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. the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

—T.S. Eliot, “Little Gidding" (Four Quartets)
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Introduction

What schemes are

The theory of schemes is the foundation for algebraic geometry formu-
lated by Alexandre Grothendieck and his many coworkers. It is the basis
for a grand unification of number theory and algebraic geometry, dreamt
of by number theorists and geometers for over a century. It has strength-
ened classical algebraic geometry by allowing flexible geometric arguments
about infinitesimals and limits in a way that the classic theory could not
handle. In both these ways it has made possible astonishing solutions of
many concrete problems. On the number-theoretic side one may cite the
proof of the Weil conjectures, Grothendieck’s original goal (Deligne [1974])
and the proof of the Mordell Conjecture (Faltings [1984]). In classical alge-
braic geometry one has the development of the theory of moduli of curves,
including the resolution of the Brill-Noether—Petri problems, by Deligne,
Mumford, Griffiths, and their coworkers (see Harris and Morrison [1998]
for an account), leading to new insights even in such basic areas as the the-
ory of plane curves; the firm footing given to the classification of algebraic
surfaces in all characteristics (see Bombieri and Mumford [1976]); and the
development of higher-dimensional classification theory by Mori and his
coworkers (see Kollar [1987]).

No one can doubt the success and potency of the scheme-theoretic meth-
ods. Unfortunately, the average mathematician, and indeed many a be-
ginner in algebraic geometry, would consider our title, “The Geometry of
Schemes”, an oxymoron akin to “civil war”. The theory of schemes is widely



2 Introduction

regarded as a horribly abstract algebraic tool that hides the appeal of ge-
ometry to promote an overwhelming and often unnecessary generality.

By contrast, experts know that schemes make things simpler. The ideas
behind the theory — often not told to the beginner — are directly related
to those from the other great geometric theories, such as differential ge-
ometry, algebraic topology, and complex analysis. Understood from this
perspective, the basic definitions of scheme theory appear as natural and
necessary ways of dealing with a range of ordinary geometric phenomena,
and the constructions in the theory take on an intuitive geometric content
which makes them much easier to learn and work with.

It is the goal of this book to share this “secret” geometry of schemes.
Chapters I and II, with the beginning of Chapter III, form a rapid intro-
duction to basic definitions, with plenty of concrete instances worked out
to give readers experience and confidence with important families of ex-
amples. The reader who goes further in our book will be rewarded with
a variety of specific topics that show some of the power of the scheme-
theoretic approach in a geometric setting, such as blow-ups, flexes of plane
curves, dual curves, resultants, discriminants, universal hypersurfaces and
the Hilbert scheme.

What’s in this book?

Here is a more detailed look at the contents:

Chapter I lays out the basic definitions of schemes, sheaves, and mor-
phisms of schemes, explaining in each case why the definitions are made
the way they are. The chapter culminates with an explanation of fibered
products, a fundamental technical tool, and of the language of the “functor
of points” associated with a scheme, which in many cases enables one to
characterize a scheme by its geometric properties.

Chapter II explains, by example, what various kinds of schemes look like.
We focus on affine schemes because virtually all of the differences between
the theory of schemes and the theory of abstract varieties are encountered
in the affine case — the general theory is really just the direct product of the
theory of abstract varieties a la Serre and the theory of affine schemes. We
begin with the schemes that come from varieties over an algebraically closed
field (I1.1). Then we drop various hypotheses in turn and look successively
at cases where the ground field is not algebraically closed (I1.2), the scheme
is not reduced (II.3), and where the scheme is “arithmetic” —not defined
over a field at all (I1.4).

In Chapter II we also introduce the notion of families of schemes. Families
of varieties, parametrized by other varieties, are central and characteristic
aspects of algebraic geometry. Indeed, one of the great triumphs of scheme
theory —and a reason for much of its success —is that it incorporates this
aspect of algebraic geometry so effectively. The central concepts of limits,
and flatness make their first appearance in section I1.3 and are discussed
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in detail, with a number of examples. We see in particular how to take
flat limits of families of subschemes, and how nonreduced schemes occur
naturally as limits in flat families.

In all geometric theories the compact objects play a central role. In many
theories (such as differential geometry) the compact objects can be embed-
ded in affine space, but this is not so in algebraic geometry. This is the
reason for the importance of projective schemes, which are proper— this is
the property corresponding to compactness. Projective schemes form the
most important family of nonaffine schemes, indeed the most important
family of schemes altogether, and we devote Chapter III to them. After
a discussion of properness we give the construction of Proj and describe
in some detail the examples corresponding to projective space over the in-
tegers and to double lines in three-dimensional projective space (in affine
space all double lines are equivalent, as we show in Chapter II, but this is
not so in projective space). We also discuss the important geometric con-
structions of tangent spaces and tangent cones, the universal hypersurface
and intersection multiplicities.

We devote the remainder of Chapter III to some invariants of projec-
tive schemes. We define free resolutions, graded Betti numbers and Hilbert
functions, and we study a number of examples to see what these invariants
yield in simple cases. We also return to flatness and describe its relation to
the Hilbert polynomial.

In Chapters IV and V we exhibit a number of classical constructions
whose geometry is enriched and clarified by the theory of schemes. We be-
gin Chapter IV with a discussion of one of the most classical of subjects in
algebraic geometry, the flexes of a plane curve. We then turn to blow-ups, a
tool that recurs throughout algebraic geometry, from resolutions of singu-
larities to the classification theory of varieties. We see (among other things)
that this very geometric construction makes sense and is useful for such ap-
parently non-geometric objects as arithmetic schemes. Next, we study the
Fano schemes of projective varieties—that is, the schemes parametrizing
the lines and other linear spaces contained in projective varieties — focusing
in particular on the Fano schemes of lines on quadric and cubic surfaces.
Finally, we introduce the reader to the forms of an algebraic variety —
that is, varieties that become isomorphic to a given variety when the field
is extended.

In Chapter V we treat various constructions that are defined locally. For
example, Fitting ideals give one way to define the image of a morphism of
schemes. This kind of image is behind Sylvester’s classical construction of
resultants and discriminants, and we work out this connection explicitly.
As an application we discuss the set of all tangent lines to a plane curve
(suitably interpreted for singular curves) called the dual curve. Finally, we
discuss the double point locus of a morphism.

In Chapter VI we return to the functor of points of a scheme, and give
some of its varied applications: to group schemes, to tangent spaces, and



4 Introduction

to describing moduli schemes. We also give a taste of the way in which
geometric definitions such as that of tangent space or of openness can be
extended from schemes to certain functors. This extension represents the
beginning of the program of enlarging the category of schemes to a more
flexible one, which is akin to the idea of adding distributions to the ordinary
theory of functions.

Since we believe in learning by doing we have included a large num-
ber of exercises, spread through the text. Their level of difficulty and the
background they assume vary considerably.

Didn’t you quys already write a book on schemes?

This book represents a major revision and extension of our book Schemes:
The Language of Modern Algebraic Geometry, published by Wadsworth in
1992. About two-thirds of the material in this volume is new. The intro-
ductory sections have been improved and extended, but the main difference
is the addition of the material in Chapters IV and V, and related material
elsewhere in the book. These additions are intended to show schemes at
work in a number of topics in classical geometry. Thus for example we define
blowups and study the blowup of the plane at various nonreduced points;
and we define duals of plane curves, and study how the dual degenerates
as the curve does.

What to do with this book

Our goal in writing this manuscript has been simply to communicate to the
reader our sense of what schemes are and why they have become the fun-
damental objects in algebraic geometry. This has governed both our choice
of material and the way we have chosen to present it. For the first, we have
chosen topics that illustrate the geometry of schemes, rather than develop-
ing more refined tools for working with schemes, such as cohomology and
differentials. For the second, we have placed more emphasis on instructive
examples and applications, rather than trying to develop a comprehensive
logical framework for the subject.

Accordingly, this book can be used in several different ways. It could be
the basis of a second semester course in algebraic geometry, following a
course on classical algebraic geometry. Alternatively, after reading the first
two chapters and the first half of Chapter III of this book, the reader may
wish to pass to a more technical treatment of the subject; we would recom-
mend Hartshorne [1977] to our students. Thirdly, one could use this book
selectively to complement a course on algebraic geometry from a book such
as Hartshorne’s. Many topics are treated independently, as illustrations, so
that they can easily be disengaged from the rest of the text.
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We expect that the reader of this book will already have some famil-
iarity with algebraic varieties. Good sources for this include Harris [1995],
Hartshorne [1977, Chapter 1], Mumford [1976], Reid [1988], or Shafare-
vich [1974, Part 1], although all these sources contain more than is strictly
necessary.

Beginners do not stay beginners forever, and those who want to apply
schemes to their own areas will want to go on to a more technically oriented
treatise fairly soon. For this we recommend to our students Hartshorne’s
book Algebraic Geometry [1977]. Chapters 2 and 3 of that book contain
many fundamental topics not treated here but essential to the modern
uses of the theory. Another classic source, from which we both learned a
great deal, is David Mumford’s The Red Book of Varieties and Schemes
[1988]. The pioneering work of Grothendieck [Grothendieck 1960; 1961a;
1961b; 1963; 1964; 1965; 1966; 1967] and Dieudonné remains an important
reference.

Who helped fix it

We are grateful to many readers who pointed out errors in earlier versions
of this book. They include Leo Alonso, Joe Buhler, Herbert Clemens, Ves-
selin Gashorov, Andreas Gathmann, Tom Graber, Benedict Gross, Brendan
Hassett, Ana Jeremias, Alex Lee, Silvio Levy, Kurt Mederer, Mircea Mus-
tata, Arthur Ogus, Keith Pardue, Irena Peeva, Gregory Smith, Jason Starr,
and Ravi Vakil.

Silvio Levy helped us enormously with his patience and skill. He trans-
formed a crude document into the book you see before you, providing a
level of editing that could only come from a professional mathematician
devoted to publishing.

How we learned it

Our teacher for most of the matters presented here was David Mumford.
The expert will easily perceive his influence; and a few of his drawings, such
as that of the projective space over the integers, remain almost intact. It was
from a project originally with him that this book eventually emerged. We
are glad to express our gratitude and appreciation for what he taught us.

David Eisenbud
Joe Harris



I

Basic Definitions

Just as topological or differentiable manifolds are made by gluing together
open balls from Euclidean space, schemes are made by gluing together open
sets of a simple kind, called affine schemes. There is one major difference:
in a manifold one point looks locally just like another, and open balls are
the only open sets necessary for the construction; they are all the same
and very simple. By contrast, schemes admit much more local variation;
the smallest open sets in a scheme are so large that a lot of interesting and
nontrivial geometry happens within each one. Indeed, in many schemes
no two points have isomorphic open neighborhoods (other than the whole
scheme). We will thus spend a large portion of our time describing affine
schemes.

We will lay out basic definitions in this chapter. We have provided a series
of easy exercises embodying and applying the definitions. The examples
given here are mostly of the simplest possible kind and are not necessarily
typical of interesting geometric examples. The next chapter will be devoted
to examples of a more representative sort, intended to indicate the ways in
which the notion of a scheme differs from that of a variety and to give a
sense of the unifying power of the scheme-theoretic point of view.

[.1 Affine Schemes

An affine scheme is an object made from a commutative ring. The rela-
tionship is modeled on and generalizes the relationship between an affine
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variety and its coordinate ring. In fact, one can be led to the definition of
scheme in the following way. The basic correspondence of classical algebraic
geometry is the bijection

{affine varicties} { finitely generated, nilpotent-free rings }

over an algebraically closed field K

Here the left-hand side corresponds to the geometric objects we are
naively interested in studying: the zero loci of polynomials. If we start
by saying that these are the objects of interest, we arrive at the restricted
category of rings on the right. Scheme theory arises if we adopt the oppo-
site point of view: if we do not accept the restrictions “finitely generated,”
“nilpotent-free” or “K-algebra” and insist that the right-hand side include
all commutative rings, what sort of geometric object should we put on the
left? The answer is “affine schemes”; and in this section we will show how
to extend the preceding correspondence to a diagram

{affine varicties} { finitely generated, nilpotent-free rings }

over an algebraically closed field K

l l

{affine schemes} «— {commutative rings with identity}

We shall see that in fact the ring and the corresponding affine scheme
are equivalent objects. The scheme is, however, a more natural setting for
many geometric arguments; speaking in terms of schemes will also allow us
to globalize our constructions in succeeding sections.

Looking ahead, the case of differentiable manifolds provides a paradigm
for our approach to the definition of schemes. A differentiable manifold M
was originally defined to be something obtained by gluing together open
balls — that is, a topological space with an atlas of coordinate charts. How-
ever, specifying the manifold structure on M is equivalent to specifying
which of the continuous functions on any open subset of M are differen-
tiable. The property of differentiability is defined locally, so the differen-
tiable functions form a subsheaf €>° (M) of the sheaf €' (M) of continuous
functions on M (the definition of sheaves is given below). Thus we may
give an alternative definition of a differentiable manifold: it is a topological
space M together with a subsheaf €°°(M) C ¢ (M) such that the pair
(M, €°°(M)) is locally isomorphic to an open subset of R™ with its sheaf
of differentiable functions. Sheaves of functions can also be used to define
many other kinds of geometric structure — for example, real analytic man-
ifolds, complex analytic manifolds, and Nash manifolds may all be defined
in this way. We will adopt an analogous approach in defining schemes: a
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scheme will be a topological space X with a sheaf &, locally isomorphic to
an affine scheme as defined below.

Let R be a commutative ring. The affine scheme defined from R will be
called Spec R, the spectrum of R. As indicated, it (like any scheme) consists
of a set of points, a topology on it called the Zariski topology, and a sheaf
Ospec r O this topological space, called the sheaf of regular functions, or
structure sheaf of the scheme. Where there is a possibility of confusion we
will use the notation |Spec R| to refer to the underlying set or topological
space, without the sheaf; though if it is clear from context what we mean
(“an open subset of Spec R,” for example), we may omit the vertical bars.

We will give the definition of the affine scheme Spec R in three stages,
specifying first the underlying set, then the topological structure, and fi-
nally the sheaf.

1.1.1 Schemes as Sets

We define a point of Spec R to be a prime—that is, a prime ideal —of
R. To avoid confusion, we will sometimes write [p] for the point of Spec R
corresponding to the prime p of R. We will adopt the usual convention that
R itself is not a prime ideal. Of course, the zero ideal (0) is a prime if R is
a domain.

If R is the coordinate ring of an ordinary affine variety V over an alge-
braically closed field, Spec R will have points corresponding to the points of
the affine variety — the maximal ideals of R—and also a point correspond-
ing to each irreducible subvariety of V. The new points, corresponding to
subvarieties of positive dimension, are at first rather unsettling but turn
out to be quite convenient. They play the role of the “generic points” of
classical algebraic geometry.

Exercise I-1. Find Spec R when R is (a) Z; (b) Z/(3); (c) Z/(6);
(d) Z); (e) Clal; (£) Cla]/(2?).

Each element f € R defines a “function”, which we also write as f, on the
space Spec R: if x = [p] € Spec R, we denote by x(z) or x(p) the quotient
field of the integral domain R/p, called the residue field of X at x, and we
define f(z) € k(z) to be the image of f via the canonical maps

R — R/p — k(x).

Exercise I-2. What is the value of the “function” 15 at the point (7) €
SpecZ? At the point (5)?

Exercise I-3. (a) Consider the ring of polynomials C|x], and let p(z) be
a polynomial. Show that if & € C is a number, then (x — «) is a prime
of C[z], and there is a natural identification of x((z — «)) with C such
that the value of p(z) at the point (x — a) € Spec C[z] is the number

p(a).
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(b) More generally, if R is the coordinate ring of an affine variety V over an
algebraically closed field K and p is the maximal ideal corresponding
to a point € V in the usual sense, then x(z) = K and f(x) is the
value of f at = in the usual sense.

In general, the “function” f has values in fields that vary from point
to point. Moreover, f is not necessarily determined by the values of this
“function”. For example, if K is a field, the ring R = K|[z]/(2?) has only
one prime ideal, which is (z); and thus the element = € R, albeit nonzero,
induces a “function” whose value is 0 at every point of Spec R.

We define a regular function on Spec R to be simply an element of R.
So a regular function gives rise to a “function” on Spec R, but is not itself
determined by the values of this “function”.

1.1.2  Schemes as Topological Spaces

By using regular functions, we make Spec R into a topological space; the
topology is called the Zariski topology. The closed sets are defined as follows.
For each subset S C R, let

V(S)={z €SpecR| f(z) =0forall f € S} ={[p] € SpecR|p D S}.

The impulse behind this definition is to make each f € R behave as
much like a continuous function as possible. Of course the fields x(x) have
no topology, and since they vary with x the usual notion of continuity
makes no sense. But at least they all contain an element called zero, so
one can speak of the locus of points in Spec R on which f is zero; and if
f is to be like a continuous function, this locus should be closed. Since
intersections of closed sets must be closed, we are led immediately to the
definition above: V'(.S) is just the intersection of the loci where the elements
of S vanish.

For the family of sets V(S) to be the closed sets of a topology it is
necessary that it be closed under arbitrary intersections; from the descrip-
tion above it is clear that for any family of sets S, we have [, V(Sa) =
V(Ua Sa), as required. It is worth noting also that, if I is the ideal gener-
ated by S, then V(I) = V(S).

An open set in the Zariski topology is simply the complement of one of
the sets V(S). The open sets corresponding to sets S with just one element
will play a special role, essentially because they are again spectra of rings;
for this reason they get a special name and notation. If f € R, we define
the distinguished (or basic) open subset of X = Spec R associated with f
to be

Xy = [Spec B[\ V(f).

The points of Xy — that is, the prime ideals of 2 that do not contain f—
are in one-to-one correspondence with the prime ideals of the localization
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Rj of R obtained by adjoining an inverse to f, via the correspondence that
sends p C R to pRy C Ry. We may thus identify Xy with the points of
Spec Ry, an indentification we will make implicitly throughout the remain-
der of this book.

The distinguished open sets form a base for the Zariski topology in the
sense that any open set is a union of distinguished ones:

U =SpecR\ V(S) =SpecR\ ﬂ V(f)= U (SpecR)¢ .
fes fes

Distinguished open sets are also closed under finite intersections; since a
prime ideal contains a product if and only if it contains one of the factors,
we have

) (SpecR)s = (Spec R),,
i=1,...,n
where ¢ is the product fi--- f,. In particular, any distinguished open set
that is a subset of the distinguished open set (Spec R)s has the form
(Spec R) 74 for suitable g.

Spec R is almost never a Hausdorff space— the open sets are simply too
large. In fact, the only points of Spec R that are closed are those corre-
sponding to maximal ideals of R. In general, it is clear that the smallest
closed set containing a given point [p] must be V(p), so the closure of the
point [p] consists of all [gq] such that g D p. The point [p] is closed if and only
if p is maximal. Thus in the case where R is the affine ring of an algebraic
variety V over an algebraically closed field, the points of V' correspond pre-
cisely to the closed points of Spec R, and the closed points contained in
the closure of the point [p] are exactly the points of V in the subvariety
determined by p.

Exercise I-4. (a) The points of Spec C|[x] are the primes (z—a), for every
a € C, and the prime (0). Describe the topology. Which points are
closed? Are any of them open?

(b) Let K be a field and let R be the local ring K[z](,). Describe the
topological space Spec R. (The answer is given later in this section.)

To complete the definition of Spec R, we have to describe the structure
sheaf, or sheaf of reqular functions on X. Before doing this, we will take
a moment out to give some of the basic definitions of sheaf theory and to
prove a proposition that will be essential later on (Proposition I-12).

1.1.3  An Interlude on Sheaf Theory

Let X be any topological space. A presheaf % on X assigns to each open
set U in X a set, denoted .Z#(U), and to every pair of nested open sets
U CV C X a restriction map

resy ¢ F (V) — F(U)
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satisfying the basic properties that
res;; ;, = identity

and
TeSy, 1y O TSy, y, = TSy, foralUcCV cW cC X.

The elements of .Z(U) are called the sections of .# over U; elements of
F(X) are called global sections.

Another way to express this is to define a presheaf to be a contravariant
functor from the category of open sets in X (with a morphism U — V
for each containment U C V') to the category of sets. Changing the target
category to abelian groups, say, we have the definition of a presheaf of
abelian groups, and the same goes for rings, algebras, and so on.

One of the most important constructions of this type is that of a presheaf
of modules % over a presheaf of rings & on a space X. Such a thing is a
pair consisting of

for each open set U of X, aring €(U) and an €/(U)-module .% (U)

and

for each containment U 2OV, a ring homomorphism « : 6(U) —
O (V) and a map of sets .#(U) — .Z (V) that is a map of O (U)-
modules if we regard .# (V') as an €(U)-module by means of a.
A presheaf (of sets, abelian groups, rings, modules, and so on) is called
a sheaf if it satisfies one further condition, called the sheaf aziom. This
condition is that, for each open covering U = J U, of an open set
U C X and each collection of elements

fo € #(U,) foreach a€ A

acA

having the property that for all a,b € A the restrictions of f, and f; to
U, NU, are equal, there is a unique element f € F(U) whose restriction
to U, is f, for all a.

A trivial but occasionally confusing point deserves a remark. The empty
set @ is of course an open subset of Spec R, and can be written as the union
of an empty family (that is, the indexing set A in the preceding paragraph
is empty). Therefore the sheaf axiom imply that any sheaf has exactly one
section over the empty set. In particular, for a sheaf & of rings, #(9) is
the zero ring (where 0 = 1). Note that the zero ring has no prime ideals at
all—it is the only ring with unit having this property, if one accepts the
axiom of choice— so that its spectrum is &.

Exercise I-5. (a) Let X be the two-element set {0,1}, and make X into
a topological space by taking each of the four subsets to be open. A
sheaf on X is thus a collection of four sets with certain maps between
them; describe the relations among these objects. (X is actually Spec R
for some rings R; can you find one?)
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(b) Do the same in the case where the topology of X = {0,1} has as
open sets only &, {0} and {0, 1}. Again, this space may be realized as
Spec R.

If % is a presheaf on X and U is an open subset of X, we may define a
presheaf .Z|y on U, called the restriction of % to U, by setting Z#|y (V) =
F (V) for any open subset V of U, the restriction maps being the same as
those of .7 as well. It is easy to see that, if .Z is actually a sheaf, so is .Z|y.

In the sequel we shall work exclusively with presheaves and sheaves of
things that are at least abelian groups, so we will usually omit the phrase
“of abelian groups”. Given two presheaves of abelian groups, one can define
their direct sum, tensor product, and so on, open set by open set; thus, for
example, if F and ¥ are presheaves of abelian groups, we define # ®¥ by

(Fa¥9)(U):=FU)a¥YU) for any open set U.

This always produces a presheaf, and if .% and ¢ are sheaves then .7 & ¢
will be one as well. Tensor product is not as well behaved: even if .% and
%4 are sheaves, the presheaf defined by

(FR9)(U):=FU)9U)

may not be, and we define the sheaf % ® 4 to be the sheafification of this
presheaf, as described below.

The simplest sheaves on any topological space X are the sheaves of lo-
cally constant functions with values in a set K —that is, sheaves £ where
2 (U) is the set of locally constant functions from U to K if K is a group,
we may make £ into a sheaf of groups by pointwise addition. Similarly,
if K is a ring and we define multiplication in .Z(U) to be pointwise mul-
tiplication, then J# becomes a sheaf of rings. When K has a topology, we
can define the sheaf of continuous functions with values in K as the sheaf
€, where €' (U) is the set of continuous functions from U to K, again with
pointwise addition. If X is a differentiable manifold, there are also sheaves
of differentiable functions, vector fields, differential forms, and so on.

Generally, if 7 : Y — X is any map of topological spaces, we may define
the sheaf .# of sections of 7; that is, for every open set U of X we define
#(U) to be the set of continuous maps o : U — 7~ U such that moo =1,
the identity on U (such a map being a section of 7 in the set-theoretical
sense: elements of .7 (U) for any sheaf % are called sections by extension
from this case).

Exercise I-6. (For readers familiar with vector bundles.) Let V' be a vec-
tor bundle on a topological space X. Check that the sheaf of sections of V' is
a sheaf of modules over the sheaf of continuous functions on X. (Sheaves of
modules in general may in this way be seen as generalized vector bundles.)

Another way to describe a sheaf is by its stalks. For any presheaf .# and
any point z € X, we define the stalk %, of F at x to be the direct limit



14 I. Basic Definitions

of the groups % (U) over all open neighborhoods U of z in X —that is, by
definition,
yx - h—InM:GU ﬁ(U)
the disjoint union of .#(U) over all open sets U containing x,
modulo the equivalence relation o ~ 7 if 0 € F(U), 7 € ZF(V),
— { and there is an open neighborhood W of x contained in U NV
such that the restrictions of o and 7 to W are equal:
resy 0 = resy T

For every x € U there is a map .% (U) — .%#,, sending a section s to the
equivalence class of (U, s); this class is denoted s,. If .Z is a sheaf, a section
s € F(U) of F over U is determined by its images in the stalks .%, for all
x € U—-equivalently, s = 0 if and only if s, = 0 for all x € U. This follows
from the sheaf axiom: to say that s, = 0 for all z € U is to say that for
each x there is a neighborhood U, of « in U such that res;, ;; (s) = 0, and
then it follows that s = 0 in #(U).

This notion of stalks has a familiar geometric content: it is an abstraction
of the notion of rings of germs. For example, if X is an analytic manifold
of dimension n and 0%" is the sheaf of analytic functions on X, the stalk
of 0% at x is the ring of germs of analytic functions at —that is, the
ring of convergent power series in n variables.

Exercise I-7. Find the stalks of the sheaves you produced for Exercises I-5
and I-6.

Exercise I-8. Topologize the disjoint union Z = |J.Z, by taking as a
base for the open sets of .# all sets of the form

V(U,s):={(x,s) :x € U},
where U is an open set and s is a fixed section over U.

(a) Show that the natural map 7 : . — X is continuous, and that, for
U and s € #(U), the map o : x — s, from U to .Z is a continuous
section of m over U (that is, it is continuous and 7 o o is the identity
on U).

(b) Conversely, show that any continuous map o : U — % such that moo
is the identity on U arises in this way.
Hint. Take x € U and a basic open set ¥/ (V,t) containing o(x), where
V' C U. What relation does t have to o?

This construction shows that the sheaf of germs of sections of 7 : . # — X
is isomorphic to %, so any sheaf “is” the sheaf of germs of sections of a
suitable map. In early works sheaves were defined this way. The topological
space .Z is called the “espace étalé” of the sheaf, because its open sets are
“stretched out flat” over open sets of X.



1.1 Affine Schemes 15

A morphism ¢ : F — & of sheaves on a space X is defined simply to
be a collection of maps p(U) : . (U) — ¢4 (U) such that for every inclusion
U C V the diagram

7)1 g
I‘eSV U l l ]:‘GS‘/7 U
Z(U) 0 9(U)

commutes. (In categorical language, a morphism of sheaves is just a natural
transformation of the corresponding functors from the category of open sets
on X to the category of sets.)

A morphism ¢ : F — ¢ induces as well a map of stalks ¢, : ., — %,
for each z € X. By the sheaf axiom, the morphism is determined by the
induced maps of stalks: if ¢ and 1 are morphisms such that ¢, = v, for
all x € X, then ¢ = .

We say that a map ¢ : F — ¢ of sheaves is injective, surjective, or
bijective if each of the induced maps ¢, : F, — %, on stalks has the
corresponding property. The following exercises show how these notions
are related to their more naive counterparts defined in terms of sections on
arbitrary sets.

Exercise I-9. Show that, if ¢ : ¥ — ¢ is a morphism of sheaves, then
©(U) is injective (respectively, bijective) for all open sets U C X if and
only if ¢, is injective (respectively, bijective) for all points x € X.

Exercise I-10. Show that Exercise I-9 is false if the condition “injective”
is replaced by “surjective” by checking that in each of the following exam-
ples the maps induced by ¢ on stalks are surjective, but for some open set
U the map p(U) : #(U) — 4(U) is not surjective.

(a) Let X be the topological space C \ {0}, let # = ¢ be the sheaf of
nowhere-zero, continuous, complex-valued functions, and let ¢ be the
map sending a function f to f2.

(b) Let X be the Riemann sphere CP' = CU{oo} and let ¢ be the sheaf of
analytic functions. Let .%; be the sheaf of analytic functions vanishing
at 0; that is, .%1(U) is the set of analytic functions on U that vanish
at 0 if 0 € U, and the set of all analytic functions on U if 0 ¢ U.
Similarly, let %5 be the sheaf of analytic functions vanishing at co. Let
F = F1 D P, and let ¢ 1 F — ¥4 be the addition map.

(c) Find an example of this phenomenon in which the set X consists of
three points.

These examples are the beginning of the cohomology theory of sheaves;
the reader will find more in this direction in the references on sheaves listed
on page 18.
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If .# is a presheaf on X, we define the sheafification of .# to be the
unique sheaf .#’ and morphism of presheaves ¢ : % — %’ such that for
all z € X the map ¢, : %, — %, is an isomorphism. More explicitly, the
sheaf .#’ may be defined by saying that a section of .#’ over an open set
U is a map o that takes each point x € U to an element in .%, in such a
way that o is locally induced by sections of .%; by this we mean that there
exists an open cover of U by open sets U; and elements s; € % (U;) such
that o(z) = (8;), for x € U;. The map % — .#' is defined by associating
to s € #(U) the function  +— s, € #,. The sheaf %’ should be thought
of as the sheaf “best approximating” the presheaf .%.

Exercise I-11. Here is an alternate construction for .#’: topologize the
disjoint union .# = |J.%, exactly as in Exercise I-8; then let .#’ be the
sheaf of sections of the natural map 7 : .# — X. Convince yourself that
the two constructions are equivalent, and that the result does have the
universal property stated at the beginning of the preceding paragraph.

If p: # — & is an injective map of sheaves, we will say that . is a
subsheaf of 4. We often write .# C ¢, omitting ¢ from the notation. If ¢ :
F — ¢ is any map of sheaves, the presheaf Ker ¢ defined by (Ker ¢)(U) =
Ker(p(U)) is a subsheaf of .Z.

The notion of a quotient is more subtle. Suppose . and ¢ are presheaves
of abelian groups, where .%# injects in &. The quotient of ¥ by .# as
presheaves is the presheaf J# defined by (U) = ¢(U)/.%#(U). But if
ZF and ¢ are sheaves, 7 will generally not be a sheaf, and we must define
their quotient as sheaves to be the sheafification of 7, thatis, &4/ F = 5.
The natural map from J# to its sheafification #”’, together with the map
of presheaves 4 — S, defines the quotient map from ¢ to ¢/.%. This
map is the cokernel of ¢.

The significance of the sheaf axiom is that sheaves are defined by local
properties. We give two aspects of this principle explicitly.

In our applications to schemes, we will encounter a situation where we
are given a base 2% for the open sets of a topological space X, and we
will want to specify a sheaf .# just by saying what the groups .7 (U) and
homomorphisms resy, ;; are for open sets U of our base and inclusions U C
V of basic sets. The next proposition is exactly the tool that says we can
do this.

We say that a collection of groups .% (U) for open sets U € % and maps
resy o F(V) = F({U) for V.C U form a HB-sheaf if they satisfy the
sheaf axiom with respect to inclusions of basic open sets in basic open sets
and coverings of basic open sets by basic open sets. (The condition in the
definition that sections of U,, U, € % agree on U, N U, must be replaced
by the condition that they agree on any basic open set V € % such that
VcU.NUy.)

Proposition I-12. Let £ be a base of open sets for X.
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(i) Every %B-sheaf on X extends uniquely to a sheaf on X.

(ii) Given sheaves F and 4 on X and a collection of maps
oU): F(U)—-¥9U) foral UecAB

commuting with restrictions, there is a unique morphism ¢ : % — &
of sheaves such that p(U) = ¢(U) for allU € A.

Beginning of the proof. For any open set U C X, define % (U) as the in-
verse limit of the sets #(V'), where V runs over basic open sets contained
in U:
— i ar
ZU) = <h—mVCU,ve33‘/(V)
B {the set of families (fv)vcu,ves € lvcy vesZ (V) such}
| that resy, v (fv)=fw whenever WCV CU with V,W e %.

The restriction maps are defined immediately from the universal property
of the inverse limit. |

Exercise I-13. Complete the proof of the proposition by checking the
sheaf axioms and showing that, for U € 4, the new definition of .# agrees
with the old one.

The second application, which is really a special case of the first, says
that to define a sheaf it is enough to give it on each open set of an open
cover, as long as the definitions are compatible.

Corollary I-14. Let % be an open covering of a topological space X. If
Fu is a sheaf on U for each U € % , and if

ooy s Fulvnv — Fvivav

are isomorphisms satisfying the compatibility conditions

PyvwPuv = Puw 01 unvnw,

for all U VW € 9, there is a unique sheaf F on X whose restriction
to each U € % is isomorphic to Fy via isomorphisms Yy @ Fly — Fy
compatible with the isomorphisms pyy — in other words, such that

vuv o ¥ulunv = ¥vlvny : Flunv — Fvlunv
for allU and 'V in % .

Proof. The open sets contained in some U € % form a base & for the
topology of X. For each such set V we choose arbitrarily a set U that
contains it, and define F (V) = Zy (V). If for some W C V the value Z (W)
has been defined with reference to a different .y, we use the isomorphism
¢y to define the restriction maps. These maps compose correctly because
of the compatibility conditions on the isomorphisms ¢y ¢7. Thus we have a
HB-sheaf, and therefore a sheaf. O
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The pushforward operation on sheaves is so basic (and trivial) that we
introduce it here: If @ : X — Y is a continuous map on topological spaces
and .Z is a presheaf on X, we define the pushforward a..# of F by « to
be the presheaf on Y given by

. F(V):=F(a ' (V)) for any open V C Y.

Of course, the pushforward of a sheaf of abelian groups (rings, modules
over a sheaf of rings, and so on) is again of the same type.

Exercise I-15. Show that the pushforward of a sheaf is again a sheaf.

References for the Theory of Sheaves. Serre’s landmark paper [1955],
which established sheaves as an important tool in algebraic geometry, is still
a wonderful source of information. Godement [1964] and Swan [1964] are
more systematic introductions. Hartshorne [1977, Chapter II] contains an
excellent account adapted to the technical requirements of scheme theory;
it is a simplified version of that found in Grothendieck [1961a; 1961b; 1963;
1964; 1965; 1966; 1967]. Some good references for the analytic case are
Forster [1981] (especially for an introduction to cohomology) and Gunning
[1990].

I.1.4 Schemes as Schemes (Structure Sheaves)

We return at last to the definition of the scheme X = Spec R. We will com-
plete the construction by specifying the structure sheaf Ox = Ogpec r. As
indicated above, we want the relationship between Spec R and R to gener-
alize that between an affine variety and its coordinate ring; in particular,
we want the ring of global sections of the structure sheaf &x to be R.

We thus wish to extend the ring R of functions on X to a whole sheaf
of rings. This means that for each open set U of X, we wish to give a ring
Ox (U); and for every pair of open sets U C V' we wish to give a restriction
homomorphism

resy ;: Ox (V) — Ox(U)

satisfying the various axioms above. It is quite easy to say what the rings
Ox(U) and the maps res,, ;, should be for distinguished open sets U and
V: we set

Ox(Xy) = Ry.

If Xy D X4, some power of g is a multiple of f (recall that the radical
of (f) is the intersection of the primes containing f). Thus the restriction
map resy - can be defined as the localization map Ry — Ry, = Ry. By
Proposition f—12, this will suffice to define the structure sheaf &, as long
as we verify that it satisfies the sheaf axiom with respect to coverings of
distinguished opens by distinguished opens. Before doing this, in Proposi-
tion I-18 below, we exhibit a simple but fundamental lemma that describes
the coverings of affine schemes by distinguished open sets.
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Lemma I-16. Let X = Spec R, and let {f,} be a collection of elements of
R. The open sets Xy, cover X if and only if the elements f, generate the
unit ideal. In particular, X is quasicompact as a topological space.

Recall that quasicompact means that every open cover has a finite sub-
cover; the quasi is there because the space is not necessarily Hausdorff. In
fact, schemes are almost never Hausdorff! Unfortunately, this fact vitiates
most of the usual advantages of compactness. For example, in contrast to
the situation for compact manifolds, say, the continuous image of one affine
scheme in another need not be closed. For this reason, we will discuss in
Section III.1 a better “compactness” notion, called properness, which will
play just as important a role as compactness does in the usual geometric
theories.

Proof. The Xy, cover X if and only if no prime of R contains all the f,,
which happens if and only if the f, generate the unit ideal; this proves the
first statement. To prove the second, note first that every open cover has
a refinement of the form X = (JXy,, where each f, € R. Since the Xy,
cover X, the f, generate the unit ideal, so the element 1 can be written
as a linear combination — necessarily finite— of the f,. Taking just the f,
involved in this expansion of 1, we see that the cover X = J X, , and with
it the original cover, has a finite subcover. O

Exercise I-17. If R is Noetherian, every subset of Spec R is quasicompact.

Proposition I-18. Let X = Spec R, and suppose that Xy is covered by
open sets Xy, C Xy.

(a) If g,h € Ry become equal in each Ry, , they are equal.

(b) If for each a there is go € Ry, such that for each pair a and b the images
of go and gy in Ry, ¢, are equal, then there is an element g € Ry whose
image in Ry, 1s go for all a.

Equivalently, if % is the collection of distinguished open sets Spec R
of Spec R, and if we set Ox(Spec Ry) := Ry, then Ox is a %-sheaf. By
Proposition I-12, &x extends uniquely to a sheaf on X.

Definition I-19. The sheaf &x defined in the proposition is called the
structure sheaf of X or the sheaf of regular functions on X.

Proof of Proposition I-18. We begin with the case f =1, so Ry = R and
Xr=X.

For the first part, observe that if g and h become equal in each Xy, then
g — h is annihilated by a power of each f,. Since by Lemma I-16 we may
assume that the cover is finite, this implies that g — h is annihilated by
a power of the ideal generated by all the Y for some N. But this ideal
contains a power of the ideal generated by all the f,, which is the unit
ideal. Thus g = h in R.
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For part (b), we will use an argument analogous to the classical partition
of unity to piece together the elements g, into a single element g € R. For
large N the product fNg, € Ry, is the image of an element h, € R. By
Lemma I-16 we may assume the covering { X, } is finite, and it follows that
one N will do for all a. Next, since g, and g, become equal in Xy ,, we
must have

i ha = (fafo) g0 = (fafo)Ngo = Ny

for large N. Again, since we have assumed the covering { X, } is finite, one
N will do for all @ and b. By Lemma I-16 the elements f, € R generate the
unit ideal, and hence so do the elements £V, and we may write

1= Z eafév
a
for some collection e, € R; this is our partition of unity. We claim that

9=>_eaha

is the element of R we seek. Indeed, for each b, we have in Ry,
g=>fYeaha =Y fNeahs = hy = [} g0,

so g becomes equal to g, on Xy,, as required.

Returning to the case of arbitrary f, set X' = Xy, R' = Ry, fI = f fa;
then X’ = Spec R’ and X }é = Xy, , so we can apply the case already proved
to the primed data. O

The proposition is still valid, and has essentially the same proof, if we
replace Ry and Ry, by My and My, for any R-module M.

Exercise I-20. Describe the points and the sheaf of functions of each of
the following schemes.

(a) X; = SpecC[x]/(x?). (b) X3 = SpecC[z]/(x? — x).
(c) X3 = SpecClz]/(z3 — x?). (d) X4 = SpecR[z]/(2? +1) .

In contrast with the situation in many geometric theories (though similar
to the situation in the category of complex manifolds), there may be really
rather few regular functions on a scheme. For example, when we define
arbitrary schemes, we shall see that the schemes that are the analogues
of compact manifolds may have no nonconstant regular functions on them
at all. For this reason, partially defined functions on a scheme X —that
is, elements Ox(U) for some open dense subset U —play an unusually
large role. They are called rational functions on X because in the case
X = Spec R with R a domain, and U = X, the elements of Ox (Xy) = Ry
are ratios of elements in R. In the cases of most interest, we shall see that
every nonempty open set is dense in X, so the behavior of rational functions
reflects the properties of X as a whole.
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Exercise I-21. Let % be the set of open and dense sets in X. Compute
the ring of rational functions

i ;e Ox (U) =

the disjoint union of Ox(U) for all U € %, modulo the equiva-
lence relation o ~ 7 if 0 € Ox(U), 7 € Ox(V), and the restric- » ,
tions of ¢ and 7 are equal on some W € % contained in U NV

first in the case where R is a domain and then for an arbitrary Noetherian
ring.

Example I-22. Another very simple example will perhaps help to fix
these ideas. Let K be a field, and let R = K[z](,), the localization of the
polynomial ring in one variable X at the maximal ideal (x). The scheme
X = Spec R has only two points, the two prime ideals (0) and (z) of R. As
a topological space, it has precisely three open sets,

g c U:={0)} c {(0), (z)} = X.

U and @ are distinguished open sets, since {(0)} = X,. The sheaf Ox is
thus easy to describe. It has values Ox(X) = R = K[z](;) and Ox(U) =
K(x), the field of rational functions. The restriction map from the first to
the second is the natural inclusion.

Exercise I-23. Give a similarly complete description for the structure
sheaf of the scheme Spec K[z]. (The answer is given in Chapter II.)

[.2 Schemes in General

After this lengthy description of affine schemes, it is easy to define schemes
in general. A scheme X is simply a topological space, called the support of
X and denoted | X| or supp X, together with a sheaf &x of rings on X, such
that the pair (| X, Ox) is locally affine. Locally affine means that |X| is
covered by open sets U; such that there exist rings R;, and homeomorphisms
Ui = |Spec Rz| with ﬁX Uig ﬁSpecRi-

To better understand this definition, we must identify the key properties
of the structure sheaf of an affine scheme. Let X be any topological space
and let & be a sheaf of rings on it. We call the pair (X, &) a ringed space,
and ask when it is isomorphic to an affine scheme (|Spec R|, Ospec r). Note
that if (X, &) were an affine scheme then it would have to be the scheme
Spec R.

Now let (X, 0) be any ringed space, and let R = ¢(X). For any f € R
we can define a set Uy C X as the set of points z € X such that f maps
to a unit of the stalk &,. If (X, @) is an affine scheme we must have:

(i) oUy) = R[f71].
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However, this condition is not enough; it does not even force the existence
of a map between X and |Spec R|. To give such a map, we need to assume
a further condition on & that is posessed by affine schemes:

(ii) The stalks &, of & are local rings.

A ringed space (X, 0) satisfying (ii) is often called a local ringed space.

If (X, O) satisfies (ii), there is a natural map X — |Spec &(X)| that takes
x € X to the prime ideal of &(X) that is the preimage of the maximal ideal
of O,. The third condition for (X, &) to be an affine scheme is this:

(iii) The map X — |Spec 0(X)| is a homeomorphism.

Given these considerations, we say that a pair (X, 0) is affine if it satisfies
(i)—(iii). The definition of scheme given above now becomes: A pair (X, &)
is a scheme if it is locally affine.

Again, where there is no danger of confusion, we will use the same letter
X to denote the scheme and the underlying space | X|, as in the construction
“let p € X be a point.”

Exercise I-24. (a) Take Z = Spec C[z], let X be the result of identifying
the two closed points (z) and (x — 1) of |Z|, and let ¢ : Z — X be the
natural projection. Let & be ¢.07, a sheaf of rings on X. Show that
(X, 0) satisfies condition (i) above for all elements f € 0(X) = Clz],
but does not satisfy condition (ii). Note that there is no natural map
X — |Spec Clz]|.

(b) Take Z = SpecC[x,y], the scheme corresponding to the affine plane,
and let X be the open subset obtained by leaving out the origin in
the plane, that is, X = |Z| — {(x,y)}. Let & be the sheaf 0z |x (that
is, O(V) = €z(V) for any open subset V C X C |Z]|.) Show that
0(X) = Clx,y], that X, 0 satisfies condition (i) and (ii), and that the
natural map X — |Spec &(X)| is the inclusion X C |Z].

Some notation and terminology are in order at this point.

A regular function on an open set U C X is a section of Ox over U. A
global regular function is a regular function on X.

The stalks Ox , of the structure sheaf Ox at the points x € X are called
the local rings of Ox. The residue field of Ox , is denoted by «(x). Just
as in the situation of Section I.1.1, a section of &x can be thought of as a
“function” taking values in these fields x(z): if f € Ox(U) and x € U, the
image of f under the composite

Ox(U) = Ox o — k(x)
is the value of f at x.

Exercise I-25 (the smallest nonaffine scheme). Let X be the topological
space with three points p, ¢1, and ¢o. Topologize X by making X; := {p,¢1}
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and Xs := {p, g2} open sets (so that, in addition, &, {p}, and X itself are
open). Define a presheaf & of rings on X by setting

O0(X) = 0(X1) = O0(Xs) = K[zlw),  O({p}) = K(x),

with restriction maps 0(X) — €(X;) the identity and 0(X;) — O({p})
the obvious inclusion. Check that this presheaf is a sheaf and that (X, €) is
a scheme. Show that it is not an affine scheme. (Geometrically, the scheme
(X, 0) is the “germ of the doubled point” in the scheme called X; in
Exercise 1-44.)

1.2.1 Subschemes

Let U be an open subset of a scheme X. The pair (U, Ox|y) is again
a scheme, though this is not completely obvious. To check it, note that
at least a distinguished open set of an affine scheme is again an affine
scheme: if X = Spec R and U = X, then (U, Ox|y) = Spec Ry. Since the
distinguished open sets of X that are contained in U cover U, this shows
that (U, Ox|y) is covered by affine schemes, as required. An open subset of
a scheme is correspondingly referred to as an open subscheme of X, with
this structure understood.

The definition of a closed subscheme is more complicated; it is not enough
to specify a closed subspace of X, because the sheaf structure is not defined
thereby.

Consider first an affine scheme X = Spec R. For any ideal I in the ring
R, we may make the closed subset V(I) C X into an affine scheme by
identifying it with Y = Spec R/I. This makes sense because the primes of
R/I are exactly the primes of R that contain I taken modulo I, and thus
the topological space |Spec R/I| is canonically homeomorphic to the closed
set V(I) C X. We define a closed subscheme of X to be a scheme Y that
is the spectrum of a quotient ring of R (so that the closed subschemes of
X by definition correspond one to one with the ideals in the ring R).

We can define in these terms all the usual operations on and relations
between closed subschemes of a given scheme X = Spec R. Thus, we say
that the closed subscheme Y = Spec R/I of X contains the closed sub-
scheme Z = Spec R/J if Z is in turn a closed subscheme of Y—that is, if
J D I This implies that V(J) C V(I), but the converse is not true.

Exercise I-26. The schemes X1, X5, and X3 of Exercise 1-20 may all be
viewed as closed subschemes of Spec C[z]. Show that

X1 C X3 and X2 C Xg,

but no other inclusions X; C Xj; hold, even though the underlying sets
of X5 and X3 coincide and the underlying set of X; is contained in the
underlying set of Xo.
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The union of the closed subschemes Spec R/I and Spec R/J is defined as
Spec R/(INJ), and their intersection as Spec R/(I+J). It is important to
note that the notions of containment, intersection, and union do not satisfy
all the usual properties of their set-theoretical counterparts: for example,
we will see on page 69 an example of closed subschemes X, Y, Z of a scheme
such that XUY =X UZand XNY =XNZbut Y # Z

We would now like to generalize the notion of closed subscheme to an
arbitrary scheme X. To do this, the first step must be to replace the ideal
I C R associated to a closed subscheme Y of an affine scheme X = Spec R
by a sheaf, which we do as follows. We define ¢ = #y,x, the ideal sheaf
of Y in X, to be the sheaf of ideals of Ox given on a distinguished open
set V= Xy of X by #(Xs) =1Ry. Now we can identify the structure
sheaf Oy of Y = Spec R/I — more precisely, the pushforward j. &y, where
Jj is the inclusion map |Y'| — |X|— with the quotient sheaf Ox/ . (You
should spell out this identification.) The sheaf of ideals _# may be recovered
as the kernel of the restriction map Ox — j.Oy.

One subtle point requires mention: not all sheaves of ideals in Ox arise
from ideals of R. For example, in the case of R = K[z](,) considered in
Example 1-22, we may define a sheaf of ideals by

J(X)=0,  FU)=0xU) forU={(0)}.

For a sheaf of ideals ¢ coming from an ideal of R we would have

A U) = J(X)e = J(X) K(z),

so ¥ does not come from any ideal of R. In the definition of a closed
subscheme above, we are only interested in sheaves of ideals that do come
from ideals of R. The theory obviously needs a name for such sheaves: they
are called quasicoherent sheaves of ideals. (This seems a poor name for
such a basic and simple object, but it is firmly rooted in the literature.
It comes from the fact that a sheaf on the spectrum of a Noetherian ring
that corresponds to a finitely generated module has a property called co-
herence; it was thus natural to say that the sheaf coming from a finitely
generated module is coherent, and that coming from an arbitrary module
is quasicoherent.)

More generally, a quasicoherent sheaf of ideals # C Ox on an arbitrary
scheme X is a sheaf of ideals _# such that, for every open affine subset U
of X, the restriction #|y is a quasicoherent sheaf of ideals on U.

Now we are ready to define a closed subscheme of an arbitrary scheme as
something that looks locally like a closed subscheme of an affine scheme:

Definition I-27. If X is an arbitrary scheme, a closed subscheme Y of X
is a closed topological subspace |Y| C | X| together with a sheaf of rings Oy
that is a quotient sheaf of the structure sheaf &'x by a quasicoherent sheaf
of ideals ¢, such that the intersection of Y with any affine open subset
U C X is the closed subscheme associated to the ideal ¢ (U).
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If V C X is any open set, we say that a regular function f € Ox (V)
vanishes on Y if f € #Z(V).

