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For Judith 



Preface to the Second Edition 

In preparing this new edition I have tried to keep the changes to a mini
mum, on the principle that one should not meddle with a relatively success
ful text. Thus the general form of the book remains the same. Naturally I 
have taken the opportunity to correct the errors of which I was aware. Also 
the text has been updated at various points, some proofs have been im
proved, and lastly about thirty additional exercises are included. 

There are three main additions to the book. In the chapter on group 
extensions an exposition of Schreier's concrete approach via factor sets is 
given before the introduction of covering groups. This seemed to be desir
able on pedagogical grounds. Then S. Thomas's elegant proof of the auto
morphism tower theorem is included in the section on complete groups. 
Finally an elementary counterexample to the Burnside problem due to N.D. 
Gupta has been added in the chapter on finiteness properties. 

I am happy to have this opportunity to thank the many friends and col
leagues who wrote to me about the first edition with comments, suggestions 
and lists of errors. Their efforts have surely led to an improvement in the 
text. In particular I thank J.C. Beidleman, F.B. Cannonito, H. Heineken, 
L.c. Kappe, W. M6hres, R. Schmidt, H. Snevily, B.A.F. Wehrfritz, and 
J. Wiegold. My thanks are due to Yu Fen Wu for assistance with the 
proofreading. I also thank Tom von Foerster of Springer-Verlag for making 
this new edition possible, and for his assistance throughout the project. 

University of Illinois at Urbana-Champaign, 
Urbana, Illinois 

Derek Robinson 
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Preface to the First Edition 

"A group is defined by means of the laws of combinations of its symbols," 
according to a celebrated dictum of Cayley. And this is probably still as 
good a one-line explanation as any. The concept of a group is surely one 
of the central ideas of mathematics. Certainly there are few branches of that 
science in which groups are not employed implicitly or explicitly. Nor is the 
use of groups confined to pure mathematics. Quantum theory, molecular 
and atomic structure, and crystallography are just a few of the areas of 
science in which the idea of a group as a measure of symmetry has played 
an important part. 

The theory of groups is the oldest branch of modern algebra. Its origins 
are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo 
Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory ofalge
braic equations. Their groups consisted of permutations of the variables or 
of the roots of polynomials, and indeed for much of the nineteenth century 
all groups were finite permutation groups. Nevertheless many of the funda
mental ideas of group theory were introduced by these early workers and 
their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-
1918), Camille Jordan (1838- 1922) among others. 

The concept of an abstract group is clearly recognizable in the work of 
Arthur Cayley (1821-1895), but it did not really win widespread acceptance 
until Walther von Dyck (1856-1934) introduced presentations of groups. 

The stimulus to study infinite groups came from geometry and topology, 
the influence of Felix Klein (1849-1925), Sophus Lie (1842-1899), Henri 
Poincare (1854-1912), and Max Dehn (1878-1952) being paramount. 
Thereafter the standard of infinite group theory was borne almost single
handed by Otto Juljevic Schmidt (1891-1956) until the establishment of the 
Russian school headed by Alexander Gennadievic Kuros (1908-1971). 

viii 



Preface to the First Edition ix 

In the meantime the first great age of finite group theory had reached its 
climax in the period immediately before the First World War with the work 
of Georg Frobenius (1849-1917), William Burnside (1852-1927), and Issai 
Schur (1875-1936). After 1928, decisive new contributions were made by 
Philip Hall (1904-1982), Helmut Wielandt, and, in the field of group repre
sentations, Richard Dagobert Brauer (1901-1977). The subsequent intense 
interest in the classification of finite simple groups is very largely the legacy 
of their work. 

This book is intended as an introduction to the general theory of groups. 
Its aim is to make the reader aware of some of the main accomplishments of 
group theory, while at the same time providing a reasonable coverage of 
basic material. The book is addressed primarily to the student who wishes 
to learn the subject, but it is hoped that it will also prove useful to special
ists in other areas as a work of reference. 

An attempt has been made to strike a balance between the different 
branches of group theory, abelian groups, finite groups, infinite groups, and 
to stress the unity of the subject. In choice of material I have been guided 
by its inherent interest, accessibility, and connections with other topics. No 
book of this type can be comprehensive, but I hope it will serve as an intro
duction to the several excellent research level texts now in print. 

The reader is expected to have at least the knowledge and maturity of 
a graduate student who has completed the first year of study at a North 
American university or of a first year research student in the United 
Kingdom. He or she should be familiar with the more elementary facts 
about rings, fields, and modules, possess a sound knowledge of linear alge
bra, and be able to use Zorn's Lemma and transfinite induction. However, 
no knowledge of homological algebra is assumed: those homological 
methods required in the study of group extensions are introduced as they 
become necessary. This said, the theory of groups is developed from scratch. 
Many readers may therefore wish to skip certain sections of Chapters 1 and 
2 or to regard them as a review. 

A word about the exercises, of which there are some 650. They are to be 
found at the end of each section and must be regarded as an integral part of 
the text. Anyone who aspires to master the material should set out to solve 
as many exercises as possible. They vary from routine tests of comprehen
sion of definitions and theorems to more challenging problems, some theo
rems in their own right. Exercises marked with an asterisk are referred to at 
some subsequent point in the text. 

Notation is by-and-Iarge standard, and an attempt has been made to 
keep it to a minimum. At the risk of some unpopularity, I have chosen to 
write all functions on the right. A list of commonly used symbols is placed 
at the beginning of the book. 

While engaged on this project I enjoyed the hospitality and benefited 
from the assistance of several institutions: the University of Illinois at 
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Urbana-Champaign, the University of Warwick, Notre Dame University, 
and the University of Freiburg. To all of these and to the National Science 
Foundation I express my gratitude. I am grateful to my friends John Rose 
and Ralph Strebel who read several chapters and made valuable comments 
on them. It has been a pleasure to cooperate with Springer-Verlag in this 
venture and I thank them for their unfailing courtesy and patience. 
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Notation 

G,H, ... 

X,~, ... 

0(, /3, y, ... 

x, y, z, ... 

[x, y] 

H~G 

H s;.G, H < G 

H<J G 

Hsn G 

H 1 H2 "'Hn 

<X;.IA E A) 

<XIR) 

d(G) 

rp(G), ro(G), r(G) 

Sets, groups, rings, etc. 

Classes of groups 

Functions 

Elements of a set 

Image of x under 0( 

y-1xy 

X-1y-1XY 

H is isomorphic with G 

H is a subgroup, a proper subgroup of the 
group G. 

H is a normal subgroup of G 

H is a subnormal subgroup of G 

Product of subsets of a group 

Subgroup generated by subsets X;. of a 
group 

Group presented by generators X and re
lators R 

Minimum number of generators of G 

p-rank, torsion-free rank, (Priifer) rank of 
G 

xv 



XVI Notation 

Gn, nG Subgroup generated by all gn or ng where 
gEG 

G[n] Subgroup generated by all 9 E G such that 
gn = 1 or ng = o. 

I S I Cardinality of the set S 

I G : H I Index of the subgroup H in the group G 

I x I Order of the group element x 

CG(H), NG(H) Centralizer, normalizer of H in G 

HG, HG Normal closure, core of H in G 

Aut G, Inn G Automorphism group, inner automor-
phism group of G 

Out G Aut GjInn G, outer automorphism group 
ofG 

HoI G Holomorph of G 

Homn(G, H) Set ofO-homomorphisms from G to H 

Endn G Set of O-endomorphisms of G 

HI x ... x Hn, HI EB ... EB Hn} 
Set product, direct products, direct sums 

Dr H). 
).eA 

H D< N, N ~ H Semidirect products 

Cr H). Cartesian product, Cartesian sum 
).eA 

H"" K Wreath product 

HI * ... * Hn , Fr H). Free products 
).eA 

H ® K Tensor product 

G' = [G, G] Derived subgroup of a group G 

Gab GIG' 

G(a) Term of the derived series of G 

raG, (aG Terms of the lower central series, the 

(G 

Fit G 

Frat G 

upper central series of G 

Center of G 

Fitting subgroup of G 

Frattini subgroup of G 



Notation 

M(G) 

O,,(G) 

1,,(G) 

StG(X), XG 

SymX 

7L, Q, IR, IC 

RG 

GL(V) 

GL(n, R), SL(n, R) 

PGL(n, R), PSL(n, R) 

T(n, R), U(n, R) 

B(n, e) 

max, min 

Schur multiplicator of G 

Maximal normaln-subgroup of G 

n-Iength of G 

Stabilizer of X in G 

Symmetric group on X 

xvii 

Symmetric, alternating groups of degree n 

Dihedral group of order n 

Generalized quaternion group of order 2" 

Sets of integers, rational numbers, real 
numbers, complex numbers 

7Ljn7L 

Group of units of a ring R with identity 

Group ring of a group G over a ring R 
with identity element 

Augmentation ideals 

Group of nonsingular linear transforma
tions of a vector space V 

General linear and special linear groups 

Projective general linear and projective 
special linear groups 

Groups of triangular, unitriangular matri
ces 

Free Burnside group with n generators 
and exponent e 

Induced module, induced character 

Maximal, minimal conditions 

Matrix with (i, j) entry 1 and other en
tries O. 



CHAPTER 1 

Fundamental Concepts of Group Theory 

In this first chapter we introduce the basic concepts of group theory, devel
oping fairly rapidly the elementary properties that will be familiar to most 
readers. 

1.1. Binary Operations, Semigroups, and Groups 

A binary operation on a set is a rule for combining two elements of the set. 
More precisely, if S is a nonempty set, a binary operation on S is a function 
IX: S x S ~ S. Thus IX associates with each ordered pair (x, y) of elements of 
S an element (x, Y)IX of S. It is better notation to write x 0 y for (x, y)lX, refer
ring to "0" as the binary operation. 

If 0 is associative, that is, if: 

(i) (x 0 y) 0 Z = x 0 (y 0 z) is valid for all x, y, z in S, 

then the pair (S, 0) is called a semigroup. 

Here we are concerned with a very special type of semigroup. A semi
group (G, 0) is called a group if it has the following properties: 

(ii) There exists in G an element e, called a right identity, such that x 0 e = 
x for all x in G. 

(iii) To each element x of G there corresponds an element y of G, called a 
right inverse of x, such that x 0 y = e. 

While it is clear how to define left identity and left inverse, the existence 
of such elements is not presupposed; indeed this is a consequence of the 
group axioms-see 1.1.2. 
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It is customary not to distinguish between the group (G, 0) and its under
lying set G provided there is no possibility of confusion as to the intended 
group operation. However it should be borne in mind that there are usually 
many possible group operations on a given set. 

The order of a group is defined to be the cardinality of the underlying 
set G. This is written IGI. If the group operation is commutative, that is, if 
x 0 y = y 0 x is always valid, the group (G, 0) is called abelian.t 

Before giving some standard examples of groups we shall list the most 
immediate consequences of the group axioms. The first of these is a general
ization of the associative law to four or more elements. 

1.1.1 (Generalized Associative Law). If an element of a group is constructed 
from a sequence of elements Xl' x 2 , ••• , x. in this order by repeatedly insert
ing brackets and applying the group operation, the element must equal 

( ··· ((x i 0 x 2 ) 0 x 3 ) · · ·) 0 Xn 

and so is independent of the mode of bracketing. 

Proof. Certainly we may assume that n > 2. If u is an element constructed 
from Xl' X2' . .. , Xn in the prescribed manner, we can write u = vow where 
v and ware constructed from Xl ' X 2 , ••• , Xi and Xi+l, ... , Xn respectively 
(1 ~ i < n). If w = X n , the result follows by induction on n. Otherwise we 
can write w = w' 0 Xn and u = (v 0 w') 0 X.: once again the result follows by 
~~oooo~ · 0 

Consequently in any expression formed from the elements X I, .. . , Xn in 
that order brackets can be omitted without ambiguity, an enormous simpli
fication in notation. 

1.1.2. Let X be an element of a group G, let e be a right identity and let y be a 
right inverse of x. Then : 

(i) yo X = e; 
(ii) eo X = X ; and 

(iii) e is the unique left identity and the unique right identity; y is the unique 
left inverse of X and the unique right inverse of x. 

Proof. (i) Let z = yo X; then z 0 z = yo (x 0 y) 0 X = z by 1.1.1. Now there is 
a w in G such that z 0 w = e. Since z 0 z = z, we have z 0 (z 0 w) = z 0 w or 
z = e. 

(ii) By (i) we have X = X 0 e = x 0 (y 0 x) = (x 0 y) 0 x = eo x. 
(iii) By (ii) a right identity is a left identity. If e' is any left identity, then 

e' = e' 0 e = e. By (i) a right inverse of x is a left inverse. If t is any left 
inverse of x, then t = t 0 (x 0 y) = (t 0 x) 0 y = y. 0 

t After Niels Henrik Abel (1802-1829). 
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In view of the last result it is meaningful to speak of the identity of G and 
the inverse of x in G. 

There are two commonly used ways of writing the group operation of a 
group (G, 0). In the additive notation x 0 y is written as a "sum" x + y and 
the identity element OG or 0, while - x denotes the inverse of x. This nota
tion is often used for abelian groups. We shall generally employ the multi
plicative notation wherein x 0 y is written as a "product" xy, the identity 
element is 1G or 1 and X-l is the inverse of x. 

1.1.3. In any (multiplicative) group the equation xa = b implies that x = ba- l 

and the equation ax = b implies that x = a-lb. 

Proof. If xa = b, then x = (xa)a- l = ba- l : similarly for the second part. 0 

Proof. Let z = (xy)-l; then xyz = 1, whence yz = X-l and z = y-lx- l by 
1.1.3. Since xx-l = 1, we have x = (x-l r l by 1.1.3 again. D 

Powers of an Element 

Let x be an element of a multiplicatively written group G and let n be 
an integer. The nth power x" of x is defined recursively in the following 
manner: 

(i) XO = IG , Xl = x, and X-l is the inverse of x; 
(ii) x"+1 = x"x if n > 0; and 

(iii) x" = (x-"r l if n < O. 

Naturally, if G is written additively, we shall write nx instead of x" and 
speak of a multiple of x . 

1.1.5 (The Laws of Exponents). Let m and n be integers and let x be an ele
ment of a group G. Then: 

(i) xmx" = xm+" = x"xm; and 
(ii) (xm)" = x m" = (x")m. 

Proof. (i) Let m ~ 0 and n ~ 0; then by induction on n and the definition 
xmx" = xm+". Applying 1.1.3 we deduce that x" = x-mxm+" and xm = xm+"x-". 
Finally inversion of the equation xmx" = xm+" and application of 1.1.4 yield 
x-"x-m = x-m+(- "). Hence the law is established in all cases. 

(ii) If n ~ 0, it follows from (i) that (xm)" = xm". Now assume that n < 0; 
then (xm)" = ((xmr"r l = (x-m"r l = x m" since x-m"x m" = 1. D 
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Isomorphism 

If G and H are groups, a function a: G ~ H is called an isomorphism if it is a 
bijection (or one-one correspondence) and if (xy)a = (x)a· (y)a. The symbol
ism G ~ H signifies that there is at least one isomorphism from G to H. 
If a: G ~ H is an isomorphism, an application of a to lala = la shows 
that laa = IH' and to xx-1 = la that (x-1)a = (xafl. It is easy to prove 
that isomorphism is an equivalence relation on groups. 

One can see from the definition that isomorphic groups have exactly cor
responding underlying sets and group operations. Thus any property of a 
group deducible from its cardinality and group operation will be possessed 
by all groups isomorphic to it. For this reason one is not usually interested 
in distinguishing between a group and groups that are isomorphic to it. 

EXERCISES 1.1 

1. Show that a semigroup with a left identity and left inverses is a group. 

2. The identity (X 1X2··· x.f1 = X;;-l .. . xz1x11 holds in any group. 

3. If the identity X2 = 1 holds in a group G, then G is abelian. 

4. Show from first principles that a group of even order contains an involution, that 
is, an element g #- 1 such that g2 = 1. 

5. The equation (xy)' = x'y' holds identically in a group for all n if and only if the 
group is abelian. 

1.2. Examples of Groups 

We shall now review some of the more obvious sources of groups. 

(i) Groups of Numbers 

Let 7l.., Q, IR, and C denote respectively the sets of all integers, rational num
bers, real numbers, and complex numbers. Each set becomes a group if we 
specify ordinary addition as the group operation, zero as the identity and 
minus x as the inverse of x. The axioms of arithmetic guarantee the validity 
of the group axioms as well as the commutativity of the group operation. 
Thus all four groups are abelian. 

The sets Q\ {O}, IR\ {O}, and C\ {O} are groups with respect to multiplica
tion, I being the identity and l/x being the inverse of x. Again all the groups 
are abelian. 
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(ii) Groups of Matrices 

Let R be a ring with an identity element and let GL(n, R) denote the set of 
all n x n matrices with coefficients in R which have inverses (these are to be 
n x n matrices over the ring R). Taking matrix multiplication as the group 
operation, we see from elementary properties of matrices that GL(n, R) is a 
group whose identity element is I., the n x n identity matrix. This group is 
called the general linear group of degree n over R. It is nonabelian if n > 1. 
In particular, if F is a field, GL(n, F) is the group of all nonsingular n x n 
matrices over F. 

(iii) Groups of Linear Transformations 

If V is an n-dimensional vector space over a field F, let GL(V) denote the 
set of all bijective linear transformations of V. Then GL(V) is a group if 
functional composition is specified as the group operation: thus (V)IX 0 P = 
«V)IX)P where v E V and IX, P E GL(V). 

There is a close connection between the groups GL(V) and GL(n, F). 
For, if a fixed ordered basis for V is chosen, each bijective linear transfor
mation of V is associated with a nonsingular n x n matrix over F. This 
correspondence is an isomorphism from GL(V) to GL(n, F), the reason 
being that when two linear transformations are composed, the product 
of the corresponding matrices represents the composite. These facts can be 
found in most text books on linear algebra. 

(iv) Groups of Isometries 

Let M be a metric space with a distance function d: M x M -+ IR. An iso
metry of M is a bijective mapping IX: M -+ M which preserves distances; thus 

(XIX, YIX)d = (x, y)d 

for all x, y in M. It is very easy to verify that the set of all isometries of M is 
a group with respect to the operation of functional composition. We shall 
write this group 

Isom(M). 

Suppose next that X is a nonempty subset of M. If IX is an isometry, 
define XIX to be the set {xlXlx E X}. The symmetry group of X with respect to 
the metric space M is the set 

SM(X) = {IX E Isom(M)IXIX = X} 

of all isometries that leave X fixed as a set, together with functional compo
sition. Again it is clear that this is a group. The more "symmetrical" the set 
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X, the larger is the symmetry group. Thus we arrive at the fundamental idea 
of a group as a measure of the symmetry of a structure. It is one reason for 
the prevalence of groups in so many areas of science. 

(v) Isometries of E2 

Let En denote n-dimensional Euclidean space. We shall give a brief account 
of isometries and symmetries in E2. For a detailed study of isometries in E2 
and in E3 see [bll]. 

There are three natural types of isometry in E2, rotations about a point, 
reflections in a line, and translations: in the latter the point (x, y) is moved to 
(x + a, y + b) for some fixed a, b. It can be shown that every isometry is 
a rotation, a translation, a reflection, or the product of a reflection and a 
translation. 

If X is a bounded subset of E2, it is intuitively clear that an isometry 
leaving X invariant cannot be a translation, and in fact must be a rotation 
or a reflection. 

Let us use the preceding remarks to analyze a famous example. Let X be 
a regular polygon with n edges (n ~ 3). The rotations that leave X invariant 
are about the center of X through angles 2ni/n, i = 0, 1, ... , n - 1. The 
reflections which preserve X are in lines joining opposite vertices or mid
points of opposite edges if n is even, or in lines through a vertex and the 
midpoint of the opposite edge if n is odd. Thus in all SE2(X) contains 
n + n = 2n elements. This group is called the dihedral group of order 2n; it is 
written 

(The reader is warned that some authors denote this group by Dn.) 

(vi) Groups of Permutations 

If X is a nonempty set, a bijection n: X --+ X is called a permutation of X. 
The set of all permutations of X is a group with respect to functional com
position called the symmetric group on X, 

Symx. 

When X = p, 2, ... , n}, it is customary to write 

Sn 

for Sym X, and to call this the symmetric group of degree n. 
Historically the first groups to be studied systematically were groups of 

permutations (or substitutions, as they were called). This approach is not so 
limited as it might seem since by a fundamental result (1.6.8) every group is 
isomorphic with a group of permutations of its underlying set. 
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We remind the reader that the signature of a permutation n E Sn is 
defined to be 

sign n = Il 
1 Si<j~n 

(i)n - (j)n 

i-j 

which equals + 1 or -1. Recall that n is even if sign n = + 1 and odd if sign 
n = -1. From the definition it is easy to check the formulas 

and sign(n- l ) = sign n. 

Hence the set of all even permutations in Sn is also a group with respect to 
functional composition; this is the alternating group An. Obviously IAII = 1; 
if n > 1, the function n H n(1, 2) is a bijection from An to the set of all odd 
permutations in Sn; hence IAnl = t(n!). 

EXERCISES 1.2 

1. Prove that no two of the groups Z, 0, IR are isomorphic. 

2. Let R be a ring with identity. Prove that GL(n, R) is abelian if and only if n = 1 
and R* is commutative. (Here R* is the group of units, i.e., invertible elements of 
R.) 

3. Describe the symmetry group of: (a) an isosceles but nonequilateral triangle; 
(b) a swastika. 

4. Show that the symmetry group of a rectangle which is not a square has order 4. 
By labeling the vertices 1, 2, 3, 4, represent the symmetry group as a group of 
permutations of the set {I, 2, 3, 4}. (This is called a Klein 4-group.) 

5. Represent the dihedral group D2n as a group of permutations of the set 
{I, 2, ... , n} by labeling the vertices of a regular polygon with n edges. 

6. Describe the symmetry group of Z in E1. (This group, Doo, is known as the 
infinite dihedral group.) 

7. Exhibit all rotations of E3 that leave invariant a regular tetrahedron. This group 
is called the tetrahedral group. Prove that it is isomorphic with A 4 • 

8. Show that the group of all rotations in E3 that leave a cube invariant is iso
morphic with S4 . [Hint: A rotation permutes the four diagonals of the cube.] 

9. A regular octahedron is the polyhedron obtained by joining the centres of the 
faces of a cube. Prove that the rotation group of the octahedron is isomorphic 
with S4 (sometimes known as the octahedral group). 

10. Prove that Sym X is abelian if and only if IXI ~ 2. 

11. Give a group-theoretic proof of Wilson's Theorem: if p is a prime, then (p - I)! == 
-1 (mod pl. [Hint: Form the product of all the elements of the group Z:.J 



8 1. Fundamental Concepts of Group Theory 

1.3. Subgroups and Cosets 

Let G be a group and let H be a subset of G. We say that H is a subgroup 
of G if (H, *) is a group where * is the group operation of G restricted 
to H. From 1.1.3 and the equation 1H1H = 1H it follows that 1H = 1G • Also, 
if xi'? is the inverse of x in the group (H, *), then xxi'? = 1H = 1G , whence 
xi/ = X-I. Thus identity and inverses are the same in G and in H. From 
this it is clear that a subset H is a subgroup of G if and only if it contains 
the identity and all products and inverses of its elements. 

We shall write 
H~G or G'C.H 

to signify that H is a subgroup of G. Two obvious examples of subgroups 
are the trivial or identity subgroup {ld, usually written 1G or 1, and the 
improper subgroup G itself. If H ~ G and H =I- G, then G is called a proper 
subgroup of G; in symbols H < G or G > H . 

1.3.1 (The Subgroup Criterion). Let H be a subset of a group G. Then H is a 
subgroup of G if and only if H is not empty and xy-I E H whenever x E H 
and y EH. 

Proof. Necessity being clear, assume that the conditions hold: then there 
exists an h E Hand 1G = hh-I E H. If x, Y E H, then 1G y-1 = y-I E Hand 
hence X(y-l r l = xy E H. Thus H is a subgroup. 0 

Examples of Subgroups 

(i) lL, 11), and IR are subgroups of Co 
(ii) Let R be a commutative ring with identity. Define SL(n, R) to be 

the set of all n x n matrices over R with determinant equal to 1. Since 
det(AB- I ) = (det A)(det B)-I and SL(n, R) contains the identity matrix, we 
see from 1.3.1 that SL(n, R) is a subgroup of GL(n, R); it is called the special 
linear group of degree n over R. 

(iii) An is a subgroup of Sn. This follows from 1.3.1 and the equation 
sign(1t11t21) = (sign 1t1)(sign 1t2). 

Intersections and Joins of Subgroups 

1.3.2.1f {H"IA. E A} is a set of subgroups of a group G, then I = n"EAH" is a 
subgroup of G. 

Proof. Obviously 1 E I. If x, Y E I, then x, y E H" and hence xy-I E H" for all 
A. E A. Thus xy-l E I and I ~ G by 1.3.1. 0 
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The Subgroup Generated by a Subset 

Let X be a nonempty subset of a group G. Define the subgroup generated 
byX 

<X) 

to be the intersection of all subgroups of G which contain X : notice that 
there will always be at least one such subgroup, G itself. That <X) is a 
subgroup follows from 1.3.2. In a real sense <X) is the smallest subgroup of 
G containing X: for if X ~ S ~ G, then <X) ~ S. Clearly X = <X) pre
cisely when X itself is a subgroup. 

Naturally one wishes to have a description of the elements of <X). 

1.3.3. If X is a nonempty subset of a group G, then <X) is the set of all ele
ments of the form x1' ... X:k where Bi = ± 1, Xi E X, and k ;:::: 0. (When k = 0, 
the product is to be interpreted as 1.) 

Proof. Let S denote the set of all such elements. Then S is a subgroup by 
1.3.1, while clearly X ~ S: hence (X) ~ S. But obviously S ~ (X), so that 
S = (X). 0 

If n is a positive integer, a group is said to be an n-generator group if 
it can be generated by some n-subset {Xl' X2' ... , x n } . A group is finitely 
generated if it is n-generator for some n. 

A 1-generator group (x) == ({x}) is termed cyclic: by 1.3.3 this consists 
of all the powers of x. The standard example of an infinite cyclic group is 7L, 
while 7Ln , the additive group of congruence classes modulo n, is the standard 
cyclic group of order n. 

If {X.dA E A} is a set of subgroups of G, the join of the X;.'s or the sub
group generated by the X;.'s is defined to be <U ... EAX ... ). This will be written 

(X ... I A E A) 

or in case A = {Ai' ... , An}, a finite set, 

<X ... " ... ,X;.). 

If G is any group, the set S(G) of all subgroups of G is a partially ordered 
set with respect to set inclusion. Moreover a nonempty subset of S(G) has a 
least upper bound in S(G), the join of all its elements, and a greatest lower 
bound in S(G), the intersection of all its elements. Thus S(G) is a complete 
lattice, known as the subgroup lattice of G. The unique smallest element of 
S(G) is 1, the unique largest G. 

Hasse Diagrams 

It is sometimes helpful to visualize the inclusions which exist between sub
groups of a group by means of a Hasse diagram. In this subgroups are 
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represented by vertices, while an ascending edge or sequence of ascending 
edges joining two subgroups indicates that the lower subgroup is contained 
in the upper subgroup. The basic Hasse diagram is the so-called parallelo
gram diagram. 

H K 

HIlK 

Left and Right Cosets 

If H is a fixed subgroup of a group G, a relation -H on G is defined in the 
following way: x -H y holds if and only if x = yh for some hE H. It is easy 
to check that -H is an equivalence relation on G and that the equivalence 
class containing x is the subset xH defined by 

xH = {xhlh E H} : 

this is called the left coset of H containing x . Observe that distinct left co sets 
are disjoint and xH = yH if and only if x-1 Y E H. All left co sets of H have 
the cardinality of H in view of the bijection h ~ xh from H to xH. The 
union of all the left co sets of H is G. 

Let us select an element from each left coset of H (thereby using the 
axiom of choice!) and write T for the resulting set of left coset representa
tives. Then G is the disjoint union 

G= U tH 
reT 

and every element of G can be uniquely written in the form th, t E T, h E H . 
The set T is called a left transversal to H in G. Notice that I TI equals 
the cardinality of the set of left cosets of H. Frequently it is convenient to 
choose 1 as the coset representative of H, so that 1 E T. 

In a precisely similar way the right coset 

Hx = {hxlh E H} 

arises as the H - -equivalence class containing x where x H - Y means that 
x = hy for some h E H. The terms right coset representative and right trans
versal are defined analogously. 
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Products and Inverses of Subsets 

It is useful to generalize the notion of a coset. If X and Yare arbitrary 
nonempty subsets of a group, define their product to be the subset 

XY = {xylx E X, y E Y} 

and the inverse of X to be 

X-l = {x-llx EX}. 

Then clearly xH = {x} H is a left coset and H x = H {x} a right coset if 
H ~ G. Multiplication of subsets is associative and (X-1 fl = X is always 
valid. 

More generally we define the product of a family of subsets 

this consists of all products Xl x 2 • • • X k where Xi E Xi' Of course we speak of 
a sum of subsets in the case of an additive group. 

1.3.4. Let H be a subgroup of G and let T be a left transversal to H in G. 
Then T- l is a right transversal to H in G. In particular, the sets of left and 
right cosets of H have the same cardinality. 

Proof. Since G is the disjoint union of the tH, t E T, inversion shows that 
G- l = G is the disjoint union of the (tHfl = HC1. 0 

The cardinality of the set of left (or right) co sets of H in G is called the 
index of H in G and is written 

IG:HI· 

1.3.5. Let K ~ H ~ G. If T is a left transversal to H in G and U a left trans
versal to K in H, then TU is a left transversal to K in G. Thus 

IG:KI = IG:HI·IH:KI· 

Proof. G = UIETtH and H = UUEUuK, whence G = UIET.UEUtuK. It re
mains to show that all the cosets tuK are distinct. Suppose that tuK = t'u' K 
where t, t' E T and u, u' E U: then Clt' E Hand tH = t'H. Since T is a 
transversal, t = t'; hence uK = u' K and u = u' since U is a transversal. 0 

Specializing to the case K = 1, we obtain a fundamental theorem. 

1.3.6 (Lagrange's Theorem). If G is a group and H is a subgroup of G, then 
IGI = IG: HI·IHI· If G is finite, IG: HI = IGI/IHI. Hence the order of a sub
group always divides the order of the group if the latter is finite. 
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On the other hand, just because a positive integer divides the group 
order it does not follow that there is a subgroup with this order (see Exer
cise 1.3.3). 

Double Cosets 

If Hand K are subgroups and x is an element of a group G, the subset 

HxK = {hxklh E H, k E K} 

is called an (H, K)-double coset. There is a partition of the group into dou
ble cosets which is occasionally useful. 

1.3.7. Let Hand K be subgroups of a group G. 

(i) The group G is a union of (H, K)-double cosets. 
(ii) Two (H, K)-double cosets are either equal or disjoint. 

(iii) The double coset H xK is a union of right cosets of H and a union of left 
cosets of K. 

Proof. Define x '" y to mean that x = hyk for some h in Hand k in K. It is 
easy to check that '" is an equivalence relation on G, the equivalence class 
containing x being HxK. Thus (i) and (ii) follow at once. (iii) is clear. 0 

The Order of an Element 

A group element x has finite order n if the cyclic subgroup <x) has order n. 
If <x) is infinite, then x has infinite order. We shall write 

for the order of x. Elements of order 2 are often called involutions. 
A torsion group (or periodic group) is a group all of whose elements have 

finite order. If the orders of the elements of a group are finite and bounded, 
the group is said to have finite exponent. The exponent of the group is then 
the least common multiple of all the orders. Obviously a finite group has 
finite exponent and a group with finite exponent is a torsion group. 

On the other hand, a group is said to be torsion-free (or aperiodic) if 
apart from the identity all its elements have infinite order. 

1.3.8. Let x be an element of a group G. 

(i) x has infinite order if and only if all powers of x are distinct. 
(ii) If x has finite order n, then xm = 1 if and only if nlm. Moreover <x) 

consists of the distinct elements 1, x, x 2 , ••• , xn-l. 
(iii) If x has finite order n, the order of Xk equals n/(n, k). 
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Proof. If all powers of x are distinct, <x) is obviously infinite. Conversely 
suppose that two powers of x are equal, say x, = xm where I < m; then 
x m- I = 1. Thus we can choose the least positive integer n such that x" = 1. 
Using the division algorithm we may write an arbitrary integer m in the 
form m = qn + r where q, r are integers and ° S r < n. Then xm = (x")qxr = 

xr, which shows that <x) = {l, x, ... , X"-l}. Hence x has finite order. Also 
xm = 1 if and only if r = 0, that is, if nlm: this is by minimality of n. Next 
suppose that Xi = xi where 0 sis j < n. Then xi-i = 1, so that nlj - i: 
but this can only mean that i = j. Hence the elements 1, X,; • • , x"-1 are all 
distinct and Ixl = n. Thus (i) and (ii) are established. 

To prove (iii) observe that (Xkt/(II,k) = (X")k/(II,k) = 1, which implies that 
m = IXkl divides n/(n, k). Also since (xk)m = 1, one has that nlkm and hence 
that n/(n, k) divides (k/(n, k»m. By Euclid's Lemma n/(n, k) divides m, so 
m = n/(n, k). D 

Subgroups of Cyclic Groups 

While it can be an arduous task to determine all the subgroups of a group, 
there is little difficulty in the case of cyclic groups. 

1.3.9. Let G = <x) and let H be a subgroup of G. 

(i) If G is irifinite, then H is either irifinite cyclic or trivial. 
(ii) If G has finite order n, then H is cyclic of order dividing n. Conversely, to 

each positive divisor d of n there corresponds exactly one subgroup of 
order d, namely <X"/d). 

Proof. We prove first that H is cyclic. If H = 1, this is obvious, so let H =F 1; 
then H contains some positive power X S =F 1. Let s be chosen minimal with 
this property. Clearly <XS) ~ H. If Xl E H, write t = sq + r where q, r E 7l.. 
and 0 S r < s. Then xr = (xSrqx l E H, so the minimality of s shows that 
r = 0 and sit. Hence Xl E <XS) and H = <x'). If G is infinite, x has infinite 
order, as does x'. Hence H is an infinite cyclic group. 

Now let Ixl = n < 00. Then IHI divides n, as we see at once from 
Lagrange's Theorem. Conversely suppose that din; then Ix"/dl = d by 1.3.8 
and I <X"/d) I = d. Finally suppose that <Xk) is another subgroup of order d. 
Then Xkd = 1 and nlkd: consequently n/d divides k and <Xk) s <X"/d). But 
these subgroups both have order d, so they coincide. D 

It is obvious that a group has just one subgroup if and only if it has 
order 1. We determine next the groups with exactly two subgroups. 

1.3.10. A group G has precisely two subgroups, namely 1 and G, if and only if 
it is cyclic of prime order. 
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Proof. Sufficiency is immediate from 1.3.6. If G has only two subgroups 
and 1 =F x E G, then G = <x). Moreover, should Ixl be infinite, <x2 ) will 
be a proper nontrivial subgroup. Hence Ixl is finite and by 1.3.9 it must be 
prime. 0 

Index Theorems 

We shall record some basic properties of the index of a subgroup. 

1.3.11. Let Hand K be subgroups of a group G. 

(i) IHKI'IH (') KI = IHI'IKI, so that IH: H (') KI = IHKI / IKI if Hand K 
are finite. 

(ii) IG : H (') KI :s; IG: HI'IG: KI, with equality if the indices IG: HI and 
I G : K I are finite and coprime. 

Proof. (i) Define an equivalence relation '" on the set product H x K by 
the rule (h, k) '" (h', k') if and only if hk = h'k'; this is equivalent to h-W = 
k(kTl or to (h ', k ' ) = (hi, i-lk) for some i E H (') K. Hence the equivalence 
class (h, k) containing (h, k) has cardinality IH (') KI. Now consider the func
tion (h, k) r-+ hk: elements equivalent to (h, k) also map to hk, so we have a 
function from the set of equivalence classes to HK given by (h, k) r-+ hk. 
Moreover this function is bijective by definition of "' . Hence the set of 
all equivalence classes has cardinality IHKI. Since IH x KI = IHI'IKI, it 
follows that IHI ' IKI = IHKI ' IH (') KI. 

(ii) To each left coset x(H (') K) we assign the pair of left co sets (xH, xK): 
this pair is clearly well-defined. Now (xH, xK) = (x' H, x' K) if and only 
if X-lX' E H (') K or x(H (') K) = x'(H (') K). Therefore the assignment 
x(H (') K) r-+ (xH, xK) is an injection and 

IG: H (') KI :s; IG: HI ' IG: KI. 

If I G : H I and I G : K I are finite and relatively prime, each divides I G : H (') K I 
by 1.3.5, whence their product does too. 0 

1.3.12 (Poincare). The intersection of a finite set of subgroups each of which 
has finite index is itself of finite index. 

The important result is an immediate consequence of 1.3. 11 (ii). 

Permutable Subgroups and Normal Subgroups 

Two subgroups Hand K of a group G are said to permute if HK = KH. 
This is in fact precisely the condition for HK to be a subgroup. 
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1.3.13. If Hand K are subgroups of a group, then HK is a subgroup if and 
only if Hand K permute. In this event HK = (H, K) = KH. 

Proof. Suppose that HK ~ G; then H ~ HK and K ~ HK, so KH £; HK. 
Taking inverses of each side we get HK £; KH, whence HK = KH. More
over (H, K) ~ HK since HK ~ G, while HK £; (H, K) is always true; thus 
(H, K) = HK. Conversely let HK = KH: if hi E Hand ki E K, then 

hl kl (h2k2fl = hl (k l k"2l )h"2l: 

now (klk"21)h"2l = h3k3 where h3 E Hand k3 E K. Hence hlkl(h2k2fl = 
(hlh3)k3 E HK and HK ~ G by 1.3.1. 0 

1.3.14 (Dedekind'st Modular Law). Let H, K, L be subgroups of a group and 
assume that K £; L. Then (HK) n L = (H n L)K. In particular, if Hand K 
permute, (H, K) n L = (H n L, K). 

Proof. In the first place (H n L)K £; HK and (H n L)K £; LK = L: hence 
(H n L)K £; (HK) n L. Conversely let x E (HK) n L and write x = hk, (h E H, 
k E K): then h = xk-l ELK = L, so that hE H n L. Hence x E (H n L)K. 
The second part follows via 1.3.13. 0 

The reader should note that since K n L = K, the modular law is really a 
form of the distributive law (HK) n L = (H n L)(K n L): however the latter 
is false in general. 

A subgroup of a group G which permutes with every subgroup of G is 
said to be permutable (or quasinormal). By far the most important examples 
of permutable subgroups are normal subgroups: these are subgroups posses
sing one of the three equivalent properties in the next result. 

1.3.15. If H is a subgroup of a group G, the following statements about Hare 
equivalent: 

(i) xH = Hx for all x E G; 
(ii) X-l Hx = H for all x E G; and 

(iii) x-1hx E H for all x E G, h E H. 

Proof. 

(i) = (ii). Premultiply by X-l. 

(ii) = (iii). This is clear. 
(iii) = (i). Let h E H and x E G. Then 

(x-1f1hx-1. x E Hx. Hence xH = Hx. 

The notation 
H<J G 

t Richard Dedekind (1831-1916). 

hx = x(x-lhx) E xH and xh = 

o 
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signifies that H is a normal subgroup of G. Of course 1 and G are normal 
subgroups and these may well be the only normal subgroups of G. If this 
is the case and G ¥- 1, the group G is said to be simple. More interesting 
instances of normality are: An<l Sn and SL(n, R)<l GL(n, R). Note also that 
in an abelian group every subgroup is normal. 

It follows from 1.3.15 that a normal subgroup is permutable: hence the 
product of a subgroup and a normal subgroup is always a subgroup. 

1.3.16. If {NAIA E A} is a collection of normal subgroups of a group, then n A e A NA and < NAI A E A) are normal subgroups. 

Proof. The first part is clear: to prove the second apply 1.3.3. o 

Normal Closure and Core 

If X is a nonempty subset of a group G, the normal closure of X in G is the 
intersection of all the normal subgroups of G which contain X. By 1.3.16 
this is a normal subgroup; it is denoted by 

XG. 

Clearly XG is the smallest normal subgroup containing X and it is easy to 
show that X G = <g-1 Xglg E G), cf. the proof of 1.3.3. 

Dual to the normal closure is XG the normal interior or core of X in 
G; this is defined to be the join of all the normal subgroups of G that 
are contained in X, with the convention that XG = 1 if there are no such 
subgroups. Again it is simple to prove that HG = ngeGg-1Hg for H a 
subgroup. 

EXERCISES 1.3 

1. If H ~ G, then G\ H is finite if and only if G is finite or H = G. 

2. Find all subgroups of S3. Using a Hasse diagram display the subgroup lattice. 

3. Repeat Exercise 2 for A 4, observing that A4 has no subgroup of order 6. 

*4. Let d(G) be the smallest number of elements necessary to generate a finite 
group G. Prove that IGI ;e: 24(G). [Note: By convention d(G) = 0 if IGI = 1.] 

5. A cyclic group of finite order n is isomorphic with if.n: an infinite cyclic group is 
isomorphic with if.. 

*6. If G is infinite cyclic and 1 f= H ~ G, then I G : HI is finite. 

7. A group has exactly three subgroups if and only if it is cyclic of order p2 for 
some prime p. 

*8. Let Hand K be subgroups with coprime indices in a finite group G. Prove that 
G = H K (use 1.3.11). 
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9. Let H::;; G and K::;; G. Then H uK::;; G if and only if H ::;; K or K ::;; H. 
Deduce that no group is a union of two proper subgroups. 

10. Give examples of: (a) a torsion group with infinite exponent; and (b) an infinite 
group with finite exponent. 

11. Prove that Q is not finitely generated. 

12. Let Hand K be subgroups of a finite group G. 

(a) Show that the number of right cosets of H in HdK equals IK : Hd () KI. 
(b) Prove that 

1 IGI 1 
~ IHd () KI = IHI·IKI = ~ IH () Kdl 

where d runs over a set of (H, K)-double coset representatives. 

13. A subgroup of index 2 is always normal. 

14. Given that H. <J K. ::;; G for all A. in A, show that (l. H. <J (l. K •. 

*15. Show that normality is not a transitive relation (check Ds). 

*16. If H::;; K ::;; G and N <J G, show that the equations HN = KN and H () N = 
K () N imply that H = K. 

* 17. If G = D2" , find elements x and y of orders 2 and n respectively such that 
G = <x, y) and x - 1yx = y-l. 

*18. If H::;; G, prove that HG = <H9 1g E G) and HG = (l geG H9. 

19. Show that (HK) () L = (H () L)(K () L) is not valid for all subgroups H, K, L. 

1.4. Homomorphisms and Quotient Groups 

Let G and H be two groups. A function IX: G -+ H is called a homomorphism 
if 

(XY)IX = (xlX)(YIX) 

for all x, y E G. For multiplicative groups it is advantageous to write x« in
stead of XIX, so that the above becomes 

(xy)« = x«y«. 

The set of all homomorphisms from G to H is denoted by 

Hom(G, H). 

This set is always nonempty since it contains the zero homomorphism 
0: G -+ H which sends every element of G to lH. 

A homomorphism IX: G -+ G is called an endomorphism of G. The identity 
function 1: G -+ G is clearly an endomorphism. 
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Of the greatest importance are the image 1m a and the kernel Ker a of a 
homomorphism a: G ~ H . These subsets are defined as follows: 

and 

1.4.1. Let a: G ~ H be a homomorphism. 

(i) (x")a = (x a)" for all integers n, so that 16 = IH' 
(ii) 1m a ~ Hand Ker a <J G. 

Proof. (i) For n > 0 this is easily proved by induction on n, while the case 
n = 0 is dealt with as follows: 16 = (IG1GY = 1616' whence 16 = 1H by 1.1.3. 
Let n < 0: then x"x-" = 1G, so (x")a(x-")a = 1H and (x")a = ((X-7)-1 = 
((x ar"r 1 = (x a )". 

(ii) This follows from the subgroup criterion and the definition of nor-
mality. 0 

The group G/Ker a is sometimes called the coimage of a: if 1m a<J H, 
then H/lm a is the co kernel of a. 

Examples of Homomorphisms 

(i) a: S" ~ < -1) where na = sign n. 
(ii) a: GL(n, F) ~ F* where A a = det A and F* = F \ {O}. Here F is a field. 

Monomorphisms, Epimorphisms, and Isomorphisms 

An injective (or one-one) homomorphism is called a monomorphism and a 
surjective (or onto) homomorphism an epimorphism: of course a bijective 
homomorphism is what we have been calling an isomorphism. 

1.4.2. Let a: G ~ H be a homomorphism. 

(i) a is a monomorphism if and only if Ker a = IG • 

(ii) a is an epimorphism if and only if 1m a = H. 
(iii) a is an isomorphism if and only if Ker a = 1G and 1m a = H. 

Proof. If a is a monomorphism and x E Ker a, then x a = 1H = 16, whence 
x = IG by injectivity. Conversely let Ker a = 1G ; then x a = ya implies that 
(xy-l)a = 1H , so xy-l E Ker a = 1G and x = y. The rest is clear. 0 
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Quotient Groups and the Noethert Isomorphism Theorems 

If N is a normal subgroup of a group G, the quotient group (or factor group) 
of N in G, 

GIN , 

is the set of all co sets of N in G equipped with the group operation 

(Nx)(Ny) = N(xy). 

This operation is well-defined since if x' = ax and y' = by with a, bEN, 
then x'y' = axby = a(xbx- 1 )xy E Nxy. Associativity is immediate. The in
verse of Nx is Nx-1 and the identity element is N. Clearly IGINI = IG: NI. 
It is often convenient to use the congruence notation 

x == y modN 

in place of Nx = Ny. 
The next theorem shows the very intimate relation between quotient 

groups and homomorphisms. 

1.4.3 (First Isomorphism Theorem) 

(i) If IX: G -+ H is a homomorphism of groups, the mapping e: (Ker IX)X 1-+ x'" 
is an isomorphism from G IKer IX to 1m IX. 

(ii) If N is a normal subgroup of a group G, the mapping v: x 1-+ Nx is an 
epimorphism from G to GIN with kernel N. (This v is called the natural or 
canonical homomorphism.) 

Proof. (i) Recall from 1.4.1 that Ker 1X<l G. Now e is well-defined since 
(kx)'" = x'" if k E Ker IX, and it is clearly an epimorphism. Also (Ker IX)X E 

Ker e if and only if x E Ker IX, that is to say, Ker e = 1G/Ker ",; thus e is an 
isomorphism (by 1.4.2). 

(ii) v is a homomorphism since Nxy = (Nx)(Ny): it is obviously an epi
morphism. Finally x v = 1G/N if and only if x E N. 0 

1.4.4 (Second Isomorphism Theorem). Let H be a subgroup and N a normal 
subgroup of a group G. Then Nil H <l Hand (N II H)x 1-+ Nx is an isomor
phismfrom HIN IIH to NHIN. 

Proof. The function x I-+Nx is clearly an epimorphism from H to NHIN 
whose kernel is N II H . The result follows by 1.4.3 (i). 0 

1.4.5 (Third Isomorphism Theorem). Let M and N be normal subgroups of a 
group G and let N ::;; M. Then M IN <l GIN and 

(GIN)/(MIN) ~ GIM. 

t Emmy Noether (1882-1935). 
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Proof. Define ex: GIN -... GIM by (Nx)a = Mx. This is a well-defined epimor
phism with kernel M IN. The result follows by 1.4.3 (i). 0 

Subgroups of the Image 

Suppose that ex: G -... H is a homomorphism. If S ::;; G, define sa to be 
{sal s E S}, the image of the restriction exls of ex to S (which is a homo
morphism). Thus sa ::;; 1m ex. Conversely suppose that T::;; 1m ex and define 
T* = {x E Glxa E T}; this is the preimage (or inverse image) of T. It is evi
dent from the definition that T* ::;; G and (T*)a = T; notice also that T* 
contains Ker ex. Utilizing this notation it is easy to describe the subgroups of 
1m ex. 

1.4.6. The functions S r-+ sa and T r-+ T* are mutually inverse bijections be
tween the set of subgroups of G that contain Ker ex and the set of subgroups 
of 1m ex. A corresponding statement holds for normal subgroups. 

Proof. We have already observed that (T*)a = T. Let x E (sa)*; then x a = sa 
for some s E Sand xs- l E Ker ex ::;; s, so XES and (sa)* ::;; S. Conversely 
S ::;; (sa)* by the definition, so (sa)* = S, which establishes the first part. 
Finally S <I G implies that sa <J 1m ex and T <I 1m ex implies that T* <I G, 
whence the second part follows. 0 

Specializing to the case of the natural homomorphism G -... GIN, one 
finds that the subgroups of GIN are of the form SIN where N ::;; S ::;; G, with 
a like statement for normal subgroups. 

Direct Products 

There are many ways of constructing a group from a given family of groups, 
the simplest of these constructions being the direct product. 

Let {GAIA E A} be a given set of groups. The cartesian (or unrestricted 
direct) product, 

C = Cr GA, 
;'EA 

is the group whose underlying set is the set product of the G;.'s, that is, the 
set of all "vectors" (g;.) with A-component gA in G;., and whose group opera
tion is defined by multiplication of components: thus 

(g;.)(h;.) = (g;.hA)' 

g;., h;. E G;.. Of course the identity element of C is to be (1;.) and (gA)-l = 
(gil). It is an easy matter to check the validity of the group axioms. 
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The subset of all (g).) such that g;, = 1;, for almost all A, that is, with 
finitely many exceptions, is called the external direct product, 

D = Dr G;,. 
;'eA 

The G;, are the direct factors. Clearly D is a subgroup of C; in fact it is even 
a normal subgroup. In case A = {Al' A2 , ••• , An}, a finite set, we write 

D=G xG x"·xG. ;";'2 ;'n 

Of course C = D in this case. Should the groups G;, be written additively, we 
shall speak of the direct sum of the G;" and write 

G;" $ G;'2 $ ... $ G;'n 

instead of G;" x G;'2 X ... x G;'n' 

For each A in A we define a function I;,: G;, -. C by agreeing that g1 shall 
be the vector whose A-component is g;, and whose other components are 
identity elements. Then I;, is a monomorphism with image G;" a normal sub
group of C contained in D. Of course G;, ~ G;,. If (g . .) E D and g;", ... , g;'k 
are its nontrivial components, then clearly (g;,) = g1:'" g1t, so that 

It is also clear from the definition that 

for all A. 

Internal Direct Products 

Suppose that H is a group with a family of normal subgroups {H;,IA E A} 
having the properties of the G;, above, that is to say 

H = (H;,IA EA) and 

Then H is called the internal direct product of the H;" which we shall write 
as H = Dr(i);'eAH;,. 

Observe that elements of H which lie in different H;,'s commute. For 
if x E H;" Y E Hp. and A # p" then x-ly-lxy = X-l(y-lxy) = (X-ly-1X)Y E 

H;, n Hp. = 1; hence xy = yx. 
Using this fact it is simple to prove that the mapping which assigns to an 

element of the external direct product the product of all its components is 
an isomorphism from Dr;'eAH;, to Dr(i);,eAH;, . 

We can sum up our conclusions about the relationship between internal 
and external direct products as follows. 
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1.4.7. 

(i) If {G).IA. E A} is a family of groups, the external direct product Dr).eA G). 
is equal to the internal direct product Dr(i»).eA G). where G). is the image of 
1).: G). --+ CrAeA G).. 

(ii) Conversely the internal direct product Dr(i»).eAH). of a family of normal 
subgroups of a group is isomorphic with the external direct product 
Dr).eA H ).. 

In the light of 1.4.7 we shall usually identify x in G). with XIA in G)., so that 
G). = G). and internal and external direct products coincide. 

The following characterization of the direct product is sometimes useful. 

1.4.8. Let {G).IA. E A} be a family of normal subgroups of a group G. Then G 
is the direct product of the G).'s if and only if: 

(i) elements belonging to different G).'s commute; and 
(ii) every element of G has a unique expression as a product of elements from 

distinct G).'s. 

Proof. Assume that G is the direct product of the G;.'s. Since the latter 
generate G, we can write any element x in the form x = X).l ... X).k where 
1 #- x). . E G).., the A.i are distinct and k ~ 0: moreover, the order of the x).. is 
immat~rial. 'If x = Ylll .. . Yll. is another such expression for x and }ll ;,. A.i 
for all i, then Y"l E G"l n <GAIA. E A, A. #- }ll), which is trivial. It is now easy 
to see that (i) and (ii) hold. Conversely, if these conditions are fulfilled, the 
intersection of G). and <G"I}l E A,}l #- A.) must be trivial by the requirement 
of uniqueness. 0 

Direct Limits 

Let A be a partially ordered set which is directed; this means that given A. 
and }l in A there exists a v in A such that A. :$; v and }l :$; v. Suppose that we 
have a family of groups G)., A. E A, and homomorphisms ~~: GA --+ Gil where 
A. :$; }l, satisfying the following requirements: 

(i) ~t is the identity map on G).; 
(ii) ~~~~ = ~X whenever A. :$; }l :$; v. 

Then the set D = {G)., ~~ I A. :$; }l E A} is called a direct system of groups. 
We shall how to construct a group 

D=~G). 
).eA 

and homomorphisms 
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The resulting set {D, O).IA E A} is called the direct limit of the direct system 
D. The idea here is that in D an element g). of G). is to be identified with all 
its images g~~. 

We shall assume that the groups G). are disjoint, so that G). n Gil = 0 if 
A #- Jl. There is no real loss of generality here since G). can be replaced by 
a suitable isomorphic copy. In the sequel g). will always denote an element 
ofG). . 

We introduce a relation", on the set-theoretic union 

u= U G)., 
).eA 

defining g). '" Oil to mean that g~~ = 0=; for some v ~ A, Jl. Notice that v here 
can be replaced by any p ~ v, as may be seen by applying a~ to both sides 
of the equation and appealing to property (ii). It is easy to verify with the 
aid of the two defining properties that'" is an equivalence relation on U. 

Let [g).] be the equivalence class containing g). and denote by D the set 
of all equivalence classes. We wish to make D into a group. Suppose that 
g). '" 0'1 and gil'" Op.· Then we can find v in A satisfying v ~ A, I, Jl, Ji and 

h h ' ' d' 'H " "d · · . f I suc t at g~}. = O~I an g=. = O~ji. ence g~}.g=. = O~I O~ an It IS meanmg u 
to define the product by 

[gJ [gil] = [gA~g=;] 

where v ~ A, Jl. The directed ness of the set and the definition of equivalence 
ensure that there is no dependence on v here. 

It is easy to check the validity of the group axioms: of course 1D = [1GJ 
and [g ).r1 = [gil]. The homomorphism 0). is just g). 1-+ [g A]. 

The essential properties of the direct limit for our purposes are these. 

1.4.9. Let G). be the image of 0A: GA ~ D. 

(i) D = UAeA GA· 

(ii) GA ::::;; Gil whenever A ::::;; Jl. 
(iii) If all the af are monomorphisms, then the 0). are monomorphisms, so that 

G).~G).. 

Proof. (i) is immediate. 
(ii) [g).] = [g~~] E Gil" 

(iii) If g~}. = 1, then [g).] = 1 = [1).]. 
Consequently g). = 1. 

Hence g~~ = 1" for some Jl ~ A. 
o 

A special case of the direct limit will be of particular interest to us. Let 
there be given a sequence of groups G1 , G2 , • •• and monomorphisms 
IJi: Gi -+ Gi +1. Defining a! to be IJiIJi+1 ... IJj-1 if i < j, we obtain a direct sys
tem {Gi , al}. The direct limit group D is the union of the chain of subgroups 

G1 ::::;; G2 ::::;; ... 
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and Gi ~ Gi . Thus whenever we have such a sequence of groups Gi , it is 
possible to think of all the groups as being contained in or embedded in a 
larger group. 

Finally an important example. Let Gi = ( x) be a cyclic group of order 
pi where p is a fixed prime. Define a monomorphism (J'i : Gi -+ Gi +1 by 
xi; = Xf+l ' The limit of the direct system is an infinite abelian p-group 
which is the union of a chain of cyclic p-groups of orders p, p2, . . .. This 
group is called a Prufert group of type poo . It plays an important part in the 
theory of infinite abelian groups, as we shall see in Chapter 4. 

EXERCISES 1.4 

1. If G is an n-generator group and H is finite, prove that I Hom(G, H)I :S IHI". 

2. Prove that a finitely generated group has only a finite number of subgroups of 
given finite index. 

*3. If H <J K :S G and () is a homomorphism from G, then H8 <J K8. Deduce that 
HN <J KN whenever N <J G. 

4. If H is abelian, Hom(G, H) is an abelian group if the group operation is defined 
by gdP = g"gP. 

5. If G and H are groups with coprime finite orders, then Hom(G, H) contains 
only the zero homomorphism. 

6. Let N <J G. Show that GIN is simple if and only if N is a maximal (proper) 
normal subgroup of G. 

7. Prove that (H x 'K) xL=:: H x K x L=:: H x (K xL). 

8. An abelian group of exponent p is a direct product of cyclic groups of order 
p-such groups are called elementary abelian p-groups. [Hint : Regard the 
group as a vector space over GF(p).] 

*9. (The mapping property of the cartesian product). Let G = Cr, eA G, and define 
the projections 7t,: G -+ G, by setting x n , equal to the A-component of x . Show 
that 7t, is a homomorphism. Let there be given a family of homomorphisms 
qJ,: H -+ G, from some group H . Prove that there exists a unique homomor
phism qJ: H -+ G such that qJ7t, = qJ, for all A. (This conclusion may be made 
more palatable by asserting that the diagrams 

H 

j~~ 
G , G , 

are commutative.) 
1t, 

t Heinz Priifer (1896- 1934). 
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* 10. Prove that the mapping property in Exercise 1.4.9 characterizes the cartesian 
product in the following sense. Suppose that G is a group and 1t).: G -+ G). a 
family of homomorphisms such that whenever we are given homomorphisms 
cp).: H -+ G)., there exists a unique homomorphism cp: H -+ G such that cp1t). = cp). 
for all A.. Then G"" Cr).EA G).. Remark: This shows that the cartesian product is 
the product in the category of groups. The coproduct is the free product (see 
6.2). 

11. Show that Q is a direct limit of infinite cyclic groups. 

12. Find some nonisomorphic groups that are direct limits of cyclic groups of 
orders p, p2, p3, .... 

1.5. Endomorphisms and Automorphisms 

Let G be a group and let F(G) be the set of all functions from G to G. If 
~, f3 E F(G), then ~f3 E F(G) where, of course, xl1.fJ = (xl1.)P. Thus F(G) is a set 
with an associative binary operation and an identity element, namely the 
identity function 1: G --. G. Such an algebraic system is called a monoid. 

There is a natural definition of the sum of two elements of F(G), namely 
xl1.+ fJ = xl1.x fJ• Clearly addition is an associative operation. In fact F(G) is a 
group with respect to addition: for the additive identity element is the zero 
homomorphism 0: G --. G and the inverse -~ is given by x-11. = (Xl1.tl. 

It is straightforward to verify the left distributive law ~(f3 + y) = ~f3 + ~y: 
however the right distributive law (~ + f3)y = ~y + f3y does not hold in F(G) 
in general. 

As an additive group and a multiplicative monoid which satisfies the left 
distributive law, F(G) is a type of algebraic system known as a left near ring. 

Let End G denote the set of all endomorphisms of G; thus {O, 1} S;; 

End G s;; F(G). If~, f3 E End G, then ~f3 E End G, so that the End G is a multi
plicative submonoid of F(G). The sum ~ + f3 need not be an endomorphism, 
but in case it is, ~ and f3 are said to be additive. 

1.5.1. Let ~, f3 be endomorph isms of a group G. Then ~ + f3 is an endomor
phism if and only if every element of 1m ~ commutes with every element of 
1m f3. Moreover ~ + f3 = f3 + ~ in this case. 

Proof. The equation (xy)l1.+fJ = xl1.+fJy l1.+fJ is equivalent to yl1.xfJ = xfJy l1.. If we 
put x = y, this yields in particular xl1.+ fJ = x fJ +11. and ~ + f3 = f3 + IX. 0 

If~, f3 E F(G) and Y E End G, then x(l1.+fJ)Y = (xl1.xfJ)Y = xI1.Y+fJY, which shows 
that the right distributive law (~ + f3)y = ~y + f3y is valid in this case. Should 
the group G be abelian, it follows from 1.5.1 that End G is a ring. In fact the 
converse is true: for if 1 + 1 is an endomorphism, it is a consequence of 
1.5.1 that G is abelian. 
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Automorphisms 

If G is a group, an automorphism of G is an isomorphism from G to G. The 
set of automorphisms of G is denoted by 

Aut G: 

this, then, is the subset of elements of End G which possess multiplicative 
inverses. Aut G is a group with respect to functional composition since the 
inverse of (1.{J in Aut Gis {J-1(1.-1. 

Suppose that x, 9 E G and write 

x9 = g-1xg: 

this element is called the conjugate of x by g. Consider the function g<: G --+ G 
defined by (x)g< = x 9. Since (xy)9 = X9y9 and g«g-1)< = 1 = (g-1 )<g" we see 
that gt E Aut G. We call gt the inner automorphism of G induced by 9 and 
write 

Inn G 

for the set of all inner automorphisms. 

1.5.2. If G is any group, the function .: G --+ Aut G defined by (x)gt = x g is a 
homomorphism with image Inn G and kernel the set of elements that commute 
with every element of G. 

Proof. By definition X(gh)' = (ght1x(gh) = h-1g-1xgh = (x9Y, so (gh)t = gtht. 
Evidently gt = lAutG is equivalent to gx = xg for all x E G. 0 

The kernel of. is called the center of G and will be written ,G. Thus 

,G = {x E Glxg = gx for all 9 E G}. 

1.5.3. If G is any group, then ,G<l G and GgG ~ Inn G. 

This follows from 1.5.2 and the First Isomorphism Theorem (1.4.3). 

1.5.4. If G is a group and gt is the inner automorphism induced by g, then 
(1.-1gt(1. = (g"')' for all (1. E Aut G. Hence Inn G<l Aut G. 

Proof. Let 9 E G and (1. E Aut G; then (1.-1gt(1. maps x to (g-1 x a-'g)a = 
(gat 1xga, which shows that (1.-1gt(1. = (gat 0 

An automorphism of G which is not inner is called outer; the quotient 
group 

Out G = (Aut G)j(Inn G) 

is called the outer automorphism group of G, even although its elements are 
not automorphisms. 
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The Automorphism Group of a Cyclic Group 

1.5.5. Let G be a cyclic group. 

(i) If G is infinite, Aut G consists of the identity automorphism and the auto
morphism 9 H g-l. Thus Aut G is cyclic of order 2. 

(ii) If G has finite order n, then Aut G consists of all automorphisms O:k: 9 H gk 
where 1 ::::;; k < nand (k, n) = 1: moreover the mapping k + nZ H O:k is an 
isomorphism from z: (the multiplicative group of units of the ring Zn) 
to Aut G. In particular Aut G is abelian and has order cp(n) where cp is 
Euler's function. 

Proof. Let G = ( x ) and let 0: E Aut G. Since (xn)a = (xa)n, the automor
phism 0: is completely determined by xa. Notice that x a must generate G. If 
G is infinite, x and x-1 are the only generators, so x a = x or x - 1. Both 
possibilities clearly give rise to automorphisms, so (i) is established. 

Now let IGI = n < 00. Since x a must have order n, we conclude with the 
aid of 1.3.8 that x a = Xk where 1 ::::;; k < nand (k, n) = 1. Conversely, given 
such an integer k, the mapping 9 H gk is an automorphism. The rest is 
cl~ 0 

Semi direct Products 

We describe next an exceedingly useful construction that is a generalization 
of the direct product of two groups. 

Suppose that N <J G and there is a subgroup H such that G = HN and 
H n N = 1; then G is said to be the internal semidirect product of Nand H; 
in symbols 

G=H~N or G=N ><IH. 

Each element of G has a unique expression of the form hn where h E Hand 
n E N. For example, the dihedral group D2n is a semidirect product of a 
cyclic group of order n and a group of order 2. (See Exercise 1.3.17.) Conju
gation in N by an element h of H yields an automorphism ha of Nand 
0:: h H ha is a homomorphism from H to Aut N. Observe that G is the direct 
product of Hand N if and only if 0: is the zero homomorphism. 

Conversely suppose that we are given two groups Hand N, together 
with a homomorphism 0:: H -+ Aut N. The external semidirect product G = 
H ~a N (or N ><Ia H) is the set of all pairs (h, n), hE H, n E N, with the group 
operation 

h" 
(h1' nd(h2' n2) = (h1h2' n12 n2): 

the motivation here is, of course, the equation (X 1Y1)(X2Y2) = x 1x2Y12 Y2, 
which holds in any group. The identity element is (IH' IN) and (h, nr1 = 
(h- 1, (n- 1 )(h")- '). We leave the reader to verify the associative law. 
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Let us consider the functions hH(h, IN) and nH(lH' n). These are mono
morphisms from H to G and N to G respectively. Writing H* and N* for 
their images we have, of course, H ~ H* and N ~ N*. Since (h, IN)(lH' n) = 
(h, n), we have also G = H* N*, while it is clear that H* n N* = 1. Finally 
(h, lNrl(lH' n)(h, IN) = (lH' nh"), which shows that N* <J G and G is the in
ternal semidirect product of N* and H*. Notice that conjugation in N* by 
(h, IN) induces the automorphism hl1.. Usually it is convenient not to distin
guish between Nand N* and Hand H*, so that G can be thought of as the 
internal semidirect product of Nand H. In the future we shall simply speak 
of the semidirect product H ~ N. 

Characteristic and Fully-Invariant Subgroups 

A subgroup H of a group G is said to be fully-invariant in G if HI1. ::; H for 
all a E End G, and characteristic in G if HI1. ::; H for all a E Aut G. Notice 
that if H is characteristic in G and a E Aut G, then HI1.. must actually equal H 
since HI1. ::; Hand HI1.-1 ::; H. 

1.5.6. 

(i) Fully-invariant subgroups are characteristic and characteristic subgroups 
are normal. 

(ii) "Fully-invariant" and "characteristic" are transitive relations. (This is not 
true for normality.) 

(iii) If H is characteristic in K and K <J G, then H <J G. 

Proof. (i) is clear and (ii) follows from the fact that the restriction of an 
endomorphism (automorphism) to a fully-invariant (characteristic) subgroup 
is an endomorphism (automorphism). To prove (iii) note that conjugation in 
K by g EGis an automorphism, so H = g-l Hg. D 

For example, the center of a group is always characteristic: if x E (G 
and a E Aut G, then xg = gx yields xl1.gl1. = gl1.xl1., which implies that xl1. E (G 
because G = GI1.. In a certain sense dual to (G is the derived subgroup G' 
generated by all commutators [x,Y]=X-1y-1xy: since [x,yY=[xl1.,yl1.] 
whenever a E End G, we see that the derived subgroup is fully-invariant. The 
center of a group is not in general fully-invariant (Exercise 1.5.9). Another 
example of a fully-invariant subgroup is Gn, the subgroup generated by all 
nth powers of elements of G. 

Operator Groups 

We introduce next a very useful generalization of the concept of a group. A 
right operator group is a triple (G, n, a) consisting of a group G, a set n 
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called the operator domain and a function tX: G x n -+ G such that 9 1--+ 

(g, w)tX is an endomorphism of G for each WEn. We shall write gW for 
(g, w)tX and speak of the n-group G if the function tX is understood. Thus an 
operator group is a group with a set of operators which act on the group 
like endomorphisms. 

Since any group can be regarded as an operator group with empty oper
ator domain, an operator group is a generalization of a group. The concept 
of a left operator group is defined in the obvious way. 

It is possible to generalize to operator groups many of the concepts 
which have already been defined for groups. If G is an n-group, an n
subgroup of G is a subgroup H which is n-admissible, that is, such that hW E 
H whenever h E Hand WEn. Clearly every n-subgroup is itself an n
group. The intersection of a set of n-subgroups is an n-subgroup. This per
mits us to define the n-subgroup generated by a nonempty subset X as the 
intersection of all the n-subgroups containing X. This may be written 

Xn. 

By the method of 1.3.3 it may be shown that Xn consists of all elements 
(xi' )WI ... (x;r)Wr where Xi E X, Bi = ± 1, r ~ 0 and Wi is a sequence of ele
ments of n applied successively. 

If N is a normal n-subgroup, the quotient group GIN becomes an n
quotient group if we define (Ng)W = Ngw. An n-homomorphism tX: G --+ H is a 
homomorphism between n-groups G and H such that 

(gW)'% = (ga)w 

for all 9 E G and WEn. The set of all n-homomorphisms from G to H is 
written 

Homn(G, H). 

With these definitions it is possible to carryover to n-groups the theory 
of homomorphisms and quotient groups described in 1.4. Thus 1m tX is 
an n-subgroup of G and Ker tX a normal n-subgroup of G. The isomor
phism theorems for n-groups hold: here of course all homomorphisms are 
n-homomorphisms. For example: G/Ker tX ~n 1m tX where the sumbol ~n 
means "n-isomorphic." We can also speak of n-endomorphisms ( = n-homo
morphisms from a group to itself) and n-automorphisms (= bijective n
endomorphisms). These form sets Endn G and Autn G: clearly Endn G ~ 
End G and Autn G :s; Aut G. 

The reader is urged to prove the theorems about n-groups just men
tioned: in all cases the proofs are close copies of the original ones. 

Examples of Operator Groups 

(i) If R is a ring and A is a right R-module, then A is a right R-operator 
group. Thus modules are particular instances of operator groups. 
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(ii) Let G be any group and let n = End G. Then G is an n-group if we 
allow endomorphisms to operate on G in the natural way. An n-subgroup 
of G is simply a fully-invariant subgroup. 

(iii) In the same way G is an operator group with respect to n = Aut G. 
Here the n-subgroups are the characteristic subgroups. 

(iv) Finally G is an operator group with respect to n = Inn G. The n
subgroups are of course the normal subgroups of G. The n-endomorphisms 
are those that commute with every inner automorphism of G. Such endo
morphisms are called normal. Notice that XC is just the normal closure XG. 

From the foregoing discussion it is clear that the concept of an operator 
group unifies many previous ideas. There is also a definite advantage in 
proving results for operator groups rather than simply for groups. This is a 
point of view to which we shall give particular attention in Chapter 3. 

EXERCISES 1.5 

1. Let Op be the additive group of rational numbers of the form mp' where m, n E 

7L and p is a fixed prime. Describe End Op and AutOp-

2. The same question for O. 

*3. Prove the isomorphism theorems for operator groups. 

4. If IX E Aut G and 9 E G, then 9 and g" have the same orders. 

5. Prove that Aut S3 ~ S3' 

6. Prove that Aut Ds ~ Ds and yet Ds has outer automorphisms. 

7. If GI,G is cyclic, then G is abelian. 

*8. Prove that ,(Dr). G}.) = Dr}. ,G}.. 

9. The center of the group A4 x 7L2 is not fully-invariant. 

10. Let G = G1 X G2 X . . • x G. where the Gi are abelian groups. Prove that Aut G 
is isomorphic with the group of all invertible n x n matrices whose (i,j) entries 
belong to Hom(G;. G), the usual matrix product being the group operation. 

*11. Prove that 

Aut(7L EEl ... EEl 7L) ~ GL(n, 7L) and Aut(7Lpm EEl .. . EEl 7L pm) ~ GL(n, 7Lpm). 
~ ~ . . 

12. Give an example of an abelian group and a nonabelian group with isomorphic 
automorphism groups. 

*13. Let G = 7Lpn, EB· · · EEl 7Lpn" where n1 < n2 < ... < nk. Prove that there exists 
a chain of characteristic subgroups 1 = Go < G1 < ... < G, = G such that 
IGi +1 : G;I = p and t = L~=l ni . Deduce that IAut GI = (p - l)pr for some r. 

14. Prove that Aut(7L2 EEl 7L4 ) ~ Ds. 

15. Show that no group can have its automorphism group cyclic of odd order> 1. 
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*16. If G has order n> 1, then IAut GI ~ n~=o(n - 2i) where k = [log2(n - 1)]. 
[Hint: Use Exercise 1.3.4.] 

17. If an automorphism fixes more than half of the elements of a finite group, then 
it is the identity automorphism. 

18. Let IX be an automorphism of a finite group G which inverts more than three 
quarters of the elements of G. Prove that g" = g-1 for all 9 E G and that G is 
abelian. [Hint : Let S = {g E Gig" = g-1}, and show that IS II xSI > !IGI where 
XES]. 

1.6. Permutation Groups and Group Actions 

If X is a nonempty set, a subgroup G of the symmetric group Sym X is 
called a permutation group on X. The degree of the permutation group is the 
cardinality of X. 

Two points (i.e., elements) x and y of X are said to be G-equivalent if 
there exists a permutation n in G such that xn = y. It is easy to see that this 
relation is an equivalence relation on X. The equivalence classes are known 
as G-orbits, the orbit containing x being of course {xnln E G}. Thus X is 
partitioned into G-orbits. 

The permutation group G is called transitive if, given any pair of ele
ments x, y of X, there exists a permutation n in G such that xn = y. Thus G 
is transitive if and only if there is exactly one G-orbit, namely X itself. For 
example the 4-group {1, (1, 2)(3,4), (1, 3)(2, 4), (1, 4)(2, 3)} is transitive but 
its subgroup {1, (1, 2)(3, 4)} is not. 

If Y is a nonempty subset of X, the stabilizer of Yin G 

StG(Y) 

is the set of permutations in G that leave fixed every element of Y. Of course 
StG(x) stands for StG({x}). The permutation group G is said to be semi
regular if StG(x) = 1 for all x in X. A regular permutation group is one that 
is both transitive and semiregular. 

We record next the most elementary properties of permutation groups. 

1.6.1. Let G be a permutation group on a set X. 

(i) Let x E X. Then the mapping StG(x)n~xn is a bijection between the 
set of right cosets of StG(x) and the orbit of x. Hence the latter has 
cardinality I G : StG(x)l· 

(ii) If G is transitive, then IGI = IXI'IStG(x)1 for all x in X. 
(iii) If G is regular, then IGI = IXI. 

Proof. It is clear that the mapping in (i) is well-defined and surjective. If 
xn = xn' where n, n' E G, then n(nTl E StG(x) and StG(x)n = StG(x)n'. All 
the remaining statements now follow. 0 
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1.6.2. Let G be a permutation group on a set X . If x E X and nEG, then 
StG(xn) == n - 1 StG(x)n. 

Proof. An element (1 of G fixes xn if and only if n(1n-1 fixes x, which is 
equivalent to (1 E n-1 StG(x)n. D 

This has the following easy but important corollary: 

1.6.3. Let G be a transitive permutation group on a set X. If G is abelian, it is 
regular. 

Proof. Let x be any element of X . If nEG, then (StG(x))" = StG(xn) by 1.6.2. 
But StG(x)<J G because G is abelian. Hence StG(x) = StG(xn) for all n in G. 
Since G is transitive, it follows that a permutation fixing x will fix every 
element of X . Hence StG(x) = 1. 0 

Similar Permutation Groups 

Similarity is a way of comparing permutation groups just as isomorphism 
compares abstract groups. Let G and H be permutation groups on sets X 
and Y respectively. A similarity from G to H is a pair (0:, {J) consisting of an 
isomorphism 0: : G -. H and a bijection {J: X -. Y which are related by the 
rule 

(n E G). 

When X = Y, this says that n" = p-l n{J where now {J E Sym X . Thus two 
permutation groups G and H on X are similar if and only if some {J in 
Sym X conjugates G into H. Clearly if IXI = I YI, then Sym X and Sym Y 
are similar. 

Similarity is a stronger relation than isomorphism. For example G = 
«(1,2)(3,4» and H = «(1,2)(3)(4» are isomorphic as abstract groups, but 
they are not similar as permutation groups (why not?). 

The Wreath Product of Permutation Groups 

Let Hand K be permutation groups acting on sets X and Y respectively. 
We shall describe a very important way of constructing a new permutation 
group called the wreath product of Hand K. This is to act on the set prod
uct Z = X x Y. 

If Y E H, Y E Y, and K E K, define permutations y(y) and K* of Z by the 
rules 

( ) {
(x, y) f-+ (xy, y), 

Y y : . 
(x,ydf-+(x,yd If Yl #y, 
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and 
K*: (x, y) H (x, YK). 

One verifies quickly that (y- 1 )(y) = (y(y)f1 and (K-1)* = (K*r1, so that y(y) 
and K* are in fact permutations. The functions y H y(y), with y a fixed ele
ment of Y, and KHK* are monomorphisms from Hand K to Sym Z: let 
their images be H(y) and K*, respectively. Then the wreath product of H 
and K is the permutation group on Z generated by K* and all the H(y), 
y E Y. This is written 

H", K = <H(y), K* Iy E Y). 

Observe that (K*r1Y(Y)K* maps (x, YK) to (xy, YK) and fixes (Xl' yd if Y1 -# 
yK. Hence by definition 

and (1) 

In addition notice that when y -# y 1 the permutations y(y) and Y1 (y 1) can
not move the same element of Z. It follows that the H(y)'s generate their 
direct product, B say; the latter is called the base group of the wreath 
product: 

B = Dr H(y). 
ye Y 

According to (1) conjugation by an element K* of K* permutes the 
direct factors H(y) in the same way as K permutes the elements of Y. Since 
elements of K* and B cannot move the same element of Z, we must have 
K* (\ B = 1. Also of course B <l Wand W = K* B. Thus W is the semidirect 
product of B by K* in which the automorphism of B produced by an element 
of K* is given by (1). For simplicity of notation let us agree to identify K* 
with K, so that K* = K. 

We record two basic properties of wreath products. 

1.6.4. 

(i) If Hand K are transitive, so is H" K. 
(ii) Let L be a permutation group on U. Let {3: (X x Y) x U --+ X x (Y x U) 

be the bijection ((x, y), u) H (x, (y, u» and let oc be the function r H {3-1 r{3. 
Then (oc, {3) is a Similarity from (H" K) '- L to H'- (K '- L). 

Proof. (i) Let (x, y) and (x', y') belong to Z = X x Y. By transitivity there 
exist Y E Hand K E K such that x' = xy and y' = yK. Then KY(Y') maps (x, y) 
to (x, y'). y(y') = (x', y'), whence H '- K is transitive. 

(ii) Let S = (X x Y) x U and T = X x (Y x U). In the first place the 
map oc: r H {3-1 r{3 is clearly an isomorphism from Sym S to Sym T. Let 
us consider the image of (H'- K) '- L under this isomorphism. If Y E H, 
then (y(y»(u) maps ((x, y), u) to ((xy, y), u) and fixes ((x, yd, u1) if U1 -# u 
or Y1 -# y: hence {3-1 (y(y)(u»{3 maps (x, (y, u» to (xy, (y, u» and fixes 
(x, (Y1' u1» if (Y1' ud -# (y, u). Therefore P-1(y(y)(U»{3 = y((y, u». Also if 
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K E K and A E L, then P-l(K(U)){J = K*(U) and {J-l A{J = A* where * indicates 
that the permutation is to be formed in H '" (K '" L). Hence IX maps 
(H '" K) '" L onto H '" (K '" L), and (IX, {J) is a similarity. 0 

The second part of 1.6.4 asserts that to within similarity the wreath prod
uct is an associative operation. 

Group Actions and Permutation Representations 

Let G be a group and X a nonempty set. By a right action of G on X is 
meant a function p: X x G --+ X such that (x, g1g2)P = ((x, gdp, g2)P and 
(x, IG)p = X. It is more suggestive to write xg instead of (x, g)p, so that the 
defining equations become 

and xlG = X (x E X, gi E G). (2) 

A left action of G on X is defined analogously as a function A: G x X 
--+ X such that (g1g2, X)A = (g1' (g2' X)A)A and (lG' X)A = x or (g1g2)X = 
g1(g2X) and IGx = x with improved notation. 

Let us consider a right action (x, g) 1-+ xg of G on X. For a fixed element 
9 of G the mapping x 1-+ xg is a permutation of X: for it has as its inverse 
the mapping xl-+xg-l, as we can see from (2). Call this permutation gY. 
Then (g1g2)Y maps x to X(g1g2), as does gigJ.. Hence (g1g2)Y = gigi. So the 
group action determines a homomorphism y: G --+ Sym X. 

Conversely let y be any homomorphism from G to Sym X -such a func
tion is called a permutation representation of G on X. Then the mapping 
(x, g) 1-+ xgY is a right action of G on X. Thus we have constructed a map 
from right actions of G on X to permutation representations of G on X, and 
also a map in the opposite direction. Clearly these are inverse mappings. 

All of this can be done with left actions but a little care must be exer
cised. If (g, x) 1-+ gx is a left action of G on X, the corresponding representa
tion of G on X is y where gY maps x to g-1 x: without this inverse we would 
not obtain a homomorphism. 

1.6.5. Let G be a group and X a nonempty set. 

(i) There is a bijection between right actions of G on X and permutation 
representations of G on X in which the action (x, g) 1-+ xg corresponds to 
the permutation representation 9 1-+ (x 1-+ xg). 

(ii) There is a bijection between left actions of G on X and permutation repre
sentations of G on X in which the action (g, x) 1-+ gx corresponds to the 
representation 9 1-+ (x 1-+ g-1 x). 

In view of this result we shall use the languages of group actions and 
of permutation representations interchangeably. In particular the following 
definitions apply to actions as well as to permutation representations. 
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Let y: G -+ Sym X be a permutation representation of G on X. The cardi
nality of X is known as the degree of the representation. Next y is called 
faithful if Ker y = 1, so that G is isomorphic with a group of permutations 
of X. Also y is said to be transitive if 1m y is a transitive permutation group. 
By an orbit of G we mean one of 1m y. Finally the stabilizer of x E X in G is 
{g E Glxg Y = x}, and y is regular if it is transitive and all stabilizers are 
trivial. It should be noted that 1.6.1 remains true when G merely acts on X. 

Permutation Representations on Sets of Cosets 

There are several natural ways of representing a group as a permutation 
group; one of the most useful arises when the group is allowed to act by 
right multiplication on the right cosets of a subgroup. 

1.6.6. Let H be a subgroup of a group G and let 91 be the set of all right 
cosets of H . For each 9 in G define gP E Sym 91 by gP: HXI--+ Hxg. Then 
p: G -+ Sym ~ is a transitive permutation representation of G on ~ with 
kernel HG , the core of H in G. 

Proof. (g-l)p = (gPtl, so gP E Sym 91 and p: G -+ Sym 91 is plainly a homo
morphism. Since Hx = (Hg)g-l X = (Hg)(g-l x)p, we see that p is transitive. 
Finally gP = 1 if and only if Hxg = Hx for all x, that is, 

9 E n x-1 Hx = HG • D 
xeG 

Equivalent Permutation Representations 

Two permutation representations of a group y: G -+ Sym X and 15: G -+ 

Sym Yare said to be equivalent if there exists a bijection 13: X -+ Y such that 

f3go = gY 13 

for all 9 in G. When X = Y, the equivalence of y and 15 can be restated in the 
form gO = p-1 9 Y 13 for some 13 E Sym X. 

The importance of the permutation representation on the right co sets of 
a subgroup is brought out by the following fact. 

1.6.7. Let G be a group and let y: G -+ Sym X be a transitive permutation 
representation of G on a set X. Then y is equivalent to the standard permuta
tion representation of G on the right cosets of one of its subgroups. 

Proof. Choose an element x of X and fix it. Let H = StG(x) and write ~ for 
the set of right cosets of H in G. Then in fact y is equivalent to the natural 
permutation representation 15 on 91. To establish this we shall find a bijec-
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tion 13: 9l--+ X such that gff3 = f3gi for all gl in G. Take 13 to be the map 
Hgt-+xgY. Note that 13 is well-defined since x(hg)Y = xgY if h E H: also 13 is 
surjective by transitivity of y, while it is injective because xgY = xgi implies 
that ggll E Hand Hg = Hg 1 . 

Finally we verify that gff3 sends Hg to (Hgg 1 )f3 = X(ggl)Y, while f3gi 
sends Hg to xgYgi = X(ggl)Y. D 

There is of course a natural permutation representation of G on the set of 
left cosets of a given subgroup H, given by gY: xH --+ g-l xH. Here the in
verse is necessary to ensure that y is a homomorphism. 

A particularly important case occurs when H = land G is represented 
by permutations of its underlying set via left or right multiplication. Then 
we obtain the so-called left regular and right regular permutation represen
tations of G: these are A. and p where 

and 

By 1.6.6 both A. and p are faithful: it is easy to see that they are also regular. 
The following is a consequence of the existence of these representations. 

1.6.8 (Cayley's Theorem). If G is any group, it is isomorphic with a subgroup 
ofSym G, 

The idea which underlies the permutation representation on co sets has 
numerous applications. 

1.6.9. If H is a subgroup with finite index n in a group G, then the core HG 
has finite index dividing n!. 

Proof. By 1.6.6 the group G/HG is isomorphic with a subgroup of Sn· D 

1.6.10. Suppose that H is a subgroup with index p in a finite group G where p 
is the smallest prime dividing IGI. Then H <J G. In particular a subgroup of 
index 2 is always normal. 

Proof. By 1.6.9 the order of G/HG divides p!, whence IG: HGI = 1 or p since 
no smaller prime than p can divide IG: HGI. But HG :s; Hand IG: HI = p, so 
H=~<Ja D 

1.6.11. Let H be a subgroup of finite index in a finitely generated group G. 
Then H is finitely generated. 

Proof. Let X be a finite set of generators of G and let {l = t 1 , t 2 , ... , t;} be 
a right transversal to H in G. If g E G, then Htjg = Ht{J)g wherejt-+(j)g is a 
permutation of {l, 2, ... , i}. Hence 

tjg = h(j, g)t{J)g, (3) 
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where h{j, g) E H. Let a E H and write a = Y1 .. . Yk where y, E X U X-1. By 
repeated application of (3) we obtain 

a = t1 a = h(1 , ydh((1)Y1' Y2) ... h((1)Y1 ... Yk-1' Yk)t(1)a· 

But Ht(1)a = Ht1 a = H since t1 = 1: thus t(1)a = 1. It follows that the h{j, Y), 
1 ~ j ~ i, Y E X U X- 1, generate H. 0 

However subgroups of finitely generated groups are not always finitely 
generated (Exericse 1.6.15). 

The Holomorph 

Let A: G -+ Sym G and p: G -+ Sym G be the left and right regular represen
tations of a group G. Then G'" and GP are subgroups of Sym G, as is Aut G. 
Now g"'gP maps x to g-1 xg, so g"'gP is just g" the inner automorphism 
induced by g. Consequently 

< G"', Aut G) = < GP, Aut G); 

this subgroup of Sym G is known as the holomorph of the group G, 

HoI G. 

Let us investigate the structure of the holomorph. If (X E Aut G and 9 E G, 
then (X-1 gP(X maps x to (x"'- 'g)a = xga. Consequently (X-1 gP(X = (gay, which 
shows that GP <J HoI G = GP(Aut G). Since p is regular, GP (\ Aut G = l. 
Thus the holomorph is a semidirect product. 

HoI G = (Aut G) ~ GP, 

where an automorphism (X of G induces in GP the automorphism gP~(ga)p. 
Similarly HoI G is a semidirect product (Aut G) ~ G .... 

There is a relation between G'" and GP that involves the concept of a 
centralizer. If X is a nonempty subset of a group H, the centralizer of X in 
H is defined to be the set of all h in H such that xh = hx for all x in X. We 
write CH(X) for this centralizer; it is clearly a subgroup. 

1.6.12. The equations CHo1G(GP) = G'" and CHo1G(G"') = GP hold for any group 
G. 

Proof. Evidently gfgi = gigf for all gi E G: for both functions map x to 
g21 xg1. If (XgP E CHo1G(G"') with (X E Aut G, then (XgP x '" = x"'(XgP for all x E G; 
this yields (Xx'" = x ... (x since gPx '" = x"'gP. Hence x'" = (X-1 X "'(x = (xa) ... and 
x a = x for all x because A. is faithful : thus (X = 1 and (XgP = gP E GP. It 
follows that CHo1G(G"') = GP. The second statement can be proved in a 
similar way. o 
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Conjugacy Classes and Centralizers 

Apart from left and right multiplication there is another natural way of rep
resenting a group G as a permutation group on its underlying set, as was 
implied by our discussion of the holomorph, namely by conjugation. If 9 E 

G, the function gt: x H g-1 xg is a permutation of G and .: G -+ Sym G is a 
permutation representation. The orbit of x consists of all the conjugates of 
x, a set which is known as the conjugacy class of x . Thus G is partitioned 
into conjugacy classes. The stabilizer of x is simply the centralizer 

CG(x) = {g E Glgx = xg}. 

Hence IG: CG(x) I = the cardinality of the conjugacy class of x. Also {x} is a 
conjugacy class if and only if x belongs to the center of G. 

Class Number and Class Equation 

Let G be a finite group. The number h of distinct conjugacy classes of G is 
known as the class number of G. Suppose that the numbers of elements in 
the conjugacy classes are n1, n2, ... , nh' Then ni = IG: CG(Xi) I where Xi is 
any element of the ith conjugacy class. These integers satisfy the class 
equation 

IGI = n1 + n2 + ... + nh; 

they also divide IG: (GI since (G ~ CG(xi). The number of ni which equal 1 
is precisely the order of (G. 

N ormalizers 

If X is a nonempty subset and 9 is an element of a group G, the conjugate of 
X by 9 is the subset 

xg = g-1 Xg = {g-1xglx EX}. 

There is a natural action of G on the set of nonempty subsets of G via 
conjugation. Thus 9 in G determines the permutation X H X9. The orbit of 
X is the set of all conjugates of X in G, while the stabilizer of X is the 
subgroup 

NG(X) = {g E Glxg = X}, 

which is called the normalizer of X in G: the set of conjugates of X in G has 
cardinality I G : NG(X)I . If H ~ G, then NG(H) is the largest subgroup of G in 
which H is normal. 

1.6.13. Let H be a subgroup of a group G. Then 

CG(H)<l NG(H) 

and NG(H)/CG(H) is isomorphic with a subgroup of Aut H. 
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Proof. If g E NG(H), let gt denote the function h 1-+ g-l hg: it is clearly an 
automorphism of H. What is more, .: NG(H) --+ Aut H is a homomorphism 
whose kernel is exactly CG(H). The result follows from the First Isomor
phism Theorem. 0 

Applications to Finite Groups-Sylow's Theorem 

To convince the reader of their utility we shall use permutation representa
tions to prove some important theorems about finite groups. 

If p is a prime, a finite group is called a p-group if its order is a power of 
p. By Lagrange's Theorem the order of each element of a p-group must also 
be a power of p. The following is the fundamental result about finite p
groups. 

1.6.14. A nontrivial finite p-group has a nontrivial center. 

Proof. Let pm = n1 + ... + nk be the class equation of the group; then each 
nj divides pm and hence is a power of p. If the center were trivial, only one 
nj would equal 1 and pm == 1 mod p, which is impossible since pm > 1. 0 

1.6.15. If P is a prime, all groups of order p2 are abelian. 

Proof. Let IGI = p2 and C = (G. Then 1.6.14 shows that ICI = p or p2 
and IG: CI = p or 1. Hence GIC is cyclic, generated by xC, say. Then G = 
<x, C), which implies that G is abelian. 0 

Sylow Subgroups 

Let G be a finite group and p a prime. If I GI = pam where (p, m) = 1, then a 
p-subgroup of G cannot have order greater than pa by Lagrange's Theorem. 
A p-subgroup of G which has this maximum order pa is called a Sylow p
subgroup of G. We shall prove that Sylow p-subgroups of G always exist 
and that any two are conjugate-so, in particular, all Sylow p-subgroups of 
G are isomorphic. 

1.6.16 (Sylow'S Theorem). Let G be a finite group and p a prime. Write 
IGI = pam where the integer m is not divisible by p. 

(i) Every p-subgroup of G is contained in a subgroup of order pa. In particu
lar, since 1 is a p-subgroup, Sylow p-subgroups always exist. 

(ii) If np is the number of Sylow p-subgroups, np == 1 mod p. 
(iii) All the Sylow p-subgroups are conjugate in G. 

Proof. Let !/ be the set of all subsets of G with exactly pa elements. Then G 
acts on the set !/ by right multiplication, so we have a permutation repre-
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sentation of G on :/ with degree 

Let us show that p does not divide n. Consider the rational number 
(pam - O/i, 1 ::; i < pa. If pili, thenj < a and pil pam - i. On the other hand, 
if pil pam - i, then j < a and pili. Hence pam - i and i involve the same 
power of p, from which it follows that p cannot divide n. 

There must therefore exist a G-orbit .9';. such that I :/11 is not divisible 
by p. Choose X E:/l and put P = StG(X), Then 1:/11 = IG: PI, whence p ( 
IG: PI and pallPI. On the other hand, for a fixed x in X the number of 
distinct elements xg, g E P, equals IPI; therefore IPI ::; pa and IPI = pa. Thus 
P is a Sylow p-subgroup of G. 

Next let f/ denote the set of all conjugates of P in G. Then P acts on f/ 
by means of conjugation. According to 1.6.1 the number of elements in a 
P-orbit is a power of p. If {P1 } is a P-orbit with a single element, then 
P1 <J <P, P1> and PP1 is a subgroup; its order equals IPI'IP1 11IP (l P1 1, a 
power of p which cannot exceed IPI = p«. Since P ::; PP1 , it follows that 
P = PP1 and P = Pl' Hence {P} is the only P-orbit with just one element. 
Writing np for If/I, we conclude that np == 1 mod p. 

Finally suppose that P2 is a p-subgroup of G which is contained in no 
conjugate of P. Now P2 too acts on f/ by conjugation. If {P3 } were a Pr 
orbit, it would follow just as above that P2 P3 is a p-subgroup and P2 ::; P3 ; 

but this contradicts our choice of P2 • Hence every P2-orbit has more than 
one element, which implies that If/I = np == 0 mod p, another contradiction. 

o 
1.6.17 (Cauchy's Theorem). If a prime p divides the order of a finite group, 
the group contains an element of order p. 

Cauchy's Theorem is of course a special case of Sylow's Theorem. 
Suppose that P is a Sylow p-subgroup of the finite group G. Then the 

number np of Sylow p-subgroups of G is by Sylow's Theorem equal to 
I G : NG(P}I . SO we have the following information about np: 

and np == 1 mod p. 

An Illustration 

Let us use these facts to prove that there exist no simple groups of order 300. 
Suppose that G is such a group. Since 300 = 22. 3· 52, a Sylow 5-subgroup 
of G has order 25. Now ns == 1 mod 5 and ns divides 300/25 = 12; thus 
ns = 1 or 6. But ns = 1 would mean that there was a unique Sylow 5-sub
group which would then have to be normal. Therefore ns = 6 and G has a 
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subgroup of index 6. It follows from 1.6.6 that G is isomorphic with a sub
group of S6 ' yet 300 does not divide 6! 

We shall take note of some useful facts about Sylow subgroups. 

1.6.18. Let P be a Sylow p-subgroup of a finite group G. 

(i) If NG(P) s H s G, then H = NG(H). 
(ii) If N <J G, then P n N is a Sylow p-subgrup of Nand P N / N is a Sylow 

p-subgroup of GIN . 

Proof. (i) Let x E NG(H). Since P s H <l NG(H), we have Px s H. Obviously 
P and px are Sylow p-subgroups of H, so px = ph for some h E H. Hence 
xh-l E NG(P) sHand x E H. It follows that H = NG(H). 

(ii) In the first place IN : P n NI = IPN: PI, which is prime to p. Since 
P n N is a p-subgroup, it must be a Sylow p-subgroup of N. For PN IN the 
argument is similar. 0 

Standard Wreath Products and Sylow 
Subgroups of the Symmetric Group 

If Hand K are arbitrary groups, we can think of them as permutation 
groups on their underlying sets via the right regular representation and 
form their wreath product W = H '" K: this is called the standard wreath 
product. Its base group is DrkEK Hk where Hk ~ Hand (Hkt = Hkk•. The 
standard wreath product can be used to describe the Sylow subgroups of 
the symmetric group Sn. 

1.6.19 (Kaluznin) 

(i) A Sylow p-subgroup of Spr is isomorphic with the standard wreath product 
W(p, r) = ( ... (Zp '" Zp)"'- .. . ) '" Zp, the number of factors being r. 

(ii) If the positive integer n is written in the form ao + alP + ... + ai- l pi-l 

where aj is integral and 0 s aj < p, a Sylow p-subgroup of Sn is isomorphic 
with the direct product of al copies of W(p, 1), a2 copies of W(p, 2), ... 
and ai- l copies of W(p, i - 1). 

Proof. The order of a Sylow p-subgroup of Sn is the largest power of p 
dividing n!. Now the number of integers among 1, 2, .. . , n divisible by p is 
[nip], by p2 is [nlp2], etc. Counting the power of p contributed in each 
case, we find that the order of a Sylow p-subgroup of Sn is pm where m = 
([nip] - [nlp2]) + 2([nlp2] - [nlp3]) + ... . Therefore 

When n = pr, this becomes m = 1 + p + ... + pr-l. 
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Let us prove that a Sylow p-subgroup of Spr is of the required type by 
induction on r, the case r = 0 being obvious. Assume that Spr has a Sylow 
p-subgroup P of the sort described. Consider the permutation 

n = (1,1 + pr, ... , 1 + (p - 1)pr)(2, 2 + pr, ... , 2 + (p - 1)pr) ... 

(pr, pr + pr, ... , pr + (p _ 1)pr): 

then n E Spr+. and nP = 1. Let Spr be regarded as a subgroup of Spr+. through 
its action on {1, 2, ... , pr}, the other symbols being fixed. Then Pi = n-ipni 
affects only the symbols j + ipr, where j = 1,2, .. . , pro Hence P = Po, PI' ... , 
Pp- l generate their direct product; also n-l Pin = Pi+l' 0::;; i < p - 1, and 
n- l Pp-In = Po. Thus <n, P) ~ P "- <n), the standard wreath product. Since 
IP" <n)1 = IPIP. p = pmp+! = p1+ p+p2 +---+pr, it follows that <n, P) is a Sylow 
p-subgroup of Spr+ •. 

In the case of a general Sn we partition the integers 1, ... , n into ai - l 

batches of pi-l integers, ai- 2 batches of pi-2, ... and ao singletons, using the 
decomposition n = ao + alP + ... + ai- l pi-I. Take a Sylow p-subgroup of 
the symmetric group on each batch of pi elements and regard these as sub
groups of Sn in the natural way. These p-subgroups generate their direct 
product, which therefore has order pm. where 

ml = ai- l (1 + p + ... + pi-2) + ai- 2(1 + p + ... + pi-3) + ... + al . 

But it is easy to show that ml = [nip] + [nlp2] + .... Thus we have con-
structed a Sylow p-subgroup of Sn" 0 

EXERCISES 1.6 

1. If Hand K are permutation groups on finite sets X and Y, show that the order 
of H K is IHI1Y1IKI. 

*2. Let G be a permutation group on a finite set X. If nEG, define Fix n to be the 
set of fixed points of n, that is, all x in X such that xn = X. Prove that the 
number of G-orbits equals 

_111 L I Fix(n)l. 
G 1teG 

3. Prove that a finite transitive permutation group of order > 1 contains an ele
ment with no fixed points. 

*4. If Hand K are finite groups, prove that the class number of H x K equals the 
product of the class numbers of Hand K. 

5. Describe the conjugacy classes of SR' 

6. Find the conjugacy classes of As and deduce that As is a simple group. 

7. If p is a prime, a group of order p2 is isomorphic with Zpl or Zp EB Zp. 
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8. Let G be a finite group. Prove that elements in the same conjugacy class have 
conjugate centralizers. If c1 , C2 , •.. , Ch are the orders of the centralizers of 
elements from the distinct conjugacy classes, prove that 1/cl + 1/c2 + ... + 
1/ch = 1. Deduce that there exist only finitely many finite groups with given 
class number h. Find all finite groups with class number 3 or less. 

9. Prove that Hoi 1:3 ~ S3 . 

10. Let H be a Sylow p-subgroup of a finite group G and let K be a subgroup of G. 
Is it always true that H n K is a Sylow p-subgroup of K? 

11. Prove that there are no simple groups of order 312, or 616, or 1960. 

*12. Show that the only simple group of order 60 is As. [Hint: Find a subgroup 
with index 5.] 

*13. If p and q are distinct primes, prove that a group of order pq has a normal 
Sylow subgroup. If p ¥= 1 mod q and q ¥= 1 mod p, the group is cyclic. 

*14. Let W = H"-K be the standard wreath product of an abelian group H i= 1 
and an arbitrary group K. Prove that the center of W equals the set of elements 
in the base group all of whose component are equal. (This is called the diagonal 
subgroup of the base group.) Hence (W = 1 if K is infinite. 

15. Prove that the standard wreath product 1: "-1: is finitely generated but has a 
nonfinitely generated subgroup. 

*16. Prove that the standard wreath product 1:2 "-1:2 is isomorphic with Da. 

17. Identify the isomorphism types of the Sylow subgroups of S6. 

*18. Prove that Aut As ~ Ss. [Hint: Let P be a Sylow 5-subgroup of As and let !Yo be 
an automorphism of As. Show that !Yo == f3 mod Inn As for some automorphism 
f3 which leaves P invariant.] 

19. Let G be a group of order 2m where m is odd. Prove that G contains a normal 
subgroup of order m. [Hint: Denote by p the regular representation of G: find 
an odd permutation in GP.] 

20. Let G = HwrK where K i= 1. Prove that B' ~ [B, K] where B is the base 
group. Deduce that G/[B, K] ~ (HIH') x K. 



CHAPTER 2 

Free Groups and Presentations 

2.1. Free Groups 

Let F be a group, X a nonempty set, and cr: X -+ F a function. Then F, or 
more exactly (F, cr), is said to be free on X if to each function IX from X to a 
group G there corresponds a unique homomorphism {3: F -+ G such that 
IX = cr{3: this equation expresses the commutativity of the following diagram 
of sets and functions: 

A group which is free on some set is called a free group. 
The function cr: X -+ F is necessarily injective. For suppose that Xl cr = 

x2 cr and Xl '" x2: let G be a group with at least two distinct elements gl and 
g2 and choose a function IX: X -+ G such that XlIX = gl and X2IX = g2. Then 
Xl cr{3 = X2cr{3, whence XlIX = X21X and gl = g2' a contradiction. Clearly F is 
also free on 1m cr, the inclusion map 1m cr -+ F taking the place of cr. Hence 
a free group is always free on a subset: in this case the commutativity of the 
diagram says that the restriction of {3 to X is IX, so that {3 is the unique 
extension of IX to F. 

Another consequence of the definition is that 1m cr generates F. Since 
this will follow from our construction of free groups, we need not prove it 
now. 

44 
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Constructing Free Groups 

There is nothing in the definition to show that free groups actually exist, a 
deficiency which will now be remedied. 

2.1.1. If X is a nonempty set, there exists a group F and a function (1: X --+ F 
such that (F, (1) is free on X and F = <1m (1). 

Proof. Choose a set disjoint from X with the same cardinality: for nota
tional reasons we shall denote this by X-I = {x-Ilx E X} where of course 
X-I is merely a symbol. By a word in X is meant a finite sequence of 
symbols from X u X-I, written for convenience in the form 

Xi E X, 8i = ± 1, r ;;::: 0: in case r = 0 the sequence is empty and w is the 
empty word, which will be written 1. Of course two words are to be consid
ered equal if and only if they have the same elements in corresponding 
positions. 

The product of two words w = xi' ... x:r and v = y7' ... y:s is formed by 
juxtaposition: thus 

with the convention that wI = w = 1w. The inverse of w is the word w-1 = 
x;tr ... xl" and 1-1 = 1. 

Let S denote the set of all words in X. We define an equivalence relation 
on S in the following manner. Two words wand v are said to be equivalent, 
in symbols w '" v, if it is possible to pass from one word to the other by 
means of a finite sequence of operations of the following types: 

(a) insertion of an xx-1 or an X-I X (X E X), as consecutive elements of a 
word; 

(b) deletion of such an xx-1 or X-I x. 

It should be clear to the reader that the relation '" is an equivalence rela
tion. The equivalence class to which w belongs will be denoted by 

[w]. 

Define F to be the set of all equivalence classes. We plan to make F into 
a group. If w '" w' and v'" v', one sees at once that wv'" w'v', so that it is 
meaningful to define the product of [w] and [v] by means of the equation 

[w] [v] = [wv]. 

Then [w][l] = [w] = [l][w] and [w][w- 1 ] = [ww- 1 ] = [1]. Moreover 
the product is associative: for (wv)u = w(vu) is obviously true and hence 
([w][v])'[u] = [(wv)u] = [w(vu)] = [w]-([v] [u]). It follows that F is a 
group with respect to this binary operation: the identity element is [1] and 
the inverse of [w] is [w- I ]. 
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Define a function a: X -+ F by the rule xu = [x]. We shall prove that 
(F, u) is free on X . Suppose that ex : X -+ G is a function from X to some 
group G. First we form a function P from the set of all words in X to G by 
mapping xlI ... x:r to gl' ... g:r where gi = x~. Now w '" v implies that wii = 
vii because in the group G products like gg-1 or g-lg equal IG. It is there
fore possible to define a function /3: F -+ G by [w]fI = wii. Then ([w] [v])fI = 
[wv]fI = (wv)ii = wiivii by definition of p. Hence ([w] [v])fI = [w]fI[v]fI and /3 
is a homomorphism from F to G. Moreover x afl = [x]fI = xii = x« for x E 

X . Finally, if y: F -+ G is another homomorphism such that ay = ex, then 
ay = a/3 and y and /3 agree on 1m a; but clearly F = (1m a), so y = /3. 0 

Reduced Words 

Let us examine the construction just described with a view to obtaining a 
convenient description of the elements of the free group F. 

A word w in X is called reduced if it contains no pair of consecutive 
symbols of the form xx-lor X-I x, (x E X). By convention the empty word is 
reduced. If w is an arbitrary word, we can delete from w all consecutive 
pairs xx-lor X-I x to obtain an equivalent word. By repeating this proce
dure a finite number of times we shall eventually reach a reduced word 
which is equivalent to w. Thus each equivalence class of words contains a 
reduced word. The important point to establish is that there is just one 
reduced word in a class. 

2.1.2. Each eqUivalence class of words in X contains a unique reduced word. 

Proof. A direct approach to proving uniqueness would involve tedious can
cellation arguments. To avoid these we introduce a permutation representa
tion of the free group F on the set of all reduced words R. First of all, let 
u E X U X-I and define a function u': R -+ R by the rule 

{
Xtl •.. xeru if u -:f. x-er 

(xtl .. • xtr)u' = 1 r r 
1 r x t l . .. xtr-I if u = x-er 

1 r-l r 

where, of course, xlI ... x:r is reduced. 
Then u' is a permutation of R since (u-1 ), is obviously its inverse. We use 

the function from X to Sym(R) in which x 1-+ x', and the defining property 
of free groups, to produce a homomorphism 8: F -+ Sym(R) such that 
[X]8 = x'. 

Now let v and w be two equivalent reduced words. Then [v] = [w] and 
[V]8 = [W]8. If v = xlI . . . x:r, then [v] = [xl'] · · · [x:r] and [vJB = (x~')'··· 
(x:r)'. Applying [V]8 to the empty word, we obtain xl' ··· x:r = v, since this is 
reduced. Similarly [W]8 sends the empty word to w. Therefore v = w. 
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Normal Form 

By 2.1.2 every element of the constructed free group F can be uniquely writ
ten in the form [w] with w a reduced word, say w = xl' ... x:r where Si = 
± 1, r 2:: ° and no xx-lor x- l x with x E X occurs in the word. By definition 
of multiplication in F we have [w] = [Xl]" ' " [x,]'r. Multiplying together 
consecutive terms involving the same element Xi' we deduce that, after 
relabeling the x;'s, the element [w] may be written in the form 

where s 2:: 0, Ii is a nonzero integer and Xi =F Xi+l . Notice that the original 
.~duced word can be reassembled from this, so the expression is unique. 

To simplify the notation we shall identify w with [w]. By this convention 
each element of F can be uniquely written in the form 

where s 2:: 0, Ii =F 0, and Xi =F Xi+l' This is called the normal form of w. Some
times it is convenient to abbreviate it to w = w(x l , ... , xs) or even to w = 
w(x}. 

The existence of a normal form is characteristic of free groups, as the 
next result shows. 

2.1.3. Let G be a group and X a subset of G. Assume that each element g of G 
can be uniquely written in the form g = x ~, X~2 . .. x!· where Xi E X, s 2:: 0, Ii =F 
0, and Xi =F Xi+l' Then G is free on X. 

Proof. Let F be a free group on the set X with associated injection 
a: X -+ F. By the mapping property there is a homomorphism f3: F -+ G 
such that af3: X -+ G is the inclusion map. Since G = (X), we see that f3 is 
surjective. It is injective by the uniqueness of the normal form. D 

As one might expect, free groups on sets of equal cardinality are 
isomorphic. 

2.1.4.1f Fl is free on Xl and F2 is free on X2 and if IXll = IX21, then Fl ~ 
F2 · 

Proof. Let a l : Xl -+ Fl and a2: X 2 -+ F2 be the given injections and let 
IX: Xl -+ X2 be a bijection. Then there are commutative diagrams 
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with f31 and f32 homomorphisms. Hence (J1f31f32 = (1.(J2f32 = (1.(1.-1(J1 = (J1 and 
the diagram 

;/ 
F1 , 

'jJ,fJ2 , 
'" X l ) F1 

0", 

commutes. But the identity map IF! on F1 will also make this diagram com
mute, so f31f32 = IF! by uniqueness. A similar argument yields f32(J1 = I F2 , so 
that f31 is an isomorphism and F1 ~ F2· D 

Conversely, if F1 ~ F2, then IX1 1 = IX2 1 - we shall postpone the proof 
until 2.3.9 below (see also Exercise 2.1.7). This makes it possible to define 
the rank of a free group as the cardinality of any set on which it is free. 
Notice that by 2.1.4 a free group on a set X is isomorphic with the free 
group on X whose elements are the reduced words in X. 

The following is a consequence of 2.1.4 and 2.1.1; if (F, (J) is free on a set 
X, then 1m (J generates F. 

Two Examples of Free Groups 

Let us see how free groups occur in nature. 
(i) Consider functions (1. and f3 on the set C u { 00 } defined by the rules 

(x)(1. = X + 2 and 
x 

(x)(J = 2x + 1· 

Here the symbol 00 is subject to such formal rules as 1/0 = 00 and 00/00 = 
1. Then (1. and f3 are bijections since they have inverses, namely (X)(1.-1 = 
x - 2 and (X)P-1 = x/(l - 2x). Thus (1. and (J generate a group of permuta
tions F of C u {oo}; we claim that F is free on the set {(1., f3}. 

To see this observe that a nonzero power of (1. maps the interior of the 
unit circle Izl = 1 to the exterior and a nonzero power of (J maps the exte
rior of the unit circle to the interior with 0 removed: the second statement is 
most easily understood from the equation (l/x)f3 = l/(x + 2). From this it is 
easy to see that no nontrivial reduced word in {(1., (J} can equal 1. Hence 
every element of F has a unique expression as a reduced word. It now 
follows from 2.1.3 that F is free on {(1., f3}. 

(ii) Our second example is of a free group generated by matrices. The 
functions (1. and f3 discussed in (i) are instances of the mapping of C u { 00 } 

ax + b 
A.(a, b, e, d): XH-- d, 

ex + 
where ad - be #- 0 and a, b, e, d E Co Such a mapping is known as a linear 
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fractional transformation. Now it is easy to show that the function 

is a homomorphism from GL(2, q to the group of all linear fractional 
transformations of IC in which 

A=G ~) and B=(~ D 
map to IX and f3 respectively. Since no nontrivial reduced word in {IX, f3} 
can equal 1, the same is true of reduced words in {A, B}. Consequently the 
group <A, B) isfree on {A, B}. 

The enormous importance of free groups in group theory is underscored 
by the following result. 

2.1.5. Let G be a group generated by a subset X and let F be a free group on a 
set Y. If IX: Y --+ X is a surjection, it extends to an epimorphism from F to G. 
In particular every group is an image of a free group. 

Proof. The function IX extends to a homomorphism from F to G which is an 
epimorphism since G = <X). 0 

Finally in this section another useful property of free groups. 

2.1.6 (The Projective Property of Free Groups). Let F be a free group and let 
G and H be some other groups. Assume that IX: F --+ H is a homomorphism and 
f3: G --+ H an epimorphism. Then there is a homomorphism y: F --+ G such that 
yf3 = IX, that is to say, such that the diagram 

commutes. 

Proof. Let F be free on a subset X. If x E X, then x« E H = 1m f3, so there is 
a gx in G such that g£ = x«. By the defining property of free groups we can 
extend the function Xf-+gx to a homomorphism y: F --+ G. Since xy/I = g£ = 
x« for all x in X and X generates F, it follows that yf3 = IX. 0 

In fact a group which possesses this projective property is necessarily free 
(Exercise 6.1.4), so the property characterizes free groups. 



50 2. Free Groups and Presentations 

EXERCISES 2.1 

1. Prove that free groups are torsion-free. 

2. Prove that a free group of rank > 1 has trivial center. 

3. A free group is abelian if and only if it is infinite cyclic. 

4. Let a be a complex number such that lal ~ 2. Prove that G ~) and G ~) 
generate a free group. 

*5. If F is a free group on a subset X and 0 *" Y c X, prove that F/ yF is free on 
X\ Y. 

6. If N <I G and GIN is free, prove that there is a subgroup H such that G = HN 
and H n N = 1. (Use the projective property.) 

7. If F; is free on X;, i = 1,2, and Fl ~ F2 , prove that IXli = IX2 1 [Hint: Consider 
Hom(F;, 1'2) and view it as a vector space over 1'd 

8. If (F, a) is free on a set X, prove from the definition that 1m a generates F. 

9. Let F be a free group on a subset X. If x E X and f E F, define aAf) to be the 
sum of the exponents of x in the reduced form of f. Prove that f E F' if and 
only if aAf) = 0 for all x in X. 

10. Let F be a free group and suppose that H is a subgroup with finite index. 
Prove that every nontrivial subgroup of F intersects H nontrivially. 

2.2. Presentations of Groups 

We have seen in 2.1.5 that every group is obtainable as an image of a free 
group. An actual description of a group as such an image is called a presen
tation. More exactly a free presentation of a group G is an epimorphism n 
from a free group F to G. Thus if R = Ker n, we have R<J F and FIR ~ G. 
The elements of R are called the relators of the presentation. 

For example let F be the free group on a set Y = {Yg 11 * g E G} and let a 
homomorphism n: F -+ G be defined by Y: = g. Then n is called the stan
dard presentation of G. 

Suppose that n: F -+ G is a given presentation of a group G. Choose a set 
of free generators for F, say Y, and a subset S of F such that SF = Ker n. If 
X = Y", then clearly X is a set of generators for G. Next rEF is a relator of 
n if and only if it can be written in the form (S1' )/1 ... (s:·)/. where Si E S, 
G; = ± 1, /; E F. If this is the case, we sometimes say that r is a consequence 
of S. The presentation n, together with the choice of Y and S, determines a 
set of generators and defining relators for G, in symbols 

G = <YIS). (1) 

In practice it is often more convenient to list the generators of G and the 
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defining relations s(x) = 1, s E S, in these generators X; thus 

G = <XJs(x) = 1, s E S). 

We shall sometimes refer to (1) or (2) as a presentation of G. 
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(2) 

Conversely it is easy to construct, in principle at least, a group having a 
presentation with a given set of generators and relators. Let Y be any non
empty set and let S be a subset of the free group on Y. Define R to be 
the normal closure of Sin F and put G = FIR. Then the natural homomor
phism n: F -4 G is a presentation of G and G has the set of generators and 
defining relators < YJ S). 

The following result is frequently useful in the discussion of groups with 
similar presentations. 

2.2.1 (von Dyck's Theorem). Let G and H be groups with presentations 
e: F -4 G and «5: F -4 H such that each relator of e is also a relator of «5. Then 
the function f' f-+ f~ is a well-defined epimorphism from G to H. 

Proof. It follows from the hypothesis that Ker e :s; Ker «5. If g E G, then g = 
f< for some f E F: moreover f~ is uniquely determined by g since if g = f!, 
then f = f1 k where k E Ker e :s; Ker «5, and f~ = ft Obviously f< f-+ f~ is an 
epimorphism. 0 

Examples of Presentations 

In practice it is usually difficult to obtain information about a group from a 
given presentation: in fact there is no general procedure for deciding if the 
group has order 1. Success usually depends upon finding a model which 
realizes the presentation. Some examples will illustrate the point. 

(I) G = <x, yJx2 = 1, y2 = 1). This group is called the infinite dihedral 
group Doc>, Set a = xy; then G = <x, a) and x-lax = yx = a-1. Conversely 
the original relations x 2 = 1 = y2 are consequences of the relations x2 = 1 
and x-lax = a-1 (strictly x-1axa = 1): for given the latter one has y2 = 
(x-1a)2 = x-1axa = 1. Thus G also has the presentation 

<x, aJx2 = 1, x-lax = a-1). 

This group may be realized as a semidirect product G = X ~ A where 
A = <ii) is infinite cyclic, X = (x) is cyclic of order 2 and x conjugates an 
element of A into its inverse. For by von Dyck's Theorem there is an epi
morphism (): G -4 G in which x f-+ X and a f-+ ii. A typical element of G has 
the form x' as, r = 0, 1, since <a) <:J G: this maps under () to x'iis, which is 
trivial only if r = 0 = s. Thus G ~ G. 

(II) G = <x, yJx2 = y2 = (xyt = 1), where n ~ 2. This is the dihedral 
group D2n of order 2n. Writing a = xy we see that 

<x, aJx2 = an = 1, x-lax = a-1) 
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is another presentation of G. As above G is isomorphic with the semidirect 
product X ~ A where A is cyclic of order n, X is cyclic of order 2 and the 
generator of X conjugates elements of A into their inverses. 

(III) A presentation of the symmetric group 

2.2.2. If n > 1, there is a presentation of the symmetric group Sn with genera
tors Xl' X2, • . . , Xn- l and relations 

1 = xl = (XjXj +1)3 = (XkX/)2, 

where 1 ~ i ~ n - 1, 1 ~ j ~ n - 2, and 1 ~ I < k - 1 < n - 1. 

Proof. Let G be a group with the generators and defining relations listed. 
We shall prove first that I G I ~ n!. If H = <x 1, .. • , Xn- 2 ), it follows from von 
Dyck's Theorem and an induction on n that IHI ~ (n - I)!. Therefore it will 
be enough to show that I G : HI ~ n. 

Consider the n right co sets H,Hxn-I,Hxn-IXn-2, ... ,Hxn-lxn-2 ··· xl. 

Let us prove that right multiplication by any Xj permutes these cosets. 
If j < i-I, then XiXj = (xixTl = XjXi by the defining relations: hence 
(Hxn- l ··· xi)xj = Hxjxn- 1 ··· Xi = HXn- 1 ... Xi since Xj E H. Let j> i. Since 
XkXj = XjXk if Jj - kl > 1, we have 

(Hxn- l ... x;)xj = HXn- 1 ... xj + 1 (Xj Xj _ I X)Xj _2··· Xi: 

now (Xj-l X)3 = 1, which implies that Xj-l XjXj_1 = XjXj _ 1 Xj. Hence we 
obtain 

Finally 
(Hxn- 1 ... X;)Xi = HXn- 1 •.. Xi+l 

and 
(Hxn- 1 ... Xi)Xi- 1 = Hxn- l ··· XiXi- I ' 

as required. Since the Xj generate G, every element of G lies in one of these 
cosets and IG: HI ~ n. 

To complete the proof we show that Sn realizes the presentation. To 
this end consider the n - 1 adjacent transpositions 7ti = (i, i + 1), i = 1, ... , 
n - 1. Every permutation is a product of transpositions and every transpo
sition is a product of adjacent transpositions-as is readily seen by repeated 
use of the formula (i,j) = (j - l,j)(i,j - l)(j - l,j), i <j - 1. Hence Sn = 
<7t I , ... , 7tn- I ). It is easy to verify that 1 = 7tt = (7tj 7tj +1)3 = (7tk7t/)2 if 1 ~ 
i ~ n - 1, 1 ~ j ~ n - 2, and I < k - 1 < n - 1. By 2.2.1 there is an epimor
phism IX: G -+ Sn in which X i H7t i . Since IG: Ker IXI = n! and IGI ~ n!, it 
follows that Ker IX = 1 and IX is an isomorphism. 
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Finitely Presented Groups 

A group is said to be finitely presented if it has a finite presentation <XIR ) , 
that is, one in which X and R are finite. In other words the group can be 
specified by a finite set of generators and a finite set of relations. This defini
tion is independent of the particular presentation chosen in the sense of the 
following result. 

2.2.3 (B.H. Neumann). If X is any set of generators of a finitely presented 
group G, the group has a finite presentation of the form <XOlr1 = r2 = ... = 
rt = 1) where Xo ~ X. 

Proof. Let G = <Y1' ... , YmlS1 = ... = s, = 1) be a finite presentation of G. 
Since G = <X ), it follows that G = <Xo) where Xo = {Xl' ••• , xn} is a fi
nite subset of X. There are, therefore, expressions for the Yi in terms of the Xj 

and the Xj in terms of the Yi' say Yi = wi(x) and Xj = viY). Hence the follow
ing relations in the x/s are valid: 

k = 1, ... , l, j = 1, .. . , n; there are of course only finitely many of these. 
Now let G be a group with generators Xl' ... , xn and the above defining 

relations in Xl ' . . . ' Xn • By 2.2.1 there is an epimorphism from G to G in 
which Xi r-+ Xi . Define Yi = Wi (X); the second set of defining relations shows 
that G = <Y1 ' ... ' Ym) . Since Sk(.Y) = 1, there is, by 2.2.1 again, an epimor
phism from G to G in which Yi r-+ Yi . These epimorphisms are mutually 
inverse, so they are isomorphisms. Hence G is generated by Xl' ... , Xn sub
ject only to the defining relations in the Xi listed above. 0 

Examples of finitely presented groups include cyclic groups, free groups 
of finite rank (which have no relations), and finite groups. To prove the last 
statement let n: F -+ G be any presentation of a finite group G such that F 
is finitely generated; let R = Ker n. Then R is finitely generated by 1.6.11. 
Therefore n is a finite presentation of G. On the other hand, not every fi
nitely generated group is finitely presented, an example being the standard 
wreath product of two infinite cyclic groups (see 14.1.4). 

Further examples of finitely presented groups may be obtained from the 
next result. 

2.2.4 (P. Hall). Let N <l G and suppose that N and GIN are finitely presented 
groups. Then G is finitely presented. 

Proof. Let N have generators Xl ' • .. , Xm and relations r1 = ... = rk = 1, and 
let GIN have generators Y1 N, . . . , YnN and relations Sl = ... = s, = 1G/N · 

Obviously G can be generated by Xl' . . . , X m, Y1' ... , Yn: moreover there are 
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relations in these generators of the following types: 

(i = 1, .. . , k, j = 1, ... , l), 

Yj-1 XiYj = Uij(X), YjXiYj-1 = Vij(X) (i = 1, ... , m,j = 1, . .. , n). 

The last two sets of relations express the normality of N in G. 
Let G be a group with generators Xl' . .. , Xm, Y l' . .. ,Yn and the above 

defining relations in the Xi and h By 2.2.1 there is an epimorphism ex : G --+ 

G such that xr = Xi and yj = Yj: let K = Ker ex. Now the restriction of ex to 
N == (Xl' . . . , Xm> must be an isomorphism since all relations in the Xi are 
consequences of the rj(x) = 1: hence K n N = 1. Next N <J G since Yj-1 XiYj 
and yj xiyj1 belong to N. Now ex induces an epimorphism from GIN to GIN 
in which YiN 1-+ YiN: this must be an isomorphism because all relations in 
the YiN are consequences of the siyN) = 1G/N • Hence K = 1 and G ~ G, so 
G is finitely presented. 0 

For example, if a group G has a chain of subgroups 1 = Go <J G1 <J ... <J 

Gi <J Gi+1 <J .. . <J Gn = G in which each Gi+1 /Gi is cyclic, then G is finitely 
presented. Such groups are called polycyclic: they are studied in Chapters 5 
and 15. 

The Word Problem 

Suppose that G is a finitely presented group with generators Xl ' . .. , Xn and 
relators r 1 , ... , rk' Here the ri are assumed to be explicitly given words in the 
Xi' The word problem is said to be soluble for the presentation if there is an 
algorithm which, when a word w in the Xi is given, decides whether or not w 
is a relator, i.e., whether w = 1 in G. Roughly speaking, this means that it is 
possible to decide, at least in principle, whether w = 1 in G by machine 
computation. It is not difficult to see that the question is independent of the 
particular finite presentation and so it is a question about the group G. 
We say that G has soluble word problem if the word problem is soluble for 
some-and hence any-finite presentation of G. 

A natural approach to the problem is to enumerate the relators of G 
by listing all consequences of the defining relators r1 , ••• , rk , i.e., all words 
(ri71)f 1 • • • (ri~±:1 Vi, (I; E F). Thus, if w is a relator, it will appear on our list 
and, given enough time, we will detect it. The difficulty is that if w is not 
a relator, it will never appear in the course of our enumeration, but this 
cannot be established in any finite time. What one needs is a way of 
enumerating the words that are not relators. Now it is known that there are 
sets which are recursively enumerable (i.e., capable of machine enumeration), 
but whose complements are not recursively enumerable. In view of this it 
is not too surprising that there exist finitely presented groups which have 
insoluble word problem. This is the famous Boone-Novikov Theorem; for 
a very readable account see [b57]. 
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Despite this negative result there are significant classes of finitely pre
sented groups for which the word problem is soluble. Here we shall prove 
just one result. But first a definition. A group G is said to be residually finite 
if, given g #- 1 in G, there is an N <J G such that g ¢ N and GIN is the finite. 
(For more on residual properties, see 2.3.) 

2.2.5. Let G be a finitely presented residually finite group. Then G has soluble 
word problem. 

Proof. We assume that G is given by an explicit finite presentation. Let w be 
a given word in the generators. We shall describe two procedures to be set 
in motion, and then explain how they will tell us whether or not w = 1 in G. 
The first procedure simply enumerates all consequences of the defining rela
tors and looks for the word w. If w turns up, then w = 1 in G, and the 
procedure stops. 

The second procedure enumerates all finite groups, say by constructing 
their multiplication tables. For each finite group F, it constructs the (finitely 
many) homomorphisms () from G to F; to do this one has to assign an 
element of F to each generator of G and then check that each defining rela
tor equals 1 in F. For each such homomorphism () the procecdure then 
computes w6 in F, and checks to see if it equals the identity. If ever w6 #- 1 
in F, then w #- 1 in G, and the procedure stops. 

The point is that residual finiteness guarantees that one procedure will 
stop. Indeed, if w #- 1 in G, then w ¢ N for some N <J G with F = GIN finite. 
Thus w #- 1 in F. If the first procedure stops, then w = 1 in G; if the second 
one stops, then w #- 1 in G. 

For example, polycyclic groups are finitely presented by 2.2.4, and it is 
shown in 5.4.17 that they are residually finite. Hence the word problem is 
soluble for polycyclic groups. The word problem is one of three important 
decision problems in group theory which were first formulated in 1911 by 
M. Dehn; the others are the conjugacy problem, which asks if there is an 
algorithm to decide if two elements of a finitely presented group are conju
gate, and the isomorphism problem: Is there an algorithm to decide whether 
two given finitely presented groups are isomorphic? All three problems 
have negative answers in general. For more information on the decision 
problems of group theory, see [b43] or [b46]. 0 

EXERCISES 2.2 

1. Show that S3 has the presentation (x, ylx2 = y3 = (xy)2 = I). 

2. Show that A4 has the presentation (x, ylx2 = y3 = (xy)3 = I) [Hint: Examine 
the right action of the group on the set of co sets (y), (y)x, (y)xy, (y)xy2.] 

3. Show that S4 has the presentation (x, ylx4 = y2 = (xy)3 = I). 
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4. Let G = (x, Ylx3 = y3 = (xy)3 = 1). Prove that G ~ (t) ~ A where t3 = 1 and 
A = (a) x (b) is the direct product of two infinite cyclic groups, the action of 
t being a' = b, b' = a-1b-1. [Hint: Prove that (xyx, x 2 y) is a normal abelian 
subgroup.] 

5. Let p be a prime. Prove that the group (x, ylx P = yP = (xy)P = 1) is infinite if 
p > 2, but that if p = 2, it is a Klein 4-group. 

6. Let A be an abelian group with generators Xl' x 2 , ... , Xn and defining relations 
consisting of [Xi' Xj] = 1, i < j = 1, 2, .. . , n, and r further relations. If r < n, 
prove that A is infinite. 

7. Suppose that G is a group with n generators and r relations whether r < n. 
Prove that G is infinite. 

8. Let G be a finitely presented group and let N be a normal subgroup which is 
finitely generated as a G-operator group. Prove that GIN is finitely presented. 

*9. Let n: F -> G be a presentation of a group G and let R = Ker n. If A is the 
subgroup of all automorphisms IX of F such that R" = R, show that there is a 
canonical homomorphism A -> Aut G. Use this to construct an outer automor
phism of A4 (see Exercise 2.2.2). 

10. Prove that the group G with generators x, y, z and relations zY = Z2, x' = x 2, 

yX = y2 has order 1. 

2.3. Varieties of Groups 

In this section we shall consider classes of groups which are defined by sets 
of equations. 

Verbal and Marginal Subgroups 

Let F be a free group on a countably infinite set {Xl' X 2 , • • • } and let W 
be a nonempty subset of F. If w = xl: ... xl; E Wand gl, ... , g, are elements 
of a group G, we define the value of the word w at (gl, . . . , g,) to be 
W(gl' . .. , g,) = gil ... g~'. The subgroup of G generated by all values in G of 
words in W is called the verbal subgroup of G determined by W, 

W(G) = <W(gl, g2," .)Ig; E G, w E W). 

For example, if W = {[Xl' X 2 ]}, then W(G) = G', the derived subgroup of 
G: if W = {xn, then W(G) = G", the subgroup generated by all the nth 
powers in G. 

If IX: G -+ H is a homomorphism, then (w(gl> '." g,W = w(g~, ... , gn, 
which shows at once that (W(G)yx ~ W(H). In particular every verbal sub
group is fully-invariant. The converse is false in general (Exercise 2.3.3), but 
it does hold for free groups. 
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2.3.1 (B.H. Neumann). A fully-invariant subgroup of a free group is verbal. 

Proof. Let F be free on a set X and let W be a fully-invariant subgroup of 
F. If w = w(x l , ... , x r ) E W with Xi E X, choose any r elements fl' ... ' fr of 
F. Now there is an endomorphism IX of F such that xf = J;: hence W 
contains w'" = W(fl' ... , fr). So W contains all values of w in F and hence 
W= W(F). D 

If W is a set of words in Xl' X 2 , ..• and G is any group, a normal sub
group N is said to be W-marginal in G if 

W(gl' ... , gj-l, gja, gj+1, ... , gr) = W(gl' ... , gj-l, gil gi+l, ... , gr) 

for all gj E G, a E N and all W(Xl' X2, ... , xr) in W. This is equivalent to the 
requirement: gj == hj mod N, (1 ~ i ~ r), always implies that W(gl' ... , gr) = 
w(h 1 , •• • , h,). 

We see from the definition that the W-marginal subgroups of G generate 
a normal subgroup which is also W-marginal. This is called the W-marginal 
subgroup of G and is written 

W*(G). 

For example, suppose that W = {[Xl' X2]}: if a E W*(G) and 9 E G, then 
[g, a] = [g, 1a] = [g, 1] = 1 for all 9 E G, that is, a belongs to the center of 
G. Conversely, if a E (G, then [gl' g2a] = [gl' g2], so that W*(G) = (G in 
this case. 

A marginal subgroup is always characteristic but need not be fully
invariant, as the example of the centre shows (Exercise 1.5.9). 

The following lemma indicates a connection between verbal and mar
ginal subgroups. 

2.3.2. Let W be a nonempty set of words in Xl' X2, .. . and let G be any group. 
Then W(G) = 1 if and only if W*(G) = G. 

Proof. Obviously W(G) = 1 implies that W*(G) = G. Suppose that W*(G) = 
G and let gj E G; then gj == 1 mod G, whence W(gl' ... ' gr) = w(1, ... , 1) = 1 
and W(G) = 1. D 

Group-Theoretical Classes and Properties 

A group-theoretical class (or class of groups) X is a class-not a set
whose members are groups and which enjoys the following properties: (i) X 
contains a group of order 1; and (ii) G1 ~ G E X always implies that G1 EX. 
For example all finite groups and all abelian groups form classes of groups. 
More generally, let f1j> be any group-theoretical property, that is, a property 
pertaining to groups such that a group of order 1 has .9, and G1 ~ G and G 
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has fJ> always imply that Gl has f1JJ. Then the class Xg> of all groups with 
fJ> is clearly a group-theoretical class: likewise to belong to a given group
theoretical class X is a group-theoretical property fJ>x . Moreover the func
tions f1JJ H X g> and X H fJ>x are evidently mutually inverse bijections. 

For this reason it is often convenient not to distinguish between a group
theoretical property and the class of groups that possess it. A group in a 
class X is called an X-group. 

Varieties 

A variety is an equationally defined class of groups. More precisely, if W is 
a set of words in Xl' X 2 , .•. , the class of all groups G such that W(G) = 1, or 
equivalently W*(G) = G, is called the variety ~(W) determined by W. We 
also say that W is a set of laws for the variety ~(W). 

Examples 

(1) If W = {[Xl' x 2J}, then ~(W) is the class of abelian groups. 
(2) If W = {[Xl' x2 J, xf} where p is a prime, then ~(W) is the class of 

abelian groups of exponent 1 or p, that is, elementary abelian p-groups. These 
are precisely the direct products of groups of order p (see Exercise 1.4.8). 

(3) If W = {xi'}, then ~(W) is the class of groups of exponent dividing n, 
the so-called Burnside variety of exponent n. 

(4) Less interesting examples of varieties are the class of groups of order 
1 (take W = {xd) and the class of all groups (take W = {1}). 

Residual Classes and Subcartesian Products 

Let X be a class of groups: a group G is said to be a residually X-group if, 
given 1 f= g E G, there exists a normal subgroup Ng such that g ~ Ng and 
G/Ng E X. Under these circumstances nl",geGNg = 1. Now consider the 
function I: G -+ C = Crl",geG(G/Ng) defined by the rule (x')g = xNg. Then it 
should be clear to the reader that 1 is a monomorphism. Notice also that 
each element of G/Ng occurs as the g-component of some element of 1m I. 

We may generalize this situation in the following manner. Let {G,tiA. E A} 
be a family of groups. A group G is said to be a subcartesian product of the 
GA if there exists a monomorphism 

I: G -+ Cr GA 
AeA 

such that for each A. in A every element of GA occurs as the A.-component of 
some element of 1m I. 
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2.3.3. A group G is a residually X-group if and only if it is a sub cartesian 
product of X-groups. 

Proof. We have already proved the necessity. Let G be a subcartesian prod
uct of X-groups GA, A. E A, via a monomorphism I: G ~ C = CrAeA GA. De
fine IA to be the composite of I with the homomorphism C ~ GA that maps 
each element of C to its A.-component. Let KA = Ker IA• Since 1 is injective, 
nleAK). = 1. Also 1m 1). = GA by the subcartesian property, whence GIK).:::= 
GA E X. If 1 =F g E G, then g $ K). for some A. and therefore G is a residually 
X-group. 0 

We wish to apply these ideas to the question: how can one decide 
whether a given class of groups is a variety? First we observe that there 
are certain "closure properties" which every variety has: then we show that 
these properties characterize varieties. 

2.3.4. Every variety is closed with respect to forming subgroups, images, and 
sub cartesian products of its members. 

This is a trivial consequence of the definition of a variety. Much less 
obvious is the following remarkable result. 

2.3.5 (BirkhofT, Kogalovskii, Sain). A class of groups which is closed with 
respect to forming homomorphic images and subcartesian products of its mem
bers is a variety. 

Proof. Let X be such a class of groups and denote by ~ the variety which 
has as a set of laws all words that are identically equal to 1 in every X
group. Certainly X S; !B: our task is to prove that !B S; X. We can certainly 
assume that X contains a group of order > 1 since otherwise !B = X = the 
class of groups of order 1. 

If w is a word (in Xl' X 2, ... ) which is not a law of ~, there is an X-group 
H(w) such that w is not identically equal to 1 in H(w). Let 1 =F G E !B and 
choose an infinite set Y whose cardinality is not less than that of G and of 
each of the H(w)'s- keep is mind that there are only countably many words 
w. Let F be a free group on Y. By choice of Y there is an epimorphism from 
F to G, say with kernel N: thus G :::= FIN. Let WE F\ N and suppose that 
w = w(yt, . . . , Yr) where Yi E Y. Now W(Xl' ... , xr) is not identically equal to 
1 on G, so there is a corresponding X-group H(w): since w is not identically 
equal to 1 in H(w), we have w(hl' ... , hr ) =F 1 for some hi E H(w). By choice 
of Y again there is an epimorphism from F to H(w) such that Yi 1--+ hi, i = 
1, . . . , r. If Kw is the kernel, then FIKw:::= H(w) E X. Now let K = nweF\ NKw: 

since w $ K w, it follows that K :s; N. But FIK is a residually X-group, so 
FIK E X by 2.3.4. Since G :::= FIN is an image of FIK, it follows that G E X 
as required. 0 



60 2. Free Groups and Presentations 

Free ~-Groups 

Let !8 be a variety, F a group in !8, X a nonempty set, and a: X -+ F a 
function. Then (F, a), or simply F, is !8-free on X if for each function 0( from 
X to a !8-group G there exists a unique homomorphism {3: F -+ G such that 
a{3 = 0(. When !8 is the variety of all groups, this is just the definition of a 
free group on X. A group which is !8-free on some set is called a free !8-
group. Groups which are free in some variety are often said to be relatively 
free. 

Free !8-groups are easily described in terms of free groups. 

2.3.6. Let X be a non empty set, F a free group on X, and !8 a variety with a 
set of laws W Then F = F/W(F) is a !8-free group on X. Moreover every 
group which is !8-free on X is isomorphic with F. 

Proof. Let u: X -+ F be the injection associated with the free group F and 
let v: F -+ F = F/W(F) be the natural homomorphism. Put a = uv. Suppose 
that G is a group in the variety !8 and let 0(: X -+ G be any function. Since F 
is free on X, there exists a unique homomorphism p: F -+ G such that up = 
0(. Because G E!8, we have W(G) = 1, so that W(F)P = 1. Consequently the 
mapping xW(F)f-+xP is a well-defined homomorphism {3 from F to G. Now 
x·p = (xW(F)Y = x P, so v{3 = p and a{3 = uv{3 = up = 0(. Hence in the tetra
hedral diagram which follows the lower face commutes: 

/I~ ---- ............................... 

X I G. 
ex 

If {3': F -+ G is another such homomorphism, u(v{3') = a{3' = 0( = up, whence 
v{3' = p = vf3 by uniqueness of p. Since v is surjective, {3' = {3. Hence F is 
!8-free on X. Just as in 2.1.4 we can prove that !8-free groups on sets of 
equal cardinality are isomorphic. Hence the result follows. 0 

If F is !8-free on X, the associated function a: X -+ F is a monomor
phism, so one may assume that X is a subset of F and that the unique 
homomorphism f3 in the definition is an extension of 0(: X -+ G to F. 

2.3.7. Let !8 be a variety and let G E !8. If G is generated by X, the group F is 
!8-free on Y and 0(: Y -+ X is a surjection, then 0( extends to an epimorphism 
from F to G. In particular every !8-group is an image of a free !8-group. 
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Proof. The surjection IX extends to a homomorphism from F by definition. 
Since G = <X), this is an epimorphism. D 

Free Abelian Groups 

A free abelian group is a group that is free in the variety of abelian groups. 
These are of great importance; for example every abelian group is an image 
of a free abelian group. Also if F is a free group on a set X, then Fab = F/F' 
is free abelian on X. Moreover every free abelian group on X is isomorphic 
with Fab ; this is by 2.3.6. 

It is easy to describe free abelian groups in terms of direct products. 

2.3.8. 

(i) If F is a free abelian group on a subset X, then F is the direct product of 
the irifinite cyclic subgroups (x), x E X. 

(ii) Conversely a direct product Drx€x Cx in which each Cx is infinite cyclic is 
free abelian on X. 

Proof. (i) We may assume that F = Fab where F is free on X. Suppose that 
x!:'" xl; E F' where i1 -s. ... < ir and Xj E X . Now the sum of the expo~ents 
of Xj in any element of F' is clearly 0; hence lj = O. This shows that (xF') is 
infinite cyclic: it also shows that each element of F has a unique expression 
of the form xl: . . . xl;F' where 21 < ... < ir and Xj E X. By 1.4.8 the group F 
is the direct product of the (xF'), x E X . 

(ii) Let D = DrXEXCX and write Cx = (cx) . Let F be a free group on X: 
we assume for convenience that X ~ F. There is an epimorphism /3: F -. D 
in which x is mapped to CX ' Suppose that y E Ker /3. Now we can write 
Y = X!l ... x!rz where i < ... < i x · E X and z E F' But zP = 1 since D is 

II l r 1 r' ) . 

abelian. Thus C~l • • • c~r = 1 where cj = cX ' But this implies that lj = 0 for all _ _ J 

j. Hence Ker /3 = F' and D ~ Fab . The latter is free abelian on X, so the 
proof is complete. D 

Therefore, if F is a free group, FIF' is a direct product of infinite cyclic 
groups. 

2.3.9. Let F1 and F2 be free abelian groups on sets Xl and X 2 respectively. If 
F1 ~ F2, then IXll = IX21. Moreover the same is true if Fl and F2 are free 
groups on Xl and X 2. 

Proof. Using 2.3.8 write Fi = DrXEXi ( ax.;) where ( ax.i) is infinite cyclic. 
Now Fl ~ F2 implies that Fd Ff ~ F2 IFf. But FdF/ is a vector space over 
the field GF(2) with basis {ax.iF/lx E X;}; its dimension is therefore IX;!. 
Since isomorphic vector spaces have the same dimension, IX 11 = IX 21. 
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Finally, if Fl and F2 are free on Xl and X2, then Fl ~ F2 implies that 
Fl /F~ ~ F2/F~, whence IXll = IX21· 0 

EXERCISES 2.3 

1. Prove that a subgroup which is generated by W-marginal subgroups is itself 
W-marginal. 

2. If W = {x2 }, identify W*(G). 

3. Let G be the multiplicative group of all complex 2"th roots of unity, n = 0, 1, 
2, .. . . Prove that 1 and G are the only verbal subgroups of G, but that every 
subgroup is marginal. Show also that G has a fully-invariant subgroup which is 
not verbal. 

4. Prove that every variety is closed with respect to forming subgroups, images, 
and subcartesian products. 

5. Let !B be any variety. If G is a !B-group with a normal subgroup N such that 
GIN is a free !B-group, show that there is a subgroup H such that G = HN and 
HnN=1. 

6. A variety is said to be abelian if all its members are abelian. Find all the abelian 
varieties. 

7. If X is any class of groups, define Var X to be the intersection of all varieties that 
contain X. Prove that Var X is a variety and that it consists of all images of 
subgroups of cartesian products of X-groups. Describe Var(&::p) and Var(&::) 
where (G) denotes the class of groups consisting of unit groups and isomorphic 
images of the group G. 

8. Prove that Q is not a subcartesian product of infinite cyclic groups. 

9. If F is a free abelian group, show that F is residually a finite p-group and also 
that F is residually of prime exponent. 

10. Let F be a finite group and let G be a finitely generated group in Var(F) where 
(F) is the class of all trivial groups and groups isomorphic with F. Prove that G 
is finite. [Hint: Apply Exercises 1.4.2 and 2.3.7.] 



CHAPTER 3 

Decompositions of a Group 

In this chapter we shall study ways in which a group may be decomposed 
into a set of groups each of which is in some sense of simpler type. This 
idea, the resolution of a single complex structure into a number of less com
plicated structures, is encountered in almost all branches of algebra. 

3.1. Series and Composition Series 

Let G be an operator group with operator domain a. An a-series (of finite 
length) in G is a finite sequence of a-subgroups including 1 and G such that 
each member of the sequence is a normal subgroup of its successor: thus a 
series can be written 

1 = Go<J G1<J "'<J G, = G. 

The Gi are the terms of the series and the quotient groups Gi+l/Gi are the 
factors of the series. If all the Gi are distinct, the integer I is called the length 
of the series. 

Since normality is not a transitive relation (Exercise 1.3.15), the Gi need 
not be normal subgroups of G. A subgroup which is a term of at least one 
a-series is said to be a-subnormal in G. Thus H is a-subnormal in G if 
and only if there exist distinct a-subgroups Ho = H, HI' ... , Hn = G such 
that H = Ho<J Hl <J '''<J Hn = G; the latter we cail an a-series between H 
and G. 

When a is empty, we shall simply speak of a series and a subnormal 
subgroup. If a = Inn G, Aut G, or End G, the terms of an a-series are nor
mal, characteristic, or fully-invariant in G and we shall speak of a normal 

63 
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series, a characteristic series, or a fully-invariant series. Of course the advan
tage in working with Q-series is that we shall obtain the theory of such 
series as special cases. 

Refinements 

Consider the set of all Q-series of an Q-group G: there will always be at least 
one such series, namely 1 <l G. If Sand Tare Q-series of G, call S a refine
ment of T if every term of T is also a term of S. If there is at least one term 
of S which is not a term of T, then S is a proper refinement of T. Clearly the 
relation of refinement is a partial ordering of the set of all Q-series of G. 

Isomorphic Series 

Two Q-series Sand T of an Q-group G are said to be Q-isomorphic if there 
is a bijection from the set of factors of S to the set of factors of T such that 
corresponding factors are Q-isomorphic. There is a basic result which is use
ful in dealing with isomorphism of series. 

3.1.1 (Zassenhaus's Lemma). Let AI' A2, BI , B2 be Q-subgroups of an Q
group G such that Al <l A2 and BI <l B2. Let Dij = Ai (l Bj • Then AID21 <l 

A I D22 and BI Dl2 <l BI D22 . Furthermore the groups A I D22/ A I D21 and 
BID22/BID12 are Q-isomorphic. 

AID22 BID22 
D22 

AID21 BIDI2 

AI BI 

DI2 D21 
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Proof. Since BI <I B2, we have D21 <I D22 . Since also Al <I A2, it follows 
that AID21 <I AID22 (Exercise 1.4.3): similarly BID12 <I B1D22 . Apply the 
Second Isomorphism Theorem (1.4.4) with H = D22 and N = AIDw noting 
that NH = AID22 and N n H = D12D21 by the modular law (1.3.14). The 
conclusion is that AID22/AID21 ~n D22/D12 D21 . Similarly BID22 /BID12 ~n 
D22 /D12D21' whence the result follows. D 

We can now prove the fundamental theorem on refinements. 

3.1.2 (The Schreiert Refinement Theorem). Any two Q-series of an Q-group 
possess Q-isomorphic refinements. 

Proof. Let 1 = Ho<l HI <I "'<1 HI = G and 1 = Ko<l KI <1"'<1 Km = G 
be two Q-series of G. Define Hij = H;(Hi+1 n Kj) and Kij = Kj(H; n Kj+d. 
Apply 3.1.1 with Al = Hi' A2 = Hi+l' BI = Kj, and B2 = Kj+l . The 
conclusion is that H;j<l Hij+1' Kij<l Ki+lj' and Hij+dHij ~n Ki+lj/Kij. 
Hence the series {Hijli = 0, ... , 1- 1, j = 0, ... , m} and {Kijli = 0, ... , I, 
j = 0, ... , m - I} are Q-isomorphic refinements of {Hi I i = 0, . .. ,I} and 
{Kh = 0, ... , m} respectively. D 

Composition Series 

An Q-series which has no proper refinements is called an Q-composition 
series. Now not every group has a composition series: for example, any 
series in 7L. must have its smallest nontrivial term infinite cyclic, so it is 
bound to have a proper refinement. On the other hand, it is clear that we 
shall arrive at an Q-composition series of a finite Q-group if we repeatedly 
refine any given series. 

If 0. is empty, we speak of a composition series. When 0. = Inn G, Aut G, 
or End G, an Q-composition series is called a principal series, a principal 
characteristic series, or a principal fully-invariant series respectively. 

It turns out that a composition series can be recognized by the structure 
of its factors. At this point the concept of an Q-simple group becomes 
important. An Q-group is said to be Q-simple if it is not of order 1 and it has 
no proper nontrivial normal Q-subgroups: as usual we speak of a simple 
group if 0. is empty. If G is Q-simple and 0. = Aut G, then G is called 
characteristically simple. 

3.1.3. An Q-series is an Q-composition series if and only if all its factors are 
Q-simple. 

t Otto Schreier (1901 - 1929). 
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Proof. If some factor X j Y of an Q-series of an Q-group G is not Q-simple, it 
possesses a nontrivial normal Q-group WjY where Y < W < X. Adjunction 
of W to the series produces a proper refinement, so the initial series is not 
an Q-composition series. Conversely, if an Q-series is not a composition se
ries, it has a proper refinement and there exist consecutive terms Y < X and 
an Q-subnormal subgroup W of G lying strictly between Y and X . But then 
WjY is Q-subnormal in X jY and the latter cannot be Q-simple. 0 

We come now to the main theorem on composition series. 

3.1.4 (The Jordan-H6ldert Theorem). If S is an Q-composition series and T 
is any Q-series of an Q-group G, then T has a refinement which is a composi
tion series and is Q-isomorphic with S. In particular, if T is a composition 
series, it is Q-isomorphic with S. 

Proof. By 3.1.2 there exist Q-isomorphic refinements of Sand T. But S has 
no proper refinements, so S is Q-isomorphic with a refinement of T. By 3.1.3 
this refinement is also an Q-composition series. 0 

Thus the factors of an Q-composition series are independent of the series 
and constitute a set of invariants of the group, the Q-composition factors of 
G. Also all Q-composition series of G have the same length, the Q-composi
tion length of G. 

