 
interesting to ask in such cases, "What happens in the case of equality?" 
Restricting the question to the case of the maximal ideal of a local ring, 
this strategy leads to a big payoff in the theory of regular local rings. 

Suppose that (R, m) is a local ring of dimension d. The principal ideal the
orem shows that m cannot be generated by fewer than d elements. Following 
Krull, R is called regular if m can be generated by exactly d elements. By 
Nakayama's lemma a collection of elements generates m iff the images of 
these elements generate the (R/m)-vector space m/m2, so this vector space 
has dimension d iff R is regular, and then every minimal system of genera
tors of m has d elements. Such a minimal system of generators is a system 
of parameters for R; it is called a regular system of parameters. 

Examples of regular local rings are k[Xl,"" Xd](Xl, ... ,Xd) and the power 
series ring k[[Xl, ... , Xd]J, where k is a field. In both of these cases the 
sequence of variables forms a regular system of parameters. If p is a prime 
integer, then Z(p) [Xl, ... , Xn](p,Xl, ... ,Xn ) , and Z(p)[[Xl,"" Xnll are also regular 
local rings. (What is a regular system of parameters?) 

Regular local rings occupy center stage in algebraic geometry, since, as 
Zariski realized, they correspond to nonsingular points on algebraic vari
eties. The simplest case is this: Over the complex numbers, an algebraic 
variety X c em looks like a complex analytic submanifold of em locally 
near a point x iff the localization of A(X) at the prime ideal corresponding 
to x is a regular local ring. We shall prove an equivalent result in The
orem 16.19. (History here is not what one might expect. Krull made the 
definition [1937] a few years before Zariski proved the theorem [1940, 1947]. 
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Of course some suggestive geometric cases were familiar to Krull.) The fol
lowing is the tip of an iceberg of results showing that regular local rings 
are well behaved. 

Corollary 10.14. If R is a regular local ring, then R is an integral domain. 

Proof. Let R be a regular local ring with maximal ideal m. We do induction 
on dim R. In case dim R = 0, we must have m = 0, so R is a field, and the 
result is trivial. Thus we may suppose dim R = d > 0. 

By Nakayama's lemma, we have m2 -I- m, so by prime avoidance 
(Lemma 3.3) and the finiteness of the set of minimal primes of R, we 
may find an element x E m that is outside the minimal primes of R, and 
also outside m2• Set S = R/(x), and let n = mS be the maximal ideal of 
S. By the choice of x we have dim S < dim R, so dim S = d - 1 by Corol
lary 10.9. Also, n/n2 = m/(m2 + (x)) is a proper homomorphic image of 
m/m2, so it can be generated by (d - 1) elements. By Nakayama's lemma, 
n can be generated by (d - 1) elements, so S is regular of dimension d - 1. 
By induction S is a domain; that is, (x) is a prime ideal. Since we chose 
x outside the minimal primes, (x) is not a minimal prime of R. Thus (x) 
contains some minimal prime ideal Q of R. 

If y E Q is any element, then we may write y = ax for some a E R. Since 
x is not in Q, we must have a E Q. This shows that Q = xQ. It follows that 
mQ = Q, so by Nakayama's lemma Q = 0, and R is a domain as required. 

o 

In general it is extremely difficult to prove that a given ideal of polynomials 
is prime; the simple idea of the proof just given is the basis of one of the 
most powerful methods known for doing so, Hochster's method of "principal 
radical systems" (Hochster [1976]). Another method, using Serre's criterion 
for normality, is described in Chll;pter 18 (Theorem 18.15). 

Corollary 10.14 has an extension that we shall use many times. It is best 
stated in terms of a definition that generalizes the notion of a nonzerodivisor: 

A sequence of elements Xl, ... , Xd in a ring R is called an R-sequence (or 
regular sequence on R) if the ideal (Xl, ... , Xd) is proper and for each i, 
the image of Xi+l is a nonzero divisor in R/(XI, ... , Xi)' 

Corollary 10.15. If Xl, ... ,Xd is a regular system of parameters in a regular 
local ring R, then Xl, ... ,Xd is an R-sequence. 

Proof. For each i the ring R/(XI, ... , Xi) is a regular local ring, and thus an 
integral domain by Corollary 10.14. The image of Xi+l in this domain must 
be nonzero, since the maximal ideal of R could otherwise be generated by 
fewer elements. 0 

In our earlier examples of regular local rings containing a field, the regular 
systems of parameters were systems of indeterminates. This is not true in 
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general; for example, if k is any field, then (k[x, y]/(y2 - x(x -l)(x + 1) ))(x,y) 
is a regular local ring-the dimension is 1, and the maximal ideal is generated 
by x. But if the characteristic of k is not 2, this ring is very different than 
k[x](x); for example, its quotient field is not isomorphic to k(x). However, 
just as all smooth manifolds of a given dimension look alike in a sufficiently 
small neighborhood, complete local rings do not vary very much. 

Proposition 10.16. Suppose R is a complete regular local ring of dimension 
d with residue class field k. If R contains afield, then R ~ k[[XI' ... ,Xd]J, and 
the isomorphism can be chosen to send the variables Xi to any given regular 
system of parameters in R. 

Proof. By the Cohen structure theorem, R contains a copy of its residue field 
k. If YI, ... , Yd is a regular system of parameters in R, then by Theorem 7.16 
there is a surjective ring homomorphism 'P : k[[XI, ... ,Xd]] ~ R, sending Xi 
to Yi. Since k[[XI' ... ,Xd]] is an integral domain of dimension d, any proper 
homomorphic image of k[[XI,'" ,Xd]] has dimension less than d. Thus, 'P is 
an isomorphism. 0 

Beyond this it is known, for example, that the elements of a regular local 
ring have unique factorizations into primes, that localizations of regular local 
rings are again regular, and much more··· . We shall prove some of these 
things in Chapter 19, after we have homological tools at our disposal. 

10.4 Exercises 

Exercise 10.1: Let R be a Noetherian ring, and let X be an indeterminate. 
Show that dim R[x, x-I] = 1 + dim R. 

Exercise 10.2 (Prime ideals in a polynomial ring):* Let R be a Noethe
rian ring. This exercise refines the formula dim R[ x] = 1 + dim R. Suppose 
that P is a prime ideal of R of co dimension c. Show that the prime ideals 
Q C R[x] that intersect R in P are all of the following two kinds, with codi
mension as shown: 

a. Q = PR[x]. In this case codimQ = c. 

b. Q ~ P R[x]. In this case codim Q = c + 1, and there is a polynomial 
f (x) E Q with leading coefficient not in P such that 

Q = {g E R[x] I for some a E R - P, ag E PR[x] + (In. 

For each prime PeR there are infinitely many primes in R[x] of type b. See 
also Exercise 13.6. 
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Exercise 10.3: Let k be a field. Show that the ring k[x] x k[x] contains a 
principal prime ideal of co dimension 1, although it is not a domain. (By the 
argument of Corollary 10.14, there is no such example in a local ring.) 

Exercise 10.4:* Let a, b be a regular sequence in a domain R, and let S = 
R[x] be the polynomial ring in one variable over R. Show that ax-b is a prime 
of S. (See Exercise 17.2 for a sort of converse. Geometers will recognize this 
as a very weak version of a theorem of Bertini.) 

Exercise 10.5: If R = k[t](t) and S is a domain containing R, then S is 
torsion-free as an R-module and thus, as we have seen, flat, so the inequality 
of Theorem 10.10 is an equality. Show, however, that we may have strict 
inequality already in the case where R = k[s, t](s,t) C S = k[s, t/ s](s,t/s) , as 
in Exercise 6.9. Note that there is an open dense set of points p of the blowup 
in Exercise 6.9 such that the equality holds in Theorem 10.10 if we take S to 
be the localization of k[s, t/ s] at the maximal ideal corresponding to p, and 
R to be the localization of k[s, t] at the preimage of this maximal ideal. This 
phenomenon is general; see Corollary 14.5. 

Exercise 10.6: We mentioned that if P is a prime ideal in a regular local 
ring R and if R ----7 S is a map of local rings, then codimPS ::::: codimP. 
Here is an example showing that this may fail when R is not regular: Let 
R = k[x, y, s, t]/(xs-yt), and let S = R/(x, y) = k[s, t]. Let P = (s, t) c R. 
Prove that codimP = 1, but codimPS = 2, as shown in Figure 10.5. 

Z(XJ') 

FIGURE 10.5. Two planes in 4-space meeting in a point lie on the cone over a quadric 
surface. 

Exercise 10.7: Here is a weak "going down" statement without the hypoth
esis of flatness: Show that if R is an integral domain contained in the local 
ring (S, Q), then there is a minimal prime of S contracting to 0 in R. Give 
another proof of Lemma 10.11 using this in place of Theorem 3.1. 
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FIGURE 10.6. X = P U L, R is the coordinate ring of X. 

Exercise 10.8: The condition that R be local is needed in Corollary 10.9 
to avoid a rather trivial sort of counterexample. Find the one illustrated by 
Figure 10.6, where X has dimension 2, but a hyperplane section of X by a 
hyperplane parallel to P would only have dimension O. 

Determinantal Ideals 

Exercise 10.9 Determinantal ideals and a generalized principal 
ideal theorem:* Let M be a p x q matrix with entries in a ring R (Noetherian 
as always). Recall that a kxk minor of M is by definition the determinant 
of some k x k submatrix of M. Let h (M) be the ideal generated by the k x k 
minors of M. If k = 1 and p = 1, the PIT bounds the co dimension of a 
prime minimal over h(M) by q. Macaulay [1916] generalized this to the case 
k = p arbitrary, giving the bound q - k + 1. (It is amusing to note that 
Macaulay proved this generalized principal ideal theorem in the context of 
polynomial rings before Krull proved Theorem 10.2.) The following general
ization to the case where p and k are both arbitrary was given around 1960 
by Jack Eagon in his thesis. The proof is taken from a subsequent paper by 
Eagon and Northcott [1962]. 

Prove that if P is a prime minimal over Ik(M), then P has co dimension 
S; (p - k + l)(q - k + 1) as follows: 

a.* (Reduction) Show that if one of the entries of M is a unit, then Ik(M) = 
Ik-l(M') where M' is a suitable (p - 1) x (q - 1) matrix. 

b. Localize at P. Use induction on k to reduce to the case where all entries 
are in P and k > 1. 

c. Now pass to R[t], where t is a new indeterminate. If the 1, 1 entry of M 
was xu, replace M by the new matrix M' whose 1, 1 entry is Xl,l +t and 
whose other entries are the same as those of M. Show that h(M') c 
P' := PR[t]. Since P' has the same co dimension as P, and M' has the 
1,1 entry not contained in P', the problem reduces to showing that P' 
is minimal over Ik(M'). 
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d. Prove that pI + (t) is minimal over h(M') + (t). 

e. Suppose that pI :J Q :J h(M' ), with Q a prime of R[t]. Show that 
pI + (t) is minimal over Q + (t). Deduce that pI = Q by the principal 
ideal theorem in R[tJlQ. 

Exercise 10.10:* Let R be any Noetherian ring, and let M = (Xij) be a p x q 
matrix of indeterminates over the polynomial ring R[XiJ Show that Ik(M) 
has co dimension (p - k + l)(q - k + 1). 

Hilbert Series of a Graded Module 

Let k be a field, let S be a polynomial ring over k, and let M be a finitely 
generated graded S-module. In the Introduction we saw that if the variables 
of S all have degree 1, then the Hilbert function HM(n) = dimk Mn agrees 
with a polynomial function of n for large n. This is not true when the variables 
have different degrees, as the following exercises show. In this case HM(n) 
still agrees with a "periodic polynomial," but it is often more convenient to 
use the Hilbert series instead. 

Exercise 10.11: Let S be the graded polynomial ring k[Xl' X2], where we 
give Xi degree i. 

a. Show that Hs(n) = In/2J + 1. Show that this does not agree with a 
polynomial function in n, even for n » O. 

b. Show that Hs(2n) and Hs(2n + 1) are both polynomial functions of 
n for n ;::: O. Show also that the Hilbert series Ln>o HA(n)tn is a 
rational function in t with denominator (1 - t)(l - t 2f 

Exercise 10.12: Let S = k[Xl,"" x r ], where Xi is an indeterminate of 
degree di . Set q(t) = IIi=l(l - t di ). The Hilbert series of M is defined to be 
the formal power series in one variable t given by hM(t) := Ln2:0 HM(n)tn. 

a. Show that hM(t) is a rational function oft, and that in fact hM(t) may 
be written as a polynomial divided by IIi=l(l - t di ); that is, it is a 
rational function with poles only at roots of unity. 

b. Show that there is a number d (which may be taken to be the least 
common multiple ofthe degrees of the di ) such that for each s, HM (dn+ 
s) agrees with a polynomial in n for all n » 0; that is, HM(n) is a 
"polynomial with periodic coefficients." 

c. Imitating the proof that the Hilbert function agrees with a polynomial 
for large n in the classical case, show that the Hilbert series of M is a 
rational function. 

Exercise 10.13: Continuing with the notation in Exercise 10.12: 
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a. Now suppose that M has a system of parameters Yl, ... , Ym, where 
Yi is a homogeneous element of degree ei > O. Suppose further that 
Yl, ... ,Ym is a regular sequence on M (that is, Yi is a nonzerodi
visor on M/(Yl,"" Yi-t)M for i = 1, ... , m; because of the grad
ing the condition (Yl,"" Ym)M =1= M is automatic). Show that 
hM(t) = u(t)/s(t), where s(t) = rrZ:1(1 - tei ) and u(t) = EUiti, 
where Ui = H[M/(Yl, ... ,Ym)MJ(i) gives the Hilbert function of the mod
ule M/(Yl,"" Ym)M. Note that this is a module of finite length, so 
that u(t) really is a polynomial, and that the coefficients of u(t) are 
nonnegative integers. 

b. Let S = k[Xl,X2], where both variables have degree 1. Compute the 
Hilbert series of the S-module S/(xi, X1X2). Since X2 is a system of 
parameters, the Hilbert series of S can be written with denominator 
(1 - t); note that the numerator does not have positive coefficients. 

c. Since the Hilbert series of M is a rational function defined over the 
integers by Exercise 1O.12c, it makes sense to speak of the order of its 
pole at any number. Show that the dimension of M is the order of the 
pole of hM(t) at t = 1. (Hint: Use a system of parameters for M). 



11 
Dimension and Codimension One 

A large part of classical algebraic geometry has to do with geometry "in 
co dimension one": results about points in curves, curves in surfaces, and so 
forth. The commutative algebra of co dimension one is correspondingly rich. 
In this chapter we digress from the presentation of dimension theory and use 
the results of Chapters 9 and 10 to analyze some codimension-1 phenomena. 
In particular, we shall study "invertible" modules; give a criterion for and 
some consequences of normality, including a bit of the theory of Dedekind 
domains; study the length of a one-dimensional ring modulo a principal 
ideal; and prove that the integral closure of a one-dimensional Noetherian 
domain is Noetherian. 

Since normalization is such a well-behaved operation, a major strategy 
in commutative algebra is to analyze any ring by comparing it with its nor
malization. Our story begins with a description of one-dimensional normal 
local rings. 

11.1 Discrete Valuation Rings 

Recall that a one-dimensional local ring (R, m) is said to be regular iff its 
maximal ideal can be generated by one element. A generator for m is called 
a regular (or uniformizing) parameter for R. Such rings have a very 
simple structure: 

Proposition 11.1. Let (R, m) be a regular local ring of dimension 1. If 
7r is a regular parameter for R, then every element t of the quotient field 
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K(R) can be written uniquely in the form t = U7rn with n E Z and u a 
unit of R. In particular, every ideal of R is of the form (7rn ) , and R is a 
principal ideal domain. 

It follows from this result that R is factorial; we shall prove that all 
regular local rings are factorial in Chapter 19. 

Proof. Since R is a regular local ring, it is a qomain by Corollary 10.14. If 
8 E R, we may by the Krull intersection theorem choose a representation 
8 = V7rm with m E Z as large as possible such that v E R. Since v fJ. (7r) = 
m, v must be a unit. If t E K (R), then writing t = 81/82 with Si E R, and 
applying the result for 8 to 81 and 82, we see that t may be represented 
as t = U7rn with n E Z and u ERa unit. Such a representation is unique 
because if U7rn = U'7rn', then u/u' = irn'-n is a unit of R, so n' = n and 
u=ul • 

The last two statements follow easily. D 

Let R be a one-dimensional regular local ring. We may define a group 
homomorphism v : K(R)* ----+ Z, from the multiplicative group K(R)* of 
nonzero elements of the quotient field of R to Z, as follows. If t E K(R)*, 
then by Proposition 11.1 there is a unique n E Z such that t = U7rn with 
u a unit of R. We set vet) = n. The map v is a discrete valuation. Note 
that if 8 = V7rm , then 8 + t = (U7rm- d + V7rn - d)7rd with d = mine m, n), 
so V(8 + t) 2: min(v(8), v(t)). In general, a valuation on a domain R is a 
group homomorphism v from K(R)* to a totally ordered group G such that 
v(r) 2: 0 for r E 'R, satisfying the inequality v(a+b) 2: min(v(a), v(b)). The 
word discrete refers to the fact that G = Z, the only discrete subgroup of 
the totally ordered group of real numbers under addition. The valuation 
ring of v is the ring S = v-1{g E Gig 2: O}. One-dimensional regular 
rings are usually called discrete valuation rings, or DVRs. For more on 
valuations, see Exercises 11.1-11.5. 

Familiar examples of DVRs include the localization of a polynomial ring 
in one variable over a field k[t](t) and its completion k[[t]]; and the arithmetic 
analogues of these rings, Z(p) for any prime p and its completion Zp, the 
ring of p-adic integers. 

By Proposition 10.16, two complete DVRs that contain fields are iso
morphic iff they have isomorphic residue class fields (and then they are 
isomorphic to k[[x]], where k is the residue class field). On the other hand, 
DVRs that are not complete can be very different from one another, even 
when they are localizations of one-dimensional affine rings over a given 
algebraically closed field. To give a quick example we appeal to some facts 
from algebraic geometry. Suppose that R = Ap and R' = A~, are DVRs 
obtained by localizing the affine rings A and A' of nonsingular curves G and 
G' over an algebraically closed field k at primes P and P' corresponding 
to points pEG and p' E G', respectively. A basic argument from algebraic 
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geometry (Hartshorne [1977, Chapter I, section 6]) shows that C and C' 
can be embedded as open subsets of unique nonsingular projective curves 
o and 0' and that if R ~ R' as k-algebras, then 0 ~ 0' by an isomorphism 
carrying p to p'. If the genus of 0 is at least 2, then 0 has only finitely many 
automorphisms, so given p there are only finitely many points p' whose local 
rings are isomorphic to that of p. In particular, R is isomorphic to AQ for 
only finitely many maximal ideals Q of A other than P. By Theorem 4.19 
A is a Jacobson ring, and thus has infinitely many maximal ideals. So it 
has infinitely many isomorphism classes of localizations at maximal ideals. 

11.2 Normal Rings and Serre's Criterion 

In general, normalization has the effect of smoothing out certain irregulari
ties in a variety; it is a step toward a "resolution of singularities." We shall 
show that a normal one-dimensional local Noetherian ring is a DVR; in 
particular, a normal one-dimensional variety is already nonsingular. Nor
malization gives a cheap and canonical process for resolution of singularities 
in dimension one. Since normalization commutes with localization, it fol
lows from this that the localizations of a normal ring at codimension-l 
primes are regular-that is, they are discrete valuation rings. This is called 
regularity in codimension 1. In the geometric setting, this means that a 
normal variety is nonsingular in co dimension I-that is, the singular locus 
is of co dimension 2:: 2. Our first main result, Serre's criterion, explains the 
condition that must be added to make the converse of this statement true 
as well. 

As an introduction, consider the case of a factorial domain. We have 
seen in Proposition 4.10 that any factorial domain R is normal. The heart 
of this argument is the following: Suppose r Isis integral over R and we 
wish to prove that rls E R, that is, that r E (s). If (s) = R we are 
done, so we assume that (s) is a proper ideal. The argument given in 
Proposition 4.10 deduces from the integrality of r I s a relation of the form 
ar = bs. This shows that if r 1- (s), then at least r is a zerodivisor mod
ulo s and is contained in an associated prime of s. In the factorial case, 
this associated prime is generated by one of the prime elements divid
ing s, so we can divide both rand s by its generator and complete the 
proof by Noetherian induction (or, as in the version of Proposition 4.10, 
we could assume from the outset that rand s have no common factor, 
and derive a contradiction). Thus the condition we used could be stated 
as follows: Associated primes of principal ideals are principal. It is not 
hard to check that this condition is equivalent to factoriality (see Corol
lary 10.6). But a slightly weaker condition of this sort is equivalent to 
normality. 
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Theorem 11.2. A Noetherian domain R is normal iff(*) for every prime 
P of R associated to a principal ideal, Pp is principal. 

This terse statement deserves some amplification. First, the condition 
that Pp is principal implies (by the principal ideal theorem) that co dim 
P = 1, so (*) implies that (i) every associated prime to a principal ideal 
has codimension 1. 

Further, if codimP = 1, so that Rp is one-dimensional, then Pp is prin
cipal iff Rp is a discrete valuation ring. Thus (*) is equivalent to condition i 
along with condition ii: Every localization of R at a codimension-1 prime is 
a discrete valuation ring (regularity in co dimension 1). The theorem asserts 
that normality is equivalent to conditions i and ii. 

The one-dimensional local case of Theorem 11.2 says that a one
dimensional local domain is normal iff it is a discrete valuation ring (that 
is, iff its maximal ideal is principal). 

Proof. We first show that the given conditions imply that R is normal. 
Since an intersection of normal domains with a common quotient field is 
obviously normal, it will be enough to show that R is the intersection of 
its localizations at primes associated to principal ideals. This is done by 
the following proposition. Since we shall soon want to apply it in a case 
where R is not a domain but only reduced, we prove it more generally for 
reduced rings. Here we need some terminology: We shall say that a prime 
of R is associated to a nonzero divisor if it is an associated prime of a 
principal ideal generated by a nonzero divisor. 

Proposition 11.3. If R is a reduced Noetherian ring, then an element 
x E K(R) belongs to R iff the image of x in K(R)p belongs to Rp for 
every prime P associated to a nonzerodivisor in R. 

Proof. Suppose that aju E K(R), with a, u E Rand u a nonzero divisor. If 
aju tJ. R, then a tJ. (u). By Corollary 3.5, there is an associated prime P of 
(u) such that a tJ. (u)p C Rp. Thus aju tJ. R p. 0 

Continuing the proof of Theorem 11.2, we next suppose that R is a 
normal domain and that P is a prime of R associated to a principal ideal 
(a); say P is the annihilator of bmod(a), with b E R - (a). We shall show 
that Pp is a principal ideal of Rp. Localizing if necessary, we may assume 
from the outset that R is local with maximal ideal P. Let K be the quotient 
field of R, and consider the set p-1 := {r E KlrP C R}. We clearly have 
Pc p-1 PeR, and since P is maximal, this leaves only the possibilities 
p-1p = P and p-1p = R. 

If p-1 P = P, then by Corollary 4.6 the elements of p-1 are integral over 
R. Since R is normal, p-1 = R. But Pb C (a), so bja E p-1 = R, whence 
bE (a)--contradicting our assumption. 
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Thus p-l P = R; that is, P is invertible. Since R is local, we get P ~ 
R by Theorem 11.6a, so P is principal. (The necessary special case of 
Theorem 11.6 is easy to do directly: Since R is local, p-l P = R implies 
that for some r E p-l we have rP = R. Consequently, P = Rr-1 is 
principal.) 0 

Corollary 11.4. If R is a normal Noetherian domain, then R is the inter
section of its localizations at codimension-1 primes. 

Proof. By Proposition 11.3 any ring is the intersection of its localizations at 
the primes associated to nonzerodivisors. If R is normal and P is a prime 
associated to a nonzero divisor , then we have shown that Pp is principal. 
Thus Pp , and with it P, has co dimension 1. 0 

The geometric version of Corollary 11.4 is quite useful. It says that if X is 
a normal variety and Y c X is a subvariety of co dimension at least 2, then 
any rational function on X regular on X - Y extends to a regular function 
everywhere on X. Another version (that we shall not prove) of this is the 
removable singularities theorem of several complex variables: If X is 
a normal analytic variety of dimension at least 2, and x E X is a point (or 
more generally a codimension-2 subset), then any meromorphic function 
on X that is holomorphic outside x is holomorphic everywhere on X. 

There is an important extension of the criterion of Theorem 11.2. First, 
a definition: A ring R is normal if it is reduced, and integrally closed in its 
total quotient ring. The normalization of a reduced ring R is the integral 
closure of R in its total quotient ring. 

Serre noticed that conditions i and ii following Theorem 11.2 really have 
nothing to do with R being a domain, and that with small modifications 
they distinguish normal rings among all Noetherian rings. It turns out that 
a normal ring is a direct product of normal domains. A local or graded 
ring cannot be a nontrivial direct product, so in many "practical" cases, 
Theorem 11.5 gives a criterion that serves to distinguish normal domains. 

It happens that it is generally rather hard to prove that a particular ring 
is a domain, that is, that an ideal is prime, while it is often not so hard 
to check the conditions of the criterion. For instance, condition i follows 
from the Cohen-Macaulay condition that we shall investigate in Chapter 18. 
Condition ii is often easy to check by using the Jacobian criterion, explained 
in Chapter 16. Thus the following criterion is a powerful tool for proving 
that a ring is a domain; see Theorem 18.15 and the example following it. 
We shall deduce the general form of the criterion from the special case 
given in Theorem 11.2. A related but easier result, characterizing reduced 
rings, is given in Exercise 11.10. 

Theorem 11.5 (Serre's Criterion). A Noetherian ring R is a direct product 
of normal domains iff the following two conditions are satisfied: 
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i. Every associated prime of a principal ideal generated by a nonzero
divisor in R is of codimension 1; every associated prime of 0 is of 
codimension o. 

ii. Every localization of R at a codimension-l prime is a discrete val
uation ring; every localization of R at a codimension-O prime is a 
field. 

Condition ii, regularity in co dimension 1, is sometimes called "Rl" where 
the R stands for "Regular." Condition i is usually called "S2" where the 
S stands, somewhat asymmetrically, for Serre. See Exercise 11.10 for the 
meaning of the condition "RO and SI" and the discussion after Theo
rem 18.15 for a reinterpretation of the conditions SI and S2. 

Proof. If R is a direct product of rings, say R = Rl X ... x Rn , then any 
prime of R has the form 

Rl X .•. X R;-l X Qi x R;+l x ... x Rn 

for some i and some prime Qi of Ri . The associated primes of 0 are those of 
the form (*) with Qi associated to 0 in R;. Similarly, the primes associated 
to a nonzero divisor 

aj E R j a nonzerodivisor for each j 

are those of the form (*) with Qi an associated prime of ai. 
If now each of the Rj is normal, then R satisfies condition i because by 

Theorem 11.2, each of the Rj does, and it satisfies condition ii because in 
addition each localization of R at a prime of co dimension c is a localization 
of some R j at a prime of codimension c. 

Conversely, suppose that R satisfies conditions i and ii. We shall first 
show that R is reduced. If 

0= nIj with I j a Prprimary ideal 

is a minimal primary decomposition of 0, then each Pj is an associated 
prime of 0 and thus has co dimension 0 by condition i. By condition ii, Rp 
is a field, so that I j = Pj , and R is reduced. 

We may now apply Proposition 11.3. Since for each prime P associated 
to a nonzerodivisor in R the ring Rp is integrally closed, it follows that R 
itself is integrally closed in K(R). Since R is reduced, K(R) is a reduced 
zero-dimensional ring, and by Proposition 2.16 K(R) is the product of 
fields K j = (R/ Pj ) Pj" Let ej be the identity element of K j , so that ej is an 
idempotent of K (R) and eiej = 0 for i =1= j. Since ej satisfies the integral 
equation e; - ej = 0, we must have ej E R for each j. It follows that R is 
the product of the rings Rej = R/ Pj. Further, since R is integrally closed 
in K(R), it now follows that each R/ Pj is integrally closed in K j , so R is 
a product of normal domains, as required. 0 
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11.3 Invertible Modules 

Anyone who has ever looked into a modern paper in algebraic geometry 
will have seen the phrase "invertible sheaf" or its approximate synonym 
"line bundle" prominently displayed. The reason is that these notions play 
a major role in the co dimension-one theory of varieties. They will play a 
major role for us, too. We begin with the definition. 

If R is a ring and I is an R-module, then I is invertible if I is finitely 
generated and if for every prime ideal P of R we have Ip ~ R p; that is, I is 
locally free of rank 1. Of course, it suffices to check this for maximal ideals, 
since if P c m are primes then Rp is a further localization of Rm. We write 
I* for HomR(I, R), and we make use of the natural map fL : I* 0 I ~ R by 
cp 0 a f----t cp(a). (We shall see that every invertible module is isomorphic to 
an ideal, so the name I is not too misleading.) 

The simplest invertible ideals are the principal ones: If I = (x), where 
x is a nonzerodivisor, then I is invertible. It is easy to give an example 
of a nonprincipal invertible ideal: The ideal I = (2,1+ A) c Z[A] 
is one. (Proof: Easy computation shows 2 E I2. If I = (x) for some x, 
then 2 = ux2 for some element u of Z[A]. Let N(a + bA) = a2 + 5b2 
be the norm. We get 4 = N(2) = N(u)N(x)2. Since N(x) is not a unit, 
N(x) = ±2. But a2 + 5b -=I- ±2. Thus I is not principal. To check that I is 
locally principal at a prime P, first note that if I rt P then Ip = R p. If 
I c P then 2 E IP, so by Nakayama's lemma Ip = (1 + A)p.) In the 
realm of affine rings, examples are common: For example, all the maximal 
ideals of k[x, y]j(y2 - x 3 + x) are invertible but not principal if k is an 
algebraically closed field of characteristic not 2. (Proof for those who know 
some geometry: This is the affine ring of a nonsingular curve of genus 1 with 
just one point at infinity. If a maximal ideal were principal then, because 
the divisor of a rational function on a complete curve has degree 0, the 
generator would birationally map the curve to Pl.) Systematic algebraic 
methods, and some more examples, are given in the exercises. 

We shall compare invertible modules with R-submodules of the total quo
tient ring K (R). These are called fractional ideals of R. If I is a finitely 
generated fractional ideal of R, then choosing a common denominator for 
the generators of I shows that I is isomorphic to an ordinary ideal of R. If 
Ie K(R) is any set, we define I- 1 := {s E K(R)lsI c R}. 

Theorem 11.6. Let R be a Noetherian ring. 

a. If I is an R-module, then I is invertible iff the natural map fL : I* ® 
I ~ R is an isomorphism. 

b. Every invertible module is isomorphic to a fractional ideal of R. Every 
invertible fractional ideal contains a nonzerodivisor of R. 

c. If I, J c K(R) are invertible modules, then the natural maps 10 J ~ 
IJ, taking s 0 t to st, and I- 1J ~ HomR(I, J), taking t E I-1 J to 
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'Pt : I ~ J defined by 'Pt(a) = ta, are isomorphisms. In particular, 
I-I ~ 1*. 

d. If I c K(R) is any R-submodule, then I is invertible iff I-I 1= R. 

Proof. 

a. If I is invertible then jt localizes, at any prime P, to the isomorphism 
jtp : Rp Q9 RpRp = Rp Q9 RpRp ~ R p. By Corollary 2.9, jt is an 
isomorphism. 

Conversely, suppose jt is an isomorphism. Suppose that 1 = 
jt(L:7=1 'Pi Q9 ai). It follows that for every prime P, jtp : (1* Q9R I)p = 
(I*)p Q9Rp Ip ~ Rp is an isomorphism. We shall show that Ip ~ Rp 
and that it is generated by one of the ai. Some 'Pi(ai) must be outside 
P. Let v = 'Pi(a;)-l E Rp so that a := vai goes to 1 under ('Pi)P. 
Then Ip = Rpa EEl ker('Pi)p, with Rpa ~ Rp. Similarly, regarding a 
as a homomorphism from Tp to R p, we see that Ip = Rp'Pi EEl ker(a) 
and R'Pi ~ R. Now, 

Since (ker'Pi) Q9 Rp'Pi maps to 'Pi (ker 'Pi) = 0 under the isomorphism 
jt, we have (ker 'Pi)P = 0, and ('Pi)P is an isomorphism sending ai 
to a generator, as claimed. It follows from Corollary 2.9 that I is 
generated by a1, ... , an, SO I is also finitely generated. 

b. Suppose I is invertible. We wish to embed I in K(R). By Exer
cise 3.14, K(R) is a semilocal ring; its maximal ideals are of the form 
PK(R), where P is a maximal associated prime of R. For every such 
P we have I Q9 K(R)PK(R) = Ip ~ Rp ~ K(R)PK(R). Thus by Exer
cise 4.13, I Q9 K(R) ~ K(R). 

Next we show that the localization map 'P : I ~ K(R) Q9 1= I[U- 1], 

where U is the set of nonzero divisors on R, is a monomorphism. 
To prove this, it is enough by Corollary 2.9 to check it locally at 
a maximal ideal P. The map 'PP is the localization map 'PP : Ip ~ 
Rp ~ K(R)Q9pRp = Rp[U-1]. The elements of U are nonzero divisors 
on R p, so 'PP is a monomorphism as required. The map I ~ K(R) Q9 
I ~ K(R) is the desired embedding. 

Suppose now that I C K(R) is any finitely generated fractional ideal 
such that InR consists of zerodivisors. Because I is finitely generated, 
there is a nonzero divisor u E R such that uI eRn I eRe K(R). 
By Corollary 3.2 there is a nonzero element b E R annihilated by 
R n I, and thus by uI. It follows that I is annihilated by ub, and 
localizing at a prime P containing the annihilator of ub, we see that 
Ip ~ R p, so I is not invertible. 
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c. Suppose that I, J c K(R) are invertible. We first show that the 
natural surjection I @ J ~ I J is a monomorphism. It suffices to show 
that for any prime P of R the map Ip@Rp Jp ~ (I J)p c K(R)p is a 
monomorphism. Now K(Rp) is a localization of K(R)p, and it suffices 
to prove that the composite map to K(Rp) is a monomorphism. Thus 
we may assume from the outset that R is local. 

In this case I ~ J ~ R, so I and J are generated as R-modules 
by some nonzero divisors sand t of K(R). It follows that st is a 
nonzero divisor. The composite map R ~ R @R R ~ I @R J ~ I J = 
Rst c K(R) is multiplication by st, a monomorphism as claimed. 

Next we show that the natural map I-1J ~ HomR(I,J) sending t 
to CPt is an isomorphism. By part b we may choose a nonzero divisor 
v E RnI. If ° -1= t E I-I J, then tv -1= 0, so t induces a nonzero element 
of HomR(I, J), and the map I-I J ~ HomR(I, J) is a monomorphism. 
To show that it is an epimorphism, let <P E HomR(I, J) be arbitrary, 
and set <p( v) = w. We claim that <p = <Pw/v' 

In fact, we claim that if any two homomorphisms <p, 'lj; : I ~ K(R) 
agree on v, then they agree on all of I. It suffices to show that they 
agree after localization. The element v has the property that its anni
hilator is 0, and this is preserved by localization, so v corresponds to a 
nonzero divisor of Rp under the isomorphism Ip ~ Rp. After choosing 
such an isomorphism, we may regard <pp and 'lj;p as homomorphisms 
of Rp-modules Rp ~ K(R)p that agree on a nonzero divisor v of Rp. 
Thus, v<p(l) = <p(v) = 'lj;(v) = v'lj;(l), so <p(1) = 'lj;(1) and <p = 'lj;. 

d. First suppose that I C K(R) is an invertible module. By part c the 
isomorphism 1* @ I ~ R may be identified with the multiplication 
map 1-1 @I ~ R, so I-II = R. 
Finally, suppose I C K(R) is an R-submodule with I-I I = R. We 
may localize and suppose that R is local with maximal ideal P, and 
we must then show that I ~ R. By our hypothesis there is an element 
v E 1-1 such that vI ct P. It follows that vI = R. This implies that 
v is a nonzero divisor , so multiplication by v is an isomorphism of I 
with R. 

D 

Part d of Theorem 11.6 accounts for the term "invertible" submodule. 
Since the tensor product is associative, the set of isomorphism classes of 
invertible R-modules forms a group under the operation @: The unit is the 
isomorphism class of R and by Theorem l1.6a the inverse of the class of I 
is the class of 1*. This group is called the Picard group of R, denoted 
Pic(R). 

Similarly, the set of invertible submodules of K(R) forms a group under 
multiplication; the inverse of I C K(R) is I-I. This is called the group 
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of Cartier divisors, C(R) (we shall see the origin of the term later). We 
have: 

Corollary 11.7. Let R be a Noetherian ring. 

a. The map C(R) ~ Pic(R) sending each invertible submodule of K(R) 
to its isomorphism class is surjective, and its kernel is isomorphic to 
the group of units of K(R). 

b. The group C(R) is genemted by the set of invertible ideals of R. 

Proof· 

a. To each unit u E K(R) we associate the "principal divisor" Ru c 
K(R); it is certainly an invertible module, with inverse Ru- I • The 
map C(R) ~ Pic(R) is surjective by Theorem 11.6b and takes prin
cipal divisors to the identity, so it suffices to show that if I, J c K(R) 
are invertible submodules and 'P : I ~ J is an isomorphism, then 
I = uJ for some unit u E K(R)*. By part c of Theorem 11.6, 
HomR(I, J) = I-IJ, so 'P may be realized as multiplication by some 
element u E K(R). The inverse map is similarly realized by multipli
cation by some element v E K(R). Thus multiplication by uv is the 
identity on I, and since I must contain a nonzero divisor of R, we see 
that uv = 1. 

b. If Ie K(R) is an invertible fractional ideal of R, then I-I contains a 
nonzero divisor a E R by Theorem 11.6b. Thus aI C R, and we may 
write 1= aI . (a)-I. D 

11.4 Unique Factorization of 
Codimension-One Ideals 

As we have mentioned before, commutative algebra began in the search 
for an analogue of unique factorization that would hold for the ring of 
all integers in a given algebraic number field K -that is, for the integral 
closure of Z in K. One fruit of this search was the Lasker-Noether theory 
of primary decomposition, which deals with arbitrary ideals in an arbitrary 
Noetherian ring, and in which products are replaced by intersections; we 
treated this in Chapter 3. But long before the work of Lasker and Noether 
(1905), Dedekind (1871) had described an extension of unique factorization 
that gave a unique expression of ideals of a ring R of algebraic integers as 
products of prime ideals. The key fact about R from this point of view 
turns out to be that its localizations are all factorial. (In Dedekind's case 
R is normal and one-dimensional, so the localizations are all DVRs.) The 
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generalization is worthwhile because, as we shall prove later, any regular 
local ring is factorial. Thus if R is the affine ring of any nonsingular affine 
variety, then R is locally factorial. 

We say that an ideal I in a ring R has pure co dimension 1 if every 
associated prime ideal of I has codimension 1. We include the case when I 
has no associated primes at all-that is, when I = R. 

Theorem 11.8. Let R be a Noetherian domain, and suppose that for every 
maximal ideal P of R the ring Rp is factorial. 

a. Let I c R be an ideal. I is an invertible module iff I has pure codi
mension 1. 

b. If I c K(R) is an invertible fractional ideal, then I is uniquely 
expressible as a finite product of powers of prime ideals of codimension 
1. Thus C(R) is a free abelian group generated by the codimension 1 
primes of R. 

Proof. Suppose first that I C R is an invertible ideal. If we localize at any 
maximal ideal then I becomes principal, generated by a nonzerodivisor. 
Since a factorial domain is normal by Proposition 4.10, Theorem 11.2 shows 
that I is unmixed of codimension 1. 

Next suppose that P is a prime ideal of codimension 1. Suppose m is 
a maximal ideal of R. If P c m, then Pm C Hm is principal because Hm 
is factorial. If P ¢.. m, then Pm = Hm. In either case Pm ~ R m, so P is 
invertible. 

We shall now show that any ideal I of pure codimension 1 is a finite 
product of codimension 1 prime ideals. Since a product of invertible ideals 
is invertible, this will show that I is invertible as well. Arguing by con
tradiction, let I be an ideal of pure codimension 1, maximal among such 
ideals that cannot be expressed as the product of co dimension 1 prime ide
als. Note that 1= R is equal to the empty product of prime ideals, so we 
may assume I #- R. Let P be a codimension 1 prime ideal containing I. 

Since P is invertible, we have p-1 P = R and thus p-1 ~ R. If p-1 I = I, 
then p-l would consist of elements integral over R by Corollary 4.6. As R 
is locally factorial, it is normal by Proposition 4.10, so this is impossible 
and p-l I ~ I. By our maximality hypothesis, we may write p-l 1= IIQi, 
a finite product of codimension 1 prime ideals, and thus I = PIIQi is 
a product of prime ideals after all. By Corollary 11. 7b, every invertible 
fractional ideal may be expressed as a product of powers of codimension 1 
prime ideals. 

It remains to show that the expression of I as a finite product of powers 
of distinct codimension 1 prime ideals is unique. Suppose I = II~l ~di = 

II?=l Q:i are two such expressions. Multiplying both sides by any primes 
that appear to negative powers, we may assume that all the di and ei are 
greater than o. We do induction on d := I: di . If d = 0, then I = Rand 



258 11. Dimension and Co dimension One 

n = 0 as well. If d 2 1, note that IIPi C Q1. Since Q1 is prime, some Pi 
must be contained in Q1. Since Pi and Q1 are both co dimension 1, we must 
have Pi = Q1. Since Q1 is invertible, we may "cancel" Q1 by multiplying 
both sides by Ql 1 , reducing d and finishing the proof. (For the relation of 
this to primary decomposition, see Exercise 11.11.) D 

A Dedekind domain is a Noetherian normal domain of dimension l. 
Thus the ring of all integers in an algebraic number field and the affine 
ring of a nonsingular irreducible algebraic curve are Dedekind domains. 
Theorem 11.8 is most often stated and applied for Dedekind domains. Here 
is the statement in this special case. 

Corollary 11.9 (Dedekind). Let R be a Dedekind domain. Every nonzero 
ideal of R is invertible and may be written uniquely as the product of prime 
ideals. The same is true for fractional ideals. Thus C(R) is a free abelian 
group generated by the set of maximal ideals of R. 

If R is a Dedekind domain, then the group Pic(R) = C(R)/K(R)* is 
usually called the class group of R. It is an interesting invariant, about 
which a good deal is known. For example, if R is the ring of integers in a 
number field, then Pic(R) is a finite group. 

On the other hand, if R is the affine ring of a nonsingular curve over an 
algebraically closed field, then Pic(R) is finite iff the curve is rational. For a 
curve of genus g > 0, Pic(R) may be represented as the Picard group of 
the associated complete curve modulo the subgroup generated by the 
classes of the ideals of the finitely many points at infinity. Over the complex 
numbers, for example, the Picard group of a complete curve of genus g is 
isomorphic as a group to a product of Z and a torus, the product of 2g 
copies of the circle {z E C Ilzl = I}. This is an uncountable group, and an 
easy argument shows that Pic(R) is actually a quotient of the torus by a 
finitely generated group projection onto Z. Thus Pic(R) is an uncountable, 
divisible group. If R is the affine ring of a singular curve, then the Picard 
group of R maps onto that of the normalization of R, which corresponds to a 
nonsingular curve; the kernel is an interesting invariant of the singularities. 

In general, it is known that every abelian group appears as the Picard 
group of some Dedekind domain, and the sets of generators and relations 
given by invertible ideals and principal ideals may also be prescribed; see 
Leedham-Greene [1972J. 
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11.5 Divisors and Multiplicities 

If a, b are elements of a ring, then b divides a iff a E (b). In general, 
an ideal can be regarded as something by which an element might be 
divisible--a "divisor." Because of the unique factorization into prime ide
als in a Dedekind domain, nonzero ideals there correspond to finite sets of 
co dimension 1 prime ideals, each with multiplicity. The term divisor was 
transferred to such sets and stuck there. We define a divisor (or Weil 
divisor) in any ring R to be an element of the free abelian group Div(R) 
whose generators are the co dimension 1 prime ideals of R. That is, a Weil 
divisor of R is a formal linear combination of co dimension 1 prime ideals 
in R, with integer coefficients. 

On the other hand, the natural analogue, for an arbitrary ring R, of the 
set of divisors in a Dedekind domain is in many respects the set of invertible 
ideals of R, now called Cartier divisors. (Both the names Cartier divisor 
and Weil divisor seem to have been coined by Mumford [1966].) In general, 
these two sets are very different, but there is a natural homomorphism from 
the group of Cartier divisors to the group of Weil divisors, which we shall 
describe. 

We shall exploit the following elementary fact: If R is a one-dimensional 
ring and a E R is any nonzerodivisor, then R/(a) is zero-dimensional, and 
thus of finite length. We shall see that the map R - {O} ----+ Z defined 
by a f---+ lengthR/(a) extends to a homomorphism from K(R)* to Z. (In 
general it is not a valuation; see Exercise 11.6.) This homomorphism even 
extends to the group of invertible ideals. 

Theorem 11.10. For any Noetherian ring R, there is a map <p : C(R) ----+ 

Div(R) sending an invertible ideal I c R to 

<p(I)= length(Rp/Ip). P E Div(R). 
PeR codim 1 prime 

If dim R = 1, then there is a map C(R) ----+ Z sending an invertible ideal I 
to length R/ I. 

Proof. We begin with a general remark: Suppose that G, H are abelian 
groups and that s eGis a subset that generates G. To define a homo
morphism <p : G ----+ H, it suffices to give <p on s, and check that <p respects 
products of elements of s in the sense that if IIai = IIbj with ai and bj in .5, 

then II<pai = II<pbj . That is, one need not worry about the inverses of ele
ments of s. To extend <p from s to all of G, suppose x = IISiIItj1 E G with 
Si, tj E s. We would like to set <px equal to II<pSi II ( <ptj t1. If x = IIs;IItj-1 
is another expression of x in terms of elements in s, then IISiIItj = IIs;IItj. 
Since we have assumed that <p is well defined on products of generators, 
II<ps;II<ptj = II<ps;II<ptj and II<pSi II ( <ptj )-1 = II<ps; II ( <ptj t1. Thus, we may 
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define rpx as above, obtaining a map of sets rp : G --+ H. It follows at once 
that rp is a group homomorphism. 

We now turn to the definition of rp : C(R) --+ Div(R). The set s of all 
invertible ideals I c R generates C(R), and by the beginning remark it 
suffices to show that the formula above defines rp(I) for I E .5 and prove 
that rp respects products. Suppose I c R is an invertible ideal and P 
is a codimension-1 prime of R. The localization Rp is one-dimensional, 
and Ip contains a nonzerodivisor, so Rp/ Ip is zero-dimensional and length 
(Rp/lp) < 00. If I ct P, then the length is O. If I c P, then since I 
contains a nonzerodivisor, P must be one of the finitely many minimal 
primes of I. Thus the sum defining rp(I) is finite, and rp is well defined on 
the generators .5. 

To show that rp respects products, suppose that I = IIIj where each 
I j is an invertible ideal contained in R. We must show that for every 
codimension-1 prime P, length(Rp/ Ip) = Lj length(Rp/ Ijp), To simplify 
the notation we may suppose that R itself is local and one-dimensional. 

Since I j is invertible, it is a principal ideal generated by some nonzero
divisor, aj E R. We must show that length R/(IIjaj) = Lj length R/(aj). 
Consider the filtration 

To prove the length equality it suffices to show that (IIj<iaj) / (IIj:::;iaj) 3:! 

R/(ai). Since each aj is a nonzero divisor , multiplication by b := IIj<iaj 
induces an isomorphism R --+ (IIj<iaj). Iffor some a E R we have ba E (aib), 
say ba = aibr, then since b is a nonzerodivisor we must have a = air E (ai). 
Thus the preimage of (IIj:::;iaj) is (ai), so multiplication by b induces the 
desired isomorphism. 

For the second statement of the theorem, suppose that R is one-dimen
sional (but not necessarily local). If Ie R is invertible, then I contains a 
nonzero divisor so that dim R/ I = 0 and length R/ I < 00. The minimal 
primes of R/ I are the codimension-1 primes of R that contain I. Thus by 
Theorem 2.13, 

lengthR/I = length(Rp/ Ip). 
P a codim-l prime containing I 

That is, the length is obtained by composing rp : C(R) --+ Div(R) with the 
homomorphism Div(R) --+ Z that takes LPa codim-l prime npP to L np. D 

See Exercise 11.13 for some refinements of the length map. 
If a E K(R)* then we say that the divisor rp((a)) is a principal divisor; 

the group of divisors modulo the principal divisors is called Chow(R), the 
codimension-l Chow group of R. (See Exercise 11.12 for the relation to 
the usual definition of the Chow groups.) Thus the map rp induces a map 'ljJ : 
Pic(R) --+ Chow(R). Theorem 11.8 shows that this map is an isomorphism 
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when R is locally factorial, but in general 'IjJ is neither surjective (there may 
be codimension-l primes that are not invertible) nor injective (it may not 
be possible to distinguish invertible ideals by the "numerical" information 
of the associated divisor). For example, see Exercise 11.17. 

Proposition 11.11. If R is a normal Noetherian ring, then the maps 
<p : C(R) -+ Div(R) and'IjJ : Pic(R) -+ Chow(R) are injective. 

Proof. Consider the diagram 

o -+ K(R)* -+ C(R) 
II I" 1 

K(R)* -+ Div(R) 

-+ Pic(R) -+ 0 
1/11 

-+ Chow(R) -+ O. 

From the diagram it follows that if <p is a monomorphism then the map 
K(R)* -+ Div(R) is a monomorphism and (for example, by the "snake 
lemma," Exercise A3.10) 'IjJ is a monomorphism. Thus it will suffice to show 
that <p is a monomorphism. Since any invertible fractional ideal may be writ
ten as one invertible ideal of R times the inverse of another, it suffices to show 
that two invertible ideals I, J c R that have the same divisor are equal. 

By symmetry it will suffice to prove that I c J. By Corollary 3.5, applied 
with M = R/ J, it is enough to show that Ip C Jp for any associated prime 
P of J. Now Pp is an associated prime of Jp, which is a principal ideal 
generated by a nonzerodivisor, and Rp is normal, so by Serre's criterion 
(Theorem 11.5), P has co dimension 1 and Rp is a discrete valuation ring. 
Since I and J have the same divisor, we have length Rp/Ip = length 
Rp/Jp. Since the ideals of Rp are totally ordered it follows that Ip = Jp, 
and this proves what is required. 0 

11.6 Multiplicity of Principal Ideals 

Suppose that R is a one-dimensional ring. In Lemma 11.10 we saw that the 
length of R/(a) gives a homomorphism from K(R)X to Z. The basic result 
of this section expresses the length of M/aM for certain R-modules M in 
terms of the length of R/(a) = R/aR and an invariant of M. We shall apply 
this to prove Krull's theorem that the integral closure of a one-dimensional 
Noetherian ring is Noetherian, in the strong form due to Akizuki [1935]. 

For simplicity, and because it suffices for the application, we shall assume 
here that R is a domain. Let K = K(R) be the quotient field. An R
module M is said to be torsion-free if every nonzero element of R is a 
nonzero divisor on M, or equivalently if the localization map M -+ K ® R M 
is a monomorphism. Note that K ®R M is a vector space over the field K. 
Set rank M := dimK K ® M. 
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Lemma 11.12. Let R be a one-dimensional Noetherian domain. If M is 
a torsion-free R-module, then 

length(M/xM) :<:::: rank(M) length(R/(x)), 

with equality if M is finitely generated as an R-module. 

Note that the case M = K shows that we really may have length 
M/xM < rank(M) lengthR/xR if M is not finitely generated. We have 
not included the case of invertible ideals because the application does not 
require it; see Exercise 11.14. 

Proof. Set r = rank(M). If M is finitely generated then r < 00; thus if 
r = 00 there is nothing to prove, and we may assume that r < 00. 

Assume that M is finitely generated. We may choose a K-basis mI, ... , m T 

of K 0 R M inside M: To do this, first choose any basis. Each basis element 
can be written as a K-linear combination of elements of M. Multiplying 
each basis element by a suitable element of R (which is a unit of K) we get 
a new basis coming from M. 

The map 0: : RT ----; M sending the elements of a basis of RT to the mi 

becomes an isomorphism after tensoring with K. Thus the kernel is 0, and 
we may think of RT as a submodule of M. Let N = M/RT. 

We shall use the elementary properties of Tor introduced in section 6.2. 
Tensoring the exact sequence 0 ----; RT ----; M ----; N ----; 0 with R/ xR we get 
an exact sequence 

Torf(M, R/xR) ----; Torf(N, R/xR) ----; 
RT /XRT ~ M/xM ----; N/xN ----; 0, 

where we have written a for the induced map RT /XRT ----; M/xM. 
By the computation done at the end of section 6.2 we have 

Torf(M, R/xR) = (O:MX) the set of elements of M killed by x. This is 
o since M is torsion-free. Similarly, we get Torf(N, R/xR) = (O:NX). Thus 
ker a = (O:NX). Putting this together we get an exact sequence 

To analyze (O:NX) we use the exact sequence that comes from multipli
cation by x on N: 

0----; (O:NX) ----; N ~ N ----; N/xN ----; O. 

Since K 0 0: is an isomorphism, and tensoring with K is exact, we have 
K 0R N = O. Since K 0R N is the localization of N inverting the set 
of nonzero elements of R, each element of N is annihilated by a nonzero 
element of R. Since M is finitely generated, so is N, and we see that some 
nonzero element fER annihilates all of N. Since R is 1-dimensional, R/ f R 
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is O-dimensional, and thus of finite length. Since N is a finitely generated 
R/ f R-module, N has finite length. 

Since the alternating sum of the lengths of the terms of any exact 
sequence of modules of finite length is 0, we get 

length(O:Nx) 

= length N - length N + length N / xN 
= length N / xN. 

Using the same principle with the sequence *) we get 

lengthM/xM 

= lengthRT /xRT + lengthN/xN -length(O:Nx) 

= length RT / XRT 

= rlengthR/xR, 

proving the equality in the Lemma in case M is finitely generated. 
We now deduce the inequality of the Lemma in the general case from 

the finitely generated case. No longer supposing that M is finitely gener
ated, suppose that contrary to the assertion in the Lemma we have length 
M/xM > r length R/xR. We may choose a finitely generated submodule 
M' c M whose image N' in M/xM has length> r length R/xR. But then 

length M' / xM' 
~ lengthN' 

> rlengthR/xR 
~ rank(M')lengthR/xR, 

contradicting the equality that we have proved in the finitely generated 
~a D 

As an application we prove that the integral closure of a one-dimensional 
Noetherian domain R is Noetherian. We shall prove it in a particularly 
strong form: We show that any ring contained between R and a finite 
extension ofthe quotient field K(R) is Noetherian; this is the Krull-Akizuki 
theorem. In dimension two, Mori and Nagata prove that the integral closure 
of Noetherian domain is Noetherian (see Nagata [1962, Theorem 33.12]), 
though in this case there may be subrings of the integral closure contain
ing R but not Noetherian. In dimension at least 3 there are unfortunately 
Noetherian domains whose integral closures are not Noetherian. For exam
ples of all these things, see Nagata [1962, Appendix, Examples 3-5]. In 
Chapter 13 we shall show that if R is an affine domain of any dimension, 
then the integral closure of R (in any finite extension of K(R)) is actu
ally a finitely generated R-module--something that is not true even for 
one-dimensional Noetherian domains. 
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The most interesting case in which to apply the lemma is when M is the 
integral closure of R in its quotient field: 

Theorem 11.13 (Krull-Akizuki Theorem). If R is a one-dimensional 
Noetherian domain with quotient field K, and L is a finite extension field of 
K, then any subring S of L that contains R is Noetherian and of dimension 
::; 1, and has only finitely many ideals containing a given nonzero ideal of 
R. In particular, the integral closure of R in L is Noetherian. 

Proof. Let 0 =I- J c S be an ideal. S is algebraic over R, so J intersects 
R nontrivially by Lemma 4.16; let 0 =I- a E R be an element of J n R. 
All the assertions of the theorem follow immediately if we show that J I as 
is a module of finite length. Since J I as C S I as, it suffices to show that 
SlaS is a module of finite length. Since K(R) lSi S c L, S is a torsion-free 
R-module of finite rank, so we are done by Lemma 11.12. 0 

11.7 Exercises 

Valuation Rings 

Exercise 11.1: A valuation ring is a domain R such that the quotient 
field of R has a valuation l/ on it such that R is the valuation ring of l/ in 
the sense of the text. (The name is standard, despite the fact that the term 
"valuation domain" would seem more sensible). 

a. * Show that R is a valuation ring iff R is a domain such that for all 
x E K(R), either x or x-1 is in R. 

b. Show that any valuation ring is integrally closed in its quotient field. 

Exercise 11.2 (Existence of valuation rings): Let R be any domain, 
and let PeR be a prime ideal. Show by Zorn's lemma that there exists a 
subring R' C K(R) containing R and maximal among subrings such that 
P R' =1= R'. Show that 

a.* R' is local, integrally closed in K(R), Rp c R', and if meR' is the 
maximal ideal, then m n R = P. 

b. For any domain S and any element s E K(S), write S[s] for the 
subring of K(S) generated by Sand s. Show that sS[s] = S[s] iff S-l 

is integral over S. Use this remark to prove the following two facts: 

c. R' is a valuation ring. 

d. The integral closure of R is the intersection of the valuation rings 
containing R. 
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Exercise 11.3: Show that a valuation ring is Noetherian iff it is a DVR. 

Exercise 11.4: Let G be any ordered abelian group. (That is, G is an 
abelian group that as a set is totally ordered by a relation <; and if 
a, b, c E G and a < b, then a + c < b + c.) Let k be a field, and let R 
be the vector space over k with basis {xala E G, a 2: O}; here xa is simply 
a symbol, not "x raised to the power a." We define multiplication of basis 
elements by xaxb = xa+b. We extend this to a product operation on R by 
linearity. Show that this operation makes R into a valuation ring with value 
group G and valuation 

where the ra are elements of k. 

Exercise 11.5: Let G be the group Z EB Z, ordered lexicographically; that 
is, (n, m) < (n', m') iff n < n' or n = n' and m < m'. Let R be the valuation 
ring constructed from G as in Exercise 11.4. Compute the Krull dimension 
of R. 

Exercise 11.6: Show that the function R - {O} -+ Z given by a I--' length 
R/(a) is not a valuation in the case R = k[x], with k a field, though it is a 
valuation on R = k[x](x). 

The Grothendieck Ring 

Exercise 11.7 (Projective Modules and the Grothendieck Ring): 

a. Show that any invertible R-module is a direct summand of a free R
module. Summands of free modules are called projective modules; 
see Exercise 4.11. 

b. Generalizing Theorem l1.6c, show that for any finitely generated 
projective module M, and any module N, we have Hom(M, N) ~ 
M*0RN. . 

c. Let Ko(R) be the free group on the isomorphism classes of projective 
R-modules modulo the relations [P]+[Q] = [PEBQ], where [P] denotes 
the class of a projective module P in Ko(R). Show that if P and Q 
are projective modules, then [P] = [Q] iff P EB Rn ~ Q EB Rn for some 
number n. If P and Q are invertible and [P] = [Q], show that P ~ Q. 
Show that the operation 0R makes Ko(R) into a ring whose group of 
units is Pic(R). See also Section 19.4. 

Exercise 11.8: If I is an invertible module over a domain R, show that 
End(I) = R, with elements of R acting by multiplication on I; in particular, 
the group of automorphisms of I is the group of units of R. 
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Exercise 11.9 (Rational Maps of Normal Varieties Are Regular 
in Codimension 1):* (For those who know some algebraic geometry). 
Deduce from Serre's criterion (Theorem 11.2 is enough) the following geo
metric statement: A rational map from a normal variety over an alge
braically closed field to a projective variety is a morphism on the com
plement of a set of co dimension two. (The algebraically closed assumption 
is unnecessary if one works with schemes.) 

Exercise 11.10 (Characterization of reduced rings):* The following 
is an analogue of Serre's criterion: Prove that a Noetherian ring R is reduced 
(that is, has no nilpotents) iff it satisfies 

RO: The localization of R at each prime of co dimension 0 is regular. 
SI: All primes associated to zero have co dimension O. 

See the discussion after Theorem 18.15 for a reinterpretation. 

Exercise 11.11: Let I be an ideal of pure co dimension 1 in a locally 
factorial ring R (for example, a Dedekind domain). Prove: 

a. I is a power of a prime ideal P iff I is P-primary. 

b. If I = IIPini with P; prime and Pi -I=- Pj for i -I=- j, then I = npini is 
the primary decomposition of I. 

Compare this result with the result of Proposition 3.11. 

Exercise 11.12 (Chow groups):' Let R be a Noetherian ring. Let Zi(R) 
be the free abelian group on the set of i-dimensional primes of R. Let 
Ai(R) be Zi(R) modulo the subgroup generated by all elements that can 
be written as principal divisors modulo some (i + 1 )-dimensional prime of 
R. Suppose that in R, as in any affine domain, we have dim P + codim P 
= dim R for every prime P. Show that A 1(R) is a quotient of the group 
that we have defined as Chow(R) , the codimension-l Chow group. (The 
groups Ai(R) are the usual Chow groups; the definition in the text, though 
natural, is somewhat nonstandard. See Fulton [1984] for more of this story.) 

Exercise 11.13: As we have seen, in the one-dimensional case the map 
sending an invertible ideal I to length R/ I is obtained by composing the 
map 'P with the map Div(R) ---) Z sending each prime ideal to 1. But the 
different prime ideals may have very different "sizes," and there may be a 
more interesting map, reflecting these sizes. For example: 

a. Suppose that R is a one-dimensional affine domain over a field k. 
Then for any codimension-l prime ideal P the field R/ P is a finite 
extension of k. We may compose 'P with the map Div(R) ---) Z sending 
P to dimkR/ P. Show that the resulting homomorphism C(R) ---) Z 
sends each invertible ideal I c R to dimkR/ I. 
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b. Suppose that Z C Rand R is a finitely generated Z-module. If we 
compose 'P with the map Div(R) ----) Z sending P to the cardinality 
of the finite set R/ P (see Exercise 4.26), show that the resulting 
homomorphism C(R) ----) Z sends each invertible ideal I C R to card 
R/I. 

Exercise 11.14: State and prove a version of Lemma 11.12 replacing x 
with an invertible ideal. 

Exercise 11.15 (A Method for Constructing Projective Modules): 

The following is adapted from Milnor's beautiful book [1971, pp. 19-24]: 
Suppose that we have a commutative diagram of rings and ring homomor
phisms 

"'I 

R ----) RI 
"'2 1 1 ,61 

R2 ----) S 
,62 

that is a fiber square in the sense that the map ((}l, (}2) : R ----) Rl X R2 
identifies R with the set {(aI, a2) E Rl x R21,8l (ad = ,82(a2)}, and suppose, 
moreover, that ,81 is surjective. If P; is a module over ~ for i = 1,2, and 
'P : H c>9RI S ----) P2 c>9R2 S is an isomorphism of S-modules, then we set 

Show that M(H,P2 ,'P) is an R-module in a natural way. Now show: 

a. If PI and P2 are free modules, and if with respect to some choice 
of bases {e}} of PI and {e;} of P2 the invertible matrix over S 
that defines 'P comes from an invertible matrix 'Plover R l , then 
M (H, P2 , 'P) is free, with basis {( 'PI 1 ( eD, e;)}. In this case 
M(Pl , P2 , 'P) c>9 Ri ~ Pi· 

b. Now suppose that PI and P2 are free modules and that 'P is an arbi
trary isomorphism. Use the identity 

(6 'P~l ) = (~ i) (_~-l ~) (~ i) (~ -~ ) 
to show that 'P E8 'P- l lifts to an isomorphism over Rl , and thus that 
M(Pl , P2 , 'P) is a projective module. 

c. Show that if Mi = Pi E8 Qi and 'P = 'P' E8 'PI! where 'P' : S (59 H ----) S (59 P2 

and 'PI! : S (59 Ql ----) S (59 Q2 are isomorphisms, then 
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d. If Pl and P2 are merely supposed to be projective modules, then there 
are modules Qi over ~ such that P; EI1 Qi = Rfi is free over ~. Show 
that if we set Qi = Ql EI1R~2 and Q~ = Q2E11R;t, then S0Qi ~ S0Q~. 
Conclude that M(P1, P2, cp) is projective. Moreover, if P1 and P2 are 
finitely generated (as modules over R1 and R2, respectively), then 
M (Pl , P2 , cp) is finitely generated over R. 

e. If Hand P2 are projective modules, then use the last part of a to 
show that ~ 0 P ~ p;. 

f. Suppose that the P; are projective over~. Show that M(P1, P2, cp) ~ 
M(P{, P~, cp') as R-modules iff there are isomorphisms 'l/JiP; -+ PI such 
that cp = S 0 'l/J:;1 0 cp' 0 S 0 'l/J1' 

g. Show that if Mi = P; 0R; Qi and cp = cp' 08 cp" where cp' : S 0 P1 -+ 

S 0 P2 and cp" : S 0 Ql -+ S 0 Q2 are isomorphisms, and if Pi and Qi 
are projective modules over ~ for i = 1,2, then 

h. The map sending an invertible module lover R to the invertible 
module ~ 0 R I over ~ is a group homomorphism Oi : Pic( R) -+ 

Pic(~). Use part f to show that the kernel of (01,02) : Pic(R) -+ 

Pic(Rt)EI1Pic(R2) is the group of units of S modulo the images of the 
groups of units of R1 and of R2• That is, writing U(R) for the group 
of units of R, we have the beginning of a "Mayer-Vietoris sequence" 

Exercise 11.16 (The Conductor Square): Let R be a Noetherian 
domain, and let R1 be the normalization of R. Suppose that R1 is a finitely 
generated R-module, and let c be the annihilator in R of the R-module 
Rtf R. The ideal c is called the conductor of R1 into R, or simply the 
cond uctor of R. 

a. Show that c eRe R1 and c is also an ideal of R1. 

b. Show that the natural diagram 

where a1 and (32 are the natural inclusions and a2, (31 are the natural 
projections, is a fiber square in the sense of Exercise 11.15. 
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FIGURE 11.1. 

c. Suppose that k is a field and R = k[t2, t3] ~ k[x, y]!(y2 - x3 ), the 
affine ring of the rational curve with a cusp, shown in Figure 11.1. 

Show that Rl = k[t], R/c = k, Rdc = k[x]!(x2). Show that the group 
of units U(Rdc) = U(k) EB k+, where k+ is the additive group of k, 
embedded in U(k[x]!(x2)) as the set {I + axla E k}. Conclude that 
Pic(R) = k+. 

d. Suppose that k is a field. Let R = k[t2 - 1, t3 - t] ~ k[x, y]!(y2 -
x2(x+ 1)), be the affine ring ofthe rational curve with a node, shown 
in Figure 11.2. 

Show that Rl = k[t], R/c = k, Rdc = k x k. Show that the group 
of units U(Rdc) = P EB P. Conclude that Pic(R) = P. What is 
Div(R)/ K(R)X? 

Exercise 11.17: Let k be a field, and let R = k[x, y]!(y2 - x3 ). Show that 
the codimension-l Chow group Div(R)/ K(Rr = OJ thus t.p : Pic(R) --t 

Div( R) / K (R) x is not a monomorphism. 

FIGURE 11.2. 



12 
Dimension and Hilbert-Samuel 
Polynomials 

Note: Throughout this section, all rfngs considered will be Noetherian. 

In this section we present a characterization of dimension that yields other 
important invariants and that is well suited to computation using tech
niques to be developed in Chapter 15. Throughout we shall write R for 
a local ring with maximal ideal m. All modules will be finitely generated 
R-modules unless otherwise stated. 

If M is a finitely generated R-module, then the Hilbert function HM(n) 
is defined by 

HM(n) := dimRjm mn M/mn+l M. 

Hilbert himself originally worked with graded rings R = Ro EB Rl EB 
... generated by Rl over a field Ro. The local case is not really more 
general, since M and grmM clearly have the same Hilbert function. In 
particular, it follows from the graded case (Chapter 1) that HM(n) agrees 
with some polynomial function PM(n) for large values of n. We shall study 
this polynomial. Our principal goal is to prove the following theorem. 

Theorem 12.1. If R is a local ring, then dimR = 1 + degPR . 

The polynomial that is identically 0 is taken to have degree -1 so that 
a special case of the theorem says something we already know: dim R = 0 
iff m is nilpotent. 

Samuel [1951] showed that in the context of intersection theory it is useful 
to study more general polynomial functions associated to a local ring and 
an ideal primary to the maximal ideal. It turns out that the more general 
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setting is technically more convenient as well. We shall adopt this context, 
which we now introduce. 

12.1 Hilbert-Samuel Functions 

First, we replace the ring R by an arbitrary finitely generated R-module 
M; we shall show that dim M = 1 + deg PM. Generalizing further, we 
replace the maximal ideal m by any parameter ideal q for M. We define 
the Hilbert-Samuel function of M with respect to a parameter ideal q 
of M to be 

Hq,M(n) := lengthqn M/qn+l M. 

The given length (that is, the length of a composition series) is finite 
because qn M / qn+l M is a finitely generated module over the Artinian ring 
R/(q + annihilator (M)). We shall show that Hq,M(n) agrees with a poly
nomial Pq,M (n) and that dim M = 1 + deg Pq,M . 

We shall repeatedly use the elementary fact that if H(n) is any function 
on the natural numbers whose first difference G(n) := H(n + 1) - H(n) is 
a polynomial of degree d, then H(n) is a polynomial of degree d + 1 (see 
Lemma 1.12 for an elaboration). 

First we prove: 

Proposition 12.2. Let R be a Noetherian ring and let M be a finitely 
generated R-module. Suppose either that R is local and q c R is a parameter 
ideal for M, or else that R = I4J EB RI EB '" is a graded ring with Ro 
Artinian and R generated as an I4J-algebra by R I . In the latter case set 
q = (Rd = RI EB R2 EB .... There is a polynomial Pq,M(n) whose degree is 
< the number of generators of q such that for sufficiently large n we have 
Pq,M(n) = Hq,M(n). 

Proof. If R is local we may first factor out ann(M) and then pass to grq R 
and grq M, so it suffices to do the case where R is graded. 

Suppose Xl, ... ,Xr E RI generate q. We do induction on r, the case r = 0 
being trivial. 

From the exact sequence 

0---+ (0: Mxd ---+ M ~ M(l) ---+ (M/XIM)(l) ---+ 0 

(where (0 : MXI) denotes {m E Mlxlm = O} and M(l) denotes the same 
module as M but with grading shifted so that M(l)n = M n+1), we see that 

The right-hand side is the difference of two Hilbert-Samuel functions of 
modules over R/(XI)' By induction, they agree for large n with polynomials 
of degree < r - 1. The left-hand side is the first difference of the function 
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Hq,M(n). Thus Hq,M(n) agrees for large n with a polynomial of degree < r. 
o 

It is convenient to introduce another function, 

From the exact sequences 

0--; qnM/qn+lM --; M/qn+lM --; M/qnM --; 0 

We see that the first difference function of Lq,M is 

It follows from the proposition that Lq,M(n) agrees, for large n, with a 
polynomial whose degree is 1 + degree Pq,M. 

In a short exact sequence of graded modules, the Hilbert function of the 
middle module is the sum of the Hilbert functions of the modules on the 
ends. In the local case treated here things are not so simple, but thanks to 
the Artin-Rees lemma, additivity does not fail too badly 

Lemma 12.3 (Additivity). Let R be a local ring. If 

o --; M' --; M --; Mil --; 0 

is an exact sequence of finitely generated R-modules, and if q is a parameter 
ideal for M, then 

Pq,M = Pq,M' + Pq,M" - F, 

where F is a polynomial with positive leading term and whose degree is 
strictly less than that of Pq,M'. 

See Exercise 12.10 for a more precise result. 

Proof. Since Pq,M(n) = Lq,M(n+ 1) - Lq,M(n) for large n, it suffices to prove 
the corresponding result with P replaced by L. From the exact sequence 

0--; (M' n qn M)/qn M' --; M' /qn M' --; M/qnM --; Mil /qn Mil --; 0 

We see that 

Lq,M(n) = Lq,MI(n) + Lq,M"(n) -length(M' n qn M)/qn M'. 

But by the Artin-Rees lemma (Lemma 5.1) there is an integer m such that 

(M' n qn M) = qn-m(M' n qm M) c qn-mM' for n 2 m, 

whence 

F(n) := length(M' n qn M)/qn M' ~ Lq,MI(n) - Lq,MI(n - m), 
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and F(n) agrees, for large n, with a polynomial of degree < the degree of 
the polynomial agreeing with Lq,MI(n), as required. 0 

We now state and prove our main theorem in a slightly more general 
form 

Theorem 12.4. If R is a local ring, and q is a parameter ideal for the 
finitely generated R-module M, then 

dimM = 1 + degPq,M. 

( This number is also the degree of the polynomial agreeing with Lq,M (n) for 
large n). 

The proof is given below. Since Pq,M depends only on the associated 
graded module 

grq M = M/qM EEl qM/q2 M EEl ... , 

it does not change when we replace M by its completion (with respect to 
q or m-it makes no difference). Thus, extending Corollary 10.12, we get 

Corollary 12.5. dimM = dimM = dim(grm M)p, where M is the com
pletion of M with respect to m, and P is the ideal of elements of positive 
degree in grm R. 0 

Actually, the dimension of M and grm M coincide under quite general 
circumstances. See Exercise 13.8 for the case M = R. 

The leading coefficient of Pq,M is of the form e(q,M)/(dimM -1)! for 
a positive integer e(q, M) called the multiplicity of q on Mj see Exer
cises 12.6-12.11, as well as Serre's classic book [1957] for an account of its 
properties. In the special case where M = R, q = m, and R is the local
ization at the "irrelevant ideal" of the homogeneous coordinate ring of a 
projective variety X, the multiplicity is just the degree of the projective 
variety X, and in general it has many properties extending those of the 
special case. 

Proof of Theorem 12.4. We divide the proof into three steps: 

Step 1: deg Pq,M is independent of the parameter ideal q. 

We may harmlessly replace the ring R by the ring R/ann M, and thus 
assume that ann M = o. From the definition of parameter ideal we know 
that there is a number d such that m :J q :J md• Thus for every n we have 
mn :J qn :J mdn , whence 

Lm,M(n) :::; Lq,M(n) :::; Lm,M(dn). 

Since the outside terms are polynomials of the same degree in n, the desired 
assertion follows. 
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Step 2: 1 + degPq,M :::; dimM. 

By Proposition 10.5 there is a parameter ideal generated by dim M ele
ments. By step 1, we may assume that it is q. The desired inequality now 
follows from Proposition 12.2. 

Step 3: 1 + deg Pq,M ~ dim M. 

We do induction on the dimension of M. The case dimM = 0 being 
trivial, we may assume dim M > O. 

Let P be an associated prime of M whose dimension is equal to dimM. 
Since M contains a copy of Rj P, it suffices (by the easy part of the additiv
ity formula (Lemma 12.3)) to treat the case M = RjP. Since dimM > 0, P 
is not the maximal ideal of Rand q rt. P. Any element x E q which is not 
in P is a nonzero divisor on M. 

It follows that dim MjxM < dimM. Using Corollary 10.9 we see that in 
fact dim MjxM = dimM -1. By induction, l+degPq,MjxM = dim MjxM, 
and it suffices to show that deg Pq,MjxM < deg Pq,M. Applying the additivity 
formula (Lemma 12.3) to the exact sequence 

o ---t M ---t M ---t MjxM ---t 0, 

we see that Pq,MjxM is a polynomial of degree < deg Pq,M, and we are done. 
D 

12.2 Exercises 

Exercise 12.1: Let fER = k[x, y, zj(x,y,z) be a homogeneous form of 
degree d, monic in x. Show that (y, z), (y2, Z2), and (y, z)2 are all param
eter ideals for M = Rj(f). Compute the corresponding Hilbert-Samuel 
functions. 

Exercise 12.2:* Let R = k[x, y, z, wj(x,y,Z,w)j I, where I is the ideal of 2 x 2 
minors of the matrix 

Show that q = (x, w) is a parameter ideal, and compute the Hilbert-Samuel 
polynomial with respect to it. Also, compute the length of Rjq. Compare 
the results with Exercise 12.3, and with the Hilbert polynomial of R, com
puted in Exercise 1.19. 

Exercise 12.3:* Show that if dim M = d, and the parameter ideal q is 
generated by d elements, then Hq,M(n) :::; (lengthMjqM)(d~~~l), so that 
the leading coefficient of Pq,M(n) :::; (length MjqM)j(d - I)!. Further, if 
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the leading coefficient equals (length M I qM) I (d - I)!, then in fact 

( d+n-1) Hq,M(n) = (lengthM/qM) d _ 1 

for all n :2': o. 

Exercise 12.4: Show that the inequality of Exercise 12.3 is not always an 
equality by computing the Hilbert-Samuel polynomial for the ring obtained 
by localizing the subring k[s\ s3t, st3, t4] c k[s, tlo at the maximal ideal 
(S4, s3t, st3, t4), using the parameter ideal q = (S4, t4). 

Analytic Spread and the Fiber of a Blowup 

Exercise 12.5 (The growth of the numbers of generators of powers 
of an ideal): Let (R, m) be a local ring of dimension d. If I c R is an 
ideal requiring r generators, then the number of generators JkI(n) of In 
is obviously bounded by (n~~~l), a polynomial of degree r - 1 in n. By 
considering the blowup ring B = R EEl I EEl 12 EEl ... and the ring of the 
exceptional fiber S = B 1mB = Rim EEl IlmI EEl 12 ImI2EEl , prove that in 
fact J.L(n) agrees with a polynomial function v(n) for large n, and that the 
degree of v( n) is at most d - 1. Show that the degree is d - 1 if I is a 
parameter ideal. (The degree of v(n) is called the analytic spread of I; 
it can be shown that it takes values between codim(I) - 1 and (d - 1); see 
Valla [1979].) 

In the geometric context, where R is the local ring of a point p on a 
projective variety X, and q is the maximal ideal, then the projective variety 
associated to S is the fiber of the blowup of X at p. Exercise 12.5 says for 
example that if R is a regular local ring (that is, p is a nonsingular point 
of X) then the fiber has dimension dim X - 1. In fact, the fiber is a Cartier 
divisor in the blowup. See Hartshorne [1977] Ch. 2. 

Multiplicities 

The most important invariant of a module and a parameter ideal other 
than the dimension is the multiplicity. 

Exercise 12.6: Let R be a local ring, let M be a finitely generated R
module, and let q be a parameter ideal for M. Let pen) := Pq,M(n) be the 
Hilbert-Samuel polynomial. By Exercise 1.21, we may write pen) uniquely 
in the form 

d 

pen) = L aiFi(n) 
i=O 

where Fi(n) = C) is the binomial coefficient regarded as a polynomial in 
n of degree i, the ai are integers, and ad # O. The integer ad is called the 
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multiplicity of q on M, written e( q, R). Show that d = dim R - 1, that 
the leading term of P(n) is e(q, M)/d!, and that e(q, M) > o. 

We have already encountered the multiplicity in a special case: If R = 
Ro EEl Rl EEl ... is a graded ring generated in degree 1, over a field Ro, then 
R is the equal to the associated graded ring of the localization of R at 
R+ = Rl EEl R2 EEl .... R also corresponds to a projective variety X c pr, 
where dimRo RI = r + 1. If we take q = R+, then e(q, R) is nothing but the 
degree of this projective variety. 

The name multiplicity comes from the following case: Suppose that R is 
the local ring of a nonsingular variety X at a point x, P is the ideal corre
sponding to a subvariety Y passing through that point, and q is generated 
by a system of parameters Zl, ... , Zd on R/ P, where d = dim R/ P. The 
statement that q is a parameter ideal for R/ P means that x is an isolated 
point of the intersection of the divisors Zi = 0 and Y. In this case Samuel 
proposed the number e(q, R/ P) as the correct intersection multiplicity of 
Y and the divisors defined by Zi = 0 at x E X. In fact, this is enough to 
construct the intersection multiplicity of any collection of subvarieties, by 
a technique called "reduction to the diagonal"; see Exercise 13.15. 

Exercise 12.7: Here are two multiplicity computations not requiring any 
theory. Let k be a field. 

a. Let F(XI, ... ,xr ) be a homogeneous form of degree d. Compute the 
degree of R .- k[XI, ... , xrJ/(F) (the multiplicity of q 
(XI, ... ,Xr ) on the local ring k[XI, ... ,XrJq/(F)). This example is 
surely the origin of the name "degree." Show that if k is infinite, 
then for a "general" choice of variables Xl, ... , X r , the degree may be 
computed as length R/(Xl, ... , Xr-l). 

b. Let R be a graded ring, finitely generated over k = Ro, and let R(d) 
be the Veronese subring (see Exercise 9.5). Compute the degree of 
R(d) in terms of the degree of R and the dimension of R. 

We shall exhibit some of the elementary facts about the multiplicity 
in the next exercises. We use a strong form of Lemma 12.3, embodied 
in Exercise 12.10; the preceding two exercises contain useful elementary 
remarks that prepare for its proof. 

Exercise 12.8: Suppose that M is a module over a ring R. Recall that Supp 
M denotes the set of primes PeR such that Mp =1= 0, or equivalently such 
that P ~ ann(M). Thus two modules M and M' have the same support iff 
rad(ann(M)) = rad(ann(M')). Suppose u is an endomorphism of M such 
that un = 0 for some n. Show that Supp M = Supp ker u = Supp coker u. 

Exercise 12.9: Let 0 ---+ A ---+ B ---+ C ---+ 0 be an exact sequence of modules 
over the local ring (R, m). Show that an ideal q c R is a parameter ideal 
of B iff it is a parameter ideal of both A and of C. 
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Exercise 12.10: Let 0 ----+ A ----+ B ----+ C ----+ 0 be an exact sequence of 
modules over the local ring (R, m), and suppose that q C R is a parameter 
ideal of A, B, and C. Recall that LA,q(n) = length (A/qn+lA), so that 
LA,q(n) = 2::7=0 HA,q(n). We have seen in Lemma 12.3 that the alternating 
sum 

F(n) := LB,q(n) - LA,q(n) + Lc,q(n) 

agrees with a polynomial Q(n) for large n. Following the steps indicated, 
prove the more precise result of Flenner-Vogel [1993]. 

Theorem. With notation as above, the alternating sum F(n) is a nonneg
ative function ofn that agrees with a polynomial Q(n) for large n. The two 
grq R-modules ker(grq A ----+ grq B) and ker(grq B ----+ grq C)/ im(grq A ----+ 

grq B) have the same support in grq R, and thus in particular have the 
same dimension 8. The degree of the polynomial Q is 8 - 1 (in case the 
modules are 0 their supports are to be interpreted as having dimension -1, 
and then the polynomial Q is 0). 

Steps of the Proof. 

a. From the right-exact sequence 

show that LA,q(n) - LB,q(n) + Lc,q(n) = length (A n qn+l B)/qn+lA. 
In particular, this shows that the alternating sum is nonnegative. 

b. Consider the Rees algebra 

~ := ~q.(R) = ... EB Rt-1 EB REB qt EB q2t 2 EB ... 

Set ~(A) = ... EB Arl EB A EB qAt EB q2 At2 EB . ", and similarly for B 
and C. Thus, we get a (not necessarily exact) sequence of ~-modules 
o ----+ ~(A) ----+ ~(B) ----+ ~(C) ----+ O. Let JC be the homology of this 
sequence in the middle. Show that JCi = [(AnqiB)/qiAJti. Show that 

while the kernel of multiplication by rl on JC is 

ker C 1 : JC(l) ----+ JC = ker(grq A ----+ grq B). 

Now show that multiplication by rl is a nilpotent endomorphism of 
JC, and apply Exercise 12.8. D 

Exercise 12.11 (Properties of the multiplicity): The following results 
may all be proved as applications of Exercise 12.10. 
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a. Suppose we have an exact sequence 0 -+ A -+ B -+ e -+ 0 of finitely 
generated R-modules on which q is a parameter ideal. Show that: 

1. If dim A = dimB = dime, then e(q, B) = e(q, A) + e(q, e); 

ii. If dim A = dimB > dime, then e(q,B) = e(q,A); 

iii. If dimA < dimB = dime, then e(q, B) = e(q, e), and that 
one of these possibilities must be realized. 

b. Suppose that for some number j, x E qf - qf+l is an element such 
that x + qf+l E (grq R)f is not in any of the minimal primes of grq R. 
Show that dimA/xA = dim A - 1, and e(q, A/xA) = j. e(q, A). 

c. (Multiplicity as a length) Now let d = dim A and suppose that q 
is generated by a system of parameters Xl, ... ,Xd on A. Show that 
if R contains an infinite field k then one may compute e(q, A) as 
follows: Let Al = A. Having defined Ai for i < d + 1 inductively, 
define F; C Ai to be the largest submodule of finite length. Show 
that some linear combination Yi of the Xl, ... , Xd, with coefficients 
in k, maps to an element of grq R that is not in any of the minimal 
primes of grq(A;/Fi)' Set Ai+l = A;/(F; + YiAi). Show that Ad+l is 
a homomorphic image of A/(Xl, ... , xd)A, and thus has finite length. 
Show that e(q, A) = length Ad+l. 

The restriction in this problem to systems of parameters is not as 
serious as it appears: Always supposing that A contains an infinite 
field k, it may be shown that if q is any parameter ideal for a module 
A of dimension d, then q contains a system of parameters for A such 
that e(q, A) = e((xl, ... , Xd), A). 

d. Generalize part c by showing that if Xl, ... ,Xd is a regular sequence 
on A, then the Fi are all zero, and e( q, A) = length A/ (Xl, ... , xd)A. 
(In general e(q, A) can be identified as an alternating sum of lengths 
of modules of which this is the first term, see Serre [1957].) 

e. (Linearity formula): Suppose that P is a prime ideal of A. Recall that 
the multiplicity of P in the primary decomposition of A was defined 
to be the length of the largest Rp-submodule of finite length in Ap. 
If P is a minimal prime of A, then Ap is itself finite length as an 
Rp-module. If P is not an associated prime of A, then Ap has no 
nonzero submodule of finite length over Rp. 

Write mp for the multiplicity of P in the primary decomposition 
of A. If q is a parameter ideal for A, and P is an associated prime of 
A, show that q is a parameter ideal for R/ P. Show that 

e(q, A) = m(P)e(q, R/ P). 
P a prime and dimR/P=dimA 
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(This formula is sometimes called the associativity formula for 
multiplicities, though the name "linearity formula" seems more 
descriptive. ) 

Hilbert Series 

Exercise 12.12:* Here is a generalization of Exercise 10.12. Suppose that 
R is a graded ring finitely generated over an Artinian ring Ro, and let 
HR(n) be the length of Rn as an Ro-module. Suppose there exist homo
geneous elements Xl, ... , Xr of strictly positive degrees dl , ..• , dr such that 
R/(XI, ... ,xr ) has finite length. 

a. Show that the Hilbert Series hR(t) := ~n>O HR(n)tn is a rational 
function of t, and that in fact hR(t) may be written as a polynomial 
divided by IIi=1 (1 - ttl;); that is, it is a rational function with poles 
only at roots of unity. . 

b. Show that there is a number d (which may be taken to be the least 
common multiple of the degrees of the di ) such that for each s, 
HR(dn + s) agrees with a polynomial in n for all n » 0; that is, 
HR(n) is a "polynomial with periodic coefficients." 



13 
The Dimension of Affine Rings 

In this section we shall prove Theorems A and AI, explained in Chapter 8. 
Theorem Al is a form of the Noether normalization theorem, due to Nagata 
[1962j. It gives a kind of universal tool for the solution of many problems 
about affine rings. We shall illustrate this assertion by proving three other 
famous results: Hilbert's Nullstellensatz, Noether's theorem on the finite
ness of the integral closure of an affine domain, and, in the next chapter, 
Grothendieck's lemma of generic freeness, with its applications to the semi
continuity of fiber dimensions. 

13.1 Noether Normalization 

To introduce the technique of the normalization theorem in a simple setting, 
we give a second proof of Corollary 1O.13a. 

Theorem 13.1. If k is a field then dim k[Xl, ... , Xr j = r. 

Proof. Let T = k[Xl, ... , xrj. We do induction on r, the case r = 0 being 
trivial. The chain of primes 

has length r, so dim T 2: r. To prove the opposite inequality, suppose that 
o c Pt c ... C Pm is any chain of distinct primes of T; we must show that 
m:S r. 
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Let f E Pt be a nonzero polynomial. Lemma 13.2 will show that there 
are elements x~, ... ,X~_l E T such that T is a finitely generated module 
over the k-subalgebra SeT generated by x~, ... ,X~_l and f. It follows 
by incomparability (Corollary 4.18) that 0 C S n PI c ... C S n Pm is a 
chain of primes of length m. Factoring out f, we get a chain of primes of 
length m - 1 in S / (f). But S / (f) is a homomorphic (actually isomorphic) 
image of a polynomial ring in r - 1 variables, so it has dimension ::; r - 1 
by induction. Thus m - 1 ::; r - 1, and m ::; r as required. 0 

It remains to prove the lemma that is at the heart of the whole follow
ing development. We give 3 refinements to the statement used above. The 
simplest and most important is statement c, and the beginner may safely 
ignore the other two. 

Lemma 13.2. Suppose that k is a field and that f E T = k[XI, ... , xrl is a 
nonconstant polynomial. There are elements x~, ... ,x~_l E T such that T is 
a finitely generated module over the k-subalgebra generated by x~, ... ,X~_l 
and f. Further: 

a. (Nagata [1962]) We may choose x; = Xi _X~i for any sufficiently large 
integer e. 

b. If f is homogeneous, then we may choose the x; homogeneous. 

c. (Noether) If k is infinite then for some (in fact, for any sufficiently 
general) ai E k we may choose x; = Xi - aiXr. 

Proof. 

a. We shall show that f, written in terms of the variables 
x~, ... , X~_l , Xr, is monic in Xr of some degree d. Thus Xr satisfies a 
monic polynomial of degree d over the subring S = k[x~, ... ,X~_l' f]' 
which one might write as f(xr) - f = o. By Proposition 4.1, T is 
generated as a module over S by 1, xn ... ,x~-l. 

If we write a monomial X~l ..... x~r of f in terms of the elements 
x~, ... ,X~_l' Xn it becomes a polynomial 

X I al x' ar-l xar + + xale+.+ar_ler-l+ar I ..... r-l . r . . . r 

whose unique highest degree term is x~ where d = ale+-· +ar_Ier- 1+ 
ar . If e is greater than any of the exponents of the Xi that occur in 
f, then the ai are the digits in the base-e expansion of this degree. 
From this we see that the degrees of the polynomials corresponding 
to distinct monomials of f are distinct. It follows that f, written in 
terms of the variables x~, ... , X~_l , Xr, is monic in Xr as required. 

b. We shall choose x~, ... ,X~_l to be homogeneous elements such that 
(Xl, ... , x r ) is a minimal prime over the ideal (x~, ... , X~_l , 1). To 
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do this, choose x; inductively using the prime avoidance lemma, 
Lemma 3.3: First, choose x~ to be any homogeneous element outside 
the minimal primes of T / (I), and having chosen x~, ... , x;, choose 
X;+l to be any homogeneous element outside the minimal primes of 
T/(I,x~, ... ,x;). By the principal ideal theorem (Theorem 10.2) we 
know that codim (Xl' ... ' Xr) ~ r. By our construction no prime of 
codimension < r can contain (I, x~, . .. ,x~), so that indeed (Xl, ... ,xr) 
is a minimal prime over the ideal (x~, . .. , X~_l' f). 

The associated primes of (x~, ... , X~_l' f) are all homogeneous by 
Proposition 3.12. It follows that (Xl, ... , xr ) is the only minimal prime 
of (x~, ... ,X~_l' j), and thus A := T /(x~, ... ,X~_l,j) is an Artinian 
graded ring. Thus the nth graded component An is 0 for large n, and 
A is a finite-dimensional vector space over k. 

Let S = k[YI, ... , Yr 1 be another polynomial ring, and let S act on 
T with Yi acting as x; for i < r and as f for i = r. If we give S a 
grading by giving Yr the same degree as f and the other Yi the same 
degree as x:, then T is a graded S-module, and T/(YI, ... , Yr)T = A. 
By the graded Nakayama's lemma, Exercise 4.6a, T is itself finitely 
generated over S, as required. 

c. As in part a we shall show that f, written in terms of the variables 
x~, ... , X~-l' X r , is monic in X r • If f has degree d then it follows that 
T is generated by 1, Xn ... ,x~-l as a module over the subring S = 
k[x~, ... , X~_l' fl· 

Consider the sum fd of all the terms of f of degree d. Writing f 
in terms of the x; = Xi - aiXn we see that the term containing x~ is 
fd(al, ... , ar-l, l)x~, and for sufficiently general al, ... , ar-l E k, we 
shall have fd(al, ... , ar-l, 1) 1= O. 0 

Now we are ready for the Noether normalization theorem; the version 
stated as Theorem Al in Chapter 8 is a special case. 

Theorem 13.3 (Noether Normalization). Let R be an affine ring of dimen
sion d over a field k. If he··· c 1m is a chain of ideals of R with dim 
I j = dj and dl > d2 > ... > dm > 0, then R contains a polynomial ring 
S = k[XI, ... , xdl in such a way that R is a finitely generated S-module and 

I j n S = (Xdj+J' ... ' Xd) for j = 1, ... , m. 

If the ideals Ii are homogeneous, then the Xi may be chosen to be homoge
neous. In fact, if k is infinite, and R is generated over k by YI, ... , Yr, then 
for j ~ dm the element Xj may be chosen to be a k-linear combination of 
the Yi. 

The following diagram illustrates the numbering in the case m = d: 
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k[Xl' X2, ... , Xd] c A 
(Xl,X2, ... ,Xd) C Id 

(X2' ... ,Xd) C Id- l 

(Xd) c It 
The geometric content of Theorem 13.3, beyond that of Theorem A, is 

the existence, for each d-dimensional affine variety X cAm and chain of 
subvarieties, of a finite map taking X to an affine space Ad of the same 
dimension, carrying the chain of subvarieties of X onto a chain of coordinate 
planes. The figure illustrates the case d = 2. 

-

The last statement of the theorem says in particular that a suitable (and, 
from the proof, any sufficiently general) linear projection Am --+ Ad induces 
a finite map X --+ Ad. 

The algebraic statement (with no ideals I j ) is due to Noether [1926] in the 
case where k is infinite (though the geometric version was simply taken for 
granted long before this); Zariski [1943] treated the case of a finite ground 
field, while Nagata [1966] is responsible for the refined version given here 
(with a single ideal It). 

Proof. Let R = T / I, where T = k [Yl, ... , Yr] is a polynomial ring. Writing 
I j again for the preimage of I j in T, and enlarging the given chain of ideals 
by setting 10 = I, we see that it is enough to treat the case where R = T, 
a polynomial ring. In this case r = d and we write 

T = k[Yl, ... ,Yd]. 

We claim that it is enough to choose elements Xl, ... ,Xd E T such that 
all Xi are homogeneous in case the I j are, and Xl, ... , Xd", are k-linear 
combinations of the Yl, ... , Yd in case k is infinite, and 

i. T is a finitely generated module over the subring S generated by 
Xl, ... ,Xd, and 

ii. for each j, I j n S ::) (Xdj+l, ... , Xd). 

To see that i and ii suffice, note first that if they are satisfied then the 
Xl, ... ,Xd are algebraically independent over k; else by i the transcendence 
degree of T would be < d, contradicting the algebraic independence of the 
Yi. Thus the subalgebra of T generated by Xl, ... ,Xd is isomorphic to the 
polynomial ring. 
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We next must show that the containment in ii is an equality. By Theo
rem 13.1 and Proposition 9.2, both ideals have dimension dj . But the right
hand side is a prime ideal. If I j n S were strictly larger than (Xd j +l, ... ,Xd), 
then I j n S would have smaller dimension. It follows that the two ideals are 
equal. This shows it is enough to find elements Xi satisfying i and ii. 

To construct such Xi, we modify the elements Yi stepwise: We begin by 
setting x~ = Yi for i = 1, ... , d. Suppose that at a certain point we have 
chosen elements Xe+l, ... ,Xd and auxiliary elements x~, ... ,x~ so that 

i'. T is a finitely generated module over 

ii'. for each j, Ij n Se :> (Xh,"" Xd), where h = max(dj + 1, e + 1). 

At the next step we shall define a new element Xe and replace x~, ... , x~_l 
with new elements (which are homogeneous if the I j are homogeneous and 
are linear combinations of the x~, ... ,x~ if k is infinite) so that i' and ii' are 
again satisfied, with e replaced by e - 1. After the last step we may take 
Xi = x~ for i = 1, ... , dm , completing the argument. 

Suppose, then, that x~, ... , x~, Xe+ 1, ... , Xd, with d ~ e > dm, have been 
chosen to fulfill the conditions i' and ii'. Let j be the smallest index such 
that e > dj . We claim -and this is the central point of the proof-that 

I j n k[x~, ... ,x~l # 0; 

otherwise, since IjnSe contains (Xe+l,"" Xd) by hypothesis, we would have 
I j n Se = (xe+1' ... ,Xd). The dimension of the ideal on the left-hand side of 
this equality is dj by Proposition 9.2, and the dimension of the ideal on the 
right-hand side is e by Theorem 13.1. Since e > dj , this is a contradiction, 
proving our claim. 

We now choose Xe to be any nonzero polynomial in I j n k[x~, ... , x~l. 
If I j and the x~ are homogeneous then we may replace x~ by any of 
its homogeneous components, and suppose that Xe is homogeneous. By 
Lemma 13.2 we may find elements x~, ... , X~_l E k[x~, ... , x~l such that 
k[xi, ... ,x~l is a finitely generated module over k[x~, ... , X~_l' xel; and 
these elements may be taken to be homogeneous if Xe is, or of the form 
x~ - alx~" .. ,X~_l - ae-lX~, x~ in case k is infinite. The elements 

satisfy conditions i' and ii' with e replaced by e - 1. This concludes the 
proof. D 

Here is the promised application to Theorem A, whose statement we 
recall. If ReT are domains, we write tr. deg'RT for the transcendence 
degree of the quotient field of T over the quotient field of R. 
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Theorem A. If R is an affine domain over a field k, then 

dim R = tr. deg'kR, 

and this number is the length of every maximal chain of primes in R. 

We postpone the proof to discuss some consequences. A first consequence 
is that the dimension is finite for affine rings over a field, as it is not in 
general for Noetherian rings. 

Another is that dimension and co dimension are complementary, as they 
ought to be, for affine rings: 

Corollary 13.4. If R is an affine domain, and I c R is an ideal, then dim 
1+ codimI = dimR. 

Proof. The dimension of R can by Theorem A be computed in terms of a 
maximal chain of prime ideals that includes a given minimal prime of I. D 

The following corollary is a much sharper form of Theorem 10.10 for the 
case of affine domains. 

Corollary 13.5. If ReT is an inclusion of affine domains over a field k, 
then 

dimT = dimR + dimK(R) ®R T. 

Proof. By Theorem A we have dim R = tr. deg.kK(R), dim K(R) ®R T = 
tr. degK(R)K(R) ®R T, and dim T = tr. deg.kT. The transcendence degree 
is additive, so the equality in the corollary follows. D 

From a geometric point of view Corollary 13.5 says that if Y --+ X is 
a dominant morphism of varieties, then dim Y = dim X + dim (generic 
fiber), where we interpret the generic fiber to be a variety over K(X), the 
field of rational functions on X. In Corollary 14.9 we shall complete this 
statement by showing that the dimension of the generic fiber is also the 
dimension of "most" fibers. 

By working Theorem A a little harder we can prove a much more general 
version of this useful result: Namely, we may replace the condition that R 
is affine by the condition that R is universally catenary. We pause to 
discuss this notion. 

Theorem A tells us, in particular, that in an affine domain, any two maxi
mal ideals have the same co dimension. If we go beyond affine rings, it is easy 
to construct localizations of affine domains where there are maximal ideals 
of different codimensions, and thus maximal chains of primes of different 
lengths, see Exercise 13.1. However, by virtue of Theorem A, any such local
ization still has the property that given primes P C Q, the maximal chains 
of primes between P and Q all have the same length. A ring R with this prop
erty is said to be catenary, and we say that R is universally catenary if 
every finitely generated R-algebra is catenary. Thus Theorem A implies: 
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Corollary 13.6. Every field-equivalently, every affine ring-is univer
sally catenary. 

In fact the rest of Theorem A is easy to deduce from this property. As we 
shall show in Corollary 18.10, virtually any ring that the geometer might 
meet (for example, any complete local ring) is universally catenary. 

Another consequence of Theorem A allows us to compute the dimension 
of a graded ring by looking at only the homogeneous maximal ideals. (Intu
itively, a graded ring corresponds to a cone; all components pass through 
the vertex, which contains the "most complicated points.") 

Corollary 13.7 (Dimension of a graded ring). Let R = Ro EB Rl EB ... be a 
Noetherian graded ring. The dimension of R is computed as the supremum 
of the codimensions of the homogeneous maximal ideals. In particular, if 
Ro is a field and PR(t) is the Hilbert polynomial of R, then dimR = 1 + 
degPR(t). 

Proof. Given any maximal ideal Q of R we must show that there is a 
homogeneous maximal ideal Q' with co dim Q' ~ codim Q. We shall prove 
this by induction on dim Ro. 

Set Qo = Q n Ro. It suffices to prove the assertion after localizing at the 
multiplicative set Ro - Qo, so we may assume that Ro is local with maximal 
ideal Qo. 

Since all the minimal primes of R are homogeneous by Proposition 3.12, 
it suffices to prove the assertion after factoring out a minimal prime, and 
we may assume that R is a domain. 

If dim Ro = ° then Ro is a field. Since R is Noetherian, it is finitely 
generated over Ro, so R is an affine domain. By Theorem A all the maximal 
ideals of R have the same codimension. For example, the co dimension of Q 
is the same as the co dimension of Qo EB Rl EB R2 EB .. " which is a maximal 
ideal that is homogeneous. 

Finally, if dim Ro > 0, then Qo contains a nonzero element a. It suffices 
to prove the assertion after factoring out a. Since Ro is a local domain, this 
decreases the dimension of Ro, and we are done by induction. 

To deduce the second statement, note that in case Ro is a field, the ideal 
Rl EBR2 EB'" is the unique maximal homogeneous ideal of R. Thus it suffices 
to compute the dimension after localizing at this ideal. Further, the Hilbert 
polynomial of R is the same as the Hilbert polynomial of this local ring, so 
the desired result follows from Theorem 12.1. 0 

The conclusion of Corollary 13.7 need not hold if R is Z-graded. For 
example, k[x, x-1] is a Z-graded ring of dimension 1, but its only homoge
neous prime ideal is 0. 

The reader should compare the following statement with Corollary 13.5, 
of which it is a generalization and refinement, and with Theorem 10.10, 
which gives an inequality of the same sort. In the geometric case it is the 
statement that if X ----. Y is a map between irreducible varieties that is 
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dominant (that is, the image of X is dense in Y) then the dimension of 
X is the sum of the dimension of Y and the dimension of the generic fiber. 

Theorem 13.8. Suppose that R is a Noetherian domain, and that T is a 
domain containing R, finitely generated as an R-algebra. If Q is a prime 
ideal of T and we set P := R n Q, then 

dimTQ :S dimRp + dimK(R) ®R T. 

If R is universally catenary, and Q is maximal among those primes meeting 
R in P, then equality holds. 

Proof. We do induction on the number of generators of T as an R-algebra. 
First suppose T = R[xl/ I for some prime ideal I in the polynomial ring 
R[x] in one variable over R. Tensoring with R p , we may suppose that R is 
local with maximal ideal P from the outset. 

Note that K(R) 0R T is an affine domain over K(R) so, by Theorem A, 
we have dim K(R) ®R T = tr. deg.RT. 

If I = 0 then tr. deg'RT = 1. On the other hand, dim TQ :S dim T = 
dimRp + 1 with equality if Q is maximal among ideals containing P, by 
Corollary 1O.13c. (This case does not use the hypothesis that R is univer
sally catenary.) 

If I =I- 0, then tr. deg'RT = O. Since In R = 0 we may compute the 
co dimension of I after localizing R at (0); that is, in the ring K(R)[x]. 
Since K(R)[x] is a principal ideal domain, we get co dim 1=1. If we write 
Q' for the preimage of Q in R[x], then 

as required. 

dimTQ :S dimR[x]QI - codimI 

:S dimR[x]- codimI 

= dimR+ 1-1 

=dimR 

If now Q is maximal among primes contracting to P, then dim R[x]QI = 
dim R + 1, so the second inequality becomes an equality, while if R is 
universally catenary, then the first inequality becomes an equality, and we 
are done. 

For the general case, suppose that r > 1 and that T is generated by 
Xl, ... , Xr over R. Let T' c T be the subalgebra generated by Xl,.··, Xr-l, 

and set Q' = Q n T'. By induction we have 

dimTb, :S dimRp + tr. deg'RT ' 

dimTQ :S dimTb, + tr. deg'T,T 

and we get the inequality in the first statement of the theorem by adding 
these. 

For the second statement of the theorem, suppose that Q is maximal 
among primes meeting R in P. As before, we may assume that R is local 
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with maximal ideal P. The hypothesis may then be restated by saying 
that Q generates a maximal ideal of T / PT. Applying the Nullstellensatz 
(Theorem 4.19) to the ring T' / PT', which is an affine ring over the field 
R/ P, and its finitely generated algebra T / PT, we see that the preimage 
Q' / PT' c T' / PT' of Q / PT is a maximal ideal, so Q' is maximal among 
primes of T' meeting R in P. If we assume in addition that R is universally 
catenary, then T' is too. Thus by induction both the above inequalities 
become equalities, and their sum is the equality we wanted. 0 

Theorem 13.8 is a form of Nagata's "altitude formula"; the usual form, 
given in Exercise 13.12, is easily deduced from this one. By a result of 
Ratliff, the conclusion of Theorem 13.8 can be used to characterize univer
sally catenary rings; see Matsumura [1986, Section 15.3]. 

Proof of Theorem A. Suppose that R is an affine domain of dimension d, 
and let S be the polynomial subring k[XI, .. " Xd] as in Theorem 13.3 (with 
no ideals I j specified). Clearly, tr. deg.kS = d. Since R is finite over S, the 
quotient field of R is finite over that of S, so tr. deg.kR = d as well, proving 
the first statement. 

Let Po C .. , C Pm C R be a chain of primes of R, so that m :S d; we 
must show that if m < d, then a new prime can be inserted somewhere in 
the chain. Choose S as in Theorem 13.3, taking I j = Pj' If m < d, then for 
some j we shall have 

dj- I := dimPj - 1 > dj- I - 1 > dimPj =: dj , 

so the prime Q := (Xdj _ 1 , • •• ,Xd) lies strictly between Qj-I := S n Pj- I = 
(Xd j _ 1+1,"" Xd) and Qj := S n Pj' We shall finish the proof by showing 
that this implies the existence of a prime P strictly between Pj - I and 
Pj. 

Factoring out Pj- I from Rand Qj-I from S, we may suppose that both 
these are zero. Note that the new S is again a polynomial ring. It suffices 
to find a prime P of R contained in Pj and meeting S in Q. Since S is 
factorial, it is normal, so the proof of Theorem A will be complete when 
we have proved: 

Theorem 13.9. (Going Down for integral extensions of normal rings) Let 
S be a normal domain, and let R be a domain containing S. If R is integral 
over S, then going down holds between Rand S: Given primes QI :J Q 
and a prime H of R lying over QI, there exists a prime P of R lying over 
Q and contained in PI (Figure 13.1). This result holds even if Sand Rare 
not Noetherian. 
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S C R 

I I 
QI PI 

I I 
Q 3P 

FIGURE 13.1. 

The example given after Lemma 10.11 shows that we cannot drop the 
assumption that S is normal (even in the case of a finite extension). 

Proof. Let K(R) and K(S) be the quotient fields of Rand S. We first treat 
the case where K(R) is a finite extension field of K(S). 

Let L be the normal closure of K (R) j K (S) in the sense of Galois theory; 
that is, L is the smallest subfield of the algebraic closure k of K(S) that 
contains K(R) and is mapped into itself by any automorphism of k that 
fixes K(S). As proved in Galois theory, the extension Lj K(S) is finite. Let 
T be the integral closure of S in L (which contains R since R is integral 
over S). By lying over and going up, Proposition 4.15, there are primes 
pi C P{ of T contracting to Q C Ql in S. 

By lying over there is some prime P{' of T lying over Pr, and thus also 
over Ql. If there is an automorphism of T fixing S and carrying P{ to 
P{', and pI! is the image of pi under this automorphism, then the prime 
P = pI! n R of R will lie over Q, as required (Figure 13.2). 

The following piece of Galois theory finishes the proof of Theorem 13.9 
in the case when K(R) is a finite field extension of K(S). 

Proposition 13.10. Let S be a normal domain with quotient field K(S), 
let K (S) c L be a finite normal field extension, and let T be the integral 
closure of S in L. If Q is a prime of S, then the primes of T lying over 
Q are conjugate under the Galois group of Lj K(S). This result holds even 
without the assumption that Rand S are Noetherian. 

s c R c T 

I I ~ 
QI PI p' I 

pI! 
1 

I 
Q 3?P p' 3?P" 

FIGURE 13.2. 
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S c R' c 

I I 
QI----- P{ c 

I I 
Q -----P' 

FIGURE 13.3. 

As we shall see in the exercises, Proposition 13.10 can be considerably 
generalized, and plays a crucial role in invariant theory. 

An easy special case says that if L is a purely inseparable extension of 
K(S), then the primes of T and S are in one-to-one correspondence. Thus, 
from a geometric viewpoint, there are (in characteristic p only!) finite maps 
between nice varieties that are one-to-one and onto, but are not locally 
isomorphisms anywhere. 

Proof. Let Q' and Ql be primes of T lying over Q, and let Q2,"" Qn be 
all the primes of T that are conjugate to Ql' If Q' is not among the Qi for 
i 2: 1, then by incomparability it cannot be contained in any of these Qi' 
Thus by prime avoidance, Lemma 3.3, there is an a E Q' that is not in any 
of the Qi' No conjugate of a can be in any of the Qi either, so the norm 
NL/K(S)(a) E S is outside QinS = Q. On the other hand, since a E Q', the 
norm of a is in Q', and thus in Q; the contradiction shows that Q' must be 
one of the Qi. 0 

Completion of the proof of 13.9. It remains to treat the case when K(R) is 
not a finite extension of K(S). Let R be the integral closure of R in K(R). 
By lying over, Proposition 4.15, there is a prime PI of R lying over Pl. If 
there exists a prime P of R contained in PI and contracting to Q in S, 
then we may take P = P n R. Thus we may assume from the outset that 
R = R is normal. 

Now consider the set of pairs (K', P') where K' is a subfield of K(R) 
containing K(S), and P' is a prime of R' := K' n R contained in P{ := 
PI n R' and contracting to Q, as in Figure 13.3. Order such pairs by setting 
(K', P') ::::; (K", P") if K' c K" and P' C P". Since an ascending union 
of prime ideals (in an ascending union of rings) is prime, Zorn's lemma 
implies that there is a maximal element (K', P'). We shall finish the proof 
by showing that K' = K(R). 

If K' -=I- K(R), let K" be the result of adjoining one element of K(R) to 
K'. Since K" is finite over K', we may apply the case already proved to 
R' C R" := R n K", using the primes Pi :J P' of R'. We see that there 
exists P" C R" contained in P{' := PI n R" and contracting to Q in S. 
This contradicts the maximality of (K', P'), and thus implies that 
K' = K(R). 0 
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The proof of Theorem A is now complete. An important consequence is 
that in the case of affine domains, the local assumption may be removed 
from the version of the principal ideal theorem dealing with dimension 
given in Corollary 10.9. We have: 

Corollary 13.11. If R is an affine domain, and fER is not a unit, then 
dimR/(f) = dimR - 1. 

Proof. By Theorem A we may compute both the dimensions after localizing 
at a maximal ideal containing f, and we may apply Corollary 10.9 to the 
localized rings. 0 

13.2 The Nullstellensatz 

As a second illustration of how the Noether normalization theorem may be 
used, we give a very short proof of Hilbert's Nullstellensatz (already proved 
in somewhat stronger form in Chapter 4). 

Corollary 13.12 (Hilbert's Nullstellensatz). Let R be an affine ring over 
a field k, and let PeR be a prime. 

i. If P is maximal, then R/ P is a finite field extension of k. 

ii. P is the intersection of maximal ideals of R. 

Proof. 

1. By Theorem 13.3, the O-dimensional affine ring R/ P is a finitely gen
erated module over the polynomial ring over k in d = 0 variables; 
that is, R/ P is a finite-dimensional vector space over k. 

n. If fER - P, we must find a maximal ideal of R containing P 
but not containing f. Factoring out P, we may assume P = O. Let 
S = k[XI,'" ,Xd] c R be a polynomial ring satisfying Theorem 13.3 
with h = (f); since dimR/(f) = d - 1 by Corollary 13.11, we have 
(f) n S = (xd. By lying over (Proposition 4.15), there exists a prime 
n of R lying over the maximal ideal m = (Xl -1, X2, ... , Xd) c S, and 
we claim that n has the desired properties. Since m is maximal, the 
dimension statement of Proposition 9.2 implies that n is maximal. n 
cannot contain f, since m would then contain Xl, and with it 1. 0 

13.3 Finiteness of the Integral Closure 

Yet another consequence of the Noether normalization theorem is the finite
ness of the integral closure of an affine domain. Geometrically, the finiteness 
of the integral closure is the key to showing that the operation of normal
ization is well defined for algebraic varieties. The result remains true if we 
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replace affine domains by finitely generated rings (that is, finitely gener
ated Z-algebras); this is part of the statement that Z is "excellent." See 
Grothendieck [1965, Chapter IV 7.S, esp. 7.S.3 ii, iii, and vi]. 

Corollary 13.13 (Emmy Noether). Let R be an affine domain over a 
field k. Set K = K(R) and let L be a finite extension field of K. If T is 
the integral closure of R in L, then T is a finitely generated R-module; in 
particular, T is again an affine domain. 

It is amusing that to prove this result for the case where L = K, we shall 
reduce to the case where L -=f. K. The idea is to use Noether normalization 
to replace R by a polynomial ring, which is itself normal. Once this is done, 
we first treat the purely inseparable case. In the separable case Proposi
tion 13.14, a classic piece of Galois theory, does the rest. See Exercise 13.10 
for the case of a complete ring. 

Proof. By Noether normalization, R is a finite module over a polynomial 
ring k[Xl,"" Xd] c R, and it suffices to prove the corollary after replacing 
R by this subring. Further, since a submodule of a finitely generated module 
is finitely generated, it suffices to prove the corollary after making a finite 
extension of L, and thus we may replace L by its normal closure and assume 
that L / K is a normal extension in the sense of Galois theory. 

Let L' be the fixed field of the Galois group of Lover K, so that L / L' is 
Galois and L' / K is purely inseparable. We shall first show that the integral 
closure R' of R in L' is a finitely generated R-module. 

If L' = K this is trivial, so we suppose that L' -=f. K. Let p be the charac
teristic of L, which is necessarily nonzero since L' / K is purely inseparable. 
For some power q of p, the field L' is generated by qth roots of rational 
functions. Extending L' further by adjoining qth roots of their coefficients, 
we may assume that 

L' k'( l/q l/q) = Xl"'" Xd 

where k' is obtained from k by adjoining the qth roots of the coefficients. 
The integral closure of R in L is T = k'[x~/q, ... , xyq], since this ring is 
integrally closed, has quotient field L, and is finite over R. Since R' C T, 
this shows that R' is finite over R. 

In Proposition 13.14 we shall see that the integral closure of the normal 
ring R' in the Galois extension L of L' is finitely generated over R'. Since 
R' is itself finitely generated over R, this completes the proof. D 

Proposition 13.14. Suppose that R is a Noetherian normal domain with 
quotient field K. If L is a finite separable extension of K, then the integral 
closure of R in L is a finitely generated R-module. 

Proof. Replacing L by its Galois closure, we may assume that L / K is 
Galois, with Galois group C. Let T be the integral closure of R in L, let 
bl , ... ,bn be elements of T that form a vector space basis for L / K, and let 
C = {al,"" an}. Let M be the matrix over L whose (i,j)th entry is aibj, 
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and set d = det MEL. We shall show that d =1= 0 and that 

T C d-2(Rb1 + ... + Rbn ). 

Since d-2(Rb1 + .. ·+Rbn ) is a finitely generated R-module and R is Noethe
rian, this will show that T is a finitely generated R-module. 

First, d =1= 0 because if the rows of M were linearly dependent then 
the a; would be linearly dependent, contradicting the linear independence 
of automorphisms. (Recall the argument from Galois theory, due to Artin: 
Suppose I: a;a; = 0 is a dependence relation with a; E K having the small
est possible number of nonzero terms. For b, C E L we get I: aw; (b)a; (c) = 
I: a;ai(bc) = 0, so I:(aiai(b))ai is also a dependence relation among the ai. 
At least two of the ai must be nonzero; suppose ai =1= 0 and aj =1= O. Choose 
b so that ai(b) =1= aj(b). If we divide the new relation by ai(b) and subtract 
from the old one, the terms involving ai cancel, but the terms involving aj 
do not. We thus get a nonzero relation having strictly fewer nonzero terms, 
a contradiction.) 

It remains to prove that T c d-2(Rb1 + ... + Rbn ). First, note that 
the ring T is invariant under the automorphisms of L / K since it is the 
integral closure of R. Thus the matrix M has entries in T. Let bET be 
arbitrary, and write b = I: Cibi with Ci E K. We must show that d2Ci E R. 
Let C be the column vector with ith entry e;. Since the Ci are fixed by the 
automorphisms ai, the ith entry of the column vector M cis I:j cjai(bj) = 

ai(I: j cjbj ) = aib E T. Multiplying on the left by the matrix of cofactors 
of M, we derive dCi E T. 

Now d = det MET. For each i, aid is the determinant of a matrix 
obtained by permuting the rows of M, so aid = ±d. It follows that d2 is 
invariant under G, whence d2 E K. 

Since dCi E T we now get d2Ci E Tn K. Since R is normal, Tn K = R. 
We have proved that d2Ci E R, or e; E d-2 R, as desired. 0 

Unfortunately, the integral closure of a Noetherian domain is generally 
not finite. In fact, starting in dimension 3 it need not be Noetherian. This 
is one of the points where the Noetherian axiomatization of what is good 
about affine rings is insufficient. (We have already seen that the integral 
closure is Noetherian in dimension 1 (Krull and Akizuki, Theorem 11.13); 
references and further information are given there.) 

There are at least three natural responses to the problem this raises: One 
might choose to work, after all, only with affine rings and their relatives; 
in the end, they are the rings one wants to use most often. One might try 
to weaken the Noetherian condition and include the integral closures of all 
Noetherian rings among the objects of study. One attempt in this direction 
is the class of "Krull rings." Or one might add the finiteness of integral 
closure (of all factor rings that are domains) as an axiom. This approach 
was given great impetus by Grothendieck. He called the rings with this 
property universally Japanese rings, though the name Nagata rings 
now seems to be current. The class of Noetherian rings has other failings 
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as well, and Grothendieck introduced the class of excellent rings, defined 
by a list of properties that they share with affine rings, as the good class 
of rings to study: It contains fields and the ring of integers, and it is closed 
under finitely generated ring extensions, completions, and some other useful 
operations such as integral closures. Each of these options has its place, but 
the third seems to have produced the most mathematics. See Matsumura 
[1986] for a definition and basic properties of excellent rings. 

We can use Proposition 13.14 and what we already know about complete 
rings and DVRs to compute the algebraic closure of the field of Laurent 
series in one variable over an algebraically closed field of characteristic O. 
The result (in the convergent case, over C) and its consequences for plane 
curves were elaborated by Puiseux [1850], though something very similar 
was apparently known to Newton [1671]. 

Corollary 13.15. Let k be an algebraically closed field of characteristic O. 
The algebraic closure of the field k((x)) of Laurent series over k is the field 
U~=lk((xl/n)), and the integral closure of k[[xll in k((x1/ n)) is k[[x1/ n]]. 

Proof. Let L be any finite extension of k((x)). We shall show that the 
integral closure T of k[[xll in L has the form k[[xl/nll for some n, and thus 
L = k((x1/ n )). This will prove the first statement of the corollary, and the 
second statement follows at once. 

By Proposition 13.14, T is finite over k[[xll. It follows by Corollary 7.6 
that T is the direct product of complete local domains. Since T is itself 
a domain, T must be local. By Proposition 9.2 (with I = 0) T is 1-
dimensional, so T is a DVR by Theorem 11.5. Write 7f for a generator 
of its maximal ideal. 

Now for some n we may write x = U7fn , with U a unit of T. The residue 
field of T is finite over k; since k is algebraically closed, the residue field 
must be k. Since k is algebraically closed, the image u of U in T / (7f) = k 
has an nth root v. Since the characteristic of k is 0, the polynomial t n - u 
has a simple root at V, so by Hensel's lemma, Corollary 7.4, v lifts to 
an nth root v of u in T. Let 7f' = V7f = xl/n; it is another generator 
of the maximal ideal of T. The map k[[x'll ----+ T sending x' to 7f is an 
epimorphism by Theorem 7.16, and must be an isomorphism since 
dimT = 1. 0 

Corollary 13.15 is often applied to plane curves by means of the following 
consequence due to Newton. See, for example, Walker [1978] for a discussion 
and a direct treatment. 

Corollary 13.16. Any polynomial equation in two variables f(x, y) = 0 
over an algebraically closed field of characteristic 0 admits solutions of the 
form y = p(xl/n) for some natural number n, where p is a Laurent series 
that may be taken to be a power series if f is monic in y. If in addition 
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f(O,O) = 0, then y may be written as a power series in xl/n without constant 
term. 

Proof. By Corollary 13.15 the irreducible factors of f(x, y) = 0 over k((x)) 
must have roots y in some k((x1/ n )). If f is monic in y, then these roots 
are integral and lie in k[[x1/ n ]]. If f(O, 0) = 0 then at least one of the roots 
y of f(x, y) must reduce mod x to O'----and thus must be in the maximal 
ideal of k[[x1/nlJ. 0 

13.4 Exercises 

Exercise 13.1: Let R be an affine domain, and suppose that P and Q 
are prime ideals of distinct codimensions, neither contained in the other. 
Let U be the multiplicatively closed set R - (P U Q). Show that there are 
maximal chains of prime ideals in Ru of distinct lengths. 

Quotients by Finite Groups 

A central geometric problem is the problem of invariant theory: Given a 
variety X over a field k and a group G acting "algebraically" on it, find a 
"good" quotient X / G. As we discussed in Chapter 1, the ring of invariant 
functions A(X)G = {f E A(X)lf(p) = f(g(p)) for all g E G}, when it is 
finitely generated over k, is the best possibility for the affine coordinate 
ring of the quotient variety X/G. Unfortunately, in general, A(X)G is not 
a finitely generated algebra; and even when it is finitely generated the 
points of the variety corresponding to A(X)G may not be in one-to-one 
correspondence with the orbits of the action of G. 

Neither of these bad phenomena arises in the case of finite groups, as we 
shall see in the next 3 problems. 

Exercise 13.2:* Let G be a finite group acting on a domain T, and let R 
be the ring of invariants, R = TG. Show that every element of T satisfies an 
integral equation over R-in fact, each element bET is integral over the 
subring generated by the elementary symmetric functions in the conjugates 
(Tb for (T E G. 

Exercise 13.3:* Use the last remark of Exercise 13.2 to prove the following 
celebrated theorem of Emmy Noether [1926]: 

Theorem 13.17. If T is an affine ring over a field ( of any characteristic), 
then the ring of invariants TG is again an affine ring-that is, there are 
finitely many invariants in terms of which all others can be expressed as 
polynomials. 

A good deal is known about the properties of the ring of invariants in 
case the characteristic of the field does not divide the order of the group; 
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see, for example, Stanley [1979]. However, the contrary case is a wide-open 
field of investigation (see, for example, Peskin [1983]). 

Exercise 13.4: If now the group G acts on an affine variety X with T = 
A(X), then since TG is again an affine ring by Theorem 13.7, we can write 
TG = A(Y) for some affine variety Y. Prove that the points of Yare in one
to-one correspondence with the orbits of the points of X (either assuming 
that the base field is algebraically closed, or interpreting points in the sense 
of schemes) by proving the following variation of Proposition 13.10: 

Proposition 13.10'. If T is an affine ring, and G is a finite group of 
automorphisms of T, then the primes of T lying over a given prime of TG 
are all conjugate under G. 

Can you formulate a result that includes both Propositions 13.10 and 
13.lO'? 

Thus the significance of Noether's theorem in Exercise 13.3 is that the 
quotient of an affine variety by a finite group is again an affine variety. 

Exercise 13.5: The analogue of Theorem 13.3 in which dimension is 
replaced by codimension fails in general, for example, for the ring R = 
k[Yl' Y2, Y3]/(YlY2, YlY3) and the ideal (Y2, Y3), but is true (and follows from 
Theorem 13.3) when R is an affine domain. 

Primes in Polynomial Rings 

Exercise 13.6: Let k be a field and let S = k[Xl, ... , xr] be the poly
nomial ring. Use Theorem 13.3 to make Exercise 10.2 more explicit and 
make Exercise 4.27 more general as follows: Let PeS be a prime ideal of 
dimension d. Set c = d - r = codirnP. Show that with respect to a suit
able choice of variables Yl, ... , Yr for S, there are polynomials of the form 
h (Yl, ... ,Yd+1), h(Yl, ... ,Yd+2), ... ,fc(Yl' ... ,Yr) and a polynomial g .;. P 
such that 

P = {J E Slgf E (h(Yl, ... , Yd+l), 
h(Yl, ... , Yd+2) , ... ,Jc(Yl, ... , Yr»)}. 

Dimension in the Graded Case 

Exercise 13.7 (Every prime in a graded ring is nearly 
homogeneous):* Assume that So is a field and that S is a graded ring 
generated as an So-algebra by Sl. Let Q c S be a prime ideal, and let 
P c Q be the ideal generated by the set of homogeneous elements of Q. 
Show that P is prime, and that either P = Q or codim Q I P = 1 in the 
ring SIP. This exercise is the algebraic (and more general) version of the 
"obvious" geometric fact that given an irreducible algebraic set X in Ar, 
there is a unique smallest cone with vertex at the origin containing it, as 
in Figure 13.4. 
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FIGURE 13.4. 

This cone is obtained by drawing lines from the origin to every point of 
X, and thus X is of co dimension 1 inside the cone. 

Exercise 13.8 (Dimension of blowup and Rees algebras):' Recall 
that if I is an ideal of the ring R, then the blowup algebra and Rees algebras 
of I are the sub algebras of R[x,x-1] given by 

B1(R) := R ED Ix ED I 2x 2 ED··· 

~I(R) := ... Rx-2 ED Rx-1 ED R ED I x ED I 2x 2 ED ... , 

and the associated graded algebra (called by geometers the ring of the 
normal cone) is 

grI(R):= R/I ED 1/12 ED··· 

Always supposing that R is Noetherian, show: 

1) a. The minimal primes of~(R, I) are the ideals of the form P R[x, x-1]n 
~(R, 1), where P is a minimal prime of R. 

b. dim ~(R,I) = 1 + dim R. 

2) a. The minimal primes of SI(R) are the ideals of the form P R[x] n 
SI(R), where P is a minimal prime of R. 

b. dimSI(R) is the maximum of the numbers dimR/P, where P 
ranges over minimal primes containing I, and 1 + dim R/Q, where 
Q ranges over minimal primes not containing I. 

3) dimgrI(R) = max{dimRplP is a maximal ideal of R containing 
I}. 

Noether Normalization in the Complete Case 

Exercise 13.9: The Noether normalization theorem is much more triv
ial (though no less useful) in the complete case because there Nakayama's 
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lemma serves as a finiteness criterion (Exercises 7.2 and 7.4). Prove a ver
sion of Theorem 13.3 in which R is replaced by a complete Noetherian local 
ring containing a field, and S is replaced by the power series ring over the 
residue class field of R. 

Exercise 13.10: Prove the analogue of Corollary 13.13 for complete rings 
containing a field: If R is a complete local Noetherian ring containing a field, 
then the integral closure of R is a finitely generated R-module. (The same 
is true for all complete local Noetherian rings; see Grothendieck [1965].) 

Exercise 13.11:* Prove that if cp : X ---> Y is a map of affine varieties with 
Y normal (that is, A(Y) is normal) and A(X) integral over A(Y), then cp 
is open in the sense that the image of an open set is open. 

Exercise 13.12 (Nagata's Altitude Formula):* Theorem 13.8 is some
times expressed in the following form: Suppose that R is a Noetherian 
domain and that T is a domain containing R, finitely generated as an 
R-algebra. If Q c T is a prime and P = Q n R, then dim TQ :::; 
dimRp + tr. deg'RT - tr.degR/p(T/Q). 

Products and Reduction to the Diagonal 

Exercise 13.13 (Affine products): Suppose that X, Y c Ak are alge
braic sets over a field k. Consider the product Z := X x YeA 2r = Ar x Ar. 

a. Show that the ideal of Z in the big polynomial ring corresponding 
to A2r is the sum of the ideals of X and Y, each written in its own 
set of variables. Show that the affine ring of Z may be written as the 
tensor product over k of the affine rings of X and Y. 

b. Show that if Rand T are affine rings over a field k, then 

dimR®k T = dimR+ dimT. 

Exercise 13.14 (Projective products): Given graded algebras Rand 
T finitely generated over a field k = Ro = To, we may consider their tensor 
product R ®k T as a graded ring with degree-d component Li+j=d R; ® T j , 

but this is not the ring associated to the product of the projective algebraic 
sets corresponding to Rand T. In fact: 

a. Show that if X, Y c pr are projective algebraic sets, with homo
geneous coordinate rings Rand T, then R ® T is the homogeneous 
coordinate ring of the join J(X, Y) C p 2r+l, defined as follows: Take 
two disjoint r-dimensional subspaces PI and P2 of p 2r+l, and regard 
X as embedded in PI, Y as embedded in P 2. The join J(X, Y) is the 
union of all the lines in p2r+1 joining points of X to points of Y. 

b. There is an embedding of pr x pr (as a set) into pn, with n = 
r2 + 2r = (r + 1) (r + 1) - 1 called the Segre embedding, defined in 
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homogeneous coordinates by: 

Show that the homogeneous coordinate ring of the image is the sub
ring of 

generated by the bilinear forms Xi ® Yj ~ XiYj. If we write R := 
k[xo, ... , xr], and T := k[yo, ... , Yr], with the natural grading, the 
homogeneous coordinate ring of the image may also be described as 
the graded ring Ei ~ ®T; c R®T. (In general, the Segre product 
of two graded k-algebras R = E ~ and T = E T; is the algebra 
E~®1icR®T.) 

c. Again let R = k[xo, ... ,xr] and T = k[Yo, ... ,Yr]. Let S = k[{Zij}] 
be the polynomial ring with variables Zij for 0 ::; i, j ::; r. Show that 
the kernel of the map S -t R ®k T sending Zij to XiYj is the ideal of 
2 x 2 minors of the "generic" matrix, with i, j entry Zij. Show that 
dim Ei ~ ® T; = 2r + 1. 

d. More generally, show that if X, Y c pr are projective algebraic sets, 
with homogeneous coordinate rings Rand T, then the image of X x 
y C pr X pr C pn has homogeneous coordinate ring S := Ei ~ ®k 
1'; c R ®k T. Show that dim S = dim R + dim T - 1. Compute the 
multiplicity of the maximal homogeneous ideal of S (the degree of 
the algebraic set X x Y in pn) in terms of the corresponding data 
for Rand T. 

Exercise 13.15 (Reduction to the diagonal): 

a. (Affine case) Suppose that X, YeAr are algebraic sets. Let ~ C A2r 
be the diagonal, that is ~ = {(x, y) EAr x Arlx = y}. Show that 
X n Y = X x Y n~. Show that the ideal of ~ is generated by r linear 
forms. 

If dim X + dim Y = r and X intersects Y in an isolated point p, then we 
say that the intersection is proper at p. In this case the generators for ~ 
form a system of parameters in the local ring of X x Y at (p, p) and the 
multiplicity of this system of parameters is defined to be the intersection 
multiplicity of X and Y at p. This gives a way of reducing the definitions 
of multiplicities which we defined in Exercise 12.6, to the case of systems of 
parameters. This idea of reduction to the diagonal was extended from the 
affine case to arbitrary local rings by Serre in [1957], who used the extension 
to establish a homological formula defining the multiplicity directly. See 
Exercise A3.19 for the statement. 
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b. (Projective case) Consider the diagonal A C pr X pro In terms of 
coordinates Xo, ... , Xr and Yo, ... , Yr on the two factors, show that 
the diagonal is defined by the 2 x 2 minors of the 2 x (r + 1) matrix 
with first row Xo, . .. ,Xr and second row Yo, . .. ,Yr' In particular, its 
ideal is not generated by r elements, though it is of co dimension r. 
However, show that in the local ring of pr x pr at a point of A this 
ideal of 2 x 2 minors is generated by r elements. For this reason the 
idea of "reduction to the diagonal" can still be used locally. One can 
also replace it by a "reduction to the join." With definitions as in 
Exercise 13.14a, let A' be the subset of p2r+l defined by the r + 1 
linear equations Xi = Yi. Show that X n Y = A' n J(X, Y). Suppose 
dim X + dim Y = r and that p is an isolated point of the intersection 
of X and Y. Let q be the point in A' n J(X, Y) corresponding to p. 
Show that the equations for A form a system of parameters in the 
local ring of J(X, Y) at q. The intersection multiplicity of X and Y at 
p may be defined to be the multiplicity of this system of parameters. 
See Vogel [1984] for an interesting extension of this idea. 

Equational Characterization of Systems of Parameters 

Exercise 13.16: Here is a sense in which systems of parameters are like 
systems of indeterminates. Prove that if (R, m) is a local ring of dimension 
r and if Yl, ... ,Yr E m is a system of parameters, then for all homogeneous 
polynomials F(Y1, ... , Yr.) with coefficients in R such that F(Yl' ... , Yr) = 
0, all the coefficients of F are in m by following the steps below. (The con
dition is not sufficient: In k[[x, Y]], the elements x2, xy satisfy the condition 
but are not a system of parameters. For a related result see Exercise 17.16.) 

a. Let I = (Yl, ... , Yr). Show that the polynomials F as above generate 
the kernel of the homomorphism of rings 

R[Yi, ... , Yr.] -+ Br(R) Y; f---t XYi E Br(R) = R[xI] C R[x]. 

b. Deduce that all such F have coefficients in m iff the induced epimor
phism R/m[Yi, ... , Yr.] -+ Sr(R)/mSr(R) is an isomorphism iff dim 
Br(R)/mBr(R) = r. 

C. Note that Br(R)/mBr(R) = grr(R)/mgrr(R). Ifm is nilpotent modI, 
then mgrr(R) is nilpotent in grr(R). Now use part 3 of Exercise 13.8. 



14 
Elimination Theory, Generic 
Freeness, and the 
Dimension of Fibers 

In this chapter we shall study the following question: Given a homomor
phism 'P : R ---7 S of Noetherian rings such that S is a finitely generated 
R-algebra, how do the "fibers" S Q9p K(R/ P) vary as we vary the prime 
P of R? If S is flat over R, then as we have seen, there is some sense in 
which the fibers vary continuously. The main result below, Grothendieck's 
generic freeness lemma, a consequence of the Noether normalization theo
rem, implies that if ReS are domains, then flatness always holds over a 
nonempty open set of R, so that "most" fibers share common properties. 

Of course, we also wish to know as much as possible about how the 
fibers vary when they do vary. Perhaps the simplest question one could ask 
about the variation of the fibers is: What can be said about the set of fibers 
that are nonempty? Put differently, what sort of set is the image? More 
generally, what can be said about the set of fibers that have at least a given 
dimension, or exactly a given dimension? These questions are the beginning 
of elimination theory. Using the generic freeness lemma we shall prove 
a rather general form of the main theorem of elimination theory. 

14.1 Elimination Theory 

The following classical result is enormously useful. 

Theorem 14.1 (Main Theorem of Elimination Theory). If X is any variety 
over an algebraically closed field k, and Y is a Zariski closed subset of 
X x pn, then the image of Y under projection to X is closed. 
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We postpone the proof until we have formulated a stronger and more 
general version, Theorem 14.8. The outline of a quick, direct proof of The
orem 14.1 may be found in Exercise 14.1. 

If X = pm then Y may be defined by a collection of polynomials 
fi(Xl, ... , Xn, Yo,···, Ym), homogeneous in the Xi and Yj separately. The 
equations for the image variety X can be found by "eliminating" the m + 1 
variables Yj from these equations, much as one eliminates a variable to 
solve a pair of linear equations in two unknowns. This is the origin of the 
name "elimination theory". Of course, in the nonlinear case, with many 
complicated equations, elimination may be a very difficult problem. We 
shall give a classical method below, and in the chapter on Grabner bases 
(Chapter 15) we shall explain a technique currently used for computational 
solution of this problem. 

As a simple example, consider the morphism tp : pl ~ p2 given by send
ing a point with homogeneous coordinates (s, t) to the point with homoge
neous coordinates (S3, s2t + st2, t3). How should we describe the image, the 
set of triples that can be expressed in the form (S3, s2t + st2, t3)? If we take 
the homogeneous coordinates in p2 to be X, y, z, the image of tp is clearly 
contained in the algebraic set defined by the ideal I of all the homogeneous 
forms F(x,y,z) that vanish identically when S3,s2t+st2,t3 are substituted 
for X, y, z, and this is the smallest algebraic set that contains the image. 
In this case, I is a principal ideal generated by a single form F of degree 3. 
It may be described as the kernal of the map k[x, y, z] ~ k[s, t] sending 
x, y, z to s3, s2t + st2 , t3, and may be obtained by "eliminating" sand t from 
the forms X - s3, y - (s2t + st2), z - t3; essentially, that is, by taking the 
intersection of the ideal (x - s3, Y - (s2t + st2), z - t3) with the polynomial 
ring k[x,y,z]. It is not completely trivial to compute F, even in this very 
easy case. The answer is F = y3 - x2 Z - 3xyz - xz2. Was it even obvious 
to the reader that the answer would be of degree 3? 