In fact, |Y] is uniquely determined by _#, so closed subschemes of X
are in one-to-one correspondence with the quasicoherent sheaves of ideals
f C Ox.

The notion of quasicoherence arises in a more general context as well. We
similarly define a quasicoherent sheaf % on X to be a sheaf of &'x-modules
(that is, .#(U) is an Ox (U)-module for each U) such that for any affine set
U and distinguished open subset Uy C U, the Ox(Uy) = Ox(U)-module
F(Uy) is obtained from .# (U) by inverting f — more precisely, the restric-
tion map % (U) — #(Uys) becomes an isomorphism after inverting f. .#
is called coherent if all the modules .% (U) are finitely generated. (A more
restrictive use of the word coherence is also current, but coincides with this
one in the case where X is covered by finitely many spectra of Noetherian
rings, the situation of primary interest.) One might say informally that qua-
sicoherent sheaves are those sheaves of modules whose restrictions to open
affine sets are modules (finitely generated in the case of coherent sheaves)
on the corresponding rings. This is the right analogue in the context of
schemes of the notion of module over a ring; for most purposes, one should
think of them simply as modules.

Exercise 1I-28. To check that a sheaf of ideals (or any sheaf of modules)
is quasicoherent (or for that matter coherent), it is enough to check the
defining property on each set U of a fixed open affine cover of X.

One of the most important closed subschemes of an affine scheme X is
Xied, the reduced scheme associated to X. This may be defined by setting
Xied = Spec Ryeq, where Ryoq is R modulo its nilradical —that is, modulo
the ideal of nilpotent elements of R. Recall that the nilradical of a ring R
equals the intersection of all the primes of R (in fact, the intersection of
all minimal primes). Therefore |X| and | X,eq| are identical as topological
spaces.

Exercise 1-29. X,.q may also be defined as the topological space | X| with
structure sheaf Ox, , associating to every open subset U C X the ring
Ox (U) modulo its nilradical.

To globalize this notion, we may define for any scheme X a sheaf of
ideals A4~ C Ox, called the nilradical; this is the sheaf whose value on
any open set U is the nilradical of &x(U). Because the construction of
the nilradical commutes with localization, .4 is a quasicoherent sheaf of
ideals. The associated closed subscheme of X is called the reduced scheme
associated to X and denoted X .q. We say that X is reduced if X = Xyeq.-

Irreducibility is another possible property of schemes; in spite of the
name, it is independent of whether the scheme is reduced. A scheme X is
irreducible if | X| is not the union of two properly contained closed sets.
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Here are some easy but important remarks about reduced and irreducible
schemes.

Exercise I-30. A scheme is irreducible if and only if every open subset is
dense.

Exercise I-31. An affine scheme X = Spec R is reduced and irreducible
if and only if R is a domain. X is irreducible if and only if R has a unique
minimal prime, or, equivalently, if the nilradical of R is a prime.

Exercise I-32. A scheme X is reduced if and only if every affine open
subscheme of X is reduced, if and only if every local ring O'x ), is reduced
for closed points p € X. (A ring is called reduced if its only nilpotent
element is 0.)

Exercise I-33. How do you define the disjoint union of two schemes? Show
that the disjoint union of two affine schemes Spec R and Spec.S may be
identified with the scheme Spec R x S.

Exercise I-34. An arbitrary scheme X is irreducible if and only if every
open affine subset is irreducible. If it is connected (in the sense that the
topological space | X| is connected), then it is irreducible if and only if every
local ring of &x has a unique minimal prime.

We have now introduced the notion of open subscheme and closed sub-
scheme of a scheme X. A further generalization, a locally closed subscheme
of X, is immediate: it is simply a closed subscheme of an open subscheme
of X. This is as general a notion as we will have occasion to consider in this
book; so that when we speak just of a subscheme of X, without modifiers,
we will mean a locally closed subscheme.

Exercise I-35. Let X be an arbitrary scheme and let Y, Z be closed
subschemes of X . Explain what it means for Y to be contained in Z. Same
question if Y, Z are only locally closed subschemes.

Given a locally closed subscheme Z C X of a scheme X, we define the
closure Z of Z to be the smallest closed subscheme of X containing Z; that
is, the intersection of all closed subschemes of X containing Z. Equivalently,
if Z is a closed subscheme of an open subscheme U C X, the closure Z
is the closed subscheme of X defined by the sheaf of ideals consisting of
regular functions whose restrictions to U vanish on Z.

1.2.2  The Local Ring at a Point

The Noetherian property is fundamental in the theory of rings, and its
extension is equally fundamental in the theory of schemes: we say that a
scheme X is Noetherian if it admits a finite cover by open affine subschemes,
each the spectrum of a Noetherian ring. As usual, one can check that this
is independent of the cover chosen.
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There is a good notion of the germ of a scheme X at a point z € X
which is the intersection, in a natural sense, of all the open subschemes
containing the point. This is embodied in the local ring of X at x, defined
earlier as

ﬁ)gx = h_rn)er ﬁx(U).

The maximal ideal my , of this local ring is the set of all sections that
vanish at x. The local ring is a simple object: to compute it (and to show
in particular that it is a local ring, with the given maximal ideal), we may
begin by replacing X by an affine open neighborhood of z, thus assuming
that X = Spec R and x = [p]. We may next restrict the open subsets U in
the direct limit to the distinguished open sets Spec Ry such that f(z) # 0—
that is, f & p. Thus

Ox.:=lim R =R,

)

and )
mX,x = m}f@ pr = pRm

the localization of R at p. We can think of the germ of X at x as being
Spec Ox .; we will study some schemes of this type in the next chapter.
This notion of the local ring of a scheme at a point is crucial to the whole
theory of schemes. We give a few illustrations, showing how to define various
geometric notions in terms of the local ring. Let X be a scheme.

(1) The dimension of X at a point x € X, written dim(X,z), is the
(Krull) dimension of the local ring €'x , — that is, the supremum of lengths
of chains of prime ideals in €x 5. (The length of a chain is the number of
strict inclusions.) The dimension of X, or dim X, itself is the supremum of
these local dimensions.

Exercise I-36. The underlying space of a zero-dimensional Noetherian
scheme is finite.

(2) The Zariski cotangent space to X at z is mX,x/miyx, regarded as
a vector space over the residue field k(z) = Ox /mx . The dual of this
vector space is called the Zariski tangent space at x.

To understand this definition, consider first a complex algebraic variety
X that is nonsingular. In this setting the notion of the tangent space to
X at a point p is unambiguous: it may be taken as the vector space of
derivations from the ring of germs of analytic functions at the point into
C. If mx, is the ideal of regular functions vanishing at p, then such a
derivation induces a C-linear map mx ,/ mggp — C, and the tangent space
may be identified in this way with Home (mx ,/m% ,, C) = (mx ,/m% )"
See Eisenbud [1995, Ch. 16]. It was Zariski’s insight that this latter vector
space is the correct analogue of the tangent space for any point, smooth or
singular, on any variety; Grothendieck subsequently carried the idea over
to the context of schemes, as in the definition given above. We shall return
to this construction, from a new point of view, in Chapter VL.
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Exercise I-37. If K is a field, the Zariski tangent space to the scheme
Spec K[x1,...,xy] at [(z1,...,2,)] is n-dimensional.

(3) X is said to be nonsingular (or regular) at x € X if the Zariski tan-
gent space to X at x has dimension equal to dim(X, x); else the dimension
of the Zariski tangent space must be larger, and we say that X is singular
at x. Thus in the case of primary interest, when X is Noetherian, X is
nonsingular at z if and only if the local ring Ox , is a regular local ring.
This fundamental notion represents, historically, one of the important steps
toward the algebraization of geometry. It was taken by Zariski in his classic
paper [1947] (remarkably, this was some years after Krull had introduced
the notion of a regular local ring to generalize the properties of polynomial
rings, one of the rare cases in which the algebraists beat the geometers to
a fundamental geometric notion).

Exercise I-38. A zero-dimensional Noetherian scheme is nonsingular if
and only if it is the union of reduced points.

1.2.3 Morphisms

We will next define morphisms of schemes. In the classical theory a regu-
lar map of affine varieties gives rise, by composition, to a map of coordi-
nate rings going in the opposite direction. This correspondence makes the
two kinds of objects—regular maps of affine varieties and algebra homo-
morphisms of their coordinate algebras— equivalent. The definition given
below generalizes this: we will see that maps between affine schemes are
simply given by maps of the corresponding rings (in the opposite direction).

Given the simple description of morphisms of affine schemes in terms of
maps of rings, it is tempting just to define a morphism of schemes to be
something that is “locally a morphism of affine schemes.” One can make
sense of this, and it gives the correct answer, but it leads to awkward
problems of checking that the definition is independent of the choice of an
affine cover. For this reason, we give a definition below that works without
the choice of an affine cover. Although it may at first appear complicated,
it is quite convenient in practice. It also has the advantage of working
uniformly for all “local ringed spaces” — structures defined by a topological
space with a sheaf of rings whose stalks are local rings.

To understand the motivation behind this definition, consider once more
the case of differentiable manifolds. A continuous map ¢ : M — N between
differentiable manifolds is differentiable if and only if, for every differen-
tiable function f on an open subset U C N, the pullback ¢# f := fo4 is a
differentiable function on ¥ ~'U C M. We can express this readily enough
in the language of sheaves. Any continuous map v : M — N induces a map
of sheaves on NV

Y7 C(N) — .C (M)
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sending a continuous function f € €(N)(U) on an open subset U C N
to the pullback fo¢ € €(M)( 'U) = (€ (M))(U). In these terms,
a differentiable map v : M — N may be defined as a continuous map
¢ : M — N such that the induced map 1# carries the subsheaf > (N) C
% (N) into the subsheaf ¥, € (M) C ¥.€(M). That is, we require that
there be a commutative diagram

#
e(v) -2y ()

T —— Y E(M)
We’d like to adapt this idea to the case of schemes. The difference is that
the structure sheaf &x of a scheme X is not a subsheaf of a predefined
sheaf of functions on X. Thus, in order to give a map of schemes, we have

to specify both a continuous map 1# : X — Y on underlying topological
spaces and a pullback map

* Ox — 1,0y .

Of course, some compatibility conditions have to be satisfied by 1# and 1.
The problem in specifying them is that a section of the structure sheaf 0y
does not take values in a fixed field but in a field x(g) that varies with the
point g € Y; in particular, it doesn’t make sense to require that the value
of f € Oy (U) at ¢ € U C Y agree with the value of Y# f € ,0x(U) =
Ox(¢p~1U) at a point p € »~1U C X mapping to ¢ (which is in effect how
¥* was defined in the case of differentiable functions), since these “values”
lie in different fields. About all that does make sense is to require that f
vanish at ¢ if and only if ©# f vanishes at p— and this is exactly what we
do require. We thus make the following definition.

Definition I-39. A morphism, or map, between schemes X and Y is a
pair (1,9%), where 1 : X — Y is a continuous map on the underlying
topological spaces and

Y# o Oy — p.Ox

is a map of sheaves on Y satisfying the condition that for any point p € X
and any neighborhood U of ¢ = ¢(p) in Y a section f € &y (U) vanishes at
q if and only if the section ¥# f of 9.Ox (U) = Ox (1p~'U) vanishes at p.

This last condition has a nice reformulation in terms of the local rings
Ox p and Oy 4. Any map of sheaves 1/1# : Oy — . Ox induces on passing
to the limit a map

Oyq = Oy (U) — lim Ox(™U),

lim
—qeUCY ——qeUcCY

and this last ring naturally maps to the limit

i vex Ox(V)
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over all open subsets V containing p, which is O ,. Thus ¢# induces a
map of the local rings Oy, — Ox . Saying that a section f € Oy (U)
vanishes at ¢ if and only if ¥# f € ¥.0x(U) = Ox (¢~ 1U) vanishes at p
is saying that this map 0y,q — Ox, sends the maximal ideal my, into
mx,, —in other words, that it is a local homomorphism of local rings.

As we mentioned above, a morphism of affine schemes
1 : X =SpecS — SpecR=Y

is the same as a homomorphism of rings ¢ : R — S. Here is the precise
result, along with an important improvement that describes maps from an
arbitrary scheme to an affine scheme.

Theorem I-40. For any scheme X and any ring R, the morphisms
(1,4#) : X — Spec R
are in one-to-one correspondence with the homomorphisms of rings
¢ R— Ox(X)
by the association
¢ = ¢#(Spec R) : R = Ospec r(Spec R) — 1. (Ox)(Spec R) = Ox (X).

Proof. We describe the inverse association. Set Y = Spec R, and let ¢ :
R — Ox(X) be a map of commutative rings. If p € |X| is a point, the
preimage of the maximal ideal under the composite R — Ox(X) — Ox
is a prime ideal, so that ¢ induces a map of sets

¢ [ X] =Y,

which is easily seen to be continuous in the Zariski topology. Next, for each
basic open set U = Spec Ry C Y, define the map ¢# : Ry = Oy (U) —
(¥« Ox)(U) to be the composite

Ry — Ox(X)y(p) — Ox(¥7'0)

obtained by localizing . By Proposition I-12(ii) this is enough to define a
map of sheaves. Localizing further, we see that if ¢)(p) = g, then ¥# defines
a local map of local rings R, — Ox ,, and thus (1,9#) is a morphism of
schemes. Clearly, the induced map satisfies

YY) = o,
so the construction is indeed the inverse of the given one. [l

Of course this result says in particular that all the information in the
category of affine schemes is already in the category of commutative rings.

Corollary I-41. The category of affine schemes is equivalent to the cate-
gory of commutative rings with identity, with arrows reversed, the so-called
opposite category.



1.2 Schemes in General 31

Exercise 1-42. (a) Using this, show that there exists one and only one
map from any scheme to SpecZ. In the language of categories, this
says that SpecZ is the terminal object of the category of schemes.

(b) Show that the one-point set is the terminal object of the category of
sets.

For example, each point [p] of X = Spec R corresponds to a scheme
Spec k(p) that has a natural map to X defined by the composite map of
rings

R — Ry — Ry/pp = k(p)

Of course, the inclusion makes [p] a closed subscheme if and only if p is
a maximal ideal of R (in general, [p] is an infinite intersection of open
subschemes of a closed subscheme).

If ¥ : Y — X is a morphism of affine schemes, X = SpecR and Y =
SpecT, and X' is a closed subscheme of X, defined by an ideal I in R, then
we define the preimage (sometimes, for emphasis, the “scheme-theoretic
preimage”) ¥~ X’ of 1 over X’ to be the closed subscheme of Y defined
by the ideal ¢(I)T in T. If X' is a closed point p of X, we call ¢~ 1p the
fiber over X'. (We will soon see how to define fibers over arbitrary points.)
The underlying topological space of the preimage is just the set-theoretic
preimage, while the scheme structure of the preimage gives a subtle and
useful notion of the “correct multiplicity” with which to count the points in
the preimage. The simplest classical example is given later in Exercise I1-2;
here we give two others.

Exercise I-43. (a) Let ¢ : X — Y be the map of affine schemes illus-
trated by

eO Y

That is, X = Spec K[z, u]/(zu) is the union of two lines meeting in
a point p = (z,u), while Y = Spec Kt] is a line, and the map is an
isomorphism on each of the lines of X; for example, it might be given
by the map of rings

K[t] — K[z,u]/(zu),

t— x -+ u.
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Show that the fiber over the point ¢, = (t—a), with a # 0, is the scheme
Spec(K x K) consisting of two distinct points, while the fiber over
go — that is, the fiber containing the double point p—is isomorphic to
Spec K [z]/(x?). The fact that the algebra K [x]/(z?) is two-dimensional
(as a vector space over K) reflects the structure of the map locally at p.

(b) Let ¢ : X — Y be the map of affine schemes illustrated by

That is, X = Spec K[z, y,u,v]/((z,y) N (u,v)) is the union of two
planes in four-space meeting in a single point p = (z,y,u,v), while
Y = Spec K|s, t] is a plane, and the map is an isomorphism on each of
the planes of X; for example, it might be given by the map of rings

Kis,t]| —» K|z, y,u,v],
t—x+u,
Syt
Show that the fiber over the point
Gap = (s—a,t=b)
is the scheme Spec(K x K') consisting of two distinct points if a or b # 0,

while the fiber over ggo—that is, the fiber containing the “double
point” p—is isomorphic to

Spec K[z, y]/ (2% zy, y?).

The fact that the algebra Klx,y]/(z? zy, y?) is a three-dimensional
vector space over K instead of a two-dimensional vector space (as one
might expect by analogy with the previous example) reflects a deep
fact about the variety X (that it is not “locally Cohen—Macaulay”).
This example will be taken up again, from the point of view of flatness,
in section II.3.4.
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1.2.4/  The Gluing Construction

Using the notion of morphism, we can construct more complicated schemes
(for example, nonaffine schemes) by identifying simpler schemes along open
subsets. This is a basic operation, called the gluing construction.

Suppose we are given a collection of schemes {X,};, and an open set
Xop in X, for each 8 # « in I. Suppose also that we are given a family of
isomorphisms of schemes

Yap i Xap — Xga for each a # B in I,
satisfying the conditions g, = w;l for all o and (3,
Yas(Xap N Xavy) = Xpa N Xpgy forall o, 3,7,

and the compatibility condition

Vi © Yapl(XasnXar) = Vay|(XasnXas)-

Under these circumstances we may define a scheme X by gluing the X,
along the 1,3 in an obvious way —that is to say, there exists a (unique)
scheme X with a covering by open subschemes isomorphic to the X, such
that the identity maps on the intersections X, N X3 C X correspond to
the isomorphisms q3.

This construction can be used, for example, to define projective schemes
out of affine ones. Another use is in the theory of toric varieties; see, for
example, Kempf et al. [1973].

In these and indeed in almost all applications, we don’t really need to
give the maps ¥, explicitly: we are actually given a topological space | X|
and a family of open subsets | X, |, each endowed with the structure of an
affine scheme —that is, with a structure sheaf 0x, —in such a way that
Ox,(XaNXg) is naturally identified with Ox , (XoNXg). For example, they
might both be given as subsets of a fixed set. Under these circumstances
it is immediate that the conditions of Corollary I-14 are satisfied, so that
there is a uniquely defined sheaf 0'x on X extending all the Ox_. The pair
(|X], Ox) is then a scheme.

Probably the simplest example of this is the definition of affine space

's over an abitrary scheme S. To begin with, for any affine scheme X =
Spec R we define affine n-space over X to be simply Spec R[z1,...,Zx];
this is denoted by either A’y or A%. (The geometry of affine spaces and
their subschemes will be taken up in Chapter II.) Next, we note that any
morphism X — Y of affine schemes induces a natural map Ay — Ay As
a consequence, we may apply the gluing construction as follows: If S is an
arbitrary scheme covered by affine schemes U, = Spec R, we define affine
space A'g over S to be the union of the affine spaces A7, , with the gluing
maps induced by the identity maps on U, N Ug.

We will see two other ways of defining affine space A over an arbitrary
base S in Exercises I-47 and 1-54 below.
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The following exercise illustrates some of the dangers of the gluing con-
struction: we can, by inappropriate (but legal) gluing, create schemes that
do not arise in any geometric setting.

Exercise I-44. Put Y = Spec K[s] and Z = Spec K[t]. Let U C Y be the
open set Y; and let V' C Z be the open set Z;. Let ¢b : V. — U be the
isomorphism corresponding to the map

Oy(U)=K[s,s '] — K[t,t '] = Oz(V)

sending s to ¢, and let v be the map sending s to t~!. Let X; be the scheme
obtained by gluing together Y and Z along v, and let X5 be the scheme
obtained by gluing along ~ instead.

Show that X; is not isomorphic to Xs. In fact, X5 is the scheme cor-
responding to the projective line P} (which we will describe in the next
section), while X7 is the affine space with a doubled origin:

M\

)
A

T
/

S

In Chapter III we will introduce a condition, called separatedness, that
will preclude schemes such as this X;.

Projective Space. An important example of a scheme constructed by
gluing is projective n-space over a ring R, denoted P%. It is made by gluing
n + 1 copies of affine space

% = Spec R[x1, ..., Ty]

over R. An extensive treatment of projective schemes will begin in Chapter
III. Here we will use the idea only as an illustration of gluing.

The construction is exactly parallel to the classical construction of pro-
jective space as a variety over a field. Although not logically necessary, it
is convenient to work as follows. Start with the polynomial ring in n + 1
variables R[Xy, ..., X,] and form the localization

A:=R[Xo, Xy, .., X0, X1

Recall that the ring A has a natural grading, that is, a direct-sum decom-
position (as an abelian group) into subgroups A for n € Z, such that

A Am)  glmtn),

here A is spanned by monomial rational fractions of degree n. In par-
ticular, the degree 0 part A is a subring of A. Now take the rings of our
defining affine covering to be R-subalgebras of A the i-th subring being
the subalgebra A; consisting of all polynomials P/X;1 eg(P), where P is a
homogeneous element of R[zo,...,x,]. Clearly, A; is generated over R by

the n algebraically independent elements

XO/Xia ceey mh AR Xn/Xla
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where the hat denotes as usual an element omitted from the list. A; is thus
isomorphic to the polynomial ring in n variables over R. Further, for i # j
we have

Al(X5/X0) 7 = A1/ X5) 7
as subsets of A; both may be described as the subalgebra of all degree
0 elements having denominator of the form XX J’-’ . If we use the identity
maps as gluing maps, the compatibility conditions are obvious.

If X = Spec R is an affine scheme, we will often write P’ instead of P,
and refer to the space as projective space over X. Any morphism X — Y
of affine schemes induces a natural map P% — P}. As a consequence, we
may apply the gluing construction again to define projective space Pg over
an arbitrary scheme S as well. This is straightforward: if S is covered by
affine schemes U,, = Spec R,,, we define projective space P to be the union
of the projective spaces Py; , with the gluing maps induced by the identity
maps on U, N Ug.

[.3 Relative Schemes

1.53.1 Fibered Products

There is an extremely important generalization of the idea of preimage of
a set under a function in the notion of the fibered product of schemes. To
prepare for the definition, we first recall the situation in the category of
sets.

The fibered product of two sets X and Y over a third set S — that is, of
a diagram of maps of sets

X

is by definition the set
X xsY ={(x,y) € X XY : px = ¢y}.

The fibered product is sometimes called the pullback of X (or of X — 5)
to Y. This construction generalizes several more elementary ones in a very
useful way:

If S is a point, it gives the usual direct product.

If X,Y are both subsets of S and ¢, are the inclusions, it gives the
intersection.

If Y C S and ¥ is the inclusion, it gives the preimage of Y in X.

If X =Y, it gives the set on which the maps ¢, 1 are equal, the equalizer
of the maps.
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Exercise I-45. Check these assertions!
Note that X xg Y comes with natural projection maps to X and Y
making the diagram

X xgY — X

L

S
G
commute. Indeed, the set X X Y may be defined by the following universal

property: among all sets Z with given maps to X and Y making the diagram
Z7 — X

|

Y — S
(4

commute, X Xg Y with its projection maps is the unique “most efficient”
choice in the sense that, given the diagram with Z above, there is a unique
map Z — X Xg Y making the diagram

commute.

In the category of schemes we simply define the fibered product to be a
scheme with this universal property — the universal property guarantees in
particular that such a thing, with its projections to X and Y, will be unique.
We can then define products, intersections, preimages, and equalizers in
terms of the fibered product! However, this begs the question of whether
any such object as the fibered product exists in the category of schemes. It
does, and we will now describe the construction.

First, we treat the affine case. Recall that the category of affine schemes is
opposite to the category of commutative rings, by Corollary I-41. Therefore,
if we have schemes

X = SpecA, Y = Spec B, S = Spec R,

where X and Y map to S (so that A and B are R-algebras), we must define
the fibered product X xgY to be

X xgY = Spec(A®r B).
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This is because the natural diagram

A®rB «— A
R
B R

has, in an obvious sense, the opposite universal property to the one desired
for the fibered product. In fancy language, the tensor product is a fibered
coproduct, or fibered sum, in the category of commutative rings.

To check that this definition is reasonable, one may note that in the
situation where Y is a closed subscheme of S defined by an ideal I, so that
B = R/I, we have A®r B = A/TA. Thus X xgY = Spec A/IA is the
same as the preimage of Y in X, as previously defined.

Exercise I-46. A few simple special cases are a great help when comput-
ing fibered products. Prove the following facts directly from the universal
property of the tensor product of algebras:

(a) For any R-algebra S we have RQr S = S.
(b) If S, T are R-algebras and I C S is an ideal, then
(S/H)@rT =(S@rT)/I1)(S®rT).
(¢) fx1,...,2n,y1,-..,Ym are indeterminates then
Rlz1,. .., 2] QR Rly1, -y ym) = RlT1, - Tn, Y1y -+ o s Y-

Use these principles to solve the remainder of this exercise.
(d) Let m,n be integers. Compute the fibered product

SpecZ/(m) Xspecz SpecZ/(n).
(e) Compute the fibered product Spec C xgpecr SpecC.

(f) Show that for any polynomial rings R[z] and R[y] over a ring R, we
have

Spec R[z] Xspec g SPec R[y] = Spec Rz, y].

Note that in example (d) the underlying set of the fibered product is the
fibered product of the underlying sets, but this is not true in (e) and (f).

(g) Consider the ring homomorphisms
Rlz] - R; x+—0
and
Rlz] — Rlyl; =~ y°

Show that with respect to these maps we have

Spec Ry] Xspec rjz] SPec R = Spec R[y]/(y?).
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In the general case, we cover S by affine schemes Spec R,, and cover
their preimages in X and Y by affine schemes Spec A,, and Spec B,g,
respectively, so that in a suitable sense the diagram

X

o

Y — S
(4
is covered by diagrams of the form

Spec A q

-

Spec B,3 — Spec R,
Vo

Of course, we already know that the fiber product of this last diagram
is Spec(Aya @R, Bpg). Using the idea of gluing explained at the end of the
preceding section, it is easy but tedious to check that these schemes agree on
overlaps and patch together to form the scheme X x gY as required; we omit
the computation. A different approach will be sketched in section VI.2.1.

One immediate use of the notion of product is an alternative description
of affine space A over a scheme S:

Exercise 1-47. Let S be any scheme. Let A} = SpecZ[z1,...,z,] be
affine space over SpecZ, as defined above (this scheme will be discussed
in detail in the next chapter). Show that affine space A§ over S may be
described as a product: Ay = A} Xgpecz S.

We can also use the fibered product to define the fiber of a morphism
1 'Y — X over an arbitrary point of arbitrary schemes: if p is a point
of X corresponding to a prime ideal p of R, then the fiber of ¥ over p is
the fibered product of ¥ and the one-point scheme Spec k(p). In the case
where X and Y are affine—say, Y = SpecT and X = Spec R— we get

wil(p) = Spec k(p) xx Y = Spec(Ry/pp ®r T) = Spec(Ry /pp @r T/pT)

as a point set; this is the set of primes of 7" whose preimages in R are equal
to p. More generally, we define the preimage, or inverse image of a closed
subscheme X’ of X under v to be the fibered product X’ x x Y.

Just as in the affine case treated above, the preimage ¥ ' X’ of X’ is a
closed subscheme of Y. Using the &x-algebra structure on Oy, the ideal
sheaf of the preimage may be written as .71 x, = Sx/ - Oy.

Another typical use of the fibered product is in studying the behavior of
varieties under extension of a base field (one usually speaks in this context
of a “base change” rather than a fibered product). In this setting, of which
we will see some examples in the following chapter, the notion is responsible
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for the great flexibility and convenience of the theory of schemes in handling
arithmetic questions.

As in examples (b) and (c) of Exercise I-46, the set of points of the fibered
product of schemes X xg Y is usually not equal to the fibered product (in
the category of sets) of the sets of points of X and Y. This is no terrible
pathology but simply reflects the fact that the theory of functions f(z,y)
of two variables is much richer than the theory of functions of the form
g(x)h(y). In any case, the definitions of Chapter VI provide a viewpoint
from which this oddity disappears.

1.3.2 The Category of S-Schemes

Just as in the case of sets, we can use the fibered product to define an
absolute product by taking S to be a terminal object in the category of
schemes — that is, a scheme such that every scheme has a unique map to S.
By Exercise 1-42 the terminal object in the category of schemes is Spec Z.
However, the absolute product has some rather surprising properties. We
have already seen in Exercise I-46(d) cases (when m and n are relatively
prime) where the product in this sense of nonempty sets may be empty!
There are other peculiarities as well: for example, the dimension of an
irreducible scheme can be defined as the Krull dimension of the coordinate
ring of any of its affine open sets. One might expect the product

X XY =X Xgpeez Y

of two schemes to have dimension equal to the sum of the dimensions of X
and Y. But in fact we have the result in the next exercise.

Exercise I-48. Show that if X = SpecZ|x] and Y = SpecZ|y], then
dimX XY =dim X +dimY —dimSpecZ =dim X +dimY — 1.

This oddity and many like it can be eliminated by a simple but convenient
generalization of our definitions: we often wish to work with schemes X over
a given field (or ring) K, or K-schemes. Of course, we will then use only
morphisms that respect this structure. Informally, this just means that we
consider X together with a K-algebra structure on &'x (X) and morphisms
respecting these structures. In this category, Spec K is the terminal object
and the absolute product is the fibered product over Spec K. If K is a
field, the product in the category of K-schemes behaves more in accord
with elementary geometric intuition. For example:

Exercise I-49. Let K be a field. If X and Y are nonempty K-schemes,
then the product X XY = X Xgpeck Y in the category of K-schemes is
nonempty.

Further, in this case the dimension of Spec K is 0, and one can check
that for schemes built up from spectra of finitely generated K-algebras the
dimension of products is additive, as it should be.
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In order to accommodate families of schemes, we may extend this notion
a little further. A K-algebra structure on &x (X) is nothing but a homo-
morphism of rings from K to Ox(X), and by Theorem I1-40 this is exactly
the same as a map X — Spec K. Replacing Spec K by an arbitrary scheme
S, we define a scheme over S, or S-scheme, to be a scheme X together
with a morphism X — S. We may think of a scheme over S informally
as a family of schemes “parametrized by points of S” —for each point of
S we have the fiber over that point. A morphism of schemes over S (or
S-morphism) is a commutative diagram

X
S
If X and Y are schemes over S, then we write Morg(X,Y") for the set of
S-morphisms. Note that the fibered product X xg Y of schemes over S is
precisely the ordinary direct product in the category of schemes over S.
As usual, if S = Spec R is affine, we will use the terms “R-scheme” and

“the category of R-schemes” interchangeably with “S-scheme” and “the
category of S-schemes”.

Y

Introducing the category of schemes over S may seem to add a layer of
complication, but in reality it more often removes one. For example, if we
want to do classical algebraic geometry over the complex numbers in scheme
language, it is necessary to work in the category of schemes over C. To see
that this is so, note that in any reasonable sense the point Spec C should
have no nontrivial automorphisms, and the scheme Spec C[z]/(z? 4 1) con-
sisting of a pair of points should have automorphism group Z/(2). This
is in fact the case in the category of schemes over C. In the category
of all schemes, however, the automorphism group of the point SpecC is
huge: it is the Galois group of C over QQ, and the automorphism group of
Spec Clx]/(z% + 1) is worse. Thus, working in the category of schemes over
C removes the (presumably unwanted) extra structure of the Galois group

Gal(C/Q).

Exercise I-50. Find the automorphism groups of the schemes X; and X3
of Exercise I-20 in the category of schemes over C.

1.3.3 Global Spec

If S = Spec R is an affine scheme, an affine S-scheme is simply the spectrum
of an R-algebra. We will now extend this construction to describe analogous
objects in the category of S-schemes for arbitrary S.

To begin with, for any scheme S we define a quasicoherent sheaf of Og-
algebras. This is, as you might expect, a sheaf % of Og-algebras, such
that for any affine open U = Spec R C S and distinguished open subset



1.3 Relative Schemes 41

U’ = Spec Ry C U, we have
FU)=FU)or 0s(U")=FU) ®r Ry

as R = Og(U)-algebras. We then associate to any quasicoherent sheaf .#
of Ug-algebras on a scheme S a scheme X = Spec.%#, together with a
structure morphism X — S, such that in case S = Spec R is affine we
get simply X = Spec.%(S) together with the structure morphism X — S
induced by the R = 0s(S)-algebra structure on .%(S).

There are a couple ways to do this. One is simply to use the gluing
construction again: we cover S by affine open subsets U, = Spec R, and
define X to be the union of the schemes Spec # (U, ), with attaching maps
induced by the restrictions maps .# (Uy) — % (Uy N Ug). This works, but
it’s a mess to verify that the resulting space Spec.% is independent of the
choice of cover, and has the further drawback that it can be awkward to
describe the set of points of Spec.%. We will give here instead an alternative
construction.

We start with a definition: given a quasicoherent sheaf . of g-algebras,
we define a prime ideal sheaf in % to be a quasicoherent sheaf of ideals
& C %, such that for each affine open subset U C S, the ideal #(U) C
Z(U) is either prime or the unit ideal. (Observe that for any affine scheme
X, the points of X are simply the prime ideal sheaves of Ox.) Now, we will
define X = Spec.% in three stages, as we did the spectrum of a ring. First,
as a set, X is the set of prime ideal sheaves in .%. Second, as a topological
space: for every open U C S (not necessarily affine) and section o € Z(U),
let Viy,» C X be the set of prime ideal sheaves &2 C .% such that o ¢ Z(U);
take these as a basis for the topology. Finally, we define the structure sheaf
O'x on basis open sets by setting

ﬁx(VUﬁ) = y(U)[U_l].

As for the morphism f : X — S: as a set, we associate to a prime ideal
sheaf & C Z its inverse image in s — Z; and the pullback map on
functions

f*:05(U) — Ox(f71(U) = Z(U)
is just the structure map g — % on U.

Exercise I-51. Show that the points of an affine scheme X are in one-to-
one correspondence with the set of prime ideal sheaves in O'x.

Exercise I-52. Show that if f: Y — X is a morphism and &2 is a prime
ideal sheaf of Oy, then f.(Z?) is a prime ideal sheaf in f.0y.

Exercise I-53. Show that if f: Y — X is a morphism, the map on sets
corresponding to f sends & C Oy to (f#)71(f.(2)) C Ox.

The simplest example of global Spec gives us yet another construction
of affine space over an arbitrary scheme S:
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Exercise I-54. Let S be any scheme. Show that affine space A’y over S
may be constructed as a global Spec:

A% = Spec(Sym(6&™)).

[.4 The Functor of Points

One of the intriguing things about schemes is precisely that they have so
much structure that is not conveyed by their underlying sets, so that the
familiar operations on sets such as taking direct products require vigilant
scrutiny lest they turn out not to make sense. It is therefore remarkable that
many of the set-theoretic ideas can be restored through a simple device,
the functor of points. This point of view, while initially adding a layer of
complication to the subject, is often extremely illuminating; as a result it
and its attendant terminology have become pervasive. We will give a brief
introduction to the necessary definitions here and use them occasionally in
the following chapters before returning to them in detail in Chapter VI.

We start with the observation that the points of a scheme do not in
general look anything like one another: we have nonclosed points as well as
closed ones; and if we are working over a non-algebraically closed field, then
even closed points may be distinguished by having different residue fields.
Similarly, if we are working over Z, different points may have residue fields
of different characteristic; and if we extend the notion of point to “closed
subscheme whose underlying topological space is a point,” we have an even
greater variety. And, of course, a morphism between schemes will not at all
be determined by the associated map on underlying point sets.

There is, however, a way of looking at a scheme—via its functor of
points —that reduces it in effect to a set. More precisely, we may think of
a scheme as an organized collection of sets, a functor on the category of
schemes, on which the familiar operations on sets behave as usual. In this
section we will examine this functorial description. A big payoff is that we
will see the category of schemes embedded in a larger category of functors,
in which many constructions are much easier. The advantage of this is
something like the advantage in analysis of working with distributions, not
just ordinary functions; it shifts the problem of making constructions in
the category of schemes to the problem of understanding which functors
come from schemes. Further, many geometric constructions that arise in
the category of schemes can be extended to larger categories of functors in
a useful way.

To introduce the notion of the functor of points, we start out in a general
categorical setting. To begin with, in many categories whose objects are
sets with additional structure, the underlying set | X| of an object X may
be described as the set of morphisms from a universal object to X; for
example:
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(a) In the category of differentiable manifolds, if Z is the manifold consist-
ing of one point, then for any manifold X we have | X| = Hom(Z, X).

(b) In the category of groups, for any group X we have |X| = Hom(Z, X).

(¢) In the category of rings with unit and unit-preserving homomorphisms,
if we set Z = Z[z], then for any ring X with unit we have |X| =
Hom(Z, X).

In general, for any object Z of a category 2 the association
X — Homg (Z, X)

defines a functor ¢ from the category 2" to the category of sets. As indi-
cated in the first paragraph above, however, it is not really satisfactory to
call the set (X) = Homg (Z, X) the set of points of the object X unless
this functor is faithful —that is, unless for any pair of objects X; and X5
of " a morphism

f . X1 — XQ
is determined by the map of sets
f' :Homy (Z,X1) — Homg (Z, X5).

It may not always be possible to satisfy this condition. For example, let
(Hot) be the category of C'W-complexes, where Hom (gq4) (X, Z) is the set
of homotopy classes of continuous maps from X to Z. If Z is the one-point
complex, then

Hom go1) (Z, X) = mo(X)

the set of connected components of X, and this does not give a faithful
functor. Nor is it possible to chose a better object Z. Likewise, in the
category of schemes, there is no one object Z that will serve in this capacity.

Grothendieck’s ingenious idea was to remedy this situation by consid-
ering not just one set Mor(Z, X) but all at once! That is, we associate to
each scheme X the “structured set” consisting of all the sets Mor(Z, X), to-
gether with, for each morphism f : Z — Z’, the mapping from Mor(Z’, X)
obtained by composing with f.

To put this more formally, the functor of points of a scheme X is the
“representable” functor determined by X; that is, the functor

hx : (schemes)® — (sets),

where (schemes)® and (sets) represent the category of schemes with the
arrows reversed and the category of sets, respectively; hx takes each scheme
Y to the set

hx(Y) = Mor(Y, X)
and each morphism f :Y — Z to the map of sets
hx(Z) — hx(Y)
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defined by sending an element g € hx(Z) = Mor(Z, X) to the composition
go f € Mor(Y, X). The reason for the name “representable functor” is that
we say this functor is represented by the scheme X. The set hx (Y) is called
the set of Y-valued points of X (if Y = SpecT is affine, we will often write
hx (T) instead of hx (SpecT) and call it the set of T-valued points of X).

To introduce one more layer of abstraction, note that this construction
defines a functor

h : (schemes) — Fun((schemes)®, (sets))

(where morphisms in the category of functors are natural transformations),
sending

X'—>hX

and associating to a morphism f : X — X’ the natural transformation
hx — hx that for any scheme Y sends g € hx(Y) = Mor(Y, X) to the
composition fog € hx/(Y) = Mor(Y,X").

Of course, when we want to work with schemes over a given base S, we
should take morphisms over S as well. The situation is completely analo-
gous to that above: we describe in this way a functor

X — hX
from the category of S-schemes to the category
Fun((S-schemes)®, (sets)).

The apparently abstract idea of the functor of points has its root in the
study of solutions of equations. Let X = Spec R be an affine scheme, where
R = Z[x1,x9,...]/(f1, fo,...). If T is any other ring (one should think of
T =17, Z/(p), L), Z(p), Q,, R, C, and so on), then a morphism from
SpecT' to Spec R is the same as a ring homomorphism from R to T, and
this is determined by the images a; of the z;. Of course, a set of elements
a; € T determines a morphism in this way if and only if they are solutions
to the equations f; = 0. We have shown that

hx(T) = sequences of elements ay,... € T that
X o are solutions of the equations f; =0 '

Similarly, if X is an arbitrary scheme, so that X is the union of affine
schemes X, meeting along open subsets, then a map from an affine scheme
Y to X may be described by giving a covering of Y by distinguished affine
open subsets Yy, and maps from Yy, to X, for each a, agreeing on open sets
(some of the Yy, may, of course, be empty). Thus an element of hx (Y') may
be described even in this general context as a set of solutions to systems of
equations, corresponding to some of the X,, with compatibility conditions
satisfied by the solutions on the sets where certain polynomials are non-
Zero.

Even with this interpretation, the notion of the functor of points may
seem an arid one: while we can phrase problems in this new language,
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it’s far from clear that we can solve them in it. The key to being able to
work in this setting is the fact that many apparently geometric notions
have natural extensions from the category of schemes to larger categories
of functors. Thus, for example, we can talk about an open subfunctor of
a functor, a closed subfunctor, a smooth functor, the tangent space to a
functor, and so on. These notions will be developed in Chapter VI, where
we will also give a better idea of how they are used.

In this chapter we have used the word “point” in two different ways: we
have both the points of a scheme X, and, for any scheme Y, the set of
Y -valued points of X. It is important not to let this double usage cause
confusion. The two notions are of course very different: for example, if
Y = Spec L for some finite extension L of Q, then we have a map

{Y-valued points of X} — | X|

but this map is in general neither injective or surjective: the image will be
the subset of points p € X whose residue field x(p) is a subfield of L, and the
fiber of the map over such a point p will be the set of ring homomorphisms
from x(p) to L. Another distinction is that while the set | X| of points of X
is absolute, the set of Y-valued points is relative in the sense that it may
depend on the specification of a base scheme S and the structure morphism
X — S. Finally, in case S = Spec K, the set of K-valued points of X —
that is, the subset of points p € X such that k(p) = K —is often called
the set of K-rational points of X.

Each of the two notions of “point” has some (but not all) of the properties
we might expect from the behavior of points in the category of sets. For
example, the set of Y-valued points of a product X7 x X5 is the product of
the sets of Y-valued points of X; and X5. However, it is not the case that
the set of Y-valued points of a union X = U UV is the union of the sets
of Y-valued points of U and V (for example, the identity map X — X is
an X-valued point of X not in general contained in U or V). By contrast,
exactly the opposite situation holds for the set | X| of points of a scheme
X in the ordinary sense.

We have now outlined the basic definitions in the theory of schemes. In
the next chapter we will give many examples, from which the reader may
form some idea of the “look and feel” of schemes.
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Examples

IT.1 Reduced Schemes over Algebraically Closed
Fields

We will start our series of examples with the one that the concept of scheme
is intended to generalize: the classical notion of an affine variety over an
algebraically closed field K. In our present context, this means considering
schemes of the form Spec R, where R is the coordinate ring of a variety X —
that is, a finitely generated, reduced algebra over K. (Recall that “reduced”
means nilpotent-free.) Spec R is sometimes called the scheme associated to
the variety X: such schemes are sometimes referred to just as varieties. In
later sections we will consider the ways in which schemes may differ from
this basic model.

The K-scheme associated to an affine variety over an algebraically closed
field K is an equivalent object to the variety; either one determines and
is determined by its coordinate algebra, which is the same for both. But
already in this case, classical notions such as the intersection of varieties
and the fibers of maps are given a more precise meaning in the theory of
schemes. We will see examples of this phenomenon in this and succeeding
sections.

II.1.1 Affine Spaces

We start with the scheme A% := Spec K[z1,...,z,], with K an alge-
braically closed field. This scheme is called affine n-space over K.



48 II. Examples

We will make use of a standard but nontrivial result from algebra, a form
of Hilbert’s Nullstellensatz; see Eisenbud [1995], for example.

Theorem II-1 (Nullstellensatz). Let K be any field. If m is a maximal
ideal of a polynomial ring K[x1,...,x,] (or, geometrically, p is a closed
point of any subvariety of an affine space over a field K), then

Klx1,...,zn]/m = k(p)
s a finite-dimensional vector space over K.

In our case, with K algebraically closed, this implies that x(p) = K.
Thus, writing \; for the image of z; in x(p), we see that

m:(xl—/\l,...,xn—/\n).

In this way the closed points of A correspond to n-tuples of elements of K,
as one should expect. We will sometimes refer to “the point (A1,...,\,)”
instead of “the point [(z1 — A1, ..., Zn — An)].”

To begin with dimension 1, the affine line

Aj; = Spec K [z]

looks almost exactly like its classical counterpart, the algebraic variety
also called the affine line. It contains one closed point for each value A €
K. The Zariski topology on the set of closed points is the same as the
classical Zariski topology on the variety: the open sets are the complements
of finite sets. The scheme A' differs from the variety only in that the scheme
contains one more point, called the generic point of A', corresponding to
the ideal (0).

(@) (x =) -
(0)
The closure of the point (0) is all of A}, so that the closed subsets of A}
are exactly the finite subsets of Aj — {(0)}.

The affine plane Ai( = Spec K|z,y] is also similar to its counterpart
variety, but now the additional points of the scheme are more numerous and
behave in more interesting ways. We have as before closed points, coming
from the maximal ideals (z — A, y — u), which correspond to the points
(A, ) in the ordinary plane. There are now, however, two types of nonclosed
points. To begin with, for each irreducible polynomial f(z,y) € K|z, y] we
have a point corresponding to the prime ideal (f) C K|z, y], whose closure
consists of the point itself and all the closed points (A, u) with f(A, u) = 0.
The point (f) is called the generic point of this set; more generally, any
point in a scheme is called the generic point of its closure. As compared to
the variety A%(, we have added one more point for every irreducible plane
curve. This new point lies in the closure of (the set of closed points on)
that curve, and its closure contains this set of closed points. Finally, we
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have as before a point corresponding to the zero ideal, the generic point of
A%, whose closure is all of A%.

. (f(z,y)) generic point of the curve

(y) W

o(z=A y—p)

# () generic point of the z-axis

‘ (0) generic point of A2

Since K[z,y] = K|z] ® x K|y], we have by definition
A% = At Xspeek A

Even here, though it’s clear that the fibered product is the correct notion of
product, the set of points of the fibered product is not the fibered product
of the sets of points of the factors.

The situation with the affine spaces A =Spec K|[z1, ..., z,]is a straight-
forward extension of the last case: geometrically, we can see the scheme A%
as the classical affine n-space, with one point py added for every positive-
dimensional irreducible subvariety ¥ of n-space. As above, py will lie in
the closure of the locus of closed points in ¥ and contain in its closure all
these points, as well as the generic points of the subvarieties of X.

More generally, suppose X C A% is any affine variety, with ideal I C
K[z1,...,x,] and coordinate ring R = Klz1,...,2z,]/I. We can associate
to X the affine scheme Spec R; the quotient map Klz1,...,2,] — R ex-
presses this as a subscheme of A%. This scheme is, as in the case of A’y
itself, just like the variety X except that we have added one new generic
point py for every positive-dimensional irreducible subvariety ¥ C X.

Fibers, and more generally preimages, are among the most common ways
that schemes other than varieties may arise even in the context of classical
geometry.

Exercise II-2. Consider the map of the affine line Spec K|z] to itself in-
duced by the ring homomorphism K[z] — K[z] mapping x to z2. Show
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that the scheme-theoretic fiber over the point 0 is the subscheme of the
line defined by the ideal (22).

Among all schemes, those associated to affine varieties over algebraically
closed fields may be characterized as spectra of rings R that are

finitely generated
— reduced algebras

— over a field

that is algebraically closed.

To get a sense of what more general schemes look like, and what they
are good for, we will in the remainder of this section and the next consider
what may happen if we remove these four restrictions. We will consider
primarily examples in which exactly one of the hypotheses fails, since an
understanding of these basic cases will enable one to understand the general
case; we will occasionally mention more complex examples in exercises.

11.1.2 Local Schemes

Our first collection of examples of schemes other than varieties is provided
by the spectra of local rings, called local schemes. The examples we will
consider here are spectra of rings that are reduced algebras over an alge-
braically closed field but not, in general, finitely generated. Local schemes
are for the most part technical tools in the study of other, more geomet-
ric schemes; they are often used to focus attention on the local structure
of an affine scheme. The extra points we have added to classical varieties
show up even more strikingly in the following examples, where in each case
there is only one closed point. It would, of course, be a mistake to try to
picture these schemes as geometric objects with just one point. Rather,
they should be seen as germs of varieties. The phenomenon of having only
one closed point is not some novelty invented by algebraists but is already



I1.1 Reduced Schemes over Algebraically Closed Fields 51

present if one considers such a familiar object as the germ of a point z
on a complex analytic manifold; here one pictures a “sufficiently small”
neighborhood of x, in which, for example, each curve through x can be
plainly distinguished, even though no other definite points beside = belong
to every neighborhood. We will see that the same kind of picture is valid
for the spectrum of a local ring.

Consider first the localization K[z],) of the ring K|x] at the maximal
ideal (), and let X = Spec K[z](,). The space |X| has only two points:
the closed point corresponding to the maximal ideal (z), and the open
point corresponding to (0), which contains the point (z) in its closure. The
inclusion of K[z] in K[z](,) induces a map X — A%, so that we may think
of X as a subscheme of A} (though | X| is neither open nor closed in [AL|).
The subscheme X is “local” in that it is the intersection of all the open
subsets of A}( containing the point (z); so that, for example, the regular
functions on X are exactly the rational functions on A regular at the point
(z) —that is, they are the elements of @41 (U) for some neighborhood U
of the point 0 = (z) in AJ. In these senses, X is the germ of A} at the
origin.

Next, consider the scheme X = Spec R, where R = K[z,y|(,,,) is the
localization of Klz,y] at the maximal ideal (z,y) corresponding to the
point (0,0). As in the previous example, we have a map X — A%, in terms
of which we can think of X as the intersection of all open subschemes of A%
containing the closed point (0,0). Again, X has only one closed point; but
now there are infinitely many nonclosed points, one for every irreducible
curve in the plane passing through the origin. Subschemes of X are thus
germs at (0,0) of subschemes of A% and X itself is the germ of A% at the
origin.

There are analogous constructions in A%, and more generally for any
subscheme of A’%: if X = Spec K|z,...,z,]/I C A’y is the scheme asso-
ciated to the affine variety with ideal I C Klz,...,z,] and m = (z1—a1,
..., Tp—ay) a maximal ideal corresponding to a closed point of X, we can
consider the scheme Spec K[z1,...,Zn]m/Im as a germ of a neighborhood
of [m] in X. While we can talk about germs of functions on a space at a
point in many contexts, in scheme theory the germ is again a scheme in its
own right.