Chain Conditions and Composition Series 

Let us consider a partially ordered set A with partial order.::;;. We say that 
A satisfies the maximal condition if each nonempty subset Ao contains at 
least one maximal element, that is, an element which does not precede any 
other element of Ao . We also say that A satisfies the ascending chain condi
tion if there does not exist an infinite properly ascending chain Al < A2 < ... 
in A. 

In fact these properties are identical. For if a nonempty subset Ao has no 
maximal element, each element of Ao precedes another element of Ao, which 
permits the construction of an infinite chain Al < A2 < ... in A. Conversely, 
if A contains an infinite ascending chain Al < A2 < ... , then plainly {Al' 
A2 , ••• } has no maximal element. 

In an entirely analogous way the minimal condition and the descending 
chain condition are defined and may be shown to be identical. The reader 
should supply the details. 

Returning to groups, let us associate with each Q-group G a set F(G) 
of Q-subgroups such that if IX : G -+ H is an Q-isomorphism, F(H) = {S"IS E 

F(G)}. For example, F(G) might consist of all Q-subgroups or of all Q-sub
normal subgroups of G. Now F(G) is a partially ordered set with respect to 
set containment, so we may apply to it the notion of a chain condition. 

t Otto Holder (1859- 1937). 
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Definitions 

An a-group satisfies the maximal condition on F-subgroups if F(G) satisfies 
the maximal condition. Similarly G satisfies the minimal condition on F -sub
groups if F(G) satisfies the minimal condition. These properties are identical 
with the ascending chain condition and the descending chain condition on F
subgroups respectively, the latter being defined as the corresponding chain 
conditions for the partially ordered set F(G). 

Observe that the hypothesis on F guarantees that these are group
theoretical properties in the sense of 2.3. We mention the most important 
cases. 

Examples 

(i) F(G) = the set of all a-subgroups of the a-groups G. We obtain the 
maximal and minimal condition on a-subgroups, often denoted by max-a and 
min-a. When a is empty, we simply write max and min and speak of the 
maximal and minimal conditions on subgroups. If a = Inn G, then max-a and 
min-a are denoted by max-n and min-n, the maximal and minimal conditions 
on normal subgroups. 

(ii) F(G) = the set of all a-subnormal subgroups: this is the case which 
concerns us here since the corresponding properties max-as and min-as are 
intimately related to the question of the existence of a composition series. 

3.1.5. An a-group G has an a-composition series if and only if it satisfies 
max-as and min-as. 

Proof. Suppose that G has an a-composition series of length I but that 
nevertheless there exists an infinite ascending chain HI < H2 < ... of a-
subnormal subgroups of G. Consider the chain 1 ~ HI < H2 < ... < H,+1: 
since Hi is a-subnormal in G, it is a-subnormal in Hi+l . Hence our chain 
can be made into an a-series of G by inserting terms of a suitable a-series 
between Hi and Hi+1 and between HI+I and G. The length of the resulting 
series is at least I + 1 but cannot exceed the composition length by 3.1.4, a 
contradiction. In a similar manner we may prove that G has min-as. 

Now assume that G has max-as and min-as but does not have an a
composition series. Apply max-as to the set of proper normal a-subgroups 
of G-note that G does not have order l-and select a maximal member 
GI : then GIGI is a-simple. Now GI # 1 since G has no a-composition 
series, and by max-as again we may choose a maximal proper normal 
a-subgroup G2 of GI . Again GdG2 is a-simple and G2 # 1. This process 
cannot terminate, so there is an infinite descending chain of a-subnormal 
subgroups of the form'" < G2 < GI < Go = G, in contradiction to min-as. 

o 
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The groups which satisfy max-s and min-s are, therefore, precisely the 
groups which possess a composition series. By the Jordan-Holder Theorem 
the composition factors of such a series are invariants of the group. These 
are, of course, simple groups. Thus in a real sense the group is constructed 
from a well-defined set of simple groups by a process of repeated extension. 
Here a group G is said to be an extension of a group N by a group Q if there 
exists M <J G such that M ::::: Nand GIM ::::: Q. 

For example, to construct all finite groups it would be necessary to: (i) 
construct all finite simple groups; and (ii) construct all extensions of a finite 
group N by a finite simple group Q. Attractive as this program might seem 
at first glance, it is fraught with difficulties. The classification of all finite 
simple groups is an exceedingly difficult problem which has only recently 
been completed. Moreover, although the problem of constructing all exten
sions of N by Q is in principle solved in Chapter 11, to decide when 
two of the constructed extensions are isomorphic is usually a very difficult 
matter. 

Properties of Chain Conditions 

We conclude by proving some important results about chain conditions. 

3.1.6. An Q-group satisfies max-Q if and only if every Q-subgroup may be 
finitely generated as an Q-group. 

Proof. First suppose that G has max-Q and that H is an Q-subgroup which 
cannot be Q-finitely generated. Let hl E H: then Hl = <hl),l 1= H and there 
exists h2 E H\Hl . Thus Hl < H2 = <hl' h2)!l and H2 1= H. Choose h3 E 

H\H2; then Hl < H2 < H3 = <hl' h2' h3)!l, and so on. This process cannot 
terminate, so it yields an infinite ascending chain of Q-subgroups Hl < 
Hz < H3 < ... ; but this is impossible. Conversely assume that each Q
subgroup is finitely generated, but that nevertheless there is an infinite chain 
of Q-subgroups Hl < H2 < .... Let H = Ui=l.2 .... Hi: since H is an Q
subgroup, H = <Xl' ... , x;)!l for some finite set of elements {Xl' ... , X;}. For 
large enough n each Xi belongs to Hn, so H = Hn , which is a contradiction. 

o 

In particular G satisfies max if and only if each subgroup is finitely gener
ated; also G satisfies max-n if and only if each normal subgroup is the normal 
closure of a finite subset. 

3.1.7. Each of the properties max-Q, max-Qs, min-Q, min-Qs is closed with 
respect to forming extensions. Thus, if N <J G and N and GIN have the 
property in question, then so does G. 
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Proof. For example take the case of max-Os. Let N <J G where G is an 0-
group and N an a-subgroup. Suppose that N and GIN both have max-Os, 
but that nevertheless there exists an infinite ascending chain Hl < H2 < ., . 
of a-subnormal subgroups of G. Now Hi n N is a-subnormal in Nand 
HiNIN is a-subnormal in GIN: hence there is an r > 0 such that HrnN = 
Hr+1 n Nand HrN = Hr+1 N. But Exercise 1.3.16 shows that Hr = Hr+1' 0 

In particular 3.1.7 applies to the properties max, max-n, max-s, min, min
n, min-so Now every cyclic group satisfies max since (by Exercise 1.3.6) a 
nontrivial subgroup has finite index. Hence every polycyclic group satisfies 
max. 

It is an unfortunate fact that the properties max-n and min-n are not 
inherited by subgroups-see Exercises 3.1.9 and 3.1.10. The following result 
is therefore of considerable interest. 

3.1.8 (Wilson). If a group G satisfies min-n and H is a subgroup of G with 
finite index, then H satisfies min-no 

Proof. Suppose that H does not in fact have min-no Since GIHG is finite by 
1.6.9, the subgroup HG cannot have min-n either. Thus we may as well sup
pose that H <J G. Now H does not satisfy min-H, the minimal condition on 
H-admissible subgroups. By min-n it follows that H contains a normal sub
group K of G which is minimal with respect to not satisfying min-H. 

Consider the set g of all finite nonempty subsets X of G with the follow
ing property: if 

(1) 

is an infinite strictly decreasing sequence of H-admissible subgroups of K, 
then 

(2) 

holds for all i. It is not evident that such subsets exist, so our first concern is 
to produce one. 

Let T be a transversal to H in G; thus G = HT For any chain of the 
above type we have Ki<J H <J G, and hence KT <J HT = G. Also KT ~ K 
since K <J G. If KT =I K, then KT has the property min-H by minimality 
of K. But this implies that Kj = Kj+1 for some j ~ i. By this contradiction 
KT = K for all i and T E g. 

We now select a minimal element of g, say X. If x E X, then Xx-1 E g 
because K <J G. Of course X x-1 is also minimal in g and it contains 1. 
Thus we may assume that 1 E X. If in fact X contains no other element, 
then (1) and (2) are inconsistent, so that K has min-H. Consequently the set 

Y = X\ {1} 

is nonempty. Therefore Y does not belong to g by minimality of X. 
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It follows that there exists an infinite sequence Kl > K2 > ... with Ki ~ 
K and Ki<J H such that KJ "# K for somej. Define 

Now K?<J Hg = H for all g in G, so Li<J H. Also Li ~ Li+1 . Suppose that 
Li = Li+l; since X E !J?, we must have K = Kf+1 and 

contradicting Ki > Ki+l. Hence Li > Li+l for all i. Therefore Lf = K for all 
i, which shows that 

Kj = Kj 1\ Lf = Kj 1\ (LjLJ) ~ Lj(Kj 1\ KJ) = Lj. 

Hence Kj = Lj. Finally, by definition of Lj we obtain KJ = Kf = K, a 
contradiction. 0 

There is a corresponding theorem for max-n provable by analogous 
methods (Exercise 3.1.11). 

EXERCISES 3.1 

1. Prove the Fundamental Theorem of Arithmetic by applying the Iordan
Holder Theorem to ?L •. 

2. Give an example of an abelian group and a nonabelian group with the same 
composition factors. 

3. Show that neither of the properties max and min implies the other. 

4. If G has an Q-composition series, prove that every Q-subgroup and Q-image of 
G have a composition series. 

*5. Prove that the additive group of a vector space is characteristically simple. 

6. Prove that for partially ordered sets the descending chain condition is equiva
lent to the minimal condition. 

*7. Show ~hat a group with min is a torsion group. 

*8. Let H Q sn K mean that H is Q-subnormal in K. 
(a) If H Q sn K ::::; G and L is an Q-subgroup of G, show that H n L Q sn 

KnL. 
(b) If H Q sn K ::::; G and e is an Q-homomorphism from G, prove that H9 Q sn 

K9. 

*9. Prove that the property max-n is not inherited by normal subgroups, proceed
ing thus: let A be the additive group of rationals of the form m2', m, n E ?L, and 
let T = <t) be infinite cyclic. Let t act on A by the rule at = 2a. Now consider 
the group G = T ~ A. 
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*10. Prove that the property min-n is not inherited by normal subgroups by using 
the following construction (due to V.S. Carin). Let p and q be distinct primes. 
Let F be the field generated by all pith roots of unity over GF(q) where i = 1, 
2, .. . , and denote by X the multiplicative group of all such roots. Then X acts 
on the additive group A of F via the field multiplication. Prove that A is a 
simple X-operator group. Now consider the group G = X I>< A. 

11. If G satisfies max-n, so does every subgroup H with finite index in G (J.S. 
Wilson). [Hint: We can assume that H <I G. Choose K <I G maximal subject to 
H/K not satisfying max-no Define !I' to be the set of all nonempty finite subsets 
X such that if K ~ K 1 < K 2 < ... is an infinite ascending chain of normal sub
groups of H, then K = (Kih for every i. Now proceed as in 3.1.8.] 

3.2. Some Simple Groups 

We have seen that simple groups are the building blocks out of which 
groups with a composition series, and in particular finite groups, are con
structed. The examples of simple groups which come first to mind are the 
groups of prime order: these have no proper nontrivial subgroups and they 
are the only abelian simple groups. In this section we shall give some exam
ples of nonabelian simple groups. 

The Simplicity of the Alternating Groups 

The first nonabelian simple groups to be discovered were he alternating 
groups An' n ~ 5. The simplicity of As was known to Galois ;,:nd is crucial 
in showing that the general equation of degree 5 is not solvable loy radicals. 

3.2.1 (Jordan). The alternating group An is simple if and only if n -# 1, 2, or 4. 

To prove this we shall need a simple fact about 3-cycles in An. 

3.2.2. An is generated by 3-cycles if n ~ 3. 

Proof. Every even permutation is the product of an even number of 2-
cycles. Since (a, b)(a, c) = (a, b, c) and (a, b)(c, d) = (a, b, cHa, d, c), an even 
permutation is also a product of 3-cycles: finally 3-cycles are even and thus 
belong to An· 0 

Proof of 3.2.1. In the first place A4 is not simple since the permutations 
(1, 2)(3, 4), (1, 3)(2,4), (1,4)(2, 3) form together with 1 a normal subgroup. 
Of course Al and A2 have order 1. On the other hand A3 is obviously 
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simple. It remains therefore only to show that An is simple if n ~ 5. Suppose 
this is false and there exists a proper nontrivial normal subgroup N. 

Assume that N contains a 3-cycle (a, b, c). If (ai, b', c' ) is another 3-cycle 
and n is a permutation in Sn mapping a to ai, b to b', and c to c', then 
clearly n-1(a, b, c)n = (ai, b', C'): if n is odd, we can replace it by the even 
permutation n(e, f) where e, f differ from ai, b', c' without disturbing the 
conjugacy relation. (Here we use the fact that n ~ 5.) Hence (ai, b', c' ) E N 
and N = An by 3.2.2. It follows that N cannot contain a 3-cycle. 

Assume now that N contains a permutation n whose (disjoint) cyclic de
composition involves a cycle of length at least 4, say 

Then N also contains 

n' = (a l , a2, a3)-l n(a 1 , a2, a3) = (a2' a3, a l , a4 , ••• ) ••• , 

so that N contains n-1n' = (aI' a2, a4 ) : notice that the other cycles cancel 
here. This is impossible, so nontrivial elements of N must have cyclic de
compositions involving cycles of lengths 2 or 3. Moreover such elements 
cannot involve just one 3-cycle-otherwise by squaring we would obtain a 
3-cycle in N. 

Assume that N contains a permutation n = (a, b, c)(a', b', c' ) ... (with 
disjoint cycles). Then N contains 

n' = (ai, b', crln(a', b', c) = (a, b, a')(c, c', b') ... 

and hence nn' = (a, ai, c, b, c' ) ... , which is impossible. Hence each element 
of N is a product of an even number of disjoint 2-cycles. 

If n = (a, b)(a', b') E N, then N contains n' = (a, c, b)-ln(a, c, b) = 
(a, c)(a', b') for all c unaffected by n. Hence N contains nn' = (a, b, c). It 
follows that if 1 "# n E N, then n = (aI' b1 )(a2, b2)(a3, b3)(a4 , b4 ) ••• , the 
number of 2-cycles being at least 4. But then N will also contain 

n' = (a3, b2)(a2, b1 )n(a2' bd(a3, b2) = (aI' a2)(a3, b1 )(b2, b3)(a4 , b4 )··· 

D 

Using this result it is easy to find all normal subgroups of the symmetric 
group Sn. 

3.2.3. If n "# 4, the only normal subgroups of Sn are 1, An, and Sn. Furthermore 
1 <l An<l Sn is the only composition series of Sn. 

Proof. We can assume that n ~ 3. Let 1 "# N <l Sn; then N n A.<l An, so by 
3.2.1 we must have either An ~ N or An n N = 1. Since ISn: Ani = 2, the 
former implies that N = An or Sn. Suppose that N n An = 1; then Sn = AnN 
and therefore Sn = An X N, so that N lies in ((Sn). But ((Sn) = 1 since each 
conjugacy class of Sn consists of all permutations of some fixed cycle type. 

D 
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Examples of infinite simple groups may be found by using the following 
elementary result. 

3.2.4. If the group G is the union of a chain {G). IA. E A} of simple subgroups, 
then G is simple. 

Proof. Let 1 "# N <J G. Then N II G). "# 1 for some A. and hence Nil G", "# 1 
for all G", ~ G).. But Nil G", <J G", and G", is simple, so G", ~ Nand N = G. 

o 
For example let S be the group of all finitary permutations of 

{I, 2, 3, . . . }, that is, all permutations which move only a finite number of 
the symbols. Then define S(n) to be the stabilizer in S of {n + 1, n + 2, ... }. 
Plainly Sn ~ S(n): let A(n) be the image of An under the isomorphism. Then 
A(I) = A(2) < A(3) < .. . and A = Un=S.6 .. .. A(n) is an infinite simple group 
by 3.2.4. This is called the infinite alternating group. 

The Simplicity of the Projective Special Linear Groups 

Let R be a commutative ring with identity. Recall that GL(n, R) is the gen
erallinear group of degree n over Rand SL(n, R) is the special linear group, 
the subgroup of all A in GL(n, R) such that det A = 1. 

3.2.5. The centralizer of SL(n, R) in GL(n, R) is the group of nonzero scalar 
matrices aln, a E R*. 

Proof. Clearly a scalar matrix will commute with any matrix in GL(n, R). 
Conversely let A = (ai) belong to the centralizer of SL(n, R) in GL(n, F). 
Write Eij for the elementary n x n matrix with 1 in the (i, j)th position and 
o elsewhere. Now 1 + Eij E SL(n, R) if i "# j , so A and 1 + Eij commute, 
whence AEij = EijA. The (k,j)th coefficient of AEij is aki while that of EijA is 
o if k "# i and is ajj otherwise. Hence aki = 0 if k "# i and aii = ajj' which 
shows that A is scalar. 0 

3.2.6. The center of GL(n, R) is the group of nonzero scalar matrices aln. The 
center of SL(n, R) is the group of scalar matrices a In where an = 1. 

This follows at once from 3.2.5. 
The projective general linear group of degree n over the ring R is defined 

to be 
PGL(n, R) = GL(n, R)j((GL(n, R)) 

and the projective special linear group is 

PSL(n, R) = SL(n, R)mSL(n, R)) = SL(n, R)/SL(n, R) II , (GL(n, R)). 
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In case R = GF(q), the following notation is used: 

GL(n, q), PGL(n, q), SL(n, q), PSL(n, q). 

Let us compute the orders of these groups. 

3.2.7. 

(i) IGL(n, q)1 = (qn _ l)(qn _ q) ... (qn _ qn-l). 
(ii) ISL(n, q)1 = IGL(n, q)I/(q - 1) = IPGL(n, q)l. 
(iii) IPSL(n, q)1 = IGL(n, q)I/(q - l)d where d = gcd(n, q - 1). 

Proof. (i) In forming a matrix in GL(n, q) we may choose the first row in 
qn _ 1 ways, a row of zeros not being allowed, the second row in qn - q 
ways, no multiple of the first row being allowed, the third row in qn _ q2 
ways, no linear combination of the first two rows being allowed, and so on. 
Multiplying these numbers together we obtain the order of GL(n, q). 

(ii) A ~ det A is an epimorphism from GL(n, q) to GF(q)* whose kernel 
is SL(n, q). Since I GF(q)*1 = q - 1, the formula for I SL(n, q)1 comes directly 
from the First Isomorphism Theorem. The order of PGL(n, q) follows from 
3.2.6. 

(iii) follows from 3.2.6 and the fact that the number of solutions in GF(q) 
of an = 1 is (n, q - 1): keep in mind here that GF(q)* is cyclic of order 
q -1. 0 

We note in passing how the projective linear groups arise in geometry. 
Let V be an (n + I)-dimensional vector space over a field F. We shall say 
that two nonzero vectors in V are equivalent if one is a nonzero multiple of 
the other: clearly this is an equivalence relation on V\ {Oy}. Let v denote the 
equivalence class to which v belongs and let V be the set of all v where 
v "# o. Then V is a projective space of dimension n over F. If ct: V -+ V is an 
F-isomorphism, there is an induced collineation a: V -+ V defined by va = 
00.. Moreover it is easy to see that ct ~ a is an epimorphism from G L(V) 
to PGL(V), the group of all collineations of V; the kernel consists of all 
nonzero scalar linear transformations. Thus the group of collineations is 
isomorphic with PGL(n + 1, F). 

Our major goal in this section is the following theorem. 

3.2.8. Let F be a field and let N be a normal subgroup of SL(n, F) which is 
not contained in the center. If either n> 2 or n = 2 and IFI > 3, then N = 
SL(n, F). 

This has the immediate corollary. 

3.2.9 (Jordan, Dicksont). If either n > 2 or n = 2 and IFI > 3, then PSL(n, F) 
is simple. 

t Leonard Eugene Dickson (1874-1954). 
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Before proving 3.2.8 we shall develop some matrix theory. 
If 0 #- a E F, a matrix of the form 1 + aEij where i #- j is called a trans

vection: it differs from the identity matrix only in that there is an a in the 
(i,j)th position. The transvections lie in SL(n, F) and playa role similar to 
that of the 3-cycles in An. Their importance arises from the fact that left 
multiplication of a matrix by 1 + aEij has the effect of adding a times the jth 
row onto the ith row, a so-called row operation. 