In fact, the image of tp is the image under the projection p2 x pl ~ p2 
of the variety Y defined by the bihomogeneous ideal (x - s3, Y - (S2t + 
st2 ), Z - t3). Thus Theorem 14.1 asserts that the image of tp is an algebraic 
set, and must be defined by F. 

Projections from one factor of a product seem rather special among mor
phisms, but in fact any morphism can be put into this form. As a conse
quence, we have: 

Corollary 14.2. The image of a projective variety under a morphism is 
closed; more precisely, if Y is a projective variety over a field k and 7r : 

Y ~ X is a k-morphism to a projective variety X, then 7r(Y) is a closed 
subset of X in the Zariski topology. 

Proof. Let Y c pn be a projective variety, and let tp : Y ~ X be a 
morphism. Let Z = {(x,y) E X x pnly E Y, x = tp(y)} be the graph of tp. 
Since the image of Y under tp is the image of Z under the projection to X, 
it suffices to prove that Z is closed in X x pn, or equivalently in X x Y. 
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Now X, being projective, can be embedded as a closed subset of a projec
tive space pm. The product X x X is a closed set in the product pm X pm; 
it is defined by the equations for X, repeated in each of the two sets of 
variables. In terms of coordinates Xi 0 Xj on pm X pm, the diagonal ~pm is 
defined by the equations Xi 0Xj - Xj 0Xi = 0, so ~pm is a closed subset. The 
diagonal ~x C X x X is the intersection of the diagonal ~pm of pm X pm 
with X X X. Thus ~x c X X X is also closed. The set Z is the preimage 
of ~x in X X Y under the morphism 1 X tp, so Z is closed as well. D 

Theorem 14.1 and Corollary 14.2 are the algebraic analogues of the state
ment that projective varieties over C are compact and Hausdorff in the 
classical topology. The key fact in point set topology is that the image of a 
compact set under a continuous mapping to a Hausdorff space has closed 
image. Every variety is compact in the Zariski topology, but no variety 
other than a point is Hausdorff in that topology, so one cannot use the 
ideas from point set topology directly. Chevalley [1958] and Grothendieck 
isolated and studied the algebraic property that projective space has under 
the names proper (a kind of relative compactness) and separated (a rel
ative form of the Hausdorff condition). See Eisenbud-Harris [1992] Chapter 
III A for an introduction to these notions, and Hartshorne [1977] Chapter 
II for more technical information. 

Here is an illustration of the usefulness of Theorem 14.1. For others see 
Exercises 14.2 and 14.3. 

Corollary 14.3. Let f be a polynomial of degree d in n variables over an 
algebraically closed field. The condition that f can be factored non trivially is 
equivalent to the vanishing of certain polynomials in the coefficients of f. 

Proof. The polymials of degree d form a vector space; let Vd be the projective 
space of lines in this vector space. Since a polynomial is irreducible iff a 
nonzero scalar multiple of it is irreducible, it makes sense to speak of the 
irreducibility of an element of Vd. If d = e + f, then the multiplication 
map induces a morphism Ve x Vj ~ Vd whose image is obviously the set of 
polynomials with factors of degrees e and f. Since Ve x Vj is a projective 
variety, its image is closed, and the set of all reducible polynomials is a 
finite union of such images. D 

Exactly parallel arguments show that the sets of polynomials that are 
perfect dth powers or possess dth powers as factors are likewise closed. 

Theorem 14.1 was proved in a direct, constructive way early by Newton 
in special cases, and for n = 1 and 2 in general by Euler and Bezout 
around 1764. The formula we present below, equivalent to those of Euler 
and Bezout, was found by Sylvester in 1840. The generalization to all n 
occupied the attention of Cayley and a number of other nineteenth-century 
mathematicians. The results produced in this period involve rather complex 
computations and give fairly good procedures for performing elimination: 
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that is, for constructing, in case X is affine, the generators of an ideal of 
A(X) defining the image of Y. In the early part of this century the tide 
turned, and people became less concerned with the constructive aspect 
of commutative ring theory, and more interested in the "general theory." 
Proofs like the one in Exercise 14.1 came into vogue. 

This replacement of complex but constructive arguments by simple non
constructive ones goes under the name of "elimination of elimination the
ory" (Weil, in his influential book [1946, p. 31]' says, "The device that 
follows ... , it may be hoped, finally eliminates from algebraic geometry the 
last traces of Elimination-Theory .... ,,)1 It has been pointed out, notably 
by Abhyankar, that one loses interesting information if one ignores the con
structive methods. He suggested in a famous poem that one should rather 

Eliminate, eliminate, eliminate, 

Eliminate the eliminators of elimination theory. 

Whatever the merits of this argument, the advent of computers has 
renewed interest in finding efficient algorithms for performing elimination. 
The most effective current algorithms do not follow the older methods, but 
are based on the theory of Grabner bases, explained in Chapter 15. 

Before proceeding to a nonconstructive general proof of Theorem 14.1, it 
is worth understanding a constructive proof in the simplest case. Consider 
an affine variety X and an algebraic subset Y of X x pl. Let xo, Xl be 
coordinates on p1, so that Y is defined by homogeneous polynomials in 
xo, Xl with coefficients in A(X). We shall suppose that Y is actually defined 
by exactly two such polynomials, f and g, of degrees d and e in xo, Xl (it 
is in any case not hard to reduce to this situation). 

First suppose that d = e = 1, that is f(s, xo, Xl) = foes )xo + h (S)X1' and 
g(S,XO,X1) = go(s)xo + gl(S)X1' where the fi(S) and gi(S) are functions in 
A(X). We claim that the image of Y under projection to X is the closed 
set defined by the vanishing of the determinant of the matrix 

M - (fo(s) h(S)) 
- gOes) gl(S) , 

as a function of sEX. Indeed, if s is in the image of a point (s, u, v) E Y 
with u, v E k, then multiplying the first column of the above matrix by u 
and the second by v and adding, we get the column vector with components 
(f(s,u,v),g(s,u,v)) = (0,0), so the determinant vanishes. Conversely, if 
the determinant vanishes for some SEX, then we may reverse the argu
ment, or, more suitably for generalization, we may note that ifthe two rows 
of the matrix are linearly dependent for some value of s, then for this s the 
functions f(s, Xo, xd and g(s, Xo, Xl) are linearly dependent as polynomials 

1 Reprinted from Foundations of Algebraic Geometry by Andre Weil, Colloquium 
Publications, Vol. 29, p. 31, by permission of the American Mathematical Society. 
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( 
~o j~ j~ ~2 ~ 1 

M = 0 0 fo h 12 
90 91 92 93 0 
o 90 91 92 93 

FIGURE 14.1. 

in XO,Xl' Thus f(8,Xo,X1) and 9(8,XO,xd share a common zero (u,v). It 
follows that (8, u, v) E Y, and 8 is in the image of Y. 

Sylvester generalized this argument to the case where d and e are arbi
trary: We take M to be the (d + e) x (d + e) matrix whose first e rows 
contain the coefficients of the polynomials 

e-l-i i f Xo . Xl' i = 0, ... , e - 1 

and whose last d rows contain the coefficients of the polynomials 

xg- l - i . xi . 9 i = 0, ... , d - 1. 

For example, if 

f = fo x6 + hXOXl + 12xi 
3 2 2 3 

9 = 90Xo + 9l XOXl + 92XOXl + 93x l, 

then M is as in Figure 14.1, where as before fi = fi(8) is a function on X, 
and similarly for the 9i. 

We claim that the vanishing of det(M), as a function on X, defines the 
image of Y in X. (Sylvester simply asserted this fact; a proof was later 
supplied by Cauchy.) As before, a point (8, u, v) of Y over 8 E X gives rise 
to a linear relation on the columns of M, showing that det(M)(8) = 0; while 
if det (M) (8) = 0 for some particular 8 EX, then the linear dependence of 
the rows of M shows that f(8, u, v) and 9(8, u, v) satisfy a relation of the 
form 

a(xo, xdf(8, xo, xd = b(xo, Xl)9(8, xo, xd, 
where the degree of a is less than e and the degree of b is less than d. Thus 
some root (u, v) of 9(8, xo, xd is not a root of a (or at least occurs with 
lower multiplicity), and thus is a root of f(8, Xo, xd; it follows that (8, u, v) 
is a point of Y over 8, establishing the claim. 

We now leave this tour of the beginning of elimination theory, and turn 
to the technical business of the chapter. 

14.2 Generic Freeness 

The following result is often referred to as the "generic flatness lemma" 
though its conclusion is that a certain module is free, a condition stronger 
than flatness. The extra strength is required by many applications. 
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Theorem 14.4 (Grothendieck's Generic Freeness Lemma). Suppose that 
R is a Noetherian domain and S is a finitely generated R-algebra. If M is 
a finitely generated S -module, then there exists an element ° =I=- a E R such 
that M[a- 1] is a free R[a-1]-module. If in addition, S = So EEl Sl EEl··· is 
positively graded, with R acting in degree 0, and if M is a graded S -module, 
then a may be chosen so that each graded component of M[a- 1] is free over 
R. 

The proof is a classic example of a technique Grothendieck called devis
sage. (English: "unscrewing." After one application of the recursive step of 
the argument, we are back to the same spot but one dimension lower.) 

Proof. Let K = K(R) be the quotient field of R. We do induction on 
d:= dimK ®R S, starting with the case where K ®R S = 0, which we may 
think of as having dimension d = -1. In this case 1 E S is annihilated by 
some nonzero element a E R, and it follows that a annihilates M, whence 
M[a- 1] = 0, and the theorem is trivially satisfied. 

Since K ®R S is a finitely generated algebra over the field K we may 
apply the Noether Normalization theorem (Theorem 13.3) in the case with 
no ideals. Thus there exist algebraically independent elements Xl, ... , Xd of 
K ®R S such that K ® S is a finitely generated module over K[X1, .. " Xd]. 
If S is graded as above, then as Theorem 13.3 allows, we choose the Xi to 
be homogeneous. Multiplying each Xi by a suitable element of R, we may 
assume that each Xi E S. Let b1 , ... , bt generate S as an R-algebra. Each 
bi satisfies an integral equation over K[X1' ... ,Xd]. Clearing denominators, 
we may write this as a polynomial equation with coefficients in Rand 
leading coefficient Ci, say. Let a = lIci. It follows that S[a- 1] is integral, 
and thus is a finitely generated module, over S' := R[a-1 ][X1' ... ,Xd]. Of 
course M' := M[a- 1] is then a finitely generated module over S' as well. 

By Proposition 3.7 there exists a finite filtration of M' by S'-submodules 
M' = M{ =:; '" =:; M~+ 1 = ° with successive quotients MI / MI+ 1 ~ s' / Qi, 
where each Qi is a prime of S'. If Qi =I=- 0, then dimK ®R S'/Qi < d, 
so by induction there is an element ai E R such that S' /Q;[a;l] is free 
over R[a;l]. If Qi = 0, then S' /Qi = S' is a free R[a-1]-module (the free 
basis is the set of monomials in the Xi), and we set ai = a. Over the 
ring R[(a1a2'" as )-l] the module M[(a1a2'" as )-l] has a finite filtration 
by free R-modules and is thus free as required. If Sand M are graded as 
above, then by Proposition 3.12 the Qi may be taken homogeneous. In this 
case the homogeneous components of S' /Q;[a- 1] are free, over R, and the 
assertion for the graded case follows. D 

14.3 The Dimension of Fibers 

Recall that if 'P : R ---> S is a ring homomorphism then the fiber of 'P 
at a prime P of R is K(R/ P) ®R S. If Rand S are affine coordinate 
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rings of algebraic sets X and Y, respectively, <p comes from a morphism 
F : Y -+ X, and if P is the maximal ideal of R representing a point p 
of X, then K(Rj P) 0R 5 = 5j P5 is the affine coordinate ring of the 
(scheme-theoretic) fiber F-1(p), whence the terminology. 

Using generic freeness we can go much more deeply into the study of the 
fibers of a homomorphism of rings. Here we shall prove some results that 
bear on dimension theory. Perhaps the most important further result shows 
that under good circumstances most fibers are "smooth" in an appropriate 
sense; it will be treated in Corollary 16.23, after we have the theory of 
differentials. 

To get an idea of what to expect, consider the map F : Y = A 2 -+ X = 
A3 given by (u,v) f-7 (u,uv,O) (see Figure 14.2). If we take coordinates 
X,y,z on the target A 3 , then this corresponds to the map of rings R = 
k[x, y, z] -+ k[u, v] = 5 sending x f-7 U, Y f-7 uv, Z f-7 O. We may describe 
the image as the (x, y)-plane, minus the y-axis, with the origin put back 
in. 

We may write the image as the union of the open subset defined by 
x i= 0 of the closed set defined by z = 0, and the closed set defined by 
x = y = z = o. If we define a locally closed set to be an open subset 
of a closed subset (equivalently: the intersection of an open subset and a 
closed subset) and a constructible set to be a finite union of locally closed 
sets, then we see that the image in Figure 14.2 constructible. Chevalley's 
theorem, proved below, says that this is true in general, and more generally 
that the image of a constructible set is again constructible. The subsets Xd 
of X where the fibers have dimension 2: d are similarly constructible, as is 
the difference Xd - X d+1 where the fiber has dimension = d. 

The situation becomes much simpler when viewed from the perspective 
of the source variety Y = A2 instead of the target X = A3. First, every 
point of Y has an image in X, so the set of points q E Y such that the 
fiber through q has dimension 2: 0 is the whole of Y, and is thus closed. 

\-== 0, fiber dim I 

1";.0, fiber dim 0 

% = 0, \ -,t n, fiber dim 0 

(1I,/II'.Oj 
(II,\") "/ 

, = .1=:=0, 
fiber dim 1 

~----"""7I 

1=:=0. '''a. 
fiber dim-I 

:~o, hber 

dim -I 

1 

FIGURE 14.2. The image of an affine variety is constructible, not closed; fiber 
dimension is semicontinuous in the source, not in the target. 
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This trivial fact is actually typical: If we define Yd to be the set of points 
q E Y such that F-l F(q), the fiber through q, has dimension:::: d, then we 
see that in the example each Yd is closed in Y. Informally, one might say 
that as a point qt approaches q = qo, the dimension of the fiber through 
qt can jump up at t = 0 but not down. This is expressed by saying that 
the dimension of fibers is upper semicontinuous on the source. (More 
formally, an invariant is upper semicontinuous if for each integer d, the 
set on which the invariant takes values :::: d is closed.) 

We shall prove this upper semicontinuity below. It follows from the main 
theorem of elimination theory that in the case of a map from a projec
tive variety, the fiber dimension is actually semicontinuous on the target. 
We shall reverse this implication and prove a strong result about graded 
rings from which the semicontinuity theorems and the main theorem follow. 
First we give a special case that follows directly from the generic freeness 
lemma and will be useful in the proof. It uses Theorem 14.4 to sharpen 
Theorem 10.10 and gives the promised geometric version of Theorem 13.8. 

Corollary 14.5. Suppose that R is a Noetherian domain and that S is a 
finitely generated R-algebra containing R. There is an element 0 -I a E R 
such that for any prime ideal PeR not containing a there are prime ideals 
Q c S with P = R n Q, and for any such Q we have: 

dimSQ = dimRp + dimSQ/PSQ. 

Proof. By Theorem 14.4 we may choose a E R such that S[a- l ] is free over 
R[a-1]. Suppose that PeR is a prime not containing a. The local ring Rp 
is a further localization of R[a- l ], so 

Rp ®R S = Rp ®R[a-1] S[a- l ] 

is free as an Rp-module. It follows that P(Rp ® S) -I Rp ® S; thus it is 
contained in a prime ideal Q' whose intersection with S is the desired Q. 
The further localization (Rp ® S)QI = SQ is flat over Rp ® S, and thus 
also flat over Rp. We may now apply Theorem 10.10 to get the dimension 
equality. 0 

Specializing still further, and using Theorem A, we obtain the form that 
is most often used. 

Corollary 14.6. Let ReS be an inclusion of affine domains over afield k. 
Set d = tr. deg.RS. There is an element a E R such that for each maximal 
ideal PeR not containing a there exist primes Q of S containing P, and 
for any prime Q minimal over PS we have dimS/Q = d. 

Proof. Choose a ERas in Corollary 14.5. Let P be a maximal ideal of R 
not containing a. Let Q, Ql, ... , Qs be the minimal primes of PS. By prime 
avoidance we may for each i choose an element fi E Qi but not in Q. By the 
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Nullstellensatz Q is an intersection of maximal ideals, so there is a maximal 
ideal Q' of S that contains Q but not the element Ili k By Corollaries 14.5 
and 13.5 we have dim SQ' j P SQ' = dim SQ' - dim Rp = d. By construction, 
Q' does not contain any of the ideals Qi, so dim SQ' j P SQ' = dim SQ) QQ" 
By Theorem A dim SQ) QQ' = dim S j Q. Putting these together we get 
d = dimSjQ as required. 0 

Here is the geometric version of Corollary 14.6, in the case where k is 
algebraically closed. Let rp : Y ----; X be a dominant morphism of affine 
varieties over an algebraically closed field k. There is a Zariski open subset 
U of X such that for each x E U the fiber rp-l(x) is nonempty, and all its 
components have dimension dimY - dimX = tr. deg'K(R)K(S). 

The result showing that the image of a morphism of varieties is con
structible has the following algebraic expression. 

Corollary 14.7 (Chevalley's Theorem). If R is a Noetherian ring and 
f : R ----; S is a homomorphism of rings making S into a finitely generated 
R-algebra, then the set of primes 

XU) = {P E SpecRI there exists a prime Q of S with rl(Q) = P} 

is constructible in Spec R. 

Proof. For any ideal I of R we let h : Rj I ----; S j I S be the may induced 
by f. By Noetherian induction we may assume that X(h) is constructible 
whenever I is nonzero. 

The ring S has finitely many minimal primes Qi' We have XU) = UXUi) 
where fi : R ----; SjQi =: Si is the induced map. Thus it suffices to show 
that XUi) is constructible. Since XUi) is a subset of the spectrum of 
R; := Rj fi-l(Qi), it suffices to treat the case where Rand S are domains 
and ReS. 

In this case, let 0 -I=- a E R be as in Corollary 14.5. The open set Xl of 
primes not containing a is in XU), so it suffices to treat the intersection 
of XU) with the complement of Xl. 

The complement, SpecR - Xl, may be identified with SpecRj(a). Its 
intersection with XU) is the set XU'), where l' : Rj(a) ----; SjSa is the 
induced map. This is a constructible set by the Noetherian induction. 0 

We now turn to the general semicontinuity results. 

Theorem 14.8 (Semicontinuity of fiber dimension). Suppose that R is 
a Noetherian ring and that S is a finitely generated R-algebra. For each 
integer e: 

a. There is an ideal Ie C S such that if Q is a maximal ideal of Sand 
P:= Rn Q, then 

dim SQ j P SQ 2: e iff Q ::) Ie. 
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b. If S = So EB Sl EB ... is a positively graded algebra, finitely generated 
over R = So, then there is an ideal Je of R such that, for any prime 
ideal PeR, 

dim K(R/ P) ® S ;:::: e iff P::> Je . 

In geometric terms, Theorem 14.8 deals with the fibers of a morphism 
Y ....... X. Part b shows that ifY is projective over X then the fiber dimension 
is upper semicontinuous on the target, not just on the source. Part a shows 
that for each e, the union of those irreducible components of fibers that 
have dimension ;:::: e is a closed set in Y. Part a does not follow directly 
from part b, even in the case when Y is projective over X: Although part b 
says that the union of the fibers of dimension;:::: e is a closed subset of Y, 
it is not subtle enough to distinguish among the components of the fibers. 

The proofs require correspondingly different tools. Both use the generic 
freeness lemma in the form of Corollary 14.5. But though we can deduce 
part b directly from the characterization of dimension by Hilbert polynomi
als, we shall use Theorem 13.8 for part a; we thus prove it only in the case 
where the ring R is universally catenary (a case that covers virtually all 
geometric applications-see Theorem A and Corollary 18.10). The general 
case may be reduced to this one, essentially by transferring the problem 
to finitely generated subrings. For this reduction see Grothendieck [1966, 
Section 13.1]' where the result is proved even when R is not Noetherian, 
assuming that S is a finitely presented R-algebra. 

Proof. The theorem is certainly true if R is a field. Working in either the 
graded or the ungraded case, we do "Noetherian induction" as follows: If 
the theorem is false for R and some R-algebra S, then there is an ideal I in 
R maximal among those such that the result is false for R/ I and some R/I
algebra Sf. Replacing R by R/ I, we may assume that for any nonzero ideal 
J c R, the result is true for R/ J and any R/ J-algebra Sf. In particular, we 
may assume that R c S-----€lse we factor out the kernel of the map R ....... S 
and use the inductive hypothesis above. 

Proof of Part a (assuming R is universally catenary). For any prime Q of 
S we have 

dimSQ/PSQ = . max. dimSQ/(PSQ + Qf). 
Q' a mlmmal pnme of S 

Thus the set of Q such that the left-hand side ;:::: e is the union, over 
the set of minimal primes Qf, of the set of Q containing Qf and having 
dimSQ/(PSQ + Qf) ;:::: e. For this reason it suffices to prove the theorem 
after factoring out one of the minimal primes of S and its preimage in R, 
and we may assume that both Rand S are domains. 

Let d = dimK(R) ® S. For every maximal Q C S we have 

dimSQ/PSQ;:::: dimSQ - dimRp = d 

by Theorems 10.10 and 13.8. Thus we may take Id = o. 
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Let 0 -=1= a E R be chosen as in Corollary 14.5, so that if a ~ Q then 
dim8QIP8Q = dim8[a-1] - dimR[a-1] = d. We see that any maximal 
ideal Q such that dim 8Q I P 8Q > dim 8 - dim R must contain a. 

By the induction, the result is true for the RIRa-algebra 818a. If I~ c 
818a is the ideal corresponding to this induced map, then for e > d we may 
take Ie to be the preimage in 8 of I~. This concludes the proof of part a. 

Proof of Part b. If R were not a domain, then by induction there would be 
for every minimal prime P of R an ideal Je,p containing P such that 

dimK(RIP) ® 82: eiff P ~ Je,p for primes P of 8 containing P8. 

If follows that we could take Ie = np a minimal prime of RIe,p. Thus we may 
suppose that R is a domain. 

By Corollary 13.7 we may compute dimK(RI P) ® 8 for any prime P of 
R from the degree of the Hilbert polynomial that agrees with the numer
ical function dimK(R/p) K(RI P) ® 8n for large n. By Nakayama's lemma, 
dimK(R/p) K(RI P) ® 8n is the number of elements required to generate the 
Rp-module (8n )p, so that dimK(R/p) K(RI P) ® 8n 2: dimK(R) K(R) ® 8n . 

Thus for all primes PeR, we have dimK(RIP)®8 2: dimK(R)®8, and 
setting d = dimK(R) ® 8 we may take Id = O. 

Let 0 -=1= a E R be chosen as in the second part of Theorem 14.4, so that 
if a ~ Q then each 8n [a- 1] is free over R. It follows that for each prime P 
of R that does not contain a, the Rp module (8n )p is free of rank equal to 
dimK(R) K(R) ® 8n . Thus the Hilbert polynomial for K(RI P) ® 8 is the 
same as that for K(R) ® 8, so dimK(RIP) ® 8 = dimK(R) ® 8. We see 
that any prime PeR such that dimK(RIP) ® 8> dimK(R) ® 8 must 
contain a. 

By induction the result is true for the RI Ra-algebra 81 8a. If I~ c 81 8a 
is the ideal corresponding to this induced map, then for e > dimK(R) ® 8 
we may take Ie to be the preimage in 8 of I~. This completes the proof of 
part b. D 

Let X be an affine variety, and let Y be a closed subset of X x pn. if R is 
the affine coordinate ring of X, then Y corresponds to a graded R-algebra 
8 = 80 EB 81 EB ... with 80 = R, generated over R by n + 1 elements of 8 1 . 

The points of Y = Proj 8 correspond to the maximal homogeneous primes 
of 8 not containing the irrelevant ideal 8+ = 8 1 EB 82 EB . .. . Thus the 
image of Y in X corresponds to the set of maximal ideals P of R such that 
the fiber algebra 81 P 8 has some homogeneous prime ideals that do not 
contain the "irrelevant ideal" 8t1 P 8 1 EB 821 P 82 EB .... Since P is maximal, 
the irrelevant ideal is a maximal ideal of 81 P 8, and the condition for there 
to be homogeneous primes that do not contain it is dim 81 P 8 2: 1. More 
generally, the dimension of the fiber of Y --t X over a maximal ideal P of 
X is one less than the dimension of the fiber algebra 81p8. (Those who 
know about schemes will have no trouble interpreting and verifying the 
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same thing for arbitrary primes P of R.) Applying this argument in the 
special case where R is an affine domain over an algebraically closed field 
gives: 

Corollary 14.9. Let X be any variety over an algebraically closed field k, 
and let Y be a Zariski closed subset of X x pn. For any number e, if Xe is 
the set of points p of X such that the fiber ofY over p has dimension;::: e, 
then Xe is closed in X. 

14.4 Exercises 

Elimination Theory 

Exercise 14.1 (Proof of the Main Theorem of Elimination The
ory): Prove Theorem 14.1 by following these steps (if you get stuck you 
can find this proof in Mumford [1976]): 

1. Reduce to the case X = Am. 

2. Suppose the set Y is defined by a collection of polynomial equations 

that are homogeneous in the second set of variables. Show that the 
fiber over a point a E Am is empty iff the polynomials fi(a; Yo, ... , Yn) 
generate an ideal I in k[yo, ... , Ynl that contains some power of the 
"irrelevant ideal" (Yo, ... , Yn). 

3.* Let Xd C Am be the subset containing those points a for which I 
does not contain the dth power of (Yo, ... ,Yn), so that the image of 
Y in X is ndXd. Show that each Xd is closed by exhibiting defining 
equations. 

Exercise 14.2 (Liouville's Theorem): Show that there are no noncon
stant functions on a projective variety; thus the image of any map from a 
projective variety to Am is a point. This is the algebraic analogue of a con
sequence of the maximum modulus principal in complex analytic geometry. 

Exercise 14.3: Here is a classic method for proving that an algebraic set 
is irreducible. Suppose that X is an variety (=irreducible algebraic set) and 
Y C X X pn is an algebraic subset, all over an algebraically closed field. 
Suppose that the projection map 71'1 : Y --+ X to the first factor has fibers 
that are all irreducible and of constant dimension. Use the Theorem on the 
upper-semicontinuity of fiber dimension to show that Y is irreducible. 

Show that some of the hypotheses of this result are necessary by giving 
examples of: 
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a. A reducible algebraic set Y c X x An where X is irreducible and 
such that 1fl has irreducible fibers, all of the same dimension. 

b. A reducible algebraic set Y c X X pn where X is irreducible and 
such that 1fl has irreducible fibers of varying dimensions. 

Exercise 14.4: Find the dual of the conic defined by the equation x 2 + 
y2 + Z2 = 0 in p2. 

Exercise 14.5: Suppose <p : Y ----> X is a morphism of varieties correspond
ing to an inclusion of affine coordinate rings S +--" R, and that S is integral 
over R. Show that for any variety Z and any closed subset W c Y x Z, 
the image of W under the morphism <p x 1 : Y X Z ----> X x Z is Zariski 
closed in X x Z. Thus such morphisms have the same property that is 
exhibited in Theorem 14.1 in the case of the map from a projective space 
to a point-this property is called properness. 

Exercise 14.6: Suppose that R is a Noetherian domain with quotient 
field K, and that S is a finitely generated R-algebra. Use generic freeness 
to show that if M is a finitely generated S-module such that K ®R M = 0, 
then there exists an element 0 f:- a E R such that R[a-1] ®R M = O. Taking 
R = Z, find an example of a countably generated Z-module S such that 
Q ® S = 0 but Z[n-1] ® Sf:- 0 for every n E Z. 

Exercise 14.7 (Strong form of Chevalley's Theorem): If R is a 
Noetherian ring, S is a finitely generated R-algebra by a map / : R ----> S, 
and Z is a constructible subset of Spec S, show that {P c Spec RIP = 
/-I(Q) for some Q E Z} is constructible. If Y ----> X is a morphism of 
affine varieties over an algebraically closed field, show that the image of a 
constructible subset of Y is a constructible set in X. 

Exercise 14.8: The set of hyperplanes in pn forms a projective space 
pnv, where the homogeneous coordinates of a hyperplane are taken to be 
the coefficients of the linear form vanishing on the hyperplane. Given an 
algebraic set X c pn, consider the "universal hyperplane section" of X, 
which is the set Y = {(x,H) E pn x pnV I x E XnH}. (The name comes 
from the fact that if we let 1f2 : Y ----> pnv be the second projection, then the 
fibers of 1f2 are the hyperplane sections of X.) Show that Y is an algebraic 
subset of pn x pnV. Use the first projection 1fl : Y ----> X to compute the 
dimension of Y. Use Exercise 14.3 to show that if X is irreducible then 
Y is irreducible too. Describe the ideal of Y by giving polynomials whose 
radical is the ideal of Y. 



15 
Grabner Bases 

Man kann dieses Verfahren dazu beniitzen, den Restkalssen
ring eines nulldimensionalen Polynomideals wirklich zu berech
nen .... 

(One can use this process to actually compute a zero-dimen
sional residue class ring of a polynomial ring .... ) 

-w. Grobner [1939] 

We shall work throughout this chapter with a polynomial ring 5 = 
k[Xl, ... , xrl over a field k. The elements of k will be called scalars. All 
5-modules mentioned will be assumed finitely generated. 

A great deal of modern commutative algebra and algebraic geometry 
is formulated in an essentially nonconstructive fashion. To take a simple 
example, Hilbert's basis theorem assures us that there exists a finite basis 
of the syzygies for any finite set of elements of 5, but at first glance it 
would seem that one must investigate syzygies of all degrees to find such 
a basis. Nevertheless, one can find such a basis algorithmically (Hilbert'S 
original proof was algorithmic!) , and one can effectively perform a very 
large proportion of the other central operations of commutative algebra as 
well. In fact, practical algorithms are known and implemented in various 
computer algebra packages. In this chapter we will take up a notion that 
is central to many such algorithms: the notion of a Grobner basis. Grobner 
bases have had interesting theoretical as well as computational applications, 
and there are currently many open problems in the theory. 

In brief, a Grobner basis for an ideal I in 5 is a set of generators for 
I with an additional property; Buchberger's algorithm yields a simple 
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and effective method for computing Grabner bases and syzygies. Through 
the use of Grabner bases, many questions about ideals in polynomial rings 
can be reduced to questions about monomial ideals, which are far eas
ier. The kinds of problems that can be attacked with Grabner bases can 
be very roughly divided into two groups: constructive module theory and 
elimination theory. 

Constructive Module Theory 

In this heading we group all the operations carried out on modules over a 
fixed ring. For example, this group includes 

• Perform Division with remainder and compute ideal mem
bership: Given generators for an ideal I c S, determine a vector 
space basis for Sf I, and given a polynomial f, compute its image in 
Sf I in terms of this basis. If f E I (that is, if the image is 0), compute 
an expression for f as a linear combination of the generators of I. 

• Compute syzygies; that is, compute the kernel of a map 'P : G --7 F 
of free S-modules. Equivalently, solve a system of linear equations 
over S. 

• Compute the intersection of two ideals. 

• Compute the annihilator of a module. 

• For ideals I, JCS, compute the saturation (I:JOO). 

• COInpute the module of homomorphisms between two given 
modules; more generally, compute Ext and Tor. 

• Compute the Hilbert function and polynomial of a graded 
module. 

Elimination Theory 

In this heading we group the operations that involve two different rings. 
The most basic operation in this class is 

• Elimination: Compute the intersection J of an ideal I C k[Xl, ... , 
xrl with a subring R' = k[Xl, ... ,xsl. 

The geometric meaning of elimination is projection: Given an algebraic 
variety X C A r defined by the vanishing of the polynomials in I, the pro
jection of X to AS is a set whose closure (in the Zariski topology) is defined 
by J. One of the main uses of elimination is in actually finding solutions for 
a system of polynomial equations-that is, finding points of a variety. The 
idea is to reduce the problem to a problem in fewer variables, and even
tually to a problem in one variable, where other techniques (factorization 
of polynomials) can be used. In this chapter we will explain how to use 
elimination to solve problems such as: 
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• Compute the equations satisfied by given elements of an 
affine ring. Geometrically, compute the closure of the image of an 
affine or projective variety under a morphism. 

In particular: 

• Find a presentation of the blowup algebra and associated 
graded ring of a ring R=S / I, with respect to an ideal m. 

• Given a variety YeAr, find equations for its closure in pro 

This chapter is somewhat inhomogeneous. The main results, on which 
the computational uses of Grabner bases are founded, are proved in the 
first part, ending with the treatment of syzygies. To borrow a phrase of 
Sturmfels', these are the "Grabner Basics." Next are collected some histor
ical remarks. Subsequent sections on flat families and generic initial ideals 
present more advanced topics. Some of the ways of applying Grabner basis 
techniques in constructive module theory are then described. The novice 
might want to read just the "Basics" and browse a little among the appli
cations to get a flavor of what is possible. For those wishing to go deeper 
into the use of computers in commutative algebra and algebraic geome
try, I have provided some computer algebra projects, with suggestions for 
implementation, in addition to more traditional exercises. 

Another part of constructive commutative algebra that certainly deserves 
mention, but that we will not treat here, concerns methods for factoring 
polynomials. This field is dominated by ideas of E. Berlekamp; a beautiful 
exposition may be found in the book of Knuth [1969, Vol. II, Section 4.6]. 

15.1 Monomials and Terms 

Since the main idea in the use of Grabner bases is to reduce all questions to 
questions about monomials, we begin with these. We write monomials in 
S using multiindices: If a = (al' ... , ar ), then x a will denote the monomial 

An ideal generated by such monomials will be called a monomial ideal. 
More generally, let F be a finitely generated free module with basis {ei}. 
A monomial in F is an element of the form m = Xaei for some i. We 
will say that such an m involves the basis element ei. A monomial 
submodule of F is a submodule generated by elements of this form. Any 
monomial submodule M of F may be written as 

M = tf)!jej C SSej = F 

with I j the monomial ideal generated by those monomials m such that 
mej EM. 
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A term in F is a monomial multiplied by a scalar. Since the monomials 
form a vector space basis for F, every element f E F is uniquely expressible 
as a finite sum of nonzero terms involving distinct monomials, which we call 
the terms of f; the monomials in these terms will be called the monomials 
of f. Since we have assumed that k is a field, the distinction between terms 
and monomials will not play much of a role in our theory. 

These definitions all depend on the chosen basis {ei} of F. Whenever 
possible, we will suppress the actual basis {ei} from our notation, and 
speak simply of F as a free module with basis. 

If m, n are monomials of S, u, v E k, and v -I- 0, then we say that the 
term umei is divisible by the term vnej if i = j and m is divisible by n 
in S; the quotient is then um/vn E S. 

A number of operations are far simpler for monomials than for arbi
trary polynomials. For example, the greatest common divisor and least 
common multiple of two monomials in S are obtained componentwise: 
If b = (b l , ... , br ), then 

GCD(xa, xb) min(aJ,bd min(a"b,) min(a,A) = xl X 2 ... Xr , 

LCM( a b) max(aJ,bd max(a"b,) max(a"b,) 
X ,X = Xl X 2 ... Xr . 

We extend these operations to terms in any free module with basis F: If m, 
n E F are terms involving the same basis element ei of F, then the GCD 
of m and n will be taken to be the largest monomial in F by which both m 
and n can be divided. It is easy to write down the intersection or quotient 
of monomial submodules in terms of these operations; see Exercises 15.3 
and 15.7. 

If M c F is a submodule generated by monomials ml, ... ,mt, it is trivial 
to decide whether a monomial m belongs to M: It does iff it is divisible by 
at least one of the mi. More generally, the "membership problem" is easy 
to solve for a monomial submodule: An arbitrary element f E F belongs 
to M iff each of its monomials belongs to M. 

Given any set of monomial generators for M, we may remove any that 
are divisible by others in the set and still have a set of generators for M. 
In this way we get the unique minimal set of monomials generating M: the 
set of monomials in M that are minimal elements in the partial order by 
divisibility on the monomials of F. We will refer to the monomials in this 
set as minimal generators of M. 

15.1.1 Hilbert Function and Polynomial 
These simple ideas already suffice to compute the Hilbert function and 
polynomial of a monomial submodule M c F, or equivalently of the quo
tient P = F/M, quite efficiently. Because the submodule M is a direct sum 
of modules of the form Ijej, where the ej are basis elements of F, we get 
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P ~ ffiS / I j . Since the Hilbert function is additive, it suffices to treat the 
case P = S / I, where I is a monomial ideal. 

We make an induction using the following idea: Choosing one of the 
minimal generators n of I, we write I = (I', n), where I' is a monomial 
ideal generated by fewer monomials than I, and we let d be the degree of 
n. There is an exact sequence of graded modules and degree 0 maps 

S(-d) ~ S/1' -4 S/I -4 0, 

where S( -d) is the free module with generator in degree d and <p is the 
map that sends the generator of S( -d) to the class of n in S/ I'. The kernel 
of <p is easy to compute. It is the monomial ideal 

J:= (I': n) = {m E Simn E I'}, 

shifted in degree to be a submodule of S( -d). If I' = (ml' ... ' mt) then by 
Exercise 15.3, 

J = (mt!GCD(ml, n), ... , mt!GCD(mt, n)), 

so like I', the ideal J has fewer minimal generators than I, and we can 
suppose by induction that we know the Hilbert function and polynomial of 
S/ I' and S/ J. 

From the short exact sequence of graded modules 

0-4 (SjJ) ( -d) -4 S/ I' -4 S/ 1-40, 

we get for each integer v a short exact sequence of vector spaces 

0-4 (S/J)//-d -4 (S/1')// -4 (S/1)// -4 O. 

Thus, on the level of Hilbert functions, 

HSjI(v) = HSjI' (v) - HSjJ(v - d), 

which solves our problem. 
By choosing n sensibly, we can make the process much faster: If n con

tains the largest power of some variable Xl of any of the minimal generators 
of I, then the minimal generators of the resulting ideal J will not involve 
Xl at all. They will thus involve strictly fewer of the variables than do the 
minimal generators of I. 

This process leads to an expression for the Hilbert function or polynomial 
as an alternating sum. A variant of the method, which leads directly to 
an expression for the Hilbert function as a sum of binomial coefficients 
(all terms positive), is presented in Exercise 15.4. The worst-case behavior 
of these methods (with the best-known choices for the monomial n) is 
exponential in the number of variables, and Bayer and Stillman [1992] 
(from which the preceding method is taken) show that finding the Hilbert 
function of a monomial ideal is an N P-hard problem in a suitable sense. 
Nevertheless, in many cases of interest, the method works quite quickly. 
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15.1.2 Syzygies of Monomial Submodules 

Syzygies of monomial submodules are also quite simple. The following 
result not only gives generators for the syzygies of a monomial submodule, 
but also gives precise information on the coefficients necessary to express 
arbitrary syzygies in terms of the generators. 

In the following, we let F be a free module with basis and let M be a 
sub module of F generated by monomials ml,"" mt. Let 

be a homomorphism from a free module whose image is M. For each pair 
of indices i,j such that mi and mj involve the same basis element of F, we 
define 

mij = mdGCD(mi,mj), 

and we define (Tij to be the element of ker cP given by 

Lemma 15.1. With notation as above, kercp is generated by the (Tij' 

Proof. We first observe that as a vector space over k, ker cP is the direct 
sum, over all monomials n E F, of the vector spaces 

Indeed, suppose that 

Pi E S 

is a syzygy, so that L: Pimi = 0. For any monomial n of F that occurs in one 
of the Pjmj, and for each i, let Pi,n be the term of Pi (if any) such that Pi,nmi 
is a scalar times n. We must have L:Pi,nmi = 0, so L:Pi,nci E (kercp)n. The 
representation is clearly unique. 

We may now assume that (T = L:avnvc(kercp)n, and we prove that (T is 
in the module generated by the (Tij by induction on the number of nonzero 
terms of (T. If (T i- 0, then because (T is a syzygy, at least two of the avnv 
must be nonzero, say the ith and the jth, with i < j. It follows that n is 
divisible both by mi and mj, and thus ni is divisible by 

Consequently, we may subtract a scalar times (ndmji)(Tij from (T to get a 
relation with fewer terms. 0 

The proof actually gives a stronger result, which we will use in the proof 
of Theorem 15.8: 
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Lemma 15.1 bis. With notation as in Lemma 15.1, every element ofker'P 
is uniquely expressible as a sum of elements T = L avnvCv E ker'P such that 
all the nvmv are equal to the same monomial n E F. For such an element 
we may write 

where the sum is over all i < j such that LCM(mi' mj) divides n, and where 
nij is a scalar times the monomial n/LCM(mi,mj) = ndmji. 

Proof. The first paragraph of the proof of Lemma 15.1 proves the first 
statement. For the second, look again at the last paragraph of the proof 
of Lemma 15.1. The element (Jij used there meets the conditions of 
Lemma 15.1 bis, and we never introduce any new term in T in the course 
of the induction. D 

The syzygies (Jij in Lemma 15.1 are sometimes called divided Koszul 
relations because of their similarity to the relations in the Koszul complex 
that we shall study in Chapter 17. We have shown that they generate all 
the syzygies on monomial ideals, but in general they do not form a minimal 
set of generators (see Exercise 15.6). In Exercise 17.11 we will see that a 
very similar construction gives a whole (nonminimal) free resolution of a 
monomial submodule, which is a kind of "divided Koszul complex." 

15.2 Monomial Orders 

If J c S is a monomial ideal, then the set B of all monomials not in J forms a 
vector space basis for S / J that makes computation in S / J quite convenient. 
If I is an arbitrary ideal of S, we would like to obtain a similarly simple picture 
of S / I. Since the monomials of S form a vector space basis, their images span 
S / I, and a maximal linearly independent subset B will be a basis. These exist 
by Zorn's lemma, so any S / I has such a monomial basis. 

If we can choose B to be the complement of the set of monomials in 
a monomial ideal J, as in the case where I is itself a monomial ideal, 
we get an extra advantage. Because a monomial ideal can be specified by 
giving finitely many monomial generators, it is easy to determine whether 
a given monomial is in B: We must simply test for divisibility by one of the 
generators of J. We will show in Theorem 15.3 that there is a monomial 
basis B for any S / I obtained in this way. We begin here with some remarks 
to motivate the construction. 

First, if J is a monomial ideal and B is the set of monomials not in J, then 
it is not hard to see that the elements of B remain linearly independent 
modulo an ideal I iff (*) J contains at least one monomial from every 
polynomial in I. For the set B to be a basis of S / I, the ideal J must (at 
least!) be minimal with property (*). 
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As a first example, let I = (ml + m2) be a principal ideal generated 
by the sum of two monomials mi' A monomial ideal contains at least one 
monomial from each polynomial in I iff it contains one of the monomial 
ideals (mi)' However, if ml divides m2 and we take J = (ml), then B 
will not be a basis since J is not minimal: ml itself is superfluous. Taking 
J = (m2) in these circumstances does make B a basis, however; we will 
prove a much more general statement in a moment, but the reader may 
wish to pause to think through this special case. 

To find a monomial ideal J that contains at least one monomial from 
each polynomial of I it seems natural to look for a method of choosing one 
monomial from each polynomial of S. Given such a method, we can apply 
it to choose a monomial from each polynomial in I, and use the chosen 
monomials to generate J. To make J minimal, some interesting additional 
conditions must be met. 

Suppose for example that ml, m2, m3 are distinct monomials of the same 
degree d and that 

1= (ml + m2, m2 + m3) + (all monomials of degree> d). 

Suppose that we have chosen ml from ml + m2 and m2 from m2 + m3 to 
put into J. The ideal I also contains 

(ml +m2) - (m2 +m3) = ml -m3· 

We must at this point choose ml (rather than m3) to put into J, because if 
we put m3 into J, then J would not be minimal. Thus if we write ml > m2 
for the relation "ml is chosen over m2", then> must satisfy the axiom for 
an order relation, ml > m2 > m3 => ml > m3. A more careful analysis 
shows that the same thing is true even when the mi have different degrees. 

Thus we must totally order the monomials of S, and put into J the 
greatest monomial in each polynomial of I. Because we wish to take J 
to be an ideal, there are two further requirements that the order > must 
satisfy with respect to multiplication. 

First, as shown in the first example, > must refine the partial order 
defined by divisibility: That is, if m2 is divisible by ml, we must take 
m2 > mI' 

Second, > must be preserved by multiplication: Suppose that I = (ml + 
m2) and that we have chosen ml > m2 so that ml E J and ml does 
not divide m2. Then nml + nm2 E I, but already, since J is an ideal, 
nml E J, so choosing nm2 > nml would lead (under many circumstances) 
to nonmimimal sets J. Thus we must have nml > nm2. The following 
definition encapsulates these conditions. 

Definition. Let F be a free S -module with basis. A monomial order 
on F is a total order > on the monomials of F such that if ml, m2 are 
monomials of F and n #1 is a monomial of S, then 

ml > m2 implies nml > nm2 > m2· 
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Bearing in mind that we are supposing F to be finitely generated, the 
second inequality has an extremely useful consequence. 

Lemma 15.2. Let F be a free S-module with basis. Any monomial order 
on F is Artinian (every subset has a least element). 

Proof. If X is a set of monomials of F, then since S is Noetherian the 
submodule of F generated by X is already generated by a finite subset 
Y eX. The least element of Y will be the least element in X because 
every element of X is a multiple, by a monomial in S, of an element of Y. 

D 

We will extend this notation to terms: If um and vn are terms with 
o =I=- u, v E k, and m, n are monomials with m > n (respectively, m 2': n) 
then we say um > vn (respectively, um 2': vn). Note that this is not a 
partial order on terms, since even if u =I=- v we have um 2': vm and vm 2': um. 
It is nonetheless convenient. 

If > is a monomial order, then for any f E F we define the initial term 
of j, written in> (f) to be the greatest term of f with respect to the order 
>, and if M is a submodule of F we define in>(M) to be the monomial 
submodule generated by the elements in> (f) for all f E M. When there is 
no danger of confusion we will simply write in in place of in>. 

Note that if pES and f E F and we write n for the (unique) term of 
p such that n in(f) is greatest, then in(pf) = n in(f). If m is a term of f 
other than in(f) and n' is a term of p other than n, we will have 

n in(f) > n' in(f) 
> n'm 

(by hypothesis) 
(because> is a monomial order). 

Monomial orders do all that we might have hoped 

Theorem 15.3 (Macaulay). Let F be a free S-module with basis, and let 
M be an arbitrary submodule. For any monomial order> on F, the set B 
of all monomials not in in>(M) forms a basis for F/M. 

Proof. To show that B is linearly independent, note that if there were a 
dependence relation 

p= LUimi EM mi E B, 

then in(p) E in(M). Since in(p) is one of the mi, which are supposed to be 
in B, this is a contradiction. 

Now suppose that B does not span F / M. Among the set of elements of F 
that are not in the span of M and B, we may take f to be one with minimal 
initial term. If in(f) were in B, we could subtract it, getting a polynomial 
with a still smaller initial term. Thus we may suppose that in(f) E in(M). 
Subtracting an element of M with the same initial term as f results in a 
similar contradiction. D 
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Monomial orders abound. Here are some significant examples with F = 
S. We write a = (al," . ,ar ) and b = (bl , ... ,br ) for multiindices, and set 
m = x a , and n = xb. By renaming the variables, we may always achieve 
Xl > X2 > ... > XT) and we will only describe orders with this property. 

Lexicographic order. m >lex n iff ai > bi for the first index i with 
ai =I- bi . 

Homogeneous lexicographic order. m >hlex n iff deg m > deg n or 
deg m = deg nand ai > bi for the first index i with ai =I- bi . 

If we are given a sequence of partial orders >1, >2, ... , then we may define 
the partial order that is their lexicographic product to be the order in 
which m > n if m >i n for the first i such that m and n are comparable 
with respect to the order >i. We sometimes say that the lexicographic 
product order is the order >1 refined by the order >2 refined by .... The 
homogeneous lexicographic order is the lexicographic product of the partial 
order by degree (m > n if deg m > deg n) refined by the partial orders by 
the degree in Xl, the degree in X2, .... 

If r = 1 then the requirement that nm2 > m2 for a monomial n not 
equal to 1 shows that there is a unique monomial order on S: the order by 
degree. Similarly, if r = 2, then there is only one monomial order on S that 
refines the order by degree and satisfies our convention Xl > X2. To see this, 
suppose m = X~l X~2 and n = X~l X~2 have the same degree al + a2 = bl + b2. 

If al > b1 , so E := al - b1 > 0, then writing p = X~l X~2 for the greatest 
common divisor gives 

m = x1P, 
n = x~p. 

But Xl > X2 implies xi > x~ (in fact induction gives xi > XrlX2 > x~), so 
m>n. 

There are in general many other orders. By far the most important is 
the following. 

Reverse lexicographic order. m >rlex n iff deg m > deg n or deg m = 
deg nand ai < bi for the last index i with ai =I- bi . 

Note the direction of the inequality ai<bi. The name "reverse lexico
graphic" comes from the fact that, on the monomials of a given degree, 
this is the reverse of the order obtained by reversing the order of the vari
ables and using homogeneous lexicographic order. (The opposite of lexico
graphic order is itself not an order in our sense; can the reader see why?) 
Reverse lexicographic order was introduced by Macaulay [1927]. The dif
ference between the homogeneous lexicographic and reverse lexicographic 
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orders is subtle, but the use of reverse lexicographic order in place of homo
geneous lexicographic order in the algorithms described next sometimes 
improves the efficiency of computation enormously (Bayer and Stillman 
[1987a and b]). See the section on generic coordinates for a hint of a pos
sible reason. 

The first case in which >hlex and >rlex could differ is for quadratic mono
mials in three variables. Here indeed we have 

while 

Roughly, we can describe the difference by saying that if m and n have the 
same degree, then m >hlex n iff m involves more from the beginning of 
the list of variables, while m >rlex n iff m involves less from the end of 
the list of variables. Most of the uses made of these orders depend on the 
following easily verified properties (which actually characterize them; see 
Exercise 15.10). These properties make it clear that the subtlety above is 
the difference between a subring and an ideal. 

Proposition 15.4 (Characteristic properties of lex, hlex, and rlex). 

a. Ifinlex(f) E k[xs, ... ,xr] for some s, then f E k[x., ... ,xr]. 

b. >hlex refines the order by total degree; and if f is homogeneous with 
inhlex(f) E k[xs, ... , xr] for some s, then f E k[xs, ... , xr]. 

c. >rlex refines the order by total degree; and if f is homogeneous with 
inrlex(f) E (xs, ... ,xr) for some s, then f E (xs, ... ,xr). 

Weight orders: We define a weight function A for S to be a linear 
function Rr _ R; A will be called integral if it comes from a linear map 
zr _ z. Any weight function A defines a partial order> A, called the weight 
order associated to A, by the rule m = xa >A n = xb iff A(a) > A(b). 
We say that A is compatible with a given monomial order > if m > A n 
implies m > n. Similar things could be done for a free module, but we 
shall not use this. There are always compatible weight orders: In fact, it 
can be shown (Robbiano [1986]; and see Exercises 15.11-15.13) that every 
monomial order is the lexicographic product of r weight orders, the first of 
which is necessarily compatible with the given order. For example, defining 
7ri : Rr - R to be the projection onto the ith coordinate, the lexicographic 
order is the lexicographic product of the weight orders corresponding to the 
7ri, while the reverse lexicographic order is the lexicographic product of the 
weight orders corresponding to the total degree function (J' = E7ri and the 
functions -7rr , -7rr -I, •.. , -7rI (the last of which may of course be omitted). 
In fact, any monomial order> can be approximated by a single weight order 
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> A in the sense that > A can be made to agree with > on any given finite 
set of pairs of monomials; see Exercise 15.12. 

In Proposition 15.16 we will have occasion to use a small extension of 
the notion of initial term: Given a weight order A on the polynomial ring 
S, we define inA(f) to be the sum of all those terms of f that are maximal 
for >A' 

One way of getting monomial orders on a free module F with given basis 
{ei} is to choose a monomial order> on S, choose an order >- among the ei, 
and use a lexicographic product of the partial orders on the monomials of 
F induced by> and >-. In particular, a reverse lexicographic order on 
F is the result of refining the reverse lexicographic order on the monomials 
of S by an order of the basis ei in this way. 

Now let F be a free S-module with basis and let M be a submodule of 
F. It turns out to be extremely useful to know the modules in>(M) with 
respect to various orders >. "Knowing" such a module means of course 
having a system of generators for it. It turns out to be practical to ask 
for a little more information: a system of generators for in>(M), and for 
each one an element of M whose initial form it is. The following central 
definition encapsulates a convenient description of this information. 

Definition. A Grabner basis with respect to an order> on a free module 
with basis F is a set of elements gl, ... , gt E F such that if M is the 
submodule of F generated by gl, ... , gt, then in>(gd, ... , in> (gt) generate 
in> (M). We then say that gl, ... ,gt is a Grabner basis for M. 

Examples. The case of no variables: Let S be a field and let F be a vector 
space of dimension s, with basis {ei}; we may identify elements of F with 
column vectors of length s. The only monomials of F are the ei; let> be 
the monomial order in which el > e2 > .... 

A set of elements gl,' .. ,gt E F is simply an s x t matrix Gover S. 
The set G is a Grobner basis iff it contains a maximal linearly independent 
set in "echelon form," that is, if some maximal independent subset of the 
column vectors gi have their first nonzero entries in distinct rows, as in 
Figure 15.1. 

The case of one variable: Next consider the case S = k[x], a polynomial 
ring over k in one variable, and take F = S. The only monomial order 
is the order by degree. A submodule M c F is then just an ideal. The 
monomial ideal in(M) is generated by x d where d is the smallest degree 
of any polynomial in M; thus a Grobner basis of M consists of any set 
of generators of M containing an element of minimal degree. Note that 
Lemma 15.5 provides a proof that an ideal is generated by any element of 
minimal degree. 

There is a Grobner basis for any submodule M of F, with respect to any 
monomial order: If gl, ... ,gt are generators for M that are not a Grobner 
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basis, then to get a Grabner basis we simply adjoin elements gt+1, ... ,gt' of 
M until the initial terms in(gd, ... ,in(gt') generate in(M). This is possible 
by the Hilbert basis theorem. The following lemma shows that any set of 
elements of M whose initial terms generate in(M) actually generate M. 
Thus, to check that a set of elements is a Grabner basis for M, it is enough 
to check that their initial terms generate in(M). 

Lemma 15.5. If N c M c Fare submodules and in(N) = in(M) with 
respect to a monomial order, then N = M. 

Proof. If N i- M, then there would be an element f E M not in N whose 
initial term is smallest among initial terms of elements not in N. Since 
in(f) E in(M) = in(N), we may write in(f) = in(g) with gEN. But then 
f - gEM, f - 9 tj. N, and f - 9 and has smaller initial term than f -a 
contradiction. D 

Once we can compute Grabner bases, Lemma 15.5 suffices to solve the 
"submodule membership" problem: Given a submodule M of a free mod
ule with basis F and an element f E F, decide whether f E M. To do 
this, choose a monomial order on F and find in(M) and in(M + Sf). By 
Lemma 15.5, the element f is in M iff in( M) = in( M + Sf). This is easy to 
test because in(M) and in(M + Sf) are monomial submodules. (In prac
tice one would probably use the division algorithm presented in the next 
section instead of this method.) 

A Grabner basis g1, ... ,gt such that in(gi) does not divide in(gj) for any 
i i- j (that is, such that the in(gi) are a minimal set of generators for the 
monomial submodule they generate) is called a minimal Grabner basis. 
We can make a Grabner basis for M into a minimal Grabner basis just 
by leaving out some elements. More interesting perhaps, a Grabner basis 
g1, ... ,gt such that in(gi) does not divide any term of gj for i i- j is said 
to be reduced. If we assume in addition that in(gi) is a monomial (that 
is, the coefficient from k is 1), then we get something uniquely defined in 
terms of the submodule, the basis of F, the choice of variables in S, and 
the choice of order-see Exercise 15.14. 
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15.3 The Division Algorithm 

One of the most elementary and useful operations with polynomials in 
one variable is "division with remainder"; given polynomials f and 9 this 
algorithm constructs an expression of the form f = !Ig + l' with deg!Ig = 
deg f, and deg l' < deg 9 (or possibly l' = 0). Given such an expression, l' 
is called the remainder on division. If we order the monomials of S = k[xIJ 
by degree (that is: xl < xi iff s < t), then we can restate the conditions 
on !I and f' above by saying that f' has no monomials in the initial ideal 
of (g), and in(f) 2:: in(!Ig) (actually the terms in question are equal). We 
will now extend this process to the general case. A side effect will be an 
algorithm for computing a Grabner basis. 

Proposition-Definition 15.6. Let F be a free S-module with basis and 
monomial order>. If f, gl, ... ,gt E F then there is an expression 

f = L figi + l' with l' E F, fi E S, 

where none of the monomials of f' is in (in(gd, ... , in(gt)} and 

in(f) 2:: in(figi) 

for every i. Any such f' is called a remainder of f with respect to 
gl, ... , gt, and an expression f = L figi + l' satisfying the condition of 
the proposition is called a standard expression for f in terms of the gi. 

The proof consists of an algorithm for finding a standard expression of 
the desired sort. 

Division Algorithm 15.7. Let F be a free S -module with basis and a 
fixed monomial order. If f, gl, ... ,gt E F, then we may produce a standard 
expression 

f = L mugsu + l' 
for f with respect to gl, ... ,gt by defining the indices Su and the terms mu 
inductively. Having chosen SI, ... , sp and ml, ... , m p, if 

p 

f; := f - L mugsu r!= 0 
u=1 

and m is the maximal term of f; that is divisible by some in(gi), then we 
choose 

Sp+l = i, 

mp+l = m/ in(gi) 
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This process terminates when either f; = 0 or no in(gi) divides a monomial 
of f;i the remainder l' is then the last f; produced. 

Lemma 15.2 guarantees that the algorithm terminates after finitely many 
steps because the maximal term of f; divisible by some gi decreases at each 
step. 

The division algorithm is most important in the case when the gi form 
a Grabner basis for a submodule M of F; then from the conditions of a 
standard expression, we see that the remainder l' gives the expression for f 
mod M in terms of the basis of F / M guaranteed by Theorem 15.3. In fact, 
since Grabner bases always exist, the division algorithm gives us another, 
more constructive, version of the second half of the proof of Theorem 15.3. 

Note that standard expressions are far from unique: The division algo
rithm as we have stated it is indeterminate, in that the remainder depends 
on some choices made in carrying out the process. This is occasionally use
ful in that some choices are more efficient than others. In fact, the division 
algorithm still terminates if at each stage we simply choose some term of f; 
divisible by some in(gi), instead of the greatest term. This gives a still-more 
indeterminate version of the division algorithm, which works just as well 
for the purposes of this chapter (see Exercise 15.16). 

It is sometimes useful to have a determinate division algorithm; we 
can do this by specifying (for example) that at each step we take m to 
be the greatest monomial of f; that is divisible by some in(gi), and Sp+l 

the smallest i for which this division is possible. Such determinate division 
gives a unique standard expression satisfying certain auxiliary conditions 
(see Exercise 15.17). 

It is easy to check that the division algorithm works just as well for weight 
orders and other monomial partial orders, so long as the initial forms of all 
the polynomials considered are terms (the initial form is by definition the 
sum of all the maximal terms). 

15.4 Grabner Bases 

The division algorithm leads to a computation of Grabner bases and syzy
gies on them, the two major topics of this chapter. We will make use of the 
following notation: 

Let F be a free module over S with basis and monomial order >. Let 
gl,.··, gt be nonzero elements of F. Let ffiSci be a free module with basis 
{Ci} corresponding to the elements {g;} of F, and let 

be the corresponding map. 
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For each pair of indices i, j such that in(gi) and in(gj) involve the same 
basis element of F, we define 

mij = in(gi)/GCD (in(gi),in(gj)) E S, 

and we set 
O'ij = mjiEi - mijEj, 

so that the O'ij generate the syzygies on the elements in(gi) by Lemma 15.1. 
For each such pair i, j, we choose a standard expression 

mjigi - mijgj = L f~ij)gu + hij 

for mjigi - mijgj with respect to gl, ... ,gt. Note that in(f~ij) gu) < in( mjigi). 
For convenience we set hij = ° if in(gi) and in(gj) involve distinct basis 
elements of F. 

With this notation we have: 

Theorem 15.8 (Buchberger's Criterion). The elements gl,'" ,gt form a 
Grabner basis iff hij = ° for all i and j. 

Proof. Let M = (gl,'" ,gt) E F. From the expression for hij we see that 
hij EM, and thus in( hij ) E in( M). If gl, ... ,gt is a Grabner basis, then as 
remarked just after the proof of the division algorithm, the definition of a 
standard expression shows that hij = 0. 

Conversely, suppose that all hij = 0, so that 'P(uij) = 'L f~ij) gu with 
in(f~ij)gu) < in(mjigi). If gl, ... ,gt is not a Grabner basis, then we may 
choose an expression 

f = L fugu with in(f) 1- (in(gl), ... , in(gt)). 
u 

Let m be the maximum among the terms in(fugu). We may suppose that 
the expression for f has been chosen so that m is as small as possible. Now 
let 'L' fvgv be the sum of all those fvgv for which in(fvgv) is m times a 
scalar. We may write in(fvgv) = nv in(gv) for some term nv of fv. If the 
sum of the corresponding initial terms 'L' nvin(gv) is nonzero, then it is 
the initial term of f; as it is a multiple of m, it is a multiple of in(g,,), 
contradicting the choice of f. Thus 

L' nv in(gv) = 0, 

so that 'L' nvEv is a syzygy among the in(gv). 
By Lemma 15.1 bis, we may write 'L' nvEv = 'Li<j aijO'ij where aij is a 

scalar times m/ in(gi). If we apply 'P and substitute 'L f~ij) gu for 'P(O'ij), we 
find a relation of the form 
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with all in(hsgs) < m. Subtracting the expression L.' nvgv - L. hsgs from 
the expression for f and cancelling the terms of L.' nvin(gv), we get a new 
expression for f of the same form but where the maximum of the in(jugu) 
is smaller, contradicting our construction. 0 

One can slightly sharpen the criterion in a way that is occasionally useful 
in practice: It is enough for hij to be zero for any subset of pairs i, j such that 
the corresponding aij generate all the syzygies on the elements in(gi), Also, 
if F = S we may further omit any pair i,j such that GCD(in(gi),in(gj)) = 
1; see Exercises 15.19 and 15.20. 

From Theorem 15.8 we get an effective method for computing Grabner 
bases and syzygies. 

Buchberger's Algorithm 15.9: In the situation of Theorem 15.8, sup
pose that M is a submodule of F, and let gl, ... ,gt E M be a set of gen
erators of M. Compute the remainders hij . If all the hij = 0, then the gi 
form a Grabner basis for M. If some hij =I- 0, then replace gl, ... ,gt with 
gl, ... ,gt, hij , and repeat the process. As the submodule generated by the 
initial forms of gl, ... , gt, hij is strictly larger than that generated by the 
initial forms of gl, ... ,gt, this process must terminate after finitely many 
steps. 

The process involved in Buchberger's algorithm is even more useful than 
first appears: Theorem 15.lO shows that the equations hij = 0 that result 
if the gi are a Grabner basis give all the syzygies on M (this is Schreyer's 
algorithm for computing syzygies). A worked example is given at the end 
of the following subsection. 

There is a fairly sharp "worst-case" upper bound b for the degree of the 
elements of the Grabner basis for a homogeneous ideal (gl,"" gt) C S 
(the nonhomogeneous case can be reduced to this) with respect to the 
lexicographic order. The bound, which is due to Maller and Mora [1984], 
is in terms of: 

r = the number of variables, 
d = the maximum degree of the polynomials gi, and 
s = the degree of the Hilbert polynomial (this is one less than the 

dimension; it is between 0 and r - 1). 

The bound is 
b = ((r + 1)(d + 1) + 1)2(S+1)(r+l), 

and thus is potentially doubly exponential in the number of variables. 
For example, for the homogeneous ideal of a curve of degree 8 in p3, it 

is known that we can take r = 4, s = 2, d = 8 - 1 and get 



334 15. Grobner Bases 

This estimate is so large as to suggest that Buchberger's algorithm and 
Grabner bases would be useless in practice. Fortunately, this is not at 
all the case: In actual use the algorithm terminates quite quickly on very 
many problems of interest. There is a partial understanding of why this 
is so, and various other bounds are known in some special cases; see for 
example Gruson, Lazarsfeld, and Peskine [1983], Winkler [1984]' and Bayer 
and Stillman [1987a]. 

15.5 Syzygies 

We retain the notation introduced in the previous section. 
There is a bonus from Buchberger's algorithm: an effective method for 

computing syzygies. The process in Algorithm 15.9 gives a linear combina
tion of the gu that is equal to hij . Thus if hij = 0 we get a linear relation 
among the gu-that is, a syzygy. It turns out that these syzygies generate 
the entire module of syzygies on the gi. 

We retain the notation developed for Theorem 15.8. In addition, for i < j 
such that in(gi) and in(gj) involve the same basis element of F, we set 

Tij = mjiCi - mijCj - L f~ij)cu. 
u 

Theorem 15.10 (Schreyer). With notation as above, suppose that gl,···, gt 
is a Grabner basis. Let> be the monomial order on EBj=ISCj defined by 
taking mcu > ncv iff 

in( mgu) > in( ngv) with respect to the given order on F 

or 
in(mgu) = in(ngv) (up to a scalar) but u < v. 

The Tij generate the syzygies on the gi. In fact, the Tij are a Grabner basis 
for the syzygies with respect to the order>, and in( Tij) = mjici. 

Proof. We show first that the initial term of Tij is mjici. We have 

mji in(gi) = mij in(gj), 

and these terms are by hypothesis greater than any that appear in the 
f~ij)gu. Thus, in(Tij) is either mjiCi or -mijCj by the first part of the defi
nition of >, and since i < j we have mjiCi > mijCj. 

Now we show that the Tij form a Grabner basis. Let T = 2:: fvcv be any 
syzygy. We must show that in( T) is divisible by one of the in( Tij); that is, 
in( T) is a multiple of some mjiCi with i < j. 

For each index v, set nvCv = in(jvcv). Since these terms cannot cancel 
with each other, we have in(2:: fvcv) = niCi for some i. Let (T = 2::' nvcv be 
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the sum over all indices v for which nv in(gv) = ni in(gi) up to a scalar; all 
indices v in this sum must be 2 i because we have assumed that niEi is the 
initial term of T. 

Thus, a is a syzygy on the in(gv) with v 2 i. By Lemma 15.1, all such 
syzygies are generated by the auv for u, v 2 i, and the ones in which Ei, 
appears are the aij for j > i. It follows that the coefficient ni is in the ideal 
generated by the mji for j > i, and we are done. D 

As with Buchberger's criterion, we can sharpen this result slightly in a 
useful way: To find a set of Tij, which generate all the syzygies on the gi, it 
is enough to take a set of pairs i, j such that the aij generate the syzygies 
of the elements in(gi)' See Exercise 15.18. 

H we wish to use Theorem 15.10 to compute syzygies on a fixed set of 
elements gl, ... , gt, we first use Buchberger's algorithm to obtain a Grabner 
basis for (gl,"" gt) and the syzygies on the Grabner basis elements. To 
get the syzygies on the gi, we need only substitute into these syzygies the 
expressions for the Grabner basis elements in terms of the gi. 

This process usually will not give us a minimal set of syzygies: To replace 
it with a minimal set (say in the case where everything is homogeneous, 
so that minimal resolutions are well defined; see Chapter 20) we must do 
some further work, finding at least the degree = 0 syzygies among the 
nonminimal syzygies, and using them to eliminate superfluous relations. 
Nevertheless, this process is by far the most efficient method known for 
computing syzygies. 

An example will help to clarify all this. 

Example. The simplest nontrivial Grabner basis computation. Take gl = 
x 2, g2 = xy + y2. We will find a Grabner basis with respect to the lexico
graphic order, taking x > y. We have in(gl) = x 2, in(g2) = xy. The GCD 
is x. We apply the division algorithm to 

(in(g2) / x )gl - (in(gl) / x )g2 = _xy2. 

In the first step we add yg2, getting y3. Since this is not divisible by either 
initial form, it is the remainder; as it is not 0, we take it as g3 = y3, and 
we have the syzygy 

T1,2 : yEl - XE2 + yE2 - 103. 

Since gl and g3 are monomials, we get from them a syzygy 

T1,3 : y3 E1 - x2E3' 

The only other pair to check is g2 and g3: Applying the division algorithm 
to 

(in(g3)/y)g2 - (in(g2)/y)g3 = y4, 

we subtract yg3 and find a remainder of O. Thus we get the syzygy 

T2,3 : y2E2 - XE3 - yE3 = y2E2 - (x + Y)E3. 
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From Buchberger's criterion we see now that 

X2, xy + y2, y3 

is a Grabner basis, and from Theorem 15.10 we know that 71,2, 72,3, and 
71,3 generate the syzygies on them. If we wish to derive from this a set 
of generators for the syzygies on the original generators gl, g2, we must 
substitute the expression for g3 in terms of gl and g2 given by the syzygy 
71,2 into the other syzygies. We get 

71,2: ° 
71,3: y3c1 - X2(YC1 - XC2 + YC2) = (y3 - x2Y)C1 + (x3 - x2y)c2 

72,3: y2c2 - (x + y)c3 = y2c2 - (x + y)(YC1 - XC2 + YC2) 

= X2c2 - (xy + y2)C1' 

We see that 71,3 = (x - y)72,3, so in fact the syzygies are generated by 
72,3' (In this simple case it is easy to see directly that 72,3 generates the 
syzygies on gl,g2: Just use unique factorization and the fact that gl and g2 
are relatively prime.) 

One corollary of Theorem 15.10 is a sharpened form ofthe Hilbert syzygy 
theorem, which says that every finitely generated S-module has a free res
olution of length :S r. We will give a more abstract proof in Chapter 19. 

Corollary 15.11. With notation as in Theorem 15.10 suppose that the gi 
are arranged so that whenever in(gi),in(gj) involve the same basis vector e 
of F, say in(gi) = nie and in(gj) = nje with ni, nj E S, we have 

i < j =} ni > nj in the lexicographic order. 

If the variables Xl,"" Xs are missing from the initial terms of the gi, then 
the variables Xl, ... , X s+ 1 are missing from the inC tij ), and F / (gl, ... , gt) 
has a free resolution of length :S r - s. 

In particular, every finitely generated S -module has a free resolution of 
length ::; r. 

Remark: The last statement is true for all S-modules: The Hilbert syzygy 
theorem with Auslander's lemma (Theorem A3.18) shows that every S
module has a projective resolution of length :S r, and every projective 
S-module is free. (See, for example, Lam [1978] for an exposition.) 

Proof. By Theorem 15.10 we have (7ij) = mjiCi, where mji = mj/GCD(mi, 
mj). Since (mi = in(gi)) 2: (mj = in(gj)) in the lexicographic order, XS+1 
appears with at least as high a power in mi as in mj and thus does not 
appear at all in mji. This proves the first statement. 

We next show that F / (gl, ... ,gt) has a free resolution of length :S r - s 
by induction on r - s. Suppose first that r - s = 0, so that none of the 



15.6 History of Grabner Bases 337 

variables Xi appears in the terms in(9i); we must show that FI(91,"" 9t) 
is free. 

Since the initial terms of the 9i must be scalars times basis elements of 
F, we see that in(91' ... ,9t) is the free submodule of F generated by the 
ei that appear among the in(9i). Let F' be the free submodule spanned by 
the other ej, and consider the composite map 

By Theorem 15.3, F 1 (91, ... ,9t) has a basis consisting of precisely 
the monomials coming from F', so the map is an isomorphism and 
F 1 (91, ... , 9t) S:: F' is free as required. 

Now suppose r - s > O. By the first statement, Xl,"" Xs+1 are missing 
from the initial terms of the Tij. We may order the Tij so as to satisfy 
the same hypothesis as that on the 9i. It follows from the induction that 
(f)Sci/( {Tij}) has a free resolution of length ~ r-s-l. Putting this together 
with the map (f)Sci ---+ F, we get the desired free resolution of F 1(91, ... ,9t). 

o 

15.6 History of Grabner Bases 

The earliest use of what amounts to the existence of Grobner bases may be 
that of Gordan [1900, pp. 141-156]. Gordan uses Grobner bases ("Ie systeme 
irreducible N" on page 152 is one) and the finite generation of monomial 
ideals to deduce Hilbert's basis theorem, just as in Exercise 15.15. 

A major step toward the theory presented in this chapter was taken 
by Macaulay, who introduced total orderings of the set of monomials of a 
ring [1927] and used them to characterize the possible Hilbert functions of 
graded ideals by comparing them with monomial ideals. 

Grobner published applications of Macaulay's idea of ordering monomials 
and explicitly finding a basis for a zero-dimensional factor ring as early as 
[1939], though his use of them apparently goes back even earlier, perhaps 
to 1932. In a passage from a paper on elimination theory [1950], he wrote, 
"I have used and tested these methods for about 17 years in the most 
varied and complicated cases, and I believe that I can say on the basis 
of my experience that they represent in all cases a useful and worthwhile 
tool for the solution of these and similar ideal-theoretic problems." In 1964 
he proposed that his student, Bruno Buchberger, compute such bases as a 
thesis problem. As seems to have been his practice in some other cases 1 as 

1 Wolfgang Vogel was a postdoctoral student of Buchberger in Innsbruck at about 
the time Buchberger did his work. He tells of another of Grabner's students, whose 
thesis problem required computing a certain free resolution. Vogel was interested in 
such computations, and discussed the problem with the student. Later, at dinner 
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well, he did not mention to Buchberger that he already had a solution to 
the problem! It was not until 1984 that Buchberger learned the early part 
of the story (see Buchberger [1987] for this and related history). 

As Grabner must have hoped, Buchberger's solution to his thesis problem 
contained ideas going well beyond what Grabner himself had known. The 
thesis [1965; University of Innsbruck] contains Buchberger's criterion and 
algorithm (our Theorem 15.8 and Algorithm 15.9) in implicit form. The 
essential added ingredient was the notion of critical pairs. Buchberger made 
his ideas more explicit and usable in his [1970] and [1976] papers. 

There were several independent streams of activity that produced sim
ilar methods and algorithms. Hironaka used a division algorithm closely 
related to the one we have presented in his landmark paper on resolution 
of singularities [1964]. He introduced "standard bases," which are analo
gous to what we have called Grabner bases, following a now more common 
usage. It is worth noting that Hironaka's work was done for power series 
(with questions of convergence treated), which in some ways is a deeper 
form of the division algorithm than the one treated here. He thought of it 
as generalizing the classical Weierstrass preparation and division theorems 
for convergent power series in one variable. 

Grauert [1972] independently introduced standard bases and a division 
algorithm in power series rings, applying them to the construction of versal 
deformation spaces. Grauert also examines in this paper the effect of a 
general change of coordinates. 

Bergman studied a more general version of Grabner bases, aimed at 
associative (noncommutative) algebras and still more general algebraic sys
tems [1978, especially Section 10.3]. Bergman's ideas specialize to Buch
berger's algorithm in the commutative case. He remarked that the ideas 
had already been used-and called "obvious"-by Cohn [1966] and others. 
Other sources for the noncommutative theory include Priddy [1970] and 
Knuth-Bendix [1967]. 

Spear [1977] and Schreyer [1980] seem to be the first to have written 
down a method for the computation of syzygies by means of the division 
algorithm. (Spear's work, written as a report on a package he was devel
oping for Macsyma, contains no mathematical details.) The formulation of 
Theorem 15.10 and the proof of the Hilbert syzygy theorem that we have 
given are Schreyer's. 

15.7 A Property of Reverse Lexicographic Order 

The reverse lexicographic order on S satisfies a key property not shared 
by other orders that makes the connection between an ideal and its initial 

with Grobner, Vogel remarked that the computation was quite difficult. "I know," 
replied Grabner. "I need confirmation of the result!" 
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ideal particularly tight. As Bayer and Stillman show [1987a], it also has 
practical consequences that make the reverse lexicographic order preferable 
for computation in some circumstances. 

Since we wish to be able to work with modules, we need the following 
definition. 

Definition. Let F be a gmded free S -module with basis {el, ... , en}. A 
monomial order > on F is called a reverse lexicographic order if it 
refines the order by total degree and satisfies the following property: If f E F 
is a homogeneous element and in(f) E (Xs. ... ,xr)F for some 1 ::; s ::; r, 
then f E (xs, ... , xr)F. 

Equivalently, as the reader may check, a reverse lexicographic order is 
defined by choosing an order on the ei, say el > ... > en, and setting 
mei > nej iff either deg mei > deg nej or the degrees are the same and 
m >revlex n or m = nand i < j. 

The defining property of reverse lexicographic orders translates into good 
behavior upon factoring out the last variable. The following easy result is 
the key. 

Proposition 15.12. Suppose that F is a free S-module with basis 
{ el, ... , en} and reverse lexicogmphic order, and suppose that gl, ... , gt is 
a homogeneous Grobner basis of a gmded submodule M. 

a. in(M+ xrF) = in(M) +xrF. Thus gl, ... ,gt,Xrel, ... ,Xren is a 
Grobner basis of M + xrF. 

b. (in(M) :p xr) = in(M:p xr). Further, if we set 

gi = gi/(GCD(xngi)), 

then gl, ... , gt is a Grobner basis for (M : p xr). 

The proposition remains true, by virtually the same proof, if Xr is 
replaced by x~. See Exercise 15.41 for an application. 

Proof. 

a. It suffices to show that in(M +xrF) C in(M)+xrF, the other inequal
ity being clear. Suppose f = 9 + xrh with gEM and h E F. We 
must show that in(f) E in(M) + xrF. If in(f) is divisible by Xn then 
we are done. Otherwise, in(f) must be one of the terms of g, and this 
term is greater than any term of xrh. Thus in(f) = in(g) E in(M). 

b. If Xr divides in(g) for some homogeneous 9 E F, then since we are 
using reverse lexicographic order, Xr divides g. The first statement of 
b follows at once. 
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By the same reasoning, (in(gi) :F xr ) is generated by in(gi) for every i, 
whence 

(in(M) :F xr ) = (in(gd, ... ,in(gt)). 

Since clearly gl,'" ,gt E (M :F x r ), this shows that the in(gi) form a 
Grabner basis. 0 

Using these properties, we get a criterion for Xr to be a nonzero divisor on 
an S-module, or more generally for the last variables in reverse order to be 
a regular sequence. (Recall from Chapter 10 that Xr, ... ,Xs form a regular 
sequence on an S-module N if, first, (xr, ... , xs)N i= N and, second, Xr is 
a nonzero divisor on N, Xr-l is a nonzero divisor on N /xrN, and so on.) 

Theorem 15.13 (Bayer and Stillman [1987]). Let F be a free module with 
basis and a reverse lexicographic monomial order. Suppose M c F is a 
graded submodule. The elements Xr, ... , x s form a regular sequence on F / M 
iff Xn ... , x s form a regular sequence on F / in( M). 

These results may be used to show that certain homological properties 
of F/M may be deduced from F/in(M); see Corollary 19.11 and Corol
lary 20.2l. 

We note that if M is a graded submodule of F then any permutation 
of a regular sequence of F / M is again a regular sequence on F / M. Thus 
we could make the same statement with the variables in the natural order 
XS) ... ,Xr · But this "permutability of regular sequences" is somewhat sub
tle: It is not true without either local or graded hypotheses. We shall return 
to this issue in Chapter 17. 

Before proving the theorem we need the following elementary criterion. 

Proposition 15.14. Let F be a free module with basis {el, ... ,en}. If 
N c F is a monomial submodule minimally generated by nl,"" nt, then 
a sequence of monomials ml, ... ,mu E S is a regular sequence modulo N 
iff each mi is relatively prime to each nl and to each mj for j i= i. 

Proof. Suppose first that each mj is relatively prime to each nl and to 
each mi for j i= i. Since all the mi and nl are monomials, any polynomial 
annihilating mv modulo N + (ml,"" mv-dF is a sum of monomials from 
the sets (Snl : mv) = Sni and (miF : mv) = miF. This shows that 
ml, ... ,mu is a regular sequence on F / N. 

Conversely, suppose that ml, ... ,mu is a regular sequence on F / N. We 
will do induction on u. First we show that ml is relatively prime to each nl. 
H GCD(ml, nl) = n, then mlnz/n E N, and since ml is a nonzero divisor on 
F / N, we see that nzl n EN. Since nz is part of a minimal set of generators 
of N, we must have nz/n = nz, so n = l. 

Since, in addition, no ml el is in N, it is immediate that nl,"" nt, 
mlel, ... , mIen is a minimal set of generators for N +mIF. Now m2,"" mu 
satisfy the hypothesis of the proposition with respect to the submodule 
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N + mIF, so by induction these mi are relatively prime to each other, to 
each nz, and to each miei. From the last condition we deduce that they are 
relatively prime to ml, and we are done. 0 

The next result is a generalization of one implication of Theorem 15.13. 
We will say that a monomial order> on a free S-module F with basis {e;} 
is compatible with a monomial order> on S itself if for h E Sand f E F we 
have in(hf) = in(h) in(f). Equivalently, a compatible monomial order on 
F is one that compares monomials mei and m' ei involving the same basis 
vector by using the given ordering on m and m'. Most monomial orders 
used in practice have this property. 

Proposition 15.15. Let F be a free S-module with basis and monomial 
order compatible with a given monomial order on S. If M c F is any 
submodule and hI, ... , hu E S are such that in(hd, ... , in(hu) is a regular 
sequence on F / in( M), then hI, ... ,hu is a regular sequence on F / M, and 
in(M + (hI, .. . , hu)F) = in(M) + l:~=1 in(hi)F. 

Proof. By induction we may reduce at once to the case u = 1, and to 
simplify the notation we write h for hI. We first show that h is a nonze
rodivisor modulo M. Suppose hf E M for some f E F. We must prove 
that f EM, and we may do induction on the size of in(f). We have 
in(hf) = in(h) in(f) E (M), so by our hypothesis in(f) E in(M). Thus 
h(f - in(f)) EM, and by our induction f - in(f) EM, so we are done. 

Next we must show that if 9 = hf+m with mE M, then in(g) E in(M)+ 
in(h)F. We do induction on the size of in(f). If in(hf) = in(h) in(f) E 
in(M), then since in(h) is a nonzero divisor modulo in(M) we have in(f) = 
in(m') for some m' in M. We may replace the given expression for 9 by 
the expression 9 = h(f - m') + (m + hm'). By induction we see that 
in(g) E in(M) + in(h)F. 

Thus we may suppose that in(h) in(f) tI. in(M). In particular, the terms 
in(hf) = in(h) in(f) and in(m) involve distinct monomials. Whichever of 
these is greater cannot cancel against any other term in hf + m, and thus 
is the initial term of hf + m, so we are done. 0 

Proof of Theorem 15.13. If Xn ... ,Xs is a regular sequence on F/in(M), 
then Xn ... ,Xs is a regular sequence on F / M by Proposition 15.15. 

It remains to prove the converse. In the case where s = r, Proposi
tion 15.12b shows that Xr is a nonzero divisor on F / in( M), as required. Fac
toring out xrF and using Proposition 15.12a, we are done by induction. 0 
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15.8 Grabner Bases and Flat Families 

All the applications of the idea of Grabner bases work by comparing an 
arbitrary ideal with its "initial" ideal, which is a monomial ideal (and more 
generally, by comparing a submodule of a free module with an associated 
initial submodule). Why should these two be similar enough to make the 
comparison profitable? The situation is quite similar to that of the associ
ated graded ring treated in Chapter 5. As in the case of the Rees algebra 
construction defined in Chapter 6, an "explanation" is provided by the 
existence of certain flat families, which we will now describe. For simplicity 
we give the constructions below for ideals, rather than for arbitrary sub
modules of a free module with basis; the (easy) extension to the case of 
modules is left to the interested reader. 

The flat family that we will describe is defined in terms of an integral 
weight function oX: zr ~ Z. For convenience of notation, we think of oX as a 
function on monomials, and if m = xa, we write oX(m) E Z in place of oX(a). 
Let >.\ be the weight order defined by oX on the monomials of S. Although 
it is only a partial order, much of our formalism for monomial orders can 
be imitated for >.\. For example, given 9 E S we write in.\(g) for the sum 
of all the terms of 9 that are maximal with respect to >.\, and if I is an 
ideal we write in.\(I) for the ideal generated by in.\(g) for all gEl. 

Before describing the flat family, we will show that integral weight orders 
are potent enough to capture the transition from a given ideal to its initial 
ideal with respect to an arbitrary monomial order. Suppose that > is a 
monomial order on S, and I c S is an ideal. Given any finite set of pairs of 
monomials S = {(mi > ni)}' Exercise 15.12 shows that there is an integral 
weight order >.\ such that mi >.\ ni for all i. Thus we may apply the 
following proposition. 

Proposition 15.16. Let> be a monomial order on S, and suppose that 
gl, ... ,gt is a Grabner basis for an ideal I with respect to >. There is a 
finite set S = {( ml > nl), ... , (ms > ns)} of pairs of monomials such that if 
>.\ is a weight order on S with (ml >.\ nl), ... , (ms >.\ ns), then gl,'" ,gt 
is a Grabner basis for I with respect to >.\ and in.\ (1) = in> (1). 

Proof. For each i = 1, ... , t we put into S all the pairs of monomials of 
the form (in(gi) > n), where n is a noninitial monomial of gi. (Here for 
simplicity we abuse our notation by writing in(gi) for the initial monomial 
of gi instead of the initial term.) Next, we use the Buchberger criterion, 
Theorem 15.8, to verify that the gi are a Grabner basis with respect to 
>; the verification depends on computing the initial terms of finitely many 
polynomials and involves finitely many uses of the division algorithm. For 
each polynomial 9 whose initial term we must compute, we put the pairs 
(in>(g), n) into S for every noninitial monomial n of g. Similarly, each 
use of the division algorithm involves finitely many comparisons of pairs 
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of monomials. We expand the list of monomials by including the pairs of 
monomials involved. 

Now the division algorithm and the proof of Buchberger's criterion work 
for weight orders and other monomial partial orders satisfying the multi
plicative properties in the definition of monomial orders just as well as for 
total orders, so long as all the initial terms involved are monomials. Thus a 
second use of the Buchberger algorithm shows that the gi form a Grabner 
basis with respect to >.\. In particular, the in(gi) generate in.\(I). Since 
in>(gi) = in.\(gi), we are done. 0 

We may describe the flat family of algebras informally as follows. Let ,X 

be an integral weight function. For any ° =f: t E k, there is an automorphism 
of S carrying Xi to r.\(xilxi' and we write It for the image of I under this 
automorphism. Clearly, all the rings SlIt for t =f: ° are isomorphic. But as 
t approaches 0, the initial terms of polynomials in It-those whose values 
under ,X are largest-come to dominate the polynomials, and the limit, the 
fiber over t = 0, will be SI in.\(I). 

To make precise mathematics out of this description, let S[t] be a poly
nomial ring in one variable over S. For any g E S, we define 9 E S[t] as 
follows. Write g = E Uimi, where the mi are monomials and ° =f: Ui E k. 
Let b = max'x(mi), and set 

9 = tbg(e.\(xdxl , ... , e.\(x,lxr ). 

Because of the way b was defined, we see that 9 is in.\ (g) plus t times a 
polynomial in t and Xl, ... , Xr • For any ideal I c S, let 1 be the ideal of 
S[t] generated by {gig E I}. It follows that S[t]!((t) + 1) ~ SI in.\(I). The 
next result extends this and gives a more sophisticated interpretation. 

Theorem 15.17. For any ideal I c S, the k[t]-algebra S[t]/1 is free-and 
thus fiat-as a k[t]-module. Furthermore, 

S[t]/1 ®k[tJ k[t, e l ] ~ SI I[t, ell, 

while 
S[t]! 1 ®k[tJ k[t]!(t) ~ sl in.\(I). 

Thus S[t]/1 is a fiat family over k[t] of quotients of S whose fiber over 
o is SI in.\(I) and whose fiber over any (t - u), for 0 =f: u E k, is SI I. 

(To give the flat family constructively, in the spirit of this chapter, we 
should specify a finite set of generators for the ideal 1. Results of this sort 
may be found in Exercise 15.25.) 

Proof. From the fact that 9 is in.\ (g) plus t times a polynomial in t and 
Xl, ... ,XT) it is clear that 

S[t]! 1 ®k[tJ k[t]!(t) = S[t]!(l + (t)) = SI in.\(I). 
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Let t.p be the automorphism of S Q9k[tj k[t, rl] = S[t, rl] defined by t.p(Xi) = 
e,(x;)Xi. This automorphism takes the ideal 1S[t, rl] to the ideal IS[t, rl]; 
it follows that t.p induces an isomorphism S[tll 1 Q9k[tj k[t, rl] ~ S II[t, rIj. 

It thus remains to prove the first statement of the theorem. Let > be a 
monomial order refining > A, and let B be the set of monomials not in> (1). 
B is a basis of S I I by Theorem 15.3, and we claim that B is also a k[t]-basis 
for S[tll 1. 

First, to prove linear independence, it is enough to show that the elements 
of B are linearly independent over k[t, t-I], as elements of S[t, t- I]. From 
Theorem 15.3 we deduce that the elements of B form a k[t, rl]-basis of 
S[t,rlllIS[t,rl]. Thus t.p-I(B) is a basis for S[t,r l ]/1s[t,r l ]. But the 
automorphism t.p-I carries any monomial minto rA(m)m, that is, a unit of 
S[t, rl] times m. Thus B itself is a k[t, t-I]-basis of S[t, t-I]I 1 S[t, rl]. In 
particular, its elements are linearly independent in S[tll 1. 

Finally, we must show that B generates S[tll 1 as a k[t]-module. 
Regarding B as a subset of S[t], we must show that the k[t]-span of 

B contains, modulo elements of 1, every monomial m in the Xi. Because 
the order > is Artinian, we may inductively assume that this has been 
verified for every monomial n < m. The monomial m is either in B or 
else m = in>(g) for some gEl. In the latter case m - 9 is a k[t]-linear 
combination of monomials that are < m, and we are done by induction. 0 

The technique embodied in the preceding result can be used to give a 
flat family connecting any given finite set of ideals to their initial ideals. (If 
one is willing to exchange the simple "base" k[t] of the family used above 
for something more complicated-generally non-Noetherian-one can do it 
for all ideals at once-see Exercise 15.26.) 

We shall now give some pictorial examples. We treat the case of three 
points in the projective plane (Figures 15.3 and 15.4) and the case of a 
smooth conic in the projective plane (Figures 15.5 and 15.6) first with the 
lexicographic and then the reverse lexicographic orders. We thus work in 
the polynomial ring in three variables, k[x, y, z], with X > y > z. The 
coordinate triangle of lines x = 0, y = 0, and z = ° is distinguished by the 
choice of coordinates, shown in Figure 15.2. 

To simulate the lexicographic order we use two weight orders. First we 
deform according to the family corresponding to weights (1, 0, 0). This may 
be interpreted either as "attract to x = 0" or as "repel from y = z = 0." 
Next we deform according to the family corresponding to weights (0, 1, 
0). This may be interpreted either as "attract to y = 0" or as "repel from 
x = z = 0." 

Similarly, to simulate the reverse lexicographic order we use first the 
deformation corresponding to the weight vector (1, 1, 0), or equivalently 
(0,0, -1). Its effect is to attract to the point x = y = ° and to repel from 
the line z = 0. Next we use the weight vector (1, 0, 1) or equivalently 
(0, -1,0). The effect is to attract to x = z = ° and to repel from y = 0. 
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When looking at the figures, bear in mind that in each deformation each 
corner of the coordinate triangle is fixed under the deformations, and each 
of the three lines of the triangle is sent into itself. 

Here is the case of a set f of 3 general points in the plane. If we take 
these to be the points (1, 1, 1), (1/3, 1/2, 1), and (1/2, 1/3, 1), then the 
ideal of f is 

I(f) = (x2 + xy - (1l/6)xz - yz + (5/6)Z2, 
xy + y2 - xz - (1l/6)yz + (5/6)Z2, 
y2 _ (2/7)xz - (47/42)yz + (17/42)Z2). 

With a little computation one sees that in lexicographic order the initial 
ideal is (x2,xy,xz,y3) = (x(x,y,Z),y3). If we remove the primary compo
nent at the irrelevant ideal we get (x, y3). Thus the limiting position for this 
deformation is the second-order neighborhood of the point x = y = 0 in the 

x=z=O 

x=O 

/ 
x=y=O 

FIGURE 15.2. 

Lexicographic deformation of 3 points 
Start with general points 
0,1,1),0/2,1/3,1),0/3,1/2,1). 

• • 
~ 

Deform by weight 
vector 1, 0, 0 

Deform by weight 
vector 0, 1, 0 

FIGURE 15.3. 

Limit is triple 
point aligned 
onx=O 
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Reverse lexicographic deformation of 3 points 
tart with gen ral point. 

(1.1.1). (1/2.1/3.1). (1/3.1/2.1). 

o fonn by weight 
vector I. I. 0 

Defonn by weight 
ve tor I. O. 1 

FIGURE 15.4. 

.----....;~-
I Limit is 

n n-collinear 
tripl point 

xicographic d formation of oni 
tart with the conic 

.\= )"2=0. 

Defonn by weight 
vector I. O. 0 

Defonn by weight 
ve torO. I. 0 

FIGURE 15.5. 

Limit is two 
lin . . \ =0 and 
==0 
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Reverse lexicographic deformation of conic 
Start with the conic 

\- )"2=0. 

D fonn by wight 
eet r I. I. 0 

D ~ nn by wight 
ve tor I. O. 1 

FIGURE 15.6. 

Continue with the 
am de~ nnation 

Limit is Ih 
d uble lin 
)'=0 

line x = O. It is perhaps easier to see that in reverse lexicographic order the 
initial ideal is (x2,xy,y2), so the limiting position is the first-order neigh
borhood of the point x = y = 0 in the plane. From these computations we 
see that the two deformations have nonisomorphic limits. 

Next we try the same deformations on the conic with equation xz _ y2 = 
O. We draw this as an ellipse tangent to the lines x = 0 and z = 0 along the 
line y = O. In lexicographic order the initial term is xz, corresponding to a 
limiting position that is the union of the lines x = 0 and z = O. In reverse 
lexicographic order, on the other hand, the initial term of the equation is y2, 
corresponding to the double line with reduced line y = O. We have added 
a picture of the stage in which the first deformation is merely approaching 
its limit. 

There is more to be seen in Figures 15.5 and 15.6. For example, as a conic 
undergoes the degeneration corresponding to one of the two orders, the dual 
conic (the set of its tangent lines) undergoes the other. This phenomenon 
is "visible" in the pictures; can the reader spot it? 
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15.9 Generic Initial Ideals 

So far we have always considered Grabner bases with respect to both some 
fixed set of variables in a polynomial ring and a fixed set of generators of 
a free module. The results of Grabner basis computations depend heavily 
on the choice of variables and basis made. By allowing a generic change of 
basis and coordinates, we may eliminate this dependence and get a generic 
initial ideal that depends only on a choice of monomial order. Some of the 
properties of generic initial ideals were exploited by Hartshorne [1966] to 
prove the connectedness of Hilbert schemes. We will prove stronger prop
erties below; these sections should give the reader a good preparation for 
the algebraic part of Hartshorne's paper. Generic initial ideals were also 
considered by Grauert [1972] in the case of power series rings. He seems to 
have been the first to observe that the generic initial ideal is a combinato
rial invariant that contains quite a lot of information. Generic initial ideals 
have also been exploited to bound the invariants of projective varieties (see 
Cook [in press] and Braun and Fl0ystad [in press]). 

To get a sense of the information contained in the generic initial ideal, 
suppose I c S is an ideal and we take reverse lexicographic order on S. 
In generic coordinates we can read off from in(I) the depth of S / I (= the 
largest t such that Xr-t+l, ... , Xr (j. in(I)) and the regularity of I (= the 
regularity of in(I); in characteristic ° this is just the maximal degree of 
a minimal generator of in(I)), as well as things like the Hilbert function 
of S/ I that we could read off from in(I) in any coordinate system. See 
Chapters 18 and 20 and Bayer and Stillman [1987b] for more information. 

In this section we will explain the basic facts about generic initial ide
als. The first treatment, in characteristic 0, is that of Galligo [1974]. Bayer 
and Stillman [1987a] did the theory in arbitrary characteristic. The com
binatorial analysis and the properties of Borel-fixed ideals in characteristic 
p were worked out by Pardue [1994], who has given a treatment covering 
many other group actions. We shall follow his treatment here, adapted to 
our special case. Although everything we do can be extended to the case of 
sub modules of a graded free module with basis, for simplicity we will stick 
to the case of ideals. 

Throughout this section we will work with a fixed monomial order> on 
S = k[Xl,"" xr ] that refines the partial order by degree and that satisfies 
Xl > ... > X r . We assume that the ground field k is infinite. All ideals 
considered will be homogeneous. 

It is convenient to speak of taking initial ideals with respect to a given 
coordinate system and order, so instead of making a generic transformation 
of coordinates, we will transform an ideal by a generic linear transformation 
and take its initial ideal in the given coordinates. 

We begin by establishing some notation for the groups of transformations 
that we will use. The general linear group 9 := GL(r, k) of invertible r x r 
matrices over k acts as a group of algebra automorphisms on S by acting 
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on the variables: If 9 is the matrix with (i,j) entry gij, we define g(Xj) to 
be I:.i gijXi· If m = I1j x;j is an arbitrary monomial of S then g(m), which 
we shall often write as gm, is given by g(m) = I1j (I:.i 9ijXi)aj. 

Because we have distinguished an ordering of the variables, certain sub
groups of 9 play an important role. Let 23 be the Borel subgroup of 9 
consisting of upper triangular invertible matrices, and let 23' be the group 
of invertible lower triangular matrices. Let U c 23 be the unipotent sub
group consisting of upper triangular matrices with ones on the diagonal. U 
is generated by the elementary upper triangular matrices 'Yij for i < j 
and c E k, where 'Yfjxj = CXi + Xj and 'Yfjxu = Xu for u -I j. Similarly, 23' is 
generated by the diagonal matrices and the elementary lower triangu
lar matrices 'Y:j for 1 :::; i < j :::; r whose action is given by 'Y:jXi = Xi + ex j 
and 'Y:jxu = Xu for u -I i. 

If V C Sd is a t-dimensional space of forms of degree d, then we may 
represent V as a one-dimensional subspace L = !\tv C !\t Sd: If V has 
basis il, ... , it, then the subspace L is spanned by f := il !\ ... !\ ft. The 
reader unfamiliar with multilinear algebra will find more information in 
Appendix 2. We define a monomial of !\tSd to be an element of the form 
n = nl !\ ... !\ nt, where the ni are degree-d monomials of S. If the ni are 
not distinct, then n = 0; in the contrary case the line kn determines and 
is determined by the finite set {nl, ... ,nt}. We define a term in !\tSd to 
be a product a . n, where a E k and n is a monomial. We will say that 
a . n = a . nl !\ ... !\ nt is a normal expression if the ni are ordered so 
that nl > ... > nt· 

We order the monomials of !\ t Sd by ordering their normal expressions 
lexicographically. That is, if n = nl !\ ... !\ nt and n' = n~ !\ ... !\ n~ are 
normal expressions, then n > n' iff ni > n; for the smallest i such that 
ni -I n;. As usual, we extend the order to terms, and define the initial term 
of an element f E !\tSd to be the greatest term with respect to the given 
order. 

Write mi for in(fi). We may replace the fi by some linear combinations 
of themselves (without changing V) to ensure that the mi are distinct and 
that ml > ... > mt. With this choice, ml!\ ... !\ mt is the normal expression 
for the initial term of f. 

15.9.1 Existence of the Generic Initial Ideal 

Theorem 15.18. Let I c S be a homogeneous ideal. There is a Zariski 
open set U = 23'U c 9, meeting U nontrivially, and a monomial ideal 
J c S such that for all 9 E U we have in(gI) = J. For each d 2: 0, if the 
degree-d part Ja of J has dimension t, then !\t Jd is spanned by the greatest 
monomial of !\tSd that appears in any !\t(gId) with 9 E 9. 

Definition. With I, J as in Theorem 15.18, J is called the generic initial 
ideal of I, written J = Gin(I). 
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The significance of the assertion U = p"U is that all the action takes 
place in the coset space P,'\9. This is a much-studied object, which may 
be identified with the space of complete flags of linear subspaces of Ar. 

Proof. First consider the degree-d part Id of I. Let h, ... , ft be a basis 
for h If h = (hij ) is a matrix of indeterminates, then h(h /\ ... /\ It) = 
h(h) /\ ... /\ h(ft) is a linear combination of monomials of /\tsd with coef
ficients that are polynomials in the hij . Suppose that m = ml /\ ... /\ mt 
is the earliest monomial that appears with a nonzero coefficient, and let 
Pd(hn , ... , hrr ) be that coefficient. Let Ud be the set of g = (gij) E 9 such 
that Pd(gn, ... , grr) -I- O. The degree-d part of the initial ideal of gI will 
be (ml,"" mt) iff g E Ud' Write Jd for the subspace of Sd spanned by 
ml,···,mt· 

We next show that J := ffiJd is an ideal. It suffices to show for each 
d that SIJd c Jd+l. Since Ud and Ud+1 are open and dense, there is an 
element g E Ud n Ud+I' We have in(gI)d = Jd and in(gI)d+1 = Jd+l, and 
the assertion follows. 

The ideal J satisfies the last statement of the theorem by definition, and 
we will show that U = n~1 Ud is Zariski open and dense in 9. Since each 
Ud is Zariski open and dense, it suffices to show that U is equal to a finite 
intersection of the Ud . Supposing that J is generated by forms of degree 
~ e, we will show that in fact U = nd=1 Ud. 

Suppose that g E nd=1 Ud. We know that in(gId) = Jd for all d ~ e. Thus 
in(gI) :) J. Since dimk Jd = dimk Id = dimk(gI)d for every d, we see that 
in(gI) = J as required. 

We next show that U = P,'U. In fact, a little more is true: 

Lemma 15.19. If Id C Sd is a subspace of dimension t and bE P,', then 
in(/\tId) = in(/\tbId). 

Proof. Since P,' is generated by diagonal matrices and elementary lower 
triangular matrices, it suffices to check the assertion when b is of one of 
these types. Choose a basis h, . .. ,ft for Id and let mi = in fi. Changing 
basis if necessary, we may assume that ml > ... > mt. The diagonal 
matrices simply alter the coefficients of the terms of f = h /\ ... /\ ft by 
nonzero scalars, so the assertion is true if b is diagonal. 

Next suppose that b = 'Y:j is an elementary lower triangular matrix. For 
any monomial n = xrm E Sd, where m is not divisible by Xi, bn is n plus a 
linear combination of monomials of the form n' = xf-Sxjm with 0 < s ~ w. 
Since Xi > Xj, we see that each n' < n. Thus in(bfi) = mi for 1 ~ i ~ t, so 
in(bf) = ml /\ ... /\ mt = in(f). D 

To complete the proof of Theorem 15.18 we check that U meets the 
unipotent subgroup U nontrivially. The set p"U is a dense open subset of 
9; see Exercise 15.24 and its hint for a proof. Thus the dense set U contains 
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an element of the form bu with b E ~' and u E U. Since U = ~IU, it follows 
that u = b-1bu E U as required. 0 

15.9.2 The Generic Initial Ideal is Borel-Fixed 

The next result shows that generic initial ideals are quite special among 
monomial ideals. The description will be made explicit in Theorem 15.23. 

Theorem 15.20 (Galligo, Bayer and Stillman). If Ie S is a homogeneous 
ideal then Gin(I) is Borel-fixed in the sense that for all g E ~, g( Gin(I)) = 
Gin(I). 

Proof. Replacing I by gI for generic g, we may assume by Theorem 15.18 
that in(I) = Gin(I). Fix i < j, and let 'Yi~ = 1 + 'Y be an elementary upper 
triangular matrix, where 'Y is a strictly upper triangular matrix with a single 
nonzero entry. Along with diagonal matrices, such matrices generate the 
Borel group ~. Since the diagonal matrices stabilize any monomial ideal, 
it suffices to show that for each degree d we have (1 + 'Y)(in(Id)) = in(Id). 

We may choose a basis h, ... , ft for Id with in(h) > ... > in(ft). Let 
f = h 1\ ... 1\ ft be the corresponding generator of the one-dimensional 
subspace I\tId C I\tSd. We have in(f) = in(h) 1\ ... 1\ in(ft). 

If (1 + 'Y)(in(Id)) :f. in(Id) then (1 + 'Y) in(f) :f. in(f). Since'Y is strictly 
upper triangular, the terms of (1 +'Y) in(f) other than in(f) are all strictly 
greater than in(f). Let am be one of these terms, where a is a nonzero scalar 
and m is a monomial of I\tSd. We shall show that for suitable diagonal 
matrices 8 the monomial m appears with nonzero coefficient in (1 + 'Y)8f. 
This will contradict the last statement of Theorem 15.18, proving that 
(1 + 'Y)(in(Id)) = in(Id) after all. 

For each term n = an111 ... lint E I\tSd we define the weight of n to be 
the monomial w = TIs ni E S. Let fw E I\tSd be the sum of all the terms 
of f having weight w, so that we have f = I:w fw. Let Wo be the weight 
of in(f). Different terms of f may have the same weight, but in(f) is the 
unique term having weight woo If 8 is a diagonal matrix and 8(Xi) = 8iXi 
with 8i E P , then 

where w( 81, ... , 8r ) E P is the result of substituting 8i for Xi in the mono
mial w. Thus 

(1+'Y)8f= L w(1+'Y)(w(81, ... ,8r )fw) 

= L ww(81, ... ,8r )(1+8)fw 

= wo(81, ... , 8r )(1 + 'Y) in(f) + '" w(81, ... , 8r )(1 + 'Y)fw. 
L..-wfwo 
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Thus the coefficient of min (1 + ,)of has the form 

where the aw E k is the coefficient of m in (1 + ,)fw. Since the term 
awo (01, ... , Or) is nonzero, we see that the polynomial c is nonzero. Since 
we have assumed that the ground field k is infinite, it follows that for 
sufficiently general values of 01, ... ,On, the value c( 01, ... ,Or) is nonzero, 
and this is what we had to prove. D 

15.9.3 The Nature of Borel-Fixed Ideals 

We next investigate the nature of Borel-fixed ideals. To treat the case of 
characteristic p it is useful to introduce a partial order -<'p on the natural 
numbers as follows: We say that a -<,p b if the binomial coefficient (!) :f=. 
O(modp). Of course -<'0 is the usual total order ~. For p > 0, Gauss gave 
the following explicit description. 

Proposition 15.21 (Gauss). Suppose p is a prime number. We have a -<'p b 
iff each digit in the base-p expansion of a is ~ the corresponding digit in 
the base-p expansion of b. 

The proof is immediate from a more refined result of Lucas. 

Lemma 15.22 (Lucas). If a = L: aipi and b = L: bipi with 0 ::; ai, bi < p, 
then (!) == IIi (!:) (modp). 

Proof. Compare the coefficients of ta in the expressions 

(t + l)b = (t + l)1;biPi = IT (t + l)bi pi 

== ITwi + l)bi (modp). 

We now give the combinatorial characterization of Borel-fixed ideals. 

D 

Theorem 15.23. Let J c S = k[X1, ... , xrl be an ideal, and let char k = 
p ~ O. 

a. J is fixed by the group of diagonal matrices iff J is generated by 
monomials. 

b. J is fixed by the group ~ of upper triangular matrices (that is, J is 
Borel-fixed) iff J is generated by monomials and the following condi
tion is satisfied for all i < j and all monomial generators m of J: 

Ifm is divisible by x} but by no higher power of Xj, then (xdxj)Sm E 

J for all i < j and s -<,p t. 
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Proof. 

a. Clearly any monomial ideal is fixed by the group of diagonal matrices. 
To prove the converse, suppose J is fixed by the diagonal matrices 
and let f E J; it is enough to show that some monomial of f is in 
J. Choose a weight vector A such that in)'(f) is a monomial; that is, 
only one monomial of f has maximal weight with respect to A. We 
will show that in), (f) E J. 

Let w be the weight of the term in), (f). If we act on f with a 
diagonal matrix gc having diagonal terms (e-),l, ... , e-),r), we replace 
each variable Xi by e-),i Xi, so in), (f) is multiplied by e-w , and the other 
terms of f are multiplied by strictly less-negative powers of e. Thus 
we may write eW gcf = in), (f) + eF (e, x) for some polynomial F (e, x). 
Consider the morphism 'P : A1 ~ S defined by 'P(e) = eWgcf = 
in)'(f) + eF(e, x). For e =f=. 0 the matrix gc is invertible. Since J is 
fixed under the group of diagonal matrices, 'P(e) E J for e =f=. O. Since 
J is a Zariski closed subset, in fact a linear subspace, this implies 
that 'P( c) E J for all e. (The fact that S is infinite-dimensional is not 
a problem: If J is the common zero locus of a set of linear functions 
O;i : S ~ k, then composing the O;i with 'P we get polynomial functions 
from A1 to k that vanish simultaneously on precisely those e for which 
'P(e) E J. Since these polynomials vanish for all nonzero e, they vanish 
for all c.) 

b. If J is Borel-fixed then, by a, J is generated by monomials. If m E J is 
a monomial generator, we consider the action on m of an elementary 
upper triangular matrix, = ,lj' We may write m = x;m', where m' 
is not divisible by Xj, and we get 

,m = (exi + xj)tm' = L C) (x;fxjYm. 
S-<pt 

Since J is fixed under, = ,'jj' we see that each (x;fxj)Sm with s -<p t 
is a monomial belonging to some polynomial in J. Being a monomial 
ideal, J contains all the monomials that appear in polynomials from 
J, and J thus contains the monomial (x;Jxj)Sm as required. 

Conversely, suppose J is a monomial ideal satisfying the condition 
in b. The formula above shows that for every monomial generator of 
J the polynomial ,m is a sum of monomials in J. Since J is generated 
by monomials, ,J = J. Since the group of upper triangular matrices 
is generated by diagonal matrices and matrices ,'jj' we are done. D 

A few examples will clarify the theorem. For simplicity we take only 
examples with all generators in a single degree. First, in characteristic 0: 
In two variables the Borel-fixed ideals are precisely the ideals generated by 
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"initial segments of the monomials" in each degree, such as (xr, xi X2, Xl x~). 
But there are already more possibilities in three variables. For example, 
the ideals (Xr,XiX2,XIXD and (Xr,XiX2,xix3) are both Borel-fixed in any 
characteristic. In characteristic p > 0 any ideal of the form (xf', ... , x~e) 
is Borel-fixed. Products, intersections, sums, and quotients of Borel-fixed 
ideals are Borel-fixed, so it is easy to make further examples. 

To exploit the results on generic initial ideals, we use the following fun
damental property of Borel-fixed ideals. 

Proposition 15.24 (Bayer and Stillman). Suppose that Ie S = k[Xl, ... , 
xrl is a Borel-fixed ideal. For any j = 1, ... , r we have 

If char k = 0, then in addition 

for every s ::::: o. 
Proof. Suppose that for some integer s and some monomial m we have 
xjm E I. For the first statement it suffices to show that if 1 :::; i < j then 

for some s' ::::: s we have xi'm E I: For if s is sufficiently large, then 

(I : xf) = (I : xj) 
C (I: (xl', ... ,xj') c (I: (Xl, ... ,Xj)js') c (I: (Xl, ... ,Xj)(XJ), 

and the reverse inclusion is obvious. 
Increasing s if necessary, we may assume that Xj does not divide m. It 

follows from the condition of Theorem 15.23 that xi'm E I as required. 
Suppose now that char k = o. If xjm E I then by the characterization 

of Theorem 15.23, any monomial n = X~l, ... , x;' with Lu Su = s satisfies 
nm E I, so (I: xj) C (I: (Xl, ... ,Xj)S). Again, the reverse inclusion is 
obvious. 

Corollary 15.25. If I is a Borel-fixed ideal in S, and P is an associated 
prime of I, then P = (Xl' ... ' Xj) for some j. If Q = (Xl' ... ' Xt) is a 
maximal associated prime, then Xt+l, ... , Xr (in any order) is a maximal 
(S /1) -regular sequence in (Xl, ... , Xr). 

Proof. Since I is a monomial ideal, every associated prime of I is generated 
by a set of variables. Suppose that j is the largest index such that Xj E P; 
we must show that Xi E P for i < j. Since P is an associated prime we 
may write P = (I : f) for some polynomial f. Since xjf E I, it follows 
from Proposition 15.24 that xi! E I for some s. Thus xi E P, so Xi E Pas 
required. 
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If Q = (Xl"'" Xt) is a maximal associated prime, then the variables 
XH1, ... , xr cannot appear in the minimal generators of I. Thus xHl,"" Xr 
(in any order) is a regular sequence mod I. Since Q is associated to I, there 
is a monomial m ~ I such that Qm C I. Since the generators of I do not 
involve XH1, ... ,Xr , we may factor these variables out of m, and assume 
that m ~ 1+ (XH1,"" xr)· It follows that Q + (Xt+l,"" x r) = (Xl"'" x r) 
is associated to 1+ (XH 1, ... , x r ), so XH 1, ... ,Xr is a maximal (511)-regular 
sequence in (Xl, ... ,xr). 

For an analysis of these ideas and a different proof of Corollary 15.25, 
see Exercises 15.22 and 15.23. 

15.10 Applications 

We now apply these methods to the problems mentioned at the beginning 
of this section. 

15.10.1 Ideal Membership 

Given generators for an ideal I C 5, determine a vector space basis for 
511, and given a polynomial 1, compute its image in 511 in terms of this 
basis. If 1 E I (that is, if the image is 0) compute an expression for 1 as a 
linear combination of the generators of I. 

This problem is solved by Theorem 15.3 and the division algorithm: 
Choose a monomial order on 5, and from the original generators h, ... , Is 
of I, compute a Grobner basis gl, ... ,gt for I. The set of monomials not in 
in(I), that is, not divisible by anyone of the in(gi), is a basis for 511. The 
remainder of any f E S on division by 91, ... ,9t has no monomials in in(I) 
and is thus the unique expression for the image of f in terms of this basis. 

If 1 E I, then the division process exhibits 1 as a linear combination of 
the generators gi. Since the algorithm that produces the gi exhibits them 
as linear combinations of the original Ii, we are done. 

For a generalization and a more formal treatment of the second part, see 
the application to syzygies. 

15.10.2 Hilbert Function and Polynomial 

Following Hilbert, we could deduce the Hilbert function or polynomial of 
a graded module from a graded free resolution for the module, computed 
with the algorithms above. However, this is extremely inefficient, and bet
ter schemes are based on the following fundamental result of Macaulay 
(1927). This theorem was the reason for Macaulay's introduction of mono
mial orders, and is thus historically at the very root of the material in this 
chapter. 
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Theorem 15.26. Let P be a finitely generated, graded S-module, given by 
generators and relations as P = F / M, where F is a free module with a 
homogeneous basis and M is a submodule generated by homogeneous ele
ments. The Hilbert function of P is the same as the Hilbert function of 
F/ in(M). 

Proof. Let E be the set of monomials not in in(M). Write Fd for the set 
of elements of degree d of F, and similarly for M, P, and E. Because P is 
graded, we have P = ffidPd, where Pd = Fd/Md. 

By Theorem 15.3, E maps to a (vector space) basis for P, so Ed maps 
to a basis for Pd. Thus dimk Pd is the number of elements of Ed. Since the 
argument applies as well to P' = F / in( M), we are done. 0 

Theorem 15.26 shows that to compute the Hilbert function of an arbi
trary module, it is enough to compute the Hilbert function of the quotient 
of a free module by a monomial submodule, and this we have already done 
in the section on monomials. 

Macaulay's original application of Theorem 15.26 was to give a character
ization of all possible Hilbert functions of ideals: By virtue of the theorem, 
it is enough to characterize the Hilbert functions of monomial ideals, and 
this leads to a complex but manageable combinatorial problem. See Stanley 
[1978J and Green [1989bJ. 

15.10.3 Associated Graded Ring 

Let R = S / I, and set m = (Xl, ... , xr). The associated graded ring gr m R of 
R with respect to m is significant geometrically, algebraically, and compu
tationally. The geometric and algebraic significances have been explained 
in Chapter 4; the main computational significance comes from the fact that 
its Hilbert function is the same as that of R and is easier to compute, for 
instance by the method above. To understand grm R we must find a pre
sentation of the form grm R = S / I', where I' is the homogeneous ideal 
consisting of the sum !bottom of the monomials of lowest degree from each 
polynomial f in I. Our goal is thus to produce finitely many elements gi of 
I such that I' is generated by the forms gi bottom' Interestingly, in order to 
do this we need only compute the Grabner basis of a homogeneous ideals! 
A similar idea will suffice to compute the associated graded module of any 
S-module with respect to m; see Exercise 15.36. Of course, we could also 
ask for the associated graded ring of R (or any S-module) with respect 
to an arbitrary ideal I. This can be done by using elimination theory; see 
Exercise 15.38. 

Choose any set of generators iI, ... , fs of I, and for each i let Fi be the 
homogenization of fi with respect to a new variable Xo, that is, 
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Proposition 15.28. With notation as above, let (G l , ... , Gt) be a Grobner 
basis of the ideal (Fl , ... , Fs) with respect to any monomial order on S[xol 
that refines the partial order by degree in Xo. If we set Gi(l, Xl, ... , Xr) = 
gi(Xl, ... ,Xr) E S, then I' = (gl bottom,··· ,gt bottom). 

Proof. Suppose 9 E Ii we must show that 9bottom is a linear combination of 
the gi bottom. Write 9 = L.Pik If G, ~, and Fi are the homogenizations of 
g, Pi, and fi, respectively, then for some integers a, b we have 

xgG = L~Fi E (Fl , ... ,Fs) 

xgG = xg9bottom + (terms of lower degree in xo). 

Because the Gi form a Grabner basis for (Fl , ... , Fs), there is a standard 
expression 

xgG = L QiGi, in(QiGi) ~ in(xgG). 

In particular, the degree in Xo of Q;Gi ~ b for each i. 
It follows that x89bottom is the sum of the products of the terms of highest 

degree in Xo in some of the Qi and Gi. Setting Xo = 1, we see that 9bottom 
itself is the sum of the products of the terms of lowest degree in those 
Qi(I,Xl, ... ,xr) and G i (I,Xl, ... ,Xr)i that is, it is a linear combination of 
the gi bottom, as claimed. 

15.10.4 Elimination 

Given an ideal I c S[Yl, . .. ,Ys], we wish to compute J = InS. The name 
"elimination" comes from thinking of the generators of I as a system of 
equations in Xi and Yj from which one wants to eliminate the variables Yj. 
We have already discussed a part of elimination theory in Chapter 14. 

To eliminate variables using Grabner bases, one uses an order on T = 
k[Xl, ... , Xn Yl,···, Ysl satisfying: 

If f E T and in(f) E S, then f E S. 

An order with this property is called an elimination order (with 
respect to Yl,···, Ys). 

Examples. 

1. The simplest way to make an elimination order is to take the partial 
order by total degree in Yl, ... , Ys, refined by any monomial orderi in 
practice it is often most efficient to take reverse lexicographic order 
as the second order. 

2. Lexicographic order is an elimination order with respect to every 
initial subset of the variables. 



358 15. Grobner Bases 

To find J = S n I we need only compute a Grobner basis with respect 
to an elimination order: 

Proposition 15.29. Let > be a monomial order on T = S[Y1, ... , Ys] = 
k[X1' ... ,XT) Y1, ... , Ys], and suppose that > is an elimination order with 
respect to the variables Y1, ... ,Ys. If leT is an ideal, then with respect to 
the monomial order on S obtained by restricting >, we have 

in(I n S) = in(I) n S. 

Further, if gl, ... ,gt is a Grobner basis for I, and gl, ... ,gu are those 9i 
that do not involve the variables Yi, then gl, ... ,gu form a Grobner basis 
in S for In S. 

Proof. Let J = InS. Clearly, in(J) C in(I) n S. We will show that the 
in(9i) for i ::; u generate in(I) n S. By Lemma 15.5, this will prove both 
statements. 

Suppose m E in(I) n S is a monomial. Since 91, ... , gt form a Grobner 
basis, m is a multiple of in(9i) for some i ::; t. Because m E S, we must 
have in(gi) E S, so gi E S whence i ::; u as required. 

There is an analogue of Proposition 15.29 for submodules of a free mod
ule: If M c F := E9Tei, then it gives us a way to construct M n E9Sei. See 
Exercise 15.37. 

One of the most frequent applications of elimination is solving the fol
lowing problem: 

Find the equations satisfied by given elements of an affine ring. (Geomet
rically: Find the closure of the image of an algebmic set under a morphism.) 

Let R = k[Y1, ... , Ysl/ K for some ideal K, and let h,.··, fr be elements 
of R. Define a map 

cp: S = k[X1, ... ,xr]- Rj 

We wish to find ker cpo Geometrically, this is the ideal defining the Zariski 
closure of the image of the algebraic set corresponding to K under the map 
corresponding to h,···, fro 

To this end, set Q = k[Y1, ... , Ys], and consider the ring T = k[Xb ... , Xr, 
Y1, ... , Ys]. For each i, let Fi E Q be a polynomial that maps to fi E R. 
Regarding the Fi as elements of T, let I C T be the ideal 

I = KT + (F1 - Xl,···, Fr - Xr). 

Proposition 15.30. ker cp = InS. 

Proof. Consider the map cp : T - Q sending Xi 1--+ Fi. The ideal J := (F1 -
Xl, ... , Fr - x r ) is obviously contained in ker cpo We claim that J = ker cpo 
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Indeed, it is clear that J c ker cp, and the reverse inclusion follows because 
each Xi is equal to a polynomial in the Yj mod J. 

It follows that the kernel of the composite map T --+ Q --+ R is I, so the 
kernel of the composite S ~ T --+ Q --+ R is S n I, as claimed. D 

If K and the Ii are homogeneous, then ker <p will be a homogeneous ideal 
too if we take the variables Xi to have the same degrees as the k If, for 
example, all the Ii were of the same degree, then we could change gradings 
to give the Xi all degree 1, and the ideal ker <p would remain homogeneous. 
Here we are computing the equations for the projective variety that is the 
image of V(K) under the map corresponding to cp-in this case the image 
is already closed, by the main theorem of elimination theory, Theorem 14.1. 

15.10.5 Projective Closure and Ideal at Infinity 
Given an algebraic set V c Ar, we wish to compute the ideal I' of the 
closure V of V in ps x Ar-s and the ideal 100 of the intersection of V with 
the hyperplane at infinity ps-l X Ar-s c ps X Ar-s. 

To describe them it is convenient to introduce the term s-degree to 
denote the degree of a polynomial with respect to the first s variables of the 
polynomial ring S. The s-homogenization of a polynomial g(Xl, ... ,xr ) 

of s-degree d, with respect to a new variable xo, is then defined as 

Less formally, p' is the sum of the terms of p, each multiplied by a power 
of Xo to bring it up to s-degree d. 

If I E S[xoJ = k[XO,Xl,'" ,XrJ is a form homogeneous with respect to 
Xo, ... ,XS , and W c ps X Ar-s is the corresponding hypersurface, then 
W n (AS x Ar-s) = W n Ar is defined by the equation 1(1, Xl, ..• ,xr) = O. 
It follows easily that I' is the set of elements in the preimage of I under 
the map 

<p : S[xoJ --+ S; Xo 1--+ 1 

that are homogeneous in the variables Xo, .. . ,Xs ' Equivalently, I' is the 
ideal generated by the s-homogenizations g' of all the elements 9 E I. From 
this second description and the fact that the hyperplane at infinity has 
equation Xo = 0, we see that we may write 100 = {goolg E I}, where goo 
denotes the sum of all those terms of 9 with maximal s-degree. 

The problem is that these descriptions of I' and 100 involve infinitely 
many polynomials. (It is easy to show that if {hi} c I is any set of elements 
such that the set ({hi)oo} generates 100 , then I' is generated by the set of 
s-homogenizations of the hi, but this still does not solve the problem.) The 
following result shows how to compute both I' and 100 in finite terms, using 
Grabner bases. 
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Proposition 15.31. With notation as above, suppose that> is a mono
mial order on 5 refining the order by degree in Xl, ... , X s. If gl, ... ,gt is a 
Grabner basis of I with respect to >, then 

a. in(Ioo) = in(I) and {(gdoo, ... , (gt)oo} is a Grabner basis for 100 • 

b. in(l') = in(I) and {g~, ... ,ga is a Grabner basis of 1'. 

Proof· 

a. We have in(goo) = in(g) for any 9 E 5 by our choice of order. It follows 
that in(Ioo) = in(I'), and this ideal is generated by the in(gD = in(gi). 

b. Again, we have in(g') = in(g) for any 9 E 5 by our choice of order. 
As in part a, it follows that in(I') = in(I), and this ideal is generated 
by the in(gD = in(gi). D 

15.10.6 Saturation 

If M is a submodule of a free 5-module F and J is an ideal of 5, we define 

(M: J) = {f E FIIJ eM} c F 
00 

(M: JOO) = U(M: Jd) C F. 
d=l 

The submodule (M : JOO) is called the saturation of M with respect 
to J. Saturations arise in the theory of primary decomposition and in local 
cohomology theory. They can also be used for finding projective closures
see Exercise 15.40. 

In the section on applications of syzygies, we will see that we can compute 
(M : Jd). We could compute these one at a time, increasing d until we 
obtained (M : Jd) = (M : Jd+l) (which must happen eventually because 5 
is Noetherian). For this value of d we have (M : JOO) = (M : Jd), and this is 
a rather practical method in many cases. However, part a of Exercise 15.41, 
with d = 00, shows that if J is the ideal generated by a single variable, 
then the problem can be solved using a single Grobner basis computation 
with respect to a suitable order. The general case can easily be reduced to 
the special case, using the other ideas in Exercise 15.41. 

15.10.1 Lifting Homomorphisms 

The following generalization of the ideal membership problem is central to 
many constructions involving maps of modules and homological algebra. 
The application below to the kernels of maps of modules is an example. 

Let F, G, and H be free 5-modules with base, and suppose we are given 
maps such that im'Y C im cp. We would like to construct a "lift" 'l/J : G ---; H 
such that cp'l/J = 'Y. 



<p 
H---I~~ F 
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To this end, we choose a monomial order on F. Write hI, ... ,hs for the 
images under 'P of the basis vectors of H. Using Buchberger's algorithm, 
we may find a Grabner basis h~, ... ,h~ for im 'P. Let 

'P' : H' = ffiSei ...... F; 

be the corresponding map. Buchberger's algorithm produces at the same 
time an expression for each h; in terms of the hj; that is, a "change of basis 
map" 0: : H' ...... H such that 'P' = 'PO:. For each basis vector Ei E C, we use 
the division algorithw. to find an expression 'Y(Ei) = L,Pih;. We may define 
a map 

1jJ':C ...... H ' ; 

so that 'P'1jJ' = 'Y (see Figure 15.7). It follows that 1jJ = 0:1jJ' is the desired 
lifting. 

H --<P"'---I~~ F 

FIGURE 15.7. 

15.10.8 Syzygies and Constructive Module Theory 

A module may be determined in many ways by giving its properties. By 
contrast, we will say that we have constructed a module P only if we 
can give generators and relations for it-that is, if we can write it as F / M 
where F is a free module and M is a submodule generated by explicitly 
given elements of F, or equivalently as the cokernel of a map 'P : C ...... F 
of free modules with image M. Since we can compute ker'P, we may also 
regard the submodule M as having been constructed. If we have constructed 
a module P = F/M, and have specified a submodule pi C P by giving a 
set of generators for it as the images of given elements of F, then it is 
clear that we can construct the quotient P / pi; we simply adjoin the new 
elements of F to the list of relations for P. It is not quite so obvious that 
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we can find the relations for the submodule pi, but this will follow from 
the pullback construction we are about to describe (Exercise 15.45). In the 
remainder of this section we will make a few of the central operations on 
modules constructive in this sense. The list here could be prolonged very 
greatly. 

8.a Pullbacks, Intersections, and Annihilators: If <P : G -+ F and 'IjJ : 
H -+ F are maps of free modules, it is often useful to find the "pullback" of 
<P and 'IjJ, by which we mean the submodule of G ffi H consisting of elements 
(g, h) such that <p(g) = 'IjJ(h). The pullback is the kernel of (<p, -'ljJ) : G ffi 
H -+ F. Since we are able to compute syzygies (Theorem 15.10), we can 
find a free module P B mapping onto the kernel-that is, we can find a 
set of generators for the pullback. We will often need the projection to one 
of the factors; we will write trc : P B -+ G and 7rH : P B -+ H for the 
compositions of P B -+ G ffi H with the projections. We get the following 
commutative diagram. 

PB ~ G 
1fH 1 1 'P 

H ---; F 
'IjJ 

This gives us a way to compute the intersection of two sub modules of F, 
the images of <p and 'IjJ, say. The intersection is simply the image of <p7rc = 
'ljJ7rH. See Exercises 15.42 and 15.43 for other constructions of intersections, 
and Exercises 15.45 and 15.46 for further uses of pullbacks. 

8.b The Kernel of a Map between Arbitrary Modules: Given S
modules P and Q by means of free presentations 

"Q 
-+ FQ -+ Q -+ 0, 

and given a homomorphism P -+ Q presented as a map <p : Fp -+ FQ 
taking the image of Gp into the image of GQ , we may construct the kernel 
of the map P -+ Q induced by <p: 

Proposition 15.32. With notation as above, let FK be a free module map
ping onto the pullback of K,Q, <p, and let 'IjJ : FK -+ Fp be the composite 

FK -+ GQ ffi Fp -+ Fp. 

Let K,~ : G -+ FK be a map onto the kernel of 'IjJ. Let <PI : Gp -+ GQ be a 
map lifting the map <pK,p along K,Q and let K,'J,; : G p -+ FK be a lifting of the 
map (-<PI, K,p) : G p -+ GQ ffi Fp, which maps into the kernel of (K,Q, <p). 
Then 
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is a free presentation of the kernel of P ---> Q, and the injection K C P is 
defined by the map 'Ij;. 

We leave the proof to the reader (Exercise 15.44). 

Hom, Ext, Tor, and all that: Much can be computed by putting together 
what we have already done. We give only some hints, and leave the working 
out of these constructions to the reader with sufficient background. 

If P and Q are S-modules given by free presentations as above, then 

Homs(P,Q) = ker(Hom(Fp,Q) ---> Hom(Gp,Q)), 

while Hom(Fp, Q) is a module with free presentation 

Hom(Fp, GQ) ---> Hom(Fp, FQ) ---> Hom(Fp, Q) ---> 0, 

and similarly for Hom(Gp, Q). 
Once we can compute free resolutions, Hom, and kernels, Ext is easy; 

and the same is true for Tor if we can compute tensor products. But ten
sor products are elementary (that is, one doesn't need to solve equations) 
because, for example, the tensor product of P and Q is presented as 

Fp (>9 GQ EB FQ (>9 Gp ---> Fp (>9 FQ ---> P (>9 Q ---> 0, 

by the right-exactness of tensor products. 
Multiplicities (in the sense of Samuel or Serre) can be computed from 

computations of Tor; those in the sense of Vogel can also be found, using 
the computation of saturations. 

The cohomology of coherent sheaves can be handled from Ext either 
using duality theory or directly, since the usual expression for the cohomol
ogy as the limit of certain Ext groups actually converges, in each degree, 
in a predictable, finite number of steps. More generally, local cohomology 
can be approximated. The interested reader may find details of these and 
other constructions in Vasconcelos [in preparation]. 

15.10.9 What's Left? 

Many further things can be done with Grobner bases well enough to have 
been implemented on computers (for example, in the program Macaulay). 
In this category fall, for instance, 

• Finding syzygies over factor rings 

• Computing the radical of an ideal 

• Primary decomposition (the first algorithm was by Grete Hermann, 
a student of Emmy Noether [1926]; for recent work, see Seidenberg 
[1984]' Gianni, Trager, and Zacharias [1988], and Eisenbud, Huneke, 
and Vasconcelos [1992]) 
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Other algorithms are known but not implemented for various reasons. 
A few examples from many: 

• Normalization of a ring (this was studied by Seidenberg [1974]; for 
recent work see Vasconcelos [1992]) 

• Flattening stratifications 

There are also plenty of problems where no algorithms are known as of 
this writing. Again a few examples: 

• Decide whether a module can be written as a direct sum of submod
ules nontrivially; if so, decompose it. For example, decide whether a 
projective module is free. 

• Decide whether two varieties are in the same component of the Hilbert 
scheme. 

• Compute the versal deformation of a factor ring S / I in the case that 
this is finite-dimensional. 

• Decide the growth rate of the (infinite) free resolution of a module 
over a factor ring of S. 

• Given generators for an ideal, decide whether a smaller number of 
generators can generate an ideal with the same radical; in particu
lar, decide whether an algebraic variety is a "set theoretic complete 
intersection" -that is, set theoretically the intersection of c hypersur
faces, where c is the codimension. The leading open case is perhaps 
the ideal of the rational quartic curve in p3: 

which is the kernel of the map 

k[xo, ... ,X3] ---> k[s, t] 

Xo f-+ S4 

Xl f-+ s3t 

X2 f-+ st3 

X3 f-+ t4. 

It is known that if the characteristic of k is positive, then this ideal has 
the same radical as an ideal generated by two elements (the elements 
depend on the characteristic). It is not known whether this is true in 
characteristic O. See Jaffe [1989] for recent results and an exposition. 
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15.11 Exercises 

In Exercises 15.1-15.6, m, n, mi, and ni denote monomials. 

Exercise 15.1:* Solve the "elimination problem" in the monomial case: If 
1= (mI, ... , mt) E Sand s < r, find In k[XI,.'" xs]. 

The next two (easy) exercises are used in the computation of Hilbert func
tions and polynomials. 

Exercise 15.2:* Show that any monomial submodule of a free module 
EBSei is a direct sum of modules of the form Iiei with Ii a monomial ideal 
of S. 

Exercise 15.3:* Let 1= (mI,".' mt) be a monomial ideal, and let n be 
a monomial of S. Prove that the ideal 

(I: n) = {f E Slfn E I} 

is generated by the monomials mdGCD(mi' n). 

Exercise 15.4: Show that if I is a monomial ideal, then the Hilbert func
tion or polynomial of S 1 I can be computed as a sum of binomial coefficients 
by using the following "divide-and-conquer" strategy: 

a. First, if I is generated by some number s of the r variables of S, then 

( r-s-1+V) 
HS/I(v) = Hk[x\, ... ,xr_,j(v) = r - s -1 . 

We can think of the binomial coefficient "combinatorially," so that it 
is 0 for all sufficiently small v, in which case it is the Hilbert function, 
or as a polynomial in v of degree(r - s - 1), in which case it is the 
Hilbert polynomial. 

b. If I is not generated by such a subset of variables, let n E S be any 
monomial properly dividing one of the minimal generators of I, and 
let d be the degree of n. Write J := (I : n). Show that there is an 
exact sequence of graded modules and degree-O maps 

o -t S!J( -d) .'£.. SI I -t SI(I, n) -t 0 

and thus 
HS/1(v) = Hs/J(v - d) + HS/(I,n) (v). 

It is an open problem to determine the most efficient choice for n, but an 
obvious idea is to take it to be "half" the "largest" monomial among the 
generators of I. 
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Exercise 15.5: Let 1 = (X1X3, X1X4, X2X4). Compute the Hilbert function 
and the Hilbert polynomial of 1. 

Exercise 15.6: For each of the following ideals, compute a minimal set of 
divided Koszul relations that generates the syzygies: 

a. (xr4x~, xi3x~9) 

b. (Xl, X2, X3) 

c. (X1X2, X1X3, X2X3) 

Exercise 15.7:* Let h = (ml,"" ms) and 12 = (nl,"" nt) be monomial 
ideals of S. Show that h n12 is generated by the elements LCM (mi,nj). 
When is this equal to the ideal hh? 

Exercise 15.8: 

a. If F is a free module with basis, M c F is any monomial submodule, 
and> is any monomial order on F, then in>(M) = M. 

b. For any submodule M show that in>(M) is spanned as a vector space 
by the elements {in>(f)lf EM}; that is, we do not need to impose 
the condition that in>(M) is a submodule. 

Exercise 15.9: If 1 c S is a homogeneous ideal, show that in>(I) is 
generated by the monomials {in>(f)lf E 1 is a homogeneous polynomial}. 

Exercise 15.10: Show that the following properties characterize the orders 
>lex, >hlex, and >rlex among monomial orders on S: 

a. If inlex(f) E k[xS) ... , xrJ for some s, then f E k[xS) ... , xrJ. 

b. >hlex refines the order by total degree; and if f is homogeneous with 
inhlex(f) E k[xS) ... ,xrJ for some s, then f E k[xS) ... ,xrJ. 

c. >rlex refines the order by total degree; and if f is homogeneous with 
inrlex(f) E (xS) ... ,xr) for some s, then f E (xS) ... ,xr). 

More generally, suppose F is a free module with basis over S hav
ing a reverse lexicographic monomial order, and f E F. If inrlex(f) E 
(xS) ... ,xr)F for some s, then f E (xS) ... ,Xr )F. 

Exercise 15.11: Given a monomial order < on S, define the positive 
cone P< c zr of > to be the set of differences a - b such that a, bare 
vectors of nonnegative integers and (in multiindex notation for monomials) 
x a > x b• Show that P is a convex cone in the sense that 

U, v E P< =} pu + qv E P< whenever 0 ::; p, q E Q and pu + qv E Zr, 
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and is even strictly convex in the sense that 

Exercise 15.12:* Let> be a monomial order on S, and suppose that mi, 
ni are monomials such that mi > ni for i = 1, ... , t. Show that there is an 
integral weight order defined by some A : zr ~ Z such that A is compatible 
with> and mi >A ni for i = 1, ... , t (Bayer [1982]). 

Exercise 15.13:* Show that every monomial order on S is a lexicographic 
product of at most r weight orders Ai (Robbiano, [1986]). 