For some purposes, the local schemes introduced in this way are not
local enough; the local ring of a scheme at a point still contains a lot
of information about the global structure of the scheme. For example, the
germs of a nonsingular variety X at various closed points will not in general
be isomorphic schemes!, although if X" denotes the complex analytic
variety defined by the same equations (or indeed any analytic manifold),

IThis has nothing to do with schemes but is already the case for varieties over C: for
example, it is so already for the general plane curve of degree d > 4.
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the germs of X" at any two points are isomorphic. This phenomenon
occurs essentially because the open sets used to define the germs of X are
so big. To get a more local picture within the setting of schemes, we can
look at the schemes associated to power series rings: for example, instead
of looking at the germ X = Spec K[z,y|(,,,) of a neighborhood of the
origin in A%( above, we can consider the scheme Y = Spec K[z,y]. As in
the previous case, this scheme has one closed point [(x,y)] and one generic
point [(0)] whose closure is all of Y; in addition, it has one point for every
irreducible power series Y a; ;xz'y’ in x and y. The maps

K[Z‘,y] — K[xay](w,y) — K[[J),y]]

give maps ¥ — X — A%(; we think of the Y as a “smaller” neighborhood
of the origin than X. (Note, however, that X and Y are neither closed
subschemes nor open subschemes of A%() For example, while the curve
corresponding to the prime ideal (y? — 23 — 22) is irreducible in X, because
the curve in A%( defined by this equation is, the preimage in Y of this curve
is the (nontrivial) union of two curves in Y, as long as the characteristic of

K is not 2, because 22 + 23 has the square root
uzx—l—%xQ—%xB—l—---

in the power series ring. Thus we can factorize y? — 23 — 22 as

y'—a® —a® = (y —u)(y + ),
so the scheme Spec K [z,y]/(y? — 23 — 2?) is reducible. (See the figure on
the next page.)
Of course, Y must have “more” curves than X for such things to be
possible. The following exercise amplifies this fact.

Exercise II-3. (a) With u = V22 + 23 as above, what is the image of

—u)]in Spec K [z, y]? (Hint: it’s a prime ideal containing y2—x3 —x2.
Y p Y p gy

(b) Show that the image of the point (y —>_, -, 2"/n!) of Y is the generic
point of A% .

In general, under the map ¥ — X above, the inverse image of a point
corresponding to an irreducible curve C' C A% consists of the set of analytic
branches of C' at the origin. (See Walker [1950] or Brieskorn and Knérrer
[1986] for further discussion of branches.)

Here is yet another important example of a local scheme. One problem
with the scheme Y above is that the points described in Exercise II-3(b)
are extraneous from an algebraic point of view. To avoid this, we may work
with the spectrum Z of the ring H C K[x,y] of power series that satisfy
algebraic equations over K (z,y), the field of rational functions. Called the
Henselization of X, the scheme Z sits in between Y and X in the sense
that we have a series of maps

Y - Z— X — A%,
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Spec K[z, y]/(y*—a®—a?) C
Spec K [z, y] is irreducible;

its preimage
Spec K[z, yll/(y* —a*—=?)
C Spec K[[z,y]] is not.

The usefulness of this construction is that H is the union of algebras finitely
generated over K, so that Z is the inverse limit of schemes coming from
ordinary varieties. Geometrically, Z is the germ of A% in the étale topology,
a concept we will not pursue here; see Artin [1971] for further information.

Exercise II-4. In the case K = C, how does the spectrum of the ring of
convergent power series fit into this picture?

II.2 Reduced Schemes over Non-Algebraically
Closed Fields

We now consider what happens when we look at the spectrum of a finitely
generated, reduced algebra over a field K that is not algebraically closed.
The interest in such structures came originally from number theory, and,
of course, it predates scheme theory very substantially! For example, the
study of rational quadratic forms, an old subject in number theory, can
be thought of as the study of varieties over the rational numbers defined
by a quadratic equation. Cubic forms in three variables over the rationals
still make up a very active number-theoretic research topic, now mostly
pursued through the theory of elliptic curves over Q. The basic objects
themselves are varieties over Q (or schemes over Z, a situation we’ll return
to later), but in the course of handling them, number theorists frequently
make use of all the base rings shown in the following diagram, along with
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many intermediate fields and rings:

Ly — Q, Cp
ZLp)
Z Q R C

F, — F,

The theory of schemes provides a particularly flexible and convenient frame-
work for handling these many changes of base. Also, a nice variety reduced
mod p may suddenly become something nonreduced — something that re-
quires the theory of schemes more fully (see for example Section 11.4.4).

To start with the simplest case, consider Ap = SpecR[z]. Using the
Nullstellensatz we see that there are two kinds of maximal ideals in Rz]:
those whose residue class field is R, which have the form (z — A) for A € R,
and those whose residue class field is C, which have the form (22 + pz +v),
for p and v € R with pu? — 4v < 0. The latter type of ideals may also be
written in the form ((x — z)(x — 2)), for z € C not real. A closed point
of A]%Q thus corresponds either to a real number or to a conjugate pair of
nonreal complex numbers. Finally, Aﬂlg has again a unique nonclosed point
corresponding to the prime (0), whose closure is all of Af.

Next, we turn to the affine plane over R, AfR = SpecR[z,y], and consider
a closed point given by a maximal ideal m of R[z,y]. Again by the Null-
stellensatz the residue class field of m is either R or C, and the composite
map

R — Rz,y]/m = (R or C)

is either the identity or the inclusion of R in C. Taking A and p to be the
images of x and y in C, we see that in the former case m = (x— A\, y—p)
corresponds to the ordinary point (A, ) in R?. But in the latter case m
corresponds to both (), 1) and (), fi); put differently, the map R[z,y] — C
sending x,y to A, 1t has the same kernel as the one sending x,y to A, fi since
they differ by the automorphism of C over R.

It is not difficult to give generators for the maximal ideals described
above. If Rz,y]/m = R, then clearly m = (z— A\, y—pu). In the other
case, suppose first that A is real. Then p must satisfy an irreducible real
quadratic polynomial equation y?+4ay+b = 0, so m contains the ideal
(x—X, y*+ay+0b). But this last ideal is immediately seen to be prime (for
example, by factoring out z— \ first), so m = (z—\, y?>+ay+b). Of course,
a similar result holds if the image of y is real.
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Finally, suppose that p and A are both nonreal. Then m contains the
irreducible polynomials f(z) and g(y) satisfied by p and A, but since g(y)
factors as

9() = (y—w(y—n)

in R[z]/(f(x)) = C the ideal (f(x),g(y)) is not prime! The picture here,
over the complex numbers, is as follows:

/ \ Im(p) z—Im(A) y = Im(uA)

(A5 ) (A )

~—— | A line whose equation

has real coefficients

(A ) (A )

The loci defined by f(z) = 0 and g(y) = 0 are unions of two vertical and
two horizontal lines, respectively, and intersect in the four points (A, i),
(A 1), (\, ), and (A, ). But the polynomial

h(z,y) = Tm(p) & — Im(A) y — Im(pA)

defining the line joining the two points (\, 1) and (), /i) has real coefficients.
The ideal

(f (@), Mz, y) = (9(y), h(z,y)) C Rz, y]

thus strictly contains the ideal (f(z),g(y)); and this ideal is the maximal
ideal m we seek, as one checks by working in

Rlz] =2 Rz, y]/(h) = R[y]

(for these isomorphisms, note that (fi—u) and (A—\) are both nonzero).
In sum, then, the closed points of A% correspond either to points (X, )
of AZ with X\ and p real, or to (unordered) pairs of points (z,w) and
(z,w) € A% with at least one of z, w not real. To put it another way, closed
points of AH% correspond to orbits of the action of complex conjugation on
the points of A%. (Note, in particular, that the closed points of Aﬁ are not
ordered pairs of closed points of Ag!) Observe also that the residue field is



56 II. Examples

R at the points of A]i corresponding to points (A, ) with A, u real, while
at points of ADQQ corresponding to pairs of complex conjugate points of A(QC
the residue field is C.

Exercise II-5. Show that the nonclosed points of A2 are all either
(a) [(0)], whose closure is all of A%, or

(b) the point [(f)] of A% corresponding to an irreducible polynomial f €
R[z,y].

Those of type (b) may or may not remain irreducible in C[z,y], so that
a nonclosed point (f) in A]%% will correspond either to a single nonclosed
point in A(QC (if f remains irreducible in C[z,y]) or to two nonclosed points
in AZ (if f may be written as a product gg with g € C[z,y]). The closed
points in the closure of such a nonclosed point may be either of both types
above or only of the second. Give examples with all these possibilities.

The situation in general follows the lines of these examples: if K is any
field, K its algebraic closure, and G' = Gal(K /K) the corresponding Galois
group, the points of A correspond to orbits of the action of G on the points
of A% (see, for example, Nagata [1962, Theorem 10.3]). The closed points
correspond to orbits of closed points, the orbits being finite. The residue
field at the point p corresponding to such an orbit, moreover, is isomorphic
to the fixed field of the action on K of the subgroup G, fixing a point of that
orbit. For example, the closed points of AQ correspond to algebraic numbers
modulo conjugacy; and for a prime number g € Z the closed points of A]F
correspond to the orbits of the Frobenius automorphism of the algebraic
closure of Fy = Z/(q) (namely, 0 and the orbits of the map a — a? on the
multiplicative group K*, which may be described as the inductive limit of
all cyclic groups of order prime to g or as the g-torsion-free part of Q/Z).

Exercise II-6. An inclusion of fields K < L induces a map A} — A'x.
Find the images in A(Q@ of the following points of A% under this map.

(8) (22, y—V3)

(c) (z—C¢, y—C¢1), where ( is a p-th root of unity, with p prime

(d) (VZo—3y)

(¢) (V2z—v3y—1)

Where feasible, draw pictures.

Exercise II-7. We say that a subscheme X C A% is absolutely irreducible
or geometrically irreducible if the inverse image of X in A'; is irreducible.
(More generally, we say any K-scheme X is absolutely irreducible if the
fiber product X Xgpec x Spec K is irreducible.) Classify the following sub-

schemes of Aé = SpecQ|[z, y] as reducible, irreducible but not absolutely
irreducible, or absolutely irreducible.
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(a) V(®-y?)

(b) V(z?+y?)

(c) V(@*+y*—1)

(d) V(z+y, 7y—2)
)

(e) V(z2—2y2, 2®+3y3)

Finally, here is an example that combines the notions of local schemes and
schemes over non-algebraically closed fields. Classically, a plane curve X C
A?C was said to have a node at the origin if in some analytic neighborhood
of the origin the locus of complex points of Y consisted of two smooth arcs
intersecting transversely at (0,0). In the language of schemes, this is the
same as saying that the fiber product of X with the formal neighborhood
Spec C[z,y] — Spec C[z,y] = AZ is isomorphic to Spec C[u, v]/(uv).

Consider now a curve in the real plane X C A2. We say in this case that
X has a node at the origin if the corresponding complex curve

X Xsgpecr SpecC C A%
does. In this case, the formal neighborhood

X XSpecR[z,y] SpeCR[[x, y]]

may have either one of two nonisomorphic forms: it may be isomorphic
to Spec R[u, v]/(uv) or to Spec R[u,v]/(u? + v?). The former is the case
if the locus of real points of X (that is, the locus of points with residue
field R) looks in an analytic neighborhood of (0,0) like two smooth real
arcs intersecting transversely at (0,0); classically, such a point was called a
crunode of X. The latter is the case if the origin is isolated as a real point
of X; this was called an acnode in the past.

Exercise II-8. Verify the assertions made above: specifically, show that if
X is a curve in A% with a node at the origin, then the formal neighborhood
X XgpecCle,y) Spec Clz, y] is isomorphic to Spec Clu,v]/(uv); and that if
X C AH% is a real plane curve with a node at the origin, then the formal
neighborhood X Xgpecr(z,y) SPec Rz, y] has one of the two forms above.
Show that there are infinitely many curves X C A?@ with nodes at the origin
having nonisomorphic formal neighborhoods. (As in the real case, we say
that X C Aé has a node at the origin if the complex curve X Xgpecq Spec C
does.)

II.3 Nonreduced Schemes

We now leave the realm of objects that could be treated in the theory of
varieties to look at some examples of affine schemes Spec R where R is a
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finitely generated algebra over an algebraically closed field K but may have
nilpotents. The phenomena here are much less familiar, and we will spend
rather more effort on them.

Schemes of this type arise already in quite simple geometric contexts: for
example, the multiple points treated below occur already as intersections
of two ordinary varieties and as “degenerate” fibers of maps, as in Exercise
I1-2. One of the most important applications of nonreduced schemes is to
the theory of families of varieties: deformation theory and moduli theory.
We will explain how to take limits of one-parameter families of varieties,
and introduce the key notion of flatness. Finally, we will give some examples
of nonreduced schemes that are interesting objects in themselves.

To start with the easiest cases, we will focus first on subschemes of affine
space A’y supported at the origin— equivalently, given by ideals I whose
zero locus V' (I) consists, as a set, just of (0,...,0). (Recall that the support
of a scheme is the underlying topological space.)

11.3.1 Double Points

Example II-9. The simplest such scheme is the subscheme X of A}( de-
fined by the ideal (z%)—that is, the scheme Spec K|[z]/(z?), viewed as
a subscheme of A} via the map induced by the quotient map K[z] —
K|x]/(2?). This scheme has only one point, corresponding to the ideal (z),
but it differs, both as a subscheme of A}( and as an abstract scheme, from
the scheme Spec K[z]/(x) = Spec K. As an abstract scheme, we can see
the difference in that there exist regular functions (such as ) on X that
are not equal to zero but that have value 0 at the one point of X; of course,
any such function will have square 0. As a subscheme of A}, the difference
is that a function f € K[z] on A} vanishes on X if and only if both f and
its first derivative vanish at 0. The data of a function on X thus consists of
the values at 0 of both a function on A, and its first derivative. Possibly
for this reason, X is sometimes called the first-order neighborhood of 0 in
A

More generally, for any n the ideal (z™) defines a subscheme X C A}(
with coordinate ring K[z]/(z"); a function f(x) on A} vanishes on X if
and only if the value of f at 0 vanishes together with the values of the first
n — 1 derivatives of f.

Example II-10 (double points). The next step in understanding double
points is to consider subschemes of Ai = Spec K[z, y] supported at the
origin and isomorphic to the scheme X of Example I1-9. Let Y C A% be
such a subscheme, R = Oy (Y) = K[g]/(¢?) its coordinate ring, and

¢: Klz,y] - R

the surjection defining the inclusion of Y in Ai. Since the inverse image of
the unique maximal ideal m of R is the ideal (z,y) C K|z, y] corresponding



I1.3 Nonreduced Schemes 59

to the origin, and since m?> = 0 in R, the map ¢ vanishes on (z,y)? =
(22 xy, y?) and so factors through a map

¢ Klz,y]/ (2% 2y, y*) — R.

Equivalently, Y must be contained in the subscheme

Spec K [z, y]/ (2% zy, y°).

But the ring K|[z,y]/(x? zy, y?) is a three-dimensional vector space over
K, whereas R is only two-dimensional. It follows that the kernel of ¢ will
contain a nonzero homogeneous linear form ax + By, for some o, € K.
Write

Xap = Spec K[z,4)/(a” zy, y°, ax+py) — Al
The subscheme X, g can be characterized either as

(i) the subscheme of A% associated to the ideal of functions f € K|z,v]
that vanish at the origin and have partial derivatives satisfying

or _or _
or oy
there (since this implies that f = ¢(ax + Sy) + higher-order terms); or

0

(ii) the image of the subscheme X C A of Example II-9 under the inclu-
sion of A} in A% given by z — (fz, —az).

In the classical language, the subscheme X, g was said to consist of the
point (0,0) and an “infinitely near point” in the direction specified by the
line defined by azx + By = 0. We draw X, g as the small arrow in this
traditional picture:

ar+ Py =0

This is intended to represent a point with a distinguished one-dimensional
subspace of the tangent space to the plane at that point (there is actually
no distinguished tangent vector, despite the impression given by the arrow).

How do schemes such as X, g arise in practice? One way is as intersec-
tions of curves. For example, when we want to work with the intersection of
aline L and a conic C' that happen to be tangent, it is clearly unsatisfactory
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to take their intersection in the purely set-theoretic sense; a line and a conic
should meet twice. Nor is it completely satisfactory to describe CNL as their
point of intersection “with multiplicity two”: for example, the intersection
should determine L, as it does in the non-
tangent case. The satisfactory definition
is that C'N L is the subscheme of A% de-
fined by the sum of the ideals I and I, so
that, for example, the line y = 0 and the
parabola y = 22 will intersect in the sub-
scheme X¢ 1 = Spec K[z,y]/(z?,y). This
does indeed determine L, as the unique
line in the plane containing Xy ;.

Another important way in which subschemes such as X, g arise is as
limits of reduced schemes. For example, consider a pair of distinct closed
points (0,0) and (a,b) in the plane. Their union is the closed subscheme

X = {(0,0), (a,b)} = Spec S € A,
where
S = K[l’,y]/((fﬂ,y) n (:Efa, Yy — b))
= K[z,y]/(z* — az, zy — bz, zy — ay, y* — by).
By the Chinese Remainder Theorem, S = K x K so in particular, S is a
K-algebra of (vector space) dimension 2 over K.
Now suppose the point (a, b) moves toward the point (0,0) along a curve

(a(t),b(t)), with (a(0),b(0)) = (0,0), where a and b are polynomials in ¢;
we write

a(t) = at +agt?> + -, b(t) = byt +bot* 4 ---.

What should be the limit of X; = {(0,0), (a(t),b(t))} as t — 07 Using
schemes, we can afford the luxury of the idea that it will continue to be two
points, in a suitable sense: it will be an affine scheme X whose coordinate
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ring is again a two-dimensional vector space over K. We may define X by
taking its ideal to be the limit as ¢t — 0 of the ideal

Iy = (z,y) N (z —al(t), y — b(t)).

Of course, this only shifts the burden to describing what is the limit of a
family of ideals! But this is easy: in the current case, for example, we can
take their limit as codimension-2 subspaces of K{z,y], viewed as a vector
space over K. That this limit is again an ideal follows from the continuity
of multiplication. A more delicate description is necessary in the general
case, where the ideals are of infinite codimension; we will discuss this below
when we come to limits of families of one-dimensional schemes and again
in Section II1.3.2 in the projective case.

To see what this means in practice, observe first that the generators
2?2 —a(t)x, vy — b(t)z, 2y — a(t)y, and y? — b(t)y of the ideal I; clearly
have as their limit when ¢t — 0 the polynomials 22, zy, zy, and y?, so these
polynomials will be in I. In addition, observe that I; contains the linear
form

a(t)y —b(t)x = (zy—b(t)z) — (xy—a(t)y)
and hence, for ¢ # 0, also the polynomial

a(t)y — b(t)x

P :aly—b1x+t()

The ideal I thus contains the limit a,y—b;x of this polynomial as well; so we
have I D (22 xy, y? a1y — bix). But the right-hand side of this expression
already has codimension 2 as a vector subspace in the polynomial ring
K[z,y]. Thus I = (22 zy, y% a1y — biz), and correspondingly

lim(Xy) = Xap with o= b1, 8= —ar.

From this we see that X, as a
subscheme of A%, “remembers” the
direction of approach of (a(t), b(t));
we think of it as consisting of the
origin together with a tangent di-
rection, along the line with equa-
tion a1y — byx = 0. This line is the
limit of the lines L; joining (0, 0) to
(a(t),b(t)); that is, it is the tangent
line to the curve parametrized by
(a(t),b(t)) at the origin, as shown
on the right.

We will see how to generalize this notion of limit in Section I1.3.4.
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11.3.2  Multiple Points

The subschemes X, g of the preceding examples are called “double points”
in the plane, the double referring to the vector space dimension of their
coordinate rings

R = K[z,y]/(z* zy, y*, ax+Py) = K[t]/ (%)

as K-modules. In general, if X = Spec R is an affine scheme and R is a
finite-dimensional vector space over a field K, we define the degree of X
relative to K, denoted degy (X) or simply deg(X), to be the dimension of
R as a K-vector space. (Where there is unlikely to be ambiguity about the
field K, we may suppress it in both the language and the notation.) In this
situation we call Spec R a finite K-scheme.

We next consider examples having degree 3 or more. A number of things
are different here. To begin with, all double points over an algebraically
closed field K —that is, schemes of the form Spec R, where R is a local
K-algebra of vector space dimension 2 — are isomorphic, since such an R
must be isomorphic to K[z]/(x?). (Proof: Let m be the maximal ideal of
R. Then R/m = K, since K has no finite-dimensional extension. Since R
is two-dimensional, m is one-dimensional. Also m? = 0— for example, by
Nakayama’s Lemma— so the obvious map from K[z] onto R has x? in the
kernel and identifies R with K[z]/(x?) as required.) By contrast, this is not
true of triple points: the schemes

Spec K[z]/(z®) and Spec K[z, y]/(z? zy, y*)

are readily seen to be nonisomorphic. However, any triple point is isomor-
phic to either of these, a fact whose proof we leave as the following exercise.

Exercise II-11. Suppose that K is algebraically closed, and let Z =
Spec K[z1,...,2,]/I C A% be any subscheme of dimension 0 and de-
gree 3, supported at the origin. Show that Z is isomorphic either to X =
Spec K [x]/(x?) or to

Y = Spec K[z, y]/ (2 zy, y°),
and X,Y are not isomorphic to each other.

In particular, any ring K|x1,...,2,]/I of vector space dimension 3 over
K can be generated over K by two linear forms in the x;. In geometric
terms, this says that any triple point in A’ is planar —that is, lies in a
linear subspace A% C A'%. Inside A%( both types of triple points can be
realized as limits of triples of distinct points. The ones isomorphic to X
above may be obtained from three points coming together in the plane along
a nonsingular curve, while those isomorphic to Y above arise when two
points approach a third from different directions. The following exercises
contain examples of these phenomena.
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Exercise I1-12. (i) Show that the subscheme of A% given by the ideal
(y—a? wy) arises as the limit of three points on the conic curve y = 2
and is isomorphic to X above, but is not contained in any line in A%.

(i) (i)
(ii) Show that subschemes of A% isomorphic to Y above arise when two
points approach a third from different directions.

Exercise II-13. (For those familiar with the Grassmannian.) The exam-
ples above may lead one to expect that the schemes isomorphic to X are
limits of those isomorphic to Y. In fact, just the opposite is the case, in the
following sense. Let JZ be the set of finite subschemes of degree 3 of Af(
supported at the origin; 5 naturally parametrized by a closed subscheme
of the Grassmannian of codimension-3 subspaces of the six-dimensional
vector space K[z,y]/(z,y)®. Show that 5 is a surface, with one point cor-
responding to the unique subscheme Spec K [z, y]/(x? xy, y?) isomorphic to
Y and the rest corresponding to subschemes isomorphic to X. Show that
the scheme J# is isomorphic to a two-dimensional cubic cone in IP’%, and
that the vertex is the one point corresponding to Y.

Exercise 1I-14. Let C be the subscheme of A% given by the ideal
J=(zo — a2 x5 —23,...).

A closed point in C is of the form f(t) = (t,t3¢3 ..., t"), for t € K;
that is, it has ideal (x1—t, zo—t2,...). Consider for ¢ # 0 the three-point
subscheme

X, = {£(0), (1), f(20)} < C.
(a) Show that the limit scheme as ¢t — 0 is
Xo =Spec K[x1,...,x,]/(x2 — az%, XT1T2, T3, Ty « -, Tn)
and is isomorphic to the triple point Spec K[x]/(z3) above.

(b) Show, however, that X is not contained in the tangent line to C at
the origin. Rather, the smallest linear subspace of A’; in which X lies
is the osculating 2-plane

$3:$4:"':$n:0
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to C (recall that this is by definition the limit of the planes spanned by
the tangent line and another point on C near the origin as the point
approaches the origin), while the tangent line to C'is the smallest linear
subspace of A% containing the subscheme defined by the square of the
maximal ideal in the coordinate ring of Xy. Thus, in this sense, Xy
“remembers” both the tangent line and the osculating 2-plane to C.

Exercise II-15. Consider for ¢t # 0 the subschemes
X: ={(0,0), (t,0), (0, )} € A%,

each consisting of three distinct points in Ai.

(a) Show that the limit scheme as ¢t — 0 is
Xo = Spec Kz, y]/ (2" zy, y*).

(b) Show that the restriction of a function f € K[z,y] on A% to X, de-
termines and is determined by the values at the origin of f and its
first derivatives in every direction; thus we think of it as a first-order
infinitesimal neighborhood of the point (0, 0).

(¢) Show that X is contained in the union of any two distinct lines through
(0,0).

(d) Show that Xj is not contained in any nonsingular curve and thus, in
particular, is not the scheme-theoretic intersection of any two nonsin-
gular curves in A%.

As we said, both types of triple point are contained in planes inside
any affine space in which they are embedded. But the quadruple point
Spec K[z, y, 2]/(x,y, 2)? is not, since its maximal ideal cannot be gener-
ated by two elements. Other new phenomena occur for spatial multiple
points — those not contained in the plane— and multiple points in higher-
dimensional spaces. For example, not every point of degree 21 in 4-space
arises as a limit of sets of 21 distinct points, as the following exercise shows.
(See also Iarrobino [1985].)

Exercise II-16. Consider zero-dimensional subschemes I' C A}ﬂ of degree
21 such that

V(m®) c T c V(m?*),

where m is the maximal ideal of the origin in A%. Show that there is an
84-dimensional family of such subschemes, and conclude that a general one
is not a limit of a reduced scheme.

Exercise II-17. Classify up to isomorphism subschemes of Aﬁ( of dimen-
sion 0 and degrees 4 and 5 with support at the origin. Which are isomorphic
as schemes over Spec K7
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Exercise II-18. A scheme Spec R supported at a point is called curvilin-
ear if the maximal ideal of the (necessarily local) ring R is generated by one
element; or, equivalently, if its Zariski tangent space has dimension zero or
one. (The name comes from the fact that these are exactly the schemes that
can be contained in a nonsingular curve.) Show that any two subschemes
of A%( having degree 2 and supported at a point can be transformed into
one another by a linear transformation of the plane, but that this is not
possible for curvilinear schemes of length 3. (Note, however, that any two
curvilinear subschemes of A% of the same degree can be carried into one
another by an automorphism of Ai()

Exercise II-19. (For those with some familiarity with curves.) There are
infinitely many isomorphism types of degree-7 subschemes supported at
the origin in 3-space and infinitely many types of degree-8 subschemes
supported at the origin in the plane.

As might be expected, the behavior of nonreduced schemes over non-
algebraically closed fields is more complex. The following exercise gives an
example.

Exercise II-20. Classify all schemes of degree 2 and 3 over R supported
at the origin in A]QR. In particular, show that while any such scheme X whose
complexification X Xgpecr Spec C is isomorphic to Spec C[z]/(x?) is itself
isomorphic to Spec R[z]/(z?), there are exactly two nonisomorphic schemes
X whose complexification is isomorphic to Spec C|xz,y]/(z% zy, y?).

Degree and Multiplicity. Recall that on page 62 we defined the degree
of a finite affine K-scheme X = Spec R, where R is a finite-dimensional
vector space over some field K, as the dimension of R over K. When K
is algebraically closed, the degree of such a scheme X measures, in some
sense, its nonreducedness. As the last exercise shows, however, this is not
true in general: Spec C is reduced, but has degree 2 as a scheme over R.

There is an alternative concept, called the multiplicity, which measures
the nonreducedness of X. Unlike the degree, which is a relative notion
dependent on the specification of a base field K C R, the multiplicity is
an invariant of X alone, and it is defined in a more general situation—
we will define it here for any local ring R that has Krull dimension zero
(equivalently, any local Artinian ring).

So let R be any zero-dimensional local ring, with maximal ideal m. It is
possible to choose ideals of R, say

Rom=LD>L>---DL_1DL=0

such that each successive quotient I; /Ij+1 is isomorphic to R/m as an
R-module. (For example, we could start with the coarser filtration

Rom>om?>---D0



66 II. Examples

and refine it by choosing arbitrary subspaces of the R/m-vector spaces
m’/m/*1) Though such a filtration is not unique, the length [ is indepen-
dent of the filtration chosen; we define the multiplicity or length of the ring
R and of the zero-dimensional scheme X to be the number [ (see for ex-
ample Eisenbud [1995, Section 2.4]). Notice that in the original situation,
when R is an algebra over a field K, finite-dimensional as a vector space
over K, the residue field R/m = « is a finite extension of K and we have
the relation
degp (X) = [k : K] mult(X).

For any zero-dimensional scheme X and point p € X we define the
multiplicity of X at p, denoted mult,(X), to be the multiplicity of the
local ring Ox p; if X is a finite K-scheme, the degree of X relative to K is
given by

degy (X) = Z [k(p) : K] mult,(X).
pEX

In Chapter IIT we will see how the notions of degree and multiplicity may
each be extended to positive-dimensional schemes.

11.3.8  Embedded Points

We now consider some examples of nonreduced schemes of higher dimen-
sion; for simplicity we will restrict ourselves to the case where the under-
lying reduced scheme is a line. Even so, the variety of possible behaviors
increases enormously; for example, we can have schemes that look like
reduced schemes except at a point, or schemes that are everywhere nonre-
duced. In this subsection, we consider the former type. By way of termi-
nology, we will say that a scheme X = Spec K[z ...,z,|/I C A% has an
embedded component if for some open subset U C A% meeting X in a dense
subset of X the closure of X NU (as defined in Section 1.2.1 above) does
not equal X; or if, equivalently, the primary decomposition of the ideal I
contains embedded primes (see the discussion of primary decomposition
that follows). If the embedded prime is maximal —equivalently, if U may
be taken to be the complement of a point—we talk about an embedded
point; since the schemes X we will discuss below are all one-dimensional,
this is all we will see.

The simplest example of a nonreduced scheme that is reduced except at
one point is X = Spec K[z, y]/(y% zy) C A%. The ideal I = (32 zy) C
K[xz,y] is the ideal of functions on the plane vanishing along the line y = 0
and in addition vanishing to order 2 at the point (0,0); in algebraic terms,
this means that (y2 zy) = (y) N (x,y)?. We can thus think of the scheme
X as the line y = 0 with the proviso that a function f on X is defined by
its restriction f(z,0) to the line y = 0 together with the specification of its
normal derivative at the point (0,0) —that is, together with the number

0f/0y(0,0).
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It is convenient to realize X as the union of the line defined by y = 0
with a nonreduced point — for example, the “first-order neighborhood of
the origin” defined by the ideal (22, zy, y?).

Such primary decompositions exist for any scheme: we briefly review
the background from algebra. For more details see, for example, Eisenbud
[1995; Atiyah and Macdonald [1969], or, for perhaps the gentlest treatment
of all, Northcott [1953].

Primary Decomposition. Given any ideal I in a Noetherian ring R, we
define the associated prime ideals of I to be the prime ideals p such that p
is the annihilator of some element of R/I. These primes make up a finite
set.

An ideal q C p is called primary to p if p is the radical of q (the set of
elements having a power in q) and for any elements f,g in R with fg € q
but f & p we have g € q; equivalently, q is p-primary if p is its radical and
the localization map R/q — R,/qR, is a monomorphism.

Any ideal I may be expressed as the intersection of primary ideals. Since
the intersection of ideals primary to a given prime ideal is again primary
to that prime, I can even be expressed as an intersection of ideals that are
primary to distinct prime ideals. If this is done in such a way that none of
the primary ideals can be left out, the expression is called a primary decom-
position of I. The primary ideals involved are called primary components
of I

The associated primes of I are exactly the radicals of the primary com-
ponents. The primary component of I corresponding to a given associated
prime is not uniquely determined by I; it is, however, so determined if the
corresponding prime is minimal among the associated primes. Such primary
components are called isolated components.

Example II-21. Taking I = (y2, zy) as above, the decomposition

I=(y)N(z,y)”

already given expresses I as an intersection of primary ideals (the first is
prime, the second is primary to (z,y)).

Since neither (y) nor (z,y)? can be omitted from this expression, it is a
primary decomposition and the associated schemes of X (as defined below)
are precisely the line X;eq and the reduced point at the origin. The primary
component associated to (x,y) in the decomposition is not unique; it could
have been taken to be (z,y?), or (x+y, %), or indeed any of an infinite
number of other such ideals, as well as their intersection (z2 zy, y?), or
for that matter the ideal (2" xy, y?) for any n > 2. Of course, the primary
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component (y) corresponding to (y) is unique, because Xeq is not contained
in any other associated scheme.

Despite this nonuniqueness, there is a well-defined length for the primary
component corresponding to a given associated prime p, which may be
computed, without choosing a primary decomposition, as the length of the
largest ideal of finite length in the ring Ry, /I R,,. Here the length of a module
M is the maximal length [ of a chain

M;MlgMgg---ng,lng:O
of submodules of M.

Exercise II-22. The length of the primary component of (zy,y?) at the
origin is 1.

It is easy to translate these matters into the geometry of schemes: any
affine scheme X = Spec R, where R is Noetherian, is the union of “pri-
mary” closed subschemes, called primary components, where a primary
affine scheme is an affine scheme Y such that Yieq is irreducible and such
that, if f, g are functions on Y,

fg vanishes on'Y but } . 4 vanishes on Y.

f does not vanish on Yieq
In such a primary decomposition of X, the components that are set-theore-
tically maximal — called isolated components — are unique. The others —
called embedded components, because their supports are contained in larger
components — are not unique. Nonetheless, the decomposition does have at
least two nice uniqueness properties:

(1) The set of reduced subschemes associated to primary components in
a minimal primary decomposition is unique; this is called the set of
associated schemes to X.

(2) The “length” of the primary component associated to each of the asso-
ciated schemes of X, called the multiplicity of that associated scheme
in X, is unique.

We may use our example X = Spec K[z,y]/(y? zy) to illustrate these
notions: we have already observed that X is the union of the line

Xred = Spec K[I? y]/(y)

and the multiple point
Y := Spec K [z, y]/(a? xy, y°)

and we have seen that this gives a primary decomposition, the multiplicity
of the embedded subscheme at the origin being 1.

As we observed, we can write X in many different ways as the union
of a line and a point: for example, for any o # 0, we have X =Y U Z,
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where Z = X,eq = Spec K[z, y]/(y) is the line and Y is, in the notation of
Section I1.3.1, the subscheme X ,:

Y = Spec K[z, y]/(2° zy, y* x+oy).

Choosing two such subschemes Y, Y’ gives an example of closed subschemes
Y,Y’ and Z in A% such that

YUZ=Y'UZ and YNZ=Y'NZ but Y #Y'

In the example above, X can be described as the unique subscheme of Af(
consisting of the (reduced) z-axis plus an embedded point of multiplicity 1
at the origin. But embedded points can carry geometric information, too.

Exercise 11-23. Choose a linear embedding of A% in A%, let P be the
image of A%, and let X' be the image of X. Show that X’ determines P
as the unique plane in A‘;( containing X'.

It is also interesting to consider subschemes of A% and A% supported
on a union of two given lines, with an embedded point of multiplicity 1 at
the intersection of the two lines. In the plane, if we take the two lines to
be the coordinate axes, such a scheme may be given as

X = Spec K[z, y]/(2%y, zy?).

Geometrically, this may be viewed as the union of the two lines defined by
xy = 0 with the point Spec K[z, y]/(z3 2%y, xy? y3). In 3-space, if we take
the lines to be (x = z = 0) and (y = z = 0), we can get such a scheme
either as

Yl = SpecK[x,y, Z]/(Zanyvny)

or as

Y2 = SpeCK[x,y,z]/(zQ,xz,yz,:cy).

Y; is the image of the scheme X above under the embedding of A% into
A‘;( as the plane z = 0, whereas Y5 is the union of the two lines with the
subscheme of A% defined by the square of the maximal ideal of the origin
in A%

Exercise 1I-24. (a) Show that Y; 2 Y5.

(b) Show that Y7 2 X is, up to isomorphism, the unique example contained
in a plane of two lines meeting in a point and having an embedded point
of multiplicity 1 at that intersection point.

(c) Show that Y3 is, up to isomorphism, the unique example contained in
3-space but not in any plane of two lines meeting in a point and having
an embedded point of multiplicity 1 at that intersection point.

One justification for the idea that the multiplicity of the embedded point
at the origin in our scheme X = Spec K[z, y]/(zy,y?) is 1 is that X is the
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limit as t — 0 of the family of subschemes
Xred UYy,
where Y; is the scheme consisting of one reduced point
Spec K[z, y]/(z,y—t) C A% .
This is plausible since the ideal

(z,y—1t) N (y) = (zy, y*—ty)

of Xyea UY; naturally seems to approach (zy,y?) at t — 0. However, the
notion of limit that we introduced earlier is not quite strong enough to deal
with this example, since the ideal (x, y—1) N (y) of X eq UY; is not of finite
codimension. In the next section we will rectify this, describing the general
context for taking limits of schemes.

11.3.4 Flat Families of Schemes

The notion of a family of schemes is extremely general: we define a family of
schemes to be simply a morphism 7 : X — B of schemes! The individual
schemes in the family are the fibers of m over points of B. This notion
includes all others that one can think of, such as a scheme defined by
“equations with parameters”, B being the space on which the parameters
vary.

However, the notion of a family as an arbitrary morphism 7 : X — B is
so general as to be virtually useless, because the fibers of the family may
have nothing in common. For example, given such a family and a closed
point b € B, one could make a new family by replacing X by the disjoint
union of X —7~'b and some other scheme Y, sending all of Y to b. Thus we
must add some condition if we wish to have families of schemes that vary
continuously, in some reasonable sense. What “reasonable” should mean
is not obvious. It seems natural at least to ask that it include the mother
of all continuously varying families, the family of projective plane curves
of a given degree (see Section III.2.8). Other examples are the families
of schemes defined by families of ideals of constant finite codimension in
a polynomial ring, as we considered in the context of limits of multiple
points.

In many geometric theories one gets the right notion of a continuously
varying family by demanding some local triviality of the family; that is,
locally, in some suitable sense, the family should look like the projection of
a direct product to one factor. This is wrong for us on two counts. First,
if we do this naively for schemes, interpreting locally as meaning locally
in the Zariski topology, we get a notion that is far too restrictive to be of
much use. A more sophisticated approach would be to demand this local
triviality analytically; that is, to demand that if x € X and b = = (x),
then the completion of the local ring 0x , should look like a power series
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ring over the completion of the local ring &'p ;. This notion is quite useful
(it is called smoothness), but it excludes, for example, the family of plane
curves of a given degree, since a smooth family can’t have singular fibers.
Smoothness also excludes the families treated in the previous section, in
which a disjoint union of distinct points approaches a multiple point; at the
multiple point, the criterion is not met. Thus we must look for something
more general.

The best current candidate for such a general notion is that of flatness.
In order to motivate this definition, we consider first the more intuitive
notion of limits.

Limits. The starting point for understanding the geometric content of
flatness is the notion of the limit of a one-parameter family of schemes.

To set this up, we start with something fairly concrete: A family of
closed subschemes of a given scheme A over a base B is a closed subscheme
X C B x A, together with the restriction to X of the projection map
Bx A — B; the fibers of X over b € B are then naturally closed subschemes
of the fibers Ay of B x A over B.

Let B be a nonsingular, one-dimensional scheme—typically, we think
of Spec R, where R = K[t], K[t]; or K[t], but any Dedekind domain
(including Z or Zy)) will do. Let 0 € B be any closed point, and write
B* = B\ {0} for the complement of 0 in B. Let A’z and A%. be as usual
affine n-space over B and B* respectively.

We consider a closed subscheme 27* C A%. = Aj x B*, which we
view as a family of closed affine schemes parametrized by B* — that is, for
any point b € B* we let X, = m~1(b) be the fiber of the projection map
7w &'« — A'g. — B*, and consider these schemes X} as the members of
a family. (In case B = Spec R with R = K[t] or K[t]; we can think of
Z* as a “family of subschemes of A% varying with parameter ¢”.) We ask
the basic question: what is the limit of the schemes X, as b approaches the
point 0?7

%'*

B\
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The answer —the only possible answer —is simple enough: since the
limit of the schemes X, in any reasonable sense must fit into a family
with them, we take 2~ C A to be the closure 27 * of 27* in A, and take
the limit limp_.o X of the schemes X} to be the fiber X of 2" over the
point 0 € B.

To make this more concrete, if B = Spec R is affine and t € R a generator
of the maximal ideal m C R corresponding to the point 0 € B (so that B* =
Spec R[t™Y]), and I(2*) C R[t™![x1,...,x,] is the ideal of 27* C A'L.,
then the ideal of the subscheme 2~ C A% is the intersection

I(Z)=I1(Z*)N Rlay, ..., zn].

To be even more concrete, if we take B = Spec K[t], the limiting scheme
Xo C A’y is cut out by the limits of polynomials vanishing on the schemes
X —in other words, if we view the ideals I(X;) C K|[z1,...,x,] as linear
subspaces of the K-vector space K|[z1,...,z,] and let V C K[zy,...,24]
be the limiting position of the planes I(X;), the ideal I(Xy) is generated
by V. Thus this definition of limit generalizes the naive notion used in
Section I1.3.1.

For example, take B = Spec K [t] and B* = B\ {0} = Spec K[t,t!], and
let X; be the subscheme of A}( consisting of the two points with coordinates
t and —t—that is, take 27" = V(22 — t?) C Spec K[t,t™!|[z] = Aj..
Then the closure 2™ of 27* in A’} is given again as 2" = V(2% — t?) C
Spec K[t][z] = A%, and the fiber X, of 2" over the point 0 € B is simply
the double point X = V(2?) C Ak.

The notion of the limit of a family of schemes 2* C A%. depends very
much on the embedding in A%%., not just on the abstract family 2™ — B*.
Thus, in the preceding example, the schemes Z* = V(22 — 1) and 2% =
V(22 —t2) C Spec K[t,t~!][z] = A k. are isomorphic as B*-schemes to the
scheme 2°*, but the limit of #* is the two reduced points V(22 —1) C A}
and that of Z7* is the empty set.

Examples. The examples of limits we have encountered up to now have all
involved limits of zero-dimensional schemes. Here are a couple of examples
involving positive-dimensional ones. They are instructive also because they
illustrate how embedded points arise naturally in limits of varieties.

The first example is that of three lines through the origin in affine 3-
space AE( over a field K. We take the three coordinate axes, rotate one
down until it lies in the plane of the other two, and ask what is the limit
of this family. Specifically, in A% = Spec K[z, y, 2] we let L = V(y, z) be
the z-axis and M = V(z, z) the y-axis, and let N; be the line

Ny =V(z—y, z—tx).

For t # 0 we let X; = L UM U N;. The curves {X;};2o form a family
2 C A%, over the base B* = Spec K[t,t!], and we ask for the limit X,
of this family.
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This is straightforward to calculate, though the answer may initially be
surprising. The ideal of the union of the three coordinate axes is (zy, xz,yz),
so the ideal of the scheme X; for ¢ # 0 is generated simply by products of
linear forms:

I(Xt) = (Q17 Q27 Q3)7

where
Q1 = 2(z — ta),
Q2 = z(z — ty),
Qs = (z —tx)(z — ty).
When we let ¢ go to zero, we see that the ideal of the limiting scheme
contains 22, the common limit of Q;, Q2 and Q3. In addition, for ¢t # 0
the ideal I(X;) contains Q1 — Q3 = tyz — t?zy and Q2 — Q3 = twz — t2xy.
Thus, for ¢ # 0 the ideal contains
Q1 — Q3 Q2 — Q3
— =yz —try and — 5

and hence the ideal of the limiting scheme X contains zz and yz. Finally,
the ideal of X; contains

Q11— Q3 Q2 — Q3
x -y
t t

and hence the ideal of the limiting scheme contains zy(x — y). Thus we
have

=zz — tzy,

= tl‘y(l‘ - y)7

I(XO) D) (xz, Yz, 22’ :vy(a:—y))

and we claim that in fact this is an equality. We will establish this in a
moment, but before we do we should point out the striking fact about this:
the limit scheme X of the family of schemes {X; = LU M U Ny }20 is not
simply the union L U M U Ny. In fact, the ideal of the union is

I(LUMUNg) = (2, zy(z—y)),

so that
I(Xo) = I(LUMUNy) N (x,y,2)>

In other words, the limit scheme X has an embedded point at the origin.

In fact, it’s not hard to see this directly, which in turn allows us to prove
the equality I(Xo) = (22, yz, 22 zy(z—y)): the schemes X; all have three-
dimensional Zariski tangent space at the origin (0,0,0) € A%, so Xy must
as well, because if 2" C A% is any closed subscheme and ¢ : B — £ any
section of 2~ — B, the dimension of the Zariski tangent space T, )2 is
an upper-semicontinuous function of b € B. This in turn implies that

I(XO) C I(LUMUNO) N (.Z',y,Z)Q = (.TZ,yZ, ZQa acy(ac—y)),

from which equality follows.
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A similar example is the limit of the scheme consisting of two disjoint
lines in A:;( as the lines move to meet in a single point. As the following
exercise shows, their limit actually has an embedded point at the point of
intersection:

Exercise I1-25. Let L; be the line in A% defined by the ideal (y, z—t)
and M be the line defined by (z, 2); for ¢ # 0 let X; be their union. Show
that the limit of X; as t — 0 is the scheme

XO = SpeCK[x?:% Z]/(227 xrz, Yz, xy)

Xy

The following exercise shows that the appearance of the embedded point
in the limit is no accident:

Exercise I1I-26. (a) Show that there does not exist a family of lines L; C
A3 disjoint from M = V(z,z) parametrized by B* = Spec K[t,t™!]
such that the limit of M U L; as t — 0 is the reduced scheme

X = Spec K[x,y, z]/(z,zy).

(b) Similarly, show that there does not exist a family of lines L, C A%
parametrized by B* = Spec K [t,t~!] such that the limit of M U L; as
t — 0 is the scheme

X = Spec K[xz,y, 2]/ (2, %y, 2y?).

Note that in these two examples, as well as those analyzed earlier, the
limit of a union of schemes properly contains the union of their limits. We
will return to this in Chapter V.

Taking the limit of a one-parameter family of subschemes of a given
scheme is a fundamental operation in algebraic geometry. In the examples
occurring throughout the remainder of this book, we will calculate the
ideals of such limits by ad-hoc methods, as we’ve done here. But there
is a general algorithm, best carried out by machines, for performing this
computation. For example, suppose that the base B = Spec K[t], and we
have an ideal .# C K[t][x1,...,zy] such that for A # 0 the scheme X C
A" is defined by the ideal

In= (I t=N /(=N C K[f][z1,. .., 2/t = N) = K[z, .., 20].
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Then we define an ideal ¢ C K[t][z1,...,zy] by setting
="
k

that is, ¢ is the ideal of polynomials f(t,z1,...,2,) such that t*f € &
for some k. This can be computed using Grobner bases; see Eisenbud [1995,
Chapter XV].

Flatness. The preceding discussion suffices to describe the notion of a
continuously varying family of subschemes of a fixed scheme A (such as
affine or projective space) over a nonsingular one-dimensional base: we say
such a family X C B x A is continuous if each fiber is the limit of nearby
ones. This notion is still too restrictive, however: it does not suffice, for
example, if the base B is nonreduced, a case that turns out to be of great
utility. To extend the notion to the most general setting, Serre introduced
the following notion:

Definition IT-27. A module M over a ring R is flat if for every monomor-
phism of R-modules A — B the induced map M ® g A — M ®g B is again
a monomorphism.

In particular, any free module is flat; and thus if R is a field, every module
is flat. It is not hard to show that if R is a Dedekind domain, then M is flat
if and only if M is torsion-free. We next make the corresponding geometric
definition:

Definition II-28. A family 7 : X — B of schemes is flat if for every point
x € X the local ring Ox ., regarded as an O (,)-module via the map #,
is flat.

This notion is general enough to include the families of plane curves of
given degree but restrictive enough so that the varieties in a flat family have
a lot in common. It is really quite satisfactory, except for the fact that —
initially, at least —it does not seem to be a very “geometric” property. In
fact, however, it is the most natural —indeed, the only possible — extension
of the naive notion of limits introduced above! We will establish this fact,
and then go on to consider other properties of the notion of flatness; see
Eisenbud [1995; Matsumura [1986; Hartshorne [1977] for good technical
discussions.

To begin with, flatness expresses the quality we desire in the cases we
have already considered:

Proposition II-29. Let B = Spec R be a nonsingular, one-dimensional
affine scheme, 0 € B a closed point and B* = B\ {0}. Let 2" C A'g be any
closed subscheme, and m : & — B the projection. The following conditions
are equivalent:

(1) 7 is flat over 0.
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(2) The fiber Xo = 7=1(0) is the limit of the fibers X, = 7= 1(b) as b — 0.

(3) No irreducible component or embedded component of 2 is supported
on Xop.

Proof. We start with the equivalence of (2) and (3). Set 2™ = 7~ }(B*) C
Z'. Since 2" C A'g is closed, it contains the closure of Z™*; so the fiber
Xo = 771(0) contains the limit of the fibers X;, = 7~1(b) as b — 0, and to
say that Xy = limy_,o X is simply to say that we have equality: 2~ = 2 *.
Conversely, X properly contains the limit of the X if and only if 2 * g Z,
that is, the expression

2 =2*UX,

as a union of closed subschemes is nontrivial. Thus (2) and (3) are equiva-
lent.

