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Preface

This book grew out of notes from several courses that the first author has taught
over the past nine years at the California Institute of Technology, and earlier at
the Johns Hopkins University, Cornell University, the University of Chicago,
and the University of Crete. Our general aim is to provide a modern approach
to number theory through a blending of complementary algebraic and analytic
perspectives, emphasizing harmonic analysis on topological groups. Our more
particular goal is to cover John Tate’s visionary thesis, giving virtually all of
the necessary analytic details and topological preliminaries—technical prereq-
uisites that are often foreign to the typical, more algebraically inclined number
theorist. Most of the existing treatments of Tate’s thesis, including Tate’s own,
range from terse to cryptic; our intent is to be more leisurely, more comprehen-
sive, and more comprehensible. To this end we have assembled material that
has admittedly been treated elsewhere, but not in a single volume with so much
detail and not with our particular focus.

We address our text to students who have taken a year of graduate-level
courses in algebra, analysis, and topology. While our choice of objects and
methods is naturally guided by the specific mathematical goals of the text, our
approach is by no means narrow. In fact, the subject matter at hand is germane
not only to budding number theorists, but also to students of harmonic analysis
or the representation theory of Lie groups. We hope, moreover, that our work
will be a good reference for working mathematicians interested in any of these
fields.

A brief sketch of each of the chapters follows.

(1) ToroLoGICAL Groups. The general discussion begins with basic notions
and culminates with the proof of the existence and uniqueness of Haar
(invariant) measures on locally compact groups. We next give a substantial
introduction to profinite groups, which includes their characterization as com-
pact, totally disconnected topological groups. The chapter concludes with the
elementary theory of pro-p-groups, important examples of which surface later
in connection with local fields.

(2) SOME REPRESENTATION THEORY. In this chapter we introduce the funda-
mentals of representation theory for locally compact groups, with the ultimate
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aim of proving certain key properties of unitary representations on Hilbert
spaces. To reach this goal, we need some weighty analytic prerequisites, in-
cluding an introduction to Gelfand theory for Banach algebras and the two
spectral theorems. The first we prove completely; the second we only state, but
with enough background to be thoroughly understandable. The material on
Gelfand theory fortuitously appears again in the following chapter, in a some-
what different context.

(3) DuALITY FOR LOCALLY COMPACT ABELIAN GROUPS. The main points here
are the abstract definition of the Fourier transform, the Fourier inversion for-
mula, and the Pontryagin duality theorem. These require many preliminaries,
including the analysis of functions of positive type, their relationship to unitary
representations, and Bochner’s theorem. A significant theme in all of this is the
interplay between two alternative descriptions of the “natural” topology on the
dual group of a locally compact abelian group. The more tractable description,
as the compact-open topology, is presented in the first section; the other, which
arises in connection with the Fourier transform, is introduced later as part of
the proof of the Fourier inversion formula.

We have been greatly influenced here by the seminal paper on abstract har-
monic analysis by H. Cartan and R. Godement (1947), although we give many
more details than they, some of which are not obvious—even to experts. As a
subsidiary goal of the book, we certainly hope that our exposition will encour-
age further circulation of their beautiful and powerful ideas.

(4) THE STRUCTURE OF ARITHMETIC FIELDS. In the first two sections the basics
of local fields, such as the p-adic rationals Qp, are developed from a completely
topological perspective; in this the influence of Weil’s Basic Number Theory
(1974) is apparent. We also provide some connections with the algebraic con-
struction of these objects via discrete valuation rings. The remainder of the
chapter deals with global fields, which encompass the finite extensions of Q
and function fields in one variable over a finite field. We discuss places and
completions, the notions of ramification index and residual degree, and some
key points on local and global bases.

(5) ADELES, IDELES, AND THE CLASS Groups. This chapter establishes the fun-
damental topological properties of adele and idele groups and certain of their
quotients. The first two sections lay the basic groundwork of definitions and
clementary results. In the third, we prove the crucial theorem that a global ficld
embeds as a cocompact subgroup of its adele group. We conclude, in the final
section, with the introduction of the idele class group, a vast generalization of
the ideal class group, and explain the relationship of the former to the more
traditional ray class group.

(6) A Quick Tour OF CLAsS FIELD THEORY. The material in this chapter is not
logically prerequisite to the development of Tate’s thesis, but it is used in our
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subsequent applications. We begin with the Frobenius elements (conjugacy
classes) associated with unramified primes P of a global field F, first in finite
Galois extensions, next in the maximal extension unramified at P. In the next
three sections we state the Tchebotarev density theorem, define the transfer
map for groups, and state, without proof, the Artin reciprocity law for abelian
extensions of global and local fields, in terms of the more modern language of
idele classes. In the fifth and final section, we explicitly describe the cyclotomic
extensions of Q and Q, and then apply the reciprocity law to prove the
Kronecker-Weber theorem for these two fields.

(7) TATE’s THESIS AND APPLICATIONS. Making use of the characters and duality
of locally compact abelian groups arising from consideration of local and global
fields, we carefully analyze the local and global zeta functions of Tate. This
brings us to the main issue: the demonstration of the functional equation and
analytic continuation of the L-functions of characters of the idele class group.
There follows a proof of the regulator formula for number fields, which yields
the residues of the zeta function of a number field F in terms of its class num-
ber 4, and the covolume of a lattice of the group U of units, in a suitable
Euclidean space. From this we derive the class number formula and, in conse-
quence, Dirichlet’s theorem for quadratic number ficlds. Further investigation
of these L-functions—in fact, some rather classical analysis—next yields an-
other fundamental property: their nonvanishing on the line Re(s)=1. Finally, as
a most remarkable application of this material, we prove the following theorem
of Hecke: Suppose that y and y' are idele class characters of a global field X
and that y,=7,' for a set of primes of positive density. Then y =y’ for some
character y of finite order.

One of the more parenthetical highlights of this chapter (see Section 7.2) is
the explanation of the analogy between the Poisson summation formula for
number fields and the Riemann-Roch theorem for curves over finite fields.

We have given a number of exercises at the end of each chapter, together
with hints, wherever we felt such were advisable. The difficult problems are
often broken up into several smaller parts that are correspondingly more acces-
sible. We hope that these will promote gradual progress and that the reader will
take great satisfaction in ultimately deriving a striking result. We urge doing as
many problems as possible; without this effort a deep understanding of the
subject cannot be cultivated.

Perhaps of particular note is the substantial array of nonstandard exercises
found at the end of Chapter 7. These span almost twenty pages, and over half of
them provide nontrivial complements to, and applications of, the material de-
veloped in the chapter.

The material covered in this book leads directly into the following research
areas.
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< L-functions of Galois Representations. Following Artin, given a finite-
dimensional, continuous complex representation o of Gal(ﬁ/ Q), one asso-
ciates an L-function denoted L(o;s). Using Tate’s thesis in combination with
a theorem of Brauer and abelian class field theory, one can show that this
function has a meromorphic continuation and functional equation. One of
the major open problems of modern number theory is to obtain analogous re-
sults for /-adic Galois representations o;, where / is prime. This is known to
be true for g, arising from abelian varieties of CM type, and L(g;,s) is in this
case a product of L-functions of idele class characters, as in Tate’s thesis.

< Jacquet-Langlands Theory. For any reductive algebraic group G [for in-
stance, GL (F) for a number field 7], an important generalization of the set
of idele class characters is given by the irreducible automorphic representa-
tions 7 of the locally compact group G(Ap). The associated L-functions
L(m,s) are well understood in a number of cases, for example for GL,, and by
an important conjecture of Langlands, the functions L(g;,s) mentioned
above are all expected to be expressible in terms of suitable L(z;s). This is
often described as nonabelian class field theory.

< The p-adic L-functions. In this volume we consider only complex-valued
(smooth) functions on local and global groups. But if one fixes a prime p
and replaces the target field C by Cp, the completion of an algebraic closure
of Q,, strikingly different phenomena result. Suitable p-adic measures lead
to p-adic-valued L-functions, which seem to have many properties analo-
gous to the classical complex-valued ones.

< Adelic Strings. Perhaps the most surprising application of Tate’s thesis is to
the study of string amplitudes in theoretical physics. This intriguing con-
nection is not yet fully understood.

Acknowledgments
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Notation Section Interpretation

N,Z,Q — natural numbers, integers, and rational
numbers, respectively

R C — real and complex numbers, respectively

R, R — nonnegative reals, positive reals

Ig — identity map on the set S

S¢ —_ complement of the set S

Card(S) — cardinality of the set S

U S, — disjoint union of sets S,

supp(f) — support of a function f

FX) — continuous (complex-valued) functions on
a topological space X

Z(X) — continuous functions with compact support

&' (X) — positive elements of @ (X) with positive
sup norm

A* K* — nonzero elements of a ring or field

A* — group of units of a ring 4

[K:F] — degree of a finite field extension K/F

Nep(x) — norm map for a finite field extension K/F;
see also Section 6.4

tr () - trace map for a finite field extension K/F

KL — compositum of fields K and L

Z/nZ — integers modulo n

o(n) — Euler phi function

S — the circle group

wt — orthogonal complement of a subspace W

pry — orthogonal projection onto a subspace ¥
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spectrum of an element in a Banach
algebra

spectral radius

space of characters of a Banach algebra 4
Gelfand transform of a

continuous functions that vanish at infinity
adjoint of an operator 7 on a Hilbert space

the closed, self-adjoint, unital subalgebra
generated by T in the ambient ring

square root of a positive operator
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representation spaces
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1
Topological Groups

Our work begins with the development of a topological framework for the key
elements of our subject. The first section introduces the category of topological
groups and their fundamental properties. We treat, in particular, uniform con-
tinuity, separation properties, and quotient spaces. In the second section we
narrow our focus to locally compact groups, which serve as the locale for the
most important mathematical phenomena treated subsequently. We establish
the essential deep feature of such groups: the existence and uniqueness of Haar
measure; this is fundamental to the development of abstract harmonic analysis.
The last two sections further specialize to profinite groups, giving a topological
characterization, a structure theorem, and a set of results roughly analogous to
the Sylow Theorems for finite groups. The prerequisites for this discussion will
be found in almost any first-year graduate courses in algebra and analysis.

1.1 Basic Notions

DEFINITION. A fopological group is a group G (identity denoted ¢) together
with a topology such that the following conditions hold:

(i) The group operation
GxG->G
(&.m) 1 gh
is a continuous mapping. (The domain has the product topology.)

(ii) The inversion map
G-»>G
grg”

is likewise continuous.

By convention, whenever we speak of a finite topological group, we intend
the discrete topology.
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Clearly the class of topological groups together with continuous homomor-
phisms constitutes a category.

It follows at once that translation (on either side) by any given group ¢le-
ment is a homeomorphism G— G. Thus the topology is translation invariant in
the sense that for all geG and U< G the following three assertions are equiva-
lent:

(i) Uisopen.
(ii) gUisopen.
(iii) Ug is open.

Moreover, since inversion is likewise a homeomorphism, U is open if and only
if U'={x: x'eU} is open.

A fundamental aspect of a topological group is its homogeneity. In general,
if X' is any topological space, Homeo(X) denotes the set of all homeomorphisms
X—>X. If S is a subset of Homeo(X), then one says that X is a homogeneous
space under S if for all x,yeX, there exists feS such that f(x)=y. (When S is
unspecified or perhaps all of Homeo(X), one says simply that X is a homogene-
ous space.) Clearly any topological group G is homogeneous under itself in the
sense that given any points g,h€G, the homeomorphism defined as left transla-
tion by g (i.e., x> hg~'x) sends g to k. From this it follows at once that a
local base at the identity ee G determines a local base at any point in G, and in
consequence the entire topology.

EXAMPLES

(1) Any group G is a topological group with respect to the discrete topology.

(2) R* R¥, and C* are topological groups with respect to ordinary multipli-
cation and the Euclidean topology.

(3) R" and C" are topological groups with respect to vector addition and the
Euclidean topology.

(4) Let k=R or C. Then the general linear group
GL, (%) = {geM, (k) : det(g)#0} (n=1)

is a topological group with respect to matrix multiplication and the Euclid-
ean topology. The special linear group

SL, (k) = {geGL,(k) : det(g)=1} (n21)

is a closed subgroup of GL, (k).
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In subsequent discussion, if X is a topological space and xeX, we shall say
that Uc X is a neighborhood of x if x lies in the interior of U (i.e., the largest
open subset contained in U). Thus a neighborhood need not be open, and it
makes sense to speak of a closed or compact neighborhood, as the case may be.

A subset S of G is called symmetric if S=S !, This is a purely group-
theoretic concept that occurs in the following technical proposition.

1-1 PROPOSITION. Let G be a topological group. Then the following assertions
hold:

(i) Every neighborhood U of the identity contains a neighborhood V of
the identity such that VVc U.

(ii) Every neighborhood U of the identity contains a symmetric neighbor-
hood V of the identity.

(iii) If H is a subgroup of G, so is its closure.
(iv) Every open subgroup of G is also closed.
(v) IfK, and K, are compact subsets of G, so is K|K,, .

PrOOF. (i) Certainly we may assume that U is open. Consider the continuous
map ¢:Ux U—G defined by the group operation. Certainly ¢ ~!(U) is open and
contains the point (e, e). By definition of the topology on Ux U, there exist open
subsets V', V, of U such that (e,e)eV;xV,. Set V=V,nV,. Then V is a neigh-
borhood of e contained in U such that by construction V'V'c U.

(i) Clearly g eUnU™" < g,g'e U, s0 V= UAU" is the required symmet-
ric neighborhood of e.

(iii) Any two points g and / in the closure of H may be exhibited as the limits
of convergent nets in / itself. Hence by continuity their product is likewise the
limit of a convergent net in A and similarly for inverses.

(iv) If H is any subgroup of G, then G is the disjoint union of the cosets of H,
and hence A itself is the complement of the union of its nontrivial translates. If
H is open, so are these translates, whence H is the complement of an open set
and therefore closed.

(v) K|K, is the image of the compact set K,xK, under the continuous map
(ky,ky) = Kk, . It is therefore compact by general topology Q

Note that (i) and (ii) together imply that every neighborhood U of the iden-
tity contains a symmetric neighborhood ¥ such that V'V U.
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Translation of Functions and Uniform Continuity

Given an arbitrary function fon a group, we define its /eft and right transiates
by the formulas

L,f(@=f(h"'g) and R,f(e)=/(gh) .

If fis a (real- or complex-valued) continuous function on a topological group,
we say that f'is left uniformly continuous if for every £>0 there is a neighbor-
hood V of e such that

heV=|Lf-f|, <€

where || ||, denotes the uniform, or sup, norm. Right uniform continuity is de-
fined similarly. Recall that #(G) denotes the set of continuous functions on G
with compact support.

1-2 PROPOSITION. Let G be a topological group. Then every function f in
& (G) is both left and right uniformly continuous.

PROOF. We prove right uniform continuity. Let K= supp(f) and fix £>0. Then
for every geK there exists an open neighborhood U, of the identity such that

heU, =|f(gh)-f(@l<s .

Equivalently, f(g') is &close to f(g) whenever g-'g’ lies in U - Moreover, by the
comment following the previous proposition, each U, contains an open sym-
metric neighborhood Ve of the identity such that Ve V cU Clearly the collec-
tion of subsets ng covers K, and a finite subcollectlon {gJV} , suffices.
Henceforth we write V; for V, and U; for U Define V, a symmetrlc open
neighborhood of the identity e, f)y the formula

v=(1v, .
j=1

If gek, then gegl, for some j. For heV we consider the difference f(gh)—f(g):

lf@eh -/@|<1feh) -/l + /&) -/@)I .

The point is that both g;"'g and g;”'gh lie in U}, so that both terms on the right
are bounded by & (Here is where we use that property V V c U for all j.) This
establishes right uniform continuity for K.
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When g does not lie in X, then we must bound |f(gh)|. If f(gh)=0, then ghe
g, for some j, and therefore f(gh) is &-close to f(g). Moreover, g'g= g 'ghh!
lies in U, (here is where we use the symmetry of 1), and it follows that | f (gj)|<£
since g is close to g and f(g)=0 by assumption. Consequently | f(gh)|<2¢ and
the argument is complete. Q

Separation Properties and Quotient Spaces

Some authors assume as part of the definition of a topological group that the
underlying topology is 7. In this case it is also customary to reserve the term
subgroup for a closed subset that constitutes a subgroup in the ordinary alge-
braic sense. Note that in general we accept neither of these assumptions.

The following proposition shows, among other things, that for a topological
group the separation axioms 7' and T, (Hausdorff) have equal strength.

1-3 PROPOSITION. Let G be a topological group. Then the following assertions
are equivalent:

0 GisT,.

(i) G is Hausdorff.

(iii) The identity e is closed in G.
(iv) Every point of G is closed.

PROOF. (i)=(ii) If G is T, then for any distinct g,h€G there is an open neigh-
borhood U of the identity lacking gh~!. According to Proposition 1-1, U admits
a symmetric open subset V, also containing the identity, such that V'V'c U. Then
Vg and Vh are disjoint open neighborhoods of g and A, since otherwise gh' lies
inV'V=rreu.

(if)=(iii) Every point in a Hausdorff (or merely T) space is closed.

(iili)=>(iv) This is a consequence of homogeneity: For every point xeG there is
a homeomorphism that carries e onto x. Hence if e is closed, so is every point.

(iv)= (i) Obvious by general topology. a

If H is a subgroup of the topological group G, then the set G/H of left cosets
of G acquires the quotient topology, defined as the strongest topology such that
the canonical projection p:gr>gH is continuous. Thus U is open in G/H if and
only if p~!(U) is open in G. Recall from algebra that G/H constitutes a group
under coset multiplication if and only if H is moreover normal in G. We shall
see shortly that in this case G/H also constitutes a topological group with re-
spect to the quotient topology.
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The following two propositions summarize some of the most important
properties of the quotient construction.

1-4 PROPOSITION. Let G be a topological group and let H be a subgroup of G.
Then the following assertions hold:

(i) The quotient space G/H is homogeneous under G.
(ii) The canonical projection p:G—>G/H is an open map.
(iii) The quotient space G/H is T, if and only if H is closed.

(iv) The quotient space G/H is discrete if and only if H is open. Moreover,
if G is compact, then H is open if and only if G/H is finite.

V) If H is normal in G, then G/H is a topological group with respect to
the quotient operation and the quotient topology.

(vi) Let H be the closure of {e} in G. Then H is normal in G, and the quo-
tient group G/H is Hausdor{[f with respect to the quotient topology.

PROOF. (i) An element xeG acts on G/H by left translation: gH+> xgH. The
inverse map takes the same form, so to show that left translation is a homeo-
morphism of G/H, it suffices to show that left translation is an open mapping
on the quotient space. Let U be an open subset of G/H. By definition of the
quotient topology, the inverse image of U under p is an open subset U of G,
and it follows that the inverse image of g under p is gU, also an open subset
of G. Therefore gU is open, and left translation is indeed an open map, as re-
quired.

(ii) Let V" be an open subset of G. We must show that p(V) is open in the quo-
tient. But p(}) is open in G/H if and only if p~'(p(V)) is open in G. By elemen-
tary group theory, p~'(o(V))=V"-H. Let x lie in V-H, so that x=vh for some velV
and heH. Since V is open, given any veV there is an open neighborhood U,
V containing v. Thus U,/ is an open neighborhood of x contained in V-H,
which is accordingly open.

(iii) By general topology, G/H is T, if and only if every point is closed. Since a
coset of A is its own inverse image under projection, each coset is a closed
point in G/H if and only if each is likewise a closed subset of G. But by homo-
geneity this is the case if and only if H itself is closed in G. (Note that we can-
not appeal to the previous proposition, since the topological space G/H is not
necessarily a topological group with respect to multiplication of cosets.)

(iv) Let H be a subgroup of G. Then by part (ii), H is an open subset of G if and
only if H is an open point of G/H. Since G/H is homogeneous under G, this
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holds if and only if G/H is discrete. Assume now that G is compact. Then so is
G/H, since p is continuous. But then H is open if and only if G/H is both com-
pact and discrete, which is to say, if and only if G/H is finite. (Recall our con-
vention that a finite topological group carries the discrete topology.)

(v) Assume that A is a normal subgroup of G. Then from part (ii) and the com-
mutative diagram

G =, g
Pl, ¢P
GIH —29, g/

(where Tg denotes left translation by g), we see at once that translation by any
group element is continuous on the quotient. A similar diagram establishes the
continuity of the inversion map.

(vi) Since {e} is a subgroup of G, so is its closure H. Moreover, it is the small-
est closed subgroup of G containing e and therefore normal, since each conju-
gate of H is likewise a closed subgroup containing e. In light of the previous
proposition, the full assertion now follows from parts (iii) and (v) above. a

Part (vi) shows that every topological group projects by a continuous homo-
morphism onto a topological group with Hausdorff topology. In this sense the
assumption that a given group is Hausdorff is not too serious.

1-5 PROPOSITION. Let G be a Hausdorff topological group. Then the following
assertions hold:

(i) The product of a closed subset F and a compact subset K is closed.
(ii) IfH is a compact subgroup of G, then p. G—G/H is a closed map.

PRrROOF. (i) Let z lie in the closure of the product FK. Then there exists a net
converging to z of the form {x_y_} with x €F and y €K. Since K is compact,
we may replace our given net by a subnet such that {y_} converges to some
point y in K. We claim that this forces the convergence of {x,} in F to zy,
showing that z= zy~ly lies in FK, which is therefore closed. To establish the
claim, consider an arbitrary open neighborhood U of the identity e. We may
choose yet another neighborhood of e contained in U such that VVc U. Then
the nets {z'x,y,} and { y2'y} are both eventually in ¥, whence the product
z7'%, v, vi'y=2""x,y is eventually in U. Thus lim x =2y, as required.



8 1. Topological Groups

(i1) If X is a closed subset of G, then arguing as the second part of the previous
proposition, we are reduced to showing that X-H is likewise a closed subset of
G. But if H is compact, this is just a special case of assertion (i). a

REMARK. The requirement that /7 be compact is essential. For example, in the
case G=R?, with subgroup H={(0,):yeR}, we have clearly G/H=R, and un-
der this identification, p(x,y) =x. Now let X = {(x,»)eR?:xy = 1}. Then X is
closed, but p(X)=R* is not.

Locally Compact Groups

Recall that a topological space is called locally compact if every point ad-
mits a compact neighborhood.

DEFINITION. A topological group G that is both locally compact and Hausdorff
is called a locally compact group.

Note well the assumption that a locally compact group is Hausdorff. Accor-
dingly, all points are closed.

1-6 PROPOSITION. Let G be a Hausdor(f topological group. Then a subgroup H
of G that is locally compact (in the subspace topology) is moreover closed.
In particular, every discrete subgroup of G is closed.

PRrROOF. Let X be a compact neighborhood of e in A. Then X is closed in H,
since A is likewise Hausdorff, and therefore there exists a closed neighborhood
U of e in G such that K=UnH. Since UnH is compact in H, it is also compact
in G, and therefore also closed. By Proposition 1-1, part (i), there exists a
neighborhood V' of e in G such that VVcU. We shall now show that
xeH=xeH.

First note that 7 is a subgroup of G by Proposition 1-1, part (iii). Thus if
x € H, then every neighborhood of x~! meets H. In particular, there exists some
yeVx-'n H. We claim that the product yx lies in UnH. Granting this, both y
and yx lie in the subgroup H, whence so does x, as required.

ProoF or CLAIM. Since UnH is closed, it suffices to show that every neighbor-
hood W of yx meets UnH. Since y~'W is a neighborhood of x, so is y~'WnxV.
Moreover, by assumption x lies in the closure of H, so there exists some ele-
ment zey~'WnxV~H. Now consider:

(i) the product yz lics both in ¥ and in the subgroup H;
(ii) by construction, yeVx~;
(iii) by construction, zexV.
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The upshot is that yz lies in V'x~1-xl’=VV/, a subset of U, and therefore the in-
tersection W (U~ H) is nonempty. This establishes the claim and thus com-
pletes the proof. a

1.2 Haar Measure

We first recall a sequence of fundamental definitions from analysis that cul-
minate in the definition of a Haar measure. We shall then establish both its
existence and uniqueness for locally compact groups.

A collection M of subsets of a set X is called a o-algebra if it satisfies the
following conditions:

(i) XeMm.
(ii) IfAeM, then A°eM, where 4° denotes the complement of 4 in X.
(iii) Suppose that 4,eM (n=1), and let

Then also 4 eM; that is, M is closed under countable unions.

It follows from these axioms that the empty set is in W and that M is closed
under finite and countably infinite intersections.

A set X together with a c-algebra of subsets M is called a measurable space.
If X is moreover a topological space, we may consider the smallest o~algebra &
containing all of the open sets of X. The elements of 4 are called the Borel
subsets of X.

A positive measure yp on an arbitrary measurable space (X, I) is a function
1:DM—> R, Ufoo} that is countably additive; that is,

w4 =Y u4,)

n=1 n=1
for any family {4,} of disjoint sets in D. In particular, a positive measure de-
fined on the Borel sets of a locally compact Hausdorff space X is called a Borel
measure.
Let 1 be a Borel measure on a locally compact Hausdorff space X, and let £
be a Borel subset of X. We say that u is outer regular on E if

u(E) = inf{u(U) : USE, U open} .
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We say that uis inner regular on E if

H(E) =sup{u(X) : KcE, K compact} .

A Radon measure on X is a Borel measure that is finite on compact sets, outer
regular on all Borel sets, and inner regular on all open sets. One can show that
a Radon measure is, moreover, inner regular on o-finite sets (that is, countable
unions of s~measurable sets of finite measure).

Let G be a group and let 4 be a Borel measure on G. We say that y is left
translation invariant if for all Borel subsets E of G,

HE) = u(E)
for all seG. Right translation invariance is defined similarly.

DEFINITION. Let G be a locally compact topological group. Then a /eft (respec-
tively, right) Haar measure on G is a nonzero Radon measure x on G that is
left (respectively, right) translation-invariant. A bi-invariant Haar measure is a
nonzero Radon measure that is both left and right invariant.

The following proposition shows that the existence of a left Haar measure is

equivalent to the existence of a right Haar measure and, in a sense, equates the
translation invariance of measure with that of integration. As usual, we let

€"(G)={f €%(G): /()20 Vs eGand || f]|,> 0} .
We often abbreviate this to " when the domain is clear.

1-7 PROPOSITION. Let G be a locally compact group with nonzero Radon
measure u. Then:

(i) The measure pis a left Haar measure on G if and only if the measure
i defined by u(E)= i(E™) is a right Haar measure on G.

(ii) The measure pis a left Haar measure on G if and only if
[Lyrdu=rdu
G G

Jorall fe€" and seG.

(iii) If p is a left Haar measure on G, then u is positive on all nonempty
open subsets of G and



1.2. Haar Measure 11
[fdu>0
G

Jorall feg".

@iv) If pis a left Haar measure on G, then u(G) is finite if and only if G is
compact.

PROOF. (i) By definition, we have the equivalence
H(E)=T(Es) Vs eG & mE")=u(s"'E™") VseG

for all Borel sets E; the assertion follows at once. (For any topological group G,
clearly E is a Borel subset of G if and only if £~ is.)

(ii) If & is a Haar measure on G, then the stated equality of integrals follows by
definition for all simple functions fe®" (i.e., finite linear combinations of
characteristic functions on G), and hence, by taking limits, for arbitrary fe &".
Conversely, from the positive linear functional IG-dy on & (G) we can, by the
Riesz representation theorem, explicitly recover the Radon measure x of any
open subset Uc G as follows:

#(U)=sup{[ S du: f €B(G), | /1|, <1, and supp(f)c U} .
G

From this one sees at once that if the integral is left translation invariant, then
u(sU)= u(U) for all open subsets U of G, since supp( f) < U if and only if
supp(L, /)< sU. The result now extends to all Borel subsets of G because a Ra-
don measure is by definition outer regular.

(iii) Since x is not identically 0, by inner regularity there is a compact set X
such that 4(X) is positive. Let U be any nonempty open subset of G. Then from
the inclusion

Kc UsU
seG

we deduce that X is covered by a finite set of translates of U, all of which must
have equal measure. Thus since x(K) is positive, so is g(U). If fe ", then
there exists a nonempty open subset U of G on which f exceeds some positive
constant R. It then follows that

[ fdp=RuUy>0
G
as claimed.
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(iv) If G is compact, then certainly 4(G) is finite by definition of a Radon
measure. To establish the converse, assume that G is not compact. Let K be a
compact set whose interior contains e. Then no finite set of translates of K cov-
ers G (which would otherwise be compact), and there must exist an infinite
sequence {sj} in G such that

s,el)s,K . .1

j<n

Now X contains a symmetric neighborhood U of e such that UUc K. We claim
that the translates sjU (j=1) are disjoint, from which it follows at once from
(iii) that z(G) is infinite.

PROOF OF CLAIM. Suppose that for i <j we have su=sy where u,ve U. Then 5=
suv-les,K, since U is symmetric and UUcK. But this contradicts Eq. 1.1. 0O

With these preliminaries completed, we now come to one of the major theo-
rems in analysis.

1-8 THEOREM. Let G be a locally compact group. Then G admits a left (hence
right) Haar measure. Moreover, this measure is unique up to a scalar mul-
tiple.

Via the Riesz representation theorem and statement (ii) of the previous prop-
osition, the existence part of the proof reduces to the construction of a left-
invariant linear functional on Z(G). The key idea is the introduction of a
translation-invariant device for comparing functions in &".

Preliminaries to the Existence Proof

Letf,pe&". Set U={seG: ¢(s) > lloll,/2}, so that a finite number of translates
of the open set U suffice to cover supp(f). Then there are » elements 515000y 8,E
G such that a linear combination of the translates of ¢ by the s; dominates f n
the following sense:

<2AA Z
el 13 i

The point is that if sesupp(f), then sesU for some j, so that sJ“seU if pis
sufficiently large. Thus it makes sense to deﬁne (f:2), the Haar covering num-
ber of f'with respect to ¢, by the formula
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(f:m:inf{ch 10<c,...c, andechsz(o for some s,,..., s, EG} .
= =l

Note that since || /]|, is assumed positive, the Haar covering number is never
zero. We shall see shortly that (f: ¢) is almost linear in ffor appropriately cho-
sen @.

1-9 LEMMA. The Haar covering number has the following properties:
) (o)=L S ) forall seG
() Lo <(:o)+ (hie)
(iii) (c¢f: @) = c(f: @) for any ¢ >0
(iv) (f;: @) < (f,: ) whenever fi<f,
™ o) 27/l
V) (19 <1 Q)1 9)

ProOF. (i) Since left multiplication by any given group element constitutes a
permutation of the ambient group, for all se G we have the equivalence

f(< chle_w) VteG e Lf(1)< chLﬂj o(t) Vt G
which is to say that
f< chsz(p@ Lf< chLﬂﬂ) .

Hence precisely the same sets of coefficients ¢;occur in the calculation of (/: ¢)
as for (L_f: p).

(ii), (iii), (iv) Obvious.
(v) If the coefficients c; appear in the calculation of (f: @), then

F® <Y 00579 Q cloll, VseG

whence 2¢; 2 ||f1|,/ll¢ll,, and the assertion follows.

(vi) We have the implication

fisdel, fiand <Y diLg = fi<)cdl, ¢
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whence
(;:p)Sinf Y c,d, =inf(}c,)inf(Y dp) = (/o) So:0)
as claimed. This completes the proof. a

The Haar covering number yields an “approximate” functional as follows.
Fix f,e " and define
(f:9)

L(N)=-L2 (f.pex’).
o(f) ooy (f.peg’)

By (vi) above, we have the inequalities

(o) (f )y e)and (fy: @) < (N 9)

Dividing the first by (f;¢) and the second by (/¢), we find that /, is bounded
as follows:

So ' <L (NSS) (1.2)

This bound is crucial to the existence of a Haar measure for G.
One would expect that as the support of ¢ shrinks, /, will become more
nearly linear. This is confirmed by the following lemma.

1-10 LEMMA. Given f, and f, in &*, for every £>0 there is a neighborhood V
of the identity e such that

LW+, ()L, (h+ ) +e

whenever the support of ¢ lies in V.

PrOOF. By Urysohn’s lemma for locally compact Hausdorff spaces, there exists
a function ge %" that takes the value 1 on supp(/;+f3) = supp(/f})supp(f)).
Choose 6>0 and let #=f, +f,+ &g, so that & is continuous. Next let h=f,/h,
i=1,2, with the understanding that 4, is 0 off the support of f,. Clearly both 4, lie
in €, and their sum approaches 1 from below as & tends to 0. By uniform
continuity, there exists a neighborhood U of e such that |A,(s)-A(f)| < & when-
ever -lseU.
Assume that supp(¢) lies in U and suppose that

h<YeLlyp
J

Then
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1) = h(h ()< X e,0(5, ' Dh () S 2,005 5K (s, ) +6) (1=12)
J J
and it follows that

; i¢)SZ_C,lhi(Sj)+5] (1=12).

Since h,+h,<1, this last inequality implies that
(o) +(Lie)<A+28)Y ¢, .
J

But X ¢; may be made arbitrarily close to (4: ¢), and therefore by definition of /,
and part (ii) of the previous lemma,

LU +1,(f,) S(1+26)1,(h)
S(+28)L,(fi + ) +61,(@)]
= 1,(fi + )+ 2811, (/i + )+ 6 1,(2)] .

Finally, Eq. 1.2 asserts that all of the / -terms on the right are bounded inde-
pendently of ¢, and so for any positive £>0 we can choose & sufficiently small
that the stated inequality holds. a

Existence of Haar Measure

We now prove the existence of a Haar measure for a locally compact group G.
The idea is to construct from our approximate left-invariant functionals / p an
exact linear functional. We shall obtain this as a limit in a suitable space.

Let X be the compact topological space defined by the bounds of / w(/) as
follows:

X =TT

re&’

Then every function 1 (in the technical sense of a set of ordered pairs in
& xR¥) lies in X. For every compact neighborhood U of e, let K, be the clo-
sure of the set {, :supp(¢) < U} in X. The collection {K} satlsﬁes the finite
intersection property, since

Ky, 2K

J

.33

.
i
-

U;
l.I

D=

J
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and the right side is nonempty by Urysohn’s lemma. Therefore, since X is
compact, (1K, contains an element J, which will in fact extend to the required
left-invariant positive linear functional on # (G). Note that 7, which lies in a
product of closed intervals excluding zero, cannot be the zero function on
% (G), so that the extended functional will likewise be nontrivial.

Since / is in the intersection of the closure of the sets {/ o Supp(p) c U}, it
follows that every open neighborhood of 7 in the product X intersects each of
the sets {/ »-Supp(@)c U}. We may unwind this assertion as follows:

For every open neighborhood U of e, and for every trio of functions
Ji. fo- € B and every £>0, there exists a function pe & with supp(¢)
c U such that [/(f)) —I¢(j;)|<e,j= 1,2,3.

(This statement extends to any finite collection of £, but we shall need only
three.) So given fe " and ceR, we may simultaneously make /(c/) arbitrarily
close to I (cf") and cI(f) arbitrarily close to ¢/ (/). Appealing to Lemma 1-9
above, this shows that /(cf)=cI(f). Similarly we have that / is left translation-
invariant and at least subadditive. To see that / is in fact additive, we use Lem-
ma 1-10 to choose a neighborhood U of e such that

I¢(f1)+1¢(f2)sl,,,(ﬁ+fz)+f

whenever supp(¢) < U. Then choose ¢ with supp(p) < U such that I(f)), I(f)),
and I(f,+f)) all likewise lie within &/4 of I ¢( AN ,p( /), and / ¢( Si+ /), respec-
tively. Since ¢ is arbitrary, it follows at once from the inequality above and the
general sublinearity of 7, that I(f} +/)=1(f)) +I(f,), as required.

Finally, extend / to a positive left translation-invariant linear functional on
% (G) by setting I()=1(f")-1(f"). As we remarked above, in view of our gen-
eral discussion of translation-invariant measures and the Riesz representation
theorem, this implies that G admits a left Haar measure x and completes the
existence proof. a

Uniqueness of Haar Measure

We now prove that the Haar measure on a locally compact group G is unique
up to a positive scalar multiple. Given two Haar measures x# and von G, clearly
it suffices to show that the ratio of integrals

[ 7Godp
s
[ rGodv
G
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is independent of fe &"*. To simplify the notation, we shall often write J(f) and
J(f) for the indicated integrals with respect to # and v, respectively. Given two
functions f,ge &", the plan is to produce a function he &" such that the ratios
I(NHIJ(f) and I(g)/J(g) can both be made arbitrarily close to I(h)/J(h).

Let K be a compact subset of G, the interior of which contains e. Then X
contains an open symmetric neighborhood of the identity whose closure X, is
compact and symmetric. (The symmetry is clearly preserved by closure.) Define
compact subsets K -and K . of Gby

K= supp(/)-K, v Ky-supp(f) and K . = supp(g)-K, v Ksupp(g) .

(Recall that the group product of compact sets is compact.) For teK,, define nf
by

1S =S - f(ts) .

Equivalently, we have
W =RS- L,—lf .

Define y,g similarly. Clearly 7, f and y,g are supported in K. and K, respec-
tively, and both vanish on the center of G and in particular at e. Let £>0 be
given. Then by left and right uniform continuity, X, contains an open neigh-
borhood U of e such that for all seG and teU,, both |y,f(s)| and |y,g(s)| are
bounded by &/2. Now U, in turn contains a symmetric open neighborhood U, of
e whose closure X is symmetric, compact, and contained in K. Moreover, by
continuity we have that |y,f(s)| <& and |y,g(s)| < & for all seG and all teX,. The
point is that as long as f remains in X, translation of fand g by ¢ on either side
has approximately the same effect.