Exercise 15.14: Let F be a free module with basis, and fix a monomial 
order on F. Suppose that gl, ... , gt E M c F. 

a. Prove that if in( M) is generated by in(gl), ... , in(gs), then gl, ... , gs 
is also a Grabner basis for M. If in(gl), ... ,in(gs) is a minimal set of 
generators for in(M), then gl, ldots, gs is called a minimal Grobner 
basis of M. 

b. Show that there exists a Grabner basis hI' ... ' hs for M with the 
properties 

i. in(hi ) is a monomial (that is, the coefficient from k is 1), 

ii. in(hi ) does not divide any term of hj for i =1= j. 

Show that for such a Grabner basis, the elements in(hi ) are the minimal 
generators of in( M). Show that if gl, ... ,gs also has properties i and ii, then 
{gil = {hi}. The Grabner basis hI' ... ' hs is called the reduced Grobner 
basis of M. 

Exercise 15.15 (Gordan's Proof of the Hilbert Basis Theorem): 
Gordan, initially shocked by Hilbert's proof of the finite generation of cer
tain rings of invariants by means of the basis theorem, recovered quickly 
and gave his own, simplified proof in [1900]. This proof represents an early 
(the earliest?) use of the idea of an "initial" ideal of monomials associated 
to an ideal in a polynomial ring. Here is a proof of the Hilbert basis theo
rem, in the spirit of Gordan. (Gordan needed only a special case, and thus 
proved only a special case, though his argument works generally. It can 
even be extended to give a proof of the form of the basis theorem saying 
that if R is a Noetherian ring then R[x] is too.) 

a. Give a combinatorial proof that any set of monomials of S = 
k[Xl' ... ,xr ] has only finitely many minimal elements in the par
tial order by divisibility. (This part is sometimes called "Dickson's 
lemma".) In particular, every monomial ideal is finitely generated. 



368 15. Grabner Bases 

b. By part a, any ideal in S has a finite Grabner basis (with respect to 
any given monomial order). Deduce that S is Noetherian. 

Exercise 15.16:* Show that the division algorithm still terminates if at 
each stage we simply choose some monomial of ff divisible by some in(9i), 
instead of the greatest such. This gives a still more indeterminate version 
of the division algorithm, whiclJ. works just as well for the purposes of this 
chapter as the one we gave earlier. 

Exercise 15.17 (Characterization of determinate division): Suppose 
that f = L m u9s. + I' is the standard expression for f with respect to 
91, ... , 9t produced by the determinate division algorithm. If we take hv 
to be the sum of all the terms mu such that Su = v, we may rewrite this 
expression as 

f = Lhv9v + 1'. 
Show that this is the unique such expression for which the monomials of 
hv lie in the set of monomials n of S such that 

and the monomials of I' do not lie in (in(9t), ... ,in(9t)). 

Exercise 15.18:* Prove that with notation as in Theorem 15.10, kercp is 
generated by any set of Tij such that the corresponding O'ij generate the 
syzygies on the elements in(9i). 

The following two results of Buchberger sometimes help to speed up the 
process of computing a Grabner basis. 

Exercise 15.19: Imitate the proof of Theorem 15.8 to show that in apply
ing Buchberger's criterion it is enough to check any subset of pairs i, j such 
that the corresponding O'ij generate all the syzygies on the elements in(9i). 

Exercise 15.20:* With notation as in Algorithm 15.9, suppose F = S. 
Show that if in(9i) and in(9j) are relatively prime, then the division algo
rithm can be carried out so that the remainder on division of mji9i - mij9j 

by 9i and 9j is 0, and thus the remainder on division of mji9i - mij9j by 
(91, ... ,9t) may be taken to be O. Thus such syzygies of the in(9i) may be 
ignored in computing a Grabner basis. (This is a case where it is good to 
have an indeterminate division algorithm!) 

Exercise 15.21:* Some plausible-sounding variations on Proposition 15.15 
are false. For simplicity we take the case F = S. Let I c S be an ideal, 
and choose a monomial order on S. Find an example of a sequence of ele
ments hI, ... ,hu E S such that hI, ... , hu is a regular sequence on S / in( 1), 
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and in(hd, ... , in(hu) is a regular sequence on SI I, but hI,"" hu is not a 
regular sequence on SII. 

Exercise 15.22: If I is an ideal of a Noetherian ring S, and x, YES, show 
that the following are equivalent: 

1. (I: yOO) = (I : (x, y)OO). 

2. Every associated prime of I that contains y also contains x. 

Exercise 15.23: Prove that any closure of an orbit of 2) on kT is, for some i, 
the subspace spanned by the last i basis elements. Use this to give another 
proof of Corollary 15.25. 

Exercise 15.24 (Bruhat):* If 9 is an r x r matrix, then the principal 
minor of order s ::; r is the determinant of the upper-left s x s subma
trix of g; that is, if 9 = (gij h<;i,j<;T then the principal minor of order s is 
det( (gij h<;i,j<;s)' If U is the set of upper triangular r x r matrices with ones 
on the diagonal, and 2)' is the set of invertible lower triangular matrices, 
show that 2)'U is the set of invertible matrices whose principal minors are 
all nonzero. In particular, 2)'U is a Zariski open and-if k is infinite-dense 
subset of 9. (In fact, 2)'U is the "big cell" in the Bruhat decomposition of 
9; see Humphreys [1975] or Fulton and Harris [1991] for more of the story.) 

Exercise 15.25: With notation as in Theorem 15.17 show that if 
gl, ... ,gt E I are chosen so that in>(gd,· .. ,in>(gt) generate in>(I), or 
even so that in), (gl), ... , in), (gt) generate in), (I), then iiI, ... ,9t generate 1. 

Exercise 15.26: Let> be a monomial order on S, and let T be the subring 
of the quotient field of S generated by all the fractions min, with m and 
n monomials of S such that m ~ n (we consider m > 1 for any nontrivial 
monomial, so T contains the polynomial ring S). 

a. * Show that {min I m, n E S are monomials and m > n} generates a 
proper ideal J of T, and that the quotient T I J is k. Show that 

SeT c S[x11, ... ,X;I] = T[x11, ... , X;I]. 

Show that T need not be Noetherian. 

We will consider S := T ®k S as a flat family of algebras over T (it 
is flat because S is flat-indeed, free-as a k-module). For convenience of 
notation, we think of T as coming from a polynomial ring in a different set 
of variables, Yl, ... , YT' With this notation, the fractions 

xC> y l3 ly"Y with yf3 ~ y"Y 

form a k-basis for S. 
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For any polynomial g( Xl, ... , X r ) E 8, with initial monomial x''', let g E 8 
be defined as 

g = yCig(xI/Yl, ... , xr/Yr), 

which is in 8 precisely because all the monomials of 9 are S; XCi. For any 
ideal 1 of 8, let i c 8 be the ideal generated by all g with 9 E 1. 

b. Show that T[Yll,oo.,y;1]0T 8/i ~ T[Yll,oo.,y;1]0T 8/1 while 
T/J 0T 8/ i ~ 8/ in>(I). 

c. Show that 8/ i is fiat over T by showing that it is free on the mono
mials in Xl, ... ,Xr not in in>(I). 

Exercise 15.27 (The simplest nontrivial syzygy computation):* 
Take gl = x2, g2 = y2, g3 = xy+yz E k[x,y,z]. Find a Grobner basis and 
syzygies using the reverse lexicographic order, and X > y > z. 

Exercise 15.28 (Five points in p3):* Find a minimal free resolution of 
the ideal 

in the polynomial ring 8 = k[xo, ... , X3] (this is the ideal of five points 
in P3). 

Exercise 15.29:* Let M = (x2 , txy + y3) C k[t, x, y]. Compute a Grabner 
basis with respect to reverse lexicographic order using t > X > y. 

Exercise 15.30: Using the result of Exercise 15.29, find a presentation 
for the associated graded ring of k[x,y]/(x2,xy + y3) with respect to the 
ideal (x, y). 

Exercise 15.31: Let 1 = (XlX3 - x§, XlX4 - X2X3, X2X4 - x§) be the ideal 
of 2 x 2 minors of the matrix 

and let l' be the ideal of minors of the matrix 

obtained by interchanging Xl and X2. Find Grabner bases for 1 and l' with 
respect to the reverse lexicographic order on the monomials. 

Exercise 15.32: Let 1 be the ideal of Exercise 15.31. Is x~ E I? 
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Exercise 15.33: Let R be the ring k[xn, X12, X21, X22] and let x = 

( xn X12) 
X21 X22 

be the generic 2 x 2 matrix over R. Let I be the ideal generated by the four 
entries of the matrix X 2, so that I = (xiI + X12X21, ... ). If the polynomials 
of I vanish when we substitute the entries aij of some 2 x 2 matrix A 
over k, then evidently A2 = O-that is, A is nilpotent. It follows from 
the Nullstellensatz that if g(xn, ... , X22) is any polynomial vanishing on 
2 x 2 nilpotent matrices, then some power of 9 lies in I. The trace and 
determinant, Xn + X22 and XnX22 - X12X21 are such polynomials. Compute 
a Grabner basis of I and use it and the division algorithm to decide which 
powers of the trace and determinant lie in I. 

It is known that if X is a generic n x n matrix, then the coefficients of the 
characteristic polynomial of X (in the 2 x 2 case, the trace and determinant) 
generate the prime ideal corresponding to the variety of nilpotent n x n 
matrices, and one can ask in general what is the smallest integer d such that 
Td belongs to the ideal of entries of X n , where T is the trace Xn + ... + X nn . 

Considering diagonal matrices it is easy to show that d 2: n2 - n + 1. In 
fact, B. Mourrain has shown me a proof that d = n2 - n + 1 using a "Sagbi 
base" for the ring of invariants under the conjugation action of GL(n, k), 
the ring generated by the coefficients of the characteristic polynomial. See 
Robbiano and Sweedler [1990] for the definitions. 

Exercise 15.34 (The general submodule membership problem): 
Let P be any S-module, given by "generators and relations," that is, as 
P = F/M, where F is a free module with basis and M = (iI, ... ,It) is 
a submodule of F. Let Q c P be a sub module , given as the image of a 
submodule N of F. Generalize the idea in application 1 (Ideal Membership) 
to decide, for any element pEP, whether or not p E Q. 

Exercise 15.35: Compute the Hilbert function and polynomial of the 
determinantal ideal I from Exercise 15.31. 

Exercise 15.36:* Let P be any finitely generated S-module, and write 
P = F/M with F a free S-module. Let m = (Xl, ... , Xr). Use a tech
nique analogous to that of Proposition 15.28 to construct a homogeneous 
submodule M' c F (with F regarded as a graded module having all its 
generators in degree 0) such that grm M = F/M'. 

Exercise 15.37: Let T = S[Y1,"" Ys] and let F be a free T-module with 
basis ei. Let> be an elimination order on F with respect to the variables 
Yi· If gl, ... ,gt is a Grabner basis in F, and gl, ... ,gs are those of the gi 
that do not involve the variables Yi, show that gl, ... ,gs is a Grabner basis 
in F' = ffiSei for J = F' n (gl,'" ,gt) with respect to the monomial order 
on F' gotten by restricting the given one from F. 
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Exercise 15.38: Show how to use elimination, via Proposition 15.30, to 
find presentations of the blowup algebra and associated graded ring of a 
ring S / I with respect to a given ideal m. 

Exercise 15.39 (Nonhomogeneous Grabner bases from homoge
neous ones): Some computer algebra systems handle Grabner bases only 
in the homogeneous case. The following shows that this is enough to com
pute Grabner bases of arbitrary ideals of S. 

Given a monomial order> on S, extend it to S[xo] as follows: If m and 
n are monomials of S, define mxg > nxo if m > nor m = nand d > e. 
Suppose that I is a (not necessarily homogeneous) ideal of S, and I' is any 
ideal of S[xo] that goes to I under the "specialization" map S[xo] ---+ S 
sending Xo f---+ 1 and Xi f---+ Xi for i > O. Show that in(I') goes to in(I) under 
the specialization, and that any Grabner basis of I' goes to a Grabner basis 
of I under the specialization. 

Exercise 15.40 (Projective closure by saturation): Let I c S be an 
ideal, and let I' be the ideal of s-homogeneous elements (in the sense of 
the section on projective closures) in the preimage of I under the map 

S[xo] ---+ S; Xo f---+ 1. 

If I" is the ideal obtained by s-homogenizing the elements of some set of 
generators for I, show that 

I' = (1" : xo). 

Exercise 15.41 «M:J) and (M:JOO) in general): Suppose that F is 
a finitely generated free S-module and M c F is a submodule. Let J c S 
be any ideal. We wish to compute (M : J) and (M : JOO). 

a. (Solution of the problem in case J is generated by a variable.) Suppose 
that J = (xr ). Proposition 15.12b allows one to compute (M : J) in 
this case. Show that Proposition 15.12 remains true if Xr is replaced by 
x~ for any d :::: 00; the case d = 00 gives a computation of (M : JOO). 
This idea comes from Bayer [1982]. 

b. (Reduction to the case where J is a principal ideal.) Let S' = Sly], 
where y is a new indeterminate, and regard S as a subring of S'. 
Let M' = S' ®s M C S' ®s F. Suppose J = (iI,···, It), and let 
f = iI + y 12 + ... + yt-l ft. Show that (M' : 1) = s' (M : J), and thus 
(M : J) = (M' : 1) n F, and deduce similar formulas for (M : JOO). 
(One could also do this by introducing t new variables Yi, and using 
f = L ydi. This is often less efficient computationally.) 

c. (Reduction to the case where J is generated by a variable.) Suppose 
that J = (1) is a principal ideal. Let M' = S' ®s M + (y - f)F c 
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S' ®s F. (Note that if M is a graded module and I is homogeneous of 
degree d, we should take y to have degree d to get a graded module 
M'.) Show that (M' : y) = (y - f)(S' ®s F) + S'(M : f), and that 
(M: f) = (M' : y)nF. Deduce corresponding formulas for (M: rJ). 

d. (Reduction to the homogeneous case.) Independent of the reductions 
above, the computation of (M : J) and (M : JOO) can be reduced 
to the homogeneous case as follows: Suppose M c F is an arbitrary 
submodule, let Xo be a new indeterminate, and let £1 c S[xo] ®s F 
be an S[xo]-module obtained by homogenizing with respect to Xo any 
set of generators for M -that is, by regarding the generators of M 
as vectors of polynomials, and homogenizing each component of that 
vector to some common degree. Let J be the ideal of S[xo] obtained 
by homogenizing any set of generators of J. (£1 and J depend on lots 
of choices.) Show that generators for (M : J) may be obtained from 
any set of generators for (£1 : J) by setting Xo to 1, and similarly for 
(M: JOO). 

Exercise 15.42 (Another way to compute intersections): If I = 
(il,···, Is) and J = (gl, ... , gt) are ideals of S, show that the kernel of the 
map Ss+t+l --+ S2 with matrix 

( ~ il 
o 

Is 0 
o gl 

... 0) 

... gt 

consists of vectors whose first coordinates generate the ideal In J. Gen
eralize this to a construction for the intersection of two submodules of an 
arbitrary free module. 

Exercise 15.43 (Yet another way to compute intersections): If I 
and J are ideals of S, define an ideal K of S[t] as K = (tJ + (l-t)J). Show 
that In J = K n S, reducing the problem of intersection to a problem of 
elimination. 

The following sequence of exercises provides applications for the pullback 
construction described in the chapter. 

Exercise 15.44 (Kernels): Prove Proposition 15.32, constructing kernels. 

Exercise 15.45 (Images): Let 'P : G --+ F be a map of free modules, 
P = coker 'P. Given a map of free modules H --+ F, use the pullback 
construction to find a presentation of the module that is the image of H 
in P. 

Exercise 15.46: Let 
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be a free presentation of a module P, and let M be the image of cp, so that 
P=F/M. 

a. (The annihilator of an element of P.) Given an element e of P, choose 
e E F mapping to e. Define a map S ---> F by sending 1 to e. Show 
that the annihilator of e is the image of the map 7rs in the pullback 
diagram 

PB ~ s 
1 1 

G ---> F 

b. (Annihilators in general) To compute the annihilator of P itself one 
can compute the annihilator of each of a set of generators, and take 
the intersection; however, there is a convenient way of doing this all 
at once: Choosing a basis {ei} of F, let 'ljJ : S ---> Hom(F, F) be the 
map sending 1 to the identity map. Write Hom(F, cp) for the map 
Hom(F, G) ---> Hom(F, F) induced by cp. Show that the annihilator of 
P is the image of the map 7rs in the pullback diagram 

PB ~ 

1 
Hom(F, G) ----) 

Hom(F, cp) 

S 
11/1 

Hom(F,F) 

c. (Quotient by an element) If 9 E S, show that the submodule (M : 
g) C F is the image of 7rF in the pullback diagram 

PB 
1 
G 

where'ljJ : F ---> F is multiplication by g. 

d. (Quotients in general) If J c S is an ideal with t generators g1,···, gt, 
we could compute (M : J) from the formula (M : J) = n(M : gi), 
but we can do it all at once as follows: Define a map a : S ---> st 
sending 1 E S to the column vector with ith entry gi. Let F 129 a : 
F = F 129 S ---> F 129 st be the tensor product of the identity map and 
a, and let cp 129 st be the tensor product of cp with the identity map of 
st. Show that the submodule (M : J) is image of 7rF in the pullback 
diagram 
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15.12 Appendix: Some Computer Algebra Projects 

Several current computer algebra systems allow the computation of 
Grabner bases. Unfortunately, as of this writing the general-purpose sys
tems such as Macsyma, Maple, Mathematica, and Axiom do not have the 
flexibility in their algorithms or simply do not run fast enough to make 
experimentation of the sort suggested below very attractive. At least two 
systems that were designed primarily for Grabner basis computation are 
generally available (and for free!): CoCoA (Computations in Commutative 
Algebra) by Alessandro Giovini and Gianfranco Niesi, of the Department of 
Mathematics, University of Genova, Italy, and Macaulay, by Dave Bayer 
and Michael Stillman, Department of Mathematics, Columbia University 
and Cornell University, respectively. 

Macaulay is available free from its authors for many machines, including 
the Macintosh, IBM-PC, Sun, Vax, and others. It can be obtained from a 
public account on a machine at Harvard University. For experts the follow
ing instructions should suffice: 

ftp math.harvard.edu, login ftp, password any, cd Macaulay. 

Documentation, the source code of the program, a "make" file for compiling 
it on unix machines, and precompiled versions for the Macintosh and IBM 
compatible machines, are in compressed files in this directory. A file called 
"readme" describes how to make use of them. 

CoCoA is relatively easy to use and is well suited for experimentation 
with Grabner bases, although it lacks many of the facilities that the more 
mature system Macaulay has developed for handling problems from com
mutative algebra and algebraic geometry. On the other hand, certain design 
decisions taken to make Macaulay efficient may look odd to the beginner: 
Macaulay only computes Grabner bases of homogeneous ideals, and works 
exclusively over finite fields Zip, for various p. In any case, I have mainly 
had experience with Macaulay and this appendix is slanted toward its use. 

Macaulay is partially "responsible" for quite a number of published the
orems, in the sense that people have been able to look at examples that 
have lead them to guess at results, or to reassure themselves of the truth 
of results, which they otherwise would not have proved. I have tried to 
reproduce the spirit-and in some cases the topics-of some of these inves
tigations at a suitable level below. I am certain that there are still new 
phenomena to be discovered in each of these realms; perhaps the student 
will hit on something genuinely original. With each project I have listed the 
names of some Macaulay commands and scripts that I would find useful if 
I were doing the project. (The reader can tell the difference because scripts 
are written beginning with the character <, while commands do not have 
this prefix.) If the user types 

<scriptname 
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or 

commandname 

then Macaulay should provide a help message on the script or command 
referred to, from which the action and the correct syntax can be inferred. Of 
course given the rate of development of computer algebra, these suggestions 
are not likely to be valid for terribly long. For all the projects I would use 
the scripts <ring and <ideal, which make defining objects somewhat more 
convenient. 

Project 1. Zero-Dimensional Gorenstein Ideals 

Compute some ideals of the form I = ((xl, ... ,xn : p), where p is a homo
geneous polynomial. It's easy to do by hand the case r = 1 and the case 
p a monomial, r = anything. Try the case r = 2 with more complicated p 
on the machine. (In Macaulay, use the "quotient" command.) How many 
generators does I require? Next try r = 3, various p. Here there is a greater 
range in the possible numbers of generators. Is there any restriction? Make 
a conjecture! How about with r = 4? One way to get polynomials p to 
try is to take random ones (made with <random_mat, for example). The 
answers you get in this case should depend only on r, s, and degp. What's 
the pattern here? Of course more possibilities will be visible if you choose 
very special polynomials p. 

It is also interesting to use res to resolve these ideals I. Their resolutions 
have a certain unusual property, visible (in Macaulay) through the com
mand "betti". Can you spot it? What are the possible sequences of betti 
numbers in the cases r = 2,3, 4? Any conjectures? 

There is also something funny about the Hilbert function. (In Macaulay, 
use hilb and <hilbJ"cn.) 

For your information, the ideals I that can be obtained as above are 
exactly what are usually called "O-dimensional, homogeneous Gorenstein 
ideals." See Chapter 2l. 

Reference: This is actually the first project that involved me person
ally with computer algebra. David Buchsbaum and I were interested in 
Gorenstein ideals around 1971-72. Ray Zibman, then an undergraduate at 
Brandeis, programmed the PDP 10 computer in Lisp to find the ideals I 
(this can be done without Grabner bases, since in this problem all the rings 
involved are finite-dimensional over k). We also made a number of hand 
computations of the syzygies of these ideals and found a regularity in the 
case r = 3 that may not be so apparent without a good deal of study of 
the matrices in the resolution. You can find the results inspired by our 
computations in Buchsbaum and Eisenbud [1977]. 



15.12 Appendix: Some Computer Algebra Projects 377 

Project 2. Factoring Out a General Element 
from an sth Syzygy 

Let R be a ring. One way for an R-module P = coker1l"p : Gp ---+ Fp to 
be an sth syzygy-that is, for it to be the kernel at the sth step of a free 
resolution-is the following: Let 

be the free resolution of Q = coker 1l"p', and dualize 9-C to get a complex 

The homology of 9-C* (kernel of one map modulo the image of the one 
before) at the module Hi* is called Extk(Q, R) (we rename Gp and Fp as 
Ho* and HI* respectively to make this true for i = 0 and i = 1 as well). If 
s ~ 1 and Extk(Q, R) = 0 for i = 1, ... , s, then the complex 

is exact, so M is the sth syzygy module of coker H/ ---+ Hs+I *. Let us 
say that M is a "standard sth syzygy" in this case. Is every sth syzygy a 
standard sth syzygy? If so, this gives a test for whether a module is an sth 

syzygy; otherwise, we have defined a new notion. Try some examples to get 
a feel for what might be true. 

Working in the case R = S, the polynomial ring, take a (standard) sth 

syzygy and kill a random element. For what t is the result a (standard) tth 
syzygy? What if you start with a free module? Perhaps the simplest case 
is when P = st / Sf, where S is the column vector with entries II, ... , It. 
Can you tell whether P is an 8th syzygy from some property of the ideal 
generated by the Ii? 

The situation is relatively simple if, as above, we work over S. Completely 
new phenomena-which no one understands as of this writing-arise if we 
replace the polynomial ring S by a factor ring, say S/(91, ... ,9u). Even the 
case u = 1 is challenging-see project 3 below-but the general case seems 
still more bafRing. 

Reference: The phenomena that the reader is most likely to discover here 
were first noticed and exploited by W. Bruns [1976]. See for example Evans
Griffith [1985] for a general treatment of related matters. 

Project 3. Resolutions over Hypersurfaces 

Find some modules over k[x, yJl(y2) (For example, take any k[x, y]-module 
M and factor out y2 times it.) Take note of whether or not y2 was a 
nonzero divisor on M; you could test for this with the script <nzd.) Resolve 
over k[x, y], and over k[x, yJl(y2). (Use fetch; explicit length of res, as in 
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res I. Ires n; betti. Keep n S 15 or so.) Can you make a conjecture about 
the resolutions? Can you prove it? How about replacing y2 by an arbitrary 
polynomial p(x, y)? How about in n variables? 

Reference: Eisenbud [1980J. 

One source of examples that will probably always be interesting is the 
family of "rational curves" of degree d in pr. From an algebraic point of 
view rational curves are subrings 

R = k[Jo(s, t), h(s, t), ... , Ir(s, t)J C k[s, tJ 

of a polynomial ring in two variables generated by r + 1 independent forms 
of degree d. (Use <subring and, for the special case where all the Ii are 
monomials, <monomiaLcurve to construct these conveniently.) The defin
ing ideal of the curve is the kernel I of the map 

k[xo, ... , xrJ ----; k[s, tJ; Xi 1-+ k 

The next three projects explore various aspects of these examples. 

Project 4. Rational Curves of Degree r + 1 in pr 
Consider the case of the subring R generated by 4 polynomials lo(s, t), ... , 
h(s, t) of degree 4 in k[s, tJ. For various choices, compute the defining ideal 
I in k[xo, ... ,X3J and its free resolution. How do the betti numbers depend 
on the polynomials chosen? How many types are there? (Tty the monomial 
examples first, then something just a little more general. Note that the 
result depends only on the vector space spanned by the Ii, not on the Ii 
themselves.) What about the situation of r forms of degree r? Note that we 
are excluding just one form; that is, the space of r forms of degree r is the 
kernel of a linear form on the space of all forms of degree r. (In Macaulay, 
use the command diff.) One way to write down such a linear form is as a 
differential operator of order r with constant coefficients~that is, essen
tially, as a single polynomial of degree r. This point of view may make the 
results more intelligible by giving natural invariants of such co dimension-
1 subspaces~for example, you might distinguish a single polynomial 9 of 
degree d by the smallest number t such that 9 is expressible as the sum of 
t a,th powers of linear forms, or is in the closure of the set of polynomials 
that are expressible this way. (If you like this point of view, you might want 
to look up "Catalecticants" in the older book on invariant theory by Grace 
and Young [1903J.) 

Project 5. Regularity of Rational Curves 

If M is a graded S-module, then we define the regularity of M (in the sense 
of Castelnuovo) from the minimal free resolution of M 
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... ~Fs~···~Fo~M~O 

to be the least integer p such that for each s, all the free generators of Fs lie 
in degree:::: s + p (see Chapter 20). In Macaulay, the command res always 
computes minimal free resolutions after the first step; use nres to make the 
first step minimal too. Thus, in Macaulay the regularity is the number of 
rows in the diagram produced by the command betti. The regularity of M 
is an important measure of how hard it will be to compute a free resolution 
of M. 

What is the possible regularity of S / I if I is the defining ideal of a 
rational curve? Try monomial curves (where all the Ii are monomials) first. 
What range of values can you get? Another interesting invariant to study 
in these cases is the last betti number of the curve. One way (of many) 
to produce interesting families of monomial curves is to fix a pattern of 
exponents-that is, an increasing sequence of numbers b1 , ••• ,br-and try 
something like 

for varying a. 

Reference: Gruson, Lazarsfeld, and Peskine [1983]. 
(Helpful Macaulay scripts: <regularity, <res, <random-lIlat, <mono
miaLcurve) 

Project 6. Some Monomial Curve Singularities 

Let 

and consider the corresponding rational curve. Show that factoring out 
sdrteo from each of the Ii will not change the defining ideal of the curve, so 
we may assume eo = 0, er = d. 

Dehomogenize the defining ideal I c k[xo, ... ,xr ] of the curve by setting 
Xo = 1 (this will be the defining ideal of the subring k[te1, ... ,ter ] C k[t]). 
Compute the associated graded ring of the curve with respect to the max
imal ideal. (In Macaulay use the script <Ltangentcone.) 

What are the possible lengths of the minimal free resolution of this 
graded ring? Can you find any families of examples where the length is 
r - I? Can you find any where the betti numbers (ranks of the free mod
ules in the resolution) are symmetric around the middle? Try patterns of 
exponents, as described in Project 5. 

Project 1. Some Interesting Prime Ideals 

For each 0 :::: u :::: r, consider the prime ideal Iu,r that is the kernel of the 
ring homomorphism 
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k[xo, . .. ,xrl --+ k[s, t, zo,· .. ,zul; Xi f-+ Fi, 

where the elements Fi are obtained as homogenizations of degree r + 1 

Pi = Sn'Pi(t/S, zo/s, ... , zu/s) 

of the entries 'Pi of the product shown in Figure 15.8, 

t

r 1 rtr - I 

= ('Po, 'PI, ... , 'Pr) 

r!/(r - u)!tr - u 

FIGURE 15.8. 

where the rows of the large matrix are obtained by successively differenti
ating the entries of the first row with respect to t. Thus, for example, for 
u = 0 the Pi are zosr-It, ... ,zotr, while for u = 1 we get 

What degree elements do you think it takes to generate lu,r if r is rather 
larger than u? For u = 1 the resolution of lu,r has a particularly interesting 
property; can you find it? Can you see any interesting properties of the 
resolution for other values of s? In general, how long do you think the 
resolution will be? (You will probably have to guess at these answers from 
rather small values of r, u-say r ::::; 9 or 10, u = 0, 1,2 and perhaps a little 
more.) Suppose you take the ideal generated by just the quadratic forms 
in lu,r (respectively, forms of degree::::; d for some d). Do you get anything 
interesting? 

(Use the commands power, diff, concat, to form the big matrix; mult to 
form the row of 'Pi; homog (applied to the transposed vector) to homogenize 
it. Use <subring to compute lu,r' Note that one must then use std or nres 
to get a minimal set of generators for the ideal.) 

These ideals arise in geometry as follows. The vector (1, t, t2, • •• ,tr) that 
is the first row of the preceding matrix may be thought of as parametrizing 
a curve C in pr whose closure is called a rational normal curve. Thus 
lo,r is the ideal of the rational normal curve in pr. 

The second row of the matrix is obtained by differentiating the first row 
with respect to X; thus a linear combination zo(first row) + zl(second row) 
represents a point on a tangent line to this curve, and h,r is the ideal of 
the tangent developable surface to the rational normal curve (that 
is, the surface consisting of the union of the tangent lines to the curve). 
Similarly, for arbitrary u, the linear combination of the u+ 1 rows represents 
a point on an osculating u-plane to the curve; thus lu,r is the ideal of the 
union of the osculating u planes. These ideals have been much studied for 
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u = 0 (easy) and for u = 1 (the "generic Green's conjecture" is a guess at 
the form of the free resolution of h,r, see Eisenbud [1992] for an exposition). 
I think there are not even conjectures for u > 1; perhaps the reader will 
make some interesting ones! 



16 
Modules of Differentials 

In this chapter we shall study objects that play roles in commutative alge
bra and algebraic geometry analogous to those of the tangent and cotangent 
bundles in the geometry of manifolds. 

Definition. If S is a ring and M is an S -module, then a map (of abelian 
groups) d : S -+ M is a derivation if it satisfies the Leibniz rule 

d(fg) = fdg + gdf for f,g E S. 

If S is an R-algebra, then we say that d is R-linear if it is a map of 
R-modules. The set DerR(S, M) of all R-linear derivations S -+ M is nat
urally an S -module, with multiplication defined by 

bd: f f--> b(d(f)) EM. 

For a familiar example let S = k[x, y] be a polynomial ring in two vari
ables. The partial derivative a/ax is a derivation from S to itself. This 
derivation is k[y]-linear, and in fact the module Derk[y) (k[x, y], k[x, y]) is a 
free k[x, y]-module ofrank 1, generated by a/ax (see Proposition 16.1). 

It is most interesting in practice to choose M = S and study DerR(S, S). 
One source of this interest is the case where S is coordinate ring of an 
affine variety X defined over a field R. As we shall see in more detail 
below, DerR(S, S) is then the set of algebraic tangent vector fields on X. 

For any derivation d we have d(l) = 0, as one sees by subtracting d(l) 
from both sides of the equation 

d(l . 1) = 1d(1) + 1d(1). 



384 16. Modules of Differentials 

It follows that d is R-linear iff da = 0 for every a E R: Namely, if d is 
R-linear then 

da = d(a· 1) = ad1 = 0, 

and the converse is immediate from the Leibniz rule. 
A dual view of derivations may be had by means of the following 

extremely important device: 

Definition. If S is an R-algebra, then the module of Kahler differ
entials of S over R, written o'S/R, is the S-module generated by the set 
{ d(f) If E S} subject to the relations 

d(bb') = bd(b') + b' d(b) (Leibniz) 

d(ab + a'b') = ad(b) + a'd(b') (R-linearity) 

for all a, a' E R, and b, b' E S. We often write df instead of d(f). The map 
d : S ----. o'S/R defined by d : f f-* df is an R-linear derivation, called the 
universal R-linear derivation. 

The map d has, from the definition, the following universal property 
(which determines it and o'S/R uniquely): Given any S-module M and R
linear derivation e : S ----. M, there is a unique S-linear homomorphism 
e' : o'S/R ----. M such that e = e'd, as in Figure 16.1. 

d/ QS1R 

/ 3!e 

S~M 
FIGURE 16.1. 

Indeed, e' is defined by the formula e'(df) = ef. This formula defines a 
homomorphism because the relations among the df are also satisfied by the 
ef. Asserting this universal property is the same as asserting that 

naturally, as functors of M. In this sense the construction of o'S/R "lin
earizes" the construction of derivations. Since the formula above allows us 
to compute DerR(S, M) in terms of o'S/R, we shall concentrate mostly on 
o'S/R in what follows. 

If S is generated as an R-algebra by elements fi, then o'S/R is generated 
as an S-module by the elements dk For if 9 = p(h, ... ,fr) is a polynomial 
in the fi with coefficients in R, then repeated use of the Leibniz rule allows 
us to express dg as an S-linear combination of the dfi. In particular, o'S/R 
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is finitely generated as an S-module whenever S is finitely generated as an 
R-algebra, despite the very nonfinite nature of the definition of o'S/R' 

SO as to have at least one example in hand before going further, we 
investigate the case of a polynomial ring: 

Proposition 16.1. If S = R[Xl"" ,xr ], the polynomial ring in r variables, 
then o'S/R = Eei=lSdxi, the free module on the dXj. 

Note that we may regard S as the tensor product, over R, of the algebras 
R[Xi] , and that o'S/R is the corresponding direct sum. We shall see later 
that, in general, differentials make direct sums out of tensor products; this 
is another way in which forming differentials can linearize a problem. 

Proof. Since S is generated as an R-algebra by the Xi, o'SjR is generated as 
an S-module by the dXj and there is an epimorphism sr ~ o'SjR taking 
the ith basis vector to dXi' 

On the other hand, the partial derivative a / aXi is an R-linear derivation 
from S to S, and thus induces an S-module map aj : o'SjR -+ S carrying 
dXi to 1 and all the other Xj to O. Putting these maps together we get the 
inverse map 

o 
The association of an R-algebra S (or equivalently a map R -+ S of rings) 

to the S-module o'SjR and the derivation d : S -+ o'S/R (as in Figure 16.2) 

R s 
FIGURE 16.2. 

is a functor in the following sense: Given a commutative diagram 

s ~ S' 

t t 
of rings, which we may regard as a morphism of pairs 'P : (R, S) ~ (R', S'), 
we get an induced "morphism" 
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Q S1R ~ QS'JR' 

dt t d 
s ~ S' 

where the bottom horizontal map is the given morphism of R-algebras and 
the upper horizontal map is a morphism of S-modules (the module 0S'IR' 
being considered an S-module by means ofthe bottom map). The necessary 
S -linear map 0 SIR -t OS' I R' is obtained from the universal property of 
OSIR, applied to the R-linear derivation S -t OS'IR' that is the composition 
of the given map S -t S' with the universal R'-linear derivation S' -t OS'IR" 
(This is more complicated to say than to prove!) In applications the map 
R -t R' is often the identity, and we think of <p as a homomorphism from 
S to S'. We shall sometimes replace the S-linear map OSIR -t OS'IR' with 
the equivalent data of the S'-linear map S' ®s OSIR -t OS'IR', Also, we 
sometimes suppress mention of the universal derivation d, and speak of 
OSIR itself as a functor. 

For reasons we shall soon describe, OSIR is often called the relative 
cotangent functor. It is right-exact in the same sense that the zeroeth 
relative homology functor is a right-exact functor of pairs of spaces in 
topology. 

Proposition 16.2 (Relative Cotangent Sequence). If R -t S -t Tare 
maps of rings, then there is a right-exact sequence of T -modules 

T ®s OSIR -t OTIR -t OTIs -t 0 

where the right-hand map takes dc to de and the left-hand map takes e ® db 
to edb. 

Proof. The generators for OTIS (as a T-module) are the same as the gener
ators of OTIR, but there are extra relations, of the form db = 0 for b E S. 
These relations are precisely the images of the generators 1 ® db of the 
module on the left. 

By analogy with the relative homology functor, one might hope for a 
homology theory that would give a long exact sequence of "higher cotan
gent functors" continuing this relative cotangent sequence to the left. The 
desired theory exists, and the functors are called "Andre-Quillen homol
ogy modules," or "higher cotangent functors." The first few, at least, have 
elementary and important applications to deformation theory. See Quillen 
[1970] or Andre [1974] for the general construction. 

Returning to the setting of Proposition 16.2, suppose that S -t T is an 
epimorphism. In this case OTIS = 0 (in general, de = 0 whenever e is in the 
image of S, by S-linearity), but the next functor to the left in the exact 
sequence (the first of the Andre-Quillen homology functors, in this case) is 
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easy to describe, so we get another very useful exact sequence, called the 
conormal sequence (the name comes from the fact that I I 12 is called 
the conormal module of TIS). 

Proposition 16.3 (Conormal Sequence). If 7r : S -+ T is an epimorphism 
of R-algebras, with kernel I, then there is an exact sequence of T -modules 

2 d D1f 
III -+ T 0s 0S/R --+ OT/R -+ 0 

where the right-hand map is given by D7r : c 0 db f--+ cdb and the left-hand 
map takes the class of f to 1 0 df. 

Proof. Consider the map d : I -+ Os/ R that is the restriction of the universal 
derivation S -+ OS/R' If bE Sand c E I, then the Leibniz formula d(bc) = 
bd(c) + cd(b) shows that d induces an S-linear map I -+ (Os/R)I(IOs/R) = 
T 0s OS/R' Taking bEl as well, the same formula shows that 12 goes to 0 
in T 0s 0S/R, so we get a map of T-modules 

d: 1112 -+ T 0s OS/R 

as described in the statement. 
To show that the cokernel of this map is given by D7r, we consider 

how to describe T 0s 0S/R by generators and relations: From the defi
nition of OS/R, and the right-exactness of tensor products, we see that 
T 0s OS/R is generated as a T-module by the elements db for b E S, 
subject to the relations of R-linearity and the Leibniz rule. This is the 
same as the description by generators and relations of OT/R, except that 
in OT/R the elements df for f E I are replaced by dO, which is of course 
o since 0 E R. Thus OT/R is the cokernel of d : I I 12 -+ T 0s OS/R as 
claimed. D 

The question of when the left-hand map of the conormal sequence is an 
injection is subtle, but a fundamental computation allows us to say when 
it is a split injection; see Proposition 16.12. It is also known to be injective 
when I is a radical ideal generated by a regular sequence in a polynomial 
ring, and somewhat more generally. See Exercise 16.17. 

16.1 Computation of Differentials 

Nearly all explicit computations of modules of differentials use these ideas 
in a simple way that we may formalize as follows: If S is a finitely gen
erated R-algebra, say S = R[Xl,"" xrJI I, and if I = (iI, ... , is), then 
Proposition 16.1 shows that S 0R OR[Xl, ... ,x,l/R = ffiiSdxi is a free S-module 
on generators dXi, and by the conormal sequence 

OS/R = coker(d: 1112 -+ ffiiSdxi). 
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Writing 1/12 as a homomorphic image of a free S-module with generators 
ei going to the classes of the 1;, the composition 

J : ffiSei --7> 1/12 ----; ffiiSdxi 

is a map of free S-modules that is represented by the Jacobian matrix of 
the Ii with respect to the Xi: That is, the (i,j) entry of J is ali/aXi. In 
short, rlS/R is the cokernel of the Jacobian matrix J = (ali/aXi), regarded 
as a map offree S-modules. For example, if S = R[x]/ f(x), then 

rlS/R = Sdx/df = Sdx/(S· f'(x)dx) ~ S/(j'(x)). 

This idea can sometimes be applied even to algebras that are not finitely 
generated over R. For example, if we are interested in a localization of an 
algebra of finite type, say S' = S[U- 1] for some multiplicatively closed set 
U, then applying Proposition 16.9 we see that rlS'/R is the cokernel of the 
same Jacobian matrix, now thought of as a map of free S'-modules. 

For an explicit example, consider the ring S = R[x, y, t]/(y2 _X2(t2 - x)). 
In this case J is the 3 x 1 matrix 

and the computation above shows that rlS/R is the free S-module on the 
generators dx, dy, and dt modulo the single relation 

(3x2 - 2xt2)dx + (2y)dy - (2x2t)dt = o. 

We shall return to this example in the section on the Jacobian Criterion. 

16.2 Differentials and the Cotangent Bundle 

We have already said that modules of differentials have something to do 
with tangent bundles, and we shall now describe the connection more pre
cisely. (The reader who is not familiar with the notion of the tangent bundle 
of a smooth manifold may skip this discussion; alternately, the little infor
mation that we shall need about this basic notion may be rapidly acquired 
from many sources, among them Hirsch [1976].) 

Briefly, the connection is this: If Y is an affine algebraic variety over a 
field k with coordinate ring S, then rlS/k plays the role of the cotangent 
bundle of Y. More generally, if Y ----; X is a morphism of affine varieties 
corresponding to a map R ----; S of coordinate rings, then rlS/R plays the 
role of the relative cotangent bundle of the map. 

Here is a more detailed description: For every smooth (differentiable is 
enough) manifold X (over k = R, say) there is a vector bundle on X, called 
the tangent bundle of X and written Tx , whose fiber over a point x E X 
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is the tangent space Tx,x of X at x. If cp : X --' Y is a differentiable map 
of smooth manifolds, then for every x E X the derivative of cp is a map 
Trp from Tx,x to the tangent space of Y at cp(x) , that is, to Ty,rp(x)' These 
derivatives fit together into a map of vector bundles on X 

Tcp : Tx --' cp*Ty, 

where cp*Ty is the tangent bundle to Y "pulled back" along cp (the pullback 
may be defined as the fiber product X Xy Ty , so that the fiber over x of 
cp*Ty is Ty,f(x))' 

To connect these constructions with our previous constructions, let S' 
be the ring of smooth functions on X. For any I E S', thought of as a 
mapping to the line R, the derivative T I : Tx --' cp*TR = X x R is 
a linear functional on each fiber Tx,x that varies smoothly with x. Thus 
T I may be considered to be a global section of the dual Tx of the tangent 
bundle, which is called the cotangent bundle of X. Of course, if 9 is another 
function, then T(f g) = IT 9 + gT I, so we may think of T as a derivation of 
the ring S' of smooth functions on X to the S'-module 0' of global sections 
of the cotangent bundle of X. 

From the universal property of the module of Kahler differentials it fol
lows that there is an S'-module homomorphism 0: : OSI/k --' 0' carrying the 
universal derivation d to the derivation T just constructed. This is usually 
not an isomorphism, essentially because we have not taken topology into 
account in defining OSI/kl but if X is actually a real affine variety and S is 
its coordinate ring, then it can be shown that OS/k is the algebraic object 
precisely analogous to 0' in the sense that 0' = OS/k 0s S'. Since the bun
dle Tx and the module 0' are equivalent objects, we see that the algebraic 
module of differentials 0S/k is a good stand-in for the cotangent bundle. 
Similarly, its dual DerR(S, S) is a satisfactory replacement for the tangent 
bundle. 

If cp : X --' Y is a map of manifolds, we write cp# for the homomorphism 
from the ring of smooth functions on Y to the ring of smooth functions on X 
that is given by composition with cpo The dual of the map Tcp : Tx --' cp*Ty 
is a map cp* (Ty) --' Tx. This is the map that is analogous to the map 
D(cp#). 

The construction we have made has a somewhat more general analogue 
that is worth keeping in mind. If cp : X --' Y is a map of manifolds whose 
derivative Tcp is everywhere surjective (such a map is said to be "submer
sive"), then the kernel of Tcp : Tx --' cp*Ty is again a bundle on X, called 
the relative tangent bundle, Tx / y , and its dual is the relative cotan
gent bundle Tx/y ' The bundle Tx / y may be thought of as the bundle of 
tangent vectors that are tangent to fibers of cpo Given any function I on 
X,TI restricts to a linear functional on Tx/y . If I is the composition of cp 
with a smooth function 9 on Y, then I will be constant on the fibers, and 
TI will induce the 0 functional on Tx /y ; that is, TI = 0 in Tx/y ' 
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From this we deduce that T, as a map from functions on X to sections 
of Ti-/y, is an R' -linear derivation, where R' is the ring of smooth functions 
on X. If X and Yare affine varieties with coordinate rings Sand R, 
respectively, so that S is an R-algebra, then the module flS/R with its 
universal R-linear derivation from S is the algebraic version of this relative 
cotangent construction. 

In the geometric case of nonsingular manifolds that we have sketched, 
the notions of tangent and cotangent bundles have the same content; each 
bundle is obtained from the other by dualization. Rather than looking at the 
module of differentials, one might just as well look at the module of tangent 
vector fields, which may be thought of as derivations. But when dealing 
with algebraic varieties with singularities, this equivalence no longer holds: 
Derivations may be derived from differential forms, but not conversely. That 
is why we usually work with flS/R rather than with its dual DerR(S, S). 

The geometric meaning of Proposition 16.2 is as follows: We defined the 
relative tangent bundle coming from a submersive map c.p : X ~ Y of 
manifolds as the kernel of the map Tx ~ c.p*Ty, and correspondingly the 
relative cotangent bundle is Ti-/y = Ti/image(c.p*TY). If Z ~ X ~ Y 
are two submersive maps of manifolds, then simply from this definition it 
follows that there is an exact sequence 

c.p*(Ti-/y) ~ T;/y ~ T;/x ~ 0, 

which corresponds to our relative cotangent sequence. 
The name conormal sequence in Proposition 16.3 also comes from the 

geometric case. Given a submanifold X of a manifold Y, we may restrict 
the tangent bundle of Y to X and get a vector bundle on X that contains 
the tangent bundle to X, Tx Co......+ TYlx . The cokernel of this inclusion is 
called the normal bundle of X in Y, written Nx / y . Part of its significance 
comes from the fact that N x/y resembles a tubular neighborhood of X in 
Y: In the differentiable category they are isomorphic (though if X and Y 
are analytic manifolds, they are generally not isomorphic in the analytic 
category). 

From the definition, we have an exact sequence of bundles 

o ~ Tx ~ TYlx ~ Nx /y ~ 0, 

which might be called the "normal sequence of X in Y." Dualizing, we get 
the conormal sequence of X in Y: 

o ~ Ni-/y ~ T;lx ~ Ti- ~ o. 
In an algebraic setting, working over a ground field R( = R or C in the 

case above), suppose that Y is an affine variety with coordinate ring T, and 
that X is a closed affine subvariety with coordinate ring T = S/ [. Then Ti 
corresponds to flT/R and T;lx corresponds to T®Rfls/R' so that [/[2 corre
sponds to the conormal bundle Ni-/y and the sequence in Proposition 16.3 
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is indeed the conormal sequence. The only thing that appears different in 
our general algebraic setting is that the map ///2 ---t T 0R 0S/R is not 
always injective. But recall that, in the algebraic setting, X is an arbitrary 
affine subvariety, not a submanifold. It turns out that if we assume some
thing corresponding to the assumption that X is a submanifold of Y(X 
locally a complete intersection in Y in the sense of Chapter 18) then ///2 
will be locally free -that is, really corresponds to a vector bundle -and 
the map ///2 ---t T 0R 0S/R will be an inclusion, bringing us exactly into 
line with the classical geometric situation. See Exercise 16.17. 

16.3 Colimits and Localization 

We now list some tools that make working with modules of differentials 
convenient. 

Proposition 16.4 (Base Change). Formation of differentials commutes 
with arbitrary "base change from R"; that is, for any R-algebras R' and S 
there is a commutative diagram as follows. 

I~RI0rlS/R 

RI0RS~ ,'" 

0'(R'0R S)/ R' 

Proof. We use the universal properties to get vertical maps as in the dia
gram: First, 10R d : R' 0 S ---t R' 00R/S is an R'-linear derivation, so there 
is a map O(R'0RS)/R' ---t R' 0R 0S/R sending d(a' 0 b) to a' 0 d(b). To go the 
other way, note that the composite map 

S = R 0R S ---t R' 0R S ~ O(R'0RS)/R' 

is an R-linear derivation, so that there is a map of S-modules 0S/R ---t 

O(R'0RS)/R' sending db to d(1 0 b). Since the target is an R' 0R S-module, 
this induces an R' 0R S-linear map 

R' 0R OS/R ---t O(R'0RS)/R' 

sending a' 0 db to a'db = d( a' 0 b), and this is the inverse of the previous 
m~. 0 

Unfortunately, no such result holds for general maps S ---t S'; but we 
shall see below that there is a similar formula for the case of a localization 
of S. 
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On the other hand, since S -'t o'S/R has a universal property, one should 
expect on categorical grounds that it should "preserve colimits" in some 
suitable sense (see Appendix 6 for information about colimits, and Exer
cises 2h and 4 in Appendix 5 for another view of the following results). We 
give two special cases that together contain the substance of this statement, 
and then formulate the general categorical result as Theorem 16.8. 

The colimits of greatest interest for us are the coproducts, and we explain 
these first. In the category of R-algebras the coproduct of a (possibly infi
nite) set of algebras {Si} is the restricted tensor product of the Si 
(Proposition A6.7b), which we shall write as Q9R,iSi or Q9RSi' Recall that 
this is the algebra generated by the symbols 

b1 Q9 b2 Q9 . . . with bi E Si, bi = 1 for all but finitely many i, 

modulo the relations of R-multilinearity 

b1 Q9 b2 Q9 00 . Q9 (abi + a' bD Q9 00 . = 
a(b1 Q9 b2 Q9 00. Q9 bi Q9 00') + a'(b1 Q9 b2 Q9 00. Q9 b: Q9 00') 

for a, a' E Rand bi , b: E Si, with multiplication defined componentwise. 
To simplify the notation, we shall exploit the commutativity of the tensor 

product and allow ourselves to write tensors in any order. 

Proposition 16.5 (Tensor Products). If T = Q9RS; is the coproduct of 
some R-algebras S;, then 

n T / R ~ EB;(T Q9s, nS;jR) 

= EBi((Q9R,joJ;Sj) Q9R nS,jR) 

by an isomorphism 0: satisfying 

0: : d(oo. Q9 1 Q9 1 Q9 b; Q9 1 Q9 1 Q9 ... ) f---t (00.,0,0,1 Q9 db;, 0, 0"00)' 

where b; E Si occurs in the i th place in each expression. 

Proof. To justify the equality sign, note that 

T Q9Si o'S;/R = (Q9R,#;Sj) Q9 S; Q9S, Q9o'S;/R' 

= (Q9R,joJi Sj) Q9R o'S;/R' 

To prove the isomorphism, let 

be the direct sum, where we have written Q9 for EBR. Write d; : S; --+ o'S;/R 
for the universal derivation on S;. Any element c E T may be written as 
a finite sum of terms Q9bi with bi E S; and only finitely many b; different 
from 1. Thus only finitely many of the maps 

1 Q9 d; : T = (Q9joJ;Sj) Q9 S; -'t (Q9joJ;Sj) Q9R o'S;/R 
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are nonzero on c, so we may define a map e : T --> 0 to be the sum ~i 1 ® di . 

Since each map 1 ® di is a derivation, e is too. Thus there is an induced 
T-module homomorphism a : OTjR --> 0 carrying d(®ibi) to e(®ibi). 

To produce the inverse of a, note that for each 5 i the composite of the 
natural map 5i --> T with the universal derivation of T is an R-linear 
derivation 5i --> OTjR and thus induces an 5i-linear map 0S;jR --> OTjR 
sending dibi to d(l ® bi), where 1 is the identity of (®#i5j ). Since the 
target is a T-module, this extends to a T-linear map 

(3i : T ®R OS;jR --> OTjR 

with 
(3i : 1 ® dibi t-+ d(l ® bi ). 

The (3i together give a map 0 = ttJiT ®R OS;jR --> OTjR that is the inverse 
of a. 

Proposition 16.5 is the geometric expression of a fundamental fact, which 
for simplicity we state for tensor prqrlucts with just two factors. If Xl and 
X2 are manifolds, then the fiber at a point (PI, P2) E Xl X X2 of the tangent 
bundle to Xl X X2 is canonically isomorphic to the direct sum Tx , ttJTX2 , 

,PI ,P2 

as illustrated in the figure. 

Because this identification is canonical, it extends to an identification of 
bundles. To express it formally, we write 7l'1 and 7l'2 for the projections of 
Xl x X2 to Xl and X 2 , respectively. We denote by 7l'iTx, the pullback to 
Xl X X2 of the tangent bundle to Xl, and similarly for the other projection. 
In these terms we have: 

In Proposition 16.5, the roles of Xl and X2 are played by two R-algebras 
51 and 52, the direct product of spaces corresponds to the tensor product 
T = 51 ®R 52, and the pullback is also given by a tensor product: If M 
is an 5r module, corresponding to a bundle on Xl, then the pullback to 
Xl X X2 corresponds to the 51 ®R 52-module M ®R 52. 

Proposition 16.1 exhibits a special case of Proposition 16.5. We can now 
go a little further in this direction. 
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Corollary 16.6. If T := S[X1,"" XrJ is a polynomial ring over an R
algebra S, then 

n TjR ~ T ®s n SjR EB EBiTdxi· 

Proof. Let T' = R[X1, ... , xrJ. Writing T as S ®R T', we can apply the 
proposition to get n TjR ~ T ®s n SjR EB T ®T' nT'jR' By Proposition 16.1, 
T ®T' nT'jR = T ®T' EBiT'dxi = EBiTdxi' (We could also have written T' = 

R[xd ®R R[X2J ®R ... ®R R[xr], and reduced to the case nR[xl/R = R[xJdx 
of Proposition 16.1.) 

The other case of colimits that we must treat is that of coequalizers. The 
co equalizer in the category of R-algebras of a pair of maps 'ljJ, 'ljJ' : Sl -+ S2 
is the algebra T = S2/ I, where I is the ideal generated by all the elements 
'ljJ(b) - 'ljJ'(b) for b E Sl (Proposition A6.7c). The necessary result follows 
from the conormal sequence. 

Corollary 16.7. Formation of differentials preserves coequalizers in the 
following sense: If T is the coequalizer in the category of R-algebras of 
a pair of maps 'ljJ, 'ljJ' Sl -+ S2, then there is a right exact sequence of 
T-modules 

T0D7jJ-T0D7jJ' 
T ®SJ nSdR ----------tl T ®S2 nSdR -+ n TjR -+ o. 

Proof. By the conormal sequence, n TjR is T®S2nsdR modulo the submodule 
generated by the elements d('ljJ(b) - 'ljJ'(b)). This submodule is the image of 
the map T ® D'ljJ - T ® D'ljJ'. 

Putting these together with a basic categorical fact (Theorem A6.1), we 
get: 

Theorem 16.8 (Colimits). Let ~ be a diagram in the category of R
algebras. Set lim B = T. If F is the functor from ~ to the category of 
T -modules tak;;g an object S to T ®s nSj R and a morphism rp : S -+ S' to 
the morphism 1 ® Drp: T ®s (S ®s' nS'jR) -+ T ®s n SjR , then 

n TjR = IlglF. 

Proof. As colimits are constructed from coproducts and coequalizers, it is 
enough to check the proposition for each of these two types of colimits. The 
case of coproducts is handled by Proposition 16.5, while that of coequalizers 
is handled by Corollary 16.7. 

As an application of these ideas we give a simple proof that modules 
of differentials localize well. (A direct proof is not difficult, but somewhat 
messier; see Exercise 16.4.) 

Proposition 16.9 (Localization). Formation of differentials commutes 
with localization of the upper argument; that is, if S is an R-algebra and U 
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is a multiplicatively closed subset of S, then 

DS[U-1l/R ~ S[U-1]0s DS/R 

in such a way that d(1/ s) = -s-2ds for s E U. 

Proof. Suppose first that U is the set of powers of a single element s, so 
that S[U-1] = S[x]/(sx - 1). By our usual computation of modules of 
differentials using Corollary 16.6 and Proposition 16.3 we see that 

DS[U-ll/R = (S[U- 1]Ds/R EB S[U-1]dx)/(S[U- 1]d(sx - 1)). 

Of course d(sx-1) = sdx+xds, and since s is a unit in S[U-1], we see that 
DS[U-1l/R = S[U-1]Ds/R' where dx is identified with -(x/s)ds. Thinking of 
x as S-1 this reads d(s-1) = -s-2ds, as claimed. 

The general case follows from this one by a coli mit argument: If 13 is the 
diagram of R-algebras whose objects are the localizations S[s-1] for s E U, 
with maps S[s-1] ~ S[(st)-1] the natural localization maps for s, t E U, 
then S[U-1] = 1!gl13 (see Exercise A6.7), so by Theorem 16.8 

DS[U-1J/R = li.!!,l sEU S[U-1]0s[s-1[ DS[S-IJ/R' 

But for any S-module M, 

M[U- 1] = li.!!,l sEU S[U-1]0S[s-1] M[S-I], 

so we are done. 

The formation of the module of differentials does not commute with 
inverse limits in general. For example, in the case of completion R of a local 
ring (R, P) the module, Dk/R is in general very large, while D(R/pn)/R = 0 
since R/pn is a homomorphic image of R, and thus I~D(R/pn)/R = o. 
However, differentials do behave well with respect to finite direct products. 
Recall that the direct product of some R-algebras Si is, as an R-module, 
the direct product of the R-modules Si, with multiplication defined coordi
natewise. If Mi is an Si-module, then the product IIiMi is a IIiSi-module, 
again with coordinatewise operations. In the case of a finite product, every 
IIiSi-module is obtained in this way by Exercise 2.27. 

Proposition 16.10 (Direct Products). If S1,"" Sn are R-algebras and 
S = IIiSi, then 

Proof. If ei is the idempotent of S that is the unit of Si, and D is a derivation 
of S to an S-module M, then Dei = 0 (Exercise 16.1) so 

D(e;J) = eiDf. 

Thus D maps Si = eiS to Mi := eiM and corresponds to a unique 
map DS;/R ~ Mi. It follows that IIiDs;/R has the universal property that 
characterizes DS/ R ' 
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16.4 Tangent Vector Fields and Infinitesimal 
Morphisms 

The equations defining an algebra homomorphism between two R-algebras 
are not linear; for this reason the set of algebra homomorphisms does not 
naturally form an abelian group. However, we shall show that if two algebra 
homomorphisms agree modulo an ideal of square 0, then they differ by 
a derivation. Those who know something of the theory of schemes will 
appreciate the geometric meaning of this: A vector field acts as a first-order 
infinitesimal translation. From our algebraic point of view the statement is 
the following: 

Proposition 16.11. Let r.p : 8 ---t 8' be a map of R-algebras, and let 
t5 : 8 ---t 8' be a map of abelian groups. If t5(8)2 = 0 then r.p + t5 is a 
homomorphism of R-algebras iff t5 is an R-linear derivation in the sense 
that t5(b1b2) = r.p(bdt5(b2) + r.p(b2)t5(b1). 

Proof. We have 

while 
(r.p + t5)(b1) . (r.p + t5)(b2) 

= r.p(b1b2) + r.p(b1 )t5(b2) + r.p(b2)t5(bd + t5(bdt5(b2). 
The last term is 0, so the two expressions are equal iff t5(b1b2) = r.p(bdt5(b2)+ 
r.p(b2)t5(b1), proving that r.p + t5 is a homomorphism of rings iff t5 is a deriva
tion. Since !.p preserves R we see that !.p + t5 preserves Riff t5(R) = o. Thus 
r.p + t5 is a homomorphism of R-algebras iff t5 is an R-linear derivation. 

As a consequence, we may give a necessary and sufficient condition for 
the left-hand map in the conormal sequence to be a split injection. 

Proposition 16.12. If 7r : 8 ---t T is an epimorphism of R-algebras, with 
kernel I, then in the conormal sequence 

1/12 ~ T ®s flS/R ~ flT/R ---t 0 

the map d is a split injection iff there is a map of R-algebras T : T ---t 8/12 
splitting the projection map 8/12 --» 8/1 = T. 

Proof. We first reduce to the case 12 = O. By the conormal sequence for 
R ---t 8 --» 8/12, the module fl(S/I2)/R is derived from flS/R by factoring out 
I2fls/R and d(I2). But if a, b E I then d(ab) = ad(b) + bd(a) so d(I2) C 

Ifls/R. Thus T ®s fl(S/I2)/R = T ®s fl S/R. Because of this we may suppose 
that J2 = o. 

To avoid confusion with the map d : I ---t T ® flS/R in the conormal 
sequence, we shall write d' : 8 ---t flS/R for the universal derivation. 

Suppose that d is split by a map (J" : T ®s flS/R ---t I. Let 'Y : flS/R = 
8 ®s flS/R ---t T ®s flS/R be the map 7r ® 1. Note that d is the restriction 
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of "(d' to I. Set b = (nd' : S -+ I C S; it is an R-linear derivation. By 
Proposition 16.11, (1- b) : S -+ S is an R-algebra homomorphism. If bE I 
then adb = b, so b(b) = a"(d'(b) = ad(b) = b. Thus (1- b)(I) = 0, and 1- b 
induces an algebra map T : T -+ S. We have 7fT = 7f(1 - b) = 7f, so T splits 
7f, as claimed. 

Conversely, suppose that T : T -+ S is a map of R-algebras splitting the 
projection 7f. The map b := 1-T7f : S -+ S has image in the kernel of 7f; that 
is, b(S) C I. Since 12 = 0, Proposition 16.11 shows that b is an R-linear 
derivation from S to I. By the universal property of 0,S/R, b corresponds to 
a homomorphism a' : 0,S/R -+ I. Since 12 = 0 this homomorphism factors 
through a homomorphism a : T @ 0,S/R = 0,s/RII0,s/R -+ I. 

We claim that a is a splitting of the map d : I -+ T @ 0,S/R. Indeed, if 
b E I then by the definition of a and a' we have ad(b) = a'd'(b) = b(b). 
But the definition of b shows that b(b) = b, and we are done. 

Perhaps the most interesting case in which to apply this proposition is 
the case where S is a local ring and I is the maximal ideal. Recall from 
Chapter 7 that a coefficient field for any local ring (R, m) is a subfield of 
S that maps isomorphically to the residue class field Rim. For the notion 
of separability used see Appendix 1. 

Corollary 16.13. Let (R, m) be a local ring, and suppose that R contains 
a field k. Let d : m/m2 -+ (Rim) @R 0,R/k be the map induced by the 
universal derivation R -+ 0, R/ k. The map d is a monomorphism iff there is a 
coefficient field for Rlm2 containing k. In particular, d is a monomorphism 
when Rim is separable over k. 

Proof. As Rim is a field, and d is a map of Rim-modules, d is an inclusion 
iff d is a split inclusion. Thus we may apply Proposition 16.12. 

For the second statement, note that Rlm2 is a complete local ring. The
orem 7.8 shows that coefficient fields containing k exist if Rim is separable 
over k. 0 

16.5 Differentials and Field Extensions 

If SeT are fields, then 0,T/S is a vector space over T. Since 0,T/S is gener
ated by the elements {dxlx E T}, it must have bases consisting of subsets 
of these elements. We say that a collection {X>J.>-EA of elements of T is a 
differential basis for TIS if the set {dXAhEA is a basis for 0,T/S as a 
vector space over T. For example, if T = S( {xAhEA) is the field ofrational 
functions in some set of variables {xAhEA' then it follows from Proposi
tions 16.1, 16.9, and (for the case where A is infinite) Proposition 16.5, 
that 0,T/S is free on the elements dxA. We shall see that in characteristic 0 
the notion of differential basis coincides with the notion of transcendence 
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basis for T over S, while in characteristic p it coincides with the notion of 
a p-basis for T over S. 

The notion of a p-basis is treated in detail in Appendix 1. Here we simply 
recall that a collection of elements {x A hEA C T is a p-basis for T over S if 
{xAhEA is a minimal set of generators for T as an S * TP-algebra. 

Theorem 16.14. If SeT are fields and {xAhEA C T is a collection of 
elements, then {dxAhEA is a basis of flT/S as a vector space over T iff 
either 

a. charS = 0 and {xAhEA is a transcendence basis ofT over S, or 

b. char S = p#-O and {dxA}AEA is a p-basis ofT over S. 

In particular, if char S = 0 or T is a finitely generated separable field 
extension of S, then {dxAhEA is a basis offlT/s iff the Xi form a separating 
transcendence basis of T over S. 

We first prove a more general result about separable algebraic field exten
sions. 

Lemma 16.15. Let R ---+ SeT be maps of rings. If Sand T are fields 
and T is separable and algebraic over S, then 

Proof. Because both the functors flT/S and T0s~ commute with direct 
limits, it suffices to prove the lemma in the case where T is a finite extension 
of S. 

Suppose then that T is a finite separable extension of S, and choose a 
primitive element a E T. If f is the minimal polynomial of a we have 
T = S[x]/(f). The conormal sequence for R ---+ S[x] ...... Tis 

(f)/(f2) .:!:c. T 0s[x] flS[xl/R ---+ flT/R ---+0, 

where the left-hand map sends f + (j2) to 10 df. Applying Corollary 16.6 
we get 

flS[xl/R ~ S[x]0s flS/R EB S[x] dx 

so that 
T 0s[x] flS[xl/R ~ T 0s flS/R EB T dx. 

The component of 1 0 df in the second summand, T dx, is l' (a) dx. Since 
T is separable over S,1'(a) #- 0, so f'(a) dx generates T dx. Thus flT/R :::! 

T 0s fl S/ R ' 

See Exercise 16.6 for an analysis of the map T 0s flS/R ---+ flT/R in some 
other cases. 
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Proof of Theorem 16.14. We treat the two cases separately, although the 
proofs are parallel. 

a. First suppose that char S = O. If {x,d .xEA is a transcendence basis, 
then since T is algebraic over S' = S({X.x}.xEA), Lemma 16,15 gives nTIs = 
T 0s nS'ls, Since S' is the localization (at the 0 ideal) of the polynomial 
ring S[{X.x}.xEA], Proposition 16,1 shows that nS'ls has {X.x}.xEA as a basis, 
which gives the desired result. 

Conversely, suppose that {dX.x}.xEA is a basis of nT/So Let T' = 
S( {X.x}.xEA) be the subfield of T generated by {X.x}.xEA. We first show that 
T is algebraic over T'. In the cotangent exact sequence 

the element 1 0 dx.x E T 0T' nT' I S goes to dx.x E nT / s. Since these elements 
generate nTIs we see that n T/T, = 0, But if {Y'"Y}'"YEr is a transcendence base 
of T over T', the argument above shows that {dY'"Y}'"YEf is a basis of n TIT" 
Thus r must be empty, and T is algebraic over T' as claimed. 

Next we must show that the Xi are algebraically independent over S. If 
on the contrary Xl, say, were algebraically dependent on {X.x}.xEA,.xj'q, then 
T would be algebraic over the field T':= S({X.x}.xEA,.x,<I)' By the argument 
above, dXI would be in the submodule generated by the {dX.x}.xEA,.x,<I, con
tradicting the hypothesis that the dx.x are linearly independent. 

b. Now suppose that char S = p #- 0, Since d(xP) = pd(xp- l ) = 0 for any 
X E T, we see that any S-linear derivation of T is automatically S * TP
linear. Thus nTIs = nT/(S*TP) , and it suffices to prove part b under the 
additional assumption that TP C S, As remarked in Appendix 1, a p-basis 
for T over S is then just a minimal set of generators for T as an S-algebra. 

In these circumstances if {X.x}.xEA is a p-basis then T = S( {X.x}.xEA), and 
it follows that nTIs is generated by the {dX.x}.xEA. Suppose it were spanned 
by a proper subset, say all but dXI. Let T' := S({X.x}.xEA,.x,<d as before. 
From the cotangent sequence it follows that n T / T , = O. But if x~ = yES 
then T = T'[x]/(xP - Y), where X is an indeterminate, so by the conormal 
sequence nT IT' = T dx IT ' d( xP - y) = T dx is free on one generator, a 
contradiction. 

Finally, supposing that TP C S and that {dx.xhEA is a basis of nTIs, we 
prove that {X.xhEA is a p-basis. We first show that T = T' := S( {X.xhEA)' 
From the cotangent sequence and the hypothesis that the {dx.x} .xEA gener
ate nTIs, we see that n T/T, = O. But if {Y'"Y}'"YEr were ap-basis ofT over T', 
then the argument above shows that the {dy'"Y }'"YEr are linearly independent 
elements of nT /T', a contradiction. 

To finish the argument we must show that {x.x} .xEA is a minimal set of 
generators for T. Otherwise, some X.x, say Xl, would be in the subfield of 
T generated over S by the others, and so dXl would be in the subspace of 
nTIs generated by the other dx.x, a contradiction. 
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The last statement of the theorem follows because if T is finitely gener
ated, then a p-basis is a separating transcendence basis by Corollary A1.5b. 

D 

A number of related statements follow at once. 

Corollary 16.16. Suppose that S is a field. If T is a localization of a 
finitely generated S-algebra, then OT/S = 0 iff T is a finite direct product 
of fields, each finite and separable over S. 

For a Noetherian version valid in characteristic 0 see Exercise 16.11. 

Proof. Suppose first that T is a finite direct product of fields finite and 
separable over S. By Proposition 16.10 it suffices to show that OT/S = 0 
when T is itself a finite separable field extension of S, and this follows from 
Lemma 16.15 with R = S. 

Now suppose that OT/S = O. Since T is a localization of a finitely gener
ated S-algebra it is Noetherian, and thus by Corollary 9.1 it will be enough 
to prove that each localization of T is a field, finite and separable over S. 
By Corollary 16.9, we may assume from the outset that T is itself a local 
ring. 

Let meT be the maximal ideal. The conormal sequence 

m/m2 -+ T/m 0T OT/S -+ O(T/m)/S -+ 0 

shows that O(T/m)/S = O. By Theorem 16.14 and Corollary A1.5, T/m is 
a finite separable extension of S. By Corollary 16.13 the map m/m2 -+ 

T /m 0T OT/S is an inclusion, so m/m2 = o. By Nakayama's lemma, m = 0 
as well, and we are done. 

Corollary 16.17. Suppose K cLare fields, with L finitely generated over 
K. Let r be the transcendence degree of Lover K. 

a. dimL OL/K 2: r, with equality iff L/ K is separable. 

b. If L is separable over K, then any set of generators contains a sepa
rating transcendence base. 

The example given in Exercise 16.10 shows that the hypothesis of finite 
generation is necessary in characteristic p (though it is not in characteris
tic 0). 

Proof. 

a. In characteristic 0 the result is immediate from Theorem 16.14. In 
characteristic p it follows from Theorem 16.14 because every p-basis 
contains a transcendence basis (and is equal to it in the finitely gen
erated separable case) by Corollary A1.5. 
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b. Assume that L is separable over K. If Xl, ... ,Xn is a set of generators 
for Lover K, then the dXi generate o'L/K' By Theorem 16.14 and 
Corollary A1.5 the subset dXI, ... ,dxr forms a basis iff Xl, ... , Xr is a 
separating transcendence basis. But any set of generators for a vector 
space contains a basis. 0 

The next corollary is an improvement on the Noether normalization the
orem. 

Corollary 16.18 (Noether normalization with a separating transcendence 
basis). If R is an affine domain of dimension d over a field k, and the quo
tient field L of R is separable over k, then there are elements Xl, ... ,Xd E R 
such that R is integral over the polynomial ring k[XI' ... ,Xd] (which is a 
subring) and also Xl,"" Xd form a separating transcendence base of Lover 
k. If k is infinite, the Xi may be taken to be k-linear combinations of any 
given set of generators of R. 

Proof. If k is infinite, we may follow the proof of Theorem 13.3, according 
to which we should write R = k[YI, ... , Yrl/ P for some prime P, and then 
modify the Yi to get Xi. Our d is the dl of the proof of Theorem 13.3. The 
elements Xl, ... ,Xd that are eventually produced are obtained by making 
a transformation of the form 

Xi = Yi - L aijYj, 
j>d 

with aij E k. 

Now the condition for the Xi to be a separating transcendence base is 
that the elements dXi generate o'L/k, which, under our hypothesis, is a 
vector space of dimension dover L. Since the original dY; must generate, 
it follows at once that the Xl, ... , Xd will generate too if the coefficients aij 
are sufficiently general. 

Without assuming that k is infinite, but allowing nonlinear changes of 
variable, we have seen in Lemma 13.2 that it suffices to make a transfor
mation of the form 

Xi = Yi - Lyf, 
j>d 

for any sufficiently large integer q. If we take q = pN to be a power of the 
characteristic, then dXi = dYi, so it suffices to take the Yi to be a separating 
transcendence base to start with. 

16.6 Jacobian Criterion for Regularity 

Recall from Chapter 10 that a local ring (R, m) is regular iff m can be 
generated by dim R elements. We asserted at that time that this notion 
has something to do with the geometric distinction between smooth and 
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singular points. In this section we shall prove an algebraic result that makes 
that relation clear and gives in many cases the most practical method for 
proving that an interesting ring is regular. It may be regarded as another 
version of the inverse function theorem. 

Theorem 16.19 (Jacobian Criterion). Let S = k[Xl, ... , xrl be a polyno
mial ring over a field k, let I = (II, ... , fs) be an ideal, and set R = S j I. 
Let P be a prime ideal of S containing I and write K,(P) = K(Rj P) for 
the residue class field at P. Let c be the codimension of Ip in Sp. 

a. The Jacobian matrix 
J := (8fd8xj), 

taken modulo P, has rank ~ c. 

b. If char k = p > 0, assume that K,(P) is separable over k. Rp is a 
regular local ring iff the matrix J, taken modulo P, has rank = c. 

We postpone the proof to describe some applications. The Jacobian cri
terion is often applied in the following special case. We say that an ideal 
has pure codimension c if all its minimal primes have co dimension c. 

Corollary 16.20. Let R = k[Xl' ... ' xrl/ I be an affine ring over a per
fect field k and suppose that I has pure codimension c. Suppose that I = 
(fI, ... , fs). If J is the ideal of R generated by the c x c minors of the Jaco
bian matrix (8fd8xj), then J defines the singular locus of R in the sense 
that a prime P of R contains J iff Rp is not a regular local ring. 

The ideal J c R (or its preimage in k[Xl, ... , Xr], generated by the minors 
of the Jacobian matrix and the ideal I, for which we shall also write J) is 
called the Jacobian ideal of R. It follows from Corollary 16.20 that the 
radical of J depends only on k and R, and not on the chosen presentation 
R = k[Xl, ... ,xrl/I of R as a homomorphic image of a polynomial ring 
over k. Bllt in fact the ideal J itself depends only on k and R ; J is the dth 
fitting i?eal of flR/k> where d = r - c is the dimension of R. See Chapter 
20 for the definition and basic properties of fitting ideals. 

As an example of how this works, consider the surface X defined by 
the equation y2 - x2 (t2 - x) = 0 in A 3 , over a field k. The function t 
on X has level sets that are nodal curves when t =F 0, degenerating to 
a cuspidal curve wp.en t = 0, as in Figure 16.3. The Jacobian ideal is 
J = (y2- x2(e-x), 3X2_2t2x, 2y, 2tx2), which has radical (x, y). A prime P 
of R contains J iff P contains (x, y) iff P = (x, y) or P = (x, y, f(t)), where 
f is an irreducible polynomial over k. If char k =F 2 then the associated 
primes of J are (x, y) and (x, y, t) and this is one way to see algebraically 
that something different is happening at the prime (x, y, t); from the picture 
one sees immediately that the corresponding point x = y = t = 0 is "more" 
singular than the others. Quite a lot of refined information is available from 



The singular locus is 
x = y = 0, a line 
parametrized by t. 
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k[x, y, t]/(y2 - X2(t2 - x)). 
[ = (y2 _ X2(t2 - x)); codim = l. 
J = (3x2 - 2t2x, 2y, -2tx2). 
The ideal of 1 x 1 minors, plus [, is 
J = (y2 - x2(t2 - x), 3x2 - 2t2x, 2y, 2tx2), 
which has radical (x,y) 

FIGURE 16.3. 

the Jacobian ideal and related constructions; see, for example, Morin [1975] 
and Le and Teissier [1981] for more information. 

Combined with Serre's criterion for normality, the Jacobian criterion is 
very useful for proving that certain rings are normal, or even in checking 
that certain ideals are prime; see Theorem 18.15 and the discussion there. 

Useful as the Jacobian criterion is, it has two technical limitations: The 
ground field k must be perfect, and the criterion deals only with localiza
tions of affine algebras. One certainly wants to know, and it is true, that 
there is an ideal defining the singular locus of a finitely generated algebra 
over an nonperfect field, 'or over the integers. For general Noetherian rings, 
however, there is no such ideal: The set of primes P such that Rp is not regu
lar need not in general be a closed set in the Zariski topology! Grothendieck 
set up a very elegant framework, the theory of "smoothness" of a ring R 
with respect to an ideal [, through which the limitations of the criterion 
may, to a certain extent, be overcome; see, for example, Matsumura [1986, 
Chapter 10] for an exposition. 

Proof of Theorem 16.19. 

a. Pulling back P to k[Xl"'" xr ] we may regard P as a prime in the 
polynomial ring. Let Q be a prime of k [Xl, ... , x r ] having co dimension 
c and satisfying [ c Q c P. It suffices to show that the rank of the 
Jacobian matrix modulo Q is at most c, and of course it suffices to 
do this after extending the set of fi to generate Q; that is, we may 
assume [= Q = P. The conormal sequence 

[/ [2 ---+ R 0 Dk[Xl, ... ,xrl/k ---+ DR/k ---+ 0, 

for k ---+ k[Xl,'" ,xr ] ---+ R, localized at Q, shows that the cokernel 
of the Jacobian matrix, regarded as a matrix over the field K,( Q) = 
RQ, is the module (DR/k)Q, which by Proposition 16.9 is DRQ /k. By 
Corollary 16.17, dimRQ DRQ/k ::::: r - c. Since the Jacobian matrix has 
r rows, its rank, taken modulo Q, is S; c. 
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b. Now suppose that K,(P) is separable over k. The conormal sequence 
for k ~ Rp ~ K,(P) is 

Pp/ pt ..!!.. K,(P) ® ORp/k ~ OK(P)/k ~ O. 

By Corollary 16.13 the map d is an injection, so 

dimK(p) Pp / Pt + dimK(p) OK(P)/k = dimK(p) K,(P) ® ORp/k. 

Now dimK(p) Pp/pt 2: dimRp, with equality iff Rp is regular. By 
Corollary 16.17a, dimK(p) OK(P)/k = tr. deg. K,(P)/k, since K,(P) is 
separably generated over k. By Theorem A of Chapter 8 (proven 
in Chapter 13), we can rewrite tr. deg. K,(P)/k as dimR/P, and 
dim R/ P + dim Rp = r - c. Putting these facts together we get 

dimK(p) K,(P) ® 0p/k 2: r - c 

with equality iff Rp is regular. 

It remains to connect dimK(p) K,(P)®ORp/k to the rank of the Jacobian 
matrix. If we map RB onto] by sending the ith generator to Ii then, 
as in the section on computation of differentials, we may regard the 
Jacobian matrix a = (8h/8xi) as the composite 

RB ~ ]/]2 ~ R ® Ok[xI, ... ,xrJ/k = Rr. 

The conormal sequence 

]/]2 ~ R ® Ok[Xl, ... ,xrJ/k ~ 0R/k ~ 0, 

for k ~ k[Xl,"" xrl """"* R shows that OR/k is the cokernel of the 
matrix ::1, and thus K,(P) ® ORp/k is the cokernel of the matrix ::1 taken 
modulo P. It follows that dimK(p) K,(P) ® ORp/k = r - c iff the rank 
of the Jacobian matrix, taken modulo P, is c. D 

16.7 Smoothness and Generic Smoothness 

For the following applications we need the connection between locally free 
modules and the ranks of matrices. This simple but important idea will be 
studied in detail in Chapter 20 under the rubric of fitting ideals. For the 
reader's convenience we explain it briefly here. Suppose that ::1 : Rt ~ Rr is 
a map of free modules over a ring R whose rank is ::; c, as for the Jacobian 
matrix of an ideal of codimension c (Theorem 16.19), and let M = coker::1. 
Let P be a prime ideal of R. We claim that Mp is free of rank r - c iff the 
matrix ::1, taken modulo P, has rank exactly c (that is, some c x c minor 
of::1 is outside P). This is a special case of Proposition 20.8, but here in a 
nutshell is the argument: 
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We may as well assume that R is local with maximal ideal P to start 
with. Suppose first that M is free. Tensoring the sequence with RIP, we 
may assume that R is a field; the rank of the vector space M I P M is r - c 
because M was supposed free. It follows that the rank of the map J ® RI P 
is c, and this is the desired conclusion. 

Conversely, suppose that the rank of J, taken modulo P, is c. One of 
the (r - c) x (r - c) submatrices of J must have determinant outside of P, 
and thus be invertible. Multiplying J by a suitable invertible matrix (an 
operation that does not change the freeness of the cokernel of J) we may 
suppose that J has the form 

1 0 0 
o 1 0 

o 0 

o 
o 

o 1 

where the upper left-hand corner is an (r - c) x (r - c) identity matrix. Per
forming row and column operations (which again amounts to multiplying 
J on the left and right by invertible matrices, not changing the freeness of 
coker J), we may reduce to the case where J12 and J21 are the zero matri
ces. From the fact that rank J = r - c, we see then that J22 must be a zero 
matrix as well. It is now obvious that the cokernel of J is free of rank c. 

Corollary 16.21. Let S = k[X1' ... ,Xr 1 be a polynomial ring over a field 
k, let I c S be an ideal, and set R = SI I. Let P be a prime ideal of S 
containing I whose residue class field K,(P) = K(RI P) is separable over k, 
and let c = codimlp C Sp. Rp is a regular local ring iff the module o'R/k 
is locally free at P of rank r - c. 

Proof. Localizing the conormal sequence, we get a free presentation 

R~ ~ Rp ® o'S/k --> (o'R/k)P --> o. 
Thus by the argument given above, (nR/k)p is free of rank r - c iff J has 

rank c locally at P. 

Note that in the common situation where I is a prime ideal, the number 
r - c may be computed directly from Rp as the transcendence degree of 
K(RI P) over k. 

It is not true that if nR/ k is locally free at P then Rp is regular; in 
characteristic p the rank could be > r - c. See Exercise 16.7 for an example. 
But all is well over a perfect field. 

Corollary 16.22. Let k be a perfect field, and let R be an affine ring over 
k. Suppose that R is equidimensional, of dimension d. The module nR / k is 
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locally free over R of mnk d iff Rp is a regular local ring for each prime 
P of R. If R is reduced or char k = 0, then the condition that the mnk of 
o'R/k is d is automatically satisfied. 

In fact, the proof below works whenever the characteristic of k is larger 
than the degree of nilpotence of Pp for any minimal prime P. 

Proof. Since every finitely generated extension of a perfect field is separably 
generated by Theorem A1.3, everything but the last statement follows from 
Corollaries 16.21 and 16.17. Suppose that o'R/k is locally free over R; we 
must show that if R is reduced or char k = 0, then o'R/k has rank d = dim R. 
Let P be a minimal prime of R, so that dim R/ P = dim R = d. The quotient 
field K,(P) = K(R/ P) has transcendence degree dover k by Theorem A of 
Chapter 13. The conormal sequence 

Pp/ pffi ~ K,(P) 00'R/k -+ o'K(P)/k -+ 0 

shows that the rank of o'R/k differs from the transcendence degree of K,(P), 
which is d, by the dimension of the image of the map d : Pp / pffi -+ K,( P) 0 
o'R/k' Thus it will suffice to show that df = 0 in K,(P)00'R/k for any f E Pp. 
If R is reduced, then Pp = 0, so we may assume that char k = O. 

If f E Pp then f is nilpotent in Rp; say r = 0 but r-1 # O. Applying 
d, we get nr-1df = 0 in o'Rp/k> and since char k = 0 we get r-1df = O. 
Since o'Rp/k = (o'R/k)P by Proposition 16.9, o'Rp/k is a free Rp-module. If 
df ¢ Po'Rp/k, then df would generate a free summand of o'Rp/k' Since df is 
annihilated by the nonzero element r-1, we see that this is impossible, and 
df E Po'Rp/k' Thus df = 0 in K,(P) 0 o'Rp/k = K,(P) 0 (o'R/k), as required. 

We shall say that an equidimensional affine ring R over a perfect field k 
is smooth over k if o'R/k is locally free of rank = dim R. 

A crucial result in the theory of manifolds is Sard's theorem, which says 
that if cp : X -+ Y is a ex> map of smooth manifolds, and X' c X is the 
critical locus of cp (the locus where the derivative of cp drops rank), then 
cp(X') has measure 0 in Y. The following is the algebraic version, which 
shows that if X and Yare varieties over a field of characteristic 0, then 
cp(X') is contained in a proper subvariety of Y. 

Corollary 16.23 (Generic smoothness). Let ReS be affine domains over 
a perfect field k. Suppose that K(R) 0 S is smooth over K(R), or that 
char k = 0 and SQ is a regular local ring for every maximal ideal Q. There 
is an element 0 i- fER such that the fiber K,(P) 0R S is smooth over K,(P) 
for every prime P of R not containing f· 

Proof. Let T = K(R) 0R S. Since the formation of differentials localizes 
(Proposition 16.9), we have o'T/K(R) = K(R) 08 0'8/R' 

Suppose that char k = 0 and SQ is a regular local ring for every maximal 
ideal Q. Now T is an affine ring over K(R) whose localizations are all 
localizations of S, and are thus regular. It follows that o'T/K(R) is locally 
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free over T ofrank equal to the dimension of T, which is the transcendence 
degree of K(8) over K(R), or equivalently dim 8 - dimR. Thus in both 
cases of the theorem, K (R) ® 8 is smooth over K (R). 

Since nTjK(R) is free over T of rank dimT - dimK(R), we may find an 
element 0 -=I- hER such that setting R' = R[Jl1] and 8' = 8[f1- 1], the 
module nSljRI is free of rank dim 8' - dim R' over 8'. 

By base change, Proposition 16.4, we see that n K(p)0 R SjK(P) = K,(P) ®R 
nSljRI = (K,(P) ®R 8') ®S' nSljRI for every prime P of R not containing k 
Thus n K(p)0R SjK(P) is free over K,(P)®R8 = K,(P)®R8' of rank dim 8-dimR 
for every such prime. 

By the semicontinuity of fiber dimension, Corollary 14.6, there is an 
element hER such that K,( P) ® R 8 has dimension equal to dim 8 - dim R 
for every prime P of R not containing h. If we take f = hh we see that 
K,(P) ®R 8 is smooth over K,(P) for every prime P of R not containing hh 
as required. 

For a simple application, consider a polynomial g(X1' ... ,xr) E k[X1, . .. , 
xr ]. If k has characteristic 0, then Corollary 16.23 implies that for all but 
finitely many values of t E k the ring k[X1, ... , xrl/(g - t) is smooth over 
k. (If we take R = k[y] mapping to 8 = k[X1, ... , xr] by sending y to g, 
then this is true for any t that is not a root of the polynomial f produced 
in the corollary.) Note that this fails in characteristic p: If k is perfect, for 
example, then t 1jp is in k for every t E k, so taking g(x) = xf we see that 
9 - t = (Xl - t 1jp )P for every t E k, and k[X1, ... , xrl/(g - t) is not even 
regular. 

16.8 Appendix: Another Construction of Kahler 
Differentials 

There is another construction of the module of derivations that is too 
important to ignore, though we shall not use it in this book: 

Theorem 16.24. Let I be the kernel of the multiplication map J.L : 8®R8 -+ 

8. If e : 8 -+ 1/12 is the map defined by b I---t 1 ® b - b ® 1, then there is an 
isomorphism'P: n SjR -+ 1/12 of 8-modules such that 'Pd = e; that is, the 
pair (d, nSj R) is in a natural sense isomorphic to (e,I / 12 ). 

Theorem 16.24 essentially writes n SjR as the conormal module for the 
map of rings 8 ®R 8 -+ 8. If Rand 8 are affine rings and the map R -+ 8 
corresponds to a map of affine varieties Y -+ X, then the epimorphism 
8 ® R 8 -+ 8 corresponds to the diagonal embedding of Y in Y x x Y. 

To understand why this works, consider a smooth manifold M. The nor
mal bundle of the diagonal embedding of M in M x M is the cokernel of 
the diagonal map 
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TM --+ TMxMIM = TM E9 TM 

and is thus TM . Thus the cotangent bundle of M is the conormal bundle 
of this diagonal embedding. Theorem 16.24 is the general algebraic form of 
this assertion. 

Theorem 16.24 is significant for two reasons. First, it is a special case of a 
more general construction, extending the idea of the module of differentials: 
The ring 8 ®R 8/In+1 may be viewed as an 8-module by the map 8 --+ 

8 ® R 8/ In+ 1 sending b to b ® 1. If R = k is a field and 8 is a localization of 
the affine ring of a nonsingular variety X over k, then this module is the 
module of sections of the jet bundle of order n on X: That is, it parametrizes 
Taylor series expansions to order n of polynomial functions on X. 

Second, if you know about the global treatment of varieties and schemes 
by means of sheaf theory, you will see that this construction, unlike the 
one given at the beginning of this chapter, "globalizes without patching": 
It makes sense directly for sheaves of functions, as well as for rings. 

Proof. We first show that e is a derivation. Indeed, e is the difference of the 
two maps b f-t 1 ® band b f-t b ® 1, which are algebra maps splitting the 
sequence 

1/12 --+ (8 ®R 8)/12 --+ 8 --+ O. 

Quite generally, if T --+ 8 is an algebra map whose kernel J has square 0, 
then J is naturally an 8-module. By Proposition 16.11 any two splittings 
el, e2 : 8 --+ T differ by a derivation. 

Because of the universal property of d and 0S/R, there is a unique map 
r.p : OS/R --+ 1/12 satisfying e = r.pd; that is, with r.p(db) = 1 ® b - b ® 1. It 
remains to prove that r.p is an isomorphism, which we shall do by identifying 
its inverse. Let T := 8 ~ Os/ R be the ''trivial extension of 8 by Os/ R"; that 
is, the ring which, as an abelian group, is the direct sum of 8 and OS/R, 
and whose multiplication is defined, for b, b' E 8, and u, u' in OS/R by 

(b, u)(b', u') = (bb', bu' + b'u). 

We claim that there is a ring homomorphism 

'¢ : 8 ®R 8 --+ T; '¢ : a ® b f-t (ab, adb) for a, b E 8. 

Since '¢(1 ® b - b ® 1) = (0, db), we see that the restriction of'¢ to I induces 
the desired inverse on 1/12. 

A map from the tensor product 8®R8 to an R-algebra T may be specified 
by giving two maps of R-algebras '¢i : 8 --+ T, so it is enough to show that 

'¢l : 8 --+ T; 

'¢2 : 8 --+ T; 

'¢l : b f-t (b,db) for b E 8 

'¢2 : a f-t (a, 0) for a E 8 

are maps of R-algebras. This is immediate for '¢2, and follows because d is 
an R-linear derivation in the case of '¢I, so we are done. 
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16.9 Exercises 

Exercise 16.1:* Show that if bE 8 is an idempotent (that is, b2 = b), and 
if d : 8 ~ M is any derivation, then db = O. 

Exercise 16.2:* Let M be an R-module, and let 8 = R ~ M, the "trivial 
extension of 8 by M"; that is, as an R-module 8 = REEl M, and the 
multiplication is the obvious one, with M2 = O. Compute o'S/R and the 
universal derivation. 

Exercise 16.3: Let 8 = R[x, y]/(xy). Compute o'S/R. 

Exercise 16.4: Give a direct proof, without using exact sequence and 
colimits, of Proposition 16.9 (localization of differentials), as follows. If R 
is an 8-algebra and U is a multiplicatively closed subset of 8, show that 
there is an R-linear derivation d' : 8[U-I] ~ 8[U- I ] ®s o'S/R sending lis 
to s-2ds, and a commutative diagram 

To define the upward map, use the fact that the obvious composite map 
8 ~ 8[U- I ] ~ o'S[U-ll/R is a derivation. For the downward map, one must 
check that d(b/s) = (1/s2)(sdb - bds) is legitimate. (After some computa
tion this boils down to showing that if s E U kills b (so that bit = 0 for all 
t E 8), then S2 kills db (so that d(blt) = 0).) 

Exercise 16.5: Let (8, m) be a regular local ring that is the localization 
at a maximal ideal of a finitely generated algebra over a field k, and let 
Xl, ... ,Xd be a system of parameters. Show that if 8/m = k, or more 
generally if 81m is a separable extension of k, then o'S/k is a free 8-module 
of rank d, generated by the dXi. What about the case when 81m is not 
separable over k? 

Exercise 16.6: If K c L' cLare fields finitely generated over K, then 
the cotangent sequence gives a natural map 

and Lemma 16.15 shows that this is an isomorphism if L is separable and 
algebraic over L'. 
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a. Show that if L = L' (Xl, .•. , X r ) is the field of rational functions in 
r > 0 indeterminates, then r.p is injective but not surjective. 

b. In general r.p need not be injective. Construct an example as follows: 
Suppose that L is purely inseparable and algebraic over L', generated 
by one element a satisfying a minimal polynomial f (x) = xP - a, with 
a EL'. By Corollary 16.6, the conormal sequence for K ---+ L'[X] ---+ L 
has the form 

Ldf ---+ L ® o.L'/K EB Ldx ---+ o.L/K ---+ O. 

Show that r.p is injective iff da = 0 E o.L' /K' Construct an explicit 
example where this condition is not satisfied. 

Exercise 16.1: Let k be a field of characteristic p, and let R = k[x]/xp • 

Show that o.Rjk is free although R is not regular. Note that the rank of 
o.Rjk is not equal to the dimension of R (compare with Corollary 16.21). 

Exercise 16.8 (First-order deformations): We say that deformations 
Rand R' with base ring A are isomorphic if there is an isomorphism a : 
R ---+ R' of A-algebras such that the induced map a®Ak: R®Ak ---+ R'®Ak 
corresponds under the given isomorphisms R ~ R ® A k and R ~ R' ® A k to 
the identity map of R. If A is a k-algebra in such a way that the composite 
map k ---+ A ---+ k is the identity, then R ~ A ®k R is a deformation, called 
the trivial deformation. If A = k[xJl(x2 ), then a deformation with base 
ring A is called a first-order infinitesimal deformation of Rover k. 

Suppose that k is a field, and that R is an affine ring; say R = S11, 
where S := k[X1,"" xr ] is a polynomial ring. In Exercise 6.12 we saw that 
the set of first-order infinitesimal embedded deformations of R is in one
to-one correspondence with N := Hom (I I 12 , R). In this exercise, we shall 
compute the set of all first-order deformations, which turns out to be a 
quotient of N. The reader will need to use the results of Exercise 6.12 here. 

As with the case of embedded deformations, the set of first-order infinites
imal deformations of Rover k is in a natural sense the Zariski tangent space 
to the space of all deformations. We refer the reader to Eisenbud and Harris 
[1992] for more information. 

a. Suppose that Rand R' are first-order infinitesimal deformations of 
the k-algebra R, and that there is a map of k[c]-algebras a : R ---+ R' 
such that the induced map 

_ a<8l1- , 
R ~ R ®k[c:] k ----t R ®k[c:j k ~ R 

is the identity map from R to R. Show that a is an isomorphism 
between Rand R', so that the deformations are isomorphic. For 
example let S = k[x], R = k[x]/(xn). Show that the deformation 
S[cJl(x - ac)n = SI(xn - nacxn- 1) of R is trivial as a (though it is 
not trivial as an embedded deformation.) 
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b. Show that every first-order infinitesimal deformation of R comes from 
an embedded first-order infinitesimal deformation, as follows: Sup
pose that 8 = k[Xl, ... , xr ], R = 8/1, and k[cJ -+ R is a deformation 
of R. Let Yi be the image of Xi in R, and let Yi be any element of 
R whose image in R is Yi. Show that R is generated over k[c] by 
the Yi, so that there is a surjection 8[c]- R "embedding" the given 
deformation. 

c. Again, let 8 = k[Xl, ... ,Xr ], and R = 8/1. Let R = 8[c]jI and 
R' = 8[c]j I' be two first-order infinitesimal embedded deformations 
that are isomorphic in the sense above, with isomorphism n. Show 
that n can be lifted to a map a : 8[c] -+ 8[c] of k[c]-algebras of the 
form 

Show that for any 9 = g(x) + cgl(X) E 8[c], a(g) = 9 + c E a/)g/8xi 
(note that this is an "infinitesimal Taylor expansion" of g). 

d. With notation as in part c, suppose that the two given deforma
tions correspond in the sense of Exercise 6.12 to homomorphisms 
<p,<p' : 1/12 -+ R. Show that <p - <p' = takes 9 to Eai8g/8xi. Con
versely, show that if <p, <p' : 1/12 -+ R are any two homomorphisms, 
differing by a homomorphism of the form 9 f-+ E ai8g / 8Xi, then <p 
and <p' define embedded first-order deformations that are isomorphic 
as (nonembedded) first-order deformations. 

e. Consider the conormal sequence of k -+ 8 - R, 

1/12 -+ R 0 o'S/k -+ o'R/k -+ o. 
Dualizing into R we get a left-exact sequence 

0-+ Hom(o'R/k> R) -+ Hom(R 0 o'S/k, R) -+ Hom(I/ 12, R). 

Define Tk/k to be the cokernel of the map Hom(R 0 o's/k> R) -+ 

Hom (I / 12, R) in this sequence. Show that Tk/k is the set of isomor
phism classes of first-order infinitesimal deformations of Rover k. 

f. (Compare with Exercise 6.12e) Let 8 = k[x], R = k[x]j(xn) (the 
n-fold point on a line"). Show that each first-order (nonembedded) 
deformation may be written in the form 

8[c]j(xn + a2CXn-2 + ... + anc) 

for a unique a2, ... ,an E k. Note that there is no term in xn-l. Geo
metrically this corresponds to a family of n points on a line approach
ing 0, modulo translations. 

g. (Compare with Exercise 6.12f) Let 8 = k[x, y], R = k[x]j(xy) (the 
"ordinary double point"). Show that each first-order (nonembedded) 
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FIGURE 16.4. 

deformation may be written in the form S[El/(XY + aE) for a unique 
a E k. Note that the space of these deformations is just I-dimensional 
over k. If k = R, this deformation corresponds to the tangent vector 
to the deformation of two lines meeting at a point into a hyperbola, 
as shown in Figure 16.4. 

Exercise 16.9: Use Theorem 16.8 to prove that if R is a field and S is 
a separable algebraic extension of R (possibly not finitely generated) then 
nSIR = O. 

Exercise 16.10: Let S be a field of characteristic p > 0, let x be an 
indeterminate, and set 

T = S(xllpoo) = llgtS(x1lpn ). 

Show directly that nTIs = 0, although T is not separably generated over 
S; this shows that the hypothesis of finite generation is necessary in Corol
lary 16.17 in characteristic p. 

Exercise 16.11: Let S be a field of characteristic 0, and let T be a Noethe
rian S-algebra such that nTIs = O. Show that T is a finite direct product 
of algebraic field extensions of S. 

Exercise 16.12: Let k' be a field of characteristic p, and let K = k'(t), S = 
k'(t)[xl/(x2) (or if you prefer take S = k'(t)[[x]]). Let k = k'(tP + x) c S. 
Show that the map d: m/m2 -+ K ® nSlk is zero. (Compare with Theo
rem 7.8 and Exercise 7.17.) 

Exercise 16.13:* Let S = k[Xl, ... , xrl be a polynomial ring over a field k, 
let I = (iI, ... , Is) be an ideal, and set R = S/ I. Suppose I has co dimension 
c. The first part of the proof of Theorem 16.19 shows that (c + 1) x (c + 1) 
minors of the Jacobian matrix (oli/oxj) are contained in any prime of 
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co dimension c that contains I (by the N ullstsellensatz this is equivalent to 
the first statement of Theorem 16.19). Show by example that the minors 
need not be contained in I itself, even if I is unmixed. 

Exercise 16.14 (The complete case):' In the complete case the module 
of differentials as we have defined it is not so useful. For example, if R is 
the localization of an affine ring over a field k at a maximal ideal and R 
is its completion, then in general o'Rjk =f:. R @R o'Rjk. For most applica-

tions (such as the Jacobian criterion) it is R @R o'Rjk that is interesting. It 
turns out that this is the completion of o'Rjk' and that in general the com
pleted module of differentials is the right thing. Here is the beginning of the 
treatment; see Grothendieck [1964, 20.4.8.2] and Scheja and Storch [1972] 
for continuations that also include the case of rings of germs of analytic 
functions (convergent power series). 

a. Let = Q[[X1, ... ,xrll be the ring of formal power series in r 2': 1 
variable over the rational numbers. Show that o'RjQ is not a finitely 
generated-or even a count ably generated-R-module. 

b. Let (S, P) be a complete local ring with coefficient field k. Show 
that the completion o'Sjk := ll!!ln(o'Sjk)1 pno'Sjk may be identified 

with the inverse limit of the modules o'(Sjpn)jk. Show that o'Sjk = 

(o'sjk)1 n~l pjo'Sjk. Show that the natural derivations S --> SI pn --> 

o'(Sjpn)jk give rise to a derivation d : S --> o'Sjk> which may also be 
identified as the composite of the universal derivation d : S --> o'Sjk 

and the projection map o'Sjk --> (o'sjk)1 n~l Pjo'Sjk. 

c. If R = k[[X1, ... , xrll is the formal power series ring, show that o'Rjk 
is the free R-module generated by dX1, ... , dxr . 

d. Let (S, P) be a complete local ring with coefficient field k, where 
p is generated by elements Y1, ... , Yr. Show that if we write S as 
k[[X1, ... , xrll/(!I,···, ft), then 

o'Sjk = (ttJiRdYi) I SdfI + ... + Sd!t 

exactly as in the affine case. 

Exercise 16.15 (The de Rham complex): 

a. Let o'~jR = l\io'SjR, the ith exterior power as S-modules. Show that 

the universal derivation d : S = o'~jR --> 0,1jR = o'SjR is in fact the 
first step in a complex of R-modules 

• 0 d 1 d1 i di i+1 
o'SjR: 0 --> o'SjR --> o'SjR --> ... --> o'SjR --> o'SjR --> ... 

where the map di : o'~jR --> 0'~/1 satisfies 
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di (bdbl /\ db2 /\ ... /\ dbi ) = db /\ dbl /\ db2 /\ ... /\ dbi . 

(You must check that the right side depends only on the left side, 
and, given this, that the formula defines a map of R-modules.) The 
complex nS/R is called the de Rham complex of S relative to R. 

The de Rham complex has long been used in the theory of mani
folds to compute topological cohomology; see, for example, Bott and 
1\1 [1982]. Atiyah, Hodge, and Grothendieck observed that in the 
algebraic setting, if R = C, and S is the affine ring of a smooth 
affine variety X, then the homology of the de Rham complex at n~/ R 

is H;ing(X, C), the usual singular homology group; see Hartshorne 
[1975] (where the history is also surveyed). The following examples 
illustrate these ideas: 

b. If R = k is a field, and S is the affine ring of a variety X of dimension 
d, then we say that X is smooth over R if nS/ R is locally free of 
rank d as an S-module. In this case, show that n~/k = 0 for i > d. 
This corresponds to the fact that although X has dimension 2d as a 
real manifold, X has the homotopy type of a complex of dimension 
::; d. (See Andreotti and Frankel [1959] for a proof.) 

c. Let S = R[XI, ... , xr ] be the polynomial ring in r variables. Show 
that the de Rham complex of SIR is exact except at n~/R' where the 
homology is R. (Note that this is not a complex of S-modules.) This 
example corresponds to the fact that the only nonvanishing homology 
group of affine space is Ho. 

d. Let R = k be a field, and let S = k[x,y]/(f(x,y)), where f(x,y) = 
y(x - al)(x - a2)··· (x - ad) - 1 where al, ... , ad E k are distinct. 
Show that nS/ R is free of rank 1 with generator dx. Show that the 
homology of the de Rham complex 

o ~ S ~ nS/ R ~ 0 

is k in degree 0 and kd in degree 1. (This corresponds to the fact that 
S is the coordinate ring of the smooth affine variety A I - { d points}, 
which, if k = C, has the homotopy type of a bouquet of d circles.) 

e. Let R = k be a field of characteristic not 2 or 3, and let S = 
k[x, yl/(x3 + y2 - 1). Check that nS/R is a locally free module of 
rank 1, so the de Rham complex is again 

o ~ S ~ nS/ R ~ o. 
Show by finding k-bases for the two (infinite-dimensional) vector 
spaces Sand nS/ R that the complex has homology k EB k in degree 
1 and k in degree o. (If k = C, then the corresponding variety X is 
homomorphic to a 2-torus minus one point, which is homotopic to a 
bouquet of two circles.) 
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Exercise 16.16: If 8 is any R-algebra and F, C : 8 ....... 8 are two R-linear 
derivations, then the commutator 

[F,C] :=FC-CF 

is again a derivation. By the universal property of d : 8 ....... OS/R, the maps 
F, C and FC - C F must be of the form f d, gd, and hd, respectively, for 
some 8-module homomorphisms f, g, h : 0S/R ....... 8. Clearly, 

FC - CF = fdgd - gdfd = (Jdg - gdJ)d, 

so one might at first think that h = (Jdg - gdJ). But this is wrong, since 
the right-hand side is not a homomorphism of 8-modules! Show from the 
formula above that there is a homomorphism k : OS/R ....... 8 of R-modules 
such that kd = 0 and h = fdg - gdf + k. Of course, the formula kd = 0 
suggests that k factors through the map defined above 

1 d1 2 
OB/A = 0B/A -+0B/A-

Show that this is correct by finding a map k' : O~/R ....... 8 of 8-modules, 
depending on f and g, such that 

h = fdg - gdf + k'd l . 

Exercise 16.17:* Proposition 16.12 gives a necessary and sufficient condi
tion for the left-hand map in the conormal sequence to be a split monomor
phism, but it may be a monomorphism without this condition being sat
isfied. The most important case is that of a radical complete intersection. 
Here is the result: 

Let (8, m) be a local ring that is the localization of a finitely generated 
algebra over a field k, and let I be an ideal of 8 such that I/ I2 is a free 
module over 8/ I of rank equal to the co dimension of I in 8. (This is so 
whenever I is generated by a regular sequence, though not in very many 
other cases: See Exercises 17.16 and 20.23.) Set T = 8/I and suppose that, 
for each minimal prime P of T, the field K(T / P) is separable over k and 
the ring 8 p is regular. Consider the conormal sequence 

/ 2 d I I ....... T ®s OS/k ....... OT/k ....... O. 

a. If I is a radical ideal, show that d is an injection. 

b. One might hope that d would be an injection for all complete inter
sections. To dispel this hope, compute the kernel of d in the case 
I = (x2,y2) C 8 = k[x,yj(x,y)' 



Part III 

Homological Methods 

A complex of modules is a sequence of modules and maps between them 

e: ... -+ALB~C-+··· 
such that the composition gf of any two consecutive maps is o. Many of 
the operations that apply to modules, such as @ and Hom, can also be 
applied to complexes of modules, as we shah see. Modules themselves may 
be regarded as complexes (where all the maps and all but one of the modules 
are 0). There is also a fundamental new operation, taking homology: The 
homology of the complex e at the module B is by definition the module 
ker(g) / im(f). 

Roughly speaking, using homological methods means studying mod
ules and complexes of modules. These methods play something of the same 
role in commutative algebra that representation theory plays in the study 
of groups; although they seem at first rather roundabout, they are uncan
nily effective in solving certain problems. We have already seen an early 
application: Hilbert's use of free resolutions to compute Hilbert functions. 
Hilbert also wrote down the Koszul complexes, described in Chapter 17, 
as examples. 

Perhaps the first serious application of homological ideas (and in fact of 
the Koszul complexes) was made by Arthur Cayley, who used them in elim
ination theory in [1858].1 The first items we shall study, the Koszul complex 
and characterizations of its exactness, are closely related to Cayley's ideas. 

Advice to the Reader: The chapters to come use more homological 
algebra (mostly the functors Tor and Ext) than the earlier chapters of 
this book. In addition, they make occasional use of the exterior algebra. 
The necessary topics-and much more besides-are treated in a compact 
way in Appendices A2 and A3, where there are also references to more 
leisurely treatments. 

lCayley regarded a complex in our sense as a parametrized family of complexes 
of vector spaces. The switch from polynomial as function to polynomial as element 
of a ring came only later, in the work of Kronecker. 



17 
Regular Sequences and the 
Koszul Complex 

Throughout this chapter we shall assume that the rings considered are 
Noetherian. It is possible to do business without this condition, but some 
definitions should be changed slightly. The interested reader may consult 
Northcott [1976]. 

We recall a fundamental definition that extends the notion of a nonze
rodivisor: 

Definition. Let R be a ring and let M be an R-module. A sequence of 
elements Xl, ... , Xn E R is called a regular sequence on M (or an M
sequence) if 

1. (Xl, ... , xn)M::/=- M, and 

2. Fori = 1, ... ,n, Xi is a nonzerodivisor on M/(XI, ... ,Xi-I)M. 

Following ideas introduced by Auslander, Buchsbaum, and Serre in the 
1950s and refined by many people since, we shall study this notion with 
a homological tool called the Koszul complex. (One can also go quite 
far without homological methods, buying an elementary treatment at the 
expense of a certain ingenuity-see Kaplansky [1970].) Most of this chapter 
is devoted to establishing the techniques for dealing with Koszul complexes. 
To make the content of the theory clear we shall start naively with the sim
plest cases and some simple applications; we then redo the theory from a 
more powerful point of view, using the exterior algebra. 
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We shall use the Koszul complex in this chapter to establish the basic 
facts about the notion of depth, an algebraic notion parallel to the geomet
ric notion of codimension. In the next chapter we shall study the Cohen
Macaulay condition, which is the condition that the two notions coincide. 

At the end of the chapter we present some common alternative descrip
tions of the Koszul complex, and explain the relation of the Koszul complex 
to the tangent and cotangent bundles of projective spaces, a relation that 
is the source of many beautiful applications. Some other geometric connec~ 
tions are given in the exercises. 

The first part of the exposition is adapted from that of Buchsbaum [1969], 
which was my own introduction to this subject. 

17.1 Koszul Complexes of Lengths 1 and 2 

We can decide whether an element x E R is a nonzero divisor from the 
homology of the complex 

K(x) : 0 ---+ R -.::. R, 

which is (0: x). This trivial remark is the essential basis for the homological 
study of regular sequences. 

Given a second element y E R, multiplication by y defines a map of 
complexes K(x) ---+ K(x) - that is, a commutative diagram 

K(x): 0 ---+ R -.::. R 
ly ly 

K(x): 0 ---+ R -.::. R 

We can use the commutativity of the square in the diagram to build a 
larger complex, which we write schematically as 

o ---+ R 
x 

R 0 ---+ ---+ 

(*) K(x,y) : \,.YEB \,.Y 
0 ---+ R ----> R ---+ 0 

-x 

or in more usual notation as 

K(x,y) : 
w (-x,y) 

0---+ R ----> REB R ~ R. 

The reader who has seen Koszul complexes before may be shocked at 
our sign convention. The Koszul complex is usually written with signs 

(!x) (x,y) 
o ---+ R ------> R EB R -------+ R. 

These two possibilities are in fact isomorphic as complexes, so no harm has 
been done. We shall introduce the complex that is naturally written with 
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signs as in the second diagram in the section "Duality and Homotopies," 
at the end of this chapter; we shall write it as K' (<p), where <p : R2 ~ R is 
the map with matrix (x, y). The choice we are making has the advantage 
that the formula for the differential (in terms of exterior algebra) is more 
transparent. 

For convenience, we shall number the homology groups of K(x) and 
K(x, y) starting from the left, and in deference to tradition we shall write 
these as cohomology groups; thus HO (K (x)) is the homology at the leftmost 
nonzero term R of K(x). We see from the definition that HO(K(x)) = (0 : 
x), the annihilator of x, and HO(K(x, y)) is (0 : (x, y)), so that if x is a 
nonzerodivisor then HO(K(x,y)) = O. 

What is the meaning of HI (K (x, y))? First we analyze the kernel of the 
right-hand map. An element (a, b) E RffiR is in the kernel iff -xa+yb = O. 
Of course this requires b E (x : y). Conversely, if b E (x : y), then there 
is an element a with -xa + yb = 0, so that (a, b) will be in the kernel. 
If we assume that x is a nonzerodivisor, then a is uniquely determined by 
b, and the association b f---t a is a module homomorphism, so the kernel is 
isomorphic to (x : y). 

On the other hand, an element is in the image of the left-hand map iff it 
is of the form (ey, ex), so the elements of (x : y) that correspond to elements 
of the image are the elements of (x). Thus if x is a nonzerodivisor, then 

HI(K(x, y)) ~ (x : y)/(x). 

In particular, if x is a nonzero divisor then HI (K (x, y)) = 0 iff the sequence 
x, y satisfies condition 2 in the definition of a regular sequence. 

A further point of interest can be deduced from the schematic presenta
tion (*) of K (x, y): The lower row of this complex is actually a sub complex 
(that is, it is taken into itself by the differential) isomorphic to K(x), while 
the upper row, also isomorphic to K(x), is the quotient of K(x, y) by the 
lower row. As written, the (i -1) term of the sub complex K(x) is included 
in the ith term of K(x, y), which projects to the ith term of the quotient 
K (x), so the long exact sequence in homology coming from this short exact 
sequence of complexes has the form: 

where the map 8 is the "connecting homomorphism." An easy diagram 
chase, which the reader should do, shows that 8 is multiplication by y. 

Now suppose only that HI(K(x, y)) = O. It follows from the preceding 
long exact sequence that 

In general, not much can be deduced from this; but if we assume in addi
tion that R is a Noetherian local ring and y is in the maximal ideal, then 
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Nakayama's lemma shows that HO(K(x)) = O! Consequently, x is a nonze
rodivisor, and x, y is a regular sequence by what we have already proved. 
We may state what we have shown as follows: 

Theorem 17.1. If R is a Noetherian local ring and x, yare in the maximal 
ideal, then x, y is a regular sequence iff HI(K(x, y)) = O. 

From the way the Koszul complex is written in (**), it is clear that the 
complexes K(x, y) and K(y, x) are isomorphic. Thus under the hypothesis 
of Theorem 17.1, X,y is a regular sequence iff y,x is. This is enough to 
show that regular sequences may be permuted. 

Corollary 17.2. If R is a Noetherian local ring and Xl, ... ,Xr is a regular 
sequence of elements in the maximal ideal of R, then any permutation of 
Xl, ... ,Xr is again a regular sequence. 

Proof. Since every permutation is a product of transpositions of neighboring 
elements, it suffices to show that we can interchange two neighbors; that is, 
if Xl, ... , Xi, Xi+l, ... , Xr is a regular sequence, then Xl,···, Xi+l, Xi, ... , Xr 
is too. The only part of the definition of a regular sequence that is not 
immediate for Xl, ... , Xi+ I, Xi, ... ,Xr amounts to saying that Xi+ I, Xi is a 
regular sequence modulo (Xl' ... ' Xi-d. After factoring out (Xl, ... , xi-d, 
Theorem 17.1 and the remark following it give the desired conclusion. 

One might at first hope that the local hypothesis in these two results 
would be superfluous, required only by the clumsy methods used in the 
proof. This is not the case. 

Example 17.3. Consider the ring 

R = k[x, y, z]j(x - l)z 

and the sequence of elements 

X, (x - l)y. 

The ideal they generate is (x, (x - l)y) = (x, y) =I- R. Further, it is easy to 
see that X is a nonzerodivisor in R, and R/(x) = k[y, z]j(z). Thus x, (x-1)y 
is a regular sequence and 

HI(K(x, (x - l)y)) = o. 

However, (x - l)y is a zero divisor-it is killed by z-so that the sequence 
in reversed order is not a regular sequence. (Despite such examples, every 
ideal generated by a regular sequence is actually generated by a set of 
elements that is a regular sequence in any order; see Exercise 17.6.) 

One further point is worth noting: If x E R is arbitrary, then 
HO(K(x,O)) = HO(K(x)) (since both are isomorphic to (0 : (x))) even 
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though the complex K(x,O) is not isomorphic to K(x). The less experi
enced reader may find it useful to stop and try at least Exercise 17.1 before 
proceeding. 

17.2 Koszul Complexes in General 

We could build up the Koszul complex step by step, iterating the process 
just illustrated (and we shall soon prove that this gives the correct answer), 
but the following construction is so direct, simple, and invariant that it has 
many advantages. 

If N is any R-module, then the exterior algebra AN may be defined as 
the free algebra R tJJ N tJJ (N Q9 N) tJJ ... modulo the relations x Q9 y = -y Q9 x 
and x Q9 x = 0 for all x and y in N. The product of two elements a, b in 
AN will be written a A b. AN is a graded algebra-the part of degree m, 
written AmN, is generated as an R-module by the products of exactly m 
elements of N. It is skew commutative in the sense that if a and bare 
homogeneous elements, then 

aAb= (_1)(dega)(degb)bAa, 

and if a has degree 1, then a A a = O. (These two conditions are equivalent 
if 2 is a unit in R.) To avoid needing a notation for the degrees of elements, 
we shall usually "abuse notation" and write (-1 )ab for (-1 ) (deg a)(deg b) . Note 
that for any N we have A 0 N = R. 

The construction AN is functorial in N: That is, if f : N --+ M is a map 
of modules, then Af : AN --+ AM is the map of algebras taking a A b A ... 
to fa A fb A .... If N is a free module (the only case we shall actually use) 
then the construction behaves just like the more familiar version where R 
is a field and N is a vector space. In particular, if N is free of rank n, then 
AnN ~ R, and if f : N --+ N is a map, then An f is multiplication by the 
determinant of any matrix representing f. In this case Am N = 0 for m > n. 

Now given a module N and an element x E N, we define the Koszul 
complex to be the complex 

2 . dx '+1 K(x) : 0 --+ R --+ N --+ A N --+ ... --+ A'N ---'>A' N --+ ... 

where dx sends an element a to the element x A a; in particular, 1 E R is 
sent to dx (1) = x E N. If N is free of rank nand 

x = (Xl"'" Xn) E Rn ~ N, 

then we shall sometimes write K(Xl,"" xn) in place of K(x). 
One advantage of this definition is that it makes the functoriality of the 

Koszul complex obvious: If f : N --+ M is a map of modules sending x E N 
to y EM, then the map Af : AN --+ AM preserves the differential, and is 
thus a map of complexes, exactly because it is a map of algebras. 
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To gain familiarity with the Koszul complex, and because it will be 
important later, let us show that Hn(K(XI,"" xn)) = R/(XI,"" xn). Set 
N = Rn , and consider the right-hand end of the Koszul complex: 

... ~ An-IN ~ AnN An+l N = O. 

Let el, ... ,en be a basis for N = Rn. We have AnN ~ R by an isomorphism 
sending el A· .. A en to 1. Similarly A n-l N ~ Rn, with basis el A ... A ei-l A 
ei A ei+l A ... A en, for i = 1, ... ,n, where the symbol ei indicates that ei 
has been omitted. Now the image of el A· .. A ei-l A ei A ei+l A· .. A en under 
the differential of the Koszul complex is 

(L: Xiei) A el A ... A ei-l A ei A ei+1 A ... A en = ±Xiel A ... A en, 

so the cokernel of An- l N ~ AnNis isomorphic to R/(XI, ... , xn). 
In general, as suggested by the case of a Koszul complex of length 2, 

the homology of the Koszul complex K(XI, ... , xn) has to do with regular 
sequences. It does not in general detect whether Xl, ... , xn is a regular 
sequence, but it detects something even more interesting: the lengths of 
the maximal regular sequences in the ideal (Xl"'" xn). The result also 
shows that these lengths are all the same. 

Theorem 17.4. Let M be a finitely generated module over the ring R. If 

Hj(M®K(XI,""Xn))=O forj<r 

while 
Hr(M ® K(XI,"" xn)) -=1= 0, 

then every maximal M -sequence in I = (Xl"'" Xn) C R has length r. 

We put off the proof until later in this chapter. 

Corollary 17.5. If Xl, ... , xn is an M -sequence, then M ® K(XI,"" xn) 
is exact except at the extreme right; that is, Hj(M ® K(XI,'" ,xn)) = 0 
for j < n. Furthermore, Hn(M ® K(XI,'" ,xn)) = M/(XI,'" ,xn)M. 

Proof. The length of a maximal M-sequence in (Xl,'" ,Xn ) is clearly;:::: n. 
The first conclusion follows from Theorem 17.4. For the second statement, 
writing N for Rn, we note that Hn (M ® K (Xl, ... , xn)) is the homology 
of M tensored with the Koszul complex M ® A n-l N ~ M ® AnN ~ 0 at 
M ® NN; that is, it is the cokernel of M ® An-IN ~ M ® AnN. By the 
right-exactness of the tensor product, 

coker(M ® An- l N ~ M ® An N) = M ® coker(An- 1 N ~ AnN) 

= M ® Hn(K(XI"" ,xn)). 

Using the computation we already made of Hn(K(XI"" ,xn)) we see that 

Hn(M®K(XI,''''Xn)) = M®R/(XI, ... ,Xn) 
= M/(XI, ... ,xn)M. D 
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That the converse is false may be seen from Example 17.3; but we shall 
see in Theorem 17.6 that the converse does hold in the local setting. We 
shall prove a more general version of this corollary in Corollary 17.12. 

Note that if 1M i=- M, then at least 

}{n(l\1®}((XI,""Xn)) = M/(XI, ... ,xn)M i=- 0, 

while, of course, 
}{-I(M ® }((XI,"" xn)) = 0, 

so there is an r for which Theorem 17.4 may be applied. On the other hand, 
we shall see that if 1M = M, then }{j(M ® }((XI,"" xn)) = ° for every j. 

If 1M i=- M, then by Theorem 17.4 the lengths of all maximal M
sequences in I are the same. We define the depth of Ion M, written depth 
(I, M), to be the length of any maximal M-sequence in I. If M = R, we 
shall speak simply of the depth of I. If 1M = M, we adopt the convention 
that depth (I, M) = 00. 

When R is local with maximal ideal P, and M is an R-module, then we 
shall see in Chapter 19 that the depth of P on M, simply called the depth 
of M, is a particularly interesting number. This terminology conflicts with 
the one just introduced in case M is an ideal; however, confusion does not 
really arise in practice, and both pieces of terminology are commonly in 
use side by side. Some authors follow the original paper of Rees [1957] and 
resolve the problem by using the term "grade I" to denote the depth of I 
on R. But most geometers, following French usage, have adopted the term 
"depth," and we shall follow this tradition. 

As we have mentioned, the depth of I is a kind of arithmetic measure 
of the size of I, while the co dimension of I is a geometric measure. In 
Corollary 17.8 we shall show that, like the codimension, the depth depends 
only on the radical of I, and is thus geometric in the sense that it is, in the 
case of affine rings, say, determined by the variety cut out by I. Pursuing 
the depth-co dimension analogy, Theorem 17.4 implies an analogue of the 
principal ideal theorem: Namely, it implies that an ideal with r generators 
can have depth at most r. We shall see that in general depth I::; co dim I. 

In the local case we can strengthen Theorem 17.4 further; it is enough 
for a single homology group to vanish, and we even get a criterion for a 
particular sequence to be an M-sequence: 

Theorem 17.6. Let M be a finitely generated module over the local ring 
R, m. Suppose Xl, ... ,Xn E m. If for some k 

then 
}{j(M ® }((XI,'" ,xn )) = ° for all j ::; k. 

In particular, if }{n-I(M ® }((XI,'" ,xn)) = 0, then Xl, ... ,xn is an M

sequence. 
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We shall postpone the proofs of Theorems 17.4 and 17.6 until we have 
developed some tools for handling Koszul complexes. 

To avoid endlessly repeating the hypothesis, we shall use the letter M 
to denote a finitely generated R-module throughout the remainder of this 
chapter. 

An immediate consequence of Theorem 17.6 strengthens Corollary 17.2. 

Corollary 17.7. If R is local and (Xl, ... , Xn) C R is a proper ideal con
taining an M -sequence of length n, then Xl, ... , Xn is an M -sequence. 

Proof. Since M is finitely generated, Nakayama's lemma shows that 
Hn(M 181 K(XI, ... ,Xn)) = M/(XI, ... ,xn)M -I- o. If now r is the small
est number such that Hr(M 181 K(XI, ... ,xn)) -I- 0, then every maximal 
M -sequence in (Xl, ... , xn) has length r by Theorem 17.4. It follows from 
our hypothesis that r = n. Thus Xl, ... , Xn is a regular sequence by Theo
rem 17.6. 

This result can often be used to prove that a given sequence is regular. 
For example, we have: 

Corollary 17.8 (Geometric nature of depth). 

a. If Xl, ... , Xr is an M -sequence, then xi, ... , x; is an M -sequence for 
any positive integer t. 

b. Thus if I is an ideal of Rand J is its radical, we have depth (I, M) 
= depth (J, M). 

Proof. 

a. We do induction on r to reduce to the local case. For r = 1 we simply 
note that a power of a nonzerodivisor is a nonzerodivisor. 

For general r, we may suppose by induction that xi, ... , X;_l is 
an M-sequence. It suffices to show that Xr is a nonzerodvisor on 
M / (xL . .. , X;_l) M (that is, that multiplication by Xr has zero ker
nel). For this we may localize at a prime P. If P does not contain 
Xl, ... ,xn then either M/(xL ... ,x;_I)M = 0 or Xr is a unit, and 
the result is obvious. Thus we may assume that R is a local ring and 
Xl, ... , Xr is contained in the maximal ideal. 

If XI, ... ,Xr is an M-sequence, then clearly XI, ... ,Xr-I,X; is an 
M-sequence. Since we are in a local ring, we may apply Corollary 17.7 
and conclude that X;,XI' ... ,Xr-l is an M-sequence. Repeating the 
argument, we see that X;_I,x;,XI, ... ,Xr-2 is an M-sequence. After 
r such steps, we see that xL ... , x; is an M-sequence. 
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b. Since J c J we have depth (J, M) ::; depth (J, M) trivially. The 
opposite equality follows using part a since if Xl, .. . ,Xr is an M
sequence in J, then xi, ... ,x; is in J for t » o. D 

17.3 Building the Koszul Complex from Parts 

To analyze the Koszul complex, we use two methods of constructing com
plexes: tensor products and mapping cones. The reader new to these mat
ters will find more details in the appendix on homological algebra. First, 
the tensor product of two complexes: 

and 
,pi 

9: ... ~ Gi ----+Gi+1 ~ ... 

is defined to be the complex 

dk 
~ ® 9: ... ~ L Fi ® Gj ----+ L Fi ® Gj ~ ... 

i+j=k i+j=k+1 

where the map dk on Fi ® G j (with i + j = k) is the zero map to Fs ® Gt 

unless i = s or j = t, while from Fi ® G j to FH1 ® Gj it is 'Pi ® 1 and from 
Fi ® G j to Fi ® Gj +1 it is (-1)i1 ® 'ljij. (The choice of sign is necessary-as 
the reader may easily check-to make ~ ® 9 a complex, that is, to make 

Heuristically, we may say that the sign occurs "because" we have commuted 
the element 'Iji, of degree -1, and an element of Fi , of degree i, introducing 
the sign (_l)(-l)i = (_l)i). 

We regard the modules in a complex as indexed in a fixed way, and if 
9 is a complex we write 9[n] for the complex 9 shifted n steps: That is, if 
Gi is the module in the ith position in 9, then Gn+i is the module in the 
ith position of 9[n]. It is convenient to take the differential of 9[n] to be 
the differential of 9 multiplied by (_l)n. Thus, for example, if we regard 
R as a complex 0 ~ R ~ 0 with R in the zeroeth position, then R[ -i] 
will denote the complex 0 ~ R ~ 0 with R in the ith position. Note that 
9[n] = R[n] ® 9. 

We now return to the Koszul complex. If ~ is the Koszul complex on one 
element y E R, 

~ : 0 ~ R J!.. R ~ 0, 

then the obvious diagram 
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R[-l]: 0 ........ 0 ........ R ........ 0 

1 11 
9": o ........ R 

y 
R 0 ........ ........ 

11 1 
R[O] : 0 ........ R ........ 0 ........ 0 

is a short exact sequence of complexes 

0 ........ R[-l] ........ 9" ........ R[O] ........ O. 

If we tensor this diagram with another complex 9, then we get a short 
exact sequence of complexes 0 ........ 9 [-1] ........ 9" 0 9 ........ 9 ........ O. Indeed, 9" 0 9 
is the so-called mapping cone of the map 9[-1] ........ 9 of complexes given 
by multiplication by y-that is, schematically as before, 9" 0 9 is given by 

Gi 
-'Pi 

Gi+1 
-'PHI 

Gi+2 .. . ........ ---+ -------+ ........ . .. 
9"09: EEl ","y EEl ","y EEl 

... ........ Gi- 1 -------+ Gi ---+ Gi+1 ........ . .. 
-i.pi-l -<Pi 

Since Hi(9[-1]) = Hi- 1(9), the short exact sequence of complexes gives 
rise to a long exact sequence in homology 

........... Hi- 1 (9) ~ Hi- 1 (9) ........ Hi (9" 0 9) ........ Hi (9) ~ ... , 

where one checks by a direct diagram chase that the connecting homomor
phisms are multiplication by y as claimed. 

Proposition 17.9. If N = N' EEl N", then I\N = I\N' 0 I\N" as skew
commutative algebras. If x' E N' and x" E N" are elements, so that x = 
(x',x") E N, then 

K(x) = K(x') 0 K(x") 

as complexes. 

Proof. The first statement of the proposition is proven in Proposition A2.2 
of Appendix 2. 

To prove the second statement, it suffices to note that if y = y' 0 y" E 
I\N' 0 I\N" = I\N, and 

then 

x = (x', x") = x' 0 1 + 1 0 x" E 1\ 1 N' @ R EEl R @ 1\ 1 N" 

= 1\ 1 N' @ 1\0 N" EEl 1\0 N' @ 1\ 1 N" 

= 1\1N, 

x 1\ Y = (x' @ 1 + 1 @ x") 1\ (y' @ y") 

= (x' I\y')@y" + (-l)X"Y'y'@(x" I\y"), 
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so the differentials in /\N and /\N' 129 /\N" agree under the identification 
above. 

We shall prove Theorem 17.4 by applying Proposition 17.9 in two ways. 
The first shows how the Koszul complex of Xl, ... , Xn can reflect informa
tion about regular sequences contained in the ideal generated by Xl,"" Xn. 

Corollary 17.10. If YI, ... , Yr are elements of the ideal generated by 
Xl, ... , Xn E R, and M is any R-module, then 

H* (M 129 K (Xl, ... , Xn, YI, ... , Yr) ) 

~ H*(M 129 K(XI"'" Xn)) 129 /\Rr 

as graded modules, In particular, for each i we have 

Hi(M 129 K(XI, ... , Xn, YI,···, Yr)) 

Thus, 

iff 

~ I: H k(MQ9K(XI, ... ,Xn))Q9NRr. 
i=j+k 

Proof. There is an automorphism of Rn EB Rr taking the element with coor
dinates Xl,"" Xn, YI, ... , Yr to the one with coordinates Xl,"" Xn, 0, ... , ° 
(r zeros); indeed, if Yi = I:j aijXj, and A is the r x n matrix with entries 
aij, then the matrix 

( I I 0) 
-A I I 

takes the column vector with entries Xl, ... , Xn, YI, ... , Yr to the one with 
entries Xl, ... , Xn, 0, ... ,0. From the functoriality of the Koszul complex 
and Proposition 17.9 we get 

K(XI, ... ,Xn,YI,··· ,Yr) ~ K(XI, ... ,xn,O, ... ,0), 

~ K(XI"'" xn) 129 K(O, ... , 0). 

Now K(O, ... ,0) is the exterior algebra on r generators, with differentials 
all 0, whence the first statement of the corollary. The last two statements 
follow immediately. 

Applying Proposition 17.9 in the case N = REBN" and using the remarks 
just before the proposition, we get: 

Corollary 17.11. Ifx = (x',y) E N = N'EBR, then K(x) is isomorphic to 
the mapping cylinder of the map K(x') --+ K(x') induced by multiplication 
by Y; in particular, we have a long exact sequence: 
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-+ Hi(M 0 K(x')) ~ Hi(M 0 K(x')) -+ Hi+I(M 0 K(x)) 
-+ Hi+I(M 0 K(x')) ~ 

Proof Since N' EEl R ~ REEl N' in a way taking (x', y) to (y, x'), we have 
K(x) = K(y,x') by functoriality. By Proposition 17.9, K(x) = K(y) 0 
K(x') and by the remark before the proposition such a tensor product is a 
mapping cylinder, so we have a short exact sequence of complexes 

0-+ M 0 K(x')[-I]-+ M 0 K(x) -+ M 0 K(x') -+ 0, 

where we have written 
K(x')[-I] 

for the complex whose ith term is the (i - 1) term of K(x'). The desired 
long exact sequence is just the long exact sequence in homology of this 
short exact sequence of complexes. 

From Corollary 17.11 we obtain a more precise version of part of Theo
rem 17.4. 

Corollary 17.12. If Xl,"" Xi is an M -sequence, then 

Hi(M 0 K(XI, ... , xn)) 
= ((Xl"'" Xi)M : (Xl"'" Xn))/(XI, ... , xi)M. 

In particular, if Xl,"" Xi is an M -sequence in the ideal I = (Xl"'" xn), 
then Hj(M 0 K(XI,"" xn)) = 0 for j < i. If Xl,"" Xi is a maximal 
M-sequence in I, and 1M =f. M, then Hi(M 0 K(XI,'" ,xn)) =f. o. 
Proof We prove the first statement by induction on i, starting with i = 
0, where the statement follows directly from the definition of the Koszul 
complex. 

For given i, we do induction on n, starting from n = i. If n = i then the 
first statement becomes Hi(M0K(XI,"" xn)) = M/(XI, ... , xn)M, which 
is clear from the definition of the Koszul complex. Now suppose n > i. By 
the induction on i we have 

Hi-I(M 0 K(XI,"" xn)) 
= ((Xl"'" Xi-I)M : (Xl"'" Xn))/(XI, ... , Xi-I)M 
=0 

since Xi is a nonzero divisor on M / (Xl, ... , Xi-I) M. Thus the exact sequence 
of Corollary 17.11 yields 

Hi(M 0 K(XI, ... , xn)) = 
. Xn . 

ker(H'(M 0 K(XI,"" Xn-l)) --t H'(M 0 K(XI,"" xn-d). 

Since also 
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((Xl, ... ,xi)M: (Xl, ... ,Xn))/(Xl, ... ,xi)M = 
Xn 

ker(((XI, ... , xi)M : (Xl, ... , Xn-l))/(XI, ... , xi)M ---+ 

((XI, ... ,Xi)M: (XI, ... ,Xn-I))/(XI, ... ,Xi)M), 

we are done. 
The vanishing part of the second statement follows from the first since 

if Xj+l is a nonzerodivisor on M/(XI, ... , xj)M then 

((xI, ... ,xj)M: (XI, ... ,Xn)) = (xI, ... ,xj)M. 

To deduce the nonvanishing part, suppose that (Xl' ... ' Xi) is a maxi
mal M-sequence in I. This means that I is contained in the set of zero
divisors on M/(XI, ... ,xi)M. By the theory of associated primes this set 
of zero divisors is a finite union of associated primes, so by prime avoid
ance, Lemma 3.3, I must be contained in a single associated prime Q of 
M/(XI, ... , xi)M. By definition, Q is the annihilator of some nonzero ele
ment m of M/(XI, ... ,xi)M, so we see that 

mE ((Xl, ... , xi)M : (Xl' ... ' Xn))/(XI, ... , xi)M, 

whence the nonvanishing statement. 

We turn to the proofs of Theorems 17.4 and 17.6. 

Proof of Theorem 17.4· Let YI, ... , Ys be a maximal M-sequence in I. By 
hypothesis, r is the smallest integer i such that 

By Corollary 17.10, r is also the smallest for which 

Hi(M 0 K(Xl, ... ,Xn,YI, ... ,Ys)) i= O. 

From the hypothesis Hr(M 0 K(XI, ... ,xr)) i= it follows that 
(Xl, ... , xr)M i= Mj this will be proved in Proposition 17.4, below. Using 
Corollary 17.12 we get s = r, as required. 

Proof of Theorem 17.6. We prove the first statement by induction on n. If 
Hk(M 0 K(XI, ... , Xn)) = 0, then by Corollary 17.11 the map 

k I (( )) Xn k I H - M®K XI, ... ,Xn-1 ---+H - (M0K(XI, ... ,Xn-I)) 

is an epimorphism. By Nakayama's lemma, this implies that 

Hk-I(M ® K(XI' ... ' Xn-l)) = 0, 

so by induction, 

Hj(M ® K(XI, ... ,xn-I)) = 0 for j ~ k-1. 
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Using Corollary 17.11 again, we see that 

Hj(M®K(Xl,""Xn))=O forj:::;k 

as required for the first statement. 
To prove the second statement we use the same strategy. If 

Hn-l(M ® K(Xl,"" xn)) = 0 

then, as just noted, 

so by induction Xl, ... ,Xn-l is an M-sequence. By Corollary 17.12, 

0= Hn-l(M ® K(Xl, ... , xn)) 

= ((Xl, ... , xn-dM : (Xl, ... , Xn))/(Xl, ... , xn-dM, 

so Xn is a nonzero divisor on M / (Xl, ... , Xn-l) M, as required. 

17.4 Duality and Homotopies 

D 

There is a dual version of the Koszul complex, associated to an R-module 
N and a map rp : N ---) R. The description requires a little exterior algebra. 
The inexperienced reader may wish to stick to the case where N is free, in 
which case what we shall describe is just the dual of the Koszul complex 
K (rp), where rp E N*. Alternately, all the required algebra is done in detail 
in the Appendix 2. 

Corresponding to rp : N ---) R we shall describe a complex 

6 
K'(rp) : ... ---) /\iN ~/\i-l N ---) ... ---) N -'!.." R ---) O. 

To describe the differential i5<p : /\ iN ---) /\ i-I N we use the "diagonalization 
map" ~ : /\N ---) /\N ®R /\N, the unique map of algebras taking each 
mEN = /\IN to 

m ® 1 - 1 ® m E /\ 1 N ® R /\0 N ffi /\0 N ® R /\ 1 N c /\N ® R /\N. 