To see that (1) is equivalent to (3), simply observe that 02 ., regarded
as an Op g-module, is flat for all x € X if and only if O (£") is torsion-
free as an R-module (see Bourbaki [1972, 1.2.4, Proposition 3.ii]; because
all these rings R are principal ideal domains, this also follows easily from
Matsumura [1986, Theorem 7.6 and its converse on p. 50] or Eisenbud
[1995, Corollary 6.3]). O

How general is this interpretation of flatness? To begin with, since the
condition of flatness is local in the domain of a morphism « : 2" — B,
the assumption that 2 and B are affine is really no restriction at all. If
we assume that 2 is of finite type over B, a mild extra finiteness condi-
tion described in Section III.1.1, we can further reduce to the case where
Z is a closed subscheme of A’ and 7 is the restriction to 2" of the pro-
jection Ay — B. All these are minor hypotheses. The serious restriction
in applying the preceding result is that we take B to be nonsingular and
one-dimensional. We can, however, broaden this substantially with the fol-
lowing lemma, which characterizes flat families of finite type over a reduced
base.

Lemma II-30. Let K be a field, B a reduced K-scheme, b € B a closed
point and X C A% a closed subscheme. X is flat over b if and only if for
any nonsingular, one-dimensional K-scheme B’, any closed point 0 € B’
and any morphism ¢ : B' — B carrying 0 to b, the fiber X is the limit of
the fibers X,y as b’ approaches 0 —that is, for any ¢ : B — B carrying
0 to b, the pullback family

%/:%XBB/CA%/ HB/
is flat over 0.

Proof. Since X,y = X;,, Proposition II-29 asserts the equivalence of the
limit condition X3 = limy .o Xy with the flatness of 27 over B’. That
said, one direction is clear: in general, if 2~ — B is flat and B’ — B is any
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morphism, the fiber product 2" xp B’ — B’ is flat; see Matsumura [1986,
Chapter 2, Section 3]. For the other direction, which is much harder, see
Raynaud and Gruson [1971, Cor. 4.2.10]. O

When the conditions of Lemma II-30 are met, we will call the fiber X,
the flat limit of the nearby fibers of 2~ over B.

A word of warning: while for B one-dimensional and 0 € B a nonsin-
gular point there exists a unique flat limit of a given family 2"~ C A%.
over B* = B\ {0}, two-parameter families may not admit any flat lim-
its at all. Consider for example the degree-2 subschemes of A% discussed
earlier. We take as our base the scheme B = Spec K|[s,t] = A%, with
the origin as our special point 0 € B. For (s,t) # (0,0) € B, we let
Xst C Spec K[x,y] = A%( be the subscheme consisting of the union of the
points (z,y) and (z—s, y—t) € A% . These subschemes form a family 2" *
over B* = B\ {0}, defined by

X =V(z(xz—s),z(y—t),ylz—s),yly—t)) C A%..

But we have seen that the limits of the schemes X ; as (s,t) approaches the
origin along lines of different slope are different double points: all supported
at the origin, of course, but with different tangent lines. The fiber X of the
closure 2 = 27 C A% of 27* in A% over the origin 0 € B must therefore
contain the union of these double points, that is, it must contain the “fat
point” V(2% zy, y?) C Aﬁ(. It follows that the closure must be simply the
subscheme

Z = V(x(xis)v x(yft)a y($78)7 y(yft)) - A%%

whose fiber over the origin is V(22 2y, y?). We see in particular that no
closed subscheme of A% containing Z* as an open subscheme can be flat
over 0 € B.

The morphism £ — B here is the same as the morphism X — Y of
Exercise 1-43(b): the scheme 2" is the union of two planes in affine four-
space A}l( meeting at a point, with the projection 2~ — B an isomorphism
on each plane. In particular, the failure of the family 2™* C A2B* to have a
flat limit is very much a function of the embedding in A%.: outside of the
origin in A%, we could include 2°* in the disjoint union A% J[A% of two
copies of A% to obtain a surjective morphism v : 2 — B with v=1(B*) =
Z* as B*-schemes. Thus the failure of this family to have a flat limit might
be ascribed to our perversity in choosing a bad embedding of 2™* in A2B.
The following exercise gives another classic example of a nonflat family,
and one that moreover has no flat limit, irrespective of the embedding.

Exercise II-31. Consider the cone B = V(su — t?) C Spec K|[s,t,u] =
A% Let 0 = (s,t,u) € B be the origin, and let B* = B\ {0} as usual.
Set 2 = Spec K[z,y] = A%, and let ¢ : 2" — B be the map dual to the
inclusion of rings

90# : K[s,t,u]/(su—t2) - K[Iay]
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sending s to x2, t to 2y, and u to y2. (Equivalently, B is simply the quotient
of 2 = A% by the involution (x,y) — (—z, —y), and ¢ the quotient map.)
Let 2°* be the inverse image ¢~ (B*) C 2. Show that 2~ — B is not flat
over 0.

In fact, the family 2™* — B* has no flat limit, in the sense that there
is no scheme % and surjection v : 4 — B such that v=}(B*) & 2°*
as B*-schemes. Nor is this really pathological: in Section IV.3.2 we’ll see
examples of naturally occurring families that don’t admit flat limits.

Proposition II-29 and Lemma II-30 together give us a geometric inter-
pretation of the flatness of a morphism ¢ : 2 — B, at least in case
where 2~ is of finite type over a base B that is reduced and over a field:
it says that ¢ is flat at p if, under any embedding of a neighborhood of
p € 2 in affine space A%, the fiber Xo = ¢ 1(0) over 0 = p(p) € B is
(an open subset of) the limit of the fibers X} as b € B approaches 0 along
any one-parameter family. The wonderful thing about the definition of flat-
ness in general is that it takes this basic notion and extends it, in a very
natural way, to arbitrary morphisms! This is particularly remarkable (and
useful) in case the base space B is a nonreduced scheme. If, for example,
B = Spec K[e]/(€?), it makes no sense to talk about the “fibers of 2~ — B
over nearby points”; B has only one point. Nonetheless (as we will see ex-
plicitly in Chapter VI) it does make sense to talk about families 2" — B of
schemes parametrized by B “varying continuously”; flatness exactly cap-
tures this property. (Even in case the base B has one-dimensional Zariski
tangent space, as in the example B = Spec K [¢]/(€?), we can’t just use the
criterion that no component of 2", irreducible or embedded, is supported
on the inverse image of the reduced point Bieq: for example, the morphism
Spec K[z, y]/ (22, vy, y*) — Spec K[e]/(e?) dual to the ring homomorphism
€ — x is not flat.)

In general, if B = Spec R is the spectrum of a local Artinian ring R
with maximal ideal m, 0 = V(m) = Byeqa C B its unique point, a flat
morphism ¢ : 2" — B is called an “infinitesimal deformation” of the fiber
Xo = ¢ 1(0). Such things played an important role in the algebraization
of the theory of curves on surfaces—see, for example, Mumford [1966] and
the discussion in Section VI.2.3.

To conclude this section, we mention (without proof) two facts about
flatness, both of which will reaffirm that flatness is indeed the correct cri-
terion for a family 2~ — B of schemes to be “varying continuously”. The
first is one we mentioned at the outset: we would like families of hypersur-
faces to be flat. Explicitly, if

flx,. ... zn) = ZGIZCI

is a polynomial in n variables whose coefficients a; are regular functions
on a scheme B, then the corresponding subscheme V(f) C A% should be
flat over B, at least away from the common zero locus V ({as}) C B of the
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coefficients. In fact, more is true: the same holds for families of complete
intersections 2" = V(f1,..., fc) C AL. We state this as follows:

Proposition II-32. Let R be a local ring with mazimal ideal m, B =
Spec R, 0 = [m] € B the unique closed point of B and k = k(0) = R/m the
residue field. Let f1,..., fc € R[z1,...,zy,] be polynomials with coefficients
i R, and

%:V(fl,...,fc) CSpecR[xl,...,xn] :A%

If the fiber Xo = w=1(0) of the projection ™ : & — B over 0 has codimen-
sion ¢ in A7, then 2" — B is flat.

More generally, we have the following criterion for flatness, which is ex-
tremely useful in practice.

Exercise II-33. (a) Prove that a module M over the ring R = K[t]«) is
flat if and only if ¢ is a nonzerodivisor on M, that is, if and only if M
is torsion-free.

(b) Let A = R[xy,...,7,] be a polynomial ring over R = K|[t]«), and let
M be an A-module with free presentation

-5 Fy— M —0.

Consider the module M := M /M; over the factor ring A := A/tA, and
let
Fl L FQ I M — 0

be the corresponding presentation. Show that M is flat over R if and
only if every second syzygy of M over A can be lifted to a second
syzygy over A in the sense that every element of the kernel of @ comes
from an element of the kernel of ¢. (Something similar is true for any
local base ring R with maximal ideal m if M is finitely generated over
A; this is a form of the “local criterion of flatness” — see, for example,
Eisenbud [1995, Section 6.4] or Matsumura [1986, p. 174].

A second thing that makes flatness a good notion is the generic flatness
theorem, due to Grothendieck (see for example Eisenbud [1995, Section
14.2]. This says that if one has any reasonable family of schemes X — B
over a reduced base, then there is an open dense subset U of B such that
the restricted family 7='U — U is flat (here “reasonable” includes, for
example, any family of subschemes of a fixed affine or projective space).
In some sense this vindicates our choice of flatness as the analogue of the
notion of bundle in topology: it is analogous to the observation that if
f: M — N is a differentiable map of compact C'*° manifolds, then there
is a dense collection of open subsets U of the target space IV such that the
restriction of f to each f~1(U) is a fiber bundle. In any event, the generic
flatness theorem certainly assures us that flat families are ubiquitous in
algebraic geometry.
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This concludes our initial discussion of flatness. We will see other ge-
ometric interpretations of flatness when we discuss families of projective
schemes in Chapter IV.

11.3.5 Multiple Lines

We now consider a nonreduced affine scheme X supported on a line and
not having embedded components. We will assume that the multiplicity
of the line (in the sense of the primary decomposition) is 2, and we will
analyze the possibilities.

It is very easy to write down a first example: the scheme

X = Spec K[z,y]/(y°) C A%

obviously has the desired properties. It’s pretty clear that there are no more
examples supported on the line y = 0 in A%(, but we can construct many in
A3 A subscheme X of the sort we want will meet a general plane in A%
passing through a point of the reduced line in a double point contained in
that plane. We already know that any double point may be thought of as a
point plus a tangent vector at that point, and this suggests that we obtain
X by choosing a normal direction at each point of the line. For example,
take L := Xoq to be the line x = y = 0, with coordinate z. Now, choose a
pair of polynomials p and ¢ in z without common zeros, and at each point
(0,0, z0) € L take the normal direction to be the one with slope p(zo)/q(z0)
in the normal plane z = zg. It is easy to see that the union over all z of the
double points in the given directions will be contained in the scheme X, ,
defined by taking

Ipvq = (.172, zy, y2a p(z)x—q(z)y)
and
Xp,q = Spec K[z,y,2]/1, 4

The simplest nonplanar example would be one where the chosen normal
directions twist just once around L —for example, the one given by the
ideal

IF = (I2, xyY, y27 Zy-.]?)
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Exercise II-34. If p, g are relatively prime polynomials, then the ideal

(@,9)/1Ip.q
in the ring
K[l’, Y, Z]/Ip’q

is torsion-free of rank 1 as a K|[z]-module; thus X, , is primary, with
(Xp.q)rea the line Spec K[z,y, z]/(z,y), and X, , has multiplicity 2.

At first sight it looks as though these examples will possess many in-
teresting invariants and thus, in particular, be distinct, but this is not so:
we can “untwist” any of the schemes X, , by an automorphism of A% to
give an isomorphism of it with the planar double line Spec K|y, z]/(y?).
To do this, note that since p and ¢ have no common zeros, we may write
1 = aq+ bp for some polynomials a,b € K[z]; thus the matrix

(o)

has unit determinant, so the map A% — A% given by

!

(x,y,2) = (2',y',2), with 2’ :=p(2)z — q(2)y, ¥ = a(z)z + b(2)y,
is invertible. Again because the matrix is invertible, we have

(z,y) = (@',y")  and (2% 2y, y®) = (2"% 2y, v'?)

so the ideal of X, , is (z, 2% zy, y?) = (z, y?), as required.
More generally, it turns out that there is up to isomorphism only one
affine double line, in the following sense:

Exercise II-35. Prove that if A is a Noetherian K-algebra such that
X = Spec A has no embedded components, has multiplicity 2, and sat-
isfies Xyeq 2 A, then X is isomorphic to Spec K[z, y]/(y?).

We will see in the next chapter that this situation contrasts with the one
in projective space: there are many nonisomorphic projective double lines.

II.4 Arithmetic Schemes

Our last collection of examples will be spectra of rings that are finitely
generated and reduced but that do not contain any field at all. In general,
the spectra of rings finitely generated over Z are called arithmetic schemes;
they arise primarily in the context of number theory, although by no means
all schemes of number-theoretic interest are of this type. In these examples
we will see some hint of the amazing unification that schemes allow between
the arithmetic and the geometric points of view.
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11.4.1 SpecZ

We start with the most obvious example, the scheme SpecZ itself. The
prime ideals of Z are, of course, the ideals (p), for p € Z a prime number,
and the ideal (0); the former correspond to closed points of SpecZ, with
residue field F,, while the latter is a “generic” point, whose closure is all
of SpecZ and whose residue field is Q. The picture is this:

. .
(2) (3) () (7) (11) (0)
This bears a formal resemblance to an affine line A} over a field; indeed,
this similarity is just the beginning of a long sequence of analogies, and it
is well to bear it in mind while looking at the following examples. However,
the analogy also has its limits: while SpecZ behaves much like A}, for

example, it is not an open dense subscheme of any scheme analogous to
Pl.

11.4.2 Spec of the Ring of Integers in a Number Field

Secondly, consider a scheme of the form Spec A, where A C K is the ring
of integers in a number field K; we will analyze the example K = Q[v/3]
and A = Z[\/g] As in the case of SpecZ, there are just two types of
points: closed points corresponding to nonzero prime ideals in A, having
finite residue fields, and a generic point corresponding to (0) with residue
field K. What makes this example interesting is the map Spec A — SpecZ
induced by the inclusion of Z in A. Consider, for example, the fiber over
a point [(p)] € SpecZ. This is just the set of primes in A containing the
ideal pA C A, and it may behave in any one of three ways (a good basic
reference for the unexplained material here is Serre [1979)]):

(1) If p divides the discriminant 12 of K over Q —that is, for p = 2 or 3—
the ideal (p) is the square of an ideal in A: we have

24 = (1+3)?
and, of course,
3A = (V3)2.
The residue fields at the points (14 +/3) and (v/3) € Spec A are the
fields F5 and F3, respectively.

(2) Otherwise, if 3 is a square mod p, the prime (p) will factor into a
product of distinct primes: for example

11A = (4+3V3)(4—3V3)

and

13A=(4+V3)(4—V3).
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The residue fields at these points will again be the prime fields, in this
case F11 and Fq3, respectively.

(3) Finally, if p > 3 and 3 is not a square mod p— for example, when p = 5
or 7—the ideal p A is still prime and corresponds to a single point in
Spec A. In these eases, the residue field is the quadratic extension of
F, — for instance, Fo5 and F49 in the two examples.

In general, as in this example, if K is a quadratic number field, and A
is the ring of algebraic integers in K, then the inclusion Z C A induces a
map of schemes 1 : Spec A — SpecZ whose fiber over each closed point
(p) € SpecZ is one of the following:

(1) A single, nonreduced point, with coordinate ring isomorphic to A/p?,
whose underlying reduced point p has residue field I, if p ramifies in
A—that is, if p A is the square of a prime ideal p of A.

(2) The disjoint union of two reduced points, p and p’, with residue fields
A/p=AJp' =TF,, if pA is a product of two distinct prime ideals of A

(3) A single reduced point p, with residue field A/p of degree 2 over F, if
p remains prime in A.

In every case the coordinate ring of the fiber has dimension 2 as an IF -
algebra. That is because A is a free Z-module of rank 2. Of interest here
is the analogy between the map Spec A — SpecZ and a branched cover of
Riemann surfaces (or, more generally, of one-dimensional schemes over an
algebraically closed field such as C). Essentially, we may think of Spec A as
a two-sheeted cover of Spec Z, with branching over the “ramified” primes,
just as, for example, SpecC[z] is a double cover of Spec C[z?2] branched
over the origin. The one apparent difference is that over some points (p) €
Spec Z other than ramification points we may have, instead of two distinct
points with multiplicity 1, one point with multiplicity 1 but with a residue
field that is a quadratic extension of the residue field F,, at (p). These are
denoted by uniform gray dots in the picture:

(4+3V3) (4+/3)
&7 N\
(14+V3) ‘ \/ ‘
(4—33) (4—+/3)

2 3 (5) (M (11) (13) . (0)

A more inclusive analogy would be with a finite map between one-
dimensional schemes over a non-algebraically closed field. Consider, for
example, the map

SpecR[z][y]/(y* — ) — Ap = SpecR][z]

Looking just at points of A]}Q = SpecR[z] with residue field R —that is,
points of the form (z — A) with A real — we have ramification over the point



84 II. Examples

(), and for A # 0 the inverse image of (x — \) is either two distinct points
with residue field R (if A > 0) or one point with residue field C (if A < 0).

We may continue this analogy a little further by looking at schemes of
the form Spec B, where B C A C K is an order in a number field —
that is, a subring of the ring of integers in K having quotient field K. For
example, let A = Z[/3] and consider the ring B = Z[11/3] and the asso-
ciated scheme Spec B. The map Spec A — Spec Z described above factors
through Spec B, and indeed the map Spec A — Spec B is an isomorphism
except that the two points (4 + 3v/3) and (4 — 3v/3) € Spec A map to the
same point (11, 111/3) € Spec B. We may thus picture Spec B as a sort of
“nodal curve” — that is, the double cover Spec A of Spec Z with two points
identified.

(4+3v3) =
(5)/\(7) (4—3V/3)
(1+V/3) ‘ \/ .
) (

7) (11) (13) .

Alternatively, consider the case A = Z[/3] and B = Z[2v/3]. Here the
map Spec A — Spec B is one-to-one but not an isomorphism at the point
[(1+ /3)] which goes to [(2, 2v/3)].

Exercise I1-36. Show that the point p = [(2, 2v/3)] is a “cusp” of the
scheme SpecZ[Q\/g] in the sense that it is a singular point and the desin-
gularization Spec A — Spec B has fiber over p consisting of a double point.

@ 3 I ()

11.4.3 Affine Spaces over Spec Z.

Our next example is of a two-dimensional scheme, Spec Z[z]; this is also
denoted Aj. The prime ideals in Z[z] are

(i) (0);

(ii) (p), for p € Z prime;

(iii) principal ideals of the form (f), where f € Z[z] is a polynomial ir-
reducible over Q whose coefficients have greatest common divisor 1;
and

(iv) maximal ideals of the form (p, f), where p € Z is a prime and f € Z[z]
a monic polynomial whose reduction mod p is irreducible.

Exercise 11I-37. Prove this.

Of these, only the last are closed points; the first, of course, has closure
all of A%, while the second and third types have closures we will describe
below.

Probably the best way to picture A% is via the map A% — SpecZ (again
a flat map!). Under this map, points of type (ii) and (iv) above go to
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the corresponding points (p) € SpecZ, while the points of types (i) and
(iii) go to the generic point (0) € SpecZ Indeed, the fiber of this map
over the point (p) is 1somorphlc to A[F = SpecF,[z } the point (p, f) € A},
corresponding to the point in A[F given by the set of roots of the polynomial
f in the algebraic closure F,, (recall that points of AFP correspond to orbits
of the action of the Galms group Gal(F,/F,) on F ) Similarly, the fiber
over the generic pomt (0) € SpecZ is the scheme AQ = Spec Q[z], with
(f) € AZ meeting AQ in the point corresponding to the set of roots of f in
Q. The picture thus is as follows:

. (2) ‘ (3) . (11) . (0)

?
(4z + 1)
3,z — 2) (11, = — 2) ‘
(z —2)
2,z — 1) 3,z — 1) 11,z — 1) ‘
(@ — 1)
(2, (3, ) (11, =) ‘
(z)

(2) (3) (11) . (0)

The closure of the point (p) € A} is the fiber A%p over the point (p) €
SpecZ. The closures of the other nonclosed points—those of type (iii)
above—are more interesting. These will consist of the point (f) itself in
the fiber A@ over (0) together with all the points (p,g ) € A, where g is
a factor of f over IF,, —that is, in each fiber AF of A}, the union of the
points of AF correspondmg to roots of f mod p.

Exercise II-38. What is the point marked with a ? in the picture above?
Why are the closures of the points (42 + 1) and (« — 2) indicated by curves
meeting tangentially at the point (3, z — 2), while they are both transverse
to the closure of (3)7 (See the discussion leading up to Exercise 1I-44 for
one answer.) Why is the closure of the point (4z + 1) drawn as having a
vertical asymptote over the point (2) € Spec Z?
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For another example, consider the ideal generated by a simple linear
polynomial, such as (52 — 49). To continue the analogy between SpecZ
and the affine line over a field, we can think of the closure of this point as
the graph of the function 49/5 on SpecZ; this is a function with a simple
pole at the point (5) and a double zero at (7). (This curve is tangent to the
closed subscheme () in A}, as evidenced by the fact that the intersection
of (z) with the subscheme (52 — 49) is not just the point (7,z) but a
nonreduced point supported at this point.)

The closure of the point (2 — 3) is pictured below in a slightly different
style:

(2) (3) (5) (7) (11) ()
- » . - . »
‘ ‘ (11, z—5) |
(2, 2—1) (3, @) (5,3273) (11, ©+5) (x2=3)
2) 3 (5) (7 1) (13) . (0)

This closure is just the scheme Spec Z[z]/(x? — 3) = Spec Z[v/3] described
above, realized here as a subscheme of A}.

Exercise II-39. Identify the three unlabeled points in the above diagram.

More generally, the scheme A7 = SpecZ|xz1,...,x,] can best be viewed
via the natural map A7 — SpecZ, whose fibers are the schemes Af;p and
Ag.

Q

11.4.4 A Conic over SpecZ

Our next example gives a hint of the depth of the unification of geometry
and arithmetic achieved in scheme theory. We consider the scheme

Spec Z[z,y]/(x? — y* — 5)

and its morphism to SpecZ.

To begin with, the fiber of this scheme over the generic point [(0)] €
SpecZ is the scheme X = Spec Q[z, y]/(2% —y?—5), which we have already
described: its points are the orbits, under the action of the Galois group G =
Gal(Q/Q), of the set of pairs (x,%) of elements of Q satisfying 22 —y? = 5.
The fiber over (p) is similarly the subscheme of the affine plane A]%p over
F, defined by the equation z? — y?> = 5 that is, whose points are the

orbits, under the action of the Galois group G' = Gal(F,/F,), of the set of
pairs (x,y) of elements of F, satisfying 2% — y* = 5.
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The fibers of this scheme over all primes other than 2 and 5 are nonsin-
gular conics, as is the fiber over the generic point.

Exercise I1-40. Are there plane conics over Spec Z that are reducible but
nonsingular? Classify them.

The fibers over (2) and (5) are singular, however: modulo 2, we have
2=y’ =5 =(x4+y+1)>3
and modulo 5 we can write
2=y’ =5 =(z+y)z—y)

Thus the fiber over (2) is a double line, while the fiber over (5) is a union
of two lines (so that in particular there are two nonclosed points mapping
to the point (5), while there is only one such point mapping to each of the
other points (p) € SpecZ).

/0 X 0

(2) 3) (5) (7)

Exercise I1I-41. (This assumes some knowledge of projective geometry.)
The fiber of X over a point (p) € SpecZ such that p =1 mod (4), p # 5, is
really a hyperbola— that is, it meets the “line at infinity” in the ﬁber A]F

in two points with residue ﬁeld F, and is 1som0rphlc to A]F —{0}. Thus
for example, the fiber over (p) is the curve 22 4+y% -5 = 0; its closure in the
projective plane over F,, has equation X2+Y?2—522 = 0, and so meets the
line Z = 0 at oo in the two points [1, «, 0] where a? = p— 1 mod (p). Show
that, by constrast, if p = 3 mod (4),

the fiber is an ellipse; that is, it meets

the line at 0o in one point with residue

field FPQ

The preceding picture is very much
in keeping with the geometric analogy:
a surface fibered over a curve — for ex-
ample, the surface V(2% — 3% — 2) C
Spec Kz, y, z] fibered over the z-line
Spec K [z] —will have a finite number
of singular fibers, as in the classic pic- ¢
ture shown on the right.
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I1.4.5 Double Points in Aj,
Next, we consider some double points over Z. Again, let
X = A}, = Spec Z[z].

If Z C X is a closed subscheme supported at only one point, corresponding
to a prime (p, f), say, we will wish to speak of the degree of Z just as we did
in the case of finite subschemes over a field. In the case of schemes over a
field, we defined the degree to be the dimension of &z(Z) as a vector space
over K. But in the current case 0z(Z) might contain no field at all—it
might be Z/(p?), for example. More confusing still, its residue field might
not be Z/(p). In the case at hand the cheapest way out of this dilemma
is to note that the cardinality #07(Z) is always of the form p? and take
the degree to be d—this is obviously the vector space dimension if &7(Z)
happens to be a Z/(p) vector space. (A more sophisticated approach is
to define the degree of a reduced closed point first as the vector space
dimension over Z/(p) and then define the degree of Z by multiplying the
degree of the reduced point by the multiplicity of Z at this point.)

Consider for example the subschemes of degree 2 supported at the point
(7,x). These behave in a manner analogous to subschemes of degree 2 in
the affine plane over a field. The ideal I of such a subscheme will always
contain the square of the maximal ideal p = (7, z) and so will be generated
by p? together with one element of p: thus,

I=1,p5=(49, 7z, 2% a7+ p2)

for some «,3 € Z not both divisible by 7. It will depend only on the
congruence classes of @ and § in Z/(7); and multiplying the pair (a, ()
simultaneously by a unit in Z/(7) will not change I either. Thus for each
point [a, (] of the projective line over the field of seven elements we get a
double point supported at p.

Exercise II-42. Show that this correspondence is bijective.

The set of subschemes of degree 2 supported at (7,2) may thus be iden-
tified with the projective line P}, over the field K = F;, much as the set
of subschemes of Ai( over a field K may be identified with the projective
line over that field. (The identification in either case is actually with the
projectivization of the Zariski tangent space to the ambient space at the
point.) There is, however, one difference: whereas all subschemes of Af( of
degree 2 supported at a point are isomorphic, the subschemes Z, g defined
by I, g look different, even abstractly. We have

Za,3 = SpecZ/(49) if B#0
but
Zy0 = Spec(Z/(7))[2]/(«?)

which are not isomorphic.
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Exercise 1I-43. Classify (a) the subschemes of degree 3 supported at the
point (7,z) € A, and (b) the subschemes of degree 4 supported at the
point (2,2% + x + 1).

Exercise II-44. Referring to the diagram on page 85, use the preceding
discussion to justify the fact that the curves (4dx+ 1) and (x — 2) are drawn
tangent to one another, while the curves (4= + 1) and (11) are drawn
transverse.

Finally, here is an example of a flat family over SpecZ. Recall that in
the preceding section there was a discussion of the family of pairs of lines
M U Ly, where M is the line x = z = 0 and Ly is the liney = z —t = 0.
The key observation there was that the flat limit of the schemes M U Ly
as t approached zero was not the scheme M U Lj but, rather, that scheme
with an embedded point at the origin.

Here is the analogous phenomenon in a family parametrized by Spec Z.
Let U = SpecZ[771] = SpecZ — {(7)} be the complement of the point
(7) € SpecZ, and let

W = A} :=SpecZ[7T7", x,y,2] C A}

be the corresponding open subscheme of A%. Let A4 and .Z be the closed
subschemes of A3 given by the ideals (z,z) and (y,z —7), respectively, and
let /* =4 NW and Z* = ZNW. Let Z* be the union of A4™* and
Z* and let 2 C A} be the closure of 2°* in A3. We may then think of
Z* as a family of pairs of lines parametrized by U; and the fiber X7 of
2 over (7) € SpecZ is the flat limit of this family “as 7 goes to 0”. The
fiber X7 is, as we expect, supported on the union of the fibers (z = z = 0)
and (y = z =0) of A" and .Z over (7); but the scheme X7 is not reduced:
exactly as in the picture in the preceding section, it has an embedded point
at the origin.

Exercise II-45. Verify the flatness of 2  over SpecZ and the descrip-
tion of X7. Can you find analogues over SpecZ of the other flat families
discussed in the preceding section?
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Projective Schemes

Once we have understood affine schemes, the theory of projective schemes
does not really contain so much that is still novel: for the most part it differs
from the classical theory of projective varieties in ways that are completely
analogous to the difference between affine schemes and affine varieties.

We start by introducing two finiteness conditions, finite and of finite
type. We then define and discuss separated and proper morphisms, which
correspond to the attributes of Hausdorflness and compactness in most of
geometry. It is partly because projective varieties and schemes have these
properties that they are fundamental objects in classical algebraic geometry
and in the theory of schemes.

The next part of the chapter is devoted to the introduction of projective
schemes and some examples. Just as in the case of affine schemes, two
approaches to projective schemes are possible: one can define projective
space and then take subschemes, or one can define all projective schemes
on an equal footing, starting with graded algebras. As we did in the affine
case, we adopt the second possibility.

After introducing the basic definitions of projective schemes and sub-
schemes, we describe morphisms of projective schemes, a topic that (as in
the category of varieties) is more subtle than its affine counterpart. We con-
clude the section with some examples of projective schemes, most notably
the Grassmannian.

The final section of the chapter is devoted to three invariants of projec-
tive schemes embedded in projective space that were introduced by David
Hilbert: the Hilbert polynomial, Hilbert function, and free resolution. Us-
ing these, we can sometimes distinguish among similar schemes, such as
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the projective double lines, and we can also shed some new light on the
phenomenon of flatness. Among the invariants of a projective scheme that
can be defined in terms of its Hilbert polynomial is its degree; and in this
connection we discuss the famous Bézout theorem.

IT11.1  Attributes of Morphisms

II1.1.1 Finiteness Conditions

There are two finiteness conditions that play a major role in most nontrivial
results about schemes. They have similar names but very different charac-
ter. The first, finite type, is a straightforward condition satisfied by almost
any morphism arising in a geometric contexts; it is invoked usually just
to preclude infinite-dimensional fibers, or “non-geometric” schemes such as
spectra of local rings. The second condition, finiteness, is by contrast a very
stringent condition: it says that a morphism is proper and that all its fibers
are finite (in particular, zero-dimensional).

First, we say that a morphism ¢ : X — Y of schemes is of finite type if
for every point y € Y there is an open affine neighborhood V= Spec B C Y
of y and a finite covering

e V) = U U;

of its inverse image by affine open sets U; = Spec A;, such that the map
cpff :B=0y(V)— Ox(p~'V) — 0x(U;) = A;

makes each A; into a finitely generated algebra over B. Thus, for example,
any subscheme X of A% or P is of finite type over K (meaning the
structure morphism X — Spec K is of finite type), while the spectrum of
a positive-dimensional local K-algebra is not.

A morphism ¢ : X — Y is called finite if for every point y € Y there is
an open affine neighborhood V' = Spec B C Y of y such that the inverse
image 1 (V) = Spec A is itself affine, and if, via the pullback map

0l B =0y (V) — Ox(p71V) = A,

A is a finitely generated B-module. This is a far more restrictive hypothesis
than being of finite type; for one thing, it immediately implies that the
fibers of ¢ are finite, and it implies that the map |¢| : |X| — |Y]| of
underlying topological spaces is closed, that is, the image of a closed subset
of X is closed in Y. Thus, for example, if Y = Spec B and f € Blx] is
a polynomial, the morphism Spec(B[z]/(f)) — Y is finite if the leading
coefficient of f is a unit, but not otherwise. For all this see Eisenbud [1995,
Chapter 4 and Section 9.1].
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II1.1.2  Properness and Separation

Many techniques of geometry yield the most complete results when applied
to compact Hausdorff spaces. Although affine schemes are quasicompact in
the Zariski topology, they do not share the good properties of compact
spaces in other theories because the Zariski topology is not Hausdorff. For
example, the image of a regular map of affine schemes ¢ : X — Y need not
be closed, even though X is quasicompact.

The fact that the Zariski topology is not Hausdorff has another unpleas-
ant consequence. Recall that in the general definition of a manifold, one
starts with a topological space that is Hausdorff and admits a covering by
charts of the standard form (balls in Euclidean space, say). The fact that
the balls themselves are Hausdorff is not enough by itself to guarantee that
the total space is. This is why the line with the doubled origin described
in Exercise I-44 and shown again here

M\

Q

T
/

S

is not a manifold. However, when we work with schemes (or, for that matter,
with varieties) glued together from affine schemes, we cannot afford to
specify that the total space is Hausdorff because even the local pieces are
not. This has the result that given two maps of schemes p,% : X — Y the
set where ¢ and v are equal may not be closed. This is illustrated in the
following exercise, which is a typical case.

Exercise III-1. (a) Let Y be the line with doubled origin over a field
K, defined in Exercise 1-44, and let ¢, ps : A}( — Y be the two
obvious inclusions. Show that the locus where 1 and ¢9 agree (simply
as continuous maps of topological spaces) is not closed.

(b) Now let X =Y xx Y and let ¢ and 9 be the two projection maps
from X to Y. Show that the set of points at which ¢ and v agree is not
closed (note that this is just the diagonal, defined below). Show that
the same is true for the set of closed points at which ¢ and v agree,
so this is not a pathology special to schemes but occurs already in the
category of varieties.

Such a pathology cannot happen, however, if X is an affine scheme; nor,
it turns out, can it happen when X is a projective scheme. The desirable
property that these schemes have, which is one of the most important
consequences of the Hausdorff property for manifolds, is expressed by saying
that X is separated as a scheme over K. In general, given any map o : X —
S of schemes, we define the diagonal subscheme A C X xg¢ X to be the
subscheme defined locally on X x g X for each affine open

X D Spec A M SpecB C S
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by the ideal I generated by all elements of the form
a®Rl—-1Qac ARp A.

We then say that « is separated, or that X is separated as a scheme over
S, if A is a closed subscheme of X xg X.

Exercise III-2. Let Y — S be any map of topological spaces, and let
ACY xgY

be the diagonal. Show that if A is a closed set, then for any commutative

diagram
\ ¥ /

S

of continuous functions the set of points of X where ¢ and v agree is closed.
Now prove a similar lemma for regular maps of schemes: show that there
is a naturally defined (that is, maximal) closed subscheme on which ¢ and

1) agree.

X Y

Exercise ITI-3. Let X be a scheme separated over S. Show that (closed
or open) subschemes of X are again separated over S.

Exercise ITI-4. Note that from the very definition of the diagonal it fol-
lows that affine morphisms are separated.

We shall see below that projective schemes, to be defined shortly, are also
separated, so at least these features of the properties of Hausdorff spaces
are valid for them as well.

In the case of classical affine varieties—even things as simple as plane
curves—it was realized early in the previous century that the simplest
way to get something that would behave like a compact object — would, in
fact, be compact in the classical topology, in the case of varieties over the
complex numbers — was to take the closure of an affine variety in projective
space. It turns out that if ¢ : X — Y is a map of projective varieties,
then indeed ¢ maps closed subvarieties of X to closed subvarieties of Y.
Somewhat more generally, if we take the product of such a map with an
arbitrary variety Z, to get

Pi=pxlyg: X xXZ—-YxZ

then 1 maps closed subvarieties of X x Z onto closed subvarieties of Y x Z.
It turns out that this, with the separation property, is the central property of
projective varieties that makes them so useful. But it is a property satisfied
by a slightly larger class of varieties than the projective ones, and it is a
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property that is sometimes easier to verify than projectivity, so it is of great
importance to make a general definition.

If «: X — S is a map of schemes of finite type, we will say that «
is proper, or that X is proper over S, if « is separated and for all maps
T — S, the projection map of the fibered product

XXST—>T

carries closed subsets onto closed subsets. As usual, if S = Spec R is a ring,
we shall often say “proper over R” when we mean “proper over Spec R”.

The additional property given here, besides that of separation, is some-
times expressed by saying that « is universally closed. The name proper
comes from an old geometric usage: a map « : M — N of Hausdorff spaces
is called proper if the preimage of every compact set is compact. This is a
kind of relative compactness for the map «. It is related to our notion by
the property expressed in the following exercise.

Exercise I1I-5. Let € be the category of locally compact Hausdorff spaces
which have countable bases for their topologies. Show that a map f: X —
Y in % is universally closed if and only if it is proper in the sense that for
all compact subsets C of Y the subset f~1(C) is compact.

This notion of properness turns out to be the key property in alge-
braic geometry whether of schemes or of varieties— it plays the role played
by “compact and Hausdorff” in other geometric theories. The projective
schemes that we will introduce below are simply the most common exam-
ples of schemes proper over a given scheme B. We will not prove this central
result here; it is not terribly difficult, but it would take us too far afield.
See, for example, Hartshorne [1977, Theorem I1.4.9] for a proof.

A finite morphism ¢ : X — Y is necessarily proper; see Eisenbud [1995,
Section 4.4].

ITI.2 Proj of a Graded Ring

11.2.1  The Construction of Proj.S

By far the most important examples of schemes that are not affine are the
schemes projective over an affine scheme Spec A, where A is an arbitrary
commutative ring. (For simplicity we usually say that such a scheme is
projective over A instead of over Spec A.) Such a scheme is obtained from
a graded A-algebra by a process very much analogous to the construction
of a projective variety from its homogeneous coordinate ring. One can also
define schemes projective over an arbitrary base scheme B by starting with
a sheaf of graded O'p-algebras, and this generalization has important ap-
plications. But most of the theory quickly reduces to the case where B is
affine, and we will stick with that level of generality here.
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To describe this construction, we start with a positively graded A-algebra
having A as the degree 0 part, that is, an A-algebra S with a grading

S = @ Sy (as A-modules)
v=0

such that
SySu CSyyy and Sy = A.

An element of S is called homogeneous of degree v if it lies in S,,. We will
define an A-scheme X = ProjS from S. The schemes projective over A are
by definition the schemes of the form Proj S, where S is a finitely generated
A-algebra. The algebra S is called the homogeneous coordinate ring of X,
though (like the homogeneous coordinate ring of a projective variety) it is
in fact not determined by X.

In case S is the polynomial ring

S = Alxo, ...,z

over A, with grading defined by giving the elements of A degree 0 and giving
each variable degree 1, the resulting scheme Proj S is called projective r-
space over A and is written P’;. (The following exercises will make it clear
that this is the same scheme P’} as defined in Chapter I.) In case A = K is a
field, the scheme P’ bears the same relation to the variety called projective
space over K as the scheme A’ bears to the variety called affine r-space.

We will suppose for simplicity that, as in the case of the polynomial ring,
the algebra S is generated over A by its elements of degree 1, and we leave
the general case as an exercise. (In a different direction, most of what we
say below also holds if S is not assumed to be finitely generated over A,
but this generalization is less frequently used.)

Proj S may be defined as follows: we write

S, = é S,
v=1

for the ideal generated by homogeneous elements of strictly positive degree
in S. We say that an ideal is homogeneous if it is generated by homo-
geneous elements. The underlying topological space |ProjS| is the set of
homogeneous prime ideals in the ring S that do not contain S, (these are
sometimes called relevant prime ideals, and S is thus called the irrelevant
ideal). The topology of |Proj S| is defined by taking the closed sets to be
the sets of the form

V(I):= {p|p is a relevant prime of S and p D I}

for some homogeneous ideal I of S.
We will give |Proj S| the structure of a scheme by specifying this structure
on each of a basis of open sets. To do this, let f be any homogeneous element
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of S of degree 1, and let U be the open set
[Proj S| =V (f)

of homogeneous primes of S not containing f (and thus not containing S ).
The points of U may be identified with the homogeneous primes of S[f~1].
On the other hand, these homogeneous primes correspond to all the primes
of the ring of elements of degree 0 in S[f~!], which is denoted by S[f~]o;
see Exercise I1I-6(a). Thus we may identify U with the topological space
Spec S[f 1o and give it the corresponding structure of an affine scheme.
We will write (Proj S) s for this open affine subscheme of Proj S. If zg, 21, . . .
are elements of degree 1 generating an ideal whose radical is the irrelevant
ideal S, ; then the open sets

(Proj S)y, := Proj S — V(z;)

form an affine open cover of ProjS.
If g is another degree 1 element of S, then the overlap (ProjS)s N
(Proj.S), is the open affine subset of (ProjS); given by the spectrum of

S ollg/H) ™= SIF97 o

Since this expression is symmetric in f and g, we get a natural identification

((ProjS)¢)g/5) = (ProjS)g)(r/g)-

As in the discussion of gluing in Section 1.2.4, this makes Proj.S into a
scheme.

The scheme X = Proj S has a natural structure map to Spec Sy defined
by the map Syp — Ox(X). One case is so important that it deserves a
definition: If B = Spec A is an affine scheme, then a morphism X — B is
projective if it is the structure map ProjS — Spec Sy for a graded ring S
such that Sg = A and S is generated over A by finitely many elements. We
will soon be in a position to generalize this to arbitrary schemes B.

In the rest of this section and the next we present some basic facts about
projective schemes and their closed subschemes. Since these facts and their
proofs are quite parallel to things from the theory of varieties, we present
them as exercises.

Exercise III-6. (a) For any homogeneous ideal I of S and homogeneous
element f of degree 1, the intersection

(L-SIFDnSHFo

is generated by elements obtained by choosing a set of homogeneous
generators of I and multiplying them by the appropriate (negative)
powers of f (see Exercise I1I-10 for the generalization where f has
arbitrary degree). Thus the homogeneous primes of S[f~!] are in one-
to-one correspondence with all the primes (no homogeneity condition)
of the ring of elements of degree 0 in S[f~!]; the correspondence is
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given by taking a prime p of S[f~!] to q = p N S[f~']o and taking the
prime q of S[f o to qS[f~1].

(b) Let S = Alzg,...,x,] be the polynomial ring, and let U be the open
affine set (P%).,, of P’y = ProjS. By definition,

U = Spec S[z; o

Show that
Sty o = Aleh ..., 2]

7 T
the polynomial ring with generators xg =z /x;. (Note that 2} = 1, so
that this is a polynomial ring in r variables.) Thus

(Pa)z; = Ay

so projective r-space has an open affine cover by r + 1 copies of affine
r-space, as described in Chapter I.

(¢) Consider the map a: S — S[m;l]o obtained by mapping x; to 1 and
z; to x; for j # i. Show from part (a) that if I is a homogeneous ideal
of S, then

I':=1-S[z;7'1nS[z; o = a(l) - S[z; o

The process of making I’ from I is called dehomogenization. Describe,
as in the classical case, the inverse process, homogenization.

Exercise III-7. If I is a homogeneous ideal of the graded ring S, then we
have an inclusion of underlying sets

|ProjS/I| C |ProjsS|.

Show that the intersection of this subset with an open affine (ProjsS);
is a closed subset of (ProjS)s, and that the corresponding subscheme is
isomorphic to (ProjS/I)¢, so that ProjS/I can be realized as a closed
subscheme of ProjS. Every finitely generated A-algebra generated in de-
gree 1 is a factor ring, by a homogeneous ideal, of the polynomial ring
Alxo, ..., z,] for some r, so we see that every projective scheme over A is
a closed subscheme of a projective space over A. We will see in more detail
the correspondence between ideals in the ring S and closed subschemes of
Proj S in Exercises I1I-15 and III-16.

Exercise III-8. Show that P’} is the disjoint union of the open set A"
and the closed set IP’;X_l. In particular, IP’?L‘ = Spec A. Thus, for example,
we may picture P} as the union of the affine line A, over Z (as pictured
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in Chapter II) with a “point at co” isomorphic to SpecZ, as follows:

L » »
(4z1+=0)
(3, w1 —220) (11, 3 —2z0) ‘
(z1—2z0)
(2,21 —=0) (3, z1—=20) (11, zy —=g) ‘
(z1—x0)
(2,z1) (3,z1) (11, zq) ‘
(z1)

@) @) an . (0

Exercise ITI-9. Add to this diagram pictures of the closures of the points
(4xy — 5x0), (221 — 520), and (5) (compare with the diagram of A3 in
Section I1.4.3). Note: The curve (421 — 5x¢) should be drawn tangent to
the “point at 00” (xg), while the curve (2x, —5x¢) should not — informally,
we could say this is because the function 5/4 has a double pole at (2), while
5/2 has only a simple pole there. (See also the discussion in Exercise 11-38.)

Exercise ITI-10. With notation as above, let h be a homogeneous element
of S of any strictly positive degree. The set

(Proj S)p, :=Proj S — V(h)

is as above the set of homogeneous primes of S not containing h. Show
that this set is again in one-to-one correspondence with the set of primes
of S[h=!p and that in fact there is an isomorphism of Spec S[h~1]y with
an open (affine) subscheme of ProjS. Show also that a collection

{(Proj S)n}tren

of such open affines is an open cover of Proj S if and only if the elements
of H generate an ideal whose radical equals S .

Exercise ITI-11. Extend the definition of ProjS to the case where S is
not necessarily generated by elements of degree 1, and show that Proj.S is
a projective scheme.
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Exercise I11I-12. Let S be a graded ring, not necessarily generated in
degree 1. For any positive integer d, define the d-th Veronese subring of S

to be the graded ring
S =P Sa
v=0

Show that Proj S is isomorphic to ProjS(¥). However, show that if S =
Alz,y], then S(@ is not isomorphic to S as a graded algebra (or even as a
ring). Thus, as in the case of varieties, the correspondence between graded
algebras and projective schemes is not one-to-one.

11.2.2  Closed Subschemes of Proj R

A homogeneous ideal I C A[zo, . .., 7] determines a coherent sheaf of ideals
I C Opr,, and hence a closed subscheme of P’y. The following problems
develop these facts.

Exercise ITI-13. For each open set
Ui = (P")., = Spec Az, ...,z 2; o = A",

let I(U;) be the ideal I - A[zg, ..., 2., x; |0 Alzg, ...,z 2; ]o. Show that
this definition may be extended in a unique way to other open sets U in
such a way that I becomes a coherent sheaf of ideals. We may thus speak
of the closed subscheme V (I) of P"y associated to a homogeneous ideal I.

Exercise III-14. Conversely, given a closed subscheme X in P7,, we may
define a homogeneous ideal I(X) C A[zo,. .., x| to be the ideal generated
by all homogeneous polynomials p(zg, ..., x,) such that for every 7 setting
the i-th variable equal to 1 gives rise to an element

p(wo,...,1,...,2.) € Ix(Ui) C Alzo, ...,z 2; o
Show that if I = I(X), then [ = Zx.
Note that with Exercise I11-7 this shows that every closed subscheme of a

projective scheme is projective: if I C S = Alzo,...,x,] is a homogeneous
ideal, then V' (I) C P"; is isomorphic to the scheme ProjS/I.

Exercise ITI-15. The correspondence between subschemes and ideals is
not, as it was in the case of affine schemes, one to one. For example, show
that in P} with K a field, the ideals I = (20) and I’ = (22, zox1) both
define the same reduced, one-point subscheme. More generally, show that
if I ¢ S=K]Jx1,...,z,] is any homogeneous ideal, and for any integer ng
we define an ideal I’ C I by

I = @ I,

n>ngo

then I and I’ define the same subscheme of P
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Exercise III-16. To deal with this, define the saturation of a homoge-
neous ideal J C S := Az, ..., x,] to be the ideal

I={FeS:F-S,CJfor somen}

and say that a homogeneous ideal is saturated if it equals its saturation.
Show that there is a bijective correspondence between subschemes of P’
and saturated ideals.

Exercise ITI-17. Show that the isomorphism of Exercise III-12 defines
an isomorphism between projective space P”; and a closed subscheme of
P!, where N = dima(A[zo, ..., x,]4). (This is just the scheme-theoretic
version of the Veronese map.)

Exercise ITI-18. Show that if R is a graded ring finitely generated over
aring A = Ry (not necessarily generated by its graded part of degree 1),
Proj R is isomorphic to a closed subscheme of some projective space P.

We conclude with a definition and a basic theorem.

Definition ITI-19. A morphism ¢ : X — Y of schemes is said to be
projective if it is the composition of a closed embedding X — P} with the
structure morphism Py — Y.

Note that if Y = Spec A is affine, this amounts to saying that X is of the
form Proj S for some finitely generated A-algebra S. The basic fact about
projective morphisms is the one stated above:

Theorem III-20. Projective morphisms are proper.
For a proof see Hartshorne [1977, Theorem II1.4.9].

Exercise ITI-21. Show that a finite morphism ¢ : X — Y is proper, and
locally projective in the sense that Y can be covered by open sets U C Y
such that the restriction ¢ : V = ¢~ 'U — U is projective. (We have
adopted the definition of projective morphism given in Hartshorne [1977,
Section II.4]; what is here called locally projective is called projective by
Grothendieck [1961, EGA II, 5.5].)

I11.2.3  Global Proj

Proj of a Sheaf of Graded Ox-Algebras. The construction of Proj of
a graded ring S gives rise to a scheme X = Proj .S together with a structure
morphism X — B = Spec(Sp). Because the association of ProjS to S is
functorial, there is a more general construction that gives rise to schemes X
with structure morphisms X — B to arbitrary schemes B, and that special-
izes to the construction Proj when B is affine: all we have to do for general
B is replace the graded Sp-algebra S with a sheaf of algebras over Op.

To carry this out, let B be any scheme. By a quasicoherent sheaf of graded
O'p-algebras we will mean a quasicoherent sheaf .# of algebras on B, and
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a grading

o0
7 =07
v=0
such that #,.%, C %,4,, and Fy = Op. Thus, for every affine open subset
U C B with coordinate ring A = €p(U), the ring .Z# (U) will be a graded
A-algebra with 0-th graded piece F#(U)q = A.