3.2.10. The transvections generate SL(n, F) if n > 1. 

Proof. Let A E SL(n, F). We reduce A to In by row operations. Adding a 
row to the second row if necessary, we may assume that a21 #- O. Add 
a2t (1 - all) times the second row onto the first row to get 1 in the (1, l)th 
position. Subtracting multiples of the first row we can get O's in the first 
column below the diagonal. The (1, l)th minor belongs to SL(n - 1, F) and 
may be treated similarly until we obtain a matrix with l's on the diagonal 
and O's below. Further row operations reduce the matrix to the identity. 
Hence 1'" 1',,-1 ... T1 A = In for certain transvections 7;, and A = T1- 1 ... 
1',,-=.~ 1',,-1: of course each 7;-1 is a transvection and every transvection belongs 
~~~B 0 

3.2.11. If n > 2, any two transvections are conjugate in SL(n, F). 

Proof. Consider first the transvections 1 + aE;j and 1 + bE;j and put c = 
a-I b. Let D be the diagonal n x n matrix with I in the (i, i)th position, c in 
the (j,j)th position, c-1 in some other diagonal position and 1 elsewhere on 
the diagonal. Then DE SL(n, F) and D-1(1 + aE;)D = I + bEij. Now con
sider transvections I + aEij and I + aE,j' i #- r. Let P be the n x n matrix 
which differs from In only in that there is a I in position (i, r), a - I in posi
tion (r, i) and O's in positions (i, i) and (r, r); then P E SL(n, F). We calculate 
that P-1(I + aEij)p = I + aE,j where j #- i, r. Similarly Q-1(1 + aE,)Q = 
I + aErs where Q is a matrix of similar type. It follows that all transvections 
are conjugate in SL(n, F). 0 

We remind the reader of the rational canonical form of a matrix A E 

SL(n, F): we shall need to know that A is similar (that is, conjugate in 
GL(n, F» to a block matrix 

[1 o 
~ ] , 

M, 
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where the Mi are companion matrices, of the form 

0 1 0 0 0 
0 0 1 0 0 

0 0 0 0 1 
a1 a2 a3 as-1 as 

Our proof of 3.2.8 relies on matrix calculations and will be accomplished 
in three steps. 

3.2.12. If a normal subgroup N of SL(2, F) contains a transvection, then N = 
SL(2, F). 

Proof. Let (~ ~) E N where a -:j:. O. It is sufficient to prove that (~ ~) E 

N for all x E F. For if this has been done, N will contain 

(0 -1)-1(1 X)(O -1) = (1 0), 
1 0 0 1 1 0 -x 1 

and by 3.2.10 we obtain N = SL(2, F). Hence we may assume that IFI > 2. 

Conjugating G ~) by (X~l ~). we get G a~2). Therefore N con

tains the matrix 

(3) 

for all x, Y E F. If F has characteristic different from 2, then b = 
(r1(b + 1»2 - (r1(b - l)f, so every element of F is the difference of two 
squares and the result follows from (3). 

We assume henceforth that F has characteristic 2. At any rate N contains 

(~ ~) and (~ ~) where a- 1 r is a square in F. Conjugate these matrices 

by (_~ ~) to obtain (~r ~) and (~a ~) respectively. Hence N 

contains 

( 1 0) (1 m) (1 0) ( 1 -mr m) 
-a 1 0 1 -r 1 = amr - a - r 1 - am ' 

where a- 1 m is a square. Assume that we can choose rand m so that 
amr = a + r. Then N contains for arbitrary y 
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Choose IE F* so that 14 # 1: this exists since if all fourth powers in F* were 
1, we should have IFI = 3 or 5. Define m = a- 1 (1 + 1-2 ) and r = a1 2 : these 
satisfy amr = a + r and a-1 m = (a- 1(1 + 1-1 ))2 , so they are proper choices 
for rand m. Then my(r - a)(1 - mrt1 = yo-4 - 1), which ranges over all of 
F as y varies. The result now follows from (4). 0 

3.2.13. Let N be a normal subgroup oj SL(2, F) not contained in the center 
and let IFI > 3. Then N = SL(2, F). 

Proof. Since N can be replaced by a conjugate in GL(n, F) if necessary, we 
may suppose that N contains a noncentral element A which is in rational 
canonical form. By 3.2.12 we can assume that N does not contain a 
transvection. 

First of all suppose that A = (~ a~l) where a # a-1• If B = (~ !). 
( 1 1 - a-2 ) 

then N must contain the commutator [A, B] = A -1 B-1 AB = 0 1 ; 

this is a transvection since a2 # 1. 

It follows that A must be of the form (~ :} Here b equals -1 since 

det A = 1. The commutator of A-1 and (~ -t2
) equals (_lx 2 1 ~X~4) 

and belongs to N for all x in F. Conjugation of this by the matrix 

( -1 -1) (0 1) x 0 - = gives -1 2 + X4 . Hence N contains for all nonzero x 

and y the matrix 

( 0 1 )-1 (0 1) (1 X4 _ y4) 
- 1 2 + X4 - 1 2 + y4 = 0 1 . 

Since N contains no transvections, the fourth power of every nonzero ele
ment of F equals 1. But the polynomial t4 - 1 has at most four roots in F. 
Hence IFI = q is finite and q - 1 .::; 4. Since q> 3 by hypothesis, q must 
equal 5. This case requires a special argument. 

We know that N contains ( _ ~ ~), by putting x = 1 in the above. It 

( 0 1)-1 (a -1) (1 -2) also contains the commutator of _ 1 a = 1 0 and 0 l' 

which equals ( _ ~ - ~) since q = 5. Conjugate the latter by ( _ ~ = !)
which belongs to SL(2, 5)-to get (_ ~ ~) in N. Finally N contains 

( 0 1)-1( 0 
-1 3 -1 

1) (1 2) . 1 = 0 1 , a transvectlOn. o 
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Proof of 3.2.8. In view of 3.2.13 we may assume that n> 2. By 3.2.11 all 
transvections are conjugate in SL(n, F); hence it is enough to produce a 
transvection in N. 

Let A be a noncentral element of N, which may be assumed to be in 
rational canonical form. Suppose that all the companion matrices of A are 
1 x 1; then A consists of blocks ai1n" i = 1, ... , k, lying on the diagonal: 
here of course ai =F aj if i =F j. Since A is not central, k must exceed 1. Then 
N contains [A, 1 + E1,n,+n,] = 1 + (1 - al l a2)E1,n,+n2' a transvection. 

Hence we can suppose that some companion matrix of A -say the first 
one-has degree r > 1. Then 

0 1 0 0 

A =(~ ~) 
0 0 1 0 

where .4= a1 =F O. 
0 0 0 1 
a1 a2 a3 ar rxr 

If r > 2, then N contains [A, 1 - Ed] = 1 + all E12 - Er1 . Hence N con
tains [1 + all E12 - Er1 , 1 - Er1 ] = 1 + all Er2 , a transvection. 

- (0 1) Now let r = 2 and write A = a b ' a =F O. Then some element of 

SL(2, F) does not commute with A. On commuting a suitable matrix with A 

we find that N contains (BO 0) where B =F 12, If B is scalar, it must 
I n- 2 

equal -12 since det B = 1; in this event F cannot have characteristic 2 and 

N contains the commutator of (-012 0) with 1 + E23 , which equals 
1n- 2 

the transvection 1 + 2E23 . Otherwise we may suppose that B has the form 

( 0 1). (B 0) -1 c' Then N con tams the commutator of 1 - E13 and 0 1
n

- 2 ' 

which equals 
1 + (1 - C)E13 - E23 . 

Finally, commuting this with 1 + E 12 , we obtain 1 + E 13 in N. o 
Discussion of Results. By 3.2.7 the groups PSL(2,2) and PSL(2, 3) have 

orders 6 and 12; there exist no simple groups of these order, and in fact it is 
easy to see that PSL(2, 2) ~ S3 and PSL(2, 3) ~ A4 . Thus the cases n = 2 
and IFI = 2 or 3 are genuine exceptions to 3.2.8 and 3.2.9. 

PSL(2, 4) and PSL(2, 5) both have order 60. Since any simple group of 
order 60 is isomorphic with As (Exercise 1.6.12), we have PSL(2, 4) ~ As ~ 
PSL(2,5). But PSL(2,7) has order 168, not the order of an alternating 
group: hence this is a new simple group. 

PSL(3, 4) is a simple group of order 20,160 = t(8!). However PSL(3, 4) is 
not isomorphic with As; for it can be demonstrated that PSL(3,4) has no 
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elements of order 15, unlike A8 which has (1, 2, 3, 4, 5)(6, 7, 8)-see Exercise 
3.2.6. Consequently there are two non isomorphic simple groups of order 
20,160. 

More Simple Groups 

In fact the projective special linear groups form just one of several infinite 
families of finite nonabelian simple groups, the so-called groups of Lie type, 
which arise as groups of automorphisms of simple Lie algebras. Since we 
cannot go into details here, the interested reader is referred to [b9]. 

Apart from the alternating groups and the groups of Lie type, there are 
twenty-six isolated simple groups. These are the so-called sporadic groups. 
The largest of them, the "Monster," has order 

246.320 ' 59.76 . 112'133'17.19.23.29.31.41.47'59'71 

or approximately 8 x 1053. The best known of the sporadic groups are the 
five groups discovered by Mathieut over a hundred years ago. These will be 
discussed in Chapter 7. 

It is now generally believed that the classification of finite nonabelian 
simple groups is complete, and that the only groups of this type are the 
alternating groups, the groups of Lie type and the twenty-six sporadic 
groups. However a complete proof has not yet been written down, and it 
would probably extend to several thousand printed pages. For a detailed 
account of the classification see [b27]. 

EXERCISES 3.2 

1. Find all the compositions series of S4' 

2. If S is the group of all finitary permutations of the set {I, 2, 3, ... } and A is the 
alternating subgroup, prove that 1 <I A <I S is the only composition series of S. 

3. Prove that PGL(2, C) is isomorphic with the group of all linear fractional trans-
formations of IC (see 2.1). 

4. Show that transvections in SL(2, F) need not be conjugate. 

5. Prove that PSL(2, 2) ~ S3 and PSL(2, 3) ~ A4 • 

6. Prove that PSL(3,4) has no element of order 15, so that PSL(3,4) is not 
isomorphic with Ag. [Hint : Suppose there is such an element: consider the possi
ble rational canonical forms of a preimage in SL(3, 4): see also [b57].] 

7. Let G be a finitely generated group not of order 1. By invoking Zorn's Lemma 
prove that G contains a maximal (proper) normal subgroup. Deduce that G has 
a quotient group which is a finitely generated simple group. 

t Emile Leonard Mathieu (1835-1890). 
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The next two exercises constitute G. Higman's construction of a finitely generated 
infinite simple group. 

8. Suppose that H = <x, y, z, t) is a finite group in which the following relations 
hold: yX = y2, zY = Z2, t Z = t2, and x' = x2. Prove that H = 1. [Hint: Let i,j, k, I 
be the orders of x, y, z, t: show that j 12 i - 1, kl2i - 1 etc. Using the fact that if 
n > 1, the smallest prime divisor of 2" - 1 exceeds the smallest prime divisor of 
n, show that i = j = k = I = 1.] 

9. Let G be the group with generators x, y, z, t and relations yX = yl, zY = Z2, t Z = 
t2, and x, = x2 • Prove that G has a quotient group which is a finitely generated 
infinite simple group. (It may be assumed that G "# 1: see Exercise 6.4.15.) 

10. Let q be an odd prime power greater than 3. Prove that SL(2, q) equals its 
derived subgroup. 

3.3. Direct Decompositions 

We have considered one way of decomposing a group, by resolving it into 
its composition factors. Another and more precise way would be to express 
the group as a direct product of factors that themselves cannot be decom
posed into a direct product. One disadvantage of this approach is that 
the indecomposable factors are much less well understood than the simple 
groups that arise from a composition series. 

Let G be a group with operator domain Q. An Q-subgroup H is called an 
Q-direct factor of G if there exists an Q-subgroup K such that G = H x K; 
then K is called an Q-direct complement of H in G. If there are no proper 
nontrivial Q-direct factors of G, then G is said to be Q-indecomposable (or 
just indecomposable if Q = 0). Clearly every Q-simple group is Q-indecom
posable: however a cyclic group of order p2 where p is prime is an example 
of an indecomposable group which is not simple. 

We shall consider chain conditions on the set of direct factors of a group. 

3.3.1. For groups with operator domain Q the maximal and minimal conditions 
on Q-direct factors are equivalent properties. 

Proof. Assume that G is an Q-group satisfying the minimal condition on 
Q-direct factors: let Y be a nonempty set of Q-direct factors of G. We will 
show that Y has a maximal element, so that G satisfies the maximal condi
tion on Q-direct factors. 

Let ff be the set of all Q-subgroups of G which are direct complements 
of at least one element of !J? Then ff has a minimal element Nand 
G = M x N for some M E Y. If M is not maximal in Y, there exists 
Ml E Y such that M < M1: then G = Ml X Nl for some Nl E ff. Now 
Ml = Ml n (M x N) = M X (Ml n N), whence G = Ml X Nl = M X Nl X 
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(MI n N). Intersecting with N we obtain N = N2 X (MI n N) where N2 = 
(M x N1) n N. Hence G = M x N = (M X (MI n N)) x N2 = MI X N2 • It 
follows that N2 E:Y and hence that N2 = N by minimality of N in :Y. 
Therefore N ~ M X NI and G = M x N = M X NI = MI X N1. Since 
M ~ M 1 , we get M = M 1 , a contradiction. The converse implication is 
proved in an entirely analogous way. 0 

Remak Decompositions 

The significance of the equivalent conditions of 3.3.1 is that they guarantee 
that an O-group may be expressed as a direct product of finitely many non
trivial O-indecomposable subgroups: such a direct decomposition is called a 
Remakt decomposition. 

3.3.2 (Remak). If an O-group G has the minimal condition on O-direct 
factors, it has a Remak decomposition. 

Proof. Assume that G has no Remak decomposition. Then G is certainly 
O-decomposable, so the set!/' of all proper nontrivial O-direct factors of G 
is not empty. Choose a minimal element G1 of!/' and write G = G1 X HI. 
Then G1 is O-indecomposable by minimality. Clearly HI inherits the mini
mal condition from G and cannot be indecomposable. Hence HI = G2 X 

H2 > G2 where G2 is O-indecomposable, and G = G1 X G2 X H2. Repetition 
of this procedure leads to an infinite descending chain HI > H2 > .. . of 0-
direct factors of G, which cannot exist. 0 

Projections and Direct Decompositions 

Our principal aim is to study the question of the uniqueness of the direct 
factors in a Remak decomposition. For this we need to analyze in greater 
detail the notion of a direct decomposition. 

An O-projection of an O-group G is a normal idempotent O-endomor
phism, that is, an O-endomorphism n: G -. G such that n = n2 which 
commutes with all inner automorphisms of G. Thus G" is a normal 0-
subgroup of G. Such endomorphisms arise whenever one has a direct 
decomposition. 

Let G = G1 X • . • x Gr be an O-direct decomposition of G; then each g in 
G is uniquely expressible in the form g = gl ... gr with gi E Gi . The endo
morphism ni defined by g1ti = gi is an O-projection of G: for clearly nf = 
ni and (h-lgh)"i = (h"TIg"ih"i = h-lg"ih for all h in G. In addition g = 

t Robert Remak (1888-194?). 



82 3. Decompositions of a Group 

gl .. . gr = g'" +"'+"r and (g"')"j = 1 if i #- j. Thus the 1ti satisfy the conditions 

1t1 + ... + 1tr = 1, 

1ti1tj = 0, (i #- j).} (5) 

Conversely let there be given normal Q-endomorphisms 1t 1 , ... , 1tr of G 
satisfying (5). Then 1ti = 1ti(1t 1 + ... + 1tr ) = 1tr, so that 1t i is a projection. Let 
Gi = G"', a normal Q-subgroup of G. Now 1t1 + ... + 1tr = 1 implies that 
G = G1 ... Gr. Furthermore, if 9 E Gi n ONi Gj , then 9 = h'" for some h, and 
g'" = h'" = g; but g'" = 1 since Gr' = 1 if i #- j, so in fact 9 = 1. Hence G = 
G1 X ... x Gr. We have established the following result. 

3.3.3. If G is an Q-group, there is a bijection between the set of all finite 
Q-direct decompositions of G and the set of all finite sets of normal Q
endomorphisms {1t l' ... , 1tr} of G satisfying (5). 

The following result is fundamental and has numerous applications. 

3.3.4 (Fitting'st Lemma). Let () be a normal Q-endomorphism of an Q
group G and suppose that G satisfies the maximal and minimal conditions on 
normal Q-subgroups. Then there exists a positive integer r such that 1m ()' = 
1m ()'+1 = ... and Ker ()' = Ker ()'+1 = ... ; also G = (1m ()') x (Ker ()'). 

Proof. Since ()i is a normal Q-endomorphism, 1m ()i and Ker ()i are normal 
Q-subgroups of G. Clearly Ker () :s; Ker ()2 :s; ... and 1m () ~ 1m ()2 ~ ... , so 
there is a positive integer r such that Ker ()' = Ker ()'+1 = ... = K and 
1m ()' = 1m ()'+l = ... = I say. Let 9 E G: then g6 r Elm ()' = 1m ()2r and 
g6r = h62r for some hE G. Hence h-6r 9 E K and 9 ElK, which shows that 
G = IK. Next, if gEl n K, then 9 = h6r with hE G. Therefore 1 = g6r = 
h62r, whence h E Ker ()2r = Ker ()' and 9 = her = 1. It follows that G = 
I x K. 0 

Definition. An endomorphism () is said to be nilpotent if ()' = 0 for some 
positive integer r. 

3.3.5. If G is an indecomposable Q-group with the maximal and minimal 
conditions on normal Q-subgroups, a normal Q-endomorphism of G is either 
nilpotent or an automorphism. 

Proof. Let () be a normal Q-endomorphism of G. By 3.3.4 there is an r > 0 
such that G = 1m ()' x Ker ()'. But G is Q-indecomposable, so either 1m ()' = 
o and ()' = 0 or G = 1m ()' and Ker ()' = 0; in the latter case () is an 
automorphism. o 
t Hans Fitting (1906-1938). 
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An endomorphism IX of a group G is called central if it operates on GI,G 
like the identity, that is to say, g« == g mod (G for all g in G. 

3.3.6. 

(i) A normal endomorphism which is surjective is central. 
(ii) A central endomorphism is normal. 

Proof. (i) Let IX be a normal surjective endomorphism of G. Then g-l x«g = 
(g-l xg)« = (g«rl x«g« for all x, g E G. Since G = G«, this implies that g«g-l E ,G and IX is central. 

(ii) Let IX be a central endomorphism of G and let x, g E G. Then g« = gz 
where z E ,G. Hence (g-l xg)« = (gzrl x«gz = g-l x«g and IX is normal. 0 

Hence for automorphisms "normal" and "central" are equivalent. 

3.3.7. Let G be an indecomposable Q-group with the maximal and minimal 
conditions on normal Q-subgroups. Suppose that (Jl, (J2' ... ,(Jk are nor
mal Q-endomorphisms every pair of which is additive (as defined in 1.5). If 
(Jl + ... + (Jk is an automorphism, then so is at least one (J;. 

Proof. By induction we may assume that k = 2 and IX = (Jl + (J2 is an auto
morphism. Put t/I; = IX- l (J;, so that t/ll + t/l2 = 1. Now IX is normal since (JI 
and (J2 are: hence t/ll and t/l2 are normal Q-endomorphisms. Suppose that 
neither (Jl nor (J2 is an automorphism: then neither t/ll nor t/l2 can be an 
automorphism. By 3.3.5 both t/ll and t/l2 are nilpotent, so t/lr = 0 = t/l2 for 
some r > O. Now t/ll = 1 - t/l2' so t/ll t/l2 = t/l2t/1l. Hence 1 = (t/ll + t/l2)2r-1 = 

~~l Cr ~ 1) t/lf t/lir-i-l by the Binomial Theorem. Since either i ~ r or 

2r - i - 1 ~ r, we have t/lf t/lir-;-l = 0 for all i. Hence 1 = 0, which implies 
that G = 1 and (Jl = 1 = (J2' a contradiction. 0 

The Krull-Remak-Schmidt Theorem 

We come now to the main result of this section. 

3.3.8 (Krull, Remak, Schmidt). Let G be an Q-group satisfying the maximal 
and minimal conditions on normal Q-subgroups. If 

G = HI X .•• x Hr = Kl X .•. x K. 

are two Remak decompositions of G, then r = s and there is a central Q
automorphism IX of G such that, after suitable relabelling of the K/s if neces
sary, Hf = K; and G = K 1 X ... X Kk X Hk+l X ... x Hr for k = 1, ... , r. 
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Proof. Assume that for some k satisfying 1 ::;; k ::;; min(r, s) + 1 there is a 
decomposition G = Kl X ..• X Kk- 1 X Hk X ••• x Hr. Certainly this is true 
if k = 1. Let {(J 1, ... , (Jr} be the set of projections specifying this decomposi-
tion, and let {n 1, ... , nr } and {Pl' ... , Ps} be the corresponding sets of pro-
jections for the decompositions G = Hl X ... x Hr and G = Kl X ••. x Ks. 
If g E G, then gPj E Kj and gPj"k = 1 if j < k. Hence Pj(Jk = 0 if j < k. Since 
(Jk = l(Jk = (Pl + ... + Ps)(Jk, we obtain 

(6) 

Notice that by 1.5.l these Pj(Jk are additive. 
Consider the restriction of Pj(Jk to Hk, certainly a normal n-endomor

phism of Hk. Now Hk inherits the maximal and minimal conditions from G 
and the restriction of (Jk to Hk is, of course, 1. By (6) and 3.3.7 some PPk' 
k ::;;j ::;; s, is an automorphism on Hk • The K j can be labelled in such a way 
that Pk(Jk is an automorphism on Hk. 

Let Kk = HCk ::;; Kk. Then Kk <J Kk since Pk is normal. If hPk = 1 with 
hE Hk, then hPk"k = 1 and h = 1: thus Pk maps Hk isomorphically onto K k. 
For the same reason (Jk maps Kk monomorphically into Hk. Write Kk = 
(Ker (Jk) II K k; then Kk II Kk = 1. Also, for x E Kk we have X"k E Hk and 
hence X"k = yPk"k for some y in Hk; thus xy-Pk E Kk and x E KkKk. Conse
quently Kk = Kk X Kk. But Kk is n-indecomposable, and Kk ~ Hk -# 1; 
hence Kk = 1 and Kk = Kk. It follows that Pk maps Hk isomorphically to 
K k • 

Next write Lk = Kl X ... X Kk- 1 X Hk+l X ... x H" so that G = Lk X 

Hk. The proof proceeds by showing that G = Lk X Kk. Firstly L~k = 1 and 
Lk II Kk = 1. Next define () = (JkPk + (1 - (Jk), a normal n-endomorphism of 
G. If g = Ih where 1 ELk, h E Hk, then g9 = 19 h9 = Ih Pk since I"k = 1 and 
h"k = h. Hence g9 = 1 implies that 1 = 1 = hPk (because Lk II Kk = 1); since 
Pk is monomorphic on Hk , we conclude that 1 = 1 = h. Hence () is a mono
morphism. It follows from Fitting's Lemma that () is an automorphism and 
therefore G = G9 ::;; G"kPkG1-"k ::;; Kk X Lk and G = Lk X Kk. This is just to 
say that G = K 1 X ..• X Kk X Hk+l X ••. x Hr. 

So far we have proved that there is a decomposition 

G = Kl X ..• X Kk X Hk+1 X ... x Hr 

for 1 ::;; k ::;; min(r, s), after relabeling the K/s. If we put k = min(r, s), it 
follows that r = s. We also saw that Pk maps Hk isomorphically to Kk 
for all k. Define IX = n1Pl + ... + nrP" a normal n-endomorphism. Now 
Hi = Hr'p, = Hf' = K;, so GI/. = G. By Fitting's Lemma IX is an automor
phism and by 3.3.6 it is central. 0 

Uniqueness of Remak Decompositions 

The Krull-Remak -Schmidt Theorem guarantees that the factors of a 
Remak decomposition are unique up to isomorphism. It does not assert 
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that there is a unique Remak decomposition (up to order of the direct 
factors). Indeed the Klein 4-group has three such decompositions. We en
quire next just when a group has a unique Remak decomposition. 

3.3.9. Let G = G1 X ... x Gr be a Remak decomposition of an D.-group with 
the maximal and minimal conditions on normal D.-subgroups. This is the only 
Remak decomposition of G (up to order of the direct factors) if and only if 
G? ::; Gi for every normal D.-endomorphism () of G and i = 1, 2, .. . , r. 

Proof. We can assume that r> 1. Since a central D.-automorphism is 
normal (by 3.3.6), sufficiency follows from the Krull- Remak-Schmidt 
Theorem. Conversely assume that G = G1 X ... x Gr is the unique Remak 
decomposition of G and let () be a normal D.-endomorphism of G such 
that G~ :t G1 . Let {1tl' ... , 1tr } be the set of associated projections. Then 

() = ()( ~ nj ) = ~ (}nj , 

so that G~ ::; TIj G~1tj. Since G~ :t G1 , there is a j > 1 such that (}1tj -# O. De
fine G1 = {xx81tj lx E Gd. Then it is easy to see that G1 -# G1 ::; G, and also 
that G = G1 X G2 X ... x Gr is another Remak decomposition. 0 

From this a more useful condition for uniqueness can be derived. 

3.3.10. A Remak decomposition G = G1 X ... x Gr of an D.-group with the 
maximal and minimal conditions on normal D.-subgroups is unique (up to order 
of factors) if and only if there exist no nontrivial D.-homomorphisms from Gi 

to the center of Gj for any i -# j. 

Proof. We can assume that r> 1. If (): Gi --+ ((G) is a nontrivial D.-homo
morphism and ni is the ith projection, then 1ti (} is a normal D.-endomorphism 
not preserving Gi . Conversely, if () is a normal D.-endomorphism such that 
G? :t Gi , then for some j -# i the restriction of (}1tj to Gi is a nontrivial D.
homomorphism from Gi to Gj • If g E Gi and x E Gj , then (g81tj )'" = (gx)61tj = 
g81tj since (}nj is normal. Consequently g81tj E ((GJ The result follows from 
3.3.9. 0 

In particular, if G = G' or (G = 1, there is a unique Remak decomposi
tion of G. 

Direct Products of Simple Groups 

One very special type of Remak decomposition is a direct product of finitely 
many simple groups. Let us call a group D.-completely reducible if it is a 
direct product of a possibly infinite family of simple groups. 



86 3. Decompositions of a Group 

3.3.11. If an n-group G is generated by a set of normal n-simple subgroups, it 
is the direct product of certain of these subgroups. Thus G is n-completely 
reducible. 

Proof. Let G = <G"IA. E A) where G" <J G and G" is n-simple. Call a subset 
N of A independent if <G"IA. E N) = Dr"EA' G", that is, if 

G" n <G/lIJ.l E N, J.l # A.) = 1 

for each A. in N. The set Y of all independent subsets of A is nonempty 
since it contains everyone-element subset. Also Y is partially ordered by 
set containment. If {Ad i E I} is a chain in Y, the union of the chain belongs 
to Y: for clearly a set is independent if its finite subsets are. By Zorn's 
Lemma there is a maximal element of Y, say M. If A. E A \M, then M u {A.} 
is not independent. Since M is independent, it follows that G" n L # 1 
where L = <G/lIJ.l EM). Now G;. n L<J G;., so G;. ~ L by simplicity of G;.. 
Hence G = L = Dr/lEM Gil' Otherwise A = M and again G = Dr/lEM Gil' 0 

We consider next normal subgroups of completely reducible groups. 

3.3.12 (Remak). Let G = Dr;'EA G;. where G;. is n-simple. Suppose that N is a 
normal n-subgroup of G. Then G = N x Dr/lEM G/l for some M £; A. More
over, if all the G" have trivial centre, then N is actually the direct product of 
certain of the G;.. In any case N is n-completely reducible. 

Proof. If N = G, we take M to be empty. Assume that N # G and let S 
be the set of all subsets N of A such that <N, G;.IA. E N) = N x Dr;'EA' G;.. 
Since N i= G, some G;. is not contained in N and since N n G" <J G;., it 
follows that N n G;. = 1;. and {A.} E S. Hence S is nonempty. As in the 
previous proof S has a maximal element M: let G* = <N, G/lIJ.l E M) = 
N x Dr/lEM Gil' If A. E A \M, then M u {A.} ff. S, which implies that G" n G* # 
1 and G;. ~ G*. Hence G = G* as required. Finally N ~ Dr;'EA\M G", so that 
N is completely reducible. 

Now assume that each ((G;.) is trivial. Clearly we may factor out any G;. 
contained in N. Assume therefore that N n G" = 1 for all A.. Then [N, G;.] ~ 
N n G;. = 1, so N is contained in the centre of G. But G has trivial center by 
Exercise 1.5.8; therefore N = 1. 0 

Thus in an n-completely reducible group every normal n-subgroup is a 
direct factor. It is interesting that the converse is true: n-completely reduc
ible groups are the only ones in which every normal n-subgroup is an 0.
direct factor. Indeed a stronger result is true, 

3.3.13 (Head). If every proper normal n-subgroup of an Q-group G is con
tained in a proper n-direct factor of G, then G is n-completely reducible. 
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Before we can prove this result we must establish a simple lemma which 
is used constantly in the study of infinite groups. It is just a straightforward 
application of Zorn's Lemma. 

3.3.14. Let G be an Q-group, let H be an Q-subgroup and let x be an element 
of G such that x f/: H. Then there exists an Q-subgroup K which is maximal 
with respect to the properties H ~ K and x f/: K. 

Proof. Consider the set S of all Q-subgroups containing H but not x. 
Then S is not empty since H is a member. Clearly S is partially ordered by 
inclusion: moreover the union of any chain in S is likewise in S. By Zorn's 
Lemma S has a maximal element K. 0 

Proof of 3.3.13. Let N be the subgroup generated by all the Q-simple nor
mal subgroups of G; then N is completely reducible by 3.3.11. Suppose that 
N =I G and let x E G\N. By 3.3.14 there exists a normal Q-subgroup M 
which is maximal subject to N ~ M and x f/: M. By hypothesis M is con
tained in a proper Q-direct factor D, with G = 'D x E say. Since E =I 1, we 
have x E M x E by maximality of M. Also D n (M x E) = M by the modu
lar law, so it follows that x f/: D. By maximality of M again, D = M and 
G = M x E. Now let F be a nontrivial normal Q-subgroup of E: then F <J 

G and M x F, being a proper normal Q-subgroup of G, lies in a proper 
Q-direct factor. But we have shown that M is contained in no proper Q
direct factor of G except M itself, so we have a contradiction. 0 

Characteristically Simple Groups 

Recall that a group G which is Aut G-simple, that is, which is nontrivial and 
has no proper nontrivial characteristic subgroups, is called characteristically 
simple. Closely related is the concept of a minimal normal subgroup of a group 
G, by which is understood a nontrivial normal subgroup that does not con
tain a smaller nontrivial normal subgroup of G. It follows at once from 1.5.6 
that in any group a minimal normal subgroup is characteristically simple. 
The subgroup generated by all the minimal normal subgroups of a group G 
is called the socle: should the group fail to have any minimal normal sub
groups, as in the case of the infinite cyclic group for example, the socle of G 
is defined to be 1. Applying 3.3.11 with Q = Inn G, we see that the socle of a 
group is a direct product of minimal normal subgroups. 

3.3.15. 

(i) A direct product of isomorphic simple groups is characteristically simple. 
(ii) A characteristically simple group which has at least one minimal normal 

subgroup is a direct product of isomorphic simple groups. 
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Proof. (i) Let G = Dr"' eA G ... where the G ... are isomorphic simple groups, and 
let H be a nontrivial characteristic subgroup of G. If the G ... are nonabelian, 
3.3.12 implies that G = H x K where Hand K are direct products of cer
tain G ... 's. But clearly there is an automorphism of G interchanging any two 
G ... 's. Hence H = G. On the other hand, if the G ... are abelian, then all of 
them have some prime order p and G is an elementary abelian p-group. The 
result now follows from Exercise 3.1.5. 

(ii) Let N be a minimal normal subgroup of a characteristically simple 
group G. Then <N"'la E Aut G) is characteristic in G and hence equals G. 
Applying 3.3.11 with n = Inn G, we conclude that G is the direct product of 
certain of the N'" including, we may suppose, N itself. If 1 #- M <l N, then 
M <l G and M = N by minimality of N. Hence N is simple and G is a direct 
product of isomorphic copies of N . 0 

In particular a finite characteristically simple group is a direct product 
of isomorphic finite simple groups. On the other hand the additive group 
of rationals is an example of a characteristically simple group that is not 
completely reducible. 

Centerless Completely Reducible Groups 

In the sequel a completely reducible group will be called a CR-group. The 
center of a CR-group is the direct product of the abelian factors in the de
composition. Hence a CR-group is centerless, that is has trivial center, if 
and only if it is a direct product of nonabelian simple groups. Centerless 
CR-groups have a very rigid normal structure. 

3.3.16. If G = Dr"' eA G ... where each G ... is a nonabelian simple group, every 
normal subgroup of G is a direct product of certain G ... 's. 

This follows at once from 3.3.12. 

3.3.17. In any group G there is a unique max imal normal centerless CR
subgroup. Moreover this is characteristic in G. 

Proof. Let {M ... IA. E J\} be a chain of centerless normal CR-subgroups of G. 
Let S be a simple direct factor of M .... Now if M ... ::;; Mil' then M ... is a direct 
factor of Mil by 3.3.12. Hence S<l Mil and S<l J = UlleAMw Consequently 
J is generated by normal nonabelian simple subgroups and 3.3.10 shows 
that J is a CR-group. By Zorn's Lemma there exists a maximal normal 
centerless CR-subgroup M. Now let N be any other normal centerless CR
subgroup of G and put I = M n N, a normal subgroup of G. By 3.3.12 we 
have M = MI X I for some MI ' If g E G, then M = M9 = Mf x I = MI X 

I . Applying 3.3.12 we conclude that I has a unique complement in M, 
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M~ = MI and MI <l G. Thus MN = MIIN = MIN = MI x N because 
MI (") N = MI (") 1= 1. Since MI is clearly a centerless CR-group, so is MN 
and by maximality N ~ M. Thus M is the required subgroup. 0 

The maximal normal centerless CR-subgroup will be called the centerless 
CR-radical. While it may in general be trivial, there is a class of groups for 
which this radical controls the group, the finite semisimple groups. 

Finite Semisimple Groups 

A finite group is called semisimple if it has no nontrivial normal abelian 
subgroups. All centerless CR-groups are semisimple: so are the symmetric 
groups Sn for n ~ 5 (see 3.2.3). We shall describe a classification due to 
Fitting of finite semisimple groups in terms of simple groups and their outer 
automorphism groups. 

3.3.18. 

(i) If G is a finite semis imp Ie group with centerless CR-radical R, then 
G ~ G* where Inn R ~ G* ~ Aut R. 

(ii) Conversely, if R is a finite center less CR-group and Inn R ~ G ~ Aut R, 
then G is a finite semisimple group whose centerless CR-radical is 
Inn R ~ R. 

Proof. (i) Let C = CG(R): We show first that C = 1. If C -1= 1, there is a mini
mal normal subgroup N of G contained in C. Now N is characteristically 
simple, so it is a CR-group by 3.3.15. Also (N <l G; thus (N = 1 by semi
simplicity of G. Hence N ~ R (") C = (R = 1, a contradiction. Let or: G-+ 
Aut R be the conjugation homomorphism: thus gt: n ..... g-1rg. Then Ker or = 
CG(R) = 1 and Rt = Inn R. If G* = 1m or, then Inn R ~ G* ~ Aut R and of 
course G ~ G*. 

(ii) Let ex E C = CAutR(Inn R) and let or: R -+ Aut R be the conjugation 
homomorphism. Then rt = ex-1rtex = (ray for all r in R by 1.5.4. Now or 
is a monomorphism because (R = 1: hence r = ra for all r E R and ex = 1. 
Consequently C = 1. Now suppose that A <l G where A is abelian. Then 
A (") Inn R <l Inn R ~ R, a centerless CR-group. Hence A (") Inn R = 1 and 
A ~ C = 1. It follows that G is semisimple-it is of course finite since R, 
and hence Aut R, is. Finally, let M be a normal centerless CR-subgroup 
of G. Then 3.3.17 implies that (Inn R)M is a CR-group and by 3.3.12 it has 
Inn R as a direct factor. Since CAutR(lnn R) = 1, this can only mean that 
M ~ Inn R and Inn R is the centerless CR-radical of G. 0 

Thus to construct all finite semisimple groups with centerless CR-radical 
isomorphic to R we need to form all groups intermediate between Inn R 
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and Aut R, in other words all subgroups of Out R. The question now arises: 
when are two groups constructed in this manner isomorphic? 

3.3.19. Let R be a finite centerless CR-group. There is a bijection between the 
set of isomorphism classes of finite semisimple groups with centerless CR
radical isomorphic with R and the set of conjugacy classes of subgroups of 
Out R. 

Proof. Let Inn R ~ Gi ~ Aut R, i = 1, 2. If G1 and G2 are conjugate in 
Aut R, then clearly G1 ~ G2 • Conversely let a: G1 -+ G2 be an isomorphism. 
By 3.3.18 it is enough to prove that G1 and G2 are conjugate in Aut R. 

Since Inn R is the centerless CR-radical of G1 and of G2 , we have 
(Inn RY = Inn R, so the restriction of a to Inn R is an automorphism. Let 
r: R -+ Aut R be the conjugation homomorphism; this is a monomorphism 
with image Inn R. Hence a determines an automorphism 0 of R given by 
(r9y = (rt)a, (r E R). 

We shall prove that ga = 0-1 gO for all g in G1, which will show that 
G2 = 0-1 G1 O. Let r E R. Keeping in mind that Or = ra and also that (rgy = 
g-lrtg for all g in Aut R, we obtain 

(r9-1g9 y = «r9-1gna = (g-1(r9-1ygY 

= (gar1rt ga 

= (rg")t. 

Thereore 0-1 gO = ga as claimed. 

Structure of the Automorphism Group 
of a Centerless CR-group 

o 

Our results so far make it of interest to investigate automorphism groups of 
finite centerless CR-groups. They may be described in terms of automor
phism groups of nonabelian simple groups. 

3.3.20. Let R be a finite centerless CR-group and write R = R1 X ... X Rk 
where Ri is a direct product of ni isomorphic copies of a simple group Hi, and 
Hi and Hj are not isomorphic if i =I j. Then Aut R ~ Aut R1 X ••. x Aut Rk 
and Aut Ri ~ (Aut H;) "'- Sni where in this wreath product Aut Hi appears in 
its right regular representation and the symmetric group Sn. in its natural per
mutation representation. Moreover these isomorphisms induce isomorphisms 
Out R ~ Out R1 X ... x Out 1k and Out Ri ~ (Out H;) "'-Sni . 

Proof. Let a E Aut R: then R~ is a direct product of ni copies of Hi and by 
3.3.12 it must equal Ri. Hence each Ri is characteristic in R and a induces 
an automorphism ai in Ri by restriction. Clearly a H (aI' . .. , ak) is an iso-
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morphism from Aut R to Aut Rl X ••• x Aut Rk in which Inn R is mapped 
to Inn Rl x . . . x Inn Rk; it therefore induces an isomorphism Out R ~ 
Out Rl X ..• x Out Rk. 

In the remainder of the proof we shall suppose for simplicity of notation 
that R is the direct product of n copies of the simple group H. Let IX E A = 

Aut R : it follows from 3.3.12 that IX permutes the direct factors of Rand 
hence is associated with a permutation na. E Sft: moreover IX H na. is clearly a 
homomorphism from A to Sft whose kernel K consists of all automorphisms 
that preserve each of the n direct factors of R. Thus K <l A and an element 
K of K induces through its action on the ith direct factor of R an auto
morphism Ki of H: the mapping KH(Kl' ... , Kft) is an isomorphism of K 
with the n-fold direct product Aut H x ... x Aut H. 

Next if n E Sft' there is an associated automorphism IX" of R which simply 
permutes components: thus if r E R, we have (ra.·)i = ri,,-I. Now (ra.··)i = 

ri("x)-1 = rix-l,,-1 = (ra.')ix-1 = (ra.·a.;;)i, so IX "X = IX"IXx' Hence nHIX" is a 
monomorphism from Sft to A with image X ~ Sft' Clearly X n K = 1. Also if 
IX E A, then IX;;} IX E K , which implies that IX E X K. Hence A = X K and A is 
the semidirect product of K and X. 

To prove that A ~ (Aut H) ""' Sft' it suffices to show that conjugation by 
IX" in K permutes components in the manner prescribed by n. Let K E K; we 
need to establish that when IX;;l KIX" is applied to any r in R, the effect on the 
ith component is identical with that produced by "i,,- I. We calculate that 

as required. D 

In order to construct all isomorphism classes of finite semisimple groups 
we must therefore construct all finite nonabelian simple groups Hand 
identify the classes of conjugate subgroups of direct products of wreath 
products (Out H)"- Sft' In simple cases the last step can be carried out. 

For example, let H = As; then Aut H ~ Ss (Exercise 1.6.18), so that 
Out H is cyclic of order 2. Hence there are two nonisomorphic finite 
semisimple groups with centerless CR-radical isomorphic with As; of course 
these must be As and Ss. Again Out(H x H) ~ Z2 "- Z2 ~ Ds (by Exercise 
1.6.16). Now the group Ds has eight conjugacy classes of subgroups. Hence 
there are eight nonisomorphic finite semisimple groups whose centerless 
CR-radical is isomorphic with As x As . 

EXERCISES 3.3 

1. Show that the maximal condition on direct factors does not imply the maximal 
condition on normal subgroups. Do the same for the minimal condition. 

2. Prove that S. is indecomposable. 

3. Prove that a central endomorphism of a group leaves every element of the de
rived subgroup fixed. 
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4. Prove that the central automorphisms of a group G form a subgroup Aute G of 
Aut G. 

5. (lE. Adney and Ti Yen). Let G be a finite group which has no nontrivial abelian 
direct factors. Prove that IAute GI = IHom(Gab, ,G)I. Deduce that if G has no 
nontrivial central automorphisms, then ,G ~ G'. [Hint: If 0( E Aute G, define (J. E 

Hom(Gab, ,G) by (gG')6 = g-lg •. Show that 0(1-->(J. is a bijection.] 

6. Suppose that A x B ~ A x C and that both max-n and min-n hold in these 
groups. Prove that B ~ C (so that A may be "canceled"). Show that this conclu
sion is not generally valid. 

7. If G is a finite group and IGabl and I'GI are coprime, prove that G has a unique 
Remak decomposition. 

8. Let G = G1 X G2 X .•. X Gk be a Remak decomposition of the finite group G. 
Assume that no two of the Gi are isomorphic. Denote by A the subgroup of all 
automorphisms of G that leave each Gi invariant. Prove the following: 

(i) A ~ Aut G1 X Aut G2 X ... x Aut G.; 
(ii) Aut G = A (Aute G); and 

(iii) Aut G = A if and only if G has only one Remak decomposition. 

9. Find the order of Aut(Ds x 83 ) (using Exercise 3.3.8). 

10. Let G be a finite group. Show that G is completely reducible if and only if it 
equals its soc\e. 

11. Identify the socle of an abelian group. 

12. Prove that an image of a completely reducible group is completely reducible. 
Prove also that the corresponding statement for centerless completely reducible 
groups is true. 

13. Let G be a finite semisimple group with centerless CR-radical R. Let (J: Aut G-+ 
Aut R be the restriction map, i.e., 0(6 is the restriction of 0( to R. Show that (J is an 
injective homomorphism. If G is regarded as a subgroup of Aut R as in 3.3.18, 
prove that 1m (J = NAutR(G). 



CHAPTER 4 

Abelian Groups 

The theory of abelian groups is a branch of group theory with a flavor all of 
its own. Indeed, as Laszl6 Fuchs has remarked, there are few properties 
with a more decisive influence on group structure than commutativity. 

Throughout this chapter we shall be concerned only with abelian groups 
and we shall therefore write all groups additively. 

4.1. Torsion Groups and Divisible Groups 

Let G be an abelian group and let x, y be elements of G with finite orders 
m, n respectively. If I is the least common multiple of m and n, then I(x ± y) = 
Ix ± Iy = 0 and x ± y has finite order dividing l. It follows that the set of all 
elements x which satisfy the equation nx = 0 forms a subgroup of G, written 
G[n]. By the same token the elements of finite order form a subgroup T, the 
so-called torsion-subgroup of G: clearly G! T is torsion-free. Moreover, ele
ments with order some power of a fixed prime p likewise form a subgroup 
G P' the p-primary component of G. 

Let us consider an arbitrary element x of T and write its order as a prod
uct of powers of distinct primes, say m = p~I ... p:k. Set mi = m!p:i and ob
serve that the integers ml , ..• , mk have greatest common divisor 1. Conse
quently it is possible to find integers II' ... , Ik such that 11 ml + ... + Ikmk = 

1. Hence x = (L7=1 lim;)X = L7=1 liXi where Xi = mix. But Xi has order p:i 
and therefore belongs to Gpi ' Consequently T is the sum of all the primary 
components Gp • Now consideration of orders of elements should convince 
the reader that Gp n Lq,<p Gq = 0; thus T is in fact the direct sum of the 
G p's. These conclusions are now summed up. 

93 
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4.1.1 (The Primary Decomposition Theorem). In an abelian group G the tor
sion-subgroup T is the direct sum of the primary components of G. 

This theorem has the effect of focusing our attention on two classes of 
abelian groups, torsion-free groups and torsion groups: moreover it reduces 
the study of the latter to that of abelian p-groups. 

Height 

An element of g of an abelian group G is said to be divisible in G by a 
positive integer m if g = mg l for some gi in G. If ph is the largest power of 
the prime p dividing g, then h is called the p-height of g in G: should g be 
divisible by every power of p, we say that g has infinite p-height in G. The 
notion of height, which is dual to that of order in the sense that pmG is dual 
to G[pm], is especially important in the study of torsion-free groups when 
order is useless. 

An abelian group G is said to be divisible if each element is divisible by 
every positive integer. This is equivalent to saying that each element of G 
has infinite p-height for all primes p. 

Quasicyclic Groups 

The divisible group that comes first to mind is probably the additive group 
of rational numbers 10; this, of course, is torsion-free. Obviously a quotient 
of a divisible group is divisible, so iQ/ 71. is divisible; this is a torsion group 
since n(m/n + 7l.) = OQ/z , By 4.1.1 the group iQ/ 71. is the direct sum of its 
primary components, each of which is also divisible. Now the p-primary 
component P of iQ/ 71. consists of all cosets (m/pi) + 7l. and is generated by 
the bi = (l /pi) + 7l., i = 1, 2, .. . . These satisfy the relations pb l = 0 and pbi+1 
= bi • 

Conversely let P be the group with generators aI ' a2' a3' ... and defining 
relations 

and 

Certainly P is an abelian p-group. Moreover the mapping ai H bi extends 
to an epimorphism ({J : P -+ P, by von Dyck's theorem (2.2.1). To see that ({J 

is an isomorphism observe first that each element of P can be written in the 
form mai for suitable integers m and i, in view of the relations paj +1 = aj • 

Now ({J maps mai to mbi = (m/pi) + 7l., which is trivial if and only if pi di
vides m; but in this case mai = 0 because piai = o. 

We have therefore shown that the group P can be realized as the p-com
ponent of iQ/ 71. and is a divisible abelian p-group. P is called a Prufer group 
of type pOC) , or a quasicyclic p-group. This group appeared in 1.4 as a direct 
limit of cyclic subgroups of orders p, p2, .... 
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We shall shortly see that every divisible abelian group is a direct sum of 
quasicyclic groups and copies of Q. 

The Injective Property of Divisible Abelian Groups 

An abelian group G is said to be injective if, given a monomorphism J1.: H ..... 
K and a homomorphism IX: H ..... G, with Hand K abelian groups, one can 
find a homomorphism [J: K ..... G such that IX = J1.[J, in other words such that 
the diagram 

G 

is commutative. 
Let us examine what this says. Since J1. is monic, H ~ 1m J1. ::s; K. Suppose 

that H is actually a subgroup of K and J1. is the inclusion map. Then the 
assertion of the injective property is that IX: H ..... G may be extended to a 
homomorphism [J: K ..... G in the sense that IX is the restriction of [J to H. 

What is the relation between divisibility and injectivity? They are one 
and the same property. 

4.1.2 (Baert). An abelian group is injective if and only if it is divisible. 

Proof. (i) Firstly assume that G is injective. Let g be any element of G and m 
any positive integer: we must prove that m divides g. Now the assignment 
m ~ g determines a homomorphism IX: mZ ..... G. If I is the inclusion map, 
the injective property permits the formation of the commutative diagram 

mZ~Z 

IX] //// 
//fJ 

.I 
G 

with [J a homomorphism. Then g = (m)1X = (m)l[J = (m)[J = m((l)[J), whence 
m divides g. 

(ii) Conversely let G be divisible: to prove that G is injective is harder. 
Assume that we are given J1.: H ..... K and IX: H ..... G, a monomorphism and a 
homomorphism respectively. Since we can replace H by 1m J1., there is noth
ing lost in taking J1. to be the inclusion map, so that H is a subgroup of K. 
Our problem is to extend IX to K. 

t Reinhold Baer (1902-1979). 
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Let us consider the set S of all partial extensions y: L --+ G of IX. This 
means that H :=:;; L :=:;; K and Y is a homomorphism such that hy = hlX for all 
h in H. We agree to order the set S by writing y :=:;; y' if y: L --+ G and y': L' --+ 

G are such that L s L' and y' is an extension of y. We aim to apply Zorn's 
Lemma to S and to this end we consider a chain {Yi!i E I} in S with Yi: Li--+ 
G. Put L = UiEI Li and let y: L --+ G be defined by xy = XYi when x ELi; 
this is unambiguous since Yi and Yj agree where both are defined. Then YES 
and Y is an upper bound for the chain. 

Applying Zorn's Lemma we choose a maximal element f3: L --+ G of S. If 
L = K, our task is completed, so we suppose that there exists an element x 
in K \ L. If it can be shown that f3 extends to L + (x) = M, this will contra
dict the maximality of L and terminate the proof. 

If L n (x) = 0, then M = L ~ (x) and we can extend f3 to f31: M --+ G by 
simply setting Xf31 = 0. If L n (x) =f. 0, there is a least positive integer m 
such that mx E L. Suppose that f3 maps mx to 9 in G. Since G is divisible, 
g = mg1 for some gl in G. Now every element of M can be uniquely written 
in the form I + tx where I ELand ° :=:;; t < m, by minimality of m. Thus we 
can define a function f31: M --+ G by writing (I + tX)f31 = 1f3 + tg1. The read
er is invited to perform the routine verification that f31 is a homomorphism. 

D 

The most important consequence of 4.1.2 is the direct summand property 
of divisible groups. 

4.1.3 (Baer). If D is a divisible subgroup of an abelian group G, then G = D ~ 
E for some subgroup E. 

Proof. Let I: D --+ G be the inclusion map. By the injective property (4.1.2) 
there is a homomorphism f3: G --+ D making the diagram 

D~G 

1] ///// 
",/{J 

D 

commutative; thus df3 = d for all din D. If 9 E G, then gf3 E D and thus gf3 = 

gf32. Hence g - gf3 E Ker f3 = E, say. It follows that G = D + E. Finally, if 
d E D n E, then d = df3 = 0. Hence G = D ~ E. D 

An abelian group is said to be reduced if it has no nontrivial divisible 
subgroups. The next result reduces our study to that of reduced groups and 
divisible groups. 

4.1.4. If G is an abelian group, there exists a unique largest divisible subgroup 
D of G. Moreover G = D ~ E where E is a reduced group. 
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Proof. Define D to be the subgroup generated by all the divisible subgroups 
of G. One sees at once that D is divisible. By 4.1.3 it is possible to write 
G = DEBE. Of course E is reduced. 0 

The Structure of Divisible Abelian Groups 

The following theorem completely describes the class of divisible abelian 
groups. 

4.1.5. An abelian group G is divisible if and only if it is a direct sum of iso
morphic copies of Q and of quasicyclic groups. 

Proof. We saw that Q and a group of type pro are divisible. Since a sum 
of divisible groups is evidently divisible, the sufficiency of the condition 
follows. 

Now assume that G is divisible and let T be its torsion-subgroup. We 
claim that T is divisible: for if x E T and m > 0, there is certainly an element 
y in G such that my = x, and hence such that m(y + T) = 0G/T . But G/ T is 
torsion-free, so Y ET and T is divisible. By 4.1.1 the group T is the direct 
sum of its primary components, each of which, as an image of T, must be 
divisible. Moreover 4.1.3 shows T to be a direct summand of G. Conse
quently, it is enough to prove the theorem in two special cases: G torsion
free and Gap-group. 

Suppose first of all that G is torsion-free. Let g E G and let m be a posi
tive integer; then g = mg1 for some gl in G, and in fact for precisely one gl 
in G: for mg 1 = mg2 implies that m(gl - g2) = ° and hence that gl = g2' 
because G is torsion-free. Thus it is meaningful to define (l /m)g as this gl . 
We now have an action of Q on G which, it is easy to verify, makes G into a 
Q-module. But a module over Q is simply a rational vector space and as 
such it has a basis. Viewed as an additive abelian group therefore, G is a 
direct sum of copies of Q. 

Now let G be a p-group and write P for G[p]. Then P is a module over 
the field 7l../ p71.. by means of the action x(n + p71..) = nx, (x E P, n E 7l..). Hence 
P is a vector space: let its dimension be c (a cardinal number). Now form a 
direct sum G* of c groups of type pro and write p* = G* [p]. Then p* too is 
a vector space of dimension cover 7l../p71.., and there is a monomorphism 
IX: p* --+ G mapping P* isomorphically onto P. Using the injectivity of G we 
can extend IX to a homomorphism p: G* --+ G. If Ker p were nonzero, it would 
have to contain an element of order p and IX could not be monic. If 1m p "# 
G, the divisible group 1m p would be a proper direct summand of G and in 
that case IX could not be surjective. Hence p: G* --+ G is an isomorphism and 
the proof is complete. 0 
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Subgroups of Divisible Groups 

The reader will perhaps have noticed that a subgroup of a divisible group 
need not be divisible- consider Q for example. In fact the subgroups of 
divisible groups account for all abelian groups in the sense of the following 
result. 

4.1.6. Every abelian group is isomorphic with a subgroup of a divisible abelian 
group. 

Proof. Let F be a free abelian group. It was shown in 2.3.8 that F is a direct 
sum of infinite cyclic groups; hence F is isomorphic with a subgroup of a 
direct sum D of copies of Q. Now every abelian group is an image of some 
such F and hence is isomorphic with a subgroup of a quotient group of D. 
But a quotient of D, like D itself, is divisible, so we are done. D 

EXERCISES 4.1 

* 1. Prove that a group of type pro has exactly one subgroup of each order pi and 
this is cyclic. Show also that every proper subgroup is finite. 

2. If G is an infinite abelian group all of whose proper subgroups are finite, then G 
is of type pro for some prime p. 

3. Establish the dual of Exercise 4.1.2. If G is an infinite abelian group all of whose 
proper quotient groups are finite, then G is infinite cyclic. 

4. Prove that an abelian group G is divisible if and only if it has the following 
property: G ~ H ~ K always implies that H is a direct summand of K. 

5. Describe the structure of the following groups: IR, IR*, C, C*. 

6. Let G be an abelian p-group such that GjG[p] is divisible. Prove that G is the 
direct sum of a divisible group and an elementary abelian p-group. 

4.2. Direct Sums of Cyclic and Quasicyclic Groups 

The principal theorems of this section describe the structure of finite abelian 
groups, abelian groups with the maximal condition, and abelian groups with 
the minimal condition. All these groups possess direct decompositions with 
cyclic or quasicyclic summands. 

Linear Independence and Rank 

Let G be an abelian group and let S be a nonempty subset of G. Then S is 
called linearly independent, or simply independent, if 0 ¢ S and, given distinct 
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elements SI' ... , Sr of S and integers ml , ... , m" the relation ml sl + ... + mrSr 
= 0 implies that misi = 0 for all i. If S is not independent, it is of course said 
to be dependent. The definition implies at once that the group G is a direct 
sum of cyclic groups if and only if it is generated by an independent subset: 
such a subset is called a basis of G. 

Zorn's Lemma shows that every independent subset of G is contained in 
a maximal independent subset. Moreover, if we restrict attention to inde
pendent subsets consisting of elements of infinite order or of elements of 
order some power of a fixed prime, we obtain maximal independent subsets 
consisting of elements of these types. 

If p is a prime and G an abelian group, the p-rank of G 

rp(G) 

is defined as the cardinality of a maximal independent subset of elements of 
p-power order. Similarly the O-rank or torsion-free rank 

ro(G) 

is the cardinality of a maximal independent subset of elements of infinite 
order. Also important is the Prufer rank, often just called the rank of G, 

r(G) = ro(G) + max rp(G). 
p 

These definitions would be of very little use if they depended on the cho
sen maximal independent subset. Let us show that this is not so. 

4.2.1. If G is an abelian group, two maximal independent subsets consisting of 
elements with order a power of the prime p have the same cardinality. The 
same is true of maximal independent subsets consisting of elements of infinite 
order. Thus ro(G), rp(G), and r(G) depend only on G. 

Proof. Let S be a maximal independent subset of elements of p-power order. 
If we replace each element of S with order larger than p by a suitable multi
ple, we obtain an independent subset So consisting of elements of order p 
such that lSI = ISol. If 9 E G[p], then S u {g} is dependent and there is a 
relation mg + Li misi = 0 where Si E S, mi, m are integers and mg #- O. Since 
pg = 0, we have Li pmisi = 0 and pmisi = O. Hence misi E (So) and 9 E (So)· 
Consequently G[p] = (So) and So is a basis of the vector space G[p]. Hence 
lSI = dim G[p]. 

Now let S be an independent subset of elements of infinite order. If T is 
the torsion-subgroup of G, define 8 = {s + Tis E S} . In fact 8 is independent 
in G/T. For ifLi mi(si + T) = OGIT with Si E S, then Li misi E T and Li minsi 
= 0 for some positive integer n; it follows that minsi = 0 and mi = O. Let V 
be an independent subset of G/ T containing 8, and suppose that u + T E 

V\ 8. Then {u} uS is independent, which contradicts the maximality of S. 
Thus 8 is a maximal independent subset of G/ T, and clearly 181 = lSI. Hence 
we can assume that T = 0 and G is torsion-free. 
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Let G* = G ® O. Since G is torsion-free, the mapping g 1-+ g ® 1 is a 
monomorphism from G to G* (see Exercise 4.2.8). If g E G, then S u {g} is 
dependent and mg E (S) for some m > O. Thus m(g ® 1) E (S*) where S* = 
{s ® lis E S}. Hence S* generates G* as O-vector space. Clearly S* is inde
pendent, so it is a O -basis of G* and lSI = IS*I = dim G*. 0 

Let us use the concept of rank to show that if an abelian group can be 
decomposed into a direct sum of cyclic or quasicyclic groups, the summands 
of the decomposition are essentially unique. 

4.2.2. Suppose that an abelian group G can be expressed in two ways as a 
direct sum of quasicyclic groups, cyclic groups of prime-power order and infi
nite cyclic groups. Then the sets of direct summands of each isomorphism type 
in the two decompositions have the same cardinality. 

Proof. Clearly the cardinality of the set of torsion-free summands in either 
decomposition equals roG. To prove the statement about p-summands we 
can assume that G is a p-group. Now the cardinality of the set of summands 
of order pn+1 in either decomposition equals that of the factor 

pnG Ii G[p] / pn+1G Ii G[p], 

which depends only on G. Clearly the summands of type poo in either de
composition generate the p-component of the maximal divisible subgroup D 
of G and they form a set of cardinality dim(D[p]). 0 

Two points about this result are worth noting. Firstly 4.2.2 is not a con
sequence of the Krull-Remak-Schmidt theorem-why not? Nor does 4.2.2 
guarantee the uniquencess of a direct decomposition into cyclic subgroups; 
indeed Z6 ~ Z3 EEl Z2, so there is no uniquencess of this sort. 

Free Abelian Groups 

By definition a free abelian group is a free group in the variety of abelian 
groups. It was shown in 2.3.8 that these groups are just direct sums of infi
nite cyclic groups. Whereas every abelian group is an image of a free abelian 
group, it is an important theorem that all subgroups of free abelian groups 
are likewise free abelian. 

4.2.3. If F is a free abelian group on a set X and H is a subgroup of F, then H 
is free abelian on a set Y where I YI ::;; IXI. 

Proof. Let X be well-ordered in some fashion, say as {xallX < fJ} where fJ 
is an ordinal number. Define Fa = (xyly < IX): then Fa+l = Fa EEl (xa) and 
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F/l = F. Writing H" for H II F", we have from the Second Isomorphism 
Theorem 

Ha+dH" ~ (H II Fa+l)F"IF" ~ Fa+dFa ~ <x,,>. 

Thus, either Ha = Ha+1 or Ha+1/Ha is infinite cyclic. We may therefore write 
Ha+l = Ha EB <Ya> where Ya may be O. Clearly H is the direct sum of the 
<Ya)'s and H is free on the set Y = {Ya =f. OIIX < Pl. 0 

The Projective Property of Free Abelian Groups 

There is a duality between free abelian groups and divisible abelian groups 
the nature of which is best seen by means of what is known as the projective 
property. 

An abelian group G is said to be projective if, given an epimorphism 
e: K -. H and a homomorphism IX: G -. H, for some abelian groups Hand 
K, there is a homomorphism p: G -. K such that pe = IX, that is, the follow
ing diagram commutes: 

H~K 

Observe that projectivity is derived from injectivity by reversing all arrows 
and replacing monomorphisms by epimorphisms. In this sense the two prop
erties are dU: 11 

In 4.1.2 we were able to identify the groups with the injective property. 
Let us do the same for groups with the projective property. 

4.2.4 (MacLane). An abelian group G is projective if and only if it is free 
abelian. 

Proof. First suppose that G is free abelian on a subset X. Let e: K -. H 
and IX: G -. H be given homomorphisms with e surjective. Given x in X we 
can find kx in K such that (kx)e = XIX. Define a homomorphism p: G -. K 
by means of xp = kx. Then (x)pe = (kx)e = XIX and pe = IX. Hence G is 
projective. 

Conversely, let G be projective. By 2.3.7 there is an epimorphism e: F -. G 
with F free abelian. Applying the projective property to the diagram 

G~F 

11 ///? 

/f3 
/ 

G 
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we obtain a homomorphism {3: G ~ F such that {3e = 1. Then Ker {3 = 0 
and G ~ 1m {3 ::;; F. Now apply 4.2.3 to conclude that G is free abelian. 0 

Dual to 4.1.6 is the already proven fact that every abelian group is an 
image of a free abelian group. Dual to the direct summand property of di
visible abelian groups is the following. 

4.2.5. If G is an abelian group and H is a subgroup such that G/H is free 
abelian, then G = H EB K for some subgroup K. 

Proof. Let F = G/H and denote the canonical homomorphism from G to F 
by IX. Then, F being projective, there is a commutative diagram 

F~G 

I) ///?' 

//P 
/ 

F 

with {3 a homomorphism: thus {31X = 1. If g E G, we have (g - (g)IX{3)1X = 
(g)1X - (g)1X = 0, so g E Ker IX + 1m {3; hence G = Ker IX + 1m {3. Moreover 
{31X = 1 implies that Ker IX (1 1m {3 = O. Hence G = Ker IX EB 1m {3: of course 
KerlX=H. 0 

Structure of Finite Abelian Groups 

The following result, which was the first significant structure theorem to be 
obtained in the theory of groups, classifies all finite abelian groups. 

4.2.6 (Frobenius-Stickelbergert). An abelian group G is finite if and only if 
it is a direct sum of finitely many cyclic groups with prime-power orders. 

The proof is based on a lemma. 

4.2.7. Let G be an abelian p-group whose elements have bounded orders and 
let g be an element of maximal order in G. Then (g) is a direct summand of 
G. 

Proof. By Zorn's Lemma there is a subgroup M which is maximal subject 
to M (1 (g) = O. If G = M + (g), then G = M EB (g) and the proof is com
plete. Assume, therefore, that G -# M + (g) and let x be an element of min
imal order in G\(M + (g»). By choice of x we have px E M + (g) and 
thus px = y + 19 where y E M. Since g has maximal order in G-Iet us say 

t Ludwig Stickelberger (1850-1936). 
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pn-we have 0 = pnx = pn-1y + pn-1lg and pn-1lg E M n <g) = O. Conse
quently, pn divides pn-11 and p divides I. Now write I = pj, so that p(x - jg) = 

Y E M, while x - jg ~ M since x ~ M + <g) . From the maximality of M we 
know that <x - jg, M) n <g) "# 0, which implies that there exist integers k 
and u and an element y' of M such that 0"# kg = u(x - jg) + y'. Hence 
ux E M + <g). Suppose that plu; then, since p(x - jg) E M, it follows that 
u(x - jg) E M and thus kg = O. Hence (p, u) = 1. However px E M + <g), so 
X E M + <g), a contradiction. 0 

Proof of 4.2.6. This is now easy. Suppose that G is finite. By 4.1.1 we can 
assume that G is a nontrivial p-group. If 9 is an element of maximum order 
in G, then G = G1 EB <g) by 4.2.7. But IG1 1 < IGI, so we can apply induction 
on the group order to G1 and obtain the result. The converse is obvious. 

o 

Structure of Finitely Generated Abelian Groups 

Any group, commutative or noncommutative, with the maximal condition 
on subgroups is finitely generated (3.1.6): for abelian groups the converse is 
true. 

4.2.8. An abelian group G satisfies the maximal condition if it is finitely 
generated. 

Proof. Let G be generated by gl ' " '' gn' If n = 1, then G is cyclic and Exer
cise 1.3.6 shows that every nontrivial subgroup has finite index; in this case 
G clearly has max. If n > 1, the subgroup H = <gl ' "'' gn-1) has max by 
induction on n, as does the cyclic group G/H. Finally G has max by 3.1.7. 

o 
We note another result of an elementary character. 

4.2.9. A finitely generated abelian group G is finite if it is a torsion group. 

Proof. If G = <gl' .. . , g.) and Gi = <gi), then G is the sum of the finite 
groups G1 , ... , G • . Hence G is finite. 0 

Next we shall prove an important theorem that completely classifies fi
nitely generated abelian groups. 

4.2.10. An abelian group G is finitely generated if and only if it is a direct 
sum of finitely many cyclic groups of infinite or prime-power orders. 

Proof. Let G be finitely generated. First of all suppose that G is torsion-free 
and let G = <gl' ... , gn ): we can of course assume that n> 1. Define H to 
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be the set of all x in G such that nx E <gl) for some positive integer n. We 
speedily verify H to be a subgroup: moreover if m i= 0 and mx E H, then 
nmx E <gl) for some n > 0, which shows that x E Hand G/H is torsion-free. 
Since G/H can be generated by the n - 1 elements g2 + H, ... , gn + H, in
duction on n shows G/H to be a direct sum of infinite cyclic groups; thus 
G/H is free abelian. Applying 4.2.5, we can find a subgroup K such that 
G = H EB K where K is free abelian. Now H/< gl) is certainly a torsion 
group. Since G has max (4.2.8), we can say that H is finitely generated and 
it then follows from 4.2.9 that H/<gl) is finite. Consequently there is a 
positive integer m such that mH::;; <gl) and the mapping x f-+ mx is a 
monomorphism x f-+mx from H into <gl)' Hence H is infinite cyclic and 
G = H EB K is free abelian. 

In the general case let T be the torsion-subgroup of G. By the first part of 
the proof G/T is free abelian and 4.2.5 shows that G = F E8 T where F is 
free abelian of finite rank. Now T is a finitely generated torsion group, so it 
is finite by 4.2.9 and we may apply 4.2.6 to T to obtain the result. 0 

By 4.2.10 a finitely generated abelian group may be decomposed in a 
direct sum of 10 infinite cyclic groups and lp ,i cyclic groups of order pi (where 
p is a prime and i = 1, 2, ... ); moreover the nonnegative integers, 10 , lp ,i con
stitute a set of invariants of G which determine the group to within iso
morphism. Perfect classification theorems of this type are, unfortunately, a 
rarity in group theory. 

Structure of Abelian Groups with the Minimal Condition 

Noting that 4.2.10 describes the abelian groups with max, we tum to abelian 
groups with min. 

4.2.11 (Kuros). An abelian group G satisfies the minimal condition if and only 
if it is a direct sum of finitely many quasicyclic groups and cyclic groups of 
prime-power order. 

Proof. Assume that G has min. Keeping in mind that any group with min is 
a torsion group (Exercise 3.1.7), we write G as the direct sum of its primary 
components, and we observe that all but a finite number of these compo
nents are trivial. Thus we may suppose that G is a p-group. Also, in view of 
4.1.4 and 4.1.5, we can take G to be a reduced group; the problem before us 
now is to show that G is finite. Let us suppose that G is infinite. Then on the 
basis of the minimal condition we can find a minimal infinite subgroup H of 
G. If H = pH, then H is divisible and hence H = 0 by reducibility of G. 
Consequently, pH < H and pH is finite, by minimality of H. Now H/H[p] 
~ pH by the First Isomorphism Theorem. Hence H/H[p] is finite and H[p] 
must be infinite. But H[p] is a direct sum of groups of order p and min 
forces it to be finite. 
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Conversely a quasicyclic group has min because every proper subgroup 
is finite (Exercise 4.1.1). Application of 3.1.7 now shows that a direct sum of 
the prescribed type has min. 0 

The decomposition of G obtained in 4.2.11 is unique in the sense of 4.2.2: 
thus abelian groups with min also have a simple set of invariants. 

EXERCISES 4.2 

1. If G is a free abelian group on a set with n elements, prove that G cannot be 
generated by fewer than n elements. 

2. If G is an abelian group, show that r( G) is finite if and only if max {d(H)} is 
finite where H ranges over the finitely generated subgroups of G. Prove that in 
this case case r(G) = max{d(H)}. [Note: d(H) is the minimum number of gener
ators of H.] 

*3. If G is a finitely generated abelian group, show that d(G) = r(G). Also d(G) = ro(G) 
if and only if G is torsion-free. 

*4. If A and B are finitely generated abelian groups and B is torsion-free, show that 
d(A EB B) = d(A) + d(B). 

5. Prove that an abelian group has rank ::;; 1 if and only if it is isomorphic with a 
subgroup of 0 or 0 /2. 

6. A group is torsion-free abelian of rank ::;; r if and only if it is isomorphic with a 
subgroup of a rational vector space of dimension r. 

*7. If H is a subgroup of an abelian group G, prove that the following are valid: 
(i) ro(H) + ro(G/H) = ro(G); 

(ii) riH) + rp(G/H) ~ rp(G), with inequality in general. 

*8. (Dieudonne).Let J.l.: A -+ B be a monomorphism of abelian groups and let G be 
a torsion-free abelian group. Prove that J.l.*: A ®z G -+ B ®z G is a monomor
phism where (a ® g)J.l.* = (aJ.l.) ® g [Hint: Reduce first to the case where G is 
finitely generated and then to the case G = 2.] 

*9. An abelian group G is free if and only if it has the following property: if K is 
a subgroup of an abelian group Hand H/K ~ G, then K is a direct summand 
ofH. 

10. If G is finitely generated abelian group, every surjective endomorphism of G is 
an automorphism. 

11. If G is an abelian group with min, every injective endomorphism of G is an 
automorphism. 

12. How many isomorphism types are there of abelian groups of order pO? 

13. If G is a finite abelian group whose order is divisible by m, prove that G has a 
subgroup and a quotient group of order m. 

14. Let G and H be two finite abelian groups. If for every integer m they contain 
the same number of elements of order m, then G ~ H. 

*15. Prove that a finitely generated abelian group is residually finite. 
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4.3. Pure Subgroups and p-Groups 

A very important notion in the theory of abelian groups is that of purity. A 
subgroup H of an abelian group G is called pure if 

nGnH = nH 

for all integers n ~ 0; in words, H is pure if every element of H that is divisi
ble by n in G is divisible by n in H. If G is a p-group, it is easy to see that H 
is pure in G if and only if pmG n H = pm H for all positive integers m. 

For example, if H is a direct summand of G and G = H Ei1 K, then 
nG n H = (nH + nK) n H = nH by the modular law. Hence every direct 
summand of G is pure. It may be helpful for the reader to think of a pure 
subgroup as a generalization of a direct summand. 

If H is a subgroup of G such that G/H is torsion-free, then clearly H is 
pure: in particular the torsion-subgroup of G is pure. This is a source of 
pure subgroups that are usually not direct summands. 

If H :;::; K :;::; G and K is pure in G, then obviously K/H is pure in G/H. If 
H is pure in G, the converse of this statement is true. 

4.3.1. Let H :;::; K :;::; G where G is an abelian group. If H is pure in G and 
K/H is pure in G/H, then K is pure in G. 

Proof. Let k E nG n K and write k = ng where 9 E G. Then k + H = n(g + H), 
whence, by purity of K/H, we have k + H = n(k' + H) for some k' in K. 
Thus h = k - nk' E H. Since h = ng - nk' = n(g - k'), the purity of H in G 
yields h = nh' with h' in H; therefore k = nh' + nk' = n(h' + k') E nK. This 
proves the result. 0 

In speaking of the height of an element in an abelian p-group G we shall 
always mean the p-height. The elements of infinite height in G are precisely 
the elements of the subgroup nn=I.2 .... pnG. 

4.3.2. Let G be an abelian p-group. If every element of order p has infinite 
height, then G is divisible. 

Proof. If G is not divisible, there exists an element 9 of smallest order which 
is not divisible by p. Let Igl = pm; by hypothesis m> 1. Now pm-lg has 
order p and thus has infinite height. Hence we can certainly write pm-lg = 
pmgl for some gl in G. It follows that pm-l(g - pgd = 0 and g2 = 9 - pgl 
has order at most pm-I. By minimality of m it is possible to write g2 = pg3 
for some g3 in G. Therefore 9 = g2 + pgl = P(g3 + gl)' in contradiction to 
our choice of g. 0 

This result may be used to establish the existence of pure cyclic sub
groups in groups which are not divisible. 
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4.3.3. Let G be an abelian p-group which is not divisible. Then G has a non
trivial pure cyclic subgroup. 

Proof. By 4.3.2 there is an element 9 of G[p] with finite height, say m. Then 
9 = pmh with hE G, and 9 rt pm+1G. We shall prove that <h) is pure in G. 
Since G is a p-group, it is sufficient to establish the equality piG Il <h) = 
pi<h) for all i> o. Suppose that i is the smallest positive integer for which 
this fails to hold. 

In the first place piG Il <h) is contained in pi-1G Il <h) and hence in 
pi-l<h). If m < i-I, then Ihl = pm+l :s; pi-l and pi-l<h) = 0; in this case 
piG Il <h) = 0 = pi<h). It follows that m ~ i-I. Then 9 = pm-i+l(pi-1h), 
whence pi-1h rt piG. This implies that piG Il <h) must be a proper subgroup 
of pi-l<h). Hence piG Il <h) :s; pi<h), a contradiction. 0 

Basic Subgroups 

Let G be an abelian torsion group. A subgroup B is called a basic subgroup 
if it is pure in G, it is a direct sum of cyclic groups, and GIB is divisible. 
Such subgroups play an important role in the theory of abelian p-groups. 
Our first task is to prove that they are always present. 

4.3.4 (Kulikov). Every abelian torsion group G has a basic subgroup. 

Proof. If Bp is a basic subgroup of the p-primary component of G, it is easy 
to see that B = Dr p Bp is basic in G. Therefore we may restrict ourselves to 
the case where G is a p-group. In addition, should G be divisible, 0 will 
qualify as a basic subgroup. Hence we may suppose that G is not divisible. 

Let us call a nonempty subset X pure-independent if it is independent and 
<X) is pure. On the basis of 4.3.3 we may be certain that pure-independent 
subsets exist. Clearly the union of a chain of pure-independent subsets is 
pure-independent. Thus Zorn's Lemma may be invoked to provide us with 
a maximal pure-independent subset X. Let B = <X): if we can establish 
that GIB is divisible, it will follow that B is basic. Assume therefore that this 
is not the case. 

By 4.3.3 the group GIB has a nontrivial pure cyclic subgroup <g + B). If 
pdg E B, then pdg E pdG Il B = pd B by purity of B. Hence pdg = pdb and 
pd(g _ b) = 0 for some b in B. Since (g - b) + B = 9 + B, it follows that 
g' = 9 - band g' + B have the same order. Now put Y = Xu {g'}. If Y 
were dependent, there would exist a positive integer m such that 0 "# mg' E 

B: but this conflicts with the fact that the orders of g' and g' + B are equal. 
Finally B is pure in G and <g' + B) is pure in GIB, whence <g', B) = <Y) 
is pure in G by 4.3.1. However we have shown that Y is pure-independent, 
so X is not maximal, our final contradiction. 0 
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Structure of Bounded Abelian Groups 

An additively written group is called bounded if its elements have boundedly 
finite orders: of course multiplicative groups with this property are said to 
have finite exponent but this term is less appropriate in the context of addi
tive groups. 

The mere existence of basic subgroups is enough to settle the structure of 
bounded abelian groups. 

4.3.5 (Priifer, Baer). An abelian group G is bounded if and only if it is a direct 
sum of cyclic groups with boundedly finite orders. 

Proof. Let G be bounded and let B be a basic subgroup. Then GIB is both 
divisible and bounded. But this can only mean that G = B, a direct sum of 
cyclic groups. The converse is clear. 0 

In general an abelian torsion group has many basic subgroups, but it is a 
remarkable fact that they are all isomorphic. 

4.3.6 (Kulikov, Fuchs). If G is an abelian torsion group, then all basic sub
groups of G are isomorphic. 

Proof. As usual we may assume that G is a p-group. Let B be a basic sub
group of G. Then G = pnG + B for all n > 0, by divisibility of GIB. Also 
pnG n B = pnB by purity of B and thus GlpnG =:: BlpnB. Now if k ~ n, the 
set of cyclic direct summands of B with order pk has cardinality equal to 
that of the set of corresponding summands in BlpnB and hence in some 
cyclic direct decomposition of GlpnG; by 4.2.2 this depends only on G. Hence 
any two basic subgroups are isomorphic. 0 

An Example 

The following example of a basic subgroup is fundamental in the theory of 
uncountable abelian p-groups. 

Let p be a prime and let H be the cartesian sum of cyclic groups Gl , G2 , 

... of orders p, p2, p3, .... Of course H is an abelian group and its torsion
subgroup G consists of all sequences (X2, X2' ... ) where Xi E Gi and the or
ders IXil are bounded. Also G is a p-group. The direct sum B of the Gi, 
consisting of all restricted sequences (Xl' X2, . .. ) with Xi = 0 for almost all i, 
is plainly a subgroup of G. 

4.3.7. B is a basic subgroup of G. 
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Proof. Naturally B is a direct sum of cyclic groups. If x E pmG !l B, then x = 
pm(Xl' X2 , ••• ) = (Yl' ... , Yb 0, 0, ... ), for some Xi' Yi in Gi and k ~ 0. Hence 
Yi = pmXi and x = (pmXl , . .. , pmXk' 0, ... ) = pm(Xl' X2 , ••• , Xk , 0, ... ) E pmB. 
Thus B is pure in G. Next let x = (Xl' x 2 , ••• ) in G have order pm; then 
pmxi = ° and if i > m, we have Xi E pGi since I Gd = pi. Hence X E B + pG 
and G/B = p(G/B), which implies that G/B is divisible. 0 

The group G is an example of a torsion-complete p-group, the torsion
subgroup of a cartesian sum of groups Bl , B 2 , ••• where Bn is a direct sum of 
cyclic groups of order pn. It is a fact that every abelian p-group without 
nonzero elements of infinite height is isomorphic with a pure subgroup of a 
torsion-complete p-group (see Exercise 4.3.11). 

We mention in passing an important theorem of Szelet: a basic subgroup 
of an abelian torsion group is an endomorphic image: for a proof see [b24]. 

Pure Bounded Subgroups 

It has been remarked that a pure subgroup is a generalization of a direct 
summand. It is an important fact that for bounded subgroups these con
cepts are identical. 

4.3.8. A pure bounded subgroup H of an abelian group G is a direct summand. 

Proof. Suppose that nH = 0. Let K = H + nG and consider the group G = 
G/K. We deduce from 4.3.5 that G is a direct sum of cyclic groups, say 
<x). + K), A. E i\. If x). + K has order n)., then n).x). = h). + ng). where h). E H 
and g). E G. Now n). divides n; hence h;. = n;.(x;. - (n/n;.)g;.) E n;.G!l H = n;.H, 
by purity of H. It is therefore possible to write h;. = n;.h~ with h~ in H. Set
ting Y;. = X;. - h~, we have n).y;' = n).x;. - h;. = ng).. Also Y;. + K = X;. + K. 

Define L to be the subgroup generated by nG and the Y;., A. E l:!. Our aim 
is to prove that G = HEEl L. If X = L;. m;.y;. + ng E H, then L;. m;.(x;. + K) = 
L;. m;.(y;. + K) = °6 , which implies that n;. divides m;. by independence of 
the X;. + K. But we saw that n).y;. = ng;.; thus X = L). m).y;' + ng E nG!l H = 
nH = 0. Hence H !l L = 0. 

Finally, if 9 E G and 9 + K = L;.I;.(Y;. + K), one has 9 - L).l).y;' E K and 
thus 9 - L;. 1;.Y;. = h + ng l where h E H, gl E G. Therefore 

9 = h + ng l + L l).y)., 
). 

which belongs to H + L. Hence G = H EEl L. o 
An important application of 4.3.8 is to the question: When is the torsion

subgroup a direct summand? 

t Tibor Szele (1918- 1955). 
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4.3.9. Let T be the torsion-subgroup of an abelian group G. If T is the direct sum 
of a divisible group and a bounded group, then T is a direct summand of G. 

This follows easily from 4.1.3 and 4.3.8. Let us pause to show that the 
torsion-subgroup is not always a direct summand. 

4.3.10. If C is the cartesian sum of cyclic groups of orders p, p2, p3, . .. , the 
torsion-subgroup T is not a direct summand of C. 

Proof. Let C = Cri=1 . 2 • . . . (x;) where Ix;! = pi. Denote by y the element of 
C whose nonzero components are PX2 , P2X4 , p4Xg etc. Then y ¢ T and y E 

pnC + T for all n. Therefore y + T is a nonzero element of infinite p-height 
in CI T. Since C has no such elements, T cannot be a direct summand of C. 

o 

A second important application of 4.3.8 pertains to the decomposability 
of abelian groups. 

4.3.11. If G is an abelian group which is not torsion-free, it has a nontrivial 
direct summand which is either cyclic or quasicyclic. 

Proof. Let T be the torsion-subgroup of G. If T is divisible, it is a direct 
summand and G has a quasicyclic direct summand. If T is not divisible, it 
has a nontrivial pure cyclic subgroup by 4.3.3: applying 4.3.8 we conclude 
that this is a direct summand of G since it is clearly pure in G. 0 

This has the immediate effect of determining all indecomposable abelian 
torsion groups. 

4.3.12. An indecomposable abelian group which is not torsion-free is either a 
cyclic p-group or a quasicyclic group. 

On the basis of 4.3.11 we can also describe the structure of abelian p
groups which have finite p-rank. 

4.3.13. An abelian p-group G has finite p-rank if and only if it is a direct sum 
of finitely many cyclic and quasicyclic groups. 

Proof. If G * 0 and rp(G) < 00, then G has by 4.3.11 a decomposition G = 
G1 Ei:) G2 where G1 is either nontrivial cyclic or quasicyclic. Since rp(G) = 
rp(G2 ) + 1, we can apply induction on the rank to G2 and obtain the result 
required. 0 

On the basis of 4.3.13 and 4.2.11 we conclude that for an abelian p-group, 
to have finite rank is equivalent to the minimal condition. 
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Direct Sums of Cyclic p-Groups-Kulikov's Criterion 

When is an abelian p-group G a direct sum of cyclic groups? It is not hard 
to find a necessary condition: G should have no nonzero elements of infinite 
height because nn=1 .2 .. .. pnD = 0 for any direct sum D of cyclic p-groups. 

However this condition by itself does not guarantee that G is a direct 
sum of cyclic groups. Indeed in 4.3.7 we saw an uncountable abelian p
group G without nonzero elements of infinite height which has a countable 
basic subgroup B. Such a group could not be a direct sum of cyclic groups: 
otherwise G would itself be basic and thus G ~ B by 4.3.6. 

Kulikov has shown how to strengthen the condition to make it sufficient. 

4.3.14 (Kulikov). An abelian p-group G is a direct sum of cyclic groups if and 
only if there is an ascending chain of subgroups Gi ~ G2 ~ .. , ~ Gn :=:; .. , 
whose union is G such that the height of a nonzero element of Gn cannot 
exceed some positive integer k(n). 

Proof. If G is a direct sum of cyclic groups, define Gn to be the subgroup 
generated by all summands of order at most pn. Clearly no nonzero element 
of Gn can have height greater than n - 1. Hence the Gn's form a chain of the 
type in question. 

Conversely let us assume that G has a chain {Gn} with the properties 
specified. Now there is nothing to be lost in taking k(n) to be n - 1: for we 
may add a finite number of O's at the beginning of the chain, repeat any Gn a 
finite number of times and relabel the resulting chain. Our chain will now 
have the convenient property pnG (\ Gn = 0 for n = 1,2, . ... 

Consider the set S of all chains {Hn} such that Gn ~ Hn and pnG (\ Hn = 0 
for all n. Let S be partially ordered according to rule {Hn} ~ {Kn} if and 
only if Hn ~ Kn for all n. We easily verify that Zorn's Lemma is applicable 
and we use this to select a maximal element ofS, say {Hn}. 

Choose a basis Sn for the group pn-iG (\ Hn[P]. Since pnG (\ Hn[P] = 0, 
the sets Si' S2, . .. are disjoint, and also their union S is independent. If s E S, 
write s = ph(s)g(S) where h(s) is the height of sand g(s) E G. Now consider the 
set {g(s)\s E S}. Suppose that this is dependent and Ls msg(s) = 0 where not 
every msg(s) is O. There is a term in this sum with maximal order, say ms,g(s') 
with order pd. Since S is independent, d> 1. But Ls mspd-ig(s) = 0 and 
mspd-ig(s) E (s): hence mspd-ig(S) = 0 for all sand \ms,g(s')\ < pd. By this 
contradiction the set of all g(s) is independent. We shall complete the proof 
by showing that G = T where T = (g(s)\s E S). 

As a first step let us prove that G[p] ~ T. Should this be false, there is a 
least r for which Hr[p] 1;. T since Gr[p] ~ Hr[P]. Moreover r> 1 because 
Si generates Hi[p]. Choose gin Hr[p] \ T; then g rt Hr- i by minimality of r. 
Now pr-iG (\ (g, Hr- i ) i= 0; otherwise we could replace Hr - i by ( g, Hr - i ), 
thereby contradicting the maximality of the chain {Hn} in S. Consequently 
(g) (\ (pr-iG + Hr-d i= 0; since \g\ = p, this means that 9 E pr-iG + Hr - i . 
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We can now write g = gl + h where gl E pr - I G and hE Hr- l . Then 
gl = g - h E pr- I G n Hr, so pgl E prG n Hr = 0, which shows that 

gl E pr- I G 11 Hr[P] = (Sr) ::;; T 

Also ph = p(g - g 1) = 0 and thus h E Hr -1 [p]. Minimality of r yields h E T 
and gET, a contradiction. 

For the final step we suppose that g is an element of minimal order in 
G\ T By the previous paragraph Igl = pn+1 for some n > 0 and png E T[p]; 
thus we can write png = mlsl + ... + mksk with Si in S since S generates T[p]. 
Let these Si be so ordered that s 1, ... , Sj belong to Sn +1 U Sn + 2 U ... and Sj+l' 
... , Sk belong to SI u ... uSn: here j satisfies 0 ::;; j ::;; k. If i ::;; j, then misi = 
pnai where ai E (g(s;) ::;; THence 

pn(g - al - ... - a) = mj+1sj+l + . .. + mksk. 

But Sj+l"'" Sk belong to Hn[P] and this intersects pnG in O. Therefore 
pn(g _ al - . . . - a) = 0 and g - al - ... - aj E T by minimality of Igl. Fi
nally gET because ai E T D 

Kulikov's criterion has several interesting applications. 

4.3.15 (Priifer). A countable abelian p-group G is a direct sum of cyclic groups 
if and only if it contains no nontrivial elements of infinite height. 

Proof. Only the sufficiency of the condition is in question; assume that G 
has no nonzero elements of infinite height. Since G is countable, its elements 
may be written gn' n = 1,2, .... Then Gn = (gl' .. . , gn) is finite and {Gn} is 
a chain of subgroups with union equal to G. Since Gn is finite, its non zero 
elements have boundedly finite heights. Now 4.3.14 gives the result at once. 

D 

It is important to realize that a reduced countable abelian p-group may 
have nonzero elements of infinite height. An example is the group with gen
erators XI' X 2 , ... and relations 

(see Exercise 4.3.7). 

Subgroups of a Direct Sum of Cyclic Groups 

4.3.16 (Kulikov). If G is a direct sum of cyclic groups, every subgroup of G is 
likewise a direct sum of cyclic groups. 

Proof. Let H::;; G. Suppose first that G is a p-group. By 4.3.14 there is an 
ascending chain of subgroups {Gn } such that G = Un Gn and nonzero ele-
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ments of Gn have boundedly finite heights. Put Hn = H n Gn: then {Hn} is a 
chain in H with the same properties as {G n}. Hence H is a direct sum of 
cyclic groups by 4.3.14 again. 

In the general case denote the torsion-subgroup of G by T and let G p be 
the p-primary component of G. Clearly GIT is a direct sum of infinite cyclic 
groups, that is, it is free abelian. By 4.2.3 the group HIH nTis free abelian. 
Applying 4.2.5 we write H = (H n T) EB K where K is free abelian. Finally T 
is the direct sum of the G p's, and H nTis clearly the direct sum of the 
H n G p's. But G p is the direct sum of those summands of G that are p-groups. 
Hence H n G p is a direct sum of cyclic groups by the first paragraph. The 
theorem now follows. 0 

It would be a pity to quit the theory of abelian p-groups without at least 
mentioning Ulm's theorem. This remarkable result does no less than char
acterize countable reduced abelian p-groups in terms of the cardinalities of 
certain factors, the so-called Ulm-Kaplansky invariants. Two groups are iso
morphic precisely when they have identical invariants. Space forbids our 
presenting this theory here, but the accounts in [b37] and [b25] are warmly 
recommended to the interested reader. 

EXERCISES 4.3 

1. If H is pure in K and K is pure in G, then H is pure in G. 

2. In a torsion-free abelian group the intersection of a family of pure subgroups is 
pure. However in a finite abelian group this need not be true. 

3. The pure subgroups of a divisible abelian group are just the direct summands. 

4. An abelian p-group is divisible if and only if it contains no nontrivial pure cyclic 
subgroups. 

*5. An abelian p-group has finitely many elements of each order if and only if satis
fies min. Use this to characterize abelian groups which have only finitely many 
elements of each order (including 00). 

6. Every abelian p-group is an image of some direct sum of cyclic p-groups. 

7. Let G be generated by Xl' X2, ... subject to defining relations PXI = 0, piXi+l = 
Xl and Xi + Xj = Xj + Xi' Prove that G is a countable reduced abelian p-group 
containing a nonzero element of infinite height. 

8. An abelian p-group has a bounded basic subgroup if and only if it is the direct 
sum of a divisible group and a bounded group. 

*9. Let G be an abelian group such that rp(G) < 00 if p = 0 or a prime. 
(a) If H ~ G, show that rp(G/H) ~ ro(G) + rp(G) for all p > O. 
(b) Prove that G/nG is finite for all n > O. 

10. If G is an abelian group such that Aut G is finite, prove that G has finite torsion
subgroup. If End G is finite, prove that G is finite. 
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11. Let G be an abelian p-group with no nontrivial elements of infinite height. Let B 
be basic in G and write B = BI EB B2 EB'" where Bj is a direct sum of cyclic 
groups of order pj. Define Cn to be the subgroup generated by pnG and B. +1, 

B.+ 2 , .••• 

(a) If g E G, prove that there exist elements b j E B j such that 

g == b l + ... + bn mod C. for all n ~ 1. 

(b) Prove that the mapping 0: g H (b l , b2 , ... ) is a well-defined monomorphism 
from G to the torsion-subgroup B of Crj=I.2 .... Bj • 

(c) Show that GB is pure in B. 

12. If G and B are as in Exercise 4.3.11, prove that IGI :5: IBINo. 

13. Let G = (XI) EB (X2) EB'" where Ixd = p" and nl < n2 < .... Let B be the sub
group generated by all Xj = Xj - p"+! - "Xi+I' Prove that B is basic in G and 
XI rt B, so B of G. 

14. (Kulikov) Prove that an abelian torsion group has a unique basic subgroup if 
and only if it is divisible or bounded. [Hint: Let B be the unique basic subgroup 
of the p-group G. Write B = (x) EB BI and show that G = (x) EB GI for some 
GI. If a E GI and lal :5: lxi, prove that the assignments x H xa and gl H gl, 

(gl E Gd, determine an automorphism of G. Deduce that a E B.] 

15. (V. Walter). Prove that an abelian group G has no quasicyclic quotients if and 
only if there is a finitely generated subgroup H such that G/H is a direct sum of 
bounded p-groups for various primes p. [Hint: Assume that G has no quasicyclic 
quotients and show that G cannot have a free abelian subgroup with infinite 
rank. Reduce to the case where G is a torsion group and apply 4.3.4]. 

16. Let A and B be abelian torsion groups. Prove that A ®2 B is a direct sum of 
finite cyclic groups. [Hint: Use basic subgroups]. 

4.4_ Torsion-Free Groups 

Torsion-free abelian groups are much harder to deal with than abelian p
groups and, except in the case of groups of rank 1, no really satisfactory 
classification exists.t Since a torsion-free abelian group can be embedded in 
a torsion-free divisible abelian group (Exercise 4.2.6), that is, in a rational 
vector space, in treating torsion-free abelian groups we are really working 
with additive subgroups of rational vector spaces. 

Height and Type 

The concept of height provides an important way of distinguishing between 
elements in torsion-free abelian groups. In the ensuing discussion we shall 
suppose that PI' P2, ... is the sequence of primes written in their natural order. 

t For a description of torsion-free abelian groups in terms of matrices see [b25]. 
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If g is an element of an abelian group G, the height vector of g is h(g) = 
(h1' h2, ·· ·) where hi is the Pc height of g in G. Each hi is therefore 00 or a 
nonnegative integer. Any vector h with components of this sort will be called 
a height without reference to a particular abelian group. 

The set of all heights may be partially ordered by defining h :::;; hi to mean 
that hi :::;; hi for all i: here the symbol 00 is subject to the usual rules. Thus 
o = (0, 0, ... ) is the unique minimum height and 00 = (00, 00, . .. ) the unique 
maximum height. 

If g is a group element with p-height h, then pg has p-height h + 1. Thus 
if the p-height of an element g of G is increased for finitely many primes p, 
the resulting height will be that of a multiple of g. This might suggest that 
such heights be regarded as equivalent. 

Accordingly two heights h and hi will be called equivalent if hi = hi for 
almost all i and hi = hi whenever hi or hi is infinite. One readily verifies that 
this is an equivalence relation on the set of heights. The equivalence classes 
are termed types. The type of a group element g is defined to be the type of 
its height vector: this will be denoted by 

t(g). 

The set of all types can also be partially ordered: we define t :::;; t' to mean 
that h :::;; hi where h and hi are some heights belonging to the types t and t' 
respectively. It is easy to check the axioms for a partial order. Clearly there 
is a unique minimum and a unique maximum type. 

Torsion-Free Groups of Rank 1 

Let us see how the concept of type may be applied to torsion-free groups of 
rank 1: note that such groups are essentially subgroups of Q . 

Suppose that G is a torsion-free abelian group of rank:::;; 1 and let gl' g2 
be two nonzero elements of G. Then <gl) (') <g2) # ° since {gl' g2} must 
be dependent. Thus 0# m1g1 = m2g2 for certain integers mi' It follows from 
the definition that h(gl) and h(g2) are equivalent and hence that t(gl) = 
t(g2)' Thus all nonzero elements of G have the same type, which is referred 
to as the type of G, in symbols t(G). 

4.4.1 (Baer). Two torsion-free abelian groups of rank :::;; 1 are isomorphic if 
and only if they have the same type. Moreover every type is the type of some 
torsion-free abelian group of rank ° or 1. 

Proof. Suppose that G and H are two torsion-free abelian groups of rank 1 
with the same type. Let 0# a E G and 0# bE H: then h(a) = (k1' k2, ... ) 
and h(b) = (11,/2",,) belong to the same type. The height vectors differ in 
only finitely many components, say at n1, n2, ... , ns' Let us write k(i) = k., 
and I(i) = I.,; then k(i) and I(i) are unequal integers and we can write 
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a = pk(l). .. pk(S)a' and b = pl(l). .. pl(Slb' for some a' in G and b' in H. Now 
nl"s "l"s 

b(a') = b(b'); consequently the equation mx = na' has a solution for x in 
G if and only if my = nb' has a solution for y in H. Moreover these equations 
have a unique solution for given m and n if they have any solution. The 
assignment x 1-+ y is a bijection from G to H since every element of G or H 
is realized as a solution of some such equation. This bijection is easily seen 
to be a homomorphism, so G ~ H. 

Finally let t be any type and let b = (hI, h2 , ••• ) be any height in t. Define 
G to be the subgroup of Q generated by the rational numbers lip!, i = 1, 2, 
. .. , j = 0, 1, ... , hi. Clearly 1 has height b in G, so t(G) = t(l) = t and our 
theorem is proven. 0 

For example 7l.. has the type of (0,0, . .. ) and Q has the type of (00, 00, . .. ). 
The group of all dyadic rationals m2n, (m, n E 7l..), has the type of (00, 0, 0, ... ). 
It is clear that the set of isomorphism classes of torsion-free abelian groups 
ofrank 1 has the cardinality 2910. 

Indecomposable Torsion-Free Abelian Groups 

Whereas an indecomposable abelian torsion group is either cyclic or qua
sicyclic (4.3.12), it is a measure of the difficulty of the theory of torsion-free 
abelian groups that indecomposable groups can have rank greater than 1. 
In fact such examples are relatively common. 

4.4.2. There exist indecomposable torsion-free abelian groups of rank 2 which 
have exactly two automorphisms. 

Proof. Let V be a rational vector space of dimension 2 and let {u, v} be a 
basis for V. Choose three distinct primes p, q, r and define G to be the sub
group of V generated by all elements of the form 

where m assumes all integral values. Certainly G is a torsion-free abelian 
group of rank 2. 

Our first object is to show that the only elements with infinite p-height in 
G are rational multiples of u. To this end suppose that 

g = iplu + jqmv + krn(u + v) 

has infinite p-height: here i,j, k, I, m, n are integers. For any positive integer 
t there is a gin G such that g = ptg; write g in the form 

ip'u + Jqiiiv + krii(u + v) . 

Since u and v are independent, the coefficients of v in g and ptg are equal; 
thus jqm + krn = pt(]qiii + kr ii ). Hence the rational number (jqm + krn)p-t 
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involves no positive power of p in its denominator, no matter how large tis. 
This can only mean that jqm + kr" = 0, so that g = (ipl + kr")u as claimed. 
In a similar way one proves that elements of infinite q- or r-height are ratio
nal multiples of v or u + v respectively. 

The information just obtained can be used to identify the automorphisms 
of G. If IX E Aut G, then u and UIX have the same p-height; therefore UIX = du 
where d is rational. For similar reasons VIX = ev and (u + V)IX = f(u + v) with 
e and f rational. But (u + V)IX = UIX + VIX, so d = e = f and hence XIX = dx 
for all x in G. Since du and dv have to belong to G, inspection of the genera
tors of G reveals that d is an integer. Also IX-I exists, so d = ± 1. The map
ping x f---4 - x is an automorphism IX of G; therefore Aut G has order 2, 
being generated by this IX. 

Finally, suppose G = H EB K where H i= 0 and K i= O. The assignments 
h f---4 - h, k f---4 k, (h E H, k E K), determine a nontrivial automorphism of G 
that does not equal IX. By this contradiction G is indecomposable. 0 

It should be apparent to the reader that by increasing the number of 
primes in the preceding example indecomposable torsion-free abelian groups 
of all countable ranks may be constructed. 

Pontryagin's Criterion for Freeness 

In certain contexts the following criterion is useful. 

4.4.3 (Pontryagin). Let G be a countable torsion-free abelian group. Then G is 
free abelian if and only if every subgroup with finite rank is free abelian. 

Proof. Necessity of the condition follows from 4.2.3. Assume that G is not 
free abelian but that every subgroup of finite rank is. Let {gl' g2, ... } be a 
countable set of generators of G and define GI to consist of all x in G such 
that mx E (gl) for some m > o. Clearly GI has rank 1, so it is infinite cyclic 
by hypothesis. Now GIGI is torsion-free and countable. Moreover its sub
groups of finite rank are free abelian: for if HIG I is such a subgroup, H has 
finite rank and is therefore free abelian and finitely generated; thus HIG I is 
free abelian, being finitely generated and torsion-free. Consequently, GIG I 

inherits the hypothesis on G. 
In the same way define G2 /G I to consist of all x + GI such that m(x + GI ) 

E (g2 + GI ) for some positive m. Then G2/G I is infinite cyclic and GIG2 in
herits the hypothesis on G. Continuing in this manner we construct a count
able ascending chain of subgroups GI < G2 < ... with union G such that 
Gi+dGi is infinite cyclic. Now write Gi +l = Gi EB (Xi +1 ). Then it is evident 
that Xl' x 2 , ••• generate G and that these elements form an independent set. 
Hence G is a free abelian group on {Xl' X2'···}· D 
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Thus if a countable torsion-free abelian group is not free abelian, the 
trouble must already occur in a subgroup of finite rank. The same cannot 
be said of uncountable groups, as we shall soon see. 

Cartesian Sums of Infinite Cyclic Groups 

Cartesian sums of torsion-free abelian groups of rank 1 form an interesting 
class of groups sometimes called vector groups. For simplicity we shall dis
cuss only cartesian sums of infinite cyclic groups. Such groups are not free 
abelian but they come rather close to having this property. 

4.4.4 (Specker). Let G be a cartesian sum of infinitely many infinite cyclic 
groups. Then G is not expressible as a direct sum of indecomposable groups. 
I n particular G is not free abelian. 

Proof. Let G = Cr).eA X). where X). is infinite cyclic and A is infinite. Sup
pose that G = DrieI Gi where Gi is indecomposable and nontrivial. If K). 
denotes the kernel of the natural projection G -.. X)., then n). K). = 0 and 
G/K). is infinite cyclic. Hence Gi i K). for some A. and G;/(Gi II K).) is infinite 
cyclic, whence Gi II K). is a direct summand of the indecomposable group 
Gi. Thus Gi II K). = 0 and Gi is infinite cyclic. Consequently G is free abelian: 
we must show this to be impossible. By 4.2.3 subgroups of G are also free 
abelian, so we can replace A by a countably infinite subset. Henceforth as
sume that A is countable, equal to {1, 2, ... } say: note that G is uncountable 
while D = Dri=1,2, ... Xi is countable. 

Let H be the subgroup consisting of all h in G such that for each positive 
integer i almost all the components of h are divisible by 2i. If h E H, then 
we can find an element d of D such that h - d E 2H. Hence H :::;; D + 2H 
and IH : 2HI :::;; IDI, which is countable. Since H is free abelian, it is count
able. But this is incorrect since H has an uncountable subgroup, namely 
Cri=1,2, ... 2iXi. 0 

We show next that the group G has the remarkable property that each of 
its countable subgroups is free abelian. This will be an easy consequence of 
the following result. 

4.4.5 (Specker). Let G be a cartesian sum of infinite cyclic groups. Then every 
finite subset of G is contained in a finitely generated direct summand of G 
whose direct complement is also a cartesian sum of infinite cyclic groups. 

Proof. Let G = Cr).eA X). where X). = 71.., and let {g(1), ... , g(n)} be a finite 
subset of G. The theorem will be proved by induction on n. Consider first 
the case n = 1 and let g(1) #- O. Define k to be the smallest absolute value of 
a non-zero component of g(1). If k = 1, then g~1) = ± 1 for some A.: in this 
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case if K;, is the kernel of the projection G ~ G;" then plainly G = <g(l» EB 
K;,; of course K;, ~ Cr/l#;' Xw Now let k > 1. 

Write g~1) in the form kq;, + r;, where q;" r;, are integers and 0 ~ r;, < k, 
and define elements x, y of G by the rules X;, = q;, and y;, = r;, . Thus g(1) = 

kx + y. Now g~~ = ±k for some Ao in A; then q;,o = ± 1 and r;,o = 0, so 
that IX;'ol = 1. The argument of the first paragraph shows that G = <x) EB 
K;,o' Now Y E K;,o because r;,o = 0, and clearly the smallest ly;,1 is less than k. 
Hence induction on k gives K;,o = L EB M where L is finitely generated and 
contains y and M is a cartesian sum of infinite cyclic groups. Thus g(l) = 

kx + Y E <x) EB Land G = <x) EEl L EB M. 
Now let n > 1 and assume that g(1), .•. , g(n-1) are contained in a finitely 

generated subgroup G1 and that G = G1 EB G2 where G2 is a cartesian sum 
of infinite cyclic groups. Write g(n) = x + y with x E G1 and y E G2 . Then y 
belongs to a finitely generated subgroup G3 such that G2 = G3 EB G4 and G4 

is a cartesian sum of infinite cyclic groups. Finally G = G1 EB G3 EB G4 and 
all the g(i) belong to G1 EB G3 . D 

4.4.6 (Specker). If G is a cartesian sum of infinite cyclic groups, every count
able subgroup of G is free abelian. 

Proof. Let H be a countable subgroup which is not free. By 4.4.3 there exists 
a subgroup K of H with finite rank which is not free. Let S be a maximal 
independent subset of K. Then S is finite and thus lies in a finitely generated 
direct summand D of G, by 4.4.5. If k E K, then mk E <S) ~ D for some 
m > O. But GID is torsion-free, so kED and K ~ D. Now D is free abelian, 
being finitely generated (4.2.10), so K is free abelian, a contradiction. D 

Taking 4.4.4 and 4.4.6 together we see that Pontryagin's criterion is not 
valid for uncountable groups. 

EXERCISES 4.4 

* 1. (a) If G and H are torsion-free abelian groups of rank 1, show that G is isomor
phic with a subgroup of H if and only ift(G) ~ t(H). 

(b) Prove that if G is isomorphic with a subgroup of Hand H is isomorphic 
with a subgroup of G, then G ~ H (where G and H are as in (a)). 

2. Show that the conclusion of Exercise 4.4.1 (b) is not valid for torsion-free abelian 
groups of rank 2. [Hint: let A and B be the additive groups of all m3" and m5", 
(m, n E Z), respectively. Consider G = A EEl Band H = <a + b, 2G) where a E 

A\2A and b E B\2B.] 

3. If G is a torsion-free abelian group of rank 1, describe Aut G and End G in terms 
of the type of G. When is Aut G finite? 

4. Show that there exist 2Ko torsion-free abelian groups of rank 1, say {GAIA E A}, 
such that Hom(GA, G~) = 0 if A i= J1. 
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5. Find torsion-free abelian groups whose automorphism groups are elementary 
abelian 2-groups of cardinality 2~o and 22"0 respectively. 

6. Construct an indecomposable torsion-free abelian group of rank r for each count
able r. 

*7. A group is called a minimax group if it has a series of finite length whose factors 
satisfy max or min. 
(a) Prove that an abelian group G is a minimax group if and only if it has a 

finitely generated subgroup H such that G/H has min. 
(b) Show that the torsion-subgroup of an abelian minimax group has min and is 

a direct summand. 
(c) Let G be a torsion-free abelian minimax group. Prove that G has a finitely 

generated free abelian subgroup H such that G/H is a divisible group with 
min. If K is another such subgroup, prove that H ~ K and G/H ~ G/K. 

(d) Characterize subgroups of Q that are minimax groups: hence characterize 
torsion-free abelian minimax groups. 

8. (Sasiada). Let G be a countable reduced torsion-free abelian group and let C be 
a cartesian sum of countably many infinite cyclic groups. If IX: C -+ G is a homo
morphism, prove that ailX = 0 for almost all i where ai is the element of C whose 
ith component is 1 and other components are O. [Hint: Assume that ailX i= 0 for 
all i. Find a sequence of integers 1 = n1 < n2 < ... such that (ni!)ailX ~ ni+1 G. 
Now argue that there is an h = (h 1 , h2 , ... ) i= 0 in C such that hlX = 0 and hi = 
o or ±niL Let m be the smallest integer such that hm i= 0 and write hmam = 
h - (0, 0, ... ,0, hm +1 , . •. ) .] Remark: Groups with the property just established 
for G are called slender groups. 

9. (Los). Let C and G be as in Exercise 4.4.8. Let D be the direct sum of the infinite 
cyclic groups. 
(a) If IX: C -+ G is a homomorphism that vanishes on D, prove that IX = O. 
(b) Prove that CjD does not have G as a homomorphic image if G i= 1. 
[Hint: To prove (a) suppose that XIX i= 0 where x = (m1 , m2 , •• • ). Define a homo
morphism {3: D -+ C by the rule ai{3 = (0, 0, ... ,0, mi. mi+1," .). Prove that ai{31X i= 
0.] 



CHAPTER 5 

Soluble and Nilpotent Groups 

In this chapter we shall study classes of groups which can be constructed 
from abelian groups by repeatedly forming extensions, the process by which 
finite groups are built up from simple groups. 

5.1. Abelian and Central Series 

Definition. A group G is said to be soluble (or solvable) if it has an abelian 
series, by which we mean a series 1 = Go<l G1 <l "'<l Gn = G in which each 
factor G;+dG; is abelian. 

Naturally every abelian group is soluble. The first example of a non
abelian soluble group is the symmetric group S3' 

Definitions. If G is a soluble group, the length of a shortest abelian series in 
G is called the derived length of G. Thus G has derived length 0 if and only if 
it has order 1. Also the groups with derived length at most 1 are just the 
abelian groups. A soluble group with derived length at most 2 is said to be 
met abelian. 

We record next some of the most elementary properties of soluble groups. 

5.1.1. The class of soluble groups is closed with respect to the formation of 
subgroups, images, and extensions of its members. 

Proof. Let G be a soluble group with an abelian series 1 = Go <l G1 <l . . . 
<l Gn = G. If H is a subgroup of G, then by the Second Isomorphism 
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Theorem H n Gi+1/H n Gi ~ (H n Gi+1)GJGi ::s; Gi+dGi, which shows that 
{H n Gdi = 0, 1, ... , n} is an abelian series of Hand H is soluble. If N <J G, 
then Gi+1NIGiN ~ Gi+dGi+1 n (GiN), which is an image of Gi+dGi. By the 
Third Isomorphism Theorem {GiNINli = 0, 1, ... , n} is an abelian series 
of GIN, so this is a soluble group. The third statement is obvious. D 

5.1.2. The product of two normal soluble subgroups of a group is soluble. 

Proof. Let M <J G and N <J G where M and N are soluble. Then 5.1.1 shows 
that MNIN ~ MIM n N is soluble. Hence MN is soluble. D 

It follows that every finite group G has a unique maximal normal soluble 
subgroup, namely the product S of all normal soluble subgroups, the soluble 
radical of G. Since GIS is clearly semisimple, every finite group is an exten
sion of a soluble group by a semisimple group. 

An abelian series of a finite group can be refined to a composition series 
whose factors are abelian simple groups, and hence are of prime order. Thus 
a finite group is soluble if and only if it has a series whose factors are cyclic 
groups with prime orders. However, despite the fact that finite soluble groups 
can be constructed from such elementary groups, their structure is by no 
means obvious. 

Definitions. A group G is called nilpotent if it has a central series, that is, a 
normal series 1 = Go ::s; G1 ::s; ... ::s; Gn = G such that Gi+1/Gi is contained 
in the center of GIGi for all i. The length of a shortest central series of G is 
the nilpotent class of G. 

A nilpotent group of class 0 has order 1 of course, while nilpotent groups 
of class at most 1 are abelian. Whereas nilpotent groups are obviously solu
ble, an example of a nonnilpotent soluble group is S3 (its centre is trivial). 
The great source of finite nilpotent groups is the class of groups whose or
ders are prime powers. 

5.1.3. A finite p-group is nilpotent. 

Proof. Let G be a finite p-group of order> 1. Then 1.6.14 shows that (G -# 
1. Hence GgG is nilpotent by induction on IGI. By forming the preimages of 
the terms of a central series of GgG under the natural homomorphism G
GgG and adjoining 1, we arrive at a central series of G. D 

5.1.4. The class of nilpotent groups is closed under the formation of subgroups, 
images, and finite direct products. 

The proof is left to the reader as an exercise. 
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Commutators 

To make progress in the subject it is necessary to develop a systematic cal
culus of commutators. 

Let G be a group and let Xl' x 2 , •.. be elements of G. Recall that the 
commutator of Xl and X2 is 

[Xl' x2J = x1lX2" lXl X2 = xllx~2. 

More generally, a simple commutator of weight n ~ 2 is defined recursively 
by the rule 

[Xl'···' xnJ = [[Xl,···, Xn-lJ, xnJ, 

where by convention [xlJ = Xl. A useful shorthand notation is 

[X, nY] = [x, y, ... , y]. 
'-y---l 

n 

We list now the basic properties of commutators. 

5.1.5. Let x, y, z be elements of a group. Then: 

(i) [x, yJ = [y, xrl; 
(ii) [xy, zJ = [x, zJY[y, z] and [x, yzJ = [x, zJ [x, yr; 

(iii) [x, y-lJ = ([x, yy'rl and [X-I, yJ = ([x, yy-'r l ; 
(iv) [x, y-l, zJY[y, z-t, xr[z, x-I, yy = 1 (the Hall-Witt identity). 

Proof. The first three parts are easily checked. (iv) is most conveniently 
proved by setting u = xzx-lyx, V = yxy-lzy, and w = zyz-lxz, and observing 
that [x , y-t, zJY = u-lv, [y, z-t, xJz = v-lw and [z, x-I, yy = w-lu; the iden
tity is then obvious. D 

Commutator Subgroups 

It is useful to be able to form commutators of subsets as well as elements. 
Let Xl' X 2' ... be nonempty subsets of a group G. Define the commutator 
subgroup of X 1 and X 2 to be 

[Xl' X 2J = <[Xl' x2Jlx l E Xl' X2 E X 2 ) . 

More generally, let 

[X 1, ... , XnJ = [[X l' ... , Xn-lJ, XnJ 

where n ~ 2. Observe that [Xl' X 2J = [X 2 , XlJ by 5.1 .5(i). It is sometimes 
convenient to write [X, nY] for [X, Y, ... , Y]. 

~ 
n 
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It is natural to introduce an analogue of the conjugate of an element. 
Accordingly we define 

X~2 = <X~2 = X;-lX1X2!X l E Xl' x 2 E X 2 ). 

If X is a subset and H is a subgroup of a group, then X S X H <J <X, H). 
Thus X H = X<X,H) is precisely the normal closure of X in <X, H) and the 
notation is consistent with that used previously for normal closures. 

5.1.6. Let X be a subset and K a subgroup of a group. 

(i) X K = <X, [X, K]). 
(ii) [X, K]K = [X, K]. 

(iii) If K = < Y), then [X, K] = [X, Y]K. 

Proof. (i) This follows from the identity Xk = x[x, k]. 
(ii) The subgroup [X, K]K is generated by all [x, kl]k2, where x E X and 

ki E K . Now 5.1.5 shows that [x, klr 2 = [x, k2r l [x, kl k2 ], so [x, kl]k2 E 
[X, K] and [X, K]K = [X, K]. 

(iii) By (ii) it is enough to show that [x, k] E [X, Y]K for all x in X 
and k in K. Now we may write k = Y~'y;2 ... y:r where Yi E Y and Si = 
± 1. Firstly [x, Yll] = ([x, Y1JY,'rl E [X, y]K, so [x, k] E [X, y]K if 
r = 1. Let r > 1 and put k' = Y~' ... Y::-i. Then [x, k] = [x, k'y:r] = 
[x, y:r] [x, k']Yl, a product which belongs to [X, y]K by induction on r. 

o 
5.1.7. Let Hand K be subgroups of a group. If H = <X) and K = < Y), then 
[H, K] = [X, y]HK. 

This follows from 5.1.6 (iii). 

The Derived Series 

Recall that G' is the derived subgroup of the group G, being generated by all 
commutators in G: thus G' = [G, G]. By repeatedly forming derived sub
groups a descending sequence of fully-invariant subgroups is generated: 

G = G(O) ~ G(l) ~ G(2) ~ ... 

where G(n+1) = (G(n»),. This is called the derived series of G, although it need 
not reach 1 or even terminate. Of course all the factors G(n)/G(n+1) are abelian 
groups: the first of these, GIG', is of particular importance and is often writ
ten Gab since it is the largest abelian quotient group of G. 

5.1.S. If 1 = Go <J Gl <J ... <J Gn = G is an abelian series of a soluble group 
G, then G(i) s:; Gn- i . In particular G(n) = 1. The derived length of G is equal to 
the length of the derived series of G. 
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Proof. The inclusion is certainly true if i = 0; assume that it is valid for i. 
Then G(i+1) = (G(i)), :::;; (Gn - J' :::;; Gn -(i+1) since Gn-dGn-(i+1) is abelian. It fol
lows that no abelian series can be shorter than the derived series. D 

According to 5.1.8 a group is soluble if and only if its derived series reaches 
the identity subgroup after a finite number of steps. By the same result every 
soluble group has a normal abelian series, that is to say, an abelian series all 
of whose terms are normal subgroups, the derived series being an example. 

The Lower and Upper Central Series 

There is another natural way of generating a descending sequence of com
mutator subgroups of a group, by repeatedly commuting with G. There re
sults a series 

G = 1'1 G 2 1'2G 2 ... 

in which 1'n+l G = [1'nG, G]. This is called the lower central series of G: no
tice that 1'nGIYn+1 G lies in the center of GIYn+l G and that each 1'nG is fully
invariant in G. Like the derived series the lower central series does not in 
general reach 1. The reader should keep in mind that 1'1 G is the first term of 
the lower central series whereas G(O) is the first term of the derived series. 

There is an ascending sequence of subgroups that is dual to the lower 
central series in the same sense that the center is dual to the commutator 
subgroup. This is the upper central series 

1 = (OG:::;;(l G :::;;(2 G :::;;···, 

defined by (n+l Gi'nG = the center of Gi'nG. Each (nG is characteristic but 
not necessarily fully-invariant in G. Of course (1 G = (G. This series need 
not reach G, but if G is finite, the series terminates at a subgroup called the 
hypercenter. 

The crucial properties of these central series are displayed in the next 
result. 

5.1.9. Let 1 = Go :::;; G1 :::;; ... :::;; Gn = G be a central series in a nilpotent group 
G. Then: 

(i) 1'iG :::;; Gn- i+1, so that 1'n+l G = 1; 
(ii) Gi :::;; (iG, so that (nG = G; 

(iii) the nilpotent class of G = the length of the upper central series = the 
length of the lower central series. 

Proof. (i) This is clear if i = 1. Since Gn-i+1/Gn-i lies in the center of G/Gn- i, 
we have [Gn- i+1' GJ :::;; Gn- i· By induction 1'i+l G = [1'iG, GJ :::;; [Gn- i+1, GJ 
:::;; Gn - i as required. 
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(ii) The proof is another easy induction. 
(iii) By (i) and (ii) the upper and lower central series are shortest central 

series of G. D 

In particular, a group is nilpotent if and only if the lower central series 
reaches the identity subgroup after a finite number of steps or, equivalently, 
the upper central series reaches the group itself after a finite number of 
steps. 

5.1.10 (The Three Subgroup Lemma: Kaluznin, P. Hall). Let H, K, L, be 
subgroups of a group G. If two of the commutator subgroups [H, K, L], 
[K, L, H], [L, H, K] are contained in a normal subgroup of G, then so is the 
third. 

Proof. By 5.1.7 the group [H, K, L] is generated by conjugates of commuta
tors of the form [h, k- 1, I], hE H, k E K, IE L, with similar statements for 
[K, L, H] and [L, H, K]. The Hall-Witt identity (5.1.5) shows that if two of 
[h, k-1, I], [k, 1-1, h], [I, h-1, k] belong to a normal subgroup of G, so does 
the third. This implies the result. D 

The Three Subgroup Lemma enables us to establish several useful com
mutator properties of the upper and lower central series. 

5.1.11. Let G be any group and let i andj be positive integers. 

(i) [YiG, yjG] ::; Yi+jG. 
(ii) Yi(Y P) ::; Y ijG. 

(iii) [YiG, (jG] ::; (j-l G if j ~ i. 
(iv) (i(Ggp) = (i+jG/(p. 

Proof. (i) Use induction onj, the casej = 1 being clear. Lemma 5.1.10 shows 
that [YiG, Yj+l G] = [yjG, G, YiG] is contained in the product 

[G, YiG, yjG] [YiG, yp, G]: 

by induction the latter is contained in Yi+j+l G. 
(ii) Use induction on i, the case i = 1 being obvious. Then Yi+l (yP) = 

[Yi(yjG), yP] ::; [YijG, yP] ::; Y(i+l)j by (i). 
(iii) This is clear if i = 1. Now by 5.1.10 we have 

[Yi+1 G, (jG] = [YiG, G, (jG] ::; [G, (P, YiG] [(P, YiG, G], 

a product which is contained in (j-(i+l)G by induction on i. 
(iv) Use induction on i. D 

5.1.12. If G is any group, then G(i) ::; Yz;G. If G is nilpotent with positive class 
c, its derived length is at most [log2 c] + 1. 
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Proof. The first part follows on applying 5.1.11(ii) to G(i) = yz(oo'(yzG)oo,) 
where yz is taken i times. Now let G be nilpotent with class c > 0 and let d 
be the derived length; then G(i) .:s; YziG .:s; Yc+l G = 1 provided 2i ;;::: c + 1. The 
smallest such i is [logz c] + 1, whence d .:s; [logz c] + 1. 0 

Triangular and Unitriangular Groups 

We conclude this section with a well-known ring-theoretic source of exam
ples of nilpotent groups. Let S be a ring with identity and let N be a subring 
of S. Write N(i) for the set of all sums of products of i elements of N where 
i > 0; clearly N(i) is a subring. Also N(i) = 0 if and only if all products of i 
elements of N vanish. If some N(i) equals 0, then N is said to be nilpotent. 

Assume that N(n) = 0 and let V be the set of all elements of the form 
1 + x where x E N. Then V is a group with respect to the ring multiplica
tion; for 

(1 + x)(1 + y) = 1 + (x + y + xy) E V 
and 

(1 + Xf1 = 1 + (-x + X Z - 00 . + (-It-1xn - 1)E V: 

here it is relevant that xn = O. Put Vi = {I + xix E N(i)}. We shall prove 
that 1 = Vn.:s; Vn- 1 .:s; ... .:s; VI = V is a central series of V. In the first place 
Vi is a subgroup because N(i) is a subring. Let x E N(r) and Y E N(s); then 

[1 + x, 1 + y] = ((1 + y)(1 + x)t1(1 + x)(1 + y) 

= (1 + y + x + yxf1(1 + x + y + xy). 

Setting u = x + y + xy and v = y + x + yx, we have 

[1 + x, 1 + y] = (1 - v + V Z - 00. + (-It- 1vn - 1 )(1 + u) 

= 1 + (1 - v + VZ - ... + (-It-Zvn-Z)(u - v) + (-I)vn- 1u. 

This is in Vr+s since vn- 1u E N(n) = 0 and u - v = xy - yx E N(r+s). There
fore [V" Vs] .:s; Vr+s and in particular [Vr' V] .:s; Vr+1, which shows that the 
V;s form a central series and V is nilpotent of class .:s; n - 1. 

For example, let us take S to be the ring of all n x n matrices over R (a 
commutative ring with identity) and let N be the subring of upper zero trian
gular matrices: these are matrices with 0 on and below the diagonal. By 
matrix multiplication we see that N(Z) consists of all elements of N whose 
first superdiagonal is zero, N(3) of all elements whose first two superdiago
nals are zero and so on: hence N(n) = O. Here the group V is just V(n, R), 
the group of all n x n (upper) unitriangular matrices over R, that is matrices 
with 1 on the diagonal and 0 below it. In fact V has nilpotent class exactly 
n - 1 since [1 + E1Z , 1 + Ez3 , . .. , 1 + En-In] = 1 + E1n # 1. It follows that 
there exist nilpotent groups of arbitrary class. 
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Observe that Vi consists of all unitriangular matrices whose first i-I 
superdiagonals are 0; from this it is easy to see that 

V;/Vi +1 ==: REB' " EB R. 
'---v--' 

n-i 

Taking R = GF(p), we find that V = V(n, p) is a finite p-group of order 
pn(n-1)/2. On the other hand, if R = 71., then V is a torsion-free nilpotent 
group: in fact V is also finitely generated, by the 1 + E;;+1 ' i = 1,2, . . . , 
n - 1, for example (Exercise 5.1.14). 

Finally let T = T(n, R) denote the set of all upper triangular matrices over 
R; these are matrices with 0 below the diagonal and units of R on the diag
onal. Such a matrix is invertible since its determinant is a unit of R: clearly 
T is a subgroup of GL(n, R). We can define a function 

(): T -+ R* x .. . x R* 
I..---y---' 

n 

by mapping a matrix onto its principal diagonal. Matrix multiplication 
shows that () is an epimorphism whose kernel is precisely V = V(n, R). Since 
V <l T and Tj V is abelian, T is a soluble group. Using 5.1.12 one sees that 
the derived length of T is at most [log2(n - 1)] + 2 if n > 1. 

EXERCISES 5.1 

1. Prove that S. is soluble if and only if n < 5. 

2. Prove 5.1.4. 

3. Verify the commutator identities (i)-(iii) in 5.1.5. 

*4. Show that the identity [urn, v] = [u, v]um - 1+um - 2+"'+U+l holds in any group (here 
xy+z = xYXZ). Deduce that if [u, v] belongs to the center of <u, v), then [urn, v] = 
[u, v]m = [u, vm]. 

5. If H, K , L are normal subgroups of a group, then [HK, L] = [H, L] [K, L]. 

6. Suppose that G is a nilpotent group which is not abelian and let 9 E G. Show 
that the nilpotent class of <g, G' ) is smaller than that of G. Deduce that G can 
be expressed as a product of normal subgroups of smaller class. 

*7. If G = HN' where H::;; G and N <l G, then G = H(YiN) for all i. [Hint: Use 
N = (H n N)N'.] 

8. A finite nilpotent group has a central series with factors of prime order. 

9. Show that the class of a nilpotent group cannot be bounded by a function 
of the derived length. 

10. Show that T(2, £:) ~ Doc; X £:2 where Doc; is the infinite dihedral group. 
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*11. Prove that U(n, p) == U(n, GF(p» is a Sylow p-subgroup of GL(n, p). Deduce 
that every finite p-group is isomorphic with a subgroup of some U(n, p). 

12. If n > 1 and F is any field, the derived length of T(n, F) equals [log2(n - 1)] + 
2. 

*13. Let R be a commutative ring with identity and put U = U(n, R). Define Ui to 
be the set of elements of U having (at least) i-I zero superdiagonals. Prove 
that 1 = Un < Un- 1 < ... < U1 = U is both the upper and the lower central se
ries of U. 

*14. Prove that U(n, Z) = <1 + E!2 ' . . . , 1 + En-In > where n > 1. 

15. (Sherman). Let G be a nontrivial finite nilpotent group. If c is the nilpotent 
class of G and h is its class number, prove that h ~ clGII/c - c + 1. Deduce that 
IGI < eh - 1 where e is the base of natural logarithms. [Hint: Let Zi = (iG and 
observe that Z i+ l \ Zi is the union of at least IZi +l : Zil - 1 conjugacy classes.] 

16. If G = < Xl' .. . , xn>, prove that Yi(G) is generated by all conjugates of the com
mutators [xi! ' .. . , xj .] where 1 :::; j, :::; n. A group G is nilpotent of class :::; c if 
and only if the identity [Xl' X 2 , • • • , Xc + l ] = 1 holds in G. 

5.2. Nilpotent Groups 

We shall now embark on a more systematic study of nilpotent groups, be
ginning with some elementary facts which are used constantly. 

5.2.1. If G is a nilpotent group and 1 1= N <l G, then N n (G 1= 1. 

Proof. Since G = (cG for some c, there is a least positive integer i 
such that N n (iG 1= 1. Now[N n (iG, G] :::;; N n (i-l G = 1 and N n (iG :::;; 
N n (I G. Hence N n (I G = N n (iG 1= 1. 0 

5.2.2. A minimal normal subgroup of a nilpotent group is contained in the 
center. 

This follows at once from 5.2.1. 

5.2.3. If A is a maximal normal abelian subgroup of the nilpotent group G, 
then A = CG(A). 

Proof. Of course A:::;; C = CG(A) since A is abelian. Suppose that A 1= C: 
then CjA is a nontrivial normal subgroup of the nilpotent group G/A, and 
by 5.2.1 there is an element xA E (CjA) n ((G/A) with x ~ A. Now <x, A ) is 
abelian and it is normal in G because <x, A )/A :::;; ((G/A). Hence x E A by 
maximality of A. D 
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It should be observed that every group contains maximal normal abelian 
subgroups, not necessarily proper, by Zorn's Lemma. Lemma 5.2.3 indicates 
the degree to which such subgroups control a nilpotent group. For example, 
if A in 5.2.3 is finite, so is Aut A and therefore G/ A since A = CG(A). Thus G 
is finite. 

Characterizations of Finite Nilpotent Groups 

There are several group-theoretical properties which for finite groups are 
equivalent to nil potence. One of these is the normalizer condition, every prop
er subgroup is properly contained in its normalizer. Another such is the prop
erty that every maximal subgroup is normal. Here by a maximal subgroup 
we mean a proper subgroup which is not contained in any larger proper 
subgroup. 

5.2.4. Let G be a finite group. Then the following properties are equivalent: 

(i) G is nilpotent; 
(ii) every subgroup of G is subnormal; 

(iii) G satisfies the normalizer condition; 
(iv) every maximal subgroup of G is normal; 
(v) G is the direct product of its Sylow subgroups. 

Proof. (i) -+ (ii). Let G be nilpotent with class c. If H::;; G, then H(iG<J 
H(i+1 G since (i+1 G/(i G = ((G/(i G). Hence H = H(oG<J H(l G<J ... <J H(cG 
= G and H is subnormal in G in c steps. 

(ii) -+ (iii). Let H < G. Then H is subnormal in G and there is a series 
H = Ho <J Hl <J ... <J Hn = G. If i is the least positive integer such that H #
Hi' then H = Hi- 1 <J Hi and Hi ::;; NG(H). 

(iii) -+ (iv). If M is a maximal subgroup of G, then M < NG(M), so by 
maximality NG(M) = G and M <J G. 

(iv) -+ (v). Let P be a Sylow subgroup of G. If P is not normal in G, then 
NG(p) is a proper subgroup of G and hence is contained in a maximal sub
group of G, say M. Then M <J G; however this contradicts 1.6.18. Therefore 
each Sylow subgroup of G is normal and there is exactly one Sylow p-sub
group for each prime p since all such are conjugate. The product of all the 
Sylow subgroups is clearly direct and it must equal G. 

(v) -+ (i) by 5.1.3 and 5.1.4. 0 

For infinite groups the situation is much more complicated and proper
ties (ii)- (v) are all weaker than nilpotency. We shall return to this topic in 
Chapter 12. 
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Tensor Products and Lower Central Factors 

Our aim is to show that the first lower central factor Gab = GIG' exerts a 
very strong influence on subsequent lower central factors of a group G. 

Let G be a group with operator domain !l and write Gi = 1'iG; this is fully
invariant, so it is an !l-admissible subgroup. Then GJGi+ l , being abelian, is 
a (right) !l-module. We ask how the !l-modules GJGi +1 are related to Gab = 
GdGz, the derived quotient group of G. (Keep in mind that these modules 
are being written multiplicatively.) 

Let g E G and a E Gi: consider the function (aGi+l , gG') f-+ [a, g]Gi+Z' In 
the first place this is well-defined; for if x E G', then [a, gx] = [a, x] [a, gY 
== [a, g] mod Gi+Z since [G i , G'] ::;; Gi+Z by 5.1.11; in addition Cay, g] = 
[a, grey, g] == [a, g] mod Gi+Z if Y E Gi + l . Our function is also bilinear; for 
[a l az, g] = [ai' g] [ai' g, az] [az, g], whence [a l az, g] == [ai' g] [az, g] 
mod Gi+Z since [ai' g, az] E Gi+z, Similarly [a, glgZ] == [a, gl] [a, gz] 
mod Gi+Z since [a, gl' gz] E Gi+Z' By the fundamental mapping property of 
the tensor product (over £') there is an induced homomorphism 

in which (aGi+d ® (gG') f-+ [a, g]Gi+Z' Since Gi +1 = [G i , G], this is an 
epimorphism. 

Now the lower central factors GJGi+ l are right !l-modules and there is a 
natural way to make the tensor product A ® B of two such modules A and 
B into an !l-module, namely by diagonal action: (a ® b)'" = a'" ® b'" (a E A, 
bE B, (J) E !l). We check that Bi is a homomorphism of !l-modules: 

(aG i +l ® gG')"'E, = (a"'Gi +1 ® g"'G'),' = [a"', g"']Gi+3 = ([a, g]Gi+Z)'" 

= (aG i +l ® gG')""'. 

Our conclusions are summed up in the following result. 

5.2.5 (Robinson). Let G be an !l-operator group and let Fi = 1'iGIYi +1 G. Then 
the mapping a(1'i+1 G) ® gG' f-+ [a, g] (1'i+Z G) is a well-defined !l-epimorphism 
from Fi ®Z Gab toFi+1' 

Iterating this result, we conclude that there is !l-epimorphism from 

Gab ®··· ® Gab 
'-y--------J 

to Fi • One would therefore expect Gab to affect greatly the structure of sub
sequent lower central factors, and even the structure of G should it be 
nilpotent. 
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5.2.6. Let f!J> be a group-theoretical property which is inherited by images of 
tensor products and by extensions. If G is a nilpotent group such that Gab has 
f!J>, then G has f!1!. 

Proof. Let Fi = YiGIYi+l G. Suppose Fi has f!J>; then Fi+1' being an image of 
Fi ® Gab' has f!J>, whence every lower central factor has f!J>. But some Yc+l G = 
1 because G is nilpotent. Since f!J> is closed under forming extensions, G has 
f!J>. D 

For example, let f!J> be the property of being finite. Then we obtain the 
result: if G is a nilpotent group and Gab is finite, then G too is finite. 

The Torsion-Subgroup of a Nilpotent Group 

If n is a nonempty set of primes, a n-number is a positive integer whose 
prime divisors belong to n. An element of a group is called a n-element if its 
order is a n-number, and should every element be a n-element, the group 
is called a n-group. The most important case is n = {p}, when we speak 
of p-elements and p-groups. Observe that every element of a finite group is 
a p-element if and only if the group order is a power of p-by Sylow's 
Theorem. Hence for finite groups this usage of the term "p-group" is consis
tent with that employed in Chapter 1. 

It should be borne in mind that infinite p-groups can easily have trivial 
center and therefore need not be nilpotent-see Exercise 5.2.11. 

5.2.7. Let G be a nilpotent group. Then the elements of finite order in G form 
a fully-invariant subgroup T such that G/T is torsion-free and T = Drp 7;, 
where Tp is the unique maximum p-subgroup of G. 

Proof. Let n be a nonempty set of primes and let T" denote the subgroup 
generated by alln-elements of G. Now (T,,)ab too is generated by n-elements 
and, being abelian, it is certainly a n-group. By 5.2.6 with f!1! the property of 
being a n-group, the subgroup 1'" is a n-group. Taking n to be the set of all 
primes we conclude that T = T" consists of elements of finite order, so T is 
torsion. Taking n = {p}, we see that Tp is a p-group. Clearly Tp<J G and 
T = Dr p Tp. Obviously G/ T must be torsion-free. D 

The subgroup T of 5.2.7 is called the torsion-subgroup of G. 

Products of Normal Nilpotent Subgroups 

In the theory of groups a fundamental role is played by the next 
result. 
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5.2.8 (Fitting's Theorem). Let M and N be normal nilpotent subgroups of a 
group G. If c and d are the nilpotent classes of M and N, then L = MN is 
nilpotent of class at most c + d. 

Proof. We shall calculate the terms of the lower central series of L, showing 
by induction on i that YiL is the product of all [Xl"'" XJ with Xj = M 
or N, a statement which is correct for i = 1 if [Xl] == Xl ' The fundamental 
commutator identities show that 

[UV, W] = [U, W] [V, W] and [U, VW] = [U, V] [U, W] 

if U, V, W <I G. It follows that 

and hence that Yi+1L is the product of all [Xl' ... , Xi' X i +1] with Xj = M 
or N. 

To complete the proof set i = c + d + 1. Then in [Xl' ... , XJ either M 
occurs at least c + 1 times or N occurs at least d + 1 times. Now A <I G 
always implies that [A, G] ~ A since [a, g] = a-lag. Thus [X I' ... , XJ is 
contained in either Yc+IM or Yd+IN, both of which equal 1. Consequently 
[X I, ... , XJ = 1 and YiL = 1, so that L is nilpotent with class at most i - 1 
=c+~ 0 

The Fitting Subgroup 

The subgroup generated by all the normal nilpotent subgroups of a group 
G is called the Fitting subgroup of G and will be written 

Fit G. 

If the group G is finite (or just satisfies max-n), Fit G is nilpotent, and evi
dently it is the unique largest normal nilpotent subgroup of G. Of course 
Fit G may be trivial-the finite groups with this property are precisely the 
semisimple groups of 3.3. On the other hand, if G is a nontrivial soluble 
group, Fit G contains the smallest nontrivial term of the derived series and 
hence cannot be 1. 

For finite groups there is another interpretation of the Fitting subgroup. 
To describe this we need to generalize the notion of a centralizer. Let G be a 
group with operator domain n and let X £; G; define the centralizer of X in 
n to be Co(X} = {ill E nix'" = x, "Ix E X}. This enables us to speak of the 
centralizer in G of a principal factor. 

5.2.9. If G is a finite group, then Fit G is the intersection of the centralizers of 
the prinCipal factors of G. 
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Proof. Let 1 = Go <l G 1 <l ... <l G n = G be a principal series of G and let 
I be the intersection of all the CG(Gi+dGJ Then [G i +1' I] ~ Gi for all i, 
whence 1'n+lI = 1 and I is nilpotent: clearly I <l G, so I ~ F = Fit G. Con
versely, we have [G 1 , F]<l G and [G 1 , F] ~ G1 • Since G1 is a minimal nor
mal subgroup of G, either [G 1> F] = 1 or [G l ' F] = G 1: in the latter event 
repeated commutation with F yields G1 ~ 1'c+1F = 1 for some c, a contra
diction. Hence F must centralizes G l ' If n > 1, induction on n shows that 
FGdG 1 , and hence F, centralizes Gi+d Gi ifi 2:: 1. 0 

P. Hall's Criterion for Nilpotence 

An extension of one nilpotent group by another need not be nilpotent -as 
S3 shows. Thus one cannot prove Fitting's Theorem as simply as 5.1.2. There 
is, however, an important criterion for such an extension to be nilpotent. 

5.2.10 (P. Hall). If N <l G and N and GIN' are nilpotent, then G is nilpotent. 

Proof. Let N and GIN' have respective nilpotent classes c and d. Regard Nab 

as a group with operator domain G, the elements of G acting by conjuga
tion. Since GIN' is nilpotent, a central series of GIN' can be intersected with 
Nab to produce a G-series of Nab whose factors are trivial G-modules, that is, 
each element of G acts like the identity automorphism. Let us call a G
module having a series with G-trivial factors poly trivial. Let Fi = 1'iNfyi+1N; 
then Fl = Nab is poly trivial. Suppose that Fi is poly trivial. Since Fi+1 is an 
image of Fi ® Nab' should we be able to prove that the tensor product of 
two poly trivial G-modules is poly trivial, it will follow that Fi +1 is poly trivial. 
Therefore every lower central factor of N will be a poly trivial G-module. If 
we form the preimage of each term of a series of Fi with G-trivial factors 
under the canonical homomorphism YiN --+ Fi and also preimages of terms 
of a central series of GIN under the canonical homomorphism G -+ GIN, we 
shall obtain a central series of G and G will be nilpotent. 

All that remains, then, is to establish the following result. 

5.2.11. Let A and B be poly trivial G-modules where G is any group. Then 
A ®z B is a poly trivial G-module. 

Proof. By hypothesis there exist G-series 0 = Ao < Al < ... Ar = A and 0 = 
Bo < Bl < ... < Bs = B such that Aj+d Aj and Bk+l /Bk are trivial G-mod
ules. We define a series in T = A ®z B as follows: let Ii be generated by all 
a ® b where a E Aj, b E Bk and j + k ~ i. Then 0 = To = Tl ~ T2 ~ ... ~ 
T,.+ s = T. Let 9 E G, a E Aj+1 and bE Bk+l: then ag = a + a' and bg = b + b' 
where a' E Aj and b' E Bk. Hence (a ® b)g = (a + a') ® (b + b') = a ® b + 
a ® b' + a' ® b + a' ® b' and (a ® b)g == a ® b mod 1]+k+l' It follows that 
each Ii is a G-module and that 1]+k+211]+k+l is a trivial G-modl.de. Hence T 
is poly trivial. 0 
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The Frattinit Subgroup 

The Frattini subgroup of an arbitrary group G is defined to be the intersec
tion of all the maximal subgroups, with the stipulation that it shall equal G 
if G should prove to have no maximal subgroups. This subgroup, which is 
evidently characteristic, is written 

Frat G. 

The Frattini subgroup has the remarkable property that it is the set of all 
nongenerators of the group; here an element g is called a nongenerator of G 
if G = <g, X) always implies that G = <X) when X is a subset of G. 

5.2.12 (Frattini). In any group G the Frattini subgroup equals the set of non
generators of G. 

Proof. Let g E Frat G and suppose that G = <g, X) but G #- <X). Then g if. 
<X), so by 3.3.14 there exists a subgroup M which is maximal subject to 
<X) ~ M and g ¢ M. Now if M < H ~ G, then g E Hand H = G. Conse
quently M is maximal in G. But g E Frat G ~ M and consequently G = 
<g, X) = M, a contradiction. Hence g is a nongenerator. 

Conversely suppose that g is a nonegnerator which does not belong to 
Frat G, so that g ¢ M for some maximal subgroup M of G. Then M #
<g, M), whence G = <g, M). But this implies that G = M since g is a non
generator. 0 

We collect together next a number of elementary properties of the Frattini 
subgroup of a finite group. 

5.2.13. Let G be a finite group. 

(i) IfN <l G, H ~ G and N ~ Frat H, then N ~ Frat G. 
(ii) If K <l G, then Frat K ~ Frat G. 

(iii) If N <l G, then Frat{GIN) ~ (Frat G)N IN with equality if N ~ Frat G. 
(iv) If A is an abelian normal subgroup of G such that (Frat G) n A = 1, there 

is a subgroup H such that G = H A and H n A = 1. 

Proof. (i) If N $, Frat G, then N $, M for some maximal subgroup M and 
G = M N. Hence H = H n (M N) = (H n M)N. By 5.2.12 it follows that H = 
H n M and H ~ M; but this gives the contradiction N ~ M. 

(ii) Apply (i) with N = Frat K and H = K. 
(iii) This follows at once from the definition. 
(iv) Choose H ~ G minimal subject to G = HA. Now H nA<l Hand 

also H n A <l A since A is abelian: therefore H n A <l H A = G. If H n A ~ 

t Giovanni Frattini (1852- 1925). 
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Frat H, then (i) shows that H (\ A ~ (Frat G) (\ A = 1. Thus we can assume 
that H (\ A $ M for some M maximal in H, in which case H = M(H (\ A) 
and G = HA = MA, in contradiction to the minimality of H. 0 

5.2.14. If H is a finite normal subgroup of a group G and P is a Sylow p-sub
group of H, then G = NG(P)H. 

Proof. Let g E G; then pg ~ Hand pg is Sylow p-subgroup of H. Hence pg = 
ph for some h E H by Sylow's Theorem. Consequently gh- 1 E NG(P) and g E 

~~Hu~~~. 0 

The proof of this enormously useful result is usually referred to as the 
Frattini argument. One application is to show that the Frattini subgroup of 
a finite group is nilpotent, a fact first established by Frattini himself. Indeed, 
a good deal more can be proved. 

5.2.15 (Gaschiitz). Let G be a group. 

(i) If Frat G ~ H <:J G where H is finite and H/Frat G is nilpotent, then H is 
nilpotent. In particular Frat G is always nilpotent if it is finite. 

(ii) Let FFrat G be defined by FFrat G/Frat G = Fit(G/Frat G). If G is fi
nite, then FFrat G = Fit G; also FFrat G/Frat G is the product of all the 
abelian minimal normal subgroups of G/Frat G. 

Proof. (i) Let P be a Sylow p-subgroup of H; by 5.2.4 it is enough to prove 
that P<:J G. Let F = Frat G and K = PF ~ H. Since K/F is a Sylow p-sub
group of H/F (by 1.6.18) and H/F is nilpotent, K/F is characteristic in H/F, 
whence K <:J G. Now apply 5.2.14 to conclude that G = NG(P)K = NG(P)F, 
which shows that G = N G(P) and P <:J G. 

(ii) Taking H to be FFrat G in (i) we deduce that H is nilpotent and 
H ~ Fit G. But the opposite inclusion is obviously true, so H = Fit G. 

In the final part we can assume that Frat G = 1. Write L = Fit G. By 5.2.4 
a maximal subgroup of L is normal and has prime index. Hence L' ~ Frat L 
~ Frat G = 1 and L is abelian. Denote by N the product of all the abelian 
minimal normal subgroups of G; then certainly N ~ L. By 5.2.13 there exists 
a subgroup H such that G = HN and H (\ N = 1. Now H (\ L <:J Hand 
H (\ L<:J L since L is abelian. Thus H (\ L<:J HL = G. Since (H (\ L) (\ N = 1, 
the normal subgroup H (\ L cannot contain a minimal normal subgroup of 
G; we conclude that H (\ L = 1 and L = L (\ (HN) = N. 0 

We turn now to the Frattini subgroups of nilpotent groups. Observe that 
if a maximal subgroup M of a group G is normal, then G/M has prime 
order and G' ~ M. Thus M <:J G if and only if G' ~ M. All maximal sub
groups of G are normal if and only if G' ~ Frat G. The following result is 
therefore an immediate consequence of 5.2.4. 
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5.2.16 (Wielandt). Let G be a finite group. Then G is nilpotent if and only if 
G':::; Frat G. 

Finitely Generated Nilpotent Groups 

We have seen in 4.2.8 that finitely generated abelian groups satisfy the max
imal condition. In fact this result may be generalized to nilpotent groups on 
the basis of the following theorem. 

5.2.17 (Baer). If G is a nilpotent group and Gab is finitely generated, then G 
satisfies the maximal condition. 

Proof. The tensor product of two finitely generated abelian groups is clearly 
finitely generated. Therefore by 5.2.5 each lower central factor of G is fi
nitely generated. It follows that such factors satisfy max. The theorem is 
now a consequence of 3.1.7. 0 

5.2.1S. A finitely generated nilpotent group has a central series whose factors 
are cyclic groups with prime or infinite orders. 

Proof. Use 5.2.17 and refine the lower central series suitably. o 
From this it is obvious that a finitely generated nilpotent torsion group 

is finite. Of particular interest are finitely generated torsion-free nilpotent 
groups, of which the unitriangular group U(n, Z) is an example. 

5.2.19 (Mal'cevt). If the center of a group G is torsion-free, each upper cen
tral factor is torsion-free. 

Proof. Let (G = (I G be torsion-free; it is enough to prove that (2Gj(1 Gis 
torsion-free. Suppose that x E (2G and xm E (I G where m > O. By Exercise 
5.1.4 we have [x, g]m = [xm, g] = 1 because [x, g] E (I G. Since (I G is tor
sion-free, [x, g] = 1 for all g E G, and x E (I G. 0 

5.2.20. A finitely generated torsion-free nilpotent group has a central series 
with infinite cyclic factors. 

Proof. The upper central factors are torsion-free by 5.2.19 and finitely gen
erated by 5.2.17; hence they are free abelian groups with finite rank. On 
refining this series we obtain one of the required type. 0 

The next theorem exhibits a surprising connection between finitely gener
ated torsion-free nilpotent groups and finite p-groups, namely that the for
mer are very rich in finite p-images. 

t AnatoliI Ivanovic Mal'cev (1909-1967). 
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5.2.21 (Gruenberg). A finitely generated torsion-free nilpotent group G is a 
residually finite p-group for every prime p. 

In order to prove this we need a further result. 

5.2.22. Let G be a nilpotent group. 

(i) If (G has exponent e, then G has exponent dividing eC where c is the class 
ofG. 

(ii) If G is finitely generated and infinite, then (G contains an element of 
infinite order. 

Proof (i) Assume that G f= (G. Let x E (2G and 9 E G. Then [x, g] E (G and 
1 = [x, gY = [x e, g], whence x e E (1 G. Thus (2Gj(1 G has finite exponent 
dividing e. By induction Gj(1 G has exponent dividing ec - 1 and G has expo
nent dividing eC. 

(ii) If (G is a torsion group, it is finite by 5.2.17 and 4.2.9. By (i) the group 
G is a torsion group, whence it is finite by 5.2.18. 0 

Proof of 5.2.21. Let G f= 1 and put C = (G. By 5.2.19 the group GIC is 
torsion-free and we can apply induction on the nilpotent class to show that 
this is a residually finite p-group. Let 1 f= 9 E G; we have to find a normal 
subgroup not containing 9 which has index a power of p. If 9 ¢ C, then 
gC f= 1GIC and all is well by virtue of the residual property of GIC. Assume 
therefore that 9 E C. 

Since C is free abelian, ni=1.2 .. .. Cpi = 1 and 9 ¢ L = Cpi for some i. 
Choose N <J G maximal subject to L ~ Nand 9 ¢ N, using max (or 3.3.14). 
If GIN is infinite, 5.2.22 shows that its center contains an element zN of infi
nite order. Since (z, N) <J G, maximality of N yields 9 E (z, N) and 9 == 
z' mod N for some r f= O. But then z' E CN, and, CjL being finite, ZS E LN = 
N for some s > O. This is impossible since zN has infinite order. Therefore 
GIN is finite. 

Next L ~ C n N < C, so ICN: NI f= 1 divides IC: LI, which is surely a 
power of p. It follows that the Sylow p-subgroup PIN of GIN is nontrivial. 
If for some q f= p the Sylow q-subgroup QIN were also nontrivial, we should 
have 9 E P n Q = N by maximality of N. Hence GIN is a finite p-group. 0 

EXERCISES 5.2 

1. If a nilpotent group has an element of prime order p, so does it center. 

*2. Let A be a nontrivial abelian group and set D = A x A. Define fJ E Aut D as 
follows: (a1, a2)~ = (a1, a1a2)' Let G be the semidirect product <fJ) ~ D. 
(a) Prove that G is nilpotent of class 2 and ,G = G' ~ A. 
(b) Prove that G is a torsion group if and only if A has finite exponent. 
(c) Deduce that even if the center of a nilpotent group is a torsion group, the 

group may contain elements of infinite order (cf. 5.2.22 (i)). 



5.3. Groups of Prime-Power Order 139 

3. If M and N are nontrivial normal nilpotent subgroups of a group, prove from 
first principles that ((M N) #- 1. Hence give an alternative proof of Fitting's The
orem for finite groups. 

4. The Fitting subgroup of an infinite group need not be nilpotent. 

5. Let Hand K be quasicyclic groups and write G = H ~ K for the standard 
wreath product. Prove that G = Frat G and deduce that the Frattini subgroup 
is not always nilpotent. 

6. A nontrivial finitely generated group cannot equal its Frattini subgroup. 

7. Let Gi = 'iG and Fi = Gi+1/Gi where G is an arbitrary group. Show that there 
is a monomorphism Fi +1 -+ Hom(Gab , F;). 

8. Find an upper bound for the nilpotent class in Hall's criterion 5.2.10. (See also 
[a199].) 

9. Prove that Frat(Sn) = 1. 

10. Find Frat(D2n) and Frat(D"J. 

*11. There exist infinite soluble p-groups with trivial center. [Hint: Consider the 
standard wreath product 7l. p "-' E where E is an infinite elementary abelian p

group.] 

*12. If G = Drp Gp where Gp is a p-group and if H ::;;; G, prove that H = Drp(H n Gp). 

13. Let G be a torsion-free nilpotent group and let H be a subgroup with finite 
index. Prove that G and H have the same nilpotent class. 

14. Let G be a finitely generated group. Prove that G has a unique maximal sub
group if and only if G is a nontrivial cyclic p-group for some prime. Also give 
an example of a noncyclic abelian p-group with a unique maximal subgroup. 

5.3. Groups of Prime-Power Order 

Finite p-groups occupy a central position in the theory of groups. Since 
their structure can be extremely complex, we shall largely limit ourselves to 
the investigation of special types. Firstly some elementary facts about finite 
p-groups in general. 

5.3.1. Let G be a group of order pm+! where p is a prime. 

(i) If G has nilpotent class c > 1, then G/(c-l G is not cyclic, so its order is at 
least p2. Moreover c ::::;; m. 

(ii) If 0::::;; i ::::;;j::::;; m + 1, every subgroup of order pi is contained in some sub
group of order pi. In particular there are subgroups of every order dividing 
pm+l. 

Proof. (i) If G/'c-l G were cyclic, then G/(c-2G would be abelian, which im
plies that 'c-l G = G and the class of G is less than c. 
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(ii) Let H be a subgroup of order pi. Since H is subnormal in G, it is a 
term of a composition series of G. Some term of this series will have order pi 
since all composition factors are of order p. D 

5.3.2 (The Burnside Basis Theorem). Let G be a finite p-group. Then Frat G = 

G'GP. Also, if IG: Frat GI = pr, every set of generators of G has a subset of r 
elements which also generates G. 

Proof. If M is maximal in G, we know from 5.2.4 that M <J G and IG: MI = 
p. Hence G'GP ::; Frat G. On the other hand G/G'GP is an elementary abelian 
p-group and such groups have trivial Frattini subgroup. Therefore Frat G = 
G'GP. 

Now let G = <Xl' ... , xs) and put F = Frat G. Then G = G/F is gener
ated by Xl F, ... , xsF. Since G is a vector space of dimension rover GF(p), it 
has a basis of the form {Xi F, ... , Xi F}. Writing Y = <Xi' ... , Xi ), we have 

1 r 1 r 

G = <Y, F) and hence G = <Y). D 

Let us use the Burnside Basis Theorem to obtain information about the 
automorphism group of a finite p-group. 

5.3.3 (P. Hall). Let G be a group of order pm and let IG: Frat GI = pro Then 
the order of CAuIG(G/Frat G) divides p(m-r)r and the order of Aut G divides 
np(m-r)r where n = IGL(r, p)l. 

Proof. Write F = Frat G and C = CAUl G(G/F). Then (Aut G)/C is isomor
phic with a subgroup of GL(r, p) since G/F is a vector space of dimension r 
over GF(p); thus I(Aut G) : q divides n. By 5.3.2. there exist generators Xl' 

... , Xr for G. Let us write x = (x 1, ... , xr) for the ordered set of r generators. 
If /; E F and Yi = Xi/;, then y = (y 1, ... , Yr) is also an ordered set of r gener-
ators of G because G = <Yl"'" y" F) implies that G = <Yl> ... , Yr)' The 
set S of all ordered sets of r generators obtainable from x in this manner has 
exactly IFlr = p(m-r)r elements. If}' E C and YES, define yY to be (yL ... , y;); 
since yr == Yi mod F, in fact yY E S. The function y 1-4 yY is a permutation of 
S, so we have an action of C on S. If yY = y, then yr = Yi for all i, and since 
the y/s generate G, it follows that}' = 1. Thus each y in S is fixed only by 1 
in C, so that C acts semiregularly on S. Consequently each orbit has c = I q 
elements. If I is the number of orbits, then cl = p(m-r)r and c divides p(m-r)r. 
Finally IAut GI = I(Aut G) : q'l q, which divides np(m-r)r. D 

Quaternion Groups 

An important type of finite 2-group that occurs in many investigations is 
the generalized quaternion group Q2n, (n ~ 3); this is a group with a presenta-
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tion of the form 

(x, ylx2"-' = 1, y2 = x 2"-" y-l xy = X-I >. 
This group may be realized in the following manner. Let (u> and (v> be 
cyclic groups of order 2"-1 and 00 respectively and let G = (v> D< (u> be 
the semidirect product where v induces the automorphism a H a-I in (u>. 
Let w = U2"-2V- 2 : then w" = w = wii, so that WE (G and (w><J G. Now put 
Q = G/(w> and write u = u(w> and v = v(w>; then u2"-' = 1, v2 = U 2"-2 
and v-1uv = u-1• By von Dyck's theorem (2.2.1) there is an epimorphism 
from Q2" to Q in which x H u and y H V. Now what is the order of Q? In 
the first place (u> n (w> = 1 (proof?), so u = u(w> has order 2"-1. Also 
v2 E (u>, while v E (u> would imply that v = uiwj = Ui+j2"-2v-2j and 
V1+2j = Ui+j2"-2 for some i andj, which is impossible. Thus IQ: (u>1 = 2 and 
IQI = 2". But we see at once from the presentation that IQ2"1 divides 2". 
Thus Q ::::= Q2" and Q2" has order 2". 

The group Qg, which has order 8, is best known as the group of Hamil
ton'st quaternions: this is the group consisting of the symbols ± 1, ±i, ±j, 
±k where -1 = i2 =/ = P and ij = k = -ji,jk = i = -kj, ki =j = -ik 
(see Exercise 5.3.1). 

Some Special Types of Finite p-Groups 

As our first major result on p-groups we shall classify finite p-groups which 
have a cyclic maximal subgroup. 

5.3.4. A group of order p" has a cyclic maximal subgroup if and only if it is of 
one of the following types: 

(i) a cyclic group of order pO; 
(ii) the direct product of a cyclic group of order p"-1 and one of order p; 

(iii) (x, alx P = 1 = aP" - ', aX = a1+ pn-2>, n ~ 3; 
(iv) the dihedral group D2", n ~ 3; 
(v) the generalized quaternion group Q2"' n ~ 3; 

(vi) the semidihedral group (x, alx2 = 1 = a2"-', aX = a2"->-1 >, n ~ 3. 

We shall need here and elsewhere the following elementary fact. 

5.3.5. In a nilpotent group of class at most 2 the identity (xyt = xmym[y, x](i) 
holds. 

Proof. The result is obviously true when m = 1: proceed by induction on m. 
Using the induction hypothesis and the fact that [x, y] lies in the center, 
we obtain that (xy)m+l = xm(ymx)y[y, x](i). Now Exercise 5.1.4 shows that 

t Sir William Rowan Hamilton (1805-1865). 
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. (m + 1) (m) SInce 2 = 2 + m. o 

Proof of 5.3.4. Let IGI = pn. Suppose that N = <a) is a cyclic maximal sub
group: then N <J G and IG: NI = p. Writing GIN = <xN), we have G = 
<x, a): also lal = pn-l and x P E N. If G is abelian and x P = bP where bEN, 
then (xb-1)P = 1 and G = <xb-1) x N; otherwise x P = ai where (i,p) = 1, 
and G = <x). Thus, if G is abelian, it is of type (i) or (ii). Henceforth we shall 
assume that G is not abelian, so that n > 2. 

The element x induces an automorphism in N which must have order p: 
hence aX = am where mP == 1 mod pn-l and 1 < m < pn-l. Now by Fermat's 
Theorem mP-l == 1 mod p, so it follows that m == 1 mod p. 

For the moment assume that p is odd. Write m = 1 + kpi where (p, k) = 1 
and, of course, 0 < i < n - 1. Now 

which shows that mP == 1 + kpi+l mod pi+2. But mP == 1 mod pn-l, so that 
kpi+l + Ipi+2 = l'pn-l with integral I and I'. Since i + 1 :=:;; n - 1 and (p, k) = 
1, it follows that i + 1 = n - 1 and i = n - 2. Thus m = 1 + kpn-2: now 
there exists a k' such that kk' == 1 mod p and axk' = a<l+kpn-2)k' = al+ pn-2, in
dicating that we may replace x by Xk' and assume that m = 1 + pn-2. It 
remains to discuss the position of x P in N. Now (x P)" = x P implies that IxPI 
divides pn-2 and x P E <a P ), say x P = bP where bEN. Also G is nilpotent of 
class 2 since [a, x] = apn-2. Hence (xb-1)P = xPb-P = 1 by 5.3.5 since [b-l, xJP 
= 1. Replacing x by xb-1, we can assume that x P = 1, so that G is of type 
(iii). 

From now on let p = 2. Certainly m is odd, equal to 2k + 1 say. From 
m2 == 1 mod 2n - 1, it follows that k(k + 1) == 0 mod 2n- 3 and k == 0 or 
-1 mod 2n - 3• There are, therefore, two possible forms: m = 2n- 21 + 1 where 
I is odd, and m = 2n - 21 - 1. In the first case, replacing x by a suitable power, 
we may assume that m = 2n - 2 + 1, while in the second either I is even and 
m = 2n - 1 - 1 or I is odd and we may take m = 2n - 2 - 1. There are, there
fore, three cases to examine. 

Suppose that m = 2n- 1 - 1, so that aX = a-I. Since (x2)" = x2, the ele
ment x2 has order 1 or 2 in N, which shows that x2 = 1 or a2n - 2 and G ~ 
D2n or Q2n respectively. Now assume that m = 2n- 2 + 1. Since x 2 cannot 
generate N, we have x 2 = a2, for some r. Setting b = a,(2n-3-l), we compute 
that (Xb)2 = x 2b2[b, x] = a2'a,(2n-2-2)a,(2n-3_1)2n-2 = a,22n-,. If n ~ 4, this 
power of a equals 1 and G is of type (iii). However, if n = 3, then aX = a-I 
and x 2 = 1 or a2, so that G ~ Ds or Qs. 
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Finally, let m = 2n - 2 - 1. If x2 = a2r, then a2r = (a 2r )X = a2r(2 n->-l), in 
which event 2r == 0 mod 2" -2 and x2 = 1 or a2n-2. If x2 #- 1, then (xa- 1 )2 = 
a2n-2a-2a-(2n-2 -2) = 1 and G is of type (vi). 0 

Finite p-Groups with a Single Subgroup of Order p 

5.3.6. A finite p-group has exactly one subgroup of order p if and only if it is 
cyclic or a generalized quaternion group. 

Proof. In the first place, cyclic p-groups and generalized quaternion groups 
have the property in question. Let G have order p" and assume that there is 
just one subgroup of order p. If G is abelian, the structure of finite abelian 
groups (4.2.6) tells us that G must be cyclic. Assume therefore that G is not 
abelian. Suppose that p is odd and let H be a maximal subgroup of G. By 
induction H is cyclic and so G has a cyclic maximal subgroup. Examining 
the list of groups in 5.3.4 we see that none of them qualify. It follows that 
p = 2. 

Let A be a maximal normal abelian subgroup of G. Then A must be 
cyclic, generated by a say. Also A = CG(A) by 5.2.3. Let xA be an element of 
G/A with order 2. Now (x, A) is not abelian and it has a cyclic subgroup of 
index 2, so by 5.3.4 it is a generalized quaternion group, all the other types 
having more than one subgroup of order 2. Hence aX = a-I, which estab
lishes that G/A has just one element of order 2. Now G/A is isomorphic 
with a subgroup of Aut A and Aut A ~ Zi~ where I A I = 2m by 1.5.5. Hence 
G/A is abelian and therefore cyclic. But -1 is not a square modulo 2m un
less m = 1, which is forbidden since it would force A to lie in the center of G. 
Therefore G/A has order 2 and G is a generalized quaternion group. 0 

Groups in Which Every Subgroup Is Normal 

In Q = Qs, the quaternion group of order 8, there is only one element of 
order 2 and it generates Q'. Hence 1 #- H :$; Q implies that Q' :$; Hand H <l 

Q. SO every subgroup of Q is normal. Our aim is to classify all groups with 
this property: these are known as Dedekind groups (a nonabelian Dedekind 
group is called Hamiltonian). We shall find that they are not far removed 
from Qs. 

5.3.7 (Dedekind, Baer). All the subgroups of a group G are normal if and only 
if G is abelian or the direct product of a quat ern ion group of order 8, an 
elementary abelian 2-group and an abelian group with all its elements of odd 
order. 

Proof. We assume that every subgroup of G is normal but G is not abelian. 
Let x and y be two noncommuting elements and put c = [x, y]. Since (x)<J 
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G and <y)<J G, we have e E <x) n <y) and therefore x' = e = yS where r, 
s#-O or 1. Writing Q = <x, y), we see that e E m and Q' = <c); thus Q is 
nilpotent of class 2. Hence e' = [x, y]' = [x', y] = [e, y] = 1, which implies 
that e, x, and y have finite orders. Consequently Q is finite. 

Let Ixl = m and Iyl = n. We shall suppose x and y so chosen that m + n 
is minimal subject to e = [x, y] #- 1. If p is a prime divisor of m, the assump
tion of minimality implies that 1 = [x P, y] = cP and e has order p. This tells 
us that Ixl and Iyl are powers of p. 

Since c is a power of x and of y, there exist integers k, i, r, s such that xkpr 
= e = yips and (k, p) = 1 = (1, p). Now there are integers k', i' such that kk' 
== 1 mod p and li' == 1 mod p. Setting x' = x" and y' = yk', we have [x', y'] 
= ck'l'; also (x')P' = (xP')" = CkT since ck' = Xkk'p' = xP', and similarly (y'r = 

ek'I'. Thus, replacing x by x' and y by y', we may assume that 

(r, s > 0). 

Evidently Ixl = p,+l and Iyl = pS+1. Without loss of generality let r ~ s. 
If Y1 denotes x-pr-sy, then [x, Y1] = [x, y] = e and, by minimality of 

Ixl + Iyl, we must have IY11 ~ Iyl = pS+1; hence yr #- 1. By 5.3.5 we have 
p' _ _pr pS[ _pr-S]ei") _ -pr(p'-1)/2 

y! - x y y, x - e . 

If p is odd, it divides -tp'(pS - 1) and yr = 1. Therefore p = 2 and 
2'-1(2S - 1) is odd, that is, r = 1. Since r ~ s, we have also s = 1. The follow
ing relations are therefore vaid, X4 = 1, x2 = y2 and xY = x-1• Consequently 
Q = <x, y) is an image of a quaternion group of order 8. Since Q is not 
abelian, it is a quaternion group of order 8. 

Next consider C = CG(Q) and suppose that 9 E G\CQ. Then 9 does not 
commute with both x and y-say yg #- y. Since Iyl = 4, we must have yg = 

y-1; therefore gx commutes with y. Thus gx cannot commute with x (or else 
gx E C). The same argument shows that gxy commutes with x: but clearly 
gxy also commutes with y. so gxy E C and 9 E CQ. It follows that G = CQ. 
If 9 E C, then [x, gy] = [x, y] #- 1 and by the first paragraph of the proof gy 
has finite order. Since 9 and y commute, 9 has finite order and G is a torsion 
group. Next suppose that 9 in C has order 4. Then [x, gy] #- 1 and (gy)4 = 1, 
which implies that (gyy = (gyr1. Thus [gy, x] = (gyr 2 = g-2y-2: but also 
[gy, x] = [y, x] = y-2, so g2 = 1, a contradiction. Thus we have shown that 
C has no elements of order 4. 

Now by what we have already proved the elements in C with odd order 
commute with each other and form an abelian subgroup O. The elements of 
C with order a power of 2 form an elementary abelian 2-group E1 and C = 
E1 X O. Hence G = CQ = (QEd x O. Since E1 is elementary abelian, we 
can write E1 = (Q n Ed x E for some subgroup E. Thus G = (QE) x 0 = 
Q x E x O. 

The converse is much easier. Assume that G has the prescribed form 
Q x E x 0 and let H ::; G. Then by Exercise 5.2.12 we have 

H = (H n (Q x E)) x (H nO) 



5.3. Groups of Prime-Power Order 145 

and clearly H n O<J G; thus we can assume that G = Q x E. If H n Q = 1, 
then H lies in the subgroup of all elements 9 of G such that g2 = 1: this 
subgroup lies in (G, so H <J G. Finally if H n Q # 1, then H ~ Q' = G' and 
again H <J G. 0 

Extra-Special p-Groups 

A finite p-group G is called extra-special if G' and (G coincide and have 
order p. These groups play an important role in some of the deeper parts of 
finite group theory. As examples one thinks of Qs and Ds: indeed any non
abelian group of order p3 is extra-special (Exercise 5.3.6). 

Let G be an extra-special p-group and write C = (G = G'. This has order 
p, so it is cyclic: let c be a fixed generator. If x, 9 E G, then [x, gP] = [x, g]P = 
1 and gP E C. Consequently V = G/C is an elementary abelian p-group and 
may be regarded as a vector space over GF(p). If x, Y E G, the commutator 
[x, y] depends only on the cosets U = xC and v = yC, so that it is meaning
ful to write [x, y] = cf(u. v) . Thus f: V x V ~ GF(p) is a well-defined func
tion. Now [XXI' y] = [x, y] [Xl' y] and [x, y] = [y, xrl, from which it fol
lows that f is a skew-symmetric bilinear form on V. If f(u, v) = 0 for all v in 
V, then [x, y] = 1 for all y in G; in this event u = xC = Ov. Thus f is a 
nondegenerate form. 

We shall now quote a standard theorem in linear algebra on nondegen
erate skew-symmetric bilinear forms. There exists a direct sum decomposi
tion V = VI EEl . .. EEl v,. where V; is a 2-dimensional subspace with basis {ui , v;} 
such that f(ui, Vi) = 1, f(ui' Vj) = 0 if i # j, and f(ui, Uj) = 0 = f(vi, v) for all 
i,j. 

Write Ui = XiC and Vi = yic. Then Gi = (Xi' Yi) is a nonabelian group 
of order p3. Clearly C < Gi ~ G and G = G1 G2'" Gn • In addition G/C = 
Dri GjC and [Gi , Gj ] = 1 if i # j. The order of G is, of course, p2n+1. 

Central Products 

It is natural to think of the extra-special p-group G as a direct product of 
the groups Gi in which the centers of the Gi are identified. Of course Gi has 
order p3, and there are in fact just two possible isomorphism types for Gi 
(Exercise 5.3.6). 

More generally a group G is said to be the central product of its normal 
subgroups GI , ... , Gn if G=GI G2 ' ''Gn , [Gi,GJ=1 for i#j, and Gin 
TIj#i Gj = (G for all i. Since (Gi ~ (G, it follows that (Gi = (G. We can 
sum up our conclusions about extra-special p-groups in terms of central 
products. 
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5.3.8. An extra-special p-group is a central product of n nonabelian subgroups 
of order p3 and has order p2n+1. Conversely a finite central product of non
abelian groups of order p3 is an extra-special p-group. 

For a more precise statement see Exercise 5.3.7. 

EXERCISES 5.3 

1. Prove that Hamilton's quaternions are realized by the Pauli spin matrices 

. (P 0) 
1= 0 _p' k=( 0 P) P 0 

by showing that these generate a subgroup of GL(2, q isomorphic with Qs. 

2. A group of order pn is isomorphic with a subgroup of the standard wreath prod
uct 7Lp"- ... "-7Lp (n factors). 

3. Find the upper and lower central series of Q2n. 

4. Prove that Aut Q2n ~ Hol(7L2n-t} if n > 3, but that Aut Qs ~ S4' 

*5. If G = (x, Ylx2 = 1 = y2n, yX = y1+2n-l}, prove that Aut G is a 2-group. 

6. Let G be a nonabelian group of order p3. If p is odd, prove that G is isomorphic 
with 

(x, ylx P = 1 = yP, [x, y}" = [x, y] = [x, y)Y) 
or 

(x, ylx P2 = 1 = yP, x Y = x 1+p ). 

Show that these groups have exponent p and p2 respectively. If p = 2, prove that 
that G ~ Ds or Qs. Note that G is always extra-special. 

7. Let G be an extra-special group of order p2.+!. 
(i) If p = 2, prove that G is a central product of Ds's or a central product of 

Ds's and a single Qs. [Hint: Show that a central product of two Qs's is a 
central product of two Ds's.] 

(ii) If p > 2, prove that either G has exponent p or else it is a central product of 
nonabelian groups of order p3 and exponent p and a single nonabelian group 
of order p3 and exponent p2. 

(iii) Deduce that there exist two isomorphism types of extra-special groups of 
order p2.+1 and give a presentation of each type. 

8. A finite p-group G will be called generalized extra-special if (G is cyclic and G' 
has order p. 

(i) Prove that G' ::; (G and GgG is an elementary abelian p-group of even rank. 
(ii) Express G as a central product of groups of two types. 

(iii) Prove that there are two isomorphism types of generalized extra-special 
groups once the order and index of the centre are specified. Give presenta
tions for these types. 

9. Let G be a finite p-group. Prove that G is not abelian but every proper quotient 
group of G is abelian if and only if G is a generalized extra-special group. 
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10. Let G be a group of order p'. If G has a unique subgroup of order pm for all 
1 < m < n, prove that G is cyclic. 

11. If in a finite p-group every subgroup of order p2 is cyclic, the group is cyclic or 
generalized quaternion. 

5.4. Soluble Groups 

Let us begin by expanding our list of examples of finite soluble groups. 

5.4.1. If p, q, r are primes, all groups of orders pm, pmq, p2q2, or pqr are 
soluble. 

Proof. Of course a group of order pm is nilpotent and hence soluble. Let 
IGI = pmq and suppose that IGI is minimal subject to G being insoluble: thus 
p l' q. If N is a proper nontrivial normal subgroup, both N and GIN are 
soluble by minimality of I GI: this implies that G is soluble. It follows that G 
must be a simple group. 

Let np be the number of Sylow p-subgroups of G. Then np divides q, so 
that np = q: for if np were 1, there would be a normal Sylow p-subgroup. Let 
I = PI !l P2 be an intersection of two distinct Sylow p-groups which has 
maximal order. If I = 1, every pair of distinct Sylow p-subgroups intersects 
trivially, whence the number of nontrivial p-elements in G is q(pm - 1) = 
pmq _ q. The other elements are q in number, so they must form a unique 
Sylow q-subgroup, contradicting the simplicity of G. Hence I l' 1. 

Now 5.2.4 shows that 1< Ni = Np.(I), and clearly I <J J = (NI' N2 ). 

If J is a p-group, it is contained in some Sylow p-subgroup, say P3 , and 
PI !l P3 ~ PI!l J ~ NI > I, which contradicts the maximality of I. Thus J 
is not a p-group and q divides IJI. If Q is a Sylow q-subgroup of J, then 
IQPII = pmq and G = QPI , from which we deduce that IG = IP, ~ PI' so 
that IG is a proper normal subgroup of G, a final contradiction. 

Suppose G is an insoluble group of order p2q2: by the first part we may 
assume G simple and p > q. Now np == 1 mod p and nplq2, whence np = q2. 
Suppose that PI and P2 are two distinct Sylow p-subgroups such that I = 
PI !l P2 l' 1. We note that Pi is abelian since IF;! = p2, so that I <J Pi and 
therefore I <J (PI' P2 ) = J. Hence J l' G, from which we infer that IG: JI = 
q. But 1.6.9 implies that IGI divides q!, which is impossible since p > q. Hence 
all pairs of distinct Sylow p-subgroups of G intersect trivially. Just as in the 
preceding case this leads to a unique Sylow q-subgroup. 

The final part is left as an exercise for the reader. 0 

More generally there is a famous theorem of Burnside to the effect that a 
group of order pmqn is always soluble : this is proved in Chapter 8. An even 
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more remarkable theorem due to Feit and Thompson [a46] asserts that 
every group of odd order is soluble; the proof is exeedingly difficult. 

The first example of an insoluble group is the alternating group As, which 
has order 60 = 22 . 3.5 (Exercise 5.4.2). Thus groups of order p2qr need not 
be soluble and 5.4.1 cannot be extended in this direction. 

Composition Factors, Principal Factors, and 
Maximal Subgroups 

If G is a group-possibly without a composition series-we shall extend 
our previous usage and say that HjK is a composition factor of G if H is 
subnormal in G and H jK is simple. Similarly we shall say that H jK is a 
principal factor if H jK is a minimal normal subgroup of GjK. 

The following easy lemma exhibits a relation between maximal subgroups 
and principal factors. 

5.4.2. Let G be a group. Assume that G = HA where H is a proper subgroup 
and A is an abelian normal subgroup of G. Then H is maximal in G if and 
only if A jH n A is a principal factor of G. Also IG: HI = IA: H n AI. 

Proof. Note first of all that H n A <J H and also that H n A <J A since A is 
abelian; thus H n A<J HA = G. 

Assume that H is maximal. If H n A < L ~ A and L<J G, then G = HL 
because L $ H. Hence A = (HL) n A = (H n A)L = L by the modular law. 
Hence A jH n A is a principal factor. Conversely suppose that A jH n A is 
a principal factor. Let H < K ~ G. Then K = K n (HA) = H(K n A) > H. 
Hence H n A < K n A <J G, so that A = K n A and G = K, which shows 
that H is maximal. 0 

5.4.3. Let G be a soluble group. 

(i) A composition factor of G has prime order. 
(ii) A principal factor of G is either an elementary abelian p-group or else a 

direct product of copies of the additive group of rational numbers. 
(iii) The index of a maximal subgroup of G is either infinite or a power of a 

prime. 

Proof. (i) is clear. 
(ii) It is enough to prove the result for H a minimal normal subgroup of 

G. Now H' <J G and H' i= H because H is soluble. Hence H' = 1 and H is 
abelian. If p is a prime, then H[p] = {x E Hlx P = I} is a normal subgroup 
of G contained in H . Hence either H[p] = H, so that H is an elementary 
abelian p-group, or H[p] = 1 for all p, which means that H is torsion-free. 
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In the last case one also has HP <J G; thus HP = Hand H is a divisible 
abelian group. The result now follows from 4.1.5. 

(iii) Let M be maximal in G. Since G is soluble and M # G, there is a 
largest integer i such that A = G(i) i M. Then A' ~ M and M/A' is maximal 
in G/A'. Without loss of generality we can assume that A' = 1 and A is 
abelian. Since M is maximal, G = M A. Then 5.4.2 shows that A is minimal 
normal in G. Since IG: MI = IAI, the result follows from (ii). D 

The Fitting Subgroup of a Soluble Group 

The Fitting subgroup of a soluble group plays a role similar to that of the 
center of a nilpotent group; the following result may be compared to 5.2.1 
and 5.2.3. 

5.4.4. Let G be a soluble group with Fitting subgroup F. 

(i) If 1 # N <J G, then N contains a nontrivial normal abelian subgroup of G 
and N nF # 1. 

(ii) CG(F) = (F. 

Proof. (i) Let i be the largest integer such that N n G(i) # 1; then (N n G(i)), ~ 
N n G(i+l) = 1, so that N n G(i) is abelian and normal in G. 

(ii) Suppose that C = CG(F) is not contained in F. By (i) there exists 
A/F <J G/F such that F < A ~ CF and A/F is abelian. But A = An (CF) = 
(A n C)F and Y3(A n C) ~ [A', C] ~ [F, C] = 1, which shows that An C ~ 
F and A = F. By this contradiction C ~ F and hence C = (F. D 

The Nilpotent Length 

If G is a finite group, the upper nilpotent series 1 = Vo( G) ~ Vl (G) ~ .. . 
is defined by Vi+l (G)/ Vi(G) = Fit(G/ Vi(G)). The lower nilpotent series 
G = Lo(G) ~ Ll(G) ~ L2(G) ~ ... is defined dually by writing Li+l(G) = 
nj~l.2 .... Yj(Li(G)), so that Li(G)/Li+l(G) is the largest nilpotent quotient 
group of Li(G). The terms of these series are characteristic- even fully
invariant in the case of {Li(G)}-and the factors are nilpotent. 

5.4.5. Let 1 = Go <J G 1 <J ... <J G. = G be a series with nilpotent factors in a 
finite soluble group G. Then 

and 

In particular 

V.(G) = G and 
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The proof is by induction on i. Note that Gi :::;; Gy :::;; Vi by 5.2.8. It fol
lows immediately that the lengths of the upper and lower nilpotent series of 
a finite soluble group are equal: this number is called the nilpotent length. 

It is sometimes convenient to speak of the nilpotent length of an infinite 
soluble group. This is best defined as the length of a shortest series with 
nilpotent factors. Groups with nilpotent length at most 2 are called meta
nilpotent groups. 

Supersoluble Groups 

A group is said to be supersoluble (or supersolvable) if it has a normal cyclic 
series, that is, a series of normal subgroups whose factors are cyclic. Super
soluble groups are, of course, soluble. The group A4 , which has no normal 
cyclic subgroups except 1, is the first example of a soluble group that is not 
supersoluble. It is easy to prove- and the reader should check-that the 
class of supersoluble groups is closed with respect to forming subgroups, im
ages, and finite direct products. 

5.4.6. 

(i) Supersoluble groups satisfy the maximal condition. 
(ii) Finitely generated nilpotent groups are supersoluble. 

Proof This follows from 3.1.7 and 5.2.18. o 

5.4.7. A principal factor of a supersoluble group has prime order and a maxi
mal subgroup has prime index. 

Proof Let N be a minimal normal subgroup of a supersoluble group G and 
let 1 = Go < Gi < ... < Gn = G be a normal cyclic series. Now there is a 
least integer i that N n Gi "# 1. Then N n Gi<J G, so that N n Gi = Nand 
N:::;; Gi . Since N n Gi - i = 1, we obtain N ~ NG i - d Gi - i :::;; GdGi - i . Hence 
N is cyclic of prime order. The second statement may be proved just like 
5.4.3 (iii). D 

In fact the properties of 5.4.7 characterize finite supersoluble groups. This 
is obvious for the first property; for the second it will be proved in Chapter 9. 

5.4.8 (Zappa). If G is a supersoluble group, there is a normal series 

1 = Go < Gi < ... < Gn = G 

in which each factor is cyclic of prime or infinite order and the order of the 
factors from the left is this: odd factors in descending order of magnitude, 
infinite factors, factors of order 2. 
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Proof. By refining a normal cyclic series of G we obtain a normal cyclic 
series 1 = Ho < HI < ... < Hm = G in which each factor has prime or infi
nite order. We describe a procedure for obtaining a new series in which the 
factors have the stated ordering. 

Suppose that Hi+dHi has order p and HJHi- 1 has order q where q < p. 
Since IAut(HJHi-dl = q - 1, which is not divisible by p, the factor HJHi- 1 

lies in the center of Hi+l /Hi-l and the latter is cyclic of order pq. If HJHi- 1 

is the subgroup of order p, it is characteristic in Hi+dHi- 1 and H(<J G: also 
Hi+1/Hi has order q. Replacing Hi by Hi we obtain a normal cyclic series of 
G in which the p-factor now precedes the q-factor. 

Next let Hi+dHi have odd prime order p and let HJHi- 1 be infinite cy
clic. Then Aut(HJHi-d has order 2, which shows that HJHi- 1 lies in the 
center of Hi+dHi- 1 and the latter is abelian. If Hi+dHi- 1 is infinite cyclic, 
simply delete Hi from the series. Otherwise there is a subgroup HJHi- 1 of 
order p; then Hi<l G and Hi+dHi is infinite cyclic. Replacing Hi by Hi' we 
cause the p-factor to precede the infinite factor. 

Finally suppose that Hi+dHi is infinite and HJHi- 1 has order 2. Then 
Hi+dHi- 1 ~ Z2 $ Z and HJHi- 1 = (Hi+dl!J.-d2 is infinite cyclic. ~so Hi<l 
G and IHi+l~ Hd = 4. ~ 5.4.7 there exists Hi<l G such that!!i < Hi < Hi+1 

and IHi+1 : Hd = 2 = IHi : HJ Delete Hi and insert Hi and Hi' Thus, at the 
expense of adding a factor of order 2 on the right, we may move an infinite 
factor to the left past one of order 2. 

By repeated use of these techniques a series of the type sought is obtained. 
D 

5.4.9. The elements of odd order in a supersoluble group form a characteristic 
subgroup. 

This follows directly from 5.4.8. Notice however that since the infinite 
dihedral group is generated by elements of order 2, the elements of finite 
order in a supersoluble group do not in general form a subgroup. 

Finally, we prove a result showing that the Fitting subgroup of a super
soluble group is relatively large. 

5.4.10. If G is a supersoluble group, then Fit G is nilpotent and G/Fit G is a 
finite abelian group. In particular, G' is nilpotent. 

Proof. Let F = Fit G. By 5.4.6 the group G satisfies the maximal condition 
and F is finitely generated. Hence F is a product of finitely many nilpotent 
normal subgroups and so it is nilpotent by Fitting's theorem (5.2.8). Let 
1 = Go < G1 < ... < G. = G be a normal cyclic series. Set Fi = Gi+dGi and 
C = ni=l, ... ,' CG(F;), Now Aut Fi is finite and abelian, which shows that 
G/C is finite and abelian. Also [Gi+1 II C, C] ::; Gi II C, whence the Gi II C 
form a central series of C and C is nilpotent. Hence C ::; F and G/F is finite 
and abelian. D 
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A discussion of the deeper properties of finite soluble groups is deferred 
until Chapter 9. In the remainder of this chapter we shall be concerned with 
certain important classes of infinite soluble groups. 

Infinite Soluble Groups 

We begin with a simple but frequently used fact. 

5.4.11. A finitely generated soluble torsion group is finite. 

Proof. Let G be the group in question and let d denote its derived length. If 
d = 0, there is nothing to prove. So let d > ° and put A = G(d-l). Then by 
induction on d the quotient group G/A is finite, which by 1.6.11 implies that 
A is finitely generated. We now use 4.2.9 to show that A is finite, from which 
it follows that G is finite. D 

Polycyclic Groups 

One of the most important classes of infinite soluble groups is the class of 
polycyclic groups. Recall that a group G is said to be polycyclic if it has a 
cyclic series, by which we mean of course a series with cyclic factors. It is 
clear that polycyclic groups are soluble and that every supersoluble group is 
polycyclic. Moreover the class of polycyclic groups is closed with respect to 
forming subgroups, images, and extensions. Most of the results that follow 
are due to K.A. Hirsch who initiated the study of polycyclic groups in 1938. 

5.4.12. A group is polycyclic if and only if it is soluble and satisfies the maxi
mal condition. 

Proof. Every cyclic group satisfies the maximal condition and the latter prop
erty is closed under forming extensions (3.1.7); hence every polycyclic group 
has max. Conversely, suppose that G is a soluble group with max. Then the 
factors of the derived series are finitely generated abelian groups. By refining 
this series we obtain one with cyclic factors, thus showing that G is poly
~k D 

5.4.13. In a polycyclic group G the number of infinite factors in a cyclic series 
is independent of the series and hence is an invariant of G (known as the 
Hirsch length). 

Proof. Suppose that we have a cyclic series of G: then a refinement of this 
series is also cyclic and it will have the same number of infinite factors. The 
reason is that if H/K is an infinite cyclic factor and K :::;; K* < H* :::;; H, 
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then one of K*jK, H* jK* , and H jH* is infinite cyclic while the others are 
finite. Since any two cyclic series have isomorphic refinements, they must 
have the same number of infinite cyclic factors. 0 

5.4.14. A group is polycyclic if and only if it has a normal series each factor 
of which is either free abelian of finite rank or finite elementary abelian. 

We leave the easy proof as an exercise. 

Poly-Infinite Cyclic Groups 

Extending our use of the prefix "poly," let us call a group poly-infinite cyclic 
if it has a series with infinite cyclic factors. Obviously every poly-infinite 
cyclic group is torsion-free and polycyclic, but the converse is false (see Ex
ercise 5.4.15). Nevertheless general polycyclic groups are quite close to being 
poly-infinite cyclic, as the following theorem shows. 

5.4.15. 

(i) Every polycyclic group has a normal poly-infinite cyclic subgroup of finite 
index. 

(ii) An infinite polycyclic group contains a nontrivial torsion-free abelian nor
mal subgroup. 

Proof. (i) Let 1 = Go <J G 1 <J ... <J G n = G be a cyclic series in a polycyclic 
group G. If n :::;; 1, then G is cyclic and the result is obvious. Let n > 1 and 
put N = Gn - 1 . By induction on n there is a normal subgroup M of N such 
that M is poly-infinite cyclic and N jM is finite. Now N jMG is finite because 
it is a finitely generated torsion group (see 5.4.11), and MG is poly-infinite 
cyclic. Thus nothing is lost if we assume that M <J G. If GjN is finite, so is 
GjM and we are finished. Assume therefore that GjN is infinite cyclic, gen
erated by xN say. 

There is a positive integer r for which xr centralizes N j M. Set L = 
<x r , M). Then it is clear that L<J <x , N ) = G. Moreover GjL is finite be
cause it is the product of the finite subgroups <x, L) jL and NLjL. Since no 
positive power of x can belong to N, the factor L jM is infinite cyclic and L 
is poly-infinite cyclic. 

(ii) If G is infinite, then L i= 1 and the smallest nontrivial term of the 
derived series of L is a subgroup of the type sought. 0 

We shall establish next an interesting property of subgroups of polycyclic 
groups. 

5.4.16 (Mal'cev). Let H be a subgroup of a polycyclic group G. Then H equals 
the intersection of all the subgroups of finite index in G that contain H. 
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Proo/(J.S. Wilson). We begin with the remark that all is well if G is abelian. 
For then H <J G and GjH, being a finitely generated abelian group, is resid
ually finite by Exercise 4.2.15; this gives the desired result. 

In the general case let I be the Hirsch length of G. Should I = 0, the 
group will be finite and there is nothing to prove. Assume therefore that 
I> ° and proceed by induction on I. According to 5.4.15 there is a torsion
free abelian normal subgroup A '" 1. Since the Hirsch length of Gj A is less 
than I, the theorem is true for Gj A. 

Let g E G\ H; it suffices to find a subgroup K such that H ~ K, IG: KI < 
00 and g rt K . If g rt H A, the existence of such a K may be inferred from the 
truth of the theorem for Gj A. Assume therefore that g E HA. Then g = ha 
where h E H and a E A; notice that a rt H II A since g rt H. 

By the abelian case there is a subgroup B of A such that H II A ~ B, 
IA : BI < 00 and art B. Clearly Am ~ B for some m > 0, and IA : Ami < 00. 

By induction on I the theorem is true for Gj Am, so we can assume that 
g E HAm, say g = h1a l , where hI E Hand a l E Am. Hence ha = h1a l , so that 
aa11 = h-1h l E H II A ~ B. Since al E Am ~ B, we reach the contradiction 
aEB. 0 

Specializing to the case H = 1 we obtain 

5.4.17 (Hirsch). A polycyclic group is residually finite. 

An arbitrary group G can be made into a topological group by declaring 
the collection of all subgroups of finite index to be a base of neighborhoods 
of the identity. The resulting topology is known as the pro finite topology: it 
is Hausdorff precisely when G is residually finite. Mal'cev's theorem may be 
reformulated by saying that every subgroup of a polycyclic group is closed in 
the profinite topology. 

We give next a further application of 5.4.15. 

5.4.18 (Hirsch). If a polycyclic group G is not nilpotent, then it must have a 
finite nonnilpotent image. 

Proof. Let G be a counterexample with minimal Hirsch length. Certainly G 
will be infinite, so 5.4.15 provides us with a nontrivial torsion-free abelian 
normal subgroup A. Of course A is free abelian; let r be its rank. 

If p is any prime, Gj AP has smaller Hirsch length than G, so by mini
mality Gj AP is nilpotent. Now Aj AP is elementary abelian of order p'; thus 
by 5.2.l it lies in ( ,(Gj AP) and 

B = [A, G, ... , G] ~ AP. 
"-y---J 

r 

But np AP = 1 because A is free abelian. Hence B = 1 and A ~ (,G. This 
shows that G is nilpotent, a contradiction. 0 
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This result is very useful in transferring properties of finite groups to poly
cyclic groups. Here are some examples due to Hirsch and Ito. 

5.4.19. The Frattini subgroup of a polycyclic group is nilpotent. 

Proof. Let F = Frat G where G is polycyclic. If F is not nilpotent, then some 
finite F j N is not nilpotent. Replacing N by its core in G, we can suppose 
that N <J G. But Frat(GjN) = F jN and a finite Frattini subgroup is always 
nilpotent by 5.2.15 (i). This is a contradiction. D 

5.4.20. If G is a polycyclic and G' ~ Frat G, then G is nilpotent. 

Proof. If G is not nilpotent, it has a finite nonnilpotent image H. But H' ~ 
Frat H is clearly valid and by 5.2.16 this implies that H is nilpotent. D 

For a detailed study of polycyclic groups the reader should consult the 
book by Segal [b61]. 

Finitely Generated Soluble Groups 

These form a much wider class of groups than do polycyclic groups. An 
example of a finitely generated soluble group that is not polycyclic is the 
semidirect product 

where A is the additive group of dyadic rationals m2n, m, n E 7l.., and X = 
<x) is an infinite cyclic group acting on A via multiplication by 2: thus 
ax = 2a. This group is generated by x and the integer 1: also it is metabelian. 
However G is not polycyclic because A is not finitely generated. 

Soluble groups with the maximal condition on normal subgroups, max-n, 
are intermediate between polycyclic groups and finitely generated soluble 
groups, as we now show. 

5.4.21. A soluble group G with the maximal condition on normal subgroups is 
finitely generated. 

Proof. Let d denote the derived length of G. If d ~ 1, then G is abelian and 
the assertion is obvious. Let d> 1 and put A = G(d-l). By induction on d 
there is a finite set of generators xIA, .. . , xmA for GjA. Now A satifies max
G since G satisfies max-no Hence A = ar' .. a:; for some finite set of elements 
ai . But since A is abelian, af = a?,,···,xm>. Therefore G is generated by ai' 
... , an, Xl' ... , Xm o 0 

Much more will be said of finitely generated soluble groups in Chap
ter 15. 
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Soluble Groups with the Minimal Condition 

Since polycyclic groups have been identified as the soluble groups with max, 
it is natural to ask about the dual class, soluble groups with min. If G is a 
soluble group with min, each factor of an abelian series has min and so by 
4.2.11 is a direct product of finitely many cyclic and quasicyclic groups. Thus 
the soluble groups with min are exactly the poly-(finite cyclic or quasicyclic) 
groups. 

Basic in the study of the minimal condition is 

5.4.22. Let the group G satisfy the minimal condition on normal subgroups. 
Then G possesses a unique minimal subgroup of finite index (called the finite 
residual). This subgroup is characteristic in G. 

Proof. The minimal condition on normal subgroups guarantees the exis
tence of a smallest normal subgroup of finite index, say F. Let H be any 
subgroup of finite index. By 1.6.9 the core HG has finite index, so by 1.3.12 
we have IG: HG n FI < 00. Hence HG n F = F and F ::; H, showing that F is 
contained in every subgroup with finite index in G. D 

We come now to the structure theorem for soluble groups with min. 

5.4.23 (Cernikov). A soluble group satisfies the minimal condition if and only 
if it is an extension of a direct product of finitely many quasicyclic groups by 
a finite group. 

Proof. Let G be a soluble group with min and let F be its finite residual (see 
5.4.22). Then we can assume that F :f= 1 since G/F is finite. Therefore F con
tains a nontrivial normal abelian subgroup of G, say A, by 5.4.4. Let 1 :f= a E 

A. Clearly conjugates of a have the same order as a and belong to A. Now 
according to Exercise 4.3.5 in an abelian group with min there are only 
finitely many elements of each prescribed order. Hence IG : CG(a)1 < 00. By 
definition of F we have F ::; CG(a) and consequently a E (F and (F :f= 1. 

If F = (F, then F is abelian with min and has no proper subgroups of 
finite index: therefore F is a direct product of finitely many quasicyclic groups 
by 4.2.11, and G has the required structure. Thus we can assume that (F < 
F . Now (F <l G, so the preceding argument may be applied to the group 
Gj(F (which has finite residual Fj(F) to show that (F = (IF < (2F. Let Z E 

(2F\ (lF and let x E F; then ZX = ZZl where Zl E (IF. Now the minimal con
dition implies that G is a torsion group; hence IZll divides Izi . Since (F 
has min, for a given Z there are only finitely many possibilities for Z 1 in (1 F 
and hence for ZX where x E F. Thus IF: CF(Z) I < 00 , which implies that F = 
CF(z) and Z E (IF, a contradiction. 

The converse follows from the fact that a quasicyclic group satisfies min 
and min is closed under extensions (3.1.7). 0 
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A group which is an extension of a finite direct product of quasicyclic 
groups by a finite group is called a Cernikov group. Such groups arise rather 
frequently in infinite group theory. Indeed until very recently they were the 
only known examples of groups with min. In this connection see 14.4. 

EXERCISES 5.4 

1. Let p, q, r be primes. Prove that a group of order pqr is soluble. 

2. If G is an insoluble group of order at most 200, prove that I GI = 60, 120, 168, or 
180. 

3. Give examples of insoluble groups of orders 60, 120, 168, and 180. 

4. A group is called perfect if it equals its derived subgroup. 
(a) Prove that every group G has a unique maximal perfect subgroup Rand R 

is fully-invariant in G. 
(b) If G is finite, then R is the smallest term of the derived series. 
(c) If G is perfect but not simple and 1 < 101 :s; 200, show that I GI = 120 or 180. 
(d) Find a perfect nonsimple group of order 120 (in fact there are no perfect 

groups of order 180-see Exercise 10.1.5). 

5. The class of supersoluble groups is closed with respect to forming subgroups, 
images, and finite direct products. 

*6. The product of two normal supersoluble subgroups need not be supersoluble. 
[Hint: Let X be the subgroup of GL(2, 3) generated by 

thus X ~ Ds. Let X act in the natural way on A = Z3 EEl Z3 and write G = 
X ~ A. Show that G is not supersoluble. Let Land M be distinct Klein 4-sub
groups of X and consider H = LA and K = MA.] 

7. If N is a normal nilpotent subgroup of G and GjN' is supersoluble, then G is 
supersoluble. 

8. If R = Z or Zp, prove that the group of triangular matrices T(n, R) is super
soluble. 

9. If N is a normal subgroup of a polycyclic group G, prove that h(G) = h(N) + 
h(GjN) where h(X) denotes the Hirsch length of X. Deduce that h(G) = h(GjN) if 
and only if N is finite. 

10. If H is a subgroup of a polycyclic group G, prove that h(G) = h(H) if and only if 
I G : HI is finite. 

11. A group is said to be poly-(cyclic or finite) if it has a series whose factors are 
cyclic or finite. Prove that a group is poly-(cyclic or finite) if and only if it has a 
normal polycyclic subgroup of finite index. 

12. Prove that 5.4.15- 5.4.20 are valid for poly-(cyclic or finite) groups. 
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13. (Seksenbaev). If a polycyclic group G is a residually finite p-group for infinitely 
many primes p, then it is a finitely generated torsion-free nilpotent group (cf. 
5.2.21). [Hint: Assume that G is not nilpotent. Show that YiG/Yi+1 G is finite for 
some i. Now argue that IYiG: Yi+1 GI is divisible by infinitely many primes.] 

14. (Smelkin). Let G be a polycyclic group and p any prime. Then G has a normal 
subgroup of finite index which is a residually finite p-group. [Hint : Argue by 
induction on the length of a cyclic series.] 

15. (Hirsch). Let G be the group with generators x, y, z and defining relations x' = 
x-l, yZ = y-l and [x, y] = Z4. Prove that G is a torsion-free polycyclic group 
with h(G) = 3. Show also that Gab is finite, so that G is not poly-infinite cyclic. 

16. If G is a finitely generated nilpotent group, prove that G is isomorphic with a 
subgroup of the direct product of a finite nilpotent group and a finitely gener
ated torsion-free nilpotent group. 

17. A group is poly-(quasicyclic or finite) precisely when it is a Cernikov group. 

18. (M.F. Newman). Let G be an infinite Cernikov p-group. Assume that G is not 
abelian but every proper quotient group of G is abelian (see Exercise 5.3.9). 
(i) Show that G is nilpotent of class 2. 

(ii) Show that' G is of type p'" and I G'l = p. 
(iii) Prove that GI'G is an elementary abelian p-group of order p2. for some 

positive n. 
(iv) Find a presentation for G. 
(v) Show that G is determined up to isomorphism by p and n. 

19. Show that a maximal subgroup of a polycyclic group has finite index. 

20. (Kegel). Let G be a polycyclic group and let H be a subgroup of G such that 
HN is subnormal in G for every N <l G with G/N finite. Prove that H is subnor
mal in G. [Hint: Let A <l G where A is free abelian with positive rank r. Argue 
that one can assume A/H n A to be torsion-free. Up is a prime, then HAP is 
subnormal in G]. 

21. Let G be a polycyclic group given by a finite presentation with generators Xl' 

• .• , X •• Show that there is an algorithm which, when words w, WI' ••. , Wm in the 
Xi are given, decides whether WE ( Wi ' W 2 , ••• , wm> in G. (Then the generalized 
word problem is said to be soluble for G.) [Hint: Use 5.4.16 and imitate the proof 
of 2.2.5.] 



CHAPTER 6 

Free Groups and Free Products 

6.1. Further Properties of Free Groups 

Among the basic properties of free groups established in Chapter 2 was the 
fact that every group is isomorphic with a quotient group of a free group, a 
fundamental result that demonstrates clearly the significance of free groups. 
Thus the quotient groups of free groups account essentially for all groups. 
By contrast subgroups of free groups are very restricted; in fact they too are 
free. This important fact, first proved in 1921 by Nielsen in the case of 
finitely generated free groups, is the principal result of the first section. 

Subgroups of Free Groups 

6.1.1 (The Nielsen-Schreiert Theorem). If W is a subgroup of a free group 
F, then W is a free group. Moreover, if W has finite index m in F, the rank of 
W is precisely nm + 1 - m where n is the rank of F (which may be infinite). 

Of the many approaches to this theorem we have chosen one due to A.J. 
Weir; this is entirely algebraic in nature, the crucial idea being the introduc
tion of certain functions called coset maps. The notation that follows will 
remain fixed throughout the proof of the Nielsen-Schreier Theorem. 

Let F be a free group on a set X; let W be an arbitrary subgroup of F. 
The right cosets of W in F are to be labeled by means of an index set I 
containing the symbol 1, 

{~Ii E I}, 

t Otto Schreier (1901 - 1929). 

159 
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with the convention that Wi = W We choose a right transversal to Win F, 
the representative of the coset W; being written 

W;, 
with the stipulation that W = 1. 

If u E F, the elements W;u and W;u belong to the same right coset W;u, so 
that 

- --1 W;uW;u E W 

The idea behind the proof is to find a transversal T such that the nontrivial 
elements W;uW;u-l, u E T, i E I, constitute a set offree generators of W 

With this aim in mind we associate with each i in I and x in X a symbol 
Yix , denoting by 

the free group on the set of all Yix ' The assignment Yixl--+ W;xW;x- i deter
mines a homomorphism 

r : ft -+ W 

The first step is to show that r is surjective. 

Coset Maps 

To each u in F and i in I we shall associate an element UWi of ft, referring to 
the mapping UI--+U Wi as a coset map. (Note: UWi does not mean a normal 
closure in this chapter.) 

Define 

and 

if x E X. Generally, if u = vy in reduced form with Y E X U X-i, define u Wi 
by induction on the length of u by means of the equation 

UWi = vWiyWiV. 

It is important to know how a coset map affects products and inverses. 

Proof. Consider the product formula. This certainly holds if v = 1. Suppose 
that v E X U X-i. If the last symbol of u is not v- i , the formula is true by 
definition. Otherwise u = Ui v- i in reduced form and uv = u1. Thus (uv)W, = 
uri. But uW, = (UiV-i)Wi = uri(v-i)WiU, and (v-i)W,Ul = (v W,UIV-1r 1 = (vW,Ur i 
by definition. Hence uri = UWiVWiU as required. 

Assume now that the length of v (as a reduced word in X) exceeds 1. 
Write v = ViY in reduced form with Y E X U X-i. By induction on the 
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length of v 
(UV)Wi = ((uvdy)Wi = (UV1)WiyWiUVI 

= uWi(vfiU)yWiUVI 
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To prove the formula for (u-1 )Wi apply the product rule to u-1 u. D 

Now let us compute the composite of a coset map with r: F -+ w. 

6.1.3. If u E F and i E I, then (U Wi )' = W;uW;u-1. 

Proof. Induct on the length of u; the equation is true by definition if u = 1 
or u E Xu X-1. Write u = U1 U2 where U 1 and U2 have smaller length than u. 
Then by the product rule 

as required. 

(u Wi)' = ((u1 U2 )Wi)' = (ufiuf'iUI)' 

= W;u 1 W;U1 -1 W;u 1 u2 W;u 1 u2 -1 

= W;uW;u-l, 

D 

Next we consider the restriction of the coset map u ~ u W to W; call this 

1jI: W-+F. 

Now 6.1.2 shows that (uv)W = UW VW if u, v E W; thus IjI is a homomor
phism. Also by 6.1.3 we have (uti')' = (u w)' = WuWu- 1 = u if u E W; for 
W = 1 = Wu. Consequently 

IjIr = 1. 

It follows that IjI is injective and r is surjective. Therefore r is a presentation 
of W in the Yix; we seek now a set of defining relators for r, that is, a subset 
whose normal closure in F equals Ker r. Write 

X = rljl, 
an endomorphism of F. 

6.1.4. The group W has a presentation r: F -+ W with generators Yix and 
defining relators yb,l yfx, (i E I, x EX). 

Proof. Let N be the normal closure in F of the set of all yb,l yfx. Notice that 
K = Ker r equals Ker X because IjI is injective. Since IjIr = 1, we have '1. 2 = 

r(ljIr)1jI = X, which shows that (Yb,l yfxY = 1. Hence N :::;; K. Conversely, let 
k E K; then k is expressible in terms of the Yix. Now yfx == Yix mod N, so 
k X == k mod N because X is a homomorphism. Hence kEN and K = N. D 
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We pass now to a more economical set of relators associated with 
elements of the transversal. 

6.1.5. If u denotes a nontrivial element of the transversal, then the elements 
u W form a set of defining relators for the presentation 1:: F --+ w. 

Proof. If u is a transversal element, (uwy = WuWu- 1 = uu- I = 1 by 6.1.3. 
Thus U W E K = Ker 1: . Let N be the normal closure of the set of all uW ; 

then N :s;; K. To prove the reverse inclusion it suffices to show that yfx == 
Yix mod N; this is because of 6.1.4. We find, using 6.1.2 and 6.1.3, that 

Y!- = (y~ )W = (WXWX-I)W = WW xWWi(WX-I)WWiX 
IX IX " , , • 

Now WW; = W;, while (W;X-I)WWiX = (W;XWfl by 6.1.2. Hence 

yfx = W;W XWi(W;XW)-1 == Yix mod N 

since x Wi = Yix and all u ware in N. 0 

Schreier Transversals 

So far we have constructed a presentation of W for each right transversal. 
The time has come to make a special choice of transversal which will 
furnish a presentation of W making the structure of that subgroup clear. 

A subset S of F is said to have the Schreier property if v E S whenever 
vy E S; here Y E X U X-I and vy is in reduced form. Thus S contains all 
initial parts of its members. What we require is a transversal to W which 
has the Schreier property. However it is not obvious that such a transversal 
exists and this must first be established. 

6.1.6. There exists a right Schreier transversal to W in F. 

Proof. Define the length of a coset to be the minimum length of a word in 
that coset. The only coset of length 0 is W: to this the representative 1 is 
assigned. Let W; be a coset of length I > 0 and assume that coset representa
tives have been assigned to all cosets of length less than I in such a way that 
the Schreier property holds. There is an element u of length I in W;; write 
u = vy where Y E X U X-I and v has length I - 1. Then Wv has already been 
assigned; we define W; to be Wvy, observing that initial parts of this W; are 
in the transversal. In this way a Schreier transversal can be constructed. 

o 

The Nielsen-Schreier Theorem can now be proved. 

Proof of 6.1.1. Choose a Schreier transversal to Win F. As usual write K = 
Ker 1: = Ker x. We know from 6.1.5 that K is the normal closure of the U W 
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where u is a nontrivial element of the transversal. Write u = vx' where x E 

X, e = ± 1 and v has shorter length than u. Then U W = VW(x')Wv. Now 
x Wv = Yix where W; = Wv; also (x-1 )WV = Yj-"l where Hij = Wvx-1. Therefore 

(1) 

for some k. Now v belongs to the transversal by the Schreier property, so VW 
as well as U W is in K. Hence Ykx E K. It follows from (1) that each U W is 
expressible in terms of certain Ykx which themselves belong to K. 

We conclude from the last paragraph that K is the normal closure in F 
of certain free generators Ykx' It follows that W is a free group (see Exercise 
2.1.5). 

Now suppose that IF: WI = m is finite. The rank of F is nm. If we can 
show that exactly m - 1 of the Yix'S belong to K, it will follow that W has 
rank equal to nm - (m - 1) = nm + 1 - m. 

In the first place Yix E K if and only if W;x = W;x. Take any coset W; 
other than W Delete the final symbol of W; (in reduced form) to obtain 
another transversal element, say »j; then W; = Hijx' and W; = Hijx' for 
some x E X, e = ± 1. If e = 1, then HijXHijX-1 = 1 and Yjx E K. If e = -1, 
then W;xW;x-1 = 1 and Yix E K. Thus each of the m - 1 cosets W; "# W fur
nishes a Yix in K; clearly all these Yix are different. Conversely let Yix E K, 
so that W;x = W;x: let Hij = W;x. The either W; "# Wor Hij "# W; hence Yix 

arises from either W; or Hij. Thus all the Yix in K are obtained in this man
ner: they are exactly m - 1 in number. 0 

As an illustration of the procedure for finding a set of free generators for 
a subgroup let us consider the case of the derived subgroup. 

6.1.7.1f F is a noneyclic free group, then F' is a free group of infinite rank. 

Proof. Let F be free on the set {xallX < P} where IX, p are ordinals. By 2.3.8 
the group F/F' is a free abelian group with the set {xaF'11X < P} as a basis. 
Thus each element of F can be written uniquely in the form ex!: x!~ ... x!~ 
where lXi < lXi+1' e E F' and Ii is a nonzero integer. The elements x!: x!~ ... x!~ 
can be used to form a transversal to F' since no two lie in the same coset. 
Clearly this is a Schreier transversal. The Schreier method yields a set of 
free generators of F'. If 1X1 < 1X2' the free generators include 

F--;-- (F'--- )-1 ()-1 -1 -1 Xa2 Xa , Xa2 Xa , = Xa2 Xa , Xa , Xa2 = Xa2 Xa , Xa2 Xa , 

and these are all different. Hence F' has infinite rank. o 

The Reidemeister- Schreier Theorem 

The Nielsen- Schreier method has many applications. One of these is a 
method of writing down a presentation of a subgroup when a presentation 
of the group is known. 
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6.1.8 (Reidemeister-Schreier). Let G be a group and H a subgroup of G. Sup
pose that qJ: F --+ G is a presentation of G with generators X and relators S. 
Let W be the pre image of H under qJ. Then with the above notation: 

(i) T:qJ: F --+ H is a presentation of H with generators Yix and defining relators 
SWi, U W where i E I, s E S, and u is a nontrivial element of a transversal to 
WinF. 

(ii) If I G : HI = m is finite and G is an n-generator group, then H can be 
generated by nm + 1 - m elements. 

Proof. (i) Clearly Ker T:qJ equals the preimage of Ker qJ = K under T:. Denote 
by N the normal closure in F of all the s Wi and u w. Let s E S. Since S s; K :::;; 
W, we have u.-;s = u.-; for all i. Hence (SWi)t = u.-;Su.-;-l. In addition (uwy = 1 
by 6.1.5; thus Nt is the normal closure in W of all u.-;su.-;-t, which implies 
that Nt = SF = Ker qJ = K. Hence Ker T:qJ = N(Ker T:) = N. 

(ii) This follows from 6.1.1 since IF: WI = I G : HI = m. 0 

Residual Finiteness of Free Groups 

Since every finite group is an image of a free group, free groups must have 
"many" finite quotient groups. This is true in the following very strong 
sense. 

6.1.9 (Iwasawa). If p is any prime and F any free group, then F is a residually 
finite p-group. 

Proof. Let 1 =1= f E F. We need to find a homomorphism 9 from F to a finite 
p-group such that f9 =1= 1. Supposing F to be free on a set X, we may write f 
in normal form 

where Xi E X, mi =1= 0, and iu =1= iu+l ' Let q be the largest of the positive inte
gers il , i2 , ... , ir . 

Choose a positive integer n such that p" does not divide ml m2 ••• mr • 

Writing Euv for the elementary (r + 1) x (r + 1) matrix over 7i.. P" with 1 in 
position (u, v) and 0 elsewhere, we define 

(2) 

for 1 :::;; j :::;; q, with the convention gj = 1 should no iu equal j. Then gj is an 
element of the group G of all (r + 1)-by-(r + 1) upper unitriangular matrices 
over 7i.. pn. By a remark at the end of 5.1 the group G is a finite p-group. 

Since F is free on X, we are at liberty to define a homomorphism 
9: F --+ G by means of the rule x7 = gi if 1 :::;; u :::;; r, and X9 = 1 for all other X 

in X. Thus f8 = gi' ... gir : we shall show that this element is not 1. Keep in 
I r 
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mind that EuvEvw = Euw while other products of E's vanish. Now the factors 
of the product (2) commute: for iu and iU+1 cannot both equal j. Expansion 
of the product gives g} = 1 + l'l,;u=j Euu+1 ' Multiplying the g~j together one 
sees that the term E 1r+1 occurs in f6 with coefficient m 1 m2 ••• mr , which is 
not zero in 7Lpn. So f6 # 1 and the theorem is proved. 0 

If F/N is a finite p-group, it is nilpotent, so that YiF ~ N for some i. Since 
the intersection of all such N is trivial by 6.1.9, we conclude that the inter
section of the YiF is trivial. This allows us to state an important result. 

6.1.10 (Magnus). If F is a free group, the intersection of all the terms of the 
lower central series of F is trivial, that is, G is residually nilpotent. 

A noteworthy property of the lower central series of a free group that 
will not be proved here is that all the factors are free abelian groups. A 
proof together with a formula for the ranks of the factors may be found in 
[b31]. 

Hopficity 

A group G is said to be hopfian (after H. Hopft) if it is not isomorphic with 
a proper quotient group, or, equivalently, if every surjective endomorphism 
is an automorphism. For example, all finite groups and all simple groups 
are hopfian, whereas a free abelian group of infinite rank is not. 

The original question posed by Hopf in 1932 was: is every finitely gener
ated group hopfian? It is now known that the answer is negative (see Exer
cise 6.1.16). However there remains the following useful fact. 

6.1.11 (Marcev). A finitely generated residually finite group G is hopfian. 

Proof. Suppose that the surjective endomorphism e: G --+ G is not an isomor
phism: let 1 # x E Ker e. By residual finiteness there is a normal subgroup 
M of finite index not containing x. Now since G is finitely generated, there 
are only finitely many ways-let us say n-of mapping G homomorphically 
to Q = G/M. Let v: G --+ G/Ker e be the natural homomorphism and 8: 
G/Ker e --+ G the isomorphism g(Ker e) 1-+ g6. If ({J1' •.• , ({In are the n distinct 
homomorphisms from G to Q, the V8({Ji are distinct, so they constitute all the 
homomorphisms from G to Q; in every case x maps to the identity. How
ever in the natural homomorphism G --+ Q the element x does not map to 
the identity. So there are n + 1 homomorphisms from G to Q. 0 

Combining 6.1.9 and 6.1.11 we obtain an interesting result. 

t Heinz Hopf(1894-1971). 
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6.1.12 (Nielsen). A free group of finite rank is hopfian. 

This has a useful corollary. 

6.1.13. Let F be a free group with finite rank n. If X is a subset of n elements 
that generates F, then F is free on X. 

Proof· Suppose that F is free on {Yl' Y2 ' . . . , Yn}; let X = {Xl ' X2, ... , xn}. 
The assignments Yi H Xi determine an endomorphism (J: F -+ F which is 
clearly surjective. The hopfian property of F shows that (J is an automor
phism of F. If some reduced word in the x;'s were trivial, the corresponding 
reduced word in the y;'s would be trivial, which cannot be true. By 2.1.3 the 
group F is free on X. 0 

EXERCISES 6.1 

1. If F is a free group and 1 # x E F, then CG(x) is cyclic. 

2. Prove that a free group satisfies the maximal condition on centralizers of sub-
groups. 

3. Every free group is (directly) indecomposable. 

4. Prove that a group which has the projective property is free (see 2.1.6). 

5. Show that GL(2, Z) has free subgroups of all countable ranks. 

6. Let G be a group which has a presentation with n generators and r relators. If 
H is a subgroup with finite index m, show that H has a presentation with nm 
generators and rm - 1 + m relators. Deduce that a subgroup of finite index in 
a finitely presented group is finitely presented. 

7. Let F be a free group of finite rank n. Find the rank of F2 as a free group. 

8. (G. Baumslag). If G is a finitely generated residually finite group, then Aut G 
is residually finite. Deduce that the automorphism group of a free group of 
finite rank is residually finite. [Hint: Let 1 # IX E Aut G; then g" # 9 for some 
9 E G and g-l g" rt N where GIN is finite. Put M = n~eAutGN~ and consider 
CAutG(GIM).] 

9. A group is said to be locally free if every finite subset is contained in a free 
subgroup. Prove that a group is locally free exactly when its finitely generated 
subgroups are free. 

10. There exist nontrivial locally free groups that are perfect (cf. 6.1.10). [Hint : Let 
Fn be free of rank 2 and consider embeddings Fn ..... F~+I'] 

11. There exist nontrivial locally free groups that have no proper subgroups of 
finite index (see 6.1.9). 

12. An abelian group of finite Priifer rank is hopfian if and only if its torsion
subgroup is reduced. 
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13. A free group which is hopfian must have finite rank. 

*14. Let F be a free group on a set {xl, ... ,x.}. Then F'/[F',F] is free abelian 
on the set of [Xi' xJ [F', F] where i < j = 1,2, ... , n [Hint: If n = 2, show that 
F/[F', F] ~ U(3, Z) and deduce the result. In the general case assume a relation 
holds between the generators and apply a suitable endomorphism of F.] 

15. Let F be the free group on {x, u}, and let W = <X2, u2, [x, u]l. Show that FIW 
is a Klein 4-group, and then find a set of five free generators for N. [Hint: 
Choose the Schreier transversal {1, x, u, xu}.] 

16. (P. Hall). There exists a finitely generated soluble group G which is not hopfian. 
[Hint: Let N = U(3, ( 2 ) where O2 is the ring of rational numbers of the form 
m2', (m, n E Z). Let t be the diagonal matrix with diagonal entries, 1, 2, 1 
and put H = <t, N). Denote by (a, b, c) the unitriangular matrix 1 + aE12 + 
bE23 + cE13 and write u = (1, 0, 0), v = (0, 1,0), w = (0, 0, 1). Prove that H = 
<t, u, v). Show also that the assignments (a, b, c)f-+(a, 2b, 2c) and tf-+t deter
mine an automorphism of H; hence show that HI<w) ~ HI<w2 ). Put G = 
HI<w2 ).] 

6.2. Free Products of Groups 

Let there be given a nonempty set of groups {G,d A. E A}. By a free product of 
the G;. we mean a group G and a collection of homomorphisms I;.: G;. ~ G 
with the following mapping property. Given a set of homomorphisms 
CP;.: G;. ~ H into some group H, there is a unique homomorphism cp: G ~ H 
such that I;.CP = CP;., that is, making all the diagrams below commute. 

G;.~G 

.,j ,,/( 
H 

It is customary to suppress mention of the I;., speaking of "the free prod
uct G." 

From the category-theoretic point of view a free product is simply 
a coproduct in the category of groups (the product being the cartesian 
product-see Exercise 1.4.9). 

Notice that the I). are injective: this follows on taking H to be G;. and cP). 
to be the identity function with CPI' = 0 if J.l '" A.. We shall shortly see that the 
images of the I;. generate G. In a certain sense a free product is the "largest" 
group that can be generated by isomorphic copies of the G;. (see Exercise 
6.2.2). 

The existence of free products is demonstrated by a construction similar 
to that used for free groups in Chapter 2. Before embarking on the con
struction we observe that free products, if they exist, are unique. 
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6.2.1. If G and G are free products of a set of groups {G;,IA E A}, then G and 
G are isomorphic. 

The proof, which is similar to that of 2.1.4, is left to the reader as an 
exercise. 

Construction of the Free Product 

6.2.2. To every nonempty set of groups {G;, I A E A} there corresponds a free 
product. 

Proof. There is no loss of generality in assuming that G;, (') GJl = 0 if A =1= J.L 

since G;, can, if necessary, be replaced by an isomorphic copy. Let U be the 
union of all the G;" A E A. Consider the set S of all words in U, that is, all 
finite sequences 

g=glg2" ' g, 

where gi E G;" and Ai E A. The empty word 1 is allowed, corresponding to the 
case r = O. The product gh of two words is defined by juxtaposition, with the 
convention that gl = 9 = 19. The inverse of 9 = glg2 '''g, is defined to be 
g;l " . g"21g11, with the convention that 1-1 = 1. 

We define an equivalence relation ~ on S in the following way: 9 ~ h 
means that it is possible to pass from 9 to h by means of a finite sequence of 
operations of the following types: 

(a) insertion of an identity element (of one of the groups G;,); 
(b) deletion of an identity element; 
(c) contraction: replacement of two consecutive elements belonging to the 

same G;, by their product; 
(d) expansion: replacement of an element belonging to a G;, by two elements 

of G;, of which it is the product. 

It should be clear that the relation ~ is indeed an equivalence relation. Let 
G denote the set of all equivalence classes, the class containing 9 being writ
ten [g]. 

One sees at once that 9 '" g' and h ~ h' imply that gh '" g' h' and g-l ~ 
(g')-l. This permits us to give G the structure of a group by defining 

[g] [h] = [gh] and 

the identity element is, of course, [1]. It is very easy to verify that the group 
axioms hold. The homomorphism I;,: G;, -+ G is defined by the rule Xl' = 

[x], X E G;,. 
Let us show that G and the I ;, constitute a free product of the groups G;,. 

To this end suppose we are given homomorphisms q>;,: G;, -+ H into some 
group H. Our task is to find a homomorphism q>: G -+ H such that I;,q> = 
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CP;.; there is a natural candidate, 

[g]<P = grA, . . . g~Ar, 

where 9 = gl .. . gn and gi E G;. .. To see that cP is well-defined observe that 
application of one of the oper~tions (a)-(d) to 9 has no effect whatever on 
grA, ... g~Ar. This point being settled, it is obvious that cp is a homomor
phism. If x E G;., then X' A<P = [x]<P = X<PA by definition of cp; thus I;.CP = CP;.. 

Finally suppose that cP' : G -+ H is another homomorphism with the pro
perty I;.CP' = CP;. . Then I;.CP = I;.CP' , so cP and cP' agree on 1m I;. . But the 1m I;. 

generate G; for if 9 = glg2· · · gr with gi E G;'i' then 

[g] = [gl][g2]··· [gr] = g~'gi2 . . . g;r 

o 
Notation. The free product G of the set of groups {G;.IA E A} will be written 

G = Fr G;. . 
;' eA 

By 6.2.1 this is unique up to isomorphism. The G;. are called the free factors 
of G. If A is a finite set {AI, ... , An}, it is usual to write 

G = G;., *G;'2* ··· *G;'n . 

Reduced Words 

Let us return to the construction of the free product described in 6.2.2, with 
the object of obtaining a clearer picture of the form of its elements. 

Let G = Fr;'eA G;. . Call a word in U ;'eA G;. reduced if none of its symbols 
is an identity and no two consecutive symbols belong to the same G;. . It is 
agreed that the empty word 1 is reduced. 

Starting with any word g, we can find by a canonical process a reduced 
word in the same equivalence class. First delete all identity elements oc
curring in 9 to obtain an equivalent word g'. Now consider a segment of g', 
by which is meant a subsequence of consecutive elements all belonging to 
the same G;. which is not part of a longer subsequence of the same type. 
Replace each segment by the product of its elements to obtain a word gil 
equivalent to g. The number of symbols of gil is less than that of 9 unless 
9 was reduced to begin with. The same procedure may be applied to gil . 
After a finite number of steps we reach a reduced word that is equivalent to 
g, say g*. 

Suppose that 9 and h are equivalent reduced words; we claim that 9 = h. 
To see this we introduce an action of the free product G on the set R of 
all reduced words. Let u E G;.; we define a permutation u' of R. If u = 1GA, 

then u' = 1. Otherwise define u' by (x 1·· ·Xr- 1xr)u' = X1·· ·Xr- 1Xru or Xl ·· · 
Xr- 1 (xru) according as A # Ar or A = A" with the stipulation that Xru is to be 
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deleted if it equals IG.' Here of course Xl ... xr E R and Xi E GA,.. Clearly 
u H U' is a homomorphism from GA to Sym(R). By the defining p;operty of 
free products these homomorphisms extend to a homomorphism (): G -+ 

Sym(R). Let g = Yl ... Ys where Yi EGA, Then [g] = [Yl]'" [Ys] and [g]8 = 

y~ ... y;. Thus [g]8 sends the empty word 1 to g. Similarly [h]8 sends 1 to h; 
hence g = h. 

We have just proved the following basic result. 

6.2.3. Each equivalence class of words contains exactly one reduced word. 

Normal Form 

Every element of the free product G = FrAEA GA is of the form [g] where g is 
a uniquely determined reduced word, say g = glgZ "'gr with 1 # gi EGA,· 
Then Ai # Ai+l and 

(3) 

Let GA be the subgroup of all [g] where g E GA' Clearly GA ~ GA' Then in (3) 
we have [g;] E GA' Every element of G has a unique expression as a product 
of elements of GA, 'namely (3). This is called the normal form of g. 

To achieve greater simplicity of notation it is usual to identify an x in GA 
with [x] in GA, so that G;. becomes a subgroup of the free product. With this 
convention each element g ofFrAEA G). can be uniquely written in the form 

(r 2: 0), 

where 1 # gi EGA, and Ai # Ai+l; the case r = ° is interpreted as g = 1. Call 
the gi the syllables of g and r the length of g as an element of the free prod
uct. Notice that G;. n <GI'IA # Il E A) = 1. 

The existence of a normal form is typical of free products in the following 
sense. 

6.2.4. Let G be a group generated by subgroups G;., A E A. Suppose that every 
element of G has a unique expression of the form glgZ'" gr where r 2: 0, 1 # 
gi E G;." Ai # Ai+l' Then G is the free product of the GA's. 

This is easy to prove using the mapping property of the free product. 

Examples of Free Products 

EXAMPLE I. If FA is a free group of rank rA, then F = FrAEA F;. is a free group 
of rank L;.EAr;.. In particular, if each F;. is infinite cyclic, F has rank IAI. 

For let FA be free on X A where the X A are disjoint sets. By 2.1.3 and the 
normal form in free products, F is free on U A E AX;.. 
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EXAMPLE II. The free product of two groups of order 2 is an infinite dihedral 
group. 

Let G = <x ) * <y) where Ixl = 2 = Iyl. Write z = xy. Then G = <x, z) 
and ZX = Z-l. Hence G is an image of an infinite dihedral group (by 2.2.1). 
Now a proper image of Doo is finite. On the other hand z has infinite order 
because z, Z2, z3 , ... are distinct elements by uniqueness of normal form. 
Thus G is infinite dihedral. 

A less obvious example of a free product is the projective special linear 
group PSL(2, Z) (see 3.2). 

EXAMPLE III. The group PSL(2, Z) is the free product of a group of order 2 
and a group of order 3. 

This result marked the first appearance of free products in the literature. 
It occurs with a geometric proof in work of Fricke and Klein [b23]. Free 
products were introduced as objects of study in group theory by Schreier in 
1927. 

Proof. Consider the elements 

A = ( 0 
-1 ~) and 

of SL(2, Z). Let H = <A, B ). We show first that H = SL(2, Z). If this is false, 
choose an element of SL(2, Z)\ H 

with lal + lei minimal. For the moment suppose that a -# 0 and e -# O. Now 

AB = G ~) and 

(AB)' X = (a : re b: rd) t H. 

If lal ~ lei, the integer r can be chosen so that la + rei < lal; then la + rei + 
lei < lal + lei, contradicting the choice of X. Hence lal < lei. In this case an 
integer s can be found such that Isa + el < lei; however 

(BArS X = (a b b d) t H. 
sa + e s + 

( 0 1) (0 -1) Therefore a = 0 or c = O. In the first case X = _ 1 d or 1 d 

and B- 1 X equals A2(ABrd- 1 or (AB)d-1 respectively. If e = 0, then X = 
(AB)h or A2(ABrh, a final contradiction. Hence A and B generate SL(2, Z). 
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Let A and ii be the images of A and B under the natural homomorphism 
SL(2, Z) -+ PSL(2, Z). Since A2 = -1 = B3, we see that IAI = 2 and liil = 3. 
Let (a) and (b) be groups of order 2 and 3 respectively and write G = 
(a) * (b). By the mapping property of the free product, the assignments 
a ~ A, b ~ ii determine a surjective homomorphism q>: G -+ PSL(2, Z). To 
complete the proof one shows that Ker q> = 1. 

Let x E Ker q>. Then we can assume that x is a product of ab's and ab-l's 
with a possible initial b±l or a final a (but not both). However 

(AB)' = G ~) and 

where r, s ~ O. Thus a nonempty product of such elements cannot contain 
both positive and negative entries, and therefore cannot equal ± A or 
±B±l. It follows that x = 1. D 

Elementary Properties of Free Products 

Elements of finite order in a free product are subject to severe restrictions. 

6.2.5. Let G = Fr).eA G).. 

(i) Let glg2'" gn be the normal form of an element g of G. If the syllables 
gl and gn belong to different free factors, then g has infinite order. 

(ii) If at least two free factors are nontrivial, then G contains an element of 
infinite order. 

(iii) An element of G with finite order is conjugate to an element in one of the 
free factors. 

Proof. (i) By uniqueness of normal form gm cannot equal 1 for any m > O. 
(ii) This follows from (i). 
(iii) Suppose that g has finite order and let g = glg2'" gn be the normal 

form. Certainly we can assume that n> 1. Then gl and gn must both 
belong to the same free factor G). by (i), and n> 2. But the element gg~l = 

(gngl)g2' " gn-l also has finite order. In view of (i) this is a contradiction. 
o 

In particular a free product of torsion-free groups is torsion-free. 

6.2.6. Let G = Fr).eA G). . If 1 #- g E G)., then CG(g) is contained in G).. 

Proof. Let x E CG(g) and write x = Xl X2'" Xn, the normal form. If Xl and Xn 

both belong to G)., replace x by XX~l , which belongs to CG(gX~l). So we can 
assume that Xl and Xn do not both belong to G).. But then gX l X2' " Xn = 
X 1X2'" xng, which can only mean that n = 1 and X = Xl E G).. 0 
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An immediate consequence is that the center of a free product is trivial if 
at least two of the free factors are nontrivial. 

6.2.7. Let G = Fr;'EA G;. and H = Fr;'EAH;. be free products. Let there be 
given homomorphisms CP;.: G;. --+ H;.. Then there is a unique homomorphism cp: 
G --+ H whose restriction to G;. is CP;.. Furthermore the kernel of cp is the nor
mal closure in G of U ;'EA Ker CP;. . 

Proof. The existence and uniqueness of cp follow from the mapping property 
of the free product. Let N denote the normal closure of U ;'EA Ker CP;. and 
write K = Ker cp. Since CP;. is the restriction of cp to G;., we have N :::;; K . 
Suppose that 9 is an element of shortest length in K \ N. Let 9 = g1g2'" g, 
be the normal form with gi E G;. .. Now 1 = g'" = gj:'gi'2'" g':'r and gr'; E 

H;. .. By uniqueness of normal fo'rm in H some gr'; = 1 and gi E N . Hence , 
g1 . ,. gi-1gi+1 ' " g, E K \ N, in contradiction to the choice of g. 0 

EXERCISES 6.2 

1. Prove 6.2.1 (the uniqueness offree products). 

2. If a group G is generated by subgroups Gl , A E A, then G is an image of 
FrlEA Gl · 

3. Given a family of groups {Gl IA E A}, find a natural epimorphism from FrlEA Gl 
to DrlEA Gl and identify its kernel. 

4. Prove that (FrlEA Gl)ab ~ DrlEA(Gl)ab' 

*5. Let Nl <J Gl and write N for normal closure of U lEA Nl in G = FrlEA Gl . Prove 
that GIN ~ FrlEA(GlINl)' 

6. Let G = FrlEA Gl and let Hl be a subgroup of Gl . If H is the subgroup of G 
generated by the H l , show that H ~ FrlEAHl . 

7. Let G = H * K where HI' 1 and K * 1. Prove that [H, K] is a free group on 
the set of elements [h, k] where 1 * h E Hand 1 * k E K. What is the rank of 
[H, K]? [Hint: Let w = xf,"" xf; be a reduced word in some set X . Let w' be the 
element of G obtained when Xij is replaced by [hj' kj] where the (hj, kj) are dis
tinct pairs of nontrivial elements from Hand K. Show by induction on r that 
the normal form of w' ends in h,k, or k,h,.] 

8. Prove that PSL(2, Z)' is a free group of rank 2. 

9. Let G = <x, ylx' = 1 = yS) where r, s ~ O. If G = « xt)g, y ) where g E G and t is 
positive integer, show that g has the form Xky'. 

10. Let G = <x, ylx' = 1 = yS) where r * s. If Y E Aut G, prove that x Y = (Xi)g and 
yY = (yj)g where g E G and (i, r) = 1 = (j, s). [Hint: Use 6.2.5(iii) and the preced
ing exercise.] Deduce that Out G ~ Z: x Zi. 

11. Prove that Aut(PSL(2, Z)) ~ PGL(2, Z). 
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12. Let G = <x, ylx' = 1 = y'). If Y E Aut G, prove that either x Y = (Xi)g and yY = 
(i)g or x Y = (if and yY = (xi)g where g E G and (i, r) = 1 = (j, r). Deduce that 
Out G ~ 71.:",71.2 , 

13. Prove 6.2.4 (the existence of a normal form characterizes free products). 

6.3. Subgroups of Free Products 

There is a famous and fundamental theorem of Kuros which describes the 
structure of subgroups of a free product. 

6.3.1 (The Kuros Subgroup Theorem). Let H be a subgroup of the free prod
uct G = Fr)'EA G).. Then H is a free product of the form 

H = Ho* Fr H n(d).G).d;:l), 
;',d. 

where Ho is a free group, d). varies over a set of (H, G;.)-double coset represen
tatives and A. varies over A. 

Furthermore, if H has finite index m in G, the rank of the free group Ho 
is L;'eA (m - m;.) + 1 - m where m). is the number of (H, G).)-double cosets 
in G. 

Let us examine the statement of this theorem in the case where each G). 
is infinite cyclic, so that G is a free group. The first assertion is that any 
subgroup H is free. Suppose that IG: HI = m is finite; thus so is m).. Let 
G;. = <x;.) and let d). be an (H, G;.)-double coset representative. For a fixed 
A. all the cosets Hd;.x~ cannot be distinct. Hence Hd;. = Hd;.x~ for some 
r > O. Thus d;.x~ = hd;. where hE H, from which it follows that 1 -:F hE 
H n (d;. G;. d;: 1 ); the latter group is therefore infinite cyclic. Hence the rank 
of H is equal to that of Ho plus L;.eAm;., which equals nm + 1 - m where 
n = IAI. Thus the Nielsen-Schreier Theorem is a consequence of the 
Kuros Subgroup Theorem. 

In proving 6.3.1 we follow once again the method of AJ. Weir, making 
use of coset maps. It is important to realize that the proof is basically simi
lar to that of the Nielsen-Schreier Theorem, although the details are neces
sarily more complicated. 

Consider the situation of 6.3.1. For each A. in A choose a presentation 
CP;.: F;. -+ G;. with F;. free. By 6.2.7 the CP;. determine an epimorphism cP from 
F = Fr;'eAF;. to G = Fr;'eA G;.. Let W be the preimage of H under cpo If a 
presentation of W is given, composition with cp yields a presentation of H. It 
will turn out that such a presentation of W can be found which elucidates 
the structure of H as a free product. It is for this reason that we begin by 
investigating subgroups of F. 
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Subgroups of Free Products of Free Groups 

Let F be the free product of free groups 

F = Fr FA' 
AEA 
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FA being free on a set XA' Let W be a subgroup of F, which will be fixed 
from now on. The right cosets of Ware labeled by an index set I containing 
the symbol 1, 

{W;li E I}, 

where W= WI' 
For each A in A we choose a right transversal to Win F, the A-represen

tative of the coset W; being written 

AW;. 

At present we require only that AW = 1 for all A. A more careful choice of 
transversals will be made later. 

Our immediate object is to construct a presentation of W. With each i in 
I and x in UAEAXA we associate a symbol Yix' The idea is to assign to Yix 
the element AW;X( AW;xtl of W. However the free group on the set of Yix'S 
is not large enough to present W, as it turns out; so we add some more 
symbols. 

Choose any element of A and call it 1: it is to remain fixed throughout 
the proof. With each pair (i, A) where 1 i= i E I and 1 i= A E A we associate a 
symbol ZiA' Now define 

to be the free group on the set of all Yix and Z;;.. 

We construct a homomorphism 

by means of the assignments 

Yixt-+ AW;X(,"W;xtl 

r:F~W 

and 

where x E XA' It will be shown that r is an epimorphism; thus r leads to a 
presentation of W in the Yix and ZiA' 

To save endless qualification let us agree that 

Zu = 1 = Zit 

for all A and i. 

Coset Maps 

For each u in F and i in I we define an element u W, of F recursively by 
induction on the length of u as a reduced word in U AEA XA' In the first 
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place 
X W; = Yix, and 

if x E U ),eA X),. Let U = vy where v "# 1 and Y E Xp. U X;l is the final symbol 
of U in the normal form: then we define 

uW; = VW;(z. Z:-l)yWj 
J)' Jp. , 

where Uj = W;v and the final syllable of v belongs to F;.. (The last statement 
will henceforth be rendered vends in A: similarly v begins in v if the first 
syllable of v belongs to Fv') The mapping 

UHU W; (U E F), 

is called a coset map. Apart from the factor zz-l, the definition is the same 
as in the proof of the Nielsen-Schreier Theorem. 

We proceed to compute the effect of a coset map on products and 
inverses. 

6.3.2. Let U and v be elements of F. 

(i) If neither U nor v cancels completely in the product UV, then 

where Uj = W;u, U ends in A, and v beings in ).t. 

(ii) (u-1)W, = (u W,U- 1r 1. 

Proof. Write v as a reduced word in U ;'eA X;.. The proof of (i) is by induc
tion on I, the length of v as a reduced word: note that I > 0, otherwise we 
consider v to have canceled. If 1= 1, then v E X;. U X;l for some A and (i) is 
true by definition. Assume that I> 1 and write v = V1Y where Y E Xv U X;l 
is the final symbol of v. Then uv = (uv1)y. Observe that U does not cancel 
completely in UV 1 ; assume that V1 does not cancel completely either. By 
definition 

(uv)W; = (uv )W;z z-lyW• 1 kp kv , 

where l¥,. = W;UVl and uv1 ends in p: thus V1 ends in p. By induction on I 

Hence 
(uv )W; = uW;z. Z:-lVWj 

1 J;' Jp. l' 

In particular the product rule holds if no cancellation between U and v 
occurs: Using this fact it is easy to prove (ii) by induction on the length of u. 

Now suppose that V1 cancels completely in UV 1. Then the final part of U is 
vi 1 and U = U 1 vi 1 for some U 1 (without cancellation). Note that y does not 
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cancel in uv = u1y. Also u # 1, otherwise u would cancel completely. Hence 

(4) 

where ltl = W;u 1 and U1 ends in (T. The product rule holds for u = U 1 vI 1 by 
what has already been proved. Thus 

(5) 

where V1 ends in p. By (ii) we have (v I1 )WI = (VflV,lr1 = (Vfj)-l since 
ltlvI1 = W;u = Uj. Substitute for Ufi in (4) using (5): we obtain 

(UV)Wi = UWiVWjz Z-l(Z z-lyW1) 
1 Ip la la I. 

= UWi(V1y)Wj = UWiV Wj, 

the correct answer because A = 11 when cancellation occurs between u and v. 
D 

Simple examples show that the product rule does not hold in general 
(Exercise 6.3.9), a fact that complicates some proofs. Two further instances 
when the rule is valid are useful. 

6.3.3. 

(i) If u, v E F and uv E W, then (uv)W = UW z;;.zi;/VWi where W; = Wu, u ends 
in A, and v begins in 11. 

(ii) If u, v E F;., then (UV)Wi = UWiV Wi". 

Proof. (i) If neither u nor v cancels completely, the equation is already 
known. Suppose that v cancels completely and u = U 1 v-1 in reduced form. 
Then uv = U1 E Wand (uv)W = ufo From u = u1 v-1 and 6.3.2 we obtain 
uW=uf(v-1)W since Wu1=W and zh=1 for all v. Hence uf 
UW«V-1)W)-1 = UWVWi since Wv-1 = Wu = W;. Thus (uv)W = uWvw', which 
is correct because A = 11 in this case. If u cancels completely, the argument is 
similar. 

(ii) We leave the proof as an exercise. 0 

If u, V E W, then 6.3.3(i) yields (uv)W = u W v W since z 1). = 1 = Z 11'" Hence 
the mapping u 1-+ u W is a homomorphism; we shall call this 

t/!: W --+ F. 
We investigate next the effect of composing t/! with T. 

6.3.4. If 1 # u E F, then (u Wi)' = ;'w;u("W;ur1 where u begins in A and ends in 
11· 

Proof. Let u = vy in reduced form where y E X,.. U X;;l. We can also assume 
v # 1; otherwise the result follows from the definitions of yWi and (y-1 )Wi. 



178 6. Free Groups and Free Products 

By 6.3.2 
UWi = (Vy)Wi = VWiZ. Z:-lyWj 

JV JIJ ' 

where W; = W;v and vends in v. By induction on the length of u as a word 
in U .. eAX .. , 

(UWiy = "w;v(Vw;rl. vw; lW;-I.("W; lw;- l r 1·"Jtjy("w;yr1, 

which becomes after cancellation 

(UWi)t = "W;vy("W;U)-1 = "w;u("W;url . D 

If U E Wand i = 1, the formula of 6.3.4 yields (uwy = "WU("W)-1 = u. 
Therefore 

I/It = 1. 

It follows that 1/1 is injective and t surjective. Write 

X = tl/l, 
which is an endomorphism of F satisfying X2 = X. 

We proceed to find a set of generators and relators for the presentation 
t: F --> W 

6.3.5. The group W has a presentation t: F --> W with generators Yix, Zi .. and 
relators 

-1 )( 
Yix Yix 

where i E I, A E A, x E U).eAX),. 

and -1 )( 
Zi .. ZU, 

Proof. Let K = Ker t. Since X = tl/l and 1/1 is injective, K = Ker x. Let N 
denote the normal closure in F of the set of all if'? yfx and Z;;.1 zf ... Then, since 
X = X2 , we have N::;; K. On the other hand, any k in K is expressible in 
terms of Yix and zu, so 1 = kX == k mod N. Therefore kEN and N = K. D 

Kuros Systems of Transversals 

The time has come to make a careful choice of transversals. It is convenient 
to do this in the more general context of a subgroup H of an arbitrary free 
product G = Fr" eA G).. A set of A-transversals to H, say {"H;li E I}, A E A, 
with right co sets Hi of H, is called a Kuros system of transversals if there 
exists for each A a set of (H, G .. )-double coset representatives d .. such that 
the following hold: 

K(i) d .. is an element of shortest length (in the free product) in its (H, G .. )-
double coset D. 

K(ii) If Hi S; D, then "Hi E d .. G ... 
K(iii) If d .. ends in Il, then Il i= A and "Hd .. = d ... 
K(iv) ).Hd .. = d).. 
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We shall see in 6.3.6 that such a set of transversals always exists. By 
choosing a Kuros set of transversals a more economical set of relators is 
obtained. Notice the similarity of K(ii) to the Schreier property. 

Let us now establish the existence of a set of transversals with the Kuros 
properties. 

6.3.6. Corresponding to any subgroup H of a free product G = Fr;' eA G;. there 
exists a Kuros system of transversals. 

Proof. Let 1 be the representative of the double coset HG;.. If Hi ~ HG;., 
choose for ;'Ni an element of G;.. So far all conditions have been met. Let 
D be an (H, G;.)-double coset of length I, that is to say, I is the length of 
a shortest element d' of D. Assume that coset representatives have been 
chosen appropriately for all double co sets of length less than I and that 
transversal elements have been assigned to cosets of H contained in such 
double cosets. Now D = Hd'G;. and d' cannot end in .A. by minimality of 
length-suppose that d' ends in Jl. Then Hd'GIl has length less than I, so its 
representative d", as well as IlHd', has already been assigned: put d = IlHd'. 
Now the length of d" is at most 1- 1. In addition dE d"GIl by K(ii), so the 
length of d is at most I (and hence equals I). Choose this d to be the repre
sentative of D, noting that K(i) and K(iii) hold. If Hi is contained in D, we 
simply define the ;'Ni so as to satisfy K(ii) and K(iv). In this way we con
struct recursively a Kuros system of transversals. 0 

Reassured that such sets of transversals always exist, we return to the 
subgroup W of F = Fr;'eAF;. . 

6.3.7. If a Kuros system of transversals to W is chosen, the following elements 
constitute a set of relators for r : F -+ W: the U W where u is a nontrivial ele
ment of a transversal and the Zj;,Zj~l where ;'Hij = IlHij. 

Proof. Let K = Ker r and denote by N the normal closure in F of the set of 
potential relators. We show first that N ::;; K. Let u = ;'w; and suppose that 
W; = Wu ~ D = WdF;. where d is the representative of D. Then by 6.3.4 

(UW)t = 'WU(IlWut 1 = U(IlW;tl 

where u begins in v and ends in Jl. If Jl = .A., then u = 1lW;. If Jl 1= .A., then, 
since u E dF;. by K(ii), we have u = d: note that d does not end in .A.. Thus 
1lW; = IlWd = d by K(iii). Hence in both cases u = 1lW; and (UW)t = 1. 

Next, if Zj;, Zj~l is one of the specified relators, 

(Z " Z:-l)t = (;.W lW-l)(IlW lW-1)-1 = ;'WIlW-1 = 1 
J .. Jil J J J J J J • 

Hence N::;; K . 
It remains to show that K ::;; N or, equivalently, that yfx == Yix mod N 

and Zt;. == Zi;' mod N (by 6.3.5). 
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First of all consider 

yfx = ("W;x "W;X-1)W = (uxv- 1)W (6) 

where x EX .. , U = .. w;, and v = "W;x. Now W; s; WdF .. for some double 
coset representative d. Thus u E dF .. and v E dF .. by K(ii), and we may write 
u = df and v = dg where f, 9 E F .. . Therefore, by the product rule, (6) 
becomes 

y{x = (d(fxg-1 )d-1)W 

= dW ZjILzi/(fxg-1)WjZj .. Zj~1(dWr1 

where Uj = Wd = Wdfxg- 1 and d ends in /1; here we have assumed that 
fxg- 1 1= 1. Now "Uj = d = ILUj by K(iii) and K(iv). Hence 

y{x == (fxg- 1 )Wj mod N. 

Notice that this is true even if fxg- 1 = 1. Next using 6.3.3(ii) we obtain 

y{x == fWjXWi(gWj)-1 mod N . 

Since Yix = XWi , it is enough to show that fWj and gWj E N. Assume that 
f 1= 1: then we deduce from u = df that UW = dW Zj/lzj;.1fWj, which implies 
that fWj E N. Similarly 9 Wj E N . 

The relator zi/ zf .. is handled in a similar way; the details are left as an 
exercise for the reader. 0 

We shall now partition the Yix in a manner corresponding to the decom
position of F into double cosets. Let A. E A and let d be the representative of 
a (w, F .. )-double coset D. Define 

F).d = <Yixl W; s; D, x EX .. ). 

Each Yix belongs to exactly one F).d. If Z is the subgroup generated by all 
the Zi .. , then 

F = Z* Fr F .. ,d,; (7) 
",d, 

here d .. ranges over all (w, F .. )-double coset representatives and A. E A. We 
shall find a set of relators for 't: F ~ W each of which belongs to a free 
factor of (7). 

6.3.8. The presentation 't: F ~ W has a set of defining relators consisting of 
~ -1 .. - /l-the elements of F .. ,d, (') Ker 't and all Zj .. Zj/l where Uj = Uj. 

Proof. Let N be the normal closure in F of the specified set of elements. 
Then N :::; K = Ker't by 6.3.7. Furthermore by the same result it is enough 
to prove that U W E N where u is a A.-transversal element. Assuming this to 
be false, we can find a (w, F .. )-double coset D of minimal length subject to 
the existence of a coset W; contained in D whose representative u = .. w; does 
not satisfy u wEN. 
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By K(ii) we may write u = df where f E F .. and d is a double coset repre
sentative of D. Then 

(8) 

where W; = Wd and d ends in J1. # A.. The length of the double coset WdF,.. is 
less than that of d; hence it is less than the length of D = WdF .. by K(i). Also 
"'Wd = d by K(iii), so d W E N by minimality. Now "'Wd = "Wd by K(iii) and 
K(iv); hence Zj,..Zj).l E N and it suffices to deal with f Wj. By (8) we have fWj E 

K. Thus it is enough to prove the following statement: if f E F .. , then 

(9) 

whenever ltl ~ WdF ... Iff E X .. , then f W' = Ylf' which belongs to FAd by def
inition: if f E X;l, then f W ' = y;;.}-, E FAd where Wm = ltlf- 1• In the general 
case write f as a reduced word in X .. and induct on its length. 0 

This set of relators enables us to recognize the free product structure 
ofW 

6.3.9. Let W be a subgroup of F = Fr'-eAF .. , the F .. being free groups. Then 
there exists for each A. in A a set of (w, F .. )-double coset representatives{ d..) 
such that there is a free product decomposition 

W = Wo * Fr W n (d .. F .. d;l) ",d, 
where Wo is a free group and the free product is formed over all double cosets 
Wd .. F .. and all A. in A. Furthermore, should IF: WI = m be finite, the rank of 
the free group Wo is 

L (m - m .. ) + 1 - m 
"EA 

where m .. is the number of (w, F .. )-double cosets in F. 

Proof. We assume of course that a Kuros system of transversals and double 
coset representatives for W has been selected. According to 6.3.8 the presen
tation 'r: F -+ W has a set of defining relators each of which belongs to Z = 
<Zi .. li E I, A. E A) or to one of the FAd' that is, to one of the free factors in (7). 
By Exercise 6.2.5 the subgroup W is the free product of Wo = Zt and the 
FId• We claim that 

(10) 

To see this take any Yix in FAd; then Y[x = "»-IX(,"»-IX)-l where x EX ... 
Now »-I ~ WdF .. by definition of FAd' so "»-I = df for some f E F .. : also 
»-Ix ~ WdF .. and "»-Ix = dg where g E F .. . Hence 

yJ" = (df)x(dgtl = d(fxg- 1 )d-1 E W n (dF .. d- 1 ). 

Thus FId :s; W n (dF .. d- 1 ) . 
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To establish the converse we choose w =F 1 from W (') (dF;.d- 1). Since w = 
Wi/it = (w w )" it will suffice to prove that WW E FuK, where as usual K = 
Ker r. Write w = dfr 1 with 1 =F f E F;.. Note that d ends in some Jl =F A. 
Also Wdf = Wd = J-fj say. By the product rule 

WW = (dfd- 1 )W = dW zh,zi/fWjzj;,zj-'/(d-l )Wj • 

Since (d- 1 )Wj = (d W rl, it follows that 

WW == fWj mod K. 

But fWj E Fu by (9), so w W E FuK as required. 
It remains to discuss Wo = Zt. The relators which affect Z are the Zj;,Zj-;'l, 

j =F 1, A =F Jl, each of which eliminates one of the z's. Hence Wo is free. Now 
let IF: WI = m be finite; the rank of Wo has to be computed. 

An element Zj;,Zj-;.l belongs to K if and only if ;'J-fj = /l J-fj. Choose a double 
coset Wd;.F;. other than WF;.. Suppose that d;. ends in Jl. If J-fj = Wd;., then 
;'J-fj = d;. = /lJ-fj, so that K contains Zj;'z;;,l, (j =F 1, A =F Jl). Conversely, let 
Zj;,Zj-;.l E K where j =F 1 and A =F Jl. Then ;'J-fj = /lJ-fj = U say. Now J-fj ~ 
Wd;.F;. (') Wd/lF/l for some d;., dw Then u E d;.F;. (') d/lF/l' so that either u = d;. 
ends in Jl or u = d/l ends in A. In this way one sees that there is a bijection 
between relators of the form Zj;,Zj-;.l (j =F 1, A =F Jl) and double co sets not of 
the form WF,t. The number of relators is therefore L;'eA (m;. - 1). If IAI = n, 
the number of free generators Zj;' of Z is (m - 1)(n - 1). Each relator re
moves one Zj;" Hence the rank of Wo is 

(m - 1)(n - 1) - L (m;. - 1) = L (m - m;.) + 1 - m. 0 
;'eA ;'eA 

Proof of the Subgroup Theorem (Concluded) 

Let H be any subgroup of G = Fr;'eA G;.. Choose presentations CP;.: F;. -+ G;. 
where F;. is free, and let F be the free product Fr;. e A F;. . Then the CP;. extend 
to a unique surjective homomorphism cp: F -+ G. Let W be the preimage of 
H under cp and put R = Ker cp. 

Let a Kuros system of transversals and double coset representatives for 
H be chosen. If g;. E G;., we choose an fix an element f;. E F;. such that f;.'" = 
g;.. If g = g;. • ... g;'k is the reduced form of gin G, write f = f;. • ... f;'k' which 
is the reduced form of f in F. Thus f'" = g. In this way we obtain elements 
of F that map to the double coset representatives and transversal elements 
of H in G. It is easy to see that these elements of F form a Kuros system of 
transversals for Win F. 

Using this system of transversals, we obtain a set of relators for r: F -+ W 
as in 6.3.8. Now rcp: F -+ H is an epimorphism whose kernel is obviously the 
pre image of R under r. Also R is the normal closure in F of U ;'eA Ker CP;. 
(by 6.2.7). Let r be a relator for CP;.. Since r E R :::;; Wand R -<J F, we have 
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W;r = W; for all i. Hence by 6.3.4 

(r w,)' = ;'W;r("W;t! E R. 

This shows that the preimage of R under r is the normal closure in F of all 
the r W' and of K = Ker r. Thus we obtain a set of relators for HP: F --+ H by 
adding to those for r the elements rW', where r is a relator for ep;.. 

Hence every defining relator of rep belongs to a free factor of F. Conse
quently H is the free product of Ho = ZUp and the (Fu)"" = (W n dF;.d-1)<P = 
H n d<PG;.(d<Ptl (by (10)). Since the relators in Z are the Zj;.Zj~\ the subgroup 
Ho is isomorphic with Wo = Zt. Applying 6.3.9 we obtain the formula for 
the rank of Ho. 0 

The Subgroup Theorem has many applications. Here is an example. 

6.3.10 (Baer-Levit). A group cannot be expressed in a nontrivial way as both 
a free product and a direct product. 

Proof. Let G = A * B = C x D where A, B, C, D are nontrivial groups. If 
A n C #- 1, then CG(A n C) ~ A by 6.2.6; therefore D ~ A. Hence CG(D) ~ A 
by 6.2.6 again, which means that C ~ A and A = G, a contradiction. Thus 
A n C = 1. For similar reasons AnD, B n C, and B n D are all trivial. 
Since C and D are normal in G, they intersect conjugates of A and B 
trivially. Applying 6.3.1 we conclude that C and D are free groups. Now 
A ~ ACjC ~ G/C ~ D. Therefore A is free by the Nielsen-Schreier Theo
rem. Similarly B is free, so that G = A * B is free. Let 1 #- c E C and 1 #
dE D; then (c, d) is abelian. But (c, d) is also a free group, so it must be 
infinite cyclic; this is impossible in view of (c) n (d) = 1. 0 

The Grushko-Neumann Theorem 

We mention without proof another very important theorem about free 
products, the Grushko-Neumann Theorem. 

If F is a finitely generated free group and ep is a homomorphism from F onto 
a free product G = Fr;'eA G;., then F is a free product of groups F;., A E A, 
such that F'[ = G;.. 

One of the most useful consequences of this theorem is the following. Let 
G = G1 * ... * Gn and let d(GJ be the minimum number of generators of the 
finitely generated group Gi . Then d(G) = d(G1) + ... + d(Gn) (see Exercise 
6.3.11). 

A geometrical approach to the Grushko-Neumann Theorem, as well as 
to the Kuros Subgroup Theorem, can be found in b43]. 

t Friedrich Wilhelm Levi (1888-1966). 
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EXERCISES 6.3 

1. Describe the structure of subgroups of PSL(2, Z). 

2. Which soluble groups can be embedded in a free product of cyclic groups? 

3. A subgroup of a free product of abelian groups is also a free product of abelian 
groups. 

4. A group is called freely indecomposable if it cannot be expressed as a free 
product of nontrivial groups. Let G = <A, B) where A and B are freely inde
composable and A n B * 1. Prove that G is freely indecomposable. 

5. Let G = Fr;'eA GA = Fr"eMH" where the G;, and H" are freely indecomposable. 
Prove that IAI = IMI and that, with suitable relabeling, GA ~ H;,. If GA is not 
infinite cyclic, show that GA and HA are conjugate. 

6. Prove that the following pairs of groups are not isomorphic; 
(a) <x, y, ZlX2 = y3 = Z4 = I) and <u, v, wlu2 = v3 = w4 = 1, uv = vu); 
(b) <x, y, zlx2 = l = (xy)2 = Z2 = I) and <u, v, wlu2 = v3 = w2 = 1, uv = vu); 
(c) <x, y, z, tlxy = yx, zt = tz) and <s, u, v, wlsu2 = u2s, vw = wv). 

7. Every nontrivial direct product is freely indecomposable. Every nontrivial free 
product is directly indecomposable. 

8. Prove 6.3.3(ii), that (uv)W, = u w'v w,_ if u, v E F;,. 

9. Prove that the product rule (6.3.2) is not always valid. [Hint: Consider (xy-l . y)W 
where x E FA, Y E F" and), * II.] 

10. Complete the proof of 6.3.7 by showing that ZfA == ZiA mod N. 

11. If G = Gl * G2 * ... * G. is a finitely generated group, prove that d(G) = d(Gl ) + 
d(G2) + ... + d(G.) by applying the Grushko-Neumann Theorem. 

12. Prove that every finitely generated group can be expressed as a free product of 
finitely many freely indecomposable groups. Show also that this decomposition 
is unique up to order. 

13. Let G be the group with the presentation <Xl' ... , x.l[x l , X2] = [X2' x3] = ... = 
[X'-l' X.] = I). Prove that G is freely indecomposable. [Hint: Assume that 
G = H * K where H * G and K * G. Let C = CG(xd and apply 6.3.1 and 6.2.6 
to show that C = 1.] 

6.4. Generalized Free Products 

Let there be given a nonempty set of groups {GAIA. E A}, together with a 
group H which is isomorphic with a subgroup HA of GA by means of a 
monomorphism 

(A. E A). 

There is an exceedingly useful object known as the free product of the GA's 
with the amalgamated subgroup H. Roughly speaking this is the largest 
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group generated by the G).'s in which the subgroups H). are identified by 
means of the cp).. Generically such groups are known as generalized free 
products. 

The precise definition follows. Let there be given groups G). and mono
morphism CP;.: H -+ G;. as before. Define F to be the free product Fr;'eA G). 
and let N be the normal closure in F of the subset 

{(h<p· )-lh<Ppl A., J-l E A, h E H}. 

The free product of the G;. with amalgamated subgroup H (with respect to the 
CP;.) is defined to be the group 

G = FIN. 

The point here is that h<P' == h<Pp mod N, so that all the subgroups H<P' N I N 
are equal in G. In general G will depend on the particular CP;. chosen, not 
merely on the subgroups H;.-see Exercise 6.4.9. Of course when H = 1, the 
generalized free product reduces to the free product. 

The case which is most commonly encountered is when there are two 
groups G1 , G2 with subgroups H1 , H2 that are isomorphic via cp: Hl -+ H2; 
this arises when H = Hl and the monomorphisms in the definition are 
CPl = 1 and CP2 = cp. 

An Example 

Let A = <a) and B = <b) be cyclic groups of orders 4 and 6 respectively. 
The free product A * B has the presentation <a, bla4 = 1 = b6 ). Since a2 

and b3 both have order 2, the subgroups <a2 ) and <b3 ) are isomorphic; we 
may therefore form the free product G with an amalgamation determined 
by the isomorphism <a2 ) -+ <b3 ). This amounts to identifying a2 and b3• 

Thus G has the presentation 

<a, bla4 = 1, a2 = b3 ) . 

Here we have not troubled to change the names of the generators. 
The element h = a2 = b3 commutes with a and b, so it belongs to the 

center of G. Therefore every element of G can be written in the form 

(r ;;:: 0), 

where i and js = 0 or 1 and ks = 0, 1, or 2. It is reasonable to ask whether 
the above expression is unique, at least if identity elements are deleted and 
consecutive terms lie in different factors. 

One way to see that this is true is to map G homomorphically onto 
the group L = <u) * <v) where u and v have orders 2 and 3 respectively. 
This can be done by means of the assignments a H u and b H v using von 
Dyck's Theorem (2.2.1). If an element of G had two expressions of the above 
type, some element of L would have two normal forms, which is known to 
be impossible. Therefore every element of G has a unique expression. 

Guided by this example we proceed to the general case. 
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Normal Form in Generalized Free Products 

Let G be the free product of groups G;., A E A, with a subgroup amalgam
ated according to monomorphisms CP;.: H -+ G;.: write H;. for 1m CP;.. If F = 
Fr;'eA G;. and N is the normal closure in F of the set of all (h""r 1 h'/\ hE H, 
A, Jl E A, then G = FIN. 

For each A E A we choose and fix a right transversal to H;. = H"" in G;., 
writing g for the representative of the coset H;.g; of course we choose I = 1. 
Consider an element f of F written in the normal form for the free product, 
f = U 1 U2 ... Ur where Ui E G;.,. For convenience put Gi = G;., and CPi = CP;.,' 
We shall define certain elements gi in G;." starting with gr = Ur. Write gr = 
hirgr where hr E H. Since hir == hir-1 mod N, we have gr == hir-1gr mod N. 
On substituting for gr = Ur in f, we obtain 

f == U 1 "'Ur-2gr-lgr mod N 

where gr-l = Ur- 1 hir-1 E Gr - 1 · Again gr-l == h::'i2 gr_l mod N for some hr- 1 

in H. Hence 
f == U 1 • •. ur-3gr-2gr-lgr mod N 

where gr-2 = ur_2h::'i2 E Gr- 2· 
After r - 2 further applications of this technique we obtain an expression 

(11) 

where hE H. Here h"'l == h"" mod N for all i. This indicates what type of 
normal form is to be expected in a generalized free product. 

Definition. Let f E F = Fr;'eA G;. . A normal form of f with respect to the 
monomorphisms CP;.: H -+ G;. and the chosen transversals is a formal expres
sion 

(r ~ 0), 

with the property f == h""lgl ... gr mod N: here hE H, gi E G;., and we stipu
late that gi # 1 and Ai # Ai+l' 

The foregoing considerations demonstrate that each element of F has a 
normal form obtainable by the canonical process that led to (11). But the 
really important point remains to be settled, the uniqueness of the normal 
form. 

6.4.1. Each element of F = Fr;'eA G;. has a unique normal form with respect to 
the monomorphisms CP;.: H -+ G;. and the fixed transversals to H;. = 1m CP;. in 
G;.. 

Proof. Since a direct proof of uniqueness would be technically very compli
cated, we adopt a different approach. 
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Let M denote the set of all normal forms of elements of F. Associate 
with each x in G;. a permutation x* of M defined in the following manner: 
(hg 1 ." gr)x* is the normal form of the element h"'"lgl ". grx which results 
on applying the canonical procedure described above. In what follows we 
write <Pi for CP;., 

We claim that 
(xy)* = x*y* 

for all x and y in G;. . This is quite straightforward to prove but it does 
require some case distinctions. 

Consider the normal form hg1 . .. gn; assume that An #- A, so gn ¢ G;.. Ap
plying our procedure for constructing a normal form to h"'lgl '''gnx, we 
obtain 

(12) 

where hi E H, x = h:';'lX, and gihr':'l = hrigihi+1, except that x must be de
leted if x E H;.. Now apply y*: we obtain elements k i of H such that 

(hg1 ". gn)x*y* = (hh 1 kdg1 (h 2 k2 )"'1. " gn(hn+1 kn+1)"'"xy (13) 

where xy = k:';'lXY and gihr~lkr':'l = krigi(hi+1ki+d"'i: here xy is to be de
leted if xy E H;.. Replacing x by xy in (12), we obtain elements Ii of H such 
that 

(hg1 .. . gnHxy)* = (hl1)gllfl ... gnl:~l xy 

where xy = 1:';'1 xy and g;lr':'l = lrigilr':'l' From the equations supporting 
(12) and (13) we find that xy = (hn+1 kn+1)"'"xy, and also g;(hi+1 ki+d"'i = 
(hikJ"'igi(hi+1 ki+1)"'i. Hence Ii = hiki and (hg1 " . gnHxy)* = (hg1 ". gn)x*y*, 
by induction on n + 1 - i. The case An = A is handled in a similar fashion. 

It follows that x ....... x* is a homomorphism 0;. from G;. to Sym M. Hence 
there is a homomorphism 0: F -+ Sym M which induces 0;. in G;,. . Since 
(h",")-l h"'- E N, the permutation of M that corresponds to this element is the 
identity. Thus 0 maps all elements of N to the identity. 

If hg1 . .. gn is a normal form of f, then by definition 

f == h"'lgl ... gn mod N. 

Hence f 6 =h"'16g!"'g:, which maps the normal form 1 to hg1 ' ''gn' It 
follows that f cannot have two normal forms. D 

It is now possible to elucidate the structure of generalized free products. 

6.4.2. Let G be the free product of the groups G;. with a subgroup H amalgam
ated via monomorphisms CP;.: H -+ G;.. Then there exist subgroups Hand G;,. of 
G isomorphic with Hand G;. respectively such that G = (G;.IA E A). More
over H is the intersection ofG;. and (G/ll,u E A,,u #- A). 

Proof. Let F = Fr;'eA G;. and let N denote the normal closure of the set of 
all (h"'"t1h"'- (h E H, A, ,u E A). Thus G = FIN . Put H = H"'"NIN, which is 
independent of A, and G;,. = G;,.NIN . Then H"'" n N = 1 and G;. n N = 1 by 
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uniqueness of the normal form. Hence Jj ~ Hand G;. ~ G;.. Also 

G;.N n <Gp.NIJ.l E A, J.l # A.) = HN 

by uniqueness of normal form again. Finally the G;. generate G because the 
G;. generate F. 0 

In order to simplify the notation we shall identify the subgroups G;. and 
G;., and likewise Jj and H. Thus the G;. are actually subgroups of their gen
eralized free product G, which they also generate: also G;. n Gp. = H if A. # J.l. 
An element of G may now be identified with its unique normal form 

(r ~ 0), 

hE H, gi E G;. \ H, A.i # A.i+1. Bear in mind that this expression is dependent 
on the choice of transversal to H in G;.. 

Just as in free products, uniqueness of the normal form is useful in 
locating elements of finite order. 

6.4.3. Let G be a generalized free product of groups G;., A. E A, in which H is 
amalgamated. 

(i) If 9 = h91 ... 9 n is the normal form of 9 (with respect to some set of 
transversals) and gl and gn belong to different factors G;'I and G;'n' then 9 
has ir!finite order. 

(ii) If there are at least two G;.'s not equal to H, then G has an element of 
infinite order. 

(iii) An element of G which has finite order is conjugate to an element of some 
G;. . 

Proof. (i) Let us examine the normal form of powers of g. For example, 
consider g2 = h91 ... 9n-1 (9nh)91 ... 9n. Using expressions such as 9nh = h'9~ 
(h' E H, 1 # g~ E G;. ), we can move the h to the left, obtaining a normal 
form with 2n factor; 9i or 9;; thus g2 # 1. Similarly gm # 1 if m > 2. 

(ii) This follows from (i). 
(iii) Suppose that gm = 1 but 9 is not conjugate to any element of G;. . 

Write 9 = h91 ... 9ft' the normal form, with gi E G;. .. Then n> 1; for other
wise 9 E G;'I. It follows from (i) that A.1 = A.n and n ; 2. Now g' = 9ng9;;1 has 
the normal form h'9~92··· 9n-1 where h' E H and g~ E G;'I. We deduce from 
(i) that n = 2, a contradiction. 0 

6.4.4. A generalized free product of torsion-free groups is torsion-free. 

This is an immediate corollary of 6.4.3. 

Embedding Theorems 

One of the great uses of generalized free products is to embed a given group 
in a group with prescribed properties. In this subject the following theorem 
is basic. 
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6.4.5 (G. Higman, B.H. Neumann, H. Neumannt). Let Hand K be sub
groups of a group G and let 0: H --+ K be an isomorphism. Then G can be 
embedded in a group G* such that 0 is induced by an inner automorphism of 
G*. What is more, if G is torsion-free, then so is G*. 

Proof. Let (u) and (v) be infinite cyclic groups. Form the free products 
X = G * (u) and Y = G * (v). Now let L = (G, W) and M = (G, KV). 
Then L = G * H U since there can be no nontrivial relation of the form 
glhrg2h~ '''gnh~ = 1 with gi E G and hi E H. Similarly M = G*Kv• Conse
quently there is a homomorphism ({J: L --+ M such that g<P = g and (hU)<P = 

(h8)V, (g E G, h E H). Clearly ({J is an isomorphism. 
Consider the generalized free product G* of X and Y in which Land M 

are amalgamated by means of ({J: L --+ M. Thus x<P = x for x in L, and G is a 
subgroup of G*. If hE H, then hU = (hU)<P = (h8)V, so that h8 = huv- 1 and 0 
is induced by conjugation by the element uv-1 of G*. Notice that if G is 
torsion-free, so are X, Y, and G* by 6.4.4. 0 

Write t for the element uv-1 of G* that induces 0; then t will have infinite 
order by 6.4.3. The group (t, G) is called an HNN-extension of G (after 
Higman, Neumann, and Neumann). It may be thought of as the group gen
erated by G and t subject to the relations Xl = x 8, (x E H). 

HNN-extensions play an important part in modern combinatorial group 
theory (see [b43] for a detailed account). 

The following embedding theorems illustrate the power of 6.4.5. 

6.4.6 (Higman, Neumann, and Neumann). A torsion-free group G can be em
bedded in a group U in which all nontrivial elements are conjugate. In particu
lar U is torsion-free and simple. 

Proof. As a first step we embed G in a group G* such that all nontrivial 
elements of G are conjugate in G*. To achieve this, well-order the nontrivial 
elements of G, say as {galO ::::;; ex < y} for some ordinal y. A chain of torsion
free groups {Gall::::;; ex < y} such that G::::;; Ga and all the gfJ with f3 < ex are 
conjugate in Ga will be constructed. Let G1 = G; suppose that GfJ has been 
suitably constructed for all f3 < ex. If ex is a limit ordinal, simply define Ga to 
be the union of all the GfJ with f3 < ex. Suppose that ex is not a limit ordinal, 
so that Ga - 1 has already been constructed. Now (go) and (ga-l) are 
isomorphic subgroups of Ga - 1 since both are infinite cyclic. Applying 6.4.5 
we embed Ga- 1 in a torsion-free group Ga in such a way that go and gll.-l are 
conjugate in Ga. All the gfJ' 0::::;; f3 < ex, are now conjugate in Ga . Thus our 
chain has been constructed. Denote the union of the Ga , 1 ::::;; ex < y, by G*. 
All nontrivial elements of G are conjugate in G*. 

t Hanna Neumann (1914- 1971). 
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The proof is now easy. Define G(O) = G and G(i + 1) = (G(i))* . This 
defines recursively a countable chain of groups G = G(O) ::;; G(I) ::;; .... Let 
U be the union of this chain. Any two nontrivial elements of U belong to 
some G(i), so they are conjugate in G(i + 1) and hence in G. 0 

On the basis of 6.4.6 we can assert that there exist groups of arbitrary 
infinite cardinality with just two conjugacy classes (cf. Exercise 1.6.8). 

To conclude this chapter we shall prove what is probably the most 
famous of all embedding theorems. 

6.4.7 (Higman, Neumann, and Neumann). Every countable group can be em
bedded in a group which is generated by two elements of irifinite order. 

Proof. Let G = {I = go, gl' g2 ·· ·} be any countable group and let F be the 
free group on a two-element set {a, b}. We consider two subgroups of the 
free product H = G * F, 

A = <a,ab,ab>, ... ) and B= <bgo,bagl,ba2g2' ... ) . 

It is easy to see that a nontrivial reduced word in a, ab, ab>, ... cannot equal 
1. Hence A is freely generated by a, ab, ab2, ... ; for the same reason B is 
freely generated by bgo, bag l , ba2g2, .... Hence there is an isomorphism 
<p: A _ B in which abi is mapped to baig,. 

By 6.4.5 we can find an HNN-extension K = <H, t) such that (abi)t = 
baig,. The subgroup <a, t) contains at = b and therefore (abiy = ba'g,. Con
sequently <a, t) contains each g" and therefore equals K. Of course G is a 
subgroup of K. 

It is obvious that a has infinite order. By a remark following 6.4.5 the 
order of t is also infinite. 0 

EXERCISES 6.4 

1. Identify each of the following groups as a generalized free product, describing 
the factors and the amalgamated subgroups: 
(a) (x, Ylx3 = y3, y6 = 1) ; and 
(b) (x, ylx30 = 1 = y70, x 3 = y5 ) . 

2. Express SL(2, £') as a generalized free product. 

3. Write in normal form the elements xyx3y2 and y5 x 2yx3y3x of the group 
( x, ylx4 = 1 = y6, x 2 = y3 ). 

4. Show that the braid group on three strings G = ( x, Ylxyx = yxy> is a generalized 
free product of two infinite cyclic groups. Deduce that G is torsion-free. [Hint: 
Let u = xy and v = xyx.] 

5. Find a mapping property which characterizes generalized free products. 

6. Complete the proof of uniqueness of the normal form (6.4.1, case An = A). 
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7. Let G be generated by subgroups G1 , A E A, and let H :s; G1 for all A.. Assume 
that there exist transversals to H in the G1 such that each element of G admits a 
unique expression of the form h91 ···9. where h E H, gi E G1,\ H, Ai "# Ai+!' and 9i 
is the coset representative of H9i in G1,. Prove that G is a free product of the G1's 
with H amalgamated. 

8. (a) Let G be a generalized free product of groups G1 , A E A, with a proper amal
gamated subgroup. Prove that the center of G equals nlEA C(G1 ). 

(b) Locate the center of the group 

<x, y, z, tlxy = yx, x6 = Z3, X4 = t S ) . 

9. Show that the generalized free product depends on the amalgamating mono
morphisms as follows. Let Gi = <ai' bilaf = 1 = bl, bi-Iaibi = ail), i = 1,2, be 
two dihedral groups of order 8. Let Hi be an elementary abelian subgroup of Gi 

with order 4. Find two isomorphisms between HI and H2 that lead to two non
isomorphic generalized products of GI and G2 with HI and H2 amalgamated. 

10. Let G = <x, ylx2 = y2). Prove that G is an extension of its center by an infinite 
dihedral group. Show that G is supersoluble and G' is cyclic. 

11. A group is said to be radicable if every element is an nth power for all positive 
integers n. Using generalized free products, prove that every group can be em
bedded in a radicable group. (Note: For additive groups the term divisible is 
used instead ofradicable.) 

12. There exists a 2-generator group containing an isomorphic copy of every count
able abelian group. 

13. Prove that any group G can be embedded in a group G* in which all elements of 
the same order are conjugate. Also if G is countable, then G* can be assumed to 
be countable. 

14. Prove that any countable group G can be embedded in a countable radicable 
simple group. [Hint: Embed G in group GI which contains elements of all possi
ble orders and then embed GI in G2 = GI * <x) where Ixl = 00. Now embed G2 

in a group G3 with two generators of infinite order. Finally embed G3 in a group 
G4 in which all elements of equal order are conjugate.] 

15. Exhibit G. Higman's group (see Exercise 3.2.9) 

G = <bl, b2, b3, b41b~4 = br, b~l = bi, b~2 = bi, b!3 = bl) 

as a generalized free product of torsion-free groups. Deduce that G is nontrivial 
and torsion-free. [Hint: Let Hi = <ai' bilbt' = bi2), i = 1,2,3,4. Let Kl2 and K34 
be the generalized free products of HI and H2 and of H3 and H4 in which bl = 
a2 and b3 = a4 respectively. Show that G is a generalized free product of K 12 

and K34.] 



CHAPTER 7 

Finite Permutation Groups 

The theory of finite permutation groups is the oldest branch of group 
theory, many parts of it having been developed in the nineteenth century. 
However, despite its antiquity, the subject continues to be an active field of 
investigation. 

If G is a permutation group on a set X, it will be understood throughout 
this chapter that G and X are finite. Frequently it is convenient to take X to 
be the set {l, 2, ... , n}, so that G::; Sym X = Sn . There is no real loss of 
generality here since we are only interested in permutation groups up to 
similarity. 

If Y is a subset of X, the (pointwise) stabilizer StG(Y) of Y in G is often 
written simply 

Gy 

in permutation group theory. We shall use this notation when it is not mis
leading. The elementary properties of permutation groups were developed 
in 1.6. 

7.1. MUltiple Transitivity 

Suppose that G is a permutation group on a set X containing n elements. If 
1 ::; k ::; n, we shall write 

for the set of all ordered k-tuples (at, a2 , ... , ak ) consisting of distinct ele
ments ai of X. The group G acts in a very natural way on X[k1, namely, 

192 
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componentwise. Thus, if nEG, 

(aI' ... , ak)n = (a l n, ... , akn) (1) 

and we have a permutation representation of G on X[k) . 
• If G acts transitively on X[k), then G is said to be k-transitive as a permu
tation group on X. Thus 1-transitivity is simply transitivity, and, in fact, the 
strength of the property "k-transitive" increases with k. Suppose that G acts 
on X without actually being a group of permutations of X; then we shall 
say that G is k-transitive on X if G acts transitively on X[k) by means of the 
rule (1). 

The following result is fundamental and is the basis of many induction 
arguments. 

7.1.1. Let G be a transitive permutation group on a set X. Suppose that k > 1 
and a is a fixed element of X . Then G is k-transitive if and only if Ga is 
(k - 1)-transitive on X \ {a} . 

Proof. Suppose first that Gis k-transitive on X and let (aI ' ... , ak-I) and 
(a~, ... , a~-I) belong to y[k-I) where Y = X \ {a}. Then ai #- a #- a; and by 
k-transitivity there is a permutation n in G mapping (aI' .. . , ak-I ' a) to 
(a~, ... , a~-l' a); now n fixes a and maps (aI' ... , ak- I) to (a~ , ... , a~-d, 
which shows that Ga acts (k - 1)-transitivelyon Y. 

Conversely suppose that Ga is (k - 1)-transitive on Y. Let (aI' ... , ak) and 
(a I, ... , ad belong to X[k) . Since G is transitive on X, we can find nand n in 
G such that al n = a and al = an. Moreover there exists a u in G" mapping 
(a2 n, ... , akn) to (a2n-I , ... , akn-I) by (k - 1)-transitivity of Ga . Thus we 
have ainu = ain-I or ainun = ai for i = 2, .. . , k. Also a l nun = aun = an = 
a l since u E Ga . Hence the element nun of G maps (aI ' .. . , ak) to (aI' ... , ak) 
and Gis k-transitive on X. D 

Notice the immediate consequence: (k + 1)-transitivity implies k-tran
sitivity. 

If X has n elements, the number of elements in X[k) equals 

n(n - 1) "' (n - k + 1), 

the number of permutations of n objects taken k at a time. Using 1.6.1 we 
deduce at once the following important result. 

7.1.2. If G is a k-transitive permutation group of degree n, the order of G is 
divisible by n(n - 1)··· (n - k + 1). 

Sharply k-Transitive Permutation Groups 

Let G be a permutation group on a set X. If G acts regularly on X[k), then G 
is said to be sharply k-transitive on X. What this means is that, given two 
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k-tuples in X[k1, there exists a unique permutation in G mapping one k-tuple 
to the other. Clearly sharp I-transitivity is the same as regularity. By \ .6.1 
we have at once 

7.1.3. A k-transitive permutation group G with degree n is sharply k-transitive 
if and only if the order of G equals n(n - 1)'" (n - k + 1). 

The easiest examples of multiply transitive permutation groups are the 
symmetric and alternating groups. 

7.1.4. 

(i) The symmetric group Sn is sharply n-transitive. 
(ii) If n > 2, the alternating group An is sharply (n - 2)-transitive. 

(iii) Up to similarity Sn and An are the only (n - 2)-transitive groups of degree 
nand Sn is the only (n - I)-transitive group of degree n. 

Proof. (i) This is obvious. 
(ii) In the first place it is easy to see that An is transitive. Since A3 is 

generated by (1,2,3), it is regular and hence sharply I-transitive: thus the 
statement is true when n = 3. Let n > 3 and define H to be the stabilizer of 
n in An. Then H acts on the set {I, 2, . .. , n - I} to produce all even permu
tations. By induction H is (n - 3)-transitive on {I, 2, . . . , n - I}, so An is 
(n - 2)-transitive by 7.1.1. Since IAnl = t(n!) = n(n - 1) '" 3, we see from 
7.1.3 that this is sharp (n - 2)-transitivity. 

(iii) Suppose that G :::; Sn. If G is (n - 2)-transitive, then n(n - 1)· · ·3 = 
t(n!) divides IGI and ISn: GI = 1 or 2. Hence G<J Sn , which implies that G = 
An or Sn (by 3.2.3 and a direct argument when n = 4). Of course if G is 
(n - 1)-transitive, then G = Sn . 0 

Examples of Sharply 2- and 3-Transitive Permutation Groups 

We shall now discuss certain important types of sharply 2-transitive and 
3-transitive permutation groups that are not of alternating or symmetric 
type. 

Let F be a Galois field GF(q) where q = pm and p is prime. We adjoin to 
F the symbol 00 : it may be helpful for the reader to think of the resulting set 

X=Fu{oo} 

as the projective line consisting of q + 1 points. Define 

L(q) 

to be the set of all functions ex : X --+ X of the form 

ax + b 
xex=--

cx + d ' 
(2) 
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where a, b, c, d belong to F and ad - be # O. (Such a function is called a 
linear fractional transformation.) Here it is understood that the symbol 00 is 
subject to such formal arithmetic rules as x + 00 = 00, 00/ 00 = 1, etc. 

H is easy to verify that L(q) is a group with respect to functional compo
sition: indeed L(q) is isomorphic with the projective general linear group 
PGL(2, q)-see Exercise 3.2.3. In the present context it is the natural action 
of L(q) on X that concerns us. The stabilizer of 00 in L(q) is easily seen to be 
the subgroup 

H(q) 

of all functions x ~ ax + b, (a # 0). Concerning the groups H(q) and L(q) 
we shall prove the following. 

7.1.5. The group H(q) is sharply 2-transitive on F = GF(q) with degree q. The 
group L(q) is sharply 3-transitive on F u {oo} with degree q + 1. 

Proof. In the first place H(q) acts 2-transitively on F. For, given x, y, x', y' 
in F with x # y, x' # y', we can solve the equations x' = ax + band y' = 
ay + b for a, b in F with a # O. Consequently there is a n in H(q) mapping 
(x, y) to (x', y' ). 

Next L(q) is transitive on X = F u {oo} because H(q) is transitive on F 
and the function x~ llx sends 00 to O. By 7.1.1 we conclude that L(q) is 
3-transitive on X. The order of H(q) is clearly q(q - 1), so H(q) is sharply 
2-transitive on F. Also IL(q): H(q)1 = IXI = q + 1; thus 

IL(q)1 = (q + l)q(q - 1) 

and the group L(q) is sharply 3-transitive on X. o 

It is clear that H(q) is not regular, but a nontrivial element of H(q) cannot 
fix more than one point of GF(q), by sharp 2-transitivity. A transitive per
mutation group with these properties is called a Frobenius group: more will 
be said of this important type of group in Chapters 8 and 10. 

There is a second family of sharply 3-transitive permutation groups act
ing on the projective line. As before let F = GF(q) and X = F u {oo} where 
now q = p2m and p > 2. The mapping 0': F ~ F given by XU = xpm is an 
automorphism of the field F with order 2 since xp2m = x. Extend 0' to X by 
letting 0' fix 00. 

Using this function 0' : X ~ X we define 

M(q) 

to be the set of all functions Ct: X ~ X which are of the form 

ax + b 
xCt= -

ex + d ' 
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where ad - be is a nonzero square in F, or of the form 

ax" + b 
XIX = , 

ex" + d 

where ad - be is not a square in F. A simple direct computation shows that 
M(q) is a group with respect to functional composition. (Note: the product 
of two nonsquares is a square.) 

Thus M(q) is a permutation group on X. The stabilizer of 00 in M(q) is 
the subgroup S(q) of all functions x 1-+ ax + b with a a nonzero square in F 
and x 1-+ ax" + b where a is not a square in F. 

Let us establish the multiple transivity of M(q) and S(q). 

7.1.6. The group S(q) is sharply 2-transitive on F = GF(q) and the group M(q) 
is sharply 3-transitive on F U {oo}. 

Proof. Both the mappings x 1-+ ax + b and x 1-+ ax" + b send (0, 1) to 
(b, a + b) and one of them must belong to S(q). Thus S(q) is 2-transitive on 
F. We must calculate the order of S(q). Now x 1-+ x2 is an endomorphism of 
the multiplicative group of F whose kernel < -I) has order 2. Hence, by the 
First Isomorphism Theorem, there are exactly t(q - 1) nonzero squares in 
F. The number of nonsquares is therefore also t(q - 1). It follows that the 
order of S(q) is 2(t(q - 1)· q) = q(q - 1). Hence S(q) is sharply 2-transitive 
on F. Next x 1-+ -l/x belongs to M(q) and maps 00 to 0, which shows that 
M(q) is transitive on X. Applying 7.1.1 we conclude that M(q) is 3-transitive 
on X. Also IM(q): S(q) I = q + 1 by transitivity of M(q); thus 

I M(q) I = (q + l)q(q - 1) 

and M(q) is sharply 3-transitive. o 

It can be shown that the groups L(q) and M(q) are not isomorphic, 
so that we have two infinite families of sharply 3-transitive groups. The 
significance of these groups may be gauged from the theorem of Zassenhaus 
([b50]) that every sharply 3-transitive permutation group is similar to ei
ther L(q) or M(q). 

In 7.4 we shall construct sharply 4-transitive and 5-transitive groups 
which are not symmetric or alternating groups. However, if k ;;::: 6, no exam
ples of k-transitive permutation groups which are not of symmetric or alter
nating type are known. Indeed according to the classification of finite 
simple groups no such examples exist (see [a22]). 

EXERCISES 7.1 

1. Using only the definition prove that a (k + I)-transitive group is k-transitive. 

2. A permutation group G of degree n is sharply k-transitive and sharply I-transitive 
where k < I if and only if k = n - 1, I = n, and G = S •. 
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3. If G is k-transitive but not (k + I)-transitive, is it true that G is sharply 
k-transitive? 

4. List all similarity types of transitive permutation group of degree :s; 5. Give in 
each case the maximum degree of transitivity and say whether it is sharp or not. 

5. Prove that a 3-transitive group G of degree 6 is similar to A6, S6, or L(5). [Hint: 
Reduce to the case where IGI = 120 and G acts on GF(5) v {OC!} with Goo = H(5). 
Show that Goo is maximal in G and consider the cycle type of elements in 
G\ H(5).] 

6. Let G be a permutation group on a set X. If IXI > 1, then G is called i-transitive 
if IGI "* 1 and all G-orbits have the same length. (If IXI = 1, then G is considered 
as being i-transitive.) Also, if 1 :s; k < n, the group G is said to be (k + i)-transi
tive if G is transitive and Ga is (k - i)-transitive for some (and hence all) a in X. 
(a) Prove that (k + i)-transitivity implies k-transitivity and k-transitivity implies 

(k - i)-transitivity. 
(b) If G is transitive and 1 "* N <l G, prove that N is i-transitive. 

7. Let G be a permutation group on a set X. If H is a transitive subgroup of G, then 
G = GaH for all a E X. Deduce that Frat G is never transitive if IGI > 1. 

8. Let F = GF(q) where q = pm and p is prime. A semilinear transformation of F is a 
mapping of the form x 1-+ ax" + b where a, b E F, a "* 0, and (J is a field automor
phism of F. 
(a) Show that r(q), the set of all semilinear transformations of F, is a soluble 

group of order mq(q - 1). 
(b) Prove that r(q) is 2-transitive. 
(c) Prove that r(q) is 3-transitive if and only if q = 3 or 4, when r(q) is similar to 

S3 or S4 respectively. 
(d) Prove that r(q) is ~-transitive if and only if q = 3 or q = 2m where m is prime. 

[Hint: G = r(q) is ~-transitive if and only if G{o.t) is i-transitive on F\ {O, I}, 
and G{o.t) is the group of field automorphisms.] 

7.2. Primitive Permutation Groups 

Let G be a transitive permutation group on a set X. A proper subset Y of X 
with at least two elements is called a domain of imprimitivity of G if, for each 
permutation n in G, either Y = Yn or Y n Yn = 0. The group G is then 
said to be imprimitive. On the other hand, should G possess no domain of 
imprimitivity, it is called primitive. For example, one quickly verifies that Sn 
is primitive for all n ~ 1. 

The essential point about an imprimitive group is that the permuted set 
has a partition the members of which are permuted under the action of the 
group. More precisely the following holds. 

7.2.1. Let G be a transitive permutation group on X. Let Y be a domain of 
imprimitivity of G and denote by H the subgroup of all n in G such that 
Yn = Y. Choose a right transversal T to H in G. 
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(i) The subsets Yo, , E T, form a partition of X. 
(ii) In the natural action G permutes the subsets Y, in the same way as it does 

the right co sets of H, namely by right multiplication. 
(iii) IXI = I YI'I n so that I YI divides IXI· 

Proof. Let a E X and bEY. On account of the transitivity of G there is a n 
in G such that a = bn. Writing n = (H with u in Hand, in T, we have a = 
(bu), E Yo, so that X is certainly the union of the Yo, ,E T. Next, if 
Y, nY,' "# 0, then Y n Y,',-1 "# 0. Hence Y = Y,',-1 and ,',-1 E H 
because Y is a domain of imprimitivity. Since , and " are members of a 
transversal, ' = ,'. Thus (i) has been established. (iii) follows at once because 
IY,I = In 

If, E T and nEG, then H,n = H,' where H, 1-+ H,' is a permutation of 
the set ofright cosets of H. Thus (Y,)n = Yo', which proves (ii). 0 

On the basis of this result we can state 

7.2.2. A transitive permutation group of prime degree is primitive. 

The next result is a valuable criterion for primitivity. 

7.2.3. Let G be a transitive permutation group on a set X and let a E X. Then 
G is primitive if and only if Ga is a maximal subgroup of G. 

Proof. Assume that Ga is not maximal, so that there is an H satisfying Ga < 
H < G. Define Y to consist of all aa where a E H. Then I YI 2': 2 since H > 
Ga. Suppose that Y = X. Then for any n in G one can write an = aa for 
some a in H; thus na-1 EGa, which gives n E Hand G = H . Finally, if 
Y n Yn "# 0 and aa1 = aa2 n with ai in H, then a2 na11 E Ga < Hand n E H, 
which implies that Y = Yn. Consequently Y is a system of imprimitivity and 
G is imprimitive. 

Conversely suppose that Y is a system of imprimitivity of G: notice 
that we may assume a to be in Y in view of the transitivity of G. Define 
H = {n E GI Yn = Y}; then H ~ G. Now H acts transitively on Y; for if b, 
e E Y, there is a n in G such that bn = e; but then e E Y n Yn, so Y = Yn and 
n E H . Hence I YI = IH: Hal. If n EGa, then a = an E Y n Yn, whence Y = 
Yn and n E H; this shows that Ga ~ Hand Ga = Ha . Finally we have IXI = 

IG: Gal and I YI = IH : Hal = IH : Gal, so that Ga < H < G and Ga is not max
~~~a 0 

The 2-transitive groups constitute a frequently encountered source of 
primitive groups. 