We now construct #. We claim first that since e lies in the interior of K,
there exists a second compact neighborhood X, of e such that K, is contained in
the interior of K. Granting this, it follows immediately from Urysohn’s lemma
for locally compact topological spaces that there exists a continuous function
h:G - R, thatis 1 on K, and 0 outside of K. Define #:G—>R, by

h(s)=h(s)+h(s™) .

Then certainly /e €, supp(h) lies in K|, and 4 is an even function in the sense
that A(s)=h(s™).

PROOF OF CLAIM. Since G is Hausdorff and the boundary B of K is likewise
compact, B admits a finite cover by open sets each of which is disjoint from a
corresponding open neighborhood of e in K. The intersection of these neigh-
borhoods thus constitutes an open neighborhood U, of e in K|, and we now set
K, equal to the closure of U,. Then by construction X, is contained in the inte-
rior of X, as required. Q
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We come to the main calculations. All integrals are implicitly over G and
are translation-invariant, since x# and v are by assumption Haar measures. First,

1(NIhy = [[ frydu,dy,
= [[rasmrduav, .

The second calculation uses the property that 4 is even.

IWJ(f)= [[ rs)f(dudy,
= [[ne's) s )du,av,
= [[ns™n s W dp,v,
= [[nyf(stydudv, .

From these we can easily estimate the difference:

LI = 1T = [[ IS (s - fUs)rdpdvy |

=|[[ a(tyy, s/ (s)dpdv,|
< guK;)J(h) .

The point in the last line of the calculation is that supp(h) lies in a K, where 3,/
is small. Similarly,

[1(n)J (&)~ ()T ()|=| [[ h(t)ig(st) - g(ts)} du,dv;|

=|[[ n(Oy7.8(s) dp,dy|
< gu(K,)J(h) .

Dividing the first inequality by J(7)J(f) yields

|1(h)_1(f)|ssy(1<f)
[V JNIT I

Dividing the second by J(#)J(g) yields

1y _ I(»)| _ a(Ky)
lJmy J()|” Jg
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Since ¢ is arbitrary, this shows that the ratio /( /)/J(f) is independent of f as
claimed. Qa

1.3 Profinite Groups

This section introduces a special class of topological groups of utmost impor-
tance to our subsequent work. We begin by establishing a categorical frame-
work for the key definition that follows.

Projective Systems and Projective Limits

Let  be a nonempty set, which shall later serve as a set of indices. We say that /
is preordered with respect to the relation < if the given relation is reflexive
(i.e., i<i for all iel) and transitive (i.e., i<j and j<k = i<k for all i, j, kel).
Note that we do not assume antisymmetry (i.e., i<j and j<i need not imply that
i=j); hence a preordering is weaker than a partial ordering. Clearly the ele-
ments of a preordered set / constitute the objects of a category for which there is
a unique morphism connecting two elements i and j if and only if /<.

We say that a preordered set / is moreover a directed set if every finite sub-
set of / has an upper bound in /; equivalently, for all i,je/ there exists kel such
that i<k and j<k. (Recall that directed sets are precisely what is needed to de-
fine the notion of a net in an abstract topological space.) While most of the spe-
cific instances of preordered sets that we meet below will moreover be directed,
we shall need only the preordering for the general categorical constructions to
follow. Beware, however, that directed sets will play a crucial but subtle role in
establishing that the projective limit of nonempty sets is itself nonempty. (See
Proposition 1-11.)

ExAMPLE. The integers Z are preordered (but not partially ordered) with respect
to divisibility and in fact constitute a directed set: a finite collection of integers
is bounded with respect to divisibility by its least common multiple.

Assume that / is a preordered set of indices and let {G,}, ; be a family of
sets. Assume further that for every pair of indices i,je/ with i<j we have an
associated mapping ¢, G—G, subject to the following conditions:

) @;=1 Viel
(i) g 00, =0, Vi jkel i<j<k
Then the system (G,, @) is called a projective (or inverse) system. Note that if

we regard / as a category, then the association i = G, defines a contravariant
functor.
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DEFINITION. Let (G,, %.) be a projective system of sets. Then we define the pro-
Jective limit (or inverse limit) of the system, denoted lim G, , by

li}_nGiz{(gi) EHG;' i ji=0;(8,)=8} .
iel

Note that as a subset of the direct product, limG, comes naturally equipped
«—
with a family of projection maps p,:limG, - G,, and with regard to these
«

projections, the projective limit manifests the following universal property:

UNIVERSAL PROPERTY. Let H be a nonempty set and let there be given a system
of maps (y,:H - G,),, that is compatible with the projective system (G, @) in
the sense that for each pair of indices i,jel with i <j, the following dzagram

commutes:
va \W'

G—»G
Py

Then there exists a unique map y:H — lim G; such that for each i€l the dia-
«
gram

14
H—— 1limG,
“«
l D;
v
G.

also commutes.

The mapping y is of course none other than /> (y,(h)),,, just as for the
direct product of sets, but in this case the compatibility of the y; guarantees that
the image falls into the projective limit.

Note carefully that neither the definition of a projective limit nor the associ-
ated universal property asserts that a given projective limit of sets is nonempty.
In particular, the projection maps may have empty domain. Of course, if a com-
patible system (y,:H — G,),, exists with nonempty domain H, then one infers
from the existence of elements of the form (y,(h)),_, that the projective limit is
likewise nonempty.

The construction of the projective limit works equally well in the category of
groups (in which case the set maps are replaced by group homomorphisms, and
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the group operation is defined componentwise) or the category of topological
spaces (in which case the set maps must be replaced by continuous functions,
and the topology on the projective limit is the subspace product topology in-
duced from the direct product). In the case of groups, note that the projective
limit is never empty, since the identity element of the direct product clearly lies
in the projective limit. It follows from these remarks that the projective limit of
a projective system of topological groups is itself a topological group with re-
spect to the componentwise multiplication and the subspace topology.

REMARK. A more obvious topology on a product space [1.X] is the box fopology,
generated by sets of the form [1U; with U; open in X, for all i. But this is a
much finer topology than the standard product topology. Moreover, with re-
spect to the box topology the product of compact spaces need not be compact.

In the following subsection we shall be concerned with projective limits of
finite groups. In passing we shall require conditions under which the projective
limit of finite sets is nonempty. It is here that the notion of a directed set re-
appears critically.

1-11 PROPOSITION. Assume that I is a directed set, and let (G,,p,) be a projec-
tive system of finite sets. Set G =1im G,. Then:
«

() Ifeach G, is nonempty, G is nonempty.
(ii) For each index i€l

p.(G)=[e;(G,) .

i<y

PRrROOF. Our proof is adapted from a more general result in Bourbaki’s Theory
of Sets, Chapter 111, § 7.4. Let us call (S)),., a compatible family (with respect to
our given projective system) if the following conditions are satisfied:

(a) Foralliel, S,cG,.
(b) Foralli,jel withi<j, %(Sj)gSz..
(c) Foralliel, S;#@.

Note well that if (S;) is a compatible family of the form S;={x;} for all i€/, then
in fact (x,)eG, which in this case is ipso facto nonempty.

Henceforth let £ denote the set of all compatible families. We impose an
ordering on Z as follows: given compatible families (S)) and (7}), we shall write
(S)<(T,) if S;27, for all i. If =’ is a totally ordered subset of Z, then clearly T’
admits the upper bound (7)) defined by
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= (1S .
(8;)ex’

Conditions (a)-(c) are trivially satisfied, and only the last of these requires fi-
niteness. Hence the given ordering is inductive.

Suppose that there exists a maximal compatible system (S)eZ. We claim
that S;= %(S}.) for all i<j. To prove this, let (7}) be defined by

Ti=[)e;5)cS; .

i<y

Since (S)) is assumed maximal, our claim is established, provided that we can
show that also (7))eZ. Again (a) and (b) are routine; (c) is interesting. First
observe that if i<j <k, then ¢,(S)c %(6}). Now consider the intersection that
defines T,. Each of the factors appearing is a subset of the finite set S;. There are
only finitely many such subsets, and consequently we may assume that the in-
tersection is over a finite set of indices j,...,j,. But I is directed, so there exists
an element k in I such that k2j,,...,j,. Thus by our previous observation,

@i (Se) < n ¢ij,,,(Sj,,,) =T
m=1

and therefore T, is manifestly nonempty.
We continue to assume that (S) is maximal in ¥ and shall demonstrate next

that each S; contains exactly one element. Fix / and let x;€S,. Define (Tj) as fol-
lows:

T. =

{Sjqu,-;](x,-) ifi<j
J

S j otherwise.

Note in particular that 7;={x;}, since ¢, is the identity on.S;. Then (7)) lies in X:
(a) is obvious, (b) is an easy exercise, and (c) follows from the claim of the pre-
vious paragraph, namely that SF%(S;) for all j>i. Moreover, by construction
(SJ.)S (TJ.), whence, since (S)) is maximal, we must in fact have equality. This
shows that S;={x,}. Since i was arbitrary, this suffices.

We now address both statements of the proposition. Again fix ie/. By defini-
tion of a projective system,

(@) < n ¢ij(Gj) .

i<y
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One may argue as above that since all but finitely many factors on the right are
redundant, the given intersection is nonempty; thus it contains an element x;.
Define (Tj) as follows:

e : otherwise.

o {co,;-‘(x,») ifi<)

Note in particular that T,={x;}. One sees without difficulty that (T)eXZ (at last
establishing that ¥ is nonempty!), and so by Zorn’s lemma there is a maximal
element (Sj) of > with the additional property that (SJ.)Z(T}). But then (.S;.)= {yj}
and G is nonempty, as required by (i). Moreover, x;=y,€ p,(G), which in light
of the preceding inclusion establishes (ii). Q

Profinite Groups

We now come to the principal definition of this section. It may seem at first to
be essentially group-theoretic, with the topology as an afterthought, but we
shall see shortly that this is not the case.

Consider a projective system of finite groups, each of which we take as hav-
ing the discrete topology. Their projective limit acquires the relative topology
induced by the product topology on the full direct product. This is called the
profinite topology, and accordingly the projective limit acquires the structure of
a topological group.

DEFINITION. A topological group isomorphic to the projective limit of a projec-
tive system of finite groups (endowed with the profinite topology) is called a
profinite group.

The following proposition summarizes the most fundamental global proper-
ties of a profinite group.

1-12 PROPOSITION. Let G be a profinite group, given as the projective limit of
the projective system (G,, @;)- Then the following assertions hold:
(i) G is Hausdor[f with respect to the profinite topology.
(ii) G is a closed subset of the direct product T1G,;.
(iii) G is compact.

PROOF. (i) The direct product of Hausdorff spaces is also Hausdorff, and any
subset of a Hausdorff space is clearly also Hausdorff in the induced topology.
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(ii) We may realize the complement of G in [1G, as an open set as follows:

G*= UU{(gk)EHGk: wij(gj) g} .

i gz

Therefore G is closed, as claimed.

(iii) Since the direct product [1G, is compact by Tychonoff’s theorem, this as-
sertion follows from (ii) on general principles: a closed subset of a compact
space is itself compact. a

EXAMPLES

(1) Let G,=Z/nZ, n>1, the additive group of integers modulo n. Then {G,} is

a projective system, since there is a canonical projection

P LML > Z/mZ
[x], = [k],,

whenever m|n, and these projections are clearly compatible in the required
sense. We may thus form their projective limit

Z=limZ/nZ .

Note that Z also admits the structure of a topological ring.

(2) Let H, = (Z/nZ)*, nz1, the group of units in Z/nZ. Then {H} is a projec-

tive system, since a (unital) ring homomorphism maps units to units. Set
Z* =1lim (Z/nZ)" .
«

Then Z*is a topological group under multiplication and in fact is the
group of units of Z.

(3) Fix a rational prime p and set G, = Z/p™Z, m>1. Again {G, } is a projec-

tive system, and we form its projective limit to obtain a ring
Z,= liin Z/p"ZL .

This is called the ring of p-adic integers.

4) Let H,, = (Z/p™Z)*, m=1, so that {H _} is a projective system as in Ex-

ample 2. Then set
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Z% =lim (Z/p"Z)* .

One checks easily that Z7, is the group of units in Z,; this is called the
group of p-adic units.

(5) The set of all finite Galois extensions K/Q within a fixed algebraic closure
Q of Q forms a directed set with respect to inclusion. We have a corre-
sponding directed system of finite groups Gal(X/Q), where if K < L, the
associated homomorphism Gal(Z/Q) — Gal(K/Q) is just restriction. More-
over, we have an isomorphism

Gal(Q/Q) —=—1lim Gal(K/Q)

o B (o) .

Topological Characterization of Profinite Groups

Recall that a topological space X is called connected if whenever X=UuUV for
nonempty open subsets U and V, then UnV#J. (Evidently an equivalent
statement results if we substitute nonempty closed subsets for open ones.) Every
point xeX is contained in a maximal connected subset of X, which is called the
connected component of x. In the special case of a topological group G, the
connected component of the identity e is denoted G°.

A topological space X is called totally disconnected if every point in X is its
own connected component. Clearly a homogeneous space is totally discon-
nected if and only if some point is its own connected component. In particular,
a topological group G is totally disconnected if and only if G°={e}.

1-13 LEMMA. G° is a normal subgroup of G. Moreover, the quotient space
G/G® is totally disconnected, whence (G/G°)° is the trivial subgroup of
the quotient.

PROOF. Let xeG°. Then x~'G° is connected (by homogeneity) and contains e,
whence x~!G°cG°. Thus G° is closed under inverses. The same argument now
shows that xG°c G°, and that for all yeG, we have further that yG°y'c G°.
Consequently G° is indeed a normal subgroup of G°, as claimed. The second
statement is immediate: by homogeneity, the connected components of G are
precisely the elements of G/G°, and so by general topology (see Exercise 5 be-
low), G/G° is totally disconnected. g

1-14 THEOREM. Let G be a topological group. Then G is profinite if and only
if G is compact and totally disconnected.
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PROOF. =) We have already seen that G is compact. Thus it remains to show
that G°={e}. Let U be any open subgroup of G. Then UnG° is open in G° and
nonempty. Now consider the subset I of G defined by

V=) xUnG%.

xeG°-U

Then since each x-(U~G°®) is open in G°, so is V. Moreover, by elementary
group theory, UnV=, and G° is the disjoint union of two open sets, namely
UnG® and V. But by definition G° is connected, so either UnG® or V must be
empty. Since the former is not, the latter is, and in fact G°=U~G®, which is to
say that G° c U. Since U is an arbitrary open subgroup of G, we have accord-

ingly,

G°’c (U.
Uan open
subgroup of G

We must now make use of the profinite nature of G. Indeed, let
G =1limG,

where each G; is a finite group with the discrete topology. Recall that for each
index i we have a projection map p,: G — G, that is just the restriction of the
corresponding map on the full direct product. Let y=(y, lie in G and assume
that y is not the identity element. Then for some index i, it must be the case
that y, #e, . But now consider the set U, = p; '(¢;). Since the topology on G,
is discrete and the projections are continuous, U, is open in G. Since the pro-
jections are moreover group homomorphisms, U, is in fact a subgroup of G.
But by construction, U, excludes y. This shows that the only element in the
intersection of all open subgroups of G is the identity. Thus G° is trivial, as
required.

The proof of the converse is more delicate and requires three lemmas. We
begin with some preliminary analysis.

Let.#" be the family of open, normal subgroups of G. This is clearly a di-
rected set with respect to the relation M<N if NcM. (In fact, two subgroups M
and N in.# have a least upper bound AM~N in .#’) Moreover, the following
observations are elementary:

(i) For each Ne.#, the quotient group G/N is both compact and discrete,
hence finite.
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(ii) For each pair of subgroups M,Ne.#’, with M<N, the kernel of the canon-
ical projection G — G/M contains N, and hence this map factors through
G/N to yield the induced map

oun:G/IN ->G/IM
xN = xM .

From this description it is clear that if L<KM<N in ., then

P Pun= LN

and {G/N},. , constitutes a projective system of finite groups.

The point, of course, is to show that G is isomorphic to the projective limit of
this system.

1-15 LEMMA. Let the profinite group G' be given by

G’ =lim G/N
¥

where N varies over /¥, as defined above. Then there exists a surjective,
continuous homomorphism o: G>G'.

PROOF. For Ne.#"let a,, denote the canonical projection from G to G/N, which
is surjective. Since G/N is homogencous, we establish that a), is also continuous
by noting that o (e ) = N, which by hypothesis is open in G. Arguing as in
(ii) above, it is clear that whenever M <N in .7, the following triangle is com-
mutative:

GIN

=
G PuN
o

GIM

Thus by the universal property of projective limits, we have a continuous homo-
morphism a: G — G’ such that ay = pyoa for all Ne.#, where p,, denotes
projection from G’ onto G/N, the component of the projective limit corre-
sponding to N.

It remains to show that « is surjective. We claim that o has dense image in
G'. Granting this, we conclude the argument as follows: Since G is compact



28 1. Topological Groups

and G' is Hausdorff, the image of « is, moreover, closed in G'. Thus Im(«),
being dense, must be all of G', as required.

To establish the claim we shall show that no open subset of G' is disjoint
from Im(a). Consider the topology of G': this is generated by sets of the form
Py (Sy) , where Sy is an arbitrary subset of G/N. Every open set in G' is thus
expressible as a union of finite intersections of these p (SN) Such an inter-
section U consists of elements of the form

('-x—N )NE./V

where at most only finitely many of the coordinates are constrained to lie in
some given proper subset of the corresponding quotient; the rest are unre-
stricted. Now suppose that the constrained coordinates correspond to the sub-
groups N,,...,N, and that

v=(,

j-
J=1

Then given (x,)eG’, the coordinates Xy, are all determined as images of the co-
ordinate x,, under the associated pro_lectlon maps. Since q,,:G—>G/M is sur-
jective, there is at least one element in reG such that a(f),,~x,,, and conse-
quently ¢ also satisfies a(t)N =Xy, for j=1,...,r. In particular, if (x,)eU, then
certainly a(r)eU, since a(t) agrees with (xN) in all of the constrained coordi-
nates. Thus U manifestly intersects Im(«), and by our previous remarks, so, too,
does every open set in G'. This completes the proof. a

1-16 LEMMA. Let X be a compact Hausdor(f space. For a fixed point PeX, set
% = {K:K is a compact, open neighborhood of P}. Define Yc X by

r=K .

Ke#%

Then Y is connected.

PROOF. Note that the collection % is nonempty because X itself is compact and
open.

Suppose that Y is the disjoint union of closed subsets Y, and Y,. We must
show that either Y, or Y, is empty. Recall from general topology that a compact
Hausdorff space is normal. Accordingly, there exist disjoint open subsets U,
and U, containing, respectively, ¥, and Y,. Now set Z=X-(U,v U,), which is
closed and therefore compact. Since Yc U;u U,, Z and Y are disjoint, which is
to say that Z lies in the complement of Y. Thus we have an open cover for Z
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zc |k
Ke¥
that admits a finite subcover. Hence there exist K, ...,K,e% such that

Zn(NK;)=2 .
J

Let W denote the intersection of the X.. Then # is a compact, open neighbor-
hood of P, and so W is itself in %. But also

W=WAU) U WAU,)

since W is disjoint from Z, the complement of U;u U,. We now make note of
the following assertions:

(i) Both WU, and WU, are compact, open subsets of X,
(ii) P lies exclusively in one of WU, or WnU,. Say PeWnU,.

From (i) and (ii) it follows that WU, €% and so Yc W U,. Since Y,c Y and
Y, is disjoint from U, it follows that Y, is empty, as required. a

1-17 LEMMA. Let G be a compact, totally disconnected topological group.
Then every neighborhood of the identity contains an open normal sub-

group.

PROOF. As a preliminary, note that G is HausdorfT: If x and y are distinct points
in G, then {x,y} is disconnected with respect to the subspace topology. There-
fore there exist respective open neighborhoods of x and y that are disjoint. The
proof now proceeds in three steps: First, we show that every open neighborhood
U of the identity contains a compact, open neighborhood W of the identity. Sec-
ond, we show that #¥ in turn contains an open, symmetric neighborhood V of
the identity such that WI’'c W. Third, from V we construct an open subgroup,
then an open, normal subgroup of G contained in U, as required.

Let Z denote the set of all compact, open neighborhoods of the group iden-
tity e. Applying the previous lemma with P=e, we find that

Y=

Ke¥%

is a connected set containing e. But G is totally disconnected, so in fact Y={e}.
Now let U denote any open neighborhood of e. Then G-U is closed and
therefore compact. Since e is the only element of G common to all of the X in
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%, there exist subsets K, ...,K, €% whose complements cover G-U, and there-
fore
r
w =K,

J
J=1

is a subset of U and a compact, open neighborhood of e. In particular, We#Z.
This completes the first step.

To begin the second step, consider the continuous map u: WxW— G defined
by restriction of the group operation. We make the following observations:

(i) For every weW, the point (w,e)e u\(W).
(ii) Since W is open, the inverse image of W itself under u is open in WxW.

(iii) It follows from (i) and (ii) that for every we W, there exists open neighbor-
hoods U, of w and V,, of e such that U, xV, c u~'(W). Moreover, by Prop-
osition 1-1, we may assume that each V, is symmetric.

(iv) The collection of subsets U,, (we W) constitutes an open cover for . Since
W is compact, a finite subcollection U, ..., U, suffices.

Let V,,...,V, correspond to U,,...,U, in (iii) above. Define an open neigh-
borhood V' W of the identity as follows:

By construction WV W, and by induction WV W for all n>0. In particular,
V"< W for all n=0. This completes the second step.

For the final step, we expand J to an open subgroup O of G contained in W
by the formula

(Note that O is closed under inversion because J is symmetric.) The quotient
space G/O is compact and discrete, hence finite, so we can find a finite col-
lection of coset representatives x,,...,x, for O in G. It follows that O likewise
has only finitely many conjugates in G: all take the form

x,0x;'  (j=L...,9).

Thus
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N= ﬂ x ijj"1
J=

is an open, normal subgroup of G. Moreover, since one of the conjugates of O is
O itself, Nc Oc W U. This completes the proof. a

This brings us at last to the conclusion of the topological characterization of
profinite groups.

PROOF OF THEOREM 1-14, CONVERSE. By Lemma 1-15, we have a surjective
homomorphism a:G—G’, where G’ is the projective limit of the finite quo-
tients G/N for N an open, normal subgroup of G (i.e., Ne .#"). Appealing to
Exercise 9 below, we see that it suffices to show that « has trivial kernel and
hence is injective.

Since « simultaneously projects on all of the quotients, it is clear that

Ker(a)= [N .

Nedt

By the previous lemma, every open neighborhood of eeG contains an open,
normal subgroup, which is therefore represented in the intersection above. It
follows that Ker(q) is contained in every neighborhood of e and hence in the
intersection of all such neighborhoods. But G is Hausdorff: the intersection of
all neighborhoods of e consists merely of e itself. Hence Ker(a) is indeed triv-
ial, and the theorem is proved. a

The Structure of Profinite Groups

The following theorem shows in particular that closed subgroups of profinite
groups and profinite quotients by closed normal subgroups are likewise pro-
finite.

1-18 THEOREM. Let G be a profinite group and let H be a subgroup of G. Then
H is open if and only if G/H is finite. Moreover, the following three state-
ments are equivalent.

(i) Hisclosed.
(ii) H is profinite.

(iii) H is the intersection of a family of open subgroups.

Finally, if (i)-(iii) are satisfied, then G/H is compact and totally discon-
nected.



32 1. Topological Groups

ProOF. The first statement follows from Proposition 1-4, part (iv), since a
profinite group is necessarily compact. We next establish the given equiva-
lences.

(i)=(ii) H is a closed subset of a compact space and therefore itself compact.
Hence it remains to show that A is totally disconnected. But this is trivial: since
G°={e}, also H°={e}, and this suffices by homogeneity.

(ii))=(i) If H is itself profinite, it is a compact subset of a Hausdorff space and
hence closed.

(iii))= (i) Suppose that H is the intersection of some family of open subgroups
of G. Then since every open subgroup is also closed [Proposition 1-1, part (iv)],
H is also the intersection of a family of closed subgroups of G, and therefore
itself closed.

(i)=(iii) As above, let.# denote the family of all open, normal subgroups of G.
If Ne#, then since N is normal, NH is a subgroup of G. By part (i), [G: V] is
finite, whence [G: NH] is likewise finite and NH is open. Moreover, clearly

Hc (\NH .
Nest”

It remains only to demonstrate the opposite inclusion. So let x lie in the indi-
cated intersection, and let U be any neighborhood of x. Then Ux~! is a neigh-
borhood of e, and so by Lemma 1-16, Ux~! contains some N,e.#. Since x lies
in the given intersection, xe N,H. Now by construction, also xe N x. Hence N,x
is equal to Nh for some heH, and consequently he Nyxc U. The upshot is that
every neighborhood of x intersects /7, and hence x lies in the closure of /. But
H is closed by hypothesis, and therefore xe H, as required.

For the final statement, the compactness of the quotient follows at once from
the compactness of G. Let p:G— G/H denote the canonical map. To see that
G/H is totally disconnected, assume that p(X) is a connected subset of G/H that
properly contains p(H). Then Y=X-H is nonempty, and since we may assume
that / is nontrivial, Y contains more than one point. Hence Y is the disjoint
union of nonempty open (hence closed) sets F, and F,. One checks easily that
since H is closed, F, and F), are both open (hence closed) in X. Thus X is the
disjoint union of the two nonempty closed sets /', H and F,. But then the im-
age of F, under pis (a) nonempty, (b) not the full image of X, and (c) both open
and closed in p(X). Since p(X) is connected, this is a contradiction. Hence the
connected component of p(H) is p(H) itself, and the quotient is totally discon-
nected, as claimed. a
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A Little Galois Theory

We close this section by showing how profinite groups make a momentous ap-
pearance in connection with the Galois theory of infinite extensions. To begin,
we recall the following elements of field theory:

(i) Let Fbe aficld. An clement a that is algebraic over F is called separable
if the irreducible polynomial of a over F has no repeated roots. An alge-
braic field extension K/F is called separable if every element of X is sepa-
rable over F.

(ii) Assume that X is an algebraic extension of F contained in an algebraic
closure ' of F. Then we call K/F a normal extension if every embedding
of K into F that restricts to the identity on F is in fact an automorphism
of K. (We say that such an automorphism is an automorphism of X over
F)

(iii) A field extension K/F is called a Galois extension if it is both separable
and normal. The set of all automorphisms of K over F constitutes a group
under composition; this is called the Galois group of K over F and de-
noted Gal(K/F). If F€Lc K is a tower of fields and K/F is Galois, then
K/L is likewise Galois.

Note that these notions do not require that K/F be finite. Qur aim now is to
extend the fundamental theorem of Galois theory to infinite extensions. This
will require the introduction of some topology.

If S is any set of automorphisms of a field F, as usual F* S denotes the fixed
field of S in F;, that is, the subficld of F consisting of all elements of F' left fixed
by every automorphism of S.

Suppose that K/F is a Galois extension with Galois group G. Consider the
set #" of normal subgroups of G of finite index. If N, Me.#"and Mc N, we have
a projection map py ,,: G’/M—G/N, and hence a projective system of quotients
{G/N}yc,- This system is certainly compatible with the family of canonical
projections g, : G — G/N, which corresponds to the restriction map from
Gal(K/F) to Gal(K"/F). Thus we have a canonically induced homomorphism p
from G into the projective limit of the associated quotients.

1-19 PROPOSITION. Let K, F, G, and #"be as above. Then the canonical map

p:G— lim G/N
Ne

is in fact an isomorphism of groups. Hence G is a profinite group in the
topology induced by p.
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In this context, we shall simply speak of the Galois group G as having the
profinite topology.

PROOF. We show first that p s injective. Certainly

Ker(p)= [\ N
Ne#t”

and so we need only demonstrate that this intersection is trivial. Let oeKer(p)
and let xeK. Then by elementary field theory there exists a finite Galois exten-
sion F'/F such that F'cK and xeF’. Now the restriction map from
G=Gal(K/F) to Gal(F"/F) has kernel Gal(K/F"), which is therefore a normal
subgroup of G of finite index. But then oeGal(K/F"), and so o(x)=x. Since x is
arbitrary, ois the identity on X, and Ker(p) is trivial, as required.

We show next that p is also surjective. Fix (gy) in the projective limit. Given
an arbitrary element xeX, again we know that x lies in some finite Galois ex-
tension F' of F with N=Gal(K/F') normal and of finite index in G and
Gal(F"/F)=G/N. Now define oeGal(K/F") by o(x)=0,(x). By construction of
the projective limit, ois independent of the choice of extension F”, and hence is
a well defined automorphism of K. Moreover, it is clear that g}, is p, (o) for all
N. a

Note that the isomorphism constructed in the previous proposition is essen-
tially field-theoretic, and not merely group-theoretic. (See Exercise 12 below.)

1-20 THEOREM. (The Fundamental Theorem of Galois Theory) Lef K/F be a
Galois extension (not necessarily finite) and let G=Gal(K/F) with the
profinite topology. Then the maps

a:L— H=Gal(K/L)
B:HHL=K"

constitute a mutually inverse pair of order-reversing bijections between
the set of intermediate fields L lying between K and F, and the set of
closed subgroups of G. Moreover, L is Galois over F if and only if the
corresponding subgroup H is normal in G.

PRrOOF. Note that in the case of a finite extension K/F, we may ignore the
topological restriction, and the statement amounts to the fundamental theorem
of Galois theory for finite extensions, a result that we assume. We proceed in
four steps.

STEP 1. We must show first that the map « is well-defined; that is, that « in-
deed yiclds closed subgroups of G. (The map g is of course well-defined on ar-
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bitrary subsets of G.) According to the previous proposition, /7 is profinite as
the Galois group of K/L, and Exercise 14 shows that this topology is identical
to that induced by G. Thus H is a profinite subgroup of a profinite group and is
therefore closed by Theorem 1-18.

STEP 2. We claim that So « is the identity map. Let L be an intermediate field.
By definition a(L) fixes L, and so clearly S(a(L))2L. Conversely, suppose that
z lies in B(a(L)). Then since z lies in K and is therefore separable over L, z also
belongs to a finite Galois extension M of L contained in K. Let o eGal(M/L).
Then there exists oeGal(K/L) that restricts to o. (The extensibility of auto-
morphisms for infinite extensions follows from the finite case by Zorn’s lem-
ma.) By construction, o(z) =z, and hence o(z) =z for all ceGal(M/L). But by
the fundamental theorem for finite extensions, we know that zeL. Hence we
have also that S(a(L))< L, and the claim is established.

STEP 3. We shall show now that ao /S is likewise the identity. By definition, for
any subgroup H of G we have that a(fS(H))2H. Now assume that H is closed.
Then again by Theorem 1-18, H is the intersection of a family % of open sub-
groups of G. Since « and £ are clearly order reversing,

s =p =2 Usw)

Ue¥% Ue¥%

and
a(BE) ca( | JpUN< NaBU)= (U=H .
Ue¥% Ue¥ Ue¥

The point is that each of the open subgroups U has finite index, and thus in
each case a(B(U))=U by the finite theory.

STEP 4. Finally, suppose that ofL)=Gal(K/L)=H, where L is some intermediate
field. Let olie in G. Then from the diagram

iq

K
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we deduce that Gal(K/o(L))=cHo'. Thus according to parts (i)—(iii) above, we
have that o(L)=L for all o€G if and only if cH o '=H for all ceG. This is to
say that L is normal (and hence Galois) over F if and only if / is normal in G.Q

REMARK. We leave it to the reader to determine the effect of aof on an arbi-
trary subgroup of Gal(K/F). (See Exercise 15 below.)

1.4 Pro-p-Groups

Our aim here is to introduce for profinite groups an analogue of the p-Sylow
subgroups that play such a crucial role in finite group theory. To begin, we
must first generalize the notion of order.

Orders of Profinite Groups

DEFINITION. A supernatural number is a formal product
[1r"
JJ

where p runs over the set of rational primes and each npeNu {o0}.

Clearly the set of supernatural numbers is a commutative monoid with re-
spect to the obvious product. If a is a supernatural number, we set vp(a) equal to
the exponent of p occurring in a. We say that a divides b, and as usual write
a|b, if vp(a)SVP(b) for all primes p. Note that if a|b, there exists a supernatural
number ¢ such that ac=b.

Given supernatural numbers a and 5, we may define both their least com-
mon multiple and greatest common divisor by the formulas

lcm(a, b) = H psuP(Vp(a)»Vp(b» and ng(a,b) = I‘I pinf(vp(a)_vp(b)) ‘

One extends these notions to arbitrary (even) infinite families of supernatural
numbers in the obvious way.

Now let G be a profinite group. As previously, let .#” denote the set of all
open, normal subgroups of G. Recall that each quotient group G/N, for Ne.#,
is finite.

DEFINITION. Let H be a closed subgroup of G. Then we define [G: H], the index
of H in G, by the formula
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[G:H]= Icm [G/N:HN/N] .
News

In particular, [G:{e}], the index of the trivial subgroup, is called the order of G
and denoted |G]|.

Using the standard isomorphism between HN/N and H/HAN, we may recast
the definition above as

|G:H]= lem [G/N:H/HANN].
- Nest
See also Exercise 16 below.

1-21 PROPOSITION. Let G be a profinite group with closed subgroups H and K
such that HCK. Then [G:K]=[G:H][H:K].

PROOF. Note that since H is closed, it is also profinite, and so the assertion is
well defined. Now let N be any open normal subgroup of G. Then

[GIN:KIKAN] = [GIN: HIHANY [HIHAN:K/KAN] . (1.3)

The lcm (over Ne.#") of either side of the equation is, of course, [G:H]. Con-
sider the factors on the right: if we replace N by any smaller subgroup N, €.#;
both indices are inflated (cf. Exercise 17). Hence, taking intersections, any pair
of prime powers occurring in [G/N:H/HAN] and [H/H~N:K/KnN]), respec-
tively, may be assumed to occur simultaneously. The upshot is that we can
compute the Icm of the product by separately computing the lcm’s of each fac-
tor. The first yields [G: H]; it remains only to show that the second yields [H:K].

Let M be any open, normal subgroup of H. Then M=Hn U, where U is open
in G. But by Lemma 1-17, U contains an open, normal subgroup N of G, and
one argues as above that

[HIM:K/IKAM] | [HIHAN:K/KANT .
Thus [H: K] may be computed as the lcm over subgroups of H of the form HAN,
where N is open and normal in G. Hence the second factor on the right of

Eq. 1.3 indeed yields [H: K], as required. a

REMARK. The proof shows that we may compute a profinite index as the lcm
over any cofinal family .# —.#" of open normal subgroups of the ambient group;
that is, if for every Ne.#" there exists an Me.# such that McC N, then

Icm [G/N:HN/N] = lcm [G/M:HMIM] .
Ne# Me.#
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EXAMPLES

(1) Consider the p-adic integers

Z,= liin(Z/p"Z) .

nzl

Let H, denote the kernel of the projection map from Z,to Z/p"L. Since
this projection is surjective, we have Z /H,=Z/p"Z, and it follows that p®
divides [Zp[ Conversely, every finite quotxent of z, has order a power of p,
and therefore |Z |=p=.

(2) Next consider

Z=1im(Z/nZ) .

nx1

Arguing as above, every factor group Z/nZ occurs as a quotient of Z,
whence every positive integer is a divisor of its order. Thus

1Z|= ] »°

p prime

Pro-p-Groups

Let p be a rational prime. Recall that a group is called a p-group if the order
of every element is finite and a power of p. In the case that G is finite, this is
equivalent to the statement that the order of G is a power of p.

DEFINITION. A projective limit of finite p-groups is called a pro-p-group.

Of course, Z is a pro-p-group; so is H_, the projective limit of the Heisen-
berg groups H(Z/p"Z). (See Exercise 18 below.)

1-22 PROPOSITION. A profinite group G is a pro-p-group if and only if its order
is a power of p (possibly infinite).

PROOF. <=) We have already seen in the proof of Theorem 1-14 that G is the
projective limit of its finite quotient groups G/N. If the order of G is a power of
P> then each of these quotients must be a p-group, as required.

=) Suppose that G is the projective limit of the projective system P, of p-
groups. Then by definition of the topology of G, cofinal among the open normal
subgroups of G are subgroups of the form



1.4. Pro-p-Groups 39
M= (H 0)nG

where Q;= P, for all but finitely many indices, and Q,={e,} for the exceptions.
Now given an arbitrary xeG and specifying any finite subset of its coordinates,
there is clearly a finite exponent of the form g=p" such that x4 is trivial at each
of the specified coordinates. Hence G/M is a p-group, and it follows by the re-
mark following Proposition 1-21 that the order of G is a power of p. a

DEFINITION. Let G be a profinite group. A maximal pro-p-subgroup of G is
called a pro-p-Sylow subgroup of G (or more simply, a p-Sylow subgroup of G).

Note that the trivial subgroup may well be a pro-p-subgroup of G for some
primes p. The following theorem shows among other things that this is the case
if and only if p does not divide the order of G.

1-23 THEOREM. Let G be a profinite group and let p be a rational prime. Then
the following assertions hold:

(i) p-Sylow subgroups of G exist.
(ii) Any pair of conjugate p-Sylow subgroups of G are conjugate.
(iii) If P is a p-Sylow subgroup of G, then [G:P] is prime to p.