Given such a sheaf %, for each affine open subset U C B we will let
Xy — U be the scheme Xy = Proj.%#(U) with the structure morphism
Proj.#(U) — Spec(A) = U. For every inclusion U C V of open subsets
of B, the restriction map # (V) — % (U) is a homomorphism of graded
rings whose 0-th graded piece is the restriction map &p(V) — 0p(U), and
so induces a map Xy — Xy commuting with the structure morphisms
Xy — U and Xy — V and the inclusion U — V. We may thus glue
together the schemes Xy to arrive at a scheme X with structure morphism
X — B; X is denoted Proj.#; and the construction of X is called global
Proj.

As in the case of ordinary Proj, in most situations it will be the case that
the sheaf of algebras .% is generated by its first graded piece %1, and that
1 is coherent (or, somewhat more generally, for some d > 0 the Veronese

subsheaf
7O =P Fa
v=0

is generated by %4, and .%, is coherent). Under these hypotheses it follows,
again as in the case of ordinary Proj, that the morphism Proj.% — B is
proper.

The simplest example of global Proj gives us yet another construction of
projective space over an arbitrary scheme S. Recall that projective space
P over an arbitrary scheme S was defined initially in Chapter I via the
gluing construction: if S is covered by affine schemes U, = Spec Ry, we
define projective space Pg to be the union of the projective spaces Pf;_,
with the gluing maps induced by the identity maps on U, N Ug. We can
also define it as a product:

n n
S = PZ Xspecz S.

Finally, we can realize it as the global Proj of the symmetric algebra of the
free sheaf of rank n+ 1 on S:

Exercise III-22. Let S be any scheme. Show that projective space P
over S may be constructed as a global Proj:

s = Proj (Sym(ﬁgawrl)).

In particular, we can realize products of projective spaces over a given
scheme S either as fibered products, or via global Proj: if we denote by
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Opu[Xo, . .., Xin] the sheaf of graded Opy-algebras Sym(ﬁﬂ%m"’l), then
Pg Xg ]P)Tsn = Proj ﬁpg [Xo, ce ,Xm].

A third way is via the Segre embedding:

Exercise I11-23. Let S be any scheme. Show that

P§ x5 P§ =V ({X;;Xp1 — Xi1Xk;}) C Proj Os[{Xi;}o<i<no<j<m]
- ]P)(n-‘rl)(nL-l—l)—l
=P ,

This in turn gives us a way of describing subschemes of such a product,
at least locally over the base:

Exercise I11-24. Let S = Spec R be any affine scheme. Show that any
closed subscheme

X C Proj R[zo, ..., 2n] xs Proj Rlyo, ..., ym| = P§ xs P¢

may be given as the zero locus of a collection {Fy,(zo, ..., ZTn; Y05 Ym)}
of bihomogeneous polynomials F, in the two sets of variables (xq, ..., z,)
and (Yo, ..., Ym). In particular, show that the ideal of 2 x 2 minors of the
matrix (2° ©1 " ) defines the diagonal subset in P§ x g P'g. Deduce that

\Yo Y1 ynd
any projective morphism is separated.

A more serious application of the global Proj construction is the defini-
tion of the blow-up of a scheme X along a closed subscheme Y C X; we
will discuss this in full in Chapter V. Another common use of global Proj is

the construction of the projectivization of a vector bundle, which we now
describe.

The Projectivization P(&) of a Coherent Sheaf &. We saw in Exer-
cise ITI-22 that projective space P& over a scheme S is Proj(Sym(ﬁg‘?”H)).
We make a similar construction for any coherent sheaf &, and define the
projectivization P(&) of & to be the B-scheme

P(&) = Proj(Symé&) — B.

To review the simplest case, let V' be an n-dimensional vector space over
a field K, regarded as a vector bundle over the one-point scheme Spec K.
The projectivization of V' is a projective space of dimension n over K. The
projectivization of V* is called the the dual projective space to PV. The
K-valued points of P(V') correspond to one-dimensional quotients of V' or
equivalently to hyperplanes in V. The K-valued points of P(V*) correspond
to one-dimensional subspaces of V; this is what was classically called P™.

More generally, if & is a locally free sheaf of rank n + 1, then P(&) is
a projective bundle over B, in the sense that for sufficiently small affine
open subsets U C B the inverse image of U in P(&) is isomorphic to pro-
jective space P{; as U-scheme. (When & is not locally free, it is less clear
what the resulting scheme P(&") will look like.) When B is a variety over
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an algebraically closed field K and & the sheaf of sections of a vector bun-
dle E on B, the K-valued points of P(&*) correspond to one-dimensional
subspaces of fibers of &, while the K-valued points of P(&") correspond to
one-dimensional quotients of fibers of &, or equivalently to hyperplanes in
these fibers.

Note that any closed subscheme X C P may be realized as Proj(.#) for
some quasicoherent sheaf .# of graded &'p-algebras. More generally, if &
is any coherent sheaf, any closed subscheme X C P(&) of its projectiviza-
tion may be so realized. Conversely, if .% is any quasicoherent sheaf of
graded Op-algebras generated by %7, the surjection Sym(.%#;) — Z gives
an embedding X = Proj.# — P(%).

Exercise IT1I-25. Let K be a field, P% = ProjK[X,Y, Z] the projective
plane over K and (P%()* = Proj K[A, B, C] the dual projective plane. Let
% be the universal line over (P%)*, that is,

Y =V(AX 4+ BY +CZ) C P% xg (P%)*

viewed as a family over (P%)*. Show that ¥ — (P%)* is the projectivization
of a locally free sheaf & of rank 2 on (P%)*, and describe the sheaf &.

Exercise III-26. Let B be any scheme, & a locally free sheaf on B and
E = Spec(Sym &*) — B the total space of the vector bundle associated
to & Show that we can complete E — B to a bundle of projective spaces
over B: specifically, show that we have an inclusion on E in the bundle
P(&* @ Op) as an open subscheme, with complement a hyperplane bundle
P(&*) CP(&* @ Op).

H1.2.4 Tangent Spaces and Tangent Cones

Affine and Projective Tangent Spaces. The Zariski tangent spaces to
a scheme are abstract vector spaces. When a scheme X over a field K is
embedded in an ambient space like affine space or projective space over
K, however, we can also associate to a point p of X with residue field K a
corresponding linear subvariety of that affine or projective space, called the
affine tangent space or projective tangent space to X at p. In the case of
an affine scheme X = V(f1,..., fr) C A% and point p = (ay,...,a,) € X,
this is the subvariety given as

v({ %(al,...,an)-(xi—ai)}a:1 k)

.....

To understand the relationship between this scheme and the Zariski tangent
space, note that a vector space over a field K is not the same thing as affine
space A%. But it is true that, given a vector space V of dimension n over
K, we may associate to V a scheme V| isomorphic to affine space A%, so
that the points of V with residue field K correspond naturally to vectors
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in V: this is just the spectrum of the symmetric algebra of the dual vector
space

V = Spec (Sym(V*)) .

We will call V the scheme associated to the vector space V.

This said, the scheme T, (A% ) associated to the Zariski tangent space to
affine space A’y over a field K at any K-rational point p € A% (that is, a
closed point with residue field x(p) = K) may be naturally identified with
the affine space itself, via an identification carrying the origin in T, (A%)
to p. Now, suppose X C A% is any subscheme, and p € X any K-rational
point. The differential di,, of the inclusion ¢ : X < A% at p represents the
Zariski tangent space T),(X) as a vector subspace

dup : Tp(X) — Tp(AK).
We take the induced inclusion of schemes

ap 1 Tp(X) = Tp(Ak) = Ak

and compose it with the translation morphism ¢, : A% — A% sending the
origin to p to obtain an inclusion

ty-dip: Tp(X) — Al — AL

The image of this inclusion is an affine subspace of A, which we will call
the affine tangent space to X at p. Again, note that it is a scheme, not a
vector space.

A similar construction will associate to a point p with residue field K
on a projective scheme X C P% a linear space T,(X) C P%. One way to
do this is to choose an open subset U = A% C P containing p, and take
the closure in P} of the affine tangent space to X NU at p. But there is a
more intrinsic way. First, we write our ambient projective space P as the
projective space PV associated to a vector space V, that is, as

% =ProjS
where
S =SymV*
is the symmetric algebra of the dual of a vector space V. Thus, (k + 1)-

dimensional linear subspaces of S; = V' correspond to k-planes in P . We
let

I=1(X)csS
be the homogeneous ideal of X C P%, and let m = m;, C S be the ideal of
forms vanishing at the point p € X. Let J be the saturation of the ideal

I +m? C S. We define the projective tangent space T,(X) C P} to X at
p to be the subspace

T,(X)=V(JNS) C Py
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of P. By way of explanation, note that J is the ideal of the first-order
neighborhood of p in X — that is, the intersection of X with the “fat point”
P C P% defined by the square of the ideal m of p. The projective tangent
space T, (X) = V(J N S1) is thus the span of this first-order neighborhood
V(J), that is, the smallest linear subspace of P% containing V' (.J).

Exercise I1I-27. Show that this definition coincides with the naive defi-
nition proposed initially.

Since the projective tangent space T,(X) to a projective scheme X at
a K-rational point p € X is a linear subspace of the ambient projective
space PV, it is of the form T,(X) = PW for some quotient vector space
V — W — 0. We may ask then what the relationship is between the vector
space W and the Zariski tangent space T,(X). The answer, which we will
see in Section VI.2.1 is that we have an exact sequence

0 — K —W"—T,(X) —0.

More precisely, if V' — U — 0 is the one-dimensional quotient of V' cor-
responding to the point p € X C PV, then the surjection V' — U factors
through a surjection ¢ : W — U, and we have a natural identification

T,(X) = Hom(Ker ¢, U).

In any event, note that we do have a natural identification of the set of
lines through p in T, (X) with the set of lines through the origin in 7}, (X).

Exercise III-28. Let X = V(F') C P be the hypersurface in P% given
by the homogeneous polynomial F(Zy,...,Z,), and let p = [ag,...,a,] €
X be any point with residue field K. Show that the projective tangent
space T,(X) is the zero locus V(L) C P% of the linear form
"~ OF
L(Zo,...,Zn)* (ao,...,an)~Zk.

P 0Z;

Tangent Cones. A more accurate reflection of the tangential behavior of
a scheme X at a point p € X is its tangent cone. To define this, let X now
be an arbitrary scheme, p € X and point, Ox , the local ring of X at p
and m = my , C Ox, the maximal ideal in Ox ,. We define the tangent
cone TCp(X) to X at p to be the scheme

TC,(X) = Spec < @ ma/m”‘H) :
a=0
A few observations about this construction are in order. First, we note that
the graded ring B = @(m®/m®*1) is generated by its first graded piece
By =m/m? = (T,X)*
so that B is a quotient of the ring
A= Sym((T,X)").
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We thus have an inclusion
TCp(X) =SpecB — Spec A =T,X,

or in other words, the tangent cone to X at p is naturally a subscheme of
the scheme associated to the Zariski tangent space T}, X to X at p.

To give a more concrete realization of the tangent cone, suppose that X
is a subscheme of affine space over a field K, that is,

X C Spec K[z1,...,25]

and let I = I(X) C K[x1,...,2,] be the ideal of X; suppose moreover
that the point p € X is the origin (z1,...,2,) € A% . For any polynomial
f € Klx,...,xz,)], write

f(xla---vxn):fm(xlv--wmn)+an+1($17---amn)+"'

with fi(z1,...,2,) homogeneous of degree [ and f,, # 0; the first nonzero
term fp,(z1,...,2,) is called the leading term of f. Then we have the
following interpretation:

Exercise I1I-29. Show that the tangent cone
TC,(X)CT,X CT,(A%) =A%

is the subscheme defined as the zero locus of the leading terms of all ele-
ments f € L.

Returning to the general case, note that since the ring B = @(m®/m+1)
is graded, we can also associate a geometric object to the pair (X,p) by
taking Proj B. This is a subscheme of the projective space P(7),X) = Py,
associated to the Zariski tangent space to X at p, called the projectivized
tangent cone to X at p and denoted PT'Cp(X). In many ways it is more
convenient to deal with, being a projective scheme and of one lower dimen-
sion than the tangent cone; it contains in general slightly less information
(as exercise I11-30 below will show, the tangent cone T'C,(X ) may have an
embedded point at the origin, which the projectivized tangent cone will
miss).

Even though the degree of a general subscheme of projective space will
not be defined until Section II1.3.1, we should mention here an important
invariant of a scheme that can be defined in terms of the projectivized
tangent cone to X at p: we define the multiplicity of X at p to be the
degree of the projectivized tangent cone PTCy(X) C P(T,X) = Py ,.
This definition represents one more example of how schemes arise naturally
and are useful in the context of varieties: in the category of varieties we
can still define the tangent cone (as the reduced scheme associated to our
tangent cone) and projectivized tangent cone, but they do not behave well
in families.
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There are many naturally occurring examples of nonreduced tangent
cones. For example, consider the family of plane cubic curves with equation
Cy = Spec K[z,y]/(y? — tz® — x%) (that is, we let B = A} = Spec K|t],
and take our family to be € = V(y? — ta> — 2°) € A% — B). For each t,
the curve C; may be given parametrically as the image of the map

A} = Spec K[\] — A% = Spec K[z, y]

given by t — (A2 — ¢, A3 — t)). For t # 0, this curve has a node at the
origin — the two points A = £/t each map to the origin— and this is
reflected in the tangent cone T (,0)Cy = V (y? — t2?), which is the union of
the two lines y = ++v/tx. When t = 0, we see that the node of the curve
has degenerated to a cusp, and the tangent cone is now the double line
T (0,0Co = V(¥?).

For more subtle examples, consider the curves C; and Cy C A% given
as the images of the maps v; : Aj, — Ai( given by

vy st (83,14, 15)
and
vy it — (£3,85,17).
In each case, let p be the singular point of C;.
Exercise II1-30. (a) Show that the projectivized tangent cones
PTC,(C;) C P%

to both curves C; are curvilinear schemes of degree 3, that is, isomor-
phic to Spec K[s]/(s3), and that they are not contained in any line in
P%.

(b) Find an example of a curve C' C A% where the projectivized tangent
cone to C' at the origin is isomorphic to Spec K [s]/(s®) and contained
in a line.

(¢) Find an example of a curve C' C A% where the projectivized tangent
cone to C' at the origin is isomorphic to Spec K [s, t]/(s?, st, t?).

(d) Find an example of a curve C' C Ai( where the projectivized tangent
cone to C' at the origin is contained in a line, but the Zariski tangent
space Tp(C') is three-dimensional.

There is another geometric characterization of the tangent cone to a
scheme X at a point p € X: simply put, the tangent cone is the locus of
limiting positions of lines pq joining p to points ¢ # p € X as q approaches
p. To state this precisely, suppose first that a neighborhood of p in X
is embedded in affine space A% over a field K. Let T = T,A% be the
affine space associated to the Zariski tangent space T,A% to A at p, and
consider the incidence correspondence

S = {(v,q) :v € T,(Fa) € T x (A% \ {p})}.




II1.2 Proj of a Graded Ring 109

Equivalently, in terms of the identification of T with A itself, ¥ is the
subscheme of A% x (A% \ {p}) given by the equations

yi(zj —5(p)) — yj (zi — 2:(p)) = 0.

Let T :_7r2_1(X \ {p}) C T x (X \ {p}) be the inverse image of X \ {p} in
Y, and I the closure of I' in T' x X. We have then:

Proposition I1I-31. The tangent cone TC,X is the fiber of T over the
point p € X.

This statement (modulo possible embedded components at the origin in
TC,X) will be proved in Chapter IV. It amounts to the statement that
the projectivization of TCp X is the exceptional divisor of the blow-up of
X at p.

Proposition I1I-31 is very useful, for example in doing Exercises I11-32-
I11-34 below.

Exercise ITI-32. Let V be the vector space of polynomials of degree n on
Pl = Proj K [X,Y], that is, homogeneous polynomials of degree n in two
variables X,Y, and let PV* 2 P% be the projective space parametrizing
one-dimensional subspaces of V. Let A C P% be the discriminant hyper-
surface, that is, the locus of polynomials with a repeated factor with the
reduced scheme structure (we will see in Chapter V how to give equations
for, and hence a natural scheme structure on, A). If

F(X,Y) =[] (a:X + b;y)™

is any polynomial of degree n (with the factors a; X 4+ b;Y pairwise indepen-
dent), what is the support of the tangent cone to A at the point p = [F]?
(Hint: consider lines in P% through the point [F]. How many other points
of intersection with A will a general such line have, and which lines will
have fewer?)

Exercise III-33. More generally, suppose A,, C P% is the locus of poly-
nomials with an m-fold root. Again, what is the support of the tangent
cone to A,, at a point [F], where F' is as above?

Exercise ITI-34. This is an exercise from classical geometry. Suppose C' C
P’% is a nonsingular curve. The union of the projective tangent lines to C
is the support of a surface S C P, called the tangent developable to C;
this surface will be singular along C' (see Harris [1995] for example). What
is the support of its tangent cone at a general point p € C? (Note that if
we take C' to be the rational normal curve in P, that is, the image of the
n-th Veronese map IP’}( — P%, then this is a special case of exercise I111-33
above.)

Exercise III-35. In each of the following, a finite group G acts on the
affine plane A%, = Spec K[z, y]. The quotient A% /G (that is, Spec K [z, y])
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will have a singularity at the image of the origin (z,y) € Ai(. Describe the
tangent cone in each case.

(a) G=12Z/(3), acting by (z,y) — (Cx, y), where ( is a cube root of unity.

(b) G = Z/(3), acting by (z,y) — (Cz,¢%y), where ( is a cube root of
unity.

(¢c) G=17Z/(5), acting by (x,y) — (Cz,Cy), where ( is a fifth root of unity.

We will encounter tangent cones again in our discussion of blowing up:
as we indicated, the projectivized tangent cone PTC,(X) to a scheme X
at a point p € X is the exceptional divisor in the blow-up Bl,(X) of X at
p. In particular, tangent cones to arithmetic schemes will come up again in
this way in Section IV.2.4.

II1.2.5 Morphisms to Projective Space

Just as there is a simple characterization of morphisms to an affine scheme
(Theorem I-40), there is a simple way of viewing morphisms to projective
space in terms of line bundles, or, equivalently, invertible sheaves, a concept
we will introduce in this section. Invertible sheaves have another geometric
realization in the notion of Cartier divisors, and we will describe this con-
nection as well. See Hartshorne [1977, Chapter II] for further information.

If we understand morphisms to the scheme P, we will understand mor-
phisms to an arbitrary projective scheme Y C P, since a morphism to Y’
is just a morphism to P’} that factors through Y (a sharp version of this is
given in Exercise I11-45); thus we will study morphisms to projective space.

To understand the situation, we first consider morphisms ¢ : X — P’} =
Proj Alzo, ..., zy] in the category of A-schemes, where X = Spec K is the
spectrum of a field. Since X has only one point, the image p of such a
morphism must be contained in one of the open sets

X x
U, =P%)az, = SpecA[—?, cel —"} > A",
Ti ZT;
Thus the map corresponds to an n-tuple of scalars (ag,...,a;,...,0,) €

K™. Of course, p may also be contained in another open set Uj; in this case
a; # 0 and the coordinates in U; are

(boy. - by, ) = (Z—;’ a% Z—Z‘)
To show the coordinates without prejudice toward one or another of the
U;, we may say that a map Spec K — P’} corresponds to an (n+1)-tuple
of elements of K, not all zero, with two such (n+1)-tuples corresponding
to the same map if and only if they differ by a scalar; the map above
corresponds to the (n+1)-tuple [cg=aq,...,;=1,..., a, =ay], or, equiv-
alently, [/Boibo, ce ,ﬂj :1, ceey 6n:bn]
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Having said this, we may extend exactly the same consideration to the
case of a morphism X — P’} where X is the spectrum of a local A-algebra:

Proposition IT1I-36. If T is a local A-algebra, the morphisms SpecT —
P (in the category of A-schemes) are in one-to-one correspondence with
the set of (n+1)-tuples [ag, . .., an] € T such that at least one of the «;
is a unit, modulo the equivalence relation [, . .., a,] ~ [aag, .. ., away] for
any unit o« € T.

Proof. Write Py = Proj Alzg,...,x,]. Given an (n+1)-tuple [ag, ..., an,]
with «; a unit, we map SpecT to U; = (P"}),, C P’ via the map corre-
sponding to the A-algebra homomorphism

To Tn

EI

T T
€T Q4
i, %
T (&7}

Conversely, given a morphism ¢ : SpecT — P’ of A-schemes, let p €
Spec T be the unique closed point, and suppose that ¢(p) € U,. The preim-
age ¢~ 1(U;) is an open subset of SpecT containing p, and hence in all of
SpecT'; in other words, ¢(X) C U;. The map ¢ is thus given by a map of

A-algebras
[ﬂ, R @} — T
T i
and we may associate to ¢ the (n+1)-tuple
Zo In
{aozx—i, =1 a”:x_i}'

(If the image ¢(x) is also contained in Uj;, we arrive at the (n+1)-tuple
_To _ _In
|:ﬁ0_1,j7 ey ﬁ]_la RS an_l‘j:|’
which equals [aag, ..., aq,] for a = x;/z;.) |

To generalize this further, to affine rings or schemes, we seek a construc-
tion that, locally, reduces to the one above. To this end, we may regard the
(n+1)-tuple (o, ..., a,) of the proposition as giving a module homomor-
phism

a: T ST

To say that « is surjective is equivalent to saying that any of the «; is a
unit in 7. And two such maps are equivalent if they differ by composition
with an automorphism of the module T' (that is, multiplication by a unit).
Equivalently, the kernel is a rank-n summand of 7%,

It turns out that this last sentence generalizes to describe A-morphisms
from an A-scheme X to P": they correspond to subsheaves & C ﬁ’}“ of
rank n that are locally direct summands of ﬁ’}“; or, equivalently, to maps

ovtt — P —0,
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where P is a sheaf locally isomorphic to &x (such a sheaf is called invertible,
a term that will be explained in the following discussion), modulo units of
Ox acting as automorphisms of P.

Theorem III-37. For any scheme X, we have natural bijections
Mor (X, P7)
= {subsheaves K C 0% that locally are summands of rank n}

_ {invertible sheaves P on X, together with an epimorphism ﬁ}+1—>P}

{units of Ox(X) acting as automorphisms of P}

Here “natural” means that for any morphism ¢ : X — Y of schemes, the
map Mor(Y,P;) — Mor(X,P7%) given by composition with ¢ commutes
with pullback of invertible sheaves and epimorphisms; in other words, we
have an isomorphism of functors from the category of schemes to the cat-
egory of sets.

Of course, if X — B is a B-scheme, we will be interested in describing
the morphisms of X to P'; over B. This turns out to involve no new ideas:
somewhat surprisingly, for any B-scheme X — B, a B-morphism X — P}
is exactly the same thing as a morphism X — P7%! The point is, since P is
the product of P with B, a morphism of any scheme X to P’} is uniquely
determined by the data of a morphism X — B and a morphism X — P7.

D G - P
B PZ
SpecZ

Thus, after specifying a structure morphism ¢ : X — B we get a bijection
Mor(X,Py) < Morg(X,P%).

We now proceed with the proof of Theorem III-37. Because all the terms
in these equalities are defined locally on X, the theorem reduces easily to
the case where X is affine, and this is the case we will actually prove below.
First, we review the corresponding notions about modules. A good basic
reference is Bourbaki [1972, Chap. II-5].

Recall that a module K over a ring T is locally free of rank m if for every
maximal ideal (or, equivalently, every prime ideal) p the T,-module K, is
free of rank m. This is the same as the sheaf-theoretic notion.

Exercise II1-38. Let K be a finitely generated module over a Noetherian
ring T, and let K be the corresponding coherent sheaf over SpecT. Show
that K is a locally free module in the sense above if and only if K is a locally
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free coherent sheaf in the sense that there is an affine cover of SpecT by
basic open sets Spec T, such that the restriction of K to each of these sets
is free (equivalently, each K([f; '] is free over Ty, = T|[f;}]).

An invertible T-module is a finitely generated, locally free T-module of
rank 1.

In commutative algebra, locally free modules are usually called projective
modules; their characteristic property is that if P is a locally free T-module,
then any epimorphism of T-modules M —~ P splits. It follows that if
K c T"*! is a submodule, then K is a summand of 7"F! if and only if
T+ /K is a locally free module; in particular, K is a rank n summand of
T+ if and only if 7"+ /K is an invertible module.

Before giving the proof of Theorem I11-37, we record a result that comes
from an immediate application of the definitions.

Proposition III-39. A morphism of an arbitrary scheme X to projective
space P}, = ProjZ[xo,...,x,;| may be given by a collection of maps ¢, :
Ui — (Py)s,, where {U;} is an open cover of X, the (P3)s, C Py are the
open subsets of Fxercise III-6, and the maps ¢; and ¢; induce the same
map U; NU; — (P7)z; N (P7)z; = Spec(Z[zo, . .. ,xr][xi_l,xj_l])o.

The heart of Theorem I11-37 is the following result, which is the affine
version of the first equality.

Proposition I11-40. If T is any ring, then
Mor(Spec T, Py)

= {K Cc T"" | K is locally a rank n direct summand of 7" +1}.

Proof. Suppose, first, that K is a rank n free summand of 7"+, and write
P for the module 771 /K. This module is locally free of rank 1 and is
generated by the n + 1 images e; of the n + 1 generators of 771, Let I;
be the annihilator of (P/Te;), and let U; be the complement of V(I;) in
SpecT, so that the U; form an open cover of SpecT. Regard T-modules
as sheaves on SpecT. On U; the map T — P defined by 1 — e; is an
isomorphism, and identifying P|y, with T'|y, via this map, the projec-
tion T"+1|U,~ — (T”+1/K)|Uj = Ply; = T|vy; has a matrix of the form
(tjo,...,t;; = 1,...,tjn), which defines an element of T{};rl and thus a
morphism SpecT — A7. These morphisms agree on overlaps as in Propo-
sition I11-39, so they define a morphism SpecT — P7;.

Conversely, suppose that we are given a morphism @ from SpecT to
P7. Since Py, is covered by n + 1 affine n-spaces, ¢ is by definition asso-
(th; e ;tjj = 1, . ,t]‘n) of Tn+1|Uj sucﬂfhat tij is a unit on Ul n Uj and
ty = tijty in T|y,ny; for all 4, j,1. Two such T-valued points are the same
if and only if the corresponding elements of T”+1|U]. are equal for each j.
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Let K; be the kernel of the map T"*!|y, — Ty, defined by the matrix
(tj(), ce ,tjj . ].7 ‘e ,tjn), and let

K ={aeT""" :aly, € K; for each j}.

To see that K is locally a rank n summand of 77!, note that any
local ring of T is a local ring of one of the U; so the result of localizing
the sequence 0 — K — 7"l — Tt /K — 0 at any prime ideal p is a
sequence of the form

O—>I(p—>Tp”+1—>T,,—>O7
and such a sequence must split. O

Exercise III-41. The word “locally” can be omitted in the statement of
the proposition, because a submodule of a finitely generated free module
that is locally a direct summand is in fact a direct summand. Prove this.

To derive a version of this with invertible modules, we use the fact that
K c T™! is a direct summand of rank n if and only if T"*!/K is an
invertible module, and identify the set on the right-hand side of the equality
in Proposition III-40 with the set of invertible quotient modules of 77!,
We may separate the isomorphism class of the quotient from the surjection
that makes it a quotient and look at invertible T-modules P with surjections
Tn*+l — P. Two surjections a, # : T"T! — P have the same kernel if and
only if there is an automorphism ¢ : P — P such that § = ca. But if
P is an invertible T-module, then Homy (P, P) = T (reason: the natural
map « : T — Homy (P, P) taking 1 to the identity is locally the same as
the natural map T — Homp(7,T), which is an isomorphism, so « is an
isomorphism). Thus the automorphisms of P may be identified with units
of T, and we get the following corollary:

Corollary 111-42. IfT is any ring, then
Mor(Spec T, Py)

B {invertible T-modules P with an epimorphism 77! — P }

{isomorphisms} ’
where an isomorphism from ¢ : T"1 — P to ¢/ : T" — P s an
isomorphism o : P — P’ such that ap = ¢'. Note that the set of such iso-
morphisms is either empty or in (non-natural) one-to-one correspondence
with the units of T'.

In the classical case of the variety P over a field K, we can specify points
of P by giving (n+1)-tuples of elements of K, not all zero. (In the scheme
P, of course, there are other, nonclosed points as well.) Analogously, for
any ring A, an (n + 1)-tuple (ao, . ..,a,) of elements a; € A that generate
the unit ideal defines a surjection A"+ — A of A-modules and thus defines
an A-valued point of P’).
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Exercise III-43. (a) Show that there are bijections between the sets

{(n + 1)-tuples of elements of A that generate the unit ideal} and

maps Spec A — P such that the composite Spec A — P’ — Spec A
is the identity (A-valued points of P7; in the category of A-schemes) [ "

. . " associ
(b) Show that the image of the morphism Spec A — P’} associated to an
(n + 1)-tuple (ao, . ..,an) is the closed subscheme

V({aiX; — a; Xi}o<ij<n)-
If A is a domain, show that ({a;X; — a;X;}o<s j<n) is a prime ideal.

If A is a domain, Exercise I1I-43 shows that the image is a reduced and
irreducible closed subscheme of P}, and in particular corresponds to a point
of |P%|. The example of the point of P; corresponding to (2,5) is treated
in Exercise III-9 above. Note that the Spec Z-valued point (2,5) is not a
Spec Z-valued point of either open set in the standard affine open cover
P}, = A UA} of P}, even though the point (221 —5z0) € |P}| lies in both!

Finally, if we are working in the category of B-schemes, we may ask for
a generalization of this result describing maps of a given B-scheme X to a
projective bundle. To state the result, let & be any coherent sheaf on B.
We have then:

Theorem II1-44. For any B-scheme ¢ : X — B and coherent sheaf & on
B, there is a natural bijection

Morgp(X,P(&))
_ {invertible sheaves P on X, together with an epimorphism ¢*& — P}

{isomorphisms}
where isomorphism is defined as in Corollary III-42.

We will not prove this here; the proof can be carried out by locally
expressing the coherent sheaf & as a quotient of a free sheaf ﬁg“, and
characterizing the subset of morphisms from X to P% that factor through
the resulting inclusion P(&’) — P%.

Exercise IIT-45. (a) Suppose that Y C P’ is the closed subscheme de-
fined by homogeneous equations {F;}. If T is a local A-algebra then, as
we showed above, the morphisms from Spec T to P’} may be identified
with n + 1-tuples of elements of T' generating the unit ideal, modulo
units of T. Show that the condition that such an n+ 1-tuple correspond
to a map to Y is simply that it be a zero of all the polynomials Fj;.

(b) The general case of a map from an affine A-scheme to a projective A-
scheme can be reduced to the local one using the following fact: if T" is
any A-algebra a morphism SpecT — P’} factors through X if and only
if for all primes p of T' the composite morphisms Spec T}, — SpecT —

15 factor through X. Prove this.
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Having characterized morphisms of schemes to projective spaces, it is
instructive to look back to other geometric theories for similar characteri-
zations. Recall that in topology the space P¢ of n-dimensional subspaces
of a complex (n+ 1)-dimensional vector space C™*! is the classifying space
for subbundles of rank n of a trivial bundle of rank n+ 1 (and similarly for
Pg). This means that for all spaces X, maps X — P¢ correspond to the
rank n subbundles of the trivial bundle on X. The correspondence is easy
to describe: a rank n subbundle ¢ of the trivial bundle ¥ = C"'x X on
X corresponds to the map X — P¢ that sends a point p € X to the point
of P¢ corresponding to the space

Fp C ¥ =C"x {p} =C".

There are other equivalent descriptions, which may be more familiar, in
terms of the rank 1 quotient bundle ¥/ _# or the subbundle (¥/ _#)* C ¥*
of rank 1.

Analogous results hold in the category of complex analytic spaces and
maps and in the category of algebraic varieties and regular maps (taking
the subbundles to be complex analytic, or algebraic, respectively). In this
section we give a corresponding result for schemes. The main difference is
that in algebraic geometry, it is traditional to replace vector bundles on Y’
by their sheaves of sections.

To see what these sheaves should look like, consider first that if & is
a trivial vector bundle of rank 1 on a scheme X, then a section of & is
the same as a function on X, so the sheaf of sections of & should be Ox.
Taking direct sums, we see that the sheaf of sections of a trivial vector
bundle of rank m is the coherent sheaf that is the free &x-module 0% . In
general, since vector bundles are by definition locally trivial, their sheaves
of sections are locally free sheaves of &x-modules of finite rank — locally
free coherent sheaves. It is not hard to go in the other direction as well and
to derive from a locally free coherent sheaf a vector bundle.

Given this equivalence between vector bundles and locally free coherent
sheaves, why work with locally free sheaves? The reason is similar to the
reason for working with schemes instead of varieties even if one is primarily
interested in varieties: locally free coherent sheaves live naturally in the
larger category of coherent sheaves, and working in the larger category
gives us flexibility. Standard constructions in the smaller category (such
as taking the fibers of a morphism of schemes, or taking the cokernel of
a homomorphism of locally free sheaves) are most naturally interpreted in
the larger category.

Like the line bundles to which they correspond, locally free sheaves of
rank 1 play an especially important role and have a special name: they are
called invertible sheaves. The terminology comes from number theory: an
invertible module over a domain 7T is a finitely generated submodule I of
the quotient field such that, for some other finitely generated submodule
J of the quotient field (called its inverse) we have I.J = T, the unit ideal.
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Over the scheme SpecT, the corresponding sheaf is an invertible sheaf.
More generally, given any invertible sheaf .# over an arbitrary scheme X,
the sheaf .#* = Hom(.#, Ox) is again invertible and the natural map .# ®
J* — Ox is an isomorphism (check locally). For this reason .#* is called
the inverse of .&.

Knowing that invertible sheaves correspond to line bundles does not at
first seem to help connect them to geometry. Just as in classical algebraic
geometry, however, morphisms of a scheme X to projective space can in fact
be characterized in geometric terms using the related notion of an effective
Cartier divisor. This is defined to be a subscheme D C X such that at every
point 2 € X the ideal of D in the local ring O , is principal and generated
by a nonzerodivisor. In other words, a subscheme D is an effective Cartier
divisor if and only if its ideal sheaf .#p is invertible. Following tradition,
we define the invertible sheaf Ox (D) associated to D to be the inverse

Ox(D) = 77,

The invertible sheaves form a group Pic X under the tensor product oper-
ation, and under reasonable circumstances — for example, for subschemes
of projective space over a field —every invertible sheaf can be written as
Ox(D)® 95 = Ox (D) ® Ox(E)* for some effective Cartier divisors D, E.

Note the unfortunate but essentially unambiguous notation: if U is an
open set of X then &(U) denotes the ring of sections of the sheaf &'x defined
over U, while if D is a Cartier divisor &'(D) denotes the sheaf above. Of
course we could also manufacture such monstrosities as Ox (D)(U). ...

We may tighten the connection between invertible sheaves and effective
Cartier divisors as follows: If D is an effective Cartier divisor then the
inclusion .#p — Ox is a global section of Hom(.¥p, Ox) = Ox (D). This
section is regular in the sense that for every open set U C X no nonzero
element of Ox (U) annihilates the restriction of this section to U (Reason:
the image of Zp(U) in Ox (U) contains a nonzerodivisor.) Thus an effective
Cartier divisor gives rise to an invertible sheaf with a global section.

Conversely, given an invertible sheaf . and a global section o, we define
the zero locus of that section to be the support of the quotient .£/0xo.
To understand what this means, choose a covering of X by open sets U
such that Z|y = Opy. The zero locus of o in U is then the zero locus of the
corresponding element of Oy . If the section is regular, it follows that the
zero locus is an effective Cartier divisor. Note that another global section
differing from o by a unit in @x(X) would give the same Cartier divisor.
We thus have a bijection

{effective Cartier divisors}

!

{invertible sheaves with choice of global section modulo units} .

The reader might wonder about the significance of “effective”. An ef-
fective Cartier divisor D may be defined by giving a nonzerodivisor in
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fu € Ox(U) for each set U of an open covering of X, and fy is defined up
to a unit of Ox (U). Thus D gives rise to a unique global section of the sheaf
of invertible rational functions modulo invertible regular functions — that
is, the sheaf .#Z% /0%, where * denotes the sheaf of multiplicative units,
and .#x is the sheafification of the presheaf whose value on an open set U
is the localization @'x (U)[Sy;'] of the ring Ox (U) at the multiplicatively
closed set Sy of elements that become nonzerodivisors in Ox , for every
x € U. (All that one usually needs to know about this slightly baroque def-
inition is that if U = Spec A for a Noetherian ring A, then .#x (U) is the
result of inverting all nonzerodivisors in A. More general cases are subtle;
see for example Kleiman [1979] for information.) We define a Cartier divi-
sor in general to be an arbitrary section of the sheaf .#Z% /0% . The Cartier
divisors on X form a group called Div X, and the association D +— Ox (D)
defines a homomorphism Div X — Pic X.

The effective Cartier divisors form a monoid in Div X; again, in reason-
able circumstances such as for subschemes of a projective space over a field,
the monoid of effective Cartier divisors generates Div X, and in the freest
possible way: Div X may also be realized as the Grothendieck group of the
monoid. The effective Cartier divisors are then just the Cartier divisors
that “effectively” define subschemes.

I11.2.6 Graded Modules and Sheaves
The attentive reader may have noticed that Theorem III-37 implies the

existence of a distinguished invertible sheaf on P7, namely, the one corre-
sponding to the identity map. In this section we will give descriptions of
this sheaf, which plays a fundamental role in projective geometry.

We begin with a general method for constructing sheaves on schemes
of the form Proj.</ analogous to the construction of sheaves on Spec A
from modules over A. Let B be a scheme, and let & = oy ® & & ---
be a quasicoherent sheaf of graded O'p-algebras. Let P = Proj.«/. Let .#
be a quasicoherent sheaf on B which has the additional structure of a
sheaf of graded «/-modules; that is, we have a direct sum decomposition
M = ®M:; D Mi41D- - and there are maps o; @ M; — M1 ; satisfying
the usual axioms (associativity, identity, ...). We may associate to .Z a
quasicoherent sheaf .#Z on P as follows: Let U be an affine subset of B,
and consider the graded ring 7 (U). For each homogeneous element f of
o/ (U) we have an affine open set Py := (Proj </ (U)); = Spec(</(U)s)o
of IP; the schemes Py ; form an affine open cover of P. The sections .#(U)
over U form a graded module over the graded ring &7 (U). Let 4y, s be
the («7(U)¢)o-module Ay 5 = (M (U) @y & (U)[f )0, and let Ay,
the corresponding sheaf on the affine scheme Py . These patch together
to define a quasicoherent sheaf on P that we denote by .Z.

In fact, every quasicoherent sheaf on Proj.</ corresponds to a sheaf of
graded & modules in this way. However, unlike the correspondence between
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modules over a ring and quasicoherent sheaves over Spec of that ring, the
correspondence is not bijective. For example, as the reader can easily check,
the sheaf associated to a module .# is the same as the sheaf associated to
the truncated module 4" = @, >y, .4, for any ny. But in good cases this
is the only kind of failure: for example, the association .# — .Z gives a
bijection

{sheaves of finitely generated graded «7-modules up to truncation}

!

{quasicoherent sheaves on P} .

To start with the simplest example, if we take .# = o/ we get the struc-
ture sheaf Op. Much more interesting is the deceptively simple modification
obtained by shifting the grading by 1. In general, if .# = @, .#; then we
define the n-th twist .#(n) of .4 to be the same module but with degrees
shifted by n, that is

///(n)z = %n+i~

—_—~—

We define Op(n) to be the sheaf o7(n) associated to the sheaf of graded
modules & (n). The most important of these is p (1), called the tautological
sheaf on P.

Exercise ITI-46. Assume the algebra <7 is generated in degree 1. Show
that all the sheaves Op(n) are invertible. Show that Op(n) ® Op(m) =
Op(n +m), and in particular Op(n)~t = Op(n)* = Op(—n).

Exercise I11-47. Let 7 : Proj«/ — Spec 4 be the structure map. Show
that for any quasicoherent sheaf .4#” on Spec &% the pullback 7*(.4") is the
sheaf assocated to &7 @4, A .

Exercise I11-48. Let K be a field, and consider the projective space P% =
Proj K|z, ..., z,]. Let H be a hyperplane. Show that H is a Cartier divisor
on P% and that the associated invertible sheaf is Opn (1).

111.2.7 Grassmannians

Grassmannians exist in the category of schemes, and behave very much
like Grassmannians in classical algebraic geometry. More precisely, there
is, for any scheme S and positive integers n and k < n, a scheme Gg(k,n)
called the Grassmannian over S; the construction is functorial in S, in the
sense that for any morphism 7' — S, the Grassmannian Gp(k,n) is the
fiber product Gg(k,n) xgT. (In particular, there is a scheme Gz(k,n)—
the Grassmannian over Spec Z —such that any Grassmannian may be re-
alized as Gg(k,n) = Gz(k,n) x S.) Moreover, in case S = Spec K is the
spectrum of an algebraically closed field the scheme Gg(k,n) is the scheme
associated to the classical Grassmann variety G(k,n) over K. In fact, the
constructions, which we will describe briefly below, are themselves exactly
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analogous to the standard constructions of the Grassmannian in the clas-
sical context. Rather, as in the case of projective space, what is new and
different about the Grassmannian as a scheme are the subschemes of it; we
will illustrate this with our discussion of Fano schemes below.

We will begin with the constructions of the Grassmannian Gg(k,n) for
S = Spec A an affine scheme (this is also called the Grassmannian over A
and denoted G4(k,n)). At the end, we will observe that the construction
is natural, in the sense that for any morphism 7" — S of affine schemes we
have

Gr(k,n) = Gs(k,n) x5 T.

It will follow that we can construct Grassmannians over arbitrary schemes
S by gluing together the Grassmannians Gy, (k,n) over a collection of affine
open subsets U, C S covering S. Alternatively, we can simply carry out
the construction of the Grassmannian Gz (k,n) over SpecZ, and then for
any scheme S simply define Gg(k,n) = S x Gz(k,n).

In the classical setting, there are two ways of constructing the Grass-
mannian G (k,n) as a variety over a field K. Abstractly, we may describe
Gk (k,n) as a union of open sets, each isomorphic to affine space Alf(("_k).
Alternatively, we may describe it at one stroke as the closed subvariety of
projective space IP% given by the Pliicker equations. Each of these construc-
tions has an immediate extension to the category of schemes, and they do
yield the same object. Moreover, there is in the language of schemes a third
way to characterize Grassmannians: as Hilbert schemes, or more precisely
as the schemes representing the functors of families of linear subspaces of a
fixed vector space. We will discuss this third construction in Section VI.2.1.
This is in many ways the optimal characterization of the Grassmannian: it
avoids the extraneous introduction of coordinates, gives us immediately a
description of morphisms of an arbitrary scheme Z to Gk (k,n), and gives
us a natural definition of equations for subschemes of the Grassmannian
such as Fano schemes and more general Hilbert schemes.

We will start by reviewing the gluing construction of the Grassmannian
as a variety over a field. We begin by realizing the set of k-dimensional
linear subspaces A of the n-dimensional vector space K™ over a field K as
the set of k x n matrices M of rank k, modulo multiplication on the left by
invertible k x k matrices. For each subset I C {1,2,...,n} of cardinality k
we can multiply any matrix M whose I-th minor is nonzero by the inverse
of its I-th submatrix M7, to obtain a matrix M’ with I-th submatrix equal
to the identity. In this way, we may identify the subset Uy C Gg(k,n)
of planes A complementary to the subspace of K™ spanned by the basis
vectors {e;};¢; with the affine space Al;(nfk) whose coordinates are the
remaining entries of M’. We thus have the following recipe for the variety
GK (k, n):

Let W = Alf(" be the space of £ x n matrices, and for each subset I C
{1,2,...,n} of cardinality k, let W; C W be the closed subset of matrices
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with I-th submatrix equal to the identity. For each I and J # I, let W ; C
Wi be the open subset of matrices whose J* minor is nonzero; let wr,J ¢
Wr,; — Wy be the isomorphism given by multiplication on the left by M ;-
M, !, We then define the Grassmannian Gk (k,n) as an abstract variety to

%n_k) modulo the identifications

be the union of the affine spaces Wy = A
of WLJ with WJ’[ given by Lr,J-

This recipe applies perfectly well to define the Grassmannian Gg(k,n)
over any affine scheme S = Spec A, using the gluing construction of Sec-

tion 1.2.4: let
W =SpecA[...,zi;j,...] §A§”,

and for each subset I = (iy,...,i5) C {1,2,...,n} let W; C W be the
closed subscheme corresponding to matrices whose I-th k x k submatrix is
the identity; that is, the zero locus of the ideal (..., a5 — da,g,...). For
each I and J # I, we define exactly as before open subschemes W; ; =
(Wr)aetmr; € Wi and isomorphisms o7y : Wr; — Wy and we then
define the Grassmannian Gg(k,n) to be the S-scheme obtained by gluing
the affine spaces Wy & A];(nfk) along the ¢r ;.

An alternative construction of the Grassmannian Gg(k,n) is as a sub-
scheme of projective space Pg , where N = (Z) — 1, given by the Pliicker
equations. Again, if we are simply careful about transcribing the classical
construction, it works in this new setting as well.

To set it up, start with the polynomial ring A[..., Xy,...] in (2) vari-
ables over A, where the variables are labeled by subsets I = (i < -+ <ix) C
{1,...,n}. We may think of the variables X as corresponding to the max-
imal minors of a k x n matrix M. If we specify further that the first k& x k
submatrix of M is the identity —that is, M is of the form (I, B) where
B is a k x (n — k) matrix— then these are in turn up to sign the minors of
all sizes of the matrix B. For example, the (i,!)-th entry of B is the I-th
minor of M, where I = (1,2,...,%,...,k,k+1); the ((¢,4), (I, m))-th minor
of B is the I-th minor of M, where I = (1,2,...,%,...,7,...,k, k+l, k+m);
and so on.

In terms of this description of the coordinates X as the minors of all sizes
of a k x (n — k) matrix A, the Plicker relations are simply homogeneous
polynomials in the variables X obtained by expanding the determinants
of these submatrices in terms of products of complementary minors of com-
plementary submatrices. For example, Cramer’s rule translates into an ex-
pression of the determinant of an [ x [ submatrix of A as a sum of products
of entries and determinants of (I — 1) x (I — 1) submatrices; in particular,
on the basis of the identification made above we have the relation

= X(1,2,0 sk kA L RAm) X (1,2, F)
= X120 B kD) X (1,2, G k) — X (1,2, ke kem) X (1,2, kD) -

We take the Plicker ideal J C A]...,X,...] to be the ideal generated by
the Pliicker relations.
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Another, more intrinsic way to describe the ideal J is simply this: we let
© be the map

Al X, ] — Alzia, - T
Tig .- Tl
Xr+—
Thyiy -+ Thyiy
sending each generator X; of A[..., X/, ...] to the corresponding minor

of the matrix (z;;), and we let J = Ker . In either case, we define the
Grassmannian Gg(k,n) to be the projective scheme

Gs(k,n) =ProjA[...,Xy,...]/J CProjA[..., Xr,...] :Pg;)‘l.

Exercise III-49. Show that the two constructions yield the same scheme
Gs (k, n)

This description of Gg(k,n) allows us to describe intrinsically the Grass-
mannian G(k, V') of subspaces of an n-dimensional vector space V over a
field K, and hence more generally to define the Grassmannian G(k, &) of
k-dimensional subspaces of a locally free sheaf & over a given base scheme
S. In the more general setting, we take the map of sheaves

EF=EREEQR Q& — NE

given simply by 01 ® -+ ® o — o1 A --+ A ok, and let ¢ be the induced
map on symmetric algebras

Q: Sym(/\ké")* — Sym(é"®k)*.

We then define G(k, &) to be the subscheme of P(&*) = Proj Sym(/\kéa)*
given by the ideal sheaf Ker(y).

One notational convention: since the Grassmannian arises sometimes in
the context of linear subspaces of a vector space, and sometimes in the
context of subspaces of a projective space, we will adopt the convention that
Ggs(k,n) is the scheme described above, and Gg(k,n) = Gg(k+1,n+1).

11.2.8 Universal Hypersurfaces

Definition III-50. Let S be any scheme. By a hypersurface of degree d
in P's we mean a closed subscheme X C P given locally over S as the zero
locus of a homogeneous polynomial of degree d: that is, for every point
p € S there is an affine neighborhood U = Spec A of p in S and elements
{ar € A} such that the a; generate the unit ideal in A, and

XNPL=V(Xarzy ...x%) C Py =Proj Alzg, . .., 2]
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A hypersurface X C P% is flat over S (the condition that the a; generate
the unit ideal in A means that they have no common zeros in S, so that
the dimensions of the fibers of X — S are everywhere n — 1), and of pure
codimension 1 in P%. Note that the fibers of X — S have no embedded
points.

By a plane curve over a scheme S we will mean a hypersurface in IP’%.

We can now introduce a fundamental object in algebraic geometry: the
universal family of hypersurfaces of degree d in P'. This is very straight-
forward to define: for any positive d and n, we set N = (dzn) — 1, and
let

PY = Proj Os[{as}]

be projective space of dimension N over S, with homogeneous coordinates
ar indexed by monomials of degree d in n + 1 variables (zo,...,x,). We
then introduce the subscheme 2" = 24, C Pg x g P& given by the single
bihomogeneous polynomial

X = V(;alxl).

The scheme 2 C IP’]SV x g Pg, viewed as a family of closed subschemes of
P’ parametrized by Pg , is called the universal hypersurface of degree d in
P%. By Proposition 11-32, 2 is flat over ]P’fgv.

Note that if S = Spec K is the spectrum of an algebraically closed field,
then every hypersurface X C P% of degree d is a fiber of 2~ — ]P’IA([.
In fact, much more is true: as we will see in Chapter VI, if B is any S-
scheme, and %" C P is any closed subscheme, flat over B, whose fibers are
hypersurfaces of degree d, then there is a unique morphism ¢ : B — PYg
of S-schemes such that & = 2" xpr B. (This is the meaning of the term
“universal”.)