7.2.4. Every 2-transitive permutation group is primitive. 

Proof. Let G be a 2-transitive permutation group on a set X and suppose 
that Y is a domain of imprimitivity of G. Then two distinct elements a and b 
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can be found in Y and also an element c in X\ Y. By 2-transitivity there is a 
n in G such that (a, b)n = (a, c). Then a E Y n Yn, whence Y = Yn; but this 
implies that c = bn E Y, a contradiction. 0 

Soluble Primitive Permutation Groups 

Before discussing groups of the above type we take note of an important 
property of normal subgroups of primitive groups. 

7.2.5. If N is a nontrivial normal subgroup of a primitive permutation group G 
on X, then N is transitive on X. 

Proof. Let Y be an N-orbit of X and let a E Y. Thus Y = {aala EN}. If 
nEG and a E N, then (aa)n = (an)a" and a" E N; thus we recognize Yn to 
be the N-orbit containing an. Hence either Y = Yn or Y n Yn = 0. But Y 
cannot be a domain of imprimitivity since G is primitive. Hence either Y = 
X, and N is transitive, or every N-orbit has just one element and N = 1. 

o 
7.2.6. Let G be a primitive permutation group on a set X and suppose that G 
has a minimal normal subgroup N which is abelian. Then N is an elementary 
abelian p-group of order pm for some prime p. Also N = CG(N) and N is the 
unique minimal normal subgroup of G. Moreover H = GaN and Ga n N = 1 
for any a in X . The degree of G is pm. 

Proof. By 7.2.5 the abelian subgroup N is transitive and by 1.6.3 it is regu
lar. Hence IXI = INI; moreover INI = pm for some prime p since N must be 
elementary abelian, being abelian and minimal normal in G. Regularity also 
implies that Ga n N = 1 for any a in X . Now Ga is maximal in G by 7.2.3, so 
G = GaN. Hence CG(N) = CG.(N)N. If n E CG.(N) and a E N, then aan = 
ana = aa. Since N is transitive, it follows that n = 1; therefore CG (N) = 1 
and CG(N) = N. Finally, if N is a minimal normal subgroup of G other than 
N, then N n N = 1 and [N, N] = 1; by our previous conclusion N ~ Nand 
N = 1, which is impossible. 0 

This result applies in particular to soluble primitive permutation groups 
because a minimal normal subgroup of soluble group is abelian. Thus a 
soluble primitive permutation group must have prime-power degree. 

The Affine Group 

The groups of 7.2.6 may be realized as subgroups of the affine group of a 
vector space. Let V be a vector space over a field F and regard the group 
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G = GL(V) of all linear transformations of Vas a permutation group on V. 
Another group of permutations of V is relevant here, the group of transla
tions of V. If v E V, the associated translation v* is the permutation of V 
mapping x to x + v; this is a permutation since (- v)* is obviously the 
inverse of v*. The mapping v H v* is a monomorphism from the additive 
group of V into Sym V, the image V* being the translation group of V. 

The affine group of V is now defined to be the subgroup of Sym V gener
ated by G and V*: 

A = Aff(V) = <G, V*). 

Let us elucidate the structure of this group. If x, v E V and y E G, then 
y-1v*y maps x to (xy-l + v)y = x + vy; therefore 

y-l v*y = (vy)*. (3) 

This equation implies that V* <J A and A = GV*. Clearly the stabilizer in A 
of the zero vector is G since no nontrivial element of V* fixes this vector; 
thus G n V* = 1. In summary, A is the semidirect product of V* by G where 
the action of G on V* is described by (3). 

7.2.7. The group G of 7.2.6 is similar to a subgroup of Aff(V) containing the 
translation group where V is a vector space with dimension mover GF(p). 

Proof. G acts on a set X where IXI = pm = INI by 7.2.6. Let V be a vector 
space of dimension mover GF(p) and let tjI: N - V be any Z-isomorphism. 
If b E X, we can write b = aa with a unique a in N since N is regular. The 
rule bcp = a'" defines a bijection cp: X - V. We use this to produce a homo
morphism <1>: G - A = Aff(V) as follows: if a E N , let aeI> = (a"')* and if n E 

Ga, let neI> = tjI-1n'tjI where n' is conjugation in N by n. It is routine to verify 
that <I> is an isomorphism. Moreover <I> and cp constitute a similarity between 
G and a subgroup of A containing NeI> = V*: to see this one checks that 
cpneI> = ncp when n E N or Ga. D 

Combining 7.2.6 and 7.2.7 we come to the conslusion that all soluble 
primitive permutation groups are to be found among the subgroups of 
Aff(V) that contain V*. 

Regular Normal Subgroups 

We wish to study regular normal subgroups of multiply transitive groups 
and to show that such normal subgroups are subject to strong restrictions. 
The key to this theory is an examination of the automorphism group of a 
group F regarded as a permutation group on the set F\ 1. 

7.2.8. Let F be a nontrivial finite group and let G = Aut F act on F\ l in the 
natural way. 



7.2. Primitive Permutation Groups 

(i) If G is transitive, F is an elementary abelian p-group for some prime p. 
(ii) If G is 2-transitive, either p = 2 or IFI = 3. 

(iii) If Gis 3-transitive, IIFI = 4. 
(iv) G cannot be 4-transitive. 
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Proof. (i) Choose any prime p dividing IFI. Then F has an element x of 
order p; by transitivity every element of F\ {1} is of the form x a, IX E G, and 
hence of order p. Thus F is a finite p-group and by 1.6.14 its center (F is 
nontrivial. Now (F is characteristic in F and thus is left invariant as a set by 
G. Transitivity shows that (F = F, whence F is an elementary abelian p
group. 

(ii) Assume that p > 2 and let 1 =1= x E F; thus x =1= X-I . Suppose that 
there is an element y of F other than 1, x, or X-I; then 2-transitivity assures 
us of an IX in G such that (x, X-I)IX = (x, y). But plainly this implies that 
y = X-I. It follows that F = {1, x, X-I} and IFI = 3. 

(iii) If G is 3-transitive on F\ {1}, the latter must have at least three ele
ments and IFI ~ 4: also F is an elementary abelian 2-group by (ii). Let H = 
{1, x, y, xy} be a subgroup of F with order 4: assume that there is an 
element z in F\ H. Then xz, yz, xyz are distinct elements, so there is an 
automorphism IX in G such that x a = xz, ya = yz, (xyt = xyz. However, 
these relations imply that z = 1, a contradiction which shows that H = F. 

(iv) If G were 4-transitive, it would be 3-transitive and IF\ {1} I = 3 by 
(iii): however this excludes the possibility of 4-transitivity. 0 

In fact the degree of transitivity is realized in each case (Exercise 7.2.8). 
We shall apply this information to regular normal subgroups of multiply 

transitive groups. 

7.2.9. Let G be a k-transitive permutation group of degree n where k > 1. Let 
N be a nontrivial regular normal subgroup of G. 

(i) If k = 2, then n = INI = pm and N is an elementary abelian p-group for 
some prime p. 

(ii) If k = 3, then either p = 2 or n = 3. 
(iii) If k = 4, then n = 4. 
(iv) k ~ 5 is impossible. 

Proof. We know of course that 1 < k :s; n. Let G be a permutation group 
on X with IXI = n, and choose a from X. By 7.1.1 the group Ga is (k - 1)
transitive on X \ {a}. 

The group Ga also acts on the set N \ 1 by conjugation. Moreover, if n E 

N \ 1, then an =1= a by regularity of N. Thus there is a mapping e from N \ 1 
to X \ {a} given by ne = an: the regularity of N also assures us that e 
is injective. In addition e is surjective since N is transitive; thus e is a 
bijection. 



202 7. Finite Permutation Groups 

If 1 =f. n E N and a EGa' we have (an)a = ana or (n0)a = (n a)0. Hence 
the permutation representations of Ga on N \ 1 and X \ {a} are equivalent. 
Consequently Ga is also (k - 1)-transitive on N \ 1 and certainly Aut N must 
have this property too. The theorem is now a direct consequence of 7.2.8. 

o 

Let us use 7.2.9 to give another proof of the simplicity of the alternating 
group (see also 3.2.1). 

7.2.10. The alternating group An is simple if n =f. 1, 2 or 4. 

Proof. We can suppose that n ~ 5. Let N be a nontrivial normal subgroup 
of G = An. By 7.1.4 the group G is (n - 2)- and hence 2-transitive; therefore 
G is primitive by 7.2.4. It follows from 7.2.5 that N is transitive. 

We shall prove that N = G by induction on n. Firstly, if n = 5, then 5 
divides INI by transitivity, so N contains a 5-cycle, say n = (1 , 2,3,4,5): 
if a = (1,2, 3), then N contains [n, a] = (1, 2, 4); however, as in 3.2.1, this 
leads quickly to N = G. Henceforth we suppose that n > 5. 

By induction on n, the stabilizer GI , which is isomorphic with An-I, 
is simple. Consequently either N (") GI = 1 or GI :5: N. In the first case 
N (") Ga = 1 for every a, so N is regular: however this contradicts 7.2.9 
since n - 2 ~ 4. Finally, if GI :5: N, then GI = NI and transitivity yields 
IG: GIl = n = IN: NIl = IN: GIl· Therefore INI = IGI and N = G. 0 

EXERCISES 7.2 

1. Prove that S. is primitive. 

2. Let Hand K be permutation groups acting transitively on sets X and Y 
respectively. Prove that the wreath product H" K is imprimitive if I X I > 1 and 
I YI > 1. 

3. Find all primitive permutation groups of degree at most 5. 

4. Let G be a nilpotent permutation group =I- 1. Prove that G is primitive if and 
only if the order and degree of G equal a prime. 

5. Let G be a supersoluble permutation group =I- 1. If G is primitive, show that it is 
similar to a subgroup of Aff(GF(p» containing the translation group for some 
prime p. Conversely show that any such group is supersoluble and primitive. 
How many similarity types are there for a given p? 

6. Prove that Aff(GF(p» = H(p) where p is prime. 

7. Complete the proof of 7.2.7 by showing that <Il is an isomorphism and (<Il, cp) is a 
similarity. 

8. Prove the converse of 7.2.8 by showing that all the given degrees of transitivity 
actually occur. 
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9. If G is a primitive permutation group with even degree> 2, prove that 4 divides 
IGI. [Hint: Use Exercise 1.6.19.] 

10. Let G be a permutation group which contains a minimal normal subgroup that 
is transitive and abelian. Then G is primitive. 

11. Let F be a finite group and let G = Aut F act on F \ {1}. Prove that G is primi
tive if and only if either F is an elementary abelian 2-group or IFI = 3. 

12. If G is a soluble transitive permutation group of prime degree p, then G is simi
lar to a subgroup of AfT(GF(p» containing the translation group. 

13. Let G be a transitive permutation group of prime degree p and let P be a Sylow 
p-subgroup. 
(a) Show that IPI = p and NG(P)/P is cyclic of order dividing p - 1. 
(b) Either IGI = p or G' is simple and G' is the only minimal normal subgroup of 

G. [Hint : If N is minimal normal in G, show that P s N and apply the 
Frattini argument.] 

14. Let G be a k-transitive permutation group of degree n where k> 1. Assume G 
is not similar to Sft . Let N <l G be nontrivial and nonregular. Prove that N is 
(k - I)-transitive. [Hint : Let G be a counterexample with k minimal. Let G act 
on X and let a E X. Argue that N. is regular and k ~ 4. Invoke 7.2.9 to show 
that IN.I is a power of 2. Find an element a = (a)(b, c)(d, e)' " in N. and let nEG 
map (a, b, c) to (d, b, c). Consider [a, n] to get a contradiction.] 

15. Let G be a k-transitive permutation group of degree n, not similar to Sft' and let 
k > 3. Prove that every nontrivial normal subgroup is (k - I)-transitive. 

16. Let G be a k-transitive permutation group where k> 2. Prove that every non
trivial normal subgroup is (k - 2)-transitive with the sole exception when G is 
similar to S4 and INI = 4. 

7.3. Classification of Sharply k-Transitive 
Permutation Groups 

By definition a sharply I-transitive permutation group is just a regular 
group. Since every group has a faithful regular representation, one cannot 
expect to be able to say anything about the structure of sharply I-transitive 
groups. 

While sharply 2-transitive groups are still numerous, they are subject to 
severe restrictions, as we see from the next result. 

7.3.1. Let G be a sharply 2-transitive permutation group. Then the degree of G 
is pm for some prime p, and G has a normal Sylow p-subgroup. Moreover G is 
similar to a subgroup of Aff( V) which contains the translation group, V being 
a vector space of dimension mover GF(p). 
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Proof. Let G act on a set X with IXI = n. We denote by G(O) and G(I) the 
sets of permutations in G that have no fixed points and exactly one fixed 
point respectively. Then, because G is sharply 2-transitive, G = 1 u G(O) u 
G(I). 

Let p be any prime dividing n. Since IGI must equal n(n - 1), there is an 
element n of order p in G; naturally n involves I-cycles and p-cycles only. 
Hence, if r is the number of I-cycles in n, we have n == r mod p. Since p 
divides n, it follows that r = 0 and n E G(O). Next G(I) is the union of the 
disjoint subsets Ga \1, a E X. This implies that I G(I)1 equals n(1 Gal - 1) = 
n(n - 2) because IGal = IGI/n = n - 1. Consequently IG(O)I = n(n - 1)
n(n - 2) - 1 = n - 1. 

Next, for any a in X we have Ga n G; = Ga n Gatt = 1 since n E G(O). It 
follows that Ga n CG(n) = 1 and 

IG: CG(n) I ~ I GaCG(n) : CG(n) I = IGal = n - 1. 

Therefore n has at least n - 1 conjugates in G, all of which belong to G(O). 
However IG(O)I = n - 1, so these conjugates constitute the whole set G(O). 
Since this conclusion applies to every prime divisor of n, we deduce that n 
must be a power of the prime p, say n = pm. 

The order of Gis pm(pm - 1) and G has a Sylow p-subgroup P of order 
pm. Now P\1 £; G(O) by the argument that led to n E G(O). Since I G(O) I = 
n - 1 = pm - 1 = IP \ II, it follows that P = G(O) u 1. The evident fact that 
cr-1 G(O)cr = G(O) for all cr in G implies that P <J G. Finally we choose a min
imal normal subgroup N of G contained in P and observe that N is abelian 
since (N "# 1: now apply 7.2.6 and 7.2.7 to obtain the result. 0 

According to a deep result of Zassenhaus either a sharply 2-transitive 
permutation group is similar to a group of transformations of F = GF(pm) 
of the form x H ax" + b where 0 "# a, bE GF(pm) and cr is an automor
phism of F, or the degree is 52, 72,11 2,232,292, or 592. Zassenhaus has also 
proved that every sharply 3-transitive permutation group is similar to L(pm) 
or M(pm). Proofs of these results may be found in [b50]. 

Sharply k-Transitive Groups for k 2 4 

If k ~ 4, there are, apart from alternating and symmetric groups, sharply 
k-transitive groups in two cases only, k = 4 and k = 5. Moreover there are 
up to similarity only two examples, the celebrated Mathieu groups Mll and 
M 12 , which have degrees 11 and 12 respectively. This remarkable result was 
published by Jordan in 1872. Our aim in the remainder of this section is to 
prove Jordan's theorem; Mll and M12 will be constructed in 7.4. 

Let us begin with a lemma which will enable us to eliminate certain pos
sibilities for sharp k-transitivity. 
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7.3.2. Let G be a k-transitive permutation group on a set X and let Y be a 
subset of X containing k elements. Denote by H the stabilizer of Y in G and 
let P be a Sylow p-subgroup of H. Then NG(p) is k-transitive on the set of 
fixed points of P. 

Proof. In the first place NG(P) does act on the set of fixed points of P: for if 
n E NG(P), a E P and b is a fixed point of P, then (bn)a = (ba"-')n = bn and 
bn is a fixed point of P. 

Let Y = {aI' ... , ad; observe that the ai are fixed points of P because 
P ~ H. It is therefore enough to prove that if b1, •• • , bk are fixed points of P, 
there is a n in NG(p) such that ain = bi' i = 1,2, . . . , k. 

By k-transitivity of G we can find a in G with the property ai = bia, i = 
1,2, ... , k. Since bi is fixed by P, one sees that ai is a fixed point of the group 
a-I Pa, from which it follows that a-I Pa ~ H. By Sylow's Theorem a-I Pa = 
,-1 p, for some, in H, whence n = ,a-1 E NG(P), Finally ain = (ai,)a-1 = 

aia- 1 = bi for i = 1, 2, .. . , k, as required. D 

This result will now be used to exclude two possibilities for sharp k
transitivity. 

7.3.3. There are no sharply 4-transitive permutation groups of degree 10; nor 
are there any sharply 6-transitive groups of degree 13. 

Proof. (i) Suppose that G is in fact a sharply 4-transitive group of degree 10. 
By 7.1.3 the order of G is 10·9·8·7 and thus a Sylow 7-subgroup P of Gis 
cyclic of order 7. For convenience we shall assume that G ~ S10 and P is 
generated by n = (1,2,3,4, 5, 6, 7). Applying 7.3.2 with k = 3, X the set of 
integers 1,2, . . . , 10 and Y = {8, 9, 10}, we conclude that N = NG(p) is 3-
transitive on Y-note here that P ~ Gy. This action therefore yields an 
epimorphism <p: N -+ Sym Y. Writing C = CG(P), we have C <J Nand N IC 
abelian since Aut P is abelian. Hence C'" ~ (N"')" which has order 3. It 
follows that C contains an element a of order 3. Now an = na, so na has 
order 21 and must be a product of a 7-cycle and a 3-cycle. Hence (naf is non
trivial and fixes seven points, which contradicts the sharp 4-transitivity of G. 

(ii) Now suppose that G is sharply 6-transitive with degree 13: in this 
case I GI = 13 ·12 ·11·10· 9· 8 and there is an element n of G with order 5 
which generates a Sylow 5-subgroup P. Of course n involves I-cycles and 
5-cycles only and, since it cannot fix 13 - 5 = 8 points, it must contain ex
actly two 5-cycles. We may assume that G ~ S13 and n = (1, 2, 3, 4, 5)(6, 7, 
8,9, 10). Apply 7.3.2 with k = 3, X the set of integers 1,2, ... , 13 and Y = 
{11, 12, 13}; then N = NG(P) is 3-transitive on Y. Just as in (i) we argue that 
CG(P) contains an element a of order 3. Then na has order 15 and must 
involve 5-cycles and 3-cycles. In fact, since (na)6 = n6 = n, there are exactly 
two 5-cycles and one 3-cycle in n. But then (na)5 is a 3-cycle and fixes ten 
points, a contradiction. 0 
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Jordan's Theorem on Multiply Transitive Groups 

We are now in a position to undertake the proof of the following major 
result. 

7.3.4 (Jordan). Assume that k ~ 4 and let G be a sharply k-transitive permuta
tion group of degree n which is of neither symmetric nor alternating type. 
Then either k = 4 and n = 11 or k = 5 and n = 12. 

Proof. We shall suppose throughout that G ~ Sn. 
(i) If k = 4, then n ~ 8 and all elements of order 2 are conjugate in G. 

In the first place n ~ k = 4 and I GI = n(n - l)(n - 2)(n - 3). If n = 4 or 5, 
then IGI = n! and G = Sn. If n = 6, then IGI = t(n!) and G = An. Hence 
n ~ 7. 

Next suppose that n = 7; then IGI = 7!/6 and G has index 6 in S7' By 
1.6.9 the core of G in S7 has index dividing 6! and hence is a proper non
trivial normal subgroup of S7 ' But A7 is the only such subgroup and its 
index is 2, so IS7 : GI ~ 2, a contradiction which shows that n ~ 8. 

Consider two elements nand (T of G with order 2. Each of these can fix at 
most three points and must therefore involve at least two 2-cycles, say n = 
(1 , 2)(3,4) . .. and (T = (a, b)(c, d) . .. . By 4-transitivity there is a 't in G such 
that (1, 2, 3, 4)'t = (a, b, c, d). Then nt = (a, b)(c, d) . .. . Hence (T-ln t fixes a, 
b, c, d, and by sharp 4-transitivity nt = (T, as required. 

(ii) If k = 4, then n = 11 (the main step in the proof). Using 4-transitivity 
we can find in G permutations of the form n = (1)(2)(3,4) ... and (T = 
(1, 2)(3)(4) .. . . Since n 2 and (T2 both fix 1, 2, 3, and 4 we may be sure 
from sharp 4-transitivity that n 2 = 1 = (T2. Moreover n(T and (Tn agree on 
{I, 2, 3, 4}, so n(T = (Tn for the same reason. Hence 

H = <n, (T) 

is a Klein 4-group. 
The permutation n can have at most one fixed point in addition to 1 and 

2. It is convenient to denote this hypothetical third fixed point by 7; how
ever it should be borne in mind that the fixed point 7 may not exist, in 
which case statements about 7 are to be ignored. 

Since n(T = (Tn, the permutation (T permutes {I, 2, 7}, the set of fixed 
points of n. Because (T interchanges 1 and 2, it must fix 7. Now consider 
't = n(T. Then (i) shows that 't is conjugate to n and, in consequence, has the 
same number of fixed points. Among the latter will be 7-if it exists-since 
nand (T fix 7. Hence 't has two further fixed points. Noting that 't inter
changes 1 and 2 and also 3 and 4, we may suppose that the remaining fixed 
points of't are 5 and 6. Again n permutes {5, 6, 7}, the set of fixed points of 
't, so n must interchange 5 and 6, as does (T by the same argument. The 
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situation is, therefore, the following: 

n = (1)(2)(3,4)(5,6)(7) ... , (J = (1, 2)(3)(4)(5, 6)(7) ... , 
and 

r = (1, 2)(3,4)(5)(7) .... 

The next point to establish is that H = CG(H). Let 1 # P E CG(H). Since p 
commutes with each of n, (J, r, it permutes each of the sets of fixed points of 
these permutations, namely {I, 2, 7}, {3, 4, 7}, and {5, 6, 7}. Hence 7p = 7 
and p has the form 

p = (1, 2)'(3, 4)"(5, 6)'(7) ... 

where r, s, t = 0 or 1. Since p can fix no more than three points, at least two 
of r, s, t equal 1. If r = s = t = 1 (so that p = (1, 2)(3, 4)(5, 6)(7) .. . ), then np 
fixes 3, 4, 5, and 6, which is impossible. Hence exactly two of r, s, t equal 1. 
If t = 0, then r = 1 = sand p and r agree on {I, 2,3, 4}, and p = r by 
sharp 4-transitivity. Similarly the cases r = 0 and s = 0 lead to p = nand 
p = (J respectively. Hence p E H in all cases and CG(H) ~ H. However H is 
abelian, so H ~ CG(H) and H = CG(H). 

The set {I, 2, 3, 4,5,6, 7} is visibly a union of H-orbits and it includes all 
fixed points of nontrivial permutations in H. Since n ~ 8, there is at least 
one further H-orbit, say X. No nontrivial element of H may fix a point of 
X, which shows that H acts regularly on X and consequently X has exactly 
four elements. Let S be the subgroup of permutations in G that leave X 
fixed as a set. Then, since Gis 4-transitive, S induces all 4! permutations of 
X. Also no nontrivial element of S may fix every point of X, so S ~ S4. Now 
H ~ S since X is an H-orbit, and there is only one regular subgroup of S4 
that is a Klein 4-group, namely, the subgroup consisting of 1 and the three 
permutations of the form (i,j)(k, I). Hence H <J Sand S ~ NG(H) = N say. 
Now IN: HI = ING(H): CG(H) I ~ IAut HI = 6. Therefore INI ~ 24 and it 
follows that N = S. Thus S is independent of the H-orbit X. 

Let X = {i,j, k, I}; then there is a permutation ~ in S which acts on X 
like (ij)(k)(I) since S induces all 4! permutations on X. Suppose that X' = 
{i',j', k', I'} is another H-orbit not contained in {I, 2, 3,4,5,6, 7}. Now S 
fixes X' setwise and e = 1, so ~ must act on X' like (i',j')(k', I'), say, since it 
cannot fix four points. But H acts regularly on X', so some 1'/ E H produces 
the permutation (i',j')(k', I'). Then ~1'/-1 must be trivial, and ~ = 1'/ E H, 
which is impossible since a nontrivial element of H cannot fix k and 1. 

It follows that X is the only H-orbit not contained in {I, 2, 3, 4, 5, 6, 7}. 
Therefore n = 6 + 4 = 10 or n = 7 + 4 = 11 (since "7" may not exist). By 
7.3.3 the first case is impossible, so n = 11. 

(iii) Final step. We assume that k ~ 5 and use induction on k to complete 
the proof. If a is any element of the permuted set Y, the stabilizer Ga is 
(k - I)-transitive on Y\{a} = T by 7.1.1. Indeed Ga is sharply (k - I)-transi
tive on T, as we see from its order IGI/n. If IGal = (n - I)! or t((n - I)!), then 
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IGI = nlGal = n! or t(n!) and G = Sn or An, contrary to assumption. Hence 
Ga is neither a symmetric nor an alternating group. By induction hypothesis 
k - 1 = 4 or 5, and k = 5 or 6. Moreover, should k be 5, then n - 1 = 11 
and n = 12. If however k = 6, then n - 1 = 12 and n = 13, a combination 
that has been seen to be impossible in 7.3.3. The proof is now complete. 0 

EXERCISES 7.3 

1. A sharply 3-transitive permutation group has degree pm + 1 where p is prime. 
Show also that all such degrees occur. 

2. Let G be a k-transitive permutation group of degree n which is neither alternating 
nor symmetric. Assume that k > 5. Prove that (n - k)! ~ 2n. Deduce that k s 
n - 4. 

3. Let k be a positive integer and let G be a permutation group of smallest order 
subject to G being k-transitive. Prove that G is sharply k-transitive. [Hint: Use 
7.3.2.] 

4. If G is a soluble 3-transitive permutation group, then G is similar to S3 or S4' 
[Hint: Identity G with a subgroup of Aff(V) where V is a vector space of dimen
sion mover GF(p). Let N be minimal normal in Go: prove that N acts irreducibly 
on V and use Schur's Lemma (8.1.4) to show that V can be identified with a field 
F of order pm and N with F*. Now argue that IGol s m(pm - 1) and deduce that 
pm = 3 or 4.] 

5. Suppose that G is a finite insoluble group whose proper subgroups are soluble. 
Prove that G has no permutation representation as a 4-transitive group. 

7.4. The Mathieu Groups 

To complement Jordan's theorem we shall construct two permutation groups 
which are sharply 4-transitive of degree 11 and sharply 5-transitive of de
gree 12. These groups were discovered by Mathieu in 1861. 

We shall employ a method of construction due to Witt which involves 
two simple, if technical, lemmas. 

7.4.1. Let H be a permutation group on a set Y and let G be a subgroup and n 
an element of H such that H = < n, G). Write Y = Xu {a} where a ¢ X. As
sume that G fixes a and acts k-transitively on X where k ;;:: 2 and an -=I- a. 
Assume further that there exist a in G and b in X such that ba -=I- b, n2 = 
a 2 = (na)3 = 1 and G: = Gb • Then H is (k + I)-transitive on Y and Ha = G. 

Proof. Let K = G u (GnG); then K-1 = K because n2 = 1. Let -r E G\ Gb , so 
that b-r -=I- b. Since k;;:: 2, we deduce from 7.1.1 that Gb acts transitively on 
X\{b}. Hence there exists a pin Gb such that (b-r)p = ba and thus -rpa- 1 E 
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Gb or rp E Gbu. It follows that r E GbUGb and hence that 

G = Gb U (GbUGb). 

209 

(4) 

Now the relations n2 = u2 = (nu)3 = 1 imply that nun = unu. Conse
quently we obtain from (4) 

nGn = (nGbn) u (nGbuGbn) = G; u (G;(nun)Gb) 

= Gb u (Gb(unu)Gb) £; G u (GnG) = K. 

It follows that KK £; K and K is a subgroup. Since n E K and G ~ K, we 
have H = (n, G) ~ K and hence H = K = G u (GnG). 

By hypothesis G is transitive on X and an #- a. It follows that H is transi
tive on Y = Xu {a}. Moreover, since G fixes a and an #- a, no element of 
GnG can fix a. Hence Ha = G, which is k-transitive on y\{a} = X. By 7.1.1 
the group His (k + I)-transitive on Y. D 

The second technical lemma is a consequence of 7.4.1. It tells us how to 
construct 5-transitive groups, starting with a 2-transitive group. 

7.4.2. Let G be a subgroup of Sn where n ~ 5. Assume that G fixes 1, 2, and 3 
and is 2-transitive on T = {4, 5, ... , n}. Let u in G have order 2 and let cu #- c 
for some c in T. Consider three permutations of order 2 in Sn of the form 

n1 = (1, c)(2)(3) . .. , n2 = (1, 2)(3)(c) ... , n3 = (2, 3)(1)(c) ... 

(where nothing is known about other cycles); assume that 

(n1 U)3 = (n2nd3 = (n3n2)3 = 1, 

(un2)2 = (un3)2 = (n1n3)2 = 1, 

and also that G:' = G:2 = G:3 = Gc• Then the group H = (n 1, n2' n3, G) is 
5-transitive on {I, 2, ... , n} and G is the stabilizer of {I, 2, 3} in H. 

Proof. Apply 7.4.1 to K = (n1' G) with k = 2, a = 1, b = c, and X = T. 
Thus K is 3-transitive on Tu {I} and K1 = G. 

Next G acts primitively on T since it is 2-transitive (7.2.4). Consequently 
Gc is maximal in G by 7.2.3 and G = (u, Gc ) in view of CO" #- c. Now the 
relations u2 = (un2)2 = n~ = 1 imply that un2 = n2u. Therefore (Kd1t2 = 
G1t2 = (u, G:2) = (u, Gc ) = G = K 1. We are now in a position to apply 
7.4.1 again, this time to L = (n 2 , K) with k = 3, a = 2, b = 1, X = Tu {I}, 
and n1 instead of u. The conclusion is that L is 4-transitive on Tu {I, 2} 
and L2 = K. 

The given relations also imply that n1n3 = 1l:3n1 and un3 = n3u. Hence 

K 1t3 = (1l: 1, G1t3) = (n 1, u, G:3) = (n1> u, Gc) = K 

and (L2)1t3 = L2. We apply 7.4.1 to H = (n3' L) with k = 4, a = 3, b = 2, 
X = Tu {t, 2} and n2 in place of u, the conclusion being that H = (n3' L) 
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is 5-transitive on Xu {I, 2, 3} = {I, 2, 3, ... , n} and H3 = L. Finally 
H{l.2.3 } = L{l . 2} = K1 = G. 0 

The Groups M 11 and M 12 

In order to exploit 7.4.2 we have to realize the situation envisaged there. 
This involves a careful choice of permutations. 

7.4.3. Let X = {I, 2, 3, ... , 11, 12} and consider the following seven per
mutations of X: 

cp = (4, 5, 6)(7, 8, 9)(10, 11, 12), 

X = (4, 7, 10)(5, 8, 11)(6,9, 12), 

1/1 = (5, 7, 6, 10)(8, 9, 12, 11), 

w = (5, 8, 6, 12)(7, 11, 10, 9), 

1t1 = (1, 4)(7,8)(9, 11)(10, 12), 

1t2 = (1, 2)(7, 10)(8, 11)(9, 12), 

1t3 = (2, 3)(7, 12)(8, 10)(9, 11). 

(i) The group M12 = <cp, x, 1/1, W, 1t1, 1t2, 1t3) is sharply 5-transitive of degree 
12 on the set X; its order is 12 · 11·10· 9·8 = 95,040. 

(ii) The group M 11 = < cp, x, 1/1, W, 1t 1 , 1t 2) is the stabilizer of 3 in M 12; it is 
sharply 4-transitive of degree 11 on X \ {3} and has order 11· 10 . 9 . 8 = 
7920. 

Proof. One easily verifies that E = < cp, X) is an elementary abelian group of 
order 9 which acts regularly on X\{I, 2, 3}. Also 1/12 = w2 has order 2 and 
1/I-1 wl/l = w-1; this shows that Q = <1/1, w) is a quaternion group of order 
8 (see 5.3). Straightforward calculations reveal that 1/I-1cpl/l = X, w-1cpw = 
CPX, 1/1 - 1 X 1/1 = cp-1, and w-1xw = WX-1. Therefore Q normalizes E and G = 
QE is a group of order 8 · 9 = 72. 

Next we observe that Q fixes 4, whereas no nontrivial element of E has 
this property; therefore G4 = G4 (l (QE) = QE4 = Q. A glance at the permu
tations that generate Q should convince the reader that Q acts transitively 
on {5, 6, 7, 8,9,10,11, 12}. Hence G is transitive on {4, 5, 6, 7, 8, 9,10,11, 
12}. Since G4 = Q, we conclude via 7.1.1 that G is 2-transitive on this nine
element set. Moreover this is sharp 2-transitivity because I G I = 9· 8. 

Now apply 7.4.2 with n = 12, c = 4 and 

(J = cp-11/12cp = (4, 6)(7,12)(8,11)(9,10); 

of course one must at this point check that the equations of 7.4.2 hold and 
that 1t 1, 1t2' 1t3 normalize G4 = Q, but this is routine. The conclusion is that 
M12 = <1t 1, 1t2, 1t3' G) is 5-transitive of degree 12 and that G is the stabi-
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lizer of {I, 2, 3} in M 12 . We saw that G is sharply 2-transitive on {4, 5, ... , 
11, I2}; consequently the stabilizer of {t, 2, 3, 4, 5} in M12 is 1 and M12 is 
sharply 5-transitive. 

From the proof of 7.4.2 (last line) the stabilizer of 3 in M12 is M ll . Now 
7.1.1 shows that Mll is 4-transitive on X\{3}. The stabilizer of {I, 2, 4, 5} in 
Mll equals that of {I, 2, 3,4, 5} in M 12 , which is 1. Hence Mll is sharply 
4-transitive of degree 11. The statements about orders follow from 7.1.3. 0 

It can be shown-altnough we shall not take the matter up here-that 
to within similarity Mll is the only sharply 4-transitive group of degree 11 
and M12 the only sharply 5-transitive group of degree 12. For details see 
[b50]. 

The Mathieu Groups M 22 , M 23 , M24 

There are three further Mathieu groups. M24 is a 5-transitive permutation 
group of degree 24 and order 244,823,040. It can be constructed with the aid 
of 7.4.2 in a manner akin to that employed for M 12 : the starting point is the 
group G = PSL(3, 4), which acts 2-transitively on the twenty-one I-dimen
sional subspaces of a 3-dimensional vector space over GF(4). The Mathieu 
group M 23 appears as the stabilizer of an element in M24 and the group 
M22 is the stabilizer of a two-element set in M 24 . Thus M 23 is 4-transitive 
with degree 23 and order 10,200,960 and M22 is 3-transitive of degree 22 
and order 443,520. Of course none of these groups is sharply transitive, by 
consideration of order. Further details can be found in [b50] 

Simplicity of the Mathieu Groups 

The five Mathieu groups have a notable property-they are all simple. In
deed these groups are examples of sporadic simple groups, not occurring in 
an infinite sequence of simple groups. 

We shall content ourselves with proving the simplicity of Mll and M 12 . 

7.4.4. The groups Mll and M12 are simple. 

Proof. (i) Let G = Ml1 and suppose that N is a proper nontrivial normal 
subgroup of G: then we can choose N to be a minimal subgroup of this 
type. Since G is 4-transitive, it is primitive (7.2.4) and therefore N is transi
tive (7.2.5). It follows that INI is divisible by 11. Now I GI = 11· 10·9·8, so N 
contains a Sylow 11-subgroup of G, say P; clearly P is generated by an 
11-cycle, say n, and P is transitive. 

We claim that P = CG(P). To see this let 1: E CG(P) and consider A = 
< T, P). Now A is certainly abelian and it is also transitive since P is. There
fore A is regular and its order must be 11. Hence IPI = IAI and T E P, which 
establishes our claim. 
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Next consider L = NG(P): we shall show that L has odd order. If this is 
false, L contains an element (J of order 2. Now (J must have at least one 
fixed point, the degree being 11, and there is nothing to be lost in supposing 
(J to fix 1; for, G being transitive, we can always replace P by a suitable 
conjugate. Since P = CG(P), the permutation (J must induce by conjugation 
in P an automorphism of order 2. But Aut P is a cyclic group of order 
10 and it has exactly one element of order 2, the automorphism X 1---+ x- l • 

Hence ncr = n-1. Consequently In i (J = l(Jn- i = In- i #- In i if 1 ::s;; i < 11. 
Since (J has only I-cycles and 2-cycles, these considerations show that (J 
must consist of (1) and five 2-cycles. But this forces (J to be an odd permuta
tion, whereas G ::s;; Al2 because all of the generating permutations of Ml2 

are even. By this contradiction L had odd order. 
Combining the result of the last paragraph with the fact that I L: PI = 

ING(P): CG(p) I divides IAut PI = 10, we conclude that IL: PI = 1 or 5. Now 
the Frattini argument (5.2.14) shows that G = NNG(p) = NL, which implies 
that LiN. Since P::S;; N n L ::s;; Land IL: PI = 1 or 5, we must have 
N n L = P, that is, P is self-normalizing in N. 

At this point we can apply a theorem of Burnside (10.1.8), concluding 
that elements of N with order prime to 11 form a subgroup; this subgroup 
must necessarily be normal in G, whence it is trivial by minimality of N. It 
follows that P = N <l G and L = G, which is impossible because IL : PI ::s;; 5. 

However, the reader who does not wish to appeal to an unproved theo
rem may argue directly, as indicated in Exercise 7.4.3 below. 

(ii) Consider now H = M 12 and suppose that N is a proper nontrivial 
normal subgroup of H. Then G n N <l G and either G n N = 1 or G ::s;; N 
because G is simple. Since H is primitive and G is the stabilizer of 3 in H, we 
conclude via 7.2.3 that G is maximal in H. If G ::s;; N, then G = Nand H3 = 
G<l H; however this would mean that G fixed every point, not merely 3, 
and G = 1. Hence G n N = 1, and also H = GN by the maximality of G. 
Next, CG(N)<l G, so either CG(N) = 1 or [N, G] = 1; however the latter 
implies that G<l GN = H, which has been seen to be false. Hence CG(N) = 
1 and IGI ::s;; IAut NI. Also INI = IH: GI = 12. However, no group of order 
12 can have its automorphism group of order as large as IGI = 7920-by 
Exercise 1.5.16. Thus our proof is complete. 0 

EXERCISES 7.4 

1. A sharply 2-transitive permutation group of order> 2 cannot be simple, whereas 
there are infinitely many sharply 3-transitive groups that are simple. 

2. Prove that Mu is a maximal subgroup of M 12 . 

3. Complete the proof of 7.4.4 without appealing to Burnside's theorem. [Hint: N is 
3-transitive by Exercise 7.2.15.] 

4. Prove that the Sylow 2-subgroups of Mll are semidihedral of order 16. 



CHAPTER 8 

Representations of Groups 

The aim of this chapter is to introduce the reader to the theory of represen
tations of groups by linear transformations of a vector space or, equiva
lently, by matrices over a field. Aside from its intrinsic interest this theory 
has proved to be a most powerful tool for studying finite groups. 

8.1. Representations and Modules 

Let G be a group, F a field, and V a vector space over F. A homomorphism 
P from G to GL(V), the group of all nonsingular linear transformations of 
V, is called a linear representation of Gover F, or simply an F -representation 
of G. Here we shall always assume that the dimension n of V is finite; the 
integer n is known as the degree of p. If Ker p = 1, then p is called faithful. 

Suppose that {Vl' ... , vn } is an (ordered) basis of V. Then if 9 E G, there is 
a matrix gPO in GL(n, F) which represents the linear transformation gP with 
respect to the basis. The mapping p*: G --+ GL(n, F) is a homomorphism 
which will be called the associated matrix representation with respect to the 
given basis. If (g)Pij denotes the (i,j) entry of gP', then in fact 

n 

Vig P = L (g)Pij Vj' 
j=l 

An obvious example of an F-representation is the trivial representa
tion l(G): G --+ F, which maps each element of G to IF: of course, this has 
degree 1. 

More interesting representations may be constructed from permutation 
representations. Let n: G --+ Sym X be a permutation representation of G on 

213 
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a finite set X, and let V be a vector space over F with basis {vxlx EX}. 
Define gP E GL(V) by writing vxgP = vxg' : one easily checks that p is a lin
ear representation of degree IXI. Notice that the matrix representing gP with 
respect to the given basis is just the permutation matrix associated with the 
permutation g". 

Usually one identifies the permutation representation 1t with the corre
sponding F-representation p, so that a permutation representation may be 
thought of as a special type of linear representation. 

Group Rings and Group Algebras 

If G is a group and R is any ring with an identity element, the group ring 

RG 

is defined to be the set of all formal sums LxeGrxx where rx E Rand rx = 0 
with finitely many exceptions, together with the rules of addition and multi
plication 

and 

It is very simple to verify that with these rules RG is a ring with identity 
element lR lG' which is written simply 1. 

If F is a field, then FG, in addition to being a ring, has a natural F
module structure given by 

(f E F). 

Thus FG is a vector space over F. In addition we have f(uv) = (fu)v = u(fv) 
where f E F and u, v E FG. Thus FG is an F-algebra, known as the group 
algebra of Gover F. 

It would be hard to overestimate the importance of group rings in the 
theory of groups. For the present let us explain how the group algebra is 
inescapably involved in the study of F-representations. 

Suppose that p: G -+ GL(M) is an F-representation of G with degree n. 
Then M can be turned into a right FG-module by means of the rule 

a( L fxx) = L fAax P), 
xeG x eG 

(a EM). 

Verification of the module axioms is very simple. Conversely, if M is any 
right FG-module with finite F-dimension n, there is a corresponding F-



8.1. Representations and Modules 215 

representation p: G --+ GL(M) of degree n given by 

agP = ag, (a EM). 

A few moments reflection should convince the reader that what we have 
here is nothing less than a bijection between F-representations of G with 
degree n and right FG-modules of F-dimension n. For example, the right 
regular permutation representation arises from the group algebra FG itself, 
regarded as a right FG-module via right multiplication. 

Convention. All modules are right modules unless the contrary is stated. 

Equivalent Representations 

Two F-representations p and (1 of a group G are said to be equivalent if they 
arise from isomorphic FG-modules M and N. In particular, equivalent rep
resentations have the same degree. 

Suppose that IX: M --+ N is an isomorphism of FG-modules, so that 
(ag)1X = (alX)g for all a E M and g E G. Then, proceeding to the associated 
representations, we have agPIX = alXg a ; hence 

(g E G). 

In terms of matrices this means that p* and (1* represent G by conjugate 
subgroups of GL(n, F). Naturally we shall be interested in representations 
only up to equivalence. 

Reducible and Irreducible Representations 

An F -representation p of G is called reducible if the associated FG-module 
M has a proper nonzero submodule. If, on the other hand, M has no proper 
nonzero submodules and is itself nontrivial-recall that such modules are 
said to be simple-then p is called an irreducible representation. 

The simple FG-modules, and hence the irreducible F-representations of 
G, can be obtained from the group algebra in a very simple manner. 

8.1.1. If F is a field and G a group, a simple FG-module is FG-isomorphic 
with some FGjR where R is a maximal right ideal of FG. 

Proof. Let M be a simple FG-module and choose a # 0 in M. Then r f--+ ar 
is an FG-homomorphism from FG to M with nonzero image. Since M is 
simple, it must coincide with this image and M ~FG FGjR where R is the 
kernel. Finally R is clearly a maximal right ideal since M is simple. 0 
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Of course, conversely, any such FG/R is a simple FG-module. Thus 8.1.1 
suggests that knowledge of the structure of FG will aid us in determining 
the irreducible F-representations of G. 

Direct Sums of Representations 

Suppose that M = M 1 EB ... EB Mk is direct decomposition of an FG-module 
Minto submodules, and assume that M has finite F-dimension. Let P and 
Pi be the F-representations of G afforded by the modules M and Mi respec
tively. Then it is natural to say that P is the direct sum of the representations 
Pi and to write 

P = Pl EB ... EB Pk· 

If we choose an F-basis for each Mi and take the union of these in the 
natural order to form a basis of M, the matrix representations P* and pt 
are related by the equation 

[ XPTOXp~ o.J 
x P• = 

x Pk 

Completely Reducible Representations 

We recall (from 3.3) that a module is completely reducible if it is a direct 
sum of simple modules. Accordingly an F-representation of a group G shall 
be called completely reducible if it arises from a completely reducible FG
module. Thus a completely reducible representation is a direct sum of 
(finitely many) irreducible representations and may be considered known 
if its irreducible components are known. Our attention is therefore directed 
at two problems: (i) determine which representations are completely 
reducible; (ii) determine all irreducible representations. We take up the 
first question next. 

Criteria for Complete Reducibility 

By far and away the most important condition for complete reducibility is 
Maschke's Theorem. 

8.1.2 (Maschke). Let G be a finite group and let F be a field whose character
istic does not divide the order of G. Then every F-representation of G is com
pletely reducible. 
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Proof. Let M be an FG-module of finite F-dimension. By 3.3.13 we need 
only prove that an FG-submodule N is a direct summand of M. 

Since M is a vector space, we can certainly write M = N EB L where L is 
an F-subspace (but perhaps not an FG-submodule). Let n be the canonical 
projection from M to N; this is certainly an F-homomorphism. To con
struct an FG-homomorphism we employ an averaging process: define n* to 
be the endomorphism of M given by 

1 
an* = - L (ax)n· x-1 

mxeG 

where m = IGI. Note that this exists since m is finite and indivisible by the 
characteristic of F. 

Clearly n* is an F -endomorphism: in fact n* is an FG-endomorphism 
because if a E M and g E G, 

1 
= - L (ay)n· y-1 = (a)n*. 

myeG 

Now Mn* ~ N since Mn = Nand N is a submodule. Also, if a E N, we 
have (ax)n = ax and so an* = a by definition of n*. Thus Mn* = Nand 
n* = (n*)2. Hence n* is a projection and M = NEB Ker n*. D 

The hypothesis that the characteristic of F does not divide IGI, which 
includes the case where F has zero characteristic, will be frequently encoun
tered here. We shall not deal with the more difficult modular representation 
theory, which is concerned with representations over a field F whose charac
teristic divides IGI: this is largely the creation of R. Brauer. For an account 
of this theory we refer to [b1?] or [b20]. 

Clifford's Theorem 

There is another criterion for complete reducibility which has the advantage 
of making no restrictions on field or group. 

8.1.3 (Clifford). Let G be any group, F any field and M a simple FG-module 
with finite F-dimension. Let H be a normal subgroup of G. 

(i) If S is a simple FH-submodule of M, then M = LgeGSg and each Sg is a 
simple FH-module. Thus M is a completely reducible FH-module. 

(ii) Let Sl' ... ' Sk be representatives of the isomorphism types of simple FH
submodules of M. Define M; to be the sum of all F H -submodules of M 
that are isomorphic with S;. Then M = M 1 EB ... EB Mk and M; is a direct 
sum of FH-modules isomorphic with S;. 
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(iii) The group G permutes the "homogeneous components" Mi transitively by 
means of the right action on M. 

(iv) If Ki is the subgroup of all g in G such that Mig = Mi, then Mi is a 
simple FKi-module. 

Proof. (i) Obviously LgeG Sg is an FG-submodule, so it equals M by sim
plicity of the latter module. Now (ag)h = (ahg-')g and hg-' E H if h E Hand 
g E G. Hence Sg is an FH-submodule. Moreover the mapping aHag is an 
F-isomorphism which maps FH-submodules onto FH-submodules, so Sg is 
simple. By 3.3.11 the FH-module M is completely reducible. 

(ii) First of all observe that there are only finitely many isomorphism 
types: for M, having finite F-dimension, satisfies both chain conditions on 
FH-submodules and thus the Jordan-Holder Theorem (3.1.4) applies. Since 
M is completely reducible, M = M I + ... + M k • Also M; is a direct sum of 
FH-modules isomorphic with S;. If Mi r. Li#iMj # 0, this intersection would 
contain a simple FH-submodule which, by the Jordan-Holder Theorem, 
would be isomorphic with Si and also with some Sj,j # i. This is impossible, 
so M = M I EB . .. EB Mk • 

(iii) If U is a simple FH-submodule of M; and g E G, then ugFJ Sj for 
some j, by (i): hence M;g ::5; Mj. Also Mjg- l ::5; M;, so that M;g = Mj. Thus G 
does indeed permute t~e Mi. Since the sum of the Mi in a G-orbit is an 
FG-module, G permutes the M; transitively. 

(iv) Let {tI' .. . , tk } be a right transversal to KI in G. Then M; = 
M 1 t; for i = 1, ... ,k, after the ti have been suitably labeled: thus M = 
Mltl EB· ·· EB Mltk • Suppose that NI is a proper nonzero FKI-submodule of 
MI and write N = L~=l Nlt; . Now tig = htj for some h E KI andj; therefore 
(Nl t;)g = (NI h)tj = NI tj. Consequently N is an FG-module and M = N. 
But NI t; ::5; MIt; = Mi, so that Nl = M I ' a contradiction. Hence M I is a 
simple F K I-module; this implies that M; = M 1 ti is a simple F K;-module 
because K; = KI{. 0 

Schur's Lemma and Applications 

The following result is traditionally known as Schur's Lemma. Despite its 
simplicity, it is enormously useful. 

8.1.4. Let M and N be simple modules over a ring R. If M and N are not 
isomorphic, HomR(M, N) = O. Also HomR(M, M) = EndR(M) is a division 
ring. 

Proof. Let IJ(: M -+ N be an R-homomorphism. Then Ker IJ( and 1m IJ( are 
submodules of M and N respectively. Since M and N are simple, either 
IJ( = 0 or Ker IJ( = 0 and 1m IJ( = N; in the latter event IJ( is an isomorphism. 
Hence HomR(M, N) = 0 if M and N are not isomorphic, and each nonzero 
element of EndR(M) has an inverse. 0 
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Probably the most useful form of 8.1.4 is the following special case. 

8.1.5. Let F be an algebraically closed field, A an F-algebra, and M a simple 
A-module with finite F-dimension. Then EndA(M) consists of all scalar 
multiplications by elements of F and EndA(M) ~ F. 

Proof. If rx E EndA(M), then rx is a linear transformation of the finite 
dimensional vector space M, and, because F is algebraically closed, rx has a 
characteristic root in F, say f; thus mrx = fm for some nonzero m in M. 
Now define S = {x E Mlxrx = fx} and observe that S is a nonzero 
F-subspace of M. If mE S and a E A, we have (ma)rx = (mrx)a = f(ma), so 
that S is an A-submodule. By simplicity of M we have S = M, which shows 
that mrx = fm for all m in M, and rx is scalar. D 

This result has immediate application to irreducible representations of 
abelian groups over algebraically closed fields. 

8.1.6. An irreducible representation of an abelian group G over an algebra
ically closed field F has degree 1. 

Proof. Let M be a simple FG-module with finite F-dimension. Applying 
8.1.5 with A = FG, we conclude that EndFG(M) consists of scalar multiplica
tions. But for any g in G the mapping a Hag is an FG-endomorphism of M 
because G is abelian. This mapping is therefore scalar and ag = /ga for 
some fg in F. Consequently everyone-dimensional subspace is a submodule 
and M has dimension 1. 0 

A Theorem of Burnside 

We aim next to prove an important theorem of Burnside on irreducible 
representations over algebraically closed fields. In addition to Schur's Lemma 
we shall need the following result. 

8.1.7 (The Jacobson Density Theorem). Let R be a ring with identity and let 
M be a simple R-module. Write S = EndR(M) and choose rx from Ends(M). 
Then to each finite subset {a l' ... , am} of M there corresponds an element r 
of R such that airx = air for i = 1, 2, ... , m. 

Proof. Form a direct sum L of m copies of M and define rx*: L --+ L by the 
rule (Xl"'" Xm)rx* = (x 1 rx, ... , xmrx). Clearly rx* is an endomorphism of L 
and in fact rx* E EndT(L) where T = EndR(L). To see this let, E T and write 
(x l ,0, ... ,0),=((xd'1l,(Xl )'12"",(Xl )'lm) where (Xl)'ljEM: now 'ljE 
EndR(M) since, E EndR(L). Therefore, since rx E Ends(M), 

(Xl' 0, ... , O),rx* = ((Xl)'llrx, . .. , (Xl)'lmrx) 

= ((Xl)rx'll' ... , (Xl)rx, 1m) = (Xl' 0, ... ,)rx*,. 
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Similarly 'rcx* and cx*'r agree on (0, X2' 0, . .. ,0), etc. Thus 'rcx* = cx*'r and 
cx* E EndT(M). 

Now L is visibly completely reducible; thus, on writing a = (a l , .. . , am), 
we have L = aR EB N for some R-submodule N by 3.3.12. Let n be the ca
nonical projection from L to aR. Then nET. Since R has an identity ele
ment, a EaR; therefore a = an and acx* = (an)cx* = (acx*)n E aR. It follows 
that acx* = ar for some r in R, and ai(X = air for i = 1,2, .. . , m. 0 

8.1.8 (Burnside). Let p be an irreducible representation of a group G with 
degree n over an algebraically closed field F. Let M be the associated FG
module. Then the set {gPlg E G} generates EndF(M) as a vector space and 
therefore contains n2 linearly independent elements. 

Proof. Let R = FG. By Schur's Lemma S = EndR(M) consists of all scalar 
multiplications and therefore Ends(M) = EndF(M). It follows from 8.1.7 
that every linear transformation of M arises from right multiplication by an 
element of R and is therefore a linear combination of gP's. Consequently the 
gP's generate EndF(M). Since the latter has F-dimension n2 , the second part 
follows. 0 

There are some interesting applications of Burnside's theorem to groups 
of matrices. If G is a subgroup of GL(n, F), then of course the inclusion 
G y GL(n, F) is a matrix representation of Gover F, and G may be called 
reducible, irreducible etc. according as this representation has the property 
stated. Moreover, if V is a vector space of dimension n over F, on choosing 
a basis of V we obtain an action of G on V making the latter an FG
module. 

We proceed to derive a basic lemma. 

8.1.9. Let G be an irreducible subgroup of GL(n, F) where F is an algebra
ically closed field. Suppose that the set {trace(g)lg E G} has a finite number 
of elements, say m. Then G is finite and IGI ::; mn2. 

Proof. Apply 8.1.8 with p the inclusion G y GL(n, F); then there are n2 

linearly independent elements of G, say gl"'" g.2. Choose any g in G and 
write g(i,j) for the (i,j) entry of the n x n matrix g. Denoting trace(gig) by 
t i , we obtain equations 

n 

L gi(j, k) · g(k, j) = ti, i = 1,2, ... , n2 . 
j,k=l 

These constitute a linear system in the n2 unknowns g(k, j). Because g l' ... , 
gn2 are linearly independent, there is a unique solution of this system, by 
a basic theorem of linear algebra. This solution determines g completely. 
Since t l' .. . , tn2 can be selected in at most mn2 ways, we conclude that 
IGI ::; mn2. 0 
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Our first application involves unipotent matrices. An element g of GL(n, F) 
is termed unipotent if (g - l)m = 0 for some m > O. It is an easy exercise to 
verify that g is unipotent if and only if all its characteristic roots equal 1. 
Clearly every unitriangular matrix is unipotent. The following is a partial 
converse of this statement. 

8.1.10. Let G be a subgroup of GL(n, F) where F is any field. If every element 
of G is unipotent, then G is conjugate to a subgroup of V(n, F), the group of 
all upper unitriangular matrices. 

Proof. Let G act on a vector space V of dimension n. It is enough to prove 
that there is a series of FG-submodules 0 = VI ~ VI ~ ... ~ l-k = V such 
that G operates trivially on V;+1 / V;. For then, on choosing suitable bases for 
the V;, we can represent the elements of G by unitriangular matrices. 

Suppose first that F is algebraically closed. We may assume that G is 
irreducible, otherwise induction on n yields the result. By hypothesis the 
trace of every element of G equals n, so 8.1.9 may be applied to give I GI = 1. 

Now suppose that F is not necessarily algebraically closed and write F 
for its algebraic closure. Let V = F ®F V and view this as an FG-module. 
By the last paragraph there is a series of FG-modules 0 = Vo ~ VI ~ ... ~ 
~ = V with V;+1IV; a trivial module. We can identify a in V with 1 ® a in V, 
so that V ~ V, and define V; = V n V;. Then the V; form a series of the 
required type. 0 

Our second application is to matrix groups that are torsion groups. 

8.1.11 

(i) (Burnside). If F is a field of characteristic 0, a subgroup of GL(n, F) with 
finite exponent is finite. 

(ii) (Schur). A torsion subgroup of GL(n, Q) is finite. 

Proof. It is evident that we can assume F to be algebraically closed in (i). 
We suppose first that G is irreducible. If G has exponent e and g E G, then 
ge = 1, whence each characteristic root of g is an eth root of unity in F. 
Since F contains at most e such roots, there are no more than en values of 
trace (g). By 8.1.9 the group G is finite. Now assume that G is reducible, If 
G acts on a vector space V of dimension n, there is a proper nonzero FG
submodule V. By 1.3.12 and induction on n, if L is the subgroup of elements 
of G which act trivially on V and on VI V, then I G : LI is finite. But L is 
isomorphic with a group of unitriangular matrices over F, whence it is 
torsion-free since F has characteristic zero. Hence L = 1 and G is finite. 

To establish (ii) it suffices to prove that G has finite exponent since (i) 
may then be applied. Let g in G have order m and put H = <g). It will be 
shown that the integer m can be bounded in terms of n. By induction we can 
assume that H is irreducible. 
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By Schur's Lemma EndH(V) is a division algebra over I)) and its center is 
a field E containing 1)). Clearly gEE. Since the cyclotomic polynomial !J)m is 
irreducible, it is the irreducible polynomial of 9 over 1)): let 1 = deg !J)m = 

cp(m). If 0 "# u E V, then u, ug, ... , ugH are linearly independent; otherwise 
the degree of the irreducible polynomial of 9 would be less than 1. Hence 
1 :::; dim V = n, so that m is bounded by a function of n. D 

EXERCISES 8.1 

1. Prove that Maschke's Theorem does not hold if: (i) the characteristic of the field 
divides the order of the group; or (ii) the group is infinite. 

*2. A permutation representation of degree > 1 is reducible. 

3. Let G be a (possibly infinite) group and let H be a subgroup with finite index. 
Suppose that F is a field whose characteristic does not divide IG: HI and that M 
is an FG-module which is completely reducible as an FH-module. Prove that M 
is completely reducible as an FG-module. [Hint: Imitate the proof of Maschke's 
Theorem.] 

*4. Let G be a finite group which has a unique minimal normal subgroup and let F 
be a field whose characteristic does not divide IGI. Prove that G has a faithful 
irreducible F-representation. [Hint: Apply 8.1.2 to FG.] 

5. An irreducible representation of a finite p-group over a field with characteristic p 
has degree 1. 

6. Prove that a cyclic group of order n has a faithful irreducible iQ-representation 
of degree q>(n) (where q> is Euler's function). 

7. A matrix over a field is unipotent if and only if all its characteristic roots equal 
1. 

8. If G is a subgroup of GL(n, F), n > 1, and (g - 1)'(g) = 0 for some r(g) > 0 and 
all 9 E G, then G is nilpotent of class at most n - 1. 

9. If F is a field of characteristic 0, a subgroup of GL(n, F) with finite exponent e 
has order at most en3 • 

10. There is an upper bound depending only on n for the order of a finite subgroup 
of GL(n, iQ). 

11. A finite p-group G has a faithful irreducible representation over an algebraically 
closed field whose characteristic is not p if and only if the centre of G is cyclic. 

12. Let n be the degree of an irreducible representation of a finite group G over an 
algebraically closed field. Prove that n2 :;; IG: (GI. [Hint: Apply 8.1.8.] 

13. (Burnside) Prove that a subgroup of GL(n, F) with finite class number is finite 
for any field F. [Hint: Use induction on nand 8.1.9.] 
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8.2. Structure of the Group Algebra 

We shall now investigate the structure of the group algebra using Maschke's 
Theorem and Schur's Lemma. 

8.2.1. If G is a finite group and F is a field whose characteristic does not 
divide the order of G, then FG has no nonzero nilpotent right ideals. 

Proof. Let S be a nilpotent right ideal of R = FG. By Maschke's Theorem R 
is completely reducible as a right R-module. Hence R = S $ T for some 
right ideal T, and we can write 1 = s + t where s E Sand t E T. Right multi
plication by s yields ts = s - S2 E S n T = O. Hence s = S2, which implies 
that s = 0 because S is nilpotent. Thus t = 1, so that T ~ 1R = Rand 
S=Q 0 

Definition. If Rand S are rings, an anti-homomorphism from R to S is a 
homomorphism 0(; R -+ S of additive groups such that 

(ri E R). 

An anti-homomorphism which is bijective is called an anti-isomorphism. 

The next result is very simple. 

8.2.2. Let R be any ring with an identity element and let RR denote the ring 
R when regarded as a right R-module in the natural way. If r E R, define 
r': RR -+ RR by xr' = rx. Then rl-+ r' is an anti-isomorphism from R to 
EndR(RR)· 

Proof. In the first place r' is certainly an endomorphism of the underlying 
additive group of R: also (xr1 )r' = rxr1 = ((x)r')r1 , so in fact r' E E = 

EndR(RR). It is equally easy to see that (rl + r2 )' = r~ + r~ and (rl r2 )' = r~r~, 
so that the mapping r 1-+ r' is an anti-homomorphism: let us call it e. If 
r' = 0, then 0 = (1)r' = r, so e is injective. Finally let ~ E E and put s = (1)~; 
then r~ = (1r)~ = (1)~r = sr = rs' for all r E R. Thus ~ = s' and e is also 
surjective. 0 

We precede the main structure theorem for group algebras with a remark 
about endomorphism rings. Let M = M 1 $ . . . $ Mk be a direct decomposi
tion of an R-module Minto R-submodules. Let ~ E EndR(M) and, if a E M i , 

define a~ij to be the Mrcomponent of a~. Then ~ij E HomR(Mi , M). Thus we 
can associate with ~ the k x k matrix ~* whose (i,j) entry is ~ij. It is easy to 
verify that ~ 1-+ ~* is a ring isomorphism from EndR(M) to the ring of all 
k x k matrices with (i,j) entries in HomR(Mi , M j ), the addition and 
multiplication rules being the usual ones for matrices. 
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8.2.3. Let G be a finite group and let F be an algebraically closed field whose 
characteristic does not divide the order of G. 

(i) FG = 11 Ei7 12 Ei7' " Ei7 Ih where Ii is an ideal of FG which is ring 
isomorphic with the ring M(ni' F) of all ni x ni matrices over F. 

(ii) I G I = n i + n ~ + ... + n:. 
(iii) Each simple FG-module is isomorphic with a minimal right ideal of some 

Ii and has F-dimension ni. Thus the ni are the degrees of the irreducible 
F-representations of G. 

(iv) The number h of inequivalent irreducible F-representations of G equals 
the class number of G. 

Proof. Let R = FG. By Maschke's Theorem R is a direct sum of minimal 
right ideals. Just as in the proof of 8.1.3 we can group isomorphic minimal 
right ideals of R together to form "homogeneous components" Ii' Then 
RR = 11 Ei7 ... Ei7 Ih where Ii is the sum of all minimal right ideals isomorphic 
with a given one, say Si' If r E R, then SH rs is an R-epimorphism from Si 
to rSi, whence either rSi = 0 or rSi ~ Si' From this is follows that rIi ~ Ii, 
which shows Ii to be an ideal of R. 

Next consider E = EndR(RR)' In view of the decomposition RR = 
11 Ei7 .. , Ei7 Ih and the remarks immediately preceding this proof, we may 
represent ~ in E by an h x h matrix ~* = (~i) where ~ij E HomR(Ii, I). If 
i =f. j, then HomR(Si ' S) = 0 by Schur's Lemma, which clearly implies that 
HomR(Ii, Ij) = O. Thus ~* is diagonal and ~ H ~* yields a ring isomorphism 

E ~ EndR 11 Ei7 ... Ei7 EndR Ih • 

Now by 8.1.5 we have EndR(Si) ~ F and thus EndR(1i) ~ M(ni ' F), where ni 
is the number of simple summands in the direct decomposition of Ii ' 

From 8.2.2 we obtain an anti-isomorphism from R to E; we also have an 
isomorphism from E to M(n1 ' F) Ei7 '" Ei7 M(nh' F) = M and finally an anti
isomorphism from M to M generated by transposing matrices. Composi
tion of these three functions yields an isomorphism from R to M. Thus (i) is 
established. 

The F-dimension of R is certainly IGI, while that of M(ni' F) is nr. Taking 
F-dimensions of both sides in (i), we obtain IGI = ni + ... + n:, thus prov
ing (ii). 

By 8.1.1 a simple R-module is an image of R and thus, by 8.1.2, is R
isomorphic with some minimal right ideal of R contained in one of the Mi ' 
If X is a right ideal of Ii, it is also a right ideal of R: for XIj ~ Ii (\ Ij = 0 if 
j =f. i, and hence XR ~ X. Therefore X £: Ii is a minimal right ideal of R if 
and only if it is a minimal right ideal of Ii ' By (i) we need to show that some 
minimal right ideal of the matrix ring M(n, F) has dimension n over F. 

Let Eij denote the n x n elementary matrix whose (i,j) entry is 1 and 
whose other entries are O. Define Ji = F Eil + ... + FEin: obviously Ji is a 
right ideal of M(n, F). Suppose that 0 < T ~ Ji where T is a right ideal of 
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M(n, F), and let ° #- t = LjjjEij E T. If, say, he #- 0, then 

E;m = t(fk- 1 Ekm ) E T 
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for all m, which proves that T = J; and J; is a minimal right ideal of M(n, F). 
The F -dimension of J; is n. 

It remains only to show that h equals the class number 1 of G. To achieve 
this we consider the center C of the ring R, which is defined to be the subset 
of elements r such that rx = xr for all x in R. Clearly C is a subring of 
R. Now C is evidently the sum of the centres of the I;. Also the center of 
M(n, F) is well-known to consist of the scalar matrices; hence its dimension 
is 1. It follows that C has F-dimension h. 

Denote the conjugacy classes ofG by K 1 , ••• , Kl and define k; = LXEKiX. 
Clearly g-l k;g = k;, so that k;g = gk; for all 9 in G; thus k; E C. Moreover 
k1' ... , kl are linearly independent over F, so 1 :s; h. If we can show that 
C = Fk1 + ... + Fk1, it will follow that h = I. Suppose that c = LXEGfxx E 

C. Then for all 9 in G 

c = g-l (L fxX)9 = L fAg- 1 xg) = L fgyg-,y· 
XEG XEG YEG 

Hence h = /gyg-I, which shows that f is constant on K;: let its value be /;. 
Then c = L:=1 /;k;, and we are finished. 0 

EXAMPLE. Consider CG where G = S3, the symmetric group of degree 3, and 
C is the complex field. Since G has three conjugacy classes, there are three 
inequivalent irreducible representations of Gover C, with degrees n1, n2, n3 
satisfying ni + n~ + n~ = 6; this has the solution n1 = 1 = n2' n3 = 2. 
Hence CG ~ C EB C EB M(2, C). 

In this case it is easy to identify the irreducible representations. Let G = 
<x, y) where x = (1, 2,3) and y = (1, 2)(3). The two irreducible representa
tions of degree 1 are the trivial representation and the representation 
9 1-+ sign g. The representation of degree 2 may be described by the 
assignments 

Xl-+(~ =!) and 

Clearly this is a faithful representation. 

EXERCISES 8.2 

1. Let G be a finite group and F any field whose characteristic does not divide IGI. 
Prove that the number of inequivalent irreducible F-representations of G cannot 
exceed the class number of G, and give an example to show that it may be smaller 
than the class number. 

2. Let G be a cyclic group of finite order n. Determine all the irreducible IC-represen
tations and all the irreducible Q-representations of G. For which n are their 
numbers equal? Also describe the structure of ICG and QG. 



226 8. Representations of Groups 

3. Find all the inequivalent irreducible I[:>representations of A4 . Describe the struc
ture of the group algebra QA4)' 

4. Repeat Problem 3 for Ds. 

5. How many inequivalent irreducible i1:>representations does S. have? In the case of 
S4 find the degrees of these representations. 

6. Let G be a finite p-group and let F be a field of characteristic p. Define I to be the 
F-subspace of R = FG generated by all g - 1, g E G. 
(a) Prove that I is an ideal of Rand R/I ~ F. 
(b) Show that I is nilpotent and coincides with the sum of all nilpotent right 

ideals of R. 
(c) A simple FG-module is isomorphic with the trivial module F. Find a sub

module of R that gives rise to the trivial representation. 

8.3. Characters 

Let p be an F-representation of a group G and suppose that p arises from 
an FG-module M. If we choose an F-basis for M, there is a corresponding 
matrix representation p*. Choice of another basis for M would lead to a 
matrix similar to x P* representing x. Now similar matrices have the same 
trace. Hence the function 

x: G -+ F 
defined by 

(x)X = trace(xP*) 

is independent of the choice of basis. We call X the character of the represen
tation p or the module M. The character X is said to be irreducible, faithful, 
etc. if the associated representation p has the property in question. 

The fundamental property of characters is that they are class functions. 
Here a class function from G to F is a function IX: G -+ F such that 
(g-1 xg)1X = (X)IX: in words, IX is constant on each conjugacy class of G. 

8.3.1. Characters are class functions. 

Proof. Let X be the character of an F-representation p of G. Then 
(g-1 xg)P* = (gP*r1 Xp* gPO where p* is an associated matrix representation. 
Thus (g-1 xg)X = trace«gp*r1 xP*gP*) = trace x p* = (x)X. D 

If p and (J are equivalent F-representations of G, then GP' and G"* are 
conjugate in GL(n, F). Using again the fact that similar matrices have the 
same trace one has the following fact. 

8.3.2. Equivalent representations have the same character. 
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That it is the irreducible characters which are of interest is made plain by 
the next result. Here the sum X + t/J of characters X and t/J is defined by the 
rule (x)X + t/J = (x)x + (x)t/J. 

8.3.3. Every character is a sum of irreducible characters. 

Proof. Let M be an FG-module with finite dimension over F affording a 
representation p. Let 0 = Mo < Ml < ... < M, = M be an FG-composition 
series of M. Write X for the character of M and Xi for the character of the 
simple module MJMi - l . Choose a basis for M l , extend it to basis of M2 , 

then to a basis of M 3 , and so on. This results in a basis of M with respect to 
which the associated matrix representation is given by 

[
X

P
! * xp~ O.j 

x P• = 

x Pr 

here Pi is the representation afforded by MJMi- l . Taking the trace of the 
matrix x P·, we obtain (x)X = (X)Xl + ... + (x)X, and X = Xl + ... + X,· 0 

Orthogonality Relations 

Let G be a finite group and let F be any field. Consider the set 

S(G, F) 

of all functions from G to F. The rules 

(X)IX + p = (X)IX + (x)P and (x)aIX = a(xIX) 

where x E G, a E F and IX, P E S(G, F), make S(G, F) into a vector space over 
F. If (}g denotes the function which maps g to IF and all other elements of G 
to OF' then the (}g are obviously linearly independent in S(G, F). Also, for 
any IX in S(G, F) we have IX = LxeG(X)IX'(}x, by direct comparison of the 
values of the two functions. Hence the set {(}glg E G} is a basis for S(G, F) 
and the latter has dimension I GI. It is also easy to verify that the class func
tions from G to F form a subspace of S(G, F) with dimension equal to the 
class number of G. 

Select an F-representation P of G and let M be an FG-module which 
gives rise to p. Choosing a basis for M, we write (X)Pij for the (i,j) entry of 
the matrix x P• where as usual P* is the corresponding matrix representa
tion. Thus associated with P are the n2 functions Pij: G .... F in S(G, F). 

The following result is basic. 
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8.3.4. Let G be a finite group, F a field, and p, a irreducible F -representations 
of G. Let Pij' aij denote the associated matrix functions (with respect to fixed 
bases). 

(i) If P and a are inequivalent, then LxeG(X)Pij(x-1)ars = O. 
(ii) If F is algebraically closed and its characteristic does not divide I GI, then 

where n is the degree of P and buv is the "Kronecker delta." 

Proof. Let P and a arise from FG-modules M and N. For any '1 in 
HomF(M, N) define if in HomF(M, N) by 

if = L XP'1(x-1 t· (1) 
xeG 

If g E G, then 

ifg" = L XP'1(x-1 g)" = L (gy)P'1(y-l t = gPif, 
xeG ~eG 

which shows that if E HomFG(M, N). 
Now choose '1 to be the linear transformation which maps the jth basis 

element of M to the rth basis element of N and all other basis elements of 
M to O. Then '1 is represented by a matrix whose (k, I) entry is bjkbr,. Taking 
the matrix form of (1) we obtain 

ifis = L L L (X)Pikbjkbr,(X-1)a,s = L (X)Pij(x-1)ars ' 
xeG k , xeG 

If P and a are inequivalent, HomFG(M, N) = 0 by Schur's Lemma, and 
if = 0 : thus (i) follows at once. To prove (ii) put a = p, so that if E EndFG(M) 
and if is scalar by 8.1.5; thus if = fjr 1 where fjr E F. Then the equation for ifis 
yields 

fjAs = L (x)Pij(x-1)Prs = L (Y)Prs(y-l)pij = J.;b,j. (2) 
xeG yeG 

Therefore Lx (x)Pij ' (x-1 )Prs = 0 if either i i= s or j # r. Furthermore (2) 
yields also fjj = Lx (x)Pij' (x-1 )Pji = hi' Thus f = fjj is independent of j. 
Hence 

= L ((xx- 1 )Pii) 
x 

=IGI· 

Since IGI, and hence n, is not divisible by the characteristic of F, it follows 
that f = IGI/n. This completes the proof. 0 

From this result may be deduced the fundamental orthogonality relations 
which connect the irreducible characters. 
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8.3.5 (Frobenius). Let G be a finite group and F a field. Let X and '" be 
distinct irreducible F -characters of G. 

(i) IxeG(x)x(x-1)", = o. 
(ii) If F is algebraically closed and its characteristic does not divide I GI, then 

IxeG (x)x (x-1)x = IGI· 
(iii) If F has characteristic 0, then (1/ IGI)IxeG(x)x(x-1 )X is always a posi

tive integer. 

Proof. Let P and (J be irreducible representations with characters X and '" 
respectively. Then P and (J are inequivalent by 8.3.2. Let Pij and (Jij be the 
associated matrix functions with respect to fixed bases. Then X = Ii Pii and 
'" = Ij (Jjj. By 8.3.4 

I (X) X (X-l )'" = I I (I (X)Pii(X-1 ) (Jjj) = o. 
xeG i j xeG 

Now assume that F is algebraically closed with characteristic not dividing 
IGI. If n is the degree of p, we obtain from 8.3.4. 

I (X)X(x-1)x=II(I (X)Pii(X-1 )Pjj) 
xeG i j xeG 

Thus (i) and (ii) are proven. 
Finally, assume only that F has characteristic 0 and let "'1' ... , "', be the 

irreducible characters of G over the algebraic closure of F. By 8.3.3 we can 
write X = Ii=1 mj"'j where mj is a nonnegative integer. Then applying the 
results of (i) and (ii), we have 

I (x)x(x-1)x = IImjmk(I(x)"'j(X-1)"'k) 
xeG j k x 

which yields (iii). o 

The Inner Product of Characters 

Let G be a finite group and F a field whose characteristic does not divide 
IGI. If a and {3 belong to S(G, F), we define an element (a, {3)G of F by 

1" -1 ( a, {3 )G = Wi x7G (x)a (x ){3. 

Clearly ( )G is a symmetric F-bilinear form on S(G, F). Also, if ( a, {3)G = 0 
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for all p, we could choose p = bX-l concluding that (x)a = 0 for all x and 
a = O. Thus < )G is nondegenerate. Hence < )G is an inner product on 
the vector space S(G, F). 

8.3.6. Let G be a finite group and let F be an algebraically closed field 
whose characteristic does not divide IGI. Then the set of distinct irreducible 
F -characters of G is an orthonormal basis for the vector space of all class 
functions from G to F with respect to the inner product < )G. 

Proof. Let Xl' . .. , Xh be the distinct irreducible F -characters of G. By 8.3.5 
and the definition of the inner product <Xi' Xj)G = bij , which shows that the 
Xi form an orthonormal set. By 8.2.3 the integer h is the class number of 
G, and this equals the dimension of the vector space of all class functions. 
Hence the Xi form a basis for this space. 0 

We shall use these ideas to prove that if F has characteristic 0, an F
representation is determined up to eqivalence by its character. To specify 
the representations, therefore, it is in principle enough to exhibit the 
characters. 

8.3.7. Let G be a finite group and let F be a field of characteristic O. Then 
F -representations of G with the same character are equivalent. 

Proof. Let Pl' ... , Ph be a complete set of inequivalent irreducible F-repre
sentations of G. Then by Maschke's Theorem any F-representation is equiv
alent to one of the form P = tlPl $ ... $ thPh where the ti are nonnegative 
integers and tiPi means the direct sum of ti copies of Pi. Denote the charac
ters of P and Pi by X and Xi respectively. Then X = tlXl + ... + thXh . By 8.3.5 
we have <X, X) = liti where Ii = <Xi' X), a positive integer. Bearing in mind 
that F has characteristic 0, we have ti = <X, x)li l . Thus the ti, and hence p, 
are determined by X· 0 

This result is false if F has positive characteristic (Exercise 8.3.6). 

Algebraic Integers 

In order to prove the next main result some simple facts about algebraic 
integers are needed. 

In the first place, recall that an algebraic number field F is a finite field 
extension of the rational field Q. An algebraic integer in F is an element 
which is the root of a monic polynomial with integral coefficients. It is a 
simple exercise to prove that f in F is an algebraic integer if and only if the 
subring generated by f and IF is finitely generated as an abelian group. 

8.3.8. The algebraic integers in an algebraic number field F form a subring. 
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Proof. Let f1 and f2 be two algebraic integers in F. Then ft" + In_dt"-l + 
... + Id1 + 10 = 0 for certain integers Ii and it" E (1, f1' ... , ft"-l): a similar 
statement holds for f2. It follows easily that the ring generated by 1, f1' and 
f2 can be finitely generated as an abelian group. Hence the subrings gener
ated by 1 and f1 ± f2 and by 1 and fd2 are also finitely generated abelian 
groups (by 4.2.8). Consequently f1 ± f2 and fd2 are algebraic integers. D 

8.3.9. A rational number which is an algebraic integer is an integer. 

Proof. Let min be an algebraic integer where m and n are relatively prime 
integers. Then min is the root of some monic polynomial tr + Ir- 1 tr- 1 + 
... + lit + 10 in Z[t], and consequently mr + Ir_1mr- 1n + ... + 11mnr- 1 + 
lonr = O. But this implies that n divides mr, and hence that n = ± 1. 0 

We can now establish the fundamental theorem on the degrees of the 
irreducible representations. The principal step in the proof is the following 
lemma. 

8.3.10. Let G be a finite group and let F be an algebraically closed field of 
characteristic O. Suppose that X is an irreducible F -character of G with degree 
n. If the element g has I conjugates in G, then 1((g)x)ln is an algebraic integer. 

Proof. Let K 1, ... ,Kh denote the conjugacy classes of G and let k i = 
LXEKi x. We have already observed that kb ... , kh form an F-basis for C, 
the center of FG. Since kikj E C, 

h 

kikj = L m!;lkr' (3) 
r=l 

where m!? is the number of pairs (x, y) such that x E K i , Y E K j , and xy 
equals a fixed element Zr in K r • (Notice that m!;l does not depend on the 
choice of Zr in K r .) 

Let p: G -+ GL(M) be a representation with character x. In the obvious 
way extend p and X to FG. Then kf E EndFG(M), so that kf = /; 1 for some /; 
in F by 8.1.5. Now n/; = trace(kf) = (kJx = liX(i) where Ii = IKd and X(il is 
the value of X on K i. Hence /; = lix(il/n. 

Applying p to (3) and using kf = /; 1, we get 
h 

/;fj = L m!'"} fro (4) 
r=l 

Fix i and regard (4) as a system of h homogeneous linear equations in the fj: 
h 

L (/;bjr - m!;l)fr = 0, j = 1,2, ... , h. 
r=l 

Now the fj cannot all equal 0 because f1 # 0 if K1 = {1}, so the linear sys
tem has a nontrivial solution. Hence the determinant of the h x h matrix 
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whose (j, r) entry is fAr - m~;> must vanish. This shows that /; is a root of a 
monic polynomial in Z [t] , and hence is an algebraic integer. 0 

8.3.11. Let G be a finite group and let F be an algebraically closed field of 
characteristic O. Then the degrees of the irreducible F -representations of G 
divide the order of the group. 

Proof. Let p be an irreducible F-representation of G and let X be the charac
ter of p. We employ the notation of 8.3.10. Writing 1 GI = m and Ki> for the 
conjugacy class (Kif1 , we have by 8.3.5 

~ = ~ L (x)X(x- 1 )X = ~ t ldi)x(i». 
n nxeG ni=l 

Since /; = Idi)ln, this becomes min = L~=l /;X(i». Now Xli»~ is the trace of an 
element of G and as such is a sum of roots of unity in F. Since a root 
of unity is certainly an algebraic integer, we can apply 8.3.l0 and 8.3.8 to 
conclude that min is an algebraic integer. Finally 8.3.9 shows that min is an 
~~ 0 

The Character Table 

Let G be a finite group and F an algebraically closed field whose character
istic does not divide 1 G I. Let K l' ... , Kh be the conjugacy classes of G and 
Xl' ... , Xh the irreducible F -characters. The value of Xi on K j will be denoted 
by xy). The values of the characters can be conveniently displayed in the 
character table of G. 

Xl 

The orthogonality properties of the characters may be translated into 
row and column orthogonality of the character table. Consider for example 

I (X)Xi (x- 1 )Xj = mc5ij 
xeG 

where m = IGI, (see 8.3.5). On writing Ii = IKd and Ki> = (Ki)-l, this be-
comes 

h 
" I X\r)X\r» = mc5·· ~ r, J 1.)' r=l 

which is referred to as orthogonality of rows. 

(5) 

Define X and Y to be the h x h matrices whose (i, r) and (r, j) entries 
are X~r) and IrXY*) respectively. Then (5) expresses the matrix equation 
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XY = m1h • Hence X is nonsingular. After conjugation by X this becomes 
YX = m1h • Taking (r, s) entries of each side we arrive at the equation 
I?=ll,X!'*)X!S) = mc5,s' Now I, divides m = IGI, so I, #- 0 in F and 

h m I l'*) XIS) = - c5 
i=I' l ~ N' 

(6) 

which expresses orthogonality of columns. 
Finally we specialize to the case F = C, the field of complex numbers. 

Let g E G and let p be a C-representation of G. Now a characteristic root f 
of gP is a complex root of unity; thus f- l = J, the complex conjugate. It 
follows that (x-l)X = (x)x for any C-character X. Equations (5) and (6) now 
become 

h 
~ 1 XI')X~') = mc5 .. L-rlJ lJ ,=1 

and (7) 

EXAMPLE. Let G be the quaternion group of order 8 with generators a, band 
the usual relations a4 = 1 = b4, a2 = b2, ab = a-l. We shall determine the 
character table of Gover IC. 

The conjugacy classes of G are Kl = {1}, K2 = {a2}, K3 = {a, a- l }, 
K4 = {b, b- l }, Ks = {c, c- l } where c = abo Hence the class number is 5. 

Let Xl"'" Xs be the irreducible characters, Xl being the trivial character 
and ni the degree of Xi' We know from 8.2.3 and 8.3.11 that If=l n; = 8 and 
each ni divides 8. It follows that one degree is 2 and the other four are 1, say 

n l = n2 = n3 = n4 = 1 and ns = 2. 

It is easy to determine the characters of degree 1 since they arise from 
homomorphisms of Gab' a 4-group, into the multiplicative group of C. For 
example a H + 1, b H -1, c H -1 is a representation of degree 1 with char
acter values on K l , K 2, K 3, K4, Ks equal to 1, 1, 1, -1, -1 respectively: let 
this character be X2' Two more nontrivial characters X3' X4 with degree 1 
are obtained by cyclically permuting a, b, C. 

To the extent of our present knowledge the character table has the form 

Kl K2 K3 K4 Ks 

Xl 1 1 1 1 1 
X2 1 1 1 -1 -1 
X3 1 1 -1 1 -1 
X4 1 1 -1 -1 1 
XS 2 x y z t 

Note that X~l) = 2 since XS has degree 2. The values x, y, Z, t can be com
puted by means of column orthogonality. Applying the second equation of 
(7) with r = 1, s = 2, one obtains 1 + 1 + 1 + 1 + 2x = 0 or x = - 2. In a 
similar way we find that y = z = t = 0 and the table is complete. 



234 8. Representations of Groups 

The irreducible representation of degree 2 arises from the well-known 
Pauli spin matrices: 

(F-l 0) 
a~ 0 -F-l' b~( 0 

-1 ( 0 F-l) c~ /1 . v -1 0 

We conclude this section with a condition for a representation to be 
irreducible. 

8.3.12. Let X be an F-character of a finite group G where F is an algebraically 
closed field of characteristic O. Then X is irreducible if and only if <X, X>G = 
1. 

Proof. Necessity of the condition has already been proved (8.3.5). Assume 
that <X, X>G = 1. If Xl' ... , Xh are the irreducible characters of G, we can 
write X = IIXI + ... + IhXh where Ii is a nonnegative integer by 8.3.3. Hence, 
using <Xi> Xi> = bij' we obtain 1 = <X, X>G = L~=llf, which implies that one 
of the Ii equals 1 and all the others equal O. Thus X = Xi for some i. 0 

EXERCISES 8.3 

1. With the notation of the orthogonality relations (7) define A to be the h x h 
matrix whose (i, r) entry is .JlJ;X!r). Prove that A is unitary, that is, A(Af = 
1. 

2. Show that the degree of an irreducible Q-representation need not divide the 
group order, and also that <X, X> need not be 1 if X is a Q-irreducible charac
ter. 

3. Construct the character table of A4 over C. 

4. Show that the character tables of Ds and Qs over C are identical. 

5. Use the Pauli spin matrices to construct an irreducible Q-representation of Qs 
with degree 4. Hence find all irreducible Q-representations of Qs. 

6. Show that a representation of a finite group G over a field of positive charac
teristic p is not in general determined by its character even if p t 1 G I. 

7. Prove that the dimension of the vector space of all class functions of Gover F 
equals the class number of G (where G is finite). 

8. Prove that the number of real irreducible C-characters of a finite group equals 
the number of conjugacy classes Ki such that Ki = K i.( == Ki1 ). [Hint: Con
sider the effect on the unitary matrix of Exercise 8.3.1 of permutations Xi H Xi 
and KiHKi"] 

9. (Burnside). Let G be a finite group of odd order m and class number h. Prove 
that m == h mod 16. [Hint: Show first that the only real irreducible C-character 
is the trivial one and then express m as the sum of the squares of the degrees of 
the irreducible C-representations.] 
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10. Assume that the finite group G has a faithful F-representation of degree n where 
n is less than the smallest prime divisor of IGI and F is an algebraically closed 
field of characteristic O. Prove that G is abelian. 

11. Let G be a simple group of order m and let p be a prime dividing m. If the class 
number of G exceeds m/p2, then the Sylow p-subgroups of G are abelian. [Hint: 
Assume that p2 divides m and write m as the sum of the squares of the degrees 
of the irreducible C-representations.] 

*12. Let Xl' . . . ' Xh be the distinct irreducible characters of a finite group Gover 
an algebraically closed field whose characteristic does not divide IGI. If Xi has 
degree Ii' prove that Ii liXi is the character of the right regular representation. 

8.4. Tensor Products and Representations 

Let G be a group and F a field. We consider two F-representations P, 0" of G 
arising from (right) FG-modules M, N . The tensor product 

T=M®N 
F 

is a finite-dimensional vector space over F with dimension mn where m and 
n are the dimensions of M and N. We make T into a right FG-module via 
the rule 

(a ® b)g = (ag) ® (bg), (a E M, bEN, 9 E G). 

This is a well-defined action because (a, b)l-+ag ® bg is bilinear. The mod
ule T affords a representation 't" of G called the tensor product of P and 0" 

which is written 
't"=P®O"· 

The degree of 't" is the product of the degrees of P and 0". By definition of 
the tensor product of two linear transformations (a ® b)gt = agP ® bg" = 
(a ® b)(gP ® g"). Thus 

gE G. 

Next we ask about the relation between the character of't" and those of P 
and 0". Choose F-bases {a 1 , .•• , am} and {b1 , ••• , bn } for M and N respec
tively and recall that the ai ® bj form a basis of T. Now 

m n 

(ai ® bj)gt = aigP ® bjg" = L (g)Pikak ® L (g) O"jl bl 
k=l 1=1 

where ((g)Pid and ((g)O"jl) are the matrices representing gP and g". Therefore 

(ai ® b)gt = L ((g)Pik)((g)O"jl)(ak ® bl). 
k,1 

Hence gt is represented by the mn x mn matrix whose (i,j: k, 1) entry is 
(g)Pik (g)O"jl · The character of't" can now be found since 

trace(gt) = L (g)Pii(g)O"jj = (trace(gP))(trace(g")). 
i,j 
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It follows that the character of P ® a equals the product of the characters 
of P and a. Here, of course, the product rxf3 of functions rx, 13: G ~ F is de
fined by (g)rxf3 = ((g)rx)((g)f3). 

8.4.1. Let G be a group and F a field. Then the sum and product of F
characters are F -characters. The set of all integral linear combinations of 
F -characters is a commutative ring (called the character ring). 

Proof. That the sum of two characters equals the character of the direct 
sum of the corresponding representations is clear. The product of two 
characters is the character of the tensor product of the associated 
representations. The remaining statement is clear. 0 

An element of the character ring is called a generalized character: usually 
a generalized character is not a character. 

Representations of Direct Products 

Let F be any field and let G be a group expressed as a direct product 
G = H x K. Let P and a be F-representations of Hand K. Then a 
corresponding F-representation of G may be constructed from P and a by 
using tensor products. 

Suppose that P and a arise from an FH-module M and an FK-module N 
respectively. Form the tensor product 

T=M®N 
F 

and make T into a right FG-module by the rule 

(a ® b)(x, y) = (ax) ® (by), 

where a E M, bEN, x E H, y E K. Then T affords an F-representation P # a 
called the Kronecker (or outer tensor) product of P and a. The degree of 
P # a equals the product of the degrees of p and a. Just as for the inner 
tensor product one can show that if p has character X and a has character 
"', the character qJ of p # a is given by (x, Y)qJ = (x)X(y)",. 

8.4.2. Let F be an algebraically closed field and let G = H x K . 

(i) If P and a are irreducible F -representations of Hand K, then p # a is an 
irreducible F-representation of G. 

(ii) Assume that G is finite and the characteristic of F does not divide the 
order of G. If {PI' .. . , Ph} and {aI' ... , ad are complete sets of inequiva
lent irreducible F-representations of Hand K, then the Pi # ar , i = 1, . . . , h, 
r = 1, . .. , k, form a complete set of inequivalent irreducible F-represen
tations of G. 
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Proof. (i) Let M and N be right modules giving rise to P and (J' and let 
{a1, ... ,am } and {b1, ... ,bn } be F-bases of M and N. Then T=M®FN 
has the set of all ai ® bj as a basis. For fixed integers i,j, r, s define ~ in 
EndF(M) and 1'/ E EndF(N) by the rules ak~ = bkiaj and b,1'/ = b,A. Now 8.1.8 
shows that HP and K et generate EndF(M) and EndF(N) respectively as vec
tor spaces; hence we can write 

and 

where u x , Vy E F. Then one setting' = ~ ® 1'/ we have 

,= I. I. UXvy(x P ® yet) = I. I. uxvy(x, y)t 
xeH yeK xeH yeK 

where r = P # (J'. However, by definition of ~ and 1'/, 

(ak ® b,)( = ak~ ® b,1'/ = bkib'r(aj ® bs )· 

Thus if we allow i,j, r, s to vary, the resulting ('s will generate EndF(T). But 
all such ('s belong to the subspace V = F(Gt), so V = EndF(T). Clearly this 
implies that r is irreducible. 

(ii) By (i) the Pi # (J'r are irreducible F-representations: we must show that 
no two of them are equivalent. Let Pi have character Xi and let (J'r have 
character I/Ir. Then Pi # (J'r has character ({Jir where (x, y)({Jir = (X)Xi(y)l/Ir· 
Hence 

1 
<({Ji" ({Jjs>G = IHI'IKI X~H (X)Xi (y)l/Ir (x-1)Xj(y-l)l/Is 

yeK 

= (I~I X~H (X)Xi(X-l)Xj)(I~1 y~K (y)l/Ir(y-l)l/Is) 

= <Xi' Xj>H' <1/1" I/Is>K 

by 8.3.6. Therefore ({Jir =I ({Jjs if (i, r) =I (j, s), and the hk representations 
Pi # (J'r are inequivalent. But the total number of inequivalent irreducible F
representations of G equals the class number of G, which clearly equals hk 
(Exercise 1.6.4). Hence the Pi # (J', constitute a complete set of inequivalent 
irreducible F-representations of G. 0 

Induced Representations 

If H is a subgroup of a group G and P is an F-representation of G, an 
F-representation of H is obtained by simply restricting P to H. A less trivial 
problem is to construct a representation of G starting with a representation 
of H. This leads to the important concept of an induced representation, 
which is due to Frobenius. 
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Suppose that G is a group and H is a subgroup of G with finite index r. 
Let there be given an F-representation p of H arising from a right FH
module M. We proceed to form the tensor product over FH, 

MG=M®FG, 
FH 

wherein FG is to be regarded as a left FH-module by means ofleft multipli
cation. So far MG is only an F -module. However FG is also a right 
FG-module via right multiplication. Consequently MG becomes a right 
FG-module by means of the rule 

(a ® r)s = a ® (rs), (a E M and r, s E FG). 

The F H-bilinearity of the map (a, r) 1-+ a ® (rs) shows this action to be well
defined. 

The right FG-module MG is called the induced module of M, and the 
F-representation which arises from M is called the induced representation 
of p, 

pG. 

If p has character X, we shall write XG for the induced character, that is, the 
character of pG. 

We plan now to investigate the nature of the module MG. Choosing a 
right transversal {tl' " '' t,} to H in G, we may write each element of FG 
uniquely in the form L~=l uiti with Ui in F H. Hence there is a decomposition 
of FG into left FH-modules FG = (FH)tl $'" $ (FH)t,. By the distributive 
property of tensor products there is an F-isomorphism. 

MG ~ M @ «FH)tl) $ ... $ M ® «FH)t,). (8) 
FH FH 

By virtue of the equation a ® uti = au ® ti where u E F H, we can rewrite (8) 
as 

MG ~ M@t l $'" $M®t,. 

Hence, if {al"'" an} is a basis of Mover F, the elements ai ® ti , i = 
1,2, ... , n,j = 1,2, ... , r, form a basis for MG over F. In particular 

degree pG = (degree p)'IG: HI. 

On the basis of these remarks the values of the induced character XG can 
be calculated. 

8.4.3. Let G be a finite group, H a subgroup of G, and F i' field whose charac
teristic does not divide the order of H. If X is an F-character of H, the value 
of the induced character is given by 

1 
(g)xG = - L (xgx-l)X 

IHI XEG 

where it is understood that X is zero on G\H. 
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Proof. Let P be an F-representation of H with character X. Choose a basis 
{a b ... , an} of the FH-module M giving rise to P and let {tl' ... , tr } be a 
right transversal to H in G. We have observed that the ai ® tj form a basis 
of MG. If g E G, then tjg = xtk for some k and x = tjgt;l E H. Hence 

(ai ® t)g = ai ® (tjg) = ai ® (xtk) = (aix) ® tk. 

As usual ((g)Pi) is the matrix representing gP; then 

(ai ® tj)g = (~ (X)Pila,) ® tk = ,~ (tjgt;l )Pil (a, ® tk)· 

Now for given j and g there is precisely one k such that tjgt;l E H. Hence, 
with the convention that Pil is zero on G\ H, one has 

n r 

(ai ® t)g = L: L: (tjgt;l )Pil (a , ® tk)· 
1=1 k=l 

This establishes that the nr x nr matrix representing gpG has (i,j: I, k) entry 
equal to (tjgt;l )Pil. The character XG can now be computed. 

n r r 

(g)X G = L: L: (tjgtj- 1 )Pii = L: (tjgtj- 1 )X· 
i=l j=l j=l 

Finally, if Z E H, 
(ztjg(ztT1)x = (z(tjgtj- 1 )Z-l)X = (tjgtj- 1)X 

since X is a class function H. Hence 

G 1" -1 
(g)x = IHI x~G (xgx )X· 

The Frobenius Reciprocity Theorem 

o 

The following theorem is used quite frequently in computations with in
duced characters. 

8.4.4 (Frobenius). Let G be a finite group and let F be a field whose charac
teristic does not divide the order of G. Assume that H is a subgroup of G and 
that", and X are F-characters of Hand G respectively. Then 

<",G, X>G = <"', XH>H 

where XH denotes the restriction of X to H. 

Proof. Let IHI = I and IGI = m. Applying 8.4.3 we have 

1 1 
<",G, X>G = - L: (x)",G(x-1)X = -I L: L: (yxy-l)", (x- 1)X. 

mxEG mxEGYEG 
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Since {x- I)X = (yx- I y-I)x, this becomes 

1 
(tjJG, X>G = -I L L (yxy-l)tjJ (yx- I y-I)X 

m YEG XEG 

1 1 
= -[ L L (z)tjJ (Z-I)x = -[ L (z)tjJ (Z-I)x. 

myEGzEG ZEG 

Now according to our convention tjJ vanishes on G\ H, so the final summa
tion on z may be restricted to H and we obtain (tjJG, X>G = (tjJ, XH>H' 0 

Permutation Representations 

In 8.1 it was remarked that a permutation representation could be regarded 
as a linear representation over an arbitrary field. We shall now show that 
permutation representations arise as representations induced from the triv
ial representation of a subgroup. 

In the following all representations are over an arbitrary field F and z(G) 
is the trivial representation of a group G. 

8.4.5. 

(i) If H is a subgroup with finite index in a group G, then (z{H))G is a transi
tive permutation representation of G with degree IG: HI. 

(ii) If P is a permutation representation of a group G on a finite set and k is 
the number of G-orbits, then P is equivalent to l(HI)G EB ... EB l(HdG where 
the Hi are point stabilizers in G. In particular, if P is transitive, it is equiv
alent to some l(H)G. 

Proof. (i) The representation l{H) arises from the trivial right FH-module F. 
Thus l(H)G arises from F ®FH FG, which has an F-basis 

{l®t;li= 1,2, .. . ,r} 

where {t 1, ... , t r } is a right transversal to H in G. Let g E G and write 
tig = htj where hE H. Then (1 ® t;}g = 1 <8l (ht) = {l)h ® tj = 1 <8l tj. In 
consequence g permutes the 1 ® ti in exactly the same way as it permutes 
the right cosets Hti: it therefore acts transitively. Hence l(H)G is a transitive 
representation with degree r = IG : HI. 

(ii) Suppose that P represents G on the set {1, 2, ... , n}. If M is a vector 
space with basis {a 1 , ••• , an} over F, the action aig = aigp makes Minto 
a right FG-module affording the linear representation p. Evidently p = 
PI EB ... EB Pk where Pi is transitive; thus we can assume that P is transitive. 
Define H to be the stabilizer of 1 in G and put i = 1tf, using transitivity. 
Then {t l , ... , tn } is a right transversal to H in G. If we define (1 ® ti)a to be 
ai' this yields cc FG --+ M, an F-isomorphism from FG to M. Also, if g E G 
and tig = htj with hE H, then aig = al (tig) = aj = (1 ® tj)a = ((1 <8l ti)g)a. 
Thus a is an FG-isomorphism and P is equivalent to l(H)G. 0 
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The Character of a Permutation Group 

Let G be a finite permutation group. Then G has a natural linear represen
tation over an arbitrary field F and hence a natural F-character n: G ...... F. 
Note that (g)n has a simple interpretation: for if we represent 9 by a permu
tation matrix g*, then (g)n = trace(g*), which is just the number of fixed 
points of the permutation g. 

The following result shows how the permutation character may be used 
to construct irreducible characters of permutation groups. 

8.4.6. Let G be a finite permutation group with character n over an alge
braically closed field F of characteristic O. Let Xl(G) be the trivial F-charac
ter of G. 

(i) The number of G-orbits equals <n, Xl(G)G' 
(ii) Let G be transitive. If H is a point stabilizer in G, the number of H-orbits 

equals <n, n)G = LXEG«x)n)2. 
(iii) Let G be transitive. Then G is 2-transitive if and only if n = Xl(G) + X 

where X is an irreducible F -character of G. 

Proof. (i) Write n = nl EB'" EB nk where nj is the character of a transitive 
permutation representation of G and k is the number of G-orbits. Then by 
8.4.5 we have nj = (Xl (H;))G for some point stabilizer Hj in G. Therefore by 
8.4.4 

k k 

<n, Xl(G)G= L < Xl (Hj)G, Xl (G)G = L <Xl(Hj), Xl (Hj)H, = k 
i=l i=l 

since (Xl(G))H, = Xl(HJ (See also Exercise 1.6.2 for an elementary proof of 
(i).) 

(ii) Let HI"'" Hn be the point stabilizers in G; here of course n is the 
degree of G. Now (x-l)n = (x)n, so <n, n)G = (1/IGDLxEG«x)n)2. Also, in 
the sum L?=l LXEH, (x)n the number (x)n is counted each time that x occurs 
in an H j • Since x has exactly (x)n fixed points, we deduce that this sum 
equals LXEG«x)n)2. Hence 

1 n 

<n, n)G = fGI i~ x~, (x)n. 

Since G is transitive, the Hi are conjugate in G and LXEH, (x)n is indepen
dent of i. If s is the number of HI-orbits, then LXEH,(x)n = slHll by (i). 
Hence 

1 
<n, n)G = fGI(ns IHll) = s . 

(iii) Let Xl' X2 ' . . . , Xh be the distinct irreducible F-characters of G with 
Xl = Xl (G). By 8.3.3 we can write n = Li niXj (with integral nj ~ 0), and using 
8.3.5 we obtain <n, n)G = ni + n~ + ... + n~. Now nl = <n, Xl)G = 1 by (i). 
Hence s = 1 + n~ + ... + n~. Now by 7.1.1 the group G is 2-transitive if and 
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only if Hl is transitive on X \ {a} where G acts on X and Hl is the stabilizer 
of a, that is, if and only if s = 2. This occurs when exactly one ni equals 1 
and nj = ° ifj ~ 2 andj =F i. Consequently 11: = Xl + Xi . D 

EXAMPLE. To illustrate the use of 8.4.6 in constructing irreducible represen
tations let us consider the (>representations of the symmetric group S4. 
There are five conjugacy classes, corresponding to the different cycle types; 

The natural permutation character 11: has, of course, degree 4 and its 
values on the five conjugacy classes are 4, 2, 0, 1, 0, as may be seen by 
counting fixed points. Since G is 2-transitive, 8.4.6(iii) implies that there is 
an irreducible character X2 = 11: - Xl: the values of X2 are, therefore, 3, 1, 
-1,0, -1, and X2 has degree 3. 

Now G has a 2-transitive permutation representation of degree 3 wherein 
its elements permute by conjugation the elements of K3 = {(I, 2)(3, 4), 
(1,3)(2,4), (1,4)(2, 3)}. Once again counting fixed points, we conclude that 
the corresponding permutation character (J has values 3, 1, 3, 0, 1. By 8.4.6 
again we find an irreducible character X3 with values 2,0,2, -1,0; this has 
degree 2. 

There is a nontrivial irreducible character of degree 1, the sign character 
X4 arising from the representation x H sign x. The values of X4 are 1, - 1, 1, 
1, -1. 

The remaining irreducible character XS has values which can be deter
mined by use of the orthogonality relations (Equation (6)). The complete 
character table is 

Kl K2 K3 K4 Ks 

Xl 1 1 1 1 
X2 3 1 -1 ° -1 
X3 2 ° 2 -1 0 
X4 1 -1 1 1 -1 
XS 3 -1 -1 ° 1 

Observe that XS = X2X4· 
The representations of Sn have been extensively investigated-for details 

see [b55]. 

Monomial Representations 

An F-representation P of a group G is called monomial if P = Pl EB··· EB Pk 
where Pi is induced from a representation of degree 1 of a subgroup of G. 
For example, it follows from 8.4.5 that every permutation representation is 
monomial. 



8.4. Tensor Products and Representations 243 

In order to visualize a monomial representation we examine the asso
ciated matrix representation. Suppose that P arises from an FG-module M 
and that M = M 1 EEl ... EEl Mk where the FG-module Mi gives rise to Pi' 
Then Mi = NiG where Ni is an F Hcmodule of dimension 1 and the Hi are 
subgroups of G. Write Ni = Fai and choose a right transversal {tJi)1j = 

1,2, ... , r;} to Hi in G, so that the ai ® tY), j = 1, 2, ... , ri , form a basis of Mi' 
Selecting g from G, we write tJi)g = htr) for a unique integer k and element h 
of H Now a·h = c!~)a . for some c!1.I) in F* since N = Fa·' thus we have . , IJ' l) I" 

(ai ® tJi»)g = ai ® (htr») = cIJ)(ai ® tr»). 

The matrix representing gP with respect to the basis of all ai ® tJil has its 
(i,j: i, k) entry equal to dJ), and all other entries O. Thus gPO has precisely 
one nonzero element in each row and in each column. 

A matrix of this sort is called a monomial matrix; it is clearly a 
generalization of a permutation matrix. 

Groups whose Representations Are Monomial 

A finite group G is said to be an .It-group if, whenever F is an algebraically 
closed field of characteristic not dividing I GI, every F-representation is 
monomial. By Maschke's Theorem G is an .It -group if and only if all the 
irreducible representations are monomial. For example, by 8.1.6 all finite 
abelian groups are .It -groups. 

The following result is helpful in connection with .It -groups. 

8.4.7 (Blichfeldt). Let G be a finite group, F an algebraically closed field and 
M a simple FG-module which affords a faithful representation of G. Assume 
that G has a normal abelian subgroup A not contained in the center of G. 
Then there exists a proper subgroup H of G and a simple FH-module N such 
that M and N G are FG-isomorphic. 

Proof. By Clifford's Theorem (8.1.3) we may write M = Ml EEl'" EEl Mk 
where M; is a direct sum of isomorphic simple FA-modules and G permutes 
the Mi transitively. By 8.1.6 the action of A on Mi is scalar. Should k equal 
1, then A ~ (G because G acts faithfully on M. Since this is contrary to 
hypothesis, k> 1. Set N = Ml and define H = {g E GINg = N}, the 
stabilizer of N in G. In view of the transitivity of G on the Mi we have 
IG: HI = k > 1 and H < G. Recall from 8.1.3 that N is a simple FH-module. 

By transitivity once again, Mi = Ngi for some gi in G and {gl' ... , gk} is 
a right transversal to H in G. Finally, if a i E N, the mapping LA ® gi'r--+ 
Liaigi is an F-isomorphism from N G to M which one easily verifies to be an 
FG-homomorphism. 0 

The next result will furnish us with some examples of .It-groups. 
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8.4.8. Let G be a finite group such that if U <l V :::;; G, then either VIU is 
abelian or it possesses a noncentral abelian normal subgroup. Then G is an 
.it-group. 

Proof. Let M be a simple FG-module where F is an algebraically closed 
field whose characteristic does not divide IGI. It must be shown that M is 
induced from a I-dimensional module. Let p be the representation afforded 
by M and set K = Ker p. Suppose first that K #- 1. Then G = GIK is an 
.it-group by induction on IGI. Since K acts trivially on M, it is clear that M 
is also an FG-module. Hence there is a subgroup H of G, a I-dimensional 
FH-module N, and an FG-isomorphism (): M -+ NG. Since FG is a right 
FG-module via right multiplication, NG = N ®FH FG becomes a right FG
module. One verifies at once that () is an FG-isomorphism. Now write H = 
HIK and note that N is an FH-module. Finally a ® Kg 1--+ a ® g is an FG
isomorphism from NG to N G, and M ~ FG N G. 

We may therefore assume that K = I and p is faithful. We can also sup
pose that G is not abelian, otherwise it is certainly an .it -group. Then by 
hypothesis there is a normal abelian subgroup of G that is not contained in 
the center. Applying 8.4.7 we conclude that there is a proper subgroup H 
and a simple FH-module L such that M ~FG LG. The conditions on G are 
inherited by H, so by induction L ~FH SH where S is a I-dimensional FT
module and T:::;; H. Hence M ~ L G ~ (SH)G ~ SG, all isomorphisms being 
of right FG-modules, since (S ®FT F H) ®FH FG ~ S ®FT FG. (This property 
is called transitivity of induction-see Exercise 8.4.2.) D 

8.4.9 (Huppert). Let G be a finite soluble group and assume that G has a 
normal subgroup N with abelian Sylow subgroups such that GIN is super
soluble. Then G is an .it -group. 

Proof. Certainly we may assume that G is not abelian. In view of 8.4.8 it is 
sufficient to prove that G has a noncentral normal abelian subgroup: for 
quotients of subgroups inherit the hypotheses on G. Suppose that every 
normal abelian subgroup is contained in the centre and let A be a normal 
abelian subgroup which is maximal subject to A :::;; N. Assuming that A < 
N, we let BIA be a minimal normal subgroup of GIA contained in NIA. 
Since G is soluble, BIA is abelian, and B is nilpotent because A :::;; ,G. But 
B :::;; N, so Sylow subgroups of B are abelian, and by 5.2.4 the group B itself 
is abelian, which contradicts the maximality of A. It follows that A = Nand 
N:::;;,G. 

Since GIN is super soluble, there is a series N = Go < G1 < ... < G. = G 
such that G;<l G and G;+1 /G; is cyclic. Now G is not abelian, so there is 
a least positive integer i for which G; 1;. ,G. Then G;-l :::;; 'G, and, because 
Gj G;-l is cyclic, G; is abelian. Therefore G;:::;; ,G contrary to the choice 
~L D 
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The following corollaries of 8.4.9 are worth noting. All finite supersoluble 
groups are A -groups, as are all finite nilpotent groups in particular. Also all 
finite metabelian groups are A-groups-to see this take N in 8.4.9 to be G'. 

On the other hand, it is natural to ask what can be said of the structure 
of A -groups in general. We shall prove just one result. 

8.4.10 (Taketa). Every A -group is soluble. 

Proof. Assuming the theorem to be false, we choose an insoluble A -group 
G of least order. It is easy to see that a quotient group of an A-group is 
also an A-group. Thus every proper quotient group of G is soluble, by mini
mality of G. Define N to be the intersection of all the nontrivial normal 
subgroups of G. Then GIN is surely soluble, so N =I 1. Applying Exercise 
8.1.4 we are able to find a faithful irreducible ~>representation p of G; 
moreover we may assume that p has been chosen of minimal degree, which 
will have to exceed 1 otherwise G would be abelian. By hypothesis p is 
monomial. Replacing each nonzero element of the monomial matrix gPO by 
1, we obtain a permutation matrix and so a permutation representation u of 
G. The degree of u equals that of p and hence exceeds 1. Now by Exercise 
8.1.2 the representation u is reducible. Thus an irreducible component of u 
has smaller degree than p and hence cannot be faithful. Since N is contained 
in every nontrivial normal subgroup of G, it follows that N is contained in 
K = Ker u. But, if x E K, then x p' is a diagonal matrix, which implies that 
KP is abelian. Since K ~ KP, it follows that K, and hence N, is abelian. Thus 
G is soluble, which is a contradiction. 0 

EXAMPLE. Not every finite soluble group is an A-group. Let Q = <a, b, c) be 
a quaternion group of order 8, the three subgroups of order 4 being <a), 
<b), and (c). There is an automorphism r of Q which permutes a, b, c cycli
cally and has order 3. Define G to be the semidirect product of Q by <r). 
Then G has order 24 and is soluble with derived length 3: actually G ~ 
SL(2,3}. 

The following assignments determine a «::-representation of G with de
gree 2, 

bt-+( 0 
-1 

-i) . , 
I 

where i = j=1, 

as simple matrix calculations show. It is also clear that p is faithful; hence p 
is irreducible since otherwise G would be abelian. If p were monomial, it 
would have to be induced from a representation of a subgroup of index 2. 
However G' = Q, so IGabl = 3 and there are no subgroups of index 2 in G. 
Consequently G is not an A -group. 
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We conclude by mentioning a theorem of Dade which indicates that the 
structure of an vi{ -group can be very complex: every finite soluble group is 
isomorphic with a subgroup of an vi{ -group. Further results on vi{ -groups 
can be found in [b6]. 

EXERCISES 8.4 

1. Let Hand K be subgroups of a finite group G. Let Xl (H) and Xl (K) denote the 
trivial characters of Hand K over an algebraically closed field of characteristic O. 
Prove that <Xl (H)G, Xl (K)G)G equals the number of (H, K)-double cosets. 

2. Let H ~ K ~ G where G is finite. Let M be an FH-module, where F is any field. 
Show that (MK)G ~FG MG (transitivity of induction). 

3. (i) Show that every generalized character is a difference of characters; (ii) give an 
example of a generalized character that is not a character. 

4. Let G = D14 be the dihedral group of order 14. By forming induced representa
tions of the subgroup of order 7 construct the I(>character table of G. 

5. Find three irreducible IC-characters of A5 by using induced representations. 
Hence construct the character table with the aid of orthogonality relations. 

6. Let H be a subgroup with index m in the finite group G. Let F be an algebraically 
closed field of characteristic O. If X is an irreducible F-character of G with degree 
n, show that there is an irreducible F-character qJ with degree at least n/m. If His 
abelian, deduce that no irreducible F-character of G has degree greater than m. 
[Hint: Let 1/1 be an irreducible character of H that is a direct summand of XH and 
consider <X, I/IG)G'] 

7. Let G be a transitive finite permutation group with permutation character n. If X 
is an irreducible IC-character, prove that its degree is at least <n, X)G' 

8. Let X be an irreducible IC-character of a finite group G and let K denote the 
kernel of the associated representation. If X has degree n, prove that (x)X = n if 
and only if x E K. 

9. Let X be a faithful IC-character of the finite group G with degree n. Denote by r 
the number of distinct values assumed by X. Prove that each irreducible IC-char
acter occurs as a direct summand of at least one power X', s = 0, 1, ... , r - 1 
(here XO is the trivial character). Deduce that the sum of the degrees of the irre
ducible IC-representations cannot exceed (n r - 1)/(n - 1). [Hint: Let 1/1 be an irre
ducible IC-character and show that not every <X', I/I)G can be 0.] 

8.5. Applications to Finite Groups 

Enough representation theory has been developed to prove three celebrated 
and powerful theorems about finite groups due to Burnside, Frobenius, and 
Wielandt. Each of these is a criterion for the nonsimplicity of a group. 

We approach Burnside's theorem through a lemma. 



8.5. Applications to Finite Groups 247 

8.5.1. Let p be an irreducible representation of degree n of a finite group G 
over the complex field C. Denote the character of p by X. Suppose that g is an 
element of G with exactly I conjugates and that (I, n) = 1. Then either (g)x = 
o or gP is scalar. 

Proof. We saw in 8.3.10 that l(g)xln is an algebraic integer. Since (I, n) = 1, 
there are integers rand s such that 1 = rl + sn. Hence by 8.3.8 

t = (g)X = rl(g)x + s(g)X 
n n 

is an algebraic integer. 
Let fl' . . . , fn be the characteristic roots of gP, so that (g)X = fl + ... + fn 

and It I = II7=1};l/n. Since each}; is a root of unity, I};I = 1 and hence It I :5: 
1. Suppose that the}; are not all equal; then It I = II7=1};lln < 1. Let (X be an 
automorphism of the field QU1, ... ' fn); then the N are not all equal, so 
It"'l < 1 in the same way. Thus the product u of all the t'" satisfies lui < 1. 
However u'" = u for all automorphisms oc. By the fundamental theorem of 
Galois theory u E Q. But u is an algebraic integer since t is; thus u is an 
integer by 8.3.9. Hence u = 0 and therefore t = 0, which shows that (g)X = 
O. 

Finally, if the}; are all equal, then gP is scalar, as may be seen by applying 
Maschke's Theorem to the restriction of p to <g) . 0 

8.5.2 (Burnside). If the finite group G has a conjugacy class with exactly 
pm > 1 elements where p is prime, then G is not simple. 

Proof. Assume that G is simple-of course G cannot be abelian. Let g in G 
have pm conjugates. Suppose that p is a nontrivial irreducible IC-representa
tion of G with character x; assume (g)X ¥- 0 and that p does not divide the 
degree of X. Then it follows from 8.5.1 that gP is scalar and hence central in 
GP. But G is simple and p is not the trivial representation, so Ker p = 1 and 
G ~ GP. Consequently g = 1, which gives the contradiction pm = 1. Hence 
(g)X = 0 for every nontrivial irreducible character X whose degree is prime 
to p. 

Let tjJ be the character of the right regular representation (J of G. Then by 
Exercise 8.3.12 we can write tjJ = I i liXi where Xl' ... , Xh are the distinct irre
ducible IC-characters of G and Ii is the degree of Xi. Thus 11 = 1 if Xl is 
the trivial character. It follows from the previous paragraph that (g)tjJ == 
1 mod p. However g" has no fixed points, which implies that (g)tjJ = 0: we 
have reached a contradiction. 0 

The famous solubility criterion of Burnside is now easily attained. 

8.5.3 (The Burnside p-q Theorem). If p and q are primes, a group of order 
pmqn is soluble. 
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Proof. Suppose the theorem to be false and choose a counterexample G of 
smallest order. If N were a proper nontrivial normal subgroup, both Nand 
G/N would be soluble by minimality of G; thus G would be soluble. Conse
quently G must be simple. Let Q be a Sylow q-subgroup of G; then Q #- 1 
since certainly G cannot be a p-group. Choose a nontrivial element g in (Q 
(using 1.6.l4). Then IG: CG(g}1 equals a power of p greater than 1 since Q ~ 
CG(g} #- G. However, this is impossible by 8.5.2. 0 

Remark. Wielandt and Kegel have proved that a finite group which is the 
product of two nilpotent subgroups is soluble. This represents a generaliza
tion of 8.5.3. For a proof see [b6]. 

The Frobenius-Wielandt Theorems 

8.5.4 (Wielandt). Suppose that G is a finite group with subgroups Hand K 
such that K <J Hand H n HX ~ K for all x in G\ H. Let N be the set of 
elements of G which do not belong to any conjugate of H \ K. Then N is a 
normal subgroup of G such that G = HN and H n N = K. 

This is perhaps the most famous of all criteria for nonsimplicity, espe
cially the case K = 1, which is due to Frobenius. 

Proof. (i) Observe that if H = K, then N = G and the result is certainly true. 
We assume henceforth that K < H . Write IHI = h, IKI = k, and IGI = m. 

(ii) It is sufficient to prove that N is a subgroup; for suppose that this has 
been accomplished. Then N <J G since clearly g-l Ng = N for all g in G. If 
x E NG(H}, one has K < H = H n HX, whence x E H by the hypothesis and 
H is self-normalizing. It follows that if {tl' ... , tr } is a right transversal to H 
in G, then HIl, ... , HI, are the distinct conjugates of H. Since H n HI,lt ~ K 
if i #- j, the subsets (H \ K)f' are mutually disjoint. Now any g in G may be 
written in the form hti with hE H; thus (H \ K}g = (H \ K)f' since K<J H. 
Therefore U = U geG(H\ K}g equals Ur=l (H \ K)\ which has exactly 
r(h - k) elements. Since m = rh, we obtain INI = IGI-IUI = rk. Now 
K n (H \ K}g = 0; this is clear if g E H, while if g f/: H, we have 
K n (H \ K}g t:; ((Hg-l n H}\ K)g, which is empty because Hg-l n H ~ K . 
Consequently K ~ H n N; but H n N ~ K is clear, so H n N = K. 
Therefore IHNI = IHI'INI/IH n NI = m = IGI and G = HN. 

(iii) Introduction of character theory (all characters are over IC). Consider 
an irreducible nontrivial representation of H which maps K to 1-such cer
tainly exist since K <J H. Let t/J be the character of the representation. Then 
f = (1)t/J is the degree of t/J and also (x)t/J = f for all x in K. We introduce a 
function <p: H -+ C defined by 
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where 1/11 is the trivial character of H. Then cp is a class function on Hand 
(x)cp = 0 for all x in K. Define cp*: G -+ C by 

cp* = Nf - I/IG; (9) 

this is a class function on G. 
(iv) The restriction of cp* to H equals cpo By 8.4.3 and the definition of cp* 

we have 
1 

(y)cp* = - I (xyx-1)cp 
h xeG 

(10) 

where it is understood that 1/11 and 1/1 are 0 outside H. Let y E H. If 
(xyx-1)cp =F 0, then xyx-1 must belong to H\ K since cp is 0 on G\ H 
and K. In this event xyx-1 E (H (1 HX-')\ K, so that x E H. Hence (y)cp* = 
(l /h) IxeH (xyx-1)cp = (y)cp since cp is a class function on H. 

(v) <CP*' CP*)G = <cp, CP)H = P + 1. Since cp is zero on N, so is cp* by (to). 
Therefore 

1 1 
<cp*, Cp*)G = - I (x )cp*(x-1)cp* = - I (x)cp*(x - 1)cp*. (11) 

mxeG mxeG\N 

Now cp* is a class function on G, so (xl;)cp* = (x)cp* = (x)cp if x E H. Since 
G\ N is the union of all the (H\ K)t;, equation (11) becomes 

< * *) IG : HI " () (-1) < ) cp , cp G = ~ X~H X cp. x cp = cp, cp H 

-keep in mind that IG: HI is the number of conjugates of H in G. Finally 
< cp, CP )H = f2 + 1 by definition of cpo 

(vi) 1/1 is the restriction to H of some irreducible character 1/1' of G. Let 
Xl' ... , XS be the distinct irreducible characters of G, the trivial character 
being X 1. Since cp* is a class function, we can write cp* = Ii;l CiXi where 
Ci = <cp*, X;)G = f<l/If, X;)G - <I/IG, X;)G' which is an integer (by 8.3.3). More
over by the Frobenius Reciprocity Theorem (8.4.4) 

since 1/1 =F 1/11. Also, 

c1 = f<l/If , Xl)G - <I/IG, Xl)G 

= f<l/Il' I/Il)H - <1/1, I/Il)H 

=f 
s 

I cf = <cp*, Cp*)G = f2 + 1 
i;l 

by (v). Therefore Ii;2 cf = 1 and some Ci = ± 1, all other c/s being 0 
if j > 1. Thus cp* = !xl ± Xi. Now (l)cp* = (l)cp = 0 by (iv), whence 0 = 
f ± (l)Xi· This shows that the negative sign is the correct one and (l)Xi = f . 
Therefore cp* = !xl - Xi· If x E H, we have (X)Xi = f - (x)cp* = f - (x)cp = 
(x)l/I. Hence (X;)H = 1/1 and we can take 1/1' to be Xi. 

(vii) Let 'I' denote the set of all nontrivial irreducible characters of H 
that are constant on K. Define I = n Ker 1/1', the intersection being formed 
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over all IjJ in 'P: here, of course, Ker 1jJ' means the kernel of the associated 
representation. Clearly I <l G. We shall show that 1= N, thus completing 
the proof. 

Let x E Nand IjJ E 'P. Then 0 = (x)q>* where q>* is given by (9). Hence 
(x)IjJ' = f since q>* = fXl - 1jJ'. Let p be the representation of G with charac
ter 1jJ' ; then the characteristic roots of x P, which are roots of unity, add up 
to f , the degree of p. Therefore these characteristic roots all equal 1. Ap
plying Maschke's Theorem and 8.1.6 to pl (x), we conclude that x P = 1 and 
thus x E Ker p. Hence x E I and N s; I. 

Finally let x E H \ K. Then there is a nontrivial irreducible representation 
(J of H, constant on K, that does not map x to I-otherwise by Maschke's 
Theorem xK would belong to the kernel of the regular representation, 
which, of course, is faithful. If the character of (J is 1jJ, then x¢; Ker 1jJ, 
whence x¢; Ker 1jJ' and x ¢; I. Thus I contains no element of (HjK)g for any 
g, from which it follows that I s; N and I = N. D 

Frobenius Groups 

The most important case of 8.5.4 is when K = 1. 

8.5.5 (Frobenius). If G is a finite group with a subgroup H such that 
H n H X = 1 for all x in G\ H, then N = G\ UxeG(H\ lY is a normal sub
group of G such that G = HN and H n N = 1. 

A group G which has a proper nontrivial subgroup H with the above 
property is called a Frobenius group. H is called a Frobenius complement and 
N the Frobenius kernel. We shall prove in Chapter 10 the important theo
rem of Thompson that N is always nilpotent. 

Frobenius groups arise in a natural way as transitive permutation 
groups-for example, we observed in 7.1 that the group H(q) is a Frobenius 
group. In fact there is a characterization of Frobenius groups in terms of 
permutation groups. 

8.5.6. 
(i) If G is a Frobenius group with complement H, the action of G on the right 

co sets of H yields a faithful representation of G as a transitive nonregular 
permutation group in which no nontrivial element has more than one fixed 
point. 

(ii) Let G be a transitive but nonregular permutation group in which no 
nontrivial element has more than one fixed point. Then G is a Frobenius 
group. The Frobenius kernel consists of 1 and all elements of G with no 
fixed points. 
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Proof. (i) Suppose that 9 in G fixes two distinct right co sets Hx and Hy. 
Then Hxg = Hx and Hyg = Hy, equations which imply that 9 E HX II HY. 
Since yx-1 ¢ H, this yields 9 = 1. 

(ii) Let G act on a set X. Choose a from X and write H = StG(a). If 9 E 

G\ H, then H II Hg consists of the elements of G that fix the distinct points 
a and ago Hence H II Hg = 1 and G is a Frobenius group. The statement 
about the Frobenius kernel follows from the definition. 0 

EXERCISES 8.5 

1. Prove the following generalization of the Burnside p-q Theorem: a finite group 
with a nilpotent subgroup of prime-power index is soluble. 

2. The center of a Frobenius group is always trivial. 

3. The dihedral group D2• is a Frobenius group if and only if n is odd and> 1. 

4. Let P be an extra-special group of exponent 7 and order 73. Let a and b be 
generators and put c = [a, b]. The assignments at-+a2 c, bt-+b2, ct-+c4 determine 
an automorphism of order 3. Show that the semidirect product ( a) ~ P is a 
Frobenius group with nonabelian kernel. 

5. Let G be a Frobenius group with kernel N . Prove that CG(x) ::::; N for all 1 '" x E 

N. 

6. If G is a Frobenius group with kernel N, then IG: NI divides INI - 1. 

7. Let G be a Frobenius group with kernel N. If L<l G, prove that either L ::::; N or 
N ::::; L. [Hint: Assume that L -t N and show that INI divides ILl.] 



CHAPTER 9 

Finite Soluble Groups 

The foundations of the theory of finite soluble groups were laid in an influ
ential series of papers by P. Hall between 1928 and 1937. After 1950 the 
subject developed further thanks to the work of R.W. Carter, W. Gaschiitz, 
B. Huppert, and others. This activity has resulted in a theory of great ele
gance. Here we can only present a small part of this theory; for a complete 
account see the recently published book [b19]. 

9.1. Hall n-Subgroups 

Let G be a group and let n be a nonempty set of primes. A Sylow n
subgroup of G is defined to be a maximal n-subgroup. While Sylow n-sub
groups always exist, they are usually not conjugate if n contains more than 
one prime. 

A more useful concept is that of a Halln-subgroup. If G is a finite group, 
an-subgroup H such that I G : H I is a n' -number is called a H alln-subgroup 
of G. It is rather obvious that every Halln-subgroup is a Sylow n-subgroup. 
In general, however, G need not contain any Hall n-subgroups. For exam
ple, a Hall {3, 5}-subgroup of As would have index 4, but As has no such 
subgroups (why?). We shall shortly see that in a finite soluble group Hall 
n-subgroups always exist and form a single conjugacy class. Notice that the 
terms "Hall p-subgroup" and "Sylow p-subgroup" are synonymous for finite 
groups in view of Sylow's Theorem. 

The normaln-subgroups of a group G playa special role. Suppose that H 
and K are n-subgroups and K <l G. Then clearly H (l K and HK/K are 
n-groups, from which it follows that HK is a n-group. Consequently the 

252 
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subgroup generated by all the normal n-subgroups of G is a n-group. This is 
the unique maximum normal n-subgroup of G; it is denoted by 

O,,(G). 

The following properties of this subgroup are useful. 

9.1.1. Let G be any group and n a set of primes. 

(i) If H is a subnormal n-subgroup of G, then H .::; O,,(G). 
(ii) O,,(G) is the intersection of all the Sylow n-subgroups of G. 

Proof. (i) By hypothesis there is a series H = Ho <J H 1 <J ... <J HI = G. If 
I.::; 1, then H <J G and H.::; O,,(G) by definition. Assuming that I> 1, we 
have by induction on I that H .::; O,,(HI- 1 ). But the latter subgroup is char
acteristic in HI- 1 and hence normal in G. Thus O,,(HI- 1 ) .::; O,,(G) and H .::; 
O,,(G). 

(ii) Let R = O,,(G) and let S be a Sylow n-subgroup of G. Then RS is a 
n-group, by the argument of the paragraph preceding this proof; therefore 
R .::; S by maximality of S. On the other hand, the intersection of all the 
Sylow n-subgroups is certainly normal in G, so it is contained in R. 0 

In particular it follows that O,,(G) is contained in every Halln-subgroup 
ofG. 

The Schur-Zassenhaus Theorem 

The following theorem must be reckoned as one of the truly fundamental 
results of group theory. 

9.1.2 (Schur, Zassenhaus). Let N be a normal subgroup of a finite group G. 
Assume that INI = nand IG: NI = m are relatively prime. Then G contains 
subgroups of order m and any two of them are conjugate in G. 

We pause to introduce a useful piece of terminology. If H is a subgroup 
of a group G, a subgroup K is called a complement of H in G if 

G=HK and HnK=1. 

The reader will recognize that 9.1.2 simply asserts that complements of N 
exist and any two are conjugate. There is yet another formulation of 9.1.2: if 
n is the set of prime divisors of m, then Hall n-subgroups of G exist and any 
two are conjugate. 

Proof of 9.1.2. (i) Case: N abelian. Let Q = GjN . Since N is abelian, it can 
be made into a Q-module via the well-defined action a Ng = ago From each 
coset x in Q we choose a representative tx, so that the set {txlx E Q} is a 
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transversal to N in G. Since txty belongs to the coset txtyN = txyN, there is 
an element c(x, y) of N such that 

txty = tXYc(x, y). 

By applying this equation and the associative law (txty)tz = tAtytz) one 
obtains the relation 

c(xy, z)· c(x, y)Z = c(x, yz)· c(y, z), 

which holds for all x, y, and z in Q. 
Next consider the element of N 

d(y) = n c(x, y). 
xeQ 

(1) 

Forming the product of the equations (1) over all x in Q, we find that 
d(z)· d(yY = d(yz)· c(y, zr because N is abelian; thus 

d(yz) = d(yYd(z)c(y, z)-m. (2) 

Since (m, n) = 1, there is an element e(y) of N such that e(y)m = d(yr 1, and 
(2) becomes e(yzrm = (e(y)Ze(z)c(y, z))-m. Hence 

e(yz) = e(yYe(z)c(y, z). 

We define sx to be txe(x) and compute 

SySz = tylze(yYe(z) = tyZc(y, z)e(y)Ze(z) = tYZe(yz) = Syz. 

Consequently the mapping x 1-+ Sx is a homomorphism 0: Q -+ G. Now Sx = 
1 implies that tx E N and x = N = l Q • Hence 0 is injective, 1m 0 ~ Q, and 
11m 01 = m. 

Now suppose that Hand H* are two subgroups of order m. Then 
G = H N = H* Nand H n N = 1 = H* n N. Let x in Q map to ux and u: 
respectively under the canonical homomorphisms Q = HN/N -+ Hand 
Q = H*N/N -+ H*. Then u: = uxa(x) where a(x) E N. But u:y = u:u: = 
uxa(x)uya(y) = uXya(x)ya(y), whence we deduce the relation 

a(xy) = a(x)Ya(y). (3) 

Define b = nxeQa(x). Forming the product of the equations (3) over all x 
in Q, we obtain b = bYa(Yr. Since (m, n) = 1, it is possible to write b = cm 

with c in N. Then the preceding equation becomes c = cYa(y) or a(y) = 
c-y c. Therefore u: = uya(y) = uyc-y c = c-1 uyc, because c-y = (c- 1 )Uy • Hence 
H* = c-1 Hc. 

(ii) Existence-The general case. We use induction on IGI. Let p be a 
prime dividing INI and P a Sylow p-subgroup of N. Write L = NG(P) and 
C = ,Po Then L s NG(C) = M, say, since C is characteristic in P. By the 
Frattini argument (5.2.14) we have G = LN and a fortiori G = MN. Let 
Nl denote the normal subgroup N n M of M and observe that 1M: Nil = 
IG: NI = m. We may apply the induction hypothesis to the group M/C on 
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noting that C #- 1. Let X /C be a subgroup of M /C with order m. Since 
IX: q = m is relatively prime to I q, we can apply (i) to conclude that X 
has a subgroup of order m. 

(iii) Conjugacy-The case G/N soluble. Denote by n the set of prime divi
sors of m and write R = O,,(G). Let Hand K be two subgroups of G both of 
which have order m. Then R ::;; H n K since Hand K are Halln-subgroups 
of G. Evidently we may pass to the group G/R. Observe that O,,(G/R) = 1, 
so we may as well suppose that R = 1. Of course we can also assume that 
m > 1, so that N #- G. 

Let L/N be a minimal normal subgroup of G/N. Since the latter is 
soluble, L/N is an elementary abelian p-group for some prime p in n. Now 
H n L is a Sylow p-subgroup of L because H n L ==< (H n L)N /N ::;; L/N 
and IL: H n LI = IHL : HI is a p'-number. The same is true of K n L. 
Thus Sylow's Theorem may be applied to give H n L = (K n L)" = Kg n L 
for some 9 in G. Writing S for H n L, we conclude that S <l (H, Kg ) = J, 
say. 

Suppose that J = G, so that S <l G. Then, because S is an-group, S ::;; 
R = 1; thus L is a p'-group. However this cannot be true since L/N is a 
p-group. It follows that J #- G. We can now use induction on I GI to con
clude that Hand K9 are conjugate in J, whence we derive the conjugacy of 
Hand K. 

(iv) Conjugacy- The case N soluble. If Hand K are subgroups of G with 
order m, then HN'/N' and KN'/N' are conjugate by (i). Hence H9 ::;; KN' for 
some 9 in G. By induction on the derived length of N we conclude that H9 
and K are conjugate, being subgroups of order m in the group KN'. Hence 
Hand K are conjugate. 

(v) Conjugacy- The general case. Since the integers m and n are rela
tively prime, at least one of them is odd, and the Feit-Thompson Theorem 
(see the discussion following 5.4.1) implies that either N or G/N is soluble. 
The result now follows from (iii) and (iv). 0 

Notice that the Feit-Thompson Theorem is only required to prove con
jugacy, and then only if we do not know a priori that either N or G/N is 
soluble. 

The following corollary of 9.1.2 is important. 

9.1.3. With the notation of 9.1.2, let m l be a divisor of m. Then a subgroup of 
G with order ml is contained in a subgroup of order m. 

Proof. Let H and HI be subgroup of G with orders m and m l respectively. 
Then G = HN and HIN = (HIN)n(HN) = «HIN)nH)N, which shows 
that the order of (HI N) n H equals IHI N: NI = IHII = mI' By 9.1.2 we con
clude that HI = «HIN) n H)9 ::;; Hg for some 9 in G; of course IHgl = m. 

o 
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n-Separable Groups 

Let G be a finite group and let n be a nonempty set of primes. Then G is 
said to be n-separable if it has a series each factor of which is either a n
group or a n'-group. For example, a finite soluble group is n-separable for 
all n: to see this one simply refines the derived series by inserting the n
component of each factor. Notice that n-separability is identical with n'
separability. It is also very easy to prove that every subgroup and every 
image of a n-separable group are likewise n-separable. 

The Upper n' n-Series 

If G is an arbitrary group, the upper n' n-series is generated by repeatedly 
applying 0". and 0". This is, then, the series 

defined by 

NJP; = O".(GIP;) and 

It is somtimes convenient to write the first few terms No, Pi' N l , .•. as 

o".(G), O".,,(G), O"."".(G), . .. . 

