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Preface 

This book grew out of notes from several courses that the first author has taught 
over the past nine years at the California Institute of Technology, and earlier at 
the Johns Hopkins University, Cornell University, the University of Chicago, 
and the University of Crete. Our general aim is to provide a modern approach 
to number theory through a blending of complementary algebraic and analytic 
perspectives, emphasizing harmonic analysis on topological groups. Our more 
particular goal is to cover Jolm Tate's visionary thesis, giving virtually all of 
the necessary analytic details and topological preliminaries-technical prereq­
uisites that are often foreign to the typical, more algebraically inclined number 
theorist. Most of the existing treatments of Tate's thesis, including Tate's own, 
range from terse to cryptic; our intent is to be more leisurely, more comprehen­
sive, and more comprehensible. To this end we have assembled material that 
has admittedly been treated elsewhere, but not in a single volume with so much 
detail and not with our particular focus. 

We address our text to students who have taken a year of graduate-level 
courses in algebra, analysis, and topology. While our choice of objects and 
methods is naturally guided by the specific mathematical goals of the text, our 
approach is by no means narrow. In fact, the subject matter at hand is germane 
not only to budding number theorists, but also to students of harmonic analysis 
or the representation theory of Lie groups. We hope, moreover, that our work 
will be a good reference for working mathematicians interested in any of these 
fields. 

A brief sketch of each of the chapters follows. 

(1) TOPOLOGICAL GROUPS. The general discussion begins with basic notions 
and culminates with the proof of the existence and uniqueness of Haar 
(invariant) measures on locally compact groups. We next give a substantial 
introduction to profinite groups, which includes their characterization as com­
pact, totally disconnected topological groups. The chapter concludes with the 
elementary theory of pro-p-groups, important examples of which surface later 
in connection with local fields. 

(2) SOME REPRESENTATION THEORY. In this chapter we introduce the funda­
mentals of representation theory for locally compact groups, with the ultimate 
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aim of proving certain key properties of unitary representations on Hilbert 
spaces. To reach this goal, we need some weighty analytic prerequisites, in­
cluding an introduction to Gelfand theory for Banach algebras and the two 
spectral theorems. The first we prove completely; the second we only state, but 
with enough background to be thoroughly understandable. The material on 
Gelfand theory fortuitously appears again in the following chapter, in a some­
what different context. 

(3) DUALITY FOR LOCALLY COMPACT ABELIAN GROUPS. The main points here 
are the abstract definition of the Fourier transform, the Fourier inversion for­
mula, and the Pontryagin duality theorem. These require many preliminaries, 
including the analysis of functions of positive type, their relationship to unitary 
representations, and Bochner's theorem. A significant theme in all of this is the 
interplay between two alternative descriptions of the "natural" topology on the 
dual group of a locally compact abelian group. The more tractable description, 
as the compact-open topology, is presented in the first section; the other, which 
arises in connection with the Fourier transform, is introduced later as part of 
the proof of the Fourier inversion formula. 

We have been greatly influenced here by the seminal paper on abstract har­
monic analysis by H. Cartan and R. Godement (1947), although we give many 
more details than they, some of which are not obvious--even to experts. As a 
subsidiary goal of the book, we certainly hope that our exposition will encour­
age further circulation of their beautiful and powerful ideas. 

(4) THE STRUCTURE OF ARITHMETIC FIELDS. In the first two sections the basics 
oflocal fields, such as the p-adic rationals Qp' are developed from a completely 
topological perspective; in tllis the influence of Weil's Basic Number Theory 
(1974) is apparent. We also provide some connections with the algebraic con­
struction of these objects via discrete valuation rings. The remainder of the 
chapter deals with global fields, which encompass the finite extensions of Q 
and function fields in one variable over a finite field. We discuss places and 
completions, the notions of ramification index and residual degree, and some 
key points on local and global bases. 

(5) ADELES, IDELES, AND THE CLASS GROUPS. This chapter establishes the fun­
damental topological properties of adele and idele groups and certain of their 
quotients. The first two sections lay the basic groundwork of definitions and 
elementary results. In the third, we prove tile crucial theorem that a global field 
embeds as a cocompact subgroup of its adele group. We conclude, in the final 
section, with tlle introduction of the idele class group, a vast generalization of 
the ideal class group, and explain the relationship of the former to the more 
traditional ray class group. 

(6) A QUICK TOUR OF CLASS FIELD THEORY. The material in this chapter is not 
logically prerequisite to tile development of Tate's thesis, but it is used in our 
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subsequent applications. We begin with the Frobenius elements (conjugacy 
classes) associated with unramified primes P of a global field F, first in finite 
Galois extensions, next in the maximal extension unramified at P. In the next 
three sections we state the Tchebotarev density theorem, define the transfer 
map for groups, and state, without proof, the Artin reciprocity law for abelian 
extensions of global and local fields, in terms of the more modem language of 
idele classes. In the fifth and final section, we explicitly describe the cyclotomic 
extensions of Q and Qp and then apply the reciprocity law to prove the 
Kronecker-Weber theorem for these two fields. 

(7) TATE'S THESIS AND APPLICATIONS. Making use of the characters and duality 
of locally compact abelian groups arising from consideration of local and global 
fields, we carefully analyze the local and global zeta functions of Tate. This 
brings us to the main issue: the demonstration of the functional equation and 
analytic continuation of the L-functions of characters of the idele class group. 
There follows a proof of the regulator formula for number fields, which yields 
the residues of the zeta function of a number field F in terms of its class num­
ber hF and the covolume of a lattice of the group UF of units, in a suitable 
Euclidean space. From this we derive the class number formula and, in conse­
quence, Dirichlet's theorem for quadratic number fields. Further investigation 
of these L-functions-in fact, some rather classical analysis-next yields an­
other fundamental property: their nonvanishing on the line Re(s)= l. Finally, as 
a most remarkable application of this material, we prove the following theorem 
of Hecke: Suppose that X and X' are idele class characters of a global field K 
and that Xp=X/ for a set of primes of positive density. Then X= PX' for some 
character P of finite order. 

One of the more parenthetical highlights of this chapter (see Section 7.2) is 
the explanation of the analogy between the Poisson summation formula for 
number fields and the Riernann-Roch theorem for curves over finite fields. 

We have given a number of exercises at the end of each chapter, together 
with hints, wherever we felt such were advisable. The difficult problems are 
often broken up into several smaller parts that are correspondingly more acces­
sible. We hope that these will promote gradual progress and that the reader will 
take great satisfaction in ultimately deriving a striking result. We urge doing as 
many problems as possible; without this effort a deep understanding of the 
subject cannot be cultivated. 

Perhaps of particular note is the substantial array of nonstandard exercises 
found at the end of Chapter 7. These span almost twenty pages, and over half of 
them provide nontrivial complements to, and applications of, the material de­
veloped in the chapter. 

The material covered in this book leads directly into the following research 
areas. 
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~ L-functions of Galois Representations. Following Artin, given a finite­
dimensional, continuous complex representation (Tof Gal(Q/Q), one asso­
ciates an L-function denoted L(cr,s). Using Tate's thesis in combination with 
a theorem of Brauer and abelian class field theory, one can show that this 
function has a meromorphic continuation and functional equation. One of 
the major open problems of modem number theory is to obtain analogous re­
sults for I-adic Galois representations OJ, where I is prime. This is known to 
be true for q arising from abelian varieties of eM type, and L( OJ,s) is in this 
case a product of L-functions of ide Ie class characters, as in Tate's thesis. 

~ Jacquet-Langlands Theory. For any reductive algebraic group G [for in­
stance, GLn(F) for a number field F), an important generalization of the set 
of idele class characters is given by the irreducible automorphic representa­
tions tr of the locally compact group G(AF). The associated L-functions 
L(tr,s) are well understood in a number of cases, for example for GLn, and by 
an important conjecture of Langlands, the functions L(Oj,s) mentioned 
above are all expected to be expressible in terms of suitable L(tr,s). This is 
often described as nonabelian class field theory. 

~ The p-adic L-functions. In this volume we consider only complex-valued 
(smooth) functions on local and global groups. But if one fixes a prime p 
and replaces the target field C by Cp ' the completion of an algebraic closure 
of Qp' strikingly different phenomena result. Suitable p-adic measures lead 
to p-adic-valued L-functions, which seem to have many properties analo­
gous to the classical complex-valued ones. 

~ Adelic Strings. Perhaps the most surprising application of Tate's thesis is to 
the study of string amplitudes in theoretical physics. This intriguing con­
nection is not yet fully understood. 
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Index of Notation 

Notation Section Interpretation 

N,Z,Q 

R,C 

R+,R: 
Is 
SC 

Card(S) 

USa 
supp(f) 

~(X) 

A*,K* 
AX 
[K:F] 

NKlF(x) 

tr KIF(X) 

KL 

VnZ 

rp(n) 
SI 

W.l 

prw 

natural numbers, integers, and rational 
numbers, respectively 

real and complex numbers, respectively 

nonnegative reals, positive reals 
identity map on the set S 

complement of the set S 

cardinality of the set S 

disjoint union of sets Sa 

support of a function f 
continuous (complex-valued) functions on 
a topological space X 

continuous functions with compact support 

positive elements of ~c(X) with positive 
sup nonn 

nonzero elements of a ring or field 

group of units ofa ring A 

degree of a finite field extension KIF 

nonn map for a finite field extension KIF; 
see also Section 6.4 

trace map for a finite field extension KIF 

compositum of fields K and L 

integers modulo n 

Euler phi function 

the circle group 

orthogonal complement of a subspace W 

orthogonal projection onto a subspace W 
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k[[t]] ring offonnal power series in t with 
coefficients in the field k 

k«t» fraction field of k[[t]] 

GLn(k) group of invertible nxn matrices over k 

SLn(k) nxn matrices over k of determinant 1 
BI{X) Al unit ball in a nonned linear space X 

XlI< Al (nonn) continuous dual of a nonned linear 
space X 

II(C, Al Cn with II nonn 

L(X) A4 measurable functions on X modulo 
agreement almost everywhere 

LP(X) A4 LP-space associated with a locally compact 
space X 

II' lip A4 LP-nonn 

As B.l localization of a ring A at subset S 

JK B.2 set of fractional ideals of a global field K 

PK B.2 set of principal fractional ideals of K 

elK B.2 traditional class group of a global field K 

N(l) B.2 absolute nonn map 

A(x\>, ",xn) B.2 discriminant of a basis xI"",xn 
A(BIA) B.2 discriminant ideal of a ring extension BIA 

Lhf,Rhf 1.1 left and right translation operators onf 

(f: rp) 1.2 Haar covering number 

limGj 1.3 projective limit ofa projective system {Gj } 
<-

A 

1.3 projective completion of Z Z 

Zp 1.3 ring of p-adic integers 
GO 1.3 connected component of the identity 

Gal (KIF) 1.3 Galois group of the field extension KIF 

FS 1.3 fixed field of a set S of automorphisms of F 

IGI 1.4 order of a profinite group G 

Aut(V) 2.1 algebraic automorphisms of a vector space 

Aulu,p(V) 2.1 topological automorphisms of a topological 
vector space 

Hom(A,B) 2.2 bounded operators between Banach spaces 

End(A) 2.2 endomorphisms on a Banach space A 

II Til 2.2 nonn of a bounded operator T 
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sp(a) 2.2. spectrum of an element in a Banach 
algebra 

r(a) 2.2 spectral radius 

A 2.2 space of characters of a Banach algebra A 

a 2.2 Gelfand transform of a 

%'o(X) 2.3 continuous functions that vanish at infinity 

T* 2.3 adjoint of an operator T on a Hilbert space 

AT~End(H) 2.3 the closed, self-adjoint, unital subalgebra 
generated by T in the ambient ring 

Tin 2.3 square root of a positive operator 

Homa(V,V') 2.4 space of G-linear maps between two 
representation spaces 

A 

3.1 Pontryagin dual of G G 
x<n)~G 3.1 n-fold products within a group G 

W(K,V) 3.1 local basis sets for the compact-open 
topology 

N(e)~SI 3.1 e-neighborhood of the identity in Sl 

Vip 3.2 Hilbert space associated with rp 

!*g 3.2 convolution of functions 

9'(G) 3.2 continuous function of positive type, 
bounded by 1 on G 

W(G) 3.2 elementary functions on G 
A 3.3 Fourier transform of a function! 

! 
V(G) 3.3 complex span of continuous functions of 

positive type 

VI(G) 3.3 LI-functions in V(G) 

T. 3.3 Fourier transform of a measure it 
)J 

moda(a) 4.1 module of an automorphism a on G 

Bm~k 4.1 ball of module radius m in a topological 
field k 

ordk(a) 4.2 order of an element of a local field k 

1"lp,I"I<Xl 4.2 p-norm and infinity norm on Q or Fit); 
see also Section 4.3 

;r=;rk 4.2 uniformizing parameter for a local field k 

e=e(k/k) 4.3 ramification index of an extension of local 
fields 
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f=f(k/k) 4.3 residual degree of an extension of local 
fields 

K" 4.4 completion of a field K at a place v 

KQ 4.4 completion of global field K at the place 
corresponding to a prime Q 

f?lJK 4.4 set of places of K 

f?lJK,oo 4.4 set of Archimedean places of K 

f?lJKJ 4.4 set of ultrametric places of K 

rKIF:9J:. -+.9p 4.4 restriction map for places of a field 
extension KIF 

vlu 4.4 place v restricts to place u 

0" 4.4 local ring of integers with respect to a 
place v 

OK 4.4 ring of integers of a global field K 

DQ 4.5 decomposition group of a prime Q 

PQ 4.5 canonical map from DQ to Gal(F/F) 

jQ 4.5 induced isomorphism from D Q onto 
Gal(KQIFp) where Q lies over P 

Homk(L,M) 4.5 embedding of L into Mover k 

IT'G" 5.1 restricted direct product 

Gs 5.1 S-version of the restricted direct product 

I1dgv 
5.1 induced Haar measure on a restricted 

v direct product of locally compact groups 

AK 5.2 adele group of a global field K 

IK 5.2 idele group of a global field K 

SO) 5.2 set of infinite places of a global field 

AO) 5.2 the open subgroup AsO) of the adele group 

CK 5.4 idele class group of global field K; see also 
Section 6.4 

IxlAK 5.4 standard absolute value on the adele group 

C~ = IkIK* 5.4 norm-one idele class group 

Soo 5.4 set of Archimedean places of a global field 

IK;S 5.4 S-ideles of the global field K 

I~,s 5.4 S-ideles of norm one 

Rs 5.4 S-integers of a global field 

AK;S 5.4 S-adeles of the global field K 
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CK,s 5.4 S-class group of a global field K 

vp 5.4 discrete valuation associated with a prime 
P in a Dedekind domain 

KM,I 5.4 elements of K congruent to 1 modulo the 
integral ideal M 

J~M) 5.4 fractional ideals relatively prime to M 

C/~M) 5.4 wide ray class group of K relative to M 

KMI 5.4 elements of K congruent to 1 modulo the 
ideal M extended by a set of real places 

C1K(M) 5.4 narrow ray class group of K relative to M 

f/JQIP 6.1 Frobenius element associated with primes 
Q and P, where Q lies over P 

(P,KIF) 6.1 Artin symbol (or Frobenius class) 

P'(P) 6.1 maximal unramified extension of Fat P 

LF 6.2 set of places of a global field F 

(G,G) 6.3 commutator subgroup of a group G 
Gab 6.3 abelianization of a group G 
V:Gab~H"b 6.3 transfer map 

CF 6.4 idele class group for F global, F* for F 
local 

NKIF:CK~CF 6.4 norm homomorphism 

jKlF:CF~CK 6.4 map induced by inclusion 

rK=Gal FIK) 6.4 Galois group of the separable closure of F 
over a finite extension K of F 

iKlF : rK~rF 6.4 inclusion map of Galois groups 

v:r;b ~r~b 6.4 transfer map on Galois groups 

OF:CF~r;b 6.4 Artin map 

°KlF 6.4 Artin map with projection onto Gal (KIF) 

F ab 6.5 maximal abelian extension of a field F 

Fn 6.5 extension of Fby all nth roots of unity 

Fro 6.5 extension of Fby all roots of unity 

O(z) 7.0 theta function 

d*x= dx/lx I 7.1 Haar measure on F* as given by the Haar 
measure dx on a local field F 

UF 7.1 elements of F* of unit absolute value 
9F 7.1 valuation group of a local field F 
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X(F*) 7.1 characters of a local field F 

L(z) or L(s,X) 7.1 local L-factor associated with a local 
character X; see also Section 7.4 

r(s) 7.1 ordinary gamma function 

rF(s) 7.1 gamma function associated with F= R or C 

sgn(x) 7.1 sign character 

v -11 I X =X . 7.1 shifted dual of a character X 

If/a 7.1 mUltiplicative translate of an additive 
character by a field element a 

S(F) 7.1 space of Schwartz-Bruhat functions on F 

Z(/,X) 7.1 local zeta function; see also Section 7.3 

0' F 7.1 dual of OF with respect to the trace map 

'J)F 7.1 different of a field F 

If/F 7.1 standard character of a local field F 

g(aJ,A) 7.1 Gauss sum for characters 0) and A 

W(aJ) 7.1 root number associated with a character 0) 

S(AK) 7.2 adelic Schwartz-Bruhat functions 

q5(x) 7.2 average value of cpeS(AK) over K 

Div(K) 7.2 divisor group of a function field K 
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1 
Topological Groups 

Our work begins with the development of a topological framework for the key 
elements of our subject. The first section introduces the category of topological 
groups and their fundamental properties. We treat, in particular, unifonn con­
tinuity, separation properties, and quotient spaces. In the second section we 
narrow our focus to locally compact groups, which serve as the locale for the 
most important mathematical phenomena treated subsequently. We establish 
the essential deep feature of such groups: the existence and uniqueness of Haar 
measure; this is fundamental to the development of abstract hannonic analysis. 
The last two sections furtlIer specialize to profinite groups, giving a topological 
characterization, a structure theorem, and a set of results roughly analogous to 
the Sylow Theorems for finite groups. The prerequisites for this discussion will 
be found in almost any first-year graduate courses in algebra and analysis. 

1.1 Basic Notions 

DEFINITION. A topological group is a group G (identity denoted e) together 
with a topology such that the following conditions hold: 

(i) The group operation 

GxG~G 

(g,h) Hgh 

is a continuous mapping. (The domain has the product topology.) 

(ii) The inversion map 

is likewise continuous. 

By convention, whenever we speak of a finite topological group, we intend 
the discrete topology. 
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Clearly the class of topological groups together with continuous homomor­
phisms constitutes a category. 

It follows at once that translation (on either side) by any given group ele­
ment is a homeomorphism G~G. Thus the topology is translation invariant in 
the sense that for all gEG and Uc;;;;,G the following three assertions are equiva­
lent: 

(i) U is open. 

(ii) gU is open. 

(iii) Ug is open. 

Moreover, since inversion is likewise a homeomorphism, U is open if and only 
if U-I={x: X-1EU} is open. 

A fundamental aspect of a topological group is its homogeneity. In general, 
if X is any topological space, Homeo(X) denotes the set of all homeomorphisms 
X ~ X. If S is a subset of Homeo(X), then one says that X is a homogeneous 
space under S if for all X,YEX, there exists IES such that I(x) = y. (When S is 
unspecified or perhaps all of Homeo(X), one says simply that X is a homogene­
ous space.) Clearly any topological group G is homogeneous under itself in the 
sense that given any points g,hEG, the homeomorphism defined as left transla­
tion by hg-I (i.e., x H hg-1x) sends g to h. From this it follows at once that a 
local base at the identity eEG determines a local base at any point in G, and in 
consequence the entire topology. 

EXAMPLES 

(1) Any group G is a topological group with respect to the discrete topology. 

(2) R *, R!, and e* are topological groups with respect to ordinary multipli­
cation and the Euclidean topology. 

(3) Rn and en are topological groups with respect to vector addition and the 
Euclidean topology. 

(4) Let k=R or C. Then the general linear group 

is a topological group with respect to matrix multiplication and the Euclid­
ean topology. The special linear group 

SLn(k) = {gEGLn(k) : det(g) = I} (n~ 1) 

is a closed subgroup of GLn(k). 
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In subsequent discussion, if X is a topological space and xeX, we shall say 
that Ur;;;,X is a neighborhood ofx if x lies in the interior of U (i.e., the largest 
open subset contained in U). Thus a neighborhood need not be open, and it 
makes sense to speak of a closed or compact neighborhood, as the case may be. 

A subset S of G is called symmetric if S=S -I. This is a purely group­
theoretic concept that occurs in the following technical proposition. 

1-1 PROPOSITION. Let G be a topological group. Then the following assertions 
hold: 

(i) Every neighborhood U of the identity contains a neighborhood V of 
the identity such that VVr;;;, U. 

(ii) Every neighborhood U of the identity contains a symmetric neighbor-
hood V of the identity. 

(iii) If H is a subgroup ofG, so is its closure. 

(iv) Every open subgroup ofG is also closed. 

(v) If KI and K2 are compact subsets ofG, so is KIK2. 

PROOF. (i) Certainly we may assume that U is open. Consider the continuous 
map rp: Ux U~G defined by the group operation. Certainly rp-I(U) is open and 
contains the point (e,e). By definition ofthe topology on Ux U, there exist open 
subsets VI,v2 of U such that (e, e)E VI x V2. Set V= VI n V~. Then V is a neigh­
borhood of e contained in U such that by construction VV r;;;, U. 

(ii) Clearly g EU nU-1 ¢:::> g,g-I E U, so V= UnU-1 is the required symmet­

ric neighborhood of e. 

(iii) Any two points g and h in the closure of H may be exhibited as the limits 
of convergent nets in H itself. Hence by continuity their product is likewise the 
limit of a convergent net in H and similarly for inverses. 

(iv) If H is any subgroup of G, then G is the disjoint union of the cosets of H, 
and hence H itself is the complement of the union of its nontrivial translates. If 
H is open, so are these translates, whence H is the complement of an open set 
and therefore closed. 

(v) KIK2 is the image of the compact set KI xK2 under the continuous map 
(k\,k2 ) 1-4 k\k2 • It is therefore compact by general topology 0 

Note that (i) and (ii) together imply that every neighborhood U of the iden­
tity contains a symmetric neighborhood V such that VV r;;;, U. 
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Translation of Functions and Uniform Continuity 

Given an arbitrary functionfon a group, we define its left and right translates 
by the formulas 

Iff is a (real- or complex-valued) continuous function on a topological group, 
we say that f is left uniformly continuous if for every &>0 there is a neighbor­
hood V of e such that 

h eV~IILhf- fll .. <& 

where II II .. denotes the uniform, or sup, norm. Right uniform continuity is de­
fined similarly. Recall that 'Ilc(G) denotes the set of continuous functions on G 
with compact support. 

1-2 PROPOSITION. Let G be a topological group. Then every function fin 
'?i'c(G) is both left and right uniformly continuous. 

PROOF. We prove right uniform continuity. Let K= supp(f) and fix &>0. Then 
for every geK there exists an open neighborhood Ug of the identity such that 

h eUg ~ If(gh)- f(g)l< & • 

Equivalently,f(g') is &-close tof(g) whenever g-Ig ' lies in Ug' Moreover, by the 
comment following the previous proposition, each Ug contains an open sym­
metric neighborhood Vg of the identity such that VgVg~Ug' Clearly the collec­
tion of subsets gVg covers K, and a finite subcollection {g}'j}j=I ..... n suffices. 
Henceforth we write ~ for Vg and ~ for Ug. Define V, a symmetric open 
neighborhood of the identity e, by the formula '.J 

n 

V=nTtJ 
j=! 

IfgeK, then geg}j. for somej. For heVwe consider the differencef(gh)-f(g): 

If(gh) - f(g)1 ~ If(gh) - f(gj) I + If(g} - f(g)1 . 

The point is that both g/g and g/gh lie in ~, so that both terms on the right 
are bounded by &. (Here is where we use that property ~v.~ U. for all}.) This 
establishes right uniform continuity for K. J J 
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When g does not lie in K, then we must bound If(gh)l. Iff(gh)*O, then ghE 
g}j for somej, and thereforef(gh) is &-close tof(gj)' Moreover, g/g=gj-lghh-1 

lies in ~ (here is where we use the symmetry of V), and it follows that If(g)I<& 
since gj is close to g and f(g) = ° by assumption. Consequently If(gh)I<2~ and 
the argument is complete. 0 

Separation Properties and Quotient Spaces 

Some authors assume as part of the definition of a topological group that the 
underlying topology is T1• In this case it is also customary to reserve the term 
subgroup for a closed subset that constitutes a subgroup in the ordinary alge­
braic sense. Note that in general we accept neither of these assumptions. 

The following proposition shows, among other things, that for a topological 
group the separation axioms Tl and T2 (Hausdorff) have equal strength. 

1-3 PROPOSITION. Let G be a topological group. Then the following assertions 
are equivalent: 

(i) Gis T1. 

(ii) G is Hausdorff. 

(iii) The identity e is closed in G. 

(iv) Every point ofG is closed. 

PROOF. (i)~(ii) If Gis T1, then for any distinct g,hEG there is an open neigh­
borhood U of the identity lacking gh-1• According to Proposition 1-1, U admits 
a symmetric open subset V, also containing the identity, such that VV~ U. Then 
Vg and Vh are disjoint open neighborhoods of g and h, since otherwise gh-1 lies 
in V-1V=VV~U. 

(ii)~(iii) Every point in a Hausdorff (or merely T1) space is closed. 

(iii) ~(iv) This is a consequence of homogeneity: For every point XEG there is 
a homeomorphism that carries e onto x. Hence if e is closed, so is every point. 

(iv)~(i) Obvious by general topology. o 

If H is a subgroup of the topological group G, then the set G/H of left cosets 
of G acquires the quotient topology, defined as the strongest topology such that 
the canonical projection p:gH gH is continuous. Thus U is open in G/H if and 
only if p-l(U) is open in G. Recall from algebra that G/H constitutes a group 
under coset multiplication if and only if H is moreover normal in G. We shall 
see shortly that in this case G/H also constitutes a topological group with re­
spect to the quotient topology. 
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The following two propositions summarize some of the most important 
properties of the quotient construction. 

1-4 PROPOSITION. Let G be a topological group and let H be a subgroup ofG. 
Then the following assertions hold: 

(i) The quotient space GIH is homogeneous under G. 

(ii) The canonical projection p: G-+GIH is an open map. 

(iii) The quotient space GIH is Tl if and only if H is closed. 

(iv) The quotient space GIH is discrete if and only if H is open. Moreover, 
ifG is compact, then H is open if and only ifGIH is finite. 

(v) If H is normal in G, then GIH is a topological group with respect to 
the quotient operation and the quotient topology. 

(vi) Let H be the closure of {e} in G. Then H is normal in G, and the quo­
tient group GIH is HausdorjJwith respect to the quotient topology. 

PROOF. (i) An element xeG acts on GIH by left translation: gHH xgH. The 
inverse map takes the same form, so to show that left translation is a homeo­
morphism of GIH, it suffices to show that left translation is an open mapping 
on the quotient space. Let Ube an open subset of GIH. By definition of the 
quotient topology, the inverse image of U under p is an open subset U of G, 
and it follows that the inverse image of gU under p is gU, also an open subset 
of G. Therefore gU is open, and left translation is indeed an open map, as re­
quired. 

(ii) Let Vbe an open subset of G. We must show that p(V) is open in the quo­
tient. But p(V) is open in GIH if and only if p-l(P(V» is open in G. Byelemen­
tary group theory, p-l(P(V»= V·H. Let x lie in V·H, so that x= vh for some ve V 
and heH. Since Vis open, given any veV, there is an open neighborhood Uyr;;;. 
V containing v. Thus Uy·h is an open neighborhood of x contained in V·H, 
which is accordingly open. 

(iii) By general topology, GIH is Tl if and only if every point is closed. Since a 
coset of H is its own inverse image under projection, each coset is a closed 
point in GIH if and only if each is likewise a closed subset of G. But by homo­
geneity this is the case if and only if H itself is closed in G. (Note that we can­
not appeal to the previous proposition, since the topological space GIH is not 
necessarily a topological group with respect to multiplication of cosets.) 

(iv) Let Hbe a subgroup of G. Then by part (ii), H is an open subset of G if and 
only if H is an open point of GIH. Since GIH is homogeneous under G, this 
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holds if and only if GIH is discrete. Assume now that G is compact. Then so is 
G/H, since p is continuous. But then H is open if and only if GIH is both com­
pact and discrete, which is to say, if and only if GIH is finite. (Recall our con­
vention that a finite topological group carries the discrete topology.) 

(v) Assume that H is a normal subgroup of G. Then from part (ii) and the com­
mutative diagram 

G 
P,1.. 

GIH 
Tp(g) 

G 
,1..P 

GIH 

(where Tg denotes left translation by g), we see at once that translation by any 
group element is continuous on the quotient. A similar diagram establishes the 
continuity of the inversion map. 

(vi) Since {e} is a subgroup of G, so is its closure H. Moreover, it is the small­
est closed subgroup of G containing e and therefore normal, since each conju­
gate of H is likewise a closed subgroup containing e. In light of the previous 
proposition, the full assertion now follows from parts (iii) and (v) above. 1:1 

Part (vi) shows that every topological group projects by a continuous homo­
morphism onto a topological group with Hausdorff topology. In this sense the 
assumption that a given group is Hausdorff is not too serious. 

1-5 PROPOSITION. Let G be a HausdorJJtopological group. Then the following 
assertions hold: 

(i) The product of a closed subset F and a compact subset K is closed. 

(ii) If H is a compact subgroup ofG, then p: G-+GIH is a closed map. 

PROOF. (i) Let z lie in the closure of the product FK. Then there exists a net 

converging to z of the form {x aY a} with Xa. EF and YaEK. Since K is compact, 
we may replace our given net by a subnet such that {ya} converges to some 

point Y in K. We claim that this forces the convergence of {xa} in F to zy-l, 

showing that z = zy-1y lies in FK, which is therefore closed. To establish the 

claim, consider an arbitrary open neighborhood U of the identity e. We may 

choose yet another neighborhood of e contained in U such that VV\; U. Then 

the nets {z-lxaya} and {y~ly} are both eventually in V, whence the product 
Z-Ixa Ya y~ly = Z-Ixa Y is eventually in U. Thus limxa=zy-I, as required. 



8 1. Topological Groups 

(ii) If X is a closed subset of G, then arguing as the second part of the previous 
proposition, we are reduced to showing that X·H is likewise a closed subset of 
G. But if H is compact, this is just a special case of assertion (i). 0 

REMARK. The requirement that H be compact is essential. For example, in the 
case G=R2, with subgroup H={(O,y) :YER}, we have clearly GIH==.R and un­
der this identification, p(x,y) = x. Now let X= {(x,y)ER2 : xy = I}. Then X is 
closed, but p(X)= R* is not. 

Locally Compact Groups 

Recall that a topological space is called locally compact if every point ad­
mits a compact neighborhood. 

DEFINITION. A topological group G that is both locally compact and Hausdorff 
is called a locally compact group. 

Note well the assumption that a locally compact group is Hausdorff. Accor­
dingly, all points are closed. 

1-6 PROPOSITION. Let G be a HausdorjJtopological group. Then a subgroup H 
ofG that is locally compact (in the subspace topology) is moreover closed. 
In particular, every discrete subgroup ofG is closed. 

PROOF. Let K be a compact neighborhood of e in H. Then K is closed in H, 
since H is likewise Hausdorff, and therefore there exists a closed neighborhood 
U of e in G such that K = U nH. Since U nH is compact in H, it is also compact 
in G, and therefore also closed. By Proposition I-I, part (i), there exists a 
neighborhood V of e in G such that VV~ U. We shall now show that 
xEH=>XEH. 

First note that H is a subgroup of G by Proposition I-I, part (iii). Thus if 
x EH, then every neighborhood of X-I meets H. In particular, there exists some 
YEVx-InH. We claim that the productyx lies in UnH. Granting this, bothy 
and yx lie in the subgroup H, whence so does x, as required. 

PROOF OF CLAIM. Since UnH is closed, it suffices to show that every neighbor­
hood W of yx meets U nH. Since y-I W is a neighborhood of x, so is y-I W r'\Xv. 
Moreover, by assumption x lies in the closure of H, so there exists some ele­
ment ZEy-1 W nxV nH. Now consider: 

(i) the product yz lies both in Wand in the subgroup H; 

(ii) by construction, yE Vx-I ; 

(iii) by construction, ZEXV. 
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The upshot is thatyz lies in Vx-1. xV=VV, a subset of U, and therefore the in­
tersection Wn(UnH) is nonempty. This establishes the claim and thus com­
pletes the proof. 0 

1.2 Haar Measure 

We first recall a sequence of fundamental definitions from analysis that cul­
minate in the definition of a Haar measure. We shall then establish both its 
existence and uniqueness for locally compact groups. 

A collection <m of subsets of a set X is called a cralgebra if it satisfies the 
following conditions: 

(i) XE<m. 

(ii) IfAE<m, thenAcE<m, whereAC denotes the complement of A inX 

(iii) Suppose tbatAnE<m (n~l), and let 

Then also A E<m; that is, <m is closed under countable unions. 

It follows from these axioms that the empty set is in <m and that r:m is closed 
under finite and countably infinite intersections. 

A setX together with a a-algebra of subsets <m is called a measurable space. 
If X is moreover a topological space, we may consider the smallest cralgebra ~ 
containing all of the open sets of X The elements of ~ are called the Borel 
subsets of X 

A positive measure f.J on an arbitrary measurable space (X, <m) is a function 
f.J:<m~R+v{ao} that is countably additive; that is, 

<Xl <Xl 

f.J(UAn) = Lf.J(An) 
n~1 n~1 

for any family {An} of disjoint sets in <m. In particular, a positive measure de­
fined on the Borel sets of a locally compact Hausdorff space X is called a Borel 
measure. 

Let f.J be a Borel measure on a locally compact Hausdorff space X, and let E 
be a Borel subset of X We say that f.J is outer regular on E if 

f.J(E) = inf{f.J(U) : U;;JE, U open} . 



10 1. Topological Groups 

We say that Jl is inner regular on E if 

p(E) = sup{p(K) : Kr;;;E, K compact} 

A Radon measure on X is a Borel measure that is finite on compact sets, outer 
regular on all Borel sets, and inner regular on all open sets. One can show that 
a Radon measure is, moreover, inner regular on crfinite sets (that is, countable 
unions of ,u-measurable sets of finite measure). 

Let G be a group and let p be a Borel measure on G. We say that p is left 
translation invariant if for all Borel subsets E of G, 

p(sE) = p(E) 

for all SEG. Right translation invariance is defined similarly. 

DEFINITION. Let G be a locally compact topological group. Then a left (respec­
tively, right) Haar measure on G is a nonzero Radon measure p on G that is 
left (respectively, right) translation-invariant. A bi-invariant Haar measure is a 
nonzero Radon measure that is both left and right invariant. 

The following proposition shows that the existence of a left Haar measure is 
equivalent to the existence of a right Haar measure and, in a sense, equates the 
translation invariance of measure with that of integration. As usual, we let 

~+(G) = {f E~(G):f(s) ~ 0 \is EG and IIfllu> O} 

We often abbreviate this to ~+ when the domain is clear. 

1-7 PROPOSITION. Let G be a locally compact group with nonzero Radon 
measure p. Then: 

(i) The measure p is a left Haar measure on G if and only if the measure 

it defined by ji(E) = p(E-1 ) is a right Haar measure on G. 

(ii) The measure p is a left Haar measure on G if and only if 

f LJdp= ffdJl 
G G 

for all fE ~+ and SEG. 

(iii) If P is a left Haar measure on G, then p is positive on all nonempty 
open subsets ofG and 
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f/d,u>O 
G 

for all/E~+. 

(iv) If ,u is a left Haar measure on G, then ,u(G) is finite if and only if G is 
compact. 

PROOF. (i) By definition, we have the equivalence 

for all Borel sets E; the assertion follows at once. (For any topological group G, 
clearly E is a Borel subset of G if and only if E-1 is.) 

(ii) If ,u is a Haar measure on G, then the stated equality of integrals follows by 
definition for all simple functions /E ~+ (Le., finite linear combinations of 
characteristic functions on G), and hence, by taking limits, for arbitrary /E ~+. 
Conversely, from the positive linear functional fG'd,u on Wc(G) we can, by the 
Riesz representation theorem, explicitly recover the Radon measure ,u of any 
open subset U ~ G as follows: 

,u(U) = sup{J / d,u : / E ~(G), II/llu ~ 1, and supp(f) ~ U} . 
G 

From this one sees at once that if tlle integral is left translation invariant, then 
,u(sU) = ,u( U) for all open subsets U of G, since supp( /) ~ U if and only if 
supp(LJ)~sU. The result now extends to all Borel subsets of G because a Ra­
don measure is by definition outer regular. 

(iii) Since ,u is not identically 0, by inner regularity there is a compact set K 
such that ,u(K) is positive. Let U be any nonempty open subset of G. Then from 
the inclusion 

K~UsU 
sEG 

we deduce that K is covered by a finite set of translates of U, all of which must 
have equal measure. Thus since ,u(K) is positive, so is ,u( U). If /E ~+, then 
there exists a nonempty open subset U of G on which / exceeds some positive 
constant R. It then follows that 

J / d,u~ R,u(U) >0 
G 

as claimed. 
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(iv) If G is compact, then certainly p(G) is finite by definition of a Radon 
measure. To establish the converse, assume that G is not compact. Let K be a 
compact set whose interior contains e. Then no finite set of translates of K cov­
ers G (which would otherwise be compact), and there must exist an infinite 
sequence {Sf} in G such that 

(1.1) 

Now K contains a symmetric neighborhood U of e such that UUr;;;K. We claim 
that the translates sfU U;;:: 1) are disjoint, from which it follows at once from 
(iii) that p(G) is infinite. 

PROOF OF CLAIM. Suppose that for i <j we have Sju=sl where u, VE U. Then sf= 

SjUV-1 EsjK, since U is symmetric and UU r;;;K. But this contradicts Eq. l.l. 0 

With these preliminaries completed, we now come to one of the major theo­
rems in analysis. 

1-8 THEOREM. Let G be a locally compact group. Then G admits a left (hence 
right) Haar measure. Moreover, this measure is unique up to a scalar mul­
tiple. 

Via the Riesz representation theorem and statement (ii) of the previous prop­
osition, the existence part of the proof reduces to the construction of a left­
invariant linear functional on ~(G). The key idea is the introduction of a 
translation-invariant device for comparing functions in ~+. 

Preliminaries to the Existence Proof 

Let/, q>E~+. Set U={SEG: qi."s) > 11q>1I)2}, so that a finite number of translates 
of the open set U suffice to cover supp(f). Then there are n elements sl' ""snE 
G such that a linear combination of the translates of q> by the s. dominates f in 
the following sense: J 

The point is that if SESUpp(f), then SESfU for some j, so that S/SE U if q> is 
sufficiently large. Thus it makes sense to define (f:g), the Haar covering num­
ber offwith respect to q>, by the formula 
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Note that since IIfllu is assumed positive, the Haar covering number is never 
zero. We shall see shortly that (f: rp) is almost linear inffor appropriately cho­
sen rp. 

1-9 LEMMA. The Haar covering number has the following properties: 

(i) (f: rp) = (Lsf: rp)for all sEG 

(ii) U;+1;: rp) 5. U;: rp) + <.J;: rp) 

(iii) (cf: rp) = c(f: rp)for any c>O 

(iv) U;: rp) 5. <.J;: rp) whenever };5.1; 

(v) (f: rp) ~ IIfll/llrpliu 

(vi) U;: rp) 5. U; :10)(.10: rp) 

PROOF. (i) Since left multiplication by any given group element constitutes a 
pennutation of the ambient group, for all sEG we have the equivalence 

which is to say that 

Hence precisely the same sets of coefficients cjoccur in the calculation of (f: rp) 
as for (Lsf: rp). 

(ii), (iii), (iv) Obvious. 

(v) If the coefficients cj appear in the calculation of (f: rp), then 

whence LCj ~ IlflVllrpllu' and the assertion follows. 

(vi) We have the implication 
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whence 

as claimed. This completes the proof. 

The Haar covering number yields an "approximate" functional as follows. 
FixfoE ~+ and define 

I (f) = (f:rp) (f t2?+) 
m ,rp E "'c . 
T (fo:rp) 

By (vi) above, we have the inequalities 

(j: rp) :s: (j :fo)(fo : rp) and (fo: rp) :s: (fo :f)(f: rp) 

Dividing the first by (fo: rp) and the second by (f: rp), we find that I'P is bounded 
as follows: 

(1.2) 

This bound is crucial to the existence of a Haar measure for G. 
One would expect that as the support of rp shrinks, I'P will become more 

nearly linear. This is confirmed by the following lemma. 

1-10 LEMMA. Given 1; and 1;. in ~+, for every &>0 there is a neighborhood V 

of the identity e such that 

whenever the support of rp lies in V. 

PROOF. By Urysohn's lemma for locally compact Hausdorff spaces, there exists 
a function gE~+ that takes the value 1 on supp(J;+1;.) = suPP(J;)usupp(J;.). 
Choose 0> 0 and let h = 1; + 1;. + og, so that h is continuous. Next let hrf/h, 
i=I,2, with the understanding that hj is 0 off the support off;. Clearly both hj lie 
in ~+, and their sum approaches 1 from below as 0 tends to O. By uniform 
continuity, there exists a neighborhood U of e such that Ihj(s)-hj(t)1 < o when­
ever t-1SEU. 

Assume that supp( rp) lies in U and suppose that 

Then 
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It(s) = h(s)hj(s) ~ Lcjrp(s/s)h,(s) ~ LCjrp(sjls)(h/(sj) + 0) (i = 1,2) 

and it follows that 

j j 

(It :rp)~ LCj[hj(s) +0] (i =1,2) . 
j 

Since hI + h2 ~ 1, this last inequality implies that 

(f.. :rp)+U; :rp) ~ (1+ 20)Lcj 
j 

But LCi may be made arbitrarily close to (h: rp), and therefore by definition of I f{J 
and part (ii) of the previous lemma, 

If{J(f..) + If{J(f2) ~ (l +20)Irp(h) 

~(1+20)[Irp(j; + f2)+oIrp(g)) 

= IrpU; + f2) + 20 [Irp(ft + f2)+oIrp(g)] 

Finally, Eq. l.2 asserts that all of the I f{J-terms on the right are bounded inde­
pendently of rp, and so for any positive &> 0 we can choose 0 sufficiently small 
that the stated inequality holds. [J 

Existence of Haar Measure 

We now prove the existence of a Haar measure for a locally compact group G. 
The idea is to construct from our approximate left-invariant functionals If{J an 
exact linear functional. We shall obtain this as a limit in a suitable space. 

Let X be tile compact topological space defined by the bounds of I f{J(j) as 
follows: 

X= I1[(fo:f)-I,(f:fo)] 
fE~+ 

Then every function I f{J (in the technical sense of a set of ordered pairs in 
~+ x R!) lies in X For every compact neighborhood U of e, let Ku be the clo­
sure oftlle set {If{J:supp(rp)!;; U} inX The collection {Ku} satisfies the finite 
intersection property, since 
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and the right side is nonempty by Urysohn's lemma. Therefore, since X is 
compact, nKu contains an element I, which will in fact extend to the required 
left-invariant positive linear functional on %'c(G). Note that I, which lies in a 
product of closed intervals excluding zero, cannot be the zero function on 
%'c(G), so that the extended functional will likewise be nontrivial. 

Since I is in the intersection of the closure of the sets {Iq>: supp(tp)~ U}, it 
follows that every open neighborhood of I in the product X intersects each of 
the sets {Iq>: supp(tp)~ U}. We may unwind this assertion as follows: 

For every open neighborhood U of e, and for every trio of functions 
J;,J;,hE (~t and every &>0, there exists a function tpE ~+ with supp(tp) 
~ U such that lI(ff) - I iff)1 < &,j= 1,2,3. 

(This statement extends to any finite collection of ff, but we shall need only 
three.) So givenfE ~+ and eER, we may simultaneously make I(ef) arbitrarily 
close to lief) and cl(f) arbitrarily close to clif). Appealing to Lemma 1-9 
above, this shows that!(ef)= cl(f). Similarly we have that! is left translation­
invariant and at least subadditive. To see that I is in fact additive, we use Lem­
ma 1-10 to choose a neighborhood U of e such that 

whenever supp(tp) ~ U. Then choose tp with supp(tp) ~ U such that I(J;), I(J;), 
and I(J;+J;) all likewise lie within &14 of IiJ;), IiJ;), and IiJ;+ J;), respec­
tively. Since & is arbitrary, it follows at once from the inequality above and the 
general sublinearity of Iq> that 1(J; +J;)=I(J;)+I(J;), as required. 

Finally, extend I to a positive left translation-invariant linear functional on 
%'C<G) by setting I(j)=l(j)-l(j). As we remarked above, in view of our gen­
eral discussion of translation-invariant measures and the Riesz representation 
theorem, this implies that G admits a left Haar measure p and completes the 
existence proof. 0 

Uniqueness of Haar Measure 

We now prove that the Haar measure on a locally compact group G is unique 
up to a positive scalar multiple. Given two Haar measures p and von G, clearly 
it suffices to show that the ratio of integrals 

f f(x)dp 
G 

f f(x)dv 
G 
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is independent offe ~+. To simplify the notation, we shall often write J(f) and 
J(f) for the indicated integrals with respect to fJ and Y, respectively. Given two 
functions j,ge ~+, the plan is to produce a function he ~+ such that the ratios 
J(f)/J(f) and J(g)/J(g) can both be made arbitrarily close to J(h)/J(h). 

Let K be a compact subset of G, the interior of which contains e. Then K 
contains an open symmetric neighborhood of the identity whose closure Ko is 
compact and symmetric. (The symmetry is clearly preserved by closure.) Define 
compact subsets Kfand Kg of G by 

(Recall that the group product of compact sets is compact.) For teKo' define rJ 
by 

rJ(s) = f(st) - f(ts) . 

Equivalently, we have 

rtf = RJ - Lt-./ . 

Define 'Ytg similarly. Clearly 'Ytf and 'Ytg are supported in Kf and Kg, respec­
tively, and both vanish on the center of G and in particular at e. Let &>0 be 
given. Then by left and right uniform continuity, Ko contains an open neigh­
borhood Uo of e such that for all seG and te Uo' both l'Ytf(s)1 and l'Ytg(s)1 are 
bounded by &12. Now Uo in turn contains a symmetric open neighborhood UI of 
e whose closure KI is symmetric, compact, and contained in Ko. Moreover, by 
continuity we have that I 'Ytf(s) I < & and I 'Ytg(s) I < & for all seG and all teKI • The 
point is that as long as t remains in K I , translation of/and g by t on either side 
has approximately the same effect. 

We now construct h. We claim first that since e lies in the interior of K I , 

there exists a second compact neighborhood K2 of e such that K2 is contained in 
the interior of K I . Granting this, it follows immediately from Urysohn's lemma 
for locally compact topological spaces that there exists a continuous function 
h : G ~ R+ that is 1 on K2 and 0 outside of K I . Define h: G ~ R+ by 

Then certainly he ~+, supp(h) lies in KI' and h is an even function in the sense 
that h(s)=h(,rl). 

PROOF OF CLAIM. Since G is Hausdorff and the boundary B of KI is likewise 
compact, B admits a finite cover by open sets each of which is disjoint from a 
corresponding open neighborhood of e in K I • The intersection of these neigh­
borhoods thus constitutes an open neighborhood U2 of e in K I , and we now set 
K2 equal to the closure of U2. Then by construction K2 is contained in the inte­
rior of KI' as required. 0 
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We come to the main calculations. All integrals are implicitly over G and 
are translation-invariant, since p and V are by assumption Haar measures. First, 

J(f)J(h) = If f(s)h(t)dPsdvt 

= If f(ts)h(t)dPsdvt 

The second calculation uses the property that h is even. 

J(h)J(f) = If h(s)f(t)dp"dvt 

= If h(ris)f(t)dPsdvt 

= If h(S-it)f(t)dPsdvt 

= If h(t)f(st)dPsdvt 

From these we can easily estimate the difference: 

IJ(h)J(f) - J(f)J(h)I=IIf h(t){f(st) - f(ts)} dPsdvt I 

=IIf h(t)ytf(s)dPsdvt I 
:s: cp(Kf )J(h) . 

The point in tlle last line of the calculation is that supp(h) lies in a Ki where r,f 
is small. Similarly, 

IJ(h)J(g)- J(g)J(h)I=IIf h(t){g(st)- g(ts)}dp"dvtl 

=IIf h(t)Ytg(s)dPsd'1l 

:s: cp(Kg)J(h) 

Dividing the first inequality by J(h)J(f) yields 

IJ(h) _ J(f)I:s: cp(K,) 
J(h) J(f) J(f) 

Dividing the second by J(h)J(g) yields 

IJ(h) _ J(g)l:s: cp(Kg) 
J(h) J(g) J(g) 
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Since & is arbitrary, this shows that the ratio I(f)/J(f) is independent off as 
claimed. Cl 

1.3 Profinite Groups 

This section introduces a special class of topological groups of utmost impor­
tance to our subsequent work. We begin by establishing a categorical frame­
work for the key definition that follows. 

Projective Systems and Projective Limits 

Let I be a nonempty set, which shall later serve as a set of indices. We say that I 
is preordered with respect to the relation ~ if the given relation is reflexive 
(i.e., i~i for all ie/) and transitive (i.e., i~j andj~k => i~k for all i,j,ke/). 
Note that we do not assume antisymmetry (i.e., i~j andj~i need not imply that 
i = j); hence a preordering is weaker than a partial ordering. Clearly the ele­
ments of a preordered set I constitute the objects of a category for which there is 
a unique morphism connecting two elements i andj if and only if i ~j. 

We say that a preordered set I is moreover a directed set if every finite sub­
set of I has an upper bound in I; equivalently, for all i,jel there exists kel such 
that i~k andj~k. (Recall that directed sets are precisely what is needed to de­
fine the notion ofa net in an abstract topological space.) While most of the spe­
cific instances of preordered sets that we meet below will moreover be directed, 
we shall need only the preordering for the general categorical constructions to 
follow. Beware, however, that directed sets will playa crucial but subtle role in 
establishing that the projective limit of nonempty sets is itself nonempty. (See 
Proposition 1-11.) 

EXAMPLE. The integers Z are preordered (but not partially ordered) with respect 
to divisibility and in fact constitute a directed set: a finite collection of integers 
is bounded with respect to divisibility by its least common multiple. 

Assume that I is a preordered set of indices and let {GJiEI be a family of 
sets. Assume further that for every pair of indices i,jel with i~j we have an 
associated mapping 'Pij: Gj~Gi' subject to the following conditions: 

(i) 'Pii = IG; Vi el 

(ii) 'P1j 0 'Pjk = 'P;k Vi,j,k e/, i ~ j ~ k 

Then the system (Gi , 'Pi} is called a projective (or inverse) system. Note that if 
we regard I as a category, then the association i H q defines a contravariant 
functor. 
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DEFINITION. Let (Gi, CfJij) be a projective system of sets. Then we define the pro­
jective limit (or inverse limit) of the system, denoted limG" by 

<-

Note that as a subset of the direct product, lim Gj comes naturally equipped 
<-

with a family of projection maps Pj: lim Gj ~ Gj , and with regard to these 
<-

projections, the projective limit manifests the following universal property: 

UNIVERSAL PROPERTY. Let H be a nonempty set and let there be given a system 
of maps (If/,:H ~ Gj)ieJ that is compatible with the projective system (G i , CfJij) in 
the sense that for each pair of indices i,jeI with i ~j, the following diagram 
commutes: 

H 

If/;/ "'{i 
Gj • Gi 

CfJij 

Then there exists a unique map If/: H ~ lim Gi such that for each i eI the dia-
<-

gram 

also commutes. 

The mapping If/ is of course none other than h I-H If/i(h))jEi' just as for the 
direct product of sets, but in this case the compatibility of the If/i guarantees that 
the image falls into the projective limit. 

Note carefully that neither the definition of a projective limit nor the associ­
ated universal property asserts that a given projective limit of sets is nonempty. 
In particular, the projection maps may have empty domain. Of course, if a com­
patible system (If/j:H ~ G;)ieJ exists with nonempty domain H, then one infers 
from the existence of elements of the form (If// (h) )ieJ that the projective limit is 
likewise nonempty. 

The construction of the projective limit works equally well in the category of 
groups (in which case the set maps are replaced by group homomorphisms, and 
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the group operation is defined componentwise) or the category of topological 
spaces (in which case the set maps must be replaced by continuous functions, 
and the topology on the projective limit is the subspace product topology in­
duced from the direct product). In the case of groups, note that the projective 
limit is never empty, since the identity element of the direct product clearly lies 
in the projective limit. It follows from these remarks that the projective limit of 
a projective system of topological groups is itself a topological group with re­
spect to the componentwise mUltiplication and the subspace topology. 

REMARK. A more obvious topology on a product space ITX; is the box topology, 
generated by sets of the form IT Uj with Uj open in X; for all i. But this is a 
much finer topology than the standard product topology. Moreover, with re­
spect to the box topology the product of compact spaces need not be compact. 

In the following subsection we shall be concerned with projective limits of 
finite groups. In passing we shall require conditions under which the projective 
limit of finite sets is nonempty. It is here that the notion of a directed set re­
appears critically. 

1-11 PROPOSITION. Assume that 1 is a directed set. and let (Gj,'Pj} be a projec­
tive system ofjinite sets. Set G = lim Gj • Then: 

+-

(i) If each Gj is nonempty. G is nonempty. 

(ii) For each index iel, 

p,(G) = n'Py·(Gj ) 

j",-j 

PROOF. Our proof is adapted from a more general result in Bourbaki's Theory 
of Sets, Chapter III, § 7.4. Let us call (Sj)jEI a compatible family (with respect to 
our given projective system) if the following conditions are satisfied: 

(a) For all iel, S;,;;Gj • 

(b) For all i,jel with i~j, 'P,,(S}r;;;Sj' 

(c) For all iel, Sj*0. 

Note well that if (Sj) is a compatible family of the form Sj= {Xj} for all i el, then 
in fact (xj)eG, which in this case is ipso facto nonempty. 

Henceforth let :E denote the set of all compatible families. We impose an 
ordering on :E as follows: given compatible families (S) and (Tj ), we shall write 
(Sj)~(T;> if Sj2Tj for all i. If:E' is a totally ordered subset of:E, then clearly :E' 
admits the upper bound (Tj ) defined by 
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Tj = nSj 
(sj)el:' 

Conditions (a)-(c) are trivially satisfied, and only the last of these requires fi­
niteness. Hence the given ordering is inductive. 

Suppose that there exists a maximal compatible system (Sj)EL. We claim 
that Sj= 9'iJ(~) for all i~J. To prove this, let (Tj ) be defined by 

T; = n 9'ii(Sj h; Sj . 
j!'j 

Since (Sj) is assumed maximal, our claim is established, provided that we can 
show that also (Tj)EL. Again (a) and (b) are routine; (c) is interesting. First 
observe that if i ~J ~ k, then 9'iSk) ~ 9'jiS). Now consider the intersection that 
defines Tj • Each of the factors appearing is a subset of the finite set Sj. There are 
only finitely many such subsets, and consequently we may assume that the in­
tersection is over a finite set ofindicesJ!, ... ,Jr . But I is directed, so there exists 
an element k in I such that k~Jl' ... ,Jr • Thus by our previous observation, 

r 

9'jk(Sk) ~ n9'ijJSjJ = T; 
m=! 

and therefore Tj is manifestly nonempty. 

We continue to assume that (S) is maximal in ~ and shall demonstrate next 
that each Sj contains exactly one element. Fix i and let XjESj. Define (1j) as fol­
lows: 

Note in particular that Tj= {Xj}' since 9'ii is the identity on Sj. Then (T) lies in ~: 
(a) is obvious, (b) is an easy exercise, and (c) follows from the claim of the pre­
vious paragraph, namely that Sj=9'iJ(~) for all J~i. Moreover, by construction 
(~) ~ (~), whence, since (~) is maximal, we must in fact have equality. This 
shows that Sj= {x;l. Since i was arbitrary, this suffices. 

We now address both statements of the proposition. Again fix iEI. By defini­
tion of a projective system, 

pj(G)~n9'ij(Gj) . 
j!'j 
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One may argue as above that since all but finitely many factors on the right are 
redundant, the given intersection is nonempty; thus it contains an element Xj' 
Define (Tj) as follows: 

T. = {rp;/(X;) if i ~ j 
J Gj otherwise. 

Note in particular that Tj={xj}. One sees without difficulty that (Tj)EL (at last 
establishing that L is nonempty!), and so by Zorn's lemma there is a maximal 
element (~) ofL with the additional property that (~)~(Tj). But then (~)={yj} 
and G is nonempty, as required by (i). Moreover, Xj=YjEPj(G), which in light 
of the preceding inclusion establishes (ii). 0 

Profinite Groups 

We now come to the principal definition of this section. It may seem at first to 
be essentially group-theoretic, with the topology as an afterthought, but we 
shall see shortly that this is not the case. 

Consider a projective system of finite groups, each of which we take as hav­
ing the discrete topology. Their projective limit acquires the relative topology 
induced by the product topology on the full direct product. This is called the 
profinite topology, and accordingly the projective limit acquires the structure of 
a topological group. 

DEFINITION. A topological group isomorphic to the projective limit of a projec­
tive system of finite groups (endowed with the profinite topology) is called a 
profinite group. 

The following proposition summarizes the most fundamental global proper­
ties of a profinite group. 

1-12 PROPOSITION. Let G be a pro finite group, given as the projective limit of 
the projective system (Gj , rpij)' Then the following assertions hold: 

(i) Gis Hausdorffwith respect to the pro finite topology. 

(ii) G is a closed subset of the direct product TIGj • 

(iii) G is compact. 

PROOF. (i) The direct product of Hausdorff spaces is also Hausdorff, and any 
subset of a Hausdorff space is clearly also Hausdorff in the induced topology. 
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(ii) We may realize the complement of G in n Gj as an open set as follows: 

GC = UU{(gk) E IT Gk : 'Pij(g)"* gj} 
j j~ 

Therefore G is closed, as claimed. 

(iii) Since the direct product n Gj is compact by Tychonoff's theorem, this as­
sertion follows from (ii) on general principles: a closed subset of a compact 
space is itself compact. 0 

EXAMPLES 

(1) Let Gn=ZlnZ, n~l, the additive group of integers modulo n. Then {Gn} is 
a projective system, since there is a canonical projection 

'Pmn:ZlnZ ~ZlmZ 

[kln H [klm 

whenever min, and these projections are clearly compatible in the required 
sense. We may thus form their projective limit 

Z=limZlnZ. 

Note that Z also admits the structure of a topological ring. 

(2) Let Hn = (ZlnZY, n~ 1, the group of units in ZlnZ. Then {Hn} is a projec­
tive system, since a (unital) ring homomorphism maps units to units. Set 

Then i x is a to~ological group under multiplication and in fact is the 
group of units of Z . 

(3) Fix a rational primep and set Gm = Zlpmz, m~l. Again {Gm} is a projec­
tive system, and we form its projective limit to obtain a ring 

This is called the ring ofp-adic integers. 

(4) Let Hm = (Zlpmzy, m ~ 1, so that {Hm} is a projective system as in Ex­
ample 2. Then set 
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z; == lim (ZlpmZr . 
..... 

One checks easily that Z; is the group of units in Zp; this is called the 
group ofp-adic units. 

(5) The set of all finite Galois extensions KIQ within a fixed algebraic closure 
Q of Q forms a directed set with respect to inclusion. We have a corre­
sponding directed system of finite groups Gal(KIQ), where if K!;;;; L, the 
associated homomorphism Gal(LlQ) ~ Gal(KIQ) is just restriction. More­
over, we have an isomorphism 

Gal(Q/Q) ~lim Gal(KIQ) 
..... 

Topological Characterization of Profinite Groups 

Recall that a topological space X is called connected if whenever X == Uv V for 
nonempty open subsets U and V, then Un V:t:0. (Evidently an equivalent 
statement results if we substitute nonempty closed subsets for open ones.) Every 
point xEX is contained in a maximal connected subset of X, which is called the 
connected component of x. In the special case of a topological group G, the 
connected component of the identity e is denoted GO. 

A topological space X is called totally disconnected if every point in X is its 
own connected component. Clearly a homogeneous space is totally discon­
nected if and only if some point is its own connected component. In particular, 
a topological group G is totally disconnected if and only if G ° == {e}. 

1-13 LEMMA. GO is a normal subgroup of G. Moreover, the quotient space 
GIGO is totally disconnected, whence (GIGOt is the trivial subgroup of 
the quotient. 

PROOF. Let XEGo. Then x-iGO is connected (by homogeneity) and contains e, 
whence x- i GO!;;;; GO. Thus GO is closed under inverses. The same argument now 
shows that xG°!;;;; GO, and that for all YEG, we have further that yG°y-i!;;;; GO. 
Consequently GO is indeed a normal subgroup of GO, as claimed. The second 
statement is immediate: by homogeneity, the connected components of G are 
precisely the elements of GIGO, and so by general topology (see Exercise 5 be­
low), GIGO is totally disconnected. 0 

1-14 THEOREM. Let G be a topological group. Then G is projinite if and only 
ifG is compact and totally disconnected. 
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PROOF. =» We have already seen that G is compact. Thus it remains to show 
that GO={e}. Let Ube any open subgroup ofG. Then U(lGo is open in GO and 
nonempty. Now consider the subset Vof G defined by 

V = U x·(U (lGO) . 
xeGO-U 

Then since each x'(U(lGO) is open in GO, so is V. Moreover, by elementary 
group theory, U(lV=0, and GO is the disjoint union of two open sets, namely 
U (l GO and V. But by definition GO is connected, so either U (l G ° or V must be 
empty. Since the former is not, the latter is, and in fact GO= U(lGo, which is to 
say that GO!;;;; U. Since U is an arbitrary open subgroup of G, we have accord­
ingly, 

GO!;;;; n U . 
Uanopen 

subgroupofG 

We must now make use of the profinite nature of G. Indeed, let 

G = limG, .... 

where each G; is a finite group with the discrete topology. Recall that for each 
index i we have a projection map P; : G ~ G; that is just the restriction of the 
corresponding map on the full direct product. Let y = (y;) lie in G and assume 
thaty is not the identity element. Then for some index io' it must be the case 
that Yj '* ej • But now consider the set U 0 = p;! (ej ). Since the topology on Gj o 0 0 0 
is discrete and the projections are continuous, Uo is open in G. Since the pro-
jections are moreover group homomorphisms, Uo is in fact a subgroup of G. 
But by construction, Uo excludes y. This shows that the only element in the 
intersection of all open subgroups of G is the identity. Thus GO is trivial, as 
required. 

The proof of the converse is more delicate and requires three lemmas. We 
begin with some preliminary analysis. 

Let A'" be the family of open, normal subgroups of G. This is clearly a di­
rected set with respect to the relation M ~N if N !;;;;M. (In fact, two subgroups M 
and N in A'" have a least upper bound M(lN in 5.) Moreover, the following 
observations are elementary: 

(i) For each N eA'", the quotient group GIN is both compact and discrete, 
hence finite. 



1.3. Profinite Groups 27 

(ii) For each pair of subgroups M,NeA'", with M~N, the kernel of the canon­
ical projection G ~ GIM contains N, and hence this map factors through 
GIN to yield the induced map 

'PM,N: GIN ~GIM 

xN I-4xM . 

From this description it is clear that if L ~M ~N in.#", then 

and {GIN}NE.#" constitutes a projective system of finite groups. 

The point, of course, is to show that G is isomorphic to the projective limit of 
this system. 

1-15 LEMMA. Let the profinite group G' be given by 

G' = lim GIN .... 
N 

where Nvaries overA', as defined above. Then there exists a surjective, 
continuous homomorphism a: G~G'. 

PROOF. For NeA'"let lXrv denote the canonical projection from G to GIN, which 
is sUijective. Since GIN is homogeneous, we establish that lXrv is also continuous 
by noting that a/J(eG1N ) = N, which by hypothesis is open in G. Arguing as in 
(ii) above, it is clear that whenever M~N in.#", the following triangle is com­
mutative: 

a GIN 

G / j~M'N 
~ 

GIM 

Thus by the universal property of projective limits, we have a continuous homo­
morphism a: G ~ G' such that aN = PN oa for all Ne.#", where PN denotes 
projection from G' onto GIN, the component of the projective limit corre­
sponding to N. 

It remains to show that a is surjective. We claim that a has dense image in 
G'. Granting this, we conclude the argmnent as follows: Since G is compact 
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and G' is Hausdorff, the image of a is, moreover, closed in G'. Thus Im(a), 
being dense, must be all of G', as required. 

To establish the claim we shall show that no open subset of G' is disjoint 
from Im(a). Consider the topology of G': this is generated by sets ofthe form 
Pl./(SN)' where SN is an arbitrary subset of GIN. Every open set in G' is thus 
expressible as a union of finite intersections of these pI.} (SN). Such an inter­
section U consists of elements of the form 

where at most only finitely many of the coordinates are constrained to lie in 
some given proper subset of the corresponding quotient; the rest are unre­
stricted. Now suppose that the constrained coordinates correspond to the sub­
groups N I , . .. ,N, and that 

Then given (XN)EG', the coordinates xN . are all determined as images of the co­
ordinate xM under the associated proje'ction maps. Since ll,v-: G~GIM is sur­
jective, there is at least one element in tEG such that a(t)M=xM' and conse­
quently t also satisfies a(t)N.=xN. for j=I, ... ,r. In particular, if (XN)EU, then 
certainly a(t)E U, since a(t) agr~es with (xN) in all of the constrained coordi­
nates. Thus U manifestly intersects Im( a), and by our previous remarks, so, too, 
does every open set in G'. This completes the proof. D 

1-16 LEMMA. Let X be a compact HausdorjJspace. For a fixed point PEX, set 
W = {K:K is a compact, open neighborhood of P}. Define Y ~X by 

Then Y is connected. 

PROOF. Note that the collection W is nonempty because X itself is compact and 
open. 

Suppose that Y is the disjoint union of closed subsets YI and Y2. We must 
show that either YI or Y2 is empty. Recall from general topology that a compact 
Hausdorff space is normal. Accordingly, there exist disjoint open subsets UI 

and U2 containing, respectively, YI and Y2. Now set Z=X-(UluU2), which is 
closed and therefore compact. Since Y ~ UI U U2 , Z and Y are disjoint, which is 
to say that Z lies in the complement of Y. Thus we have an open cover for Z 
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that admits a finite subcover. Hence there exist K\, ... ,KreW such that 

Let W denote the intersection of the IS. Then W is a compact, open neighbor­
hood of P, and so Wis itself in w. But also 

since W is disjoint from Z, the complement of U\u U2• We now make note of 
the following assertions: 

(i) Both W r. U\ and W r. U2 are compact, open subsets of X. 

(ii) P lies exclusively in one of W r. U\ or W r. U2 • Say Pe W r. U\ . 

From (i) and (ii) it follows that W r. U\ e Wand so Y!;; W r. U\. Since Y2!;; Y and 
Y2 is disjoint from U\, it follows that Y2 is empty, as required. 1:1 

1-17 LEMMA. Let G be a compact, totally disconnected topological group. 
Then every neighborhood of the identity contains an open normal sub­
group. 

PROOF. As a preliminary, note that G is Hausdorff: Ifx andy are distinct points 
in G, then {x,y} is disconnected with respect to the subspace topology. There­
fore there exist respective open neighborhoods of x and y that are disjoint. The 
proof now proceeds in three steps: First, we show that evety open neighborhood 
U of the identity contains a compact, open neighborhood W of the identity. Sec­
ond, we show that W in turn contains an open, symmetric neighborhood V of 
the identity such that WV!;; W. Third, from V we construct an open subgroup, 
then an open, normal subgroup of G contained in U, as required. 

Let '!/ denote the set of all compact, open neighborhoods of the group iden­
tity e. Applying the previous lemma with P=e, we find that 

is a connected set containing e. But G is totally disconnected, so in fact Y={e}. 
Now let U denote any open neighborhood of e. Then G-U is closed and 
therefore compact. Since e is the only element of G common to all of the K in 
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W, there exist subsets KI' ... , KrE W whose complements cover G-U, and there­
fore 

is a subset of U and a compact, open neighborhood of e. In particular, WEW. 
This completes the first step. 

To begin the second step, consider the continuous map p: Wx W ~ G defined 
by restriction of the group operation. We make the following observations: 

(i) For every WE W, the point (w,e)Ep-I(W). 

(ii) Since W is open, the inverse image of W itself under p is open in Wx W. 

(iii) It follows from (i) and (ii) that for every WE W, there exists open neighbor­
hoods Uw ofw and Vw of e such that UwXVwt;;;;;p-I(W). Moreover, by Prop­
osition 1-1, we may assume that each Vw is symmetric. 

(iv) The collection of subsets U w (WE W) constitutes an open cover for W. Since 
W is compact, a finite subcollection UI , ••• , Ur suffices. 

Let VI' ... ,vr correspond to U1, ••• , Ur in (iii) above. Define an open neigh­
borhood Vt;;;;; W of the identity as follows: 

By construction WVt;;;;; W, and by induction wvnt;;;;; W for all n~O. In particular, 
Vnt;;;;; Wfor all n~O. This completes the second step. 

For the final step, we expand V to an open subgroup 0 of G contained in W 
by the fonnula 

(Note that 0 is closed under inversion because V is symmetric.) The quotient 
space GIO is compact and discrete, hence finite, so we can find a finite col­
lection of coset representatives xI' ... ,xs for 0 in G. It follows that 0 likewise 
has only finitely many conjugates in G: all take the fonn 

(j = 1, .. . ,s). 

Thus 
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• 
N=nxpxJ1 

}=I 

is an open, normal subgroup of G. Moreover, since one of the conjugates of 0 is 
o itself, N!;;O!;; W!;; U. This completes the proof. [J 

This brings us at last to the conclusion of the topological characterization of 
profinite groups. 

PROOF OF THEOREM 1-14, CONVERSE. By Lemma 1-15, we have a surjective 
homomorphism a:G~G', where G' is the projective limit of the finite quo­
tients GIN for N an open, normal subgroup of G (i.e., Ne J). Appealing to 
Exercise 9 below, we see that it suffices to show that a has trivial kernel and 
hence is injective. 

Since a simultaneously projects on all of the quotients, it is clear that 

Ker(a)= n N . 
Ne.iY 

By the previous lemma, every open neighborhood of eeG contains an open, 
normal subgroup, which is therefore represented in the intersection above. It 
follows that Ker( a) is contained in every neighborhood of e and hence in the 
intersection of all such neighborhoods. But G is Hausdorff: the intersection of 
all neighborhoods of e consists merely of e itself. Hence Ker( a) is indeed triv­
ial, and the theorem is proved. [J 

The Structure of Profinite Groups 

The following theorem shows in particular that closed subgroups of profinite 
groups and profinite quotients by closed normal subgroups are likewise pro­
finite. 

1-18 THEOREM. Let G be a profinite group and let H be a subgroup ofG. Then 
H is open if and only if GIH is finite. Moreover, the following three state­
ments are equivalent. 

(i) H is closed. 

(ii) His profinite. 

(iii) H is the intersection of a family of open subgroups. 

Finally, if (i)-(iii) are satisfied, then GIH is compact and totally discon­
nected. 
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PROOF. The first statement follows from Proposition 1-4, part (iv), since a 
profinite group is necessarily compact. We next establish the given equiva­
lences. 

(i)=>(ii) H is a closed subset of a compact space and therefore itself compact. 
Hence it remains to show that H is totally disconnected. But this is trivial: since 
GO={e}, also HO={e}, and this suffices by homogeneity. 

(ii) => (i) If H is itself profinite, it is a compact subset of a Hausdorff space and 
hence closed. 