(iv) Each p-Sylow subgroup of G is nontrivial if and only if p divides the
order of G.

PROOF. As usual, let.#” denote the set of open normal subgroups of G and recall
the explicit isomorphism

¢:G > lim G/N

xPOON)yey -

Note in particular that if x,yeG and xN=yN for every open normal subgroup N,
then x=y. A similar statement holds for arbitrary subsets of G.

(i) For each Ne.#’, let Z(N) denote the set of p-Sylow subgroups of the finite
group G/N. Then clearly Z(N) is finite and, moreover, nonempty. (If G/N has
order prime to p, then the trivial subgroup is a p-Sylow subgroup.) Assume that
M,NeA#with NcM. Then there exists a surjective homomorphism of finite
groups ¢, - G/N— G/M. Since this map sends a p-Sylow subgroup of G/N to a
p-Sylow subgroup of G/M (refer again to Exercise 17), we obtain an induced
map @, ' FP(N)—>FM). Thus we obtain a projective system (P(N), Purn) Of
finite nonempty sets, and the projective limit of this system is likewise non-
empty by Proposition 1-11. This means that there exists a projective system of
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p-Sylow subgroups (Py,,, y), where for each Ne.#', we have Py, cG/N. Let P
be the projective limit of the P,,, which we can clearly identify with a subgroup
of the projective limit of the G/N and hence with a subgroup of G via ¢. Then P
is a pro-p-group by construction, and we shall now show that it is maximal. Let
Q be any pro-p-subgroup containing P. Then for every open normal subgroup
N, ON/INoPNIN=P,,. But Q is a pro-p-group, so by the previous proposition,
ONI/N is a p-group and therefore equal to the p-Sylow subgroup P,,. Thus for
every open normal subgroup N, ON/N=PN/N, and therefore Q and P have the
same image under @ and accordingly are equal. Hence P is indeed maximal, as
claimed.

(ii) Let P and Q be p-Sylow subgroups of G. For every Ne.#”, we make the
following definitions:

P, = PNIN
Qy = ONIN
Yy = {WweGIN:yyPyyy =04} .

Note that each Y is finite and, by the Sylow theorems for finite groups,
nonempty. Moreover, the subsets Y), clearly constitute a projective system. Let ¥
denote the (nonempty) projective limit of the Y,,, which we again identify with
a subset of G via ¢, and let y lie in Y. Then by construction, yPy~! and Q have
equal projection in G/N for all open, normal N and are therefore equal. Hence P
and Q are indeed conjugate.

(iii) Let P be a p-Sylow subgroup of G. Then by definition

[G:P]=lcm [G/N:PN/N] .
Nes

But by Exercise 19, for each N, the subquotient PN/N is a p-Sylow subgroup of
G/N, and so by finite group theory each index [G/N:PN/N] is prime to p. Hence
[G:P] is likewise prime to p.

(iv) This follows at once from parts (i) and (iii). a

1-24 COROLLARY. Let G be a commutative profinite group. Then the following
assertions hold:
(i) For every prime p, G admits a unique pro-p-Sylow subgroup.

(ii) Let p and q be distinct primes and let P and Q be the corresponding
Sylow subgroups. Then PN Q is trivial.

(iii) G is isomorphic to the direct product of its Sylow subgroups.
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PROOF. (i) In light of the commutativity of G, this follows at once from parts (i)
and (ii) of the theorem above.

(ii) The order of P~ Q must divide powers of both p and g, whence this inter-
section must be trivial.

(iii) Let N be an open normal subgroup of G. Then for each pro-p-Sylow sub-
group P we have a canonical projection from P onto PN/N, the unique p-Sylow
subgroup of G/N. Note that this projection is trivial for all but the finitely many
primes p that divide the order of G/N. By the theory of finite commutative
groups, we have

[1PNIN=GIN

where the product is taken over all of the Sylow subgroups of G. We may lift
this isomorphism to G as follows:

G =1lim GIN
=lim [[PN/N
=[tim PN/N
=[Ttim PIPAN

=][P .

All products are over the set of Sylow subgroups of G; all projective limits are
over the family of open, normal subgroups of G. The final line of the calcula-
tion is justified by the cofinality of subgroups of the form P~ N among the open
subgroups of P, which may be deduced from Lemma 1-17. a

EXAMPLE. Recall that the abelian profinite group
Z=1limZ/nZ

has order [1p*, where the product is taken over all primes. Given a prime p, let
P be the unique corresponding p-Sylow subgroup of Z. Let P, denote the
unique p-Sylow subgroup of Z/nZ. Then

P=limP, =limZ/p"*"Z = imZ/p"Z = Z,, .
« « «

n n m

Thus according to the corollary, Z=T1Z .
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Exercises

L.

(@

®)

Let G be a topological group. Show that the topology on G is completely
determined by a system of open neighborhoods of the identity e.

Let G=Z and impose the following topology: Uc G is open if either 0¢ U
or G-U is finite. Show that G is not a topological group with respect to
this topology. [Hint: If so, the mapping a+>a+1 would be a homeo-
morphism; show that it is not.]

This exercise shows that we may impose a nondiscrete topology on Z such
that Z is nonetheless a topological group with respect to addition. Let S'
denote the multiplicative group of complex numbers of absolute value 1.
Recall that an element of Hom(Z,S") is called a character of Z. We denote
such a character . Let

g=1]s
x

where the product is taken over all characters. Then & is a compact topo-
logical group. Now consider the homomorphism

JL—> %
n = (x(n) .

Show that; is injective; that is, show that for any nonzero neZ there exists
a character y such that y(n)=1.

Let G=/(Z). Then G is a group algebraically isomorphic to Z and a topo-
logical group with respect to the subspace topology induced by 2. Show
that G is not discrete with respect to this topology and conclude that Z it-
self admits a nondiscrete topological group structure with respect to addi-
tion. [Hint: Suppose that j(1) is open. Then there exists an open subset U of
& such that UnG =j(1); moreover, we may assume that all but finitely
many projections of U onto its various coordinates yield all of S'. Noting
that j(1) generates the infinite group G, one may now derive a contra-
diction.]

Give an example of a topological group with a closed subgroup that is not
open.

Let X be a topological space and let C(X) denote the space of connected
components of X. (This constitutes a partition of X). As usual, we impose
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the quotient topology on C(X)—the strongest topology such that the canon-
ical projection o: X — C(X) is continuous. Show that C(X) is totally discon-
nected with respect to this topology. [Hint: We say that a subset Y of a
topological space is saturated if whenever yeY, the entire connected com-
ponent of y lies in Y. Let F be a connected component of C(X) that contains
more than one point. Show that p~!(F) is a saturated, closed, disconnected
set. Write p~!(F) as the disjoint union of two saturated, closed subsets of X,
and apply p to this decomposition to show that F is in fact disconnected—a
contradiction.]

Let G=GL,(R). Show that G° is the set of nxn matrices with positive de-
terminant.

Let H be a subgroup of the topological group G. Show that its closure H is
normal (respectively, abelian) if H is.

Let f: G — G’ be a surjective continuous homomorphism of topological
groups. Show that f factors uniquely through G/Ker(f); that is, there exists
a unique continuous homomorphism f such that the following diagram
commutes:

G—»G’

P\ /7

G/Ker(f)

Show that f is moreover injective. Under what conditions is f a topologi-
cal isomorphism onto its image?

Let /: X — Y be a continuous bijective mapping of topological spaces and
assume that X is compact and Y is Hausdorff. Show that f is moreover a
homeomorphism. [Hint: It suffices to show that fis open. What can one say
about the image of U° under f'where U is any open subset of X7]

Let 7 be an index set with preordering defined by equality and let (G, )
be a projective system of sets defined with respect to /. What is the projec-
tive limit in this case?

Give an example of a projective system of finite nonempty sets over a pre-
ordered, but not directed, set of indices such that the projective limit is
nevertheless itself empty.

Let G be an arbitrary group. Show that in general G is not isomorphic to
the projective limit of the quotient groups G/N, as N varies over all of the
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subgroups of G of finite index. Hence not every abstract group acquires a
profinite structure by this device. [Hint: Take G=2Z.]

Let (G, p,) and (I;, ¢,) be two projective systems of sets. (Note that we use
the same map designators ?; for both systems.) Suppose that we have a
family of maps {{;:G,—H} that is compatible with these systems in the
sense that ¢,.0¢:= o g, for all pairs of indices i<j. Show that there exists a
unique map ¢'G->H on their respective projective limits such that
Gop=p;o¢for all i, where p, denotes the appropriate projection map. Ob-
serve that this construction works equally well in the categories of groups,
topological spaces, and topological groups. [Hint: In light of the universal
property of projective limits, consider the family of composed maps

{Gop;:GoH}
Let K/F be a Galois extension with Galois group G.

Let L be an intermediate field that is finite over F. For any given oe€G,
define N;(0)cG to be the set of 7eG such that o and 7 agree on L. The
subsets V(o) constitute a subbase for a topology on G. Show (i) that this
topology remains unchanged if we restrict the subbase to normal interme-
diate fields that are finite over F and (ii) that this topology is identical to
the profinite topology on G.

Now let L be an arbitrary intermediate field, and let H denote the Galois
group of X over L. Use the characterization of the profinite topology given
in part (a) to show that the topology induced on H by G is identical to the
profinite topology defined directly on / as Gal(K/L).

Let K/F be a Galois extension (not necessarily finite) and let / be any sub-
group of G=Gal(K/F) (not necessarily closed). Let @ and £ be defined as
in Theorem 1-20. Show that a(B(H))= H , the closure of H.

Let G be a profinite group and let H be a closed subgroup. Show that
[G:-H] =},cer/r’1/ [G:HN]

where .#” is the set of all open, normal subgroups of G. Show further that if
M is any open subgroup of G containing H, then there exists an open nor-
mal subgroup N of G such that Mo NH. Conclude from this and the previ-
ous equation that moreover,

[G:H]= lem [G:M] .
M open
MON
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Let ¢: G— G' be a surjective homomorphism of groups with kernel L. Let
H be a subgroup of G of finite index and let A’ be the image of H under ¢.
Show that [G:H]=[G': H'|-[HL:H].

For any commutative ring A with unity, define the Heisenberg group H(A)
over A by

l a
H(A)={|0 1 rab,ced
00

- O 0

Show that H(A) is a group under multiplication in the matrix ring M;(4)
and that this construction is, moreover, functorial in 4.

To continue, for n>1, H(Z/p"Z) is clearly a group of order p3*, and hence
a p-group. If m|n, then by functoriality, we have that the canonical projec-
tion Z/p"Z—>Z/p™Z induces a homomorphism ¢, from H(Z/p"Z) to
H(Z/p™Z).

Show that (FH(Z/p"Z),p,,,) is a projective system of groups.

Let H » denote the projective limit of the H(Z/p"Z); by definition, this is a
pro-p-group.

Show that H(Z ) = H - [Hint: Consider the map
7, H(Z,)—> H(Z/p"L)

induced by projection from Z, onto Z/p"Z. Show that this is a continuous
surjective homomorphism and that moreover, the family {7} is compatible
with the system of homomorphisms {¢,,,}. Finally, show that the map =
obtained from the 7, by the universal property of the direct limit is the de-
sired isomorphism.]

Let G be a profinite group and p a rational prime. For each open, normal
subgroup N in G, let H,, be a p-subgroup of G/N (not necessarily a p-Sylow
subgroup). Show that there exists a pro-p-Sylow subgroup P of G such that
PN/NoH,, for all N. Conclude (i) that every pro-p-subgroup of G is con-
tained in a pro-p-Sylow subgroup of G; and (ii) that if P is a pro-p-Sylow
subgroup of G, then PN/N is a p-Sylow subgroup of G/N for each open,
normal subgroup N of G. [Hint. Generalize the argument from the proof of
part (i) of Theorem 1-23.]
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Some Representation Theory

The general background for Tate’s thesis involves locally compact groups, their
representations, and duality theory. Many of these basic prerequisites are de-
rived in this and the next chapter.

Here we develop elements of representation theory for a locally compact
topological group G represented in the automorphism group of a topological
vector space V. A representation in this context is in fact a restricted instance of
an ordinary abstract group representation, with the extra constraints involving
continuity and some specific topological conditions on V. Our development is
somewhat general without becoming excessively technical; in particular, we
postpone the assumption that G is commutative until as late as possible. This is
not empty abstraction: the noncommutative case is interesting in its own right,
as shown by Jacquet-Langlands theory, which deals with representations of the
general linear group.

The key results of this chapter are Schur’s lemma for irreducible unitary
representations of a topological group G and the theorem that such representa-
tions are one-dimensional in the case that G is abelian. Considering that the
finite-dimensional analogues of these statements are not particularly deep, they
are surprisingly challenging to prove. In fact, the chase will lead us through the
spectral theory of Banach algebras, the Gelfand transform, and the spectral
theorems. (We state the second spectral theorem for completeness, but make no
essential use of it.) The Gelfand transform is especially noteworthy because it is
applied again in the following chapter in a wholly different context.

2.1 Representations of Locally Compact Groups

A field k (subject to some given topology) is called a fopological field if both
addition and multiplication are continuous functions on kxk. A vector space V'
(again subject to some given topology) over k is called a topological vector
space if the following two conditions are satisfied:

(i) The underlying additive group (V,+) is moreover a topological group.

(ii) The scalar multiplication map
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kxV >V
(A, v)— Av

is continuous (with respect to the product topology on kx V).
EXAMPLES

(1) Ifk is a topological field and V' is any merely algebraic vector space over &,
then we have an isomorphism of vector spaces

v=]]k
I

where 7 is some index set. We may use the isomorphism to transfer the
product topology of [Tk to V. One checks easily that with respect to this
induced topology, V is a topological vector space over k. Moreover, for fi-
nite-dimensional V, every linear map is clearly continuous, and hence the
transferred topology is independent of the choice of isomorphism.

(2) Recall that a normed vector space V over R (respectively, over C) that is
complete with respect to the norm metric is called a real (respectively,
complex) Banach space. One checks easily that V is a topological vector
space over R (respectively, C) with respect to the norm topology. (Note
that any normed space may be embedded in its completion, with the given
norm extended by continuity; the completion is ipso facto a Banach space.)

Henceforth we shall assume that our topological vector spaces are 7, (and
hence Hausdorff, by Proposition 1-3). This is equivalent to the assertion that
{0} is a closed subset.

For a topological vector space I over &, we distinguish Aut(}’), the group of
vector space automorphisms V-V, from Aut, (V), the group of topological
automorphisms V—V (i.e., continuous vector space automorphisms with con-
tinuous inverse).

Recall that a subset S of a real or complex vector space is called convex if
for every x, yeS, each point of the form tx+(1-£)y, 0<¢<1, also lies in S. A real
or complex topological space is called locally convex if there is a base for the
topology consisting of convex sets. Thus, for example, the topological vector
spaces R” and C” are both locally convex.

DEFINITION. Let G be a locally compact topological group and let V" be a locally
convex topological vector space over C. Then an abstract representation of G
is merely a homomorphism p: G—>Aut(V). We call p a fopological representa-
tion (or simply a representation, without qualifier) if it satisfies the additional
condition that the map
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GxV >V
(&%) p,(x)

is continuous with respect to the product topology on GxV. [Note that for geG
we usually write p, for p(g).]

It follows at once from the definition that for a topological representation p,
the image of G under p in fact lies in Autmp( V).

2-1 PROPOSITION. An abstract representation p:G—>Aut(V) is moreover a
topological representation of G if and only if it satisfies the following two
conditions:

(i) For every compact subset K of G, the collection of functions p(K) is
equicontinuous on V.

(ii) For every xeV, the map g p,(x) is continuous from G to V.

PRrOOF. =) Certainly a topological representation satisfies (ii), so we need only
argue for (i). Let U be a neighborhood of 0 in V. By continuity, for each geG,
there exists a neighborhood H, ,ofgin G and a neighborhood Wg of 0 in V' such
that p,(x)eU for all heH A and xe Wg. Since X is compact, there is a finite sub-
collection ,,...,H, of the Hg that cover K. Let W,,..., W, be the corresponding
neighborhoods of 0 in V, and set

Then for all geX and xe ¥, by construction pg(x)e U, and therefore the collec-
tion p(K) is equicontinuous, as claimed.

<) Let (g,x) lie in GxV. Since V is locally convex, it suffices to show that for
any convex neighborhood U of 0 in V, there exist neighborhoods H of g in G
and W of 0 in V' such that for all heH, p,(x+W)c p,(x)+U.

Assume that Kc G is a compact neighborhood of g. By condition (i), there
exists a neighborhood # of 0 in V" such that p,(w)e U/2 for all heK and welV.
By condition (ii), there exists a neighborhood H of g contained in K such that
for all heH, likewise PxX)-p(x)€ U/2. Now for arbitrary heG and wel/, we
have that

Pr(x+W)= p,(x) = p, (W) + (0, (x) — P (%)) .
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Thus, in particular, if he H and we W, then by construction the indicated differ-
ence lies in U/2+U/2. But of course U/2+U/2=U, because U is convex, and
this completes the proof. a

Note that the set of all mapping from V-V is the direct product of topologi-

cal spaces
I1v
14

and thus acquires the product topology, which in this case amounts to the to-
pology of pointwise convergence. The subset Aut(}) in turn acquires the sub-
space topology, and viewed thus, condition (ii) above implies that the represen-
tation p:G—>Aut(}) is a continuous mapping. Therefore, given any compact
subspace K of G, p(K) is compact. Consequently, if ¥ is a Banach space, the
Banach-Steinhaus theorem implies that p(K) is equicontinuous. Thus we have
proved the following corollary:

2-2 COROLLARY. Suppose that V is a Banach space. Then an abstract repre-
sentation p:G—>Aut(V) is moreover a topological representation if and
only if for every xeV, the map g p,(x) is continuous from G to V. QO

REMARK. The corollary holds more generally if V is a barreled space. Sce
Bourbaki, Topological Vector Spaces, Chapter II1, §4.2.

Let p: G— V'be an abstract representation of G. A subspace W of V is called
A(G)-invariant (or simply G-invariant, when p is understood from the context)
if p, (W) < W for all geG. Equivalently, if we view V" as a module over the
group algebra C[G], then a p(G)-invariant subspace is exactly a C[G]-sub-
module. Both the trivial subspace {0} and V itself are o(G)-invariant. The class
of representations for which these are the only such invariant subspaces is espe-
cially noteworthy.

DEFINITION. An abstract representation (p, V) is called algebraically irreducible
if it admits no proper, nontrivial p(G)-invariant subspaces. A topological repre-
sentation (p, V) is called topologically irreducible (or simply irreducible, with-
out qualifier) if it admits no closed, proper, nontrivial p(G)-invariant
subspaces.

Algebraic irreducibility of course implies topological irreducibility, but not
conversely.

Given a representation (p,V) of G, we can vary p by any homeomorphic
change of basis to obtain another representation that is essentially the same
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object. We generalize this notion of equivalence just slightly in the following
definition to accommodate the possibility of distinct representation spaces:

DEFINITION. We call two representations (o,V) and (0, V') equivalent and
write (p, V)= (p', V") if there exists a topological isomorphism 7": '-}” such that

Top,=pgeT @.1)

for all geG; that is, for all geG, the following diagram commutes:

One checks easily that Eq. 2.1 amounts to the assertion that 7 is a topologi-
cal isomorphism of C[G]-modules. Accordingly, we sometimes call 7 a G-
isomorphism. (More generally, an arbitrary linear transformation from V to '
that respects the action of G is called G-linear.)

2.2 Banach Algebras and the Gelfand Transform

Let A and B be Banach spaces defined over the same field. Recall that a linear
transformation 7 from A to B is called a bounded operator if there exists a real
constant ¢ such that

7@l < cllall 2.2)

for all aeA. It is well known that a linear transformation 7 is a bounded opera-
tor if and only if 7" is continuous. Henceforth Hom(A4, B) denotes the space of all
bounded operators from 4 to B. If TeHom(A4, B), then the smallest ¢ that makes
inequality 2.2 true is called the norm of T and denoted ||T||. One shows easily
that Hom(4, B) is itself a Banach space with respect to this norm. In the special
case 4=B, we write End(4) for Hom(4,4). [Keep in mind that the morphisms
in Hom(4, B) and End(4) are always topological as well as algebraic.]

Let A be a complex algebra that also admits the structure of a complex Ba-
nach space. Then A is called a Barach algebra if the norm is also sub-
multiplicative; that is, if

llabli <llal-fI&1l 23)

for all a,beA. Throughout, we assume that our Banach algebras are unital; this
is to say that 4 contains a multiplicative identity 1,. As usual, the group of
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units of 4 will be denoted A*. We can always renorm A without disturbing its
topology to arrange that ||1,||=1, and henceforth we do so. (See Exercises 2 and
3 below.)

If A is a Banach algebra, each aeA acts on A by left multiplication. Let us
denote this map p . Then according to the inequality 2.3, for all be4, we have
that ||p,(b)||=|labli<l|a]|'l|b]l, whence ||p,||<|lal|, the former norm being computed
of course in End(4). Since we assume that ||1,]|=1, also |la||=|l2,(1 )l
and thus the norm of a as an element of A agrees with its norm as an element of
End(A).

Again let ae4 and assume now that ||a]|<1. Then one shows easily that the
series £, a’ converges (see Exercise 4 below), whence we observe that (1-a)
lies in 4* with

(-a)'=)a . 2.4
j=0
We shall need this observation for the following result.

2-3 PROPOSITION. Let A be a Banach algebra as above. Then A* is an open
subset of A. Moreover, the mapping
A > 4"
a—a’
is a homeomorphism.
PROOF. Let aeA4* and suppose that for beA we have that |[a—b]|<|la!||-!. Then
it follows that ||a~'(a-b)||<1, whence by the preceding observation we find that
the difference 1-a-'(a—b) lies in A*. But then also b=a(l-a'(a-b))eA*,

showing that A~ is open. The second statement follows at once, since the map
a > a™ is continuous on A* and is its own inverse. a

With these preliminaries in hand, we now come to one of the principal defi-
nitions of this section, essentially a generalization of the notion of an eigen-
value familiar from linear algebra.

DEFINITION. Let A be a complex Banach algebra and let aeA4. Then the spec-
trum of A, denoted sp(a), is the subset of C defined as follows:

sp(a)={1€C:A-1,—agA*} .

We shall see below that the spectrum of an element aeA is never empty.
Hence we may define r(a), the spectral radius of a, by

r(a) = sup{|4|: Aesp(a)} .
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[For the moment, we can take the spectral radius to be 0 if sp(a) is empty.] The
resolvent set of a is the complement of sp(a) in C. By construction, if A lies in
the resolvent set, then (4°1,~a)! exists in 4.

2-4 PROPOSITION. Let A be a complex Banach algebra as above, and let p(x)
be a polynomial with complex coefficients. Then for all acd, if Aesp(a),

then p(2)esp(p(a)).

PROOF. Suppose that p(x) = Z}':o ajx’ . Then we may compute that

p(A)1,~pla)=> a; (¥ 1,-a’)
=
=(A-1,—a)b

where b is some element of the algebra 4 for which we need no explicit calcu-
lation, but only the modest observation that 5 commutes with a. The point is
this: if the lefi-hand side of the preceding equation has inverse c, then 41 —a
has inverse bc, a contradiction, since A is assumed to lie in the spectrum of a. O

REMARK. This result generalizes to convergent power series over C. (See Exer-
cise 5 below.)

2-5 LEMMA. Let aeA. Then r(a) < inf||a”||"".

ProoF. We first show that sp(a) lies in the closed disk around zero of radius
|lall. Note that in general for nonzero A we have (1-1,-a)=A(1, - A'a). Thus
if |A|>|lall, Eq. 2.4 applies to show that (1:1, —a) is invertible. Now let Ae
sp(a). Then by the previous proposition, A”esp(a”) for all 20, and therefore,
by the first part of the argument, |1]"<}la™]. Taking nth roots yiclds the stated
inequality. a

The following theorem is the first major result about the spectrum of an
element. The proof requires three substantial, but familiar, results: Liouville’s
theorem, the Hahn-Banach theorem, and the Cauchy integral formula. Recall
that if 4 is a complex Banach space, then 4 *, the dual space, denotes the space
of all continuous (equivalently, bounded) linear maps from 4 to C.

2-6 THEOREM. Let A be a complex unital Banach algebra. Then for every acA
sp(a) is nonempty and compact. Moreover, the sequence ||a"||"" converges

to the spectral radius of a.

PROOF. We first show that the spectrum is at least compact. Consider the con-
tinuous mapping
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Co> 4
A Al -a) .

The resolvent of a is simply the inverse image of A* under this map. But then
since 4 is open, so is the resolvent. Consequently the spectrum of a is closed
and, according to the previous result, also bounded. Therefore sp(a) is compact.
We next show that sp(a) is nonempty. Fixing an arbitrary gpeAd*, define a
complex-valued function fon the resolvent set of a by the formula

f)=p((A-1,-a)") .

Note that for u sufficiently close to zero, we have

SA-w=p([(A-p)-1,~al")
=p([(A-1,-a)(1,- u(A-1, -—a)_l ]_] )
=) (A1 -a)")
n=0

=S oAl —ay™)

n=0

(The last step follows from the linearity and continuity of £) Thus fhas a valid
power series expansion at every point of its domain and is accordingly holo-
morphic. Moreover, if |1|>|al|, we have

F)=e(A-1,-a)")
=p(A'1,-1"a)™")

_ ¢(i A" (2.5)

n=0

=3 g

n=0

and we can therefore bound fas follows:

I FADI< A N |lllal)”
n=0
__lell
|A-lall




54 2. Some Representation Theory

Now assume that the spectrum of a is empty, whence a is nonzero. Then f is
entire, bounded on the closed disk |1|<2]||a|| by general principles, and bounded
elsewhere by the quotient ||¢|/|lal| according to the previous inequality. By
Liouville’s theorem, f must be constant, and since clearly lim /(1) >0 as [1| >
oo, this constant must be 0. Since this holds for arbitrary ped*, it follows from
the Hahn-Banach theorem that (-1, — a)™! is 0, which is impossible. Hence
sp(a) is nonempty.

Finally, it remains to establish that the spectral radius of a is as stated, and
in establishing this, we may certainly assume that a” is nonzero for all neN.
First we claim that the power series expansion for f given in Eq. 2.5, which was
established for |1|>||a]|, in fact holds with uniform convergence for |1|>r, for
all  greater than the spectral radius of a. To see this, consider the auxiliary
function

)= {f(,%') for 1#0

otherwise.

Since as we have seen, f'is holomorphic for |1]=r>r(a), the power series repre-
sentation

gA)=Y A"'p(a")
n=0

extends to the entire closed disk |A|<r-!. Moreover, the Cauchy integral for-
mula tells us that for |1|<r~! the remainder g, , after n terms is given by

ag

g =[5

A (S )]

where the integral is taken over the circle C of radius strictly between r-' and
r(a)~!. It follows easily from this that this remainder is bounded independently
of A. The upshot is that since g is represented by the uniformly convergent
power series given above for |[A|<r~!, fis correspondingly represented by the
power series representation of Eq. 2.5 with uniform convergence for [1|>r, as
claimed.

Next let A=re'®, where r>r(a). We may then integrate the series for A7*1/(1)
with respect to & as follows:

o 27

Ir”le'("+1)0f(re'9)d0 ZI n=m g, i(n- m)9¢(a Yd@

m=0 ¢

=2xe(a") .
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Moreover, this value is clearly bounded by 27" 1M(r)| ||, where

M(r)=sup|lre’-1,-al .
8
Thus

lp@@m<r™ Mrlipll

for all ped*. Appealing again to the Hahn-Banach theorem, we see that the
linear mapping ya" > ylla”|l (yeC), which is obviously of norm 1, extends
from the one-dimensional subspace spanned by a”(%0) to an element peA* of
lesser or equal norm. In this special case, the previous inequality reduces to

lla”ll < PmIMG)
Since this holds for all »>r(a), taking nth roots and limits we find that
lim sup |la"||'" < 1(a) .

This inequality together with Lemma 2-5 shows that the sequence |la”||'” is
indeed convergent to the spectral radius of a.

2-7 CoROLLARY. (Gelfand-Mazur) If A is a division ring, then A=C.

PROOF. Given ae4, there exists Aesp(a), so that A-1,- a is not invertible. But
if 4 is a division ring, then A-1,-a=0, whence every element of 4 takes the
form A-1, for some complex A. Then evidently, A=C. a

Quotient Algebras

In preparation for the discussion of the Gelfand transform, we make some brief
remarks on the quotient of a Banach algebra 4 by a (two-sided) ideal J, which
in particular is a linear subspace of 4. Recall that as an algebra, A/J consists of
the cosets a+J. We say that a represents its associated coset, and addition and
multiplication of cosets are defined by the addition and multiplication of asso-
ciated representatives. We define a seminorm on A /J by the formula

la+J|| = inf{[|a—x] : xeJ} . (2.6)

It is easy to sec that this is well-defined and lacks being a norm only insofar as
it is possible that ||a+J||=0 without it being the case that a represents the zero
element of the quotient.
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2-8 PROPOSITION. Assume that J is closed in A. Then Eq. 2.6 defines a norm on
AlJ, and AlJ is likewise a Banach algebra with respect to this norm.

PRrOOF. In light of the preceding remarks, it suffices to show that the seminorm
on the quotient is submultiplicative and yields zero only on the zero element of
the quotient space. We consider first the latter point. If ||a +J||=0, there must
exist a sequence of points in J converging to a. But since J is assumed closed,
this means that aeJ, whence a+J=J, as required.

It remains to show that the seminorm on 4/J is submultiplicative; that is,

llab+J|| < lla+J]|-6+J]| .

First note that since J is a linear subspace, ||a+J|| can equally well be defined
as inf{||a+x| : xeJ}. Accordingly,

la-+J 6+ |l= inf la + x| - inf15+
2 inf ||ab+xb+ay+xy||
x,yet
>inf||ab +x||
xeJ

=|lab+J|| .

The first inequality in the calculation is justified by the submultiplicative nature
of the norm on A4; the second is justified because the sum xb+ay+xy clearly lies
in the ideal J, provided that x and y do. This completes the proof. a

REMARK. Note that if J is an ideal of the Banach algebra A4, then in particular, J
is a subgroup of a topological group, and we may infer from Proposition 1-1
that the closure of J is likewise a subgroup of 4. Moreover, since the norm is
submultiplicative, if {x} is a convergent sequence in J, then so are the sequen-
ces {axj} and {xja} for all aeA. It follows that the closure of J is likewise an
ideal of 4.

The Gelfand Transform

In this subsection we specialize to commutative complex Banach algebras (al-
ways assumed to be unital). If 4 is such an algebra, a character of A is simply a
nontrivial (hence surjective and unital) homomorphism of complex algebras
from 4 to C. The set of all characters of 4 is denoted 4.

2-9 PROPOSITION. Let A be as above. Then the following statements hold:

(i) Every maximal ideal of A is closed.
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(ii) The mapping y > Kery constitutes a bijective correspondence be-
tween A and the set of maximal ideals of A.

(iii) Every element of A is continuous

(iv) For every aeA, sp(a)={y(a): 7@4}.

PROOF. (i) Let M be a (two-sided) maximal ideal of 4; that is, M is a proper
ideal of A and there exist no ideals properly between M and A. By the remark
above, M, the closure of M, is likewise an ideal of 4, and so to show that
M = M it suffices to show that M is a proper ideal; that is, that A/ excludes
all units. But since A* is open by Proposition 2-3, any unit in A/ must be the
limit of units already included in M, contradicting the assumption that M/ #A.
Hence the maximal ideal M is closed, as claimed.

(ii) Since every character y is surjective, the quotient 4/Ker y is a field. Hence
Ker y is maximal, and the given mapping is at least well-defined. Let A/ be the
closed ideal Kery. Then we have the following commutative diagram:

Y
A—» C
AM

Here p denotes the canonical projection onto the quotient (a continuous homo-
morphism of Banach algebras), and 7 is the unique induced map on the quo-
tient, which is at least an isomorphism of complex algebras. Every element of
A/M takes the form z-1,+M for some zeC, and in fact the induced iso-
morphism is precisely

¥z 1+ M)=z.
Note that ¥ is, moreover, continuous: for open UcC,
vy )=U-1,,+M=pU-1,)
which is evidently open in A/M.
Conversely, if M is any maximal ideal of 4, then A/M is not only a Banach
algebra but also a field, which by Corollary 2-7 is isomorphic to C. Call this

isomorphism ¥,,. Then the diagram above defines a character y,, =7%,,0p,
and it is straightforward to check that for all characters %,

7Ker;/=y

and for all maximal ideals M,
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Kery, =M .
This establishes the claim.

(iii) The continuity of an arbitrary character y follows at once from its fac-
torization above into two continuous maps.

(iv) Let aeA. Then Aesp(a) if and only if (1-1,—a) is not a unit of 4, and hence
(by Zorn’s Lemma) if and only if (1+1,-a) is contained in some maximal ideal
M. But by part (ii) this occurs if and only if (1:1,—a) lies in the kernel of some
character % which is to say, if and only if y(a)=A for some . a

We next introduce a topology on A, the space of characters on 4, by duality.
As a preliminary, note that for each ae4, we have an associated map from A*
to C defined by @ @(a); this is simply evaluation at a. Recall that one then
defines the weak-star topology on A* (abbreviated to the w*- topology on 4*) to
be the weakest topology on A with respect to which all such evaluation maps
are continuous. Under this topology A* is a locally convex topological vector
space and, in particular, Hausdorff. (See Appendix A; especially sections A.2 and
A .3.) Moreover, convergence in the w*-topology amounts precisely to pointwise
convergence.

Part (iii) of the previous result shows that in fact 4 lies in 4* The subspace
toleogy on 4 induced by the w*-topology on A * is called the Gelfand topology
onA4.

2-10 LEMMA. The space A of characters on A lies in the unit ball of the dual
space A*. Moreover, A is both Hausdorff and compact with respect to the
Gelfand topology.

PROOF. For each ae4 and yeA, we see from Proposition 2-5 and Proposition 2-
9, part (iv), that

ra) <) <|al . )

Thus || #||<1, and 4 lies in the unit ball of the dual space A*, as claimed.

The Gelfand topology on A is clearly HausdorfT, since it is induced from a
Hausdorff topology on A*. Since the unit ball in A* is compact by Alaoglu’s
theorem, to show that A is compact, it suffices to show that it is closed. But if 14
is the limit of a convergent net {y,} in A, then y(a)=lim 7(a) for all ae4, S0
that 7 is again a nontrivial homomorphism of complex algebras; that is, yeA4,
and therefore 4 is closed, as required. Q

For each aeA and Z’E/f , define d(»)=y(a). Note that by construction each of
the functions d from A to C is continuous with regard to the Gelfand topology.
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Let #(4) denote the algebra of complex-valued functions on A that are continu-
ous with respect to the Gelfand topology, and endow #(4) with the sup norm.
Then the mapping

I:4 > Z(4)
ara

is called the Gelfand transform. The following theorem summarizes its funda-
mental properties.

2-11 THEOREM. Let A be a complex, unital, commutative Banach algebra with
character space A. Then the following statements hold:

(i) The Gelfand transform T4 —> %’(/Al) is a norm-decreasing homo-
morphism of unital complex algebras.

(ii) The image of T separates points in A.

(iii) For every aeA, 4(A)=sp(a) and ||d||,=1(a), the spectral radius of a.

(iv) The kernel of T is the radical of A; that is, the intersection of all
maximal ideals of A. Equivalently, the kernel of I consists of all ele-
ment of A having spectral radius 0.

(v) T isinjective if and only if A is semisimple; that is, if and only if the
radical of A is trivial.

PrOOF. (i) It is straightforward to verify that I is a homomorphism of algebras.
For instance,

L'(ab)(y) = y(ab) = y(a) y(b) = (T (&)L (b))(7) .
Moreover, I' is norm-decreasing by Eq. 2.7.

(ii) If y, and p, are distinct characters, then y,(a)# y,(a) for some aeA. There-
fore deA separates 7, and y,.

(iii) This is the content of Proposition 2-9, part (iv), and the definition of the
spectral radius.

(iv) Since every character yfactors through 4/M for some maximal ideal M, the
only elements aeA that evaluate to zero under every character ¥ must lie in the
intersection of all maximal ideals of 4, as claimed. The second statement fol-
lows from the previous part.

(v) This follows at once from (iv), to complete the proof. g
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2.3 The Spectral Theorems

We begin with the complex extension of a familiar theorem in real analysis. A
linear space A4 of complex-valued functions is called se/f-adjoint if for every fe
A, its complex conjugate f is also in A. From the identity

f=(f+f')+,.<f—_f)
2 2i

one sees at once that 4 is self-adjoint if and only if A=A +id,, where Ay de-
notes the subspace of real-valued functions in 4.