We shall actually use only the component of ~ that maps /\iN to N ® 
(/\i-lN), which may be described on generators as 

i 

~'(ml/\"'/\ mi) = 2) -l)j- l mj ® ml /\ ... /\ mj /\ ... /\ mi, 
j=l 

where mj signifies that mj has been left out of the product. We define i5<p 
to be the composite 

/\iN ~ N ®R (/\i-l N) ~ R ®R /\i-l N = /\i-l N. 
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When i = 1 this is nothing but t.p. 
To show we have defined a complex, we must show that 8~ = O. Com

puting, we see that 8~(nl A ... A ni) is a linear combination of the terms 
nl A· .. A ii j A· .. A iij' A· .. A ni, where we have left out nj and nj'. Assuming 
that j < j' we see that the coefficient of this term in 8~(nl A··· A ni) is 

so indeed 8~ = O. 
Many computations such as this one can be simplified by using Propo

sition A2.8 proved in the appendix on multilinear algebra, that 8<p is a 
derivation of the exterior algebra AN to itself. That is, if n, n' are homo
geneous elements of AN, then 

The sign is the natural one for a degree -1 derivation of skew-commutative 
graded algebras. To prove that 8~ = 0 using this, we argue that 8~(m) = 0 
by induction on the degree of m. If deg m = 0 the formula is obvious. In 
general, we may write m as a linear combination of elements of the form 
nAn', where n has degree 1. We have 

8<p8<p(n An') = 8<p(8<p(n) An') - 8<p(n A 8<p(n')) 

= 8<p(8<p(n)) An' + 8<p(n) A 8<p(n') 
- 8<p(n) A 8<p(n') + n A 8<p8<p(n') 

= 8<p(n) A 8<p(n') - 8<p(n) A 8<p(n') 

= O. 

Here is one relation between the Koszul complex defined originally and 
this dual version: 

Lemma 17.13 (Homotopy for the Koszul complex). If x E Nand t.p : N -+ 

R, then the maps 8'1' and dx satisfy the identity 

where 1 is the identity map on AN. Thus 8<p is a homotopy showing that 
multiplication by t.p(x) is homotopic to 0 on K(x), and similarly for dx on 
K'(t.p). 

Proof. The proof is a straightforward computation. Indeed, it is trivial if 
we use the fact that 8<p is a derivation. We have 

dx 8<p(n) + 8<pdx (n) = x A 8<p(n) + 8<p(x A n) 

= x A 8<p(n) + 8<p(x) An - x A 8<p(n) 

= 8<p(x) An 

= t.p(x)n. 
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Of course, this can also be shown directly: We have 

bcpdx(nl /\ ... /\ ni) = bcp(x /\ nl /\ ... /\ ni) 

= cp(x) . nl/\"'/\ ni 

+ ~)-l)jx/\nl/\···/\nj/\ ... /\ni; 
j 

dxbcp(nl /\ ... /\ ni) = x /\ 2:) -1 )j-Inl /\ ... /\ nj /\ ... /\ ni· 
j 

If we add, all the terms cancel except cp(x) . nl /\ ... /\ ni. 

For yet another proof, in a special case, see Exercise 17.7. 
Here are some consequences: 

Proposition 17.14. 

a. If y E (Xl"'" xn), then y annihilates the Koszul homology groups 
Hi(M 0 K(XI,'" ,xn)) for all M and all j. 

b. If (Xl,'" ,xn)M = M, then Hj(M 0 K(XI"" ,xn)) = 0 for all j. 

Proof. 

a. If y = I: aiXi, then the map cp : Rn -> R with matrix (al,"" an) 
carries X := (Xl"'" Xn) ERn to y E R. Thus, by the lemma, 0'1' is a 
homotopy showing that multiplication by cp(x) = y on K(XI,'" ,xn ) 

is homotopic to O. Since a map homotopic to 0 induces the zero map 
on homology, we are done. 

b. We may replace R by R/(annihilator M) without changing M 0 
K(XI, ... , xn), so we may assume that the annihilator of Mis O. By 
Corollary 4.7, we see that there is an element y E (Xl"'" xn) such 
that 1 - Y annihilates M; thus y = 1. Now apply part a. D 

If M is an R-module and X E M then X corresponds to a functional 
x* : M* -> R given by x* ( cp) = cp( x). Thus we may define Koszul complexes 
K(x) and K'(x*). If M is a free module (and as always finitely generated), 
then an examination of the terms suggests that these complexes are dual 
to one another, and this is true. More surprisingly, they are isomorphic; 
that is, the Koszul complex is self-dual. We make the isomorphism explicit 
as follows. 

As we have already noted, /\ n Rn ~ R. If we fix such an isomorphism 
f : /\ n Rn -> R (called an "orientation" of Rn because if R = R, the 
real numbers, then this corresponds exactly to the geometric notion of 
orientation), then there are induced isomorphisms /\kRn -> /\n-k(Rn)* -> 

/\n-k(Rn*) that may be defined as follows: First, given elements a E /\k Rn 
and b E /\n-k(Rn), we define a : /\k Rn -> /\n-k(Rn)* by setting a(a)(b) = 
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I (a /\ b). The map a is an isomorphism because if {el' ... , en} C Rn is a 
basis, then {a( eil /\ ... /\ eik)} is, up to sign, a dual basis to {ejl /\ ... /\ ejn_J. 

Next we define (3 : (/\n-k Rn)* --+ /\n-k(Rn*). Suppose that {II, 
... ,In} c Rn* is a basis dual to {el, ... ,en}. (3 takes the basis element 
dual to eil /\ ... /\ eik to the element (_1)8 Ii, /\ ... /\ hn-k' where {iI, ... , ik} U 

{jl, ... ,jn-d = {I, ... , n} and (-1) 8 is the sign of the permutation 
[il, ... , ik,jl, ... ,jn-kj. 

Using these isomorphisms we have: 

Proposition 17.15 (Self-duality of the Koszul complex). For x E Rn there 
is a commutative diagram 

K(x) : /\iRn dx 
/\i+l Rn --+ ... ... --+ --r 

al la 
d' 

K(x)* : (/\n-iRn)* x 
(/\n-i-l Rn)* --+ ... ... --+ --r 

f31 1f3 
K(x*) : /\ n-i(Rn*) 8 .. /\n-i-I(Rn*) --+ ... ... --+ ---+ 

where the vertical maps a and (3 are isomorphisms. 

Since we shall not make direct use of this fact, we leave the proof to the 
reader in Exercise 17.8. 

This explains at last our convention of writing the homology of the Koszul 
complex as cohomology: With the obvious notation, we have 

The two right-hand forms are the ones that usually occur in the literature, 
despite the advantage of simplicity in the form we have adopted. 

17.5 The Koszul Complex and the Cotangent 
Bundle of Projective Space 

A major geometric source of the significance of the Koszul complex is 
its relation to the tangent bundle on projective n-space. We shall only 
sketch the connection, which belongs perhaps more to algebraic geometry 
than to commutative algebra. First note that if R is a graded ring and 
x = (xo, ... , xn) is a sequence of homogeneous elements, then the Koszul 
complex K(x) has the structure of a graded complex (that is, a complex 
of graded free modules where all the maps are homogeneous of degree 0). 
Quite generally, if M is a graded R-module, then since /\M is a bigraded 
algebra, the Koszul complex of any homogeneous element of degree 0 of M 
is graded. Thus we need only regard x as a homogeneous element of degree 
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o in the graded free module M = EBiR(degxi)' If all the Xi have degree I, 
then we can write the jth term of the complex as I\j R n+1(j). 

Now take R to be the graded polynomial ring k[xo, ... ,xnl and let T be 
the cokernel of the first map in the Koszul complex, 

0-+ R -+ Rn+l(l) -+ T -+ O. 

It is well known that T is the graded module corresponding to the (sheaf 
of algebraic sections of the) tangent bundle 'J of projective space under the 
usual Serre correspondence between sheaves on pn and graded R-modules. 
(A part of this is obvious: Up to twist, the exact sequence above simply 
expresses the fact that, since pn is the set of lines through the origin in the 
vector space kn+1 , the tangent space to pn at a point corresponding to a 
line L is the quotient of the tangent space to kn+1 at a point of L modulo 
a tangent vector to L at that point.) 

In geometry, not only the tangent bundle 'J x of a smooth variety X, but 
also its exterior powers and those of its dual, the cotangent bundle, are 
interesting. For example, the exterior powers of the cotangent bundle 

n1 := I\qrx 

appear in the Hodge formula for singular cohomology over the complex 
numbers: 

Ht(X, C) = EBp+q=tHP(X, n1), 
and the highest exterior power wx = ndirnX plays a central role in dual
ity. It turns out that the Koszul complex connects the graded modules 
corresponding to these sheaves in case X = pn. 

Theorem 17.16. Let R = k[xo, ... , xnl be a polynomial ring in n + 1 
variables over afield k, and let K(x) be the Koszul complex of the sequence 
x = (xo, ... , xn). Let Tj be the jth module of cycles in the Koszul complex, 
that is 

Tj = ker(l\j+l R n+1 (j + 1) -+ I\j+2 Rn+l(j + 2)). 

Then Tj I\jT for j = 0, ... , n - 1. Further, for all j, Tj is the graded 
module associated to the bundle I\j'Jpn, and Tn- j ~ I\jT*(n + 1) is the 

module associated to the bundle n~n (n + 1). 

Of course a similar result holds for the Koszul complex of any regular 
sequence. 

Proof Sketch. The first statement follows from the right-exactness of the 
exterior algebra: If F -+ G -+ M -+ 0 is any right-exact sequence of R
modules, then we get a right-exact sequence 

F ® I\G -+ I\G -+ I\M -+ 0, 

and thus 



17.6 Exercises 437 

the map being the multiplication in the exterior algebra. Applying this to 
T we see that /\jT is the cokernel of the Koszul complex map 

R (9 /\j-l Rn+l (j _ 1) = /\j-l Rn+l (j - 1) ~ /\j Rn+l (j) 

as required. 
To simplify the notation let X = pn. The canonical bundle on X is 

Ox ~ (lpn ( -n - 1). Equivalently, /\ n'J x = (lpn (n + 1), so the pairing 

/\j'J x (9 /\ n-j'J x ----t /\ n'J x 

gives us /\n--j'Jx ~ (/\j'Jx)(n + 1) = O~(n + 1). Thus all the rest of the 
statements will follow once we show that Tj is the graded module associated 
to the bundle /\j 'J x. For this it suffices to show that the depth of the module 
Tj ~ 2 (see the discussion of local cohomology in Appendix A4). Of course 
Tn = R( n + 1), while Tj = ° for j > n, so these cases present no problem. 
In the interesting cases, a stronger result is given in Exercise 17.9. D 

17.6 Exercises 

We continue to assume that all rings considered are Noetherian. 
Exercise 17.1: Suppose that 

is a matrix over R whose determinant is a unit in R. Using the primitive 
description of the Koszul complex for two elements given at the beginning 
of the chapter, construct an isomorphism K(x, y) ----t K(ax + by, ex + dy). 
(A more general form of this follows trivially from our construction of the 
Koszul complex from the exterior algebra.) Conclude that if R is local and 
x, yare in the maximal ideal, then x, y is a regular sequence iffax+by, ex+ 
dy is a regular sequence. 

Exercise 17.2:* If a =I=- 0, b are elements of a domain R, then the element 
ax - b E R[x] is prime iff HI(K(a, b)) = 0, in which case R[x]/(ax - b) ~ 
R[b/a] c K(R), the quotient field of R. (Compare Exercise 10.4, and see 
Exercise 17.14b) for a generalization.) 

Exercise 17.3: Here are easy parallel characterizations ofregular sequences 
and systems of parameters (see Exercise 17.16 for a further analogy). Let 
Xl, ... ,Xn E R be a sequence of elements in the maximal ideal of a local 
ring. 

a. Show that Xl, ... ,Xn is a regular sequence iff for each i = 0, ... , n - 1 
the element Xi+ I is not in any associated prime of (Xl, ... , Xi). 
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b. Show that Xl, ... ,Xn is part of a system of parameters iff for each 
i = 0, ... , n - 1 the element Xi+l is not in any minimal prime of 
(Xl, ... ,Xi). 

Exercise 17.4 (Kaplansky): Abstract the method of Corollary 17.8 to 
show that if Xl, ... ,Xr is an M -sequence and X2, ... ,Xr is an M -sequence, 
then X2,.'" Xr , Xl is an M-sequence. 

Exercise 17.5: Show that if Xl, ... ,Xr is a regular sequence in R then so 
is X~l, ..• ,X~T for any positive integers ai. (See Exercise 17.13d for a much 
stronger result with slightly stronger hypotheses.) 

Exercise 17.6:* Show that if an ideal I in a Noetherian ring R can be gen
erated by a regular sequence, then it can be generated by a set of elements 
that is a regular sequence in any order (I learned this from Craig Huneke). 

Exercise 17.7: 

a. Suppose that a, (J : :J -.-, :J' are maps of complexes, homotopic by a 
homotopy a : :J -.-, :J'[-I]. If 9 is another complex, show that the 
maps a ® 1, (J ® 1 : :J ® 9 -.-, :J' ® 9 are homotopic by a homotopy 
that may be described as a ® 1. 

b. If X E R, show that multiplication by X is homotopic to 0 on K(x). 

c. If multiplication by each of Xl, ... ,Xn E R is homotopic to 0 on a 
complex :J, show that for any X E (Xl"'" xn) the multiplication by 
X is homotopic to 0 on :J. Show that multiplication by Xi is homotopic 
to 0 on K(Xl, ... ,xn ) by showing that 

and using part a. 

Exercise 17.8: Prove Proposition 17.15. Note that the identification of 
I\n-k(Rn*) with (I\n-k Rn)* requires some signs. 

Exercise 17.9:* Complete the proof of Theorem 17.16 by proving that 
depth Tj = n + 1 - j for j = 0, ... , n. 

Exercise 17.10 (Koszul homology as Tor): 

a. Suppose that S -.-, R is a homomorphism of rings, and suppose that 
Yl,"" Yr E S have images Xl,···, xr in R. If YI,"" Yr is a regular 
sequence in S, show that 

Hi (K'(XI , ... , Xr ) ® M) = Torr(S/(XI,.'" xr ), M). 

b. Show that for any ring R and any sequence of elements Xl, ... ,Xr E 

R there is a ring S, a regular sequence YI, ... ,Yr in S, and a ring 
homomorphism carrying Yi to Xi. 
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Free Resolutions of Monomial Ideals 

Exercise 17.11 (Taylor's resolution of a monomial ideal):* It 
remains an open problem to give in closed form the minimal free reso
lution of an arbitrary monomial ideal. However, there is a nice nonminimal 
resolution that was discovered by Diana Taylor [1960]. It generalizes the 
Koszul complex in a natural way. Let S = A[XI"'" x r ], where A is any 
ring and the Xi are indeterminates. Let ml, ... , mt be monomials in the Xi. 

Define the Taylor complex T(ml, ... , mt) as follows. Let Fs be the free 
module on basis elements e[, where I is a subset {1, ... , t}. Set 

ml = least common multiple {mili E I}. 

For each pair of subsets I, J such that I has s elements and J has s - 1 
elements, let I = {il , ... , is} and suppose that i l < ... < is. Define: 

{ OifJ)tI 
CI,J = (-1)kmI/mJ if 1= Ju {id for some k. 

Finally, define 

dB : Fs ---> Fs- I 

by sending el to 2:J CI,J' Let 

Show that T(ml"'" mt) is a free resolution as follows: 

a. Given any monomial m, let ni be a generator of (mi : m) (in other 
words ni = mi / GCD (m, mj)). Show that there is a map of complexes 
'Pm : T(nl"'" nt) ---> T(ml"'" mt) sending e0 to me0' 

b. Show that (up to an adjustment of signs) the mapping cylinder of 'Pm 
is the complex T(ml, ... , mt, m). 

d. Show by induction on t that T(ml,"" mt) is a resolution of 
S/(ml, ... , mt). 

One can use the same formulas to define a complex T(ml"'" mt) for 
more general elements mi of more general rings; essentially all one needs 
is that the intersection of any subset of the ideals (mi) is again a princi
pal ideal ml-this says that the least common multiple operation is well 
defined. For an interesting example where this complex is exact, see Yuzvin
sky [1994]. 
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Conormal Sequence of a Complete Intersection 

Exercise 17.12: Let A be an affine ring over a perfect field k. Assume 
A is equidimensional and locally regular, and let I c A be a radical ideal 
generated by a regular sequence of length c. Let B = AI I. Prove using 
the steps below that I I 12 is a free B-module and that the map d in the 
conormalsequence 

is injective; thus DBjk has projective dimension ~ 1 in this case (it is a 
conjecture of Vasconcelos, recently proved in the graded case by Avramov 
and Herzog [1994], that this is the only situation in which DBjk has finite 
projective dimension). 

a.' Let A be any ring, I an ideal of A generated by a regular sequence 
Xl, ... , Xc· Show that the images in I I 12 of Xl, ... , Xc form a free basis 
of 1112 over All. 

b. With hypotheses as in part a, suppose in addition that AI I is reduced. 
Show that the associated primes of I I 12 are the minimal primes of I. 

c. Returning to the situation of the exercise, it is enough by part b to 
prove that d is an injection locally at each minimal prime P of B. 
But Bp is a field. Prove the necessary result by comparing the ranks 
of the free Bp-modules (1/ 12)p, Bp ®A DAjk and DBpjk. 

Regular Sequences Are Like Sequences of Variables 

Exercise 17.13 (Ideals of monomials in a regular sequence):' Let 
YI, ... , Yr be a sequence of elements of a ring R such that every subset 
of {YI, ... , Yr} forms a regular sequence in some order. Show that ideals 
generated by monomials in the Yi obey the same rules for intersections, 
ideal quotients with each other, and resolutions, as do ideals generated 
by monomials in the variables of a polynomial ring, as follows (the proof 
follows Eagon and Hochster [1974]): 

a. First consider the "generic case": That is, let S = Z[XI, ... , X r ], where 
the Xi are indeterminates. If J c S is an ideal generated by monomials 
in the Xi, show that S I J has a filtration by modules of the form 
SI(Xi!l" .. ,Xi,). 

b. Regard R as an S-algebra by the map sending Xi 1-+ Yi. Use the Koszul 
complex to show that Torr (S I (Xi" ... , Xi,), R) = o. 

c. Use induction on the number of terms in the filtration given in part a 
to show that Torr(SIJ,R) = o. 
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d. If I is any ideal generated by monomials in the Yi, show that 1= JR 
for some monomial ideal J of S. Now show that the Taylor complex 
may be used to give a free resolution of R/ I. 

Show that if I = J R and I' = J' R for monomial ideals J, J' c S, 
then 

e. I n I' = (J n J')R. 

f. (I: I') = (J : JI)R. 

Blowup Algebra and Normal Cone of a Regular Sequence 

Exercise 17.14 (Blowup of a regular sequence):* If XI,,,,,Xr is a 
regular sequence in R, and I is the ideal I = (Xl, ... , xr ), show that 

a. The natural map Symm (I) ----; 'B(I, R) = fB';oIj from the symmetric 
algebra of I to the blowup algebra of I is an isomorphism. 

b. The natural map R[t2'"'' trl ----; K(R) sending ti to XdXI has the 
"obvious" kernel, generated by the elements tiXI - Xi for i = 2, ... , r. 

Exercise 17.15:* For any ideal I and element X E R, let inJ(x) be the 
class of X in In /In+l where n is the greatest integer such that X E In (set 
inJ(x) = 0 if there is no such integer). Prove the following: 

Proposition 17.17. Suppose that (R, m) is a local ring and Xl, ... , Xr Em. 
If there is an ideal Ie m such that inJ(xd, ... , inJ(xr) is a regular sequence 
on grJ R, then Xl,"" xr is a regular sequence. 

Exercise 17.16 (Normal cone of a regular sequence): The follow
ing characterization of regular sequences is due to David Rees [1957]. The 
reader may compare the result with Exercise 3.16 to see a measure of the 
difference between regular sequences and systems of parameters. 

a. * Let I = (Xl"", Xr) C R. If Xl, ... ,Xr is a regular sequence, show 
that the natural map R/I[YI,"" Yrl ----; grJ R sending Yi to the class 
of Xi in 1/12 is an isomorphism. (This condition may be restated by 
saying that if F(XI"" ,Xr) E R[XI"" ,Xrl is a homogeneous form 
of degree d such that F (Xl, ... , Xr) E I d+ I, then all the coefficients of 
F are in I. In particular, In /In+l is a free R/ I-module for all n. 

b. * If R is local and Xl, ... ,Xr are elements of the maximal ideal, show 
that the converse is true as well. (Under some circumstances, it suf
fices to suppose that 1/12 is free; see Vasconcelos' theorem, Exer
cise 20.23.) 

c. Suppose that R is local and Xl, ... ,Xr are elements of the maximal 
ideal. Show that Xl, ... ,Xr is a regular sequence iff the following vari
ant of the condition in parts a and b is satisfied: Each homogeneous 
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form F(Xl , ... , X r ) E R[Xl , ... , XrJ such that F(Xl,"" xr ) = 0 has 
its coefficients in (Xl, ... , xr ). 

Exercise 17.17: 

a. If M is an R-module and X E M, show that cycles of K(x) (that 
is the kernel of dx ) is a AM-submodule of AM and similarly for the 
boundaries (the image of dx ). Thus there is a natural AM-module 
structure on the homology H*(K(x)) := ffiiHi(K(x)) of K(x). 

b. If N is an R-module and 'P : N -+ R is a homomorphism, use the 
fact that o<p is an derivation of AN to show that the cycles of K' ('P) 
form a subalgebra of AN, and the boundaries are an ideal in this 
algebra. Thus there is a natural algebra structure on the homology 
H*(K'('P)) := ffiiHi(K'('P)). 

c* . Let M ~ R2 have basis ml, m2 and let X = Xl ml + X2m2 EM. Let 
N ~ R2 have basis nl, n2 and let 'P : N -+ R be given by 'P( nt) = 
Xl, 'P(n2) = X2. Compute the AM-module structure on H*(K(x)) and 
the algebra structure on H*(K'('P)) in case R = k[Xl' X2J/(Xr, xD and 
in case R = k[Xl,X2J/(Xl,X2)3. 

Geometric Contexts of the Koszul Complex 

The exercises 17.18-17.20 are for those with some acquaintance with line 
bundles and sheaves on an algebraic variety (the reader with still more 
experience may substitute the word "scheme" for "variety" everywhere). 

Exercise 17.18 (Castelnuovo's base point free pencil trick): Let X 
be an algebraic variety over a field k, let f., be an invertible sheaf (line 
bundle) on X, and let V be a pencil of sections of f.,: That is, V is a 
two-dimensional vector space over k of global sections of the line bundle f.,. 

a. * Show that there is a complex 

0-+ f., -1 -+ V 0 CJx -+ f., -+ 0 

that in terms of a local trivialization .Giu ~ CJxlu is the Koszul com
plex of the map of modules V 0 CJ xlu -+ CJ XIU' Show that if the pencil 
is base-point free in the sense that the sections in V generate f., 

locally everywhere, then this complex is exact. 

b. Let F be any sheaf on X, and consider the multiplication map J.L : 

V 0 HO(X; F) -+ HO(X; f., 0 F). Suppose that V is base-point free. 
Show that if Hl(f., -10 F) = 0, then J.L is surjective by tensoring F 
with the exact sequence of part a. 

c. * Here is a typical application of part b: Suppose X is a reduced irre
ducible curve and that f., is generated by global sections and non
special (Hl(X; q = 0). Show that the k-algebra ffin~oHO(X; o~n) is 
generated in degrees 1 and 2. 
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Exercise 17.19 (Koszul cohomology): Let X be a variety over a field 
k, let L be a line bundle on X, let V be any finite-dimensional vector space 
of sections of L, and let F be any quasicoherent sheaf (that is, sheaf of 
<9x-modules) on X. Define a complex of sheaves on X: 

K: ... --+ /\i+lV ® .cG(j-l) ® F --+ /\iV ® .c0j ® F --+ ... 

such that for each affine open set U with affine ring R such that .c is trivial 
on U we have Klu ~ K'(Xl,"" xr)®M, where Xl,"" Xr form a basis of V, 
regarded as elements of <9x(U) by means of an identification qu = <9x1u 
and M = F(U), regarded as an <9x (U)-module. Show that if the sections 
in V do not all vanish simultaneously, then the complex K is exact. If we 
apply the functor H a, however, we get a complex 

a . a G' H (K): ... --+ /\'V ® H (.c J ® F) --+ '" 

that is generally not exact. Its homology is called the Koszul cohomology 
of V,.c, F. This notion has been developed and extensively exploited by 
Mark Green; see [1984a and band 1987]. 

Exercise 17.20 (Zero locus of a section of a vector bundle): Let E 
be a vector bundle (= locally free sheaf) of rank r on a variety X, and let 
a be a section of E. 

a. Regarding a as a map F := E* --+ <9 x, form a Koszul complex 

K: 0 --+ /\r F --+ ... --+ /\i F --+ /\i-l F --+ ... ~ F --+ <9x . 

b. Now suppose that the zero locus Z of a has co dimension r, the 
"expected" value. Suppose that every local ring <9 X,x has the property 
that any sequence of elements Xl, ... ,Xr generating a co dimension
r ideal is a regular sequence (X is "locally Cohen-Macaulay"; see 
Chapter 18). Show that K is a resolution of the sheaf <9z by vector 
bundles. 

Exercise 17.21 (The tautological Koszul complex): Let k be a ring 
and let V be a finitely generated free module over k. Let S = S(V) be 
the symmetric algebra of V. There is a natural isomorphism V* ® V --+ 

Hom(V, V) sending <P ® v to the map W f---> <p(w)v. Let t E V* ® V be the 
element corresponding to 1 E Hom(V, V). In terms of a basis {Vi} of V and 
a dual basis {<Pi} of V*, show that t = L <Pi ® Vi' 

a. Regarding t E V* ® V = /\1 (V*) ® Sl (V) as an element of the algebra 
/\(V*) ® S(V), show that t 2 = O. Use this to derive the existence of a 
complex of free S(V)-modules 

K: S(V) --+ V* ® S(V) --+ '" --+ /\d(V*) ® S(V) --+ 

where the maps are all given by multiplication by t, called the tau
tological Koszul complex. Show that this is naturally isomorphic 
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to the Koszul complex K(t), where we regard t as an element of the 
S(V)-module V* ® S(V). 

b. Show that the dual of the complex defined in part a is a free reso
lution of k over S(V). Thus the homology of k ® K is isomorphic to 
Exts(V/k, k). Show that the differential of the complex k®K is 0, so 
the homology is k ® K = 1\ V. Use Exercise A3.28 to show that the 
isomorphism is an isomorphism of algebras, where Exts(V)(k, k) is an 
algebra with the Yoneda product. 

c. Above we decomposed the algebra I\(V*) ® S(V) in a certain way to 
obtain K. Decompose it in a different way to define a complex of free 
1\ V-modules 

L : I\(V*) -t 1\ V* ® V -t ... -t I\(V*) ® Sd(V) -t 

and show, using the same ideas as for part b, that Ext~(V.)(k, k) ~ 
S(V). L is a sort of Koszul complex for I\(V*). 

Exercise 17.22 (Priddy's generalized Koszul complex): There is a 
generalization of the tautological Koszul complex due to Stuart Priddy 
[1970] that plays a significant role in both commutative and noncommuta
tive algebra. We present an interesting special case. Let k be a field and 
let T = T(V) be the tensor algebra over k on a finite-dimensional vec
tor space V (that is, T is the free algebra generated by a basis of V). A 
quadratic algebra is a (not necessarily commutative) k-algebra of the 
form Til, where I is generated as a two-sided ideal by a vector space of 
quadratic relations Q C V ® V = T2-that is, 1 = TQT. 

a. Show that the symmetric algebra and exterior algebra are quadratic 
algebras: 

S(V) = Tillis generated by {v ® w - w ® vlv,w E V} 

I\V = Tillis generated by {v®w+w®v,v®vlv,w E V}. 

In particular the commutative quadratic algebras are those of the 
form S(V)I J, where J is an ideal generated by quadratic forms. 

b. We may identify V* ® V* with (V ® V)* by the rule cp ® 7jJ( v ® w) = 
cp(v)7jJ(w) for all cp, 7jJ E V* and v, w E V. For any subspace Q C 

V ® V, we define the perpendicular subspace to be Q.1 = {a E 
V* ® V*la(q) = ° for all q E Q}. If 1 c T is generated by Q C T2, let 
1.1 C T(V*) be the ideal generated by Q.1 C T2(V*); and if A = Til, 
set A.1 = T(V*)ll.1. Show that 

AH =A 
S(V).1 = I\(V*). 
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c. Let t E V ® V* be as in Exercise 17.21. Regarding t as an element of 
degree (1,1) of the algebra A ®k A.l, show that t2 = ° by considering 
t2 E A2®At = Hom(At*, A2) as a homomorphic image of the element 
1 ® 1 E Hom(V ® V, V ® V). (In fact, T(V*)Q.lT(V*) is the smallest 
ideal we could factor out and have this be true!) 

d. Deduce the existence of a complex of free A-modules 

P(A) : A ~ A ®k V* ~ A ®k At ~ ... ~ A ®k AJ ~ ... , 
the Priddy complex, where the differential is multiplication on the 
right by t. 

e. Show that in case A = S(V), the Priddy complex is the tautological 
Koszul complex of Exercise 17.21. 

f. Show by using Exercise A3.28 that there is a map of algebras A.l = 
k ®A P(A) ~ Ext:4(k, k), where Ext:4(k, k) is an algebra by means of 
the Yoneda product. 

It is known that this map is always an injection, and that the image 
may be characterized either as the sub algebra of Ext:4 (k, k) generated 
by Ext~(k,k) or as the sub algebra EBdExt1(k,k)d consisting of ele
ments of bidegree (d, d). See L6fwal [1986] for details. The algebra 
A is called a Koszul algebra if A.l = Ext:4(k, k). Many algebras of 
interest in algebraic geometry have this property-roughly speaking 
it is true of the homogeneous coordinate ring of any variety embedded 
in projective space by a "sufficiently" ample line bundle-for exam
ple, by a sufficiently high multiple of any line bundle. It is also true of 
the homogeneous coordinate ring of many homogeneous spaces such 
as the Grassmannian, flag manifold, etc. See Kempf [1990] or Eisen
bud, Reeves, and Totaro [1994] and the references there for more 
information. Among noncommutative algebras, the most interesting 
examples are perhaps the coordinate rings of quantum groups; see, 
for example, Manin [1988]. 

g. We may alternately define the dual of the Priddy complex directly: 
This will give us a resolution of k as an A-module iff A is Koszul iff 
K has a resolution in which the dth free module has all its generators 
in degree d. With Q c V ® V the space of quadratic relations of A, 
set 

Fd = ker(TdV ~ L ~V 0 A2 ® TjV) 
i+j=d-2 

= ni+j=d-2 (Ti V ® Q ® Tj V) C Td V. 

Show that Fd = V ® Fd- 1 n Fd- 1 ® V. This gives a natural map 
Fd ~ V ® Fd- 1 , which extends to a map of free A-modules A ® Fd ~ 
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A 0 Fd- 1 . Show that the composite map Fd ~ V 0 Fd- 1 ~ A2 0 Fd-2 
is 0, and deduce the existence of the complex 

P*(A): ... ~ A 0 Fd ~ A 0 Fd-l ~ ... ~ A 0 Q ~ A 0 V ~ A. 

Show that this is the dual of the Priddy complex P(A). 



18 
Depth, Codimension, and 
Cohen-Macaulay Rings 

In this chapter all the rings are assumed to be Noetherian. 

In this chapter we shall use the tools forged in Chapter 17 to explore the 
basic facts about Cohen-Macaulay rings, which are rings R in which 
depth( I, R) = codim I for every ideal I (it is enough to assume this when I is 
a maximal ideal). These rings are important because they provide a natural 
context, broad enough to include the rings associated to many interesting 
classes of singular varieties and schemes, to which many results about regu
lar rings can be generalized. The geometric meaning of the Cohen-Macaulay 
property is somewhat obscure but has a good expression in terms of maps to 
regular varieties, as we shall see in Theorem 18.16 and Corollary 18.17. 

Perhaps the most significant of the results of this section is the unmixed
ness theorem (Corollary 18.14), which explains, for example, why hyper
plane sections of smooth varieties do not have embedded components. This 
is the reason that we can treat divisors as codimension 1 subvarieties. It is 
thus a pillar of algebraic geometry. (For those who know about schemes, 
the unmixedness theorem says the same thing for any Cartier divisor on 
a locally Cohen-Macaulay scheme, and still more generally for any scheme 
satisfying the property 82.) 

18.1 Depth 
Recall from the previous chapter that if I is an ideal of a ring R, and M is a 
finitely generated R-module such that 1M =I- M, then the depth of Ion M, 



448 18. Depth, Codimension, and Cohen-Macaulay Rings 

written depth(I, M), is the length of a (indeed any) maximal M-sequence 
in I. When M = R, we shall simply speak of the depth of I. Theorem 17.4 
characterizes depth(I, M) in terms of the vanishing of the homology of the 
Koszul complex. 

As usual, we shall frequently want to localize, so a remark on the behavior 
of depth under localization is in order. 

Lemma 18.1. If R is a ring, and P is a prime ideal in the support 
of a finitely generated R-module M, then any M -sequence in P localizes 
to an Mp-sequence. Thus for any ideal I c P we have depth(I, M) ::; 
depth(Ip, M p ), the latter taken in the ring Rp. In general, the inequality 
may be strict, but for any ideal I there exist maximal ideals P in the sup
port of M such that depth(I, M) = depth(Ip , Mp). In particular, if P is a 
maximal ideal, then depth(P, M) = depth(Pp , Mp). 

Proof. Nakayama's lemma guarantees that IpMp =t M p , the only tricky 
part of the first statement. The depth really can increase on localization, 
since for example the localization map M --+ Mp might kill some of the 
elements killed by elements of I, so that these elements of I might become 
nonzerodivisors. 

For the second statement write I = (Xl, ... , xn ), and set r = depth(I, M). 
By Theorems 17.4 and 17.6, Hr(M 0 K(Xl,'" ,xn)) =t 0 and the primes 
P containing I such that depth(Ip , Mp) = depth(I, M) are exactly the 
primes in the support of Hr(M 0 K(Xl,"" Xn)). In particular, there are 
some maximal ideals P with this property. The last statement of the lemma 
follows at once from the second. 

For an alternate approach to the second statement, which does not 
require the Koszul complex, choose a maximal M -sequence Xl, ... ,Xr in 
I. Because I consists of zero divisors on M/(Xl,"" xr)M, I is contained in 
the union of the associated primes of M / (Xl, ... , Xr ) M, and since the set 
of associated primes is finite, prime avoidance (Lemma 3.3) shows that I 
is contained in one of them. Localization at this prime, or at any prime 
containing it, will preserve the depth of Ion M. 

We have already remarked that depth I is a measure of the size of I, as 
is codim I. In this section we shall explore the relation between these two 
notions. First we show that there is always an inequality. It is technically 
useful to work with the depth of Ion a module M. We write ann(M) for 
the annihilator of M in R. If X E R then the action of X on M depends 
only on the residue class of X modulo ann(M), so the depth of I on M 
is the same as that of I + ann(M) on M. For this reason we can restrict 
attention to ideals containing ann(M). 

Proposition 18.2. Let R be a ring and let M be a finitely generated R
module. If I is an ideal of R containing ann(M), then depth (I, M) is ::; 
the length of any maximal chain of prime ideals descending from a prime 
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containing I to an associated prime of M. In particular, the depth of I (on 
R) is ~ co dim I. 

In the proof we use a result that plays a role in the theory of depth 
something like the one played by the principal ideal theorem in the theory 
of codimension. 

Lemma 18.3. If R, P is a local ring, M is a finitely generated R-module, 
I is an ideal of R, and yEP, then 

depth((I,y),M) ~ depth(I,M) + 1. 

Proof. Let Xl,"" xn be a set of generators for I, and set r = depth (I + 
(y),M). By Theorem 17.4, Hi(M 0 K(Xl,""Xn,y)) = 0 for i < r. By 
Corollary 17.11 and Nakayama's lemma, Hi(M 0 K(Xl,"" xn)) = 0 for 
i < r - 1. By Theorem 17.4, depth I 2: r - 1. 

Proof of Proposition 18.2. Though the second statement follows from the 
first, its proof is so easy as to be worth giving separately: Let Xl, ... ,Xn be 
a maximal R-sequence in I. Since Xl is a nonzerodivisor, it is not contained 
in any minimal prime of R, so the co dim 1/ (Xl) (as an ideal in R/ (xd) 
< codimI. But the depth of I/(Xl) as an ideal in R/(Xl) is n - 1, so by 
induction n - 1 ~ codim 1/ (Xl) < codim I, and we are done. 

For the main result, let Q ::J Ql ::J .. , ::J Ql be any maximal chain of 
primes descending from a prime Q containing I to a prime Ql associated to 
M. We do induction on t. The case l = 0, where Q is an associated prime, 
is immediate from the definitions. 

Now suppose l 2: 1. Enlarging I, we may as well assume that 1= Q. If 
we localize at Q, any regular sequence in Q remains a regular sequence, so 
the depth can only increase and we may suppose that R is local and that 
Q is its maximal ideal. Let X E Q be an element outside Ql. Since Q is the 
only prime minimal over Ql + (x), Corollary 2.12 shows that Q is nilpotent 
mod Ql + (x). Thus by Corollary 17.8 depthQ = depth(Ql + (x)). 

By Lemma 18.3, depth(Ql + (x)) ~ depth(Qd + 1. From the inductive 
hypothesis we get depth( Ql, M) ~ l-l. Putting these inequalities together 
we get depth Q ~ depth ( Ql, M) + 1 ~ l as required. 0 

IB.l.l Depth and the Vanishing of Ext 

There is another characterization of depth that generalizes, in a certain 
sense, the characterization by the homology of the Koszul complex of The
orem 17.4. We shall apply it in Theorem 18.12 and again in Chapter 20. 
The following result contains our first use of the functor Ext, the analogue 
of Tor in which the functor Tor~(M, N) = M 0R N is replaced by the 
functor Ext~(M, N) = HomR(M, N). The reader may wish to review the 
Introduction to Tor section in Chapter 6 and compare it with the material 
on Ext in Appendix 3 at this point. 
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Proposition 18.4. Let R be a ring and let M and N be finitely generated 
R-modules. IfannM+annN = R then Ext'R(M, N) = Oforeveryr. Other
wise, depth(ann(M), N) is the smallest number r such that Ext'R(M, N) =I
o. 
Proof. Since Ext is an R-linear functor in each variable, ExtR(M, N) is 
annihilated by each element of annM and annN (see Appendix 3), so the 
first statement is clear. 

First we show that annM +annN = Riff ann(M)N = N. Suppose that 
ann(M)N = N: By Corollary 4.7, there is an element r E ann(M) such 
that (1 - r)N = o. Thus 1 E ann M + ann N. Conversely, if we can write 
1 = r + s with r E annM and s E annN, then rN = (r + s)N = N. 

Now suppose that annM + annN =I- R. Since then ann(M)N =I- N, the 
number d = depth(ann(M), N) is < 00, and we do induction on d. If d = 0 
we must show that Hom ( M, N) =I- O. Since depth( ann M, N) = 0, there is an 
associated prime P of N that contains ann M. Since M is finitely generated, 
the formation of Hom commutes with localization (Proposition 2.10), so it 
is enough to prove the result after localizing at P. After localizing we are 
in the situation where R is local, and N contains a copy of the residue class 
field R/P. Since M =I- 0, Nakayama's lemma shows that M/PM =I- 0, so 
M / P M is a nonzero direct sum of copies of R/ P. Thus there is a nonzero 
map M --+ R/P c N. 

Next suppose that d ~ 1, and let x E ann M be a nonzero divisor on N. 
We have ann(M)N/xN =I- N /xN, and depth(ann(M), N /xN) = d - 1. By 
induction Extk(M, N/xN) =I- 0 for i = d - 1, but for no smaller i. 

We apply the long exact sequence in ExtR(M, -) to the short exact 
sequence 

x 
0--+ N --+ N --+ N/xN --+ O. 

Since x kills M, it kills each Ext1(M, N). Thus Hom(M, N) = 0, and we 
obtain short exact sequences 

0--+ Ext1-I(M, N) --+ Ext1-I(M, N/xN) --+ Ext1(M, N) --+ 0 

for every j ~ 1. By induction on i it follows that Extk(M, N) = 0 for i < d, 
while Ext~(M, N) =I- 0, as required. 

The connection with Theorem 17.4 is as follows: If Xl, ... , xn is a 
regular sequence in R, then the Koszul complex K(XI, ... ,xn) is a 
free resolution of R/(XI, ... ,xn) by Corollary 17.5. Thus the homol
ogy of the complex Hom(K(xl, ... , xn), M) is ExtR(N, M) where N = 
R/(XI, ... ,xn ). Since the Koszul complex is isomorphic to its own dual, 
Hom(K(xl, ... , xn), M) ~ M 0R K(XI, ... , xn) as complexes, so Theo
rem 17.4 coincides with Proposition 18.4 in this case. 

Recall that pdR(M) is the minimum length of a free resolution of M. 
Since Ext(M, N) is computed from a free resolution of M, we see that if 
Extk(M, N) =I- 0 for any module N, then pdRM ~ i. In particular, we get 
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Corollary 18.5. For any nonzero module M, pdRM :2: depth ann M. 

Proof. Take N = R in Proposition 18.4. 

See Exercise 19.9 for the case of equality, and Exercise 19.13 for a sharper 
version. 

In case (R, P) is local, Proposition 18.4 shows that the depth of any 
module N (that is, depth(P, N)) may be computed from the vanishing 
behavior of Ext'R(R/ P, N). For every short exact sequence of modules 

o --+ N' --+ N --+ Nil --+ 0 

we get a long exact sequence in Ext, so we get inequalities on the depths of 
N, N', and Nil. (We could have done the same thing using the homology 
of the Koszul complex.) We record two of them for use in Chapter 20. 

Corollary 18.6. With notation as above, if N, N' and Nil are nonzero, 
then 

a. depth Nil :2: min( depth N, depth N' - 1). 

b. depthN':2: min(depthN, depth Nil + 1). 

18.2 Cohen-Macaulay Rings 

In Corollary 10.15 we showed that if (R, P) is a regular local ring (that is, 
if the number of generators of P is equal to the dimension of R), then any 
minimal set of generators for P is a regular sequence. Thus the inequality 
depth P :s; co dim P of Proposition 18.2 becomes an equality in this case. 
It turns out that equality holds in many nonregular rings as well. The 
following result will help us exploit this equality when it occurs. 

Theorem 18.7. Let R be a ring such that depth P = co dim P for every 
maximal ideal P of R. If I c R is a proper ideal, then depth I = co dim I. 

For a generalization to the case of modules, see Exercise 18.4 and the 
results around Proposition 21.9. 

Proof. By Proposition 18.2 we have depth (I) :s; codim(I), and we must 
prove the other inequality. 

By Lemma 18.1 we may localize at some maximal ideal P :l I without 
disturbing the depth of lor the depth of P, so we may assume that (R, P) 
is local with I C P. If I is P-primary, then co dim I = codimP. By Corol
lary 17.8, depthI = depthP, so the theorem is true for I. Thus we may 
assume that I is not P-primary. By Noetherian induction, we may assume 
that the theorem holds for all ideals strictly larger than I. 
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Since P is not a minimal prime of I, we may by prime avoidance 
(Lemma 3.3) find an element x E P not in any minimal prime of I. By 
the induction we have depth(I + (x)) = codim(I + (x)) = codim(I) + 1. 
But by Lemma 18.3 depth (I +(x)) ~ depth(I)+l, so depth(I) ~ codim(I), 
as required. 

Theorem 18.7 is so useful that its hypothesis has become one of the 
central definitions in commutative algebra. 

Definition. A ring such that depth P = codim P for every maximal ideal 
P of R is called a Cohen-Macaulay ring. 

The Cohen-Macaulay property is local in a strong sense. 

Proposition 18.8. R is Cohen-Macaulay iff Rp is Cohen-Macaulay for 
every maximal ideal P of R, and then RQ is Cohen-Macaulay for every 
prime Q of R. A local ring is Cohen-Macaulay iff its completion is Cohen
Macaulay. 

Proof If R is Cohen-Macaulay, and Q is a prime ideal, then codim QQ = 
codimQ = depth(Q,R) ~ depthQQ ~ codimQQ by Proposition 18.2, so 
the inequality is an equality and RQ is Cohen-Macaulay. If Rp is Cohen
Macaulay for every maximal ideal P, then depth(P, R) = depth(Pp , Rp) by 
Lemma 18.1. As codimP = codimPp , we see that R is Cohen-Macaulay. 

Now suppose that (R, P) is a local ring, and let CR, P) be its comple
tion. We already know that co dim P = co dim P, so it is enough to show 
that depth(P, R) = depth(P, R). Let Xl, .. " xn be generators for P. From 
the construction we see that R ®R K(XI, ... , xn) is the Koszul complex K 
of Xl,'" ,Xn as elements of R. By Theorem 7.2b, R is flat over R so we 
have H*(K) = R ® H*(K(XI"'" xn )). By Theorem 7.2a and Nakayama's 
lemma, any finitely generated nonzero R-module remains nonzero on ten
soring with R, so depth(P, R) = depth(P, R) by Theorem 17.4. 

The Cohen-Macaulay property passes to polynomial rings: 

Proposition 18.9. A ring R is Cohen-Macaulay iff the polynomial ring 
R[x] is Cohen-Macaulay. 

Proof If R[x] is Cohen-Macaulay, then since X is a nonzerodivisor, 
R[xJI(x) = R is Cohen-Macaulay. 

For the converse, it suffices by Proposition 18.8 to prove that each local
ization of R[x] at a maximal ideal is Cohen-Macaulay. Let P be a maximal 
ideal of R[x], and let Q = P n R. Since the complement of Q in R is 
contained in the complement of Pin R[x] we have 

R[x]p = Rdx]p, 
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so we may assume that R is local with maximal ideal Q. The ring 
R[x]/QR[x] = (R/Q)[x] is a principal ideal domain, so modulo Q the ideal 
P is generated by a monic polynomial f (x): That is, P = (Q, f (x)). If 
Xl, ... , xn is an R-sequence in Q, then it is also an R[x]-sequence since 
R[x] is a free R-module. Further, the monic polynomial f(x) is a nonzero
divisor modulo any ideal of R, so Xl, ... , x n , f(x) is an R[x]-sequence. Thus 
depth P ~ 1 + depth Q. 

On the other hand, co dim P :S 1 + co dim Q by the principal ideal the
orem. Since R is Cohen-Macaulay we have codimQ = depthQ, and we 
obtain co dim P :S depth P. The opposite inequality is immediate from 
Proposition 18.2, so R[x]p is Cohen-Macaulay as required. 

Now we turn to some of the desirable properties of Cohen-Macaulay rings. 
The following corollary is a substantial generalization of part of Theorem A 
from Chapter 8. Recall that a ring R is catenary, or has the saturated 
chain condition, if given any primes P C Q of R, the maximal chains 
of primes between P and Q all have the same length. R is universally 
catenary if every finitely generated R-algebra is catenary. It follows at 
once that a homomorphic image of a universally catenary ring is universally 
catenary. 

Corollary 18.10. Cohen-Macaulay rings are universally catenary. More
over, in a local Cohen-Macaulay ring, any two maximal chains of primes 
have equal length, and every associated prime of R is minimal. 

Proof. Since the polynomial ring over a Cohen-Macaulay ring is again 
Cohen-Macaulay by Proposition 18.9, it suffices to show that a homomor
phic image S of a Cohen-Macaulay ring R is catenary. Any two maximal 
chains between a given pair of primes in S pull back to two maximal chains 
between two primes Q C P in R. By Proposition 18.8 we may localize 
and suppose that R is local with maximal ideal P. The two chains may 
be extended to maximal chains in R by adding the same chain of primes 
descending from Q to each. Thus the first statement of the corollary will 
follow from the second statement. 

Let (R, P) be a local Cohen-Macaulay ring. For the second statement of 
the corollary it is sufficient to show that all maximal chains of primes from 
P to an associated prime of R have the same length, namely dim R. By 
Proposition 18.2, the length of any such chain ~ depth P. But depth P = 
dimP, the maximal length of such a chain, by hypothesis. 

There is a corresponding statement for modules; see Exercise 18.5. 
A little more is true in the direction of Corollary 18.10. To formulate 

it, define a ring to be equidimensional if all its maximal ideals have the 
same co dimension and all its minimal primes have the same dimension. 
For a Cohen-Macaulay ring, the latter condition follows from the former 
by Corollary 18.10. 
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If Rl and R2 are Cohen-Macaulay rings, then by Exercise 18.6, the direct 
product Rl x R2 is also Cohen-Macaulay. It follows that a Cohen-Macaulay 
ring need not be equidimensional. However, from Corollary 18.10 we imme
diately derive: 

Corollary 18.11. Any local Cohen-Macaulay ring is equidimensional. 

Geometrically, Corollary 18.11 says that if a variety X is locally Cohen
Macaulay at a point p (in the sense that the local ring (9 X,p is Cohen
Macaulay), then p cannot lie on two components of different dimensions. 
Thus, for example, the affine ring of the variety shown in Figure 18.1, or 
even its localization at the singular point, is not Cohen-Macaulay. 

Not Cohen-Macaulay here. 

FIGURE 18.1. 

The property established in Corollary 18.11 is essentially topological 
(either in the classical topology, if we work with varieties over C, or in the 
Zariski topology). Unfortunately, no complete characterization of Cohen
Macaulayness in topological terms is known, but there is one more restric
tion of the topology of a variety near a Cohen-Macaulay point: A result 
of Hartshorne [1962J says that at a Cohen-Macaulay point, a variety (or 
scheme) must be locally (analytically) "connected in co dimension I" in the 
sense that removing a subvariety of co dimension 2 or more cannot discon
nect it (or even disconnect the spectrum of its completion). Algebraically, 
we may state the result (in a somewhat strengthened form) as follows: 

Theorem 18.12 (Hartshorne's Connectedness Theorem). Let R be a local 
ring and let I and J be proper ideals of R whose radicals are incompa
rable. If I n J is nilpotent, then depth(I + J) :S 1. In particular, if R 
is a Cohen-Macaulay ring, or even satisfies Serre's condition 82, then 
codim(I + J) :S 1. 

Proof. Replacing I and J by IN and IN for a suitable integer N » 0, 
and using the fact that I J c In J is nilpotent, we may assume I J = O. 
Therefore, (I n J)(I + J) = O. Thus if I n J -I- 0, then 1+ J consists of 
zero divisors and has depth O. 
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Thus we may assume In J = O. Consider the short exact sequence 

0-> R -> R/I ED R/J -> R/(I + J) -> 0, 

where the image of 1 in R = R/(I n J) is (1, -1) E R/I ED R/J, and 
the right-hand map sends (a, b) to a + b. If depth(I + J) > 1, then by 
Proposition 18.4, Extk(R/(I + J), R) = 0, so the sequence splits, and there 
is an element (a, b) E R/ I ED R/ J such that a + b == 1 mod (I + J) and such 
that R(a, b) n R(l, -1) = 0 in R/ I ED R/ J. 

Since R is local, either a or b -say a -must be a unit. Thus J(a, b) = 
(Ja,O) = (J, 0) C R(a, b). But J(l, -1) = (J, 0), so we must have (J, 0) = 0, 
that is, J C I. It follows that the radical of J is contained in the radical of 
I, contradicting our assumption. 

Thus, for example, a variety that looks locally like two surfaces meeting 
in a point in four-space, as suggested in Figure 18.2, cannot be Cohen
Macaulay. 

Not Cohen-Macaulay here. 

FIGURE 18.2. 

Corollary 18.10 and Theorem 18.12 may be used to get information about 
an ideal I in a ring R as soon as we know that R/ I is Cohen-Macaulay. The 
simplest case in which this hypothesis is satisfied is given by the following 
result. 

Proposition 18.13. Let R be a Cohen-Macaulay ring. If I = (Xl"", Xn) 
is an ideal generated by n elements in a Cohen-Macaulay ring R such that 
codim I = n, the largest possible value, then R/ I is a Cohen-Macaulay ring. 

Proof. By Proposition 18.8 we may assume that R is local, with maxi
mal ideal P. Choosing a maximal regular sequence in P that begins with 
Xl, ... , X n , we see that depth R/ I = depth R - n. On the other hand, 
dim R/ I S; dim R - n because for i = 1, ... , n, the element Xi is not in 
any of the minimal primes of (Xl, ... , Xi-I). 
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A consequence, the second statement of the following corollary, was 
proved by Macaulay in the case R is a polynomial ring, and by Cohen 
for regular local rings. This is the reason for the name "Cohen-Macaulay." 

Corollary 18.14 (Unmixedness Theorem). Let R be a ring. If I = 
(X1,oo.,Xn ) is an ideal generated by n elements such that codimI = n, 
then all minimal primes of I have codimension n. If R is Cohen-Macaulay, 
then every associated prime of I is minimal over I. 

Proof. Since the codimension of I is the minimum of the co dimensions of 
the minimal primes, we see that these all have co dimension ~ n. By the 
principal ideal theorem, they all have codimension ::; n. 

If now R is Cohen-Macaulay, then R/ I is Cohen-Macaulay by Proposition 
18.13, so all the associated primes of I (that is, the primes of Ass( R/ 1)) 
are minimal over I by Corollary 18.10. 

A common geometric use of the unmixedness theorem is to verify that 
a given set of polynomials generates the homogeneous coordinate ring of 
a given projective variety. Perhaps the oldest example is given in Exer
cise 18.10. 

For those with some geometric background, here is another, more typical 
application of the same kind: Let k be an algebraically closed field. Consider 
a curve C of genus 1 and degree 4 in p3(k) (an elliptic quartic). We examine 
the homogeneous ideal I of C. The curve does not lie in a plane, since 
a plane quartic has genus 3. By Riemann-Roch we have hO(C; <90(2)) = 
degree <90(2) = 8, while the space of quadrics in p3 is lO-dimensional. Thus 
there exist two linearly independent quadrics Q1, Q2 that vanish on C. We 
claim that they form a regular sequence and generate the homogeneous 
ideal of C. 

First we show that Q1 must be irreducible. Suppose on the contrary 
that Q1 = LL', the product of two linear forms. Since C is irreducible it 
would lie in one of the planes L = 0 or L' = 0, and we have already seen 
that C does not lie in a plane. Next, since the homogeneous coordinate 
ring 8 = k[xo, Xl, X2, X3] of p3 is factorial, the irreducibility of Q1 implies 
that (Qd is a prime ideal. Thus Q2 is a nonzero divisor mod Q1; that is, 
Q1,Q2 is a regular sequence. Now 8/(Q1,Q2) has degree 4 by Bezout's 
theorem. Since (Q1, Q2) is contained in I, we must have (Q1, Q2) = In J, 
where codimJ > 2. By Corollary 18.14 the ideal (Q1,Q2) has no primary 
components of co dimension > 2, so I = (Q1, Q2). 



18.3 Proving Primeness with Serre's Criterion 457 

18.3 Proving Primeness with Serre's Criterion 

Given elements iI, ... , f n in a ring 8, it is often of interest to know whether 
the ideal 1 = (iI, ... , fn) is prime. There are some special methods, like 
Eisenstein's criterion (Exercise 18.11), and there is a general method that 
seeks to identify 811 with an explicitly known subring of a domain, per
haps by identifying a vector space basis for each, as in the case given in 
Exercise 1.19. But in general the problem is quite hard, even when 8 is as 
simple as a polynomial 8 = k[Xl, ... , xrl ring over a field k. 

Roughly speaking, there are two aspects of primeness of an ideal 1 C 8. 
First, geometrically, the variety corresponding to 1 must be irreducible 
(not the union of two smaller varieties). Second, arithmetically, 1 must be 
a radical ideal; that is, 1 must have no embedded components, and must 
be equal to its radical at the generic points of its isolated components. In 
many common circumstances the geometric condition is relatively easy to 
check-often one starts with an irreducible locus and has enough equations 
to cut it out set-theoretically-but the arithmetic condition is obscure. 
However, if R:= 811 is Cohen-Macaulay, then the fact that R has "many" 
nonzerodivisors helps with the arithmetic condition. For example, by the 
unmixed ness theorem, the Cohen-Macaulay condition guarantees that there 
will be no embedded components. The last point is to know that there will 
be no isolated nonradical components. We shall give a method for checking 
this based on the Jacobian criterion. 

Sometimes one does not know the locus of points .where the ideal 1 
vanishes, and therefore one does not know in advance that it is irreducible. 
In such cases, at least when the variety described by 1 is actually normal, 
Serre's criterion allows one to deduce the primeness of 1 from the Jacobian 
criterion directly. The point here is that if X is a connected variety (for 
example, one given by homogeneous equations, so that X is a cone), then 
the points where two components of X meet are singular points of X and 
are in the singular locus. Hartshorne's connectedness theorem shows that 
if R is Cohen-Macaulay then the components must meet in co dimension 1 
in X if they meet at all. 

Before stating the r~sult, one further remark is in order: Since the meth
ods we shall employ are local, we cannot hope to do more than prove that 
R = 811 is "locally a domain." By Proposition 2.20 this is equivalent to 
the statement that R is a direct product of domains. In applications where 
we wish to show that R is actually a domain, we shall need some further 
information; for example, we might know the variety X as a point set and 
know that it is connected; or we might know that R cannot have nontrivial 
idempotents because it is local (so that any nonzero idempotent a unit) or 
graded (so that any idempotent has degree 0) with degree-O part a domain. 

Theorem 18.15. Let R = k[Xl,"" xr][U-1ll 1 be a localization of an affine 
ring over a perfect field k. 8uppose that 1 = (iI, ... , fn) has codimension c. 
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Let J c R be the ideal generated by the c x c minors of the Jacobian matrix 
a = (8f;j8xj), taken modulo I. Suppose R is Cohen-Macaulay. 

a. R is reduced iff J has codimension ~ 1 in R. 

b. R is a direct product of domains iff condition a holds and Rp is a 
domain for every prime P of codimension ::; 1. 

c. R is a direct product of normal domains iff J has codimension ~ 2 
in R. 

Proof. Parts a and c will be a direct application of the Jacobian criterion 
together with 8erre's criterion and the related criterion of Exercise 11.10. 
To see this, we first reinterpret the conditions 81 and 82 that appear in 
Exercise 11.12 and 8erre's criterion. 

The condition 81 is that all primes associated to 0 have co dimension o. 
Now a prime P is associated to 0 in R iff Pp is associated to 0 in Rp iff 
depthRp = O. (Here as usual we write depth Rp for depth(Pp, Rp).) Thus 
we may restate 81 as the condition 

81' : For every prime P of codimension ~ 1 we have depth Rp ~ 1. 

The condition 82 comprises the condition 81 as well as the requirement 
that if (x) c R is an ideal generated by a nonzero divisor and P is an 
associated prime of (x), then the co dimension of P is 1. We claim that 
these conditions are the same as the conditions 81' and 

S2' : For every prime P of co dimension ~ 2 we have depth Rp ~ 2. 

Indeed, suppose that R satisfies 81' and S2'. We have seen that R satisfies 
81' Let x E R be a nonzerodivisor and P a prime associated to (x); we must 
show that P has co dimension ::; 1. But Pp is then associated to xRp, so 
depth Rp ::; 1, and P must have co dimension ::; 1 by 82'. 

Conversely, suppose that R satisfies 82, and that P is a prime of codi
mension ~ 2. If depth Rp ::; 1, then since 1 ~ depth(Pp, Rp) ~ depth(P, R) 
we would either have depth P = 0 (so that P would have co dimension 0 
by 81) or depth P = 1. In the latter case, P contains a nonzero divisor x 
and consists of zero divisors modulo x. Thus P is contained in an associated 
prime Q of (x). By 82, codimQ ::; 1, and it follows that codimP would 
be less than 1. 8ince these possibilities contradict our hypothesis, we have 
depth Rp ~ 2. 

Now if R is Cohen-Macaulay, then by Proposition 18.8, depth Rp = 
dim Rp = codim P for every prime P of R; thus R satisfies S2 (and of 
course 81). 

Returning to the hypotheses of Theorem 18.15, R is equidimensional 
because it is Cohen-Macaulay, and we may apply the Jacobian criterion, 
Theorem 16.19, to compute the singular locus. The separability hypothesis 
is guaranteed since we have assumed that k is perfect. Thus if P is a prime 
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of R then Rp is nonsingular iff J <t. P. The condition RO thus says that J 
has codimension ~ 1, while the condition Rl says that J has codimension 
~ 2. Thus parts a and c follow at once from the criteria of Exercise 11.10 
and Serre's criterion, Theorem 11.5, respectively. 

For part b suppose first that R is a product of domains. Every localization 
of R is then a domain and R is reduced, so the conditions of part b hold. 
Conversely, suppose that part a is satisfied (so that R is reduced) and Rp 
is a domain for each prime P of codimension ~ 1. We must show that R 
is locally a domain. All the hypotheses are preserved by localization, so we 
may as well assume that R is local from the outset. Since R is reduced, it 
suffices to show that R has only one minimal prime. For this purpose we 
apply Hartshorne's connectedness theorem. If QI, ... , Q s were the minimal 
primes of R, then taking I = QI and J = Q2 n··· n Qs in Theorem 18.12, 
we see that depth (I + J) ~ 1. Since R is Cohen-Macaulay we also have 
codim(I + J) ~ 1. Thus there is a prime P of codimension 1 containing 
both I and J, and it follows that P contains two minimal primes. But this 
contradicts the hypothesis that Rp is a domain. The contradiction proves 
that there cannot be two minimal primes of R, and shows that R is a 
domain. 

Here is a fairly typical example of how this result is used. For a more 
elementary case see Exercise 18.12. 

Example. As an example, consider again the curves cut out by two 
quadrics in p3. This time, let us reverse the process and start with an 
ideal generated by two quadrics, 1= (QI, Q2) C S = k[xo, Xl, X2, X3], with 
k algebraically closed and of characteristic not 2, say. Suppose that the Qi 
are given explicitly, for example, as 

with ao, ... ,a3 E k. 

For what values of a = (ao, ... , a3) is I prime of codimension 2? For what 
values is it the ideal of a nonsingular curve? (It is easy to see geometrically 
that the curve is then an elliptic quartic, as in this example.) 

Since QI is irreducible and S is factorial, (Qd is prime, so QI, Q2 is a 
regular sequence as soon as Q2 is not a multiple of Ql-that is, as soon 
as the ai are not all equal. If all the ai are equal, then (QI, Q2) = (Qd is 
certainly not a curve, so we shall henceforward assume that not all the ai 
are equal. Thus R := Sf I is Cohen-Macaulay by Proposition 18.13, and we 
may apply Theorem 18.15. 

The Jacobian matrix of the two equations QI, Q2 is 

a - ( 2xo 2XI 2X2 2X3 ) 
- 2aoxo 2alXI 2a2x2 2a3x3· 
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Write J' c S for the ideal generated by the 2 x 2 minors of a. Since 2 is a 
unit, the Jacobian ideal J' is generated by the elements (ai - aj)(xiXj) for 
i=/=j. 

Suppose first that two of the ai are equal, say ao = al. The element 
Q2 - aoQl = (a2 - ao)x~ + (a3 - ao)x~ factors as (b2x2 + b3X3) (b2x2 - b3X3), 
where bi is a square root of ai - ao. The factors are linear, and thus certainly 
not contained in I, so in this case I is not a prime, and we may assume 
that all the ai are distinct. 

With this hypothesis J' is the ideal generated by all the XiXj for i =/= 
j. This monomial ideal has codimension 3, so we see at once by Theo
rem 18.15a that R is reduced. Since J' is monomial, it is easy to compute 
its minimal primes: They are primes generated by the minimal subsets 
of variables necessary to generate ideals containing J'. Thus the minimal 
primes of J' are the primes generated by any 3 of the four variables. Since 
Ql is not in any of these primes, we see that J' + (Qd, and thus also J' + I, 
has codimension 4. It follows by Theorem 18.15c that R is a product of 
normal domains, and since R is graded with Ro = k a field, R must itself 
be a normal domain. Thus we have shown: 

The ideal I = (Ql, Q2) has codimension 2 iff not all the ai are equal; it 
is prime iff no two of the ai are equal; and in this case it is the ideal of a 
smooth curve in p3. 

18.4 Flatness and Depth 

Most interesting Noetherian rings can be written as finitely generated mod
ules over regular subrings. For example, Noether normalization allows us 
to write any affine algebra as a finitely generated module over a polyno
mial ring of the same dimension, and every complete local ring may be 
written as a finitely generated module over a regular local ring of the same 
dimension. 

The view of a ring as a finitely generated module over a regular subring 
clarifies many structures. In particular, it yields a dramatic clarification of 
the nature of the Cohen-Macaulay property. We begin with a more general 
formulation, based on the local criterion of flatness (Theorem 6.8). The 
second part provides a converse to Theorem 10.10 in an interesting special 
case. 

Theorem 18.16. Let (R, P) be a regular local ring, and let (A, Q) be a 
local Noetherian R-algebra, with PAc Q. 

a. A is fiat over R iff depth(P A, A) = dim R 

b. If A is Cohen-Macaulay, then A is fiat over R iff dim A = dimR + 
dimA/PA. 
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Proof. 

a. Let dim R = d. Since R is regular, P is generated by a regular 
sequence Xl, ... , Xd. Let K = K(XI, ... , Xd) be the Koszul complex, 
which is exact except for Hd K = k. If A is flat, then tensoring with 
A takes exact sequences to exact sequences, so Hi(K ® A) = ° for 
i #- d too. But K ® A may be identified as the Koszul complex over 
A of the images of the Xi in A, so that these form a regular sequence 
in A, and P A has depth d. 

Conversely, if depth(PA, A) = d then the Kozul complex K ® A 
of the generators of P A has no homology except for Hd. Thinking of 
K as a free resolution of RIP over R, we see that Torf(RI P, A) = 
Hd-I(K ® A) = 0, so A is flat by Theorem 6.8, applied with S = 
M=A. 

b. If A is flat over R, then dim A = dim R+dim AI P A by Theorem 10.10 
independently of the Cohen-Macaulay property. Conversely, suppose 
that A is Cohen-Macaulay and dim A = dim R+dim AI P A. It follows 
that codimPA = dimR. Since depth(PA,A) = codimPA, we may 
apply part a and conclude that A is flat over R. 0 

For a striking special case of this result, see Exercise 18.18. 
In case A is finitely generated as an R-module, flatness is the same thing 

as freeness by Corollary 6.6. In this case we can weaken the hypothesis that 
A is local. 

Corollary 18.17. Let (R, P) be a regular local ring, and suppose that R is 
contained in a ring A in such a way that A is a finitely generated R-module. 
If A is equidimensional, in the sense that the localizations of A at maximal 
ideals all have the same dimension, then A is Cohen-Macaulay iff A is a 
free R-module. 

Proof. Again, let dim R = d. Since R is regular, P is generated by a regular 
sequence Xl, ... ,Xd. We apply the local criterion of flatness, Theorem 6.8, 
with S = Rand M = A, and conclude as in the preceding theorem that A 
is a flat (and thus free) R-module iff Xl, ... ,Xd is a regular sequence in A. 

Suppose that this condition is satisfied. By Proposition 9.2 every maxi
mal ideal Q of A contains the maximal ideal of R, so Xl, ... ,Xd is a regular 
sequence in AQ , and AQ , is thus Cohen-Macaulay; it follows that A is 
Cohen-Macaulay too. 

Conversely, if A is Cohen-Macaulay, then since dim P A = 0, by Propo
sition 9.2 we have co dim P A = d, and we see that depth(P, A) = d. Since 
R is local, Corollary 17.7 shows that Xl, ... ,Xd is a regular sequence on A. 

o 
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Corollary 18.17 may be interpreted geometrically as saying (for example, 
in the affine case) that a variety X is Cohen-Macaulay (that is, has coor
dinate ring that is Cohen-Macaulay) iff for some (respectively any) finite 
map from X to a regular variety Y, the fibers of the map all have the same 
length. See Exercise 18.17. 

The Noether normalization theorem in the complete case shows that 
any complete local ring is a finite module over a regular local subring (see 
Exercise 13.9 for rings containing a field, and Bourbaki [1983] in general). 
Therefore Corollary 18.17 can be applied to the completion of any ring. 
Since a local ring is Cohen-Macaulay iff its completion is Cohen-Macaulay, 
this gives a reasonably satisfying result in the general case. 

Cohen-Macaulay rings have many desirable properties, for example, dual
ity; see Hartshorne [1977, Chapter III] for the beginning of this story. See 
also Bruns and Herzog [1993] for an idea of the richness of the current 
theory. In the remainder of this chapter we shall focus on examples. 

18.5 Some Examples 

From the preceding results we see that any regular ring-that is, one whose 
localizations are regular local rings-is Cohen-Macaulay. The easiest way 
to generate further examples is to use Proposition 18.13. The importance 
of such examples leads us to make the following definition. 

We say that a ring R is a complete intersection if there is a regular 
ring S and a regu'lar sequence xl, ... , Xn E S such that R ~ S/(XI, ... , xn). 
R is locally a complete intersection if this is true for Rp for every 
maximal ideal P of R. By Propositions 18.8 and 18.13, any ring that is 
locally a complete intersection is Cohen-Macaulay. As we shall show in the 
next chapter, the localization of a regular local ring is again regular, and it 
follows that the same is true for complete intersections-see Exercise 19.2. 

It can be shown that if R is a local complete intersection, then for any 
surjection S ~ R from a regular local ring, the kernel is generated by 
a regular sequence in S, so the definition is actually independent of the 
regular ring chosen (see, for example, Avramov, Foxby, and Herzog [1994]). 
Since every complete local ring is a homomorphic image of a regular local 
ring (see Theorem 7.17 for rings containing a field), it is convenient to 
weaken the definition of a complete intersection and say that a local ring R 
is a complete intersection if R can be written as a regular local ring modulo 
a regular sequence. If R itself is a homomorphic image of a regular local 
ring-and thus in virtually all cases of geometric interest-this apparently 
weaker definition is equivalent to the previous one. Though it is far from 
obvious, this more general notion of complete intersection also localizes; 
see Avramov [1975]. 

Many interesting rings that are not complete intersections are still Cohen
Macaulay. Here is a short list of examples: 
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1. Determinantal rings. People use this phrase in different ways, but 
one common usage that suits our needs is the following: A ring R is 
determinantal if it can be written in the form R = S / I where S is a 
Cohen-Macaulay ring and I is the ideal generated by the r x r minors 
of a p x q matrix M, for some p, q, r, such that the co dimension of 
I in S is exactly (p - r + 1)(q - r + 1). (Recall from Exercises 10.9 
and 10.10 that this is an upper bound for the codimension of I if 
I I=- R; and that if S is a polynomial ring in pq indeterminates, and 
M is the "generic" matrix with distinct indeterminates for entries, 
then the condition is satisfied.) Note that complete intersections are 
determinantal rings with p = r = 1. Proposition 18.13 generalizes: 

Theorem 18.18. Determinantal rings are Cohen-Macaulay. 

This result was proved by J. Eagon in the special case r = min(p, q) 
and by Eagon and Hochster in general. See Bruns and Vetter [1988] 
for a recent treatment that includes a simple proof. 

Of course, an unmixedness theorem for determinantal ideals gen
eralizing Corollary 18.14 follows. Interestingly this was proved by 
Macaulay himself (for the maximal minors), and his work was what 
led to the whole development we have described. 

2. Similarly, one can make rings using the minors of a symmetric matrix, 
the "Pfaffians" of a skew-symmetric matrix, and so on. Also interest
ing are the ideals defining the varieties of square matrices tp such 
that the rank of tpr ::; dr for some sequence of integers dr. For each 
of these ideals a result similar to Theorem 18.18 holds, with different 
co dimensions required, depending on the case. See Bruns and Vetter 
[1988], De Concini, Eisenbud and Procesi [1982]' and Eisenbud and 
Saltman [1989] for these and related results. 

3. Invariants. Let S be a polynomial ring over a field k, and let G 
be a linearly reductive algebraic group, acting algebraically by linear 
transformations of the variables of S. The ring of invariants Se, con
sisting of all those elements fixed by G, is an interesting object. We 
saw in Chapter 1 that Se is a finitely generated k-algebra (Hilbert'S 
theorem). Hochster and Roberts have shown that Se is also Cohen
Macaulay. In the case of a finite group G this is fairly easy-see 
Exercise 18.14. The initial proofs in the general case were quite diffi
cult, but recently Hochster and Huneke's technique of tight closure 
[1990] has given rise to a much simpler proof; see Bruns and Herzog 
[1993, Section 6.5]. Again, we shall not give any proof; rather, we 
describe a few examples. 

A finite group G is linearly reductive as long as the characteristic of 
k does not divide the order of G. The classical groups GL(n), SL(n), 
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O(n), etc., are linearly reductive in characteristic O. The algebraic 
torus consisting of a product of copies of the multiplicative group (of 
k, if k is algebraically closed, or in the sense of schemes) is linearly 
reductive in any characteristic. A consequence of the last case, for 
example, is that if T C Z~ is a "rational polyhedral convex cone" 
(that is, the set of all lattice points in some convex region closed 
under multiplication by positive numbers, with finitely many sides, 
having rational slopes, such as the shaded region in Figure 18.3), 
then k[T] c k[Xl,"" Xn] is a Cohen-Macaulay subring. Equivalently, 
as was proved in Exercise 4.23, these are the normal subrings of 
k[Xl' ... ,xn] generated by finitely many monomials. Fulton [1992] is 
an excellent introduction to these rings and the varieties made from 
them. 

HG HE I .3. 

Another particularly interesting example is to take S to be the 
polynomial ring on (~) variables, thought of as a basis for the vec
tor space Nkn , and take the invariants under the action of GL(n), 
acting in the natural way on kn and thus on N kn. The invariant 
ring R = sC£(n) is in this case the homogeneous coordinate ring of 
the Grassmann variety of r-planes in kn , so this coordinate ring is 
Cohen-Macaulay. 

4. Let C be a nonsingular algebraic curve of genus g, and let C be 
embedded in some projective space pr by a complete linear series of 
degree d 2:: 2g (or by the complete canonical series). Then the homo
geneous coordinate ring of C is Cohen-Macaulay; see Saint-Donat 
[1973]. 

In general, there is a natural characterization of Cohen
Macaulayness for the homogeneous coordinate rings of projective 
varieties in terms of sheaf cohomology (see Exercise 18.16). 

The richness ofthe Cohen-Macaulay theory has also influenced the theory 
of arbitrary Noetherian rings, through Hochster's theorem that any local 



18.6 Exercises 465 

Noetherian ring containing a field posesses a module (which may not be 
finitely generated) whose depth is equal to the dimension of the ring
a "maximal Cohen-Macaulay module". See Hochster [1975J for this and 
related matters. 

18.6 Exercises 

Throughout these exercises all rings considered are assumed to be Noethe
rian. 

Exercise 18.1: Characterize Cohen-Macaulay rings among I-dimensional 
rings in terms of the associated primes of the ring. 

Exercise 18.2: Show that a local ring R is regular iff the maximal ideal 
of R can be generated by a regular sequence. 

Exercise 18.3: Give an elementary proof of Lemma 18.3 using Nakayama's 
lemma and the theory of associated primes. 

Exercise 18.4: Let R be a ring and let M be a finitely generated R-module. 
For any ideal I of R, set 

codim(I, M) = codimR/ann(M) (I + ann(M)/ ann(M)). 

Prove the following generalization of Theorem 18.7: If for every maximal 
ideal P of R containing ann(M) we have depth(P, M) = codim(P, M), then 
for every ideal I of R we have codim(I, M) = depth(I, M). 

Exercise 18.5: Let (R, P) be a local ring, and let M be a finitely generated 
R-module. If depth(P, M) = dim M, show that all the associated primes of 
M have the same dimension, namely dim M. 

Exercise 18.6: Prove that the direct product of two Cohen-Macaulay rings 
is Cohen-Macaulay. Use Exercise 2.25 to show that an affine ring that is 
Cohen-Macaulay is a product of equidimensional Cohen-Macaulay rings. 
(The corresponding geometric statement is clear from Corollary 18.11.) 

Exercise 18.7:* Prove that the homogeneous coordinate ring of the 
"twisted cubic," 

R = k[i, s2t, st2, t3J C k[s, t], 

is Cohen-Macaulay when localized at the maximal homogeneous ideal by 
finding an explicit homogeneous regular sequence. (We shall show in Exer
cise 19.10 that if a positively graded ring is Cohen-Macaulay locally at the 
maximal homogeneous ideal, then it is Cohen-Macaulay.) Check that R is 
a determinantal ring, by showing that it is isomorphic to k[xo, ... ,X3J/ I, 
where I is the ideal generated by the 2 x 2 minors of the matrix 
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Exercise 18.8:* Prove that the homogeneous coordinate ring of a smooth 
rational quartic in three-space, 

is not Cohen-Macaulay. Check that R is isomorphic to the ring 
k[xo, ... , X3l! I, where I is the ideal generated by the 2 x 2 minors of the 
matrix 

( Xo xi XI;3 X2) 

Xl XOX2 X2 X3 

(Actually I is already generated by four of the six minors: One of the cubics 
and the quartic are superfluous.) 

The difference between these two examples may be accounted for as 
follows: First, the second represents a curve embedded by an incomplete 
linear series; quite generally, the homogeneous coordinate ring of a variety 
in an incomplete embedding is never Cohen-Macaulay. (This is best proved 
with local cohomology, Appendix 4.) Second, as mentioned in the text, 
ideals generated by minors of a matrix in a Cohen-Macaulay ring define 
Cohen-Macaulay factor rings if they have the "generic" codimension; for 
the 2 x 2 minors of a 2 x 3 matrix this co dimension is 2, and for the 2 x 2 
minors of a 2 x 4 matrix it is 3, whereas the ideals I and J in the preceding 
two exercises both have co dimension 2. 

Exercise 18.9: Deduce from Exercise 11.10 that a Cohen-Macaulay ring 
is reduced iff it is generically reduced-that is, iff its localization at each 
minimal prime is reduced. Give an example of a generically reduced ring 
that is not reduced. 

Exercise 18.10 (Max Noether's AF +BG theorem): The following is 
a precursor of the unmixedness theorem; prove it as an application. Suppose 
that F and G are homogen!'lous forms in three variables generating the 
ideals of plane curves that meet transversely in a set of points r. If H is 
homogeneous forII]. vanishing on r, then there are homogeneous forms A 
and B such that H = AF + BG. 

Exercise 18.11 (Eisenstein's Criterion):* Let R be a domain, and let 
P be a prime ideal of R. If a polynomial f (x) = roxn + rl xn- l + ... + r n 
satisfies the conditions ro ~ P, rl, ... , r n E P, r n ~ p2, then f is irreducible. 

Exercise 18.12: Let k be an algebraically closed field of characteristic not 
2, and let S be a polynomial ring over k in n variables. Any quadric Q 
takes on a diagonal form Q = xI + x§ + ... + x; with respect to a suitable 
choice of coordinates Xl, ... , x n . (Proof: Take an orthonormal basis for the 
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associated bilinear form modulo its null space.) The number of squares, r, 
is called the rank of Q. 

a. Use the Jacobian criterion to find the singular locus of Q. What is 
its dimension in terms of rank Q7 

b. Assuming Q is nonzero, use Theorem 18.15 to show that S/(Q) is 
reduced iff r ;:=: 2; a domain iff r ;:=: 3; normal iff r ;:=: 4; and corresponds 
to a smooth projective variety iff r = n. 

c. For those who know about quadratic forms: What is the correspond
ing result in characteristic 27 (See, for example, Buchweitz, Eisenbud 
and Herzog [1987] for further information.) 

Exercise 18.13: Let I, J be ideals of a local ring R such that In J = o. 
Suppose that R/ I, R/ J, are Cohen-Macaulay rings of the same dimension 
d, and that R/(I +J) is of dimension d-l. Show that R is Cohen-Macaulay 
iff R/ (I + J) is. 

An affine algebraic set X is called Cohen-Macaulay if A(X) is Cohen
Macaulay. In these terms we can reformulate the result of this exercise by 
saying: If X and Yare Cohen-Macaulay, and X n Y is of co dimension 1 in 
X and in Y, then Xu Y is Cohen-Macaulay iff X n Y is. 

If X and Yare Cohen-Macaulay, 

and XnYisof 
codimension 1 in X 
and in Y, 

then XUY is Cohen-Macaulay iff Xny is. 

Exercise 18.14: Let G be a finite group acting as automorphisms of an 
algebra R over a field of characteristic O. Show that if R is Cohen-Macaulay, 
then the ring of invariants RG is Cohen-Macaulay. 

Exercise 18.15: Let r c pr be a finite set of points. Show that the 
homogeneous coordinate ring of r is Cohen-Macaulay. 

Exercise 18.16: (For those with knowledge of the cohomology of coherent 
sheaves) Prove: 
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a. The homogeneous coordinate ring of a curve X C pr with ideal 
sheaf I is Cohen-Macaulay iff Hl(pr; I(n)) = 0 for all n iff X is 
linearly normal and EBnH°(pr; C">x(n)) is generated as an algebra by 
H°(pr; C">x(l)). 

b. The homogeneous coordinate ring of a projective variety X c 
pr of pure dimension d with ideal sheaf I is Cohen-Macaulay iff 
Hl(pr; I(n)) = 0 for all nand Hi(pr; C">x(n)) = 0 for 0 < i < d, 
and all n. 

Exercise 18.17 (Cohen-Macaulayness in the geometric case): Here 
is the most commonly used geometric form of Corollary 18.17: Let X be a 
projective algebraic set whose components all have dimension d. If 7T : X -+ 

Y is a surjective morphism onto a locally regular variety of dimension d, 
then X is locally Cohen-Macaulay iff 7T is flat iff all the fibers C">x,p/mY,1l"(p) 
have the same length. (You may need to use Exercise 20.13.) 

Exercise 18.18 (Hartshorne, [1966a]):* Suppose (R, P) is a local ring 
containing a field k, and let Xl, .•. , Xr E P be a sequence of elements. 
Show that Xl, •.• , xr is a regular sequence iff R is flat as a module over 
k[Xl, ... , xr]. 



19 
Homological Theory of Regular 
Local Rings 

In this section we shall examine some further uses of the homological tools. 
After preliminaries on minimal free resolutions, we shall use the Koszul 
complex to prove the Hilbert syzygy theorem and the basic results of 
Auslander-Buchsbaum and Serre about regular local rings and polynomial 
rings: the characterization of regular local rings as the rings of finite global 
dimension, and the consequences that localizations of regular local rings 
are regular and that regular local rings are factorial. We also derive some 
important relations of depth to homology in the Auslander-Buchsbaum 
formula and the formula connecting the vanishing of Extk(M, N) with the 
depth of the annihilator of M on N. This "explains" in a certain sense the 
relations of depth and the homology of the Koszul complex that we saw in 
Chapter 18. 

19.1 Projective Dimension and Minimal 
Resolutions 

We begin with some basic ideas. 

Definition. A projective resolution of an R-module M is a complex 

'Pn 'PI 
~: ... ----; Fn ---+ • • • ----; FI ---+ Fo 

of projective R-modules such that coker <PI = M and ~ has no homology. 
(Sometimes we add a "----; 0" to the right-hand side of~, and then insist that 
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:r have no homology except at Fo.) We shall sometimes abuse this notation 
and say that 

~n ~1 :r: ... ---t Fn --+ ... ---t FI --+ Fo ---t M ---t 0 

is a resolution of M. :r is a free resolution if all the Fi are free, and a 
graded free resolution if R is a graded ring, all the Fi are graded free 
modules (that is, sums of modules of the form R( d), for various integers 
d), and the maps are all homogeneous maps of degree 0 (that is, they take 
homogeneous elements to homogeneous elements of the same degree). Of 
course, only graded modules can have graded free resolutions. If for some 
n < 00 we have Fn+I = 0, but Fi i=- 0 for 0 ::; i ::; n, then we shall say that 
:r is a finite resolution, of length n. 

It is easy to see that every module has a free resolution and, if R is graded, 
every graded module has a homogeneous free resolution. To construct one, 
begin by taking a set of generators for M and map a free module onto M 
sending the free generators of the free module to the given generators of M. 
Let MI be the kernel of this map, and repeat the procedure, now starting 
with MI. 

Free or projective resolutions serve to compare a module with free mod
ules. As we have explained in Chapter 1, free resolutions were originally 
studied by Hilbert [1890] in the case of a graded module M over a polyno
mial ring R = k[xo, ... , xr ], in order to compute the Hilbert function of 
the module M -the function 

HM(n) = dimk Mn-

For this one needs a finite free resolution, and we proved in Chapter 15 
that every module over a polynomial ring has a finite free resolution. In 
this chapter we shall extend this result to regular local rings and derive 
some of its consequences. 

In general, we define the projective dimension of M, written pd M (or 
pdR M if the ring involved is not clear from context), to be the minimum 
of the lengths of projective resolutions of M (it is 00 if M has no finite 
projective resolution). The global dimension of R is the supremum of the 
projective dimensions of all R-modules. The following result of Auslander 
shows that it is enough to take the supremum for finitely generated R
modules. 

Theorem 19.1 (Auslander [1955]). The following conditions on a ring R 
are equivalent: 

a. gl dim R ::; n -that is, pd M ::; n for every R-module M. 

b. pd M ::; n for every finitely generated module M. 

A proof (together with some other equivalent conditions) is given in The
orem A3.18. We shall not actually use the result in this book-for our 
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purposes we might as well have defined the global dimension to be the 
supremum of the projective dimensions of finitely generated modules. In 
particular, we shall state and prove the results of this chapter for finitely 
generated modules, although many of them hold in the case of arbitrary 
modules as well. 

There is a simplification in the local and graded cases that is essentially 
a consequence of Nakayama's lemma: The notions of projective and free 
modules coincide. This gives rise to a characterization of projectives as 
"locally free" modules that we shall need later. 

Theorem 19.2 (Characterization of projectives). Let M be a finitely gener
ated module over a Noetherian ring R. The following statements are equiv
alent: 

a. M is a projective module. 

b. Mp is a free module for every maximal ideal (and thus for every prime 
ideal) P of R. 

c. There is a finite set of elements Xl, ... ,Xr E R that generate the unit 
ideal of R such that M[X;IJ is free over R[X;IJ for each i. 

In particular, every projective module over a local ring is free. Every graded 
projective module over a positively graded ring R with Ro a field is a graded 
free module. 

A proof of Theorem 19.2 is contained in Exercises 4.11 and 4.12, and 
the hints provided there. The result is "responsible" for the fact that one 
may identify projective modules and vector bundles; see Corollary A3.3 
for a sketch. The characterization of projectives as locally free modules is 
also true without the Noetherian and finitely generated hypotheses. See 
Kaplansky [1958J for the general case. 

We have already studied one family of finite free resolutions in some 
detail: the Koszul complexes of regular sequences. They yield: 

Corollary 19.3. If x = Xl, ... ,Xn is a regular sequence, then K (x) is a free 
resolution of R/(XI, ... , xn). In particular, if R is a regular local ring, and 
Xl, ... ,Xn is a minimal set of generators for the maximal ideal of R, then 
the Koszul complex K(XI, ... , xn) is a finite free resolution of the residue 
class field of R. 

Proof. The first statement is a restatement of Corollary 17.5 in the case 
M = R. That the generators of the maximal ideal in a regular local ring 
form a regular sequence was proved in Corollary 10.15. 0 
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The surprising fact is that Corollary 19.3 suffices to show that every 
finitely generated R-module has a free resolution of length at most n. (With 
Theorem 19.1, this even implies that every module has a free resolution of 
length at most n.) Before deriving this implication, we digress to discuss 
resolutions over local rings more generally. 

Rather than starting a free resolution of a module M by selecting an 
arbitrary set of generators of M, it seems reasonable to think we would 
do better to choose a minimal set of generators. (One might also try a set 
of generators with some other special property-as we did in the context 
of Grabner bases in Chapter 15.) Obtaining in this way a "minimal" map 
from a free module F to M, we could continue by choosing a minimal 
set of generators for the kernel, and so forth, and get a "minimal" free 
resolution. It turns out that this idea is not useful in general, since minimal 
sets of generators have no uniqueness properties. (Even the number of 
generators in a minimal set of generators need not be well defined; for 
example, in the integers, (5) = (10,15).) But over a local or graded ring, 
where Nakayama's lemma makes the notion of a minimal set of generators 
nice, the idea comes fully into its own; as we shall see in Chapter 20, each 
module over a local ring has a unique minimal free resolution, and every 
resolution is constructed from the minimal one in a simple way. 

To avoid saying things twice, we shall work only with the local case; but 
the reader will have no difficulty in translating everything for the case of a 
positively graded ring with degree 0 part a field. We shall use both in the 
sequel. 

It turns out to be useful to define not only the notion of a minimal free 
resolution, but the notion of a minimal complex as well, and for this the 
definition has to be cast in a form apparently different from the previous 
one. 

Definition. A complex 
<{In 

9": ... ~ Fn ---4 Fn- 1 ~ ... 

over a local ring (R, P) is minimal if the maps in the complex 9" ® R/ P 
are all 0; that is, for each n, the image of tpn : Fn ~ Fn- 1 is contained in 
PFn-l· 

In case 9" is a complex of free modules, this simply means that any matrix 
representing tpn has all its entries in P. 

For example, if x := (Xl> ... ' Xn) E ~ and each component Xi is in P, 
then the Koszul complex K(x) is a minimal complex since the maps in the 
complex K (x) ® R/ P are given by the exterior product with the image of 
the element x in Rn / P Rn-and this image is o. 

The relation of this peculiar definition to minimality in the previous sense 
is given by the following lemma. 
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Lemma 19.4. A free resolution 

'Pn 'PI 
3": ... ---+ Fn ~ Fn- l ---+ ••• ~ Fo 

over a local ring is a minimal complex iff for each n, a basis of Fn - l maps 
onto a minimal set of generators of coker 'Pn. 

Proof. Let R, P be the local ring, and let 'Po be the natural map Fo ---+ coker 
'Pl. For any n ?: 0, consider the induced epimorphism of vector spaces 

By Nakayama's lemma, a basis for the vector space on the right is a minimal 
set of generators of coker 'Pn. Thus the second condition of the lemma is 
satisfied iff this epimorphism is an isomorphism. This is equivalent to the 
condition that im 'Pn is in PFn, which is the condition of minimality. 0 

The following useful consequence might be described as a homological 
version of Nakayama's lemma. 

Corollary 19.5. If R is a local ring with residue class field k, and M is 
a finitely generated nonzero R-module, then pdR M is the length of every 
minimal free resolution of M. Further, pdR M is the smallest integer i for 
which Tor~l (k, M) = o. Thus the global dimension of R is equal to pdR k. 

The proof of the last statement rests on the fact that if R is a ring and 
M and N are R-modules, then the module Torf(M, N) can be computed 
either as the ith homology of the tensor product of M with a projective 
resolution of N. See Theorem A3.24, Application i. 

Proof. Tor~l(k, M) can be computed as the (i+ 1) homology module ofthe 
tensor product of k and an arbitrary resolution of M. Thus if n = pdR M, 
then Tor~l (k, M) = 0 for i ?: n. 

Now suppose that 

is a free resolution of M of length n. If i is the smallest integer for which 
Tor~l (k, M) = 0, then we trivially have n ?: pdR M ?: i. But if 3" is 
minimal then the differentials in the complex k Q9 3" are 0, so 

Tor~l (k, M) = k Q9 Fi+1. 

This is 0 iff Fi+l is 0, so i = n, proving the first two statements of the 
corollary. 

Since we may compute Tor~l (k, M) from a free resolution for k as well, 
Tor~l (k, M) = 0 for i ?: pdR k, and we see that pdR M ::; pdR k for 
any finitely generated R-module. Combining this with Auslander's theo
rem (19.1) we get the last statement. 0 
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19.2 Global Dimension and the Syzygy Theorem 

We return at last to regular local rings. 

Corollary 19.6. If R is a regular local ring of dimension n, then the global 
dimension of R is n. 

We shall see in Theorem 19.12 that regular local rings are the only local 
rings with finite global dimension. 

Proof. If Xl, ... , Xn generate the maximal ideal of R, then we have seen that 
the Koszul complex K(XI, ... , xn) is a minimal free resolution of length n 
of the residue class field k of R. By Corollary 19.5, n = pdR k is equal to 
the global dimension of R. 

As we have already remarked, the case of graded modules over a posi
tively graded ring is completely analogous to the local case. The only fea
ture of regularity that we just used is that the maximal ideal is generated 
by a regular sequence. This condition is satisfied by the ideal of positively 
graded elements of a graded polynomial ring, so imitating the preceding 
proof, we get another proof of Theorem 1.13, which is opposite in spirit 
from the one contained in Corollary 15.11. 

Corollary 19.7 (Hilbert Syzygy Theorem). If k is a field, then every 
finitely generated graded module over k [Xl, ... ,xnl has a graded free res
olution of length ~ n. 

The proof of the syzygy theorem that we have presented is due to Cartan 
and Eilenberg [1956]. It looks like a bit of homological trickery compared 
with Hilbert's original proof. Hilbert was strongly influenced by the elim
ination theory of his time, and his proof is a constructive reduction to a 
problem over a polynomial ring with fewer variables, closer in spirit to the 
proof of Corollary 15.13. 

Somewhat surprisingly, Corollary 19.6 implies the corresponding result 
in the ungraded case. 

Corollary 19.8. Every finitely generated module over k[Xl' ... ,xn ] has a 
finite free resolution. 

Proof. Let F .:£. G ---> M ---> 0 be a free presentation of the finitely generated 
module M over the polynomial ring S = k[XI, ... ,xn]. Introducing a new 
variable xo, we may "homogenize cp" as follows: First choose bases, so that 
cp is represented by a matrix, and let d be the maximum of the degrees of 
the polynomials appearing in this matrix. Next, replace each monomial in 
each entry of cp by that monomial multiplied by the power of Xo necessary 
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to bring its degree up to dj let tjJ be the matrix over T = k[xo, Xl, ... ,xnl 
whose entries are the resulting homogeneous polynomials of degree d. 

Note that we may write S ~ T/(l- xo). With this module structure on 
S, we claim that <p = tjJ 0T Sj indeed, this equation simply says that if we 
replace Xo by 1 in each entry of tjJ, we get back <p, which is obvious from 
the construction. If we let M~ = cokertjJ, we thus have M~ 0T S = M. 

Now let :f~ be a free resolution of M~, beginning with tjJ, which exists by 
virtue of the Hilbert syzygy theorem (applied, for instance, to ker tjJ). We 
shall complete the proof by showing that :f~ 0T S is a resolution of M. For 
this it suffices to show that :f~ 0T S has no homology (except M, at the 
zeroeth step), that is, that Torf( M~ ,S) = 0 for i ~ 1. We may compute 
this module from the free resolution 

l-xo o --t T -----+ T --t S --t 0 

of Sj tensoring with M~, we see we must show that 

l-xo o --t M~ -----+ M~ 

is exact, that is, that 1 - Xo is a nonzero divisor on M~. But 1 - Xo is a 
nonzerodivisor on any graded module M, since for any element 

m = me + (degree greater than e) E M, 

with deg me = e, we have 

(1 - xo)m = me + (degree greater than e). D 

For the generalization to polynomial rings over regular rings, see 
Exercise 19.3. 

19.3 Depth and Projective Dimension: The 
Auslander-Buchsbaum Formula 

In order to exploit the fact that regular local rings have finite global dimen
sion, we shall use a connection between projective dimension and depth 
discovered by Auslander and Buchsbaum. 

Theorem 19.9 (Auslander-Buchsbaum formula). Let (R, P) be a local 
ring. If M is a finitely generated R-module of finite projective dimension, 
then 

pd M = depth(P, R) - depth(P, M). 

See Exercise 19.8 for the graded case. If R is a regular local ring, this 
formula follows at once from Corollary 19.5 and Theorem 17.4, because if 
the maximal ideal of R is generated by the regular sequence Xl, ... , X n , we 
have 
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TOr!l (k, M) = Hn-i-l(M 181 K(Xl, ... , xn)). 

The left side computes the projective dimension while the right side com
putes the depth. 

Proof. We exploit the finiteness of the projective dimension of M by using 
induction; if pd M = 0 then M is free and the result is obvious. 

If pdM > 0, let 

J':O--+N~F--+M--+O 

be one step of a minimal free resolution of M -that is, let F --+ M be an 
epimorphism from a free module F of minimum possible rank, and let N 
be the kernel, with <p : N --+ F the inclusion. By Corollary 19.5 we have 
pd N = pd M - 1, so we may apply the theorem inductively to N. Writing 
d = depth N, we must show that the depth of M is exactly d - 1. 

To do this we shall exploit the characterization of depth by the Koszul 
complex. Let x = (Xl, ... ,Xn ) be a set of generators of the maximal ideal. 
If we tensor the Koszul complex K(x) with the short exact sequence J', we 
obtain a short exact sequence of complexes which gives the following long 
exact homology sequence: 

... --+ Hi-l(F 181 K(x)) --+ Hi-l(M 181 K(x)) --+ Hi(N 181 K(x)) 
--+ Hi(F 181 K(x)) --+ .... 

Since Nand F both have depth ~ d, we see at once that 

for i < d - 1. To prove that depth M = d - 1 it therefore suffices to show 
that 

Hd-l(M 181 K(x)) =I- O. 

Since depth N = d we know Hd(N 181 K(x)) =I- o. It is thus more than 
sufficient to prove that the map 

which is the map induced by <p, is zero. 
If pd N > 0, then by the theorem applied to N, we have d < depth R, 

so that in fact Hd(F 181 K(x)) = O. Otherwise, pdN = 0, so that N is free, 
and we have 

Hd(N 181 K(x)) = N 181 Hd(K(x)), 

Hd(F 181 K(x)) = F 181 Hd(K(x)). 

The map induced by <p is in these terms simply <p 181 1. Since <p is a minimal 
presentation, it may be represented by a matrix with entries in P. But 
Hd(K(x)) is annihilated by P by Proposition 17.14, so the tensor product 
map is in fact 0, as required. 
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The Auslander-Buchsbaum formula is a fundamental tool for studying 
modules of finite projective dimension. Here is a first indication of its use
fulness: A result connecting projective dimension to the theory of primary 
decomposition. 

Corollary 19.10. Let (R, P) be a local ring. If there exists a finitely gen
erated module of projective dimension equal to the dimension of R, then 
R is Cohen-Macaulay. If R is Cohen-Macaulay, then a module M of finite 
projective dimension has pd M = dim R iff the maximal ideal is associated 
toM. 

We can also deduce a result of Bayer-Stillman comparing the projective 
dimension of an ideal I and its generic initial ideal Gin(I), using Theorem 
15.13. A similar result, for the power series case, was announced by Grauert 
in [1972]: 

Corollary 19.11. Let S = k[XI,." ,xr ] be the polynomial ring over an 
infinite field, and let F be a graded free S -module with given basis and a 
reverse lexicographic monomial order. If I c S is a homogeneous ideal, 
then 

pds SI 1= pds SI Gin(I). 

Proof. We use the graded version of the Auslander-Buchsbaum Theorem, 
Exercise 19.8. If depth((xI, ... ,xr),SII) ::::: 1, then by prime avoidance 
some linear form is a nonzero divisor on SI I. After a generic change of coor
dinates, we may assume that Xr is a nonzero divisor on S I I in this case. 
Continuing in this way, we may suppose, after a generic change of coor
dinates, that XT) Xr-l, ... , Xs is a maximal SI I-regular sequence. By The
orem 15.20, Gin(I) is Borel-fixed, so Corollary 15.25 shows that there is a 
maximal (SI Gin(I))-regular sequence of the form X r , Xr-l, ... , Xt. By The
orem 15.13, s = t, so depth SI I = depth SI Gin(I) , and we are done. 0 

A similar result holds for arbitrary modules; we leave to the reader the 
necessary generalizations. 

One of the most significant applications of the Auslander-Buchsbaum 
formula is the promised completion of Corollary 19.6, a fundamental result 
of Auslander-Buchsbaum and Serre: 

Theorem 19.12. A local ring has finite global dimension iff it is regular. 

Proof. Half of this is done by Corollary 19.6. We now must show that if R 
has finite global dimension then R is regular. 

Suppose that R has finite global dimension, and let k be its residue class 
field. Let Xl, ... , Xn be a minimal set of generators of the maximal ideal of R. 
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We must show dim R = n. By the principal ideal theorem (Theorem 10.2) 
we have dim R :::; n, and it suffices to prove the opposite inequality. 

By Proposition 18.2 it suffices to show that depth R ~ n. But, by 
the Auslander-Buchsbaum formula, Theorem 19.9, depth R = pd k. In 
Lemma 19.13 we shall show that the Koszul complex K(Xl"'" xn), which 
has length n, is contained in the minimal free resolution of k. In particular, 
pd k ~ n, and we are done. 0 

For a generalization of the fact that if R has finite global dimension then 
R is regular, see Exercise 20.23. 

It remains to prove the following more-general result: 

Lemma 19.13. If (R, P) is a local ring with residue class field k, and if 
P is minimally generated by Xl, ... , X n, then K (Xl, ... , xn) is a subcomplex 
of the minimal free resolution of k. 

Proof. Let 
:.r: ... -+ Fl -+ Fo 

be the minimal free resolution of k. We have trivially a comparison map of 
complexes 'P : K(Xl,"" xn) -+ :.r lifting the identity map k -+ k. We shall 
show by induction on i that, for each i, the map 

is a split monomorphism. 
The statement is obvious for i = 0 and 1; since in fact 

(An - l Rn ~ Rn) -+ (An Rn ~ R) -+ k -+ 0 

is a minimal free presentation of k, it is isomorphic to 

via 'Po and 'Pl· 

Suppose, inductively, that we know that the map 'Pi-l is a split monomor
phism. Consider the following diagram. 

Fi -+ Fi- l 

~;r ~Hr 
An-iRn d An-Hi Rn -+ 

It will be enough to show that 

R/ P 0 'Pi : R/ P 0 A n-i Rn -+ R/ P 0 Fi 

is a monomorphism, since then by Nakayama's lemma a minimal set of 
generators of A n-i Rn maps to a subset of a minimal set of generators for Fi. 

Note that since the differential d of the Koszul complex maps into the 
maximal ideal times A n-i+l Rn, it induces a map of vector spaces 



19.3 Depth and Projective Dimension: The Auslander-Buchsbaum Formula 479 

d: Rj P 0 A n-i Rn ---> P j p2 0 A n-i+l Rn. 

We shall show that d is a monomorphism; since 'Pi-l is a split monomor
phism, it takes Pjp2 0 An-i+1Rn monomorphically to PjP20 Fi- 1, and 
this implies that Rj P 0 'Pi is a monomorphism, as desired. 

Finally, the proof that d is a monomorphism is nothing but linear alge
bra. Since the elements Xi minimally generate P, the vector space P j p 2 is 
isomorphic to kn , with basis {Xj}. Writing {ej} for a basis of Rn , we wish 
to show that the map 

given by 

is a monomorphism for each i < n. Since the elements Xj are linearly inde
pendent, it suffices to show that not all the ej A a can be zero unless a is zero. 
This follows at once by direct computation, or from the observation that the 
multiplication map A n-i kn x Ai kn ---> An kn = k is a perfect pairing. 

The inclusion of complexes in Lemma 19.13 makes the free modules in the 
Koszul complex into direct summands of the free modules in the minimal 
free resolution. In fact, an even stronger result holds: Results of Assmus, 
Tate, and Gulliksen (see, for example, Gulliksen and Levin [1969]) show 
that the minimal free resolution of k has the structure of a free graded skew
commutative algebra (with the differentials acting as derivations) and that 
the Koszul complex, regarded as the exterior algebra, is a tensor factor. 

As a consequence of Theorem 19.12 we can prove that a localization of a 
regular local ring is again regular. The result was known originally only for 
the geometric cases (affine rings, power-series rings, and so forth). The proof 
of the general case, by Auslander and Buchsbaum and by Serre indepen
dently, was one of the first big successes of "representation theory" -using 
module theory to prove results about rings-in commutative algebra. 

Corollary 19.14. Every localization of a regular local ring is regular. Every 
localization of a polynomial ring over a field is regular. 

Proof. Suppose R is a regular local ring or a polynomial ring, and let Rp 
be a localization. By Theorem 19.12 it is enough to show that Rp has finite 
global dimension, and by Corollary 19.5 it suffices to prove that the residue 
field Rp j Pp has finite projective dimension. Since R is regular, Rj P has 
a finite projective resolution over R, and the localization of this is a finite 
free resolution of Rpj Pp over Rp, and we are done. 

The Auslander-Buchsbaum formula can also be used to give an "extrin
sic" characterization of Cohen-Macaulay rings: 
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Corollary 19.15. If R is a regular local ring and A is a local R-algebra 
that is finitely generated as an R-module, then A is Cohen-Macaulay iff 
pdR A = codimR A (the codimension of the annihilator of A in R). 

For example, if A is a local ring that is a finitely generated module over 
a regular local ring RcA, then Corollary 19.15 implies that A is Cohen
Macaulay iff A is a free R-module (compare Corollary 18.17). 

Proof. Let P be the maximal ideal of R and let Q be the maximal ideal 
of A. Since A is a finitely generated R-module, PA =I- A by Nakayama's 
lemma, so PAc Q. Since A is finitely generated over R, A/ PAis a finite
dimensional R/ P vector space, and is thus Artinian. It follows that Qn C 

PA, so depth(Q, A) = depth(PA, A). 
If Xl, ... , xn is a maximal A-sequence in P, then P is contained in an 

associated prime (in R) of A/(XI, ... ,xn)A, and thus P annihilates some 
nonzero element y E A/(XI, ... ,xn)A. It follows that PA annihilates y, so 
Xl, •.• ,Xn is a maximal A-sequence in P A. This shows depth( P A, A) = 
depth(P, A). 

By the Auslander-Buchsbaum formula, depth(P, A) = depthR-pdR A = 
dimR - pdRA. Putting these things together we see that depth(Q, A) = 
dim A iff pdR A = codimR A. D 

19.4 Stably Free Modules and Factoriality of 
Regular Local Rings 

Another success of "representation theory" is the theorem of Auslander 
and Buchsbaum that regular local rings are factorial. It turns out that this 
is a consequence of an odd remark. 

Proposition 19.16 (Serre). Any projective module with a finite free reso
lution is stably free~that is, it becomes free after adding a free module. 

Proof. If 
~: 0 ---; Fn ---; Fn- l ---; ... ---; Fo ---; P ---; 0 

is a free resolution of the projective module P, then the epimorphism Fo ---; 
P must split. Thus the kernel, which is the image of FI , is also projective, 
and continuing this way, we see that each Fi is the direct sum of its image 
in Fi - l and the image of Fi+l . Consequently, we have 

P EB FI EB F3 EB ... ~ Fo EB F2 EB ... , 

that is, PEB free module ~ free module. 

With Corollary 19.8, Proposition 19.16 shows that if k is a field, then 
projective modules over a polynomial ring k[XI' ... ,xnl are stably free. In 
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fact, they are free. This is the algebraic analogue of saying that vector bun
dles on an affine space are trivial, an obvious fact because affine space is 
contractible. Serre [1955], observing this analogy, asked whether the alge
braic fact would hold too, and he proved Proposition 19.16 as a first bit of 
evidence that it might. The problem had quite an active history-interest 
in it contributed, for example, to the early development of algebraic K
theory-and was finally laid to rest by Quillen and Suslin independently 
in 1976-see Lam [1978] for a beautiful exposition. 

Lest the reader imagine that every stably free module is free, we give a 
classic example: 

Example 19.17. Let 

and let T be the R-module with free presentation 

It is quite easy to see that T is stably free: Indeed, since E x; = 1 in R, 
the map Rn -+ R given by the matrix (Xl' ... ' xn) splits the map R -+ Rn, 
so T ffi R ~ Rn. Under this identification, T consists of the vectors 

such that E Xiti = 0. 

It is a remarkable fact, still lacking a simple algebraic proof, that T is 
actually free if and only if n = 1,2,4, or 8. To see at least part of this, 
note first that R is the affine coordinate ring of the real (n - 1 )-sphere. T 
is in fact the module of "polynomial sections of the tangent bundle": Let 
t ETc Rn. If Z is a point of the (n - 1 )-sphere, thought of as a unit vector 
in Rn, so that Pz := (Xl - Zl, ... ,Xn - Zn) is a maximal ideal of R, then 
the image of t in Rn / pzRn = Rn is a vector with coordinates ti satisfying 
E Ziti = 0, that is, a vector orthogonal to z. Such vectors may be identified 
with tangent vectors to the sphere at the point z, 
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so that t corresponds to a tangent vector field to the sphere. Since the ti 
are polynomial functions of the coordinates of z, t is a polynomial vector 
field, and following the same construction backward, it is clear that every 
polynomial vector field corresponds to a section of T. 

Now if T is free, then we can choose a basis, which will consist of n - 1 
elements of T whose images in T / PzT form a basis for every z. Thinking of 
these as vector fields, we see that they yield a trivialization of the tangent 
bundle to the (n -l)-sphere. However, the tangent bundle is only trivial
even topologically-iff n = 1,2,4, or 8. Essentially it is trivial in these cases 
because then the sphere is the group of elements of norm 1 in the reals, com
plexes, quaternions, and Cayley numbers, respectively; the group law makes 
possible a "parallel transport" of a basis of the tangent space at anyone 
point. Since the multiplication laws in these algebras are given by polynomi
als, the trivializing vector fields may be taken to be sections ofT. The proof 
that these are the only cases where the tangent bundle is trivial is very deep. 

One can go a little further in this direction: For example, you can't even 
"comb down hair" on a two-sphere, so even a rank 1 free direct summand 
in case n = 3 does not exist. For an account of the topological results we 
have used, see Husemoller [1975]. 

In contrast to this difficult situation, it is easy to see that a stably free 
ideal is always free. We shall use this fact in the proof that regular local 
rings are factorial. 

Lemma 19.18. If M is a module such that MffiRn-l ~ R n, then M ~ R. 

Proof If M ffi Rn-l ~ Rn, then by Proposition A2.2c, 

R ~ I\nRn 

~ I\n(M ffi R n- 1) 

~ L l\iM@ I\j R n - 1 

i+j=n 

~ M ffi 1\2 M @ I\n-2 R n- 1 ffi··· 

If now P is any maximal ideal of R, then Mp is free ofrank 1, so I\i Mp = 0 
for all i ~ 2. It follows that l\iM = 0 for all i ~ 2, and we are done. 0 

See Exercises 19.4 and 19.6 for a sharpening and application of this idea. 
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We are now ready for the factoriality result. 

Theorem 19.19. Every regular local ring is factorial. 

A more refined version (MacCrae [1965]; see also Buchsbaum and Eisen
bud [1974]) says that a ring is factorial iff every two-generated ideal has 
finite projective dimension. 

Proof. Let R be a regular local ring, and let x be an element of a minimal 
set of generators of the maximal ideal of R. Since R/(x) is again a regular 
local ring, x is prime by Corollary 10.14. We shall use the following: 

Lemma 19.20 (Nagata). If x is a prime element of an integral domain R, 
and if a prime Q not containing x becomes principal in R[X-l], then Q is 
principal. In particular, if R[x-l] is factorial, then R is factorial. 

Proof. Choose an element q E Q such that qR[x-l] = QR[x-1], and the ideal 
(q) c R is maximal with this property-in particular, we may assume that 
q rt. (x). It suffices to show that if xy E (q) then y E (q)-that is, that x is 
a nonzerodivisor mod(q). 

Write xy = rq. Since (x) is prime, q rt. (x), we must have r = sx for some 
s. Dividing both sides by x we get y = sq, as required. 

To deduce the final statement we apply Corollary 10.6, noting that the 
codimension-1 primes of R are precisely (x) and the codimension-1 primes 
Q not containing x. D 

We assume again that R is regular, and prove Theorem 19.19 by induc
tion on dim R. By Lemma 19.20 it is enough to prove that R[X-:l] is fac
torial, that is, that every codimension-l prime Q of R[x-l] is principal. If 
P is a maximal ideal of R[X-l], then R[X-l]p is also a localization of R, 
so by Corollary 19.14, it is a regular local ring. Its dimension is less than 
that of R, so by induction we may assume that it is factorial. Thus Qp 
is principal, and thus a free Rp-module for every P. Theorem 19.2 shows 
that Q is projective as an R[x-1]-module; we must prove that it is actually 
free. 

Of course Q is the localization of an ideal Q' of R, so Q has a finite free 
resolution over R[x-l], obtained by localizing a free resolution of Q'. Thus 
by Corollary 19.16, Qis stably free, and by Lemma 19.18, Q is free. D 

19.5 Exercises 

Throughout these exercises we assume that all rings considered are Noethe
rian. 
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Regular Rings 

Exercise 19.1: Show that the completion of a regular local ring is again 
regular. 

Exercise 19.2: Suppose that a local ring R is a complete intersection in 
the sense that R = S / I, where S is a regular local ring and I is generated by 
a regular sequence. Show that any localization of R has the same property. 

Exercise 19.3:* Imitate the proofs of Corollaries 19.7 and 19.8 to prove 
that a Noetherian ring R is regular iff the polynomial ring R[xJ is regular. 

Modules over a Dedekind Domain 

Exercise 19.4:* Let R be a domain. If h, ... , In and JI , ... , Jm are nonzero 
ideals with 

h EB ... EB In ~ JI EB ... EB Jm , 

then n = m and II ... , . In ~ JI .. , .. Jno (Something like the assumption 
that R is a domain is necessary to avoid cases like the one where R has 
a nontrivial idempotent e, and h = Re, h = R(l - e), so R = h EB h
It is enough to assume that each I j contains a nonzero divisor. However, if 
we assume m = n, then the statement is true-but much more subtle
without the assumption about nonzerodivisors. See Heitmann and Wiegand 
[1991J.) 

Exercise 19.5: Let R be a Dedekind domain. If II"'" It are nonzero ideals 
of R, show that EB;=I I j ~ Rt-I EB II; = 1 I j . Thus if h, ... ,In and J1 , ••• , Jm 
are nonzero ideals, then 

II EB ... EB In ~ JI EB ... EB Jm , 

iff n = m and II ..... In ~ JI ..... I n· 

The problem reduces immediately to the case n = 2. The main point: 
Given two invertible modules h, 12 , use localization to show that they can 
be embedded in R in such a way that h + h = R. Form an exact sequence 
o -- J -- II EB 12 -- R -- 0, and use Exercise 19.4 to show that J ~ 1112, 

Exercise 19.6:* Suppose that R is a Dedekind domain. 

a. Let P be a torsion-free R-module. Show that P is projective. Show 
that P is isomorphic to a unique module of the form Rt EB I, where I 
is an ideal. 

b. Let M be any finitely generated R-module, and let Mtors be the tor
sion submodule of M -that is, the set of elements of M annihilated 
by some nonzero element of R. Show that M ~ M / Mtors EB Mtors . 

c. Let M be a torsion R-module (that is, M = Mtors ). Show that M 
may be written uniquely in the form 
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where a i= he··· c 1m ~ R is an ascending sequence of ideals of R. 

The Auslander-Buchsbaum Formula 

Exercise 19.7: An elementary special case of the Auslander-Buchsbaum 
formula: Let (R, P) be a a-dimensional local ring. Prove directly that no 
submodule of P Rn can be free. Conclude that any module of finite projec
tive dimension over R is free. 

Exercise 19.8 (Auslander-Buchsbaum formula in the graded 
case): Let R = Ro EEl Rl EEl ... be a graded ring, finitely generated as an 
algebra over a field Ro. Let P = Rl EEl R2 EEl ... be the homogeneous maxi
mal ideal. If M is a finitely generated graded R-module of finite projective 
dimension, then pd M = depth(P, R) - depth(P, M). 

Projective Dimension and Cohen-Macaulay Rings 

Exercise 19.9: An ideal I c R is said to be perfect if the inequality 
of Corollary 18.5 is an equality for M = R/ I; that is, if depth (I, R) = 
pdR R/ I. Ideals generated by regular sequences, among others, are perfect. 
Show that if R is Cohen-Macaulay, and I is perfect, then R/ I is Cohen
Macaulay. 

Exercise 19.10: Use Proposition 3.12, Corollary 19.15, and Exercise 19.8 
to show that if R = k[xo, ... , xnl/ I is a graded ring, then R is Cohen
Macaulay iff Rp is Cohen-Macaulay, where P = (xo, ... ,xn)' 

Exercise 19.11: If R is Cohen-Macaulay, then R has a module of finite 
length and finite projective dimension. (The converse is a well-known con
jecture of Bass, known to be true for rings containing a field.) 

Exercise 19.12:* Theorem 19.2 is false if we do not assume that M is 
finitely generated, even over rings as simple as k[x] or Z: Let M be the 
Z-module consisting of all rational numbers with square-free denominator. 
Show that M becomes free when localized at any prime ideal of Z. Show 
that M is not projective. 

Exercise 19.13: For any nonzero module M, and any prime P E AssM, 
show that pd M 2: depth P. 

Hilbert Function and Grothendieck Group 

Let S = k[Xl,"" X r ], where Xi is an indeterminate of degree di . Set 
q(t) = IIi=l(1 - t di ). Recall from Exercises 10.11-10.13 that the Hilbert 
series of M is the formal power series in one variable t given by hM(t) := 

2:n::>O HM(n)tn. 
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Exercise 19.14: 

a. Show that the Hilbert series of S is given by hs(t) = l/q(t), and thus 
that the Hilbert series of S( -a) is hS(-a)(t) = ta/II(l - tdi ). 

b. Let M be a finitely generated graded S-module. From Corollary 19.7 
we know that M has free resolution of the form 

o -+ Fm -+ ... -+ FI -+ Fo -+ M -+ 0, 

with Fi = EBS(-aij). Let p(t) = Li,/-l)ita;i. Show that hM(t) = 

p(t)/q(t). 

Exercise 19.15 (The Hilbert series is universal on graded mod
ules): Let S = k[XI, ... , Xr ], where k is a field and (for simplicity) all the 
indeterminates have degree 1. Let e be the category of finitely generated 
graded S-modules. The Hilbert series is an "additive function on e" with 
values in the (additive group of) formal power series Z[[t]] in the sense that 
for each module ME e we have the power series hM(t) = L:o dimk(Md) E 
Z[[t]], and for each short exact sequence 0 -+ M' -+ M -+ M" -+ 0 in e we 
have hM" - hM + hM' = 0 in Z[[t]]. In fact, it is the universal additive 
function, in a certain sense. We prove this now: 

We define the Grothendieck group Go(e) to be the additive group 
with a generator [M] for each graded module M in e, and a relation [M"]
[M] + [M/] for each short exact sequence 0 -+ M' -+ M -+ M" -+ 0 in e. 

Show that the map M r-+ [M] is the universal additive function on e 
in the sense that given any other additive function h with values in a 
group A, there is a unique group homomorphism h' : Go (e) -+ A such that 
h(M) = h'([MD. In particular, the Hilbert series induces a function on 
Go(e). Show that this function is a monomorphism on Go(e), and maps 
Go(e) isomorphically to (1 - t)-r(Z[t, rID c Z[[t]] , using the following 
steps: 

a. Define Ko(e) to be the additive group with a generator [F] for each 
graded free module F, and a relation [F"]- [F] + [F/] for each short 
exact sequence 0 -+ F' -+ F -+ F" -+ 0 in e. (Since every short 
exact sequence of free modules splits, we could instead have taken a 
relation [F"]- [F] + [F/] whenever F ~ F' EB F" as graded modules.) 
Show that regarding a free module as a module gives a map of groups 
Ko(e) -+ Go(e). Because of the existence of finite free resolutions of 
a graded module by graded free modules, this map has an inverse. 
Construct it. 

b. Use part a to show that Go(e) = Ko(e) is the free group on the 
classes of modules S(d) for dE Z. Now use Ex. 19.14a. 

Exercise 19.16 (The Hilbert polynomial is universal on 
sheaves): The Hilbert polynomial has a universal description too: The 
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map taking each graded module M to its Hilbert polynomial is the univer
sal additive function on modules that is zero on modules of finite length. 
Prove this as follows: 

a. With notation as in Exercise 19.15, let Go(e) = Go(e)/'J, where 'J is 
the subgroup generated by the classes of modules of finite length. (If 
you like that language, you might think of Go(e) as the Grothendieck 
group of coherent sheaves on pr-l, and PM(n) as the Euler charac
teristic of the sheaf associated to M.) Show that the map of sets 
M ~ PM (n) taking each graded module to its Hilbert polynomial is 
a group homomorphism from Go(e) to the additive group of Q[n]. 

b. Show that the Koszul complex of Xl, •.• ,Xr leads to a relation 

c. Show that Go(e) is generated by the classes [S( -a)] for a = 0, ... , r-
1. 

d. Show from Exercise 19.14a that the Hilbert series of M may be writ
ten in the form hM(t) = fM(t)/(l - tY + 9M(t), where fM(t) is a 
polynomial of degree < r, and gM(t) is a polynomial, uniquely deter
mined by this relation. Show that fS(-a) = ta for 0 ~ a ~ r - 1. 
Deduce that Go(e) is the free abelian group on the classes [S( -a)] 
for a = 0, ... , r - 1. 

e. Now prove that the map [M] ~ PM(n) E Q[n] induces an isomor-
phism from Go (e) onto its image. 

Exercise 19.17: In terms of the basis for Go(e) constructed in Exer
cise 19.16, compute the class [S/(XI, ... ,Xt)] for each t < r. Do these classes 
form a basis for Go(e)? 

The Chern Polynomial 

Exercise 19.18:* Let S be the graded polynomial ring k[XI, ... , Xr+l] , 
where each Xi has degree 1, the homogeneous coordinate ring of pr over the 
field k. Suppose the degrees of the Xi are all equal to 1, so that the graded 
ring S corresponds to projective space P/;. Let M be a finitely generated 
graded S-module. In geometry the coefficients of the Hilbert polynomial are 
usually coded in a different way, as Chern classes (or Chern numbers). 
These may be defined as the coefficients of the Chern polynomial Ct(M) 
of M (or actually of the sheaf associated to M on projective space), which 
we shall now describe. 

The Chern polynomial Ct(M) is an element of Z[t]j(tT+l) defined by the 
following two properties. (See Fulton [1984, Chapter 3]; Chern classes are 
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defined there initially only for vector bundles, but for nonsingular varieties 
such as pr-l one may extend the definition to all sheaves by using free 
resolutions. ) 

i. The Chern polynomial of S( -a) is defined to be ct(S( -a)) = 1 - at. 

ii. The Chern polynomial is multiplicative in exact sequences, in the 
sense that if 0 -+ M' -+ M -+ M" -+ 0 is a short exact sequence, 
then Ct(M) = ct(M')Ct(M"). 

Prove that there exists one and only one polynomial satisfying conditions 
i and ii. 

The Hirzebruch-Riemann-Roch formula for sheaves on projective space 
(see Fulton [1984, Chapter 15]) provides a way of computing the Chern 
and Hilbert polynomials from one another. It seems plausible that there is 
a simple combinatorial expression of this relationship, but I do not know 
of one. 



20 
Free Resolutions and Fitting 
Invariants 

We shall treat five related areas in this chapter: 

1. Uniqueness of free resolutions 

2. Fitting ideals of modules 

3. What makes a complex exact? 

4. The Hilbert-Burch structure theorem for perfect ideals of codimen
sion 2 

5. Castelnuovo-Mumford regularity 

Many invariants in algebraic geometry and commutative algebra-from 
intersection numbers of varieties to the cohomology of sheaves to the depth 
and dimension of a module-may be defined in terms of free resolutions. 
Many of these invariants are actually invariants of the homology of com
plexes derived from free resolutions. Some others seem accessible only 
through free resolutions themselves. 

In this chapter we introduce some topics related to finite free resolutions. 
We begin with the uniqueness of the minimal free resolution of a module 
over a local ring. Then we study Fitting invariants, which generalize the 
structure theory of modules over a principal ideal domain and, in general, 
give a way of expressing certain features of a module in terms of ideals. In 
the third section we use the Fitting ideals of syzygy modules to characterize 
resolutions among all finite complexes of free modules. In the fourth section 
we apply this information to give a structure theorem due to Hilbert and 
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Burch for certain resolutions of length 2 that has been the beginning for a 
great deal of recent work. Finally, in the last section, we explain a few facts 
about the "regularity" of graded modules, an idea due to Mumford that is 
a better-behaved version of the degree of the generators of a module. 

The results here involving minimal resolutions all work equally well in 
the local case and in the case of a positively graded algebra over a field. 
As pointed out by Goto and Watanabe [1978], there is a natural common 
generalization of these two cases, "generalized local rings," described in 
Exercise 20.1. To avoid repeating everything, we stick with the local case 
in the text except in the discussion of regularity, which requires a grading, 
and in a few other applications. The reader may check that everything in 
the first four sections goes through in the generalized local case. 

20.1 The Uniqueness of Free Resolutions 

We have described how to produce a free resolution of any module by choos
ing generators of the module, then generators for the kernel of the resulting 
map from a free module, and so on. Of course, the resolution produced may 
not be finite, even if the module has finite projective dimension, and has 
no obvious uniqueness. Schanuel's lemma (Exercise A3.13) shows that the 
modules in a projective resolution do have a sort of stable uniqueness. But 
this is a weak result: In the local or graded cases the modules are in any 
case free. Exercise 20.16 contains an example illustrating the nonunique
ness that can occur. However we shall now show that in the local and 
graded cases the minimal free resolution is unique, and any free resolution 
is the direct sum of the minimal free resolution and a free resolution of the 
module O. 

The opposite of a minimal complex is a trivial complex, by which we 
mean a direct sum of complexes of the form 

O-+R~R-+O-+O .. · 

Thus, for example, the complex 

@ (0,1) 
o -+ R ---t R2 ---t R -+ 0 ~ EB EB 

O-+R-+ 
1 

is a trivial complex. Trivial complexes have no homology, so if 

9: ... -+ Gn -+ ... -+ Go -+ 0 

is a trivial complex and ~ is a resolution of a module M, then ~ EB 9 is 
again a resolution of M. This is the simplest reason for the nonuniqueness 
of free resolutions. Over a local ring we shall see that it is the only reason. 
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Lemma 20.1. If 

Je: ... ---; Hn ---; ... ---; HI ---; Ho ---; 0 

is a complex of free modules with trivial homology (that is, a free resolution 
of 0) over a local ring, then Je is a trivial complex. 

Proof. Since Ho is free, the epimorphism HI ---; Ho splits, and we can write 
HI = Ho EB H~, with 

H~ = ker(HI ---; Ho) = im (H2 ---; Hd, 

the map HI ---; Ho being the projection onto the first factor. Thus Je is the 
direct sum of the complexes 

and 
Je': ... ---; Hn ---; ... ---; H2 ---; H~ ---; o. 

The complex Je l is a trivial complex, and the complex Je' is at least a 
complex of projective modules with trivial homology with nonzero terms 
only in degrees greater than o. Every projective module over a local ring 
is free (by Nakayama's Lemma, in the form of Exercise 4.11a) so Je' is 
actually a free complex. 

By the same argument we may write Je' = Je2 EB Je" and thus Je = Je l EB 
Je2 EB Je" where Je l and Je2 are trivial complexes and Je" is a free complex 
with trivial homology, and nonzero terms only in degrees greater than l. 
Continuing indefinitely we obtain a decomposition Je = Je l EB Je2 EB ... as a 
direct sum of trivial complexes. 

We are now ready for the uniqueness result. 

Theorem 20.2 (Uniqueness of minimal free resolutions). Let R be a local 
ring, and let M be a finitely generated R-module. If 3" is a minimal free 
resolution of M, then any free resolution of M is isomorphic to the direct 
sum of 3" and a trivial complex. In particular, there is up to isomorphism 
only one minimal free resolution of M. 

The first requirement for the proof of this result is to find a map between 
3" and another given resolution of M. Such a map is induced from the 
identity map 1: M ---; M as in the following easy lemma. Since it is a 
special case of Proposition A3.13 we shall omit the proof. 

Lemma 20.3 (Maps from projective to acyclic complexes). Let 

3": ... ---; F n ---; . . . ---; Fo ---; M ---; 0 

be any complex of modules with each Fi projective, and let 

9: ... ---; Gn ---; ... ---; Go ---; N ---; 0 
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be a complex of modules without homology (for example, a free resolution 
of N). 

If 'P : M -+ N is any map, then there is a "lifting" of'P to a map of 
complexes 

o : ~ -+ 9, inducing 'P : M -+ N. 

If tj; is another such lift, then 0 and tj; are homotopic in the sense that 
there exists a collection of maps Si : Fi -+ Gi +1 such that if we write 
di : Fi -+ Fi- 1 and 8i : Gi -+ Gi - 1 for the differentials of the complexes ~ 
and 9, respectively, then 

D 

Proof of Theorem 20.2. Let 9 be another free resolution of M. By Lemma 
20.3 there are comparison maps a : ~ -+ 9, (3 : 9 -+ ~ lifting the identity 
map on M. Further, (3a is homotopic to 1: That is there exist Si satisfying 
the relations of Lemma 20.3. Thus 1 - (3iai : Fi -+ Fi is a sum of maps 
factoring through the differentials of ~, and since ~ is minimal, this means 
that 

(1 - (3iai)(Fi) C P Fi, 

where P is the maximal ideal of R. It follows that det (3iai == l(mod P), so 
(3a is an automorphism of ~. Replacing (3 with the composition of (3 and 
the inverse of this automorphism, we may assume that (3a = 1 -that is, 
a is an inclusion and the new (3 is a splitting of a. 

Let JC := coker a. Since each ai is a split inclusion, the modules of JC are 
all free. Since the splitting of (3 is a map of complexes, 9 ~ ~ EEl JC. Thus 
the homology of 9 is the direct sum of the homologies of ~ and JC. Since 
the inclusion a : ~ -+ 9 induces an isomorphism on homology, the complex 
JC has no homology at all. By Lemma 20.1, JC is a trivial complex, and 9 
is the direct sum of ~ with a trivial complex, as claimed. D 

20.2 Fitting Ideals 

As a consequence of the uniqueness theorem just proved, we can make 
many invariants of a module out of a free (or even projective) resolution 
of the module. We begin by studying some that come from the first step 
of a free resolution, a "free presentation." Since this may be applied to the 
syzygy modules of a given module too, it will serve us later in the study 
of the whole free resolution. We shall assume throughout that our modules 
are finitely generated, and leave the adaptation to the infinite case in the 
hands of the interested reader. 

Definition. If'P : F -+ G is a map of free modules, then Ij'P is the image 
of the map 
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induced by Aj rp : Aj F -+ Aj G. If we choose bases for F and G, then rp may 
be represented by a matrix, and we see that Ijrp is generated by the minors 
(that is, determinants of submatrices) of size j of that matrix. We make the 
convention that the determinant of the 0 X 0 matrix (like a product with no 
factors) is 1. In particular, Iorp = R, and more generally, we set Ijrp = R 
if j :::; o. 

It is not really necessary to suppose that F is free to make the preced
ing construction-we can replace F by any free module mapping onto F 
without changing Ijrp. 

These ideals of minors turn out to define invariants of a module that 
generalize the usual invariants for finitely generated abelian groups, a fact 
that was first observed by Fitting [1936]. 

Corollary-Definition 20.4 (Fitting's Lemma). Let M be a finitely gen
erated module over a ring R, and let rp : F -+ G -+ M -+ 0 and rp' : F' -+ 

G' -+ M -+ 0 be two presentations, with G and G' finitely generated free 
modules of ranks rand r'o For each number i with 0 :::; i < 00, we have 
Ir-i(rp) = Ir,_i(rp'), and we define the ith Fitting invariant of M to be the 
ideal 

Fitti(M) = Ir-irp C R. 

Proof. We leave to the reader the immediate reduction to the case where 
F and F' are finitely generated, the only case with which we shall be 
concerned-see Exercise 20.5. 

Two ideals are equal iff they become equal in every localization of R, 
so we may harmlessly assume that R is local, and we must show that the 
Fitting ideals coming from a given free presentation of M are the same as 
the ones coming from the minimal presentation. If rp is the map giving the 
minimal presentation, then by Theorem 20.2 any other presentation map 
'l/J may be put in the form 

where 1 is a p x p identity matrix. We must show that Ijrp = Ij+prp. Any 
nonzero minor m of 'l/J of size j + p is made by taking, for some j', p' with 
j' + p' = j + p, a j' x j' minor m ' of rp and a p' x p' minor of I, and 
multiplying them. Since we must have p' :::; p, it follows that j' ~ j, and 
m = m'. Thus Ij+p'l/J = ~j:'Ojl:'Oj+p Ijlrp. Since Ijlrp C Ijrp for all j' ~ j, we 
are done. 

The preceding proof-and indeed the whole theory of Fitting invariants
works just as well for projective presentations F -+ G -+ M -+ 0 as for 
free ones as long as G has constant rank (that is, the same rank at every 
localization). This is true of any projective unless R contains nontrivial 
idempotents; see Exercise 20.12. 



494 20. Free Resolutions and Fitting Invariants 

The Fitting ideals are functorial: 

Corollary 20.5. The formation of Fitting ideals commutes with "base 
change"; that is, for any map of rings R ~ S, 

Fittj(M ®R S) = (Fittj M)S. 

Proof. By the right-exactness of tensor product, the tensor product of S 
with a free presentation of M is a free presentation of S ®R M. 

The significance of the Fitting ideals is perhaps best described by saying 
that the Fitting ideal Fittj M is the obstruction to generating M with 
j elements in the following sense. 

Proposition 20.6. If (R, P) is local, then M can be generated by j ele
ments iff Fittj M = R. In general, the closed subset of Spec R defined by 
Fittj M is the set of primes Q such that MQ cannot be generated by j 
elements. 

Proof. By Corollary 20.5 the formation of the Fitting ideals commutes with 
localiztion, so we may suppose that R is local, and we need only show that 
M can be generated by j elements iff Fittj M = R. 

Let cp : F ~ G be a minimal presentation of M -that is coker cp = M 
and cp is represented by a matrix with its entries in the maximal ideal P of 
R. Computing Fittj M from cp we see that Fittj M c P iff j < rank G, the 
minimal number of generators of M. 

The property given in Proposition 20.6 characterizes the Fitting ideals up 
to radical only. Because the generic determinantal ideals are prime however, 
the Fitting ideals themselves may be characterized as the collection of the 
largest ideals satisfying both Corollary 20.5 and Proposition 20.6. We shall 
not require this point, so we shall not pursue it further. 

In the case of the zeroeth Fitting ideal, Proposition 20.6 shows that 
Fitto M has the same radical as the annihilator of M. One can be more 
specific: 

Proposition 20.7. For any R-module M: 

a. FittoM c annM. 

b. For every j > 0 we have (annM) Fittj(M) c Fittj_l(M). If Mean 
be generated by n elements, then (ann M)n c Fitto M. 

Proof. Suppose M = coker cp : G ~ Rn. 

a. We have Fitto M = Incp. If cp' is an n x n submatrix of cp, then M is 
a homomorphic image of M' := coker cp', and thus annM' c annM. 
Thus it suffices to treat the case G = Rn, cp = cp', and show that det cp E 
ann M. Writing 1 : R n ~ Rn for the identity map, we may factor 
(det cp)l as cpo'lj;, where 'Ij; is the matrix of cofactors of cpo The diagram 
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Rn~ Rn---+ M-tO 
.p,/ ! (det cp)l ! (det cp)IM=O 

Rn -t Rn ---+ M -t 0 
cp 

commutes, so (det <p)M = O. 

b. If a E ann M and <p' is a (j - 1) x (j - 1) submatrix of <p with 
j - 1 < n, then we must show a· det(<p') E Ij(<p). We can make a 
new presentation matrix for M of the form <p + aI : G EB Rn -t Rn, 
where aI : Rn -t Rn is multiplication by a. In terms of matrices, 
<p + aI is represented by an n x (n + m) matrix of the form pictured 
in Figure 20.1, where m = rankG. Let <p" be the submatrix of <p+aI 
obtained from <p' by adding a row not involved in <p' and adding the 
corresponding column from aI, as in Figure 20.1. 

We have <p" = <p' EB a, so det( <p") = a . det( <p'). By Fitting's lemma, 
Corollary 20.4, det <p" E Ij (<p + aI) = Ij (<p) as required. 

Finally, note that Fittn (M) = R, so from the preceding relation we 
successively deduce 

(annM)R c Fittn_l(M), 
(annM)2 c (annM) Fittn_l(M) c Fittn_2(M) 

(annM)n C (annM) Fittl(M) c Fitto(M). D 

The case M = (Rj I)n shows that the exponent n in part b cannot be 
improved. However, the result can be considerably sharpened and extended. 
Some results in this direction are given in Exercises 20.6, 20.9, and 20.10, 
Buchsbaum and Eisenbud [1977], and Eisenbud and Green [1994]. 

If ann M = 0, then Proposition 20.7 tells us only that Fitto M = O. In 
general, if M = coker(<p : F -t G), then the most important of the Fitting 
ideals of M is the first of the Fittj M that is nonzero. We call this Fitting 
ideal simply I(M) or, to make the notation more convenient in many cases, 
J(<p). Thus I(<p) = Irankcp<p. Its significance for us is the following: 

Proposition 20.8. M is projective of constant rank r iff Fittr(M) = R 
and Fittr_l(M) = o. Thus M is projective of (some) constant rank iff 
I(M) = R. 

~+~=( 
a 

) a 

a 

<p" = <p' E9 (a) 

FIGURE 20.1. 
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Proof. Suppose that M is projective of constant rank ri that is, suppose 
that for all primes Q of R the module MQ is free of rank r. Over RQ the 
module MQ has a free presentation F ----; G ----; MQ ----; 0 with F = 0 and 
G = MQ, so Fittj MQ = RQ if j :2: r, while Fittj MQ = 0 otherwise. By 
Corollary 20.5 the Fitting ideals localize, so Fittj M = R if j :2: r, while 
Fittj M = 0 otherwise. In particular, I(M) = R. 

Conversely, suppose that Fittr M = R while Fittr-l M = 0, and let Q be 
a prime. By Proposition 20.6, MQ can be generated by r elements over RQ. 
Let MQ = coker( 'P : G ----; R'Q) be a free presentation over the localization 
RQ of R. Since 0 = Fittr-l MQ = h('P), we have 'P = 0 and MQ is free of 
rank r. 