(iii)=>(i) Suppose that H is the intersection of some family of open subgroups 
ofG. Then since every open subgroup is also closed [proposition 1-1, part (iv)], 
H is also the intersection of a family of closed subgroups of G, and therefore 
itself closed. 

(i)=>(iii) As above, let..lfl' denote the family of all open, normal subgroups of G. 
If NE..IfI', then since N is normal, NH is a subgroup of G. By part (i), [G:NJ is 
finite, whence [G:NH] is likewise finite and NH is open. Moreover, clearly 

It remains only to demonstrate the opposite inclusion. So let x lie in the indi­
cated intersection, and let U be any neighborhood of x. Then Ux-\ is a neigh­
borhood of e, and so by Lemma 1-16, Ux-\ contains some NoE..IfI'. Since x lies 
in the given intersection, xENoH. Now by construction, also xENOX. Hence Nox 
is equal to Noh for some hEH, and consequently hENoXr;;.. U. The upshot is that 
every neighborhood of x intersects H, and hence x lies in the closure of H. But 
H is closed by hypotllesis, and therefore xEH, as required. 

For the final statement, the compactness of the quotient follows at once from 
the compactness of G. Let p:G-+G/H denote the canonical map. To see that 
GIH is totally disconnected, assume that P(X) is a connected subset of G/H that 
properly contains P(H). Then Y=X-H is nonempty, and since we may assume 
that H is nontrivial, Y contains more than one point. Hence Y is the disjoint 
union of nonempty open (hence closed) sets F\ and F2• One checks easily that 
since H is closed, F\ and F2 are botl1 open (hence closed) in X. Thus X is the 
disjoint union of tl1e two nonempty closed sets F\ u Hand F2• But then the im­
age of F2 under pis (a) nonempty, (b) not the full image of X, and (c) both open 
and closed in P(X). Since P(X) is connected, this is a contradiction. Hence the 
connected component of P(H) is P(H) itself, and the quotient is totally discon­
nected, as claimed. 0 
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A Little Galois Theory 

We close this section by showing how profinite groups make a momentous ap­
pearance in connection with the Galois theory of infinite extensions. To begin, 
we recall the following elements of field theory: 

(i) Let F be a field. An element a that is algebraic over F is called separable 
if the irreducible polynomial of a over F has no repeated roots. An alge­
braic field extension KIF is called separable if every element of K is sepa­
rable over F. 

(ii) Assume that K is an algebraic extension of F contained in an algebraic 
closure F of F. Then we call KIF a normal extension if every embedding 
of K into F that restricts to the identity on F is in fact an automorphism 
of K. (We say that such an automorphism is an automorphism of Kover 
F.) 

(iii) A field extension KIF is called a Galois extension if it is both separable 
and normal. The set of all automorphisms of Kover F constitutes a group 
under composition; this is called the Galois group of Kover F and de­
noted Gal(KIF). If Fr;;;;.Lr;;;;.K is a tower of fields and KIF is Galois, then 
KIL is likewise Galois. 

Note that these notions do not require that KIF be finite. Our aim now is to 
extend the fundamental theorem of Galois theory to infinite extensions. This 
will require the introduction of some topology. 

If S is any set of automorphisms of a field F, as usual F S denotes the fixed 
field of S in F; that is, the subfield of F consisting of all elements of F left fixed 
by every automorphism of S. 

Suppose that KIF is a Galois extension with Galois group G. Consider the 
setA'" of normal subgroups of G of finite index. If N,MeA'"andMr;;;;.N, we have 
a projection map PN,M: GIM -+ GIN, and hence a projective system of quotients 
{GIN}NGIY' This system is certainly compatible with the family of canonical 
projections PN : G -+ GIN, which corresponds to the restriction map from 
Gal(KIF) to Gal(K!"IF). Thus we have a canonically induced homomorphism p 
from G into the projective limit of the associated quotients. 

1-19 PROPOSITION. Let K, F, G, and.IY be as above. Then the canonical map 

p:G-+ lim GIN 
~ 

Ne.IY 

is in fact an isomorphism of groups. Hence G is a profinite group in the 
topology induced by p. 
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In this context, we shall simply speak of the Galois group G as having the 
profinite topology. 

PROOF. We show first that p is injective. Certainly 

Ker(p)= n N 
NeA'" 

and so we need only demonstrate that this intersection is trivial. Let oeKer(p) 
and let xeK. Then by elementary field theory there exists a finite Galois exten­
sion F'IF such that F'~K and xeF'. Now the restriction map from 
G=Gal(KIF) to Gal(F'IF) has kernel Gal(KIF'), which is therefore a normal 
subgroup ofGoffinite index. But then oeGal(KIF'), and so o(x)=x. Since x is 
arbitrary, eris the identity on K, and Ker(p) is trivial, as required. 

We show next that p is also surjective. Fix (erN) in the projective limit. Given 
an arbitrary element xeK, again we know that x lies in some finite Galois ex­
tension F' of F with N=Gal(KIF') normal and of finite index in G and 
Gal(F'IF) = GIN. Now define ereGaI(KIF') by o(x)=erN(x). By construction of 
the projective limit, eris independent ofthe choice of extension F', and hence is 
a well defined automorphism of K. Moreover, it is clear that erN is Prv( er) for all 
N. a 

Note that the isomorphism constructed in the previous proposition is essen­
tially field-theoretic, and not merely group-theoretic. (See Exercise 12 below.) 

1-20 THEOREM. (The Fundamental Theorem of Galois Theory) Let KIF be a 
Galois extension (not necessarily finite) and let G=Gal(KIF) with the 
profinite topology. Then the maps 

a :L H H = Gal(KIL) 

P:HHL=KH 

constitute a mutually inverse pair of order-reversing bijections between 
the set of intermediate fields L lying between K and F. and the set of 
closed subgroups of G. Moreover, L is Galois over F if and only if the 
corresponding subgroup H is normal in G. 

PROOF. Note that in the case of a finite extension KIF, we may ignore the 
topological restriction, and the statement amounts to the fundamental theorem 
of Galois theory for finite extensions, a result that we assume. We proceed in 
four steps. 

STEP 1. We must show first that the map a is well-defined; that is, that a in­
deed yields closed subgroups of G. (The map P is of course well-defined on ar-
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bitrary subsets of G.) According to the previous proposition, His profinite as 
the Galois group of KIL, and Exercise 14 shows that this topology is identical 
to that induced by G. Thus H is a profinite subgroup of a profinite group and is 
therefore closed by Theorem 1-18. 

STEP 2. We claim that po a is the identity map. Let L be an intermediate field. 
By definition a(L) fixes L, and so clearly p(a(L»~L. Conversely, suppose that 
Z lies in p(a(L». Then since Z lies in K and is therefore separable over L, Z also 
belongs to a finite Galois extension M of L contained in K. Let CT E Gal( MIL) . 
Then there exists CTEGal(KIL) that restricts to CT. (The extensibility of auto­
morphisms for infinite extensions follows from the finite case by Zorn's lem­
ma.) By construction, o(z) = z, and hence O(z) = Z for all uEGal(MIL). But by 
the fundamental theorem for finite extensions, we know that zEL. Hence we 
have also that p(a(L»r;;;.L, and the claim is established. 

STEP 3. We shall show now that ao p is likewise the identity. By definition, for 
any subgroup H of G we have that a(p(H»~H. Now assume that H is closed. 
Then again by Theorem 1-18, H is the intersection of a family W of open sub­
groups of G. Since a and p are clearly order reversing, 

P(H) = P( n U) ~ UP(U) 
Ue'V Ue'V 

and 

a(p(H»r;;;.a( UP(U»r;;;. na(p(U»= nU=H. 
Ue'V Ue'V Ue'V 

The point is that each of the open subgroups U has finite index, and thus in 
each case a(p(U»= Uby the finite theory. 

STEP 4. Finally, suppose that a(L)=Gal(KIL)=H, where L is some intermediate 
field. Let CT lie in G. Then from the diagram 

(J' 

K- K 

(J' 

L - o(L) 

""'/ F 
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we deduce that Gal(Klo(L» = uH u-I . Thus according to parts (i)-(iii) above, we 
have that o(L)=L for all creG if and only if uHu-I=Hfor all (TeG. This is to 
say that L is nonnal (and hence Galois) over F if and only if His nonnal in G.D 

REMARK. We leave it to the reader to detennine the effect of aofi on an arbi­
trary subgroup of Gal(KIF). (See Exercise 15 below.) 

1.4 Pro-p-Groups 

Our aim here is to introduce for profinite groups an analogue of the p-Sylow 
subgroups that play such a crucial role in finite group theory. To begin, we 
must first generalize the notion of order. 

Orders of Profinite Groups 

DEFINITION. A supernatural number is a formal product 

where p runs over the set of rational primes and each np eN u {ex>} . 

Clearly the set of supernatural numbers is a commutative monoid with re­
spect to the obvious product. If a is a supernatural number, we set vp(a) equal to 
the exponent of p occurring in a. We say that a divides b, and as usual write 
alb, if vp(a)~vib) for all primes p. Note that if alb, there exists a supernatural 
number c such that ac=b. 

Given supernatural numbers a and b, we may define both their least com­
mon multiple and greatest common divisor by the fonnulas 

One extends these notions to arbitrary (even) infinite families of supernatural 
numbers in the obvious way. 

Now let G be a profinite group. As previously, let.#" denote the set of all 
open, nonnal subgroups of G. Recall that each quotient group GIN, for Ne.#", 
is finite. 

DEFINITION. LetHbe a closed subgroup ofG. Then we define [G:H1, the index 
ofH in G, by the fonnula 
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[G:H]= lcm [GIN:HNIN] . 
NEA" 

In particular, [G:{e}], the index of the trivial subgroup, is called the order of G 
and denoted IGI. 

Using the standard isomorphism between HNIN and HlHnN, we may recast 
the definition above as 

[G:H]= lcm [GIN:HIHnN] . 
. NEA" 

See also Exercise 16 below. 

1-21 PROPOSITION. Let G be a projinite group with closed subgroups Hand K 
such that Hr:;;;,K. Then [G:K]=[G:HHH:K]. 

PROOF. Note that since H is closed, it is also profinite, and so the assertion is 
well defined. Now let N be any open normal subgroup of G. Then 

[GIN:KIKnN] = [G/N:HIHnN] [HlHnN:KIKnN] . (1.3) 

The lcm (over NE./JI) of either side of the equation is, of course, [G:H]. Con­
sider the factors on the right: if we replace N by any smaller subgroup NI E./Y, 
both indices are inflated (cf. Exercise 17). Hence, taking intersections, any pair 
of prime powers occurring in [GIN:HlHnN] and [HIHnN:KIKnN], respec­
tively, may be assumed to occur simultaneously. The upshot is that we can 
compute the lcm of the product by separately computing the lcm's of each fac­
tor. The first yields [G:H]; it remains only to show that the second yields [H:K]. 

LetMbe any open, normalsubgroupofH. ThenM=HnU, where Uisopen 
in G. But by Lemma 1-17, U contains an open, normal subgroup N of G, and 
one argues as above that 

[HlM:KIKnM] I [HlHnN:KIKnN] . 

Thus [H:K] may be computed as the lcm over subgroups of H of the form HnN, 
where N is open and normal in G. Hence the second factor on the right of 
Eq. 1.3 indeed yields [H:K], as required. 0 

REMARK. The proof shows that we may compute a profinite index as the lcm 

over any cojina/ family ./I r:;;;,ff of open normal subgroups of the ambient group; 

that is, iffor every NEff there exists anME./I such that Mr:;;;,N, then 

lcm [GIN:HNIN] = lcm [GIM:HMIM] . 
NEA" MEL 
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EXAMPLES 

(1) Consider the p-adic integers 

Zp = lim(ZI pnZ) . 
<­
n;o,\ 

Let Hn denote the kernel of the projection map from Zp to ZI pnz. Since 
this projection is surjective, we have Z/Hn=Zlpnz, and it follows thatp'" 
divides I ZpI. Conversely, every finite quotient of Zp has order a power of p, 
and therefore IZpl=p"'. 

(2) Next consider 

Z = lim(ZlnZ) . 
<­

n;o,\ 

Arguing as above, every factor group ZI nZ occurs as a quotient of Z, 
whence every positive integer is a divisor of its order. Thus 

Pro-p-Groups 

Let p be a rational prime. Recall that a group is called a p-group if the order 
of every element is finite and a power of p. In the case that G is finite, this is 
equivalent to the statement that the order of G is a power of p. 

DEFINITION. A projective limit of finite p-groups is called a pro-p-group. 

Of course, Zp is a pro-p-group; so is ifp, the projective limit of the Heisen­

berg groups H(Zlpnz). (See Exercise 18 below.) 

1-22 PROPOSITION. A projinite group G is a pro-p-group if and only ifits order 
is a power ofp (possibly injinite). 

PROOF. ~) We have already seen in the proof of Theorem 1-14 that G is the 
projective limit of its finite quotient groups GIN. If the order of G is a power of 
p, then each ofthese quotients must be a p-group, as required. 

=» Suppose that G is the projective limit of the projective system Pi of p­
groups. Then by definition of the topology of G, cofinal among the open normal 
subgroups of G are subgroups of the form 
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M = (IT Q;)IlG 

where Qj=P j for all but finitely many indices, and Qj={e;J for the exceptions. 
Now given an arbitrary XEG and specifying any finite subset of its coordinates, 
there is clearly a finite exponent of the form q=pr such that xq is trivial at each 
of the specified coordinates. Hence G/M is a p-group, and it follows by the re­
mark following Proposition 1-21 that the order of G is a power of p. a 

DEFINITION. Let G be a profinite group. A maximal pro-p-subgroup of G is 
called a pro-p-Sylow subgroup of G (or more simply, a p-Sylow subgroup of G). 

Note that the trivial subgroup may well be a pro-p-subgroup of G for some 
primes p. The following theorem shows among other things that this is the case 
if and only if p does not divide the order of G. 

1-23 THEOREM. Let G be a pro finite group and let p be a rational prime. Then 
the following assertions hold: 

(i) p-Sylow subgroups ofG exist. 

(ii) Any pair of conjugate p-Sylow subgroups ofG are conjugate. 

(iii) If P is a p-Sylow subgroup ofG, then [G :P] is prime to p. 

(iv) Each p-Sylow subgroup ofG is nontrivial if and only ifp divides the 
orderofG. 

PROOF. As usual, let ff denote the set of open normal subgroups of G and recall 
the explicit isomorphism 

rp:G ~lim GIN .... 

Note in particular that ifx,YEG andxN=yNfor every open normal subgroup N, 
then x= y. A similar statement holds for arbitrary subsets of G. 

(i) For each NEff, let ,9J(N) denote the set of p-Sylow subgroups of the finite 
group GIN. Then clearly ,9J(N) is finite and, moreover, nonempty. (If GIN has 
order prime to p, then the trivial subgroup is a p-Sylow subgroup.) Assume that 
M,NEffwith NC;;M Then there exists a surjective homomorphism of finite 
groups rpM.N:G/N~GIM. Since this map sends ap-Sylow subgroup of GIN to a 
p-Sylow subgroup of GIM (refer again to Exercise 17), we obtain an induced 
map rpM.N:,9J(N)~,9J(M). Thus we obtain a projective system (,9J(N), rpM.N) of 
finite nonempty sets, and the projective limit of this system is likewise non­
empty by Proposition 1-11. This means that there exists a projective system of 
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p-Sylow subgroups (PN,rpM,N)' where for each Neff, we have PN r;;;, GIN. Let P 
be the projective limit of the P N' which we can clearly identify with a subgroup 
of the projective limit of the GIN and hence with a subgroup of G via rp. Then P 
is a pro-p-group by construction, and we shall now show that it is maximal. Let 
Q be any pro-p-subgroup containing P. Then for every open normal subgroup 
N, QN/N~PNIN=PN" But Q is a pro-p-group, so by the previous proposition, 
QNIN is a p-group and therefore equal to the p-Sylow subgroup P N" Thus for 
every open normal subgroup N, QNIN=PNIN, and therefore Q and P have the 
same image under rp and accordingly are equal. Hence P is indeed maximal, as 
claimed. 

(ii) Let P and Q be p-Sylow subgroups of G. For every NEff, we make the 
following definitions: 

PN = PNIN 

QN = QNIN 

YN = {YN EGIN :YNPNYN-1 = QN}' 

Note that each YN is finite and, by the Sylow theorems for finite groups, 
nonempty. Moreover, the subsets YN clearly constitute a projective system. Let Y 
denote the (nonempty) projective limit of the YN , which we again identify with 
a subset of G via rp, and lety lie in Y. Then by construction, yPy-1 and Q have 
equal projection in GIN for all open, normal N and are therefore equal. Hence P 
and Q are indeed conjugate. 

(iii) Let P be a p-Sylow subgroup of G. Then by definition 

[G:P]= lcm [GIN:PNIN] . 
N E.A" 

But by Exercise 19, for each N, the subquotient PNIN is a p-Sylow subgroup of 
GIN, and so by finite group theory each index [GIN:PNIN] is prime to p. Hence 
[G:P] is likewise prime to p. 

(iv) This follows at once from parts (i) and (iii). o 

1-24 COROLLARY. Let G be a commutative projinite group. Then the following 
assertions hold: 

(i) For every prime p, G admits a unique pro-p-Sylow subgroup. 

(ii) Let p and q be distinct primes and let P and Q be the corresponding 
Sylow subgroups. Then PnQ is trivial. 

(iii) G is isomorphic to the direct product of its Sylow subgroups. 
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PROOF. (i) In light of the commutativity of G, this follows at once from parts (i) 
and (ii) of the theorem above. 

(ii) The order of Pn Q must divide powers of both p and q, whence this inter­
section must be trivial. 

(iii) Let N be an open normal subgroup of G. Then for each pro-p-Sylow sub­
group P we have a canonical projection from Ponto PNIN, the unique p-Sylow 
subgroup of GIN. Note that this projection is trivial for all but the finitely many 
primes p that divide the order of GIN. By the theory of finite commutative 
groups, we have 

I1PNIN:=GIN 

where the product is taken over all of the Sylow subgroups of G. We may lift 
this isomorphism to G as follows: 

G = lim GIN 

= lim IT PNIN 
<-

= IT lim PNIN 
<-

= IT lim PIPnN 
<-

=ITp· 
All products are over the set of Sylow subgroups of G; all projective limits are 
over the family of open, normal subgroups of G. The final line of the calcula­
tion is justified by the cofinality of subgroups of the form PnN among the open 
subgroups of P, which may be deduced from Lemma 1-17. D 

EXAMPLE. Recall that the abelian profinite group 

Z = limZlnZ 
<-

has order TIp"", where the product is taken over all prime~. Given a prime p, let 
P be the unique corresponding p-Sylow subgroup of Z. Let P n denote the 
unique p-Sylow subgroup of ZlnZ. Then 

P = limPn = limZI pvp(n)Z = limZI pmZ = Zp . 
<- <- <-
n n m 

Thus according to the corollary, Z = n Z p • 
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Exercises 

1. Let G be a topological group. Show that the topology on G is completely 
detennined by a system of open neighborhoods of the identity e. 

2. Let G = Z and impose the following topology: U ~ G is open if either 0 ~ U 
or G-U is finite. Show that G is not a topological group with respect to 
this topology. [Hint: If so, the mapping a ~ a + 1 would be a homeo­
morphism; show that it is not.] 

3. This exercise shows that we may impose a nondiscrete topology on Z such 
that Z is nonetheless a topological group with respect to addition. Let Sl 
denote the multiplicative group of complex numbers of absolute value 1. 
Recall that an element of Hom(Z,SI) is called a character of Z. We denote 
such a character X. Let 

where the product is taken over all characters. Then :Y' is a compact topo­
logical group. Now consider the homomorphism 

}:Z~ :9' 

n ~(x(n» 

(a) Show that} is injective; that is, show that for any nonzero nEZ there exists 
a character X such that z(n) i= 1. 

(b) Let G=}(Z). Then G is a group algebraically isomorphic to Z and a topo­
logical group with respect to the subspace topology induced by:Y'. Show 
that G is not discrete with respect to this topology and conclude that Z it­
self admits a nondiscrete topological group structure with respect to addi­
tion. [Hint: Suppose that}(l) is open. Then there exists an open subset U of 
:Y' such that UnG = }(1); moreover, we may assume that all but finitely 
many projections of U onto its various coordinates yield all of Sl. Noting 
that }(1) generates the infinite group G, one may now derive a contra­
diction.] 

4. Give an example of a topological group with a closed subgroup that is not 
open. 

5. Let X be a topological space and let C(X) denote the space of connected 
components of X. (This constitutes a partition of X). As usual, we impose 
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the quotient topology on C(X)-the strongest topology such that the canon­
ical projection p:X ~C(X) is continuous. Show that C(X) is totally discon­
nected with respect to this topology. [Hint: We say that a subset Y of a 
topological space is saturated if whenever yE Y, the entire connected com­
ponent of y lies in Y. Let F be a connected component of C(X) that contains 
more than one point. Show that p-l(F) is a saturated, closed, disconnected 
set. Write p-l(F) as the disjoint union of two saturated, closed subsets of X, 
and apply p to this decomposition to show that F is in fact disconnected-a 
contradiction. ] 

6. Let G=GLn(R). Show that GO is the set of nxn matrices with positive de­
tenninant. 

7. Let H be a subgroup of the topological group G. Show that its closure H is 
nonnal (respectively, abelian) if His. 

8. Let f: G ~ G' be a smjective continuous homomorphism of topological 
groups. Show that f factors uniquely through GfKer(f); that is, there exists 
a unique continuous homomorphism J such that the following diagram 
commutes: 

G/Ker(f) 

Show that J is moreover injective. Under what conditions is J a topologi­
cal isomorphism onto its image? 

9. Letf:X ~ Y be a continuous bijective mapping of topological spaces and 
assume that X is compact and Y is Hausdorff. Show that f is moreover a 
homeomorphism. [Hint: It suffices to show thatfis open. What can one say 
about the image of U C under f where U is any open subset of X?] 

10. Let I be an index set with preordering defined by equality and let (Gi , 'Pij) 
be a projective system of sets defined with respect to I. What is the projec­
tive limit in this case? 

11. Give an example of a projective system of finite nonempty sets over a pre­
ordered, but not directed, set of indices such that the projective limit is 
nevertheless itself empty. 

12. Let G be an arbitrary group. Show that in general G is not isomorphic to 
the projective limit of the quotient groups GIN, as N varies over all of the 
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subgroups of G of finite index. Hence not every abstract group acquires a 
profinite structure by this device. [Hint: Take G=Z.] 

13. Let (Gi , flJij) and (Hi' ({li) be two projective systems of sets. (Note that we use 
the same map designators ({lij for both systems.) Suppose that we have a 
family of maps {S;: Gi ~ H;} that is compatible with these systems in the 
sense that ({lijo Sj= S; ° ({lij for all pairs of indices i ~j. Show that there exists a 
unique map t;:G~H on their respective projective limits such that 
S;0Pi=Pi0t;for all i, where Pi denotes the appropriate projection map. Ob­
serve that this construction works equally well in the categories of groups, 
topological spaces, and topological groups. [Hint: In light of the universal 
property of projective limits, consider the family of composed maps 
{S;o Pi: G-+H;}.] 

14. Let KIF be a Galois extension with Galois group G. 

(a) Let L be an intermediate field that is finite over F. For any given CTEG, 

define NL (a) r;;;; G to be the set of TE G such that CT and T agree on L. The 
subsets NL(CT) constitute a subbase for a topology on G. Show (i) that this 
topology remains unchanged if we restrict the subbase to normal interme­
diate fields that are finite over F and (ii) that this topology is identical to 
the profinite topology on G. 

(b) Now let L be an arbitrary intermediate field, and let H denote the Galois 
group of Kover L. Use the characterization of the profinite topology given 
in part (a) to show that the topology induced on H by G is identical to the 
profinite topology defined directly on Has GaI(KIL). 

15. Let KIF be a Galois extension (not necessarily finite) and let H be any sub­
group of G=Gal(KIF) (not necessarily closed). Let a and p be defined as 
in Theorem 1-20. Show that a(p(H») = H, the closure of H. 

16. Let G be a profinite group and let H be a closed subgroup. Show that 

[G:H] = Icm [G:HN] 
NEA'" 

where ff is the set of all open, normal subgroups of G. Show further that if 
M is any open subgroup of G containing H, then there exists an open nor­
mal subgroup N of G such tllat M";2NH. Conclude from this and the previ­
ous equation that moreover, 

[G:H] = Icm [G:M] 
Mopen 
M:2N 
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17. Let tp: G ~ G' be a surjective homomorphism of groups with kernel L. Let 
H be a subgroup of G of finite index and let H' be the image of H under tp. 
Show that [G:H)=[G':H1·[HL:H). 

18. For any commutative ring A with unity, define the Heisenberg group H(A) 
overA by 

H(A)={(~ ~ ~J: a,b,ceA} . 

(a) Show that H(A) is a group under multiplication in the matrix ring M3(A) 
and that this construction is, moreover, functorial inA. 

To continue, for n~ 1, H(Zlpnz) is clearly a group of order p3n, and hence 
a p-group. If m In, then by functoriality, we have that the canonical projec­
tion ZlpnZ~Zlpmz induces a homomorphism tpmn from H(Zlp"Z) to 
H(Zlpmz). 

(b) Show that (H(ZlpnZ),tpmn) is a projective system of groups. 

Let Hp denote the projective limit of the H(Zlpnz); by definition, this is a 
pro-p-group. 

(c) Show that H(Zp) == Hp. [Hint: Consider the map 

1rn:H(Zp)~ H(Zlp"Z) 

induced by projection from Zp onto Zlpnz. Show that this is a continuous 
surjective homomorphism ana that moreover, the family {1rn} is compatible 
with the system of homomorphisms {tpmn}' Finally, show that the map 1r 
obtained from the 1rn by the universal property of the direct limit is the de­
sired isomorphism.) 

19. Let G be a profinite group and p a rational prime. For each open, normal 
subgroup N in G, let HN be a p-subgroup of GIN (not necessarily a p-Sylow 
subgroup). Show that there exists a pro-p-Sylow subgroup P of G such that 
PNIN;;;JHN for all N. Conclude (i) that every pro-p-subgroup of G is con­
tained in a pro-p-Sylow subgroup of G; and (ii) that if P is a pro-p-Sylow 
subgroup of G, then PNIN is a p-Sylow subgroup of GIN for each open, 
normal subgroup N of G. [Hint: Generalize the argument from the proof of 
part (i) of Theorem 1-23.] 



2 
Some Representation Theory 

The general background for Tate's thesis involves locally compact groups, their 
representations, and duality theory. Many of these basic prerequisites are de­
rived in this and the next chapter. 

Here we develop elements of representation theory for a locally compact 
topological group G represented in the automorphism group of a topological 
vector space V. A representation in this context is in fact a restricted instance of 
an ordinary abstract group representation, with the extra constraints involving 
continuity and some specific topological conditions on V. Our development is 
somewhat general without becoming excessively technical; in particular, we 
postpone the assumption that G is commutative until as late as possible. This is 
not empty abstraction: the noncommutative case is interesting in its own right, 
as shown by Jacquet-Langlands theory, which deals with representations of the 
general linear group. 

The key results of this chapter are Schur's lemma for irreducible unitary 
representations of a topological group G and the theorem that such representa­
tions are one-dimensional in the case that G is abelian. Considering that the 
finite-dimensional analogues of these statements are not particularly deep, they 
are surprisingly challenging to prove. In fact, the chase will lead us through the 
spectral theory of Banach algebras, the Gelfand transform, and the spectral 
theorems. (We state the second spectral theorem for completeness, but make no 
essential use of it.) The Gelfand transform is especially noteworthy because it is 
applied again in the following chapter in a wholly different context. 

2.1 Representations of Locally Compact Groups 

A field k (subject to some given topology) is called a topological field if both 
addition and multiplication are continuous functions on kxk. A vector space V 
(again subject to some given topology) over k is called a topological vector 
space if the following two conditions are satisfied: 

(i) The underlying additive group (V, +) is moreover a topological group. 

(ii) The scalar multiplication map 
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is continuous (with respect to the product topology on kx V). 

EXAMPLES 

(1) If k is a topological field and V is any merely algebraic vector space over k, 
then we have an isomorphism of vector spaces 

V=I1k 
I 

where I is some index set. We may use the isomorphism to transfer the 
product topology of Ilk to V. One checks easily that with respect to this 
induced topology, V is a topological vector space over k. Moreover, for fi­
nite-dimensional V, every linear map is clearly continuous, and hence the 
transferred topology is independent of the choice of isomorphism. 

(2) Recall that a normed vector space V over R (respectively, over C) that is 
complete with respect to the norm metric is called a real (respectively, 
complex) Banach space. One checks easily that V is a topological vector 
space over R (respectively, C) with respect to the norm topology. (Note 
that any normed space may be embedded in its completion, with the given 
norm extended by continuity; the completion is ipso facto a Banach space.) 

Henceforth we shall assume that our topological vector spaces are T( (and 
hence Hausdorff, by Proposition 1-3). This is equivalent to the assertion that 
{O} is a closed subset. 

For a topological vector space V over k, we distinguish Aut(V), the group of 
vector space automorphisms V ~ V, from Aultop(V)' the group of topological 
automorphisms V ~ V (i.e., continuous vector space automorphisms with con­
tinuous inverse). 

Recall that a subset S of a real or complex vector space is called convex if 
for every X,YES, each point of the form tx+(l-t)y, O~t~ 1, also lies in S. A real 
or complex topological space is called locally convex if there is a base for the 
topology consisting of convex sets. Thus, for example, the topological vector 
spaces Rn and Cn are both locally convex. 

DEFINITION. Let G be a locally compact topological group and let V be a locally 
convex topological vector space over C. Then an abstract representation of G 
is merely a homomorphism p: G~Aut( V). We call p a topological representa­
tion (or simply a representation, without qualifier) if it satisfies the additional 
condition that the map 
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GxV -+ V 

(g,X) ~ Pg(X) 

is continuous with respect to the product topology on GxV. [Note that for geG 
we usually write Pg for p(g).] 

It follows at once from the definition that for a topological representation p, 
the image of Gunder P in fact lies in Au'top( V). 

2-1 PROPOSITION. An abstract representation p:G-+Aut(V) is moreover a 
topological representation of G if and only if it satisfies the following two 
conditions: 

(i) For every compact subset K of G, the collection of functions p(K) is 
equicontinuous on V. 

(ii) For every xeV, the map g~ Pg(x) is continuous from G to V. 

PROOF. =» Certainly a topological representation satisfies (ii), so we need only 
argue for (i). Let U be a neigbborhood of 0 in V. By continuity, for each geG, 
there exists a neighborhood Hg of g in G and a neighborhood Wg of 0 in V such 
that Ph(x)e U for all heHg and xe Wg. Since K is compact, there is a finite sub­
collection HI' ... ,Hn of the Hg that cover K. Let WI"'" Wn be the corresponding 
neighborboods of 0 in V, and set 

n 

W=nffJ 
j=\ 

Then for all geK and xe W, by construction Pg(x)e U, and therefore the collec­
tion p(K) is equicontinuous, as claimed. 

<=) Let (g,x) lie in Gxv. Since V is locally convex, it suffices to show that for 
any convex neighborhood U of 0 in V, there exist neighborhoods H of g in G 
and W of 0 in V such that for all h eH, Ph(X+ W) r;;;,pg(x) + U. 

Assume that Kr;;;, G is a compact neighborhood of g. By condition (i), there 
exists a neighborhood W of 0 in V such that Ph(w)e Ul2 for all heK and we W. 
By condition (ii), there exists a neighborhood H of g contained in K such that 
for all heH, likewise Ph(x)-p/x)eUl2. Now for arbitrary heG and weV, we 
have that 
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Thus, in particular, if h EH and WE W, then by construction the indicated differ­
ence lies in Ul2 + Ul2. But of course Ul2 + U/2 = U, because U is convex, and 
this completes the proof. 0 

Note that the set of all mapping from V ~ V is the direct product of topologi­
cal spaces 

I1V 
v 

and thus acquires the product topology, which in this case amounts to the to­
pology of pointwise convergence. The subset Aut(V) in tum acquires the sub­
space topology, and viewed thus, condition (ii) above implies that the represen­
tation p: G~Aut( V) is a continuous mapping. Therefore, given any compact 
subspace K of G, p(K) is compact. Consequently, if V is a Banach space, the 
Banach-Steinhaus theorem implies that p(K) is equicontinuous. Thus we have 
proved the following corollary: 

2-2 COROLLARY. Suppose that V is a Banach space. Then an abstract repre­
sentation p: G~Aut( V) is moreover a topological representation if and 
only iffor every XEV, the map g H Pg(x) is continuous from G to V. 0 

REMARK. The corollary holds more generally if V is a barreled space. See 
Bourbaki, Topological Vector Spaces, Chapter III, §4.2. 

Let p: G~ Vbe an abstract representation of G. A subspace Wof V is called 
p(G)-invariant (or simply G-invariant, when P is understood from the context) 
if piW)!;;;; W for all gEG. Equivalently, if we view Vas a module over the 
group algebra C[G], then a p(G)-invariant subspace is exactly a C[G]-sub­
module. Both the trivial subspace {O} and V itself are p(G)-invariant. The class 
of representations for which these are the only such invariant subspaces is espe­
cially noteworthy. 

DEFINITION. An abstract representation (p, V) is called algebraically irreducible 
ifit admits no proper, nontrivial p(G)-invariant subspaces. A topological repre­
sentation (p, V) is called topologically irreducible (or simply irreducible, with­
out qualifier) if it admits no closed, proper, nontrivial p(G)-invariant 
subspaces. 

Algebraic irreducibility of course implies topological irreducibility, but not 
conversely. 

Given a representation (p, V) of G, we can vary P by any homeomorphic 
change of basis to obtain another representation that is essentially the same 



50 2. Some Representation Theory 

object. We generalize this notion of equivalence just slightly in the following 
definition to accommodate the possibility of distinct representation spaces: 

DEFINITION. We call two representations (p, V) and (p', V') equivalent and 
write (p, v)=(p', V') if there exists a topological isomorphism T: V~V' such that 

(2.1) 

for all geG; that is, for all geG, the following diagram commutes: 

V ~ V' 

Pg J. J. P~ 
V ~ V' 

One checks easily that Eq. 2.1 amounts to the assertion that T is a topologi­
cal isomorphism of C[G]-modules. Accordingly, we sometimes call T a G­
isomorphism. (More generally, an arbitral)' linear transformation from V to V' 
that respects the action of G is called G-Iinear.) 

2.2 Banach Algebras and the Gelfand Transfonn 

Let A and B be Banach spaces defined over the same field. Recall that a linear 
transformation T from A to B is called a bounded operator if there exists a real 
constant c such that 

II T(a) II ~ cllall (2.2) 

for all aeA. It is well known that a linear transformation T is a bounded opera­
tor if and only if T is continuous. Henceforth Hom(A, B) denotes the space of all 
bounded operators from A to B. If TeHom(A,B), then the smallest c that makes 
inequality 2.2 true is called the norm of T and denoted II Til. One shows easily 
that Hom(A,B) is itself a Banach space with respect to this norm. In the special 
case A =B, we write End(A) for Hom(A,A). [Keep in mind that the morphisms 
in Hom(A,B) and End(A) are always topological as well as algebraic.] 

Let A be a complex algebra that also admits the structure of a complex Ba­
nach space. Then A is called a Banach algebra if the norm is also sub­
multiplicative; that is, if 

IIabll:S: lIall·llbll (2.3) 

for all a,beA. Throughout, we assume that our Banach algebras are unital; this 
is to say that A contains a multiplicative identity IA • As usual, the group of 
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units of A will be denoted A x. We can always renonn A without disturbing its 
topology to arrange that III A II = 1, and henceforth we do so. (See Exercises 2 and 
3 below.) 

If A is a Banach algebra, each aEA acts on A by left multiplication. Let us 
denote this map Pa. Then according to the inequality 2.3, for all bEA, we have 
that IIPa(b)II=lIabll~lIall'lIbll, whence IIPall~llall, the fonner nonn being computed 
of course in End(A). Since we assume that IIIAII=I, also lIall=IIPa(IA)II~IIPall, 
and thus the nonn of a as an element of A agrees with its nonn as an element of 
End(A). 

Again let aEA and assume now that Ilall<l. Then one shows easily that the 
series "Lf=0 a i converges (see Exercise 4 below), whence we observe that (I-a) 
lies inAx with 

00 

(I-ar l = L ai . 
j=O 

We shall need this observation for the following result. 

(2.4) 

2-3 PROPOSITION. Let A be a Banach algebra as above. Then A x is an open 
subset of A. Moreover, the mapping 

is a homeomorphism. 

PROOF. Let aEAX and suppose that for bEA we have that lIa-bll < 11a-11I-1. Then 
it follows that 1Ia-I(a-b)II<I, whence by the preceding observation we find that 
the difference I-a-I(a-b) lies in AX. But then also b=a(I-a-I(a-b»EAX, 
showing that A x is open. The second statement follows at once, since the map 
a 1-4 a-I is continuous on A x and is its own inverse. D 

With these preliminaries in hand, we now come to one of the principal defi­
nitions of this section, essentially a generalization of the notion of an eigen­
value familiar from linear algebra. 

DEFINITION. LetA be a complex Banach algebra and let aEA. Then the spec­
trum of A, denoted sp(a), is the subset of C defined as follows: 

sp(a)={2eC:2·1A-a~AX} . 

We shall see below that the spectrum of an element aEA is never empty. 
Hence we may define r(a), the spectral radius of a, by 

r(a) = sup{121: 2esp(a)} . 
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[For the moment, we can take the spectral radius to be 0 if sp(a) is empty.] The 
resolvent set of a is the complement of sp(a) in C. By construction, if A. lies in 
the resolvent set, then (A.' IratI exists inA. 

2-4 PROPOSITION. Let A be a complex Banach algebra as above, and let p(x) 
be a polynomial with complex coefficients. Then for all aeA, if A.Esp(a), 
then p(A.)Esp(p(a». 

PROOF. Suppose that p(x) = L'}=o ajxi. Then we may compute that 

n 

p(A.).IA - pea) = Laj(AI ·IA -aj) 
j=1 

=(A..IA-a)b 

where b is some element of the algebra A for which we need no explicit calcu­
lation, but only the modest observation that b commutes with a. The point is 
this: if the left-hand side of the preceding equation has inverse c, then A.·I r a 
has inverse bc, a contradiction, since A. is assumed to lie in the spectrum of a. 0 

REMARK. This result generalizes to convergent power series over C. (See Exer­
cise 5 below.) 

2-5 LEMMA. Let aeA. Then rea) ~ inflla"/llIn. 

PROOF. We first show that sp(a) lies in the closed disk around zero of radius 
lIall. Note that in general for nonzero A. we have (A.·IA - a) = A.(IA - A.-ta). Thus 
if 1A.1>lIall, Eq. 2.4 applies to show that (A.·IA -a) is invertible. Now let A.E 
sp(a). Then by the previous proposition, A.nESp(an) for all n~O, and therefore, 
by the first part of the argument, 1A.ln~lIanll. Taking nth roots yields the stated 
inequality. 0 

The following theorem is the first major result about the spectrum of an 
element. The proof requires three substantial, but familiar, results: Liouville's 
theorem, the Hahn-Banach theorem, and the Cauchy integral formula. Recall 
that if A is a complex Banach space, then A *, the dual space, denotes the space 
of all continuous (equivalently, bounded) linear maps from A to C. 

2-6 THEOREM. Let A be a complex unital Banach algebra. Then for every aeA 
sp(a) is nonempty and compact. Moreover, the sequence /Ian WIn converges 
to the spectral radius of a. 

PROOF. We first show that the spectrum is at least compact. Consider the con­
tinuous mapping 
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The resolvent of a is simply the inverse image of AX under this map. But then 
since A x is open, so is the resolvent. Consequently the spectrum of a is closed 
and, according to the previous result, also bounded. Therefore sp(a) is compact. 

We next show that sp(a) is nonempty. Fixing an arbitrary qJeA *, define a 
complex-valued functionfon the resolvent set of a by the formula 

Note that for p sufficiently close to zero, we have 

f(A- p) = qJ([(A- p)·lA -arl ) 

= qJ([(A·IA -a)(lA - p(A·IA - arlrl) 
00 

= qJ(LP"(A.IA -arn-I ) 
n=0 

00 

= LP"qJ«A.IA -arn-I) 
n=O 

(The last step follows from the linearity and continuity off) Thusfhas a valid 
power series expansion at every point of its domain and is accordingly holo­
morphic. Moreover, ifIAI>lIall, we have 

f(A) = qJ«A·IA -arl ) 

= qJ(XI (lA - A-Iarl ) 

"=0 
00 

= LA-n-lqJ(an) 
n=0 

and we can therefore boundfas follows: 

<Xl 

If(A)I:S; LIAI-n-lllqJ 1I·lIall" 
n=O 

= -,1c.:..:..1qJ-:.:lI_ 
IAl-iiall 

(2.5) 
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Now assume that the spectrum of a is empty, whence a is nonzero. Then / is 
entire, bounded on the closed disk IAI~211all by general principles, and bounded 
elsewhere by the quotient IIqJl!lIIail according to the previous inequality. By 
Liouville's theorem,fmust be constant, and since clearly lim/(A)~O as IAI ~ 
00, this constant must be O. Since this holds for arbitrary qJeA *, it follows from 
the Hahn-Banach theorem that (A' 1 A - a)-I is 0, which is impossible. Hence 
sp(a) is nonempty. 

Finally, it remains to establish that the spectral radius of a is as stated, and 
in establishing this, we may certainly assume that an is nonzero for all neN. 
First we claim that the power series expansion for/given in Eq. 2.5, which was 
established for IAI>IIall, in fact holds with unifonn convergence for IAI:<::r, for 
all r greater than the spectral radius of a. To see this, consider the auxiliary 
function 

g(,t) = {/(A-I) for A *.0 
o otherwise. 

Since as we have seen, lis holomorphic for l,tl:<::r>r(a), the power series repre­
sentation 

ao 

g(,t) = LA,,+lqJ(a") 
n;O 

extends to the entire closed disk IAI~rl. Moreover, the Cauchy integral for­
mula tells us that for l,tl~rl the remainder gn+1 after n tenns is given by 

where the integral is taken over the circle C of radius strictly between rl and 
r(a)-I. It follows easily from this that this remainder is bounded independently 
of ,t. The upshot is that since g is represented by the unifonnly convergent 
power series given above for IAI~rl, / is correspondingly represented by the 
power series representation of Eq. 2.5 with unifonn convergence for l,tl:<::r, as 
claimed. 

Next let A=rei8, where r>r(a). We may then integrate the series for An+1(A) 
with respect to 8 as follows: 

2~ ao 26 f rll+lei(n+I)8 /(re i8 )d8 = L f r n- mei(n-m)8 qJ(am )d8 
o _00 
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Moreover, this value is clearly bounded by 2trrn+lM(r)lltpll, where 

Thus 

M(r) = sup II reiO ·IA -a II 
o 

for all tpEA *. Appealing again to the Hahn-Banach theorem, we see that the 
linear mapping yan f4ylla n ll (YEC), which is obviously of norm 1, extends 
from the one-dimensional subspace spanned by an(:;tO) to an element tpeA* of 
lesser or equal norm. In this special case, the previous inequality reduces to 

Since this holds for all r>r(a), taking nth roots and limits we find that 

This inequality together with Lemma 2-5 shows that the sequence lIanll 11n is 
indeed convergent to the spectral radius of a. 0 

2-7 COROLLARY. (Gelfand-Mazur)JJA isadivisionring, thenA:::C. 

PROOF. Given aEA, there exists AEsp(a), so that kl[ a is not invertible. But 
if A is a division ring, then A"IA -a=O, whence every element of A takes the 
form A"IA for some complex A. Then evidently, A:::C. 0 

Quotient Algebras 

In preparation for the discussion of the Gelfand transform, we make some brief 
remarks on the quotient of a Banach algebra A by a (two-sided) ideal J, which 
in particular is a linear subspace of A. Recall that as an algebra, A /J consists of 
the cosets a+J. We say that a represents its associated coset, and addition and 
multiplication of cosets are defined by the addition and multiplication of asso­
ciated representatives. We define a seminorm on A /J by the formula 

lIa+JII = inf{lIa-xll : XEJ} • (2.6) 

It is easy to see that this is well-defined and lacks being a norm only insofar as 
it is possible that lIa+JII=O without it being the case that a represents the zero 
element of the quotient. 
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2-8 PROPOSITION. Assume that J is closed in A. Then Eq. 2.6 defines a norm on 
A /J, and A IJ is likewise a Banach algebra with respect to this norm. 

PROOF. In light of the preceding remarks, it suffices to show that the seminonn 
on the quotient is submultiplicative and yields zero only on the zero element of 
the quotient space. We consider first the latter point. If lIa+JII=O, there must 
exist a sequence of points in J converging to a. But since J is assumed closed, 
this means that aeJ, whence a+J=J, as required. 

It remains to show that the seminonn on A IJ is submultiplicative; that is, 

11 ab +JII ~ lI a+JII·llb+JII . 

First note that since J is a linear subspace, II a + J II can equally well be defined 
as inf{lIa+xll : xeJ}. Accordingly, 

lIa+JII'llb+JII= inflla+xll· infllb+ yll 
xEJ )'eJ 

~ inf lIab+xb+aY+XYIl 
x,)'EJ 

~ infllab+xll 
xEJ 

=lIab+JII . 

The first inequality in the calculation is justified by the submultiplicative nature 
of the nonn onA; the second is justified because the sum xb+ay+xy clearly lies 
in the ideal J, provided that x and y do. This completes the proof. 0 

REMARK. Note that ifJis an ideal of the Banach algebraA, then in particular, J 
is a subgroup of a topological group, and we may infer from Proposition 1-1 
that the closure of J is likewise a subgroup of A. Moreover, since the nonn is 
submultiplicative, if {x) is a convergent sequence in J, then so are the sequen­
ces {axj } and {xp} for all aeA. It follows that the closure of J is likewise an 
idealofA. 

The Gelfand Transform 

In this subsection we specialize to commutative complex Banach algebras (al­
ways assumed to be unital). If A is such an algebra, a character of A is simply a 
nontrivial (hence surjective and unital) homomorphism of complex algebras 
fromA to C. The set of all characters of A is denotedA'. 

2-9 PROPOSITION. Let A be as above. Then the follOWing statements hold: 

(i) Every maximal ideal of A is closed 
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(ii) The mapping Y~ Kery constitutes a bijective correspondence be­
tween A and the set of maximal ideals of A. 

(iii)Every element of A is continuous 

(iv) For every aeA, sp(a) = {r(a): yeA}. 

PROOF. (i) Let M be a (two-sided) maximal ideal of A; that is, M is a proper 
ideal of A and there exist no ideals properly between M and A. By the remark 
above, M, the closure of M, is likewise an ideal of A, and so to show that 
M = M it suffices to show that M is a proper ideal; that is, that M excludes 
all units. But since A x is open by Proposition 2-3, any unit in M must be the 
limit of units already included in M, contradicting the assumption that M :;tA. 
Hence the maximal ideal M is closed, as claimed. 

(ii) Since every character y is surjective, the quotient A IKer y is a field. Hence 
Ker y is maximal, and the given mapping is at least well-defined. Let M be the 
closed ideal Ker y. Then we have the following commutative diagram: 

y 

A ----__ C 

AIM 

Here p denotes the canonical projection onto the quotient (a continuous homo­
morphism of Banach algebras), and r is the unique induced map on the quo­
tient, which is at least an isomorphism of complex algebras. Every element of 
AIM takes the form zolA+M for some zeC, and in fact the induced iso­
morphism is precisely 

Note that r is, moreover, continuous: for open U~C, 

which is evidently open in AIM. 
Conversely, if M is any maximal ideal of A, then AIM is not only a Banach 

algebra but also a field, which by Corollary 2-7 is isomorphic to C. Call this 
isomorphism rM' Then the diagram above defines a character YM = rM op, 
and it is straightforward to check that for all characters y, 

YKery= Y 

and for all maximal ideals M, 
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KerYM =M . 

This establishes the claim. 

(iii) The continuity of an arbitrary character Y follows at once from its fac­
torization above into two continuous maps. 

(iv) Let aeA. Then Aesp(a) if and only if(A'IA-a) is not a unit of A , and hence 
(by Zorn's Lemma) if and only if (A'IA-a) is contained in some maximal ideal 
M. But by part (ii) this occurs if and only if (A' lA-a) lies in the kernel of some 
character y, which is to say, if and only if y( a) = A for some y. 0 

We next introduce a topology on A, the space of characters on A, by duality. 
As a preliminary, note that for each aeA, we have an associated map from A* 
to C defined by tpH tp(a); this is simply evaluation at a. Recall that one then 
defines the weak-star topology onA* (abbreviated to the w*- topology on A *) to 
be the weakest topology on A with respect to which all such evaluation maps 
are continuous. Under this topology A * is a locally convex topological vector 
space and, in particular, Hausdorff. (See Appendix A; especially sections A.2 and 
A.3.) Moreover, convergence in the w*-topology amounts precisely to pointwise 
convergence. 

Part (iii) of the previous result shows that in fact A lies in A *. The subspace 
topology onA induced by the w*-topology onA * is called the Gelfand topology 
onA. 

2-10 LEMMA. The space A of characters on A lies in the unit ball of the dual 
space A *. Moreover, A is both Hausdorff and compact with respect to the 
Gelfand topology. 

PROOF. For each aeA and yeA, we see from Proposition 2-5 and Proposition 2-
9, part (iv), that 

y(a) :s; r(a) :s; lIall . (2.7) 

Thus II yll:S; I, and A lies in the unit ball of the dual space A *, as claimed. 
The Gelfand topology on A is clearly Hausdorff, since it is induced from a 

Hausdorff topology on A*. Since the unit ball in A* is compact by Alaoglu's 
theorem, to show that A is compact, it suffices to show that it is closed. But if y 
is the limit of a convergent net {Ya} in A, then y(a)=limYa(a) for all aeA, so 
that y is again a nontrivial homomorphism of complex algebras; that is, yeA, 
and therefore A is closed, as required. 0 

For each aeA and yeA, define a(y)=y(a). Note that by construction each of 
the functions a from A to C is continuous with regard to the Gelfand topology. 
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Let ~(A) denote the algebra of complex-valued functions on A that are continu­
ous with respect to the Gelfand topology, and endow ~(A) with the sup norm. 
Then the mapping 

is called the Gelfand transform. The following theorem summarizes its funda­
mental properties. 

2-11 THEOREM. Let A be a complex, unital, commutative Banach algebra with 
character space A. Then the following statements hold: 

(i) The Gelfand transform r:A ~ ~(A) is a norm-decreasing homo-
morphism of unital complex algebras. 

(ii) The image ofr separates points in A. 

(iii)For every aeA, a(A)=sp(a) and II a 1100 =r(a), the spectral radius of a. 

(iv) The kernel of r is the radical of A; that is, the intersection of all 
maximal ideals of A. Equivalently, the kernel ofr consists of all ele­
ment of A having spectral radius O. 

(v) r is injective if and only if A is semisimple; that is, if and only if the 
radical of A is trivial. 

PROOF. (i) It is straightforward to verify that r is a homomorphism of algebras. 
For instance, 

r(ab)(y) = y(ab) = y(a)y(b) = (r(a)r(b»(y) 

Moreover, r is norm-decreasing by Eq. 2.7. 

(ii) If Yj and J2 are distinct characters, then Yj(a)*J2(a) for some aeA. There­
fore a eA separates Yj and J2. 

(iii) This is the content of Proposition 2-9, part (iv), and the definition of the 
spectral radius. 

(iv) Since every character yfactors through AIM for some maximal ideal M, the 
only elements aeA that evaluate to zero under every character ymust lie in the 
intersection of all maximal ideals of A, as claimed. The second statement fol­
lows from the previous part. 

(v) This follows at once from (iv), to complete the proof. o 
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2.3 The Spectral Theorems 

We begin with the complex extension of a familiar theorem in real analysis. A 
linear space A of complex-valued functions is called self-adjoint if for every fE 
A, its complex conjugate 1 is also inA. From the identity 

f =(f+!)+i(f-!) 
2 2i 

one sees at once that A is self-adjoint if and only if A = A R + iA R' where A R de­
notes the subspace of real-valued functions inA. 

Now let X be a compact Hausdorff space and let ~(X) denote the space of 
continuous complex-valued functions on X. Assume that A is not only a self­
adjoint subspace, but moreover a unital subalgebra of ~(X), so that in particu­
lar A contains the constant functions. If A separates points, then so must A R , 

and the real-variable case of the Stone-Weierstrass theorem applies to prove the 
following extension: 

2-12 PROPOSITION. Let A be a self-adjoint unital sub algebra of ~(X) that 
separates points. Then A is uniformly dense in ~(X) with respect to the 
~M~ 0 

This form of the Stone-Weierstrass theorem is critical to the first of our 
spectral theorems and appears in the proof via the following corollary. To state 
this corollary, we need to introduce for a locally compact Hausdorff topological 
space X a class of functions somewhat larger than the class of complex-valued 
continuous functions on X with compact support. Accordingly, we define ~o(X) 
to be the set of continuous functions f: X ~ C such that for each & > 0, the set 
{xeX: If(x)I;:::&} is compact. If X'=Xu{w} is the Alexandroff one-point com­
pactification of X, then it is easily verified thatfE~o(X) if and only iff extends 
to a continuous complex-valued function J on ~(X') such thatf(w)=O. 

2-13 COROLLARY. Let X be a locally compact HausdorjJspace and let A be a 
self-adjoint sub algebra of~o(X) that separates points with the additional 
property that for every xeX there exists an fEA such that f(x):t:O. Then A 
is uniformly dense in ~o(X) with respect to the sup norm. 

PROOF. Again let X' denote the one-point compactification of X. (Note that this 
makes sense even if X is already compact, in which case we have simply ad­
joined an isolated point.) Identify A with a subalgebra of ~(X') by extending 
each element to a function that vanishes at w, and let A I be the subalgebra of 
~(X') generated by A and the complex constant functions. Then A I is evidently 
self-adjoint and unital. Moreover, A I separates points: since A already separates 
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points in X, we need only observe that by hypothesis, for every xeX there is a 
functionfeA that does not vanish at x, while by construction its extension to X' 
does vanish at w. The previous result now applies to show that A ' is uniformly 
dense in ~(X'). Thus for each ge~o(X) [tacitly identified with an element of 
~(X')] and for each positive & there exists an feA [again identified with an 
element of~(X')] and a AeC such that 

Ig(x) - f(x) + AI< &/2 

for all xeX'. Since bothf and g vanish at aJ, it follows that IAI < &12, and there­
fore f and g differ on X by less than &, as required. 0 

Bounded Operators on Hilbert Spaces 

In this subsection we specialize our analysis to the Banach algebra of bounded 
operators on a Hilbert space. Actually, only a few formal aspects of such an 
algebra will be needed, and these we highlight below. 

First recall that a positive definite Hermitian form on a complex vector space 
H is a mapping 

HxH~C 

(v, w) ~ (vlw) 

that satisfies the following properties: 

(i) (ulu) eR+ (u eH), with equality if and only if u= 0 

(ii) (ulv)=(vlu) (u,veH) 

(iii) (AU+ ,uvlw) = A(ulw)+ ,u(vlw) (u, v, w eH; A,,u eC) 

Note that (ii) and (iii) imply also: 

(iii)' (UIAV+ ,uw) = X(ulv)+ ,li(ulw) (u, v, w eH; A,,u eC) 

That is, the form (I) is positive definite, conjugate symmetric, linear in the first 
variable, and conjugate linear in the second. 

A complex vector space H together with a positive definite Hermitian form 
is called a pre-Hilbert space. One shows easily that (I) defines a norm on Has 
follows: 

IIvll = ~(vlv) . 
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If H is moreover complete with respect to the associated metric, then H is called 
a Hilbert space. In particular, H is a complex Banach space, and therefore a 
topological vector space with respect to the topology induced by the norm. 

Assume for the remainder of this discussion that H is a Hilbert space, and in 
accordance with previous usage let End(H) denote the space of bounded linear 
maps from H to itself. End(H) is thus a Banach algebra with respect to addition 
and composition of functions, and it acquires some significant new structure 
from H. In particular, it is well known (see Exercises 9 and 10 below) that for 
every TeEnd(H) there exists a unique element T*eEnd(H), called the adjoint 
of T, such that 

(Tx\y) = (x\T*y) 

for all x,yeH. Moreover, the adjoint has the following elementary properties: 

(i) For all TeEnd(H), T**=T; that is, the adjoint operator has period two. 

(ii) For all TI'T2eEnd(H) and A,1'A.zeC, (A,7; +A,27;)*= ~7;* +~7;*; that is, 
the adjoint operator is conjugate linear. 

(iii) For all T1, T2eEnd(H), (7; 7;)* = 7; * 7;*; that is, the adjoint operator is an­

timultiplicative. 

(iv) For all TeEnd(H), II Til = II T* II; that is, the adjoint operator is an isometry; 
in particular, the adjoint operator is continuous. 

(v) For all TeEnd(H), IITT*II=IITII2. 

The usual arguments from linear algebra suffice to establish properties (i)­
(iii). To establish (iv) and (v), note that for all T, 

II T(x)II2 = (T(x)\T(x» = (T*T(x)\x)~"T*T"."xW . 

This shows that IITW~IIT*TII. But also IIT*TII~IITII'IIT*II, so we have the chain 
of inequalities 

IITW~IIT*TII~IIT*II' II Til 

and it follows that IITII~IIT*II for all T. By symmetry, we deduce that 
II Til = II T* II, thus proving (iv). In light of the previously displayed chain, prop­
erty (v) is now immediate. 

The following terminology, largely familiar from linear algebra, is most use­
ful: An element TeEnd(H) is called normal if T commutes with T*; that is, if 
T*T= TT*. An endomorphism T is called self-adjOint or Hermitian if it is equal 
to its adjoint; that is, if T*= T. The endomorphism T is called unitary if its ad­
joint is equal to its inverse; that is, if T-1 = T*. Both self-adjoint and unitary 
operators are automatically normal. 
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It follows at once from property (v) above that if TeEnd(H) is self-adjoint, 
then IIT211=IITII2, whence 

(2.8) 

for all n~O. 

REMARK. Let A be a complex algebra. An operator a 14 a * on A is called an 
involution if (a) the operator * has period two; (b) the operator * is conjugate 
linear; (c) the operator * is antimuItiplicative. If A is further a Banach algebra 
and (d) the operator * moreover satisfies the identity lIoa*II=lIaIl2 for all aeA, 
we call A a C*-algebra. If A is a C*-algebra, then 

and arguing as above, we see that the operator * is in fact an isometIy; that is, 
II a 11=11 a*1I for all aeA. 

Clearly the notion of a C*-algebra is an abstraction of the properties of the 
adjoint operator on the space of (topological) endomorphisms of a Hilbert 
space. This generalization, however, is in some sense vacuous: the Gelfand­
Naimark theorem shows that every C*-algebra is isomorphic to a closed, self­
adjoint subalgebra of End(H) for some Hilbert space H by a map that preserves 
both the complex algebra and metric structures of the corresponding spaces as 
well as the *-operator; that is, by an isometric *-isomorphism. 

Although we state the next suite of results (through Theorem 2-16) for en­
domorphisms of Hilbert spaces, the reader should note that in fact only the 
properties of a C*-a1gebra are required. 

We now resume the general exposition; we first consider the spectral radius 
of normal elements ofEnd(H). 

2-14 PROPOSITION. Let TeEnd(H) be normal. Then r(T)=IITIi. 

PROOF. Since T is normal, (TT*)m=Tm(T*)m for all nonnegative integers m. 
Hence applying property (v) above (twice) and Eq. 2.8 to the self-adjoint opera­
tor TT*, we obtain 

Thus 
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for all n, whence r(T) = II Til by Theorem 2-6. o 

2-15 PROPOSITION. Let TEEnd(H). 1fT is unitary, then sp(T)~SI; ifT is self­
adjoint, then sp(T)~R. (As usual, Sl = {ZEC: Izl= I} is the circle group.) 

PROOF. We make two preliminary observations. First, since the adjoint operator 
is antimultiplicative, an endomorphism of H is invertible if and only if its ad­
joint is. In particular, given TEEnd(H), A'I H- T is invertible if and only if 
1.IH - T* is likewise invertible, and hence AESp(T) if and only if lEsp(T*). 
Second, if T EEnd(H) is itself invertible, then for any nonzero A, 

and it follows that AESp(T) if and only if A,-I Esp(T-I). 
Assume now that T is unitary, so that TT*= 1 H' By property (v) above, 

II Til = 1, and so the spectral radius of T is also 1. Noting that (T*r1 = T and 
applying our preliminary observations, we deduce that AESp(T) if and only if 
1-1Esp(T). Thus if AESp(T), then both A and A-I have magnitude bounded by 
1, which clearly forces A to lie in SI, as claimed. 

Finally, assume that T is self-adjoint, and consider the convergent series 

"'(Tt 
exp(iT) = L-'-

n=0 n! 

By continuity and conjugate linearity, 

'" ( Tt 
exp(iT)* = L ~ = exp( -iT) 

n=O n! 

and so exp(iT)* =exp(iT)-I. Therefore exp(iT) is unitary. According to Exer­
cise 5 below, if AESp(T), then exp(iA)Esp(iT), and by the analysis of the uni­
tary case, lexp(iA)I= l. Thus the real part of iA must be zero, which is to say that 
AER. 0 

Recall from the previous section that if A is a commutative Banach algebra, 
thenA is the space of characters of A, and A admits a compact Hausdorff topol­
ogy. 

2-16 PROPOSITION. Let A be a self-adjoint, unital, closed, commutative sub­
algebra ofEnd(H). Then the Gelfand transform r:A ~W(A) is an iso­
metric isomorphism of unital complex algebras. The map r is, moreover, 
a *-isomorphism in the sense that r(T*) = reT) for all TeA. 
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PROOF. Note first that every element of A is normal, since A is commutative. 
Therefore, by Theorem 2-11 and Proposition 2-14, for all TeA, 

II Til = r(T) =IITIL, 

is indeed an isometry (hence continuous, injective, and therefore a homeo­
morphism onto its image). 

Suppose that TeA is self-adjoint. Then by Proposition 2-15, 

T(r) = r(T) Esp(T)!:;R 

for all r. whence T is likewise self-adjoint in the sense that it assumes only real 
values. Now any arbitrary TeA can be decomposed into a sum T=To+iT) where 
both To and T) are self-adjoint and defined as follows: 

T+ T* T- T* 
T.o = and T.) = --

2 2i 

One sees at once that T*=To-iT). Since both r(To) and r(T) are real-valued, 
we may readily compute that 

qT*) = r(To - iI; ) 
= r(To)-ir(1;) 

= r(To) + W(1J ) 

= r(To +i1J) 

= r(T) . 

This establishes the second assertion of the proposition. 

It remains to show that r:A ~~(A) is sUijective, and for this we collect the 
following facts about Im(r): 

(i) Im(r) contains the constant functions, since A is unital, and Im(r) sepa­
rates points by Theorem 2-11, part (ii). 

(ii) Im(r) is a self-adjoint subalgebra of~(A), sinceA is self-adjoint in End(H) 
and, as we have seen above, qT*) = r(T) for all TeA. 

(iii) Im(r) is closed in ~(A), since it is isometrically isomorphic toA. 

Thus, in accordance with (i) and (ii), the Stone-Weierstrass theorem (proposi­
tion 2-12) implies that Im(r) is dense in ~(A). Hence from (iii) we deduce that 
in fact Im(r)=~(A), and this completes the proof. 0 
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The First Spectral Theorem 

We now make our last preparations for the first spectral theorem. Assume 
that TEEnd(H) is normal. Henceforth, AT shall denote the smallest closed, self­
adjoint, unital subalgebra of End(H) containing T. This is clearly the closure of 
the algebra generated by lH' T, and T*, and moreover, AT is commutative be­
cause T is normal. We must now distinguish between sp(T), the spectrum of T 
computed as usual in the full algebra End(H), and spiT), the spectrum of T as 
computed in the subalgebraAT. The latter is defined by 

Clearly sp(T)~spiT); the opposite inclusion also holds, as we shall see in the 
proof of the following theorem. Finally, if W is any nonempty subset of C, we 
let iwdenote the inclusion map W~c. 

2-17 THEOREM. (The First Spectral Theorem) Let TEEnd(H) be normal, and 
let AT be defined as above. Then there exists an isometric *-isomorphism 
of unital complex algebras <D: ~(sp(T» ~AT such that <D (isp(T»= T. 

PROOF. Consider the Gelfand transfonn of T as defined on the space of charac­
ters of AT: 

T :AT ~ C 

r 1-4 r(T) 

~ccordinp to Theorem 2-11, part (i), T is a continuous mapping. Moreover, if 

T(rl) = T(r2)' then appealing to Proposition 2-16, we have 

Thus J] and r2 agree on the unital subalgebra ofEnd(H) generated by T and T*, 
and hence, by continuity, they also agree on its closure, AT; that is, J] = J1. 
Therefore f is injective, and so by the open mapping theorem a homeomor­
phism onto its image, which by part (iii) of the previously cited theorem is pre­
cisely spiT). To summarize, 

Next consider the transposed map 
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\II : ~(Sp A (T)) ~ ~(AT ) 
A 

ff4fOT. 

This clearly respects conjugation and norm and is therefore an isometric *­
isomorphism. We now define l1>=r-I 'I', so that the following diagram com­
mutes: 

Being defined as the composition of isometric * -isomorphisms, l1> is again an 
isometric *-isomorphism. We consider its effect on a function feW(spiT)). 
First note that by definition, 'I'(f)(r)=f(r(T)). But since the Gelfand transform 
is an isomorphism, every map in ~(AT) takes the form rf4 r(P) for some 
unique PeAT' Thus by the diagram above, we find that l1>(f) is characterized 
by the following property: 

A 

f(r(T)) = r(l1>(f)) 'Vr eAT 

From this it is clear that l1>(isPA(T)) = T and that l1>(l) = IH • Thus it only re­

mains to show that sPA(T)=sp(T). 

Let A.espiT) and choosef eW(spiT)) such that/has maximum absolute 
value 1, f(A.) = 1, andf(,u)=O whenever IA.-,ul~$. Let P=l1>(f). Then since l1> 
is an isometry and f is zero away from A., we have that 

II(T - A.·IH )1'11 = II <I>-I«T -A.·IH )P)II.., 

= lI(lsPA(T) - A.)fll.., 

'5,$ . 

Thus, if T -A.' 1 H were invertible, it would follow that 

1= Ilfllao=IIPII 

= II(T-A..IHr l(T-A..IH)P1I 
'5, II(T-A..1Hrlllll(T-A..IH)PII 

'5,1I(T-A..IH r l ll·$ . 
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But since e is arbitrary, this forces II T -A'IH II to infinity. Hence, T -A'IH is not 
invertible, and indeed Aesp(T). This completes the proof. I:J 

Positive Operators 

In this subsection we recall the notion of a positive operator and show, as an 
easy consequence of the first spectral theorem, that such operators admit 
"square roots" in an obvious sense to be defined below. As a preliminary we 
need to introduce a criterion for invertibility that allows us to interpret elements 
of the spectrum of an operator as generalized eigenvalues. 

Again let H be a complex Hilbert space and let TeEnd(H). We say that Tis 
bounded away from zero if there exists an e>O such that IIT(x)lI~ellxll for all 
xeH. Note that a map bounded away from zero has trivial kernel and is there­
fore injective. 

2-18 LEMMA. Let T be an operator in End(H). Then the following five state­
ments are eqUivalent: 

(i) T is invertible in End(H). 

(ii) T* is invertible in End(H). 

(iii) T and T* are bounded away from O. 

(iv) T and T* are injective and Im(T) is closed in H. 

(v) T is bijective. 

PROOF. (i)¢:>(ii) This follows at once from the antimultiplicativity of the ad­
joint operator. 

(i)=>(iii) Since iIT(x)=x for all xeH, it is clear that T is bounded away from 
zero by lIilli. In light of the equivalence between (i) and (ii), T* is likewise 
bounded away from zero. 

(iii)=>(iv) We need only show that Im(T) is closed. But for all x,yeH, 

IIT(x)-T(y)II=IIT(x- Y)II~ ellx - yll 

for some positive e. Thus any Cauchy sequence in Im(T) must come from a 
Cauchy sequence in H and must therefore converge. Hence Im(T) is closed. 

(iv) =>(v) Consider T(H)l., the orthogonal complement to T(H) in H. (See Ex­
ercises 11 and 12 below.) Since for all x,yeH, (T(x)ly)=(xIT*(y», it follows 
from positive definiteness that T(H)l.=Ker(T*), which by assumption is trivial. 
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Consequently, since T(H) is assumed closed, we may conclude by Exercise 13 
that T(H)=(T(H).l).l=H, as required. 

(v) =>(i) This isjust a special case of the open mapping theorem. 

We may use this result to make an explicit connection between the spectrum 
of an endomorphism and an obvious generalization of the ordinary linear-al­
gebraic notion of an eigenvalue and corresponding eigenvector. 

2-19 LEMMA. Let T be an operator in End(H) and let liesp(T). Then there is a 
sequence of unit vectors {xn} such that either 

(i) IIT(xn)-AXnll~O or 

(ii) IIT*(xn)- A xnll ~O . 

PROOF. If both alternatives fail, then clearly T -AIH and its adjoint are bounded 
away from 0 and therefore invertible, by Lemma 2-18. But this contradicts the 
assumption that Aesp(T). 0 

2-20 PROPOSITION. Let T be a normal operator in End(H), and again suppose 
that Aesp(T). Then for every positive c there exists a unit vector xeH 
such that IIT(x)-.lix1l < c. If A is isolated in sp(T), then in fact A is an ei­
genvalue ofT. 

PROOF. According to the previous lemma, for arbitrary TeEnd(H), the first 
statement must at least hold for one of T or T*. But since T is assumed normal, 
and therefore so is T - A'I H' it follows from Exercise 14 that this statement cer­
tainly does hold for T. 

To prove the second statement, we make use of the isometric isomorphism <l> 
described in the first spectral theorem. Let A be an isolated point of the compact 
subset sp(T). Then we can define a continuous functionffrom sp(T) to C such 
thatf(A) = 1, whilefvanishes identically elsewhere in sp(T). Then by construc­
tion and by Theorem 2-17, 

Here 1 denotes the constant function 1 on sp(T); note also that the infinity 
norm is computed over sp(T), not C. Since f is not the zero map, neither is 
<l>(f), whence there exists a nonzero xeH such that (1i·IH-T)x=O. Thus A is 
an eigenvalue for T, as claimed. 0 
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A self-adjoint operator TeEnd(H) is called a positive operator if (T(x)lx):2!O 
for all xeH. If this is the case, we write T:2!0. Clearly for all TeEnd(H) the 
product IT· is positive. 

2-21 PROPOSITION. A normal operator T is self-adjoint if and only ifsp(T)~R 
and positive if and only if sp(T) ~ R+. 

PROOF. We know that a self-adjoint operator has real spectrum by Proposition 
2-15. Assume, moreover, that T is positive, and let ..tesp(D. According to the 
previous proposition, for every &>0 there exist vectors x andy in H such that x 
is a unit vector,y has norm less than &, and T(x)=..tx+y. Thus 

o ~ (T(x)lx) = (..tx+ ylx) = ..t(xlx)+(ylx) = ..t+(ylx) 

It follows from the Cauchy-Schwarz inequality that O~..t+.s: Since & is arbi­
trary, ..t cannot be negative. 

Now assume that the spectrum of T is real. Then the mapping isP(T) is self­
adjoint, whence so is T by the first spectral theorem. If, moreover, the spectrum 
of T is nonnegative, then we may of course define the continuous function 
f(..t) =.fi on sp(T), which corresponds to the self-adjoint operator cI>(f). Ac­
cordingly, 

(T(x)lx) = (cI>(f)2(X) Ix) = (cI>(f)(x)IcI>(f)(x»:2! 0 

as required. 