Now let X be a compact Hausdorff space and let &(X) denote the space of
continuous complex-valued functions on X. Assume that A is not only a self-
adjoint subspace, but moreover a unital subalgebra of Z°(X), so that in particu-
lar 4 contains the constant functions. If 4 separates points, then so must A,
and the real-variable case of the Stone-Weierstrass theorem applies to prove the
following extension:

2-12 PROPOSITION. Let A be a self-adjoint unital subalgebra of €(X) that
separates points. Then A is uniformly dense in & (X) with respect to the
sup norm. a

This form of the Stone-Weierstrass theorem is critical to the first of our
spectral theorems and appears in the proof via the following corollary. To state
this corollary, we need to introduce for a locally compact HausdorfT topological
space X a class of functions somewhat larger than the class of complex-valued
continuous functions on X with compact support. Accordingly, we define & (X)
to be the set of continuous functions f: X— C such that for each £>0, the set
{xeX:|f(x)|= ¢} is compact. If X'=XU{w} is the Alexandroff one-point com-
pactification of X, then it is easily verified that fe@(X) if and only if f extends
to a continuous complex-valued function f on &(X") such that f{w)=0.

2-13 COROLLARY. Let X be a locally compact Hausdor{(f space and let A be a
self-adjoint subalgebra of & (X) that separates points with the additional
property that for every xeX there exists an feA such that f(x)#0. Then A
is uniformly dense in & (X)) with respect to the sup norm.

PROOF. Again let X’ denote the one-point compactification of X. (Note that this
makes sense even if X is already compact, in which case we have simply ad-
Jjoined an isolated point.) Identify 4 with a subalgebra of #(X’) by extending
each clement to a function that vanishes at w, and let A’ be the subalgebra of
Z(X') generated by 4 and the complex constant functions. Then A’ is evidently
self-adjoint and unital. Moreover, 4’ separates points: since 4 already separates



2.3. The Spectral Theorems 61

points in X, we need only observe that by hypothesis, for every xeX there is a
function feA that does not vanish at x, while by construction its extension to X"
does vanish at @. The previous result now applies to show that A’ is uniformly
dense in Z(X"). Thus for each ge#(X) [tacitly identified with an element of
Z(X")] and for each positive ¢ there exists an fe4 [again identified with an
element of Z(X")] and a AeC such that

lg(x)-f(x)+ A< el2

for all xeX". Since both fand g vanish at e, it follows that |1|< &/2, and there-
fore fand g differ on X by less than ¢, as required. Q

Bounded Operators on Hilbert Spaces

In this subsection we specialize our analysis to the Banach algebra of bounded
operators on a Hilbert space. Actually, only a few formal aspects of such an
algebra will be needed, and these we highlight below.

First recall that a positive definite Hermitian form on a complex vector space
H is a mapping

HxH > C
(v,w) b (v|w)

that satisfies the following properties:

(i) (u|u)eR, (ueH), with equality if and only if u=0
() @p)=@lu) @veH)
Gii) (Au+ pv|w)= A ulw)+ pv|w) (wv,weH; A, uecC)

Note that (ii) and (iii) imply also:
(iil)’ (u|Av + puw) = /-‘L_(ulv)+/7<u|w) (w,v,weH;, L, ueC)

That is, the form (|) is positive definite, conjugate symmetric, linear in the first
variable, and conjugate linear in the second.

A complex vector space H together with a positive definite Hermitian form
is called a pre-Hilbert space. One shows easily that (|} defines a norm on H as
follows:

Ivll=y¢vivy
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If H is moreover complete with respect to the associated metric, then H is called
a Hilbert space. In particular, H is a complex Banach space, and therefore a
topological vector space with respect to the topology induced by the norm.

Assume for the remainder of this discussion that / is a Hilbert space, and in
accordance with previous usage let End(/7) denote the space of bounded linear
maps from H to itself. End(H) is thus a Banach algebra with respect to addition
and composition of functions, and it acquires some significant new structure
from H. In particular, it is well known (see Exercises 9 and 10 below) that for
every TeEnd(H) there exists a unique element 7*€End(), called the adjoint
of T, such that

(Tx|y)=(x|T*y)
for all x,ye H. Moreover, the adjoint has the following elementary properties:

(i) Forall TeEnd(H), T**=T, that is, the adjoint operator has period two.

(i) For all 7),T,eEnd(#) and A,,4,eC, (4T, + L,T,)*= L,T* +1,T;*; that is,
the adjoint operator is conjugate linear.

(iii) For all T}, T,eEnd(H), (T, T,)* = T,* T;*; that is, the adjoint operator is an-
timultiplicative.

(iv) For all TeEnd(H), || T||=1|T*||; that is, the adjoint operator is an isometry;
in particular, the adjoint operator is continuous.

(v) Forall TeEnd(H), |TT*||=||T||

The usual arguments from linear algebra suffice to establish properties (i)-
(iii). To establish (iv) and (v), note that for all 7,

TGN =TT X)) = T*T XY <IIT*T-[Ix]*

This shows that ||T|2<||7*T||. But also ||T*T||<||T]|*||IT*|l, so we have the chain
of inequalities

ITIP<IT*T<|IT*]- I

and it follows that ||7)|<||T*|| for all 7. By symmetry, we deduce that
[IT||=)|T*|l, thus proving (iv). In light of the previously displayed chain, prop-
erty (v) is now immediate.

The following terminology, largely familiar from linear algebra, is most use-
ful: An element TeEnd(H) is called normal if T commutes with 7%, that is, if
T*T=TT*. Anendomorphism T is called self-adjoint or Hermitian if it is equal
to its adjoint; that is, if 7*=T. The endomorphism 7 is called unitary if its ad-
joint is equal to its inverse; that is, if 7~'=T* Both self-adjoint and unitary
operators are automatically normal.
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It follows at once from property (v) above that if TeEnd(H) is self-adjoint,
then || 72||=||T]|?, whence

W=7 2.8)
for all n>0.

REMARK. Let 4 be a complex algebra. An operator a> a* on A4 is called an
involution if (a) the operator * has period two; (b) the operator * is conjugate
linear; (c) the operator * is antimultiplicative. If 4 is further a Banach algebra
and (d) the operator * moreover satisfies the identity ||aa*||=||a|]? for all ae4,
we call 4 a C*-algebra. If A is a C*-algebra, then

lall* = llaa*|| < llal/lla*|l

and arguing as above, we sec that the operator * is in fact an isometry; that is,
llal|=lla*|| for all acA.

Clearly the notion of a C*-algebra is an abstraction of the properties of the
adjoint operator on the space of (topological) endomorphisms of a Hilbert
space. This generalization, however, is in some sense vacuous: the Gelfand-
Naimark theorem shows that every C*-algebra is isomorphic to a closed, self-
adjoint subalgebra of End(/7) for some Hilbert space / by a map that preserves
both the complex algebra and metric structures of the corresponding spaces as
well as the *-operator; that is, by an isometric *-isomorphism.

Although we state the next suite of results (through Theorem 2-16) for en-
domorphisms of Hilbert spaces, the reader should note that in fact only the
properties of a C*-algebra are required.

We now resume the general exposition; we first consider the spectral radius
of normal elements of End(H).

2-14 PROPOSITION. Let TeEnd(H) be normal. Then v(T)=||T)|.
PrOOF. Since T is normal, (TT*)"=T"(T*"™ for all nonnegative integers m.

Hence applying property (v) above (twice) and Eq. 2.8 to the self-adjoint opera-
tor 7T*, we obtain

n n-1 n n n n n
TN = || TTH* =)\ T (@) =1 T T M =1 T .

Thus

N2> =7
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for all n, whence r(7")=||T|| by Theorem 2-6. a

2-15 PROPOSITION. Let TeEnd(H). If T is unitary, then sp(T)cS"; if T is self-
adjoint, then sp(T)cR. (As usual, S'={zeC:|z|=1} is the circle group.)

Proor. We make two preliminary observations. First, since the adjoint operator
is antimultiplicative, an endomorphism of H is invertible if and only if its ad-
joint is. In particular, given T€End(H), A-1,-T is invertible if and only if
Z-IH —T* is likewise invertible, and hence Aesp(7T) if and only if e sp(T™).
Second, if 7 eEnd(#) is itself invertible, then for any nonzero A,

A, =TT =411, -T™)

and it follows that Aesp(7) if and only if A 'esp(7-!).

Assume now that T is unitary, so that T7*=1,. By property (v) above,
IT|I=1, and so the spectral radius of T is also 1. Noting that (7*)' =7 and
applying our preliminary observations, we deduce that Aesp(7T) if and only if
Ale sp(T). Thus if Aesp(T), then both 1 and A-! have magnitude bounded by
1, which clearly forces A to lie in S!, as claimed.

Finally, assume that 7 is self-adjoint, and consider the convergent series

exp(iT) = an”
n=0 n!
By continuity and conjugate linearity,

exp(iTy* = i(—‘g)— = exp(—iT)

n=0

and so exp(i7)*=exp(iT)~!. Therefore exp(iT) is unitary. According to Exer-
cise 5 below, if Aesp(T), then exp(iA)esp(iT), and by the analysis of the uni-
tary case, |exp(i4)|=1. Thus the real part of i4 must be zero, which is to say that
AeR. a

Recall from the previous section that if A is a commutative Banach algebra,
then 4 is the space of characters of 4, and 4 admits a compact Hausdorff topol-

ogy.

2-16 PROPOSITION. Let A be a self-adjoint, unital, closed, commutative sub-
algebra of End(H). Then the Gelfand transform T':A—>%(A) is an iso-
melric isomorphism of unital complex algebras. The map T is, moreover,
a *-isomorphism in the sense that T(T*) =T (T) for all TeA.
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PROOF. Note first that every element of 4 is normal, since 4 is commutative.
Therefore, by Theorem 2-11 and Proposition 2-14, for all Te4,

71l =r(T) =T,
is indeed an isometry (hence continuous, injective, and therefore a homeo-

morphism onto its image).
Suppose that 7€/ is self-adjoint. Then by Proposition 2-15,

()= 1(T) esp(T) =R
for all y, whence T is likewise self-adjoint in the sense that it assumes only real
values. Now any arbitrary TeA can be decomposed into a sum 7'=T,+iT, where

both T}, and 7', are self-adjoint and defined as follows:

_T+T* T-T*

T

One sees at once that 7*=T,—~iT,. Since both I'(7;)) and I'(T)) are real-valued,
we may readily compute that

I(T*) =T (T, i)
=T(Ty)~iT(T})
=T(@)+iT(T)
=T(T, +iT;)
- .

This establishes the second assertion of the proposition.

It remains to show that I": 4 > @(4) is surjective, and for this we collect the
following facts about Im(I'):

(i) Im(T') contains the constant functions, since 4 is unital, and Im(I") sepa-
rates points by Theorem 2-11, part (ii).

(ii) Im(T) is a self-adjoint subalgebra of Z(4), since 4 is self-adjoint in End(F)
and, as we have seen above, I'(7%) =T'(T) for all TeA.

(iii) Im(T) is closed in Z°(4), since it is isometrically isomorphic to 4.

Thus, in accordance with (i) and (ii), the Stone-Weierstrass theorem (Proposi-
tion 2-12) implies that Im(I') is dense in #(A). Hence from (iii) we deduce that
in fact Im(I)=%'(A), and this completes the proof. Q
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The First Spectral Theorem

We now make our last preparations for the first spectral theorem. Assume
that TeEnd(#) is normal. Henceforth, 4, shall denote the smallest closed, self-
adjoint, unital subalgebra of End(#) containing 7. This is clearly the closure of
the algebra generated by 1,, 7, and 7*, and moreover, 4, is commutative be-
cause T is normal. We must now distinguish between sp(7’), the spectrum of 7
computed as usual in the full algebra End(#7), and sp (7'), the spectrum of 7" as
computed in the subalgebra A,.. The latter is defined by

sp,(T) = {AeC: A1~ TgA} .

Clearly sp(T)csp,(7); the opposite inclusion also holds, as we shall see in the
proof of the following theorem. Finally, if # is any nonempty subset of C, we
let i,,, denote the inclusion map W —C.

2-17 THEOREM. (The First Spectral Theorem) Let TeEnd(H) be normal, and
let Ay be defined as above. Then there exists an isomelric x-isomorphism
of unital complex algebras © : € (sp(T))—>A, such that @ (isp(T)) =T.

ProoF. Consider the Gelfand transform of 7 as defined on the space of charac-
ters of 4.

YA“:/AlT—>C
v by .

According to Theorem 2-11, part (i), T is a continuous mapping. Moreover, if
T(7) =T(y,), then appealing to Proposition 2-16, we have

N(T*) =n(T)= 7, (T) = 7,(T* .

Thus  and y, agree on the unital subalgebra of End(#) generated by 7 and T*,
and hence, by continuity, they also agree on its closure, A; that is, =7,
Therefore 7T is injective, and so by the open mapping theorem a homeomor-
phism onto its image, which by part (iii) of the previously cited theorem is pre-
cisely sp,(7). To summarize,

T:4, > sp(T) .

Next consider the transposed map
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¥ : B(sp,(T)) > B(Ar)
fl——)fof .

This clearly respects conjugation and norm and is therefore an isometric *-
isomorphism. We now define ®=I"""¥, so that the following diagram com-
mutes:

\{J LY
E(sp (1) —— B(4y)

N

Ar

Being defined as the composition of isometric *-isomorphisms, @ is again an
isometric *-isomorphism. We consider its effect on a function fe#(sp (7).
First note that by definition, ‘¥ (f)(»)=f(1(T)). But since the Gelfand transform
is an isomorphism, every map in %(flr) takes the form y+—» y(P) for some
unique PeA,. Thus by the diagram above, we find that ®( ) is characterized
by the following property:

FHD) =1 d(f)) Yyed, .

From this it is clear that ®(iy, ,7))=7 and that ®(1)=1,. Thus it only re-
mains to show that sp ,(7)=sp(T).
Let Aesp,(T) and choose f €Z(sp,(T)) such that f has maximum absolute

value 1, f(1)=1, and f()=0 whenever | 1—u|>¢. Let P=®(f). Then since ®
is an isometry and f'is zero away from A, we have that

(T = A-1)Pl = |97 (T~ 2-1)Pllo
=N spyery = Mo
<¢ .

Thus, if 7-A-1,, were invertible, it would follow that
1= fllo=Pl|
= |[(T~ A1) (T~ A-14)P||

ST =A-1) T = A1) Pl
SINT=2-15)7| ¢
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But since ¢is arbitrary, this forces || 7-A-1,|| to infinity. Hence, 7-A4-1, is not
invertible, and indeed Aesp(T’). This completes the proof. a

Positive Operators

In this subsection we recall the notion of a positive operator and show, as an
easy consequence of the first spectral theorem, that such operators admit
“square roots” in an obvious sense to be defined below. As a preliminary we
need to introduce a criterion for invertibility that allows us to interpret elements
of the spectrum of an operator as generalized eigenvalues.

Again let H be a complex Hilbert space and let TeEnd(/{). We say that 7 is
bounded away from zero if there exists an £>0 such that ||7(x)||= &|x{| for all
xeH. Note that a map bounded away from zero has trivial kernel and is there-
fore injective.

2-18 LEMMA. Let T be an operator in End(H). Then the following five state-
ments are equivalent:

(i) Tisinvertible in End(H).

(ii) T* is invertible in End(H).

(iii) 7 and T* are bounded away firom 0.

(iv) T and T* are injective and Im(T) is closed in H.
(v) T is bijective.

PRrROOF. (i)<>(ii) This follows at once from the antimultiplicativity of the ad-
Jjoint operator.

()= (iii) Since T"'T(x)=x for all xeH, it is clear that T is bounded away from

zero by ||77'||. In light of the equivalence between (i) and (ii), 7* is likewise
bounded away from zero.

(iii)= (iv) We need only show that Im(7’) is closed. But for all x,yeH,
NG =TT (e = )l ellx = i

for some positive €. Thus any Cauchy sequence in Im(7’) must come from a
Cauchy sequence in / and must therefore converge. Hence Im(7') is closed.

(iv) = (v) Consider T(H)*, the orthogonal complement to 7(/) in H. (See Ex-
ercises 11 and 12 below.) Since for all x,yeH, (T(x)|y)={x|T*(y)), it follows
from positive definiteness that 7(H)*=Ker(7T*), which by assumption is trivial.
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Consequently, since 7(H) is assumed closed, we may conclude by Exercise 13
that T(H)=(T(H)1)*=H, as required.

(v) = (i) This is just a special case of the open mapping theorem. a

We may use this result to make an explicit connection between the spectrum
of an endomorphism and an obvious generalization of the ordinary linear-al-
gebraic notion of an eigenvalue and corresponding eigenvector.

2-19 LEMMA. Let T be an operator in End(H) and let Aesp(T). Then there is a
sequence of unit vectors {x,} such that either

® WT¢x,)—Ax,||>0 or

(ii) [|T*(x,)- A x| >0 .

ProoOF. If both alternatives fail, then clearly 7- 11, and its adjoint are bounded
away from 0 and therefore invertible, by Lemma 2-18. But this contradicts the
assumption that Aesp(7). a

2-20 PROPOSITION. Let T be a normal operator in End(H), and again suppose
that Aesp(T). Then for every positive & there exists a unit vector xe H
such that ||T(x)—Ax||< &. If A is isolated in sp(T'), then in fact A is an ei-
genvalue of T.

PROOF. According to the previous lemma, for arbitrary TeEnd(H), the first
statement must at least hold for one of T or 7*. But since 7’ is assumed normal,
and therefore so is 7—A:1,, it follows from Exercise 14 that this statement cer-
tainly does hold for 7.

To prove the second statement, we make use of the isometric isomorphism @
described in the first spectral theorem. Let A be an isolated point of the compact
subset sp(7’). Then we can define a continuous function f from sp(7") to C such
that f(1)=1, while fvanishes identically elsewhere in sp(7’). Then by construc-
tion and by Theorem 2-17,

0=[(A-1=1yry)  fllo = I(A-1 =T)e @S| .

Here 1 denotes the constant function 1 on sp(7); note also that the infinity
norm is computed over sp(7), not C. Since f is not the zero map, neither is
@(f), whence there exists a nonzero xeH such that (41, ~T)x=0. Thus 1 is
an eigenvalue for 7, as claimed. a
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A self-adjoint operator TeEnd(H) is called a positive operator if (7(x)|x)=0
for all xeH. If this is the case, we write 720, Clearly for all TeEnd(A) the
product 7T* is positive.

2-21 PROPOSITION, A normal operator T is self-adjoint if and only if sp(T)cR
and positive if and only if sp(T)cR, .

PROOF. We know that a self-adjoint operator has real spectrum by Proposition
2-15. Assume, moreover, that 7 is positive, and let Aesp(7). According to the
previous proposition, for every £>0 there exist vectors x and y in H such that x
is a unit vector, y has norm less than ¢ and T(x)=Ax+y. Thus

0 <(T(x)|x)=(Ax +y|x) = Kx|x)+{y|x) = A +{y|x) .

It follows from the Cauchy-Schwarz inequality that 0<A+e¢& Since ¢ is arbi-
trary, A cannot be negative.

Now assume that the spectrum of 7 is real. Then the mapping i, is self-
adjoint, whence so is T by the first spectral theorem. If, moreover, the spectrum
of T is nonnegative, then we may of course define the continuous function
) =Jion sp(T), which corresponds to the self-adjoint operator @( ). Ac-
cordingly,

(T(x)|x) = (D(S)*(x)]|x) = (D)) DS )(x)) 2 0
as required. Q

2-22 PROPOSITION. Let T be a positive operator in End(H). Then there exists a
unique positive operator T"?*€End(H) such that (T"?)*=T. Moreover, T"?
commutes with every operator that commutes with T.

PROOF. Let f'be as in the proof of the previous result and define 7"*=®d(f), so
that clearly (7"?)*=T. By the Stone-Weierstrass theorem f may be expressed as
a uniformly convergent power series in the function 1_,7, on sp(T'), whence T 12
may be expressed as a uniformly convergent power series in 7. Thus 7" indeed
commutes with every operator that commutes with 7. Uniqueness is established
in Exercise 15 below. a

The Second Spectral Theorem

In this subsection we state, without proof, the second spectral theorem. As a
prerequisite we must first introduce the notion of a spectral measure.

Note that although we state this result in integral form, it is in fact an exten-
sion of the first spectral theorem to the class of bounded complex Borel func-
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tions on the spectrum of a given normal operator. We shall return to this point
briefly below.

Let H be a Hilbert space, and let (X, ) be a measurable space (cf. Section
1.2). Then a spectral measure on X taking values in the operator space End()
is a mapping E: M —-End(H) satisfying the following axioms:

(i) For all YeM, E(Y) is an orthogonal projection in End(#) onto a closed
subspace.

(ii) The full space X corresponds to the identity map, and the empty set corre-
sponds to the zero map; i.e., E(X)=1,, and E(J)=0.

(iii) For all ¥,,Y,eM, E(Y,~Y,)=E(Y)E(Y,).

(iv) Let {¥,} be a countable collection of measurable sets. Then
EWUY,)=VE(,)

where the right-hand side denotes projection onto the closed subspace gen-
erated by the union of the images of the £(Y,).

Recall that a signed measure is a map from M to RU{+oo} that is additive
on countable unions of disjoint measurable sets and takes at most one of the
values too. According to the Hahn decomposition theorem, every signed meas-
ure x may be written as a difference of ordinary (nonnegative) measures u* and
4~ that are mutually singular; that is, X is the disjoint union of two measurable
sets X" and X~ such that 4" is trivial on X, and g~ is trivial on X". Hence
integration with respect to x may be defined in the natural way as the difference
of two integrals defined with respect to " and y~. A complex measure is a sum
Hotip, of two signed measures 4 and y, that do nof take the values +oo. Inte-
gration with respect to a complex measure is again readily defined.

One verifies easily that a spectral measure £ on X gives rise to a family of
ordinary measures 4 .on X (xeH): for ¥ eM, define

(1) =(ET)x]x) .

For all xeH, this measure is clearly bounded by ||x|?, owing to axiom (i) for a
spectral measure. These measures 4, in turn give rise to a doubly indexed fam-
ily of complex measures Hey on X (x,yeH) defined by

| -2
Hoy =g 2 Hority

or equivalently,
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He (D) =(EX)x]y) .

Now let f be a bounded, measurable, complex-valued function on X, and
consider the associated integral

Lxy)= [ fdu, ,(A) .
X

This is clearly a sesquilinear form on A (i.e., linear in the first variable, conju-
gate linear in the second) and continuous on HxH, because f is bounded by
I/1l,, while the measures s+, are bounded by [|x+i*y|]2. Hence by Exercise 9,
there exists an endomorphism Tf on A such that

TN =1,(xp)
= [ fAydu, () .
X

One often expresses this more succinctly as an “operator integral,” as follows:

Ty = [ S(HdEQ)
X

and this is henceforth the implicit meaning attached to such an integral. With
this in mind we can now state the second spectral theorem (for normal opera-
tors).

2-23 THEOREM. (The Second Spectral Theorem) Let T be a normal operator in
End(H). Then there exists a spectral measure E defined on the Borel sub-
sets of sp(T’) such that

T= IldE(ﬂ.) .

sp(T)

That is, for all x,yeH,

T@lyy= [Adu, ,(A)
sp(T)

where i, is the complex measure associated with E. Moreover, for every
Borel subset Y of sp(T), the associated projection E(Y) commutes with
every operator that commutes with T.
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While we will not prove this, we will at least say how a spectral measure £
on sp(7) is naturally associated with the normal operator 7. Let Y be any Borel
subset of sp(7). Then the characteristic function y, from sp(7) to C is certainly
Borel measurable. Via an extension of the first spectral theorem, y, corresponds
to an operator E(Y) in End(/7), which turns out to be a projection that com-
mutes with every operator that commutes with 7. The association Y — E(Y) is
in fact the required spectral measure.

2.4 Unitary Representations

In this brief section we develop some basic facts about a special class of topo-
logical representations, the so-called unitary representations. We shall use the
first spectral theorem to prove a powerful topological extension of Schur’s
lemma, a well-known result in the ordinary theory of group representations.

We begin working over a pre-Hilbert space H. One can show by routine
methods that A , the metric completion of H, also admits a compatible structure
as a pre-Hilbert space, which is by construction in fact a full Hilbert space.
Moreover, any bounded operator on H likewise extends uniquely by continuity
to a bounded operator on H. Hence adjoint operators are also defined for H by
restricting the adjoint defined on the completion.

Assuming that H is a pre-Hilbert space with respect to some given positive
Hermitian form (|), a bounded endomorphism T of H is called pre-unitary
(with respect to the given form) if, as one would expect, the following equation
holds for all x,yeH:

) =(Tx),TO) . 2.9)

Equivalently, T T*=1,,, where T* again denotes the adjoint of . A pre-unitary
endomorphism on a Hilbert space is, of course, a unitary operator in the usual
sense.

More generally, if H and H' are pre-Hilbert spaces, we shall call an isomor-
phism T: H=H' pre-unitary if Eq. 2.9 holds.

DEFINITION. If (p,H) is a representation of a locally compact group G on a pre-
Hilbert space H, we say that p is pre-unitary if each topological automorphism
P, (8€G) is pre-unitary; that is, if

U, v)=(p, (), pe(V)) .

We also say that the underlying form (|) is invariant under (G).
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DEFINITION. Two arbitrary topological representations (o, H) and (o',H') are
called pre-unitarily equivalent if there exists a pre-unitary topological iso-
morphism 7: H=H'such that Top, = p; o T for all geG.

In the context of these definitions, if /7 and A’ are moreover Hilbert spaces,
we then speak, respectively, of unitary representations and unitary equiva-
lences.

2-24 PROPOSITION. Let H and H' be two Hilbert spaces. If two unitary repre-
sentations (p,H) and (p',H') are equivalent, then they are moreover uni-
tarily equivalent.

PROOF. Let T: H—>H' be the topological G-isomorphism defining the equiva-
lence of (p,H) and (p',H"). Define T*: H'— H by the relation

(T*®)y) = I TO)

for all xe H', ye H. (Again see Exercises 9 and 10; note that this slight generali-
zation of the adjoint has all of the usual formal properties.) Then one shows
easily that TT* is a positive operator on H'. According to Proposition 2-22,
there exists a unique positive (in particular, self-adjoint) operator U such that
U?=TT*and U (hence U™') commutes with every operator that commutes with
TT*. An easy calculation shows that the composite operator U™'T is unitary:

UDUT* = U TTHUY* = U'TT* U = UV U = 1, .
It remains to show that U~'T also defines an equivalence between the unitary
representations (p, /) and (o', H'). This follows trivially, provided that U~' com-

mutes with p; for all geG, and for this it suffices to show that 77* commutes
with the p; . To establish this last assertion, we begin with the defining relation

Tp,=Tp; .

Taking the adjoint of both sides (and noting that both representations are, by
assumption, unitary), we have

P T*=T",
whence

TT*p, =Tp,T*=p, TT* .

This completes the proof. a
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We come now to one of the principal results of the present chapter: Schur’s
lemma. This is an extension to our topological setting of a most elegant result
for abstract group representations. We give two proofs of the “difficult part,”
one based only on the first spectral theorem, proven above in its entirety, and
the other given as an illustration of how the second spectral theorem may be
applied.

The key to the first proof is the following immediate consequence of the first
spectral theorem.

2-25 PROPOSITION. Let T be a normal operator on a complex Hilbert space H,
and, as usual, let A, be the closure of the unital subalgebra of End(H)
generated by T and T*. Then the following three statements are equiva-
lent:

(i) sp(7) is a point.

(ii) 4,=C.

(iii) T is a scalar multiple of the identity operator. a
This brings us directly to the main event.

2-26 THEOREM. (Schur’s Lemma).

(i) Let G be an arbitrary group, and let V and V' be vector spaces over
an arbitrary field. Suppose that both p and p' are algebraically irre-
ducible representations of G on V and V', respectively. If Te
Homy(V, V"), the space of all G-linear maps from V to V', then either
T is the trivial map or T is an algebraic isomorphism.

(ii) Assume further that G is a locally compact topological group and
that H is a complex Hilbert space. Let p be a topologically irreduci-
ble unitary representation of G on H, and let TeEnd (H), the space
of continuous G-linear maps from H to itself. If T is a normal op-
erator, then T is a scalar multiple of the identity map. In particular,
Jor arbitrary TeEnd;(H), the product T*T is scalar.

PROOF. (i) By hypothesis, both I and V" admit no nontrivial, proper G-invariant
subspaces. Accordingly, if T is not surjective, it has trivial image, and if T is
not injective, its kernel is all of V. Thus if T is not an isomorphism, it is indeed
trivial, as claimed. Note well that this argument holds for arbitrary abstract
group representations, independent of ground field or topology.

(i) Certainly we may assume that H is nontrivial. Let the representation
p:G—>End(H) be given as stated, and let T be a normal operator commuting
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with p. Suppose that Aesp(T). Then we can find a nonzero function f on sp(7)
that vanishes on an open neighborhood of A in sp(7). Let @ :Z(sp(T)) —A;
again be the isometry of the first spectral theorem. Then W, the closure of the
subspace ®(/)H in H, is invariant under p(G); to see this, express O(f) as a
limit of polynomials in 7, which evidently commute with Py, for all geG. It
follows now from the irreducibility of p and the nontnvxahty of f that in fact
W=H.

Now suppose that sp(T’) is not a singleton. Then we may find another con-
tinuous function & with complementary support vis-a-vis /. But then

10} = (M D(NHH

and W cannot be all of H. This contradiction shows that sp(7) must contain no
more than one point, and hence the previous proposition applies to complete
the proof. Q

ALTERNATIVE PROOF OF THE SECOND PART. We give this alternative proof based
on the second spectral theorem only for positive operators, leaving the exten-
sion to arbitrary normal operators to the reader.

Let 7' be a positive operator on /, whence sp(T)cR,. By the second spectral
theorem, there exists a spectral measure E defined on the Borel subsets of sp(7T)
such that

T= [1dEQ2) .
sp(T)

Moreover, E has a crucial property: each projection E(Y) commutes with every
operator that commutes with T and, in particular, commutes with every Pp>
since T is a G-endomorphism and p is unitary. Thus the image of each E(Y) is a
G-invariant subspace of H and therefore, by assumption, is either the trivial
subspace or H itself, which is to say that for every Borel subset ¥, the endomor-
phism E(Y) is either the trivial projection or the identity projection.

Let us now unwind the previous equation. For all x,yeH, we have

(Tx,y)= [Adu, (4)

sp(T)
=—Z'I 1k, ()
g e

=—Zz swp [y(Ddu, 1, (4)

x+x y
k 1 Y osp(T)
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where for each term, the supremum is taken over all simple functions  on
sp(7’) such that y(4)<A. Accordingly,

(Tx, y>=§ii“ sup Y inf(Y; XE(Y,)(x +i* )| (x +i* y))
k=1 j

4
= i-zik supZinf(Yj)é'j (e+iFp)|Ce+itp))

k=1 I
4
=sup Y (1)) 8, - Y (e +F I+
; k=l
=(Aox, ¥)

where each supremum is taken over all finite, disjoint measurable covers {r}
of sp(T), and 51 is either 0 or 1 depending on whether E(Y;.) is the zero projec-
tion or the identity projection. Thus T=4"1,, as claimed. Q

REMARKS. (i) Suppose that in the second part H is assumed finite-dimensional.
Then we can give a direct proof based on elementary linear algebra that for any
TeEnd4(H), the product 7*T is scalar. We know that 7*T is a sclf-adjoint op-
erator on f, and so by the spectral decomposition theorem, A decomposes into
the direct sum of closed orthogonal eigenspaces with respect to 7*7. Let ¥ be
the eigenspace belonging to the eigenvalue A. Then for we W and geG,

(o, 1)) = pT*TON) = pAw) = Ap, (W)

so that £ W) again lies in the eigenspace belonging to A. It follows that ¥ is a
nontrivial, closed, G-invariant subspace of V. Since p is assumed irreducible, in
fact W=H, and therefore T*T=1-1,.

(ii) One key step in the proof of Schur’s lemma is noteworthy even when G is
trivial: every normal operator on a Hilbert space H of dimension greater than
one leaves a nontrivial, proper, closed subspace Wc H invariant. When H is
finite-dimensional, this follows from the existence of eigenvectors, but these
need not occur in the infinite-dimensional case. Thus some of the analysis on
Hilbert spaces that we have here developed is certainly unavoidable. Suffice it
to note further that there need rot be invariant subspaces W in a general Ba-
nach space V, even for nice operators. For instance, Z admits an infinite-
dimensional, norm-preserving Banach representation that is in fact irreducible!

We conclude this section with a final application of these spectral techniques
to prove a theorem that provides a natural bridge into the next topic.
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2-27 THEOREM. Let G be a locally compact abelian group and let (p,H) be an
irreducible unitary representation of G on a Hilbert space H. Then
dim (H)=1.

Proor. For every geG, the corresponding unitary (hence normal) transforma-
tion p, lies in End;(#7) and hence, by Schur’s lemma, acts by a scalar, say,
l(g)eS !. Hence each nonzero xeH generates the G-invariant closed subspace
Cx, which must then be H itself, since p is assumed irreducible. a

Note in the proof that since p is a representation of G, the map y is continu-
ous from G into S!, with the further property that

x(gg) = x(@x(g")

for all g, g’eG. This qualifies y as a (unitary) character of G, and such charac-
ters are very much at center stage in the following chapter.

Exercises

1. Let V'be a topological space that is also a vector space over the topological
field k. Show that V' is a topological vector space over k if and only if the
following maps are continuous:

VxV -V kxV -V
W)y v+w Ay v

2. Let 4 be a (complex) Banach algebra, possibly without unity. Show that 4
embeds isometrically into a Banach algebra 4’ with unity. [Hint. Consider
the direct product AxC; there is only one way to extend the ring structures
of A and C to this product. For the norm, set ||(a, A)|| = [la|| + [A], where the
latter is, of course, the ordinary complex absolute value.]

3. Let A4 be a Banach algebra with unity. Show that we may replace the given
norm |||l on 4 with another norm ||-||, that yields the identical metric to-
pology, with the further property that ||1||,=1. [Hint: For each ae4, let p,
denote the left multiplication map and define ||al|,= || p,||, the norm of the
associated linear transformation.]

4. Let A be a Banach algebra and let aeA satisfy ||a||<1. Show that for all
integers m and n with 1<m<n,
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_lal™?
Il Z alls .

J=m+l 1- ”a”
Conclude that the series 77, a’ converges in 4.

Let 4 be a complex unital Banach algebra and let aeA. Let D denote the
closed disk in the complex plane of radius |ja|]. Assume that f(2) is holo-
morphic in a region containing D (and hence, by elementary complex
analysis, has a valid power series expansion on D). Show (i) that f(a) con-
verges in 4 and (ii) that if Aesp(a) and AeD, then f(A)esp(f(a)).

6. Let A be a complex unital Banach algebra and let x,yeA.

(@

®)

©

@

®)

Show that if 1-xy is invertible, then so is 1-yx. [Hint. Suppose that z is
the inverse of 1-xy. Show that xyz=zxy and deduce that 1+yzx is the re-
quired inverse for 1—yx.]

Deduce from part (a) that if A is a nonzero element in the spectrum of xy,
then A is likewise in the spectrum of yx. Show that restriction of this state-
ment to nonzero elements of the spectrum is in fact necessary.

Conclude from parts (a) and (b) that if x is invertible, then the spectrum of
xy is identical to that of yx for all yeA.

Let A be a complex unital Banach algebra and let x,yeA. Show that xy and
yx have the same spectral radius. [Hint: Use the previous exercise.]

Let 4 be a complex Banach algebra without unity, and suppose that 4 em-
beds isometrically into a unital Banach algebra B as a subspace of codi-
mension 1. (According to Exercise 2, such an algebra B always exists.)

Show that linear extension and restriction define a pair of inverse map-
pings between the character spaces A4 and B.

LetT'y:B— %(IAB) denote the Gelfand transform for B. Show that the im-
age of A under I'y already separates points in B and hence in 4. (See
Theorem 2-11.)

Let H be a Hilbert space. Show that every element of peH* takes the form

P(x) = (x|xg)
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10.

11.

12.

13.

14.

15.
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for some element x,e H uniquely defined by ¢. [Hint: Assume that ¢ is not
the zero transformation and let K denote the kernel of ¢. Decompose H
into the direct sum of K and K (the closed subspace of H consisting of
elements orthogonal to X). Clearly there exists yoeKl such that p(y)=1.
Now show that x,=y /|||l has the required property. The key will be that
x—@(x)y, lies in X for all xeH.]

Let H be a Hilbert space and let TeEnd(#). Show that the adjoint trans-
formation 7*eEnd(H) exists and is unique. [Hint: For each yeH, the map-
ping x> (T(x)|y) lies in H* Hence by the previous exercise there exists
an element T*(y)eH such that (T(x)|y)=(x|T*(y)) for all xeH. Now
show that T* lies in End(H).]

Let X be a subset of a Hilbert space H and define X* to be the set of points
in H orthogonal to every element of X. Show that X is a closed subspace
of A.

Let W be a closed subspace of a Hilbert space / and define W' as in the
previous problem. Show that H= W@ W" as a vector space. [Hint: Given
xeH define pry(x), the orthogonal projection of x onto the subspace W, to
be the closest point of W to x. Then show that x = pryfx) + (x—pry(x)) is
the required unique decomposition. ]

Continuing in the context of the previous problem, show that (Y1) is the
smallest closed subspace of H that contains the closure of X. Conclude, in
particular, that if I is a closed subspace of H, then (W)'=w.

Let H be a Hilbert space and let 7 be a normal element of End(H). Show
that for all xeH, ||T(x)||=||T*(x)||. [Hint: By definition of the adjoint, for all
xeH, (T(x)|T(x))=(T*T(x)|x). But T* commutes with 7.]