What we have here is a series of characteristic subgroups whose factors are 
alternately n'-groups and n-groups. 

9.1.4. Let G be a finite n-separable group and let 1 = Ho <J Ko <J Hi <J 

Kl <J "'<J Hm<J Km = G be a n'n-series, that is, such that KJH; is a n'
group and HHdK; is n-group. Then H; ::; P; and K; ::; N; where P; and N; are 
terms of the upper n'n-series of G. In particular, Nm = G. 

Proof. Suppose that the inclusion H; ::; P; has been proved-it is of course 
true if i = O. Then K;PJP; is a subnormal n'-subgroup of GIP;, whence K; ::; 
N; by 9.1.1 (i). Thus HH1NJN; is a subnormal n-subgroup of GIN; and 
HHl ::; PHi' The result now follows by induction. 0 

It follows that a finite group G is n-separable if and only if it coincides 
with a term of its upper n' n-series. Moreover the upper n' n-series is a 
shortest n' n-series; its length is termed the n-length of G 

1,,(G). 

We take note of a simple characterization of n-separable groups. 
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9.1.5. The following properties of the finite group G are equivalent: 

(i) G is n-separable; 
(ii) every principal factor of G is a n or a n' -group; 

(iii) every composition factor of G is a n-group or a n'-group. 
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Proof. (i) ~ (ii). If G is n-separable, then so is every principal factor; but the 
latter are characteristically simple, so by 9.1.4 each one is either an-group 
or a n' -group. 

(ii) ~ (iii). Simply refine a principal series to a composition series. 
(iii) ~ (i). This is obvious. 0 

Halln-Subgroups of n-Separable Groups 

The most important property of n-separable groups is that Hall n-subgroups 
exist and are conjugate. 

9.1.6 (P. Hall, Cunihin). Let the finite group G be n-separable. Then every 
n-subgroup is contained in a Hall n-subgroup of G and any two Hall n-sub
groups are conjugate in G. 

Proof. Since each n-subgroup is contained in a Sylow n-subgroup, it suffices 
to prove that a Sylow n-subgroup P is a Hall n-subgroup and that all such 
subgroups are conjugate. This will be accomplished by induction on I GI, 
which we suppose greater than 1. Let R = O,,(G) and assume first that 
R # 1. Then R :::; P and by induction PIR is a Hall n-subgroup of GIR. Of 
course it follows that P is a Hall n-subgroup of G. If Q is another Hall 
n-subgroup of G, then PIR and QIR are conjugate, whence P and Q are 
conjugate. 

Now assume that R = 1. Since Gis n-separable and G # 1, we have S = 
O".(G) # 1. Of course PSIS is a n-group and by induction it is contained in 
a Hall n-subgroup QIS of GIS. By 9.1.3 the n-subgroup P is contained in a 
Hall n-subgroup P* of Q. But P is a Sylow n-subgroup, so P = P* and P is 
a Hall n-subgroup of Q and hence of G. If Pl is any other Hall n-subgroup 
of G, then PSIS and Pl SIS are conjugate; for these are surely Hall n
subgroups of GIS. Thus Pf :::; PS for some g in G. But now the Schur
Zassenhaus Theorem may be applied to PS to show that P and Pf are 
conjugate. 0 

The most important case of 9.1.6 is when G is soluble: this is the original 
theorem of P. Hall and we shall restate it as 

9.1.7 (P. Hall). If G is a finite soluble group, then every n-subgroup is con
tained in a Hall n-subgroup of G. Moreover all Hall n-subgroups of are 
conjugate. 
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It is a remarkable fact that the converse of 9.1.7 holds: the existence of 
Hall n-subgroups for all n implies solubility. 

9.1.8 (P. Hall). Let G be a finite group and suppose that for every prime P 
there exists a Hall pi-subgroup. Then G is soluble. 

Proof. Assume that the theorem is false and let a counterexample G of 
smallest order be chosen. Suppose that N is a proper nontrivial normal 
subgroup of G. If H is a Hall pi-subgroup of G, it is evident that H n Nand 
HNIN are Hall pi-subgroups of N and GIN respectively. Therefore Nand 
GIN are soluble groups by minimality of G. But this leads to the contradic
tion that G is soluble. Consequently G must be a simple group. 

Write IGI =P~'°O'Pkk where e;>O and Pl,oo"Pk are distinct primes. 
Burnside's theorem (8.5.3) shows that k > 2. Let G; be a Hall p;-subgroup 
of G and put H = G3 n' " n Gk • Then IG: Gd = pii • By 1.3.11 we have 
IG: HI = n~=3 pii , whence IHI = p~'pi2 and H is soluble, by Burnside's the
orem once again. Let M be a minimal normal subgroup of H; then M is an 
elementary abelian p-group where P = Pl or P2, let us say the former. Now 
IG:HnG2 1 =pi2OO 'Pkk, so IHnG2 1 =P~'. Thus HnG2 is a Sylow Pl
subgroup of H and consequently M ~ H n G2 ~ G2 • Also IH n Gli = pi2 by 
the same reasoning. Hence G = (H n Gl )G2 by consideration of order. It 
follows that MG = M G2 ~ G2 < G, and MG is a proper nontrivial normal 
subgroup of G. This is a contradiction. 0 

Minimal Nonnilpotent Groups 

Our next objective is a theorem of Wielandt asserting that if a finite group 
has a nilpotent Hall n-subgroup, then all Hall n-subgroups are conjugate. 
In order to prove this we need to have information about minimal non
nilpotent groups. Indeed knowledge of the structure of such groups is useful 
in many contexts. 

9.1.9 (0.1. Schmidt). Assume that every maximal subgroup of a finite group G 
is nilpotent but G itself is not nilpotent. Then: 

(i) G is soluble; 
(ii) IGI = pmq" where P and q are unequal primes; 

(iii) there is a unique Sylow p-subgroup P and a Sylow q-subgroup Q is cyclic. 
Hence G = QP and P<J G. 

Proof. (i) Let G be a counterexample of least order. If N is a proper non
trivial normal subgroup, both N and GIN are soluble, whence G is soluble. 
It follows that G is a simple group. 
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Suppose that every pair of distinct maximal subgroups of G intersects in 
1. Let M be any maximal subgroup: then certainly M = NG(M). If IGI = 
nand IMI = m, then M has n/m conjugates every pair of which intersect 
trivially. Hence the conjugates of M account for exactly (m - l)n/m = 
n - n/m nontrivial elements. Since m ;;::: 2, we have n - n/m;;::: n/2 > (n - 1)/2: 
in addition it is clear that n - n/m :5; n - 2 < n - 1. Since each noniden
tity element of G belongs to exactly one maximal subgroup, n - 1 is the 
sum of integers lying strictly between (n - 1)/2 and n - 1. This is plainly 
impossible. 

It follows that there exist distinct maximal subgroups MI and M2 whose 
intersection I is nontrivial. Let MI and M2 be chosen so that I has maxi
mum order. Write N = NG(l). Since M is nilpotent, I #- NM,(l) by 5.2.4, so 
that 1< N n MI ' Now I cannot be normal in G; thus N is proper and is 
contained in a maximal subgroup M . Then 1< N n MI :5; M n M I , which 
contradicts the maximality of III. 

(ii) Let I G I = pf' ... Pkk where ei > 0 and the Pi are distinct primes. As
sume that k ;;::: 3. If M is a maximal normal subgroup, its index is prime since 
G is soluble; let us say I G : MI = Pl ' Let Pi be a Sylow Pcsubgroup of G. If 
i> 1, then Pi :5; M and, since M is nilpotent, it follows that Pi<J G; also the 
subgroup PI Pi cannot equal G since k ;;::: 3. Hence PI Pi is nilpotent and thus 
[PI' P;] = 1 (by 5.2.4). It follows that NG(PI) = G and PI <J G. This means 
that all Sylow subgroups of G are normal, so G is nilpotent. By this contra
diction k = 2 and IGI = pf'pi2 • We shall write P = P2 and q = Pl' 

(iii) Let there be a maximal normal subgroup M with index q. Then the 
Sylow p-subroup P of M is normal in G and is evidently also a Sylow P
subgroup of G. Let Q be a Sylow q-subgroup of G. Then G = QP. Suppose 
that Q is not cyclic. If g E Q, then (g, P) #- G since otherwise Q ~ G/P, 
which is cyclic. Hence (g, P) is nilpotent and [g, P] = 1. But this means 
that [P, Q] = 1 and G = P x Q, a nilpotent group. Hence Q is cyclic. 0 

Wielandt's Theorem on Nilpotent Halln-Subgroups 

In an insoluble group Hall n-subgroups, even if they exist, may not be con
jugate: for example, the simple group PSL(2, 11) of order 660 has subgroups 
isomorphic with Dl2 and A4: these are nonisomorphic Hall {2,3}-subgroups 
and they are certainly not conjugate. However the situation is quite differ
ent when a nilpotent Hall n-subgroup is present. 

9.1.10 (Wielandt). Let the finite group G possess a nilpotent Hall n-subgroup 
H. Then every n-subgroup of G is contained in a conjugate of H. In particu
lar all Hall n-subgroups of G are conjugate. 

Proof. Let K be a n-subgroup of G. We shall argue by induction on IKI, 
which can be assumed greater than 1. By the induction hypothesis a maxi-
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mal subgroup of K is contained in a conjugate of H and is therefore 
nilpotent. If K itself is not nilpotent, 9.1.9 may be applied to produce a 
prime q in 1t dividing IKI and a Sylow q-subgroup Q which has a normal 
complement L in K . Of course, if K is nilpotent, this is still true by 5.2.4. 

Now write H = HI X H2 where HI is the unique Sylow q-subgroup of H. 
Since L =1= K, the induction hypothesis shows that L :s; Hg = Hf x H~ for 
some g E G. Thus L :s; H~ because L is a q'_group. Consequently N = NG(L) 
contains <Hf, K). Observe that I G: HII is not divisible by q; hence Hf is a 
Sylow q-subgroup of N and by Sylow's Theorem Q :s; (HfY for some x E N. 
But L = LX and, using L :s; H~, we obtain 

K = QL = QU :s; Hfx H~x = Hgx, 

as required. o 

EXERCISES 9.1 

1. Let G be a Frobenius group with kernel K. Prove that every complement of K 
in G is a Frobenius complement and that all Frobenius complements of K are 
conjugate in G (see Exercise 8.5.6). 

*2. Let N <l G and suppose that IG : NI = m is finite and N is an abelian group 
in which every element is uniquely expressible as an mth power. Prove that N 
has a complement in G and all such complements are conjugate. [Hint: See the 
proof of 9.1.2.] 

3. Let G be a countable locally finite group (i.e., finitely generated subgroups are 
finite). Suppose that N <l G and that elements of N and GIN have coprime 
orders. Prove that N has a complement in G. Show also that not all the 
complements need be conjugate by considering the direct product of a count
able infinity of copies of S3 . 

4. If H is a subnormal subgroup of a group G, prove that O,,(H) = H n O,,(G). 

5. Let Hand K be n-separable subgroups of a finite group G. If H is subnormal 
in G, prove that <H, K ) is n-separable. 

6. If p divides the order of a finite soluble group G, prove that there is a maximal 
subgroup whose index is a power of p. Show that this is false for insoluble 
groups. 

7. Let G be a finite soluble group whose order has exactly k prime divisors where 
k> 1. Prove that there is a prime p and a Hall pi-subgroup H such that IGI ~ 
IHlk/k - i . [Hint: Let IGI = pr'·· · P:' and consider the smallest pfj.] 

8. Let G be a finite soluble group whose order has at least three distinct prime 
divisors. If every Hall p' -subgroup of G is nilpotent, show that G is nilpotent. 
[Hint: Prove that each Sylow subgroup is normaL] 

9. (Wielandt). If a finite group G has three soluble subgroups HI ' H2, H3 with 
their indices coprime in pairs, then G is soluble. [Hint: Use induction on the 
order of G. Assume HI # 1 and choose a minimal normal subgroup N of HI: 
show that N G is contained in either H2 or H3 .] 



9.2. Sylow Systems and System Normalizers 261 

to. A finite group in which every subgroup is either subnormal or nilpotent is solu
ble. [Use 9.1.9.] 

11. Let G = PQ be a finite minimal nonnilpotent group with the notation of 9.1.9. 
Derive the following information about G: 
(a) Frat Q :0:; (G. 
(b) P = [P, Q] and Frat P :0:; ((G), so P is nilpotent of class at most 2. 
(c) If p is odd, PP = 1, while p 4 = 1 if p = 2 [Hint: Prove that [a, x]P = 1 or 

[a, X]4 = 1 where a E P and x E Q.] 

12. (Ito). Let G be a group of odd order. If every minimal subgroup lies in the 
center, prove that G is nilpotent. [Use Exercise 9.1.11.] 

13. (Ito). Let G be a group of odd order. If every minimal subgroup of G' is normal 
in G, prove that G' is nilpotent and G is soluble. 

*14. Let N be a minimal normal subgroup of a finite soluble group G such that 
N = CG(N). Prove that N has a complement in G and all such complements are 
conjugate. [Hint : Let LIN be minimal normal in GIN . Show that N has a com
plement X in L and argue that NG(X) is a complement of N in G.] 

9.2. Sylow Systems and System Normalizers 

Let G be a finite group and let Pi ' ... , Pk denote the distinct prime divisors 
of I GI. Suppose that Qi is a Hall p;-subgroup of G. Then the set {Qi ' . . . , Qk} 
is called a Sylow system of G. It is a direct consequence of 9.1.7 and 9.1.8 
that a finite group has a Sylow system if and only if it is soluble. 

A Sylow system determines a set of permutable Sylow subgroups of G in 
the following manner. 

9.2.1. Let {Q 1 , •.. , Qk} be a Sylow system of the finite soluble group G. 

(i) If n is any set of primes, then np;f" Qi is a Hall n-subgroup of G. In 
particular Pi = nNi Qj is a Sylow Pi-subgroup of G. 

(ii) The Sylow subgroups Pi ' ... ,Pk are permutable in pairs, that is, Pi~ = 
~Pi' 

Proof. Let IGI = p~l ... p:k where IG: Q;I = p1i. It follows from 1.3.11 that 
H = nPi¢"Qi has index equal to np;f"p1i , which shows that H is a Hall 
n-subgroup of G. Applying this result to n = {Pi ' pJ, i "# j, we conclude that 
K = nk"i,jQk is a Halln-subgroup with order P1ipji, containing Pi and ~. 
Since IPi~1 = p1ipP, it follows that Pi~ = K = ~Pi ' 0 

A set of mutually permutable Sylow subgroups, one for each prime 
dividing the group order, is called a Sylow basis. By 9.2.1, if fl = 

{Qi'" ' ' Qd is a Sylow system of finite soluble group G, there is a 
corresponding Sylow basis fl* = {Pi ' .. . , Pd given by Pi = nNi Qj . In fact 
the converse holds: each Sylow basis determines a Sylow system. 
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9.2.2. If G is a finite soluble group, the function fll-+ fl* is a bijection between 
the set of Sylow systems and the set of Sylow bases of G. 

Proof. Let &' = {P1 , • •• , Pk } be any Sylow basis of G and define Qi = 
ONi~' Since the ~ are permutable, Qi is a subgroup. From its order we 
can tell that Qi is a Hall pi-subgroup. Hence &'* = {Q1' ... , Qk} is a Sylow 
system of G. Finally one easily verifies that 

and 

so that f1J'1-+&'* and fll-+fl* are inverse mappings. o 

Two Sylow systems {Q1' .. . , Qd and {Q1' ... , Qd of G are said to be 
conjugate if there is an element g of G such that Qf = Qi for i = 1, 2, . .. , k. 
Conjugacy of two Sylow bases is defined in the same way. 

9.2.3 (P. Hall). In a finite soluble group G any two Sylow systems are conju
gate, as are any two Sylow bases. 

Proof. Denote by 9'; the set of all Hall pi-subgroups of G. Then G acts on 9'; 
by conjugation and 9.1.7 shows that this action is transitive. Consequently 
19';1 = IG: NG(Q;)I where Qi E 9';: it follows that 19';1 divides IG : Qil and 
equals a power of Pi ' Now G also acts by conjugation on the set f/ = 
9;. x .. . x .elk of all Sylow systems. An element of G fixes (Q1' ... , Qk) if and 
only if it normalizes each Qi' Thus the stabilizer of (Q1, ... , Qk) in G is the 
intersection of all the NG(Qi), which has index equal to O~=l 19';1 = If/I. But 
this means that G acts transitively on !/, which is just to say that any two 
Sylow systems are conjugate. Applying the mapping fll-+ fl* and using 9.2.2 
we deduce the corresponding result for Sylow bases. 0 

System Normalizers 

Let {Q1" '" Qd be a Sylow system of a finite soluble group G. The subgroup 
k 

N = n NG(Qi) 
i=l 

is called a system normalizer of G. We shall see that these subgroups have 
many remarkable properties. Notice that if {P1 , ••• , Pk } is the corresponding 
Sylow basis, an element of G normalizes every Qi if and only if it normalizes 
every Pi: this in on account of the relation between the Pi and the Qi (see 
9.2.1 and 9.2.2). Hence 

k 

N = n NG(PJ 
i=l 

and the system normalizers can also be obtained from Sylow bases. 
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9.2.4. In a finite soluble group the system normalizers are nilpotent and any 
two are conjugate. 

Proof. Let {PI' . .. , Pk } be a Sylow basis giving rise to a system normalizer 
N. Now IN : N (\ P;\ = INPi : P;\ divides IG: Pil since Pi<l NPi. Hence N (\ Pi 
is a Sylow Pi-subgroup of N. Also N (\ Pi <l N. It follows from 5.2.4 that 
N is nilpotent. The conjugacy of the system normalizers is a direct conse
quence of the conjugacy of the Sylow systems. 0 

Covering and A voidance 

Suppose that G is a group and let K <l H :s; G and L :s; G. Then L is said 
to cover H/K if HL = KL, or equivalently, if H = K(H (\ L). On the other 
hand, if H (\ L = K (\ L, that is, if H (\ L :s; K , then L is said to avoid 
H/K. 

9.2.5. Let G be a finite soluble group and let H/K be a principal factor of 
G which is a p-group. Let M <l G and denote by Q a Hall pi-subgroup of 
M. Then NG(Q) covers or avoids H/K according as M centralizes H/K or 
not. 

Proof. Denote NG(Q) by L. First of all suppose that M centralizes H/K, 
so that [H, M] :s; K. Now QH = Q[H, Q] by 5.1.6 and, because Q :s; M, it 
follows that QH :s; Q(K (\ M). If x E H, then Q and QX are clearly Hall p'
subgroups of Q(K (\ M) and 9.1.7 shows that they are conjugate, say QX = 
QY for some y in K (\ M. Hence xy-I ELand x E LK = KL, which shows 
that L covers H/K. 

Now suppose that M does not centralize H/K and write C = CG(H/K); 
then D == C (\ M < M and consequently there is a principal factor E/D of G 
such that E :s; M ; thus E $ c. Now E/D acts via conjugation on H/K. If 
E/D were a p-group, the natural semidirect product (E/D) D< (H/K) would be 
a finite p-group and hence nilpotent, which would imply that [H, E]K < H 
and thus [H, E] :s; K: however this is false because E $ C. Therefore the 
principal factor E/D is a pi_group, from which we deduce that E :s; DQ: for 
Q is a Hall pi-subgroup of M. It follows that 

[H (\ L, E] :s; [H (\ L, DQ] :s; [H (\ L, D] [H (\ L, Q] :s; K ; 

for D:s; C, while [H (\ L, Q] :s; H (\ L (\ Q :s; K since H/K is a p-group. 
Thus (H (\ L)K/K :s; CH/K(EK/K); now the latter is G-admissible and not 
equal to H/K because E $ C. Since H/K is a principal factor, CH/K(EK/K) is 
trivial, so H (\ L :s; K and L avoids H/K. 0 

This result is the stepping stone to a fundamental covering and avoid
ance property of system normalizers. 
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9.2.6 (P. Hall). If N is a system normalizer of a finite soluble group G, then N 
covers the central principal factors and avoids the noncentral principal factors 
ofG. 

Proof. Let 1 = Go < G1 < ... < Gn = G be a principal series of G. Let the 
system normalizer N arise from a Sylow system {Ql' ... , Qk} and put Ni = 
NG(Q;), so that N = Nl n .. . n Nk • 

According to 9.2.5 (with G in place of M), the subgroup Ni covers the 
central pi-principal factors and avoids the noncentral pi-principal factors 
(here Qi is a Hall pI-subgroup). Hence N certainly avoids the noncentral 
principal factors. Now I Gj+1Ni : GjNd equals 1 or I Gj+1 : Gjl according to 
whether Ni covers or avoids Gj+1 /Gj. It follows that IG: N;I equals the prod
uct of the orders of the noncentral pi-principal factors. Since the I G : N;I are 
relatively prime, IG: NI equals the product of the orders of all the non
central principal factors. This implies that INI equals the product of the 
orders of the central principal factors. But INI equals the product of all the 
indices IGj+1 n N: Gj n NI where Gj+dGj is central; for N avoids noncentral 
factors. Hence IGj+lnN:GjnNI=IGj+l:Gjl if Gj+1/Gj is central: this 
implies that Gj+1 = Gj(Gj+1 n N) and N covers Gj+1/Gj. 0 

An interesting corollary of 9.2.6 is the fact that the order of a system 
normalizer equals the product of the orders of all the central factors in a 
principal series. 

As an application of the covering-avoidance property of system normal
izers, we shall prove a theorem on the existence of complements. 

9.2.7 (Gaschiitz, Schenkman, Carter). Let G be a finite soluble group and 
denote by L the smallest term of the lower central series of G. If N is any 
system normalizer in G, then G = NL. If in addition L is abelian, then also 
N n L = 1 and N is a complement of L. 

Proof. Form a principal series of G through L by refining 1 <l L<l G. Since 
G/L is nilpotent, principal factors "above" L will be central and hence are 
covered by N (by 9.2.6). Therefore G = N L. 

Now assume that L is a abelian. Then it is sufficient to prove that no 
principal factor of G "below" L is central: for by 9.2.6 the system normalizer 
N will avoid such factors and N n L will be trivial. We shall accomplish this 
by induction on ILl> 1. By the induction hypothesis it suffices to show that 
Ln(G = 1. 

If C = CG(L), then L ~ C < G since L = [L, G] -# 1. Hence G/C is nil
potent; we now choose a nontrivial element gC from the center of G/C, 
noting that [L, [g, G]] = 1. We deduce from this relation and one of the 
fundamental commutator identities that if a ELand x E G, then 

[a, gy = [aX, gX] = [aX, [x, g-l ]g] = [aX, g]. 
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Hence the mapping e: L --+ L defined by a6 = [a, g] is a nonzero G-endo
morphism of L, and Ker e<J G. Since L (\ (G ~ Ker e, we may assume 
Ker e # 1, so that (L/Ker e) (\ ((G/Ker e) is trivial by induction. Also 
L/Ker e ~G L8, from which it follows that L8 (\ (G = 1. Now 1 # L8 <J G 
and (L/L6) (\ ((G/L6) is trivial by induction. Therefore L (\ (G = 1, as 
re~red 0 

9.2.8. Let N be a system normalizer of a finite soluble group G. Then NG, the 
core of N in G, equals the hypercenter of G and the normal closure of N 
equals G itself. 

Proof. Let H be the hypercenter of G and refine the series 1 <J H <J G to a 
principal series. By 9.2.6 every central principal factor is covered by N, so 
H ~ N and hence H ~ NG = K, say. If H # K, there is a principal factor 
L/H where L ~ K. Now since L/H cannot be central, it is avoided by N. 
But L ~ K ~ N, from which it follows that L = H, a contradiction. 

If the normal closure N G were proper, it would lie inside a maximal nor
mal subgroup of G, say M. But G/M is abelian since G is soluble. Hence N 
covers G/M and G = MN = M, which cannot be true. 0 

Since NG is generated by conjugates of N, we deduce from 9.2.8 the fol
lowing fact. 

9.2.9. A finite soluble group is generated by its system normalizers. 

Abnormal Subgroups 

A subgroup H of a group G is called abnormal if 9 E (H, Hg) for all 9 in 
G. For example, it is simple to show that a nonnormal maximal subgroup 
is always abnormal. Abnormality is a strong form of nonnormality which 
leads to an interesting characterization of system normalizers. 

Important examples of abnormal subgroups are the Sylow normalizers. 

9.2.10. Let N be a normal subgroup of the finite group G and let P be a Sylow 
p-subgroup of N. Then NG(P) is abnormal in G. 

Proof. Let H = NG(P) and put K = (H, H9) where 9 is some element of G. 
Now P and pg are conjugate in K (\ N since they are Sylow p-subgroups 
of that group. Therefore pg = px for some x in K (\ N, and gx-1 E H. It 
follows that 9 E K, as requred. 0 

An abnormal subgroup H always coincides with its normalizer: for if 9 E 

NG(H), then 9 E (H, Hg) = H. Now it is obvious that any subgroup of G 
that contains an abnormal subgroup is itself abnormal. Consequently every 
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subgroup that contains H is also self-normalizing. In fact the converse of 
this statement is true for finite soluble groups. 

9.2.11 (Taunt). Let G be a finite soluble group and let H be a subgroup. Then 
H is abnormal in G if and only if every subgroup containing H coincides with 
its normalizer in G. 

For the proof we require a simple lemma. 

9.2.12. Let G be a finite group and let H ~ G and N <l G. If H is abnormal in 
HN and HN is abnormal in G, then H is abnormal in G. 

Proof. If g E G, then g E <HN, (HN)9) = N <H, Hg ); thus g = xy where 
x E Nand y E <H, Hg ). Now x E <H, HX ) since H is abnormal in HN. 
Hence x E <H, Hgy-' ) ~ <H, Hg ) since y E <H, Hg ). Finally g E <H, Hg ) as 
~~. 0 

Proof of 9.2.11. Only the sufficiency of the condition is in question: assume 
that H satisfies the condition. We shall prove that H is abnormal in G by 
induction on I GI > 1. If N is a minimal normal subgroup of G, the hypothe
sis on H is inherited by HN/N, with the result that HN/N is abnormal 
in G/N by induction. Obviously this means that HN is abnormal in G. If 
HN # G, then H is abnormal in HN, by induction once again, and the de
sired conclusion follows from 9.2.12. Finally, suppose that HN = G. Then, 
since N is abelian, H n N = 1; we may apply 5.4.2 to show that H is maxi
mal in G. However H = NG(H) by hypothesis, so H is abnormal in G. 0 

System Normalizers and Abnormality 

The aim of the rest of this section is to explore the relationship between 
abnormality and system normalizers, the principal theorem (9.2.15) being a 
characterization of system normalizers. For the latter we shall need two pre
liminary results. 

9.2.13. Let M be a nonnormal maximal subgroup of a finite soluble group G 
and let IG: MI = pm. If Q is a Hall pi-subgroup of M, then NG(Q) ~ M. 

Proof. In the first place I G : M I is indeed a power of a prime p by 5.4.3. 
Induct on I G I > 1. If the core of M in G-call it K -is nontrivial, then 
NG1K(QK/K) ~ M/K by induction, which surely implies that NG(Q) ~ M. 
Henceforth we suppose that K = 1. Choose a minimal normal subgroup N 
of G; then N i M, so that G = MN and M n N <l G. (Keep in mind that N 
must be abelian because G is soluble.) It follows that M n N = 1 and INI = 
IG:MI=pm. 
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Let NI be minimal normal in M and suppose that NI is a p-group. Then 
NNI is a p-group and hence is nilpotent; thus [N, Nl ] < N . But [N, Nll<J 
MN = G, so [N, N1 ] = 1 and 1 i= NI <l MN = G. However, since M has 
trivial core, this is impossible. It follows that Nl has order prime to p and 
in consequence NI sQ. Writing L for NG(Q}, we argue that Nf s NttN = 
Nf S NI N. Therefore Nf s (Nl N) n Q = NI and L S NG(Nl }. The latter 
subgroup equals M since NI <l M and M is maximal: thus L S M. 0 

9.2.14. If M is a nonnormal maximal subgroup of a finite soluble group G, 
then every system normalizer of M contains a system normalizer of G. 

Proof. Let {QI"'" Qk} be a Sylow system of G where Qi is a Hall p:
subgroup of G. The index of M is G is a prime power, say pro Since a Hall 
p~ -subgroup of M is also a Hall p~ -subgroup of G, we may assume that 
Ql sM. If i > 1, the indices IG: MI and IG: Qd are relatively prime and we 
conclude from Exercise 1.3.8 that G = MQi' Hence 1M: M n Qd = IG: Q;I, 
which is a power of Pi- It follows that M n Qi is a Hall p:-subgroup of M 
and that {Ql =MnQl' MnQ2, ... ,MnQd is a Sylow system of M. 
Since NG(QI} s M by 9.2.13, 

Hence some system normalizer of G is contained in one of M. The required 
result follows from the conjugacy of the system normalizers of M. 0 

Subabnormal Subgroups 

A subgroup H of a group G is said to be subabnormal in G if there is a finite 
chain of subgroups H = Ho < HI < . .. < Hn = G such that Hi is abnormal 
in Hi+l' Subabnormality is a weaker property than abnormality. Our inter
est in subabnormality stems from the next theorem. 

9.2.15 (P. Hall). The system normalizers of a finite soluble group G are pre
cisely the minimal subabnormal subgroups of G. 

Proof. Firstly it will be established that every subabnormal subgroup H 
contains a system normalizer of G. By definition there is a chain H = 
Ho < HI < . . . < Hs = G such that Hi is abnormal in Hi+l ' Since additional 
terms can be inserted in the chain without disturbing abnormality, we may 
assume that Hi is maximal in Hi+l' Of course Hi is not normal in H i+l . Thus 
9.2.14 implies that each system normalizer of Hi contains one of Hi +1 , and 
surely H contains a system normalizer of G. 

To complete the proof it is sufficient to prove that every system normal
izer is subabnormal. If G is nilpotent, the only system normalizer is G itself: 
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for this reason we shall suppose that G is not nilpotent. Choose a principal 
series of G and let H be the smallest nonnilpotent term in the series. If K 
is the preceding term, then K is nilpotent and, of course, H/K is a principal 
factor of G with order p\ say, where p is prime. If P is a Sylow p-subgroup 
of H, then H = PK and P cannot be normal in H; otherwise the latter would 
be nilpotent in view of 5.2.8. Thus L = NG(p) #- G; note that L is abnormal 
in G by 9.2.10. Also the Frattini argument (5.2.14) implies that G = LH = 
LPK = LK. 

We show next that any system normalizer N of L is automatically a sys
tem normalizer of G. By induction on I GI we have that N is subabnormal in 
L and hence in G. Applying the result of the first paragraph, we conclude 
that N contains a system normalizer of G. Since system normalizers of G, 
being conjugate, have the same order, it suffices to prove that N is con
tained in a system normalizer of G. 

Let N arise from the Sylow system {Ql' .. . , Qk} of L. Writing Ki for the 
unique Hall p;-subgroup of the nilpotent group K , we observe that Ki<J G 
and Qr == QiKi is a p;-group. Also I G : Qrl = ILK: QiK;I is a power of Pi 
since both IL: Q;I and IK: K;I are powers of Pi ' Therefore Qr is a Hall 
p;-subgroup of G and {Q!, ... , Q:} is a Sylow system of G-with corre
sponding system normalizer N*, let us say. Since NL(Q;)::;; NG(Q{)' we 
obtain N ::;; N* as required. 

Finally, N is subabnormal in L, which is abnormal in G; hence N is 
subabnormal in G. This completes the proof since all system normalizers of 
G are conjugate. 0 

EXERCISES 9.2 

1. Locate the system normalizers of the groups S3, A4, S4, SL(2, 3). 

2. Let G be a finite soluble group and let 1t be the set of prime divisors of IGI. Let 
1t = 1tl U 1t2 u ·· · U 1tk be any partition of 1t. Prove that there exists a set of 
pairwise permutable Hall1tcsubgroups, i = 1, 2, . .. , k. 

3. (P. Hall). Let G be a finite soluble group of order n~= l prj, where the Pi are dis
tinct primes. Prove that the order of Out G divides the number n~=l mip1,(e,-d,), 
where mi = IGL(di, Pi)1 and di is the minimal number of generators of a 
Sylow Pcsubgroup of G. [Hint: Let [/ be a Sylow basis of G and let Y E Aut G: 
now consider [/1.] 

4. Show that the last part of 9.2.7 need not be true if Lis nonabelian. 

5. Let G be a finite soluble group in which the last term L of the lower central series 
is abelian. Prove that every complement of L is a system normalizer. 

6. Give an example of a subabnormal subgroup that is not abnormal. 

7. Let G be a finite soluble group which is not nilpotent but all of whose proper 
quotients are nilpotent. Denote by L the last term of the lower central series. 
Prove the following statements: 
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(a) L is minimal normal in G; 
(b) L is an elementary abelian p-group; 
(c) there is a complement X 'I- 1 of L which acts faithfully on L; 
(d) the order of X is not divisible by p. 

269 

8. Suppose that X 'I- 1 is a finite nilpotent p'-group that acts faithfully on a simple 
FX-module L where F = GF(p). Prove that every proper quotient of G = X ~ L 
is nilpotent but G is not nilpotent. 

9. Let G be a finite soluble group which is not abelian but all of whose proper 
quotients are abelian. Prove that either G is generalized extra-special (see Exer
cise 5.3.8) or G is isomorphic with a subgroup of H(q) where q > 2 (see 7.1). 

9.3. p-Soluble Groups 
If n is a set of primes, a finite group G is called n-soluble if it has a series 
whose factors are n-groups or n' -groups and if the n-factors are soluble. 
Equivalently we could have said that each composition factor is either a 
n-group or a n '-group and in the former case has prime order. (The reader 
should supply a proof.) n-solubility is, therefore, a strong form of n
separability. Evidently all finite soluble groups are n-soluble. Of particular 
importance is p-solubility (which is the same as p-separability), a concept 
introduced in 1956 by P. Hall and G. Higman [a80] in a paper of great 
significance for finite group theory. 

The following result is basic. 

9.3.1. If G is a n-separable group, then CG(O"."(G)/O,,.(G)) ~ O".,,(G). 

Proof. Clearly we can assume that O".(G) = 1 and prove that CG(O,,(G)) ~ 
O,,(G). Put P = O,,(G) and C = CG(P). Then P II C = (P<l G, so that (P ~ 
O,,(C). Also O,,(C) ~ P II C = (P, and it follows that (P = O,,(C). If C i P, 
then O,,(C) = (P < C. Since C is n-separable, there exists a characteristic 
subgroup L of C such that O,,(C) < Land L/O,,(C) is a n'-group. By the 
Schur-Zassenhaus Theorem (9.1.2) there is a subgroup K such that L = 
K(O,,(C)) and K II O,,(C) = 1. In fact L = K x O,,(C) because K ~ C and C 
centralizes O,,(G). It follows that K is normal in G, being the unique Sylow 
n'-subgroup of L. Thus K ~ O".(G) = 1 and L = O,,(C), in contradiction to 
the choice of L. 0 

9.3.2 (Hall-Higman). Let G be a p-soluble group such that Op.(G) = 1. If P 
denotes 0iG), then conjugation leads to a faithful representation of G/P as a 
group of linear transformations of the vector space P/Frat P. 

Proof. Recall that Frat P = P'PP by 5.3.2, so that P/Frat P is a vector space 
over 7Lp. Thus C = CG(P/Frat P) contains P. If D = CG(P), then D ~ C and 
CjD is a p-group by 5.3.3. Also D ~ Op(G) by 9.3.1, so C is a p-group. Since 
C <l G, it follows that C = P. 0 
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p-Nilpotent Groups 

A finite group G is said to be p-nilpotent (where p is a prime) if it has a 
normal Hall p'-subgroup, that is, if Op'p(G) = G. Obviously every finite 
nilpotent group is p-nilpotent; conversely a finite group which is p-nilpotent 
for all p is nilpotent, as the reader should check. 

The product of all the normal p-nilpotent subgroups of a finite group is 
clearly Op'p(G): this is the maximum normal p-nilpotent subgroup of G and 
we shall also write it 

the p-Fitting subgroup. 
The following characterization of Fitp(G) is analogous to an already 

proven characterization of Fit G-see 5.2.9. 

9.3.3. If G is a finite group, then Fitp(G) equals the intersection of the central
izers of the principal factors of G whose orders are divisible by p. 

Proof. Let H be a normal p-nilpotent subgroup of G and let N be a 
minimal normal subgroup of G whose order is divisible by p. Assume that 
[H, N] =I- 1. Then H n N =I- 1 and thus N :::;; H. Now N $, Op,(H), so that 
N n Op,(H) = 1. Hence N is a p-group. Also CH(N);::: Op,(H) and jj = 
H/CH(N) is a p-group. The natural semidirect product jj ~ N is a p-group, 
so it is nilpotent and [H, N] < N. This implies that [H, N] = 1 since N is 
minimal normal in G. It follows by induction on IGI that H centralizes every 
principal factor whose order is divisible by p. 

Now let C be the intersection of the centralizers of the principal factors 
whose orders are divisible by p. Then Fitp(G) :::;; C by the previous para
graph. We are required to prove that C is p-nilpotent. Let N be minimal 
normal in G. Then by induction on the group order CN /N ~ C/C n N is 
p-nilpotent. We may therefore assume that C n N =I- 1, so that N :::;; C and 
CjN is p-nilpotent. If N is a p'-group, it is obvious that C is p-nilpotent. 
Suppose that p divides INI; then [N, C] = 1 and N :::;; 'CO It follows that N 
is a p-group. Let M/N = Op.(CjN): clearly CjM is a p-group. Because N :::;; 
,M we can apply 9.1.2 to show that M has a normal Hall p'-subgroup L. 
But CjL is a p-group, so Cis p-nilpotent. 0 

Another analogue of a result on nilpotency is next (see 5.2.15). 

9.3.4. Let G be a finite group and assume that Frat G :::;; N <l G and N /Frat G 
is p-nilpotent. Then N is p-nilpotent. Hence Fitp(G/Frat G) = Fitp(G)/Frat G. 

Proof. Let F = Frat G and write Op,(N/F) = Q/F. Since Op,(F) can be 
factored out if necessary, we may assume that F is a p-group. By 9.1.2 there 
is a subgroup H such that Q = HF and H n F = 1: here of course H is a 
p'-group. If g E G, then Hand Hg are conjugate in Q, by 9.1.2 again: hence 
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Hg = HX for some x in Q and gx-1 E L = NG(H). It follows that G = LQ = 
LF. However F consists of nongenerators by 5.2.12. Consequently G = L 
and H <J G. Since N/H is obviously a p-group, N is p-nilpotent. 0 

In Chapter 10 we shall establish important criteria for a group to be 
p-nilpotent due to Frobenius and Thompson. 

The p-Length of a p-Soluble Group 

Recall that if G is a p-soluble group, the p-Iength Ip(G) is the length of the 
upper pip-series. We wish to relate this invariant to other invariants of G 
such as the nilpotent class of the Sylow p-subgroups. To begin with two 
simple lemmas will be established. 

9.3.5. If G is a finite group and p is a prime dividing 1 G I, then p also divides 
IG: Frat GI. 

Proof. Assume that IG: Frat GI is not divisible by p; then a Sylow p
subgroup P of G is contained in Frat G. Since the latter is nilpotent, P <J G. 
By 9.1.2 there is a subgroup H such that G = HP and H (\ P = 1. But, since 
P :$; Frat G, it follows that G = Hand P = 1, which contradicts the fact 
that p divides IGI. 0 

9.3.6. If G is a p-soluble group, Ip(G) = Ip(G/Frat G). 

Proof. If F denotes Frat G, then it is obvious that Ip(G/F):$; Ip(G). If 
Ip(G/F) = 0, then p does not divide IG : FI and 9.3.5 shows that p cannot 
divide IGI: hence liG) = 0. Suppose that Ip(G/F) > 0: now FitiG/F) = 
Fitp(G)/F by 9.3.4, that is, Op'p(G/F) = Op'p(G)/F =I 1. From this it follows 
that the upper pip-series of G and G/F have same length. 0 

The fundamental theorem on p-Iength can now be established. 

9.3.7 (Hall-Higman). Let G be a p-soluble group. 

(i) Ip(G)::;; cp(G) where cp(G) is the nilpotent class of a Sylow p-subgroup. 
(ii) Ip(G):$; dp(G) where dp(G) is the minimum number of generators of a 

Sylow p-subgroup. 
(iii) Ip(G):$; sp(G) where sp(G) is the maximum rank of a p-principal factor of 

G. 

Proof. (i) If cp(G) = 0, then of course G is a pi_group and liG) = 0: suppose 
that cp(G) > ° and proceed by induction on cp(G). Let P be a Sylow 
p-subgroup of G. Then POp,(G)/Op,(G) is a Sylow p-subgroup of G/Op,(G), 
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so it contains Op'p(G)/Op,(G). Therefore (P centralizes Op'p(G)/Op,(G) and 
9.3.1 shows that (P::; Op'p(G). From this it follows that cp(G/Op'p(G)) ::; 
cp(G) - 1; consequently lp(G/Op'p(G)) ::; cp(G) - 1. Finally 

lp(G) = lp(G/Op'p(G)) + 1, 

so the desired inequality follows. 
(ii) The proof employs induction on d = dp(G). Notice that d = 0 is to be 

interpreted as P = 1, so that lp(G) = 0 in this case. Let lp(G) > O. Evidently 
we may assume that Op,(G) = 1. Let P1 = Op(G); then P1 ::; P. 

Suppose that P1 ::; Frat P. Then P1 ::; Frat G by 5.2.13, which leads to 
lp(G/Frat G)::; lp(G/P1) = lp(G) - 1, in contradiction to 9.3.6. Therefore 
P1 i Frat P. 

By the Burnside Basis Theorem (5.3.2) d equals the minimum number 
of generators of P/Frat P, so this group has order pd. Now Frat(P/P1) 
contains (Frat P)P1 /P1. Thus the Frattini quotient group of P/P1 is an 
image of P/(Frat P)P1 and its order is at most pd-l. Application of the in
duction hypothesis to G/P1 yields lp(G/P1) ::; d - 1 and hence lp(G) ::; d. 

(iii) Let s = sp(G). If s were 0, then G would be a p '-group and 1== lp(G) 
would equal 0; therefore we assume s > O. Let H/K be a p-principal factor 
of G; then H/K has order pn where n ::; s. Now G/CG(H/K) is isomorphic 
with a subgroup of Aut(H/K) and Aut(H/K) ~ GL(n, p) (see Exercise 1.5.11). 
The set of (upper) unitriangular matrices in GL(n, p) is a Sylow p-subgroup 
and its nilpotent class is equal to n - 1 (Exercise 5.1.11): it follows that 
YnP centralizes H/K. Therefore Ysp centralizes every p-principal factor and 
Ysp ::; Fitp(G) = Op'p(G) by 9.3.3. By (i) we have 

lp(G/Op'p(G)) ::; cp(G/Op'iG)) ::; s - 1, 

from which it follows immediately that lp(G) ::; s. o 

An application of 9.3.7 to the restricted Burnside Problem is given in 
14.2. 

p-Soluble Groups of p-Length at Most 1 

A finite p-soluble group G has p-Iength at most 1 if and only if Op'pp,(G) = 
G. For example, a p-nilpotent group has p-Iength ::; 1. The next objective is 
a result of Huppert that characterizes soluble groups of p-Iength ::; 1 in 
terms of their Sylow bases. This theorem is preceded by two preliminary 
results. 

9.3.8. Let G be a p-soluble group and suppose that every proper image of G 
has p-length ::; k while lp(G) > k. Then: 
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(i) Frat G = 1; 
(ii) Fitp(G) == Op'p(G) = N is an elementary abelian p-group; this is also the 

unique minimal normal subgroup of G; 
(iii) N = CG(N) and N has a complement in G. 

Proof. (i) follows at once from the equation Ip(GIFrat G) = Ip(G) (see 9.3.6). 
(ii) and (iii). Clearly Op.(G) = 1, so N is a p-group. Also Frat N :::;; 

Frat G = 1 by 5.2.13, which shows that N is elementary abelian. Now if Nl 
and N2 are nontrivial normal subgroups of G such that Nl n N2 = 1, then 
GINl and GIN2 both have p-Iength :::;; k and the mapping gl-+(gNl ' gN2) is 
a monomorphism of G into GINl x GIN2; however this implies that Ip(G) :::;; 
k. It follows that G has a unique minimal normal subgroup Land L :::;; N. 
Since Frat G = 1, there is a maximal subgroup M which fails to contain L. 
Thus G = ML and M n L<l ML since L is abelian. Consequently M n L = 
1 and M is a complement of Lin G. Also N = N n (ML) = (N n M)L, and 
N n M <l G since both M and L normalize N n M. If N n M -=F 1, then L :::;; 
N n M :::;; M, in contradiction to the choice of M. Therefore N n M = 1 and 
N=L. 

Finally, suppose that C = CG(N) is strictly larger than N. Then C = 
C n (MN) = (C n M)N and 1 -=F C n M <l G. However this implies that 
N :::;; C n M, which is impossible. 0 

It turns out that the property of having p-Iength at most 1 is closely 
connected with a curious permutability property of the Sylow p-subgroups 
of G. This is already indicated by the next result. 

9.3.9. Let G be a finite p-soluble group. Let P be a Sylow p-subgroup and Q a 
Hall pi-subgroup of G. If PIQ = QPI, then Ip(G) :::;; 1. 

Proof. Let G be a counterexample to the assertion with least possible order. 
Since the hypothesis is inherited by images, every proper image of G has 
p-Iength :::;; 1. This is our opportunity to make use of 9.3.8. Thus 
N = Fitp(G) is a p-group and N :::;; P. Therefore N n (PIQ) = N n pi <l P. 
But N n (PIQ)<l PIQ and by examination of order G = PQ; hence 
N n pi <l G. Now, according to 9.3.8, the subgroup N is the unique minimal 
normal subgroup of G, so either N n pi = 1 or N :::;; P'. In the first case 
[N, Pi] = 1 because N :::;; P; therefore pi :::;; CG(N) = N , by 9.3.8(iii). This 
leads to the successive conclusions pi = 1, cp(G) :::;; 1, and Ip(G) :::;; 1 via 9.3.7. 
It follows that the other possibility N:::;; pi must prevail. Consequently 
N :::;; Frat P. Applying 5.2.l3(i) we conclude that N :::;; Frat G. But Frat G = 1 
by 9.3.8, so N = 1, a contradiction. 0 

We come now to the criterion referred to above. 
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9.3.10 (Huppert). Let G be a finite soluble group and let {PI"'" Pd be a 
Sylow basis of G. 

(i) If P;~ = ~P; for all i andj, then Ip(G)'::; 1 for all p. 
(ii) Conversely if Ip(G) .::; 1, every characteristic subgroup of Pi is permutable 

with every characteristic subgroup of ~: in particular P; ~ = ~P;. 

Proof. (i) Let Qj be a Hall pi-subgroup arising from the given Sylow basis 
(as in 9.2.2); thus Qj = Ok,.jPk, Hence Pi surely permutes with Qj by the 
hypothesis, and Ip(G) .::; 1 by 9.3.9. 

(ii) Write H = Pi~' where i "# j, keeping in mind that Pi and ~ permute 
since they belong to a Sylow basis. Clearly Ip(H) .::; Ip(G) .::; 1, which shows 
that the upper piPrseries of H has the form 1 <l N <l N~<l H where Nand 
H / N ~ are pi-groups. Let K j be characteristic in ~. Since the natural homo
morphism ~ -+ N~/N is an isomorphism, it follows that NK)N is charac
teristic in N~/N, and hence that NKj<l H. Now N .::; Pi' so PiKj = Pi(NKJ 
is a subgroup. By 1.3.13 we deduce that PiKj = KjPi = L, say. Now Ip(H) .::; 1 
and Pi and Kj are respectively a Sylow Pi- and a Sylow Prsubgroup of L. If 
Ki is a characteristic subgroup of Pi' then KiKj = KjKi by what has already 
been proved. 0 

EXERCISES 9.3 

1. A finite group is nilpotent if and only if it is p-nilpotent for all p. 

2. Give an example of a finite group that is p-nilpotent and q-nilpotent for two 
distinct prime divisors p, q of its order, but is not nilpotent. 

3. A finite group is soluble if and only if it is p-soluble for all p. 

4. A finite group is p-nilpotent if and only if every principal factor of order divisible 
by p is central. 

5. A finite group is p-soluble of p-length ~ 1 if and only if the group induces a 
pi_group of automorphisms in every principal factor whose order is divisible by p. 

6. Let G be a finite p-soluble group with Op,(G) = 1. Prove that CG(P/ Frat P) = P 
where P = Op(G). Deduce that IGI is bounded by a function oflPI. 

7. Let G be a finite p-soluble group. Prove that G has an abelian Sylow p-subgroup 
if and only if Ip(G) ~ 1 and Op'p(G)jOp,(G) is abelian. 

9.4. Supersoluble Groups 

During the exposition of basic properties of supersoluble groups in Chapter 
5 it was shown that a maximal subgroup of a supersoluble group has prime 
index. Our object in this section is to prove that for finite groups the con-
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verse of this statement is true, a result due to Huppert. We begin with an 
auxiliary result which is of independent interest. 

9.4.1 (P. Hall). If every maximal subgroup of a finite group G has index a 
prime or the square of a prime, then G is soluble. 

Proof. Let N be a minimal normal subgroup of G and denote by p the 
largest prime divisor of INI. Let P be a Sylow p-subgroup of N and put 
L = NG(P) , If L = G, then P<J G and GjP is soluble by induction on IGI; 
hence G is soluble. Thus we may assume that L < G and choose a maximal 
subgroup M which contains L. Then according to the hypothesis IG: MI = 
q or q2 for some prime q. By the Frattini argument G = N L = N M and 
I G : MI = IN : N (') MI, from which we deduce that q divides INI and conse
quently q ~ p. 

Next, the conjugates of P in G account for all the Sylow p-subgroups of 
N; therefore IG: LI == 1 mod p by Sylow's Theorem. For the same reason 
1M : LI == 1 mod p and it follows that IG: MI == 1 mod p. Now q =1= 1 mod p 
because q ~ p, so we are left with only one possibility, IG: MI = q2 == 
1 mod p and thus q == -1 mod p. However this is possible only if p = 3 
and q = 2. Thus IN: N (') MI = 4 and consequently N has as an image some 
nontrivial subgroup of S4 (see 1.6.6). Hence N > N' and N' = 1 by mini
mality. Thus N is abelian, while GjN is soluble by induction. Finally, we 
conclude that G is soluble. 0 

We shall also need two results of a more elementary character. 

9.4.2. Let N be a minimal normal subgroup of the finite soluble group G and 
let N ~ L<J G. Assume that L jN is p-nilpotent but L is not. Then N has a 
complement in G. 

Proof. Suppose first that N ~ Frat G = F. Then LF/F is p-nilpotent. How
ever, by 9.3.4 this implies that LF, and hence L, is p-nilpotent. Thus there 
exists a maximal subgroup M not containing N. Then G = M Nand 
M (') N <J G since N is abelian. Hence M (') N = 1. 0 

9.4.3. Let G be an irreducible abelian subgroup of GL(n, p). Then G is a cyclic 
group of order m where n is the smallest positive integer such that p" == 
1 mod m. 

Proof. Let us identify G with a group of linear transformations of an n
dimensional vector space V over Fp = GF(p). Then V is a simple module 
over R = FpG. Choose any nonzero vector v from V. Then Yf--+ vr is an R
module homomorphism from R onto V, the kernel I being a maximal ideal 
since R jI ~ V. Hence F = RjI is a finite field of order p". Now the mapping 
g H g + I is a monomorphism () from G to F*. Consequently G is cyclic. 
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Also m = IGI divides pn - 1 and pn == 1 mod m. Let n1 be a smaller positive 
integer than n. Since the equation t pn, = t has only pn, solutions in F and 
since GO generates F, we must have gpnl =I g for some g in G. Hence p"' if=. 
1 mod m. D 

We come now to the principal theorem of this section. 

9.4.4 (Huppert). Let G be a finite group. If every maximal subgroup has prime 
index, then G is supersoluble. 

Proof. In the first place 9.4.1 assures us that G is at least soluble. We as
sume that IGI > 1 and employ induction on IGI. Let N be a minimal normal 
subgroup of G; then GIN is supersoluble by the induction hypothesis, and 
N is an elementary abelian p-group, say of order pn. Our task is to prove 
that n = 1. 

Let LIN = Op.p(GIN), so LIN is p-nilpotent. Assume that L is not p
nilpotent. Then by 9.4.2 there is a subgroup X such that G = XN and 
X n N = 1. Thus IG : XI = INI = pn. But it is clear that X is maximal in G, 
whence it follows that n = 1. 

Now assume that L is p-nilpotent. Consider a p-principal factor HIK 
of G such that N ~ K. Since GIN is supersoluble, IH: KI = p and thus 
GICG(HIK) is abelian with order dividing p - 1. If 9 is any element of G, 
then gP-l centralizes every p-principal factor of GIN. Applying 9.3.3 we Con
clude that gP-l E L. Also G' ~ L for the same reason, so GIL is abelian with 
order dividing p - 1. 

Next [N, L] <I G, so either N = [N, L] or [N, L] = 1; in the former 
event, since L is p-nilpotent and thus LIOp.(L) is nilpotent, we should 
have N ~ Op.(L) and N = 1. It follows that [N, L] = 1 and L ~ CG(N). 
Thus G = GICG(N) is abelian with exponent dividing p - 1. It is also 
isomorphic with an irreducible subgroup of GL(n, p). We deduce from 9.4.3 
that G is cyclic of order m where n is the smallest positive integer such that 
p" == 1 mod m. However m divides p - 1, so in fact p == 1 mod m and n = 1. 

D 

Note the following consequence of Huppert's theorem. 

9.4.5. If G is a finite group and G/Frat G is supersoluble, then G is super
soluble. 

EXERCISES 9.4 

1. Let G be a finite soluble group which is not supersoluble but all whose proper 
quotients are supersoluble. Establish the following facts (without using 9.4.4). 
(a) The Fitting subgroup F is an elementary abelian p-group of order> p. 

(b) F is the unique minimal normal subgroup of G. 
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(c) G = XF and X (\ F = 1 where the supersoluble subgroup X acts faithfully on 
F. 

(d) Frat G = 1. 

2. Deduce Huppert's Theorem (9.4.4) from Exercise 9.4.l. 

3. Let G be a finite soluble group. Assume that every quotient group G with p

length at most 2 is supersoluble for all primes p. Prove that G is supersoluble. 

4. Let G be a finite group. Prove that G is supersoluble if and only if for every 
proper subgroup H there is a chain of subgroups H = Ho < Hl < ... < HI = G 
with each index IHi+l : Hd a prime. 

9.5. Formations 

A class of finite groups ~ is said to be a formationt if every image of an 
~-group is an ~-group and if G/N1 n N2 belongs to ~ whenever G/N1 and 
G/N2 belong to ~. A comparison of this definition with the characterization 
of varieties in 2.3.5 might suggest that a formation be thought of as a kind 
of finite analogue of a variety. (However formations are not in general 
closed will respect to forming subgroups.) 

Examples of formations are readily found. The classes of finite groups, 
finite soluble groups, finite nilpotent groups, and finite supersoluble groups 
are all formations. 

A formation ~ is said to be saturated if a finite group G E ~ whenever 
G/Frat G E~. Obviously the class of all finite groups is saturated. The 
nilpotency of Frat G implies that finite soluble groups from a saturated for
mation. The other two formations mentioned above are also saturated in 
view of 5.2.15 and 9.4.5. 

Locally Defined Formations 

We shall describe an important method of constructing saturated forma
tions. For each prime p let ~p be a formation or the empty set. Define ~ to 
be the class of all groups G with following property: if H/K is a principal 
factor of G whose order is divisible by p, then G/CG(H/K) belongs to ~P" 

It is clear that the class ~ is closed with respect to forming images. If 
G/N1 and G/N2 belong to ~ and Nl n N2 = 1, a principal factor of G is 
G-isomorphic with a principal factor of G/N1 or of G/N2 • This is a conse
quence of the Jordan-HOlder Theorem. The validity of the centralizer prop
erty is now apparent. Thus ~ is in fact a formation. ~ is said to be locally 
defined by the ~P" For example, we see that the class of groups of order 1 is 
locally defined by taking every ~ p to be empty. 

t Some authors allow formations to be empty. 
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9.5.1 (Gaschiitz). If ~ is locally defined by formations ~p, then ~ is a satu
rated formation. 

Proof. Let G be a group such that G/Frat G E~: we have to show that 
G E ~. Let P denote the intersection of the centralizers of those principal 
factors of G/Frat G whose orders are divisible by the prime p; then G/P E 

~p by definition of~. Now P/Frat G = Fitp(G/Frat G) = Fitp(G)/Frat G by 
9.3.3 and 9.3.4. Thus P = Fitp(G) and 9.3.3 shows that P centralizes every 
principal factor of G whose order involves p. If H/K is such a principal 
factor, then CG(H/K) ~ P and therefore G/CG(H/K) E ~p. It now follows 
ili~GE~ D 

Remark. P. Schmid [a185] has proved that every saturated formation is 
locally defined. Thus all saturated formations can be constructed in the 
above manner. 

EXAMPLES. Let ~ be the formation locally defined by formations ~p where p 
is prime. 

(i) If each ~p is the class of unit groups, then ~ is the class of finite 
nilpotent groups. 

(ii) If q is a fixed prime, define ~q to be the class of all unit groups and if 
p "# q, let ~p be the class of all finite groups. Then ~ is the class of finite 
groups in which every principal factor with order divisible by q is central. 
By 9.3.3 this is just the class of finite q-nilpotent groups. 

9.5.2. Let ~ be a saturated formation and let N be a minimal normal subgroup 
of the finite soluble group G. Assume that G/N E ~ but G ¢ ~. Then N has a 
complement in G and all such complements are conjugate. 

Proof. If N ~ Frat G, then G/Frat G E~, whence G E ~ because ~ is 
saturated. This is incorrect, so there exists a maximal subgroup M not 
containing N. Then G = M Nand M n N <J G since N is abelian. Hence 
MnN=l. 

For the second part, let Kl and K2 be two complements of N in G. Then 
Kl and K2 are maximal subgroups of G by 5.4.2. Write C for the core of Kl 
in G. Then surely C n N = 1 and, since G ¢ ~, it follows that G/C ¢ ~. If 
C i K 2, then G = CK2 and G/C ~ K 2/C n K2 E ~ because K2 ~ G/N E ~. 
By this contradiction C ~ K 2. Consequently K1 / C and K 2/C are comple
ments of NCjC in G/C. Moreover G/NC E ~ and G/C ¢~, while N ~G 
NCjC, so that NCjC is minimal normal in G/C. Now if C is nontrivial, we 
can apply induction on the group order to G/C, concluding that K1 /C and 
K2 /C-and hence Kl and K2- are conjugate. If C = 1, then CK,(N) = 1 
and therefore N = CG(N). Now we may apply Exercise 9.1.14 to obtain the 
~ili 0 
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tj-Covering Subgroups 

If !r is a formation and G is a finite group, let 

Gty 
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denote the intersection of all normal subgroups N such that GIN E !r. Then 
GIGty E !r and this is the largest !r-quotient of G. 

A subgroup H of G is called an !r-covering subgroup if H E !r and if S = 
StyH for all subgroups S that contain H: of course this equation asserts that 
H covers SISty and hence every !r-quotient of S. It will turn out that !r
covering subgroups exist and are conjugate whenever G is soluble and !r is 
saturated. Before proving this we shall record two simple facts about !r
covering subgroups. 

9.5.3. Let G be a finite group, H ~ G and N <l G. Let !r be a formation. 

(i) If H is an !r-covering subgroup of G, then HNIN is an !r-covering sub
group of GIN. 

(ii) If HdN is an !r-covering subgroup of GIN and H is an !r-covering sub
group of HI' then H is an !r-covering subgroup of G. 

Proof. (i) Let HNIN ~ SIN ~ GIN and put RdN = (SIN)ty and R = Sty; 
then RNIN ~ RdN. Hence 

(HNIN)(RdN) ~ (HR)NIN = SIN, 

which implies that HNIN is an !r-covering subgroup of GIN. 
(ii) First of all observe that HI = HN because HI IN E!r and H ~ HI' 

Assume that H ~ S ~ G and put R = Sty. Obviously HdN is an !r-covering 
subgroup of SNIN and SNIRN E!r; therefore SN = HIRN = HRN and 
S = S (1 (HRN) = (HR)(S (1 N). In addition S (1 HI = S (1 (HN) = H(S (1 N), 
so (S (1 HdR = S. Consequently S (1 HdR (1 HI ~ SIR E !r. Since H is an 
!r-covering subgroup of S (1 HI' it follows that S (1 HI = H(R (1 HI) and 
hence that S = (S (1 HI)R = HR, as we wanted to show. 0 

We come now to the fundamental theorem on !r-covering subgroups 
which yields numerous families of conjugate subgroups in a finite soluble 
group. 

9.5.4 (Gaschiitz). Let !r be a formation. 

(i) If every finite group has an !r-covering subgroup, then !r is saturated. 
(ii) If !r is saturated, every finite soluble group G possesses !r-covering sub

groups and any two of these are conjugate in G. 

Proof. (i) Let G be a finite group such that GIFrat G E !r. If H is an !r
covering subgroup of G, then G = H(Frat G), which implies that G = H by 
the nongenerator property of Frat G. Thus G E !r and !r is saturated. 
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(ii) This part will be established by induction on I GI. If G E ~, then G 
is evidently the only ~-covering subgroup, so we shall exclude this case. 
Choose a minimal normal subgroup N of G. Then by induction GIN has an 
~-covering subgroup HdN. 

Suppose first that GIN ¢ iJ, so that Hl =f. G. By induction Hl has an 
iJ-covering subgroup H. We deduce directly from 9.5.3(ii) that H is an iJ
covering subgroup of G. Now let Hl and H2 be two iJ-covering subgroups 
of G. By 9.5.3(i) the subgroups H1NIN and H2NIN are iJ-covering sub
groups of GIN, whence they are conjugate, say H1N = H~N where g E G. 
Now H1N =f. G because GIN ¢ iJ. Hence Hl and H~, as iJ-covering sub
groups of H1N, are conjugate, which implies that Hl and H2 are conjugate. 

Finally, assume that GIN E iJ. Then 9.5.2 shows that there is a comple
ment K of N in G. Moreover K must be maximal in G since N is minimal 
normal. Since GIN E iJ, we have GIj = Nand G = KGIj. Therefore, since K 
is maximal in G, it is an iJ-covering subgroup of G. If H is another such 
subgroup, then G = HN, while H!l N = 1 since N is abelian. Applying 9.5.2 
we conclude that Hand K are conjugate. 0 

There is a simple but useful application of 9.5.4. 

9.5.5. Let iJ be a saturated formation and G a finite soluble group. If N <J G 
then each iJ-covering subgroup of GIN has the form HNIN where H is an 
iJ-covering subgroup of G. 

Proof. Let KIN be an iJ-covering subgroup of GIN and let Hl be one of G. 
Then H1NIN is an iJ-covering subgroup of GIN, so H1NIN is conjugate to 
K IN by 9.5.4. Hence K = (H1N)g = HfN for some g in G. Define H to be 
ffl· 0 

(j-Projectors 

Let iJ be a formation. A subgroup H of a finite group G is called an iJ
projector if HNIN is maximal iJ-subgroup of GIN whenever N <J G. 

There is a close connection between iJ-covering subgroups and iJ-projec
tors, as the next theorem indicates. 

9.5.6 (Hawkes). Let iJ be a formation and let G be a finite soluble group. 

(i) Every ~-covering subgroup of G in an iJ-projector. 
(ii) If iJ is saturated, every iJ-projector of G is an iJ-covering subgroup. 

Before commencing the proof we must establish an auxiliary result. 

9.5.7 (Carter-Hawkes). Let iJ be a saturated formation and G a finite soluble 
group. If H is an iJ-subgroup such that G = H(Fit G), then H is contained in 
an iJ-covering subgroup of G. 



9.5. Formations 281 

Proof. Let us argue by induction on IGI > 1. Obviously we may assume 
that G rt IY. Let N be a minimal normal subgroup of G. Then HNIN inherits 
the hypotheses on H , so by induction it is contained in some IY-covering 
subgroup of GIN . The latter will by 9.5.5 be of the form KNIN where K is 
an IY-covering subgroup of G. Consequently H ~ KN. 

Suppose that KN < G. Then by induction hypothesis H is contained in 
some IY-covering subgroup M of KN. But evidently K is an IY-covering sub
group of KN and as such is conjugate to M. This shows M to be an IY
covering subgroup of G. 

We may therefore assume that KN = G. Let F = Fit G. Now N ~ F 
since G is soluble, and indeed N ~ (F because 1 -# N n (F <J G. Therefore 
K n F <J KN = G. If K n F -# 1, we can apply the induction hypothesis to 
GIK n F, concluding that H ~ T where TIK n F is an IY-covering subgroup 
of GIK n F. Thus TIj ~ K. Also T covers G/(K n F)N ElY, so G = TN and 
TI T n N ~ K IK nNE IY. Thus TIj ~ K n N. But K n N = 1 since the alter
native is N ~ K, which leads to G = K E IY. Therefore TIj = 1 and T ElY. It 
is now clear that T is an IY-covering subgroup of G. 

Consequently we can assume that K n F = 1. Hence F = (KN) n F = N. 
Then G = HN and H is maximal in G: for H -# G since G rt IY. Finally GIj = 
N since GIN E IY. Hence G = HGIj and H itself is an IY-covering subgroup 
cl~ 0 

Proof of 9.5.6. (i) Let H be an IY-covering subgroup of G and let N <J G. If 
HN ~ K and KIN ElY, then H covers K IN and K = HN. Hence HNIN is a 
maximallY-subgroup of GIN and H is an IY-projector. 

(ii) We shall argue by induction on I GI > 1. Assume that H is an IY-pro
jector of G and let N be a minimal normal subgroup of G. Then one easily 
verifies that HNIN is an IY-projector of GIN. By induction hypothesis 
HN IN is an IY-covering subgroup of GIN . 

By 9.5.5 we can write M = HN = H*N where H* is an IY-covering 
subgroup of G. Since N is abelian, it is contained in Fit M, and M = 
H(Fit M) = H*(Fit M). By 9.5.7 there is an IY-covering subgroup H of M 
containing H . But H is a maximal IY-subgroup of G by the projector prop
erty, so H = H. But H* is clearly an IY-covering subgroup of M. It follows 
now from 9.5.4 that Hand H* are conjugate in M. Obviously this means 
that H is an IY-covering subgroup of G. 0 

Carter Subgroups 

The most important instance of the preceding theory is when IY is the class 
of finite nilpotent groups. Then IY-covering subgroups and IY-projectors 
coincide and form a single conjugacy class of self-normalizing nilpotent sub
groups in any finite soluble group. The existence of these subgroups was 
first established by R.W. Carter in 1961. 
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A Carter subgroup of a group is defined to be a self-normalizing nilpotent 
subgroup. 

9.5.8 (Carter). Let G be a finite soluble group. 

(i) The Carter subgroups of G are precisely the covering subgroups (or pro
jectors) for the formation of finite nilpotent groups. 

(ii) Carter subgroups are abnormal in G. 

Proof. (i) Let 91 be the formation of finite nilpotent groups and let H be an 
91-covering subgroup of G. Suppose that H < NG(H). Then there is a sub
group K such that H <l K and KIH has prime order. Now K = HR where 
R = KIJI. However R :::;; H, so K = H, a contradiction which shows that 
H = NG(H). Since H E 91, it is a Carter subgroup. 

Conversely, let H be a Carter subgroup of G and suppose that H :::;; S :::;; 
G. Write R = SIJI and assume that HR < S. Then there is a maximal sub
group M of S containing HR. Since SIR E 91, we have M <l S. Induction on 
the group order shows that H is an 91-covering subgroup of M. If XES, 
then HX is also an 91-covering subgroup of M and it is conjugate to H in M 
by 9.5.4. It follows that S :::;; NG(H)M = HM = M, which is false, indicating 
that H is an 91-covering subgroup of G. 

(ii) Again let H be a Carter subgroup. If H :::;; K :::;; G, then in fact K = 
NG(K) by the argument of the first paragraph. That H is abnormal in G is 
now a consequence of 9.2.11. 0 

Since a Carter subgroup of G is abnormal, it has a subgroup which is 
minimal with respect to being subabnormal in G. Remembering that the 
minimal subabnormal subgroups are precisely the system normalizers 
(9.2.15), we derive the following result. 

9.5.9. In a finite soluble group every Carter subgroup contains a system 
normalizer. 

In general the system normalizers are properly contained in the Carter 
subgroups (Exercise 9.5.8). However in the case of finite soluble groups of 
small nilpotent length quite a different situation prevails. 

9.5.10 (Carter). Let G be a finite soluble group of nilpotent length at most 2. 
Then the system normalizers coincide with the Carter subgroups of G. 

Proof. By hypothesis there exists a normal nilpotent subgroup M such that 
GIM is nilpotent. If N is a system normalizer of G, then N covers every 
central principal factor by 9.2.6 and we have G = N M. Denote by PI' . .. , Pk 
the distinct prime divisors of 1 G I. Let Ni and Mi be the unique Sylow p;
subgroups of the nilpotent groups Nand M respectively. Then Qi = MiNi 
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is a Hall p;-subgroup of G since G =NM. Thus {Ql' . .. , Qk} is a Sylow 
system of G. Now Mi<J G; hence N normalizes Qi and N :::;; NG(Qi) for all 
i. Since all system normalizers have the same order, being conjugate, it 
follows that N = nf=l NG(Q;). If g normalizes N, it also normalizes Ni and 
hence Qi. Thus g E Nand N is self-normalizing, which means that N is a 
Carter subgroup. Since system normalizers and Carter subgroups are conju
gate, the theorem follows. 0 

Fitting Classes and tY-Injectors 

A natural dualization of the theory of formations was given by Fischer, 
Gaschiitz, and Hartley ([a47]) in 1967. A class of finite groups ~ is called a 
Fitting class if it is closed with respect to forming normal subgroups and 
normal products of its members. For example, finite soluble groups and 
finite nilpotent groups form Fitting classes while finite super soluble groups 
do not (see Exercise 5.4.6). 

A subgroup H of a finite group G is called an ~-injector if H n S is a 
maximal ~-subgroup of S whenever S is a subnormal subgroup of G. Thus 
an ~-injector is the natural dual of an ~-projector. 

The analogue of 9.5.4 asserts that if ~ is any Fitting class, every finite 
soluble group contains a unique conjugacy class of ~-injectors. (No extra 
hypothesis on ~ corresponding to saturation is required.) When ~ is the 
class of finite nilpotent groups, it turns out that the ~-injectors are precisely 
the maximal nilpotent subgroups which contain the Fitting subgroup. These 
usually differ from the ~-projectors, that is, from the Carter subgroups. 

EXERCISES 9.5 

1. Give an example of a formation of finite soluble groups that is not subgroup 
closed. [Hint: Let ~ be the class of finite soluble groups G such that no G
principal factor in G' is central in G.] 

2. If ~ is a formation and H is an ~-covering subgroup of a finite group G, then H 
is a maximal ~-subgroup. 

3. Let ~ be a formation containing all groups of prime order. If H is a subgroup 
which contains an ~-covering subgroup of a finite group G, then G = NG(H). 
Deduce that if G is soluble, then ~-covering subgroups are abnormal in G. 

4. Show that every formation which is locally defined by formations ~p satisfies the 
hypothesis of Exercise 9.5.3. 

5. Prove that a finite soluble group has a set of conjugate abnormal supersoluble 
subgroups. Need all abnormal supersoluble subgroups be conjugate? 

6. Identify the Carter subgroups of groups S3, A4, and S4. 

7. Prove that Ss has Carter subgroups all of which are conjugate, but that As has 
no Carter subgroups. 
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8. Give an example of a finite soluble group in which the Carter subgroups are not 
system normalizers. 

9. Let G be a finite soluble group with abelian Sylow subgroups. Prove that each 
Carter subgroup contains exactly one system normalizer. 

10. If G is a finite soluble group of nilpotent length ::;; 2, prove that every sub
abnormal subgroup is abnormal. 

11. A group is called imperfect if it has no nontrivial perfect quotient groups. Prove 
that finite imperfect groups form a saturated formation. 



CHAPTER 10 

The Transfer and Its Applications 

The subject of this chapter is one of the basic techniques of finite group 
theory, the transfer homomorphism. Since the kernel of this homomorphism 
has abelian quotient group, it is especially useful in the study of insoluble 
groups. It will be seen that this technique underlies many deep and impor
tant theorems about finite groups. 

10.1. The Transfer Homomorphism 

Let G be a group, possibly infinite, and let H be a subgroup with finite 
index n in G. Choosing a right transversal {t 1, ... , tn } to H in G, we have 
Htig = Ht(i)9 with 9 E G, where the mapping i H (i)g is a permutation of the 
set {l, 2, . .. , n}. Thus tigt~)~ E H for all 9 in G. 

Suppose that (): H --+ A is a given homomorphism from H to some abelian 
group A. Then the transfer of () is the mapping 

()* : G --+ A 
defined by the rule 

n 
6' n ( -1)6 X = tixt(i)x' 

i=1 

Since A is abelian, the order of the factors in the product is irrelevant. 

10.1.1. The mapping ()*: G --+ A is a homomorphism which does not depend on 
the choice of transversal. 

Proof. Let us first establish independence of the transversal. Let {t~ , .. . , t~} 
be another right transversal to H in G and suppose that Hti = Ht; and 
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t; = hit, with h, in H. Then, if x E G, 

, ,-1 h ( -1 )h-1 t,xt(,)x = ,t,xt(i)x (,)x' 

and therefore, since A is commutative, 

n n n 

fl ( ' '-1)6 fl ( -1)6 fl h6h-6 t,xt(i)x = t,xt(,)x' ,(,)x . (1) 
,=1 ,=1 ,=1 

Now as i runs over the set {1,2, ... ,n}, so does (i)x, from which it fol
lows that the second factor in (1) is trivial. Hence the uniqueness of ()* is 
established. 

Next, if x and yare elements of G, we calculate that 

n 

(xy)6* = fl (t,xyt~)~y)6 
,=1 

n n 

= fl (t,Xt~)~)6. fl (tjytU~y)6 
,=1 j=1 

= X6*y6*, 

and ()* is a homomorphism as claimed. D 

Computing ()* 

We continue the notation used above. The value of ()* at x can often be 
effectively computed by making an appropriate choice of transversal; this 
choice will not affect ()* by 10.1.1. 

Consider the permutation of the set of right co sets {Htl' .. . , Htn } pro
duced by right multiplication by x E G. A typical (x)-orbit will have the 
form 

(2) 

here Xl, is the first positive power of x such that Hs,x l, = Hs" and of course 
I7=1 1, = n. The elements s,x j , i = 1, ... ,k, j = 1, . . . , 1, - 1 form a right 
transversal to H. Using this transversal we calculate x 6*. Since Hs,x l, = Hs" 
the contribution of the orbit (2) to x 6* is 

((s,x)(s,xr 1 . ,. (Si XI ,-1 )(Si XI,-1 r1(SiXI'sil »6, 

which reduces to (SiXI'sil t Therefore 

We shall give this important formula the status of a lemma. 
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10.1.2. Let the x-orbits of the set of right cosets of H in G be 

i = 1, . .. , k. If f): H -> A is a homomorphism into an abelian group, then 
k 

x o* = Il (SiXI'si1 t 
i=l 

Transfer into a Subgroup 
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The most important case of the transfer arises when f) is the natural homo
morphism from H to H ab , that is, X O = H'x. In this case f)* : G -> Hab is 
referred to as the transfer of G into H. 

Two cases of special interest are when H is central in G and when H is a 
Sylow subgroup of G. We consider the central case first. 

10.1.3 (Schur). Let H be a subgroup of the center of a group G and suppose 
that IG: HI = n is finite. Then the transfer r of G into H is the mapping 
x f--> x". Hence this mapping is an endomorphism of G. 

Proof. Continuing the notation of 10.1.2, we note that SiXl'si1 E H since 
it is a product of elements of H. It follows that Xl , E H and hence that 
sixl'si1 = Xl,. Finally xt = Il~= l Xl, = x". 0 

We pause to mention a corollary of 10.1.3 which will be important in the 
study of finiteness properties of a group that refer to conjugates (Chapter 
14). 

10.1.4 (Schur). If G is a group whose center has finite index n, then G' is finite 
and (G')" = 1. 

Proof. Let C= ( G and write GjC={Cg1 , ... ,Cg"}. For any Ci in C we 
have, on account of the fundamental commutator identities, the equality 
[Cigi, cjgJ = [gi' gj] , which implies that G' is generated by the m elements 
[gi' gj], i < j. Since G'jG' n C ~ G'CjC, which is finite, we deduce from 
1.6.11 that G' n C is a finitely generated abelian group. From 10.1.3 we 
know that the mapping x f--> x" is a homomorphism from G to C, and since 
C is abelian, G' must be contained in the kernel; therefore (G' )" = 1. That 
G' n C, and hence G', is finite is now a consequence of 4.2.9. 0 

Transfer into a Sylow p-Subgroup 

If P is a Sylow p-subgroup of a finite group G and r: G -> Pab is the transfer, 
then Gj Ker r is an abelian p-group. With this in mind we define 

G'(p) 
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to be the intersection of all normal subgroups N such that G/N is an abelian 
p-group. Thus G/G'(p) is the largest abelian p-quotient of G. 

10.1.5. Let 't: G ~ Pab be the transfer of a finite group G into a Sylow p
subgroup P. Then G'(p) is the kernel of 't and P n G' is the kernel of the 
restriction of 't to P. 

Proof. Write K for Ker't. In the first place G'(p) ~ K because G/K is an 
abelian p-group. 

Decompose the set of right co sets of P into x-orbits as in 10.1.2; then in 
the notation of that result 

k 

xt = P' n SiXlisi1. 
i=1 

Now G = PG'(p), so we may choose the Si to lie in G'(p). On the basis of 
this equation we may write xt = P'xnc where n = IG: PI and c E G'(p). Thus 
x E K implies that xn E P'G'(p) = G'(p). It follows that K/G'(p) is a p'-group, 
a conclusion which can only mean that K = G'(p). 

Finally P n Ker 't = P n G'(p) = P n G' since G'(p)/G' is a p '-group. 0 

It follows from 10.1.5 that 1m 't ~ G/G'(p): obviously the latter is iso
morphic with the Sylow p-subgroup of Gab' that is, with PG'/G'. Hence 

1m 't ~ P/PnG'. (3) 

Groups with an Abelian Sylow p-Subgroup 

These ideas may be applied with particular advantage in the presence of an 
abelian Sylow p-subgroup. 

10.1.6. Let the finite group G have an abelian Sylow p-subgroup P and let N 
denote NG(P). Then P = Cp(N) x [P, N]. Moreover, if 't: G ~ P is the trans
fer , 1m 't = Cp(N) and P n Ker 't = [P, N]. 

Proof. As in 10.1.2 we can write xt = n~=1 Si Xlisi1 . Let x E P and write y for 
Xli. Then y and ySi' both belong to P. Since P is abelian, the subgroup 
C = CG(ySi') contains ( P, PSi ') , and by Sylow's Theorem P and pSi' are 
conjugate in C, say, pSi' = pc where c E C. Thus ri = si1c-1 EN. Since 
ySi ' = y", we compute that 

k 

xt = n (Xli)'i = xnd, 
i=1 

(4) 

where n = IG: PI and d = n~=1 [x\ rJ E [P, N]. It follows successively that 
xn E pt[P, N] and P = pt[P, N] because (n, p) = 1. Suppose next that 
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xt E Ker r where x E P; then 1 = (xT = (xT because (G')t = 1. Conse
quently xt = 1 and pt n Ker r = 1. Since G = PG'(p), and thus 1m r = pt, 
we have P = (1m r) x [P, N]. 

Next we claim that 1m r <J N. For if x E P and YEN, then 
n n 

(xt)Y = TI (tiXt(i)~)Y = TI tfxY(t~)xr1, 
i=l i=l 

where {t1' ... , tn } is any right transversal to P. But {tf, ... , t~} is also a right 
transversal because y E NG(P). Thus (x'}Y = (xY)'-see also Exercise 10.1.14. 
Hence 1m r <J N. 

We deduce that [1m r, N] :::;; 1m r n [P, N] = 1 and 1m r :::;; Cp(N). On 
the other hand, if x E Cp(N), then (4) shows that xt = x", which 
yields x E 1m rand Cp(N) :::;; 1m r. Hence Cp(N) = 1m r. Finally [P, N] :::;; 
P n Ker r, and also IP: P n Ker rl = Iptl = IP: [P, N]I since P = p t X 

[P, N]. Therefore P n Ker r = [P, N]. D 

10.1.7 (Taunt). Let G be a finite group all of whose Sylow subgroups are 
abelian. Then G' n (G = 1 and (G is the hypercenter of G. 

Proof. Let p be a prime and P a Sylow p-subgroup of G. Then 

(G' n (G) n P :::;; Cp(NG(P)) n (P n G') = 1 

by 10.1.5 and 10.1.6. Since this is true for every prime, it follows that 
G' n (G = 1. Finally [(2G, G] :::;; G' n (G = 1 and therefore (G = (2G. D 

The following useful result is an easy consequence of 10.1.6. 

10.1.8 (Burnside). If for some prime p a Sylow p-subgroup P of a finite group 
G lies in the center of its normalizer, then G is p-nilpotent. 

Proof. By hypothesis P is abelian and P = Cp (NG (P)). We deduce at once 
from 10.1.6 that P n Ker r = 1 where of course r: G ~ P is the transfer. This 
means that Ker r is a p'-group, which in turn implies that G is p-nilpotent 
since GjKer r ~ 1m r, a p-group. D 

While much more powerful criteria for p-nilpotence are available, as the 
following sections will show, 10.1.8 provides significant information about 
the orders of finite simple groups. 

10.1.9. Let p be the smallest prime dividing the order of the finite group G. 
Assume that G is not p-nilpotent. Then the Sylow p-subgroups of G are not 
cyclic. Moreover 1 G 1 is divisible by p3 or by 12. 

Proof. Let P be a Sylow p-subgroup of G and write Nand C for the nor
malizer and centralizer of P respectively. Then C i= N by 10.1.8. Now NjC 
is isomorphic with subgroup of Aut P, by 1.6.13. If P is cyclic, then P:::;; C 
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and N IC has order dividing p - 1 by 1.5.5. However p is the smallest prime 
divisor of I GI, so we are forced to the contradiction N = C. Hence P is not 
cyclic. 

Next suppose that p3 does not divide IGI. Then P must be an elementary 
abelian p-group of order p2 by 1.6.15 and the noncyclicity of P. Hence 
Aut P ~ GL(2, p), which has order (p2 - 1)(p2 - p). Since C ~ P, it follows 
that IN: CI divides (p - W(p + 1), which, if p were odd, would yield a 
smaller prime divisor of IGI than p. Hence p = 2 and IN: CI = 3, so that IGI 
is divisible by 12. 0 

If G is a finite simple group of composite order, then 10.1.9 tells us that 
IGI is divisible by 12 or the cube of the smallest prime dividing the order of 
G. However by the Feit-Thompson Theorem this smallest prime is actually 
2. So in fact the order of G is divisible by either 8 or 12. In addition the 
Sylow 2-subgroups of G cannot be cyclic. For a more precise result see 
Exercise 10.3.1. 

Finite Groups with Cyclic Sylow Subgroups 

We have developed sufficient machinery to classify all finite groups having 
cyclic Sylow subgroups. The definitive result is 

10.1.10 (Holder, Burnside, Zassenhaus). If G is a finite group all of whose 
Sylow subgroups are cyclic, then G has a presentation 

G = <a, blam = 1 = bn, b-1ab = ar ) 

where rn == 1 (mod m), m is odd, 0 ::;; r < m, and m and n(r - 1) are coprime. 
Conversely in a group with such a presentation all Sylow subgroups are 

cyclic. 

This means that a finite group whose Sylow subgroups are cyclic is an 
extension of one cyclic group by another; such groups are called metacyclic. 
In particular the group is supersoluble. 

Proof of 10.1.10. (i) Assume that all the Sylow subgroups of G are cyclic. If 
G is abelian, then, being the direct product of its Sylow subgroups, G is 
cyclic and has a presentation of the required sort with m = 1. Thus we may 
assume that G is not abelian. 

Let p denote the smallest prime divisor of IGI. Then, according to 10.1.9, 
the group G is p-nilpotent and GIOp.(G) is a p-group. By induction on the 
group order G is soluble; let d be the derived length. Then G(d-l) is abelian 
and therefore cyclic, from which it follows that Aut(G(d-l») is abelian. How
ever this means that G' centralizes G(d-l), which, if d > 2, gives the contra
diction G(d-l) ::;; (G')' n ((G') = 1 by 10.1.7. So it has been proved that d = 2 
and Gis metabelian. Hence GIG' and G' are cyclic groups. 
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If Q is a Sylow q-subgroup of G, then 10.1.6 implies that either Q ~ G' or 
Q n G' = 1: for Q, being cyclic, does not admit a nontrivial direct decompo
sition. Hence q cannot divide both m = IG'I and n = IG: G'I; consequently 
these integers are coprime. 

Let G' = ( a) and GIG' = ( bl G'). The order of bl must be expressible in 
the form ml n where ml divides m. Now b = br" has order nand bG' gener
ates GIG' because (m l , n) = 1. Therefore G = ( a, b). Also ab = ar where the 
integer r satisfies rn == 1 mod m and 1 < r < m. Suppose that there is a 
prime q dividing m and r - 1. Then r == 1 mod q and if a l = am1q, we should 
have lall = q and at = a~ = ai ' whence a l E G' n(G = 1 by 10.1.7; but this 
would mean that lal = mlq, a contradiction which shows that (m, r - 1) = 1. 
Since (m, r) = 1, it follows that m is odd. 

(ii) Conversely assume that G has the given presentation and that P is a 
Sylow p-subgroup. Then ( a) <J G and G is finite of order mn, while either 
P ~ ( a) or P n ( a) = 1 since (m, n) = 1. In either case P is cyclic. 0 

Prominent among the groups with cyclic Sylow subgroups are the groups 
with square-free order: such groups are therefore classified by 10.1.10. 

EXERCISES 10.1 

1. Let H ~ K ~ G where G is finite. Denote the transfer of G into K by 'G, K' Prove 
that 'G, K'K ,H = 'G, H (with a slight abuse of notation). 

2. If G is a group whose center has finite index n, prove that IG' I divides nn[1og2 nl- n+2. 

[Hint: Use Exercise 1.3.4.] 

*3. If G/(G locally finite n-group (that is, finitely generated subgroups are finite n
groups), prove that G' is a locally finite n-group. 

4. If G is a simple group of order p2qr where p, q, r are primes, prove that G ~ As. 
[Hint: IGI is divisible by 12.] 

5. There are no perfect groups of order 180, (so a nonsimple perfect group of order 
~ 200 has order 1 or 120-see Exercise 5.4.4). 

6. Let H be a p'-group of automorphisms of a finite abelian p-group A. Prove that 
A = [A, H] x CA(H). If H acts trivially on A[p], prove that H = 1. 

7. Let N be a system normalizer of a finite soluble group G which has abelian 
Sylow subgroups. Prove that G = NG' and N n G' = 1. 

8. (Taunt). Let G be a finite soluble group with abelian Sylow subgroups. If L<J G 
and L is abelian, prove that L = (L n G') x (L n (G). Deduce that L = 
(L n (G) x (L n ( G' ) x .. . x (L n (G(d-l») where d is the derived length of G. 
[Hint : Let N be a system normalizer. Apply Exercise 10.1.7 and show that 
LnN = Ln ( G.] 

9. Let G(m, n, r) be a finite group with cyclic Sylow subgroups in the notation 
of 10.1.10. Prove that G(m, n, t) ~ G(m, ii, i') if and only if m = m, n = ii and 
<r + m7L ) = ( i' + m7L ) in 7L! . 
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10. How many nonisomorphic groups are there of order 21O? 

11. Let G be a finite group with cyclic Sylow subgroups. Prove that every subnor
mal subgroup of G is normal. 

12. (Burnside). Let n be a positive integer. Prove that every group of order n is cyclic 
if and only if (n, cp(n)) = 1 where cp is the Eulerian function. 

13. What conditions on the integer n will ensure that all groups of order n are 
abelian? 

14. Let H be a subgroup of finite index in a group G. If'r is the transfer of G into H 
and Y E NG(H), prove that (xt)Y = (xy)t for all x in G. 

15. Let G be a group, H a subgroup with finite index in G, and A any abelian group. 
Then restriction to H yields a homomorphism Res: Hom(G, A) ..... Hom(H, A). 
The corestriction map Cor: Hom(H, A) ..... Hom(G, A) is defined by e H e* where 
e* is the transfer of e. Prove that Cor is a homomorphism and that Res 0 Cor is 
multiplication by IG: HI in Hom(G, A). 

10.2. Griin's Theorems 

Two important and powerful transfer theorems due to O. Grlin will be 
proved in this section. These theorems provide us with more useful expres
sions for the kernel and image of the transfer into a Sylow subgroup. 

10.2.1 (Grlin's First Theorem). Let G be a finite group and let P be a Sylow 
p-subgroup of G. If N = NG(p) and r: G -+ Pab is the transfer, then 

P n Ker r = P n G' = <P n N', P n (P,)glg E G). 

Proof. In the first place P n Ker r = P n G' by 10.1.5. Define D to be the 
subgroup generated by P n N' and all P n (P')9 with g E G. Then certainly 
D :5: P n G' and D <l P. What we must prove is that P n G' :5: D. Assuming 
this to be false, let us choose an element u of least order in (P n G')\ D. 

We shall calculate u t by a refinement of the method of 10.1.2. First of all 
decompose G into (P, P)-double cosets PxjP, j = 1, 2, ... , s. Now a double 
coset PxP is a union of cosets of the form Pxy, YEP, and the latter are 
permuted transitively by right multiplication by elements of P. Hence the 
number of cosets of the form Pxy, YEP, with Px fixed, divides IPI and 
equals a power of p, say p'. Under right multiplication by u the cosets Pxy 
fall into orbits of the form 

i = 2, ... , r, (5) 

where Yi E P and upm, is the smallest positive power of u such that 
PXYiUpm, = PXYi' These orbits are to be labeled so that m1 :5: m2 :5: . . . :5: mr • 

Replacing x by XY1 ' we can suppose Yl = 1. The elements XYiUj, i = 1, 
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2, ... , r, j = 0, 1, .. . , pm; - 1 form part of a right transversal to P which may 
be used to compute ut . 

Let us calculate the contribution of the u-orbit (5) to ut • This is P'vi 

where 
(6) 

an element of P. Taking i = 1 we deduce that (Upm1y-1 E P since Yl = 1. Now 
m1 ~ mi by our ordering, so (upm;)X-1 E P for all i and it follows from (6) that 
c = [u pm\ Yi1 y-I E P. In addition c E (p'y-I, which means that c E D. Con
sequently Vi == (upm;),,-I mod D. The total contribution to ut of the double 
coset PxP is therefore P'w(x) where 

r 

w(x) = n Vi == (Up'y-I mod D (7) 
i=1 

since I,'i=1 pm; = pt. 
Now suppose that t > 0. Since w(x) E P, we have (Up'y-I E P (") Ker r by 

(7), and by minimality of lui we obtain (up')X-1 ED. For the same reason 
uP' E D. Thus we certainly have w(x) == 1 == uP' mod D. 

If, on the other hand, t = 0, then PxP = Px, which is equivalent to x E N. 
Hence PxP contributes P'xux-1 = P'u[u, X-I] to u t : of course [u, X-I] E 

P (") N' ~ D. Again we have w(x) == uP' mod D. 
Thus O:i=1 w(Xj) == u' mod D where I = I,J=1 ptj and ptj is the number of 

co sets PXjY in PxjP. Then I = I G : P I, the total number of right co sets of 
P in G. Since u E P (") G', we have u t = P' ~ D. Hence u' E D, which yields 
u E D since p does not divide I. D 

The next result illustrates the usefulness of Grlin's theorem. 

10.2.2 (Wong). Suppose that G is a finite group which has a Sylow 2-subgroup 
P with a presentation <a, bla2" = 1 = b2 , ab = a1+2"-I) where n > 2. Then G 
is 2-nilpotent and, in particular, G cannot be simple. 

Proof. Let N denote NG(P), The Schur-Zassenhaus Theorem implies that 
there is a subgroup Q such that N = QP and Q (") P = 1; of course Q has 
odd order. However Q/CQ(P) is isomorphic with a subgroup of Aut P and 
by Exercises 5.3.5 the latter is a 2-group. Thus we are forced to conclude 
that Q = CQ(P) and N = Q x P. 

Applying 10.2.1 we have 

P (") G' = <P (") N', P (") (P')9lg E G). 

Now P (") N' = P (") (Q' x P') = <a2"-'), a group of order 2, which allows 
us to conclude that P (") G' is generated by elements of order 2. Since all 
the elements of P with order 2 belong to Po = <a2"-', b), it follows that 
P (") G' ~ Po. 
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Let LIG' be the odd component of Gab and set S = <a2 , b)L, evidently 
a normal subgroup of G. Now P 11 S = <a2, b) (P 11 L) and PilL = 
P 11 G' ~ Po, from which it follows that P 11 S = <a2 , b) = Pl , say. Pl is a 
Sylow 2-subgroup of S since S <l G. 

From the presentation one sees that Pl is abelian: indeed it is the direct 
product of a cyclic group of order 2n- 1 > 2 and a group of order 2. Conse
quently Aut Pi is a 2-group by Exercise 1.5.l3. The argument of the first 
paragraph now shows that Pi is a direct factor of Ns(Pd and we deduce 
from 10.1.8 that S is 2-nilpotent. Since 1 G : SI ~ 2, the same holds for G. D 

There has been much work on the classification of finite simple groups 
of composite order according to the nature of their Sylow 2-subgroups. It 
was remarked above that the Sylow 2-subgroups of such a group cannot be 
cyclic; of course 10.2.2 excludes a further set of 2-groups. 

For example, we mention that Brauer and Suzuki have shown that a 
(generalized) quaternion group Q2n cannot be the Sylow 2-subgroup of a 
finite simple group. In another investigation Gorenstein and Walter have 
proved that PSL(2, pm), p #- 2, and A7 are the only finite simple groups to 
have a dihedral Sylow 2-subgroup. The proofs of these results are difficult 
and cannot be discussed here. For more information on these questions 
consult [b26]. 

Weak Closure and p-Normality 

If Hand K are subgroups of a group, then H is said to be weakly closed in 
K if H ~ K and if H9 ~ K always implies that H = H9. Otherwise stated H 
is weakly closed in K if K contains H but no other conjugate of H. 

If P is a Sylow p-subgroup of G and if the center of P is weakly closed in 
P, then G is said to be p-normal. Among p-normal groups are groups with 
abelian Sylow p-subgroups and groups in which distinct Sylow p-subgroups 
have trivial intersection. 

10.2.3 (Griin's Second Theorem). Let the finite group G be p-normal and 
let P be a Sylow p-subgroup of G. If L = NG(,P), then P 11 G' = PilL' and 
GIG'(p) ~ LIL'(p). 

Proof. In the first place GIG'(p) ~ PIP 11 G' by 10.1.5 and (3). In addition, 
since P ~ L, the subgroup P is a Sylow p-subgroup of Land LIL'(p) ~ 
PIP n L'. The theorem will therefore follow should we succeed in proving 
that P n G' = P n L'. What is more, by Griin's First Theorem it suffices 
to show that P n N' ~ PilL' and P n (P')9 ~ P n L' for all g in G, where 
N = NG(P), Since ,P is characteristic in P, it is certainly true that N ~ L 
and P n N' ~ PilL'. Thus we can concentrate on I = P 11 (P')9. 



10.3. Frobenius's Criterion for p-Nilpotence 295 

Let Po = ,P and M = NG(I). Then Po .::;:; M and Pg .::;:; M since Pg = '(J>II). 
Let P1 and P2 be Sylow p-subgroups of M containing Po and Pg respec
tively. Then of course P1 = P~ for some h in M. Now PI .::;:; px for some x 
in G and Po .::;:; PI .::;:; r, so that Po and PO-' are both contained in P. By 
p-normality Po = Po-'. In addition Pgh .::;:; P~ = PI .::;:; px, so that pt = Po = 
Po by p-normality again. Thus gh E L. It now follows that [= [h = 
ph (') (P,)gh .::;:; L' since P .::;:; L. Finally [ .::;:; P (') L' as required. 0 

EXERCISES 10.2 

1. Show that 10.2.2 does not hold if n = 2. 

2. Let P be a finite 2-group such that Aut P is a 2-group and P cannot be generated 
by elements of order dividing IP'I. Prove that there is no finite simple group 
whose Sylow 2-subgroups are isomorphic with P. Give some examples. [Hint: 
Apply Grlin's First Theorem.] 

3. Prove that a p-nilpotent group is p-normal. 

4. Let G be a finite p-normal group. If P is a Sylow p-subgroup and L = NG(,P), 
prove that L 11 G'(p) = L'(p). 

10.3. Frobenius's Criterion for p-Nilpotence 

Here we derive a useful criterion for p-nilpotence, describing in the sequel 
some of its many applications. The following technical lemma is used in the 
proof. 

10.3.1 (Burnside). Let PI and P2 be Sylow p-subgroups of a finite group G. 
Suppose that H is a subgroup of PI (') P2 which is normal in PI but not in P2 • 

Then there exists a p-subgroup M, a prime q # p and a q-element g such that 
H.::;:; M and g E NG(M)\CG(M). 

Proof. Write K = Np2(H) and assume that P2 has been chosen so that K 
is maximal subject to P2 -t NG(H). Since K .::;:; NG(H) and PI is a Sylow p
subgroup of NG(H), there is an x in NG(H) such that K .::;:; Pf by Sylow's 
Theorem. Now H <J PI implies that H<JPf, which indicates that we may 
replace PI by Pf without disturbing the hypotheses. Hence we can assume 
that K .::;:; PI' so that K .::;:; PI (') P2 .::;:; K and K = PI (') P2 • Since PI # P2 , it 
follows that K < PI and K < P2 • 

Apply the normalizer condition to Pi' i = 1, 2: then K < Ni .::;:; Pi where 
Ni = Npi(K). Hence K <J L = (NI' N2 ). Notice that L cannot normalize H 
because, if it did, N2 would be contained in Np2(H) = K. 

Next NI is contained in a Sylow p-subgroup of L, which in turn is con
tained in some Sylow p-subgroup P3 of G. Then K < NI .::;:; Np3(H); this, in 
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view of the maximality of K, implies that P3 normalizes H. It follows that 
there is a Sylow p-subgroup of L which normalizes H. 

Combining the results of the last two paragraphs we conclude that there 
exist a prime q -:f p and a Sylow q-subgroup Q of L such that Q does not 
normalize H. Let g E Q\NG(H) and put M = H(g). Since H <J K <J Land 
Q ~ L, we see that M is a p-group. Obviously g E NG(M), but g ¢ CG(M) 
since g ¢ CG(H). 0 

10.3.2 (Frobenius). A finite group G is p-nilpotent if and only if every p
subgroup is centralized by the p'-elements in its normalizer. 

Proof. Assume that G is p-nilpotent and that P is a p-subgroup. Then 
all the p'-elements belong to Op,(G), and we have [Op,(G) n NG(P), P] ~ 
P n Op,(G) = 1, which establishes the necessity of our condition. 

Conversely assume that the condition is satisfied in G and let P be a 
Sylow p-subgroup. The p-nilpotence of G will be established by induction 
on IGI; of course we may suppose that IGI -:f 1 and !PI -:f 1. Write C = (P 
and L = NG(C)' Then 1 -:f C<J L and PIC is a Sylow p-subgroup of LIe. 
We verify easily that LIC inherits the condition imposed on G; therefore 
LIC has a normal Hall p'-subgroup Qle. By the Schur-Zassenhaus Theo
rem there is a complement M of C in Q. But since M normalizes C and is a 
p'-group, it centralizes C; thus Q = M x C. Evidently IL: MI is a power of 
p, and in addition M is characteristic in Q and hence normal in L. From 
these properties there follows the equality L = PM. Consequently P n L' ~ 
Pn(P'M) = P' and PnL' = P'. 

By 10.3.1 and the hypothesis a normal subgroup of a Sylow p-subgroup 
of G is normal in every Sylow p-subgroup that contains it. It follows that 
every Sylow subgroup containing C is itself contained in L. But L = PM 
and both P and M centralize C, so that C ~ (L. Combining this with the 
previous sentence we conclude that C lies in the centre of every Sylow p
subgroup which contains it, a property t4at is manifestly equivalent to weak 
closure of C in P, that is, to p-normality of G. 

We are now in a position to apply Griin's Second Theorem, concluding 
that P n G' = P n L'. But we have seen that P n L' = P', so in fact P' = 

P n G', which is a Sylow p-subgroup of G' and hence of G'(p). If G'(p) were 
equal to G, it would follow that P = P' and P = 1, contrary to assumption. 
Thus G'(p) is a proper subgroup and by induction on IGI it is p-nilpotent, 
which implies at once the p-nilpotence of G. 0 

Applications of Frobenius's Theorem 

10.3.3 (Ito). Let G be a finite group which is not p-nilpotent but whose maxi
mal subgroups are p-nilpotent. Then G has a normal Sylow p-subgroup P such 
that IG: PI is a power of a prime q -:f p. Moreover every maximal subgroup of 
G is nilpotent. 
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Proof. Since G is not p-nilpotent, 10.3.2 shows that there exist a p-subgroup 
P, a prime q # p and an element g of order qm such that g normalizes but 
does not centralize P. Now <g, P) cannot be p-nilpotent, by 10.3.2 again. 
Consequently G = <g, P) and P<J G. Hence IG: PI = Igl = qm and P is a 
Sylow p-subgroup. 

Let H be any maximal subgroup of G. Since H is p-nilpotent, H/Op,(H) is 
nilpotent. In addition H/H n P is nilpotent while P n Op,(H) = 1. It follows 
that H is nilpotent. 0 

Thus it emerges that a finite minimal non-p-nilpotent group is a minimal 
nonnilpotent group. Further structural properties can therefore be deduced 
from Exercise 9.1.11. 

10.3.3 has, in turn, application to groups whose proper subgroups are 
supersoluble. 

10.3.4 (Huppert). If every maximal subgroup of a finite group G is super
soluble, then G is soluble. 

Proof. Assume that G is insoluble and let p be the smallest prime dividing 
IGI. If Gis p-nilpotent, then Op,(G) # G, so that Op,(G) is supersoluble. Since 
G/Op,(G) is a p-group, the solubility of G follows. Hence G is not p-nilpotent. 
On the other hand, a maximal subgroup of G is supersoluble and hence 
p-nilpotent by 5.4.8. However 10.3.3 shows that G must be soluble. 0 

A good deal of structural information about finite minimal nonsuper
soluble groups is available: for details see [b6] (and also Exercise 10.3.10). 

On the basis of 10.3.4 an interesting characterization of finite super
soluble groups pertaining to maximal chains may be established. Here by a 
maximal chain in a group G we mean a chain of subgroups 1 = Mo < Ml < 
... < Mm = G such that M; is maximal in M;+l for each i. 

10.3.5 (Iwasawa). A finite group G is supersoluble if and only if all maximal 
chains in G have the same length. 

Proof. First let G be supersoluble. Since a maximal subgroup of a super
soluble group has prime index, the length of any maximal chain in G equals 
the number d of prime divisors of I GI, including multiplicities. 

Conversely, assume that G has the chain property but is not supersoluble. 
Let G be chosen of least order among such groups. Since subgroups inherit 
the chain property, G is a minimal nonsupersoluble group, so by 10.3.4 it is 
soluble. Therefore a composition series of G is a maximal chain and the 
length of each maximal chain equals the composition length, which is just d, 
the number of prime divisors of I GI. 

By 9.4.4 there exists a maximal subgroup M whose index is composite. 
On refinement of the chain 1 < M < G there results a maximal chain whose 
length is less than d, a contradiction. 0 
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EXERCISES 10.3 

1. If G is a finite simple group of even order, then IGI is divisible by 12, 16, or 56. 

2. If G is a finite simple group whose order is divisible by 16, prove that IGI is 
divisible by 32, 48, 80, or 112. 

3. A subgroup H is said to be pronormal in a group G if for all 9 in G the sub
groups Hand Hg are conjugate in <H, H9). If His pronormal and subnormal in 
G, show that H <J G. 

4. Let G be a finite group and let p be the smallest prime dividing IGI. If every 
p-subgroup is pronormal in G, then G is p-nilpotent. [Hint: Use Frobenius's 
criterion and Exercise 1O.3.3.J 

5. (J.S. Rose). Let G be a finite group and p a prime. Prove that every p-subgroup is 
pronormal in G if and only if each p-subgroup is normal in the normalizer of 
any Sylow p-subgroup that contains it. [Hint: Use and prove the result: if H <J P 
and Hg <J P where P is a Sylow p-subgroup of the finite group G, then Hand Hg 
are conjugate in NG(P).J 

6. Show that Exercise 10.3.4 does not hold for arbitrary primes p. 

7. Let P be a Sylow p-subgroup of a finite group G. If NG(H) = P whenever H is a 
nontrivial abelian subgroup of P, prove that G is p-nilpotent. [Hint: Prove that 
P 11 pg = 1 if 9 E G\P.J 

8. Let P be a Sylow p-subgroup of a finite group G. Prove that G is p-nilpotent if 
and only if NG(H) is p-nilpotent whenever 1 =I- H :::::; P. 

9. If G is a finite group in which every minimal p-subgroup is contained in the 
centre of G, then G is p-nilpotent provided p > 2. 

10. (K. Doerk). Let G be a finite minimal nonsupersoluble group. Prove that G is 
p-nilpotent for some p dividing IGI. 

10.4. Thompson's Criterion for p-Nilpotence 

The subject of this section is a very powerful condition for p-nilpotence 
due to Thompson which has important application to Frobenius groups. A 
major role is played by a rather curious subgroup that can be formed in any 
finite p-group P. We define 

J(P) 

to be the subgroup generated by all abelian subgroups of P with maximal 
rank. Obviously J(P) is characteristic in P. 

10.4.1 (Thompson). Let G be a finite group, p an odd prime and P a Sylow 
p-subgroup of G. Then G is p-nilpotent if and only if NG(J(P» and CG((P) are 
p-nilpotent. 
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Proof. (i) Of course it is only the sufficiency of the conditions that is in 
question. We assume henceforth that NG(J(P)) and CG(CP) are p-nilpotent 
but G itself is not p-nilpotent. Furthermore let G be a group of smallest 
order with these properties. Observe that any proper subgroup containing 
P inherits the conditions on G and is therefore p-nilpotent. 

The proof is broken up into a series of reductions, each one of itself being 
fairly straightforward. 

(ii) Op,(G) = 1. 
Suppose that on the contrary T = Op,(G) "# 1 and write G = G/ T and 

P = PT/T. Our immediate object is to show that the conditions on G apply 
to G. Certainly P is a Sylow p-subgroup of G isomorphic with P via the 
natural homomorphism x H xT. From this we deduce that J(P) = J(P)T/ T. 
If xT E N(J(J(P)), then J(P)XT = J(P)T, from which it follows by Sylow's 
Theorem that J(PY = J(P)Y for some y in T; thus x E NG(J(P))T. Conse
quently N(J(J(P)) is contained in NG(J(P))T/T, which shows the former to be 
p-nilpotent. 

Now we must examine C(J(CP). Clearly CP = (CP)T/T, so that if xT E 

C(J(CP), then (CPYT = (CP)T; just as in the previous paragraph, x E NG(CP)T. 
Clearly we can assume that x E NG(CP). Then [CP, x] ~ Tn CP = 1 and 
x E CG(CP). Consequently C(J(CP) = CG(CP)T/T is p-nilpotent. 

Finally the minimality of G allows us to conclude that G is p-nilpotent, 
which implies at once that G is p-nilpotent. 

(iii) We introduce the set Y of all nontrivial p-subgroups whose normal
izer in G is not p-nilpotent. Y is not empty, otherwise the normalizer of 
every nontrivial p-subgroup would be p-nilpotent, which in view of the 
Frobenius criterion (10.3.2) would imply the p-nilpotence of G. 

The set Y is partially ordered by means of a relation ~ defined in the 
following manner. If HI' H2 E Y, then HI ~ H2 means that either 

(i) ING(HI)lp < ING(H2 )lp 
or 

and 

Here np denotes the largest power of p dividing n. 
Choose an element H of Y which is maximal with respect to this partial 

ordering and write 
N = NG(H). 

If Po is a Sylow p-subgroup of N, then H ~ Po since H <J N. Replacing P if 
necessary by a suitable conjugate, we may suppose that Po ~ P and thus 
H ~ P. Also Po ~ P n N, so that Po = P n N since Po is a Sylow p-subgroup 
of N. 

(iv) H = Op(G) and G = G/H is p-nilpotent. 
We shall first establish the fact that N satisfies the conditions on G. 

Since H ~ P, we have [CP, H] = 1 and CP ~ N, which implies that CP ~ 
Po n CG(Po) = (Po because Po = P n N. In consequence CN(CPO) ~ CG(CP), 
which demonstrates that CN(CPO) is p-nilpotent. 
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Let us now examine NN(J(PO))' If Po were equal to P, this normalizer 
would certainly be p-nilpotent. Assuming that Po < P, we invoke the nor
malizer condition to produce a subgroup PI normalizing P such that Po < 
PI :s;; P. Since J(Po) is characteristic in Po, it is normal in PI and thus 
PI :s;; NG(J(Po)), which shows that ING(J(Po))lp > lPol = INIp- By maximality 
of H in !/ the group NG(J(Po)) must be p-nilpotent, whence so is NN(J(PO))' 

If N # G, then N is p-nilpotent by minimality of G. But this contradicts 
the fact that H E g. Hence N = G and H <l G, which leads at once to 
H :s;; Op(G). Suppose that P2/H is a nontrivial normal subgroup of P/H. 
Then P :s;; NG(P2), from which it follows that ING(P2)l p = IPI = INlp: also 
IHI < IP2 1, of course. Once again maximality of H in !/ enters the argu
ment, forcing NG(P2) to be p-nilpotent. This makes it clear that P2 cannot be 
normal in G; since H :s;; Op(G) :s;; P, it follows that H = 0iG). 

Observe that P = P/H # 1 since P cannot be normal in G. On applying 
the preceding discussion to P2 /H = J(P) we obtain the p-nilpotence of 
N(J(J(P)). In a similar manner, taking P2/H to be ((P) we find that NG((P) 
is p-nilpotent, and since C(J((P):S;; NG((P)/H, the p-nilpotence of q;((P) 
follows. Finally IGI < IGI, so Gis p-nilpotent by minimality of IGI. 

In the sequel we shall write 

K = Opp.(G), 

so that G/K is a p-group. Also a "bar" will always denote a quotient group 
modulo H. 

(v) P is maximal in G and CG(H) :s;; H. 
Since CG((P) is p-nilpotent, it is proper and lies inside a maximal sub

group M. Then P :s;; CG((P) :s;; M, so that M is p-nilpotent by (i). We have 
to prove that P = M, or equivalently that U == Op.(M) = 1. Now U <l M 
and also H <l G and H:s;; P :s;; M, so we have [U, H] :s;; Un H = 1 and 
U:s;; CG(H). In addition U :s;; K because G/K is a p-group, and therefore 
U:s;; CK(H). 

Now consider CK(H). Clearly H n CK(H) = (H, from which it follows 
that CK(H)/(H is a p' -group and (H has a complement X in CK(H). How
ever (H is obviously contained in the centre of CK(H), so that in fact 
CK(H) = (H x X. Here X = Op.(CK(H))<l G because CK(H)<l G. However 
Op.(G) = 1 by (ii); thus X = 1 and CK(H) = (H, a p-group. It therefore fol
lows that U = 1 as required. 

Finally ICG(H): CK(H) I is a power of p because IG: KI is. Since CK(H) = 
(H by the last paragraph, CG(H) is a p-group. Hence CG(H) :s;; Op(G) = H. 

(vi) K is a nontrivial elementary abelian q-group, q # p. 
In the first place K cannot equal H, otherwise G would be a p-group and 

a fortiori p-nilpotent. Choose a prime q dividing IK: HI; then certainly 
q # p. If Q is a Sylow q-subgroup of K, the Frattini argument applies to 
give G = NG(Q)K, from which it follows that I G: NG(Q)HI divides IK: HI 
and is prime to p; thus NG(Q)H contains a Sylow p-subgroup of G, let us say 
pg. Then P :s;; NG(Qg-')H and, since Q may be replaced by Qg-', we can in 
fact assume that P :s;; NG(Q)H. 
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Let Qo denote the subgroup generated by all the elements of order q in 
the center of Q. Since Qo is characteristic in Q, it is normal in NG(Q), which 
implies that QoH <l NG(Q)H. It follows that (QoH)P = QoP is a subgroup 
since we agreed that P ~ NG(Q)H in the last paragraph. Furthermore 
G = QoP since P is maximal in G, from which we deduce that Q = 

Q!l (QoP) = Qo, thus showing Q to be elementary abelian. 
Finally K = K!l (QP) = Q(K!l P) = QH since K = Opp,(G); therefore 

K=QH and K::: Q. (8) 

(vii) CG(K) = K. 
Of course CG(K) ~ K by (vi). Now K has a normal complement in Cc;(K) 

a fact that shows Cc;(K) to be the direct product of K and PdH = Op(Cc;(K)). 
It follows that PI <l G and since PI is a p-group, PI = H, which yields the 
desired equality. 

(viii) At this point one must observe that J(P) cannot be contained in H; 
for if it were, since H ~ P, we should have J(P) =J(H)<l G, thus forcing 
G = NG(J(P)) to be p-nilpotent. Consequently there is an abelian subgroup 
A of P with maximal rank which is not contained in H. Then [K, AJ -J,. H; 
for otherwise A ~ K by (vii), which would imply that A ~ P!l K = H. Since 
K = QH, it follows that [Q, AJ -J,. H. 

P=AH 

A 

I 

(ix) P = AH and Q = K is minimal normal in QA. 
Notice that Q = K <l G and that Q is an abelian Sylow q-subgroup of 

QA in view of (vi). Applying 10.1.6 to the group QA we obtain a direct 
decomposition 

(9) 

We have observed in (viii) that [Q, AJ -J,. H; thus [Q, AJ :f:. 1 and we can 
choose QI such that QI ~ Q and QI is a minimal normal subgroup of QA 
contained in [Q, A]. It is necessary to prove that QI = Q. 

To accomplish this we consider the subgroup 

R = <H, A, QI) = QtAH = QIAH 
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with a view to showing that it satisfies the conditions on G. We recognize 
AH as a Sylow p-subgroup of R: for it is surely a p-group while AH :::;; R :::;; 
AK and I AK : AH I is prime to p. 

We shall prove first of all that NR(AH) = AH. If this is false, the group 
AH is normalized by some element u of Ql \H; this element must satisfy 
[A, u] :::;; (AH) n K since u E Ql :::;; K . Therefore [A, u] :::;; Hand uH E C(i(A). 

This means that uH belongs to both CQ(A) and [Q, A] since Ql :::;; [Q, A], 
which contradicts (9). Next let x E NR(J(AH)). Obviously A :::;; J(AH), so we 
have AX :::;; J(AH) :::;; AH and x E NR(AH) = AH. Consequently NR(J(AH)) = 
AH, a p-group and hence certainly p-nilpotent. 

Now consider CR(((AH)). Since H :::;; P, we have (P :::;; CG(H) :::;; H by (v). 
Also A :::;; P, which implies that (P :::;; ((AH) and CR(((AH)) :::;; CR((P). Since 
the latter is p-nilpotent, so is CR(((AH)). 

If R =f. G, the minimality of IGI leads to the p-nilpotence of R; thus 
R/Op,(R) is a p-group. But Op,(R) centralizes H by 10.3.2 and CR(H) :::;; H by 
(v); therefore R is a p-group and Ql = 1, which is contrary to the choice 
ofQl' 

Hence G = R = QIAH, which implies that Q:::;; QIA. Thus Q = Ql' as 
claimed. Finally P = AH: for AH has been seen to be a Sylow p-subgroup 
of R = G. 

(x) A is cyclic. 
We see from (ix) that K is a simple FqA-module where Fq = GF(q). Also 

A acts faithfully on K by (vii). Applying 9.4.3. we conclude that A is cyclic. 
(xi) Write D = (H and consider the group QD. Obviously D is an abelian 

Sylow p-subgroup of QD and D<J QD. Thus 10.1.6 yields the decomposition 

D = CD(QD) x [D, QD] = CD(Q) x [D, Q]. (10) 

Suppose that [D, Q] = 1; then Q :::;; CG(D) :::;; CG((P) since (P :::;; CG(H) = D 
by (v). Now CG((P) = P since P is maximal and CG((P) cannot equal G. 
There results the contradiction Q = 1, which shows that [D, Q] =f. 1. 

Now define V as the subgroup generated by all elements of order p in 
[D, Q]. Notice that [D, Q] = [D, QH] = [D, K] <J G, so that V <J G. Of 
course V is an elementary abelian p-group. 

(xii) I VI :::;; p2. 
Let Ao = An H. Since A/Ao is cyclic by (x), we have r(A) - r(Ao) :::;; 1. 

Also Ao V is abelian because V:::;; (H. In view of Ao V :::;; P and the maxi
mality of A we have r(Ao V) :::;; r(A). It is easy to show that r(Ao V) = 
r(Ao) + r(V) - r(Ao n V), using the fact that V is elementary. Hence r(V) -
r(Ao n V) :::;; r(A) - r(Ao) :::;; 1. This implies that r(V/ Ao n V) :::;; 1 and 
V/Ao n V is cyclic. If 1 =f. x E Q, then V/Ao n V is cyclic, by conjugation. 
Now suppose that r(V) ? 3; then Ao n Ao n V =f. 1 and I = A n AX n V =f. 1. 
If AX:::;; P = AH, we should have x E NG(AH) = NG(P) = P by maximality 
of P, and x = 1. Thus AX $. P and G = (P, AX) = (H, A, AX), which leads 
to I :::;; (G. But then I :::;; CD(Q) n [D, Q] = 1 by (10), a contradiction. 

(xiii) The final step. 
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We begin by showing that CG(V) = H . Obviously H ~ CG(V)<J G, and 
if H "# CG(V), then CG(V) is not a p-group. Hence Q n CG(V) "# 1, whkh 
implies that H < CK(V) ~ K . Now CK(V)<J G since V <J G, and yet K is a 
minimal normal subgroup of QA by (ix). Hence K = CK(V). However this 
yields V ~ CD(Q) n [D, Q] = 1, which is certainly false. Consequently 
CG(V) = H . 

This result tells us that G is isomorphic with a group of automorphisms 
of V, and hence in view of (xii) with a subgroup of GL(2, p). Now SL(2, p) is 
normal and has index p - 1 in GL(2, p), indicating that all p-elements of 
GL(2, p) lie in SL(2, p). However P is maximal in G, so we may be sure that 
G, and hence G, is generated by p-elements. Consequently G is isomorphic 
with a subgroup of SL(2, p). 

Recall from 3.2.7 that ISL(2, p)1 = (p - l)p(p + 1). Thus IKI = qm divides 
(p - l)(p + 1). Suppose that q > 2, so that q cannot divide both p - 1 and 
p + 1. Now qm == 1 mod p by (ix) and 9.4.3, which implies that qm ~ p + 1 
and qm = p + 1. Since p is an odd prime by hypothesis, p + 1 is even and 
q = 2. But an easy matrix calculation-see Exercise 10.4.2-reveals that 
SL(2, p) has precisely one element of order 2, namely -12 , which is in the 
centre. Since K is elementary abelian, K ~ ((G) and (vii) gives K = G and 
hence A ~ H, contrary to the choice of A, which is our final contradiction. 

o 
EXAMPLE. Thompson's theorem is not true if p = 2. For let G = S4 and let P 
be a Sylow 2-subgroup. Then P is a dihedral group of order 8 and it is easy 
to see that for this group J(P) = P and NG(J(P)) = P; in addition CG((P) = 
P. Of course P is 2-nilpotent but G does not have this property: indeed 
02.(G) = 1. 

Groups with a Nilpotent Maximal Subgroup 

In Chapter 9 we proved the theorem of Schmidt that a finite group whose 
maximal subgroups are all nilpotent is soluble. We shall use Thompson's 
criterion to establish a notable improvement of Schmidt's theorem which 
applies to groups in which a single maximal subgroup is nilpotent. 

10.4.2 (Thompson). If a finite group G has a nilpotent maximal subgroup M 
of odd order, then G is soluble. 

Proof. As usual we suppose the theorem false and choose for G a counter
example of smallest order. If M contains a nontrivial normal subgroup N of 
G, then GIN is soluble by minimality of IGI: therefore G is soluble, N being 
nilpotent. Hence the core of M in G must be 1. 

Choose a prime p dividing IMI and let Po be the unique Sylow p-sub
group of M. Then Po is contained in a Sylow p-subgroup P of G. Since M is 
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maximal and Po is not normal in G, it must be true that NG(Po) = M, which 
implies that Np(Po) = P n M = Po . By the normalizer condition Po = P, 
which means that IG: MI is prime to p and M is a Hall n-subgroup where n 
is the set of prime divisors of I MI. 

We aim next to show that Thompson's theorem is applicable to G. Since 
J(P) is characteristic in P, it is normal in M. Now J(P) cannot be normal in 
G, so it follows that NG(J(P)) = M. For exactly the same reason CG((P) = M. 
Thus 1004.1 assures us that Gis p-nilpotent for every prime p in n. Defining 
L to be the intersection of all Op,(G) for p in n, we see that L is a n'-group 
and GIL a n-group. Since M is a Hall n-subgroup, it follows that G = ML 
and M nL = 1. 

Let Q be any Sylow subgroup of L. Then G = NG(Q)L by the Frattini 
argument. The Schur-Zassenhaus Theorem provides us with a complement 
of NdQ) in NG(Q), say NG(Q) = XNL(Q). This gives G = XNL(Q)L = XL, so 
that X is another complement of L in G and X = Mg for some 9 by the 
conjugacy part of the Schur-Zassenhaus Theorem. It follows that X is a 
maximal subgroup and Q<J XQ = G. Hence every Sylow subgroup of Lis 
normal and so L is nilpotent. Since GIL ~ M, it follows that G is soluble. 

D 

In fact 1004.2 is false if the maximal subgroup possesses elements of order 
2; for the simple group PSL(2, 17) has a maximal subgroup of dihedral type 
D16 • However Deskins and lanko have proved that 10.4.2 remains true if 
the Sylow 2-subgroup is allowed to have class at most 2. For details see 
[b6]. 

EXERCISES 1004 

1. Let G be a finite group whose order is not divisible by 6. Let P be a Sylow 
p-subgroup of G. Prove that G is p-nilpotent if and only if NG(J(P)) and CG(CP) 
are both p-nilpotent. 

2. If p is an odd prime, prove that the only element of order 2 in SL(2, p) is -12 , 

Deduce that a Sylow 2-subgroup of SL(2, p) is a generalized quaternion group 
and that a Sylow 2-subgroup of PSL(2, p) is dihedral. [Hint: Apply 5.3.6.] 

3. Let P be a Sylow 2-subgroup of G = PSL(2, 17). Show that P ~ D16 and that 
P = NG(P), Show also that NG(J(P» = P = CG(CP). Thus the p-nilpotence of 
NG(J(P)) and CG(CP) does not imply the solubility of G. (Remark: P is actually 
maximal in G.) 

4. Assume that the finite group G has a nilpotent maximal subgroup M. If 
Fit G = 1, prove that M is a Halln-subgroup of G for some n. 

5. Let M be a maximal subgroup of a finite group G. Assume that each subgroup of 
M is normal in M. Prove that G cannot be simple unless its order is a prime. 
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10.5. Fixed-Point-Free Automorphisms 

An automorphism IX of a group G is said to have a fixed point g in G if 
ga = g; thus CG(IX) is the set of all fixed points of IX. If CG(IX) = 1, and 1 is 
the only fixed point of IX, then IX is called fixed-point-free. A subgroup H of 
Aut G is said to be fixed-point-free if every nontrivial element of H is fixed
point-free. 

We shall make use of Thompson's criterion for p-nilpotency to prove an 
important theorem about groups with a fixed-point-free automorphism of 
prime order: this can then be applied to the structure of Frobenius groups. 

The following lemma collects together the most elementary properties of 
fixed-poi nt-free automorphisms. 

10.5.1. Let IX be be a fixed-point-free automorphism of a finite group G and 
let IX have order n. 

(i) If (i, n) = 1, then IX i is also fixed-point-free. 
(ii) The mapping -1 + IX which sends x to x- l +a = x-lxa is a permuta

tion of G. 
(iii) x and x a are conjugate if and only if x = 1. 
(iv) Xl +a+ 00 . +an-' = 1 for all x in G. 

Proof. (i) holds because IX is a power of IXi. 
(ii) If x-l+a = y-l+a, then (xy-l)a = xy-l and x = y. Since G is finite, 

-1 + IX is a permutation. 
(iii) Suppose that x a = x g for some g in G. By (ii) it is possible to write 

g = y-l +a for some y in G. It follows that x a = x g = y-a(yxy-l )ya and hence 
that (yxy-l)a = yxy-l. Therefore yxy-l = 1 and x = 1. 

(iv) Let z = xl+a+oo '+an-'; then za = xa+a2+oo '+an-'+l = zX. Thus z = 1 by 

~ D 

10.5.2. If IX is a fixed-point-free automorphism of a finite group G, then for 
each prime p there is a Sylow p-subgroup P such that pa = P. 

Proof. Let Po be any Sylow p-subgroup. Then Po = P8 for some g in G. 
Applying 10.S.1(ii), we may write g = h- l +a for a suitable h: now let P = 
pg-'. Then 

D 

10.5.3. Let H be a group of automorphisms of a finite abelian group A. Sup
pose that H is the semidirect product (0) ~ M where u{3 is fixed-point-free 
of prime order p for every {3 in M. Assume also that IAI and IMI are coprime. 
Then M = 1. 
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Proof. Let a E A and {3 E M. Then al+aP+ " '+(aP)P-l = 1 by 10.5.1. Taking the 
product of these equations for all {3 in M and remembering that A is abelian, 
we obtain 

p-1 p-1 

1 = f1 f1 a<aP)i = a lMI f1 f1 a(afi)i. (11) 
peM i=O i=l peM 

We claim that if i is a fixed integer satisfying 1 ::; i < P - 1, the elements 
(u{3)i, {3 E M, are all different. For suppose that (u{3)i = (UP)i; then u{3 E (uP) 
since (i, p) = 1 and (u{3)P = 1. Thus u{3 = (uP)i where 1 ::; j < p; however 
this implies that j = 1 and {3 = p because (u) (') M = 1 and u has order p. 
This establishes our claim. Hence these elements (u{3)i account for all the 
elements u i{3, (i being fixed). Therefore 

f1 a(ap)i = f1 aaiP, 

fieM fieM 

so that (11) yields 

But the right-hand side of this last equation is clearly fixed by each element 
of M; since (Ial, 1M!) = 1, we deduce that a is fixed by each such element. 
Because a was an arbitrary element of A, we conclude that M = 1. D 

We come now to the principal theorem of this section. 

10.5.4 (Thompson). Let G be a finite group and let p be a prime. If G has a 
fixed-point-free automorphism a of order p, then G is nilpotent. 

Proof. Assume that the theorem is false and let G be a counterexample of 
minimal order. We see from 10.S.1(ii) that -1 + a is surjective on G/(G, 
so the hypotheses on G are inherited by GgG. Hence (G = 1. The plan 
of attack is first to deal with the case where G is soluble, then to use 
Thompson's criterion to reduce the general case. 

(i) Case G soluble. 
Let 1 "# A <J G and let A be minimal subject to Aa = A. Since (A,)a = A', 

we see that A is abelian and, since (Aq)a = Aq, that A is an elementary 
q-group for some prime q. Now G cannot be a q-group because it is not 
nilpotent, so there exists a prime r different from q dividing I GI. Also 10.5.2 
tells us that G has an a-admissible Sylow r-subgroup R. Observe that r "# p 
otherwise a would have a fixed point in R since (0() ~ R would be nilpotent. 

If AR "# G, then, since (ARY = AR, the minimality of I GI forces AR to be 
nilpotent and thus R ::; CG(A) because (IAI, IR!) = 1. Should this be true for 
all r "# q, the group G = G/CG(A), and hence G ~ A, would be aq-group 
and thus nilpotent, leading to the contradiction A (') (G "# 1. Consequently 
G = AR for some r "# q. 

Let u be the restriction of a to A and let M denote the group of auto
morphisms of A that arise from conjugation by elements of R. Then 
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H = <a, M ) = <a) ~ M ::s; Aut A. We shall show that the conditions of 
10.5.3 are met in H . 

Let g E R and let gt E M be the automorphism induced by conjugation 
by g in A. We claim that agt is conjugate to a in Aut A; this will show that 
ag t is a fixed-point-free automorphism of order p. Since 0(-1 is fixed-point
free on R, we can find an r in R such that glZ-' = r-l+ IZ-'; hence g = r- IZ+1. 

The automorphism (rtr1art sends a E A to b = r-1(rar-1 )"r. Now (rar-1)" = 
(rar-1)1Z = rlZa"r-lZ, so that b = r-1+lZa"r-lZ+l = g-la"g. Hence (rtr1art = agt 
as required. 

We may now apply 10.5.3 to show that M = 1, that is, [A, RJ = 1. How
ever this gives the contradiction 1 "# A ::s; (G since G = AR. 

(ii) Case G insoluble. 
Let q be an odd prime dividing I GI. By 10.5.2 there is a Sylow q-sub

group Q such that QIZ = Q. Hence J(Q)IZ = J(Q), which implies that NG(J(Q)) 
is a-admissible. If J(Q)<J G, then G/l(Q) would be nilpotent and G soluble, 
which by (i) cannot be the case. Therefore NG(J(Q)) is a proper subgroup, 
and, being a-admissible, it is nilpotent. For similar reasons CG(W) is nil
potent. Thompson's criterion now shows that G is q-nilpotent and G/Oq,(G) 
a q-group. Since Oq,(G) is proper and a-admissible, it is nilpotent and G is 
soluble. 0 

In addition rather precise information is available concerning the struc
ture of a fixed-poi nt-free automorphism group. 

10.5.5. Let H be a fixed-point-free group of automorphisms of a finite group 
G. Then every subgroup of H with order pq where p and q are primes is cyclic. 
The Sylow p-subgroups of H are cyclic if p is odd and cyclic or generalized 
quaternion if p = 2. 

Proof. Let S be a noncyclic subgroup of H with order pq. Then by Exercise 
1.6.13 there is a normal Sylow subgroup, say Q of order q, and clearly 
S = QP where P is a subgroup of order p. By 10.5.4 the group G is nilpotent: 
let R be a nontrivial Sylow r-subgroup of G. Clearly RS = R. Also, if r = q, 
then Q ~ R would be nilpotent and have nontrivial center, which would 
prevent H from being fixed-point-free. Therefore r "# q. Let P = <a) and let 
13 E Q; then laf3l cannot equal pq since lSI = pq and S is not cyclic; thus 
laf3l = p. Now af3 is fixed-point-free, so we may apply 10.5.3 to S as a group 
of automorphisms of (R, obtaining at once the contradiction [(R, QJ = 1. 
The structure of the Sylow subgroups is now a direct consequence of 5.3.6. 

o 
EXAMPLE. There is a finite nonni/potent group with a fixed-point-free auto
morphism of order 4. Let A = <a) x <b) be an elementary abelian 7-group 
of order 49, and let X = <x) be a cyclic group of order 3. The assignments 
a H a2 and b H b4 determine an automorphism of A with order 3. Thus 
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there is a corresponding semidirect product G = X ~ A; this is a metabelian 
group of order 147. One easily verifies that the assignments a 1---+ b, b l---+a-l, 

x 1---+ X-I determine an automorphism of G with order 4. A typical element g 
of G will have the form xiaibk where 0 ~ i < 3 and 0 ~ j, k < 7, and g is 
mapped by ex to x-ibia-k. Thus g is a fixed point if and only if i = j = k = 0, 
that is, g = 1. Hence ex is fixed-point-free, but G is not nilpotent. 

Frobenius Groups 

Recall from Chapter 8 that a group G is a Frobenius group if it has a proper 
nontrivial subgroup H such that H n Hg = 1 for all g in G\ H. By 8.5.5 there 
is a Frobenius kernel, that is, a normal subgroup K such that G = HK and 
HnK=1. 

The following fundamental theorem on Frobenius groups is a con
sequence of the main results of this section. 

10.5.6. Let G be a finite Frobenius group with kernel K and complement H. 
Then: 

(i) K is nilpotent (Thompson); 
(ii) the Sylow p-subgroups of H are cyclic if p > 2 and cyclic or generalized 

quaternion if p = 2 (Burnside). 

Proof. Let 1 #- h E H and suppose that kh = k where k E K. Then 1 #- hk = 

k E H n H\ whence k E H n K = 1 by definition of a Frobenius group. 
Hence conjugation by h in K induces a fixed-point-free automorphism in K. 
It follows immediately from 10.5.4 that K is nilpotent. Since CH(K) = 1, the 
group H is a fixed-point-free group of automorphisms of K. The second 
statement is now a consequence of 10.5.5. 0 

EXERCISES 10.5 

1. A finite group has a fixed-point-free automorphism of order 2 if and only if it is 
abelian and has odd order. 

2. Let G be a finite group with a fixed-point-free automorphism C( of order 3. Prove 
that [x, y, y] = 1 for all x, y in G. [For the structure of such groups see 12.3.6. 
Hint: Show first that [x, xa] = 1 and then prove that [xY, xa] = 1 for all x, y.] 

3. Let C( be a fixed-point-free automorphism of a finite group G. If C( has order a 
power of a prime p, then p does not divide IGI. If p = 2, infer via the Feit
Thompson Theorem that G is soluble. 

4. If X is a nontrivial fixed-point-free group of automorphisms of a finite group G, 
then X D< G is a Frobenius group. 

S. Let G be a finite Frobenius group with Frobenius kernel K. If I G : KI is even, 
prove that K is abelian and has odd order. 
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6. Suppose that G is a finite group with trivial center. If G has a nonnormal abelian 
maximal subgroup A, prove that G = AN and A II N = 1 for some elementary 
abelian p-subgroup N which is minimal normal in G. Show also that A must be 
cyclic of order prime to p. [Hint : Prove that A II AX = 1 if x E G\ A.] 

7. If a finite group G has an abelian maximal subgroup, then G is soluble with 
derived length at most 3. 

8. A finite Frobenius group has a unique Frobenius kernel, namely Fit G. Deduce 
that all Frobenius complements are conjugate (see Exercise 9.1.1). 

9. If a finite Frobenius group G has a Frobenius complement of odd order, then G 
is soluble. (Do not use the Feit- Thompson Theorem.) 

10. Let P be a nonabelian group of order 73 and exponent 7. Find a fixed-point-free 
automorphism of P with order 3. Hence construct a Frobenius group with non
abelian Frobenius kernel. 



CHAPTER 11 

The Theory of Group Extensions 

The object of extension theory is to show how a group can be constructed 
from a normal subgroup and its quotient group. In this subject concepts 
from homological algebra arise naturally and contribute greatly to our 
understanding of it. The necessary homological machinery, including the 
definitions of the (co)homology groups, is presented in 11.2. 

The classical theory of group extensions was developed by O. Holder 
and o. Schreier while the homological implications of the theory were first 
recognized by S. Eilenberg and S. MacLane. Much of the version presented 
here is due to K.W. Gruenberg. 

11.1. Group Extensions and Covering Groups 

If Nand G are arbitrary groups, an extension of N by G is, in familiar 
parlance, a group E possessing a normal subgroup M such that M ~ Nand 
ElM ~ G. For our purposes it is best to be rather more specific. By a group 
extension of N by G we shall mean a short exact sequence of groups and 
homomorphisms 

I--+N~E~ G--+ 1. 

The main features here are firstly that Jl is injective and e surjective, and 
secondly that 1m Jl = Ker e = M say. Thus M ~ N and ElM ~ G, so E is 
an extension of N by G in the original sense. The group N is called the 
kernel of the extension. 

For the sake of brevity let us agree to write >-+ to denote a mono
morphism and - an epimorphism. The above extension becomes in this 

310 
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notation 
N~E~G. 

Extensions of N. by G always exists. For example, we may form the semi
direct product E = G ~~ N corresponding to a homomorphism ~: G-+ 
Aut N. Define all = (1, a) and (g, a)' = g where a E N, g E G. Then 

N~E~G 

is an extension of N by G. 

Morphisms of Extensions 

Il • -ji-l-
By a morphism from N >-+ E - G to N >-+ E - G is meant a triple of homo-
morphisms (0(, fJ, y) such that the following diagram commutes: 

N~E~G 

,I pI ' I 
N~E~G. 

We mention that the collection of all group extensions of N by G and mor
phisms between them is a category, although this will play no part in the 
sequel. 

Certain types of morphisms are of special interest, foremost among them 
equivalences; these are morphisms of the form (1, fJ, 1) from N >-+ E - G to 
N >-+ E - G. A more general type of morphism is an isomorphism; this is a 
morphism of the form (0(, fJ, 1) from N >-+ E - G to N>-+ E - G where 0( 
is an isomorphism of groups. It is easy to see that fJ too must be an iso
morphism. It is clear that equivalence and isomorphism of extensions are 
equivalence relations. 

Couplings 

Let N ~ E ~ G be an extension. By choosing a transversal to M = 1m p. = 
Ker e in E one obtains a function -r: G -+ E called a transversal function . 
Thus if x E E, the coset representative of xM is (x')'. Usually -r will not be a 
homomorphism-a fact that makes extension theory interesting. But -r will 
always have the property 

-re = 1. 

Conversely any function -r with this property determines a transversal to M 
in G, namely the set {gtlg E G}. 



312 11. The Theory of Group Extensions 

We associate with each g in G the operation of conjugation by gt in M. 
Since M ~ N, this leads to an automorphism g). of N described by the rule 

(a g')'" = (gT1al'(gt), (a E N, g E G). (1) 

In this way we obtain a function A.: G --+ Aut N. 
To what extent does A. depend upon the choice of transversal function ,? 

If " is another transversal function, then gt and gt' differ by an element 
of M. Consequently, if " leads to a function A.': G --+ Aut N, then g). and 
g)" differ by an inner automorphism of N, as one can see from (1). Hence 
gA(Inn N) = gA'(Inn N), which makes it reasonable to define a function 

x: G --+ Out N 

by the rule 

gX = gA(Inn N); (2) 

here X does not depend on the transversal function. What is more, X is a 
homomorphism because (glg2Y == glg~ mod M. 

Thus each extension N A E ~ G determines a unique homomorphism 
X: G --+ Out N which arises from conjugation in 1m jJ. by elements of E. If 
G and N are arbitrary groups, we shall refer to a homomorphism X: G --+ 

Out N as a coupling of G to N, whether or not it arises from an extension. 
If C is the center of N, a coupling X of G to N gives rise to a G-modulet 

structure of C, namely ag = agx ; this action is well-defined because Inn N 
acts trivially on C. In the very important case where N is abelian, the cou
pling X: G --+ Aut N prescribes a G-module structure for N. 

11.1.1. Equivalent extensions have the same coupling. 

Proof. Let (1,0,1) be an equivalence from N A E ~ G to N ~ E - G; 
then there is a commutative diagram 

N~E~G 

'j (3) 

N~E~G 

(Here the left and right vertical maps are identity functions.) Let X and X be 
the respective couplings of the two extensions. Choose a transversal func
tion ,: G --+ E for N ~ E - G. Then i = ,0 is a transversal function for the 
second extension: this is because ie = ,(Oe) = ,6 = 1 by commutativity of 
(3). 

t In order to assign a &':G-module structure to an abelian group M it is enough to prescribe the 
action of the elements of G. We shall therefore treat the terms "G-module" and &,:G-module" as 
synonymous. 
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Let us use rand f to compute the couplings X and X. In the first place 
gX = gA(Inn N) and g"i = gX(Inn N) where A.: G --+ Aut N and I : G --+ Aut N 
arise from rand f as in (1). Applying () to (1) and keeping in mind that 
Jl.{) = p" by (3), we obtain (a 9A )iL = (gi)-laiL(gi) = (a 9x )iL. Hence gA = gX and 
gX = g"i, which shows that X = X. D 

The principal aims of the theory of group extensions may be summarized 
as follows: 

(i) to decide which couplings of G to N give rise to an extension of N by 
G; 

(ii) to construct all extensions of N by G with given coupling x; 
(iii) to decide when two such extensions are equivalent (or possibly iso

morphic). 

We shall see that these goals can, in principle at least, be attained with 
the aid of cohomology. 

Split Extensions 

An extension N A E ~ G is said to split if there exists a transversal func
tion r: G --+ E which is a homomorphism. For example, the semidirect prod
uct extension N>-+ G ~ N - G is split because g H (g, 1) is a transversal 
function which is a homomorphism. 

In fact this example is entirely typical of split extensions. For suppose 
that N A E ~ G splits via a homomorphism r: G --+ E. Write X = EEt = G'. 
Since re = 1, we have (x-Etx), = X-EX' = 1, so that x-Etx E M = Ker e and 
E = X M. In addition X n M = 1 because xEt E M implies that 1 = (xEt)' = 
x'. Hence E = X ~ M ~ G ~ N; this shows that every split extension is a 
semidirect product extension. 

Complements and Derivations 

Consider a split extension N >-+ E - G, which can without loss be taken to 
be a semidirect product extension; thus E = G ~ N. Recall from 9.1 that a 
subgroup X with the properties X N = E and X n N = 1 is called a comple
ment of N in E. Of course G itself-or indeed any conjugate of G-is a 
complement. It is an important problem to decide whether every comple
ment is conjugate to G. 

We shall show that complements of N in E correspond to certain func
tions from G to N known as derivations. If X is any complement, each g in 
G has a unique expression of the form g = xa-1 where x E X and a E N: 
define b = bx : G --+ N by gb = a. Thus ggb E X . Let gi E G, i = 1, 2; then X 
contains the element (glgf)(g2gn, which equals glg2(gf)92gt so that the 
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function l> has the property 

(4) 

Quite generally, if N is any G-operator group, a function l>: G ~ N is 
called a derivation (or l-cocycle) from G to N if (4) holds for all gi in G. 
Notice the simple consequences of (4) 

and (5) 

The set of all derivations from G to N is written 

Der(G, N) or Zl(G, N). 

Thus far we have associated a derivation with each complement. Con
versely, suppose that l>: G ~ N is a derivation. Then there is a correspond
ing complement to N in G given by X6 = {gg6lg E G}. It follows easily from 
(4) and (5) that X6 is a subgroup. Clearly E = X6N and X6 Il N = 1, so X6 is 
in fact a complement. 

It should be apparent to the reader that X 1-+ l>x and l> 1-+ X6 are inverse 
mappings. Thus we can state the following result. 

11.1.2. The mapping X 1-+ l>x is a bijection from the set of all complements of 
N in E = G ~ N to Der(G, N). 

Inner Derivations 

Let us now assume that N is abelian, so that N is a G-module. We shall 
write A instead of N. 

There is a natural rule of addition for derivations, namely a6, +62 = a6'a62. 
It is quite routine to check that l>1 + l>2 is a derivation; notice however that 
the commutativity of A is essential here. Further, with this binary operation 
Der(G, A) becomes an additive abelian group. 

If a E A, we define a function l>(a): G ~ A by the rule 

g6(a) = [g, a] = a-9+1. 

The commutator identity [g1g2, a] = [g1, a]92[g2, a] tells us at once that 
l>(a) is a derivation. Such derivations are called inner (or l-coboundaries), the 
subset of inner derivations being written 

Inn(G, A) or B1(G, A) 

Now [g, ab-1] = [g, br1[g, a] since A is abelian. Therefore l>(ab-1) = 
l>(a) - l>(b) and consequently Inn(G, A) is a subgroup of Der(G, A). 

The significance of the inner derivations is that they determine comple
ments which are conjugate to G. 
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11.1.3. If A is a right G-module, there is a bijection between the set of 
conjugacy classes of complements of A in G ~ A and the quotient group 
Der(G, A)/lnn(G, A) in which the conjugacy class of G corresponds to 
Inn(G, A). 

Proof. Suppose that X and Yare conjugate complements. Then X = yy,a = 
ya for some YI E Y, a E A. If g E G, then gglJx E X where ~x is the derivation 
arising from X. Then gglJx = ya for some y in Y. Now ya = y[y, a], so 
gglJx = y[y, a], which shows that [y, a] = [g, a] = glJ(a) because A is abelian. 
Therefore g(glJxg-lJ(a») = y E Y. Consequently ~y = ~x - ~(a) and ~x = ~y 
mod(lnn(G, A)). Reversing the argument one can show that if ~y = ~x - ~(a), 
then gglJx = (gglJr)a, so that X = ya. This completes the proof. 0 

Thus all complements of A in G ~ A are conjugate if and only if the 
group Der(G, A)/lnn(G, A) is trivial. We shall see later that this quotient 
group can be interpreted as the first degree cohomology group HI(G, A). 

Factor Sets and Extensions with Abelian Kernel 

Before proceeding with the general theory of extensions we shall consider 
the special case of extensions with abelian kernel. 

Consider an extension 

A~E~G 

where A is an abelian group, written additively; let x: G ~ Aut A be the 
coupling of the extension. Then X prescribes a G-module structure for A by 
conjugation; this is given by (ax£)Jl = X-I (aJl) x where x E E, a E A. 

As the first step in the analysis of the extension, we choose a transversal 
function T: G ~ E; thus Te = 1. Now T may not be a homomorphism, but we 
can write for x, y in G 

xtyt = (xy)t((x, y)¢J)Jl, 

where (x, y)¢J E A, since xtyt and (xy)t belong to the same coset of Ker e = 
1m Jl. Thus we have a function 

¢J: G x G ~A; 

this is subject to a restriction because of the associative law xt(ytzt) = 
(xtyt)zt. Substituting for products like xtyt, we obtain the fundamental 
equation 

(x, yz)¢J + (y, z)¢J = (xy, z)¢J + (x, y)¢J. z, (6) 

which holds for all x, y, z in G. A function ¢J: G x G ~ A satisfying (6) is 
traditionally called a factor set; the homological term is a 2-cocycle, and we 
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shall write 
Z2(G, A) 

for the set of all 2-cocycles of G with coefficients in the G-module A. Notice 
that Z2(G, A) has the structure of an abelian group where the group opera
tion is defined by (x, y)¢Jl + ¢J2 = (x, y)¢Jl + (x, y)¢J2' 

The first thing we need to know is the extent to which the factor set ¢J 
depends on the choice of transversal function 1:. Suppose that 1:' is another 
such function for the extension A A E ~ G, leading to a factor set ¢J', say. 
Then x<y< = (xy)'((x, y)¢J)p, and xt'yt' = (xy),,((x, y)¢J' )p,. Now xt' and xt' 
belong to the same coset of Ker e = 1m p,. Consequently we can write 
xt' = xt((x)t/J)p, for some (x)t/J E A. Substitute for xt'yt' and (xy)" in the 
equation defining (x, y)¢J'. On rearranging the terms and comparing them 
with the equation for (x, y)¢J, we quickly find that 

(x, y)¢J = (x, y)¢J' + (xy)t/J - (x)t/J· y - (y)t/J 

for x, y, z in G. Now define t/J* : G x G -+ A by the rule 

(x, y)t/J* = (y)t/J - (xy)t/J + (x)t/J · y. 

Then ¢J' = ¢J + t/J*, so that t/J* E Z2(G, A). The 2-cocycle t/J* is of a special 
kind called a 2-coboundary (n-cocycles and n-coboundaries are introduced 
in 11.3). 

It is easy to see that the 2-coboundaries t/J* form a subgroup of Z2(G, A): 
this is written 

B2(G, A). 

What we have shown is that ¢J and ¢J' belong to the same coset of B2(G, A). 
Thus the extension determines a unique element ¢J + B2(G, A) of the group 

Z2(G, A)jB2(G, A). 

This group will appear later as the cohomology group of degree 2. 

Constructing Extension from Factor Sets 

The next step is to start with a G-module A and a factor set ¢J : G x G -+ A, 
and to show how to construct an extension of A by G which induces the 
given G-module structure of A, and which, for a suitable transversal func
tion, has ¢J as factor set. 

Let E(¢J) be the set product G x A. A binary operation on E(¢J) is defined 
by the rule 

(x, a)(y, b) = (xy, ay + b + (x, y)¢J). 

It is straightforward to verify that this operation is associative, using the 
factor set condition (6). Observe that if we put y = 1 = z in (6), there results 
(x, 1)¢J = (1 , 1)¢J, which is therefore independent of x. Using this fact one 
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verifies that (1, -(1, 1)/j?) is an identity element for the semigroup E(/j?). Also 
(x, a) in E(/j?) has as its inverse the element 

(x-I, -ax-1 - (1, 1)/j? - (x, X-I )/j?), 

as one verifies using the operation on E(/j?). Therefore E(/j?) is a group. 
Finally we can form an extension 

A~E(/j?)~G 

by defining aJl = (1, a - (1, 1)/j?) and (x, a)' = x. For clearly Ker e = 
{(1, a)la E A} = 1m Jl. A simple calculation reveals that 

(x, Orl(1, a - (1, 1)/j?)(x, 0) = (1, ax - (1, 1)/j?) 

(for this one needs (1, x)/j? = (1, 1)/j?' x, and also the identity (6) with y = X-I 
and z = x). This equation shows that the extension induces the given G
module structure in A. 

It is clear that the assignment x H (x, 0) is a transversal function" for 
the extension; calculating with the group operation, we find that xtyt = 
(xyY((x, y)/j?)Jl. Thus /j? is indeed the factor set for the extension when the 
transversal function" is used. 

Equivalence 

So far we have seen how to pass from extensions to factor sets and from 
factor sets back to extensions. Now we wish to decide when two extensions 
are equivalent by looking at their factor sets. 

Let A be a fixed G-module and consider two extensions of A by G realiz
ing this module structure, 

A~E.~G . , (i = 1,2). 