2-22 PROPOsmoN. Let T be a positive operator in End(H). Then there exists a 
unique positive operator TI12 eEnd(H) such that (TII2)2= T. Moreover, TII2 
commutes with every operator that commutes with T. 

PROOF. Letfbe as in the proof of the previous result and define T I12=cI>(f), so 
that clearly (T I12i=T. By the Stone-Weierstrass theoremfmay be expressed as 
a uniformly convergent power series in the function Isp(T) on sp(D, whence TII2 
may be expressed as a uniformly convergent power series in T. Thus TII2 indeed 
commutes with every operator that commutes with T. Uniqueness is established 
in Exercise 15 below. 0 

The Second Spectral Theorem 

In this subsection we state, without proof, the second spectral theorem. As a 
prerequisite we must first introduce the notion of a spectral measure. 

Note that although we state this result in integral form, it is in fact an exten­
sion of the first spectral theorem to the class of bounded complex Borel func-
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tions on the spectrum of a given normal operator. We shall return to this point 
briefly below. 

Let H be a Hilbert space, and let (X, gn) be a measurable space (cf. Section 
1.2). Then a spectral measure on X taking values in the operator space End(H) 
is a mapping E: gn ..... End(H) satisfying the following axioms: 

(i) For all Yegn, E(Y) is an orthogonal projection in End(H) onto a closed 
subspace. 

(ii) The full space X corresponds to the identity map, and the empty set corre­
sponds to the zero map; i.e., E(X)= IH' and E(0)=0. 

(iii) For all YI , Y2egn, E(Y{'IY2)=E(YI )E(Y2). 

(iv) Let {Yn} be a countable collection of measurable sets. Then 

E(UY,,) = V E(Y,,) 

where the right-hand side denotes projection onto the closed subspace gen­
erated by the union of the images of the E(Yn). 

Recall that a signed measure is a map from gn to Ru{±oo} that is additive 
on countable unions of disjoint measurable sets and takes at most one of the 
values ±oo. According to the Hahn decomposition theorem, every signed meas­
ure P may be written as a difference of ordinary (nonnegative) measures p+ and 
P- that are mutually singular; that is, X is the disjoint union of two measurable 
sets r and X- such that p+ is trivial on X-, and p- is trivial on r. Hence 
integration with respect to p may be defined in the natural way as the difference 
of two integrals defined with respect to p+ and p-. A complex measure is a sum 
Po + i PI of two signed measures Po and PI that do not take the values ±oo. Inte­
gration with respect to a complex measure is again readily defined. 

One verifies easily that a spectral measure E on X gives rise to a family of 
ordinary measures Pxon X (xeH): for Yegn, define 

Px(Y) = (E(Y)xlx) . 

For all xeH, this measure is clearly bounded by II X 112, owing to axiom (i) for a 
spectral measure. These measures Px in tum give rise to a doubly indexed fam­
ily of complex measures Px,y on X (x,yeH) defined by 

or equivalently, 
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,ux,/Y) = (E(y)xly) 

Now let f be a bounded, measurable, complex-valued function on X, and 
consider the associated integral 

Ij(x,y) = f f(J.)d,ux,y(J.) 
x 

This is clearly a sesquilinear form on H (i.e., linear in the first variable, conju­
gate linear in the second) and continuous on HxH, because f is bounded by 
IIfll." while the measures Px+;ky are bounded by IIx+ikYIl2. Hence by Exercise 9, 
there exists an endomorphism Tf on H such that 

(Tj(x)ly) = I j(x,y) 

= J f(J.)d,ux./J.) 
x 

One often expresses this more succinctly as an "operator integral," as follows: 

Tj = J f(J.)dE(J.) 
x 

and this is henceforth the implicit meaning attached to such an integral. With 
this in mind we can now state the second spectral theorem (for normal opera­
tors). 

2-23 THEOREM. (The Second Spectral Theorem) Let T be a normal operator in 
End(H). Then there exists a spectral measure E defined on the Borel sub­
sets ofsp(T) such that 

T= JJ.dE(J.) 
sp(T) 

That is, for all X,YEH, 

(T(x)ly) = f J.d,ux,/J.) 
sP(T) 

where.u is the complex measure associated with E. Moreover, for every x,y 

Borel subset Y of sp(T), the associated projection E(Y) commutes with 
every operator that commutes with T. 
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While we will not prove this, we will at least say how a spectral measure E 
on sp(T) is naturally associated with the normal operator T. Let Y be any Borel 
subset of sp(T). Then the characteristic function Zy from sp(T) to C is certainly 
Borel measurable. Via an extension of the first spectral theorem, Zy corresponds 
to an operator E(Y) in End(H), which turns out to be a projection that com­
mutes with every operator that commutes with T. The association Y 1-4 E(Y) is 
in fact the required spectral measure. 

2.4 Unitary Representations 

In this brief section we develop some basic facts about a special class of topo­
logical representations, the so-called unitary representations. We shall use the 
first spectral theorem to prove a powerful topological extension of Schur's 
lemma, a well-known result in the ordinary theory of group representations. 

We begin working over a pre-Hilbert space H. One can show by routine 
methods that iI, the metric completion of H, also admits a compatible structure 
as a pre-Hilbert space, which is by construction in fact a full Hilbert space. 
Moreover, any bounded op~rator on H likewise extends uniquely by continuity 
to a bounded operator on H. Hence adjoint operators are also defined for H by 
restricting the adjoint defined on the completion. 

Assuming that H is a pre-Hilbert space with respect to some given positive 
Hermitian form (I), a bounded endomorphism T of H is called pre-unitary 
(with respect to the given form) if, as one would expect, the following equation 
holds for all x,yeH: 

(X,y) = (T(x), T(y» . (2.9) 

Equivalently, TT*=lv, where T* again denotes the adjoint of T. A pre-unitary 
endomorphism on a Hilbert space is, of course, a unitary operator in the usual 
sense. 

More generally, if Hand H' are pre-Hilbert spaces, we shall call an isomor­
phism T:H=.H' pre-unitary ifEq. 2.9 holds. 

DEFINITION. If (P,H) is a representation of a locally compact group G on a pre­
Hilbert space H, we say that p is pre-unitary if each topological automorphism 
Pg (geG) is pre-unitary; that is, if 

We also say that the underlying form (I) is invariant under p(G). 
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DEFINITION. Two arbitrary topological representations (P,H) and (P',H') are 
called pre-unitarily equivalent if there exists a pre-unitary topological iso­
morphism T:H-=H' such that To Pg = P~ 0 T for all gEG. 

In the context of these definitions, if Hand H' are moreover Hilbert spaces, 
we then speak, respectively, of unitary representations and unitary equiva­
lences. 

2-24 PROPOSITION. Let Hand H' be two Hilbert spaces. If two unitary repre­
sentations (p,H) and (P',H') are equivalent, then they are moreover uni­
tarily equivalent. 

PROOF. Let T: H ~ H' be the topological G-isomorphism defining the equiva­
lence of (P,H) and (P',H'). Define T*:H'~Hby the relation 

(T*(x)ly) = (xl T(y» 

for all xEH', yeH. (Again see Exercises 9 and 10; note that this slight generali­
zation of the adjoint has all of the usual formal properties.) Then one shows 
easily that TT* is a positive operator on H'. According to Proposition 2-22, 
there exists a unique positive (in particular, self-adjoint) operator U such that 
U2= TT* and U (hence U- I ) commutes with every operator that commutes with 
TT*. An easy calculation shows that the composite operator U-IT is unitary: 

It remains to show that U-IT also defines an equivalence between the unitary 
representations (p,H) and (P',H'). This follows trivially, provided that U- I com­
mutes with P~ for all gEG, and for this it suffices to show that TT* commutes 
with the p~. To establish this last assertion, we begin with the defining relation 

Taking the adjoint of both sides (and noting that both representations are, by 
assumption, unitary), we have 

whence 

This completes the proof. Cl 
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We come now to one of the principal results of the present chapter: Schur's 
lemma. This is an extension to our topological setting of a most elegant result 
for abstract group representations. We give two proofs of the "difficult part," 
one based only on the first spectral theorem, proven above in its entirety, and 
the other given as an illustration of how the second spectral theorem may be 
applied. 

The key to the first proof is the following immediate consequence of the first 
spectral theorem. 

2-25 PROPOSITION. Let T be a normal operator on a complex Hilbert space H, 
and, as usual, let AT be the closure of the unital subalgebra ofEnd(H) 
generated by T and 1'*. Then the following three statements are equiva­
lent: 

(i) sp(T) is a point. 

(ii) AT=C. 

(iii) T is a scalar multiple of the identity operator. 

This brings us directly to the main event. 

2-26 THEOREM. (Schur's Lemma). 

o 

(i) Let G be an arbitrary group, and let V and V' be vector spaces over 
an arbitrary field. Suppose that both p and p' are algebraically irre­
ducible representations of G on V and V', respectively. If Te 
Homa(V, V'), the space of all G-Iinear maps from V to V', then either 
T is the trivial map or T is an algebraic isomorphism. 

(ii) Assume further that G is a locally compact topological group and 
that H is a complex Hilbert space. Let p be a topologically irreduci­
ble unitary representation ofG on H, and let TeEnda(H), the space 
of continuous G-Iinear maps from H to itself. If T is a normal op­
erator, then T is a scalar multiple of the identity map. In particular, 
for arbitrary TeEnda(H), the product T*T is scalar. 

PROOF. (i) By hypothesis, both Vand V' admit no nontrivial, proper G-invariant 
subspaces. Accordingly, if T is not surjective, it has trivial image, and if T is 
not injective, its kernel is all of V. Thus if T is not an isomorphism, it is indeed 
trivial, as claimed. Note well that this argument holds for arbitrary abstract 
group representations, independent of ground field or topology. 

(ii) Certainly we may assume that H is nontrivial. Let the representation 
p: G ~ End(H) be given as stated, and let T be a normal operator commuting 
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with p. Suppose that 2esp(T). Then we can find a nonzero function/on sp(T) 
that vanishes on an open neighborhood of 2 in sp(T). Let <D:W(sp(T»~AT 
again be the isometry of the first spectral theorem. Then W, the closure of the 
subspace <D(f)H in H, is invariant under peG); to see this, express <D(f) as a 
limit of polynomials in T, which evidently commute with Pg , for all geG. It 
follows now from the irreducibility of p and the non triviality of/that in fact 
W=H. 

Now suppose that sp(T) is not a singleton. Then we may find another con­
tinuous function h with complementary support vis-a-vis! But then 

{O} = <D(h)<D(f)H 

and W cannot be all of H. This contradiction shows that sp(T) must contain no 
more than one point, and hence the previous proposition applies to complete 
~~ 0 

ALTERNATIVE PROOF OF THE SECOND PART. We give this alternative proof based 
on the second spectral theorem only for positive operators, leaving the exten­
sion to arbitrary normal operators to the reader. 

Let T be a positive operator on H, whence sp(T)~R+. By the second spectral 
theorem, there exists a spectral measure E defined on the Borel subsets of sp(T) 
such that 

T= f 2dE(2) 
sP(T) 

Moreover, E has a crucial property: each projection E(Y) commutes with every 
operator that commutes with T and, in particular, commutes with every Pg , 

since T is a G-endomorphism and P is unitary. Thus the image of each E(Y) is a 
G-invariant subspace of Hand tllerefore, by assumption, is either the trivial 
subspace or H itself, which is to say that for every Borel subset Y, the endomor­
phism E(Y) is eitller the trivial projection or the identity projection. 

Let us now unwind the previous equation. For all x,yeH, we have 

(Tx,y)= f 2d,ux,yC2) 
sp(T) 

1 4 
= - "ik f2d,u .k (2) 4 L.. X+l Y 

k;l sP(T) 

1 4 
= - "ik sup f 1f/(2)d,u .k (2) 4 L.. XH Y 

k;l V/ sP(T) 
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where for each tenn, the supremum is taken over all simple functions '1/ on 
sp(T) such that '1/(,1.):0:,1.. Accordingly, 

<Tx, y) = .!. ±/ sup ~)nf(Y)<E(~. )(x +;k y)l(x +;k y» 
4 k=l / 

=.!. t;k sup Linf(Y/) 15/" «x +/ y)l(x+;k y» 
4 k=l / 

= sup Linf(Y) 15/ " .!. I;k «x+;k y)l(x +;k y» 
/ 4 k=l 

=<~x,y) 

where each supremum is taken over all finite, disjoint measurable covers {Yj} 
of sp(T), and <} is either 0 or 1 depending on whether E(Yj) is the zero projec­
tion or the identity projection. Thus T=Au"lH' as claimed. D 

REMARKS. (i) Suppose that in the second part H is assumed finite-dimensional. 
Then we can give a direct proof based on elementary linear algebra that for any 
TEEndG(H), the product T*T is scalar. We know that T*T is a self-adjoint op­
erator on H, and so by the spectral decomposition theorem, H decomposes into 
the direct sum of closed orthogonal eigenspaces with respect to T*T. Let W be 
the eigenspace belonging to the eigenvalue A.. Then for WE Wand gEG, 

so that piw) again lies in the eigenspace belonging to A.. It follows that W is a 
nontrivial, closed, G-invariant subspace of V. Since p is assumed irreducible, in 
fact W=H, and therefore T*T=A.-lw 

(ii) One key step in the proof of Schur's lemma is noteworthy even when G is 
trivial: every nonnal operator on a Hilbert space H of dimension greater than 
one leaves a nontrivial, proper, closed subspace Wc;;;;,H invariant. When H is 
finite-dimensional, this follows from the existence of eigenvectors, but these 
need not occur in the infinite-dimensional case. Thus some of the analysis on 
Hilbert spaces that we have here developed is certainly unavoidable. Suffice it 
to note further that there need not be invariant subspaces W in a general Ba­
nach space V, even for nice operators. For instance, Z admits an infinite­
dimensional, nonn-preserving Banach representation that is in fact irreducible! 

We conclude this section with a final application of these spectral techniques 
to prove a theorem that provides a natural bridge into the next topic. 
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2-27 THEOREM. Let G be a locally compact abelian group and let (P,H) be an 
irreducible unitary representation of G on a Hilbert space H. Then 
diInc(H) = 1. 

PROOF. For every geG, the corresponding unitary (hence normal) transforma­
tion Pg lies in Enda(H) and hence, by Schur's lemma, acts by a scalar, say, 
z(g)eSI. Hence each nonzero xeH generates the G-invariant closed subspace 
ex, which must then be H itself, since P is assumed irreducible. I:l 

Note in the proof that since P is a representation of G, the map Z is continu­
ous from G into SI, with the further property that 

z(gg') = Z(g)Z(g') 

for all g,g'eG. This qualifies Z as a (unitary) character of G, and such charac­
ters are very much at center stage in the following chapter. 

Exercises 

1. Let Vbe a topological space that is also a vector space over the topological 
field k. Show that V is a topological vector space over k if and only if the 
following maps are continuous: 

VxV .... V 

(v,w) HV+W 

2. LetA be a (complex) Banach algebra, possibly without unity. Show that A 
embeds isometrically into a Banach algebra A' with unity. [Hint: Consider 
the direct product AxC; there is only one way to extend the ring structures 
of A and C to this product. For the norm, set lI(a,A)1I = lIall + IAI, where the 
latter is, of course, the ordinary complex absolute value.] 

3. LetA be a Banach algebra with unity. Show that we may replace the given 
norm 11·11 on A with another norm 11°111 that yields the identical metric to­
pology, with the further property that 1I1Ih=1. [Hint: For each aeA, let Pa 
denote the left multiplication map and define lIallI= IIPall, the norm of the 
associated linear transformation.] 

4. Let A be a Banach algebra and let aeA satisfy lIall<1. Show that for all 
integers m and n with 1 ~m <n, 
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Conclude that the series LJ=O aj converges inA. 

5. Let A be a complex unital Banach algebra and let aeA. Let D denote the 
closed disk in the complex plane of radius 11011. Assume that j(z) is holo­
morphic in a region containing D (and hence, by elementary complex 
analysis, has a valid power series expansion on D). Show (i) thatj(a) con­
verges inA and (ii) that if Aesp(a) and AeD, thenj(A)esp(f(a». 

6. Let A be a complex unital Banach algebra and let x,yeA. 

(a) Show that if l-xy is invertible, then so is l-yx. [Hint: Suppose that z is 
the inverse of l-xy. Show that xyz=zxy and deduce that 1 +yzx is the re­
quired inverse for 1-yx.] 

(b) Deduce from part (a) that if A is a nonzero element in the spectrum of.ry, 
then A is likewise in the spectrum of yx. Show that restriction of this state­
ment to nonzero elements of the spectrum is in fact necessary. 

(c) Conclude from parts (a) and (b) that if x is invertible, then the spectrum of 
xy is identical to that of yx for all yeA. 

7. LetA be a complex unital Banach algebra and let x,yeA. Show that xy and 
yx have the same spectral radius. [Hint: Use the previous exercise.] 

8. Let A be a complex Banach algebra without unity, and suppose that A em­
beds isometrically into a unital Banach algebra B as a subspace of codi­
mension l. (According to Exercise 2, such an algebra B always exists.) 

(a) Show that linear extension and restriction define a pair of inverse map­
pings between the character spaces A and B. 

(b) Let rB:B ~ ~(B) denote the Gelfand transform for B. Show that the im­
age of A under r B already separates points in B and hence in A. (See 
Theorem 2-1l.) 

9. Let H be a Hilbert space. Show that every element of cpeH* takes the form 

cp(x) = (xlxo> 
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for some element xoEH uniquely defined by cp. [Hint: Assume that cp is not 
the zero transformation and let K denote the kernel of cp. Decompose H 
into the direct sum of K and K1. (the closed subspace of H consisting of 

elements orthogonal to K). Clearly there exists YoEK1. such that cp(Yo)= 1. 
Now show that xo=Yo/lIYoll has the required property. The key will be that 
x-cp(x)Yo lies in Kfor all XEH.] 

10. Let H be a Hilbert space and let TEEnd(H). Show that the adjoint trans­
formation T*EEnd(H) exists and is unique. [Hint: For each YEH, the map­
ping XH (T(x)Jy) lies in H*. Hence by the previous exercise there exists 

an element T*(Y)EH such that (T(x)Jy) = (x JT*(y» for all xEH. Now 

show that T* lies in End(H).] 

11. Let X be a subset of a Hilbert space H and define X 1. to be the set of points 
in H orthogonal to every element of X. Show that X 1. is a closed subspace 
ofH. 

12. Let W be a closed subspace of a Hilbert space H and define W1. as in the 
previous problem. Show that H= WEeW1. as a vector space. [Hint: Given 
XEH define prW<x), the orthogonal projection of x onto the subspace W, to 
be the closest point of W to x. Then show that x = prw<x) + (x-prw<x» is 
the required unique decomposition.] 

13. Continuing in the context of the previous problem, show that (X 1.l is the 
smallest closed subspace of H that contains the closure of X. Conclude, in 
particular, that if W is a closed subspace of H, then (w1.l= W. 

14. Let H be a Hilbert space and let T be a normal element of End(H). Show 
that for all xEH, IIT(x)JJ = JJT*(x)lI. [Hint: By definition of the adjoint, for all 
xEH, (T(x)JT(x»=(T*T(x)Jx). But T* commutes with T.] 

15. Let TEEnd(H) be a positive operator on a Hilbert space H. Show that the 
"square root" of T as defined in Proposition 2-22 is unique, arguing as fol­
lows: 

(a) Show that if SEEnd(H) is a positive operator such that S2=T, then both T 
and TII2 lie in As, the smallest closed, self-adjoint, unital subalgebra of 
End(H) containing S. 

(b) Show that TII2 corresponds under the isomorphism of Theorem 2-17 to a 
function gE'6"(Sp(S» satisfying g2(A) = ).,2 for all ).,ESp(S). 

(c) Conclude from (b) and the positivity of S that in fact S=TI/2. 
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16. (Unitarizability for Compact Groups) Let Hbe a representation of a com­
pact group G on a finite-dimensional vector space V. Show that there exists 
a scalar product ( I ) on V that is n(G)-invariant; that is, His unitaty with 
respect to the Hilbert space structure defined on V by this scalar product. 
Note that this construction applies to any finite group with the discrete to­
pology. [Hint: Pick any scalar product [ I ] on V. and consider the average 

(v Iv') = -1-f [H(g)V I H(g)V'] dg 
vol(G)G 

where dg is the Haar measure on G.] 

17. Give an example of a finite-dimensional representation of a locally com­
pact, but noncompact, group for which the conclusion asserted by the pre­
vious exercise does not hold. [Hint: Try G=SLz(C)' V=Cz, with Htaken to 
be the standard representation.] 

18. Let (H, V) be a finite-dimensional unitaty representation of a locally com­
pact group G. Show that His completely reducible; that is, there exists a di­
rect sum decomposition 

such that (i) n(G) preserves each V;, and (ii) the restriction of Hto V; is ir­
reducible for all i. [Hint: Take orthogonal complements of invariant sub­
spaces.] 

19. Give an example of an infinite-dimensional unitary representation of a 
locally compact group G that is not completely reducible. [Hint: Try G= R 
and V=L 2(R), where H acts by translation on the functions that constitute 
V.] 

20. (Orthogonality Relations for Compact Groups) Let (H, V) and (H',v') be 
nonisomorphic, irreducible, unitary representations of a compact group G. 
Show that the following identity holds for all VI' VZE V and v'l' V'ZE V': 

f (H(vl )lvz)(H(vDlv2)' dg = 0 
G 

where dg denotes the Haar measure on G normalized to give total volume 
one-this is called the probability measure on G-and (I) and (I)' de­
note the invariant scalar products on Vand V', respectively. 
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21. Let (;r, V) be an irreducible unitary representation of a compact group G 
with Haar measure dg. Verify the following identity for all VI' V2'V3' v4e V: 

22. Let G be a locally compact group with Haar measure dg. Define L2(G) to be 
the Hilbert space of square-integrable functions on G; that is, L2(G) con­
sists of the measurable functions f: G ~ C such that 

JIJ(g)12 dg <00 
G 

Show that the right (or left) translation action of G on L2(G) defines a uni­
tary representation relative to the scalar product 

(flh) = J J(g)h(g) dg 
G 

This is called the regular representation of G. 

23. Let (;r, V) be a finite-dimensional unitary representation of a compact 
group G. For any pair (VI' v2) of vectors in V, define the associated matrix 
coefficient to be the function G~C defined by 

where ( I ) denotes the ;r-invariant inner product on V. 

(a) Show that the character X,,: G~C defined by g H tr 1f(g) is a linear com­

bination of matrix coefficients (relative to a basis of V). Show further that 

for all geG. 

(b) (Orthogonality of Characters) Show that if (;r',G') is another finite­
dimensional unitary representation and if, moreover, ;rand ;r' are irreduci­
ble, then 
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if tr;f:. tr' 

if tr:: tr' . 

Here * denotes the convolution product: 

!*h(x)= f!(xy-I)h(y)dy . 
G 

24. Assume that G is a compact matrix group; that is, a compact subgroup of 
GLn(C). Let :M(G) denote the C-linear span of the matrix coefficients of 
all finite-dimensional unitary irreducible representations (tr,V) of G. One 
endows :M(G) with an algebra structure via the tensor product. 

(a) Show that the elements of :M(G) are continuous and that :M(G) contains 
the constant functions and separates points. 

(b) Show that :M(G) is uniformly dense in the space of continuous functions 
fromGto C. 

(c) Show that :M(G) is dense for the L2-norm in L2(G). This is defined by 

25. Again let G be a compact matrix group. 

(a) Show that we have the following decomposition of the (right) regular rep­
resentation: 

A 

L2(G):: EB .dim(V).V 
(1r.V}eG 

where G denotes the set of inequivalent irreducible unitary representations 

of G, and EB denotes the Hilbert direct sum; that is, the completion of the 
algebraic direct sum. 

(b) If G isjinite, show that there is a natural identification of L2(G) with the 
complex group algebra CG. 
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26. Show that every irreducible unitary representation of a compact matrix 
group is necessarily finite-dimensional. 

REMARK. The assertions of the preceding three exercises are in fact true for any 
compact group G (that is, without assuming that G is a matrix group). Together 
they are the content of the Peter-Weyl theorem, the most fundamental result in 
the representation theory of compact groups. 

27. Let G be a locally compact group, and let H be a closed, unimodular sub­
group. This means that the left and right Haar measures on H are identical, 
after appropriate normalization. Let W be a Hilbert space with its corre­
sponding space of unitary transformations denoted Zf(W), and suppose that 
0": H ~ Zf(W) is a unitary representation of H. Define 

the so-called representation of G induced by (0; W) to be the space of func­
tions/from G to W such that 

(i) /(hg)=CT(h)/(g) for all heH, geG, and 

(ii) / is measurable and in L2 modulo H; that is, the product (I(g)I/(g», 
which by the previous condition and the unitarity of 0" is well-defined 
on H\G, is integrable over the quotient space. 

Note that G acts on Ind~(O") by right translation; that is, by the action 

(x,f)H (gH /(gx» 

for all g,xeG. 

(a) Show that 1nd~(0") is a unitary representation of G. [Hint: First show that 

- dg 
dg=­

dh 

is a right G-invariant measure on the homogeneous space H\G; use it and 
the H-invariant scalar product on W to define an appropriate scalar product 

on 1nd~(O").J 

(b) If H is not unimodular, how should the definition of 1nd~(0") be modified 
to ensure unitarity? 
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(c) Show that if Gis ajinite group, then there is a natural G-isomorphism 

Note that the object on the right is the usual induced module in the repre­
sentation theory of finite groups. 

28. Let G= R, here viewed as an additive, locally compact group with Haar 
measure given by the ordinary Lebesgue measure dx. 

(a) Given/eL2(R) and zeR, define (PJ)(x)= /(x+z). Show that 

is a well-defined unitary representation. 

(b) Show that for zeR, the operator Pz has a purely continuous spectrum; that 
is, for each Aesp(pz), there exists no corresponding eigenvector, which in 
tum is to say, no element/eL2(R) such that Pz/ -A/=O. 

(c) Determine sp(Pz) and the spectral measure E on sp(Pz), as in the second 
spectral theorem. 

(d) Show that EndR(L2(R)) is commutative. [When this happens, one says that 
the representation (p,L2(R)) is multiplicity-free.] Show nonetheless that 
EndR(L2(R)) is not C, so that the representation is not irreducible. 

(e) After studying Chapter 4, do this problem again for G=Qp • 



3 
Duality for Locally Compact 
Abelian Groups 

.. 
For a locally compact abelian group G, its group G of characters (i.e., continu-

ous homomorphisms from G to SI) also acquires the structure of a topological 

group. In this chapter, we give two distinctiv: characterizations of what turns 

out to be the same underlying topology for G and examine this topology in 

detail. The ~n result is the Pontryagin duality theorem, which says in effect 

that G and G are mutually dual, both algebraically and topologically. To prove 

this, we build upon the results of the previous chapter, especially insofar as the 

introduction of functions of positive type makes a critical correspondence with 

the theory of unitary representations. 

Another key element of the discussion is the definition of the Fourier trans­

form in this abstract setting. Extending the notion of the real Fourier transform, 

we shall here associate wi~ evel! suitable complex-valued function f on G a 

comp!ex-valued transform f on G. Moreover, we shall see that the functions f 
and f satisty a generalized form of the Fourier inversion formula. 

The locally compact abelian groups of most importance to us will ultimately 

be the additive and multiplicative groups associated with a local field F, which 

in characteristic zero must be R, C, or a finite extension of the p-adics Qp' In 

this context, the Fourier transform and the Fourier inversion formula bear 

heavily on Tate's thesis. To be more precise, the local zeta functions Z(f,x,s) of 

Tate are defined, for se C, with respect to an appropriate function f on a local 

field F and a character X on F*. The functional equation then relates Z( f, x, s) 

to Z(j,'Z,l-s), where Z is the conjugate of the character X. Hence this mate­

rial is doubly critical to the sequel. 

3.1 The Pontryagin Dual 

Let G be an arbitrary group. If X is any subset of G, for neN defineX<n)!:;G as 
follows: 



3.1. The Pontryagin Dual 87 

X(rJ) = {n Xj: Xj e X,j = l, ... ,nl. 
J=l 

Thus we explicitly distinguish between x<n) and the n-fold Cartesian product of 
X with itself. 

Assul,!1e now that G is an abelian topological group, written multiplicatively. 
Define G, the (multiplicative) group of continuous complex characters ofG, to 
be the set of all continuous homomorphisms G~SI, Awhere as usual, Sl denotes 
the group of complex numbers of absolute value l. G is also called the Pontry­
agin dual of G. Let K be a compact subset of G, and let V be a neighborhood of 
the identity in Sl. Then define the subset W(K, V) of G by the formula 

A 

W(K,V)={xeG:z(K)!;;V} . 

The sets W(K, V) constitute a neighborhood base for the trivial character and 
hence determine a topology on G, called the compact-open topology. If G is 
discrete (in which case every compact set is finite), this topology evidently co­
incides with the topology of pointwise convergence. 

We next define some key subsets in SI. Recall that 8 1 has universal cover 
given by the exponential map 

which is in fact a continuous homomorphism with kernel Z. Let s be a real 
number such that 0 < ss;.l. Define N(S)!;;SI by 

Thus, N(s) is the image under 'Pofa symmetric open neighborhood ofOeR. 

A 

The key to the analysis of the compact-open topology on G is the following 
technical lemma. 

3-1 LEMMA. Let m be a positive integer and suppose that xeC is such that 
x,x2, ... ,xm lie in N(I). Then xeN(lIm). Consequently, ifU is a subset ofG 
containing the identity and x: G~SI is a group homomorphism (not nec­
essarily continuous) such that X(u(m»!;;N(I), then X(U)!;;N(lIm). 

PROOF. Let r be an arbitrary positive integer and suppose that xr lies in N(l). 
Then clearly there exists yeN(lIr) such that xr=yr, whence the quotient x/y is a 



88 3. Duality for Locally Compact Abelian Groups 

complex rth root of unity. Thus xEN(l/r)rp(q/r) for some integer q such that 
o ~ q < r. We shall now make a crucial observation about sets of the form 
N(l/r)rp(q/r) that in passing explains the factor of one-third in the definition of 
N(s): for all positive integers r we have the implication 

1 1 q 
N(-)nN(-)rp(-)*0 ~ q=O 

r r+1 r+1 

The point is that 

1 21rit 1 1 
N(-) = {exp(-):t E(--,+-)} 

r 3 r r 

while 

N( 1 ) (q) _ { p(21rit). (3q -I 3q+ I)} -- .rp -- - ex --.t E --,-- . 
r+1 r+1 3 r+1 r+1 

Hence the intervals indicated for the parameter t can have no intersection un­
less l/r> (3q-I)/(r+ I), which is to say that 2r+ 1 > 3qr, an inequality that 
cannot hold unless q=O. 

Suppose now that xEN(l/r) and X r+1EN(1). Then xEN(l/(r+I)) modulo an 
(r+l)th root of unity, and therefore by the observation of the last paragraph, in 
fact xEN(l/(r+I)). Thus it follows by induction that if x,x2, ... ,xm lie in N(I), 
then x lies in N(l/m), as claimed. 

The second statement follows immediately: Let gEUc;;;.G, and suppose that 
U contains the identity. Then clearly g,g2, .. . ,gmE u(m). Hence if X(u(m))c;;;.N(I), 
X(g) satisfies the hypotheses of the first part of the lemma. Thus X(g)EN(l/m) 
and X(U)c;;;.N(lIm), as claimed. 0 

3-2 PROPOSITION. Let G be an abelian topological group. Then the following 
assertions hold: 

(i) A group homomorphism X: G~SI is continuous, and hence a charac­
ter ofG, if and only if r 1(N(1)) is a neighborhood of the identity in G. 

(ii) The family {W(K,N(I))}K (indexed over all compact subsets of G) is a 
neighborhopd base of the trivial character for the compact-open to­
pologyofG. 

(iii) IfG is discrete, then G is compact. 
A 

(iv) IfG is compact, then G is discrete. 

(v) IfG is locally compact, then G is likewise locally compact. 
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PROOF. (i) Suppose that indeed there exists an open neighborhood U of the 
identity of G that maps into N(l) via Z. Then since multiplication in G is con­
tinuous, for any positive integer m there exists an open neighborhood V of the 
identity in G such that v(m) is contained in U. Thus according to the previous 
lemma, 0 m)r;;;;;,N(lIm), and X is continuous. 

(ii) We need to show that for every compact subset K J of G and for every posi­
tive m, there exists a compact subset K of G such that 

W(K, N(l»r;;;;;, W(KJ,N(llm» . 

Let K = Kfm), which is the continuous image of the compact set K m (direct 
product), hence itself compact. If Xe W(K,N(l», then by construction, for all 
xeKJ, we have that .x(X),.x(X)2, ... ,.x(x)meN(l). It follows now from the lemma 
that .x(x)eN(lIm), whence xe W(KJ,N(lIm», as claimed. 

(iii) If G is discrete, then G = Hom(G,SI), the set of all algebra homomor­
phisms from q to the circle group. Moreover, as noted above, the compact-open 
topology on G is precisely the topology of pointwise convergence. But with 
respect to the latter topology, Hom(G,SI) is evidently a closed subset of the 
space of all maps from G to Sl, which is itself compact. Hence G is compact. 

(iv) Given any character X, X(G) is a subgroup of Sl and hence not contained in 
any set of the form N(s), 0 < s::O; l. Thus if G is compact, then W(G,N(l» can 
c~ntain only the trivial cha!acter, which therefore constitutes an open subset of 
G. It follows at once that G is discrete. 

(v) To show that G is locally compact, we shall show that if K is any fixed 
compact neighborhood of the identity of G, then 

W = W(K,N(l/4» 

is a compact neighborhood of the identity in G. (Here the bar denotes closure.) 
By part (ii), this suffices, since {W(K,N(l»} for K compact is a neighborhood 
base at the identity. 

Let Go denote the discrete topological group having the same group structure 
as G. Note that only finite subsets of Go are compact. From parts (iii) and (iv) 
we know that ~o, is just Hom(G,SI) with the topology of pointwise conver­
gence and that Go is compact. Define Wo by 
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Now clearly Wo is closed in Go, and is therefore itself compact. Moreover, 
Wo~ Wby part (i), and certainly W~ Wo' since Go ignores continuity. Hence 

and if To denotes t~e topology induced on W by Go' and T denotes the topology 
on W induced by G, it suffices to show thatTo is finer than T; for then the com­
pactness of W with respect to To will imply its compactness with respect to T, as 
required. (In fact, the two topologies are then equal, since r, the compact-open 
topology, is clearly finer than To, the topology of pointwise convergence.) Let 
KI be a compact subset of G and let m be a positive integer. For each XE W, 
consider the subset 

W(X) = (XW(KI'N(1/m)))n W . 

We shall show that each W(x) is an open neighborhood of X with respect to To, 

whence T has a neighborhood base at X contained in To. 

Let Vbe an open neighborhood of the identity in G such that v(2m)~K. Since 
KI is compact, there exists a finite set F such that FoV~KI. Define a subset 
Wo(x) of Was follows: 

Wo(X) = (XWo(F,N(l/(2m)))) n W 

where Wo(F,N(l/(2m») denotes the set of characters on Go that map F into 
N(l/(2m». We claim that Wo(x) is a To-neighborhood of X contained in W<!), 
and this will complete the proof. Since Wo(F,N(l/(2m))) is clearly open in Go, 
only the inclusion Wo(x)~ W(x) needs verification. A 

Let ,uE Wo(x). Then by construction, ,u= XJ10E W for some J10E Go such that 
fJo(F)~N(l/(2m». Since clearly 110= rl,uE W(2), it follows that 

,uo(K) ~ N(lI2) ~ N(l) 

From this we may draw two conclusions: 

(a) The character 110 is continuous [according to part (i)]. 

(b) By the assumption that v(2m)~K and by the preceding lemma, we have that 
fJo(V)~N(1/(2m» and hence the following chain of inclusions: 

J1o(KI) ~ fJo(F) 0110 (V) ~ N(l/(2m»oN(l/(2m» = N(l/m) . 

The upshot is that 110 in fact lies in W(KI'N(l/m», and therefore ,u lies in W(x). 
Thus Wo(x) is indeed contained in W(x), as required. D 
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3.2 Functions of Positive Type 

In order to motivate the principal definition of this discussion, we begin with an 
elementary observation about unitary representations. 

Let p be a representation of the topological group G (not necessarily locally 
compact or abelian) in the space of unitary operators of a Hilbert space H. For 
our current purposes, for any seG it will be convenient to write AS) rather than 
Ps for the associated operator. Fix xeH. We may now define a complex-valued 
function 'I' on G as follows: 

rp(S) = (p(s)(x) Ix) . 

Let s» ... ,s" be any family of elements in G and consider the complex nxn ma­
trix 

We claim that A is both Hermitian and positive semidefinite. The first point is 
trivial: since each p(s) is unitary, 

For the second, consider any complex vector z=(z;)eC". Then we compute 

II 

(Azlz) = Lrp(s'/s;)zA 
;,j=1 

II 

= L(p(s;)(x)lp(sj)(x»zi'; 
;,j=1 

II /I 

= (LP(Sj )(Zjx) I Lp(s;)(z;x» 
j=1 ;=1 
II 

=ILp(s;)(z;x)12~o . 
;=1 

This analysis will lead shortly to a key definition in which the preceding ine­
quality appears in continuous form. 

Assume now that G is a locally compact group with (left) Haar measure ds. 
Let ~c(G) denote the set of complex-valued continuous functions on G with 
compact support. Recall that for every p, l:S:p:S:oo, ~c(G) is contained in the 
Banach space LP(G) and is hence subject to the LP-norm and associated topol­
ogy defined by 
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for finite p, with 11/11..) defined to be the essential supremum of III. [See Ap­
pendix A, Section A.4. Note that L OO(G) consists of functions in L(G) with finite 
essential supremum.] In fact, for all p, %'c(G) is dense in LP(G). 

DEFINITION. Let G be a locally compact topological group. Then a Haar­
measurable function fP: G~C in L OO(G) is said to be of positive type (or posi­
tive definite) iffor any IE%'c(G) the following inequality holds: 

Both integrals are implicitly over the full group G. 

Note that the integrand is Haar measurable on GxG by Exercise 1 below, 
and so Fubini's theorem applies to show that this double integral is in fact de­
fined. (Every locally compact group is the disjoint union of a-compact spaces; 
see Section A.4 of the Appendices.) Moreover, if the support of lis contained in 
the compact subset K £;; G, then the integrand has support contained in the com­
pact subset KxK of GxG. Since fP is in L OO(G), it is bounded by II fPlioo' the es­
sential supremum of fP, except on a set of measure zero. Thus the integral is 
itself bounded as follows: 

Iff fP(s-lt)/(s)ds l(t)dtl~ IlfPlI", (supI/I·p(K»)2 (3.1) 

Here p(K) is the (necessarily finite) Haar measure of K. 
To establish some fundamental properties of functions of positive type, we 

make two connections: first with Hilbert spaces and second with unitary repre­
sentations. 

If fP is a function of positive type, we can define a positive sesquilinear (and 
hence conjugate symmetric) form on %'c(G) by the formula 

Analysis similar to that above shows that this integral is defined and finite for 
all.!; and.!; in %'c(G). Put 

It follows from the Cauchy-Schwarz inequality (the proof of which does not 
require positive definiteness) that W", is a subspace of%'cCG) and that W", con-
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sists of those functions that are degenerate with respect to rp. We may thus form 
the quotient space 'l?c(G)/Wtp' on which, by construction, (I)tp is a positive 
definite Hermitian form. Let Vtp denote the completion of this quotient, to 
which the form (I)tp extends by continuity. Accordingly, Vtp acquires the 
structure of a Hilbert space. 

Let/be any function on G and recall that for any seG, we define Lslon G 
as follows: 

In the particular case that/e'l?c(G), then also Ls/e'l?c(G) by the continuity of 
the group laws and one checks easily that the mapping 

G ~ End(~(G» 

sH Ls 

is an abstract representation of G. Moreover, if rp is a function of positive type 
on G, and/is again in 'l?c(G), then 

(LsIILs/)tp = II rp(r1u)/(s-lt) dtl(s-IU) du 

= II rp«S-It)-1 (s-lu»/(s-lt)dtl(s-IU) du 

= II rp(r1u)/(t)dtl(u)du 

= (III)" . 

This shows that L induces at least an abstract unitary representation of G on the 
Hilbert space Vtp. To see that L is moreover a topological representation, it suf­
fices by Corollary 2-2 to show that for every le'l?c(G) the mapping 

is continuous, which is to say that if sa~s in G, then Lsal ~ Lsi in'l?c(G) 
with respect to the rp-norm. According to inequality 3.1, this will be the case, 
provided that the obvious pointwise convergence 

for teG is uniform. But clearly s;lt ~ s-lt uniformly in G, whence the re­
quired uniform convergence follows from Exercise 2 below. We summarize this 
discussion in the following proposition: 
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3-3 PROPOSITION. Let G be a locally compact group and let rp be a function of 
positive type on G. Then the mapping s H L. induces a unitary represen-

tation ofG on the associated Hilbert space V.,. 0 

Further properties of functions of bounded type depend on a more detailed 
examination of the representation above. 

Definition of Convolution and the Representation of Bounded 
Functions of Positive Type 

The representation described above of G on V., allows us to represent a 
bounded function rp of positive type in the following sense: there exists a func­
tion X.,E V., such that 

almost everywhere for sEG. To develop this result, we need first to recall the 
notion of convolution of functions on G. 

Let f and g be complex-valued Borel functions on a locally compact topo­
logical group G. Then their convolution f*g is defined by 

provided that this integral, taken over the full group with respect to the (left) 
Haar measure ds, exists. We shall make a more systematic study of the key 
properties of convolution in the following section. In connection with our cur­
rent study of functions of positive type, we are interested in the special casef*rp 
where fE'??c(G), rpEL "'(G). Under these conditions, clearly f*rp exists. More­
over, ifta~tin G, then 

and it follows thatf*rp is continuous. 

3-4 PROPOSITION. Let rp be a function of positive type on G. Then there exists 
an element X.,E V., such that 

almost everywhere for SEG. 
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PROOF. Let {a} be an index set for the collection of open neighborhoods Va of 

the identity of G. Since G is Hausdorff, clearly {e}=naVa' and if we write 

a~pwhenever Vp~Va' then {a} is a directed set. It follows from Urysohn's 

lemma for locally compact spaces that for index a, we can construct a continu­

ous function g a: G~ R+ such that 

(i) the support of ga is a compact subset of Va; 

(ii) each ga satisfies the equality 

This simultaneously defines a net {ga(s)ds} of positive linear functionals on 
<jj'c(G): 

/14 J /(s)ga(s)ds . 
G 

Evidently these converge weakly to the Dirac measure b." which is nothing 
more than evaluation at the identity e; that is, 

tS.U) = /(e) 

Let/e<jj'c(G), and letga be as above. Consider the integral 

which exists, since/*9' is continuous andg has compact support. We may now 
define a linear form ll> on V" that on <jj'c(G) is given by 

To see that this limit exists and that in fact 

ll>U) = /*rAe) = J rAS-1)/(s)ds 

it suffices to note that in order to compute ll>U) we may replace the factor /*9' 
in the integrand by the product (/*9')"h, where he<jj'c(G) is a fixed function 
that takes the value 1 in a neighborhood of e that contains the eventual support 
of gao Hence (/*9')"h lies in <jj'c(G), and the previous equality is nothing more 
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than the weak convergence of ga(s)ds to c>:. Now since V9' is self-dual, there 
exists an element X9'E V9' such that 

for all ~E V9'; this is to say that the ga converge weakly in V9' to x9'. 
We shall see next how x9' behaves under the continuous group action from G 

defined by s H L,. First we compute 

= Ii~ If rp(r1ug(t)dt ga(s-Iu)du 

= J rp(rls)~(t)dt . 

Next we compute the inner product in reverse order: 

= Ii~ If rp(r1u)ga (s-It)dt ~(u)du 

= J rp(s-Iu)~(u)du . 

By the conjugate symmetry of the Hermitian form ( I )9" it now follows at once 
from the two previous equations that 

In the special case that s=e, we have, in particular, that 

From Eq. 3.2 we deduce immediately that for arbitrary hE'??c(G), 

(~Ih)(p = If rp(s-It)~(s)dsh(t)dt 
= J (~ILtx(p)(ph(t)dt 

(3.3) 

and by (strong) continuity this equality clearly extends to all of V9'. This shows 
that if ~ is orthogonal to the CG-submodule of V9' generated by x9" then ~ is 
zero in V9'. Thus V9' is in fact generated as a CG-module by x9'. In the special 
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case q=xlp' the previous equation together with Eq. 3.3 shows that for all 
'l'E Vip' 

J 9'(s) 'I'(s)ds = (x,,1 '1')" = J (x"IL.x"),, 'I'(s)ds 

whence 

almost everywhere, as required. o 

3-5 COROLLARY. Let rp be as above. Then rp is equal to a continuous function 
of positive type almost everywhere. If, moreover, rp is itself continuous, 
then we have further that: 

(i) rp(e)~O. 

(ii) rp(e) = sup I rp(s)l, where s ranges over G. 

(iii) 9'(s-l) = 9'(s) for all SEG. 

PROOF. The main statement is obvious from the representation of rp given in the 
proposition: the inner product is continuous by the polarization identity from 
linear algebra. For assertion (i), note that 

Next, (ii) follows from the Cauchy-Schwarz inequality: 

The key, of course, is that L8 is unitary. Finally, (iii) is again an easy exercise in 
unitary operators: 

o 

Elementary Functions 

The functions of positive type that are continuous on G and bounded by 1 in the 
L co-norm constitute an important subset of L CO(G) denoted .9'(G); that is, 

.9'(G) = {rp E '6'(G)f"'\ L CO(G): rp is a positive type and IirplicoS:l} . 
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Note that by the corollary above, in this case the condition "tplt<>~l amounts to 
nothing more than tp( e) ~ l. 

A related collection of L "'-functions, denoted g'(0), is defined as follows. A 
function tp lies in W(O) if it is the zero map or if it satisfies the following three 
conditions: 

(i) tp is continuous and of positive type. 

(ii) tp(e)=l. 

(iii) For every decomposition tp= tpl + tp2 into the sum of two functions tpl'tp2 
both lying in 9'(0), there exist positive real constants Al and Az such that 

The nonzero elements of g'(0) are called elementary functions. Note that con­
dition (iii) asserts that elements of W(O) are in fact extreme points of 9'(0). 

3-6 LEMMA. 9'(0) and g'(0) have the following properties: 

(i) 9'(0) is a convex, bounded subset of L "'(0). It is, moreover, weakly 
closed and therefore weakly compact as a subset of L 1(0)*. 

(ii) Any convex, closed subset of 9'(0) containing its extreme points is all 
of 9'(0). 

(iii) The extreme points of 9'(0) consist precisely of the points ofg'(O). 

PROOF. (i) 9'(0) is obviously convex and bounded. Now identify elements of 
9'(0) with elements of L1(0)* in accordance with the usual duality theory for 
LP-spaces (see Section A.4 of Appendix A). Recall in particular that the infinity 
norm of an element in L "'(0) is identical to the norm of the corresponding 
functional between the Banach spaces L1(0) and C. To say that a sequence tpn 
of functions in 9'(0) is weakly convergent to some tpeL "'(0) is to say that for 
allfeLI(O) we have 

f ftpn ds ~ f ftpds . 

It follows at once from this that "tp"",~l and that 

whence tp is also of positive type and therefore continuous by the previous cor­
ollary. [More precisely, tp represents the equivalence class of a continuous 
function in L "'(0)]. Thus as a subset of L1(X)*, 9'(0) corresponds to a closed 
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subset ofthe unit ball, which is therefore compact under the weak-star topology 
by Alaoglu's theorem. 

(ii) This is a special case of the Krein-Milman theorem. 

(iii) The only point to check is that a nonzero extreme point rpe.9'(G) satisfies 
rp(e)=l. But if rp(e)<l, then also 

lies in .9'(G), and rp is not extreme. o 

This brings us to a striking and exquisite theorem that connects the elemen­
tary functions with irreducible representations. 

3-7 THEOREM. Let rp be a continuous function of positive type on G such that 
tp(e)= l. Then rpe g'(G) if and only if the unitary representation s H L, of 
Gin VfJ is irreducible; that is, VfJ itself and the zero subspace are the only 
closed subs paces of VfJ that are invariant under each of the transforma­
tions La' for seG. 

PROOF. =» Assume that rp is an elementary function. Let W be a closed G­
invariant subspace of VfJ , with orthogonal complement W.i. Let prw denote the 
orthogonal projection map into W. Then since each operator La is unitary, we 
have the following commutative diagram: 

prw) W.i 

'" La 
prw) W.i 

Thus it suffices to show that if A is any orthogonal projection operator that 
commutes with each La' then A is either the zero map or the identity map on 
VfJ. Since in general we have (Axly) fJ = (Ax lAy) 9' for any projection, it follows 
that for all seG, 

rp(s) = (xfJ l Lsx9')9' 

= (Ax9' I LsxfJ)9' +(x9' -Ax9'I Lsx9')9' 

= (Ax9'IL~x9')(7> +(x9' -Ax9'I Ls(x9' -Ax9')9' 

This expresses rp as the sum of two functions that, by Exercise 4, are of positive 
type. Hence under the assumption that rp is extreme, 
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for all SEG, and itfollows that A =A.·l v ' because as we observed in the proof of 
the representation theorem for functioris of positive type, xrp generates Vrp as a 
CG-module. But since A is idempotent, this forces A. to be 0 or I, as required. 

<=:) Suppose that the given representation of G in Vrp is indeed irreducible and 
that ffJ = ffJI + ffJ2 is a decomposition of ffJ into the sum of two functions from 
fYJ(G). Then for eachfE~c(G), one observes easily that 

From this it follows that any element of ~c(G) that is degenerate with respect to 
( I ) rp is also degenerate with respect to ( I ) rp . Thus ffJI likewise defines a Her­
mitian form on Vrp' and accordingly there e~ists a continuous positive definite 
endomorphism A of Vrp such that 

for all ;, If/E Vrp' Thus, in particular, 

for all SEG. But also 

The point here is that in the proof of Proposition 3-4, the convergence of the 
net {gal to Xrp with respect to the ( I )rp-norm will also hold with respect to the 
( I ) rp -norm by virtue of the last-stated inequality. Thus ffJI is likewise repre­
sented by x rp in the sense above. The upshot is that 

We claim now thatA commutes with each Ls' Granting this, Schur's lemma for 
unitary representations (Theorem 2-26) implies that A is a scalar multiple A. of 
the identity map on Vrp' and therefore 

showing that rp is indeed extreme. 
Finally, to establish the claim we rely on the unitary nature of Ls and com­

pute as follows: 
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(ALsrp 1 IJ')tp = (Lsrp 1 IJ')'P! 

=(rpILrllJ')'P! 

=(ArpILrllJ')tp 

= (LsArp 1IJ')tp 

for all seG and rp, IJ'eWc(G). This completes the proof. [J 

We can now make an enlightening connection between functions of positive 
type and group characters. Here, at long last, we assume that G is abelian. 

3-8 THEOREM. Let G be a locally compact abelian topological group. Then the 
elementary functions of positive type on G are precisely the (continuous) 
characters ofG. 

PROOF. Note first that a character Z on G is clearly a bounded function in 
LOO(G). Moreover, by the following calculation it is of positive type: 

If Z(s-lt)f(s) ds f(t) dt = If Z(s)Z(t)f(s) tis f(t) dt 

= f Z(s)f(s)ds . f Z(t)f(t)dt 

=1 f z(s)f(s)ds 12 

for all feWc(G). Since necessarily z(e)=l, in light of the previous theorem it 
suffices to show that given a continuous function rp of positive type on G such 
that rp(e)=l, the following conditions are equivalent: 

(i) The representation of G in Vip is irreducible. 

(ii) rp is a character of G. 

One implication is straightforward; the other depends on spectral theory. 

(ii)=>(i) Suppose that rp is a character of G and consider a functionfeWc(G). 
Then as above, 

(flf)1p = If rp(S-lt)f(S) ds f(t) dt 

=1 f rp(s)f(s)ds 12 . 
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The point is that the subspace of'6'c(G) consisting of functions degenerate with 
respect to the form ( 1 )tp has codimension 1, and hence Vtp is a I-dimensional 
and therefore irreducible representation of G. 

(i)=>(ii) Assume now that the representation of G via rp in Vtp is irreducible. 
Then as a consequence of Schur's lemma (specifically, Theorem 2-27), the rep­
resentation S f4 La is one-dimensional, whence for all qe Vtp' 

where A.(s) evidently depends continuously on s. Moreover, it is clear from the 
preceding equation that indeed A is a character of G. Finally, 

q'J(s) = (xtpIL,sXtp)" = A(s)(xtplxtp)tp = A(S) q'J(e) = A(S) 

whence rp is likewise a character, as claimed. [J 

3.3 The Fourier Inversion Fonnula 

The principal technical tool for establishing the Pontryagin duality theorem in 
the following section is the Fourier inversion formula. In this section we review 
the Fourier transform and prove this fundamental result. Throughout, G de­

notes a locally compact abelian grou~ with bi-invariant Haar measure dx and 
continuous complex character group G. 

DEFINITION. Let/eL1(G). Then we define j:G ~ C, the Fourier transform of 

f, by the formula 

j(z) = J /(y)'i(y)dy 
G 

~ 

for zeG. 

Note that this formula makes sense, since for all yeG, Z(y) has norm l. 
Hence if/ is integrable, so is the product appearing in the integrand. Moreover, 

one verifies at once that Ij(z)l:5: II/Ih for /eL1(G), zeG. 

REMARK. In the special case that G= R, the topological group of real numbers 
with respect to addition, we can identify each teR with the character 
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In this case the fonnula above reduces to 

J(t) = J f(s)e-istds 
R 

which is of course the ordinary Fourier transfonn of a function defined on R. 
The pOil!t is that despite appearances, this should in fact be regarded as a func­
tion on R. 

Let V(G) denote the complex span of the continuous functions of positive 
type on G, and define 

We can now state the principal result of this section. (See Exercises 13 and 14 
below for direct proofs of this theorem and the duality theorem for G finite.) 

3-9 THEOREM. (The Fourier Inversion Fonnula) There exists a Haar measure 

dxon G such thatfor allfeV1(G), 

f(y) = J J(X)X(y)dX 
G 

Moreover, the Fourier transform f H J identifies Vl(G) with Vl(G). 

The measure dX of the theorem is called the dual measure of dx, the given 
Haar measure on G. To prove its existence, we must begin with some elemen­
tary properties of convolution. 

3-10 PROPOSITION. Let f and g be complex-valued Borel functions on the lo­
cally compact abelian group G. Then the following statements hold: 

(i) If the convolution f* g(x) exists for some XE G, then so does g *f(x), 
and in fact g*f(x) = f*g(x). 

(ii) If j,geLl(G), then f*g(x) exists for almost all xeG; moreover, 
f*geL 1(G) and 

Thus, in particular, convolution is both associative and commutative on 
Ll(G). 
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PROOF. (i) This follows by direct application of the translation-invariance of the 
Haar measure on G. We replace y by yx in the integrand that defines convolu­
tion to obtain 

f * g(x) = J g(y-Ix)f(y)dy 

= J g(y-I )f(yx)dy 

=g*f(x) . 

Note that the last step is justified by the elementary observation that for locally 
compact abelian groups, the Haar measure of a Borel subset E of G is equal to 
that of E-1• (See Exercise 7 below.) 

(ii) First consider the homeomorphism a from GxG to itself defined by 

a(x,y) = (yx,y) . 

Observe that the inverse map sends (x,y) to (ylx,y). Next consider an open 
subset Ur;;;.C. Then a(f-I(U)xG) is clearly a Borel subset of GxG, and by con­
struction, (x,Y)Ea(f-I(U)xG) if and only ifylxEf-I(U). This shows that the 
mapping 

is a Borel function on GxG, and hence so is 

(x,y) H f(y-IX)g(y) 

since the product of Borel functions is again a Borel function. (Here we may 
view g as a function on GxG in the obvious way.) Since bothf and g are LI­
functions, we have 

and therefore Fubini's theorem applies to yield 

Hlf(y-lx)g(Y)I~dx =lIflh IIglh 

It follows that If I * Igl is an L I-function and hence is finite almost everywhere; 
so, too, then for f* g. Finally, the inequality of norms is clear from the previous 
equation. 
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(iii) Associativity follows by a calculation that again depends on Fubini's theo­
rem; the requisite hypotheses are guaranteed for almost all x by part (ii). To 
begin, 

f*(g*h)(x) = J f(y-Ix)(g*h)(y)dy 

= J f(y-IX)J g(z-ly)h(z)dz dy 

= JJ f(y-IX)g(Z-ly)h(z)dydz 

Now replace y by yz in the inner integral to obtain 

f*(g*h)(x) = JJ f(y-Iz-Ix)g(y)h(z)dydz 

= J f*g(z-lx)h(z)dz 

= (f * g)*h(x) . 

This completes the proof. 

We may infer from the previous result that for G as above, LI(G) constitutes 
a Banach algebra with respect to convolution. One sees easily that if G is dis­
crete, then LI(G) has a unit (the characteristic function of the group identity). 
The converse also holds. The Banach algebra structure of L I(G) allows us to 
make an explicit connection between the Fourier transform and the Gelfand 
transform. 

3-11 PROPOSITION. Let B denote the Banach algebra L1(G). and as usual let 

B = Homc(B, C)* denote the space of (nonzero) complex characters of B. 

For any given character xofG andfunctionfELI(G). define 

Then for each X. v z lies in B. Moreover. the mapping 

is a bijection. 

Note that the proposition subsumes the assertion that the Fourier transform of 

the convolutionf*g is the complex product of Fourier transforms jg. 
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PROOF. Clearly each Vz is linear on Ll(G), and not identically zero, since each 
character Z of G takes values of nonn 1. We check with a routine calculation 
that each such map is multiplicative: 

vz<f·g) = f f·g(y)z(y)dy 

= f f f(Z-ly)g(Z)dzZ(Y)dy 

= f f f(Z-IY)Z(y)dyg(z)dz 

= f f f(y)z(zy)dy g(z)dz 

= f f(y)z(y)dyf g(z)Z(z)dz 

=j(Z)g(Z) . 

We show next that every nonzero character of B is of the fonn v ffor some 
group character z. Let ",:B~C be a nontrivial algebra homomorphism. By 
Gelfand theory (Lemma 2-10) we know that ",is a functional on Ll(G) ofnonn 
bounded by l. Hence by the duality of Ll and L«J there exists some rpeL«J(G) 
having identical nonn such that 

f//(f) = J f(x)rp(x)dx 
G 

for all feL leG). Recall that for any yeG and function f defined on G, Lyf is 
defined by Lyf(x)=f(y-lx). Now compute: 

f ",(f)g(y)rp(y)dy = ",(f)",(g) 

= ",(f·g) 

Thus we have that 

= If f(y-1X)g(y)dyrp(x)dx 

= If Lyf(x) rp(x) dxg(y)dy 

= f ",(Lyf)g(y)dy . 

(3.4) 

for almost all yeG. One shows readily that the expression on the right is con­
tinuous in y-the elements of 'ff'c(G) are dense in L leG) and left and right uni­

formly continuous-whence we may assume that rp is likewise continuous; here 
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we need that If' is not zero. Now applying the previous equation three times, we 

obtain 

Again since If' is nonzero, rp is multiplicative on G. Thus in particular, 

whence Irp(Y)I=l for allyeG, because rp has L ""-norm bounded by 1. This shows 
that rp is indeed a character of G and that If' = v~ . 

Finally, given two group characters Z and z', if v z(f) = v r(f) for all func­
tionsjeL1(G), then by duality, Z and z' must agree almost everywhere in G. 
But since both are continuous by definition, it follows that Z=z', as required. D 

The Ring of Fourier Transforms and the Transform Topology 
A A 

Consider now the space A [or, more explicitly, A(G), should we wish to 

emphasize the underlying locally compact abelian group G] defined by 

A={j:feE(G)} . 

Thus A consists of the Fourier transforms of functions feL I(G) and inciden­

tally defines a weak topology on G, the space of complex characters of G; this 
A A 

is the weakest topology such that each f eA is continuous. We shall call this 
A 

the transform topology on G. Since the Fourier transform off*g is the com-

plex product of functions j g, it follows that A in fact constitutes a ring of con-
A 

tinuous functions on G with respect to the transform topology. Now, according 

to the previous proposition, each element j eA may be regarded as the Gel-
A 

fand transform off insofar as we identify G with the space of characters on 

L I(G) via the mapping ZH v z. More precisely, we have by construction that 

A 

where, strictly speaking, on the left f denotes the Gelfand transform operating 

on the space of characters of L I (G) in the sense of Chapter 2, and on the right 
A A 

f denotes the Fourier transform operating on G. These considerations lead at 

once to the following proposition. 
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3-12 PROPOSITION. Let G have the transform topology induced by A. Then the 

ring A is a separating, self-adjoint, dense subalgebra of'tf'o(G). 

PROOF. Let us first consider B = HomdB,C)* . According to Lemma 2-10, if 
LI(G) is unital, then B is a (weakly) compact subset of the dual space B*, and 
givenfeL1(G), its Gelfand transfonn j lies in ~(B). Otherwise, B perhaps 
is not closed, because the weak limit of nontrivial algebra homomorphisms may 
in fact be trivial. Nonetheles~ in either case B'=Bu{O} is closed. Thus for 
eachfeLI(G), we have that f, when extended by zero to B', lies in 'tf'(B') , 
and therefore J e ~ (.8) . 

Now identify ~(G) with ~(.8) according to the topological isomorphism 

induced by ZI4 v%'. Then ~y Gelfand theory (Theorem 3-11 and Exercise 8 of 
Chapter 2) it follows that A is at l~ contained in 'tf'o(G) and separates poin~s. 
Thus it only remains to show that A is self-adjoint, since its density in'tf'o(G) 
is then a consequence of the Stone-Weierstrass theorem (see Proposition 2-13 

and Exercise 9 below). LetfeL1(G). Then for all characters zon G, we have 

A 

J j(y-I )z(y)dy = J f(y)z(y-I )dy 

= J f(Y)Z(Y)dy 

=f(z) 

showing that A is indeed closed under complex conjugation, as required. 0 

This application of Gelfand theory becomes even more compelling in con­
sideration of the following theorem: 

A 

3-13 THEOREM. Let G and G be as above, and let K denote a compact subset 
of G, and Van open neighborhood of 1 in SI. Then the follOWing state­
ments hold: 

(i) Eac~ of the sets W(K, V) as defined in Section 3.1 is an open subset 

of G in the transform topology. 

(ii) The system {W(K, V)} in fact constitutes a neighborhood base for 
A 

the trivial character with respect to the transform topology of G. 
A 

(iii) The compact-open topology and the transform topology on G are 
identical. 

Note that (ii) immediately implies (iii), since by construction {W(K, V)} is 
also a neighborhood base for the trivial character with respect to the compact­
open topology. The proof will be straightforward, given the preliminary lemma 
that follows. 
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A 

3-14 LEMMA. Let G x G have the product topology defined b~ the topology 

given on G and the corresponding transform topology on G. Then 

(i) For every feL1(G). the map 

GxG~C 

(Y.Z) ~ (Lyft (Z) 

is continuous. [Here (Lyf)'\ denotes the Fourier transform of the left 
translation of f by y.] 

(ii) The map 
A 

GxG~C 

(Y.Z) ~ z(y) 

is likewise continuous. 

PROOF. (i) Let (Yo.Zo) be any fixed point in the domain of the given map. 
Then. according to Exercise 8 below. for every &>0. there exists a neighbor­
hood U of Yo such that 

for all ye U. Moreover. by construction of the transfonn topology there exists a 
neighborhood V of Zo such that 

for all ze V. Now since for any LI-function g and character Z. Ig(z)I:S:lIglll' it 
follows in particular that 

Therefore. 

whenever (y.z)e Ux V. and this clearly establishes the asserted continuity. 

(ii) Note that Eq. 3.4 is equivalent. in the special case rp = Z. to the equation 

A 1\ 

f(z)z(y) = (Lyf) (Z) . 
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Exercise 9 shows that for evel)' Z there is an L I-function whose Fourier trans­
form does not vanish at Z and hence does not vanish in a neighborhood of Z 
under the transform topology. Thus this last equation implies that the function 
(y,Z)H i(y) on the product space is, according to part (i), the quotient of 
two continuous functions. Therefore both this function and its conjugate are 
likewise continuous. This completes the proof. 0 

PROOF OF THEOREM 3-l3. According to our preliminal)' remarks, we need only 
prove parts (i) and (ii). Moreover, it clearly suffices to deal with subsets W(K, V) 
of the form W(K,N(e», where the neighborhoods of the identity N(e)(;~BI, e>O, 
are defined as in Section 3.l. 

(i) Let K be a compact subset of G, and let e>O be given; choose and fix 
ZoeW(K,N(e». Then in consequence of the preceding lemm~, for evel)' yoeK 

there exist open neighborhoods U of Yo in G and V of Zo in G (with respect to 
the transform topology) such that z(y)eN(e) for all ze V and ye U. The com­
pact subset K is covered by finitely many open sets UI' ... , Ur with correspond­
ing character sets VI' ... ,vr' Clearly the intersection of the ~ is an open 
nei~hborhood of Zo contained in W(K,N(e», and therefore W(K,N(e» is open 

in G, as claimed. 

(ii) Let Vbe an open neighborhood of the trivial character, here denoted l. We 
must show that V contains a subset of the form W(K,N(e» for some compact 
subset K of G and some positive &. But by definition of the transform topology 
(consider its subbase!) we know that for some el >0 there must indeed exist a 
finite family offunctionsi;, ... ,f,.eL I(G) such that 

n{z:lij(z)-.i}(l)I<bjh;;;V. 
j 

Since 'tf'c(G) is dense in L I(G), we may further assume, at the cost of decreas­
ing el , that each of the fj has compact support ~ .. Let K denote the (necessarily 
compact) union of the ~ and choose a positive e subject to the inequality 

e < 3bj 

maxjllfjlh 

An easy calculation now shows that if ze W(K,N(e», then for allj, 

A A 

IJj(Z) - fj(l)1 < bj 

whence ze V. Hence V contains a subset of the required form, and the proof is 
complete. 0 
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The Fourier Transform of a Character Measure 

We continue with G and G as above. Let p be a Radon measure on G such 
that p( ch is finite. (Recall that a measure that is finite on the totality of its 
ambient space is said to have finite total mass). For yeG, define 

We call this the Fourier transform of the measure jJ. From the assumption that 

p has finite total mass, one deduces at once that this transform is both con­
tinuous and bounded by p(G) on G. Moreover, an application ofFubini's theo­
rem shows that for allfeL1(G), 

(3.5) 

The conditions for Fubini's theorem certainly hold since, J is bounded on G 
and the product f(y)x(y) is measurable on GxG by the previous lemma. 

3-15 PROPOSITION. Iffor T.u(Y) = 0 everyyeG, then P=O. Thus p is com­
pletely determined by its Fourier transform. 

PROOF. According to Eq. 3.5, the hypothesis implies that 

for allfeL1(G). But recall that the ring of Fourier transforms of LI-functions is 
dense in Wo(G). Hence, in particular, 

f g(X)dp(X) = 0 

for all continuous functions g on G with compact support. The result then fol­
lows at once by the elementary correspondence between Radon measures and 
integrals. D 

This brings us to a key result-in fact, an amazing connection between 
measures on the character space of G and functions of positive type. 

3-16 THEOREM. (Bochner) The functions of 9'(G) (that is, the continuous 
functions of positive type on G with infinity norm less than or equal to 1) 
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are precisely the Fourier transforms of Radon measures on G of total 

mass less than or equal to 1. 

PROOF. First note that by Exercise 10 below, the Radon measures of finite total 
mass on a locally compact Hausdorff space correspond bijectively with the Ra­
don meas,!res on its one-point compactification that Atake the value zero on {oo}. 

Now let M denote the set of Radon measures on G of total mass less than or 
equal to 1. If j.J e if is a point measure of total mass 1 concentrated at X, then of 
course 

T,,(Y) = f X(y)djJ(X) = X(y) 

whence the Fourier transform of it is precisely the character X itself, and thus 
manifestly a function of positive type. Next suppose that A is the weak limit of 
arbitrary measures jJ e if , by which we mean that corresponding Radon inte­
grals converge pointwise on ~(G'). Then certainly 

and thus the space M is weakly closed and therefore compact by Alaoglu's 
theorem. If feLi(G), we know thatJe~(G'), whence by definition of the 
weak convergence of measures, 

f f<x)dfJo = lim f f<X)df.J 
I' 

From this and Eq. 3.5 we find that 

J j(y)TPo (y)dy = lim J j(y)TpCY)dy 
Ii 

which is to say that T Po is the Aweak limit of T", again owing to the density of 
the Fourier transforms in ~(G). This is the key, for it has the following con­
sequences: 

(i) Since the every element of M is the weak limit of a linear combination of 
point measures of total mass 1 with positive coefficients (see Exercise 11 
below), the Fourier transform of each measure in if is the weak limit of a 
linear combination of characters with positive coefficients, and therefore 
lies in the weakly closed set .9'(G). 
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A 

(ii) The Fourier transform is a weakly continuous map from M to 91(G), and 

hence its image is a weakly compact and, in particular, weakly closed sub­

set of 91(G). Moreover, this image is evidently convex and contains the 

characters of G as well as the zero function. Hence by Exercise 6, it must 

be precisely 91(G) itself. 

This completes the proof. [J 

Recall that V= V(G) denotes the complex linear span of the continuous func­

tions of positive type on G and that such functions are bounded, since a con­

tinuous function of positive type obtains its maximum at the identity of G. 

According to Bochner's theorem and the proposition that precedes it, each 

function f e V determines a measure ,u I of finite total mass on G such that f is 

the Fourier transform of ,ul. This is to say, 

forallyeG. 

The association off with the measure ,ul enjoys the following reciprocity 

law: 

3-17 LEMMA. Let f and g lie in VI=VIILI(G). Then we have the equality of 
measures 

PROOF. Since these measures are completely detennined by their Fourier 

transforms, it suffices to establish the equality for the corresponding trans­

forms. This leads to a brief, but beautiful, exercise in integration, which depends 

primarily on Fubini's Theorem and the construction of ,ul and ,ug: 

Tg(Z)dPf(Z)(Y) = J Z(y) g(Z)dpf(Z) 

= J z(y)J g(z)z(z)dzdPf(Z) 

= J J Z(z-ly)dPf(Z) g(z)dz 

= J f(Z-l y ) g(z)dz 

=!* g(y) . 
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Thus the Fourier transfonn of the left-hand side of the asserted equality of 
measures is precisely the convolutionf*g, and by symmetry the Fourier trans­
fonn of the right-hand side is precisely g*f. But naturally, these convolutions 
are equal, whence the equality of measures, as claimed. 0 

Let 9" denote the set of continuous, bounded, complex-valued functions rp on 
A A 

G ~t satisfy the following condition: there exists some complex measure v" 
on G of finite total mass such that 

for all fe VI. According to the previous lemma, the Fourier transfonns of ele­
ments of VI certainly lie in!T: if rp = g for some ge VI, then v" is simply itg • 

As our final preliminary to the proof of the Fourier inversion fonnula, we 
establish some key properties of the set !7. 

3-18 LEMMA. The set 9" defined above has the following properties: 

(i) If rpeg; the associated measure v" is unique. 

(ii) If rpe9" arises as the Fourier transform of an element feL I(G), then 
A A 

v" = p,. 
(iii) If rpe9"is positive, then the measure v" is likewise positive. 

(iv) The set 9" constitutes a module over the ring of continuous, 
bounded, complex-valued functions on G .. moreover, with respect to 

this module structure, the mapping rpl-4 v" constitutes a ~omomor­
phism of modules into the space of complex measures on G of finite 
total mass, viewed as a module over the same ring of continuous 
bounded functions. In particular, we have that 

A 

for all rp, re9" and continuous bounded functions a on G. 