Let 7eEnd(f) be a positive operator on a Hilbert space H. Show that the
“square root” of T as defined in Proposition 2-22 is unique, arguing as fol-
lows:

Show that if SeEnd(H) is a positive operator such that S>=7, then both T
and 7' lie in A, the smallest closed, self-adjoint, unital subalgebra of
End(H) containing S.

Show that 7'* corresponds under the isomorphism of Theorem 2-17 to a
function ge#(sp(S)) satisfying g%(1)= A2 for all Aesp(S).

Conclude from (b) and the positivity of S that in fact S=7"2,



16.

17.

18.

19.

20.

Exercises 81

(Unitarizability for Compact Groups) Let 7 be a representation of a com-
pact group G on a finite-dimensional vector space V. Show that there exists
a scalar product (| ) on V that is #(G)-invariant; that is, = is unitary with
respect to the Hilbert space structure defined on I by this scalar product.
Note that this construction applies to any finite group with the discrete to-
pology. [Hint: Pick any scalar product [ | ] on V, and consider the average

1
vol(G)

vvy= [Ix(g)vix(g)v1dg
G

where dg is the Haar measure on G.]

Give an example of a finite-dimensional representation of a locally com-
pact, but noncompact, group for which the conclusion asserted by the pre-
vious exercise does not hold. [Hint: Try G=SL,(C), V= C2, with 7 taken to
be the standard representation.]

Let (#,V) be a finite-dimensional unitary representation of a locally com-
pact group G. Show that 7 is completely reducible; that is, there exists a di-
rect sum decomposition

V=0,V

such that (i) #(G) preserves each V, and (ii) the restriction of 7z to V is ir-
reducible for all i. [Hint. Take orthogonal complements of invariant sub-
spaces.]

Give an example of an infinite-dimensional unitary representation of a
locally compact group G that is not completely reducible. [Hint: Try G=R
and V=L?(R), where 7 acts by translation on the functions that constitute
Vl

(Orthogonality Relations for Compact Groups) Let (,V) and (7',V") be
nonisomorphic, irreducible, unitary representations of a compact group G.
Show that the following identity holds for all v,v,eV and v',,v',eV".

[y a))Ivyy dg =0
G

where dg denotes the Haar measure on G normalized to give total volume
one—this is called the probability measure on G—and (| ) and (| )’ de-
note the invariant scalar products on  and V', respectively.
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Let (#,V) be an irreducible unitary representation of a compact group G
with Haar measure dg. Verify the following identity for all v ,v,,v,,v,eV:

Wi lvy) (vslvy) .

———————— 1
£ (ri@mva) (alghvslva) dg = s

Let G be a locally compact group with Haar measure dg. Define L%(G) to be
the Hilbert space of square-integrable functions on G; that is, L*(G) con-
sists of the measurable functions f/: G— C such that

fIr@rdg<e .
G

Show that the right (or left) translation action of G on L*(G) defines a uni-
tary representation relative to the scalar product

(1= f(h(g)dg .
G

This is called the regular representation of G.
Let (7,V) be a finite-dimensional unitary representation of a compact

group G. For any pair (v,,v,) of vectors in V, define the associated matrix
coefficient to be the function G— C defined by

g (m(gv|v,)
where ( | ) denotes the 7~invariant inner product on V.

Show that the character y,:G— C defined by g+ trz(g) is a linear com-
bination of matrix coefficients (relative to a basis of ). Show further that

2:(8)=2.(g7)
for all geG.
(Orthogonality of Characters) Show that if (#',G’) is another finite-

dimensional unitary representation and if, moreover, 7 and 7* are irreduci-
ble, then
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0 fr#n
Z;:*Zn'= 1
frz=na .
dimp %

Here * denotes the convolution product:

S*h) = [ 1™y .
G

Assume that G is a compact matrix group; that is, a compact subgroup of
GL,(C). Let M(G) denote the C-linear span of the matrix coefficients of
all finite-dimensional unitary irreducible representations (7,)) of G. One
endows M(G) with an algebra structure via the tensor product.

Show that the elements of M(G) are continuous and that M(G) contains
the constant functions and separates points.

Show that M(G) is uniformly dense in the space of continuous functions
from G to C.

Show that M(G) is dense for the L2-norm in L*(G). This is defined by

1/2
Ilf||2={flf(g)12 dg} :
G

Again let G be a compact matrix group.

Show that we have the following decomposition of the (right) regular rep-
resentation:

F(G)= & dim()-V
V)G

(=

where G denotes the set of inequivalent irreducible unitary representations

of G, and @ denotes the Hilbert direct sum; that is, the completion of the
algebraic direct sum.

If G is finite, show that there is a natural identification of L*(G) with the
complex group algebra CG.
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Show that every irreducible unitary representation of a compact matrix
group is necessarily finite-dimensional.

REMARK. The assertions of the preceding three exercises are in fact true for any
compact group G (that is, without assuming that G is a matrix group). Together
they are the content of the Peter-Weyl theorem, the most fundamental result in
the representation theory of compact groups.

27.

@

®)

Let G be a locally compact group, and let H be a closed, unimodular sub-
group. This means that the left and right Haar measures on H are identical,
after appropriate normalization. Let W be a Hilbert space with its corre-
sponding space of unitary transformations denoted (W), and suppose that
o.H—2%(W) is a unitary representation of H. Define

Indf; (o)

the so-called representation of G induced by (o, W) to be the space of func-
tions ffrom G to W such that

() f(hg)=o(h)f(g) for all heH, geG, and
(ii) f is measurable and in L2 modulo H; that is, the product {f(g)| f(2)),

which by the previous condition and the unitarity of o is well-defined
on A\G, is integrable over the quotient space.
Note that G acts on Indf,(cr) by right translation; that is, by the action
(x, ) (g f(gx))
for all g,xeG.

Show that Ind$ (o) is a unitary representation of G. [Hint: First show that

de=2
=

is a right G-invariant measure on the homogeneous space H\G; use it and
the H-invariant scalar product on W to define an appropriate scalar product
on Indg(cr) ]

If H is not unimodular, how should the definition of Ind$, (o) be modified
to ensure unitarity?
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Show that if G is a finite group, then there is a natural G-isomorphism
Ind§(o)=W @, CG .

Note that the object on the right is the usual induced module in the repre-
sentation theory of finite groups.

Let G=R, here viewed as an additive, locally compact group with Haar
measure given by the ordinary Lebesgue measure dx.

Given feL*(R) and zeR, define (o, /)(x)=f(x+z). Show that

R — Aut(Z*(R))
zZep,

is a well-defined unitary representation.
Show that for zeR, the operator p, has a purely continuous spectrum; that
is, for each Aesp(p,), there exists no corresponding eigenvector, which in

turn is to say, no element feL*(R) such that p_f-A/=0.

Determine sp(p,) and the spectral measure E on sp(p,), as in the second
spectral theorem.

Show that EndR(Lz(R)) is commutative. [When this happens, one says that
the representation (p,L%(R)) is multiplicity-free.] Show nonetheless that
EndR(Lz(R)) is not C, so that the representation is not irreducible.

After studying Chapter 4, do this problem again for G=Q,.
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Duality for Locally Compact
Abelian Groups

For a locally compact abelian group G, its group G of characters (i.e., continu-
ous homomorphisms from G to S') also acquires the structure of a topological
group. In this chapter, we give two distinctive characterizations of what turns
out to be the same underlying topology for G and examine this topology in
detail. The main result is the Pontryagin duality theorem, which says in effect
that G and G are mutually dual, both algebraically and topologically. To prove
this, we build upon the results of the previous chapter, especially insofar as the
introduction of functions of positive type makes a critical correspondence with
the theory of unitary representations.

Another key element of the discussion is the definition of the Fourier trans-
form in this abstract setting. Extending the notion of the real Fourier transform,
we shall here associate with every suitable complex-valued function fon G a
complex-valued transform f onG. Moreover, we shall see that the functions f
and f satisfy a generalized form of the Fourier inversion formula.

The locally compact abelian groups of most importance to us will ultimately
be the additive and multiplicative groups associated with a local field F, which
in characteristic zero must be R, C, or a finite extension of the p-adics Qp. In
this context, the Fourier transform and the Fourier inversion formula bear
heavily on Tate’s thesis. To be more precise, the local zeta functions Z( f, x,s) of
Tate are defined, for seC, with respect to an appropriate function f on a local
field F and a character y on F*. The functional equation then relates Z( f, 7,5)
to Z( f” ,2,1—5), where 7 is the conjugate of the character . Hence this mate-
rial is doubly critical to the sequel.

3.1 The Pontryagin Dual

Let G be an arbitrary group. If X is any subset of G, for neN define X" G as
follows:
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X™ = {ij: x; eX,j= 1,...,n} .

J=1

Thus we explicitly distinguish between X and the n-fold Cartesian product of
X with itself.

Assume now that G is an abelian topological group, written multiplicatively.
Define G, the (multiplicative) group of continuous complex characters of G, to
be the set of all continuous homomorphisms G—+S’,Awhere as usual, S' denotes
the group of complex numbers of absolute value 1. G is also called the Pontry-
agin dual of G. Let K be a compact subset of G, and let ' be a neighborhood of
the identity in S'. Then define the subset W(K, V) of G by the formula

WK, V)={yeG:xK)V} .

The sets W(K, V') constitute a neighborhood base for the trivial character and
hence determine a topology on G, called the compact-open topology. If G is
discrete (in which case every compact set is finite), this topology evidently co-
incides with the topology of pointwise convergence.

We next define some key subsets in S'. Recall that S' has universal cover
given by the exponential map

o RS

x> e

which is in fact a continuous homomorphism with kernel Z. Let ¢ be a real
number such that 0 < £<1. Define N(¢)cS' by

N(e)=¢((-§"-,+-§-)) .

Thus, N(¢) is the image under ¢ of a symmetric open neighborhood of 0eR.

The key to the analysis of the compact-open topology on G is the following
technical lemma.

3-1 LEMMA. Let m be a positive integer and suppose that xeC is such that
x,x2,...,x™ lie in N(1). Then xeN(1/m). Consequently, if U is a subset of G
containing the identity and y:G—S" is a group homomorphism (not nec-
essarily continuous) such that y(U ™Y NQ1), then x(UYc N(1/m).

PROOF. Let r be an arbitrary positive integer and suppose that x” lies in N(1).
Then clearly there exists ye N(1/r) such that x"=y”, whence the quotient x/y is a
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complex rth root of unity. Thus xeN(1/r)p(q/r) for some integer ¢ such that
0<g<r. We shall now make a crucial observation about sets of the form
N(1/r)p(g/r) that in passing explains the factor of one-third in the definition of
N(¢): for all positive integers » we have the implication

1 1 q
NENN)p(—)=2D = g=0 .
NN D) q

The point is that
1 2rit
N(;)={ p(——) te (—— +—)}
while

(__) ¢’(—) (e p(th)t (3q 13q+l

r+l Tr+l

)}

Hence the intervals indicated for the parameter ¢ can have no intersection un-
less 1/r> (3g-1)/(r+1), which is to say that 2r+1 > 3¢r, an inequality that
cannot hold unless g=0.

Suppose now that xeN(1/r) and x"*'eN(1). Then xeN(1/(r+1)) modulo an
(r+1)th root of unity, and thercfore by the observation of the last paragraph, in
fact xeN(1/(r+1)). Thus it follows by induction that if x,x2,...,x™ liec in N(1),
then x lies in N(1/m), as claimed.

The second statement follows immediately: Let ge Uc G, and suppose that
U contains the identity. Then clearly g,g2, ...,g"e U™. Hence if z(U™)cN(1),
x(g) satisfies the hypotheses of the first part of the lemma. Thus y(g)eN(1/m)
and y(U)c N(1/m), as claimed. a

3-2 PROPOSITION. Let G be an abelian topological group. Then the following
assertions hold:

(i) A group homomorphism y:G—S" is continuous, and hence a charac-
ter of G, if and only if y"\(N(1)) is a neighborhood of the identity in G.

(il) The family {W(K,N(1))}; (indexed over all compact subsets of G) is a
neighborhood base of the trivial character for the compact-open to-

pology of G.
(iii) If G is discrete, then Gis compact.
(iv) If G is compact, then G is discrete.

) If G is locally compact, then G is likewise locally compact.
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PROOF. (i) Suppose that indeed there exists an open neighborhood U of the
identity of G that maps into N(1) via y. Then since multiplication in G is con-
tinuous, for any positive integer m there exists an open neighborhood ¥ of the
identity in G such that "™ is contained in U. Thus according to the previous
lemma, V™ cN(1/m), and y is continuous.

(if) We need to show that for every compact subset X, of G and for every posi-
tive m, there exists a compact subset K of G such that

WK, N(1))  W(K,,N(1/m)) .

Let K =K{™, which is the continuous image of the compact set X™ (direct
product), hence itself compact. If ye W(K,N(1)), then by construction, for all
xeK,, we have that y(x), ®(x)%..., {(x)"eN(1). It follows now from the lemma
that y(x)eN(1/m), whence ye W(K,,N(1/m)), as claimed.

(iii) If G is discrete, then G=Hom(G,S‘), the set of all algebra homomor-
phisms from G to the circle group. Moreover, as noted above, the compact-open
topology on G is precisely the topology of pointwise convergence. But with
respect to the latter topology, Hom(G,S") is evidently a closed subset of the
space of all maps from G to S', which is itself compact. Hence G is compact.

(iv) Given any character ¥, (G) is a subgroup of S' and hence not contained in
any set of the form N(¢), 0 < ¢<1. Thus if G is compact, then W(G, N(1)) can
contain only the trivial character, which therefore constitutes an open subset of
G. It follows at once that G is discrete.

(v) To show that G is locally compact, we shall show that if X is any fixed
compact neighborhood of the identity of G, then

W = W(K,N(1/4))

is a compact neighborhood of the identity in G. (Here the bar denotes closure.)
By part (ii), this suffices, since {W(K,N(1))} for K compact is a neighborhood
base at the identity.

Let G, denote the discrete topological group having the same group structure
as G. Note that only finite subsets of G, are compact. From parts (iii) and (iv)
we know that GO, is just Hom(G,S") with the topology of pointwise conver-
gence and that éo is compact. Define W, by

Wy ={x €Gyux(K)c N(1/A)} .
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Now clearly W, is closed in éo, and is therefore itself compact. Moreover,
W, Wby part (i), and certainly W W, since G, ignores continuity. Hence

w=w,

and if 7, denotes the topology induced on W by Go, and 7 denotes the topology
on W induced by é, it suffices to show thatz, is finer than 7; for then the com-
pactness of W with respect to 7, will imply its compactness with respect to 7, as
required. (In fact, the two topologies are then equal, since 7, the compact-open
topology, is clearly finer than 7, the topology of pointwise convergence.) Let
K, be a compact subset of G and let m be a positive integer. For each yeW,
consider the subset

W) = WK, NAIm))nW .

We shall show that each () is an open neighborhood of y with respect to 7,
whence 7 has a neighborhood base at y contained in 7.

Let " be an open neighborhood of the identity in G such that V@)K, Since
K, is compact, there exists a finite set 7 such that F ‘V2K,. Define a subset
W,(x) of W as follows:

Wo(2) = (AW(F,N(1/(2m))) n W

where W,(F,N(1/(2m))) denotes the set of characters on G, that map F into
N(1/(2m)). We claim that W (y) is a 7,-neighborhood of yx contained in W(y),
and this will complete the proof. Since W (F,N(1/(2m))) is clearly open in éo,
only the inclusion W (y) < W(y) needs verification.

Let ueWy(2). Then by construction, u=yu,eW for some y, e Go such that
U(F)SN(1/(2m)). Since clearly =y ' ueW @ it follows that

H(K)YSNA2) S N(D) .
From this we may draw two conclusions:

(a) The character 4, is continuous [according to part (i)].

(b) By the assumption that V@’ K and by the preceding lemma, we have that
H,(V)S N(1/(2m)) and hence the following chain of inclusions:

1K) S 1(F) (V) € N(L@m))-N(1/(2m)) = N(Um) .

The upshot is that 4 in fact lies in W(K |, N(1/m)), and therefore x lies in W(y).
Thus W(y) is indeed contained in W(y), as required. a
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3.2 Functions of Positive Type

In order to motivate the principal definition of this discussion, we begin with an
elementary observation about unitary representations.

Let p be a representation of the topological group G (not necessarily locally
compact or abelian) in the space of unitary operators of a Hilbert space H. For
our current purposes, for any seG it will be convenient to write p(s) rather than
p, for the associated operator. Fix xeH. We may now define a complex-valued
function @ on G as follows:

p(s) = (pEX)|x) .

Let s,,...,5, be any family of elements in G and consider the complex nxn ma-
trix

A=(0(s's)) .

We claim that 4 is both Hermitian and positive semidefinite. The first point is
trivial: since each p(s) is unitary,

(ps}'s )%y = (ps Y] s, (X)) = (s, )] s X)) = (s s ()] x)

For the second, consider any complex vector z=(z)eC". Then we compute

(Azl2) = p(s}'s))z,2,

ij=1

= Y ()@ A5, )(x))z 2,

ij=1

= (3 o5,z )Y A5y )ze))
7= =1

—13 A )z 20

i=1

This analysis will lead shortly to a key definition in which the preceding ine-
quality appears in continuous form.

Assume now that G is a locally compact group with (left) Haar measure ds.
Let Z(G) denote the set of complex-valued continuous functions on G with
compact support. Recall that for every p, 1<p<o, & (G) is contained in the
Banach space L?(G) and is hence subject to the L?-norm and associated topol-
ogy defined by
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1/p
||f||,={ firr dx}
X

for finite p, with || f]|,, defined to be the essential supremum of | f|. [See Ap-
pendix A, Section A.4. Note that L“(G) consists of functions in L(G) with finite
essential supremum.] In fact, for all p, # (G) is dense in L?(G).

DEFINITION. Let G be a locally compact topological group. Then a Haar-
measurable function ¢:G—C in L*(G) is said to be of positive type (or posi-
tive definite) if for any fe# (G) the following inequality holds:

[Jots D7) dsF @ dt 20

Both integrals are implicitly over the full group G.

Note that the integrand is Haar measurable on GxG by Exercise 1 below,
and so Fubini’s theorem applies to show that this double integral is in fact de-
fined. (Every locally compact group is the disjoint union of o-compact spaces;
see Section A.4 of the Appendices.) Moreover, if the support of fis contained in
the compact subset K< G, then the integrand has support contained in the com-
pact subset KxK of GxG. Since ¢ is in L*(G), it is bounded by || ¢||,,, the es-
sential supremum of ¢, except on a set of measure zero. Thus the integral is
itself bounded as follows:

[ o(s7'0) £ (s)ds F () dt|< Nl L, (supl £ |- (KDY . G.1)

Here p(X) is the (necessarily finite) Haar measure of K.

To establish some fundamental properties of functions of positive type, we
make two connections: first with Hilbert spaces and second with unitary repre-
sentations.

If ¢ is a function of positive type, we can define a positive sesquilinear (and
hence conjugate symmetric) form on Z (G) by the formula

flfde = [[ s D () ds fy (Dt

Analysis similar to that above shows that this integral is defined and finite for
all f, and £ in Z (G). Put

W,={/e€(G):([1/)=0} .

It follows from the Cauchy-Schwarz inequality (the proof of which does not
require positive definiteness) that q, is a subspace of Z(G) and that W’ » con-
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sists of those functions that are degenerate with respect to ¢. We may thus form
the quotient space & (G)/W s> ON which, by construction, (|)¢ is a positive
definite Hermitian form. Let V, denote the completion of this quotient, to
which the form () o extends by continuity. Accordingly, V, acquires the
structure of a Hilbert space.

Let / be any function on G and recall that for any seG, we define L_fon G
as follows:

Lf®=f¢") .

In the particular case that fe% (G), then also L, fe% (G) by the continuity of
the group laws and one checks easily that the mapping

G - End(Z(G))
s L

is an abstract representation of G. Moreover, if ¢ is a function of positive type
on G, and fis again in & (G), then

(LSILS Y, = [[ 0t u) f(s ) dt (57 u)
= [[ o™ty (s £ (st f (s ™)

= [[ ot u) /() de T du
=), -

This shows that L induces at least an abstract unitary representation of G on the
Hilbert space Vq,. To see that L is moreover a topological representation, it suf-
fices by Corollary 2-2 to show that for every /€% (G) the mapping

G->Z(©G)
s Lf

is continuous, which is to say that if s,—>s in G, then L, f — L,/ in € (G)
with respect to the g-norm. According to inequality 3.1, this will be the case,
provided that the obvious pointwise convergence

S0 £(s7n)
for teG is uniform. But clearly s;lt—>s"t uniformly in G, whence the re-

quired uniform convergence follows from Exercise 2 below. We summarize this
discussion in the following proposition:
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3-3 PROPOSITION. Let G be a locally compact group and let ¢ be a function of
positive type on G. Then the mapping s> L, induces a unitary represen-

tation of G on the associated Hilbert space Vo a

Further properties of functions of bounded type depend on a more detailed
examination of the representation above.

Definition of Convolution and the Representation of Bounded
Functions of Positive Type

The representation described above of G on V, allows us to represent a
bounded function ¢ of positive type in the following sense: there exists a func-
tion x, »€V, such that

() = (x,|L,x,),

almost ‘everywhere for seG. To develop this result, we need first to recall the
notion of convolution of functions on G.

Let fand g be complex-valued Borel functions on a locally compact topo-
logical group G. Then their convolution f*g is defined by

[xg)=[g(s'f(s)ds= [ g(s™) f (ts)ds

provided that this integral, taken over the full group with respect to the (left)
Haar measure ds, exists. We shall make a more systematic study of the key
properties of convolution in the following section. In connection with our cur-
rent study of functions of positive type, we are interested in the special case f*@
where fe@ (G), peL“(G). Under these conditions, clearly f*¢ exists. More-
over, if £ ,—tin G, then

(s ts)~ f(t))ds —> 0

and it follows that f*¢ is continuous.

3-4 PROPOSITION. Let ¢ be a function of positive type on G. Then there exists
an element XV, such that

) = (x,ILx,),

almost everywhere for seG.
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PROOF. Let {a} be an index set for the collection of open neighborhoods V', of
the identity of G. Since G is Hausdorff, clearly {e}=MN _V . and if we write

a a’

a<f whenever Vﬂg V,, then {a} is a directed set. It follows from Urysohn’s
lemma for locally compact spaces that for index ¢, we can construct a continu-
ous function g ,: G R, such that

(i) the support of g, is a compact subset of V;
(ii) each g, satisfies the equality

Iga(s)ds =1 .
G

This simultaneously defines a net {g (s)ds} of positive linear functionals on
Z(G):

S [f(s)g,(9)ds .
G

Evidently these converge weakly to the Dirac measure J,, which is nothing
more than evaluation at the identity e; that is,

s.(N=r1(e) .

Let /€% (G), and let g, be as above. Consider the integral
(o701 (s)ds g (Ddt = 1 +p(t)- g, (1)t

which exists, since f*¢ is continuous and g has compact support. We may now
define a linear form @ on V, that on & (G) is given by

O(f) = im(f |g,), = lim [[ o(s7'0) £ () ds g (1)t =lim [ £ #p(0)- g (1)t .
To see that this limit exists and that in fact
()= fxple) = [ pls™)f (5)ds

it suffices to note that in order to compute ©( /) we may replace the factor fx¢
in the integrand by the product (f*¢)-h, where he® (G) is a fixed function
that takes the value 1 in a neighborhood of e that contains the eventual support
of g,. Hence (f*@)-h lies in € (G), and the previous equality is nothing more
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than the weak convergence of g (s)ds to J,. Now since V, is sclf-dual, there
exists an element x eV, such that

O(&=(£lx,),
for all JeV ; this is to say that the g, converge weakly in Votox,.

We shall see next how x_ behaves under the continuous group action from G
defined by s+ L,. First we compute

(§|Lx,), = li;n<5 |Li&4a )y
=lim H et w)é) dt g, (s7'u)du
=o'y e ar .
Next we compute the inner product in reverse order:

(Lx,| &)y =lim(L,g, | &),
=lim H o(t™u)g, (s7't) dt Eu)du
- fots B

By the conjugate symmetry of the Hermitian form (] ) - it now follows at once
from the two previous equations that

€EILx,), = [ o) E@ydt = [ p(s T EY . 32)
In the special case that s=e, we have, in particular, that
(£1%,), = [ Ps) E(s)ds . (3.3)
From Eq. 3.2 we deduce immediately that for arbitrary he% (G),

€1y, = [[ (s ) E(s) ds bty dt
= J’ (5 |L1x¢ >¢ mdt
and by (strong) continuity this equality clearly extends to all of V,. This shows

that if £ is orthogonal to the CG-submodule of V, generated by x, then £is
zero in V. Thus ¥, is in fact generated as a CG-module by x,. In the special
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case §=x¢, the previous equation together with Eq. 3.3 shows that for all
vel ,

P
[ eoyws)ds = (x v, = [(x,ILx,), wis)ds
whence
o) = (x,|L,x,),
almost everywhere, as required. a

3-5 COROLLARY. Let @ be as above. Then ¢ is equal to a continuous function
of positive type almost everywhere. If, moreover, @ is itself continuous,
then we have further that:

@ ¢()=20.

(i) p(e)=sup|p(s)|, where s ranges over G.
(iii) p(s™") = @(s) for all seG.
PROOF. The main statement is obvious from the representation of ¢ given in the

proposition: the inner product is continuous by the polarization identity from
linear algebra. For assertion (i), note that

() = (x,|Lx,),= (X,]%,),20 .
Next, (ii) follows from the Cauchy-Schwarz inequality:
P(5)* = (xplLx, Vg < (Xl ) LI LX), = (Xl ) = Pe)”

The key, of course, is that L_ is unitary. Finally, (iii) is again an easy exercise in
unitary operators:

P(s™) = (gl L, )y = (L%, lx, )y = (6, ILx,) = 0(s) Q

Elementary Functions

The functions of positive type that are continuous on G and bounded by 1 in the
L*-norm constitute an important subset of L “(G) denoted Z(G); that is,

P(G) = {peB(G) L°(G): pis a positive type and ||p|| <1} .
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Note that by the corollary above, in this case the condition ||¢||, <1 amounts to
nothing more than p(e)<1.

A related collection of L “~functions, denoted &(G), is defined as follows. A
function ¢ lies in &(G) if it is the zero map or if it satisfies the following three
conditions:

(i) ¢is continuous and of positive type.

(i) p(e)=1.

(iii) For every decomposition ¢=g,+¢, into the sum of two functions ¢, p,
both lying in £(G), there exist positive real constants 4, and A, such that

¢, = 4o ¢,=,p (whence 4, +4,=1) .

The nonzero elements of &(G) are called elementary functions. Note that con-
dition (iii) asserts that elements of &(G) are in fact extreme points of #(G).

3-6 LEMMA. 2(G) and &(G) have the following properties:

() P(G) is a convex, bounded subset of L*(G). It is, moreover, weakly
closed and therefore weakly compact as a subset of L'(G)*.

(if) Any convex, closed subset of P(G) containing its extreme points is all

of Z(G).
(iii) The extreme points of P(G) consist precisely of the points of £(G).

PROOF. (i) L(G) is obviously convex and bounded. Now identify elements of
(G) with elements of L'(G)* in accordance with the usual duality theory for
L?-spaces (see Section A.4 of Appendix A). Recall in particular that the infinity
norm of an element in L*(G) is identical to the norm of the corresponding
functional between the Banach spaces L'(G) and C. To say that a sequence ?,
of functions in (G) is weakly convergent to some peL “(G) is to say that for
all feL'(G) we have

J-f% ds—> J.fq)ds .
It follows at once from this that ||| <1 and that
[Jo.(s'0fdsf@ydet > [[ s £ (s)ds () de

whence ¢ is also of positive type and therefore continuous by the previous cor-
ollary. [More precisely, ¢ represents the equivalence class of a continuous
function in L*“(G)]. Thus as a subset of L'(X)*, 2(G) corresponds to a closed
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subset of the unit ball, which is therefore compact under the weak-star topology
by Alaoglu’s theorem.

(ii) This is a special case of the Krein-Milman theorem.

(iii) The only point to check is that a nonzero extreme point g€ P(G) satisfies
o(e)=1. But if p(e)<1, then also

o(e)
lies in ZP(G), and ¢ is not extreme. a

This brings us to a striking and exquisite theorem that connects the elemen-
tary functions with irreducible representations.

3-7 THEOREM. Let ¢ be a continuous function of positive type on G such that
¢(e)=1. Then pe &(G) if and only if the unitary representation s+ L, of

G inV_is irreducible; that is, Vq, itself and the zero subspace are the only
closed subspaces of V, that are invariant under each of the transforma-
tions L, for seG.

PROOF. =) Assume that ¢ is an elementary function. Let /¥ be a closed G-
invariant subspace of V¢ , with orthogonal complement W+*. Let pr,, denote the
orthogonal projection map into W. Then since each operator L_ is unitary, we
have the following commutative diagram:

wewt 2, gt
L, VoL
wew: —2¥, gt
Thus it suffices to show that if 4 is any orthogonal projection operator that
commutes with each L, then 4 is either the zero map or the identity map on

V,. Since in general we have (Ax|y),=(Ax|Ay), for any projection, it follows
that for all seG,

P(s)=(x,|Lyx,),
=(Ax,|Lx,), +(x, —Ax¢|Lsx¢)¢
= (Axy|LAx,), +(x, — Ax, | L (X, ~ AX,)), .

This expresses ¢ as the sum of two functions that, by Exercise 4, are of positive
type. Hence under the assumption that ¢ is extreme,
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(Ax | Lx, ), = Ax,|Lx,),

for all seG, and it follows that A=A- 1, because as we observed in the proof of
the representation theorem for functions of positive type, x,, generates V as a
CG-module. But since 4 is idempotent, this forces Ato be 0 or 1, as requlred

<) Suppose that the given representation of G in V, is indeed irreducible and
that p=¢,+¢, is a decomposition of ¢ into the sum of two functions from
P(G). Then for each fe# (G), one observes easily that

N sy -

From this it follows that any element of Z (G) that is degenerate with respect to
(| ), is also degenerate with respect to ( | ) Thus ¢, likewise defines a Her-
mman form on V_, and accordingly there ex1sts a continuous positive definite
endomorphism A of V, such that

¢ W)q; =(¢ 'W>¢l

forall £, ye V¢. Thus, in particular,

<Ax¢ | Lsx¢ >¢7 = <x¢ |L3x¢ >¢’l
for all seG. But also
<x¢p ILsx¢ )qzl =q@(s) .

The point here is that in the proof of Proposition 3-4, the convergence of the
net {g,} to x, with respect to the (| ) -norm will also hold with respect to the
Dy ,-horm by virtue of the last-stated inequality. Thus ¢, is likewise repre-
sented by X, in the sense above. The upshot is that

(Ax plLxp)p = @i (s) .

We claim now that 4 commutes with each L. Granting this, Schur’s lemma for
unitary representations (Theorem 2-26) implies that A4 is a scalar multiple A of
the identity map on V¢, and therefore

o(s)= </1x¢|Lsx¢:>¢ = A¢p(s)
showing that ¢ is indeed extreme.

Finally, to establish the claim we rely on the unitary nature of L_ and com-
pute as follows:



3.2. Functions of Positive Type 101

(ALsp |W)p =L@ [W)g,
=@ L ¥y,
=(Ao|L v,
=(L;Ap |¥)e

for all seG and ¢, ye% (G). This completes the proof. a

We can now make an enlightening connection between functions of positive
type and group characters. Here, at long last, we assume that G is abelian.

3-8 THEOREM. Let G be a locally compact abelian topological group. Then the

elementary functions of positive type on G are precisely the (continuous)
characters of G.

Proor. Note first that a character y on G is clearly a bounded function in
L*(G). Moreover, by the following calculation it is of positive type:

[[ 2705y ds F O dt = ([ 2(S)x(6) £ (s)ds 7 (8 d
= [H®f(s)ds - [ x) ftyat
= [ 2@/ (s)ds|?

for all fe® (G). Since necessarily y(e)=1, in light of the previous theorem it
suffices to show that given a continuous function ¢ of positive type on G such
that ¢(e)=1, the following conditions are equivalent:

(i) The representation of G in v, is irreducible.

(ii) g@is a character of G.

One implication is straightforward; the other depends on spectral theory.

(ii)=(i) Suppose that ¢ is a character of G and consider a function fe% (G).
Then as above,

1y = [0 f(s)ds F(t)dt
=| [p()/(s)ds|? .
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The point is that the subspace of &,(G) consisting of functions degenerate with
respect to the form (| ), has codimension 1, and hence V, is a 1-dimensional
and therefore irreducible representation of G.

(i)=(ii) Assume now that the representation of G via ¢ in V is irreducible.

Then as a consequence of Schur’s lemma (specifically, Theorem 2-27), the rep-
resentation s+ L, is one-dimensional, whence for all eV,

L&) =As)¢

where A(s) evidently depends continuously on s. Morcover, it is clear from the
preceding equation that indeed A is a character of G. Finally,

Ws)=(x,|Lx,), = MsKx,)x,), = A(s) ple) = A(s)

whence ¢ is likewise a character, as claimed. a

3.3 The Fourier Inversion Formula

The principal technical tool for establishing the Pontryagin duality theorem in
the following section is the Fourier inversion formula. In this section we review
the Fourier transform and prove this fundamental result. Throughout, G de-
notes a locally compact abelian group with bi-invariant Haar measure dx and
continuous complex character group G.

DEFINITION. Let feL'(G). Then we define f G- C, the Fourier transform of
/, by the formula

Fa=[ropzmdy
G
for ye G.

Note that this formula makes sense, since for all yeG, y(y) has norm 1.
Hence if fis integrable, so is the product appearing in the integrand. Moreover,
one verifies at once that | f(y)| <||flj for feL'(G), xeG.

REMARK. In the special case that G=R, the topological group of real numbers
with respect to addition, we can identify each feR with the character

ist

sHe
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In this case the formula above reduces to

F®=]f(s)e"ds
R

which is of course the ordinary Fourier transform of a function defined on R.
The point is that despite appearances, this should in fact be regarded as a func-
tionon R.

Let (G) denote the complex span of the continuous functions of positive
type on G, and define

VY'(G) = G)NL'(G) .

We can now state the principal result of this section. (See Exercises 13 and 14
below for direct proofs of this theorem and the duality theorem for G finite.)

3-9 THEOREM. (The Fourier Inversion Formula) There exists a Haar measure
dy on G such that for all feV'(G),

SO =[7r»dy .
G

Moreover, the Fourier transform f > [ identifies V'(G) with V'(G).

The measure dy of the theorem is called the dual measure of dx, the given
Haar measure on G. To prove its existence, we must begin with some elemen-
tary properties of convolution.

3-10 PROPOSITION. Let f and g be complex-valued Borel functions on the lo-
cally compact abelian group G. Then the following statements hold:

(i) If the convolution f*g(x) exists for some xeG, then so does g*f(x),
and in fact g *f(x) = f*g(x).

(i) If £,geL (G), then f*g(x) exists for almost all xeG; moreover,
f*geL(G) and

Wr*gll <14 el -
(iii) Iff g heL\(G), then (f*g)xh=f*(g*h).

Thus, in particular, convolution is both associative and commutative on
LY(G).
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ProOF. (i) This follows by direct application of the translation-invariance of the

Haar measure on G. We replace y by yx in the integrand that defines convolu-
tion to obtain

[*2(x)=[g(y™x) /)y
=g SOm)dy
=g*f(x) .
Note that the last step is justified by the elementary observation that for locally
compact abelian groups, the Haar measure of a Borel subset E of G is equal to
that of £, (See Exercise 7 below.)
(ii) First consider the homeomorphism & from GxG to itself defined by
ax,y)=(x,y) .
Observe that the inverse map sends (x,y) to (y~'x,y). Next consider an open
subset Uc C. Then a(f(U)xG) is clearly a Borel subset of GxG, and by con-
struction, (x,y)e a(f~(U)xG) if and only if y-'xe f~!(U). This shows that the
mapping
)= f('x)
is a Borel function on G xG. and hence so is
)= f('0)8(y)
since the product of Borel functions is again a Borel function. (Here we may

view g as a function on GxG in the obvious way.) Since both / and g are L'-
functions, we have

[[l70 ldel gl dy <o

and therefore Fubini’s theorem applies to yield

[iro™g0dy de =l ALl gl -

It follows that | /| *|g| is an L'-function and hence is finite almost everywhere;
s0, too, then for f*g. Finally, the inequality of norms is clear from the previous
equation.
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(iii) Associativity follows by a calculation that again depends on Fubini’s theo-
rem; the requisite hypotheses are guaranteed for almost all x by part (ii). To
begin,
Sr(@*h)x) = [ fOx)(g*h)(y)dy
=[r"0[ gz y)n(z)dz dy
=[[ 0" 0e" V) dydz .

Now replace y by yz in the inner integral to obtain

@) x) = [[ (727008 dy de
= jf*g(z"x) h(z)dz
=(f*g)*h(x) .

This completes the proof. a

We may infer from the previous result that for G as above, L'(G) constitutes
a Banach algebra with respect to convolution. One sees easily that if G is dis-
crete, then L'(G) has a unit (the characteristic function of the group identity).
The converse also holds. The Banach algebra structure of L'(G) allows us to
make an explicit connection between the Fourier transform and the Gelfand
transform.

3-11 PROPOSITION. Let B denote the Banach algebra L\(G), and as usual let
B = Hom(B,C)* denote the space of (nonzero) complex characters of B.
For any given character y of G and function feL\(G), define

2(N=TWD= [y .