Choose transversal functions "; and let the resulting factor sets be /j?;. 
First of all, suppose that the two extensions are equivalent, and that the 

diagram 

A~E2-G 
112 G2 

commutes where () is an isomorphism. Now 'G = '[" 1 () is a transversal func
tion for the second extension because 'Ge2 = "1 ()e 2 = "1 e1 = 1. Apply
ing () to the equation xtlytl = (xy)t·((x, y)/j?dJll> we obtain xt2y t2 = 
(xy)"2((X, y)/j?I)Jl2' so that "2 determines the factor set /j?1 for the second 
extension. Therefore /j?1 + B2(G, A) = /j?2 + B2(G, A) since 'G and "2 deter
mine factor sets belonging to the same coset of B2(G, A). 
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Conversely, assume that rPl + B2(G, A) = rP2 + B2(G, A); then rPl = rP2 + 
1/1* for some 1/1: G -+ A. We aim to show that the two extensions are equiva
lent. To this end define (): El -+ E2 by 

(x E G, a E A). Then a routine calculation shows that () is a homomorphism. 
One verifies easily that III () = 1l2-here one has to note that 1" = (1, 1)rPl 
since 1"1" = 1"(1, 1)rPl. Finally it is clear that e1 = ()e2. 

It follows that () fits into a commutative diagram 

A >-------+ E2 - G. 
Ji.2 e2 

Thus () is an isomorphism and the two extensions are equivalent. These 
conclusions are summarized in the following result. 

11.1.4. Let G be a group and A a G-module. Then there is a bijection between 
the set of equivalence classes of extensions of A by G inducing the given mod
ule structure and the group Z2(G, A)/B2(G, A). Moreover the split extension 
corresponds to B2(G, A). 

In particular, every extension of A by G is equivalent to one of the con
structed extensions A ~ E(rP) -# G. 

This concludes our discussion of extensions with abelian kernel, which is 
essentially Schreier's original treatment. Next we shall show how general 
extensions may be constructed starting from a presentation of the quotient 
group. 

Introduction of Covering Groups 

Let Nand G be given groups and let x: G -+ Out N be some coupling of G 
to N. We are going to show how all extensions of N by G with coupling 
X-if any exist-may be constructed as images of a "covering group." 

To start things off we must choose a presentation of G 

R>---+F~ G. 

Here, of course, F is a free group and R = Ker n. Denote by v: Aut N-+ 
Out N the natural homomorphism with kernel Inn N. By 2.1.6 a free group 
has the projective property; hence there is a lifting of nx: F -+ Out N, that is, 
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a homomorphism e: F ~ Aut N making the diagram 

F 

"y/ j., 
Aut N ~ Out N ----. 1 

319 

commute. Thus ev = 7T.X. Now R~v = (R")X = 1, so R~ ~ Ker v = Inn N. Let 
~: R ~ Aut N be the restriction of e to R. 

By the Nielson-Schreier Theorem (6.1.1) the group R is a free group. So 
it too has the projective property. Hence there is a homomorphism 1'/: R ~ N 
such that 1'/-C = ~ 

where -c: Aut N ~ N is the conjugation homomorphism. It follows that the 
diagram 

is commutative. 

It -
N ~ AutN ~ OutN 

Using the function e: F ~ Aut N, we form the semidirect product 

S = F ~~N. 

(7) 

This is the covering group from whose quotient groups extensions of N by G 
will be formed. 

11.1.5. Let Nand G be given groups, let x: G ~ Out N be a coupling of G to 
N and let R >-+ F - G be a fixed presentation of G. Write S = F ~ ~ N where 
e: F ~ Aut N is a lifting of X as in (7). 

(i) Every extension of N by G with coupling X is equivalent to an extension 
N>-+ SIM - G where M is a normal subgroup of S such that MN = 
M x N=RN. 

(ii) Conversely every such normal subgroup M gives rise to an extension 
N>-+ SIM - G with coupling x. 

Proof. Suppose first of all that M <J S satisfies MN = M x N = RN. Let 
71: N ~ SIM and Ii: SIM ~ G be the natural mappings, ail = aM and 
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(JaM)' = r, (a E N, f E F); then there is an extension 

N~S/M~G. (8) 

F or Nil = M N / M = RN / M = Ker 8. Denote the coupling of this extension 
by X. To calculate gX choose f from F so that r = g and conjugate by f 
in S/M. This produces the automorphism f~ of N since S = F ~ ~ N. By 
commutativity of (7) we have 

gX = f~(lnn N) = f~v = rx = gX. 

Hence X = X and (8) has coupling X. Thus (ii) has been established. 
It remains to prove that an extension N ~ E ~ G with coupling X is 

equivalent to an extension of type (8). To establish this we begin by using 
once again the projective property of free groups, this time to construct a 
homomorphism y: F -+ E such that ye = 77:. 

Now (RYY = R" = 1, so RY ::; Ker e = Nil. Thus we obtain a commutative 
picture 

(9) 

where K is defined by (r")11 = rY and the right hand mapping is the identity 
function. Define x" to be the automorphism of N that arises from conjuga
tion by x in 1m J1.; thus (a X'r = x-1allx, (a E N, x E E). Then A: E -+ Aut N is 
surely a homomorphism. Since the coupling X arises from conjugation in N, 

ex = AV. 

Therefore YAV = (ye)x = 77:X = ~v; here we have used the commutativity of 
(7) and (9). Since Ker v = Inn N, the elements x Y" and x~ differ by an inner 
automorphism of N, say (n:)\ nx E N, and 

(10) 
for all x E E. 

Now choose a set of free generators X of F. Then there is a homomor
phism 0' : F -+ E such that XU = x Yn: for all x in X. With this 0' one has 
xu' = (x Yn:Y = x ye = x" by (9). Therefore 

77: = ae. 
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Next we extend u to u*: S --+ E by means of the rule (fa)"· = f"a ll, (f E F, 
a EN). To show that this u* is actually homomorphic it suffices to check 
that (ax)"· = (a"·Y·· for all x E X, a E N. Now (aX)"· = (aX)1l = (ax()1l since 
~: F --+ Aut N specifies the action of F on N. Further x~ = (xYn~)A = X"A by 
(10) and the definition of u. Thus ~ = uA. It follows that (ax)". = (ax")1l = 
(x"tlallx" = (a""Y", as required. 

The homomorphism u*: S --+ E is surjective because E = FYNIl. We shall 
use M = Ker u* to construct an extension of type (8). Suppose that fa E M 
where f E F, a E N. Then f" E Nil by definition of u*; hence f" = f'" = 1 
and fER. Also all = (f"tl. It follows that 

M = {ralr E R, a E N, all = (r"tl}. 

Therefore MN = RN. Moreover, if ra E M n N, then rEF n N = 1; hence 
MN=M x N. 

Defining ali to be aM and (faM)' to be f" we obtain an extension 

N~SIM~G. 

To show that this is equivalent to the extension we started with, consider 
the natural isomorphism 8: SIM --+ E defined by (SM)9 = s,,". The diagram 

N~ SIM~ G 

j' 
N~ E 

e 
G -

is commutative. For ali9 = (aM)9 = a"· = all and (faM)9. = (fa)"-' = 
(f"a ll )" = /"'; but Ue = n, so (faM)9. = f" = (faM)'. This completes the 
~~ 0 

What the preceding discussion has achieved is to reduce the study of 
extensions to that of certain normal subgroups of covering groups. There 
may of course be no such normal subgroups, reflecting the fact that exten
sions with a prescribed coupling do not always exist. However, if N is 
abelian, Inn N = 1 and R~ = 1 by (7). Thus [R, N] = 1 and RN = R x N, 
so that R is a candidate for M. The corresponding extension N ~ SIR - G 
is equivalent to the split extension N ~ G ~ N - G. 

Theory of Covering Groups 

We propose to study covering groups in a somewhat more general context. 
The outcome will be a classification of equivalence classes of extensions with 
given coupling. 
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Let there be given groups Nand U together with a homomorphism 
e: U --+ Aut N, enabling us to form the semidirect product or covering group 

S = U ~~ N. 

The center of N shall be denoted by C. Let V be a normal subgroup of U 
such that 

[C, V] = 1. 

The product VN is denoted by L. 
We are interested in the (possibly empty) set 

vii = viI(U, V, N, e) 

of all normal subgroups M of S with the property 

MN=M x N=L. 

The relative position of these subgroups is indicated in the accompanying 
diagram 

s 

v 

Each M in vii determines an extension 

N~SIM~U/V 

where all = aM and (uaMY = uv, (a E N, u E U). 

u 

(11) 

What is the relevance of this set vii to our previous considerations? The 
normal subgroups M that occur in 11.1.5 are precisely the elements of 
viI(F, R, N, e): notice that [(N, R] = 1 because R~ :s 1m N . Thus we are 
motivated to ask when two extensions of type (11) are equivalent. 

The Action of HomuCV, C) on .A 

If cP E Homu(V, C), so that cp is a U-operator homomorphism from V to C, 
define cp': L --+ L by the rule 

(va)'P' = v(av'P), (v E V, a EN). (12) 
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It is easy to check that cp' is a homomorphism using the fact that v'l' belongs 
to C and [C, V] = 1. The inverse of cp' is clearly (-cp)', so cp' is an auto
morphism of L. Furthermore cp' is a V-automorphism because cp is a V
homomorphism. 

Now suppose that ME vii. Clearly L = L'I" = M'I" X N'I" = M'I" X N; 
also M'I" <J V. In other words M'I" E vii and Homu(V, C) acts on the set vii. 
Concerning this action we shall prove the following fact. 

11.1.6. If vii = vII(V, V, N, ~) is not empty, the group Homu(V, C) acts regu
larly on this set. 

Proof. Suppose first that M'I" = M where M E vii and cp E Homu(V, C). If 
cp' "# 1, then cp "# 0, and there is an element v of V such that v'l' "# 1. On 
writing v = xa with x E M and a E N, we see that M must contain X '1" = 
(va- l )'1" = va-lv'l' = xv'l'; from this it follows that v'l' EMil C = 1, a contra
diction. It remains to prove transitivity. 

Choose Ml and M2 from vii. For each v in V there are expressions 
v = xiai, i = 1, 2, where Xi E Mi, ai E N. Define a function cp: V -+ N by 
writing v'l' = al azl. Now al and a2 induce the same automorphism in N as 
v since [Mi' N] = 1; hence v'l' E C. It is obvious that cp is a homomorphism: 
indeed cp E Homu(V, C) because (v")'I' = a~ az" = (v'l')" if u E V. 

To complete the proof we verify that Mi' = M 2 • We choose x from M I , 

writing it in the form x = va, (v E V, a EN). Now v = miai, i = 1, 2, where 
mi E Mi, ai EN. Since x = mlala, we have ala = mllx E MIll N = 1; thus 
al = a-I. Consequently X '1" = (va)'I" = vav'l' = vaa1aZ1 = m2 E M2. Hence 
Mi' ::; M 2 • Since Mi' E vii, it follows that M2 = M2 Il (Mi' x N) = M(. 

o 

Equivalences Classes in .A(U, V, N, e) 

In view of our interest in equivalence of group extensions the following defi
nition is a natural one. Two elements Ml and M2 of vii are said to be equiv
alent if the corresponding group extensions N >-+ SIMi - VIV, i = 1, 2, are 
equivalent. Obviously this is an equivalence relation on vii. But what are 
the equivalence classes? In attempting to answer this question one finds that 
derivations arise in an essential way. 

Suppose that 15: V -+ C is a derivation; denote its restriction to V by b. 
Since [V, C] = 1, the defining property of derivations yields (VI V2)6 = vtvg, 
(Vi E V); in short b: V -+ C is a homomorphism. If u E V and v E V, then by 
(4) and (5) 

(U- 1VU)6 = ((u- l )6r(vu)6 = ((u 6)"-' V"r1 (V6)"U6 

= (U6)-I(V6)"U6 = (v 6)". 
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It follows that (VU);\ = (v;\)U, so that ;5 E Homu(V, C). It should be clear to the 
reader that the restriction mapping 0 f-+ ;5 is a homomorphism 

Der(U, C) ~ Homu(V, C). 

This provides us with a natural action ofDer(U, C) on A in which M~ = M;\'. 

11.1.7. If A is not empty, the equivalence classes of A = A(U, V, N, ~) are 
precisely the Der(U, C)-orbits. 

Proof. Suppose that Ml and M2 are equivalent elements of A; then there is 
a homomorphism (J making the diagram 

N >-----+ SIMl - UIV 

'j II 
N >-----+ SIM2 - U IV 

commutative. We shall find a 0 in Der(U, C) such that Mf = M2. 
Let u E U: then by commutativity of the right-hand square (uMd9 maps 

to uv. Hence (uMd9 = UCM2 where c E N is unique. In fact C E (N = C. For 
if a E N, we have (aUM l )9 = aUM2 by commutativity of the left-hand square 
in the diagram; thus aUM2 = ((uMd8)-l(aMd8(uMd8, which becomes 
aUM2 = aucM2 on substituting UCM2 for (uMd8 and aM2 for (a Md. Hence 
(aUrla UC E M2 II N = 1, which yields (aUr = aU. Since this is valid for all a in 
N, we conclude that C E C. 

The equation (uMd = uu 6M2 therefore determines a function 0: U ~ C. 
Now (J is a homomorphism, so 

(ulufM2)(U2U~M2) = (UlU2)(UlU2)dM2' 

which shows that (ul U2)~ = (unU2(u2)~-remember here that M2 II C = 1. 
Thus (j E Der(U, C). 

The next point to settle is that (j maps M 1 to M 2 under the action 
described above. Denote the restriction of (j to V by ;5. If x E V, then 
(xMl )8 = XX~M2 = x;\'M2 by definition of ;5' see (12)). This also holds if 
x E N since in that case (XMl)8 = XM2 and x;\' = x. Thus (xMd = x;\'M2 is 
true for all x in L = VN. If x E M l , it follows that x;\' E M2 and Mf = M2. 

Conversely, assume that there is a 0 in Der(U, C) such that Mf = M2. 
Let us show that Ml and M2 are equivalent. Define (J: SIMl ~ SIM2 by 
the rules (UM1)8 = UU~M2 and (aMl)8 = aM2 where u E U, a E N. It is 
simple to check that (1 , (J, 1) is an equivalence from N>-+ SIMl - UIV to 
N >-+ SIM2 - UIV. D 

We are now able to give a description of the equivalence classes of A. 
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11.1.S. There is a bijection between the set of equivalence classes of vIt = 
vIt(U, V, N, e) and the co kernel of the restriction homomorphism Der(U, C)--+ 
Homu(V, C), provided that vIt is not empty. 

Proof. Denote the image of the restriction map by I. Let Mo be any fixed 
element of vIt. If M is any other element of vIt, there is a unique ({JM E 

Homu(V, C) such that M = M~M; this is by 11.1.6. Suppose that M is equiv
alent to M. Then M = M 6' where () E Der(U, C) by 11.1.7. Therefore M~i; = 
M~M6' = M~q>M+3)' since ex' /3' = (ex + /3)' by definition (12). It follows from 
the regularity of the action of Homu(V, C) that ({JKi = «({JM + J)" where 
({JlJ = ({JM + (5 or ({JlJ == ({JM mod I. Conversely this congruence implies that 
M and M are equivalent by reversal of the argument. 0 

From 11.1.5 and 11.1.8 it follows that there is a bijection between the 
set of equivalence classes of extensions of N by G with coupling X and the 
group 

Coker(Der(F, CN) --+ HomF(R, (N)) (13) 

provided that such extensions exist: here of course R >--+ F - G is any fixed 
presentation of G. We shall see later that the group (13) can be identified 
with the second degree cohomology group H2(G, CN). 

EXERCISES 11.1 

1. If (IX, p, y) is a morphism of extensions and IX and yare group isomorphisms, 
prove that p is an isomorphism. 

2. Let (IX, 0, 1) be an isomorphism from N >-+ E - G to N >-+ E - G. If these 
extensions have couplings X and X respectively, prove that X = XIX' where 
IX': Out N --+ Out N is induced by IX: N --+ N. 

3. Let G be a group. Prove that G is free if and only if every extension by G splits. 
[Hint: Use the Nielson-Schreier Theorem.] 

4. Find two isomorphic extensions of Z3 by Z3 X Z3 which are not equivalent. 

5. Let A:" E --".. G be a group extension with abelian kernel A and G = <g) cyclic 
of order n. Let g = x' with x E E. A transversal function r: G --+ E is defined by 
(giy = Xi for 0 ::; i < n. Prove that the values of the corresponding factor set tP 
are 

i i)tP _ {O if i + j < n 
(g , g - a if i + j ~ n where a = x· E Ker E. 

6. Every extension N:" E --".. G is isomorphic with an extension of the form 
M ,..:.. E --".. G in which M = 1m J.l and I is inclusion. 

7. Show that there are eight equivalence classes of extensions of Z2 by Z2 X Z2. 
How many nonisomorphic groups do these give rise to? 
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8. Let G be an infinite cyclic group and let N be any group. If x: G -> Out N is a 
coupling, prove that some extension of N by G realizes X. Using the obvious 
presentation 1 >-> G - G, show that there is a unique equivalence class of exten
sions of N by G with coupling X and that these extensions are split. 

9. Let G = <x) be a cyclic group with finite order n and let N be any group. Sup
pose that X: G -> Out N is a coupling that gives rise to extensions of N by G. 
Prove that there is a bijection between equivalence classes of extensions of N by 
G with coupling X and Ker K/Im v: here v and K are the respective endomor
phisms a f-+ al+x+oo.xn-l and a f-+ [a, x] of A = 'N. (The action of x on A comes 
from X.) Show also that each such extension is an image of a split extension of N 
by an infinite cyclic group. 

10. Find all equivalence classes of extensions of Qs by 71. 2 , Identify the groups which 
arise in this way. 

11. Let Nand G be arbitrary groups. For each x in G let Nx be a group isomorphic 
with N via a map a f-+ ax. Write B = CrxeGNx, the cartesian product. If bE B 
and g E G, define b9 by the rule (b9)x = bX9- 1. Show that this action of G on B 
leads to a semidirect product W = G ~ B. (Here W is called the standard com
plete wreath product N;;C; G and B is the base group of W). 

12. (Kaluinin-Krasner) Let N ,!:... E..!.. G be any group extension and denote by W 
the standard complete wreath product N;;C; G. Prove that E is isomorphic with a 
subgroup of W, so that W contains an isomorphic copy of every extension of N 
by G. [Hint: Choose a transversal function 't: G -> E for the extension. Define 
y: E -> W as follows. If x E E, let x Y = x'b(x) where b(x) is the element of the 
base group of W given by (b(x))g = «gx-'YX(gT)-1)1t-1

.] 

11.2. Homology Groups and Cohomology Groups 

The purpose of this section is to define the homology and cohomology 
groups by means of projective resolutions. This material will be familiar to 
those readers who have experienced a first course in homological algebra: 
they may proceed directly to 11.3. 

Complexes 

Let R be a ring with identity. A right R-complex C is a sequence of right 
R-modules and homomorphisms 

D.+1 D. 
" '- Cn+1 - Cn - Cn - 1 - " ', (nEZ), 

infinite in both directions, such that 0n+10n = 0, that is to say, 1m 0n+1 ~ 
Ker On for all n. The homology H(C) of the complex C is the sequence of 
R-modules 

(n E Z), 
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which are usually referred to as the homology groups of C. Thus C is exact if 
and only if all the homology groups vanish. 

By a morphism Y from an R-complex C to an R-complex C is meant a 
sequence of R-homomorphisms Yn: Cn ~ en such that the diagram 

°n+l C On C 
~ n~ n-l ~ ... 

Y. j Y • • j 
~C- ~C-

" "-1 
~ ... 

commutes. Define y~ : HnC ~ HnC by the rule (a + 1m On+1 )y~ = aYn + 1m an+1 

where a E Ker On' Notice that aYn E Ker an because aYnan = aOnYn-l = 0 by 
commutativity of the diagram; also y~ is well-defined since (1m 0n+l)Yn = 
Im(Yn+1 an+d :::; 1m an + 1 . Clearly y~ is an R-homomorphism. We state this 
basic observation as a lemma. 

11.2.1. A morphism y: C ~ C of R-complexes induces homomorphisms 
y~: HnC ~ HnC of homology groups. 

It is clear how to define a left R-complex of left R-modules. Most results 
will be proved for right complexes, but they are, of course, valid for left 
complexes by corresponding proofs. 

Homotopy 

We wish to introduce a way of comparing morphisms between complexes 
C and C. Two such morphisms Y_ and ~ are said to be homotopic if there 
exist R-homomorphisms Un: Cn ~ Cn+1 such that 

for all Z E 7L. This may be thought of as a sort of partial commutativity of 
the diagram 

- check the commutativity statements for the two middle triangles. It is 
very easy to verify that homotopy is an equivalence relation. 

The following fact plays a central role in the proof of the uniqueness of 
homology and cohomology groups. 
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11.2.2. If y: C -+ C and ~: C -+ Care morphisms of R-complexes such that y~ 
and ~y are homotopic to identity morphisms, then y~: HnC -+ HnC is an iso
morphism for all integers n. 

Proof. By hypothesis there are R-homomorphisms O"n: Cn -+ Cn+1 such that 
Ynen - 1 = O"nan+1 + anO"n-1' If a E Ker an, then ay~ = a + aO"nan+1 == a mod 
1m an+1. Therefore ay~ + 1m an+1 = a + 1m an+1, which is just to say that 
y~~~ = 1. Similarly ~nY~ = 1, so that ~~ is the inverse ofy~ . 0 

Free and Projective Modules 

Free R-modules are defined in exactly the same way as free abelian groups, 
or free groups for that matter. An R-module M is said to be free on a set X 
if there is a mapping I: X -+ M such that, given a function 0(: X -+ N with 
N any R-module, there is a unique homomorphism {3: M -+ N such that 
0( = 1{3. Thus the diagram 

commutes. The mapping I is necessarily injective: usually we take it to be 
inclusion, so that X £; M. 

The following statements are proved in precisely the same way as for 
abelian groups: a right R-module is free if and only if it is a direct sum of 
copies of RR' the ring R regarded as a right R-module by multiplication. 
Every R-module is an image of a free-module (see 2.3.8 and 2.3.7). 

An R-module M is said to be projective if, given an R-homomorphism 
0(: M -+ N and an R-epimorphism e: L -+ N, there is an R-homomorphism 
{3: M -+ L such that 0( = {3e, that is to say, the diagram 

commutes. Every free module is projective (see the proof of 4.2.4). A projec
tive module is not in general free, but merely a direct summand of a free 
module (see Exercise 11.2.6). 

A complex is said to be free if all of its modules are free, and projective if 
all of its modules are projective. 
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Resolutions 

A complex C is called positive if Cn = 0 for n < 0: the complex is then 
written'" ~ C2 ~ C1 ~ Co ~ O. Let M be a right R-module. By a right R
resolution of M is meant a positive right R-complex C and an epimorphism 
t:: Co - M such that 

a2 a, e 
... ----+ C2 ----+ C1 ----+ Co ----+ M ----+ 0 

is exact. We may abbreviate the resolution to C ~ M. The resolution is said 
to be free (projective) if C is free (projective). 

11.2.3. Every R-module has a free R-resolution. 

Proof. Let M be any R-module. Then there exists an epimorphism t:: Co - M 
with Co is free. Likewise there exists a homomorphism 01 : C1 ~ Co where 

1m 01 = Ker t: and C1 is free. So far we have an exact sequence C1 ~ Co ~ 
M ~ O. Clearly this procedure can be repeated indefinitely to produce a free 
resolution of M. D 

e - £ - -
11.2.4. Let P - M and P - M be two projective R-resolutions. If IX: M ~ M 
is an R-homomorphism, there is a morphism 7t: P ~ Ii such that 7toB = t:IX. 

Moreover any two such 7t'S are homotopic. 

P~ M 
I 

). I 
7t1 

! 
- s 
P- M. 

Proof. Since Po is projective and B surjective, there is a homomorphism 
7to: Po ~ Po such that 7toB = t:IX. 

Suppose that we have constructed homomorphisms 7ti : 1'; ~ 1>;, for i = 1, 2, 
... , n, such that 7t i 8 i = 0i7ti-l' Then we have On+17tn8n = On+1 On7tn-l = 0, so 
that Im(on+l7tn) ~ Ker 8n = 1m 8n+1 • By projectivity of Pn+1 there exists a 
homomorphism 7tn+1 : Pn+1 ~ Pn+1 such that 7tn+18n+1 = 0n+l7tn, as one can 
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see from the diagram 

Hence the following diagram is commutative: 
0n+1 On 01 8 

Pn+!~Pn~Pn-l~"'Pl~Po~M~ 0 

'0" j _ '0 j _ '0-' j " j _ " j , j 
- On+! - On - - 0, - 8 -
Pn+l~Pn~Pn-l~"'Pl~Po~M~ O. 

Consequently we have defined recursively a morphism n: P -+ Ii with the 
right property. 

Now suppose that n': P --+ Ii is another such morphism. Let p: P -+ Ii be 
the morphism given by Pn = nn - n~. Then the following diagram commutes 
-ignore the diagonal maps for the present: 

0.+2 On+! 01 8 
... ~ P n+2 ~ P n+1 ~ P n ~ ••• Pi ~ Po ~ M ~ 0 

Po" j .o~/~., j ';/:0 j p, j ./~ j oj 
- '" 0n+2 - '" On+! - - '" 01 - 8 -

•.. ~ P n+2 ~ P n+1 ~ P n ~ ..• Pi ~ Po ~ M ~ O. 

Since P0 8 = 0, we have Impo::;; Ker 8 = 1m 61 , By projectivity of Po 

there exists a homomorphism CTO: Po -+ Pi such that CT0 6 1 = Po. Suppose that 
homomorphisms CTi : Pi --+ P i+1 have been constructed in such a way that 
Pi = 0i CTi-l + CTi6i+l for i = 0, 1, ... , n. (Refer now to the diagram.) This is 
true when i = 0 if we interpret CT_ 1 as O. Now 

(Pn+l - an+! CTn )6n+1 = 0n+1Pn - 0n+l CTn6 n+1 

= an+! (OnCTn- 1 + CTn6 n+!) - an+! CTn6 n+! 

= O. 

Hence Im(Pn+l - 0n+l CTn) ::;; Ker 6 n+1 = 1m 6n+2 • The projectlvlty of P n+1 

yields a homomorphism CTn+1 : Pn+! - ]>n+2 such that CTn+! 6 n+2 = Pn+! -

0n+l CTn, or Pn+l = 0n+l CTn + CTn+! 6 n+2 as required. Thus the CTn have been con
structed for all n, and nand n' are homotopic by definition. 0 

The Homology Groups Hn(G, M) 

Let G be any group and M any right G-module (that is to say, right lLG
module). Consider the additive group of integers lL regarded as a trivial left 
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G-module; this means that elements of G operate on 7l.. like the identity map. 
By 11.2.3 there is a left projective resolution P --+ 7l... By tensoring each 
module of P with Mover 7l..G and taking the natural induced maps we 
obtain a complex of 7l..-modules 

a~+l a~ 
... ---+ M @ ZG Pn+1 ---+ M @ ZG Pn ---+ M @ ZG Pn- 1 ---+ . . . 

which we call M @ ZG P : here of course (a @ b) o~ = a @ (ban)' a E M, bE Pn. 
This complex will usually not be exact. Define the nth homology group of G 
with coefficients in M to be the abelian group 

Hn(G, M) = Hn(M @ZG P). 

Since 7l.. has many projective resolutions, the following remark is essential. 

11.2.5. Up to isomorphism the homology groups Hn(G, M) are independent of 
the projective resolution P --+ 7l... 

Proof. Let P ~ 7l.. and P -!.. 7l.. be two left projective 7l..G-resolutions of 7l... 
Applying 11.2.4 with 1: 7l.. --+ 7l.. for IX, we obtain a morphism n: P --+ P such 
that noe = e. Similarly there is a morphism n: P --+ P such that noe = e. 
Then nn: P --+ P has the property (nono)e = e; of course so does the identity 
morphism 1: P --+ P. It follows from 11.2.4 that nn is homotopic to 1; the 
same is true of nn. We deduce that n'n' and n'n' are homotopic to identity 
morphisms where n' : M @ ZG P --+ M@zGP and n': M@zG P --+ M @ ZG P 
are the natural induced morphisms in which (a @ b)n~ = a @ (bnn) and 
(a @ b)n~ = a @ (bnn). Finally 11.2.2 shows that the map n~ induces an iso
morphism 

o 

The Cohomology Groups Hn(G, M) 

Let G be any group and M any right G-module. Let P ~ 7l.. be a right pro
jective 7l..G-resolution of 7l... Form the new complex HomG(P, M), that is, 

DO DO+! 
. . . ---+ HomG(Pn-l, M)---+ HomG(Pn , M)---+ HomG(Pn+l, M)---+ . . . 

where {)n is defined in the natural way, by composition; thus (1X){)n = OnlX 
where IX E HomG(Pn-l , M). Each HomG(Pn, M) is a 7l..-module. Now the com
plex Homa(p, M) will usually be inexact. The nth cohomology group of G 
with coefficients in M is the abelian group 

Just as for homology we can prove independence of the resolution. 

11.2.6. Up to isomorphism the cohomology groups Hn(G, M) are independent 
of the projective resolution P - M. 
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When a projective resolution of Z is known, the homology and co
homology groups may be read off from the following result. 

11.2.7. Let G be a group and MaG-module. Suppose that P - Z is a projec
tive ZG-resolution of Z, and denote Im(on: Pn --+ Pn- 1 ) by In. 

(i) If P is a left complex and M is a right G-module, there is an exact se
quence 

o~ Hn(G,M)~ MQ9;wln~ MQ9;wPn- l . 

(ii) If P is a right complex and M is a right G-module, there is an exact 
sequence 

Proof. (i) Let v: Pn --+ In be the obvious mapping a 1--+ aon, and let 1: In --+ Pn- 1 

be inclusion. Then we have the commutative picture with an exact row 

Tensor each module with M, keeping in mind the right exactness property 
of tensor products. We obtain an induced commutative diagram with an 
exact row. 

v' 

M®~ ~i®'GJ. ~ 0 

M®;WPn-l' 

Thus Ker v' = 1m O~+1' We claim that (Ker o~)v' = Ker I'. If a E Ker o~ , then 
o = ao~ = av',' by commutativity of the second diagram. Thus av' E Ker I'. 
Conversely let bE Ker I' and write b = cv' where c E M Q9;w Pn • Then 
0= bI' = evil' = co~, so C E Ker o~ and bE (Ker o~)v'. Hence v' induces 
an isomorphism from Ker o~/Im O~+1 to Ker I'. But Hn(G, M) 
Ker o~/Im O~+1' so we obtain an isomorphism of Hn(G, M) with 

Ker(l': M ®;w In ~ M Q9;w Pn-d, 

as called for. 
(ii) The proof is similar. o 

Remark: Left modules versus right modules 
It is also possible to define HiG, M) as Hn(P Q9 M) where P is a right 
projective resolution and M is a left module. Similarly Hn(G, M) may be 
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defined to be Hn(Hom(P, M)) where P is a left projective resolution and M 
is a left module. Up to isomorphism the same groups are obtained. The 
basis for this is the fact that any left module A over a group G can be 
regarded as a right module A' over G by means of the rule ag = g-la 
(a E A, 9 E G); for details see Exercises 11.2.10 and 11.2.11. 

EXERCISES 11.2 

(In the first five exercises R is a ring with identity.) 

*1. Prove that a right R-module is free if and only if it is a direct sum of copies of 
RR· 

*2. Any R-module is an image of a free R-module. 

*3. Free modules are projective. 

4. Consider an extension of R-modules, that is, an exact sequence of R-modules 
and R-homomorphisms 0 ..... A ~ B ~ C ..... o. 
(a) Prove that there is an R-homomorphism 1' : C ..... B such that ye = 1 if and 

only if 1m J-I = Ker e is a direct summand of B. 
(b) Prove that there is an R-homomorphism /3: B -+ A such that J-I/3 = 1 if and 

only if 1m J-I = Ker e is a direct summand of B. 
(The extension is said to split if these equivalent properties hold.) 

5. Prove that the following properties of an R-module M are equivalent: 
(a) M is projective. 
(b) Every extension 0 ..... A ..... B ..... M ..... 0 splits. 
(c) M is a direct summand of a free R-module. 

6. Use Exercise 11.2.5 to give an example of a projective module that is not free. 

7. If R is a principal ideal domain, prove that every projective R-module is free. 

8. Let M be a free G-module and let H ::; G. Prove that M is a free H-module. 

9. Prove 11.2.6. 

10. Prove l1.2.7(ii). 

11. Let P be a right G-complex and let M be a left G-module. If A is a left (right) 
G-module, let A' be the corresponding right (left) G-module where ag = g- la (or 
ga = ag-1). Prove that Hn(P ®ZG M) ~ Hn(M' ®ZG PI) where P' is the complex 
whose modules are P~. 

12. IfP is a left G-complex and M is a left G-module, prove that Hn(HomzG(P, M)) ~ 
Hn(Homza(p', M')) in the notation of the previous exercise. 

11.3. The Gruenberg Resolution 

Naturally 11.2.7 is of little value until we have some explicit method of 
writing down a projective ZG-resolution of Z. There is a way of doing this 
whenever a presentation of the group G is given. 
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Augmentation Ideals 

Let G be any group. Then there is an obvious epimorphism of abelian 
groups 

e: ?LG -+?L 

such that g H 1 for all g in G: this is known as the augmentation of ?LG. It is 
easy to check that B is a ring homomorphism. Thus the kernel of B is an 
ideal of ?LG; this ideal, which is of great importance, is denoted by 

IG, 

the augmentation ideal of ?LG. Obviously IG consists of all r = LgeGngg 
such that LgeG(ng ) = O. Now such an r can be rewritten in the form r = 
L l"ge G ng(g - 1); conversely any such r has coefficient sum equal to 0, so it 
belongs to I G • Thus 

IG = <g - 111 =F g E G), 

the additive group generated by all the g - 1 =F O. Indeed it is easy to see 
that IG is a free abelian group with the set {g - 111 =F g E G} as basis. 

The following property of the augmentation ideal of a free group is 
fundamental. 

11.3.1. If F is a free group on a set X, then IF is free as a right F-module on 
the set X = {x - 11x EX}. 

Proof. Let tX: X -+ M be a mapping to some F-module M. By definition of 
a free module it suffices to prove that tX extends to an F-homomorphism 
f3: IF -+ M. 

First of all let tX': F -+ F ~ M be the group homomorphism which sends 
x in X to (x, (x - l)tX). To each f in F there correspond fl in F and a in M 
such that /'" = (fl, a). Now it is clear from the definition of tx' that fl = f 
Thus a function 0: F -+ M is determined by the equation /'" = (f, f6). Next 
for any fl' f2 in F we have 

(fd2Y" = ftl{ = (fl.JlHf2.Jt) = (fd2' (fDf2 + ff), 

in view of the additive nature of M. Hence (fd2)6 = (f[')f2 + ft, so that 
0: F -+ M is a derivation. 

Keeping in mind that IF is free as an abelian group on the set {f - 111 =F 
f E F}, we construct a homomorphism f3: IF -+ M of abelian groups by 
writing (f - 1)f3 = f6. Now (x - 1)f3 = x 6 = (x - l)tX because x'" = 
(x, (x - l)tX); thus f3 is an extension of tx to IF. Finally f3 is an F
homomorphism because 

((f - l)fdf3 = ((ffl - 1) - (fl - 1))f3 = (ffl - 1)f3 - (fl - 1)f3 

= (ffl)6 - f[' = (f6)fl 

= (f - l)f3fl· 0 
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As an application of 11.3.1 let us prove that the homology and cohomo
logy groups of a free group vanish in dimensions greater than 1. 

11.3.2. If F is a free group and M is any F-module, then Hn(F, M) = 0 = 
HiF, M) for all n > 1. 

Proof. By 11.3.1 the complex··· -+ 0 -+ 0 -dr-+"Z.F ~"Z. is a free "Z.F
resolution of "Z.. Using this resolution and the definitions of Hn(F, M) and 
Hn(F, M) we obtain the result. 0 

Relative Augmentation Ideals 

Let G be any fixed group and suppose that N is a normal subgroup of 
G. The assignment g r-+ gN determines an epimorphism of abelian groups 
from "Z.G to "Z.(GIN) which is easily seen to be a ring homomorphism. Let its 
kernel be denoted by 

IN· 

This may be thought of as a generalization of the augmentation ideal since 
IG = I G• 

Let I denote the ideal IN("Z.G) = ("Z.G)IN; then clearly I ::;; IN. We regard 
"Z.GII as a G-module via right multiplication. If x E N, g E G and r E "Z.G, 
then (r + I)gx = rg + I since x - 1 E I. We may therefore turn "Z.GII into 
a GIN-module via the rule (r + I)gN = rg + I. It follows that IN must act 
trivially on "Z.GII, or IN::;; I . There results the equalities 

IN = IN("Z.G) = ("Z.G)IN· 

Hence IN is the right ideal of"Z.G generated by all x - 1 where 1 "# x E N. 
The next result generalizes 11.3.1. 

11.3.3. Let R be a normal subgroup of a free group F. If R is free on X, then 
IR is free as a right F-module on {x - 11x EX}. 

Proof. Suppose that LXEX(X - 1)ax = 0 where ax E "Z.F. Choose a transver
sal T to R in F; then "Z.F = DrtET("Z.R)t, so we may write ax = LtETbx,tt 
where bx,t E"Z.R. Hence LtET(LxEX(X - 1)bx,t)t = O. Obviously this means 
that LXEX (x - 1)bx,t = 0 for every t. Since IR is free on the set of all x - 1 
by 11.3.1, it follows that bx,t = O. 0 

One final preparatory lemma is needed. 

11.3.4. Let R >--+ F ~ G be a presentation of a group G. Suppose that Sand T 
are right ideals of "Z.F that are free as F-modules on X and Y respectively. 
Then: 
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(i) s /siR is free as a G-module on {x + sIRlx EX}; 
(ii) ST is free as an F-module on {xylx E X, y E Y} provided that T is a 2-

sided ideal. 

Proof. (i) In the first place s /IR is a G-module via the action (s + SIR)!" = 
sf + sIR; this is well-defined because srf = sf + s(r - l)f == sf mod sIR 
where s E S, f E F, r E R. 

Since S = Drxexx(ZF), we have sIR = DrxexxIR' and 

(ii) Clearly 

- G - G 
S/SIR ~ Dr x(ZF)/xIR ~ Dr x(Z(F/R)). 

xeX xeX 

ST = Dr x(ZF)T = Dr xT = Dr xyZF. 
xeX xeX xeX 

ye Y 

o 

11.3.5 (The Gruenberg Resolution). Let R >-+ F ~ G be a presentation of a 
group G. Then there is a free right G-resolution of Z 

' " ~ I'R /I'R+1 ~ IFI'R- 1/IFI'R ~ I'R- 1/I'R ~ . .. 
-2 -3 - -2 - -2 -

. . . ~ IR/IR~ IFIR/IFIR~ IR/IR~ IF/IFIR~ ZG~ Z. 

The mappings here are as follows: ZG -+ Z is the augmentation, IF/IFIR -+ ZG 
is induced by n: F -+ G and all other mappings are natural homomorphisms. 

Proof. By 11.3.1 and 11.3.3 both IF and IR are free F-modules. Applying 
11.3.4 we see that the modules IFI'R / IFI'R+1 and I'R /I'R+1 which appear in the 
complex are free G-modules. Now check exactness. The kernel of ZG -+ Z is 
IG , which is also the image of IF/IFIR -+ ZG. The kernel of the latter map is 
IR/IFIR since IR is the kernel of ZF -+ ZG; the image of IR /Ii -+ IF/IFIR is 
also IR /IFIR. And so on. 0 

There is of course a corresponding left resolution in which the IF appears 
on the right throughout. In the language of category theory 11.3.5 sets up a 
functor from presentations to resolutions-see Exercise 11.3.8. 

The Standard Resolution 

Let G be any group and let F be the free group on a set {xgll ¥- g E G}. 
Recall that the assignment Xg H 9 gives rise to a presentation R >-+ F ~ G 
called the standard presentation. We propose to examine the Gruenberg 
resolution that arises from this presentation: it is known as the standard 
resolution. 

For convenience define Xl to be 1; then the set {xglg E G} is a transversal 
to R in F. Since the nontrivial Xg are also free generators of F, it is clear that 
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this is a Schreier transversal in the sense of 6.1. It follows from 6.1.1 (and its 
proof) that R is freely generated by the elements 

(14) 

By 11.3.3 the Y9, ,92 - 1 form a set of free generators for the free F-module 
JR' Define 

(15) 

where gi belongs to G. Clearly (gl' g2) E JR and (gl' g2) = 0 if and only if gl 
or g2 equals 1. Moreover (15) shows that the nonzero (gl' g2)'S freely gener
ate the F-module JR' 

Next we define for n > 0 the symbols 

(gllg21" 'lg2n) = (gl' g2)(g3, g4) '" (g2n-l, g2n) + /R+ 1 

and 

(gllg21" 'lg2n-l) = (1 - Xg,)(g2 ' g3)(g4' gs)' " (g2n-2, g2n-l) + I F / R· 
These are elements of P2n = JR I/R+ 1 and P2n- 1 = IF/R-I IIFIR respectively. 
Observe that P2n and P2n- 1 together with Po = 7L.G are the terms of the 
Gruenberg resolution (11.3.5). We deduce from 11.3.4 that P2n is freely gen
erated as a G-module by the (gllg21 " 'lg2n) and P2n- 1 is freely generated 
as a G-module by the (gllg21 " 'lg2n-l) where 1 "# gj E G. It is evident that 
(gllg21"'lgn) = 0 if some gi equals 1. 

There is a useful formula describing the homomorphisms which appear 
in the standard resolution. 

11.3.6. The homomorphism on: Pn --+ Pn- 1 which occurs in the standard resolu
tion is given by 

n-l 
(gll " 'lgn)on = (g21 "' lgn) + L (_1)i(gll "'lgi-llgigi+1lgi+21 " ' Ign) 

i~l 

Proof. Consider the statement when n = 1. By definition (g) = 1 - Xg + 
IFJR, so (g)Ol = 1 - g, which agrees with the formula if we interpret 
(grl " 'Igs) as 1 when r > s. 

Next consider the case n = 2. Now 02: P2 --+ Pl maps (gllg2) = Xg 9 -_ _ 1 2 

Xg,Xg2 + I~ to X9,92 - X9,Xg2 + IFIR. The identity 

Xg,92 - X9,Xg2 = (1 - xg2) - (1 - X9'92) + (1 - X9,)X92 

shows that (gllg2)02 = (g2) - (glg2) + (gdg2' as predicted. 
Now let n = 3. By definition 03 : P3 --+ P2 maps 

-2 
(gt!g2Ig3) = (1 - X9,)(g2' g3) + IFIR 

to (1 - X9,)(g2' g3) + J~ = (1 - xg,)(g2Ig3)' On the other hand, the value 
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predicted by the formula is 

which is just 

-2 
- (X9'92 - Xg,X9,)X93 + JR' 

After cancellation this becomes (1 - X9J(X9293 - X92X9) + Ii. or 

(1 - Xg J(g2!g3)' 

If n > 3, induction may be used to reduce to one of the cases already 
dealt with-for details see [b29]. D 

Cocyc1es and Coboundaries 

Let P - 7L be the standard 7LG-resolution of 7L. Let us use this resolution to 
calculate Hn(G, M) where M is any right G-module. One has to take the 
homology of the complex HomG(P, M); in this the homomorphisms are the 

In+l: HomG(Pn, M) ---+ HomG(Pn+l, M). 

Now p. is the free G-module on the set of all (g l!g2!" '!gn), gi -# 1. Thus a 
1/1 in HomG(Pn, M) is determined by its value at (gl!g2!" '!gn); conversely 
these values may be chosen arbitrarily in M to produce a 1/1. Hence elements 
1/1 of HomG(Pn, M) correspond to functions cP : G x ... x G --+ M such that 

'--y----J 
n 

(gl' ... , gn)CP = 0 if some gi equals 1; the correspondence is given by 

(gl!" '!gn)1/I = (gl,"" gn)CP. 

Such functions cP are called n-cochains. Note that (g 1, .. . , gn)CP = 0 if some 
gi = 1. 

The induced action of In+1 on n-cochains is easy to discover: (cp)Jn+1 
corresponds to (I/I)Jn+1 = On+ll/1. Using 11.3.6 we conclude that 

(gl, g2,"" gn+1)cpJn+l = (g2,···, gn+l)CP 
n 

+ L (-1)i(gl' ... , gi-l, gigi+l, gi+2,···, gn+1)CP 
i=1 

(16) 
If we write 

zn(G, M) = Ker In+l and Bn(G, M) = 1m In, 

then 
H"(G, M) ~ zn(G, M)jBn(G, M). (17) 
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Elements of zn(G, M) are called n-cocycles while those of Bn(G, M) are 
n-coboundaries. 

For example, suppose that n = 1. If q> E Zl(G, M), then (16) shows that 

0= (g2)q> - (glg2)q> + (gdq>' g2 

or (glg2)q> = ((gl)q»'g2 + (g2)q>, which is precisely the condition for q> to 
be a derivation from G to M. 

Next if q> is a O-cochain, which must be interpreted as a constant, that is, 
an element a of M, then (g)q>b 1 = a(l - g). Thus the 1-coboundary (q»b 1 is 
just an inner derivation. We have therefore made the following identifica-
tion: 

Hl(G, M) = Der(G, M)jlnn(G, M). 

If q> is a 2-cochain, the condition for q> to be a 2-cocyde is 

(gl' g2g3)q> + (g2' g3)q> = (g l g2' g3)q> + (gl' g2)q>' g3 

(18) 

for all gi in G. We recognize this as the factor set condition (6) encountered 
in 11.1. 

11.3.7. Let G be a finite group of order m. Suppose that M is any G-module. 
Then m' Hn(G, M) = 0 for all n > O. 

Proof. Let q>: G x ... x G -+ M be any n-cochain. There is a corresponding 
"-v-' 

n 

(n - l)-cochain '" given by 

(g2 ' ... , gn)'" = L (x, g2' ... , gn)q>· 
xeG 

Sum the formula (16) over all gl = x in G to get 

L (x, g2"'" gn+l)q>b n+1 = m((g2, · ··, gn+l)q» 
xeG 

n 

+ L (-1)i(g2' ... , gi-l, gigi+l, gi+2, . .. , gn+1)'" 
i=2 

- (g3, ... , gn+d'" + (-l)n+1(g2' .. . , gn)"" gn+l' 

If q> E zn(G, M), this becomes mq> = "'bn, so that mq> E Bn(G, M) and 

m' H"(G, M) = O. o 
This has the following useful corollary. 

11.3.8. Let G be a finite group of order m. Suppose that M is a G-module 
which is uniquely divisible by m. Then Hn(G, M) = 0 for all n > O. 

Proof. Let q> E zn(G, M): then mq> = "'bn for some (n - l)-cochain '" by 
11.3.7. Since M is uniquely divisible by m, it is meaningful to define Iii to 
be (11m)",. Then Iii is an (n - l)-cochain and q> = liib n E Bn(G, M). Thus 
H"(G, M) = O. 0 
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The corresponding results for homology are also true but require a dif
ferent proof (see Exercise 11.3.10). 

EXERCISES 11.3 

*1. For any group G show that IG is a free abelian group on the set G - 1 = 
{g-111i'gEG}. 

2. Let G = <g> be an infinite cyclic group. Using the presentation 1 >--> G - G 
write down the left and right Gruenberg resolutions for G. If M is a G-module, 
show that HO(G, M) ~ MG ~ HdG, M) and HI(G, M) ~ MG ~ Ho(G, M) where 
MG = {a E Mlag = a} and MG = M/M(g - 1). 

3. If F is a free group and M is an F-module, use the Gruenberg resolution to 
calculate H°(F, M) and Hl(F, M). 

4. The same question for Ho(F, M) and HI (F, M). 

5. Let G = <g> be a cyclic group of finite order m. If F is an infinite cyclic group, 
show that the presentation Fm >--> F - G determines a resolution 

P • P • • 
... -----+ 7L G -----+ 7L G -----+ 7L G -----+ 7L G -----+ 7L G -----+ 7L -----+ 0, 

where IX and /3 are multiplication by g - 1 and 1 + g + ... + gm-l, respectively. 

6. Use the previous exercise to calculate the (co)homology of a cyclic group G of 
order m. If M is any G-module, then for n > 0 

H 2n- I (G, M) ~ Ker /3/Im IX and H 2n(G, M) ~ Ker IX/1m /3. 

Also 

7. Let G be a finite cyclic group and let M be a finite G-module. Assume that 
H;(G, M) = 0 for some fixed i> o. Prove that Hn(G, M) = 0 for all n > O. [Use 
Exercise 11.3.6.] 

8. (a) Let R; >--> F; - G, i = 1, 2, be two presentations of a group G. Prove that 
there is a morphism (IX, /3, 1) from Rl >--> Fl - G to R2 >--> F2 - G. 

(b) Prove that any such morphism of presentations of G determines a morphism 
of the correspondence Gruenberg resolutions. 

(c) The association of a Gruenberg resolution with a presentation determines a 
functor from the category of presentations of G to the category of free G
resolutions of 7L. 

9. Let G be the union of a countable chain of groups Gl ~ G2 ~ .••. Let M be a 
G-module such that Hn(G;, M) = 0 = Hn+I(G;, M) for all i and for some fixed n. 
Prove that Hn+l(G, M) = O. 

10. Let G be a finite group of order m and let M be any right G-module. By adopting 
the following procedure (due to R. Strebel) prove that m· Hn(G, M) = 0 if n > O. 
(a) Let F be a free left 7LG-resolution of 7L. Define morphisms of complexes 

IX: M ®ZG F ..... M ®z F and /3: M ®z F ..... M ®ZG F by (a ® b)lX; = LgeGag ® 
g-lb and (a ® b)/3; = a ® b where a E M and b E F;. 
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(b) Show that af3 induces homomorphisms Hn(M ® ZG F) -+ Hn(M ®ZG F) which 
are simply multiplication by m on each module. 

(c) Prove that M ® z F is exact, noting that if A >-> B - C i s an exact sequence 
of free abelian groups, then M ® A >-> M ® B - M ® C is an exact se
quence (with the obvious maps). 

(d) Deduce from (b) and (c) that m ' Hn( G, M) = O. 

11.4. Group-Theoretic Interpretations of 
the (Co)homology Groups 

The group-theoretic significance of the homology and cohomology groups 
in low dimensions will now be discussed. 

The Groups Ho(G, M) and HO(G, M) 

To compute Ho(G, M) we tensor the left Gruenberg resolution by M, 
obtaining 

... -- M ®:w (IF /IRIF) -- M ®.w TLG -- O. 

Now M ®;w TLG ~ M via the mapping a ® g 1-+ ago Therefore by definition 
of the homology groups Ho(G, M) is isomorphic with M/MIG' the largest 
G-trivial quotient of M; this is usually written MG' 

In a similar manner it may be shown that 

HO(G, M) ~ {a E Mlag = a, '</g E G}, 

the set of G-fixed points of M, which is often written MG (confusion with 
normal closures being unlikely). Thus we have 

11.4.1. If G is a group and M a right G-module, then 

Ho(G, M) ~ MG and HO(G, M) ~ MG. 

The Group Hl(G, M) 

11.4.2. If G is a group and M a right G-module, then H 1(G, M) is isomorphic 
with the kernel of the homomorphism M ® ZG IG -+ M in which 

a ® (g - 1) 1-+ a(g - 1). 

This follows at once when 11.2.7 is applied to the Gruenberg resolu
tion. There is a neat formula for H 1 (G, M) when G operates trivially on M. 
In order to derive this we take note of a result which has some interest in 
itself. 
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11.4.3. If G is any group, then IG/IJ ~ Gab. 

Proof. Since IG is free on {g - 111 =f. 9 E G} as an abelian group, the mapping 
x-I H xG' determines a homomorphism IG --+ Gab. Now the identity 
(x - l)(y - 1) = (xy - 1) - (x - 1) - (y - 1) implies that IJ is mapped 
to O. Hence there is an induced homomorphism <p : IG/IJ --+ Gab such that 
((x - 1) + IJ)<p = xG'. On the other hand, x H (x - 1) + IJ is a 
homomorphism from G to IG/IJ by the same identity. Therefore it induces a 
homomorphism Gab --+ IGIJ which is clearly inverse to <po D 

11.4.4. If M is a trivial right G-module, then H1(G, M) ~ M ® Gab. 

Proof. By 11.4.2 we have H1(G, M) ~ M ® ZG I G • It is seen that the assign
ment a ® (x - 1) H a ® ((x - 1) + IJ) yields an isomorhism 

M ®ZG IG':+ M ®z (IG/IJ). 

The result now follows from 11.4.3. D 

The Group Hl(G, M) 

An interpretation of Hl(G, M) as the quotient group Der(G, M)/Inn(G, M) 
has already been mentioned during our discussion of the standard resolu
tion. Another approach to this important result will now be given based on 
a lemma for which we shall find other uses. 

11.4.5. If G is a group and MaG-module, then Der(G, M) ~ HomG(IG, M). 

Proof. If <5 E Der(G, M), we may define a homomorphism <5*: IG --+ M by 
(g - 1)<5* = g<5, keeping in mind that IG is free as an abelian group on the 
set {g - 111 =f. 9 E G}. For gl' g2 in G we have (g1 - 1)g2 = (g1g2 - 1)
(g2 - 1), which implies that 

((g1 - 1)g2)<5* = (g1g2)<5 - g2<5 = (g1 <5)g2 = ((g1 - 1)<5*)g2· 

Hence <5* E HomG(IG, M). Conversely, if () E HomG(IG, M), define g()* = 

(g - 1)(); a similar calculation shows that ()* E Der(G, M). Of course <5 H <5* 
and () H ()* are inverse mappings. It is equally clear that <5 H <5* is a homo
morphism of abelian groups. Thus <5 H <5* is an isomorphism. D 

11.4.6. If G is a group and MaG-module, then 

H1(G, M) ~ Der(G, M)/Inn(G, M). 

Proof. Applying 11.2.7 to the Gruenberg resolution we obtain the exact 
sequence 

HomG(ZG, M) -----+ HomG(IG' M) -----+ H1(G, M) -----+ O. (19) 



11.4. Group-Theoretic Interpretations of the (Co)homology Groups 343 

According to 11.4.5 the middle group is isomorphic with Der(G, M). Note 
that cP E HomG(ZG, M) is completely determined by (l)cp = a in M; for then 
(g)cp = ago The image of cp in HomG(IG, M) is the restriction of cp to la, 
which corresponds to the derivation g 1-+ (g - l)cp = a(g - 1), that is, to an 
inner derivation. Thus Inn(G, M) corresponds to the image of the left hand 
mapping in (19). It follows that the sequence 

0-- Inn(G,M)-- Der(G,M)-- H1(G,M) __ 0 (20) 

is exact. The required isomorphism is a consequence of (20). o 
Combining 11.4.6 with 11.1.3 we obtain the next result. 

11.4.7. Let G be a group and MaG-module. All complements of M in 
the associated semidirect product G ~ M are conjugate if and only if 
H1(G, M) = O. 

MacLane's Theorem 

We come now to the connection between the second cohomology group 
and extension theory. First, however, a simple observation must be made. 

11.4.8. Let R >-+ F ~ G be a presentation of a group G. Then the mapping 
rR' 1-+ (r - 1) + IFiR is a G-isomorphism from Rab to iR/IFiR. 

Proof. Of course Rab is a G-module via conjugation in F: thus (rR')f" = 
(f-1 rf)R' where r E Rand f E F. Let T = iR/IFiR and consider the mapping 
r 1-+ (r - 1) + IFiR from R to T. Now ifr1' r2 are elements of R, 

r1'2 - 1 = (r1 - 1) + (r2 - 1) + (r1 - l)(r2 - 1) 

== (r1 - 1) + (r2 - 1) mod IFiR. 

This shows that r 1-+ (r - 1) + IFiR is a homomorphism of groups. Since T 
is abelian, there is an induced homomorphism e: Rab ~ T. 

Let us check that e is a G-homomorphism; 

«rR'V")6 = (f-1,fR,)6 = (f-1 rf - 1) + IFiR 

= f-1(r - l)f + IFiR 

= (r - l)f + IFiR = «rR')6)f". 

Finally, in order to show that e is an isomorphism we shall produce 
an inverse. Let R be free on X. By 11.3.3 for left R-modules we have 
iR = DrxexZF(x - 1), so that T = iR/IFiR equals Drxex(ZF)(x - 1)/ 
IF(x - 1) and hence is isomorphic with Drxex(ZF/IF)(x - 1). Since ZF/IF ~ 
Z, we conclude that T is the free abelian group on the set of all 
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(x - 1) + IFiR, X E X. Hence there is a group homomorphism 1/1: T --+ Rab 
such that ((x - 1) + IFiR)1/I = xR'. Obviously 1/1 is the inverse of B. D 

11.4.9 (MacLane). Let R >-+ F ~ G be a presentation of a group G. Let M be 
any right G-module. Then there is an exact sequence 

Proof. Here M is an F-module via n, so that af = af" where a E M, f E F. 
Apply 11.2.7 using the Gruenberg resolution associated with the given pre
sentation. There results an exact sequence 

HomG(IFIIFiR, M) -- HomG(iR IIFiR, M) -- H2(G, M) -- o. (21) 

Recall that the left-hand map is induced by the inclusion iRIIFiR --+ IFIIFiR. 
By 11.4.8 we have iRIIFiR ~ Rab, so the middle group in the exact sequence 
is isomorphic with HomG(Rab, M). 

We claim that 

HomG(IdIFiR, M) ~ HomF(IF, M). 

To see this let a: IF -+ M be an F-homomorphism. Then a maps IFiR to 0; 
for, on the basis of the trivial action of R on M, we have ((f - l)(r - l))a = 
(f - l)a· (r - 1) = O. Hence a induces a homomorphism IX: IFIIFiR --+ M. It 
is clear that a H iX is an isomorphism, so the assertion is true. 

Next Der(F, M) ~ HomF(IF, M) by 11.4.5. Hence (21) becomes 

Der(F, M) -- HomG(Rab, M) -- H2(G, M) -- O. (22) 

We have, of course, to keep track of the left-hand mapping; it is the obvious 
one {) H {)' where {)' is induced in Rab by {). If {) is inner, there is an a in M 
such that (rR't = a( -r + 1) = 0 for all r in R; this is because R operates 
trivially on M. Consequently Inn(F, M) maps to O. The result now follows 
from 11.4.6. D 

The Second Cohomology Group and Extensions 

Let G and N be groups and let x: G -+ Out N be a coupling of G to N. Let 
us assume that there is at least one extension that realizes x. Recall from 
11.1.8 that there is a bijection between the set of equivalence classes of 
extensions of N by G with coupling X and the cokernel of Der(F, C) --+ 

HomF(R, C); here C is the center of N. Now Hom(R, C) ~ Hom(Rab, C) and 
R acts trivially on Rab; thus HomF(R, C) ~ HomG(Rab , C). We have to deal 
with the cokernel of the obvious mapping Der(F, C) -+ HomG(Rab, C); by 
(22) this is isomorphic with H2(G, C). 

We have proved a fundamental theorem. 
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11.4.10. Let G and N be groups and let X be a coupling of G to N. Assume 
that X is realized by at least one extension of N by G. Then there is a bijection 
between eqUivalence classes of extensions of N by G with coupling X and 
elements of the group H2(G, C) where C is the center of N regarded as a 
G-module via X. 

When N is abelian, this reduces 11.1.4, which was proved by using factor 
sets. 

Extensions with Abelian Kernel 

It has been pointed out that when N is abelian, every coupling of G to N 
is realized by some extension, for example the split extension, which cor
responds to 0 in H2(G, N). 

It is worthwhile being more explicit in this important case. 

11.4.11. Let G be a group, A a G-module and R >-+ F ~ G any presentation of 
G. Let L\ E H2(G, A) and suppose that <p is a pre image of L\ under the mapping 
HomG(Rab , A) --+ H2(G, A) of MacLane's Theorem. Then 

A>---+ (F D< A)/R<P' ~ G 

is an extension which induces the prescribed G-module structure in A and 
whose equivalence class corresponds to L\. 

Here A is regarded as an F-module via 7t: F --+ G. To comprehend 11.4.11 
it is necessary to look back at the proof of 11.1.8. We take R to be the fixed 
element of Jt in that proof, which is possible since A is abelian. The equiva
lence class of R<P' corresponds to <p + I where I is the image of Der(F, C); 
this <p + I corresponds to L\. 

The next result is essentially the abelian case of the Schur-Zassenhaus 
Theorem (9.1.2). 

11.4.12. Let G be a finite group of order m. Suppose that A is a G-module 
such that each element of A is uniquely divisible by m. Then every extension 
of A by G splits and all complements of A are conjugate. 

This follows directly from 11.3.8, 11.4.7, and 11.4.10. 

Central Extensions 

An extension C ~ E - G is called central if 1m J.1. is contained in the centre 
of E. In this case G operates trivially on C, so that C is a trivial G-module. 
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Such extensions are frequently encountered; for example every nilpotent 
group can be constructed from abelian groups by means of a sequence of 
central extensions. 

Suppose that C is a trivial G-module and let R >-+ F - G be a presenta
tion of G. Let us interpret MacLane's Theorem in this case. Of course F, 
like G, operates trivially on C, and 

Der(F, C) = Hom(F, C) ~ Hom(Fab' C). 
Also 

HomG(Rab, C) ~ Hom(R/[F, RJ, C) 

because [F, RJ/R' must map to 1 under any G-homomorphism from Rab 
to C. As a consequence of these remarks MacLane's Theorem takes the 
following form. 

11.4.13. If C is a trivial G-module and R >-+ F - G is a presentation of the 
group G, there is an exact sequence 

Hom(Fab, C) ---+ Hom(R/[R, FJ, C) ---+ H2(G, C) ---+ O. 

Thus each central extension of C by G arises from a homomorphism 
q>: R/[R, FJ -+ C. 

Abelian Extensions 

A central extension of one abelian group by another is usually not abelian 
-consider for example the quaternion group Qs. Suppose that G is an 
abelian group and C a trivial G-module. Call the extension C >-+ E - G 
abelian if E is an abelian group. There are, of course, always abelian exten
sions, for example the direct product extension, C >-+ C x G - G . 

The equivalence classes of abelian extensions correspond to a certain 
subset 

Ext(G, A) 
of H2(G, A). 

Let us use 11.4.11 to determine which central extensions are abelian; in 
the sequel G is an abelian group. As usual choose a presentation R >-+ F -
G here of course F' ~ R. By 11.4.11 a central extension of C by G is equiva
lent to one of the form 

C>---+ (F X C)/R'P' - G 

where q> E HomG(Rab, C). This extension is abelian if and only if F' ~ R'P'. 
Let f E F' and r E R; if f = r'P' = rr'P, we observe that r'P = r-1f E File = 1; 
thus f = rand f'P = r'P = 1. Hence q> maps F' to 1. Conversely, if q> E 

HomG(Rab, C) maps F' to 1, then j'P' = fj'P = f if f E F'. Thus F' ~ R'P'. 
It follows that the abelian extensions are determined by elements of 
Hom(R/F', C). Thus Ext(G, C) is a subgroup of H2(G, C). 
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11.4.14. Let G and C be abelian groups. Suppose that R >-+ F - G is a pre
sentation of G. Then there is an exact sequence of abelian groups 

Hom(Fab' C) -----+ Hom(R/F', C) -----+ Ext(G, C) -----+ o. 

This follows on combining the preceding remarks with 11.4.13. 

The Schur M ultiplicator 

Let G be any group and let 7l. be regarded as a trivial G-module. For brevity 
it is customary to write 

HnG = H,,(G, 7l.), 

the integral homology group of degree n. For example Hl G ~ 7l. ® Gab ~ Gab 
by 11.4.4. The group 

is known as the Schur multiplicator of G. It plays a prominent role in Schur's 
theory of projective representations. We shall see that it is also relevant to 
the theory of central extensions. 

There is an interesting formula for M(G). 

11.4.15 (Hopf's Formula). If R >-+ F - G is a presentation of a group G, 
then 

M(G) ~ F' n R/[F, R]. 

In particular this factor does not depend on the presentation. 

Proof. Apply 11.2.7 to the left Gruenberg resolution. There results 

M(G) ~ Ker(71. ® ZG (iR /iRIF) -----+ 7l. ®w (/F/iRIF)). 

Now iR/iRIF is isomorphic as a left G-module with Rab by the left version 
of 11.4.8-here Rab is to be regarded as a left G-module via the action 
JR(rR') = (frf-l )R'. Also 7l. ®w Rab ~ R/[F, R] via n ® rR' 1-+ rn[F, R]. In 
addition 7l. ® ZG (/F /iRIF) ~ IF/I; for a similar reason. By 11.4.3 we have 
IF/I; ~ Fab. It follows that 

M(G) ~ Ker(R/[F, R] -----+ Fab), 

the map being the obvious one, rEF, R] 1-+ rF'. The kernel is clearly 
F' n R/[F, R]. 0 

In the case of abelian groups there is a simpler formula for the Schur 
multiplicator. If G is an abelian group, define 

G " G = (G ® G)/ D 
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where D = <g ® gig E G). This is called the exterior square of G. If gl A g2 
denotes gl ® g2 + D, then (gl + g2) A (gl + g2) = 0, which shows that 
g1 A g2 = -(g2 A gd. Thus GAG may be regarded as a skew-symmetric 
tensor product. 

11.4.16. If G is an abelian group, then M(G) ~ GAG. 

Proof. Let R >-+ F - G be a presentation of G. Since G is abelian, F' ::;; R 
and M(G) ~ F'/[F, R] by Hopf's formula. The mapping (f1R,J2R) H 

[f1' f2] [F, R], U; E F), is well-defined and bilinear. Consequently there is 
an induced homomorphism (FIR) ® (FIR) ~ F'[F, R] by the fundamental 
mapping property of the tensor product. What is more, fR ® fR maps to 1, 
so there is induced a homomorphism 8: (FIR) A (FIR) ~ F'/[F, R] in which 
f1R A f2R is sent to [f1,J2][F, R]. 

To construct an inverse of 8 choose a set of free generators {Xl' X2, . .. } 
for F. By Exercise 6.1.14 the group F'IY3F is free abelian with free genera
tors the [Xi' Xj]Y3F, where i < j . Hence there is a homomorphism 
tPo: F'IY3F ~ (FIR) A (FIR) sending [Xi' XJY3F to xiR A xjR. Now for any 
fl' f2 E F we see from bilinearity of the commutator that ([f1,J2]Y3F)9lo = 
flR A f2R. Hence tPo maps [F, R]IY3F to 0, and so there is an induced 
homomorphism tP: F'/[F, R] ~ (FIR) A (FIR). Clearly 8 and tP are inverse 
functions. 0 

For example, if G is an elementary abelian p-group of rank r, then 
M(G) ~ GAG is an elementary abelian p-group of rank m (Exercise 
11.4.9). 

Hopf's formula can be used to associate an exact sequence of homology 
groups with any extension. This will be applied in Chapter 14 to the study 
of one-relator groups. 

11.4.17 (The Five-Term Homology Sequence). Corresponding to any group 
extension N >-+ E ~ G there is an exact sequence 

M(E) ------ M(G) ------ N/[E, N] ------ Eab ------ Gab ------ 1. 

This sequence is natural in the following sense. Given a morphism (a, [3, y) 
from N >-+ E - G to N >-+ E - G there are induced homomorphisms a*, [3*, 
Y*, making the diagram 

M(E) ~ M(G) ~ N/[E,N]) ~ Eab~ Gab~ 1 

jP. j,. j .. jP. j,. 

M(E) ~ M(G) ~ N/(E, N]) ~ Eab~ Gab~ 1 

commutative. 
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Proof. Here of course we can take N to be a subgroup of E as a matter of 
convenience. 

The mappings N I[E, N] -+ Eab and Eab -+ Gab are the obvious ones, 
x[E, N] H xE' and xE' H x'G' respectively. Exactness at Eab and Gab is 
easily checked. It remains to construct the other two mappings and check 
exactness at M(G) and N/[E, N]. 

Let R ~ F ~ E be some presentation of E. Then nl>: F -+ G is a presen
tation of G; let Ker nl> = S. By Hopf's formula M(E) ~ F' rt RI[F, R] and 
M(G) ~ F' rt S/[F, S]. Now S is the preimage of N under n, so in fact R ~ S 
and SIR ~ N. The relevant subgroups are situated as follows:. 

F' rt S 
[F, S] 

F'rtR 

[F, R] 

Define M(G) -+ N /[E, N] by means of x[F, S] H x"[E, N] and M(G) ~ 
F' rt S/[F, S]. The image of this mapping is clearly E' rt N I[E, N], which is 
the kernel of N/[E, N] -+ Eab . This establishes exactness at N/[E, N]. 

Finally, define M(E) -+ M(G) by means the natural homomorphism from 
F' rt RI[F, R] to (F' rt R) [F, S]/ [F, S], together with Hopf's formula. The 
kernel of M(G) -+ N /[E, N] corresponds to (F' rt R)[F, S]/ [F, S], so the se
quence is also exact at M(G). 

We shall not take the space to establish naturality (see however Exercise 
11.4.16). 0 

To conclude this discussion of the Schur multiplicator we mention an 
important result that illustrates the relationship between the multiplicator 
and the theory of central extensions. A proof is sketched in Exercise 11.4.5. 

11.4.18 (Universal Coefficients Theorem). If G is a group and M a trivial 
G-module, there is an exact sequence 

Ext(Gab, M) >---+ H2(G, M) --- Hom(M(G), M). 

The mapping on the right shows that every central extension of M by G 
gives rise to a homomorphism from M(G) to M. 

An important special case occurs when G is perfect; for then Ext(Gab , M) = 
o and 

H2(G, M) ~ Hom(M(G), M), 



350 11. The Theory of Group Extensions 

so equivalence classes of central extensions of M and G stand in one-to-one 
correspondence with homomorphisms from M(G) to M. 

The Third Cohomology Group and Obstructions 

Finally we shall address the third major problem of extension theory. Given 
groups Nand G together with a coupling x: G --+ Out N, when does there 
exist an extension of N by G which realizes the coupling X? 

We shall write C for the centre of N, keeping in mind that X prescribes a 
G-module structure for C. 

Choose any presentation R >-+ F ~ G of G. Just as in ILl-see equation 
(7)-we can find homomorphisms e and 11 which make the diagram 

(23) 

N ~ AutN ~ OutN 

commutative: here 't is the conjugation homomorphism and v the natural 
homomorphism. If r E Rand ! E F, the element (r~rl((rf-')~)fC surely 
belongs to N. Let us apply the function 't to this element, observing that 
11't = e by commutativity of the diagram, and that (xay = (xt)a if 0: E Aut N. 
We obtain 

so that the element 
(24) 

belongs to Ker 't, that is to C, the center of N. 
Using the definition (24) it is completely straightforward to verify the 

formulae 

and 
!*(r1r2) = (fH1)(!H2) 

(fd2) * r = (f2 * r)(!l * rH')fi. 

(25) 

(26) 

Let us now consider the Gruenberg resolution that is associated with 
the chosen presentation of G. Suppose that F is free on a set X and R is 
free on a set Y. Since IFiR/IFi~ is free as a G-module on the set of all 
(1 - x)(1 - y) + IFi~, (x EX, Y E Y), by 11.3.3 and 11.3.4, the assignment 

(1 - x)(1 - y) + IFi~ 1-----+ x * Y 

determines a G-homomorphism 

1/1: IFiR/IFi~ ---+ C. 

Next one observes that ((1 - x)(1 - r) + IFi~)1/I = x * r, (x E X, r E R). This 
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follows by (25) and induction on the length of r, together with the equation 

In a similar way one can prove that 

«1 - f)(1 - r) + IFj~)", = f * r (27) 

for all f in F and r in R; this may be accomplished by using induction on 
the length of f, equation (26) and also the equation 

(1 - fJ2)(1 - r) = (1 - f2)(1 - r) + (1 - fl)(1 - rf2 ')f2 ' 

If ri E R, the definition (24) tells us that r1 * r2 = (r1)-I«rF')~)'1 = 
(r1)-l r1 = 1. Equation (27) now shows that'" maps j~/IFj~ to 1. Conse
quently '" induces a homomorphism <p from IFjR/j~ to C. We call this 
homomorphism 

- -2 
<p E HomG(lFIR/IR' C) 

the obstruction determined by the coupling X. 
The obstruction <p will in general depend on the choice of ~ and '1 in (23); 

for these are not unique. However, according to 11.2.7, there is an isomor
phism of H3(G, C) with the cokernel of the homomorphism 

- ~ - ~ HomG(lR/IR, C) --+ HomG(lFIR/IR, C). (28) 

Thus X determines an element A of H3(G, C). 
The important facts about A are as follows. 

11.4.19. Let X be a coupling of G to N. Let ~, '1 be homomorphisms as in (23) 
leading to an obstruction <po Let J be the image of the homomorphism (28). 
Then: 

(i) A = <p + J is independent of the choice of ~ and '1; 
(ii) by varying '1 we obtain all obstructions in the coset A. 

F or a proof of 11.4.19 we refer the reader to [b29], §5.5. 
It is now possible to give a formal criterion for a coupling to be realiz

able in an extension. 

11.4.20. Let G and N be groups and suppose that X is a coupling of G to N. 
Then there is an extension of N by G with X as its coupling if and only if 
X corresponds to the zero element of H3(G, C) where C is the centre of N 
regarded as a G-module by means of x. 

Proof. Suppose that X is realized by an extension N >-+ E - G. As usual let 
R >-+ F ~ G be a fixed presentation. There is a homomorphism 0': F -+ E 
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that lifts n; thus 
R~F~G 

j j. 
N~E-G 

is a commutative diagram. Define ~: F -+ Aut N to be the composite of (j 
with the conjugating homomorphism E -+ Aut N, and let 1'/ be the restric
tion of ~ to R. Then the diagram 

(29) 

N ~ AutN ~ OutN 

is commutative. This ~ and 1'/ will do very well to construct an obstruction qJ. 

If f E F and r E R, then 

fH = (r<1r1«rf -')0')f( = (r<1r1(rr1(r f -')<1r 

= (r<1)-lr<1 = 1. 

Hence qJ = 0 and X corresponds to the zero element of H3(G, C). (Here one 
should remember that the element of H3(G, C) determined by X does not 
depend on ~ and 1'/ by 11.4.19). 

Conversely suppose that qJ corresponds to 0 in H3(G, C). Then 
11.4.19(ii) shows that ~ and 1'/ may be chosen so that (29) is commutative 
and f * r = 1 for all f E F and r E R. This means that r" = «rr')")1(, 
which, when r is replaced by rf, becomes 

(rf)" = (r")1(. (30) 

Now define M = {r(r-1 )"Ir E R}, a subset of F ~~ N = S. By using (30) it 
is easy to show that the mapping r 1-+ r(r-1)" is a homomorphism of F
operator groups. Hence M <J F M. Also for x in N we have xr(r - ')' = xr(r-')( = 
x(rr-')~ = x since ~ = I'/r; thus [M, N] = 1. Therefore M <J FN = Sand 
MN=M x N=RN,soMEA(F,R,N,~). 

Finally N >-+ SIM - G is an extension which has coupling X. 0 

Extensions of Centerless Groups 

Consider the case where N has trivial centre. Then H3(G, C) = 0 and every 
coupling of G to N arises from some extension of N by G. Moreover up to 
equivalence there is only one such extension since H2(G, C) = O. Of course 



11.4. Group-Theoretic Interpretations of the (Co)homology Groups 353 

each equivalence class of extensions gives rise to a unique coupling, as we 
saw in 11.1.1. 

We sum up our conclusions in the following form: 

11.4.21. Let N be a group with trivial center and let G be any group. Then 
there is a bijection between the set of all equivalence classes of extensions of 
N by G and the set of all couplings of G to N. 

At the other extreme is the case where N = C is abelian and X is essen
tially a homomorphism from G to Aut N. We can define ~ = rex and '1 = 1, 
obtaining in (29) a commutative diagram. Using this ~ and '1 in the defini
tion we get f * r = 1 for all f and r. This means that every coupling X corre
sponds to the zero element of H3(G, C), a conclusion that is hardly surpris
ing since X is realized by the semi direct product extension. 

We mention without going into details the following additional fact. Sup
pose that G is a group and A a G-module. If A E H3(G, A), there exists a 
group N whose center is isomorphic with A, and a coupling X: G --+ Out N 
which is consistent with the G-module structure of A and corresponds to A 
as in 11.4.19. Of course X is realizable by an extension of N by G if and only 
if A = O. A fuller account of the theory of obstructions may be found in 
[b29]. 

While group-theoretic interpretations of the cohomology groups in 
dimensions greater than 3 are known, no really convincing applications to 
group theory have been made. 

EXERCISES 11.4 

1. Let G be a countable locally finite group and let M be a G-module which is 
uniquely divisible by every prime that divides the order of an element of G. 
Prove that H"(G, M) = 0 if n > 1 [use 11.3.8 and Exercise 11.3.9]. Show that 
HI(G, M) need not be 0 by using 11.4.7. 

2. Let N <] E and assume that CE(N) = 'N = C say. Put G = EjN and write e for 
the extension N >-> E - G. Denote by A(N) the set of all automorphisms of E 
that operate trivially on Nand G. 
(a) Prove that A(N) is an abelian group which is isomorphic with Der(G, C). 

[Hint: Show that if y E A(N), then [E, y] s C.] 
(b) Prove that A(N) n Inn E maps to Inn(G, C) under the above isomorphism, 

and deduce that A(N)j A(N) n Inn E ~ Hl(G, C). 

3. In the notation of the preceding problem let Aut e denote the group of auto
morphisms of E that leave N invariant. Put Out e = Aut ejInn E. Show that 
there is an exact sequence 

0----+ HI(G, C) ----+ Out e ----+ Out N. 

[Hint: Let y E Aut e and consider the restriction of y to N.] 
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4. (R. Ree). Let E be a noncyclic finitely generated torsion-free nilpotent group. 
Prove that Out E contains elements of infinite order. [Hint : Let N be a maxi
mal normal abelian subgroup of E: then N = CE(N). Assuming the result false, 
argue that Hl(G, N) is a torsion group where G = E/N. Now find an M such 
that N ~ M and E/ M infinite cyclic. Show that H1(E/M, NM) is torsion and 
apply Exercise 11.3.2.] 

5. If M is a trivial G-module, establish the existence of the Universal Coefficients 
Sequence 

Ext(Gab, M) >--+ H2(G, M) -- Hom(M(G), M). 

Show also that the sequence splits [Hint: Choose a presentation of G and 
apply 11.4.13 and 11.4.14.] 

6. If G is a finite group, show that M(G) is finite and that M(G) ~ H2(G, 1[*) 
where 1[* is the multiplicative group of nonzero complex numbers operated 
upon trivially by G. [Hint : Use Hopf's formula to show that M(G) is finitely 
generated. Apply Exercise 11.3.10.] 

7. Let G be an abelian group. Prove that every central extension by G is abelian if 
and only if GAG = O. Prove also that a finitely generated group has this prop
erty precisely when it is cyclic. 

*8. If G is an elementary abelian group of order p', then M(G) is elementary 
abelian of order p(~). 

9. If G is free abelian of rank n, then M(G) is free abelian of rank m. 
10. According to 11.4.18 a central extension C>-+ E _ G determines a homomor

phism 15: M(G) -> C called the differential. Prove that 1m b = E'I"'\ C. Deduce 
that b is surjective if and only if C ~ E'. (Such an extension is called a stem 
extension.) [Hint: The given extension is equivalent to one of the form C >-+ 
(C x F)/ R"" _ G where R >-+ F - G i s a presentation of G and <p E HomF(R, C).] 

11. Prove that Schur's theorem (10.1.4) is equivalent to the assertion that M(G) is 
finite whenever G is finite. (Use Exercise 11.4.10.) 

12. A central extension C >-+ E - G is called a stem cover of G if its differential is 
an isomorphism. Prove that every stem cover of G is isomorphic to a stem 
cover M(G) >-+ E - G with differential equal to 1. [Hint: Let <p E Hom(R/[R, F], 
C) determine the given stem cover, R >-+ F - G being a presentation of G. If b 
is the differential of a stem cover C >-+ E _ G, consider <pb-1 E Hom(R/[R, F], 
M(G».] 

13. Prove that every stem extension is an image of a stem cover (i.e., there is a 
morphism (IX, fl, 1) from a stem cover with IX and fl surjective). 

14. Prove that there is a bijection between the set of isomorphism classes of stem 
covers of G and Ext(Gab, M(G». Construct four non-isomorphic stem covers of 
71.2 x 71. 2, [Use Exercise 11.4.13.] 

15. A finite group G has a unique isomorphism class of stem covers if and only if 
(IGabl, IM(G)I) = 1. 
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*16. (a) Establish the naturality of the 5-term homology sequence (see 11.4.17). 
[Hint: Start with presentations R >-+ F - E and R>-+ P - If and lift 
y: G -> G to ~: F -> P.] 

(b) Prove also that (yy)* = y. y* where y: G -> G and y: G -> G are homo
morphisms. (In the language of category theory this says that M( -) is a 
functor.) [Hint : Show that y* does not depend on the particular lifting n 

17. Let G be the group with generators Xl' X 2 , .•• , x. and defining relations 
[Xl ' X2] = [X2 ' X3] = .. . = [X'-l ' X.] = 1. Using Hopf's formula, show that 
M(G) is free abelian of rank n - 1. 



CHAPTER 12 

Generalizations of Nilpotent 
and Soluble Groups 

In Chapter 5 we found numerous properties of finite groups which are equi
valent nilpotence-see especially 5.2.4. For example, normality of all the 
Sylow subgroups is such a property. When applied to infinite groups, these 
properties are usually much weaker, giving rise to a series of wide general
izations of nilpotence. For soluble groups the situation is similar. The aim 
of this chapter is to discuss the main types of generalized nilpotent and 
soluble groups and their interrelations. 

12.1. Locally Nilpotent Groups 

If f1l> is a property of groups, a group G is called a locally f1l>-group if each 
finite subset of G is contained in a f1l>-subgroup of G. If the property f1l> is 
inherited by subgroups, this is equivalent to the requirement that each 
finitely generated subgroup have 9. 

Our first class of generalized nilpotent groups is the class of locally 
nilpotent groups. It is easy to see that images and subgroups of a locally 
nilpotent group are locally nilpotent. There are certain properties of nil
potent groups which are of a local character in the sense that they are state
ments about finite sets of elements; such properties are inherited by locally 
nilpotent groups. For example, there is the following result. 

12.1.1. Let G be a locally nilpotent group. Then the elements of finite order in 
G form a fully-invariant subgroup T (the torsion-subgroup of G) such that 
G/T is torsion-free and T is a direct product of p-groups. 

356 
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This follows immediately from 5.2.7. Note that infinite p-groups are not 
in general nilpotent (Exercise 5.2.l1), or in fact even locally nilpotent by a 
famous example of Golod [a59]. 

One rather obvious way of constructing locally nilpotent groups is to 
take the direct product of a family of nilpotent groups: if the nilpotent 
classes of the direct factors are unbounded, the resulting group will be a 
non-nilpotent locally nilpotent group. 

Products of Normal Locally Nilpotent Subgroups 

Recall that the product of two normal nilpotent subgroups is nilpotent
this is Fitting's Theorem (5.2.8). The corresponding statement holds for 
locally nilpotent groups and is of great importance. 

12.1.2 (The Hirsch-Plotkin Theorem). Let Hand K be normal locally nil
potent subgroups of a group. Then the product J = HK is locally nilpotent. 

Proof. Choose a finitely generated subgroup of J, say <hI k l , ... , hmkm) 
where hi E Hand ki E K . We must prove that J is nilpotent. To this end we 
introduce the subgroups X = <hI' ... , hm) and Y = <k l , ... , km), and also 
Z = <X, Y) . Since J ~ Z, it is enough to show that Z is nilpotent. 

Let e denote the set of all commutators [hi' kj ], i, j = 1, .. . , m; then 
e ~ H (l K since Hand K are normal. Hence <X, e) is a finitely generated 
subgroup of H, so in fact <X, e) is nilpotent. Since finitely generated nil
potent groups satisfy the maximal condition (5.2.17), the normal closure eX 
is finitely generated, as well as being nilpotent. Moreover eX ~ H (l K, so 
that < Y, eX) ~ K. Therefore < Y, eX) is nilpotent and finitely generated, 
whence it satisfies the maximal condition. Now [X, Y] = eXY by 5.1.7. 
Thus, using 5.1.6, we have 

<Y, eX) = <Y, e XY ) = <Y, [X, Y]) = yX. 

It follows that yX is nilpotent, and by symmetry X Y is nilpotent. Finally 
Z = <X, Y) = XYyX is nilpotent by Fitting's Theorem. 0 

12.1.3. In any group G there is a unique maximal normal locally nilpotent 
subgroup (called the Hirsch-Plotkin radical) containing all normal locally nil
potent subgroups of G. 

Proof. It is easy to see that the union of a chain of locally nilpotent sub
groups is locally nilpotent. Thus Zorn's Lemma can be applied to show that 
each normal locally nilpotent subgroup is contained in a maximal normal 
locally nilpotent subgroup. If Hand K are two maximal normal locally 
nilpotent subgroups of G, then HK is locally nilpotent by 12.1.2. Hence 
H=K. 0 
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The reader will observe that the Fitting subgroup is always contained in 
the Hirsch-Plotkin radical. Of course these subgroups will coincide if the 
group is finite. 

Ascendant Subgroups 

Before proceeding further with the theory of locally nilpotent groups we 
shall introduce a very useful generalization of a subnormal subgroup called 
an ascendant subgroup. 

By an ascending series in a group G we shall mean a set of subgroups 
{Hala < P} indexed by ordinals less than an ordinal p such that: 

(a) Hal::; Ha2 if a 1 ::; a2 ; 

(b) Ho = 1 and G = Ua</l Ha; 
(c) Ha<J Ha+1; 
(d) Hl = Ua<lHa if .A. is a limit ordinal. 

Condition (d) is inserted to ensure completeness of the series under unions. 
It is often convenient to write the ascending series in the form 

1 = Ho<J Hl <J ... H/l = G. 

Of course the Ha are the terms of the series, while the Ha+l/Ha are the 
factors: the ordinal P is the length or ordinal type. Should P be finite, the 
ascending series becomes a familiar object, a series of finite length. Some
times it is convenient to speak of an ascending series beginning at a sub
group K: in this case Ho = K but (a)-(d) are otherwise unchanged. 

A subgroup which occurs in some ascending series of a group G is called 
an ascendant subgroup; this is an evident generalization of a subnormal sub
group. It may be as well to give an example at this point. 

Let G = X D< A be a so-called locally dihedral 2-group; this means that A 
is of type 200 , while X = (x) has order 2 and aX = a-l, (a E A). Let Ai be the 
unique (cyclic) subgroup of A with order 2i. Then [Ai+ 1 , X] = Al+l = Ai 
since [a, x] = a- 2• Consequently XAi<J XAi+l and there is an ascending 
series X <J XA 1 <J XA 2 <J "'<J XA = G; notice that Ui<wXAi = XA here. 
Hence X is ascendant in G. On the other hand, X G = X A = X[A, X] = 
XA = G, so X is not subnormal in G. 

Returning now to locally nilpotent groups, we shall show that the Hirsch 
- Plotkin radical contains many more than just the normal locally nilpotent 
subgroups. 

12.1.4. If G is any group, the Hirsch-Plotkin radical contains all the ascen
dant locally nilpotent subgroups. 

Proof. Let H be an ascendant locally nilpotent subgroup of G. Then there 
is an ascending series H = Ho<J Hl <J ... H/l = G. Define Ba to be HH,; 
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then one quickly verifies that 

H = Hl <l H2 <l ... H(J = HG 

is an ascending series. We argue by transfinite induction that H" is locally 
nilpotent. If this is false, there is a first ordinal IX such that H~ is not locally 
nilpotent. If IX were a limit ordinal, H~ would equal.l)y<" Hy and, Hy being 
locally nilpotent for y < Ct, it would follow that H~ is locally nilpotent. 
Hence IX cannot be a limit ordinal, Ct - 1 exists and H~-l is locally nilpotent. 
Now (H~_l)H. = (HH.-1)H. = HH. = H,,: moreover for any x in H" we have 
H:- 1 <l H: = H". Consequently H" is a product of normal locally nilpotent 
subgroups and is therefore locally nilpotent by 12.1.3. By this contradiction 
H(J = HG is locally nilpotent, which shows that H G, and hence H, is con
tained in the Hirsch-Plotkin radical of G. 0 

Maximal Subgroups and Principal Factors in 
Locally Nilpotent Groups 

We recall two known properties of nilpotent groups: maximal subgroups 
are normal and principal factors are central (5.2.4 and 5.2.2). Let us show 
that these hold for locally nilpotent groups. 

12.1.5 (Baer, McLain). If M is a maximal subgroup of a locally nilpotent 
group G, then M is normal in G. Equivalently G' ::; Frat G. 

Proof. If M is not normal, then G' 1, M and there is an element c in G'\M. 
Then G = <c, M) because M is maximal. Now c E <gl' ... , gn)' for certain 
gl' ... , gn' and these elements all belong to L = <c, F) for a suitable finitely 
generated subgroup F of M. Since c If F, we can use 3.3.14 to find a sub
group N of L which is maximal subject to containing F but not c. A sub
group of L which is larger than N would contain c as well as F and hence 
would have to equal L; this amounts to saying that N is a maximal sub
group of the nilpotent group L. Hence N <l L and LIN is abelian. However 
this leads to c E L' ::; N, in contradiction to the choice of N. 0 

For finite groups the condition G' ::; Frat G is equivalent to nilpotence. 
However for infinite groups this is a very weak property because an infinite 
group may not have any maximal subgroups and G = Frat G is a real pos
sibility. For example, let G be the standard wreath product of groups of 
type poo and qoo: it is an easy exercise (see Exercise 12.1.8) to show that 
G = Frat G, so that certainly G' ::; Frat G. However G is not locally nil
potent if p -# q. Thus G' ::; Frat G does not imply local nil potence. 

12.1.6 (Mal'cev, McLain). A principal factor of a locally nilpotent group G is 
central. 
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Proof. Let N be a minimal normal subgroup of G. It suffices to prove 
that N is central in G. If N $. (G, there exist a in Nand 9 in G such that 
b = [a, g] -# 1. Since bEN, we have N = b G by minimality of N. Hence 
a E <bg " ••• , bgn ) for certain gi in G. Let H = <a, g, gl"'" gn), a nilpotent 
group, and set A = aH . Then bE [A, H], so that bgi E [A, H] and 
consequently a E [A, H]. Hence A = [A, H] and A = [A, ,H] for all r. Since 
H is nilpotent, it follows that A = 1 and a = 1. But this means that b = 
[a, g] = 1. D 

Locally Nilpotent Groups Subject to Finiteness Conditions 

Sometimes when a finiteness restriction is placed upon a locally nilpotent 
group, the group is forced to become nilpotent. An obvious example is: 
every finitely generated locally nilpotent group is nilpotent. Here is a less 
trivial result of the same kind. 

12.1.7 (McLain). If the locally nilpotent group G satisfies the maximal condi
tion on normal subgroups, then G is a finitely generated nilpotent group. 

Proof. Clearly GIG' satisfies max-n and hence max since it is an abelian 
group. Therefore G = XG' for some finitely generated subgroup X. Then X 
is nilpotent of class c, say. Let "bars" denote quotient groups modulo Yc+ 2 G. 
Thus G = XG' and G is nilpotent. Therefore G' ::; Frat G by 5.2.16 and 
G = X(Frat G). But Frat G is finitely generated, by 5.2.17, and its genera
tors are nongenerators of G by 5.2.12. Hence G = X, which means that G 
has nilpotent class at most c and Yc+1 G = Yc+2 G. Writing L for Yc+1 G, we 
have L = [L, G]. If L -# 1, then by max-n there is a normal subgroup N 
of G which is maximal subject to N < L. But LIN is minimal normal in 
GIN, so it is central by 12.1.6. Thus [L, G] ::; N < L, a contradiction. Hence 
L = 1 and G is nilpotent. D 

Notice the corollary: max and max-n are the same property for locally 
nilpotent groups. 

If one imposes min-n, the minimal condition on normal subgroups, on 
a locally nilpotent group, hoping for nilpotence, one is disappointed. For 
example, let G = X ~ A be a locally dihedral 2-group. This group is locally 
nilpotent and even satisfies min. However G' = A = [A, G], so the lower 
central series terminates at G' and G cannot be nilpotent. 

Nevertheless a fairly good description of the structure of locally nilpotent 
groups with min-n can be given. 

12.1.8 (McLain). A locally nilpotent group G satisfies the minimal condition 
on normal subgroups if and only if it is the direct product of finitely many 
Cernikov p-groups for various primes p. 
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Proof. Let G satisfy min-no According to 5.4.22 there exists a unique mini
mal subgroup F with finite index in G. Furthermore F satisfies min-n by 
3.1.8. Now if F is abelian, it satisfies min and by the structure theorem for 
abelian groups with min (4.2.11), F is divisible-bear in mind that F cannot 
have a proper subgroup with finite index. In this case G is a Cernikov 
group; also G is the direct product of its p-components by 12.1.1. Hence
forth assume that F is not abelian. 

By 12.1.6 minimal normal subgroups of F are contained in (F; thus min
n guarantees that (F '# 1. Moreover (F '# F, so that (F < (2F by the same 
argument. Let x E (2F and Y E F; then xY = xz for some z in (F. Now (F 
has min because F has min-n, and (2Fj(F has min for the same reason. 
Therefore x and z have finite orders: what is more, Izl divides Ixl. Regard x 
as fixed and y as variable. Since (F contains only finitely many elements of 
each given order, there are only finitely many conjugates of x in F. Hence 
IF: CF(x) I is finite, F = CF(x) and x E (F. However this contradicts (F < (2F. 

The converse is left to the reader as an exercise. 0 

It is an immediate corollary that min and min-n are the same property 
for locally nilpotent groups. 

McLain's Characteristically Simple Groups 

We shall describe next some famous examples due to D.H. McLain of 
locally nilpotent groups that are characteristically simple. These groups are 
perfect and have trivial center, which should convince the reader that 
locally nilpotent groups are far removed from the familiar realm of nil
potent groups. 

In essence McLain's groups are infinite analogues of unitriangular matrix 
groups (see 5.1). We begin with Q, the ordered set ofrational numbers, and 
any field F, and we form a vector space V with countably infinite dimension 
over F: let {v;.lA. E Q} be a basis for V. If A. < jJ., denote by e;'/l the usual 
elementary linear transformation of V: thus 

and (v '# A.). 

The standard multiplication rules hold for these e;'/l: 

and (jJ. '# v). (1) 

In particular d/l = 0, from which it follows that (1 + ae;'/lt1 = 1 - ae;'/l for 
a in F. Using this rule for inverses and also (1) we calculate that 

[1 + ae;'/l' 1 + be/l'] = 1 + abe;.. } 

[1 + ae;'/l' 1 + be.a = 1 if A. '# ( and Jl '# V. 

and (2) 
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McLain's group is the group of linear transformations of V generated by 
all 1 + ae)./l where a E F and A < fJ. E Q. Let this be written 

M = M(Q,F). 

One sees from the multiplication rules (1) that every element of M can be 
written uniquely in the form 1 + L).</la)./le)./l where a)./l E F and almost all 
of the a)./l are zero. Conversely any element x of this form belongs to M . To 
prove this we assume that x =F 1 and choose fJ.o E Q as large as possible 
subject to a).O/lO =F ° for some Ao . Write u = a).O/loe).O/lO and v = x - u - 1. 
Then of course x = 1 + u + v = (1 + u)(1 + v); for uv = ° because a/lO/l. = ° 
if fJ.o < fJ.l' By induction on the number of nonzero terms in x we have 
1 + v E M, so that x E M as claimed. 

The following theorem lists the essential properties of McLain's group. 

12.1.9 (McLain). Let M = M(Q, F). 

(i) M is the product of its normal abelian subgroups, so M is locally nilpotent. 
(ii) If F has characteristic p > 0, then M is a p-group: if F has characteristic 

0, then F is torsion-free. 
(iii) M is characteristically simple. 
(iv) eM = I and M = M'. 

Proof. (i) By the commutator relations (2) each conjugate of 1 + ae)./l belongs 
to the subgroup generated by all 1 + bev{ where b E F and v :$; A < fJ. :$; C 
therefore all conjugates of 1 + ae)./l commute and thus (1 + ae)./l)M is an 
abelian group. Clearly M is the product of all the (1 + ae)./l)M. Thus M 
equals its Hirsch-Plotkin radical and is locally nilpotent. 

(ii) If x E M, there exists a finite set of elements Al , ... , An in Q such that 
Al < ... < An and x belongs to the subgroup H generated by alII + aeAiAi+.' 
i = 1, ... , n - 1, a E F. Clearly the mapping 1 + aeAiAi+. 1-+ 1 + aEii+l 
establishes an isomorphism between H and the unitriangular group U(n, F); 
both assertions now follow from the discussion of the unitriangular group 
in 5.1. 

(iii) Suppose that N is characteristic in M and N =F 1. We need to prove 
that N = M. The first step is to show that N contains a generator of M. 
If 1 =F x E N, then x E H where H is a unitriangular group as in (ii). Also 
1 =F H II N <J H, so that eH II N =F 1 by 5.2.1. Now the center of U(n, F) 
consists of all 1 + aEln , a E F (Exercise 5.1.13): consequently some 1 + aeA•An 
with a =F ° belongs to N as claimed. 

Now let A < fJ. be a pair of rational numbers. It is a well-known fact 
that there exists an order-preserving permutation IX of Q such that AIX = Al 
and fJ.1X = An' Moreover IX determines an automorphism of M given by 
1 + bev~ 1-+ 1 + beva.~a.' Since N is characteristic in M, it follows that N con
tains 1 + aeA/l for all A < fJ. in Q. Finally, if bE F, then N also contains 

[1 + aeA/l' 1 + a-lbe/lv] = 1 + beAV 

for all A < v in Q. Therefore N = M and M is characteristically simple. 
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(iv) By (iii) ,M = 1 or M: obviously M is not abelian, so , M = 1. For a 
similar reason M' = M. 0 

EXERCISES 12.1 

1. A soluble p-group is locally nilpotent. 

2. A group is called radical if it has an ascending series with locally nilpotent 
factors. Define the upper Hirsch-Plotkin series of a group G to be the ascending 
series 1 = Ro ~ Rl ~ . . . in which Ra+d R. is the Hirsch-Plotkin radical of G/R. 
and R;. = U.<;. R. for limit ordinals A.. Prove that the radical groups are pre
cisely those groups which coincide with a term of their upper Hirsch-Plotkin 
series. 

3. Let G be a radical group and H is Hirsch-Plotkin radical. 
(a) If 1 oF N <l G, show that H (\ N oF 1. 
(b) Prove that CG(H) = 'H. 

4. Show that a radical group with finite Hirsch-Plotkin radical is finite and 
soluble. 

*5. Write H a sc K to mean that H is an ascendant subgroup of a group K . Establish 
the following properties of ascendant subgroups. 
(a) H asc K and K asc G imply that H asc G. 
(b) H asc K ~ G and L asc M ~ G imply that H (\ L asc K (\ M. 
(c) If H asc K ~ G and (J. is a homomorphism from G, then H· asc K·. Deduce 

that HN asc KN if N <l G. 

6. An ascending series that contains all the terms of another ascending series is 
called a refinement of it. An ascending composition series is an ascending series 
with no refinements other than itself. Characterize ascending composition series 
in terms of their factors and prove a version of the Jordan-Holder Theorem for 
such series. 

7. (Baer). Show that a nilpotent group with min-n is a Cernikov group whose 
center has finite index. Show also that the derived subgroup is finite. (See also 
12.2.9). 

8. Let G be the standard wreath product of two quasicyc1ic groups. Prove that 
G = Frat G. 

9. Establish the commutator relations (2). 

10. Prove that M(Q, F) has no proper subgroups of finite index and no nontrivial 
finitely generated normal subgroups. Identify the Frattini subgroup. 

11. Need a cartesian product of finite p-groups be locally nilpotent? 

12.2. Some Special Types of Locally 
Nilpotent Groups 

In this section we shall consider some natural generalizations of nil potence 
that are stronger than local nilpotence. 
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The Normalizer Condition 

Recall that a group satisfies the normalizer condition if each proper sub
group is smaller than its normalizer. It was shown (in 5.2.4) that for finite 
groups the normalizer condition is equivalent to nilpotence. It is not diffi
cult to see that the normalizer condition can be reformulated in terms of 
ascendance. 

12.2.1. A group G satisfies the normalizer condition if and only if every sub
group is ascendant. 

Proof. Let G satisfy the normalizer condition. For any subgroup H one may 
define a chain of subgroups {Ha} by the rules 

Ho=H, and 

where a is an ordinal and A. a limit ordinal. If Ha < Ha+1 for all a, it would 
follow that IGI is not less than the cardinality of a for all a, obviously 
absurd. Hence Ha = Ha+1 for some a, so that Ha = G by the normalizer con
dition. Since the Ha's form an ascending series from H, it follows that H is 
ascendant in G. 

Conversely assume that every subgroup of G is ascendant and let H < G. 
Then there is an ascending series H = Ho<l Hl <l H2<l .. . Hp = G. By 
omitting redundant terms we may assume that H =1= Hl . Hence Hl ::;; NG(H) 
and H =1= NG(H). 0 

Now that we have a clearer idea of what the normalizer condition 
entails, let us relate this property to local nilpotence. 

12.2.2 (Plotkin). If a group G satisfies the normalizer condition, then it is 
locally nilpotent. 

Proof. Let g E G; then <g) is ascendant in G by 12.2.1, while by 12.1.4 the 
subgroup <g) is contained in H, the Hirsch- Plotkin radical of G. Therefore 
H = G and G is locally nilpotent. 0 

McLain's group M(Q, F) is an example of a locally nilpotent group that 
does not satisfy the normalizer condition (Exercise 12.2.8). A simpler exam
ple is W = H '-K where IHI = p and K is an infinite elementary abelian 
p-group; here K is self-normalizing. 

Hypercentral Groups 

An ascending series 1 = Go <l Gl <l . .. Gp = G in a group G is said to be 
central if Ga<l G and Ga+dGa lies in the center of G/Ga for every a < p. A 
group which possesses a central ascending series is called hypercentral. 
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This natural class of generalized nilpotent groups can also be charac
terized in terms of the trans finitely extended upper central series, which is 
defined in the following manner. If G is any group and a an ordinal, the 
terms 'aG of the upper central series of G are defined by the usual rules 

and 

together with the completeness condition 

';.G=U'aG 
a<;' 

where A. is a limit ordinal. Since the cardinality of G cannot be exceeded, 
there is an ordinal f3 such that 'pG = 'P+1 G =, etc., a terminal subgroup 
called the hypercenter of G. It is sometimes convenient to call 'aG the a
center of G. 

12.2.3. A group is hypercentral if and only if it coincides with its hypercenter. 

The easy proof is left to the reader. As examples of hypercentral groups 
we cite the locally dihedral 2-group and any direct product of nilpotent 
groups. 

How is hypercentrality related to local nil potence? The answer is given 
by 

12.2.4. A hypercentral group G satisfies the normalizer condition and hence is 
locally nilpotent. 

Proof. Let {Gala ~ f3} be a central ascending series of G and let H ~ G. 
Since Ga+dGa is central in G, we have HGa<J HGa+1 for all a. Hence 
HGo = H is ascendant in HGp = G. The result now follows from 12.2.1 and 
12.2.2. 0 

For many years it was not known if a group with the normalizer condi
tion was automatically hypercentral. This was finally shown to be false by 
Heineken and Mohamed in 1968-see [a88] and [a83]. 

12.2.5. A locally nilpotent group with the minimal condition on normal sub
groups is hypercentral. 

This follows from 12.1.6. 

Baer Groups and Gruenberg Groups 

The next two types of generalized nilpotent groups are characterized by the 
subnormality or ascendance of finitely generated subgroups. The following 
result is basic. 
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12.2.6. Let Hand K be finitely generated nilpotent subgroups of a group G 
and write J = <H, K). 

(i) (Gruenberg). If Hand K are ascendant in G, then J is ascendant and 
nilpotent. 

(ii) (Baer). If Hand K are subnormal in G, then J is subnormal and nilpotent. 

Proof. (i) By 12.1.4 both Hand K lie inside R, the Hirsch-Plotkin radical of 
G: hence J ~ R. Since J is plainly finitely generated, we conclude that it is 
nilpotent. 

To prove that J is ascendant in G is harder. Let H = Ho<J Hl <J ... 
Ha = G be an ascending series with ()( > O. Keeping in mind that J is a 
finitely generated nilpotent group, we note that HJ is finitely generated. If ()( 
is a limit ordinal, it must follow that HJ ~ H{J for some P < ()(. Transfinite 
induction on ()( yields the ascendance of HJ in H{J and hence in G. If, on 
the other hand, ()( is not a limit ordinal, then H ~ Ha - l <J Ha = G and 
H J ~ Ha - l : again transfinite induction leads to H J being ascendant in G. 
What this argument demonstrates is that H can be replaced by HJ. In short 
we can suppose that H <J J and J = HK. 

Next we pass to a modified ascending series, defining Ba to be HH«; then 
H = Bo = Bl <J B2 <J .. . Ba = HG is an ascending series. But what is really 
required is another ascending series, with K-admissible terms. Such a series 
can be obtained by writing 

H; = n (B{J)k. 
keK 

It is fairly clear that H = Hti = HT and HG = Hi; also H; <J H;+l' How
ever to conclude that the HI's form an ascending series we must prove com
pleteness, 

H! = U H; 
(J<). 

for limit ordinals A.. One inclusion, H! ~ U{J<).H;, is of course obvious. 
To establish the other inclusion choose x from Ht. Clearly <x, K) ~ 
<B)., K), which is contained in the Hirsch-Plotkin radical of G (since HG 
and K are). Now <x, K) is finitely generated, so it is nilpotent and xK is 
finitely generated. But xK ~ (H!)K = H! ~ B). = U{J<).B{J and the Bp's 
form an ascending series. Consequently x K ~ B{J for some P < A.; therefore 
x K ~ H; and in particular x E HI- This settles the point at issue. 

The remainder of the proof is easy. For each P < ()( we have H;<J H;+lK 
and K is ascendant in H;+lK; hence H;K is ascendant in H;+lK by Exer
cise 12.1.5. Putting these relations together for all p, we deduce that J = Hti K 
is ascendant in HiK = HGK and hence in G since HGK is ascendant in G. 

(ii) The same method applies in this case, but it is easier since, of course, 
we need not consider limit ordinals. D 

The following statements are immediate corollaries of 12.2.6. 
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12.2.7. If every cyclic subgroup of a group is ascendant, then every finitely 
generated subgroup is ascendant and nilpotent. 

12.2.S. If every cyclic subgroup of a group is subnormal, then every finitely 
generated subgroup is subnormal and nilpotent. 

Definitions. A group is called a Gruenberg group if every cyclic subgroup 
is ascendant and a Baer group if every cyclic subgroup is subnormal. Obvi
ously every Baer group is a Gruenberg group, and by 12.2.7 every Gruen
berg group is locally nilpotent. Notice also that a group with the normalizer 
condition is a Gruenberg group in view of 12.2.1. 

The structure of Baer groups-and hence of nilpotent groups-with 
min-n is described by the following result: 

12.2.9. If G is a Baer group satisfying the minimal condition on normal sub
groups, then G is nilpotent and its center has finite index. 

Proof. We know from 12.1.8 that G is a Cernikov group. Let N denote the 
smallest normal subgroup of finite index in G. Of course, N is a divisible 
abelian group. It suffices to prove that N is contained in the center of G. 
If this is false, we can find an element g such that [N, g] #1. Now <g) 
is subnormal in G, so there is a series <g) = Ho<J HI<J · .. <JHr = G. 
Then [N, g] :::;; Hr - I , [N, 2g] :::;; Hr- 2, etc., and finally [N'rg] :::;; <g). Hence 
[N, r+Ig] = 1. If r is the smallest such integer, then r ~ 1. Let M = [N, r-Ig] 
and put m = Igl. Since [M, g, g] = 1, we can use one of the fundamental 
commutator identities to show that [M, g]m = [M, gm] = 1. But the map
ping a 1-+ [a'rg] is an endomorphism of N; therefore [M, g] = [N'rg] is 
divisible. Consequently, [M, g] = 1 in contradiction to the choice of r. 0 

Two further classes of locally nilpotent groups will be briefly mentioned. 
A group G is a Fitting group if G = Fit G, that is, if G is a product of normal 
nilpotent subgroups. For example, McLain's group is a Fitting group. If 
x E G = Fit G, then x lies in a product of finitely many normal nilpotent 
subgroups, and hence in a normal nilpotent subgroup by Fitting's theorem. 
Thus we have an alternative description of Fitting groups. 

12.2.10. A group G is a Fitting group if and only if every element is contained 
in a normal nilpotent subgroup. Every Fitting group is a Baer group. 

Lastly, a class of groups about which very little is known, groups in 
which every subgroup is subnormal. Obviously such groups are Baer 
groups and by 12.2.2 they satisfy the normalizer condition. We mention in 
this connection a notable theorem of Roseblade [a174]; if every subgroup of 
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a group is subnormal in a bounded number of steps, the group is nilpotent. 
This contrasts with the example of a non-nilpotent group with every sub
group subnormal constructed by Heineken and Mohammed [a88]. Finally 
Mohres has recently shown that if every subgroup of a group is subnormal, 
then the group is soluble. 

Diagram of Group Classes 

locally nilpotent 

Gruenberg 

normalizer 
Baer condition 

all 
subgroups 
subnormal 

hypercentral Fitting 

nilpotent 

It is known that all these eight classes are distinct-see [b54] for details. 

EXERCISES 12.2 

1. If G is a hypercentral group and 1 i= N <J G, then N n (G i= 1. 

2. (Baer). A group is hypercentral if and only if every nontrivial quotient group 
has nontrivial center. 

3. A nontrivial hypercentral group cannot be perfect. 

4. If A is a maximal normal abelian subgroup of a hypercentral group G, then 
A = CG(A). 

5. (P. Hall). The product of two normal hypercentral subgroups is hypercentral. 

6. If G is hypercentral and Gab is a torsion group, show that G is a torsion group. 
Does this hold for locally nilpotent groups? 

7. Give an example of a hypercentral group that is not a Baer group. 
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8. Prove that M(IIJ, F) does not satisfy the normalizer condition. Deduce that 
Fitting groups need not satisfy this condition. [Hint : Consider the subgroup 
generated by all 1 + ae lp where a E F and either A. < jJ. :::;; 0 or 0 < A. < jJ..] 

9. A countable locally nilpotent group is a Gruenberg group. (This is false for 
uncountable groups-see [b54].) 

10. Prove 12.2.6(ii). 

11. What is the effect on the diagram of classes of locally nilpotent groups if the 
condition max-n or min-n is imposed on the groups? 

*12. Every group has a unique maximal normal Gruenberg (Baer) subgroup which 
contains all ascendant Gruenberg (subnormal Baer) subgroups. 

13. Prove that a group G is hypercentral if and only if to each countable sequence 
of elements gl' g2, .. . there corresponds an integer r such that [gl' g2, . ··, gr] = 1. 

14. (Cernikov). A group-theoretical property fljJ is said to be of countable character 
if a group has fljJ whenever all its countable subgroups have fljJ. Prove that nil
potence and hypercentrality are properties of countable character. [Hint: Use 
Exercise 12.2.13.] 

15. (Baer). Prove that the normalizer condition is a property of countable charac
ter. [Hint: Assume that every countable subgroup of G satisfies the normalizer 
condition but G has a proper subgroup H such that H = NG(H). Choose a 
countable subgroup X satisfying 1 < X n H < X. If x E X \ (X n H), there is 
an x* in H such that (x*Y and (x*)X- 1 do not both belong to H. Define 
X* = <X, x*lx E X). Now Xl = X and X i +1 = Xr Consider the union U of 
the chain Xl :::;; X2 :::;; •••• ] 

*16. If N <J G and N is hypercentral, prove that N' :::;; Frat G. [Hint: Let M be a 
maximal subgroup of G not containing N. Prove that N n M <J G and N/N n M 
is a principal factor of G.] 

12.3. Engel Elements and Engel Groups 

In this and the following sections generalized nilpotent groups which are 
not locally nilpotent will be considered. Among the best known groups of 
this sort are the so-called Engel groups. This is a subject whose origins lie 
outside group theory, in the theory of Lie rings. 

Engel Elements 

An element g of a group G is called a right Engel element if for each x in G 
there is a positive integer n = n(g, x) such that [g, nX] = 1. Notice that the 
variable element x appears on the right here. If n can be chosen indepen
dently of x, then g is a right n-Engel element of G, or less precisely a bounded 
right Engel element. The sets of right and bounded right Engel elements of G 
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are written 
R(G) and R(G). 

Left Engel elements are defined in a similar fashion. If 9 E G and for each 
x in G there exists an integer n = n(g, x) such that [x, ng] = 1, then 9 is a 
left Engel element of G. Here the variable x is on the left. If n can be chosen 
independently of x, then 9 is a left n-Engel element or bounded left Engel 
element. Write 

L(G) and L(G) 

for the sets of left and bounded left Engel elements of G. 
While it is clear that these four subsets are invariant under automor

phisms of G, it is unknown if they are always subgroups. What inclusions 
hold between the four subsets? 

12.3.1 (Heine ken). In any group G the inverse of a right Engel element is a left 
Engel element and the inverse of a right n-Engel element is a left (n + 1)
Engel element. Thus 

R(Gtl ~ L(G) and 

Proof. Let x and 9 be elements of G. Using the fundamental commutator 
identities we obtain 

[X,n+lg] = [[x,g],ng] = [[g-1,x]9'ng] 

= [[g-1, x], ng]9 

= [Egg-X, ng]9 

= [g-X, ng]9. 

Hence [g-X, ng] = 1 implies that [x, n+lg] = 1. Both parts of the result now 
fu~~ 0 

It is still an open question whether every right Engel element is a left 
Engel element. 

The two sets of left Engel elements are closely related to the Hirsch
Plotkin radical and the Baer radical respectively, the latter being the unique 
maximal normal Baer subgroup (which exists in any group-see Exercise 
12.2.11). Moreover it turns out that the two sets of right Engel elements 
have much to do with the hypercenter and the co-center. 

12.3.2. Let G be any group. Then: 

(i) L(G) contains the Hirsch-Plotkin radical and L(G) the Raer radical; 
(ii) R(G) contains the hypercenter and R(G) contains the co-center. 

Proof. (i) Let 9 belong to the Hirsch-Plotkin radical H and let x E G. Then 
[g, x] E H and thus K = <g, [x, gJ) ::;; H. It follows that K is nilpotent and 
[x, ng] = 1 for some n > 0, so that 9 E L(G). Next suppose that 9 belongs to 
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the Baer radical; then <g) is subnormal in G, and there is a series of finite 
length <g) = Go<J G1 <J "'<J Gn = G. Clearly [x, g] E Gn- 1, [x, 2g] E Gn- 2 
for any x in G, and so on; finally [x, ng] E Go = <g). Consequently 
[x, n+lg] = 1 and g E L(G). 

(ii) Let g belong to the hypercenter of G and let x E G. Suppose that 
[g, nX] "# 1 for all n. Now g E (aG for some first ordinal (x, which cannot 
be a limit ordinal; for if it were, (aG would equal UP<a(pG. Hence g E 

«(aG)\«(a-l G). It follows that [g, x] E (a-l G, so that by the same argument 
[g, x] E «(a,G)V(a'-l G) where (x' < (x. Similarly [g, 2X] E «(a"G)\«(a"-l G) 
where (X" < (X' < (x, Since this process cannot terminate, it leads to an 
infinite descending chain of ordinals ... < (X" < (X' < (X; this cannot exist. 
Hence g E R(G). Finally, if g E (nG and x E G, then [g, nX] = 1 and g E R(G). 

o 
The major goal of Engel theory is to find conditions which will guarantee 

that L(G), L(G), R(G), and R(G) are subgroups which coincide with the 
Hirsch-Plotkin radical, the Baer radical, the hypercenter and the w-center 
respectively. That equality does not always hold is shown by a famous 
example of Golod [a59] (see also [b33]) of a finitely generated infinite 
p-group G such that G = L(G) = R(G). This group does not equal its Hirsch 
-Plotkin radical, otherwise it would be finite. 

Engel Groups 

For any group G the statements G = L(G) and G = R(G) are clearly equi
valent, and a group with this property is called an Engel group. By 12.3.2 
(or directly) we see that every locally nilpotent group is an Engel group. 
Golod's example mentioned above shows that Engel groups need not be 
locally nilpotent. Thus Engel groups represent a rather wide generalization 
of nilpotent groups. 

By an n-Engel group is meant a group G such that [x, nY] = 1 for all 
x, Y E G; that is, every element is both left and right n-Engel. Thus the class 
of n-Engel groups is the variety determined by the law [x, nY] = 1. For 
example, a nilpotent group of class n is an n-Engel group. On the other 
hand, n-Engel groups need not be nilpotent-see Exercise 12.3.1. A group is 
a bounded Engel group if it is n-Engel for some n. 

Engel Structure in Soluble Groups 

The sets L(G) and L(G) are well-behaved if G is a soluble group. 

12.3.3. (Gruenberg). Let G be a soluble group. 

(i) L(G) coincides with the Hirsch- Plotkin radical and is a Gruenberg group. 
Thus a soluble Engel group is a Gruenberg group. 

(ii) L(G) coincides with the Baer radical. Thus a soluble bounded Engel group 
is a Baer group. 
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Proof. (i) Let 9 E L(G): by 12.2.7 it suffices to prove that (g) is ascendant in 
G. Let d be the derived length of G. If d ::s; 1, then G is abelian and (g) <l G; 
thus we can assume d > 1 and write A = G(d-I). Now obviously gA E L(G/A), 
so (g, A) is ascendant in G by induction on d. It remains to prove that (g) 
is ascendant in (g, A). 

Since A is abelian, the mapping a 1-+ [a, g] is an endomorphism e of A. If 
F ¥= 1 is a finite subset of A, there is an integer n such that [x, ng] = 1 for all 
x in F; hence F~n = 0, which clearly implies that C,,(g) ¥= 1. Now define sub
groups 1 = Ao, AI' ... by the rules Acx+1 / Acx = CA/A.(g) and A ... = Up< ... A p 
where ex is an ordinal and A a limit ordinal. Since we can always find a 
nontrivial element that is centralized by 9 in a nontrivial quotient of A, 
there is an ordinal y such that Ay = A. Now (g, Acx)<l (g, Acx +l ) because 
9 centralizes Acx+I / Acx. It follows that the (g, Acx) form an ascending series 
from (g) to (g, A) and (g) is ascendant in G. 

(ii) Now suppose that 9 is a left n-Engel element. Keeping the same nota
tion, we have (g, A) subnormal in G by induction on d. Here [a, ng] = 1 for 
all a in A, so (g, A) is nilpotent and (g) is subnormal in (g, A) and hence 
in G. Therefore 9 is in the Baer radical. 0 

On the other hand, quite simple examples show that R(G) may be larger 
than the hypercenter even when G is soluble (Exercise 12.3.1). 

The following was the first theorem to be proved about Engel groups. 

12.3.4 (Zorn). A finite Engel group is nilpotent. 

Proof. Suppose that this is false and let G be a finite Engel group which has 
smallest order subject to being nonnilpotent. Then every proper subgroup 
of G is nilpotent and G is soluble by Schmidt's theorem (9.1.9). By 12.3.3, G 
equals its Hirsch-Plotkin radical, which means that G is nilpotent since it is 
~~ 0 

2-Engel Groups 

Obviously a O-Engel group has order 1 and the 1-Engel groups are exactly 
the abelian groups. Greater interest attaches to the class of 2-Engel groups; 
this, it turns out, includes all groups of exponent 3. 

12.3.5. A group of exponent 3 is a 2-Engel group. 

Proof. Let G be a group of exponent 3 and let x, y E G. Then (xy-I)2 = 
(xy-I r l = yx-1. Post-multiplication by y2 yields 

xy-Ixy = yx-I y2 = y-2x -Iy-1 = y-l(y-1x-Iy-l) = y-I X(X- I y-I)2. 

Therefore 
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It follows that x commutes with x Y and hence with x-Yx = [y, x]. Thus 
[y, x, x] = 1. 0 

We shall now establish the basic result on 2-Engel groups. 

12.3.6 (Levi). Let G be a 2-Engel group and let x, y, z, t be elements of G. 
Then: 

(i) x G is abelian; 
(ii) [x, y, z] = [z, x, y]; 

(iii) [x, y, Z]3 = 1; 
(iv) [x, y, z, t] = 1, so that G is nilpotent of class ~ 3. 

Proof. (i) We have [x, x Y] = [x, x[x, y]] = [x, [x, yJ]. Now x commutes 
with [y, x] and hence with [x, y]. Therefore x and x Y commute, and it 
follows by conjugation that any two conjugates of x commute. Hence x G is 
abelian. 

(ii) Let A = x G, an abelian group. The mapping a ~ [a, y] is an endo
morphism of A which will be written y*. Since (y*)2 sends a to [a, y, y] = 1, 
we have (y*f = O. 

From the elementary commutator formulae for [x, yz] and [x, y-l] we 
obtain the results 

(yz)* = y* + z* + y*z* 
and 

(y-l)* = _ y*. 

Now (YZ)-l commutes with [a, yz], so by (3) and (4) we have 

o = (YZ)*(Z-l y-l)* = (y* + z* + y*z*)( - z* - y* + z*y*) 

= - y*z* - z*y*. 

Therefore 
y*z* = -z*y*, 

(3) 

(4) 

(5) 

which tells us that [x, y, z] = [x, z, yrl. Since A is abelian, [x, z, yr1 = 
[[x, zr1, y] = [z, x, y]; hence [x, y, z] = [z, x, y] as required. 

(iii) Using (ii) we obtain [x, y - l, z]Y = [x, y-l, z] and thus [x, y-l, zJy = 
[[x, yrl, z] = [x, y, zrl. Now apply the Hall-Witt identity (5.1.5) and (ii) 
to get the result. 

(iv) By (5) we have y*(zt)* + (zt)*y* = O. Expanding this with the aid of 
(3) and (5) one obtains 

0= y*z* + y*t* + y*z*t* + z*y* + t*y* + z*t*y* 

= 2y*z*t*. 

Hence [x, y, Z, t]2 = 1. But also (iii) implies that [x, y, Z, t]3 = 1, so 
[x, y, z, t] = 1. 0 
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Notice that G is a 2-Engel group if and only if x G is abelian for all x in G. 
While 3-Engel groups are less well-behaved, it is true that G is 3-Engel if 
and only if x G is nilpotent of class ::::;; 2 for all x in G (Kappe and Kappe 
[alII]). In general 3-Engel groups are not nilpotent, but they are always 
locally nilpotent (Heineken [aS7]). For a clear and concise account of the 
theory of 3-Engel groups see Gupta [b30]. 

Engel Structure in Groups with the Maximal Condition 

According to 12.3.4 a finite Engel group is nilpotent. Can we weaken the 
hypothesis of finiteness here? Certainly finitely generated will not do
Golod's example tells us that-but is there any hope for the maximal con
dition? The answer turns out to be affirmative; in fact groups with max have 
excellent Engel structure. 

12.3.7 (Baer). Let G be a group which satisfies the maximal condition. Then 
L(G) and L(G) coincide with the Hirsch-Plotkin radical, which is nilpotent, 
and R(G) and R(G) coincide with the hypercenter, which equals (mG for some 
finite m. In particular, if G is an Engel group, it is nilpotent. 

Most of the labor of the proof resides in establishing the following spe
cial case. 

12.3.8. If G satisfies max and a E L(G), then aG is finitely generated and 
nilpotent. 

Proof. Assume that the statement is false. 
(i) Let {a G} denote the set of all conjugates of a in G. A subgroup X of G 

will be called a-generated if it is generated by those conjugates of a that it 
contains, in symbols X = <X" {a G }). 

(ii) If X and Yare nilpotent a-generated subgroups such that X < Y, then 
Ny(X) contains at least one conjugate of a which does not belong to X. 

Because Y is nilpotent, X is subnormal in Y and there is a series X = 
Xo<J Xl <J "'<J Xs = Y. Since X =F Y and Y is a-generated, Y \ X must 
contain a conjugate of a. Hence there is an integer i such that 

X" raG} = Xi" raG} # Xi+l" raG}. 

Suppose that y E Xi+l " {a G} and y ¢ Xi' Then y normalizes Xi' so that 
(X" {aG})y = (Xi" {aG})Y = Xi" {a G} = X" raG}. Since X" raG} gener
ates X, the element y normalizes X. 

(iii) There exist two distinct maximal a-generated nilpotent subgroups U 
and V. 

Consider the set 9' of all a-generated nilpotent subgroups. By the maxi
mal condition each element of 9' is contained in a maximal element. If there 
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were just one maximal element of Y, say M, then it would contain (a); for 
(a) E Y. But M <J G since conjugates of M belong to Y; thus aG ~ M and 
aG is nilpotent, a contradiction. 

(iv) Consider the subgroup 

1= (U n Vn {a G }). 

Here we can suppose that U and V have been chosen so that I is maximal. 
Now define 

W = (Nu(I) n {a G}). 

From its definition we see that I is a-generated and also that I # U since 
I ~ V. By (ii) we conclude that 1< W For the same reason Nv(I) n {a G} has 
an element v that does not belong to I and hence not to U. 

Suppose that v E NG(W). Now max shows that W can be finitely gener
ated, say by ag " ••• , agm• Keeping in mind that v is conjugate to a and there
fore belongs to L(G), we find an n > 0 such that [a gi, nV] = 1 for i = 1, ... , m. 
Let H = (v, W); then clearly W' <J Hand H/W' is nilpotent of class ~ n. 
But W is nilpotent since U is, so we can apply Hall's criterion (5.2.10), con
cluding that H is nilpotent. Since W is a-generated and v is conjugate to a, 
we see that H is a-generated. Therefore HEY and H is contained in a 
maximal element T of Y. Now v E T\ U, which shows that T # U. Also 
W ~ H ~ T, so Nu(I)n {aG} £ Un Tn {aG} and 1< W ~ (U n Tn {aG}). 
But this contradicts the maximality of I. 

(v) It follows from the preceding argument that v ¢ NG(W). Since I < U, 
there is an element u in Nu(I) n {a G} which is not in I: here we use (ii). Now 
[v, nU] = 1 for some n because u E L(G). Hence there is a least integer k 
such that [v, kU] normalizes W; moreover k > 0 since v ¢ NG(W). Writing 
z = [v, k-l u], we have [z, u] = (uzf1u E NG(W) and u E W; whence UZ E 
NG(W). Now we may show just as in (iv) that K = (U Z , W) belongs to Y, 
and is therefore contained in a maximal element R of Y. But, since W is 
a-generated, (U n R n {a G }) ~ W> I, which will contradict the maximality 
of I unless R = U. Therefore UZ E U. 

By construction u and v belong NG(I), so that z = [v, k-l u] E NG(I). Since 
U Z is conjugate to a, we obtain U Z E Nu(I) n {a G} £ W, by definition of W 
Also u E W; so we have U Z E W Z • It follows that U Z E Un W Z n {a G}. Now 
I ~ Wand 1= F ~ W Z , so that 1< (U n W Z n {a G}). Thus W Z is con
tained in a maximal element of Y which must equal U; otherwise the 
maximality of I would again be contradicted. Consequently W Z ~ U and 
(Nu(I)n{aG}Y is contained in NG(IYnUn{aG} = Nu(I)n{a G} because 
z E NG(I). Hence W Z ~ W Since W Z # W; it follows that W Z < W; con
jugating by negative powers of z, we obtain W < W z-' < W Z -

2 < ... , which 
contradicts max. 0 

Proof of 12.3.7. Here G is a group with max. If a E L(G), then aG is nilpotent 
by 12.3.8, so that aG is contained in the Hirsch-Plotkin radical H. More-
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over H is finitely generated and nilpotent by max. Hence L(G) = H coin
cides with the Baer radical and hence with L(G) by 12.3.2. 

The statement about right Engel elements requires a little more atten
tion. Let a E R(G); then a-1 E L(G) by 12.3.1 and (a-1)G = aG = A is nil
potent by 12.3.8. Let x E G. Since Aab is generated by finitely many right 
Engel elements, [A, k X] ::;; A' for some positive integer k. Hence ( x, A )/A' is 
nilpotent, which implies that (x, A ) is nilpotent. Refine the upper central 
series of A to a G-admissible series whose factors are elementary abelian or 
free abelian of finite rank. Let B be such a factor; then x acts unipotently 
on B. By 8.1.10 the action of G on B is unitriangular and in consequence 
A::;; ' sG for some s. 

It follows that R(G) = 'rG for some r in view of max. Finally R(G) = 'rG 
by 12.3.2. 0 

EXERCISES 12.3 

1. Let G be the standard wreath product of a group of order p and an infinite ele
mentary abelian p-group. Prove that G is a (p + I)-Engel group, yet CG = 1. 
Deduce that a 3-Engel group need not be nilpotent (see 12.3.6). 

2. If G is a locally finite group, show that L(G) equals the Hirsch-Plotkin radical 
and that R(G) is a subgroup of L(G). [Hint: Use 12.3.4.] 

3. Let G be a soluble group with a normal series of finite length whose factors 
are abelian groups of finite rank with finite torsion-subgroups. Prove that 
L(G) = L(G) and R(G) = R(G). Show that these conclusions are not valid for ar
bitrary soluble groups. 

4. A soluble p-group of finite exponent is a bounded Engel group. 

5. A group G is a 2 -Engel group if and only if the identity [ x, y , z] = [y, z, x] holds 
inG. 

6. Let x, y be group elements satisfying [x, .y] = 1. Prove that <x)(y) is finitely 
generated. 

7. (Plotkin). If G is a radical group (see Exercise 12.1.2), prove that L(G) coincides 
with the Hirsch-Plotkin radical and that R(G) is a subgroup of L(G). [Hint : Let 
{Ga } be the upper Hirsch-Plotkin series. If X is a finite subset of L(G) (') G2 , 

prove that <X ) is nilpotent, using Exercise 12.3.6.] 

12.4. Classes of Groups Defined by General Series 

There are numerous interesting classes of generalized soluble and nilpotent 
groups which are defined by means of a series of general order type, a con
cept which will now be explaind. 
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Definition. Let G be an a-operator group. By a (general) a-series of G we 
shall mean a set S of subgroups, called the terms of S, which is linearly 
ordered by inclusion and which satisfies the following conditions: 

(i) If 1 "# x E G, there are terms of S which do not contain x and the union 
of all such terms is a term Vx of S. 

(ii) If 1 "# x E G, there are terms of S which contain x and the intersection 
of all such terms is a term Ax of S. 

(iii) Vx <J Ax. 
(iv) Each term of S is of the form Vx or Ax for some x "# 1 in G. 

Thus x belongs to the set Ax \ v,,; the corresponding quotient group Ax/v" 
is a factor of fl£. Notice that no term of S can lie strictly between Vx and Ax. 
Hence if x, y "# 1, then either Ax ~ Yy or Ay ~ v". 

This enables us to linearly order the factors of S by the rule that Ax/Vx 
precedes Ay/Yy if Ax ~ Yy. The order-type of S is the order-type of the set of 
all factors of S. It follows easily from the definition that 

and 

where the union is formed over all factors Ay/Yy that precede Ax/v" and 
the intersection over all factors that succeed Ax/v". These are completeness 
properties of the series. 

If S has finite order-type, it is clearly just a series of finite length: the 
smallest Vx will equal 1 and the largest Ax will equal G. If S has the order
type of an ordinal number [3, the series will be an ascending series. On the 
other hand, suppose that the order-type of S is the reverse of an ordinal 
number [3, that is, the set of ordinals a < [3 in descending order. Then S is a 
descending series; this can be written in the form 

"'<J H2 <J Hl <J Ho = G 

where HIZ+! <J HIZ and H;, = ny<;,Hy with a an ordinal and A a limit ordinal. 
Note that nlZ</i HIZ = 1. 

Composition Series 

If Sand S* are a-series in G and if every term of S is a term of S*, then S* is 
said to be a refinement of S, in symbols S ~ S*. If 1 "# x E G, then, with 
the obvious notation, Vx ~ v,,* ~ A: ~ Ax. An a-series which has no refine
ment other than itself is called an a-composition series. 

When a is empty, we speak of a series and a composition series: when a 
is the group of inner automorphisms, we speak of a normal series and a 
principal series. 

General composition series have the definite advantage that they exist in 
any group. 
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12.4.1. Every Q-series can be refined to an Q-composition series. 

Proof. Let 80 be a given Q-series in an Q-group G. Consider the set !![ of 
all refinements of 80 . The relation ~ is clearly a partial ordering of gr. Let 
~ = {8(Y)ly E r} be a chain in gr; we shall construct an upper bound for ~ 
in gr. 

If 1 ..J.. X E G define Y = U y(y) and A = n A (y) where of course y(y) -r- , x y X X Y X , , x 

and A~) are terms of 8(Y). Certainly Vx <l Ax. In addition ~y):::;; Vx :::;; Ax :::;; 
A~) for each y in r. Hence the set 8 = {Ax, Yxl1 i= x E G} is linearly ordered 
by inclusion. It is clear that 8 is a series which is an upper bound for rc. 

We may now apply Zorn's Lemma to produce a maximal element of gr. 
But this is simply a composition series of G. 0 

The reader should observe that no analogue of the Jordan- Holder Theo
rem exists for general series. For example, 7L has the two composition series 
... 87L < 47L < 27L < 7L and ... 277L < 97L < 37L < 7L, but these have noniso
morphic factors. 

Groups with a Central Series 

Suppose that the group G has a central series 8, that is, each term is normal 
and each factor Ax/ Vx is central in G. This represents a generalization of 
nilpotence since G would be nilpotent if 8 were finite. Groups with this 
property are sometimes called Z-groups. 

12.4.2. If G is a locally nilpotent group, then G has a central series. 

Proof. By 12.4.1 there is a principal series in G. The factors of this series are 
principal factors of G and by 12.1.6 they are central in G. D 

Groups with a descending central series are examples of Z-groups
these are sometimes called hypocentral groups and are characterized by the 
fact that their lower central series reaches the identity subgroup when con
tinued transfinitely (Exercise 12.4.1). Among the most commonly encoun
tered hypo central groups are the residually nilpotent groups. Even this class 
is very extensive, containing groups which might be regarded as highly non
nilpotent, for example, free groups by 6.1.10. 

Serial Subgroups 

A subgroup which occurs in some series of a group G is called serial. This 
must be regarded as a very broad generalization of subnormality and 
ascendance. It is quite possible for a serial subgroup to be self-normalizing 
or to have the whole group as its normal closure (Exercise 12.4.4). 
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Here we are interested in groups having all their subgroups serial; natu
rally these include all nilpotent groups. Groups of this type can be charac
terized in terms of the Frattini properties of their subgroups. 

12.4.3. Every subgroup of a group G is serial if and only if H' ~ Frat H for 
all H ~ G. 

Proof. Of course, the condition on H is equivalent to the normality of all its 
maximal subgroups. Suppose that every subgroup of G is serial and let M 
be maximal in H. There is a series in G which includes M. Intersect the 
terms of this series with H to get a series in H which also includes M. But 
M is maximal in H , so M and H must be consecutive terms in the second 
series and M <:J H . 

Conversely, assume that the subgroups of G have the property stated. 
Let L ~ G and define :f{ to be the set of all chains of subgroups that are 
refinements of 1 ~ L ~ G and that satisfy all the conditions in the definition 
of a series except perhaps the normality condition (iii). As in 12.4.1 we use 
Zorn's Lemma to construct a maximal element S of :f{. If X and Yare 
consecutive terms of S, then X must be maximal in Y by maximality of S. 
Hence X <:J Yand S is a series. Consequently L is serial in G. 0 

In view of this result and 12.1.5 we have the following interesting prop
erty of locally nilpotent groups. 

12.4.4. Every subgroup of a locally nilpotent group is serial. 

On the other hand, it has been shown by Wilson [a223] that local nil
potence is not a consequence of the seriality of all subgroups of a group. 

Generalized Soluble Groups 

The concept of a series permits the creation of many classes of generalized 
soluble groups. We mention briefly some ofthe most important. 

A group which possesses a series with abelian factors is called an SN
group; this is an immensely wide generalization of solubility. For example, it 
is known that there are simple SN-groups which are not of prime order 
([b54]). 

Somewhat narrower is the class of Sf-groups, groups which possess a 
normal series with abelian factors. We shall shortly see that locally soluble 
groups are Sf-groups (12.5.2). 

An important subclass of Sf is the class of groups which have an ascend
ing normal series with abelian factors; these are called hyperabelian groups. 
Being much closer to soluble groups this is a relatively tractable class. 

We conclude with a result which illustrates the power of the minimal 
condition. 
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12.4.5 (Cernikov). An SN-group G satisfies min if and only if it is a soluble 
Cernikov group. 

Proof. We need only prove that if G satisfies min, it is a soluble Cernikov 
group. Let F denote the unique minimal subgroup with finite index in G 
(see 5.4.22). Then F may be assumed to be nontrivial. Now G is an SN
group, so it has a series with abelian factors. By min the members of this 
series are well-ordered by set inclusion: thus G has an ascending series with 
abelian factors. Because thus conclusion applies equally to G/F, this finite 
group is soluble. 

Since F "# 1, there is a smallest term of the ascending series having non
trivial intersection with F, say Ga; here the ordinal (X is not a limit ordinal, 
so Ga - 1 (l F = 1 and Ga (l F ~ (Ga (l F)Ga-1 /Ga- 1. Thus Ga (l F is abelian; it 
is also ascendant in F and contained in the Hirsch- Plotkin radical H of 
F by 12.1.4. Now H is hypercentral by 12.2.5, so 1 "# CH <J G and F con
tains a nontrivial normal abelian subgroup A of G. The rest of the proof 
is just like that of 5.4.23 and is left to the reader as an exercise. D 

EXERCISES 12.4 

1. Define the trans finitely extended lower central series of a group G by the rules 
YI G = G, Y. +l G = [y.G, G] and YA G = np <A YpG where IX is an ordinal and A. a 
limit ordinal. Prove that G is residually nilpotent if and only if y",G = 1, and G 
is hypocentral if and only if some Y. G = 1. 

2. A subgroup is called descendant if it is a member of some descending series. 
Find all the descendant subgroups of Doo. Show that descendance is not pre
served with respect to taking quotient groups. 

3. Prove that Doo is residually nilpotent. 

4. Find a serial subgroup which coincides with its normalizer and whose normal 
closure is the whole group. [Hint: Consider McLain's group M(Q, F).] 

5. If every subgroup of a group G is serial and G satisfies min, prove that G is 
locally nilpotent. 

6. A group G is said to be residually central if for each nontrivial element x there 
is a normal subgroup N such that N *- xN E '(GIN). Prove that G is residually 
central if and only if x ¢ [G, x] whenever 1 *- x E G. Show also that Z-groups 
are residually central. (The converse is false-see [a155].) 

7. (Ayoub, Durbin). Let G be a residually central group. 
(a) Show that each minimal normal subgroup is contained in the centre of G. 
(b) If H is the hypercenter, prove that GIH is residually central. 
(c) Prove that a residually central group with min-n is a hypercentral Cernikov 

group. 

8. A group is hyperabelian if and only if each nontrivial quotient group has non
trivial Fitting subgroup. 



12.5. Locally Soluble Groups 381 

9. By an SN*-group is meant a group which has an ascending series with abelian 
factors. Show that hyperabelian implies SN* implies radical. Give an example 
of a finitely generated SN*-group that is not hyperabelian. [Hint: Let M = 
M(02' Fp); this is McLain's group with the ordered set O2 of all rationals of 
the form m2", m, n E 71.., and Fp = GF(p). The assignments 1 + e).~ f--> 1 + eH1~+1 
and 1 + e).~ f--> 1 + e2).21l determine automorphisms IX and fJ of M respectively. 
Consider the group G = <IX, fJ> ~ M.] 

10. Prove that a group G is an SN*-group if and only if it has an ascending series 
whose factors are Gruenberg groups. 

11. Assume that G is a group with a normal series (of general order type) whose 
factors are cyclic. Prove that G/ is a Z-group. 

*12. Complete the proof of 12.4.5. 

13. A nontrivial group which has no proper nontrivial serial subgroups is called 
absolutely simple. Prove that a series is a composition series precisely when all 
its factors are absolutely simple. 

14. A finitely generated simple group is absolutely simple. (Note: Nonabsolutely 
simple groups exist [b54J.) 

15. An SN-group is a group such that the factors in every composition series are 
abelian. Prove that a group G is an SN-group if and only if every image of a 
serial subgroup of G is an SN -group. 

16. An SI-group is a group such that all factors in every principal series are abelian. 
Prove that a group G is an SI-group if and only if every quotient group of Gis 
an SI-group. 

12.5. Locally Soluble Groups 

A group is locally soluble if every finitely generated subgroup is soluble. 
Generally speaking, this type of group is much harder to deal with than 
locally nilpotent groups, essentially because the finitely generated subgroups 
need not satisfy max. For example, there is no analogue of the Hirsch
Plotkin Theorem-see [b54], §8.1. 

Here is one of the few positive results that have been proved about 
locally soluble groups. 

12.5.1 (Mal'cev, McLain). If G is a locally soluble group, every principal 
factor of G is abelian. 

Proof. Obviously it is enough to prove that a minimal normal subgroup 
N of G is abelian. Suppose that this is false and let a, b be elements of 
N such that c = [a, b] #- 1. Since c E N, we must have N = c G, so that 
there are elements g1' ... , gm of G such that a, b E (c9', ... , C9~>. Set H = 
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(a, g1"'" gm' b), a soluble group, and consider A = CH. Since A contains a 
and b, the element c belongs to A'. Consequently A' ~ cH = A and A' = A. 
However this means that A = 1 because H is soluble. D 

12.5.2. Every locally soluble group G is an SI-group. Thus a simple locally 
soluble group has prime order. 

Proof. By 12.4.1 the group has a principal series and 12.5.1 shows that the 
factors are abelian. D 

On the other hand, infinite simple SN -groups were shown to exist by 
P. Hall (see [b54], §8.4). 

We note another simple application of 12.5.1. 

12.5.3. A locally soluble group with the minimal condition on normal sub
groups is hyperabelian. 

In general a locally soluble group with min-n is not a Cernikov group. 
Moreover the classes of locally soluble groups and hyperabelian groups are 
incomparable. For more on these matters consult [b54J. 

Locally Soluble Groups with the Maximal Condition 
on Normal Subgroups 

12.5.4 (McLain). Let G be a locally soluble group with the maximal condition 
on normal subgroups. Then to each integer p ~ ° there corresponds an integer 
m = m(p, G) such that G(m) ~ Yr p (-" Yr2(Yr, (G)"') for every sequence of p posi
tive integers r1 , r2 , ••• , rp' 

Proof. If we define m(O, G) = 0, the assertion is vacuously true for p = 0. 
Assume that m = m(p, G) has been properly defined. Now G/G(m+1) is finitely 
generated because it is a soluble group with max-n (see 5.4.21). Hence G = 
XG(m+1) for a suitable finitely generated subgroup X. Then X is soluble, 
with derived length d, let us say. Now choose any sequence of p + 1 positive 
integers r1, ... ,rp +1' From G=XG(m+1) it follows via Exercise 5.1.7 that 
G = Xy (G(m»). But X(d) = 1 so 

"p+l ' 

G(d) ~ X(d)y (G(m») ~ Y (y . .. y (G)···). 
rp+l "p+l rp 'I 

Finally define m(p + 1, G) to be d. D 

Using this lemma an interesting criterion for a locally soluble group with 
max-n to be soluble may be established. 
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12.5.5 (McLain). Let G be a locally soluble group with the maximal condition 
on normal subgroups. Then G is soluble if and only if finitely generated sub
groups of G have bounded nilpotent lengths. 

Proof. Only the sufficiency requires any discussion. Assume that every 
finitely generated subgroup of G has nilpotent length at most 1. Just as in 
the proof of 12.5.4 we have G = XG(m+l) for some finitely generated sub
group X. Since X has nilpotent length ~ 1, there exist integers r1 , ••• , rl such 
that Yr,(··· Yr, (X)···) = 1. Now by 12.5.4 there is an integer m = m(l, G) such 
that 

G(m) ~ Yr,(···Yr,(G)···) ~ Yr,(···Yr,(X)···)G(m+1) = G(m+l). 

Hence L = G(m) satisfies L = L'. If L = 1, then G is soluble. Otherwise by 
max-n we can choose a normal subgroup M of G which is maximal subject 
to M < L. But then LjM is a principal factor of G and 12.5.1 shows that 
LjM is abelian, which conflicts with L = L'. D 

12.5.6 (McLain). A locally supersoluble G with the maximal condition on nor
mal subgroups is supersoluble. 

Proof. If X is a finitely generated subgroup of G, then X is supersoluble and 
X' is nilpotent by 5.4.10. Thus X has nilpotent length 2 or less. Now apply 
12.5.5 to conclude that G is soluble. By 5.4.21 the group G is finitely gener
ated and hence supersoluble. D 

EXAMPLE. There is a locally soluble group with max-n which is not soluble 
and not finitely generated. For each positive integer i we construct a finite 
soluble group Gi with a unique minimal normal subgroup N i • To start the 
construction let G1 be the symmetric group of degree 3 and Nl the alternat
ing subgroup. Suppose that Gi has been constructed. If p is a prime not 
dividing I G;I, there exists a faithful irreducible module Ni+1 for Gi over GF(p) 
(Exercise 8.1.4). Define Gi+1 to be the semidirect product of Ni+1 and Gi. 
Then Ni+1 is the unique minimal normal subgroup of Gi+l since it is self
centralizing in Gi+l. 

Define G to be the union of the chain of groups G1 < G2 < .... Then Gis 
a locally soluble group and it is also a torsion group. Certainly G is not 
finitely generated-otherwise G = Gi for some i. 

Finally we show that G has max-no Let 1 # N <:J G; then N n Gj # 1 for 
some j. Now N n Gi<:J Gi; thus Ni ~ N if N n Gi # 1 since Ni is the unique 
minimal normal subgroup of Gi. Therefore N contains <~, ~+1' ... ), which 
implies that IG: NI is finite. It follows that G cannot contain an infinite 
ascending chain of normal subgroups. Finally G is not soluble: for if it were, 
it would be finitely generated. 
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EXERCISES 12.5 

1. The class of locally soluble groups is not closed with respect to forming exten
sions (see Exercise 12.4.9). 

2. A locally soluble group need not contain a nontrivial normal abelian subgroup. 
(Hence locally soluble does not imply hyperabelian.) 

3. Let Hand K be normal locally polycyclic subgroups of a group. Then the prod
uct J = H K is locally polycyclic. Deduce that every group has a unique maximal 
normal locally polycyclic subgroup and this contains all ascendant locally poly
cyclic subgroups. [Hint: Imitate the proofs of 12.1.2-12.1.4.] 

4. If G is a locally soluble group with max-n, some term of the (transfinitely extended) 
derived series equals 1. (Such groups are called hypoabelian.) 

5. (McLain). A principal factor of a locally polycyclic group is elementary abelian. 
Deduce that a locally polycyclic group with min-n is a torsion group. 

6. (McLain). Let G be a locally polycyclic group with min-no Prove that G is a 
Cernikov group if and only if there is an upper bound for the rank of a principal 
factor of a finite subgroup. [Hint: Let r be this upper bound. Suppose that N 
is a minimal normal subgroup which is an infinite elementary abelian p-group. 
Choose a linearly independent subset {at, a2 , .•• , a,+t} of N and put A = 
<at, .. . , a,+1). Find a finite subgroup H containing A such that L == AH = aH for 
all 1 * a E A. Choose M maximal in L subject to M <l H and at ¢ M, and show 
that M II A = 1.] 

7. (McLain). A locally supersoluble group with min-n is a Cernikov group. (Note: 
There exist locally soluble groups with min-n which are torsion groups but which 
are not Cernikov groups-see McLain [a140].) 



CHAPTER 13 

Subnormal Subgroups 

Although subnormality is a very natural generalization of normality, it re
ceived no attention from group theorists until 1939 when Wielandt's funda
mental paper [a215] appeared. However there has been much activity in 
this field in recent years. For a full account of the subject see [b42J. 

We shall often write 
HsnG 

to denote the fact that H is a subnormal subgroup of a group G. The most 
elementary properties of this relation are outlined in Exercise 3.1.8. 

13.1. Joins and Intersections of 
Subnormal Subgroups 

A useful tool in the study of subnormality is the series of successive normal 
closures. If X is a nonempty subset of a group G, a sequence of subgroups 
X G•i, i = 0, 1,2, ... , is defined by the rules 

xG,o = G and 

Thus X is contained in every XG,i and 

"'XG,2<l X G,l<l XG,o = G. 

Of course, X G,l is just the normal closure X G• It should be clear to the 
reader how to extend the series transfinitely-see Exercise 13.1.12. 

The significance of this series for subnormality is made apparent by the 
following result. 

385 
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13.1.1. Let H sn G and suppose that H = Hn <l Hn - 1 <l ... <l Ho = G is a fi
nite series from H to G. Then HG,i ::s;; Hi and hence H = HG,n. 

Proof. The assertion is true for i = O. If HG,i ::s;; Hi' then HG,i+l = HHG., ::s;; 

H{!.\ = Hi+l and the result follows by induction on i. D 

Consequently, a subgroup H is subnormal in G if and only if H = HG,n for 
some n ::s;; O. Moreover, if H is subnormal in G, it also follows from 13.1.1 
that of all series between Hand G the series of successive normal closures is 
shortest. 

The length of this shortest series is called the subnormal index or defect of 
H in G. This will be written 

s(G: H). 

Obviously s(G: H) equals 0 precisely when H = G, while s(G: H) = 1 if 
and only if H <l G and H i= G. Another evident fact is this: if H sn K sn G, 
then H sn G and 

s(G: H) ::s;; s(G: K) + s(K: H). 