(v) If rpeg; then every translation r of rp also lies in g; and to obtain vr 
from v" one applies the same translation. In particular, iffeLI(G) 

and g is obtained from f by multiplication by a character ZO' then 

the associated functions g and A are obtained from J and it, re­

spectively via translation by ZOo 
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PROOF. (i) Let rpEg: According to Exercise 12 below, there exists a net of 

functions/in VI(G) such that j converges unifonnly to the constant function 
A 

1 on compact subsets of G. By construction it then follows that 

and therefore v(7J is uniquely detennined by rp. 

(ii) This follows at once from part (i) and the preceding lemma. 

(iii) This essentially follows from the argument made in part (i) with one addi­
tional observation: according to Bochner's theorem, the measures itl that arise 

in connection with the net / are each positive. Hence if rp is positive, v(7J is the 

limit of positive measures rp(X)ditl(X) and hence itself positive. 

(iv) The additivity of the map rp H v(7J is obvious from the uniqueness state­
ment. Along the same lines, if a is continuous and bounded on the space of 
characters of G, then the equality 

shows at once that va(7J = a V (7J • These facts taken together show that g- is a 
module over the given ring and that the map rpHV(7J is a module homomor­
phism. 

(v) The issue here is not so much mathematics as typography. Hence we intro­
duce the following provisional notation: if f.J is a measure on a group and z is 
any group element, we shall write f.Jz for the left translation of f.J by z. That is, if 
E is any measurable subset of the ambient group, then f.JZ(E) = f.J(Z-IE). 

Fix a character Xo and define the translation rof rp by r(x)=rp(Xo-1 X). With 
the convention above in force, we make the following calculation, leaving the 
details to the reader. For all hE'lfC<G) and/EL1(G), 

J h(x)r(x)djJtCX) = J h(X)qJ(X~1 X)djJI(X) 
-I 

= J h(XoX)rp(X)djJ;o (X) 

= J h(XoX)rp(X)djJ xiii/X) 
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Hence 

= J h(zoz)(zol/t(z)dvip(z) 

= J h(ZoZ)](ZoZ)dvrp(Z) 

= J h(Z)](Z)dv:o (Z) . 

showing that vr is the required translation of vip' 

Proof of the Fourier Inversion Formula 

o 

The proof of the inversion fonnula proper now requires three steps. We defer 
the identification of VI(G) with Vl( G) via the Fourier transform until the fol­
lowing section. 

First we claim that a function r that lies in ~(G) also lies in§. Let K be a 

compact subset of the space of characters that contains the support of y. Then 
we may assert, as in part (i) of the preceding lemma, that there exists a function 
Ie VI(G) whose fourier transform is bounded away from zero on K. Hence the 

quotient a = r / I is bounded and continuous on K and may be extended to a 
bounded continuous function on the full space of characters by simply defining 
it to be zero on the complement of K. Since the Fourier transform of I lies in ST, 
it follows by part (iv) of the previous result that r likewise lies in!T, as prom­
ised. 

The second step amounts to the choice of a Haar measure for the character 
space. First consider the mapping 

A 17 
~(G) ~ C 

r f4 f 1 dvr(Z) 

If Ie VI(G) is not identically zero, then neither is the associated measure Pj, 

which is to say that there exists a continuous, bounded function a on the char­
acter space such that the measure a(z)dpj(Z) is also nonzero. But then taking 
r to be the product aj, we have that dVr = a(z)dpj(Z) , whence the mapping 
TJ is not the zero map. The upshot is this: since TJ is not the zero map, it follows 

from parts (iii), (iv), and (v) of the lemma that TJ is in fact a Haar measure dZ 
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on G. In particular, the translation-invariance follows from part (v) by the fol­

lowing calculation: 

Thus with respect to this measure we may write 

A 

for all r in ~(G). 

To begin the final step, note that for all tpE.9'and aE'??c(G) the product atp 

of course also has compact support. Thus according to the preceding equation 

and part (iv) of the lemma, 

J a(x)tp(x)dX = J a(x)dv,,(X) 

This is to say that 

tp(X)dX = dv,,(X) 

But then, in particular, forfEV1(G), 

and hence by construction, 

f(y) = J X(y)dp/X) = J j(Y)X(y)dX 

This establishes the formula. o 

We conclude this section with a fine corollary that prepares the way for the 
identification of Vl(G) with Vl(G). 

3-19 COROLLARY. Letfbe a complex-valuedfunction on G that is integrable 

with respect to the Haar measure dx on G. Then the following statements 

hold: 

(i) If f is moreover continuous and of positive type, then the Fourier 

transform offis a positive function on the space of characters ofG. 
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(ii) For f as in the previous part we a/so have that 

ff(x)dx:2!O . 

(iii) Iff is positive on G, then its Fourier transform is afunction ofposi­
tive type. 

Thus the Fourier transform defines an injective mapping from VI(G) to 
Vl((l). 

PROOF. (i) By the inversion fonnula,fis precisely the Fourier transfonn of the 

character measure J(Z)dZ. According to Bochner's theorem, this must be a 
Radon measure of finite total mass, and, in particular, positive. Hence the 

Fourier transfonn off, being continuous, must also be positive. 

(ii) This is a particular instance of part (i): 

f f(x)dx =J(I):2! 0 

Here 1 denotes the identity character. 

(iii) We leave this to the reader as an exercise in direct calculation. 

The final statement now follows directly from part (iii) by linearity: Each 
element in VI(G) can be written as a complex linear combination of positive 
integrable functions. Hence the Fourier transfonn indeed defines a mapping 
into the stated codomain; it is, of course, injective by the inversion fonnula. 0 

Henceforth we assume that the Haar measures on G and its dual are nor­
malized so that the Fourier inversion fonnula holds. 

3.4 Pontryagin Duality 
A 

Again let G denote a locally compact abelian group, with character group G, 
which, as we have seen, is also locally compact and abelian. We can thus iterate 
the operation of taking the dual and define a natural map 

A 
A 

a: G ~ G, a(y)(z) = z(y) . 
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That is, a(y) is just eva~uation at y on the dual space. This is clearly a 
(continuous) character of G. The main point of this section is to establish the 
following result: 

3-20 THEOREM. (pontryagin Duality) The map a: G ~ G is an isomorphism of 

topological groups. Hence G and G are mutually dual. 

We begin with a lemma that shows that the map a is at least injective. This 
will subsequently allow us to identify its image with a subset of G. 

3-21 LEMMA. The mapping a defined above is injective; that is, G separates 
points in G. 

PROOF. Suppose that z is not the identity of G. Clearly it suffices to demonstrate 
the existence of a character Z such that .z(z);tl. Suppose that no such Z exists. 
Then by definition of the Fourier transform and Haar measure, it is immediate 
that 

j = (L.f)" 

for allfin LI(G). Hence by the Fourier inversion fonnula we get f=L.f for allf 
in VI (G). Now, since G is Hausdorff, there exists an open neighborhood U of 
the identity such that U("")(Z-I U)=0. By Exercise 5, tllere exists a nonzero con­
tinuous function f of positive type with support in U. But for such f, it is impos­
sible thatf= LJ. The contradiction completes the proof. 0 

A A 

Now let K be a compact neighborhood of the identity character in G. Given 
an open neighborhood V of the identity in Sl, we may apply the construction of 
Section 3.1 to define the following subset of the double dual of G: 

A A A 

W(K,v)={V/ EG:V/(Z) EVforalIZEK} . 

Such subsets and their translates constitute a base for the topology of G. Of 
course, some of the elements in the double dual arise unambiguously from ele­
ments of G via the mapping a. Hence it makes sense to define 

A A 

Wo(K, V) = W(K, V)("")a(G) 

and to regard this as a subset of G. We shall use these subsets to characterize 
the topology of G in a way that immediately implies that a is moreover a ho­
meomorphism onto its image. 
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3-22 PROPOSITION. The subsets Wo(K,V) and their translates constitute a 
base for the topology ofG. 

PROOF. Let U be an open neighborhood of the identity eeG. Then again by 
Exercise 5, there exists a continuous function g on G of positive type with sup­
port in U such that g(e) = l. It follows from Corollary 3-19, part (i), that the 
Fourier transform of g is positive. Moreover, from the inversion formula we 
have 

Thus we may identify g(Z)dZ with a finite Radon measure on G, which in 
particular is inn:r regular. Accordingly, given any positive s there exists a 
compact subset K of characters such that 

and hence the corresponding integral over the complement of K is less than s. 
Now consider the identity 

g(y) = f g(Z)Z(y)dZ+ f g(Z)Z(y)dZ 
i i c 

given by the Fourier inversion formula. As V shrinks to a sufficiently small 

neighborhood of I in SI, the first integral above eventually lies within s of 

unity for all ye WG(K, V), while the second is unconditionally bounded in ab­

solute value by s. Hence g must be bounded from below by 1-2son WG(.K, V). 

But by construction, U contains the support of g, and therefore U contains 
A 

WG(K,V) , thus completing the proof. 0 

3-23 COROLLARY. The mapping a defined above is bicontinuous; thus a is a 
homeomorphism onto its image. 

PROOF. By construction we have the identity 

A A 

a(WG(K, V» = W(K,v)na(G) 

which in light of the lemma and the proposition shows that a is bicontinuous at 
the identity element of G. Since a is clearly a group isomorphism onto its im­
age, the result holds everywhere in G by translation. [J 
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Recalling one of the fundamental facts of topological groups, this first cor­
ollmy nets us a second: 

A 
A 

3-24 COROLLARY. The image 0/ a is closed in G. 

PROOF. By general topology, a locally compact and dense subset of a Hausdorff 
space must be open. Now a(G) is locally compact. being the homeomorphic 
image of the locally compact group G, and, of course, is dense in its closure in 
the double dual. Accordingly, a(G) is an open subgroup of its closure. But 
since every open subgroup of a topological group is also closed, a(G) is in fact 
identical to its closure, as required. 0 

Given these two corollaries, the proof of Pontryagin's theorem reduces to 
showing that a(G) is dense in the double dual of G. This requires a final bit of 
delicate analysis. 

The Plancherel Theorem 

Let/eLI(G) and as usual, define j(x) = /(x-I ) for xeG. An easy calculation 
shows that 

f<z) = j(Z) 

Set g = / * j; then certainly g is integrable and moreover, according to Exer­
cise 5 below, of positive type. If/lies also in L2(G), the Fourier inversion for­

mula yields the following key observation: 

f 1 /(x )12 dx = g(l) 

= f g(Z)dz 

= jlj(z)12dz 

This shows that the Fourier transform induces a map 

LI(G)(""\ L2(G) ~ L2(G) 
A 

/f4/ 

which is an isometry onto its image. 
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Recall that A = A( G) denotes the ring of Fourier transforms of functions in 

LI(G)~ Let AI denote the subset of A arising from the isometry above. Note 

that AI is stable under multiplication by elements of a(G): 

[a(yo)' j](Z) = z(yo)f f(Y)i(y)dy 

= f f(Y)i(Yoly)dy 

= f f(Yoy)i(y)dy 

=(LyJf(Z) . 

The following result is the key to our current discussion. 

3-25 LEMMA. AI is a dense subspace of the Hilbert space L2(G). 

Granting this, since also LI(G)r.L2(G) is dense in L2(G)-the intersection 
contains ~c(G)-the isometry defined by the restricted Fourier transform may 
be extended by continuity to an isometric isomorphism 

L2(G) ~ L2(G) 

f H f· 

Note that we continue to use the circumflex notation for this extended version 
of the Fourier transform, called the Plancherel transform. To summarize, rela­
tive to the preceding lemma, we have established the following: 

3-26 THEOREM. (planche rei) Let G be a locally compact abelian group. Then 
the extended Fourier transform defines an isometry of Hilbert spaces 
from L2(G) onto L2(G). 0 

PROOF OF LEMMA. In view of the self-duality of Hilbert spaces and the Hahn­
Banach theorem, it suffices to show that zero is the only element of L2(G) or­
thogonal to every element of AI . 

Assume that ge L2( G) is orthogonal to every element
A 
in AI' Since AI is 

stable under multiplication by elements of a(G) for allfeAI andyeG, we have 
that 

J g(Z)](Z)z(y)dZ= 0 . 
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This says that the Fourier transfonn of the measure g(z)j(Z)dZ is zero, and 

hence by a slight extension of Proposition 3-15 so is the product gj almost 

everywhere. But note that for a character zwe have (Z· ff = Lxj . Thus given 

any nonzero continuous element of A l' we can produce an element of A I that 

does not vanish in some neighborhood of z. Hence if the product gj is zero 

almost everywhere, it must be thatg is zero in L2(0), as required. [J 

3-27 COROLLARY. (parseval's Identity) For allf,geL2(G), we have 

J f(x)"g(x)dx = J J(Z)g(Z)dZ . 

PROOF. By elementary linear algebra, a linear isometry is necessarily unitary. 0 

3-28 COROLLARY. Let f and g lie in L2(G), and let h lie in LI(G). Then if 
h=f'g, we have h= j.g. 

PROOF. Suppose that h factors as given. Let Zo be a character. We compute as 
follows, appealing to Parseval's identity to justify the transition from the second 
to the third line: 

This completes the proof. 

h(;ro) = J f(y)g(y)zo(y)dy 

= J f(y)g(y)zo(y)dy 

= J j(z)g(z-Izo)dz 

=j·g(zo) . 

o 

3-29 COROLLARY. The ring A of Fourier transforms ofLI-functions on G con­

sists precisely of convolutions of functions in L2( 0). 

PROOF. If heL I(G), then h factors as/"g for functionsJ,geL2(G). For instance, 
h=r'lrl where reL2(G) is defined by 

r(x) = {~(X)/lh(X)1112 ifh(x) * 0 

otherwise. 
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Hence j, = j * g, and therefore every element of A is of the required form. 

Conversely, by Plancherel's theorem every convolution of functions in L2(0) 

takes the form j * g for some / and g as above, and hence is the transform of 

the LI-function/·g. Accordingly, such products lie in A, as required. 0 

This brings us to the final technical prerequisite for the proof of Pontry­
agin's theorem. 

A 

3-30 PROPOSITION. Let U be a nonempty open subset 0/ G. Then there exists a 
A A 

nonzero function / eA with support contained in U. 

PROOF. Recall from Proposition 1-7, part (iii), that the volume of any nonempty 

open set relative to a Haar measure is positive. Thus, by inner regularity, there 

exists a compact subset K of U with positive measure. At every point of xeK we 

can find an open neighborhood Vx of the identity and an open neigh~orhood Ux 
of x such that Ux Vx is contained in U. Then since K is compact and G is locally 

compact, there exists a compact neighborhood Vof the identity such that KV is 
A 

contained in U. Define / as the convolution of the characteristic functions on 
A A 

K and V, respectively. It follows at once from the previous result that / eA and 
A 

that/ has support contained in KV, and therefore contained in U. Moreover, 

one calculates at once that the integral of j over 0 is simply the product of the 

measures of K and V, and hence positive. Thus j is nonzero on a set of posi­

tive measure. 0 

Proof of Pontryagin 's Theorem 
A 

As we observed above, it remains only to show that a(G) is dense in G. If not, 

then according to our last proposition, there exists a function in rpeLI(O) such 

that q, is nonzero but nonetheless q, vanishes on a(G). Let %0 lie in the dou­

ble dual. Then by definition, 

~(,io) = f rp(Z)%O(Z-1 )dZ . 

But the assumption that q, vanishes on a(G) means precisely that 
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for all yeG. Hence, as in the proof of Plancherel's theorem, tp=O almost eve­
rywhere, and therefore ~ = O. This contradiction completes the proof. [J 

The only remaining issue in this chapter is to establish the last statement of 
the Fourier inversion formula, namely that the Fourier transform identifies 
VI(G) with VI(G). We have already shown that the map f 14 J is injective. 

Let F lie in VI( G), and define a function f on G by the formula 

A 
A 

f(y)= J F(Z)Z(y)dZ 

Identifying G with G, this amounts to 

which placesfeVl(G) by Corollary 3-19. [One verifies at once from the defini­
tion that if yl4 tp(y) is of positive type, then so is yl4 tp(y-I).] By the Fourier 

inversion formula, 

F(Z) = J ft{y)Z(Y)dy 

= J f(y-I )Z(y)dy 

= J f(Y)Z(y)dy 

and this shows that F is the Fourier transform off. Hence f 14 f is also sur­
jective, as required. [J 

Exercises 

1. Let G be a locally compact topological group. We consider functions from 
G into either the real or complex numbers. 

(a) Let.!; and.!; be Haar-measurable functions on G. Show that the product.!;.!; 
is likewise Haar-measurable on G. 

(b) Letf be a Haar-measurable function on G. DefineFon GxGby 

F(g,h) = f(g)f(h) 

Show that Fis Haar-measurable on GxG. 



126 3. Duality for Locally Compact Abelian Groups 

(c) Let rp be a Haar-measurable function on G. Define f// on GxG by 

f//(g,h) = rp(g-Ih) 

Show that f// is Haar-measurable on GxG. 

2. Let G be a topological group and letXbe a metric space, with xoeX Sup­
pose that/:G~X is a continuous function subject to the condition that 
there exists a compact subset K of G such that if SEK, thenf(s)=xo. (Thus 
we generalize the idea of compact support to cases for which the codomain 
has no algebraic structure.) Use Proposition 1-1 to show that/is uniformly 
continuous in the following sense: for every &>0, there exists a neighbor­
hood Vofthe identity in G such that 1/(s)-f(t)1 < & whenever .rIte V. 

3. Let/e'6'c(G) and let ge'6'o(G). Show that/* g likewise lies in '6'o(G). [Hint: 
For continuity, use an easy extension of Exercise 2 to show that if ta~t in 
G, then for any positive e; eventually 

To see that/*g moreover vanishes at infinity, note that for every positive & 

there exists a compact subset Ko of G such that Igl is bounded by & on Ko c, 

the complement of Ko. But also, the support off is confined to a compact 
subset KI of G. Now if t lies outside of the compact product K = KIKo' then 
whenever ts lies in K I, .rl must lie outside of Ko. Thus 

whencef*g(t) tends to 0 as t tends to infinity.] 

4. Let p be a unitary representation of a locally compact group G on a Hilbert 
space V. Let xe V be arbitrary. Show that the mapping 

s H (xlp(s)[x» 

is of positive type. This essentially establishes the converse of Proposition 
3-4. [Hint: In the manner of the introductory discussion of Section 3.2, 
consider the discrete analogue of this statement.] 
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5. For I a complex-valued function defined on a locally compact abelian 

group G, define j, also on G, by 

J(s) = I(S-I) 

Use the preceding exercise to show that if le'if'c(G), then the convolution 

product 1* j is continuous of positive type on G. Next use Urysohn's 

lemma to show that for any open neighborhood Vof the identity, there is a 

continuous function g of positive type with support contained in V such 

that g(e)=l. 

6. Let G be a locally compact abelian group. Show that every closed, convex 
subset of L "'(G) that contains the characters of G and the zero function 
also contains .9(G). [Hint: Use Lemma 3-6 and Theorem 3-8.] 

7. Show that for a locally compact abelian group G with Haar measure p, 

for all Borel subsets E. [Hint: Show that v(E) = )I(E-1) is likewise a Haar 
measure on G, hence a multiple it of p. But what if E is a symmetric subset 
of G of finite measure? Must such subsets exist?] 

8. Let G be a locally compact abelian group. Use that'if'c(G) is dense in U(G) 
for l~p~oo to show that for all yeG the mapping 

LI(G) ~ LI(G) 

IHLyl 

is uniformly continuous. [The same is true for U(G), l~p<oo.] 

9. Let G be a locally compact abelian group. Show that for every character X 
of G there exists a function leL I(G) such that J(Z) * o. [Hint: The real 

part of X is positive in some neighborhood of l. Use the local compactness 

of G and Urysohn's lemma to construct an appropriate!] 

10. Let X be a locally compact Hausdorff space. Show that each Radon meas­
ure p on X of finite total mass extends uniquely to a Radon measure )I' on 
X', the one-point compactification of X, such that )I'({OO})=O. [Hint: To see 
that p' is outer regular, observe that for E measurable, 
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p(E) ~ inf p( U u U «,) ~ inf ( p( U) + p( U 00) ) 

where the infimum is taken over all pairs of open sets U and U 00 such that 
U contains E and Uoo contains 00. But since p is inner regular on G, there 
exist neighborhoods of 00 of arbitrarily small measure. Now derive the in­
ner regularity of p' from its outer regularity and the fact that a subset of X' 
is compact if and only if its complement is open; in essence the supremum 
calculation over compact subsets of E is equivalent to the infimum calcula­
tion over open supersets of E.] 

11. Let G be a locally compact topological group (not necessarily abelian) and 
let p be a positive Radon measure on G of finite total mass. Recall that we 
may identify p with a linear functional on Wc(G), and that under this iden­
tification a point measure corresponds to a positive multiple of an evalua­
tion map. As usual, G' denotes the one-point compactification of G, and p 
is extended to G'by setting p(oo)=O. 

(a) Show that for every open neighborhood U of the identity in G and open 
neighborhood Vof 00 in G' there exists a finite partition of G consisting of 
measurable sets WI' ••• , Wn , Woo such that each w,; admits a translate con­
tained in U and Woo lies in V. [Hint: A finite number of translates of U 
cover the complement of V, and these together with V - {oo} cover G. Ex­
tract the required partition from this open cover.] 

(b) Let U, V, and WI"'" Wn be as above and select points WjE w,; for j= 1, ... , n. 
Define a corresponding linear functional pu. v on Wc(G) by 

Show that for each f in Wc(G), as U approaches the identity and V ap­
proaches 00, Pu. v(f) approaches p(f). [Hint: Assuming that the support of 
f is contained in the complement of V, we have evidently that 

If f dp- .tV.v(f)1 ~ L flf(w)- f(w)ldp(w) . 
w} 

Now use the finiteness of the mass of p and the uniform continuity off (cf. 
Section 1.1) to deduce the conclusion.] 

(c) Conclude from parts (a) and (b) that every measure p on G of the given 
type is the weak limit of a linear combination of point measures of total 
mass 1 with positive coefficients. 
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12. Let G be a locally compact abelian group. Show that there exists a net of 
functionsfin Vl(G) whose Fourier transforms converge uniformly to the 
constant function 1 on compact subsets of the space of characters on G. 
[Hint: Consider a compact neighborhood K of the identity and a positive 
function gK having support on K whose integral is 1. What can one say 
about the convolution fK = gK * gK' especially in light of Exercise 5?] 

13. (Duality for Finite Abelian Groups) Let G be a finite abelian group, and set 

Note that we may assume the discrete topology for G, whence continuity 
plays no role. 

(a) Let CG denote the space of complex-valued functions on G; in other 
words, the complex group algebra of G. For every IE CG, define its Fourier 
transform by 

A A 

f:G~C 

X 1-4 L:f(g)i(g). 
gEG 

Prove directly that 

1 A 

f(g) = Card(G) ~ f(x)x(g) . 
zEG 

This is, of course, the finite version of the Fourier inversion formula. 

(b) Show explicitly in the case G=ZlnZ that also G=ZlnZ. [Hint: If agener­
ates G, show that G is generated by the map x:ak 1-4 e21fikln.] 

(c) LetHbe a subgroup ofG, let Ii EH, and letYEG-H. Set H' equal to the 

subgroup of G generated by Hand y. Show that there exists an element 

ji E H' that agrees with Ii on H. Conclude by induction that there exists a 
character X of G that likewise agrees with Ii on H. From this and part (b), 

deduce that for any gEG, there exists a character X of G such that x(g) *1. 
[Hint: Given any tESl and n;:::l, one can find WES1 such that wn=t.] 

(d) Define a map a on G as follows: 
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A 

a:G~G=Hom(G,sl) 
g 1-4 ag:z 1-4 Z(g) . 

Show that a is a well-defined injective homomorphism. [Hint: Use the pre­
vious part.] 

A 

(e) Define the map <l> bet~een the group algebras CG and CG by sending f to 

its Fourier transform f. Use part (d) to show that <l> is both C-linear and 

injective. 

(f) Show that any set of distinct characters Zl' .•. ,Zr of G are linearly inde­
pendent over C. [Hint: Start with a dependency relation of minimal length, 
and then find a shorter one.] 

A 

(g) Let h be an element of CG that does not lie in the image of the map <l> de-
fined above. Show that h must satisfy the equation 

Lh(Z)j(Z) = 0 . 
zea 

Deduce from this that 

as a function on G. Conclude from this and part (f) that h(z)=O for all Z, 
and from this contradiction that <l> is indeed surjective. 

A 

(h) Show that dim(CG)=dim(CG). Conclude that the map a defined above is 
in fact an isomorphism. 

14. Let G be a profinite group, or equivalently, a compact, totally disconnected 
group. 

(a) Let Z:G~C· be a continuous homomorphism. Then show that Ker(z) 
must contain an open subgroup and that consequently Z must have finite 
order. [Hint: First show that there exists a neighborhood U of leC· that 
contains no nontrivial subgroup of C· .] 

(b) For any n~l, let p:G~GLn(C) be a continuous homomorphism; that is, a 
representation of dimension n. Show that Ker(p) must still contain an open 
subgroup, so that p(G) is a finite group. 
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(c) Fix an algebraic closure Q!:;;; C of Q, and let GQ denote the Galois group 
of Q over Q. For any positive integer m, let Pm denote the group of mth 
roots of unity in Q. Observe that for any ueGQ , we have that a(pm)= Pm' 
Now choose a rational prime p and set 

W=limp ,,' 
~ p 
n 

Show that there exists a continuous homomorphism 

that, in contrast with the first part of the exercise, is not of finite order. 
(Indeed, one can further imbed Qp in C and thus view Zp as a complex 
character on GQ, but this composition is not continuous for the standard 
complex topology. The character suggested here is called the pth cycloto­
mic character.) 



4 
The Structure of Arithmetic Fields 

This chapter develops the basic structure theory for local and global fields; we 
follow A. Weil in stressing the topological rather than algebraic perspective, 
although perhaps less emphatically. Thus the more algebraically inclined will 
gain new insight into phenomena that have more often been treated in the con­
text of the fraction field of a discrete valuation ring with finite residue field, or 
a Dedekind domain. 

We begin by introducing an essential tool in the topological analysis of lo­
cally compact abelian groups and, in particular, of locally compact fields: the 
so-called module of an automorphism. This leads us to the classification theo­
rem for local fields that appears in the second section, followed by an analysis 
of the extension of such fields in the third. It is here that we first meet the no­
tion of ramification. 

In Section 4.4 we study the more challenging global fields, the analysis of 
which relies fundamentally on the dense embeddings of a global field F into 
suitable locally compact fields. Thus the starting point is the classification of 
the (locally compact) completions of F relative to an absolute value; this is a 
generalization of Ostrowski's theorem, which says that the completions of Q 
are either R or Qp' for some prime p. We shall see that the Archimedean ones 
are indexed by the nonconjugate embeddings of F into C, while the non­
Archimedean ones are in bijective correspondence with discrete valuations 
arising in connection with prime ideals. 

In the final section we introduce the decomposition group with its relation to 
the corresponding local Galois group, further discuss ramification, and con­
clude with a technical result on global and local bases. 

4.1 The Module of an Automorphism 

Let G be a locally compact additive group with Haar measure 11 and consider a 
(continuous) automorphism a of G. If X is any Borel subset of G, then so is aX, 
and thus 110 a is likewise a Haar measure on G. By uniqueness of the Haar 
measure, it follows that 110 a=cl1 for some positive real constant c, which is 
then called the module of a and denoted moda( a). Thus, by definition, we have 
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for all measurable subsets X of G. Obviously the module is multiplicative in the 
sense that 

for all automorphisms a and p of G. 
As a special case, if k is a locally compact field-what we often refer to 

more succinctly as a local field-and V is any topological vector space over k, 
then every aek* defines an automorphism of V by left multiplication, and we 
define modp(a) to be the module of the associated automorphism. We extend 
modv to all of k by defining modV<O) to be O. In particular, we may define 
modk(a) for aek to be the module of a acting on k itself. 

4-1 PROPOSITION. Let k be a locally compactfieldwith Haar measure J.L Then 
modk:k~R+ is a continuous mapping. 

PROOF. Fix a compact neighborhood X of zero and choose an arbitrary element 
a lying in k. Note first that by Proposition 1-7, part (iii), ,u(X»O. Now since ,u 
is outer regular, for every positive & there is an open set U, aX!;; U, such that 

,u(U) ::;; ,u(aX) + & . 

Since multiplication is continuous and X is compact, there exists an open 
neighborhood W of a such that WX!;; U. But then for all be W, bX!;; U, and so 

,u(bX) ::;; ,u(aX) + & 

whence dividing by ,u(X), 

Thus modk is at least continuous at zero. Moreover, this shows that for all posi­
tive x, the inverse image of (O,x) under modk is open. Now clearly 

and so we have a commutative diagram 

modt 
k* ~ RX 

+ 

0-1 J. J. 0-1 

k* 
modt 
~ RX 

+ 
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from which it follows that for all positive x, the inverse image of (x,oo) is like­
wise open. Hence the inverse image of any open interval is open, and from this 
we deduce that modk is continuous, as claimed. 0 

Since every discrete topological space is trivially locally compact, we can 
expect serious progress in the classification of locally compact fields only if we 
exclude this case. (Note in particular that the previous result is trivial for dis­
crete fields.) Accordingly, we shall henceforth address nondiscrete topological 
fields. 

4-2 COROLLARY. Assume that k is nondiscrete. Let U be any open neighbor­
hood of zero. Then for every positive e there exists an element ae U such 
that 0 < modk(a) < e. 

PROOF. The inverse image of [0, e) is an open neighborhood of zero. Hence its 
intersection with U is likewise an open neighborhood of zero. Since k is not 
discrete, this intersection contains a nonzero element a, which by construction 
has the required property. 0 

4-3 COROLLARY. Assume that k is nondiscrete. Then the function modk is un­
bounded, and consequently k is not compact. 

PROOF. By the previous corollary, for any positive e we may find aek* such 
that 0 < modia) < e. Hence modk(crl) ~ &"""1, and the assertion follows. 0 

4-4 PROPOSITION. Let k be as above and let m be a positive number. Define 

Then Bm is compact. 

PROOF. Note first that Bmis at least closed by the continuity of modk. Let Vbe a 
compact neighborhood of zero, and let W be an open neighborhood of zero such 
that WVC;;v. Then by the first corollary above there exists an element reWf""IV 
such that O<modk(r)<l. We find inductively that rneV for all positive n, 
whence for any oek, the sequence {rna}, which lies in the compact set Va, 
must admit at least one limit point. But clearly lim modk(rna) = 0, whence by 
continuity the one and only limit point of this sequence is zero. Since V con­
tains an open neighborhood of zero, it now follows that for all aek, either a 
belongs to Vor the integer va = inf {n: rnae V} is finite and positive. In the lat­
ter case, clearly 

(4.1) 
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We claim that for aeBm-V, the numbers va are bounded from above by some 
constant M. Granting this, it follows at once from Eq. 4.1 that the closed subset 
Bm is contained in the union of compact subsets V,rl V, ... ,r-MV and is there­
fore compact. 

PROOF OF CLAIM: LetXbe the closure of V-rV, which is compact and excludes 
zero. Set 

Then P is positive, since a continuous function on a compact set achieves its 
minimum, which in this case cannot be O. ChooseM such that modk(r)M<plm. 
Then if aeBm - V, we have 

and since o <modk(r) < I, we must have va$.M. This completes the proof. [J 

4-5 COROLLARY. For aek, lima" = 0 if and only ifmodk(a)< l. 
"-+00 

PROOF. If modk(a) < I, then the elements an lie in the compact set B I , and 
therefore the sequence {an} converges. By continuity, the limit has module zero 
and is therefore itself zero. The converse is obvious. [J 

4-6 COROLLARY. Let I be a discrete field contained in k. Then for all ae/., 
modk(a)= 1. Moreover, I is finite. 