The construction of I('P) = Irank<p'P does not in general commute with 
localization since the rank of'P may decrease when we localize. However, 
this is the only problem, so that if I ('P) contains a nonzero divisor then 
I('P) ® R[S-lJ = I('P ® R[S-l]) for any multiplicatively closed set S. We 
shall use this remark in the proof of Theorem 20.9. 

20.3 What Makes a Complex Exact? 

The next result shows that a finite free resolution can be distinguished from 
an arbitrary free complex simply by examining the ideals of minors of its 
maps. 

Theorem 20.9. Let R be a ring. A complex 

of free R modules is exact iff 

(1) rank Fk = rank 'Pk + rank 'Pk+l 

and 

(2) 

for k = 1, ... , n. 

Here we interpret the unit ideal as having infinite depth, so that if 
I( 'Pk) = R, then condition (2) is automatically satisfied. We postpone the 
proof of Theorem 20.9 for a moment. 

It is easy to make versions for projective modules and for the exactness 
of:r ® M, for any module M. For example, in the latter case the numbers 
that are important are rank('Pk,M), the largest r such that (Ir'P)M =I- 0, 
and depth(Ir ('P), M). For these generalizations and others, see Buchsbaum 
and Eisenbud [1973J or Northcott [1976J. 
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One might hope for a similar result for complexes with no 0 at the left
hand end, so that one could apply it to infinite resolutions as well, or simply 
to a pair of maps whose composition is zero, a complex of the form 

F~G~H. 

Unfortunately, no such result is known. To get an idea how far this case 
may deviate from the conditions of the preceding theorems, even when the 
given complex forms part of a minimal free resolution over a local ring, 
consider the ring R = k[E] with E2 = 0, and the matrix 

(
EO 0) 

'P= OEO. 
o 0 E 

It is easy to check that over this ring the complex 

···~R3~R3~R3~ ... 

is exact although rank 'P = 1 in our sense, and depth I( 'P) = O. See Eisenbud 
[1980] for more information on such resolutions. 

Nonetheless, there is one elementary result of this kind that holds under 
a strong hypothesis and generalizes the case of vector spaces over a field. 
We shall use it in the proof of Theorem 20.9. For a slightly more general 
result, see Exercise 20.4. 

Lemma 20.10. A complex F ~ G ~ H of free R-modules with I('P) = 
I ( 7jJ) = R is exact iff rank 'P + rank 7jJ = rank G. 

Proof. The most direct way to prove this lemma is to localize so that one 
may assume that 'P and 7jJ have minors of size rank'P and rank 7jJ that are 
units, and then to reduce <p and 7jJ as far as possible to normal form. Since 
it is hard to give such an argument without a blackboard, we take a more 
formal approach: 

We may harmlessly assume that R is local. In this circumstance, Propo
sition 20.8 shows that coker 'P is free of rank equal to rank G - rank <po The 
map 7jJ may be factored as 

1;' 
G ---t coker 'P --'t H, 

and the rank and ideals of minors of 7jJ' are the same as those of 7jJ. Thus 
it suffices to prove the result when 'P = O. 

Write - * for HomR( -, R). By Proposition 20.8, coker (7jJ*) is free of rank 
equal to rank( G*) - rank( 7jJ*) = rank G - rank 7jJ. Dualizing the right-exact 
sequence 

H* ---t G* ---t coker (7jJ*) ---t 0, 

we get a left-exact sequence 

o ---t coker ( 7jJ*)* ---t G ---t H. 
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The dual of a free module is 0 iff the module is 0, so 'l/J : G --+ H is a 
monomorphism iff rank'l/J = rank G. 

Proof of Theorem 20.9. We first show that if:! satisfies (1) and (2), then:! 
is exact. It is enough to prove this after localizing. Because (2) guarantees 
in particular that each J(<Pk) contains a nonzero divisor , the rank of each 
<Pk is preserved by localizing. Thus hypotheses (1) and (2) are preserved, 
and we may begin by supposing that R is local. 

We may reduce to the case n ::;: d := depth R. Since no proper ideal of 
R can have depth> depth R, condition (2) implies that J( <Pk) = R for all 
k > depth R. Thus Lemma 20.10 proves the exactness of the complex:! at 
Fk for k > d. Furthermore, coker <Pd+l is projective (and thus, since R is 
local, free) by Proposition 20.8, so we may simply replace Fd by coker <Pd+l 

and assume from now on that n ::;: d. 
By induction on the dimension of R, we may suppose that :! becomes 

exact wher localized at any nonmaximal prime (admitting the case that 
R is zero-dimensional, so that there are no nonmaximal primes). Thus we 
may assume that for i 2 1 the homology of :! at Fi is annihilated by a 
power of the maximal ideal, and in particular that it has depth O. The 
following powerful result of Peskine and Szpiro [1973] completes the proof 
of the exactness of:! in the case n ::;: depth R (which is the depth of Fi for 
every i, since the Fi are free). 

Lemma 20.11 (Acyclicity Lemma). Suppose 

is a complex of finitely generated (but not necessarily free) modules Fi over 
a local ring R such that depthFi 2 i. If Hi:! #- 0 for some i > 0, then for 
the largest such i we have depth Hi:! 2 1. 

Proof. Truncating the complex on the right if necessary, we may assume 
that HI:! is the only nonvanishing homology. If n = 1, then HI:! C FI has 
depth 2 1 as required, so we may assume n 2 2. Writing K = ker <PI and 
Bi = im <Pi, we have exact sequences 

o --+ Bk+l --+ H --+ Bk --+ 0, for k 2 2, 

and 
0--+ B2 --+ K --+ HI:! --+ O. 

Applying Corollary 18.6 iteratively to the first group of these sequences, 
starting from k = n and depth Fn = depth Bn 2 n, we see that depth Bk 
2 k for all n 2 k 2 2. On the other hand, depth K 2 1 because K is a 
submodule of Fl. Using Corollary 18.6 again, we see that depth HI'.f 2:: 1 
as required. 0 

Continuing with the proof of Theorem 20.9, we must show that if the 
complex:! is exact, then conditions 1) and 2) are satisfied. We shall localize 
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and use the Auslander-Buchsbaum formula. To use this technique we need 
to know that the formation of the I('Pk) commutes with localization. To 
this end we shall show that each I( 'Pk) contains a nonzero divisor. 

We may begin by inverting all the nonzero divisors in R, and thus assume 
that R is a semilocal ring where all the maximal ideals are associated primes 
of R. In this situation we must show that I( 'Pk) = R for every k. Since we 
may truncate the resolution :J on the right, it is enough to show that 
I('PI) = R. 

Let P be a maximal ideal of R. Since P is an associated prime of 0 in R 
we have depth Rp = O. Let M = coker 'Pl. By the Auslander-Buchsbaum 
formula, Theorem 19.9, the module Mp is free over R p . It follows that the 
complex :J p is split exact, so the rank of Mp is given by 

rankMp = ~)-l)irankFi' 
i2:0 

independently of the prime P. This shows that M is projective of constant 
rank. From Proposition 20.8 we get the desired equality I ('PI) = R. 

We now prove (1). To this end we may begin by inverting all the nonze
rodivisors of R without changing the ranks of the maps or the modules. 
By what we have just proven, we shall then have I('Pk) = R for each k, so 
that Lemma 20.10 gives the desired conclusion. 

It remains to prove 2). Let P be a prime containing I('Pk) and associated 
to a maximal regular sequence in I ('Pk), so that 

depth (Pp,Rp) = depth I('Pk). 

Localizing :J at P and using Proposition 20.8 on the module coker 'Pk, 
we see that coker ('Pk)P is not free, so pdRp Mp 2 k by Proposition 20.2. 
Since Mp is a module of finite projective dimension, the Auslander
Buchsbaum formula shows that depth (Pp, Rp) 2: k. Our choice of P gives 
depth I('Pk) 2: k, and we are done. 

Here are some applications of Theorem 20.9: 

Corollary 20.12. Let:J be a complex as in Theorem 20.9. If:J is exact, 
then 

rad I('Pk) c rad I('Pk+d for all k 2 l. 
If in addition coker 'PI has a nonzero annihilator, then 'PI has rank equal 

to the rank of Fo. In this case, writing d = depthI('PI), we have 

rad I('Pd = ... = rad I('Pd) i= rad I('Pd+I). 

Proof. By Theorem 20.9, the exactness of :J implies that each of the ideals 
I( 'Pk) contains a nonzerodivisor, so 'Pk has the same rank at every localiza
tion of R. 

To prove the first statement it is enough to show that if a prime Q does 
not contain I('Pk) then it does not contain I('Pk+I). But if Q does not 
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contain I('Pk) then coker('Pk)Q is projective by Proposition 20.8. Thus in 
particular the sequence 

0--+ coker('Pk+dQ --+ (Fk)Q --+ coker('Pk)Q --+ 0 

splits, so coker( 'Pk+dQ is projective and hence free. Using Proposition 20.8 
again, we see that I('Pk+l) ct. Q, as required. 

Now suppose that M = coker 'PI has nonzero annihilator. Let a E I('Pd 
be a nonzero divisor. Proposition 20.8 shows that M[a- I ] is projective of 
constant rank over R[a- I]. Since M[a- I] has nonzero annihilator, M[a- I] 
must be o. It follows that rank 'PI = rankFo. 

To establish the equalities in the last statement of Corollary 20.12, 
set I = ann( coker 'Pd. Since rank 'PI = rank Fo, we have I ('PI) = 
Fitto (coker 'Pd, so by Proposition 20.7 the radical of I coincides with the 
radical of I('Pd. 

Suppose that Q is a prime ideal not containing I('Pk) for some k ::::: 
depth I. Since I('Pk) ct. Q, we know from Proposition 20.8 that (coker 'Pk)Q 
is free. We must show that I ct. Q, or equivalently that (coker 'PdQ = o. 

If we assume that (coker 'PdQ =I- 0, then by Corollary 18.5 we know that 

depth IQ ::::: pd(coker 'PdQ. 

Since (coker 'Pk)Q is free, we have 

pd( coker 'PdQ < k 

which is a contradiction. 

::::: depth I 
::::: depth IQ 

Finally, we prove that rad I( 'Pd) =I- rad I( 'Pd+I). We have already shown 
that rad I('Pd) = rad I('Pd, so 

depth I('Pd) = depth rad I('Pd) = depth rad I('Pd = d. 

On the other hand, by Theorem 20.9, I('Pd+d must have depth :::: d + 1 
and we are done. 

Corollary 20.12, in conjunction with Theorem 20.9, contains a well
known result of Auslander and Buchsbaum. 

Corollary 20.13 (Auslander-Buchsbaum). Let M be a module with a finite 
free resolution over a ring R. If the annihilator of M is nonzero, then it 
contains a nonzerodivisor, and the alternating sum of the ranks of the free 
modules in any finite free resolution of M (the "Euler characteristic of M ") 
is zero. 

Proof. With notation as in Corollary 20.12, suppose :r is a finite free reso
lution of M. By Theorem 20.9, I('PI) contains a nonzerodivisor. By Propo
sition 20.7, the annihilator of M contains Fitto M. By Corollary 20.12, 
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rank<pl = rank Fa, so Fitta M = I(<pd proving the first statement. The 
statement about the Euler characteristic follows from condition 1 of The
orem 20.9. 

A beautiful application of Corollary 20.13, due to Vasconcelos, is given 
in Exercise 20.23. 

The I(<Pd) in a finite free resolution of a module M can be used to give 
an interesting description of the associated primes of M. 

Corollary 20.14. Let M be an R-module with a finite free resolution 
~n ~1 o ....... Fn -+ .......... Fl -+ Fa ....... M ....... O. 

a. If P is a prime of Rand d = depth Pp, then P E Ass M iff P :::) I( <Pd). 

b. Set depth ann M = d. We have depth Pp = d for all P E Ass M iff 
depthI(<Pk) > k for all k > d. 

Proof. 

a. Corollary 19.10 of the Auslander-Buchsbaum formula, applied over 
the local ring Rp , shows that P is an associated prime of M iff the 
projective dimension of Mp over Rp is depth Pp = d. This happens iff 
(coker <Pd)P is not free. By Proposition 20.8, (coker <Pd)P is not free 
over Rp iff P contains I((<pd)p), By Theorem 20.9, I(<Pd) contains 
a nonzerodivisor, so I((<pd)p) = I(<Pd)p, and we see that P if> an 

" associated prime of Miff P contains I(<Pd), as required. 

b. By Lemma 18.1, depth I(<Pk) > k iff no associated prime P with 
depth Pp = k contains I(<pk)' Thus by part a, depth I(<Pk) > k iff no 
such prime is associated to M. Since this is true for each k > d, the 
result follows. 0 

20.4 The Hilbert-Burch Theorem 

In a sense Theorem 20.9 shows that the condition for a complex to be 
exact is not so complicated; but being a complex is a very subtle property! 
Thus, from Theorem 20.9, we are not really in a position to construct free 
resolutions, and in general it is very difficult to say what they look like: For 
example, it is an open conjecture of Buchsbaum and Eisenbud [1977], and 
Horrocks (reported in Hartshorne [1979]) that over a regular local ring, the 
Koszul complex has the smallest rank free modules of any resolution of a 
module of finite length. 

To understand free resolutions further, one must look at some simple 
special cases. Let R be a local ring. In general, the most interesting modules 
to resolve are factor rings R/ I, since in the geometric case these correspond 
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to subvarieties. If R/ I has projective dimension 1, then I must be free and 
is thus generated by a nonzerodivisor. 

The next case, where pd R/ I = 2, is more interesting but can still be 
analyzed completely. This is the content of the Hilbert-Burch theorem. 

Theorem 20.15. 

a. If a complex 
'P2 'PI 

::F : 0 -+ F2 --+ Fl --+ R -+ R/ I -+ 0 

is exact, and Fl ~ Rn, then F2 ~ Rn- l and there exists a nonzerodi
visor a such that I = aln- l ('P2). In fact the ith entry of the matrix 
for 'Pl is ( -1 )ia times the minor obtained from 'P2 by leaving out the 
ith row. The ideal In- l ('P2) has depth exactly 2. 

b. Conversely, given any (n-1) x n matrix 'P2 such that depth I( 'P2) ::::: 2, 
and a nonzerodivisor a, the map 'Pl obtained as in part a makes ::F 
into a free resolution of R/I, with I = aln- l ('P2). 

Hilbert [1890] proved this result for graded ideals of co dimension 2 in a 
polynomial ring, simply to give examples of free resolutions. Burch [1968] 
proved it in the generality here. Many other people have discovered it for 
themselves (and quite a few have also published it) in the intervening years. 
For a proof in a different style from that presented here see Kaplansky [1970, 
p. 148]. Our presentation reverses history, since the Hilbert-Burch theorem 
provided key evidence for the conjecture that became Theorem 20.9. 

Proof. 

a. To prove that 'Pl has the desired form, we choose bases for F2 and 
Fl and define 'P~ : Fl -+ R to be the map with matrix whose ith 
entry is the minor obtained from 'P2 by leaving out the ith row. The 
composition 'P~ 'P2 is 0 because each of the entries of 'P~ 'P2 can be 
interpreted as the determinants of a matrix obtained from 'P2 by 
repeating a column. By the characterization of resolutions, I n - l ('P2) 
has depth 2:: 2, so using the characterization again, we see that the 
second row in the following diagram is exact: 

::F* : 0 -+ R 
'Pi 
--+ F* 1 

'P; 
--+ F.* 2 

al 1 1 
::F'* : 0 -+ R 

'P~* 
---> F* 1 

'P; 
--+ F.' 2 

~fu~~~~oofu~~fu~~~fu~ 
labelled a is a comparison map that exists because the first row is a 
free complex and the second row is exact. Since it is a map from R 
to R, it is multiplication by an element, which we shall also call a, of 
R. 
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It is evident from the commutativity of the diagram that aip~ = ipl. 

It follows that a is a nonzero divisor because I(ipd has depth ~ 1 by 
the characterization of resolutions. 

To show that depth I n - l (ip2) ::; 2, we first apply Theorem 20.9 to 
:J". The hypotheses are obviously fulfilled, and we see that :J" is a reso
lution of RI I n - l (ip2). Since :J" has length 2, Corollary 18.5 shows that 
depth I n - l (ip2) ::; pdR RI I n - l (ip2) = 2. Alternatively, we could quote 
Exercise 10.9 to see that co dim I n - l (ip2) ::; 2 and use the fact that 
the depth is bounded above by the co dimension (Proposition 18.2). 

b. Part b follows immediately from Theorem 20.9. o 

The Hilbert-Burch theorem is most often used in the study of Cohen
Macaulay rings of co dimension 2-that is, Cohen-Macaulay factor rings 
R = SII of a regular ring S (usually taken to be local or graded) for which 
co dim I = 2. If R is such a factor ring, then since dim S = 2 + dim R = 
2 + depth R in this case, we must have pds R = 2 by the Auslander
Buchsbaum formula, and the Hilbert-Burch theorem applies. Conversely, 
if we are given an n x (n - 1) matrix whose (n - 1) x (n - 1) minors 
generate an ideal I of co dimension 2 in a regular ring S, then S I I will 
be Cohen-Macaulay of co dimension 2. (This converse----but not the other 
implication-can be generalized to minors of other sizes and many types of 
related ideals, such as those defined by the Pfaffians of a skew-symmetric 
matrix.) An application of these ideas to factoriality of hypersurface rings 
is given in Exercise 20.17. 

Perhaps the simplest setting where the Hilbert-Burch theorem is useful 
is in the study of ideals of sets of points in the projective plane. Indeed, 
anyone-dimensional affine ring where every associated prime is minimal is 
Cohen-Macaulay, so that the ideal I c S := k[xo, Xl, X2] of a set of points 
in p 2-or indeed of any zero-dimensional scheme in p2-has pd S I I = 2 by 
the Auslander-Buchsbaum formula. Thus the Hilbert-Burch theorem may 
be applied. 

20.4.1 Cubic Surfaces and Sextuples of Points in the Plane 

Here is an ancient example from projective geometry that still inspires 
research. See Gimigliano [1989] and Dolgachev and Kapranov [1993] for 
recent treatments and extensions. Let X be a set of six distinct points 
in p2, not contained in any conic. Since X does not lie on a conic, the 
ideal of X must be generated by forms of degree ~ 3. The condition for a 
curve of given degree to pass through a given point is one linear condition 
on the coefficients of the equation of that curve; since the vector space of 
cubic equations has dimension 10, it follows that if J is the vector space of 
equations of cubics containing X, then 

dim J ~ 10 - 6 = 4. 
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Further, a minimal system of generators for the ideal I of X must contain 
a basis for J. Now by the Hilbert-Burch theorem, the minimal generators 
for I are the (n - 1) x (n - 1) minors of some n x (n - 1) matrix with 
entries in the maximal homogeneous ideal (Xo, Xl, X2) of 8. In particular, 
if the ideal requires ~ n generators, then the generators must each be of 
degree ~ n - 1. In the present case, since we have cubic generators, I must 
be minimally generated by ~ 4 elements, and we see that dim J = 4 and 
any basis for J is a set of generators of I. Such a basis 11, ... ,14 is the set 
of 3 x 3 minors of a 3 x 4 matrix of forms of degrees ~ 1, so in fact it must 
be the 3 x 3 minors of a 3 x 4 matrix M of linear forms. (More generally, 
the Hilbert-Burch theorem has the curious consequence that an ideal of a 
set of points with many generators must have all generators of rather high 
degree; this was the application that Burch originally had in mind.) 

We can use the Ii to define a surface Y in p3, the image of p2 under 
the "rational map" I defined by sending a point p E p2 to the point 
(11 (p), ... , 14 (p)) E p3. The fiber of lover a general point is finite since, 
regarding the Ii as defining a map from A 3 to A 4 , the preimage of the 
point 0 consists of the cone over X and is thus one-dimensional. By Corol
lary 14.5, the image of I is a surface in p3. Algebraically, Y may be defined 
as the surface whose equation is the generator of the kernel of the map of 
rings 

k[yo, ... ,Y3]---+ k[XO,Xl,X2] sending Yj to Ij(x). 
The kernel is principal since it is a prime ideal of co dimension 1, the ring 
generated by the Ij being a domain of dimension 3. In fact, the image is 
the plane, blown up at the "base locus" X of the four cubics. 

We may compute the equation of this surface conveniently from the 
matrix M as follows. Restricting M to the degree = 0 part of 8 3 , we get a 
map of vector spaces 

k3 = (83)0 ---+ (84h = (XO,Xl,X2) 0!Jk k4 = k3 ®k k4. 

In general, giving a p x q matrix of linear forms in n variables is the same as 
giving a map kq ---+ kP ® kn. Thus the map k3 ---+ k3 ® k4 corresponding to M 
above also corresponds to a 3 x 3 matrix N of linear forms in four variables 
Yi. In fact, the determinant of this matrix, which is a cubic form in the Yi, 
is the equation of Yin p3. We shall not prove this here. However, it is easy 
to see at least that the determinant vanishes on Y; that is, substituting the 
Ii for the Yi in N gives a matrix N(f) whose determinant is identically o. 
Indeed the fact that (11, ... ,14) 0 M = 0 is, as one easily sees, equivalent 
to the fact that ((Xo, Xl, X2) 0 N)(f) = O. 

20.5 Castelnuovo-Mumford Regularity 

Throughout this section 8 = k[Xl, ... , xrl is a polynomial ring in r variables 
over a field k, and M denotes a finitely generated graded 8-module. To 
simplify notation, we shall write Ext for Exts. 
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There is a notion of regularity for sheaves on projective spaces due to 
David Mumford [1966] that generalizes the idea of Castelnuovo's base-point 
free pencil trick given in Exercise 17.18; it is useful in controlling the vanish
ing of cohomology of a sheaf. A closely related notion for graded modules 
arises naturally in the study of finite free resolutions, and we present it 
here. 

If Ie S is a homogeneous ideal, minimally generated by forms il,···, fn' 
then the maximum of the degrees of the fi is an invariant of I~in fact it 
is even an invariant of the graded ring S / I, as the reader may easily check. 
Unfortunately, this invariant is difficult to handle. It is often easier to study 
the degrees of elements required to generate all the syzygies of I. To get 
a feeling for the right question, let M be any finitely generated graded 
S-module, and let 

. . . --+ Fj --+ . . . --+ Fo --+ M --+ 0 

be the minimal graded free resolution of M. Write bj for the maximum 
of the degrees of the generators of Fj . In many cases of interest one has 
bj > bj~l > '" > bo (see Exercise 20.19), so it is natural to work with the 
sequence bj - j. We shall say that M is m-regular for some integer m if 
(bj - j) -::; m for all j; and we define the regularity of M, written regM, 
to be the least integer m for which M is m-regular. 

The definition is set up so that if M is m-regular, then in particular M 
is generated by elements of degrees -::; m. We may restate the definition 
by saying that the regularity of M is the smallest integer m such that for 
every j the jth syzygy of M is generated in degrees -::; m + j. 

If M is m-regular, then Fj has no generators of degree 2:: m + j + 1, 
so F/ = Homs(Fj, S) is zero in degree -::; -m - j - 1. Thus, in particular, 

Extj (M, S), which is a subquotient of Fj* , must be 0 in degrees -::; -m- j -1. 
Not so obviously, the converse is true as well: 

Proposition 20.16. With notation as above, M is m-regular iff 

Extj(M, S)n = 0 for all j and all n -::; -m - j - 1. 

Proof. We have already seen that if M is m-regular then the condition 
on Ext is satisfied. Suppose conversely that m is an integer for which the 
condition on Ext is satisfied. Let m' be the regularity of M. It suffices to 
show that m' -::; m. 

Let j be the largest integer such that bj - j = m'. The module Extj (M, S) 
is the homology of the dual of the resolution of M at Fl. From the hypoth
esis on j we see that Fj' has S(m' + j) as a summand, whereas F/+l has no 
summand of the form S(n) with n 2:: m' + j + 1. Since the free resolution 
we have taken is minimal, the summand S(m' + j) in Fj* must map to 0 in 
F/+1' Again by minimality (or by inspecting degrees) nothing in Fj*~ 1 can 
map onto the generator of S( m' + j) in Fj*' so it gives a nonzero class in 
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Extj(M, S), of degree -m' - j. Thus -m' - j ~ -m - j, so m' ~ m as 
required. 

Proposition 20.16 is hard to apply because in principle infinitely many 
conditions must be checked. Actually, it suffices to check just a few! To 
state the result cleanly we make another definition. 

Definition. We say that M is weakly m-regular if 

Extj(M, R)n = 0 for all j and n = -m - j - 1. 

In terms of this definition, Proposition 20.16 says that M is m-regular iff 
M is weakly m'-regular for all m' ~ m. 

For most purposes this is the same as the definition for sheaves on pro
jective space given by Mumford [1966J. (See the historical comments at the 
end of this section and also Exercise 20.20 for the translation.) As Mumford 
says, "This apparently silly definition reveals itself as follows:" 

Theorem 20.17 (Mumford). With notation as above, let N be the maximal 
submodule of M having finite length. If M is weakly m-regular, then MIN 
is m-regular. 

The context in which Mumford actually worked is that of sheaves over 
projective space. Every sheaf corresponds to a module (its module of 
twisted sections) having no submodule of finite length. In this context, 
Theorem 20.17 says simply that regularity coincides with what we have 
called weak regularity. 

Proof. We do induction on the Krull dimension of the module M. Set 
M' = MIN. If dimM = 0 then M' = 0, so the result is obvious. 

From the exact sequence 0 -> N -> M -> M' -> 0, we get a long exact 
sequence 

... -> Extj-1(N,S) -> Extj(M',S) -> Extj(M,S) -> Extj(N,S) -> ... 

By Proposition 18.4 we have Extj (N, S) = 0 for all j < r. Thus Extj (M', S) 
~ Extj(M,S) for j < r, so M' is also weakly m-regular. 

The maximal homogeneous ideal is not associated to M'. We would like 
to choose a homogeneous element xES of degree 1 such that x is a 
nonzerodivisor on M'. If k is infinite, this is no problem: Since the vector 
space of forms of degree 1 in S is not contained in anyone of the associated 
primes of M', it is not contained in their union. If k is finite, there may be 
no such element x, but we can get around the problem as follows: Let K 
be an infinite extension field of k. Since K is flat over k, the minimal free 
resolution of M Q9k K as a module over S Q9k K is obtained by tensoring the 
resolution of M' as an S-module with K, and we see that Ext~®kK(M' Q9k 

K, S Q9k K) = Ext~(M', S) Q9k K. Thus neither the hypothesis nor the 
conclusion of Theorem 20.17 is affected by tensoring with K. It follows 
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that we may assume that k is infinite from the outset, and thus that a 
degree 1 nonzero divisor x exists. 

Let !VI = M' / xM'. From the exact sequence 0 -+ M' ( -1) ~ M' -+ !VI -+ 

0, we get an exact sequence 

(*) Extj-1(M'(-I),S) -+ Extj(!VI,S) -+ Extj(M',S) -+ Extj(M'(-I),S). 

It follows that !VI is weakly m-regular. If N is the largest submodule of 
finite length in !VI, then !VI / N is m-regular by induction on the dimen
sion. 

We can use the exact sequence (*) to show that M' is weakly (m + 1)
regular as follows: Since Extj (!VI, S) = Extj (!VI / N, S) for j < r, we see 
using Proposition 20.16 that Extj(!VI, S)n = 0 for all j < rand n ::; -m
j - 1. For n = -m - j - 2 = -(m + 1) - j - 1, we have 

Extj(M'( -1), S)n = Extj(M', S)(I)n 
= Extj (M', S)n+l 
= 0, 

since M' is weakly m-regular. 
Thus by taking the degree n = -m - j - 2 part of the preceding exact 

sequence, we get Extj(M', S)n = 0 for j < r. Since Extj(M', S) = 0 for j = 
r, this shows that M' is weakly (m + I)-regular. Applying this repeatedly, 
we see that M' is weakly m'-regular for all m' 2: m, so by Proposition 20.16 
M' is m-regular. D 

Putting these things together we get the following theorem. 

Theorem 20.18. Let S = k[Xl,'" ,XT ], with k a field, let M be a finitely 
generated graded S -module, and let N be the maximal submodule of M hav
ing finite length. The following conditions on an integer m are equivalent: 

a. M is m-regular. 

b. M is weakly m-regular, and Nt = 0 for t > m. 

Proof. Suppose that M is m-regular. By Proposition 20.16, M is weakly 
m-regular, so it suffices to prove the condition on N. 

From the exact sequence 0 -+ N -+ M -+ M / N -+ 0 we see that 
ExtT(M, S) ~ ExtT(N, S). By Exercise 2.4 we have Exts(N, S( -r)) ~ 
Homk(N, k). By Proposition 20.16, Exts(N, S)n = 0 for n < -m - r, 
so that Exts(N, S( -r))n = 0 for n < -m. Taking the dual into k, we see 
that Nt = 0 for t > m, as required. 

For the converse, suppose M is weakly m-regular and Nt = 0 for t > m. 
By the previous duality argument it follows that Exts(M, S)n = 0 for 
n < -m - r. By Theorem 20.17 we know that M / N is n-regular for all 
n 2: m. Since Extj(M, S) ~ Extj(M/N, S) for j < r, this shows that 
Extj(M, S)n = 0 for n < -m - j. By Proposition 20.16, Mis m-regular. 
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As a first consequence we have: 

Corollary 20.19. If 0 -+ A -+ B -+ G -+ 0 is a short exact sequence of 
graded finitely generated S -modules, then 

a. reg A ~ max (reg B, reg G + 1). 

b. regB ~ max(regA,regG). 

c. regG ~ max(regA -1,regB). 

d. If A has finite length, then regB = max(regA,regG). 

Proof. We have a long exact sequence 
. 1 

... -+ ExtJ - (A, S) -+ 

Extj(G, S) -+ Extj(B, S) -+ Extj(A, S) -+ Extj+1(G, S) -+ ... , 

from which conditions a-c follow at once, using Theorem 20.18. 
If A has finite length, then Extj (A, S) = 0 for all j < r, so the preceding 

long exact sequence degenerates into isomorphisms 

Extj (G, S) ~ Extj (B, S) for j < r, 

and a short exact sequence 

0-+ ExqG, S) -+ ExqB, S) -+ ExtT(A, S) -+ o. 

Using the Theorem 20.18 characterization again, we see that both reg A 
and reg G ~ reg B, and with part b we get the desired equality. 

20.5.1 Regularity and Hyperplane Sections 

One of the things that makes regularity a useful notion in the case of sheaves 
on projective space is that it is preserved when passing to a "general" 
hyperplane section. The algebraic expression of this is as follows. 

Proposition 20.20. If M is a finitely generated graded S -module and x is a 
linear form of S that is a nonzerodivisor on M, then regM = reg(M/xM). 
More generally, if x is a linear form whose annihilator (0 :M x) in M has 
finite length, then 

regM = max(reg(O:M x),regM/xM). 

Proof. It follows directly from the definition that reg M ( -1) = reg M + l. 
If x is a nonzerodivisor, then xM ~ M(-1), so regxM = regM + l. 
Assuming only this equality, we shall show that reg M = reg M / xM. 

Applying part a of Corollary 20.19 to the exact sequence 

0-+ xM -+ M -+ M/xM -+ 0, 



20.5 Castelnuovo-Mumford Regularity 509 

we get regM + 1 = regxM :::; max(regM,regM/xM + 1), so regM :::; 
regM/xM. Applying part c of Corollary 20.19, we get regM/xM:::; max 
(reg xM - 1,regM) = regM, the opposite inequality. 

In the general case, set N = (0 :M x) and suppose that N has finite 
length. The exact sequence 0 ...... N(-l) ...... M(-l) ...... M ...... M/xM ...... 0, 
where the middle map is multiplication by x, breaks into two short exact 
sequences 

0 ...... N(-l) ...... M(-l) ...... xM ...... 0, 

0 ...... xM ...... M ...... M/xM ...... O. 

Using part d of Corollary 20.19, we see from the first ofthese sequences that 
regN :::; regM and regxM :::; regM + 1. From part c of Corollary 20.19 
applied to the second sequence, we get reg M / xM :::; max (reg xM - 1, reg 
M) = reg M, so reg M ?: max( reg N, reg M / xM). It suffices to prove the 
opposite inequality. 

Assume that reg N < reg M. Part d of Corollary 20.19 then shows that 
reg xM = reg M ( -1) = reg M + 1. By the argument in the first part of the 
proof, this implies reg M = reg M / xM, and we are done. 0 

20.5.2 Regularity of Generic Initial Ideals 

Our final goal in this section is a result of Bayer and Stillman [1987al 
connecting the regularity of an arbitrary ideal with the regularity of its 
generic initial ideal. 

Corollary 20.21 (Bayer-Stillman). Let S = k[XI, ... , xrl be a polynomial 
ring over an infinite field k. Let F be a graded free S -module with basis and 
a reverse lexicographic monomial order. If M c F is a graded submodule, 
then 

regF/M = regF/Gin(M). 

Proof. Rechoosing the variables Xl, ... ,Xr generically, we may assume in 
particular that in(M) = Gin(M). Since the only associated prime of F/M 
containing Xr is the maximal ideal, we see that (M : x r ) is of finite length. 
By Proposition 15.12b, we have (in(M) : xr ) = in(M : x r ). Thus, (in(M) : 
xr)/in(M) and (M : xr)/M are nonzero in the same degrees, and it follows 
from Theorem 20.18 that they have the same regularity. By Noetherian 
induction we may assume that the result holds for M + xrF, so we are 
done by Proposition 20.20. 

20.5.3 Historical Notes on Regularity 

The germ of the idea of regularity is present in work of Castelnuovo [1893] 
as (a special case of) the "base point free pencil trick" described in Exer
cise 17.18; see Exercise 20.21 for an explanation of the connection. This 
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was (according to Steve Kleiman) one of the things Oscar Zariski taught 
to all his students-including of course David Mumford. Mumford [1966] 
was the first to define the notion in essentially the generality given here. 
The approach we have followed is from Eisenbud and Goto [1984]. 

Mumford actually defines regularity for a coherent sheaf on projective 
space, using the vanishing of the cohomology of sheaves. His definition is 
equivalent to ours, applied to the module of twisted sections, under mild 
conditions; see Exercise 20.20. The idea was also exploited by Kleiman in 
his thesis [1965] and afterwards in some Exposes in Grothendieck's volume 
SGA 6 (Berthelot [1971]). In both of these references, the notion of regu
larity is used in the construction of bounded families of ideals or sheaves 
with given Hilbert polynomial-a crucial point in the construction of the 
Hilbert or Picard scheme. In a related direction, Kleiman [1971] uses the 
idea to prove that if I is a prime ideal in S = k[Xl, ... ,xr ] (and a little 
more generally), then the coefficients of the Hilbert polynomial of S / I can 
be bounded in terms of the initial coefficient alone. 

20.6 Exercises 

Exercise 20.1 (Generalized local rings; see Goto and Watanabe 
[1978]): We define a generalized local ring to be a positively graded ring 
R = RoEBRl EB··· with Ro local and Noetherian, and R finitely generated as 
an algebra over Ro. Show that R has a unique maximal homogeneous ideal, 
that we shall simply call the maximal ideal of R. Show that every finitely 
generated graded R-module has a unique minimal graded free resolution, 
just as in Theorem 20.2. Most of the results about local rings in this book 
can be adapted to generalized local rings, and include the analogous results 
in the local and graded cases. 

Exercise 20.2: Let R be any commutative ring. Prove that an ideal I c R 
is free as an R-module iff I is a principal ideal generated by a nonzerodivi
sor. 

Fitting Ideals and the Structure of Modules 

Exercise 20.3:* 

a. (Fitting) Show that if R is a principal ideal domain, then any finitely 
generated R-module is determined up to isomorphism by its Fitting 
invariants. This fails for more complicated rings. For example, show 
that 

b. If R = k[x, y, z], with k a field, then the matrices 
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present nonisomorphic modules with the same Fitting invariants. 

c. Show that if we replace z by y in the matrices of part b, we get 
presentations of isomorphic modules; but if we replace z by y2 we 
get presentations of nonisormorphic modules with the same Fitting 
invariants over k[x, y]. 

Exercise 20.4: Extend Lemma 20.10 by showing that a complex 

F~G~H 

of free R-modules with I( rp) = R is exact iff rank rp + rank 'lj! = rank G and 
I ( 'lj!) contains a nonzero divisor. 

Exercise 20.5:* Show that the case of Corollary-Definition 20.4 in which 
F and F' are not supposed finitely generated (or free), and R is not Noethe
rian, follows frbm the case where R is Noetherian and F, F' are finitely 
generated and free. 

Exercise 20.6 (Fitting invariant and annihilator for a square 
matrix): Suppose that M is presented by a square matrix rp whose deter
minant is a nonzerodivisor. Let 'lj! be the matrix of cofactors of rp. Using 
the expressions det ( rp) . I = 'lj!rp = rp'lj!, show that 

annM = (det(rp) : Fittl M) = (Fitto M : Fith M). 

If M is presented by a p x n matrix, with p > n and depth ann M = p-n+ 1 
(the largest possible value), then it can be shown that 

ann M = Fitto M. 

For these and for formulas relating the other Fitting ideals to the annihi
lators of exterior powers of M, see Buchsbaum and Eisenbud [1977]. 

Exercise 20.7:* Compute the ideals I( rpk) for the Koszul complex of any 
sequence of elements, one of which is a nonzerodivisor. 

Use the result and Theorem 20.9 to give another proof that 
depth«(xl,"" xn ), R/ J) can be determined if one knows which 
Hi(K(Xl,"" xn) ® R/ J) vanish. 

Exercise 20.8: Let R be a ring and let M be an R-module. Suppose that 
rp : F -t G is a map of free modules. Show that rp ® M is a monomorphism 
iff Irrp contains a nonzero divisor on M, where r = rankF. (This can be 
extended to a version of the characterization of free resolutions that tells 
when :r ® M is exact; see Buchsbaum and Eisenbud [1973].) 

Exercise 20.9 (A stronger annihilator lemma, part a): Proposi
tion 20.7a can be strengthened as follows: Let R be a ring and let M be 
a finitely generated R-module. For each j ~ 0 let Aj(M) be the annihi
hilator of 1\j+1M. Thus Ao(M) = annM, and Proposition 20.7a says that 
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Fitto(M) C Ao(M). Strengthen this result by proving 

( a') 

as follows: 
Suppose that M = coker'P : F -'> G with F and G free and rank G = n. 

Let 'Pi,j : l\iF (>9 /lJG -'> l\i+jG be the map 1(>9 9 ~ l\i'P(f)Ag induced by 
'P. Set Ai,j = ann coker 'Pi,j. 

1. Show that Fittj(M) = An-j,j while Aj(M) = AI,j (for the latter, see 
Proposition A2.2d). Thus it suffices to show that for all i + j ::; n we 
have 

Ai,j C Ai-I,j. 

ii. Now suppose that 9 E I\i+j- IG and r E Ai,j. To prove (*) we must 
show that rg E im 'Pi-I,j. By linearity, it suffices to prove this for 
all vectors 9 in some fixed basis for I\i+j-IG, so we may suppose 
that 9 = eIA··· Aei+j-I, where the ei form a basis of G. Using this 
representation show that there is an element g' E l\i+jG and a "( E C* 
such that D,,((g') = g, where D"( is the differential ofthe Koszul complex 
corresponding to "( : C -'> R as in Chapter 17. (In the appendix on 
multilinear algebra, this would be written simply as ,,((g') = g.) 

iii. By hypothesis there is an element h = l: Ii (>9 gi E 1\ i F (>9 I\j C such 
that rg' = l:(l\i'P(fi))Agi. Use the fact that 8"( acts as a derivation 
(Proposition A2.8) to show that 

rg = D,,((rg') = L D"((l\i'P(fi))Agi ± L(l\i'P(fi))AD"(gi E I\i+j- IC. 

Show from the definitions that D"((l\i'P(fi)) = (l\ i'P(D'P,("()Ii)) (this says 
that I\'P is a map of complexes). The left-hand term is in the image 
of 'Pi-I,j, and the right-hand term is in the image of 'Pi,j-I. 

iv. Complete the proof by showing that im('Pi,j-d C im('Pi-l,j). (Note 
that the image of 'Pi,j is generated by all wedge products of i elements 
of 'P(F) and j arbitrary elements of C.) 

Exercise 20.10 (A stronger annihilator lemma, part b): With nota
tion as in Exercise 20.9, Proposition 20.7b says that for every j > 0 we 
have Ao(M) Fittj(M) C Fittj_I(M). Prove a stronger result, 

(b') For every j > i ~ 0 we have Ai(M) Fittj(M) C Fittj_I(M), 

by checking the following steps: 

1. The image of 'PI,i-1 : F (>9 I\i- IC -'> l\ iC contains Ai(M) I\i C. (See 
Proposition A2.2d.) 
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ii. Therefore the image of <Pl,j-l : F 0 I\j- Ic ~ I\ jC contains 
Ai(M) I\j C. 

lll. The image of <PI,i : I\n-j F 0 I\ jC ~ I\nC is Fittj(M) I\n C. 

iv. Therefore the image of I\n-j F®F®l\j- IC ~ I\nC under the map h 0 
h0g f--+ I\n- j<p(!I)I\<p(h)l\g has image containing Ai(M) Fittj(M)l\n 
C. 

v. Complete the proof by observing that the image of the map in part 
iv is the same as the image of <Pn-j+1,j-I, which is Fittj_I(M). 

Deduce from this exercise and the last that if M can be generated by 
n elements, then Aj(M)n-j+I C Fittj(M), so that Radical (Fittj(M)) = 
Radical (Aj(M)). (There is an easy localization argument that proves this 
last equality; can the reader find it?) These and similar results are con
tained in Buchsbaum and Eisenbud [1977]. (Note that the Fitting ideals 
are indexed differently there than in this book, and the inequality in The
orem 1.2.2 in that paper points in the wrong direction.) 

Projectives of Constant Rank 

The following problems explain what it means for a projective module to 
have constant rank. 

Exercise 20.11:* If M is a finitely generated R-module, show that the set 

{P a prime of RIMp can be generated by :S k elements over RP} 

is an open set of Spec R. 

Exercise 20.12:* Prove that every finitely generated projective R-module 
M has constant rank iff R has no nontrivial idempotents. 

Exercise 20.13 (Fiberwise characterization of projectives):* Sup
pose that R is a reduced ring, and that M is a finitely generated R-module. 

a. Show that M is projective iff the number 

fLp(M) := dimRp/PRp(Mp/PMp) 

is a locally constant function of the primes P in R. Show that M is 
projective of constant rank iff this function is constant. 

b. The hypothesis that R is reduced is necessary. Show that either of 
the statements in part a is a characterization-perhaps a silly one---of 
reduced rings. 

Exercise 20.14 (Flatness and Hilbert functions): As in Exercise 6.11, 
let R = Ro EEl RI EEl ... be a graded ring. Suppose that Ro is a Noetherian 
ring and that R is finitely generated as an Ro-algebra by elements of degree 
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1. Let M be a finitely generated graded R-module, and let Md be the 
degree-d part of M. Thinking of M as a family of graded modules over 
the "base" Ro, we ask, for each prime ideal P C Ro, about the Hilbert 
function HK(P)®M(d) = dimK(p) K,(P)®Md and about the associated Hilbert 
polynomial. Exercise 6.lld shows that if M is flat and Ro is local, then 
HK(p)®M(d) is constant as a function of P. The same goes for the Hilbert 
polynomial PK(P)®M(d) under the weaker assumption that M(j-I]O is flat 
over Ro for all f E R1• 

a. Deduce from these local statements that for an arbitrary Noetherian 
Ro, if M as above is flat over Ro' then the function HK(p)®M(d) is 
locally constant as a function of P, and similarly for PK(P)®M(d). In 
particular, the dimension of the fiber K,(P) ®R M is locally constant 
as a function of P (in the Zariski topology on the set of primes of R). 

b. Using Exercises 20.13 and 6.llc, show that the converse is true when 
Ro is reduced: That is, if HK(P)®M(d) is locally constant as a function 
of P, then M is flat over Ro, while if PK(P)®M(d) is locally constant 
as a function of P, then M[f-I]O is flat over Ro for all f E RI. 

Exercise 20.15: Prove that a ring R is a factorial domain iff for every x, y 
in R, one of the two following conditions holds: 

i. (x, y) is generated by a nonzerodivisor (possibly a unit!). 

ii. There is a regular sequence x', y' in R and a nonzero divisor a in R 
such that x = ax', y = ay'. 

This can be used to show that a local ring is factorial iff every two
generator ideal has finite projective dimension (MacCrae's [1965] general
ization of the Auslander-Buchsbaum theorem; see Buchsbaum and Eisen
bud [1974] for a generalization replacing (x, y) by any matrix). 

Exercise 20.16 (A nonunique resolution): The question of the unique
ness of free resolutions in the nonlocal case is quite subtle. Here is an exam
ple based on the example of the "tangent bundle of the 2-sphere," discussed 
in Chapter 19. Let 

R = k[XI' X2, x3l/(xi + x~ + x~ - 1) 

where k is a field. Show that there are matrices A and B making the 
following diagram. commute: 
If k c R, the field of real numbers, show that neither A nor B can be chosen 
to be an isomorphism. Thus resolutions of the ideal (1) = (x, y, z) c R 
that begin with the upper and lower diagonal maps are not isomorphic. 
If k = C, on the other hand, show that A and B can be taken to be 
isomorphisms. (There are similar examples, using a few more variables, 
where the resolutions remain non-isomorphic over the complex numbers.) 
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A 

This example can be used to construct others where the ideals resolved 
are minimally generated by the given generators. Here is the "generic" 
example: Let T be a polynomial ring S in 24 variables {aij, bij , Xi, Yih::;i,j:53 
over k modulo to the 6 quadratic relations that give the matrix equalities 

where A and B are the matrices with entries ai,j and bij respectively. Show 
that (Xl, X2, x3)T = (Yl, Y2, Y3)T. Construct the first terms of two T-free 
resolutions of this ideal, and show they are non-isomorphic in the sense 
above if k = R. 

Exercise 20.17 (Factoriality of Hypersurface rings): There are a 
number of beautiful results on the question of when a ring of the form 
R/(J), where R is regular local (or a polynomial ring), is factorial. Perhaps 
the most famous is the Noether-Lefschetz theorem: If R = C[Xl,"" X4J is 
the polynomial ring in four variables over C, then for almost every homo
geneous form f of degree ~ 4, R/(J) is factorial. Here the "almost every" 
must be taken in an analytic sense: The set of "bad" f is a countable union 
of hypersurfaces (and is thus not an algebraic set). For a modern treatment 
see Ciliberto, Harris, and Miranda [1988J. 

In a different direction, a result due to Brieskorn in characteristic 0 and 
to Lipman in greater generality says, in the simplest case, that if k is 
an algebraically closed field of characteristic 0 and A := k[[x, y, zJJ/(J) is 
factorial, then A ~ k[[x, y, zJJI(x2 + y3 + z5), the so-called E8 singularity. 
See Lipman [1975J. 

Here, as an application of the Hilbert-Burch theorem, we give a rather 
general result due to Andreotti and Salmon [1957], from which Brieskorn's 
result may be deduced (Choi [1988]). Let (R, P) be a three-dimensional 
regular local ring, and let 0 i= f E P be any element. Show that the ring 
R/(J) is factorial iff f cannot be written as the determinant of an n x n 
matrix with entries in P for n > 1, as follows. 

If f = det(aij), let M be an (n - 1) x n submatrix of (aij). Show that 
the ideal of minors of M is an unmixed ideal of codimension 2 in R, and 
therefore codimension 1 in R/(J), that is not principal, so R/(J) is not 
factorial. 
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If R/ (f) is not factorial, let Q be a prime of R of codimension 2 such 
that f E Q but Q/(f) is not principal. Show that R/Q is Cohen-Macaulay, 
so that by Hilbert-Burch Q is minimally generated by the (n -1) x (n -1) 
minors of some (n - 1) x n matrix M with entries in the maximal ideal. 
Show that f is the determinant of a matrix made by augmenting the matrix 
M with one further row to get an n x n matrix M'. If f E PQ, the new 
matrix can be chosen with entries in P, and we are done. If f ¢ PQ, show 
that n 2:: 3, and that after row and column operations M' can be written 
as the direct sum of a 1 x 1 identity matrix and an (n - 1) x (n - 1) matrix 
with entries in P. 

Castelnuovo-Mumford Regularity 

Exercise 20.18: Show that if M has finite length then reg M 
max{nlMn =I O}. 

Exercise 20.19: Let F : ... -+ Fj -+ ... -+ Fo -+ M -+ 0 be a minimal free 
resolution of a finitely generated graded module over the graded polynomial 
ring S = k[Xl, ... , xr]. Write Fj = EBmS( -aj,m). Set aj = minm(aj,m), and 
bj = maxm(aj,m). 

Show that aj > aj-l > ... > ao. If the dual F* : Fa -+ Fi -+ ... -+ 

Fj* -+ ... is also exact, show that bj > bj- 1 > ... > boo Show that this 
condition is satisfied, in particular, when M is a module of finite length, or 
more generally when depth M = dim M. 

Exercise 20.20 (Regularity of sheaves on pn):* (For those who know 
something about cohomology of sheaves, and local duality.) Suppose that 
9" is a sheaf on pn, and let M := EBdH°(pn;9"(d)) be the corresponding 
graded module of twisted sections. Mumford defines 9" to be m-regular if 
Hj(pn; 9"(m - j)) = 0 for all j > o. 

a. Show that Mumford's definition is the same as saying that 

Extj(M, S)n = 0 for all j ::::; r - 2 and n = -m - j - 1. 

b. Suppose that Ass(9") contains no closed points, so that M is finitely 
generated. Show that M is m-regular in the sense of this chapter iff 
9" is m-regular in Mumford's sense. 

Exercise 20.21 (Castelnuovo's base point free pencil trick revis
ited): Suppose that £., is a line bundle on a curve X in pn, and that £., 

is m-regular in the sense that Hl£.,(m - 1) = O. Let R = EBHO«'Jx(d)) be 
the homogeneous coordinate ring of X. Show using the previous exercise 
that the R-module EBnH°£"(d) is generated in degree::::; m. (You may also 
deduce this from Exercise 17.18.) 

Exercise 20.22 (Linear free resolutions): We say that a module M, 
generated in some degree n, has a linear free resolution if it has a free 
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resolution of the form 

••• ----> EElS( -n - j)!3j ----> ••• ----> EElS ( -n - l)!3J ----> EElS ( -n)f3o ----> M ----> O. 

a. Suppose M is a module of finite length. Show that M has a linear 
free resolution iff M ~ k(n)f3 for some nand ,(3-that is, iff M is a 
vector space concentrated in a single degree. 

b. Suppose M is an ideal of S, and that S/M has finite length. Show 
that M has a linear free resolution iff M is a power of the maximal 
ideal. 

c. Despite these cases, there are a lot of modules with linear free resolu
tions: Show that reg M = m iff the "truncation" Tm(M) := EEln?:.mMn 
has a linear free resolution. 

See Eisenbud and Goto [1984] and Eisenbud and Koh [1991] for some 
further information and conjectures on this topic. 

Exercise 20.23 (Vasconcelos' characterization of ideals generated 
by regular sequences): Suppose that (R, P) is a local ring and I c R 
is an ideal. If I is generated by a regular sequence, then 1/12 is a free 
module over R/ I by Exercise 17.16, and I has finite projective dimension 
by Corollary 19.3. Prove that the converse is also true, as follows: 

a. Since I has finite projective dimension, so does R/ I. Thus I is the 
annihilator of a module of finite projective dimension, so by Corol
lary 20.13, I contains a nonzero divisor. Using this and prime avoid
ance, show that there is a nonzero divisor x E I such that x .;. PI. 

b. Note that x generates an R/ I-free summand of 1/12 so that 1/12 ~ 
((x) + 12)/12 EEl J/I2 for some ideal J::) 12 and ((x) + 12)/12 ~ R/I. 
Show that (x) n J = xl. 

c. Show that I/xI ~ I/(x) EEl (x)/xI. 

d. Show that 1/ xl is a module of finite projective dimension over R/ (x). 
Conclude that 1/ (x) c R/ (x) is an ideal of finite projective dimen
sion. 

e. Use induction on the rank of the free R/ I-module 1/12 to finish the 
proof. 

Derive from this characterization another proof that if R, P is a local 
ring of finite global dimension, then P is generated by a regular sequence, 
so that R is regular. For a refinement and further applications, see the 
original paper of Vasconcelos [1967]. 



21 
Duality, Canonical Modules, and 
Gorenstein Rings 

Throughout this chapter, we shall assume that all the rings considered are 
Noetherian. 

The most basic geometric objects associated with a smooth manifold or a 
smooth variety are its tangent and cotangent bundles, and various tensors 
derived from them. In algebraic geometry the most easily accessible, and 
the most important, is the canonical bundle, the highest exterior power 
of the cotangent bundle. It plays a central part in duality theory. If the 
variety is affine, then the sections of the canonical bundle form a mod
ule over the coordinate ring of the variety called the canonical module. 
Because it is the module of sections of a line bundle, it is locally free of 
rank l. 

If the variety has singularities, then there is still a canonical module, but 
it may not be locally free. It is an interesting object and plays a major role 
in the theory of Cohen-Macaulay rings. In this chapter we shall introduce 
the local theory of the canonical module over a Cohen-Macaulay ring, and 
in particular we shall study local Gorenstein rings-those local rings for 
which the canonical module is free. What we do here is only a beginning. 
For a more extensive treatment, see Bass [1963], Herzog and Kunz [1971], 
or Bruns and Herzog [1993]. 

The global study of the properties of the canonical module is quite 
subtle. Despite a monumental attempt by Grothendieck and Hartshorne 
(Hartshorne [1966b]) and much work by others (see, for example, Kunz 
and Waldi [1988] and Lipman [1984]), I suspect that the subject is proba
bly still not in its final form. In any case, its study is best undertaken in 
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the general context of schemes. The most accessible introduction seems to 
me to be Altman and Kleiman [1970]. 

We begin this chapter with a leisurely introduction to the zero
dimensional case, where many of the features of the theory can be clearly 
seen without the homological technique necessary for the general case, 
which we treat in the rest of the chapter. The reader who has not encoun
tered injective modules and resolutions before will need to master these 
notions and the notion of essential extension before reading the details of 
the proofs of the later sections of this chapter. We give the necessary results 
in Appendix 3. 

Duality theory, even in geometry, is a notably technical and algebraic 
matter. Most of this chapter is resolutely algebraic, but at the end we 
have presented some of the elements of the theory of liaison (linkage) and 
(in the exercises) Cayley-Bacharach theory to show that this material has 
remarkable geometric applications. 

21.1 Duality for Modules of Finite Length 

We begin with a very simple case. Suppose that k is a field and that 
A is a local zero-dimensional ring that is a finite-dimensional k-algebra. 
(See Exercise 21.3 for the nonlocal case.) If we wish to imitate the usual 
duality theory for vector spaces, we might at first try to work with the 
functor 

But this is often very badly behaved; for example, it does not usually 
preserve exact sequences, and if we do it twice we do not get the identity: 
That is, HomA (HomA (M, A), A) '1- M in general. 

A good duality may be defined in a different way: If M is a finitely 
generated A-module, we provisionally define the dual of M to be 

D(M) = Homk(M, k) 

(we shall give a more intrinsic definition shortly). The vector space D(M) 
is naturally an A-module by the action 

(a· 'P)(m) = 'P(am) for 'P E D(M), a E A, and m E M. 

This makes D a contravariant functor from the category of finitely gener
ated A-modules to itself. Since M is finite-dimensional over k, the natural 
map M ~ D(D(M)) sending m E M to the functional 'P f--+ 'P(m) , for 
'P E Homk(M, k), is an isomorphism of vector spaces; in fact it is an iso
morphism of A-modules, as the reader may immediately check. Since k 
is a field, D is exact in the sense that it takes exact sequences to exact 
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sequences (with the arrows reversed). Thus D is a dualizing functor l on 
the category of finitely generated A-modules. This dualizing functor is very 
familiar in the theory of representations of groups, where D(M) is called 
the contragredient representation to M. 

The functor D seems to depend on the field k, but we shall show that 
it does not. For a transparent special case, suppose that A is a field, finite 
over the field k. For any vector space V over A, D(V) = Homk(V, k) is 
again a vector space over A. To show that D(V) ~ HomA(V, A), it suffices 
to prove that dimA V = dimA D(V). This is immediate because dimk V = 
dimk D(V). We shall soon see that there is even a functorial isomorphism. 
However, there is no canonical isomorphism: If there were, there would 
have to be a canonical isomorphism A ~ Homk(A, k), or equivalently a 
canonical choice of generator of this one-dimensional A-vector space. If A 
is separable over k, one may take the trace map, but if A is inseparable 
there seems to be no canonical choice. 

To get an idea of how D acts, note first that if P is a maximal ideal of A, 
then any dualizing functor D takes the simple module AI P to itself. Indeed, 
D(AI P) must be simple, because else it would have a proper factor module 
M and D(M) would be a proper submodule of AlP. As A is local, it has 
only one simple module, and thus D(AI P) ~ AlP. Since D takes exact 
sequences to exact sequences, reversing the arrows, D "turns composition 
series upside down" in the sense that if 

is a chain of modules with simple quotients M;jMi- 1 ~ AlP, then 

is a chain of surjections whose kernels Ni are simple. In particular, for any 
module of finite length, the length of D(M) equals the length of M. More 
generally, the lattice of submodules of D(M) is obtained from the lattice 
of submodules of M by reversing inclusions. 

It is easy to see that any dualizing functor preserves annihilators: If 
a E A annihilates M, then by the A-linearity of D, a annihilates D(M), so 
ann(M) c ann(D(M)). Since D(D(M)) = M, the reverse inclusion holds 
as well. 

Any dualizing functor preserves endomorphism rings; more generally, 
HomA(D(M), D(N)) ~ HomA(N, M). In particular, D(A) is a module with 
endomorphism ring A. To see this consider the mappings given by applying 
D: 

lTechnical definition: A dualizing functor is a contravariant A-linear functor D 
such that D2 = 1 and D is exact in the sense that D takes exact sequences to exact 
sequences; actually one can omit the condition of exactness-see Exercise 21.2. 
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HomA(M, M) -+ HomA(D(M), D(M)) 
-+ HomA(M, M) -+ HomA(D(M), D(M)). 

Since D2 ~ 1, the composite of two successive maps in this sequence is an 
isomorphism, so each of the maps is an isomorphism too. 

Some of the standard concepts of module theory have interesting duals. 
For example, the definition of an injective module may be obtained from the 
definition of a projective module by reversing the directions of the arrows; 
thus the dual of a projective module is an injective module, and similarly 
the dual of an injective module is projective. 

A central role in the theory of modules over a local ring A, P is played 
by what might be thought of as the top of a module M, defined to be 
the quotient M -;; M I PM; Nakayama's lemma shows that this quotient 
controls the generators of M. It could be defined categorically as the largest 
quotient of M that is a direct sum of simple modules. The dual notion is 
that of the socle of M: It is defined as the annihilator in M of the maximal 
ideal P, or equivalently, as the sum of all the simple submodules of M. (The 
word socle is an architectural term for the base of a column; a glance at the 
illustrations will explain its use in our context.) Note that since the top of 
A is AlP, a simple module, the socle of D(A) must be a simple module as 
well. The socle of a graded module is naturally a graded vector space, but 
it need not consist of elements all of the same degree; see Exercise 21.1. 

For example, if we picture the ring A = k[x,y]/(x2,xy2,y3) in terms of 
a basis of monomials as 

A= 

then the dual module WA, which is injective as an A-module, might be 
pictured as follows: 

D A) = 
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Here for each monomial basis vector f,we have written l' for the dual basis 
vector to f. In each of these pictures we have shaded the boxes representing 
the socle. Note that A has a simple top, and D(A) has a simple socle, as 
claimed. For the ring A = k [x, y l/ (x2 , y3), the picture is symmetric: 

A = 

We shall see that such symmetry holds for all complete intersections, and 
somewhat more generally. 

The definition of D that we have given depends on the field k chosen, 
but in fact D does not! 

Proposition-Definition 21.1. Let (A, P) be a local zero-dimensional 
ring. If E is any dualizing functor from the category of finitely gener
ated A-modules to itself, then there is an isomorphism of functors E( -) ~ 
HomA(-,E(A)). Further, E(A) is isomorphic to the injective hull of AlP. 
Thus there is up to isomorphism at most one dualizing functor. 

For the definitions of injective hull and essential submodule, used in the 
following proof, see Appendix 3. 

Proof Since E2 ~ 1 as functors, the map HomA(M, N) --. HomA(E(N), 
E(M)) given by rp f-+ E(rp) is an isomorphism. Thus there is an isomor
phism, functorial in M, 

E(M) = HomA(A,E(M)) ~ HomA(E(E(M)),E(A)) ~ HomA(M,E(A)). 

This proves the first statement. 
Since A is projective, E(A) is injective. As we observed above, A has a 

simple top, so E(A) has a simple socle. Because A is zero-dimensional, every 
module contains simple submodules. The socle of a module M contains all 
the simple submodules of M, and thus meets every submodule of M; that 
is, it is an essential submodule of M. Since AlP appears as an essential 
submodule of E(A), we see that E(A) is an injective hull of AlP. 

With Proposition 21.1 for justification, we define the canonical module 
WA of a local zero-dimensional ring A (not necessarily containing a field) to 
be the injective hull of the residue class field of A. By Proposition 21.1 any 
dualizing functor D on the category of finitely generated A-modules must 
be D(M) := HomA(M,wA), and in fact this functor is always dualizing. 
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Proposition 21.2. If A is a zero-dimensional local ring, then the functor 
M f-+ D(M) := HomA(M,wA) is a dualizing functor on the category of 
finitely generated A-modules. 

Proof. The functor D is obviously A-linear, and it is exact because WA is 
injective. Thus it suffices to show that D2 is isomorphic to the identity. Let 
a : 1 -> D2 be the natural transformation given by maps 

sending m E M to the homomorphism taking ip E HomA(M,wA) to ip(m). 
We shall show that a is an isomorphism by showing that each aM is an 
isomorphism. 

We do induction on the length of M. First suppose that the length 
is 1, so that M = AlP, where P is the maximal ideal of A. Since 
WA is the injective hull of AlP, the socle of WA is AlP, and we have 
HomA(AI P, WA) = AlP, generated by any nonzero map AlP -> WA. Thus 
HomA(HomA(AIP,wA),wA) = AlP, generated by any nonzero map. But 
if 1 E AlP is the identity, then the map induced by 1 takes the inclusion 
AI P "--+ WA to the image of 1 under that inclusion, and is thus nonzero, so 
aA/p is an isomorphism. 

If the length of M is greater than 1, let M' be any proper submodule 
and let Mil = M 1M'. By the naturality of a and the exactness of D2 it 
follows that there is a commutative diagram with exact rows 

o -> M' -> Mil -> 0 

1 aM' 

o -> D2M' -> 

1 aM" 

D2M" -> O. 

Both M' and Mil have lengths < length M, so the left- and right-hand 
vertical maps are isomorphisms by induction. It follows by an easy diagram 
chase (see the "Five Lemma," Exercise A3.11) that the middle map aM is 
an isomorphism too. 

Corollary 21.3. If A is a local Artinian ring, then the annihilator of WA is 
0; the length of WA is the same as the length of A; and the endomorphism 
ring of WA is A. 

Proof. The dualizing functor preserves annihilators, lengths, and endomor
phism rings, and takes A to W A. 

If a zero-dimensional local ring A is a finite-dimensional vector space 
over a field k, then the canonical module may be expressed in terms of the 
field: A dualizing functor is Homk( -, k), so we have WA ~ Homk(A, k). We 
next show that with a small modification we can replace the field by an 
arbitrary local ring. Later we shall give other formulas of this type. 
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Proposition 21.4. Let A be a zero-dimensional local ring. Suppose that for 
some local ring B, A is a B-algebra that is finitely generated as a B-module 
and the maximal ideal of B maps into that of A. If E is the injective hull 
of the residue class field of B, then 

In particular, if B is also zero-dimensional, then WA = HomB (A, W B)' 

Proof. By Appendix A3.8, HomB(A, E) is an injective A-module. To show 
that it is the injective hull of the residue class field k of A, it suffices to 
show that it is an essential extension of the residue class field k of A. 
Let P be the maximal ideal of A, and let PB be the maximal ideal of 
B. By Proposition 9.2, the preimage of P is PB , so there is an induced 
homomorphism of the residue class field kB of B to k. As k is a finite
dimensional vector space over kB, we have k = Wk ~ HomkB(k, kB) as 
k-modules (this is in fact the special case of the proposition where A and 
B are fields). 

Let S c HomB(A, E) be the A-submodule of homomorphisms whose 
kernel contains P, or equivalently, such that Prp = O. The module S is the 
socle of HomB(A, E) as an A-module. If rp E S, then since PBA c P, the 
image of rp is annihilated by PB ; that is, the image of rp is in the socle of 
E as a B-module, and since E is the injective hull of kB, this is kB. Since 
the homomorphisms in S all factor through the projection A -- AlP = k, 
we have S ~ HomB(k, kB) ~ k. 

If rp : A -- E is any B-module homomorphism, then since P is nilpotent, 
rp is annihilated by a power of P, and thus there is a multiple arp i= 0 that 
is annihilated by P. Thus S is an essential A-submodule of HomB(A, E), 
as required. 0 

21.2 Zero-Dimensional Gorenstein Rings 

From the point of view of duality, the simplest case is the following: 

Definition. A zero-dimensional local ring A is Gorenstein if A ~ WA. 

For example, fields are Gorenstein, and we shall soon see that complete 
intersections are Gorenstein. 

The name Gorenstein comes from a duality property of Gorenstein rings 
that has as a special case a phenomenon concerning the singularities of 
plane curves that was studied by Daniel Gorenstein in his thesis [1952] 
under Oscar Zariski. The theory was cast in its current form through work 
of Serre and Bass (Gorenstein, who was later famous for his work on finite 
groups, always claimed that he couldn't even understand the definition of 
Gorenstein ring); aspects of it can be traced back to Macaulay's theory of 
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"inverse systems." Gorenstein rings are geometrically common and signifi
cant, as the title of Bass' foundational paper "On the Ubiquity of Goren
stein Rings" [1963] attests. There are many characterizations, among them 
the following in the zero-dimensional case: 

Proposition 21.5. Let A be a zero-dimensional local ring. The following 
are equivalent: 

a. A is Gorenstein. 

b. A is injective as an A-module. 

c. The socle of A is simple. 

d. W A can be generated by one element. 

Condition b is sometimes stated by saying that A is self-injective. 

Proof. 

a =} b: WA is injective as an A-module, so if A ~ WA, then A is injective 
as an A-module. 

b =} c: As A is a local ring, it is indecomposable as an A-module. If it is 
injective, it must be the injective hull of its sode. The injective 
hull of a direct sum is the direct sum of the injective hulls of the 
summands, so the sode must be simple. 

c =} d: If the sode of A is simple, that is, isomorphic to AlP, then the 
"top" of the dual of A, that is the top of WA, which is wAI PWA, 

is simple. By Nakayama's lemma WA can be generated by one 
element. 

d =} a: If W A is generated by one element then it is a homomorphic 
image of A. But A and WA have the same length by Proposi
tion 21.2, so A ~ WA. D 

In the examples of zero-dimensional rings pictured earlier, we see that 
k[x,yl/(x2 ,y3) is Gorenstein while k[x,yl/(x2,x2y,y3) is not. In codimen
sion 2 all Gorenstein rings are complete intersections. We shall give a codi
mension 3 example that is not a complete intersection in Example 21.7. 

Most of the common methods of constructing Gorenstein rings work 
just as well in the case where A is not zero-dimensional, and we shall 
postpone them for a moment. However, one technique, Macaulay's method 
of inverse systems, is principally of interest in the zero-dimensional case. 
Let 3 = k[Xl, ... ,xr ]. For each d ;::: 0 let 3d be the vector space of forms of 
degree d in the Xi. Let T = k[x11, ... , x;l] c K(3) = k(Xl,"" xr ) be the 
polynomial ring on the inverses of the Xi. 

We make T into an 3-module as follows: Let L c K(3) be the vector 
space generated by the monomials in the Xi that are not in T. Notice that 
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L is an 8-submodule of K(8). We identify the 8-module K(8)/ L with T 
by means of the maps T c K(8) ---* K(8)/L. More directly put: If mE 8 
and nET are monomials, then m . n is the monomial mn E K (8) if this 
happens to lie in T, and 0 otherwise. 

Theorem 21.6. With notation as above, there is a one-to-one inclusion 
reversing correspondence between finitely generated 8 -submodules MeT 
and ideals I c 8 such that I c (Xl"'" xr ) and 8/1 is a local zero
dimensional ring, given by 

M I--' (0 :s M), the annihilator of M in 8; 

I I--' (0 :T I), the submodule of T annihilated by I. 

If M and I correspond then M ~ WSj[, so the ideals I C (Xl, ... ,Xr ) such 
that 8/1 is a local zero-dimensional Gorenstein ring are precisely the ideals 
of the form I = (0 :S 1) for some nonzero element f E T. 

The element f associated in this way to a zero-dimensional Gorenstein 
ring 8/1 is sometimes called the dual sode generator of 8/1. 

Proof. The 8-module T may be identified with the graded dual 
EBd Homk(8d, k) of 8; indeed, the dual basis vector to m E 8d is m-l E T. 
Exercise A3.4 shows that this graded dual is the injective envelope of 
k = 8/(XI, ... ,xr ) as an 8-module. In the following we shall use only 
this property. 

It follows by Proposition 21.4 that for any local zero-dimensional quotient 
A = 8/1 of 8 we have WA := Homs(A,T), which we may think of as the 
submodule of T consisting of elements annihilated by I. By Corollary 21.3 
the annihilator of WA in A is O. Thus, we see that I = (0 :S WA), so that 
starting from an ideal I we get back to I under the correspondence. 

Now suppose that M is any submodule of T, let 1= (0 :s M), and set 
A = 8/1. By what we have already done it suffices to show that M = (O:T 
1). Note that the annihilator of M in A is 0 by construction. Clearly, we 
have M C (0 :T I) = WA. Dualizing the inclusion, we get A ---* D(M). The 
kernel of this map would annihilate D(M), and thus M, so the kernel is 
zero and the map is an isomorphism. Dualizing again, we get M = W A as 
required. 0 

Example 21.7. In the case r = 3, let f = X1l X21 + X3 2 • We have I := 

(O:s 1) = (xI,X~,XIX3,X2X3,XIX2 - xD· It is easy to check that the socle 
of 8/1 is generated by XIX2 (which is congruent mod I to xD. Note that 
k[XI' X2, X3J/ I is a local Gorenstein ring that is not a complete intersection. 
See Exercise 21.6 for a more systematic investigation of this example. 

For a different view of inverse systems, see Exercise 21.7. 
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21.3 Canonical Modules and Gorenstein Rings In 
Higher Dimension 

We now extend the preceding zero-dimensional theory to local Cohen
Macaulay rings of any dimension. Many questions about Cohen-Macaulay 
rings can be reduced to the zero-dimensional case, so it seems reasonable 
to give a definition in terms of the reduction. 

Definition. Let A be a local Cohen-Macaulay ring. A finitely generated 
A -module W A is a canonical module for A if there is a nonzerodivisor 
x E A such that wAjxwA is a canonical module for Aj(x). The ring A is 
Gorenstein if A is itself a canonical module; that is, A is Gorenstein if 
there is a nonzerodivisor x E A such that Aj(x) is Gorenstein. 

The induction implicit in this definition terminates because dim Aj(x) = 
dimA - 1. We may easily unwind the induction, and say that WA is a 
canonical module if some maximal regular sequence Xl, ... ,Xd on A is also 
an wA-sequence, and wAj(XI, ... ,Xd)WA is the injective hull of the residue 
class field of Aj (Xl, ... , Xd). Similarly, A is Gorenstein iff Aj (Xl, ... , Xd) 
is a zero-dimensional Gorenstein ring for some maximal regular sequence 
Xl, ... , Xd. By Nakayama's lemma and Proposition 21.4d, this is the case 
iff A has a canonical module generated by one element. 

For a simple example, consider the case when A is a regular local ring. 
We claim that A has a canonical module, and in fact that WA = A. When 
dim A = 0 the result is obvious, since A is a field. For the general case we 
do induction on the dimension. If we choose X in the maximal ideal of A, 
but not its square, then X is a nonzero divisor and Aj(x) is again a regular 
local ring, so AjxA is a canonical module for Aj(x) and A is a canonical 
module for A, by definition. 

There are three problems with these notions. First, it is not at all obvious 
from the definitions that they are independent of the nonzero divisor X that 
was chosen. Second, something called a canonical module should at least 
be unique, and uniqueness is not clear either. Our first goal is to show that 
this independence and uniqueness do hold. 

The third problem is that it is not obvious that a canonical module should 
exist. Here we are not quite so lucky: There are local Cohen-Macaulay rings 
with no canonical module. However, our second goal will be to establish 
that canonical modules do exist for any Cohen-Macaulay rings that are 
homomorphic images of regular local rings (and a little more generally). 
This includes complete local rings and virtually all other rings of interest 
in algebraic geometry and number theory. 

Let A be a ring and let M be an A-module. We say that a complex of 
injective A-modules 

1/J, c : Eo -----> EI -+ ... -+ En -+ ... 
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is an injective resolution of M ifker 'l/Jl = M and £ is exact except at Eo. 
H £ is an injective resolution, then we say that £ is a minimal injective 
resolution iff each En is the injective hull of ker (En ----> En+d. 

As is shown in Corollary A3.11, every module has a minimal injective 
resolution, which is unique up to isomorphism. The injective dimension 
idAM of M is the length of this resolution (which may be 00). 

The next theorem solves the problem of the independence of the defini
tion of the canonical module of the regular sequence chosen. 

Theorem 21.8. Let A be a local Cohen-Macaulay ring of dimension d, and 
let W be a finitely generated A-module. W is a canonical module for A iff 

a. depth W = d. 

b. W is a module of finite injective dimension (necessarily equal to d). 

c. End(W) = A. 

We postpone the proof to develop some preliminary results. In condition 
c we have written End(W) for the HomA(W, W), the endomorphism ring 
ofW. 

As we shall see, in the presence of condition a, condition b means that W 
reduces modulo a system of parameters Xl, ... , Xd to an injective module 
over A := A/(Xl, ... , Xd). Such a module is isomorphic to a direct sum of 
copies of W A- Condition c serves to limit the number of copies to 1. Thus 
condition c is a sort of rank-1 condition. In Exercise 21.18 it is shown that 
under good circumstances the canonical module is isomorphic to an ideal 
of A. 

21.4 Maximal Cohen-Macaulay Modules 

First, to clarify the meaning of condition a, we prove: 

Proposition-Definition 21.9 .. Let A be a local ring of dimension d, 
and let M be a finitely generated A -module. The following conditions are 
equivalent: 

a. Every system of parameters in A is an M -sequence. 

b. Some system of parameters in A is an M -sequence. 

c. depthM = d. 

If these conditions are satisfied, we say that M is a maximal Cohen
Macaulay module over A. Every element outside the minimal primes 
of A is a nonzerodivisor on M. 
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Proof. The implications a =} b =} c are immediate from the definitions. Sup
pose depth M = d. If Xl, ... , Xd is a system of parameters then (Xl, ..• , Xd) 

contains a power of the maximal ideal P of A. By Corollary 17.8, 
depth( (Xl, ... , Xd), M) = depth ( P, M) = d, so Xl,"" xd is a regular 
sequence on M by Corollary 17.7. 

To prove the last statement, note that if Xl is not in any minimal prime 
of A, then dim Aj (xt) = dim A-I, so a system of parameters mod Xl may 
be lifted to a system of parameters for A beginning with Xl. Thus Xl is a 
nonzerodivisor on M. D 

In case A is zero-dimensional, all finitely generated modules are maximal 
Cohen-Macaulay modules. On the other hand, if A is a regular local ring, 
then by the Auslander-Buchsbaum formula the maximal Cohen-Macaulay 
A-modules are exactly the free A-modules. 

More generally, if A is a finitely generated module over some regular 
local ring S of dimension d, then by the Auslander-Buchsbaum theorem 
the maximal Cohen-Macaulay modules over A are those A-modules that 
are free as S-modules. Thus maximal Cohen-Macaulay modules may be 
thought of as representations of A as a ring of matrices over a regular local 
ring-as such they generalize the objects studied in integral representation 
theory of finite groups under the pame of lattices. We shall later exploit 
the following example: If B = Aj J is a homomorphic image of A such 
that B is again Cohen-Macaulay of dimension d as a ring, then B is a 
Cohen-Macaulay A-module. 

21.5 Modules of Finite Injective Dimension 

We next study condition b of Theorem 21.8. If E is an injective module 
and J c A is an ideal, the!! by Lemma A3.8 the module HomA(AjJ,E) = 
(0 :E J) c E is an injective module over A/I 

Proposition 21.10. Suppose £ as in Section 21.3 is a minimal injective 
resolution of a module M, and that an element X E A is a nonzerodivisor 
on A and on M. Set Ef = HomA(Ajx, Ei). The complex 

£' : E~ --+ E~ --+ ... , 

whose maps are induced by those of £, is a minimal injective resolution 
of MjxM over Aj(x). Thus idA/(x) MjxM = idA M - 1, and if N is an 
A-module annihilated by x, then 

Ext~/x(N, MjxM) ~ Ext~+I(N, M) for all j 2: o. 

Proof. The homology of the complex 



21.5 Modules of Finite Injective Dimension 531 

HomA(A/x, £) : E~ ----t E~ ----t E~ ----t ••• 

is by definition ExtA(A/x,M). On the other hand, M is an essential sub
module of Eo, and M contains no submodule annihilated by x, so Eo 
contains no submodule annihilated by x. Thus Eb = 0, and we see that 
HomA(A/x, £) = £'. 

Computing ExtA(A/x,M) instead from the free resolution 

o ----t A -=-. A ----t A/(x) ----t 0, 

we see that Ext~(A/(x),M) = M/xM, while Ext~(A/(x),M) = 0 for 
j f 1. Thus £I is an injective resolution of M/xM. Note that the numbering 
of the terms of £' is such that Ext~/(x) (N, M / xM) is the homology of 

HomA/(x)(N, £') at HomA/(x)(N, Ej+l); strictly speaking we should say that 
£1[1] is an injective resolution of M/xM. 

To see that £I is minimal, note that the kernel of E~ ----t E~+l is the 
intersection of the essential submodule ker En ----t En+l with E~, and is 
thus essential in E~. 

It follows at once that idA/(x) M / xM = idA M - 1. If x annihilates the 
A-module N, then every map from N to an Ei has image killed by x, 
so HomA(N, £) = HomA(N, £') = HomA/(x)(N, £'). Taking homology, and 
taking into account the shift in numbering, we get the last statement of 
the proposition. D 

To exploit this result, we need to know the modules of finite injective 
dimension over a zero-dimensional ring. 

Proposition 21.11. Let A be a local Cohen-Macaulay ring. If M is a max
imal Cohen-Macaulay module of finite injective dimension, then idA M = 
dimA. If dim A = 0, then M is a direct sum of copies of WA, and M ~ WA 
iff EndA(M) = A. 

Proof. Suppose first that dimA = O. Let D = HomA( -, WA) be the dual
izing functor. If M has finite injective dimension, then applying D to an 
injective resolution of M we see that D(M) is a module of finite projective 
dimension, and is thus free by the Auslander-Buchsbaum formula (Theo
rem 19.9). Applying D again we see that M = D2 M is a direct sum of 
copies of DA = WA. 

Using D, we see that the endomorphism ring of wA is the same as the 
endomorphism ring of An. Thus it is equal to A iff n = 1. 

If dim A = d is arbitrary, then we may choose a regular sequence 
Xl, ... , xd of A that is a regular sequence on M, and use Proposition 21.10 d 
times to conclude that idA M = d+idA/(xl, ... ,xd) M/(XI,"" xd)M = d+O = 
d. D 

Finally, to understand condition c of Theorem 21.8 (and for a uniqueness 
result), we need: 
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Proposition 21.12. Let A be a local Cohen-Macaulay ring of dimension d, 
and let M be a maximal Cohen-Macaulay module of finite injective dimen
szon. 

a. If N is a finitely generated module of depth e, then Ext~ (N, M) = 0 
for j > d - e. 

b. If x is a nonzerodivisor on M, then x is a nonzerodivisor on 
HomA(N, M). If N is also a maximal Cohen-Macaulay module, then 

HomA(N, M)/x HomA(N, M) ~ HomA/(x) (N/xN, M/xM) 

by the homomorphism taking the class of a map cp : N ---+ M to the 
map N/xN ---+ M/xM induced by cpo 

Proof. 

a. We do induction on e. By Proposition 21.11, the injective dimension 
of M is d, so that Ext~ (N, M) = 0 for any N if j > d. This gives the 
case e = O. 

Now suppose e > 0, and let x be a nonzero divisor on N that lies in 
the maximal ideal of A. From the short exact sequence 

0---+ N ~ N ---+ N/xN ---+ 0 

we get a long exact sequence 

••• ---+ Ext~(N,M) ~ Ext~(N,M) ---+ Ext~+\N/xN,M) ---+ ••• 

The module N/xN has depth e-1, so by induction Ext~+l(N/xN, M) 
vanishes if j + 1 > d - (e - 1), that is, if j > d - e. By Nakayama's 
lemma, Ext~ (N, M) vanishes if j > d - e. 

b. Suppose x is a nonzero divisor on M. From the short exact sequence 

0---+ M ~ M ---+ M/xM ---+ 0 

we derive a long exact sequence beginning 

0---+ HomA(N, M) ~ HomA(N, M) ---+ HomA(N, M/xM) 
---+ Ext1(N, M) ---+ ••• 

Thus x is a nonzerodivisor on HomA(N, M). If N is a maximal 
Cohen-Macaulay module then depth(N) = d, so Ext1(N,M) = 0 by 
part a. Every homomorphism N ---+ M / xM factors uniquely through 
N/xN, so HomA(N, M/xM) = HomA(N/xN, M/xM). The short 
exact sequence above thus becomes 
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Since HomA(MlxM, NlxN) = HomA/(x) (MlxM, NlxN), this proves 
part b. 0 

Proposition 21.13. Let A be a local ring, and let M and N be finitely 
generated modules. Suppose that x is a nonzerodivisor on M and that x is 
in the maximal ideal of A. If cp : N ----t M is a map and 1/J : N I xN ----t M I xM 
is the map induced by cp, then: 

a. If 1/J is an epimorphism, then cp is an epimorphism. 

b. If 1/J is a monomorphism, then cp is a monomorphism. 

Further, if M and N are maximal Cohen-Macaulay modules, M has finite 
injective dimension, and 1/J : N I xN ----t M I xM is any map, then there is a 
map cp : N ----t M inducing 1/J. 

Proof. 

a. If 1/J is an epimorphism, then cp is an epimorphism by Nakayama's 
lemma. 

b. Suppose that 1/J is a monomorphism, and let J = ker cp. Since J goes 
to zero in NlxN, we must have J c xN. On the other hand, since 
x is a nonzero divisor on the image of cp, we have (J :N x) = J. Thus 
xJ = J, so J = 0 by Nakayama's lemma. 

The last statement is a restatement of part b of Proposition 21.12. 0 

Proof of Theorem 21.8. First suppose that W is a canonical module. We 
do induction on the dimension of A. 

If dim A = 0, then condition a is vacuous, condition b is satisfied because 
W = WA is injective, and condition c follows because, by duality End(wA) = 
End(D(wA)) = End(A) = A. 

Now suppose dim A > 0, and let x be a nonzero divisor. By hypothesis, 
WlxW is a canonical module over AI(x), and by induction it satisfies 
conditions a, b, and c as an AI(x)-module. 

Since x is a nonzero divisor on Wand WlxW has depth d -1, condition 
a is satisfied. W has finite injective dimension by Proposition 21.10. 

Let B = End(W), and consider the natural map cp : A ----t B sending 
each element a E A to the map "multiplication by a" E End(W). We must 
show that cp is an isomorphism. By Proposition 21.12, x is a nonzero divisor 
on B, and BlxB = End(WlxW) = AI(x). Thus by induction the map cp 
induces an isomorphism AI (x) ----t B I xB. It follows by Proposition 21.13 
that cp is an isomorphism. 

Next suppose that W is an A-module satisfying conditions a, b, and c. 
Again we do induction on dim A. 
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In case dimA = 0 we must show that W = WA. By Proposition 21.11 
this follows from conditions band c. 

Now suppose that dim A > 0, and let x be a nonzero divisor in A. The 
element x is also a nonzero divisor on W by Proposition 21.9, so W/xW 
has depth d-1 over A/(x). By Proposition 21.10, idA/(x) W/xW < 00, and 
by Proposition 21.12, End(W/xW) = End(W)/x End(W) = A/(x). Thus 
W/xW is a canonical module for A/(x) by induction, and W is a canonical 
module for A. 0 

21.6 Uniqueness and (Often) Existence 

These results imply a strong uniqueness result. 

Corollary 21.14 (Uniqueness of canonical modules). Let A be a local 
Cohen-Macaulay ring with a canonical module W. If M is any finitely gen
erated maximal Cohen-Macaulay A-module of finite injective dimension, 
then M is a direct sum of copies of W. In particular, any two canonical 
modules of A are isomorphic. 

Proof. We do induction on dim A, the case dim A = 0 being Proposi
tion 21.11. If x E A is a nonzerodivisor, then x is a nonzerodivisor on 
Wand on M, and M/xM ~ (W/xw)n for some n. By Proposition 21.13, 
there is an isomorphism M ~ wn. 0 

Henceforth we shall write WA for a canonical module of A (if one exists). 
We now come to the question of existence. We have already seen that if 

R is a regular local ring, then R has canonical module WR = R. We shall 
now show that if A is a homomorphic image of a local ring with a canonical 
module, then A has a canonical module too. 

Theorem 21.15 (Construction of canonical modules). Let R be a local 
Cohen-Macaulay ring with canonical module WR. If A is a local R-algebra 
that is finitely generated as an R-module, and A is Cohen-Macaulay, then 
A has a canonical module. In fact, if c = dim R - dim A, then 

WA ~ ExtR(A, WR) 

is a canonical module for A. 

Proof. We shall do induction on dim A. First suppose that dim A = O. In 
this case c is the dimension of R. The annihilator of A contains a power of 
the maximal ideal of R. By Corollary 17.8 we may choose a regular sequence 
Xl, ... , Xc of length c in the annihilator of A. Let R' = R/ (Xl, ... , xc). R' is 
a local Cohen-Macaulay ring of dimension 0, and A is a finitely generated 
R'-module. 

By definition, WR/(XI, ... ,Xc)WR is a canonical module for R', for which 
we shall write WR'. By Proposition 21.10, applied c times, 
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ExtR(A,WR) ~ Ext~,(A,WRI) = HomRI(A,wR')' 

By Proposition 21.4, this is a canonical module for A, as required. 
Now suppose that dim A > O. It suffices to show that if x is a 

nonzero divisor on A, then x is a nonzero divisor on ExtR(A, WR) and 
ExtR(A, WR)/X ExtR(A, WR) is a canonical module for A/x. The short exact 
sequence 

0-+ A ~ A -+ A/(x) -+ 0 

gives rise to a long exact sequence in Ext of which a part is 

-+ ExtR(A/(x), WR) -+ ExtR(A, WR) ~ ExtR(A, WR) 
-+ ExtR+1(A/(x),WR) -+ Ext~tl(A,WR) -+ .... 

By induction, ExtR+1(A/(x),WR) is a canonical module for A/(x), so it 
suffices to show that the two outer terms are 0, which we may do as follows: 

Set I = annR A. The ring A/(x) is annihilated by (1, x), which has depth 
c+ 1 in R. Thus ExtR(A/(x),WR) = 0 by Proposition 18.4. 

The ring A, being Cohen-Macaulay, has depth equal to dim R - c so 
ExtR+1(A,WR) = 0 by Proposition 21.12a. 0 

This description of WA has a particularly simple interpretation when R 
is a regular local ring: 

Corollary 21.16. Let R be a regular local ring, suppose that I is an ideal 
of codimension c in R, and suppose that A = R/ I is Cohen-Macaulay. If 
:J" is the minimal free resolution of A as an R-module, then the length of:J" 
is c, and :J"* is the minimal free resolution of WA. If we write :J" as 

'Pc 'PI 
:J": 0 -+ Fn -----; Fn- 1 -+ '" -+ Fl -----; R, 

then n = c and the following statements are equivalent: 

a. A is Gorenstein. 

b. :J" is symmetric in the sense that :J"* ~ :J" as complexes. 

c. Fc ~ R. 

Proof. By Corollary 19.15, pdR A = c. By Proposition 18.4 Ext~(A, R) = 0 
for j < c, so :J"* is a minimal free resolution of ExtR(A, R) = WA. 

a =} b: If A is Gorenstein then W A ~ A, so :J"* is another minimal free 
resolution of A, and part b follows from the uniqueness of min
imal free resolutions. 

b =} c: By b, Fc = Fo = R* = R. 

c =} a: From c we see that W A can be generated by one element so W A = 
A/J for some ideal J. Since End (WA) = A by Theorem 21.8, 
J = O. (Alternatively, we could reduce to the zero-dimensional 
case and use Proposition 21.5d.) 0 
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21. 7 Localization and Completion of the Canonical 
Module 

Corollary 21.17. Let A be a local Cohen-Macaulay ring with canonical 
module WA. If P is a prime ideal of A, then (WA)P is a canonical module 
of Ap; in particular, if A is Gorenstein, then Ap is Gorenstein. 

Proof. We prove that each of the properties in the characterization of The
orem 21.8 localizes: 

a. Set co dim P = c. We claim that there is a system of parameters 
for A whose first c elements lie in P. It suffices to show that some 
sequence of elements Xl, ... ,Xc E P generates an ideal of height c. 
Let Q c P be a prime of co dimension c - 1. By induction we may 
find Xl, ... ,Xc-l E Q generating an ideal I of co dimension c - 1. The 
principal ideal theorem (Theorem 10.2) shows that each of the finitely 
many primes minimal over I has co dimension :::; c - 1, and therefore 
does not contain P. Using prime avoidance (Lemma 3.3) we see that 
P is not in the union of these primes, so we can choose Xc E P not 
in any of the minimal primes of I. It follows that Xl, ... , Xc generates 
an ideal of co dimension c. 

Now suppose that M is any finitely generated module of depth 
d-that is, a maximal Cohen-Macaulay module over A. It follows 
from Proposition 21.9 that Xl, ... , Xc is an M-sequence. Localizing 
at P preserves this property, so we see that Mp is again a maximal 
Cohen-Macaulay module over Ap. This shows that (WA)P satisfies 
property a over Ap . 

b. We claim that if we localize a finite injective resolution of WA we 
get an injective resolution over Ap of Wp. It suffices to show that 
if E is an injective A-module, then Ep is an injective Ap-module. 
Every ideal of Ap has the form Ip for some ideal I of A. If cp : 
Ip -+ Ep is a homomorphism, we must show that cp extends to a 
map Ap -+ E p . Since I is finitely presented, Proposition 2.10 shows 
that HomAp (Ip, Ep) = HomA (I, E)p. Thus there is an element u rf- P 
such that ucp is the localization of some map 'ljJ : I -+ E. Since E is 
injective, 'ljJ extends to 'ljJ' : A -+ E, and u-I'ljJ' is the desired extension 
of cp. 

c. Since Wp is a finitely presented module, EndAp((wA)p) 
EndA(wA)p = Ap by Proposition 2.10. D 

Corollary 21.18. If A is a local Cohen-Macaulay ring with canonical mod
ule WA, then W A = (WAY', the completion of WA. In particular, A is Goren
stein iff the completion A is Gorenstein. 
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Proof. It is enough, by the definition of the canonical module, to show that 
for some system of parameters Xl, ... ,Xd the module 
(WAY' /(Xl,"" Xd)(WAY' is a canonical module for A/(Xl, ... , xd)A. If we 
choose Xl,"" xd in A, then A/(Xl, ... , Xd), being Artinian, is already com
plete, so A/(Xl,"" xd)A = A/(Xl,.'" Xd). The same goes for any mod
ule over A/(Xl, ... , Xd), so (WAY' /(Xl,"" Xd)(WAY' = WA/(Xl,"" Xd)WA, 
which is the canonical module of A/(Xl, .. " Xd) as required. 

Since A/(Xl,"" xd)A = A/(Xl, ... , Xd), one is Gorenstein iff the other 
is. The second statement follows. 

21.8 Complete Intersections and Other Gorenstein 
Rings 

We next turn to some examples. The most common examples of Goren
stein rings are complete intersections-regular local rings modulo regular 
sequences. 

Corollary 21.19. If A = R/ I where R is a regular local ring and I is an 
ideal generated by a regular sequence, then A is Gorenstein. 

Proof. If Xl, ... , Xc is a regular sequence generating I, then the Koszul 
complex K(Xl, ... , xc) is the minimal free resolution of A as an R-module, 
so pdR A = c, Ext'R(A, R) s:! A, and we are done by Theorem 21.15. 

The converse is false: We have already seen an example of a Goren
stein ring A = R/ I where I had co dimension 3 and was generated by five 
quadrics. However, there is no such example in co dimension 2. 

Corollary 21.20 (Serre). Let A = R/ I where R is a regular local ring. 
If codim I = 1, then A is Cohen-Macaulay iff A is Gorenstein iff I is 
principal. If codim I = 2, then A is Gorenstein iff I is generated by a 
regular sequence of length 2. 

Proof. Let K(R) be the quotient field of R. Since I is nonzero, K(R)0R/ 1= 
0, so that with notation as in Corollary 21.16, K(R)0~ is an exact sequence 
of vector spaces, and we see that the alternating sum of the ranks of the 
free modules in ~ is O. 

Suppose codim I = 1. If A is Cohen-Macaulay, then pdR A = 1 and ~ 
has the form 

o ---. Fl ---. R ---. A ---. O. 

Thus rank Fl = I-that is, I is principal. Conversely, if I is principal, then 
A is Gorenstein by Corollary 21.19. 

If co dim I = 2, then the resolution has the form 
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If A is Gorenstein, then F2 has rank 1, and we deduce that FI has rank 2. 
Thus I is generated by two elements that must form a regular sequence by 
Corollary 17.7. Again, the converse is given by Corollary 21.19. 

Even in higher codimension the ideals I in a regular local ring R such 
that R/ I is Gorenstein are subject to some surprising restrictions: For 
example, if codim I = c then of course I may be minimally generated by c 
elements (a regular sequence) but not by c + 1 elements; see Kunz [1974]. 
Also, if c = 3, the minimal number of generators must be odd, and in fact 
there is a structure theorem along the lines of the Hilbert-Burch theorem 
(Buchsbaum and Eisenbud [1977]). In co dimension c 2:: 4 however, every 
minimal number of generators 2:: c + 2 is possible; the restrictions are more 
subtle and are still a matter of current research. 

21.9 Duality for Maximal Cohen-Macaulay 
Modules 

The duality theory for modules of finite length generalizes to a duality for 
maximal Cohen-Macaulay modules. We shall describe this generalization 
now to prepare for the idea of linkage explained in the next section. 

Theorem 21.21 (Duality). Let A be a local Cohen-Macaulay ring and let 
D be the functor HomA ( -, W A)' The functor D is a dualizing functor on 
the category of maximal Cohen-Macaulay A-modules in the sense that 

a. D takes maximal Cohen-Macaulay A-modules to maximal Cohen
Macaulay A-modules. 

b. D takes exact sequences of maximal Cohen-Macaulay A-modules to 
exact sequences. 

c. The natural map M ---+ D2M = HomA(HomA(M,wA),WA) sending 
m E M to the map a f--+ a( m) for a E HomA (M, WA) is an isomor
phism when M is a maximal Cohen-Macaulay A-module. 

Proof. 

a. This follows by induction on dim A, using Proposition 21.12b. 

b. If 0 ---+ M' ---+ M ---+ M" ---+ 0 is an exact sequence of A-modules, then 
we get an exact sequence 

o ---+ HomA(M",wA) ---+ HomA(M,wA) ---+ HomA(M',wA) 
---+ Ext~(M",WA) ---+ 

If in addition M" is a maximal Cohen-Macaulay module, then 
Ext~(M",WA) = 0 by Proposition 21.12a. 
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c. Let 'PM be the natural map M -+ D2(M) = HomA(HomA(M,wA), 
WA) sending m E M to the map a f-r a(m) for a E HomA(M,wA). 
We shall prove by induction on dim A that 'PM is an isomorphism for 
every maximal Cohen-Macaulay module M. The case dim A = 0 was 
treated in Proposition 21.2. 

By Proposition 21.12, D(M)/xD(M) ~ D'(M/xM), where 
D' = HomA/x(M/xM,WA/XWA) is the duality for maximal Cohen
Macaulay modules over A/(x). Unraveling the isomorphism, we see 
that the map M/xM -+ D2(M)/xD2(M) induced by 'PM is the cor
responding duality map 'PM/xM defined over A/(x). Since this map is 
an isomorphism by induction, it follows from Proposition 21.13a and 
b that 'PM is an isomorphism. 0 

21.10 Linkage 

A striking application of Theorem 21.15 occurs in the theory of linkage as 
formulated by Peskine and Szpiro [1974]. The classical cases involve sets of 
points in the plane or curves in p3. The case of points in the plane is the 
setting of the Cayley-Bacharach theorem and its generalizations; we leave 
this to Exercise 21.24. We begin with an example from the case of curves. 
For simplicity we work over an algebraically closed field. 

Suppose that X, Y C p3 are curves without common components. We 
say that X and Yare directly linked if X U Y is a complete intersection 
in the sense that the ideal J(XUY) is generated by a regular sequence. We 
say that curves X and Z are linked if they can be connected by a sequence 
of such direct linkages. For example, the twisted cubic curve X, which is 
the image of pI in p3 under the map 

has ideal generated by the 2 x 2 minors of the matrix 

If one takes just two of these minors-say the two containing the first row in 
common, h = XOX2 - xi, 12 = XOX3 - Xl X2-it turns out that they generate 
the ideal of the union of X with one of its secant lines Y (Figure 21.1), in 
this case the line Xo = Xl = O. 
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FIGURE 21.1. The twisted cubic curve X and one of its secants Y. 

(Note that xo, Xl are the two 1 x 1 minors-that is, entries-of the common 
row. This is no accident, as we shall see in Proposition 21.24.) Thus X and 
Yare directly linked. 

This sort of relationship between curves has been of interest for a long 
time, as evidenced by the article by Rohn and Berzolari in the German 
Enzykolpiidie der Mathematischen Wissenschaften [1921-1928]. However, 
it was given new interest by the discoveries of Apery [1945a, b] and Gaeta 
[1952], who showed essentially that if X and Z are curves in p3 whose 
homogeneous coordinate rings are Cohen-Macaulay, then X and Z are 
linked. Peskine and Szpiro [1974] greatly generalized and recast the theory 
in the form we give it below. Hartshorne and Rao (see Rao [1979]) then 
generalized the result of Apery and Gaeta. They showed that the linkage 
classes of curves in p3 are distinguished by a simple invariant: If we write 
S(X) for the homogeneous coordinate ring of the curve X C p3, then 
S(X) is a homomorphic image of S = k[xo, ... , X3], the coordinate ring of 
p3 itself, and two curves X and Z are linked iff the graded modules of finite 
length Ext1(S(X), S) and Ext1(S(Z), S) are equal up to a shift in grading 
and a dualization. (The theorem of Apery and Gaeta is a special case, since 
S(X) is Cohen-Macaulay iff Ext1(S(X), S) = 0.) See Martin-Deschamps 
and Perrin [1990] for a treatment of space curves that grows from this fact. 

It is not hard to show that if X and Yare directly linked, and the ideal 
of the complete intersection X UY is (iI, h), then ((iI, h) : I(X)) = I(Y). 
In the treatment of Peskine and Szpiro, this algebraic relationship takes 
center stage. In general, they define ideals I and J of co dimension c in a 
Gorenstein local (or suitably graded) ring A to be directly linked if there 
is a regular sequence iI, ... , Ie in A such that J = ((iI,···, Ie) : 1) and 
I = ((iI, ... , Ie) : J). I and J are linked if they are connected by a series 
of direct linkages.2 We often say that AI I and AI J are linked to mean that 
I and J are. 

Linkage is in some ways a rather crude equivalence relation. For example, 
we have: 

2 A priori, if we apply this notion in the case where A is the polynomial ring in 
four variables and c = 2, we get a weaker relation than the linkage defined for pairs 
of reduced curves without the common component above; but Peskine and Szpiro 
prove that the two notions coincide, and we shall henceforth use only this algebraic 
version. 
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Proposition 21.22. Let A be a Gorenstein local ring. If Xl,.·., Xc and 
Yl, ... ,Yc are regular sequences in A, then (Xl, ... ,Xc) and (Yl, ... ,Yc) are 
linked. 

Proof. We do induction on c, beginning with c = 1. If X and yare nonzero
divisors in A and xa = xyb, then we can cancel the X and get a = yb. Thus 
(xy : x) = (y) and similarly (xy : y) = (x), so we see that (x) and (y) are 
linked. 

For arbitrary c, we first observe that if Q is an associated prime of 
AI(Yl,"" Yc-d then Q has depth c - 1. Since A is Cohen-Macaulay, Q 
has co dimension c - 1 by Theorem 18.7. On the other hand, the ideal 
(Xl"'" Xc) has co dimension c by Proposition 18.2. Thus (Xl"'" Xc) is not 
contained in any of the associated primes of AI(Yl,"" Yc-d, and by the 
refined prime avoidance lemma of Exercise 3.19b, there is an element of 
the form x~ := Xc + l:~-l aiXi that is not in any of these associated primes. 
Replacing Xc by x~, we may assume from the outset that Yl, ... , Yc-l, Xc is 
also a regular sequence. 

It now suffices to prove the proposition in the case where the two reg
ular sequences share a common element. By the permutability of regular 
sequences, we may reindex the elements, and take this common element 
to be the first, say Xl = Yl. Working modulo Xl the inductive hypothesis 
shows that (Xl, Y2, ... , Yc) and (Xl, ... , Xc) are linked by a sequence of direct 
linkages each involving a regular sequence beginning with Xl. 0 

On the other hand, there is a strong connection between directly linked 
rings. Here is the key result. 

Theorem 21.23 (Linkage). Let A be a Gorenstein local ring, and let I be 
an ideal of codimension O. Set J = (0 :A 1)B = AI I and J = (0 :A 1). We 
have J ~ HOmA(B, A). 

a. The ideal J has codimension 0 and no embedded components. If I has 
no embedded components, then I = (0 :A J) so I and J are linked. 

b. If B := AI I is a Cohen-Macaulay ring, then C := AI J is a Cohen
Macaulay ring. 

c. If B := AI I is a Cohen-Macaulay ring, then J = (0 :A 1) = 

HomA (B, A) is a canonical module for B; in particular, B is Goren
stein iff J is a principal ideal of A. 

Proof. 

a. The map HomA(B, A) --4 A sending a homomorphism <p to <p(1) is an 
isomorphism onto (0 :A I), proving the first statement. If P is a prime 
associated to (0 :A I), then it is still associated after we localize at P, 
so we may assume that P is a maximal ideal. For some Y tJ. (0 :A 1) 
we have Py C (0 :A 1), that is, PyI = O. Since yI f. 0, this implies 
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that P annihilates an element of A, and is thus associated to 0 in A. 
Since A is Cohen-Macaulay, P must be a minimal prime. 

Quite generally and trivially, I C (0 :A J). If I has no embedded 
components, then to prove equality it is enough to do so locally at a 
minimal prime of A. Thus we may assume that A is a zero-dimensional 
Gorenstein ring. 

Note that HomA(AII,A) = (O:A I) since each homomorphism may 
be identified with the image of 1 E AI I, and the elements that can 
be the images of 1 are just the elements of (0 :A I). Thus 

J = (O:A I) = HomA(AII,A) = HomA(AII,wA) = D(AII), 

where D is the dualizing functor. Since D preserves length we have 
length J = length AI I = length A -length I. Repeating the argument, 
we see that length(O :A J) = lengthAIJ = length A -lengthJ = 
length I, so I = (0: J). 

b. Suppose that AI I is Cohen-Macaulay. Let D be the functor 
HomA(-,wA) = HomA(-,A), as in Theorem 21.21. Since Band 
A are maximal Cohen-Macaulay A-modules, the same is true of I 
by Corollary 18.6b. Just as we saw that J = D(B) above, we have 
C = D(I), so C is a maximal Cohen-Macaulay A-module, and is thus 
a Cohen-Macaulay ring. 

c. The equation J = D(B) shows that J = WB. The last statement 
follows by Proposition 21.5d and Nakayama's lemma. 0 

To bring the discussion back to earth, we give a modern presentation of 
the idea of Apery [1945a, bJ and Gaeta [1952J that initially gave rise to this 
whole theory. It generalizes the example of the twisted cubic and secant 
line with which we started. It is generally applied in the graded case where 
A is a polynomial ring over a field. 

Proposition 21.24. Let A be a local Gorenstein ring, and let M be an 
(n + 1) x n matrix over A. Write ~i for the n x n minor of M obtained by 
omitting the ith row, and let M' be the result of dropping the first two rows 
from M, as in the following picture. If ~l' ~2 is a regular sequence, then 
B = AlIn(M) and C = AlIn-1(M') are Cohen-Macaulay rings, linked in 
the Gorenstein ring AI(~l' ~2). 
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n 

----------M" )2 

M ~n-l 
M' 

Proof. Write I for In(M) and J for In-l (M'). The minors ~l' ~2 may be 
written (by the "Laplace expansion" of determinants) as linear combina
tions of the (n-1) x (n -1) minors of M', so that ~l' ~2 E In J, and both 
I and J have depth ~ 2. From the Hilbert-Burch theorem (Theorem 20.15) 
we see that we have resolutions 

and 
M" o _ An- 1 ----+ An _ A _ C _ O. 

From the Auslander-Buchsbaum formula it follows that Band C are both 
Cohen-Macaulay of co dimension 2 in A. 

We shall show that I /(~l' ~2) = We. Since the annihilator of We is J, 
this implies that 

as required. 
Examining the resolutions above we see that M is a presentation matrix 

for I. Supposing that the first two basis vectors of An map to ~l' ~2' we 
can get a presentation matrix for 1/ (~l' ~2) by adding two new relations 
that map to these first two basis vectors. Thus we have an exact sequence 
of the form 

M 
A2 EB An ~ An+1 _ I/(~l' ~2) _ 0 

where M is given as a matrix by 
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n 

1 0--------
)2 o 1 M" 

M= 
o 0 

~n-I M' 
o 0 

By adding multiples of the first two columns to the other columns, which 
corresponds to a change of basis in A2 EB An, M can be put in the form 

n --------1 0 0 ... 0 
o 1 0 ... 0 

)2 

o 0 

M' ~n-I 
from which it is clear that the cokernel of M is the same as the cokernel of 
M'. Examining the preceding resolutions, we see that the cokernel of M' is 
Ext~(C,A), and by Theorem 21.15 this is We, as required. 

Corollary 21.25. If A is a regular local ring, then any two Cohen-Macaulay 
factor rings of codimension 2 are linked. 

Proof. Let I c A be an ideal of codimension 2 such that AI I is Cohen
Macaulay. Proposition 21.22 shows that any two complete intersections are 
linked to one another, so it is enough to show that I is linked to an ideal 
generated by two elements. 

Let m be the minimal number of generators of I. Using the prime avoid
ance lemma we may find a minimal set of generators for I such that the 
first two elements generate an ideal of co dimension 2: Simply choose the 
first element outside the union of the minimal primes of A, and the sec
ond element outside the minimal primes of the first element (these have 
codimension 1 by the principal ideal theorem). 

By the Hilbert-Burch theorem, there is an (m -1) x m matrix M whose 
(m - 1) x (m - 1) minors are the chosen generators of I. If m > 2 we apply 
Proposition 21.24 (with n = m - 1) and conclude that I can be linked to 
an ideal generated by just m - 1 elements. We may repeat this argument 
until we get an ideal generated by 2 elements. D 
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The statement of Corollary 21.25 fails in the case of co dimension 3: 
The ideal (x, y, z? C k[x, y, z] is not linked to a complete intersection. See 
Huneke [1984] and the references there. There is a growing body of evidence 
that Cohen-Macaulay factor rings that are linked to complete intersections 
are particularly nice. See, for example, Huneke and Ulrich [1987]. 

21.11 Duality in the Graded Case 

Now suppose that instead of being local, A is a positively graded Cohen
Macaulay ring A = Ao EB Al EB ... with Ao = k a field. As with all the results 
in this book, the duality theory developed in this chapter can be transposed 
to the graded case. However, there is one point that requires attention: The 
module WA will now be a graded module, and we must distinguish between 
a module and its shifts. (Recall that if M is a graded module, then the 
module M(8) obtained from M by shifting 8 steps is the graded module 
with the same homogeneous components as M but renumbered so that 
M(8)n = MHn.) For example, in the zero-dimensional case, we insist that 
WA is the injective hull of the residue field k, where k is concentrated in 
degree 0; thus for a field A = k, it is still true that Wk 9;! k. In order to 
make the fundamental result 

of Theorem 21.15 true, however, we must change the definition of the canon
ical module. To see why, consider the simple case R = k[x], where x is an 
indeterminate of degree 1, and A = k[x]/(xt ) for some integer t > O. The 
sode of A is generated by xt-!. Thus A is the injective hull of k( -t+ 1), not 
of k, so WA, the injective hull of k, is A(t - 1). The graded free resolution 

o ~ R( -t) ~ R ~ A ~ 0 

shows that Extk(A, R) = A(t), so WA = Extk(A, R( -1)). This suggests 
that we should have W R = R( -1). 

Definition. Let A be a positively graded Cohen-Macaulay ring A = Ao EB 
Al EEl ... with Ao = k a field. A finitely generated A-module W is a graded 
canonical module for A if there is a homogeneous nonzerodivisor x E A 
of some degree 8 such that (W/xW)(8) is a canonical module for A/(x). 
The ring A is Gorenstein if A(8) is a canonical module for some 8; that 
is, A is Gorenstein if there is a homogeneous nonzerodivisor x E A such 
that A/(x) is Gorenstein. 

Using this definition it is easy to show, for example, that if A = 
k[XI"" ,xr ], the polynomial ring on r indeterminates of degree 1, then 
WA = A( -r); one uses induction, factoring out one indeterminate at a 
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time. It follows from the definition that if we factor out a regular sequence 
II, ... ,Ie of homogeneous elements of degrees 81, ... 8e, then the canonical 
module of B := A/(h ... , Ie) is WB = B('L,8; - r). (See Exercise 21.16 
for a more general case and Exercise 21.22 for the effect that this has on 
linkage.) 

Theorem 21.8 also requires some modification in the graded case. The 
conditions as they stand characterize the canonical module only up to a 
shift. One convenient way to change the list of properties to get a charac
terization is to replace property c by the property 

ct. Ext1(k, W) ~ k. 

See Exercise 21.13. We made the choice we did in the text because from 
the condition End(W) = A it is obvious that the annihilator of W is 0; and 
also because the condition End(W) = A localizes. 

21.12 Exercises 

The Zero-Dimensional Case and Duality 

Exercise 21.1:* Let A be the ring k[x, yl/(x2 , xy, yn). Show that the socle 
of A is a 2-dimensional graded vector space with generators in degrees 1 
and n - 1. Draw diagrams for A and D(A) in the style of the pictures at 
the beginning of this chapter. 

Exercise 21.2:* Let A be a ring, and let D be a contravariant A-linear 
functor from the category of A-modules of finite length to itself. If D2 ~ 1 
as functors, show that D is exact. 

Exercise 21.3: Let A be a finite-dimensional algebra over a field k. Not 
assuming that A is local, show that Homk(A, k) is the injective hull of the 
direct sum of the simple A-modules. 

Exercise 21.4:* Here is a different generalization of the duality theory in 
the zero-dimensional case: 

Let R be a regular local ring of dimension d. Show that the functor 
Ext~( -, WR) is a dualizing functor on the category of R-modules of finite 
length. 

Exercise 21.5:* Prove that the dualizing functor described in Exercise 21.4 
is, up to isomorphism, the only dualizing functor on the category of R
modules of finite length. 

Exercise 21.6: Let I be any quadratic form in k[xl1, x;-l, x31], and con
sider the ideal If in S = k[Xl,X2,X3] corresponding to I. Show that 
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1. f has rank 1 as a quadratic form iff If is generated by a regular 
sequence consisting of two linear forms and a cubic. 

2. f has rank 2 as a quadratic form iff If is generated by a regular 
sequence consisting of a linear form and two quadrics. 

3. f has rank 3 as a quadratic form iff If has 5 quadratic generators. 

Exercise 21.7 (Inverse systems and differential operators): Here is 
a more astonishing form of the theory of inverse systems. Let k be a field 
of characteristic 0, and let T = k[YI,"" Yrl be the polynomial ring. Recall 
that a polynomial differential operator with constant coefficients 
over k is an operator on T of the form 

D = '" a . (O/OYI )il . .., . (%y )ir L...,; Zl"",Zr r , 
il, ... ,iT 

with ai), ... ,ir E k. The symbol of D is the polynomial (in a new polynomial 
ring S = k[XI"" ,xr]) obtained by replacing each O/OYi by Xi: 

symbol(D):= '" a· . X'I'1 ••••• xir E S. L-t Zl"",Zr r 

Let 0 =I- f E T be a polynomial. Prove that if I is the set of symbols 
in S of polynomial differential operators with constant coefficients D on T 
such that D f = 0, then I is an ideal of S contained in (Xl'"'' xr ), and 
S / I is a zero-dimensional local Gorenstein ring. Conversely, prove that if 
J C (Xl, ... ,Xr ) is an ideal such that S/J is a zero-dimensional Gorenstein 
ring, and J' is the set of differential operators with symbols in J, then there 
is a solution f E T to the differential equations 

Dg = 0 for all D E J', 

with the property that every solution g of these equations is obtained by 
applying some differential operator to f. 

Exercise 21.8: Let A be a finite-dimensional algebra over a field k. Show 
that a map A --+ Homk(A, k), sending 1 f--+ <p, is an isomorphism iff <p 
generates Homk(A, k) as an A-module. 

Exercise 21.9: Let A, P be a zero-dimensional local ring, finite
dimensional as a vector space over a field k ~ A/ P. Suppose that A is 
Gorenstein. Let <p : A --+ k be a linear functional on A. Show that the 
symmetric bilinear form (a, b) = <p(ab) is nonsingular iff <p is nonzero on 
the so de of A. Show that this form is an invariant of A, (as a k-algebra); 
for example, if k = R then the signature of this form is an invariant of 
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A. (When F = (il, ... , Ir) : Rr -t Rr is an analytic mapping taking 0 to 
0, and il, ... ,Ir is a regular sequence in the ring of real analytic germs of 
functions at 0, then this signature is the local degree at the origin of F; 
that is, the number of times F wraps a small sphere about the origin in the 
source space around a small sphere about the origin in the target space. 
See Eisenbud and Levine [1977].) 

Exercise 21.10:* Here is a generalization of Exercise 21.9: 
Suppose that (A, P) is a zero-dimensional local ring that happens to 

be a finite-dimensional vector space over a field k. Proposition 21.1 shows 
that WA ~ Homk(A, k), but the isomorphism is not canonical. The module 
Homk(A, k) comes equipped with a natural map 'f]k : Homk(A, k) -t k, 
namely evaluation at 1 E A. Given an isomorphism rp : WA -t Homk(A, k), 
we get a map 'f]krp : WA -t k, and the isomorphism rp may be expressed 
in terms of this map by the formula rp( w) (a) = ('f]krp) (aw). From this it is 
easy to see that 'f]krp must be nonzero on the socle of WA, since rp would 
otherwise kill the map that is the inclusion of the socle. 

Conversely, given any k-linear map 'f] : WA -t k, let 'l/J'I : WA -t Homk(A, k) 
be defined, for w E WA and a E A, by the formula 'l/J'I(w)(a) = 'f](aw). 
Show that the map 'l/J'I is a map of A-modules, and that the following are 
equivalent: 

a. 'l/J'I is an isomorphism. 

b. 'fJ generates Homk(wA, k) ~ A as an A-module. 

c. 'f] is nonzero on the socle of W A. 

A map 'f] : WA -t k satisfying conditions a-c is called a residue map. 
The name comes from duality theory on a smooth curve over C. There the 
analogue of the elements of the canonical module are certain meromorphic 
differential forms, representing classes in the first cohomology group of 
the cotangent bundle; and the classical residue map is just the sum of the 
residues of these forms at all points where they have poles. See Kunz [1991, 
1992] for some elementary and unusual examples of the use of residue theory 
on curves. 

Having explicit residue maps is often quite useful, and there is an inter
esting literature on constructing them. The result of Eisenbud and Levine 
cited above is an application of such results. 

Higher Dimension 

Exercise 21.11 (Semigroup rings): Here is a case where the computa
tion of WA is quite direct. Let r c N be a "numerical semigroup" -that is a 
subset containing 0 and closed under addition. Suppose that r contains all 
numbers from a certain number c on, and that c is the smallest number with 
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this property; c is called the conductor. We may use r to define a subring 
of the power series ring in one variable, A := k[[{fYll' E r}]] c k[[t]]. We 
abbreviate this as A = k[W]]. A good general reference for the properties 
of such rings, and their relation to one-dimensional complete domains in 
general, is Herzog and Kunz [1971]. Show that: 

a. A is a one-dimensional local domain (and is thus Cohen-Macaulay) 
with quotient field k((t)). The integral closure of A is A' = k[[t]]. 
The ideal AnnA(A'jA) (also called the conductor) is the ideal 
(tC , tC+I, t c+2 , ••• ) C A. 

b. Let W be the vector space spanned by rn for all integers art r. Show 
that w is an A-submodule of k((t)), and W ::J tk[[t]]. For example, if r 
is the semigroup generated by 3, 5, and 6, show that c = 8 and that 
w is spanned by r4,r2,r1,t,t2 ,t3 , •••• 

c. Let s = tC , so that k[[t]] and A are finite modules over k[[s]]. By 
Theorem 21.15, WA ~ Homk[[sll(A, k[[s]]). Show that 

HOmk[[s]] (A, k[[s]]) = {cp E HOmk((s)) (k((t)), k((s)))lcp(A) C k[[t]]}. 

d. Show that HOmk((s))(k((t)), k((s))) is generated by the map a sending 
t i to 0 if i is not a multiple of c and to si/c if i is a multiple of c. Show 
that a generates HOmk((s)) (k((t)), k((s))) as a k((t)) module, where as 
usual the module structure is given by fa(g) = aUg). Deduce that 
WA ~ {f E k((t))lfa(A) C k[[s]]}. Using this description, show that 
W~WA' 

e. Show that, for any semi group r as above, if for I' E r then c - 1 -
I' ¢ r. 

f. Deduce from part d that WA ~ A, so that A is Gorenstein, iff r 
satisfies the condition: 

I' E r {:? c - 1 - I' rt r, or equivalently 
card {a E [0, 1, ... , c - 1]1 a rt r} = card {a E [0, 1, ... , c - 1]1 a E r}. 

Semigroups r satisfying this condition are called symmetric semi
groups. 

g. Check using these ideas that k[[t2 , t5]] is Gorenstein, but k[[t3 , t4 , t5]] 

is not Gorenstein. 

Exercise 21.12: Show that WA is an injective in the category of maximal 
Cohen-Macaulay A-modules in the sense that if 0 ~ M' ~ M ~ Mil ~ 0 
is a short exact sequence of maximal Cohen-Macaulay modules, and cp : 
M' ~ W A is any homomorphism, there is a homomorphism 'l/J : M ~ W A 

extending cp: 
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Exercise 21.13: Show that condition c in Theorem 21.8 may be replaced 
by the condition 

c/. Ext1(k,WA) ~ k. 

Exercise 21.14 (Cohen-Macaulay type): Suppose that A is a local 
Cohen-Macaulay ring. The following provides a measure of how far A is 
from being Gorenstein: 

If Xl, ... ,Xd is a regular sequence in A, the number of generators of the 
socle of A/(XI, ... ,Xd) is called the (Cohen-Macaulay) type of A (with 
respect to (Xl, ... ,Xd)). 

a. Show that if A has a canonical module, then the type of A is the 
minimal number of generators of the canonical module. Deduce that 
the type does not depend on the regular sequence chosen, and that 
if P is a prime ideal of A, then type Ap :-:; type A. 

b. If A is a homomorphic image of a regular local ring R, identify the 
type of A with an invariant of the resolution of A as an R-module. 

c. Show that the type of A is the same as the type of the completion of 
A- which always has a canonical module. 

Exercise 21.15: Here is another construction of Gorenstein rings. It is 
not as canonical as that of Theorem 21.6 because of the dependence on the 
regular sequence (Xl' ... ' Xc), but it is often simpler computationally: 

Let R be a regular local ring and let Xl, ... ,Xc be a regular sequence in 
R. Let y E R, y (j. (Xl, ... , Xc) and set J := ((Xl' ... ' Xc) : y). Prove that J 
has co dimension c and R/ J is Gorenstein. If J i- (Xl, ... , Xc), show that y 
satisfies the formula (y, Xl, ... , Xc) = ((Xl, ... , Xc) : J), so J determines y 
modulo (Xl' ... ' Xc) up to units. 

Exercise 21.16:* Let A = k[XI, ... , Xr l/ (It, .. . , Ic), where k is a field, 
k[XI, ... ,XrJ is a polynomial ring where the variable Xi has degree Ci, and 
Ii is a form of degree Dj such that It, ... ,Ic form a regular sequence. Show 
directly from the definition of a graded canonical module that 

Exercise 21.17 (Hilbert series of a graded Cohen-Macaulay 
ring): Suppose that k is a field and that A = k EB Al EB ... is a positively 
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graded Cohen-Macaulay ring. Let hA(t) = 1+ (dimk Adt+(dimk A2 )t2 + ... 
be the Hilbert series of A. Similarly, we write hWA (t) for the Hilbert series 
of the graded module WA. 

a. If dim A = 0, then hA(t) is a polynomial; suppose it has degree n. 
Show that hWA(t) = tnhA(r1). 

b. Suppose that A is Cohen-Macaulay of dimension d, and that iI,···, fd 
is a regular sequence of homogeneous elements in A with degrees 
81, ... ,8d. Set B = A/(iI, ... , fd). Show that hA(t) = hB(t)IIf=l (1 -
tOi ). 

c. In the situation of part b, show that for some integer n we have 
hWA(t) = (_1)dimAtnhA(r1). In particular, if A is Gorenstein, 
hA(t)/hA(r1) = (_1)dimAtn for some n. 

d. Show that the converse of the assertion in part c is false, even in the 
zero-dimensional case, by computing the Hilbert series of the ring 

and showing that this ring is not Gorenstein. Remarkably, the con
verse is true for domains; see Exercise 21.19. 

The Canonical Module as Ideal 

Exercise 21.18 (When is the canonical module an ideal?):* Let 
A be a local Cohen-Macaulay ring, and suppose that A has a canonical 
module WA. We have already mentioned that condition c of Theorem 21.8 
has the meaning that W A is of rank 1. Here we show that if A is a domain, 
then WA is isomorphic to an ideal. In fact, it is not hard to give the exact 
conditions under which WA is isomorphic to an ideal. 

a. Prove that W A is isomorphic to an ideal of A iff A is generically Goren
stein, in the sense that Ap is Gorenstein for every minimal prime ideal 
P of A. (Note that since a field is Gorenstein, any domain-even any 
reduced ring -is generically Gorenstein.) 

b. If A = k EB Al EB ... is a positively graded Cohen-Macaulay ring, with k 
a field, and A is generically Gorenstein, prove that W A is isomorphic, 
up to a shift in degree, to a homogeneous ideal of A. 

Exercise 21.19 (Stanley's Gorenstein Criterion):* (Stanley [1978J 

a. Suppose that A = kEBA1 EB··· is a positively graded Cohen-Macaulay 
domain. If A satisfies hA(t)/hA(r1) = (_1)dimAtn for some n, then 
A is Gorenstein. 



552 21. Duality, Canonical Modules, and Gorenstein Rings 

b. It is not enough to assume that A is a graded generically Goren
stein algebra (that is, locally Gorenstein at the minimal primes) or 
even that A is reduced. Show that A := k[x, y, z, wJl(xw, yw, JJYs) is 
a reduced Cohen-Macaulay ring of dimension 2 with Hilbert series 
hA(t) = (1 + 2t + t 2)/(1 - t)2, but A is not Gorenstein. 

Exercise 21.20:* Let A be a local Cohen-Macaulay ring. Show that if 
I c A is a proper ideal, and I is a canonical module for A, then I has 
co dimension 1 and A/lis Gorenstein. 

Exercise 21.21:* Let A be a local Cohen-Macaulay domain with a canon
ical module. If A is factorial, prove that A is Gorenstein. 

Linkage and the Cayley-Bacharach Theorem 

Exercise 21.22 (The graded case of linkage): Suppose that k is a 
field and that A = kEEl Al EEl ... is a positively graded Gorenstein ring with 
canonical module A(8). Suppose that I and J are ideals of co dimension 0 
in A that are directly linked in A, and that B := A/land C := A/ J are 
Cohen-Macaulay. Show that We = (0 : 1)(8). 

Exercise 21.23 (Resolutions and linkage): There is much more to be 
said about linkage. For example, when X and Yare curves in p3, directly 
linked by equations of degrees d and e, Peskine and Szpiro [1974] prove 
that the degrees and genera of X and Yare related by the formulas: 

degX + degY = de 
genus X - genus Y = (degree X - degree Y) (d + e - 4) /2. 

This and many other of the facts about linkage are proved by using reso
lutions. The technique rests on the following observations: 

Suppose that R is a regular local ring, I c R is an ideal of co dimension 
c such that R/ I is Cohen-Macaulay, and Xl, ... ,Xc is a regular sequence 
contained in I. Let J = ((Xl"'" Xc) : 1) be the linked ideal. The linkage 
process can be used to go from a resolution of R/ I to a resolution of R/ J. 
Let 

~ : 0 ~ Fc ~ ... ~ Fl ~ R ~ R/ I ~ 0 

be a free resolution of R/ I, and let 

be the Koszul complex that resolves R/(Xl, ... ,xc). Let <p : K ~ ~ be 
a map of complexes extending the projection map R/ (Xl, ... ,Xc) ~ R/ I, 
and let £. be the mapping cone of <p, so that £. has the form 
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a. Identifying /\ i RC* with N-i RC, show that the dual 

£* : 0 -4 R -4 (R EB Fd* -4 (RC EB F2)* -4 ... -4 RC EB Fc* -4 R 

is a free resolution of R/ J by proving that 

and deducing an exact sequence 

0-4 ExtR(R/ J, R) -4 ExtR(R/(Xl,"" xc), R) 
ExtR(I/(Xl,"" xc), R) -40 

from the exact sequence 

b. The resolution in part a is never minimal-it does not even have the 
right length. Show that it contains a resolution of the right length 
(but in general is still not minimal) of the form 

o -4 (Fd* -4 (RC EB F2)* -4 ... -4 RC EB Fc* -4 R. 

If the elements Xl, . .. ,Xc form part of a minimal set of generators 
for J, then the map !.pi : RC -4 Fl is a split inclusion, and there is a 
resolution of R/ J of the form 

c. Deduce from this another proof of the statement that if J is principal 
modulo Xl, ... ,Xc, then R/ J is Gorenstein. 

d. Now suppose that Rj J is Gorenstein, and identify Fc with R. The 
map !.p : K -4 :J' has as its degree-c part a map !.pc : R -4 Fc = R; that 
is, an element S E R. Show that s generates the ideal (J : (Xl, ... , Xc)). 

e. In the special case where J = (il, ... , Ic), generated by a regular 
sequence, let (aij) be a c x c matrix such that r.aijli = Xj' We may 
choose !.p so that !.po is the identity and !.pi is given by the matrix (aij). 
If R/(Xl,.'" xc) is zero-dimensional, and J is the maximal ideal of 
R, show that det(aij) generates the socle of R/(Xl,'" ,xr). 

Exercise 21.24 (Cayley-Bacharach): The classical statement of the 
Cayley-Bacharach theory, due to Chasles (who was generalizing Pascal's 
theorem in projective geometry) is the following: Any cubic vanishing on 8 
of the 9 points in which two cubic curves meet in the plane vanishes on the 
ninth point. Cayley and Bacharach generalized this to plane curves of higher 
degree. The most general version is perhaps the statement that a complete 
intersection is Gorenstein. Connect these rather dissimilar statements as 
follows: 
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a. Intrinsic version: Suppose that A is a graded one-dimensional Goren
stein ring, with Ao = k a field, and x E Ai is a nonzero divisor. For 
any graded A-module N, finite-dimensional over k in each degree, 
write 

Homgr(N, k) = EBn Homk(Nn , k) 

for the "graded dual" of N. Let M be the cokernel of the localization 
map A --t A[x-ij. Show that M is a graded module, finite-dimensional 
in each degree. Set w = Homgr(M, k). Show that w ~ WA, the canon
ical module, as follows: 

Dualize the exact sequence 

to get an exact sequence 

Deduce from this exact sequence that x is a nonzero divisor on W 

and that 
wlxw ~ {~E Homgr(A,k)lx~ = O}. 

Show that this last is isomorphic to Homk(AlxA, k), the canonical 
module of AI xA. 

Show that if A is the homogeneous coordinate ring of a set r of d 
points in projective space, then dimk Mn is the failure of r to impose 
independent conditions on forms of degree n -that is, the difference 
between the number of points in r and the codimension of the space of 
forms of degree n vanishing on r in the space of all forms of degree n. 

b. Numerical version: Let r be a set of d points (or a subscheme, for 
those who know what that is) in pr whose ideal is a complete inter
section (11, ... , ir) of forms, with deg Ii = di · Let r ' be a subset of 
r, and let r" be the residual set. Show that I r" = (Ir : Iff)' and 
conversely, as in Theorem 21.23. (In the scheme case, define r" by 
this equation.) Apply part a to the ring k[Xi, ... ,Xr l/ (11, ... , ir) to 
show that the dimension of the space of forms of degree m vanish
ing on r/, modulo those vanishing on r, is equal to the failure of r" 
to impose independent conditions on forms of degree e - m, where 
e = Edi - r-1. 

c. Basic application: Taking r" to be a single point, show that r" 
imposes independent conditions on forms of degree o. Deduce that 
any form of degree Edi - r vanishing on all but one of the points 
of r vanishes on all of r. The preceding statement about cubics is a 
special case. 



Appendix 1 
Field Theory 

In this appendix we prove some results about infinite field extensions that 
are used in the text. We assume that the reader is familiar with algebraic 
field extensions, and with the notions of separability and inseparability for 
such extensions. The necessary background (and more) can be found in 
Lang [1993] or nearly any other basic algebra text. A general source for the 
material in this appendix is Bourbaki [1981] Chapter 5. 

AI.I Transcendence Degree 

Let X be an affine variety over a field k. The most primitive notion of the 
dimension of X is the number of independent rational functions on X, that 
is, the transcendence degree over k of the field K(X) of rational functions 
on X. Here we will show algebraically that this is well defined. 

The simplest kind of field extension is a pure transcendental extension 
defined as follows: 

Definitions. Let {xbhEB is a set of indeterminates. The field k({XbhEB) 
of rational functions in the indeterminates Xb is called a pure transcen
dental extension of k. 

If k c K are fields, and B C K is a set of elements, then B is alge
braically independent over k if there is a homomorphism k( {XdbEB) --+ 

K sending Xb to b. 

Homomorphisms of fields are automatically monomorphisms. Thus if B 
is algebraically independent over k the subfield k(B), generated by B, is 
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isomorphic to k( {Xb hEB). The set B is a transcendence basis for Kover 
kif B is algebraically independent and K is algebra over the subfield k(B). 

The reader may verify that the following more elementary description 
of algebraic independence is equivalent to the one just given: The set B is 
algebraically independent over k if for any integer n, any nonzero polyno
mial f(tI, . .. ,tn ) with coefficients in k, and any set b1, ... , bn of distinct 
elements of B we have f(b1, ••• , bn ) i= O. 

Theorem A1.1. Let k c K be fields. If Band B' are transcendence bases 
of Kover k, then Band B' have the same cardinality. 

We shall give the proof only in the case where Band B' are finite. 
The proof uses the exchange property: Suppose we are given a set L 
(in the proof L will be a finite set such that K is algebraic over k(L)) 
and a nonempty distinguished class of finite subsets 13 called bases, no 
one contained in another. We say that 13 has the exchange property if 
given B, B' E 13 and b' E B', there is an element b E B such that the 
set B' U {b} - {b'} is again a basis. A set L with a family of bases 13 
satisfying the exchange property is called a matroid. (See White [1986], 
[1987], and [1992] for a sense of myriad occurrences of this notion.) The 
collection of bases in a finite dimensional vector space is a matroid, and 
we shall see that the set of transcendence bases of a given field extension 
of finite transcendence degree is a matroid too. (The same is true for the 
p-bases that we will introduce below, but we will not need this.) 

The exchange property ensures that all the sets in 13 have the same 
number of elements: 

Lemma A1.2. If 13 is a matroid, then all the bases in 13 have the same 
cardinality. 

Proof. Let r be the minimal cardinality of a basis. If B is a basis, we prove 
that B has r elements by downward induction on the number of elements 
that B shares with some basis B' of cardinality r. To start the induction, 
observe that if card(B n B') = r, then B = B' since no basis can properly 
contain another. If card(B n B') = s < r, then there is an element b' E B' 
that is not in B. By the exchange property there is a basis of the form 
B' - {b'} U {b} for some b E B. This basis has cardinality r and shares s + 1 
elements with B, so we are done by induction. 0 

Proof of Theorem A1.l in the case of finite transcendence. We shall show 
that the set 13 of finite subsets of L that are transcendence bases for Kover 
k has the exchange property. By Lemma A1.2 this implies the conclusion 
of the theorem. 

Let B = {bI, ... , bs } and B' = {b~, ... , b~} be two transcendence bases of 
Kover k. Since K is algebraic over k(b~, ... ,b~), there is for each i an irre
ducible polynomial Pi E k(b~, ... , b~)[Y] such that Pi(bi) = o. Multiplying 
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by a suitable polynomial in b~, ... ,b~, we may assume that the coefficients 
of each Pi are polynomials in the b~. The element b~ E K is algebraic over 
k(b1 , ••• , bs ). If none of the Pi involves b~ nontrivially, then b1, .•• , bs are 
algebraic over {b~, ... , b~}, and thus b~ is algebraic over {b~, ... , b~}, con
tradicting our hypothesis that B~ is a transcendence basis. Thus some Pi 
involves b~. 

For this value of i, we claim that {bi , b~, ... , b~} is a transcendence 
basis. The polynomial relation Pi(bi ) = 0 shows that b~ is algebraic 
over {bi , b~, ... , b~}. If {bi , b~, ... , b~} were algebraically dependent, then 
since {b~, ... , b~} is algebraically independent, bi woUld be algebraically 
dependent on {b~, ... , b~}. Thus b~ would be algebraically dependent on 
{b~, ... , b~}, contradicting the hypothesis that {b~, b~, ... , b~} is a transcen
dence basis. 0 

A1.2 Separability 

Let k c K be fields. If K is algebraic over k, we say that K is separable 
over k if for every 0: E K the minimal polynomial satisfied by 0: over k 
has no multiple roots in an algebraic closure of k. In characteristic 0 every 
algebraic extension is separable. We shall explain the natural extension 
of separability to nonalgebraic extensions, something that is useful in the 
theory of coefficient fields of complete rings and in the study of the module 
of differentials. Nearly all of what follows is from MacLane [1939J. (This 
very readable paper contains much more information as well.) 

Definition. K is separably generated over k if there exists a transcen
dence base {X.xhEA for K such that K is a separable algebraic extension 
of k( {X.xhEA). K is separable over k if every subfield of K that is finitely 
generated over k is separably generated over k. 

It is not quite obvious, but we shall soon see that a separably generated 
extension field is separable. 

In characteristic 0 the fact that every algebraic extension is separable 
makes it clear that every extension is separably generated, and thus that 
every extension is separable. Thus we will assume for the remainder of this 
section that k is a field of characteristic P =I- O. 

We write k1/ poo for the union, over all n, of the field generated by the 
(pn)th roots of elements of k. It turns out that the separability of Kover 
k depends on the relationship between K and kl/poo. 

If K and L are subfields of a field K', then we write L * K for the 
compositum of Land K, that is, the field generated by Land K. We 
say that Land K are linearly disjoint over a common subfield k if the 
multiplication map L Q9k K -t L * K taking a Q9 b to ab is an isomorphism. 
(The name comes from the remark that L and K are linearly disjoint iff 
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for every set {Xi} of elements of L linearly independent over k, the set {Xi} 
remains linearly independent over K.) 

Theorem A1.3 (MacLane [1939]). The following statements are equiva
lent: 

a. K is separable over k. 

b. For every field extension L of k, the ring L ®k K is reduced. 

c. k1/poo ®k K is reduced. 

d. k1/poo is linearly disjoint from K. 

Proof. a =} b: Since L is flat over k, we may write L ®k K = UK,L ®k K', 
where K' runs over all subfields of K finitely generated over k. Thus it 
is enough to do the case where K is finitely generated over k, and we 
may assume that K is separably generated over k. To show that K satisfies 
condition b, it is enough to show that both purely transcendental extensions 
and separable algebra extensions satisfy condition b. 

The purely transcendental case is easy since L ®k k( Xl, ... , X r ) = 
L(X1' ... ,xr ), the field of rational functions over L. For the algebra case, 
it suffices, by the same argument about unions as before, to treat the case 
where K = k(a) is generated by one algebra element a. 

Suppose a satisfies a minimal polynomial f(x). We have K = k[x]j(f(x)), 
so L®kK = L[x]/(f(x)). As f splits into a product of distinct linear factors 
over the algebra closure of L, it splits into a product of relatively prime 
factors over L, say f = ITi!;. By the Chinese remainder theorem (Proposi
tion 2.13 or Exercise 2.6) we have L[x]/(f(x)) = ITiL[X]/(fi(X)), a product 
of fields. This shows that L ®k K is reduced. 

b =} c: Obvious. 
c =} d: Because K is flat over k, we have L ® K = UL L ® K, where L 

runs over the subfields L c k1/poo finite over k, so it suffices to show that 
K is linearly disjoint from such an L. 