Universal hypersurfaces are fundamental objects in algebraic geometry,
and arise in a number of contexts. We will see many examples of these
objects, or variants of them, in the following chapter, and will describe them
in more detail in Section V.1.2 and the following discussions of resultants
and discriminants. We will present here a few of the simpler examples and
related constructions.

We start with some notation and terminology. First, we will assume
throughout that S is irreducible (with generic point @), so that IP’{SV is
irreducible as well (for the most part, we can think of S as the spectrum
of a field K, though there will be occasions when it will be handy to be
able to take S = SpecZ). Let P € Pg be the generic point, and L = x(P)
its residue field, that is, the function field in N variables over the function
field K = 5(Q) of S. Let Xp C P¥ be the fiber of 2~ — P¥ over the
generic point P = Spec L; X p is sometimes called the generic hypersurface
of degree d. We will as usual write 2 (L) = X (L) for the set of L-valued
points of 2, or equivalently the L-rational points of Xp. Geometrically,
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these are sections of 2 — P§ defined over some open subset U C Py ;
algebraically, they are simply solutions z; = f;(a) of the equation ), a rxl,
with the x; rational functions of the aj.

We start with a basic fact:

Exercise III-51. Show that 2 is irreducible, and smooth as an S-scheme.
(Hint: consider the projection 2" C Pg x gP% — P%.) Deduce in particular
that X C P is smooth as an L-scheme.

Now for some examples:

Exercise ITI-52. If d = 1, so that P§ = (P%)*, the scheme 2~ C P% x5
(P%)* is called, naturally enough, the universal hyperplane. Show that it is
a projective bundle over P%.

Exercise I11I-53. Suppose now that d is arbitrary and n = 1, so that
N = d and the scheme 2~ C P% x5 Pk is finite of degree d over P%. Show
that the generic fiber X, is a single reduced point R, with residue field an
extension of degree d of the function field L of P%.

The last exercise is a little harder.

Exercise ITI-54. Suppose now that S is the spectrum of a field K, and
take d = n = 2. Show that 2 (L) # @.

Hint: Show that we can reduce to the inverse image of the subspace of
Py = IP?( corresponding to polynomials a X2 + bY 2 + ¢Z?; or just see the
argument for Proposition IV-84.

It is in fact the case for all n and d that 2 (L) # @ if and only if d = 1,
as can be seen by an application of the Lefschetz Hyperplane Theorem to
X C PR xx P,

ITI.3 Invariants of Projective Schemes

In this section we assume that K is a field and work with K-schemes,
except when explicit mention is made to the contrary.

Suppose that we are given a scheme in a projective space; how can we
find invariants of it? The simplest idea is to ask: how many independent
forms of degree d vanish on it? Putting the answers together, for various d,
we get what used to be called the postulation of the scheme (presumably
because one was then interested in schemes for which one postulated certain
values for these numbers). Nowadays, it is usual to discuss this informa-
tion in the equivalent form of the Hilbert function. We will discuss here
several variations of the method of Hilbert functions, which yield a wide
range of invariants. Some of the invariants that we produce actually depend
only on the abstract scheme and not on the given projective embedding,
while others depend on the data associated to the embedding; and we will



II1.3 Invariants of Projective Schemes 125

comment on these matters along the way. The approach we follow is the
original one used by Hilbert [1890], rather than that of Samuel, which is
more commonly adopted (see, for example, Hartshorne [1977, Chapter I]).
Hilbert’s method requires slightly more technique but yields a stronger and
more easily understood result.

We begin by defining the basic invariants. In the last part of the chapter
we will exhibit a number of simple geometric examples showing what sort
of information the invariants contain.

I1I1.3.1 Hilbert Functions and Hilbert Polynomials

To begin with, suppose that we are given a closed subscheme X C P%
described by a saturated ideal I = I(X) C S = K|xo,...,z,| defined as
in Example III-14. Suppose that the homogeneous polynomials Fy, ..., F,
generate I. Write R = S/I(X) for the homogeneous coordinate ring of X,
and write R, for the homogeneous component of degree v.

The basic idea is to associate to X C P a function

H(X, ):N—>N
called the Hilbert function of X and defined by
H(X,v) =dimg R,.

More generally, if M is any finitely generated graded S-module, we define
its Hilbert function to be H(M,v) := dimg M,. The fundamental result is
as follows.

Theorem III-55 (Hilbert). There exists a unique polynomial P(X,v) in
v such that H(X,v) = P(X,v) for all sufficiently large v. More generally,
for any finitely generated graded S-module M there exists a unique polyno-
mial P(M,v) such that H(M,v) = P(M,v) for all sufficiently large v.

We will indicate below how this may be proved (along the lines of
Hilbert’s original proof [1890]).

The polynomial P(X,v) is called the Hilbert polynomial of X. As in the
classical case of varieties, it carries basic information about the scheme X.
For example, we will see that its degree is the dimension of X, and in case
X is of dimension 0, its (constant) value is the degree of X. More generally,
we define the degree of any n-dimensional subscheme X of projective space
over a field K to be n! times the leading coefficient of the Hilbert polynomial
of X; this allows us to extend to the larger class of subschemes X C P
the classical notion of degree for varieties.

I11.3.2  Flatness II: Families of Projective Schemes

Another aspect of the significance of the Hilbert polynomial is that it gives
us a geometric interpretation of the notion of flatness.
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Proposition I11-56. A family 2" C Py of closed subschemes of a projec-
tive space over a reduced connected base B is flat if and only if all fibers
have the same Hilbert polynomial.

A proof of this in the general case would take us too far afield, but the
result is easy when the base is B = Spec K[t]4).

Proof when B = Spec K[t],). A closed subscheme X C P x B is given by
an ideal I in

K[t](t)[xo, .. .,xr]

which is homogeneous in xg, ..., z,. Thus each graded piece of the homo-
geneous coordinate ring

R = K[t](t)[xo,...,m,«]/f

is a module over K[t]).

As we know, the family X — B is flat if and only if each local ring
Ox ., is K[t]y)-torsion-free. This is the same as saying that the torsion
submodule of R goes to zero if we invert any of the z;. It follows that
the torsion submodule is killed by a power of the ideal (zg,...,z,) and
thus meets only finitely many graded components of R. But if R, is a
graded component of R, then since K[t]() is a principal ideal ring and R,
is finitely generated as a Kt];)-module, R, is torsion-free if and only if it
is free. Further, R, is free if the number of generators it requires, which by
Nakayama’s Lemma is

dimg R, ®K[t](t) K

is equal to its rank
dimg 1) Ry ®k1ey,, K ()

that is, if and only if the value of the H(X),v) is equal to the value of
H(X),v), where X (o) and X4 are the fibers of the family X over the two
points (0) and (¢) of B. (By the same argument, the Hilbert function itself
is constant if and only if the family of affine cones Spec R is a flat family
over B.) O

This proposition shows that flat limits of closed subschemes of projective
space behave better than flat limits in general. For example, though it is
certainly possible that the flat limit of nonempty subschemes of an affine
scheme may be empty, the proposition shows that this is not possible for
flat limits of nonempty subschemes of a projective space. This, together
with the existence and uniqueness of flat limits of closed subschemes in
a one-parameter family (Sections I1.3.4 and I1.3.4), gives one approach to
proving that projective schemes are proper, using the “valuative criterion.”
For all this, see, for example, Hartshorne [1977, Chap. II].

Of course H(X,v) contains more information than P(X,v), but it may
appear that P(X,v), as a polynomial with only finitely many coefficients, is
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easier to manipulate than the whole Hilbert function. Actually, the Hilbert
function has a finite expression too, in terms of binomial coefficients. To
see this, we will introduce a still finer set of invariants, the graded Betti
numbers of the free resolution of R, in terms of which both the Hilbert
function and the Hilbert polynomial can be written conveniently. (The real
advantage that the Hilbert polynomial has over the Hilbert function is that
the information it contains depends a little less—in a sense we will make
precise—on the details of the embedding of X.)

111.3.3 Free Resolutions

We will write S(—b) for the graded, free module of rank 1 with generator
in degree b; the apparently unfortunate choice of sign is recompensed by
the convenient and eminently memorable formula

S(=b), = Sy_s.

We can resolve R, or indeed any graded S-module, by using graded, free
modules, which are direct sums of copies of modules of the form S(—b).
Here is how.

Suppose that Fi,..., F, is a minimal set of homogeneous generators for
M. We will write by; for the degree of F;. We define an epimorphism

@Yo E() = @S(—boj) — M
Jj=1

by sending the generator of S(—bg;) to F; € M. Let M® be the kernel
of ¢o. If M) =£ 0, we repeat the process above with M) in place of
M (which could be called M(?)); choosing a minimal set of homogeneous

elements 651) of Ey that generate M) with degrees by;, we map a graded
free module with generators of degrees b1; onto M7, by a map

Y25 E1 = @S(—blj) — EO

j=1
sending the i-th generator of F; to ez(-l). Continuing in this way, we obtain
a resolution

E:... E; 1

EO?
with

E; = @ S(-bi)).

Of course, the process stops if some ¢; is a monomorphism. Hilbert’s fun-
damental discovery was that this always occurs if S is a polynomial ring.
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Theorem III-57 (Hilbert’s syzygy theorem). Let S = K|xq,...,z,]. In
any minimal free resolution as above, p; is a monomorphism for some
i < r+1, the number of variables; in particular, any graded S-module has
a finite, graded, free resolution.

We will not prove this here; see Hilbert [1890] or, for a modern account,
Eisenbud [1995, Section 1.10, Chap. 19] or Matsumura [1986, Theorem
19.5]. The syzygy theorem allows us to prove Theorem III-55.

Proof of Theorem III-55. The Hilbert function of the module S(—b) is easy
to write down. Since

S(=b), = Su_p
has a basis consisting of all monomials of degree v — b in r 4 1 variables,
we see that
—b
N |

where the binomial coefficient is to be interpreted as 0 when the bottom is
larger than the top. For v > b — r this agrees with the polynomial

(r+v=>b(r+v—->0—-1)---(v-0»)

P(S(ib)ay): 7“(7"—1)"'1

so we see that H(X,v) is a polynomial for large v.
From a finite, free resolution for M as an S-module

E:0—» B, 20t

E, e FEq M 0,
with

E; = P S(—by),

we see that the Hilbert function of M can be written in the form
I T

H(M,v) = Y (-1 H(Eiv) = Y (1) 3 H(S(=bij). )

1=0 =0

Since we have already shown that each H(S(—b;;),v) is a polynomial for
large v, we see that H(M,v) is a polynomial for large v, as required. This
proves Theorem III-55. O

The Hilbert function and polynomial are clearly invariants of X C P,
but it is perhaps not obvious that the graded Betti numbers b;; are too.
This follows from Nakayama’s Lemma; see, for example, Eisenbud [1995,
Chap. 19] or Matsumura [1986, Section 19] for a discussion of minimal free
resolutions over a local ring that translates immediately to the graded case.

We have thus three progressively weaker sets of invariants of a projective
scheme: the graded Betti numbers, the Hilbert function, and the Hilbert
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polynomial. To orient the reader, we will list some facts about them that
we will not prove here and that will not be used in an essential way. Then
we will give some examples.

(1) As we have already mentioned, the degree d of the polynomial
P(X,v) is the dimension of X.

(2) The leading term is of the form
6(X)
and 0(X) is called the degree of X. It may be identified with the length
of the subscheme in which X meets a general plane in P% of dimension
r —d. (See, for example, Hartshorne [1977, Chapter I, 7.3 and 7.7].) This
follows from the observation, proved below (Proposition I1I-59), that the
Hilbert polynomial of a zero-dimensional subscheme of degree ¢ in P’ is
the constant polynomial § together with the fact that if Y is a general
hyperplane section of X, then the Hilbert polynomial of Y is the first
difference function of the Hilbert polynomial of X —that is,

P(Y,v)=P(X,v)— P(X,v-1).

(3) In terms of the description given in Section III1.2.5 of maps to pro-
jective space, the Hilbert polynomial P(X,v) of a subscheme X C P
depends only on the invertible sheaf .Z corresponding to the embedding
X — P%, and not on the particular epimorphism ﬁ;;“l — % In fact, for
readers familiar with cohomology of coherent sheaves, P(X,v) is equal, for
all v, to the alternating sum of dimensions of cohomology groups

X(£®) =) (-1)"dimg H (X, 2%").

In particular, P(X,0) = x(Ox) = Y. (-1)"dimgx H (Ox) is a number
depending on X and not on the embedding! In case X is a nonsingular curve
over the complex numbers— that is, a Riemann surface — the number

dimg H'(Ox) =g=1— P(X,0)

is the genus of X, and 1 — P(X,0) turns out to be the right notion of
genus for any one-dimensional scheme. It is called the arithmetic genus of
the scheme. In the case where the dimension d of X is greater than one, it
was at first felt that the normal case was the case where H*(0x) = 0 for
1 < i < d (and this cohomology group always vanishes for ¢ > d), so the
arithmetic genus of X was by analogy defined as 1 + (—1)?P(X,0).

(4) The set of all varieties in P% with Hilbert polynomial equal to a
given polynomial turns out to be itself naturally the set of K-valued points
of a projective scheme, called the Hilbert scheme associated with the given
polynomial. For example, any subscheme X C P% with Hilbert polynomial
P(v) = ("}") (that is, the Hilbert polynomial of a k-plane) is in fact a
k-plane; and the Hilbert scheme of all such subschemes turns out to be the
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Grassmannian G (k,r) = G(k+1, r+1). There are, however, not many other
cases in which these Hilbert schemes have been understood geometrically!
We will return to this construction in Sections VI.2.2 and VI1.2.2 of the final
chapter.

Exercise I11-58. Let A be a Noetherian ring and 2" a closed subscheme
of P7, regarded as a family of schemes over Spec A. Since the fiber X,, of
Z over a point p € Spec A is a closed subscheme of IP’;”(p), it has a Hilbert
function H (X, v). Show that the function H (X, v), regarded as a function
in p, is upper semicontinuous in the Zariski topology on Spec A; that is, for

any v and any number m,
{p € Spec A | H(X,,v) > m}
is a closed subset of Spec A.

We extend the definition of the Hilbert polynomial to the case of a sub-
scheme X C Py of projective space over an arbitrary irreducible base S by
defining the polynomial P(X,v) to be the Hilbert polynomial of the fiber of
X over the generic point of S. This doesn’t involve anything new — by the
generic flatness theorem of Section I1.3.4 combined with Proposition I11-56,
or by Exercise III-58, X will be flat over an open dense subset U C Sieq,
and P(X,v) is simply the common Hilbert polynomial of the fibers of X
over U —but it’s convenient terminology.

(5) In many ways the invariant provided by the graded Betti numbers
is the most subtle of all, and until very recently nothing was known of its
geometric significance beyond that of the Hilbert function and polynomial.
Now, however, we know in a few cases (and conjecture in a few more) how
they reflect some subtle aspects of the intrinsic geometry of X. See, for
example, Green [1984; Green and Lazarsfeld [1985] for more information.

11.3.4 Ezamples

Points in the Plane. Already for the case of zero-dimensional subschemes
in the plane we get different information from the Hilbert polynomial,
Hilbert function, and graded Betti numbers.

First of all, we have stated above that the Hilbert polynomial of a sub-
scheme X C P is a polynomial whose degree is equal to the dimension of
X; so when X is zero-dimensional, the Hilbert polynomial is a constant.
We can easily prove this and somewhat more in the case of points.

Proposition III-59. The Hilbert function of a 0-dimensional subscheme
of degree ¢ in P satisfies
H(X,v)<$é

for all v, with equality for large v. Thus P(X,v) = 4.
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Proof. We must show that the codimension in Kz, ..., .| of the set of
homogeneous forms of degree v that vanish on X —that is, codim I(X), —
is less than or equal to J, with equality for large v. The reason is that van-
ishing at a point is one linear condition on the coefficients of a polynomial,
and thus vanishing at X should be ¢ linear conditions; for large v we will
show that these conditions are always linearly independent.

To make this precise, we pass to an affine open set. Changing coordinates,
we may suppose that X is contained in the affine open set x, # 0, so that a
form F of degree v belongs to I(X) if and only if F(zo,...,2,—1,1) belongs
to the ideal J C K|zg,...,z,—1] of X in the affine open set z, # 0. To say
that X is of length 6 means that J is of codimension ¢ in K[xq,...,2,—1]
and thus of codimension less than or equal to § in the space of those poly-
nomials that can be written as F'(xg,...,2,—1,1) for F' of degree v —these
are simply the polynomials in K{zg,...,z,_1] of degree less than or equal
to v. This shows at once that H(X,v) < ¢ for all v, with equality if J has
codimension § in the space of polynomials of degree less than or equal to
v. But J will have codimension § in the space of polynomials of degree less

than or equal to v as soon as a set of representatives for K|xg,...,z,—1]/J
can be chosen from among the polynomials of degree less than or equal to
v, which is certainly true for all large v. |

If X C P% is nonempty, I(X) contains nothing of degree 0 (we are
working over a field!), so H(X,0) = 1. Thus the proposition provides easy
examples where P(X,0) # H(X,0).

We can easily exhibit a family of subschemes of IP’% with constant Hilbert
polynomial but varying Hilbert function. To construct such a family 2" C
IP’%( x Spec K [t], for example, we can take the “constant” points P and Q
given by (z2 = 21 + 29 = 0) and (22 = 1 — xp = 0), and the variable point
R given by (z1 = 22 —tzg = 0), and let 2" be the (disjoint) union of P, Q,
and R in P% x Spec K|t].
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We regard 2" as a flat family over Spec K[t] by means of the projection
to the second factor, whose fibers X o) and X over the generic point and
over every closed point (¢t — \) (as schemes over K (t) and K, respectively)
have Hilbert polynomials P(X g, ) = P(Xx,v) = 3; but while the Hilbert
function H(X,1) = 3 for A = 0, we have H(Xo,1) = 2.

Exercise ITI-60. Let X)\ C ASK be the cone over the fiber X, of the
family 2" above. Show that there does not exist a flat family 2 C A% X K
Spec K|[t] whose fiber over each point (t — A) is Xy. (There does exist such
a family over the complement of the origin in Spec K[t], however.) What
is the flat limit of the cones X, as A approaches 07 (See the example in
Section I11.3.4.)

Now consider the case where X is a set of four distinct points in the
plane P%,. We already know that P(X,v) = 4. We will treat separately the
cases where all the points or all but one of the points lie on a line.

(1) X is contained in a line. Suppose, first, that the points lie on a line
L, with equation [ = 0, say. The only line containing X is L, so

H(X,1) = H(P%,1) —1=2.

If ¢ = 0 is the equation of a conic containing X, then ¢ restricts to a
form of degree 2 on L, vanishing at the four points of X, so ¢ must vanish
identically on L. Thus ¢ = 0 is the union of L and one other line, and the
set of equations of conics containing X is the three-dimensional space of
multiples of [ by linear forms. This gives

H(X,2) = H(P%,2) — 3 =3.

Starting with v = 3, however, vanishing at the four points imposes four
independent conditions on forms of degree v, so H(X,v) = 4. To prove
this, it is enough, for each 3 point subset X’ of X, to find a curve of degree
v that contains X’ but not the fourth point of X. We may do this with a
curve consisting of v straight lines, three of these passing through one each
of the points of X’ and the rest far away from X:
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To compute the minimal free resolution in this and the next examples,
we will use a result of Hilbert, which was generalized and extended to the
local case by Lindsay Burch.

Theorem I1I-61. If I is the homogeneous ideal of a zero-dimensional sub-
scheme X C IP’ %, then any minimal free resolution of the homogeneous
coordinate ring S/I has the form

n—1 A n
0 > 8(=by;) > > S(=byy) — S.
j=1 j=1

Further, the j-th generator of I — that is, the image of S(—bi;) in S —is
up to a monzero scalar the determinant of the matrix A with the j-th row
deleted.

For a proof, see Eisenbud [1995, Section 20.4], for example.
We will make use of this to compute minimal generators of the ideal
I(X) through the following corollary.

Corollary I1I-62. If I is the homogeneous ideal of a zero-dimensional
subscheme X C IP’%, and if I contains an element of degree e, then I can
be generated by e + 1 elements.

Proof. If the minimal number of generators of I is g, then I is generated by
(9—1) x (g —1) determinants of a matrix A whose entries are in the graded
maximal ideal of S and are thus forms of positive degree. Consequently,
no element of I has degree less than ¢ — 1, and we have g < e + 1, as
claimed. (]

By the theorem, knowing the degrees of the entries of the matrix A is
equivalent to knowing the graded Betti numbers in this case: the by; are
just the degrees of the minors of A, and by; is the sum of b1; plus the degree
of the ij-th entry of A.

Applying this to the example at hand, we see that since X lies on a line,
I(X) may be generated by two elements, which may, of course, be taken to
be L and a form of smallest possible degree in I that is not divisible by L

L=0

F=0

As we have noted, this smallest possible degree is 4, and we may, for
example, take F' to be the equation of a quartic consisting of four lines,
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each through one point of X.

Since L and P have no common factor, we see that the minimal free
resolution of S/I(X) has the form

0—8(=5) — S(-4)&5(-1) — 5,

giving the expression for the Hilbert function

- (3)-(3)-(59)+(5)

(2) All but one of the points of X lie on a line. Next, consider the case
where only three of the four points lie on the line L. Now there is no linear
form in I(X), so H(X,1) = 3.

Any quadric containing the three points on L must, by the same argu-
ment as before, contain L; so any quadric containing X is the union of L
and a line through the fourth point. Since the space of linear forms corre-
sponding to lines through the fourth point is two-dimensional, the space
of quadrics containing X is two-dimensional and we have H(X,2) = 4.
Following the same argument as before, we show that H(X,v) = 4 for all
larger v, so this is the case for all v > 2.
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As for the resolution, we see by the corollary above that I(X) requires at
most three generators. But I(X) is not generated by the two independent
quadrics it contains, since these have a common factor; thus it is mini-
mally generated by these two quadrics and another generator, an element
of smallest possible degree not contained in the ideal generated by the two
quadrics or, equivalently, vanishing on a curve not containing L. It is easy
to see that there is a cubic curve with the desired properties; it may be
taken, for example, to be the union of three lines, each passing through one
of the points of L and one passing, in addition, through the fourth point.
Since the minimal generators of I(X) have degrees 2, 2, 3, the matrix A
must be a 2 X 3 matrix whose entries have degrees as given in the following
diagram (up to a rearrangement of the rows and columns):

1 2
1 2
0 1

(Of course, the entry of degree 0 must actually be 0, since all the entries
must be in the maximal graded ideal.) Thus the minimal free resolution
has the form

0 S(—3)® S(—4) “> S(—2) @ S(—2) & S(—3) —— S.

(3) No three points of X lie on a line. Finally, consider the case where
X consists of four points, no three of which lie on a line. We claim that
the Hilbert function of X is the same as in the previous case: H(X,1) =
3, H(X,v) =4 for v > 2. The first of these values is obvious, since X lies
on no lines. For the second, it is enough as before to note that there are
quadrics (and thus a fortiori forms of higher degree) containing any subset
of the four points but missing the last; these may be constructed as before
as unions of lines.

Now we compute the free resolution of S/I(X). Taking the two pairs
of opposite sides of the quadrilateral formed by the points gives us two
quadrics ¢; and ¢o without common factor in the ideal of X.

|

q2

\/

q1
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Since ¢; and g are relatively prime, the free resolution of the ideal I they
generate has the form

0 S(-4) -2 snesn B .

where

B=(qnq) A= (—(Jz).

q1

Computing the Hilbert function of S/I from this resolution, we see that
it is the same as that of S/I(X), and since I C I(X), we must have
I = I(X); that is, I(X) is generated by ¢; and g2 and X is correspondingly
the intersection of the two conics containing it.

Summing up, we see that all three of the examples look the same from
the point of view of Hilbert polynomials; the first two examples are dis-
tinguished by their Hilbert functions; and the last two examples look the
same from the point of view of Hilbert functions but are distinguished by
their graded Betti numbers. It is not hard to find corresponding examples
of subschemes X of length 4 where the properties distinguished are actually
intrinsic properties of the schemes, not dependent on the embedding. For
example, while the scheme Spec K[z]/(z*) may be embedded in P% so as
to have any of the Hilbert functions and Betti numbers above (for instance,
as the subschemes defined by the ideals (zg, 21), (2023 — 23, xox1, 23), and
(woxe — 23, 22) respectively, the subscheme defined by (22, z?) will always
have the graded Betti numbers and Hilbert function of case 3).

Exercise III-63. Find the Hilbert polynomial, the Hilbert function, and
the graded Betti numbers of all subschemes of the plane of length 3.

Examples: Double Lines in General and in IP’:;(. So far, most of our
discussion of projective schemes has been parallel to the theory of varieties.
We will now look at one genuinely nonclassical family of examples.

Exercise 11-35 asked you to show that all affine double lines are equiv-
alent. This is not true for projective double lines. Here are some simple
examples.

Let K be a field. Consider the graded ring
S = Ku,v,z,y]/(2% zy, y* u'z — vly)
and the scheme
X =X4=ProjS.

To see that X is a double line, we construct an open affine covering of
X. The elements =z and y are nilpotent in S, so the radical of the ideal
generated by uw and v is the irrelevant ideal of S, and X is covered by X,
and X,. From the definitions we see that

X, = Spec(S[u""])o.
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To analyze the ring (S[u~'])o, we note that it is a factor ring of
Kfu,v,z,yl[u" "o = K[v',2,y/],
where

v =—, €r = —, y =—

and the kernel of the map to (S[u~'])o is generated by (2)?, z'y/, (y')?,
and 2’ — (v")%y’ (see Exercise I11-6). Thus

(S™o = K[v', ¢/ (y')

and X, is an affine double line. By symmetry, X, is too, and this proves
that X is a projective double line. Explicitly,

X, = Spec(S[v™)o

and
(S[’Ufl])o ~ K[u", :C”,y”]/(x”Q, :C”y”, y//27 (u//)dx// _ y//)
o K[’U,H, J)N, y/,]/(l‘NQ),
where
n_ U _ i n_ T n_Y
v v v’ L

The simplest way to see that, in contrast to the affine case, not all double
lines are isomorphic to one another, is to show that the isomorphism class
of X depends on the integer d, which may be thought of as specifying how
fast the double line twists around the reduced line inside it. To demonstrate
this, we will show that the ring of global sections &x (X) of the structure
sheaf of X depends on d. To compute it, suppose first that o € Ox (X).
The element o restricts to an element of €x (X, ), which is isomorphic to
K[v',y']/(y')? by the above, so we may write

olx, = a() + o)y
and similarly
O_|Xv — f(u//) +g(u//)x//

for unique polynomials a, b, f, and g with coefficients in K. But on X,,NX,
we have

and

T _ 7 _ /d/E: nNd—1,_/
=TTy =y
Thus f(1/v") = a(v"), which is only possible if f and a are constant poly-
nomials and f = a. Also, g(1/v")(v")4~1 = b(v'), which is only possible if
both ¢ and b have degree less than or equal to d — 1 (and then each of
g and b determines the other). Conversely, any element of &x(X,,) of the
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form a + b(v')y’ with a a constant and b a polynomial of degree less than
or equal to d — 1 extends uniquely to a global section of Ox, so we see that
the dimension of Ox(X) is d + 1. This shows that the isomorphism class
of X depends on d, as claimed.

In fact, we will see below that the integer d is the negative of the arith-
metic genus of X, as defined in Section II1.3.3. As it turns out, every
projective double line of genus —d, with d > 0, is isomorphic to X.

There are also double lines of positive arithmetic genus— the simplest
example of which is the double conic Proj K|x,y, z]/(zy — 22)?, which has
genus 3—and even continuous families of these when the genus is greater
than or equal to 7. These objects arise naturally in the study of nonsingular
curves: as a nonsingular nonhyperelliptic curve degenerates to a hyperel-
liptic curve, a phenomenon well known in the classical theory of varieties,
the canonical model of the smooth curve approaches a projective double
line (see Bayer and Eisenbud [1995] and Fong [1993] for more details).

Exercise ITI-64. What is the ring structure of &x (X) for the double line
X above?

Exercise II1-65. Compute Ox (X) for the double line
X = Proj K[u, v, z,y]/ (2% 2y, y*p(u, v)z+q(u, v)y),

where p and ¢ are any homogeneous polynomials of degree d without com-
mon zeros in Pj. Prove that this double line is isomorphic to the double
line of the example (and thus does not depend on the choice of p and gq).

To calculate the Hilbert polynomial of X, observe that for each d, the
ideal I = (22 xy, y% ulr —vly) contains the ideal
I = (22 xy, y2).
Since S/I is a free K[u,v]-module on the generators 1, z, and y, we see
that
H(S/I,v)=H(S/(z,y),v) +2H(S/(x,y), v—1).
Further, we see easily, using this basis, that if we write p = u%x — vy for
the fourth generator of I; as written above, then for any homogeneous form
q = q(x,y,u,v) we have gp € I if and only if ¢ € (z,y). Thus
H(S/I4,v) = H(S/1,v) — H(S/(z,y),v—d—1).
But P(S/(z,y),v) = v+ 1. Putting all these equalities together, we get
P(X,v)=2v+d+1,
so the Hilbert polynomial, and in particular the arithmetic genus
pa(X)=1-P(X,0) = —d,
distinguishes between these double lines for different d.

Here is an exercise that will be useful for the following three examples.
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Exercise I11-66. Compute the Hilbert polynomials of the following sub-
schemes of P,

(a) The union of two skew lines.
(b) The union of two incident lines.

(¢) The subscheme supported on the union of two incident lines with an
embedded point of degree 1 at their point of intersection, not lying in
the plane spanned by the two lines. Also, show that for any point p
on the double line Xy (or on any of the double lines above) there is a
unique subscheme of IP’% consisting of Xy with an embedded point of
degree 1 at p; and compute the Hilbert polynomial of this subscheme.

Given this exercise, we can use the notion of Hilbert polynomial to further
illuminate the example of a family of pairs of skew lines tending to a pair of
incident lines. Recall that in Exercise I1-25 we discussed such a family and
showed that the flat limit was not reduced: it was supported on the union of
the incident lines but had an embedded point at their point of intersection.
As the exercise above suggests, if we complete these families in P%, we see
that this is necessary from the point of view of Hilbert polynomials.

Consider next a family of pairs of skew lines in IP’:;(, described as follows.
First, let L C }P’:;( be the constant line x = y = 0, and let M C ]P’:;( be
the line z = tv, y = tu. Let Y; be the union of these two lines. We may
ask then for the flat limit of the family Y;; or in other words, the fiber
Yy over the origin in A} of the union % of the subschemes .% and .# of
IP’?( x A} given by z =y = 0 and = = tv, y = tu, respectively. Of course,
the support of Yy will be the line L, but it is equally clear that it must
have some nonreduced structure. In fact, the flat limit is none other than
the double line X; above.

Exercise II1-67. Verify that the flat limit Yy is the double line X;. (By
comparing Hilbert polynomials, it is enough to prove inclusion in one di-
rection.)

An interesting wrinkle on this last construction is to consider a slightly
different family of pairs of skew lines: we let L be as above, and let M;
be the line given by = = tv, y = —t?u. At first glance it might appear
that the flat limit of the unions Y; = L U M, will be the double line given
by (2% = y = 0), which is isomorphic to the double line Xy above; but
this cannot be, since the Hilbert polynomials are not equal. The following
exercise gives the real situation.

Exercise III-68. Show that with L and M, as above, the flat limit as
t — 0 of the union L U M is the double line 22 = y = 0 with an embedded
point of degree 1 located at the point [0, 0,1, 0].

Exercise I11-69. Let L, M, and N, C P% be the lines u = v = 0, y =
v=0,and y+u=ty+ (1 —t)v =0, respectively; let Z; be their union in
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]P’i(. Find the Hilbert polynomial of Z; and the Hilbert polynomial of Zj.

What is the limit, in the sense discussed above, of the subschemes Z; C P
ast — 07

No

M ( = u-axis)
Finally, there are arithmetic analogues of each of the last three examples.

For example, consider the following three families of subschemes of ]P’%
(which are flat families over SpecZ):

(a) Let £ C P3 be the constant line z = y = 0, and let .# C PJ be the

line x = Tv, y = —Tu; let Z be the union of these two subschemes.
(b) Let £ C P} be the constant line = y = 0, and let .# C P} be the
line x = Tv, y = —49u; let % be the union of these two subschemes.

(c) Let &, A, and AN C P3 be the subschemes defined by u = v = 0,
y=v=0,and y+u = 7y — 6v = 0, respectively; let % be their union.

Exercise III-70. For each of the subschemes % C P3 above, find the
fiber of % over the point (7) € SpecZ. Compare your answer with that
found in the preceding three exercises.

111.3.5 Bézout’s Theorem

The most classical form of Bézout’s theorem asserts that if plane curves
C,C" C P% defined by equations of degrees d and e meet in only finitely
many points, then the number of points of intersection is at most de, with
equality if the two curves meet transversely and the field K is algebraically
closed. This important result has gone through many successive generaliza-
tions. In particular, the language of schemes allows us to give a version that
is simultaneously simpler and more general than the original; and, while
this version is not the most general possible, we will focus on this.

For the following, we will work with schemes over a field K. As in the dis-
cussion of degree, we could state Bézout’s theorem for a projective scheme
X C Pg over any base S, but this conveys no more information than
Bézout’s theorem for schemes over a field, applied to the fibers of X over
the generic points of S. Also, note that we do not assume K is algebraically
closed. We will see in Exercises III-72 through III-75 below examples over
non-algebraically closed fields.
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The statement of Bézout’s theorem is very simple. Recall that by a hy-
persurface in projective space P = Proj K[Xy, ..., X,] over a field K we
mean not any (n — 1)-dimensional subscheme of P% but specifically the
zero locus V(F) of a single homogeneous polynomial F. In particular, it
will have pure dimension n — 1 (see Eisenbud [1995], for example); and
while it may be nonreduced (if F' has repeated factors) it will have no em-
bedded components. Recall also that the degree of an arbitrary subscheme
X C P% of projective space over a field K is defined in terms of its Hilbert
polynomial; and that if in particular the dimension of X is zero, then its
degree is simply the dimension of the space €x(X) of global sections as a
K-vector space.

Theorem III-71 (Bézout’s Theorem for complete intersections). Assume
that Zy, ..., Z, C P% are hypersurfaces of degrees di,...,d, in projective
space over a field K, and that the intersection T' = (| Z; has dimension
n—r. Then

deg() = [ ] d-

Thus, for example, if D and E C P%( are plane curves of degrees d
and e with no common components, then the intersection I' = D N E will
have degree de. As an immediate consquence, we can deduce from this the
classical “deg(I") < de” form of the theorem, together with the fact that
equality holds if and only if I" is reduced and each point of I' has residue
field K.

More generally, we can deduce from Theorem III-71 the general form of
the equality statement of the classical Bézout theorem for complete inter-
sections over an algebraically closed field, in which we express the product
[1d; of the degrees of the hypersurfaces as a linear combination of the de-
grees of the irreducible components I'; of the reduced scheme I'yoq, with
coefficients referred to as the multiplicity of the intersection Z1 N ... N Z,
along T'; arising from the nonreduced structure. In this form we can further
generalize the statement of Bézout’s theorem to arbitrary proper intersec-
tions in projective space (that is, intersections of subschemes X,Y C P
of pure codimensions k and [ such that X N'Y has codimension k + [);
but to do this we will need also to define in general the multiplicity of an
intersection along one of its components. We postpone this, and the proof
of Bézout’s theorem for complete intersections, in order to give the reader
a chance to try some examples.

Exercise ITI-72. Let C' C P2 be the conic curve given as
C =ProjR[X,Y,Z]/(X*+Y? - Z?) C ProjR[X,Y, Z]

and let L1, Lo and L3 be the lines given by X, X — Z and X — 27 respec-
tively. Show that no two of the schemes C' N L; are isomorphic, but that
they all have degree 2 as schemes over R.
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The following four exercises describe a situation in which Bézout’s theo-
rem over a non-algebraically closed field arises naturally: an intersection of
universal curves over the product of the schemes parametrizing such curves.
The situation is one that occurs frequently, and is of interest (apart from its
value as an illustration of Bézout) as an example of “generic” intersections.

Exercise ITI-73. Let K be a field, and let

B = A} =SpecKla,b,c,d,e, f,g,h,i,j,k,1].
Consider the two conic curves 6; C ]P’QB given by

G =V (aX?+bY? +cZ? +dXY +eXZ + fYZ)
C Proj(Kla,b,c,d,e, f, g, h,i, j,k1][X,Y, Z]) = P%
and similarly
G =V (gX?>+hY? +iZ% + jXY +kXZ +1Y Z) C P%,.

By considering the projection map

Ty 1 61 NE CPL = P% Xspecx B — P2
show that %) N %5 is an irreducible K-scheme.

Exercise III-74. (a) With @) and %> as above, show that the intersection
%1 N %> is generically reduced by showing that the projection

T :‘51ﬂ‘52CPQB —>B=A}?
has a fiber consisting of four distinct (hence reduced and K-rational)
points.

(b) Although part (a) is enough for the application in the following ex-
ercise, deduce that €1 N %% is everywhere reduced by unmixedness
of complete intersections (see Eisenbud [1995], for example). Alterna-
tively, show that it is nonsingular by a direct tangent space calculation.

Exercise III-75. Let L = K(a,b,c,d,e, f,g,h,i,7,k,1) be the field of
rational functions in 12 variables over K (that is, the function field of
B =A32). Let

C, =V(aX?+bY? +¢cZ>4+dXY +eXZ + fYZ) C P2

and
Cy =V(gX?+hY?+iZ? + jXY + kX Z +1Y Z) C P};
that is, Cy and C5 are the fibers of %) and %5 over the generic point of A}?.

Deduce from the preceding two exercises that the intersection C; N Cs is a
single, reduced point P.
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Exercise ITI-76. Keeping the notation of the preceding problem, show
that, as Bézout predicts, the intersection C; N Cs has degree 4 as a scheme
over L —that is, the residue field x(P) of the point P = C1NC% is a quartic
extension of L.

Hint: introduce affine coordinates x = X/Z and y = Y/Z on an open
subset of P2, and express £(P) as

K(P) = Llz]/(R(z))

where R(z) is the resultant of the dehomogenized form of the defining
polynomials for C; and Cs with respect to x as in Section V.2.

There is an interesting sidelight to this example, which we will mention
in passing. One question we may ask in this situation is, what is the Galois
group of the Galois normalization of the extension L C x(P)? To answer
this, at least in case the ground field K = C, we should introduce what we
call the monodromy group of the four points of intersection of two general
conics. Briefly, there is an open subset U C B over which the fibers of the
projection ¢ : 1 N%> — B are reduced; and in terms of the classical topol-
ogy, the restriction of the map ¢ to the inverse image of U is a topological
covering space. As such, for any point p € U we have a monodromy action of
the fundamental group 71 (U, p) on the points of the fiber ¢~ (p): to an arc
v :10,1] — U starting and ending at p and any point ¢ € ¢ ~1(p) we asso-
ciate the end point of the unique lifting 7 : [0,1] — ¢~ 1(U) of v to ¢~ 1(U)
with 5(0) = ¢. Informally, suppose we allow two conics C} (t), Ca(t) C PZ to
vary with a real parameter ¢ € [0, 1], keeping them transverse at all times.
As t varies, the four points of the intersection C(t) N Ca(t) vary; and if
the conics return to their original positions— that is, C;(0) = C;(1) —we
find that while the intersection C1(0) N C2(0) = C1(1) N C2(1) the four
points individually may not return to their original positions; the resulting
group of permutations of the four is called the monodromy group. It turns
out that the answer to our original problem — that is, the Galois group of
the Galois normalization of x(P) over L — coincides with the monodromy
group of the four points, which it is possible to see from this geometric
characterization is the symmetric group on four letters.

More generally, in many enumerative problems that depend on parame-
ters (in this example, the intersection of two conics), the universal solution
turns out to be a single point P, with residue field x(P) a finite extension
of the function field L of the scheme (in this case B = A}?) parametrizing
the problems. In this situation, we may ask, what is the Galois group of
the Galois normalization of the extension L C x(P)? This turns out in gen-
eral to coincide with the monodromy group of the problem. For a general
treatment see Harris [1979].

We will now give a proof of Bézout’s theorem, and also discuss its possible
generalizations. We will prove it by using the Koszul complex to calculate
the Hilbert polynomial of I' (and in particular its degree). The Koszul
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complex is fully described in Eisenbud [1995, Chapter 17]; we will sketch
the construction here and simply state the properties we need.

First, we introduce the defining equations of the hypersurfaces Z;: we
write

Z; = Proj K[ Xy, ..., Xy]/(F;) C Proj K[Xo,...,Xn],
so that
I' = Proj K[Xo,..., Xu])/(F1,..., Fp).
We now describe a resolution of the homogeneous coordinate ring St as
follows. First, for any subset
I ={i1,d0,... iy C{1,2,...,1},
we will denote by |I| = k the number of elements of I, and by

k
dr =Y d,
a=1
the sum of the degrees of the corresponding polynomials. We then set
My = @ S(—d)
[I|=k

where as usual S = K[Xy,...,X,] is the polynomial ring. As there is
a unique I with |I| = 0, we set My = S. We will write an element of
Mj; as a collection {G} of polynomials, where I ranges over all multi-
indices of size k; by our definition, {G} will be homogeneous of degree d
if deg(Gr) = d — d for each L

We now define a complex

0—M, — M1 — ... — My — M; — My=5.

The map i : My — My is given by setting pr({Gs}) equal to the
collection of polynomials {H ;}, where

Hy= Z tTF, - GJU{@}
agJ
and the sign depends on the number of elements of J less than a.

Notice that the image of 1 : M7 — My = S is exactly the ideal of I'. In
fact, this sequence is a free resolution of the coordinate ring Sy. This is a

general phenomenon: whenever we have a collection of elements Fi, ..., F,
in a ring S, we can form a sequence in this way, which is called the Koszul
complez. It is a standard theorem that whenever the collection F1,..., F.

is a regular sequence, then the associated Koszul complex is a resolution
(see Eisenbud [1995, Chapter 17|, for example). In the present circum-
stance, where the polynomials F; are homogeneous, the hypothesis on the
dimension of I" together with the fact that the polynomial ring .S is Cohen—
Macaulay implies that the polynomials Fy, ..., F,. form a regular sequence
in S (just as in the local case), so the sequence above is a resolution.
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Given the Koszul resolution, it is straightforward to describe the Hilbert
polynomial P(T',v). If we write H(Mjy,v) for the Hilbert polynomial of
the module My, (that is, H(My,v) is the polynomial that agrees with the
dimension of Mj in degree v when v is large), then from the exactness of
the Koszul complex we see that

P@,v) =Y (-1)"P(My,v)

depends only on the numbers d; and not on the particular polynomials F;.
For convenience, we will denote the Hilbert polynomial of such a complete
intersection by Py, ... 4.(v). (Note that we don’t need to write down the
Koszul complex to see that complete intersections of given multidegree all
have the same Hilbert polynomial; this follows directly from the flatness of
families of complete intersections as stated in Proposition I1-32).

Now, simply adding up the contributions of the summands in the Kozsul
complex above, we see that

Pay g, V)= (_1)|I|<”+I;—dl>

Ic{1,.r}

where the sum ranges over all subsets of {1,2,...,r}, including the empty
set and the whole set.

This in a sense the complete answer to the question of the Hilbert poly-
nomial of ', but there remains the problem of reading off from it things like
the degree of I'. To do this, we use an induction on the number r to relate
the functions Py, 4, (v) and Pg,.... 4. ,(v). This is simple: in the expres-
sion above for Py, . 4,.(v), we simply separate out those terms in which
r € I and those terms in which it is not. The terms in which r ¢ I visibly
add up to Py, 4, ,(v); and comparing terms in which r € I to the term
corresponding to I\ {r}, we see that these add up to Py, . a4, ,(v —d,).
Thus,

Pay.nd, (V) = Pay,do (V) = Paydo (v = di).
Now, since

V" — (v —a)™ = mar™ ! + O™ ?)

(where, following the analysts’ convention, we have written O(¥™~2) to
denote a sum of terms of degree at most m — 2), we see that if f(v) is any
polynomial, written as

f(l/) _ le/m + O(Vm—l)

then
fw) = f(v = a) = mac,v™ "1 + O™ 2).

Since the Hilbert polynomial of projective space itself is

n v+n 1 n n—
PR = (V77 = 2 00,
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we can write
1
Py . awW)y=nn—-1)---(n—r+Ddidy---dr—v""" + O(V””*l)

n!
ddy - - - dr n—r n—r—

Hence
deg(T") = dids - - - d,.,

as desired.

We could have avoided the final computation in this proof by specializing:
By using the fact established at the outset that complete intersections of
given multidegree all have the same Hilbert polynomial, we can just choose
for each pair (¢,7) with 1 <4 <7 and 1 < j <d, a general linear form L; ;
and let Z; = V(F;) where

d;
F; = H L;;
j=1

for each 4. The intersection I' = (] Z; is then the union of [] d; reduced lin-
ear subspaces in P, and so has degree [ d;; we conclude that all complete
intersections of multidegree (di,...,d,) do.

Exercise III-77. For another specialization, let Z; C P% be the sub-
scheme defined by F;(Xo,...,X,) = Xf"’. Show directly that the intersec-
tion () Z; has degree []d;. (Hint: you can reduce to the case r = n.)

Multiplicity of Intersections. Bézout’s theorem for complete intersec-
tions (Theorem III-71) gives the degree of a complete intersection of hyper-
surfaces, but in practice we are often interested in intersecting more general
subvarieties or subschemes of projective space. Since we have already de-
fined the degree of any subscheme of projective space, it seems natural
to ask whether the degree of an arbitrary intersection of subschemes X,
Y C P% is the product of the degrees of X and Y, always assuming the
intersection is proper, that is, has the expected codimension. This turns
out to be false in general, although it does hold if we make some hypoth-
esis on the singularities of the schemes being intersected: if X and Y are
locally complete intersection subschemes of P, or more generally Cohen—
Macaulay subschemes of P, we have:

Theorem III-78 (Bézout’s Theorem for Cohen-Macaulay schemes). Let
X andY C P be Cohen—Macaulay schemes of pure codimensions k and |
in P%. If the intersection X N'Y has codimension k + 1, then

deg(X NY) =deg X deg?Y.

Example ITI-79. As we indicated, the statement of Theorem III-78 fails
without the hypothesis that X and Y are Cohen-Macaulay, and it’s in-
structive to see an example of this. Perhaps the simplest occurs in IP’}l( =
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Proj K[Zy, Z1, Za, Z3, Z4): we take X = Ay U As the union of the two 2-
planes

A1 = V(Zl, ZQ) and A2 = V(Zg,Z4)
and we take Y the two-plane
Y =V(Z1—2Zs, Za—Z4).

We have already discussed this example in Exercise 1-43 and following
Lemma I1-30; in particular, we have seen that the scheme X NY of in-
tersection is the subscheme of the plane Y defined by the square of the
maximal ideal of the origin, and so has degree 3. (Alternatively, since the
projective tangent space to X is all of IP’%(, it follows that the Zariski tan-
gent space to XNY is two-dimensional, from which we may see immediately
that deg(X NY) > 3.) But deg X degY =2-1 =2, and so Theorem III-78
cannot hold.

What is going on in this example is not mysterious. Express Y as the
intersection of two general hyperplanes Hy, Ho containing it, and reparen-
thesize the intersection X NY as

XNY =XnN(H, NHy) = (XNH)N Hy.

The first time we intersect, we find that the intersection scheme X N H; has
an embedded point at the point (Z1, Z3, Z3, Z4). The second hyperplane Hy
passes through this point, in effect picking up the extra intersection.

This example both demonstrates the need for a refined way of ascribing
multiplicity to a component of the intersection of subschemes of projective
space, and suggests a way to do it. Here is the idea: Suppose we are given
schemes X, Y C P, of pure codimensions k and [, intersecting in a scheme
of codimension k + [. We first reduce to the case where the scheme Y is a
linear subspace of projective space, as follows: choose two complementary
n-dimensional linear subspaces Ay, Ay C P%H, and an isomorphism of
P’% with each. (Concretely, we can label the homogeneous coordinates of
]P’%H'1 as xg,...,Tn,Y0,---,Yn and take the linear spaces to be given by
2o = ...=ax, =0and yop = ... = y, = 0.) Write X’ and Y’ for the
images of X and Y C P% under these two embeddings. Let J C IP%H'I
be the subscheme defined by the equations of X, written in the variables
x;, together with the equations of Y, written in the variables y; —in other
words, the intersection of the cone over X’ with vertex Ay with the cone
over Y’/ with vertex A;. J is called the join of X’ and Y’; set theoretically, it
is the union of the lines joining points of X’ to points of Y. Let A ¢ P2+
be the subscheme defined by the equations zg —yo = ... =z, —yn, = 0. It
is clear that the scheme X NY is isomorphic to the scheme J N A, and we
will define the multiplicity of intersection of X and Y along an irreducible
component Z C X NY to be the intersection multiplicity of J and A along
the corresponding component of J N A. We have thus reduced the problem
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of defining the multiplicity of intersection of X and Y along an irreducible
component Z C X NY to the case where Y is a linear space.