PROOF. Suppose that ae/· but m~(a)< l. Then the sequence {an}n>o lies in I, 
which, according to the previous corollary, is therefore not discrete-a contra­
diction. If modk(a) > I, the same argument applies to a -I. This establishes the 
first assertion and shows moreover that I~BI' But a discrete subset of a com­
~~~be~~ [J 

4-7 PROPOSITION. The sets Bm constitute a local base at zero for the topology 
of k. 

PROOF. Recall first that for a locally compact Hausdorff space, we at least know 
that the compact neighborhoods of a given point constitute a local base. On any 
compact neighborhood V of zero in k, modK is bounded, say by m. Then cer­
tainly V ~ Bm , and X, the complement of the interior of V in Bm , is likewise 
compact and excludes zero. As above, set 
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p= inf modk(x) > 0 
xe.X 

Choosing r in R such that 0 < r< p, we have B r~ V, and this completes the 
proof Cl 

4-8 PROPOSITION. The function modk induces an open homomorphism of k X 

onto a closed subgroup r ofR:. 

PROOF. Let x be the limit of a sequence {modk(aj)}j where each ajEk. Then 
since modk is bounded on this sequence, eventually the aj fall into a compact 
ball Bm for some m. Hence x lies in the closure of the continuous image of a 
compact set, which must itself be closed. It follows that in fact xEmodk(Bm), 

whence modk(k) is closed. Accordingly r is closed in the usual induced topol­

ogy on R:. 

We next establish that modk is open on kX. Let U denote the kernel of the 
restricted map, so that we have a short exact sequence of commutative groups 

Let Vbe an open subset of k X and let {Xj} be any sequence in r converging to 
some xEmodk(V). Say x=modk(a) for some aEv' The sequence {Xj} pulls back 
via modk to a sequence {a) in the unit group kX, and so as above, eventually the 
points fall into one of the compact balls B m' Therefore some subsequence {a j} 
of the sequence {aj} converges, say, to aEkx • By continuity, modk( a) = x also, 
whence by group theory aEaU~ VU. Since VU is open, eventually the points 
of {aj} must lie in the product of these two subsets. But by construction, 
modk(VU)=modt<V), showing that the subsequence {modk(a~)} of the original 
sequence {x)-and hence the entire sequence-eventually falls into modk(V). 
The image of V under modk is therefore open, as claimed. Cl 

4-9 THEOREM. Let k be a locally compact, nondiscrete topologicalfleld with 
Haar measure p. Then: 

(i) There exists a positive constant A~l such that 

(ii) If A = 1, then modk(k*) is discrete. 

PROOF. DefineA by the formula 

A = sup {modk(l +b)} 
bEBl 
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Since the supremum is taken over a compact set (a translate of B1), A is indeed 
finite and clearly greater than or equal to 1. Moreover, taking a=l in the in­
equality 4.2, we see that the number defined by this formula is clearly the 
smallest possible value for which the stated inequality can hold. 

To show now that inequality 4.2 holds for all a and b, it clearly suffices to 
consider the case that either a or b is not zero. So assume that a is not zero and 
that modk(b)~modk(a). (Otherwise, b is likewise nonzero, and we can switch the 
roles of a and b.) Then setting c=a-1b, we have modk(c)~ 1 and a+b=a(l +c). 
By construction, modk(l +c)g, and therefore 

modk(a+b) = modk(a)modk(l+c) 

~A·modk(a) 

= A ·sup{modk(a), modk(b)} 

as claimed in part (i). 
To prove (ii), suppose that A = 1. Let U denote the interior of B\, which obvi­

ously contains 0. Then modk maps 1 +U into an open subset of r that contains 1 
but is itself contained in [0,1]. This means that modk(l+U) is the intersection of 
an open subset of R with r, and, in particular, that there is an open interval I 
containing 1 whose intersection with r is contained in [0,1]. However, 1 is an 
accumulation point from the left in r if and only if it is also an accumulation 
point from the right, since modk(a-1)= modk(a)-l for all a:#=O, and so such an 
interval I cannot exist unless 1 is not an accumulation point of r. But then the 
set consisting of 1 alone is open in r, which is to say that r enjoys the discrete 
topology, as claimed. Cl 

DEFINITION. If k satisfies the inequality of part (i) with A = 1, then we say that k 
(or modk) is ultrametric. In this case, 

and we call this the ultrametric inequality. 

Via an easy induction, the ultrametric inequality implies that modk(n.1 k) ~ 
modk(lk) = 1 for all neN, so that for an ultrametric field modk is bounded by 1 
on the prime ring. We shall establish the converse, and more, shortly. 

The following propositions establish some properties of modk that depend on 
the inequality 4.2 of the previous theorem. The first holds more generally for 
any strictly multiplicative function. 

4-10 PROPOSITION. Let F:N ~R+ be a strictly multiplicative function [i.e., for 
all natural numbers m and n, F(mn)=F(m)F(n)], and assume that there 
exists some constant A such that 
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F(m+n):5:A'sup{F(m),F(n)} 

for all m, neN. Then either (i) F(m):5: 1 for all m, or (ii) F(m)=mA for 
some positive constant A. 

PROOF. We note first that since F is strictly multiplicative, the idempotents 0 
and 1 must map onto idempotents, which is to say 0 and 1. Moreover, from the 
identities F(O)=F(O'n)=F(O)'F(n) and F(n)=F(1'n)=F(1)'F(n) we deduce that 
if F is not constant, then F(O) must be 0 and F( 1) must be 1. 

Define an auxiliary function f: N ~ R+ by 

{o ifF(m)=O 
(m)= 

f 10gF(m) otherwise. 

We shall show that for m~2,f(m)=Alogm for some constant A. Let a=logA. 
Then we have the following relations for all m, n, and nonzeroj: 

f(m i ) = j ·f(m) 

f(mn):5:f(m)+ f(n) 

f(m+n):5: a +sup{f(m),f(n)} 

The middle relation is, of course, an equality, provided that neither m nor n is 
zero. The last extends inductively to 

r 

f(:L m;) :5: ra + sup{f(m;)} 
i;::O j 

Now assume that m,n~2, and let b=sup{f(O), ... ,f(n-I)}. Express m in base n 
as follows: 

r 

m=:Ld;n; 
;=0 

(O:5:d;<n, i=O, ... ,r) . 

We assume in particular that dr is nonzero, whence nr:5:m. Then by the general 
properties above,f(m):5:ra+b+rf(n), whence the further inequality 

f(m) a + f(n) b 
--:5: +--
logm logn logm 

Replacing m by mi and takingj to infinity yields 

_f_(m_) < _a_+.::....f..:....(n...:...) 
logm - logn 



4.1. The Module of an Automorphism 13 9 

Repeating this argument for n in this last inequality yields finally 

f(m) < f(n) 
logm - logn 

whence by symmetry, we deduce thatf(m)nog m is a constant for m::?2. Hence 
for such m, f(m) = Alogm for some constant A, as claimed above. 

If A is 0, then clearly alternative (i) holds for m::?2, and the remaining cases 
(m=O, I) are covered by our preliminary analysis. 

If A is positive, then alternative (ii) holds for m::?2, and it only remains to 
check m<2. But in this case F is not constant, and once again our preliminary 
analysis yields the desired result. D 

Note that a function F on an arbitrary field k induces a function on N (or 
even Z) by defining F(m)=F(m·lk). In particular, the function modk induces a 
strictly multiplicative function on N. 

4-11 PROPOSITION. lfmodk is bounded on the prime ring of k (that is, if the 
induced map on N is bounded), then in fact modk~ I on the prime ring, 
and moreover, k is ultrametric. 

PROOF. Since modk(mi)=modk(m)i, the induced map cannot be bounded unless 
its values lie in [0,1]. It remains to show that k is ultrametric. Let N=2n. Then 
by successively splitting the summation 

into two summations, each involving half as many terms, we find that 

N 

modk(L a j) ~ An sup { modk( a j)} 
j=l j 

which clearly implies the following more general inequality for arbitrary N: 

N 

modk(Laj ) ~ Ar1og2 (N)1 sup {modk(a)} 
j=l j 

Thus 
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Without loss of generality, assume that modk(a) ~ modk(b). Then since modk is 
bounded by 1 on the prime ring, the previous inequality simplifies to 

Taking logarithms, dividing by 2n, and letting n tend to infinity shows that 
modk(a+b)~modk(a), and thus k is ultrametric, as claimed. 0 

4.2 The Classification of Locally Compact Fields 

The main point of this section is the following classification theorem. 

4-12 THEOREM. Let k be any nondiscrete locally compactfield. Then: 

(i) lfchar(k)=O, k is R or C or afinite extension ofQp. 

(ii) lfchar(k)=p>O, then k is ultrametric and isomorphic to the field of 
formal power series in one variable over a finite field (i.e., the quo­
tient field ofF qUt)) for some finite field F q and indeterminate t). 

We begin with some prelimiruuy results on topological vector spaces. 

Topological Vector Spaces over Nondiscrete Locally 
Compact Fields 

Let V be a topological vector space over a nondiscrete locally compact field k, 
and let Wbe a finite-dimensional subspace of Vof dimension n. Assume further 
that W has basis WI' ••• , W n. Consider the map 

'P 
k" ~ W 

(a j ) ~ ~:ajWj 

Clearly rp is a sum of continuous functions, from which one deduces at once 
that rp is a continuous isomorphism of topological vector spaces. 

4-13 PROPOSITION. Given k, V, W. and rp as above, the following assertions 
hold: 

(i) Let U be any open neighborhood of zero in V. Then Wn U:t:{O}. 

(ii) The mapping rp is a homeomorphism. Consequently W admits pre­
cisely one structure as a topological vector space over k. 
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(iii) W is closed and locally compact. 

(iv) If V is itself locally compact, then V is finite-dimensional over k, 
and modv<a) = modk(a)dim V for all aE V. 

PROOF. (i) W (") U must contain something other than zero, else via tp-I the zero 
vector would constitute an open subset of kn, contradicting the assumption that 
k is not discrete. 

(ii) We need only show that tp is an open mapping. Since according to Proposi­
tion 4-7, the sets 

constitute a local base at zero for k, it suffices to show that for all positive t, 

tp(B,") contains a neighborhood ofOE W. We introduce an auxiliary map 

I{/ 

k n ~ R: 
(a j ) ~ (modk(aj))j:I ..... n 

which is continuous by Proposition 4-l. Define subsets A of k n and X of R:, 
respectively, by 

and 

A = {(a) Ek": sup (modk(aj))=l} 
j 

X = U{(x) ER~:Xi = 1., xj:S: 1 for) ;o!:i} . 
i 

Clearly neither set contains zero. Note, moreover, that X is closed in R:, and 
therefore A, which is precisely vrl(X), is likewise closed in kn. Furthermore, A 
is a subset of the compact set B.,n and therefore itself compact. 

Now consider tp(A), a compact subset of V, which also does not contain zero. 
Since scalar mUltiplication is a continuous map from kx V to V, the inverse im­
age of V-tp(A) contains an open neighborhood of (Ok'OV)' Again, since the sets 
B/ constitute a local base at zero for k, it follows that there exists an open 
neighborhood U of zero and an c > ° such that B & Un tp(A) = 0. This is to say 
that ifYEkwith modky.:S"c, thenyUntp(A)=0. 

Fix t>O and choose aEk such that O<modk(a):S:ct. (Such a exist according 
to Corollary 4-2.) By part (i), the set (WnaU)-{O} is nonempty; suppose that 
w=LajWj lies therein. Let h be the index such that modk(ah) is maximal and 
hence positive. Finally, define the following parameters: 
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(J = 1, ... ,n) 

Since (bj ) lies inA, z lies in tp(A). Since w lies in aU, z lies inyU withy = ah-1a. 
By definition of U and ewe must have that modk(y) > e. Therefore, 

This implies that (aj ) eBtn and that we rp(Bn. We conclude that 

W naU c;;;; rp(Bn 

whence rp(Bn indeed contains a neighborhood of 0 in W, and therefore tp is 
open. 

(iii) Clearly W is locally compact by part (ii). Suppose that z lies in the closure 
of W but not in W itself. Then again by part (ii), we have a homeomorphism of 
k!""1 onto (W,z), the subspace generated by Wand z, which maps the closed sub­
space k"x{O} onto W. It follows that W itself is closed in (W,z), whence ze W-a 
contradiction. Thus W is closed in V, as claimed. 

(iv) Assuming for the moment that V is indeed finite-dimensional over k, in 
light of part (ii) it suffices to prove the formula for mody-(a) for V=k n• But by 
Fubini's theorem, the effect of left multiplication by a on the measure of a 
measurable subset of k" may be computed iteratively over each of the coordi­
nates, and from this we deduce immediately that mody-(a)= modk(a)n, as 
claimed. 

It remains to show that a locally compact topological vector space V is in­
deed of finite dimension over k. Let there be given aek such that 
O<modk(a)< l. Then according to Corollary 4-5, we have that lim an=O, 
whence mody-(a) < 1 also. (Note that this holds for any nontrivial locally com­
pact topological vector space V over k: by continuity of multiplication, for any 
compact Kc;;;;V, anK eventually falls into neighborhoods of 0 of arbitrarily small 
measure.) Let W be a finite-dimensional subspace of V, which is therefore 
closed by part (iii), and consider the quotient space V'= V/W. By devissage (see 
Exercise 3), 

and since modv.(a):s: 1 with equality if and only if V'= {O}, we have modv.(a):S: 
modk(a)dim w. But this upper bound is valid for all finite-dimensional subspaces 
W, hence dim V must be finite or else modv{a) would be O-a contradiction that 
completes the proof. 0 
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Preliminary Analysis for the Main Theorem 

We develop some general statements about modk that will be needed in the 
proof of the main theorem. In fact this analysis allows us to settle the case of 
characteristic zero in short order. 

Recall from the previous section that we define modk for N by the formula 
modk(m) = modk(m °Ik) and that according to Proposition 4-10, either 

(1) modk(m):;;; 1 for all m (equivalently, k is ultrametric by Proposition 4-11), or 

(2) there is a positive constant A such that modk(m) = mA. for all m. 

Assume first that alternative (1) holds, which is always the case for k of positive 
characteristic, since then modk is clearly bounded on the prime ring of k. We 
then have 

and since B) is compact, there exists at least one limit point a. For every posi­
tive E there are infinitely many m such that modk(m ° lea):;;; E. Let m and m' be 
two such integers with m<m'. By the ultrametric inequality, 

In particular, there exists n~ 1 such that modin)< 1. Let p be the smallest posi­
tive integer for which this inequality holds. Since modk is multiplicative, p 
must be prime (see the proof of Theorem 4-30), and by induction, moreover, 
modk(mp) < 1 for every meN. Letj be a positive integer less than p. From the 
identity 

j = (j + mp) - mp 

it follows from the minimality of p and again from the ultrametric inequality 
that 

modij+mp)= 1 . 

Thus if n is any positive integer prime to p, then modk(n) = 1, and in particular, 
p is the unique prime at which modk is less than 1. This leads us to two possi­
bilities: 

(a) Suppose that char(k) >0. In this case modichar(k»=O, and according to 
the analysis above, p is in fact equal to char(k). 
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(b) Suppose, still under alternative (I), that char(k)=O. Then modk(P) is not 
zero, and we may write modk(P)=p-t for some positive t. Expressing arbi­
trary n as mpT with m prime to p, we see at once that 

where l'lp is the p-norm on Q. [For nonzero c, the p-norm is defined as 
follows: express c in the formpm(aIb) where a and b are integers relatively 
prime to p; then Iclp =p-m.] 

Let 1'1.., denote the usual norm on R. It follows from case (b) that in charac­
teristic zero, under either alternative (1) or (2), we have that for all natural 
numbersn, 

(4.3) 

where v is the prime p described above if alternative (I) holds and p is 00 if al­
ternative (2) holds. Thus in this case the module has a uniform characteriza­
tion. Indeed, Eq. 4.3 is the key to the analysis in characteristic zero, as we shall 
see in the following subsection. 

REMARK. Note finally that if modk(P) < 1 for some positive rational prime p, 
then either (a) holds, or (b) holds with v=p. In either case, k is ultrametric. 

Proof of the Main Theorem in Characteristic Zero 

We now dispense with the case char(k)=O. The isomorphism of algebras 

extends to an isomorphism Q~lk'Q~k, which we regard as an identification. 

By Eq. 4.3, modk induces the function x I4lx~ on Q. Since the sets Bt con­

stitute a local base at 0 in k, the topological structure of Q induced by k is iden­

tical to that induced by the distance function Ix-yly' Hence in view of k's local 

compactness, the closure Q of Q in k is precisely the completion Qy of Q rela­

tive to the metric v; that is, Q == Qy (as locally compact fields). By Proposition 

4-13, part (iv), k is finite-dimensional over Qy, so that ifv=oo, k is a finite field 

extension ofR, and hence is either R or C. Otherwise, ifv=p, then k is a finite­

dimensional extension of the p-adic field Qp. This completes the proof of as­

sertion (i) of the main theorem. a 
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The bulk of the proof of assertion (ii) of the main theorem is in the analysis 
of the local ring associated with a locally compact ultrametric field. 

The Local Ring of an Ultrametric Field and Its Residue Field 

Assume that k is ultrametric. Recall in particular (proposition 4-9) that r, the 
image of k* under modk' is discrete in R:. We define the following subsets of 
k: 

A = {xek I modk(x) :s; I} 

AX = {xek I modk(x) = I} 

P = {xek I modk(x) < I} 

We begin with an analysis of the major structural features of A , P, andAIP. 

4-14 LEMMA. A is the unique maximal compact subring ofk, and AX (as de­
fined above) is the group of units of A. 

PROOF. Note first that A =B) is compact, whence its closed subset AX is likewise 
compact. By the ultrametric inequality and the multiplicativity of modk' A is 
clearly a ring with unit group AX, as claimed. If S is any relatively compact 
multiplicative subset of k, then aeS implies that the sequence {an} has an ac­
cumulation point in S, and so modk(a):s; 1. Thus S!;;,;A, andA is indeed maximal, 
as required. 1:1 

Recall that a local ring is an integral domain that has a unique maximal 
ideal. Clearly every element lying outside of this maximal ideal is a unit. A 
discrete valuation ring is a principal ideal domain having a unique prime ideal; 
it is in particular a local ring. The unique prime ideal of a discrete valuation 
ring R takes the form Rtr, where tr, the unique irreducible element of R (up to 
associates), is called the uniformizing parameter of R. 

4-15 LEMMA. A is a discrete valuation ring, and hence a local ring, with 
unique maximal ideal P =Atr, where the uniformizing parameter tr is 
given as any element in k* such that y= modk(tr) is the maximal element 
of r less than 1. Moreover, the residue field AlP is finite. 

PROOF. By the ultrametric inequality, P is obviously an ideal of A, and since 
P=A-AX, it is, moreover, open and the unique maximal ideal of A. Note also 
that our description of trek* is sensible, since r is discrete, and that tr is neces­
sarily irreducible in A. One shows easily that y generates r, so that we have a 
short exact sequence of groups 
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whence every element in aek* is expressible uniquely in the form un" for some 
ueA x and integer n, called the order of a and denoted ordk(a). (For con­
venience, we set ordk(O) = +00.) Consequently every proper ideal of A is gener­
ated by its element of minimal order and thus of the form n"A for some positive 
integer n. Hence A is ipso facto a discrete valuation ring with unique maximal 
ideal P=Atr. Since P is open and A is compact, the residue ring AlP is discrete, 
compact, and hence finite. This complete the proof. 0 

4-16 COROLLARY. Every automorphism u of k (as a topological field) maps A 
to A and P to P; hence it induces an automorphism (j on AlP. 

PROOF. A must map onto itself by virtue of its description as the maximal com­
pact subring of k, and since a (unital) ring homomorphism maps units to units, 
P=A _AX likewise maps onto itself. 0 

Henceforth we put q=Card(AIP). If modk(P) < 1 for some rational prime p, 
then as observed in the remark above, k is ultrametric, and the present discus­
sion applies. Also, by definition p .lkeP, so that the characteristic of the residue 
field A IP must be p, and q=pr for some positive integer r. Since A is compact, 
and therefore of finite measure, and A is the disjoint union of q additive trans­
lates of P=trA, p(A)=qp(1rA), so that modk(1r)=q-l. We call q the module of 
k. Thus 

(4.4) 

4-17 PROPOSITION. Assume that k is locally compact and that modk(P) < 1 for 
some prime p. Then the following assertions hold: 

(i) Let {a)j:20 be a sequence in k such that limaj=O. Then the series 

converges in k. 

(ii) Let {aj} be a fixed set of coset representatives for A IP that includes 0 
and let aEk* have order n. Then a is expressible uniquely in the form 

(4.5) 
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PROOF. (i) Since modk is continuous, we must have also that lim modk(a} = O. 
Consider the sequence of partial summations 

Since k is ultrametric, for m<n, 

mod(S" -Sm):S: sup mod,t(aj):s:supmod,t(aj ) 
m<jS" m<j 

and the bound can be made arbitrarily small. We see that the S" must fall into a 
compact subset of k and there accumulate to a unique limit point. 

(ii) Since the aj are chosen from a fixed finite set, the ~umbers modk(alri ) con­
verge to zero, and hence so do the field elements alr}. By part (i), a series of 
the given form always converges. Next consider the possibility that 

but not all the ai are zero. Jfjo is the first index such that aio :;: 0, then 

(each aj except 0 is a unit), which is impossible, since modk applied to the left is 
q-io, but modk applied to the right is bounded by q-(jo+I). It follows that any 

representation of the form given in Eq. 4.5 is unique. Finally, given aek*, after 
multiplication by tr" we may assume that aeA x• We may then inductively 
choose aj such that 

,,-I 

a=: LajRj (modP") . 
j=O 

Note that ao""O because a Ii!: P. Thus 

,,-I 

mod,t(a- LajRj):s:q-" 
j=O 

and as n-+oo, the partial sums converge to a. This completes the proof. [J 
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Roots of Unity in k 

We continue to assume that modk(P) < 1 for some rational prime p (with all 
notation as in the preceding subsection). In particular, this condition holds if 
char(k)=p. We examine a special subgroup of k* that is simultaneously a trans­
versal for (;tlp)*. From this we shall easily deduce part (ii) of the classification 
theorem (Theorem 4-12). 

We begin with a technical lemma. Recall that q, the module of k, is also the 
order of the finite residue fieidAIP and that q=pr for some positive integer r. 

4-18 LEMMA. Let aeA x and define a sequence in A as follows: 

ao =a 
n ,,-I 

an =aq -aq (n~l) 

Then {an} converges to zero, and hence lim aq" exists. 
n-+oo 

PROOF. Since by assumptionp·lkeP, an easy induction shows that 

(1 + P)tI' !;;;; 1 + pn+1 • 

Now (A IP)* has order q-l, so clearly aq-I e 1 + P, and from the inclusion above 

it follows that a(,-I),- e 1+ p,,,+I. Therefore, 

qn+1 qn qn( (q_l)qn 1) prn+1 a,,+1 = a - a = a a - e 

whence limmodk(a,,) = O. Thus by continuity lim an = 0, as claimed. The sec-
11-+00 n-+ao 

ond statement follows from Proposition 4-17, part (i), since the nth partial sum 

of the series ~aj is precisely aqn • a 

According to the lemma, we can sensibly define 

OJ(a) = limaqn 
n-+oo 

for aeA x • The definition also makes sense for aeP (where the limit is 0) and 
hence for all ofA. Moreover, 

OJ(ab) = OJ(a)OJ(b) 

for all a,beA, and in particular, OJ(an)=OJ(a)n for all integers nand aeA x • 
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Recalling that (1 + P)p' !;; 1 + p'l+l , we see that a(a)= 1 if a51 (mod P). Con­
versely, if m(a)= 1, then eventually (a -1)qll = aq" -1 e P, and SO a51 (mod P). 
Thus the inverse image of zero under OJ is P, while the inverse image of 1 is 
precisely l+P. Note, too, that since aq-I e l +P for all aeAX, m(a)q-I=l. Choose 
an element aleA x whose projection generates (AIP)* and put PI=m(al). We 
claim that PI generates a cyclic group of order q-l in A x. 

PROOF OF CLAIM. For any integer n, we have the following chain of equiva­
lences: 

Pi" =1 <:>OJ(an=1 

<:>ar el+P 
<:> n 5 0 (mod q-l) 

Clearly this can hold if and only if PI generates cyclic group of order q-l. CJ 

Define M* to be the group of roots of unity in k of order prime to p. The 
upshot of this discussion is that OJ induces an injective homomorphism of 
groups (AIP)*~M*. This induced map turns out to be an isomorphism. 

4-19 PROPOSITION. For every aeM*, m(a)=a. Hence the factorization of OJ 
through the canonical projection onto (AIP)* induces an isomorphism of 
groups M*=.(AIP)*. Thus M=M*u{O} constitutes a complete set of coset 
representatives for A IP, and the polynomial xq-I-l splits in k. 

PROOF. Let aeM* be of order n, and let Nbe the order of q in ZlnZ, so that qN 
51 (mod n). Then aqiN = a for allj~O, and consequently m(a)=a. Since M* is 
a torsion group, this suffices to establish the first statement. The balance of the 
proposition is easily deduced from the following commutative diagram: 

M* 

--.. (AlP)· _ M* a 

In the case of positive characteristic, M=M*u{O} turns out to be much 
more than a commutative monoid, and this is the key to part (ii) of the classifi­
cation theorem. 

4-20 PROPOSITION. Assume that k is of positive characteristic p. Then M is the 
algebraic closure ofFp in k. 
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PROOF. Let M be th:..,algebraic closure of Fp in k. We must show that every 
nonzero element a eM is a root of unity of order prime to p. Certainly a lies in 
some finite extension ofFp' so that aP"'-1= 1 for some m~ 1. Hence the order of 
a has no factor ofp, and aeM, as required. [J 

Combining this result with the representation of k by power series in the uni­
formizing parameter tr[proposition 4-17, part (ii)) yields the following result. 

4-21 PROPosmON. Assume that k is locally compact with modk(P) < 1 for some 
rational prime p. Then 

(i) Every element of pn (neZ) is uniquely expressible as 

'" ~::ajtr j (aj eM) . 
j~" 

(ii) (M,+) is a subgroup of (k,+) (and hence M is a field) if and only if 
char(k) is positive. 

PROOF. We need only demonstrate (ii) in the forward direction. But this follows 
at once from the existence of an injection of M into the finite set AlP: if Mis 
closed under addition, it must have torsion, whence k has positive characteris­
tic. 0 

Proof of the Main Theorem in Positive Characteristic 

We consider the second statement of Theorem 4-12, the case char(k)=p>O, to 
which the previous discussion applies. By the preceding proposition, every ele­
ment of k can be expressed uniquely as a power series in tr with coefficients in 
M (possibly involving finitely many terms with negative exponent). If k is of 
positive characteristic, then M is a field and the assignment tr 14 X induces an 
isomorphism from k to M«x», the field of formal power series in the indeter­
minate x with coefficients in M. This completes the proof. 0 

4.3 Extensions of Local Fields 

Returning to the more general case of a nondiscrete locally compact field k with 
modk(P) < 1, with no assumption on the characteristic of k, we now develop 
some fundamental results on finite extensions. Accordingly, let k/k be an ex­
tension of k of degree n. Recall that k1 has a unique topology as a topological 
vector space over k, in which category it is isomorphic to kn. It follows that k1 is 
also nondiscrete and that any k-linear map of k1 onto itself preserves this topol­
ogy, which is to say that Aut(k/k)=Auttop(k/k). 
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SPECIAL CONVENTION. For this section we adopt the following convention: if X 
denotes any structure or invariant defined with respect to k, then Xl denotes 
that same structure or invariant defined with respect to k l • Thus A and A I are, 
in particular, the local rings associated with the fields k and k l , respectively. 

Ramification Index and Residual Degree 

We shall now see how the finite extension k/k of a local field k gives rise to a 
finite extension offinite residue fields; this in tum yields two key parameters. 

4-22 PROPOSITION. The finite extension kl of k satisfies the inequality 
modk\(p) < I and therefore is likewise uitrametric. Moreover, Al n k=A 
andPlnk=P. 

PROOF. In light of the topological and algebraic characterizations of A, P, AI' 
and PI' only the first statement requires justification. This follows from the 
general formula 

applied to p·lk to show that modk\(p) is also less than l. o 

We come now to a fundamental relationship between the degree of the ex­
tension k/k and the order of tr, the uniformizing parameter inA, as an element 

of AI' 

4-23 PROPOSITION. Let k/k be an extension offields of degree n as above and 
define ql' q, and e asfollows: 

q\ = Card(A/1D 

q = Card(AIP) 

e = ordk1 (tr) 

Then ql = qf for some integer f, and moreover, n = ef for some positive in­
teger e. 

PROOF. Certainly A/PI is a finite extension of the finite field AlP, whence such 
an exponentfexists. Using Eq. 4.4, we can compute modk\ (p) in two ways: 

modk (tr) = (qlre = q-ef 
\ 

modk\(tr) = modk(tr)n = q-n 
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A comparison of exponents yields the stated result. o 

The integers e andfappearing in this proposition are singled out in the fol­
lowing definition. 

DEFINITIONS. The invariant e is called the ramification index of k/k; the exten­
sion is called unramified if e= 1. The exponentfis called the residual degree of 
k/k; the extension is called totally ramified if f= 1. 

Characterization of Unramified Extensions 

We maintain the assumptions and notation of the previous subsection. In par­
ticular, k/k is an extension of nondiscrete locally compact fields and 
modk(P)< 1. Henceforth k and ~ denote, respectively, the residue fields associ­
ated with the local rings of k and k l . Thus by definition [~: Ii] = f and ql = ql . 

In accordance with our convention, Mt denotes the set of roots of unity in kl of 
order prime to p, and M1 = Mt u {O} . 

4-24 LEMMA. Let kl be a finite extension of k generated by one or more roots 
of unity of order prime to p. Then: 

(i) kl =k(MI); kl is thus the splitting field for the polynomial xQ1- I-l 
and hence a Galois extension ofk. 

(ii) Every automorphism oeGal(k/k) induces an automorphism on the 
residue field (j e Gal(k; / Ii); moreover, the mapping CT H (j con­

stitutes an isomorphism of groups. 

(iii) kl is cyclic and unramified over k. 

PROOF. We know by the isomorphism M1*-=(A/IU* (proposition 4-19) that 
M1* consists precisely of the roots of xql- I -1, and we have seen that kl at least 
contains M I, whence by assumption kl=k(MI). The subsets AI and PI both re­
main invariant under every (necessarily topological) automorphism (J" of kl over 
k, so (J" indeed induces the automorphism (j of f., over k defined by a(a+PI)= 
a(a)+PI. If (j is the identity on f." then a(a)=a (mod PI) for all aekl. But 
since MI is a complete set of coset representatives for (A/PI) and (J" permutes 
the elements of M I, this implies that 0( a) = a for all a eMI . Hence (J" is the iden­
tity on all of kl =k(MI), and therefore the group homomorphism (J" H (j is at 
least injective. From this we deduce at once that 
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Thus the ramification index e must be I-which is to say that k/k is unrami­
fied-and accordingly both Galois groups have the same cardinality. But if this 
is the case, then injectivity implies bijectivity for the map O"H CT, whence 
Gal (k/k) == Gal (k;Ik) , and the extension k/k is indeed cyclic by elementaIy 
Galois theol)'. This completes the proof. [J 

4-25 PRoPOsmoN. Let k/k be a finite extension of nondiscrete locally com­
pact fields with modk(P)< 1. Then k\ is unramified over k if and only ifk\ 
is generated over k by M\. Hence for every positive J, k has exactly one 
unramified extension of degree J, and this is generated over k by any 
primitive (qLI)th root of unity. 

PROOF. Assume that k/k is unramified of_degree f and consider the intermedi­
ate extension 1= k(M\), with residue field 1 . Since M\ also constitutes the set of 
roots of unity in k(M\) of order prime to p, it follows that M\ is isomorphic to 
both T and kl; thus [Z:k] = [kl :k] = f. But then [I:k]~f, showing that k\=I. In 
light of the previous lemma, this establishes the first statement and shows fur­
ther that an unramified extension of degree f is precisely the splitting field over 
k of the polynomial xt/ -1 -1; it is therefore unique up to isomorphism. [J 

4-26 COROLLARY. Let k/k be as above. Then the follOWing assertions hold: 

(i) The mapping kl H k; constitutes a bijective correspondence between 
the isomorphism classes of un ramified finite algebraic extensions ofk 
and the isomorphism classes of finite extensions of k. 

(ii) Given any finite extension kl of k. there exists an unramified sub­
extension Ilk such that k/l is totally ramified. 

PROOF. Part (i) is immediate from the previous proposition, since a finite field 
is determined (up to isomorphism) by its order. For part (ii), take I = k(M\). 
Then Ilk is maximally unramified and of degree f, the ramification index of k\ 
over k. For a uniformizing parameter 7r of the local ring associated with k, the 
following equations hold: 

ordk1 (7r)=e 

ord1(7r) = 1 

In particular, 7r is also a uniformizing parameter for the local ring associated 
with I, so that ek1ll = e. Since [k\: k] = ef, it follows that [k\ :l]=e, fklll = 1, 
and k/I is totally ramified, as required. [J 
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Finally, these results allow us to define the Frobenius automorphism associ­
ated with the unramified extension of any given degree. We shall study this in 
detail in Chapter 6. 

DEFINmON. Let klk be the unramified extension corresponding to the residue 

extension ~/k where k =Fq • Then 'l'q is the automorphism of Gal(klk) corre­
sponding to the mapping x H x q in Gal(~/k) under the isomorphism given 
above by Lemma 4-24, part (ii). 

4.4 Places and Completions of Global Fields 

A number field is a finite extension of Q. A function field in one variable over 
a field k is a field extension K of k of transcendence degree 1. Hence K is an 
algebraic extension of the intermediate field k(x) for some element xeK that is 
transcendental over k. 

Since number fields are likely to be quite familiar, we will say a few words 
only about function fields. If X is any compact Riemann surface (i.e., a one­
dimensional complex manifold), the field K= C(X) of meromorphic functions 
on X is a function field over the field of complex numbers (whence the name). 
In fact, every function field in one variable over C arises in this way. One also 
knows that every compact Riemann surface is the set of complex points of a 
smooth, projective algebraic curve over C. Given a function field K in one vari­
able over any field k, we may identify K with the field of rational functions of a 
smooth projective algebraic curve X over k. K is purely transcendental if and 
only if X has genus zero, which is to say that it is isomorphic to P k 1• 

DEFINmON. A global field is one of the following: 

(i) an algebraic number field K; 

(ii) a finitely generated function field K in one variable over a finite field k=F q' 

That these types of fields have many common properties has become the 
basis of one of the most fruitful analogies in mathematics. 

Absolute Values 

We study global fields mainly by analyzing the different types of "absolute val­
ues" they admit. Note that the function modk studied for local fields in the pre­
vious two sections is a particular instance of the following definition. 

DEFINITION. Let F be a field. An absolute value (or valuation of order 1) on F 
is a map 
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satisfying the following properties: 

(A V-I) lal=O if and only if a=O. 

(AV-2) lahl=lal'lhl for all a,heF. 

(AV-3) There exists a positive real constant C such that for all a,heFwe have 
that la + hlS;c'sup{lal, Ihl}. 

Note that the ordinary absolute value function on the complex numbers is an 
absolute value in the sense above with c= 2. In fact, a somewhat stronger state­
ment is true. 

4-27 LEMMA. Let I· I : F --. R+ satisfy properties A V -I and A V -2. Then the 

following statements are equivalent: 

(i) Property AV-3 holds with cS;2. 

(ii) For all a,heF, la + hi S; lal + Ihl. 

Statement (ii) is, as usual, called the triangle inequality. 

PROOF. We need only show that (i) implies (ii). Assume that n=2m for some 
positive integer m and let ap ••• ,an be a sequence of elements of F. Then by 
induction it follows at once that 

2m 

I Lajl S; 2m ·supl ajl 
j=1 

Now suppose that n is an arbitrary positive integer. We can always pad the se­
quence a l , ... , an with zeros out to 2m terms, where m satisfies the condition 
2m:?n > 2m-I. The previous inequality then implies that 

n 2m- 1 2m 

ILajlS;C'SUp{ILajl, I Lajl} 
j=1 j=1 j=2m- I+1 

S;2·sup{ 2m- I. sup lajl, 2m-I. sup la)} 
jS2m- 1 j>2m- 1 

S; 2·2m-1. suplajl 
j 

Thus we achieve the general relation 

.. 
I~>jl S; 2n,suplaj l 
j=1 
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for arbitrary n>O. In particular, setting arl for allj, we obtain the inequality 
Inl ~2n. Moreover, 

" " ILajl~2nOLlajl 
j=1 j=1 

We may now proceed with the main calculation: 

n 

= I~(;)ajbn-jl 
}=O 

~ 2(n +l)fl(~)llaljlbln-j 
j=O J 

~ 4(n + 1) f(n.) I aljlbln-j 
j=O J 

= 4(n+l)(lal+lbl)n . 

Taking the nth roots of both sides and then the limit as n~oo now yields the 
triangle inequality. Cl 

Note that if 1°1 is an absolute value, then III = l. Indeed, by A V -2, if a= Ill, 
then a 2=a, whence ais 0 or l. But the possibility that a=O is excluded by AV-
1, whence a= l. 

One says that 1°1 is trivial if lal=1 for all nonzero aeFo Every absolute value 
on a finite field k=Fq is trivial. This is so because for any nonzero aek, we 
have aq-I=I; accordingly lalq-I=I, and hence lal=l, since R+ has no roots of 
unity other than 1. 

DEFINITION. Two absolute values 1°1 and 1°1' on F are equivalent if there is a 
positive constantt such that I ai' = I al t for all aeF. A place of F is an equiva­
lence class of nontrivial absolute values. 

Note that if we replace an absolute value 1·1 satisfying AV-3 for some c>O 
by 1°1 t for some t>O, then c is replaced by ct. Appealing to the previous lemma, 
we see that every absolute value is equivalent to one that satisfies the triangle 
inequality. 

The next proposition is similar in both form and proof to the corresponding 
statement for the function modk on a local field (proposition 4-11). 
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4-28 PROPOSITION. Let 1'1 be an absolute value on F. Then the following 
statements are equivalent: 

(i) 1'1 satisfies the ultrametric inequality (i.e., AV-3 with c=l). 

(ii) The set {Inl : neN} is bounded. 

In either case, In I is in fact bounded by 1 on N. 

PROOF. That the first statement implies the second follows at once from the 
observation that 

Inl = 11+1+"'+11 s 1 . 

Conversely, suppose that Inl is bounded by some positive constant P for all 
natural numbers n. Then since 1'1 is multiplicative, Inl cannot be greater than 1 
for any n, or else Inml tends to infinity. Replacing 1'1 by an equivalent absolute 
value if necessary, we may assume that 1'1 satisfies AV-3 with cS2 and hence 
satisfies the triangle inequality. Thus we may calculate as in the previous result: 

la+bln~:tI(n.)llaljlbln-j 
j=O J 

~ (n+l)sup{lal,lbW 

Taking the nth roots of both sides and then the limit as n~oo now yields the 
ultrametric inequality. 0 

DEFINITION. An absolute value is called non-Archimedean, or u/trametric, if the 
equivalent conditions of the preceding proposition are satisfied. Otherwise it is 
calledArchimedean, or ordinary. 

Note that any absolute value 1'1 on a field F defines a nonnegative function d 
on FxFby 

d(a, b) = la-hi . 

This function induces a topology on F, a base for which is given by open balls 
relative to d, and this topology is nondiscrete if and only if the absolute value is 
nontrivial. Clearly any equivalent absolute value induces the same topology 
(one can also establish the converse), and d may in fact be taken as a metric on 
F. We say that F is complete with respect to 1'1 if F is a complete metric space 
with respect to the metric topology defined by this absolute value. Thus, for 
example, every local field with its associated absolute value (the module) is 
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complete in this sense. The familiar construction of equivalence classes of 
Cauchy sequences yields the following result: 

4-29 PROPOSITION. Let F be an arbitrary field and let 1·1 be an absolute value 
on F. Then F can be embedded in a field that is complete with respect to 
an absolute value that is equivalent to 1·1 on F. 

Ostrowski's Theorem 

We shall now classify the places of prime global fields; that is, either the ra­
tional numbers Q or a function field Fit). 

4-30 THEOREM. Let K be a prime global field. Then 

(i) Suppose that K=Q. Then every nontrivial place of K is represented 
by either the usual absolute value, sometimes denoted 1·100' or a p­
adic one 1·lp,/or some prime p. 

(ii) Suppose that K=Fit), and let R=Fqlt). Then every nontrivial place 
of K is given by either the "infinite place" 1.100 defined by 

If / gl 00 = qdog(f)-dog(g) 

or by the finite place 1·lp corresponding to an irreducible polynomial 
P(t)eR. 

The first statement is called Ostrowski's theorem. 

PROOF. Note that in either case we must have Izl= 1 for any root of unity z. In­
deed, ifzn=l, then Izln=l, and so Izl=l, since there are no other roots of unity 
among the nonnegative reals. We now address the two separate cases. 

(i) Suppose first that 1·1 is ultrametric; the analysis is similar to that for an ul­
trametric module. For any positive integer n, we know by induction that Inl $; 1. 
Since 1·1 is nontrivial, Inl < 1 for some positive integer, and we take n to be the 
smallest such. We claim that n must be prime. For if m=mjm2 where both fac­
tors are greater than 1, then the inequality 1>lml=lmjllm21 implies that Imjl<1 
for at least one i, contradicting the minimality of m. Thus m is prime, and ac­
cordingly we shall henceforth write p for m. 

We claim next that lal=1 for any integer a prime to p. Indeed, any such a is 
of the form dp+r for integers d and r with O<r<p. The choice ofp forces Irl to 
be 1. But since Irl$;max{ldpl,lal}, this forces lal to be 1, as asserted. In sum­
mary, we have shown that 
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for all k where a is prime to p. The usual p-adic nonn has the same fonn with 
Ip Ip = 1/ p < I, and it is now clear that 1'1 and I'lp are equivalent. 

Now consider the case that 1'1 is Archimedean and hence may be assumed to 
satisfy the triangle inequality. Then when restricted to N, this absolute value 
function satisfies the hypothesis of Proposition 4-10 with A =2. Since it is 
moreover unbounded, it follows from that same proposition that 1'1 is just a 
positive power of the ordinary absolute value function, and therefore it repre­
sents the same place of Q. This completes the proof of part (i). 

(ii) We may identify the subring of K generated by I eK with the finite field Fp. 
Thus the set of values In·11 for neZ is bounded, and hence 1'1 is non-Archi­
medean; in fact, these nonns are precisely I for all n prime to p,. 

Suppose that there exists a polynomial PeFq[t) such that IPI<I; clearly we 
may assume that P is irreducible. Then arguing as above, IQI = I for all Q not 
divisible by P. Hence given any polynomial feFq[t) , we may factor it into the 
fonn pnQ where n~O and Q is prime to P, and thus Ifl=lPln in accordance 
with the second alternative of the assertion, 

Now suppose that IPI~I for every irreducible polynomial PeFq[t). Then 
since lal=1 for all nonzero constants, it follows that 1'1 maps Fq[t)* into the 
interval [1,00). Thus in particular, Itl~I, and we claim that in fact this inequal­
ity is strict. Suppose to the contrary that Itl=1. We will then show that 1'1 takes 
the value I on all of K*, contradicting the assumption that 1'1 represents a non­
trivial place. For this it clearly suffices to show that Ifl=1 for allfeFq[t)*, and 
accordingly we can proceed by induction on n, the degree off The case n=O is 
clear. So assume that n is positive and write 

f(t) = ao + trp(t) 

where rpeFq[t)* is of degree n-1. By assumption and induction, Itrp(t)1 =1, 
whence Ifl=l, as claimed, because 1'1 is non-Archimedean. So indeed Itl>1. 

We claim next that for a nonzero polynomialfwe have Ifl=ltldeg(f). Again 
the proof goes by induction on n, the degree off, and again the case that n=O is 
clear. Writingfas above, we find at once that 

If(t)I~1 trp(t)I=ltl n • 

But then If I must be Itl n, for otherwise we have a contradiction from the ine­
quality 

Itrp(t)l~ sup{laol,lf(t)I} 
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since laol is 0 or l. (We observe yet again that all non-Archimedean triangles 
are isosceles!) This proves the claim and also the theorem, because clearly 

ILl = If I = Itldeg(f)-deg(g) 
g Igl 

o 

Extension of Absolute Values 

Let K denote an arbitrary global field. Let F denote a subfield of K of the form 
F q(t) if K is of positive characteristic p or let F= Q if K has characteristic zero. 
In the former case, we can always find an element tEK such that K is finite and 
separable over Fit) (see Exercise 4), and hence we may assume that KIF is 
finite and separable. 

Next put n=[K:F] and for any place v of K, let Kv denote the completion of 
K relative to a representative absolute value, say I' Iv' belonging to the class v. 
Let .9 K denote the set of all places of K. This is the disjoint union of two sub­
sets: 

.9 K.oo = the set of Archimedean places of K, and 

.9 K,f = the set of ultrametric places of K. 

Note that every v E .9 K induces by restriction a place u = res J-v) E .9 F' and hence 
we have defined a restriction map 

r = rKIF:.9k ~.9p 

VHU 

from the places of K to the places of F. 

Since the previous discussion gives a complete description of .9 F' to under­
stand .9 K' it suffices to describe the image and the fibers of r. 

Henceforth we shall write vlu ifvErl(u) and say that v lies over u or that v 
divides u. 

To analyze the relationship between local extensions K)Fu and the global 
extension KIF, we must analyze the embeddings over F of K into F,., the alge­
braic closure of the completion of Fat u. By separability we know that K=F(a) 
for some element a E F ~ F... Let p(x) denote the minimal polynomial of a 
over F and suppose that 

r 

p(x) = IT Pj(x) 
j=1 
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is t~e irreducible factorization of p(x) in Fu[x). For each}, fix a root ~. of pix) 
in Fu' Note that these q are distinct, since p(x) is separable. 

4-31 PROPOSITION. Let K = F( a) be a finite separable extension ofF, where F 
is either Q or Fit), and let u be a fixed place ofF. Suppose further that 
p(x) is the minimal polynomial of a over F and that p(x) factors over Fu 
into the product of polynomials pix) with corresponding roots ~., as 
above (j= 1, . .. ,r). Then the following assertions hold: 

(i) lfv is a place ofK that lies over u, then Ky =Fu(JJ), where p is a root 
ofp(x) and hence separable over Fu' In particular, K)Fu is afinite 
separable extension. 

(ii) The places v of K that lie over u are in bijective correspondence 
with the embeddings of K into F. induced by the assignments 
aH aj" 

PROOF. (i) Consider this diagram of embeddings: 

F Kv 

K= F(a) ~ Kv 

I 
F ~ Fu 

Clearly Ky contains Fu(JJ), where p is the image of a and therefore a root of 
p(x). But Fu(JJ) is finite-dimensional over Fu and hence locally compact. Thus 
it is a complete field containing both F and the image of a, which is to say that 
Ky=Fu(JJ)· 

(ii) Every finite extension Fu(JJ) admits a unique topological structure as a lo­
cally compact field, namely the one induced by a vector space isomorphism 
with (Fu)m, where m is the degree of p over Fu' and the associated absolute 
value on Fu' In particular, each of the extensions Fu(q) admits an absolute 
value, which, when restricted to the image of K, induces an absolute value on K 
and a corresponding place v that obviously lies over u. Part (i) shows that every 
such place arises in this way, since Fu(jJ) is isomorphic to Fu(~.) for some}. 

It remains to show that distinct assignments a H aJ give rise to distinct 
places. Consider, for instance, Pl(x)eFu[x], which can be expressed-in the 
obvious sense-as the limit of a sequence {q(x)} of polynomials over F. Then 
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where I· Ii denotes the absolute value associated with the embedding a ~ ar 
But forj>l, 

which shows that I· h and I· Ii represent different places. More generally then, 
I· Ii and 1·lk represent different places whenever f#k, as required. This com­
pletes the proof. Cl 

As an immediate consequence of this proposition, we have the following 
fundamental result. 

4-32 COROLLARY. Let F, K, and u be as above and let n=[K:F]. 

In particular, the restriction map is surjective, and the fiber over 
each place of Fu is finite. 

(ii) If KIF is moreover a Galois extension, then ny is constant for all v I u. 

PROOF. (i) The proof of the first statement is immediate because the degree of 
KIF is also the degree of p(x), while the degree of each local extension lSlFu is 
the degree of the corresponding factor PJ(x). 

(ii) If KIF is Galois, all of the roots of p(x) eF[x] lie in K, whence every embed­
ding of K into F,. contains all of the roots of p(x). Thus for all indices j and k, 

Fu(a}r;;;.Fu(l!Jc)' so that all of the completions of K in fact give rise to the same 
subfield of F. ---only the embeddings are different-and hence are of the same 
dimension. Cl 

We next analyze ny=[Ky:Fu] where vlu in the case that u is ultrametric. 
Then KiFu is a finite extension ofnon-Archimedean local fields. Let 

denote the respective local rings of integers of Ky and Fu ' and let k and k' de­
note the residue fields of 0u and Oy modulo their respective maximal ideals. Put 

Iv = [k':k] . 
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This is called the residual degree of Ky over Fu' 

4-33 LEMMA. For all vlu, we have 

for some integer ey. 

In this context, the positive integer ey is called the ramification index of Ky 
over Fu' Note that our current use of the tenns residual degree and ramification 
index is consistent with that of Section 4.2. 

PROOF. Let LlFu be the largest unramified subextension of KJFu' Then, as we 
noted earlier in our characterization of unramified extensions (see especially 
Lemma 4-24 and Proposition 4-25), the residue field of L identifies with k', and 
moreover, [L:Fu)=[k':k)=fv. Put ey=[Ky: L). The lemma follows. [J 

4-34 COROLLARY. Let KIF be a finite separable extension of global fields, and 
let u be a non-Archimedean place ofF. Then we have 

n = [K:F) = Levlv . 
vi_ 

Moreover, if KIF is Galois, then both the ramification indices and the re­
sidual degrees are constant for all v lying over u, so that 

n =efg 

where e =ey,f=fv, and g is the number of places v ofK lying over u. 

PROOF. Since for a Galois extension we already know that ny=eyfv is constant, it 
suffices to show that the residual degree is invariant. But in this case, all of the 
local extensions are isomorphic to a single finite extension, say, Ky of Fu' The 
maximal unramified subextension of Ky is obtained from Fu by adjoining all of 
the roots of unity of order prime to the characteristic and hence is also inde­
pendent ofv. Finally, fv is precisely the degree of this subextension. [J 

DEFINITION. The finite extension KIF is unramifled at u if ey=1 for all vlu. It is 
totally ramified iffv =1 for all vlu. 

DEFINITION. Let E be an algebraic extension of a number field F, possibly of 
infinite degree. Then we say that ElF is unramifled (respectively, totally rami­
fied) at a place u of F if there exists a chain 
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of finite extensions such that each E;I E;_I is unramified (respectively, totally 
ramified) at every place of E;_I lying above u. 

The Ring of Integers of a Global Field 

Let K be a global field. If K is a number field, then the ultrametric places of K 
are also called finite places; the Archimedean ones are also called infinite 
places. 

If p= char(K) is positive, we fix an element teK such that K is a finite sepa­
rable extension of Fit) with Fq = K 11 Fp. Here t is not canonically defined, but 
this is of no consequence to what follows. We shall now define the infinite 

places of K to be those lying over that place of F P) represented by 

If I g Lx) = leg(f}-deg( g) . 

The remaining places of K are then called finite. We emphasize that in the 
function field case, the distinction between finite and infinite places does not 
correspond to the dichotomy of the ultrametric versus the Archimedean. 

DEFINITION. Let K be a global field, with finite and infinite places defined as 
above. Then we define OK' the integers of K, as follows: 

OK = n{x eK:lxlv S; I} 
v finite 

Thus OK is the intersection of the local rings of integers at all finite places of K 
and is therefore itself a ring. 

In consonance with this definition we shall in the sequel often write 0Kv for 
what we had previously denoted 0v when we wish to emphasize the underlying 
local field. 

The proposition below summarizes the most important properties of the in­
tegers of a global field. The proof is largely elementary algebra and is therefore 
omitted. 

4-35 PROPOSITION. The ring of integers OK of a global field K has the following 
properties: 

(i) OK is a Noetherian domain that is integrally closed in its field of 
fractions; moreover, every prime ideal of OK is maximal. 

(ii) OK is in fact the integral closure of Z in K if K has zero characteris­
tic, and the integral closure of Fq[t] in K if K has positive charac­
teristic. D 
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Part (i) says that OK is a Dedekind domain, from which it follows that every 
nonzero element or ideal is contained in only finitely many prime ideals. (See 
Appendix B.) This tells us in particular that the fraction field of OK is in fact K 
itself. 

Henceforth, for K a global field, a prime of K is simply a nonzero prime 
ideal of the ring of integers OK. One shows easily that the quotient field 0KIQ 
(computed globally) is isomorphic to the local version o)Qy, where v is the 
ultrametric place associated with the prime Q. In particular, this quotient is 
finite. We shall often write KQ rather than Ky to denote the completion of Kat 
the place corresponding to Q; similarly we often write 0 for Oy. 

If KIF is an extension of global fields, then we say t'ht a prime Q of K lies 
above a prime P of F if either of the following equivalent conditions holds: (i) 
the place of K corresponding to Q lies above the place of F corresponding to P, 
or (ii) P~Q. 

4.5 Ramification and Bases 

We close this chapter with two principal results. The first places a finite limit 
on the number of primes that ramify in a finite separable extension KIF of 
global fields. The second, which is quite technical, describes how we pass from 
a global basis of KIF to a basis of the product of local extensions K)Fu relative 
to a fixed place u of F. This is essential to our geometric analysis of the adele 
group in the following chapter. 

Ramification and the Decomposition Group 

Consider a finite Galois extension KIF of global fields with G=Gal(KIF), and 
let Q be a prime of K. Then Q lies above some prime P of F, and we let F de­
note the residue field 0FIP. We define the decomposition group of Q in G to be 

DQ = {ue G I o(Q)=Q} . 

Now suppose that the residue field 0KIQ is the finite field Fq , a finite extension 
of F. We have a canonical homomorphism 

that associates with ueDQ the map (x modQ ~ o(x) modQ) for all XEOK• This 
makes sense because o(Q)=Q for all uin the decomposition group of Q. Also, 
PQ (0") is trivial on F = 0FI P, since u is trivial on F. 

We shall have more to say later about the decomposition group in connec­
tion with the Frobenius elements, which we study in Chapter 6. For the mo­
ment we need only these elementary facts about the homomorphism PQ: 
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4-36 PROPOSITION. The canonical map PQ : DQ-+Gal(F/F) has the following 
three properties: 

(i) PQ is surjective. 

(ii) PQ is also injective if and only if P is unramijied in K; i.e., if and 
only if the local extension KQI Fp is unramijied. 

(iii) Each creDQ extends to an automorphism of the completion KQ that 
is trivial on the subfield Fp. The induced map 

is in fact an isomorphism. 

PROOF. We first show that the order of DQ is the degree of the local extension 
KQIFp. Let G=GaI(KIF). Then G has order efg, where e andfare the common 
ramification index and residual degree of the primes lying over P, and g is the 
number of such primes. But since G acts transitively on the set of primes of K 
lying above P (see Exercise 5 below) and rDQ=r'DQ if and only if r(Q)=r'(Q), 
the integer g is also the index of DQ in G. Hence o(G)=go(DQ), whence the 
decomposition group of Q has order ef, the degree of the corresponding local 
extension. This proves the asserted equality. 

We can now prove assertion (iii). Each creDQ is by construction an isometry 
of K, and so the extension jQ(cr) clearly exists and respects Fp. Moreover, jQ is 
injective: j Q( cr) cannot be trivial unless cr is. But as we have just shown, D Q and 
Gal(KQIFp) have common order, whencejQ is indeed an isomorphism. 

Next consider the commutative diagram 

where PQ is the map crH (xmodQ H o(x)modQ). Let LlFp denote the 

maximal subextension of KQIFp such that L is unramified over Fp. From our 
analysis of unramified extensions in Section 4.3, we know that LlFp is normal 
over Fp and that Gal(LlFp) is isomorphic to Gal(F/F) by the "restriction" of 
PQ to Gal(LlFp). This yields assertion (i), because ordinary restriction from KQ 

to L yields a surjective homomorphism from Gal(KQIFp) to Gal(LlFp). 

Finally, we deduce assertion (ii) from the triangle. Since Gal(LlFp) already 

maps surjectively onto GaI(F/F), PQ-and hence PQ-is moreover injective 
exactly when L=KQ ; that is, exactly when the local extension is unramified. a 
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Our goal for the remainder of this subsection is to establish the following 
fundamental result, which will be critical to our subsequent discussion of local 
and global bases. 

4-37 PROPOSITION. Let KIF be a finite separable extension of global fields. 
Then there are at most finitely many primes P in F that ramify in K. 

REMARK. This is a far less precise statement than one might make using the 
notion of the relative discriminant of KIF, but the present assertion suffices for 
our purposes. (See Exercises 13, 14, and 15 below and Appendix B, Section 2.) 
Moreover, the nonstandard proof that we give uses a key idea found in the 
proofs of the Tchebotarev density theorem and the Artin reciprocity law, both 
stated in Chapter 6: the reduction to cyclotomic and Kummer extensions. 

PROOF. The argument proceeds in four steps. The first three are reductive; the 
fourth is a direct argument for a much simplified special case. 

STEP 1. We may assume that KIF is finite and Galois. Indeed, if K is not nor­
mal over F, let E be its normal closure. Then a prime P that ramifies in K must 
certainly ramify in E: the ramification index measures the order of the corre­
sponding uniformizing parameter in a local extension KQIFp, and this can only 
get larger if we pass to E. Thus it suffices to show that only finitely many 
primes ramify in E. 

STEP 2. We may assume that KIF is cyclic of prime degree, say I. This is con­
siderably more subtle. We claim that any given prime P of F ramifies in K if 
and only if there exists some intermediate field K), K -;2K) -;2F, such that 

(i) KIK) is cyclic of prime degree, and 

(ii) there exists a prime divisor p) of Pin K) such that p) ramifies in K. 

Certainly the backward direction is trivial, so suppose that P ramifies in K. 
Then there exists a prime divisor Q of P in K such that KQIFp is ramified, with 
corresponding residue fields F q and F. But then the natural map 

is surjective but not injective by the previous proposition. Let N denote the ker­
nel of this map. Again by the previous proposition, we may identify N with a 
subgroup of the decomposition group D Q' and of course KQ is ramified over any 
intermediate field containing K~. Since KQ*K~, we may choose an interme­
diate field L with KQ-;2L-;2 K~ and KQIL cyclic of prime degree. Let H be the 
subgroup of DQ corresponding to Gal(KQIL) and put K)=K". Then KIK) is also 
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cyclic of prime degree. Let p)=Qr1 0Kl' so that p) is a prime between P and Q, 
and the completion of K) at p) may be taken in KQ. Now Gal(KIK) is con­
tained in DQ , so in fact the decomposition group of Q computed relative to K) 

is the full Galois group. Thus by the definition of K) and part (iii) of the previ­
ous proposition, 

and therefore (K)PI =L. Since KQI(K)PI is ramified by construction-after all, 
Gal(KIK) is also contained in N-we have established our assertion. 

According to this claim, then, any prime that ramifies in KIF gives rise to a 
prime that ramifies in a cyclic intermediate extension of prime degree. But 
since there are only finitely many such intermediate extensions-indeed, in­
termediate extensions of any kind-it suffices to show that only finitely many 
primes ramify under these special conditions. 

STEP 3. We may assume that KIF is cyclic of prime degree I and that F con­
tains all of the Ith roots of unity in the algebraic closure ofF. If 1= p, the char­
acteristic of F, then the only Ith root of unity is I itself, and the present case 
reduces trivially to that of the previous step. Hence we may assume for the bal­
ance of this step that I is different from p. Let , denote a nontrivial, hence 
primitive, lth root of unity in F, and consider the following diagram of fields: 

To verify our reduction, it suffices to show that there are only finitely many 
primes P in F that ramify in F( 0. For then if there are only a finite number of 
primes of F(0 that ramify in K(0, there can only be finitely many primes of F 
that ramify in K. 

Now consider the extension F(0IF. In the function field case, all of the resi­
due fields have characteristic p, which is here assumed distinct from I. In the 
number field case, for only finitely many primes P of F is the corresponding 
residual field of characteristic I, since as we have seen, the restriction map for 
absolute values has finite fibers. In either case, for all but the finitely many 
primes whose residual characteristic is I, the local extension Fp(01Fp is un­
ramified by Proposition 4-25. This concludes Step 3. 
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STEP 4. We shall now prove the proposition in the case that KIF is a cyclic Ga­
lois extension of prime degree I, with the further assumption that F contains all 
of the Ith roots of unity in its algebraic closure. 

If I is different from p, the characteristic of F, by standard Kummer theory 
we have K=F(a), with a a root off(x)=xCa, for some aeF*, where a itself is 
not an Ith power in F. If I is identical to p, then again K=F(a), but this time a 
is a root of f(x)=xP- x-a, for some a as characterized previously. Let S be the 
set of primes P in F such that I a Ip:;t 1. Then S is finite, since OF is a Dedekind 
domain. Further define S' (again finite) by 

{s if char(F) > 0 

S' = S u {primes P with residual characteristic :;t I} if char(F) = 0 . 

The proof will be complete once we establish the following result: 

4-38 LEMMA. Suppose that P does not lie in S'. Then for any prime Q of K ly­
ing over P the local extension KQIFp is unramified. 

PROOF OF LEMMA. Clearly the local extension is either trivial or cyclic of degree 
I. We may thus assume the latter case, so that a is a root of f(x) in KQ-Fp. Let 
L be the maximal unramified subextension of KQlFp. We have the following 
diagram of local and residual fields: 

KQ--Fq 

I I 
L--Fq 

I I 
Fp--F 

Now we consider the consequences of the relation f(a)=O. First note that 
whichever of the two forms thatftakes, since a is a unit in op (for P not in S, 
I alp = 1 !), it follows that a is itself a unit in 0Q and, in particular, integral with 
respect to Q. Second, f(x) has a root fJ in the residual field F q that arises from 
an integer of the corresponding local field. This second statement clearly holds 
also at the middle level of the diagram above, and this is the key to the argu­
ment. Let us compute the formal derivative of f(x): 

{
I /-1 

f'(x)= x 
-1 

if l:;t p 

if/=p. 
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In either casef'(fJ) is not congruent to zero modulo P, and Hensel's lemma 
(Exercise 6) applies-to the middle level!-to lift p to an integer of L. But then 
L contains a root of F and KQ = L. Thus P is unramified. 0 

This complete the proof of the full proposition. 

REMARK. Note that the hypotheses of Hensel's lemma, namely that 

(i) f(fJ) == 0 (mod P) and 

(ii) f'(fJ) =I 0 (mod P), 

o 

imply that f and f' do not have any roots in common; that is, the discriminant 
off [or the resultant of (f,f~] is nonzero modulo P. This naturally leads to the 
use of the discriminant of KIF to determine which primes ramify-typically the 
more common approach. 

Global and Local Bases 

In this subsection, KIF is a finite separable extension of global fields. Let u be a 
place of F, and defineMby 

That is, M is the product of all the completions of K at places lying over u. We 
have an embedding 

where V'v is the canonical embedding given by the completion at v. The fol­
lowing result is fundamental. 

4-39 PROPOSITION. Let {el' ... ,en } be an F-basis of K, and let u be a place of 
F. Then X= { V'(e I)' ... , V'(en)} is an Fu-basis of M. Moreover, there exists 
a finite set S of places ofF, containing the Archimedean ones, such that 
for all U(£S, 

is free over 0Fu with basis X 
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If L and M are extensions of a common field k, then Hom,,(L, M) denotes the 
set of embeddings of L into M that induce the identity map on k. 

PROOF. Extend If/ to an Fu-linear map 

in the obvious way. Both sides are Fu-vector spaces of dimension n, since as we 
have just seen, the sum of the local degrees [Kv:Fu1 is precisely the dimension 
of Kover F, and clearly {ei®l}l~i~n is an Fu-basis for the domain. Hence it 
suffices to show that rp is injective, in fact over F,.. This requires one technical 

preliminary. 
Recall from our discussion of local and global degrees that K = F( a) for some 

a and that every embedding of K into F,. over F is induced by an assignment 
a H p, where p is a root of the minimal polynomial p(x) of a over F. More­
over, the associated place induced on K depends exactly on the conjugacy class 
of p: the assignments a H p and a H p' give rise to the same place of K if 
and only if p and p' are roots of the same irreducible component of p(x) when 
factored over Fu. The upshot of this discussion is that we can construct a bijec­
tion It between the global and local embeddings into the algebraic closure of Fu 
as follows: 

It:HomF(K,F,,) ~ UHomFu(Kv,F,,) 
vlu 

(T (T. 

(a H P) H (If/v(a) H P) 

We now proceed with the main body of the proof. Consider the following 
diagram: 

where It. is the isomorphism induced from It and K is the F" -linear injection 

induced by the F" -bilinear map 
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K x F.. ~ p"HOmF(K.Fu ) 

(x, y) 1-4 (o'(X)y )O'EHOmF(K.Fu ) 

and similarly for each K". Since by construction each embedding CT: K ~ F,. 
1Jf" (Tv _ 

factors as K ~ K v -+ Fu for some unique v I u, we have that 

But also 

and this is the same as the v-component of A,.(K(X®Y». Hence the diagram is 
commutative, and it follows that rp® 1 and rp are injections, as required. 

We now prove the second assertion of the proposition. Let u be any finite 
place of F. Since 0Fu is a discrete valuation ring and therefore a principal ideal 
domain, each OK, is free over 0Fu' and thus OM is likewise free over 0Fu ' The pre­
vious part shows that in fact the rank of OM is dimFu(M)=n, the cardinality of 
the basis X={ vr(e), ... , vr(en)}. Let S' be the finite set of places consisting of 
the Archimedean ones, the unramified ones, and those corresponding to primes 
that divide the numerators or denominators of the ej' Then X certainly lies in 
OM for all urtS'. Now consider the following claim: 

CLAIM 1. There exists a finite set S-;;;J,S' such that for all urtS, the collection 

{vr(e), ... , vr(en)} spans OM over 0Fu' 

Granting this, the collection {vr(e), ... , vr(en)} is clearly a basis for OM over 0Fu 

for all urtS, as required. 
To establish Claim 1, we consider the modules 

j j 

Then Lu~OM=OK®OF 0Fu for all urtS'. (The isomorphism follows from the 
equality of dimensions.) The claim now follows, provided that Lu = OM for all but 
finitely many of these u. Let Pu be the unique prime ideal of 0Fu' Then by 
Nakayama's lemma it suffices to show that 
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and since u is unramified, this amounts to establishing 

Lu +(TI Pv)OM = OM 
vlu 

where P y is the unique prime ideal of OK • This in turn follows almost every-
where from our next claim. v 

CLAIM 2. For almost all places u, the elements V/(e) span the product 

Here the bar denotes canonical projection into the quotient module. To prove 
this, put 

Iu = TI(PvIlK)£;;K 
ylu 

Then R identifies with 0K'Iu by the Chinese remainder theorem, since the prime 

ideals PyllK are all also maximal; moreover, each V/(e) identifies with "if" 

Thus Claim 2 is equivalent to the following, which finally we prove directly: 

CLAIM 3. For almost all places u, we have 

PROOF OF CLAIM 3. Note that the indicated inclusion is equivalent to the state­
ment that OK £;; L + Iu. Put Q{= LIl OK. We have the following chain of equiva­
lences: 

OK ex. L + Iu ¢:> OK ex. Q,( + Iu 

¢:> Q,( + Iu £;; P y for some vlu 

¢:> Q,(£;;Py for some vlu . 

The second equivalence follows because Iu is not contained in any maximal 
ideal other than P y. But by the general theory of Dedekind domains, Q,( is con­
tained in only a finite number of prime ideals of OK' and hence we have the re­
quired inclusion for almost all u. CJ 
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Note that since K®~u and M=TIv1uKv are both finite-dimensional of the 
same dimension, they acquire a canonical locally compact topological structure 
from Fu' Thus we end with the following useful result, whose proof is left as an 
exercise. 

4-40 PROPOSITION. The algebraic isomorphism K®FFu ~ M= TIvlu Kv is in fact 
a topological isomorphism. a 

Exercises 

1. Let a be an automorphism of a locally compact group G. Show that if G is 
discrete, then the module of a is 1. 

2. Construct a strictly multiplicative F: N ~ R+ such that the conclusion of 
Proposition 4-10 does not hold. (In particular, F must not satisfy the given 
inequality.) 

3. Let V be a locally compact topological vector space over a nondiscrete lo­
cally compact field k, and let W be a subspace of V. Show the following, 
without appeal to the fact that V must indeed be finite-dimensional over k 
(cf. Proposition 4-13): 

(a) V is topologically isomorphic to WEBW' for some subspace W' that is to­
pologically isomorphic to VIW. Here W and W' have the topology induced 
by the projection maps prw(X) and prw'(X); i.e., the weakest topology that 
makes these projections continuous. (Note that both subspaces are trivially 
locally compact with respect to this topology.) 

(b) If X is a Borel subset of V, then pr w(X) and pr w.(X) are Borel subsets of W 
and W', respectively. 

(c) Let p and p' be Haar measures on Wand W', respectively. Show that the 
product p(prw(X»'p'(prw'(X» is a Haar measure on V. 

(d) Conclude that for each aek, modv(a)= modw(a)' modw.(a). 

4. Let K be a finitely generated extension of transcendence degree 1 of the 
finite field F. (Hence K is a global field.) Show that there exists an element 
u in K such that K is a finite separable extension of the function field F(u). 

5. Let KIF be a finite Galois extension of global fields, and let P be a prime of 
F. Show that G=Gal(KIF) acts transitively on the set of primes of K lying 
above P. [Hint: Let Q and Q' lie above P and suppose that o(Q) does not 
equal (and therefore is not contained in) Q' for all CTeG. What, then, can 
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one say about IT.,. a(Q)? Does this product not lie in P? Must it not also 
then lie in the prime ideal Q'?] 

6. (Hensel's Lemma) Let F be a non-Archimedean local field with ring of 
integers 0F={aeF: lal::; I} and prime ideal P={xeF:lxl < I}. Letfeop-{x] 
be such that for some aeoF, 

1(a)=.0 (modP) but f(a);;=O (modP) . 

Show that there exists beoF such that f(b)=O. Use this to show that F 
contains all of the qth roots of unity for q=Card(oFIP). 

7. (Krasner's Lemma) Let Fbe a non-Archimedean local field with algebraic 
closure F. Suppose that a, fJ e F satisfy 

IfJ - al < Ira- al VreHomF(F(a),F) 

and that fJ is separable over F(a). Show that F(a)r;;,F(fJ). 

8. Let Fbe a non-Archimedean local field and letfeflx] be a monic, irreduc­
ible, separable polynomial. Let g be another monic polynomial in flx] of 
the same degree. Identifyingfand g as points in the metric space F(degf+1), 

show that if g is close enough to f, then g is also irreducible. Show also that 
there is a bijection {aj } .... {fJ;} between the roots of f and those of g such 
that F(aj)=F<pj) for all i. [Hint: Use the previous problem.] 

9. Let Fbe a global field with non-Archimedean completion F y , and let EIFy 

be a finite extension of degree d. Show that there exists an extension KIF 
of degree d such that K embeds densely in E. [Hint: Use the previous exer­
cises.] 

10. Let F be a non-Archimedean local field. Show (i) that for every n~I there 
exists a unique unramified extension Fn of degree n. Now let Fur denote the 
maximum unramified extension of F in its algebraic closure. Prove (ii) that 
we have the following isomorphism of topological groups: 

Gal(FurIF) == Z = lim(ZlnZ) .... 
n 

(See also Section 1.3.) 

11. Let F be a non-Archimedean local field with prime ideal P and let ElF be a 
totally ramified extension of degree e. Show that any uniformizing element 
1r of E satisfies an Eisenstein equation over F; i.e., an equation of the form 
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e 

Lajxj = 0 (aj EOF ,Vj; ae= 1; a/" 0 modP, Vj S; e-l; ao~O mOdp2 ) • 

j;O 

12. Show that for all n~l, a non-Archimedean local field has only a finite 
number of extensions of degree less than or equal to n. [Hint: Use the pre­
vious three exercises.] 

13. Let K/F be a finite separable extension of non-Archimedean local fields, 

with respective rings of integers OK and OF' and uniformizing parameters "K 

and "F" We define the inverse different (or codifferent) V~ of Kover Fto 
be "j/OK' where d is the largest integer such thattrK$("J/OK)~OF' The 
different'lJKlF is then given by 

and the discriminant AKIF by 

where N KIF is the norm map. Thus AKIF is an ideal of oF" (See Appendix 
B.2 for a more general treatment in the case ofa Dedekind domain.) 

REMARK. When F is either Qp or Fi(t», one drops the expression "over 
F" and simply writes vK and ilK for the different and the discriminant, re­
spectively. 

(a) Let n= [K:F]. We know from the elementary theory of principal ideal do­

mains that there exist elements e l' """, en E OK that constitute a basis for oK 

over OF" Use this fact to obtain the formula 

where 

(b) Use part (a) to show that K/Fis unramified (that is, if eKlF=I) if and only if 

AKIF is a unit in OF" [Hint: Show that the discriminant is a unit in OF if and 
only if its image in 0F/ "FOF is nonzero, and that this in tum occurs if and 
only if 0K/ "FOK is a field. Then apply Corollary 4-26.] 
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(c) One says that KIF is tamely ramified if the residual characteristic p does 
not divide e(KIF}. Show that KIF is tamely ramified if and only if v/.'lJKlF) 
(this is the exponent d occurring in the definition of the different) is pre­
ciselye(KIF}-l. [Hint: Show that these conditions are equivalent to having 

°F=trKlF(OK)·] 

(d) Let LlK also be finite separable extension. Show that 

and that 

14. Let KIF be a finite separable extension of global fields. The inverse differ­
ent of Kover F is defined by 

This is a fractional ideal of K, whence we set 'lJKlF' the different of Kover 
F, to be its inverse fractional ideal. (Again see Appendix B, both for a dis­
cussion of fractional ideals and for a more general treatment of the notions 
under discussion here.) Define the discriminant IlKlF to be the ideal of OF 
generated by NKlF('lJKlF). 

REMARK. As above, we abbreviate the notation for the different and the 
discriminant to 'lJK and ilK' respectively, when F is a prime global field. 
Moreover, in the case of a number field we write dK for the integer defined 
up to sign by IlK=dKZ and loosely refer to this number as the discriminant. 

(a) Show that z>x..)p is the largest fractional ideal J of K such that trKlF(J)~OF. 

(b) Prove the final part of the previous exercise in this global setting. 

(c) Let P be a prime ideal in oF" Show that 

where the product is taken over the primes of OK that lie above P. Conclude 
that P is unramified in K if and only if it does not divide IlKlF . 



178 4. The Structure of Arithmetic Fields 

(d) Suppose that OF is a principal ideal domain. Show, as in part (a) of the pre­
vious exercise, that 

where {e)j,,;n is an 0F"basis for OK. If 0F= Z, show that AK= AKlF( e I' ... , en) is 
independent of the choice of OF-basis. 

(e) Show that every finite extension K of Q must be ramified at some prime p. 
[Hint: Use the previous two parts.) 

15. In light of the previous exercises, we shall now examine cyclotomic exten­
sions. 

(a) Let K=Q[e21rilpn). Show that Z[e21rilpn) is the ring of integers in K. 

(b) Let K be as above. With the AK as in the fourth part of the previous exer­
cise, show that 

[Hint: Use Exercise 13 and evaluate 

the so-called Vandermonde determinant.) 

if pn = 4 or pn == 3 mod 4 

otherwise. 

(c) For m~l, let Km=Q[e21rilm), and let Am denote the corresponding discrimi­
nant. Show that if m and r are relatively prime integers, then 

Conclude that the ring of integers in Km is Z[ e21ri1m). 

(d) With Km as above, show that for any m~l, the prime p ramifies in Km if 
and only ifplm. 
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Adeles, Ideles, and the Class Groups 

To do harmonic analysis on a global field F, one needs to introduce two locally 
compact abelian groups: AF , the adele group, and IF' the idele group. From one 
perspective, if we view F as a discrete group, it is of great interest to determine 
its Pontryagin dual ft, which we know must be compact. Recall that for the 
particular discrete group Z, its dual is simply the quotient RlZ. We shall see in 
our analysis that the adele group plays the role of R, in the sense that F natu­
rally embeds discretely in AF with compact quotient AFIF, which ultimately 
can be identified with ft. For F=Q, one has a canonical surjection AQ~R, 
which induces a covering map ~/Q~RlZ with totally disconnected fibers. 
This is discussed, after some preliminaries on approximations, in Section 5.3. 

The adele group of a global field F, which is moreover a topological ring, is 
defined as the "restricted direct product" of the additive groups of the various 
local completions Fv' The restriction is that an element (xv> of AF must satisfy 
the condition that almost all of its coordinates Xv lie in the ring 0v of integers of 
F v ' for v finite. The notion of a restricted direct product is in fact more general, 
as developed in Section 5.1, and applies again when the additive group is re­
placed by the multiplicative group, leading to the construction of IF' the idele 
group. This was first introduced by C. Chevalley as a generalization of the no­
tion of an ideal in F. It turns out that F* embeds discretely in IF' but is not co­
compact. The quotient CF=IFIF* is called the idele class group of F. We shall 
see in Section 5.4 that there exists an important compact abelian group C~ such 
that CF is isomorphic as a topological group to C~ x R: if F has characteristic 
zero, and to c1 x Z if F has positive characteristic. Moreover, the classical 
ideal class group and the ray class group relative to an ideal reveal themselves 
to be quotients of CF • 

From the vantage point of number theory, the role of AF and IF' at least ini­
tially, was to provide an efficient derivation of the classical results of algebraic 
number theory, as we shall now see. We discuss its further impact on class field 
theory in Chapter 6. The important later work of Tate, building on the work of 
Matchett, expanded this role immeasurably, and entered-at the suggestion of 
E. Artin-analytic number theory as well. Suddenly there surfaced a radical 
new way to derive Hecke's results on a class of zeta functions, and it led to an 
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explicit fonnula for the "root number" occurring in their functional equations. 
These issues are fully dealt with in Chapter 7. 

In many modem applications not discussed in this book, one replaces the 
multiplicative group of AF with G(AF), where G is a general "reductive" matrix 
group such as GLn • The groups G(AF) are locally compact, and the quotients 
G(F)\G(AF) are important homogeneous spaces. If Z denotes the center of G, 
then XF=G(F)Z(AF)\G(AF) has finite volume, and the harmonic analysis on 
L2(XF) relative to the right action of G(AF) holds the key, according to the 
general philosophy of Langlands, to understanding the nonabelian extensions 
ofF. 

5.1 Restricted Direct Products, Characters, and Measures 

Let J ={v} be a set of indices, and let J«) be a fixed finite subset of J. Assume 
that for every index v we are given a locally compact group Gv' not necessarily 
abelian, and that for all v~J«), we are further given a compact open (hence 
closed) subgroup Hv ofGv. 

DEFINITION. We define the restricted direct product of the Gv with respect to 
the Hv as follows: 

D' Gv = {(xv): Xv eGv with Xv eHv for all but finitely many v} . 
veJ 

Note that the Hv are concealed in this notation; this will cause no confusion. 
Let G denote the restricted direct product of the Gv with respect to the Hv' 

Clearly G is a subset of the ordinary set-theoretic direct product of the Gv and, 
moreover, a subgroup of the group-theoretic direct product. (In fact, G lies be­
tween the direct product and the direct sum of the component groups.) 

We define a topology on G by specifying a neighborhood base of the identity 
consisting of sets of the fonn I1Nv where Nv is a neighborhood of 1 in Gv and 
Nv=Hv for all but finitely many v. Note that this topology is not the product 
topology; it is best understood in tenns of the following construction. 

Let S be any finite subset of J that contains J «), and consider the subgroup G s 
of G defined by 

Gs = D Gv x D Hv . 
yeS Vf!S 

Then G s is the product of a finite family of locally compact groups with a com­
pact group; hence Gs is locally compact in the product topology. Now here is 
the key point: the product topology on G s is identical to that induced by the 
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topology defined in the previous paragraph. Hence each subgroup of the fonn 
G s is locally compact with respect to the topology of the restricted direct prod­
uct. Since every xeG belongs to some subgroup of this form. it follows at once 
that G is locally compact. 

One verifies at once that G is a topological group with respect to the indi­
cated group structure and topology. Hence we have proven the first part of the. 
following result: 

5-1 PROPOSITION. Let Gy and Hy be as above. and let G be the restricted direct 
product of the Gy with respect to the Hy • Then 

(i) G is a locally compact group. 

(ii) A subset Y of G has compact closure if and only if Y r;;;. ITKy for some 
family of compact subsets Kyr;;;.Gy such that Ky= Hy for all but finitely 
many indices v. 

PROOF. As noted, we need only argue the second part. Suppose that K, the clo­
sure of Y, is a compact subset of G. Since subsets of the fonn Gs cover G and 
since subsets of this fonn are clearly open, a finite number of G s cover K. But a 
finite union of G s is obviously contained in a single subset of this fonn, whence 
we conclude that K r;;;. G So for some finite collection of indices So. From this we 
can draw two conclusions: 

(a) Let Py denote the projection from G onto Gy. Since the topology of G in­
duces the product topology on G so' each map Py is continuous. Hence Py(K) 
is compact for all v. 

(b) py(K)r;;;.Hy for all but finitely many v. 

It follows at once that K, and hence Y, is contained in a product ITKy of the 
required fOnD. The converse is obvious. 0 

Finally, note that for each v we have a topological embedding 

Gv ~ G 

x 14( ... ,I,I,I,X,I,l,l, ... ). 
1 

vth component 

Since the image of Gy under this embedding evidently lies in G{y}, which en­
joys the topology of pointwise convergence, it follows that each Gy may be 
identified with a closed subgroup of G. 
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Characters 

The material in the remainder of this section, while logically belonging to the 
current discussion, will not be used until Chapter 7. Since our immediate con­
cern is with characters, in this subsection we restrict our attention to abelian 
groups. 

Assume that G is the restricted direct product of the locally compact abelian 
groups Gy with respect to the open subgroups Hy. As usual, if yeG, we write yy 

for the projection of y onto the factor Gy and, as addressed above, we identify 
Gy with a closed subgroup of G. 

5-2 LEMMA. Let xeHomcont(G, C*). Then X is trivial on all but finitely many 
Hy. Consequently,for yeG, X(Yy)= l/or all butfinitely many v, and 

x(y) = I1X(Yy) . 
y 

PROOF. We can obviously choose a neighborhood U of 1 in e* such that U 
contains no subgroups of e* other than the trivial subgroup. Let N=I1Ny be an 
open neighborhood of the identity of G such that x(N)r;;; U, with Ny=Hy for all 
v lying outside some finite subset S of the full index set. Then 

whence 

But the left-hand side is a subgroup ofe*, and so 

In particular, X(Hy)={l} for all v~S. Now given yeG, we can factor it into a 
productY\Y2Y3 where 

y\ is the finite product of the projections of y that lie outside of any Hy; 

Y2 is the finite product of the projections of y that lie in some Hy for v a 
member of the index set S identified above; 

Y3 comprises the remaining projections of y, all of which lie in some Hy for v 
not lying in S. 

This shows that X is trivial on all but finitely many projections of y; the product 
formula follows at once. CJ 
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5-3 LEMMA. For each v let X" lie in Homcont(G",C*) and assume that X"IH,,=l 
for all but finitely many v. Then x= TIX" lies in Homcont(G, C*). 

PROOF. Let S be a finite set of indices such that X"IH,,=l for v~S, and let m be 
the cardinality of S. As in the previous proof, x= TIX" is well-defined (i.e., 
amounts to a finite product), and thus the only issue is continuity. Let U be a 
neighborhood of 1 in C*. Choose a second neighborhood V such that v(m)~u. 
For each veS there is a neighborhood N" of the identity of G" such that 
X,,(N,,) ~ v. It follows that 

is a neighborhood of the identity in G that lies in the inverse image of U under 
X. Hence X is continuous, as required. [J 

A 

Given an arbitraIy G", as usual we can form its dual group G". If moreover, 

v~J 00' then define K(G",H,,) to be the subgroup of characters on G" that restrict 
to the trivial map on H". Recalling from Section 3.1 the construction of the 

compact open topology on the dual group, we see that if U is a sufficiently 

small neighborhood of 1 eSt, then, as above, K(G", B,,)= W(H",U). (The point 
again is to choose U so small that i! contains no nontrivial subgroups of C*.) 

Hence K(G",H,,) is at least open in G". Now let xeK(G",H,,), and consider the 
following commutative diagram: 

This shows that the assignment XI4 Z defines a mapping from K(G",H) to 
(GJH,,)". One shows easily that this is in fact an isomorphism of topological 

groups. Since H" is open in G", it follows that GJH" is discrete, and hence 

(GJH"),, is compact. Thus K(G",H,,) is likewise cof!1pact, and it makes sense to 
form tlle restricted direct product of the groups G v with respect to the sub­

groups K(G",H,,). 

5-4 THEOREM. Let G", H" be as above, and let G be the restricted direct prod­
uct of the G" with respect to the H". Then as topological groups, 
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where the restricted direct product on the right is taken with respect to the 
subgroups K(Gv,Hv) defined above. 

PROOF. Consider the mapping 

rTav ~ a 
(%v) H Il%v 

In view of the two previous lemmas, this is clearly an isomorphism of abstract 
groups. Hence it remains to show that rp is bicontinuous, and for this it is 
enough to establish bicontinuity at the identity. 

Let U be a neighborhood of 1 in C* and let K be a compact neighborhood of 
the identity of G. We know that K= TIKv' where Kv is a compact neighborhood 
of the identity of Gv and Kv = Hv for all but finitely many indices v. A character 
% on G lies in the open neighborhood W(K, U) of the trivial character if and 
only if .x(K) = TI.x(Kv)!;;;; U. Suppose that the subset S of indices for which % is 
nontrivial on Kv has cardinality m. As previously, we can find a neighborhood 
Vof 1 in C* such that V<m)!;;;; U. Then if 

(%v)eN= nW(Kv,v) x IT K(Gv, Hv) 
yeS YES 

it follows at once that rp<xv> e W(K, U). But since by definition of the restricted 
direct product topology N is an open neighborhood of the identity in its ambient 
group, rp is continuous. 

Finally, with the notation as above, let N = TIW(Kv' U) be an open neighbor­
hood of the identity in the restricted product TI'Gv • Then clearly W(TI~,U) is 
contained in rp(N), and hence rp is open as well as continuous. 0 

Measures 

We shall now show how to define measures on restricted direct products of lo­
cally compact groups and, in the abelian case, on their Pontryagin duals. 

5-5 PROPOSITION. Let G= TI'vEJGv be the restricted direct product of locally 
compact groups Gv with respect to the family of compact subgroups 
Hv!;;;;Gv (for v~J,j. Let dgv denote the corresponding (left) Haar measure 
on Gv normalized so that 
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for almost 01/ v~Joo' Then there is a unique Hoar measure dg on G such 
that for each finite set of indices S containing J 00' the restriction dgs of dg 
to 

Gs = IT Gv x IT Hv 
veS v~S 

is precisely the product measure. 

PROOF. Choose a set S as indicated and define a measure dgs by taking the 
product of the measures dgv ' The normalization of these measures forces the 
volume of the compact group TIvEsHv to be finite, as needed, and one checks 
easily that dgs is indeed a Haar measure on Gs . Suppose now that T;;~S is a 
larger finite set of indices. Then, of course, 

Gs = <IT Gv x IT Hv) x <IT Hv)!;; <IT Gv x IT Gv) x <IT Hv) = Gr 
veS veT-S v~T veS veT-S v~T 

Moreover, by construction, 

dgs = <IT dgv x IT dgv) x <IT dgJ 
veS veT-S v~T 

and 

dgr=<ITdgvx ITdgv)x<ITdgv )' 
veS veT-S v~T 

We conclude at once from this that dgs coincides with the restriction of dgT to 
the subgroup Gs. 

Now, since G is locally compact, we know it has a Haar measure, which 
restricts to a Haar measure on any Gs . Accordingly, we may fix any set S of 
indices containing J"", and define a Haar measure dg on G to be the Haar 
measure that restricts to dgs' That this measure is independent of S and unique 
follows from the conclusion of the first paragraph: given two sets of indices S 
and S', the measure dg constructed relative to S uniquely picks out the product 
measure on G sus' and hence also on G s" [J 

Henceforth we write 

dg= IT dgv 
v 

for the (left) Haar measure on G defined by the proposition. We refer to this as 
the measure induced by the factor measures. We shall next learn how to inte­
grate nice functions on G relative to dg. 
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5-6 PROPOSITION. Let G be a restricted direct product of locally compact 
groups as above, with induced measure dg. 

(i) Letfbe an integrablefunction on G. Then 

f f(g)dg = li~ f f(gs)dgs . 
G Gs 

Iff is only assumed to be continuous, this formal identity still holds, 
provided that we allow the indicated integral to assume infinite val­

ues. 

(ii) Let So denote any finite set of indices including J 00 and those v for 
which Vol(H",dg,,):;f:l, and suppose that for each index v we are given 
a continuous integrable function Iv on G"such that IvIH,,=l for all 
v~So' For g=(g)eG, define 

" 
Then f is well-defined and continuous on G. If S is any finite set of in­
dices including So' we have 

f f(gs )dgs = I1 (f f,,(g,,)dg,,) . (5.1) 
Gs "eS G. 

Moreover, 

f f(g)dg = I1 (f f.(g,,)dg,,) 
G " G. 

and feL I (G), provided that the right-hand product is finite. 

(iii) Let {Iv} and f be as in the previous part, with the added condition that 
Iv is the characteristic function of H" for almost all v. Then f is inte­
grable. Moreover, in the abelian case, the Fourier transform off is 
likewise integrable and in fact given by 

(5.2) 
v 
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PROOF. (i) Certainly 

f /(g)dg = l~ f /(g)dg 
G C 

where the limit is taken over compact subsets C of G. But any such C is con­
tained in some G s' and the limit formula follows. Clearly, the identity holds 
formally for/continuous, but not necessarily integrable. 

(ii) SincelvlHv=l for almost all v and sinceg=(gv)eG has (by definition) almost 
all of its components gv in Hv' TIIv(gv) is in fact a finite product for all such g, 
and / is well-defined. The continuity of/follows easily from the continuity of 
each Iv because a base for G can be given in the form TINvxTIHv' where the 
first factor is a finite product containing all of the components of G on which 
the corresponding function Iv is nontrivial. Hence / may be computed locally as 
a finite product of continuous functions. 

Now fix any S satisfying the hypothesis of part (ii). Then by the definition of 
Gs and the assumption thatlvlHv=1 and Vol(Hv,dg)=1 for all v not in S, it is 
clear that Eq. 5.1 holds since dgs is precisely the product measure on Gs. To 
prove the second statement, note that by part (i), lis integrable if and only if 

li,rt f /(gs)dgs <00 
Gs 

where the limit is taken over larger and larger S. But Eq. 5.1 implies that this 
limit exists if and only if 

li,rt IT (f /.(g.)dg.) = IT (f J,,(g.)dg.) <00 
veS G. allv G. 

which is true by hypothesis. 

(iii) Since Iv is the characteristic function of Hv for almost all v, 

IT (J J,,(g.)dg.) = IT (J /.(g.)dg.) 
• G. yeS G. 

for some finite set S, and is hence convergent. Therefore/is integrable on G. 
In the abelian case, to establish the assertions about the Fourier transform, 

let x=<Zv) denote a character of G, and for each lv, define hv to be the product 
IvXv' Define h as TIvhv' Then h is integrable, since X is unitary, and the asser­
tions of part (ii) applied to h immediately yield Eq. 5.2. CJ 



188 5. Ade1es, Ideles, and the Class Groups 

Assume henceforth that our groups are abelian. The final goal of this section 

is to build a product measure on the group 

• 

that is dual to dg= TIydgy in the sense defined by the Fourier inversion theorem 
(Theorem 3-9), where we again assume that the measures dgy have been nor­

malized so that Hy has volume 1 for almost all v. For each v, let 

denote the dual measure to dgyon Gv • For each v andfELI(G), we have by 

definition that 

J.(x.) = J fv(gv)"iv(gv)dg •. 
Gv 

Iffv is the characteristic function of H y , which is clearly integrable and ofposi­

tive type on Gy , we deduce from the orthogonality relations that in fact 

In other words, if H: is the subgroup of G v consisting of characters trivial on 

Hy [that is, what we have previously denoted K(Gy,H)], then fv(Xv) is the 

characteristic function of H: times the volume of H y • From this observation 

and the Fourier inversion formula, it follows that 

Vol(H.) Vol(H:) = 1 

where the first volume is computed relative to dgy and the second relative to 

dXy' Consequently the latter measure also gives volume 1 to H: for almost all 

v, and we can define dX = (dgf as above. 

5-7 PROPOSITION. The measure dX so defined is dual to dg. That is, 

for all fE VI(G). 

f(g) = J J(X)X(g)dX 
G 
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PROOF. Since we seek only to detennine a nonnalization factor, it suffices to 
check the formula given above for the product functions/=nfv withfv equal to 
the characteristic function of Hv for almost all v. The left hand-side is nfv(g), 
while according to the previous proposition, the right-hand side is 

IT J Jv(Zv)Zv(gv)dZv 
v Gv 

But since dZv is the dual measure to dgv' 

/v(gv) = J Jv(Zv)Zv(gv)dZv 
a. 

for each v, and the assertion follows. [J 

5.2 Adeles, Ideles, and the Approximation Theorem 

Let K be a global field and let Kv be the completion of K at a place v. Then 
(Kv' +) is a locally compact additive group, which in the case of an algebraic 
number field is either R, C, or a v-adic field. For all finite places v, Kv admits 0v 

as an open compact subgroup. The restricted direct product of the Kv over all v 
with respect to the subgroups 0v (v finite) is called the adele group of K and 
denoted Ax. Note that we have an algebraic embedding 

K~Ax 

x H (x,x,x, ... ) 

This map is well-defined because K always embeds in Kv for all absolute values 
v and every element of K is a local integer for all but fmitely many places. 

Along the same lines, for all places v of K, we can consider the locally com­
pact multiplicative groups (Kv *, . ). Here the local units 0: (v finite) constitute 
an open compact subgroup, and hence we may form the restricted direct prod­
uct of the Kv * with respect to the subgroups 0:. This is called the idele group 
of K and denoted Ix. Again we have an algebraic embedding 

K* ~IK 

x H (x,x,x, ... ) 

which is clearly well-defined. 

REMARK. The adele group Ax admits an obvious ring structure, and we have an 
algebraic isomorphism Ix=Axx that identifies the idele group with a subset of 
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the adele group. However, this is not a topological embedding: the topology on 
the idele group as a restricted direct product is in fact stronger than the relative 
topology induced by the full adele group. We can see this easily in the case 
K = Q. Let S be any finite collection of primes including the infinite prime, and 
let Np be any neighborhood of 1 in Qp for peS. Then 

(IT Np x ITZp)nIQ ex R* x ITZ/ . 
peS p~S p<ao 

The point is that we can construct a point x=(xp) in the product appearing on 
the left such that for some p~S, xp is a p-adic integer but not a p-adic unit; this 
does not exclude x from ~, but it does exclude it from the open set displayed 
on the right. Hence the neighborhood base of the relative topology on ~ in­
duced from the adele group cannot in general accommodate the open sets in the 
idele topology, which consequently is stronger. (We leave it to the reader to 
observe that every set open in the relative topology is also open in the idele to­
pology.) Despite this dissonance, these topologies are related by an algebraic 
map, as shown in Exercise 1. 

Fix K and let SOJ denote the set of infinite places of K. Note that SOJ=S~ in 
characteristic zero. We write AOJ for the open subgroup AsOJof the adele group 
AK• Hence AOJ consists of elements of the adele group all of whose components 
at finite places have absolute value less than or equal to one. 

5-8 THEOREM. (The Approximation Theorem) For every global field K, 

PROOF. Here, of course, we identify K with the diagonal subset of its adele 
group. We must show that given xeAK, there exists )JeK such that each com­
ponent of the difference x-)J is a local integer. We give the argument for K an 
algebraic number field; the modifications for a function field are obvious. 

Let V be a prime ideal of OK and assume that V lies over the rational prime p. 
Then multiplying any nonzero element of the associated completion by p cer­
tainly reduces its v-adic absolute value, so that eventually it lies in the corre­
sponding ring of integers. This shows that there exists some finite rational 
integer m such that mx is integral at all finite primes. Let {VI' ... ,Vr } be the set 
of primes of K that divide m (clearly this set must include all the primes at 
which the corresponding component of x fails to be integral), and let np •.. ,nr 
be a sequence in N. By the Chinese remainder theorem (see Exercise 2 below), 
we can find AE OK such that 



5.3. The Geometry of AKIK 191 

where Xj is the component of the adele x corresponding to Vi" Let f.1=Alm. If we 
choose each nj at least as large as the exponent of Vj occurring in the factoriza­
tion of the ideal (m) in OK' then x-f.1=m-l(mx-A) is by construction integral at 
each of the primes VI' ... ,Vr • At other primes, its absolute value is identical to 
that of mx-A, and hence it remains integral. This establishes the first assertion; 
the second is trivial. 0 

5-9 COROLLARY. Let A denote the adele group o/Q. Then 

A=Q+A." =Q+(Rx IlZp). 
pprime 

Moreover, QIlAoo=Z. 

5.3 The Geometry of AK/ K 

Let K denote a global field. Before describing the structure of the quotient of AK 
by K, we must first investigate how the adeles behave under base change. 

5-10 LEMMA. Let ElK be afinite extension, andfix a K-basis {ul'''''un } olE. 
Then the natural map 

n 

a:IlAK ~AE 
j=1 

«XV,j)v)j H ~>/xv,)v 
j 

is an isomorphism o/topological groups. 

PROOF. The map a is certainly a vector space isomorphism, so the question is 
only one of continuity. For every place v of K, define 

where w runs through the places of E lying above v. This is, of course, not a 
field, but certainly a vector space over Ky, in which Ky itself embeds diagonally. 
We have shown in Section 4.5 (proposition 4-39) that Ey admits {u I , .",un} as 
a Ky -basis, and thus an algebra isomorphism 
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n 

a v:I1Kv ~ Ev 
j=l 

(xj ) ~ ~>jUj 

By Proposition 4-13, ely is also a topological isomorphism. 

Define a subset 0E. of Ell by 

Then again by Proposition 4-39 there exists a finite set of places So of K, in­
cluding the Archimedean ones, such that for every v~So the map ely defined 
above induces by restriction an isomorphism 

Now for any given finite set S that contains So' consider the products 

Ai = I1 KlI x TI OK and A~ = I1 Ell X I1 0E . 
liES liES' liES liES' 

Then from what we have seen so far, 

n .. n Ai = TI (TI K. xI1 OK.): I1 E. xI1 0E. =A~ 
j=l j=l liES liES liES liES 

Thus for each such set of places S, the collection {ely} induces a map 

n 

as: I1 Ai '::'A~ 
j=l 

which, according to the analysis of the previous paragraph, is a topological 

isomorphism and by construction agrees with the restriction of a. Since this is 

true for every S containing So and the open sets A~ cover AE , we deduce that a 
itself must be a topological isomorphism. [J 

5-11 THEOREM. K is a discrete, cocompact subgroup of AK • 
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PROOF. Let Ko denote Q [respectively, the function field FP») if K is of char­
acteristic zero [respectively, of characteristic pl. Put n=[K:Ko). Then by the 
preceding lemma we have the following commutative diagram of topological 
groups, for which the top and bottom rows are isomorphisms: 

" a 
ITAKo ~ AK 
j=1 

J J 
" al 

ITKo ~ K 
j=1 

Consequently, AKIK is compact if and only if (AK/KJn is compact, which in 
tum is true if and only if AK/Ko is compact; similarly for discreteness. Thus we 
may replace K by Ko and assume for the remainder of the proof that K is either 
Q or Fit). In the former case, let ex> denote the Archimedean place; in the latter 
case, let ex> denote the place defined by (I-I). Put OK equal to Z or F q[t), accord­
ingly. We shall now exhibit a compact fundamental domain for K in AK • 

Define a subset C of the adele group by 

It now suffices to show that CnK={O} and that AK=C+K. 
Suppose that xeK also lies in C. Then xeoK , since xeoy for all V*ex>. In the 

rational case, the requirement that IXooloo:OS; 112 certainly forces x to be zero. Now 
consider the function field case. Then 

I I -ord III (x) 
X«J=q 

which cannot be less than 112 for nonzero elements of Fq[t). This shows that 
indeed CnK={O}. 

It remains to show that AK is covered by translates of K by elements in C, 
and we do this in two steps. First we claim that if Y is an adele of K, then we 
may choose oeK such thatYy-oeoy for every finite place v of K. We only need 
to worry about a finite set S of places, and for each veS, we may construct an 
element p=p(v)eK such thaty-p is integral at v, and p is integral at all finite 
places different from v. To see this we need merely note that for any irreducible 
element 1r in OK' positive n, and integral elements a and b relatively prime to n; 
we can always find a third integral element c such that 
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a c ---
btr" tr" 

is integral at 1r, because the congruence ashc (modtrn) is clearly solvable for c. 
Thus 0= LvES,u(V) meets our needs, and this completes the first step. 

Continuing with Y and 0 as above, we claim that we can next choose 0' e OK 

such that I y"" -0 -0 'I",,:S;: 112. If K = Q, the number 0' is just the integer nearest to 
(y ex> - 0); if K = F q(t), then 0' is just the part of (y ex> - 0) that is a polynomial in t. 
(The remainder is a polynomial in t-1 with no constant term, and hence of in­
finity norm less than q-I, a value patently less than or equal to 112.) Now by 
construction, both (Yy -0) and 0' lie in Oy for all finite places v. Thus 

IYy -o-o'ly :S;:1 and IYex>-0-0'1ex>:S;:1I2 

whencex=y-t5-o'ec. This clearly suffices, since by construction, x+o+o'= Y 
and o+o'eK. [J 

If K is a number field, then the preceding result is the adelic version of the 
well-known fact that OK is a discrete, cocompact subgroup of K"" = TIKw' where 
the product is taken over all Archimedean w. Moreover, in the case K=Q we 
can apply the approximation theorem to yield the following beautiful descrip­
tion of the quotient of AQ by Q. 

5-12 PRoposmoN. There exists an isomorphism o/topological groups 

The projective limit is, of course, taken over the positive integers as a directed 
set with respect to divisibility. 

PROOF. For each positive integer n set 

Clearly each en is a compact subgroup, and moreover, the intersection of the en 
over all n is {O}. This yields an identification 
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where the ordinary limit on the right is also taken over the positive integers as a 
directed set with respect to divisibility. (The point is that if we fix a prime p, 
the sequence that results from taking the pth components of the indexed set of 
adeles that constitute an element of the projective limit must converge in Qp.) 

This isomorphism in turn induces an identification of quotients 

Now consider the map 

given by sending x to the class of the adele with x as the Archimedean compo­
nent and zero as the finite component. This map is well-defined, because for all 
products na, aeZ, we have the decomposition 

(na,O,O, ... ) = (na, na, na, ... )+(0, -na, -na, ... ) e Q+Cn 

t t t 
00 2 3 

It is immediate that 'Pn is injective. The surjectivity follows from the approxi­
mation theorem, the proof of which may be readily extended to show that the 
finite part of Aco may in fact be replaced by Cn. From the existence of these 
isomorphisms 'Pn, we now deduce that 

AQ/Q :=limAQ/(Q+Cn ) := lim R/nZ 
+- <---

and this completes the proof. D 

REMARK. Thus AQ/Q is an inverse limit whose nth component corresponds to 
the unique covering ofRlZ of degree n, n~ 1. Since 7li(RlZ)=Z has ZlnZ as its 
unique quotient of order n for each n ~ 1, every finite cover of S 1 is obtained 
from ~/Q. Thus ~/Q may be thought of as the "algebraic universal covering 
space" of SI, analogous to R as the "topological universal covering space" of 
S 1• The Galois group of the covering AQ/Q ~S 1, namely Z, may be thought of 
as the "algebraic fundamental group" of SI. This is a simple instance of 
Grothendieck's general construction of the algebraic fundamental group for 
algebraic varieties, a notion that arose in connection with the following situa­
tion: Let X be a smooth projective algebraic curve over C, so that the set of 
complex points X(C) defines a Riemann surface; i.e., a complex manifold of 
dimension 1. Suppose that Y is a finite covering of X(C). Then by the Riemann 
existence theorem, Y corresponds to a smooth projective algebraic curve X' with 
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Y=X'(C). But if Y is an infinite cover, it will not be algebraic, and therefore 
one needs to restrict to finite covers to remain in the algebraic category. 

5,4 The Class Groups 

In this section, we reverse the historical order and begin with the definition of 
the idele class group CK of a global field K. We analyze its properties and then 
show how the usual ideal class group CIK and, more generally, any ray class 
group relative to an ideal, is a factor of the compact part of CK , (In the function 
field case, the class group CIK is usually called the Picard group and denoted 
Pic OK') 

Let K be an algebraic number field or a finitely generated function field in 
one variable over a finite field Fq where q=pa. Just as K embeds discretely in 
AK , K* identifies with a discrete subgroup of the idele group IK via the diagonal 
map. (See Exercise 3.) Since IK is abelian, its quotient by K* under the quotient 
topology acquires the structure ofa topological group [cf. Proposition 1-4, (v)]. 

DEFINITION. The topological group 

is called the idele class group of K. 

Since AKIK is compact, one might hope that CK is also compact. But this is 
not true, as follows from the existence of a nontrivial absolute value that will be 
defined shortly. But first we must standardize our absolute value functions: 

DEFINITION. Let k be a local field. Then the normalized absolute value l'lk on k 
is defined as follows: 

(i) If k= R, then I'lk is the usual absolute value function. 

(ii) If k=C, then Izlk=zZ' , the square of the usual absolute value function. 

(iii) If k is non-Archimedean with uniformizing parameter 1i, then 

where q is the order of the residue field o/;r'ok' This clearly extends 
uniquely to k. Note well that for the infinite place associated with a func­
tion field of positive characteristic in the indeterminate I (so that the uni­
formizing parameter is in fact 1-1), this normalized absolute value function 
amounts to the formula If(t)loo =qdegf for polynomialsf(/). (Hence the infi-
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nite place described in Chapter 4 was represented precisely by the corre­
sponding nonnalized absolute value function.) 

The following lemma shows how these normalized absolute values behave 
with respect to finite extensions of local fields. Recall that if Ilk is a finite ex­
tension of arbitrary fields, then every element xel defines, by multiplication, an 
endomorphism Px of I as a vector space over k; this is just the regular represen­
tation. In this context, the norm of x over k, denoted NlIk(x), is the determinant 
of px. For a Galois extension, this reduces to the product of the conjugates of x; 
in any case, NlIk is multiplicative. 

5-13 LEMMA. Let Ilk be a finite extension of local fields. Then for all xeE, we 
have 

PROOF. This is clear in the Archimedean cases. So let k be non-Archimedean 
with uniformizing parameter 1Tk • It suffices to prove the lemma for x=~, the 
uniformizing parameter for I. Let n=[/:k). Recall from Proposition 4-23 that 
the ramification index and residual degree for the extension are defined by the 
relations 

and that n=ef We may certainly replace 1Tk with u-I1Zk, so that 1Tk = 1T,e. Ac­
cordingly, 

and it follows that 

Thus taking eth roots of this equation and recalling the definition of 1·1/, we 
obtain 

as required. [J 
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We now apply our construction of nonnalized absolute values to make the 
following definition. Again let K be global field. 

DEFINmON. Let I'ly denote the nonnalized absolute value on the completion 

Ky. Then define the absolute value I ,I Ax: Ix ~ R: by the formula 

where as usual, x=(Xy). 

CRUCIAL REMARK. From the analysis of local fields in Chapter 4, it follows that 
for any idele x, the value of IxlAx is precisely the module of the automorphism 
y ~ xy as defined on the locally compact abelian group Ax. (See the discus­
sion preceding Proposition 4-17.) This explains the choice of nonnalization at 
the non-Archimedean places and, moreover, why the nonnalized absolute value 
on C has been chosen as the square of the usual absolute value. 

5-14 THEOREM. Let K be aglobalfield. Then 

(i) For every xeK* we have I x lAx = 1. 

(ii) The absolute value map I • lAx is surjective if char(K) = 0 and has im­
age of the form pmoz if char(K) = p, where mo is an integer different 
fromO. 

The first part of this result is known as Arlin's product formula. 

PROOF. (i) Suppose that ElK is a finite separable extension. Then according to 
the lemma, for every xeE, we may write 

But appealing to the isomorphism of Proposition 4-40, E®KK"=TIyluEV ' we see 
that 

IT NB.1X,.{x) = NB1X(x) 
vlu 

Thus 
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IxI AE = IlJNEIK(x)lu 
u 

and so the truth of the assertion for K will imply it for E. Since we have shown 
that every global field is a finite separable extension of either Q or F /t), we 
have now reduced the argument to these two cases. Moreover, since I'IAK is 
multiplicative, it suffices to establish the product formula for integral irreduci­
bles. 

Suppose that K = Q and p is a rational prime. We may take p to be positive, 
since it is clear that 1-lly=1 for all v. Then p has nontrivial absolute value at 
only two places and hence 

This establishes the product formula for Q. For K=Fq(t), we must consider an 
irreducible polynomialf(t)EFq[t), and again this has nontrivial absolute value 
at only two places. For the infinite place, 

If(t)loo = qdegf 

as noted above, while at the finite place, 

since of course, Card(Fq[t)/f(t)Fq[tD is qdegf. Thus once more the product for­
mula holds. 

(ii) First assume that K is a number field, so that there is at least one Ar­
chimedean place w. For any positive real number t, we can pick some YEKw * 
such that Iy Iw = t. Let x denote the idele whose w-component is Y with all other 
components equal to 1. ~learly, I x IAK = Iylw ~ t, whence lolAK is smjective. 

Next let K be a function field over a fimte field, and let v be a place of K 
with corresponding residue field Fq , where q=pm.Then the normalized absolute 
value of a uniformizing parameter" of Ky is q-I. Accordingly, given nEZ, the 
absolute value of the idele x=(I, ... , I, ,,-n, I, ... ) is pmn. The upshot is that the 
image of each component of AK under the adelic absolute value is pmZ, and 
hence the total image is pmoz for some nonzero integer mo' This completes the 
~~ 0 

We next use the absolute value 1·1 AK on AK to define a subgroup of IK into 
which K* does embed cocompactly. The key is to trivialize the absolute value. 

DEFINITION. Let K be an algebraic number field or a finitely generated function 
field in one variable over a finite field Fq , where q=pQ. Then we define 
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(the ideles ofnonn one) and 

c~ =I~/K* . 

This quotient is called the norm-one idele class group of K. 

Note that C~ is well-defined, since K*~I~ by the Artin product fonnula. 

Moreover, we have a short exact sequence 

where according to the characteristic of K, V(IK)=Im(I-IAK) is either R: or of 

the fonnpmoz. 

5-15 THEOREM. For all globaljields K, the quotient 

c~ =I~/K* 

is compact. 

PROOF. Recall from the proof of Theorem 5-11 that there is a compact subset <D 
of AK such that AK=K+<D. Since AK is locally compact, there exists a Haar 
measure J1 on AK, which we shall now fix; of course, J1(<D) is finite. Choose a 
compact subset Z of AK such that J1(Z»J1(<D). Construct two subsets of differ­
ences and products of elements in Z as follows: 

ZI = {ZI-Z2 : ZI>Z2 EZ} 

Z2 = {Zl z2 : ZI,Z2EZ} 

These sets are also compact by the continuity of subtraction and multiplication. 
Since K is discrete in AK , KnZ2 is finite, with nonzero elements, say, Yl> --"Yr ' 

Now set 

r 

'I' = U<>\{(u,Yj1v) : u, v E ZI}) 

)=1 

where 0 is the embedding ofIK into AKxAK that sends x to (x,x- I ). (See Exer­
cise 1.) Since 0 is a homeomorphism onto its image, 'I' is a compact subset of 
IK, whence the theorem is a consequence of the following claim: 
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CLAIM. I~ ~ K*'¥. 

PROOF OF CLAIM. First recall that for any yeIK, I y IAK = IIylYyly is the module of 
the automorphism of AK given by multiplication by y. Now pick any x e I~ . 
Since I x IAK = 1, we see that the compact sets xZ and x-1Z have the same volume 
as Z. Since ,u(Z) > ,u(<Il), it follows from Exercise 4 that there exist elements 

Zpz2,Z3,Z4eZ, Z\*Z2' Z3*Z4' such that a=x(z\-z2) and {3=X-\(Z3-Z4) are both in 
K. Then a{3=(z\-z2)(z3-z4) evidently belongs to K*nZ2={yp ""Yr}' In other 
words, (z\-z2)(z3-z4)y/=I, for somej:::;r. Thus 

This shows that x{3 e '¥ and completes the proof. a 

It is useful to have S-versions of the groups we have been discussing, for any 
finite set S of places of K containing S"" the set of Archimedean places. Of 
course, there are no such Archimedean places if char K is positive. (This nota­
tion is unfortunately conventional, although not entirely sensible: it excludes 
the infinite places for a function field. Let the reader beware.) 

DEFINITION. Let K and S~S", be as above. Then define the S-ideles of K by 

Equivalently, 

5-16 LEMMA. IK,s is open in IK; it is compact if and only if S=0, which can 
occur only in positive characteristic. 

PROOF. That IK,s is open in IK is clear, because the restricted direct product to­
pology on IK is the same as the relative topology induced by the product TIyKy *. 
(See Section 5.1.) Since K/ is not compact for any v, IK,s is compact if and 
only if S is empty, But in characteristic zero, we require that S contain the 
nonempty set of Archimedean places, so this can happen only in positive char­
acteristic, as claimed. a 

DEFINITION. Let K and S~S", be as above. Then 
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denotes the set of S-ideles of norm one. 

According to the lemma, I~.s is an open subgroup of Ik in the relative to­
pology induced by the full idele group. 

DEFINITION. The ring ofS-integers of K is defined to be 

where 

The definition above in particular gives OK as RSeD for K a number field, and 
OK as Rso for K a function field, where in the latter case So denotes the set of 
infinite places of K. Also note that 

This is because IK•s is the group of invertible elements in AK•S and 

5-17 PROPOSITION. Let S be a finite set of places of K containing SeD. The fol­
lowing statements hold: 

(i) The quotient Ik.sl Rsx is compact. 

(ii) There exists an isomorphism 

where PK is the group of roots of unity in K and 

r(S) = sup{O,Card(S)-l} . 

PROOF. (i) Since Ik.s is open in I~, its image Ik.sl Rsx is an open (hence 
closed) subgroup of I~ I K.*. But according to our previous theorem, the ambi­
ent space is compact, and hence the assertion. 

(ii) Since we know this for the special case S=0 (see Exercise 5), we mayas­
sume that S is nonempty. Put 
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c=TIcv 

where the product is taken over all places and Cv ={XvEKv: IXviv = I}. This "adelic 
circle" is a compact subgroup of IK•S' We have a short exact sequence of topo­
logical groups 

l~C~IK,S ~ fI(K:/Cv)~l 
VES 

Note that 

{

log 

K* / C ::= R: == R, if v is Archimedean 
v v-

Z, if v is non-Archimedean. 

Writing r=r l +r2 , where r l is the number of Archimedean places in Sand r2 is 
the remainder, this yields the sequence 

Since, again by Exercise 5, CnK*=PK and also I~,s n K* = R; , we get the 
short exact sequence 

where L is the image of K* in Rrl x Z r2 • Since K* is discrete and cocompact in 

I~,s , an application of Exercise 6 below (with A= III'lv) shows that L is iso­

morphic to zr(S), [J 

REMARK. Part (i) implies in particular that R: is finitely generated as an abe­
lian group, a fact that is not obvious from the definition. For K a number field 
and S=Soo' this was established by Dirichlet and Minkowski. 

We now introduce S-versions of the idele class group, which have a critical 
property when Sis nonempty. 

DEFINITION. The S-c/ass group of K is defined by 
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The critical property is this: The inclusion map of norm-l ideles into the full 
idele group always induces an injection of quotients 

However, if 8-:#2J, this map is moreover an isomorphism, because we can then 
always represent any idele class on the right with an idele of norm one by ad­
justing a component corresponding to a place in S. If S is empty, then we are in 
characteristic p>O, and the map has cokemel isomorphic to Z by Theorem 5-
14, part (ii). 

5-18 THEOREM. The S-class groups of K have the follOWing properties: 

(i) In the case that S is nonempty. CK•S is a finite group. 

(ii) In the case that S is empty. CK 0 is isomorphic to the direct product 
of Z with a finite group. . 

PROOF. We have seen that the image of Ik.s in Ik is open. Since Ik IK* is 
compact, the quotient I~/K*I~.s must then be finite. The theorem now follows 
from the preceding analysis of the injection of I~/K*I~.s into CK•S ' [J 

The Traditional Class Group 

A global field K is the field of fractions of the Dedekind domain R = OK' the 
ring of integers of K. Afractional ideal of K is a nonzero finitely generated R­
submodule of K. Thus in particular, the ordinary nonzero ideals of R are frac­
tional ideals of K. One knows from the basic theory of Dedekind domains that 
JK , the set of fractional ideals of K, constitutes a group under multiplication of 
(fractional) ideals and, moreover, that JK is a free abelian group on the prime 
ideals of R. This is to say that we may write every fractional ideal o.eJK 

uniquely as 

(l = TIp"p 
p 

where the product is taken over all prime ideals P of R and n p is zero for almost 
all P. (See Appendix B.) We sometimes write vp(o.) for the exponent np defined 
by this factorization, and similarly define vp(x) for nonzero xeK. More pre­
cisely, vp(x)=vp(xR)=ordll'(x), where 7r is a uniformizing parameter for Rp. We 
call vp the discrete valuation associated with P. 

Fractional ideals of the form Ra, aeK*, are called principal fractional ideals, 
and these constitute a subgroup P K of J K that includes the nonzero principal 
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ideals of R. The quotient group JKIPK is the traditional ideal class group of K, 
here denoted CIK' If o.eJK, then [0.] denotes its projection into the class group. 

As previously, S (J1 denotes the set of infinite places of a global field K. Hence 
S (J1 is either StrJ for a number field or So for a function field. 

5-19 PROPOSITION. Let K be a global field. Then there is a natural isomor­
phism 

PROOF. Define a map 

Ii: IK -+C1K 

x H [Il pvp(xp)] 

p 

with vp as above. Then a is a well-defined homomorphism. Moreover, if 
xeK*, then 

(x) = Il pVp(x) 

p 

is the principal fractional ideal generated by x, and so a(x) = I. Since a(x) 

depends only on the components of x corresponding to the finite places, a is 
trivial on Il(vES",)Kv *. Finally, a is trivial on IIp op X, since op X~Ker(vp) for all 
P. In summary, a is trivial on K*IK,s", and hence induces a homomorphism 

sending the class ofx to a(x). 

Suppose that o.eJK • Then vp(o.) is nonzero for only a finite number of P. Ac­
cordingly, we may define an idele x by reqlliring that x be nonzero at the infi­
nite places and xp= trpvp(o.) for the places corresponding to primes P, where trp is 
the associated uniformizing parameter. Then by construction a([x]) = [0.], and 
thus a is surjective. 

Finally, suppose that a([x]) = 1 for some xeIK• Then there is a yeK* such 
that 

(y) = Il pvp(xp) . 
p 

This implies that for all P, vp(y)=vp(xp), and so we may choose u=(up) e 110/ 
such that (xu)p=yP' for all P. Then xu andy differ by an element ofI1CvES",)K/; 
that is, x and y differ by an element of IK s . Consequently, xeK*' IK S ' which 

, 4) , tD 

means that its class [x] in CK,s'" is trivial. Hence a is also injective. [J 
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REMARK. By saying that a is natural we mean that it is functorial for the inclu­
sion offields in one direction and for the norm map in the other. 

Ray Class Groups 

Again let K be a global field, the fraction field of R=AQ}flK, with fractional 
ideal group JK . Let Mbe a nonzero integral ideal of R, so that we may factor M 
uniquely as 

where P v is the prime corresponding to the finite place v of K, with associated 
discrete valuation vp. Let Sbe the set of finite places where vp(M»O. 

DEFINITION. An element aeK* is said to be congruent to 1 modM if the fol­
lowing conditions hold at every yeS: 

(i) ae o~ 

The set of all such a is denoted KM •J; one checks easily that this constitutes a 
subgroup of K*. 

DEFINITION. Let K and Mbe as above. Then define 

JJ..M) = {IeJK : (I,M) = R} 

That is, J J..M) consists of the fractional ideals of K that are comaximal with 
respect to M. In particular, if aeKM,1' then aReJJ..M). We may thus further 
define 

C1J..M) =JJ..M)/KM,J . 

We call C1K(M) the (wide) ray class group of K relative to M (or with conduc­
torM). 

EXAMPLE. Consider the case K = Q. Then R = Z is a principal ideal domain, 
RX={±l}, and each nonzero integral ideal M takes the form mZ for some 
unique positive integer m. Define a map 
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that sends the class of a fractional ideal (alb)Z (with both numerator and de­
nominator prime to m) to the double residue class ±[a][b]-I. This map is well­
defined on JK(M) and factors through CIK(M) because (alb)Z maps to the 
identity if and only if a =±b (mod m) in the elementary sense. Since Q1 is clearly 
surjective, it is in fact and isomorphism. 

More generally, for a number field K this construction is usually extended to 
include the signs at the real places. Let {wI' ... , WI} be a set of real embeddings 
representing inequivalent real places (not necessarily exhaustive), and put 

where M is an integral ideal. 

DEFINITION. An element aeK* is said to be congruent to 1 mod M if the fol­
lowing conditions hold at every veS: 

(i) a=l (modM), as above 

(ii) wJ(a) > 0, Vj=l, ... ,1 

The set of all such a is denoted K M.I ' and as previously, this constitutes a sub­
group ofK*. 

DEFINITION. We define the quotient 

When {wl"'" WI} comprises the entire set of real places of K, then this is called 
the narrow ray class group of K relative to M. 

EXAMPLE CONTINUED. Again consider the case K=Q. Let M = (M,oo), withM 
generated by m>O as before. We can now in a sense refine our map Q1 to an iso­
morphism 

The point is that by using the narrow ray class group, we can distinguish signs 
in (ZlmZY. More particularly, given any ideal xZ in JJM), we take x=alb, 
with a and b uniquely given positive integers relatively prime to m and to each 
other, and then map xZ to [a][b]-I. This map is clearly a surjective homomor­
phism with kernel K M.I . 
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Exercises 

1. Let K be a global field, and let Ai have the product topology. Show that 

the mapping 

is a topological isomorphism onto its image (under the relative topology 
induced by that of the codomain). 

2. Let A be an integral domain for which all prime ideals are maximal. Show 
that if PI and P 2 are distinct prime ideals of A, then 

for all positive integers m and n. [Hint: Prove this directly for all m when 
n=l, and then proceed by induction.] 

3. Let Kbe a global field. Use the discrete embedding of K into the associated 
adele group and Exercise 1 to show that K* embeds discretely in the asso­
ciated idele group. 

4. Let G be a locally compact abelian group with Haar measure f.L Suppose 
that r is a subgroup of G and that <1> is a compact subset of G such that 
G=r+<1>. Show that if X is a compact subset of G such that p(X) > p(<1», 
then there exist distinct elements xl ,x2eX such that x1-X2Er. 

5. LetKbe a global field. Show that Ixlv=1 at every place v of K if and only if 
x is a root of unity in K. 

6. Let G be a topological group isomorphic to R'x ZS+I-r for some integers S~ 
r~O, and let A:G~R be a nontrivial, continuous homomorphism such that 
when r>O, A is in particular nontrivial on R'. Assume that r is a discrete, 
cocompact subgroup of Ker(A). Show that r::zs. 

7. Let K be a global field. Show that the isomorphism a: CK,SfJ):: CIK is natu­
ral in the sense of the remark following Proposition 5-19. 

8. Let K be a global field and let S be a finite, nonempty set of places of K 
containing the infinite ones. Show that Rs [=KIlAK•S)' the ring of S­