We do induction on the degree of Lover k. As L may be obtained by 
successively adjoining pth roots, we may choose a subfield L1 c L, con
taining k, such that L = L1(a) for some a with aP E L1 and a ¢ L1. As 
L ®k K = L ®L\ (L1 ®k K), and as k1/poo ®k K = k1/poo ®L\ (L1 ®k K), we 
may assume that L1 = k. 

Since aP E k, the order of the extension K(a) is either 1 or p, so it suffices 
to show that a ¢ K. But if a E K, then xP -a, the irreducible equation of a 
over k, would split as (x-a1/p)P in K, and thus L®kK = K[x]/(xP-a) = 
K[x]j(x-a1/p)P is not reduced. Since L®kK C k1/poo ®kK, this contradicts 
our hypothesis and shows that Land K are linearly disjoint. 

To prove that d =} a, we need a method for recognizing separating 
transcendence bases. We shall use a more general notion, which also plays 
an important role in the study of coefficient fields of complete local rings. 
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A1.3 p-Bases 

Definition (Teichmiiller [1936]). If k c K are fields of characteristic 
p, then a collection of elements {X,XhEA C K is a p-basis for Kover k if 
the set W of monomials in the X,X having degree < p in each x,\ separately 
forms a vector space basis for K over the subfield k * KP. 

We next show that every extension K of k has a p-basis. It will be useful 
to know that if K' is any KP-algebra contained in K, then K' is a field. 
This follows from the fact that every element of K' is integral over the 
field KP (use Corollary 4.17 or Exercise 4.3). Moreover, if x E K is not in 
K', then K'[x] is a field extension of degree p over K'. For the minimal 
polynomial f(t) satisfied by x over K' must divide tP - xP = (t - x)P and 
thus has the form f(t) = (t - x)n for some n. It follows that both xn and 
xP are in K'. If n < p, then since nand p are relatively prime, we would 
have x E K', contradicting the hypothesis x rt K'. 

By Zorn's lemma we may choose a maximal subset {X,XhEA C K having 
the property that the elements of the set W defined above are linearly 
independent over k * KP. The span of W over k * KP is equal to the subring 
k * KP[B] generated by B over k * KP. By the remark above, k * KP[B] is a 
subfield of K. We must show that K = k * KP[B]. If this were not the case, 
then an element x of K not in k * KP[B] would generate a field extension 
of degree p over k * KP[B]. Thus 1, x, ... , xp - 1 are linearly independent 
over k*KP[B]. This contradicts the maximality of {X,XhEA and shows that 
K = k * KP[B]. Thus, {X,XhEA is a p-basis. 

This argument also shows that being a p-basis is equivalent to being a 
minimal set of generators for K as a field over k * KP. (Since K is algebraic 
over k * KP, we could also say a minimal set of generators as an algebra 
over k * KP.) 

We need the following facts about p-bases: 

Theorem AlA (MacLane [1939]). Suppose that k C K are fields of char
acteristic p. Let B be a p-basis for Kover k, and let q = pn for some n. 
Let Wq be the set of monomials in the elements of B having degree < q in 
each element of B. 

a. K = k * Kq[B]; that is, Wq spans K as a vector space over k * Kq[B]. 

b. If K is separable over k, then Wq is a vector space basis for Kover 
k*Kq[B]. 

c. If K is separable over k, then the elements of B are algebraically 
independent over k * KPOO 

• 

Proof. a and b. We do induction on n. The case n = 1 follows from the 
definition of a p-basis, so we may suppose n > 1. Let q' = pn-l. By induction 
K = k * Kq'[B]. 
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Since raising to the pth power is a ring homomorphism in characteristic 
p, we may raise this equation to the pth power, getting KP = kP * Kq [BP]. 
Thus K = k * KP[B] = k * kP * Kq[BP][B] = k * Kq[B]. This proves part a. 

For part b we must show that the elements of Wq are linearly indepen
dent. Equivalently, we must show for every finite subset {b1, ... , bs } c B 
that the field k*Kq[b1, ... , bs ] has degree qs over k*Kq. Consider the chain 
of fields 

k*Kq ~ k*Kq[bi, ... ,~] ~ k*Kq[b1, ... ,bs ]' 

We shall show that the extension (1) has degree ~ (q')S and that the 
extension (2) has degree ~ pS. It will follow that the whole extension has 
degree ~ qS. 

Consider first the extension (2). Since bKP[b1, ... , bs ] has degree pS over 
k * KP, and k * Kq [bi, ... ,~] is contained in k * KP, it follows that 

k * Kq[b1, ... , bs ] = k * Kq[bi, ... , ~][bl"'" bs ] 

has degree ~ pS over k * Kq fbi , ... , ~]. 
Next consider the extension (1). By induction k*Kq'[b1, ... , bs ] has degree 

(q')S over k*Kq'. Since raising to the pth power is an isomorphism of K onto 
its image KP, we see that kP * Kq[bi, ... ,~] has degree (q')S over kP * Kq. 
To show that k * kP * Kq [bi, ... ,~] = k * Kq [bi, ... ,~] has degree (q')S over 
bkP*Kq = k*Kq, it now suffices to show that bKq and kP*Kq[bi, ... ,~] 
are linearly disjoint over kP * Kq. Since the second field is contained in KP, 
it suffices to show that k * Kq and KP are linearly disjoint over kP * Kq. This 
is equivalent to the statement that k1/p * Kq' and K are linearly disjoint 
over k * Kq', since the pth power map provides an isomorphism between 
these two situations. Since K is separable over k, the fields k1/ p and K are 
linearly disjoint over k. (These fields are shown in the illustration.) Since 

k * Kq' is a subfield of K, this implies that k1/p * Kq' = k1/p ®k (k * Kq'), 
and thus k1/p * Kg and k are linearly disjoint over k * Kg as required. This 
proves part b. 

Part c is an immediate consequence of part b: Since k * KP'" = 
nq=pnk * Kq c k * Kq for every q, the elements of Wq are linearly inde
pendent over k * KPoo for every q. That is, no polynomial in the bi with 
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coefficients in k * KPoo can be zero, so the elements of B are algebraically 
independent over k * KPoo as claimed. 

As a consequence we can exhibit the relation between p-bases and sepa
rating transcendence bases: 

Corollary A1.5. Let k c K be fields of characteristic p. 

a. Any separating transcendence basis for Kover k is a p-basis. 

b. If B is a p-basis for Kover k and K is finitely generated over k, then 
K is finite and separable over k( B). If in addition K is separable over 
k, then B is a separating transcendence basis for Kover k. 

Part b fails for extensions that are not finitely generated, as may be seen 
from the example at the end of this appendix. 

Proof. a. Let B be a separating transcendence basis for Kover k, so that 
K is a separable algebraic extension of k(B). K is a purely inseparable 
extension of k(B) * KP, so we must have k(B) * KP = K, and we need only 
show that B is a minimal generating set for Kover k * KP. Were this not 
the case, we could write B = {x} U B' in such a way that x E k( B') * KP, 
so K = k(B') * KP. Since K is separable over k(B), it follows that KP is 
separable over k(BP), and thus K = k(B') * KP is separable over k(B')(xP). 
As the elements of B are algebraically independent over k, we see that 
x ~ k(B')(xP), so x is not separable over k(B')(xP); the contradiction shows 
that B is p-independent. 

b. Suppose that K is finitely generated over k, and let B be a p-basis. 
Suppose that Xl,"" xr is a transcendence basis of Kover k(B), and let 
K' be the maximal separable extension of k( B) (Xl, ... , xr ) inside K. Since 
K is purely inseparable and finitely generated over K', we have Kpn c K' 
for sufficiently large n. But since B is a p-basis, K = k(B) * KP and thus 
K = k(B) * Kpn for every n. It follows that K' = K. 

Since now K is a separable extension of k( B) (Xl, ... , x r ), we see that 
KP is a separable extension of (k(B)(XI"" ,xr))P = k(B)P(;rf, ... ,xn It 
follows that k(B) * KP is a separable extension of k(B)(;rf, ... ,xn From 
this we get a contradiction if r > 0, since Xl would not be separable over 
k(B)(;rf, ... , xn Thus r = 0, so K is algebraic and separable over k(B). 

If K is separable over k, then by Theorem A1.4b the elements of Bare 
algebraically independent over k * KPoo and thus over k. 

Conclusion of the Proof of Theorem Al.3. d =} a: Since L is flat over K, 
we have L Q?h K = UK,L Q?h K', where K' runs over the finitely generated 
extensions of K. It suffices to prove that such a K' has a separating tran
scendence basis. Since K' c K, K' is separable over k. By Corollary A1.5 
any p-basis for K' over k is a separating transcendence basis. 0 

Using Theorem A1.3, we can easily derive some basic facts about sepa
rability. 
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Corollary AL6. If K is separable over k, and k c K' c K, then K' is 
separable over k. In particular, any separably generated field is separable. 

Proof. Use the characterization in part b of Theorem A1.3 and the fact that 
(with the notation there) L Q9 K' c L Q9 K. The second statement follows 
from Corollary A1.5b. 0 

Corollary AI. 7. If k is a perfect field and K is any field containing k, 
then K is separable over k. 

Proof. To say that 
is immediate from 
Theorem A1.3. 

k is perfect means that kl/poo = k, so the result 
the characterization of separability in part c of 

o 

Example. A typical example of a field extension that is separable but not 
separably generated is the following: Let k be any field of characteristic p, 
let x be an indeterminate, and let K = Unk(x1/ pn ). Any finitely generated 
subfield of K containing k is contained in some k(xl/pn), which is purely 
transcendental over k and thus separable. Consequently K is separable over 
k. The transcendence degree of Kover k is 1, so a transcendence basis for 
Kover k consists of a single element y. But k(y) c k(x,y) -I- k(y,xl/pn) 
for large n; so K contains a purely inseparable extension of k(y), and y is 
not a separating transcendence basis. If k is perfect then KP = K, so the 
empty set is a p-basis for Kover k, even though K is not finite over k. 

A 1. 3.1 Exercises 

Exercise ALI:* Suppose that R is an integral domain containing a field 
k, and let S be any reduced ring containing k. As usual, we write K(R) 
for the quotient field of R. Generalize Theorem A1.3 to show that if K(R) 
is separable over k then R Q9k S is a reduced ring. As an application, prove 
that if k eKe K' are fields such that K is separable over k and K' is 
separable over K, then K' is separable over k. 

Exercise AL2:* Suppose that Rand S are integral domains containing a 
field k. Show that: 

a. If K(R) is separable over k and k is algebraically closed in K(R), then 
R Q9k S is a domain. For example, if k is algebraically closed, and R 
and S are arbitrary domains containing k, then R Q9k S is a domain. 
A special case of this is usually stated in algebraic geometry as: the 
product of two irreducible varieties over an algebraically closed field 
is again an irreducible variety. 

b. If K(R) is a finite purely inseparable extension of k then R Q9k S is 
irreducible in the sense that it has just one minimal prime. 
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Exercise A1.3: Recall that if k c K is an algebraic extension of fields then 
there is a unique largest field L with k c L c K such that L is separable 
over k. (This amounts to saying that if Land L' are both separable over 
k, then the compositum L * L' is too.) Show that this result may fail 
for extensions k c K that are not algebraic, even for finitely generated 
extensions of transcendence degree 1. 



Appendix 2 
Multilinear Algebra 

A2.1 Introduction 

In this appendix we shall describe the results on tensor products and the 
symmetric and exterior algebras that we have already used occasionally in 
the text, and put them into a somewhat larger context. As an application 
we explain the construction of a family of complexes generalizing the Koszul 
complex and the complex used in the Hilbert-Burch theorem in Chapter 20. 
These complexes arise both in commutative algebra and algebraic geometry. 

The symmetric algebra of a free module of rank r over a ring R is simply 
the graded polynomial ring S := R[Xl, . .. , xr]. It would be superfluous to 
explain its importance in commutative algebra: It is the object of commu
tative algebra. 

The significance of the exterior algebra is more subtle. It appears in 
commutative algebra in several ways, one of which is in the study of 
homomorphisms between free modules (matrices): The exterior algebra 
is implicitly involved in the construction of the determinant, and more 
generally in the construction of the lower order minors (= subdetermi
nants) of a matrix. The exterior algebra also appears, in the guise of the 
Koszul complex, as the minimal free resolution of the "natural" module 
R = R[Xl, ... ,xrl/(Xl, ... ,Xr ). Consequently TOrR[xl, ... ,xr](R,R) is isomor
phic to an exterior algebra as an R-module. That this identification is 
natural may be seen from the fact that the algebra and coalgebra struc
tures of the exterior algebra (to be explained below) coincide with the 
natural algebra and coalgebra structures on TOrR[xl, ... ,xr](R, R), explained 
in Appendix 3. 
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Some comments on the material in this appendix may help orient the 
reader. All of the constructions require extensive use of tensor products. 
Their definition and basic properties are therefore described in the first 
section. 

The exterior and symmetric algebras are best treated together-it turns 
out that they are both manifestations of a single skew commutative algebra. 
It is natural to include another algebra, the tensor algebra, as a tool. The 
second section of this appendix describes the elementary part of the theory 
of these algebras: "base change," behavior with respect to direct sums, and 
right exactness. For a categorical view of these results, see Examples a, b, 
c in Appendix 5. 

The fact that the symmetric and exterior algebras behave well with 
respect to direct sums has the consequence that they are both Hop! 
algebras---essentially this means that their duals are again algebras, and 
the two algebra structures are related in a simple way. The graded dual of 
the exterior algebra of a finitely generated free module F turns out to be 
an exterior algebra on F* = Hom(F, R). The graded dual of the symmetric 
algebra is, however, a new object, called the divided power algebra of F*. 
In characteristic 0 this is isomorphic to the symmetric algebra of F*, but 
in characteristic p > 0 the divided power algebra is not even Noetherian. 
These matters of duality are dealt with briefly in the section on Coalgebra 
Structures and Divided Powers. 

Divided powers-and indeed Hopf algebras-seem first to have been 
noticed and systematically exploited by the topologists. The abstract defi
nition comes from Cartan [1954], one of a sequence of talks aimed at compu
tations of the homology groups of the Eilenberg-Maclane spaces K(n, n). 
But divided power algebras appear naturally in commutative algebra as 
well in the construction of free resolutions and elsewhere. (One leading 
case, that of the minimal free resolution of the residue class field of a local 
ring, bears a tight analogy with topology; see for example A vramov and 
Halperin [1986].) 

A more comprehensive definition of multilinear algebra than the one we 
have adopted might include the representation theory of the general linear 
group GL. For an appendix, however, such a definition would be catas
trophic: Even to include the most classical part of the theory, the theory 
of representations over a field of characteristic 0, alias the theory of sym
metric functions, would take at least one whole book! (An excellent recent 
book including such material is Fulton and Harris [1991J.) Moreover, the 
applications to "standard" commutative algebra actually involve parts of 
representation theory that are nonclassical-things like integral represen
tation of GL( n, Z)-so the theory of symmetric functions would not be 
enough. And the state of affairs in this "integral" representation theory 
is not so good: Many simple things that would be desirable for a natural 
treatment of the subject are topics of current research, and thus in no state 
for an introductory text. Since the connection with representation theory 
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is too significant to ignore completely, we shall sketch the beginnings in the 
section on Schur Functors. 

In the last section we explain some constructions of complexes by multi
linear algebra-the Eagon-Northcott and Buchsbaum-Rim complexes and 
a family of complexes to which they belong. 

For a more detailed treatment of the basic material included here, see 
Bourbaki [1970], Chapter III. 

Notation: Throughout this section, R will denote a commutative ring, and 
M will denote an R-module. Tensor products will be taken over Runless 
otherwise noted, and we sometimes write ® for ®R. 

The central case of interest is the one where M is a finitely generated free 
R-module, and though applications of other cases do occur occasionally, we 
suggest that the inexperienced reader think of this case throughout. 

A2.2 Tensor Products 

Definition. Let M and N be R-modules. The tensor product of M and 
N over R, written M ® R N, is the R-module generated by symbols m ® n 
for m E M and n EN, with relations 

rm®n = m®rn 
(m+ m') ®n = m®n+ m' ®n 
m® (n +n') = m® n +m®n'. 

These relations say precisely that the natural map b : M x N --+ M ® R N 
taking (m, n) to m ® n is bilinear. It follows that the tensor product, 
together with the map b, has (and is characterized by) the following uni
versal property: For any module P the bilinear maps M x N --+ Pare 
in one-to-one correspondence with the homomorphisms M ®R N --+ P by 
means of composition with b; that is, 

HomR(M ®R N, P) ~ {Bilinear maps M x N to P} 
~I )~b. 

It is elementary that a bilinear map M x N --+ P is the same as a homo
morphism M --+ HomR(N, P), so we may rewrite the natural isomorphism 
above as a natural isomorphism 

In categorical language this says that the functor - ® R N is the left adjoint 
of the functor HomR(N, -). See Appendix A5 for the general definition. 
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Either from general category theory or from simple manipulation of the 
definition the following facts are easy to prove. 

Proposition A2.1 (Properties of ®). If M, N, P and Q are R-modules, 
then 

a. (Associativity and commutativity): M @R N ~ N @R M and 
M @R (N @R P) ~ (M @R N) @R P. 

b. (Direct surqs): (M EB N) @R P ~ (M @R P) EB (N @R P). 

c. (Right exactness): If M --+ N --+ P --+ 0 is an exact sequence, then 
the sequence 

obtained by tensoring with Q is also exact. 

d. (Base change): If R' is an R-algebra and U is an R' -module, then 
HomR,(R' @RM, U) ~ HomR(M, U) and 

Proof. Properties a, b, and c are all best checked by using the universal 
property. For example, the associativity formula in a comes from the fact 
that a bilinear map (to anywhere) from either M x (N @R P) or from 
(M@RN) x P to Q is the same as a trilinear map from M x N x P to Q. 
For statement b note that a bilinear map from (M EB N) x P is the sum of a 
bilinear map from M x P and one from N x P. For property c, it is enough 
to show that the cokernel of the map Q @R M --+ Q @R N has the same 
universal property as Q @R P. But maps from the cokernel correspond to 
bilinear maps from Q x N that kill the elements of Q x M, and these are 
the same as bilinear maps from Q x P. 

Part d has a slightly different flavor. For the isomorphism HomR,(R' @R 
M, U) ~ HomR(M, U) we note that the left side may be identified with the 
set of R-bilinear maps <p of R' x M to U that satisfy <p(r' x m) = r'<p(l x m) 
for any r' E R'. But such a <p is determined by the R-linear map 'l/J(m) = 
<p(l x m), and the same formulas may be read backward, starting from an 
arbitrary R-linear map 'l/J. 

To prove that UrzmM ~ U@R,(R'@RM), we give maps in both directions. 
The map (u, m) ~ u @R' 1 @ m is R-bilinear, and thus defines a map 
from left to right. The map sending (u, L: Si @ mi) E U x (R' @R M) to 
L:(SiU @ mi) E U @R Mis R'-bilinear, and defines the inverse map. D 
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A2.3 Symmetric and Exterior Algebras 

We begin by introducing the main characters. 

Definitions. The tensor algebra of the R-module M is the graded, non
commutative algebra 

TR(M) := REB M EB (M 0R M) EB···, 

where the product of x10· . ·0xm and Y10· . ·0Yn is x10· . ·0xm 0Y10· . ·0Yn. 
In the most interesting case, where M is a free R-module on the Xi, this is 
simply the free (noncommutative) algebra on the Xi. When the ground ring 
R is clear from context we shall simply write T(M) for TR(M). 

The symmetric algebra of M is the algebra SR(M) obtained from 
TR(M) by imposing the commutative law, that is, by factoring out the 
two-sided ideal generated by the relations X 0 Y - Y 0 X for all x, y E M. 
When the context is clear we shall drop the subscript R and write S(M) 
for the symmetric algebra. 

Finally, the exterior algebra of M is the algebra /\R(M) obtained 
from TR(M) by imposing skew-commutativity, that is, by factoring out the 
two-sided ideal generated by the elements x 2 = X 0 x for all x EM. (From 
the formula (x + y) 0 (x + y) = x 0 x + x 0 Y + Y 0 x + Y 0 Y we see that 
x 0 y + y 0 x goes to 0 in ARM for all x, y E M, so that ARM really is 
skew-commutative.) When the context is clear we shall drop the subscript 
R and write A(M) for the exterior algebra. 

So far we have ignored the possibility that the module M is graded. We 
shall now use this possibility to treat the exterior and symmetric algebras 
together. For the rest of this and the next section we adopt: 

Sign Convention and Definition. R will denote a graded ring con
centrated in degree 0 (that is, R = 11.0), and M will denote a Z-graded 
R-module, M = EBiEZMi. The tensor algebra TR(M) becomes a Z-graded 
module with i th graded component 

With this convention in hand, we define the symmetric algebra, writ
ten SR(M) or S(M), to be the graded R-algebra TR(M)/I, where I is the 
two-sided ideal generated by the "skew-commutativity" relations 

(SC) ab- (_l)(dega)(degb)ba, a2 = 0 if dega is odd, 

for homogeneous elements a, b of M. 
If M is concentrated in even degrees (that is, Mi = 0 for all odd i), then 

S(M) = S(M), the symmetric algebra just defined, and is commutative. 
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If, on the contrary, M is concentrated in odd degrees (that is, Mi = 0 for 
all even i), then S(M) = I\(M) is the exterior algebra on M. When we 
write S(M) or I\(M) here, we shall think of M as an ungraded module, 
and identify these algebras with S(M) where M is given degree 2 or 1, 
respectively. 

In general, all homogeneous elements a, b of S(M) satisfy the skew
commutativity relation, not just those coming from M; this follows at once 
since every element of S(M) is a sum of products of elements of M. The 
elements of even degree in S(M) commute with every element, while the 
elements of odd degree anticommute with each other (that is ab = -ba). 
We could have defined S in terms of Sand 1\; see Exercise A2.1. 

We define the dth symmetric power of M, written SR,d(M) or Sd(M), to 
be the image in S(M) of M ® ... ® M (d factors) in T(M). If M is concen
trated in even degree, then this is also called Sd(M); if M is concentrated 
in odd degree, then it is also called the dth exterior power, I\d(M). We have 
S(M) = EBd2:0Sd(M). Note that each Sd(M) is a graded module. 

We have defined S(M) as a quotient of the tensor algebra. The reader 
should be warned that in the classical literature (that is, when R is a field 
of characteristic 0) one often sees the symmetric and exterior powers iden
tified with the subspaces of symmetric or skew-symmetric tensors (spaces 
of elements of Td(M) invariant under appropriate actions of the symmetric 
group on d letters). It turns out that this identification is possible in the 
case of the exterior powers of a free module, but it may run into trouble 
more generally and in particular is wrong for the symmetric powers if R 
does not contain the field of rational numbers. (When M is a free mod
ule, one gets the homogeneous components of the divided power algebra 
'D(M) defined below.) In any case, these subspaces do not form a subal
gebra (instead they form a sub-coalgebra), so the identification cannot be 
used to define the algebraic structure. 

It is perhaps not obvious that the sign convention we have introduced 
is more than an artifice to save space by talking of two things at once. 
Actually, it appeared first in topology (the cup product on cohomology 
is skew commutative in the sense defined here); now it even appears in 
physics. 

Here are some elementary properties of T(M) and S(M) that are the 
basis for many computations. Specializing to the case of a module concen
trated in even or odd degree, we get corresponding properties for S(M) and 
I\(M); since these are the forms that are commonly used, we have included 
the statements explicitly: 

Proposition A2.2. 

a. (Functoriality) Sl(M) = M; and given any map of modules cp : 
M ~ N, there is a unique map of R-algebras S(cp) : S(M) ~ S(N) 
carrying Sl(M) = M to Sl(N) = N via cpo 

b. (Base change) If R' is an R-algebra and M is an R-module, then 
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TRI(R' &;R M) = R' &;R TR(M), 
SR1(R' &;R M) = R' &;R SR(M), 

SRI(R' &;R M) = R' &;R SR(M), 
I\RI(R' &;R M) = R' &;R I\R(M). 

c. (Direct sums) T(MtBN) =T(M)&;T(N)&;T(M)&;T(N)···, the 
set of finite sums of tensor products of elements all but finitely many 
of which are 1 E R = To(M) = To(N). Moreover, 

and thus 

S(M tB N) = S(M) &; S(N), 

S(M tB N) = S(M) &; S(N), 
I\(M tB N) = I\(M) &;I\(N). 

d. (Short exact sequences) An exact sequence 

K-+N-+M-+O 

of R-modules gives rise to exact sequences 

and thus 

T(N) &; K &; T(N) -+ T(N) -+ T(M) -+ 0, 

K &; S(N) -+ S(N) -+ S(M) -+ 0, 

K &; S(N) -+ S(N) -+ S(M) -+ 0, 

K &; I\(N) -+ I\(N) -+ I\(M) -+ 0, 

where the left-hand maps are given by multiplication. In particular, for 
every d the module Sd(M) is the module Sd(N) modulo the relations 
K· S(N)d-l "generated by" K, and similarly for Sd(M) and I\dM. 

Remark: In part c, we have S(M tB N) = S(M) &; S(N) as commutative 
algebras. To make S(MtBN) ~ S(M)&;S(N) and I\(MtBN) ~ I\(M)&;I\(N) 
algebra isomorphisms as well, we must take the second to be the "skew 
tensor product of algebras": that is, S(M) &; S(N) is the ordinary tensor 
product of graded R-modules, but the multiplication is given by the skew
commutative rule 

a&; b· a' &; b' = (_l)(degb)(dega')aa' &; bb' 

for homogeneous elements a, b. 

Proof. All of the properties for T(M) follow at once from the correspond
ing facts about tensor products; see Proposition A2.1. We shall deduce 
the statements for S from these (the statements for Sand 1\ then follow 
immediately, and we shall not mention them further). 
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a. The map <p induces a map from T(M) to T(N), carrying the skew
commutativity relations for SCM) into skew-commutativity relations 
for SeN); thus there is an induced map SCM) ---+ SeN). 

b. R' ®R SR(M) is the result of factoring out the ideal generated by 
elements of the form 1 ® (x ® y ± Y ® x) from R' ®R TR(M). Under 
the identification of R' ®R TR(M) with TRI(R' ®R M), the element 
l®(x®y±y®x) corresponds to (l®x)®(l®y)±(l®x)®(l®y)
and these generate the skew-commutativity relations in TRI(R'®RM). 

c. Starting with T(M EEl N) = T(M) ® T(N) ® T(M) ® . ", we first 
factor out the skew-commutativity relations saying that elements of 
M skew-commute with elements of N; the result is T(M) ® T(N). 
Next we factor out the relations saying that elements of M skew
commute and elements of N skew-commute, to get SCM) ®R SeN). 

d. Since the skew-commutativity relations in T(M) are images of those 
in T(N), we immediately deduce from the right-exact sequence 

T(N) ® K ® T(N) ---+ T(N) ---+ T(M) ---+ 0 

a right-exact sequence 

SeN) ® K ® SeN) ---+ SeN) ---+ SCM) ---+ 0; 

but the image of SeN) ® K ® SeN) in SeN) is, by commutativity, the 
same as the image of K ® SeN). Since the sequence K ® SeN) ---+ 

SeN) ---+ SCM) ---+ 0 is a direct sum of the sequences K ® Sd-l (N) ---+ 

Sd(N) ---+ Sd(M) ---+ 0, the very last statement follows as well. 0 

A2.3.1 Bases 
In the central case where M is a free module with basis Xl, ••• , X r , part c 
of Proposition A2.2 gives us a simple way to deduce bases of T(M), SCM), 
SCM), and I\(M): 

Corollary A2.3. If M is a free module on homogeneous elements 
Xl, ••• , Xr , then 

a. Td(M) is the free R-module of rank rd with basis the set of all words 
of length d in Xl, ••• , X r • 

b. Sd(M) is the free module with basis the set of all monomials of degree 
d in the Xi in which no Xi of odd degree appears to a power greater 
than 1. 
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Thus: 

c. S(M) is the polynomial ring on the "variables" Xi, and Sd(M) is 
the free R-module of rank (T;~ll), with basis the set of monomials of 
degree d in the Xi. 

d. I\d(M) is the free R-module of rank (~) with basis 

{Xi! 1\ ... 1\ Xid 11 ~ i l < ... < id ~ r} 

corresponding to the set of all d-subsets of {I, ... , r}. 

e. If N is another free module, with basis Yl, ... ,Ys, and if cP : M ---+ N is 
a homomorphism with matrix f, then the induced map 1\ dcp : 1\ d M ---+ 

1\ d N has matrix whose entry corresponding to the basis elements Xi! 1\ 

... 1\ Xid and Yjl 1\ ... 1\ Yjd is the determinant of the submatrix of f 
involving the columns iI, ... ,id and rows jl, ... ,jd· 

Proof. Results a-d may be proved by induction on r, using Proposition A2.2 
on a decomposition RT = REEl RT-l, and taking the grading into account in 
part b. Since the result is in any case fairly trivial for the tensor algebra, 
we illustrate with part b; Parts c and d follow from this as usual. 

We may write RT = RXI EEl EEli=2Rxi as graded free modules. Now 

S(RT) = S(RXl) ® S(EElr=2 Rxi). 
If degree Xl is even, then S(RXl) has as basis the set of powers of Xl, so 

S(RT) = (EElnRxi') ® S(EElr=2Rxi), 
and assuming the desired result for S( EEli=2Rxi) by induction on r, the 
desired description follows by using commutativity. If, on the contrary, 
degree Xl is odd, then S(RXl) ~ R[XlJ/(Xl)2, so 

S(RT) = (R EEl Rxt) ® S(EEl~=2Rxi) 

Sd(RT) = Sd(RT- l ) EEl (Rx ® Sd_l(RT - l )), 

and again we are done by induction and skew-commutativity. 
e. To simplify the notation, we suppose that (il, ... ,id) = (jl, ... ,jd) = 

(1, ... ,d). We have I\dcp(Xl 1\ .. . 1\ Xd) = cp(xt) 1\ ... 1\ cp(Xd) because I\cp is 
an algebra map. Writing cp(Xi) = L CPijYj, this gives 

I\dcp(Xl 1\ ... 1\ Xd) = L CPl,j! ... CPd,jdYj! 1\ ... 1\ Yjd· 

Because of the skew-commutativity of I\M we may gather the terms in 
which a given set of Yj appears; the coefficient of Yl 1\ ... 1\ Yd is 

= L sgn(a)CPl,a(l)··· CPd,a(d) , 

where a runs over all permutations of 1, ... ,d, and sgn( a) is the sign of the 
permutation a, that is, (_I)n, where n is the number of transpositions in 
representation of a as a product of transpositions. This is just the deter
minant of the submatrix of cP involving rows 1, ... , d and columns 1, ... , d. 

o 
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A2.3.2 Exercises 

Exercise A2.1: Show that if we define Meven = EBi evenMi and Modd = 
EBi oddMi, then 

as R-algebras. 

Exercise A2.2: Compute I\(M) and S(M) when R = Z and M = Zj(2)EB 
Zj(3). 

Exercise A2.3: 

a. * Suppose that R is a local ring and M is a finitely generated module. 
Compute the minimal number of generators of SdM and 1\ d M in 
terms of the minimal number of generators of M. 

b. Suppose that R is an integral domain with quotient field K = K(R). 
For any module M, the torsion-free rank of M is by definition the 
rank of the K-vector space M @R K. Compute the torsion-free rank 
of SdM and 1\ d M in terms of the torsion-free rank of M. 

Exercise A2.4: Suppose that R is an integral domain, and that 1 is an 
ideal of R. Show that the natural map 

has kernel equal to the torsion submodule of Sd(1). Use this fact together 
with Exercise A2.3a to give examples of ideals 1 such that Sd(I) has a 
nonzero torsion submodule. It turns out to be quite an interesting question 
when this and the corresponding map Sd(1 j 12) ____ 1d j 1d+1 are isomor-
phisms; see Huneke [1982] and the references cited there for some informa
tion. 

Exercise A2.5: 

a. Suppose that 1 is an ideal in a ring R in which 2 is a unit. Show that 
1\ d 1 is annihilated by 1 for every d > 1. 

b. Under the same hypotheses as in part a, show that I\d 1 = I\d(I j 12 ). 

Exercise A2.6: Show that if 2 = 0 in R, then I\(M) = S(M)j({X2Ix E 
M}). If M is free with basis Xl, ... ,Xr, then this may also be written as 

R[XI,'" ,xrl/(xi, ... ,x;). 

Writing 1 for the ideal (Xl, ... ,Xr ) C S := R[XI, ... ,Xr], compute the 
annihilator of 1\21. Note that it does not contain 1, as would be the case if 2 
were invertible. For example, if R = k[x, y, z], then xy 1\ z =I- 0 E 1\2(X, y, z). 



A2.4 Coalgebra Structures and Divided Powers 575 

Exercise A2.7: The characteristic polynomial of an endomorphism has a 
nice expression in terms of exterior powers. Let !p : F ----> F be an endo
morphism of a finitely generated free module. Show that the characteristic 
polynomial of !p may be expressed as 

det(.H - !p) = ~) _l)d trace (/\d!p) .. d. 

Exercise A2.8 (Action of the symmetric group on a d-fold skew 
tensor product): If A is a graded skew-commutative algebra, then the 
group G of permutations of d letters acts as automorphisms of the skew
commutative algebra A0d, the d-fold skew tensor product of algebras, by 
permutation of the factors and multiplication by a sign. Since every permu
tation is the product of transpositions, the sign is determined if we specify 
it on transpositions; indeed, the whole action could have been defined in 
this way. If u is a transposition of the ith and (i + 1) terms, then 

U(Zl @ ... @ Zd) = (_l)degz; degzHI Zl @ ... @ Zi+l @ Zi @ ... @ Zd. 

Show that this really defines a representation of G as algebra automor
phisms of A 0d. 

Exercise A2.9 (Which algebras are symmetric algebras?):* Des
cribe the symmetric algebra of an R-module M as a quotient of a poly
nomial ring over R by using a free presentation of M. Use the result to 
characterize the quotients of polynomial rings over R that are symmetric 
algebras of modules. 

A2.4 Coalgebra Structures and Divided Powers 

In this section we shall require the following special convention for the duals 
of graded modules. 

Notation. If N is a graded R-module we shall write N* for the graded 
dual of N, that is 

N* := EBd HomR(Nd, R) 

(rather than N* = HomR(N, R), as we have usually written previously). 

This only makes a difference when N is not a finitely generated module. It 
will be important for us mainly in the case N = S(M); then we have 

Without this convention, the dual of a graded module would not be a 
graded module in the usual sense: It would be the direct product, not the 
direct sum, of its homogeneous components. 
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We have seen in the previous section that S(M EB M) ~ S(M) ® S(M), 
the isomorphism being as skew-commutative algebras (the tensor product 
sign on the right is the skew tensor product; see Proposition A2.2 and the 
remark following it). We can exploit this by using the natural "diagonal" 
map ~ : M ---t M EB M that sends x to (x, x). ~ induces a map of algebras, 
which we shall also call ~, 

~ : S(M) ---t S(M EB M) = S(M) ® S(M), 

and thus (by restriction) maps of algebras 

~ : I\(M) ---t I\(M EB M) = I\(M) ® I\(M), 
~ : S(M) ---t S(M EB M) = S(M) ® S(M), 

all sending m f---+ m ® 1 + 1 ® m for any mE M. For any graded module N 
we define a map T : N* ® N* ---t (N ® N)* by T(a ® b)(x ® y) = a(x)b(y) 
(note that there are no signs here). We dualize ~ and compose with T to 
get 

J-L = ~*T : S(M)* ® S(M)* ---t S(M)*. 

The map J-L is actually the multiplication map of an algebra structure on 
S(M)*; because of this ~ is called the comultiplication (or diagonal) 
map of S(M). This algebra structure on S(M)* has a unit element, too, a 
fact which may be expressed by saying that there is a map R ---t So(M)* 
with certain properties. The dual of this map is called the counit (or 
augmentation) of S(M). It is defined as the projection map 

€ : S(M) ---t S(M)/MS(M) = So(M) = R. 

Together, the maps ~ and € are called the coalgebra structure of S(M). 
Because ~ and € are R-algebra maps, S(M) is what Bourbaki calls a bige
bra. (Others, including this author, call it a bialgebra, to which Bourbaki 
presumably objects that in arabic one would not use the article al with the 
numera12(bi).) 

Another structure on S(M) deserves mention. It is the antipode map, 
which is the map induced on S(M) by the map -1 : M ---t M. With the 
antipode, S(M) becomes what is called a Hopf algebra. We shall not 
require this structure. 

Proposition A2.4. J-L gives an associative skew-commutative multiplica
tion on S(M)*. 

Proof. Associativity is the statement that the two possible composites are 
equal in the diagram 

~01 

(*) S(M)* ® S(M)* ® S(M)* ===: S(M)* ® S(M)* ~ S(M)*. 
10~ 
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It is enough to check the corresponding fact on the diagram 
Ll.01 

(**) S(M) ~ S(M) ® S(M) ===:S(M) ® S(M) ® S(M) 
10L1. 

of which (*) is the dual. As all the maps in question are algebra maps, and 
as S(M) is generated by M as an algebra, it is enough to check the desired 
inequality on elements of M. But identifying S(M) ® S(M) ® S(M) with 
S(M EB M EB M) by Proposition A2.2, both (~® 1)~ and (1 ® ~)~ induce 
the map 

M----.MEBMEBM mr-->(m,m,m). 
Similarly, skew-commutativity is the statement that the diagram in Figure A2.1 

commutes, where T is the map that interchanges the two factors and intro
duces a sign according to our usual convention, 

T(a®b) = (_l)(deg a)(deg b)b®a for homogeneous elements a,b, 

and that Jt(a ® a) = 0 if a E S(M)* is homogeneous of odd degree. 

(***) 

g(M)'0~ 

T ~g(M)' 

S(M)* ® S(M)* 

FIGURE A2.1. 

Since (* * *) is the dual of the diagram in Figure A2.2, we first show 
that the latter commutes. Because of the signs we have introduced, T is 
a homomorphism of algebras, and since S(M) is generated as an algebra 
by elements of M, it suffices to check that T~(m) = ~(m) for an element 
mE M. If we identify S(M)®S(M) with S(MEBM), then ~(m) = (m,m) = 
m ® 1 + 1 ® m, and T(m ® 1 + 1 ® m) = m ® 1 + 1 ® m, as desired. 

It remains to show that Jt(n®n) = 0 for n E S(M)* homogeneous of odd 
degree. That is, we must show that if a E S(M), then T(n ® n)(~a) = O. 
But from Lemma A2.5, below, there exists an element b E S(M) ® S(M) 
such that ~a = b + Tb. If we write b = L:: bi ® b;, then 

T(n ® n)(b) = L n(b;}n(bi ) 

and 
T(n ® n)(Tb) = L( _l)deg(b;)deg(b;)n(b;)n(bi ). 

Because the degree of n is odd, the only nonzero terms are those where the 
degrees of bi and b; are both odd, so we get n®n(b) = -n®n(Tb), whence 
n ® n(~a) = 0 as claimed. 0 
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S(M) ®S(M) 

~ 
T ~8(M) 

S(M)®S(M) 

FIGURE A2.2. 

Lemma A2.5 was used in the preceding proof and will be needed in a 
more general form shortly. Because S(M)* is associative, there is a "d-fold 
diagonal" 

t::.d : S(M) --> S(M)®d := S(M) ® ... ® S(M) (d factors), 

defined inductively by composing t::.d- 1 with t::., applied to any factor of 
S(M)®(d-l)-the formula (1 ® t::.)t::. = (t::. ® 1)t::. established in the proof 
of associativity in Proposition A2.4 says exactly that the choice of factor 
does not matter. 

Lemma A2.5 (Symmetry of diagonalization). Let G be the symmetric 
group on d letters, acting on M E& M E& .•. E& M (d times) by permuting the 
factors, and on 

S(M E& M E& ••• E& M) = S(M)®d 

by the induced maps of algebras. For any element x E S(M) there is an 
element y E S(M)®d such that t::.dx is the symmetrization of y; that is, 

(See Exercise A2.8 for another description of this action of G.) 

Proof. Since both the map t::.d and the symmetrization map 2:aEG u are 
R-linear, it suffices to prove the Lemma for elements x that are products 
of elements in M. We do this by induction on the number of factors. If 
x E M (a product with just one factor) then we check directly from the 
definition that t::.d(x) = 2:aEG u(x ® 1 ® 1 ® ... ® 1), so we may take y = 
x ® 1 ® 1 ® ... ® 1. If x is a product of several factors we may write x = x' x" 
in such a way that x' and x" each involve fewer factors. By induction we 
may assume that t::.d(x' ) and t::.d(x") are the symmetrizations of elements 
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y' and y", respectively. Since !:l,. d is an algebra homomorphism we have 

!:l,.d(X) = !:l,.d(X')!:l,.d(x") 

= L a(y') L T(Y") 
<rEG rEG 

= L L a(y' a-lT(y")) (because a is an algebra homomorphism) 

= LLa(y'T(y")), 
<rEGrEG 

the last equality holding because as T runs over G, a-lT and T run through 
the same set of elements. But the last expression may be rewritten as 

La (LY'T(y")) ; 
<rEG rEG 

that is, !:l,.d(x) is the symmetrization of LrEG(y'T(y")). This completes the 
induction. D 

We shall now describe the structure of S(M)* in the case where M is 
free. We shall see that if M has odd degree, so that S(M) = I\(M), we 
get I\(M)* ~ I\(M*) as algebras. However, in the case when M has even 
degree parts, S(M)* is generally a kind of algebra we have not met before, 
called the divided power algebra of M*, We pause for definitions. 

Definition. If A is a gmded skew-commutative R-algebm with Ao = R, 
then a system of divided powers in A consists of a collection of func
tions, one for each integer d ~ 0: 

x f--+ x(d) , 
defined on the union of the Ai for i > 0, satisfying all the axioms that would 
be true if we could write x(d) = xd /(d!). For elements x, y E uA, these may 
be taken to be 

x(O) = 1, X(l) = x, degx(d) = d· degx 

x(d) = 0 if deg x is odd and d > 0 

x(d)x(e) = ((d + e)!/d!e!)x(d+e) 

(x(d))(e) = ((de)!/e!(dW)x(de) 

(xy)(d) = d!x(d)y(d) = xdy(d) = x(d)yd 

(ax)(d) = ady(d) for a E Ao, 

and, best of all, the "beginner's binomial theorem," 
d 

(x + y)(d) = Lx(e)y(d-e). 
e=O 
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Note that from the third of these relations it follows that d!x(d) = x d. In 
an algebra over a field of characteristic 0, we may divide through by d!; it 
follows that such an algebra has at most one system of divided powers, and 
it is easy to check that the assignment x(d) = x d Id! really does satisfy all 
the requirements. A more interesting example is furnished by the exterior 
algebra of a module; we shall do this example systematically in a moment, 
but we note for now that 

so it is natural to take (xl\y + ZI\W)(2) = XI\YI\ZI\W, and this does extend to 
a system of divided powers. From this example one can see the need for 
the restriction that divided powers are only defined for elements of strictly 
positive degree: If l(d) were defined, then we would have y(d) = (ly)(d) = 
d!l (d)y(d) by the next-to-Iast axiom. Taking d = 2, we get y(2) = 2· 1 (2)y(2), 

and this would be 0 in characteristic 2. But (xI\Y + ZI\W)(2) =I- 0 in the 
example just given, even in characteristic 2. 

On the other hand, suppose that 2 = 0 in R; in the symmetric algebra 
of a module of even degree, say S = S(Rx) = R[x], with degx = 2, we 
have x2 =I- 0; but if S had a system of divided powers, then we would have 
x 2 = 2X(2) = O. Thus, in general, the symmetric algebra does not have 
divided powers. 

Divided powers occur quite naturally in commutative algebra. Perhaps 
the most striking example is the theory of Tate, Assmus, Levin, Gullik
sen, and others concerning the free resolution over a local ring (A, P) of 
the residue class field AlP. The general idea is to form this resolution by 
starting with the Koszul complex of the maximal ideal P, and "adjoin" ele
ments to kill the cycles that are not boundaries in the Koszul complex. This 
adjunction may be done by exploiting the algebra structure of the Koszul 
complex, and adjoining new variables with divided powers. The ultimate 
result, due to Gulliksen, shows that in fact one gets the minimal free reso
lution this way; put more precisely, the minimal free resolution is a tensor 
product of exterior algebras and divided power algebras-an algebra of the 
form S(M)* for a certain graded free module M. See the Gulliksen and 
Levin [1969] for an exposition. 

We shall now prove the existence of divided powers in S(M)*. The under
lying reason, as the proof will show, is the symmetric form of the diagonal
ization map, proved in Lemma A2.5. 

Proposition-Definition A2.6. If M is a graded free module, then the 
algebra structure defined above on S(M)* is called the divided power 
algebra on M*, and written as 1)(M*). The algebra 1)(M*) has a system 
of divided powers, which is unique, for example, if R = Z, and may be 
determined by functoriality from this case. 
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Proof. It is enough to prove the proposition in the case where R = Z. As 
already remarked, Q ® S(M)*, as an algebra containing a field of char
acteristic 0, trivially has a unique family of divided powers. Any system 
of divided powers on S(M)* would pass to a system of divided powers on 
Q ® S(M)* by localizing. Since S(M)* is a free Z-module, nothing goes to ° under localization, so this shows that S(M)* has at most one system of 
divided powers. In fact we could think of the proposition as saying simply 
that the subalgebra 

S(M)* = Z ® S(M)* c Q ® S(M)* 

is closed under divided powers. (That this is not trivial, and really depends 
on the nature of the algebra structure map L). *, is shown by the fact that 
it would be false for S(M) c Q ® S(M).) 

Let u E Sn(M)*; we must prove that ud is divisible by d!. If n is odd 
then ud = 0, so we may assume that n is even. Now multiplication in 
S(M)* is defined as the dual of the diagonal on S(M); this means that 
as a functional on S(M), the value of ud on an element x E S(M) is the 
value of u®d E S(M)*®d on L).d(x) E S(M)®d. By Lemma A2.5, L).d(x) is 
the "symmetrization" of some element y E S(M)®d; that is, we may write 
L).d(x) = EO"EG a(y). But u®d acts nontrivially only on tensor products 
of d elements of degree n, and since n is even, a acts on such a tensor 
product by permutation of the factors alone-that is, with a sign of + 1. 
Thus, u®d(y) = u®d(a(y)) for any a, so u®d(x) = d!u®d(y), as required. 

If M is free of finite rank, then S(M)* is a bialgebra too, with dual 
S(M): In this case the natural map S(M)* ® S(M)* ---; (S(M) ® S(M))* is 
an isomorphism, so we may define the diagonal map (written, as usual, as 
L).) on S(M)* to be the dual of the multiplication map on S(M). This map 
L). is an algebra homomorphism as before, and it is easy to check that if 
a E M* = Sl(M)*, then L).(a) = a® 1 + 1 ®a. 

In the case where M is free we can give an explicit basis for S(M)*, dual 
to the monomial basis for S(M). The following proposition is important 
because it describes the multiplication in terms of the basis. 

Proposition A2.7. 

a. If M has free generators Xl, .. ·, xm in odd degrees and Yl,· .. , Yn 
in even degrees, and if we write ~i and 'T}i for the dual basis ele
ments of Xi and Yi, then 1>(M*) is freely generated as a module by 
"divided monomials," where a divided monomial is something of the 
form 

In fact, the divided monomials form (up to sign) a dual basis to the 
basis of monomials 
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of S(M). 

Thus, writing 2)(a) for the divided power algebra of a free module 
with one generator a, we have 

b. If M is a free module, then I\(M)* ~ I\(M*) as algebras. 

c. If M is a free module and R contains the rational numbers, then 
2)(M*) = S(M)* ~ S(M*) as algebras. 

Proof· 

a. It suffices to check that ~i! 1\ ... 1\ ~i, . ",idd ... ",~dn) is the dual basis 
element to Xi! 1\ ... 1\ Xi, . yt! ... y,/;, and for this it suffices to treat 
the case of free modules over Z or even over Q. Setting d = s + L di , 

we have (for any element X of M) b,d(x) = X 010···01 + 10 X 0 
10···01 + ... , so 

is a sum of terms each of which comes from a permutation of the 
factors of Xi! 1\ ... 1\ Xi, . yt! ... y~n and a separation of these factors 
into d groups. Now ~i! 1\ ... 1\ ~i, . ",idd ... ",~dn) acts on a monomial <: 
such as X· 1\ ... 1\ X· . y1d! ... ydn by the action of 

~ ~ n 

on b,d((). Thus the value can be nonzero only when ( = Xi! 1\ ... 1\ 

Xi, . yt! ... y,/;, and it is ±1 in this case by inspection. 

b. For any module M, we have seen in Proposition A2.4 that I\(M)* is 
an algebra satisfying the same kind of skew-commutativity properties 
as I\(M*); thus there is a natural map of algebras I\(M*) ---t I\(M)* 
induced by the identity map M* ---t M*. In the case of a free module 
M, we have seen from part a that the basis of I\(M)* corresponds to 
the basis of I\(M*) under this map, which is thus an isomorphism. 
The proof of part c is similar. D 

A2.4.1 S(M)* and S(M) as Modules over One Another 

Notation: If a E A and a E A*, then to avoid confusion with the following 
definitions we shall write (a, a) E R for the result of applying a to a, so 
that (,) : A 0 A* ---t R is the natural pairing. 
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If A is any R-algebra, then A* = HomR(A, R) is naturally an A-module: 
If a E A and a E A *, then we define a( a) E A * by means of the formula 
(a(a))(b) = (ab, a). The reason for the notation a(a), in place of the more 
ordinary looking aa, is that we shall shortly be dealing with the case where 
A is a bialgebra and A = A **, so we must distinguish between a( a) E A * 
and a( a) E A. The module structure has a nice description in terms of the 
diagonal of A* (which is by definition the dual of the multiplication map 
A (9 A --+ A): It is given by the composition 

10.:l (.)01 
A (9 A* -----+ A (9 A* (9 A* -----> R (9 A* = A*, 

as the reader may easily check. In more concrete terms, if we write D.a as 
I: ai (9 a;, then a(a) = I:(a, ai)a;. 

If A is a bialgebra like 3 (M) or (in case M is free) 3 (M) *, then it makes 
sense to ask how this module structure interacts with the algebra structure. 
The following result gives a piece of the answer. 

Proposition A2.8. If a E M*, then a acts as a derivation on 3(M) in 
the sense that if a, bE 3(M) are homogeneous, then 

a(ab) = a(a)b + (_l)(degQ)(dega)aa(b). 

Thus, for example, if M is free and R contains a field of characteristic 
0, S(M)* may be identified as the algebra of differential operators with 
constant coefficients on S(M). 

Proof. We need the following observation about the diagonal: For a E M, 
the diagonal is D.a = a (9 1 + 1 (9 a. Further, since 3(M) is a bialgebra, 
D.(ab) = (D.a) (D.b). Since any element of S(M) is a sum of products of 
elements of M, we see that for any a E 3(M)+ := I:j>o 3j (M) we may 
write 

D.a = 1 (9 a + a (9 1 + L mi (9 m; 
where mi, m; E S(Mh. Returning to the proof of the proposition, we write 
D.a = I: ai (9 a; and D.b = I: bi (9 b;. We have 

so 

D.(ab) = L( _l)(dega;)(degbj)aibj (9 a;bj, 
i,j 

i,j 

Since a E M*, the only nonzero terms are those for which a;bj E M = 31M, 
that is, where one of ai, bj is in 31M and the other is in SoM. By the remark 
on the form of D. above, we get 
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a(ab) = L(a, ai)a;b + L( _1)(deg a) (a, bj)abj 
i j 

= a(a)b + (-I)deg aaa(b), 

as required. 

Some consequences of this for the exterior algebra are described near the 
end of Chapter 17. 

A2.5 Schur Functors 

In the introduction to this appendix we mentioned the connection of mul
tilinear algebra and representation theory. Here we sketch the beginnings 
of it. We have included this material simply for its intrinsic interest; it is 
not used elsewhere in this book. 

Let V be a finite-dimensional vector space over a field k. Let G = SL(V) 
be the group of linear transformations of V with determinant 1. The group 
G acts on Td V = V0d by acting on each factor. For 0' E G and VI ® ... ®Vd E 
V0d, we set 

O'(VII8)··· ® Vd) = O'VI ® ... ® O'Vd· 

It turns out that if k has characteristic 0, then every representation of G on 
a finite-dimensional k-vector space is a direct sum of irreducible represen
tations (one says that G is "reductive"). Further more, every irreducible 
representation occurs as a summand of some Td V. These summands are 
also irreducible representations of GL(V). To get all irreducible represen
tations of GL(V), one simply tensors these irreducible representations with 
I-dimensional representations of the form 

O'(r) = (detO'rr for r E k, 

for m E Z. 
One may think of the process of making a representation as the process 

of constructing a new vector space from V in some reasonably functorial 
way. For example, 1\ m V and 8m V, the exterior and symmetric powers are 
representations of SL(V), or even of GL(V). But I\m and 8m have a stronger 
property: They are functors in the sense that any linear transformation of 
V acts naturally on 1\ m V and 8m V. As we have seen, 1\ m and 8m may 
even be regarded as functors on any category of modules. The same thing 
turns out to be true for all the irreducible representations mentioned above, 
and some others as well. The resulting functors, which include I\m and 8m , 
are called Schur functors in honor of Issai Schur, one of the pioneers of 
representation theory in the beginning of this century. 

To give the definition, let R be any ring and let Mbe any R-module. Let 
A be a finite set and let A be a pair of partitions {A;}i=I ... s and {Bj}j=I ... t 
of A into disjoint subsets: That is, writing II for disjoint union, we have 



A2.5 Schur Functors 585 

A : A = IIi=I, ... ,sAi = IIj=I, ... ,tBj. 

For any integer d, the diagonal Ll of the exterior algebra on M gives us a 
map Ll d : I\. d M ____ TdM = M0d. If we think of a collection of copies of M 
indexed by the elements of A, and if Ai c A is a subset of cardinality d, 
then we shall write I\. Ai M ____ TAi M for this map I\. d M ---- TdM, thought of 
as involving the copies of M labeled by the elements of Ai. By tensoring 
several such maps together we get a map 

(); ; I\.AI M Q9 ... Q9I\.A, M ---- TAl M Q9 ... Q9 TA,M. 

There is a natural identification 

obtained by using the associativity and commutativity of the tensor prod
uct. For any integer d the multiplication map in the symmetric algebra of 
M gives a map TdM ---- SdM. As above, if Bj is a subset of A of cardinality 
d, we write TBjM ---- SBjM for TdM ---- SdM, thought of as involving the 
copies of M indexed by elements of Bj . By tensoring several such maps 
together we get a map 

We define the Schur module SA M, associated to A and M, to be the image 
of the composite map 

This construction is obviously functorial in M (that is, if M ---- N is any 
homomorphism, then there is an induced homomorphism SA M ____ SA N, 
with compositions preserved); the functor SA is the Schur functor associ
ated to the pair of partitions. 

It should be said that this definition is one of several possible definitions 
which are equivalent in the central case where R is a field and M is a 
finitely generated vector space. It is known to have reasonable properties 
when R is any ring and M is a free module-for example, SA M is again a 
free module, whose rank depends only on the rank of M and the partitions 
A of A, not on the properties of R. However, the case where M is not free 
has hardly been il1-vestigated, and the definition may be the "wrong" one 
in this generality. For some other possibilities see Towber [1979] and Akin, 
Buchsbaum, and Weyman [1982]. 

First examples for the reader to check: If all the Ai have cardinality 
1 and BI = A has cardinality d, then the corresponding Schur functor 
SA M = SdM is a symmetric power. If, on the other hand, the module M 
is free, all the Bi have cardinality 1, and Al = A, then SA M = I\.d M. (See 
Exercise A2.14 for the kind of trouble that can result if M is not free.) 
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FIGURE A2.3. 
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FIGURE A2.4. 

It is easy to see that if any B j contains more than one element of some Ai, 
then the corresponding Schur functor is 0. Thus the only interesting pairs of 
partitions are those constructed as follows: Let A be a set of lattice points 
in the plane, and let A be defined by taking Ai to be the set of points in the 
ith row of A, while B j is the set of points in the jth column. An example 
is shown in Figure A2.3, where A is the set consisting of the 9 heavy dots. 
If R is a field of characteristic 0, then the irreducible representations of 
SL(V) are given by those Schur functors SA V that correspond to the sets 
of lattice points of the form shown in Figure A2.4, with "width" less than 
dim V. 
More precisely, given a sequence of integers d1 ~ d2 ~ ••• ~ ds ~ 0, 
called a partition of d = I: di , we define a set A of d lattice points in 
the plane as follows: Put di lattice points consecutively in the ith row 
(positions (i, l)-(i,di )). The pair of partitions of A by rows and columns 
then partitions A into sets Ai of cardinality di and B j of cardinality ej. One 
usually writes S{dj, ... ,d,} = SA for the corresponding Schur functor. Thus, 
if {1 d} represents a sequence of ones {1, 1, ... ,I} of length d, then S{1 d} M 
is the dth symmetric power of M, while S{ d} M is the dth exterior power 
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FIGURE A2.5. 

of M. The first "new" 'Object is S{2,2} M. We shall not prove the following 
theorem. 

Theorem A2.9. If M is a free R-module of rank r, and all the di are less 
than r, then S{ dj, ... ,d,} M is a free R-module of rank equal to the determinant 
of binomial coefficients shown in Figure A2.5. If R is a field of characteristic 
0, and V is a vector space of dimension r, then the S{dj, ... ,d,}V with r > d1 :2: 
d2 :2: ... :2: ds > ° are the distinct nontrivial, irreducible, finite-dimensional 
representations of SL(V). 

For example, S{2,2} M is the image of /\2 M 0 /\2 M in 82M 0 S2M under 
the map sending a/\b0c/\d to ac0bd-bc0ad-ad0bc+bd0ac. The kernel of 
this map is (in characteristic 0) in fact /\3 M0M, embedded in /\2 M 0/\2 M 
by the map diagonalizing the /\3 Minto /\2 M 0 M, and then wedging the 
last factors; that is, ifm0n E /\3M0M and b..m = L:mi0m; E /\2M0M, 
then m0n ....... L: mi0(m;/\n) E /\2 M0/\2 M. If M has rank r, then S{2,2} M 

is a free module of rank G) 2 - G) G). 
For a further treatment of these matters, see Fulton and Harris [1992]. 

A2.S.1 Exercises 

Exercise A2.10 (Divided powers and the rational normal curve): 
The rational normal curve is another construction that shows how "right" 
the divided powers are. We begin with a reminder of the classical situation: 

a. Let k be a field of characteristic 0, and let V be a k-vector space 
of dimension 2 with basis s, t. The subset of Sd(V) consisting of dth 
powers of linear forms is the affine cone over a projective curve, the 
rational normal curve in pd = P(SdV). If we take the coefficient of 
the monomial sitd- i to be the variable Xi, then the homogeneous ideal 
of the curve is generated by the 2 x 2 minors of the matrix 
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( (d)xo (d - l)XI ... (l)Xd-l) 
(l)XI (2)X2 ... (d)Xd . 

Show at least that the 2 x 2 minors of this matrix do vanish when 
we substitute for the Xi the coefficients of the dth power of a linear 
form. 

b. Show that if d is a power of a prime p, and k is a field of characteristic 
p, then the dth powers of linear forms in k[s, tj form a 2-dimensional 
linear subspace of Sd(V)-not the cone over a rational normal curve 
of degree d. 

c. Independently of characteristic, the divided dth powers of linear forms 
do sweep out the rational normal curve, and the homogeneous ideal 
of the curve is generated by the 2 x 2 minors of the matrix 

( Xo Xl ... Xd-l). 
Xl X2 ... Xd 

Show at least that the 2 x 2 minors of this matrix do vanish when 
we substitute for the Xi the coefficients of the dth divided power of a 
linear form. 

Exercise A2.11 (Divided powers and Pfaffians): Let P be a free mod
ule and let <p : P* --+ P be a homomorphism. We say that <p is alternating 
if <p is skew-symmetric (that is, <po = -<p) and x( <p( x» = 0 for every X E F*. 
(Note that if 2 is a unit in R, then each of these two conditions implies the 
other.) 

a. Show that there is a one-to-one correspondence between elements 
of /\2 P and alternating homomorphisms P* --+ P given by sending 
a E /\2p to the map <POt: x ....... x(a) E P. 

b. If <p is any alternating map, then the determinant of <p is well defined 
up to a square in R as the determinant of <p with respect to any basis 
of P and its dual basis in P*. If rank P is odd, then det <p = o. 

c. * Suppose rank P = 2r is even, and consider an alternating homomor
phism <p : P* --+ P and the corresponding element a E /\2 P. If we 
choose a basis ei for P, we may write the rth divided power of a as 

a(r) = uel /\ ... /\ e2r for some u E R. 

The element u is called the Pfaffian of <p, written u = Pfaff(<p). Show 
that if we compute with respect to the basis ei of P and a dual basis 
of P*, then 
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d. More generally, show that the coefficient in 0:(8) of a basis element 
ei, 1\ ... 1\ ei2s of 1\28 F is the Pfaffian of the alternating submatrix of 
r.p obtained by taking rows and columns numbered i l ,···, i 28 . 

Exercise A2.12: If M is a free module, then the dual of the multiplica
tion map of S(M) is a comultiplication for 1>(M*). Show that 1>(M*) is a 
bialgebra too. 

Exercise A2.13:* Let k be a field, let R = k[[x, Yll/(x2 - y3), and let 
1 = (x, y) be the maximal ideal. Show that a free presentation of 1 is given 
by the matrix 

Deduce: 

a. 1* ~ 1 

c. 8 21 requires three generators. 

d. (821)* requires only two generators. 

Conclude that 1\(1)* is not the exterior algebra of any module, and that 
8(1)* is not the symmetric algebra of any module, even in characteristic 0. 

Exercise A2.14: Consider the part of the diagonal map that goes from 
SdM -t M 0···0 M (d factors); call it L. 

a. Show that if M is a free module, then L is an injection. 

b. Show that if R contains a field of characteristic 0, then L is an injec
tion. 

c. Show that if R = k[x, y, z], M = (x, y, z), and k is a field of charac
teristic 2, then L : 1\2 M -t M 0 M is not an injection; in fact show 
that L(Xy 1\ z) = 0, and use the result of Exercise A2.6. 

A2.6 Complexes Constructed by Multilinear 
Algebra 

Certain complexes that are useful in commutative algebra and algebraic 
geometry can be defined easily in terms of the multilinear constructions 
we have already made. In this section we sketch the construction and basic 
properties of a family of complexes beginning with the Eagon-Northcott 
complex and the Buchsbaum-Rim complex. 
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The Koszul complex is associated to a sequence of elements of a ring 
R, or equivalently to a map from a finitely generated free R-module F to 
R. The complexes defined in this section are associated in an analogous 
way to an arbitrary map of finitely generated free modules F ---+ G. (The 
definitions and results that follow can be extended easily to the case where 
F and G are only locally free; we remark on the necessary modifications in 
the text.) But even though they generalize the Koszul complex, they are 
also contained in the Koszul complex in a certain sense. 

Let <p : F ---+ G be a map of free modules over a ring R. Write f for the 
rank of F and 9 for the rank of G. Although much of what we shall do works 
formally for any f, g, the applications will all be in the case where f ~ g, so 
we shall assume from now on that f ~ 9 and think of <p as a presentation 
of the R-module M := coker<p. By Fitting's lemma (Corollary 20.4), Mis 
annihilated by the ideal Ig( <p) generated by the 9 x 9 minors of <p, as are a 
whole host of associated modules such as the symmetric powers of M. We 
shall see that under reasonable assumptions M and these other modules are 
isomorphic to ideals of co dimension 1 in R/Ig(<p), and they arise naturally 
in the divisor theory of determinantal varieties. We shall define complexes 
ei that should be thought of as attempts at resolutions for some of these 
modules. The complexes ei for i ~ -1 will actually be resolutions in the 
"generic" case, where <p is represented by a matrix of indeterminates ri,j 
over a polynomial ring Z[{ri,jh=l ... g,j=l"'f]' 

For example, eo, the Eagon-Northcott complex, provides a resolution for 
R/Ig(<p) in the generic case, and el , the Buchsbaum-Rim complex, does 
the same for M itself. These two complexes are resolutions whenever Ig(<p) 
contains a regular sequence of length f - 9 + 1. The conditions for some 
of the other complexes in the family to be resolutions involve lower order 
minors as well. 

The motivation behind the discovery of the Eagon-Northcott complex 
was to understand Macaulay's unmixedness theorem (Corollary 18.14), 
which was strengthened, in Eagon's thesis, to say that the ring R/lk(<p) 
is Cohen-Macaulay for generic <p and all 0 ::; k ::; g. By the Auslander
Buchsbaum formula, this is equivalent to the existence of a free resolution 
of R/ h(<p) of length (f -k+1)(g-k+1); Buchsbaum had suggested finding 
a proof along these lines. In the case k = g, Eagon and Northcott accom
plished this by defining the Eagon-Northcott complex [1962]' and Buchs
baum [1964] gave a different, nonminimal resolution. The Buchsbaum-Rim 
complex was defined in a subsequent paper (Buchsbaum-Rim [1964]). 

Buchsbaum and Eisenbud [1973] noted that the Eagon-Northcott and 
Buchsbaum-Rim complexes fit into the family of complexes presented here, 
and our treatment follows ideas sketched in that paper. The same family 
was discovered independently by David Kirby [1974]. A geometric idea 
originating in George Kempf's (unpublished) thesis [1970] represents the 
same complexes as pushforwards of Koszul complexes defined on Grass
mann bundles, computed using Bott's vanishing theorem and its relatives. 
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This technique generalizes, in principle, to many other complexes, includ
ing those giving resolutions of lower order minors. See Weyman [1990] for 
an exposition and a beautiful recent application. 

Many mathematicians, starting perhaps with Buchsbaum [1970], have 
tried to find complexes related to the lower order minors of <.p in the same 
way that the Eagon-Northcott complex or other members of the fami
lies here are related to the maximal minors. Through work of Lascoux 
[1978], who used the idea of Kempf mentioned above; Nielsen [1981]; Akin, 
Buchsbaum, and Weyman [1982]; Pragacz and Weyman [1985] and others, 
the situation is reasonably well understood in characteristic 0, but many 
questions about the form of these complexes remain unanswered in more 
general cases. 

For a spectacular geometric application of the Eagon-Northcott complex 
(in a case where it is not even exact!), see Gruson, Lazarsfeld, and Peskine 
[1983]. Buchsbaum and Rim were motivated by a desire to generalize the 
multiplicity theory that comes from the Koszul complex. The "Buchbaum
Rim" multiplicity that they defined has recently found interesting geomet
ric applications in the work of Kleiman, Thorup, Gaffney, Rees, and others 
(see, for example, Kleiman and Thorup [in press]). Geometric applications 
of the family of complexes defined here have been made by Schreyer [1986] 
and others. 

A2.6.1 Strands of the Koszul Complex 

We begin with a reinterpretation of the Koszul complex. Let S = S(G), 
the symmetric algebra on G (that is, the graded polynomial ring on a set 
of free generators for G, regarded as elements of degree 1). If Xl, ... ,Xg is 
a free basis of G, then S = R[X1,"" Xg]. If we write F' for the S-module 
S®F( -1), then there is a unique map of S-modules <.p' : F' -+ S that sends 
F = R ® F = (S 0 F)o = F{ c F' to G = SlG by <.p. In terms of bases, let 
e1, ... , ef be free generators of F, and suppose <.pei = Eri,jXj with ri,j E R. 
If we write e: for the generator 10 ei E F', then <.p' e: = Eri,jXj, thought of 
as an element of S = R[X1, ... ,Xg]. 

Let 
'P' 

K(<.p'): 0 -+ r/F' -+ (J-1F' -+ ... -+ /\2F' -+ F' ~S 

be the Koszul complex determined by <.p' over the ring S. Since the boundary 
maps of K (<.p') are homogeneous of degree 0 in the sense of the grading on S, 
we may restrict to a single degree and derive a complex of free R-modules, 
called a strand of K (<.p'). Explicitly, in degree d we have a complex 

K( <.p')d: ... .!!. Sd-iG 0 /\i F .!!. Sd-i+1 G 0 /\i-1 F 
{) {) {) 
-+ ... -+ Sd-1G0F -+ SdG, 

where for simplicity we call each of the differentials a. If we write {x;} for 
the basis of G* dual to the basis {Xi} of G, then <.p*(Xi) E F* acts on /\F, 



592 Appendix A2. Multilinear Algebra 

and the map 8 takes an element m 1&1 f E Sd-iG 1&1 I\i F to the element 
Eixim 1&1 <p* (Xi) (f) E Sd-i+1 G 1&1 I\i-! F. 

The element c = EXil&lXi E GI&IG*, sometimes called the "trace" element, 
is independent of the basis Xi chosen; it is the image of the identity element 
under the map R -+ GI&IG* that is dual to the evaluation map G*I&IG -+ R. 
The maps 8 are simply given by multiplication by c, regarded as an element 
of S(G) 1&1 I\G* (where the action of I\G* on I\F is via the algebra map 
I\<p* : I\G* -+ I\F*). In particular, since S(G) I&II\G* is the exterior algebra 
over SG of the SG-module SG 1&1 G*, and c is an element of degree 1 in this 
exterior algebra, we see at once that c2 = 0 -another proof that 82 = o. 

Now dualizing K(<p')d by taking Hom(-,R), we derive a complex 

K(<p')'d:'" -+ (Sd-i+1G)* I&Il\i-1F* -+ (Sd-iG)* I&Il\iF* -+ ... 

If we choose an element Q: E I\! F then we may use it to identify 1\ i F* with 
I\!-i F as in Chapter 17.2 To simplify the notation we shall also write DiG* 
(which we may think of as a component of the divided power algebra of 
G*) in place of (SiG)*. We may now rewrite this dual complex as 

K(<p')'d: 0 ---+ DdG* I&II\! F ~ Dd-1G* 1&I1\!-1 F ~ ... 
{j D G* ,0, 1\!-iF {j D G* ,0, 1\!-i-1F {j -+ d-i '61 -+ d-i-1 '61 -+ ... 

Since DG* is a module over SG, the map fj may again be described as 
multiplication by c E G 1&1 G* c SG 1&1 I\G*. Note that the entries in a 
matrix for any 8 or fj will be R-linear forms in the entries of a matrix for <po 

The complexes we are interested in are the K( <p')d, the K(<p')'d, and, most 
important, a type made by "splicing together" K( <P'Y'd with K( <p')!-g-d, in 
case d ::; f - g. Note that if d ::; f - g, then the last term of K ( <p') 'd at 
the right end is DoG* 1&1 I\!-d F, which we may identify with I\!-d F, since 
DoG* = R. We shall define a "splice" map c from I\!-d F to the first term 
at the left end of K(<p')!-g-d, which is 1\!-g-dF. We shall denote by ei the 
complex obtained by splicing K(<p')j_g_i and K(<p');' 

We shall define c in terms of a generator 'Y E f\9G* ~ R; such a'Y may 
be chosen because we have assumed that Gis free. 3 Given the choice of 'Y, 
we define, for any k ~ g, the map 

c : 1\ k F -+ 1\ k-g F 

to be the action of f\9<p*'Y on F. In terms of bases, if we write I for a subset 
i1 < ... < ik of {I, ... ,j}, and e[ = eil 1\ ... 1\ eik for the corresponding 
product, then 

2 A choice of generator for 1\1 F is possible in our case because we have assumed 
that F is free. If we had only assumed that F was locally free, then we would have 
had to tensor the whole complex with 1/ F at this point. 

3If we had only assumed that G was locally free, then we would have had to 
tensor part of the complex with NG to be able to make the definitions properly. 
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c(eI) = L sgn(J c 1)(det 'PJ)eI-J, 
JcI,lJI=g 

where 'PJ is the g x g submatrix of 'P with columns corresponding to the 
basis elements indexed by J, sgn( J c 1) is the sign of the permutation 
of I that puts the elements of J into the first g positions, and eI-J is the 
wedge product of the basis vectors indexed by elements of the set 1- J. 
The entries of a matrix for c are thus g x g minors of 'P-in particular, they 
are forms of degree g in the entries of a matrix for 'P. For example, in case 
k =g, 

c: I\gF ---+ 1\0F = R 

may be identified with the composite 

whose image is the ideal of g x g minors of 'P. 
We are now ready to write down the complexes. To simplify the notation, 

we shall write 

Dd for DdG* = (SdG)*, 

1\ d for 1\ d F. 

We also note that Do = So = 1\° = R, and we shall substitute R for 
these wherever they occur; in particular, we shall allow ourselves to think 
of c : I\k F ---+ I\k-g F as a map from DoG* 0 I\k F to I\k-g F. Further, we 
write G,G*, and F in place of Dl = D1G*,SI = S IG, and 1\1 = I\IF. 

A description of two leading cases will serve to illustrate these conven
tions. Perhaps the most important case is that of the Eagon-Northcott 
complex 

eO: 0 ----> D/_gG* 01\/ F ~ D/_g_1G* 01\/-1 F ~ ... 

~ D1G* 0 N+ 1F ~ DoG* 0 NF = NF ~ 1\0F, 

which according to the preceding conventions we shall write as 

eO: 0 ----> DI_g 01\1 ~ DI-g-l 01\/-1 ~ ... 

~ G* 0 I\g+1 ~ I\g ~ R. 

Here the c map on the right may, as indicated, be identified with N'P : 
N F ---+ NG = R, the last identification being made by sending 'Y to l. 
Its image is the ideal Ig( 'P), and the Eagon-Northcott complex should be 
thought of as an approximation to a resolution of Rj Ig ('P); we shall see 
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that it is actually a resolution iff Ig( rp) contains a regular sequence of length 
f-g+l. 

In the Eagon-Northcott complex the splice map c comes at the end, so 
it is not so clear that two complexes are being spliced. In fact the complex 
on the left is K(rp')j_g' while the one on the right is K(rp')o, the complex 
o --t R --t O. In the next example, the Buchsbaum-Rim complex 

e1 : 0 ----. D/_g- 1 01\/ ~ D/_g- 2 01\/-1 ~ ... 

6 I\g+l c F 8 G 
~ ~---+, 

the splice map splices K(rp')j_g_1 to K(rp'h, the complex 0 --t F --t G --t O. 
The Buchsbaum-Rim complex should be thought of as an approximation 
to a resolution of the cokernel of the map rp : F --t G. It is actually a 
resolution iff Ig(rp) contains a regular sequence of length f - 9 + l. 

All the complexes ei are given in Figure A2.6. The maps in the part 
below the diagonal line are all 8; in fact, this part is nothing but K ( rp), 
decomposed according to degree in S. The maps along the diagonal line 
are all c, while the maps above the diagonal line are all 8. The picture is 
self-dual: The complex ei is dual to the complex e/-g- i . We shall mostly 
be concerned with the complexes outside the gray region, since, as we shall 
see, these are often resolutions. 

Theorem A2.1O. Let 
'Pe 'Pe-I 'PI 'Po e : 0 --t Fe ---+ Fe -1 ------+ . . . ---+ Fl ---+ Fo 

be one of the ei , i ~ -1, and let r(j) = E:=j( -1)i-j rank Fi, the rank that 
rpj would have if e were a resolution. 

a. e is a complex. 

b. For each e ~ j ~ 1, rpj has rank:::; r(j), and the ideal Ir(j)(rpj) is 
contained in and has the same radical as the ideal IS(j)rp, where s(j) = 
min(g, f - j + 1). 

c. e is a free resolution whenever 

depth 1m ( rp) ~ f - m + 1 for all m with 9 ~ m ~ f - e + 1, 

In particular, e is a free resolution in the "generic" case, where rp is 
represented by a matrix of indeterminates. 

Remark: Because the ei with i < -1 are dual to ei with i > -1, we 
see that all the ei are actually complexes. If the map rp : F --t G is a split 
epimorphism, that is if Ig ( rp) = R, then all the ei are split-exact for i ~ -1, 
and by duality again, all the ei are split-exact (as the upcoming argument 
would also show directly). This is actually the only case in which a ei is 
exact for i < -1; see Exercise A2.16. 
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An initially surprising feature of the following argument is that modulo 
several uses of the criterion of exactness (Theorem 20.9), Theorem A2.1O 
is reduced to results on multilinear algebra that do not involve ring theory 
at all, but are essentially combinatorial in nature. 

Proof. Part c follows from parts a and b by the criterion of exactness 
(Theorem 20.9). 

For parts a and b, since e-1 is dual to ei - g+1, it suffices to prove the 
theorem for i ~ o. Parts a and b express certain identities on polynomials in 
the entries of a matrix representation for 'P. We have been careful to make 
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all our constructions compatible with base change (that is, tensoring with 
an R-algebra), so if the desired identities hold for a given map <p : P ----+ G 
of free R-modules, and if R' is any R-algebra, then they hold for the map 
R' ® <p : R' ® P ----+ R' ® G of free R'-modules. Thus it actually suffices 
to treat the case R = Z[{tijh:5i:5g,l:5j:5/], where the tij are indeterminates, 
and <p is represented by the f x 9 matrix with entries t ij . In this case each 
Im(<P) is a prime ideal, so that to prove Ir(j)(<pj) C Im(<P), it suffices to 
show that they have the same radical. This is what we shall actually prove 
here (and this suffices for the rest of the assertions); for a proof that 1m (<p) 
is prime in the generic case, see Bruns and Vetter [1988; Remark 2.12 and 
Theorem 6.3J. 

a. Since we already know that EJ2 = 0 = 82, it suffices to show that 
€8 = 0 and & = 0 in the sequence 

G* ® /\k+l P ~ /\k P ~ /\k-g P ~ /\k-g-l P ® G. 

But it is easy to see that this sequence is self-dual: We already know 
that 8 : G* ® /\k+1 P ----+ /\k P = 0* : G* ® /\I-k-l P ----+ /\I-k P up 
to the identifications of /\I-np ~ /\np* induced by any choice of an 
orientation in /\1 P*. The dual of € is similarly isomorphic to an €, via 
the same identifications: One may check by direct computation that 
the diagram 

EO 

commutes. Thus it suffices to show that & = O. Since R = Z[tijJ 
is a domain, it is enough to prove that O€ = 0 after tensoring with 
the quotient field of R. We may thus suppose that P = P' ffi G, and 
<p : P ----+ G is the projection onto the second factor. Consider the 
diagram in Figure A2.7. 

I\k F ~ 

211 

I:P+q=k I\P F' ® NG 

! 
I\k-g F' ® MG 

I\k-gF 

112 

I:P+q=k N F' ® 1\ q - 9 G 

r 
I\k-gF'®I\OG 

FIGURE A2.7. 

-L I\k-g-IF ® G 

I:P+q=k N F' ® I\q-9-l G® G 

! 

o 

Here the isomorphisms are those of Proposition A2.2c. The vertical 
maps at the bottom are the projection to and inclusion of a direct 
summand. The left-hand horizontal maps are induced by the action 
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of'Y E f\9G*, while the right-hand horizontal maps come from the 
diagonal map on AG. The commutativity is easy to check, and proves 
that in this case the composition OE is o. Even better, it proves that 
if cP : F ~ G is a surjection, then the sequence 

Ak F ~ A k - g F ~ Ak-g-l F ® G 

is exact. 

b. The heart of the argument is the following lemma, which describes 
what happens if we invert a minor of cP and factor out the larger 
minors. The results we want follow formally from the criterion of 
exactness (Theorem 20.9) once we know this. D 

Lemma A2.11. Let cp,e = ei , and CPj be as in Theorem A2.10. If Is(cp) = 
R but Is+I(cp) = 0, then 

a. If s = g, then CPI : FI ~ Fo is a surjection and e is exact at Ft for 
all t. 

b. If s < g, then e is exact at Ft ifft > f - s. 

Proof. It is enough to prove the lemma after localizing at a maximal ideal. 
After such a localization, we may assume that some s x s minor of cP is a unit 
and all larger minors are o. We may thus write F = F' EB G', G = G' EB Gil, 
with rank F' = f - s, rank G' = s, and rank Gil = g - s, and assume that 
cP is the projection to G'. 

By duality it suffices to treat the cases where t :::; i: Indeed, if i :::; f - g+ 1 
then ei is the dual of e!-g-i, and f - g - i 2: -1, while if t > i then Ft = 0, 
and there is nothing to prove. 

First consider the special case t = i :S f - g, so that CPHI = E. If s = g, 
then cP : F ~ G is a surjection, and we established in the proof of part a 
of Theorem A2.1O that e is exact at Ft. If, on the other hand, s < g, then 
E = 0, and e is not exact at Ft. These assertions correspond to a and b of 
the lemma in this case. 

In all other cases with t :::; i, both CPHI and CPt are maps in the strand 
K(CP')i of the Koszul complex, and we may prove the lemma by analyzing 
the homology of this Koszul complex. 

With respect to a suitable basis {Xi} of G, K (cp') is the Koszul complex 
of the sequence of elements (Xl' ... ' Xs , 0, ... ,0). By Proposition 17.9 this 
is the tensor product of the Koszul complex of (Xl' ... ' xs) and the Koszul 
complex of (0, ... ,0). It follows at once that the homology of K( cp') may 
be identified with AF'( -1) ® S(G"). 

If j :::; f - g + 1 then s = g so Gil = 0 and the homology of the Koszul 
complex is AF' ( -1). In this case the degree-i strand is exact at Ft for all 
t < i, as desired. In the contrary case, when j > f - g + 1, the homology 
is nonzero at the tth step Ft = At F ® Si-tG of the degree-i strand iff 
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t ::; rank F' = f - s = ma;x(J - g, j - 1) = j - 1 

and 
i 2: t, 

which proves the lemma. 0 
We now return to the proof of Theorem A2.lD. As remarked earlier, it 

suffices to treat the case where R = Z [{ tij}], and <P is the map associated to 
the matrix (tij ). Let D be a g x g minor of <p. Applying Lemma A2.11 we see 
that the complex R[D-1]0Re is split-exact. Thus the rank of R[D-1]0R<Pj 
is r(j). Since Z[{ tij}] is a domain, the rank of <Pj is also r(j), proving the 
first statement of part b. 

Next we shall show that rad(Ir(j) (<pj)) ::J rad(Is(j)(<P)). Suppose that Pis 
a prime of R containing Ir(j)(<Pj)i we must show that Is(j)<p c P. Let Q be 
the quotient field of RIP. Note that Q 0R e is not exact at Fj . It follows 
from Lemma A2.11 that Is(j)<p c P as desired. 

Since Is(j)<p has codim(J - s(j) + l)(g - s(j) + 1) 2: j, the criterion of 
exactness (Theorem 20.9) shows that e is a resolution. From Corollary 20.12 
it follows that 

To finish the proof we must show that rad(Ir(j) (<pj)) c rad(Is(j) (<p)). 
Suppose that P is a minimal prime of Is(j) ( <p) i we must show that P ::J 

Ir(j) (<pj). Note that P does not contain IS(j)-l (<p), since this ideal has greater 
co dimension than Is(j) (<p) by Exercise lD.lD. Let Q be the quotient field 
of RIP. The map Q 0R <P satisfies the condition of Lemma A2.11 with 
s = s(j) -1, so Q0R e is exact at Ft ifft > f -s(j) + 1 = max(J - g+ 1,j). 
In particular, Q 0 R e is not exact at Fj . But if ~ did not contain Ir(j) (<pj) 
then it would not contain any IrV) (<pj') for j' 2: j, so by Theorem 20.9 
Q 0R e would be exact at Fj . The contradiction shows that P contains 
Ir(j) (<pj) as required. 0 

Corollary A2.12. Let (R, m) be a local ring, and suppose that <P : F ---'> 

G is a map of free modules of ranks f 2: g over R with h (<p) C m. If 
depth Ig ( <p) = f - g + 1, the greatest possible value, then ei is the minimal 
R-free resolution for -1 ::; i ::; g. Thus for example the ideal Ig(<p) is 
minimally generated by the (;) distinct g x g minors of <po 

Proof. That the ei are resolutions is the content of Theorem A2.lD. Mini
mality comes from the way in which the maps are made from <Pi if all the 
entries of <P are in m, then the same goes for each of the maps c, 8, and G. 
The last statement follows because the free module Fl in the resolution eO, 
which maps onto Ig (<p), has a free basis mapping onto the distinct minors 
of <po 
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A module N over a local ring (R, m) of dimension d is called a maximal 
Cohen-Macaulay module if m contains a regular sequence on N having 
length d. If R is regular, such modules are free by the Auslander-Buchsbaum 
theorem. See Chapter 21 for more information. 

Corollary A2.13. Let (R, m) be a local Cohen-Macaulay ring, and suppose 
that cP : F -t G is a map of free modules of ranks f 2: 9 over R. Set 
M = coker cpo If depth Igcp = f - 9 + 1, the greatest possible value, then 
R/ Ig( cp) is a Cohen-Macaulay ring. Further, the complex e- I is a resolution 
of !/-g (coker cp*), and for 1 ::;. i ::; f - 9 + 1 the complex ei is a resolution of 
Si(M). These modules are maximal Cohen-Macaulay (R/Ig(cp))-modules. 

Proof. By Theorem A2.1O, the complexes ei for -1 ::; i ::; f - 9 + 1 are 
resolutions of length f - 9 + 1. If we let 

be one of these ei , then by the Auslander-Buchsbaum formula coker CPo 
is an R-module of depth equal to depthR - (f - 9 + 1). If i = 0, then 
coker CPo is R/ Ig( cp). By the equidimensionality of Cohen-Macaulay rings, 
dimR/Ig(cp) = dimR - co dim Ig(cp) = depthR - depth Ig(cp) = depthR
(f - 9 + 1), so R/Ig(cp) is a Cohen-Macaulay ring. 

If i 2: 1, then CPo is the natural map a: F ® Si-IG -t SiG, and we know 
from the right-exactness of the symmetric algebra (Proposition A2.2d) that 
the cokernel is Si ( M) . 

If i = -1, then CPo is the map 8 : G* ® flY F -t flY-I F. By duality in the 
exterior algebra we may identify this map with the map G* ® I\!-g F* -t 

1\!-g+1 F* induced by cp*, whose cokernel is 1\!-g+l(coker cpO). 
By Proposition 20.7, M is annihilated by Ig(cp), so M, and with it all 

the 8i(M) are (R/Ig(cp))-modules. The module 1\!-g+l(coker cpO) is also 
annihilated by Ig(cp), by Exercise 20.9. Thus all the modules in question 
are maximal Cohen-Macaulay (R/Ig(cp))-modules. D 

Our final result shows that under good circumstances all the modules 
we have resolved are isomorphic to ideals of R/ Ig( cp). In Exercise A3.30 we 
shall show how to use the preceding complexes to give resolutions of the 
preimages of these ideals in R. In Exercises A2.21 and A2.22 we shall see 
that these can be used to study geometrically significant examples, such as 
collections of points on a rational normal curve, elliptic normal curves, and 
trigonal canonical curves. 

Theorem A2.14. Suppose that Ig(cp) has depth f - 9 + 1. Fix bases for F 
and G, and regard cp as a matrix. Let CPI be the submatrix consisting of the 
first 9 - 1 columns of cp; let CP2 be the submatrix consisting of the first g-1 
rows of cp; and let CPo be the upper left (g - 1) x (g - 1) submatrix of cp, 
as in Figure A2.8. Suppose that both Ig- 1 (CPI) + Ig(cp) and Ig- I(CP2) + Ig(cp) 
have depth > f - 9 + 1. 
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g-l 

CPo= D ----------
g 

f 
FIGURE A2.8. 

a. M:= coker'P is isomorphic to the ideal 1= (1g-1('Pl) +lg('P))/lg('P) 
of R/ Ig( 'P) generated by the (g - 1) x (g - 1) minors in the first 9 - 1 
columns of 'P. For j = 1, ... , f - 9 + 1 we have I j S::! Sj(M). 

b. If j > f - 9 + 1 and depthlg_t ('P) > f - 9 + 1 + t for all 0 < t :::; 
j - (f - 9 + 1), then I j S::! Sj(M). 

c. N := /,/-g(coker'P*) is isomorphic to the ideal J = Ig- 1('P2)/lg('P) 
generated in R/ Ig( 'P) by the (9 - 1) x (9 - 1) minors in the first 9 - 1 
rows of 'P. 

It can be shown that if depthlg('P) = f - 9 + 1, depthlg_1('P) ::::: f -
9 + 2, and the ground field is infinite, then after a general row and column 
operation the conditions of Corollary A2.14 will be satisfied. 

Proof. We begin by defining maps ex: M ---> R/lg('P) and (3: N ---> R/lg('P) 
whose images are the given ideals; these maps are defined without hypothe
ses on the depths of the various ideals of minors, and they involve only sim
ple determinantal identities, here expressed with multilinear algebra. The 
depth conditions of the hypothesis will serve to ensure that these maps are 
monomorphisms. 

To describe a map from a module with free presentation 

X = coker'lj; : HI ---> Ho 

to the ring R/lg ('P), it suffices to give a commutative diagram as in Figure 
A2.9, where we have identified AYG with R. In the case of the module 
X = M, we have presentation M = coker 'P : F ---> G. Let a be the exterior 
product of the first 9 -1 basis vectors of F, and let b = AY-l'P(a). It is easy 
to see that the diagram in Figure A2.1O commutes, where the two vertical 
maps are given by wedging with a and with b respectively. The right-hand 
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AgqJ 
AgF ~ R 

t t 
HI ~ Ho 

'I' 
FIGURE A2.9. 

AgF 
AgqJ 

~ AgG=R 

"1~ aA -t t"O~bA -
F ~ G 

'I' 
FIGURE A2.1D. 

vertical map, ao, sends the ith basis vector ei E C to b 1\ ei, which is the 
(g - 1) x (g - 1) minor of <p involving the first 9 - 1 columns (corresponding 
to our choice of a) and all but the ith row. Thus the image of ao is the 
ideal Ig- 1(<Pl). The map ao induces a map a : M -+ I. We deduce maps 
Sj(a) : Sj(M) - Ij for every j by multiplication. 

In the case X = N, we have a presentation 

N = I\I-g+l (coker <pO) = coker ( C* ® I\I-g F* -+ I\I-g+1 F*). 

Let aI, ... ,ag be the chosen basis of C, and let b1 , ... ,bg be the dual basis 
of C*. To give the necessary commutative diagram, we first identify the 
upper horizontal map f\9 F -+ R with the map I\I-g F* -+ 1\1 F* = R that 
is exterior multiplication by f\9<p*(b1 1\· . . 1\ bg). To define the vertical maps 
in the diagram in Figure A2.11 we set b = b1 1\ ... 1\ bg- 1. We define 

(31 (c ® d) = (c, ag)d, 
(3o(e) = I\g-I<p*(b) I\e, 

where (c, ag ) E R is the value of the functional ag on c. Since the lower 
horizontal map takes c ® d to <po ( c) 1\ d, its composite with (3 takes c ® d 
to f\9 <po (b 1\ c) 1\ d. On the other hand, the upper horizontal map takes d to 
f\9<p*(b 1\ bg) 1\ d. Thus its composite with (31 takes c ® d to (c, ag) (f\9<p* (b 1\ 

bg)) 1\ d. Since (c, ag)(b 1\ bg) = b 1\ c, the diagram commutes. The image of 
(30 is generated by the (g - 1) x (g - 1) minors of <P2. Thus (30 induces a 
map (3: N - J. 
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FIGURE A2.11. 

We must identify the conditions under which the maps Sj(a) and j3 are 
monomorphisms, and we begin with the behavior after certain localizations. 
Suppose that R is Cohen-Macaulay, that Ig(<p) has co dimension 1 - 9 + 1, 
and that both Ig-1(<pd + 19(<p) and Ig- 1(<P2) + 19(<p) have depth> 1 -
9 + 1, as in the hypothesis of the corollary. R/ Ig( <p) is Cohen-Macaulay 
by Corollary A2.13, so 19(<p) is unmixed, and every minimal prime P of 
Ig(<p) has co dimension 1 - 9 + 1. Thus in the ring Rp we have (Ig-l(<Pl) + 
Ig(<p))Rp = (Ig-l(<P2) + Ig(<p))Rp = Rp. We claim that the localizations 

Sj(a)p: Mp --+ (R/Ig(<p))p, 
j3p : Np --+ (R/1g(<p))p, 

which we already know are epimorphisms, are in fact isomorphisms. By 
Proposition 20.7 and Exercise 20.9 both Mp and Np are annihilated by 
Ig(<p)p, so it suffices to show that each of the modules Mp and Np can 
be generated by one element. Proposition 20.6 proves this directly for M p . 

The same result shows that (coker <p*)p is generated by 1 - g+ 1 elements, 
so Np = I\f-g+l(coker<p*)p is also generated by one element. 

Suppose that L is an (R/1g(<p))-module, and that 'Y : L --+ R/1g(<p) is 
any map that is a monomorphism locally at each minimal prime P of 19 (<p). 
The map 'Y is a monomorphism iff 'Y is a monomorphism locally at each 
prime ideal P associated to L by Corollary 3.5. Thus to show that 'Y is a 
monomorphism, it is enough to show that the associated primes of L are 
among the minimal primes of Ig(<p). 

To complete the proof of parts a and c, let L be either N or one of the 
modules Sj(M) for j = 1, ... ,1 - 9 + 1. We must show that if P E Ass(L) 
then P is minimal over Ig (<p). Since L is resolved by one of the complexes 
ej for -1 ::; j ::; 1 - 9 + 1, it has projective dimension::; 1 - 9 + 1, so 
depth L ~ depth R - (f - 9 + 1) by the Auslander-Buchsbaum formula. It 
follows from Corollary 18.5 that codim P ::; l-g+1. Since the annihilator of 
L contains Ig( <p), we see that P contains Ig( <p). Since co dim Ig( <p) = 1 -g+ 1 
by hypothesis, P must be a minimal prime of Ig ( <p). 

For part b, suppose that j > 1 - 9 + 1 and depth I g- t ( <p) > 1 - 9 + 1 + t 
for all 0 < t ::; j - (f - 9 + 1). By Theorem A2.1O, ej is a free resolution 
of Sj (M). By Corollary 20.14b, Ass( Sj (M)) consists entirely of minimal 
primes of Ig(<p) , and we are done. 
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In fact the condition in part b of the corollary is in good cases necessary 
and sufficient; see Exercise A2.15. 

The case that arises most commonly in geometry is that in which 9 = 2, 
and in which r.p is a matrix over a polynomial ring whose entries are linear 
forms and whose 2 x 2 minors define a rational normal scroll. In this case 
the ideals I and J in the proposition define divisors on the scrolls, and 
the divisors defined by J and In for n = 0,1, ... ,1 - 9 + 1 are, up to 
adding a multiple of the hyperplane section, the divisors that are themselves 
arithmetically Cohen-Macaulay varieties. See Eisenbud and Harris [1987] 
and Schreyer [1986] for more information on this situation. The special 
cases of sets of points on a rational normal curve, and of an elliptic normal 
curve, are given in the exercises. 

A2.6.2 Exercises 
Exercise A2.15: With hypotheses as in the body of Corollary A2.14, 
suppose that j > 1 - 9 + 1 and depthIg_t(r.p) ~ 1 - 9 + 1 + t for all 0 < t ~ 
j - (f - 9 + 1). Show that Sj (M) is isomorphic to Ij only if depth Ig- t ( r.p) > 
1 - 9 + 1 + t for all 0 < t ~ j - (f - 9 + 1). 

Exercise A2.16:* To convince oneself that at least some of the ei in the 
gray region of Figure A2.6 are not generically exact, note that were e-g 

exact, it would be the resolution of the ideal generated by the 1 x 1 minors 
of r.p, that is, by the entries of a matrix representing r.p. But generically the 
1 9 entries form a regular sequence, so the ideal should have a resolution of 
length Ig, not length 1 like the complex e-g • Prove that ei for i < -1 is 
never a resolution unless the ideal of 9 x 9 minors of r.p contains a unit (in 
which case it is split-exact). 

Exercise A2.17 (Matrices of linear forms): 

a. Show that the following three kinds of objects are equivalent: 

i. p x q matrix of linear forms whose entries span a space of linear 
forms of dimension r in a polynomial ring S over a field k 

ii. an r-dimensional space of p x q matrices with entries in k 

iii. a pairing JL : kP ® kq ~ L of k-vector spaces, where L has 
dimension rand JL is surjective. 

b. What matrix of linear forms corresponds to the linear space of all 
p x p symmetric matrices? To the linear space of all p x p matrices of 
trace O? 

c. Show that the p x q matrix in Figure A2.12, which is sometimes 
called the catalecticant or persymmetric matrix, corresponds to 
the multiplication pairing k[s, t]p-l ® k[s, t]q-l ~ k[s, t]p+q-2. 
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( ~~ . ~.: .. ~~ .............. J 
Xr-2 Xr-l 

Xr-l Xr 

FIGURE A2.12. 

r=p+q-l 

d. Find a description related to the one in part c for the pairing that 
corresponds to the matrix in Figure A2.13. 

( ~l 
X2 ••. Xr 0 0 

J 
Xl .•. Xr-l Xr 0 0 

•••• 0 •••••••••• 

o 0 Xl X2 Xr 0 
o 0 Xl X2 Xr 

FIGURE A2.13. 

Prove that the ideal generated by the p x p minors of this matrix is 
the pth power of the maximal ideal in k [Xl, ... , Xr]; note that this is 
of codim r = p + q - 1, the greatest possible value. 

Exercise A2.I8 (I-generic matrices): (References: Eisenbud [1988]; 
Harris [1992].) Let f be a matrix of linear forms over a polynomial ring 
S = k [Xl, ... , xr ], with k a field. By a "generalized row" of f we mean a 
k-linear combination of the rows of f with not all coefficients 0; similarly a 
generalized column is a nonzero k-linear combination of the columns of f. 
A generalized entry of f is simply linear combination with nonzero coeffi
cients of the entries of some generalized row. Equivalently, if f represents 
a map cp : SP( -1) --+ sq of graded free S-modules, then a generalized entry 
corresponds to a composite map 

where a and {3 are both nonzero. We say that f (or cp) is I-generic if every 
generalized entry is nonzero. 

a. Prove that the generic p x q matrix, defined over the polynomial ring 
k[{Xijh=I ... p,j=I ... q] is I-generic. 

b. Prove that the generic symmetric p x p matrix is I-generic. 

c. Under the correspondence between matrices of linear forms and pair
ings of vector spaces introduced in Exercise A2.17, show that the 
pairing J.L : V ® W --+ L is I-generic iff for all elements v E V and 
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w E W, the element f..L( v Q9 w) is nonzero; that is the kernel of f..L does 
not meet the set of "pure" tensor products v Q9 w. We shall call such 
pairings I-generic. 

d. Use the idea in part c to show that if f is a I-generic p x q matrix of 
linear forms in r variables, then r 2: p + q - 1. 

e. Prove that the p x q "catalecticant matrix" in p + q - 1 variables is 
I-generic. 

Parts f and g are for those with some background in algebraic geom
etry. 

f. Generalize the preceding example by showing that if ,(,1 and ,(,2 are 
line bundles on a (reduced irreducible) variety X, and if V and W 
are vector spaces of sections of ,(, and M, respectively, then the mul
tiplication pairing 

is I-generic. 

g. Let L be the image of f..L. Show that the closure of the image of the 
rational map X ---t pr defined by L is contained in the rank-l locus 
of the matrix of linear forms corresponding to f..L. In the case of the 
catalecticant map in part c, conclude that the ideal of 2 x 2 minors 
of the catalecticant matrix vanishes on the rational normal curve of 
degree p + q - 2 in pp+Q-2. In this case the minors generate the ideal 
of the curve (see Gruson and Peskine [1982]). 

Exercise A2.19 (Determinantal varieties associated to matrices 
of linear forms): Let f be a p x q matrix of linear forms over S = 
k[xo, ... , xr], with p :::; q, and consider the set Vm in pr defined by the ideal 
of (m + 1) x (m + 1) minors of f-that is, the "rank-m locus" of f. 

a. For each generalized row p (respectively, column) of f, let Lp be the 
linear subspace of pr defined by the vanishing of the linear forms in 
p. Show that Vp- 1 is the union of the Lp. 

b. If f is I-generic, use part a to show that the co dimension of Vp-1 is 
q - p + 1, the maximum possible value. Show that in fact if L c pr 
is any linear space of co dim c < p, then L n Vp-1 has codim q - p + 1 
in L. 

A slightly harder argument shows that the homogeneous ideal of 
Vp-1 is actually generated by the p x p minors of f, and that the 
same is true even after cutting with an arbitrary linear space of co dim 
< p - 1 (see Eisenbud [1988]). Parts c and d are two special cases, 
handled by a different technique. 
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c. Let 
'P = (xo Xl ... Xr-l). 

Xl X2 ... Xr 

Show that the ideal 1 generated by the 2 x 2 minors of 'P is the 
homogeneous ideal of the rational normal curve parametrized by 
(s,t) f--t (sr,sr-It, ... ,tr), and is thus prime, as follows: 

1) Prove that on the open set Xo = 1 the 2 x 2 minors include 
the equations Xi = xi that generate the ideal of the curve 
parametrized by t f--t (1, t, e, ... , r). Treat the open set Xr = 1 
similarly. Show that Vp-l does not meet the closed set where 
Xo = Xr = O. Conclude that the ideal generated by the 2 x 2 
minors differs from the ideal of the rational normal curve at 
most in a component primary to (xo, ... ,xr). 

2) Use the Eagon-Northcott complex to show that the projective 
dimension of SI1 is r -1, the co dimension of 1. Conclude from 
the Auslander-Buchsbaum formula that SI1 is Cohen-Macaulay. 
Now use Macaulay's unmixedness theorem to conclude that 1 is 
the ideal of Vp-l. 

d. Let 
'P = (xo Xl ... Xa-l Yo YI ... Yb-l). 

Xl X2 Xa YI Y2 ... Yb 
Show that the ideal 1 generated by the 2 x 2 minors of 'P is the 
homogeneous ideal of the variety, called a rational normal scroll, that 
is the closure of the set of points of the form (usa, usa-It, ... ,uta, vsb, 
vsb-It, ... , vtb), and is thus prime, by following the same ideas as in 
part c. 

e. (For those who know more algebraic geometry) If f is a 1-generic 
matrix, representing a map 'P : SP ( -1) --+ sq, consider the variety 

"C;-l = {(q, p) E pr x PPI if p = (PI, ... , pp), 
then the matrix 'PP has entries that vanish at q}. 

Show that "C;-l projects to Vp-l C pr and is a resolution of singular
ities of Vp-l. (This resolution is suggested in Room [1938] and may 
be older; the idea was revived and recast by George Kempf in his 
thesis.) 

Exercise A2.20: Prove a graded version of Theorem A2.14. Assume that 
R is a polynomial ring and that the matrix 'P is a matrix of linear forms. 
Assuming that the various depth conditions of Theorem A2.14 are satisfied, 
prove that 1j ~ Sj(M( -g + 1)) = (SjM)( -j(g - 1)) and J ~ N( -g + 1) 
as graded modules. 
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Exercise A2.21 (Divisors on rational normal curves): Let S = 
k [xo, ... , xr] and let cp : sr ( -1) ---+ S2 be the matrix of linear forms 

_ (xo Xl ... xr-l) cp- . 
Xl X2 ... Xr 

Let P be the ideal 12 (cp) generated by the 2 x 2 minors of cpo We have 
seen in Exercise A2.19 that P is a prime ideal. Set R = S / P, and let 
1, J c R be the ideals generated by a column and a row of cp, respectively, 
say 1 = (xo, xI)R and J = (xo, ... ,xr-dR. 

a. Show that 1 ~ (Xt, xt+l)R for any 0 ~ t ~ r - 1, and that J ~ 
(Xl, ... , X r ) R. (The same would be true for any generalized row and 
column in the sense of Exercise A2.18.) 

b. Show that the hypotheses of Theorem A2.14 are satisfied for cp, so 
that Exercise A2.20 applies. 

c. Show that WR ~ Sr-2(M)( -1) ~ 1r- 2(r - 3). 

d. (For those who know more algebraic geometry) P is the ideal of the 
rational normal curve C of degree r in pr. Show that 1 is the ideal 
of a subscheme of length r - 1 on C, while J is the ideal of orie point 
on C. If D is a divisor of degree n = dr - j on C, show that the 
ideal of D (in the homogeneous coordinate ring of C) is isomorphic 
to Sj(M)( -d). 

e. Show that the minimality criterion of Exercise A3.30 is satisfied, and 
with Theorem A2.14 gives a minimal free resolution for the ideal of 
any set of points on a rational normal curve. 

f. Use part d to show that J* = 1(-1) and 1* = J(-l). 

Exercise A2.22 (Divisors on a scroll): (For those who know something 
about linear series on curves and of rational ruled surfaces, say at the level 
of Hartshorne [1977] Chapters 4 and 5). In this exercise we consider two 
more applications of Theorem A2.14 in which f = 2 (this is almost the only 
case for which the minors of cp can cut out a nonsingular variety). Using 
Exercise A3.30, this gives minimal free resolutions of the ideals of elliptic 
normal curves and of trigonal canonical curves. 

Divide the coordinates on pr into two groups xo, ... ,Xa and Yo, ... ,Yb. 
We have seen in Exercise A2.19 that the ideal P of 2 x 2 minors of the 
matrix 

cp = (xo Xl ... Xa-l Yo YI ... Yb-l) 
Xl X2 ... Xa YI Y2 ... Yb 

is prime. Let S = S(a, b) cpr be the corresponding variety, the rational 
normal scroll of type a, b. 
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a. Show that Exercise A2.20 may be applied to the matrix 'P. 

b. (Elliptic normal curves) Let C be an elliptic curve over an alge
braically closed field, and D a divisor on C of degree r + 1. By the 
Riemann-Roch theorem we have hO(()c(D» = r + 1, and there is a 
corresponding map a : C ----t pr. If r ~ 3, this map is an embedding 
(see Hartshorne, [1977] Chapter IV). The image of C in pr is called 
an elliptic normal curve. 

Now let r ~ 3, and let E c C be any divisor of degree 2. Again 
by Riemann-Roch, hO(()(£» = 2 and h°(l:J('D - c»~ = r - 1. Using 
Exercise A2.18 we see that the elliptic normal curve a(C) lies in the 
rank-one locus of a certain 2 x r - 1 matrix of linear forms 7/J. 

We next put 7/J into normal form. Show that without loss of gener
ality we may take the divisor E to have the form 2p, and the divisor 
D to have the form (r - 2)p + q, for some points p, q E C. We 
may represent the space HO(()c(E» as the space of rational func
tions on C with poles of order at most 2 at p. In this sense we may 
choose 1, x as a basis, where x is a rational function with a pole of 
order 2. Similarly, we may take a basis for HO(()c(D - E» to be 1, 
x, x2, ... ,xa- 1, y, yx, ... ,yxb-I, where y is a rational function with a 
double pole at p and an additional simple pole at q (or a triple pole 
at p if q = p), and a and b are the greatest integers such that the 
order of the pole of xa- 1 is 2(a - 1) :::; r - 1, and similarly the sum 
of the orders of the poles of yxb- 1 is 2b + 1 :::; r - 1. Show that with 
a suitable choice of coordinates on pr, the matrix 7/J is equal to the 
matrix 'P above, so that the elliptic normal curve a( C) is a divisor 
on the rational normal scroll S of type a, b. 

The divisor class group of the scroll is Z EB Z, generated by the 
class of a hyperplane H and the class of a ruling F. Show that the 
elliptic normal curve a(C) has class 2H - (r - 3)F, so that the ideal 
of a(C) in the scroll is ()s((r - 3)F - 2H). Show that the elements of 
any column of the matrix 'P vanish on a ruling F of the scroll (that 
is, a plane of dimension r - 2 contained in the scroll). 

With notation of Theorem A2.14, show that the ideal of a(C) in 
the scroll is isomorphic to Sr-3(M)( -2). Show that the minimality 
criterion of Exercise A3.30 is satisfied, so that the mapping cone 
described there is a minimal free resolution of the ideal of the elliptic 
normal curve in pr. 

(The most familiar case: If r = 3, then a( C) is a complete intersec
tion of two quadrics in p3. See the analysis following Corollary 18.14.) 

c. (Trigonal canonical curves) Now let C be a curve of genus r ~ 4 
that is trigonal in the sense that there is a base-point free divisor 
E of degree 3 on C such that hO(()c(E» = 2. Let K be a canonical 
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divisor on C. The complete canonical system H°(C:Jc(K)) defines an 
embedding 0: : C -t pr. Applying the ideas of part a to the divisors 
E and K - E, show that C lies on a rational normal scroll S of type 
a,b where a is the greatest integer such that K - (a+ l)E is effective. 
Show that the divisor class of o:(C) in S is 3H - (r - 3)E. Show as 
in part a that Theorem A2.14 (in the form of Exercise A2.20) and 
Exercise A3.30 lead to the description of the minimal free resolution 
of the ideal of 0: (C) in pr. 

(The most familiar case: If r = 3, then 0:( C) is a complete inter
section of a quadric and a cubic in p3. It is not hard to show that 
any nonsingular curve that is the complete intersection of a quadric 
and a cubic in p3 is a canonical curve (necessarily trigonal because 
the genus is 4). 



Appendix 3 
Homological Algebra 

A3.1 Introduction 

A complex of modules over a ring R is a sequence of R-modules and 
homomorphisms 

a- F 'PHI F 'Pi F J: ... ----> HI --> i ----> i-I ----> ••• 

such that 'Pi'PHI = 0 for each i. The homology of Fat Fi is defined to be 

Homological algebra is, roughly speaking, the study of complexes of mod
ules and their homology. 

Some basic terminology: The module Fi is called the term of degree i of 
F. For reasons we shall explain the maps <Pi are often called the "boundary 
operators," or "differentials," of ::t. The elements of the image of <PHI are 
accordingly called boundaries, and the elements of the kernel of <Pi are 
called cycles. We think of::t as having infinitely many terms, but we shall 
almost always be concerned only with complexes where Fi = 0 either for 
all i < 0 or for all i > O. It is often convenient not to indicate explicitly the 
terms that are zero. The complex ::t is said to be exact at Fi if HiF = 0; 
we say that ::t is exact if it is exact at every Fi . 

Complexes appear in the work of Cayley fairly explicitly as early as 
[1858]. They were used by Hilbert in his famous work [1890] to compare 
a factor ring of a polynomial ring to the polynomial ring itself (just as we 
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shall use free resolutions to compare an arbitrary module to free modules); 
the context of his application was explained in Chapter 1. Our current 
terminology was introduced much later. The name "complex," for example, 
arose from the simplicial complexes of topology: To an oriented simplicial 
complex Poincare [1899] associated a "chain complex," with geometrically 
defined "boundary operator." The case of a triangle is illustrated in the 
figure. The formulation in terms of groups and maps came later, apparently 
suggested by Emmy Noether to several people in the mid-1920s. 

a""-I----------~y 

ZA --. 
aA 
ax 

z 

Zx EB Zy EB Zz --. Za EB Z(3 EB Z"( 

x+y+z, 
(3 - a, ay = "( - (3, az = a - "( 

Another part of the prehistory of homological algebra is Poincare's study 
of the complex of differential forms on a manifold that we now call the de 
Rham complex: Poincare's lemma asserts that the de Rham complex of R n 

is exact. (de Rham's name attaches to the complex because he was the first 
to prove---in the 1940s-that the cohomology of the de Rham complex is a 
topological invariant.) The maps in the de Rham complex are derived from 
differentiation, and it was natural to call them differentials: 

a(f(x)) = J'(x) dx. 

If M is an R-module, we may consider M as a complex 

with only one nonzero term. Thus homological algebra includes the study 
of modules. In commutative algebra, homological algebra is usually pur
sued in order to study modules more closely. Complexes give us a way of 
comparing an arbitrary module with nicer ones-with free, or projective, 
or injective modules. Perhaps the most complete expression of this idea is 
in the construction of the derived category, which we describe briefly in the 
last section of this appendix. 

Complexes arise naturally from the study of systems of linear equations: 
A system of no linear equations in nl unknowns over a ring R corresponds 
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to an na x nl matrix 'P over R (the matrix of coefficients of the equations), 
or alternately as a map of free R-modules, 'P : FI = Rnl ~ Rno = Fa. A 
family of solutions to the (homogeneous) equations 

'PX = 0 

may be described by a map F2 ~ FI making the sequence 

F2 ~ FI ~ Fa 

a complex. Solving the equations means giving a "complete" set of solu
tions; that is, a map as above making the complex exact at Fl. 

If R is a field, then of course there is a finite linearly independent set of 
solutions in terms of which all others can be expressed. For more general 
rings, this is no longer the case: It may be impossible to choose a generating 
set for the kernel consisting of linearly independent elements. 

An example will make the situation clear. Let R = k[a, b, c] be a poly
nomial ring in three variables, and consider the linear equation in three 
unknowns 

aXI + bX2 + cX3 = 0 

corresponding to the map 'P : R3 ~ R with matrix (a, b, c). By analogy 
with our experience of linear equations over a field, we should say that 
the rank of this system is 1, so we should expect 3 - 1 = 2 independent 
solutions. However, the three columns of the matrix 

( 
0 C 

-c 0 
b -a 

are all solutions (elements of ker 'P). It is easy to see that they actually 
generate ker 'P, but that no two elements generate it. Furthermore, these 
three generators are linearly dependent in the sense that if we multiply the 
first column by a, the second by b, and the third by c, and add, we get O. It 
is not hard to show (see Chapter 20) that every complete set of solutions 
must be linearly dependent. Thus we have a situation that could not have 
arisen over a field: a system of linear equations such that any complete set 
of solutions is linearly dependent. 

If we wish to describe the solutions to our original system of equations as 
linear combinations of the solutions in a complete set of solutions, then we 
must describe the linear dependencies (otherwise, we won't be able to tell 
which linear combinations give the trivial solution). If we have n2 solutions, 
and we define a new map 'P2 of free R-modules F2 = Rn2 to FI by sending 
the basis elements of F2 to our solutions, then the dependencies are the 
elements of the kernel of 'P2. We may regard 'P2 as being a new system of 
linear equations, and the process of solving begins again. With hindsight 
we rename 'P as 'PI, and continuing the process above we finally arrive at 
a complex: 
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in fact, this is an especially interesting sort of complex, called a free reso
lution. In the example above, the resolution actually ends at the next step 
beyond the one we have given, in the sense that the kernel of 'P2 is itself 
free (that is, 'P2 has a complete system of solutions with no dependencies). 
It may be exhibited as in Figure A3.1. 

-----.~ R 
(abc) 

FIGURE A3.1. 

This phenomenon is typical of rings called regular rings; see Chapter 19. 
The complex given here is called a Koszul complex (the name, though 
universal, is misleading: Such complexes appeared in the works of Cayley 
and Hilbert before Koszul was born). 

We shall now take up these notions systematically, if somewhat sketchily. 
The proofs that we have omitted are all easy, and we leave them as exercises 
for the reader.! The goal of the first half of this appendix is the theory of 
derived functors; Ext, Tor, and local cohomology are the most important 
ones here. One of our less traditional topics in this part is the theory of 
injective modules over a Noetherian ring. The second half of the appendix 
is an introduction to spectral sequences. 

As everywhere in this book, we shall work with modules over a commu
tative ring, but the reader should know that nearly everything here can 
be generalized with just a little effort to modules over an arbitrary ring, 
or even to objects in a nice Abelian category. Jans [1964], Rotman [1979], 
and Maclane [1963] are readable sources for more information, roughly in 
order of increasing difficulty and comprehensiveness. The book of Gelfand 
and Manin [1989] should soon be available in English. 

Part I: Resolutions and Derived Functors 

Let R be a commutative ring; the modules in this chapter will all be R
modules. 

IThis is not so bad. A famous exercise from Serge Lang's influential textbook 
Algebra [Addison-Wesley, Reading, MA, 1965, p. 105] reads: "Take any book on 
homological algebra, and prove all the theorems without looking at the proofs given 
in that book." 
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A3.2 Free and Projective Modules 

The easiest modules to understand are the free modules: direct sums of 
copies of the ring. From our point of view free modules are useful because 
it is easy to define a map from a free module: Namely, suppose F is free 
on a set of generators Pi (that is, F ~ ffiiR, and we denote the generator 
of the ith summand by Pi)' To define a map from F to any module M it 
is enough to tell where to send the generators Pi, and any choice of images 
for these elements will do. That is, 

HOmR-modules(F, M) = Homsets( {Pi}, M). 

(In the language of category theory (Appendix 5), the "free module functor 
is left-adjoint to the forgetful functor" ; but we shall not use this formulation 
here.) This property makes them projective in the following sense: 

Definition. A module P is projective if for every epimorphism of modules 
a : M ---» N and every map fJ : P --- N, there exists a map 'Y : P --- M 
such that fJ = a'Y, as in the following figure. 

p 

~)/l~ 
.: 

M------* N a 

Free modules are projective because if P is free on a set of generators Pi, 
then we may choose elements qi of M that map to the elements fJ(Pi) EN, 
and take 'Y to be the map sending Pi to qi· 

The definition of projectivity has several useful reformulations: 

Proposition A3.1. Let P be an R-module. The following are equivalent: 

a. P is projective. 

b. For every epimorphism of modules a : M ---» N, the induced map 
Hom(P, M) --- Hom(P, N) is an epimorphism. 

c. For some epimorphism F ---» P, where F is free, the induced map 
Hom(P, F) --- Hom(P, P) is an epimorphism. 

d. P is a direct summand of a free module. 

e. Every epimorphism a : M ---» P "splits": That is, there is a map 
fJ : P --- M such that afJ = Ip. 
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Proof. 

a ¢} b: This is a restatement of the definition. 

b =} c: Obvious. 

c =} d: Any map 'P E Hom(P, F) in the preimage of the identity map 
1 E Hom(P, P) is a splitting of the epimorphism F ""'* P, so P 
is a summand of F. 

d =} b: This follows because for any modules P and Q we have 

Hom(P EB Q, -) = Hom(P, -) EB Hom(Q, -). 

We have now shown that a, b, c, and d are equivalent. 

a =} e: Apply the definition in the case where (3 is the identity map of 
P. 

e =} d: Obvious. o 

As a first example, the reader may check that a finitely generated Z
module is projective iff it is torsion-free iff it is free. 

Not all projective modules are free; perhaps the simplest example is the 
ideal (2,1 + R) c Z[R]; see Chapter 11. In general, whether or not 
a projective module is free is quite a hard question. (We have already 
discussed the connection of this question to number theory.) 

Geometrically, projective modules correspond to algebraic vector bun
dles: The set of sections of a vector bundle on a variety X is a module 
over the ring of regular functions on X. This connection is sketched in 
Corollary A3.3. The relation of algebraic vector bundles to the structure 
of X is more subtle than in the topological case. For example, topological 
vector bundles on contractible spaces are easily shown to be trivial, but it 
was only recently shown (by Quillen and Suslin, in answer to a celebrated 
problem of Serre; see Lam [1978]) that algebraic vector bundles on Ak are 
trivial-that is, that projective modules over k [Xl, ... , X r ], where k is a 
field, are free. 

Projective modules behave well under localization. Moreover, there is a 
useful "local criterion" for projectivity, established in Exercises 4.11 and 
4.12 and their hir1ts, and summarized as follows: 

Theorem A3.2 (Characterization of projectives). Let M be a finitely pre
sented module over a Noetherian ring R. The following are equivalent: 

a. M is a projective module. 

b. Mp is a free module for every maximal ideal (and thus for every prime 
ideal) P of R. 
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c. There is a finite set of elements Xl, ... , Xr E R that generate the unit 
ideal of R, such that M[xi l ] is free over R[xil] for each i. 