Then for each y, v, lies in B. Moreover, the mapping

o>

G-
Y i

<>
=N

is a bijection.

Note that the proposition subsumes the assertion that the Fourier transform of
the convolution f*g is the complex product of Fourier transforms fg.
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PRrOOF. Clearly each v, is linear on L'(G), and not identically zero, since each
character y of G takes values of norm 1. We check with a routine calculation
that each such map is multiplicative:

v (f*rg)=[frer(Mdy
=[G ez dy
=[[r&'»xGHdvez)dz
= [[rox@)d g(2)dz
= [rx | g()x) dz
=f(DEQ) -

We show next that every nonzero character of B is of the form vy for some
group character y. Let w:B—C be a nontrivial algebra homomorphism. By
Gelfand theory (Lemma 2-10) we know that y is a functional on L'(G) of norm
bounded by 1. Hence by the duality of L' and L® there exists some peL®(G)
having identical norm such that

w(f)= [ f)p(x)dx
G

for all feL!(G). Recall that for any yeG and function f defined on G, L,fis
defined by L, /(x)=/(y~'x). Now compute:

[vNem e dy = w(NHw(e)
=y(f*g)
= [[ 7O D2 dy p(x)dx
=[[L, /() p(x)dr g(»)dy
= [y, Neay .
Thus we have that
v(Ne(y)=wL,f) G4
for almost all yeG. One shows readily that the expression on the right is con-

tinuous in y—the elements of #(G) are dense in L'(G) and left and right uni-
formly continuous—whence we may assume that ¢ is likewise continuous; here
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we need that y is not zero. Now applying the previous equation three times, we
obtain

w(e(y) = w(L, /)= w(LL,[)=w(L,[)px)= y()e(x)p(y)
Again since y is nonzero, ¢ is multiplicative on G. Thus in particular,
e = ()™

whence |p(y)|=1 for all yeG, because ¢ has L “-norm bounded by 1. This shows
that ¢ is indeed a character of G and that y = Gq—, .

Finally, given two group characters y and ¢, if v, (f)=v,.(f) for all func-
tions feL'(G), then by duality, ¥ and ' must agree almost everywhere in G.
But since both are continuous by definition, it follows that y=y/, as required. O

The Ring of Fourier Transforms and the Transform Topology

Consider now the space A [or, more explicitly, /](G), should we wish to
emphasize the underlying locally compact abelian group G] defined by

A={f:f el G)} .

Thus A consists of the Fourier transforms of functions feL(G) and inciden-
tally defines a weak topology on é the space of complex characters of G; this
is the weakest topology such that each f” A is continuous. We shall call this
the transform topology on G. Since the Fourier transform of JS*g is the com-
plex product of functions f’ g, it follows that A in fact constitutes a ring of con-
tinuous functions on G with respect to the transform topology. Now, according
to the previous proposition, each element f” e may be regarded as the Gel-
fand transform of f insofar as we identify G with the space of characters on
L'(G) via the mapping 7> Gz. More precisely, we have by construction that

f@)=%,N=F

where, strictly speaking, on the left f denotes the Gelfand transform operating
on the space of characters of L'(G) in the sense of Chapter 2, and on the right
f denotes the Fourier transform operating on G. These considerations lead at
once to the following proposition.



108 3. Duality for Locally Compact Abelian Groups

3-12 PROPOSITION. Let G have the transform topology induced by A. Then the
ring A is a separating, self-adjoint, dense subalgebra of €(G).

PROOF. Let us first cons1derl§ Hom -(B,C)*. According to Lemma 2-10, if
L'(G) is unital, then Bisa (weakly) compact subset of the dual space B*, and
given feL'(G), its Gelfand transform f lies in %(B) Otherwise, B perhaps
is not closed, because the weak limit of nontnv1al algebra homomorphisms may
in fact be trivial. Nonetheless, in either case B'= l§u{0} 1s closed. Thus for
each fe L'(G), we have that f when extended by zero to B ', lies in %(B ),
and therefore f €%, (B)

Now identify &(G) with Z(B) according to the topological isomorphism
induced by y— v Then by Gelfand theory (Theorem 2-11 and Exercise 8 of
Chapter 2) it follows that A is at least contained in & (G) and separates pomts
Thus it only remains to show that A is self-adjoint, since its density in (G)
is then a consequence of the Stone-Weierstrass theorem (see Proposition 2-13
and Exercise 9 below). Let feL'(G). Then for all characters y on G, we have

[Fo™M20dy =] r)ay™dy
= [ rx)dy
=7 ()
showing that A is indeed closed under complex conjugation, as required. a

This application of Gelfand theory becomes even more compelling in con-
sideration of the following theorem:

3-13 THEOREM. Let G and G be as above, and let K denote a compact subset
of G, and V an open neighborhood of 1 in S'. Then the following state-
ments hold:

(i) Each of the sets W(K, V) as defined in Section 3.1 is an open subset
of G in the transform topology.

(ii) The system {W(K,V)} in fact constitutes a neighborhood base for
the trivial character with respect to the transform topology of G.

(iii) The compact-open topology and the transform topology on G are
identical.

Note that (ii) immediately implies (iii), since by construction {W(K,V)} is
also a neighborhood base for the trivial character with respect to the compact-
open topology. The proof will be straightforward, given the preliminary lemma
that follows.
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3-14 LEMMA. Let G xG have the product topology defined by the topology
given on G and the corresponding transform topology on G. Then

(i) For every feL\(G), the map

G x G >C
2P @Y ()

is continuous. [Here (Lyf )" denotes the Fourier transform of the left
translation of f by y.]

(ii)) The map

G x é —-C
P 200

is likewise continuous.
PrOOF. (i) Let (y,,%,) be any fixed point in the domain of the given map.

Then, according to Exercise 8 below, for every £>0, there exists a neighbor-
hood U of y, such that

12, -LlI<e

for all ye U. Moreover, by construction of the transform topology there exists a
neighborhood V of y, such that

@ /Y@ - W NI < £

for all yeV. Now since for any L'-function g and character z, [g(2)I<|lgl),, it
follows in particular that

D~ L/ VDI SILS-L S -

Therefore,

LN -Ly S YOI SIS Y D)Ly Y OOy, D)Ly SV (RS2
whenever (y, y)e UxV, and this clearly establishes the asserted continuity.

(ii) Note that Eq. 3.4 is equivalent, in the special case ¢ = 7, to the equation

FOIWM =L, N ) -
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Exercise 9 shows that for every y there is an L'-function whose Fourier trans-
form does not vanish at y and hence does not vanish in a neighborhood of ¥
under the transform topology. Thus this last equation implies that the function
(3, x)> x(») on the product space is, according to part (i), the quotient of
two continuous functions. Therefore both this function and its conjugate are
likewise continuous. This completes the proof. a

PRrROOF OF THEOREM 3-13. According to our preliminary remarks, we need only
prove parts (i) and (ii). Moreover, it clearly suffices to deal with subsets W(X, V)
of the form W(K, N(¢)), where the neighborhoods of the identity N(g)cS', £>0,
are defined as in Section 3.1.

(i) Let K be a compact subset of G, and let £>0 be given; choose and fix
YEW(K,N(£)). Then in consequence of the preceding lemma, for every y,eK
there exist open neighborhoods U of y, in G and V of g, in G (with respect to
the transform topology) such that y(3)eN(¢) for all yeV and yeU. The com-
pact subset X is covered by finitely many open sets U,,..., U, with correspond-
ing character sets V),...,V,. Clearly the intersection of the V), is an open
neighborhood of ¥, contained in W(K,N(¢)), and therefore W(K,N(¢)) is open

in G, as claimed.

(ii) Let ¥ be an open neighborhood of the trivial character, here denoted 1. We
must show that V' contains a subset of the form W(K, N(¢)) for some compact
subset K of G and some positive & But by definition of the transform topology
(consider its subbase!) we know that for some £ >0 there must indeed exist a
finite family of functions f;,..., f,€ L'(G) such that

Nix:1/,(0-f,Wl<g3cV .
J

Since & (G) is dense in L !(G), we may further assume, at the cost of decreas-
ing &, that each of the / has compact support K. Let K’ denote the (necessarily
compact) union of the K and choose a positive ¢ subject to the inequality

35
max | /51l

An easy calculation now shows that if ye W(K, N(¢&)), then for all j,
;- 1,MDl<g

whence yeV. Hence V contains a subset of the required form, and the proof is
complete. a
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The Fourier Transform of a Character Measure

We continue with G and G as above. Let /& be a Radon measure on G such
that (G) is finite. (Recall that a measure that is finite on the totality of its
ambient space is said to have finite total mass). For yeG, define

T, = [ 2W)dix) .

We call this the Fourier transform of the measure 1. From the assumption that
£t has finite total mass, one deduces at once that this transform is both con-
tinuous and bounded by ,&(@) on G. Moreover, an application of Fubini’s theo-
rem shows that for all feL'(G),

[7dixn = [TOTm . 3.5)

The conditions for Fubini’s theorem certainly hold since, f” is bounded on G
and the product f(y)x(y) is measurable on GxG by the previous lemma.

3-15 PROPOSITION. If for T;(y)=0 every yeG, then ji=0. Thus i is com-
pletely determined by its Fourier transform.

PROOF. According to Eq. 3.5, the hypothesis implies that
[ Fodiz) =0

for all feL'(G). But recall that the ring of Fourier transforms of L'-functions is
dense in &,(G) . Hence, in particular,

[gydicy) =0

for all continuous functions g on G with compact support. The result then fol-
lows at once by the elementary correspondence between Radon measures and
integrals. Q

This brings us to a key result—in fact, an amazing connection between
measures on the character space of G and functions of positive type.

3-16 THEOREM. (Bochner) The functions of P(G) (that is, the continuous
Junctions of positive type on G with infinity norm less than or equal to 1)
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are precisely the Fourier transforms of Radon measures on G of total
mass less than or equal to 1.

Proor. First note that by Exercise 10 below, the Radon measures of finite total
mass on a locally compact Hausdorff space correspond bijectively with the Ra-
don measures on its one-point compactification that take the value zero on {co}.
Now let M denote the set of Radon measures on G of total mass less than or
equalto 1. If e Misa point measure of total mass 1 concentrated at 7, then of
course

T,(») = [ 2(di) = 2(»)

whence the Fourier transform of z is precisely the character y itself, and thus
manifestly a function of positive type. Next suppose that z, is the weak limit of
arbitrary measures [ eM, by which we mean that corresponding Radon inte-
grals converge pointwise on #(G’). Then certainly

[rdm, <1

and thus the space M is weakly closed and therefore compact by Alaoglu’s
theorem. If feL!(G), we know that f e &(G'), whence by definition of the
weak convergence of measures,

[ Fdu = lilr‘nffx”(x)du :
From this and Eq. 3.5 we find that
[T,y =tim [ FONT, ()

which is to say that T;,o is the ‘weak limit of 77, again owing to the density of
the Fourier transforms in % (G) This is the key, for it has the following con-
sequences:

(i) Since the every element of M is the weak limit of a linear combination of
point measures of total mass 1 with positive coefficients (see Exercise 11
below), the Fourier transform of each measure in M is the weak limit of a
linear combination of characters with positive coefficients, and therefore
lies in the weakly closed set #(G).
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(ii) The Fourier transform is a weakly continuous map from Mo P(G), and
hence its image is a weakly compact and, in particular, weakly closed sub-
set of Z(G). Moreover, this image is evidently convex and contains the
characters of G as well as the zero function. Hence by Exercise 6, it must
be precisely 2(G) itself.

This completes the proof. a

Recall that '=J{(G) denotes the complex linear span of the continuous func-
tions of positive type on G and that such functions are bounded, since a con-
tinuous function of positive type obtains its maximum at the identity of G.
According to Bochner’s theorem and the proposition that precedes it, each
function fel’ determines a measure fzf of finite total mass on G such that fis
the Fourier transform of [zf . This is to say,

SO = [ 2)dit, ()
for all yeG.

The association of f with the measure fzf enjoys the following reciprocity
law:

3-17 LEMMA. Let f and g lie in V'=VALYG). Then we have the equality of
measures

(a0 = f(di ()

PrROOF. Since these measures are completely determined by their Fourier
transforms, it suffices to establish the equality for the corresponding trans-
forms. This leads to a brief, but beautiful, exercise in integration, which depends
primarily on Fubini’s Theorem and the construction of i, and /i, :
Té(z)dﬂf(z)(y) = Il(y) ﬁ(l)di‘f(l)

= [ 2| @ (@) dz dit (z)

= [[ 2z y)di, (z) g(2)dz

=[1(z"y) g(z)dz

=f+g(y) .
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Thus the Fourier transform of the left-hand side of the asserted equality of
measures is precisely the convolution f*g, and by symmetry the Fourier trans-
form of the right-hand side is precisely g*/. But naturally, these convolutions
are equal, whence the equality of measures, as claimed. a

Let % denote the set of continuous, bounded, complex-valued functions ¢ on
G that satisfy the following condition: there exists some complex measure f/v
on G of finite total mass such that

o) di ()= [(x)d7,(2)

for all feV’!. According to the previous lemma, the Fourier transforms of ele-
ments of /! certainly lie in & if ¢ = g for some ge V', then v, is simply /1, .

As our final preliminary to the proof of the Fourier inversion formula, we
establish some key properties of the set #.

3-18 LEMMA. The set & defined above has the following properties:

(i) If 9, the associated measure f/q, is unique.

(ii) If peF arises as the Fourier transform of an element feL'(G), then
Vq, = ‘[J If -

(iii) If peFis positive, then the measure f/¢ is likewise positive.

(iv) The set & constitutes a module over the ring of continuous,
bounded, complex-valued functions on G; moreover, with respect to
this module structure, the mapping @+ f/¢ constitutes a homomor-
phism of modules into the space of complex measures on G of finite

total mass, viewed as a module over the same ring of continuous
bounded functions. In particular, we have that

vy =VptV, and v, =av,

Vo v

Jor all ¢, ye & and continuous bounded functions a on G.

) If peF, then every translation y of ¢ also lies in ¥, and to obtain f/r
from V,, one applies the same translation. In particular, if feL'(G)
and g is obtained from f by multiplication by a character x,, then
the associated functions g and [tg are obtained from f and j}f re-
spectively via translation by yx,.
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PrROOF. (i) Let pe#. According to Exercise 12 below, there exists a net of
functions f'in V"'(G) such that 1 converges uniformly to the constant function
1 on compact subsets of G. By construction it then follows that

lim ()i () = dv, (%)
and therefore ffq, is uniquely determined by ¢.

(ii) This follows at once from part (i) and the preceding lemma.

(iii) This essentially follows from the argument made in part (i) with one addi-
tional observation: according to Bochner’s theorem, the measures [tf that arise
in connection with the net f are each positive. Hence if ¢ is positive, f/¢ is the
limit of positive measures ¢( x)d[zf( %) and hence itself positive.

(iv) The additivity of the map ¢ f/‘,, is obvious from the uniqueness state-
ment. Along the same lines, if @ is continuous and bounded on the space of
characters of G, then the equality

a(e()di ()= f()a(x) dv,(x)

shows at once that f/w = affq, . These facts taken together show that # is a
module over the given ring and that the map > f/q, is a module homomor-
phism.

(v) The issue here is not so much mathematics as typography. Hence we intro-
duce the following provisional notation: if 4 is a measure on a group and z is
any group element, we shall write 4 for the left translation of z by z. That is, if
E is any measurable subset of the ambient group, then g*(E)=u(z'E).

Fix a character y, and define the translation yof ¢ by 1 (2)=¢(x,™' 2). With
the convention above in force, we make the following calculation, leaving the
details to the reader. For all he%c(é) and feL'(G),

[rCor Codit, (0 = [ el Vi ()
- [ ane(DdEE (1)

= [ W00 4 (1)
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= [ W) 1Y (v, (2)
= [ ) (22)d%5(2)

= [H 7} (2) .
Hence
(A ()= f(2)dv2 (%)
showing that v, is the required translation of v, . a

Proof of the Fourier Inversion Formula

The proof of the inversion formula proper now requires three steps. We defer
the identification of V"'(G) with "'(G ) via the Fourier transform until the fol-
lowing section.

First we claim that a function y that lies in %’j(f}) also lies in #. Let K be a
compact subset of the space of characters that contains the support of . Then
we may assert, as in part (i) of the preceding lemma, that there exists a function
f€V'(G) whose Fourier transform is bounded away from zero on K. Hence the
quotient a=y/ f is bounded and continuous on K and may be extended to a
bounded continuous function on the full space of characters by simply defining
it to be zero on the complement of X. Since the Fourier transform of f lies in .7,
it follows by part (iv) of the previous result that y likewise lies in %, as prom-
ised.

The second step amounts to the choice of a Haar measure for the character
space. First consider the mapping

~ n
Z(G) » C
y e 1av,om .

If fe'(G) is not identically zero, then neither is the associated measure [zf R
which is to say that there exists a continuous, bounded function a on the char-
acter space such that Ehe measure a( x)d[zf( %) is also nonzero. But then taking
¥ to be the product af , we have that dv, = a(x)dji;(x) , whence the mapping
n is not the zero map. The upshot is this: since # is not the zero map, it follows
from parts (iii), (iv), and (v) of the lemma that # is in fact a Haar measure dy
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on G.In particular, the translation-invariance follows from part (v) by the fol-
lowing calculation:

f1 dGLlor(z)=jl v’ (l)=le;,1 dv,(x)=[147%,(2) .
Thus with respect to this measure we may write

[rCode =[dv, ()

for all yin Z(G).

To begin the final step, note that for all peF# and ae%c(é) the product ag
of course also has compact support. Thus according to the preceding equation
and part (iv) of the lemma,

[atwCdr = [a(ndi, ()
This is to say that
P(Y)dy =dv,(x) .

But then, in particular, for fe V'(G),
fdx = dii ()
and hence by construction,
S = [ xdit, G =[xy
This establishes the formula. a

We conclude this section with a fine corollary that prepares the way for the
identification of V''(G) with V''(G).

3-19 COROLLARY. Let f be a complex-valued function on G that is integrable

with respect to the Haar measure dx on G. Then the following statements
hold:

() If fis moreover continuous and of positive type, then the Fourier
transform of f is a positive function on the space of characters of G.
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(ii) For f as in the previous part we also have that

[rendczo .

(iii) Iffis positive on G, then its Fourier transform is a function of posi-
tive type.

Thus the Fourier transform defines an injective mapping from V'(G) to

V\(G).

ProoF. (i) By the inversion formula, fis precisely the Fourier transform of the
character measure f (x)dy. According to Bochner’s theorem, this must be a
Radon measure of finite total mass, and, in particular, positive. Hence the
Fourier transform of f, being continuous, must also be positive.

(ii) This is a particular instance of part (i):

[redx=f@=o0 .

Here 1 denotes the identity character.
(iii) We leave this to the reader as an exercise in direct calculation.

The final statement now follows directly from part (iii) by linearity: Each
element in V'(G) can be written as a complex linear combination of positive
integrable functions. Hence the Fourier transform indeed defines a mapping
into the stated codomain,; it is, of course, injective by the inversion formula. O

Henceforth we assume that the Haar measures on G and its dual are nor-
malized so that the Fourier inversion formula holds.

3.4 Pontryagin Duality

Again let G denote a locally compact abelian group, with character group é,
which, as we have seen, is also locally compact and abelian. We can thus iterate
the operation of taking the dual and define a natural map

a:G>G, aD=x0) .
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That is, a(y) is just evalAuation at y on the dual space. This is clearly a
(continuous) character of G. The main point of this section is to establish the
following result:

3-20 THEOREM. (Pontryagin Duality) The map a:G— G isan isomorphism of
topological groups. Hence G and G are mutually dual.

We begin with a lemma that shows that the map « is at least injective. This
will subsequently allow us to identify its image with a subset of G.

3-21 LEMMA. The mapping a defined above is injective; that is, G separates
points in G.

PROOF. Suppose that z is not the identity of G. Clearly it suffices to demonstrate
the existence of a character y such that y(z)#1. Suppose that no such y exists.
Then by definition of the Fourier transform and Haar measure, it is immediate
that

f=@n

for all f in L'(G). Hence by the Fourier inversion formula we get /=L, f for all f
in V(G). Now, since G is Hausdorff, there exists an open neighborhood U of
the identity such that Un(z"'U)=@. By Exercise 5, there exists a nonzero con-
tinuous function f of positive type with support in U. But for such £, it is impos-
sible that /=L, f. The contradiction completes the proof. a

Now let K be a compact neighborhood of the identity character in G. Given
an open neighborhood ¥’ of the identity in S', we may apply the construction of
Section 3.1 to define the following subset of the double dual of G:

WE,V)={y eG:y(y)eVforall y K} .
Such subsets and their translates constitute a base for the topology of G. of
course, some of the elements in the double dual arise unambiguously from ele-
ments of G via the mapping . Hence it makes sense to define
Wo(K,V)=WEK,V)na(G)
and to regard this as a subset of G. We shall use these subsets to characterize

the topology of G in a way that immediately implies that « is moreover a ho-
meomorphism onto its image.
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3-22 PROPOSITION. The subsets WG(IQ',V ) and their translates constitute a
base for the topology of G.

PrOOF. Let U be an open neighborhood of the identity eeG. Then again by
Exercise 5, there exists a continuous function g on G of positive type with sup-
port in U such that g(e) = 1. It follows from Corollary 3-19, part (i), that the
Fourier transform of g is positive. Moreover, from the inversion formula we
have

[ewar=1.

Thus we may identify g(x)dy with a finite Radon measure on é which in
particular is inner regular. Accordingly, given any positive & there exists a
compact subset X of characters such that

[8dy>1-¢
K

and hence the corresponding integral over the complement of K is less than .
Now consider the identity

g = [2xdx+ [#x(»ax
X

IEC

given by the Fourier inversion formula. As V shrinks to a sufficiently small
neighborhood of 1 in S, the first integral above eventually lies within & of
unity for all ye WG(I% ,V), while the second is unconditionally bounded in ab-
solute value by & Hence g must be bounded from below by 1-2¢0n W, (12' V).
But by construction, U contains the support of g, and therefore U contains
WG(I% ,V'), thus completing the proof. a

3-23 COROLLARY. The mapping a defined above is bicontinuous; thus « is a
homeomorphism onto its image.

PRrOOF. By construction we have the identity
aWy (R, V) =WE V) a(G)
which in light of the lemma and the proposition shows that « is bicontinuous at

the identity element of G. Since a is clearly a group isomorphism onto its im-
age, the result holds everywhere in G by translation. a
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Recalling one of the fundamental facts of topological groups, this first cor-
ollary nets us a second:

3-24 COROLLARY. The image of a is closed in G.

ProoF. By general topology, a locally compact and dense subset of a Hausdorff
space must be open. Now a(G) is locally compact, being the homeomorphic
image of the locally compact group G, and, of course, is dense in its closure in
the double dual. Accordingly, a(G) is an open subgroup of its closure. But
since every open subgroup of a topological group is also closed, a(G) is in fact
identical to its closure, as required. a

Given these two corollaries, the proof of Pontryagin’s theorem reduces to

showing that a(G) is dense in the double dual of G. This requires a final bit of
delicate analysis.

The Plancherel Theorem

Let feL'(G) and as usual, define j~" (x)= f(x™) for xeG. An easy calculation
shows that

fn=71@ .

Set g=f* f” ; then certainly g is integrable and moreover, according to Exer-
cise 5 below, of positive type. If f lies also in L%(G), the Fourier inversion for-
mula yields the following key observation:

[1reor dx =g
=& dr
=[I/ldy .

This shows that the Fourier transform induces a map

ING)AIXG) - I¥G)
fef

which is an isometry onto its image.



122 3. Duality for Locally Compact Abelian Groups

Recall that A= A(G) denotes the rmg of Fourier transforms of functions in
L (G) Let A denote the subset of A arising from the isometry above. Note
that AI is stable under multiplication by elements of a(G):

[a(yo)- F1) = 2o SONZ)
= [FEs Ay
=[Sz dy
=L, /YD)

The following result is the key to our current discussion.
3-25 LEMMA. /i, is a dense subspace of the Hilbert space Lz(é).

Granting this, since also L'(G)nL*G) is dense in L*G)—the intersection
contains % (G)—the isometry defined by the restricted Fourier transform may
be extended by continuity to an isometric isomorphism

IA(G) - I*}G)
f f .

Note that we continue to use the circumflex notation for this extended version
of the Fourier transform, called the Plancherel transform. To summarize, rela-
tive to the preceding lemma, we have established the following:

3-26 THEOREM. (Plancherel) Let G be a locally compact abelian group. Then
the extended Fourier transform defines an isometry of Hilbert spaces
Sfrom L*(G) onto LX(G). a

PrOOF OF LEMMA. In view of the self-duality of Hilbert spaces and the Hahn-
Banach theorem, it suffices to show that zero is the only element of L2(é) or-
thogonal to every element of /]1 .

Assume that ge Lz(é) is orthogonal to every element in ﬁl. Since 21, is
stable under multiplication by elements of a(G) for all f ef], and yeG, we have
that

[eFow»az=0 .
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This says that the Fourier transform of the measure g(y) f(x)dy is zero, and
hence by a slight extension of Proposition 3-15 so is the product gf almost
everywhere. But note that for a character y we have (y- /) =L, f” . Thus given
any nonzero continuous element of 4,, we can produce an element of 4, that
does not vanish in some neighborhood of 7. Hence if the product gf is zero
almost everywhere, it must be that g is zero in Lz(é), as required. a

3-27 COROLLARY. (Parseval’s Identity) For all £, ge LX(G), we have
[ g =[ f(ngdr
PROOF. By elementary linear algebra, a linear isometry is necessarily unitary. O

3-28 COROLLARY. Let f and g lie in LXG), and let h lie in L'(G). Then if
h=f-g,wehave h=f*g.

ProoFr. Suppose that & factors as given. Let x, be a character. We compute as
follows, appealing to Parseval’s identity to justify the transition from the second
to the third line:

h(x0) = [ 72N Zo(¥) dy
= [ FMEWN 2y
= [ 708 20 dx
= f*8(x0) -

This completes the proof. Qa

3-29 COROLLARY. The ring A of Fourier transforms of L'-functions on G con-
sists precisely of convolutions of functions in L*(G).

PROOF. If he L'(G), then h factors as f-g for functions f,ge L G). For instance,
h=r|r| where reL¥(G) is defined by

{h(x)/lh(x)l”z ifh(x)# 0
r(x)=

0 otherwise.
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Hence h= f” xg, and therefore every element of A is of the required form.
Conversely, by Plancherel’s theorem every convolution of functions in Lz(é)
takes the form f” * g for some fand g as above, and hence is the transform of
the L!-function f~g. Accordingly, such products lie in A , as required. a

This brings us to the final technical prerequisite for the proof of Pontry-
agin’s theorem.

3-30 PROPOSITION. Let U be a nonempty open subset of G. Then there exists a
nonzero function f' eA with support contained in U.

PRrOOF. Recall from Proposition 1-7, part (iii), that the volume of any nonempty
open set relative to a Haar measure is positive. Thus, by inner regularity, there
exists a compact subset X of U with positive measure. At every point of xeK we
can find an open neighborhood V, of the identity and an open neighborhood U,
of x such that U,V is contained in U. Then since X is compact and G is locally
compact, there exists a compact neighborhood ¥ of the identity such that KV is
contained in U. Define f as the convolution of the characteristic functions on
K and V, respectively. It follows at once from the previous result that f’ €A and
that f" has support contained in KV, and therefore contained in U. Moreover,
one calculates at once that the integral of f” over G is simply the product of the
measures of X and V, and hence positive. Thus f” is nonzero on a set of posi-
tive measure. Q

Proof of Pontryagin’s Theorem

As we observed above, it remains only to show that a(G) is dense in G.If not,
then according to our last proposition, there exists a function in ¢ € I/ (é) such
that ¢ is nonzero but nonetheless ¢ vanishes on a(G). Let y, lie in the dou-
ble dual. Then by definition,

#(70) = [ e Fo(x x .
But the assumption that ¢ vanishes on a(G) means precisely that

[0z ™dg=0
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for all yeG. Hence, as in the proof of Plancherel’s theorem, ¢ =0 almost eve-
rywhere, and therefore @ =0. This contradiction completes the proof. a

The only remaining issue in this chapter is to establish the last statement of
the Fourier inversion formula, namely that the Fourier transform identifies
V(G) with V!(G). We have already shown that the map f - f is injective.

Let F'lie in V‘(é), and define a function fon G by the formula
f)=[Fir»dy .

Identifying G with é, this amounts to
f»M=Fo™)

which places feV''(G) by Corollary 3-19. [One verifies at once from the defini-
tion that if y—> @(y) is of positive type, then so is y+> ¢(371).] By the Fourier
inversion formula,

F() = [FOo)z(»dy
=[ro™Maay

=[xy
and this shows that F is the Fourier transform of /. Hence f — f” is also sur-
jective, as required. a
Exercises

1. Let G be a locally compact topological group. We consider functions from
G into either the real or complex numbers.

(@) Let f, and f, be Haar-measurable functions on G. Show that the product f, f,
is likewise Haar-measurable on G.

(b) Let f be a Haar-measurable function on G. Define F on GxG by

F(g.m=1@/h) .

Show that F is Haar-measurable on GxG.
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(c) Let p be a Haar-measurable function on G. Define y on GxG by

v(g.h=pE'h) .

Show that y is Haar-measurable on GxG.

2. Let G be a topological group and let X be a metric space, with x,eX. Sup-
pose that f:G—X is a continuous function subject to the condition that
there exists a compact subset X of G such that if s¢ K, then f(s)=x,. (Thus
we generalize the idea of compact support to cases for which the codomain
has no algebraic structure.) Use Proposition 1-1 to show that f is uniformly
continuous in the following sense: for every £>0, there exists a neighbor-
hood V of the identity in G such that | f(s)—/(¢)|< e whenever s 'te V.

3. Letfe® (G) and let geZ(G). Show that f*g likewise lies in & (G). [Hint:
For continuity, use an easy extension of Exercise 2 to show that if £ ,—f in
G, then for any positive & eventually

I (g(s7'1)~ g(s7'1)).f (s) dis|<|| Sl s(supp e .

To see that f*g moreover vanishes at infinity, note that for every positive &
there exists a compact subset K, of G such that |g| is bounded by son K,
the complement of K. But also, the support of fis confined to a compact
subset K, of G. Now if f lies outside of the compact product K=K K, then
whenever fs lies in K, s~ must lie outside of K. Thus

| &™) 1 (ts) s\ <I| f1l., (K )E

whence f#*g(f) tends to 0 as ¢ tends to infinity.]

4. Let pbe a unitary representation of a locally compact group G on a Hilbert
space V. Let xeV be arbitrary. Show that the mapping

5 (x| p(9)x])
is of positive type. This essentially establishes the converse of Proposition

3-4. [Hint; In the manner of the introductory discussion of Section 3.2,
consider the discrete analogue of this statement.]
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For f a complex-valued function defined on a locally compact abelian
group G, define f, also on G, by

f®=rc" .

Use the preceding exercise to show that if fe# (G), then the convolution
product f* f is continuous of positive type on G. Next use Urysohn’s
lemma to show that for any open neighborhood V of the identity, there is a
continuous function g of positive type with support contained in V such
that g(e)=1.

Let G be a locally compact abelian group. Show that every closed, convex
subset of L*“(G) that contains the characters of G and the zero function
also contains Z(G). [Hint. Use Lemma 3-6 and Theorem 3-8.]

Show that for a locally compact abelian group G with Haar measure g,

ME) = WE™)

for all Borel subsets E. [Hint: Show that v(E)=u(E™) is likewise a Haar
measure on G, hence a multiple 4 of x But what if £ is a symmetric subset
of G of finite measure? Must such subsets exist?]

Let G be a locally compact abelian group. Use that & (G) is dense in L?(G)
for 1<p<oo to show that for all ye G the mapping

ING) > I['(G)
SeLf

is uniformly continuous. [The same is true for L?(G), 1<p<o0.]

Let G be a locally compact abelian group. Show that for every character y
of G there exists a function feL'(G) such that f(x) # 0. [Hint: The real
part of y is positive in some neighborhood of 1. Use the local compactness
of G and Urysohn’s lemma to construct an appropriate /-]

Let X be a locally compact Hausdorff space. Show that each Radon meas-
ure x on X of finite total mass extends uniquely to a Radon measure 4’ on
X', the one-point compactification of X, such that z'({cc})=0. [Hint: To see
that 4' is outer regular, observe that for £ measurable,
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11.

(@

®)

©

HE) <inf w(U U, < inf (u(U) + u(U,))

where the infimum is taken over all pairs of open sets U and U_ such that
U contains £ and U_, contains c. But since g is inner regular on G, there
exist neighborhoods of o of arbitrarily small measure. Now derive the in-
ner regularity of 4’ from its outer regularity and the fact that a subset of X’
is compact if and only if its complement is open; in essence the supremum
calculation over compact subsets of £ is equivalent to the infimum calcula-
tion over open supersets of £.]

Let G be a locally compact topological group (not necessarily abelian) and
let 1 be a positive Radon measure on G of finite total mass. Recall that we
may identify x with a linear functional on & (G), and that under this iden-
tification a point measure corresponds to a positive multiple of an evalua-
tion map. As usual, G’ denotes the one-point compactification of G, and u
is extended to G’ by setting £(c0)=0.

Show that for every open neighborhood U of the identity in G and open
neighborhood V of « in G’ there exists a finite partition of G consisting of
measurable sets W,,...,W,,W_ such that each W admits a translate con-
tained in U and W_ lies in V. [Hint: A finite number of translates of U
cover the complement of V, and these together with V'—{w} cover G. Ex-
tract the required partition from this open cover.]

Let U,V, and W,,...,W, be as above and select points wjer for j=1,...,n.
Define a corresponding linear functional y;; , on € (G) by

Puy ()= BV f(w))
Show that for each f in € (G), as U approaches the identity and V" ap-

proaches oo, 44, (/) approaches u( f). [Hint: Assuming that the support of
[ is contained in the complement of V, we have evidently that

[ f du= s (N Y [IF )= S (w )l dpa(w)
w;

Now use the finiteness of the mass of # and the uniform continuity of /° (cf.
Section 1.1) to deduce the conclusion.]

Conclude from parts (a) and (b) that every measure i on G of the given
type is the weak limit of a linear combination of point measures of total
mass 1 with positive coefficients.
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Let G be a locally compact abelian group. Show that there exists a net of
functions fin V!(G) whose Fourier transforms converge uniformly to the
constant function 1 on compact subsets of the space of characters on G.
[Hint. Consider a compact neighborhood K of the identity and a positive
function g, having support on K whose integral is 1. What can one say
about the convolution f, = g, *g,, especially in light of Exercise 57]

(Duality for Finite Abelian Groups) Let G be a finite abelian group, and set
G =Hom(G,S") .

Note that we may assume the discrete topology for G, whence continuity
plays no role.

Let CG denote the space of complex-valued functions on G; in other
words, the complex group algebra of G. For every fe CG, define its Fourier
transform by

f :G>C
2P f(@1(8).
gsG

Prove directly that

1 ~
f(g)= m%@f(l)l(g) .

This is, of course, the finite version of the Fourier inversion formula.

Show explicitly in the case G=Z/nZ that also G=ZInZ. [Hint: If o gener-
ates G, show that G is generated by the map y:0* 1> €2/ |

(c) Let H be a subgroup of G, let u cH , and let yeG—H. Set H' equal to the

subgroup of G generated by H and y. Show that there exists an element
u € H' that agrees with 2 on H. Conclude by induction that there exists a
character y of G that likewise agrees with ¢ on H. From this and part (b),
deduce that for any ge@G, there exists a character y of G such that y(g)#1.
[Hint: Given any teS' and n>1, one can find weS' such that w"=1.]

(d) Define a map a on G as follows:
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a:G>G =H0m(é,S')
grax x(g) .

Show that « is a well-defined injective homomorphism. [Hint: Use the pre-
vious part.]

Define the map @ between the group algebras CG and cG by sending f to
its Fourier transform f . Use part (d) to show that @ is both C-linear and
injective.

Show that any set of distinct characters 2,,..., %, of G are linearly inde-
pendent over C. [Hint: Start with a dependency relation of minimal length,
and then find a shorter one.]

Let 4 be an element of CG that does not lie in the image of the map @ de-
fined above. Show that # must satisfy the equation

> (=0 .

2€G

Deduce from this that
> h(x)x=0

2€G

as a function on G. Conclude from this and part (f) that #(y)=0 for all y,
and from this contradiction that @ is indeed surjective.

Show that dim(CG)=dim(Cé). Conclude that the map « defined above is
in fact an isomorphism.

Let G be a profinite group, or equivalently, a compact, totally disconnected
group.

Let y:G—>C* be a continuous homomorphism. Then show that Ker(y)
must contain an open subgroup and that consequently y must have finite
order. [Hint: First show that there exists a neighborhood U of 1eC* that
contains no nontrivial subgroup of C*.]

For any n2l, let p:G—GL,(C) be a continuous homomorphism; that is, a
representation of dimension n. Show that Ker(p) must still contain an open
subgroup, so that p(G) is a finite group.
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(c) Fix - an algebraic closure Q c C of Q, and let Ggq denote the Galois group
of Q over Q. For any positive integer m, let 4, denote the group of mth
roots of unity in Q. Observe that for any oe GQ, we have that o(y,)=u4,,.
Now choose a rational prime p and set

W=h(1_n;1p,,.

n

Show that there exists a continuous homomorphism
Zp-Go = Aut(W) = Z;‘, c Q’;,

that, in contrast with the first part of the exercise, is not of finite order.
(Indeed, one can further imbed Q, in C and thus view y, as a complex
character on GQ, but this composition is not continuous for the standard
complex topology. The character suggested here is called the pth cyclofo-
mic character.)