integers of K, is a Dedekind domain. [Hint: Appeal to the case S=S~, 
where we know this to be true by Appendix B.] 



Exercises 209 

9. For any Dedekind domain R with fraction field K, define Pic(R) to be the 
group of invertible fractional ideals of K modulo the principal ones. With 
this definition and the preceding exercise in mind, prove the following S­
version of Proposition 5-19: 

Let K be a global field, and let S be a finite nonempty set of places of K 
containing the infinite ones. Then there is an isomorphism CK s == Pic(Rs)' 

Show also that for S large enough, CK,s is trivial. 

10. Let K be a number field. 

(a) Show that an element xeK* is a unit of OK if and only ifNKlQ(x)=±1. 

Assume for the remainder of this exercise that K is a quadratic number 
field; that is, K=Q(O), where tJ2=d, a square-free integer. 

(b) Show that 

if d:: 2,3 (mod4) 

ifd::l(mod4}. 

(c) Assuming that d is negative, list the units of OK' 

(d) Assuming that d is positive and congruent to either 2 or 3 modulo 4, show 
that the units of OK are precisely those numbers a+bo such that the integer 
pair (a,b) satisfies Pell's equation a2 - db2 = ±1. Show, moreover, that 
there is afundamental unit ul=al +bA al,bl >0, such that every unit in OK 

is of the form ±~n for some neZ. The pair (al,b l ) is called afundamental 
solution to Pell's equation. 

(e) For this part, we assume that the reader is familiar with continued frac­
tions. Assume that d is as in the previous part, and let [ao' aI' ... ,an, ... ] be 
the (simple) continued fraction expansion of o with "convergents" 

Show that for some n, the pair (An,Bn) constitutes a fundamental solution 
to Pell's equation. Check in particular that when d=2 (respectively, 3), the 
fundamental unit of K=Q(O) is 1 +0 (respectively, 5+20). 
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11. Let R be a Dedekind domain, for example the ring of integers in a number 
field. 

(a) Suppose that Pic(R), the class group of the fraction field of R, is trivial. 
Show then that R is a unique factorization domain; that is, every nonzero 
element of R is expressible as the (finite) product of irreducible elements 
and that this factorization is unique up to order and associates. [Hint: Show 
that any two elements a,heR, not both zero, have a greatest common divi­
sor by looking at the intersection of aR with hR.] 

(b) Show that every integral ideal I in R can be written as the intersection of a 
finite number of principal ideals. 

(c) Prove the converse of part (a): if R is a unique factorization domain, then 
Pic(R) is trivial. [Hint: To show that every integral ideal is principal, show 
first that having unique factorization forces the intersection of any two 
principal ideals to be principal, and then appeal to part (b).] 

MORAL. The class number hK of a number field measures the failure of 
unique factorization in OK. 

12. (Artin) This exercise develops an explicit description of the connected 
component of C~. Let K be a number field of degree n=r1 +2r2, where r1 

and r2 are, respectively, the number of real and nonconjugate complex em­
beddings of K into C. Recalling that o~ has rank r=rl +r2-1, fix a set 
{u l' ... , U r} of multiplicatively independent units in OK. Put 

V=REBZ 

and embed Z in V by the diagonal map that sends m to (m,m). Write 

where the elements in I~ (respectively, I{) have only trivial finite 
(respectively, infinite) components. 

(a) Show that for any y e I{ and x e Z, the expression yX makes sense. [Hint: 

I{ has a fundamental system of neighborhoods of unity consisting of sub­
groups of finite index.] 

(b) Show that for any z e I{ and t e R, the expression zt makes sense, and that 
it can be normalized to obtain real values at real places. 
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(c) For j= 1, .. . ,r2 and leR, let ~(/) denote the idele with component e2trit at 
the jth complex place and 1 everywhere else. Define a map A by 

r rz 
(A,/)= (~, ... ,Ar;t1, ... tr) f4 DU/iD ¢/t) 

i=1 j=1 

Show that A (A., I) is a principal idele if and only if every A.i and every Ii lies 
in Z. 

(d) Let A: Vr E9 Rrz ---+ C!: denote the induced map to the idele class group. 
Show that VIZ is compact, connected, and infinitely and uniquely divisible. 
Conclude that D= Im(A) is compact, connected, and infinitely divisible. 

(e) Show that every infinitely divisible element of C!: lies in the closure of D, 
and hence lies in D itself. 

(f) Show that D contains the connected component of C!:, and conclude that 
in fact D is the connected component of C!:. [Hinl: Use that D contains the 
image of I; II If .] 

13. Let R be a commutative ring with unity. Define the Heisenberg group of R 
as follows: 

H(R)={l~ I ;)a,b,cER} . 

Show that for any global field, H(K) embeds as a discrete, cocompact sub­
group of H(AK). 

14. Continuing in the context of the previous problem, show that the abeliani­
zation map 

H(AK) ---+ A~ 

(1 a bJ 
Ole H(a,b) 

001 

induces a continuous sutjective map 
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whose fibers identify with AKIK. 

15. Let K be a global field. 

(a) Show that GL2(K) embeds as a discrete subgroup of GL2(AK). 

(b) Show that the corresponding quotient space-not quotient group, for this 
embedding is not normal-is not compact. 

(c) Let Z(·) denote the subgroup of GL2(· ) consisting of scalar matrices. Show 
that the quotient space GL2(AK)IZ(AK)GL2(K) is still not compact. 



6 
A Quick Tour of Class Field Theory 

One could argue that the principal goal of number theory is to understand the 
integral or rational solutions of systems of Diophantine equations; that is, poly­
nomial equations with integral coefficients. Nineteenth-century mathemati­
cians, mainly riding the impetus provided by attempts to tackle the Fermat 
equation xn+yn=zn (n~3), realized the benefits of studying the solutions in 
extended number systems R, as opposed to confining one's attention to only Z 
and Q, and this led eventually to global and local fields and their rings of inte­
gers. Such an extension often was made to allow for the presence of suitable 
roots of unity in R, which provided desirable factorizations, such as 

n-\ 

xn + y" = I1 (x + e21rijl"y) . 
j=O 

Two related problems immediately arose, the first associated with the general 
failure of unique factorization in R, leading to the class group, and the second 
pertaining to the question of how rational primes factor, or split, in R. The lat­
ter problem was first solved in its entirety, in the guise of the study of quadratic 
forms, for quadratic fields F=Q(5), where c9=D is an integer that is not a 
square in Q. It was established that an odd prime p splits in F if and only if D 
is a quadratic residue-that is, a square-modp, and that the setXD of primes 
for which D is a quadratic residue mod p completely determines the extension 
FIQ. (In modem parlance, one says that the set XD defines a canonical open 
subgroup of the idele class group CQ.) Of special importance here is the quad­
ratic reciprocity law, which for primes p and q gives a precise relationship be­
tween the status of p as a quadratic residue mod q and the status of q as a 
quadratic residue modp. Further progress followed on cyclotomic and Kummer 
extensions, and, perhaps most significantly, an assertion of Kronecker led to 
the realization of all abelian extensions of Q as subextensions of the cyclotomic 
ones. 

By the early twentieth century, the central problem of algebraic number 
theory had become that of describing the splitting of primes in finite abelian 
extensions ("class fields") L of an arbitrary number field K in terms of struc­
tures associated with K itself. A particular subclass that was well understood 
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early on was the maximal unramified abelian extension H(K), called the Hil­
bert class field of K, whose Galois group GaI(H(K)IK) turned out to be isomor­
phic to the ideal class group elK. In the 1930s, Takagi gave a general solution 
to the problem and established in the process an abstract isomorphism of the 
Galois group of any finite abelian extension L of K with a ray class group of K. 
(As we have seen in Chapter 5, every ray class group is a quotient of the idele 
class group.) A completely satisfactory understanding of abelian extensions LIK 
was finally achieved with the revolutionary work of E. Artin, who proved a 
general reciprocity law. Artin reciprocity, on the one hand, vastly extends 
Gauss's law of quadratic reciprocity and, on the other, gives a canonical iso­
morphism between Gal(LlK) and the relevant ray class group. The key tool is a 
crucial homomorphism called the Artin map. 

In this chapter, after introducing the required technical preliminaries on 
Frobenius elements, the Tchebotarev density theorem-a huge generalization of 
Dirichlet's theorem on primes in arithmetic progressions-and the transfer 
map, we summarize (without proof) the main results of abelian class field the­
ory a la Artin. While we state everything for idele class groups rather than ray 
class groups, the reader may consult Section 5.4 for the relevant dictionary. 
Putting matters in adelic language might seem an unnecessary complication, 
but it is absolutely essential if we are to apply the techniques of harmonic 
analysis. We end the chapter with an explicit description of the abelian exten­
sions of Q and Qp' including a proof of the Kronecker-Weber theorem. 

SPECIAL NOTES. (i) The results of this chapter are not prerequisite for the proof 
of Tate's thesis in the following chapter, but they will playa role in some of our 
applications. (ii) In the exercises for Chapter 7, we shall develop a proof of the 
Tchebotarev density theorem as reformulated in terms of Dirichlet density. 
Since this proof in fact relies on Artin reciprocity, it is important to stress here 
that Artin's law is itself independent of the Tchebotarev density theorem. While 
Artin was inspired by ideas in Tchebotarev's proof, his actual argument does 
not depend upon it, and hence we introduce no latent circularities. 

6.1 Frobenius Elements 

The goal of this section is to introduce a family of special elements---or, more 
properly, of special conjugacy classes-in the Galois groups of global fields. 
We fix a global field F, and for any Galois extension KIF denote the corre­
sponding Galois group Gal(KIF). 

We shall first consider the case of a finite Galois extension KIF with 
G=Gal(KIF). Let Q be a prime of OK. Then Q lies above some prime P in OF' 

and we let F denote the residue field 0FIP. Recall from Section 4.3 that we then 
define the decomposition group of Q in G to be 
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DQ = {erE G: cr(Q)=Q} . 

Let the residue field 0KIQ be identified with the finite field F q. Then we have a 
canonical homomorphism 

that associates with erEDQ the map (x modQ ~ cr(x) modQ) for all XEOK• As 
proven previously, the map PQ is always sUJjective and is in fact an isomor­
phism if and only if P is unramified in K. Moreover, each erE D Q extends to an 
automorphism of the completion KQ that is trivial on the subfield Fp; the in­
duced map 

is unconditionally an isomorphism. 
One knows from elementary field theory that Gal(F /F) is cyclic, generated 

by the Frobenius map 

where Card(F)=pJ: With this in mind, we make the following definition. 

DEFINITION. Let P be unramified in K. Then the Frobenius element 'PQIP in 
D Q ~ G associated with QI P is defined by 

-1( pi) 
'PQIP = PQ X H X . 

Note that this element unfortunately depends on the choice of Q over P. In­
deed, suppose that Q' is another prime dividing P. Note first that DQ , is conju­
gate to DQ . Explicitly, we know that we can find PEG such that P(Q')=Q, and 
consequently p-I erp preserves Q' for each erEDQ. 

6-1 LEMMA. The maps 'PQIP and 'PQ'IP are conjugate in the Galois group G. 

PROOF. Choose PEG as above so thatpDQ,p-1 = DQ. Then by definition, 

-1( pi) 
'PQ'IP =PQ' xHx . 

To show that this is conjugate by P to 'PQIP' we explicitly compute as follows: 
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p-I'PQIPP(X+Q') = p-I'PQIP(P(X)+Q) 

= p-I (P(x PI ) + Q) 
I 

=xP + Q' 

= 'PQ'IP(X+Q') . 

This completes the proof. o 

DEFINITION. The Frobenius class in G corresponding to P, denoted 'PP,KlF or 
(P,KIF), is the conjugacy class of the Frobenius element 'PQIP' 

This is well-defined by the previous lemma. The notation (P, KIF) is some­
times called the Artin symbol of P relative to KIF. We shall next analyze the 
functorial properties of these Frobenius classes. 

6-2 PROPOSITION. The Arlin symbol has the following properties: 

(i) Let MIF be a finite Galois extension and KIF a normal sub extension, 
so that the restriction map NMIK from Gal(MIF) to Gal(KIF) induces 
an isomorphism between Gal(MIF)/Gal(MIK) and Gal(KIF). Then for 
any prime P unramijied in M, 

NM1K(P,MIF) = (P,KIF) . 

(ii) Let K and K' be two finite Galois extensions ofF that are, moreover, 
linearly disjoint over F. Then for every prime P unramijied in KK', we 
have that ereGal(KK'IF) lies in the Frobenius class (P,KK'IF) if and 
only if( eriK' eriK') e (P, KIF) x (P,K'IF). 

(iii) Let KIF be a finite Galois extension, and let L be an intermediate 
field, not necessarily normal over F, with [K:L]=m. Let P be a prime 
ofF unramijied in K, and suppose that Q is a prime of L that divides P 
and that P is a prime of K that divides Q. Then we have that LQ= Fp if 
and only if 'PPIP eGal(KIL). Moreover, the number of primes Q of L 
lying over P such that LQ= Fp is given by the formula 

REMARK. A prime Q of L dividing P such that LQ= Fp is called a degree-one 
prime over F. When LIF is normal,(P,KIF) is a subset of Gal(KIL) if and only 
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if 'PPIP eGal(KIL) for some Frobenius element defined over P, and in this case 
P splits completely in L into a product of primes of degree 1. 

PROOF. (i) Let P' be a prime of K above P, and P" a prime of M above P'. Let k, 
k', and k" denote the corresponding residue fields. Then we have the following 
diagram: 

M ~ M p" ;;2 0 P' ~ k" 

I 
K ~ Kp;;2 op ~ k' 

I 
F ~ Fp;;2 op ~ k 

Let k=FqO' and let er'eGal(k'lk) and er"eGal(k"lk) denote, respectively, the 
Frobenius automorphisms of k' and k" over k. Both er' and er" are given by the 
assignment x H x 90 , and thus it is clear that er' is no more than the restriction 
of er". Moreover, since P is unramified in M, the decomposition groups 
Dpur;;;.Gal(M/F) and Dp'r;;;.Gal(KIF) are, respectively, isomorphic to Gal(k"lk) 
and Gal(k'lk). Since by construction 'PP''lPeGal(MIF) and 'Pp'/peGal(KIF) are 
the preimages of er' and er" under these isomorphisms, we see also that 'PP'IP is 
the restriction of 'PP''IP' The same then holds for the associated conjugacy 
classes, and hence (i) holds. 

(ii) Let 

r: Gal(KK' I F) ~ Gal(K I F) x Gal(K' I F) 

er H (eriK' eriK') 

denote the canonical homomorphism. This is in fact an isomorphism because K 

and K' are assumed linearly disjoint over F. Now let P denote a prime of KK' 

lying above P. Then Q = PliO K and Q' = PliO K' are, respectively, primes of 
K and K' lying under P and over P. One checks easily that 

Conversely, any pair of intermediate-level Frobenius maps must arise via r 
from a conjugate of 'PPIP because r is an isomorphism. This proves (ii). 

(iii) Let the primes P, Q, and Pbe as shown: 
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K ~ OK ~ P 
I I 
L ~ °L ~ Q 

I I 
F ~ OF ~ P 

Again we must keep in mind two elementary, but crucial facts: the Frobenius 

map f' = 'PP/P lies in the decomposition group Dp!;; Gal(KIF), and 

where this isomorphism is nothing more than extension of an automorphism of 
Kover Fto one of Kpover Fp. Now ifQ is in fact a degree-one prime, which is 
to say that LQ=Fp, then the corresponding extension of T is ipso facto trivial on 
LQ, and therefore on L. Thus TeGal(KIL). Conversely, if f'eGal(KIL) and 
%=Card(oFIP), then it follows that aqO=a (modQ) for aeoL , from which we 

deduce at once that the residue fields of Land F are identical. Accordingly 
LQ= Fp, as required. This proves the first statement of (iii). 

To conclude, we establish the formula. We know now that the number of 
primes P of K dividing P such that P n 0L is of degree one over P is exactly 
the number of Frobenius elements defined over P that lie in Gal(KIL); this is 
just Card( (P,KIF)nGal(KIL». Now the number of such primes lying over any 
single given degree-one prime in L is always mlf, where / be the residual de­
gree associated with P. (Clearly / is the same whether computed with respect 

to Lor F and is therefore independent of P n 0L' provided that this intermedi­
ate prime is indeed of degree one.) Thus the number of degree-one primes in L 
is/1m times the cardinality of (P,KIF)n Gal(KIL). But every element of this 

intersection is represented exactly /times in the form a'PPIP a-I = 'PaPIP as a 

runs over Gal(KIF), and from this the formula follows at once. [J 

Arbitrary Unramified Extensions 

Recall that an extension ElF is called unramified at a place u of F if there exists 
a chain 

of finite extensions such that each E;I Ei_1 is unramified (in particular, finite 
and separable) at every place of Ei-I lying above u. 
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DEFINITION. Let F be a global field and P a prime in F. Then pur(P) denotes the 
maximal subextension of F I F that is unramified at P. This is called the maxi­
mal unramifled extension of Fat P. 

It is easy to check that pur(P) exists (see Exercise 1 below) and is a Galois 
extension of F. For we have seen that each step in the tower that defines an 
unramified extension is the splitting field of a polynomial of the form xT-l, and 
hence is itself Galois over F. Clearly, 

Gal(FIlf (P)I F) = lim KIF ... 

where K runs over finite Galois extensions of F contained in pur(P). The previ­
ous proposition shows that the Frobenius classes rpKlF=(P,KIF) patch nicely to 
give a class (P,pur(p)IF) in Gal(pur(P)/F). 

It is perhaps disappointing that we cannot define the Frobenius class in the 
absolute Galois group Gal(F I F), but we point out without proof that if 

is a continuous representation arising from the I-adic cohomology of a smooth 
projective variety over F (with I a prime different from the characteristic of F), 
then p is unramified at all P outside a finite set S of primes. In other words, p 
factors through GF,s' the Galois group of the maximal extension of Fin F that 
is unramified outside S. Since Gal(pur(p)IF) maps onto GF,s' we see that p(rpp) 
is well-defined at every P~S. 

6.2 The Tchebotarev Density Theorem 

Given a finite Galois extension KIF of global fields, we have seen how to define 
a map 

rp=rpKIF: LF-SKIF ~Gal(KIF)# 
PHrpp 

where LF denotes the set of places of F, SKiF denotes the (finite) union of the 
Archimedean places and the finite places that ramify in K, and Gal(KlF)# is the 
space of conjugacy classes of Gal(KIF). A natural question to ask is whether 
every conjugacy class is rpp for some P. The answer is yes, as affirmed by the 
following beautiful result, given here without proof. 
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6-3 THEOREM. (Tchebotarev) Let G=Gal(KIF). Then/or every conjugacy class 
C in G there exist infinitely many primes P such that rpp=c. More pre­
cisely, 

lim Card{P:N(P) ~ x,rpp = C} = Card(C) 
H'" Card{P:N(P) ~ x} Card(G) 

Here, N(P), the (absolute) norm of the prime P, is the cardinality of the as­
sociated residue field. The limit on the left side of the equality is called the 
natural density of the set described in the numerator. (As noted above, we 
prove a reformulation of this theorem in terms of Dirichlet density in the exer­
cises for Chapter 7.) 

An illuminating special case of this theorem arises when F= Q and 
K=Q(Sm)' the field of mth roots of unity over Q, for some m>1. Then one 
knows that the Galois group G of KIF is abelian, and in fact isomorphic to 
(ZlmZY. Explicitly, each a relatively prime to m gives rise to an element 

of G. For every prime p not dividing m, this extension is unramified (proved for 
m prime in Section 4.3). Now let C be a conjugacy class in G, so that in the 
present case C corresponds to a singleton subset {a }~(ZlmZY. Then one can 
deduce that 

rpp = {eTa} ~ p = a (mod m) . 

Thus Tchebotarev's theorem becomes the well-known theorem of Dirichlet on 
primes in arithmetic progressions, namely that there are infinitely many primes 
p congruent to a modulo m, and, more specifically, that the density of such 
primes is 1/rp(m). 

6.3 The Transfer Map 

In preparation for the statement of the Actin reciprocity law, we now introduce 
a subtle and entirely group-theoretic construction that is of interest in its own 
right. The subtlety lies in that in general there is no homomorphism from a 
group to a subgroup. 

Let G be any group, with H a subgroup offinite index. Let (G, G) denote the 
commutator subgroup; i.e., the subgroup generated by the products sts-1rl 

where sand t vary over G. Since conjugation by any element is an automor­
phism of G, the commutator subgroup is normal in G, and the corresponding 
quotient group Gab=G/(G, G) is called the abelianization of G. The homomor-
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phism in question is the transfer map, also called die Ver/agerung by Gennan 
aficionados, 

and is defined as follows. 

First choose a section s:H\G~G; that is, a set of representatives for H\G, 
the set of right cosets of H in G. Put 

where yx denotes the effect of right translation on a coset y in H\G. (Of course, 
ll\G is a G-set!) Clearly, hx,y measures the failure of s(y)x to equal s(yx); 
that is, the failure of s to be a G-map. Next define 

V(x)= IIhx,y mod (H,H) . 
yEH\G 

Thus the right-hand side is the natural image of the given product in H"b. 

6-4 PROPOSITION. The map V : G~H"b is a group homomorphism independent 
of the choice of the section s:G~H\G. 

PROOF. First we show that V is independent of the choice of section. Let s' be 
another section. Then there is a function 17:H\G~H such that 

s'(y) = rJ{y)s(y) 

for each y eH\G. Given xeG, the direct calculation 

IT s' (y)xs' (jixrl = II 17(Y)S(y)x[17('y)S(jix>r1 

y y 

= IT 17(Y)S(y)xs(yx r l 17(yr1 

y 

shows that we may calculate Vex) using either section and obtain the same re­
sults modulo the commutator subgroup (H, H). 

We may make a similar calculation to see that if is a group homomorphism: 
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V(X1X2) = n s(Y)X1X2S(.YxI X2)-1 mOO(H,H) 
y 

= n s(Y)X1s(YxI r l • S(.Yx1 )X2S(.YxI X2rl mod(H, H) 
y 

= ns(y)x1s(.Yxlrl . nS(.YxI)X2s(.YxIX2rl mod(H,H) 

In moving from the second line to the third, we note that the indicated trios of 
factors all lie in H, whence all of the right hand-trios can be accumulated 
modulo (H,H) into a single product. In moving from the third to the fourth, we 
note that as Y varies over H\G, so does YXi. 0 

In consequence of this proposition, it follows from the universal property of 
the abelianization of a group that V induces a unique map 

which we call the transfer map. We also write Va.H for this map to emphasize 
the domain and codomain. From the previous proposition it follows that the 
transfer map is completely intrinsic to G and H, and independent of the choice 
of section. Moreover, it satisfies a kind of transitivity: 

6-5 PRoPOsmoN. (Transitivity of the Transfer Map) JfHr;;;;Kr;;;;G, then 

Va.H = VK,H 0 Va.K • 

PROOF. Exercise. o 
In his book The Theory of Groups, M. Hall gives an alternative development 

of the transfer map via monomial representations (1959, pp. 201-203). 

6.4 Artin's Reciprocity Law 

One of the major success stories in number theory this century has been the 
work of Takagi and Artin on the description of abelian extensions of global 
fields. This is codified elegantly and concisely by the Artin reciprocity law. In 
this section we shall, without proof, state this law simultaneously for global and 
local fields and indicate its associated functorial properties. We begin with a 
few preliminary considerations. 

Let F be a global or local field. Put 

{
F* if F is local 

CF = IF/F* if Fis global. 
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We know that this is a locally compact abelian group. Moreover, if KIF is a 
finite extension, we will be concerned with two natural homomorphisms: 

The first map is simply that induced by inclusion. The second is the norm ho­
momorphism, which in the global case is induced by 

(Xv)v ~ (n Nv(xv»u 
vlu 

where NV: KV ~ FIl is the ordiruuy norm. Observe that this idele class version of 
the norm is well-defined: the ordinary version maps integers to integers (cf. 
Appendix B, Section 2), and Proposition 4-39 shows that elements of K map to 
elements of F. Note also that according to Exercise 3 below, the image of NKIF 

is an open subgroup of CF • 

Next fix a separable algebraic closure F and put 

for any extension KIF withK r;;F. To describe the functoriality of Arlin reci­
procity, we shall also need two maps on the Galois side. The first is simply the 
inclusion 

The second, which goes in the opposite direction, is the more subtle transfer 
map 

defined as above on the abelianizations of the domain and codomain. 
Before stating Artin's reciprocity law, let us take note of the relationship 

between the cokernel of the norm map and the Galois group for four particular 
extensions KIF. 

CASE l. Let F=R and K=C. Then Gal(CIR) = {I,p}, where p denotes complex 
conjugation. Moreover, the cokernel of the norm map 

is simply the quotient of R* by the nonzero squares, which is to say the cyclic 
group of order 2. Hence there is a unique abstract isomorphism between 
R*IN(C*) and Gal(CIR) sending the class of -I to p. 
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CASE 2. Let F=C. Then since the complex numbers are algebraically closed, K 
must also equal C, and both the cokernel of the norm map and the Galois group 
are trivial. 

CASE 3. Let p be an odd prime, and let F=Qp and K=Q/t5), where 0 2=2. Then 

It is a good exercise to check that this norm subgroup has index 2 in Q;. Of 
course, Gal(KIF) is also cyclic of order 2. 

CASE 4. Let F=Fq' and let K be any finite extension. Note that the norm map 
from K* to F: is always surjective, and hence has trivial cokernel. Hence the 
situation here is very different from that of a local or global field. 

6-6 THEOREM. (Artin Reciprocity) Let F be a global field or a local field. Then 
there exists a homomorphism, called the Artin map, 

satisfying each of the following two groups of assertions: 

P ART ONE-The Artin Map for Abelian Extensions 

(i) For every finite abelian extension KIF, let 0KlF denote the composition 
of ° F with the natural projection r;b ~ Gal(KIF). Then 0KlF is sur­
jective with kernel NK1F(CK). 

(ii) Conversely, given any open subgroup N of CF of finite index, there 
exists afinile abelian extension KIF such that N=Ker(OKlF). In par­
ticular, 

CFIN: Gal(KIF). 

(iii) Let KIF be a finite abelian and unramified extension of the non­
Archimedean local field F with residual extension k'ik. Then we have 
explicitly 

where rp is the Frobenius element ofGal(KIF):Gal(k'lk)= (rp). 
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(iv) Let KIF be a finite abelian extension of global fields, and let P be a 
finite prime in F that is unramified in K. Denote by xp the class in CF 

defined by the idele 

Xp = (1 •... ,1, 1l", 1, ... , 1) 
t 

placeP 

all of whose components are 1 except at the place defined by P, where 
the component is a uniformizing parameter 1l". Then we have 

where ({Jp=(P,KIF). [Note that since KIF is abelian, the Frobenius 
conjugacy class ({Jp is in fact a single element of Gal(KIF).J 

PART Two-Functoriality 

Let KIF be a finite separable extension, not necessarily abelian (with F 
either global or local). Then we have the following two commutative dia­
grams: 

(i) 

(ii) 

Moreover, if K/F is an abelian extension with sub extension KIF, then we 
have afurther commutative diagram 
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(iii) 

F* IN KlIF(K)*) 
OK)IF 

Gal(K) IF) ) 

proj .J... .J... proj 

F*INKIF(K*) Gal(KIF) 
OK IF 

Note well that the inclusion-induced map on the class group side corre­
sponds to the transfer map on the Galois side and that the inclusion map on the 
Galois side corresponds to the norm map on the class group side. In the abelian 
case, we may simply identify the projections. 

6.5 Abelian Extensions of Q and Qp 

In this section, working over either Q or Qp' we consider class field theory in a 
particular and concrete setting. We prepare with some general field-theoretic 
notions. 

Let F be a field, for which we implicitly fix an algebraic closure. If K) and 
K2 are Galois extensions of F, then so is their compositum K)K2' and in fact we 
have an embedding 

Gal(K)K2IF) ~ Gal(K/F) x Gal(K2IF) 

u H (ulKl ,uIK2 ) 

which is an isomorphism if K) and K2 have intersection F. Thus if K) and K2 
are moreover abelian extensions, so again is their compositum. Thus there ex­
ists a maximal abelian extension F ab of F, which is precisely the compositum of 
all abelian extensions of F within its algebraic closure. 

Henceforth, for any n~l, Fn denotes the field obtained by adjoining the nth 
roots of unity to F (again, within its fixed algebraic closure). We shall soon see 
that this is always a finite Galois extension of F. We further let Foo denote the 
compositum of all of the Fn , n~1. 

We now state the main theorems of this section. 

6-7 THEOREM. Let F be a local or global field. Then for all n, Fn is a finite 
abelian extension. Moreover, the following assertions hold: 

(i) If F=Q, then Gal(FnIF)=.(ZlnZY by an isomorphism that associates 

aE(ZlnZY with the automorphism of Fn induced by OJ H OJa , where OJ 

is a primitive nth root of unify. Consequently, Foo~Fab. 
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(ii) If F=Qp and n is relatively prime to p, then F)F is unramified, with 
Gal(FnlF) cyclic. In fact, every finite unramified extension of Qp oc­
curs as some Fn' with (p,n)=l. 

(iii).if F=Qp and n is a power of p, then FnlF is totally ramified, with 
Gal(F/F) : (ZlnZY· 

6-8 THEOREM. (Kronecker-Weber) Let F be either Q or Qp• Then Foo=pb. 

REMARK. Let F=Q. Then by the Kronecker-Weber theorem, given any finite 
abelian extension K of F, we can find a positive integer n such that K is con­
tained in the field Fn=Q(e21riln). Thus one can think of K as being generated by 
the values of the function e21riz at rational arguments. Kronecker's Jugendtraum 
(youthful dream) was to hope that any finite abelian extension of a number field 
F could be generated by values at algebraic arguments of a suitably chosen set 
of transcendental functions. This dream is realized for imaginary quadratic 
fields F, where the abelian extensions are all generated by the values of elliptic 
functions at "division points." Further progress has been made by Shimura and 
others. Kronecker's dream has in fact influenced much of modern number the­
ory. 

PROOF OF THEOREM 6-7. We begin with some basic Galois theory. Let F be any 
field with separable algebraic closure F. For positive n, consider the equation 

over F. Then its splitting field is precisely Fn. If char(F)=p>O, then there are 
no nontrivial p-power roots of unity in F. Thus if we write n=p'm, with m 
prime to p, the nth roots of unity in F are the same as the mth roots of unity. 
Therefore, in the case of positive characteristic p, we can and shall assume that 
n is prime to p. 

Let w be a primitive nth root of unity in F, so that (On= I, but (Om:;!!:! for any 
positive m smaller than n. Indeed, such an w must exist because the formal de­
rivative off 

f' (x) = nxn- I 

is nonzero for nonzero x-after all, n is assumed prime to p in positive charac­
teristic-and therefore f must have n distinct roots in F. Hence this necessarily 
cyclic group of solutions must have order n and, of course, a generator (0. From 
this we see at once that Fn = F( w) and that Fn is the splitting field of a separable 
polynomial over F. Accordingly, Fn is a finite Galois extension of F. 

Fix a primitive nth root of unity w. Then (0' is again a primitive nth root of 
unity if and only if r is an integer prime to n. In this way we obtain exactly 
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rp(n) primitive roots. Now if CTeG=Gal(F/F), it must send 0) to another prim­
itive nth root of unity. Thus we must have 

for some aue(ZlnZY. Moreover, for 0; TeG, 

Thus a ur = a uO r' and so we have a homomorphism of groups 

r: G ..... (ZlnZY . 

Since CTis the identity of G if and only if O)aO' is 0) itself, which is to say, if and 
only if au = 1 in (ZlnZ)X, it follows that r is injective and that G is abelian. 

Keeping in mind that 0) generates Fn over F, each element ae(ZlnZY con­
versely gives rise to an automorphism CTa of Fn defined by 

However, this might not be an element of G by virtue of its failure to restrict to 
the identity on F, and this will indeed occur if some power of 0) lying in F is 
moved by CTa • Hence in general r is not swjective. 

Before specializing to Q or Qp' we observe that for any din, we may define a 
factorfd(x) off(x) by setting 

Then clearly, 

fd(X) = IT(x_O)bnld) 

be(ZldZ)x 

f(x) = IT fAx) 
dlr! 

withJ;(x)=(x-I). We customarily call /" the nth cye/otomic polynomial. Since 

we see inductively that each cyclotomic polynomial lies in F[x]. Moreover, 
since each is monic, it follows from the Euclidean algorithm that its coefficients 
in fact lie in the subring of F generated by 1. In this sense, the cyclotomic poly-
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nomials are generic over any field, although they mayor may not be irreducible 
depending upon F. 

With these preliminaries in hand, let us now proceed to each of the three 
statements of the first theorem. 

(i) Now let F= Q. Then for n:2:3, F contains no nth root of unity, and therefore 
aJa does not lie in F for any a prime to n. Moreover, Fn is simply the splitting 
field of the cyclotomic polynomial .r", and elements of G permute the primitive 
roots of unity. Thus to show that r is an isomorphism, it suffices to show that 
.r,,(x) is irreducible, for then the order of G will be the degree of .r", which is 
clearly rp(n), the order of (ZlnZY. 

Let g(x) be the irreducible factor of.r,,(x) that is the minimal polynomial of aJ 
over F. Since g is the product of linear factors of the form (x-aJa), its coeffi­
cients are both rational and integral over Q, which is to say that g(x)eZ[x). We 
claim that it is enough to show that for every prime p not dividing n, aJP is also 
a root of g. For this implies by iteration that wa is a root of g for all a prime to 
n, thusforcingg=.r". Write 

J,,(x) = g(x)h(x) 

with h necessarily having integral coefficients because g is monic. If g(aJP) is 
not zero, then h( aJP) must be, and therefore aJ is a root of h(xP), which is con­
gruent to h(x)P modulo p. So, g and h have a common root when reduced 
modulo p, contradicting the separability of.r" modulo p that obtains whenever p 
does not divide n. This contradiction shows that aJP is indeed a root of g, as 
claimed. 

To summarize, we have the isomorphism 

r: G~(ZlnZr 

in the case F=Q. 

(ii) In the case that F=Qp' we know by Proposition 4-25 that a finite extension 
of F is unramified if and only if it is of the form Fn , with n relatively prime to 
p. Such extensions are moreover cyclic by Lemma 4-24. 

(iii) Finally, we assume that F=Qp and that n=pr. We still have the injective 
homomorphism from G=Gal(FnIF) into (ZlnZY that we constructed previ­
ously. As in part (i), to show that this map is moreover an isomorphism, it suf­
fices to show that the order of G is again rp(n). 
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Let w be a primitive nth root of unity in Fn, so that in factFn =F(w), and set 

r-I 
r;=w p • 

Then r;is a primitive pth root of unity. Now define 

p-I 

f(x) = Lxipr- I 
• 

j=O 

Note thatf(x) is irreducible because g(x)=f(x+l) is an Eisenstein polynomial. 
[That is, the leading coefficient of g(x) does not lie in the unique prime ideal of 
Zp' but all of the other coefficients do, and the constant term does not lie in the 
square of this ideal.] It follows that 

p-I p-I 

f(w) = LWJpr-1 = Lr;J =0 
j=1 J=I 

whence f is the irreducible polynomial of w over F. But of course 

degf= (p _l)pr-I = rp(n) 

showing that the degree of the extension F/F, and hence the order of G, is 
precisely rp(n), as required. 

It remains only to show that F/F is totally ramified. To begin, let 1r=w-l, 
so that 1r is a root of the irreducible polynomial g(x), which, too, has degree 
rp(n) over F. Then Fn =F(1r):F[x]/(g(x». The residual extension F(n) is still 
generated over F p by the image x of x. But happily 

g(x) = x9'<n) 

where g(x) is the reduction of g(x) modulo p, whence x = 0 . (Eisenstein!) 
This implies that F(n)= F p ' showing that F/F is totally ramified, as required. D 

Proof of the Kronecker-Weber Theorem: The Local Case 

We first consider the local situation, so that F=Qp • By the previous theorem, 
we have the following inclusions: 

Qp =F~Fur = UF.. ~F<Xl ~Fab 
(p,n)=1 
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where Fn , Foo ' and F ab are as above, and Fur is the maximal unramified exten­
sion of F in the given algebraic closure. 

Recall that according to our statement of Artin reciprocity, for every finite 
abelian extension KIF there is a canonical isomorphism between Gal(KIF) and 
F*INK1F(K*). Moreover, every open subgroup of F* is a norm subgroup; that is, 
is of the form NK1F(K*) for some finite abelian extension K of F. Consequently, 
since F ab is the compositum (and hence direct limit) of such extensions K, we 
can identify 

Gal(FabIF) : lim Gal(KIF) 
<-­
K 

with the projective completion of F*; that is, 

Gal(pbIF) :limF*IN 
<-­
N 

where the limit is taken over open subgroups N of F*. Next recall that we have 
a short exact sequence 

Vp 

1-4o~-4F*-4Z-40 (6.1) 

which splits once we choose a uniformizing parameter ", via Ij/:Z-4F*, 
Ij/(n) = tin. For every open subgroup N of F*, this yields another split short exact 
sequence 

Vp 

1-4 o~ I o~ nN -4 F*IN -4ZlnZ ~ 0 

With the existence of a left inverse for v F in hand, we can take the corre­
sponding profinite limits to obtain 

(6.2) 

which defines a projection If' from Gal(Fab IF) onto i. (From the proof of Theo­
rem 1-14, we know that a profinite group is the projective limit of its quotients 
by open normal subgroups. Since the subgroups o~ n N are cofinal among the 
open subgroups of o~, the projective limit of the corresponding quotients is 
precisely o~ itself.) And we have a final short exact sequence 

(6.3) 
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derived from the projection p from Gal(pabIF) onto Gal(FIJrIF) via the natural 

identification of Gal(rlF) with Gal(F/F):: i, where F=Fp is the residue 
field ofF. 

6-9 LEMMA. The projection rp defined in sequence 6.2 may be identified with 
the natural projection p of Gal(FabIF) onto Gal(FIJrIF). Consequently we 
have an isomorphism GaI(Fab/r):: 0; . 

To prove the main statement, we must produce a compatible family of homo­
morphisms from 

to 

the quotients vF(F*IN), N open, that appear as factors of the projective 
limit that constitutes the cokernel in sequence 6.2 

the groups GaI(KIF), K unramified, that appear as factors of the projec­
tive limit that constitutes the cokernel in sequence 6.3 

such that the induced map on the respective projective limits is an isomorphism 
a satisfying p = a 0 rp. The following lemma contains the technical key: 

6-10 LEMMA. Let K be afinite abelian extension ofF with ring of integers OK. 
Then the following statements are eqUivalent: 

(i) The extension KIF is unramified. 

(ii) NK1F( O~) = 0; . 

Moreover, in this case F*INK1F(K*) is a quotient ofvp(F*). 

PROOF. Let F'/F be the residual extension corresponding to KIF, and as usual, 
put f=[F':F] and n=[K:Fj=ef, where e is the ramification index. Let 1rF and 
1rK denote, respectively, the uniformizing parameters for OF and OK. Then from 
sequence 6.1 we get 

F*= o;xZ and K*= o~xZ 

and this is compatible with the group action from Gal(KIF). Recalling that the 

norm of 1rK is 7rt, one then easily obtains 
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Since F*INK1F(K*) is isomorphic to Gal(KIF), its order is n. Thus KIF is un­
ramified if and only if n= f, which is to say, if and only if NKIF( o~)= o~. The 
final statement is now obvious. 0 

REMARK. We have the following commutative diagram with exact rows: 

{..N {..N {..N 

1 --+ 1 + 1l" F OF --+ O~ --+ F* --+ 1 

Since the norm map on the (finite) residue fields is always sUIjective, it follows 
readily that N(o~)=o~ if N(l+1l"KOK)=l+1l"FOF. Thus if the norm fails to be 
surjective, it already fails at this level. 

PROOF OF LEMMA 6-9. Suppose that K) is a finite abelian extension of F and 
that K is any Galois subextension contained therein. From the diagram 

F*INK1/F(K'n = o~1 NKIIF(O~) x vF(F*)lvF(NKIIF(O~I)) 

{.. {.. {.. 

we see that the canonical projection on the left decomposes into the direct 
product of the two canonical projections indicated on the right. In the case that 
K is the maximal unramified subextension of K), it follows from the previous 
lemma that Gal(KIF)=F*INK1F(K*) is in fact isomorphic to the right-hand 
factor on the second line. Moreover, since K/K is then totally ramified, the 
projection on the right is the identity map, and hence we have an isomorphism 

If K{ is another finite abelian extension of F that contains K) with maximum 
unramified subextension K'IF, we have a diagram 

proj 

vF(F*INKIIF(Kn) ~ vF(F*1 N K'IF(K{*)) 
1 

{.. {.. 

vF(F*1 N KIF(K*)) ~ vF(F*IN K'IF(K'*)) 
{.. {.. 

Gal(KIF) ~ Gal(K'IF) 
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where the vertical sequences constitute aK and aK " respectively. To show 
that these maps are compatible with the projective) systems is to show the 
commutativity of this diagram, which easily reduces to the commutativity of the 
lower square. But if we unwind the definitions and identifications, this follows 
at once from the explicit description of the Artin map given for local fields in 
Part One, statement (iii), of the Artin reciprocity law (Theorem 6-6). 

From this analysis we see that the maps aK) indeed induce an isomorphism 
a of projective limits 

where the limit on the left is taken over all finite abelian extensions of F and 
the limit on the right over all finite unramified extensions of F. In view of the 
remarks immediately following the statement of the lemma, it now suffices to 
show that a moreover satisfies the condition p = a 0 rp, where p and rp are de­
fined by sequences 6.2 and 6.3 above. This amounts to checking the commuta­
tivity of the diagram 

F*INK1/F(K)*) -+ Gal(K) IF) 

J.. -l, 
F*INK1F(K*) -+ Gal(KIF) 

where the vertical maps are the canonical projections and the horizontal maps 
are the isomorphisms ()K)/F and ()KIF. But this is no more than an element of the 
functoriality of the Artin map. [See Theorem 6-6, Part Two, diagram (iii).] 0 

We now return to the proof of the Kronecker-Weber theorem. By the first 
lemma, which holds for arbitrary local F, we have 

(The compositum oflocal fields is local by Zorn's Lemma.) Now let F=Qp' and 
consider the diagram 

FIX) 
p 

F 
/ 
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where Fp '" is the extension of F obtained by adjoining all roots of unity of order 
a power of p. One checks easily that Fp'" and Fur are linearly disjoint over F. (It 
suffices to verify this for finite totally ramified and unramified extensions; see 
Exercise 2 below.) Thus from Theorem 6-7, part (iii), we may deduce that 

Gal(F",IFUr) == Gal(F ",IF) == lim(ZlpnZr == Zpx . 
p <--

n 

Accordingly, the Galois groups of both F", and pb over Fur are isomorphic to 
the p-adic units, and since Furc;;,F",(;;;,Fab, we get an identification of F", with 
F ab once we prove the following: 

6-11 LEMMA. Any surjective (continuous) homomorphism p:Z; ~Z; is an 

isomorphism. I:l 

The proof of this lemma is left as an exercise. (One approach is to use that 
Z; is isomorphic to F: x Z p and that Zp is Noetherian as a module over Z.) 
Thus we have established that every abelian extension of Qp is cyclotomic. I:l 

Proof of the Kronecker-Weber Theorem: The Global Case 

We now consider the global case F=Q. By Artin reciprocity (Theorem 6-6), 
every finite abelian extension KIQ determines a canonical open subgroup 
U= U(F) of CQ= IQ/Q* such that CQIU identifies, via the Artin map, with 
Gal(KIQ). For each m~l, let Um denote the open subgroup associated with the 
mth cyclotomic extension Fm =Q(e21rj/m). Since the first part of the reciprocity 
law implies in particular that the correspondence between open subgroups and 
finite abelian extensions is bijective and inclusion-reversing, we need only 
show that U contains U m for some m. To do this, we must first understand open 
subgroups of ~ and IQ/Q* somewhat better. The following result is key: 

6-12 PROPOSITION. The idele group admits a decomposition as a direct prod­
uct ojtopological groups 

where ZX = lim(ZlnZr = IT Z;. Hence CQ = R: x Zx. 
<--
n P 

PROOF. Define a map ;:IQ~Q* by 

;<X) = sgn(x",)TIlxpl;1 
p 
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for x=(xoo,X2,X3, ... ,Xp, ... )E~. If m is a nonzero rational integer with prime 
factorization 

then 

r 

~m) = ±I1lpil~;) 
)=1 

But the normalized absolute value of each Pi with respect to itself is p/' and so 
in fact, ~(m)=m. From this we deduce that ~(x)=x for all nonzero rational x; in 
other words, ; provides a continuous group-theoretic section to the diagonal 
embedding Q*~~. Thus we have ~=Q*xKer(;). Finally, it is obvious that 

whence the assertion follows. 0 
We return to the proof that for any finite abelian extension K of F=Q, the 

associated open subgroup U of CQ contains Um for some m~l. By the proposi­
tion above, any such U can be identified with an open subgroup of R: x Zx. 
Since the positive reals admit no nontrivial open subgroups, U must be of the 
form R: x U , where the latter factor is an open subgroup in Z x. But an ex­
amination of the local base for the topology of i x at the identity-and the Chi­
nese remainder theorem-reveals at once that U must contain some U m' the 
unique subgroup of CQ corresponding to Gal(KmIK). 

This completes the proof of the Kronecker-Weber theorem. [J 

The Characters of CQ 

We conclude this section by describing all of the (continuous) characters of the 
idele class group of Q. 

6-13 PROPOSITION. Every character of IQ that is trivial on Q* is a product of 

the form xl ·I~, where X is a character of finite order and s is a complex 

number. 

PROOF. Let alEHomcoot(IQ,C*) with alIQ.=1. We have a topological isomor­
phism 



6.5. Abelian Extensions ofQ and Qp 237 

which we regard as an identification. Accordingly, we can decompose OJ as the 

product OJrOJu with OJr: IQ ~ R: and OJu: IQ ~ Sl. By the previous proposition, 
we may view OJ as a continuous character of R: x Z x. Since the second factor is 
compact and totally disconnected, its complex characters are of finite order. 

(See Chapter 3, Exercise 14. This is not true if, for example, we consider p-adic 
characters!) Thus OJrli x = 1, while OJuli x must be o~ finite order. Now put 
z(x) = OJu(p(x», where p is the projection of ~ onto ZX. Since OJr is trivial on 
both Q* and Zx, it factors through the projection 

and so OJr(x)=P(lxIA) for a continuous homomorphism P:R: ~ R:. Let dP be 
the "differential" of P; that is, dP(t)=logp(e ' ). Since this map is linear, it must 
be equivalent to multiplication by a real number y. Exponentiating, we get 

By a similar argument, we see that any continuous homomorphism y:R: ~ Sl 

must be of the form a H ail for some feR. Putting all of this together, we get 
OJ = OJr OJu with 

for some y,te R. Hence the assertion of the proposition holds with s= y+ it. 0 

REMARK. A character Z on IQ that factors through CQ and has finite order must 
accordingly be trivial on the R: component of the idele class group and hence 
is neither more nor less than a character of Zx. Moreover, Z further factors 
through some component (ZlnZY of Zx. This follows by continuity: for every 

rational prime p, 
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for some np ' where we have implicitly embedded the quotient into the inverse 
limit in the obvious way. Hence, since Z has finite image, 

z(ZX)= Z(rrZ;)=Z«Zlp~ ... p~Zr) 
p 

for some finite collection of primes Pi' Thus the idele class character Z induces 
a Dirichlet character, which is to say a character of (ZlnZ)X for some positive 
n. (Dirichlet characters are customarily extended to all of ZlnZ by assigning 
zero to elements not invertible modulo n.) The smallest n that affords such a 
factorization is called the conductor of Z. Moreover, this association is patently 
reversible: given any Dirichlet character, we can certainly pull it back to a 
character of the group Zx, and hence to a unique idele class character on ~. 
Thus the rational idele class characters of finite order lie in a natural bijective 
correspondence with the Dirichlet characters. 

Exercises 

1. Let Fbe a global field and P a prime of F. Show that FlJr(P) exists and is in 
fact given as the compositum of all finite, unramifed extensions of KIF in a 
fixed algebraic closure F. [Hint: This is an exercise in cardinality. How 
many such K are there?] 

2. Let F be a local field with finite extensions K and L that are, respectively, 
totally ramified and unramified. Show that K and L are linearly disjoint 
over F. [Hint: Choose a basis B for Lover F such that (i) BC;;;0L and (ii) B 
projects onto a basis of the corresponding residue fields. What happens to a 
linear dependence relation over OK when reduced modulo the unique prime 
of the compositum of K and L? Keep in mind that the residue extension 
corresponding to KIF is trivial. Conclude that B remains linearly inde­
pendent over K and hence that K and L are linearly disjoint over F.] 

3. Let F be a global field. 

(a) Show, for every place u of F and for every positive integer n, that (F,,*Y' is 
an open subgroup of F,,*. [Hint: First show that a subgroup G of F,,* of fi­
nite index is open if and only if it is closed.] 

(b) Show, for every place u of F and for every finite extension L of Fu ' that the 
image of L* under the norm map NLlFu is an open subgroup of Fu*' [Hint: 
Note that if n= [L : FI,1 , then (Fu*Y' is a subgroup of NLlFu(L*).] 
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(c) Let KIF be a finite extension. Show, for any place u of F, that the map 

IT K* ~F* v u 
vJu 

(xv) HIT N Kv IF• (xv) 
vJu 

has open image. 

(d) Let KIF be a finite extension. show that NK1F(CE) is an open subgroup of 

CF" [Hint: First analyze the map NKIF:IK~IF"J 

4. Let F be a local field, and let OF : CF ~ r;h be the Artin map. Recall that 

C F is just F* in this local case. 

(a) Show that 0F(O~) lies in the inertia group 

where F q is the residue field of F. 

(b) Using Part One, statement (ii), of Theorem 6-6, show that OF induces an 

isomorphism of o~ with 1. 

(c) Show that the natural topology of o~ is identical to that induced by the 
norm subgroups. 

5. Let Fbe a global field, and let OF: CF ~ r;h be the Artin map. 

(a) Show that if F is a number field, then OF is surjective with kernel equal to 
the connected component of the identity of CF" 

(b) (Artin-Tate) Show that if F is a function field over a finite field Fq , then OF 

is injective with dense image. Show, moreover, that each automorphism in 

the image restricts to an integral power of the Frobenius map x H x q 

on Fq • 

SPECIAL NOTE. It is beyond us to compose problems on class field theory and 
the relationship of Artin's reciprocity law to the classical power residue sym­
bols, prime decompositions, etc., equal to the amazing ones found in Algebraic 
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Number Theory by Cassels and Frohlich (1968, pp. 348-364). We encourage 
the reader to tlY all of these wonderful and productive exercises. 



7 
Tate's Thesis and Applications 

It is well known that much infonnation on rational primes is encoded in the 
Riemann zeta function (s), which is defined by the absolutely convergent se­
ries 

1 
(s) = L--; 

11;;,1 n 

for complex numbers s such that Re(s) > 1. Moreover, this function admits an 
analytic continuation to the whole s-plane, except for a simple pole at s=l, and 
satisfies the functional equation 

where 

~s)= ;(I-s) 

~s) = tr-sl2r( ~ K(s) . 
2 

One establishes this analytic continuation and the functional equation by mak­
ing use of the Mellin transform of the theta function 

and the well-known identity 

for t>O. 

B(z) = Le2Jrill2z 

lIeZ 

(7.1) 

Euler was the first to study (s), but only for s real. He established the Euler 
product expansion [in fact valid in the domain Re(s»I] 
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where p runs over the rational primes. He also realized that the assertion s(s) 
approaches infinity as s-+l+ is equivalent to the infinitude of primes in Z. One 
could greatly generalize the zeta function with the introduction of the Dirichlet 
series. Given a multiplicative sequence {an}n;o,l' which is to say that amn=aman 
whenever m and n are relatively prime, one can form the series 

L(s) = L a~ 
,,;0,1 n 

which is absolutely convergent in some right half-plane. Two very important 
examples are (i) L(s)=Ll(n)n-S, where X is a Dirichlet character (for instance, 
as derived from the Legendre symbol), and (ii) L(s)=Ll(a)(Na)-S, where a runs 
over the nonzero ideals of the ring of integers of a number field K and X is a 
character of the ideal class group CIK' (In the latter example, when x=1, the 
resulting series is called the Dedekind zeta function of K.) A simultaneous gen­
eralization of these two is the L-function L(s,X) associated with a (continuous) 
character X of the idele class group CK of any number field K. A substantial 
achievement of E. Hecke was to establish the analytic continuation and the 
functional equation of L(s,X) for any idele class character X by an enormously 
complicated application of generalized theta functions and the higher analogues 
ofEq. 7.1, which we now understand as consequences of the Poisson summa­
tion formula. One thing that Hecke's method could not describe satisfactorily 
was the nature of the global constant W(x), the so-called root number, appear­
ing in the functional equation of L(s,X). Then, circa 1950, following a sugges­
tion of his erstwhile thesis advisor E. Artin, J. Tate made use of Fourier 
analysis on adele groups to re-prove both the analytic continuation and the 
functional equation of L(s,X). In the process, Tate also established local func­
tional equations along with a factorization of the "abelian" root number, for 
which he gave an explicit formula. 

The basic idea of Tate was to realize the local factors and the global L­
functions of X as the greatest common divisor of a family of zeta integrals, with 
a consequent generalization of Gauss sums. The key is to take a nice topologi­
cal ring R such as Qp, R, or AQ. and to consider integrals ofthe form 

z(x,cp) = f X(x)cp(x)dx: 

where X is a character of Wand cp is a nice function on R. The functional 
equation reflects the Fourier duality between (x,cp) and (i,~), where ~ is the 
Fourier transform of cp and Cui' IS )V = .u1·11- s if f.J is a unitary character of W. 
Note that in the formally analogous case R=Fp' X is of order dividing (P-l), 
and every function cp on R is a linear combination LC I{/If/. where If/" runs over 
the characters of the additive group of R; that is, elements of Hom(Fp'C*), So, 
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as suggested above, in this case, z(z, rp) becomes rclVg(z, V/), where each 
g(z, V/) is the Gauss sum 

p-I L x(a)e2/riab(IV)lp 

0=1 

for some integer b( V/). When R is a local field or the adele ring of a global 
field, the characters V/ of R are oscillatory and z(z, V/) will not converge. Here 
the zeta integrals make sense only for suitable functions rp and may have sin­
gularities; the true analogue of the Gauss sum turns out to be the epsilon factor 
S(Z, rp) occurring in the functional equation. When R is the adele ring of a 
global field F, the multiplicative characters X of interest will always be trivial 
on F* and thus will define idele class characters. 

In his thesis, Tate used some ad hoc spaces of functions over local and 
global fields. Here we will systematically use the spaces of Schwartz-Bruhat 
functions. 

We end this chapter with applications, and, in particular, with a proof of the 
characterization of idele class characters X via their local components Xp ' for p 
running over a set of primes of density greater than one-half. 

7.1 Local (-Functions 

Let Fbe a local field with absolute value 1'1 and Haar measure dx. Define 

dx 
d*x= c·-

Ixl 

for some fixed real number c>o, which we always normalize to c=l for F Ar­
chimedean. Then d*x is a Haar measure on F*. When F is non-Archimedean, 
let OF denote its ring of integers, P= P F its maximal ideal, 7rF the uniformizing 
parameter, and F q the corresponding residue field. Recall that F* is the direct 
product U F x 9F , where U F is the subgroup of F* consisting of elements of unit 
absolute value and 9 F is the valuation group; that is, 

9 F = {ye R; : y= lxi, for some xeF*}. 

Then 9F equals R: ifF is Archimedean and qZ otherwise. (Note that UF is just 
the usual group of units in OF in the non-Archimedean case.) 

Let X(F*) = Homcont(F*, C*) denote the space of continuous group homo­
morphisms from F* to C*. In this chapter, we refer to elements XeX(F*) as 
characters of F*. These have sometimes been called quaSi-characters. Char­
acters with codomain given as Sl are here distinguished as unitary characters. 
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Hence unitary characters of F* are ordinary group characters in the sense of 
Chapter 3. (Admittedly, the term has been overworked.) We see that every 
%eX(F*) factors into the product 

where II is the pullback of a unitary character on U Fr;;;;.F*, uniquely defined by 
the restriction of %, and s is a complex number. This is because the compact­
ness of UF forces its characters to be unitary, while the characters of 9F are all 
of the form t I-H' for some seC. A straightforward calculation shows that 
while s may not be uniquely determined by this factorization--examine the 
non-Archimedean case-nonetheless, Re(s), the real part of s, always is. Ac­
cordingly, we call Re(s) the exponent of %. 

The object of this section is to introduce the local L-factor L(z) associated 
with an arbitrary character % of F* and to realize it as the greatest common 
divisor of some local zeta integrals. 

We say that %eX(F*) is unramified if %1 Up = 1. If F is non-Archimedean, set 

L(%) = {(l- %(nF)r1 if Xis ~nramified 
1 Otherwise. 

If F= C, then U F is Sl, and % takes the form 

for some uniquely defined seC and neZ. (Recall that the dual group of Sl is 
the discrete group Z; for arbitrary real n, the map ei6 ~ ein6 is not continuous.) 
We then set 

Inl _(s+l!!i) Inl 
L(Z.n)=rc(s+-) = (2n) 2 r(s+-) -, 2 2 

where r(s) is the traditional r -function 

co 

r(x) = f e-tt,,-ldt 
o 

and rc(s)=2(2n)-"T(s). Finally, for F=R, in which case UF ={±1}, we may 
write %= 111'18, with both II and s uniquely defined. Letting sgn denote the sign 
character x ~ xII x I , we set 
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Given a character % of F* and a complex number s, the product %1·l s of 
course also defines a character, and one customarily writes L(s,%) for L(%I· n. 
Moreover, we define the shifted dual of % by 

so that 

Fix a nontrivial additive character IjI of F; that is, a nontrivial element of 
ft = Hom(F,SI) , the ordinary dual group of (F,+). One can show that if 1jI' is 
any other additive character on F, then 

1jI'(x) = ljI(ax) 

for some aeF. (See Exercise 1 below.) We will denote this character ljIa' It fol­
lows from this that map a ~ IjI a is an isomorphism of topological groups from 
the additive group F to the dual group ft, and hence we have the following 
result, which we shall later extend to adele groups: 

7-1 PROPOSITION. Any local field F viewed as an additive locally compact 
topological group is isomorphic to its (unitary) dual. In fact, given any 
nontrivial character IjI ofF, the mapping 

a ~ ljIa 

is an isomorphism of topological groups. 

In a case such as this of a self -dual, locally compact abelian group, we may 
speak of a Haar measure dx as being self-dual if it is equal to its own dual 
measure in the sense defined by the Fourier inversion formula (Theorem 3-9). 

We will say that a complex-valued functionfon F (or F*) is smooth if it is 
'lfoo for F Archimedean, and locally constant otherwise; that is, f(x)= f(xo) for 
all x sufficiently close to xo' In the Archimedean case, a Schwartz function f on 
F is a smooth function that goes to zero rapidly at infinity; more precisely, 

p(x)f(x) ~ 0 
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as x-+oo for all polynomials p(x). A Schwartz-Bruhat function is a Schwartz 
function if F is Archimedean, and a smooth function with compact support in 
the non-Archimedean case. We let S(F) denote the space of Schwartz-Bruhat 
functions; this is clearly a complex vector space. 

Given feS(F) and the fixed additive character '1/, we may define the Fourier 
transform of fby 

j{y) = f f(x)'I/{XY)dx . 
F 

Note that in this chapter it is convenient to drop the traditional conjugation of 
the second factor of the integrand; accordingly, this conjugation reappears in 
the Fourier inversion formula. While this is well-defined and in fact again lies 
in S(F), it nonetheless depends on the choice of the pair (If/, dx). In his thesis, 
Tate normalizes his measure to be self-dual relative to If/, so that the identity 

A 

f(x) = f(-x) 

holds. We shall avoid this normalization at least for the local non-Archimedean 
case. 

Given feS{F) and zeX(F*), we define the associated local zeta function, or 
local zeta integral, to be 

Z(f,z) = f f{x)Z(x)d*x. 
F'* 

The main result of this section is the following: 

7-2 THEOREM. Let feS{F) and Z= ,ul·l s with ,u unitary of exponent CT=Re{s). 
Then the following statements hold: 

(i) Z(f,Z) is absolutely convergent if CT is positive. 

(ii) If CTe(O, 1), there is afunctional equation 

for some r(Z, If/, dx) independent off, which in fact is meromorphic as 
afunction ofs. 

(iii) There exists a factor &(z, If/,dx) that lies in C* for all s and satisfies 
the relation 
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According to part (i), Z(],ZV) converges for r:r< 1, and so part (ii) immedi­
ately yields a meromorphic continuation of Z(f,Z)=Z(f,p,s) to the whole s­
plane, although initially this function is defined and holomorphic only for 
Re(s»O. Moreover, from parts (i) and (iii) we deduce that 

Since the zeta factor on the left is absolutely convergent to the left of 1 and the 
epsilon factor on the right is a nonzero complex number, this implies that the 
poles of Z(f,Z) are no worse than those of L(z), which is independent off We 
will see later that the "local L-factor" is given as L(z)=Z(fo,z) for some suit­

ablefo· 

PROOF. (i) Since z= pl' IS and p is unitary, we need to show that 

I(f,r:r) = c Jlf(x)HxIO'-1 dx<oo . 
F-{O} 

First suppose that F is Archimedean. Then, since f is a Schwartz function, the 
integrand goes to zero rapidly as x approaches infinity. Also, as x approaches 
zero, the behavior of the integral is governed by the fact that IxIO'-1 is integrable 
around zero for any positive CT. Thus the integral is finite, and we may pass to 
the second and final case. 

Suppose next that F is non-Archimedean. Since f is then locally constant 
with compact support, it factors through a finite quotient group of the form 

for some integers m and n. Hence by linearity and the translation invariance of 
the Haar measure, it suffices to check the assertion for functions f that are 
merely the characteristic functions of the various ideals 1rto F' But from the 
decomposition 

it follows that 

<Xl 

1rtOF-{O}=U ~o; 
k=j 

I(f, r:r) = c J If(x)HxIO'-1 dx 
F-{O} 

= Jlf(x)HxIO'd*x 
F* 



248 7. Tate's Thesis and Applications 

= Vol(o~,d*x) Lq-ku 
k?j 

-}u 

= Vol(oFX , d*x) -q-­
I_q-U 

which is finite for CT positive. This completes part (i). 

(ii) Choose an auxiliary function heS(F). Tate's key idea is first to prove the 
following: 

7-3 LEMMA. For all zwith exponent CTe(O, I). we have 

PROOF. Note that these zeta functions are well-defined at least for such CT by 
part (i). We may write 

Z(f,Z)Z(h,ZV) = JJ f(x)h(Y)Z(xy-I)lyl d*xd*y 
F·xF* 

Since d*xd*y is the product (Haar) measure on F*xF* and hence invariant 
under the translation (x, y) J.4 (x, xy), this double integral becomes 

where 

JJ f(x)h(XY)Z(y-I)lxYI d*xd*y = f{f,h}(Y)Z(y-I)IYI d*y (7.2) 
F*x~ F* 

{f, h}(y) = f f(x)h(xy)lxld*x 
F* 

Both steps are justified by Fubini's theorem. The symbol {f,h} in fact has a 
critical property: 

CLAIM. {f,h}={h,f}. 

A 

Indeed, since c·dx=lxld*x, we have by definition of h that 

{f,h}(y) = c JJ f(x)h(z)lf/(xyz)dzdx 
FxF 
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which by Fubini's theorem equals 

c J h(z)j(yz)dz = {h,f}(y) 
F 

and thus the claim is established. The full lemma of course follows at once from 
Eq.7.2. 1:1 

Let us now return to the proof of part (ii) of Theorem 7-2. Fix a function 
foeS(F) and put 

Then by the preceding lemma, r is independent of the choice of fo, and we have 

as asserted. As noted above, since Z(f,X) is defined for all X with positive expo­
nent, while Z(j,XV ) is defined for all X with exponent less than unity, we will 
get the requisite meromorphic continuation of Z(f,X) if we can show that r(X) 
is meromorphic everywhere. This will follow as a byproduct of the proof of the 
final assertion, where we will in fact compute r(X) for a suitable fo. 

(iii) We shall choose a special function (or family of functions) ffor each of the 
three cases defined below. The computations are done for the standard measure 
dx (to be defined), which is self-dual for a standard choice of If/. In Exercise 8 
below we shall indicate the ensuing changes for an arbitrary pair (dx, If/). 

CASE ONE: F= R. We take dx to be the usual Lebesgue measure and choose our 
standard character to be 

If/(X) = e-2trix . 

As we have observed previously, every character xeHomcont(R*, C*) must be of 
the form 1_1 8 or sgn 1_1 8 , where sgn is the sign character. Suppose first that 
'%=1-1 8 • Then take 

f(x) = e -trX 
2 
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which is clearly in S(R). Then 

Z(f,x) = fe-=2Ixlsd*x =2je-=2x.s-IdX. 
R* 0 

Putting u= mil, the integral reduces to 

since in general, 

00 

Z(f,x) = tr-s/2 f e-uus/2- ldu = tr-S12r(s12) 
o 

00 

r(s/2) = f e-uusI2-ldu. 
o 

Checking this against the definition of L(X), we have shown that Z(/.X)=L(X) 
for all characters X of this fonn. Next recall that 

j(y) = f e _1l'X
2 e-2triXYdx = f(x). 

R 

(This classical fonnula can be proven by contour integration.) Thus we have 

Z(j,XV) = f f(x)XV(x)d*x 
R* 

which equals L(XV) by what was just shown. So for x= I' IS, we have 

rex) = L(XV
) 

L(X) 

and we may put &(x)= &(x, 'l/,dx)= l. 

For F real, there still remains the possibility that x=sgn I' IS. Under these 
circumstances take 

2 
f(x) = xelDC . 

Then since sgn(x)=xllxl, we find that 
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Z(f,z) = J xe-mt2 ·..!..·Ixls d*x 
R" Ixl 

= J e-n2 Ixls+1 d*x 
R· 

8+1 1 
= 1r -<T)r(S+ ) 

2 

where the last line follows by the first computation. Thus again Z(f,z) = L(Z) by 
definition. But contour integration also shows that 

A 2 
f(y) = iye-IrY 

and so 

Thus for Z=sgn 1'18 we have s(Z)= s(z, I{',dx)=i. 

CASE Two: F=C. We take the measure on C to be dzdz=2dxdy, which is 
twice the ordinary Lebesgue measure and self-dual with respect to our standard 
complex character 

V'(z) = e-21ri(z+z) • 

Furthermore, we adjust the norm on C to agree with the module; that is, for 
purposes of these calculations, set 

Izl=z'i . 

As we have seen above, since C*= R: x Sl, every character of C* takes the 
form 

for some uniquely defined complex S and integral n. Put 
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One can show that the Fourier transform of.r" is then given by 

for all n. Note finally that d*z=(2Ir)drd8. We may then compute for n positive 
or zero: 

c· 

= _1_ J zne-2trZz (zz)S e in8(z)d*z 
2tr c. 

1 2,..", 2 1 
= - J J r ne-2,..r r 2s -drdB 

tr 0 0 r 

-(s+!!.) '" 2 s+!!.-I 
= (2tr) 2 J e-2,..r (2trr2) 2 4trrdr. 

o 

The result cries out for the substitution t=2trr2, whence 

-(s+!!.)'" s+!!.-I 
Z(fn,Xs,n) = (2tr) 2 J e-tt 2 dt 

o 

-(s+!!.) n 
= (2tr) 2 r(s+-) 

2 

Repeating the calculation for negative n shows that in fact, 

-(s+~) InJ 
Z(fn,Xsn) = (2tr) 2 r(s+-) =L(Xsn) , 2' 

for all n. Since clearly 

it follows from the linearity of this calculation and from the formula for the 
Fourier transform of.r" given above that 
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Consequently, 

( ) = ;lnIL(Z:'n) 
r Zs.n L() 

Zs.n 

and 

This completes the proof for the complex case. 

CASE THREE: F is a non-Archimedean local field. We shall treat only the case 
of characteristic zero; see Exercise 5 for positive characteristic. Thus we as­
sume that F is a finite extension Qp for a fixed rational prime p. We have a 
standard additive character If/p on Qp defined by the following composition: 

can e2Jrj(.) 
. I 

If/p = lQp ~ QplZ p ~ Q/Z ~ S]. 

(Exercise 3 gives an explicit construction.) This character induces a standard 
additive character If/Fon Fvia the trace map from Fto Qp . Thus for xeF, 

Note that If/F is clearly trivial on OF' We know, moreover, that any additive 
character of F takes the form 

If/(X) = If/Jzx) = If//tr(zx» 

for some zeF. (Likewise, in positive characteristic we can define a standard 
character If/F in the local case such that If/F is trivial on the associated ring of 
integers; again, see Exercise 3.) 

Fix a nontrivial additive character If/ and the corresponding self-dual meas­
ure dx. For these calculations, If/ need not be the standard character. Define an 
integer constant m as follows: 

m = inf{reZ: If/lpr= I} 

where P is the unique prime of F, and here we understand pO to be OF' Note 
that m is indeed finite because If/ is assumed continuous and takes the value one 
at zero. We call pm the conductor of If/. For the trivial character, one custom­
arily takes the conductor to be OF' 

For a multiplicative character Z:F*~C* we define the conductor to be pn, 
where Un = 1+ pn (n~O) is the largest subgroup of this form on which .1 is triv­
ial. In the case that n is zero, we take Uo to be ° ~ and say that .1 is unramified. 
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Consider again the trace map tr:F ..... Qp, which is nondegenerate; indeed, 
the nondegeneracy of the trace map characterizes finite separable extensions. 
We can define a subset o~ ofF, called the dual of OF' as follows: 

One sees at once that 0 ~ is a Zp -submodule of F, and since F is a local field, 
there exists an integer d such that 

Note that by construction, the standard character on F has conductor 0 ~, which 
accordingly has exponent -d. We now define 'lJ='lJF ' the different of F, by 

Thus the different of F is the inverse of the dual of OF with respect to the trace 
map. (See Appendix B, Section 2, and also the exercises from Chapter 4 for 
more information on the different.) 

Write Z .. n for the map 

where OJ is a unitary character of conductor pn. Certainly every multiplicative 
character of F is of this form, and while the indices do not completely deter­
mine Zs.n' they do suffice to determine the ensuing computations. Now define f 
by 

f(x) = {'I'(X) ifXE~n 
o otherwise 

(7.3) 

where again pm is the conductor of '1'. We shall now compute Z(f,Zs.n) sepa­
rately for n equal to zero and for n positive. 

CASE n=O. This is a routine calculation. We need only keep in mind that 'l'is 
trivial on its conductor pm, OJ is trivial everywhere, and pm_tO} is the disjoint 
union of the sets 1r~ o~ for k~m. Accordingly, we compute 
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Z(f,zs,,,) = f f(x)Zs,,,(x)d*x 
F" 

= flxls d*x 
POl_{O} 

-lIU 
= Vol(oX d*x) -q--

F' 1-' -q 

=q-lIUVol(o~,d*x) L(s,l) 

where of course, L(s, 1)=L(Z8,O>. 

CASEn>O. One sees at once that 

Z(f,z.,,,) = L q-Ics f ",(;rku)m(u)d*u . 
k::?m-" of 

(7.4) 

To resolve this expression, we resurrect in modem form one of the classic con­
structions of number theory. For any multiplicative character m: o~ ~SI and 
additive character A: 0F~SI, we define the associated Gauss sum to be 

g(m,A) = f m(u)A(u)d*u . 
OF 

Then 

Z(f,zs,,,) = Lq-Icsg(m, "'8k) 
k::?'m-" 

where again '!',(x)= ",(tx). 

7-4 LEMMA. Let m and A have conductors P" and P', respectively. Then the 
following statements hold: 

(i) Ifr<n, then g(~A)=O. 

(ii) Ifr=n, then Ig(~A)12=cVol(oF,dx)Vol(U",d*x). 

(iii) Ifr>n, then Ig(~A)12=cVol(oF,dx)[Vol(U",d*x)-q-1Vol(U,_\,d*x)]. 
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PROOF. Write U= 0; as a disjoint union of cosets modulo Ur = 1+ pr, and note 
that A.(a(1+1l'h)) = A.(a) A.(1l'ab) = A.(a) by definition of the conductor. Thus 

g(w,.A.) = L .A.(a)w(a) f w(u)d*u . 
UlU, U, 

But if r<n, then wlu is nontrivial, and the indicated integral is zero by the or­
thogonality of the c~cters. This proves part (i). 

Now suppose that r~n. We have 

where 

Ig(w,.A.)1 2 = f f W(xy-l).A.(X- y)d*Xd*y 
uu 

= f w(z)h(z)d*z 
U 

h(z) = f .A.(y(z -l»d*y = cf .A.(y(z -l»dy . 
U U 

(The second equality holds because c·dx=lxld*x and Iyl=l whenever y lies in 
the unit group U.) Thus 

h(z) = c f .A.(y(z-l»dy- cf .A.(y(z-l»dy 
OF P 

= -cq-tVol(oF'dx) ifvp(z-l)=r-l {
C(l-q-l)VOl(OF'dx) ifvp(z-l)~r 

o otherwise. 

From this we get 

!
C(l-q-l)VOl(OF,dx)VOI(U,d*X) 

Ig(w,.A.)1 2= 
cVol(oF,dx)[Vol(Ur,d*x)-q-l f w(z)d*z] 

u,...\ 

and parts (ii) and (iii) now follow at once. 

ifO=r(=n) 

ifO<r 

[J 

Resuming the computation of Z(f,Xs,n)' we deduce from the first part of the 
lemma and the equation that precedes it that for n positive, 
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Z(f ) - -(m-n). ( ) ,X.,n - q g (0, f//" .,-. . (7.5) 

But now we see from part (ii) of the lemma that since the conductor of both (0 

and f//"m-n have exponent n, the second factor on the right-hand side of this 
equation cannot be zero. Thus in this case Z(f,Xs•n) is essentially an exponential 
function, with neither zeros nor poles-which is well, because by definition 
L(Xs,n)=1 for n>O. 

Next we make ready for the other half of the calculation, and for this we 
need to compute a Fourier transform. 

7-5 LEMMA. For the function fdefined by Eq. 7.3, the Fourier transform offis 
given as Vol(pm-n,dx) times the characteristic function of OF for n=O and 
as Vol(pm-n, dx) times the characteristic function of pn_l for n>O. 

PROOF. By definition, 

j(y) = f f(x) f//(XY)dx = f f//(X(y + l»dx . 
F p...-n 

Let n=O. Then since the conductor of f//is pm, by orthogonality f(y) is zero if 
y does not lie in OF' When y does lie in OF' then f<y) = Vol(pm-n). Now sup­
pose that n is positive. Then if y is not in pn_l, then vp(y+J)::5:n-l, and thus 

the product x(y+ 1) occurring in the integrand does not lie in pm'A Accordingly, 
f//Y +l is a nontrivial character of pm~n, and by orthogonality, f(y) is zero. 
Wheny does lie in pn_l, then again f(y) = Vol(pm-n). 0 

With this fundamental technical lemma in hand, we are now prepared to 

compute the value of Z(j, X:'n) . 

CASE n=O. Using the last lemma and the by now familiar decomposition of 
integers of F into the disjoint union of subsets of a given valuation, we find that 

Z(j,X:'o) = Vol(pm,dx) f X:'o(y)d*y 
Op-{o) 

= Vol(pm,dx)Lq-k(1-s) f d*y 
k"O 

= Vol(pm,dx)Vol(o~,d*x) 1 ~(1-S) 
-q 

= Vol(pm,dx)Vol(o~,d*x) L(X:'o)' 



258 7. Tate's Thesis and Applications 

Thus we find from this and Eq. 7.4 that 

and 

r ( 'V ) = qWlS Vol(pm dx) L(Z:'o) 
M,O 'L(Z ) 

s,O 

CASEn>O. Again the lemma applies, and we have at once that 

= Vol(pm-n, dx) J iO( -u)d*u 

= Vol(pm-n,dx)Vol(l+r,d*x)w(-I) 

since the conductor of w is identical to that of its conjugate. The result is a con­
stant, as it should be, since L(Z:'n) = 1 for n positive. Accordingly, it follows 
from Eq. 7.5 that 

q(m-n)s Vol(pm-n,dx) Vol(1 + r ,d*x)w( -I) 
&(Zs,n''!''dx) = r(zs,n' ,!"dx) = () 

g w, '!'trm- n 

Now one sees easily that 

and since the conductor of '!'trm-<! is pn, by combining the formulas above for the 
epsilon factor with part (ii) of Lemma 7-4, we get the following compact for­
mula: 

Here we have also used that Vol(pm-n) = qn-m . Vol(oF)' 

To conclude our analysis, we observe that in all three cases the poles of 
Z(f,Z) are given by the zeros of the now clearly meromorphic function 
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because the regions of absolute convergence of Z(f.X) and Z(j,XV ) are, re­
spectively, Re(s»O and Re(s) < 1. Moreover, the zeros of rmust coincide with 
the poles of L(x), since L(X) and L(XV) have no zeros. This finishes the proof of 
Theorem 7-2. [J 

The Root Number 

Let F be a non-Archimedean local field of characteristic zero. From Exercise 7 
below we have the following result: 

Suppose that Ip(X)='I'p(tr(x», the standard nontrivial character of F. 
Then the associated self-dual measure dx on F is the one that satisfies 
the relation Vol( OF' dx)= N('l>F)-112 = q-d12, where 'l>p = n; OF is the differ­
ent ofF, as described above. 

For a multiplicative character OJ, one defines the root number W(OJ) by 

W(OJ) = e(OJI·I~,'I',dx). 

One can show (see Exercise 9 below) that W(OJ) is of absolute value 1. If the 
conductor of OJ has exponent n and A. is any additive character whose con­
ductor also has exponent n, one sees readily that 

g(W, A.) = cVol(P") Lw(x)A.(x). 
xeUlU" 

The sum on the right is the usual Gauss sum. Now suppose that 'I' is the 
standard character and dx the self-dual measure. Then it follows immedi­
ately from the s-formula above and the preceding expansion that 

W(OJ) = q-nl2 LW(x)'I'(xn-(d+n». (7.6) 
xeUlU" 

7.2 The Riemann-Roch Theorem 

A basic result of abelian harmonic analysis, both in the classical and adelic 
settings, is the Poisson summation formula, which relates the averages over a 
lattice of a nice function and its Fourier transform. The Riemann-Roch theorem 
provides a nontrivial and valuable extension. In the function field case, it can 
be interpreted as giving the "usual" Riemann-Roch theorem for curves over Fq, 

whence its name. 
We begin with some notation. Let Kbe a global field. Then define 
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where the restricted tensor product of the Schwartz-Bruhat spaces S(Ky) con­
sists of functions of the form 

/=®/v:/v eS(Kv)''i/v and Ivlo =1, for almost all v . 
• 

We shall call such an / an adelic Schwartz-Bruha! function; in this case it 
makes sense to write 

/(x) = I1/v(xv) 
v 

for all x=(xy)eAK. Let dx denote a Haar measure on AK and define L2(AK) us­
ing this measure. It is easy to see that S(AK) is dense in L2(AK ). 

Fix a nontrivial (continuous) unitaly character 'I' on AK such that 'l'IK= 1. 
(See Exercises 4 and 6 for the existence of such characters.) Define the adelic 
Fourier transform on any /eS(AK) by 

j(y) = J /(x)'I'(xy)dx . 
Ax 

Here we normalize dx to be the self-dual measure for If/. In Exercise 12 below 
we shall deduce that the mapping / H j defines an automorphism of S(AK) 

that moreover extends to an isometIy of L2(AK ). 

We are interested in functions on AK that are invariant with respect to 
translation by elements of K. One example is '1'. An obvious approach to find­
ing others is to take an average over K. To elaborate, set 

qi(x) = LqJ{y+x) 
reK 

for rpeS(AK). When this function is convergent for all x, we see that for all 
oeK it satisfies the relation 

reK r'eK 

where y'=y+o. Thus qi(o+x) = qi(x), as desired. 

';:: 

DEFINITION. Let / be complex-valued on AK such that both / and / are nor-
mally convergent; that is, both are absolutely and uniformly convergent on 

compact subsets. Then we say that/is admissible. 
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7 -6 LEMMA. Every function feS(AK) is admissible. 

PROOF. LetfeS(AK)' We have to show the absolute and uniform convergence of 
f over any compact subset C of AK. By enlarging C, we may assume without 
loss of generality that C takes the form 

CQ) x IT Pynv x IT 0v 
YES ya 

where S is a finite set offinite places including those at whichflov:;!!:l, 

is a compact set in the product K Q) = II Ky taken over the set S Q) of infinite places, 
and ny is an integer for all YES. We may enlarge S to contain Swand assume 
that Iv is the characteristic function of Py"'v for all veS-Sw' Note that such 
functions generate S(AK). Define a fractional ideal I in OK by 

where ky =inf{ny,my}. Suppose thatf(r+z):;!!:O for some zeC and reK. Then r 

lies in pykv for all veS-Sw' and in Oy for all vrlS. Thus 

17(z)l~ Llftv(r+ztv)1 
reI 

where 

fQ) = ITfv eS(Kw) and ZOJ = (zv)veS., . 
veS., 

But I is a discrete subgroup of Kw (this follows, for instance, from the discrete­
ness of K in AK), and the Schwartz-Bruhat function Iw has a uniform absolute 
bound over the compact set C w' with the further property that the value of 
Ifw(r+zw)1 decreases rapidly with Zw in the number field case, while fw has 
compact, hence finite, support in the function field case. Thus for a number 
field, the number of r that occur in any shell of radius B and thickness !ill can 
grow at most as a power of B, while If wi goes to zero faster than any polyno­
mial; for a function field, the number of terms in the summation is finite. The 
normal convergence of f follows. Since this extends at once to its Fourier 
transform, which also lies in S(AK)' the proof is complete. 0 
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-_ A 

7-7 THEOREM. (poisson Summation Fonnula) Let fES(AK). Then f = f; that 

is, 

If(r+ x ) = IJ(r+ x ) 
reK reK 

for a/l xEAK. 

PROOF. Every K-invariant function rp on AK induces a function, again denoted 
rp, on AKIK. For all zEK we set 

~(z) = f rp(t)'I/(tz)dt 
AKIK 

where dt is the quotient measure on AKIK induced by dt on A K . This is to say 
that dt is characterized by the relation 

f ](t) dt = f (If(r+t»dt = f f(t)dt 
AKIK AKIK reK AK 

for all continuous functions f on AK with appropriate convergence properties. 
(The integration variable t, as it occurs on the left and in the middle, takes val­
ues in the quotient group AKIK; nonetheless, the indicated expressions are well­
defined.) We shall need two lemmas. 

7-8 LEMMA. For every function fin S(AK), we have 

PROOF. Fix zEK. By definition, 

](z) = f ](t) 'I/(tz)dt 
AKIK 

= f (If(r+t»'1/(tz) dt. 
AKIK reK 

Since we assume that the unitary character '1/ has the property 'l/IK= 1, we have 
that 

'1/( tz) = 'I/«r + t)z ) 
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for all reK. Accordingly, by definition of the quotient measure (relative to the 
counting measure on K) it follows that 

A 

/(z)= f (L/(r+t)V'«r+t)z) )dt 
AglX reX 

= f /(t)V'(tz)dt 
Ag 

A 

=/(z) 

and this completes the proof. o 

7-9 LEMMA. Let /eS(Ax)' Then/or every xeK, we have 

/(x) = Lf(r)V1(rx). 
reX 

A 

PROOF. By the previous lemma, jlx = /Ix on K. Hence the summation 

A 

L/(r)V1(rx) 
reX 

is normally convergent. In particular, 

and so the Fourier inversion formula applies. (Since the PontIyagin dual of the 
quotient AxlK is K itself under the discrete topology, the indicated summations 
correspond to the appropriate integrals.) The assertion of the lemma follows. 0 

We are now prepared to deduce the Poisson summation formula. Indeed, if 
we put x=O into the second lemma and then apply the first, we have on the one 
hand that 

/(0) = Lf(r) = Lj(r). 
reX reX 

But on the other hand, by definition, 
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](0) = :Lf(y) 
reK 

and this suffices. [J 

It is of interest in number theory to understand the average 

:Lf(yx) 
reK 

for an idele x. [Note that the absolute convergence of this summation follows 
from that of "L!(y), which is implicit in the admissibility of f1 One cannot get 
this infonnation from the previous theorem, and one needs instead the follow­
ing stronger result. 

7 -10 THEOREM. (Riemann-Roch) Let x be an idele of K and let f be an element 
ofS(AK). Then 

~ 1 ~ A I 
~f(rx)=-~f(rx-) . 
reK Ixl reK 

PROOF. Fix xeAK, and for aIbitrary yeAK' define h(y)= f(yx). Clearly, 
heS(AK). Thus, by the Poisson summation formula, 

But 

:Lh(y) = :Lh(y) . 
reK reK 

h(y) = J f(YX)II/(YY)dy 

= I!I Lf(Y)II/(yyx-l)dy 

1 fA( -I) 
=~ yx . 

The theorem now follows immediately. 

The Riemann-Roch Theorem for Algebraic Curves 

[J 

When K is a function field in one variable over F q' the previous theorem can be 
interpreted to yield the perhaps more familiar Riemann-Roch theorem of alge­
braic geometry. We shall explain this after some preliminaries. 
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A divisor on K is a fonnallinear combination 

where the sum runs over all places v of K and each coefficient nv is an integer 
that is zero for almost all v. The divisors on K naturally fonn an additive group, 
denoted Div(K). The degree ofa divisor D=rnvv is defined by 

deg(D)= Lnvdeg(v) 
v 

where deg(v) is the degree (over Fq) of the residue field Fq. at v. Thus 

qv = N(v) = qdeg(v) • 

Since deg(D+D')=deg(D)+deg(D'), we see that the degree map defines a 
homomorphism deg: Div(K) ..... Z, the kernel of which is denoted DivO(K), the 
group of divisors of degree zero. 

Given any feK*, we can associate a divisor, called a principal divisor, by 
setting 

div(f) = L v(f)v 
v 

where v(f) of course denotes the valuation offat v. [In geometry, it is custom­
ary to write ordy(f) rather than v(f).] Since v(f) can be nonzero only at a finite 
number of places, div(f) is a bona fide divisor. Moreover, it is obvious that 
div(fg) = div(f)+div(g). The quotient Div(K)/div(K*) is denoted Pic(K) and 
called the Picard group of K. Elements ofPic(K) are called divisor classes. 

Recall that Artin's product fonnula says that for allfeK*, 

IflAK = [llflv = 1 . 
v 

But 

I flv = q~v(f) = q -v(f)deg(v) 

for all v, so 

deg(div(f» = L v(f)deg(v) = 0 . 
v 

Thus we see that div(K*)s;;;;DivO(K). 
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Now suppose that div(f)=div(g) for fand gin K*. Then div(f/g)=O, and 
the quotient a=f/g is a unit of 0v for all v. From Chapter 5, Exercise 5, we 
know that any such a must lie in Fq *. To summarize, we have the following 
exact sequence of groups: 

div 
1 ~ F: ~ K* ~ Divo(K) ~ Pico(K) ~ 0 

where Pic°(K), the Picard group of degree zero, of course denotes the quotient 
DivO(K)/div(K*). Clearly, deg induces a homomorphism, again denoted deg, on 
Pic(K), with kernel Pic°(K). Elements of PicO(K) are called divisor classes of 
degree zero. 

We next introduce the partial ordering on Div(K) defined by 

D = ~ n v> D' = ~ n' v if n > n' 'tv L.Jv- £..Jv v-v· 
v v 

With this, to each divisor D one may associate the following linear system of D: 

L(D) = {O}u{feK* :div(f)~-D} . 

Since div(f) has degree zero forfeK*, we have at once that L(O)=Fq' One may 
further deduce from the Artin product formula that L(D)={O} if deg(D) <0. 

Note that L(D) is clearly closed under scalar multiplication from F q' More­
over, it is closed under addition by the ultrametric inequality: 

v(f+g) ~ inf{v(f), v(g)} . 

Hence L(D) is in fact a vector space over Fq, and one writes I(D) for the dimen­
sion of this space. One sees immediately from our previous observations that 
1(0)=1 and I(D)=O if deg(D)<O. It is not a priori clear, however, that in gen­
eral this number is finite. 

7-11 PROPOSITION. For any divisor D, the number I(D) is finite. 

PROOF. The first step is to extend the divisor map to ideles. Accordingly, we 
define 

div : IK ~ Div(K) 

(xv) H L v(xv)v . 
v 

It is easy to see that this extended map is surjective. Moreover, we have the 
following set of equalities: 
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Ker(div) = no: = I X•0 

" 
div(I~) = Divo(K) 

Next letf=®J.,eS(Ax) be defined by requiring that each component func­
tionfv be the characteristic function on 0". Given any divisor D=r.n"v, we may 
associate an idele x(D) such that v(x(D)")=n,, for all v. Then, by construction, 
we have for all yeK* that 

f(yx(D» = {OI ifv(yx(D),,) ~ 0 "tv 
otherwise. 

In other words, for nonzero y, we have that f(yx(D» is nonzero if and only if 
yeL(D). Note also thatf(O) = 1. 

Since feS(Ax), f is admissible, as defined previously, and accordingly, the 
following sum converges: 

Lf(yx(D». 
reX 

But from our analysis above of f(yx(D» as a function of y, we see that this sum 
is exactly Card(L(D»=ql(D). Hence I(D) is finite, as claimed. [J 

7-12 THEOREM. (Riemann-Roch, Geometric Form) Let K be a function field in 
one variable over Fq • Then there exists an integer g~O (called the genus 
oflO and a divisorxofdegree 2g-2 (called the canonical divisor ofK), 
such that 

I(D) -/(x -D) = deg(D) - g + 1 

for every divisor D. 

Before deducing this from the earlier, harmonic analysis version, of the Ri­
emann-Roch theorem, let us note two important consequences. 

7-13 COROLLARY. If deg(D»2g-2, then I(D) = deg(D)-g+ 1. In particular, if 
K is a rational function field (that is, if K has genus zero), then for any 
pair of distinct places v and v', there exists a function feK* with a simple 
zero at v and a simple pole at v'. 

PROOF. Since deg(D»2g-2=deg(X), deg(x-D)<O, and, by an earlier obser­
vation, I(x-D)=O. So by the Riemann-Roch formula, I(D)=deg(D)-g+l. If, 
moreover, g=O and v and v' are distinct places, consider the divisor D=v-v'. 
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We may assume that deg(v)~deg(v'), whence deg(D)~O and so I(D)~1. Thus by 
definition there exists a nonzeroJeL(D) that satisfies the assertion. 0 

7-14 COROLLARY. For the canonical divisorXwe have that I(x)=g. 

PROOF. This follows at once from the special case D=O, since clearly, 
deg(O)=O, and as we have seen, 1(0)=1. 0 

PROOF OF THEOREM. Pick any nontrivial character If/:AK~SI that is trivial on 
K. (For instance, the standard character; see Exercise 6.) At each place v, let 
the conductor of If/y be pym •. Since my is zero for almost all v, we get a divisor 
by setting 

One knows also that if If/' is another nontrivial character of AK that is trivial on 
K, then there exists aeK* such that If/'(x)= If/(ax) for all xeAK. Moreover, one 
checks easily that if the divisor x' is constructed relative to If/', then 

x'=x+ div(a) 

and thus xis uniquely determined modulo principal divisors. 
Now let J=®JyeS(AK) be defined as above, so that again each component 

functioniv is the characteristic function on Oy. We have already seen that for 
any divisor D="[.nyv, 

l(D) = LJ(yx(D» 
yeK 

with xeD) defined as above. This is one side of the identity given in the earlier 
version of the Riemann-Roch theorem (Theorem 7-10). Note also that 

(:2>. deg(y» 

Ix(DWI = Il q':' = q • = qdeg(D). 

y 

So in light of the previous version, it remains only to show that 

"Lj(yx(Drl) = ql(.7C-D)-g+1 (7.7) 
reK 

Recall that the Fourier transform is taken relative to the self-dual measure dx 
on AK defined by If/. It follows from Exercise 7 below that for all v, 



7.3. The Global FWlctional Equation 269 

Jy = N(P"'v )112. the characteristic function of p"'v . 
y y 

Note that 

so that 

TI N(Py"'v )1/2 = q-deg(xY2 = ql-g . 

y 

Thus we have for all yeK* that 

{ 
I-g 

J(yx(Dr l ) = q 0 
if v(y)~mv+nv 

otherwise 

and Eq. 7.7 follows at once by definition of lex-D). 
Note that the fonnula in the theorem shows at once that g must be an inte­

ger, which, as we have seen above, must be lex). Thus g is indeed a nonnega­
tive integer, as asserted. 0 

REMARK. One learns in basic algebraic geometry that given any function field K 
over F q as above, there is a smooth projective curve X defined over F q such that 
K identifies with the field of rational functions on X. Thus the Riemann-Roch 
theorem provides valuable geometric insight into X. 

7.3 The Global Functional Equation 

Let K again be a global field with integers OK and different 'lJ='lJK ' Note that the 
different is defined just as in the local case, but here it is not generated by a 
power of a unifonnizing parameter. (See Appendix B, Section 2.) The local 
versions of the integers and different at a finite prime P will be denoted op and 
'lJp , and in fact, the global different is determined by these local versions. 

We shall now construct a standard character for the adele group AK• At each 
place v of K, let 'l'y denote the standard character and dxy the associated self­
dual measure. We recall from Section 7.1 that for a number field K, these char­
acters are given explicitly by 

_ {'I'p (tr(x» v finite, vip 
'l'v(x) - -21ritr(x) 'nfi't e vllrue 

where tr denotes the trace map from Ky to Qy, and 'l'p is the familiar composi­
tion Qp ~Q/Zp ~Q/Z~SI. (Refer to Exercises 3 and 5 for the function field 
case.) Now set 
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v 

for all adeles x=(x). Then 'l/K is well-defined, because 'l/y = 1 on l\ for almost 
all v, and hence 'l/K is a nontrivial character. Moreover, if F denotes either Q or 
Fit) depending upon whether we are dealing with a number field or a function 
field, the standard character on AK clearly factors through the trace map from 
AK to AF defined by 

tr:AK ~AF 

(xJv '-HL trK.1F.,<Xv))u 
vlu 

where u ranges over all of the places of F. This is to say that 

'I//-x) = 'I/~tr(x)) 
for all adeles x of K. 

As in the local case, we have a continuous homomorphism 

where 'l/K,/X) = 'l/K(YX) and the product yx is taken componentwise. One shows 
easily that the given map is an isomorphism of topological groups. We record 
this and related elementary facts about the characters of the adele group in the 
following result, the proof of which we leave as an exercise. 

7-15 PROPOSITION. Let K be a global field with standard character If/K on the 
group AK. Then the following four assertions hold: 

(i) The group AK is self-dual by the isomorphism y H If/ K.y' 

(ii) If/K is trivial on K and hence induces a character on AKIK. 

(iii) The Pontryagin dual of AKIK (respectively, K) may be naturally 
identified with K (respectively, AKIK). Explicitly, this can be real­
ized by the map that sends xeK to If/K,x e(AKIK)". Hence by the self­
duality of the full adele group, the translation If/K.y of If/K is trivial 
on Kif and only ifyeK. 

(iv) If If/ is any character of AKIK, then If/y has conductor Oy for almost 
all places v of K. CJ 

Let dx denote the Haar measure on AK defined by the product measure TIydxy 
on ITyKy. One knows from Section 5.1 that this measure is self-dual with re-
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spect to our standard character 'f/K' and one can show easily that dx moreover 
satisfies the relation 

d(ax) = laldx 

The Global Zeta Function 

Let % denote any C*-valued character of IK that is trivial on K*; in other 
words, an idele-class character. For f eS(AK)' we define the global zeta function 

Z(j,%) = f f(x)%(x)d*x . 
IK 

A word about the normalization of d*x, which again is induced by the product 
measure I1yd*xy on I1yKy *: for each non-Archimedean place v, it will be con­
venient for us to take the corresponding constant factor c=cy (see Section 7.1) 
such that 

We do this so that o~ will get measure (N(lJ))-1I2=q-dvI2. Note again that dy=O 
for almost all v. 

One shows easily that Z(f,%) is normally convergent in (1'= Re(s) > 1, where 
% has factorization ,ul ' IS with ,u unitary, and that it defines a holomorphic 
function there. Define %v to be %-11'1, as in the local case. 

7-16 THEOREM. (Meromorphic Continuation and Functional Equation) Z(f,%) 
extends to a meromorphic function of s and satisfies the functional equa­
tion 

The extended function Z(f,%) is in fact holomorphic everywhere except 
when ,u=I'I-iT, 1"eR, in which case it has simple poles at s=i-r and 
s = 1 + i -r with corresponding residues given by 

- Vol(C':: )f(O) and Vol(C':: )](0) 

respectively. 
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Here, as in Chapter 5, the symbol Cl-denotes the quotient IiIK*, which is the 
compact part of the idele class group IKIK*. The volume of cl- is taken rela­
tive to the quotient measure on CK defined by d*x and the counting measure on 
K*. The computation ofVol( cl-) will be done in Section 7.5. 

REMARK. While we implicitly state and prove this result with respect to the 
standard character-which is all we shall need for the next section-it remains 
true for an arbitrary adele class character '1/ with the proviso that the associated 
measure remains self-dual to '1/. 

PROOF. If K is a number field, we may write, for any X of exponent greater than 
one, 

where 

00 1 
Z(f,X) = f Z,(/,X)-dt 

o t 

Z,(f,x) = f /(tx)X(tx)d*x . 
11 

K 

(Here the product tx takes place in a fixed infinite component of x.) For K a 
function field, we have 

00 

Z(f,X) = 'LZ/(f,X) 
I/I",~O 

with Z,(f,X) as above. We will establish a functional equation for Z/(f,X) by 
using the Riemann-Roch theorem. To be precise, we assert the following: 

7-17 PROPOSITION. The/unction Z/(f,X) satisfies the relation 

Z,(f,x) = Z,-1 (j,XV)+ ](0) f XV(xlt)d*x - /(0) f X(tx)d*x . 

ck cl 

PROOF. Since cl- is the quotient IiIK*, we have 

Z, (f, X) = f (L/(atx) )X(tx)d*x = f X(tx)d*x L/(atx) 
Ck aEK* Ck aEK* 

where the summation should now be regarded as the second factor of an iter­
ated integral. We have also used the hypothesis that X=1 on K*. 
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To apply the Riemann-Roch theorem, we need to sum over K, not K*. This 
leads us to consider the following expression: 

which equals 

Zt(f,z) + f(O) I z(tx)d*x 
ck 

I z(tx)d*x Lf(atx) . 
ck aeK 

Via the Riemann-Roch theorem, we may replace the right-hand factor by 

Thus 

= Ilr1xlz(tx-1)d*x LJ(ar1x) 
ck aeK 

where in the second line we have replaced x by X-I. But one shows easily that 
this equals 

Z,-I <J,ZV)+ J(O) I ZV(xlt)d*x 
ck 

since X'= z-11·1. The fonnula now follows. o 

We return to the proof of Theorem 7-16. Suppose that K is a number field. 
Then we may write 

I 1 '" 1 
Z(f,Z) = I Zt(f,z)-dt+ I Zt(f,z)-dt. 

o tit 
(7.8) 

The second integral is simply 

J f(x)z(x)d*x 
{xeI K: Ixl~l} 

which converges nonnally for all s. Indeed, the convergence is better for small 
0; and since we know it converges for q> I, it must do so everywhere. But also 
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where the correction tenn is given from the previous proposition by 

E = J [](O)%V(t_I) J %V(x)d*x - 1(0)%(/) J %(X)d*X] 7 dt. 
044 

Via the substitution of I-I for I, we find that 

(7.9) 

and hence this integral is convergent for all 0; by the argument above. It re­
mains to analyze E. By the orthogonality of the characters, however, both 

J %(x)d*x and J %V(x)d*x 

ck ck 

are zero if % is nontrivial on I~; hence E is likewise zero in this case. When 
%=.ul 'IS is trivial on I~, we know that in fact %=1 'Is', where s'=s-i1', for some 
real 1', and in this case, 

I 

E = J [](O)/S'-I Vol(C~)- I(O)/S' VOI(Cl)]! dl 
o 1 

= Vol(C~ )[](O) - 1(0)]. 
s' -1 s' 

Since E is a rational function, we get the desired meromorphic continuation of 

Z(J.%) to the whole s-plane. We have also shown incidentally that it is holo­

morphic everywhere if .u*I'I-i'l', and that when .u=I'I-i'l', its only poles are at 
S=iT and s= 1 +i1', with respective residues -Vol( C~ )/(0) and Vol( C~ )](0). 

Finally, observe from Eqs. 7.8 and 7.9 that in fact the global zeta function 

may be expressed as 
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00 1 00 1 
Z(f,z) = f Z,(f,Z)-dt+ f Z,(j,ZV)-dt + E(f,Z) 

\ t \ t 

00 1001 
= f f f(tx)Z(tx)d*x-dt + f f j(tx)ZV(tx)d*x -dt + E(f,Z)· 

\ IK t \ IK t 

Moreover, since 

f(x) = f(-x) and «Z)vt = Z 

it follows also that 

A 00 A 1 00 :: 1 A 

Z(f,zV) = f Z,(f,ZV)-dt+ f Z,(f,Z)-dt + E(f,ZV) 
\ t \ t 
00 1 00 1 

= f f j(tx)ZV(tx)d*x-dt + f f f(-tx)Z(tx)d*x -dt + E(j,zV). 
\ IK t \ IK t 

But from our explicit formula above we see at once that E is invariant under the 

transformation (f,Z) H (j,ZV), and we may replace Z(tx) by Z(-tx) every­

where because Z is an idele-class character and hence indifferent to sign. Thus 
for K a number field we obtain the functional equation 

as claimed. 
The function field case remains. Here, by a similar argument, we get that 

Z(f,z) = Z\(f,z) + LZ,'<f,z)+LZ,.(j,ZV)+E' 
,,>0 ,,>0 

where {tn} is a set of representatives OflK modulo Ii with Itnl=qn, and 

E' = L [j(O)ZV(t_n) f ZV(x)d*x - f(O)z(t,,) f Z(X)d*X]. 
~ ~ ~ 

Using the preceding proposition in the case n=O, we can write 
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A 

Z\(f,X) = .!.[ZI(f,x)+z\(j,xv )]+ 1(0) f XV(x)d*x - 1(0) f X(x)d*x . 
2 2 c} 2 c} 

Putting &n = 1/2 for n = 0 or &n = 1 if n ~ 1, we then find that 

where 

Z(f,x) = L&,,[Ztn (f,X)+Ztn (j, XV)] + E 
n~O 

E = {~&n Vol(Cl )[j(O)q,,(I-s) - I(O)q- .... ] 
",,0 

ifx*I·ls 

ifx=I·ls . 

But Ln~ qnu = 1/(l-qU), so when x= I· IS we have that 

E = Vol(C\ ).[ j(O) _ 1(0) _ j(O)- 1(0)]. 
K 1 \-s 1 -s 2 -q -q 

The assertions of the theorem now follow as in the number field case. D 

7.4 Hecke L-Functions 

In this section we introduce and analyze global L-functions. While we state and 
prove the results only for number fields, even stronger results hold for function 
fields. In particular, in positive characteristic these L-functions turn out to be 
rational functions in q-S, where q is the order of the corresponding field of con­
stants. (See Exercise 22 below.) 

Let X be an idele class character of IK for a number field K. As previously, 
we may write X as .ul·ls, where .u is unitary and SEC. Again, 0; the real part s, 
is called the exponent of x. At each place v of K, we define a local character 

Xv: K: ~ C'" 
1 14 X(I, ... ,I,/,I, ... ,I) 

t 
vth component 

Then X(y)= TIvXv(y). Note that this makes sense because the restriction of Xv is 
trivial on the units of 0v for almost all v. (See Lemma 5-2.) Recall from Sec­
tion 7.1 that we define the local L-factors at finite places v by 
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L(Xv) = {(11- Xv(1l"v)fi if Xv is unramified 
if Xv is ramified. 

We may now define the (global) L-function of X in terms of its local versions 
by the product expansion 

L(X) = TI L(Xv) 
v 

wherever this is convergent. 

7-18 LEMMA. L(x) is absolutely convergent and nonzero whenever the expo­
nent of X is greater than 1. 

PROOF. Write X as Xol'18, with O'=Re(s). With respect to convergence issues, 
we may ignore the finite set of places v where Xv is ramified: since Xv is trivial 
on the units of 0v for almost all v, it is likewise unramified for almost all v. 
Then 

and we must show that its logarithm converges for 0'> l. Since 

it suffices to establish the convergence of 

-mtT 

~=LL~' 
v m>O m 

We will do this for the number field case, leaving the function field case for an 
exercise. Letting p vary over the set of positive rational primes, write 

-mtT 

~=LLL~' 
p vlpm>O m 
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The number ofv lying over any given prime p is bounded by n=[K:Q], and for 
each such v, the number qy is a positive integral power ofp. Therefore, 

But np(l-p') is the classical Euler product, which sums to ~n~ln-t and is ab­
solutely convergent if t> 1. a 

DEFINITION. Let Z be an idele class character of IK • Then for complex s define 
the Hecke L-function L(s,Z} by 

L(s,Z} = L(zl· r}· 

It is also convenient to define finite and infinite versions of the Hecke L­
function: 

L(s,Z,} = IT L(s, Zv} 
vrmite 

L(s,Z",} = IT L(s,Zv} 
vinfmite 

The product of these two clearly gives L(s,Z}. Note, in particular, that when 
Z=I, we have 

L(s 1 } - IT __ 1 __ 
" - vrmite 1-N(PvfS 

where P y is the prime associated with the finite place v and N is the absolute 
norm map. In particular, if K=Q, we obtain the Riemann zeta/unction 

1 1 
~(s)= I1---.. = L ~ 

p 1- p n<!:) n 

in {Re(s}>I}. For arbitraIy K, L(s, If} is called the Dedekind zeta/unction of K, 
and denoted ~x<s}. Just as in the rational case, for Re(s) > 1 we have 

where Q runs over the set of nonzero ideals of OK. 
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REMARKS. (i) Hecke actually considered a slightly different definition involving 
a generalized ideal class character; we explore this subsequently in Exercise 13. 
(ii) What we here denote L(s,Z) is sometimes written as A(s,Z); the notation 
L(s,Z) classically denotes that which we have called L(s,Z,). 

7-19 THEoREM. Let Z be a unitary idele class character. Then L(s,Z), which is 
a priori defined and holomorphic in {Re(s»l}, admits a meromorphic 
continuation to the whole s-plane, and satisfies the functional equation 

L(I- s,ZV) = &(s,Z)L(s,Z) 

where 

&(s,Z) = IT e(zvl·n eC·. 
v 

Moreover, this meromorphic continuation is entire unless z=I'I-i~ -reR, 
in which case there exist poles at s=i-rand s=1 +i~ with respective resi­
dues -Vol(Ck) and IN(Z>x)rl12 Vol(Ck). 

PROOF. First we claim that the asserted functional equation of L(s,Z) will fol­
low once we show that it is meromorphic everywhere. Indeed, if we choose a 
factorizablef=®v/veS(AK), we will have (by Section 5.1) that with respect to 
any adele class character on AK , 

v 

Specializing to the standard character V'K and appealing to the global functional 
equation of Section 7.3 and the local one of Section 7.1, we obtain 

1= IT e(s,Zv)L(I-s,Z:) = e(s,Z)L(l-s,ZV) . 
v L(s,Zv) L(s,Z) 

Hence we shall have our functional equation and meromorphic continuation, 
provided that L(s,Z) is indeed meromorphic. 

That L(s,Z) is meromorphic in turn follows at once from Theorem 7-16 if we 
can establish the existence of a functionf=®v/veS(AK) with the property that 

Z(f,zl'I S ) = h(s,Z)L(s,Z) (7.10) 

for a nonzero meromorphic function h. But we can see now that for every place 
v, we have already, in the proof of Theorem 7-2, constructed a local function 
/veS(Kv) such that 
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where h" is entire and everywhere nonzero for all v and, in fact, equal to 1 for 
almost all v. Indeed, in the real and complex cases the given Schwartz-Bruhat 
functions Iv yield Z(fv,x"loIS)= L(s,X) precisely. In the p-adic case, the local 
standard characters are given by 

where v lies above the rational prime p. If we again let m" denote the exponent 
of the conductor of VI", which is zero for almost all v, then our previous con­
struction takes the fonn 

{
III (x) if x E pm.,-ny 

Iv(x)= 0"''' 
otherwise 

where n" is the exponent of the conductor of X". From our prior calculations 
(see Eqs. 7-4 and 7-5) and the normalization of d*x" to give volume qmv12 on the 
local unit groups, it follows that 

{
q -mv(s-1/2) L(s, X,,) if n" = 0 

Z(f", x"lo n = -(m.,-nv)s ( )L() otherwl.se. q g X",VI mv-nv S,X" "v 

Moreover, since n" is zero for almost all v, we see that Iv is the characteristic 
function of 0" for almost all v, and thus!=®,,1v does indeed define a function! 
in S(AK) such that Z([,xloIS) has the requisite property ofEq. 7.10. 

Finally, for x=lol-i'l" the expressions given for the residues are derived as 
follows from the corresponding residue fonnulas of Theorem 7-16. Locally we 
have everywhere that 1v(0)=1, which establishes the residue at s=O. To com­
pute the residue at s=l, we can, via the global functional equation, simply 
compute the residue at s=o for the Fourier transfonn of Iv. But in this case, 
n,,=O for all v, so by construction Iv is the characteristic function of pmI', because 
this is precisely the conductor of VI". It then follows from Exercise 7 below that 

J,,(O) = IN(V,,)1-1I2 • 

Thus taking the product of these over all v completes the proof. [J 
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7.5 The Volume of cl and the Regulator 

Let K again be a global field. Since the residue of '~s) at s=1 involves the vol­
ume of ci- = 1 ~ I K* , it is our next order of business to compute it. First recall 
the following definitions and results from Chapter 5. 

For any finite set S of places of K, let us now define the S-ideles of K by 

with norm-one version given by 

Observe that here we do not require that S contain the infinite places of K, and 
thus this is a slight, but compatible, extension of the definition given previously 
in Chapter 5. Note also that I K •0 = 11.0 is compact. 

We shall prepare ourselves for the eventual volume calculation with three 
preliminary steps. 

STEP ONE. Assume henceforth that S is nonempty. Then we have the short ex­
act sequence 

where CK,s has finite order, say, hs. (We proved this in Section 5.3 only for the 
case that S contains S<1)' but the present extension is trivial.) Consequently, 

Vol(Ci) = hs ' Vol(I~,sIK*("'\I~.s) (7.11) 

and OUT calculation is reduced to finding the volume of the second factor. 

STEP Two. Assume henceforth that K is a number field. Take S=S<1)' the set of 
Archimedean places of K, and write Card(S) as the sum r) +r2 , where r) is the 
number of real embeddings into a fixed algebraic closure of Q, and r2 is the 
number of nonconjugate complex embeddings. Define the logarithmic map as 
follows: 
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This is clearly a continuous homomorphism. Next define a hyperplane H in 
Rrl+r2 by the equation 

~)v + 2 ~)v = 0 . 
y real y complex 

7 -20 LEMMA. The logarithmic map has the following properties: 

(i) Im(2) = H. 

(ii) Ker(2) = It0(= IK ,0)' 

PROOF. That the image of.2 lies in H follows from two facts. First, that 

and second, that the normalized absolute value l'ly coincides with the usual 
absolute value for v real and the square of the usual absolute value for v com­
plex. Moreover, given t=(t)eH, we can consider the idele x=(x) with xy=l for 
v finite and xyeKy for veS", of ordinary absolute value tv' Then by construction 
A(x)=t, and this proves part (i). Since IXyly=l for all v for any xelK0 , it is obvi­
ous that IK.0~Ker(2). Now suppose conversely that x e I~,s .. belon'gs to Ker(.2). 
Then 10glxyly=O, i.e.,lxyly=l, for all veS",. Thus x eli.0(= I K ,0)' 0 

The restriction of .2 to K* n I~.s.. is called the regulator map and denoted 
reg(x). Recall that in fact, 

x K* 11 
OK = n K.S .. ' 

From the lemma above, we see that 

Ker(reg) = li.0 n K* = ilK 

where ilK is the set of roots of unity in K. Put 

WK = Card(IlK) and L = reg(o~). 

Then L is a discrete subgroup of H, which in turn is isomorphic to R r where 
r=r l+r2-1. Also, since lilK* is compact, HlL is likewise compact. Thus L is a 
full lattice in H. 
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STEP THREE. As our final preliminary for the calculation at hand, note that 
clearly, I~.0 admits the product decomposition 

I1Uy X I1Uy x I1Uy 

y ",a1 y complex y finite 

where Uy denotes the subset of elements of Ky of absolute value one. We can 
thus establish a Haar measure on I~.0 given by the product measure whose 
factors are defined as follows: 

Thus 

For v real, this is the counting measure on Uy={±I}. 

For v complex, this is the ordinary Lebesgue measure on SI. 

For v finite, this is the normalized measure d*xy defined previously. 

for v real 

for v complex 
for v finite 

where Z>y is the different for finite v. Since one knows from Appendix B, Sec­
tion 2, that the absolute value of the discriminant dK (see also Chapter 4, Exer­
cises 13 and 14) is given by 

we get, relative to this measure, 

(7.12) 

We may now combine the results of our three preliminary steps to obtain the 
following marvelous formula: 

7-21 THEOREM. Let K be a number field Then we have 

where hK is the class number of K and RK is the regulator of K; that is, 
the volume of HIL relative to the quotient measure induced by the map 
A. defined below. 
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PROOF. From step two we have at once the commutative diagram below, all of 
whose rows and columns are exact: 

1 1 0 

-1- -1- -1-
reg 

1 ~ J.1'K OX 
K -+ L -+ 0 

-1- -1- -1-

1 ~ 1~,0 -+ II 
K,S", 

2 
-+ H -+ 0 

-1- -1- -1-

I~ 0/,uK I~,s", 1 O~ 
2. 

1 ~ -+ -+ HIL -+ 0 

-1- -1- -1-
1 1 0 

The fonnula now follows at once from Eqs. 11 and 12. Note that RK is computed 
with respect to the quotient measure induced (ultimately) by the measure on 
I~ 121 established in step three and our standard measure on the idele group. 0 

REMARK. Let T (=PK) denote the torsion subgroup of o~ , and define L' by 

L' = (o~/T) $ Z 

which we regard as a free Z-module. Define a homomorphism 

reg': L' ~ R rl+ rZ 

(u,m) H reg(u)+mo 

where o=(OV)VES<o is the vector with 0v=1 (respectively, 0v=2) for v real 
(respectively, for v complex). Then it follows from the remarks above that reg' 
is an embedding whose image is a full lattice in Rrl+rZ. This induces an isomor­
phism 

(reg'@R): L'@R~Rrl+~ . 

One can check that RK is none other than the absolute value of the detenninant 
of this map relative to integral bases drawn from L' on the left and Z rl+ rZ on the 
right. There are many situations in arithmetic and algebraic geometry where 
two lattices like this are sitting in a Euclidean space and the detenninant of an 
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associated map from one to the other, as above, gives special values (or resi­
dues) of more general zeta functions. This is an active area of research. 

We will conclude this section with the function-field case. Here we fix any 

place Vo of K and take S={vo}' As previously, let DivO(K) denote the group of 
divisors of degree zero on K; that is, finite formal sums D of the form 

v 

with deg(D)::!:: Lvnvdeg(v)= O. (See Section 7.2.) Again we have the Picard 

group of degree zero given by the quotient 

where eachfeK* defines the divisor div(j)=Lvv(j)v. Recall that in forming 
this quotient, we are using implicitly that ~vv(j)deg(v)=O, which is to say that 
fhas as many zeros as poles, when counted with multiplicities. Indeed, this is 
true of any element x of adelic norm one because by definition, TIvl xvlv=l. 

We may once again extend the divisor map from K* to a larger structure: 

div:I~,s ~ Divo(K) 

x H Lv(xv)v. 
v 

Since Xv is a local unit at almost all v, we know that v(xV> is zero almost every­
where, and so the formal sum on the right has at most finitely many nonzero 
components. Moreover, arguing as above, Lvv(j)deg(v)=O because xe I~,s, 
and thus the extended map is indeed well-defined. Finally, suppose that 
xeKer(div). Then v(xv)=O for all v, and therefore xeIK,0= TIvUv' 

From the equality I K,0 n K* = F: ' we get the short exact sequence 

Thus PicO(K) is compact and discrete, and therefore finite. With these consid­
erations in mind, we have the following function-field-theoretic version of our 
previous theorem: 

7-22 THEOREM. Let K be a function field over Fq • Then 

- Ress=l SK(S) = Vol(C~) = _1_. Card(Pico(K» . 
logq 

o 
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7.6 Dirichlet's Class Number Fonnula 

In this section, we shall specialize our results to the base field Q, prove a fac­
torization formula, and then recover the class number formula of Dirichlet for 
cyclotomic fields. 

Recall from Section 6.5 that there is a natural identification of idele class 
characters Z of Q of finite order and the Dirichlet characters ZD' By abuse of 
notation, we will write Z to denote either. 

7-23 PROPOSITION. Fix m~ 1, and consider F m = Q(e21rilm). Then we have 

(F", (s) = II L(s, Z) (7.13) 
x 

where the product runs over all the Dirichlet characters Z of conductor 
mx dividing m. 

PROOF. It suffices to show that for each rational prime p the corresponding lo­
cal factors are the same. In other words, we have to show that for t=p-8, 

II (1- tlv ) = II (1- Z(p)t) (7.14) 
vip x 

wherefv=[Fm,v:Qp1. SinceFm is Galois over Q,fv=fis the same for each of the 
g places v lying above p, and likewise, the corresponding ramification indices 
have a common value, which we denote e. We know further that 

rp(m) = [Fm:Q] = efg· 

Hence the left-hand side ofEq. 7.14 may be rewritten and factored as follows: 

II(l-tlv ) = (l-tl )g = II(I-zt)g . 
v~ ~=1 

Accordingly, one may obtain Eq. 7.14 at once from the following lemma, the 
proof of which we leave as an exercise. 

7-24 LEMMA. For every fth root of unity z there are g characters Z (mod m) 
such that Z(P)=z. Cl 

Note that on the right side ofEq. 7.13, the factor corresponding to the trivial 
character is precisely the Riemann zeta function, which has a simple pole of 
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residue 1 at s=l. Thus by the residue computation of 4-m(s) at s=l, we have the 
following formula: 

(7.15) 

Here the symbols wm' dm, hm, and Rm denote, respectively, the number of roots 
of unity, discriminant, class number, and regulator associated with Fm. 

One can do better. Suppose that K is any finite abelian extension of Q. By 
the Kronecker-Weber theorem, K is a subfield of some Fm. Put G=Gal(KIQ), 

which)s a quotient group Aof Gm = Gal(FmlQ)= ('ZlmZY. Then its Pontryagin 
dual G is a subgroup of Gm .... Dirichlet characters X modulo m are naturally 
identifiable with elements of Gm • A refinement of the proofofEq. 7.13 gives in 
this case the factorization 

SK(S) = IT L(s,X) . 
,rEG 

In particular, SK(s) is a factor of SFm(S). Now using the residue formula for ';K(S) 
at s=l, we obtain the following powerful theorem. 

7-25 THEOREM. (Class Number Formula) Let K be a finite abelian extension of 
Q with Galois group G, number of roots of unity wK' class number hK' 
regulator RK, and discriminant dK. Let r1(K) and r2(K) denote, respec­
tively, the number of real and nonconjugate complex embeddings of K 
into an algebraic closure ofQ. Then we have 

o 

One may wonder at the importance of this formula. The reason is that L(I,X) 
admits a concrete expression. Indeed, as we shall see in Exercise 14 below, by 
elementary Fourier analysis one may obtain an explicit formula: 

7-26 PROPOSITION. Fix m::::l, and let X be a Dirichlet character modulo m. 
Then 

L(1,X) = -g(X) Lx(a)log(l-e-2Irialm) 
m amodm 
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where g{z) is the Gauss sum 

More explicitly, we have 

Lx(a)e21rialm . 
amodm 

Ig(X) tri "x(a)a 
m2 ~ 

L(I,X) = amodm 

-g(X) Ix(a)logll-e21rialml 
m amodm 

if X(-I) =-1 

o 
if X(-I) = +1 . 

When this proposition is combined with the preceding theorem and then 
specialized to quadratic fields, we get the following beautiful result of Dirichlet. 

7-27 THEOREM. (Dirichlet) Let K=Q(5) be a quadratic field of discriminant 
0 2= D, and let XD be the quadratic Dirichlet character associated to K by 
class field theory; that is, for all rational primes p not dividing D, p splits 

in Kif and only if XD(P) = 1. Then the root number for XD is given by 

W('V )= g(XD) (-1)' e{-I+I} 
AD ~ , 

where r=O (respectively, I) if X(-I)= 1 (respectively, -1). Moreover: 

(i) If D<O, then 

h __ W(XD)wKi "" -( ) 
K - L.JX a a 

2D amodD . 
(a,D)=l 

(ii) If D>O, let Uo denote the fundamental unit of K; that is, a generator 
of o~ modulo its torsion subgroup. Further let Uc = U;K. Then 

IUcl= Illl_e21Z'ia ID IW(XD ) 

O<a<D/2 
(a,D)=l 

PROOF. The assertion about W{zD) is developed in Exercise 15 below. Let D<O. 
Then r2=1, r)=O, RK=1 (since OK has rank r)+r2-1=O), and G has a unique 
nontrivial character, which one can show to be XD' Also, K is imaginary if and 
only if XD(-I)=-I, which says that the real prime does not split in K. It is easy 
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to check that the conductor m of XD is just IDI. This gives (i) immediately. 
WhenD>O, we have r)=2, r2=O, wK=2, andRK=log luol. Accordingly, 

hK logluol = -g(X). L x(a)logI1_e2JriaIDI . 
2.Ji5 amodD 

(a,D)=) 

The asserted identity then follows by exponentiation, once we note that 

x(a) = x(-a) and 11_e2Jria1DI =ll_e-2JrialDl ' 

This completes the proof. 

7.7 Nonvanishing on the Line Re(s)=l 

One of the consequences of Dirichlet's class number formula is that L(1,X) is 
nonzero for any nontrivial Dirichlet character X. The goal of this section is to 
prove, more generally, the following theorem. 

7-28 THEOREM. Let K be a number field and Xa unitary character ojCK, Then 
L(s,X) does not vanish at s = 1 +it jor any teR 

PROOF. For X unitary and teR, note that L(s,xl'l it ) = L(s+it,X) and that xl'lit 
is also unitary. Thus, after replacing X by xl-lit, we may reduce the proof to 
showing that L(s,X) has no zero at s=1 for any unitary character X. Recall that 
L(s,X) has a pole at s=1 if and only if X=I, in which case the pole is simple. 
Thus we may assume that X is a nontrivial unitary character, and, since L(s,%,,) 
has no zeros, show that 

(7.16) 

To do so, we shall separately treat two cases. 
First consider the case that X is quadratic; that is, X2=1. (If K=Q, this case 

is already known to us, but we shall give a unified treatment.) For Re(s»I, 
define 

L(s) = r;K(s)L(s,X/) and D(s) = log L(s) 

and continue L(s) meromorphically to the whole s-plane via its factors. From 
the product expansions of r;K(s) and L(s,X/) we know that L(s) has neither zero 
nor pole in {Re(s»I}, and hence we may choose a single-valued branch of 
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D(s) in that region. Moreover, from these same two expansions we see readily 
that 

D(s)= L L 1+ Z(P! . 
Pprimem<e\ N(P) 

(7.17) 

This is a Dirichlet series with nonnegative coefficients, since z(P)E{-I,O, + I}, 
and is absolutely convergent in {Re(s)> I}. 

Now we will give an argument based on a ubiquitous method of Landau, 
which requires two purely complex-analytic preliminaries. 

7-29 LEMMA. Let D(S)=Ln~lanlns and suppose that for some real number t, 
D(s) converges absolutely at s= t. Then D(s) converges normally in the 
region {Re(s»t} and hence defines an analytic function there. 

PROOF. Replacing D(s) by D(s+t), we may assume that t=O. Then Ln~lan con­
verges absolutely, and so for every &>0 there exists a positive N such that 

whenever k"?N. It is easy to see (by regrouping terms) that 

k k-\ n k 

})anin-s = L(Liari)(n-S -(n+lrS)+(Liani)k-S 
n=N n=N r=N n=N 

for any complex s, whence one immediately deduces that for real 0->0 

k k-\ 

Liani n- u < &'[L(n-U -(n+lrU) + k-U] = &N-u ~ & . 

n=N n=N 

This suffices to establish normal convergence in {Re(s»O} because we can 
always shift the complex part of the exponential onto the an without disturbing 
the absolute convergence of the associated series. 0 

7-30 LEMMA. Let D(s) be as above and assume further that an "? 0 for all n"?l. 
Suppose that D(s) converges normally in {Re(s»t} and that D(s) is 
holomorphic at s=t. Then there exists a number to<t such that the series 
Ln~lanlns converges in {Re(s»to} and therefore represents D(s) in this 
region. 

PROOF. Again, we may assume that t=O. Let D(s) be holomorphic on a disk of 
radius R about zero, and choose t5<RI2. Then for all positive 0- we can write 
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D(CT) = La"e-(O"-o)Jog"e-oJog" 
,,~J 

= La" ( L (O-CT)m~IOgn)m ) e-oJog " 
,,~J m~O m. 

(0- CT)m 
= L(La,,(logn)mn-O) I . 
m~O ,,~J m. 

The rearrangement is valid because the nonnegativity of the an guarantees the 
requisite absolute convergence. (One may think of this as a discrete instance of 
Fubini's theorem.) This gives a power series expansion for D(s) in a neighbor­
hood of 0 that must be valid in a disk of radius R J >RI2, since clearly such a 
disk can be inscribed in our original circle of radius R-within which D(s) is 
holomorphic by assumption. Thus, reversing the force of the equality above, we 
find that the series representation Ln~Ja,.lns is indeed valid to the right of zero, 
as asserted. 0 

Let us now return to the proof of the theorem. Restricting our attention to 
the real half-line, we have from Eq. 7.17 that D(CT) takes on nonnegative real 
values for CT> l. Suppose that L(I,X!)=O. Then we claim that L(s) is invertible 
at s=l. Otherwise, it has a pole or a zero there. The former is impossible be­
cause SK(S) has only a simple pole at s=l, and the latter is impossible because 
D(CT) is nonnegative to the right of s=l, and therefore 

lim D(CT) ::I- -00 . 
0"-+1+ 

Accordingly, we can continue D(s) to the left until we encounter the first sin­
gularity, say at CToER, if indeed there is one. Applying the lemmas, we find that 
the expansion given by Eq. 7.17 is still valid for CTo < CT, which therefore remains 
nonnegative to the right of CTo. This tells us that 

lim D( CT) = +00 . 
(7-+ CTo 

But then L(s) must have a pole (and not a zero) at S=CTo. This is impossible be­
cause neither SK(S) nor L(s, X!) has a pole at any point other than s=1 (and only 
in the former case). This means that we can continue D(s) to the left as far as 
we want, say to CT=-2, and the previous expansion remains valid, with D( CT) 
nonnegative on the real half-line. Now observe that sis) has a zero at s=-2, 
because r(s12YI(K)r(s) r,.{K) SK(s) has no pole there, while res) has simple poles at 
the values s=0,-I,-2, .... [See Theorem 7-19 and the local constructions of the 
L(z).] Since L(s,X!) has no pole, L(s) has a zero at s=-2, whence it follows that 
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lim D( CT) = -00 
0"-+-2 

-a contradiction! Therefore, L(s,Z/)*O, as required. 
Now let Z be nonquadratic. We set 

L(s) = (K(S)2 L(s,Z! )L(s,i!) and D(s) = 10gL(s) . 

Then 

D(s) = II 2+ z(P) + X(P) 
P m,,1 N(P)WIS 

Since Z is unitary, Z(P) is of the form e itp, and hence 

2+ z(P) + X(P) = 2+2cos(tp) ~ ° . 
Now the argument from the quadratic case goes through verbatim. o 

The following result will be used in the next section. 

7-31 PROPOSITION. Let Z be a unitary idele class character of K. Then we have 

(i) The summation 

I z(P)s 
Pprime N(P) 

is holomorphic at s=l, prOVided that Z is nontrivial. 

(ii) Moreover, 

Ii"! I _I -s / 10g(_I_) = 1 . 
HI PprimeN(P) s-1 

PROOF. Recall that 10gL(s,Z) is absolutely convergent in Re(s) > I, and note, 
moreover, that it equals 

I z(P), + I I Z(P): 
Pprime N(P) m,,2 Pprime N(P) 

Now, on the one hand, the second series is dominated in absolute value by 
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L L 1 .... 
m~2 Pprim. N(P) 

which converges at s=1. On the other hand, if Z:;tl, L(s,Z) is invertible at s=1 
by the previous theorem. Hence both 

L(s,Z) and L Z(P), 
Pprim. N(P) 

are holomorphic at s=1. Now let Z=1. Then L(s,z) = (K(s)L(s,Z«» has a simple 
pole at s=l, and so we can write (K(s)=(s-I)-IH(s), with H(s) invertible in 
{Re(s)~I}. Then 

1 
10g(K(s) = log(-) + log H(s) 

s-1 

with log H(s) holomorphic at s= 1. Thus 

1 1 log(K(s) 
lim (L --) / log(-) = lim 1 = 1 
H1+ P N(PY s-1 8-+1+ log(-) 

s-1 

as claimed. [J 

Given any set 8 of primes P, we say that 8 has Dirichlet, or analytic, density 
8=8(8) if we have 

lim (L-1-) / 10g(_I_) = 15 • 
H1+ PeSN(P)' s-1 

It is part of the definition that the left-hand side converges; if it diverges, 8 has 
no Dirichlet density. Clearly 8(8) is unchanged if 8 is modified by a finite set, 
and, by the preceding proposition, 8(8)=1 if 8 contains almost all the primes P 
in K. (See Exercise 16 below for further elaboration of these ideas.) 

An immediate consequence of the proposition and some elementary Fourier 
analysis is the following celebrated theorem of Dirichlet on prime numbers in 
arithmetic progressions. 

7-32 THEOREM. (Dirichlet) Fix a positive integer m and let a be any integer 
relatively prime to m. Then there exist infinitely many rational primes p 
that are congruent to a modulo m. In fact, the set 8a m of such primes has 
Dirichlet density l/qJ(m). . 
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PROOF. Define 

1 
h(s)= L -a· 

p=amodm P 

Note that by the orthogonality of the characters of (Z/mZ) x , given any integer b 
relatively prime to m, we have 

Lz(b) = {rp(m) ifbsl modm 
o otherwise. zmod", 

(7.18) 

Accordingly, we may compute 

g(s) == L z(a)(L x(~» = L( Lx(a'p»p-a 
zmodm p P p zmodm 

where a' is the multiplicative inverse of a modulo m. From Eq. 7.18 we see that 

g(s) = rp(m) ·h(s) . 

By part (i) of the previous proposition, 

is holomorphic at s=1 if X is nontrivial. Thus 

1 
IlL pa 1 

lim h(s)/Iog(-) = --·lim--'p-- = -­
..-.1+ s-1 rp(m) ..-.1+ 10g(_I_) rp(m) 

s-1 

by part (ii) of the same proposition. o 

REMARK. Some number theorists prefer to work with "natural density" rather 
than the Dirichlet density. (See Section 6.2.) When the fonner exists for a set S 
of primes, then the latter exists as well, and the two densities are equal. But 
there are exotic S for which the latter exists, but not the fonner. 

The Tchebotarev density theorem is a tremendous generalization of Dirich­
let's theorem on primes in arithmetic progressions. Exercises 18-21 below will 
lead the reader through an elegant proof due to O. Schreier that uses the results 
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of this section. Also, Exercise 23 below will deal with the prime number theo­
rem, or, more precisely, with its natural extension to arbitrary number fields. 

7.8 Comparison of Hecke L-Functions 

In this concluding section we shall prove the following beautiful theorem of 
Hecke, with an immediate and striking corollary. Throughout, K denotes an 
algebraic number field. 

7-33 THEOREM. (Hecke) Let p) and 1-'2 be unitary idele class characters of K. 
Suppose that the local components p),P and f.J2,P are equal on a set 
S=S(PI'I-'2) of primes of positive Dirichlet density. Then there exists a 
character Z of finite order on CK such that P)=ZP2' Moreover, for any 
n~l, if 8(S) > lin, then Z has order less than n. 

7-34 COROLLARY.!fthe Dirichlet density ofS is greater than one-half, then in 