In particular, every projective module over a local ring is free. Every graded 
projective module over a positively graded ring R with Ra a field is a graded 
~~~. 0 

Corollary A3.3. Finitely generated projective modules over the affine ring 
A of a variety X correspond to vector bundles on X: Given a vector bundle 
E, its sections r(E) form a finitely generated projective A-module, and any 
finitely generated projective module arises from a unique vector bundle in 
this way. 

Proof (sketch, for those who know about sheaves). If E is a vector bundle, 
then there is a covering of X by affine open sets Xi = {p E X Ix; (p) -1= O} 
such that Elxi is trivial. Thus r(ElxJ = r(E)[xil] is free, and r(E) is 
projective by Theorem A3.2. Conversely, suppose M is a finitely generated 
projective module. By Theorem A3.2 we may find elements Xl, ... , Xr that 
generate the unit ideal and such that M[xi l] is free (of some rank ri) for 
each i. Let Ei be the trivial bundle on Xi of rank rio Choose an isomorphism 
O:i : r(Ei ) ----t M[xil]. On Xi n Xj we may form the composite 

and this determines an isomorphism of bundles aij : EilxinXj ----t EjlxinXj' 
Using the maps aij as gluing maps, we reconstruct a vector bundle E on X. 
An easy computation using Exercise 2.19 shows that M = r(E). Further, 
if M is the module of sections of a vector bundle E' to begin with, then 
the identification of modules of sections 

comes from an isomorphism E 1xi = Ei ----t E 1xi ' Since these isomorphisms 
are compatible with the gluings, we get E' ~ E. 0 

A3.3 Free and Projective Resolutions 

As we have already noted, every module M is an epimorphic image of a 
free (and thus proj~ctive) module-just choose a set of generators {g;} for 
M, and map a free module on a corresponding set of generators {ei} to 
M by sending ei to gi. This makes it easy to compare any module to free 
modules: if 0: : Fa ---» M is an epimorphism, then we may say that Fa differs 
from M by the module ker 0:. We may thus express M in terms of free 
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modules "better" by mapping a free module Fl onto ker Ct. Taking !.pl to 
be the composite 

Fl -7> ker Ct >---+ Fo, 

we may say instead that M = coker!.pl : Fl ---+ Fo. Unfortunately, there is 
still a (possibly) nonfree module lurking in this description: the kernel of 
!.pl. We can repair this defect to some extent by taking a free module F2 
that maps onto ker !.pl. Writing !.p2 : F2 ---+ Fl for the composite 

F2 -7> ker!.pl '---+ Fl , 

we may think of M as given by the sequence of free modules 

F2 ---+ H ---+ Fo. 

There is still the problem that ker!.p2 might not be free. Repeating the 
process above indefinitely if necessary, we may at last obtain a sequence of 
free modules 

'PHI 'Pi 'PI F: ... ---+ Fi+l ----+ Fi ---+ Fi-l ---+ ••• ---+ Fo 

with the properties that !.pi+l maps Fi+1 onto the kernel of !.pi for each i ?: 1, 
and that M is the cokernel of !.pl. A sequence of free modules Fi and maps 
!.pi with these properties is called a free resolution of M. If the Fi are 
merely projective, it is called a projective resolution. Note that F is a 
complex in the sense above (regarding all the Fi with i < 0 as 0). 

Example. Perhaps the simplest nontrivial, finite free resolutions are the 
Koszul complexes; see Chapter 17. The simplest nontrivial, infinite resolu
tion might be the following: 

Let S = k[x] be a polynomial ring in one variable (k could be any ring, 
but might as well be taken to be a field). Let R = S/(xn ), and let M 
be R/ Rxm , with 0 < m < n, regarded as an R-module. Here is a free 
resolution of M as an R-module: 

xn - m xm xn- m xm 
. . . ----+ R ----+ R ----+ R ----+ R, 

where we have written xa for the map that is multiplication by xa. We leave 
the easy verification to the reader. 

A3.4 Injective Modules and Resolutions 

The notion of an injective module is dual to that of a projective module, 
but perhaps because injective modules are almost never finitely generated, 
they are not so familiar. 

Definition. An R-module Q is injective if for every monomorphism of R
modules Ct : N >---+ M and every homomorphism of R-modules f3 : N ---+ Q, 
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there exists a homomorphism of R-modules 'Y : M ----; Q such that {3 = 'Ya , 
as in the figure. 

Although the definition of injective modules is precisely dual to that of 
projective modules, the theory is not dual at all (the category of mod
ules is quite different from its dual category, so this should not be a 
surprise). The subject is quite beautiful, and we shall explain its begin
ning. 

We begin with a result of Reinhold Baer (who defined injective modules 
in [1940]), showing that in the definition of injectives it is enough to check 
the case where a is the inclusion of an ideal in the ring. 

Lemma A3.4 (Baer). Let Q be an R-module. If for every ideal I c R, 
every homomorphism {3 : I ----; Q extends to R as in the diagram, then Q is 
injective. 

Proof. Suppose M and N are arbitrary R-modules. Let {3 : N ----; Q be 
a homomorphism, and let a : N >-> M be a monomorphism. If N' is a 
submodule of M containing N, then we shall say that {3' : N' ----; Q is an 
extension of {3 if {3' restricts to {3 on N. We wish to show that there is an 
extension of {3 to M. By Zorn's lemma, there is a submodule N' and an 
extension {3' of {3 to N' that is maximal in the sense that {3' can be extended 
no further. If N' = M, we are done. 

Supposing that N' -=I M, we shall derive a contradiction. Let m E M be 
outside of N', and consider the submodule N" = N' + Rm. Let I = {r E 

Rlrm EN'}. By hypothesis the map I ----; Q sending rEI to (3'(rm) E Q 
extends to a map 8 : R ----; Q. The map 8 induces a map 8' : Rm ----; Q 
because the kernel of the map R ----; Rm is contained in ker 8, and 8' agrees 
with {3' on Rm n N' by definition. We may thus define an extension {3" 
of {3' to N" by letting {3" be {3' on N' and 8' on Rm. This contradicts 
the maximality of N' and {3'. All the necessary maps are shown in the 
figure. D 
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I c 

~ 

Injective modules over Z-that is, injective Abelian groups-are easy to 
describe: 

Proposition A3.5. An Abelian group Q is injective iff it is divisible in the 
sense that for every q E Q and every 0 =I n E Z there exists q' E Q such 
that nq' = q. 

Proof. Let Q be injective, and let q E Q,o =I nnE Z. Let (3 : Z -+ Q be the 
map sending 1 to q and let 0: : Z -+ Z be multiplication by n. Since Q is 
injective there is a map 'Y : Z -+ Q with (3 = 'YO:. It follows that n'Y(l) = q, 
so Q is divisible. 

Conversely, suppose that Q is divisible. We apply Baer's lemma, A3.4: 
Let (n) C Z be the inclusion of an ideal. Suppose a map (3 : (n) -+ Q takes 
n to q. Since Q is divisible we may choose q' E Q with nq' = q. The map 
'Y : Z -+ Q sending 1 to q' obviously extends (3. 

From Proposition A3.5 we easily derive a result that is dual to the state
ment that subgroups of free groups are free. 

Corollary A3.6. IfQ is an injective Abelian group, and K is any subgroup, 
then Q / K is an injective Abelian group. 

Proof. If Q is divisible, then Q / K is divisible too. 

We can now show that every Abelian group may be embedded in an 
injective Abelian group: 

Corollary A3.7 (Baer [1940]). There are "enough" injective Abelian 
groups, in the sense that for every module M there is a monomorphism 
i : M -+ Q with Q injective. 

Proof. Write M = F / K, with F a free module. F is contained in the Q
vector space F ®z Q, which is obviously divisible. Thus M is contained in 
the divisible group (F ®z Q)/K. 0 

Remarkably enough, the corresponding statement for modules over any 
ring, which is the main goal of our development, is an immediate conse
quence. (In fact the same argument works still more generally, for example 
in categories of sheaves of modules over a "ringed space" -a fact that is 
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exploited in the cohomology theory of sheaves. See, for example, Hartshorne 
[1977, p. 207].) The key observation is this: 

Lemma A3.8. If R is an S -algebra, and Q' is an injective S -module, then 
Q := Homs(R, Q') is an injective R-module (the R-module structure comes 
via the action of Ron the first factor ofHoms(R,Q')). 

For a partial converse, see Exercise A3.7a. 

Proof. Let N c M be a submodule, and let (3 : N -+ Q be a homomorphism; 
we must show that (3 extends to M. There is a natural map of S-modules 
Q -+ Q', sending a homomorphism t.p to t.p(l). Let (3' be the composite of 
(3 and this map Q -+ Q', and let '"'y' be an extension of (3' to M, regarded 
as an S-module. We may define the desired map 'Y : M -+ Q of R-modules 
by sending m to the map t.p defined by t.p(r) = 'Y'(rm). 

Corollary A3.9. For any ring R, the category of R-modules has enough 
injective objects, in the sense that for every module M there is a 
monomorphism i : M -+ Q with Q injective. 

Proof (Eckmann and Schopf [1953J). There is a monomorphism 0: : M -+ 

Homz(R, M) sending m to the map t.p given by t.p(r) = rm. Temporarily 
viewing M as an Abelian group, we know that there is a monomorphism of 
Abelian groups, (3 : M -+ Q' of M into an injective Abelian group Q'; apply
ing the functor Homz (R, -) we get a monomorphism (3' : Homz (R, M) -+ 

Homz(R, Q'). By Lemma A3.8 the module Homz(R, Q') is an injective 
R-module. Thus (3'0: is a monomorphism of M to an injective module, as 
desired. 0 

If M is an R-module, then by Corollary A3.9 we may embed M in an 
injective module Qo. We may then embed the cokernel, Qo/M, in an injec
tive module Ql. Continuing in this way, we get an injective resolution 

o -+ M -+ Qo -+ Ql -+ Q2 -+ ... 

of M; that is, an exact sequence of the given form in which all the Qi 
are injectives. We shall see how such resolutions are used in the upcoming 
section on derived functors. 

Example. The most familiar injective modules are the divisible Abelian 
groups. Perhaps the simplest interesting injective resolution is that of Z as 
a Z-module: 

o -+ Z -+ Q -+ Q/Z -+ o. 
In general, injective modules have an interesting and simple structure; see 
the exercises for more information. 

In Chapter 20 it is shown that if R is a local ring then every finitely 
generated R-module has a unique minimal projective (actually free) res
olution. The situation for injective modules is much better: Any module 
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over any ring has a unique minimal injective resolution! The key idea is 
that of injective envelope (or injective hull). First a preliminary defi
nition: 

Let R be a ring and let M c E be R-modules. We say that M is an 
essential submodule of E, or that.E is an essential extension of M if 
every nonzero submodule of E intersects M nontrivially. 

Proposition-Definition A3.10. Let R be a ring. 

a. Given any R-modules M c F, there is a maximal submodule E of F 
containing M such that M c E is essential. 

b. If F is injective, then so is E. 

c. There is, up to isomorphism, a unique essential extension E of M that 
is an injective R-module; this E is called the injective envelope of 
M, written E(M). 

Proof. 

a. If M C El C E2 C '" c F with M c Ei essential, then any 
submodule N of UiEi meets some Ei nontrivially, and thus meets 
M nontrivially. Thus M is essential in UEi. Since M is essential in 
M, it follows by Zorn's lemma that there exist maximal essential 
extensions of M contained in F. 

b. Suppose now that F is injective, and M C E c F with M c E a 
maximal essential extension of M by a submodule of F. If E' were an 
essential extension of E in F, then any nontrivial submodule of E' 
would meet E, and thus M, nontrivially, so E' would be an essential 
extension of M and so E' = E by hypothesis. It thus suffices to treat 
the case where M = E. Let N be a submodule of F maximal among 
those not meeting E; such submodules exist by Zorn's lemma. Since 
E and N do not meet, we see that E EEl N ~ E + N c F. We shall 
show that F = E + N, from which it follows that E EEl N ~ F, so E 
is injective. 

Consider the composite map Q : E C F ........ FIN. Because N does 
not meet E, Q is an inclusion. It is essential, for if a submodule N' of 
FIN failed to meet E, then its preimage in F would be a submodule 
larger than N and not meeting E, contradicting our hypothesis. Since 
F is injective, we may find a map (3 : FIN --) F extending Q. Since 
(ker (3) n E = ker Q = 0, and E is essential in FIN, we see that 
ker(3 = O. In particular, (3(FIN) is an essential extension of E. It 
follows from the maximality of E that (3(FIN) = E, so FIN = E, 
and E + N = F as desired. 
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c. By Corollary A3.9 there exist monomorphisms from M to an injec
tive R-module F. From parts a and b we see that a maximal sub
module E c F, such that M c E is essential, is injective too. 

For uniqueness, suppose that al : M -t El and a2 : M -t E2 
are both essential inclusions, with El and E2 injective, then by the 
injectivity of E2 there exists a map f3 : El -t E2 extending a2 in the 
sense that the following' diagram 

commutes. Since ker f3IM = ker a2 = 0, and al (M) is essential in E1, 

we see that ker f3 = 0. Thus f3(Ed is an injective submodule of E2. 
It follows that E2 = f3(E1) EB E~ for some submodule E~ of E2. Since 
a2(M) is essential in E2, and a2(M) C f3(Ed, we must have E~ = 0, 
and f3 is the required isomorphism. 0 

We now say that an injective resolution 

is a minimal injective resolution if, setting Mi = coker(Qi_l -t Qi), we 
have Qi+l = E(Mi), and the map Qi -t Qi+l to be the composite of the 
natural maps 

Qi -t Mi -t E(Mi) = Qi+1' 

As an immediate consequence of Proposition A3.1O we have: 

Corollary A3.11. If R is any ring and M is any R-module, then M has 
a unique minimal injective resolution. 0 

A3.4.1 Exercises 
Injective Envelopes 

Exercise A3.1: The following principle was used several times in the text: 
Show that if N c M is an essential submodule then any map M -t E of 
modules that restricts to a monomorphism on N is a monomorphism. 

Injective Modules over Noetherian Rings 

Exercise A3.2 a. (Bass' Characterization of Noetherian rings):* 
Show that arbitrary direct products of injective modules are injective. 
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Show, however, that a ring R is Noetherian iff every direct sum of injective 
R-modules is injective. (This observation from Bass' graduate student days 
appears, with reference to Bass, in Chase [1960].) 

b. Again, assume that R is a Noetherian ring. Use part a to show that 
any injective module is a direct sum of indecomposable injective modules. 

Exercise A3.3 (Injectives and primes): We shall say that an injective 
module E is indecomposable if it cannot be written as a direct sum E = 
E' (f)E" with both E and E" nonzero. Suppose that R is a Noetherian ring. 
Use primary decomposition to show that if E is an indecomposable injective 
R-module, then E ~ E(R/ P) for some prime ideal P of R. Show that if 
P and Q are primes, then E(R/ P) ~ E(R/Q) iff P = Q. Thus there is 
a one-to-one correspondence between indecomposable injectives and prime 
ideals. 

Exercise A3.4: We can compute injective envelopes in some simple cases: 

a.* Let R be a Noetherian ring and let P be any ideal of R. Set E = 
E(R/ P). For any ideal I c R and map r.p : I -+ R/ P, use the 
Artin-Rees lemma (Lemma 5.1) to show that there is a number d 
such that r.p factors through 1/ (pd n I) ~ (pd + I) / pd. Deduce that 
E' = Ud(O :E p d) C E, the set of elements annihilated by some power 
of P, is injective, and thus that E = E'. 

b. * With notation as in part a, suppose that P is a maximal ideal. Show 
that (0 :E p d ) is the injective hull of R/ P over the Artinian ring 
R/ pd. By Corollary 21.3 it is a module of the same finite length as 
R/pd. 

c. Let R = k[Xl,"" xr], and let P = (Xl, ... , xr). Let E = (f)d Homk(Rd, 
k) be the graded dual of R. We have E C El := Homk(R, k) = 
TId Homk(Rd, k), which is an injective R-module by Lemma A3.8. 
Show that E is an essential extension of k=HomA:(k, k) cHomA:(R, k). 
Show that E = Ud(O :Ej p d). Conclude from part a that E is the 
injective envelope of k. 

d. Show that the indecomposable injective Abelian groups are Q and, 
for each prime p, the group 

Z/pOO := Ii!!! (Z/p c Z/p2 c Z/p3 C ... ) = Z[P-l]/Z. 

Show that Q/Z ~ (f)pZ/poo. 

What is the injective resolution of Zip as a Z-module? 

Exercise A3.5 (Graded injective modules and injective graded 
modules): Let R = (f)dRd be a Z-graded ring. If M = (f)Md is a graded 
R-module, and E is an Ro-module, we write 
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Homgr(M, E) := EBd HomRo(Md, E). 
This is a graded R-module, and is generally much smaller than 
HomRo(M, E) = IId HomRo(Md, E). 

a. Show that if E is an injective Ro-module then Q = Homgr(R, E) is 
an injective in the category of graded R-modules in the sense that 
Q satisfies the definition given in the text whenever Nand Mare 
graded modules and a is a homomorphism of graded modules. (One 
way to do this is first to prove an analogue of Lemma A3.4). Conclude 
that every graded module has a graded-injective resolution. 

b. Let R = k[x], where k is a field. Show that k[x, x-1] is injective in 
the category of graded R-modules. Show that in the category of all 
R-modules, k(x) is the injective hull of k[x]. Conclude that k[x,x-1] 

is not injective in the category of all R-modules, and that in fact there 
is no degree-preserving inclusion of R into a graded module that is 
injective in the category of all modules. 

c. Suppose R = EBd?oRd is a positively graded Noetherian ring, and 
that Ro is a field. Extend the method of Exercise 3.4c to show that 
Homgr(R, k) is the injective hull of k = Homk((R/ EBd>O Rd), k) in the 
category of all R-modules, not just the category of graded R-modules. 

Exercise A3.6 (Injective envelopes and primary decomposi
tion): Still assuming that R is Noetherian, let M be any finitely generated 
R-module. 

a. Let P be a prime. Show that if a : M ----t E(R/ P) is any map, then 
ker a is a P-primary submodule of M. 

b.* Show that the injective envelope E(M) is a finite direct sum of inde
composable injectives. Let M ----t E(M) = EBE(R/ Pi) be the injec
tive envelope of M. Show that if P is a prime ideal and if M(P) 
is the kernel of the composite map M ----t E(M) = EBE(R/ Pi) ----t 

EBpi=pE(R/ Pi), then M(P) is P-primary. Show that 0 = nM(p) is a 
primary decomposition of 0, and that the set of P that occur among 
the P; above is precisely the set Ass(M). 

Exercise A3.7 (More on the Noetherian property): Let ReS be 
rings, and suppose that S is finitely generated as an R-module. 

a.* Let F be an R-module. Show that F is injective as an R-module iff 
HomR(S, F) is injective as an S-module. 

b. (Eakin's Theorem) Use part a and the criterion of Exercise A3.2 to 
show that R is Noetherian iff S is Noetherian. (This result is due 
to Eakin [1968]; the argument is from Eisenbud [1970]. A direct and 
more general proof was given by Formanek [1973] and is reproduced 
in Matsumura [1986, Theorem 3.6].) 
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A3.5 Basic Constructions with Complexes 

A3.5.1 Notation and Definitions 

To simplify the notation in what follows, we think of R as a trivially graded 
ring-that is, the degree = 0 part is R and all the other homogeneous 
components are O. If 

D 'Pi+1 D 'Pi D F: ... -t ri+1 --+ ri -t ri-I -t ... 

is a complex, we think of F as a graded R-module (the degree-i component 
of F is Fi) together with an endomorphism cP of degree -1. As usual we 
shall make the convention that maps of graded modules have degree 0 unless 
otherwise specified: Writing F[i] for the graded module obtained from F 
by the rule F[i]j = Fi+j, we could also have said that cp is a map from F 
to F[-l]. Often the grading does not matter, and we define a differential 
module (F,cp) to be an R-module F with an endomorphism cp such that 
cp2 = O. As for complexes, we define a cycle of F to be an element of ker cp 
and a boundary of F to be an element of imcp. 

Definitions. Let F be a complex as above. The ith homology module of F 
is defined to be 

Hi (F) = ker cpd im CPi+!· 

We sometimes write H(F) for the direct sum tfJiHi(F) of all the homology 
modules. If F is simply a differential module, with differential cp, then we 
set H (F) = ker cp / im cp; in case F is a complex, this is again tfJiHi (F). 

We say that the complex (or differential module) F is exact if H(F) = O. 
A complex 

'PH 1 'Pi 'PI F: ... -t Fi+! --+ Fi -t Fi-I -t ... -t Fo 

is called a (left) resolution (of Ho(F) = cokercpd if Hi(F) = 0 for all 
i > O. (It is someti~es convenient to regard F as continuing to the right 
forever with 0 maps and modules, thus: 

'P~ 'P" ~ F: ... -t Fi+1 ~ Fi ~ Fi-I -t ... --+ Fo -t 0 -t 0 -t .... ) 

If the Fi are projective (respectively, free), then such a resolution is called 
a projective (respectively, free) resolution. Dually, a complex 

is called a (right) resolution if its only nonzero homology is Ho(I) 
ker CPo. A right resolution is called an injective resolution if all the I j are 
injective modules. 
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A3.6 Maps and Homotopies of Complexes 

Projective (or free) resolutions of modules are in general far from unique 
(though over a local ring minimal resolutions of finitely generated modules 
are unique up to noncanonical isomorphisms-see Chapter 20). Thus, if we 
are to examine modules by studying their resolutions, it is necessary to ask 
what connects two different resolutions of the same module. This question 
turns out to have a simple answer. The necessary idea is useful in a more 
general form. 

Definition. If (F, ip) and (G, 'ljJ) are differential modules, then a map of 
differential modules is a map of modules a : F -+ G such that aip = 'ljJa. 
If F and G are complexes, then we insist that a preserve the grading as 
well. Explicitly, if 

D 'PHI D 'P; D F: ... -+ ri+1 -----+ ri -----+ ri-1 -+ ... 

and 
G G .pHI G .p; G : ... -+ i+ 1 -----+ i -----+ i-I -+ ... 

are complexes of modules, then a map of complexes a : F -+ G is a collec
tion of maps 

ai : Fi -+ Gi 

of modules making the diagrams 

Fi 
'1'; 

Fi-1 -+ -----+ -+ 

u;l 1 U;_I 

-+ Gi -----+ Gi - 1 -+ 
.p; 

commutative. 
If a : (F, ip) -+ (G, 'ljJ) is a map of differential modules, then a carries 

ker ip to ker 'ljJ and im ip to im 'ljJ. Thus a gives rise to an induced map on 
homology, which we also call a: 

a: HF = ~erip -+ ~er'ljJ = HG. 
1mip 1m'ljJ 

If a : F -+ G is a map of complexes, then the grading is preserved, and we 
get 

.. H.F - ker ipi ker'ljJi - H.G a t · t -. -+. -to 
1m ipi+1 1m'ljJi+1 

When do two maps of a complex F to a complex G induce the same 
map on homology? This is a subtle question in general, but there is a very 
important sufficient condition that may be given in terms of equations. 
This sufficient condition is called homotopy equivalence. 
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Definition. If 0:,13 : (F, rp) -; (G, 'lj;) are two maps of differential modules, 
then 0: is homotopy equivalent to 13 (or simply homotopic to (3) if there 
is a map of modules h : F -; G such that 0: - 13 = 'lj;h + hrp. If F and G are 
complexes (so that F and G are graded modules and rp and 'lj; have degree 
-1), then we insist that h have degree 1: 

<Pi 
... ---+ Fi ---+ fj -1 ---+ ... 

/././ 
... ---+ Gi ---+ Gi-l ---+ ... 

'IIi 

Note that 0: is homotopy equivalent to 13 iff 0: - 13 is equivalent to O. 
The homotopy terminology comes from topology: If 0: and 13 are continu

ous maps from a space X to a space Y, then they induce maps of complexes 
from the (say, singular) chain complex of X to that of Y. A homotopy 
H : X x I -; Y from 0: to 13 determines a chain map h(x) := H(x x 1) 
that raises dimensions by 1. If we orient everything appropriately, we get 
o:(x) - f3(x) = 8(h(x)) - h8(x)) as in Figure A3.2: 

u 

f3x C H(XX§) 
v 

o:x 

~I 

FIGURE A3.2. 

hex) = H(x x I); 

8h(x) = o:x - u - f3x + v; 

h(8x) = H(8x x I) = u - v; 

xo: - f3x = 8h(x) + h(ax). 

One of the fundamental properties of homotopic maps in topology is that 
they induce the same map on homology. The topological proof works by 
considering the map h on the level of chain complexes. It generalizes imme
diately to the following algebraic form. 

Proposition A3.12. If 0:, 13 : (F, rp) -; (G, 'lj;) are two maps of differential 
modules, and 0: is homotopy equivalent to 13, then 0: and 13 induce the same 
map on homology. 

Proof. It suffices to show that 0: - 13 induces the map 0 on homology. Thus 
we may simplify the notation by replacing 0: by 0: - 13, and assume from 
the outset that 13 = O. Let h be the homotopy, so that 0: = 'lj;h + hrp. 
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<P2 <PI 
... ~ F2 ~ Fl ~ Fo ~ M 

I{;<~!o~ ~~ 
... ~ G2 ~ G1 ~ GO ~ N 

'V2 'VI 

Let x E ker <P be a cycle of F; we must show that 0:( x) is a boundary of 
G. From the formula for the homotopy h we get 

o:(x) = 1jJ(h(x)) + h(<p(x)) = 1jJ(h(x)) + h(O) = 1jJ(h(x)), 

as desired. D 

An important idea in homological algebra is that one can usefully replace 
a module with a projective (or dually an injective) resolution. Suppose that 
F and G are projective resolutions of modules M and N. It turns out that 
maps from M to N are the same thing as homotopy classes of maps from 
F to G. An equally useful dual statement, with injective resolutions, can 
be proved by "dualizing" the following argument; we leave the formulation 
and proof to the reader. 

Proposition A3.13. Let 

'Pi 'PI F: ... ---+ Fi ----+ Fi- l ... ---+ Fl ----+ Fo 

and 
1/1i 1/11 G: ... ---+ Gi ----+ Gi - l ... ---+ G l ----+ Go 

be complexes of modules, and set M = coker <PI = HoF, N = coker 1jJ1 = 
HoG. If the modules F; are projective and the homology ofG vanishes except 
for HoG = N, then every map of modules (3 : M ---+ N is the map induced 
on Ho by a map of complexes 0: : F ---+ G, and 0: is determined by (3 up to 
homotopy. 

Proof. Both the existence and the homotopy uniqueness of 0: are proved by 
induction; we give the first step and leave the (easy) continuation to the 
reader. 

Existence: Since Go maps onto N, the composite map Fo ---+ M ---+ N 
may be lifted to a map 0:0 : Fo ---+ Go. It is immediate that O:O<Pl maps 
Fl to ker(Go ---+ N) = im(Gl ---+ Go), so O:O<Pl has a lifting 0:1 : Fl ---+ Gl ; 

continuing in this way we get the map of complexes 0:: 

Homotopy uniqueness: If we are given two maps 0: and 0:' of complexes 
lifting the same map (3 : M ---+ N, then subtracting we see that 0: - 0:' 
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is a lifting of the zero map. Thus, changing notation, it suffices to show 
that if a is a lifting of the zero map, then a is homotopic to zero, that is, 
ai = hi-I'Pi + 1/Ji+1hi for some maps hi : Fi ---t Gi+1. First, since ao induces 
zero : coker 'PI ---t coker 1/JI, it takes Fo into im 1/JI. Thus there is a lifting 
ho : Fo ---t G1 such that 1/Jlho = ao. Now 

so hO'P1 - al maps into ker 1/JI = im 1/J2. Since FI is projective, we may lift 
this to a map hI : FI ---t G2• Continuing in this way we get the desired 
homotopy. 

We can at last give the answer to the question with which we began, of 
what connects different projective resolutions of a module. For later use, 
we give a version with a functor in it. Recall that a functor F from a 
category of modules to another category of modules is called additive if 
it preserves the addition of homomorphisms: That is, if a, b : M ---t N 
are homomorphisms, then F{a + b) = F{a) + F{b) : FM ---t FN. This 
is the property that we need in order that F preserve homotopy equiva
lences. 

Corollary A3.14. 

a. Any two projective resolutions P and pI of the same module are 
homotopy equivalent in the sense that there are maps a : P ---t pI 
and /3 : pI ---t P such that a/3 is homotopic to the identity map of pI 
and /3a is homotopic to the identity map of P. 

b. If F is any additive functor and we write F P, F pI for the results of 
applying F to the complexes P and pI, then for each i the homology 
modules Hi{FP) and Hi{Fpl) are canonically isomorphic. 

Proof. 

a. Suppose that P and pI are projective resolutions of a module M. 
By Proposition A3., there are maps a : P ---t pI and (3 : pI ---t p 
of complexes inducing the identity map on M. The composites a(3 : 
pI ---t pI also induces the identity map on M. But the identity map 
pI ---t pI induces the same map on M, so a(3 is homotopic to the 
identity by the other part of Proposition A3.13. Of course the same 
argument holds for (3a. 

b. Suppose a is as above, and fix an index i. We claim that the map 
Hi(Fa) : Hi(FP) ---t Hi(Fpl) is a canonical isomorphism-that is, 
an isomorphism independent of the choice of a. 
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First, if 0/ : P -+ P' were another choice of a map of complexes 
inducing the identity on M, then by Proposition A3.13 0: is homotopic 
to 0:', say by a homotopy s with 0: - 0:' = ds + sd, where d denotes 
the differential both in P and in P'. Applying F, we get Fo: - Fo:' = 
FdFs + FsFd, so Fo: and Fo:' induce homotopic maps FP -+ FP'. 
By Proposition A3.12, the induced maps Hi(Fo:) and Hi(Fo:') are 
the same. 

Next, to see that Hi(Fo:) is an isomorphism, note simply that 
Hi(Fo:)Hi(F(3) = HiF(o:(3) = 1 because 0:(3 is homotopic to the 
identity, and the same argument works for Hi(F(3)Hi(Fo:). 0 

A3.7 Exact Sequences of Complexes 

If 0: : F' -+ F and (3 : F -+ F" are maps of complexes, with (30: = 0, then 
we say that 

is a short exact sequence of complexes if for each i the sequence 

O F' OJ D. (3j F" 0 ----; i ---------+ r." ----t i --t 

is exact. Given such a short exact sequence, we get induced maps O:i 

HiF' -+ HiF and (3i : HiF -+ HiF". Somewhat more surprisingly, we get a 
natural map 

called the connecting homomorphism, defined as follows: Write 'P', 'P, 
and 'P" for the boundary maps of F', F, and F", respectively. If hE HiF" 
we choose a cycle x E ker 'P~ whose homology class is x. Let Y E Fi be 
an element such that (3i (y) = x; such a y exists because (3i is surjective. 
Since (3i-l'Pi(Y) = 'P:'(3i(Y) = 'P~(x) = 0, there is an element z E FLI such 
that O:i-l(Z) = 'Pi(Y). Since O:i-2 is a monomorphism and O:i-2'P:_l(z) = 
'Pi-lO:i-l(Z) = 'Pi-l'Pi(Y) = 0, we see that Z is a cycle of F'. We define 8i(h) 
to be the image of z in Hi-IF' (see Figure A3.3). 
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y • x 

o --> F! ---> F;l ~ Fi' r 0 

zU~(y) ~ 0 
o !Fi_, ~ F i - I ~ F" ~ 0 i-I 

! ! o ! 
o ~F[_2 ~ Fi- 2 ~ F" i-2 ~ 0 

FIGURE A3.3. 

A3.7.1 Exercises 

Exercise A3.8: Show that 8i (h) is independent of the choices made in the 
definition, and 8i is a map of modules. 

Exercise A3.9: A parallel construction works for exact sequences of differ
ential modules; give it explicitly. The case of complexes becomes a special 
case if we remark that in the case of complexes the connecting homomor
phism can be taken homogeneous and of degree -1. 

L: Hi+l (F') 
a. 

Hi+l (F) 1 Hi+l (F") --+ 

L: Hi (F') a. 
Hi(F) 1 Hi (F") --+ 

L: ... 
FIGURE A3.4. 

A3.8 The Long Exact Sequence in Homology 
Proposition A3.15. If 

o ---t F' ~ F L FI! 
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is a short exact sequence of complexes, then the sequence shown in Figure 
A3.4, called the long exact sequence in homology of (*), is exact. 
More generally, if (*) is a short exact sequence of differential modules, 
then the connecting homomorphism makes the following triangle exact (in 
the sense that the image of each map is the kernel of the next map). 

Proof. We leave the easy verification to the reader. o 
Extending the principle embodied in Proposition A3.13, that phenom

ena regarding modules are well reflected in projective resolutions, we now 
show that a short exact sequence of modules corresponds to a short exact 
sequence of projective resolutions in a certain natural sense. 

Proposition A3.16. Let 

o----tM'~M~M"----tO 

be a short exact sequence of modules. If 

and 
"~,, "~,, F": ... ____t Fi -----> Fi- I ... ____t FI -----> Fo 

are projective resolutions of M' and M", respectively, then there is a pro
jective resolution F of M and a short exact sequence of complexes 

O----tF'~F~F"----tO 

such that 0/ and 0: induce the maps (3' and (3, respectively. 

Note that because the FI' are projective, it follows that Fi = FI EB FI' for 
each i. However, the differentials 'Pi : Fi ____t Fi-I of F will generally not be 
the direct sums of 'P; and 'P;'. 

Proof. Again, we only describe the beginning of the induction, leaving the 
rest to the reader. Because F~' is projective the map from it to M" can be 
lifted to a map F~' ____t M. Of course we also have a composite map F6 ____t 

M' ____t M. Taking the sum of these maps we get a map Fo := F6EBF6' ____t M, 
and it is easy to check that this is an epimorphism. Replacing M', M, and 
M" by the kernels of the maps F~ ____t M', Fo ____t M, and F6' ____t M", 
respectively, we may repeat this argument. 0 



634 Appendix A3. Homological Algebra 

A3.B.l Exercises 
Diagrams and Syzygies 

Exercises A3.1Q-A3.12 are three arguments with diagrams that come up 
so frequently that they have acquired names. 

Exercise A3.1O (Snake Lemma):' If 

o ---7 A ---7 B ---7C ---7 0 

o ---7 A. ---7 B' ---7 C ' ---7 0 

is a commutative diagram of modules with exact rows, show that there is 
an exact sequence 

o ~ ker a ~ ker {3 ~ ker 'Y ~ coker a ~ coker {3 ~ coker 'Y ~ O. 

Show that if we drop the assumptions that A ~ B is a monomorphism and 
that B' ~ C' is an epimorphism, then the six-term sequence is still exact 
except at the ends. 

Where is the "snake"? Look at Figure A3.5 . 

• • • 

FIGURE A3.5. 
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Exercise A3.11 (5-Lemma): If 
Al ~ A2 ~ A3 ~ A4 ~ As 

al ~ PI ~ r ~ P2 ~ a2 ~ 
BI ~ B2 ~ B3 ~ B4 ~ Bs 

is a commutative diagram of modules with exact rows, show that if /31 and 
/32 are isomorphisms, al is an epimorphism, and a2 is a monomorphism, 
then'Y is an isomorphism. This is often applied when AI, B l , A5, and B5 
are o. 

Exercise A3.12 (9-Lemma): Suppose that the diagram in Figure A3.6 

0 0 0 

~ ~ ~ 
o~ A ~ B ~ C ~ 0 

~ ~ ~ 
o ~ A' ~ B' ~ C' ~ 0 

~ ~ ~ 
o ~ A"~B"~C" ~ 0 

~ ~ ~ 
0 0 0 

FIGURE A3.6. 

is a commutative diagram of modules with exact columns, and exact middle 
row. Show that if either 0 ---+ A ---+ B ---+ G ---+ 0 or 0 ---+ A" ---+ B" ---+ Gil ---+ 0 
is exact, then both are. 

Exercise A3.13 (Schanuel's Lemma):* Show that if 

o ---+ N F ---+ F ---+ M ---+ 0 
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and 
O ....... Na ....... G ....... M ....... O 

are exact sequences with F and G projective, then 

Np EEl G ~ ker(F EEl G ....... M) ~ Na EEl F, 

where the map in the middle expression is the sum of the two given maps 
F ....... M and G ....... M. 

The module N p is usually called a first syzygy module of M, and its 
uniqueness "up to projective summand" is another way of saying in what 
sense the projective resolution of M is unique. (The nth syzygy module 
is defined inductively as the first syzygy module of the (n - 1 )st syzygy 
module. Since the first syzygy module of a direct sum may be taken to be 
the direct sum of the first syzygy modules, all the syzygy modules of M 
are uniquely defined up to projective summands.) 

Exercise A3.14: Let R be a ring and let 

:r: .......... Fd ................. Fa ....... M ....... 0 

be a projective resolution of M. Let d be the smallest number such that 
im(Fd ....... Fd-l) is projective. Use Schanuel's lemma (Exercise A3.13) to 
show that d is independent of the resolution chosen, so that d = pd M. 

A3.9 Derived Functors 

One of the main applications of projective and injective resolutions is defin
ing derived functors. The idea is this: Often one has a functor F (say, for 
simplicity, from R-modules to R-modules) that is additive and that takes 
short exact sequences 

0 ....... A ....... B ....... C ....... 0 

of modules into sequences that are exact only at one end, say at the right: 

FA ....... F B ....... FC ....... O. 

Such a functor is said to be right-exact; an example is the functor M®R-, 
which takes an R-module to its tensor product with a fixed R-module M. 
(If the sequence is only exact on the left, we speak of a left-exact functor; 
an example is HomR(M, -). We shall stick with right-exact functors in the 
description that follows, and remark on the dualization to the left-exact case 
at the end. The reader should be warned that we shall apply both notions.) 

If F is an interesting right-exact functor, then it is generally interesting 
to have a description of when a zero can be added on the left end of the 
right-exact sequence 

FA ....... FB ....... FC ....... 0 
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and still have an exact sequence; or more generally, to have a good descrip
tion of the kernel of the left-hand map. Derived functors provide this. In 
the situation above, for example, there is a "first left-derived functor LIF" 
and a map 0 : LIF(C) ---+ FA such that 

8 LIF(C) ----. FA ---+ FB ---+ FC ---+ 0 

is exact. (Here 0 must depend on the short exact sequence given, but the 
module LIF(C) does not!) Of course, one should then ask about the kernel 
of O. In fact, the theory provides a whole sequence of left-derived functors, 
which answer the sequence of questions beginning in this way: 

Definition. Suppose F is a right-exact functor on the category of R
modules. If A is an R-module, let 

P: ... ---+ Pi ~ Pi-I' .. ---+ PI ~ Po 

be a projective resolution of A, and define the ith left-derived functor 
of F to be LiF(A) = HiFP, where FP is the complex 

F<p; F<Pl F P: ... ---+ F P; ----. F Pi-I' .. ---+ F PI ----. F Po, 

the result of applying F to P. 
We have: 

Proposition A3.17. The left-derived functors of F are independent of the 
choice of resolution and have the following properties: 

a. LoF=F. 

b. If A is a projective module, then LiF(A) = 0 for all i > O. 

c. For every short exact sequence 

o ---+ A ~ B ~ C ---+ 0, 

there is a long exact sequence as shown in Figure A3. 7. 

d. The "connecting homomorphisms" 0i in the long exact sequence are 
natural: That is, if 

o ---+ A ---+ B ---+ 0 

a1 111 
o ---+ A' ---+ B' ---+ 0 

is a commutative diagram with exact rows (a "map of short exact 
sequences") then the diagrams 

Li+I FC 
8;+1 

LiFA ----. 

L;+1 F '"'f 1 1 L;Fa 

Li+I FC' 
8; 

LiFA' ----. 

commute. 
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FIGURE A3.7. 

Proof. The independence of resolution is the content of Corollary A3.14b. 

a. To show that LoF(A) = F(A), just use the right-exactness of F: 
From the definition 

LoF(A) = Ho('" -+ FH -+ FPo), 

we get LoF(A) = coker FP1 -+ FPo = FA. 

b. This is immediate from the independence of resolution, since if A is 
projective then we may take as projective resolution the complex 

... -+ 0 -+ 0 -+ A. 

c. This is immediate from Propositions A3.15 and A3.16. 

d. Form the projective resolutions of each of the two short exact 
sequences as in Proposition A3.16. The maps a, (3, and "y lift to com
parison maps between these resolutions. If we use these maps of res
olutions to define the maps LiF(a) and LiF((3), then the verification 
of the commutativity of the diagram in part d is easy. We leave the 
details to the reader. 0 

Dually, if F is a left-exact functor, then we define the right-derived func
tors Ri F of F: If A is a module, we let 

Q : 0 -+ Qo -+ Q-1 -+ ... 

be an injective resolution of A, and we set 

where FQ is the complex 

FQ: 0 -+ FQo -+ FQ-1 -+ ... 

Proposition A3.17 dualizes to this setting. 
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A3.9.1 Exercise on Derived Functors 

Exercise A3.15:* Show that the conditions of Proposition A3.17 charac
terize the functors LiF. 

A3.10 Tor 

Let A be an R-module. The left-derived functors of the functor M ®R - are 
called Torf(M, -). The tensor product itself is commutative in the sense 
that M ® R N 9! N ® R M, and this property carries over to the Tori, as 
we shall prove in the section on spectral sequences. Thus Torf may be 
regarded as a functor of two variables, Torf( -, -), and we get long exact 
sequences from short exact sequences in either variable. When the ring R 
is understood, we suppress it from the notation. We give a few very useful 
computations as exercises; the reader is urged to do at least the first three. 

A3.10.1 Exercises: Tor 

The name "Tor" comes from the following computation, which connects 
Tor with torsion. 

Exercise A3.16:* Let x E R be a nonzerodivisor. Show that 

Torl(R/x,M) = {m E Mlxm = o.} 

Exercise A3.11: If I and J are any ideals of R, then I J c In J. Show 
that TOfI (R/ I, R/ J) = (I n J) / (I J). This usefully encapsulates several 
often-used cases (of course these can also be proven directly). For example, 
use it to show that I n J = I J in the following cases: 

a. I +J=R. 

b. I is generated by a sequence of elements that form a regular sequence 
modJ. 

Exercise A3.18 ("Betti" numbers): Let (R, m) be a local ring. We say 
that a free resolution 

'Pi+! 'Pi 'PI F : ... --+ Fi+1 ---+ Fi ---+ Fi- 1 --+ .•. ---+ Fa 

of a module M is minimal if each 'Pi has an image contained in mFi- l . (If 
the Fi are finitely generated modules, then Nakayama's lemma shows that 
this is equivalent to a more obviously natural formulation. See Chapter 20.) 
If F as above is a minimal free resolution of M and rank F; = bi , then show 
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that Tori (R/m, M) = (R/m)bi • The bi are called Betti numbers of M, in 
loose analogy with the situation in topology, where F is a chain complex. 

Exercise A3.19 (Serre's Intersection Formula): Let X and Y be 
subvarieties of AL of dimensions d and n - d, defined by ideals I and 
J C k[Xl, ... , XrJ = S, and suppose that XnY has the origin 0 as an isolated 
point. A crucial part of algebraic geometry is devoted to the question, in 
this and similar cases, of defining an "intersection multiplicity i(X, Y; 0) 
of X and Y at 0" that will have desirable properties. If X and Yare 
themselves nice (for example, nonsingular at 0), then this is not too hard; 
writing R for the localization of S at (Xl"'" xr ), the right answer turns 
out to be the vector space dimension of R/ I 0 R RjJ = R/ (I + J). Such 
a formula is correct also in the case of plane curves, but in general the 
dimension of R/ (I + J) turns out only to be the first term of an alternating 
sum. The following definition is due to Serre [1957J: 

i(X, Y; 0) := :~::) -l)j dimk Torf(R/ I, RjJ). 
j 

Show that Torf(R/ I, R/ J) is annihilated by both I and J, and therefore 
has finite length. Let r = 4, and take I = (Xl,X2) n (X3,X4), the ideal 
corresponding to the union X of two two-planes, meeting in the point 0, 
and J = (Xl - X3, X2 - X4), the ideal corresponding to another two-plane Y, 
transverse to each of the first two and meeting them at the origin. Compute 
the Torf(R/ I, R/ J) and show that i(X, Y; 0) = 2. Note that Y meets each 
of the two-planes in X transversely in a single point (multiplicity 1) so Y 
"should" meet X with multiplicity 2; however, the length of R/ 10 R R/ J = 
R/(I + J) is not 2. 

Exercise A3.20 (Tor as an algebra): For any R-modules A, A', B, B', 
define a natural "external multiplication" map 

as follows. Let P and P' be projective resolutions of A and A'. Represent 
elements a, /3 of Tor~(A, B) and Tor~(A', B') as cycles of the complexes 
P0B and P'0B' (where for simplicity we write 0 for 0R)' Show that a0/3 
is then naturally a cycle in the tensor product complex (P0B)0(P' 0B') ~ 
P 0 P' 0 B 0 B'. (Here the tensor product of two complexes may be defined 
as the total complex of the double complex with terms P;0B0Pj0B'-see 
the section on double complexes below if this is unfamiliar.) If P" is a free 
resolution of A 0 A', there is a map of complexes P 0 P' -+ P" inducing 
the identity on Ho = A 0 A'. Use this to define e. 

If A and Bare R-algebras, take A' = A and B' = B and combine the 
map above with the multiplication maps of A and B to get a multiplication 
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J-L : Tor~(A, B) 0R Tor~(A, B) --> Tor~+n(A, B). 

Show that this makes Tor~(A, B) into a graded associative R-algebra that 
is "graded-commutative" in the sense that for elements 0:, (3 of degrees a 

and b we have 

Remarks: A good deal of work has been done on the structure of this 
algebra in the case where A = B = k, the residue class field of a local ring 
R. In that case Tate and Gulliksen showed, for example, that Tor~(k, k) is 
a free graded-commutative divided power algebra (that is, the tensor prod
uct of a divided power algebra on even degree generators and an exterior 
algebra on odd degree generators). It was hoped for a long time that the 
"Poincare series" of R, namely the power series 

n 

would be a rational function of t, but Anick [1982] showed that this is false 
in general. The hope behind this hope was perhaps that the ranks of the 
free modules in a minimal free resolution of k are "finitely determined." 
It remains an open problem to give a description simpler than the one 
obtained by computing the minimal free resolution. 

One important point in this development is that the algebra structure 
on Tor can be computed from a resolution that is an algebra in a nice 
way: 

Exercise A3.21: Let R be a ring with augmentation onto a factor ring 
R --> k. Suppose that 

d d P: ... ---t PI ---t Po 

is a projective resolution of k over R, with Po = R. Suppose that the 
complex P has an algebra structure such that d is a derivation, d(pq) = 
d(p)q + (-1)Qpd(q). Show that this algebra structure induces the natural 
algebra structure on the homology Tor(k, k) = H*(P 0 k). 

Exercise A3.22 (Auslander's Transpose Functor): The long exact 
sequence in Tor is not the only answer to the question of how to measure 
the inexactness of the functor 0. Suppose that M is a finitely presented 
R-module. Following ideas of Auslander [1966], we define the transpose 
of M as follows: 

Let rp : F --> G be a projective presentation of M -that is, a map of 
projective modules with cokerrp = M. Write -* for HomR( -, R), so that 
rp* : G* --> F* is the "transpose" of rp. Define T( rp), the transpose of M, to 
be T( rp) = coker rp*. 
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a. * Show that like the first syzygy of M, T( cp) depends, up to a projective 
summand, only on M in the sense that if cp' is another projective 
presentation of M, then there are projective modules P and pI such 
that T(cp) (JJ pI ~ T(cp') (JJ P. 

Notation: We shall write T(M) for any (fixed) choice T(cp). We may choose 
things so that T(T(M)) = M. 

b. Show that if 
o::O-+A-+B-+C-+O 

is a short exact sequence of R-modules, and M is a finitely presented 
R-module, then there is an exact sequence 

0-+ Hom(T(M), A) -+ Hom(T(M), B) -+ Hom(T(M), C) -+ 

M ® A -+ M ® B -+ M ® C -+ O. 

This sequence gives another way of "measuring" the inexactness of 
the functor M ® -. If N is any module, and we choose M = T(N), 
then since T(T(N)) = N, we may also think of it as a measure for 
the inexactness of Hom(N, -). 

c. Here is an application: We say that A c B is a pure R-submodule 
if for every module M the induced map M ®R A -+ M ®R B is a 
monomorphism. Show that if 0: : 0 -+ A -+ B -+ C -+ 0 is a short 
exact sequence with A -+ B pure, and if N is a finitely presented 
R-module, then 

Hom(N,o:) : 0 -+ Hom(N, A) -+ Hom(N, B) -+ Hom(N, C) -+ 0 

is a short exact sequence. Deduce that if C is finitely presented, then 
0: splits. Note that it is even enough to know that N ® A -+ N ® B 
is a monomorphism for every finitely presented module N. (This is 
actually the same as purity, since every module is the filtered direct 
limit of finitely presented modules-see Exercise A6.5.) 

A3.11 Ext 

We now turn from ® to Hom. The functor HomR(M, -) is left-exact, so we 
may apply the dual theory, the theory of right-derived functors, as follows: 
For any R-module N, let 

I : 10 -+ II -+ ... 
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be an injective resolution of N, and define the right-derived functor 
Ri Hom(M, - )(N), which we shall write more compactly as Extk(M, N), 
to be H_i(HomR(M, 1)), where HomR(M, 1) is the complex 

As we shall prove by spectral sequences later (another proof, done by iden
tifying both results with the "Yoneda Ext," is given in the exercises), we 
could also compute this from a projective resolution 

F: ... -t Fl -t Fo 

of Mas Extk(M,N) = H_i(HomR(F,N)), where HomR(F,N) is the com
plex 

Here is a classic application of Ext, due to Auslander, showing that the 
global dimension of a ring can be computed from finitely generated mod
ules-even from cyclic modules. The original proof used a direct limit argu
ment; the proof given here, using injective modules, is due to Serre. The 
result is very general: It holds for non-Noetherian rings too, and even for 
noncommutative rings if we specify left or right modules and ideals through
out. 

Theorem A3.18 (Auslander [1955]). The following conditions on a ring 
R are equivalent: 

a. gl dim R ~ n-that is, pdM ~ n for every R-module M. 

b. pd R/ I ~ n for every ideal I. 

c. injective dimension N ~ n for every R-module N. 

d. Extk(M, N) = 0 for all i > n and all R-modules M and N. 

Proof. 

a => b is trivial. 

b => c: Suppose that condition b holds and let 

o -t N -t Eo -t ... -t En- 1 -t X -t 0 

be an exact sequence with the Ei injective; we shall show that 
X is injective, proving c. Breaking the long exact sequence 
above into short exact sequences, and considering the long exact 
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sequences obtained from these by applying Ext'R(R/ I, -), we see 
that 

Extk(R/I,X) 9E ExtR+1(R/I,M) = 0, 

the last equality coming from the hypothesis b. Thus it suffices 
to show that a module X is injective if Extk(R/ I, X) = 0 for all 
ideals I. Computing Extk(R/ I, X) from a projective resolution 
of R/ I, we see that this hypothesis is equivalent to saying that if 
't/J : I ....... X is any map, then there is a map R ....... X such that the 
composition I ....... R ....... X is 't/J. By Lemma A3.4, X is injective. 

c ~ d: Compute ExtR(M, N) from an injective resolution of N. 

d ~ a: Assume that condition d holds, and let 

o ....... X ....... Fn ................. Fo ....... M ....... 0 

be an exact sequence with the Fi projective. It will suffice to 
show that X is projective. Applying the long exact sequences in 
Ext to the short exact sequences 

0 ....... ker(Fi +1 ....... Fi) ....... Fi ....... ker(Fi ....... Fi-d ....... 0 

obtained from this resolution, we see that 

Extk(x, N) 9E ExtR+1(M, N) = 0, 

for every module N. We shall show that this condition implies 
that X is projective. (Note the duality of this with the preceding 
argument -but here there is no restriction on N, and the proof 
is easier.) 

To this end we must show that if 

p .......... H ....... Po ....... X ....... 0 

is a projective resolution, then the map Po ....... X splits. Let 

N = ker(Po ....... X). 

The natural map <p : H ....... N is a cycle of Hom(P, N) and thus 
defines an element of Extk(X, N); since this group vanishes, the 
element is a boundary so there exists a map Po ....... N extending <p. 
This map is a splitting of the inclusion N ....... Po, and thus coker 
Po ....... X splits too. This concludes the proof of the equivalence 
of conditions a-d. 0 

As with Tor, we offer the reader some simple exercises to become com
fortable with Ext. 
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A3.11.1 Exercises: Ext 
Exercise A3.23: If x is a nonzero divisor in a ring R, compute 
Extk (R/x, M). In particular, compute Ext~(Z/n, Z/m) for any integers 
n,m. 

Exercise A3.24: Show that a finitely generated Abelian group A is free iff 
Ext~(A, Z) = O. It was conjectured by Whitehead that this would hold for 
all groups, but the truth turns out to depend on your set theory (Shelah 
[1974]). 

Exercise A3.25:* For any ring R and ideal I c R, show from the defini
tions and Exercise A3.17 that 

Extk(R/1,R/1) = HomR(I/12 ,R/1) = Hom(Torl(R/1,R/1),R/1). 

In a geometric context, supposing that R is the affine coordinate ring 
of a variety X and that I is the ideal of a subvariety Y, this module 
HomR (I/ 12 , R/ I) plays the role of the "normal bundle" of Y in X; see 
Exercise 16.8 for more information. 

Exercise A3.26 (Yoneda's description of Extl): The ideas in this and 
the next exercise give a useful and appealing interpretation of the elements 
of Ext. See, for example, MacLane [1963, Chapter III] for more details. 

a. If 

a: O-tB-tX-tA-tO 
a' : 0 -t B -t X' -t A -t 0 

are short exact sequences, we say that a is Yoneda equivalent to 
a' if there exists a map f : X -t X' making the diagram 

O-tB-tX 
II f 1 

o -t B -t X' 

commute. Show that Yoneda equivalence is an equivalence relation 
(reflexive, symmetric, and transitive). Show that a is Yoneda equiv
alent to the "split" sequence 

O:O-tA-tAEBB-tB-tO 

iff a is itself split. 

We shall write [a] for the Yoneda equivalence class of a short exact 
sequence a. 

We now define El (A, B) to be the set of equivalence classes of short 
exact sequences as above. We shall see that EMA, B) is naturally 
isomorphic to Extk(A, B). 
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b. Functoriality in A: Show that Ek(A, B) is a contravariant functor of 
A as follows: If 

a:O-tB-tX~A-tO 

is a short exact sequence and v : A' -t A is a map, define 

X' = ker( -a, v) : X EB A' -t A, 

X' is called the pull-back (or fibered product) of X and A' over 
A. Show that there is a short exact sequence 

a' : 0 -t B -t X' -t A' -t 0 

and a commutative diagram 

a' : 0 -t B -t X' -t A' -t 0 
II ! ! v 

a: 0 -t B -t X -t A -t O. 

We define vela]) to be a'. Show that this makes Ek(A, B) into a 
contravariant functor of A as claimed. 

c. Functoriality in B: Given a map b : B -t X and another map u : 
B -t B', the push-out (or fibered coproduct) of X and B' under 
B is by definition coker( -b, u) : B -t X EB B'. Dualize the argument 
of part b, using the push-out construction, to show that Ek(A, B) is 
a covariant functor of A. 

d. Prove that EMA, B) ~ Extk(A, B) as follows: Let 

Q Q 1/Jo Q 1/J-l : 0 ----4 -1 ----4 • • • 

be an injective resolution of B, and let b : B -t Qo be the injection 
of B to Qo that is the kernel of '¢O. An element 1/ of ExtkCA, B) is 
represented by a cycle of HomR(A, Q), which is a map v : A -t Q-l 
such that '¢-IV = 0; that is, a map v: A -t ker'¢_1 = Qo/B. Let a 
be the short exact sequence 

a : 0 -t B -t Qo -t Qo/ B -t 0, 

and let 1/' E E1(A, B) be the element vela]). Show that 

€ : Extk(A, B) -t E1(A, B); 1/ f---> €(I/) := 1/' 

is a bijection of sets, natural in the sense that if A' -t A or B -t 

B' are homomorphisms, then the induced maps on Extk(A, B) and 
Ek(A, B) correspond. If P : ... -t PI -t Po is a projective res
olution of A, show dually that Ek(A, B) may be identified with 
H_ 1(HomR(P,B». This proves that Extk(A, B) could be computed 
from a projective resolution of A as well as from an injective resolu
tion of B. 
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e. The module structure on E1 : If r E R, the underlying ring, then 
multiplication by r is an endomorphism of any module B, and thus 
induces a map on Ek(A, B) by functoriality in B. Of course, it also 
induces a map by functoriality in A. Show that these two maps are 
the same; we use them to define the action of R on Ek(A, B). To 
define an addition on Ek(A, B), let a, a' be short exact sequences as 
in part a. Let d : A ---+ A Ef) A be the diagonal map d( a) = (a, a), and 
let s : B Ef) B ---+ B be the sum map s(b, b') = b + b'. Let a Ef) a' be the 
direct sum of a and a', 

a Ef) a' : 0 ---+ B Ef) B ---+ X Ef) X' ---+ A Ef) A ---+ 0 

and set 
[a] + [a'] = sd[a Ef) a'] = ds[a Ef) a']. 

Show that these definitions make Ek(A, B) a module and E an iso
morphism of modules. 

f. If 
(3 : 0 ---+ B' ---+ B ---+ B" ---+ 0 

is a short exact sequence of modules, define a "connecting homo
morphism" 8 : HomR(A, B") ---+ Ek(A, B') for b E HomR(A, B") by 
8(b) = b[(3] E Ek(A, B'). Show that there is an exact sequence 

0---+ HomR(A, B') ---+ HomR(A, B) ---+ HomR(A, B") 

~ Ek(A, B') ---+ E1(A, B) ---+ Ek(A, B"), 

and that if we identify E1 with Extk, then 8 is the usual connecting 
homomorphism. 

Exercise A3.27 (Ext as an algebra; the Yoneda Ext in general): 

a. Higher Exts: Two exact sequences from A to B "of length n" 

a: o ---+ A ---+ Xl ---+ X 2 ---+ • • . ---+ X n ---+ B ---+ 0 

a' : o ---+ A ---+ Xi ---+ X ~ ---+ • • • ---+ X ~ ---+ B ---+ 0 

are primitively equivalent if there is a commutative diagram 

a: 0 ---+ A ---+ Xl ---+ X 2 ---+ ---+ Xn ---+ B ---+ 0 

II ! ! ! II 
a' : 0 ---+ A ---+ X' I ---+ X' 2 ---+ ---+ X' n ---+ B ---+ O. 

This is not an equivalence relation (it is not symmetric), but we may 
define Yoneda equivalence to be the equivalence relation it generates. 
Define ER(A, B) to be the set of Yoneda equivalence classes of exact 
sequences of length n from A to B. Analogously with the case done 
in the previous exercise, show that ER(A, B) is naturally isomorphic 
to ExtR(A, B) (computed from either an injective resolution of B or 
a projective resolution of A). 
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b. The Yoneda product: The functoriality of Ext 1 (A, B) may be thought 
of as giving rise to "multiplication" maps 

p: HomR(B, C) ®R ExtR(A, B) ----> ExtR(A, C); 
p: Ext'R(B, C) ®R HomR(A, B) ----> Ext'R(A, C). 

Thinking of Hom as Exto is the first step in defining an "algebra 
structure," which is a natural pairing called the Yoneda product 

p: ExtR(B, C) ®R Ext'R(A, B) ----> ExtR+m(A, C) 

defined for all m and n. Namely, if 

and 
b' 

(3: O---->B~Yi---->Y2---->···---->yn---->C---->O 

are exact sequences, then we define p([{3] ® [a]) to be the class of the 
exact sequence 

Prove that this multiplication is well defined on Yoneda equivalence 
classes and that it is associative. (The only case that needs work is 
where one of the factors is in Exto = Hom.) 

Note that the Yoneda algebra defined above is graded by the positive 
integers and pairs of modules! However, if we fix a module A and take 
A = B, we get a more reasonable object, a (noncommutative) algebra 
ExtR(A, A) := EBn2:0 ExtR(A, A) that is graded by the positive integers. 
Very little is known in general about the properties of this algebra, although 
extensive work has been done on the case where R is local and A = k 
is its residue class field. The natural commutative algebra structure on 
TorR(k, k) := EBn Tor~(k, k) = EBn Homk(ExtR(k, k), k), described in the 
exercises on Tor, makes ExtR(k, k) into a cocommutative Hopf algebra. 
Good references are Gulliksen-Levin [1969] for the early work and Anick 
[1988] for more recent developments. One important point (used in the 
exercises of Chapter 17) is that the product on Ext(k, k) may be computed 
from an appropriate coalgebra structure of the resolution of k. 

Exercise A3.28:* Let R be a ring with augmentation onto a factor ring 
R ----> k. Suppose that 

d d P: ",~Pl~PO 

is a projective resolution of k over R, with Po = R. Suppose that the 
complex P* = HomR(P, R) has the structure of a graded algebra over R 
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and that the differential d* of P* is defined by multiplication by some fixed 
element x En, that is d* (p) = xp. Show that the algebra structure on P* 
induces the Yoneda algebra structure on ExtR(k, k), in the sense that the 
cycles of P* form a sub algebra of P* and the map from the cycles onto 
ExtR(k, k) is an algebra homomorphism. Show that if R is a regular local 
ring then the hypothesis on d* is satisfied. 

Exercise A3.29 (Miyata [1967]): 

a.* (Apparently split implies split) If a: 0 --; A --; B --; C --; 0 is a short 
exact sequence of finitely generated modules over a Noetherian ring 
and B ~ A EB C, then a splits. If you find the general case difficult, 
try the case where A, B, and C are finite Abelian groups. 

b. One could try to classify the R-modules X that are extensions of one 
given module 8 by another, A, by classifying elements of Extk(A, B). 
One problem with this approach is that one can have two short exact 
sequences 

and 
a' : 0 --; B --; X' --; A --; 0 

with X ~ X' withQut a being Yoneda-equivalent to a'. Give an exam
ple of sequences of finite Abelian groups where this happens. In gen
eral, it is hard to say even what relationship [a] and [a'] E Extk(A, B) 
have. However, part a shows that [a] = 0 iff [a'] = O. Extend this by 
proving, with notation as above, that if X ~ X', then 

rad( ann [a]) = rad( ann [a']) . 

A3.11.2 Local Cohomology 

The third derived functor of great use in commutative algebra is local 
cohomology. (The coherent sheaf cohomology of the algebraic geometers 
can also be expressed in terms of it, at least for projective varieties, and 
local cohomology with I the ideal of a subvariety plays in a certain sense 
the role of "relative" cohomology; see Grothendieck [1967].) For any ideal 
I of R, let fI(M) = {m E MlJPm = 0 for sufficiently large pl. It is easy to 
see that fI is a left-exact functor, and we define 

again as the homology of the complex obtained by applying f I to an injec
tive resolution of M. We explain something of the properties of this derived 
functor in the central case where R is a local ring and I is the maximal 
ideal in Appendix 4. 
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Part II: From Mapping Cones to Spectral Sequences 

A3.12 The Mapping Cone and Double Complexes 

If 0: : F ---> G is a map of complexes, then in many contexts we would 
like to know about the kernel and cokernel of the map induced by 0: on 
homology. If 0: were part of a short exact sequence of complexes-that is, 
if either all the O:i were monomorphisms or all were epimorphisms, then 
we could study this problem by looking at the corresponding long exact 
sequence in homology. Of more general usefulness is the following simple 
way of producing an exact sequence of complexes 

0---> G ---> M ---> F[-l] ---> 0 

whose connecting homomorphisms are the maps on homology 

induced by 0:. Here we make the convention that if F is a complex with 
differential r..p, then F[i] is the complex where F[i]j = FHj and with dif
ferential (-1 )ir..p. Of course the change of sign of the differential has no 
effect on the homology module (indeed, the complexes with signs changed 
or not are isomorphic-the map is -1 in every degree), but turns out to be 
convenient. 

Definition. If 0: : F ---> G is a map of complexes, and we write r..p and 
'0, respectively, for the differentials of F and G, then the mapping cone 
M(o:) of 0: is the complex such that M(O:)i = F i - 1 EB Gi, with differential 

That is, on Gi +1 the map is the differential of G, but on Fi the map is the 
sum of the differential of F and the given map 0: of complexes. 

Again, the motivation for this construction is topological: If 0: : X ---> Y is 
a continuous map between topological spaces, then we may form the union 
X x J u Y. Let M be the space obtained by identifying X x {O} to a point, 
and X x {1} to o:(X) in Y, as in Figure A3.8. The d-dimensional chains 
of M are generated by the d-dimensional chains of Y and in addition for 
every (d-1 )-chain x of X, a d-dimensional chain that we may describe as 

x:= (x x J) Uo:(x) 
x x {O} = point, x x {1} = o:(x) C Y· 
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(8x)- = u - v 

ex) = o:(x) - U+V 

= o:(x) - (8x)-

FIGURE A3.8. 

With orientations as in Figure A3.8, we have 8(x) = -(8(x))~ + o:(x). 

Proposition A3.19. With notation as in the preceding definition, the nat
ural inclusion makes G into a subcomplex of M(o:), and M(o:)jG ~ F[-l], 
so that there is a short exact sequence 

0---> G ---> M(o:) ---> F[-l]---> ° 
of complexes. In the corresponding long exact sequence in homology, 

fJ 
••• ---> Hi(G) ---> HiM(o:) ---> Hi(F[-l]) -----t Hi-1(G) ---> ••• , 

the connecting homomorphism (5 is the map Hi(F[-l]) = Hi-1F ---> Hi-1G 
induced on homology by 0: : F ---> G. 

Proof. The fact that G is a sub complex of M(o:) with quotient F[-l] (that 
is, F shifted by 1 in degree) follows at once from the definition. To compute 
the effect of the connecting homomorphism, recall that if [z] is the homology 
class in Hi(F[-l]) of a cycle z of degree i, then (5([z]) is by definition the 
homology class of dz, where z is a preimage of z in M(o:) and d is the 
differential of M(o:), and we regard dz as an element of the subcomplex 
G. But we may take z to be (z,O) E M(O:)i = Fi- 1 ffi Gi, and then dz = 
(O,O:i-l(Z)), whence the assertion. 0 

Applications of the mapping cone to the proof of exactness of the Koszul 
complex and the Taylor complex are given in Chapter 17. A natural gen
eralization of the mapping cone is the total complex of a double complex; 
we give the construction here, though we shall not use it seriously until we 
develop the language of spectral sequences. 

For agreement with what we do later, we make a small change in notation. 
Up to this point we have usually dealt with complexes whose differentials 
d have degree -1: 
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d ... ~ Pn ---+ Pn-l ~ ... 

In the interest of agreeing with most of the standard treatments of spectral 
sequences and double complexes, we shall now switch to complexes with 
differential of degree + 1, and we shall write them with upper indices 

... ~ pm ~ pm+l ~ .... 

If we take m = -n and identify Pn with p-n, we recover our previous 
notation. We shall generally adopt this convention for dealing with upper 
and lower indices. It has the advantage of avoiding negative indices. Thus 
we shall write an injective resolution of a module M as 

and we can write a free resolution M either in the form 

... ~ p-2 ~ p-l ~ po ~ M ~ 0 

or in the old form 

I believe that the price of making such translations is more than repaid by 
the convenience, in dealing with spectral sequences, of always having the 
arrows point the same way. 

Definition. A double complex is a commutative diagram as in 
Figure A3.9 (extending infinitely in all four directions) where each row 
and each column is an ordinary complex; that is, a commutative diagram 
p as shown, with d~or = 0 = a;ert. 

Of course, any ordinary complex may be considered a double complex in 
which only one row is nonzero, and a map of ordinary complexes may be 
thought of as a double complex in which only two rows are nonzero. From 
the latter example, we have seen how to make an ordinary complex, the 
mapping cone. The natural generalization of this construction is a way of 
making an ordinary complex, called the associated total complex, from 
any double complex. 

Definition. The total complex of P is a complex whose kth term is 

ffi. . kpi,j 
w,+]= , 

with differential as in Figure A3.10. Somewhat more directly, one may think 
of a term of the total complex as the sum of the terms of the double complex 
along a diagonal, as shown by the line through the summands of (tot p)i+j+l 
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i 
d hor 

i 
• Fi,j+l • Fi+1,j+l .... 

F: d=, i i~ 
• Fi,j • Fi+1,j .... 
i 

dhor 

i 
FIGURE A3.9. 

EB ~ EB 
F i+2,j-l 

~ 
Fi+1,j-l 

EB EB 

Fi+1,j 

~ 
Fi,j 

EB EB 

Fi,j+l 

~ 
Fi-1,j+l 

EB EB 

FIGURE A3.1O. 

in Figure A3.1l. The differential is equal to the sum of all the maps shown, 
the maps in the j th row being multiplied by (-I)j. 

If F and G are ordinary complexes, with differentials cp and 'l/J, then the 
tensor product of F and G (as graded modules) becomes a double complex 
with terms Fi,j = F-i,-j := Fi 0 Gj and differentials dhor = cp 0 1, d vert = 

10 'l/J, as in Figure A3.12. 
Similarly, Hom(F, G) is a double complex with terms Fi,-j := Hom(Fi , Gj ) 

and differentials dhor = Hom(cp, 1) and dvert = Hom(I,'l/J). The homology 
of the total complex of Hom(F, G) has a nice interpretation, given in the 
following exercises. 
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i 
~ ... 

F: 

--.. ~~ Fi,j ~ ... 

i 
FIGURE A3.11. 

i <Pi ® 1 i 
~ Pi ® Gj-l ~ Fi-l ® Gj - 1 .... 

F®G: l®Vj i i1®Vj 

• F;r • Fi - 1 ® Gj 
<Pi ® 1 

i 
~ ... 

FIGURE A3.12. 

A3.12.1 Exercises: Mapping Cones and Double Complexes 

Exercise A3.30 (Resolution of an ideal from a factor ring): Suppose 
that R is a graded ring such that Ro is a field, I c R is an ideal, and J is 
an R-module. Suppose that 

F: '" --t Fs --t •.• --t Fl --t R --t Rjl --t 0 

and 
G: ... --t Gs --t ... --t G1 --t Go --t J --t 0 

are free resolutions of Rjl and J. Given a monomorphism a : J --t Rjl, 
identifying J with an ideal in Rj l, let J' be the preimage of a( J) in R. 
Given also maps ai : Gi --t F;, forming a map of complexes a : F --t G 
lifting the map a, show that the mapping cone of a is a free resolution 
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M: ... ---t Fs EB Gs - I ---t ••• ---t FI EB Go ---t R ---t R/ J' ---t 0 

of R/J'. 
If R is local or graded, we would sometimes like to have a minimal free 

resolution of R/J'. Unfortunately, M need not be minimal even if F and G 
are, but there is one moderately common case in which we can prove that 
M is minimal. Suppose that R = Ro EB RI EB ... is a graded ring, and write 
each Fi and Gj as a sum of twists of R: Fi = EBjR(fij) and Gi = EBjR(gij). 
Show that if iij > gik for all i, j, k, then M is minimal. 

Exercise A3.31: If 0: is an isomorphism of complexes, show that the 
complex M(o:) is "homotopically trivial" in the sense that the identity 
map from M(o:) to itself is homotopic to the zero map. 

Exercise A3.32: A quasi-isomorphism of complexes is a map of com
plexes that induces an isomorphism on homology; two complexes are quasi
isomorphic if there is a quasi-isomorphism between them (in either direc
tion). A homotopy equivalence of complexes F and G is a map 0: : F ---t G 
such that there is a map 13 : G ---t F with the property that 0:13 and 130: 
are each homotopic to the identity. Show that a homotopy equivalence is a 
quasi-isomorphism. Show by example that not every quasi-isomorphism is 
a homotopy equivalence. Show by example that two complexes may have 
the same homology without being quasi-isomorphic. 

Exercise A3.33: Suppose that 

o ---t F' ~ F L FI! ---t 0 

is a short exact sequence of complexes. Show that FI! is quasi-isomorphic 
to M (0:) by showing that there is a short exact sequence of complexes 

o ---t M( 0:') ---t M (0:) ---t FI! ---t 0, 

where 0:' is the isomorphism of F' onto o:(F') c F, and using Exer
cise A3.32. Similarly, show that F' is quasi-isomorphic to M(j3) (up to 
a shift of degree). 

Exercise A3.34: Show that if 

F: ... ---t F n - 2 ---t Fn - I ---t Fn ---t 0 ---t 0 ---t ••• 

is a complex "bounded above" and 

G: ... ---t 0 ---t 0 ---t Gm ---t Gm +1 ---t Gm+2 ---t ••• 

is a complex "bounded below," then the cycles of degree i in tot(Hom(F, G)) 
are the degree-i maps of complexes from F to G (that is, collections of 
maps F_j = Fj ---t Gj+1 that commute with the differentials), and the 
boundaries are the maps homotopic to 0; thus Hi (tot(Hom(F, G))) is the 
group of homotopy classes of maps of degree i from F to G. The same thing 
is true if F is bounded below and G is bounded above. 
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A3.13 Spectral Sequences 

General references for spectral sequences:2 Serre [1957] does the case of a fil
tered complex quite directly (I learned the subject from this source). Other 
good treatments may be found in Maclane [1963], Cartan and Eilenberg 
[1956]' Godement [1958], Grothendieck [1957] and Hilton and Stammbach 
[1971]. For a particularly gentle exposition of the subject with topological 
intentions, see Bott and Th [1982] (but watch out for misprints). 

Spectral sequences first arose in the work of Leray [1946, 1950] on topol
ogy and independently in the work of Lyndon [1946, 1948] on group coho
mology. The topologists are the primary consumers of the theory, but there 
are plenty of applications in commutative algebra, in various algebraic coho
mology theories, and in other areas as well. 

It is easy to describe a spectral sequence. 

Definition. A spectral sequence is a sequence of modules r E for r ;::: 1, 
each with a "differential" dr : r E -+ r E satisfying drdr = 0, such that 
r+ I E ~ ker dr / im dr (or, as we shall prefer to write it, r+ IE = H (r E), the 
homology or E). 

From these data one can define a "limit" term 00 E. A spectral sequence 
may be interesting because 00 E may be identified with some inherently 
interesting object, to which the r E become "successive approximations"; 
or, on occasion, because the r E are interesting and 00 E is somehow trivial, 
which shows that some of the maps dr must be very nontrivial. 

To define 00 E, we first define submodules 

0= IB c 2B c··· c rB c··· c··· C rZ c··· C 2Z C IZ = IE 

such that iE = iZjiB for each i. To do this, let IZ = IE, and IB = 0, so 
that IE = IZPB. Having defined iB and iZ, for i :::; r we define r+lz as 
the kernel of the composite map 

and write the image of this map as r+I Br B; clearly r+l Zr+l B = H(r E) = 
rHE, and 

rB c r+lB C r+lz C rz, 

as required. Having defined all the i Z and i B, we set 

r 

ooZ = nZ , 
r 

ooB = UB; 

2Spectral sequences = suites spectrales; and spectral sweets = ghost candy. 
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and finally we define the limit of the spectral sequence to be 

00 E = 00 Z /00 B. 

We say that the spectral sequence collapses at r E if r E = 00 E, or equiv
alently if the differentials dTl dr+1, dr+2 , ... are O. 

Where do interesting spectral sequences come from? Most of the appli
cations in algebra have to do with a spectral sequence that arises from 
a double complex in a way to be described shortly, a construction that 
generalizes the theory of the mapping cone that we have already used. 
There are also a few applications of the more general notion of the spec
tral sequence of a filtered complex. Still more general is a construction 
introduced by Massey [1952] that derives a spectral sequence from an 
object called an exact couple. There is an exact couple associated to 
any monomorphism from one complex (or differential module) to another, 
and it seems that most useful spectral sequences can be defined this 
way. 

The subject of spectral sequences is elementary, but the notion of the 
spectral sequence of a double complex involves so many objects and indices 
that it seems at first repulsive. The approach via exact couples allows a 
much simpler view, postponing the indices until they are really needed; 
we shall follow this approach. First, however, we introduce the subject by 
recasting the theory of the mapping cone in the form it takes as a special 
case of the theory of the spectral sequence of a double complex. 

A3.13.1 Mapping Cones Revisited 

Suppose that a : F -> G is a map of complexes, and that we are interested 
in the homology of the mapping cone M := M(a). We shall show that 
the long exact sequence in homology of Proposition A3.19 can be inter
preted as giving a filtration on the homology of M and a (very simple) 
spectral sequence whose 00 E term is the associated graded module of this 
filtration. This is a special case of the situation that holds more generally 
for (reasonable) double complexes. 

The complex M contains a sub complex Ml isomorphic to G, with quo
tient M / Ml ~ F[ -1]. The resulting long exact sequence in homology has 
the form 

where we have written ai and ai-l for the maps induced on homology. 
Saying that there is such an exact sequence is equivalent to saying that 
HiM has a filtration, which we shall write as 
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(HiM)lj(HiM? = cokerQ;i, 

(HiM)O j(HiM)l = kerQ;i-l. 

We write HF = tBiHiF, and similarly for G and M. Write Q;. for the direct 
sum of the maps Q;i, so that Q;. : H F ---+ H G. 

We can now define the spectral sequence: Let 1 E be the module H F[-I]tB 
HG. The module 1 E has a "differential" d1 that is the composite 

lE: HF[-I] tBHG - HF[-I] ~ HG ~ HF[-I] tBHG, 

where the left-hand map is projection onto the first factor, and the right
hand map is injection into the second factor. It is clear that ker d1 = ker Q;. tB 
H G, and im d1 = 0 tB im Q;., so 

We give 2 E and all the succeeding r E the differential 0, so that the resulting 
spectral sequence collapses at 2 E, and 2 E = 3 E = ... = 00 E. The above 
relations may thus be written as 

grHM = HooE, 

where gr H M is the associated graded module of H M, that is, 

This is the form that is generalized to arbitrary double complexes and 
beyond in the next section. 

A3.13.2 Exact Couples 
An exact couple is an exact triangle3 of the form 

3The reader who objects to defining an exact couple to be an exact triangle has 
my sympathy. Presumably the fact that there are only two distinct modules in the 
triangle, A and E, is the origin of the name. 
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~that is, a diagram of modules and maps as above, which is exact in 
the obvious sense that kera = im,)"ker,), = im;3, and ker;3 = ima. Let 
d : E ----> E be the composite map d = ;3')'. Since ')';3 = 0, we see that d2 = 0, 
so E is a differential module, and we write 

HE = kerd/imd 

for its homology. 

Proposition-Definition A3.20. If the diagram (*) above is an exact 
couple, then there is a derived exact couple 

(**) 

HE 

where: 

a' is a restricted to aA, the image of a; 

;3' is;3 0 a-I: aA ----> HE, taking aa to the homology class of ;3a; 

')" is the map induced by ')' on ker d (which automatically kills im d). 

Proof. Note that ;3' is well defined because ker a = im')' is taken to im d 
by ;3. The proof of exactness is completely straightforward, and we leave it 
to the reader. D 

Given an exact couple ( *) we may form the derived exact couple (**), and 
then repeat the process on (**) .... Thus we get the spectral sequence 
of the exact couple, defined by: 

1 E = E with differential d1 = d = ;3')', from the original couple; 

2 E = HE with differential d2 = ;3',),', from the derived couple; 

3 E = H HE· .. from the derived couple of the derived couple; 

and so forth. 
It is easy to check that with notation as in the definition of a spectral 

sequence we have 

T+l Z = ')'-I(imaT ) 

T+IB = ;3 (ker aT), 

where aT is the composite of a with itself r times. Thus 



660 Appendix A3. Homological Algebra 

Where do interesting exact couples come from? All of those treated here 
are instances of the following construction: 

Let F be a differential module over a ring R, and let a : F -+ F be a 
monomorphism. Set P = FlaF. The module P inherits a differential from 
F, so the short exact sequence of differential modules 

O-+F~F-+P-+O 

gives rise to an exact triangle in homology 

HF a. • HF 

1\ ;: 
HF 

where we have written a again for the map on homology induced by 
a : F -+ F. The spectral sequence of this exact couple will be called 
the spectral sequence of 0 on F. 

It is convenient to think of the map a as induced by multiplication 
with an element a of R that is a nonzero divisor on F. Every case may 
be regarded this way-if necessary we adjoin a new variable a to R, and 
let it act as a on F (and thus also on H F), so that F and P become 
R[a]-modules, with P = FlaF. If R is Z, the ring of integers, and a E Z 
is an integer, then the spectral sequence above is widely known as the 
Bockstein spectral sequence, and the differentials as the Bockstein oper
ators, but much of the theory is the same in the general case. With this 
in mind, we shall call ker aT : HF -+ HF the or-torsion of HF. We 
shall also consider the intermediate complexes FiaT Fi we say that a class 
in H P can be lifted modulo or if it is in the image of the natural map 
H (FiaT F) -+ H Pi that is, if it has a representative in F (not necessarily 
a cycle) that becomes a cycle modulo aT. 

Proposition A3.21. In the spectml sequence of a on F, the module T+1 Z 
is the set of classes in H P that can be lifted modulo aT+1, while T+l B 
is the image in H P of the aT -torsion in H F. If z is a cycle in P with 
a representative z E F that is a cycle modulo aT, then the differential 
dr+1 : r+l E -+ r+l E takes the class z to the class of a-(T+l)dz, where d is 
the differential of F. 
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Proof. If z is any lifting to F of a cycle z in HF, then ')'[z] = [a-1dz] E HF. 
Further if z E F represents a cycle in F / aT F, then dz is divisible by aT, so 
a-T dz E F makes sense; it is a cycle because a is a monomorphism on F. 
The rest is immediate from the definitions. D 

A3.i3.3 Filtered Differential Modules and Complexes 

A filtered differential module is a differential module (G, d) together 
with a sequence of submodules GP satisfying 

G ::J ... ::J GP ::J GP+l ::J ... , pEZ 

that are preserved by d ~that is, dGP c GP for all p. If in addition G is 
graded (for example, G might be a complex), say by upper degrees G = 
ffiqGq, then we write (Gq)P for the pth level in the filtration of Gq. There 
are two examples that the reader should bear in mind. Recall that we write 
Gq for G-q. 

Example A. Let 

G G 'Pq+l G 'Pq G : ••• ---> q+l ---) q ---) q-l ---> ••• 

be a complex of finitely generated modules over a Noetherian local ring 
(R, m), and let 

For the interesting applications we shall need more general filtrations 

Gp GP 'Pq+l GP 'Pq GP • .. • ---> 1 ---) ---) 1 ---> • .. . q+ q q- , 

satisfying only the property that ... ::J G~ ::J G~+l ::J ... is an m-stable 
filtration in the sense of Chapter 5 and Exercise A3.42. 

We regard G as a filtered differential module by taking the direct sum 
over all q, as usual. 

Example B. Let F be a double complex as in Figure A3.9 and let G 
be the total complex, G = tot F. There are two natural filtrations on 
G~vertical filtration and horizontal filtration. The horizontal filtration is 
defined by subcomplexes horGP, where horGP comes from the rows of F 
where the second index 2: p; that is horGP is made from the rows from F*'P 
up, shaded in Figure A3.13. 

Similarly, vertGP is the subcomplex coming from the columns where the 
first index is 2: p; in the picture, these are the columns FP,* and to the 
right. More formally, we let 
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i 
dhor 

i 
~ FlP ~ F'+l.p 

horGP 

d"~ i i d"," 

F' .p - l ~ pi+l.p- l 

i 
d h r 

i 
~ ... 

IG RE 3.13. 

( GP)k - EB ·· . Fi ,j 
hor - '+J=k, J?P 

with differential defined as the restriction of the differential of G, and sim
ilarly for vertGP. 

In this section we shall give a general procedure for making a spectral 
sequence from a filtered differential module and we shall consider Exam
ple A. In the next section we shall consider Example B. In each of these 
cases we simply interpret Proposition A3.21; it is a new interpretation of 
the limit term that makes these situations interesting. 

Let G be a filtered differential module as above, and let F = EBpEZGP. 
The sum of the inclusion maps Gp+l -t GP defines a map a : F -t F that 
is obviously a monomorphism. Its cokernel P is obviously 

grG := EBpGP/GP+l . 

Thus, setting lEP = H(GP/GP+l) , we see that the spectral sequence of a 
on F starts with 

Since F/arF = EBpGP/GP+r, we may interpret Proposition A3.21 as saying 
in this case that r+ 1 Z = EB/+l ZP, with 

r+l ZP = {[z] E 1 EPlz E GP and dz E GP+r+l} 

= {z E GPldz E GP+r+l} + GP+l/GP+l + dGP; 

r+l BP = {[z] E 1 EPlz E GP and z = dy for some y E GP-r} 

= (GP n dGP-r) + GP+l/GP+l + dGP. 
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So far, this is nothing but an application of Proposition A3.21. The new 
element is the following relation of 00 E with HG. The module HG is filtered 
by the submodules (HG)P = imH(GP) -+ HG. The associated graded 
module may be written as gr HG = ffip(HG)P/(HG)p+l, and writing KP = 
{z E GPldz = O}, we have 

(HG)p /(HG)p+l = KP /(KP+l + (dG n GP)) 
= KP + GP+l/(GP n dG) + GP+l 

because KP n ((GP n dG) + GP+l) = KP+l + (dG n GP). 
This last expression for (HG)P /(HG)p+l is quite similar to the expression 

r r 

Writing the quotient on the right as MP / NP, we have 

MP :J KP + GP+l, 

NP c (GP n dG) + GP+l; 

so taking the direct sum over all p, we get 

gr HG is a quotient of a submodule of 00 Z/oo B. 

Definition. We say that the spectral sequence of the filtered differential 
module G converges, and for any term r E of the spectral sequence we 
write r E ~ gr HG, if gr HG = 00 Z/oo B; that is, if for each p we have 

i. nr({z E GPldz E GP+r} + GP+l) = {z E GPldz = O} + GP+l, and 

ii. Ur (( GP n dGP-r) + GP+ 1) = (GP n dG) + GP+ 1 . 

Note that condition ii is relatively trivial; it will be satisfied as soon as 
G = UpGP. Condition i, however, is much more subtle. 

Theorem A3.22. The spectral sequence in Example A converges; further, 
the filtration induced on the homology of G is m-stable. 

Proof. We prove convergence for the m-adic filtration, leaving the important 
generalization to the reader in Exercise A3.42. In this spectral sequence, 
GP = G for p :S 0; thus convergence condition ii is trivially satisfied. 

We now turn to condition i, which we may rewrite in the form 

r 

= ({z E GPldz = O} + GP+l)/{Z E GPldz = O}. 
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The proof uses the Artin-Rees lemma (Lemma 5.1) and the Krull intersec
tion theorem (Corollary 5.4). 

Note that each GP is a direct sum of the finitely generated modules 
(Gq)P = mPGq, and the result we want may be checked for one of these 
summands at a time. 

First, set X = (Gq)P/{z E (Gq)Pldz = a}. The differential d induces an 
inclusion X c (G q_ dP, and for sufficiently large r', 

{z E (Gq)P Idz E (Gq_dP+r'+r}/{z E GPtdz = o} 
eX n (Gq_l)p+r 

= X n mr(Gq_I)P. 

By the Artin-Rees lemma, there is a number s such that this is contained 
in mr - s X for all r ::::: s, so that 

Thus 

{z E (Gq)pldz E (Gq_dP+r+r'} + (Gq)p+I/{z E (Gq)Pldz = o} 

c mr-s(Gq)P + {z E (Gq)Pldz = o} + (Gq)p+I/{z E (Gq)pldz = O}, 

and the intersection of these for all r is 

{z E G~ldz = O} + G~+1 /{z E G~ldz = O} 

by the Krull intersection theorem. We leave the m-stability of the induced 
filtration on HG to the reader (see Exercise A3.42). 

The following corollary contains two simple applications. 

Corollary A3.23. 

a. Let Xl, ... ,Xr be a sequence of elements in the maximal ideal m of a 
local ring (R, m), and write x; for the leading form of Xi in grm R. If 
the x; form a regular sequence on grm R, then the Xi form a regular 
sequence on R. 

b. Let M and N be finitely generated modules over a local ring (R, m). 
There is a spectral sequence 

TorgrR(gr M, gr N) => TorR(M, N). 

Thus, for example, if Torr R(gr M, gr N) = 0 then Tor~(M, N) = O. 

Proof. Follow the hints in Exercises A3.43 and A3.44. o 
We emphasize that the filtration induced on TorR(M, N) in this corollary 

may not be the m-adic filtration, but will be m-stable. 
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A3.13.4 The Spectral Sequence of a Double Complex 

We now take up Example B, which is arguably the most important for 
algebraists. For this discussion we keep the example's notation, summarized 
in Figure A3.9, with G = tot F. 

We consider HG and H(G/aG) as bigraded modules by setting 

The maps a, (3, and 'Y in the exact triangle 

HG a ~ HG 

~; 
H(G/aG) 

are then bigraded of degrees (-1,1), (0,0), and (1,0), respectively. Thus 
the differential dr : r E ---+ r E is bihomogeneous of degree r in the p grading 
and -(r - 1) in the q grading; that is, dr is the direct sum of maps 

More graphically, representing 1 E as an array of the 1 EP,q, 

1 EP,q 

1 Ep,q-l 

1 EP,q-2 

1 EP+l,q 

lEp+l,q-l 

1 EP+l,q-2 

1 EP+2,q 

1 EP+2,q-l 

1 EP+2,q-2 

the differential dr goes "r steps to the right and r - 1 steps down" as in 
Figure A3.14. 

Of course, this picture needs some interpretation: d2 is actually defined 
on the kernel of d1 (a quotient of which is 2 E*'*); d3 is actually defined on 
the kernel of d2 ; and so on. To describe the di , suppose for definiteness that 
we are working with the spectral sequence of the horizontal filtration. Then 
d1 is simply the map induced by dhor on the homology of dvert . An element 
of the kernel of d1 is represented by a "vertical cycle" Z E FP,q (that is, 
an element of the kernel of dverd that is mapped by dhor to 0 in homology 
-that is, such that dhor(z) is a "vertical boundary," an element of the form 
dvert(z'). The map d2 takes (the homology class of) z to the homology class 
of dhor(z'). For this to be zero means that dhor(z') = dvert(z") for some Zll, 
and in this case d3 carries (the homology class of) z to dhor(ZIl); and so 
on. 

Here is our main result. 
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FIG RE 3.14. 

3.15. 

Theorem A3.24. Associated with the double complex F are two spectral 
sequences, ha~E and ver[ E, corresponding, respectively, to the horizontal 
and vertical filtrations of tot(F) = G. The 1 E terms are bigraded with the 
components given by 

1 Ep,q = Hq(F*'P) har , 1 EP,q = Hq(FP'*) vert . 

If Fi,j o for all i < 0 or for all j > 0, then the horizontal spectral 
sequence converges; that is, 

Symmetrically, if Fi,j = 0 for all i > 0 or for all j < 0, then the vertical 
spectral sequence converges. 

Terminology: Theorem A3.24 implies that both spectral sequences con
verge either if Fi,j = 0 for all i < 0 and for all j < 0 or if Fi,j = 0 for 
all i > 0 and for all j > O. In the former case, the nonzero terms are 
all in the first quadrant of the i, j-plane, and we call F a first-quadrant 
double complex. In the second case the nonzero terms are all in the 
third quadrant, and we call F a third-quadrant double complex (see 
Figure A3.15). 
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Proof. The proof of the first formula is immediate from the definitions. For 
example, we have 

1 Ep,q = Hp+q(gr (tot F)P) hor hor 

= Hq(F*'P), 

whence the formula for ho~Ep,q; the case of the vertical spectral sequence is 
similar. 

The proof of convergence uses the bigrading. Writing G for the total 
complex tot F, we must show that 

1. nr({z E GPldz E GP+r} + GP+l) = {z E GPldz = O} + GP+l 

and 

n. Ur ( (GP n dGP-r) + GP+l) = (GP n dG) + GP+l. 

Since G = UpGP with respect to either filtration, condition ii is trivially 
satisfied (this does not use any conditions on the double complex). Condi
tion i means that if z E GP and for each r there is an element Yr E GP+l 
such that d(z - Yr) == OmodGp+r, then there is some Y E GP+l such that 
d(z - y) = O. In our case, since G is a complex, it is enough to check this 
for z E (Gq)P, for some q. For definiteness, consider again the case of the 
horizontal filtration. The element d( z - Yr) is then in 

Fi,j. 
i+j=q+l,j2':p+r 

If Fi,j = 0 for j > 0, then (G*)p+r = 0 for r > -po If, on the other hand, 
Fi,j = ° for i < 0, then (Cq+1 )p+r = ° if r > q + 1 - p. Thus in either case 
d( z - Yr) = 0 for suitable r, and we may take Y = Yr for this value of r. 

A refinement of the notation for convergence is useful: We write 

to mean that the spectral sequence containing the terms r Ep,q converges, 
and that writing Hp+q(tot F)P for the pth level in the associated filtration 
of Hp+q(tot F), 

00 EP,q = Hp+q (tot F)P / Hp+q (tot F)P+ 1. 

We now give two simple applications. More will be found in the exer
cises. The first involves a double complex both of whose spectral sequences 
degenerate at 2 E. 

i. Balanced Tor. We shall show that Torf(M, N) may be computed from 
a free resolution of either M or N and is in fact a "balanced" functor in the 
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P®Q: 

FIGURE A3.16. 

sense that if a E R, then multiplication by a on M induces the same map 
on Torf(M, N) as does multiplication by a on N-that is, the R-module 
structure on Torf(M, N) may be induced from the module structure of 
either M or N. To see this let 

'Pi P: ... ---> Pi ---t Pi- 1 ---> ••• ---> Po 

and 
'Ij;, 

Q: ... ---> Qi ---t Qi-l ---> ••• ---> Qo 

be free resolutions of M and N, respectively. We shall show that 

H(P 0R N) ~ H(tot(P 0R Q)) ~ H(M 0R Q), 

as R-modules. Since "Torf(M, N) computed from a free resolution of M" 
is the first of these, and "Torf(M, N) computed from a free resolution of 
N" is the last, this will suffice. 

Let vertE be the vertical spectral sequence associated with the third
quadrant double complex F = P 0R Q, which may be written with 
upper indices, using the convention that pi = P-i , in the form shown in 
Figure A3.16. We have vert1 Ei,j = veri E-i,-j = Hj(Pi 0 Q). Since P; is free, 
the complex Pi 0 Q is just a direct sum of copies of Q; more invariantly, we 
have Hj (P;0Q) = Pi0Hj (Q). This is 0 for j > 0, while Pi0Ho(Q) = Pi0N. 
Thus the only nonzero veri Ei,j are those with j = O. The differential d1 is 
induced by dhar = cP 01. Thus verl E is the complex P 0 N, and 

2 E . . = { Hi(P 0 N) f~r j = 0 
vert ',J 0 for j > O. 
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It follows that the spectral sequence degenerates at 2 E; that is, veri:' E = 
ver; E. Since all the nonzero terms have j = 0, 

EB ve~ Ei,j = 00 Ek,o, 
i+j=k 

and the filtration of H(tot(P®Q)) has only one nonzero piece. Thus we get 
H(P ® N) = H(tot(P ® Q)). By symmetry, H(tot(P ® Q)) = H(M ® Q) 
as well; we could also deduce this from the horizontal spectral sequence of 
P®Q. 

ii. Change of Rings. Let R ---+ S be a ring homomorphism, let A be an 
S-module, and let B be an R-module. We shall derive one of the "change of 
rings spectral sequences" (see Exercise A3.45 for others), whose 2 Ei,j term 
is Exts(A, Ext~(S, B)), converging to Ext~j (A, B); that is, 

Ext~(A,Ext~(S,B)) "*i Ext~j(A,B). 

Let 
P: ... ---+ Pi ---+ Pi- 1 ---+ ••. ---+ Po 

be an S-free resolution of A as an S-module, and let 

be an R-injective resolution of B as an R-module, respectively. We regard 
Homs(P, HomR(S, Q)) as a first-quadrant double complex, with Homs(Pi , 

HomR(S, Qj)) as the i,j term. We first claim that the horizontal spectral 
sequence degenerates, as in Example i. We have 

Since Qj is R-injective, HomR(S, Qj) is S-injective, and 

Since p. is a resolution of A, this vanishes except for i = 0, and when i = ° 
it is Homs(A, HomR(S, Qj)) ~ HomR(A, Qj). Since the ho;E differential is 
induced from the differential in Q, we see that 

2Ej,i = {Hj(HOmR(A,Q.)) = Ext~(A,B) for i = ° 
hor 0 for i > 0. 

Thus, as in the last example, the spectral sequence degenerates at the 2 E 
term, so Hj(tot(Homs(P, HomR(S, Q))) ~ Ext~(A,B). 

However, the vertical spectral sequence does not degenerate in this case! 
We have 
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verlEi,j = Hj(Homs(~,HomR(S,Q*)), 

and since ~ is free over S, this may be written as 

Homs(~, Hj (HomR(S, Q*))) = Hom(~, Ext~(S, B)). 

The verl E differential is the map induced by the differential of P, and thus 
the 2 E term has the form 

veJEi,j = Ext~(A,Ext~(S,B)). 

The 2 E differential d2 maps this term to Ext~+2(A, Ext~-1(S, B)) 
= ~ertEi+2,j-1. Since horE has the same limit as vertE, we get 

veJ E = Exts(A, ExtR(S, B)) => ExtR(A, B) 

as required. 

The change of rings spectral sequence is a special case of the spectral 
sequence of a composite functor; we have only used the fact that 
HomR(A, B) is the composite of the functor Homs(A, -) with the functor 
HomR(S, -) and the fact that the functor HomR(S, -) takes injectives to 
injectives. The general construction plays an important role in algebraic 
geometry, beginning with the Leray spectral sequence. See Exercise A3.50 
below. 

A3.13.5 Exact Sequence of Terms of Low Degree 
In general, the relation between the r E term and the 00 E term of a spectral 
sequence is somewhat tenuous, but there is often a simple relation between 
the Hk(tot F) and some of the 2 EP,q. For the sake of definiteness we treat 
the vertical spectral sequence of a third-quadrant double complex F only. 
Of course, similar remarks will hold for the horizontal spectral sequence, 
and also for a first-quadrant double complex; they may be extended to 
other r E as well (see Exercise A3.48). 

Proposition A3.25 (5-term exact sequence). If Fi,j is a third-quadrant 
double complex, then writing Hi for H-i (tot F), and E for vertE, we have 

a. Ho S:! 2 EO,O. 

b. For every i there is a pair of natural maps 

2 EO,-i ~ Hi ~ 2 E-i,o. 

c. There is a 5-term exact sequence 

H it 2E-20 d2 2Eo- 1 ~ H It 2E-10 0 
2- '- ' - 1- '~, 

where d2 is the differential of the spectral sequence. 
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Proof. We use the fact that E converges to H(tot F), together with the fact 
that 2 EP,q = 0 for p > 0 and for q > O. For example, to prove part c, look 
at Figure A3.17 where we have shown some of the 2 E differentials. 

o o o 

o o o 

FIGURE A3.17. 

Because the terms outside the third quadrant are 0, we see that 

2E- 1,0 = ooE-1,0 = HI/(H1 )0, 

while 

and 
ker d2 = 3 E-2,0 = 00 E-2,0 = H2/ (H2)-I. 

Putting these facts together, we get the five-term sequence. The other parts 
are similar, but even easier. 0 

A3.13.6 Exercises on Spectral Sequences 

Exercise A3.35: Check the exactness of the derived couple in Proposi
tion A3.20. Check the formulas for r+l Z and r+l B. 

Exercise A3.36: Let (F, d) be any differential module, and filter F by 

FO := F :J Fl := kerd:J F2 := imd:J F3 := O. 

Writing (r E, dr) for the associated spectral sequence, show that 3 E = 00 E = 
HF. 

Exercise A3.37: Let p E Z be an integer. Explicitly construct the Bock
stein spectral sequence associated with the complex 
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F : 0 ---+ Z2 ~ Z ---+ 0 

with respect to the endomorphism that is multiplication by p; that is, 
compute all the T E and dT) and compute 00 E. 

Exercise A3.38: 

a. Show that for the spectral sequence of the exact couple 

A 

there are short exact sequences 

o ---+ AI (im a + ker aT) ---+ T E ---+ (ker a) n (im aT) ---+ 0, 

by showing that the left- and right-hand terms are the images of the 
appropriate maps in the rth derived exact couple. 

b. Show that if ker aT+ 1 = ker aT for some r, then the spectral sequence 
collapses at T E and T E = 00 E = AI(ima + keraT ). 

c. Show that if A is a finitely generated module and the ground ring is 
Noetherian, then for some r the condition of part b is satisfied. Give 
a version that holds for the spectral sequence of a monomorphism 
a: F ---+ F of a (not necessarily finite) complex F of finitely generated 
modules over a Noetherian ring. 

d. If F is a finite complex of finitely generated, torsion-free Abelian 
groups and p is an integer, then show that the Bockstein spectral 
sequence for p on F (that is, the spectral sequence for the endomor
phism of F that is multiplication by p) has limit H F I (T + pH F), 
where T is the p-torsion submodule of HF (the set of elements killed 
by some power of p). For what r is T E equal to 00 E? 

e. Generalize the argument in the case where F is an infinite complex of 
finitely generated, torsion-free Abelian groups; again, show that the 
Bockstein spectral sequence for p has limit HFI(T + pHF). 

Exercise A3.39: Generalize the construction of the spectral sequence of 
an exact couple to the following: Suppose we are given an exact triangle 
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A a. B 

~~ 
E 

together with an epimorphism s : A ~ B. Define a differential d : E ~ E 
by d = (38'Y, Show that there is a "derived triangle" 

where (3'(aa) is the class of (3sa, and a','y' are induced from a,,,(; there is 
also a natural "derived epimorphism" s : s-laA ~ aA. Thus the process 
may be repeated, and we get a spectral sequence. 

Exercise A3.40: Let R be the local ring k[x, Y](x,y)' Work out all the terms 
and differentials of the spectral sequence 

of Corollary A3.23b. 

Exercise A3.41 (Comparison Theorem): Suppose that F··· :l FP:l ... 
and G··· :J GP :J ... are filtered complexes, and that a : F ~ G is a 
morphism of filtered complexes-that is, a morphism of complexes carrying 
FP into GP. Writing r E(F) and r E(G) for the associated spectral sequences, 
show that there are induced maps r E(F) ~r E( G) for every r. Show that if 
one of these maps is an isomorphism, and the spectral sequence converges, 
then a induces an isomorphism on homology, H(F) 9:! H(G). 

Exercise A3.42: Let R be a ring, and let m be any ideal of R. Recall from 
Chapter 5 that a filtration 

... :J GP :l GP+l :l ... 

of an R-module G is called m-stable if 

i. mGP C GP+ 1 for all p; and 

ii. mGP = GP+l for all sufficiently large p. 
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In Chapter 5 it is shown that if condition i is satisfied then gr G is 
naturally a module over the ring grm R, and that if G is a finitely generated 
module and both conditions are satisfied, then gr G is a finitely generated 
(grm R)-module. Show conversely that if condition i is satisfied and gr Gis 
a finitely generated (grm R)-module, then ii holds. 

Assume that (R, m) is a local Noetherian ring, and that G is a finitely 
generated module with m-stable filtration 

G ::J ... ::J GP ::J GP+l ::J . .. . 

a. If the associated graded module gr G = ffiGP /GP+1 is zero, then G is 
zero. 

b. If F is any submodule of G, then the filtration of F by FP := F n GP 
is m-stable. Similarly, the filtration of G / F by (G / F)P := (FP + G) / G 
is m-stable. 

c. Suppose that (R, m) is a local Noetherian ring. If 

G: ... ---+ Gq ---+ Gq- l ---+ ••• 

is a filtered complex of finitely generated R-modules such that the 
filtration on each Gq is m-stable, show that the induced filtration on 
the homology HiG is also m-stable. Prove that the spectral sequence 
of the filtered complex G converges to HG, that is, H(gr G) =} HG. 

Exercise A3.43: Prove assertion a of Corollary A3.23 by giving an m
stable filtration of the Koszul complex K (Xl, ... , X r ) as follows: Let 8i be 
the degree of the leading form xi of x;, that is, 8; is the largest integer 
8 such that Xi E m8. In the Koszul complex, the ith free module may be 
written as 1\ i Rr. This module has a basic consisting of elements of the form 
ej! 1\ ... 1\ eji' where ej is the basis vector of 1\1 Rr = Rr that maps to Xj in 
R. We filter 1\ i Rr by submodules 

( I\i Rr)p = ffi(Re' 1\ ... 1\ e· )P J! Ji , 

where (Rej! 1\ .. . 1\ ejJP = mP-Et8Jt (Rej! 1\ .. . 1\ ejJ; here mk is interpreted 
as R for k :s; O. 

Show that the filtration··· ::J (l\iRr)p ::J (l\iRr)p+1 ::J ... of l\iRr is 
m-stable, and that with this filtration 

gr K(XI, ... ,xr) = K(xi, ... , x;), 

the Koszul complex of the leading forms of the Xi, over the ring grm R. Now 
deduce assertion a of the corollary from the convergence of the associated 
spectral sequence 

H(K(xr, . .. , x;)) =} gr H(K(Xl, ... , Xr )). 

Exercise A3.44: Prove the assertion of part b of Corollary A3.23 as fol
lows. 
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a.* First find a free resolution G of M and an m-stable filtration· .. :J 
GP :J GP+l :J ... of it such that the associated graded complex is a 
free resolution of grm Mover grm R. 

b. Define a filtration on the complex G iZI N by taking 

(G iZI N)P = image in G iZI N of GP iZI N. 

Show that with respect to this filtration, gr( G iZI N) = gr G iZI gr N. 
Now consider the spectral sequence of the filtered complex G iZI N. 

Exercise A3.45 (More Change-of-Rings Spectral Sequences): Sup
pose that R --+ S is a homomorphism of rings, and A is an S-module, B 
an R-module. 

a. Show that there is a spectral sequence whose 2 E term is Exts(TorR(S, 
B), A), and that converges to ExtR(B, A). 

b. Similarly, show that there is a spectral sequence 

Tor: (Tor: (S, B), A) =?p Tor:+q(B, A). 

Exercise A3.46 (The Two-Rowand Two-Column Cases): 

a. Let F be a double complex whose vertical spectral sequence E =vert E 
converges to H := H(tot F). Suppose that for some r only two 
columns of r E are nonzero-that is, suppose that the r Ep,q are 
nonzero for only two distinct values of p, say p = sand p = t, with 
s > t. Show that there is a long exact sequence 

... --+ r Es,i-s --+ Hi --+ r Et,i-t ~ r E s,i-s+l --+ Hi+l --+ ••. , 

where {j = ds - t if r ::; s - t, and (j = 0 if r > s - t. 

b. A similar result holds if the r Ep,q are nonzero for only two values of 
q. Apply this to the change-of-rings spectral sequence in the text: For 
example, assume that Ext~(S, B) = 0 unless j = s or j = s + 1, and 
derive the isomorphism 

ExtR(A, B) ~ Homs(A, ExtR(S, B)) 

and the long exact sequence 

o --+ Ext1(A,ExtR(S,B)) --+ ExtR+l(A,B) --+ Homs(A,ExtR+1(S,B))--+ 

Exts(A, ExtR(S, B)) --+ ExtR+U(A, B) --+ ExtS-l(A, ExtR+1(S, B)) 
--+ ExtS+l(A, ExtR(S, B)) --+ •.•• 
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c.* Suppose that R is a regular ring of dimension d (for example, a 
polynomial ring in d variables over a field) and S = R/ I is a two
dimensional domain (for example the homogeneous coordinate ring 
of an irreducible projective curve). Let B = R, and let A be any 
S-module. Show that part b above applies, with s = d - 2. 

Exercise A3.47: Suppose that R ---t S --* k are maps of rings. Using the 
change-of-rings spectral sequence of Exercise A3.45b, show that there is a 
five-term exact sequence 

Tor~( k, k) ---t Tor~ (k, k) ---t Torf(S, k) ---t Torf( k, k) ---t Torr (k, k) ---t O. 

This sequence is particularly interesting when R is a local ring, S is a factor 
ring of R, and k is the residue field of R and S. Interpret the sequence in 
this case in terms of minimal free resolutions. See, for example, Gulliksen 
and Levin [1969] for information on the resolution of the residue class field 
of a local ring. 

Exercise A3.48: Find explicit analogues and generalizations for Propo
sition A3.25 for all r E, for horizontal spectral sequences, and for the case 
where pi,j = 0 for i < 0 and j < O. 

Exercise A3.49 Resolutions of complexes:* If 

P : 0 ---t pO ---t pI ---t p2 ---t •.• 

is a complex of modules, show that there is a double complex Ij,k and 
maps 

i i i 
0 ---t 1°,2 ---t 1 1,2 ---t 1 2.2 ---t 

i i i 
0 ---t 1°,1 ---t 1 1,1 ---t 1 2,1 ---t 

i i i 
0 ---t 1°,0 ---t 1 1,0 ---t 1 2,0 ---t 

i i i 
0 ---t po ---t pI ---t p2 ---t 

such that 

i. Each column Ij,O ---t Ij,1 ---t Ij,2 ---t ••• is an injective resolution of Pj. 

ii. In the rows, the kernel of each Ij,k ---t Ij+1,k is an injective summand 
of Ij,k, and thus the image of Ij,k ---t Ij+1,k and the homology of 
Ij-1,k ---t Ij,k ---t Ij+1,k which is h 1 Ej,k are inJ'ective modules , or' . 
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iii. The spectral sequence horE degenerates at 2 E to H(F); that is, the 
term ho:E of the spectral sequence, with differential dl induced by 
the vertical maps in the diagram above, forms injective resolutions 

0 --+ Hj(F) --+ lEj,O --+ lEj,l --+ 1 Ej,2 --+ ..• 
hor hor hor 

of the homology of F. 

Such a double complex is called an injective resolution of the com
plex F. 

Exercise A3.50 (Grothendieck's spectral sequence of a composite 
functor): Suppose that A and 'B are categories of modules over some 
rings and that :f : A --+ 'B and 9 : 'B --+ e are left-exact functors. What 
is the relation between the derived functors Ri:f, Ri9, and Ri(9:f)? Under 
favorable circumstances, it is given by a spectral sequence. Prove this as 
follows: 

a. We say that an object B of'B is 9-acyclic if Ri9(B) = 0 for all i > O. 
Show that if B is any object of'B and 0 --+ B --+ BO --+ Bl --+ ... is 
an exact sequence of objects of'B with each Bi 9-acyclic, then 

Ri9(B) = Hi(O --+ 9Bo --+ 9Bl --+ 9B2 --+ •.. ). 

b.* Now suppose that A has a resolution by :f-acyclic objects that are car
ried by :f to 9-acyclic objects. Show that there is a spectral sequence 

2 Ep,q = RP:f(RQ9(A)) =*P RP+Q(:f9)(A). 

c. Show that the change-of-rings spectral sequence given in the text is 
of this form, where the composite functor is 

Homs(A, HomR(S, -)) = HomR(A, -). 

d.' If you know enough about sheaves, derive the Leray spectral sequence 
H i (Rj 7r.(A)) =* Hi+j(A) for a sheaf of Abelian groups A on a topo
logical space X and a continuous map of spaces 7r : X --+ Y. 

A3.14 Derived Categories 

... Ie manque de fondements adequats d'Algebre Homologique 
m'avait empikM .... Cette lacune de fondements est sur Ie point 
d'etre comblee par la these de Verdier. ... 

[ ... the lack of an adequate foundation for homological algebra 
hindered me .... This gap in the foundations has just been filled 
by the thesis of Verdier .... J 

-Alexandre Grothendieck, 1963 
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We have given a somewhat primitive view of derived functors simply as 
things constructed from projective or injective resolutions. Various more 
axiomatic definitions have been used, but the most complete and powerful 
seems to be Verdier's formulation by means of his notion of the derived 
category [1977]. We give a very brief sketch of the derived category and 
the picture of derived functors to which it leads, in the hope that this will 
help orient the reader. More complete pictures may be found in Hartshorne 
[1966b, Chapter I] Iversen [1986], Grivel [1987], or Lipman [1995]. 

As we have seen, the central idea in homological algebra is to replace a 
module by a projective resolution or an injective resolution: for simplicity 
we shall stick with projective resolutions for this description, and leave 
the dualization to the reader. There are two desiderata addressed by the 
construction of the derived category: First, one would like the association of 
a module to one of its projective resolutions to be a functor of some kind. 
Second, one would like to be able to replace a module, or a complex of 
modules, with a complex of projective modules having the same homology, 
as in some ways these are easier to manipulate. This leads to a construction 
in two steps, which we now explain. We shall ignore some set-theoretic 
points (coming for example from the fact that the "set of all modules" is 
not a set) that would form a part of a careful treatment. 

A3.14.1 Step One: The Homotopy Category of Complexes 

The association of a module to its projective resolution is not a functor, 
because projective resolutions are not unique, and neither are the maps 
induced on projective resolutions by maps of modules. The first of these 
problems is easy to cure: We simply choose a fixed projective resolution 
P(M) for each module M (other, more canonical solutions would be to 
make a "canonical projective resolution", with each module free on the 
elements of the kernel of the map before; or to take some direct limit 
over all projective resolutions). Unfortunately, the nonuniqueness of maps 
induced on projective resolutions keeps P from being a functor. However, 
we have already seen that every map of modules lifts to a map of projective 
resolutions that is unique up to homotopy. Thus P becomes a functor from 
the category J\1 of R-modules to the category K(J\1) whose objects are 
complexes of R-modules and whose morphisms are the homotopy classes 
of maps between complexes. 

Because we would like to have projective resolutions for any object in our 
category, and because it is not so clear how to make projective resolutions 
for unbounded complexes, we restrict ourselves at this point to the category 
K+(J\1) of "bounded-below complexes," that is complexes 

F: ... ---t Fi+ 1 ---t Fi ---t ••• 

with Fi = 0 for i « O. See Exercise A3.53 for the meaning of projective 
resolutions in this setting. (Recent developments suggest that there are 
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good resolutions for unbounded complexes too--see A vramov and Halperin 
[1986]. In any case, a more thorough treatment of derived categories would 
contain parallel constructions with bounded-below complexes, unbounded 
complexes, and bounded-above complexes, the last for the purpose of using 
injective resolutions and constructing right derived functors. We shall sys
tematically ignore all but the first of these.) Because homotopic maps 
induce the same map on homology, one still can speak of the "nth homology 
module" Hi(X) of an object X of K(M), even though one cannot speak of 
the "term of degree n" in X. 

Now the category K+(M) is no longer an Abelian category. For example, 
if F and G are the complexes of Abelian groups 

F: ···O-+O-+Z-+O-+O-+···, 

G: ···0 -+ 0 -+ Z/(2) -+ 0 -+ 0 -+ ... , 

and 7r : F -+ G is the natural map of complexes mapping Z onto Z/(2), 
then no image for 7r exists in K+(M)j see Exercise A3.51. 

Because K+(M) is not Abelian, we cannot speak of exact sequences in 
this category. However, the category K+ (M) has a new structure, called 
a triangulation, which can be used as a substitute for exact sequences. 
First, we have a "translation functor" T on complexes that takes a complex 
F to the complex F[-l]. Given a translation functor T on a category, a 
triangulation is a distinguished collection of diagrams of the form 

A -+ B -+ C -+ T A, 

satisfying certain axioms, which we shall not state. In the case of the cate
gory K+(M), we may take the triangles to be the diagrams made from the 
mapping cones of maps a : A -+ B of complexes, that is the diagrams of 
the form 

A~ B ~M(a) ~ TA, 

where for simplicity we have written a for the homotopy class of a, and f3 
and'Y are the homotopy classes of the standard inclusion of Bin M(a) and 
the projection of M(a) to A[-l] = TA, respectively. If we apply the homol
ogy functor to such a triangle, we get a long exact sequence in homology, 
as explained in the section on mapping cones. 

The reason for making this choice instead of taking the triangles to be (or 
at least include) the short exact sequences of complexes is that, with the 
definition above, any additive functor on the category of modules induces, 
in an obvious way, a functor on K+ (M) that preserves triangles. 

A3.14-2 Step Two: The Derived Category 

Following our outline, we wish to be able to replace any complex by a pro
jective complex with the same homology. The construction of projective 
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resolutions of complexes, Exercise A3.53, shows that given any bounded
below complex F there is a bounded-below complex F' of projective mod
ules and a map F' ----+ F of complexes that induces an isomorphism on 
homology. Thus we may attain our goal by formally inverting every mor
phism that is an isomorphism on homology-such a morphism is called a 
quasi-isomorphism, or quism. 

Now, quite generally, given a category A and a set S of morphisms, there 
is a universal solution to the problem of finding a category 13 and a functor 
A ----+ 13 taking all the elements of S to isomorphisms; the resulting category 
13 is unique up to equivalence of categories and is called A[8-1]. The objects 
of A[S-l] may be taken to be the same as the objects of A, and the mor
phisms are "words" whose letters are morphisms of A and formal inverses 
8-1 of morphisms 8 E S, subject to the condition of composability and the 
equivalence relation generated by composition in A and the rule that 8-1 is 
inverse to 8. (The construction is directly analogous to localization of rings, 
which is actually the special case where A is an additive category having 
just one object X-the ring in question is Hom(X,X).) However, these 
localized categories are in general quite awkward. For example, there may 
be no simple criterion to tell whether two morphisms from A become equal 
in 13. (The same phenomenon occurs in the special case of localizations of 
general noncommutative rings. In logical terms, the "word problem" may 
be recursively insoluble.) 

In the case of the category K+ (M) we are lucky (the recognition of this 
luck seems to have been one of Verdier's fundamental insights): The local
ization of K+(M) with respect to the set of quasi-isormorphisms has a nice 
form. The fundamental point is that the maps in the localized category can 
all be represented in the form a-la, where a is a morphism of K+(M) and 
a is a quasi-isomorphism, so that we have a sort of "calculus of fractions." 
The crucial point that must be checked is that we can rewrite any compo
sition b(3-1 with (3 a quism in the form a-la, with a a quism. Rewriting 
this without using inverses, one must check that given a map a : B ----+ C 
and a quasi-isomorphism a : B ----+ A, there exists, for some complex B', a 
quasi-isomorphism (3 : C ----+ B' and a map b : A ----+ B' such that ba = (3a 
(see, for example, Hartshorne [1977, p. 30].) 

We now define the derived category D+(M) to be the category K+(M) 
with the quasi-isomorphisms formally inverted. The objects of D+(M) are 
complexes, and the maps are things of the form aa-1 : A ----+ C, where 
a: B ----+ C is a morphism and a: B ----+ A is a quasi-isomorphism in K+(M), 
modulo an equivalence relation effectively saying that one can cancel a 
quasi-isomorphism from a product. We write P : K+(M) ----+ D+(M) for 
the localization functor. 

The derived category inherits from K+ (M) the structure of a triangu
lated category: Since the translation functor on K+ (M) preserves quasi
isomorphisms, it induces a functor, called again translation, on D+(M), and 
we take as a triangle anything quasi-isomorphic to a triangle in K+(M). 
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It is interesting to note that any exact sequences of complexes becomes a 
triangle of D+(M); this follows from Exercise A3.33. 

Just as using the localization of a ring is conceptually simpler than work
ing in the original ring but "as if" elements of a multiplicative system 
were invertible, working in the derived category has proved simpler for 
certain applications than working with the category of complexes directly. 
However, every quasi-isomorphism between bounded-below projective com
plexes is actually a homotopy equivalence, so that if we define P to be the 
category of projective R-modules, the derived category may be described 
simply as K+(P); see Exercise A3.54. 

With these i<J.eas in place we can describe left-derived functors (for right
derived functors one would use bounded-above complexes and injective 
resolutions). If F is an additive functor from M to M, say, then as we have 
already noted, F induces a functor that we may call K(F) : K(M) ---+ 

K(M). The left-derived functor LF of F is a functor LF : D+(M) ---+ 

D+(M), together with a natural transformation TJ : LF 0 P ---+ KF, which 
gives the "best possible approximation to K F" in the sense that for any 
functor G : D+(M) ---+ D+(M) and natural transformation v: GoP ---+ KF, 
there is a unique map G ---+ LF such v is the composite GoP ---+ LFoP ---+ F. 
The old derived functors LiF are obtained by composing LF with the "ith 
homology functor" Hi : D+ (M) ---+ M. 

The first hint of the simplification that is obtained by all this comes 
when one considers composite functors. Previously we saw that under good 
conditions the derived functors of a composite functor fit into a spectral 
sequence (we did this in the text in the context of "change of rings" and in 
the exercises in general). But in terms of the derived category, the derived 
functor of a composite functor is (under the same favorable circumstances) 
simply the composition of derived functors! For example, if S is an R
algebra, M is an S-module, 

F = S C?JR - : R - modules ---+ S - modules, 

and 
G = M C?Js - : S - modules ---+ S - modules, 

then the spectral sequence 

LiG(LjF) = Torf(M, Torf(S, N)) =} Tor~j(M, N) = Li+j(G 0 F)(N), 

where N is an R-module, is replaced by the much simpler 

LG 0 LF = L(G 0 F). 

When there are many functors and compositions around, this simplification 
can be decisive. Of course, when one wants to make computations one must 
fall back to the more concrete language of spectral sequences. 
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A3.14.3 Exercises on the Derived Category 

Exercise A3.51 (The category K+(JVr) is not Abelian):* In an Abe
lian category, every morphism A -+ C can be factored into an epimorphism 
followed by a monomorphism A --* B >---+ C. Show that the natural map 
Z -+ Z/(p) gives rise to a map of complexes 

A = { ... -+ 0 -+ Z -+ 0 -+ ... } -+ {- .. -+ 0 -+ Z/ (p) -+ 0 -+ ... } = C 

that cannot be factored in this way in K+(M). 

Exercise A3.52: If A and B are bounded-below complexes of projective 
modules, and a: : A -+ B is a quasi-isomorphism, show that a: is a homotopy 
equivalence. 

Exercise A3.53: Let F be a bounded-below complex of R-modules. Imi
tate Exercise A3.49 to show that there is a bounded-below complex of 
projective R-modules P and a quasi-isomorphism P -+ F. Such a P is a 
projective resolution of F. 

Exercise A3.54: Let K+(P) be the category whose objects are bounded
below complexes of projective R-modules, and whose morphisms are homo
topy classes of morphisms of complexes. Define a "projective resolution 
functor" K+(M) -+ K+(P). Show that it sends quasi-isomorphisms to iso
morphisms (that is, to homotopy equivalences), and thus induces a func
tor D+(M) -+ K+(P). Show that together with the composite functor 
K+(P) -+ K+(M) -+ D+(M), this defines an equivalence of categories 
D+(M) ~ K+(P). 



Appendix 4 
A Sketch of Local Cohomology 

As we have often seen, there is a tight analogy between local and graded 
rings. We have generally started from things that we proved for the local 
case and adapted them for the graded case. But the analogy flows in the 
other direction too. A graded domain R gives rise to a subvariety X = 
Proj R of projective space, and a module Mover R gives rise to a sheaf 
£1 on X. One of the most important tools available in this context is the 
cohomology H*(X, £1). If we take the local-global analogy seriously, we 
should ask whether there is a good local analogue of this cohomology. 

The answer is yes, and the corresponding construction is called local 
cohomology. We will state some of the most basic definitions and results 
pertaining to it but omit the proofs for the sake of brevity. The reader can 
find more information in Grothendieck [1967J and Brodmann and Sharp 
[1996J. 

First a general definition: If R is a ring, I an ideal of R, and M an R
module, then we define the zeroeth local cohomology module of M with 
supports in I to be simply the set of all elements of M which are annihilated 
by some power of I: 

HJ(M) = Un(O:M r) = lim Hom(Rjr,M), 
n--+CXJ 

where (0 :M In) denotes the set of elements of M annihilated by In. We 
define the higher local cohomology groups as the right-derived functors of 
HJ-that is, Hj(M) is the ith cohomology module of the complex obtained 
by applying HJ to an injective resolution of M. 

Geometrically, if we think of elements of M as global sections of the 
sheaf on Spec R associated to M, then the elements of HJ(M) are just 
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the sections with support on the closed subscheme Spec Rj I c Spec R. It 
is clear that a similar definition could be made for any closed subs cherne 
of any scheme, and indeed the theory is most naturally developed in this 
context-see, for example, Grothendieck [1967]. 

It is easy to see that the functor HJ is left-exact, and so for any short 
exact sequence of modules we get a long exact sequence in local cohomol
ogy. Since local cohomology is the derived functor, it is universal among 
sequences of functors with this property. On the other hand, the functors 

lim Extk(Rjr,M) n->oo 
behave in a similar way, taking short exact sequences to long exact 
sequences. A careful inspection shows that they have the same universal 
property as the local cohomology, so they are in fact naturally isomorphic: 

H}(M) ~ lim Extk(Rjr,M). n->oo 
Besides Un(O :M In) and limn->ooHom(RjIn,M), we can express the 

zeroeth local cohomology in another way in terms of familiar objects. If 
I = (Xl, .. " x s ), then the elements of M annihilated by some power of I 
are the same as the elements annihilated by some power of each of the Xi' 
Hence we have 

HJ (M) = lim HO (M (;9 K (x~ , ... , x~)), n->oo 
where the maps 

HO(M (;9 K(x~, ... ,x~)) ----; HO(M (;9 K(x~+l, ... ,x~+l)) 

over which the limit is taken are the inclusions 

HO(M (;9 K(x~, ... , x~)) = (0 :M (x~, ... , x~)) C (0 :M (X~+l, ... , x~+1)) 
= HO(M (;9 K(X~+I, ... , X~+l )). 

Equivalently, and more usefully, we may think of these maps as induced by 
the natural maps of Koszul complexes 

K( n n) K( n+l n+l) Xl' ... ,Xs ----; Xl , ... ,Xs 

which in degree 1 are given by the map f : Rn ----; Rn multiplying the ith 
component by Xi, and in degree dare /\ d f, which acts by multiplying a 
basis vector eil /\ ... /\ eid by Xii .••.. Xid' Thus we may take the limit in 
each of the Koszul homology groups, and arguing as before we get 

H}(M) ~ lim Hi(M (;9 K(x~, ... , x~)). n->oo 

A4.1 Local Cohomology and Global Cohomology 

The last isomorphism above provides the means to relate local cohomology 
to the cohomology of coherent sheaves on a projective variety or scheme. 
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Suppose that R is graded, with maximal ideal P generated by Xl, ... ,XS , 

and having degree 0 part, Ra, a field. We write M for the sheaf induced by 
M on the scheme Proj R. 

First a general remark which will help to identify the limit of the Koszul 
complexes: If we take a sequence of modules Mn ~ M, and maps Mn ----t 

Mn+l induced by multiplication by some fixed element a E R, then 

limMn = M[a- l ], 
-----> 

the localization of M with respect to the multiplicative set generated by 
a. Of course if a is homogeneous, then the degree 0 part of M[a- l ] is the 
module of sections of M on the open set a -I=- 0 of Proj R, and M[a- l ] itself 
is the sum over all v of the global sections of M(v) on the open set a -I=- O. 
If a = xi] ..... Xid' then writing Ui for the open set Xi -I=- 0, the open set 
a -I=- 0 is the intersection Uij n ... n Uid · 

Thus with f as above, the limit of modules isomorphic to M ® Ad RS 
under the maps induced by Ad f is 

lim M ® Ad R S = E9i j".id " H°(Uij n ... n Uid , M(v)lui n".nui ). 
n--too ~ 1 d 

v 

Since taking homology commutes with direct limits over directed sets, we 
see that the local cohomology of M is the cohomology of the complex 

"0 -o ----t M ----t E9i ~ H (Ui , M(v)ruJ ----t ••• 

v 

v 

and except for the first term, this is the Cech complex, whose ith homology 
is the ordinary Cech cohomology Hi (Proj R, M). This shows that local and 
global cohomologies are related in the following way: 

Theorem A4.1. If M is a graded R-module, then there is a natural exact 
sequence 

o ----t H~(M) ----t M ----t L HO(Proj R, M(v)) ----t H~(M) ----t 0 
v 

and for every i > 0 a natural isomorphism 

L Hi (Proj R, M(v)) ~ H~+l(M), 
v 

where the sums extend over all positive and negative integers. 

One reason that ordinary cohomology is so useful is that each of the 
Hi (Proj R, M(v)) is a finite-dimensional vector space over the field Ra. 
The local cohomology modules, being infinite-direct sums of these, are not 
in general finite-dimensional, and in the case where R is local rather than 
graded, and P is the maximal ideal, they do not break up into such conve
nient finite pieces. However, if M is finitely generated one can show directly 
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that the H~(M) are at least Artinian modules. (Reason: The ith step in 
an injective resolution of M consists of a direct sum of injective envelopes 
E(R/Q) of modules R/Q, with Q a prime ideal, and only finitely many of 
each E(R/Q) occur. Applying the zeroeth local cohomology functor to one 
of these E(R/Q) gives 0 unless Q = P, in which case it gives E(R/ P), so 
the local cohomology is the homology of a complex of finite direct sums 
of copies of E(R/ P). Since each of these is an Artinian module, the local 
cohomology is too.) 

A4.2 Local Duality 

One of the most important results about cohomology is the duality theorem, 
which for a sheaf :r on a d-dimensional projective space X says 

Hi(X,:r) ~ Ext~-i(:r, CJx ( -d - 1))*, 

where * represents Hom into the ground field. Of course if:r is invertible, 
this degenerates to the more familiar 

Hi(X,:r) ~ Hd-i(X, :r-1 Q9 wx)*. 

The local form of this is: 

Theorem A4.2. If (8, Q) is a regular local ring of dimension d, and M is 
a finitely generated R-module, then 

Hb(M) ~ Ext~-i(M, R)*, 

where * denotes the duality functor HomR( -, E(R/ P)). 

If (R, P) is a factor ring of a regular local ring ring (8, Q), and M is an 
R-module, then just as in the case of ordinary cohomology it is easy to see 
that the corresponding local cohomology modules agree: 

Hb(M) = H~(M), 
so the theorem reduces all local cohomology questions to questions about 
Ext modules, at least for rings which are factor rings of regular local rings 
(virtually every ring of geometrical interest). 

A4.3 Depth and Dimension 

In particular, one can deduce from Theorem A4.2, Theorem 18.20, and the 
Auslander-Buchsbaum formula that the functor ExtR( -, R), and thus also 
the local cohomology, measures both the depth and the dimension of a 
module. 

Theorem A4.3. Let (R, P) be a local ring, and let M be a finitely generated 
R-module. Let d = dimM, and let 8 = depth(P, M). We have: 
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a. H~(M) = 0 for i < 8 and for i > d. 

b. H~(M) =f. 0 for i = 8 and for i = d. 

Of course it follows that 8 ::; d; in the case where M is a factor ring, this is 
a consequence of Proposition 18.2, and it can be proved in the same way 
in general. 

Exercise A4.1: 

a: Let (R, P) be a local ring such that RQ is Cohen-Macaulay for every 
prime ideal Q =f. P. Show that H},(R) has finite length for every 
i < dimR. 

b: Let R = ffid?oRd be a Noetherian positively graded ring and sup
pose that Ro is a field. Suppose that RQ is Cohen-Macaulay for each 
homogeneous prime Q =f. P. Show that RQ' is Cohen-Macaulay for 
every prime Q' of R, homogeneous or not. Then show that H},(R) 
has finite length for every i < dim R. 

Exercise A4.2: Let R = ffid?oRd be a Noetherian positively graded ring 
and suppose that Ro is a field. Let P = ffid>oRd be the maximal homoge
neous ideal. Let R(e) = ffid?oRde be the eth Veronese subring of R, and let 
Pre) be its maximal homogeneous ideal. 

a: Show that 
H}'(e) (R(e)) = H},(R)(e) := ffidH},(R)de. 

b: Deduce from Exercises A4.1b and A4.2a that if Ro is Cohen
Macaulay for each homogeneous prime Q =f. P, then H}'(e) (R(e)) is 
concentrated in degree 0 (that is H~ (R(e))d = 0 for d =f. 0) for all 

(e) 

sufficiently large integers e and all i < dim R. 

Exercise A4.3: A local ring (R, P) is said to be Buchsbaum if the natural 
map Extk(R/ P, R) ---> lim Extk(R/ p d, R) = H},(R) is an isomorphism for 

d-->oo 

every i < dim R. It turns out that this somewhat unappetizing definition 
leads to a rich and surprising theory; see Stiickrad and Vogel [1986J. Show 
that a sufficiently high Veronese embedding of any projective scheme has 
Buchsbaum homogeneous coordinate ring as follows. Let R = ffid?oRd be a 
Noetherian positively graded ring and suppose that Ro is a field. Suppose 
that H},(R) is concentrated in degree 0 for i < d as in Exercise A4.2b. 
Show that R is Buchsbaum. 



Appendix 5 
Category Theory 

A5.1 Categories, Functors, and Natural 
Transformations 

A category e is a collections of objects and for each pair of objects A, B 
a set Home(A, B) of morphisms with a composition law 

HomdA, B) x HomdB, C) -+ HomdA, C) (f,g)l---+gf 

and a distinguished element lA E Home(A, A) for each object A such that: 

a. Composition is associative in the sense that h(gf) = (hg)f whenever 
both sides are defined. 

b. flA = f and lAg = 9 whenever the compositions are defined. 

We usually write f : A -+ B to mean f E HomdA, B), and we say that 
certain diagrams commute to indicate that certain compositions are equal. 

In this book the category that appears (implicitly) most frequently is the 
category R-Mod, where R is a ring, whose objects are the modules over 
R and whose mQrphisms are the homomorphisms of R-modules. Variants 
include the subcategories of finitely generated or finitely presented modules. 
Of course the categories Ring (objects are commutative rings, morphisms 
are ring homomorphisms) and its subcategories of algebras over a fixed 
ring, affine rings, and so forth, are also important to us. 

Note that in the category R-mod, as in the category of sets, the collection 
of objects is not itself a set. It is not hard to see that one can always restrict 
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it to be a set in practical applications, and it is sometimes essential to do 
so. All the methods I know for doing this seem somewhat artificial. One 
standard device is Grothendieck's idea of "universes"; see Grothendieck 
[1972, Chapter I]. 

Categories were defined by Eilenberg and Maclane to unify ideas from 
group theory and topology, and the language of category theory (though 
not many specific results) is now used very widely. Maclane [1971] gives an 
overview. For homological algebra, the setting of Abelian categories, 
defined by Buchsbaum in his thesis and applied by Grothendieck, has 
become the standard; it has the advantage of including both the categories 
of modules (such as R-Mod) in commutative algebra and the categories of 
sheaves in algebraic geometry, as well as many other useful examples. See 
Freyd's seductive little book [1964] for an introduction. 

In this book we have often used the notions of functor and natural 
transformation and we have occasionally mentioned the notion of adjoint 
functor. Here we provide a brief introduction. Another useful categorical 
construction, that of limit and colimit, is taken up, with some important 
examples, in Appendix 6. 

A map between categories is called a functor: More explicitly, if e and 
'D are categories, then a functor F : e --+ 'D is 

a. For every object A of e an object FA of 'D. 

b. For every morphism f : A --+ B a morphism F f : FA --+ F B preserv
ing composition and identity elements. 

There are morphisms of functors too (so the category of all categories is 
a "double category" in a certain sense): If F, G : e --+ 'D are functors, then 
a morphism a : F --+ G, called a natural transformation, is, for each 
object A of e, a morphism aA : FA --+ GA such that whenever f : A --+ B 
is a morphism in e, the diagram 

FA ~ GA 
Ff 1 1 Gf 

FB --+ GB 
aB 

commutes. We say that F and G are isomorphic, written F ~ G, if there 
are natural transformations a : F --+ G and /3 : G --+ F whose compositions 
a/3 and /3a are the identity natural transformation (that is, /3AaA = 1FA 
and aA/3A = 1GA for all objects A of e). The following section, on adjoint 
functors, contains a number of examples. 

The functors with which we have most to do, such as the functors F, G : 
R-Mod --+ R-Mod defined by F(N) = M ®R Nand G(N) = HomR(M, N) 
for some fixed module M, as well as the functors made from Tor or Ext, 
are additive in the sense that F: Hom(M, N) --+ Hom(F(M), F(N)) is a 
homomorphism of Abelian groups. 
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Additive functors preserve finite direct sums: To say that M ~ Nl EB N2 
means that there are inclusion and projection maps L; : N; ---+ M and 
7r;: M ---+ N; such that 7r;L; = lNi and Ll7rl +L27r2 = 1M. These formulas are 
preserved by any additive functor. 

Actually the functors on R-mod that we commonly use have an even 
stronger property: They are R-linear in the sense that 

F : Hom(M, N) ---+ Hom(F(M), F(N)) is a homomorphism of R-modules. 

For such a functor, taking M = N, we see that if fM : M ---+ N is multipli
cation by an element r E R, and F is R-linear, then FUM) = fF(M). In par
ticular, if fM is 0 (that is, r E ann(M)), then fF(M) = FUM) = F(O) = 0, 
so ann(F(M)) ::J ann(M). 

Isomorphism of categories may be defined as usual, but it is the "wrong" 
notion in the sense that it does not include many interesting cases. To 
take a very simple example, consider the category e of finite-dimensional 
vector spaces over a fixed field k, and let 'D be the "opposite" category: 
That is, the objects of'D are also finite-dimensional vector spaces, but we 
define Homn(V, W) := Home(W, V). Let F be the functor that takes each 
vector space V in e to its dual V*, regarded as an object of 'D, and each 
homomorphism f : V ---+ W to the dual homomorphism f* : W* ---+ V* 
regarded as a morphism f* : F(V) ---+ F(W). It is easy to see that F is a 
functor. The same kind of dualization defines a functor G : 'D ---+ e, and the 
composites G F and FG are each the functor that replaces a vector space 
by its double dual. Thus G F and FG are "like" the identity functors, and 
we should clearly regard F and G as showing that e and 'D are "equivalent" 
categories. But GF and FG are not the identity functors! The double dual 
of a vector space V is a vector space whose elements are linear functionals 
on the dual of V ~this is not the same as elements of V. Thus we have not 
shown that F and G are isomorphisms, and indeed they are not, since, for 
example, not every vector space has elements that are linear functionals. 
We thus make a formal definition that includes the case above: 

A functor F : e ---+ 'D is an equivalence of categories if there exists a 
functor G : 'D ---+ e such that FG and G F are isomorphic to the identity 
functors. 

A5.2 Adjoint Functors 

One of the most useful notions from category theory is that of an adjoint of 
a functor. The notion generalizes the notion of equivalence just exhibited. 
We present some of the theory as a sequence of problems. 

Definition. If F : A ---+ 13 and G : 13 ---+ A are functors, then we say that 
F is a left adjoint for G (equivalently: G is a right adjoint for F) if 
there is a natural isomorphism 0: : HomA(-,G(-)) ~ Hom'B(F(-),-). 
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This means that for every pair of objects A of A and B of 13 there is an 
isomorphism O!A,B : HomA(A, G(B)) ~ Hom21(F(A), B) such that for every 
morphism of objects A --+ A' in A and B --+ B' in 13, the diagram 

HomA(A', G(B)) 
Q'A',B 

C>< Hom21 (F(A'), B) 

Hom,("G(,)) ~ ~Hom' (F(, ),¢) 

HomA(A', G(B')) 
ll:A,B' 

Hom21 (F(A), B') C>< 

commutes, where the vertical maps are induced by <p and 'IjJ. We shall some
times say that (F, G) is an adjoint pair of functors. 

AS.2.1 Uniqueness 

Show that any two left adjoints of a functor G are naturally isomorphic; 
dually, two right adjoints of a functor F are naturally isomorphic. (Hint: 
If F and F' are left adjoints to G, let <PA : F(A) --+ F'(A) be the image of 
the identity map IpA under the adjointness isomorphisms 

Hom21(FA,FA) ~ HomA(A,GFA) ~ Hom21(F'A, FA); 

and define 'IjJ A : FA --+ F' A similarly. Show that <P and 'IjJ are natural 
transformations, and show that they are isomorphisms by showing that 
they are inverse to one another.) 

AS.2.2 Some Examples 

Pairs of adjoint functors occur very frequently in mathematics. Here are a 
few examples connected with the subjects of this book: 

a. Let A be a ring, and let (A-Alg) be the category of commutative 
A-algebras. Let (Sets) be the category of sets. Let G : (A-Alg) --+ 

(Sets) be the "forgetful functor" which associates to each A-algebra 
its underlying set, and let F:(Sets) --+ (A-Alg) be the "free algebra" 
functor taking a set X to the polynomial ring A[X] whose indeter
minates are the elements of X. Show that F is a left adjoint of G. 

b. Let (A-Mod) be the category of A-modules. Let G : (A-Alg) --+ 

(A-Mod) be the "forgetful functor" which associates to an algebra 
its underlying module, and let F : (A-Mod) --+ (A-Alg) be the sym
metric algebra functor, which associates to a module M the algebra 
Symm(M). Show again that F is a left adjoint of G. In general, "free" 
constructions tend to be left adjoints to "forgetful" constructions. 
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c. Let F be the functor which associates to an A-module M the "graded
commutative" algebra AM, the exterior algebra. Find a right adjoint 
for F. 

d. Let G: (Groups) ----., (Sets) be the forgetful functor from the category 
of (not necessarily Abelian) groups to sets. Find a left adjoint of G. 

e. Let B be an A-algebra, and let U : (B-Mod) ----., (A-Mod) be the 
"forgetful functor" which takes a B-module to the underlying A
module. Show that the functor which takes an A-module M to the 
B-module B Q9A M is a left adjoint of G. Show that the functor which 
takes an A-module M to the B-module HomA(B, M) is a right adjoint 
ofU. 

f. Let A be a ring and let M be any A-module. The functor N I--> 

M Q9A N from (A-Mod) to itself is the left adjoint of the functor 
N I--> HomA(M, N). 

g. Let 'B be a small category (a category whose objects form a set), 
and A any category. Let U : A ----., :run ('B,A) be the functor which 
associates to an object A of A the "constant functor" C : 'B ----., A, 
which takes every object of'B to the object A and every morphism 
of 'B to the identity morphism lA. Show that A has colimits over 
functors from 'B iff the functor C has a left adjoint, and that in this 
case lim is the left adjoint. Similarly, lim, if it exists, is a right adjoint. 
(Definitions of lim and lim are give;Y-n Appendix 6.) 

--; +--

h. Let A be a ring and let 'B be the category whose objects are triples 
consisting of an A-algebra B, a B-module M, and an A-linear deriva
tion d : B ----., M and whose morphisms (B,M,d) ----., (B', M', d') are 
pairs (rp, 'IjJ) consisting of a ring homomorphism rp : B ----., B' and a 
homomorphism of B-modules 'IjJ : M ----., M' (where we regard M' as a 
B-module by means of 'IjJ) such that d'rp = 'ljJd. Let G : 'B ----., (A-Alg) 
be the forgetful functor. Show that the functor (A-Alg) ----., 'B taking 
B to the triple (B, OBjA, dB), where dB is the universal derivation, is 
a left adjoint to G. 

AS.2.3 Another Characterization of Adjoints 

If F : A ----., 'B is a left adjoint of G : 'B ----., A, then for each object B of 
'B the identity morphism GB ----., GB gives rise by the isomorphism in the 
definition of adjointness to a morphism CB : FGB ----., B, called the counit, 
and similarly for each object A of A we get a morphism TJA : A ----., G F A 
called the unit of the adjoint pair. 

a. Show that C and TJ are natural transformations, and that the adjoint
ness isomorphism itself can be reconstructed from them: If rp : A ----., 
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G B is a map, then the corresponding map FA - B is obtained 
by composing Fcp : FA - FGB with the counit CB : FGB - B. 
(Similarly, if '¢ : FA - B is a morphism, then the corresponding 
morphism A - G B is the composite of the unit TJA : A - G F A with 
G'¢: GFA - GB.) 

b. Conversely, show that if F : A - ~ and G : ~ - A are functors, 
and if c : FG - 1 and "I : 1 - G F are natural transformations with 
the property that Gc 0 TJG = lc (that is, for each object B of B the 
identity transformation GB - GB is the composite of TJCB : GB -
GFGB and G(cB): GFGB - GB) and TJFoFc = IF, then F is left 
adjoint to G with unit "I and counit c. 

A5.2.4 Adjoints and Limits 
Sometimes one gets a bonus for noticing that a functor has an adjoint, 
because this fact forces certain properties on the functor. Here are some 
useful examples: 

a. Show that left-adjoint functors preserve colimits (and dually right
adjoint functors preserve limits) in the sense that if F : A - ~ and 
G : ~ - A are functors, with F left adjoint to G, and if D : 1> - ~ 
is a diagram, then 

F(limD) ~ limFD (natural isomorphism). 
--+ --+ 

b. Use this and the earlier example 2f to show that if M is an A-module 
then the functor M ® A - preserves right-exact sequences and direct 