In addition, if H sn K ::s;; G and 0: is a homomorphism from G, then Ha sn Ka 

and 
s(Ka : Ha) ::s;; s(K : H). 

As regards the distribution of defects of a group there are basically two 
situations which can arise. 

13.1.2. If a group G has a subnormal subgroup with positive defect i, it has a 
subnormal subgroup with defect i-I. Hence either there is an integer s ~ 0 
such that G has subnormal subgroups with defects 0, 1, . . . , s but none of de
fect greater than s, or else all nonnegative integers occur as defects of sub
normal subgroups of G, 

Proof. If H sn G and s(G: H) = i > 0, then s(G : HG,i-l) = i-I. The lemma 
now follows. D 

Some interest attaches to groups which have bounded defects; these in
clude, of course, all finite groups and also all nilpotent groups (see the proof 
of 5.2.4). Further examples will be encountered in 13.3. 

There is a useful formula for HG,i. 

13.1.3. If H ::s;; G, then HG,i = H[G, iH] for all i ~ O. 

Proof. This is trivial if i = O. Assuming the result for i and using 5.1.6, we 
argue that 

D 

This formula gives another proof of the result: if G is a nilpotent group of 
class c and H ::s;; G, then H sn G and s(G: H) ::s;; c. 
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Intersections of Subnormal Subgroups 

It is easy to see that the intersection of any finite set of subnormal sub
groups is itself subnormal. More generally there is the following fact. 

13.1.4. Let {H ... IA. E A} be a set of subnormal subgroups of a group G such 
that s( G : H ... ) ~ s for all A.. Then the intersection 1 of the H ... 's is subnormal in 
G and s( G : 1) ~ s. 

Proof. If x E IG,., then clearly x E Hr" for all A. in A; therefore x E H ... by 
13.1.1, so that I G,. = 1. 0 

Nevertheless the intersection of an arbitrary collection of subnormal sub
groups may well fail to be subnormal. 

EXAMPLE. Consider the infinite dihedral group G = ( x, alax = a-I, x2 = 1) 
and set Hi = (x, a2i ). Then H i+1 <l Hi since [a2i, x] = a-2i+ l. Consequently 
Hi sn G. However HIll H2 11'" = (x), a subgroup that coincides with its 
normalizer in G. Hence the intersection is not subnormal in G. 

Joins of Subnormal Subgroups 

An altogether more subtle problem is to determine whether the join of a 
pair-or more generally of any set-of subnormal subgroups is subnormal. 
If turns out that two subnormal subgroups may well generate a subgroup 
that is not subnormal. 

The following fact is basic. 

13.1.5. Let H sn G and K sn G, and assume that K normalizes H. Then J = 
(H, K) is subnormal in G and s(G: J) ~ s(G: H) s(G: K). 

Proof. In the first place, if Hi = HG,i, then Hi = H[G, iH] by 13.1.13. There
fore K normalizes Hi' 

Next H i +1 <l HiK and K sn HiK. Therefore Hi+1K sn HiK by the 
elementary properties of subnormality already mentioned, and indeed 
S(HiK: Hi+IK) ~ s(G: K). Since HoK = G and HrK = HK = J if r = 
s(G: H), it follows that J sn G and s(G: J) ~ s(G: H) s(G: K). 0 

This result can be used to reformulate the join problem for a pair of 
subnormal subgroups. 

13.1.6. Let H sn G, K sn G and J = (H, K). Then the following statements 
are equivalent: 
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(i) J sn G; 
(ii) HK sn G; and 

(iii) [H, K] sn G. 

13. Subnormal Subgroups 

Proof. The implications (i) -+ (ii) -+ (iii) are trivial consequences of the rela
tions [H, K] <J HK <J J. Now suppose that (iii) holds. Since HK = H[H, K] 
and H normalizes [H, K], we deduce from 13.1.5 that HK sn G. Similarly 
J = HKK and 13.1.5 implies that J sn G. D 

A group is said to have the subnormal joint property (SJP) if the join of 
every pair-and hence of every finite set-of subnormal subgroups is sub
normal. Now the set of all subnormal subgroups of a group is a partially 
ordered subset of the lattice of all subgroups, and it is closed under finite 
intersections. Hence a group has the SJP exactly when the set of all its sub
normal subgroups is a sublattice of the lattice of subgroups. Some examples 
of groups with the SJP are given by 

13.1.7. Every group with nilpotent derived subgroup has the subnormal join 
property. In particular this conclusion applies to metabelian groups. 

To prove this one observes that, in the notation of 13.1.6, the subgroup 
[H, K] is subnormal in G' because the latter is nilpotent. Hence [H, K] sn G 
and 13.1.6 gives the result. 

The next result is of quite a different character, asserting that if a group is 
sufficiently finite it has the SJP, whereas in 13.1.7 the hypothesis is a form of 
commutativity. Indeed it is the interplay between finiteness and commuta
tivity which makes the SJP such an elusive property. 

13.1.8 (Robinson). Let G be a group whose derived subgroup satisfies the 
maximal condition on subnormal subgroups. Then G has the subnormal join 
property. 

Proof. Let H sn G, K sn G, and J = (H, K). Put s = s(G : H). If s = 0, then 
H = J = G and all is clear; assume therefore that s > O. 

Let {Xl' x 2 , ••• , xn } be a given finite subset of K and put 

L = (H, HX', . . . , HX") 

Since s(HG : HXi) = s - 1, repeated use of an induction hypothesis on s 
gives L sn HG and hence L sn G. Now the equation hX = h[h, x] implies that 
(H, HX) = (H, [H, x] ). Consequently L = (H, M) where M is the sub
group generated by [H, Xl], ... , [H, xn ]. Since H normalizes [H, x;], it 
normalizes M, from which it follows that M <J L and thus M sn G. That 
M sn G' is an immediate consequence. On the basis of max-s we can find a 
subgroup M which is maximal of the above type. But M must equal [H, K] 
since one can always add another [H, x;] to M. Hence [H, K] sn G, which 
by 13.1.6 implies that J sn G. D 
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The following special cases are noteworthy. 

13.1.9 (Wielandt). A group satisfying the maximal condition on subnormal 
subgroups has the subnormal join property. 

13.1.10 (Wielandt). In a group G with a (finite) composition series the set of 
all subnormal subgroups is a complete sub lattice of the lattice of subgroups. 

Proof of 13.1.10. Let 1 = <H;.IA. E A) where H;. sn G. If Ao is a finite subset 
of A, then lAo = <H;.IA. E Ao) sn G by 13.1.9. Since G satisfies max-s, there is 
a maximal subgroup lAo' But clearly lAo equals land 1 sn G. The argument 
for intersections is similar. 0 

An Example of a Group Without the Subnormal 
Join Property 

Let [I' denote the set of all subsets X of the integers 7l such that X contains 
all integers less than some integer I(X) and none greater than some L(X) 
where I(X) ::;; L(X). Thus, roughly speaking, [I' consists of subsets that con
tain all large negative integers but no large positive ones. With each X in [I' 

we associate symbols ax and bx . Let A and B be elementary abelian 2-groups 
having as bases the sets {axlX E [I'} and {bxlX E [I'} respectively. Now 
form the direct product 

M=AxB 

The next step is to define suitable automorphisms of M. Define aXOn to be 
aXu {n} if n rt X and 1 if n E X: a similar convention applies to the b's. For 
each integer n, automorphisms Un and Vn of M act according to the follow
ing rules. Firstly Un acts trivially on Band Vn acts trivially on A; secondly 

It is easy to see that these are in fact automorphisms of M. 
Consider the subgroups of Aut M 

and 
and put 

1 = <H, K). 

Finally form the semidirect product 

G = lDe: M. 

Concerning the group G we shall prove the following. 
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13.1.11. The subgroups Hand K are subnormal in G with defect equal to 
3, but J is not subnormal in G. Thus G does not have the subnormal join 
property. 

Proof. The following equations are direct consequences of the definitions: 

(1) 
and 

[ax, vn] = 1, [bx' vn] = aXOn' (2) 

It is also easy to check from the definitions that UmUn = UnUm and u; = 1, 
relations which show H to be an elementary abelian 2-group; of course K 
too is of this type. 

Now write 

Using the Hall-Witt identity (5.1.5) 

together with (1) and (2), we obtain 

similarly 

By the Hall-Witt identity once again 

Evaluating this with the aid of (1) and (2) we deduce that [ax, [zmn, UI]] = 1, 
with a corresponding result for bx . Hence [zmn' ua = 1 and likewise [zmn' VI] 

= 1. What these equations show is that Zmn belongs to the center of J. Thus 
[J', J] = 1 and J is nilpotent of class 2. 

Equations (1) and (2) imply that [H, A] ~ Band [K, B] ~ A. If X E !/ 
and n is the largest integer in X, then, on writing Y = X\ {n}, we have 
[a y , un] = bY>n = bx, which implies that [H, A] = B. Similarly [K, B] = A. 

We are now in a position to calculate the successive normal closures of 
Hand K. In the first place HG = (HM)K = (HA)K; also HA = (H, [H, A]) = 
(H, B). Therefore HG = (HK, BK) = HKM. Hence we have HG.2 = (HHK)M 
= HM since H sn J and s(J: H) ~ 2. Thus HG.2 = (H, B). Finally HG.3 = 
H because [H, B] = 1. Naturally a similar argument applies to K. 

However JG = G because JG contains both HA = (H, B) and KB = 

(K, A). Consequently J is not subnormal in G. D 

Joins of Infinitely Many Subnormal Subgroups 

If the join of an arbitrary set of subnormal subgroups is always subnormal, 
the group in question is said to have the generalized subnormal join prop
erty. This is a much stronger property than the SJP. 
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EXAMPLE. Let Gi = (Xi' adat = 1 = X~, afi = ail) be a dihedral group of 
order 2i+l; then Hi = (Xi) is subnormal in Gi with defect t. Now consider 
the direct products 

and H = Hl X H2 x ·· ·. 

Then obviously Hi sn G and the Hi generate H. If H were subnormal in G 
and s(G: H) = r, it would follow that s(Gi : Hi) ~ r + 1 for all i, a contradic
tion. Thus G does not have the generalized SJP. However G does have the 
SJP because it is a metabelian group (see 13.1.7). 

There is a criterion for a group to have the generalized SJP which pro
vides some insight into the nature of that property. 

13.1.12 (Robinson). A group G has the generalized subnormal join property if 
and only if the union of every chain of subnormal subgroups is subnormal. 

Proof. The condition stated is surely necessary. Let us assume therefore that 
it is satisfied in G. The first step is to prove that G has the SJP. To this end 
let H sn G, K sn G and J = (H, K): we shall proceed by induction on s = 
s(G: H), which can be assumed positive. The elements of K may be well
ordered as {x"ilX < y} where y is some ordinal. For p ~ y define Lp = 
(Hx«ilX < P). Then the Lp's form a chain and Ly = HK. Now suppose that J 
is not subnormal in G; then HK is not subnormal by 13.1.6 and there is a 
first ordinal P such that Lp is not subnormal in G. This p cannot be a limit 
ordinal because if it were, Lp would be the union of a chain of subnormal 
subgroups and our condition would force Lp to be subnormal. Hence p - 1 
exists and Lp = (Lp- l , HX,-I). However s(HG: HXH) = s - 1 and Lp- l sn HG, 
so induction on s gives the contradiction Lp sn G. 

Now let!/' be a possibly infinite set of subnormal subgroups of G. We 
need to prove that the join of all the members of !/' is subnormal. Since G 
has the SJP, it is permissible to assume that!/' is closed under the forma
tion of finite joins. The given chain condition and Zorn's Lemma can be 
used to produce a maximal element J of !/'. If HE!/', then (H, J) E !/', 
whence H ~ J. Consequently J is the join of all the members of !/'. But 
J sn G, so G has the generalized SJP. D 

Some classes of groups that have the generalized SJP can be read off 
from the next result. 

13.1.13 (Robinson). Let N <J G and assume that N has the generalized sub
normal join property while GIN satisfies the maximal condition on subnormal 
subgroups. Then G has the generalized subnormal join property. 

Proof. Let {H"ilX E A} be any chain of subnormal subgroups of G and let U 
denote the union of the chain. By 13.1.12 it is enough to prove that Usn G. 
Now max-sn implies that UN = H"N for some IX in A. Hence U = 
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Un (HaN) = Ha(U n N). Obviously Un N is the union of the chain 
{Ha n Nlex E A} and Ha n N sn N. Thus by hypothesis Un N sn Nand 
certainly Un N sn G. Finally Un N <J U, so it follows from 13.1.5 that 
Uma 0 

For example, finitely generated metabelian groups have the generalized 
SJP, whereas this is not true of arbitrary metabelian groups, as we saw in 
the example above. For more classes of groups with the SJP, see [b42]. 

EXERCISES 13.1 

1. Find all subnormal subgroups of the groups SR' DR, Dc<) . 

2. Let H sn G, K sn G and J = ( H, K). If s(G: H) ::::; 2, prove that J sn G and 
s(G: J) ::::; 2 s(G: K). 

3. Let H sn G, K sn G and J = (H, K). If HK = KH, prove that J sn G. If s(G: H) 
= rand s(G : K) = s, show also that s(G: J) ::::; rs(s + 1) ... (s + r - 1). [Hint: Let 
Hi = Hi,i and show that Hi = Hi+1(Hi n K).J 

4. There exists a finitely generated soluble group which does not have the SJP. 
[Hint: In the notation of 13.1.11 let t E Aut M be defined by ax f-+ aX+l, bx f-+ bX+l 
where X + 1 = {x + llx E X}. Let L = (J, t) P< M and prove that L is finitely 
generated.J 

5. Let D = Drl Gl where Gl ~ G. If D has the generalized SJP, prove that there is 
an upper bound for subnormal defects in G. 

6. Let H ::::; G and X S; G. Show that for any positive integer i the equation H(X) = 
HS,[H, i(X) J holds where Si = 1 v X v (XX) V'" v (X'" X). [Hint: Use 5.1.6.J 

'---y--J 
i-l 

7. If H ::::; G and K is a finitely generated subnormal nilpotent subgroup of G, then 
HK is generated by finitely many conjugates of H in K. 

8. Let H sn G, K sn G and assume that H <l J = ( H, K). If Hand K belong to a 
class of groups X which is closed with respect to forming normal subgroups and 
finite normal products, prove that J belongs to X. Give some applications. 

9. Generalize the previous exercise to the case where J = HK = KH. 

10. (J.E. Roseblade and S.E. Stonehewer). Let X be a class of groups which is closed 
with respect to forming normal subgroups and finite normal products. Assume 
that H sn G, K sn G and J = (H, K). If Hand K are finitely generated X-groups, 
prove that J E X and J sn G. Apply this with X equal to the classes of all groups, 
nilpotent groups, soluble groups. [Hint: Use Exercise 13.1.6 and induction on 
s(G: H).J 

11. (H. Wielandt). Let H sn G, K sn G and J = (H, K). Define 9' to be the set of all 
subnormal subgroups L of G such that H ::::; L ::::; HK. Given that 9' satisfies the 
maximal condition, prove that J sn G. Deduce that J sn G if [H, KJ satisfies 
max-so 
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12. Show how to extend the series of successive normal closures of a subgroup to 
transfinite ordinals. Use this to give a criterion for a subgroup to be descendant, 
that is, a term of a descending series. 

13.2. Permutability and Subnormality 

Recall that subgroup H is said to be permutable in a group G if HK = KH 
whenever K :::;; G. We shall sometimes write 

HperG 
to denote this relation. 

Of course every normal subgroup is permutable, which might lead one to 
hope that subnormal subgroups also have this property. However any such 
hope is soon dispelled. If G is a dihedral group of order 8, it can be gener
ated by two subgroups Hand K each of order 2. Now H sn G and K sn G 
since G is nilpotent. However IHKI = IHI ' IKI = 4, so that G =I- HK, and 
H K =I- KH by 1.3.13. 

One may adopt the opposite point of view, asking whether permutable 
subgroups are subnormal. Here there is an encouraging answer for finite 
groups at least, as we shall soon see. 

13.2.1 (Ore). If H is a maximal permutable subgroup of a group G, then 
H<J G. 

Proof. Suppose that this is false; then there is a conjugate K of H such that 
K =I- H. Now HK :::;; G and clearly HK per G. Therefore G = HK and K = 
Hhk for some hE H, k E K . However this implies that H = K . 0 

This has immediate application to permutable subgroups of finite groups. 

13.2.2 (Ore). If H is a permutable subgroup of a finite group G, then H is 
subnormal in G. 

Proof. Refine 1 :::;; H :::;; G to a chain 1 = Go < G1 < ... < Gn = G such that 
Gi is a maximal proper permutable subgroup of Gi+l' By 13.2.1 we have 
Gi<J Gi+l' Since H appears in the chain, H sn G. 0 

While in general a permutable subgroup of an infinite group need not be 
subnormal (Exercise 13.2.3), such subgroups are invariably ascendant. To 
prove this it is necessary to establish a technical lemma. 

13.2.3. Let G = HK where H per G and K = <k ) is an infinite cyclic group. 
Assume that H (") K = 1. Then H <J G. 
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Proof. Let p be any prime. Then HKP:::;; G and 

IG:HKPI = IHK:HKPI = IK:(HKP)nKI = IK:KPI =p. 

Write Xp for the core of HKP in G. Then 1.6.9 shows that I G : Xpi divides pL 
Because IG: HKPI = p, it follows that HKPjXp is a Hall p'-subgroup of 
GjXp. Since HXpjXp is permutable in the finite group GjXp, we can apply 
13.2.2, concluding that HXpjXp is subnormal in GjXp. 

Hence HXpjXp :::;; 0p,(GjXp) by 9.1.1. Consequently 

HGXpjXp:::;; Op,(GjXp):::;; HKPjXp 

and HG :::;; HKP. Since Xp is the core of HKP, it follows that HG :::;; Xp for all 
p. Let N denote the intersection of the Xp for all p. Now GjN is surely 
infinite; for it contains subgroups of every prime index. Also N = N n (HK) 
= H(N n K); if N n K = 1, then certainly H = N <l G, so suppose that 
N n K #- 1. Then IK: N n KI is finite, K being infinite cyclic, and hence 
IHK:H(NnK)1 is finite. But the latter index equals IG:NI, a contradic
~ 0 

13.2.4 (Stonehewer). In any group G a permutable subgroup is ascendant. 

Proof. Let H per G. We shall construct an ascending series H = Ho<l Hl <l 

... Hp = HG such that Ha per G and Ha+ljHa is finite cyclic group for all 
IJ( < p. From this it will follow that H is ascendant in G. 

As a first step we form a partial series of the required type in H G, that 
is to say, an ascending series H = Ho<l Hl <l .. . Hp = V:::;; HG where Ha 
per G and Ha+dHa is finite cyclic. Suppose that this series cannot be ex
tended, in the sense that there does not exist a permutable subgroup K such 
that V <l K :::;; HG and KjV is a nontrivial finite cyclic subgroup. If V = H G, 
we are finished, so assume that V #- HG. Then vg i V for some 9 in G; for 
otherwise H G :::;; V G = V. Thus V#- vvg. Since V per G, we have vvg:::;; 
V<g), and therefore vvg = (VVg)n(V<g») = V<g") = L, say, for some 
positive integer n. 

If IL: VI is infinite, so is I V<g): VI, which implies that V n <g) = 1. But 
now 13.2.3 may be applied to give the contradiction V <l V<g) and V = 
vg. Hence IL: VI is finite. Taking L modulo the core of V and applying 
13.2.2 to the resulting quotient group, we conclude that V sn L. If V = 
V L •r < v L ,r-l = V, then V is generated by conjugates of V; also V <l V:::;; 
L :::;; HG and obviously VjV is a finite cyclic group. Since V is generated by 
conjugates of V, it is permutable in G. However this contradicts the non
extendability of the partial ascending series. 0 

Finally, we consider permutable subgroups of finitely generated groups. 

13.2.5 (Stonehewer). A permutable subgroup of a finitely generated group G 
is subnormal. 



13.2. Permutability and Subnormality 395 

Proof. Assume that H per G. We consider an infinite cyclic subgroup K = 
<k) such that H (") K = 1. We claim that H (") K9 = 1 for every 9 in G. Sup
pose that this is false and H9-1 

(") K #- 1; then kn E H9-1 
:::;; H<g) for some 

n > O. Now IH<kn ) : HI is infinite since H (") K = 1; therefore IH<g): HI is 
infinite and H (") <g) = 1. But 13.2.3 shows that H9-1 = H which is contrary 
to assumption. 

Let N be the subgroup generated by all infinite cyclic subgroups K such 
that H (") K = 1. The argument of the previous paragraph has established 
that N <J G. In addition H <J HN by 13.2.3. Now clearly HNIN per GIN, 
and also each element of GIN has some positive power in HNIN, by defini
tion of N. Therefore we may pass to the group GIN, which amounts to 
assuming that N = 1. 

It will be sufficient to show that IHG: HI is finite; for then the core of H 
will have finite index in HG and we can deduce from 13.2.2 that H sn HG 
and thus H sn G. 

Let G = <gl ' g2' .. . ' gn ); we shall argue by induction on 

n 

L IH<g;) : HI· 
;=1 

Notice that this is finite because of the assumption N = 1. Suppose that 
H9i :::;; H for all i. Some power of g; belongs to H, so repeated conjugation 
by g; yields H = H9, :::;; H9i :::;; H for some r; hence H = H9i for all i and 
H <J G. We may therefore assume that H9i $. H for some i ; thus H < HH9i 
per G. Since 

for alIj, and 

IHH9i<g; ) : HH9' I < IHH9i<g; ) : HI = IH<g; ) : HI, 

the induction hypothesis leads to the finiteness of I(HH9i)G: HH9i l. But 
(HH9i)G = HG and IHH9i: HI:::;; IH<g) : HI < 00 , so IHG : HI is finite as 
~~ 0 

To conclude we mention without proof a further connection between 
subnormality and permutability discovered by J.E. Roseblade [aI75] in 
1965. Let H sn G, K sn G and assume that the tensor product Hab ® Kab is 
trivial: then HK = KH. In particular a perfect subnormal subgroup permutes 
with every subnormal subgroup. 

EXERCISES 13.2 

1. (a) If H per G and K per G, then HK per G. 
(b) Permutability is not a transitive relation. 
(c) If H per K ::::; G and ex. is a homomorphism from G, then H" per K". 
(d) If H per K ::::; G and L ::::; G, then H ("\ L per K ("\ L. 
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2. Let H ::;; G, K ::;; G, and J = <H, K). 
(a) Prove that J = HKH if and only if HKH = HKHK. 
(b) (J.S. Wilson). If H sn G, K sn G and J = HKH, prove that J = HK. 

3. (K. Iwasawa). Let G = T~ A where T = <t ) is infinite cyclic, A is a group of 
type p"', p > 2, and at = a l +P, (a E A). Prove that every subgroup of G is permut
able but not every subgroup is subnormal. [Hint: It is enough to show that any 
two cyclic subgroups permute.] 

4. Let G = <H, K ) where Hand K are finitely generated permutable nilpotent 
subgroups. Prove that G is nilpotent. 

5. Let H per G and K ::;; G where H n K = 1 and K is torsion-free. Prove that 
H <J HK and H n Kg = 1 for all 9 in G. 

6. A permutable subgroup is normalized by every element of prime order. 

7. Let H per G where G can be generated by elements of order at most m. Prove 
that H sn G and s(G: H) does not exceed the number of prime divisors of m 
(including multiplicities). 

8. A subgroup H of a group G is called subpermutable if there is a finite chain of 
subgroups H = Ho::;; HI::;; ' " ::;; H. = G with Hi per Hi+l • Prove that a finite 
subpermutable subgroup is always subnormal and conclude that for finite sub
groups subpermutability and subnormality are identical properties. [Hint : Ar
gue by induction on IHI + n where H is finite and subpermutable and n is the 
length of the chain from H to G. Introduce the subgroup K generated by all 
elements of prime order.] 

9. Show that a finite ascendant subgroup need not be subpermutable. 

10. (Ito). Let G = AB where A and B are abelian subgroups of the group G. Prove 
that G is metabelian. [Hint: Let a, a l E A and b, bl E B. Write bO , = a2 bz and 
ab, = b3 a3 where ai E A, bi E B. Now show that [a, b]o,b, = [a, b]b,o,.] 

13.3. The Minimal Condition on 
Subnormal Subgroups 

Most of the finiteness restrictions that pertain to the normal or subnormal 
subgroups of a group are hard to work with in that it is difficult to relate 
them to structural properties of the group. The one real exception is min-s, 
the minimal condition on subnormal subgroups, as this section will show. 

Simple Subnormal Subgroups 

In discussing groups with min-s one must expect to be faced with minimal 
subnormal subgroups, i.e., simple subnormal subgroups. Such subgroups 
are, of course, either of prime order or nonabelian; it is those of the latter 
type that concern us at present. The next result is basic. 
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13.3.1 (Wielandt). Let H sn G, K sn G and assume that H n K = 1. If H is a 
nonabelian simple group, then [H, K] = 1. 

Proof. Let J = <H, K) and s = s(J : H). If s ~ 1, then H<J J and [H, K]<J H. 
If [H, K] # 1, then H = [H, K], so that H ~ K J and K J = J; therefore 
K = J by subnormality of K, which leads to the contradiction H = H n K 
= 1. Consequently [H, K] = 1. 

Assume therefore that s> 1, so that H # Hk for some k in K . Since 
H n Hk sn H, we must have H n Hk = 1 by simplicity of H. Now S(Hk : H) = 
s - 1, so induction on s yields [H, Hk] = 1. For any hI, h2 in H we have, 
therefore, 

1 = [hI, h~] = [hI, h2[h2, k]] = [hI' [h2, k]] [hI, h2J!h2,kl, 

which implies that [hI, h2] E [H, K] and H' ~ [H, K]. But H = H' since 
H is not abelian, so H ~ [H, K]; just as before this leads to K J = J and 
H= 1. D 

13.3.2. A nonabelian simple subnormal subgroup normalizes every subnormal 
subgroup. 

Proof. Let H sn G and K sn G where H is simple and nonabelian. Since 
H n K sn H, either H n K = 1, and therefore [H, K] = 1 by 13.3.1, or H ~ 
K . The result is now clear. D 

13.3.3. The join of a set of nonabelian simple subnormal subgroups is the di
rect product of certain of its members and hence is a completely reducible 
group without center. 

This follows directly from 3.3.11 and 13.3.2. 

13.3.4. If H sn G and H is a nonabelian simple group, then HG is a minimal 
normal subgroup of G and H is a direct factor of HG. Thus s(G: H) ~ 2. 

Proof. By 13.3.3 the group HG is a direct product of conjugates of H, includ
ing H we may suppose. If 1 # N <J G and N ~ HG, then N must contain a 
conjugate of H by 3.3.12. It follows that HG ~ Nand N = HG. D 

The Subnormal Soc1e 

If G is any group, the subgroup generated by all the minimal (i.e., simple) 
subnormal subgroups is called the subnormal socle of G. Should G prove to 
have no minimal subnormal subgroups, we define the subnormal socle to 
be 1. 



398 13. Subnormal Subgroups 

13.3.5. If G is a group and S is its subnormal socie, then S = So X Sl where So 
is the centerless completely reducible radical of G and Sl is a Baer torsion 
group. 

Proof. Let So and Sl be the joins of all the minimal subnormal subgroups of 
G that are nonabelian and abelian respectively. In the first place Sl is a Baer 
group by Exercise 12.2.11. In addition it is generated by elements of finite 
order, so 12.1.1 shows it to be a torsion group. By 13.3.3 the subgroup So is 
completely reducible and it has trivial center. On the other hand, any nor
mal completely reducible subgroup with trivial centre is certainly contained 
in So. 

Obviously S = SOSl and So<l G, Sl <l G. Furthermore 3.3.12 shows that 
So n Sl is a direct product of nonabelian simple groups; on the other 
hand, it is also a Baer group. Since simple Baer groups have prime order, 
So n Sl = 1 and S = So X Sl' 0 

One can tell from the structure of the subnormal socle whether a group 
has a finite number of minimal subnormal subgroups. 

13.3.6. Let G be a group with subnormal socie S. Then the following state
ments are equivalent. 

(i) G has only finitely many minimal subnormal subgroups. 
(ii) S is the direct product of a finite nilpotent group and finitely many non

abelian simple groups. 
(iii) S satisfies the minimal condition on subnormal subgroups. 

Proof. (i) --+ (ii) Write S = So X Sl using the notation of 13.3.5. Certainly So 
is the direct product of a finite number of non abelian simple subnormal 
subgroups of G. As for Sl' it is surely finitely generated; since it is also a 
Baer group, it is nilpotent (12.2.8). Finally Sl is a torsion group, so it is 
actually finite (5.2.18). 

(ii) --+ (iii) This follows from 3.1.7. 
(iii) --+ (i) By 12.2.9 the group Sl is nilpotent. Also (Sl)ab is generated by 

elements of prime order and satisfies min. By the structure of abelian groups 
with min (4.2.11), or by direct observation, (Sl)ab is finite. Theorem 5.2.6 
now implies that Sl is finite. Hence there are only finitely many abelian 
minimal subnormal subgroups. On the other hand, a nonabelian minimal 
subnormal subgroup is a direct factor of So and of these there are only 
~~m~ 0 

The Wielandt Subgroup 

The Wielandt subgroup of a group G, 

w(G), 
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is defined to be the intersection of all normalizers of subnormal subgroups 
of G. Thus G = w(G) if and only if every subnormal subgroup of G is nor
mal. For example, according to 13.3.2 all nonabelian minimal subnormal 
subgroups are contained in w(G). In general w(G) may well be trivial-see 
Exercise 13.3.2-but, as the next result will show, this cannot happen in a 
nontrivial group satisfying min-so 

13.3.7 (Wielandt). Let N be a minimal normal subgroup of a group G and 
suppose that N satisfies the minimal condition on normal subgroups. Then 
N S w(G). 

Proof. By min-n there is a minimal normal subgroup Nl of Nand N = Nf. 
Applying 3.3.11 we can express N as a direct product of finitely many conju
gates of N1 , including Nl itself. Consequently each normal subgroup of Nl 
is actually normal in N, a fact which shows N1 to be simple. By 3.1.7 the 
group N satisfies min-so 

Now let H sn G and write s = s(G: H). We shall prove that N normalizes 
H by induction on s, which can, of course, be assumed greater than 1. Since 
N is minimal normal in G, either HG n N = 1 or N S HG. The first possibil
ity leads to [N, HGJ = 1 and hence to N S NG(H). Assume therefore that 
N S HG. Now there is a minimal normal subgroup M of HG contained in 
N; notice that M itself satisfies min-n because N satisfies min-so Moreover 
s(HG: H) = s - 1 , so the induction hypothesis tells us that M and all its 
conjugates normalize H. Hence N = MG normalizes H. 0 

In groups with min-s the Wielandt subgroup is larger than one might 
expect in the following sense. 

13.3.8 (Robinson, Roseblade). If a group G satisfies min-s, then w(G) has 
finite index in G. 

Proof. Let R denote the finite residual of G and let H sn G. To prove that 
HR = H will be conclusive. Accordingly assume that this is false and let the 
subnormal subgroup H be chosen minimal subject to HR # H. Denote by 
P the join of all the proper subnormal subgroups of H; then p R = P by 
minimality of H. Moreover P-<l H and clearly H/P must be simple. Since 
P-<l HR and HR sn G, the group HR/P inherits the property min-s from 
G. We may therefore invoke 13.3.6 to conclude that HR/P possesses only 
finitely many minimal subnormal subgroups. If x E R, then P S HX and 
HX/P is a simple, and therefore minimal, subnormal subgroup of HR/P. 
Consequently the number of conjugates of H in R is finite, or, equivalently, 
IR: NR(H) I is finite. However R has no proper subgroups of finite index, so 
R = NR(H) and H = HR, a contradiction. 0 

This has an easy but interesting corollary. 
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13.3.9. If the group G satisfies the minimal condition on subnormal subgroups, 
there is an upper bound for the defects of subnormal subgroups of G. 

Proof. Write W = w(G) and let H sn G. Then certainly H <J HW, while G/W 
is finite by 13.3.8. Now HW/W is subnormal in the finite group G/W, so 
certainly s(G: HW)::5: IG: WI = m. Hence s(G : H)::5: m + 1. 0 

Characterizing Groups with the Minimal Condition 
on Subnormal Subgroups 

13.3.10 (Robinson). The following statements about a group G are equivalent. 

(i) G satisfies the minimal condition on subnormal subgroups. 
(ii) If H is a proper subnormal subgroup of G, there is at least one but 

only finitely many subnormal subgroups K which are minimal subject to 
H<K. 

(iii) Each nontrivial image of G has a nontrivial subnormal socle satisfying the 
minimal condition on subnormal subgroups. 

Proof. (i) ~ (ii). Suppose G satisfies min-s but possesses infinitely many sub
normal subgroups K 1 , K 2 , • •• each of which is minimal subject to properly 
containing H. Now clearly H sn K, and minimality shows that H <J K, and 
K,/H is simple. Thus if J = <K 1 , K 2 , ••• ), then H<J J and each K,/H is a 
minimal subnormal subgroup of J /H. Let R denote the finite residual of G. 
Then G/R is finite and R ::5: w(G) by 13.3.8. Consequently R normalizes each 
K, and hence J: thus J <J JR. Next JR/R is generated by subnormal sub
groups K,R/R of the finite group G/R. Hence JR/R sn G/R by 13.1.9, and 
JR sn G. It follows that J sn G, from which we conclude that J/H satisfies 
min-so However, according to 13.3.6 the group J /H cannot have infinitely 
many minimal subnormal subgroups, so we have a contradiction. 

(ii) ~ (iii). Suppose that G # 1 satisfies (ii). Then taking H to be 1 and 
applying 13.3.6, we conclude that the subnormal socle of G is nontrivial and 
satisfies min-so Since the property (ii) is inherited by images of G, we deduce 
that (iii) is valid in G. 

(iii) ~ (i). This is the main thrust of the theorem. It will be dealt with in 
four steps. 

(a) We begin by forming the series of successive subnormal socles 
{ Sa IIX ::5: fJ}. This is the ascending series defined by the rules So = 1 and 
Sa+1 /Sa = the subnormal socle of G/Sa, together with the usual completeness 
condition SA = Ua<A Sa if A is a limit ordinal. Notice that (iii) guarantees 
that Sa < Sa+1 whenever Sa # G. Thus G = Sp and the series reaches G. 

(b) If 1 # N <J G, then N n Sl # 1. Certainly there is a first ordinal rx 
such that N n Sa # 1 , and IX cannot be a limit ordinal by the complete
ness condition. Hence N n Sa-l = 1 and N n Sa ~ (N n Sa)Sa- d Sa-l. Now 
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(N n Sa)Sa-dSa-1 is normal in Sa/Sa-1 and must satisfy min-s since the latter 
does by hypothesis. Hence N n Sa satisfies min-s and contains a minimal 
subnormal subgroup of G. It follows that N n S1 1= 1. 

(c) G satisfies min-no Suppose that N1 > N2 > ... is an infinite descend
ing chain of normal subgroups of G, and let I = N1 n N2 n .. . . Then G/l 
inherits property (iii) from G, so we may pass to G/I; in short assume that 
I = 1. Now N1 n S1 ~ N2 n S1 ~ ... and of course N; n S1 <:J S1. However S1 
satisfies min-s, so there is an integer i such that N; n S1 = N;+1 n S1 =, etc. 
Since I = 1, it follows that N; n S1 = 1, which, in view of (b), means that 
N; = 1; but this is false. 

(d) Conclusion. Since G satisfies min-n, it has a unique smallest subgroup 
R with finite index. It follows from 3.1.8 that R too satisfies min-no If it can 
be shown that every subnormal subgroup of R is normal, it will follow that 
R satisfies min-s, and hence that G satisfies min-so 

We first refine the ascending series {Sal(J( ~ {J} to one with simple factors; 
this can be done on the basis of our knowledge of the structure of Sa+1 /Sa 
by inserting additional terms. 

Now let H be any subnormal subgroup of R. Intersecting H with the 
terms of the refined series described in the previous paragraph, one obtains 
an ascending series of H whose factors, after deletion of repetitions, are all 
simple. The length of this series shall be termed the height of H. If H is not 
normal in R, we may assume that H has been chosen of minimal height (J( 
with this property. It is obvious that (J( cannot be a limit ordinal, so there 
exists a subgroup K, normal in H, such that H/K is simple and K has height 
(J( - 1. Now if L sn K, then L has height (J( - 1 or less and L<:J R by choice 
of H . Since R satisfies min-n, we conclude that K satisfies min-so 

Next K <:J R and I G : R I is finite, from which it follows that K has only a 
finite number of conjugates in G. Each such conjugate is normal in Rand 
has min-s, so that M = KG also satisfies min-s by 3.1.7: Consider now the 
subnormal socle T/ K of R/ K. Since T <:J R, we have Tn M <:J M, which 
shows that Tn M satisfies min-so Furthermore T/T n M ~ TM/M and the 
latter, being an image of T/K, is generated by minimal subnormal sub
groups. Therefore TM/M is contained in the subnormal socle of G/M, in 
which it is even subnormal. It follows from the hypothesis that TM/M 
satisfies min-so By 3.1.7 we conclude that T satisfies min-s and 13.3.6 implies 
that R/K has only finitely many minimal subnormal subgroups. However, if 
x E R, then K <:J HX and HX/K is minimally subnormal in R/K. Finally, we 
deduce that H has finitely many conjugates in R, so that H <:J R since R has 
no proper subgroups of finite index. D 

13.3.11 (Wielandt). A group G has a composition series of finite length if and 
only if it has only finitely many subnormal subgroups. 

Proof. If G possesses only finitely many subnormal subgroups, it certainly 
satisfies max-s and min-s, and therefore has a composition series of finite 
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length (see 3.1.5). Conversely, let G have such a composition series: then G 
has min-s and hence property (ii) of 13.3.10. It is now clear that a composi
tion series in G can be formed in only finitely many ways. Every subnormal 
subgroup appears in some composition series, so the result follows. 0 

EXERCISES 13.3 

1. If G is a group with min-s and I is the composition length of Gjw(G), prove that 
no subnormal defect in G exceeds I + 1. 

2. If G = DOC), then w(G) = 1. 

3. If G is a torison-free nilpotent group, prove that w(G) = (G; does this hold for 
all nilpotent groups? (Remark: According to a theorem of Schenkman [a184] 
w(G):::; (zG ifG is nilpotent.) 

4. Need a group with max-s have bounded defects? 

5. Suppose that G has min-s and let R be its finite residual. Prove that GjR' is the 
largest quotient of G which is a Cernikov group. Deduce that R' is perfect and 
has no proper subgroups of finite index. 

6. If G is a group with min-s, the set of subnormal subgroups of G is a complete 
lattice. 

7. (lE. Roseblade). Let H sn G and K sn G. If Hand K have min-s and H has no 
proper subgroup of finite index, show that KH = K. [Hint: Use induction on 
s(G: H) and choose K minimal subject to KH i= K.] 

8. (D. Robinson, J.E. Roseblade). Let H sn G, K sn G and J = <H, K). If Hand K 
have min-s, prove that J sn G and J has min-so 

9. If H is ascendant in G and H satisfies min-s and has no proper subgroup of 
infinite index, prove that H sn G and s(G: H) :::; 2. 

10. (D. Robinson). If a group satisfies the minimal condition on subnormal sub
groups with defect:::; 2, prove that it satisfies min-so [Hint: Use 13.3.10.] 

13.4. Groups in Which Normality 
Is a Transitive Relation 

We shall be interested in groups G with the following property: H <l K <l G 
always implies that H <l G. Such groups are called T-groups, the "T" stand
ing for transitivity of course. Thus, T-groups are precisely the groups in 
which every subnormal subgroup is normal 

Several examples of T-groups are at hand. By 3.3.12 every completely re
ducible group is a T-group. Also a nilpotent group is a T-group if and only if 
every subgroup is normal, i.e., it is a Dedekind group. The structure of Dede-
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kind groups, completely determined in 5.3.7, will be important in the sequel. 
The smallest finite group that is not a T-group is the dihedral group of 
order 8. 

13.4.1. If G is a T-group and C = CG(G'}, then C is the Fitting subgroup G. 
Moreover C is a Dedekind group. 

Proof. In the first place, since [C', C] ~ [G', C] = 1, the group C is certainly 
nilpotent and C ~ Fit G. Let N be any normal nilpotent subgroup of G and 
pick an element x of N. Then <x) sn N <l G, so that <x) <l G by the prop
erty T. Now G/CG(x} is isomorphic with a subgroup of Aut<x) and the 
latter is abelian (1.5.5). Hence G' ~ CG(x} and x E C. It follows that N ~ C 
and thus C = Fit G. Finally, a subgroup of C is subnormal and hence nor
mal in G. Consequently C is a Dedekind group. 0 

Using this lemma we may easily establish the basic result on soluble T
groups. 

13.4.2 (Robinson). Every soluble T-group is metabelian. 

Proof. Let us suppose that this is false. Then, because the property T 
is inherited by quotients, we can find a T-group G such that G" == G(2) is 
abelian but nontrivial. Now G" ~ Fit G and Fit G = CG(G'} by 13.4.1, from 
which it follows that [G", G'] = 1 and G' is nilpotent. Hence G' ~ Fit G = 

CG(G'} and we reach the contradiction G" = 1. 0 

Finite Insoluble T-Groups and the Schreier Conjecture 

For the most part we shall be interested in soluble T-groups, but for the 
moment consider a general T-group G. By 13.4.2 a normal soluble subgroup 
of G is metabelian. Consequently the union of any chain of normal soluble 
subgroups of G is soluble (and, of course, normal). It follows easily by 
Zorn's Lemma that G contains a unique maximal normal soluble subgroup, 
say S. Moreover the group G = G/S is semisimple, i.e., it has no nontrivial 
normal abelian subgroups. Next G/G(3) is a soluble T-group, so it is meta
belian. Hence G" is a perfect semisimple T-group. Disclaiming any interest 
in soluble T-groups for the present, let us replace G" by G. 

Now suppose that G is in addition finite and let R be the completely 
reducible radical of G. Then R = Sl X ••• X S, where Si is a finite non
abelian simple group. Clearly Si<l G and G/CG(Si} is isomorphic with a sub
group of Aut Si; moreover the subgroup SjCG(S;)/CG(S;) corresponds to 
Inn Si under this isomorphism. 

There is a famous conjecture of Schreier to the effect that the outer auto
morphism group of a finite simple group is soluble. It has been verified on a 
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case by case basis, using the classification of finite simple groups. Thus, we 
may state that Out Si is soluble, whence so is G/SiCG(SJ However G is per
fect, so G = SiCG(Si) = Si x CG(SJ The same procedure can be applied to 
CG(SJ, the end result being that G = Sl X S2 X ... X Sr. Thus a finite perfect 
semisimple T-group is completely reducible. 

From now on we shall deal exclusively with soluble T-groups. 

Power Automorphisms 

An automorphism of a group G that leaves every subgroup invariant is 
called a power automorphism. The terminology is a natural one since such 
an automorphism maps each element to one of its powers. It is clear that 
the set of power automorphisms of G is a subgroup of Aut G: this will be 
written 

Paut G. 

Power automorphisms of abelian groups arise in the theory of soluble 
T-groups in the following way. Suppose that G is a T-group and that A is a 
normal abelian subgroup of G. Conjugation by an element of G yields a 
power automorphism of A, so that there is a monomorphism 

G/CG(A) -+ Paut A. 

While much can be said about power automorphisms of abelian groups, 
we shall record only the bare minimum necessary for the present exposition. 
(For further information see Exercise 13.4.9.) 

13.4.3. Let ex be a power automorphism of an abelian group A. 

(i) If A contains an element of irifinite order, then either ex is the identity or 
a" = a-I for all a in A. 

(ii) If A is a p-group of finite exponent, there is a positive integer I such that 
a" = a' for all a in A. If ex is nontrivial and has order prime to p, then ex is 
fixed- point-free. 

Proof. (i) Suppose that a is an element of infinite order in A and let b be any 
element of A. Then there exist integers I, m, n such that a" = a', b" = bm 

and (ab)" = (ab)". Notice that I = ± 1 here. The homomorphism condition 
(ab)" = a"b" gives a"b" = a'bm. If (a) 11 (b) = 1, then a" = a' and b" = bm. 
Since a has infinite order, I = nand b" = bm = b'. If, on the other hand, 
(a) 11 (b) =F 1, then a r = bS =F 1 for some rand s: in this case application of 
ex yields arl = bsm = arm, which shows that I = m and again b" = b'. 

(ii) By 4.3.5 the group A is a direct product of cyclic p-groups. Let (a) be 
a cyclic direct factor of maximum order and let (b) be any cyclic direct fac
tor of a complement of (a) in A. Denote the orders of a and b by pr and pS 
respectively. Now a" = a', b" = bm and (ab)" = (ab)" for certain integers I, m, 
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n. Hence albm = a"b", which implies that I == n mod p' and m == n mod p' . 
Since s :s; r, we obtain I == m mod p' and ba = bl • This proves the first part. 

Suppose that a # 1 is not fixed-point-free; then I == 1 mod p and so 
IPe-1 == 1 mod pe where pe is the exponent of A. Therefore aP· - 1 = 1. 0 

Structure of Finite Soluble T-Groups 

13.4.4 (Gaschiitz). Let G be a finite soluble T-group and write L = [G', G]. 
Then L is the smallest term of the lower central series, L is abelian and GIL is 
a Dedekind group. Also ILl is odd and is relatively prime to IG : LI, so that L 
has a complement in G. 

Proof. Like G the group GIY4G is a T-group, and since it is nilpotent, it is a 
Dedekind group and thus of class at most 2. Hence L == Y3 G = Y4 G. Since 
L:s; G', we see at once from 13.4.2 that L is abelian. To show that L has 
odd order we examine the T-group GIL2. Conjugation in LIL2 yields power 
automorphisms; however LI L 2 is an elementary abelian 2-group and such 
groups have only one power automorphism, the identity automorphism. It 
follows that LIL2 is central in G and L = [L, G] :s; L2. Thus L = L2, which 
shows that I LI is odd. 

Let p be a prime dividing ILl; it remains to wove that GIL has no ele
ments of order p; for the existence of a complement will then follow from 
the Schur- Zassenhaus Theorem (9.1.2). Keep in mind that p must be odd. 
In what follows Lp and Lp' denote the Sylow p- and Sylow p'-subgroups of 
L. Let M(p)/L be the Sylow p-subgroup of GIL and consider the p-group 
M(p)/Lp'; this is abelian because it is a Dedekind group of odd order. Write 
C(p) for CG(Lp). Then, since M(p)/Lp. is abelian and Lp:S; M(p), we have 
[Lp, M(p)] :s; Lp n Lp' = 1 and M(p) :s; C(p). Therefore Glc(p) is a p'-group; 
it is also isomorphic with a subgroup of Paut(Lp). Let x E G\ C(p)-note that 
C(p) = G would imply that [L, G] = [Lp" G] < L. By 13.4.3 the element x 
induces by conjugation in Lp an automorphsim a 1--+ am where m =1= 1 mod p. 
Also Lp and LILp' are isomorphic as <x)-modules, so x must induce in 
M(p)/Lp' a power automorphism a 1--+ an where n =1= 1 mod p. Hence M(p) = 
[M(p), x ]Lp" But M(p)/L is contained in the centre of the Dedekind group 
GIL because p is odd; consequently [M(p), x] :s; L and thus M(p) = L, 
which completes the proof. 0 

Constructing Finite Soluble T-Groups 

Enough information is now at hand for us to be able to construct all finite 
soluble T-groups. 

Let A be a finite abelian group of odd order and let B be a finite Dede
kind group whose order is relatively prime to that of A. Furthermore let 
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there be given a homomorphism 0: B ~ Paut A with the property that for 
each prime p dividing IAI there is an element bp of B such that b: acts non
trivially on the p-component of A. Now form the semidirect product 

G(A, B, 0) = B ~6 A. 

Obviously this is a finite soluble group. To see that it is also a T-group we 
must establish a lemma. 

13.4.5. Let N be a normal subgroup of a finite group G and assume that the 
following hold: 

(i) GIN is a T-group; 
(ii) H sn N implies that H <J G; 

(iii) INI and IG: NI are relatively prime. 

Then G is a T-group. 

Proof. Assume that H <J K <J G; it must be shown that H <J G. Now H n N 
sn N, so H n N <J G by (ii). Thus by passing to quotient groups modulo 
H n N we may suppose that H n N = 1. This implies that IHI and INI 
are relatively prime. Let M = K n (HN) = H(K n N); then M <J G since 
HN <J G in view of (i). Also H <J M. Hence, if n is the set of all prime divi
sors of IG: NI, then H is the unique Halln-subgroup of M. Therefore H is 
characteristic in M and normal in G. D 

Applying 13.4.5 with N = A we deduce that G(A, B, 0) is a T-group. Also 
by 13.4.4 every finite soluble T-group is isomorphic with some G(A, B, 0). 
Notice that if G = G(A, B, 0), then A = [A, GJ by the construction, and 
A = Y3G. 

13.4.6. The group G(A, B, 0) is a finite soluble T-group. Every finite soluble 
T-group is isomorphic with some G(A, B, 0). 

In general a subgroup of a T-group need not be a T-group. For example, 
As is simple, so it is certainly a T-group; but As has a subgroup isomorphic 
with A 4 , which is not a T-group. However the situation is different for finite 
soluble T-groups. 

13.4.7 (Gaschiitz). A subgroup of a finite soluble T-group G is a T-group. 

Proof. Let L = Y3G and let H ~ G. We know from 13.4.4 that ILl and IG: LI 
are relatively prime, which clearly implies that IH n LI and IH: H n LI are 
relatively prime. Also HIH n L ~ HLIL ~ GIL, so that HIH n L, being iso
morphic with a subgroup of a Dedekind group, is certainly a T-group. Sub
groups of H n L are normal in G, and therefore in H. That H is a T-group is 
now a direct consequence of 13.4.5. 0 
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13.4.S. A finite group with cyclic Sylow subgroups is a soluble T-group. 

This follows directly from 10.1.10 and 13.4.5. 

Finitely Generated Soluble T-Groups 

While much is known about infinite soluble T-groups, the situation is more 
complicated, there being several distinct types of group, some of which defy 
classification. A detailed account of these groups is given in [aI66]. Here we 
shall be content to describe the finitely generated soluble T-groups: in this 
case there are no surprises. 

13.4.9 (Robinson). A finitely generated soluble T-group G is either finite or 
abelian. 

Proof. Assume that G is infinite and not abelian. Let C = CG(G'). Since G' is 
abelian (by 13.4.2), the finiteness of C would imply that of G' and hence that 
of I G : Ci; in short G would be finite. Therefore C is infinite. 

Let Xl' . . • , Xn generate G and put cij = [Xi' Xj]. Then (cij)<J G by the 
property T and the commutativity of G' ; it follows that G' is generated by 
the elements cij ' not merely by their conjugates. Hence G' is a finitely gener
ated abelian group and as such it satisfies max; therefore G satisfies max. 
Now considerC: this is a finitely generated, infinite nilpotent group (see 
13.4.1), so it must contain an element of infinite order (5.2.22). However 
in view of the structure of Dedekind groups this can only mean that C is 
abelian. Of course C '" G by hypothesis. 

Now let g E G\ C. Then g induces a nontrivial power automorphism in 
C; using 13.4.3 one deduces that cg = c-l for all C in C. Moreover this is 
the only nontrivial power automorphism of C. Since G' ~ C, we see that C 
equals its centralizer in G and I G : Ci = 2. Thus G = (g, C) and g2 E C, so 
that g2 = (g2)g = g-2 and g4 = 1. Next [C, g] = C2, which implies that 
(g, C2) <J G. Similarly [C2, g] = C4, which leads to (g, C4) <J (g, C2). 
Therefore (g, C4 )<J G, from which it follows that [C, g] = C2 ~ (g, C4). 
Consequently C2 = C2 II (g)C4) ~ (g2, C4). Thus we arrive at the equa
tion 

(g2, C2) = (g2, C4). 

Let T denote the torsion subgroup of C and write C = CIT. Since g2 E T, 
the above equation yields C2 = C4 . But C is a free abelian group, being 
finitely generated and torsion-free. Therefore C is trivial and C = T is finite. 

o 
EXERCISES 13.4 

1. A group which satisfies min-s and has no proper subgroups of finite index is a 
T-group. 
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2. A Baer T-group is a Dedekind group. 

3. A hypercentral T-group is soluble, but not necessarily nilpotent. [Hint: The 
locally dihedral 2-group.] 

4. A subgroup of an infinite soluble T-group need not be a T-group. 

5. If G is a finite T-group, prove that Frat G is abelian. 

6. Let A be a group of type 5'" and let 0 be a primitive fourth root of unity in 
the ring of 5-adic integers. Define G = <x) ~ A where x induces in A the auto
morphism a H aB• Prove that G is a soluble T-group but Frat G is not even 
nilpotent (cf. Exercise 13.4.5). 

7. Using the notation of 13.4.6, find necessary and sufficient conditions for two 
groups G(A, B, 0) and G(A, B, 0) to be isomorphic. 

8. (T. Peng, D. Robinson). Let G be a finite group. Prove that G is a soluble T
group if and only if every p-subgroup is pro normal in G for all primes p. [Hint: 
Refer to Exercises 10.3.3-10.3.5. To prove sufficiency let G be a minimal counter
example with the pronormality property. If p is the smallest prime dividing IGI, 
then G is p-nilpotent.] 

9. Let A be an abelian torsion group. 
(a) If Ap is the p-component of A, show that Paut A :::e Crp (Paut Ap). 
(b) If Ap has infinite exponent, prove that Paut Ap is isomorphic with the group 

of units of the ring of p-adic integers. If 1 i= a E Paut Ap has finite order 
and p > 2, then a is fixed-point-free and aP-l = 1. (This together with 13.4.3 
completes the description of power automorphism groups of abelian groups.) 

10. Let G be a soluble T-group which is a torsion group. Set L = [G', G]. Prove 
that: 
(a) L2 is a divisible abelian 2-group (which need not be trivial); 
(b) elements of L 2 , and GIL 2 , have relatively prime orders. 
[Hint: Imitate the proof of 13.4.4 and appeal to Exercise 13.4.9.] 

11. (D. Robinson). Let G be a nonabelian soluble T-group such that C = CG(G') is 
not a torsion group. Show that C is abelian and that G = <t, C) where t induces 
a Ha-l in C, the element t2 belongs to C and has order 1 or 2, and <t2, C2 ) = 
<t2, C4 ). Conversely show that a group with this structure is a T-group. [Hint: 
Examime the proof of 13.4.9.] 

12. Let G be a nonabelian soluble group all of whose subgroups are T-groups. 
Prove that G is a torsion group and L = [G', G] contains no involutions. [Hint: 
use Exercise 13.4.11 to show that C = CG(G') is a torsion group. Then argue that 
G is a torsion group with the aid of 13.4.9.] 

13.5. Automorphism Towers and Complete Groups 

The main result of this section is an important property of subnormal sub
groups with trivial centralizer in a finite group. A consequence of this is the 
famous theorem of Wielandt on automorphism towers. The first result is 
quite elementary. 
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13.5.1. Let H be a subnormal subgroup of a finite group G and let 1t be a 
set of primes. Write R = O,,(G) and define H/M to be the largest 1t-quotient 
group of H. Then R normalizes M. 

Proof. Let r E R: then the mapping x f-+ [r, x] [R, M, M] is a homomor
phism from M into the 1t-group [R, M]/ [R, M, M], with kernel K say. Thus 
M/K is a 1t-group, which implies that M /L is a 1t-group where L is the core 
of Kin H. It follows that H/L is a 1t-group, whence M = L = K by maxi
mality of H/ M. Consequently [r, M] ::::;; [R, M, M] and thus [R, M] = 
[R, M, M]. By 13.1.3 this gives MT = M T , 2 = etc., where T = <R, M). 
However M <J H, so M sn G and thus M sn T. Hence M = MT and 
~=M 0 

We are now equipped to prove the main theorem of this section. 

13.5.2 (Wielandt). Let G be a finite group and suppose that H is a subnormal 
subgroup of G with the property CG(H) = 1. Then there is an upper bound for 
IGI depending only on IHI. 

Proof. (i) We construct a series of characteristic subgroups in H, say 1 = 
So < SI < .. . < St = H, in the following manner. If H is semisimple, let SI 
be generated by all (non abelian) simple subnormal subgroups of H . If H is 
not semisimple, there is a prime PI such that 0p,(H) -=1= 1; in this case define 
SI to be 0PI (H). Similarly S2/SI is generated by all simple subnormal sub
groups of H /SI if the latter is semisimple: otherwise S2 /SI = 0p2(H/SI ) -=1= 1 
for some prime P2. Continuing in this manner we construct a series of the 
required type. 

There is a corresponding partial series in G, say 1 = Ro ::::;; RI ::::;; ... ::::;; Rt; 
this means that RHI /Ri is generated by all the nonabelian simple subnormal 
subgroups of G/R i if Si+dSi is the corresponding subgroup of H /Si, while 
RHdRi = 0pi(G/R i) if SHdSi = 0pi(H/SJ 

These series are related by the inclusion 

Si::::;;Ri· 

This is certainly true if i = o. Suppose that i > 0 and Si-I ::::;; Ri - I . Then 
SdSi-l, and hence SiRi-dRi-l, is either a Pi-group or is generated by 
simple subnormal subgroups. Now SiRi-dRi-1 is subnormal in G/R i- I 
because H sn G. Hence Si ::::;; Ri by definition of Ri. 

(ii) It is sufficient to bound IRtl in terms of h = IHI. For H = St ::::;; R t , so 
that CG(Rt)::::;; CG(H) = 1 and CG(Rt) = 1. Therefore IGI = IG: CG(Rt)1 ::::;; 
IAut Rtl and this last cannot exceed IRtlL 

(iii) There is an integer m(h, i) such that I Rd ::::;; m(h, i). Notice that the 
theorem will follow once this has been proved: for we may take i to be t and 
observe that t ::::;; IHI = h. 

We can of course define m(h, 0) to be 1, and we assume that m = 
m(h, i - 1) has been found so that IRi-11 ::::;; m. 
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Suppose first that H/Si- 1 is semisimple. In this case Ri normalizes 
HRi-dRi- 1 by 13.3.2. Moreover CR,(HRi- 1)::; CG(H) = 1, so that IRd ::; 
IAut(HRi-1)1, which does not exceed (hm)!. In this case define m(h, i) to be 
(hm)!. 

Otherwise SdSi-l' and hence RdRi- 1, is a Pi-grouP. Let H/Ni be the 
largest Pi-quotient of H; then HRi-dNiRi- 1 is surely the largest Pi-quotient 
of HRi-dRi- 1, and we deduce from 13.5.1 that Ri normalizes NiRi- 1. There
fore, on writing Ci for CR(NiRi- 1), we have IRi : Cd::; IAut(NiRi-1)1 ::; (hm)!. 

Let Pi be a Sylow Pi-s~bgroup of H and let Qi be a Sylow Pi-subgroup of 
HCi containing Pi. Now Pi normalizes NiRi- 1 since Pi ::; H; hence Cf' = Ci· 
Also Pi ::; Qi· Hence Pi normalizes T; = Ci n Qi. Suppose that T; -# 1. Now 
Pi T; is a Pi-grouP, so it is nilpotent and T; contains a nontrivial element x in 
the center of Pi T; (see 5.2.1). But x E Ci ::; CG(Ni) and H = PiNi, which leads 
to x E CG(H) = 1. By this contradiction T; = 1. However T; is a Sylow Pi
subgroup of Ci and RdRi- 1 is a Pi-grouP. It follows that Ci ::; Ri- 1 and ICd 
::; m. Finally IRd ::; m((hm)!), a number which we take to be our m(h, i). D 

The Automorphism Tower of a Group 

Suppose that G is a group with trivial center. If 9 E G, let gt denote conjuga
tion in G by g. Then T: G -+ Aut G is a monomorphism whose image is 
Inn G, the normal subgroup of all inner automorphisms of G. Suppose that 
IX in Aut G centralizes Inn G. Then gt = (gt)a = (ga)t by 1.5.4. Since T is a 
monomorphism, it follows that 9 = ga for all 9 in G, and IX = 1. Hence 

CAutG(Inn G) = 1. 

In particular Aut G has trivial center and so the same procedure may be 
applied to Aut G. By making suitable identifications we can in this way con
struct an ascending chain of groups 

G = Go<l G1 <l ... Ga<l Ga+l <l ... 

with the properties 

and GA. = UP<A. Gp for limit ordinals A.. This chain is called the automorphism 
tower of G. A natural question is whether the tower always terminates. 

In studying automorphism towers the following simple lemma is useful. 

13.5.3. Let G = Go <l G1 <l ... Ga <l Ga+1 <l ... , IX < /3, be an ascending chain 
of groups such that CGd, (Ga ) = 1 for all IX. Then CGJ Go) = 1. 

Proof. If this is false, there is a least ordinal IX such that C = CGJGo) -# 1, 
and IX is certainly not a limit ordinal. We argue that [Gy, C] = 1 for all 
y < IX. Suppose that this is true for all ordinals preceding y but not for y. 
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Then y is not a limit ordinal and [Gy- I , C] = 1, so C = CG.(Gy-d. Hence 
C is Gy-invariant and [Gy , C] :-:;; Ga- I II C = CG. _1 (Go) = 1 a contradiction. 
Therefore C :-:;; CG.(Ga - l ) = 1, a final contradiction. 0 

The classical result on the automorphism tower problem can now be 
proved. 

13.5.4 (Wielandt). The automorphism tower of a finite group with trivial cen
ter terminates after finitely many steps. 

Proof. Let G = Go<l GI <l ... be the automorphism tower of a finite group 
G. Then CGi+ l(GJ = 1 for all i and thus CG.(Go) = 1 for all i by 13.5.3. Now 
Go sn Gi ; thus 13.5.2 shows I G;I to be bounded above by a number depend
ing only on IGI. Hence there is an integer i such that Gi = Gi +1 = etc. 0 

More generally, 13.5.4 is still true if G is a Cernikov group (Rae and 
Roseblade [a161]). On the other hand, there are groups with infinite auto
morphism tower, the infinite dihedral group being an example (Exercise 
13.5.4). 

Recently S. Thomas has established the interesting fact that the auto
morphism tower of any centerless group terminates after a possibly infinite 
number of steps. The proof is remarkably simple, using only some basic 
properties of cardinal numbers. In what follows c+ denotes the successor 
cardinal to a cardinal number c. 

13.5.5. Let G be an hifinite group with trivial center. If {Ga } is the auto
morphism tower of G, then GA = GHI = etc., where A. is the smallest ordinal 
with cardinal (21Glt . 

Proof. As usual we write the automorphism tower as 

G = Go<l GI <l ... Ga<l Ga+1 <l .. . . 

Then CG (G) = 1 for all a, by 13.5.3. Let CfJ E NG (G); then the restriction 
CfJI = CfJIG' is an element of Aut G = GI , and CfJCfJli E CG.(G) = 1. Therefore 
CfJ = CfJI and we have shown that NG.(G) = GI for all a. It follows that 
I Ga+1 : GIl equals the cardinality of the set of conjugates of G in Ga+l . All 
such conjugates are contained in Ga , so I Ga+1 : GIl :-:;; I GaPGI. It follows that 

IGa+11 = IGII · IGa+l : GIl :-:;; IGII·IGaIIGI = IGaIIGI. 

Let a < A. where A. is the smallest ordinal with cardinality c = (2IGI )+; thus 
A. is a limit ordinal. We argue by transfinite induction that IGal < c if a < A.. 
Assume that IGpl < c for all f3 < a. If a> 0 is not a limit ordinal, then 
I Gal :-:;; I Ga_IIIGI :-:;; 21GI < c. If, on the other hand, a is a limit ordinal, then 
IGal :-:;; 21Gl lal < c since lal < c. 
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Assume that G). # GH1 ; then Ga # Ga+1 for 0( < A. and thus IG).I ;;::: c. Let 
({J E GH1 \ G). and let 0(1 < A.. We shall argue that there is an ordinal 0( such 
that 0(1 ~ 0( < A. and G: = Ga. In the first place, I G;t > I ~ IGall~o ~ 21G1 < c. 
Now c is a regular cardinal, i.e., it cannot be expressed as a sum of fewer 
than c smaller cardinals. From this it follows that G;t> ~ Ga2 for some 
0(2 < A.. Similarly Ga~"' > ~ Ga3 with 0(3 < A., and so on. Put 0( = lim(O(;); then 
0( < A. since IGal < c, and clearly G: = Ga. 

The argument just given shows that there is an unbounded set A of ordi
nals preceding A. such that G: = Ga for all 0( in A. For each 0( in A we know 
therefore that ({JIG is an automorphism of Ga, and hence is conjugation by 
some ga E Ga+1 • If /3 is another ordinal in A and 0( ~ /3, say, then gag,/ E 

CGJGa) ~ CaJG} = 1. Hence ga = gp = g, say, which is independent of 0(. 

This means that for every 0( in A, the automorphism ({JIG. is conjugation by 
g. But C is unbounded, so it follows that ({J is conjugation by g in G)., and 
({J E Inn G). = G)., a contradiction. 0 

Complete Groups 

A group G is said to be complete if its center and outer automorphism 
group are both trivial. This is equivalent to requiring that the conjugation 
map G -+ Aut G be an isomorphism. It is clear that the automorphism 
tower of a centerless group terminates as soon as a complete group is 
reached in the tower. 

The following result is an immediate consequence of Wielandt's theorem 
on the automorphism tower. 

13.5.6. A finite group with trivial center is isomorphic with a subnormal sub
group of some finite complete group. 

This certainly indicates that complete groups can have very complex sub
normal structure. It is natural to ask if the restriction on the center is neces
sary here. As it turns out, the theorem remains true when the center is 
allowed to be nontrivial. 

13.5.7. Every finite group is isomorphic with a subnormal subgroup of some 
finite complete group. 

Proof. In the light of 13.5.6 we recognize that it suffices to prove the follow
ing proposition: a finite group G is isomorphic with a subnormal subgroup of 
some finite group with trivial center. 
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Let C be the center of G, which we can assume nontrivial. Let p be a 
prime not dividing I CI and consider the standard wreath product 

W=G"-T 

where T = (t) has order p. Identify G with one of the direct factors of the 
base group B, say Gi . Then G sn W 

It will be necessary to identify the center of W Suppose that (W $ B; 
then W = «(W)B since I W: BI = p, and thus tb E (W for some bE B. Let 
1"# a E G and put c = (a, 1, 1, ... , 1) E B. Then ctb = (1, a, 1, ... , 1)b = c, which 
gives the contradiction a = 1. Thus (W :s; B. If (go, gi' ... , gp-d E (w, then, 
since 

(go, gl>"" gp_dt = (gp-i, go, gi"'" gp-2), 

it follows that go = gi = ... = gp-i = g say. Also conjugation by (x, 1, 1, ... , 1) 
show that gX = g for all x in G, so g E C. These considerations demonstrate 
that (W consists of those elements of B having all their components equal 
and in C. Notice that Gi n «(W) = 1 and Gi ~ Gi «(W)!(W sn W!(W To 
complete the prooflet us show that G* = W!(W has trivial centre. 

Suppose that u«(W) E (G* but u If. (W If u If. B, then W = (u, B) and t = 
urn mod B for some integer m. Choose 1 "# c E C and take b to be the ele
ment (c, 1, ... , 1). Since [b, B] = 1, it follows that [b, t] = [b, urn] E (W Now 
a simple calculation shows that [b, t] = (c- i , C, 1, ... , 1). Our description of 
(W forces p to be 2 and c- i = C, so c2 = 1: however I CI is odd since p t I CI, 
so c = 1. By this contradiction, u E B. 

Let u = (uo, ui , ... , Up-i) where Ui E G. If b = (bo, bi , ... , bp-d is an ele
ment of B, then [b, u] has components [bi' u;], i = 0, 1, ... , p - 1. Take 
bi = ... = bp- i = 1; since [b, u] E (w, we deduce that [bo, uo] = 1 for all bo 
in G; hence Uo E C and similarly ui , ... , up - i belong to C. Next the ith com
ponent of [u, t] is uiiui_i and [u, t] E (W Hence y = uiiUi_i is independent 
of i and belongs to C. With up = uo, the product of the uiiUi_i for i = 

1, 2, ... , p equals 1; therefore yP = 1. But C has no element of order p; it 
follows that y = 1. Hence Ui = Ui- i for all i and U E (W D 

More on Complete Groups 

The chapter concludes with some criteria for a group to be complete, the 
most famous being the direct factor property. 

13.5.S (Holder, Baer). A group G is complete if and only if, whenever G ~ N 
and N <J H, it follows invariably that N is a direct factor of H. 

Proof (i) Let G be complete and assume that G ~ N <J H. If we write C for 
CH(N), then C <J Hand C n N = (N = 1. Thus (C, N) = C x N. Con juga-
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tion in N by an element x of H produces an automorphism which is neces
sarily inner, induced by YEN say. Thus aX = aY for all a in Nand xy-1 E C. 
Therefore x E CN and H = C x N. 

(ii) Conversely, assume that G has the stated property. Suppose that A = 
(G is nontrivial. By Exercise 5.2.2 there is a finite nilpotent group L such 
that 1: = (L ~ A. Form the central product M of Land G, the subgroups 
(L and A being identified by means of the above isomorphism (see 5.3). 
Thus M = LG, [L, G] = 1 and L II G = A. By hypothesis M = G x K for 
some K, and K =:;; CM(G). Now CM(G) ~ L, so that CM(G) = CM(G) II (LG) = 
L((G) = L. Thus K =:;; Land L = L II (GK) = AK. It follows that 1: = K' 
and A = (L = L' = K' =:;; G II K = 1, a contradiction which shows that 
(G = 1. 

Finally, G ~ Inn G<l Aut G, so by hypothesis Aut G = Inn G x R for 
some R. But R =:;; CAutG(Inn G) and this centralizer consists of the central 
automorphisms. Since (G = 1, such automorphisms are trivial and it follows 
that R = 1 and Aut G = Inn G. Hence G is complete. 0 

13.5.9 (Burnside). If G is a group with trivial centre and Inn G is characteris
tic in Aut G, then Aut G is complete. 

Proof. Let A <l B and let "': Aut G -+ A be an isomorphism; write 1 = 
(Inn G)"'. Then 1 is characteristic in A and therefore normal in B. Thus an 
element b of B induces an automorphism in 1 by conjugation. Since G ~ 
Inn G ~ 1, the element b also induces an automorphism 0( in G. To describe 
0( we introduce the conjugation homomorphism r : G -+ Inn G, which is a 
monomorphism in this case. Then 0( is given by the rule 

(g E G). 

Applying", to the equation O(-lg'O( = (ga)" we get (0("T 1g''''0(''' = (ga)'''' = 
b-1(g'''')b. Therefore 0("'b-1 E CB(l) = C, say, and B = CA. Also C II A = 
CA(l) = 1 because CAutG(Inn G) = 1. Thus B = C x A and the completeness 
of Aut G follows via 13.5.8. 0 

This theorem supplies explicit examples of complete groups. 

13.5.10 (Burnside). If G is a non abelian simple group, then Aut G is complete. 

Proof. Since G ~ Inn G = 1, the subgroup 1 is minimal normal in A = 
Aut G. If Aut G is not complete, then on account of 13.5.9 the subgroup 1 
cannot be characteristic in A. Thus 1 "" r for some 0( in Aut A. Remem
bering that 1 is simple, we have 1 II r = 1 and thus [1, r] = 1. Hence r =:;; 
CA(l) = 1 and G = 1, a contradiction. 0 

It is a theorem of Holder that Aut An ~ Sn provided that n "" 2, 3 or 6. 
(For the case n = 5 see Exercise 1.6.18.) It follows via 13.5.9 (and a special 
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argument when n = 3 or 4) that Sn is complete if n -# 2 or 6. Of course S2 is 
not complete: nor is S6 and in fact lOut S61 = 2. For more on these matters 
see [b40]. It should be mentioned that many finite simple groups are com
plete. 

For comparison with 13.5.10 we mention a result due to Dyer and 
Formanek [a43]: if F is a noncydic free group, then Aut F is complete. An 
account of recent work on complete groups can be found in [al72]. 

EXERCISES 13.5 

1. Prove that S3 and S4 are complete. 

2. Prove that the holomorph of 71." is complete if and only if n is odd. 

3. If A is the additive group of rational numbers of the form m2", m, n E 71., show 
that the holomorph of A is complete. 

4. Let G = Doo; prove that the automorphism tower of G terminates after Q) + 1 
steps with the group of Exercise 13.5.3. 

5. If G is a completely reducible group with trivial centre, show that Aut G is com
plete. 

6. If a complete group G is isomorphic with the derived subgroup of some group, 
prove that G must be perfect. 

7. Let G be a finite group. 
(a) If G is a direct product of (directly) indecomposable complete groups which 

are pairwise nonisomorphic, then G is complete. 
(b) If G is complete, it has a unique direct decomposition of this type. 

8. A finite soluble group is isomorphic with a subnormal subgroup of a complete 
finite soluble group. [Hint: Imitate the proof of 13.5.6 and 13.5.7.] 

9. (D. Robinson). An infinite supersoluble group cannot be complete. [Hint : Sup
pose that G is such a group and let A be a maximal normal abelian subgroup of 
G. First of all show that CG(A) = A. Argue that A contains no involutions and 
there is a nontrivial element cA2 in ((G/A2) fl A/A2. Write [g, c] = a(g)2 where 
a(g) E A and consider the mapping g f-> ga(g).] 

10. Let G be an arbitrary group. 
(a) Prove that G wr 71. has trivial centre. 
(b) Deduce from (a) and 13.5.5 that G is isomorphic with an ascendant subgroup 

of a complete group G*, where I G* I :$; (21G1t if G is infinite. 



CHAPTER 14 

Finiteness Properties 

A finiteness condition or property is a group-theoretical property which is 
possessed by all finite groups: thus it is a generalization of finiteness. This 
embraces an immensely wide collection of properties, numerous examples of 
which we have already encountered, for example, finiteness, finitely gener
ated, the maximal condition and so on. Our purpose here is to single out for 
special study some of the more significant finiteness properties. 

14.1. Finitely Generated Groups and 
Finitely Presented Groups 

The property of being finitely generated is one that has arisen from time 
to time. We have seen enough to appreciate that this is a relatively weak 
finiteness condition which guarantees little else but countability. Indeed the 
complexity of the structure of finitely generated groups is underscored by 
the theorem of Higman, Neumann, and Neumann that every countable 
group can be embedded in a 2-generator group (6.4.7). 

Another measure of the vastness of the class of finitely generated groups 
is the following theorem of B.H. Neumann: there exist 2~o nonisomorphic 
2-generator groups. Thus the set of isomorphism classes of 2-generator 
groups has the largest cardinality one could expect: for to construct a finitely 
generated group one has to form a normal subgroup of a free group of finite 
rank, which can surely be done in at most 2~o ways. 

Actually we shall prove a stronger result indicating that even finitely gen
erated soluble groups are very numerous and can have complex structure. 

416 
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14.1.1 (P. Hall). If A is any nontrivial countable abelian group, there exist 2Ko 

non isomorphic 2-generator groups G such that [G", G] = 1, (G ~ A, and 
GgG has trivial center. 

Proof. To begin the construction, form the free nilpotent group Y of class 2 
on the set {y;li = 0, ± 1, ±2, .. . }. Thus Y ~ F/Y3F where F is a free group 
of countably infinite rank. Now y' ~ F'/Y3F, so Y' is a free abelian group 
with the set of elements [Yi' Yj] = cij ' i < j as a basis (see Exercise 6.1.14). 

We impose further relations on Y by identifying generators Cij and Ci+kj+k 

for all i, j , k. This amounts to forming a quotient group X = Y/K where K 
is generated by all ci/Ci +kj+k : observe that K <l Y since K ::;; (Y. Writing Xi 

for YiK, we have {x;li = 0, ± I , . . . } as a set of generators of X subject to 
relations 

and (1) 

Clearly Y'/K is torsion-free, so that X is a torsion-free nilpotent group of 
class 2. Moreover the element 

(i = 1,2, . . . ), 

is independent ofi and d l , d2 , ... form a basis of the free abelian group X'. 
The mapping Xi 1-+ Xi+l preserves the set of relations (1). Hence by Exer

cise 2.2.9 there is an automorphism IX of X such that xi = X i +l • Clearly IX 

has infinite order. Now form the semidirect product 

where T = <t> is infinite cyclic and t operators on X like IX. Then 

d: = [xo, x,J' = [Xl' X,+l] = d" 

so that X'::;; (H. Since H/X' is surely metabelian, H"::;; X' and thus 
[H", H] = 1. Moreover H = <t, xo> since x[ = X i +1. 

Let us consider the group H = H/X '. In this group all commutators in 
the Xi have been suppressed, which means that, if we write f for tX' and xt 

for XiX', the elements f and Xo will generate H subject only to the relations 
[Xi' Xj] = 1, x[ = Xi+l' Thus H is the standard wreath product of a pair of 
infinite cyclic groups. By Exercise 1.6.14 the center of H is trivial: therefore 
(H = X'. 

Since X' is a free abelian group of countably infinite rank while A is 
countable and abelian, A ~ X '/M for some M ::;; X'; here we are using 2.3.7. 
Now M is contained in the center, so it is normal in H . Thus we can define 

GM=H/M. 

Certainly [G~ , GM] = 1 and GM is a 2-generator group. Also ((GM) ::;; X '/M 
because H/X' has trivial center. It follows that ((GM ) = X '/M ~ A. 
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All that remains to be done is to show that 2 t{o nonisomorphic groups 
can be obtained by varying M within X', always subject to X'/M ~ A of 
course. In the first place there are surely 2t{o of the M's available. Suppose 
however that the resulting GM's fall into countably many isomorphism 
classes. Then for some M there exist uncountably many isomorphisms 
0;..: GM• ~ GM. If a;..: H ~ GM• is the natural homomorphism with kernel M;.., 
then a;..O;.. is a homomorphism from H to GM . If a;..O;.. = ap.Op., then M;.. = 
Ker(a;..O;..} = Ker(ap.Op.} = Mw Hence the a;..O;.. constitute an uncountable set 
of homomorphisms from the 2-generator group H to the countable group 
GM ; but this is plainly absurd. 0 

Notice that the groups we have constructed are 2-generator soluble 
groups of derived length 3 belonging to the variety of groups G satisfying 
[G", G] = 1. 

Finitely Presented Groups 

Recall from 2.2 that a group G is finitely presented if it has a presentation 
with a finite number of generators and a finite number of relations: equi
valently G ~ F/R where F is a free group of finite rank and R is the normal 
closure of a finite subset. Certainly there are up to isomorphism only count
ably many possibilities for F and R, and therefore for G. Therefore the fol
lowing is clear. 

14.1.2. There exist only countably many nonisomorphic finitely presented 
groups. 

Theorems 14.1.1 and 14.1.2 taken together show that there exist finitely 
generated groups which are not finitely presented, but they do not provide 
an explicit example. In practice it can be a troublesome business to decide 
whether a particular finitely generated group is finitely presented. On occa
sion the following lemma is useful in this connection. 

14.1.3 (P. Hall). Let G be a finitely generated group, let N <I G and suppose 
that G/N is finitely presented. Then N is the normal closure in G of a finite 
subset; thus N is finitely generated as a G-operator group. 

Proof. Let 0: F ~ G be a presentation of G where F is a free group of finite 
rank. Write S for the preimage of N under O. Then S >-+ F - G/N is a pre
sentation of the finitely generated group G/N. By 2.2.3 the subgroup S is the 
normal closure in F of some finite subset. Applying 0 to S we obtain the 
required result. 0 

Let us illustrate the utility of this simple result by proving that a partic
ular group is not finitely presented. 
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14.1.4. The standard wreath product of two infinite cyclic groups is a 2-
generator metabelian group that is not finitely presented. 

Proof. Let H denote the group constructed during the proof of 14.1.1. It 
was remarked that H / X' is a wreath product of the type under discussion. If 
this group were finitely presented, 14.1.3 would show X' to be finitely gener
ated- here it is relevant that X' is central in H. But this is certainly not the 
case. D 

This example should be contrasted with the known theorem that every 
polycyclic group is finitely presented (2.2.4). We mention without going into 
details that an important geometrical approach to finite presentability of 
soluble groups has been devised by Bieri and Strebel (see [a202]). 

Finite presentability has relatively little effect on the structure of a group 
or on the types of subgroup that can occur. A deep theorem of G. Higman 
tells us what kind of subgroups to expect. 

A countable group which has a presentation with a recursively enumerable 
set of relators can be embedded in a finitely presented group. Here the mean
ing of the term "recursively enumerable" is, roughly speaking, that there is 
an algorithmic process which will enumerate the relators. A simplified treat
ment of this theorem is to found in [b43]. 

The Deficiency of a Group 

Let G be a finitely presented group. Suppose that there is a presentation of 
G with n generators and r relators. The integer n - r is called the deficiency 
of the presentation; it can sometimes be used to yield information about 
structure of the group that would otherwise be hard to obtain. If r > 0, it is 
possible to add further relators that are consequences of the original ones, 
so that a presentation of smaller deficiency is obtained. Thus one seeks pre
sentations with as large deficiency as possible. 

With this in mind we define the deficiency of the group G 

defG 

to be the maximum deficiency of a finite presentation of G. That this is 
always finite will follow from the next result, which connects the deficiency 
with the Schur multi plica tor. Recall that d(G) is the minimum number of 
elements required to generate a finitely generated group G. 

14.1.5 (P. Hall). If G is a finitely presented group, the Schur multiplicator 
M(G) is finitely generated: moreover 

def G ~ ro(Gab ) - d(M(G)). 

In particular G has finite deficiency. 
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Proof. Let R >-+ F - G be a finite presentation of G with n generators and r 
relators. Thus R is the normal closure in F of a set of r elements, which 
means that R /[R, F] can be generated by r elements and thus d(R/[R, F])::; 
r. Now R/R n F' is isomorphic with a subgroup of the free abelian group 
Fab, so it is free abelian (4.2.3). It follows from 4.2.5 that (R n F')/[R, F] is 
a direct factor of R/[R, FJ. Recall that (R n F')/[R, F] is isomorphic with 
M(G)-this is Hopf's formula (11.4.15). Consequently R/[R, F] ~ M(G) EB S 
where S ~ RF'/F'. Now d(M(G) EB S) = d(M(G)) + d(S), by Exercise 4.2.4. 
Hence 

r ~ d(R/[R, F]) = d(M(G)) + d(S). 

But d(S) = ro(RF'/F') = ro(Fab) - ro(F/RF'), by Exercise 4.2.7, so that d(S) = 
n - ro(Gab ). Therefore 

r ~ d(M(G)) + n - rO(G.b), 

whence n - r ::; ro(Gab) - d(M(G)). This holds for every finite presentation 
ofG. 0 

Let us see how the inequality of 14.1.5 can be used to give structural 
information about groups with special presentations. The following is a 
good example of the use of homological methods to prove a purely group
theoretic theorem. 

14.1.6 (Magnus). Let G be a group having a finite presentation with n + r 
generators and r relators. If Gab can be generated by n elements Xl G', ... , 
xnG', then Xl' ... , Xn generate a free subgroup of rank n for which they form 
a set of free generators. 

This has the following consequence: 

14.1.7 (Magnus). Let G be a group having a finite presentation with n + r 
generators and r relators. If G can be generated by n elements, then G is a 
free group of rank n. 

To see that this is at least plausible imagine that the relators could be 
used to eliminate r of the n + r generators; it would seem reasonable that 
the remaining n generators ought not to be subject to any relations. Of 
course this is no proof since it is not clear that the elimination can be 
carried out. 

Proof of 14.1.6. Using 14.1.5 we derive the inequalities 

n = n + r - r ::; def G ::; ro(Gab) - d(M(G)) ::; n - d(M(G)), 

which tells us immediately that d(M(G)) = 0 and ro(Gab) = n; hence M(G) = 
O. Moreover Exercise 4.2.3 shows that Gab is a free abelian group of rank n; 
for ro(Gab) = n ::; d(Gab ) ::; n. 
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Let F be the free group on a set of n elements {Yl' ... , Yn}. Then there is 
a homomorphism e: F -+ G such that yr = X;. We shall prove that e is injec
tive, which will establish the theorem. 

In the first place e maps Fab onto Gab because the x;G' generate Gab' 
Since both Fab and Gab are free abelian groups of rank n, it follows easily 
that e maps Fab isomorphically onto Gab' 

Let F; = F /Yi+l F and G; = GIYi+l G. Assume that e maps F; isomor
phically onto G;- note that when i = 1 this has just been proved. Consider 
the commutative diagram 

1 ----+ Y;+lF ----+ F ----+ F; ----+ 1 

[, [, [, 
1 ----+ Y;+l G ----+ G ----+ G; ----+ 1. 

Here the down maps on the left and right are induced bye. Applying 
11.4.17 we obtain a corresponding commutative homology diagram with 
exact rows 

ex P y 
0= M(F) - M(F;) - Y;+1F/Yi+2F - Fab - (F;)ab-1 

[" [" [" [" [" 
rx' P' y' 

0= M(G)- M(G;)- Yi+lGIYi+2G- Gab - (G;)ab-1. 

Here M(F) = 0 because F is a free group (11.3.2). Since e: F; -+ G; is bijec
tive, so is the induced map e*: M(F;) -+ M(G;); here we use the fact that 
1 = (ee-1)*=e*(e-1 )* by Exercise 11.4.16. In addition e*:(F;)ab-+(G;)ab 
is bijective. Our immediate object is to prove that e*: Y;+1FIYi+2F-+ 
Y;+l GIYi+2 G is bijective: for this will surely imply that e* : Fi+2 -+ Gi+2 is bi
jective. (The reader with a grounding in homological algebra will recognize 
this as the "five lemma" and may skip the next two paragraphs.) In fact 
p = 0 = p'. 

Let X belong to the kernel of the above e*. Then 1 = x 6.(J' = X(J6. by 
commutativity of the diagram. Hence x(J = 1 and x E Ker p = 1m ex; thus 
x = ya where Y E M(FJ Hence 1 = x 6• = y a6• = y6.a', so that y6. = 1 and 
y = 1. Thus x = 1 and the e* in question is injective. 

Now for surjectivity. Let a E Y;+1 GIYi+2G; then a(J' = b6• for some bE Fab 
since e*: Fab -+ Gab is surjective. Hence 1 = a(J'Y' = b6• y' = by6., which yields 
bY = 1 since e*: (F;)ab -+ (G;)ab is injective. Therefore bE Ker Y = 1m p and 
b = c(J for some c in Yi+l F/Yi+2 F. Thus a(J' = b6• = C(J6. = c 6.(J' and a == c 6• 

mod(Ker p' = 1m ex'). It follows that a = c6·da' for some dE M(GJ But d = 
e 6• for some e in M(FJ Hence da' = e 6• a' = e a6• and a = (ce a)6., which 
proves surjectivity. 

It now follows by induction on i that e*: FIYi+lF -+ G/Yi+l G is bijective 
for all i. Hence Ker e ~ Y;+1 F for all i. But the intersection of all the Yi+l F's 
is 1, by 6.1.10. Hence Ker e = 1 and e: F -+ G is injective. 0 
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EXERCISES 14.1 

1. A group G is said to have finite torsion-free rank if it has a series of finite length 
whose factors are either torsion or infinite cyclic. Prove that all series in G of 
this type have the same number of infinite cyclic factors. (This number is called 
the torsion-free rank or Hirsch length of G, see 4.2.) 

2. Prove that a group has finite torsion-free rank r if and only if it has a normal 
series whose factors are torsion groups or torsion-free abelian groups the sum of 
whose ranks equals r. [Hint: To prove necessity form a series as in Exercise 
14.1.1 and take the normal closure of the smallest nontrivial term.] 

3. A group G has finite Prufer rank r if every finitely generated subgroup can be 
generated by r elements and r is the least such integer. Prove that the class of 
groups of finite Prlifer rank is closed with respect to forming subgroups, images 
and extensions. 

4. Show that a soluble group has finite Prlifer rank if and only if it has a series 
of finite length whose factors are either infinite cyclic or isomorphic with sub
groups of Q/71.. Deduce that a soluble group of finite Prlifer rank has finite tor
sion -free rank. 

5. Let G be a finitely presented group. Prove that every quotient of G is finitely 
presented if and only if G satisfies max-no 

6. If r is an integer > 1, show that the standard wreath product 7l. '- 7l. '- ... '- 7l. 
with r factors is finitely generated but not finitely presented. 

7. If G is a finitely presented group with positive deficiency d, show that G has a 
free abelian quotient group of rank d. 

8. A finite presentation is said to be balanced if it has the same number of genera
tors as relators. If a torsion group G has a balanced presentation, prove that 
M(G) = O. 

9. Prove that a finite abelian group has a balanced presentation if and only if it is 
cyclic. 

to. Let G = <Xl, X2,"" x.lu) be a "one-relator group". Let ei be the sum of the 
exponents of Xi in u (regarded as a word in the xJ If e l , e2 , •.• , e. are coprime, 
show that G has a free subgroup of rank n - 1. [Hint: Prove that Gab is free 
abelian of rank n - 1.] 

14.2. Torsion Groups and the Burnside Problems 

According to the definition in 12.1, a group is locally finite if each finitely 
generated subgroup is finite. Thus a locally finite group is a torsion group. 
To pose the converse is to ask if every finitely generated torsion group is 
finite. This is a famous problem named after Burnside, who first raised it in 
an article in 1902 ([a20]). 
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The Burnside problem remained unsolved until 1964 when Golod con
structed a finitely generated infinite p-group using class field theory. Since 
then many other such groups have been found. For example, in 1980 
Grigorcuk [a61] gave an example of an infinite 3-generator 2-group which 
is a group of transformations of the interval [0, 1]. Also Gupta and Sidki 
[a66] constructed an infinite 2-generator p-group consisting of automor
phisms of the infinite regular tree of degree p. 

Here we shall construct an infinite 2-generator p-group, using only ele
mentary properties of free products. The construction is due to Gupta. 

Construction 

Let p be an odd prime (when p = 2, the construction requires modification 
-see Exercise 14.2.7). Consider first the free product 

H = (a) * (t) 

where a and t have order p. If we put ai = ati , then 

A = aH = (ao, ai' . .. , ap - l )' 

It is easily seen that the expression a!: a!; ... a!;, where ij # ij+1' is a normal 
form for elements of A. Thus by 6.2.4 the group A is a free product: 

A = (ao) * (a l ) * ... * (ap - l )' 

Also of course H = (t) ~ A. 
Next for k = 0, 1, ... , p - 1 a homomorphism Ok: A --+ H is defined by the 

rules 
and if i#k. 

These Ok are used to define subgroups as follows: No = 1 and 

Ni+1 = {wEAlw9k ENi , Vk}. 

Thus, for example, NI = nk=O.I.2 .... Ker Ok' An easy induction on i shows 
that Ni :s; Ni+1' so that 1 = No :s; NI :s; N2 :s; . . . . 

Induction can also be used to prove that Ni<J H. Indeed suppose that 
N i - l <J H. Now it follows at once from the definition that Ni<J A. Also, if 
w = w(ao, a l , ... , ap - l ) E Ni , then, since a:k = a:~i', we have for all k that 

(t-Iwttk = (w(a l , a2"'" ap - l ' ao))9k 

= (w(ao, ai' ... , ap _d)9k - 1 E Ni9k - 1 :s; Ni - l • 

Hence t-1wt E Ni and Ni<J N. 
To complete the construction put N = Ui=I.2 ... . Ni and write 

G = HIN. 

Concerning this group we shall prove 
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14.2.1. The group G is an infinite p-group with two generators. 

Proof. Obviously G is a 2-generator group. The main step in the proof con
sists in showing that G is a p-group. First comes a definition. Let h E H 
and write h = tiw where w E A. The length l(h) of h is defined by 

I(h) = {I + l(w) if i =1= 0 (mod p), 
I(w) if i == 0 (mod p), 

where I(w) is the length of the normal form of w. We shall prove that 

provided that n ;;::: I(h); this will show that G is a p-group. 
The proof is by induction on I(h). If l(h) ~ 1, then hE <t) or hE <a) for 

some i, in which case hP = 1. Assume that the statement is true for elements 
of length n, and let h = tiw have length n + 1. 

First of all consider the case where i =1= 0 (mod p). Then l(w) = n. Now 

since tP = 1. In addition, if w = w(ao, ai' ... , ap- l ), then wtiIP-J) = w(ai(p-i)' 
a l +i(p- i)' ... , ap- l +i(p-i») where subscripts are to be reduced modulo p. Sup
pose that ak occurs as a power exactly dk times in w. Then ak occurs as a 
power in hP at most L~:J dk - i, = L~:J d, ~ n times (again subscripts are 
reduced modulo p). 

Now consider (hP)Ok. This involves at most n ao's, and also various 
power of t. If the exponent sum of a, in w is l" then for r i= k the contribu
tion of a, to the exponent of t in (hP)Ok is 

:t: l,(r + ij - k) = I,(p(r - k) + i(~)) == 0 (mod p) 

since p > 2. Moving all powers of t to the left in (hP)0k, we see that (hP)Ok E A 
and this involves at most n powers of a;'s, i.e., 1((hP)Ok) ~ n. By induction on 
n we have ((hPtk)pn E Nn , so that (hpn+I)Ok E Nn for all k, and hpn+1 E Nn+l . 

Now consider the case where i == 0 (mod p) and h = WE A; here l(w) = 
n + 1. Since we can replace w by a conjugate, there is no loss in supposing 
that w does not begin and end with the same generator ai. If l(wOk) ~ n 
for all k, then induction will show that (WOk)P" E Nn so that wpn E Nn +1' and 
wpn+1 E Nn+l . Thus we can assume that l(wOk ) = n + 1 for some k. 

It follows that w cannot involve two or more powers aJ with j i= k. 
Hence, taking into account the fact that w does not begin and end with the 
same ai ' we see that I(w) = 2 and n = 1. Also, conjugating if necessary, we 
can suppose that w = aJa: wherej i= k. Then WOk = tU-k)'ao . 

Arguing as in the case a =1= 0 (mod p), we can conclude that ((WOk)P)O/ in A 
has length 1 at most. Consequently (W P2 )OkO/ = 1 for all I, and (W P2 )Ok E N1• 

Also (W P2 )OI E NI for 1 i= k, so wp2 E Nz, as required. 
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It remains to prove that G = H/N is an infinite group. Assume that this 
is false; then N is finitely generated and N = Ni for some i. 

To disprove this, we introduce elements vo, Vi' V2 , ... of A via the follow
ing equations: 

Then vgo = [ao, t] = aOiai , and an easy induction on i shows that V?~i = Vi . 
By 6.2.5 the element Vj has infinite order; for its normal form begins with aoi 

and ends with a i . 

We shall argue that <Vj ) n ~+2 = 1 for all j . This will contradict N = Ni 
since vr' EN/ where 1= l(vJ Suppose that < Vj-i ) n ~+1 = 1 and that some 
vJ belongs to ~+2. Then (vJo), = (VJ)6o E ~+i ' and so VJ-i E <Vj-i) n ~+i = 
1. Since vj - i has infinite order, r = 0 and vJ = 1. Hence it is enough to prove 
that <vo) n N2 = 1. Assume that Vo E N2. Then (VO)60 = (aoiad E Ni . Hence 
1 = «aoiai )')6o = (aoit)', which shows that r == 0 (mod p). Therefore 

1 = «aoit)P),/P = (a i a2 . .. ap - i aorr/P. 

But this implies that r = 0, so the proof is complete. D 

In his original memoir of 1902 Burnside also raised a special case of the 
preceding problem: does a finitely generated group of finite exponent have 
to be finite? If G is an n-generator group and Ge = 1, then G is an image of 
the so-called free Burnside group 

B(n, e) = F/P 

where F is a free group with n generators; this follows from 2.3.7. In the 
terminology of 2.2 the group B(n, e) is a free group in the variety of groups 
of exponent dividing e. Thus Burnside's question is whether B(n, e) is finite. 

Our present state of knowledge of this problem is very incomplete. If 
e = 1 or n = 1, it is trivially true. If e = 2, 3, 4 or 6, it has been proved with 
varying degrees of difficulty. At present no other values of e are known for 
which B(n, e) is finite. 

On the other hand, in 1968 Novikov and Adjan, in a series of papers of 
great length, proved that B(n, e) is infinite if n > 1 and e is a large enough 
odd number. Subsequently work of Adjan showed that B(n, e) is infinite if 
n > 1 and e is an odd integer ~ 665 (see [bl]). Very recently Ivanov has 
proved that B(n, e) is infinite for n > 1 and all sufficiently large exponents e, 
whether even or odd. 

We shall examine the cases e = 2, 3,4 here: to prove that B(n, 6) is finite 
is much harder (see M. Hall [b31]). 

14.2.2. B(n, 2) is finite with order 2ft. 

Proof. If G is an n-generator group and G2 = 1, then for any x, y we have 
1 = (xy)2 = xyxy, so that xy = y-ix- i = yx. Hence G is an elementary 
abelian 2-group of rank ~ nand 1 GI ~ 2ft. But an elementary abelian 2-
group with rank n has order 2ft, so IB(n, 2)1 = 2ft. D 
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14.2.3 (Levi-van der Waerden). B(n, 3) is finite and has order 3d where d :::; 

n + (;) + G)' 
Proof. Let G be a group such that G3 = 1 and let Xl' ... , Xn generate G. 
Since Gab is obviously an elementary abelian 3-group, I Gabl :::; 3n• Moreover 
by 5.1.7 the group G'j [G', G] is generated by all the [Xi' Xj] [G', G] where 

i <j; hence IG': [G', G]I:::; 3(2). By 12.3.5 and 12.3.6 the group G is nilpotent 
of class at most 3. Hence [G', G] is contained in the center of G, so it may 

be generated by the (;) commutators [Xi' Xj' x k] where i < j < k: here it is 

relevant that [x, y, z] = [z, X, y] holds identically in G (by 12.3.6). Thus 

I[G', G]I :::; 3(3) and the result follows. 0 

In fact the order of B(n, 3) equals 3n+Ci)+(3) - a proof is sketched in Exer
cise 14.2.4. 

14.2.4 (Sanov). B(n, 4) is finite. 

The proof is based on a lemma which is a special case. 

14.2.5. Let G be a group such that G4 = 1. Suppose that H is a finite sub
group and X is an element of G such that G = <x, H) and X2 E H. Then G is 
finite. 

Proof. Since X2 E H, an arbitrary element g of G can be written in the form 

(2) 

where hi E H. Suppose that (2) is an expression for g of shortest length. If we 
can bound n in terms of I H I, it will follow that G is finite. 

If h is any element of H, then (Xh)4 = 1, so that 

xhx = h-1X-lh-1X-lh-l = h-1X(X2h-1X2)xh-l 

since X4 = 1. Thus 
xhx = h-lxh*xh-l (3) 

where h* E H. Applying this rule to XhiX in (2) we obtain 

g = hl xh2x ' " Xhi_2X(hi_lhil)xhix(hilhi+l)X'" xhn-lxhn (4) 

with hi in H. Note that this expression still has the minimal length n. Thus 
we have succeeded in replacing hi- l by hi- l hi1. Similarly we may apply the 
rule (3) to the element x(hi- 1 hil)x in (4) to obtain an expression for g of 
length n in which hi- 2 is replaced by hi-2hih~\. By repeated application of 
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this process we may replace h2 by any of the expressions 

h2 h3\ h2h4h3\ h2h4(h3 hSr\ h2h4 h6(h3 hSr\ .... 

Notice that there are n - 2 of these elements. Suppose that n - 2 > IHI. 
Then at least two of the above elements are equal. For example, suppose 
that 

h2h4 ... h2r(h3 hS .,. h2r+1r l = h2h4 ... h2s(h3hS ... h2S+1r l 

where r < s. Then 

(5) 

The left-hand side of (5) is one of the expressions which we may substitute 
for h2r+2; it can therefore be deleted from the expression for g, which con
tradicts the minimality of n. In the same way equality of expressions of 
other types leads to a contradiction. Consequently n ::; IHI + 2. 0 

Proof of 14.2.3. This is now an easy matter. Let G = (Xl' . '" xn) satisfy 
G4 = 1. If n = 1, then it is clear that I G I ::; 4. Let n > 1 and assume that 
H = (Xl' ... , xn- l ) is finite. By 14.2.5 the subgroup K = (H, x;) is finite. 
The same result shows that G = (K, xn) is finite. The theorem now follows 
by induction on n. 0 

The exact order of B(n, 4) is unknown, although the proof of 14.2.4 gives 
a crude upper bound (see Exercise 14.2.1). However, it is known that the 
groups B(2,4), B(3,4), and B(4, 4) have orders 212, 269, and 2422 respec
tively. Also it has been shown by Razmyslov that there are insoluble groups 
of exponent 4 ([a162]). 

The Restricted Burnside Problem 

This is the problem: does there exist an upper bound f(n, e) for the order of 
a finite n-generator group of exponent dividing e? A positive answer would 
mean that finite quotients of B(n, e) have bounded order, so that there is in 
effect a largest finite quotient; however, B(n, e) itself might conceivably be 
infinite. 

We shall establish the truth of the conjecture for e dividing 6. 

14.2.6. The order of a finite n-generator group G of exponent dividing 6 can
not exceed a certain integer depending only on n. 

Proof. In the first place G is soluble by the Burnside p-q Theorem (8.5.3). 
Also l2(G)::; C2(G) by 9.3.7. Since a Sylow 2-subgroup of G has exponent 2, 
it is abelian and C2(G)::; 1. Hence 12(G)::; 1, which means that G = 02'22,(G). 
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Now G/02'2(G) is a 2'-group of exponent dividing 6, so it has exponent 
dividing 3. By 14.2.3 the order of G/02'2(G) cannot exceed 3"+(i)+(~). It 
follows from the Reidemeister-Schreier Theorem (6.1.8) that 02'2(G) can be 
generated by 1 = (n - 1)3"+(~)+(~) + 1 elements. Next 02'2(G)/Oz,(G) is an 
elementary abelian 2-group; thus its order cannot exceed 2/. Consequently 
Oz,(G) can be generated by m = (1- 1)21 + 1 elements. Finally Oz,(G) has 
exponent dividing 3, so its order does not exceed 3"+('2)+('3). Thus we have 
an upper bound for IGI. D 

Actually the maximum order of a finite n-generator group with exponent 
dividing 6 is 

(6) 
where 

a = (n - 1)3"+(~)+(3) and b = (n - 1)2" + 1. 

Since M. Hall has confirmed that B(n, 6) is finite, the integer (6) is in fact 
the order of this free Burnside group. 

Quite recently Zel'manov, in a remarkable paper, has shown that the 
restricted Burnside problem has a positive solution for all exponents. For 
an accessible account of the proof see [b70]. 

EXERCISES 14.2 

L Find a function f(n) (defined recursively) such that IB(n, 4)1 ::;; f(n), 

2. If F is a free group, prove that F/F4 is nilpotent if and only if F has finite rank. 

3. Find a 2-generator group of exponent 4 and order 128 and a 2-generator group 
of exponent 8 and order 2136. [Hint: If F is a free group with rank 2, consider 
F/(F2)2 and F/(F2f)2,] 

4. (Levi and van der Waerden: see also [b26]). Show that the order of B(n, 3) is 
3"+(2)+tJ) by means of the following procedure, 
(a) It suffices to prove that IB(3, 3)1 = 37 (see the proof of 14,2.3). 
(b) Let A = (a) x (b) x (e) x (d) be an elementary abelian group of order 34 . 

Let t E Aut A be given by at = ad and [b, t] = [e, t] = Cd, t] = 1. Then H = 
(t) ~ A has exponent 3 and order 35. 

(c) Define U E Aut H by tU = te, bU = bd-1 and 1 = [a, u] = [e, u] = Cd, u]. Then 
K = (u) ~ H has exponent 3 and order 36. 

(d) Define v E Aut K by UV = ua-l, tV = tb-l, eV = cd and 1 = [a, v] = [b, v] = 
Cd, v]. Then G = (v) ~ K has exponent 3 and order 37 • 

(e) Show that G = (t, u, v), 

5. Find a 2-generator group of exponent 9 and order 33685 

6, Prove that the group G of 14.2.1 is not finitely presented. 

7, Show that the construction leading to 14,2.1 can be modified to allow p to equal 
2, [Hint: Let a and t have order 4. Define aZk = ao, ark = t i- k if i *- k (mod 2), and 
ark = 1 if i == k (mod 2), i # k.] 
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14.3. Locally Finite Groups 

Of the finiteness properties that have been encountered the one which seems 
closest to finiteness is surely the property of being locally finite. To test 
this intuitive judgment one may in quite whether any of the major theorems 
of finite group theory can be carried over, with suitable modifications, to 
locally finite groups. One of the objectives of this section will be to examine 
how far Sylow's Theorem is valid for locally finite groups. 

To begin with, a simple observation: obviously the class of locally finite 
groups is closed with respect to forming subgroups and images. It is not 
hard to see that it is also extension closed. 

14.3.1 (Schmidt). If N <J G and the groups N and GIN are both locally finite, 
then G is locally finite. 

Proof. Let H be a finitely generated subgroup of G. Then HIH nN ~ HNIN, 
which is finite. By the Reidmeister-Schreier Theorem-or more simply by 
1.6.11-the subgroup H n N is finitely generated, and thus finite. Therefore 
H is finite. 0 

Sylow Subgroups in Locally Finite Groups 

If p is a prime, a Sylow p-subgroup of a possibly infinite group G is defined 
to be a maximal p-subgroup. It is an easy consequence of Zorn's Lemma 
that every p-subgroup of G is contained in a Sylow p-subgroup. In particular, 
Sylow p-subgroups always exist. It follows from Sylow's Theorem that if G 
is finite, then a maximal p-subgroup of G has order equal to the largest 
power of p dividing /G/. This demonstrates that the foregoing definition is 
consistent with the notion of a "Sylow p-subgroup of a finite group" intro
duced in 1.6. 

The main problem of Sylow theory is to determine whether all the Sylow 
p-subgroups of a group are conjugate, possibly in some weak sense. Of 
course, this is true for finite groups by Sylow's Theorem. However, con
jugacy tends to fail in a spectacular manner for infinite groups. Indeed Sylow 
p-subgroups need not even be isomorphic! 

Let us begin with the remark that the proof of Sylow's Theorem given in 
Chapter 1 does not require the finiteness of the whole group. In fact the 
argument establishes the following result. 

14.3.2 (Dicman-Kuros-Uzkov). Let P be a Sylow p-subgroup of a group G 
and suppose that P has only finitely many conjugates in G. Then every Sylow 
p-subgroup of G is conjugate to P. Moreover their number is congruent to 1 
modulo p. 
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It is intructive to see how badly Sylow's Theorem can fail for infinite 
groups. 

14.3.3. Let PI and P2 be arbitrary p-groups and let G = PI * P2 be their free 
product. Then PI and P2 are Sylow p-subgroups of G. Hence in an infinite 
group Sylow p-subgroups can have different cardinalities and thus need not be 
conjugate. 

Proof. Let P be a Sylow p-subgroup of G containing Pl ' Then P cannot be a 
free product of nontrivial groups; otherwise it would contain an element of 
infinite order, by 6.2.5. Hence the Kuros Subgroup Theorem (6.3.1) shows 
that P is conjugate to a subgroup of PI or P2 . However one can tell from 
the normal form for elements of a free product that a nontrivial element of 
PI cannot be conjugate to an element of P2 • Consequently P is conjugate 
to a subgroup of PI' say P = P8 where Po :::;; Pl' Now P :::;; Pf :::;; pg, which 
implies that P = pg because P is a Sylow p-subgroup. Therefore pg = P = 

P8 and P = Po :::;; Pl' Hence P = Pl ' 0 

From now on we shall consider only locally finite groups, hoping for 
better behavior on the part of the Sylow subgroups. 

14.3.4. Let G be a locally finite group and suppose that P is a finite Sylow 
p-subgroup of G. Then all Sylow p-subgroups of G are finite and conjugate. 

Proof. Let PI be any finite p-subgroup of G. Then H = (P, PI) is finite 
because G is locally finite. Now clearly P is a Sylow p-subgroup of H, so 
Sylow's Theorem shows that PI is contained in some conjugate of P. In 
particular IPd :::;; IPI and no finite p-subgroup can have order larger than 
IPI. It follows that a Sylow p-subgroup is necessarily finite. The argument 
already given shows that any Sylow p-subgroup is conjugate to P. 0 

The next theorem is much deeper; it does a good deal to elucidate the 
question of conjugacy of Sylow p-subgroups in countable locally finite 
groups. 

14.3.5 (Asar). Let G be a locally finite group. If each countable subgroup of G 
has only countably many Sylow p-subgroups, then all the Sylow p-subgroups 
of G are conjugate. 

Proof. We presume the theorem to be false, reaching a contradiction in 
three steps. 

(i) There is a Sylow p-subgroup P with the property: each finite subgroup 
of P is contained in at least two Sylow p-subgroups of G. By assumption 
there exist two Sylow p-subgroups P and Q which are not conjugate. Sup
pose that P does not have the property in question: the idea is to prove that 
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Q does have this property. To this end let Y be a finite subgroup of Q. By 
hypothesis, P has a finite subgroup X which is contained in only one Sylow 
p-subgroup, namely P itself. Then L = <X, Y) is finite. Now PilL is con
tained in a Sylow p-subgroup Pl of Land Pl contained in a Sylow p-sub
group P2 of G. Hence X :s; PilL :s; Pl :s; P2 ; by hypothesis P2 = P and thus 
Pl = PilL. Therefore PilL is a Sylow p-subgroup of L. Consequently Y :s; 
(P II L)g :s; pg for some g; but pg # Q because P and Q are not conjugate. 
Hence Q has the property in question. 

(ii) If X is a finite subgroup of P, there exist a finite subgroup Xo of P 
and a conjugate Xl of Xo such that X < XO, X < Xl and <Xo, Xl) is not a 
p-group. By (i) there is a Sylow p-subgroup Q # P such that X :s; Q. Let 
x E Q\P and put M = <x, X). Then M :s; Q, so M is a finite p-group. Write 
T = P II M. Then T < M and T < NM(T). It follows that NM(T) $ NG(P) 
since otherwise NM(T) :s; P, the latter being the only Sylow p-subgroup of 
NG(P), Choose y from NM(T)\NG(P), Then <P, pY) cannot be a p-group: for 
otherwise P = pY and y E NG(P), Hence there is a finite subgroup Xo of P 
containing T such that <Xo, Xi» is not a p-group. Let Xl = Xi). Clearly 
X :s; T = P :s; Xi) = Xl' Also X < Xo because <X, XY) is contained in the 
p-group T. 

(iii) Final step. Using (ii) repeatedly we can construct for any given finite 
subgroup X of P and each infinite sequence i = (il' i2 , ... ) of O's and l's a 
chain of finite p-subgroups 

X<X· <X . . < ... 
'1 '1'2 

(7) 

with the property that <X;';2 ... ;,j' X;';2"';".) is never a p-group ifj # k. 
Let Xi denote the union of the chain (7). If i # i', then X; and Xi' cannot 

be contained in the same p-subgroup by the non-p-group property. Now let 
H be the subgroup generated by all the X; for varying i; then H is generated 
by all the X;';2"';" so it is surely countable. But each sequence i determines 
a Sylow p-subgroup of H, namely one containing X;. Since there are 2~o 
sequences, there will be that many Sylow p-subgroups of H. However this is 
contrary to hypothesis. 0 

Asar's theorem takes a particularly satisfying form for countable locally 
finite groups. 

14.3.6. Let G be a countable locally finite group. Then the Sylow p-subgroups 
of G are conjugate if and only if they are countable in number. 

Proof. If all the Sylow p-subgroups are conjugate, the set of Sylow p
subgroups must be countable since G is countable. 

Conversely, suppose that G has countably many Sylow p-subgroups . 
. Conjugacy will follow via 14.3.5 if it can be shown that a subgroup H of G 
has countably many Sylow p-subgroups. Let P be a Sylow p-subgroup of H. 
Then P is contained in a Sylow p-subgroup Q of G. Now P :s; Q II H :s; H, 
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so that P = Q n Hand P is determined by Q. But there are only countably 
many Q's. D 

The reader is perhaps wondering if Sylow p-subgroups are always con
jugate in locally finite groups. However this is not true, even for countable 
groups. 

EXAMPLE. Let G be the (restricted) direct product of a countably infinity of 
copies of S3; this is surely a countable locally finite group. If ai is an element 
of order 2 in the ith direct factor, then P = (a 1> x (a2> x ... is a Sylow 
2-subgroup of G because any strictly larger subgroup contains an element 
of order 3. Now each ai can be chosen in three ways, so there are 2~o 
choices for P. These cannot all be conjugate since G is countable. D 

As a matter of fact there are more sophisticated examples which show 
that worse situations can arise: the Sylow p-subgroups of a countable 
locally finite group need not even be isomorphic (Exercise 14.3.6). 

There has been much recent work on Sylow theory of locally finite 
groups: the interested reader may consult [bI8]. 

Infinite Abelian Subgroups of Locally Finite Groups 

Does every infinite group have an infinite abelian subgroup? This is a ques
tion of some antiquity in the theory of groups, although its origin seems to 
be obscure. The answer is certainly positive if an element of infinite order is 
present; thus we can restrict ourselves to torsion groups. It is now known 
that all the abelian subgroups of the free Burnside group B(n, e) are cyclic if 
n > 1 and e ~ 665 is odd; on the other hand B(n, e) is infinite. This is a 
by-product of the work of Novikov and Adjan on the Burnside problem. 
Thus the question has in general a negative answer. 

We shall show that the situation is quite different for locally finite 
groups, proving the following celebrated theorem. 

14.3.7 (P. Hall-Kulatilaka, Kargapolovt). Every infinite locally finite group 
has an irif"inite abelian subgroup. 

If a group has an infinite abelian subgroup, each element of this sub
group will have infinite centralizer. This suggests that in any attack on 
14.3.7 one is going to have to deal with groups in which nontrivial elements 
have finite centralizers. In fact this is the key to the proof. 

The following theorem applies to torsion groups that are not necessarily 
locally finite. 

t Mikhail Ivanovic Kargapolov (1928-1976). 
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14.3.8 (Sunkov). Let G be an irifinite torsion group. Assume that G contains 
an involution i such that CG(i) is finite. Then either the center of G contains 
an involution or G has a proper irifinite subgroup with nontrivial center. In 
both cases there is a nontrivial element with infinite centralizer. 

This theorem will effectively reduce 14.3.7 to the case where all elements 
have odd order. 

Proof of 14.3.8. We shall suppose the theorem false. 
(i) There are irifinitely many elements g in G such that gi = g-l (let these 

be called i-elements). In the first place there are infinitely many conjugates of 
i since I G : CG(i)1 must be infinite. Thus G contains infinitely many involu
tions. Since CG(i) is finite, there must exist infinitely many distinct co sets 
CG(i)a with a an involution. Now (aai)i = aia = (aai)-l, so aai is an i-ele
ment. If aa i = bbi, the elements a and b being involutions, then ab E CG(i) 
and CG(i)a = CG(i)b. Therefore involutions belonging to distinct right cosets 
of CG(i) give rise to infinitely many i-elements. 

(ii) G contains only finitely many i-elements of even order. For suppose 
that {Xl' X2, ... } is an infinite set of nontrivial elements of this type. Now 
there is a positive integer m, such that x;'r is an involution. Clearly x;'r E 

CG(i), whence only finitely many of the x;'r are distinct. Consequently for 
some r the involution x;'r is centralized by infinitely many xS' But this con
tradicts our assumption that the theorem is false. 

Choose and fix an i-element a#-1 of odd order and write k = ia: then 
k2 = iaia = i2a ia = 1. Since a cannot equal i, the element k is an involution. 

(iii) There exist irifinitely many nontrivial i-elements b with odd order such 
that u = ikb is an i-element of odd order. (Write S for the set of all such 
elements b.) In the first place u is an i-element because ui = kbi = u-l . Next, 
since we are assuming that the theorem is false, CG(k) is finite, k being an 
involution. Hence, if b is allowed to vary over distinct right cosets of CG(k), 
we shall obtain infinitely many distinct elements of the form u = ikb• An 
infinite number of these will have odd order by (ii). 

The group <i, k) is a dihedral group in which a = ik has odd order. 
Therefore <i) and <k) are conjugate, being Sylow 2-subgroups of <i, k). It 
follows that i = ka , for some al in <a). 

(iv) To each b in S there corresponds an h in Co(k) such that the involution 
j = bi conjugates hal to its inverse. Let u = ikb be as in (iii). Since u has odd 
order, i and kb are conjugate in <i, kb ), just as above; hence i = (bk )", for 
some Ul in <u). So we have kbu , = i = k"', which implies that h = bula1l E 

CG(k). Notice that j = bi is an involution since bi = b-l . We now calculate 
rl(hal)j = bibulbi = bbiuibi = bb-1U1lb-l = u1lb- l = (hal)-l; keep in 
mind here that bi = b- l and ui = u-l . This is what we wanted to prove. 

(v) Final step. Using (iv) and the finiteness of CG(k), we can assert that 
there is an infinite subset T of S and an element h of CG(k) such that j = bi 
conjugates c = hal to its inverse for each b in T. Let band b' be two ele-
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ments of T; then Cbi = c-l = Cb'i, so that cb = cb' and b(bTl E CG(c). Since 
T is infinite, we conclude that CG(c) is infinite. 

Suppose that c E (G. Since c = hal and hE CG(k), it follows that a l E 

CG(k). Hence k = kat = i, which implies that a = 1, a contradiction. Conse
quently c ¢ (G, from which we see that CG(c) is a proper subgroup with 
nontrivial center. D 

Before embarking on the proof of 14.3.7 we remark that use will be made 
of the solubility of groups of odd order. No proof is known which avoids 
using this difficult theorem of Feit and Thompson. 

Proof of 14.3.7. (i) It is enough to prove that every infinite locally finite group 
has a nontrivial element with infinite centralizer. Assume that this statement 
has been proved. Let G be an infinite locally finite group. Choose any finite 
abelian subgroup A 1 which has infinite centralizer Cl in G-for example 
Al = 1 will do perfectly well. Then Al <J Cl and CdAl is an infinite locally 
finite group. By hypothesis there is an element x of Cl \Al such that the 
centralizer CCt/AJxAd-Iet us call it Dj A l-is infinite. Since the subgroup 
A z = (x, Al) is finitely generated, it is finite; let Cz = CG(Az) and observe 
that Cz ::s;; D; therefore Cz ::s;; CD(x). On the other hand, D ::s;; Cl implies that 
CD(x) ::s;; Cz; thus Cz = CD (x). Notice that Az <J D because [D, x] ::s;; Al ::s;; 
A z. It follows that 

ID: CD(x) I = ID: Czl ::s;; IAut Azi < 00. 

Since D is infinite, we may conclude that CD(x) is infinite; consequently 
CG(Az) = Cz is infinite. 

By repeated application of this argument we are able to construct an 
infinite chain of finite abelian subgroups Al < A z < ... such that each 
CG(A;) is infinite. The union of the chain is an infinite abelian subgroup. 

From now on it will be assumed that G is an infinite locally finite group 
such that every nontrivial element has finite centralizer. This will eventually 
lead to a contradiction. 

(ii) If F is a nontrivial finite subgroup of G, then NG(F) is finite. For let 
1 #- x E F. Then CG(F) ::s;; CG(x) and the latter is finite. Thus CG(F) is finite. 
By 1.6.13 we deduce that NG(F) is finite. 

(iii) There is a finite subgroup F such that CG(F) = 1. Let 1 #- x E G: then 
CG(x) is finite, equal to {1, Y1, ... , Yn} say, where Yi #- 1. Since CG(y;) is fi
nite, we can pick Zi in G outside CG(y;). Now put F = (x, Yi' zili = 1, ... , n), 
surely a finite group. Clearly CG(F) ::s;; CG(x); but since Yi and Zi do not com
mute, it follows that CG(F) = 1. 

(iv) For each prime p the Sylow p-subgroups of G are finite and conjugate. 
Suppose that P is an infinite Sylow p-subgroup. Since P is locally finite and 
nontrivial elements of P have finite centralizers, (iii) shows that Cp(F) = 1 
for some finite subgroup F of P. But (F::s;; Cp(F), so (F = 1 and hence 
F = 1: this gives the contradiction P = 1. Conjugacy follows via 14.3.4. 
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(v) Every proper quotient group of G is finite. Let 1 # N <J G. Then N has 
a nontrivial Sylow p-subgroup P for some prime p. Since Sylow p-subgroups 
of N are conjugate, the Frattini argument is available. Thus G = NG(P)N 
and I G : NI = ING(P) : N n NG(P) I, which is finite by (ii) and (iv). 

(vi) G is a locally soluble group without elements of order 2. Sunkov's the
orem (14.3.8) shows at once that G cannot contain an involution. Hence 
finitely generated subgroups of G have odd order and thus are soluble by 
the Feit-Thompson Theorem. 

(vii) G is not residually finite . For suppose that G is residually finite. 
There is a nontrivial Sylow p-subgroup P of G for some prime p. Define 

T = < CG(x ) I 1 # x E P). 

Since P is finite, T is a finite group. Moreover it is clear that P ~ T. By 
residual finiteness there is a normal subgroup K with finite index in G such 
that K n T = 1. Then K n P = 1. Since Sylow p-subgroups are conjugate, it 
follows that K has no elements of order p. Now K # 1, so there is a prime 
q # p and a nontrivial Sylow q-subgroup Q of K. If N = NG(Q), the Frattini 
argument yields G = NK. Now IFI divides IG: KI = IN: N n KI since P ~ 
PKIK. Hence Sylow p-subgroups of N have the same order as P and so are 
conjugate to P. Replacing P by a suitable conjugate-an operation that 
does not affect K since it is normal- we may suppose that P ~ N. Hence 
QP= Q. 

The next step is to prove that PQ is a Frobenius group; it is, of course, 
finite. Let 1 # x E P n p Y where 1 # y E Q. Then x = aY where 1 # a E P; 
therefore [a, y] = a-I x E P n Q = 1 since Q<J PQ. Hence y E K n CG(a) ~ 
K n T = 1 and x = 1. This shows that PQ is a Frobenius group. We now 
invoke 10.5.6 to conclude that the Frobenius complement P is cyclic, noting 
that p is odd. 

It has just been proved that every Sylow subgroup of G is cyclic. It 
follows from 10.1.10 that finite subgroups of G are metabelian, which cer
tainly causes G to be metabelian. If G were abelian and 1 # 9 E G, then 
CG(g) = G is finite. This is false, so G' # 1. Now let 1 # 9 E G'; then G' ~ 
CG(g), so G' is finite. Also GIG' is finite by (v), so again the contradiction 
that G is finite is attained. 

(viii) Conclusion. Let R be the intersection of all the normal subgroups of 
finite index in G; then R # 1 by (vii). Hence GIR is finite by (v). Suppose 
that 1 # N <J R. Now R is an infinite locally finite group with the finite 
centralizer property, just like G. Therefore (v) can be applied to show that 
RIN is finite. This makes IG : NI finite, so the core of N has finite index in G. 
Hence this core contains R, which implies that N = R. Thus R is a simple 
group. However we have proved G to be locally soluble, whence so is R. A 
theorem of Mal'cev (12.5.2) now shows that R has prime order. Therefore G 
is finite, our final contradiction. 0 

We mention without proof two very important theorems about locally 
finite groups which have been proved in recent years. 
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I (Sunkov, Kegel-Wehrfritz). A locally finite group whose abelian subgroups 
satisfy the minimal condition is a Cernikov group. 

II (Sunkov). Let G be a locally finite group and suppose that each abelian 
subgroup of G has finite rank. Then G is an extension of locally soluble group 
by a finite group (and has finite Prufer rank in the sense of Exercise 14.1.3). 

For a detailed account of the theory of locally finite groups the reader is 
referred to [blS] and [b39]. 

EXERCISES 14.3 

1. Show that in any group G there is a unique maximal normal locally finite sub-
group R and that R contains all ascendant locally finite subgroups (see 12.1.4). 

2. Prove 14.3.2. 

3. (Baer). Show that in a Cernikov group all Sylow p-subgroups are conjugate. 

4. Let G be a countable locally finite group. If N <J G, show that every Sylow p
subgroup of GIN has the form PN IN where P is a Sylow p-subgroup of G. 

5. Let G be a countable locally finite group with countably many Sylow p-sub
groups. Show that in every quotient group of G all Sylow p-subgroups are 
conjugate. 

6. (Kegel-Wehrfritz) Show that there is a countable metabelian, locally finite 
group with nonisomorphic Sylow p-subgroups by means of the following proce
dure. 
(a) Let p and q be distinct primes, let X = <x> have order q and C = <c> 

have order p. Let A be a group of type pOC! with the usual generating set 
{a 1, a2 , ... }. Define G to be the standard wreath product of X" (A x C). 
Show that A x C is a Sylow p-subgroup of G. 

(b) An element bn of the base group of G is defined in the following way: the y
component of bn is x if y E <an>c and is otherwise 1. Put Un = a!,b2 ... bn • Show 
that [an- 1 , bn ] = 1 and that u: = Un - 1 , so that U = <u1 , U2, ... > is a group 
of type pOC!. 

(c) Let U be a contained in a Sylow p-subgroup P. If U '* P, prove that P ~ 
A x C and G = BP. Writing c = b-1v where b E B, v E P, obtain a contradic
tion. Conclude that U is a Sylow p-subgroup and U 't- A x C. 

7. An infinite locally finite group of all whose proper subgroups are finite is quasi
cyclic. 

*8. Without appeal to 14.3.7, prove that an infinite locally finite p-group G has an 
infinite abelian subgroup using the following argument. 
(a) Reduce to the case where G is countable. Assume that all abelian subgroups 

of G are finite. 
(b) If H is the hypercenter of G, prove that H is finite (using Exercise 12.2.4). 
(c) Show that every abelian subgroup of GIH is finite. Now assume that H = 1, 

so that (G = 1. 
(d) Write G = Ui=1.2, ... Gi where 1 < G1 =:;; G2 =:;; ... and Gi is finite. Put Z; = 

(G; and show that Zi = Zi+1 = etc. for some i. Hence Zi =:;; (G and (G '* 1. 
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For many years the following questions about groups with the maximal 
conditon (max) and the minimal condition (min) were outstanding. 

(a) Is a group with max a finite extension of a soluble group? 
(b) Is a group with min a finite extension of a soluble group? 

Note that soluble groups with max or min are reasonably well understood 
-see 5.4.14 and 5.4.23. For example (b) would imply that a group with min 
is a Cernikov group. 

These conjectures have been verified in various special cases. For exam
ple (b) is true for locally finite groups by virtue of the Sunkov-Kegel
Wehrfritz theorem mentioned at the end of 14.3; trivially (a) is also true for 
this class of groups. In addition (b) has been proved for SN-groups (12.4.5). 

However, recently Ol'sanskil [a152] and Rips have constructed a num
ber of remarkable examples which show that both conjectures are false in 
general. These include infinite groups all of whose proper nontrivial sub
groups have prime order. Groups of this type are termed Tarski groups. 
Clearly they satisfy max and min and defeat both conjec;tures. 

We shall now concentrate on 2-groups, showing that the two conjectures 
are true for such groups. 

2-Groups with the Maximal Condition 

Infinite 2-groups satisfy a weak form of the normalizer condition. 

14.4.1. If G is an irifinite 2-group, each finite subgroup is properly contained 
in its normalizer in G. 

Proof. Suppose that F is a finite subgroup such that F = NG(F). Since G is 
infinite, not every finite subgroup is contained in F. Thus there is a finite 
subgroup M such that I = M (") F is maximal subject to M $ F. Now I # 
NM(l) because I is a proper subgroup of the nilpotent group M. Also I < F, 
from which it follows that I < NF(l). Consequently there exist elements of 
order 2 in NM(l)II and NF(l)II, say xl and yI. Then IX = I = JY. 

Let T = <x, y, I). Then I <J T and Til, being generated by two involu
tions, is a dihedral group. But Til is also a 2-group, so it must be finite. It 
follows that T is finite. However this is impossible in view of the maximality 
of I; for T $ F since x ¢ I, and 1< T (") F because y ¢ I . 0 

Using this result one can quickly dispose of 2-groups with max. 

14.4.2 (Kegel). A 2-group which satisfies the maximal condition is finite. 
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Proof. We assume that G is an infinite 2-group with max. Using 14.4.1 re
peatedly, we can construct an infinite ascending chain of finite subgroups 
Fl < F2 < . .. ; for if Fi has been constructed, choose Xi from NG(F;)\ Fi and 
define Fi+l = <Xi' F;) = <x;)Fi. Let U be the union of the chain; then U 
is obviously an infinite locally finite group, so by 14.3.7 it contains an infi
nite abelian subgroup V. (This use of the difficult theorem 14.3.7 can be 
avoided-see Exercise 14.3.8.) On the other hand, V is a finitely generated 
abelian 2-group, so it is finite. D 

2-Groups with the Minimal Condition 

14.4.3 (Schmidt). A 2-group which satisfies the minimal condition is a Cernikov 
group. 

Proof. (i) Let G be a 2-group with min. By 12.1.8 it is enough to prove that 
G is locally finite. Thus we shall assume this to be false and that G is mini
mal subject to not being locally finite. Then every proper subgroup of G is 
locally finite. It follows that the union of a chain of proper subgroups must 
be proper. Hence Zorn's Lemma implies that every proper subgroup lies in 
a maximal subgroup. Similarly a proper normal subgroup is contained in a 
maximal normal subgroup. If N is a maximal normal subgroup of G, then 
GIN cannot be locally finite by 14.3.1. Moreover GIN satisfies min and is a 
2-group while all its proper subgroups are locally finite. In short GIN is as 
good as G, so let us suppose that N = 1 and G is simple. 

(ii) Each pair of distinct maximal subgroups intersects trivially. Assume 
that this is false and let M and M1 be maximal subgroups such that II = 
M n Ml # 1. In the ensuing proof it is understood that M is fixed. Since 
Ml is a locally finite 2-group with min, it is hypercentral (12.2.5) and thus 
11 < NM,(lI) by 12.2.4. Now Z1 = 01 is characteristic in II and thus normal 
in NM,(ld. Hence ZI is normalized by some element of M1 \ M . Since 
Z1 # 1 and G is simple, NG(Z1) must be a proper subgroup of G; thus it is 
contained in a maximal subgroup M2. Here M2 # M because NG(Zd 1,. M. 
Also II ~ NM(Zd ~ M2, so that II ~ 12 = M n M2. 

By the minimal condition we may suppose that Ml and M2 have been 
chosen so that NG(Zd ~ M2 and Z2 = 02 is minimal. Just as above 
NG(l2) < G and NG(Z2) 1,. M. Therefore NG(Z2) is contained in a maximal 
subgroup M3 which cannot equal M. Now 

11 ~ 12 < NM(l2) ~ NM(Z2) ~ M n M3 = 13, 

say. Consequently Z3 = 0 3 centralizes Z1 and therefore Z3 ~ NM(Zd ~ 
M n M2 = 12 , which in turn implies that Z3 ~ 02 = Z2' Now the pair 
(M2' M 3) has all the properties of the pair (Ml' M2); since Z3 ~ Z2 ' the hy
pothesis of minimality leads to Z3 = Z2' It follows from this that 

13 ~ NM(Z3) = NM(Z2) ~ M n M3 = 13; 
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hence NM (Z2) = 13, However 13 < M, which implies that some element of 
M\I3 normalizes 13, and hence Z3' a contradiction. 

(iii) Conclusion. Let M and MI be two distinct maximal subgroups of 
G-these exist otherwise there is only one maximal subgroup which would 
then have to be normal. Let a and a l be involutions belonging to M and 
Ml respectively. Then A = <a, al ) is finite because it is a dihedral group. 
Thus A is proper and is contained in a maximal subgroup M*. But 1 -# a E 

M n M* and 1 -# a l E MI n M*; thus (ii) shows that M = M* = MI, a 
contradiction. 0 

EXERCISES 14.4 

1. Let G be a Tarski group, i.e., an infinite group all of whose proper nontrivial 
subgroups have prime order. Prove that G is a 2-generator simple group. 

2. Show that there are no Tarski p-groups if p < 5. 

3. Using the negative solution to the Burnside problem and the positive solution of 
the restricted Burnside problem (see 14.2), show that there is a finitely generated 
infinite simple group of exponent p where p is a large enough prime. 

4. (Kegel). An infinite 2-group has an infinite abelian subgroup. 

14.5. Finiteness Properties of Conjugates 
and Commutators 

There are numerous finiteness properties which restrict in some way a set of 
conjugates or a set of commutators in a group. Sometimes these restrictions 
are strong enough to impose a recognizable structure on the group. We 
shall study finiteness properties of this type. 

Finiteness Properties of the Upper and 
Lower Central Series 

A basic theorem of Schur (10.1.4) asserts that if the center of a group G has 
finite index, then the derived subgroup of G is finite. Roughly speaking this 
says that if the center is large, the derived subgroup is small. This raises 
various questions: is there a generalization to higher terms of the upper and 
lower central series? Is there a converse? Theorems of Baer and P. Hall 
provide positive answers to these questions. 

14.5.1 (Baer). If G is a group such that G/(iG is finite, then Yi+1 G is finite. 
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The case i = 1 is, of course, Schur's theorem. We shall deduce 14.5.1 from 
a lemma on commutator subgroups. 

14.5.2 (Baer). Let H, K, M, N be normal subgroups of a group G such that 
M :=:;; Nand N :=:;; K. Assume that IH: MI and IK: NI are finite, and also that 
[H, N] = 1 = [K, M]. Then [H, K] is finite. 

Proof. Let 1= H II K and put K = K/CK(I). Form the semidirect product 
P = K ~ I, utilizing the action of K on I which arises from conjugation. 
Since M II I is centralized by K , it is contained in the center of P. Now 
I/M II I ~ IM/M :=:;; H/M, so I /M II I is finite. Also N:=:;; CK(I) implies that 
K is finite. It follows that P/M II I , and hence Pj(P, is finite. We now infer 
from Schur's theorem that P' is finite; in particular [K, I] = [K, I] is finite. 
For similar reasons [H, I] is finite. Hence [H, I] [K, I] is a finite normal 
subgroup contained in [H, K]. Evidently there is nothing to be lost in 
factoring out by this subgroup, so we assume that [H, I] = 1 = [K, I]. 
Since [H, K] :=:;; I by normality of Hand K, it follows that 

[H, K , H] = 1 = [H, K, K]. (8) 

The Three Subgroup Lemma (5.1.10) can now be applied to yield [H', K] = 
1 = [H, K ']. 

Consider the mapping hH'M ® kK'NH [h, k] where hE Hand k E K; 
this is well-defined since [H, K'N] = 1 = [H'M, K]. It gives rise to a homo
morphism from (H/H'M) ® (K/K'N) onto [H, K] by (8). But H/H'M and 
K[ K' N are finite, whence so is their tensor product. Therefore [H, K] is 
fu~ 0 

Proof of 14.5.1. We argue by induction on i> 1, the case i:=:;; 1 being 
known. Since (i-l(Gj(G) = (iGj(G has finite index in G/(G, the induction 
hypothesis implies that Yi(Gj(G) = (YiGKG/(G is finite. Apply 14.5.2 with 
H = (YiGKG, M = (G, K = G, and N = (iG, noting that [YiG, (iG] = 1 by 
5.1.11. The conclusion is that [H, K] = Yi+l G is finite. 0 

P. Hall has proved a partial converse of Baer's theorem. 

14.5.3 (P. Hall). If G is a group such that Yi+l G is finite, then Gj(2iG is finite. 

Combining 14.5.1 and 14.5.3 we can state that some term of the upper 
central series has finite index if and only if some of the lower central series is 
finite. 

Theorem 14.5.3 requires a preliminary lemma on commutator subgroups. 

14.5.4 (P. Hall). Let G be a group and let H = CG(Yi+l G). If I, m, n are inte
gers satisfying I + m + n ~ 2i - 1, then [[H, IG], [H, mG]] :=:;; (nG. 
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Proof. In the first place it is easy to prove by induction on n that 

[[M, N], .G] ~ n [[M, P], [N, kG]] 
j+k=. 
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whenever M and N are normal subgroups. Applying this with M = [H'IG] 
and N = [H, mG] we obtain 

[[M, N], .G] ~ n [[H, l+P], [H, m+kGJ]. 
j+k=. 

Now (/ + j) + (m + k) = I + m + n ~ 2i - 1, so that either I + j ~ i or 
m + k ~ i. Hence either [H, I+P] ~ Yi+l G or [H, m+kG] ~ Yi+l G. But H 
centralizes Yi+l G, so we conclude that [[H, l+iG], [H, m+kG]] = 1 in any 
event. Consequently [M, N] ~ (.G. 0 

Proof of 14.5.3. Let H = CG(Yi+l G). By hypothesis Yi+l G is finite, so IG : HI 
is finite. Consider the factor 

Fs = [H, i-sG]/ [H, i-sG] n (i+sG, 

where 0 ~ s ~ i. We would like to prove that Fs is finite. Certainly Fo is 
finite; for it is a factor of Yi+l G. Assume that Fs is finite for some s < i. 

By 14.5.4 we have 
[[H, i-sG], H] ~ (i+sG 

because (i - s) + 0 + (i + s) = 2i > 2i - 1. Therefore Fs is a central factor of 
H. It follows that if g is a fixed element of G, the mapping 

x H [x, g] ([H, i-sG] n (i+sG) 

is a homomorphism from L = [H, i-s-l G] into the finite group Fs. Then 
L/K(g) is finite where K(g) is the kernel of the homomorphism. 

Choose a transversal {t l' ... , tr } to H in G and let 

K = K(t 1 ) n'" n K(tr). 

Then L/K is finite. The definition of K(t;) shows that [K, t;] ~ [K(ti)' t;] ~ 
(i+sG. Also [K, H] ~ [L, H] ~ (i+ sG by 14.5.4. Since G = U~=1 Hti, it 
follows that [K, G] ~ (i+sG and K ~ (i+s+l G. Hence K ~ L n (i+s+l G, 
which shows that Fs+l = L/L n (i+s+l G is finite. 

Thus Fs is finite for all s. Taking s = i we conclude that H/H n (2iG is 
finite, so that (2iG has finite index in H(2iG. Since IG : HI is finite, the result 
follows. 0 

Groups with Finite Conjugacy Classes 

An element g of a group G is called an FC-element if it has only a finite 
number of conjugates in G, that is to say, if I G : CG(g)1 is finite. It is a basic 
fact that the FC-elements always form a subgroup. 

14.5.5 (Baer). In any group G the FC-elements form a characteristic subgroup. 
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Proof. Let 9 and h be FC-elements of G. Then CG(g) and CG(h) have finite 
index, which implies that CG(g) n CG(h) has finite index. But obviously 
CG(gh- l ) ;;::: CG(g) n CG(h), so CG(gh- l ) has finite index and gh-l is an 
FC-element. Thus the FC-elements form a subgroup. If !X E Aut G, then 
CG(g") = CG(g)", from which it follows that CG(g") has finite index. Hence g" 
is an FC-element. D 

An FC-element may be thought of as a generalization of an element 
of the center of the group; for elements of the latter type have just one 
conjugate. For this reason the subgroup of all FC-elements is called the 
FC-center: of course it always contains the center. 

A group G is called an FC-group if it equals its FC-center, which 
amounts to saying that every conjugacy class of G is finite. Prominent 
among the FC-groups are groups with center of finite index: in such a 
group each centralizer must be of finite index because it contains the center. 
Of course in particular all abelian groups and all finite groups are FC-groups. 

It is very easy to see that the class of FC-groups is closed with respect 
to forming subgroups, images and direct products- as the reader should 
verify. 

The following result draws attention to FC-groups that are torsion 
groups. 

14.5.6 (Baer). If G is an FC-group, then G/(G is a residually finite torsion 
group. 

Proof. (G is the intersection of all the centralizers of elements of G. Since 
each of the latter has finite index, GgG is surely residually finite. 

To see that GgG is a torsion group take any x in G and choose a right 
transversal {tl, ... ,tk} to CG(x) in G. Then CG(tl)n···nCG(tk) has finite 
index in G, whence so does its core K. Thus xm E K for some positive inte
ger m. It follows that xm centralizes each ti. But the ti and CG(x) generate G; 
therefore xm E (G. D 

In the study of FC-groups that are torsion groups the following simple 
lemma is invaluable. Herein a subset of a group will be termed normal if it 
contains all conjugates of its elements. 

14.5.7 (Dicman's Lemma). In any group G a finite normal subset consisting 
of elements of finite order generates a finite normal subgroup. 

Proof. Let X = {Xl' x 2 , ••• , xn } be the normal subset and let H = (X). Ob
viously H is normal in G: we have to prove that it is finite. 

If 1 "# h E H, then h = x::' ... x::'r where 1 ~ !Xi ~ n. In general there will 
be many such expressions for h, among them some of shortest length, say r. 
Furthermore among these expressions of shortest length there is one which 
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appears first in the lexicographic ordering of r-tuples: this is the ordering 
in which (IX I , ••• , IX.) precedes (1X'1, ••• , IX~) if lXi = IX; for i < s and IX, < IX~ for 
some s :<:; r. Denote this first expression by h = Y1YZ·· · Y. where Yi = x:;'. 

Suppose that lXi = IXj where i < j. Moving Yj to the left we obtain 

h = Y1 ... Yi-1(YiY)Y;~1 ... YJ!-IYj+I··· Y .. 

an expression of length less than r. Consequently the lXi are all different. 
Now assume that lXi > 1Xi+1; then 

h = Y1 ... Yi_IYi+ly[i+l Yi+Z··· Y.· 

But this expression of length r precedes YIYZ· ·· Y. in the ordering of r
tuples. Hence IXI < IXz < ... < IX •• It follows that there are at most 0:'=1 Ix;! 
possibilities for h. 0 

This allows us to describe Fe-torsion groups in a different manner. 

14.5.8. A torsion group G is an Fe-group if and only if each finite subset is 
contained in a finite normal subgroup. 

Proof. Let G be an Fe-group and let F be a finite subset of G. The set of 
conjugates of elements of Fin G is a finite normal subset. By 14.5.7 it gener
ates a finite normal subgroup. Conversely, if G has the property in question 
and x E G, then x E F <J G for some finite F. All conjugates of x belong to F, 
so there are only finitely many of them. 0 

Groups with the property of 14.5.8 are often called locally finite and 
normal groups instead of torsion Fe-groups. Notable examples are direct 
products of finite groups, their subgroups and quotient groups. 

Returning to general Fe-groups we shall use Schur's theorem to estab
lish a basic fact about the commutator subgroup of an Fe-group. 

14.5.9 (B.H. Neumann). If G is an Fe-group, then G' is a torsion group. Also 
the elements of finite order in G form a fully-invariant subgroup containing 
G'. 

Proof. By 14.5.6 and 14.5.8 the group G/eG is locally finite. Now if X is a 
finitely generated subgroup of G, then X/X n eG is finite, which implies that 
X /eX is finite. Hence X' is finite by Schur's theorem. Obviously G' is the 
union of all such X', so G' is a torsion group. Next let x, Y in G satisfy 
xm = 1 = y" where m, n > O. Then (xy- l t" == 1 mod G'. Therefore (xy- 1 )1 = 
1 for some I > O. Hence the elements of finite order form a subgroup 
containing G'. 0 

We have discovered enough about Fe-groups to be able to characterize 
them in terms of torsion-free abelian groups and locally finite and normal 
groups. 



444 14. Finiteness Properties 

14.5.10. A group G is an FC-group if and only if it is isomorphic with a sub
group of the direct product of a torsion-free abelian group and a locally finite 
and normal group. 

Proof. Suppose that G is an FC-group and let T be the set of elements 
of finite order. Then G' s T s G by 14.5.9, so that GjT is a torsion-free 
abelian group. By Zorn's Lemma there exists a maximal torsion-free sub
group of the center-call it M. Then it is easy to see that 'GjM is a torsion 
group. But Gj,G is a torsion group by 14.5.6; hence G/M is a torsion group. 
Since G/M is clearly an FC-group, it is locally finite and normal. Now 
Tn M = 1 because T is torsion and M is torsion-free. Consequently the 
mapping xI--+(xT, xM) is an embedding ofG in (GjT) x (GjM). 

The converse follows from the fact that the class of FC-groups is closed 
with respect to forming subgroups and direct products. D 

Since it is not easy to describe the subgroups of a direct product, 
14.5.10 does not provide a completely satisfactory classification of FC
groups. 

Groups with Boundedly Finite Conjugacy Classes 

A group G is called a BFC-group if there is a positive integer d such that no 
element of G has more than d conjugates. BFC-groups form a very special 
class of FC-groups which admits a precise description. 

14.5.11 (B.H. Neumann). A group G is a BFC-group if and only if the com
mutator subgroup G' is finite. 

Proof. If G' has finite order d, then the number of commutators [g, x] can
not exceed d. Hence the number of conjugates of an element g is at most 
equal to d. Thus G is a BFC-group. 

Conversely let G be a BFC-group; denote by d the maximum number of 
elements in a conjugacy class. Then there is an element a with exactly d 
conjugates in G; thus!G: CG(a)! = d. Choose a right transversal t l , ... , td to 
CG(a); then aft, ... , atd are the d distinct conjugates of a. Define C to be the 
intersection of the centralizers CG(tJ, i = 1, . .. , d. Since! G : CI is finite, there 
is a finite right transversal {Sl' ... , Sk} to C in G. 

N ow consider 
N = <a, S1' ... , Sk)G. 

This is a finitely generated FC-group, so its center has finite index by 14.5.6 
and 14.5.8. Schur's theorem shows that the elements of finite order in N 
form a finite subgroup. Since G' is a torsion group (14.5.9), it is sufficient to 
prove that G' s N. 
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If x E C, then (xa)f' = xat, since C ~ CG(tJ From this it is apparent that 
the d elements xat, are distinct and account for all the conjugates of xa in 
G. Consequently, if y E C, there is an i such that (xa)Y = xa\ this implies 
that x Y = xat'a-Y and [x, y] = at'a-Y E N. Hence C' ~ N. But G = NC 
implies that Gt ~ NC' ~ N. D 

Subgroups of Direct Products of Finite Groups 

It has been observed that any subgroup of a direct product of finite groups 
is locally finite and normal. Are such subgroups typical of locally finite and 
normal groups? Since a direct product of finite groups is residually finite, 
only locally finite and normal groups with the latter property can arise as 
subgroups. Precisely what further conditions the locally finite and normal 
group must satisfy is unknown. For countable groups however the situation 
is well understood. 

14.5.12 (P. Hall). A countable locally finite and normal group G is isomorphic 
with a subgroup of a direct product of finite groups if and only if it is residu
ally finite. 

Proof. Only the sufficiency of this condition is in doubt. Assume therefore 
that G is residually finite and let G = {gl' gz, ... }. Writing Gi for the normal 
closure of {gl' gz, ... , gJ, we obtain G as the union of an ascending chain 
of finite normal subgroups 1 = Go ~ Gl ~ Gz ~ .... 

Let us show how to construct a descending chain of normal subgroups of 
finite index G = Rl ~ Rz ~ ... such that Gi n Ri = 1. Suppose that Ri has 
already been chosen. Since G is residually finite, there is a normal subgroup 
N of finite index such that N n Gi+l = 1. Define Ri+l = N n Ri , clearly a 
normal subgroup of finite index; then 

Gi+1 n Ri+1 = (Gi+l n N) n Ri = 1. 

Thus the construction has been effected. 
Define Si+l to be Gi Ri +1 , i = 0, 1, ... , again a normal subgroup with 

finite index in G. Then 

Gi+1 n Si+l = Gi+l n (GiRi+l) = Gi(Gi+l n Ri+l) = Gi • (9) 

Now given g #- 1 in G, there is an i such that g E Gi+1 \Gi; hence g tf. Si+l by 
(9). It follows that the intersection of all the Si is 1. In addition, a given 
element g of G belongs to almost all of the Gi and therefore to almost all of 
the Si. This means that the mapping gl--+(Slg, Szg, ... ) is a homomorphism 
from G into the direct product, not merely the cartesian product, of the G/Si • 

It is also injective because Sl n Sz n··· = 1. Thus the theorem is proved. 
D 
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For information about the uncountable case see [b69], which is a good 
general reference for FC-groups. 

Groups with Finitely Many Elements of Each Order 

As the last topic of the chapter we consider groups that possess only a finite 
number of elements of each order, including 00. We shall call these FO
groups-they are sometimes known as groups with finite layers. Notice that 
an FO-group is an FC-group: for conjugate elements have the same order. 
So we are confronted with a special type of FC-group-so special in fact 
that a satisfactory structural description is possible. 

First a couple of elementary results. 

14.5.13 (Baer). (i) An FO-group is locally finite and normal. 
(ii) Every Cernikov group whose centre has finite index is an FO-group. 

Proof. (i) If a group has an element of infinite order, it has an infinity of 
such elements. An FO-group is therefore a torsion group, so by 14.5.8 it is 
locally finite and normal. 

(ii) Let G be a Cernikov group whose center C has finite index; of course 
G is a torsion group. Choose a transversal {t l , ••• , t k } to C in G and let ti 
have order mi. Let us consider elements of G which have some fixed order 
m. If g has order m and g = cti , (c E C), then 1 = (ct;)m = cmt;". Hence cmmi = 
1. Now C has only a finite number of elements of order dividing mmi by 
4.2.11. Consequently there are only finitely many possibilities for g and Gis 
an FO-group. 0 

We come now to the main theorem on FO-groups from which most prop
erties of these groups can be read ofT. In essence it says that all FO-groups 
arise as subgroups of certain direct products of Cernikov groups with center 
of finite index. Thus groups of the latter type may be regarded as prototypes 
of FO-groups. 

In the next theorem a direct product will be called prime-sparse if for 
each prime p only a finite number of the direct factors possess elements of 
order p. 

14.5.14 (Cernikov, Polovickii). The following statements about a group G are 
equivalent. 

(i) G is an FO-group. 
(ii) G is locally finite and normal and each Sylow subgroup is a Cernikov 

group. 
(iii) G is isomorphic with a subgroup of a prime-sparse direct product of 

Cernikov groups with centers of finite index. 
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Proof. (i) -+ (ii). Let G be an FO-group; then G is locally finite and normal 
by 14.5.13. Consider a Sylow p-subgroup P of G and let R be generated by 
all subgroups of P which have no proper subgroups of finite index. Then 
R ::::;; P and it is easy to see that R itself has no proper subgroups of finite 
index. Also if R < S ::::;; G, then SjR must have a proper subgroup with finite 
index. If g E P, then IR : CR(g)1 is finite since R is an FC-group. It follows 
that R = CR(g) and R ::::;; (P. Thus R is a divisible abelian p-group. 