~~~. Q 

PROOF OF THEOREM. Let p) and 1-'2 be given as stated and suppose that 8(S) is 
positive. Suppose further that 

is of order greater than or equal to some positive integer n. Then certainly Zi:;ll:l 
for all integers j of absolute value less than n. Define 

"-I "-1 

(LZi(P»(Lz-j(P» 

D(s)= L j=O j=O 

N(PY Pprim. 

and 

1 
D (s)=n 2",--

s £.J N(P)S . 
PES 

Then both D(s) and Ds(s) are Dirichlet series with nonnegative coefficients. 
Moreover, since Z(P)=1 for all PeS, in fact, Ds(s) is a subseries of D(s), and 
both are absolutely convergent in Re(s) > 1. For real a> 1, we can infer from the 
nonnegativity of the coefficients that 

Ds( a) !5: D( a) . (7.19) 

CLAIM. The function D(s) has the follOWing property: 
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lim D( cr) / 10g(_I_) = n . 
.,. .... 1+ cr-l 

(It is here that we shall need to know that the order of Z is indeed greater than 
or equal to n.) Before proving the claim, let us see how it suffices to prove the 
theorem. Indeed, by definition we have that 

lim Ds(cr) / 10g(_I_) = n2o(S) 
.,. .... 1+ cr-l 

and by the inequality 7.19, this forces the inequality o(S)~lIn. But this will 
hold for every positive n if Z has infinite order, contrary to the hypothesis that 
O(S) is positive. Thus Z must be of finite order, and if its order is greater than 
or equal to n, then o(S)~lIn. Thus the contrapositive holds, and this is pre­
cisely the assertion that if o(S) > lin, then Zhas order less than n. [J 

PROOF OF CLAIM. We first note that 

D(s)=nL-1 - + L 
p N(PY O~j.k~n-I 

j'#k 

By the first part of Proposition 7-31, we have that the summation 

~ v(P) 

~N(PY 

(7.20) 

is holomorphic at s=1 for all characters v*l, and this certainly applies to the 
characters Zj-k for O~j,k~n-l, j*k, provided that the order of Z is at least n. 
Moreover, we know from the second part of that same proposition that 

lim (L-1 -,,) / 10g(_I_) = 1 . 
11-+1+ P N(P) s-1 

The claim now follows directly from Eq. 7.20. 