sums. 

c. Use this and Example 2h to give another proof of Theorem 16.8 by 
identifying colimits in the category ~. 

d. Use the same idea, with Example 2c, to show that if M = coker 
cp : P - Q is a presentation of a module M, then 

and that 

l\iM = coker P ® l\i-lQ _l\iQ 

l\i(M (f) N) ~ E9 I\i M ® I\k N, 
j+k=i 

useful formulas for studying the exterior powers of modules. Find and 
prove the similar formulas for symmetric powers using Example 2b. 
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A5.3 Representable Functors and 
Yoneda's Lemma 

There are functors that can be defined directly from the structure of a 
category. These are called representable functors. Let A be a category, and 
let A be an object of A. The representable functor (represented by A) 
is defined to be the functor hA(B) = HomA(A, B). 

As an example, let k be a commutative ring and let R be a commutative 
k-algebra. Let F be the functor from R-mod to the category of sets that 
takes any R-module M into the set Derk(R, M) of R-linear derivations. 
The universal property of nRjk may be expressed, as was done in Chapter 
16, by saying that this functor is represented by the module n Rjk of Kahler 
differentials: That is, there is a natural isomorphism 

Derk(R, -) ~ HomR(nRjk> -). 

Universal properties can all be expressed in terms of representable functors, 
as well as in terms of adjoint ness as is done above. 

Representable functors were given a large role in algebraic geometry by 
Grothendieck [1957]. Since his work, schemes are commonly described by 
describing the functors they represent. Often the functors exist (or are 
known to exist) much more generally than the schemes, and the problem 
of proving the existence of the schemes becomes the problem of showing 
that the functors are representable. We followed a similar path in the begin
ning of Chapter 16. See Eisenbud and Harris [1992] for some elementary 
examples from the theory of schemes, and nearly any work by Grothendieck 
for further examples. 

One reason that this procedure is useful is that the representable func
tors, as functors, reflect the properties of the objects that represent them 
extremely well. The basic observation in this direction is Yoneda's Lemma. 
To state it, let 3" be the category whose objects are functors from A to 
the category of sets and whose morphisms are natural transformations. Let 
h : A -+ 3" be the functor that takes each object A of A to the functor 
hA. Yoneda's Lemma shows that the functor h is actually an equivalence 
between A and the opposite of the category of representable functors on A. 

Lemma A5.1 (Yoneda's Lemma). Let A and B be objects of the category 
A. With notation as above, 

Hom:r(hA,hB) ~ HomA(B,A) 

by the map sending a natural transformation 'P : hA -+ hB to 'PA(1A) E 
HomA(B, A). 

Proof. The inverse map sends f E HomA(B,A) to the natural transfor
mation 'P : hA -+ hB taking 9 E HomA(A, C) = hA(C) to 'PA(g) := gf E 
HomA(B,C) = hB(C), 0 
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Limits and Colimits 

In this section we describe two categorical notions that are useful in commu
tative algebra, limits and colimits. The two notions are dual to each other, 
although their realizations are not. Thus for the abstract description, we 
need only describe one. 

The applications we will make involve the category of modules over a 
ring and the category of algebras over a ring. In the category of algebras 
the coli mit is the deeper notion, as it involves tensor products instead of 
ordinary products. Also, we will give in this section Govorov and Lazard's 
famous characterization of flat modules as filtered colimits of free modules. 
For these reasons we will describe the abstract notion of colimits instead 
of that of limits. 

To get the corresponding definitions and results for abstract limits, the 
reader need only remove all the "co" prefixes, reverse all the arrows, and 
interchange the words "source" and "target" in the following discussion. 
A very important group of applications of the notion of limits is found in 
Chapter 7, Completions. 

Let A be a category. We define a diagram in A, based on 13, to be a 
functor F : 13 ---> A. Often we will think of 13 as a subcategory of A, and 
we suppress the functor and speak of 13 itself as a diagram. 

If C is an object of A and F : 13 ---> A is a diagram, we define a morphism 
'lj; : F ---> C to be a collection {'lj; B} consisting of a morphism 'lj; B : F B ---> C 
for each object B of 13, such that if'P : B ---> B' is any morphism in 13, then 
the following diagram commutes. 
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The coli mit lim F of F is defined to be an object A of A, and a morphism 
'¢ : F -+ A, whiCh is universal in the sense that for any morphism '¢' from 
F to an object A', there exists a unique morphism "( : A -+ A' making all 
the "obvious" identities "('¢B = '¢~ true. Such a colimit, if it exists, is unique 
up to isomorphism. (Proof If A and A' were colimits, then the universal 
property would furnish us maps "( : A -+ A' and "(' : A' -+ A making the 
"obvious" identities true. The composite "('''( : A -+ A would then also be 
a map making the "obvious" identities true. As the identity map has this 
same property, the uniqueness statement in the universal property implies 
that "('''( = 1. Similarly "("(' = 1, so"( and "(' are the required isomorphisms.) 

In practice, it is often a little artificial to take colimits over a category: The 
identity morphisms and the compositions of morphisms in 13 really play no 
role, and we may use the same words as above to define the colimit of a set 13' 
of objects of A and a set of morphisms between them -this will be the same 
as the colimit of the subcategory 13 generated by 13' (see Exercise A6.9). 

The construction lim itself is a functor in the following way. Let 
:Fun(13,A) be the cat~ory of functors from 13 to A, whose morphisms 
are the natural transformations of functors. If colimits exist in A, then 
lim is a functor from :Fun (13 , A) to A: Given a natural transformation 
;:;; F -+ G, the diagrams 

lim G 
~ 

lim a: 
~ 

commute and we define lim 0:: : lim F -+ lim G to be the unique map 0:: 

induced by the vertical m~s F B -=. lim G.----
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The following result shows that all colimits can be constructed from two 
special types of colimits: coproducts and coequalizers. The construction 
itself, given in the proof, is at least as useful as the existence result. 

We define the coproduct of a collection of objects {BJ of A, written 
lIiBi , to be the colimit of the diagram consisting of the objects Bi with no 
morphisms other than the identity morphisms. We define the coequalizer 
co equalizer ( '¢, ,¢') of a pair of morphisms 

to be the colimit of the diagram with objects C1, C2 , their identity mor
phisms, and the morphisms 'l/J, 'l/J'. 

Since we have not required the collection of objects in a category to 
form a set, colimits of functors from arbitrary categories may fail to exist 
for somewhat trivial reasons: Most categories (for example, the category 
of modules over a ring) don't contain coproducts of arbitrary collections 
of objects. A great variety of categories (again including the category of 
modules over a ring) do, however, contain the coproduct of a set of objects. 
Thus it is sensible in discussing colimits to stick to the case of functors from 
small categories, where by a small category we mean one whose collection 
of objects is a set. 

We have: 

Theorem A6.1. If coproducts of sets of objects and coequalizers of pairs of 
morphisms exist in the category A, then all co limits of functors from small 
categories exist in A. Further, any functor on A that preserves coproducts 
and coequalizers preserves all colimits over small categories. 

Proof. Let '13 be a diagram of A. For simplicity, we identify '13 with its 
image in A, and think of it as a subcategory. Let C2 := liSE obj 'BB be the 
coproduct of all the objects in 'B. For each morphism cp of '13, write source ( cp) 
and target(cp) for the source and target of the map cp. Let C1 := lI<pE morph 'B 
source(cp). Thus C1 is the direct sum of the same objects as C2 , but each 
object appears in C1 as many times as there are morphisms originating 
from it. 

We will now define two maps, 'l/J and 'l/J', from C1 to C2 in such a way 
that 

lim'B = coequalizer( 'l/J, 'l/J'). 
----> 

To define a map from C1 to C2, it is enough by the universal property of 
the coproduct to define a map from each of the objects ofsource(cp) to C2• 

On the other hand, from the definition of C2 , there is for each object B of 
'13 a natural "inclusion" map ~ : B -+ C2• Thus we may define 'l/J to be the 
map induced by the maps 

source( cp) ~ C2 
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and define '¢' to be the map induced by the composite maps 

source(cp) ~ target(cp) -':.. C2• 

Let C := coequalizer (,¢, ,¢'), and let", : C2 -; C be the corresponding 
morphism. For each B E obj'B we get a composite map 

B-':..C2 .!:...C 

and together these form a morphism 'B -; C : For each cp E morph 'B, the 
diagram 

source (<p) 

~ ~ 
source (<p) C 

~ ~ 
target (<p) 

commutes exactly because", is the coequalizer. Conversely, given any mor
phism'B -; C', the induced morphism ",' : C2 -; C' will satisfy ",',¢ = ",',¢', 
and thus ",' will factor uniquely through "', as required. 

For the last statement, note that any functor preserving coproducts and 
coequalizers preserves the construction that we have given for colimits. 0 

A6.1 Colimits in the Category of Modules 

In this subsection we fix a commutative ring A and consider colimits in the 
category (A-Mod) of modules over A. Limits are treated in Exercises A6.1 
and A6.11 (and used extensively in Chapter 7). 

Proposition A6.2. Colimits exist in the category of A-modules. The copro
duct is the direct sum, while the coequalizer of a pair of maps is the cokernel 
of their difference. 

Proof. By the general construction of colimits above, it is enough to prove 
the second statement. Both parts of this statement follow easily from the 
definitions. 0 

Our next goal is Lazard's theorem characterizing flat modules in terms 
of colimits. The crucial ingredients are the characterization of flat modules 
by equations from Corollary 6.5 and the notion of a filtered colimit. 

To set the stage, we note that if a category A has colimits, then for any 
small category 'B the functor lim : !run('B,A) -; A is right-exact. This 
rather abstract statement, which follows directly from the universal prop
erty of the colimit (see the section on adjoints and limits, in Appendix 5, 
Category Theory), has a simple interpretation when A = (A-Mod): It 
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means that if F', F, and F" are functors from 13 to A, and if 0: : F' ........ F 
and {3 : F ........ F" are natural transformations such that, for every object B 
of 13, 

aB f3B 
0 ........ F'B ---4 FB --> F"B ........ 0 

is an exact sequence, then 

lima lim f3 " 
limF' '="""limF ~ limF ........ 0 

--> --> 

is a right-exact sequence. What we want is a condition on 13 under which 
it is also left-exact. 

Definition (Filtered colimits). A category 13 is said to be filtered if: 

a. For any two objects Bl and B2 of B there exists an object B of 13 
with morphisms Bl ........ Band B2 ........ B,. and 

b. For every two morphisms with the same source 'P1 : B' ........ B 1, 'P2 : 
B' ........ B2 there exists an object Band morphisms '1/11 : B1 ........ Band 
'1/12 : B2 ........ B such that '1/11 'P1 = 'I/12'P2, as in the following diagram. 

"'I 
38 

A diagram F : 13 ........ A is called filtered if 13 is filtered, and then we 
say that li!!; F is filtered. 

Filtered colimits are like unions of submodules and admit an alternate 
description. 

Proposition A6.3. If13 is a filtered small subcategory of (A - Mod), then 
li!!; 13 is the disjoint union U BE Obj 11 B (as sets) modulo the equivalence 
relation rv defined by: 

b1 rv b2 for b1 E B1 and b2 E B2 iff there exist morphisms 

'Pi: Bi ........ Bin 13 such that 'P1(b1) = 'P2(b2). 

Proof. Let X = UBE Obj llB / rv. Because 13 is filtered, X has a natural 
structure of A-module (for example, to add two elements, just map them 
into a common object of 13). The fact that X is the colimit may be seen by 
checking the universal property directly: Given an A-module C and maps 
'I/1i : Bi ........ C, there is an obvious induced map '1/1 : UBE Obj llB ........ C, and 
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if the 'l/Ji commute with all the maps of~, then 'l/J respects the equivalence 
relation "', and thus descends to a uniquely defined map on X. 0 

Proposition A6.4. Filtered colimits preserve exact sequences in the fol
lowing sense: Let ~ be a filtered category and let F', F, and F" be functors 
from ~ to A. If 0: : F' ---f F and (3 : F ---f F" are natural transformations 
such that, for every object B of ~, 

CiB f3B o ---f F' B ----> F B _____ F" B ---f 0 

is an exact sequence, then 

lim Ci lim f3 o ---f lim F -=-. lim F -----> ) lim F" ---f 0 
-----> -----> -----> 

is an exact sequence. 

Proof. The right-exactness being clear, it is enough to show that limo: is 
injective. But this follows at once from Proposition A6.3: If an ele~nt of 
UBE Obj 13F'B/ '" goes to zero in UBE Obj 13 FB/ "', it is represented by an 
element b in some F'B such that O:B(b) goes to zero under a map Fcp, for 
some morphism cp : B ---f B' of~. But since the diagram 

CJ.B 
P'B ---7 PB 

F~~ 
CJ.B' 

f~ 
P'B' ---7 PB' 

commutes and O:B' is injective, b must go to zero under F' cp, and thus the 
original element was 0 in Ii!!?- F'. 0 

A6.2 Flat Modules as Colimits of Free Modules 

Every A-module M is the colimit of a diagram of free modules, because if 

F~G---fM---fO 

is a free presentation, then M = coker cp = coequalizer (cp, 0). But there is 
another, less obvious, diagram of which M is the colimit. We want to define 
the diagram of free modules over M to be roughly the diagram "of 
free modules mapping to M and maps between them commuting with the 
maps to M." Because we want to take colimits only over small categories, 
and because we want a certain functoriality, we must exercise some care. 
We define a finite list of elements of M to be, for some natural n, a choice 
of n elements ml, ... , mn E M. We allow repeated elements in such lists. 
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Definition. The diagram of free modules over M is the functor F : 
13 ---> (A-Mod) such that an object of B is a free A-module with a dis
tinguished basis consisting of a finite list of elements of M, and whose 
morphisms are the maps between these free modules commuting with the 
natural maps of these free modules to M. That is, if {mi} and {nj} are 
finite lists of elements of M, and if B = EBAmi and C = EBAnj are the 
corresponding free modules in 13, then a morphism of A-modules B ---> C 
is in 13 iff it commutes with the maps B ---> M and C ---> M sending mi to 
mi and nj to nj, respectively. 

Proposition A6.5. If M is an A-module, then M is the colimit of the 
diagram 13 of free modules over M. 

Proof. For every object B of 13, we will write (3B : B ---> M for the corre
sponding homomorphism of free modules, and we shall write (3 : lim 13 ---> M 
for the map induced from all the maps (3B' We will show that ,81s an iso
morphism. 

For each object B of 13 we have a commutative diagram 

lim'B 

/~~ 
B ~ M 

~B 

and since every element of M is in the image of some (3B, we see that (3 is 
surjective. 

To show that (3 is injective, let x be an element of ker (3. We must show 
that x = O. From the construction of Theorem A6.1 we see that the direct 
sum of all the Bi maps onto lim 'B. Thus x is in the image of a finite subsum. 
Since a finite direct sum of fu free modules in 13 is again in 13, x is in the 
image of some object B of 'B. 

Let x' E B be an element mapping to x in lim 'B. We have (3B(X') = O. 
Let Bo be the object of 13 given by the rank-l free A-module whose basis 
element is the element 0 in M. The two maps Bo ---> B sending the basis 
element to 0 and to x' are both in 'B. From the definition of lim, it follows 
that the map B ---> lim 13 co equalizes these two maps, and th;; sends x' to 
O. This shows x = O~ 0 

Theorem A6.6 (Govorov and Lazard). Let M be an A-module. M is fiat 
iff M is a filtered colimit of free modules, in which case the diagram of free 
modules over M is filtered. 

Proof. First we show that if an A-module M is a filtered collmit lim 13 of a 
diagram of free modules, then it is flat. If N' ---> N is a monomoqiliism of 
A-modules, we must prove that the induced map M Q9A N' ---> M Q9A N is a 
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monomorphism. Consider the functors P', P from ~ to (A-Mod) obtained 
by tensoring with N' and with N, respectively. Tensor products preserve 
colimits by Proposition A2.1 and Theorem A6.1 (or use Problems 2f and 
3a from Appendix 5), so the map M ®A N' -+ M ®A N may be written as 

(lim~) ®A N' = limP' -+ limP = (lim~) ®A N. 
--7 --7 ----+ ---+ 

However, the map lim P' -+ lim P is a filtered limit of monomorphisms, and 
is thus a monomorPhism by p;.oposition A6.4. This shows that M is fiat. 

Supposing that M is fiat, we must show that the diagram ~ of free 
modules over M is filtered. For part a of the definition it suffices to note 
that if Band B' are objects of ~, then B EB B' is also an object of ~, 
and the inclusion maps are morphisms in ~. For part b, suppose that ~ 
contains maps as follows: 

We must show that there are maps '¢i : Bi -+ B in ~ with '¢1({Y1 = '¢2({Y2. 

As a first approximation to this goal, let C = Bl EEl B z; this is again 
an object of ~. Let (3 : C -+ M be the map sending the basis of C to 
the corresponding list of elements of M. By Corollary 6.6 there is a map 
'Y : C -+ B in ~ which annihilates the kernel of (3. We claim that the 
maps '¢i obtained by composing 'Y with the inclusions Bi -+ C fulfill the 
necessary condition. Indeed, this is clear because the composite maps B' -+ 

Bi -+ C -+ B -+ M are the same for i = 1 and 2, and therefore by the 
definition of B the composites B' -+ Bi -+ C -+ B are the same for i = 1 
and 2. 

A6.3 Colimits in the Category of 
Commutative Algebras 

The case of modules is simple and entirely familiar-see Exercise A6.1 for 
a review. Here we will describe the situation in the category of algebras. 
See the exercises for further examples. 

Proposition A6.7. Limits and colimits exist in the category of algebras 
over a commutative ring A. More precisely: 
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a. Limits are set-theoretic; that is, the limit of any diagram has underly
ing set equal to the limit of the corresponding diagram of sets. In more 
detail, the product of a family of algebras Bi is the direct product of 
the Bi as sets, with componentwise addition and multiplication; and 
the equalizer of a pair of maps of algebras 

is the subalgebra {c E Cl l1/;c = 1/;'c} of C1 . 

b. The coproduct of a family of algebras {Bi hEA is the "restricted tensor 
product," written @ABi , whose elements are finite sums of tensors 

... @ 1 @ 1 @ bi 0 1 @ 1 @ . . . bi E Bi 

all but finitely many of whose factors are 1. This may also be defined 
to be the colimit of the category whose objects are tensor products of 
finitely many of the B i , with a morphism @A,iENBi --4 @A,iEA"Bi for 
each inclusion of finite subsets A' C A" of A, defined by tensoring 
with the identity elements of the B j with j E A" - A'. 

c. The coequalizer of a pair of maps of A-algebras 

Proof. 

is the algebra C2 / I, where I is the ideal generated by all elements of 
the form 1/;(c) - 1/;'(c) for c E C1 . 

a. Given a diagram 13 of algebras, we may regard each algebra as a 
set, and thus think of 13 as a diagram of the category of sets (that 
is, take the image of the "forgetful functor"). Let C = lim 13 in the 
category of sets. In the case of products and equalize;s, C has a 
natural algebra structure, presented in the proposition. With this 
structure, the universal morphism C --4 13 in the category of sets, 
coming from the definition of the limit, is actually a map of algebras. 
It follows from the construction of limits dual to Theorem A6.1 that 
also in the general case C has a natural algebra structure, making the 
universal morphism C --4 13 in the category of sets into a morphism 
in the category of algebras. 

To show that C is really the limit in the category of algebras, suppose 
that C' --4 13 is a morphism in the category of algebras. Again we may 
regard it as a morphism in the category of sets, so we see that there 
is a unique morphism of sets C' --4 C making the diagram 
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commutative. It suffices to show that this is actually a map of alge
bras, and to do this it suffices again to treat the cases of products 
and equalizers. In these cases the result is immediate. 

b. Because of the definition, it is enough to check that the coproduct 
of a finite set of algebras B1, ... ,Bn is the tensor product of those 
algebras over A. For simplicity, we write ® for ®A. 

First, there are natural maps Bi ---+ ®iBi sending bi to the tensor 
product of bi with the identity elements of the B j for j =I=- i. 

Next, given algebra maps 'Pi from each Bi to some A-algebra G', we 
must show that there is a unique A-algebra map 'P : ®iBi ---+ G' 
whose composition with the natural map Bi ---+ ®iBi is 'Pi. Since 
®iBi is generated as an algebra by the images of the individual 
B i , the uniqueness statement is clear, and it suffices to prove exis
tence. 

There is a multilinear map IIiBi ---+ G' sending 

to 

m 

L (b1j , ... , bnj ) 

j=l 

m 

L(b1j · .... bnj ), 

j=l 

where the product· is the multiplication of the algebra G'. By the def
inition of the tensor product (Appendix 2), there is a corresponding 
map ®iBi ---+ G' sending 

to 

m 

L(b1j ® ... ® bnj ) 

j=l 

m 

L(b1j · .... bnj ). 

j=l 

This is evidently an algebra map, proving existence. 

c. Clear from the definitions. D 
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A6.4 Exercises 

Exercise A6.I: In the category of modules over a ring A, show that the 
product is the direct product, while the coproduct is the direct sum. (In 
the infinite case, these are not the same. The direct product of infinitely 
many modules Mi is the set of sequences of elements (mi) with mi E Mi; 
the direct sum is the set of such sequences for which only finitely many mi 

are nonzero.) Construct equalizers and coequalizers in terms of kernels and 
cokernels. 

Exercise A6.2: In the category of sets, show that the product is the direct 
product, while the coproduct is the disjoint union. What are equalizers and 
coequalizers? 

Exercise A6.3: In the category of (not necessarily Abelian) groups, show 
that the product is the direct product, while the coproduct is the free 
product. What are the equalizers and coequalizers? 

Exercise A6.4: Show that any module is the filtered colimit of its finitely 
generated submodules, the maps being the inclusions. 

Exercise A6.5: Show that any module is the filtered colimit of finitely 
presented modules. 

Exercise A6.6: Show that any A-algebra B is the colimit of the category 
whose objects are the finitely generated subalgebras of B, and whose maps 
are the inclusions. 

Exercise A6.7: Show that if B is an A-module and S is a multiplicatively 
closed subset of A, then the localization B -; B[S-l] is the colimit of the 
diagram of localizations B[rl] for t E S, where the maps are the natural 
maps B[rl] -; B[(tt')-l]. If B is an A-algebra, show that the same is true 
in the category of A-algebras. 

Exercise A6.8: State and prove the analogue of Proposition A6.3 in the 
category of A-algebras. Show that if 13 is a filtered subcategory of the 
category of A-algebras, then 

a. If all the objects of 13 are domains, then lim 13 is a domain. 
--> 

b. If all the objects of 13 are fields, then lim 13 is a field. 
-----> 

For the case of general colimits, the situation is much more delicate; see 
Exercise Al.I for a special case. 

Exercise A6.9: Let 13' be a set of objects of a category A and a set of 
morphisms between these objects. Let 13 be the subcategory generated by 
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13', which may be defined either as the smallest subcategory containing 13' 
or as the subcategory with the same objects as 13' whose morphisms are 
all the possible compositions of morphisms of 13' and identity morphisms. 
Show that lim 13' exists iff lim 13 exists, and that if they exist they are 
canonically fS(;morphic. --> 

Exercise A6.1O (Limits and colimits are not exact): It is shown in 
the text that filtered colimits are exact in the category of modules. Give 
an example to show that, in the category of modules over a ring, equalizers 
(kernels) are not right exact and coequalizers (cokernels) are not left exact; 
thus limits and colimits in general are not exact. 

Exercise A6.1l (Filtered limits are not exact): It is shown in 
Chapter 7 that certain limits in the category of modules over a ring are 
exact. Show that in general even filtered limits in this category are not 
right exact by taking the limit of the following exact sequences 

En+l: 0 -> Z 
pn+l 

---+ Z -> Zjpn+l -> 0 
lp II 1 

En: 0 -> Z ~ Z -> Zjpn -> o. 
pn 



Appendix 7 
Where Next? 

So [said the doctorJ. Now vee may perhaps to begin. Yes? 

-The last line, delivered by Portnoy's psychiatrist, after three hundred 
pages of Portnoy's confessions, in "Portnoy's Complaint," by Phillip 
Roth (1967). 

Many references to the literature of commutative algebra are scattered 
through this book, in the hope that the reader will be attracted to look 
beyond what I have been able to include. Nonetheless it seemed worthwhile 
to collect here a list~even if idiosyncratic, heterogeneous, and incomplete~ 
of readings that might make suitable "next steps" in commutative algebra 
and algebraic geometry. Some, like the marvelous books of Serre, are rela
tively self-contained. Others will require backtracking through references. 
I apologize in advance to all the authors whose beautiful and worthwhile 
books and papers I wasn't clever enough to include! The order is roughly 
from more to less geometric. 

Basic Algebraic Geometry: Here is a path I might suggest for my own stu
dents: Read parts of the books of Harris [1992]' Mumford [1976], Eisenbud 
and Harris [1992J; then Hartshorne [1977J balanced by Shafarevich [1972J 
and Griffiths and Harris [1978J. Be sure and go on to deeper things before 
spending too much time on the basics! 

Some further steps in Algebraic geometry: Mumford [1966], and [1975J, 
Beauville [1983], Arbarello, Cornalba, Griffiths, and Harris [1985J. 

Canonical curves: For the geometric side of the complexes in Appendix 2: 
St. Donat [1973]. The paper of Schreyer [1991] relates canonical curves to 
Grabner bases. 
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Elliptic curves are a topic on the border of number theory and algebra 
geometry. An excellent introduction is Silverman [1986]. For a look at the 
state of the art, see Cornell and Silverman [1986]. 

Rings of Witt vectors and the number-theoretic aspect of complete local 
rings: Serre [1979]. This book also has a nice treatment of Galois descent, 
carried further in Serre [1973]. 

Spectral sequences and other homological algebra, with geometric appli
cations in mind: Grothendieck [1957]. 

The fundamental group and etale cohomology on the geometric side, 
and the theory of Hensel rings and etale extensions on the algebraic side: 
Grothendieck [1971], Artin [1973], and Milne [1980] (parts of which should 
probably be read first). Add Azumaya [1950] for the truth about lifting 
idempotents. 

Intersection Theory: Serre [1957], Fulton [1983] and [1984]' and for the 
arithmetic connection, Szpiro [1987]. For a beautiful application of Fulton's 
Theory to commutative algebra see the paper by Roberts in Hochster, 
Huneke, and Sally [1989]. 

Determinantal rings and varieties: Bruns and Vetter [1988], DeConcini, 
Eisenbud and Procesi [1980, 1982]. For a surprising application to geome
try see Gruson, Lazarsfeld, and Peskine [1983]. A current development of 
interest is given in Conca and Herzog [in press]. For a look at the (possible) 
future, see Gelfand, Kapranov and Zelevinsky [1993]. 

Primary decomposition and computation: Gianni, Trager, and Zacharias 
[1989] and Eisenbud, Huneke and Vasconcelos [1992] for two views of the 
problem of computing primary decomposition. Eisenbud and Sturmfels 
[1994] for a recent piece of theoretical work with computational overtones. 

Recent work in commutative algebra: The book on Cohen-Macaulay rings 
by Bruns and Herzog [1993] is an easy way to get a look at what has been 
going on lately. A broad view of the state of the field in 1987 may be had 
from the volume of papers edited by Hochster, Huneke, and Sally [1989]. 

Recent progress in methods of commutative algebra using positive char
acteristic: The papers of Hochster, Huneke, Watanabe, and others, starting 
with Hochster and Huneke [1990]. Much of this work is related to a group 
of homological conjectures nicely presented in Hochster [1975]. 

Infinite free resolutions: Gulliksen and Levin [1969]. For a recent devel
opment see Avramov, Gasharov, Peeva [1994]. 



Hints and Solutions for 
Selected Exercises 

Chapter 1 

Exercise 1.1: 

1 => 2: If II ~ h ~ ... c M, let I = UjIj . If I is generated by iI,··· ,in, 
then each Ii must be in one of the Ij , so from some i on, Ii = I. 

2 => 3: Given any set of submodules, choose a maximal ascending sequence 
in it-this must be finite by condition 2. (Note that we don't even 
need Zorn's lemma for this.) 

3 => 4: If 4 did not hold, the sequence of submodules Ij (!I, ... , Ij) 
would have an infinite strictly ascending subsequence. 

4 => 1: If a submodule I eM I were not finitely generated, then it would 
be possible to choose iI, 12, ... E I, contradicting condition 4, by 
choosing Ii+l in I but not in the submodule generated by iI,···, k 

Exercise 1.4: 

1 => 2: If R is Noetherian then Ro is Noetherian because it is a homomor
phic image of R. The second condition is trivial because every ideal 
of R is finitely generated. 

2 =? 3: Assume that Xl, ... ,Xr generate the ideal R+ = Rl EB R2 EB ... 
Replacing the Xi by their homogeneous parts, we may assume that 
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they are homogeneous. We claim that they generate R as an Ro
algebra. It suffices to show that each homogeneous element I E R is 
in the subalgebra R' generated by the Xi. Since I is homogeneous, 
we may write I = L:i aiXi with homogeneous coefficients ai (given 
a representation with non-homogeneous ai, we could replace each 
ai by its homogeneous component of degree deg I - deg Xi)' Since 
the Xi have strictly positive degrees, each ai may be chosen to have 
degree less than that of f. By induction on the degree, the ai belong 
to R', and the given expression for I then shows that I does too. 

3 ::::} 1: Apply Corollary 1.3. o 

Exercise 1.5: If It C 12 C ... is an ascending chain of ideals of R, then 
since S is Noetherian we must have 

InS = In+IS = ... 

for some n. But 7f(IjS) = Ij7f(S) = IjR = I j for any j, so 

In = In+l = .... 0 

Exercise 1.6: 

b. Along with any monomial A = X'{'I ... x~' , P must contain all the 
monomials O"-I(A) = (xu(1))ml ... (xu(r))m, where 0" E L: is a permu
tation. 

e. To prove that any I E Sy:, can be written as a polynomial in the Ii, 
consider the initial term of I. Using conditions band c we see that 
some monomial in the Ii has the same initial term. Subtracting this 
monomial, we get an invariant with a smaller initial term. We repeat 
the process; by condition a, it cannot go on forever. 

To prove the uniqueness of the expression, it is enough to show 
that for any nonzero polynomial q(YI, ... , Yr), the polynomial 
P(XI, ... ,Xr) = q(ir(xI, ... ,xr), ... ,lr(XI,""Xr)) is nonzero. By 
condition d, the initial terms of distinct monomials in the Ii are dis
tinct monomials in the Xi. Thus there is a unique term ayt1 ••• Y~' 
of q(YI"",Yr), with a E k, for which the monomial in the ini
tial term of air (Xl, ... , Xr )1'1 ... Ir (Xl, ... , Xr )1', is maximal. This 
uniqueness implies that the initial term of p( Xl, ... , X r ) will be 
the initial term of air (Xl, ... , Xr )1'1 ... Ir (Xl, ... , Xr )1". In particular, 
p(XI, ... ,Xr)# O. 

Exercise 1. 7: 

a. To show that k[X2, xY, y2] is not isomorphic to a polynomial ring, note 
that it does not have unique factorization (X2 . y2 = xy . xy). 
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b. For m E zr, let Q:(m) E Hom(G,k*) be the map g f---> g(xm)/xm. 
The invariants are generated by the monomials whose exponents lie 
in ker Q:. Use the fact that k is a field (and thus k* cannot have more 
than d elements of order d for any integer d) to show that the group 
Hom( G, k*) is finite. Thus ker Q: is itself isomorphic to zr. If t 1 , ••• , tr 
is a basis for ker Q:, show that the ring of invariants has quotient field 
k(tl, ... ,tr). 

Exercise 1.11: The map t f---> (4t/(t2 + 4), (t2 - 4)/(t2 + 4)), which is a 
stereographic projection from the "north pole," gives a bijection C - {±2i} 
to {(x, y) I x2 + y2 = I} - {( 0, I)}. (To improve this bijection, try moving 2i 
"to 00" with the substitution t = ~ + 2i.) 

Exercise 1.14: Show that the vector space k[x, yJ/(y2 - x3) is spanned 
by the classes of elements of the form xn and xny with 0 ~ n ~ 00, and 
show that the images of these elements in k[tJ form a basis for k[t2, t3J = 
k[t2, t3, t4 , .. . J. 

Exercise 1.15b: If k is a field of characteristic not 2 and Q is a quadratic 
form in n variables, regarded as a function of a vector v E kn , then show that 
the function of two vector variables (v, w) = (Q( v + w) - Q( v) - Q( w)) /2 is 
a symmetric bilinear form on k n , and Q(v) = (v,v). Thus the classification 
of quadratic forms is the same as the classification of symmetric bilinear 
forms, which is the same as the classification of symmetric n x n matrices 
up to the equivalence relation M rv AM A transpose. We define the rank of 
the form to be the rank of the corresponding matrix M. 

Show that given any symmetric bilinear form on k n , there is a basis of 
kn consisting of vectors orthogonal to one another; that is, any symmetric 
matrix is equivalent to a diagonal matrix. If k is algebraically closed, then 
in addition the diagonal entries can be made to be ones and zeros, so the 
forms are classified by the number of ones on the diagonal, the rank. 

Exercise 1.16b: Prove that if a polynomial over an infinite field vanishes 
on a line through the origin, then so does each of its homogeneous compo
nents. 

Exercise 1.17: Consider the homogenization of the element (xI + X2) -
(XI + X3) = X2 - X3· 

Exercise 1.20: Try an ideal in k[Xl,X2J generated by two forms of the 
same degree having relations only in a high degree like (XtX2' xlx~) with 
d «: e. 

Exercise 1.21a: F(n) = F(O) + L~-l G(n), so it is enough to show that 
such sums of polynomials are polynomials of degree one more. Since the 
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polynomial Fk of part b has degree exactly k, any rational polynomial can 
be expressed as a rational linear combination of the Fk, and it is enough 
to check the desired property for Fk. In fact we have 

~ Fk(m) = ~ (~ ) = (k: 1) ,= Fk+1(n). 

This holds because a choice of k + 1 elements from {I, ... , n} may be 
thought of as a choice of a last element, call it m + 1, together with a 
choice of k elements from {I, ... , m}. 

Chapter 2 

Exercise 2.11: u(nlu) = nil. 

Exercise 2.19: a. If m goes to zero in each M[fi-1j, then m is killed by a 
power of each fi. Show that if the set {Ii} generates the unit ideal, then so 
does the set {fini } for any positive integers ni. 

b. Since mi and mj become equal in M[fi- 1 f j- I ], we must have 
UiJi)N(mi - mj) = 0 for large N. We may as well assume that the set 
of fi is finite (if 1 E ({Ii}), then it is in the ideal generated by finitely 
many of the J;) so some power N will do for all i, j. 

Using the idea of part a, we may write 

1 = Lrdr 
(this is the "partition of unity"). We may suppose that N is large enough 
so that for each i the element fr mi is the image of some element m; EM. 
Show that m = Li rim; has the desired property. 

Exercise 2.22: If I is the ideal and is not prime, then there exist a, b E R, 
not in I, with ab E I. Show that (1, a) can be generated by a and finitely 
many elements 9j of I. Then show that 

J := (I : a) = {r E Rlra E I} 

is finitely generated, and that aJ together with the 9j generate I, contra
dicting the hypothesis. 

Exercise 2.27: 

a. After proving that M II)'ErM)" prove the fact about 
homomorphisms with the same idea: cp)' = e)'cp. The uniqueness of 
the decomposition follows, since cp is an isomorphism iff all the CP)' 
are isomorphisms. 

b. Consider the direct sum R = ffi)'R)'. 
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Chapter 3 

Exercise 3.3: Since all the sets of primes involved behave well with respect 
to localization, it suffices to prove that if R is a local ring with maximal 
ideal P then P is in Ass HomR(M, N) iff it is in Supp M n Ass N. If P 
is in SuppM, show using Nakayama's lemma that there is a surjection 
M ---* R/ P. If P is also in Ass N, there is an inclusion R/ PeN. The 
composition 'P E HomR(M, N) of these two maps is annihilated by P, so 
P E Ass HomR(M, N). Conversely, if P E Ass HomR(M, N), then we can 
choose 0 =I- 'P E HomR(M, N) with annihilator P. It follows that M =I- 0, so 
P E Supp M, and also that im 'P C N is annihilated by P, so P E Ass N. 

Exercise 3.4: 

a. The inclusion Content(fg) C Content (f) Content (g) is obvious. To 
prove the second inclusion, it is enough to show that if a prime PeR 
contains Content(fg), then it contains Content(f)Content(g). Factor
ing out P, we may assume that R is a domain and P is 0, and we 
must show that if f g = 0 then f or g = O. Since S is now a domain, 
this is obvious. 

b. If R is Noetherian and Content (f) consists of zerodivisors, then 
Content (f) annihilates a nonzero element of R by Corollary 3.2. It 
follows that f annihilates this same element viewed as an element 
of S. 

c. Use part a to show that for any polynomials f, g, and h E R[x]: 

*) If r f = gh in R[x] with r E R, and p is a prime of R dividing r, 
then p divides g or h. 

Use * to show that if f is irreducible in R[x] and R is factorial then 
f is irreducible in K[x]. 
Now suppose that R is factorial. To show that R[x] is factorial, verify 
that R[x] satisfies ascending chain condition on principal ideals and 
that an irreducible polynomial f E R[x] is prime. Using the fact that 
f is prime in K[x], this reduces to showing that if fg = rh in R[x] 
with r E R, then r divides g. Use * again for this. 

Exercise 3.6: Ideals generated by subsets of the variables are prime. Ide
als generated by powers of some of the variables are irreducible. Ideals 
generated by square-free (that is, multilinear) monomials are radical. Ide
als containing a power of each of a certain subset of the variables, and 
generated by elements involving no further variables, are primary. 

Exercises 3.7 and 3.8: Let I be a monomial ideal. The key point is that 
if m is a minimal generator of I, and we can factor m into relatively prime 
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parts m = m'm", then I = (I + (m')) n (I + (mil)). It is also useful to note 
that a monomial n is in I iff it is divisible by one of the minimal generators 
of I. 

Exercise 3.9: 

a. Do induction on r, inverting Xr and using Theorem 3.1. 

b. With an induction as in the hint for part a, it suffices to show that 
m = (xo, ... , xr ) is an associated prime iff r is connected and all 
the variables are involved in the I j • If r is connected, let T be a 
spanning tree (that is, a connected subgraph of r containing all the 
vertices, and whose edges form no loops). For each edge e of T, let 
ie be an element of the intersection of the two sets corresponding to 
the vertices incident to e. Show that m is associated by showing that 
m IIeETxie C I. Conversely, if r is not connected, we may partition r 
into two subgraphs r l and r 2 that are not connected to each other. 
Let Ir and h be the corresponding subproducts of primes, so that 
1= Irh and Ir and 12 involve disjoint subsets of the variables. Show 
that Ilh = Ir n h and thus the associated primes of Rj I are those 
of Ir (which involve only the first set of variables) and those of h, 
involving only the second. 

Exercise 3.10: a. As a vector space the ring R is k[b] Ef) ka. 
d. Jl must contain all forms of degree greater than or equal to d, where d is 

the maximal degree of a nonzero homogeneous element of (0 : (Xl, ... , Xr)). 

Exercise 3.11: First, let 8 = Xl, ... ,xs be a subset of the variables 
Xl, ... , X r • Relating each monomial ideal to its minimal set of monomial 
generators, observe that there is a one-to-one correspondence between 
monomial ideals primary to (8) and monomial ideals primary to the irrele
vant ideal in K[XI' ... , xs], where K = k( Xs+l, ... , xr) is the field of rational 
functions in the remaining variables. 

Use this observation, together with the fact that primary decompositions 
localize, to reduce the problem to the following special case: 

Let m be the irrelevant ideal of S = k[Xl, ... , xr]. Suppose that I is a 
monomial ideal of S, and I = I' n J where I' is a monomial ideal having 
no m-primary component and J is an m-primary monomial ideal. In this 
case the unique maximal monomial choice of J is the ideal generated by 
all those monomials not dividing any of the finitely many monomials in I' 
but not in I. (The finiteness of this set implies that J contains a power of 
each variable and is thus m-primary.) 

Exercise 3.15: a. In this case all the prime ideals of K(R) are maximal 
ideals of K (R). 
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Exercise 3.18: Suppose that IE UiEBPi, and suppose that 

{PI, ... , Pn} = {P;I some monomial of I is in Pi}. 

Show that if 9 is a polynomial such that 9 and 1+ 9 are in UiEBPi, then 
9 E U~=lPm' Conclude that if I E I C UiEBP;, then I C U~=lPm and I is 
thus contained in one of the PI"'" Pn. 

Exercise 3.19: 

a. Regard the subspace in R generated by it, .. . ,In as an image of an 
n-dimensional vector space V. Let Wj be the preimage of I j in V, 
and write it, ... , In again for the basis elements of V. Let mj be the 
dimension of Wj . Consider the n x (mj + 1) matrix M j whose first 
column is (tl,"" t n ) and whose other mj columns represent a basis 
for Wj' The (mj + 1) x (mj + 1) minors of M j are linear forms in the 
ti. For each ], the condition L. adi (j. Wj is the condition that one 
of these forms is nonzero at (al,"" an). Since not all of the Ii are 
in W j , one of these linear forms is not identically 0; call it L j . The 
polynomial 9 may be taken to be IIjLj . 

b. We do induction on n, the case n = 1 being trivial. We may suppose 
that none of the primes II"'" In contains another of the I j . By 
induction we may chOOSe]l E J such that (f + ]1) (j. Uk=2Ik. If 
(f + ]1) (j. h we are done, so suppose that (f + ]1) E II' 

Since I + ]1 + J = (f + J) ct. h, we must have J ct. II. Since h is 
prime we therefore have J r.. nk=2h ct. II' Let ]2 E J r.. nk=2h be an 
element outside h. It is easy to see that I + ]1 + ]2 (j. Uk=lIk. 

Chapter 4 

Exercise 4.4: tx3 + tx2 - x 2 - X = (tx - 1)(x2 + x), and tx - 1 is a unit. 

Exercise 4.11: a. Choose a minimal set of generators gl, ... ,gn for M. By 
Nakayama's lemma, the images of the gi form a basis of the R/ P-vector 
space M/PM. 

Let F = Rn be a free module of rank n, and let <p : F ----+ M be the 
map sending the ith generator of F to gi. Since <p induces an isomorphism 
F / P F ----+ M / PM, we see that ker <p C P F. But <p is an epimorphism and 
M is projective, so <p is split, and we can write F = M' EB ker <p, with 
M' ~ M. Thus PF = PM' EB Pker<p. Since ker<p C PF, Nakayama's 
lemma shows that ker <p = 0, so F = M', <p is an isomorphism, and M is 
free as required. 

If R is graded, with Ro a field, and M is a graded module, we let P 
be the irrelevant ideal R+, and choose the gi to be homogeneous elements. 
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Taking the ith generator of F to have degree=deg gi, we may proceed as 
before. 

b. It is clear from part a that if M is projective then each Mp is free 
over Rp ; that is, M is locally free. Conversely, if M is locally free, and cP : 
F -+ M is a surjection, use Proposition 2.10 to show that HomR(M, F) -+ 

HomR(M, M) is a surjection. Any map 'ljJ E HomR(M, F) in the preimage 
of 1 is a splitting of cpo 

Exercise 4.12a: For the "intermediate step," if cp : Mp -+ N p, then 
by Proposition 2.10 there is map cp' : M -+ N such that cp = cp' / h for 
some h .;. P. Since cp' becomes an isomorphism on localizing, coker cp' is 
annihilated by some h .;. P. We may repeat the argument with 'ljJ = cp-l, 
obtaining a map 'ljJ' and elements h,!4 .;. P. Take f = hhhh The 
maps cp' 'ljJ' and 'ljJ' cp' are both epimorphisms over R[f-l], so they are both 
isomorphisms by Corollary 4.4a. 

Now suppose that M is projective. By Exercise 4.11b it becomes free 
when we localize at any prime. The "intermediate step" provides an element 
fp .;. P such that M[r1] is free. Clearly, ({fpIP a prime}) = R, so some 
finite set of fp already generates the unit ideal. 

For the converse, use the characterization of projectives as those mod
ules M such that for some epimorphism F -+ M from a free module 
the induced map HomR(M, F) -+ HomR(M, M) is surjective (Proposi
tion A3.1c, together with Propositions 2.9 and 2.10; see also Exercise 2.20). 

Exercise 4.13: Suppose that H, ... , Pn are the maximal ideals of R. Let 
CPi : M pi -+ N pi be isomorphisms of Rpi-modules. Since HomRPi(Mpi,Np,) 
= HomR(M, N)Pil by Proposition 2.10, we may mUltiply each CPi by a unit 
of R pi and assume that it is the localization of a map 'ljJi : M -+ N. 

Since Pi 1; nj-l-iPj for each i, we may (by Lemma 3.3) choose elements 
ai E R; such that ai E nj-l-iPj but ai .;. Pi. We claim that 'ljJ := Li ai'ljJi : 
M -+ N is an isomorphism. 

To see this, it suffices (from Corollary 2.9) to show that 'ljJPi is an iso
morphism for each i. In fact, we claim that if (R, P) is any local ring and 
cp, 'Y : M -+ N are homomorphisms between finitely generated R-modules 
such that cp is an isomorphism and 'Y( M) c P N, then cp + 'Y is an iso
morphism. Applying this result to the localizations at Pi of cp = aiCPi and 
'Y = Lj-I-i ajcpj gives the desired conclusion. 

To prove the claim, note that 'Y induces the map 0 from M to N / P N. Since 
cp induces an epimorphism M -+ N/PN, so does cp + 'Y. By Nakayama's 
lemma, cp + 'Y : M -+ N is an epimorphism, and we must show that it is a 
monomorphism. Composing cp + 'Y with an isomorphism a : N -+ M, we get 
an endomorphism of M that is surjective. By Corollary 4.4, a( cp + 'Y) is an 
isomorphism, and thus cp + 'Y is a monomorphism as required. D 
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Exercise 4.17: It is easy to show that if R[x] is integrally closed in S[x], 
then R is integrally closed in S. For the converse: 

First reduce to the case where R is Noetherian by passing to a subring 
finitely generated over Z. If f(x) E S[x] is integral over R[x], then M := 
R[x][f(x)] c S[x] is a finitely generated R[x]-module. Let coef (M) be the 
submodule of S generated by all coefficients of elements of M. Show that 
coef (M) is a finitely generated R-module. If 0: is the leading coefficient of 
f, show that R[o:] c coef(M); it follows that R[o:] is a finitely generated 
R-module, so 0: is integral over R (Corollary 4.6). Use induction on the 
degree and the fact that the integral elements form a ring to show that 
f E R[x]. 

Exercise 4.18: Use Exercise 4.17, letting S be the quotient field of R. 
Note that S[x] is factorial, and thus normal. 

Exercise 4.21a: Use the characterization that an element t E T is integral 
iff t stabilizes some finitely generated S-submodule M of T. Show that if 
t stabilizes M, then the leading form of t stabilizes the module of leading 
forms of M. Show that if M is finitely generated, then the module ofleading 
forms of M is finitely generated by showing that the latter is contained in 
the module generated by all the components of a set of generators of M. 

Chapter 5 
-1 

Exercise 5.7: Use the function that is e;2 for x > 0 and 0 for x < 0, and 
its reflection in the y-axis. 

Exercise 5.8b: Show first that in(I) = (in(t4),in(t5),in(tll )), so it is 
enough to check that these three elements annihilate in(tll ). 

Chapter 6 

Exercise 6.1b: Show that if 0 ---+ M' ---+ F ---+ M ---+ 0 is a short exact 
sequence with M and F flat, then M' is flat. 

Exercise 6.2a: Assuming that R is local, choose a minimal set of genera
tors for M, and use these to define a map from a free module F onto M; 
let K be the kernel. Show that the construction can be done so that K is 
finitely generated. Now tensor with Rj P, and use Nakayama's lemma to 
conclude that K = 0 iff Torf(M, Rj P) = 0 iff M is flat. This argument also 
gives an alternate (and much simpler) proof of Theorem 6.8 in the case 
where R = S. 
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Exercise 6.3: ToshowinthesecondcasethatT:= Torf(R/(x,y),M) = 0, 
note that multiplication by x is an isomorphism on M, so it acts as an 
isomorphism on T. However, note that it acts as ° on R/(x, y), so it acts 
as ° on T. 

Exercise 6.4: The short exact sequence ° ~ 8 ~ 8 ~ 8/ (J) ~ ° gives 
rise to a long exact sequence in Tor. Using this with the fact that 8 is a 
free R-module, we see that Torf(R/l,8/(J)) = (0 :S/IS f), the kernel of 
multiplication by f on 8/18. If 1 contains the coefficients of f, then this 
multiplication is 0, so Tor is nonzero. If the coefficients of f generate the 
unit ideal, then f is a nonzero divisor on 8/18 for every ideal 1 of R (use 
Gauss' lemma, Exercise 3.4). 

Exercise 6.6a: Use the definition of flatness and the associativity of the 
tensor product, 

(8®RT) ®TM = 8®RM, 

if M is aT-module. 

Exercise 6.10: 

a. Use the equational criterion: The relation L nimi may be broken 
into homogeneous parts, and then one can replace each of the other 
quantities that appear by its homogeneous part as well. 

b. By part a, it is enough to show that if 1 is homogeneous and 
Torf(R/l, M) =J. 0, then its localization at P =J. 0. This is true for 
any graded module. 

Exercise 6.11c: Note that M[f-I]O is the direct limit of the diagram of 
Ro-modules 

f f f ... ~ Mi ~ M i+1 ~ ...• 

This makes it easy to show that if Mi is free over Ro for all i » 0, then 
M[f-I]O is flat over Ro. (The same technique is used in the easy half of the 
proof of the Govorov-Lazard theorem, Theorem A6.6.) 

For the converse, show first that if f E RI, then M[r l ] = Ro[x, X-I] ®Ro 
M[f-I]O. (See Exercise 2.17 for a similar situation.) Thus M[rl]o is flat 
over Ro iff M[rl ] is flat over Ro. Now if M[f-I] is flat over Ro, and 
1 c Ro is the maximal ideal, then the kernel K of the multiplication map 
1 ®Ro M ~ M, which is a finitely generated graded R-module, satisfies 
K[r l ] = 0. If this is true for every f E RI , show Ki = ° for i » 0. Since 
1 ®Ro M ~ EB(I ®Ro Mi) and M ~ EBMi , we see that the multiplication 
maps 1 ®Ro Mi ~ Mi are injective for all i » 0. This shows that Mi is flat 
over Ro, and since it is also finitely generated and Ro is local, Mi is free. 
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Chapter 7 

Exercise 7.6: m is a union of the cosets of mj it contains. 

Exercise 7.9: To exhibit the isomorphism, let (ri) be a Cauchy sequence, 
and using the definition of Cauchy sequence, choose an increasing function 
cr : N -t N such that ro-(i) - rj E mi for all i and all j > cr(i). The 
isomorphism is then given by sending (ri) to the element (ro-(i) +mi), which 
is independent of the choice of cr. The inverse map may be taken to be 

(ri + mi) ~ (ri). 

The ambiguity introduced by the choice of ro-(i) E (ro-(i) + mi) is swallowed 
by the equivalence relation on the Cauchy sequences. 

Exercise 7.11: Regard R as an R[Xl' ... ,xnJ-module by means of the 
homomorphism'P : R[Xl, ... ,xnJ -t R sending Xi to ai, and complete the 
exact sequence of R[Xl' ... ,xnJ-modules 

o -t (Xl - al, ... , Xn - an) -t R[Xl, ... , XnJ .£. R -t 0 

with respect to the ideal (Xl, ... , Xn). 

Exercise 7.14: Use induction on n. Then show that R[[xll is flat over R. 
Now use Exercise 7.13 to reduce to the statement of Exercise 7.12. 

Exercise 7.19: 

a. A = S[Xl/(gl) is a free S-module on the elements 1, x,x2, ... ,xd- l . 
Uniqueness comes because gl, being monic, is a nonzerodivisor of 
S[x]. 

b. To show that Gl , G2 generate the unit ideal of R[xJ is equivalent to 
showing that G2 generates the R-module M = R[xl/(Gl ). Because Gl 
is monic, M is a finitely generated R-module. Now use Nakayama's 
lemma. 

Exercise 7.20: Reducing mod m and writing hi for Hi produces 

0= glhl + g2h2 with hi E (R/m) [x], deg h2 < deggl. 

Now use the uniqueness in part a of the lemma. 
Show that the elements 

satisfy the theorem. 

h = Gl +H2 

12 = G2 +Hl 

To do the general case, find successive liftings of the factorization mod 
m, mod m2 , mod m4 , .•• , and take the limit. 
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Exercise 7.23: p(x) = 3x2 - 2x3 . 

Exercise 7.27: The form of the criterion will be as follows: u is congruent 
to an nth power mod m, for an integer m that you should determine. 

Chapter 9 

Exercise 9.6: Let I c S be an ideal and s E I a nonzero element. Use 
Corollary 2.9 to show that s, together with a set of elements that generate 
I locally at every maximal ideal containing s, generates I. 

Chapter 10 

Exercise 10.2: By localization, we may reduce to the case where R is local 
with maximal ideal P. To show that the primes described are the only ones 
contracting to P, factor out P and reduce to the case where R is a field. 

a. To show that codim P R[x] :::; c: By the converse to the PIT there 
are elements al,"" ac E P such that P is nilpotent mod (al,"" ac). 
It follows that PR[x] is nilpotent mod (al,'" ,ac)R[x], and the PIT 
gives the desired conclusion. 

h. Let Q = {g E R[xll for some a E R - P,ag E PR[xl + (f)}. To show 
that co dim Q :::; c + 1, take (al' ... ,ac) as above, and show that Q is 
minimal over (al,"" ac, f)R[x]. 

Exercise 10.4: Compare R[x]!(ax - b) with the domain obtained from R 
by adjoining the fraction bfa. 

Exercise 10.9a: Assuming that the 1,1 entry of M is the unit, we may use 
row and column operations to reduce to the case where the other entries 
of the first row and column are O. These operations do not change Ik(M). 

Exercise 10.10: It suffices by Exercise 10.9 to prove that codimh(M) 2 
(p - k + 1)(q - k + 1). Do induction on k, the case k = 1 being easy. 
Let P be a prime ideal containing Ik(M). Suppose that codimP < (p
k + 1)(q - k + 1). Observe that P cannot contain all the variables. Thus 
we may begin by inverting a variable, which we may suppose to be Xu. 
As in Exercise 10.9, show that this reduces the problem to computing the 
codimension of h-l(M'), where M' is a smaller matrix. The entries of M' 
have the form Yij = Xij -XilXljXjI Show that k[Xij] = k[{Yij}, {xid, {Xlj }]; 
that is, the Yij may be taken as a subset of the indeterminates. Now use 
the inductive hypothesis on h-l(M'). 
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Chapter 11 

Exercise 11.1: It is easy to show that valuation rings satisfy the condition. 
For the converse, prove first that the fractional ideals of R form a group, 
totally ordered by inclusion. This group, with the opposite order, may be 
taken to be the value group, with valuation sending a E K(R)X to the 
fractional ideal Ra. 

Exercise 11.2a: First reduce to the case R = Rp. If x E K(R), suppose 
neither x nor x-I were contained in R. By the maximality of R we have 
PR[x] = R[x], so we may write 

1 = ro + rlX + ... + rnxn with ri E P R. 

Multiplying by x-n , we see that x-I is integral over R, and thus in R. 

Exercise 11.9: We may assume that X is affine, with coordinate ring R. 
Any rational map f : X -+ pr may be given in the form 

f : x ~ ('Po ( x ), ... , 'Pr ( x ) ) , 

where the 'Pi are rational functions on X. The set on which f is a morphism 
defined is an open set, so that it is enough to show that f is defined at 
some points of any codimension-l subvariety. Let Y c X be a subvariety 
of co dimension 1, corresponding to a prime P of R. Since R is normal, Rp 
is a discrete valuation ring. Use this fact to write 

('Po(x), ... ,'Pr(x)) = (q'l/Jo(x), ... ,q'l/Jr(x)) 

with 'l/Ji E R, not all in P, and q a rational function. Deduce that f is 
defined wherever not all of the 'l/Ji are O-in particular, f is defined at the 
generic point of Y. 

Exercise 11.10: First suppose R is reduced. All associated primes of R 
are then minimal-that is, they have co dimension O. If we localize at such 
a prime we get a reduced zero-dimensional ring-that is, a field. This is in 
particular a regular ring. 

Conversely, suppose that R satisfies RO and S1. By SI, all the primes 
in a primary decomposition of zero must be minimal primes. Localizing at 
one of these primes, we get a zero-dimensional regular ring by RO. But by 
definition, the maximal ideal of such a ring is generated by zero elements; 
that is, the ring is a field. It follows that the primary components are all 
prime. Thus 0 is an intersection of primes in R, as required. 

Exercise 11.12: Suppose a E R is a nonzero divisor. If P is a codimension-l 
prime of (a) C P, show that 

length(Rp/((a)) = eQ length R/((a) + Q), 
QcPa minimal prime 
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where eQ = length(RQ ), so that every principal divisor is a linear combi
nation of relations on AI(R). 

Chapter 12 

Exercise 12.2: Show that R may be identified with a localization of the 
ring k[S3, s2t, st2, t3], and pull back the ideal q to this ring. 

Exercise 12.3: Define a surjection 

M/qM @R/q R/q[XI,"" Xd] ---> grq M, 

where R/q[XI, ... , Xd] is the polynomial ring on d variables over R/q, mak
ing Xl, ... , Xd act like a set of generators for q. Then show that any nonzero 
graded submodule of M/qM @R/q R/q[XI, ... , xr ] has dimension T. 

Exercise 12.12a: Do induction on the number of generators of q, using 
the exact sequence 

0---> (0 :A XI)( -1) ---> A( -1) ---> A ---> A/(xd ---> O. 

Chapter 13 

Exercise 13.2: The coefficients of the characteristic polynomial of bare 
the elementary symmetric functions in the conjugates of b. 

Exercise 13.3: Let gi be a set of generators of T as an algebra over k. 
First form the ring S generated by the elementary symmetric functions in 
the conjugates of the gi, and show that T is integral over it. Thus T, and 
hence also T G , is a finitely generated S-module. 

Exercise 13.7: Exercise 2.15c shows that P is prime. To show that 
co dim Q / P = 1, we may first factor out P and invert all the nonzero 
homogeneous elements in the resulting ring. Thus we may assume that 
every homogeneous element is a unit. Now So is a field, and S ~ So or 
So[x,x- l ] by Exercise 2.18. 

Exercise 13.8: 

1a. Given an ideal J of R, set J' = JR[x, X-I] n 9(I(R). Show that (JI n 
J2 )' = J{ n J~, (In)' = (I,)n; that if P is a prime ideal then P' is a 
prime ideal; and that if I is P-primary then I' is P'-primary. Deduce 
that 0' preserves the primary decomposition of O. 
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lb. Show that <.R.(R)/J' ~ <.R.(I+J)jJ(R/J). Use this with part 1a to 
reduce to the case where R is a domain. Note that the localization 
<.R.J(R)[(X-1)-1] = R[x,x-1]; by Exercise 10.1 this shows dim <.R.J(R) :::: 
1 + dim R. The opposite inequality follows from Theorem 13.8. 

2a and b. Imitate the solutions to 1a and b. 

3. By Corollary 13.7 the dimension of grJ(R) is the maximum of the 
co dimensions of homogeneous prime ideals. Show that the maximal 
homogeneous prime ideals are the ideals of the form P* := P / I EB 
I/I2EB· .. for P a maximal ideal of R containing I. Further, grJ(R)p. = 
grJ(Rp )p •. This reduces the problem to the case where R is local with 
maximal ideal P :J I. 

Note that grJ R = <.R.J(R)/(x-1)<.R.J(R), and that x-1 is not in any 
minimal prime of <.R.J(R). Thus dimgrJR:'S: dim <.R.J(R) -1 = dimR. 
For the opposite inequality, show that if P :J P1 :J ... is a chain of 
distinct primes of R, then pI + (x- 1 ) :J pI :J P{ :J ... is a chain of 
distinct primes of <.R.J(R). Thus co dim pI + (x- 1) :::: 1 + codimP. By 
Corollary 10.8, dim grJ R :::: co dim Q - 1. 

Exercise 13.11: It is enough to consider the image of an open set U defined 
by the nonvanishing of a single element 1 E A(X). Let P(t) be a monic 
polynomial with coefficients in A(Y) such that P(f) = O. Prove that the 
image of U is open by showing that Y - cp(U) is the closed set defined by 
the coefficients of P. 

To this end write K(X) and K(Y) for the fields of fractions of A(X) 
and A(Y), respectively, and let L :J K(Y) be the normal closure of the 
field extension K(X) :J K(Y). Let T be the integral closure of A(X) (or 
equivalently of A(Y)) in L, and let '(j; : X' ---> X be the corresponding 
map of varieties. First note that '(j;'(j;-lU = U, so that we need only con
sider the case X = X'. Show directly that a prime of A(X) not containing 
1 contracts to a prime of A(Y) not containing at least one of the coeffi
cients of the characteristic polynomial of 1. Prove the converse (a prime 
containing 1 contracts to a prime containing all the coefficients) by using 
Proposition 13.10. 

Exercise 13.12: Reduce to the case where R is local, and apply Theorems 
A and 13.8. 

Chapter 14 

Exercise 14.1, part 3: Let V be the set of polynomials of degree d 
obtained by multiplying each li(81, ... , 8 m ; XO, ... , Xn) by all the monomials 
in the Xi of deg d - deg Ii, and let M be the matrix of coefficients of the 
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polynomials in V, with respect to the basis consisting of the monomials of 
degree d in the Xi' M is a p x q matrix, with p equal to the number of 
polynomials in V, and q equal to the number of monomials of degree d in 
the Xi; the coefficients of M are polynomials in the Si. For a E Am, let 
M(a) be the matrix obtained by evaluating the entries of Mat a. We have 
a E Xd iff the polynomials in V, evaluated at (Sl,"" sm) = a, fail to span 
the set of all monomials of degree d. This happens iff M (a) has rank < q, 
that is, iff all the q x q minors of M (a) vanish. 

Exercise 14.3: Let Z c pn X pnv be the set of pairs (x, H) such that 
x E X, x E H, and H contains the tangent space to X at x. These are all 
closed conditions-the last may be expressed in terms of the vanishing at 
x of certain minors of the Jacobian matrix associated with the generators 
of the ideal of X restricted to £-so Z is closed. Its image under projection 
to pnv is X'. 

Chapter 15 

Exercise 15.1: It is generated by monomials. 

Exercise 15.2: If the submodule is generated by monomials {g;}, let Mi = 
fiei be the submodule generated by all the gj that are of the form mei' 

Exercise 15.3: The given elements are certainly in (I: n). On the other 
hand, if f E (I: n) then fn E f, so the terms of fn are multiples of some 
mi. It follows from unique factorization that the terms of f are multiples 
of some m;jGCD(mi' n). 

Exercise 15.7: h n h = hf2 iff a minimal generating set {mil for h 
and a minimal generating set {nj} for f2 do not have any variables in 
common. The "if" part is easy. To prove "only if," suppose on the contrary 
h n f2 = hf2 but mi = pm~ and nj = pnj have GCD p -=I=- 1, and that m~ 
is chosen with minimal degree. Since h n f2 ::) pm~nj, we see that pm~nj 
is a multiple of some munv' Deduce a contradiction from the assumed 
minimality of degrees. 

Exercise 15.12: From Exercise 15.11 it follows that zero is not in the 
convex hull of the finitely many elements mi - ni E P<. Equivalently, there 
is a rational hyperplane H through the origin in Qr such that a translate 
of H separates 0 from the mi - ni' Writing H as the set of zeros of a linear 
functional A, we see that A is either strictly positive or strictly negative 
on all the mi - ni. In the second case we replace A by -A. Since we may 
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multiply A by a positive integer without changing H, we may assume that 
A is integral. 

Exercise 15.13: Find a rational linear functional w whose hyperplane of 
zeros does not meet the interior of the positive cone P <. If w is nonnegative 
on P<, use w for the first weight vector; otherwise use -w. Do induction 
on the dimension of the span of P<, considering the intersection of P< with 
the hyperplane of zeros of w. 

Exercise 15.16: The sequence in(fD is nonincreasing and thus must even
tually stabilize; let ml be its eventual value. Similarly, the sequence in(f£ -
ml) must eventually stabilize; let m2 be its eventual value, and so on. Show 
that if the process did not terminate, then ml, m2, ... would be an infinite 
strictly descending sequence. 

Exercise 15.18: If not all the syzygies were linear combinations of the 
given syzygies, we could choose one, say 2:pucu, with the property that 
the largest monomial m among the in(pugu) is minimal. Let 2:' Pvgv be the 
sum of all those terms Pvgv for which in(pvgv) is m up to a scalar. Writing 
in(pvgv) = nv in(gv) for some term nv of Pv, we have 2:' nv in(gv) = 0, 
so there is a linear combination of the given syzygies that has the form 
2:' nvCv - 2: fucu for some fu with in(fugu) < m. Subtract this from the 
syzygy 2: Pucu to get a contradiction. 

Exercise 15.20: In this case we have mij = in(gi)/ei and mji = in(gj)/ej. 
We have 

-mjigi + mijgj = (gjgi - gigj) - (in(gj)gi - in(gi)gj) 
= (gj - in(gj))gi - (gi - in(gi))gj 

= Pjgi - Pigj 

with in(pj) < in(gj) and in(Pi) < in(gi). We claim that the initial term of 
such an expression is necessarily in(pj)in(gi) or in(pi)in(gj). Indeed, the 
only other possibility is that these terms cancel. But since in(gi) and in(gj) 
are relatively prime, cancellation is only possible if in(gi) divides in(Pi), 
which is impossible because of the inequality. Now subtract the appropriate 
multiple of gi or gj, and repeat the argument. 

Exercise 15.21: You need go no further than u = 1 and the case of two 
variables. 

Exercise 15.24: First, if b' E P,' and u E ti, observe that the upper-left 
s x s submatrix of b'u is the product of the upper-left s x s submatrix of 
b' and the upper-left s x s submatrix of U. In particular, it is the product 
of invertible matrices, so the principal minors of b' u are all nonzero. 
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Conversely, suppose that the principal minors of a matrix 9 are all 
nonzero. It suffices to show that there is a lower triangular matrix b such 
that u = bg is in U; then 9 = b-1u shows that 9 E ~/U. But multiplying 
9 on the left by a lower triangular matrix may be expressed as a sequence 
of elementary transformations, in each of which one either multiplies a row 
of 9 by a nonzero scalar or adds a row of 9 to a later row. Since the 1 x 1 
principal minor of g, which is the upper-left entry gu, is nonzero we may 
multiply the first row by gt:l and then subtract a multiple of the first row 
from each succeeding row to make 9 into a matrix whose first column has 
entries 1,0, ... ,0. The effect of this is to multiply the principal minors by 
gIl =F O. In particular, the principal minor of order 2, which is now equal 
to g22, is nonzero. Multiplying the second row by g:;} and then adding a 
multiple of it to each succeeding row, we may assume that the second col
umn of 9 has entries g12, 1,0, ... ,0. Continuing in this way, we eventually 
reduce to an element 9 E U as claimed. 

Since each of the principal minors is a polynomial function of the entries 
of g, the locus where they are all nonzero is open; as 9 is itself an open 
subset of an affine space, any open subset is dense. 

Exercise 15.25: Modify the last paragraph of the given proof to use only 
the elements gi from I. 

Exercise 15.26a: Take r = 2 and > as the lexicographic order. Let K be 
the ideal generated by all xd x'2 for s ~ O. Show that X2K = K. Since T is 
a domain, Corollary 4.7 shows that K cannot be finitely generated. 

Exercise 15.27: To get a Gr6bner basis adjoin g4 = yz2. The syzygies on 
the original three generators are generated by the columns of 

( 
y2 0 (x + z)y ) 

_x2 X + z 0 . 
o -y _x2 

Exercise 15.28: The resolution will be sYIlWletric, with ranks of free mod
ules 1, 5, 5, 1, and the first and last matrices should be transposes of 
one another up to change of basis; if you make the change of basis nec
essary to make the first and last matrices actually be transposes of one 
another, the middle matrix will be skew-symmetric. This phenomenon will 
be "explained" in Chapter 21. 

Exercise 15.29: x 2, txy + y3, xy3, y5 

Exercise 15.36: Begin by homogenizing the elements of a presentation 
matrix for M with respect to a new variable Xo and multiplying each ele
ment by whatever power of Xo is necessary to bring them all to the same 
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degree, to get a homogeneous submodule Mil c F whose cokernel is a 
graded S[xo]-module. Then argue as in the proposition. 

Chapter 16 

Exercise 16.1: From 

d(b) = d (b. b) = bd(b) + bd(b) 

we get b db = (1- b) db. The equation bm = (1- b)m implies that m = 0 for 
any idempotent band S-module M. Alternate proof: Localize and reduce 
to the case b = 1 or b = 0, treated in the text. 

Exercise 16.2: nS/ R = M. 

Exercise 16.13: Take 1 = (x~, ... , x~). 

Exercise 16.14a: Show that the transcendence degree of the quotient field 
Q((Xl,"" xr )) over Q is uncountable, and use Proposition 16.9. 

Exercise 16.17a: To show that a map is an injection, it is enough to show 
this locally at each associated prime of 0 in the source. Since 1112 is free 
over T = S11, and 1 is a radical ideal, these associated primes are just the 
minimal primes of T. Localizing at such a prime P, T becomes the field 
K(TIP), and thus it is enough to treat the case where S is local and T is 
the residue class field of the regular local ring S. 

Now, in general, if U --t V --t W --t 0 is a right-exact sequence of 
vector spaces, then the map U --t W is a monomorphism iff dim V = 
dim U + dim W, so it suffices to check this equality in the case at hand. 

By Corollary 16.21 (see the remark immediately after it), o'S/k is free of 
rank equal to the transcendence degree of S over k. By Corollary 16.17, 
o'T/k is a vector space of dimension equal to the transcendence degree of T 
over k. The vector space 1112 has dimension = dim S. 

Writing S as (k[Xl,"" xrl/Q)p, where T = K(k[Xl,"" xrl/ P, we 
see that the transcendence degree of S over k is the dimension of 
k[Xl, ... ,xrl/Q, which is the dimension of S plus the transcendence degree 
of T over k, as required. 

Chapter 17 

Exercise 17.2: First reduce to the case where R is local, and the condition 
is that a, b is a regular sequence. Suppose ax - b is prime. Note first that 
R[x] is a free R-module, so that Hl(K(a, b)) = 0 iff HI (R[x] ®K(a, b)) = 0, 
so that it is enough to show that the Koszul complex of a, b in the ring R[x] 
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is exact. But over R[x] the sequence a, b can be transformed by an invertible 
2 x 2 matrix into the sequence ax + b, aj if ax + b is prime, this last is a 
regular sequence, so HI(K(ax+b,a)) = O. Now use the preceding exercise. 

Exercise 17.6 (From an unpublished note of J. Sally): 

Step 1: Show that if Xl, ... , Xr is a regular sequence and Xr is a nonzerodivi-
sor modulo Xl> ... , Xi for each i = 0, ... , r - 1, then xr, Xl, ... , Xr-l 
is a regular sequence. (To do this you might factor out Xl and use 
induction, treating the r = 2 case separately.) 

Step 2: Show that if Xl, ... , Xr-l is a regular sequence in any order and 
Xr is a nonzerodivisor modulo every subset of {Xl, ... , Xr-l} then 
Xl, ... , Xr is a regular sequence in any order. 

Step 3: Use prime avoidance in the form given in Exercise 3.8b to show 
that if Xl, ... , Xr is a regular sequence, then there is an element 
j E (Xl' ... ' xr-d such that Xr + j is a nonzerodivisor modulo 
every subset of {Xl, ... , Xr-l}. 

Step 4: Complete the proof of the assertion of Exercise 17.6 by induction 
on r. 

Exercise 17.9: Use the short exact sequences 

o -tl\jTI -t1\j+IRn+l(j + 1) -tl\j+1TI -t 0 (j = 1, ... ,n) 

and the long exact sequence in Koszul homology to which they give rise. 

Exercise 17.11: 

a. Send eI to (LCM(m,ml, ... ,mt)/LCM(ml, ... ,mt))eJ, where LCM 
denotes the least common multiple. 

b. The basis element eI of T(nl' ... ' nt) corresponds to elU{t+I} of 
T(ml, ... ,mt,m). 

c. Do induction on tj use the long exact sequence associated 
to the mapping cone, and note that multiplication by m 
takes R/(nl> ... ,nt) = Ho(T((nl, ... ,nt)) monomorphically to 
R/(ml, ... , mt) = Ho(T((ml, ... , mt)). 

Exercise 17.12a: We may map a free A/I-module onto 1/12 sending the 
ith generator to Xi. To prove that this map is an isomorphism, it suffices to 
prove this locally, so we may suppose that A is a local ring. If ~~=l aiXi = 
~l<i< "<c bijXiXj, we must show that all the ai are in (Xl, ... , Xc). Since A __ J_ 

is local, every permutation of Xl, ... , Xc is a regular sequence, so it suffices 
to show that ac E I. 
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To this end we rewrite the equality above as 

(ac - bccxc)xc = L bijXiXj - L bicXiXc E (Xl, ... ,xc-d· 
l~i~j~c-l l~i~c-l 

Since Xl, ... , Xc is a regular sequence, we have 

Exercise 17.13: 

a. Use the facts that associated primes of monomial ideals are gener
ated by subsets of the variables, and that the ideal quotient of two 
monomomial ideals is a monomial ideal. 

b. Note that RII = SIJ @ R, and that if J = (ml,'" ,mt), then 
Torf(SI J, R) = Hi(T(ml, ... , mt) @ R). 

c. Use the short exact sequence 

0----'> SI(J n J') ----'> SIJ ffi SIJ' ----'> SI(J + J') ----'> 0, 

and the vanishing of Torr (S I (J n J'), R). 

d. If J' = (ml, ... , mt), then (J : J') = ni(J : mi), so using part e the 
problem reduces to the case where J' is principal. But (J : m) is the 
ideal generated by the coefficients of m in syzygies L aimi + bm = 0; 
so the result follows from part d. 

Exercise 17.14: 

a. Let Sj(I) be the jth symmetric power of I as an R-module (see 
Appendix for the definition). Show that Sj(I) ~ Ij by induction on 
j, by computing a free presentation of each. 

b. Use part a, inverting the element Xl in I. (This is a strengthening of 
the fact that the blowup of I in R is covered by open affines like Spec 
R[xdxI,'" ,xrlxd)· 

Exercise 17.15: Prove the proposition by induction on r. First prove that 
if in(x) is a nonzerodivisor on grI(R), then X is a nonzero divisor. Next show 
that if in(x) is a nonzero divisor of degree d on grI(R), then (x) nIn+d = xIn 
for every integer n ::=: O. Deduce that if I is the image of I in R := RI(x), 
then grI(R)1 in(x) grI(R) = gr[ R. 

The hypothesis that R is local is used in the first step; it would be enough 
to know that nnInRI(XI,'" ,xs) = 0 for every s::=: O. 
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Exercise 17.16: 

a. First suppose that Xl, ... ,Xr is a regular sequence. It is necessary to 
show that Ij /Ij+l is isomorphic to the symmetric power Sj(I/I2), a 
free R/ I-module with free generators the monomials in the Xi. Do this 
first for (Yl, ... ,Yr) C S := Z[Yl, ... ,Yr]. Prove as in Exercise 17.13c 
that s . 

TorI (S/(Yl, ... , Yr)J, R) = 0 

and deduce the general case by tensoring the exact sequence 

o ---? (Yl, ... ,Yr)j /(Yl, ... ,Yr )Hl ---? S/IHI ---? S/Ij ---? 0 

with S. 

b. For the converse, use Exercise 17.15 with I = (Xl, ... , Xr ). 

Exercise 17.17 c: In the first case the homology is 

HO(K(x)) = k· xix~1 
Hl(K(x)) = k· x~ml EB k· xim2 

H2(K(x)) = k ·ml A m2; 

H2(K'(x)) = k· xix~nl A n2 
Hl(K'(x)) = k· xinl EB k· x~n2 
Ho(K'(x)) = k· 1. 

In this case the module structure on the first is trivial-that is, M = 
Al M annihilates H*(K(x))-while the algebra structure on the second is 
isomorphic to an exterior algebra on a two-dimensional vector space over k. 

In the second case, if we write m for the ideal (Xl, X2), the homology is 

HO(K(x)) = m21 ~ kx2 EB kxy EB ky2 
Hl(K(x)) = k . x~ml EB k . xim2 

H 2(K(x)) = k . ml A m2; 
H2(K'(x)) = m2nl A n2 ~ kx2nl A n2 EB kxynl A n2 EB ky2nl A n2 

Hl(K'(x)) = k· xinl EB k· x~n2 
Ho(K'(x)) = k· 1. 

In this case the module structure on the first is nontrivial (for example, 
ml . HO K(x) = k . x~md, while the algebra structure on the second is 
trivial-that is, (Hl(K'(cp)) EB H2(K'(cp)))2 = O. 

Exercise 17.18: 

a. If the linear series V is base-point free, then the complex in question 
is locally the Koszul complex of a sequence of elements generating 
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the unit ideal. Since the cohomology of K (Xl, ... , xr ) is annihilated 
by Xl, ... ,XT) this proves exactness. 

b. Apply part b to the sheaf F = £,0n for n ::::: 2. 

Chapter 18 

Exercise 18.7: For the second part, show that the elements of 
k[xo, ... , x3]1 I can each be written in the form (scalar) ,xo' xt· x2· x3 with 
o :::; b, c:::; 1. Then consider the natural map of k[xo, ... ,x3]1 I onto R. 

Exercise 18.8: It helps to think of this as a subring of k[S4, s3t, s2t2, st3, t4], 
which is Cohen-Macaulay. 

Exercise 18.11: If 

roxn + rlxn - l + ... + rn = (SOXd + SlXd- l + .. ·)(toxe + tlxe- l + ... ), 
with So, to i= 0, then because R is a domain we must have d + e = n. It 
follows that So, to 1:- P, and, by a descending induction, that Si, tj E P for 
i, j ::::: 1. But then r n = Sdte E p2, contradicting our hypothesis. 

Exercise 18.18: First show that it is enough to prove that R is flat over 
the localization k[Xl"" ,xr](Xl, ... ,Xr )' You can then use the local criterion of 
flatness. 

Chapter 19 

Exercise 19.3: If R has finite dimension, show that R is regular iff R has 
finite global dimension. Reduce to the case where R is local (and thus of 
finite dimension). If M is an R-module such that R[x] 181 M is projective, 
show that M is projective; deduce that if R[x] is regular then M is. For 
the converse, note that if R is local then graded modules over R[x, y] have 
minimal free resolutions like modules over a local ring. If R is regular local, 
show first that graded modules over R[x, y] have finite free resolutions, and 
deduce that arbitrary modules over R[x] have finite free resolutions. 

Exercise 19.4: Suppose that ai E Ii and bi E Ji are nonzero divisors, and 
let 

c = II ai II bi · 

We first show that m = n. If we invert c, then each Ii and Ji becomes 
isomorphic to R, and we are reduced to showing that over a commutative 
ring, the rank of a free module is well defined; this may be deduced from 
the fact that 1\ i Rn = 0 iff i ::::: n (or see Corollary 4.4). 
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To show that the products are equal, we shall show that II ..... In is 
isomorphic to the image of I\n(Il EB·· 'EBln) in I\n(Il EB·· 'EBln)Q9R[c-l ] under 
the localization map. Since the isomorphism of II EB·· 'EBln with J l EB·· 'EBJn 

induces an isomorphism of I\n(Il EB··· EB In) with I\n(Jl EB··· EB I n), this will 
have the desired consequence. 

To accomplish this, we embed each of the ideals Ii in R, so that we get a 
map II EB ... EB In --> Rn which becomes an isomorphism upon inverting c. 
Taking nth exterior powers, we get a map I\n(h EB··· EB In) --> I\nRn = R. 
By the first statement of Proposition 7.4, I\(II EB· .. EB In) = I\Il Q9 . .. Q9I\In, 
so that in particular I\n(h EB··· EB In) is a direct sum of terms of which one 
is 1\1 II Q9 ... Q9 1\ 1 In = II Q9 ... Q9 In and the rest each involve some exterior 
power 1\ k Ii with k > 1. The map 

1\1Il Q9 ... Q9l\l In --> 1\1RQ9'" ® 1\1R = I\nRn = R 

induced by the inclusion is just the product map, so that its image is 
II' .... In. On the other hand, if k > 1, then 

I\k Ii Q9 R[c- l] = I\k R Q9 R[c-l] = 0, 

so the image of I\n(h EB ... EB In) in I\n(h EB ... EB In) Q9 R[c-l ] is the same 
as the image of h Q9 ... Q9 In in I\n(h EB··· EB In) Q9 R[c-l ] = R[c- l] under 
the product map-that is, since c is a non zerodivisor, h ..... In, and we 
are done with the second statement. 

Exercise 19.6: 

a. Consider an arbitrary nonzero map P --> R. Its image is an ideal I. 
Since I is projective, we see that P = I EB pI, and pI has smaller rank 
than P. 

c. First do the case where R is local, and thus a DVR; the proof is then 
the same as for the fundamental theorem of abelian groups. Note 
that this includes the case of a module over a factor ring of a DVR. 
Then set J = ann M. Show that J is a nonzero ideal. Since R is 
Dedekind, RI J is Artinian, and thus a product of its localizations, 
which are factor rings of DVRs. Split M according to this product 
decomposition, and reduce M to the desired form separately over the 
factors. Put the results together using Exercise 2.27. 

Exercise 19.12: Locally at (p) we have M(p) = Z(p)' (lip) c Q. Show that 
the composite map M --> M(p) = Z(p) . (lip) ~ Z(p) --> Z/(p) does not lift 
to a map c.p : M --> Z by considering 1 E Z c M and showing that c.p(1) 
would have to be divisible by every prime. 

Exercise 19.18: If M has a free resolution 

0--> Fm --> ... --> Fl --> Fa --> M --> 0, 

with Fi = EBS( -aij), then we must have 
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ieven,j iodd,j 

Chapter 20 

Exercise 20.3: 

a. The usual structure theorem for modules over a principal ideal domain 
shows that any module is uniquely a direct sum of cyclic modules 
whose annihilators form a chain of ideals. Compute the Fitting ideals 
in terms of a presentation adapted to this structure. 

b. One module has an element annihilated by z and the other doesn't. 

Exercise 20.5: Show that anyone minor of <p is a linear combination of 
the appropriate minors of <p' by restricting to a ring finitely generated over 
Z, and to finitely generated free modules mapping to F and F'. 

Exercise 20.7: First do the case where the elements are the variables of a 
polynomial ring. In this case use the fact that the only ideals of k[Xl, ... , xnl 
that are invariant under the natural action of GLn are the powers of the 
maximal ideal. Show that because of the form of the answer, it determines 
the ideals I <Pk in the general case. 

Exercise 20.11: What closed sets are defined by the FittiM? 

Exercise 20.12: Show that for each k, {P a prime I rank Mp = k} is open. 

Exercise 20.13: By Lemma 19.2 it is enough to treat the case where 
R, P is local. Show that fJp(M) = fJQ(M) for every minimal prime Q of 
R. Let n = fJp(M). By Nakayama's lemma M can be generated by n 
elements, that is, there is a surjection <p : Rn -+ M. Show that <p becomes a 
monomorphism on tensoring with K(R/Q) for each minimal prime Q. Use 
the fact that R is reduced to conclude that <p is an isomorphism. For part 
b, consider the R-module Rred. 

Exercise 20.20: It follows from local duality that if S = k[xo, ... , xnl 
is the homogeneous coordinate ring of pn, then M has depth 2: 2 (so 
Extn+1-j(M, S) = 0 for 0 :::; j :::; 2) and 

Hj-l(pn;g:'(m - j)) ~ Extr+1-j(M,S)_r+j_m 

for j 2: 2. The given formula is now a direct translation of Proposition 20.16. 
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Chapter 21 

Exercise 21.1: Here are the pictures for A and D(A), with the sodes 
shaded: 

Exercise 21.2: 

1. Show that D takes each simple module to itself (use annM c 
annD(M) c annD2(M) = annM). 

2. By induction on the length of a module M, show that length M = 
lengthD(M). 

3. If M -+ N is an epimorphism and D(N) -+ D(M) is not a monomor
phism, then D(N) -+ D(M) factors through a module of smaller 
length. Apply D again and derive a contradiction. Similarly, show 
that D takes monomorphisms to epimorphisms. 

4. Finish the problem by proving: If the complex 0 -+ M' -+ M -+ 

Mil -+ 0 is exact at M' and at Mil and if length M = length M' + 
length Mil, then the complex is exact. 

Exercise 21.4: The functor D = Extd( -, R) is certainly R-linear and 
contravariant. If 0 -+ M' -+ M -+ Mil -+ 0 is a short exact sequence of 
modules of finite length, then Extd- 1(M', R) = 0 by Theorem 18.4 while 
Ext~+l(M', R) = 0 by Corollary 19.6. Thus from the long exact sequence 
in Ext we get a short exact sequence 
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o --- Ext~(M',R) --- Ext~(M,R) --- Ext~(M,R) --- 0, 

proving that D is exact. 
It thus remains to show that there are natural isomorphisms M --

Ext~(Ext~(M, R), R) for all R-modules of finite length M. Let 

:t : 0 --- Fe --- Fc- 1 --- . . . --- Fl --- Fo 

be a free resolution of M. Because M has finite length, the annihilator of 
M has depth d, so the modules Extk(M, R) = 0 for all i < d by Proposi
tion 18.4. This implies that the complex T = HomR(:t, R), whose homol
ogy is ExtR(M, R), is a free resolution of Ext~(M, R). Repeating this argu
ment, we see that :t** is a free resolution of Ext~(Ext~(M, R), R). Since 
all the free modules in :t may be chosen to be finitely generated, the nat
ural homomorphism :t --- :t** is an isomorphism, and induces the required 
natural isomorphism M --- Ext~(Ext~(M, R), R). (The reader may check 
that this isomorphism is independent of the resolutions chosen.) 0 

Exercise 21.5: By what we have already done, the dualizing functor is 
unique on the category of modules over a fixed zero-dimensional factor 
ring of R, and thus on the category of modules of any fixed length. Show 
that the isomorphism between two isomorphic dualizing functors on one 
of these subcategories is already determined by the isomorphism on the 
simple module. 

Exercise 21.10: From the definitions, if a, b E A and w E WA, then 
'ljJ(aw)(b) = 1](abw) = (a1])(bw), so 'ljJ(aw) = a'ljJ(w) , and 'ljJ is a homo
morphism of A-modules. 

Applying the duality functor Homk( -, k) we see that the dual of the map 
'ljJ1J : WA --- Homk(A, k) is the map 

A = Homk(Homk(A, k), k) --- Homk(wA, k) 

sending 1 to 1]. Since WA ~ Homk(A, k), its dual Homk(wA, k) is isomorphic 
to A. Since 'ljJ1J is an isomorphism iff its dual is, this proves the equivalence 
of statements 1 and 2. 

For the equivalence of statements 2 and 3, let 0: : AlP '----> WA be the inclu
sion of the socle in WA. The dual of 0: is a projection A ~ Homk(WA' k) ....... 
Homk(AI P, k) ~ AlP. This projection carries 1] E Homk(wA, k) to 1]0: E 
Homk(AI P, k). Thus the projection is nonzero on 1] iff 1] is nonzero on the 
socle of WA. But up to multiplication by a unit, there is only one projec
tion A ....... AlP, and the elements carried to nonzero elements of AlP are 
precisely the units of A. These are the elements that generate A as an 
A-module. Thus 1] is nonzero on the socle of WA iff the image of 1] gener
ates WA. 

Exercise 21.16: First check the case c = 0 by induction on r; then do 
induction on c. 



738 Hints and Solutions for Selected Exercises 

Exercise 21.18: 

a. Suppose first that dimA = O. In this case WA is isomorphic to an 
ideal iff W A ~ A, because W A and A have the same length. 

In general, suppose first that WA is isomorphic to an ideal. Localizing 
and using the zero-dimensional case, we see that A is generically 
Gorenstein. 

If A is generically Gorenstein, show that the first fitting ideal of WA 

contains a nonzero divisor u, and that after inverting u every local
ization of A is Gorenstein. Conclude that WA[U-1j is an invertible 
module over A[u-1j. Construct a homomorphism 'P : WA --+ A that is 
an injection after inverting u, and conclude that 'P is an injection by 
showing that u must be a nonzero divisor on WA. 

b. Show that u may be chosen to be homogeneous, and proceed as in 
part a. 

Exercise 21.19: The condition on the Hilbert series implies that hWA (t) = 
(_l)dimAtnhA(rl) = tmhA(t) for some m. We wish to prove that WA is 
generated by a single element. 

Use Exercise 21.18b to conclude that for some integer e,wA(e) is isomor
phic, as a graded module, to a homogeneous ideal I. 

Deduce from the hypothesis on hWA (t) that dimk(wA)m = 1. Thus 
dimk Im - e = 1. Choose a nonzero element f Elm - e . 

We have Af C I. Show that the Hilbert series of Af is tm-ehA(t), and 
that this is the same as the Hilbert series of I. Conclude that I = Af. 

Exercise 21.20: Suppose that I is a canonical module. I has co dimension 
;::: 1 since the annihilator of I is o. I has co dimension :s: 1 and A/lis Cohen
Macaulay since depth(P, A/1) ;::: depth(P, 1) -1 by Corollary 18.6. To show 
that A/I is Gorenstein, compute WAil = Ext~(A/I,wA) = Ext~(A/I,1). 
From the exact sequence 0 --+ I --+ A --+ A/I --+ 0 we get a long exact 
sequence including 

that is, 

HomA(A/I,1) --+ HomA(A,1) --+ HomA(I, 1) 

--+ Ext~ (A/ 1,1) --+ Ext~ (A,1) , 

0--+1 --+ A --+ WAfI --+ 0, 

so WAil = A/I. 

Exercise 21.21: Let I be an ideal of A isomorphic to the canonical module. 
I is unmixed of co dimension 1, so I is principal (generated by the GCD of 
its elements). 
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Appendix 1 

Exercise A1.I: Show that it suffices to do the case where R is a field and 
S is a finitely generated reduced k-algebra. Embed S in its total quotient 
ring, which is a finite direct product of fields. Show that tensor products 
commute with finite direct products. Finally, apply Theorem A1.3. 

Exercise A1.2: 

a. It suffices to treat the case where Rand S are finitely generated fields 
over k. By the characterization of Theorem A1.3 b), if k c k' is any 
extension of fields such that R @k k' is a domain, then the quotient 
field of R @k k' is separable over k'. For this reason it suffices to treat 
the case where S = k(z) is generated by one element over k. 

If z is transcendental over k, then the result is obvious. If z is algebraic 
over k, satisfying an irreducible polynomial p(Z) = 0, say, then to 
show that R @k S = R[Z]/(p(Z)) is a field it suffices to show that p 
is irreducible over R. But the factors of p have coefficients that are 
algebraic over k; since k is algebraically closed in R, any factors in 
R[Z] would be in k[Z]. 

b. Reduce to the following special case: If S is a field of characteristic p 
and s E S, then S[xl/(xP - s) is a local ring. 

Appendix 2 

Exercise A2.3a: Use Nakayama's lemma and Proposition A2.2. 

Exercise A2.9: The symmetric algebras of R-modules are the quotients 
R[Xl' ... , l/ I where I is generated by elements homogeneous of degree 1 in 
the Xi. 

Exercise A2.llc: A "quick and dirty" argument: First consider the case 
where a = elA e2 + e3A e4 + .... Reduce to this case by first reducing to the 
case of a generic alternating matrix over Z[Xij], then embedding this ring 
into C so that the problem is reduced to the case of a "generic" matrix of 
complex numbers, and finally reducing this complex matrix to the form CPa 
with a as above. 

Exercise A2.13: Use Nakayama's lemma and base change to compute the 
numbers of generators of the exterior and symmetric powers of I. 

Though accessible to bare-handed computation, this exercise can be done 
more easily with a little extra technique: 

(1) The presentation given is part of the Tate resolution of the residue 
class field. 
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(2) R is a one-dimensional Gorenstein ring, so any torsion-free R-module 
is reflexive. 

(3) Because the multiplicity of R is 2, and R is one-dimensional, every 
ideal of R can be generated by (at most) two elements (they are free 
modules of rank 2 over a polynomial ring in one variable over which 
R is integral). 

Exercise A2.16: Suppose <p is a matrix for which ei(<p) is exact, for some 
i < -1. Deduce from Theorem A2.10, Exercise 10.10, and the criterion 
of exactness (Theorem 20.9) that ei would be exact in the generic case 
and would also be a resolution of a module whose annihilator has codim 
i(f - 9 + i), the co dimension of the generic determinantal ideal. Derive a 
contradiction from Proposition 18.4. 

Appendix 3 

Exercise A3.2: 

a. First show that the image of any map from a finitely generated mod
ule to an infinte direct sum is contained in a finite subsum. If R is 
Noetherian, prove using Lemma A3.4 that the direct sum of injectives 
is injective. For the converse, suppose that II C lz C ... is an ascend
ing chain of ideals with union I. Embed each I j I j into an injective 
module E j , and extend the map I ---> tBEj to R. 

b. Choose a maximal direct sum of indecomposable injectives contained 
in a given injective. Use primary decomposition to produce another 
indecomposable summand. 

Exercise A3.4a: To show that E' is injective, it suffices to show that <p 
can be extended to a map R ---> E'. The kernel of <p certainly contains PI. 
By the Artin-Rees lemma, pd n I c PI for some d. Thus <p factors through 
I ---> I j(I n pd) = pd + I j pd. Thus we may extend 'P to a map Rj pd ---> E, 
and use this to define an extension R ---> Rj pd ---> E of'P to R. The image 
of this extension is contained in the image of Rj pd, which is annihilated 
by pd and thus contained in E'. 

b: Set Q := Homgr(R, k) and let P = tBd>oRd be the homogeneous 
maximal ideal of R. Write Q(d) = Homgr(Rj pd, k). We have Q(d) = 
Homk(Rj pd, k) because Rj pd is a finite dimensional vector space over k, 
so Q(d) is injective over Rj pd. Furthermore, Q = UdQ(d). If I is any ideal, 
and a : I ---> Q is any homomorphism, then since I is finitely generated the 
image of I is contained in some Q(d). For this value of d the map a factors 
through a map Ci : I j pd n I ---> Q(d). The map Ci can be extended to a map 
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Rjpd ----* Q(d), and composing this with the projection R ----* Rjpd, we get 
a map that extends 0:. Thus Q is injective. To show that it is the injective 
hull of k = Q(O), show directly from the definition that k is an essential 
submodule. 

Exercise A3.6b: First do the case where 0 c M is not the intersection of 
two nonzero submodules. Reduce to this case by Noetherian induction, as 
in the proof of the existence of primary decomposition. 

Exercise A3.7a: One direction is Lemma A3.8. For the other direction, 
show that if FeE is essential, then so is HomR(S, F) c HomR(S, E). 

Exercise A3.10: If we regard the columns of the diagram as complexes, 
then the first of these results is a special case of the long exact sequence in 
homology coming from a short exact sequence of complexes. 

Exercise A3.13: It suffices by symmetry to prove the first isomorphism. 
If we write K = ker(F EB G ----* M), then the inclusion of F into FEB G 
induces an inclusion of exact sequences 

F ----* M ----* 0 
J II 

o ----* K ----* F EB G ----* M ----* o. 
The snake lemma now shows that G ~ coker(NF ----* K). Since G is projec
tive, we obtain K ~ N F EB G as required. 

Exercise A3.15: Do induction on i, and use an exact sequence 

o ----* A' ----* A ----* A" ----* 0, 

with A projective. 

Exercise A3.16: Consider the resolution 

O----*R~R 

of Rjx. 

Exercise A3.22a: Reduce to the case where there is a "surjective compar
ison map" between the two presentations-that is, a commutative diagram 

F ----* G ----* M ----* 0 
1 1 II 
F' ----* G' ----* M ----* 0 

where the downward maps are surjective. 

Exercise A3.25: Let EO be an injective module containing Rj I, and set 
T = Ej(RjI). Note first that HomR(I,RjI) = HomR(IjI2,RjI). If 
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E : EO ---; El ---; ... 

is an injective resolution of R/ I, show that maps from R/ I into Tare 
the same a (-I)-cycles ofthe complex HomR(R/I,E). Show that via the 
short exact sequence 0 ---; I ---; R ---; R/ I ---; 0, maps of R/ I to T, mod 
those factoring through Eo, correspond to maps I ---; R/ I. Alternately, 
the relation Extk(R/ I, R/1) = HomR/I(Torf(R/ I, R/1), R/1) follows from 
the "change-of-rings" spectral sequence Ext'R/I(Tor~(R/ I, R/ 1), R/1) ::::} 

Ext'R(R/ I, R/1) and the fact that Tor~(R/ I, R/1) = R/ I is a free R/I
module. This same spectral sequence shows that all the Extk(R/ I, R/1) 
are dual to the Torf(R/ I, R/1) if the latter are all free over R/ I -for 
example, if R is local and I is its maximal ideal, or if I is generated by a 
regular sequence. 

Exercise A3.28: The multiplication on P* corresponds to a comultiplica
tion.6. : P ---; P ® P. The condition on d* guarantees the commutativity of 
the diagrams 

~ project 
Pm+n+1 ---; ~i+j=m+n+lPi ® Pj ~ Pm+1 ® Pn 

! ! 
~ project 

Pm+n ---; ~i+j=m+nPi ® Pj ~ Pm ® Pn. 

The product of co cycles I : Pm ---; k and 9 : Pn ---; k is the composite 

~ project g0/ 
go 1= h: Pm+n ---; ~i+j=m+nPi ® Pj ~ Pn ® Pm ~ k ® k = k. 

From the commutativity of the diagram above, it follows that h is again a 
cocycle. 

Now with notation as in Exercise A3.27, suppose that I represents the 
class of a and 9 represents the class of /3. To show that go I represents the 
class of /3a, it suffices to check the commutativity of the following diagram. 
In this diagram we have written .6.' for the composition of .6. and the 
projection onto one component of A ® A, and I' for the lifting of I to 
Ao. Its commutativity follows easily from the commutativity of the smaller 
diagram given at the beginning of this hint. 

Exercise A3.29a: By Exercise A3.22c it is enough to show that the 
induced map N ® A ---; N ® B is a monomorphism for every finitely gen
erated module N. Reduce by localizing and factoring out a power of the 
maximal ideal to the statement: If A ---; B ---; C ---; 0 is a right-exact 
sequence of modules of finite length, and B ~ A ffi C, then A ---; B is a 
monomorphism. This follows at once by comparing 

length ker( B """* C) = length B - length C 

to length A. 

Exercise A3.44a: To define Go, choose generators mi for grm M and lift 
them back to a (possibly nonminimal) set of generators mi for M, so that 
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Am+n ---> .•• ---> Am+l ---> Am ---> Am-l ---> ---> Ao ---> k 

+.' + .' 
Ani81A m ---> ---> Al i8IAm 

+,®t' +,®t' 
An ---> ---> AI ---> 

+' + k ---> ---> Yn-l ---> Xl ---> ---> Xm ---> k 

mi is the leading form of mi in grm M. Let Go ---> M be the map from 
a free module with basis corresponding to these generators. Filter Go in 
such a way that its free generators have the same degree in gr Go as the 
corresponding mi have in gr m M. Filter the kernel Ml of Go ---> M by 
taking the induced filtration from Go, that is, MP := (Go)p. This is a stable 
filtration by the Artin-Rees lemma. Repeat this process inductively for the 
rest of the resolution. 

Exercise A3.46c: Use the Auslander-Buchsbaum formula (Chapter 19) 
and Theorem 18.4. 

Exercise A3.49: Break up F into short exact sequences 

o ---+ Ki ---+ Fi ---+ Bi ---+ 0 

and 
o ---+ Bi ---+ Ki+ 1 ---+ Hi+ 1 (F) ---+ O. 

Use the same idea as in Proposition A3.16 to form a short exact sequence of 
injective resolutions for the modules of each of these short exact sequences, 
and put these together. 

Exercise A3.50: 

b. Use the following double complex: Take an acyclic resolution of A, 
apply :r, and take an injective resolution of the resulting complex in 
the sense of Exercise A3.49. 

d. Use resolutions by flabby sheaves. 

Exercise A3.51: If 0: : A - Band f3 : B >---> C were such a factorization, 
and if I : B' ---+ B is such that B' ---+ B ---+ C is homotopic to 0, then I 
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would have to be homotopic to 0 itself. Apply this to the mapping cone of 
a, and apply the dual argument to the mapping cone of /3, to get a diagram 
such as the following, 

where the left and right columns are (parts of) the mapping cones of a and 
/3, the horizontal maps give maps of complexes that are homotopic to 0, 
and the diagonal maps are the homotopies. Deduce that the maps labelled 
hand k give a surjection Zip -+ Z, a contradiction. 

Appendix 6 

Exercise A6.1O: Consider the Snake Lemma (Appendix 3). 
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Index of Notation 

Entries are listed in order of appearance. 

Z, integers, 12 
Q, rational numbers, 12 
R, real numbers, 12 
C, complex numbers, 12 
k[Xl, . .. , Xr ], polynomial ring, 13 
ann M, annihilator, 15 
(I : J), ideal quotient, 15, 360, 372 
Z[i], Gaussian integers, 21 
SLn(k), special linear group, 24, 38 
G Ln (k), general linear group, 24, 

38 
SG, ring of invariants, 25, 30 
An,A~,An(k), affine n-space, 32 
Z(I), zero locus, 32, 40 
A(X), affine coordinate ring, 33 
P#, map on functions, 35 
X/G, quotient by G, 37 
pr, Pk' pr (k), projective space, 39 
HM(S), Hilbert function of M, 42, 

148 
M(d), a,th twist of M, 42, 321 
Spec R, spectrum of R, 54 

max-Spec R, maximal spectrum, 54 
M[U-1], U-1 M, localization, 59 
mil, image of m in localization, 59 
Rp, localization at a prime, 60 
K (R), total quotient ring, 60 
HomR(M, N), homomorphisms, 62 
M Q9R N, tensor product, 63, 567 
m Q9 n, image of (m, n) in M Q9R N, 

64 
Supp M, support of a module, 67 
rad I, radical of an ideal, 71 
length M, length of composition 

series, 72 
AssRM, Ass M, associated primes, 

89 
HJ(M), annihilator of big power of 

I = zeroth local cohomology, 
100, 683 

(I : JOO), saturation, 101, 360, 372 
k[r], semigroup ring, 139 
grIM, gr')M, associated graded 

ring or module, 146 
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BIR, blowup algebra, 148 
B'JM, blowup, 149 
Tor~(M, N), derived functors of 181, 

159 
~(R, 1), Rees algebra, 170 
H, Hm, completion, 179 
k[[Xl, ... ,xnlJ, power series ring, 

179 
lim, inverse limit, 181, 697 

931, distinguished ideal of 
completion, 181 

Zp, p-adic integers, 182 
in(a), initial form of a, 194 
k * Rq[B], compos it urn of subrings, 

202 
dim, dimension, 225 
codim, codimension, 225 
K(R)* = K(R)X, group of units, 

248 
Ro, R 1, So, SI, Serre's conditions, 

252 
I-I, inverse of a fractional ideal, 

253 
Pic(R), group of isomorphism 

classes of invertible ideals, 255 
C(R), group of invertible ideals, 

256 
Chow(R), Chow group, 260 
End(I) = Hom(I, I), 

endomorphism ring, 265 
GCD, greatest common divisor, 320 
LCM, least common multiple, 320 
G'ij, monomial syzygy, 320 
mij, m;j(GCD(mi' mj)), 322 
in(f) , in>(f), initial form, 325 
lex, hlex, rlex, monomial orders, 

326 
13, upper-triangular matrices (Borel 

subgroup), 349 
13', lower-triangular matrices, 349 
U, identity plus strictly 

upper-triangular matrices 
(unipotent subgroup), 349 

At, exterior power, 349 
nl A ... A nt, exterior product, 349 

Sd, forms of degree d in 
S = k[Xl,"" Xr ], 349 

Gin(I), generic initial ideal of I, 
349 

-<p, Gauss order on integers, 352 
fbottom, sum of low degree terms, 

356 
goo, sum of top degree terms, 359 
100 , ideal at infinity, 359 
DerR(S, M), R-linear derivations, 

383 
nS/ R , Kiiher differentials, 384 
AN, or ARN, exterior algebra, 423, 

569 
K(x), Koszul complex, 423 
K(Xl,'" ,xn ) Koszul complex, 428 
depth(I, M), length of maximal 

M -sequence, 425 
n'L exterior power of cotangent 

bundle, 436 
pdRM, projective dimension, 470 
gl dim R, global dimension, 472 
Ijcp, determinantal ideal of cp, 492 
Fitti (M), Fitting ideal of M, 493 
reg M, Castelnuovo-Mumford 

regularity, 505 
idAM, injective dimension, 529 
TR(M), tensor algebra, 569 
SR(M), symmetric algebra, 569 
SR(M), (skew-)symmetric algebra 

of a graded module, 569 
~,~d, diagonal (comultiplication), 

576,578 
T, interchange map, 577 
x(d), divided power, 579 
Pfaff cp, Pfaffian (square root of 

determinant), 588 
r E, r B, r Z, rth term, boundaries, 

cycles, of a spectral sequence, 
656 

00 E, 00 B, 00 Z, limit term, 
boundaries, cycles, of a 
spectral sequence, 656 

horG, vertG, parts of a double 
complex, 661 



horE, ~ertE, spectral sequences of a 
double complex, 666 

r EP,q =?p Hp+q convergence of a 
spectral sequence, 667 

K(9Jt) , K+(9Jt), homotopy 
categories of complexes, 678 

Index of Notation 765 

D+(9Jt), derived category, 680 
H}(M), local cohomology, 684 
lim, colimit (or direct limit), 698 
::fun(13,A), category of functors, 

698 



Index 

I-generic matrices, 604, 605 
5-lemma, 635 
5-term exact sequence, 670 
9-lemma, 635 

Abel, N. H., 24 
Abelian categories, 614, 690 
Abhyankar, S. S., 306 
action of the symmetric group, 25, 

575 
acyclicity lemma of Peskine-Szpiro, 

498 
additive functor, 630 
adjoint functors, 64, 691-694 
affine algebraic set, 32, 76 
affine domain, integral closure of, 

263, 292ff 
affine k-algebra, 35, 129 
affine n-space, 32 
affine products, 299 
affine rings, 35, 221, 281ff 
affine schemes, 36 
affine space is contractible, 481 
Akin, K., 585, 591 

Akizuki, Y., 261 
algebra, 13 
algebraic curve, 23 
algebraic extension of domains, 130 
algebraic geometry, further 

readings, 709 
algebraic independence, 555, 556 
algebraic integers, 119 
algebraic subset, 32 
algebraic variety, 32 
algebraic vector bundle, 616 
algorithm for monomial primary 

decomposition, 111 
algorithms, 317ff 
alternating matrix, 588 
analogy with topology, 566 
analysis situs, 213 
analytic spread, 276 
analytic view of normalization, 128 
Andre, M., 386 
Andre-Quillen homology, 386 
Andreotti, A., and Salmon, P., 515 
annihilation of Koszul cohomology, 

434 
annihilator, 235, 318, 362, 374 
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annihilators and Fitting invariants, 
512,513 

antipode map of a Hopf algebra, 
576 

Apery, R., 542 
apparently silly definition, 506 
approximate root, 183, 209 
Arabic, article in, 576 
Artin, E., 143 
Artin-Rees lemma, 145, 196, 273, 

624 
Artin-Tate proof of the 

Nullstellensatz, 143 
Artinian, 71, 73, 75, 76, 227, 325 
ascending chain condition, 27 

on principal ideals, 14 
Assmus, E. F., 479, 580 
associated, 89 
associated graded ring or module, 

146, 319, 342, 356, 372 
associated primes, 87, 89, 108 
associated primes and free 

resolution, 501 
associated primes of principal 

ideals, 249, 250 
associated primes and projective 

dimension, 477 
associativity, 11 
aufblasen (blow up), 149 
augmentation, 576 
Auslander, M., 643 
Auslander-Buchsbaum, 469, 477, 

500 
Auslander-Buchsbaum formula, 

469, 475, 477, 485, 499, 590 
Auslander's lemma, 336 
Auslander's transpose functor, 641 
automorphisms, 80 
average over a group, 30 
Avramov, L., 191, 440 
Avramov, L. and Halperin, S., 679 
Axiom (computer algebra system), 

375 

Baer, R., 619, 620 

balanced Tor, 667 
base change, 391, 494, 570 
base and fiber, 236 
base point free pencil trick, 442, 

505 
bases, 556 

for TM, SM, 8M, AM, 572 
basis, vector space, for a module, 

325 
Basis Theorem, Hilbert's, 26 
Bass, H., 525 
Bass' characterization of 

Noetherian rings, 623 
Bass' conjecture, 485 
Bayer, D., 334, 351, 354, 509 
Bayer, D. and Stillman, M., 340 
beginner's binomial theorem, 580 
Bergman, G., 338 
Berlekamp, E., 319 
Bertini, E., 243 
Betti numbers, 639 
Bezout, E., 305 
bialgebra, 576, 589 
big cell, 369 
bigebra, 576 
bilinear, 63, 567 
binary form, 25 
binomial coefficients, 54, 352 
blowup algebra, 148, 243, 319, 372 
blowup of a regular sequence, 441 
Borel subgroup, 349 
Borel-fixed ideals, 351, 353, 354 
Bott's vanishing theorem, 590 
boundary operators, 611 
bounded rational functions are 

integral, 128 
bouquet of circles, 414 
Bourbaki, N., 576 
branch of a plane curve, 129, 185 
Brieskorn, E., 515 
Brouwer, L.E.J., 214 
Bruhat decomposition, 369 
BruIJ.;3, W., 377 
Buchberger, B., 368 
Buchberger's algorithm, 317, 333 



Buchberger's criterion, 332 
Buchsbaum, D. A., 376, 538, 585, 

590,687 
Buchsbaum, Eisenbud, Horrocks 

conjecture, 502 
Buchsbaum-Rim complex, 567, 590 
Buchsbaum-Rim multiplicity, 591 
Buchsbaum ring, 687 
Burch, L., 502 

canonical bundle, 519 
canonical curves 

further readings, 709 
trigonal, 609 

canonical module, 519, 523, 528 
as ideal, 551 
localization and completion, 536 
uniqueness and existence, 534 

canonical ring of a variety, 26 
Cantor's one-to-one 

correspondence, 214 
Caratheodory's theorem, 139 
Cartan, H., 566 
Cartier divisors, 256, 259, 276, 447 
Castelnuovo, G., 442, 505 
Castelnuovo-Mumford regularity, 

505, 516 
history of, 510 

Castelnuovo's base point free pencil 
trick, 516 

catalecticant matrix, 604, 605 
category, 36, 221, 286, 689ff 
catenary, 453 

universally, 286, 288, 312, 453 
Cauchy, A., 307 
Cauchy sequence, 204 
Cayley, A., 119, 305, 417, 611, 614 
Cayley numbers, 482 
Cayley-Bacharach, 520, 552, 553 
Cayley-Hamilton theorem, 117, 

119, 123 
Cayley's n-process, 30 
center of a noncommutative ring, 

187 
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chain complex, 612 
chain of submodules, 72 
change-of-rings spectral sequences, 

669, 675, 676 
characteristic of a field, 205 
characteristic polynomial, 371, 575 
Chasles, M., 553 
Chern classes, 44, 488 
Chern polynomial, 488 
Chevalley, C., 48, 57 
Chevalley's theorem, 311 

strong form, 315 
Chinese remainder theorem, 72, 80 
Choi, S., 515 
Chow, W. L., 260 
Chow group, 260, 266 
circle, as a complex curve, 52 
circular points at infinity, 52, 215 
class group, 258 
classical groups, 463 
classical topology, 32, 55, 180, 454 
clean primary decomposition, 93 
Clebsch, A., 24, 215 
closed, in the Zariski topology, 32 
coalgebra structure, 576 
CoCoA (computer algebra system), 

375 
codimension, 225 

and depth, 448 
co dimension one, 247 
coefficient fields, 189, 190, 201, 205, 

397 
coequalizer, 394, 699, 700 
Cohen, I. S., 85 
Cohen factorization, 191 
Cohen structure theorem, 189, 201 
Cohen-Macaulay, extrinsic 

characterization, 479 
Cohen-Macaulay factor rings of 

codimension 2, 544 
Cohen-Macaulay implies 

universally catenary, 453 
Cohen-Macaulay module, existence 

of,465 
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Cohen-Macaulay property is local, 
452 

Cohen-Macaulay ring, 420, 443, 
447-468, 477, 528, 536, 590, 
710 

is equidimensional, 454 
Cohen-Macaulay rings of 

codimension, 2, 503 
Cohen-Macaulay type, 550 
Cohen-Macaulayness in the 

geometric case, 468 
coherent sheaf, 44 
Cohn, P. M., 338 
cohomology of coherent sheaves, 

44, 467 
cokernel as a colimit, 700 
colimits, 391, 394, 697-699 

of diagrams of commutative 
algebras, 704 

of diagrams of free modules, 702 
of diagrams of modules, 700 

combinatorial invariant, generic 
initial ideal as, 348 

commands in Macaulay, 375 
commutative property, 11 
compactification (completion) of 

affine space, 40 
compactness, 129 
comparison of local and global 

cohomology, 673 
compatible orders, 327, 341 
complete intersection, 462, 537 
complete intersections are Cohen-

Macaulay, 455 
complete local ring, 182, 187 
complete set of orthogonal 

idempotents, 13 
complete set of solutions, 613 
complete with respect to an ideal, 

182 
completion of a regular local ring, 

484 
completion of a ring or module, 

179ff 
complex, exactness of a, 496 

complex, trivial, 490 
complex of differential forms, 612 
complex line or complex plane, 215 
complex of modules, 45, 417, 611 
complex points, 215 
complexes constructed by 

multilinear algebra, 589 
complexes, constructions with, 

626ff 
complexity of computing Grabner 

bases, 333 
composition series, 72 
compositum of subrings or 

subfields, 557 
computation, further readings on, 

710 
computation of differentials, 387 
computation of Tor, 160 
computer algebra projects, 375ff 
comuitiplication, 576 
conductor, 268, 549 
conductor square, 268 
cone, 287, 297 
conics, 51 
conjecture of Bass, 485 
conjecture of Buchsbaum, 

Eisenbud, Horrocks, 502 
connected components, 85 
connected in co dimension 1, 454 
connecting homomorphism on 

homology, 428, 631 
conormal module, 177, 387 
conormalsequence, 387 
conormal sequence of a complete 

intersection, 440 
constant rank, projective modules 

of, 493 
constructible algebraic set, 309, 

311,315 
constructing prime ideals, 85 
constructive module theory, 318 
contragredient representation, 521 
convergence of a sequence in the 

Krull topology, 192 



convergence of a spectral sequence, 
663 

convergent power series, 184 
converse of the Principal Ideal 

Theorem, 233 
convex cone, 139 
coordinate geometry, 23 
coordinate ring, 33 
coprimary module, 94 
coproducts, 699, 700 
cotangent bundle, 383, 388 

functor, 386 
of projective space, 436 

counit of a coalgebra, 576 
counting constants, 232 
covariant functor, 160 
criteria for flatness, 161ff 
critical pairs in computation of 

Grabner basis, 338 
cubic surface, 504 
curve, Picard group of a, 258 
cusp, 51 

de Rham complex, 414, 612 
Dedekind, R., 22-24, 87, 256 
Dedekind domain, 258, 484 
deformation, trivial, 175 
deformations, 175, 176, 410 
degree, 44, 300 
depth 

and codimension, 448 
and dimension, 686 
and flatness, 460 
is geometric, 425 
of an ideal on a module, 420, 

425, 447 
and localization, 448 
and projection dimension, 475 
and the vanishing of Ext, 449 

depths of modules in an exact 
sequence, 451 

derivations, 383, 583 
derived category, 612, 677, 679 
derived exact couple, 659 
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derived functors, 614, 636 
Desargues, G., 39 
Descartes, R., 23, 39, 215 
descending chain condition, 71 
descending chains of prime ideals, 

222,233 
descending multiplicative filtration, 

145 
determinant in multilinear algebra, 

565 
determinantal ideals, 106, 112, 244, 

371 
determinantal rings, 463, 710 
determinantal varieties, 590, 606 
determinate division, 368 
determinate division algorithm, 331 
devissage, 308 
diagonal, 300, 576 
diagonal map, 589 
diagram, 697 
diagram of free modules over M, 

702 
diagrams and syzygies, 634 
diameter and volume of a 

neighborhood, 224 
differential basis, 190, 397 
differential module (=module with 

differential), 626 
differential modules, map of, 627 
differential operator and inverse 

system, 547 
differential operators, 583 
differentials 

and colimits, 394 
complete case, 413 
and direct products, 395 
Kahler, 383, 611 
and localization, 394 

dimension 
of fibers, 308 
of a graded ring, 287 
is a local property, 218 
of a ring or module, 43, 213, 225, 

246,555 
dimension zero, 227, 546 
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direct product, 12, 15, 16, 81, 188, 
251,707 

of Cohen-Macaulay rings, 465 
direct sum, summand, 15, 31, 47, 

571, 700, 707 
Dirichlet, P. G. L., 22 
disconnected spectrum, 85 
discrete valuation, 248 
discrete valuation ring (DVR), 220, 

247, 248, 257, 265, 295 
disjoint union as colimit, 707 
distinguished open set in Zariski 

topology, 55 
distributive law, 11 
divided Koszul relations, 323, 366 
divided power algebra, 54, 566, 579 
divided powers 

and Pfaffians, 588 
and the rational normal curve, 

587 
divisibility of binomials, 352 
divisibility of monomials, 320 
division algorithm, 330, 331 
division with remainder, 318, 330 
divisor, 253, 259, 590 
divisors 

on rational normal curves, 607 
on a scroll, 608 

Dolgachev, I., 503 
domain, 12, 150, 166 
dominant morphism of varieties, 

288 
double complex, 652 

third-quadrant, 666 
double complexes with two rows, 

675 
dual socle generator, 527 
duality, 520, 546 

for maximal Cohen-Macaulay 
modules, 538 

dualizing functor, 521, 523, 524 
DVR, see discrete valuation ring525 

Eagon, J., 590 

Eagon-Northcott complex, 567, 
590,606 

Eakin, P., 625 
Eckmann and Schopf, 621 
eclater, 149 
effective methods in commutative 

algebra, 318 
effectivity in the Nullstellensatz, 34 
Eilenberg, S., 690 
Eilenberg-MacLane spaces, 566 
Eisenstein's criterion, 466 
elementary symmetric function, 25, 

296 
elementary upper triangular 

matrices, 349 
elimination of elimination theory, 

306 
elimination order, 357, 371 
elimination theory, 303, 304, 314, 

318, 356, 357, 365, 372 
main theorem of, 303, 314 

ellipse, 52 
elliptic curves, further readings, 710 
elliptic normal curve, 608 
elliptic quartic, 456 
embedded deformation, 175 
embedded prime or primary 

component, 90 
endomorphism ring, 521, 524 
enumerative geometry, 232 
epimorphism, 15 
equation of integral dependence, 

118 
equational criterion for flatness, 164 
equations of an image, 358 
equicharacteristic, 189, 205 
essential extension, 622 
essential submodule, 523, 622 
etale topology, further readings, 

710 
Euclidean, 214 
Euler, L., 22, 305 
Euler characteristic, 44, 501 
Evans, E.G., 377 
exact couple, 657, 658 



exact functor, 520 
exact sequence, 16, 611, 626 

of terms of low degree, 670 
exact sequences of complexes, 631 
exact triangle, 658 
exactness 

of a complex, 496 
of limits, 196 

excellent rings, 192, 293, 295 
exceptional fiber, 276 
exceptional set, 149 
exchange property, 556 
existence of valuation rings, 264 
Ext (extension functor), 363, 642, 

611ff, 644 
as an algebra, 647 

exterior algebra, 432, 565, 569 
exterior power, 136 
exterior power of an ideal, 574 

factoriality, 14, 98, 125, 483, 514, 
552 

homological characterization, 514 
hypersurface rings, 515 
regular local rings, 480 

factoring polynomials; Hensel's 
lemma and, 184, 206-208 

factorization of polynomials over Z 
and Q, 138 

families of graded modules, 175 
family of projective plane curves, 

172 
family of varieties or algebras, 155 
Fermat, P., 23, 39 
Fermat's last theorem, 22 
fiber of a blowup, 276 
fiber square, 267 
fibers, 155, 227, 286, 303, 308 
fiberwise characterization of 

projectives, 513 
field, 11 
field theory, 555ff 
filtered colimit of free modules, 703 
filtered colimits, 701 
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exactness of, 702 
filtered differential module, 661 
filtered limits are not exact, 708 
filtration 

I-adic, 145ff 
I-stable, 146 
m-adic, 181, 192, 664 
stable, 661, 664 

filtrations, 145, 146 
finite free resolutions, 54, 474 
finite global dimension, 477 
finite group, 38, 467 
finite injective dimension, 530, 531 
finite map, 227 
finite over R, 122 
finite projective dimension, 475, 

477 
finite resolution, 470 
finitely generated, 17, 135 
finitely presented, 17 
finiteness of the integral closure, 

292 
first-quadrant double complex, 666 
Fitting invariant 

and annihilator, 511 
or ideal, 404, 489, 492, 494, 496 

Fitting's lemma, 493, 590 
five lemma, 524, 635 
five points in p3, 370 
five-term exact sequence, 670 
flags of linear subspaces, 350 
flat modules 

as colimits of free modules, 702 
finitely presented, 171 

flatness, 66, 68, 137, 155, 163, 165, 
183, 237, 303, 342, 703 

and depth, 460 
and Hilbert functions, 514 
of graded modules, 174 
and regular sequences, 468 

flattening stratifications, 364 
Flenner, H., 278 
forgetful functor, 692 
form (= homogeneous polynomial), 

13 
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formal Nullstellensatz, 49 
formal power series, 179 
fourteenth problem, Hilbert's, 26 
Foxby, H.-B., 191 
fractional ideals, 253 
fractions, 59 
free algebra, 692 
free and projective resolutions, 617 
free module, 16, 615 
free presentation, 17, 492 
free product, 707 
free resolution 

and associated primes, 501 
of monomial ideals, 439 

free resolutions, 44, 45, 470, 489, 
614 

linear, 517 
function theory, 23 
function, Coo, 150, 153 
functor, 62, 689 
functoriality, 570 
fundamental group, further 

readings, 710 
fundamental problem of invariant 

theory, 25 

Gaeta, F., 542 
Gaffney, T., 591 
Galligo, A., 351 
Galois theory, 290, 293 
Gauss, C.F., 21-23, 31, 352 
Gauss' fundamental theorem of 

algebra, 31 
Gauss' lemma, 109, 125, 126 
Gaussian integers, 21 
general change of coordinates, 338 
generalized local rings, 510 
generalized principal ideal theorem, 

244 
generators and relations, 17 
generic codimension, 466 
generic fiber, 286 
generic flatness, 307 

generic freeness lemma, 
Grothendieck's, 303, 307, 308, 
315 

generic initial ideal, 348, 351 
existence, 349 

generic matrix, 300, 371 
generic smoothness, 404, 406 
geometric invariant theory, 37 
geometric nature of depth, 426 
germ of a variety, 67, 151, 153 
Germain, S., 23 
ghost candy, 656 
Gianni, P., 363 
Gilmer, R., 218 
Gimigliano, A., 503 
global dimension, 470, 474 
gluing, 84 
going down, 237, 238, 243, 289 
going up, 129, 227 
Gordan, P., 26, 337, 367 
Gorenstein, D., 525 
Gorenstein rings, 525, 528, 536, 

537, 541, 542, 545, 553 
Gorenstein, Stanley's criterion for, 

551 
Goto,510 
Govorov-Lazard theorem, 166, 703 
grade, 425 
graded by degree, 30 
graded canonical module, 545 
graded case of linkage, 552 
graded free R-module, 44 
graded free resolution, 45, 470 
graded injective modules, 624 
graded module, 42 
graded primary decomposition, 109 
graded ring, 29, 51, 136, 287 
graded rings, integral closure of, 

138 
Grauert, H., 338, 348 
greatest common divisor, 320 
Green, M., 443 
Green's conjecture, 381 
Grell, H., 57 
Griffith, P. A., 377 



Grobner, Wo, 317, 337 
Grobner bases and flat families, 342 
Grobner basics, 317, 319, 328, 333 
Grobner basis 

computing a, 368 
history of, 337 
minimal, 329, 367 
simplest example, 335 

Grothendieck, Ao, 118, 293 
Grothendieck ring, 265, 303, 308, 

403, 519, 677, 695 
group 

classical, 463 
finite, 467 

growth rate of a resolution, open 
problem on, 364 

Gruson, Lo, 334, 591 
Gulliksen, To, 479, 580 

hairy ball and stably free modules, 
482 

Hamilton, Wo R, 119 
Hartshorne, R, 348, 468, 519, 540 
Hartshorne's connectedness 

theorem, 454, 457 
Hausdorff, Fo, 55 
Heitmann, R, 484 
Hemingway, Ernest, 1 
Hensel, K., 179 
Henselian, 184 
Henselization, 184 
Hensel and Landsberg, 24 
Hensel rings, further readings, 710 
Hensel's lemma, 179, 180, 183-185, 

200, 201, 206-209 
Hermann, Go, 363 
Herzog, Jo, 191, 440 
Hilbert, Do, 21, 24, 26, 27, 38, 42, 

46, 214, 271, 292, 417, 502, 
611,614 

Hilbert basis theorem, 367 
Hilbert-Burch theorem, 501, 502 
Hilbert function, 42, 43, 53, 148, 

223, 245, 318, 470 
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and Grothendieck group, 485 
and polynomial, computing, 355 

Hilbert functions, characterization 
of,356 

Hilbert polynomial, 42, 43, 223, 
276, 287, 312, 313, 318, 510 

is universal, 487 
Hilbert scheme, 364 
Hilbert series, 245, 280, 487 

of graded Cohen- Macaulay ring, 
550 

is universal, 487 
Hilbert syzygy theorem, 45, 336, 

469,474 
Hilbert's finiteness argument, 47 
Hilbert-Samuel function, 272, 275 
Hilbert-Samuel polynomial, 276 
Hironaka, Ho, 338 
Hirzebruch-Riemann-Roch formula, 

489 
hlex order, 326 
Hochster, Mo, 234, 241, 463, 464 
Hodge formula for singular 

cohomology, 436 
Hom (module of homomorphisms), 

62, 363 
homogeneous, 13, 30, 52 

component, 30 
coordinate ring, 40, 468 
coordinates, 39 
ideal, 30, 366 
ideals, characterization of, 81 
lexicographic order (hlex), 326 

homogenization, 41, 356 
homogenize, 474 
homological methods, 417 
homology, 45, 611 
homotopically trivial, 655 
homotopies for the Koszul complex, 

432ff 
homotopy category of complexes, 

678 
homotopy equivalent, 628 
homotopy of maps of complexes, 

492 
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Hopf algebra, 566, 576 
Hopkins, C., 74 
Horrock's conjecture, 502 
Huneke, C., 146, 363, 438, 463, 545, 

574 
Hurwitz' theorem, 206 
hyperbola, 52 
hyperplane 

at infinity, 41, 359 
section, 447, 508 

hypersurfaces, 377 

ideal, 12, 22 
at infinity, 359 
membership problem, 318, 355, 

371 
quotient, 15, 57, 79 

ideals 
of minors, 493 
of monomials in a regular 

sequence, 440 
idempotents, 13, 85, 409, 513 
identity element, 11 
images, 373 
imaginary points, 39 
implicit function theorem, 231 
incomparability, 131, 227 
induced map on homology, 627 
infinite free resolutions, 710 
infinitesimal criterion of flatness, 

172 
infinitesimal deformation, 410 
infinitesimal morphism, 396 
infinitesimal neighborhood, 219 
infinitesimal translation, 396 
infinity, 39 
initial coefficient, 27 
initial ideal, 195 
initial term, 27, 48, 152, 325 
injective Abelian group, 620 
injective dimension, 529 
injective envelope, 622, 623 

and primary decomposition, 625 
injective graded modules, 624 

injective hull, 523, 622 
injective modules, 614, 618 

over Noetherian rings, 623 
injective objects, enough, 621 
injective resolution, 529, 626 
injectives and primes, 624 
integral closure, 118, 140, 264, 294 

of Z[Vnl, 138 
of a graded domain, 138 
of ideals, 137 

integral dependence, 117 
integral elements, 118, 120 
integral equation, 118 
integral extension, 118, 123, 130, 

227, 228, 289 
integral values, polynomial with, 53 
intersection and product of ideals, 

639 
intersection multiplicity, 300 
intersection theory, further 

readings, 710 
intersections of ideals, how to 

compute, 362, 373 
invariant theory, 24 

fundamental problem of, 25 
invariants, 47, 48, 463, 467 
inverse, 11 
inverse function theorem, 180, 184, 

208 
inverse limit, see limit209 
inverse systems, 526 

and differential operators, 547 
invertible, 247, 255, 257, 260 
invertible element, 11 
invertible modules, 253 
inveiting an element of a ring, 58 
involves a basis element, 319 
irreducible algebraic set (variety), 

32, 88, 314 
irreducible decomposition, 96 
irreducible elements and prime 

elements, 13, 14 
irreducible ideal or submodule, 96, 

111 



irreducible polynomials are prime, 
126 

irreducible representations of a 
group, 584 

irreducible versus analytically 
irreducible, 185 

irredundant primary 
decomposition, 95 

irrelevant ideal, 30 
isolated prime or primary 

components, 90 
isomorphic, 690 
isomorphism, 15 

Jacobi, C.G.J., 24 
Jacobian criterion, 402, 403, 457 
Jacobian ideal, 402, 403 
Jacobian matrix, 402 
Jacobson, N., 131 
Jacobson radical, 124, 136, 203 
Jacobson ring, 131 
Jaffe, D., 364 
Japanese rings, 127 

universally, 294 
jet bundle, 408 
join variety, 301 
Jordan-Holder theorem, 72 

Kahler differentials, 384, 408 
Kaplansky, L, 115,419,438,471 
Kapranov, M., 503 
Kempf, G., 445, 590 
Kepler, J., 39 
kernels, 362, 373 
king of invariants, 26 
Kirby, D., 590 
Kleiman, S.L., 510, 591 
Knuth-Bendix, 338 
Koh, J. H., 234 
Koszul algebra, 445 
Koszul cohomology, 443 
Koszul complex, 417, 419, 423, 427, 

565, 590, 614 
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and cotangent bundle, 436 
duality, 432 
and minimal free resolution, 478 
tautological, 443 

Koszul complexes, tensor product 
of,428 

Koszul homology, 438 
Kronecker, L., 22-24, 232, 417 
Krull, W., 57, 131, 143, 216, 217, 

225, 231, 240 
Krull-Akizuki theorem, 263, 264, 

294 
Krull dimension, 213, 217, 225 
Krull intersection theorem, 150 

converse to, 153 
Krull rings, 294 
Krull topology, 193, 204 
Krull's principal ideal theorem 

(PIT), 222, 231ff 
Kummer, E. E., 22, 23 
Kunz, E., 519, 538 

Lame, G., 22 
Lang, S., 614 
Larfeldt-Lech theorem, 192 
Lascoux, A., 591 
Lasker, E., 22, 23, 87, 226, 256 
lattices, 530 
Laurent polynomials, 82 
Laurent series, 295 
Lazard, D., 703 
Lazarsfeld, R., 334, 591 
least common multiple, 320 
Le Dung Trang, 403 
Leedham-Greene, C., 258 
left adjoint, 691 
left-derived functor, 637 
left-exact functor, 63 
left-exact sequence, 63 
Leibniz rule, 383 
length, 72, 259, 276 
length of the chain, 225 
Leray spectral sequence, 677 
Levin, 580 
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lex, hlex, rlex, characterization of, 
366 

lexicogaphic product, 326 
lexicographic deformation 

of 3 points, 345 
of conic, 346 

lexicographic order, 48, 326, 344 
liaison, see linkage350 
lifting homomorphisms, 360 
lifting idempotents, 184, 186, 187, 

208 
limit of a spectral sequence, 656 
limits, 181, 192, 196, 697 

and adjoints, 694 
and colimits are not exact, 708 

linearly disjoint field extensions, 
557 

linearly reductive algebraic group, 
463 

linkage, 520, 539, 544, 552 
Liouville's theorem, 314 
Lipman, J., 515, 519 
local and graded, 683 
local cohomology, 100, 649, 683 

and global cohomology, 684 
local coordinate system, 235 
local criterion 

for flatness, 167, 460 
for projectivity, 616 

local duality, 686 
local ring, 12, 57, 60 
localization, 57, 59, 60, 79, 126, 

203, 391 
of a complete intersection, 484 
of depth, 448 
of graded rings, 82 
of Kahler differentials, 409 
of a regular local ring, 479 

locally a complete intersection, 462 
locally a domain, 457 
locally closed, 309 
locally free module, 136, 171,471 
locally trivial, 156 
L6fwal, C., 445 
long exact sequence 

of homology, 632 
of Tor, 160 

Lucas, H., 352 
lying over, 129 

m-regularity, 505, 507 
weak, 506, 507 

M-sequence, 426 
Macaulay (computer algebra 

system), 375 
Macaulay's unmixedness theorem, 

456, 590, 606 
Macaulay, and monomial orders, 

325-327, 356 
Macaulay, F. S., 226, 463, 525, 526 
Mac Lane, S., 557, 559, 690 
Mac Laurin, C., 23 
MacRae, R., 514 
Macsyma (computer algebra 

system), 375 
Manin, Yu., 445 
map with finite fibers, 219 
Maple (computer algebra system), 

375 
mapping cone, 427, 428, 650 

and double complexes, 650 
mapping cones revisited, 657 
mapping cones to spectral 

sequences, 650 
maps 

and homotopies of complexes, 
627 

from power series rings, 198 
from projective to acyclic 

complexes, 491 
Massey, 657 
Mathematica (computer algebra 

system), 375 
Matrices of linear forms, 604, 606 
matroid, 556 
maximal Cohen-Macaulay modules, 

529,599 
maximal ideals, 12, 141 
maximal M-sequence, 430 



maximal minors, 463 
maximal regular sequences, 424 
maximal spectrum (max-spec), 54 
maximal subfields, 205 
Max Noether's AF + BG theorem, 

466 
Menger, K., 214 
minimal complex, 472 
minimal free resolution, 478 

is unique, 490, 491 
minimal generators of monomial 

ideal, 320 
minimal Grabner basis, 329, 367 
minimal injective resolution, 529, 

623 
minimal map, 472 
minimal primary decomposition, 95 
minimal prime, 77 
minimal primes of I, 47 
minimal resolutions, 469 
minimal set of generators, 472 
minor 

k x k, 244 
principal, 369 

minors 
2 x 2, 53 
of a matrix, 107, 244, 300, 301, 

370, 465, 565 
Miyata, T, 649 
Mobius, A. F., 39 
model theory, 142 
module of homomorphisms, 318 
modules, 15 

over a Dedekind domain, 484 
moduli,38 
Moller, H. M., 333 
monic polynomial, 117, 126, 138 
monomial, 13, 139, 319, 349 
monomial basis, 323 
monomial curve singularities, 379 
monomial ideal, 111, 319, 365 
monomial orders, 323, 324 
monomial submodule, 319 
monomorphism, 15 
Mora, T., 333 

Mori, S., 26, 263 
Morin, B., 403 
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morphism, 35, 304, 689, 697 
Mourrain, B., 371 
multilinear algebra, 565 
multiple point on a line, 178 
multiplicatively closed set, 59, 70 
multiplicity, 259, 274, 276, 277, 300 

in primary decomposition, 102 
Mumford, D., 38, 505, 506, 516 

Nagata, M., 26, 105, 184, 263, 483 
Nagata rings, 294 
Nagata's altitude formula, 289, 299 
Nagata's factoriality lemma, 483 
Nakayama's lemma, 124, 129, 135, 

136, 203, 241, 298, 299 
homological version, 473 

natural transformation, 689, 690, 
698 

neighborhoods, 57, 156 
Newton, I., 23, 295, 305 
Newton's method, 183 
Nielsen, H. A., 591 
nilpotent, 33, 36, 71 
nilpotents do not affect dimension, 

219 
nine lemma, 635 
nodal plane cubic, 185 
Noether, E., 23, 27, 47, 49, 57, 87, 

118, 127, 217, 231, 256, 296, 
612 

Noetherian, 27, 28, 46, 62, 85, 183, 
192, 229, 265, 294, 625 

Noether-Lefschetz theorem, 515 
Noether normalization, 221, 281, 

283, 298, 308, 460 
with separating transcendence 

base, 401 
nonconstructive fashion, 317 
nonhomogeneous Grabner bases, 

372 
nonsingular, 249 
nontrivial idempotent, 85 
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nonunique resolution, 515 
nonzerodivisor, 12, 163 
normal cone, 441 
normal cone of a regular sequence, 

441 
normal domain, 118, 251 
normal expression, 349 
normal module, 177 
normal ring, 125, 126, 138, 249, 

251, 289 
normal vector field, 177 
normalization, 118, 126, 128, 137, 

141, 251, 364 
north pole, 50 
Nullstellensatz, 31, 33, 38, 131, 141, 

311,413 
number theory, 21 
numbers of generators of powers, 

276 

objects of a category, 689 
obstruction to generating M, 494 
one-generic matrices, 604, 605 
open morphism, 238, 299 
orientation, 434 
orthogonal idempotents, 13, 187 
orthonormal basis, 466 
osculating plane, 380 

p-adic integers, 184 
p-adic numbers, 179, 182 
p-adic unit, 209 
p-bases, 559 
p-basis, 190 
parallel lines meet at infinity, 39 
parameter ideal, 234, 235, 272, 275, 

278 
Pardue, K., 348 
partitions, 585 

of unity, 83 
Pascal, B., 553 
pathologies, 218, 221, 229 
Peano, G., 214 

perfect fields, 190 
perfect ideals, 485 
periodic polynomial, 245 
permutation of a regular sequence, 

422 
perpendicular subspace, 444 
persymmetric matrix, 604 
Peskine, C., 334, 540, 591 
Peskine and Szpiro, 498, 539 
Pfaffians, 463, 503, 588 
Picard group, 255, 258 
PIT, see principal ideal theorem260 
Plucker, J., 24, 39 
Poincare, H., 213, 612 
points at infinity, 40 
pole, order of a, 246 
polynomial 

factoring, 305 
with periodic coefficients, 245, 

280 
polynomial equations, 34 
polynomial function, 31, 33 
polynomial map, 35 
polynomial ring, 394 
Portnoy's Complaint, 709 
positive characteristic, further 

readings, 710 
positive cone, 366 
power series, 205 
power series ring, 189, 193, 198 
Pragacz, P., 591 
Priddy, S., 338 
Priddy's generalized Koszul com

plex, 444, 445 
primary component, 95 
primary decomposition, 23, 87, 94, 

363, 477, 710 
geometry of, 103 
(non)-uniqueness of, 102 
and projective dimension, 477 
uniqueness of, 111 

primary ideal or submodule, 94, 
111 

prime avoidance, 90, 113 
prime element, 14 



prime ideal, 12, 54, 60, 70, 111, 243 
prime in a graded ring, 297 
primes 

in an integral extension, 129 
minimal over I, 47, 90 
in polynomial rings, 297 

primitive polynomial, 109 
principal ideal domain, 13, 54, 137, 

163 
principal ideal ring, 228 
principal ideal theorem, 231ff 

converse to, 233 
for depth, 449 

problems in computation, 364 
products of algebraic sets, 299 
products of domains, 78 
products of rings, expression by 

idempotents, 85 
projection from a product to a 

factor, 299, 304, 318 
projection to a quotient, 37 
projective algebraic set, 40 
projective closure, 41, 359 

by saturation, 372 
projective of constant rank, 493, 

496,513 
projective dimension, 469, 470 

and associated primes, 477 
and depth, 451, 475 
and primary decomposition, 477 

projective geometry, 51 
projective module, 136, 137, 265, 

267, 364, 471, 615 
projective modules, 

characterization of, 616 
projective morphism, 166 
projective plane, complex, 215 
projective products, 299 
projective r-space, 39 
projective resolution, 469, 626 
projective resolution functor, 682 
projective varieties, 39, 304, 464 
proper ideal, 12 
proper morphism, 118, 129, 166, 

300, 305, 315 

pseudo-reflection, 48 
pseudogeometric, 192 
pth power map, 201 
Puiseux, V., 295 
pullback, 362 
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pure codimension 1, 257 
pure transcendental extension, 555 

quadratic algebra, 444 
quadratic relations, 444 
quadric, rank of, 467 
quadrics, 51, 459, 466 
quasi-isomorphism of complexes, 

655, 680 
quaternions, 482 
quick and dirty proof of the 

Nullstellensatz, 142 
Quillen, D., 386, 481 
quism, see quasi-isomorphism482 
quotient 

on division, 320 
by a group, 37, 296, 297 
by an ideal (I:J), computing, 15, 

374 

RO, 252, 266 
Rl,252 
R-bilinear, 160 
R-linear, 691 
R-sequence, 241 
Rabinowitch's trick, 132, 142 
radical, 33, 71, 111, 137 
radical complete intersection, 415 
radical of an ideal, computing, 363 
rank 

of an ideal, synomym for 
codimension, 226 

of a module, 16, 135, 261 
of a quadric, 467 

Rao, A. P., 540 
rational convex polyhedral cone, 

464 
rational curves, computer project, 

378 
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rational function, 251, 555 
rational map, 266 
rational normal curve, 380, 587, 

606, 650 
rational quartic in p3, 466 
Ratliff, L., 289 
reduced Grabner basis, 329, 367 
reduced ring, 33, 251, 266, 562 
reduction to the diagonal, 277, 

299-301 
reduction to the join, 301 
reductive group, 584 
Rees, D., 591 
Rees algebra, 167, 342 
refined by, 326 
reflection of isomorphism, 203 
regular in co dimension 1, 249, 266 
regular function, 33, 251 
regular local ring, 191, 240, 469, 

474,484 
is factorial, 483 
Jacobian criterion for, 402 

regular local rings 
are Cohen-Macaulay, 462 
and regular sequences, 465 

regular map, 35 
regular parameter, 247 
regular sequence, 173, 241, 243, 

246, 419, 426, 437, 441, 465 
regular sequence in any order, 

generation by, 438 
regular sequences 

characterization of, 517 
and flatness, 468 
permutability, 422, 438 

regular system of parameters, 240 
regularity, Castelnuovo-Mumford, 

378, 505, 516 
regularity of generic initial ideals, 

509 
regularity and hyperplane sections, 

508 
relative cotangent bundle, 389 
relative cotangent sequence, 386 
relative tangent bundle, 389 

remainder on division, 330 
removable singularities theorem, 

251 
representable functors, 695 
representation theory of GL(V), 

SL(V), 566, 584 
representation theory, success of, 

479, 480 
residue class field, 60 
residue map, 548 
resolution, 617, 626 
resolution of an ideal from a factor 

ring, 654 
resolution of singularities, 249 
resolutions and linkage, 552 
resolutions of complexes, 676 
restricted tensor product, 392, 705 
resultant, Sylvester's, 307 
retraction, 206 
reverse lexicographic deformation 

of 3 points, 346 
of conic, 347 

reverse lexicographic order, 326, 
328, 339, 344 

Riemann, G. B., 24, 215 
Riemann-Roch theorem, 44, 456 
Riemann sphere, 215 
Riemann surfaces and algebraic 

curves, 215 
right adjoint, 691 
right exact, 65 
right exact functor, 636 
right exact sequence, 63 
ring, 11 
ring homomorphism, 12 
ring of invariants, 371 
rlex, monomial order, 326 
Roberts, J., 463 
root, 117, 183 
roots in the p-adic numbers, 209 
Roth, P., 709 
Ruckert, W., 217 

8-degree, 359 



s-homogenization, 359 
81, 252, 266 
82, 252 
Sagbi base, 371 
Saint-Donat, B., 464 
Samuel, P., 271 
saturated chain condition, 453 
saturation, 360 
saturation (I : J OO ), 318 
scalars, 13, 317 
Schanuel's lemma, 490, 635 
scheme, 442 
Schreyer, F.-O., 334, 338, 591 
Schur, 1., 584 
Schur functors, 584, 585 
scripts, in Macaulay, 375 
Segre product, 300 
Seidenberg, A., 363, 364 
self-duality of the Koszul complex, 

435 
self-injective, 526 
semicontinuity, of fiber dimension, 

310,311 
semigroup rings, 139, 548 
semilocal, 137 
separability, 557 
separable, 190, 293, 398, 400, 401, 

561,562 
separable but not separably 

generated, 562 
separably generated, 557 
separated, 182, 203, 305 
separating transcendence base, 401, 

561 
Serre, J.-P., 119, 274, 279, 300, 477, 

480, 525, 527, 643 
Serre correspondence, 436 
Serre's criterion, 249, 266, 403, 457 
Serre's intersection formula, 640 
set theoretic complete intersection, 

364 
set theory, 214 
sextuples of points in the plane, 503 
sheaf, 67, 100 
sheaf cohomology, 464 
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sheaves on projective spaces, 505 
Shephard, G. C., 48 
short exact sequence, 16, 571 

of complexes, 631 
sign convention, 569 
simplicial complexes, 612 
singular locus, 402 
singular point, 128 
skew-commutative algebra, 423, 

479, 566 
skew-symmetric, 503, 588 
S(M)* and S(M) as modules over 

one another, 582 
smoothness, 404-406, 414 
snake lemma, 634 
socle, 522, 523 
solution of polynomial equations, 

117,318 
Spear, D., 338 
spectral sequence 

collapse of, 657 
of a composite functor, 670, 677 
convergence of a, 663 
of a double complex, 665 
of the exact couple, 659 

spectral sequences, 614, 656 
spectrum of a ring (Spec R), 54 
split, 16 
split = apparently split, 649 
splitting criteria, 81 
square roots of p-adic numbers, 184 
square-free denominator, 485 
stable filtrations, 145, 146 
stably free, 480 
stalk of a sheaf, 67 
standard bases, 338 
standard expression, 330 
Stanley, R., 551 
Stein factorization, 118 
Stillman, M., 334, 351, 354, 509 
strands of the Koszul complex, 591 
structure of modules, 511 
Stiickrad, J., 687 
submodule membership problem, 

371 
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substitution, 25 
summand, see direct sum 
super height , 234, 236 
support, 67 
Suslin, A., 481 
Sylvester, J.J., 24, 305, 307 
symbol of a differential operator, 

547 
symbolic power, 105, 232 
symmetric algebra, 565, 569 
symmetric algebras, recognizing, 

575 
symmetric function, 25 
symmetric power of an ideal, 574 
symmetric semigroup, 549 
symmetrization, 578 
symmetry of diagonalization, 578 
system of divided powers, 579 
system of linear equations, 612 
system of parameters, 222, 231, 

234, 235, 246, 301, 437 
syzygies, 318, 332, 366, 377 
syzygy computation, easiest, 370 
syzygy module, 636 
syzygy theorem, 44, 474 
Szpiro, L., 540 

tangent bundle, 383, 388, 393, 436 
tangent bundles of spheres, 481 
tangent cone, 151, 152 
tangent developable surface, 380 
tangent vector fields, 383 
Tate, J., 143, 479, 580 
Taylor, D., 439 
Taylor complex, 439 
Taylor series 

expansions (jet bundle), 408 
as ring homomorphism, 152 

Teichmiiller, 0., 559 
Teissier, B., 403 
tensor, 62 
tensor algebra, 566, 569 
tensor and hom, 693 
tensor product, 62, 63, 392, 

565-568 

of two complexes, 427 
tensor products and Kahler 

differentials, 392 
term of a polynomial, 13, 320, 349 
theology versus mathematics, 26 
Thie, P. R., 224 
Thorup, A., 591 
three dimensions, meaning of, 213 
tight closure, 463 
Todd, J. A., 48 
top of a module, 522 
Tor (derived functor of tensor), 

159, 363, 639ff 
as an algebra, 640 
and flatness, 171 

toric varieties, 464 
torsion, 158 
torsion free, 163, 261, 484 
total complex, 652 
total quotient ring, 60 
Towber, J., 585 
Trager, B., 363 
transcendence basis, 556 
transcendence degree, 215, 216, 

221, 285, 400, 555 
translation functor of a category, 

679 
triangulation of a category, 679 
twist of a graded module, 42 
twisted cubic curve, 465, 540, 542 

ubiquity of Gorenstein rings, 526 
UFD, see factbriality527 
Ulrich, B., 545 
uniformizing parameter, 247 
unions as colimits, 701 
unipotent subgroup, 349 
unique factorization, 13, 87, 256 
uniqueness of minimal free 

resolutions, 490, 491 
unit, 11 
universal, 698 
universal additive function, 487 
universal hyperplane section, 315 



universal property of localization, 
60,80 

universal R-linear derivation, 384 
universally catenary, 286, 288, 312, 

453 
universally Japanese rings, 294 
unmixedness theorem, Macaulay's, 

456 
Urysohn, P. S., 214 
Urysohn's lemma, 55 
Uzkov, A. 1., 57 

valuation, 248, 265 
valuation ring, 264 
Van der Waerden, B. L., 143 
varying with parameters, 155 
Vasconcelos, W., 363, 364, 440, 

501, 517, 518 
vector bundles, 471 

on an affine space, 481 
Verdier, J. L., 677 
Veronese embedding, 687 
Veronese subring, 228 
versal deformation, 364 
vertex, of a cone, 297 
Vogel, W., 287, 301, 687 
volume of a neighborhood, 224 

Waldi, R., 519 
Watanabe, 510 
weakly m-regular, 506, 507 
Weber, H., 24 
Weierstrass, K., 24 
weight function, 327 
weight of an exterior product of 

monomials, 351 

Index 785 

weight order, 327, 331, 367 
Weil, A., 306 
Weil divisor, 259 
Weyman, J., 585, 591 
what makes a complex exact, 496 
Wiegand, R., 484 
Winkler, F., 334 
Witt vectors, 191, 710 

Y oneda's description of Ext, 645, 
647 

Yoneda's lemma, 695 

Z/(2)-graded rings, 30 
Z-graded rings and modules, 30, 

81, 138, 287 
Zacharias, D., 363 
Zariski, 0., 26, 32, 54, 57, 105, 240, 

510,525 
Zariski-closed set, 54 
Zariski neighborhood, 156, 179 
Zariski tangent space, 176 
Zariski topology, 32, 54, 55, 304, 

454 
zero-dimensional Gorenstein ideals, 

376 
zerodivisor, 12, 90 
zero locus 

of a form in 4 variables = 
surface, 215 

of a section of a vector bundle, 
443 

Zorn's lemma, 14, 68, 201, 205 
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