We will handle this case, as suggested by the example above, by writing
Y as an intersection of hyperplanes H; N...N H; and intersecting X with
the H; one at a time. After each step we discard the embedded components
of the intersection. In the end we arrive at a scheme W contained in the
actual intersection X N'Y, which has degree satisfying Bézout’s theorem:
deg(W) = deg(X) deg(Y). To relate this to the classical language, for each
irreducible component Z of the intersection X N'Y, we define the inter-
section multiplicity of X and Y along Z, denoted uz(X -Y), to be the
length of the local ring of W at the generic point of W corresponding to
the component Z. We have then:

Theorem ITI-80 (Bézout’s Theorem with multiplicities). Let X andY C
P’ be schemes of pure codimensions k andl in P . If the intersection XNY
has codimension k + 1, then

deg(XNY) = pz(X-Y) deg Zyea-
A

There are other approaches to the definition of the multiplicity pz(X-Y)
of intersection of two schemes X and Y C P’ along a component Z C
X NY; the classical literature is full of attempts at definitions, and there is
also a modern approach involving the sheaves Tor(0x, Oy ). Most of these
approaches will work as well to define intersection multiplicities of any two
subschemes X, Y of a nonsingular subscheme, as long as the intersection
is proper.

Beyond this, there is a still more general version of Bézout’s theorem
that works for arbitrary subschemes X and Y of pure codimensions k and
l in a nonsingular scheme T, even when the intersection X N'Y does not
have codimension k+1 (or even for subschemes X, Y of a possibly singular
scheme T, in case one of the two is locally a complete intersection subscheme
of T'). In this setting, one associates multiplicities to certain subschemes, or
equivalence classes of subschemes, of the actual intersection X NY, in such
as way that (in case T' = P’ ) the degrees of these subschemes times the
corresponding multiplicities add up to deg X degY . For this and further
refinements, see Fulton [1984] and Vogel [1984].

Exercise ITI-81. In case the idea of taking X reducible in Example III-79
strikes the reader as cheating: show that the same phenomenon occurs if we
take X C ]P"}( the cone over a nonsingular rational quartic curve C' C IP‘}(,
with Y again a two-plane passing through the vertex.

Exercise ITI-82. To see that the failure of Theorem III-78 to hold in
general cannot be remedied by replacing deg(X NY’) by any other invariant
of the scheme XNY in the left hand side of the statement of Theorem III-78,
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find an example of a scheme I' C P} and subschemes X, Y, Z, W C P of
the appropriate dimensions, such that X NY =ZNW =T, and

deg X degY = degI' # deg Z deg W.

1I1.3.6 Hilbert Series

As the final note in our discussion of Hilbert functions, Hilbert polynomials
and free resolutions, we mention the Hilbert series of a subscheme X C P,
or more generally of a graded module M over the coordinate ring S of P.
This is simply a very useful vehicle for conveying the information of the
Hilbert polynomial; as an illustration, we will be able to write down the
Hilbert polynomial of a complete intersection in a much more transparent
way.

The Hilbert series H)s(t) of a module M is easy to define: if P(M,v) is
the Hilbert function of M, we let Hps(t) be the Laurent series

oo

Hy(t)= Y P(M,v)t".

V=—00

We define the Hilbert series Hx(t) of a subscheme X C P% to be the
Hilbert series of its coordinate ring Sx = S/I(X). The first thing to note
is that the Hilbert series of projective space itself is simple: we have

1
(1—t)ntt’

Similarly, the Hilbert series of any twist S(d) of S is simply

Hpy (t) = Hs(t) =

4
Hsa)(t) = (D

Given any exact sequence of graded S-modules
OHMT*)Mrflﬁ"’g’MQHMl*)MO*)(L

we see that their Hilbert series satisfy the relation

s

D (=) Ha, (1) = 0.

k=0
Thus, if we have a free resolution of a scheme X C P’

kz kl
L — @S(*(l%) — @S(fah-) — S — Sx — 0,

=1 i=1

we see that the Hilbert series
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(where we adopt the convention that kg = 1 and ag; = 0). One thing we
see from this is that the Hilbert series of any subscheme of projective space
is a rational function of t.

Exercise III-83. Show that if X C P’ is a subscheme of dimension m,
then the rational function Hx (t), reduced to lowest terms, has numerator

Hx(t) = (1= )™ Hx (t);
in particular, this is a polynomial in ¢. Show that its value at 1 is
Hx(1) = deg(X).

Now suppose that X C P% is a complete intersection of r hypersur-
faces of degrees dq, ..., d,. By the Koszul resolution above, we see that the
Hilbert series

v (_1)|I|t\1\
(1—t)ntt -
We can factor this, and cancel factors, writing

1—td L+t+-- 4 tdt
Hx(t) = 1(_[1( t)nJrl) = L 11—ttt )

Hx(t) =

Hence,
Hx(t) = (1 )™ (1) = [+t 4 1570,

Since the value of this polynomial at ¢ = 1 is the product []d;, Bézout’s
theorem follows.



IV

Classical Constructions

In this chapter, we illustrate how some geometric constructions from clas-
sical algebraic geometry are carried out in the setting of scheme theory. We
will see in each case how the new language allows us to extend the range of
the definitions (and of the questions we may ask about the objects); how it
enables us to give precise formulations of classical problems; and in some
cases how it helps us to solve them.

IV.1 Flexes of Plane Curves

In this section, we will describe the classical definition of a flex of a nonsin-
gular plane curve C' C }P’%{ over an algebraically closed field K. We will then
indicate how this definition may be extended to the setting of schemes, and
show how this extension sheds light on the geometry of flexes, even in the
classical case.

1V.1.1 Definitions

We need one preliminary definition. Let K be any field, let C, D C P% be
two plane curves without common components, and let p € C N D be a
point of intersection. We define the intersection multiplicity of C and D
at p, denoted u,(C - D), to be the multiplicity of the component I' of the
scheme C' N D supported at p. Since plane curves are Cohen—Macaulay,
this coincides with the notion of intersection multiplicity introduced in
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Section II1.3.5. Note also the relation with the notion of degree: the degree
of I' as a subscheme of P% is the intersection multiplicity p,(C - D) times
the degree (k(p) : K) of the residue field as an extension of K. Thus, for
example, the Bézout theorem (ITI-71) for plane curves asserts that

degC degD = Y (k(p): K) pp(C - D).
peCND

This said, the notion of a flex of a plane curve in classical algebraic
geometry is a straightforward and geometrically reasonable one: if C' C
IP% is a nonsingular plane curve of degree d over the complex numbers, a
point p € C is called a flex if the projective tangent line T,C C ]P% (see
Section I11.2.4) has contact of order 3 or more with C' at p; or, in modern
language, if the intersection multiplicity p,(C - T,C) of T,C and C at p
is at least 3. (Here, since we are working over an algebraically closed field,
the intersection multiplicity coincides with the degree of the component of
T,CNC supported at p, that is, dime (Or,cnc,p)-) It is a classical theorem
(which we will establish below) that if C is not a line, then C' has finitely
many flexes, and that if they are counted with the proper multiplicity the
number is 3d(d — 2).

This simple definition was extended to singular curves — see, for example,
Coolidge [1931] —though the definitions are not always precise by modern
standards. There are also problems with the definition if we consider curves
C C ]P’%( over non-algebraically closed fields K, or over fields K of finite
characteristic, or curves that contain a line or a multiple component.

What we will do here is to give a uniform definition of flexes for an
arbitrary plane curve C' C ]P’?g over any scheme S. First recall from Sec-
tion III.2.8 that by a plane curve of degree d over a scheme S we mean a
subscheme C' C IP’% that is, locally on S, the zero locus V(F) of a single
homogeneous polynomial

F(X,Y,Z) = Z aijp XY 7k
i+j+k=d
of degree d whose coefficients a;;;, are regular functions on S not vanishing

simultaneously. Recall also that if S is affine, we can dispense with the
word “locally”; that is, if S = Spec A, a plane curve C over S is of the form

C =ProjA[X,Y, Z]/(F)

for some polynomial F.

Now, given a plane curve C' C ]P’QS over S, we will define a closed sub-
scheme % = %#¢ C C, which we will call the scheme of flexzes on C. This
will commute with base change S’ — S (that is, if we set C/ = 5" x5 C C
P%,, then For = (m) ' (Fc)) and .F will be finite and flat of degree
3d(d — 2) over at least the open subset of S where the relative dimension
of Z is zero. The significance of this is that if we have a family of plane
curves, the limits of the flexes of the general fiber are flexes of the special
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fiber (that is, .# is closed), and conversely in case .# has relative dimen-
sion zero (% is flat). Moreover, in the classical setting— that is, if C is a
nonsingular plane curve over the spectrum S = Spec K of an algebraically
closed field of characteristic zero— the support of .% will be the set of flexes
of C as defined classically (and hence in the general case, if s € S is any
point whose residue field x(s) is algebraically closed of characteristic zero,
the support of the fiber %, of .% over s will be the set of flexes of Cj).

To motivate our definition in the general case, we recall one of the earliest
results in the classical setting: for a nonsingular plane curve C' = V(F) C
IF’%( over an algebraically closed field K, given as the zero locus of a poly-
nomial F(X,Y, Z), the flexes of C are the points of its intersection with its
Hessian, the curve defined as the zero locus of the polynomial

0*F 0%F O*F

0X2 9X9Y 0XoZ

0*F 0%F O*F
oYoX  9Y? Yoz

0*F 0%F O*F
0Z0X 0Z3Y 072
We leave the proof of this fact as an exercise:

H(X,\Y,Z) =

Exercise IV-1. Let K be an algebraically closed field of characteristic
zero, C' C IP)%( a plane curve and p € C a nonsingular point of C. Show
that the projective tangent line T ,C' has contact of order 3 or more with
C at p if and only if H(p) = 0.

Hint: introduce affine coordinates
X Y
z YTz
on the corresponding subset of IP’%( and use Euler’s relation to see that the
dehomogenization h(z,y) = H(z,y,1) of the Hessian determinant is (up to
scalars)

xr =

;oo

or oy
of of  9f
Ox 0x2 Oxz0y|’
of of  of
Oy Oxdy  Oy?
where f(z,y) = F(z,y,1) is the dehomogeneization of F.

h(zvy) =

To define the scheme of flexes of an arbitrary plane curve C' C IF’% in the
general setting, we simply generalize the Hessian and extend this charac-
terization: Suppose that in some affine open subset U = Spec R C S the
curve

C NP} =Proj RIX,Y, Z]



154 IV. Classical Constructions

is the zero locus of the polynomial F' € R[X,Y, Z]. We define the Hessian
determinant to be the polynomial

0*F 0’F 0*F
0X? 0X9Y 0X0Z
0’F 0’F 0’F
oyox  oy? oY oz
0’F 0’F 0’F
0Z0X 0Z0Y 072
Since F, and hence H, is determined by C' up to multiplication by a unit
in R = 0(U), we may define the Hessian C' of C to be the subscheme of

]P’QS defined by the Hessian determinant over each affine open U C S; and
we define the scheme .# of flexes of C to be the intersection

F=CnC.

H(X,Y,Z) =

We see immediately that this is a closed subscheme of C' and that its
formation commutes with base change. In particular, for any point s € S,
the fiber %, of % over s will be simply the scheme of flexes of the fiber
Cs C ]P’i(s) of C over s. As the intersection of two plane curves of degrees
d and 3(d — 2) it is finite and flat of degree 3d(d — 2) over at least the open
subset of S where the fiber dimension is zero (by Proposition II-32, families
of complete intersections are flat). And, by Exercise IV-1, a nonsingular
point of a curve C over an algebraically closed field of characteristic zero
lies in . if and only if it is a flex in the classical sense.

One word of warning: our definition does not coincide with the classical
one in the case of a singular curve C' C IP’%(: in our definition the singular
points of C' will always be in the support of #. (As we will see, this is as
it must be if the flexes of a family of curves are to be closed in the total
space.) As for the classical formulas, we will see below how to derive them
from our definition.

We can go further and relate the scheme structure of .# at p to the
geometry of C at p:

Exercise IV-2. Let C' C IF%( be as in Exercise IV-1, and p € C' a non-
singular point of C. Show that the projective tangent line T,,C C IP%( to
C at p has intersection multiplicity m > 3 with C at p if and only if the
component I';, of the intersection C' N C” supported at p is isomorphic to

', = Spec K [z]/(z™ ).

As this exercise suggests, we define the multiplicity of a flex p € Csmooth
to be the order of contact of T,C with C' at p minus 2. We would like to
apply Bézout’s theorem to deduce that a nonsingular plane curve of degree
d > 1 over an algebraically closed field K has exactly 3d(d — 2) flexes,
counting multiplicity, but there is one further issue: we need to know that
Z is a proper subscheme of C; that is, that not every point of C is a
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flex! Although this seems intuitively obvious, it is actually false in positive
characteristic:

Exercise IV-3. Let K be a field of characteristic p, and let C' C P% be
the plane curve given by the polynomial XPY + XYP? — ZP*1 Show that
C is nonsingular, but that every point of C' is a flex.

In characteristic 0, however, our intuition is correct:

Theorem IV-4. IfC C ]P’i( is any nonsingular plane curve of degree d > 1
over an algebraically closed field K of characteristic zero, then not every
point of C' is a flex (so that in particular C' has exactly 3d(d — 2) flexes,
counting multiplicity).

Proof. See for example Hartshorne [1977, Chapter IV, Exercise 2.3¢| or
Griffiths and Harris [1978, Chapter 2, Section 4]. |

Flexes of multiplicity m > 1 certainly can occur on nonsingular curves.
This naturally raises the question of whether, on a general curve, all the
flexes are simple (that is, have multiplicity 1). In fact, this is the case:

Exercise IV-5. Let K be an algebraically closed field. Fix an integer d > 2
and let B = }P’% the projective space parametrizing plane curves C' C ]P’i(
of degree d. Show that for a general point [C] € B—that is, for all points
[C] in a dense open set in B—all the flexes on the corresponding curve
C C P% are simple.

Hint: Consider the scheme of flexes . of the universal curve € C P%
(as defined in Section ITI.2.8). Show that .# is irreducible, and deduce that
it is sufficient to exhibit a single plane curve C' C IP’%( with a single simple
flex.

Exercise IV-6. Suppose we want to remove the hypothesis that K is al-
gebraically closed in Theorem IV-4 above. How should we define the mul-
tiplicity of a flex point p € C' with residue field a finite extension L of K
so as to preserve the conclusion that X has 3d(d — 2) flexes?

1V.1.2  Flexes on Singular Curves

Interesting new questions arise when we consider singular curves. First of
all, every singular point is a flex:

Exercise IV-7. Let C C IF%( be a plane curve. Show that all singular
points of C are flexes.

Hint: either exhibit a line through a singular point p of C' with intersec-
tion multiplicity 3 or more by looking at the tangent cone to C' at p (that
is, expanding f around p and taking a component of the zero locus of the
quadratic term); or use Exercise IV-2 and show that the Hessian vanishes
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at p by observing that X times the first column of the Hessian determinant,
plus Y times the second column, plus Z times the third, vanishes at p.

There are two sorts of questions about flexes on singular curves. First, we
can consider curves C' with isolated singularities and no line components,
so that the Hessian C” will still meet C' in a zero-dimensional scheme I', and
thus C will have a finite number of flexes; we ask for the number of flexes
supported at nonsingular points of C. To find this number, we simply have
to find the degree of the part of the scheme I' whose support is contained
in the singular locus Csing and subtract this from 3d(d — 2). It turns out
that this has a nice answer in particular cases, two of which are expressed
in the following exercise.

Exercise IV-8. Let C' C P% be irreducible and reduced, with Hessian
C'. Looking ahead to Definition V-31, let p € C' be an ordinary node of C'
(“ordinary” here means neither branch of C' at p has contact of order 3 or
more with its projective tangent line). Show that the component Ty, of the
intersection C'N C’ supported at p has degree 6 over the residue field x(p)
of p. Similarly, show that the component supported at a cusp p of C has
degree 8. What is the degree if p is an ordinary tacnode of C? (For formal
definitions of node, cusp and tacnode see Definition V-31).

Thus, over an algebraically closed field, the number of nonsingular flexes
of a plane curve of degree d not containing any lines and having as singu-
larities 0 ordinary nodes and k cusps is

3d(d —2) — 66 — 8k.
This is an example of the classical Plicker formulas for plane curves.

Exercise IV-9. Verify that if C' is reducible (again assuming no com-
ponent of C' is a line), we can get the same answer by considering the
components of C' individually.

1V.1.3  Curves with Multiple Components

A very different sort of question emerges when we consider curves with
multiple components, for example the curve defined by a power F = G™ of
a polynomial G(X,Y, Z). Of course, for such a curve C' the scheme Z¢ of
flexes is positive-dimensional, and typically not that interesting. Rather, the
interesting questions arise when we consider families of curves specializing
to such a multiple curve. We ask: in such a family, where do the flexes go?

To give just an example of such a problem, consider the case of a nonsin-
gular quartic plane curve degenerating to a double conic in a linear family.
Let K be an algebraically closed field of characteristic zero and consider a
curve € over the scheme B = A, = Spec K[t]. Suppose U = U(X,Y, Z) is
an irreducible quadric polynomial and G = G(X,Y, Z) any quartic poly-
nomial such that the curves V(U) and V(G) C P% intersect transversely.
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Consider the family 7 : € — A}( of quartic plane curves given by the
equation F = U? 4 tG = 0 that is, the scheme

m:¢ =ProjK[t][X,Y, 2]/ (U(X,Y, Z2)* +tG(X,Y, Z))
C Proj K[t][X,Y, Z] = P% — B.

Let .Z be the scheme of flexes of the curve € C P%. To set up the
problem, let .Z* C P%. be the inverse image in .% of the punctured line
B* = Spec K[t,t~'] C B, and .#’ the closure of .#* in P%. The scheme .%*
is finite and flat over B*, and readily described: if C), C IP’%( is the fiber of
€ over the point (t —u) € B = A, then for p # 0, the fiber F,, of Z over
(t — p) will be the 3d(d — 2) = 24 flexes of C,,. In other words, away from
the origin (t) € B = A} the flexes of the curves C,, themselves form a flat
family.

Let .Z' be the closure of .Z* in P%, and let F}, be the fiber of % over
the origin. Since B is one-dimensional and nonsingular, .’ will be flat over
all of B; it follows in particular that Fj ¢ Co C P% has dimension zero
and degree 24 over K. We may think of Fjj as the “limiting position” of
the 24 flexes of the nearby nonsingular curves C), as p approaches zero.
Thus, the naive question, “where do the flexes of a plane quartic go when
the quartic degenerates into a double conic?” translates into the precise
problem: determine the flat limit F{j, and in particular its support.

What makes this tricky is that the scheme F{ is not the fiber of .# over
the origin. Rather, .% will have two components: one, the closure .%#’ of .Z*
consisting of the “real” flexes and their limits, and the other supported on
the conic V (t,U) in the special fiber 7=1((t)) = P% of P%. Thus we cannot
hope to gain any clues to the answer simply by looking only at the curve
Cy (indeed, since the group of automorphisms of IP)?( carrying Cjy into itself
acts transitively on the closed points of the conic (Cp)red, We see that the
answer must depend on the family %).

To answer the question, we first write down the ideal I of the scheme
Z (in an affine open subset Spec K[t][z,y] = A% C P%), then the ideal
I* = I K[t,t Y[x,y] of Z*, then the ideal I’ = I* N K[t][z,y] of the
closure %', and finally the ideal I); = (I’,t) of the fiber F{ of .#' over the
origin (¢) € B. To illustrate how such calculations are done, we will carry
out these steps in detail. (You may wish to wait to look at these details
until you have a similar problem of your own to solve!)

To start, if u(z,y) = U(X,Y,1) and g(x,y) = G(X,Y, 1) are the inhomo-
geneous forms of U and G respectively in the affine open Spec K[t][x,y] =
AQB C ]P’QB, the ideal I is by definition generated by two elements, the equa-
tion u? — tg and the affine Hessian

u? —tg 2uty + tg. 2uuy + tgy
ity +tg:  2Ulgy + 2u2 + tGrn 2Ulgy + 2Uz Uy + TGy
2uuy +tgy  2Ulgy + 2Uzly +1Gsy 22Uty + 2u§ + tGyy
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Thus, I = (u? —tg, H), where

0 2uuy + tg, 2uuy + tgy
H=|2uu, +tg, 2uugz, + 2u92€ Ttz 2UUzy + 2Ugly + 1Gry
2uuy +1tgy  2Ulgy + 2Uzty + gy 2Ulyy + 2u§ + tgyy

We may expand out H, grouping terms involving like powers of t:

H = 8u? (—ui(uuyy + ui) + 2ty (Ulzy + Ugtly) — ui(uum + ui))
+ 8tu(—gxux(uuw + ui) + gaty (Wlgy + Ugty)
+ gyta(Uay + Uaty) — gyty(utics + ugzc))
+ dtu? (—uigyy Tt Uz UyGoy — Uigm)
+2t7 (_9325 (utyy + ui) + 2929y (Utay + uguy) — gz(uum + Ui))
+ 4820 (— g tiaGyy + GatlyGey + GyUaGay — yUyGaz)
+ 1% (—920yy + 9o9+Y9ey — 9odaa) -

The first two terms on the right may be simplified, yielding the expression

H = 8u® (—uuyy + tatiytay — ultizs)
+ 8t (—gollatiyy + Gollyliay + Jyliatiay — Jyllylias)
+ 4tu® (—ulgyy + UallyGoy — Uolea)
+ 2t (—gg(uuyy + ui) + 2929y (Wgy + Ugty) — gg(uum + ui))
+ 4% (— g tiaGyy + GatlyGey + GyUaGay — GytyGaz)
+ 13 (~929yy + 9294 Y9uy — 9oGas) -

Now, modulo the other generator u? — tg of I, we may replace u? by
—tg in this expression to arrive at a polynomial divisible by t. Thus the
ideal I* = I(F*) =1 - K[t,t Y[z, y] C K[t,t"][z,y], and hence the ideal
I'=I1(%") =I"NnK[t][z,y] C K[t][x,y], contain as well the element

H' = —8ug (fuiuyy + Up Uy YUy — uium)
— 8tg (—GaUaUyy + JolylUsy + GyUslzy — JylyUzz)
— 4tg (—ulgyy + UslyGey — UpGaz)
+2t (*gi(uuyy + ui) + 2909y (Uttay + Usty) — g;(““m + ui))
+ 4tu (= gaUagyy + gallyGay + JyUoGay — GyUyJaz)
+ 12 (—929yy + 909+ Yoy — 9udaa) -
Moreover, if we multiply this generator of I* by u and once more replace
u? by —tg, we arrive again at a polynomial divisible by t; we conclude that
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the ideals I'* and I’ contain as well
J = 8g> (_“iuyy + Up Uy YUy — uium)
—8gu (_g:cuxuyy + gzxUyUzy + GyUgUgy — gyuyu:cac)

+ 2u (—gi(uuyy + Ui) + 2929y (Utipy + Uzuy) — 95 (wtgy + U’ﬂzc))

—4tg (_gzumgyy + GaUyGoy + GyUzGay — gyuygmm)
+tu (—g29yy + 909+ Y9ey — Joea) -
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To continue with this analysis, we have to use the fact that, for any

homogeneous quadratic polynomial U(X,Y, Z), the Hessian
0*U 0*U 0*U
X2 0X9Y 0X0Z
0*U 0*U 0*U

0YoX oy? Yoz
0*U 0*U 0*U

0Z0X 0Z0Y 072

is a scalar u = p(U), nonzero if U is irreducible (that is, if the curve

V(U) C P? is nonsingular), and zero otherwise. It follows that
ou ou

dx Oy

ou  9*u 0%u
or 02 0xdy
ou  *u  9%*u
ay 0xdy Oy

u

for some scalar A\. Substituting this in the expression for J, we have

J = 8ug?
+ 8\g%u
— 89U (= gaUalyy + Gallyley + Gylalay — Gyllyles)

— 4gu (—u3 gyy + UztiyGry — u;gm)

2 2
= —ULUyy + UpUg YUy — UyUgy = Au + p,

+2u (_gi(uuyy + ui) + 2909y (utiay + uaty) — 9'3 (Utige + UE))

— 4tg (= gatiaGyy + GoUyGay + GyUaey — GyUyJuz)
+ tu (—929yy + 9o 9+ Y92y — 9obaa) -

Now, we have seen that the ideal I’ D (u? +tg, H', J). Restricting to the
fiber over the origin in B — that is, setting ¢ = 0— we see that the ideal

I = (I',t) of the fiber Fjj of #' contains
u? +tg=u® mod (1),
H' =ug mod (t,u?),
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and

J =8ug® — 2vu mod (t,u?, ug),
where
v= Qi(uuyy + uz) — 2029y (Utty + uztty) + gi(uum + ui)
We see from this that I} D (¢,u?, ug, 8ug? + 2vu). Now, we may write
V= gi(uuyy + Ui) — 2929y (Ullgy + ugty) + gi(uum + U’32c)
= (gouy — gyus)?  mod (u)

2
9z Gy ‘
Uy Uy

In particular, given that V(U) and V(@) intersect transversely, v cannot
be zero at a point where u = g = 0. We may thus recognize the ideal
(t,u?, ug,8ug? + 2vu) as the ideal of a subscheme of the special fiber Co,
supported at the eight points t = U = G = 0 of intersection of the conic
U = 0 and the quartic G = 0 in the plane ¢ = 0 and having degree 3 at
each point. Since 8 x 3 = 24, the fiber F{j cannot be any smaller than this,
and so we must have equality, that is,

Ii = (t, u? ug, 8ug® + 2vu).
In other words:

Proposition IV-10. The scheme F{ is supported at the eight points t =
U = G = 0 of intersection of the conic V(U) and the quartic V(G) in the
plane V (t). At each point, it consists of a curvilinear scheme of degree 3,
tangent to, but not contained in, the conic V(U).

One aspect of this answer is that any closed point of the reduced curve
(Co)rea could be a limit of flexes of nonsingular curves for a suitable family
of curves C), tending to Cy. This is a general phenomenon; in fact, every
point of a multiple component of a curve is a limit of flexes of nearby
nonsingular curves.

The phenomenon described in this example is fairly general. The follow-
ing exercises give two generalizations.

Exercise IV-11. Let K be as before an algebraically closed field of char-
acteristic zero and B = A} = Spec K[t]. Let F = V(U) be a nonsingular
conic, and D = V(@) and E = V(H) nonsingular plane curves of degrees d
and d—4 respectively intersecting C' transversely, such that FNDNE = &,
and the points of ENF are not flexes of E. Consider the family 7 : € — B
of plane curves of degree d given by the equation F = U2H +tG = 0—
that is, the scheme ¢ = Proj K[t][X,Y, Z]/(U*H 4+tG) C P%. Describe the
limiting position of the flexes of the fiber C over the point (t — \) € B
as A goes to zero. In particular, show that of the 3d(d — 2) flexes of Cj,
3 approach each of the 2d points U = G =t = 0; 9 approach each of the
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2(d—4) points U = H =t = 0, while the remaining 3(d—4)(d—6) approach
flexes of the curve H =t = 0.

Exercise IV-12. With K and B as above, suppose now that F = V(U)
is a nonsingular plane curve of degree e and X = V(G) a nonsingular
plane curve of degree d = 2e intersecting F' transversely. Consider the
family 7 : € — B of plane curves of degree d given by the equation
F = U? +tG = 0, and once more describe the limiting position of the
flexes of the fiber Cy as A\ goes to zero. In particular, show that of the
3d(d —2) flexes of C, 3 approach each of the de points U = G =t = 0 and
2 approach each of the 3e(e — 2) flexes of G =¢ = 0.

There is one case, other than that of a curve with multiple components,
in which a plane curve over a field of characteristic 0 may have a positive-
dimensional scheme of flexes: that of a curve C' C P% containing a line.
We may ask in this setting the analogous question: given a family of plane
curves specializing to one containing a line— for eample, with K and B
as above, the family 7 : € — B of plane curves of degree d given by the
equation LF + tG = 0 for L, F' and G general polynomials of degrees 1,
d—1 and d respectively — where do the flexes of the general fiber of C' — B
go? The answer turns out to be in some ways more subtle than that in the
case of multiple components; we will not describe it here, for lack of some
necessary language, but will mention that (as the reader may verify) the
location of the limiting flexes on the line V(L) is not the intersection of
V(L) with V(G).

To conclude this section, here is an amusing aspect of the geometry of
flexes on plane cubics.

Exercise IV-13. Consider a nonsingular plane cubic curve C' C IP’H% over
the real numbers. Show that the scheme of flexes will consist, for some pair
of integers a and b with a 4+ 2b = 9, of a points with residue field R and b
points with residue field C. Deduce in particular that C' must have a real
flex.

In fact, the number a in this problem is 3. For the pleasure of the reader
familiar with the classical theory of elliptic curves, we sketch the argument.
Part of it is simple: the exclusion of 5 and 7 follows from the existence of a
group law on the set of points of C' with residue field R, in terms of which
the flexes with residue field R form a subgroup of the group Z/(3) x Z/(3)
of the 9 flexes of C' xg SpecC. To see that a = 3, we observe that the
R-rational points of C' form a compact real one-dimensional Lie group, and
hence is isomorphic to S* x G where G is a finite group. For degree reasons,
G can have cardinality at most 2.

More generally, if K is any field and C' C P% a nonsingular plane cubic,
the number of flex points p € C' with residue field K will be 0, 1, 3 or
9. This phenomenon is strictly limited to cubics, however: it follows from
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Harris [1979] that for any d > 4 and any number § with 0 < ¢ < 3d(d —2),
d # 3d(d — 2) — 1, there exists a field K and a nonsingular plane curve
CcC IP’%( of degree d whose scheme of flexes contains exactly ¢ points with
residue field K.

In Chapter V we’ll discuss another object classically associated to a plane
curve C' C P%: its dual curve C* C (P%)*. We'll encounter many phenom-
ena analogous to those we have just discovered.

IV.2 Blow-ups

Blowing up is a basic tool in classical algebraic geometry. It is used to
resolve singularities, to resolve the indeterminacy of rational maps, and
to relate birational varieties to one another. Saying that one variety is a
blow-up of another along a given subvariety expresses a relationship that is
simultaneously close enough to relate the structure of the two intimately,
and flexible enough that it is a very common ingredient in the expression
of maps between varieties. In this section, we will extend the definition to
the category of schemes, defining the notion of the blow-up of an arbitrary
(Noetherian) scheme along an arbitrary closed subscheme.

Generalizing the definition of blow-ups in this way actually serves two
purposes. First there is the expected benefit: blowing up schemes other
than varieties is useful for the same reason blowing up varieties is, that is,
for resolving singularities or relating two birational schemes (for example,
we will blow up arithmetic schemes in Section IV.2.4).

In addition we will see that, even in the context of maps between varieties,
the language of schemes —specifically, being able to talk about blow-ups
of a variety X along possibly nonreduced subschemes Y C X —represents
a highly useful extension of the concept. For example, we will illustrate
this in Section IV.2.3 below, where we extend the classical description of
nonsingular quadric surfaces as blow-ups of the plane to quadric cones,
using this generalized notion of blowing up. Likewise, in Section IV.2.3
we will see a naturally occurring map of varieties that turns out to be a
blow-up along a subscheme. These examples are in fact not special: when
we broaden the definition of “blow-up” in this way, it turns out that any
projective birational morphism of varieties is a blow-up! This is proved in
Hartshorne [1977, Theorem I1.7.17].

IV.2.1 Definitions and Constructions

For the following, we will assume the reader is familiar with the basic notion
of blowing up in the classical context, that is, blowing up varieties along
nonsingular subvarieties. (This material is amply covered in, among others,

Harris [1995], Hartshorne [1977, Chapter 1], and Shafarevich [1974].) In the
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simplest circumstances — for example, blowing up a reduced point in the
affine plane over an algebraically closed field K —a blow up map may be
described exactly as it is classically. We start by reviewing an example, the
blow-up of the plane at the origin, to see how the classical construction
of the blow-up via gluing may be carried out as well in the category of
schemes over a field. Generalizing this to the definition of the blow-up
Bly (X) — X of an arbitrary scheme X along an arbitrary closed subscheme
Y C X is simply a matter of expressing this standard construction in a
sufficiently natural way. In the following subsection we will give several
characterizations of blow-ups in general: a definition, two constructions,
and a further description in some special cases, such as the blow-up of a
scheme along a regular subscheme (Definition IV-15).

An Example: Blowing up the Plane.

Example IV-14. We start with the blow-up Z of the origin in the affine
plane A%( = Spec K[z,y] over a field K. This can be most concretely
described as the union of two open sets, each isomorphic to Ai: we let
U’ = SpecK|[z',y'] and U” = Spec K[z",y"], and consider the maps
@ U — A% and ¢ : U” — A% dual to the ring homomorphisms

()" Kr,y] — Kl',y']  and  (9")7: Kz, y] — K[2",y"]

T x/ T x//y//

y— 'y y—y’
The map ¢’ gives an isomorphism between the open subsets
U, =SpecK[z',y/,2''] and U, = SpecK|[z,y,z "],

and similarly ¢” gives an isomorphism between the open subsets U;’ =

Spec K[z, v/, i] and U, = Spec K[z,y,y~!]. In particular, they give iso-
morphisms of the inverse images

U;y = Spec K[.%‘/, Yy, xl—l, y/_l] and U:;/y _ SpecK[aﬁ”,y”,x”_l,y”_l]

of the intersection Uy, = U, N U, = Spec K [z,y, 2!,y !]. We can thus
identify the open sets U;, C U’ and U}, C U", and so glue together U’
and U"” to obtain a scheme

Z =U"UU" = Spec K[z',y'] U Spec K [z",y"],

UL, =Ul,
where the isomorphism U,, = U, is given by the ring homormorphism

" //—1]

Ko,y o'y~ — K"y 2"y

x/ —_ I//y//
y/ — x//_l.
We call the union Z, with its structure morphism ¢ : 7 — Af(, the blow-up
of A% at the origin. The inverse image E = ¢~ 1(0,0) C Z of the origin
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is isomorphic to IP’}( (this is called the exceptional divisor of the blow-up),
while ¢ is an isomorphism everywhere else, that is, Z \ E = A% \ {(0,0)}.

One way to think of this construction is to observe that the coordinate
rings of the open subsets of the blow-up are enlarged to include the ratios
y' = y/x and 2" = x/y respectively. This has a number of consequences. For
one thing, the pair of functions z,y on A% define a map f : A%\ {(0,0)} —
]P’}( on the complement of the origin: in classical language, this is the map
(a,b) — [a,b], or in modern terms it is the map associated to the surjection
O @0 — O given by (f,g) — xf + yg. This map cannot be extended to
a regular map on all of A%(; but if we compose f with the isomorphism
Z\ E =A%\ {(0,0)}, we see it does extend to a regular map on all of Z.
This is because the ideal generated by the (pullbacks of the) functions x
and y is locally principal on Z (and generated by a nonzerodivisor), so that
where z and y have common zeroes we can simply divide the homogeneous
vector [x,y] by their common factor to extend the map. Another effect of
the enlarged coordinate rings in the blow-up is to separate the lines through
the origin. That is, if L and L’ are distinct lines through the origin in A%,
the preimages of L\ {(0,0)} and L’ \ {(0,0)} have doisjoint closures, as
shown in the picture (these are just the fibers of the map f).

By the same token, if we have a curve C' C Af( with a node at the origin,
the inverse image of the complement of the origin in C' is nonsingular in Z,
meeting the exceptional divisor at two points.

Definition of Blow-ups in General. We will use these observations as
starting points in generalizing the definition of a blow-up to that of an
arbitrary scheme along an arbitrary subscheme. The essential fact is that,
in the blow-up ¢ : Bly(X) — X of a scheme X along the subscheme
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Y C X, the inverse image of Y is locally principal. To formalize this, we
start with a definition:

Definition IV-15. Let X be any scheme, Y C X a subscheme. We say
that Y is an Cartier subscheme in X if it is locally the zero locus of a
single nonzerodivisor; that is, if for all p € X there is an affine neighborhood
U = Spec A of p in X such that YNU = V(f) C U for some nonzerodivisor
f € A. More generally, we say that Y is a regular subscheme if it is locally
the zero locus of a regular sequence of functions on X.

Definition IV-16. Let X be any scheme, Y C X a subscheme. The blow-
up of X along Y, denoted ¢ : Bly (X) — X, is the morphism to X charac-
terized by these properties:

(1) The inverse image ¢~ '(Y) of Y is a Cartier subscheme in Bly (X).

(2) ¢ : Bly(X) — X is universal with respect to this property; that is, if
f: W — X is any morphism such that f~!(Y) is a Cartier subscheme
in Z, there is a unique morphism g : W — Bly (X)) such that f = pog.

The inverse image E = ¢~ *(Y) of Y in Bly X is called the exceptional
divisor of the blow-up, and Y the center of the blow-up.

It is clear that these properties uniquely characterize the blow-up ¢ :
Bly(X) — X of a scheme along a subscheme. It is less clear that the
blow-up exists, but we shall soon see that it does.

In the affine case the blow-up can be realized in a very simple way as
the closure of the graph of a morphism, and we describe this construction
first. We start by generalizing the construction of Example IV-14 to the
blow-up at the origin of affine space over an arbitrary ring.

Example IV-17. Let A be any ring and let A"y = Spec A[z1,...,Z,].
Consider the schemes

U, = SpecT; =2 A"},

where
—Al* In .
TZfALEi, ey xi’xl}
is the subalgebra of T = Alzy, 27", .., 20, 2, "]

generated over A by the
functions x;/x; and ;. The rings (T}),, and (T})., are equal as subrings
of T, so we have commuting isomorphisms

Thus we may form a scheme Z that is the union of the U; with these
open sets identified. Note that the morphisms U; — A"} corresponding to
the inclusions A[z1,...,2,] — T; agree on the overlap to give a natural
structure morphism ¢ : Z — A’}.

This example shows many of the properties of the classical blow-up de-
scribed in Example IV-14:
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(1) Let U = A%\ V(21,...,x,) be the compelement of V(z1,...,z,) (the
“origin”) in A;. We have a morphism

. n—1
O‘(wl,‘..,m") ° U - PA

given by the functions (x1, ..., z,); or, more formally, by the surjection
ﬁg’ — ﬁU7
(a1y...,apn) — > ax;.

We claim that Z is the closure in Ay x 4 P" ' = P! of the graph of
a. To see this, we observe that (U;),, C Z is the graph of the map

n— X Tn
a(a:i,..,,zn) U1)$7 - (PA 1)3?1‘, = SpecA[x—i, ey _:|7

T4

e
and that the open sets (U;),, are dense in Z.

(2) The preimage E = ¢ 1V (z1,...,2,) C Z of V(z1,...,2,) C AT}
under the structure map ¢ : Z — A’} is isomorphic to IP’Z_l; and

is an isomorphism.

(3) Since (z1,...,2,)T; = (x;)T;, the preimage E C Z of the origin
V(zy,...,2,) C A’} is locally defined by a single equation.

Proposition IV-18. The morphism ¢ : Z — A"} is the blow-up of A"}
along the subscheme V(x1,...,2y).

Proof. We have already observed that Z — A’} satisfies condition (1) of
Definition IV-16. It remains to show that if ¢ : W — A’} is any morphism
such that ¥~V (x1,...,2,) is Cartier, then 1 factors through ¢; that is,
there exists a map a: W — Z with ¥ = p o a.

We prove this first when W = Spec R and R is a local ring. Consider
R as an algebra over A[xy,...,x,| via the map ¢v* : Alzy,...,2,] — R.
Since the ideal (z1,...,z,)R is principal, Nakayama’s Lemma (Eisenbud
[1995, Corollary 4.8]) implies that it is generated by one of the z;. More
concretely, if we write

(Il, o 7$n)R = (’Y)v
we can write
’y:alxl+"'+anxn

for some «; € R, and likewise z; = ;. It follows that
Y=Y aiwi =Y by,

from which we see that at least one of the §; must be a unit in R; that is,
(1,...,2n) R = () = (z;) for some i.
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We can now write z; = vjz; (where v; = ﬂjﬂi_l) for each j, and we
defined the desired map

a:W-—-U; — 7

as dual to the homomorphisms of rings

x Tn
2L 2| — R,
T Ti

A

Now suppose that W is an arbitrary scheme, and ¢ : W — A} a morphism
with ¥~V (x1,...,2,) Cartier. For each point w € W, the previous argu-
ment yields a map o : Spec Oy, — Z whose image lies in one of the affine
open subsets U; = A" C Z covering Z. Such a map can be extended to
the Zariski open neighborhood of w € W on which the images o (x;/z;)
are regular, so we get a covering of W by open sets Wj and morphisms
ay : Wi — Z such that ¢ o ap = ¥|w,.

We will complete the argument by showing that the maps «y, agree on
the overlaps W; N W, and thus define a morphism o on all of W.

Since the restriction of ¢ to Z\ E — A"} \ V(z1,...,2,) is an isomor-
phism, it will suffice to show that the inverse image ¥ =1 (A} \V (21, ..., 75))
is dense in W. But by hypothesis, 1~V (z1,...,,) is a Cartier divisor in
W. The following lemma thus completes the argument.

Lemma IV-19. If X CY is a Cartier subscheme of a scheme, then Y\ X
is dense in'Y (as schemes, not just as topological spaces).

Proof. We may assume that Y is affine, say Y = Spec A, and that X =
V(f) for some nonzerodivisor f € A. To say that there is a proper closed
subscheme Y’ containing ¥\ X is to say that the localization map A — Ay
factors through A/I(Y’). But since f is a nonzerodivisor, this localization
map is a monomorphism. 1

Exercise IV-20. (a) Show that the conclusion of Lemma IV-19 fails for
X =V(x) CY = SpecK|z,y]/(zy,y°).

(b) Show more generally that it characterizes Cartier subschemes among
all locally principal subschemes of Y.

(c) Show that Bly = & if and only if suppY = supp X.

The construction of Proposition IV-18 will yield all blow-ups of affine
schemes as soon as we understand how blow-ups behave on subschemes, or,
more generally, under pullbacks. This follows directly from the definition:

Proposition IV-21. Let X be any scheme, Y C X a subscheme and
¢ : Bly(X) — X the blow-up of X along Y. Let v : X' — X be any mor-
phism and set Y' = v=1(Y) C X'. If W is the closure, in the fiber product
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X' xx Bly X, of the inverse image m; {(X'\Y"), then my : W — X' is the
blow-up of X' along Y'.

This lemma is already interesting in the case X’ = X, where it asserts
that the inverse image of X \'Y in Bly X is dense.

Proposition IV-21 is most often applied in case X’ C X is a closed sub-
scheme. In this case W is simply the closure in Bly X of the inverse image
e HX"\ (X' NY)); it is called the strict transform, or proper transform,
of X’ in Bly X. (The full inverse image ¢~ '(X’) C Bly X is called the
total transform.) Thus we may say that, in the blow-up Bl, Ai, the proper
transforms of the lines through the origin p € A% are disjoint (note that
the proper transforms of the lines map isomorphically to the lines them-
selves, as they should, since the origin is a Cartier subscheme on each), and
that the blow-up of a nodal curve at a node is nonsingular at the points
lying over the node.

In case X’ C X is an open subscheme, Proposition IV-21 says simply
that the formation of blow-ups does commute with base change, that is,

0 1 (X") 2 Blyny X' — X',

But more is true: since ¢ ~1(X’\Y) is dense, there is a unique such isomor-
phism over X. As a consequence, if 7 : Z — X is a morphism and suppose
we have a cover of X by open sets U such that 77U = Blyny U over X,
then Z = Bly X. In a phrase: blow-ups are determined locally.

Proof of Proposition IV-21. We check first that the inverse image
E =n'(Y)cW

of Y is a Cartier subscheme of W. It is certainly principal: the inverse image
E = ¢ 1Y) C Bly X is locally principal in Bly X, and E’ C W is simply
its inverse image 7, ' (F) under the projection 73 : W — Bly X. Moreover,
since the associated primes of W are exactly the associated primes of X’
not containing the ideal of Y, the local defining equation of E in Bly X
cannot pull back to a zero divisor on W.

Next, we have to verify that W has the universal property. Suppose T’
is any scheme, and f : T — X' any morphism such that the inverse image
F7Y(Y") of Y/ in T is a Cartier subscheme. In particular, since f~1(Y’") C T
is Cartier, no component or embedded component of 7' maps to Y'; thus
the closure in T of f~1(X’\Y”’) is all of T.

We have to show that f lifts to a morphism g : T'— W (that is, there
exists a morphism ¢ : T — W such that the composition 71 0 g = f). We
do this in three steps. First, let

h=vof:T—X

be the composition of f with the morphism v : X’ — X since the inverse
image h=1(Y) = f~1(Y’) is Cartier, it follows by the universal property of
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the blow-up Bly X — X that & lifts to a morphism h:T — Bly X. Next,
the pair of maps f: T — X’ and h : T — Bly X give a map

QITHXIXXBlyX

whose composition with the projection m; : X' x xBly X — X’ is f. Finally,
since § maps the inverse image f~1(X’\Y’) to W, and the closure in T'
of f~HX'\Y') is all of T, it follows that the map §: T — X’ xx Bly X
factors through the inclusion of W in X’ x x Bly X to give the desired map
g:T—W. |

We are now in a position to blow up any closed subscheme of any affine
scheme. If X = SpecA and f1,...,fn € A, then (f1,...,f,) defines a

morphism
Aty U=X\V(f1, oo fo) — PITY

more precisely, (f1,..., fn) defines a map 0% — Ox sending (a1, ..., an,)
to Y a;f;, which is an epimorphism exactly on U.

Proposition IV-22. Let X = Spec A be an affine scheme, and let
Y = V(fla"'afn) cX

be a closed subscheme. The blow-up of Y in X is the closure in X ><A]P’fffl =
]P’Zfl_l of the graph of the morphism

n—1
Aty P X\NY = P

Proof. Consider the embedding X — A" = Spec Alz1,...,z,] given by
the ring homomorphism

Alxy, ... zn] — A,
T — fi.

Note that under this embedding we have XNV (z1,...,z,) = Y. By Propo-
sition IV-21, the blow-up of X along Y is the proper transform of X in the
blow-up Z of A’} along V(x1,...,2,). By Proposition IV-18, on the other
hand, the blow-up Z of A"} along V(z1,...,x,) is the closure of the graph
T" of the map

Qg zn) - AZ\V(&jl,...,xn) —>PZ‘_1.

Since the graph of g, ., ) is simply the intersection of I' with the preim-
age of X C A}, its closure is the proper transform of X C A"} in Z, and
the result follows. |

In this proposition we built in the restriction that the subscheme Y C X
be defined by finitely many functions f;, but this is really unnecessary.
The reader may check that everything works for infinite sets (though the
morphisms go to infinite-dimensional projective spaces).
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The Blowup as Proj. We have now proved the existence of the blow-up
of an affine scheme along a closed subscheme. We could at this point deduce
the existence of blow-ups in general by gluing. However, there is a more
elegant construction of blow-ups via global Proj, which accomplishes this
in one fell swoop.

Theorem IV-23. Let X be a scheme andY C X a closed subscheme. Let
I = Iy x C Ox be the ideal sheaf of Y in X. If o/ is the sheaf of graded
Ox -algebras

d=Prr=0x0s50570 -
n=0

(where the k-th summand is taken to be the k-th graded piece of <f ), then
the scheme Proj(e/) — X is the blow-up of X along Y.

Remark. This construction often leads to notational confusion: if f €
Ox (U) is a regular function vanishing on Y, the symbol “f” could a priori
be used to denote either the section of @y = Ox or the section of 2] = & —
two different sections of .&7. To avoid this, we will often realize & as a
subsheaf of the sheaf

oxlt] =Pt ox,
n=0

writing
A =O0x DtI 2% D ---.

We will use this notation in the proof below.

Proof. We have to show that the morphism
¢: B =Proj(«) - X

satisfies the two conditions that characterize a blow-up: that the preimage
0 Y of Y in B is Cartier, and that any morphism f : Z — X with f~1Y
Cartier factors uniquely through B. We will write .# for the ideal %y of Y
in X.

To show that the preimage of Y in B is Cartier, recall from section 1.3.1
that o~ 1Y is the subscheme of B defined by the ideal sheaf .# @'5. Since the

structure sheaf &5 is the sheaf associated to the sheaf of graded «/-modules
o/, we see that #Op is the sheaf associated to the graded .&/-module

I =F OpDI - IDI - I>F---
N AP AW AN

where the term .# - .#¢ = #9*1 occurs in degree d. This is the truncation
of the graded module

d)=0o I 5.
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(again the term .#9t! occurs in degree d.) Thus by Exercise I11-46, .# 05 =
Op(1) is invertible.

It remains to show that if f : Z — X is a map such that f~'Y is Cartier,
then f factors uniquely through B. We will assume for simplicity that .# is
coherent. We will realize B as a closed subscheme of P(.¢) = ProjSym(.¥)
and produce the desired map from Z to B by giving a natural map from
Z to P(.#) whose image is contained in B.

The maps Symy(#) — #¢ give a surjection Sym(.#) — . Its kernel
is a sheaf of graded ideals of &/ and thus as in section III.2.2 it identifies
B = Proj </ with a closed subscheme of P(.%).

Because f~1'Y is Cartier, its ideal .# - 0z is invertible. Thus the natural
surjection

f*fzcﬁ@ﬁxﬁz—hﬂ-ﬁz

corresponds as in Theorem I1I-44 to a map «a : Z — P(.#). Further, by
Lemma IV-19, the complement of f~'Y is dense in Z. Since ¢ is an iso-
morphism on the complement of =1V, it follows that a(Z \ f~1Y) is
contained in B, and thus all of a(Z) is contained in B. The map « is thus
the desired map from Z to B.

Both the fact that f = pa and the uniqueness of « follow as well from
the density of Z\ f~'Y in Z and the last sentence of Exercise I11-24. [

We assumed for simplicity that the ideal sheaf .# was coherent (and not
merely quasicoherent); the quasicoherent case could be handled by means
of a straightforward generalization of I11-44.

Blowing up gives us another way to interpret the projectivized tangent
cone to a scheme, which we will use later in this section.

Exercise IV-24. Show that the exceptional divisor in the blow-up Bl,(X)
of a scheme X at a point p € X is the projectivized tangent cone PT'C,(X)
to X at p.