REMARK. One can deduce this theorem from the stronger "equidistribution" 
result of Heeke on the values at Frobenius elements of any idele class character 
Z whose restriction to CKo maps surjeetively onto SI. See Serre (1989, Appen­
dix to Chapter 1) for a lovely treatment. 
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Exercises 

1. Let F be a local field and let 'I' be a nontrivial unitary character on F; that 
is, a continuous, nontrivial homomorphism from F as an additive group 
into Sl, the circle group. For each aeF, define lfIa:F ~Sl by 

lfIa(x) = lfI(ax) . 

(a) Show that lfIa is again a unitary character of F, and that lfIa is trivial if and 
only if a=O. 

(b) Show that 'I' H lfIa defin~s a continuous, injective homomorphism a", of F 
into its Pontryagin dual F. 

(c) Show that the image of a", is dense in ft. [Hint: Show that lfIa(b) = 1 for all 
beF if and only if b=O.] 

(d) Show that a", is bicontinuous. 

(e) Show that a",(F) is a complete, hence closed, subgroup of ft. Conclude 
that a", is an isomorphism of topological groups. 

2. Let F be a non-Archimedean local field with ring of integers OF and maxi­
mal ideal P. Fix a nontrivial unitary character 'I' of F. Let pm be the con­
ductor of '1'; that is, the largest fractional ideal pm on which 'I' is trivial. 
Let a"" as defined in the previous exercise, be the isomorphism between F 
and its Pontryagin dual. 

(a) Show that via a"" pm identifies with the Pontryagin dual of OF' (This is 
also the inverse different of F, which soon makes its appearance.) 

(b) Letn~l andxeF. Showthatxpne Ker(lfI) if and only ifxe pm-n. 

3. In this exercise we construct nontrivial characters for non-Archimedean 
local fields, including the standard character for Qp and its extensions, and 
the standard character for the completion of Fp(t) and its extensions, at the 
place defined by t-I. 

(a) Given any xeQp' let n be the smallest nonnegative integer such that pnx 
lies in Zp. Let r be such that r=pnx mod pn. Put 

IfI(X) = e2trirlpn • 
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Show that If': Qp ..... Sl is a nontrivial unitaIy character of conductor Zp and 
that it identifies with the composite map Qp ..... Q/Zp ..... Q/Z ..... S 1• 

(b) Let K«J denote the completion of K=Fit) defined by the place t-I. Show 
that K«J =Fp«t-I»; that is, that each xeK«J can be uniquely represented by a 
formal power series 

r 

La"t" 
11=-«1 

with a"eZlpZ for all n less than or equal to the integer r. Put 

() 2tria\lp Sl If'«J X = e e. 

Show that If'«J is a nontrivial unitaIy character of K«J of conductor Fp[[t-I]]. 

(c) Let tr be any irreducible polynomial in Fp[t)~K, and let K tr denote the 
completion of K defined by the prime ideal (tr), with residue field k, which 
we may identify with a transversal of (tr) in Fp[t). Show that every xeKtr 

can be written in the form 

+ao 

La"tr" 
n=r 

for some integer r, with each coefficient a"ek. Next put 

Show that If'tr is a nontrivial unitaIy character of K tr • 

(d) Let Fbe any non-Archimedean local field. Show that F is a finite separable 
extension of a local field Fo as in parts (a), (b), or (c) above. Let If'o denote 
the corresponding character of Fo defined therein. Given xeF, set 

Show that If' is a nontrivial unitaIy character of F. 

(e) Continuing in the same context, show that when the characteristic of F is 
zero, the conductor of If' is the inverse different ~1. In this case show also 
that for f the characteristic function of OF' the Fourier transform of f is 
N('lJF>-112 times the characteristic function of ~1. 
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4. We shall now construct the standard character on AKIK for an algebraic 
number field K. 

(a) For each rational prime p, let Ij/p denote the standard character of Qp de­
fined above. Also define lj/oo:R~SI by lj/oo(x)=e-21riX• Show that 

Ij/:AQ ~SI 

(xv) f4 n Ij/v(xv> 
v 

is a nontrivial unitary character on AQ , which is trivial on Q (embedded 
diagonally). [Hin/: Use the Artin product formula.] 

(b) For any number field K, define Ij/K: AK~SI by 

v 

where v ranges over all the places of K and Ij/v is the standard character on 
the local field K v' as constructed above. Show that Ij/K is a nontrivial uni­
tary character on AK • 

(c) Show also that Ij/Jx) =Ij/(tr(x» where tr denotes the adelic trace map from 
K to Q. Conclude from part (a) that Ij/K is trivial on K. 

5. We shall now construct the standard character for the completion Kv of 
K=F/I) at any finite place v. 

(a) Let tr(/) be an irreducible element of Fp[/] of degree d~1. Show that K has 
a unique place v such that the polynomial tr(/) generates the maximal ideal 
0v={aeKv:lalv::::l}. Show further that qv=Card(o)tr0v)=pd, and that the 
polynomials in Fp[/] of degree less than d in fact generate o)tr0v' 

(b) Given any place v of K (possibly infinite), let us define 

K(v) = {xeK: Ixlu:'S;1 V'u:;t:v} . 

Show that Kv =K(v)$ov' [Hint: By replacing I by I-I if necessary, one may 
assume that v is defined by an irreducible polynomial tr(t)eFp[/] and then 
apply the previous part.] 

(c) Let v be any finite place of K; that is, one defined by an irreducible poly­
nomial tr(t)eFp[t] of positive degree d. Show that every element y of K(v) 



300 7. Tate's Thesis and Applications 

can be written as z/frn for some n~O and polynomial z=z(/)eFp[/] of the 
form 

with cjeFpfor allj, possibly all zero. Ifx= y+aeKy with aeoy , put 

(This is of course well-defined despite the status of c i as a residue class 
modulo the prime p.) Show that V'y is a nontrivial character of Ky of con­
ductor oy. 

(d) Let v, fr, and y be as in the previous part. Show that y=arl (mod 1-2). 

Conclude that V'y(y)V'",,(y)=I, where V'"" is as in part (b) of Exercise 3. 
[Hin/: Write fr as Idg, with g a polynomial in I-I of constant term I, so that 
y =/g-nl-nd.] 

6. We may now use the results of previous problems to construct the standard 
character V'K:AK ..... SI for K any global field of positive characteristic. 

(a) Suppose that Ko = F p(/). Define V'Ko by 

v 

where V'"" is given by Exercise 3 and V'y (v finite) is given by part (c) of the 
previous exercise. Show that V'Ko is a nontrivial character of AKo that 
moreover, is trivial on Ko. 

(b) Now let K be any finite separable extension of Ko. Use the trace map from 
K to Ko (or, equivalently, the corresponding adelic trace map) to define the 
standard character V'K on K. Show that this character is nontrivial on AK, 
but trivial on K. 

7. Let G be a locally compact abelian group with Haar measure dg, 3.!.ld let dg 

be the dual measure; that is, the measure on the Pontryagin dual G relative 
to which the Fourier inversion formula holds. Suppose that we have an 
isomorphism a:G.=.G of topological groups. 

(a) Show that there is a unique multiple 1l=I'dg such that Il identifies with its 
dual measure under a. One calls J.I the self-dual measure on G relative to 
the isomorphism a. 
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(b) Let G be the additive group ofa non-Archimedean local field F, 'I/:F-+S1 
the standard unitary character, and a", the isomorphism of Exercise 1. De­
note by dx the self-dual measure relative to '1/ (that is, relative to a",). 
Show that VOI(OF,dx)=N(VF)-ll2, where VF denotes the different of F. 

8. In this exercise we analyze the dependence of the epsilon factor on the ad­
ditive character '1/ and the Haar measure dx. Let F be a local field and con­
sider &(Z, I//,dx) for any zeHomcont(F*,C*). 

(a) For every positive real number t, show that 

&(z, 'I/,f·dx) = t·&(Z, I//,dx) . 

(b) Let aeF*, and let 'l/a denote the character defined by 'l/a(x)= 'I/(ax). Show 
that 

(c) Let F be non-Archimedean with unique prime ideal P, and let pn and pm 
be the conductors of Z and '1/, respectively. Then show for every unramified 
character v of F* that 

where tr is a uniformizing parameter for OF. Note that the first factor on the 
right is well-defined because v is unramified. [Hint: Use the explicit for­
mula given in Eq. 7.6.] 

9. Let Fbe a local field with standard character '1/ and self-dual measure dx, 
and let z= mi. IS be a (quasi-) character on F* with m unitary. Put 

W(m) = e(Z, 'I/,dx)ls='h . 

(a) By using the functional equation, show that 

W(m)W(w)=m(-I) . 

Conclude that IW(m)I=1. [Hint: First prove that W(iiJ) = m(-I)W(m).] 

(b) Using Section 7.1, show that for F=R, W(m)=1 (respectively, -i) for m=1 
(respectively, m=sgn). Show further that when F=C, we have W(m)=1. 
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(c) Let F be non-Archimedean with uniformizing parameter ;r, and let was 
above have conductor ;rnoF. Put 

G = Lw(x)lf/(x;rd-,,) 
xeVlV. 

where ;rdoF='lJF (the different), Ur= l+;rroF (r>O), and U is the full group 
of units in oF' Show directly that IGI2=qn. Then appeal to Eq. 7.6 to de­
duce (once again) that I W(w)1 =1. 

10. (Tate) Let Fbe a non-Archimedean local field with uniformizing parame­
ter ;r, and let w be a unitary character of F* with conductor ;rnoF. Let a be 
an ideal ofoF such that a2 divides ;rnoF. Put b=a-l;rnoF~ oF' 

(a) Show that there exists an element ceF such that coF= ;rn'lJF and also 

m(l +t) = If/(c-1t) 

for all teb. [Hint: Suppose that a:t:0F, so that ;r divides a. If t,zeb, then 
tze;rnoF. Consequently, m(l +t) m(l +z)= m(l +t+z), and therefore the map 
that sends t to m(l +t) is a character of the additive group b, and this ex­
tends to one on F. Now appeal to the isomorphism of F with its dual.] 

(b) For c as in the previous part and F now assumed to have characteristic 
zero, show that 

W(w) = N(ba-1r Il2 Lw(c-1x) If/(c-1x) . 
XE(I+a)/(1+b) 

NOTE. When a=oF' this result is identical to Eq. 7.6. 

(d) Let E be a number field containing W( w). Then show that for every place v 
of E not dividing the residual characteristic p of F, we have I W( w )Ip = 1. 
Using the Artin product formula, conclude that if E has a unique place u 
above p, then also IW(w)lu =1. 

(e) Suppose that ;rnoF=;ra. Then, using part (b), show that z=(m(c-1) W(W»2 
lies in the cyclotomic extension E=Q(e21ri/p') for some r~1. Show further, 
using part (d), that z must be a root of unity. 
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(f) (Lamprecht, Dwork) Suppose that aJ is either unramified (that is, n=O) or 
wildly ramified (that is, n~2). Show that W(aJ) is a root of unity. [Hint: 
This is clear if n is even. When n is odd, write anoF = an and apply the 
previous part.] 

11. Let K be a global field. For any idele class character %= (%v>' put 

v 

(a) Show that W(%) wert)= 1. In particular, if % is unitary, then IW(%)I=1. 

(b) Let K be a number field, and let % be quadratic or trivial. Conclude from 
part (a) that W(%)=±1. [This number is called the sign of the functional 
equation of L(s,%).] Show, moreover, that if % is unramified everywhere, 
then 

where Z is the associated character of the class group CIK (cf. Proposition 
5-19). [Hint: Use the previous problem.] 

(c) Let % be a quadratic idele class character, and let ElK be the quadratic ex­
tension corresponding to the open subgroup Ker(%) of CK by class field 
theory (Theorem 6-6). Note that 'E(S) = 'K(S) L(s,%) and deduce the formula 

where dK and dE are the discriminants of K and E, respectively. 

(d) (Hecke' s Theorem, Serre's Proof) Let K be a number field. Then prove: 

THEOREM. (Hecke) The ideal class of'lJK is a square in the class 
group CIK. 

[Hint: Observe that it suffices to show that X ('lJK) = 1 for every quadratic 
character Z of CIK. Then appeal to parts (b) and (c) of this problem.] 

12. We consider here the Fourier transforms of Schwartz-Bruhat functions. 

(a) Let F be a local field. Show that for every feS(F), its Fourier transform 
likewise lies in S(F). [Hint: For F Archimedean, this is a well-known clas­
sical fact. In the non-Archimedean case, use thatfis a linear combination of 
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characteristic functions of the basic compact sets pn, where P is the unique 
prime associated with F.) 

(b) Let K be a global field and assume that jeS(AK). Show that the Fourier 
transform of j is likewise in S(AK). [Hint: First prove that S(AK) is gener­
ated by factorizable functions ®J", where each Iv lies in S(K) for all v, 
and then use the previous part to establish the result in this special case.] 

(c) Use the results of Chapter 3 to show that the Fourier transform map 
S(AK)~S(AK) extends to an isometry L2(AK)~L2(AK)' 

13. (Hecke Characters) Let Kbe a number field of degree d, let S be a finite set 
of places containing Soo, and let JK(S) be the group of fractional ideals 
prime to S. Furthermore, let IK(S) denote the subgroup of IK consisting of 
idelesy=(y) such thatY,,=l at every place v in S. 

a(y) = I1 p;(Yv) 

"!lS 

Show that a is a surjective homomorphism with kernel 

U(S) = {yeIJ..'(S) :y"e o~ , \iv finite} . 

Conclude that every character X of IK that is unramified outside S defines a 

character X of JK(S)· 

(b) Let p be a Grossencharakter (or Hecke character) of K, which is to say a 
homomorphism fromJK(S) to C* for which there exists an integral ideal M 
with support S, complex numbers SI' ""sd and integers rnp •.. ,rnd such that 
for every aeK*(M), one has 

d 

p«a» = I1 CTia)mj I CTia)1'j 
}=I 

where {OJ.} is the set of embeddings of K in C. Show that every p is of the 
form % for some character X:IK~C* that is trivial on K*. [Hint: Show 
that p defines a character of the ray class group CI K(M) and then lift it to 

the idele class group Cd 
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( c) Let <l> = Z for an idele class character X unramified outside S. Show that <l> 
is in fact a Gr(Jssencharakter. [Hint: Take 

M = I1 Pvm8X(I,n,,) 

yeS 

where ny is the exponent of the conductor of Xy ' For aeK*(M), show that 
<l>«a» = Il.,ES zy(a) = IIZao0o(a) by using first that Illyly=1 for all v in Sand 
second that Z is trivial on K* ,) 

14. Fix an integer k~l, and consider the polylogarithm function 

zit 
lk(z) = Lk"' 

It~l n 

Note that 11(z)=-log(l-z). The special case of 12(z) is called Euler's 
dilogarithm function. 

(a) Show that the series is normally convergent in the open unit disk {lzl<l} 
and that it has finite limit on the unit circle Sl (respectively, SI-{I}) if 
k>1 (respectively, k=I). 

(b) Let Z be a Dirichlet character of conductor m~l. For W an mth root of 
unity, put 

G(z,W)= LX(c)wc • 
cmodm 

Let L(s,X) be the Dirichlet L-series, and assume that X is not the trivial 
character if k=l. Put X(-I)=(-I)'. Then show that 

L(k, Z) =.!. L G(Z, e-2lriblm) [lk(e2lriblm) +(-1)' lk(e-2lriblm)] 
m l,;b,;m/2 

[Hint: Expand X in tenns of the basis {e2mblm:O:s:b<m} ofC[ZlmZ).] 

(c) Show that 

Simplify part (b) accordingly for k=1 and deduce Proposition 7-26. 
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(d) For any k~l, show that there is an elementary expression for the Dirichlet 
series L(k,X) if X(-I)=(-I)k. 

15. Let X be a Dirichlet character of conductor m ~ 1. As above, put 

Show that 

W(x) = e(xl'IYa) (=e(lh,X) ) . 

W(x) = G(X) (-iY rm 
where r=Q (respectively, I) if X(-I)= I (respectively, -I), and 

G(x)= Lx(a)e2malm. 
amodm 

16. Let K be a number field and let S be a set of primes in OK' One says that S 
has lower Dirichlet density 

~S)=liminf I 'L_l­
- s~l+ log_l- PeS N(PY 

s-1 

provided that the indicated lim inf exists, The upper Dirichlet density 

O(S) is likewise defined via the lim sup. 

(a) Show that every S has both a lower and an upper Dirichlet density. [Hint: 
Use Proposition 7-31, part (ii), and also that a bounded sequence in R has 
an infimum and a supremum.] 

(b) Show that S has a Dirichlet density (as defined previously) if and only if 

Q(S) = o(S) , 

(c) ~et T be anx finite set of primes in OK' Show that §.(SuT) = §.(S) and 
O(S u T) = o(S) . Conclude, in particular, that any finite set of primes has 

density zero. 

(d) Let .91:1 denote the set of degree-one primes of K; that is, prime ideals of OK 

such that N(P) = 1. Show that for any set S of primes, Q( S 11.91:1 ) = §,( S) 

and 8(S n.91:1) = 8(S). Conclude that the set of primes in OK of degree 

greater than one has density zero. 



Exercises 307 

17. Let ElK be a finite abelian extension of number fields with Galois group 
G=Gal(EIK). Let U= NE1K(CE). Recall that CKIU is isomorphic to G via 
class field theory. (See Theorem 6-6.) For any character X of G, let Z de­
note the corresponding character of CK that is trivial on U. Keeping in 
mind that the extension ElK is abelian, for any prime P of K, we let 

denote the corresponding Frobenius element. Now set 

X(P) = {oX(rpp) if Pis unramified in E or if X is trivial 
otherwise 

and put 

L(s,X) = n (1- X(p)N(pr'r l • 
p 

(a) Show that L(s,X) converges absolutely in {Re(s»I} and further admits a 
meromorphic continuation to the whole s-plane, with no poles except pos­
sibly a simple one at s=l, which occurs only when X=1. Show, moreover, 
that there is a functional equation relating s to l-s. [Hint: Use Theorems 
6-6 and 7-16.J 

(b) Show that 

SE(S) = n L(s, X) . 
ZEG 

[Hint: Write the left-hand side as an Euler product over the primes P of K.J 

(c) Show that 

. 1 ~ X(P) {I if X = 1 
lIm ~--= 
x .... l+ 10g_l_ Pe.9'i N(P)' 0 otherwise. 

s-1 

The following four problems lead the reader through a proof of a version of the 
Tchebotarev density theorem, here refonnulated in tenns of Dirichlet density. 
Recall that9'KJ denotes the set of finite places of K, or, equivalently, the set of 
prime ideals of OK' 
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THEOREM. Let ElK be a finite Galois extension of number fields with Galois 
group G, and let C be a conjugacy class in G. Set 

Then O(SK(C» exists and equals Card(C)/Card(G). 

We shall also need the degree-one version of SK(C), which we define as 

The first problem is well known and deals with the abelian case. The next three 
encapsulate the ideas from an elegant proof due to O. Schreier. 

18. Let ElK be a finite abelian extension, so that C reduces to a singleton set 
{a} for some aeG. We recall from Chapter 3, Exercise 13, the discrete 
form of the Fourier inversion formula: iffis a complex-valued function on 
G, then 

1 A 

f(g) = Card(G) ~ f(x)x(g) 
,lEG 

where 

j(x) = Lf(g)i(g) . 
gEG 

(a) Given aeG, define fa: G~C by 

fa(g) = Lx(a-Ig) . 
,lEG 

Show that fa is in fact the characteristic function of {a}. 

(b) For all geG show that 

(c) Show that o(S/C) exists and equals I/Card(G)=Card(C)/Card(G). [Hint: 
Use the previous exercise.] 
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19. Suppose that ElK is any finite normal extension of number fields. Let G be 
the associated Galois group, and let e be a conjugacy class in G. Suppose 
further that E' is an auxiliary finite abelian extension of K with Galois 
group G' such that E and E' are linearly disjoint over K. Put L= EE'. 

(a) Show that LlK is normal with Galois group9=GxG'. 

(b) Choose any conjugacy class e'={a} in G', and let H be the subgroup gen­
erated by ee' in G. Put F=LH, and consider the compositum FE'. We have 
the following diagram: 

L=EE' 

/ HI 'FE:'" 
E F/ E' 

~I~ 
K 

Show that FE' is a normal extension of F with Galois group given by 

Gal(FE'IF) == HIH r"l(e) == (e')!;; G' . 

Using the previous problem, conclude that 

o( { Q e ~t : ( FE~ F) = e' } ) = ;, 

where f'= Card« e'». 

(c) For P eSi(C) , define ap(F)=Card({ Q e~t(e): QIP}). Show that 

ap(F) = 1 Card({Te9:TeT-t eH}) . 
Card(H) 

[Hint: Use Proposition 6-2.] 

(d) Putl=Card(e). Assumingthat/l/', show for PeSi(C) that 

20. We continue in the context of the previous problem and always assume that 

IIf'· 
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(a) Show that 

where 

S1(C,c,)={peS1(C):( E';K) =C'}. 

(b) Show that 

where n and n' denote Card(G) and Card(G'), respectively. [Hint: Show 
that ap(F)=nn'/f/'.] 

(c) Let 

nj = Card({a' e G' :flo(a')}). 

Show that 

where again §.. denotes lower Dirichlet density, as defined above. [Hint: 
Any absolutely convergent summation indexed over P e S~ (C) can be re­
written as a double summation, first over a'eG' and then over 

{P eS1(C): ( E'; K) = a'}. 

Use this and appeal to part (b).] 

21. We continue in the context of the previous two problems. 

(a) Show that we can choose G' such that the quotient njln is arbitrarily close 
to 1. [Hint: Suppose that/has prime factorization 

r 

/=np? (aj>O). 
j=1 

Then take G' of order 



Exercises 311 

. bj art aj 
such that for each J, P j - P j elements of G' have order a power of P j .] 

(b) Use the previous exercise and the first part of this one to show that 

(c) Show that 

[Hint: G-C is the disjoint union of conjugacy classes different from C.] 

(d) Show that 8(SX<C» exists and is given by f/n=Card(C)/Card(G). [Hint: 
Use part (c) to conclude that 

But the lower and upper Dirichlet densities always exist, and the latter 
bounds the former from above.] 

22. Let K be a function field in one variable over a finite field F q. The first 
parts of this exercise lead to a proof of the following result: 

THEOREM. The function 'K(S) is a rational function of T=q-s. More pre­
Cisely, there is a polynomial P of degree 2g, where g is the genus of K, 
with P(O)=I, such that 

P(T) 
'K(S) = (1- T)(l- qT) 

Furthermore, P(l)=h, the order of the divisor class group PicO(K). (See 
Section 7.5.) 

REMARK. A celebrated theorem of A. Weil asserts in addition that P(1) lies in 
Z[t] and admits a factorization over C of the form 
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with each q. an algebraic integer of absolute value q 112. Consequently, every zero 
of 'K(S) lies on the line {Re(s)=1I2}-in other words, the Riemann hypothesis 
holds for K! But a proof of this result lies far beyond the scope of this book. 

(a) Show that there exist infinitely many places v of K such that N(v)=q. Here 
the norm of v simply measures the cardinality of the residue field associ­
ated with the corresponding local field Ky. [Hint: Suppose not. Then 

'K(S) = II (l-q-S). II (l-q-fySr l 
yeS yfS 

for a finite set S, with fv~2 for all v outside S. Deduce from this that in 
fact, log 'K(s) has a finite limit as S -.1 +, and thus derive a contradiction to 
Theorem 7-19.] 

(b) Show that 'K(S) is a meromorphic function of q-8. [Hint: Show that the 
image of I'IAK:IK -. R: is qZ, and then use that 'K(s)=L(I'I~K)'] 

(c) Using part (b) and Theorem 7-19, show that 'K(s) takes the form given in 
the theorem above, with P(q-8) an entire function. 

(d) Using the functional equation for 'K(s), deduce the following functional 
equation for the numerator: 

P(1) = qgT2g p(_1 ). 
qT 

Deduce that P must be a polynomial, and (by using Theorem 7-22) that 
P(I)=h. 

(e) Let Z be any idele class character of K. Show that L(z) is a rational func­
tion of T=q-8. [Hint: Reduce to the unitary case and argue as above. Pro­

vided that z~I'I~K' the function L(z) is in fact a polynomial in T.] 

23. Let K be a number field. For x>O, put 

The "prime number theorem" for K then asserts that as x-.oo, 
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(7.21) 

For K=Q, this was conjectured by Riemann and proven independently by 
Hadamard and de la Vallee-Poussin in 1896. The object of this exercise is 
to deduce this theorem from the following theorem for Dirichlet series: 

THEOREM. (Tauberian Theorem for Dirichlet Series) Let 

D(s) = L a: 
n,,) n 

be a Dirichlet series with nonnegative coefficients an that satisfies the fol­
lowing conditions: 

(i) D(s) is normally convergent in {Re(s) > I}. 

(ii) D(s) is invertible on the line {Re(s)= I} except for a simple pole at the 
point s=1 of residue a. 

Then 

asymptotically in x. 

(a) Show that 

Lan-ax 
n:>x 

for some function ~(s) holomorphic and nonzero in {Re(s) ~ I} and D(s) 
the Dirichlet series defined by an = logn, if n is the norm of some prime P, 
and an=O, otherwise. 

(b) Using the results of Section 7.7, show that the function D(s) of the previous 
part satisfies the hypotheses of the Tauberian theorem and has residue 1 at 
s = l. Deduce that 

g(x) = L 10gN(P) - x . 
N(P):>x 

(c) Put bn =an/logn. Show that for any m~l, we have 
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where 

[ 1 1] h(m) = g(n) -- . 1 logn log(n+l) 

[Hint: an =g(n)-g(n-l).] 

(d) Using thatg(n)-n, prove Eq. 7.21 by showing that h(m) is o(mllogm); that 
is, 

lim logm h(m) = 0 . 
m-+oo m 

[Hint: Show first that 

( 1 1) 1 
logn - log(n + 1) S; n log2 n 

for all n > 1.] 



Appendices 

The two appendices address, respectively, the elementary theory of nonned 
linear spaces and the factorization properties of Dedekind domains. In both 
areas, our goal is to review fundamental definitions and results that have been 
used frequently in the main exposition; hence the discussions below are sharply 
limited. We shall indicate comprehensive sources in the references. 

Appendix A: Normed Linear Spaces 

In the main, this appendix addresses common topological constructs on nonned 
linear spaces and particular aspects of LP-spaces and LP-duality. We show first 
that the topological possibilities for a finite-dimensional nonned linear space X 
are essentially limited to one, and then discuss for general X the weak topology 
and the weak-star topology on the continuous dual X*. The discussion culmi­
nates in Alaoglu's theorem. The final section defines the LP-spaces for locally 
compact Hausdorff spaces and states without proof the duality theorem for 
spaces belonging to conjugate exponents. 

A.I Finite-Dimensional Nonned Linear Spaces 

If X is any nonned linear space (real or complex), we let SI(X) denote the set of 
elements of X of nonn 1. Similarly, BI(X) denotes the set of all elements of 
nonn less than or equal to 1, the so-called unit ball. 

Recall that II(C,,} is the complex nonned linear space whose underlying 
vector space is Cn with nonn given by 

for (a}eCn• [We shall also write a for (aj ) when convenient.] The point of this 
brief discussion is to show that every complex nonned linear space of dimen­
sion n is isomorphic to II(C,,) in the category of complex nonned linear spaces 
with morphisms given as continuous linear maps. It follows from this that any 
two finite-dimensional complex nonned linear spaces of the same dimension 
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are likewise isomorphic. Note that this discussion applies equally well to the 
category of real normed linear spaces. 

We begin with some easy preliminaries. Let X be a complex normed linear 
space of dimension n~ 1. Choose a basis XI' ""xn for X, via which we may de­
fine the following map, which at the least is an isomorphism of vector spaces: 

Evidently, 

rp: II (C") ~ X 

(a) 14 ~>jXj 
j 

IIrp«a)II~ supllxjll' 'Llajl 
j 

whence rp is bounded with respect to the II-norm and hence continuous. We 
wish to show more, namely that rp is an isomorphism of normed linear spaces. 
The key technical point lies in the following lemma: 

A-I. LEMMA. There exists a positive constant csuch that for all elements (aj)e 
II(Cn) of unit norm, IIrp«a)II~&. 

PROOF. As (aj ) ranges over the compact set SI(/I(Cn», IIrp«aJ)}II at some point 
assumes a minimum value. This minimum cannot be zero, since the vector 
space isomorphism rp has trivial kernel, and the zero vector is manifestly not of 
unit norm. Hence the minimum is indeed a positive number c, as claimed. [J 

We deduce from the lemma that rp is moreover a topological isomorphism as 
follows. Let xeBI(X) be nonzero and suppose that rp-I(x)=a. Then 

II rp(a/llaID II ~c 

and so by construction, 

Hence rp-I is likewise bounded, and therefore continuous. Thus we have proven 
a fundamental result: 

A-2. THEOREM. Let X be a finite-dimensional complex normed linear space of 
dimension n. Then X is isomorphic to II (Cn). Consequently, any two finite­
dimensional normed linear spaces of the same dimension over Care 
isomorphic. [J 
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As a further consequence of the isomorphism rp we may observe that every 
finite-dimensional complex normed linear space is moreover complete, and 
therefore a complex Banach space. 

A.2 The Weak Topology 

LetXbe a (real or complex) normed linear space. Then the given norm defines 
a topology on X via the associated metric. This is called the norm, or strong, 
topology, and with respect to it, X is of course a locally convex topological 
vector space. We shall now introduce a second natural topology on X, compara­
ble to the norm topology, but still of a somewhat different character. 

DEFINITION. Let X* be the continuous dual of X. The weak topology on X is 
defined to be the coarsest topology such that each map x* eX* is continuous. 

Since the inverse image of any open neighborhood of 0 must be weakly open 
for each x*, the weak topology has a neighborhood base at 0 given by sets of the 
form 

N(O;xt, ... , x:; &) = {x eX:lxj(x)l< &,j = l, ... ,n}. (A. I) 

We may deduce from this that the w~ topology is Hausdorff and satisfies the 
first axiom of countability; hence with regard to convergence we may deal with 
sequences rather than nets. Thus it follows at once from the definition that a 
sequence {Xj} inX converges weakly (Le., converges in the weak topology) to a 
point Xo in X if and only if for each x* eX*, we have 

x*(x ) = lim x*(x.) . o j-+«J J 
(A.2) 

These observations yield the following fundamental result: 

A-3. PROPOSITION. Let X be as above. Then the follOWing assertions hold: 

(i) The weak topology is indeed weaker than the norm topology. 

(ii) X is also a locally convex topological vector space with respect to 
the weak topology. 

PROOF. (i) Recall that in an arbitrary first countable topological space, the clo­
sure of a subset Y is exactly the set of points that can be obtained as the limits of 
convergent sequences in Y. Clearly, Eq. 2 implies that strong convergence im­
plies weak convergence (since each x* is continuous), and so if a subset of X is 
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weakly closed, it is also nonn closed. Hence the weak topology is indeed 
weaker than the nonn topology. 

(ii) Let {(xj'Yj)} be a weakly convergent sequence in XxX with limit (xo,Yo)' 
Then the sequences {Xj} and {Yj} converge weakly to Xo and Yo' respectively. 
Now since each x* is additive, the definition of weak continuity and the ordi­
nary continuity of addition on X with respect to the nonn topology yield the 
weak limit 

Hence we have the following commutative square of mappings and weak limits: 

(Xj'Yj) H Xj + Yj 

.J... .J... 

(xo,Yo) H Xo + Yo 

showing that addition is weakly continuous on X xX A similar argument shows 
that scalar multiplication is likewise weakly continuous. and hence X is at least 
a topological group with respect to the weak topology. 

It remains to show that X is weakly locally convex. For this. we consider Eq. 
A.I. Suppose that 

x,yeN(O;xi,···,x:;&) . 

Then for all indicesj and real numbers t, O~t~I, the triangle inequality yields 

IxJ(tx+(l-t)y)1 ~ tlxJ(x)I+(l-t)lxJ(y)1 ~ & 

whence tx+(I-t)y eN(O;xi •...• x:; &). Hence X is locally convex. 0 

The weak topology on a nonned linear space X also gives rise to a weak 
dual: the space of all linear maps from X to the ground field that are continuous 
with respect to the weak topology on X The notation for this construction 
might have proved too much of a challenge (perhaps X!eak)' but fortunately. 
the weak dual coincides with the ordinary nonn dual. 

A-4. PROPOSITION. Let X be a normed linear space. Then the weak dual of X 
coincides with X*, the ordinary norm dual of X 

PROOF. Let W be an arbitrary space with topologies" and ,,' and suppose that " 
is weaker than ,,'. Then for any fixed topological space Y, every map W ~ Y that 
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is 1"-continuous is automatically -r'-continuous: if the inverse image of every 
open subset of Y is open in the 1" topology, it is certainly also open in the 1"' 
topology. In particular, since the weak topology is weaker than the norm topol­
ogy, every weakly continuous linear map from X to C is a norm continuous 
linear map from X to C. Conversely, by definition of the weak topology every 
norm continuous functional is also weakly continuous. Cl 

We show next that in a Banach space, weakly compact sets are norm closed 
and norm bounded. The key to this is the uniform boundedness principle, 
which we now recall: Let X be a Banach space, and let Y be a normed linear 
space. Suppose that !T is a subset ofHom(X, Y), the space of bounded opera­
tors from X to Y, such that for every xeX; the set {T(x): Te!T} is bounded in 
Y. Then !T is a bounded subset of Hom(X, Y). 

A-5. PROPOSITION. Let K be a weakly compact subset of the Banach space X 
Then K is norm closed and norm bounded. 

PROOF. Since K is weakly compact, it is weakly closed, and hence norm closed. 
It remains to show that K is bounded. Since each element of the dual space is 
weakly continuous, for each element x* eX, we know that x*(K) is a compact, 
hence bounded, subset of C. But consider the natural isometric embedding of K 
into X** defined by k(x*)=x*(k) for each keK. (The isometry, hence injectiv­
ity, follows from the Hahn-Banach extension theorem.) Under this identifica­
tion, K is a subset of Hom(X*, C) which is bounded at each point of its domain. 
Hence by the uniform boundedness principle, K is norm bounded in X**, which 
is to say norm bounded in X. Cl 

A.3 The Weak-Star Topology 

Let X be a (real or complex) normed linear space, with norm continuous dual 
X*. Then every element xeX gives rise to an evaluation map vxeX** in the 
usual way: 

vx(x*) = x*(x) 

for all x* eX*. Indeed, since X is locally convex, the Hahn-Banach separation 
theorem asserts in particular that the mapping x 14 v z is an embedding. Ac-

cordingly, we shall often simply write x(x*) for vx(x*). 

DEFINITION. The weak-star topology on X* is the coarsest topology such that 
each evaluation map v x for xeX is continuous. 
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Note that in the special case thatX=X**, the weak-star and weak topologies 
on X* coincide by definition. Thus they can differ only to the extent that the 
evaluation maps from X do not exhaust X**. 

We can also characterize the weak-star topology on X by limits and neigh­
borhoods. A net {x,l. *} in X* converges in the weak-star topology to a point Xo * 
in X* if and only if for each xeX we have 

xo*(x) = lim x,l. * (x) (A.3) 

Moreover, since the inverse image under an evaluation map v x of a neighbor­
hood of zero in C must be weak-star open for each xeX, the weak-star topology 
has a neighborhood base at 0 given by sets of the fonn 

N*(O;xl , ••• , xn ; &) = {x* eX:lx*(xj)l< &,j = I. ... ,n}. (A.4) 

Thus as above, we have that the weak-star topology is both Hausdorff and first 
countable. These facts suffice to prove the following result: 

A-6. PROPOsmON. Let X be as above. Then the following assertions hold: 

(i) The weak-star topology of x* is weaker than the weak topology. 

(ii) X* is a locally convex topological vector space with respect to the 
weak-star topology. 

PROOF. (i) Rewriting Eq. 4 explicitly in tenns of evaluation maps, we have 

N*(O;xl , ••• , xn ; &) ={x* eX: IVxj(x*)I< &,j = 1, ... , n} . 

Thus we see that weak-star neighborhoods are in fact weak neighborhoods, and 
this proves (i). 

(ii) The argument that X* is a locally convex topological vector space with re­
spect to the weak-star topology is entirely similar to the corresponding argu­
ment for the weak topology. 0 

We shall next show that the weak-star dual of X* is precisely X. Note that 
this argument is not as shallow a fonnality as the proof that the weak and nonn 
duals of X are identical. In fact, the key is the following purely linear algebraic 
result: 

A-7. LEMMA. Let V be a vector space over the field k, and let f,gp ... ,gn be 
elements of the dual space. Suppose further that Ker(f);;;?(nKer(gj»' 
Thenflies in the span ofg\' ... ,gn' 
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PROOF. By induction on n. Ifn=l, we have Ker(f);;2Ker(g), so that both/and 

gl factor through the induced maps j,gl: VIKer(gI)~k. Since the quotient 
space has dimension no greater then one, j is certainly a scalar multiple of gl' 
and hence / is likewise a scalar multiple of g). 

Now assume that n> 1. Let 

denote the respective restrictions of the indicated maps to Ker(g,,). Then clearly, 

"-I 

Ker(/I);;2 nKer(gjl) 
j=1 

whence by induction,J1 is a linear combination of the maps gIl, ... ,gn-d. Thus 
for some family of scalars AI' ... , An-I ek, the map 

"-I 

1=/-LAjgj 
j=1 

vanishes on Ker(g,,). But then Ker(f>;;2Ker(g,,), and so by the case n=l it 

follows that J is a scalar multiple of gIl' Hence / is indeed a linear combination 
of the gj' as claimed. Cl 

A-8. PROPOSITION. Let X be a normed linear space. Then the weak-star dual 0/ 
X* coincides with X itself. 

PROOF. Let xeX; as above, we may regard x as an element of the dual of X* via 
the evaluation map. Then by definition of the weak-star topology, x is a weak­
star continuous map onX*, and so only the converse is interesting. 

Let/be a weak-star continuous linear map fromX* into C. Then 

U= {x*eX*: 1/(x*)I<l} 

is weak-star open in X* and hence contains an open neighborhood of zero of 
the form N*(O; XI' ... , x"; e). Now suppose that for some x*eX* we have 

x*(x) = 0 (j = 1, ... ,n) 

which is to say that x* lies in the kernel of each of the evaluation maps corre­
sponding to the Xj and in particular, x* eN*(O;xl , ... , x,,; e)!;;;; U. Then also for 
all scalars A we have 
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(AX*)(X j ) = 0 (j = I, ... ,n) 

whence If(Ax*)I<1 for all A. But then in fact, f(x*)=O. The upshot is that 
Ker(f);;;2(nKer(xj», whence by the previous lemmafis a linear combination 
of the Xj and therefore itself a member of X, as required. D 

The most fundamental property of the weak-star topology on the dual of a 
normed linear space is the following criterion for compactness: 

A-9. THEOREM. (Alaoglu) Let X be a normed linear space and let B)(* denote 
the unit ball of the (norm) continuous dual X*. Then 

(i) B)(* is a weak-star compact subset ofX*; 

(ii) Any bounded and weak-star closed subset of x* is weak-star com­
pact. 

PROOF. (i) Let x*eB)(*. Then for every xeBx ' the unit ball in X, we have that 
Ix*(x)1 ~ I. Thus we obtain an injective mapping 

Bx' ~ ITD 
Bx 

x* Hx*1 Bx 

from B)(* into a product of unit disks D in the complex plane. Moreover, since 
the weak-star topology on X* and the product topology on the codomain are 
both the topology of pointwise convergence, the map above is in fact a topo­
logical isomorphism onto its image, and accordingly we may regard it as an 
identification. Therefore, since by Tychonoff's theorem the full domain is com­
pact, it suffices to show that B)(* is, under the given identification, a closed sub­
set thereof. 

Suppose that {x/} is a sequence in B)(* convergent to some function 
f:Bx~D. Then by pointwise convergence and the linearity of the dual ele­
ments it follows at once that 

f(ax+by) = af(x) + bf(y) 

whenever x, y, and ax + by lie in Bx. From this it is clear thatf extends uniquely 
by linearity from any basis contained in Bx to some element of X*, or, to put it 
the other way around, f is the restriction of some unique element in X*, which 
we also denote! Moreover, sincefis the weak-star limit offunctionals of norm 
less than or equal to I, f likewise has norm less than or equal to I, and so is 
itself a member of B)(*. Accordingly, B)(* contains its limit points and is there­
fore closed, as required. 



A.4. A Review of LP-Spaces and Duality 323 

(ii) Any bounded and weak-star closed subset Y of X* is contained in some ex­
pansion of the unit ball BX* by a positive factor A. Since multiplication by such 
a scalar is a homeomorphism of X* onto itself, Y is then a weak-star closed sub­
set of the weak-star compact space ABX*, and hence itself weak-star compact. [J 

A.4 A Review of LP -Spaces and Duality 

Let X be a locally compact Hausdorff space. Recall that a Radon measure on X 
is a Borel measure p that is finite on compact sets, outer regular on all Borel 
sets, and inner regular on all open sets. (See Section l.2.) An integral defined 
with respect to a Radon measure is called a Radon integral. Not surprisingly, 
one can also develop Radon integrals as an extension of a linear functional I on 
'0"c(X), the space of continuous functions on X with compact support, with the 
additional proviso thatI(J):<::O wheneverftO. 

Let I and g be measurable functions on X. Then we say that I and g agree 
almost everywhere (with respect to pI) if the subset of X on which/andg disa­
gree has measure O. Clearly, agreement almost everywhere is an equivalence 
relation on the space of measurable functions on X. The quotient space modulo 
this relation is denoted L(X). By customary abuse of language we shall often 
speak of elements of L(X) as ordinary functions. Moreover, we admit functions 
I:X ..... Ru{±oo} into L(X), provided that the subset Y=jl({±oo}) has measure 
zero and that/is measurable on the complement of Y in the ordinary sense. 

Let Ll(X)~L(X) denote the vector space (real or complex, according to 
context) of integrable functions on X (with finite integral). By definition of ab­
stract integration,/eL1(X) if and only if I/leL1(X). More generally, for any 
real number p:<:: 1 define LP(X)~L(X) as follows: 

One defines a norm II lip on LP(X) by the formula 

{ }
IIP 

II/lIp = I'/IP dx 

By virtue of Minkowski's inequality, II lip is indeed a norm on P(X), and in 
fact, LP(X) constitutes a Banach space with respect to this norm. 

One extends these considerations to the case p=oo as follows. Assume that 
I: X ..... [0,00] is a measurable function. Consider the subset S ofR defined by 

S= {aeR:p(jl(a,oo)) = O}. 

Now define s, the essential supremum off, by the fonnula 
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S={ooinfS ifS:;t0 
otherwise. 

Note that if Sis nonempty, then indeed seSby virtue of the fonnula 

and the fact that a countable union of measurable sets is measurable. Given any 
feL(X), define 11/11"" to be the essential supremum of If I· Accordingly, set 

L ""(x) = (feL(X): IIfll"" is finite} . 

Elements of L ""(x) are called essentially bounded functions. The general inclu­
sion 

(f + g )-I«a + b,oo)) ~ j1«a,00)) u g-I«b,oo)) 

shows at once that 1111"" is indeed a nonn on L ""(x). In fact, L ""(x) is a Banach 
space with respect to this nonn. 

Duality 

We conclude this synoptic review with a key duality statement for LP-spaces, 
but first we must introduce a technical restriction on our locally compact Haus­
dorff space X. 

DEFINITION. A topological space X is called rrcompact if X is the countable 
union of compact subsets. 

Clearly the metric spaces Rn and en are r:rcompact, since each is the union 
of balls of integral radius. Moreover, one can show that every locally compact, 
r:rcompact Hausdorff space is normal. We now state the main result: 

A-IO. THEOREM. Let X be a locally compact, rrcompact Hausdor.tJspace with 
Radon measure II- Let p and q satisfy the relation 

1 1 
-+-=1 
p q 

where I~p,q~oo and 1/00 is defined to be zero. Then for each pair of 
functions leLP(X) and geL q(X), 



A.4. A Review of LP-Spaces and Duality 325 

(fig) = J fi dp 
x 

is finite. Moreover. the mapping 

LP(X) ... L'I(X)* 

fH<II-) 

defines an isometric isomorphism from LP(X) to (L q(X»*. 

Note that this theorem clearly extends to the case that X is the disjoint union 
of CJ'oCompact sets, a condition met by every locally compact topological group 
G, as demonstrated by the following argument: 

Let K be a compact neighborhood of the identity of G. Then K admits a 
symmetric subset V. also a neighborhood of the identity, which we may assume 
is closed and hence compact. The subset V in tum generates a subgroup H of G, 
which is manifestly the countable union of compact sets: 

H=U(IlV) . 
J=1 k=1 

Finally, G is the disjoint union of cosets of H, thus proving our claim. 
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Appendix B: Dedekind Domains 

We now survey the elementaty theory of Dedekind domains. In particular, we 
demonstrate the crucial property that the group of fractional ideals of a Dede­
kind domain is free on its prime ideals, and we examine the behavior of primes 
under extension. Throughout, all of our rings are commutative with unity. 

B.1 Basic Properties 

Let A be an integral domain, which is to say that {O} is a prime ideal of A. 
Then a nonempty subset S!;A* is called multiplicative if it is closed under 
multiplication. In this case, we can construct the ring 

As = {als : aeA, seS} 

via the usual quotient construction: als=a'ls' if and only if as'=a's. This is 
called the localization of A at S. Given any seS, we clearly have an embedding 
of A in As defined by sending aeA to as/seAs' and one sees that we mayas­
sume that leS. 

In the particular case that S= A *, the localization A s is the full fraction field 
of A. This example has an important generalization. Let P be any prime ideal of 
A. Then S=A-P is a multiplicative set. (We accept the convention that a prime 
ideal is a proper ideal.) In this case, we writeAp for As and speak of the local­
ization of A at P. 

Localization at an arbitrary multiplicative set S has the following key prop­
erty with respect to prime ideals. 

B-1 PROPOSITION. Let A be an integral domain and let S be a multiplicative 
subset of A. Then the maps 

Q'I4Q=Q'nA 

QI4Q'=QAs 

constitute a mutually inverse pair of order-preserving bijections from the 
set of prime ideals of As to the set of prime ideals of A that have empty in­
tersection with S. 

PROOF. Exercise. 

A ring having exactly one maximal ideal is called a local ring. We see at 
once that in such a ring, the complement of this unique maximal ideal consists 
precisely of the group of units. It follows from the proposition that if P is a 
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prime ideal of A, then Ap has only one maximal ideal, namely PAp. Therefore 
the localization of a ring at a prime ideal is always local, and if Q is any ideal 
of A not contained in the prime P, then clearly QAp blows up to Ap. Thus lo­
calization at a prime ideal vastly simplifies the multiplicative structure of a 
ring. 

REMARK. Some algebraists prefer to reserve the tenn local ring for a Noether­
ian ring with a unique maximal ideal; they then call what we have defined 
above a quasi-local ring. 

The ideals of an integral domain and the full ring itself are determined by 
localization at maximal ideals in the following sense. 

B-2 PROPOSITION. Let A be an integral domain. Then 

(i) We have that 

where the intersection is taken over all maximal ideals of A. 

(ii) Let Jor;;J) be a chain of ideals in A such that JOAM=J)AM for all 
maximal ideals M of A. Then Jo =Jt . 

PROOF. Let x=y/z (y,zeA) lie in the given intersection, and assume that xeAM 
for every maximal ideal M. Consider the set 1={aeA :ayeAz}, which is clearly 
an ideal of A. If M is any maximal ideal, then y/z=y'/z' for some ring elements 
y' and z' with z' not in M. Hence z'el, and thus I does not lie in any maximal 
ideal. Accordingly, I=A, and so leI, whenceyeAz and x=y/zeA. This proves 
part (i). The proof of part (ii) is similar, but in this case we show that for every 
xeJl' the ideal 1={aeA :axeJo} is all of A , showing at once thatxeJo. a 

Local rings admit a special case that will be of utmost importance to us. A 
principal ideal domain having exactly one nonzero prime (hence maximal) 
ideal is called a discrete valuation ring. Note that this definition excludes 
fields. If the unique prime ideal of A is generated by the irreducible element 1r, 

then tris called a unijormizing parameter for A, and it is unique up to a factor 
in A X. One sees at once that every nonzero element of A factors as u trn for some 
unit u and unique nonnegative integer n; moreover, every ideal of A has the 
form A trn, again for a unique n. This brings us to the key definition of this ap­
pendix. 

DEFINITION. Let A be a Noetherian integral domain. Then A is called a Dede­
kind domain if for every nonzero prime ideal P of A, the localization Ap is a 
discrete valuation ring. 
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Our most interesting examples will arise shortly in connection with integral 
elements. For the present, we make the following elementary observations, all 
of which follow immediately from the first proposition above: 

(i) Any principal ideal domain is a Dedekind domain. 

(ii) Every prime ideal of a Dedekind domain is maximal. 

(iii) The localization of a Dedekind domain at any multiplicative set is likewise 
a Dedekind domain. 

Our goal for this section is to demonstrate some fundamental equivalent 
characterizations of a Dedekind domain, but before doing so, we must review 
the notion of an integral element over a ring. 

Integral Elements 

Let B be an extension of the ring A, so that inclusion is a unital ring homomor­
phism. Then an element xeB is said to be integral over A if there exists a 
monic polynomial p(t)eA [t) such thatp(x)=O. 

B-3 PROPOSITION. Let A, B, and x be as above. Then the follOWing four state­
ments are eqUivalent: 

(i) The element x is integral over A. 

(ii) The ring A [x) r;;B is finitely generated as a module over A. 

(iii) The ring A [x) is contained in a subring A' of B that is finitely gener­
ated as a module over A. 

(iv) There exists an A [x)-module L, finitely generated over A, such that the 
only element of A that annihilates L is zero. 

PROOF. That (i) implies (ii) follows at once from the observation that if x satis­
fies a monic polynomial of degree n in A [t), then by Euclidean division A [x) is 
generated by l,x, ... ,xn as a module over A. Clearly, (ii) implies (iii), and (iii) 
implies (iv). (For the latter, take L=A[x) itself, which contains 1.) Thus it re­
mains only to show that (iv) implies (i). 

Let L be as stated, and let b l' ... , b r be a set of generators for L over A. Then 
for each index i we have an equation 

r 

xb; = LA-IIbj 

j=1 

for some A-ijeA. Now consider the rxr matrix M defined by 
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where 4j is the Kronecker delta. Then we have the matrix equation 

M/J=O 

where b is the column vector whose components are hI' ...• hr• Multiplying both 
sides of this equation by the adjoint of M shows that d= det(M) annihilates 
every hi and hence all of L. By hypothesis we then must have that d=O. and 
therefore x satisfies the monic polynomial det(toif-A.if) inA[t]. Thus x is integral 
over A. and this completes the proof. 0 

If x.yeB are both integral over A, then A [x.y] is finitely generated as an A­
module. and hence by part (iii) above, their sum. difference. and product are 
likewise integral over A. Thus we have the following immediate corollary: 

B-4 COROLLARY. Let A and B he as ahove. Then the set of all elements of B 
that are integral over A is a suhring of B containing A. 0 

The ring consisting of all elements of B integral over A is called the integral 
closure of -:4 in B. One deduces easily from the proposition above that the op­
eration of taking the integral closure within a fixed extension is idempotent. If 
A is equal to its integral closure in an extension B. we say that A is integrally 
closed in B. We say that an integral domain is integrally closed (without refer­
ence to an extension) if it is integrally closed in its fraction field. We leave it to 
the reader to show that every unique factorization domain is integrally closed. 

Characterization of Dedekind Domains 

With the notion of integral closure in hand, we can now state our main result 
on the characterization of Dedekind domains. 

B-5 THEOREM. Let A he an integral domain, and assume that A is not a field. 
Then the follOWing three statements are eqUivalent: 

(i) A is a Dedekind domain. 

(ii) For each maximal ideal M of A, the localization AM is a discrete 
valuation ring, and each nonzero element of A is contained in only fi­
nitely many prime ideals. 

(iii) A is Noetherian, integrally closed, and every nonzero prime ideal is 
maximal. 
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Before proving this, we need to do a little more elementary commutative 
algebra. 

B-6 PROPOSITION. Let A be a Noetherian ring. Then 

(i) Every ideal of A contains a product of prime ideals. 

(ii) There exist distinct prime ideals PI' ."'Pr and corresponding positive 
integers m l , ••• ,mr such that 

r 
{O} = IT Ijmj . 

j=1 

Assume further that A has zero divisors and that every nonzero prime ideal 
of A is maximal. Let the prime ideals PI' ""Pr and integers m l , ••• ,mr be as 
above. Then we have, moreover, that 

r 

(iii) A == II AIPjmj . 
j=1 

(iv) The prime ideals PI'" "Pr are the only prime ideals of A. 

PROOF. Part (i) follows by Noetherian induction: If 1 is maximal among ideals 
not containing a product of primes, then there exist x and y in A such that nei­
ther x nor y lies in 1, but the product xy does. Then (Ax+1)(Ay+1)(;;;.I, and both 
factors, by virtue of being strictly larger than 1, contain products of primes; 
hence so does I-a contradiction. Part (ii) is an immediate corollary. Part (iii) 
then holds in consequence of the Chinese remainder theorem, once we note that 
if 1 and J are distinct maximal ideals of A, then rand r remain comaximal 
for all positive m and n. Finally, part (iv) follows at once from part (iii). 0 

B-7 COROLLARY. Let A be a Noetherian ring for which every nonzero prime 
ideal is maximal. Then every nonzero ideal of A is contained in only fi­
nitely many prime ideals. In particular, every nonzero element of A is 
contained in only finitely many prime ideals. 

PROOF. Let 1 be a nonzero ideal of A. If 1 is prime, it is contained in only one 
proper ideal, namely 1 itself. Otherwise, AlI is not an integral domain, and we 
can apply parts (ii) through (iv) of the preceding proposition to this quotient. 0 

We may now proceed to the proof of the main theorem. 

PROOF OF THEOREM. (i) ~ (ii). If A is a Dedekind domain, it certainly satisfies 
the condition of the preceding corollary, and hence assertion (ii) clearly holds 
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for A. (Note that {O} is not a maximal ideal, whence the localization state­
ment.) 

(ii) =>(iii). First, since A is the intersection of its localizations at maximal ide­
als, each of which is integrally closed by virtue of being a unique factorization 
domain, we have thatA itself is integrally closed. Second, if PcQ is any proper 
chain consisting of a prime ideal P and maximal ideal Q, then PAQcQAQ is 
likewise a proper chain of prime ideals in the discrete valuation ring AQ-an 
impossibility. Hence every prime ideal of A is maximal, and it only remains to 
show thatA is Noetherian. 

Let 1 be any nonzero ideal in A and let xe1, with x itself nonzero. Then there 
exist only finitely many prime ideals Pt , ••• ,Pr of A that contain 1. At each cor­
responding localization-which is a principal ideal domain-we have 

1ApJ = yjApJ 

for some YI' ... ,Yr , each of which, as one shows easily, we may assume also to 
lie in 1. Now consider the ideal 

J=Ax+Ay) + ... +AYr 

which is clearly contained in 1. On the one hand, if P is any prime ideal of A 
not containing x, then JA p and lAp both blow up to A p. On the other hand, if P 
is any prime ideal of A that does contain x, then P=Pj for somej, and by con­
struction, 

YjAp s;;;JAps;;;l Ap = YjAp 

and again JAp=lAp. Thus JS;;;l constitutes a chain of ideals that collapses lo­
cally at every prime ideal, and therefore J=l by Proposition B-2. Accordingly, 
our original ideal 1 is finitely generated, whence A is Noetherian. 

(iii) => (i). Since A is given as Noetherian, we need only show that for each 
nonzero prime ideal P, the localization Ap is a discrete valuation ring. We 
know already that A p has a unique prime ideal, because the nonzero primes of 
A are maximal by hypothesis. Since this localization is also integrally closed 
and Noetherian, the proof of the characterization theorem is complete if we can 
show that any Noetherian, integrally closed domain having precisely one non­
zero prime ideal is also a principal ideal domain. Let B be such a ring, with Q 
its unique nonzero prime. 

Given xeB-BX, consider the nontrivial quotient B/Bx as a module over B. 
For each nonzero element Y + Bx in this quotient, let l(y)s;;;B denote its annihi­
lator. Then because B is assumed Noetherian, among these annihilators there is 
a maximal element, 1m, corresponding to, say, Ym +Bxe(BlBx)*. One checks 
readily that 1m is prime and hence equal to Q. SO Qy mc;;Bx, while Y m itself does 
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not lie in Bx. Thus z =Ya/x does not lie in B, and therefore z cannot be integral 
over B. But certainly Qz~B, whence Qz is an ideal of B. We claim that in fact, 
Qz=B. Assume contrariwise that Qz~Q. Then we have: 

Qz is a B[z]-module. 

Qz is finitely generated over B. 

Since B is an integral domain, the final statement of Proposition B-3 yields a 
contradiction: namely, that z is integral over B. Thus Qz=B, and setting ;r=z-l, 
we have Q=B1r (and in fact, 1r will be our uniformizing parameter). 

We now complete the proof that B is a discrete valuation ring. Let I be any 
nonzero ideal of B. Then I=Iz-lz~Iz, whence we have an ascending chain of 
B-modules 

I~Iz~Iz2~ ... 

which must become stationary. But if Izn=Izn+l, then Izn is a B(z]-module, 
finitely generated over B, and again we have the contradiction that z is integral 
over B. Hence only a finite part of this chain can remain in B. So assume that 
for some nonnegative integer n, 

Iz" ~B but IZ"+l r;t.B. 

Then it cannot be the case thatIz"~Q=B;r, or else multiplying by z=;rl yields 
another contradiction, and therefore Izn= B. This to say that I=B;rn. Hence B is 
principal, and the proof is complete. 0 

Factorization of Ideals 

We shall now develop another critical property of a Dedekind domain. The 
point is that while a Dedekind domain need not exhibit unique factorization at 
the level of elements, it does so nonetheless at the level of ideals. 

B-8 PROPOSITION. Let A be a Dedekind domain. Then every nonzero ideal I of 
A has a unique factorization into a product of prime ideals. In fact, the 
ideals appearing in this factorization are precisely those prime ideals 
containing 1. 

PROOF. Clearly we may assume that I is a proper ideal. Then I is at least con­
tained in some prime ideal, and Corollary B-7 implies that there are only fi­
nitely many such primes. Let these be PI' ... ,Pr. They are also precisely the 
primes of All, and we know from Proposition B-6 that 

r 

I~I1P? 
j=l 
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for some positive integers nr By the Chinese remainder theorem, 

r r 

B=A1n PjnJ =nA1P? 
j=l j=l 

and by localization it is easy to see that every ideal in the factor rings appearing 
on the right takes the form 

p'!'J IP~J 
J J 

for some nonnegative mj' Hence the image of I in B takes the form 

and therefore 

r 

np,!,JIP~J 
J J 

j=l 

r 

1= nPjmJ . 
j=l 

We see at this point that the mj are in fact positive, or else we would contradict 
the hypothesis that I is contained in each of the Pr This shows the existence of 
the asserted prime factorization. 

We can easily deduce uniqueness, again by localization. Suppose that 

for a second family of prime ideals {Qj}' Then localizing at any Pj yields, on 
the left-hand side, 

m· Ap fr.') 
J J 

where 'S is the uniformizing parameter for the local ring ApJ • Hence each Pj 

must correspond to a Qj , and corresponding factors must manifest the same 
exponent. This completes the proof. [J 

REMARK. A strong form of the converse of this proposition holds: an integral 
domain in which every ideal is the product of prime ideals is necessarily a 
Dedekind domain. 
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Fractional Ideals and the Ideal Class Group 

LetA be a Dedekind domain with field offractions K. Afractional ideal of K is 
a nonzero finitely generated A -submodule of K. Let J K denote the set of all such 
fractional ideals, the so-called ideal group of K. This clearly contains all the 
ideals of A and, in particular, A itself. 

Given I,JeJK, define the product IJ as for ordinary ideals~ this clearly re­
mains in JK. Moreover, for IeJK, define rl={xeK: Ix!;;A}. One checks easily 
thatl-1eJK, but perhaps it is not obvious thatl-1I=A. For ordinary ideals this 
follows from Proposition B-8 by localization~ for arbitrary elements of JK we 
need an extension of the cited proposition. This is given by the first part of the 
following theorem. 

B-9 THEOREM. Let A and K be as above. Then every element of IeJK has a 
unique factorization of the form 

where the exponents mj may be positive or negative. Consequently. JK is a 
free abelian group on the prime ideals of A. 

PROOF. We can construct an element xeA such that Ix!;;A. Noting that 
I=(Ix)(Ax)-I, we may then apply Proposition B-8 to both Ix and Ax to get our 
factorization. The rest is a straightforward exercise. [J 

Elements of the form Ax in JK, with xeK* are called principal fractional 
ideals, and these constitute a subgroup denoted PK. The quotient CIK=JKIPK is 
the familiar ideal class group of K. Note well that for a general Dedekind do­
main, CI K need not be finite. This shows that one essentially needs some analy­
sis to supplement the abstract algebra in Chapter 5. 

B.2 Extensions of Dedekind Domains 

In this section we give some further fundamental definitions and state, without 
proof, some key results that arise in connection with extensions of Dedekind 
domains. Indeed, the theorems that appear here in essence define our interest in 
this rich class of rings. 

Throughout, let A be a Dedekind domain with fraction field K, and let LlK 
be a finite extension of K. Then the integral closure of A in L is a subring of L, 
which we denote B. Clearly, A !;;B. The following theorem is paramount~ it has 
the immediate particular consequence that for a global field K, the ring of inte­
gers OK is a Dedekind domain. 
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B-1O THEOREM. Let the ring extension BIA and the field extension UK be 
given as above. Then B is also a Dedekind domain. 

While we omit the proof, we will remark that one approach to proving this 
result is to advance in two steps by introducing an intennediate field E such 
that one story of the resulting tower is separable, while the other is purely in­
separable. In the separable case, we may use the nondegeneracy of the trace 
map to show that the corresponding integral closure is Noetherian, and then 
proceed to show that it satisfies part (iii) of our characterization of Dedekind 
domains (Theorem B-5). In the purely inseparable case, we may use part (ii) of 
our characterization: the argument is reducible by localization to the case that A 
is a discrete valuation ring, and one then shows that B is likewise a discrete 
valuation ring. 

From this theorem and the results of the preceding section, we have at once 
that given any prime ideal P of A, 

g 

PB= nQ? 
j=1 

where Q\'" .. , Qg are the prime ideals of B that lie above (that is, contain) P. 
Hence in this entirely algebraic setting we now become reacquainted with two 
old friends from Chapter 4. 

DEFINITIONS. The number ej defined above is called the ramification index of Qj 

over A. The number 

(that is, the degree of the extension of residue fields) is called the residual de­
gree of Qj over A. 

Of course, every prime Q of B lies over some prime P of A, namely QnA. 
Thus Q is said to be ramified over A if Q has ramification index greater than 
one or if the corresponding extension of residue fields fails to be separable. 
Otherwise, we say that Q is unramified over A. In the same vein, a prime P of A 
is ramified in B if it is divisible by a prime of B ramified over A; otherwise, P is 
unramified. 

We have these familiar-looking results that relate ramification index to re­
sidual degree: 

B-11 THEOREM. Let P and Q i' ... , Qg be as above. Then the follOWing state­
ments hold: 
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(i) The summation "i..e/'j equals the dimension of BIPB over the residue 
field A IP and, moreover, is bounded by the degree of Lover K 

(ii) IfLIKisseparable, then infact, "i..ej~=(L:K). 

(iii) If LIK is Galois, then all of the ej have a common value e and all of 
the ~ have a common value f; moreover, efg= (L : K). 

The Norm of an Ideal 

AgainA is a Dedekind domain with fraction field K, LIK is a finite extension of 
K, and B is the integral closure of A in L. Recall that for any xEL, 

the norm and the trace of x, are, respectively, the determinant and the trace of 
the K-linear endomorphism of L that sends YEL to xy. One knows that 

where both sum and product are taken over a full set of embeddings of Lover K 
into a fixed algebraic closure of K, and [L: K] i is the inseparable degree of the 
extension. It follows at once from these formulas that both maps send elements 
of B intoA. 

We may extend the norm map NLlK:L~K to ideals. If 1 is an ideal of B, 
define NLlK(J) to be the ideal of A generated by all of the images NLlK(x), where 
x ranges over 1. In the special case that K=Q, the ideal NLlK(J) is contained in 
Z and therefore is generated by a unique positive integer, which we shall de­
note simply N(l). This is called the absolute norm of an integral ideal in a 
number field. 

We summarize the most important properties of the norm and absolute norm 
for ideals in the two following propositions. 

B-12 PROPOSITION. Let the extensions BIA and LlK be given as above and as­
sume further that the latter is separable. Suppose that 1 is a nonzero ideal 
of B with prime factorization 

r 

1= TIQ7j • 

j=1 

Put Pj=QjnA and set~ equal to the residual degree ofQj over A. Then 

r mjl-
NLlK(J) = TI Pj J. 

j=1 
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B-13 PROPOSITION. Let K be a number field and let A be the integral closure of 
Z in K. Thenfor any nonzero ideal 1 of A, we have N(J) = Card(AfI). 

The Different and the Discriminant 

The extensions AlB and LlK remain as above, with the continuing assumption 
that LlK is separable. If J is any subset of L, then J' denotes its dual subset, 
which is defined by 

J' = {xEL:trLlK(xJ)~A} . 

One can show that if J is a fractional ideal of L, then J' is likewise a fractional 
ideal of L. The dual subset corresponding to B itself is called the inverse differ­
ent of BfA. The different of the extension, denoted '])BIA' is then the inverse 
fractional ideal of the inverse different. Since '])BIA is the inverse of a fractional 
ideal that contains 1, it is in fact an ideal of B, and one can show that this ideal 
is determined locally. 

The following general relation shows how the different is fundamental to the 
calculation ofthe dual of any fractional ideal J of L: 

Moreover, one has this essential connection with ramification: 

B-14 THEOREM. Let Q be a prime ideal of B. Then Q is ramified if and only if 
Q divides the different '])BIA' In fact, Qe-l divides '])BfA> where e is the 
ramification index ofQ over A. 

REMARK. As an immediate corollary, we have that only finitely many primes of 
B are ramified over A. 

We now develop one further ring invariant. Let xl' ""xn be a basis for Lover 
K. Then 

lies in K and is called the discriminant ofthe basis xl''' "xn' If each Xj lies in B, 
then ~(Xl' ... ,xn) lies in A. Thus as Xl' ""Xn range over all bases of Lover K 
that are contained in B, the elements ~(xl' ... ,xn) generate an ideal of A, de­
noted ~(BfA) and called the discriminant ideal. This again may be determined 
locally, and the discriminant gives us a criterion for ramification at the lower 
level: 

B-15 THEOREM. Let P be a prime ideal of A. Then P ramifies in B if and only if 
P contains the discriminant ideal ~(BfA). 
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Finally, we state the relation between the different and the discriminant; this 
is mediated by the norm: 

B-16 THEOREM. Let the rings A and B and the separable extension LIK be as 
above. Then we have that 

That is, the discriminant is the norm of the different. 

The reader should refer to the exercises from Chapter 4 for a development of 
the different and the discriminant for the integers of local and global fields. 
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