Next, Exercise 4.3.5 shows that abelian subgroups of P have min; thus R 
has min. We claim that PjR is also an FO-group. To see this consider an 
element xR of PjR with order m. Then xm E Rand x m = ym for some y E R 
because R is divisible. Hence (xy-l)m = 1 since R ::::;; (P. It follows that there 
are only finitely many possibilities for xy-l and thus for xN. We conclude 
that abelian subgroups of PjR have min. The structure of groups with min 
and the maximality of R shows that abelian subgroups of PjR are actually 
finite. By Exercise 14.3.8 the group PjR is finite. Thus P is a Cernikov group 
and Pj(P is finite. 

(ii) -+ (iii). This is the main point of the proof. We shall prove it in four 
steps. Let G satisfy (ii). 

(a) The p-elements of G generate a Cernikov subgroup. Since G is an FC
group, a subgroup of type poo is contained in the center of G. Hence the 
pOO-subgroups generate a subgroup R of the center. Clearly R is a divisible 
abelian p-group. Let P be any Sylow p-subgroup of G. Then R ::::;; P since 
R <J G. Since, by hypothesis, P is a Cernikov group, it has a divisible 
abelian subgroup of finite index which must equal R. Thus P = PjR is fi
nite. It is clear that P is a Sylow p-subgroup of G = GjR. Thus 14.3.4 shows 
th~t each ~low p-subgroup of G is conjugate to P and thus is contained in 
pG. But pG is finite because G is locally finite and normal; thus we have 
proved that the p-elements of G generate a finite subgroup. Since R satisfies 
min, the assertion (a) is true. 

(b) In every image of G the p-elements generate a Cernikov subgroup. Let 
N <J G and let gN be a p-element of GjN. Then g has order Ipm where gpm E 

N and I is a positive integer coprime to p. Now al + bpm = 1 for suitable 
integers a and b. Hence we have g = galgbpm == gal mod N. Here gal is a p
element, so we may as well assume in the first place that g is a p-element. 
Consequently the p-elements of GjN generate a subgroup SNjN where Sis 
generated by all p-elements of G. The assertion now follows from (a). 

(c) If M is the maximum normal p'-subgroup of G, then GjM is a Cernikov 
group. By (b) the quotient group GjM inherits the properties of G. So with
out loss of generality assume that M = 1. According to (a) the p-elements of 
G generate a Cernikov group T. Now a quasicyclic subgroup of G lies in the 
center and must be a p-group since M = 1. Hence the quasicyclic subgroups 
of G generate a p-subgroup S contained in Tn ((G). Next GjCG(TjS) must 
be finite because TjS is finite. Furthermore, if x E CG(TjS), the mapping 
yS H [x, yJ is a well-defined homomorphism x8 from TjS to S; also 
8: CG(TjS) -+ L == Hom(TjS, S) is a homomorphism. Here it is essential to 
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observe that S ::s;; (G. Now L is finite since TIS is finite and S has only a 
finite number of elements of each given order. Consequently CG(TIS)/Ker () 
is finite. Clearly Ker () = CG(T) = K, say. Thus GIK is finite. 

It remains to prove that K is a Cernikov group. The p-elements of K 
belong to Tn K , so that KI(K is a p'-group. By Exercise 10.1.3 the p'
elements of K form a fully-invariant subgroup of K , which will be normal in 
G. But G has no nontrivial normal p'-subgroups. Hence K is a p-group and 
K ::s;; T, which shows that K is a Cernikov group. 

(d) Conclusion. Let PI ' P2' . .. be the sequence of primes and let M; be 
the maximum normal p;-subgroup of G. By (c) we know that GIM; is a 
Cernikov group: this group is also locally finite and normal (since G is), so 
all quasi cyclic subgroups of GIM; are central and the center of GIMi has 
finite index. Clearly the intersection of all the Mi is 1, so that the mapping 
gH(gMI' gM2 , •• • ) is a monomorphism into the cartesian product of the 
GIM; . We shall prove that the image of this mapping is contained in the 
direct product of the GIM;. 

Let p be any prime. Then the p-elements of G generate a Cernikov group 
P by (a). Naturally the prime divisors of the orders of elements of P consti
tute a finite set of primes n. If Pi rt n, then P is a normal p;-subgroup and 
P ::s;; Mi. So only a finite number of the groups GI Mi contain an element of 
order p. It follows that an element of finite order in the cartesian product of 
the GIMi must belong to the direct product; moreover the latter is prime
sparse. Hence the image of G is contained in the direct product of the GIM;. 

(iii) -+ (i). The elements of order m are contained in the product of finitely 
many direct factors and hence in a Cernikov group whose centre has finite 
index. The implication follows via 14.5.13. 0 

14.5.15. An image of an FO-group is an FO-group. 

Proof. Let N <J G where G is an FO-group. Then GIN is certainly locally 
finite and normal. Let PIN be a Sylow p-subgroup. Then it is easy to see 
that P can be generated by N together with p-elements. But the p-elements 
of G generate a Cernikov group by 14.5.14 (or more simply by (a) of the 
second implication in the proof), so PIN too has this structure. Applying 
14.5.14 we conclude that GIN is an FO-group. 0 

Notice that 14.5.15 does not follow in an obvious way from the definition 
of an FO-group. 

EXERCISES 14.5 

1. A group G is FC if and only if Gj CG(x G) is finite for every x in G. 

2. (B.H. Neumann). A finitely generated group is FC if and only if it is a finite 
extension of its center (hence such groups have max). 
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3. A group with min-n in FC if and only if it is a Cernikov group whose center has 
finite index (hence such groups have min). Find a similar characterization of 
FC-groups with max-no 

4. A direct product of FC-groups is an FC-group. But a group that is a product of 
two normal FC-subgroups need not be an FC-group. [Hint : A free nilpotent 
group with class and rank equal to 2.] 

5. (Fedorov). Prove that the only infinite group all of whose proper subgroups 
have finite index is the infinite cyclic group. 

6. (McLain). A locally nilpotent FC-group is hyercentral. [Hint: If G '# 1 is such a 
group, find a nontrivial normal subgroup N which is free or elementary abelian 
with finite rank. Consider the action of G on N and apply 8.1.10.] 

7. If G is a finitely generated group such that Yi+l G is finite, prove the G/CiG is 
finite. Show that this is not true for nonfinitely generated groups. [Hint : Use 
induction on i. Let C = CG(Yi+l G) and consider the map C n YiG -> Yi+l G given 
by x H [x , g] where g is a generator.] 

8. (P. Hall). Every countable residually finite, locally finite and normal group is 
isomorphic with a subgroup of S2 x S3 X S4 X ..• . 

9. (Cernikov). The following properties of a group G are equivalent: 
(a) G is torsion and for each prime P the group has only finitely many P

elements; 
(b) G is locally finite and normal and all Sylow subgroups are finite; 
(c) G is isomorphic with a subgroup of a prime-sparse direct product of finite 

groups. 

10. (Cernikov). A group with the properties of Exercise 14.5.9 need not be a direct 
product of finite groups. Proceed as follows. 
(a) Choose distinct primes Pi ' P2, ... such that P2i == 1 mod(P2i+1P2i-d· 
(b) Let ( Xi > have order Pi and put X = ( Xl > x ( x 3> x . .. and Y = (X 2> x 

( x4> x . ... Since P2i+l divides P2i - 1 and P2i+ 2 - 1, there is a natural 
action of X2i+l on ( X2;) and (X2i+2>. Use this to construct an action of X on 
Y and put G = X D< Y. 

(c) Prove that G is locally finite and normal and has finite Sylow subgroups. 
(d) Prove that G is directly indecomposable. 

11. (Schenkman). Let G be a locally finite group. 
(a) Prove that G has finitely many Sylow p-subgroups if and only if G/Op(G) is 

an extension of a finite group by a p' -group. [Hint : If Pi ' .. . ' Pk are the 
finitely many Sylow p-subgroups of G, consider D = n~=l NG(P;).] 

(b) Let H be the Hirsch-Plotkin radical of G. Show that if G has finitely many 
Sylow p-subgroups for each prime p, then G/H has the structure given in 
Exercise 14.5.9. 



CHAPTER 15 

Infinite Soluble Groups 

The theory of infinite soluble groups has developed in directions quite dif
ferent from the older theory of finite soluble groups. A noticeable feature of 
the infinite theory is the strong interaction with commutative algebra, which 
is due to the role played by the group ring. Despite this fact the exposition 
that follows is largely self-contained. 

15.1. Soluble Linear Groups 

If R is a ring with identity, we say that a group G is R-linear (or simply 
linear if the ring is understood) if it is isomorphic with a subgroup of the 
matrix group GL(n, R) for some positive integer n. Equivalently one could 
say that G is isomorphic with a group of R-automorphisms of a finitely 
generated free R-module. Our interest will center on two cases, where R is a 
field or the ring of integers. 

It is natural to ask which groups are linear. Rather obviously a finite 
group Gis R-linear for every R: for we can use the regular representation to 
identify G with a group of permutation matrices over R. It follows that 
linearity is a finiteness condition in the sense of 14.1. 

In 2.1 we observed that the matrices 

(~ ~) and (~ ~) 
generate a free group of rank 2: taking the derived subgroup and applying 
6.1.7 we conclude that every countable free group is "£-linear. On the other 
hand, there exist infinite groups which are not linear over any field, as we 
shall see in 15.1.5. 

450 
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The intrusion of linear groups into the theory of soluble groups is easily 
explained. Suppose that G is a soluble group with a normal abelian sub
group A. Then a = G/ CG(A) is isomorphic with a group of automorphisms 
of A. If A is an elementary abelian p-group of finite rank n, then Aut A ~ 
GL(n, p), so a is linear over the field of p elements. If A is free abelian of 
rank n, then Aut A ~ GL(n, Z) and a is Z-linear. 

Finally, suppose that A is a torsion-free abelian group of finite rank n. 
Let V = A ®z Q, which is a rational vector space of dimension n. Then V 
becomes a a-module via the natural action (a ® r)9 = ali ® r. In this case a 
is isomorphic with a subgroup of GL(n, Q) and a is Q-linear. 

It is apparent from these examples that information about the structure 
of soluble linear groups is likely to be useful in the study of soluble groups 
whose abelian factors have finite p-rank for p = 0 or a prime. 

The Lie-Kolchin-Mal'cev Theorem 

Let V be a vector space of dimension n over a field F. A subgroup G of 
GL(V) is called triangularizable if it is possible to find a basis for V with 
respect to which G is represented by a group of (upper) triangular matrices. 
We saw in 5.1 that the group T(n, F) of all triangular matrices is soluble. 
Thus every triangularizable subgroup is soluble. 

In the same spirit a subgroup of GL(V) is called diagonalizable if it can 
be represented by a group of diagonal matrices by means of a suitable choice 
of basis. Diagonalizable subgroups are, of course, abelian. 

The main result of this section may be regarded as a partial converse to 
the statements of the last two paragraphs. The final version, due to Mal'cev, 
improves earlier results of Lie and Kolchin. 

15.1.1 (Lie, Kolchin, Mal'cev). Let V be a vector space of dimension n over an 
algebraically closed field F. Suppose that G is a soluble subgroup of GL(V). 

(i) If G is irreducible, there is a normal diagonalizable subgroup D with finite 
index not exceeding g(n) for some function g. 

(ii) In general there is a normal triangularizable subgroup T with finite index 
not exceeding h(n) for some function h. 

The key to this important result is the special case when G is irreducible 
and primitive. Here a subgroup G of GL(V) is said to be primitive if there 
does not exist a decomposition 

(k> 1), 

into nonzero F-subspaces such that elements of G permute the V; . 

15.1.2 (Zassenhaus). Let V be as in 15.1.1 and suppose G is a primitive irre
ducible soluble subgroup of GL(V). Then there is a normal subgroup S con-
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sisting of scalar transformations such that IG: SI ::s; n2f(n 2) where f(m) is the 
maximum number of automorphisms of an abelian group of order m or less. 

Proof. Let A be a normal abelian subgroup of G. Since G is irreducible, V is 
a simple FG-module with the natural action of G on V. By Clifford's Theo
rem (8.1.3) we can write V = VI EB ... EB v" where the V; are the so-called 
homogeneous components, direct sums of isomorphic simple FA-modules; 
moreover elements of G permute the V;. Since G is primitive, k = 1 and 
V = VI' Because F is algebraically closed and A is abelian, a simple F A
module has dimension i-this is by 8.1.6. It follows that A consists of scalar 
multiplications; in particular A is contained in C, the centre of G. Thus 
every normal abelian subgroup of G is contained in C and is scalar. 

The remainder of the proof is concerned with a maximal normal abelian 
subgroup BIC of GIC, the object being to prove that 

IB: CI ::s; n2 and CG(Blc) = B. 

Once this has been achieved we shall be able to conclude that 

IG: BI = IG: CG(Blc)1 ::s; I Aut(Blc) I ::s; f(n 2) 

by definition of f. Hence I G : CI ::s; n2f(n 2) as required. 
To begin with suppose that CG(B) $, e. Then CG(B)/C, being normal, 

must contain a nontrivial normal abelian subgroup of GIC, say DIe. Now 
BDIC is abelian because [B, D] = 1, so the maximality of BIC leads us to 
D ::s; B. Hence D ::s; (B and D is abelian. By the first paragraph D = C, which 
is a contradiction. Thus we have proved that CG(B) = e. 

Next let {b1 , • .. , br } be a finite subset of a transversal to C in B. Suppose 
that this subset is linearly dependent (in the vector space EndF(V». After 
relabelling the b;'s if necessary, we can find a relation of the form L~=1 /;bi = 0 
where 0 1= /; E F and the length s is minimal. Now b1 bi1 ¢ C = CG(B). 
Hence [b1 bi!' x] 1= 1 for some x in B. This implies that [b1 , x] 1= [b2, xl 
Now, since [bi' x] E C, we can write [bi' x] = til with ti E F-recall that C 
is scalar. Then tl 1= t2 and, since x-1bix = bi[bi, x] = tibi, 

s 

= L (tl - ti)/;bi· 
i=2 

But s was chosen minimal, so (tl - t2)f2 = 0 and f2 = 0, a contradiction. It 
follows that {b1 , ... , br } is linearly independent in EndF(V). Since the latter 
has dimension n2 , we obtain IB : CI ::s; n2• 

It must still be shown that K == CG(Blc) equals B. Of course B ::s; K 
because BIC is abelian. If k E K, the map Ok which sends bC to [b, k] is 
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plainly a homomorphism from B/C to C. What is more, the assignment 
k 1---+ Ok is a homomorphism from K to Hom(B/C, C) whose kernel is pre
cisely CK(B), that is, C. Thus K /C is isomorphic with a subgroup of 
Hom(B/C, C). Since C is scalar, it is isomorphic with a subgroup of F*, 
the multiplicative group of F. But finite subgroups of F* are cyclic, so 
the order of Hom(B/C, C) cannot exceed that of H = Hom(B/C, Zm) where 
m = IB: CI· Thus IK: CI ::; IHI = IB : CI. Finally B ::; K, so IB: CI ::; IK: CI· 
It follows that B = K. 0 

Proof of 15.1.1. (i) Here G is assumed irreducible. By 15.1.2 we can also 
assume that G is not primitive, so there is a decomposition V = V1 EB .. . EB l-k 
where n ~ k > 1 and the nonzero subspaces l-'; are permuted transitively by 
the elements of G. If 9 E G, then l-';g = l'(i)1t9 where 1tg E Sk. Now 9 1---+ 1tg is a 
homomorphism from G to the symmetric group Sk whose kernel K is the 
intersection of all the subgroups Ki = {g E GIl-';g = l-';}. Thus IG: KI ::; k! 
::; n!. 

Consider the FK;-module l-';; this is simple by Clifford's Theorem, so Ki 
acts irreducibly on l-';. Now dim l-'; = ni < n; hence by induction on n there 
is a subgroup Di of Ki such that IKi : Dil ::; g(n;) and Di acts diagonally on 
l-'; . Define D = n1=1 Di; then D is diagonalizable and IK : DI ::; 01=1 g(ni) ::; 
(max {g(i)ll ::; i < n} t = l(n). Thus I G : DI ::; (n!)l(n). Replace D by its core 
in G and apply 1.6.9 to obtain the result with g(n) = ((n!)l(n))!. 

(ii) In the general case form an FG-composition series 0 = Vo < V1 < 
... < v., = V Apply (i) to the group G/CG(l-';+dl-';), regarded as a subgroup of 
GL(l-';+dl-';). If dim(l-';+1 / l-';) = ni , we conclude that there is a normal sub
group Di of index at most g(n;) which acts diagonally on l-';+dl-';. Then T, 
the intersection of the Di , is clearly triangularizable; moreover I G : TI cannot 
exceed (max g(n;)t = h(n). 0 

15.1.3 (Zassenhaus). Let F be any field. Then the derived length of a soluble 
F-linear group of degree n cannot exceed a number depending only on n. Thus 
a locally soluble F-linear group is soluble. 

Proof. It suffices to consider a soluble group G of n x n matrices over an 
algebraically closed field; for F may be replaced by its algebraic closure. By 
15.1.1 there is a normal subgroup T of finite index at most h(n) such that 
T::; T(n, F). But T has derived length at most d = [log2(n - 1)] + 2 or 1 if 
n = 1; this was proved in 5.1 . Hence the derived length of G is at most 
h(n) + d. The second statement follows from the first. 0 

The upper bound for the derived length that is furnished by the proof is 
quite extravagant-for sharp bounds see Newman [aI47]. 

15.1.4 (Mal'cev). A soluble linear group over a field is a finite extension of a 
group with nilpotent derived subgroup. 
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This is because T(n, F)/ U(n, F) is abelian and U(n, F) is nilpotent (see 
5.1). 

One way of showing that a soluble group is not linear is to prove that it 
does not have the structure prescribed by 15.1.4. 

15.1.5. Let G = (X" Y) "Z be the standard wreath product of three infinite 
cyclic groups. Then G is not linear over any field. 

Proof. Suppose that G is linear. Then for some m > 0 the subgroup H = 

<Xm, ym, zm) has nilpotent derived group. But H is simply the standard 
wreath product of Xm, ym and zm, so we may as well take m = 1. 

Let B be the base group of the outer wreath product (X" Y)" Z; then 
[B, Z] is nilpotent, say of class k. Choose a from X"- Y and write at for the 
element of B whose I-component is a; and whose other components equal 1. 
If Z is generated by z, then [at, z] has its z-component equal to a;. Hence 
the z-component of [[a!, z], ... , [at+1' z]] equals [a 1, ... , ak+1]. It follows 
that [a 1, ... , ak+1] = 1 and X"- Y is nilpotent. But this is absurd since 
X'- Y has trivial center (Exercise 1.6.14). D 

It follows that a finitely generated soluble group need not be linear (over 
any field). On the other hand, L. Auslander has proved that a polycyclic 
group is always Z-linear (and hence Q-linear): a proof of this (due to R.G. 
Swan) can be found in [b54] or [b71]. 

The next theorem provides important information on the structure of 
polycyclic groups. 

15.1.6 (Mal'cev). A polycyclic group has a normal subgroup of finite index 
whose derived subgroup is nilpotent. 

Proof. Let G be a polycyclic group. Then there is a normal series 1 = Go < 
G1 < ... < Ge = G such that G;+dG; is either free abelian of finite rank or 
finite. Let K; = CG(Gi+d GJ If Gi+d G; is finite, then so is G/K;. On the other 
hand, if G;+dG; is infinite, then G/K; is Z-linear. Extend the action of G/K; 
to the complex vector space (Gi+dG;) ®z C and view G/K; as a C-linear 
group. By 15.1.1 there is a normal subgroup of finite index in G/K; which is 
triangularizable, say TdK;. Then elements of (T; /K;)' can be represented by 
unitriangular matrices. From this it follows that [G;+1' m(;) T;'] ::s; G; for some 
m(i) > O. We conclude that there is a normal subgroup N of finite index in 
G such that [Gi+1' mN'] ::s; G; for all i and some m > O. This implies that N' 
is nilpotent. D 

EXERCISES 15.1 

1. The class of linear groups of given characteristic p is closed with respect to form
ing subgroups and finite direct products, but not images. 
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2. The standard wreath product X "- Y of two infinite cyclic groups is IR-linear. 
[Hint : Let X = ( x ), Y = ( y ) and consider the assignments x H (W, y H (~~) 
where ~ is a real transcendental.] 

3. The class of IR-linear groups is not extension closed. 

4. Let A <l G where A is a divisible abelian p-group of rank n. Prove that G = Gj CG(A) 
is linear over the ring of p-adic integers. 

5. (R. Strebel). Let G be an F-linear group where F is a field. Prove that Gj ,G is 
also F-linear. [Hint: Let G act on a vector space V Regarding G as a subset 
of EndF(V), let R be the subring generated by G. Consider the action of G on R 
via conjugation.] 

6. Let G be a group with a series of finite length 1 = Go <l G1 <l . . . <l Gm = G whose 
factors are abelian. If the sum of the p-ranks of each factor (p = 0 or a prime) is 
finite, then G is said to be a soluble group of finite total rank. 
(a) If G is a soluble group with finite total rank, it has a normal series of the type 

specified in the definition. 
(b) (Mal'cev). A soluble group of finite total rank has a subgroup of finite index 

whose derived subgroup is nilpotent. [Hint : Use (a) and imitate the proof of 
15.1.6.] 

7. (Mal'cev). If A is an abelian subgroup of GL(n, 2), then A is finitely generated. 
Proceed as follows. 
(a) Argue by induction on n and show that we may assume A to be rationally 

irreducible (i.e., irreducible as a subgroup of GL(n, Q). 
(b) If A acts on the natural rational vector space V, then EndQA(V) is division 

ring by Schur's Lemma, and its center F is an algebraic number field. Argue 
that A is a group of algebraic units of F. Now apply Dirichlet's theorem on 
the group of units of a number field (see [b73], for example.) 

8. Let A be an irreducible abelian subgroup of GL(n, Q). If A has finite torsion-free 
rank, show that it is finitely generated. (For the structure of the multiplicative 
group of an algebraic number field see [b24].) 

15.2. Soluble Groups with Finiteness Conditions 
on Abelian Subgroups 

Intuitively one might expect the abelian subgroups of a soluble group to 
exert a considerable influence on the structure of the group. For example, it 
is quite a simple exercise to show that a soluble group is finite if all its 
abelian subgroups are finite (see Exercise 15.2.1). There are several much 
deeper theorems of this type, the most famous being due to Marcev and 
Schmidt. 

15.2.1 (Marcev). A soluble group G satisfies the maximum condition if each of 
its abelian subgroups satisfies this condition. 
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15.2.2 (Schmidt). A soluble group G satisfies the minimal condition if each of 
its abelian subgroups satisfies this condition. 

The reader is reminded that a soluble group with min is a Cernikov 
group (5.4.23) and a soluble group with max is a polycyclic group (5.4.12). 
Also an abelian group satisfies max precisely when it is finitely generated. 

We begin with a simple fact about endomorphisms of torsion-free abelian 
groups. 

15.2.3 (Fuchs). Let e be an endomorphism of a torsion-free abelian group A of 
finite rank. Then e is injective if and only if IA : 1m 01 is finite . 

Proof. The group A is written additively. If IA : 1m 01 is finite, then A and 
1m e have the same torsion-free rank. Since A/ Ker e ~ 1m e, it follows that 
Ker 0 = O. Conversely let 0 be injective. Since A may be thought of as a 
subgroup of a finite-dimensional rational vector space, we may represent 0 
by a rational matrix. Thus 0 satisfies an equation of the form 10 + /1 e + ... 
+ Imom = 0 where the Ii are integers, not all zero. Here one can assume that 
10 #- 0 because e is injective. Now loa = (-11 a - 12 aO - . . . - Imaem - 1)() E 

1m 0 for all a in A . This implies that loA::;; 1m e. But A/ loA is finite because 
A has finite rank (Exercise 4.3.9). Hence IA : 1m 01 is finite. 0 

Two Basic Lemmas 

The two lemmas which follow provide the key to the main theorems 15.2.1 
and 15.2.2. They should be viewed as weak splitting criteria, giving condi
tions for a group to split over a normal subgroup "to within finite index" or 
"up to a finite subgroup." 

15.2.4. Let A <l G where A and G / A are abelian and A is torsion-free of finite 
rank. Assume that every nontrivial G-admissible subgroup of A has torsion 
quotient group in A. If A is not central in G, then there is a subgroup H such 
that IG: HAl is finite and H n A = 1. 

15.2.5. Let A<l G where A and G/A are abelian and A is a divisible group of 
finite rank. A ssume that every proper G-admissible subgroup of A is finite . If 
A is not central in G, then there is a subgroup H such that G = HA and 
H n A is finite. 

Proof of 15.2.4. Since A is not central, there is an element g of G such that 
[A , g] #- 1. Hence the mapping a H [a, g] is a nonzero endomorphism of 
A , say O. Since G/A is abelian, 

[a X, g] = [a, gX-'Y = [a, [x- l, g-l ]gY = [a, gY 
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where a E A and x E G . This shows that e is a G-endomorphism; hence 
Ker e<J G. Now AIKer e ~ 1m e ::;; A, so A/Ker e is torsion-free. By the 
hypothesis on A we have Ker e = 1, so that e is injective. Now apply 15.2.3 
to conclude that IA : 1m el is finite, equal to m say. We write C = CG(A/lm e), 
observing that 1 G : q is finite. 

Let c E C; then [c, gr E 1m e. Now [em, g] == [c, g]m mod[C, g, C] by 
one of the elementary commutator formulas. Also [C, g, C] ::;; [A, C] ::;; 
1m e. Therefore [em, g] Elm e = [A, g] and [em, g] = [a, g] for some a in A, 
from which it follows that cma-l E CG(g) = H, say. Thus em E HA and since 
HA<J G, we can conclude that GIHA is an abelian torsion group. 

The next step is to show that GIHA is finitely generated; this will force 
GIHA to be finite. Choose a transversal to 1m e in A, say {al ' .. . , am}. For 
j = 1, 2, ... , m we select an element Xj in G such that aj = [Xj' g], with the 
understanding that Xj = 1 should such a choice be impossible. Now pick an 
element x of G. Since GIA is abelian, [x, g] = a;[bi, g] for some i and bi E A. 
Thus [xbi-l, g] = ai' so that [xbi-l, g] = [Xi' g] and xbi-lxil E CG(g) = H. 
It follows that x E (Xl' .. . , Xm, H , A), which shows GIHA to be finitely 
generated. 

Finally H n A = Ker e = 1. 0 

Proof of 15.2.5. Choose g as in 15.2.4, observing that a f-+ [a, g] is a G
endomorphism e of A. Since Ker e<J G and Ker e # A, the hypothesis on A 
implies that Ker e is finite. Also 1 # 1m e<J G and 1m e is divisible and 
therefore infinite. Hence 1m e = A, again by the hypothesis on A. Thus e is 
surjective. 

Now choose any element x of G. Then [x, g] E A = 1m e = [A, g], so 
that [x, g] = [a, g] for some a in A. Hence xa- l E CG(g) = H, say. We have 
proved that x E HA, so G = HA. Finally H n A = Ker e is finite. 0 

15.2.6. Let A <J G where A is abelian. If every abelian subgroup of G satisfies 
the maximal condition, then the same is true of abelian subgroups of GIA. 

15.2.7. Let A <J G where A is abelian. If every abelian subgroup of G satisfies 
the minimal condition, then the same is true of abelian subgroups of GI A. 

Proof of 15.2.6. Suppose that BIA is an abelian subgroup of GIA. We shall 
prove that B, and hence BI A, is finitely generated. 

(i) Case: A is central in B. Then B is a nilpotent group; let M be a maxi
mal normal abelian subgroup of B. Thus A ::;; M and M = CB(M) by 5.2.3. 
If bE B, the mapping xA f-+ [x, b] is a homomorphism from MIA to A-let 
us call it b'. In addition t: B -+ Hom(MIA, A) = L is a homomorphism with 
kernel CB(M) = M. Now L is a finitely generated abelian group since both 
M IA and A are groups of this type. Therefore BIM is finitely generated, 
which implies that B is finitely generated. 
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(ii) Case: A is finite. Here C = CB(A) has finite index in B. Also A ::s; (C, 
so that C/ A is finitely generated by (i). It follows that B is finitely generated. 

(iii) Conclusion. Let T denote the torsion-subgroup of A; this is finite 
because A is finitely generated. By (ii) abelian subgroups of G/ T are finitely 
generated, so we may assume that T = 1, that is, A is free abelian of finite 
rank r say. 

Let us suppose that the pair (G, A) has been chosen with A of minimal 
rank subject to the existence of a nonfinitely generated abelian subgroup 
B/A of G/A . This minimality of rank implies that a nontrivial B-admissible 
subgroup of A must have finite index in A. Also A is not central in B by (i). 
Now apply 15.2.4 to conclude that there is a subgroup H with the properties 
H n A = 1 and IB : HAl < 00. Then H ~ HA/ A ::s; B/A, so H is abelian and 
therefore finitely generated. It follows that HA, and hence B, is finitely 
generated. 0 

Proof of 15.2.7. This has the same form as the preceding proof. Let B/A 
be an abelian subgroup of G/A; it will be enough to prove that B has 
min. 

(i) Case: A is central in B. Here B is nilpotent; denote by M a maximal 
normal abelian subgroup of B. As in the preceding proof there is a homo
morphism r from B to L = Hom(M/A, A) with kernel M. At this point 
some care must be exercised because L need not satisfy min (why not?). One 
observes however that r maps B into the torsion-subgroup Lo of L ; in fact 
Lo is finite. To see this, pick e in Lo: then me = 0 for some m > O. Writing D 
for the maximal divisible subgroup of M = M /A, we have (DBr = 1. How
ever DB is certainly divisible; thus DB = 1 and D ::s; Ker e. It follows easily 
that Lo ~ Hom(M/D, A). Now M /D is finite in view of the structure of 
abelian groups with min (4.2.11); let its order be m. Then a homomorphism 
from M /D to A will have its image in Ao, the subgroup of all elements a 
satisfying am = 1. Thus in fact Lo ~ Hom(M/D, Ao). But Ao is finite since it 
has finite exponent and min, so Lo is finite. In conclusion we see that B/M is 
finite; thus B has min. 

(ii) Case: A is finite. Argue as in the proof of 15.2.6. 
(iii) Conclusion. Since A has min, there is a finite characteristic subgroup 

F such that A/F is divisible. By (ii) we can factor out F; thus assume that A 
is a divisible p-group. 

Suppose that the pair (G, A) has been chosen so that A has minimal rank 
subject to the existence of an abelian subgroup B/ A of G/A that does not 
have min. By minimality a proper B-admissible subgroup of A is finite. Also 
A cannot be central in B by (i). We are now in a position to apply 15.2.5. 
There is a subgroup H such that B = HA and H n A is finite. According 
to (ii) abelian subgroups of H/H n A satisfy min. Now H/H n A ~ HA/A = 
B/A, so H/H n A is abelian. Consequently B/A has min by (ii); therefore so 
does B. 0 
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Proof of 15.2.1. Let d denote the derived length of G. If d ~ 1, then, G being 
abelian, there is nothing to prove. Let d > 1 and write A = G(d- l). By 15.2.6 
abelian subgroups of G/A satisfy max. Hence, by induction on d, the group 
G / A has max. Therefore G has max. 0 

Proof of 15.2.2. This proceeds in the same manner via induction on the 
derived length. 0 

Minimax Groups 

A group is called a minimax group if it has a series of finite length whose 
factors satisfy either max or min. Thus minimax is a finiteness property 
which generalizes both max and min. A basic example of an abelian mini
max group in the group 0" of rational numbers whose denominators are 
n-numbers where n is some finite set of primes: for lL satisfies max and 
O,, /lL min. It should be clear that an abelian minimax group has finite rank. 

Suppose that A is an abelian minimax group; let 1 = Ao <J Al <J • . . <J 

An = A be a series with min or max factors. Choose a finite set of generators 
for each finitely generated factor of the series; then choose a preimage in A 
of each generator. The resulting finite set generates a subgroup X such that 
A/X has min. Thus an abelian group is minimax if and only if it is an exten
sion of a group with max by a group with min. However this conclusion does 
not hold for arbitrary soluble minimax groups (Exercise 15.2.6). Notice that 
a soluble torsion group is minimax if and only if it has min. (For further 
properties of abelian minimax groups see Exercise 4.4.7.) 

There is a theorem for the property minimax analogous to the theorems 
of Mal'cev and Schmidt. 

15.2.8 (Baer, Zaicev). A soluble group is minimax if each of its abelian sub
groups is minimax. 

In the usual way this follows from 

15.2.9. Let A <J G where A is abelian. If every abelian subgroup of G is mini
max, then the same is true of abelian subgroups of G/ A . 

The standard mode of proof is employed, but the special case where A is 
central requires extra attention. 

Proof of 15.2.9. Clearly we can split the proof into two cases, A torsion and 
A torsion-free. Let B/A be an abelian subgroup of G/A. 

(i) Case: A is central in B. Suppose that A is a torsion group; let n denote 
the set of prime divisors of orders of elements of A, a finite set. Consider the 
torsion-subgroup S/ A of B/ A. Then S is a torsion group, so its abelian sub-
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groups have min. Schmidt's Theorem (15.2.2) implies that S has min. Hence 
S/A has min and is a direct factor of B/A by 4.3.9. In view of this we can 
assume that B/ A is torsion-free. 

Choose any countable subset {Xl' X2""} of B. If we succeed in proving 
X = <Xl' X 2 , • • . > to be a minimax group, it will follow that B/A has finite 
rank; also B will be countable and hence a minimax group. 

Since B/A is abelian, [Xi' Xj ] E A, so that [Xi> xJ1ii = 1 for some positive 
n-number lij . Now [Xi' Xj] belongs to the center of B; therefore 

[Xi' XJii] = 1. 

Define 11 = 1 and Ij = IljI2j " ·Ij - lj, (j > 1). The above equation shows that 
the subgroup 

is abelian. By hypothesis Y is a minimax group. It follows that Y A is a 
minimax group. Now XA/YA is a n-group, as may be seen from the fact 
that the Ij are n-numbers. Since Y A/A has finite torsion-free rank, so does 
XA/A; hence XA/YA has finite p-rank for all primes p (see Exercise 4.2.7). 
Since n is finite, we conclude that XA/YA has min in view of the structure 
of abelian p-groups with finite p-rank (4.3.13). Hence XA is minimax, which, 
of course, implies that X is minimax. 

Now suppose that A is torsion-free. If M is a maximal normal abelian 
subgroup of B, then in the usual way we form a homomorphism from B to 
L = Hom(M/A, A) with kernel M. Let () E L. Since A is torsion-free, the 
torsion-subgroup T/A of M/A is mapped by () to 1. Thus () will be deter
mined by its effect upon a maximal independent subset of M/T. It follows 
that L is isomorphic with a subgroup of a direct product of finitely many 
copies of A. This surely implies that L is a minimax group. Hence B is a 
minimax group. 

(ii) Case: A is finite. The usual argument applies. 
(iii) Conclusion. By factoring out a finite subgroup of A, we reduce to two 

special cases: A torsion-free or a divisible p-group. Let (A, G) be chosen so 
that the rank of A is minimal subject to the existence of an abelian sub
group B/A of G/A that is not minimax. By (i), A is not central in B. The 
minimality of rank shows that 15.2.4 or 15.2.5 can be applied. Thus there is 
a subgroup H such that IB: HAl is finite and H (\ A = 1 or B = HA and 
H (\ A is finite. In the usual way H is minimax, whence so is B. 0 

A complete discussion of soluble groups with finiteness restrictions on 
their abelian subgroups is to be found in [al71]. 

EXERCISES 15.2 

1. A soluble group is finite if each of its subnormal abelian subgroups is finite. 
[Hint: Reduce to the case of a metabelian group G. Choose a maximal abelian 
subgroup A containing G' and observe that A = CG(A).] 
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2. A soluble group G satisfies max if each of its subnormal abelian subgroups does. 
Adopt the following procedure. 
(a) Use induction on the derived length of G to reduce to the case where G has a 

normal abelian subgroup A and GIA is abelian. 
(b) Reduce to the case where A is free abelian. 
(c) Now apply Exercise 15.1.7. 

3. Let G = ( t ) ~ A where A is of type 2'" and at = a3, (a E A). Prove that every 
subnormal abelian subgroup of G is contained in A and thus has min, but G does 
not have min (cf. the previous exercise). 

4. Let G be the holomorph of Q. Prove that each subnormal abelian subgroup has 
torsion-free rank ~ 1, but G does not have finite torsion-free rank (see Exercise 
14.1.1). 

5. If G is a nilpotent group such that Gab is minimax, then G is minimax. 

6. Give an example of a minimax group that is not an extension of a group with 
max by a group with min. [Hint: The group of Exercise 15.2.3.] 

7. (Carin). If G is a soluble group all of whose abelian subgroups have finite total 
rank (in the sense of Exercise 15.1.6), then G has finite total rank. [Hint: Imitate 
the proof of 15.2.8.] 

8. (Mal'cev). A soluble subgroup of GL(n, £:) is polycyclic. [Hint: Apply Exercise 
15.1.7.] 

9. Give an example of a finitely generated infinite soluble group with all its abelian 
normal subgroups finite (see Exercise 15.2.1). [Hint: Apply 14.1.1 with A a non
trivial finite abelian group.] 

15.3. Finitely Generated Soluble Groups and the 
Maximal Condition on Normal Subgroups 

The rest of this chapter is devoted to finitely generated soluble groups. That 
this is a complex class of groups is indicated by a theorem of Neumann 
and Neumann ([aI45]): any countable soluble group of derived length d may 
be embedded in a 2-generator soluble group of derived length at most d + 2. 
Thus finitely generated soluble groups of derived length 3 can have com
plicated abelian subgroups. (See also 14.1.1.) This might suggest finitely 
generated metabelian groups as suitable objects of study. In fact we shall do 
somewhat better, dealing with finitely generated groups that are extensions 
of abelian groups by nilpotent (or even polycyclic) groups. Most of the ideas 
in the theory that follows originated in three fundamental papers of P. Hall 
published between 1954 and 1961. 

We begin by recalling an elementary fact: a soluble group with max-n 
is finitely generated (5.4.21). Thus for soluble groups the property max-n 
is intermediate between max and finitely generated. Are there significant 
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classes of soluble groups which possess max-n other than polycyclic groups? 
The following theorem, the basic result of the whole theory, furnishes a 
large class of such groups. 

15.3.1 (P. Hall). A finitely generated group G which is an extension of an 
abelian group by a polycyclic group satisfies the maximal condition on normal 
subgroups. 

For example, a finitely generated metabelian group has max-no So the 
standard wreath product of a pair of infinite cyclic groups has max-n, but it 
is not polycyclic since it does not satisfy max. 

The main ingredient in the proof of 15.3.1 is a variant of Hilbert's Basis 
Theorem on polynomial rings. This is the first of a series of well-known 
results from commutative algebra that underlie the principal theorems of 
this and the following sections. (The reader who wishes to read about the 
background should consult a text on commutative algebra; however this is 
not necessary to comprehend the sequel.) 

The version of Hilbert's Basis Theorem referred to now follows. 

15.3.2 (P. Hall). Let G be a group with a normal subgroup H and let R be a 
ring with identity. Assume that G/H is either infinite cyclic or finite. Suppose 
that M is an RG-module and N an RH-submodule. If N generates M as an 
RG-module and N is RH-noetherian, then M is RG-noetherian. 

Recall that a (right) module over a ring S is said to be noetherian, or 
to satisfy max-S in the notation of 3.1, if it satisfies the maximal condition 
on S-submodules. A ring S is said to be right noetherian if Ss, the ring 
S regarded as a right S-module in the obvious way, is noetherian: this 
amounts to imposing the maximal condition on the right ideals of S. 

If we take H to be 1, G = <t) an infinite cyclic group and R a right 
noetherian ring, the theorem shows that R<t) is right noetherian. Since 
R<t) is the polynomial ring R[t, C l ], the connection with the polynomial 
ring form of Hilbert's theorem becomes apparent. 

Proof of 15.3.2. (i) Suppose first of all that G/ H is finite. Let {t 1, ... , t l } be a 
transversal to H in G. Since G = U;=l Ht; and by hypothesis M = (N)RG, 
we have M = Ntl + ... + Nt l • Now if a E N and x E H, then (at;)x = 

(axti')t; E Nt;, which implies that Nt; is an RH-submodule. The same equa
tion makes it clear that the mapping a 1-+ at; is an R-isomorphism which 
maps RH-submodules of N to RH-submodules of Nt;. (However it is not an 
RH-isomorphism) Since N has max-RH, so must Nt;. Therefore M satisfies 
max-RH, by 3.1.7. A fortiori M satisfies max-RG. 

(ii) Now let G/H be infinite cyclic, generated by Ht let us say. Then each 
element a of M can be written in the form 

s 

a = L bit; 
i=r 
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where bi E Nand r ~ s, although perhaps not in a unique fashion. If bs ;/= 0, 
call bstS a leading term and bs a leading coefficient of a. 

Choose a nonzero RG-submodule Mo of M. Our task is to show that Mo 
is finitely generated as an RG-module; for by 3.1.6 this will imply that M is 
RG-noetherian. To this end we form the set No consisting of 0 and all lead
ing coefficients of elements of Mo, claiming that No is a RH-submodule of 
N. To see this suppose that a and a' belong to M o, having leading terms bstS 
and b;,tS'. Then a ± a'tS- S ' certainly belongs to Mo; moreover its leading 
coefficient is bs ± b;, unless of course this vanishes. Thus in any event 
bs ± b;, E No. Furthermore, if U E RH, then a(t-SutS) in Mo has leading term 
(bsu)tS unless bsu = 0; hence bsu E No and our claim is established. 

By hypothesis N has max-RHo Hence there is a finite set {b, ... , bl } with 
bi ;/= 0 which generates No as an RH-module. By definition there exists an a i 

in Mo which has bi as a leading coefficient. Now we can modify ai by a large 
enough power of t to ensure that no negative powers of t are involved: the 
same device permits us to assume that bitm is a leading term of ai for each i. 
Thus all the ai have leading terms of the same degree n. 

Next define M1 to be the RG-submodule generated by a 1 , ••. , al ' Also 
write N1 =Mon(N+Nt+···+Ntm- 1 ). Observe that N+Nt+···+ 
Nt m- 1 has max-RH by an argument used in the first paragraph; conse
quently its RH-submodule N1 is finitely generated. Therefore the RG-module 

M2 = M1 + (NdRG 

is finitely generated. Now obviously M2 ~ Mo; our contention is that 
M2 = Mo, which will complete the proof. 

Suppose that a E Mo \M2 • Certainly there is nothing to be lost in assum
ing that a does not involve negative powers of t. Choose such an element a 
whose leading term is ctP where p is as small as possible. If p < m, then 
a E Mo n (N + Nt + ... + Ntm- 1 ) = M1 ~ M2 , which is not true; thus p 2'! m. 
Since c E No, it is possible to write c = Lli=1 biui where Ui E RH. Now the 
element 

I 

a' = L ai(Cmuitp ) 
i=1 

belongs to M 2 , involves no negative powers of t and has a leading term 

So a and a' have the same leading term. Hence a - a' belongs to Mo \M2 
and involves no powers of t higher than the (p - l)th, which contradicts the 
minimality of p. 0 

The important application of this lemma is to the group ring of a poly
cyclic group. 
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15.3.3 (P. Hall). Let G be a finite extension of a polycyclic group and let R 
be a right noetherian ring with identity. Then the group ring RG is right 
noetherian. 

Proof. By hypothesis there is a series 1 = Go <J G1 <J ... <J Gn = G whose 
factors are infinite cyclic or finite. If n = 0, then G = 1 and RG = R, which 
is given as being right noetherian. Let n > ° and put H = Gn - 1 . By induc
tion on n the ring RH is right noetherian, that is, as an RH-module it has 
max-RHo Apply 15.3.2 with M = RG and N = RH to get the result. D 

On the basis of 15.3.3 it is now easy to complete the proof of 15.3.1. 

Proof of 15.3.1. By hypothesis G possesses a normal abelian subgroup A 
such that H = G/A is polycyclic. View A as a ZH-module by conjugation in 
the natural way. Now G is finitely generated, while H is finitely presented 
since it is polycyclic (see 2.2.4); hence A is a finitely generated ZH-module 
by 14.1.3. Consequently, in additive notation, A is a sum of finitely many 
cyclic ZH-modules. But a cyclic ZH-module has max-ZH since it is an 
image of ZH and the latter is right noetherian as a ring by 15.3.3. It follows 
that A has a max-ZH or, what is the same thing, max-G. Finally G has 
max-G, that is to say max-no D 

Not every finitely generated soluble group has max-n: for example, the 
group G of 14.1.1 does not have max-n if A is not finitely generated. Notice 
that this group has derived length 3, confirming the bad behaviour of 
finitely generated soluble groups with derived length greater than 2. 

The Upper and Lower Central Series in Finitely 
Generated Abelian-by-Nilpotent Groups 

The next objective is to prove some results about the lengths of the upper 
and lower central series in finitely generated soluble groups. In the back
ground here is a key theorem of commutative algebra known as the Artin
Rees property (see Exercise 15.3.4). The small amount of ring theory neces
sary will be developed from scratch. 

Polycentral Ideals 

Let R be a ring with identity element. Recall that an element r is said to be 
central in R if rx = xr for all x in R. The set of all central elements is a 
subring of R, the center. An ideal I is called a central ideal of R if it can be 
generated by central elements; thus I = L;. r;.R = L;. Rr;. where each r;. is 
central. It is important to notice that JI = IJ if J is any ideal and I any 
central ideal of R. 
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More generally an ideal I is said to be polycentral if there is a finite series 
of ideals of R 

0=10 < 11 < ... < II = I 
which is R-central, that is to say, li+dli is a central ideal of R/l i. The length 
of a shortest series of this type is the height of I . 

To explain the relevance of polycentral ideals let us consider a group 
G and a normal subgroup H which is contained in some finite term of the 
upper central series, say H:s; UG). Defining Hi = H n (iG, we obtain a 
series 1 = Ho <J H 1 <J •.• <J He = H which is a partial central series of G. 
Let Ii = IH; be the right ideal of TLG generated by all elements x-I where 
x E Hi; it was shown in 11.3 that Ii is a two sided ideal of 7LG. Also of course 
o = 10 :s; /1 :s; ... :s; Ie = IH. In fact this is a central series in 7LG, so that IH 
is a polycentral ideal of 7LG. To prove this choose x E Hi+1 and g E G; then 

(x - l)g - g(x - 1) = xg - gx = gx([x, g] - 1). 

Since [x, g] E Hi' it follows that [x, g] - 1 E Ii and (x - l)g == g(x - 1) 
mod Ii. Therefore 1i+1 /li is a central ideal of 7LG/l i. 

In particular IH is polycentral in TLG whenever H <J G and G is nilpotent. 
This will be our standard example of a polycentral ideal. 

We proceed now to establish the necessary facts about polycentral ideals. 

15.3.4. Let R be a ring with identity and let M be a right noetherian R-module. 
Suppose that J is a sum of polycentral ideals of R each of which has a power 
annihilating M. Then Mr = 0 for some n > O. 

Proof. Since M is noetherian, MJ = MI where 1= /(1) + ... + I(r); here 
each l(j) is a polycentral ideal of Rand MI(j)m = 0 for some m > O. Let 
n1 = r(m - 1) + 1. Then /"' is the sum of all products of n1 l(j)'s and in 
each product at least one l(j) will occur m times; therefore M/"' = O. 

It is clear from the definition that I is polycentral; let 

0=/0 </1 < ... <1,=1 

be a central series of ideals of R. If MI = 0, then MJ = 0 and there is noth
ing more to prove. Assume therefore that MI =f. 0; then there is an integer 
i < s such that 0 = Mli < Mli+1 . The polycentral ideal 1/1i+1 has height 
s - i-I < sin R/l i+1; by induction hypothesis on the height applied to the 
R/li+1-module M/Mli+1 there is an n2 > 0 such that Mr2 < Mli+1. Since 
1i+1/li is a central ideal, li+J :s; JIi+1 + Ii. But Mli = 0, so in fact N li+1 J :s; 
N J 1i+1 for every submodule N of M. Applying this inclusion repeatedly we 
deduce that MJkn2 :s; M/~+1 for all k > O. Setting k = n1 and remembering 
that M/"' = 0, we conclude that Mr,n2 = o. 0 

The crucial property of polycentral ideals can now be established. If M is 
a right R-module and X a subset of R, let 

*X 
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denote the set of all a in M which are annihilated by X; thus 

*X={aeMlaX=O}. 

15.3.5 (Robinson). Let R be a ring with identity and let M be a (right) 
noetherian R -module. Then there is a positive integer n such that M I" n * I = 
o for every polycentral ideal I of R. 

Proof. (i) First we will prove the weaker statement wherein the "n" is allowed 
to depend on the ideal. Suppose that this has been proved for all ideals of 
height less than i (where i > 0). Choose a polycentral ideal I of height i. 
Assuming the result false for I, we may suppose the pair (M, I) to be chosen 
so that the result is true for (M, I) whenever M is a proper image of M: here 
we make use of the noetherian condition. Suppose that there are nontrivial 
submodules MI and M2 such that MI n M2 = O. Then by choice of (M, I) 
there is an integer n > 0 such that MI" n *1:::;; MI and MI" n *1:::;; M 2 . This 
implies that MI" n *1 = 0, a contradiction. Consequently nontrivial sub
modules of M intersect nontrivially. 

By hypothesis there is a central series of ideals 0 = 10 < I I < ... < Ii = I. 
Choose a central element x lying in II. Then 0 # *1 :::;; *x, so that *x # O. 
Because x is central in R, the mapping a 1-+ ax" is an R-endomorphism 
of M; thus its kernel *(x") is a submodule. Since *x:::;; *(x2 ) :::;; . • . , the 
noetherian condition tells us that there is an integer nl such that *(x"') = 
*(x", +1). Suppose that a e M x", n * x; then a = bx"' for some b eM, and 
o = ax = bx"' +1, so that b e *(x", +1) = *(x",) and a = bx"' = O. It follows 
that Mx"' n *x = O. Since Mx"' and *x are submodules and *x # 0, we 
deduce that Mx"' = O. Now because x is central, (Rx)"' = Rx"', so that 
M(Rx)"' = O. But II is a sum of ideals of the form Rx with x central. Hence 
MI~2 = 0 for some n2 > 0 by 15.3.4. 

Suppose we have shown that Ml'I~+1 = 0 for some integers rand s. Then 
Ml'I~ is an Rill-module; also /111 is a polycentral ideal of Rill with height 
i - 1. Induction on i yields an integer t such that 

0= (Ml'If)l' n *1 = Ml'+tI~ n *1 

since I I I = I (I I) by centrality of I I. Because *1 # 0, it follows that 
Ml'+tI~ = O. But we know that MI~2 = 0; thus repeated applications of the 
foregoing argument lead to M I" = 0 for some n > O. This is a contradiction. 

(ii) It remains to show that an "n" can be found which is independent 
of I . Assume that no such integer exists for M, but that every proper image 
of M has one. Just as above nontrivial submodules of M must intersect 
non trivially. If I is any polycentral ideal, we have proved that there is an 
integer nl, depending on I, such that MI"' n *1 = O. It follows that either 
M 1"' = 0 or *1 = O. Denote by J the sum of all the polycentral ideals of 
R which have a power annihilating M. Then by 15.3.4 there is an n > 0 
such that MJ" = O. Consequently MI" n *1 = 0 holds for any polycentral 
~~L D 
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Applications 

15.3.6 (Stroud, Lennox-Roseblade). Let G be a finitely generated group with 
a normal abelian subgroup A such that G/A is nilpotent. Then there is a posi
tive integer n such that 

and 
(n-l H = (n H 

for every subgroup H such that HA -<J G. 

Proof. Let R = Z(G/A) and define I to be iHA/A ; this is polycentral in R 
because HA/A-<J G/A and G/A is nilpotent. Also G/A is polycyclic, so A is a 
noetherian R-module by 15.3.1. Thus 15.3.5 is applicable: there is an integer 
n l such that Ar' n * I = O. Now, allowing for the change from additive to 
multiplicative notation, we recognize AI as [A, H]; so in group-theoretic 
terms [A, niH] n CA(H) = 1. If G/A has nilpotent class c, then Yc+lH ~ A 
and thus Yc+1 +n, H n (H = 1. 

The second part is now easy. Writing n for c + 1 + nl, we have 
[(nH, n-lH] ~ YnH n (H = 1, which shows that (nH = (n-lH. 0 

15.3.7 (Stroud). Let G be as in 15.3.6 and let H -<J G. Then YwH = Yw+lH. 

Proof. Clearly Yw+1 H -<J G, while 

Yw H/Yw+1 H = Yw(H/YW+l H) ~ ((H/Yw+l H). 

Hence YwH = Yw+l H by 15.3.6. o 
For example, if G is a finitely generated metabelian group, there is a finite 

upper bound for the length of the upper central series of an arbitrary sub
group; for in 15.3.6 we can take A to be G', in which event HA -<J G is auto
matic. Also the lower central series of a normal subgroup of G terminates 
after at most OJ steps. 

A very extensive theory of upper central lengths of subgroups in finitely 
generated soluble groups has been developed by Lennox and Roseblade 
[a123]. 

Powers of the Augmentation Ideal 

15.3.8. Let R be a ring with identity element, I a polycentral ideal and M a 
right noetherian R-module. Then an element a belongs to Mr for every n > 0 
if and only if a = ax for some x in 1. 

Proof. Suppose that a E Mr for all n, and consider N = aI and the R
module M/N. According to 15.3.5 there is a positive integer n such that 
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(MjN)r n *1 = O. Clearly a + N belongs to every (MjN)r: it also belongs 
to * I since N = aI. Therefore a E N, which implies that a = ax for some x in 
I. The converse is obvious. 0 

The reader may recognize 15.3.8 as a generalization of the Krull Inter
section Theorem for modules over a commutative ring. 

From 15.3.8 we easily obtain a criterion for residual nilpotence of finitely 
generated soluble groups. 

J5.3.9. Let G be a finitely generated group with a normal abelian subgroup A 
such that GjA is nilpotent. Assume that A is torsion-free as a Z(GjA)-module. 
Then G is residually nilpotent. 

Proof. Suppose that 1 "# a E [A, nGJ for every n. Apply 15.3.8 with M = A, 
R = Z(GjA) and 1= IGIA' the augmentation ideal. Then, in additive nota
tion, 0"# a = ax for some x in I, or a(x - 1) = O. Since A is a torsion-free 
R-module, x = 1. But 1 E I implies that I = R, a contradiction. It follows 
that the intersection of all the [A, nGJ is 1. Since the quotient group Gj[A, nG] 
is nilpotent, G is residually nilpotent. 0 

In order to make use of this criterion it is necessary to discover situations 
where the module condition is satisfied. This is the purpose of the ensuing 
discussion. 

Zero Divisors in Group Rings 

There is a long-standing conjecture that the integral group ring of a torsion
free group G contains no divisors of zero; equivalently, is ZG when regarded 
as a right ZG-module torsion-free? The conjecture has been proved in vari
ous special cases, the following one being quite sufficient for our purposes. 

15.3.10 (G. Higman). If G is a group such that every nontrivial finitely gener
ated subgroup has an irifinite cyclic image, then ZG has no zero divisors. 

Proof. Suppose that ab = 0 where a and b are nonzero elements of ZG. Let 
the number of group elements involved in a and in b be m and n respec
tively. If I = m + n, then certainly I::?: 2, while 1=2 means that a E G and 
bEG, which clearly excludes ab = O. Thus I > 2. Assume that a and b have 
been chosen so that I is minimal subject to ab = O. Observe that 1 can be 
assumed to occur in both a and b; for we can premultiply a and post
multiply b by suitable elements of G to achieve this. 

The totality of elements involved in a and b generates a nontrivial finitely 
generated subgroup H which, by hypothesis, has a normal subgroup K such 
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that H/K is infinite cyclic, generated by Kt say. We can write 

a = a1 t U , + ... + artu• and b = b1tV, + ... + bstVs 

where ai' bj E ZK and the integers ui, Vj satisfy U 1 < U 2 < ... < Ur and 
V 1 < V 2 < ... < Vs' Suppose that r = 1 = s. Since 1 occurs in a and b, and 
H/K is infinite cyclic, it follows that a and b lie in ZK; however this implies 
that H = K. Hence either r > 1 or s > 1. 

Now form the product ab using the sums exhibited above. The lowest 
power of t which occurs in the product is tU , +v, and its coefficient a1 bru, 

must therefore be O. However, because r > 1 or s > 1, either a1 involves 
fewer group elements than a or bru , involves fewer than b. This contradicts 
the minimality of I. 0 

Obviously a nontrivial poly-infinite cyclic group has an infinite cyclic 
image. Therefore we obtain the following result. 

15.3.11. The integral group ring of a group that is locally poly-infinite cyclic 
contains no divisors of zero. In particular this is true of the integral group 
ring of a finitely generated torsion-free nilpotent group. 

For an account of the present status of the zero divisor problem the 
reader should consult [b51J, 

We can now give some examples of groups to which the residual nil
potence criterion applies. 

15.3.12. If R ~ F - G is a finite presentation of a finitely generated torsion
free nilpotent group G, then F/R' is residually nilpotent. 

Proof. Rab is a G-module via conjugation in F. It was shown in 11.4.8 
that the mapping rR' ~ (r - 1) + IFIR is a ZG-monomorphism from Rab 

to IF/IFIR; furthermore the latter module is ZG-free (11.3.4). Now ZG has no 
zero divisors by 15.3.11; hence a free ZG-module, and so a submodule of a 
free ZG-module, is torsion-free. Conclude that Rab is torsion-free as a ZG
module. 15.3.9 can now be applied to give the result. 0 

For example, let F be a finitely generated free group. It is known that the 
lower central factors of F are free abelian groups (see for example [b31J). 
Hence F IYnF is torsion-free. Thus the relatively free group F /(YnF)' is residu
ally nilpotent, as one sees by taking R to be YnF in 15.3.12. 

The section closes with an interesting application of the intersection the
orem 15.3.8. 

15.3.13 (Gruenberg). If G is a finitely generated torsion-free nilpotent group, 
then the intersection of all the powers of the augmentation ideal Ia is zero. 
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Proof. ZG is torsion-free as a ZG-module by 15.3.11. The result now follows 
from 15.3.8 with R = ZG and [ = [G' 0 

In fact 15.3.13 is more generally true: G can be an arbitrary torsion-free 
nilpotent group (Hartley [a82J). 

EXERCISES 15.3 

1. If the integral group ring of G is right noetherian, then G satisfies max. [Hint: If 
H < K ::; G, then IH < lK'] 

2. Let W = Z "- G, the standard wreath product. 
(a) If W satisfies maXon, show that G satisfies max. 
(b) If G is a finite extension of a polycyclic subgroup, prove that Z"- G satisfies 

max-no (Note: The base group of W is isomorphic with ZG). 

3. Let G be a finitely generated extension of an abelian group by a nilpotent group. 
Prove that the Hirsch-Plotkin radical of G is nilpotent and equals the Fitting 
subgroup. [Hint: Use 15.3.6. See also 15.5.1.] 

4. Let R be a ring with identity, I an ideal of Rand M a right R-module. The pair 
(M, I) has the Artin-Rees property if, given a submodule N and a positive integer 
n, there exists a positive integer m such that MIm n N £: NIn. If M is noetherian 
and I is polycentral in R, prove that (M, I) has the Artin-Rees property. 

5. If the integral group ring of G has no zero divisors, then G is torsion-free. 

6. If G is a finitely generated torsion-free nilpotent group, the standard wreath 
product Z"- G is residually nilpotent. 

7. (P. Hall). There are only countably many nonisomorphic finitely generated 
groups which are extensions of abelian groups by polycyclic groups. (cf. 14.1.1). 
[Hint: Use 15.3.1.] 

8. Let R be a noetherian integral domain and let I be a proper ideal. Prove that 
nn=1.2 ... .In = O. 

15.4. Finitely Generated Soluble Groups 
and Residual Finiteness 

The principal aim of this section is to prove the following major result. 

15.4.1 (P. Hall). A finitely generated group which is an extension of an abelian 
group by a nilpotent group is residually finite. 

Like so many results in the theory of finitely generated soluble groups 
15.4.1 hinges on properties of finitely generated modules over noetherian 
group rings. In this instance we require an analogue of what in commuta
tive algebra is known as the Weak Nullstellensatz of Hilbert. 
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The Class of Modules .ff(J, n) 

Suppose that J is a principal ideal domain and let n be a set of (non
associate) primes in J. Then a J-module M is said to be belong to the class 
.A(J, n) if it has a free J-submodule F such that MIF is a n-torsion-module; 
thus if a E M, there is some product x of primes in n such that ax E F. The 
crucial property of a module in .A(J, n) is that it cannot have a submodule 
isomorphic with the field of fractions of J unless n is a complete set of 
primes. We list this with other simple facts about .A(J, n) in the following 
lemma. 

15.4.2. (i) If M E .A(J, n) and N is a submodule of M, then N E .A(J, n). 
(ii) The field of fractions of J belongs to .A(J, n) if and only if n is a 

complete set of primes. 
(iii) If M has an ascending series of submodules each factor of which 

belongs to .A(J, n), then M E .A(J, n). 

Proof. (i) Since J is a principal ideal domain, a submodule of a free J-module 
is free. The result now follows easily. 

(ii) This is a simple exercise which we leave to the reader. 
(iii) Let 0 = Mo ~ M I ~ .. . Ma = M be the given ascending series. 

By hypothesis there is for each P < IX a free J-module MplMp such that 
Mp+dMp is a n-torsion module. Choose a basis {ap;. + MplA. E MP)} for the 
free module MplMp; then form the submodule S generated by all the ap;. 
where A. E A(P), P < IX. If there were a nontrivial J-linear relation in the ap;.'s, 
there would be such a relation in the ap;. + Mp for some fixed p, which is 
impossible. Consequently the ap;. are linearly independent over J and S is a 
free J-module. On the other hand, each (Mp+1 + S)/(Mp + S) is an-torsion 
module, which clearly implies that MIS is a n-torsion module. D 

Now for the basic result on modules over polycyclic group rings which 
will eventually lead to a proof of 15.4.1. 

15.4.3. Let G be a polycyclic group and J a prinCipal ideal domain. Then a 
finitely generated JG-module M belongs to the class .A(J, n) where n is some 
finite set of primes in J. 

Proof. Form a series in G with cyclic factors, 1 = Go<J GI <J"'<J G, = G. 
If I = 0, then G = 1 and M is a finitely generated J-module. The structure 
theorem for finitely generated modules over principal ideal domains implies 
the result immediately. So we assume that I > 0 and put N = G,- I . In what 
follows we shall write R for JG and S for IN. 

(i) Case: GIN is finite. Choose a transversal T to N in G. Now by hypo
thesis there is a finite set {aI' a2' .. . , ak} such that M = aIR + a2R + ... + 
akR; hence M is the sum of the finite set of cyclic S-modules (ait)S, i = 1, 
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2, ... , k, t E T. Thus M is a finitely generated S-module. By induction on I 
we obtain M E .A(J, n) for some finite set of primes n. 

(ii) Case: G/N is infinite. Write G = <t, N) and H = <t). Then G = 
H ~ N, the natural semidirect product. Since M is finitely generated as an 
R-module, there is a finitely generated S-module L such that M = LR; 
hence M is the sum of the S-submodules Lt i, i = 0, ± 1, ± 2, .. . . 

Now define for each positive integer n 

n -1 

L: = L Lti and L; = L Lti. 
i=1 i=-n 

These are, of course, S-modules, as is V = Un=I.2 .... L;, the sum of all the 
Lti for negative i. Clearly V ~ Vt ~ Vt2 ~ " ' , the union of this chain being 
M. The S-modules Vt/ V and Vtn+1 / Vtn are J-isomorphic via the obvious 
mapping at + V ~ atn+1 + Vtn. Now Vt = V + L, so Vt/ V ~ L/V n L. 
But L/ V n L E .A(J, nd for some finite n1 by induction on I. Consequently 
M / V E .A(J, n1) by 15.4.2(iii). Thus it remains only to deal with V 

Certainly ° = Lo ~ LJ. ~ ... and V is the union of this chain. Also 
L;+1 = Lt- (n+l) + L;, so that L;+dL; is S-isomorphic with 

Lt-<n+l)/Lt-<n+1) n L;, 

which is J-isomorphic to L/LnL;tn+l = L/LnL:. Now LnLj' ~ 
L n L~ ~ . . , is an ascending chain of S-submodules of L. Moreover S is 
right noetherian by 15.3.3-notice here that J is noetherian since it is a 
principal ideal domain. Since L is a finitely generated S-module, it is 
noetherian. It follows that L n L: = L n L:+1 = etc. for some integer n. We 
see now with the aid of the induction hypothesis that every L;+d L; belongs 
to .A(J, n2 ) for some finite set of prime n2 • Therefore V E .A(J, n2 ) and 
ME .A(J, n) where n = n 1 u n2 • 0 

On the basis of this lemma the analogue of the Weak Nullstellensatz 
referred to above can be derived. 

15.4.4 (P. Hall). If G is a finitely generated nilpotent group, then any simple 
7l.G-module M is finite . 

Proof. There is nothing to be lost in assuming that G acts faithfully on 
M; thus we may regard G as a group of automorphisms of M. Because M 
is simple, it isa cyclic 7l.G-module; it follows via 15.4.3 that ME .A(71., n) 
for some finite set of primes n. Now the additive group of M is either an 
elementary abelian p-group or a rational vector space (since it is character
istically simple). However the latter is impossible because iQ cannot belong 
to .A(71., n) if n is finite (by 15.4.2). Hence M is an elementary abelian p
group. 

Choose z from the center of G. Define J to be the group algebra of an 
infinite cyclic group <t) over F, the field of p elements: thus J is a principal 
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ideal domain. We make M into a lG-module by defining at to be az for 
a E M. (Here it is relevant that z E ((G).) Then ME "({(J, n) for some finite 
set of primes n of 1. Since a complete set of primes for 1 is infinite, the field 
of fractions K of J does not occur as a submodule of M: here use is made of 
15.4.2 once again. 

Since M is a simple JG-module, Schur's Lemma (8.1.4) tells us that 
EndJG(M) is a division ring; its center C is therefore a field, clearly of char
acteristic p. By identifying y in F with y 1 in C, we can regard F as a subfield 
of C. Let S denote the subring of C generated by F and z. Then the assign
ment t t--. z determines a surjective ring homomorphism IX from 1 = F<t) 
to S. Thus S ~ 111 for some ideal I. 

Suppose that 1=0, so that IX: 1 ~ C is a monomorphism; this extends 
to a monomorphism IX: K ~ C. Let 0 =/; a E M and define 0: K ~ M by 
x(} = axil, x E K. This is easily seen to be a J-monomorphism. However this 
cannot be correct since K is not isomorphic with a l-submodule of M. Hence 
1=/;0. 

It now follows that J / I is finite since I is a principal ideal; thus S is finite 
and z has finite order. 

We have now proved that the center of the finitely generated nilpotent 
group G is a torsion group. It follows via 5.2.22 that G is finite. Since M = 
(aglg E G) for any nonzero a in M, we conclude that M is finite. 0 

The main theorem 15.4.1 can now be proved. 

Proof of 15.4.1. By hypothesis G is a finitely generated group with a normal 
abelian subgroup A such tht GIA is nilpotent. Let 1 =/; 9 E G. By Zorn's 
Lemma there is a normal subgroup which is maximal subject to not con
taining g-let us call it N. It suffices to prove that GIN is finite. Clearly we 
lose nothing in supposing N to be trivial. Every nontrivial normal subgroup 
of G must now contain g. Hence there is a unique smallest nontrivial nor
mal subgroup of G, say M. 

If A = 1, then G is nilpotent and M lies in the center of G; what is more, 
M must have prime order, say p. Since M lies in every nontrivial normal 
subgroup, (G is a p-group. It follows that G is finite. 

Assume that A =/; 1, so that M ~ A. Now M is a simple Z(GIA)-module, 
so 15.4.4 shows M to be finite. Thus C = CG(M) has finite index in G. Now 
by 15.3.6 there is a positive integer n such that Yn(C) (") (C = 1. But it is 
clear that M ~ (C, so Yn(C) (") M = 1, which can only mean that YnC = 1 
and C is nilpotent. Also C is finitely generated since I G : CI is finite. Thus (C 
is a finitely generated abelian group; hence some power ((C)m is torsion-free. 
But ((C)m (") M = 1 because M is finite. Consequently ((C)m = 1, which 
implies that C, and hence G, is finite. 0 

More recently it has been shown that 15.4.1 is true for the more general 
class of finitely generated extensions of abelian groups by polycyclic groups. 
This is due to Jategaonkar [a107] and Roseblade [a180]: the proof is signif
icantly harder. 
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EXERCISES 15.4 

1. Let J be a principal ideal domain and F its field offractions. Prove that FE Jt(J, n) 
if and only if n is a complete set of primes in J. 

2. Let G be a finitely generated torsion-free group. Suppose that there is a normal 
abelian subgroup A such that G/A is nilpotent. If n is any infinite set of primes, 
prove that np."AP = 1. 

3. Let G be a finite extension of a polycyclic group and let J be a principal ideal 
domain. If M is a finitely generated JG-module, show that ME Jt(J, n) where n 
is a finite set of primes in J. 

4. If G is a finite extension of a finitely generated nilpotent group, prove that a 
simple ZG-module is finite. 

*5. (P. Hall). Let G be a finitely generated group which is a finite extension of a 
metanilpotent group. Prove that all principal factors of G are finite and all maxi
mal subgroups of G have finite index. [Hint : Use Exercise 15.4.4.] 

6. (P. Hall). The main theorems of this section do not hold for finitely generated 
soluble groups of derived length 3. Use the following construction. Let V be 
a rational vector space with a basis {v;l i E Z} and let the set of all primes be 
ordered as {pjli E Z} with pj #- Pj if i #- j. Define ~ and" in GL(V) as follows: 

and Vj" = pjVj. 

Establish the following statements. 
(a) H = < ~, ,, > is isomorphic with the standard wreath product 1""-1", a finitely 

generated metabelian group. 
(b) V is a simple ZH-module. 
(c) G = H ~ V is a finitely generated soluble group with derived length 3 satis

fying max-no 
(d) G is not residually finite, and it has an infinite principal factor and a maxi

mal subgroup of infinite index. 

15.5. Finitely Generated Soluble Groups 
and Their Frattini Subgroups 

In Chapter 5 several characterizations of the Fitting subgroup were given, 
for example in terms of the centralizers of the principal factors (see 5.2.9 and 
5.2.15). Similar characterizations were discovered by P. Hall to hold for cer
tain finitely generated soluble groups. 

15.5.1 (P. Hall). Let G be a finitely generated metanilpotent group. Then the 
following subgroups of G coincide and are nilpotent. 

(i) The Fitting subgroup. 
(ii) The Hirsch- Plotkin radical. 
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(iii) The subgroup FFrat G defined by the equation 

FFrat G/Frat G = Fit(G/Frat G), 

(iv) The intersection of the centralizers of the principal factors of G, 

One consequence of this theorem is that Frat G :;:;; Fit G; thus the Frattini 
subgroup of G is nilpotent, 

Behind 15,5,1 stands another version of the Hilbert Nullstellensatz, usu
ally referred to as the Strong Nullstellensatz, The form of this important 
theorem which is required here is as follows, 

15.5.2. Let G be a finitely generated nilpotent group with integral group ring 
R. Suppose that M is a finitely generated R-module and z a central element of 
R such that Mz :;:;; N for every maximal submodule N. Then Mzn = 0 for 
some positive integer n. 

Proof. M is a noetherian module by 15.3.3. Thus we can assume the result 
to be false for M but true for every proper image of M. Recall that 

*z={aeMlaz=O}; 

since z is central in R, this is a submodule of M. If *z "# 0, then Mzm :;:;; *z 
for some positive m, which implies that Mzm+l = O. By this contradiction 
*z = 0, so that the R-endomorphism a ~ az is injective and M =::R Mz, 

Let Ml be an R-module isomorphic with M by means of the assignment 
a ~ al, (a e M, al e Md. Then a ~ alz is surely an injective R-homomor
phism from M to Ml with image Mlz. We may therefore embed M in Ml as 
M1z. By repeated use of this device one obtains a sequence of R-modules 
M = Mo, M l , ... and embeddings M; --t M;+l with image Mi+lZ. Let M be 
the direct limit of this sequence of maps and modules. Then, after suitable 
identifications, we can think of M as the union of the chain 

M=Mo:;:;;M1 :;:;; .. •· 

Since Mz ~ M;+lZ = M;, we have M = Mz, Therefore a ~ az is an R-auto
morphism of M. 

Now form the direct product G = G x T where T = (t) is an infinite 
cyclic group. Make M into a G-module by defining at to be az, (a e M); 
this is compatible with the action of G because z is central in R. From 
M; = Mi+lZ it follows that M; = Mt-;. Since M is the union of the M;, we 
conclude that M is finitely generated as a ZG-module. Consequently M has 
a maximal ZG-submodule, say L. Suppose that L contains M; then L will 
also contain Me; = M;, which gives the contradiction L = M. Therefore 
LnM"# M. 

By 15.4.4 the simple ZG-module M IL is finite. Thus MIL n M is a non
trivial finite abelian group. Now L n M is contained in some maximal R
submodule of M, say M*. By hypothesis Mz :;:;; M*; thus application of z to 
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M IL n M yields an endomorphism which is not surjective. Since M IL n Mis 
finite, this endomorphism cannot be injective either, so there is an a in M \ L 
such that az E L n M. Hence (a + L)z = L. But this cannot be true since 
b f-+ bz is an automorphism of M and it induces an automorphism in M IL. 

o 
Proof of 15.5.1. By hypothesis the finitely generated group G has a nil
potent normal subgroup N such that GIN is nilpotent, and certainly 
N ~ Fit G = F, say. Since GIN satisfies max, F is the product of finitely 
many normal nilpotent subgroups. Hence F is nilpotent by 5.2.8. 

Consider next the Hirsch-Plotkin radical H of G. Of course F ~ H; we 
aim to show that H centralizes every principal factor of G and to achieve 
this it is sufficient to prove that H centralizes every minimal normal sub
group L of G. This is clear if H n L = 1, so assume that L ~ H. Now L is 
finite by Exercise 15.4.5, so there is a principal factor of H of the form L IM. 
Then L IM is central in H because H is locally nilpotent- here we are 
appealing to 12.1.6. Thus [L, H] < L. But [L, H]<l G, so we obtain 
[L, H] = 1 as required. It follows that H ~ X where X is the intersection of 
the centralizers of the principal factors of G. 

The next step in the proof is to demonstrate that X is nilpotent; for then 
it will follow that X ~ F, and hence that F = H = X . If this is not true, X IF 
is nontrivial and must contain a nontrivial element of the center of GIF, say 
zF. Consider the Z(GIF)-module P = FIF': this is noetherian by 15.3.1. If 
S is a maximal submodule of P, then z will centralize PIS because z E X; 
in other words z - 1 annihilates the module PIS. According to 15.5.2 this 
implies that some (z - It annihilates P, which, translated into the language 
of group theory, says that (z, F )IF' is nilpotent. However if follows from 
5.2.10 that (z, F) is nilpotent, while (z, F) is normal in G because zF was 
chosen from the center of GIF. Therefore z E F, which is false. 

Finally we consider Y = FFrat G. It is clear that F ~ Y. All that remains 
to be done is to show that Y ~ F. 

In fact we need only do this in the case where N is abelian. For suppose 
that this has been achieved. By Exercise 12.2.15, we have N' ~ Frat G, so 
that Frat(GIN') = (Frat G)/ N' and FFrat(GIN ' ) = (FFrat G)/N'. Hence 
YIN' is nilpotent. Since N is nilpotent, we may deduce from 5.2.10 that Y is 
nilpotent and Y ~ F. 

In the remainder of the proof we assume that N is abelian, so that G 
is residually finite by 15.4.1. Let L be a minimal normal subgroup of G. 
We need only check that [Y, L] = 1. Now L is certainly finite (Exercise 
15.4.5). By residual finiteness we can find a T<l G such that GIT is finite 
and L n T = 1. Obviously Frat(GIT) ~ (Frat G) TI T, so that FFrat(GIT) ~ 
YTI T. But FFrat(GIT) = Fit(GIT) by Gaschiitz's theorem (5.2.15), so 
YTIT ~ Fit(GIT). Also L ~G LTI T, which implies that LTIT is minimal 
normal in GIT. We deduce from 5.2.9 that YTIT centralizes LTIT and 
[L, Y] ~ L n T = 1. The proof is now complete. 
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The following useful theorem is a consequence of 15.5.2. It is a general
ization of a theorem of Hirsch on polycyclic groups (5.4.18). 

15.5.3 (Robinson, Wehrfritz). Suppose that G is a finitely generated soluble 
group. If G is not nilpotent, then it has a finite image that is not nilpotent. 

Proof. Presuming the theorem to be false, we choose for G a counterexample 
of smallest derived length. If A is the smallest nontrivial term of the derived 
series, then G/A is nilpotent and, of course, A is abelian. Therefore G 
satisfies max-no By passing to a suitable quotient group we may assume that 
each proper quotient group of G is nilpotent. 

Write F = Fit G. Then F is nilpotent by max-no If F' #- 1, then G/F' is 
nilpotent, which implies that G is nilpotent. Consequently F is abelian. In 
addition G/F is nilpotent because F cannot equal 1. 

Since F #- G, there is a nontrivial element in the center of G/F, say zF. 
Using max-n we may choose a maximal Z(G/F)-submodule M of F; then 
F/M is finite. If M = 1, the group G is actually polycyclic, in which case the 
theorem is known to be true (5.4.18). Hence M #- 1 and G/M is nilpotent. 
Since F/M is minimal normal in G/M, it is central; thus [F, z] ::;:; M. 
Applying 15.5.2 we deduce that [F, nZ] = 1 for some n > O. However, this 
says that <z, F) is nilpotent and causes z to lie in F. 0 

In conclusion we illustrate the use of the last theorem. 

15.5.4. Suppose that G is a group whose Frattini subgroup is finitely gener
ated. Then Frat G is nilpotent if and only if it is soluble. 

The proof goes exactly like that of 5.4.19, appeal being made to 15.5.3 at 
the appropriate point. However, despite 15.5.4, the Frattini subgroup of a 
finitely generated soluble group may fail to be nilpotent, as examples of 
P. Hall show ([a78]). 

EXERCISES 15.5 

1. (P. Hall). If G is a finitely generated soluble group with nilpotent length 1 + 1, 
then Frat G has nilpotent length at most 1. (The nilpotent length of an infinite 
soluble group is the length of a shortest series with nilpotent factors.) 

2. Prove 15.5.4. 

3. A finitely generated soluble group G such that G' S Frat G is nilpotent (see 5.2.16). 

4. Is the preceding exercise correct if the group is not finitely generated? 

5. (Baer). If G is a finitely generated, nonnilpotent group, prove that G has a quo
tient group G which is not nilpotent but all of whose proper quotient groups are 
nilpotent. 
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6. Suppose that G is a finitely generated group which has an ascending normal 
series each of whose factors is finite or abelian. If G is nonnilpotent, then G has a 
finite nonnilpotent image. [Hint : Use Exercise 15.5.5.] 

7. An automorphism 0( of a group G is said to be uniform if the mapping x H x -1x« 
is surjective. If G is a finite group, then 0( is uniform if and only if 0( is fixed-point
free. Show that this is false for infinite groups. 

8. (Robinson, Zappa). Let G be a finitely generated soluble group. If G has a uni
form automorphism of prime order, prove that G is a finite nilpotent p' -group. 
[Hint : Use 15.5.3 and 10.5.4.] 

9. Prove that 15.5.1 remains true if we allow G to be a finite extension of a finitely 
generated metanilpotent group. 



Bibliography 

Items marked with an asterisk are in Russian. 

Articles 

[a1] Asar, A.D., A conjugacy theorem for locally finite groups, J. London Math. 
Soc. (2) 6 (1973),358-360. 

[a2] Auslander, L., On a problem of Philip Hall, Ann. Math. (2) 86 (1967), 112-
116. 

[a3] Ayoub, C., On properties possessed by solvable and nilpotent groups, J. 
Austral. Math. Soc. 9 (1969), 218-227. 

[a4] Baer, R., The subgroup of the elements of finite order of an abelian group, 
Ann. Math. 37 (1936), 766-781. 

[a5] Baer, R., Nilpotent groups and their generalizations, Trans. Amer. Math. 
Soc. 47 (1940), 393-434. 

[a6] Baer, R., Representations of groups as quotient groups, Trans. Amer. Math. 
Soc. 58 (1945),295-419. 

[a7] Baer, R., Finiteness properties of groups, Duke Math. J. 15 (1948), 1021-
1032. 

[a8] Baer, R., Groups with descending chain condition for normal subgroups, 
Duke Math. J. 16, (1949),1-22. 

[a9] Baer, R., Endlichkeitskriterien flir Kommutatorgruppen, Math. Ann. 124 
(1952), 161-177. 

[a 10] Baer, R., Nilgruppen, Math. Z. 62 (1955), 402-437. 
[all] Baer, R., Classes of finite groups and their properties, Illinois J. Math. 1 

(1957), 115-187. 
[a12] Baer, R., Engelsche Elemente Noetherscher Gruppen, Math. Ann. 133 

(1957),256-270. 
[a13] Baer, R., Abziihlbar erkennbare gruppentheoretische Eigenschaften, Math. 

Z. 79 (1962),344-363. 
[a14] Baer, R., Polyminimaxgruppen, Math. Ann. 175 (1968),1-43. 

479 



480 Bibliography 

[a15] Baer, R. and Levi, F., Freie Produkte und ihre Untergruppen, Compositio 
Math. 3 (1936),391-398. 

[a16] Baumslag, G., Automorphism groups of residually finite groups, J. London 
Math. Soc. 38 (1963), 117- 118. 

[a17] Bender, H., A group theoretic proof of Burnside's paqb-theorem, Math. Z. 
126 (1972), 327- 338. 

[a18] Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Philos. 
Soc. 31 (1935), 433-454. 

[a19] Burnside, W., On some properties of groups of odd order II, Proc. London 
Math. Soc. 33 (1901),257-268. 

[a20] Burnside, W., On an unsettled question in the theory of discontinuous 
groups, Quart. J. Pure Appl. Math. 33 (1902), 230-238. 

[a21] Burnside, W., On groups of order paqP, Proc. London Math. Soc. (2) 1 
(1904),388-392. 

[a22] Cameron, P.l, Finite permutation groups and finite simple groups, Bull. 
London Math. Soc. 13 (1981), 1-22. 

[a23] Carin, V.S., * A remark on the minimal condition for subgroups, Dokl. 
Akad. Nauk. SSSR 66 (1949),575-576. 

[a24] Carin, V.S., *On soluble groups of type A 3 , Mat. Sb. 54 (1961), 489- 499. 
[a25] Carter, R.W., Splitting properties of soluble groups, J. London Math. Soc. 

36 (1961),89- 94. 
[a26] Carter, RW., Nilpotent self-normalizing subgroups of soluble groups, 

Math. Z. 75 (1961),136-139. 
[a27] Carter, RW. and Hawkes, T.O., The ij-normalizers of a finite soluble 

group, J. Algebra 5 (1967), 176-202. 
[a28] Cernikov, S.N., *Infinite locally soluble groups, Mat. Sb. 7 (1940), 35-64. 
[a29] Cernikov, S.N., *On special p-groups, Mat. Sb. 27 (1950), 185- 200. 
[a30] Cernikov, S.N., *Infinite groups with finite layers, Mat. Sb. 22 (1948),101-

133 = Amer. Math. Soc. Translations (1) 56 (1951), 51-102. 
[a31] Cernikov, S.N., *On groups with finite classes of conjugate elements, Dokl. 

Akad. Nauk SSSR 114 (1957),1177- 1179. 
[a32] Cernikov, S.N., *On layer-finite groups, Mat. Sb. 45 (1958), 415- 416. 
[a33] Cernikov, S.N., *Finiteness conditions in the general theory of groups, 

Uspehi Mat. Nauk 14 (1959), 45-96 = Amer. Math. Soc. Translations (2) 84 
(1969), 1-67. 

[a34] Chevalley, C. Sur certains groupes simples, T{)huku Math. J. (2) 7 (1955), 
14-66. 

[a35] Clifford, A.H., Representations induced in an invariant subgroup, Ann. 
Math. 38 (1937), 533- 550. 

[a36] Cooper, C.D.H., Power automorphisms of a group, Math. Z. 107 (1968), 
335-356. 

[a37] Cunihin, S.A., *On theorems of Sylow's type, Dokl. Akad. Nauk. SSSR 66 
(1949), 165-168. 

[a38] Dedekind, R , Uber Gruppen, deren siimtliche Teiler Normalteiler sind., 
Math. Ann. 48 (1897), 548- 561. 

[a39] Dicman, A.P., *On p-groups, Dokl. Akad. Nauk. SSSR 15 (1937), 71-76. 
[a40] Dicman, A.P., Kuros, A.G. and Uzkov, A.I., Sylowsche Untergruppen von 

unendlichen Gruppen, Mat. Sb. 3 (1938),178-185. 
[a41] Doerk, K., Minimal nicht iiberauflosbare, endliche Gruppen, Math. Z. 91 

(1966), 198- 205. 
[a42] Durban, lR, Residually central elements in groups, J. Algebra 9 (1968), 

408- 413. 
[a43] Dyer, J.L. and Formanek, E., The automorphism group of a free group is 

complete, J. London Math. Soc. (2) 11 (1975),181 - 190. 



Bibliography 481 

[a44] Eilenberg, S. and MacLane, S., Cohomology theory in abstract groups I, 
II, Ann. Math. (2) 48 (1947),51-78,326-341. 

[a45] Feit, W., The current situation in the theory of finite simple groups, Actes 
Congres Intern. Math. (Nice 1970), Vol. 1,55-93. 

[a46] Feit, W. and Thompson, lG., Solvability of groups of odd order, Pacific 1. 
Math. 13 (1963), 775-1029. 

[a47] Fischer, B., Gaschiitz, W., and Hartley, B., Injektoren endlicher auflosbarer 
Gruppen, Math. Z. 102 (1967),337-339. 

[a48] Fitting, H., Beitrage zur Theorie der Gruppen endlicher Ordnung, 
lahresber. Deutsch. Math. Verein 48 (1938),77-141. 

[a49] Frattini, G., Intorno al1a generazione dei gruppi di operazioni, Rend. Atti. 
Accad. Lincei (4) 1 (1885),281-285,455-457. 

[a50] Frobenius, G., Ueber Relationen zwischen den Charakteren einer Gruppe 
und denen ihrer Untergruppen, Berliner Berichte (1898),501-515. 

[a51] Frobenius, G., Uber auflosbare Gruppen V, S.-B. Preuss, Akad. Berlin 
(1901). 1324-1329. 

[a52] Frobenius, G. and Stickelberger, L., Uber Gruppen von vertauschbaren 
Elementen, 1. Reine Angew. Math. 86 (1879),217-262. 

[a53] Gal1ian, I.A., The search for finite simple groups, Math. Mag. 49 (1976), 
163-180. 

[a54] Gaschiitz, W., Zur Erweiterungstheorie endlicher Gruppen, 1. Reine 
Angew. Math. 190 (1952), 93-107. 

[a55] Gaschiitz, W., Uber die <I>-Untergruppe endlicher Gruppen, Math. Z. 58 
(1953), 160-170. 

[a56] Gaschiitz, W., Gruppen, in denen das NormaIteilersein transitiv ist, 1. 
Reine Angew. Math. 198 (1957),87-92. 

[a57] Gaschiitz, W., Zur Theorie der endlichen auflosbaren Gruppen, Math. Z. 
80 (1963),300-305. 

[a58] Gaschiitz, W., Nichtabelsche p-Gruppen besitzen aussere p-Automorphis
men, J. Algebra 4 (1966), 1-2. 

[a59] Golod, E.S., *On nil-algebras and residual1y finite p-groups, Izv. Akad 
Nauk SSSR Ser. Mat. 28 (1964), 273-276 = Amer. Math. Soc. Translations 
(2) 48 (1965),103-106. 

[a60] Gorcakov, Yu.M., *On 10cal1y normal groups, Mat. Sb. 67 (1965), 244-
254. 

[a61] Grigorcuk, R.I., *Burnside's problem on periodic groups, Funktsional. 
Anal. i Prilozhen. 14 (1980),53-54. 

[a62] Gruenberg, K.W., Residual properties of infinite soluble groups, Proc. 
London Math. Soc. (3) 7 (1957), 29-62. 

[a63] Gruenberg, K.W., The Engel elements of a soluble group, Illinois J. Math. 
3(1959),151-168. 

[a64] Gruenberg, K.W., The upper central series in soluble groups, Illinois J. 
Math. 5 (1961), 436-466. 

[a65] Griin, 0., Beitrage zur Gruppentheorie I, J. Reine Angew. Math. 174 (1935), 
1-14. 

[a66] Gupta, N.D. and Sidki, S., On the Burnside problem for periodic groups, 
Math. Z. 182 (1983),385- 388. 

[a67] Hal1, P., A note on soluble groups, J. London Math. Soc. 3 (1928), 98-105. 
[a68] Hal1, P., A contribution to the theory of groups of prime-power order, 

Proc. London Math. Soc. (2) 36 (1934), 29-95. 
[a69] Hal1, P., A characteristic property of soluble groups, J. London Math. Soc. 

12 (1937), 198-200. 
[a70] Hal1, P., On the Sylow systems of a soluble group, Proc. London Math. Soc. 

(2),43 (1937), 316-323. 



482 Bibliography 

[a71] Hall, P., On the system normalizers of a soluble group, Proc. London Math. 
Soc. (2) 43 (1937), 507-528. 

[an] Hall, P., Finiteness conditions for soluble groups, Proc. London Math. Soc. 
(3) 4 (1954), 419- 436. 

[a73] Hall, P., Theorems like Sylow's, Proc. London Math. Soc. (3) 6 (1956), 286-
304. 

[a74] Hall, P., Finite-by-nilpotent groups, Proc. Cambridge Phi/os. Soc. 52 (1956), 
611 - 616. 

[a75] Hall, P., Some sufficient conditions for a group to be nilpotent, Illinois J. 
Math. 2 (1958),787-801. 

[a76] Hall, P., Periodic FC-groups, J. London Math. Soc. 34 (1959),289-304. 
[a77] Hall, P., On the finiteness of certain soluble groups, Proc. London Math. 

Soc. (3) 9 (1959), 595-622. 
[a78] Hall, P., The Frattini subgroups of finitely generated groups, Proc. London 

Math. Soc. (3) 11 (1961), 327-352. 
[a79] Hall, P., On non-strictly simple groups, Proc. Cambridge Phi/os. Soc. 59 

(1963),531-553. 
[a80] Hall, P. and Higman, G., On the p-Iength of p-soluble groups and reduc

tion theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 
1- 42. 

[a81] Hall, P. and Kulatilaka, C.R., A property of locally finite groups, J. London 
Math. Soc. 39 (1964),235- 239. 

[a82] Hartley, B., The residual nilpotence of wreath products, Proc. London 
Math. Soc. (3) 20 (1970), 365-392. 

[a83] Hartley, B., A note on the normalizer condition, Proc. Cambridge Phi/os. 
Soc. 74 (1973), 11-15. 

[a84] Hawkes, T.O., On formation subgroups of a finite soluble group, J. London 
Math. Soc. 44 (1969),243-250. 

[a85] Head, T.l., Note on the occurrence of direct factors in groups, Proc. Amer. 
Math. Soc. 15 (1964), 193- 195. 

[a86] Heineken, H., Eine Bemerkung iiber engelsche Elemente, Arch. Math. 
(Basel) 11 (1960), 321. 

[a87] Heineken, H., Engelsche Elemente der Lange drei, Illinois J. Math. 5 (1961), 
681-707. 

[a88] Heineken, H. and Mohamed, 1.1., A group with trivial centre satisfying the 
normalizer condition, J. Algebra 10 (1968),368-376. 

[a89] Higman, G., The units of group-rings, Proc. London Math. Soc. (2) 46 
(1940), 231 - 248. 

[a90] Higman, G., A finitely generated infinite simple group, J. London Math. 
Soc. 26 (1951), 61 - 64. 

[a91] Higman, G., Complementation of abelian normal subgroups, Pub!. Math. 
Debrecen 4 (1956), 455-458. 

[a92] Higman, G., Subgroups of finitely presented groups, Proc. Roy. Soc. 
London Ser. A262 (1961), 455-475. 

[a93] Higman, G., Neumann, B.H., and Neumann, H., Embedding theorems for 
grO\lps, J. London Math. Soc. 24 (1949), 247-254. 

[a94] Hirsch, K.A., On infinite soluble groups I, Proc. London Math. Soc. (2) 44 
(1938), 53-60. 

[a95] Hirsch, K.A., On infinite soluble groups II, Proc. London Math. Soc. (2) 44 
(1938), 336-344. 

[a96] Hirsch, K.A., On infinite soluble groups III, Proc. London Math. Soc. (2) 49 
(1946), 184-194. 

[a97] Hirsch, K.A., On infinite soluble groups IV, J. London Math. Soc. 27 (1952), 
81 - 85. 



Bibliography 483 

[a98] Hirsch, K.A., On infinite soluble groups V, J. London Math. Soc. 29 (1954), 
250- 251. 

[a99] Hirsch, K.A., Uber lokal-nilpotente Gruppen, Math. Z. 63 (1955), 290-
294. 

[a 100] Holder, 0., Bildung zusammengesetzer Gruppen, Math. Ann 46 (1895), 
321-422. 

[a101] Hopf, H., Uber die Bettischen Gruppen, die zu einer beliebigen Gruppe 
gehoren, Comment. Math. Helv. 17 (1944/45),39-79. 

[a 102] Hulse, 1. A., Automorphism towers of polycyclic groups, J. Algebra 16 
(1970),347-398. 

[a 103] Huppert, B., Normalteiler und maximale Untergruppen endlicher Gruppen, 
Math. Z. 60 (1954), 409- 434. 

[a 104] Ito, N., Note on S-groups, Proc. Japan Acad. 29 (1953),149-150. 
[a 105] Iwasawa, K., Uber die endlichen Gruppen und die Verbiinde ihrer Unter

gruppen, J. Univ. Tokyo 4 (1941), 171- 199. 
[a 106] Iwasawa, K., Einige Siitze tiber freie Gruppen, Proc. Imp. Acad. Tokyo 19 

(1943),272-274. 
[a 107] Jategaonkar. A.V., Integral group rings of polycyclic-by-finite groups, J. 

Pure Appl. Algebra 4 (1974),337-341 
[a108] Jordan, e., Recherches sur les substitutions, J. Math. Pure Appl. (2) 17 

(1872),351-363. 
[a 109] Kaluznin, L.A., Uber gewisse Beziehungen zwischen einer Gruppe und 

ihren Automorphismen, Berlin Math. Tagung (1953),164-172. 
[a11O] Kaluznin, L. and Krasner, M., Produit complet des groupes de permuta

tions et probleme d'extension des groupes, Acta Sci. Math. Szeged. 13 
(1950),208-230,14 (1951),39-66,69-82. 

[all 1] Kappe, L.-e. and Kappe, W.P., On three-Engel groups, Bull. Austral. 
Math. Soc. 7 (1972),391-405. 

[a1l2] Kargapolov, M.I., *On a problem of O. Yu Schmidt, Sibirsk Math. t. 4 
(1963),232-235. 

[al13] Kegel, O.H., Produkte nilpotenter Gruppen, Arch. Math. (Basel) 12 (1961), 
90-93. 

[a 114] Kegel, O.H., Noethersche 2-Gruppen sind endlich, Monatsh. Math. 71 
(1967), 424-426. 

[all 5] Kegel, O.H. and Wehrfritz, B.A.F., Strong finiteness conditions in locally 
finite groups, Math. Z. 117 (1970),309-324. 

[all 6] KoJchin, E.R., On certain concepts in the theory of algebraic matric groups, 
Ann. Math. (2) 49 (1948), 774-789. 

[all 7] Kostrikin, A.I., *The Burnside problem, Izv. Akad. Nauk SSSR Ser. Mat. 
23 (1959), 3- 34. 

[all 8] Krull, W., Uber verallgemeinerte endliche Abelsche Gruppen, Math. Ann. 
23 (1925), 161-196. 

[a1l9] Kulikov, L.Ya, *On the theory of abelian groups of arbitrary cardinality, 
Mat. Sb. 9 (1941),165-182. 

[a 120] Kulikov, L.Ya, *On the theory of abelian groups of arbitrary power, Mat. 
Sb. 16 (1945), 129-162. 

[a121] Kuros, A.G., Die Untergruppen der freien Produkte von beliebigen 
Gruppen, Math. Ann. 109 (1934),647-660. 

[a122] Kuros, A.G. and Cernikov, S.N., *Soluble and nilpotent groups, Uspehi 
Mat. Nauk 2 (1947),18-59 = Amer. Math. Soc. Translations 80 (1953). 

[a123] Lennox, J.e. and Roseblade, J.E., Centrality in finitely generated soluble 
groups, J. Algebra 16 (1970), 399-435. 

[a124] Levi, F.W., Groups in which the commutator operation satisfies certain 
algebraic conditions, J. Indian Math. Soc. 6 (1942),87-97. 



484 Bibliography 

[a125] Levi, F.W. and van der Waerden, B.L., Uber eine besondere Klasse von 
Gruppen, Abh. Math. Sem. Univ. Hamburg 9 (1932),154-158. 

[a126] Lyndon, R.C, The cohomology theory of group extensions, Duke Math. J. 
15 (1948), 271 - 292. 

[a127] MacLane, S., Cohomology theory in abstract groups III, Ann. Math. (2) 50 
(1949), 736- 761. 

[a128] MacLane, S., A proof of the subgroup theorem for free products, Mathe
matika 5 (1958), 13-19. 

[a129] Magnus, W., Beziehungen zwischen Gruppen und Idealen in einem speziel
len Ring, Math. Ann. 111 (1935), 259-280. 

[aBO] Magnus, W., Uber freie Faktorgruppen und freie Untergruppen gegebener 
Gruppen, Monatsh. Math. Phys. 47 (1939),307-313. 

[a131] Mal'cev, A.I., *On the faithful representation of infinite groups by matrices, 
Mat. Sb. 8 (1940), 405-422 = Amer. Math. Soc. Translations (2) 45 (1965), 
1-18. 

[a132] Mal'cev, A.I., *On a general method of obtaining local theorems in group 
theory, Ivanov. Gos. Ped. Inst. Ucen. Zap. 1 (1941), 3-9. 

[a133] Mal'cev, A.I., *Generalized nilpotent algebras and their adjoint groups, 
Mat. Sb. 25 (1949), 347-366 = Amer. Math. Soc. Translations (2) 69 (1968), 
1-21. 

[a 134] Mal'cev, A.I., *On certain classes of infinite soluble groups, Math. Sb. 28 
(1951),567-588 = Amer. Math. Soc. Translations (2) 2 (1956),1-21. 

[a135] Mal'cev, A.I., *Homomorphisms of finite groups, Ivanov Gos. Ped. Inst. 
Ucen. Zap. 18 (1958), 49-60. 

[a 136] Mathieu, E., Memoire sur l'etude des fonctions de plusieur quantites, J. 
Math. Pures Appl. (2) 6 (1861),241-323. 

[a137] Mathieu, E .. Sur la fonction cinq fois transitive de 24 quantites, J. Math. 
Pures Appl. (2) 18 (1873), 25- 46. 

[a138] McLain, D.H., A characteristically-simple group, Proc. Cambridge Philos. 
Soc. 50 (1954), 641-642. 

[a139] McLain, D.H., On locally nilpotent groups, Proc. Cambridge Philos. Soc. 52 
(1956), 5-11. 

[a140] McLain, D.H., Finiteness conditions in locally soluble groups, J. London 
Math. Soc. 34 (1959),101-107. 

[a141] Meldrum, ID.P., On the Heineken-Mohamed groups, J. Algebra 27 (1973), 
437-444. 

[a142] Neumann, B.H., Identical relations in groups I, Math. Ann. 114 (1937), 
506-525. 

[a143] Neumann, B.H., Groups with finite classes of conjugate elements, Proc. 
London Math. Soc. (3) 1 (1951), 178-187. 

[a144] Neumann, B.H., An essay on free products of groups with amalgamations, 
Philos. Trans. Roy. Soc. A 246 (1954), 503-554. 

[a145] Neumann, B.H. and Neumann, H., Embedding theorems for groups, J. 
London Math. Soc. 34 (1959), 465-479. 

[a146] Newman, M.F., On a class of nilpotent groups, Proc. London Math. Soc. (3) 
10 (1960),365-375. 

[a147] Newman, M.F., The soluble length of soluble linear groups, Math. Z. 126 
(1972),59-70. 

[a148] Newman, M.F., Problems, in "Burnside Groups", Lecture Notes in Math. 
Vol. 806, Springer-Verlag, Berlin (1980), 249-254. 

[a149] Nielsen, J., Om Regning med ikke kommutative Faktoren og dens Anven
delse i Gruppeteorien, Mat. Tidssk. B (1921),77-94. 

[a150] Novikov, P.S. and Adjan, S.I., *Infinite periodic groups, Izv. Akad. Nauk 
SSSR Ser. Mat. 32 (1968),212-244,251-524,709- 731 = Math. USSR-Izv 
2 (1968) 209- 236, 241-479, 665- 685. 



Bibliography 485 

[a151] Novikov, P.S. and Adjan, S.I., *Commutative subgroups and the conjugacy 
problem in free periodic groups of odd order, Izv. Akad. Nauk SSSR Ser. 
Mat. 32 (1968),1176-1190 = Math. USSR-Izv. 2 (1968),1131-1144. 

[a152] Ol'sanskii, A.Yu, *An infinite group with subgroups of prime orders, Izv. 
Akad. Nauk. SSSR Ser. Mat. 44 (1980),309-321. 

[a153] Peng, T.A., Engel elements of groups with maximal condition on abelian 
subgroups. Nanta Math. 1 (1966), 23-28. 

[a154] Peng, T.A., Finite groups with pro-normal subgroups, Proc. Amer. Math. 
Soc. 20 (1969), 232- 234. 

[a155] Phillips, R.E. and Roseblade, J.E., A residually central group that is not a 
Z-group, Michigan Math. J. 25 (1978),233- 234. 

[a156] Plotkin, B.I., *On some criteria of locally nilpotent groups, Uspehi Mat. 
Nauk 9 (1954), 181-186 = Amer. Math. Soc. Translations (2) 17 (1961), 
1-7. 

[a157] Plotkin, B.I., *Radical groups, Mat. Sb. 37 (1955), 507-526 = Amer. Math. 
Soc. Translations (2) 17 (1961), 9-28. 

[a158] Plotkin, B.I., *Generalized soluble and nilpotent groups, Uspehi Mat. 
Nauk 13 (1958),89- 172 = Amer. Math. Soc. Translations (2) 17 (1961), 29-
115. 

[a159] Polovickii, Ya.D., *Layer-extremal groups, Mat. Sb. 56 (1962), 95-
106. 

[a160] Prafer, H., Untersuchungen aber die Zerlegbarkeit der abzahlbaren 
primaren Abelschen Gruppen, Math. Z. 17 (1923),35- 61. 

[a161] Rae, A. and Roseblade, J.E., Automorphism towers of extremal groups, 
Math. Z. 117 (1970), 70-75. 

[a162] Razmyslov, Yu.P., The Hall-Higman Problem, Izv. Akad. Nauk. SSSR 
Ser. Mat. 42 (1978),833-867. 

[a163] Remak, R., Uber die Zerlegung der endlichen Gruppen in direkte unzerleg
bare Faktoren, J. Reine Angew. Math. 139 (1911),293- 308. 

[a164] Remak, R., Uber minimale invariante Untergruppen in der Theorie der 
endlichen Gruppen, J. Reine Angew. Math. 162 (1930),1-16. 

[a165] Remak, R., Uber die Darstellung der endlichen Gruppen als Untergruppen 
direkter Produkte, J. Reine Angew. Math. 163 (1930),1-44. 

[a166] Robinson, D.1.S., Groups in which normality is a transitive relation, Proc. 
Cambridge Phi/os. Soc. 60 (1964),21-38. 

[a167] Robinson, D.J.S., Joins of subnormal subgroups, Illinois J. Math. 9 (1965), 
144-168. 

[a168] Robinson, D.J.S., On the theory of subnormal subgroups, Math. Z. 89 
(1965),30-51. 

[a169] Robinson, D.IS., A note on finite groups in which normality is transitive, 
Proc. Amer. Math. Soc. 19 (1968), 933-937. 

[a170] Robinson, D.1.S., Hypercentral ideals, noetherian modules and a theorem 
of Stroud, J. Algebra 32 (1974),234-239. 

[al71] Robinson, D.1.S., A new treatment of soluble groups with finiteness condi
tions on their abelian subgroups, Bull. London Math. Soc. 8 (1976), 113-
129. 

[al72] Robinson, D.1.S., Recent results on finite complete groups, in Algebra 
Carbondale 1980, Lecture Notes in Math. Vol. 848, Springer-Verlag, Berlin 
(1981),178-185. 

[a173] Roseblade, J.E., On certain subnormal coalition classes, J. Algebra 1 (1964), 
132-138. 

[a174] Roseblade, IE, On groups in which every subgroup is subnormal, J. Alge
bra 2 (1965), 402-412. 

[a175] Roseblade, IE., The permutability of orthogonal subnormal subgroups, 
Math. Z. 90 (1965),365-372. 



486 Bibliography 

[a176] Roseblade, J.E., A note on subnormal coalition classes, Math. Z. 90 (1965), 
373-375. 

[al77] Roseblade, J.E., The derived series of a join of subnormal subgroups, Math. 
Z. 117 (1970), 57-69. 

[a178] Roseblade, J.E., The integral group rings of hypercentral groups, Bull. Lon
don Math. Soc. 3 (1971),351-355. 

[a179] Roseblade. J.E., Group rings of polycyclic groups, J. Pure Appl. Algebra 3 
(1973), 307-321. 

[a180] Roseblade, lE., Applications of the Artin-Rees lemma to group rings, 
Symposia Math. 17 (1976), 471-478. 

[a181] Roseblade, J.E. and Stonehewer, S.E., Subjunctive and locally coalescent 
classes of groups, J. Algebra 8 (1968), 423-435. 

[a182] Sanov, I.N., *Solution of Burnside's problem for exponent 4, Leningrad 
State Univ. Annals (Ucen. Zap.) Mat. Ser. 10 (1940),166-170. 

[a183] Schenkman, E., The splitting of certain solvable groups, Proc. Amer. Math. 
Soc. 6 (1955), 286-290. 

[a184] Schenkman, E., On the norm of a group, Illinois J. Math. 4 (1960), 150-
152. 

[a185] Schmid, P., Every saturated formation is a local formation, J. Algebra 51 
(1978), 144-148. 

[a186] Schmidt, O.J., Sur les produits directs, Bull. Soc. Math. France 41 (1913), 
161-164. 

[a187] Schmidt, O.J., Uber Gruppen, deren samtliche Teiler spezielle Gruppen 
sind, Rec. Math. Moscow 31 (1924), 366-372. 

[a188] Schmidt, O.l, *Infinite soluble groups, Mat. Sb. 17 (1945),145-162. 
[a189] Schmidt, O.J., *The local finiteness of a class of periodic groups, Ivbr. Trudi 

(1959), 298-300, German translation Math. Forschungsberichte Bd. 20 
(1973), 79-81. 

[a 190] Schreier, 0., Uber die Erweiterung von Gruppen I, Monatsh. Math. Phys. 
34 (1926), 165-180. 

[a191] Schreier, 0., Uber die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. 
Hamburg 4 (1926), 321-346. 

[a192] Schreier, 0., Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. 
Hamburg 5 (1927),161-183. 

[a193] Schur, I., Neuer Beweis eines Satzes tiber endliche Gruppen, S.-B. Preuss 
Akad. Berlin (1902), 1013-1019. 

[a194] Schur, I., Uber die Darstellung der endlichen Gruppen durch gebrochene 
lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50. 

[a195] Schur, I., Untersuchungen tiber die Darstellungen der endlichen Gruppen 
durch gebrochene lineare Substitutionen, J. Regine Angew. Math. 132 
(1907),85-137. 

[a196] Seksenbaev, K., *On the theory of polycyclic groups. Algebra i Logika 4 
(1965), 79- 83. 

[a197] Smelkin, A.L., *Polycylic groups, Sibirsk. Mat. Z. 9 (1968), 234-235 = 
Siberian Math. J. 9 (1968), 178. 

[a198] Specker, E., Additive Gruppen von Folgen ganzer Zahlen, Portugal. Math. 
9 (1950), 131-140. 

[a199] Stewart, A.G.R., On the class of certain nilpotent groups, Proc. Roy. Soc. 
London Ser. A 292 (1966),374-379. 

[a200] Stonehewer, S.E., The join of finitely many subnormal subgroups, Bull. 
London Math. Soc. 2 (1970),77-82. 

[a201] Stonehewer, S.E., Permutable subgroups of infinite groups, Math. Z. 125 
(1972),1 - 16. 

[a202] Strebel, R., Finitely presented soluble groups, in Group Theory, Essays for 
Philip Hall, Cambridge University Press, Cambridge (1984). 



Bibliography 487 

[a203] Sunkov, V.P., *On locally finite groups with a minimality condition for 
abelian subgroups, Algebra i Logika 9 (1970), 579- 615 = Algebra and Logic 
9 (1970),350- 370. 

[a204] Sunkov, V.P., *Locally finite groups of finite rank, Algebra i Logika 10 
(1971), 199-225 = Algebra and Logic 10 (1971), 127-142. 

[a205] Swan, R.G., Representations of polycyclic groups, Proc. Amer. Math. Soc. 
18 (1967),573-574. 

[a206] Sylow, L., Theoremes sur les groupes de substitutions, Math. Ann. 5 (1872), 
584-594. 

[a207] Taunt, D., On A-groups, Proc. Cambridge Philos. Soc. 45 (1949), 24-42. 
[a208] Thompson, J.G., Finite groups with fixed-point-free automorphisms of 

prime order, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578-581. 
[a209] Thompson, lG., Normal p-complements for finite groups, J. Algebra 1 

(1964),43-46. 
[a210] Ulm, H, Zur Theorie der abziihlbar-unendlichen Abelschen Gruppen, Math. 

Ann. 107 (1933), 774-803. 
[a211] Wehrfritz, B.A.F., Frattini subgroups in finitely generated linear groups, J. 

London Math. Soc. 43 (1968), 619-622. 
[a212] Weir, A.J., The Reidemeister-Schreier and Kuros Subgroup Theorems, 

Mathematika 3 (1956), 47-55. 
[a213] Wiegold, J., Groups with boundedly finite classes of conjugate elements, 

Proc. Roy. Soc. London Ser. A 238 (1957), 389-401. 
[a214] Wielandt, H., Eine Kennzeichnung der direkten Produkte von p-Gruppen, 

Math. Z. 41 (1936), 281-282. 
[a215] Wielandt, H., Eine Verallgemeinerung der invarianten Untergruppen, Math. 

Z. 45 (1939), 209-244. 
[a216] Wielandt, H., Zum Satz von Sylow, Math. Z. 60 (1954), 407-408. 
[a217] Wielandt, H., Vertauschbare nachinvariante Untergruppen, Abh. Math. 

Sem. Univ. Hamburg 21 (1957), 55-62. 
[a218] Wielandt, H., Uber den Normalisator der subnormalen Untergruppen, 

Math. Z. 69 (1958), 463-465. 
[a219] Wielandt, H., Uber Produkte von nilpotenten Gruppen, Illinois J. Math. 2 

(1958), 611-618. 
[a220] Wielandt, H., Uber die Existenz von Normalteilern in endlichen Gruppen, 

Math. Nachr. 18 (1958), 274-280. 
[a221] Wielandt, H., Uber die Normalstruktur von mehrfach faktorisierbaren 

Gruppen, J. Austral. Math. Soc. 1 (1960),143-146. 
[a222] Wilson, J.S., Some properties of groups inherited by normal subgroups of 

finite index, Math. Z. 114 (1970), 19-21. 
[a223] Wilson, J.S., On periodic generalized nilpotent groups, Bull. London Math. 

Soc. 9 (1977), 81-85. 
[a224] Witt, E., Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. 

Univ. Hamburg 12 (1938), 256-264. 
[a225] Wong, W.J., On finite groups whose 2-Sylow subgroups have cyclic sub

groups of index 2, J. Austral. Math. Soc. 4 (1964), 90-112. 
[a226] Zaicev, D.I., *On groups which satisfy a weak minimality condition, Mat. 

Sb. 78 (1969), 323- 331 = Math. USSR Sb. 7 (1969), 315-322. 
[a227] Zappa, G., Sui gruppi di Hirsch supersolubili, Rend. Sem. Mat. Univ. Padova 

12 (1941),1-11, 62-80. 
[a228] Zassenhaus, H., Uber endliche Fastkorper, Abh. Math. Sem. Univ. Hamburg 

11 (1936), 187-220. 
[a229] Zassenhaus, H., Beweis eines Satzes tiber diskrete Gruppen, Abh. Math. 

Sem. Univ. Hamburg 12 (1938), 289-312. 
[a230] Zorn, M., Nilpotency of finite groups, Bull. Amer. Math. Soc. 42 (1936), 

485- 486. 



488 Bibliography 

Books 

[b1] Adjan, S.I., The Burnside Problem and Identities in Groups, translated from 
the Russian by J.e. Lennox and J. Wiegold, Springer-Verlag, Berlin (1978). 

[b2] Aschbacher, M., Finite Group Theory, Cambridge University Press, New 
York (1986). 

[b3] Atiyah, M.F. and Macdonald, lG., Introduction to Commutative Algebra, 
Addison-Wesley, Reading, MA (1969). 

[b4] Baumslag, G., Lecture Notes on Nilpotent Groups, American Mathematical 
Society, Providence, RI (1971). 

[b5] Bieri, R, Homological Dimension of Discrete Groups, Queen Mary College 
Mathematics Notes, London (1976). 

[b6] Blackburn, N. and Huppert, B., Finite Groups, Springer-Verlag, Berlin 
(1967-82). 

[b7] Burnside, W., Theory of Groups of Finite Order, 2nd edn., Cambridge Uni
versity Press, Cambridge (1911) (Dover reprint 1955). 

[b8] Cartan, H. and Eilenberg, S., Homological Algebra, Princeton University 
Press, Princeton, NJ (1956). 

[b9] Carter, RW., Simple Groups of Lie Type, Wiley-Interscience, New York 
(1972). 

[blO] Conway, J.H., Curtis, RT., Norton, S.P., Parker, RA., Wilson, RA., ATLAS 
of Finite Groups, Oxford University Press, New York (1985). 

[b11] Coxeter, H.S.M., Introduction to Geometry, Wiley, New York (1961). 
[b12] Coxeter, H.S.M. and Moser, W.O.J., Generators and Relations for Discrete 

Groups, 3rd edn., Springer-Verlag, Berlin (1972). 
[b13] Curtis, e.W., and Reiner, 1, Methods of Representation Theory, Wiley, New 

York (1981). 
[b14] Dickson, L.E., Linear Groups with an Exposition of the Galois Field Theory, 

Teubner, Leipzig (1901) (Dover reprint 1958). 
[b15] Dixon, J.D., Problems in Group Theory, Blaisdell, Waltham, MA (1967). 
[b16] Dixon, J.D., The Structure of Linear Groups, Van Nostrand, London (1971). 
[b17] Dixon, J.D. and Puttaswamaiah, B.M., Modular Representations of Finite 

Groups, Academic Press, New York (1977). 
[b18] Dixon, M.R., Sylow Theory, Formations and Fitting Classes in Locally Finite 

Groups, World Scientific, Singapore (1994). 
[b19] Doerk, K. and Hawkes, T.O., Finite Soluble Groups, de Gruyter, Berlin 

(1992). 
[b20] DornholT, L., Group Representation Theory, 2 vols., Marcel Dekker, New 

York (1971). 
[b21] Epstein, D.B.A., Word Processing in Groups, Jones and Bartlet, Boston 

(1992). 
[b22] Feit, W., Characters of Finite Groups, Benjamin, New York (1967). 
[b23] Fricke, R and Klein, F., Vorlesungen ilber die Theorie der Elliptischen Modul

funktionen, 2 vols., Teubner, Leipzig (1890-2). 
[b24] Fuchs, L., Abelian Groups, Pergamon, Oxford, UK (1960). 
[b25] Fuchs, L., Irifinite Abelian Groups, 2 vols., Academic Press, New York 

(1970-3). 
[b26] Gorenstein, D., Finite Groups, Harper & Row, New York (1968). 
[b27] Gorenstein, D., Finite Simple Groups, Plenum Press, New York (1982). 
[b28] Griffith, P.A., Irifinite Abelian Group Theory, University of Chicago Press, 

Chicago (1970). 
[b29] Gruenberg, K.W., Cohomological Topics in Group Theory, Lecture Notes in 

Math., vol. 143, Springer-Verlag, Berlin (1970). 



Bibliography 489 

[b30] Gupta, N.D., Burnside Groups and Related Topics, University of Manitoba, 
Winnipeg (1976). 

[b31] Hall, M., The Theory oj Groups, Macmillan, New York (1959). 
[b32] Hall, P., The Edmonton Notes on Nilpotent Groups, Queen Mary College 

Mathematics Notes, London (1969). 
[b33] Herstein, LN., Topics in Ring Theory, University of Chicago Press, Chicago 

(1969). 
[b34] Hilton, PJ. and Stammbach, u., A Course in Homological Algebra, Springer

Verlag, New York (1970). 
[b35] Johnson, D.L., Presentations oj Groups, London Mathematical Society Lec

ture Notes Series 22, Cambridge (1976). 
[b36] Jordan, e., Traite des Substitutions et des Equations Algebriques, Gauthier

Villars (1870) (Blanchard reprint 1957). 
[b37] Kaplansky, I., InJinite Abelian Groups, 2nd edn., University of Michigan 

Press, Ann Arbor, MI (1969). 
[b38] Kargapolov, M.I. and Merzljakov, Ju.I., Fundamentals oj the Theory oj 

Groups, 2nd edn., translated from the Russian by R.G. Burns, Springer
Verlag, New York (1979). 

[b39] Kegel, O.H. and Wehrfritz, B.A.F., Locally Finite Groups, North-Holland, 
Amsterdam (1973). 

[b40] Kuros, A.G., The Theory oj Groups, 2nd edn., 2 vols., translated from the 
Russian by K.A. Hirsch, Chelsea, New York (1960). 

[b41] Kuros, A.G., Gruppentheorie, 3rd edn., 2 vols., German translation, 
Akademie-Verlag, Berlin (1972). 

[b42] Lennox, J.e. and Stonehewer, S.E., Subnormal Subgroups, Oxford University 
Press, New York (1987). 

[b43] Lyndon, R.e. and Schupp, P.E., Combinatorial Group Theory, Springer
Verlag, Berlin (1977). 

[b44] Mac Lane, S., Homology, Springer-Verlag, Berlin (1967). 
[b45] Magnus, W., Karrass, A., and Solitar, D., Combinatorial Group Theory, 

Wiley-Interscience, New York (1966). 
[b46] Miller, e.F. III, On Group Theoretic Decision Problems and Their Classifica

tion, Princeton University Press, Princeton, NJ (1971). 
[b47] Neumann, B.H., Lectures on Topics in the Theory oj InJinite Groups, Tata 

Institute, Bombay (1960). 
[b48] Neumann, H., Varieties oj Groups, Springer-Verlag, Berlin (1967). 
[b49] Passi, I.B.S., Group Rings and Their Augmentation Ideals, Lecture Notes in 

Math., Vol. 715, Springer-Verlag, Berlin (1979). 
[b50] Passman, D.S., Permutation Groups, Benjamin, New York (1968). 
[b51] Passman, D.S., The Algebraic Structure oj Group Rings, Wiley-Interscience, 

New York (1977). 
[b52] Plotkin, B.L, Groups oj Automorphisms oj Algebraic Systems, translated 

from the Russian by K.A. Hirsch, Wolters-Noordhoff, Groningen 
(1972). 

[b53] Robinson, D.J.S., Infinite Soluble and Nilpotent Groups, Queen Mary Col
lege Mathematics Notes, London (1968). 

[b54] Robinson, D.J.S., Finiteness Conditions and Generalized Soluble Groups, 2 
vols., Springer-Verlag, Berlin (1972). 

[b55] Robinson, G. de B., Representation Theory oj the Symmetric Group, Toronto 
(1961). 

[b56] Rose, J.S., A Course on Group Theory, Cambridge University Press, Cam
bridge (1978). 

[b57] Rotman, 1.1., An Introduction to the Theory oj Groups, 4th edn., Springer
Verlag, New York (1995). 



490 Bibliography 

[b58] Schenkman, E., Group Theory, Van Nostrand, Princeton, NJ (1965). 
[b59] Schmidt, O.J., Abstract Theory oj Groups, 2nd edn., translated from the 

Russian by F. Holling and lB. Roberts, Freeman, San Francisco (1966). 
[b60] Scott, W.R, Group Theory, Prentice-Hall, Englewood Cliffs, NJ (1964). 
[b61] Segal, D., Polycyclic Groups, Cambridge University Press, New York (1983). 
[b62] Serre, J.-P., Linear Representations oj Finite Groups, translated from the 

French by L.L. Scott, Springer-Verlag, New York (1977). 
[b63] Specht, W., Gruppentheorie, Springer-Verlag, Berlin (1956). 
[b64] Speiser, A., Die Theorie der Gruppen von Endlicher Ordnung, 3rd edn., 

Springer-Verlag, Berlin (1937). 
[b65] Steinberg, R, Lectures on Chevalley Groups, Yale University Press, New 

Haven (1967). 
[b66] Suprunenko, D.A., Soluble and Nilpotent Linear Groups, Translation of 

Mathematics Monographs, American Mathematical Society (1963). 
[b67] Suzuki, M., Structure oj a Group and the Structure oj Its Lattice oj Sub-

groups, Springer-Verlag, Berlin (1956). 
[b68] Suzuki, M., Group Theory, Springer-Verlag, Berlin (1982). 
[b69] Tomkinson, M.J., FC-Groups, Pitman, Boston (1984). 
[b70] Vaughan-Lee, M., The Restricted Burnside Problem, Oxford University 

Press, New York (1993). 
[b71] Wehrfritz, B.A.F., InJinite Linear Groups, Springer-Verlag, Berlin (1973). 
[b72] Weinstein, M., Examples oj Groups, Polygonal, Passaic, NJ (1977). 
[b73] Weiss, E., Algebraic Number Theory, McGraw-Hill, New York (1963). 
[b74] Wielandt, H., Finite Permutation Groups, translated from the German by R 

Bercov, Academic Press, New York (1964). 
[b75] Zassenhaus, H., The Theory oj Groups, 2nd English edn., Chelsea, New 

York (1958). 



Index 

Abelian group 2 
finite 102 
finitely generated 103 
with minimal condition 104 

Abelian series 121 
Abnormal subgroup 265 
Absolutely simple 381 
Action of a group on a set 34 
Adjan, S.I. and Novikov, P.S. 425, 432 
Affine group 200 
Algebra,group 214,224 
Algebraic integer 230 

number field 230 
Alternating group 7, 73 

simplicity of 71 
Anti-homomorphism 223 
Anti-isomorphism 223 
Aperiodic group 12 
Artin-Rees property 464,470 
Asar, A.O. 430 
Ascendant subgroup 358 
Ascending chain condition 66 
Ascending series 358, 363 
Associative law 1 

generalized 2 
Augmentation 334 
Augmentation ideal 334 

powers of 467 
relative 335 

Automorphism 26 
inner 26 
outer 26 

Automorphism group 26 
Automorphism tower 410 
Avoidance 263 

Baer group 367 
Baer, theorems of 95,96, 115, 137, 143, 

359,366,374,439,459 
Baer, R. and Levi, F.W. 183 
Balanced presentation 422 
Base group of a wreath product 33 
Basic subgroup 107 
Basis 99 
BFC-group 444 
Binary operation 1 
Blichfeldt, H. 243 
Bounded abelian group 108 
Boundedly finite conjugacy classes 444 
Braid group 190 
Brauer, R. 217, 294 
Burnside 

basis theorem 140 
criterion for p-nilpotence 289 
group 425 
p-q theorem 247 
problems 422, 425, 427 
theorems of 220,308,414 
variety 58 

Canonical homomorphism 19 
Carter, R.W. 264,281,282 

491 



492 

Carter subgroup 282 
Cartesian product (sum) 20 

of infinite cyclic groups 118 
Cauchy's theorem 40 
Cayley's theorem 36 
Center 

ofa group 26 
11.- 365 
FC- 442 
of a ring 225, 464 

Central endomorphism 83 
Central extension 345 
Central ideal 464 
Central product 145 
Central series 122, 378 

ascending 364 
lower 125 
upper 125 

Centralizer 37, 133 
¢ernikov group 157 
Cernikov, S.N. 157, 380, 446 
Chain condition 

ascending 66 
descending 66 

Character 226 
of a permutation group 241 
ring 236 
table 232 

Characteristic series 64 
Characteristic subgroup 28 
Characteristically simple group 87 

McLain's 361 
Chief series (factor) (see principal series 

(factor» 
Class 

equation 38 
function 226 
number 38 

Class of groups 57 
Clifford's theorem 217 
Cohomology group 331 
Cokernel 18 
Collineation 74 
Commutator 28, 123 
Complement 253,313 
Complete group 412 
Complete wreath product 326 
Completely reducible group 

representation 216 
Complex 326 

free 328 
projective 328 

Composition 
factor 66, 148 

length 66 
series 65, 363, 377 

Conjugacy classes 38 
group with finite 441 

Conjugacy problem 55 
Conjugate 26, 38 

Index 

Consequence of set of defining relators 
50 

Coproduct in the category of groups 
167 

Core of a subgroup 16 
Coset 10 

map 160,175 
Coupling of an extension 311 
Covering 263 

tj- 279 
group 318 

Cunihin, S.A. 257 
Cyclic group 9 
Cyclic series 150 

Dedekind 
group 143 
modular law 15 

Defect of a subnormal subgroup 
386 

Deficiency 419 
Defining relation 51 
Defining relator 50 
Degree 

of a permutation group 31 
of a representation 213 

Dependent 99 
Derivation 313 

inner 314 
Derived length 121 
Derived series 124 
Derived subgroup 28 
Descendant subgroup 393 
Descending chain condition 66 
Descending series 377 
Diagonal subgroup 43 
Diagonalizable 451 
Diagram of classes of generalized 

nilpotent groups 368 
Dickson, L.E. 74 
Dicman's Lemma 442 
Differential 354 
Dihedral group 6,51 

infinite 7, 51 
locally 358 

Direct complement 80 
Direct factor 21,80 



Index 

Direct limit 22 
Direct product 20 

external 21 
internal 21 
of finite groups 445 

Direct sum 21 
of cyclic groups 111 
of representations 216 

Direct system 22 
Directly indecomposable 80 
Divisible group 94 

structure of 97 
Domain ofimprimitivity 197 
Double coset 12 

Eilenberg, S. 310 
Elementary abelian group 24 
Embedding 24 

theorems 188 
Endomorphism 17 

additive 25 
central 83 
nilpotent 82 
normal 30 

Engel 
element 369 
group 371 

Epimorphism 18 
Equivalent extensions 311 
Equivalent representations 35, 215 
Exponent 

groups with finite 12 
laws of 3 

Extension (group) 68,310 
abelian 346 
central 345 
with abelian kernel 345 

Extension, module 333 
Exterior square 348 
Extra-special group 145 

generalized 146 

Factor group 19 
Factor of a series 63 
Faithful representation 35, 213 
Fe-center 442 

-element 441 
-group 442 

\Y-covering subgroup 279 
Feit- Thompson theorem 148 
Feit, W. and Thompson, lG. 148 
Finite residual 156 

Finitely generated 9 
abelian group 103 
nilpotent group 137 
soluble group 461 

Finitely presented 53 
Finiteness condition 360,416 

on abelian subgroups 455 
Finiteness property 416 

of central series 439 
of conjugates 439 

Fitting class 283 
group 367 
lemma 82 
subgroup 133, 149 
theorem 133 

493 

Five-term homology sequence 348, 355 
Fixed point 

of an automorphism 305 
of a permutation 42 

Fixed-point-free automorphism 305 
FO-group 446 
Formation 277 
Frattini 

argument 136 
subgroup 135,155,474 
theorem of 135 

Free abelian group 61, 100 
Free complex 328 
Free factor 169 
Free group 44,60,159 

construction of 45 
subgroups of 159 

Free module 328 
Free product 167 

construction of 168 
generalized 184 
subgroups of 174 
with amalgamation 184 

Free resolution 329 
Freely indecomposable 184 
Frobenius 

complement 250 
criterion for p-nilpotence 295 
group 195,250,308 
kernel 250 
reciprocity theorem 239 
theorem of 229 

Frobenius, G. and Stickelberger, L. 
102 

Frobenius-Wielandt theorems 
248 

Fuchs, L. 108, 458 
Fully-invariant series 64 
Fully-invariant subgroup 28 



494 

Galois, E. 71 
Gaschutz, VV. 136,278,279,283,406 
General linear group 5 
Generalized character 236 
Generalized free product 184 
Generalized nilpotent group 356 
Generalized soluble group 379 
Generators 9 

and defining relations 50 
Golod, E.S. 371,423 
Gorenstein, D. 294 
Group algebra 214 
Group axioms 1 
Group extension 310 
Group ring 214 
Group-theoretical class 57 
Group-theoretical property 57 
Gruenberg 

group 367 
resolution 333 
theorems of 138, 366, 371, 469 
theory of group extensions 310 

Grun's theorems 292, 294 
Grushko-Neumann theorem 183 
Gupta, N.D. 423 

Hall, M. 425, 428 
Hall, P. 

criterion for nil potence 134 
theorems of 53, 126,257,417, 432, 

440,445 
theory of finite soluble groups 252 
theory of finitely generated soluble 

groups 461 
Hall, P. and Higman, G. 269 
Hall1t-subgroup 252 
Hall-VVitt identity 123 
Hamiltonian group 143 
Hamilton's quaternions 141 
Hartley, B. 283,470 
Hasse diagram 9 
Hawkes, T.O. 280 
Height 

in abelian p-groups 106 
vector 115 

Heineken, H. and Mohamed, 1.1. 365 
Higman 

embedding theorem 419 
finitely generated simple group 80 
theorem of 468 

Higman, G. and Hall, P. 269 
Higman, G., Neumann, B.H., and 

Neumann, H. 189 

Hilbert's basis theorem 462 
Hilbert's Nullstellensatz 470,475 
Hirsch, K.A. 152 
Hirsch length 152,422 
Hirsch-Plotkin 

radical 357 
theorem 357 

HNN-extension 189 
Holder, O. 290,310, 413 
Holomorph 37 

Index 

Homogeneous component 218,452 
Homology group 330 
Homology of a complex 326 
Homomorphism 17 

canonical 19 
identity 17 
natural 19 
zero 17 

Homotopy 327 
Hopf, H. 165 
Hopfian group 165,167 
Hopf's formula 347 
Huppert, B. 244,274,276,297 
Hyperabelian group 379 
Hypercentral group 364 
Hypercenter 125, 365 
Hypoabelian group 384 
Hypocentral group 378 

Identity 3 
left 1 
right 1 
subgroup 8 

Image of a homomorphism 18 
Imprimitive permutation group 197 
Indecomposable group 80, 110, 184 
Independent 98 
Index of a subgroup 11 

subnormal 386 
Induced character 238 

module 238 
representation 237 

Injective property 95 
Injector 283 
Inner automorphism 26 
Inner derivation 314 
Inner product 230 
Inverse 3 

left 1 
right 1 

Inverse image 20 
Involution 12 
Irreducible linear group 220 



Index 

Irreducible representation 215 
Isometry 5 
Isomorphism 4 

of extensions 311 
of series 64 

Isomorphism problem 55 
theorems 19 

ito, N. 155,296 
Ivanov, S.I. 425 
Iwasawa, K. 164, 297 

Jacobson density theorem 219 
Jategaonkar, A.V. 473 
Join of subgroups 9 
Jordan,C. 71,74,206 
Jordan-Holder theorem 66 

Kaluznin, L.A. 41,126,326 
Kargapolov, M.I. 432 
Kegel, o. 437 
Kegel, O. and Wehrfritz, B.A.F. 436 
Kernel 18 
Klein 4-group 7 
Krasner, M. 326 
Kronecker product 236 
Krull intersection theorem 468 
Krull-Remak-Schmidt theorem 83 
k-transitive 193 
Kulikov's criterion 111 
Kulikov, theorems of 107, 108, 111 
Kuros 

subgroup theorem 174 
system of transversals 178 
theorem of 104 

Lagrange's theorem 11 
Lattice of subgroups 9 
Laws for a variety 58 
Length 

derived 121 
Hirsch 152 
nilpotent 150 
of a series 63 
ofa word 170 

Levi, F.W. 183,373 
Levi, F.W. and van der Waerden, B.L. 

426 
Lie-Ko1chin-Mal'cev theorem 451 
Lie type, simple groups of 79 
Lifting 318 
Linear fractional transformation 195 

495 

Linear group 450 
Linear representation 213 
Linearly independent 98 
Locally defined formation 277 
Locally dihedral 2-group 358 
Locally finite and normal groups 443 
Locally finite groups 429 

abelian subgroups of 432 
Locally nilpotent groups 356 
Locally-&, 356 
Locally soluble groups 381 
Lower central factors 131 
Lower central series 125 

transfinite 380 
Lower nilpotent series 149 

MacLane, S. 101,310 
MacLane's theorem 343 
Magnus, W. 165,420 
Mal'cev, A.I. 153, 165,381,451,453, 

455 
Mapping property 

of cartesian product 24 
offree product 167 

Marginal subgroup 57 
Maschke's theorem 216 
Mathieu groups 79, 208 
Maximal chain 297 
Maximal condition 66 

2-groups with 437 
soluble groups with 152 

Maximal subgroup 130 
of a locally nilpotent group 359 

McLain, D.H. 
characteristically simple groups 361 
theorems of 359,381 

Metabelian group 121 
Metacyc1ic group 290 
Metanilpotent group 150 
vii -group 243 
Minimal condition 66 

abelian groups with 104 
2-groups with 438 
on subnormal subgroups 396 
soluble groups with 156 

Minimal nonnilpotent group 258 
Minimal non-p-nilpotent group 296 
Minimal normal subgroup 87 
Minimax group 120,459 
Modular law 15 
Modular representation 217 
Monoid 25 
Monomial matrix 243 



496 

Monomial representation 242 
Monomorphism 18 
Morphism 

of complexes 327 
of extensions 311 

Multiple of an element 3 
Multiply transitive group 192 

Natural homomorphism 19 
Near ring 25 
Neumann, B.H. 53, 57,443,444 
n-generator group 9 
Nielsen, J. 159, 166 
Nielsen- Schreier theorem 159 
Nilpotent class 122 
Nilpotent endomorphism 82 
Nilpotent group 122 
Nilpotent length 150, 477 
Nilpotent ring 127 
Nilpotent series 149 
Noether isomorphism theorems 19 
Noetherian 462 
Nongenerator 135 
Normal closure 16 

successive 385 
Normal form 

in free group 47 
in free products 170, 186 

Normal series 63 
Normal subgroup 15 
Normal subset 442 
Normalizer 38 
Normalizer condition 130, 364 
Novikov, P.S. and Adjan, S.I. 425,432 
Nullstellensatz 470,475 

Obstruction 350 
Octahedral group 7 
Operator group 28 
Orbit 31 
Order 

ofa group 2 
of an element 12 
-type of a series 377 

Ore, O. 393 
Orthogonality relations 227 
Outer automorphism 26 

Pauli spin matrices 146, 234 
p-element 132 
Perfect group 157 

Periodic group 12 
Permutable subgroup 15,393 
Permutation 6 

even 7 
group 31,192 
odd 7 
representation 34,240 

p-Fitting subgroup 270 
p-group 39, 132, 139 
p-nilpotent group 270 
p-normal 294 
p-rank 99 
p-soluble 269 
n-e1ement 132 
n-group 132 
n-length 256 
n-separable group 256 
n-soluble 269 
Plotkin, B.I. 364 
Poincare's theorem 14 
Point 31 
Polovickii, Ya.D. 446 
Polycentral ideal 465 
Polycyclic group 54, 152 

group ring of 464 
Polyinfinite cyclic group 153 
Poly trivial module 134 

Index 

Pontryagin's criterion for freeness 117 
Power automorphism 404 
Power of an element 3 
Preimage 20 
Presentation of a group 50 

standard 50 
Primary component 93 
Primary decomposition theorem 94 
Prime-sparse 446 
Primitive linear group 451 
Primitive permutation group 197 
Principal 

series 65 
factor 148 

Product 
in category of groups 167 
of subsets 11 

Profinite topology 154 
Projection 81 
Projective linear group 73 
Projective module 328 
Projective property 49, 101 
Projective space 74 
Projector 280 
Pronormal subgroup 298 
Proper refinement 64 
Proper subgroup 8 



Index 

Priifer 
group 24,94 
rank 99,422 

Priifer, H. 112 
Pure subgroup 106 

Quasicyclic group 94 
Quaternion group 140 
Quotient group 19 

Radicable group 191 
Radical 

completely reducible 89 
Hirsch-Plotkin 357 

Radical group 363, 376 
Rank 99 

of a free group 48 
p- 99 
Priifer 99, 422 
torsion-free 99 
total 455 

Rational canonical form 75 
Reduced abelian group 96 
Reduced word 

in a free group 46 
in a free product 169 

Reducible 215 
Refinement 64, 363, 377 
Reflection 6 
Regular permutation group 31 
Regular permutation representation 36 
Reidemeister-Schreier theorem 164 
Relation 51 
Relatively free group 60 
Relator 50 
Remak 

decomposition 81 
theorems of 81,86 

Representation 
linear 213 
matrix 213 
permutation 34, 240 

Residually central 380 
Residually finite 55, 154, 164,470 
Residually nilpotent 165, 378 
Residually q: 58 
Resolution 329 

Gruenberg 333 
standard 336 

Restricted Burnside problem 427 
Right regular representation 36 
Robinson,D.l.S. 131,388,399,466,477 

497 

Roseblade, lE., theorems of 367,399, 
473 

Rotation 6 

Sanov, LN. 426 
Saturated formation 277 
Schenkman, E. 264, 449 
Schmidt, 0.1. 258, 438, 456 
Schreier 

conjecture 403 
property 162 
refinement theorem 65 
transversal 162 

Schur 
lemma 218 
multiplicator 347 
theorem of 221, 287 

Schur-Zassenhaus theorem 253 
Semidihedral group 141 
Semidirect product 27 
Semigroup 1 
Semilinear transformation 197 
Semiregular permutation group 31 
Semisimple group 89 
Serial subgroup 378 
Series 63,377 
Sharply transitive 193 
Signature of a permutation 7 
SI-groups 379 
Similar permutation groups 32 
Similarity 32 
Simple groups 16,65 

classification of 68, 79 
of Lie type 79 
sporadic 79 

Simplicity 
criteria for non- 246 
of alternating groups 71 
of Mathieu groups 211 
of projective linear groups 73 

Slender group 120 
SN-group 379 
Socle 87 

subnormal 397 
Soluble group 121, 147 
Soluble linear group 450 
Solvable group 121 
Special linear group 8, 73 
Specker, E. 118 
Split extension 313 
Sporadic simple group 79 
Stabilizer 31 
Standard presentation 336 



498 

Standard resolution 336 
Standard wreath product 41 
Stem cover 354 
Stem extension 354 
Stonehewer, S.E. 394 
Strong Nullstellensatz 475 
Subabnormal subgroup 267 
Subcartesian product 58 
Subgroup 8 

generated by a subset 9 
improper 8 
proper 8 
subnormal 63, 385 

Subnormal index 386 
Subnormal join property 388, 390 
Subnormal socle 397 
Subnormal subgroup 63, 385 

joins of 387 
Subpermutable 396 
Successive normal closures 385 
Sum of subsets 11 
Sunkov, V.P. 433,436 
Supersoluble group 150, 274, 297 
Supersolvable group 150 
Suzuki, M . 294 
Syllable 170 
Sylow 

basis 261 
subgroup 39,252,429 

groups with cyclic 290 
of S. 41 

system 261 
Sylow's theorem 39 

for infinite groups 429 
Symmetric group 6 

presentation of 52 
Symmetry group 5 
System normalizer 262 

Taketa, K. 245 
Tarski group 437 
Taunt, D. 266, 289 
Tensor products 

and lower central factors 131 
of representations 235 

Term of a series 63 
Tetrahedral group 7 
T-group 402 

soluble 405 
Thomas, S. 411 
Thompson 

criterion for p-nilpotence 298 
theorems of 306, 308 

Three subgroup lemma 126 
Torsion-complete group 109 
Torsion-free 12 

abelian group 114 
rank 99,422 

Index 

Torsion group 12 
Torsion-subgroup 93, 109, 132, 356 
Total rank 455 
Transfer 285 
Transitive normality relation 402 
Transitive permutation group 31 
Translation 6, 200 

group 200 
Transvection 75 
Transversal 10 
Triangular matrix 128 
Triangularizable 451 
Trivial module 134 
Trivial representation 213 
Trivial subgroup 8 
Type of an element 115 

Ulm, H. 113 
Uniform automorphism 478 
Unipotent matrix 221 
Unitriangular matrix 127 
Universal coefficients theorem 349, 

354 
Upper central series 125, 365 

in finitely generated soluble groups 
467 

Upper Hirsch-Plotkin series 363 
Upper nilpotent series 149 
Upper n'n-series 256 

Variety of groups 58 
Verbal subgroup 56 
Von Dyck's Theorem 51 

Walter, J.H. 294 
Weak Nullstellensatz 470 
Weakly closed 294 
Wehrfritz, B.A.F. 477 
Weight of a commutator 123 
Weir, AJ. 159, 174 
Wielandt 

automorphism tower theorem 411 
subgroup 398 
theorems of 137, 259,389,397,399, 

409 



Index 

Wilson, J.S. 69,154,379 
Witt, E. 123, 208 
Word 45,168 
Word problem 54 

generalized 158 
Wreath product 32 

base group of 33 
complete 326 

Zaicev, D.1. 459 
Zappa, G. 150 
Zassenhaus 

lemma 64 
theorems of 196, 204,290,451 

Zelmanov, E.I. 428 
Zero divisors in group rings 468 
Z-group 378 

499 



Graduate Texts in Mathematics 

conttnued from page U 

61 WHITEHEAD. Elements of Homotopy 92 DIESTEL. Sequences and Series in Banach 
Theory. Spaces. 

62 KARGAPOLOV~~AKOV. Fundamentrus 93 DUBROVIN/FoMENKoINoVIKOV. Modern 
of the Theory of Groups. Geometry-Methods and Applications. 

63 BOLLOBAS. Graph Theory. Part I. 2nd ed. 
64 EDWARDS. Fourier Series. Vol. I. 2nd ed. 94 WARNER. Foundations of Differentiable 
65 WELLS. Differentiru Anruysis on Complex Manifolds and Lie Groups. 

Manifolds. 2nd ed. 95 SHIRYAEV. Probability. 2nd ed. 
66 WATERHOUSE. Introduction to Affine 96 CONWAY. A Course in Functionru 

Group Schemes. Anruysis. 2nd ed. 
67 SERRE. Locru Fields. 97 KOBLITZ. Introduction to Elliptic Curves 
68 WEIDMANN. Linear Operators in Hilbert and Modular Forms. 2nd ed. 

Spaces. 98 BROCKER/TOM DIECK. Representations of 
69 LANG. Cyclotomic Fields II. Compact Lie Groups. 
70 MASSEY. Singular Homology Theory. 99 GRoVE/BENSON. Finite Reflection Groups. 
71 FARKAS/KRA. Riemann Surfaces. 2nd ed. 2nd ed. 
72 STILLWELL. Classicru Topology and 100 BERG/CHRISTENSEN/REsSEL. Harmonic 

Combinatoriru Group Theory. 2nd ed. Anruysis on Semigroups: Theory of 
73 HUNGERFORD. Algebra. Positive Definite and Related Functions. 
74 DAVENPORT. Multiplicative Number 101 EDWARDS. Galois Theory. 

Theory. 2nd ed. 102 V ARADARAJAN. Lie Groups, Lie Algebras 
75 HOCHSCHILD. Basic Theory of Algebraic and Their Representations. 

Groups and Lie Algebras. 103 LANG. Complex Anruysis. 3rd ed. 
76 IITAKA. Algebraic Geometry. 104 DUBROVIN!FOMENKOINOVIKOV. Modem 
77 HECKE. Lectures on the Theory of Geometry-Methods and Applications. 

Algebraic Numbers. Part II. 
78 BURRIS/SANKAPPANAVAR. A Course in 105 LANG. S~(R). 

Universal Algebra. 106 SILVERMAN. The Arithmetic of Elliptic 
79 WALTERS. An Introduction to Ergodic Curves. 

Theory. 107 OLVER. Applications of Lie Groups to 
80 ROBINSON. A Course in the Theory of Differentiru Equations. 2nd ed. 

Groups. 2nd ed. 108 RANGE. Holomorphic Functions and 
81 FORSTER. Lectures on Riemann Surfaces. Integrru Representations in Severru 
82 BorrlTu. Differentiru Forms in Algebraic Complex Variables. 

Topology. 109 LEHTO. Univruent Functions and 
83 WASHINGTON. Introduction to Cyclotomic Teichmiiller Spaces. 

Fields. 110 LANG. Algebraic Number Theory. 
84 IRELAND/ROSEN. A Classicru Introduction 1\1 HUSEMOLLER. Elliptic Curves. 

to Modern Number Theory. 2nd ed. 1\2 LANG. Elliptic Functions. 
85 EDWARDS. Fourier Series. Vol. II. 2nd ed. 113 KARATZAslSHREVE. Brownian Motion and 
86 VAN LINT. Introduction to Coding Theory. Stochastic Cruculus. 2nd ed. 

2nd ed. 114 KOBLITZ. A Course in Number Theory 
87 BROWN. Cohomology of Groups. and Cryptography. 2nd ed. 
88 PIERCE. Associative Algebras. 115 BERGERIGOSTIAUX. Differential Geometry: 
89 LANG. Introduction to Algebraic and Manifolds, Curves, and Surfaces. 

Abelian Functions. 2nd ed. 1\6 KELLEy/SRINIVASAN. Measure and 
90 BR0NDSTED. An Introduction to Convex Integral. Vol. I. 

Polytopes. 117 SERRE. Algebraic Groups and Class 
91 BEARDON. On the Geometry of Discrete Fields. 

Groups. 118 PEDERSEN. Analysis Now. 



119 ROTMAN. An Introduction to Algebraic 142 LANG. Real and Functional Analysis. 
Topology. 3rd ed. 

120 ZIEMER. Weakly Differentiable Functions: 143 DOOB. Measure Theory. 
Sobolev Spaces and Functions of 144 DENNISIFARB. Noncommutative 
Bounded Variation. Algebra. 

121 LANG. Cyclotomic Fields I and II. 145 VICK. Homology Theory. An 
Combined 2nd ed. Introduction to Algebraic Topology. 

122 REMMERT. Theory of Complex Functions. 2nd ed. 
Readings in Mathematics 146 BRIDGES. Computability: A 

123 EBBINGHAUS/HERMES et al. Numbers. Mathematical Sketchbook. 
Readings in Mathematics 147 ROSENBERG. Algebraic K-Theory 

124 DUBROVIN/FoMENKoINoVIKOV. Modem and Its Applications. 
Geometry-Methods and Applications. 148 ROTMAN. An Introduction to the 
Part Ill. Theory of Groups. 4th ed. 

125 BERENSTEIN/GAY. Complex Variables: An 149 RATCLIFFE. Foundations of 
Introduction. Hyperbolic Manifolds. 

126 BOREL. Linear Algebraic Groups. 150 EISENBUD. Commutative Algebra 
127 MASSEY. A Basic Course in Algebraic with a View Toward Algebraic 

Topology. Geometry. 
128 RAUCH. Partial Differential Equations. 151 SILVERMAN. Advanced Topics in 
129 FULTON/HARRIS. Representation Theory: the Arithmetic of Elliptic Curves. 

A First Course. 152 ZIEGLER. Lectures on Polytopes. 
Readings in Mathematics 153 FuLTON. Algebraic Topology: A 

130 DODSON/POSTON. Tensor Geometry. First Course. 
131 LAM. A First Course in Noncommutative 154 BROWN/PEARCY. An Introduction to 

Rings. Analysis. 
132 BEARDON. Iteration of Rational Functions. 155 KASSEL. Quantum Groups. 
133 HARRIs. Algebraic Geometry: A First 156 KECHRIS. Classical Descriptive Set 

Course. Theory. 
134 ROMAN. Coding and Information Theory. 157 MALLIAVIN. Integration and 
135 ROMAN. Advanced Linear Algebra. Probability. 
136 ADKINS/WEINTRAUB. Algebra: An 158 ROMAN. Field Theory. 

Approach via Module Theory. 159 CONWAY. Functions of One 
137 AxLERlBOURDONIRAMEY. Harmonic Complex Variable II. 

Function Theory. 160 LANG. Differential and Riemannian 
138 COHEN. A Course in Computational Manifolds. 

Algebraic Number Theory. 161 BORWEINIERDELYI. Polynomials and 
139 BREDON. Topology and Geometry. Polynomial Inequalities. 
140 AUBIN. Optima and Equilibria. An 162 ALPERIN/BELl... Groups and 

Introduction to Nonlinear Analysis. Representations. 
141 BECKERlWEISPFENNINGlKREDEL. Grobner 163 DIXONIMORTIMER. Permutation 

Bases. A Computational Approach to Groups. 
Commutative Algebra. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