4
The Structure of Arithmetic Fields

This chapter develops the basic structure theory for local and global fields; we
follow A. Weil in stressing the topological rather than algebraic perspective,
although perhaps less emphatically. Thus the more algebraically inclined will
gain new insight into phenomena that have more often been treated in the con-
text of the fraction field of a discrete valuation ring with finite residue field, or
a Dedekind domain.

We begin by introducing an essential tool in the topological analysis of lo-
cally compact abelian groups and, in particular, of locally compact fields: the
so-called module of an automorphism. This leads us to the classification theo-
rem for local fields that appears in the second section, followed by an analysis
of the extension of such fields in the third. It is here that we first meet the no-
tion of ramification.

In Section 4.4 we study the more challenging global fields, the analysis of
which relies fundamentally on the dense embeddings of a global field F into
suitable locally compact fields. Thus the starting point is the classification of
the (locally compact) completions of F relative to an absolute value; this is a
generalization of Ostrowski’s theorem, which says that the completions of Q
are either R or Qp, for some prime p. We shall see that the Archimedean ones
are indexed by the nonconjugate embeddings of F into C, while the non-
Archimedean ones are in bijective correspondence with discrete valuations
arising in connection with prime ideals.

In the final section we introduce the decomposition group with its relation to
the corresponding local Galois group, further discuss ramification, and con-
clude with a technical result on global and local bases.

4.1 The Module of an Automorphism

Let G be a locally compact additive group with Haar measure x and consider a
(continuous) automorphism « of G. If X is any Borel subset of G, then so is a.X,
and thus o« is likewise a Haar measure on G. By uniqueness of the Haar
measure, it follows that yo a=cu for some positive real constant ¢, which is
then called the module of o and denoted mod;(a). Thus, by definition, we have
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H(aX) = mod(a) u(X)

for all measurable subsets X of G. Obviously the module is multiplicative in the
sense that

mod () = mod(a)mod( )

for all automorphisms a and S of G.

As a special case, if k is a locally compact field—what we often refer to
more succinctly as a local field—and V is any topological vector space over %,
then every ack* defines an automorphism of V' by left multiplication, and we
define mod,{(a) to be the module of the associated automorphism. We extend
mod,, to all of k by defining mod,(0) to be 0. In particular, we may define
mod,(a) for aek to be the module of a acting on & itself.

4-1 PROPOSITION. Let k be a locally compact field with Haar measure . Then
mod,:k—>R, is a continuous mapping.

PRrROOF. Fix a compact neighborhood X of zero and choose an arbitrary element

a lying in k. Note first that by Proposition 1-7, part (iii), #(X)>0. Now since y
is outer regular, for every positive ¢ there is an open set U, aXc U, such that

uU)<spaX)+e .

Since multiplication is continuous and X is compact, there exists an open
neighborhood W of a such that W.Xc U. But then for all beW, bXc U, and so

uOX)sp@x)+e
whence dividing by u(X),
mod,(b) < mod,(a) + u(X) e .

Thus mod, is at least continuous at zero. Moreover, this shows that for all posi-
tive x, the inverse image of (0,x) under mod, is open. Now clearly

mod,(a~") = mod,(a)™!

and so we have a commutative diagram

mod,,
k* - R}
O Lo
modk

k* —> R;
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from which it follows that for all positive x, the inverse image of (x, o) is like-
wise open. Hence the inverse image of any open interval is open, and from this
we deduce that mod, is continuous, as claimed. Q

Since every discrete topological space is trivially locally compact, we can
expect serious progress in the classification of locally compact fields only if we
exclude this case. (Note in particular that the previous result is trivial for dis-
crete fields.) Accordingly, we shall henceforth address nondiscrete topological
fields.

4-2 COROLLARY. Assume that k is nondiscrete. Let U be any open neighbor-
hood of zero. Then for every positive ¢ there exists an element acU such
that 0<mod,(a)<e.

ProOF. The inverse image of [0, £) is an open neighborhood of zero. Hence its
intersection with U is likewise an open neighborhood of zero. Since k is not
discrete, this intersection contains a nonzero element a, which by construction
has the required property. a

4-3 COROLLARY. Assume that k is nondiscrete. Then the function mod, is un-
bounded, and consequently k is not compact.

PRrROOF. By the previous corollary, for any positive £ we may find aek* such
that 0 <mod,(a) < &. Hence mod,(a~') 2 7!, and the assertion follows. a

4-4 PROPOSITION. Let k be as above and let m be a positive number. Define
B, = {ack : mod (a)<m} .
Then B,, is compact.

ProoF. Note first that B, is at least closed by the continuity of mod,. Let V'be a
compact neighborhood of zero, and let # be an open neighborhood of zero such
that WV V. Then by the first corollary above there exists an element re Wnl
such that 0<mod,(r)<1. We find inductively that r"eV for all positive n,
whence for any aek, the sequence {r"a}, which lies in the compact set Va,
must admit at least one limit point. But clearly lim mod,(r"a) = 0, whence by
continuity the one and only limit point of this sequence is zero. Since V con-
tains an open neighborhood of zero, it now follows that for all aek, cither a
belongs to V' or the integer v,= inf {n:r"acV’} is finite and positive. In the lat-
ter case, clearly

rea eV —rl . “.0
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We claim that for aeB, ~V, the numbers v, are bounded from above by some
constant M. Granting this, it follows at once from Eq. 4.1 that the closed subset
B, is contained in the union of compact subsets V,r,...,rMV and is there-
fore compact.

PrOOF OF CLAIM: Let X be the closure of I'—rV, which is compact and excludes
zero. Set

B= inf mod, (x) .

Then f is positive, since a continuous function on a compact set achieves its
minimum, which in this case cannot be 0. Choose M such that mod, (n)M<S/m.
Then if aeB,~V, we have

mod, ()" -m< < mod, (r**a) = mod, (r)*= - mod,, (a) <mod, (r)"= -m
and since 0 <mod,(r) <1, we must have v, <M. This completes the proof. a

4-5 COROLLARY. For a€k, lima” =0 if and only if mod,(a)<1.

n—»w

PrROOF. If mod,(a) <1, then the elements a” lie in the compact set B,, and
therefore the sequence {a"} converges. By continuity, the limit has module zero
and is therefore itself zero. The converse is obvious. a

4-6 COROLLARY. Let | be a discrete field contained in k. Then for all acl*,
mod,(a)=1. Moreover, | is finite.

PROOF. Suppose that ae/* but mod,(a)<1. Then the sequence {a"},., lies in /,
which, according to the previous corollary, is therefore not discrete—a contra-
diction. If mod,(a)> 1, the same argument applies to a~'. This establishes the
first assertion and shows moreover that /cB,. But a discrete subset of a com-
pact set must be finite. a

4-7 PROPOSITION. The sets B,, constitute a local base at zero for the topology

of k.

PRrROOF. Recall first that for a locally compact Hausdorff space, we at least know
that the compact neighborhoods of a given point constitute a local base. On any
compact neighborhood V' of zero in k, mod, is bounded, say by m. Then cer-
tainly < B,, and X, the complement of the interior of V" in B,, is likewise
compact and excludes zero. As above, set
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pB= ,lcne)i.: mod, (x)>0 .

Choosing y in R such that 0 <y< g, we have By_c_V, and this completes the
proof. a

4-8 PROPOSITION. The function mod, induces an open homomorphism of k*
onto a closed subgroup T of R

PROOF. Let x be the limit of a sequence {modk(aj)}j where each a.ek. Then
since mod, is bounded on this sequence, eventually the a; fall into a compact
ball B,, for some m. Hence x lies in the closure of the continuous image of a
compact set, which must itself be closed. It follows that in fact xemod,(B,),
whence mod, (k) is closed. Accordingly I is closed in the usual induced topol-
ogy on R}.

We next establish that mod, is open on k*. Let U denote the kernel of the
restricted map, so that we have a short exact sequence of commutative groups

152Uk >T>1 .

Let IV be an open subset of £~ and let {x;} be any sequence in I converging to
some xemod,(V). Say x=mod,(a) for some aeV. The sequence {x;} pulls back
via mod, to a sequence {a;} in the unit group k*, and so as above, eventually the
points fall into one of the compact balls B,,. Therefore some subsequence {a’j}
of the sequence {a;} converges, say, to aek™. By continuity, mod,(@)=x also,
whence by group theory aeaUc V'U. Since VU is open, eventually the points
of {a’} must lic in the product of these two subsets. But by construction,
mod,(V'U)=mod, (V), showing that the subsequence {modk(a'l.)} of the original
sequence {xj}—and hence the entire sequence—eventually falls into mod, (V).
The image of V" under mod, is therefore open, as claimed. a

4-9 THEOREM. Let k be a locally compact, nondiscrete topological field with
Haar measure u. Then:

(i) There exists a positive constant A21 such that
mod, (a+b) < A-sup{mod, (a),mod, (b)} Va,bek . “4.2)
(i) IfA=1, then mod(k*) is discrete.
PROOF. Define 4 by the formula

A=sup{mod, (1+b)} .

beB
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Since the supremum is taken over a compact set (a translate of B,), 4 is indeed
finite and clearly greater than or equal to 1. Moreover, taking a=1 in the in-
equality 4.2, we see that the number defined by this formula is clearly the
smallest possible value for which the stated inequality can hold.

To show now that inequality 4.2 holds for all a and b, it clearly suffices to
consider the case that either a or b is not zero. So assume that a is not zero and
that mod,(b) <mod,(a). (Otherwise, b is likewise nonzero, and we can switch the
roles of a and b.) Then setting c=a-'b, we have mod,(c)<1 and a+b=a(1+c).
By construction, mod,(1+c)<4, and therefore

mod, (a+b) =mod,(a)mod,(1+c)
< 4-mod,(a)
= A-sup{mod,(a),mod, ()}

as claimed in part (i).

To prove (ii), suppose that 4=1. Let U denote the interior of B,, which obvi-
ously contains 0. Then mod, maps 1+U into an open subset of I" that contains 1
but is itself contained in [0,1]. This means that mod,(1+U) is the intersection of
an open subset of R with I', and, in particular, that there is an open interval /
containing 1 whose intersection with I is contained in [0,1]. However, 1 is an
accumulation point from the left in I' if and only if it is also an accumulation
point from the right, since mod,(a~')=mod,(a) ! for all a#0, and so such an
interval / cannot exist unless 1 is nof an accumulation point of I'. But then the
set consisting of 1 alone is open in I', which is to say that I" enjoys the discrete
topology, as claimed. a

DEFINITION. If k satisfies the inequality of part (i) with A=1, then we say that &
(or mod,) is ul/trametric. In this case,

mod, (a +b) < sup{mod, (a),mod, (b)} Va,b ek

and we call this the ultrametric inequality.

Via an easy induction, the ultrametric inequality implies that mod,(n-1,) <
mod,(1,)=1 for all neN, so that for an ultrametric ficld mod, is bounded by 1
on the prime ring. We shall establish the converse, and more, shortly.

The following propositions establish some properties of mod, that depend on
the inequality 4.2 of the previous theorem. The first holds more generally for
any strictly multiplicative function.

4-10 PROPOSITION. Let F:N—R, be a strictly multiplicative function [i.e., for
all natural numbers m and n, F(mn)=F(m)F(n)], and assume that there
exists some constant A such that
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F(m+n) £ A-sup{F(m),F(n)}

for all m,neN. Then either (i) F(m)<1 for all m, or (ii) F(m)=m* for
some positive constant A.

PrROOF. We note first that since F is strictly multiplicative, the idempotents 0
and 1 must map onto idempotents, which is to say 0 and 1. Moreover, from the
identities F(0)=F(0-n)=F(0)-F(n) and F(n)=F(1'-n)=F(1)-F(n) we deduce that
if F is not constant, then #(0) must be O and F(1) must be 1.

Define an auxiliary function /:N—>R_ by

0 if F(m)=0

S (m)= {log F(m) otherwise.

We shall show that for m>2, f(mm)=Alogm for some constant A. Let a=log 4.
Then we have the following relations for all m, n, and nonzero j:

fm’y=j-f(m)
S(mn)< f(m)+ f(n)
S(m+n)<a+sup{f(m), f(n)}

The middle relation is, of course, an equality, provided that neither m nor n is
zero. The last extends inductively to

f(Zm,-)Sra+su_p{f(m,)} .
i=0 i

Now assume that m,n>2, and let b=sup{ f(0),...,f(n—-1)}. Express m in base n
as follows:

m=Ydn  (0<d;<n, i=0,..,r) .
i=0

We assume in particular that d, is nonzero, whence n”<m. Then by the general
properties above, f(m)<ra+b+rf(n), whence the further inequality

f(m) _atfn) b

logm ™~ logn logm

Replacing m by m/ and taking j to infinity yields

J(m) _a+[(n)

logm =~ logn
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Repeating this argument for » in this last inequality yields finally

fom) [

logm ~ logn

whence by symmetry, we deduce that f(m)/log m is a constant for m>2. Hence
for such m, f(m)=Alogm for some constant A, as claimed above.

If A is 0, then clearly alternative (i) holds for m>2, and the remaining cases
(m=0,1) are covered by our preliminary analysis.

If A is positive, then alternative (ii) holds for m>2, and it only remains to
check m<2. But in this case F is not constant, and once again our preliminary
analysis yields the desired result. a

Note that a function F on an arbitrary field ¥ induces a function on N (or
even Z) by defining F(m)=F(m-1,). In particular, the function mod, induces a
strictly multiplicative function on N.

4-11 PROPOSITION. If mod, is bounded on the prime ring of k (that is, if the
induced map on N is bounded), then in fact mod,<1 on the prime ring,
and moreover, k is ultrametric.

PROOF. Since mod,(m’)=mod,(m)’, the induced map cannot be bounded unless

its values lie in [0,1]. It remains to show that & is ultrametric. Let N=2", Then
by successively splitting the summation

N
2 a;
J=1
into two summations, each involving half as many terms, we find that

N
mod, () a,)< A" sup{mod,(a,)}

Jj=1 J

which clearly implies the following more general inequality for arbitrary N:

N
mod, (3" a,) < A" sup {mod, (a,)} .

Jj=1 J

Thus

modk(a+b)2" <A™ sup {mod,,([z_jj mod, (a)’ modk(b)z"‘f} )
J

o< <2"
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Without loss of generality, assume that mod,(a) <mod,(b). Then since mod, is
bounded by 1 on the prime ring, the previous inequality simplifies to

mod, (a+b)*" <A™ mod, (a)*" .

Taking logarithms, dividing by 27, and letting » tend to infinity shows that
mod,(a+b)<mod,(a), and thus £ is ultrametric, as claimed. a

4.2 The Classification of Locally Compact Fields

The main point of this section is the following classification theorem.
4-12 THEOREM. Let k be any nondiscrete locally compact field. Then:
(i) Ifchar(k)=0, k is R or C or a finite extension of Qp.

(i) If char(k)=p>0, then k is ultrametric and isomorphic to the field of
Jormal power series in one variable over a finite field (i.e., the quo-
tient field of F [[1]] for some finite field ¥, and indeterminate {).

We begin with some preliminary results on topological vector spaces.

Topological Vector Spaces over Nondiscrete Locally
Compact Fields

Let V' be a topological vector space over a nondiscrete locally compact field %,
and let /¥ be a finite-dimensional subspace of V of dimension #. Assume further
that # has basis w,,...,w,. Consider the map

]
K" o w

(a;) » Zajwj .

Clearly ¢ is a sum of continuous functions, from which one deduces at once
that ¢ is a continuous isomorphism of topological vector spaces.

4-13 PROPOSITION. Given k, V, W, and ¢ as above, the following assertions
hold:

(i) Let U be any open neighborhood of zero in V. Then WU #{0}.

(ii)) The mapping ¢ is a homeomorphism. Consequently W admits pre-
cisely one structure as a topological vector space over k.
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(iii) W is closed and locally compact.

@(v) If V is itself locally compact, then V is finite-dimensional over k,
and mod (a)=mod,(a)¥™" for all a€V.

PROOF. (i) W~ U must contain something other than zero, else via ¢! the zero
vector would constitute an open subset of k", contradicting the assumption that
k is not discrete.

(ii) We need only show that ¢ is an open mapping. Since according to Proposi-
tion 4-7, the sets

B,= {aek:mod(@)<t} (t>0)

constitute a local base at zero for k, it suffices to show that for all positive ¢,
@(B/") contains a neighborhood of 0 . We introduce an auxiliary map

v
k* > R}

(a_,') > (mOdk(aj))j=l,...,n

which is continuous by Proposition 4-1. Define subsets 4 of k" and X of R,
respectively, by

A={(a;)ek™ sup (mod, (a,)) =1}
J
and

X=|J{(x;,)eRL:x;=L x,<1forj#i} .

Clearly neither set contains zero. Note, moreover, that X is closed in R, and
therefore 4, which is precisely y(X), is likewise closed in k”". Furthermore, 4
is a subset of the compact set B" and therefore itself compact.

Now consider ¢(4), a compact subset of V, which also does not contain zero.
Since scalar multiplication is a continuous map from kx} to V, the inverse im-
age of V- p(A4) contains an open neighborhood of (0,,0,). Again, since the sets
B, constitute a local base at zero for k, it follows that there exists an open
neighborhood U of zero and an £>0 such that B.UNp(4)=9. This is to say
that if yek with mod,y <'¢, then yUn p(4)=O.

Fix >0 and choose aek such that 0<mod,(a)<&f. (Such a exist according
to Corollary 4-2.) By part (i), the set (WnaU)—{0} is nonempty; suppose that
w=Xaw, lies therein. Let / be the index such that mod,(a,) is maximal and
hence positive. Finally, define the following parameters:
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bj = a;laj (j =1...,n)

=
z=a;w

Since (b)) lies in A, z lies in @(4). Since w lies in aU, z lies in yU with y=a,'a.
By definition of U and £we must have that mod,(y)> ¢. Therefore,

mod,(a,) < £'mod (@) <t .
This implies that (a;) € B and that w e p(B;"). We conclude that
WnaUc o(B')

whence ¢(B/") indeed contains a neighborhood of 0 in W, and therefore ¢ is
open.

(iii) Clearly ¥ is locally compact by part (ii). Suppose that z lies in the closure
of W but not in W itself. Then again by part (ii), we have a homeomorphism of
k™! onto (W, z), the subspace generated by # and z, which maps the closed sub-
space k"x{0} onto W¥. It follows that I itself is closed in (W, z), whence ze W—a
contradiction. Thus ¥ is closed in V, as claimed.

(iv) Assuming for the moment that V' is indeed finite-dimensional over %, in
light of part (ii) it suffices to prove the formula for mod,(a) for V’=k". But by
Fubini’s theorem, the effect of left multiplication by a on the measure of a
measurable subset of X may be computed iteratively over each of the coordi-
nates, and from this we deduce immediately that mod (a)=mod(a)", as
claimed.

It remains to show that a locally compact topological vector space V is in-
deed of finite dimension over k. Let there be given aek such that
0<mod,(a)<1. Then according to Corollary 4-5, we have that lima"=0,
whence mod,(a)<1 also. (Note that this holds for any nontrivial locally com-
pact topological vector space V' over k: by continuity of multiplication, for any
compact KcV, a”K eventually falls into neighborhoods of 0 of arbitrarily small
measure.) Let W be a finite-dimensional subspace of V, which is therefore
closed by part (iii), and consider the quotient space }J’=V/W. By devissage (sece
Exercise 3),

mod,,(a) = mod,,(a) mod,.(a) = mod,(a)4™¥ mod,.(a)

and since mod,,.(a)<1 with equality if and only if '= {0}, we have mod,.(a)<
mod,(a)4i™¥_ But this upper bound is valid for all finite-dimensional subspaces
W, hence dim / must be finite or else mod, (a) would be 0—a contradiction that
completes the proof. a
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Preliminary Analysis for the Main Theorem

We develop some general statements about mod, that will be needed in the
proof of the main theorem. In fact this analysis allows us to settle the case of
characteristic zero in short order.

Recall from the previous section that we define mod, for N by the formula
mod,(m)=mod,(m-1,) and that according to Proposition 4-10, either

(1) mod,(m)<1 for all m (equivalently, k is ultrametric by Proposition 4-11), or
(2) there is a positive constant A such that mod,(m)=m? for all m.
Assume first that alternative (1) holds, which is always the case for k of positive

characteristic, since then mod, is clearly bounded on the prime ring of k. We
then have

{m-1,: meN}c B,

and since B, is compact, there exists at least one limit point a. For every posi-
tive ¢ there are infinitely many m such that mod (m-1,-a)<¢. Let m and m’ be
two such integers with m<m’. By the ultrametric inequality,

mod, ((m' —m)-1,)=mod,(m' -1, -m-1,)< ¢ .

In particular, there exists 721 such that mod,(n)<1. Let p be the smallest posi-
tive integer for which this inequality holds. Since mod, is multiplicative, p
must be prime (see the proof of Theorem 4-30), and by induction, moreover,
mod,(mp) <1 for every meN. Let j be a positive integer less than p. From the
identity

Jj=({+mp)—mp

it follows from the minimality of p and again from the ultrametric inequality
that

mod,(j+mp)=1 .
Thus if » is any positive integer prime to p, then mod,(#)=1, and in particular,

p is the unique prime at which mod, is less than 1. This leads us to two possi-
bilities:

(a) Suppose that char(k)>0. In this case mod,(char(k))=0, and according to
the analysis above, p is in fact equal to char(k).
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(b) Suppose, still under alternative (1), that char(k)=0. Then mod,(p) is not
zero, and we may write mod,(p)=p~* for some positive ¢. Expressing arbi-
trary n as mp” with m prime to p, we see at once that

mod, () =ln[’

where |+ I,, is the p-norm on Q. [For nonzero ¢, the p-norm is defined as
follows: express ¢ in the form p™(a/b) where a and b are integers relatively
prime to p; then |c|p=p"".]

Let | |, denote the usual norm on R. It follows from case (b) that in charac-
teristic zero, under either alternative (1) or (2), we have that for all natural
numbers n,

mod, (n) =lnl! @3)

where v is the prime p described above if alternative (1) holds and p is « if al-
ternative (2) holds. Thus in this case the module has a uniform characteriza-
tion. Indeed, Eq. 4.3 is the key to the analysis in characteristic zero, as we shall
see in the following subsection.

REMARK. Note finally that if mod,(p)<1 for some positive rational prime p,
then either (a) holds, or (b) holds with v=p. In either case, k is ultrametric.

Proof of the Main Theorem in Characteristic Zero

We now dispense with the case char(k)=0. The isomorphism of algebras

7z > Z-],
n o d n'lk

extends to an isomorphism Q—1,-Qck, which we regard as an identification.
By Eq. 4.3, mod, induces the function x|x|, on Q. Since the sets B, con-
stitute a local base at 0 in k, the topological structure of Q induced by # is iden-
tical to that induced by the distance function [x—y/|,. Hence in view of k’s local
compactness, the closure Q of Q in k is precisely the completion Q, of Q rela-
tive to the metric v; that is, Q =Q, (as locally compact fields). By Proposition
4-13, part (iv), k is finite-dimensional over Q,, so that if v=oo, k is a finite field
extension of R, and hence is either R or C. Otherwise, if v=p, then £ is a finite-
dimensional extension of the p-adic field Qp. This completes the proof of as-
sertion (i) of the main theorem. a
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The bulk of the proof of assertion (ii) of the main theorem is in the analysis
of the local ring associated with a locally compact ultrametric field.

The Local Ring of an Ultrametric Field and Its Residue Field

Assume that k is ultrametric. Recall in particular (Proposition 4-9) that T, the
image of k* under mod,, is discrete in R. We define the following subsets of
k:

A = {xek|mod(x) <1}
A*= {xek|mod(x)=1}
P = {xek|mod,(x) <1}

We begin with an analysis of the major structural features of 4, P, and A/P.

4-14 LEMMA. A is the unique maximal compact subring of k, and A* (as de-
fined above) is the group of units of A.

PROOF. Note first that A =B, is compact, whence its closed subset A is likewise
compact. By the ultrametric inequality and the multiplicativity of mod,, 4 is
clearly a ring with unit group A%, as claimed. If S is any relatively compact
multiplicative subset of k, then aeS implies that the sequence {a”} has an ac-
cumulation point in S, and so mod,(a)<1. Thus Sc4, and 4 is indeed maximal,
as required. a

Recall that a Jocal ring is an integral domain that has a unique maximal
ideal. Clearly every element lying outside of this maximal ideal is a unit. A
discrete valuation ring is a principal ideal domain having a unique prime ideal;
it is in particular a local ring. The unique prime ideal of a discrete valuation
ring R takes the form Rz, where 7, the unique irreducible element of R (up to
associates), is called the uniformizing parameter of R.

4-15 LEMMA. A is a discrete valuation ring, and hence a local ring, with
unique maximal ideal P =Am, where the uniformizing parameter r is
given as any element in k* such that y=mod(n) is the maximal element
of T less than 1. Moreover, the residue field A/P is finite.

ProOF. By the ultrametric inequality, P is obviously an ideal of 4, and since
P=4-4~ it is, moreover, open and the unique maximal ideal of 4. Note also
that our description of wek* is sensible, since I is discrete, and that x is neces-
sarily irreducible in A. One shows easily that y generates I, so that we have a
short exact sequence of groups
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mod
1> A > k* > T =1

whence every element in aek* is expressible uniquely in the form u 7" for some
ueA* and integer n, called the order of a and denoted ord(a). (For con-
venience, we set ord,(0) =+c0.) Consequently every proper ideal of 4 is gener-
ated by its element of minimal order and thus of the form 7”4 for some positive
integer n. Hence A is ipso facto a discrete valuation ring with unique maximal
ideal P=A . Since P is open and A is compact, the residue ring A/P is discrete,
compact, and hence finite. This complete the proof. a

4-16 COROLLARY. Every automorphism o of k (as a topological field) maps A
to A and P to P; hence it induces an automorphism o on A/P.

PROOF. 4 must map onto itself by virtue of its description as the maximal com-
pact subring of k, and since a (unital) ring homomorphism maps units to units,
P=A4 -A* likewise maps onto itself. a

Henceforth we put g=Card(4/P). If mod,(p)<1 for some rational prime p,
then as observed in the remark above, k is ultrametric, and the present discus-
sion applies. Also, by definition p-1, € P, so that the characteristic of the residue
field A/P must be p, and g=p" for some positive integer ». Since A is compact,
and therefore of finite measure, and 4 is the disjoint union of g additive trans-
lates of P=74, p(A)=qu(rA), so that mod,(7)=g~'. We call ¢ the module of
k. Thus

mod, (a) =g "% (aek®) . 4.4

4-17 PROPOSITION. Assume that k is locally compact and that mod (p)<1 for
some prime p. Then the following assertions hold:

(i) Let {a}., be asequence in k such that lima=0. Then the series
77j=20 7

converges in k.

(i) Let {aj} be a fixed set of coset representatives for A/P that includes 0
and let ack* have order n. Then a is expressible uniquely in the form

a=Y an 4.5)
Jj=n

with a,z0.
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PROOF. (i) Since mod, is continuous, we must have also that lim modk(aj) =0.
Consider the sequence of partial summations

”n
S, = Z“J
J=0
Since k is ultrametric, for m<n,

mod(S, —S,,)< sup mod,(a;)<supmod,(a;)

m<j<n m<j

and the bound can be made arbitrarily small. We see that the S, must fall into a
compact subset of k and there accumulate to a unique limit point.

(ii) Since the a; are chosen from a fixed finite set, the numbers modk(a ') con-

verge to zero, and hence so do the field elements g, /. By part (i), a series of
the given form always converges. Next consider the poss1b111ty that

-]
Zajfr/ =0
J=0

but not all the a; are zero. If j, is the first index such that a; #0, then

. a0
Jo=g?! z p 2
T alo a/r

J=Jjot!

(each a; except 0 is a unit), which is impossible, since mod, applied to the left is
q % but mod, applied to the right is bounded by q'("’”) It follows that any
representation of the form given in Eq. 4.5 is unique. Finally, given aek*, after
multiplication by 7" we may assume that ae4*. We may then inductively
choose g; such that

n-1
as=Y an’ (modP") .
J=0

Note that a,#0 because a ¢ P. Thus

n-1
mod, (a-Y a,x’)<q™"
Jj=0

and as n— oo, the partial sums converge to a. This completes the proof. a
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Roots of Unity ink

We continue to assume that mod,(p)<1 for some rational prime p (with all
notation as in the preceding subsection). In particular, this condition holds if
char(k)=p. We examine a special subgroup of k* that is simultaneously a trans-
versal for (4/P)*. From this we shall easily deduce part (ii) of the classification
theorem (Theorem 4-12).

We begin with a technical lemma. Recall that ¢, the module of £, is also the
order of the finite residue field A/P and that g=p” for some positive integer r.

4-18 LEMMA. Let acA* and define a sequence in A as follows:

a,=a

-1
a, = a?"-a?" (n21)

. n .
Then {a,} converges to zero, and hence lim a? exists.
n—o

PROOF. Since by assumption p-1,&P, an easy induction shows that
A+P)Y" 1+ P |

Now (4/P)* has order g—1, so clearly a9-'e1+P, and from the inclusion above
it follows that a@"™" 1+ P™*'. Therefore,

n+l

_ n__ n, (g-Dg” rn+l
a,,=a” —a” =a”" (@9 _eP

whence limmod, (a,) = 0. Thus by continuity lim a, = 0, as claimed. The sec-

n—wo

ond statement follows from Proposition 4-17, part (i), since the nth partial sum
of the series Ta; is precisely a?" . m]
According to the lemma, we can sensibly define

(a) = lima?

n—»o

for aeA*. The definition also makes sense for aeP (where the limit is 0) and
hence for all of 4. Moreover,

a(ab) = aXa)axb)

for all a,beA, and in particular, e(a™)=w(a)" for all integers n and aeA*.
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Recalling that (1+ P)”" < 1+ P™!, we see that (a)=1 if a=1 (mod P). Con-
versely, if eXa)=1, then eventually (a - 1)?" =a? -1€P, and so a=1 (mod P).
Thus the inverse image of zero under o is P, while the inverse image of 1 is
precisely 1+ P. Note, too, that since a?-'e1+P for all ae4*, aXa)?'=1. Choose
an clement a,eA4* whose projection generates (4/P)* and put y=aXa,). We
claim that g, generates a cyclic group of order g—1 in 4*.

PRrROOF OF CLAIM. For any integer n, we have the following chain of equiva-
lences:

W=l w(a)=1
<al €l+P
<n=0 (modg-1)

Clearly this can hold if and only if 4, generates cyclic group of order g—1. O

Define M* to be the group of roots of unity in £ of order prime to p. The
upshot of this discussion is that @ induces an injective homomorphism of
groups (4/P)*—M*. This induced map turns out to be an isomorphism.

4-19 PROPOSITION. For every acM* aXa)=a. Hence the factorization of @
through the canonical projection onto (A/P)* induces an isomorphism of
groups M*=(A/P)*. Thus M=M*U{0} constitutes a complete set of coset
representatives for AP, and the polynomial x%~'-1 splits in k.

PROOF. Let aeM* be of order n, and let N be the order of ¢ in Z/nZ, so that gV
=1 (mod n). Then a®™ =q for all Jj20, and consequently axa)=a. Since M* is
a torsion group, this suffices to establish the first statement. The balance of the
proposition is easily deduced from the following commutative diagram:

M*

can. Iy

| — = P —> M* 0

In the case of positive characteristic, M=M*U{0} turns out to be much
more than a commutative monoid, and this is the key to part (ii) of the classifi-
cation theorem.

4-20 PROPOSITION. Assume that k is of positive characteristic p. Then M is the
algebraic closure of F, in k.
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PROOF. Let M be the algebraic closure of F, in k. We must show that every
nonzero element a € M is a root of unity of order prime to p. Certainly a lies in
some finite extension of Fp, so that a?"'= 1 for some m>1. Hence the order of
a has no factor of p, and aeM, as required. a

Combining this result with the representation of k by power series in the uni-
formizing parameter x [Proposition 4-17, part (ii)] yields the following result.

4-21 PROPOSITION. Assume that k is locally compact with mod,(p)<1 for some
rational prime p. Then

(i) Every element of P" (neZ) is uniquely expressible as

Zajﬂj (a,eM) .
Jjzn
(ii) (M, +) is a subgroup of (k,+) (and hence M is a field) if and only if
char(k) is positive.

Proor. We need only demonstrate (ii) in the forward direction. But this follows
at once from the existence of an injection of M into the finite set A/P: if M is
closed under addition, it must have torsion, whence & has positive characteris-
tic. a

Proof of the Main Theorem in Positive Characteristic

We consider the second statement of Theorem 4-12, the case char(k)=p>0, to
which the previous discussion applies. By the preceding proposition, every ele-
ment of k can be expressed uniquely as a power series in 7 with coefficients in
M (possibly involving finitely many terms with negative exponent). If & is of
positive characteristic, then M is a field and the assignment 7+ x induces an
isomorphism from % to M((x)), the field of formal power series in the indeter-
minate x with coefficients in A, This completes the proof. Q

4.3 Extensions of Local Fields

Returning to the more general case of a nondiscrete locally compact field k£ with
mod,(p)<1, with no assumption on the characteristic of k, we now develop
some fundamental results on finite extensions. Accordingly, let k,/k be an ex-
tension of k of degree n. Recall that k, has a unique topology as a topological
vector space over k, in which category it is isomorphic to £”. It follows that k, is
also nondiscrete and that any k-linear map of k, onto itself preserves this topol-
ogy, which is to say that Aut(kl/k)EAutmp(kl/k).
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SpECIAL CONVENTION. For this section we adopt the following convention: if X
denotes any structure or invariant defined with respect to k, then X; denotes
that same structure or invariant defined with respect to k;. Thus 4 and 4, are,
in particular, the local rings associated with the fields k and k,, respectively.

Ramification Index and Residual Degree

We shall now see how the finite extension & /k of a local field k gives rise to a
finite extension of finite residue fields; this in turn yields two key parameters.

4-22 PROPOSITION. The finite extension k, of k satisfies the inequality

mod, (p) <1 and therefore is likewise ultrametric. Moreover, A\~ k=A
and P,nk=P.

PrOOF. In light of the topological and algebraic characterizations of 4, P, 4,,
and P,, only the first statement requires justification. This follows from the
general formula

mod, (a) =mod, (@)" (ac€k)
applied to p-1, to show that mod ky ( p) is also less than 1. a

We come now to a fundamental relationship between the degree of the ex-
tension k,/k and the order of 7, the uniformizing parameter in 4, as an element
of4,.

4-23 PROPOSITION. Let k\/k be an extension of fields of degree n as above and
define q,, q, and e as follows:

g, = Card(4,/R)
q = Card(A/P)
e=ord b ()

Then q, =g/ for some integer f, and moreover, n=ef for some positive in-
teger e.

ProOF. Certainly 4,/P, is a finite extension of the finite field 4/P, whence such
an exponent fexists. Using Eq. 4.4, we can compute mod,,] (p) in two ways:

mod, (7)=(q)*=q"7

mod, (7)=mod,(r)" = q"
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A comparison of exponents yields the stated result. a

The integers e and f appearing in this proposition are singled out in the fol-
lowing definition.

DEFINITIONS. The invariant e is called the ramification index of k /k; the exten-
sion is called unramified if e=1. The exponent f'is called the residual degree of
k,/k; the extension is called fotally ramified if f=1.

Characterization of Unramified Extensions

We maintain the assumptions and notation of the previous subsection. In par-
ticular, k/k is an extension of nondiscrete locally compact ficlds and
mod,(p)<1. Henceforth k and I?l denote, respectively, the residue fields associ-
ated with the local rings of k and k,. Thus by definition [k:k]= f and ¢, =q .
In accordance with our convention, M,* denotes the set of roots of unity in k, of
order prime to p, and M, = M,  U{0}.

4-24 LEMMA. Let k, be a finite extension of k generated by one or more roots
of unity of order prime to p. Then:

(i) Kk =k(M)); k, is thus the splitting field for the polynomial x -1
and hence a Galois extension of k.

(ii) Every automorphism ceGal(k,/k) induces an automorphism on the
residue field & eGal(k,/k); moreover, the mapping o> & con-
stitutes an isomorphism of groups.

(iii) k, is cyclic and unramified over k.

PrROOF. We know by the isomorphism Af*=(4,/R)* (Proposition 4-19) that
M,* consists precisely of the roots of x%~' —1, and we have seen that k, at least
contains M|, whence by assumption k,=k(,). The subsets 4, and P, both re-
main invariant under every (necessarily topological) automorphism o of k, over
k, so o indeed induces the automorphism o of I?l over k defined by o(a+P)=
o(a)+P,. If & is the identity on k,, then o(a)=a (mod P,) for all ack,. But
since M, is a complete set of coset representatives for (4,/P,) and o permutes
the elements of M|, this implies that o(a)=a for all aeM,. Hence o is the iden-
tity on all of k,=k(M,), and therefore the group homomorphism o+ & is at
least injective. From this we deduce at once that

ef =[k:k]<[k:k]=f .
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Thus the ramification index e must be 1—which is to say that &, /k is unrami-
fied—and accordingly both Galois groups have the same cardinality. But if this
is the case, then injectivity implies bijectivity for the map o+ o, whence
Gal(k,/k) = Gal(k,/k), and the extension k,/k is indeed cyclic by elementary
Galois theory. This completes the proof. a

4-25 PROPOSITION. Let k\/k be a finite extension of nondiscrete locally com-
pact fields with mod,(p)<1. Then k, is unramified over k if and only if k,
is generated over k by M,. Hence for every positive f, k has exactly one
unramified extension of degree f, and this is generated over k by any
primitive (¢/-1)th root of unity.