Blow-ups along Regular Subschemes. As we mentioned before the
statement of Theorem IV-23, the construction of a blow-up may not be as
explicit in practice as it appears. The reason is that, even given explicit
equations for a scheme X and a subscheme Y, it may not be obvious how
to express the Rees algebra

o =Pt A x C Oxlt]

n=0

in terms of explicit generators and relations. (The generators are clear,
assuming we know locally generators of the ideal sheaf .y x; it’s knowing
when we have found all the relations that may be tricky.) There is, however,
one circumstance in which the Rees algebra has a nice description: when
the subscheme Y C X is a regular subscheme. We will state the result first
in case Y has codimension two.
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Proposition IV-25. Let A be a Noetherian ring and x,y € A; let B be
the Rees algebra

B = Alzt, yt] C Aft].
If x,y € A is a reqular sequence, then
B> AX,Y]/(yX —2Y)

via the map X — xt, Y — yt.

Proof. First we invert x and set X’ = 27'X € A[z7!][X,Y]. The element
yX' —Y € Alz7'][X,Y] = Alz7][X', Y] generates the kernel of the map

Alz7X Y] — Alz7M[t],
X' —t,
Y — yt.

Since (yX —2Y) = (yX’' —Y) in the ring A[z71][X, Y], it suffices to show
that z is a nonzerodivisor modulo yX — 2Y in A[X,Y]. Notice that, in the
other order, yX —zY is obviously a nonzerodivisor modulo z —it’s congru-
ent to yX, the product of two nonzerodivisors! In general, a permutation
of a regular sequence is not a regular sequence, but in this setting, as in
many others, it is; see Eisenbud [1995, Section 17.1].

In our case we may argue as follows: To show that x is a nonzerodivisor
modulo yX — 2Y we must show that

(yX —2Y) : (x)

M= x =)

=0,

where (yX — 2Y) : (z) denotes the ideal {f € A[X,Y] | fz € (yX —zY)}.
Note that yX —2Y = yX modulo z, so (x, yX —zY") is a regular sequence
in A[X,Y]. Further, yX — 2Y is clearly a nonzerodivisor (to annihilate it,
a polynomial f(X,Y) would have to have leading term in X annihilating
x, which is a nonzerodivisor by hypothesis). It follows that the quotient M
is isomorphic to the first homology group of the Koszul complex

(yX_;La:Y) A2 (yX—2Y x)

0 A A.

By the same argument, this group is isomorphic to
(1) : (yX — a)
(z) ’

which is 0 since z,yX — zY is a regular sequence. (For a more leisurely
treatment of this last argument, see Eisenbud [1995, Section 17.1].) O
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The heart of the proof above is the statement that if I is generated by a
regular sequence of length 2, then the Rees algebra

AelolPe- -
is isomorphic to the symmetric algebra
Symy (1)

and this in turn is defined by the determinant of the 2 x 2 matrix

r oy
X Y /)
Similar statements are true for larger regular sequences:

Exercise IV-26. If I = (z1,...,2,) C A is generated by a regular se-
quence, then

ApTol?®--- 2 AXy,...,X,]/J

where J is generated by the 2 x 2 minors of the matrix
I . In
X ... X, )

1V.2.2  Some Classic Blow-Ups
Example IV-27. Let K be a field, and consider the quadric cone

Q = Spec K[z, y, 2]/ (zy — 2%) C Spec K [x,y, 2] = A%

Let p = (0,0,0) € Q be the vertex of the cone @, and let L be a line
through p lying on @, for example L = V(x, z). We would like to describe
the blow-ups of ) along both p and L.

We can do this directly, using either Theorem IV-23 or Proposition IV-22.
But perhaps the simplest way is to use Proposition IV-21. To begin with, we
can verify by either Theorem IV-23 or Proposition 1V-22 that the blow-up
of A‘;( at the origin p is the morphism
¢ Ay = ProjK[z,y,2][A, B,C]/(xB—yA, 2C—zA, yC—2B)

— Spec K[x,y,2] = A%.
The exceptional divisor E = ¢~ 1(p) C A% is indeed Cartier: for example,
we may write the open subset Uq = A3 \ V(A) as

Uy = Spec K|z, y, 2][b, c]/(xb—y, xc—z) = Spec K[z, b, ¢]

and in Uy, the exceptional divisor F is the zero locus of (the pullback of)
the function . As in the case of the blow-up of the plane at the origin, the
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proper transforms L of the lines L C A% through p are all disjoint in Ai(,
and indeed the exceptional divisor E is a copy of P% whose K-rational
points correspond bijectively to the set of these lines via the association
L— LNE.

Now, when we pull back the defining equation xy — 22 of @ to A%, we
find that it factors: it is twice divisible by the defining equation of E. For
example, in Uy,

o (zy — 2%) = 2%b — 222 = 22 (b — ).
We can express this globally as
¢ (Q) = V((z,y,2)*) UV(AB - C?)
and by Proposition IV-21 we may conclude that the blow-up Bl, Q of @ at
p is the restriction of ¢ to the locus V(AB — C?) C A%, that is,
¥ : Q = Proj K[z,y, 2][A, B,C]/(xB—yA, xC—zA, yC—zB, AB—C?)
— Spec K[z, y, 2]/ (y - 22) = Q.

We can picture Q as the disjoint union of the (proper transforms of the)
lines on () passing through p:

Now, what about the blow-up Bl @ — @ of @ along L? To begin with,
note that L is a Cartier subscheme of ) at every point of L except at p,
where it is not (p is a singular point of @, but a nonsingular point of L). It
follows that the blow-up Bl;, @ — @ will be an isomorphism over @ \ {p},
but not an isomorphism. Also, since the inverse image ¢ ~'(L) C Q of L
in the blow-up Q = Bl, @ — Q of @ at the point p is Cartier, the map
¥ : Q — Q must factor through the blow-up Bly Q@ — Q. It will by now
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not come as a surprise to the reader to learn that in fact, the two blow-ups
are the same! We leave the verification as the following exercise.

Exercise IV-28. Show that the blow-up Blj, A:;( of A:;( along the line L
may be realized as the map

¢ Blp A3 = Proj K|z, y,2][A, B /(B — 2A) — Spec K[z,y,2] = A%
(We may visualize this as the disjoint union of the planes in Ai( containing

L.) Use this to describe the blow-up Bl, @ — @, and show that it is
isomorphic to Bl, @ — @ as a (Q-scheme.

Another surprisingly rich example is the blow-up of a quadric cone of
dimension 3.

Example IV-29. Consider now the quadric hypersurface
X = V(zxw — yz) C Spec K [x,y, z,w] = Af.

X is the cone over the nonsingular quadric surface Q = V(zw — yz) C
Proj K|z, y,z,w] = IP’:}(. We want to consider blow-ups of X along three
subvarieties: the point p = (0,0,0,0); the plane Ay = V(z =y = 0) C X,
and the plane Ay = V(z = z = 0) C X. What is interesting is that, while
all three blow-ups are isomorphisms over X \ {p}, they are all distinct X-
schemes; also that the blow-ups Bly, X and Bly, X are isomorphic schemes,
but not isomorphic X-schemes.

To begin with, let ¢ : X — X be the blow-up of X at the point p. This
may be described along much the same lines as the blow-up of the quadric
surface at a point in the previous example: all the lines on X through the
point p are made disjoint; X is nonsingular; and the exceptional divisor is
a nonsingular quadric surface naturally identified with @ C IP%.

The blow-ups X; of X along the planes A; are described in the following
exercise:

Exercise IV-30. Let ¢; : X1 = Blp, X — X be the blow-up of X along
the plane A;. Show the following assertions.
(a) The scheme X; is nonsingular.
(b) The map ¢; is an isomorphism over X \ {p}.
(c) The fiber C' = @7 *(p) of X; over the point p is isomorphic to PF.
)

(d) The exceptional divisor F = ¢ *(A;), which is also the proper trans-
form of Ay in X, is isomorphic to the blow-up of A; = A% at the
point p.

(e) More generally, the proper transforms /~\17M of the planes

Avy = V(z—pz, y—pw)
spanned by the vertex p of X and the lines of one ruling of @) coincide

with their total transforms; they are isomorphic to the blow-ups of A; ,,
at the point p, and intersect pairwise along the curve C.
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(f) By contrast, the inverse images 7 (A2 ,,) of the planes

Az = V(z—py, z2—pw)
spanned by the vertex p of X and the lines of the other ruling of @
have two irreducible components: the proper transforms A, , and the
curve C. (In particular, they are not Cartier subschemes of X;.) The
proper transforms A, , map isomorphically to the planes A, ,, and are
disjoint in Xi; thus we may try to visualize X, as the planes A5, made
disjoint.

&
<
[V

X1 ® X2

P
®1 P2
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Since the inverse images of the planes A; and As are Cartier subschemes
of X (they are of pure codimension one in the nonsingular scheme X ),
the blow-up X = Bl, X — X factors through each of the blow-ups X; =
Bljp, X — X. In fact:

Exercise IV-31. (a) Show that X = X, xx Xo as X-schemes.

(b) Show that the induced map 1; : X — X; is simply the blow-up of X;
along the curve C.

The schemes X; are certainly not isomorphic to each other as X-schemes,
since the inverse image of As in X; is not Cartier and vice versa, though
they are isomorphic as K-schemes (X has an automorphism exchanging the
planes A; and As). Likewise, neither is isomorphic to X as an X-scheme,
since the inverse images of both A; and Ay are Cartier in X.

Exercise IV-32. Show that in fact X; and X5 are not isomorphic to X
even as K-schemes. (Hint: one way is to show that X; contains no two-
dimensional subscheme proper over K.)

Exercise IV-33. Here is an interesting way to realize all three of the blow-
ups described above. Identify AA}( with the affine space associated to the
vector space M of 2 X 2 matrices, or of linear maps A : V' — W between a
pair of two-dimensional vector spaces over K:

M:Hom(V,W):{(j Z)}

Let PV™* be the projective space of one-dimensional quotients of V*, that
is, one-dimensional subspaces of V, and similarly let PW™* be the projective
space of one-dimensional subspaces of W. Show that X and the blow-ups
X1, X» and X are, respectively, the schemes associated to the varieties

X={A:V > W |rankA <1} Cc A},

X, ={(A,L)| L CKer A} C A} x PV*,

Xo={(A, L) |ImAC L'} Cc A} xPW*
X={(A,L,M)|LCKerAand ImA C L'} C A} x PV* x PW*.

In fact, the results of Example IV-27 and Example IV-29 apply not only

to quadric cones, but to schemes that look locally like them. This is the
content of the following exercises, which will require one further definition:

Definition IV-34. Let K be an algebraically closed field of characteristic
not equal to 2 and X any scheme over K. We say that a point p € X is an
ordinary double point if the formal completion of the local ring Ox ,, is

&Xyp%K[[zl,...,xn]]/(x;f+z%+'~+z%).
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For example, an ordinary double point of a curve is what we have been
calling a node. More generally, an ordinary double point of an n-dimensional
scheme X may be characterized as any point such that the projectivized
tangent cone to X at p is a nonsingular quadric hypersurface in P7,X =
P%.

Exercise IV-35. Suppose now that X has dimension 2 and p € X is
an ordinary double point. Let X = Bl, X — X be the blow-up of X at
p. Show that the conclusions of Example IV-29 apply as well to X: that
X is nonsingular; that the exceptional divisor E C X is a conic curve
in PT,X = Pf{, and that if C C X is any curve nonsingular at p then
Ble X & X as X-schemes.

Exercise IV-36. Keeping the hypotheses of Exercise IV-35, suppose now
that X has dimension 3 and p € X is an ordinary double point. Let
X = Bl, X — X be the blow-up of X at p- Show that the conclusions
of Example IV-29 apply as well to X: that X is nonsingular; that the eX—
ceptional divisor E C X is a nonsingular quadric surface Q C PT,X = IP
and that if S C X is any surface nonsingular at p then the blow up Blg X
has fiber over p isomorphic to ]P’}( (and in particular is not isomorphic
to X). Show moreover that if S and S’ C X are two such surfaces, the
blow-ups Blg X and Blgs X are isomorphic as X-schemes if and only if the
projectivized tangent planes PT,S and PT,S’ C PT,X belong to the same
ruling of the quadric Q.

By way of language, for a three-dimensional scheme X with an ordinary
double point p € X, the schemes X’ — X obtained (locally around p) as
blow-ups of X along surfaces nonsingular at p are called small resolutions
of X at p. In general, a resolution of singularities 7 : X’ — X —that is,
a birational morphsim such that X’ is nonsingular —is called small if for
any subvariety I' C X the inverse image 7~ !(T") has dimension at most

dim(T") + dim(X) — 1
5 .

The birational isomorphism between the two small resolutions of a three-
fold X with an ordinary double point is called a flop; see Clemens et al.
[1988].

Let X be a scheme and Y, Z C X a pair of subschemes. If we blow up X
first along one, then along the proper transform of the other, the order in
which we do it matters. We can now illustrate this with a simple example,
given in the form of a series of exercises.

dim(7~(I")) <

Exercise IV-37. Let K be a field and A% = Spec K[z,y, 2]. Let L and
M C A3 be the lines V(z,%) and V(z, z) respectively, and N = LU M =
V (x,yz) their union. Describe the blow-up X = Bly A% — A%; in partic-
ular, show that X has fiber isomorphic to P}( over every point of N, but
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that it is not nonsingular: it has an ordinary double point p lying over the
origin in A3 .

Exercise IV-38. Keeping the notations of the preceeding problem, let
Y — A% be the blow-up of A% along the line L, M C Y the proper
transform of M in Y and X’ — Y the blow-up of Y along M. Show
that the composite map X' — Y — A% factors through the blow-up
X = Bly A% — A%, and that the induced map X’ — X is one of the
small resolutions of the ordinary double point p € X.

Exercise IV-39. Now let Z — A% be the blow-up of A% along the line
M, L C Y the proper transform of L in Z and X” — Z the blow-up of
Z along L. Show that the composite map X” — Y — X again factors
through the blow-up X — A%, and that the induced map X’ — X is the
opposite small resolution of the ordinary double point p € X from X’ — X.
To see directly that X’ — X and X" — X are not isomorphic X-schemes,
let N and N” be the closures of the inverse image of L\ {0} in X’ and
X" and compare the fibers of N’ and N” over 0 € A%.

1V.2.8  Blow-ups along Nonreduced Schemes

Up to now, we have dealt only with examples of blow-ups Bly X — X in
which all three objects involved —the original scheme X, the subscheme
Y and the blow-up Bly X —are varieties. In the remaining two parts of
this section, we will consider the behavior of blow-ups in the more general
setting of schemes, giving examples first of blow-ups along non-reduced
subschemes of a scheme X, and then of blow-ups of arithmetic schemes.
We will start here by giving some examples of blow-ups of varieties along
nonreduced subschemes.

Blowing Up a Double Point. Let X = A% = Spec K|[z,y], and let
I ¢ A% be the subscheme given by the ideal I = (z2,5). The blow-up
Z = Blp(A%) will be Proj A, where A is the ring

A=Kzylolol*
By Proposition IV-25, we can also write Z as
Z = Proj K[z,y][A, B]/(yA — 2*B)
which is covered by the open sets
Ua = Spec K[z, y][b]/(y — 2°b)
and
5 = Spec K[z, y][a]/ (ya - z?)

where a = A/B and b = B/A.
We can see immediately some differences between this scheme and the
ordinary blow-up of A%( at the origin. For one thing, though the fiber of
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each over the origin is isomorphic to A, the scheme Z = Blp(A%) is
singular at one point P (the point @ = = y = 0 in Upg), while the
ordinary blow-up is nonsingular.

We can see more if we express Z in terms of blow-ups with reduced
centers. Briefly, the “recipe” for Z in classical language is this (see figure
below): first, let Z; be the blow-up of A% at the origin; let £ C Z; be
the exceptional divisor, that is, the inverse image of the origin. Let P be
the point of E lying on the proper transform of the z-axis— that is, the
closure of the preimage of the z-axis in Z; \ E. Let Z3 be the blow-up of
Zy at P; let F' C Z3 be the exceptional divisor of this blow up and (by a
slight abuse of notation) E C Z, the proper transform of E in Zs. Then,
in classical language, Z = Blp (A%) is obtained from Z; by blowing down
E. In other words:

Proposition IV-40. The blow-up Z' of Z = Blr(A%) at its singular point
P is ZQ,

A

a singular point of Z
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We see from this description that the lines through the origin in the plane
are not made disjoint, as they were in the case of the blow-up of A%( at the
reduced origin: they are made disjoint in the first blow-up, but then meet
each other once more after we blow down F C Zs. On the other hand,
nonsingular curves through the origin tangent to the x-axis and having
different curvatures are separated: after the first blow-up in this sequence
they meet transversely at the point P; they are then separated by the
second blow-up and are not affected by the blowing down.

Proof of Proposition IV-40. By Exercise IV-35, the blow-up of Z at its
singular point is the same as the blow-up of Z at the reduced scheme F
associated to the exceptional divisor of Z = Blp(A%) — A%. This scheme
F is the total transform in Z of the (reduced) origin in A%, as we see
directly from the equations.

On the other hand, we claim that Z, may be obtained by first blowing
up the reduced origin in A%( to get Z1, and then blowing up the total
transform of I" in Z; — the reverse of the previous process. To see this,
observe that by the equations the ideal of " in Z; is the product of the
ideal of E C Z; and the ideal of the point P; since F is Cartier, it follows
that BIF/ Zl = Blp Zl.

With these remarks in place, it now suffices to apply the following lemma:

Lemma IV-41. Let X be a scheme and Y1 and Yo C X closed subschemes.
If fi: Z; = Bly, X — X be the blow-ups of X along Y1 and Ya, then

Bl, 1y, Z1 2 Bl 25

(Y1)

as X -schemes.

Proof. Let Wy = Blffl(y2)Z1, and let g1 : W1 — Z; be the blow-up
map; define W5 and g, analogously. Set h; = f;og; : W; — X. Since
(V) = g7 H(fT 1 (Ya)) € Wi is Cartier, the structure map hy : Wi — X
factors through Zs; that is, there is a map j; : W7 — Z3 such that hy =
f2 0 ji. Similarly, since j; ' (f; H(Y1)) = hi (Y1) = gy ' (f; 1 (Y1) € Wy s
also Cartier, the map j; : W1 — Z5 factors through W, = Bly,_1(vy) 2o,
inducing a map k1 : W7 — W5 such that hy = ho o k1. In the other
direction, we likewise obtain a map ko : Wy — Wj. Since Wi has no
automorphisms as an X-scheme, kg o ky is the identity, and in particular
k1 is an isomorphism. [l

Compare this lemma with Exercises IV-37 to IV-39, where we saw that
if we replace “total transform” with “proper transform”, the order does
indeed matter.

Blowing Up Multiple Points. We will consider here a few more exam-
ples of blow-ups of the plane along subschemes supported at a point.
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Exercise IV-42. For another example, let Q; C A% be the subscheme
defined by the ideal (y,z3) C K[z,y] and Qs the subscheme defined by the
ideal (y2,2%) C K[z,y]. Consider the blow-ups ¢; : Z; = Blg, (A%) — A%
of the plane at each of these two schemes. Show in that in each case the
scheme Z; is singular, the fiber ; *(P) over the origin P = (z,y) € A% is
isomorphic to IP’}(. Show also that in each case the blow-up map may be
factored into a sequence of three blow-ups followed by two contractions,
that is, there is a scheme W;, obtained by blowing up A% successively
at three reduced points, and a map W; — Z; that is constant on the
exceptional divisors of the first two blow-ups and is an isomorphism on
their complement. What is different about the sequence of points blown up
in the two cases?

Not to give a false impression, we should remark that the fibers of blow-
ups, even of nonsingular varieties, need not be projective spaces. (Of course,
given our assertion that any proper birational morphism is a blow-up, this
could hardly be the case.) The subject of the following exercises is a simple
example of other behavior.

Exercise IV-43. Let A% = Spec K[z, y] be the affine plane over an alge-
braically closed field K, and let I' C Aﬁ( be the subscheme given by

I =V(2®, zy, y?).
Let X be the blow-up X = Blp(A%). Show that X is given as
X = Proj K|z, y][A, B,C]/I
where [ is the ideal
I = (yA—2’B, yB—xC, AC—zB?).

Hint: blow up A% = Spec[z,y, z] along the subscheme V(z — zy, 2% y?),
which is a regular subscheme, and consider the proper transform of the
plane V(z).

Exercise IV-44. Show that the scheme X of the preceding exercise is
nonsingular, with fiber over the origin (z,y) € A% a union of two copies of
]P’}( meeting at one point. (In fact, X is the scheme Z5 of Proposition IV-40.)

It is not the case that we have a one-to-one correspondence between ideals
and blow-ups; different ideals may yield the same blow-up. Of course there
are many trivial examples of this— for example, any principal ideal yields
the trivial blow-up. Only slightly less trivially, let X be any Noetherian
scheme, I' C X any closed subscheme and .¢ C Ox its ideal sheaf. Let
T',, be the subscheme of X defined by the ideal .#™. It follows from the
definition via the universal property that the blow-ups Z,, = Bl (X) are
all isomorphic. Here are some more interesting examples:
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Exercise IV-45. Let A% = Spec Kz, y] be the affine plane over an alge-
braically closed field K. Consider the subschemes I',, C A%( given by the
ideals

In — (xn-i-l’ xn—ly’ xn—2y27 o 7xyn—lvyn) _ (x’y)n N (xn—i-l’y).

(In other words, I, is the ideal of polynomials vanishing to order n at the
origin, and vanishing to one higher order along the z-axis.) Note that I'y
is the scheme I' of Proposition IV-40.

Show that for n > 2 the schemes X,, are isomorphic to one another by
exhibiting ismorphisms ¢, : X — X,,, where X = Blp(A%) is the blow-up
described in Proposition IV-40.

The j-Function. Here is an example of a blow-up similar to the one we
have just described that arises very naturally. It involves the j-function of
a plane cubic curve; this is a topic we will not mention officially until the
very end of this book, but with which the reader may well be familiar. In
any event, we will assume some acquaintance with j in what follows.

We consider the (flat) family & — A% = Spec K|a,b] of plane cubic
curves given by the equation

y? = 2%+ ax +b.

Now, when the curve Cg, given in A% = Spec K[z,y] by the equation
y?> = 23 + ax + b, is nonsingular, we associate to it the scalar
4a3

4a3 + 27b%°

As the reader may know, two such curves Cgp and C, p are isomorphic
if and only if the values of the j-function are the same. It is thus of some
interest to understand how the rational map from A% = Spec K|a,b] to
A} = Spec K[j] behaves —in other words, how the moduli of the curve
Cap behaves when it becomes singular. Most of the time this is clear: if
the point (a,b) approaches any point of the curve 4a® 4+ 276> = 0 other
than the origin @ = (a,b) C Spec Kla, b], the value of j(C, ;) approaches
infinity. The question of what happens when C, ; acquires a cusp is more
subtle. To put it another way, we have a morphism

jAR\{Q} — Pk
(a,0) — j(Cap)
and would like to understand the map in a neighborhood of Q.

The answer is not hard to find: the closure I in A% x P} of the graph
of the map j : A% \ {Q} — P} is simply the blow-up

@ : Zy = Blg, (A%) — A%

J(Cap) = 1728

of the plane along the subscheme whose ideal is generated by the numerator
and denominator of the expression above for j(Cy ). We can also describe
it in terms of classical blow-ups as follows:
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Exercise IV-46. Factor the projection I' — Af( into blow-ups and blow-
downs at reduced points: explicitly, show that the map j blows up the
origin, then the point of intersection of the exceptional divisor with the
proper transform of the z-axis, then the intersection of the two exceptional
divisors; finally, it blows down the first two exceptional divisors.

From this description we can see many things. For example, consider a
pencil of cubics specializing to a cusp; that is, restrict the family above to
a line through the origin in the plane Spec K[a,b]. Equivalently, consider
for some pair «, 8 the family of curves C; given by

y? =23 + atx + fGt.

The limiting value of j(C}) as t approaches 0 is always j = 0—in terms of
the moduli space .7, the curves approach the curve given by y? = 2341 —
independently of the slope 3/, as long as 5 # 0. Conversely, if we want
to describe families of plane cubics acquiring a cusp whose j-invariants
approach a value other than 0 or oo, we have to find curves through the
origin in the plane Spec K[a, b] whose proper transform in the triple blow-
up Wy of the plane, described in Exercise IV-46, is separated from the first
two exceptional divisors.

In this case the j-function is so explicitly given that we hardly need
the geometric analysis. But the qualitative picture is very important: the
picture in general when a family a curves of any genus acquires a cusp is the
same. For example, if a pencil of plane curves acquires a cusp, the stable
limit will always have an elliptic tail of j-invariant either 0 or oc.

1V.2.4  Blow-ups of Arithmetic Schemes

Since we have defined blow-ups so generally, we can use the construction to
relate various arithmetic schemes, as the following examples and exercises
illustrate.

We start by blowing up a reduced point in P%: we let P be the reduced
point P = (3,X) € P; and consider the blow-up Z = Blp(PP3) of P at
P. This is straightforward; as before, the only problem is notational. Since
the scheme P}, = ProjZ[X,Y] we are starting with is not affine, we cover
it by affine open sets Ux = SpecZ[y] = Az and Uy = SpecZ[z] = A
where y = Y/X and x = X/Y. Since the point to be blown up lies in the
complement of Ux, the inverse image of Ux in Z is simply Ux.

Next, we describe the blow-up of Uy . To avoid confusion, we denote by
A and B the two generators 3 and « of the ideal I = (3,z) of P € Uy =
Spec Z[x]; we can then write the ring Z[z] ® I ® > & ... as

I = 2[4, B/(zA - 3B).
n=0
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We may describe Proj of this ring as the union of the two open subsets W4
and Wpg. The first is simpler: setting b = B/A, we have

W4 = Spec Z[z][b]/(z — 3b) = Spec Z[b] = A},

so that the open set W4 = AL, but the map Wy — Uy = A} C P} is
not an isomorphism; rather, it’s the map Spec Z[b] — Spec Z[z] dual to the
ring map sending x to 3b.

As for the other open set, we have

B = Spec Z[z][a]/(ax — 3),

that is to say, Wg is an affine plane conic. For primes p # 3 the fiber of
WB over (p) € SpecZ is the complement SpecZ/(p)|z, —] of one point in
Aj /() (or equivalently, the complement of two points in P /(p)) The fiber
of Wp over (3), on the other hand, is the union of two copies of AZ/(?,)
meeting at a point.

We have seen that the blow-up Z is a union of three affine opens: two,
Ux = SpecZ|y] and W4 = SpecZb], are each isomorphic to A}, and the
third, Wp, is a plane conic in A% The identifications among these sets are
simple to describe. For example, the open subset Uz, = SpecZ[y, , 3] C
Spec Zy] is identified with the open subset Us, = Spec Zb, 1, 5] C SpecZ[ |
via the map dual to the ring isomorphism sending y to 1/3b; this yields a
scheme

=Ux UWy4 = SpecZ[y] U SpecZ[b]
SpecZ[y,L ) ] SpecZ[b, 1 3 3

whose fiber over (p) € SpecZ for each prime p # 3 is a copy of IP’Z/(p) (in
fact, the inverse image of SpecZ \ {(3)} = SpecZ[%] in Z’ is isomorphic to
]P’épecz[;]), and whose fiber over (3) is a disjoint union of two affine lines.

Finally, we glue in the third open set Wp = SpecZ|x][a]/(azx — 3), via
the identification of the complement of the single point (3,a,z) in Wp
with the corresponding open subset of Z’ (this is the union of the im-
ages in Z' of the open subsets U, = SpecZ]|y, i] C Ux = SpecZ[y] and
Uy = SpecZ[b, §] € Wp = SpecZ[b]). This adds one final point: the two
components of the fiber of Wg over (3), each isomorphic to A%/(S), are
each glued onto corresponding components of the fiber Z’ over (3) to yield
two copies of IP’Z/(g) meeting at one pomt In sum, the fiber of Z over (p) is
IP’Z/(p) for p # 3, and two copies of ]P’Z/(3) meeting at one point for p = 3,
as shown on the next page.

There is another way to represent this scheme, which avoids the need for
gluing constructions (though we will need the description of the blow-up
via gluing to see that it really is the blow-up). This is expressed in the
following result:

Proposition IV-47. The blow-up Z = Blp(P}) of P} at the point P =
(3,X) is isomorphic to the plane conic

C = ProjZ[S,T,U]/(ST — 3U%) c P2 = ProjZI[S, T, U].
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W4 = SpecZ[b] = Spec Z[z/3]

Wpg = SpecZla, z]/(az — 3)

|
4

(z)
®3) ®3)
map collapses fiber over (3)\ /
to the point P
()
£ ()
3) 3)
Ux = SpecZly] \ ,/ Uy = SpecZ[z]
Y)
£ (X)
SpecZ
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Proof. Having already described Z as the union of open sets as above, this is
easy: we simply exhibit isomorphisms of these open sets with corresponding

open subsets of C' and check that they agree on the overlap. First,

S U]

Ux = SpecZ[y] — Ur = SpecZ [T’ T

/

via the isomorphism sending y to U/T’; then

T U]

Wa = SpecZ[b] — Ug = Spec Z [g, §

/

5
73

T
53

(
(

U

T

U

S

f) -
f)-om

n

via the isomorphism sending b to U/.S; and finally

S T

Wpg = SpecZla, z|/(ax — 3) — Uy = SpecZ [ﬁ’ =

I/

Exercise IV-48. Describe in similar terms the blow-up of P}, at the nonre-
duced subscheme

via the isomorphism sending a to S/U and z to T/U.

I'=V(9,X)C P} =ProjZ[X,Y]

Use this description to identify the blow-up with the conic in P2 given by
ST —9U? in PZ = Proj Z[S, T, U].

In the case of the affine plane over a field, the blow-ups at the subschemes
of degree 2 supported at the origin all looked alike, because the automor-
phism group of Aﬁ( acts transitively on nonzero tangent vectors, and hence
on subschemes of degree 2. The analogous statement is not true for Aj,
however. As we saw in Section I1.4.5, there are two types of subschemes
of degree 2 supported at such a point, the vertical and the horizontal (or,
more accurately, the non-vertical). They may be distinguished by their co-
ordinate rings, which are Z/(p)[z]/(z?) and Z/(p?), respectively. As the
following exercise shows (in conjunction with the preceding exercise), they
may also be distinguished by their blow-ups.

Exercise TV-49. Consider the blow-up Z = Blo(PP3) of P at the nonre-
duced subscheme

Q=V(3,X?) cPj =ProjZ[X,Y].

Show that the fiber of Z over (3) € SpecZ has two components, one of
which is everywhere nonreduced. Use this to show in particular that Z is
not isomorphic to any conic in ]P’%.

Exercise IV-50. Find a curve C' C P} isomorphic to the scheme Z of the
preceding exercise.
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Hint: First represent Z as a subscheme of P} x P}, then embed P}, x PJ,
in ]P’% via the Segre embedding. One possible answer is

ac3d
bd a

that is, the zero locus in IP’% = ProjZ|a,b,c,d] of the 2 x 2 minors of the

matrix (‘; 2 3{5)

Z = {[a,b, ¢, d] : rank( )gl}C]P’%;

Here are some examples of blow-ups of arithmetic schemes of dimension
one, two of which we have already encountered. Recall to begin with that
an order in a number field K is a subring of the ring of integers in K having
quotient field K. In the following three exercises, we’ll see that the spectra
of orders in a given number field may be related by blowing up.

Exercise IV-51. Let A = SpecZ[V/3] and B = SpecZ[11V/3], as de-
scribed in Section I1.4.2. Show that A is the blow-up of B at the point
(11,11/3). (The blow-up along the subscheme (11) is trivial.) Similarly,
show that A is the blow-up of the scheme B’ = Spec Z[2v/3] at the point

(2,2V/3).

In the preceding examples, the normalization of the schemes B and B’
coincided with the blow up, as is appropriate for schemes we claim are
analogues of curves with a simple node and cusp respectively. To see a case
where this is not so, we naturally look for a curve with a “tacnode”. We
will study such a scheme in the following two exercises.

Exercise IV-52. Let A and B be as in the preceding exercise, and let
C = SpecZ[1211/3], so that we have morphisms

A— B —C.

Show that B is the blow-up of C' at the (reduced) point (11,121+/3). At
the same time, exhibit A as the blow-up of C at a nonreduced scheme
supported at this point.

Exercise IV-53. To justify the analogies between B and C and curves
with a node and tacnode, consider the morphisms7: A — Bandn: A — C
from A to each. Let P = (4 +3v/3) and Q = (4 — 3v/3) € A be the two
points lying over the singular points (11,11+/3) of B and (11,121+/3) of C.
Show that the image of the differentials

drp : Tp(A) — T(11,11\/§)(B)
and

dﬂ'Q . TQ(A) — T(11,11\/§)(B)

do not coincide, but that the images of

dnp : Tp(A) — T1q 121,5)(C)
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and
dng : To(A) — T(11,121\/§)(C)
do.

The remainder of this section consists of a project for the reader, using
several of the techniques we have developed for local analysis to distinguish
among arithmetic surfaces.

Example IV-54. Consider the schemes
Cy = ProjZ[X,Y, Z]/(XY —32%), Co=ProjZ[X,Y,Z]/(XY -9Z?),
Cs3 = ProjZ[X,Y,Z]/(XY —27Z%), C4=ProjZ[X,Y,Z]/(XY —81Z%).

All four are plane conics, that is, they are the zero loci in ]P’% of homo-
geneous quadratic polynomials. Moreover, the inverse images of the open
subset

S = SpecZ[3] = SpecZ \ {(3)} C SpecZ

in all four are isomorphic, via (powers of) the automorphism of the ring
Z[%, X,Y, Z] given by (X,Y, Z) — (3X,Y, Z). In particular, each has fiber
over (p) a nonsingular conic in ]P’% /(p) for p # 3. Finally, in each case the
fiber over (3) is a union of two lines in P%/(g).

We claim, however, that no two of these schemes are isomorphic; and we
will prove this as an illustration of the various techniques developed over
the course of this section. The key is the local structure of each scheme
around the point (3, X,Y) (which we will, by a slight abuse of notation,
call P in each of the four schemes C;). We start as follows:

Exercise IV-55. Show that C; is nonsingular, while Cs, C5 and C4 each
have P as a unique singular point.

Thus, C' cannot be isomorphic to any of the others; and for any two of the
others to be isomorphic, a neighborhood of P in each must be isomorphic.

Now, we cannot use the dimension of the tangent space to C; at P to
further distinguish among these: Tp(C) is two-dimensional (since Cj is
nonsingular, after all), and dimTp(C;) = 3 for each of i = 2,3 and 4. But
the tangent cone does provide a useful tool here:

Exercise IV-56. Show that the projective tangent cone to Cy at P is a
nonsingular plane conic, while the tangent cones to C5 and Cy at P are
each a union of two distinct lines in P%/(s)-

Thus C5 cannot be isomorphic to any of the others. Finally, how do we
distinguish C3 and C4? Blowing up provides the answer:

Exercise IV-57. Let C5 = Blp(Cs) be the blow-up of C3 at P, and C4
the blow-up of Cy at P. Show that Cjs is nonsingular, while Cjy is not.
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For the reader who wishes to pursue this further, the techniques we have
are in fact sufficient to prove the following statement:

Exercise IV-58. For any positive integer n, let
C,, = ProjZ[X,Y, Z]/(XY — 3"Z?).

Show that for any n # m, the schemes C,, and C,, are not isomorphic.

Hint: the number of blow-ups required to resolve the singularity of each
is |5 ]; and we can distinguish between n even and n odd by the tangent
cone at the singular point before the last blow-up.

In fact, the above analysis shows something more than is claimed: we see
that the local rings 0¢,, , (equivalently, the local schemes Spec O¢,, ;) are
not isomorphic to one another pairwise.

1V.2.5 Project: Quadric and Cubic Surfaces as Blow-ups

It is a classical fact that a nonsingular quadric surface @ C ]P’(% is isomorphic
to the surface obtained by blowing up two points in the plane IP’% and
blowing down the line joining them —in other words, the blow-up of @ at
a point is isomorphic to the blow-up of IP’% at two points. (This description
arises naturally if we consider the graph I' of the rational map Q@ — IP?C
given by projection from a point on Q.) It is likewise well-known, if less
readily seen, that a nonsingular cubic surface S C }P’(QC is isomorphic to the
blow-up of the plane at six points, no three collinear and not all six on a
conic.

In the following series of exercises, we will see how to use our notion of
blow-ups along arbitrary subschemes of the plane to extend this description
of smooth quadric and cubic surfaces to some singular ones. We start with
the case of quadric surfaces. Here we ask: what do we get if, instead of
blowing up two points and blowing down the line joining them, we blow up
a nonreduced scheme I' C IP%( of degree 2 and dimension 0, and blow down
the unique line containing it? The answer is expressed in the following:

Exercise IV-59. Let K be an algebraically closed field, @ C IP’% an irre-
ducible quadric, and p € () any nonsingular closed point. Show that the
blow-up of @ at p is isomorphic to the blow-up of the plane IP%( at a sub-
scheme T' C P% of dimension zero and degree 2, with I" reduced if and only
if @ is nonsingular.

The situation over non-algebraically closed fields is illustrated in the
following two exercises.
Exercise IV-60. Let Pj = ProjR[X,Y, Z, W] be projective 3-space over
the real numbers, and consider the two quadric surfaces Q1, Q2 C Py given
as the zero loci

Q=V(X?+Y?-2Z2-W? and Q=V(X?+Y?+22-W?).
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Show that the blow-up of @; at any closed point with residue field R is
isomorphic to the blow-up of the plane ]P’DQQ at a subscheme I'; C ]P’DQQ of
dimension zero and degree 2, with

I'y = Spec(R x R) and I'; = Spec(C).

In other words, I'1 consists of two points with residue field R and I'; of one
point with residue field C.

We will return to this in Exercise IV-70 below.

Exercise IV-61. More generally, let K be any field, Q C IP’% a nonsin-
gular quadric, and p € @ any point with residue field K. Show that the
blow-up of @ at p is isomorphic to the blow-up of the plane IP’% at a sub-
scheme I' C P% of dimension zero and degree 2. Show moreover that T' will
consist of two points with residue field K if and only if @ contains a line
L =P} C QCP%, and that in this case Q = P}, xx Pj.

We turn our attention next to cubic surfaces. As in the case of quadrics,
we ask: if any nonsingular cubic surface S C ]P’f( over an algebraically closed
field K is isomorphic to the blow-up of the plane ]P’f( at six points. Indeed,
if ' C ]P’%( is a collection of six points, no three collinear and not all six on
a conic, there will be a four-dimensional vector space of cubics vanishing
on I'. This gives a morphism

Pi\T — P,

and by Proposition IV-22 the blow-up S = Blp P% of P? at T is the closure
in P% x g P3 of the graph of this morphism. The surface S C P% x x P%
projects isomorphically to IP’%, and its image is a smooth cubic surface;
conversely, every smooth cubic S C ]P’% may be obtained in this way.

What happens when the points of I' come together? A complete answer
is naturally more complicated here; we will simply sketch some of the pos-
sibilities. A prerequisite for the following exercises is familiarity with the
classical theory of smooth cubic surfaces; see for example Griffiths and
Harris [1978] or Mumford [1976].

We assume throughout that K is an algebraically closed field.

Exercise IV-62. Let I' C ]P’f( be any subscheme of degree 6 consisting of
four reduced points and one double point, with I' not contained in a conic
and no subscheme of I of degree 3 contained in a line. Show that the blow-
up Blp Pi( is isomorphic to a cubic surface with one ordinary double point
(defined in Section IV.2.2), and conversely that any cubic surface with one
ordinary double point may be realized in this way. (Use the description
of the blow-up in Proposition IV-40.) How many lines does such a cubic
surface contain?

Exercise IV-63. This time let I' C P%( be any subscheme of degree 6
consisting of three reduced points and one curvilinear triple point, again
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with I" not contained in a conic and no subscheme of I" of degree 3 contained
in a line. Show that the blow-up Blp ]P’%( is isomorphic to a cubic surface
with one double point, but this time the double point is not ordinary. (What
is the tangent cone at the double point?) How many lines does such a cubic
surface contain?

Exercise IV-64. For an example of a cubic surface with only one line,
let T' C IP’%{ be any curvilinear subscheme of degree 6 supported at a single
point. Suppose that the (unique) subscheme of I" of degree 3 is contained in
a line, but the subscheme of degree 4 is not. Show that the blow-up Blp ]P’%(
is isomorphic to a cubic surface that contains a unique line.

IV.3 Fano schemes

1V.3.1 Definitions

In classical geometry, one way to study a projective variety X C P% is via
its relation to linear subspaces of P% . Thus, a number of subvarieties of the
Grassmannians G g (k, n) are associated to such a variety. For example, we
can associate to X C P’ the loci in G g (k, n) of linear spaces that meet X;
of tangent spaces to X; of secants to X; or of linear spaces contained in X.
All of these subvarieties can now be redefined as subschemes of Gg(k,n)
associated to a subscheme X C P, and as such they are endowed with a
richer structure that reflects the geometry of X. Even if we start with a
variety X C P over an algebraically closed field K, the schemes associated
to it in this way may be nonreduced.

In this section we will define and study the scheme Fy(X) C Gg(k,n)
parametrizing linear spaces of dimension k contained in a scheme X C
PY; this is called the k-th Fano scheme of X. We will try in particular
to indicate how and when a nonreduced scheme structure may arise, and
how it allows us to extend many classical theorems about Fano varieties.
For example, we’ll see that, if K is any field and X C ]P’i( is any cubic
surface not swept out by lines, the Fano scheme of lines on X will have
degree exactly 27 over K, though the set of lines contained in X will have
cardinality 27 only if X is nonsingular, and even then may not if K is
not algebraically closed. More generally, we will see that in many cases the
family of Fano schemes associated to a flat family of varieties 2~ C Py — B
is itself flat over B, and so we will be able to make statements about number
and degree in greater generality.

In this chapter we will define Fano schemes by giving their defining ideals,
which are the same ideals that were classically used to define the Fano
variety; the only difference is that we no longer throw away information by
passing to their radicals. However, we will see in Chapter VI that there is a
more intrinsic definition of Fano schemes F(X) using the functor of points;
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and this definition gives us in turn a characterization of various aspects of
their geometry (e.g., their tangent spaces) that is more directly related to
the geometry of the schemes X. These descriptions are very useful even in
case both X and Fj,(X) are varieties.

Let S be any scheme, and let X C P be any subscheme of projective
space over S; let k < n be any positive integer. The Fano scheme Fj(X) C
G = Gg(k,n) of X is a scheme parametrizing the linear subspaces of
dimension k in Pg lying on X. (As always, the word “parametrize” has a
precise meaning, which we will discuss further in Section VI.2.2 below.) We
define the Fj(X) first in case the base scheme S = Spec R is affine. We will
describe them in terms of the description given in Section II1.2.7 of G as
the union of affine spaces Wy = Agk+1)(n7k).
Recall that in this construction we let

W =SpecR|...,z;;,...] = Agk+1)(n+1)

(which we think of as the affine space associated to the vector space of
(k+ 1) x (n 4+ 1) matrices), and for each multi-index I = (ig,...,ix) C
{0,1,...,n} let W = Agkﬂ)(THk) C W be the closed subscheme given by
the ideal (..., %, j; — da,3,--.) (Which we think of as the affine space asso-
ciated to the subspace of matrixes whose I-th submatrix is the identity).
Now, suppose that G(Zy, ..., Z,) € I(X) is any homogeneous polynomial
in the ideal of X. Applying it to a general linear combination of the rows
of a (k4 1) x (n+ 1) matrix, we obtain a polynomial

Hg(u, 33) =G (Z UiT0,iy Z UiTL gy ey Z uixk,i)

which we may write out as a linear combination of the monomials v’/ =
ulPul' -+ -ulk in the variables ug, ..., uy:

Hg(u,z) = ZHG,J(.ﬁ) cu’.

The coefficient polynomials Hg j(z) are then polynomials in the variables
x; ;; restricting to the subscheme W =2 A(Skﬂ)(n*k) C W they are like-
wise regular functions there. We define the Fano scheme Fj,(X) to be the
subscheme of G given, in each open subset Wy, by the ideal generated
by the polynomials Hg j(x), where G ranges over all elements of the ideal
I(X) C R|Zy,...,Zy] and J indexes monomials of degree d in the variables
Ugy -+« -y Uk

Alternatively, for any (k + 1)-tuple ¢ = (co, ..., ck) of elements of R, we
may define a polynomial Hg .(x) by

HG,c(l‘) =G (Z CiZ0,i, Z CiZllyiye-y Z Ci-Tk,i)

and take the Fano scheme Fj(X) to be the subscheme of G given in W;
by the ideal generated by the polynomials Hg (), where G ranges over
I(X) C R|Zy,...,Zy] and c ranges over R"*1.
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To complete this definition we would have to check a number of things:
that these subschemes of W agree on the overlaps of the W7, and that the
subscheme Fy(X) C G they define does not depend on choice of coordinates
(this is easier if we adopt the second way of generating the ideal of Fj,(X)N
Wi, but then of course we have to show the two ways yield the same ideal).
Finally, we should check that the construction is natural, that is, if T — S
is any morphism and X1 = X x g T C P7., then the Fano scheme Fi(Xr1) =
Fr(X)xs T C Gg(k,n)xs T = Gr(k,n). This last condition in particular
ensures that, given a projective scheme X C P’ over an arbitrary (possibly
nonaffine) base S, we can define the Fano scheme F(X) C Gg(k,n) by
restricting to affine open subschemes of S and gluing the results. All of these
assertions can either be verified directly from the definitions; but they will
follow more readily from the intrinsic characterization of the Grassmannian
and of Fano schemes to be given in Section VI.2.2 below.

1V.3.2  Lines on Quadrics

To illustrate the definition of Fano schemes, we will consider a simple case:
the lines on the quadric surface Q = V(X2 +Y? 4 Z24+W?) C P3 over an
algebraically closed field K. For convenience, we assume the characteristic
of K is not 2 (the situation is the same in characteristic 2 as long as we stick
to smooth quadrics). Even in this case, we will see some very interesting
phenomena; and we will consider some examples over non-algebraically
closed fields as well.

Lines on a Smooth Quadric over an Algebraically Closed Field.
As suggested above, we will first write down equations for F3(Q) in an
open subset W; C G = Gk (1,3); in this case, symmetry will do the rest.
For example, take Wx y = Wj 2 the subset of G corresponding to lines
skew to the line X =Y = 0; we may identify this with the affine space
A%( = Spec K|a, b, ¢, d] associated to the space of matrices of the form

(IV.1) (é (1) Z Z)

We then write the restriction H of the polynomial G(X,Y, Z, W) = (X2 +
Y2 + Z2 + W?) to a linear combination u(1,0,a,b) + u1(0,1,¢,d) of the
rows of this matrix as

He(ug,u1) = G(ug, u1, upa + uic, ugb + uid)
=ud +ui + (woa + uic)?® + (ugh + urd)?
= (1 +a® +b*)ud + 2(ac + bd)uguy + (14 ¢* + d*)u3.

The Fano scheme F}(Q) in Wy y = A% is defined to be the zero locus of
the coefficients of Hg, viewed as a polynomial in ug and wuq; that is,

Q) NWxy =V(1+a®>+b* ac+bd, 1+ c*+d*) C Spec K[a, b, ¢, d).
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It is not hard to describe the subscheme of A}l( defined by these equations.
It is reducible, with one (irreducible) component lying in the plane a =
d,b = —c and the other in the plane a = —d,b = ¢. Each component is
isomorphic via the projection to the plane conic Spec K|c, d]/(c?>+d?+1) C
A2 = Spec K|c, d].

We can use this to write down the equations of F3(Q) in homogeneous
coordinates on G C IP’?(. To do this, recall first that the homogeneous
coordinates on IP’?( correspond to the 2 X 2 minors of a 2 x 4 matrix; we
will label them accordingly Il xy, llxz, Ixw, lyz, lIyw and I zw . The
open subset Wx y C G is the intersection of G with the affine open subset
IIxy # 0; and the coordinate functions a, b, ¢ and d above on Wy y = A}ﬂ
are the restrictions of the ratios

a=-Iyz/Uxy, b=-Tyw/lxy,
c=Ilxz/Txy, d=xw/Txy.
Also,
ad —be =T zw /Mxy,
from which we can deduce the defining equation of G C P%:
G =V{zwlxy + Oyzlxw — Uxzlyw).

Now, from the equations of F;(Q) N Wx y above, we can see that the
Fano scheme F;(Q) is contained in

V(Iky + 13, + I3y, My 20lxz + Oywllxw, Dy + 05, + ).

Carrying out the same procedure in the other five affine open subsets of
P5 as well yields a complete set of defining equations for Fy Q) C IP5. This
is easy because of the symmetry of the equations; we conclude that F3(Q)
has the expression

V(I3 ,—iw, My z+0xw)yw+xz), My z+xw)Izw —Ixy),
3y —1% 2, (Myw—Ilxz)Iyz—Ixw), (Myw—Ilxz)zw—Ilxy),
05w 1%y, Mzw+HIxy)yz—xw), zw+Ixy)(Dyw-+xz),
ey TS 7+ 115y, My 115 7+ 1Ty ).

It may be easier to understand this if we organize it a little better; the
way to do this is suggested by the description above of F1(Q) NWx y. Let
A and Ay = Pﬁ( C IP?( be the disjoint 2-planes defined by the equations

A =V (Ilyz +Oxw, Oyw — xz, zw + xy)
and

Ay =V(Ilyz — Oxw, Oyw + xz, Izw — Hxy).
Then we have, simply

Fi(Q)=(AMUA)NG CP®
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as schemes. Each of the planes A; intersects G in a nonsingular plane
conic C; so we see that F;(Q) is simply the union of two conics lying in
complementary planes. (In particular, F;(Q) is simply the closure of the
two affine conics in F; (Q) NWx y above.) This corresponds to the