PROOF. Assume that k,/k is unramified of degree f and consider the intermedi-
ate extension /=k(M,), with residue field / . Since M, also constitutes the set of
roots of unity in k(M) of order prime to p, it follows that M, is isomorphic to
both / and ki ; thus [1:k] = [k,:k] = f. But then [/:k]>f, showing that k,=/. In
light of the previous lemma, this establishes the first statement and shows fur-
ther that an unramified extension of degree fis precisely the splitting field over
k of the polynomial x?1 1; it is therefore unique up to isomorphism. a

4-26 COROLLARY. Let k,/k be as above. Then the following assertions hold:

(i) The mapping k, > k, constitutes a bijective correspondence between
the isomorphism classes of unramified finite algebraic extensions of k
and the isomorphism classes of finite extensions of k .

(ii) Given any finite extension k, of k, there exists an unramified sub-
extension l/k such that k /1 is totally ramified.

PROOF. Part (i) is immediate from the previous proposition, since a finite field
is determined (up to isomorphism) by its order. For part (ii), take /= k(M)).
Then //k is maximally unramified and of degree f, the ramification index of &,
over k. For a uniformizing parameter 7 of the local ring associated with k, the
following equations hold:

ord, (7)=e
Ordl(ﬂ') =1

In particular, 7 is also a uniformizing parameter for the local ring associated
with /, so that e, , =e. Since [k,:k]=¢f, it follows that [k,:/]=e, f, ,=1,
and k,/! is totally ramified, as required.
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Finally, these results allow us to define the Frobenius automorphism associ-
ated with the unramified extension of any given degree. We shall study this in
detail in Chapter 6.

DEFINITION. Let ,/k be the unramified extension corresponding to the residue
extension I;]/IE where k =Fq. Then 2, is the automorphism of Gal(k,/k) corre-
sponding to the mapping x > x?in Gal(k /k) under the isomorphism given
above by Lemma 4-24, part (ii).

4.4 Places and Completions of Global Fields

A number field is a finite extension of Q. A function field in one variable over
a field k is a field extension K of k of transcendence degree 1. Hence X is an
algebraic extension of the intermediate field k(x) for some element xeX that is
transcendental over k.

Since number fields are likely to be quite familiar, we will say a few words
only about function fields. If X is any compact Riemann surface (i.e., a one-
dimensional complex manifold), the field K=C(X) of meromorphic functions
on X is a function field over the field of complex numbers (whence the name).
In fact, every function field in one variable over C arises in this way. One also
knows that every compact Riemann surface is the set of complex points of a
smooth, projective algebraic curve over C. Given a function field X in one vari-
able over any field k£, we may identify K with the field of rational functions of a
smooth projective algebraic curve X over k. K is purely transcendental if and
only if X has genus zero, which is to say that it is isomorphic to P, .

DEFINITION. A global field is one of the following:
(i) an algebraic number field X

(ii) afinitely generated function field K in one variable over a finite field k=F,.

That these types of fields have many common properties has become the
basis of one of the most fruitful analogies in mathematics.

Absolute Values

We study global fields mainly by analyzing the different types of “absolute val-
ues” they admit. Note that the function mod, studied for local fields in the pre-
vious two sections is a particular instance of the following definition.

DEFINITION. Let F be a field. An absolute value (or valuation of order 1) on F
is a map

|-1: F> R,
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satisfying the following properties:

(AV-1) |a]=0 if and only if a=0.

(AV-2) |ab|=|al’|b| for all a,beF.

(AV-3) There exists a positive real constant ¢ such that for all a,beF we have
that |a +b|<c-sup{al,|b|}.

Note that the ordinary absolute value function on the complex numbers is an
absolute value in the sense above with ¢=2. In fact, a somewhat stronger state-
ment is true.

4-27 LEMMA. Let |-|: F > R, satisfy properties AV-1 and AV-2. Then the
Jfollowing statements are equivalent:

(i) Property AV-3 holds with c<2.
(ii) For all a,beF, |a+b|<|a| + |b].

Statement (ii) is, as usual, called the triangle inequality.

PrROOF. We need only show that (i) implies (ii). Assume that n=2" for some
positive integer m and let a,,...,a, be a sequence of elements of F. Then by
induction it follows at once that

2m
|Zaj|s2"‘-sup|aj| )

J=t

Now suppose that » is an arbitrary positive integer. We can always pad the se-
quence ay,...,a, with zeros out to 2™ terms, where m satisfies the condition
2m2n>2m1 The previous inequality then implies that

am-1

lza |<c- SUP{IZaI lza!}

2m1

<2-sup{ 2" sup |a,|, 2™ sup |a,|}
j<aml jramt

s2-2""'-sup|aj] .
J

Thus we achieve the general relation

n
IZajl < 2n-supla,|

J=1
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for arbitrary n>0. In particular, setting a=1 for all j, we obtain the inequality
|n|<2n. Moreover,

Izn:aJISZn-ilajl .
J=1 Jj=
We may now proceed with the main calculation:
|a+b|"=|(a+b)"|
n n . i
= |j§=%(j)ajb" 7]
noo ) »
sz(n+1)j_§l(,)nalflbl" d

s4(n+1)j§)(j)|a|’|b|”"
= d(n+1)(lal+]3])" .

Taking the nth roots of both sides and then the limit as #—o now yields the
triangle inequality. a

Note that if || is an absolute value, then |1]=1. Indeed, by AV-2, if a=|1]|,
then a?=q, whence ais 0 or 1. But the possibility that =0 is excluded by AV-
1, whence a=1.

One says that |-| is trivial if |a|=1 for all nonzero aeF. Every absolute value
on a finite field k=F,_ is trivial. This is so because for any nonzero ack, we
have a?'=1; accordingly |a|?'=1, and hence |a|=1, since R, has no roots of
unity other than 1.

DEFINITION. Two absolute values || and |+|" on F are equivalent if there is a
positive constant ¢ such that |a|' = | a|’ for all aeF. A place of F is an equiva-
lence class of nontrivial absolute values.

Note that if we replace an absolute value |-| satisfying AV-3 for some ¢>0
by |-|* for some £>0, then ¢ is replaced by ¢’. Appealing to the previous lemma,
we see that every absolute value is equivalent to one that satisfies the triangle
inequality.

The next proposition is similar in both form and proof to the corresponding
statement for the function mod, on a local field (Proposition 4-11).
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4-28 PROPOSITION. Let |-| be an absolute value on F. Then the following
statements are equivalent:

(i) || satisfies the ultrametric inequality (i.e., AV-3 with c=1).
(ii) The set {|n|: neN} is bounded.

In either case, |n| is in fact bounded by 1 on N.

ProoOF. That the first statement implies the second follows at once from the
observation that

n] = [1+1++1| < 1 .

Conversely, suppose that |n| is bounded by some positive constant g for all
natural numbers n. Then since |-| is multiplicative, |n| cannot be greater than 1
for any n, or else |[n™| tends to infinity. Replacing |*| by an equivalent absolute
value if necessary, we may assume that |- | satisfies AV-3 with ¢<2 and hence
satisfies the triangle inequality. Thus we may calculate as in the previous result:

ja+b1"< 3I(7)1 ' 16] "
Jj=0
<(n+Dsup{lal,B}" .

Taking the nth roots of both sides and then the limit as #— o now yields the
ultrametric inequality. a

DEFINITION. An absolute value is called non-Archimedean, or ultrametric, if the
equivalent conditions of the preceding proposition are satisfied. Otherwise it is
called Archimedean, or ordinary.

Note that any absolute value || on a field F defines a nonnegative function d
on FxFby

d(a,b)=|a-b| .

This function induces a topology on F, a base for which is given by open balls
relative to d, and this topology is nondiscrete if and only if the absolute value is
nontrivial. Clearly any equivalent absolute value induces the same topology
(one can also establish the converse), and d may in fact be taken as a metric on
F. We say that F' is complete with respect to |-| if F is a complete metric space
with respect to the metric topology defined by this absolute value. Thus, for
example, every local field with its associated absolute value (the module) is
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complete in this sense. The familiar construction of equivalence classes of
Cauchy sequences yields the following result:

4-29 PROPOSITION. Let F be an arbitrary field and let |-| be an absolute value
on F. Then F can be embedded in a field that is complete with respect to
an absolute value that is equivalent to || on F.

Ostrowski’s Theorem

We shall now classify the places of prime global fields, that is, either the ra-
tional numbers Q or a function ficld F /().

4-30 THEOREM. Let K be a prime global field. Then

(i) Suppose that K=Q. Then every nontrivial place of K is represented
by either the usual absolute value, sometimes denoted |-| , or a p-
adic one |*|_, for some prime p.

(i) Suppose that K=F (t), and let R=F 4lt1. Then every nontrivial place
of K is given by either the “infinite place” |+|  defined by

If/gl.= qdes(f)—dez(g)

or by the finite place |- |, corresponding to an irreducible polynomial
P(t)eR.

The first statement is called Ostrowski’s theorem.

PROOF. Note that in either case we must have |z|=1 for any root of unity z. In-
deed, if z"=1, then |z|"=1, and so |z|=1, since there are no other roots of unity
among the nonnegative reals. We now address the two separate cases.

(i) Suppose first that |-| is ultrametric; the analysis is similar to that for an ul-
trametric module. For any positive integer n, we know by induction that |n|<1.
Since |+| is nontrivial, |n|<1 for some positive integer, and we take n to be the
smallest such. We claim that » must be prime. For if m=m m, where both fac-
tors are greater than 1, then the inequality 1>|m|=|m,||m,| implies that [m <1
for at least one /, contradicting the minimality of m. Thus m is prime, and ac-
cordingly we shall henceforth write p for m.

We claim next that |a|=1 for any integer a prime to p. Indeed, any such a is
of the form dp+r for integers d and » with 0<r<p. The choice of p forces |r| to
be 1. But since |[r|<max{|dp|,|al}, this forces |a| to be 1, as asserted. In sum-
mary, we have shown that
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lap*|=1p*

for all £ where a is prime to p. The usual p-adic norm has the same form with
|7l p=1/p <1, and it is now clear that |-| and |- Ip are equivalent.

Now consider the case that || is Archimedean and hence may be assumed to
satisfy the triangle inequality. Then when restricted to N, this absolute value
function satisfies the hypothesis of Proposition 4-10 with A=2, Since it is
moreover unbounded, it follows from that same proposition that |-| is just a
positive power of the ordinary absolute value function, and therefore it repre-
sents the same place of Q. This completes the proof of part (i).

(ii) We may identify the subring of K generated by 1€X with the finite field F,.
Thus the set of values |n-1| for neZ is bounded, and hence || is non-Archi-
medean; in fact, these norms are precisely 1 for all » prime to p,.

Suppose that there exists a polynomial P€F [¢] such that |P|<I; clearly we
may assume that P is irreducible. Then arguing as above, |Q}=1 for all Q not
divisible by P. Hence given any polynomial feF [f], we may factor it into the
form P"Q where n20 and Q is prime to P, and thus | f|=|P|" in accordance
with the second alternative of the assertion.

Now suppose that |P|>1 for every irreducible polynomial PeF [f]. Then
since |a|=1 for all nonzero constants, it follows that |-| maps F [f]* into the
interval [1,00). Thus in particular, |f|>1, and we claim that in fact this inequal-
ity is strict. Suppose to the contrary that |f|=1. We will then show that |-| takes
the value 1 on all of K*, contradicting the assumption that || represents a non-
trivial place. For this it clearly suffices to show that | f|=1 for all fqu[t]*, and
accordingly we can proceed by induction on n, the degree of £ The case n=0 is
clear. So assume that » is positive and write

S(#)=ay+1tp(t)

where @eF [t]* is of degree n—1. By assumption and induction, |te(f)| =1,
whence | f|=1, as claimed, because |-| is non-Archimedean. So indeed |¢|>1.

We claim next that for a nonzero polynomial /' we have | f|=|¢|4&(/), Again
the proof goes by induction on n, the degree of f, and again the case that n=0 is
clear. Writing f as above, we find at once that

IS teOl=t]" .

But then | /| must be |#|”, for otherwise we have a contradiction from the ine-
quality

|tp(0)]< sup{|acl.| SO}
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since |a,} is O or 1. (We observe yet again that all non-Archimedean triangles
are isosceles!) This proves the claim and also the theorem, because clearly

!_f_‘zl_f_l= |80 deas) a
gl lgl

Extension of Absolute Values

Let K denote an arbitrary global field. Let F denote a subfield of K of the form
F (1) if K is of positive characteristic p or let F=Q if X has characteristic zero.
In the former case, we can always find an element teX such that X is finite and
separable over Fq(t) (see Exercise 4), and hence we may assume that K/F is
finite and separable.

Next put n=[K:F] and for any place v of X, let K, denote the completion of
K relative to a representative absolute value, say |-|,, belonging to the class v.
Let &, denote the set of all places of X. This is the disjoint union of two sub-
sets:

Py = the set of Archimedean places of X, and

Py ¢ = the set of ultrametric places of K.

Note that every ve &, induces by restriction a place #=res(v)e £, and hence
we have defined a restriction map

r=rypR >R
Vi u

from the places of X to the places of F.

Since the previous discussion gives a complete description of .., to under-
stand &,., it suffices to describe the image and the fibers of 7.

Henceforth we shall write v|u if ver-!(x) and say that v lies over u or that v
divides u.

To analyze the relationship between local extensions K /F, and the global
extension K/F, we must analyze the embeddings over F of X into F,, the alge-
braic closure of the completion of F at u. By separability we know that K=F(a)
for some clement e F 17; Let p(x) denote the minimal polynomial of
over F and suppose that

p) =] p,)
j=1
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is the irreducible factorization of p(x) in F, [x]. For each j, fix a root a; of PLx)
in F,. Note that these «; are distinct, since p(x) is separable.

4-31 PROPOSITION. Let K=F(a) be a finite separable extension of F, where F

is either Q or F (D, and let u be a fixed place of F. Suppose further that

p(x) is the minimal polynomial of a over F and that p(x) factors over F,

into the product of polynomials p(x) with corresponding roots Q;, as
above (j=1,...,r). Then the followmg assertions hold:

() Ifvisaplace of K that lies over u, then K =F (), where f3 is a root
of p(x) and hence separable over F,. In particular, K IF, is a finite
separable extension.

(ii) The places v of K that lie over u are in bijective correspondence
with the embeddings of K into F, induced by the assignments

ak> aj.

PROOF. (i) Consider this diagram of embeddings:

Clearly K, contains F, (), where f is the image of a and therefore a root of
p(x). But F (f) is finite-dimensional over F, and hence locally compact. Thus
it is a complete field containing both F and the image of @, which is to say that

K=F (8.

(ii) Every finite extension F, () admits a unique topological structure as a lo-
cally compact field, namely the one induced by a vector space isomorphism
with (F,)", where m is the degree of § over F,, and the associated absolute
value on F,. In particular, each of the extensions F () admits an absolute
value, which, when restricted to the image of K, induces an absolute value on X
and a corresponding place v that obviously lies over u. Part (i) shows that every
such place arises in this way, since F, (/) is isomorphic to Fu(aj) for some j.

It remains to show that distinct assignments a > @; give rise to distinct
places. Consider, for instance, p,(x)eF,[x], which can be expressed—in the
obvious sense—as the limit of a sequence {g(x)} of polynomials over 7. Then

Ilimq(a')l1 = |limq(a1)|, = Ipl(al)ll =0
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where |-[}. denotes the absolute value associated with the embedding a— ;.
But forj>1,

[limg(a)|; = |limg(a))|;=|p(a)|; =0

which shows that |-|, and |-|; represent different places. More generally then,
||;and ||, represent different places whenever j#k, as required. This com-
pletes the proof. a

As an immediate consequence of this proposition, we have the following
fundamental resuit.

4-32 COROLLARY. Let F, K, and u be as above and let n=[K . F].

(i) Define n,=[K :F,] forv|u. Then

n=Y'n,

viu
In particular, the restriction map is surjective, and the fiber over
each place of F, is finite.

(ii) If K/F is moreover a Galois extension, then n, is constant for all v|u.

PROOF. (i) The proof of the first statement is immediate because the degree of
KJ/F is also the degree of p(x), while the degree of each local extension Kj/Fu is
the degree of the corresponding factor p(x)

(ii) If K/F is Galois, all of the roots of p(x)eF]x] lie in K, whence every embed-
ding of X into F, contains all of the roots of p(x). Thus for all indices j and k,
F (a)cF (ak) so that all of the completions of X in fact give rise to the same
subﬁeld of F,—only the embeddings are different—and hence are of the same
dimension. a

We next analyze n,=[K,: F,] where v|u in the case that « is ultrametric.
Then K /F,, is a finite extension of non-Archimedean local fields. Let

o,={xeF,:|x|,<1} and o, = {xekK, :|x|, <1}

denote the respective local rings of integers of K, and F,, and let k and £’ de-
note the residue fields of o, and o, modulo their respective maximal ideals. Put

f,=[k"k] .
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This is called the residual degree of K, over F,.

4-33 LEMMA. For all v|u, we have

nV = e\’»fl"

Jor some integer e,

In this context, the positive integer e, is called the ramification index of K,
over F, . Note that our current use of the terms residual degree and ramifi catzon
index is consistent with that of Section 4.2.

PROOF. Let L/F, be the largest unramified subextension of X, /F,. Then, as we
noted earlier in our characterization of unramified extensmns (see especially
Lemma 4-24 and Proposition 4-25), the residue field of L identifies with ', and
moreover, [L:F,]=[k":k]=f,. Put e,=[K : L]. The lemma follows. a

4-34 COROLLARY. Let K/F be a finite separable extension of global fields, and
let u be a non-Archimedean place of F. Then we have

n=[K:F1=)e,f,

viu

Moreover, if KIF is Galois, then both the ramification indices and the re-
sidual degrees are constant for all v lying over u, so that

n=efg
where e=e,, =f,, and g is the number of places v of K lying over u.

PROOF. Since for a Galois extension we already know that n,=e f, is constant, it
suffices to show that the residual degree is invariant. But in thls case, all of the
local extensions are isomorphic to a single finite extension, say, K, of F,. The
maximal unramified subextension of X, is obtained from F, by adjommg all of
the roots of unity of order prime to the characteristic and hence is also inde-
pendent of v. Finally, f, is precisely the degree of this subextension. a

DEFINITION. The finite extension K/F is unramified at u if e,=1for all v|u. It is
totally ramified if f,=1 for all v|u.

DEFINITION. Let E be an algebraic extension of a number field F, possibly of

infinite degree. Then we say that E/F is unramified (respectively, totally rami-
fied) at a place u of F if there exists a chain

F=E0§E1 g...gE:UEi
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of finite extensions such that each E,/E, , is unramified (respectively, totally
ramified) at every place of £, | lying above u.

The Ring of Integers of a Global Field

Let X be a global field. If X is a number field, then the ultrametric places of X
are also called finite places; the Archimedean ones are also called infinite
places.

If p=char(X) is positive, we fix an element teX such that X is a finite sepa-
rable extension of Fq(t) with Fq =Kn Fp. Here ¢ is not canonically defined, but
this is of no consequence to what follows. We shall now define the infinite
places of K to be those lying over that place of Fq(t) represented by

|f/gl =qdes(f)—deg(g) .

The remaining places of K are then called finite. We emphasize that in the
function field case, the distinction between finite and infinite places does not
correspond to the dichotomy of the ultrametric versus the Archimedean.

DEFINITION. Let K be a global field, with finite and infinite places defined as
above. Then we define o, the integers of K, as follows:

o = [[{xeKix| <1} .

v finite

Thus o, is the intersection of the local rings of integers at all finite places of K
and is therefore itself a ring.

In consonance with this definition we shall in the sequel often write o, for
what we had previously denoted o, when we wish to emphasize the underlying
local field.

The proposition below summarizes the most important properties of the in-
tegers of a global field. The proof is largely elementary algebra and is therefore
omitted.

4-35 PROPOSITION. The ring of integers o of a global field K has the following
properties:

(i) oy is a Noetherian domain that is integrally closed in its field of
Jractions; moreover, every prime ideal of v, is maximal.

(ii) oy is in fact the integral closure of L in K if K has zero characteris-
tic, and the integral closure of F 1 in K if K has positive charac-
teristic. d



4.5. Ramification and Bases 165

Part (i) says that o, is a Dedekind domain, from which it follows that every
nonzero element or ideal is contained in only finitely many prime ideals. (See
Appendix B.) This tells us in particular that the fraction field of o, is in fact X
itself.

Henceforth, for K a global field, a prime of K is simply a nonzero prime
ideal of the ring of integers o,. One shows easily that the quotient field 0,/Q
(computed globally) is isomorphic to the local version o,/Q,, where v is the
ultrametric place associated with the prime Q. In particular, this quotient is
finite. We shall often write K, rather than K|, to denote the completion of X at
the place corresponding to Q; similarly we often write o, for o,,.

If K/F is an extension of global fields, then we say that a prime Q of X lies
above a prime P of F if either of the following equivalent conditions holds: (i)
the place of X corresponding to Q lies above the place of F’ corresponding to P,
or (ii) Pc Q.

4.5 Ramification and Bases

We close this chapter with two principal results. The first places a finite limit
on the number of primes that ramify in a finite separable extension K/F of
global fields. The second, which is quite technical, describes how we pass from
a global basis of K/F to a basis of the product of local extensions X /F, relative
to a fixed place u of F. This is essential to our geometric analysis of the adele
group in the following chapter.

Ramification and the Decomposition Group

Consider a finite Galois extension K/F of global fields with G=Gal(X/F), and
let O be a prime of K. Then Q lies above some prime P of F, and we let F de-
note the residue field o,/P. We define the decomposition group of Q in G to be

Dy={0eG| o(®)=0} .

Now suppose that the residue field o,/Q is the finite field Fq, a finite extension
of F. We have a canonical homomorphism

Pg : Dy —> Gal(F,/F)

that associates with o€ D, the map (x modQ - o(x) mod Q) for all xeoy. This
makes sense because a(Q)=0 for all oin the decomposition group of Q. Also,
Pp(0) is trivial on F=o0./P, since o is trivial on F,

We shall have more to say later about the decomposition group in connec-
tion with the Frobenius elements, which we study in Chapter 6. For the mo-
ment we need only these elementary facts about the homomorphism p,:
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4-36 PROPOSITION. The canonical map p, : Dy—>Gal(F /F) has the following
three properties:

() py is surjective.

(ii) py is also injective if and only if P is unramified in K; i.e., if and
only if the local extension K 0 [ Fy is unramified.

(iii) Each o€ D, extends to an automorphism of the completion K, that
is trivial on the subfield F,. The induced map

Jg 1 Dy = Gal(K,/Fp)
is in fact an isomorphism.

PRrROOF. We first show that the order of DQ is the degree of the local extension
KQ/F p- Let G=Gal(K/F). Then G has order efg, where e and f are the common
ramification index and residual degree of the primes lying over P, and g is the
number of such primes. But since G acts transitively on the set of primes of K
lying above P (see Exercise 5 below) and TDQ= z"DQ if and only if 7(Q)=7'(Q),
the integer g is also the index of DQ in G. Hence o(G)=g-o(DQ), whence the
decomposition group of O has order ef, the degree of the corresponding local
extension. This proves the asserted equality.

We can now prove assertion (iii). Each aeDQ is by construction an isometry
of X, and so the extension Jo(o) clearly exists and respects F,. Moreover, Jo is
injective: Jo(o) cannot be trivial unless o is. But as we have just shown, D, and
Gal(KQ/F » have common order, whence Jo is indeed an isomorphism.

Next consider the commutative diagram

Po
D, Gal(F, / F)
Jo N < Po
Gal(Ky/ Fy)

where p, is the map o> (xmodQ > o(x)modQ). Let L/F, denote the
maximal subextension of K,/Fp, such that L is unramified over . From our
analysis of unramified extensions in Section 4.3, we know that L/F, is normal
over Fp and that Gal(L/F}) is isomorphic to Gal(Fq/F) by the “restriction” of
,EQ to Gal(L/F}). This yields assertion (i), because ordinary restriction from KQ
to L yields a surjective homomorphism from Gal(KQ/F p) to Gal(L/F).

Finally, we deduce assertion (ii) from the triangle. Since Gal(L/F}) already
maps surjectively onto Gal(Fq/ F), ,EQ —and hence pQ——is moreover injective
exactly when L=KQ; that is, exactly when the local extension is unramified. O
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Our goal for the remainder of this subsection is to establish the following
fundamental result, which will be critical to our subsequent discussion of local
and global bases.

4-37 PROPOSITION. Let K/F be a finite separable extension of global fields.
Then there are at most finitely many primes P in F that ramify in K.

REMARK. This is a far less precise statement than one might make using the
notion of the relative discriminant of X/F, but the present assertion suffices for
our purposes. (See Exercises 13, 14, and 15 below and Appendix B, Section 2.)
Moreover, the nonstandard proof that we give uses a key idea found in the
proofs of the Tchebotarev density theorem and the Artin reciprocity law, both
stated in Chapter 6: the reduction to cyclotomic and Kummer extensions.

ProOOF. The argument proceeds in four steps. The first three are reductive; the
fourth is a direct argument for a much simplified special case.

STEP 1. We may assume that K/F is finite and Galois. Indeed, if X is not nor-
mal over F, let £ be its normal closure. Then a prime P that ramifies in X must
certainly ramify in £: the ramification index measures the order of the corre-
sponding uniformizing parameter in a local extension X ,/F, and this can only
get larger if we pass to E. Thus it suffices to show that only finitely many
primes ramify in E.

STEP 2. We may assume that K/F is cyclic of prime degree, say I. This is con-
siderably more subtle. We claim that any given prime P of F ramifies in X if
and only if there exists some intermediate field K|, KoK, 2F, such that

(i) K/K, is cyclic of prime degree, and

(ii) there exists a prime divisor P, of P in K, such that P, ramifies in K.

Certainly the backward direction is trivial, so suppose that P ramifies in XK.
Then there exists a prime divisor Q of P in K such that K ,/F}, is ramified, with
corresponding residue fields F , and F. But then the natural map

P, Gal(K, / Fp) > Gal(F, / F)

is surjective but not injective by the previous proposition. Let N denote the ker-
nel of this map. Again by the previous proposition, we may identify N with a
subgroup of the decomposition group D,,, and of course K, is ramified over any
intermediate field containing Kg . Since KQ:&Kg , we may choose an interme-
diate field L with K,2Lo Kg and KQ/L cyclic of prime degree. Let H be the
subgroup of D, corresponding to Gal(K /L) and put K,=KH. Then K/K, is also
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cyclic of prime degree. Let P,=0n Ox,»> So that P, is a prime between P and Q,
and the completion of K, at P may be taken in K,,. Now Gal(K/K)) is con-
tained in D, so in fact the decomposition group of Q computed relative to X,
is the full Galois group. Thus by the definition of K, and part (iii) of the previ-
ous proposition,

Gal(Ky/(K,)p,) = Gal(K/K,) = Gal(K /L)

and therefore K)p,=L. Since K,/(K))p, is ramified by construction—after all,
Gal(K/K,) is also contained in N—we have established our assertion.

According to this claim, then, any prime that ramifies in X/F gives rise to a
prime that ramifies in a cyclic intermediate extension of prime degree. But
since there are only finitely many such intermediate extensions—indeed, in-
termediate extensions of any kind—it suffices to show that only finitely many
primes ramify under these special conditions.

STEP 3. We may assume that K/F is cyclic of prime degree | and that F con-
tains all of the Ith roots of unity in the algebraic closure of F. If I=p, the char-
acteristic of 7, then the only /th root of unity is 1 itself, and the present case
reduces trivially to that of the previous step. Hence we may assume for the bal-
ance of this step that / is different from p. Let ¢ denote a nontrivial, hence
primitive, /th root of unity in F, and consider the following diagram of fields:

To verify our reduction, it suffices to show that there are only finitely many
primes P in F that ramify in (). For then if there are only a finite number of
primes of F(¢) that ramify in K(), there can only be finitely many primes of F
that ramify in K.

Now consider the extension F({)/F. In the function field case, all of the resi-
due fields have characteristic p, which is here assumed distinct from /. In the
number field case, for only finitely many primes P of F is the corresponding
residual field of characteristic /, since as we have seen, the restriction map for
absolute values has finite fibers. In either case, for all but the finitely many
primes whose residual characteristic is /, the local extension F({)/F, is un-
ramified by Proposition 4-25. This concludes Step 3.
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STEP 4. We shall now prove the proposition in the case that K/F is a cyclic Ga-
lois extension of prime degree /, with the further assumption that F contains all
of the /th roots of unity in its algebraic closure.

If / is different from p, the characteristic of F, by standard Kummer theory
we have K=F(a), with a a root of f(x)=x'-a, for some acF*, where a itself is
not an /th power in F. If / is identical to p, then again K=F(«), but this time o
is a root of f(x)=xP- x—a, for some a as characterized previously. Let S be the
set of primes P in F such that |a|,#1. Then S is finite, since o is a Dedekind
domain. Further define S’ (again finite) by

I —

S if char(¥)>0
Su{primes P with residual characteristic # /} if char(F)=0.

The proof will be complete once we establish the following result:

4-38 LEMMA. Suppose that P does not lie in S'. Then for any prime Q of K ly-
ing over P the local extension K ,/Fy is unramified.

PRrROOF OF LEMMA. Clearly the local extension is either trivial or cyclic of degree
I. We may thus assume the latter case, so that « is a root of f(x) in K,—F}. Let
L be the maximal unramified subextension of K,/F,. We have the following
diagram of local and residual fields:

K,—F,
| |
L—F,
I |
F—F

Now we consider the consequences of the relation f(a)=0. First note that
whichever of the two forms that f takes, since 4 is a unit in o, (for P not in S,
|alp=11), it follows that ¢ is itself a unit in o, and, in particular, integral with
respect to Q. Second, f(x) has a root £ in the residual field F, that arises from
an integer of the corresponding local field. This second statement clearly holds
also at the middle level of the diagram above, and this is the key to the argu-
ment. Let us compute the formal derivative of f(x):

Ix7 ifl#p

f,(x)z{—l ifl=p.
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In either case f'(B) is not congruent to zero modulo P, and Hensel’s lemma
(Exercise 6) applies—to the middle level!—to lift A to an integer of L. But then
L contains a root of F and K,=L. Thus P is unramified. Q

This complete the proof of the full proposition. a
REMARK. Note that the hypotheses of Hensel’s lemma, namely that

(i) f(B)=0 (mod P) and

(ii) /'(B)# 0 (mod P),

imply that fand /' do not have any roots in common; that is, the discriminant
of f [or the resultant of (f, f")] is nonzero modulo P. This naturally leads to the

use of the discriminant of K/F to determine which primes ramify—typically the
more common approach.

Global and Local Bases

In this subsection, K/F is a finite secparable extension of global fields. Let # be a
place of 7, and define M by

M=1]k, .

viu

That is, M is the product of all the completions of K at places lying over u. We
have an embedding

14
KoM
x l—)z v, (x)

where ;, is the canonical embedding given by the completion at v. The fol-
lowing result is fundamental.

4-39 PROPOSITION. Let {e,,...,e,} be an F-basis of K, and let u be a place of
F. Then X={y(e,),..., w(e,)} is an F -basis of M. Moreover, there exists
a finite set S of places of F, containing the Archimedean ones, such that
Jor all ugs,

°M=H°Kv

viu

is free over o, with basis X.
u
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If L and M are extensions of a common field &, then Hom,(L, M) denotes the
set of embeddings of L into M that induce the identity map on k.

PrOOF. Extend y to an F-linear map
oK@, F,>M

in the obvious way. Both sides are F,-vector spaces of dimension n, since as we
have just seen, the sum of the local degrees [K,:F,] is precisely the dimension
of K over F, and clearly {e®1},_,_, is an F -basis for the domain. Hence it
suffices to show that ¢ is injective, in fact over F,. This requires one technical
preliminary.

Recall from our discussion of local and global degrees that K=F(a) for some
a and that every embedding of X into F, over F is induced by an assignment
a— B, where f is a root of the minimal polynomial p(x) of « over F. More-
over, the associated place induced on X depends exactly on the conjugacy class
of B: the assignments ai— £ and a+> S’ give rise to the same place of X if
and only if # and B’ are roots of the same irreducible component of p(x) when
factored over F,. The upshot of this discussion is that we can construct a bijec-
tion 1 between the global and local embeddings into the algebraic closure of F,
as follows:

A:Hom(K,F,) - |-JHom,, (X,.F,)

v|u

(@ B) > (w,(@) = B) .

We now proceed with the main body of the proof. Consider the following
diagram:

_ P®1
K®.F, — M®; F, I
! N
K
_ _ _ U Homp (x,.F) —Hompg (X,.F,)
Hom g (K, ) w Futtvtu
Eme(h)  —— F, = 1I%

Ax v|u

where 4, is the isomorphism induced from A and « is the F, -linear injection
induced by the F, -bilinear map
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KXF ___)F_HO’“F(K’P_;‘)
(x,y) - (U(x)y)ael{om r(K.E)

and similarly for each . Since by construction each embedding o:K — F,

Yy Oy _
factors as K — K, —» F, for some unique v|u, we have that

Ak (x® ) = M((0(X)Y) setiom p . 7)) = (G © Wy (DY), ctiom £, Ky F) lu
But also
(P@DE® V) =x, (W (N ® ) = (0, V(DY) i e 1

and this is the same as the v-component of 4,(x(x®}))). Hence the diagram is
commutative, and it follows that ¢® 1 and ¢ are injections, as required.

We now prove the second assertion of the proposition. Let # be any finite
place of F. Since o is a discrete valuation ring and therefore a principal ideal
domain, each O, is free over o, and thus o, is likewise free over Op, - The pre-
vious part shows that in fact the rank of o, is dlm,,. (M)=n, the cardmahty of
the basis X={y(e,),..., w(e,)}. Let S’ be the finite set of places consisting of
the Archimedean ones, the unramified ones, and those corresponding to primes
that divide the numerators or denominators of the e;. Then X certainly lies in
o, for all u¢S’. Now consider the following claim:

CLAM 1. There exists a finite set SoS' such that for all ugS, the collection
{w(e)),..., w(e,)} spans o, over Of,

Granting this, the collection {y/(e,),..., ¥(e,)} is clearly a basis for Oy OVET Of
for all uesS, as required.
To establish Claim 1, we consider the modules

L=) ope; and L, =Y 0, y(e)=L® o .
J J

Then LugoMzoK®oF O, for all ueS’ (The isomorphism follows from the
equality of dimensions.) The claim now follows, provided that L =o,  for all but
finitely many of these . Let P, be the unique prime ideal of 0. Then by
Nakayama’s lemma it suffices to show that

L,+P, o,=0,
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and since » is unramified, this amounts to establishing

L, +(Hpv)°M =0y

viu

where P, is the unique prime ideal of o, . This in turn follows almost every-
where from our next claim.

CLAIM 2. For almost all places u, the elements y(e;) span the product
R=[]ox/P,
viu
over F=o, /P,.

Here the bar denotes canonical projection into the quotient module. To prove
this, put

L=]][(nK)cK .

viu

Then R identifies with o,/ by the Chinese remainder theorem, since the prime
ideals P, K are all also maximal; moreover, each y(e;) identifies with €.
Thus Claim 2 is equivalent to the following, which finally we prove directly:

CLAIM 3. For almost all places u, we have
L+1)I1, 20,11, .

ProOF OF CLAIM 3. Note that the indicated inclusion is equivalent to the state-
ment that o, < L +I,. Put A=Lo,. We have the following chain of equiva-
lences:

oxzL+Il, o, A+],
< A+1, c P, for some v|u
< AcP, for some v|u .
The second equivalence follows because /, is not contained in any maximal
ideal other than P,. But by the general theory of Dedekind domains, ¥ is con-

tained in only a finite number of prime ideals of 0., and hence we have the re-
quired inclusion for almost all u. a
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Note that since K®,F, and M=[],, K, are both finite-dimensional of the

same dimension, they acquire a canonical locally compact topological structure
from F,. Thus we end with the following useful result, whose proof is left as an

exercise.
4-40 PROPOSITION. The algebraic isomorphism K® F, — M= Hv|u K, isin fact
a topological isomorphism. a

Exercises

@)

®)

©

(d)

Let a be an automorphism of a locally compact group G. Show that if G is
discrete, then the module of ais 1.

Construct a strictly multiplicative F;N—R, such that the conclusion of
Proposition 4-10 does not hold. (In particular, 7 must not satisfy the given

inequality.)

Let V be a locally compact topological vector space over a nondiscrete lo-
cally compact field &, and let /¥ be a subspace of V. Show the following,
without appeal to the fact that J must indeed be finite-dimensional over &
(cf. Proposition 4-13):

V is topologically isomorphic to W®W' for some subspace W' that is to-
pologically isomorphic to V'/W. Here W and W’ have the topology induced
by the projection maps pr,(X) and pr,,(X); i.e., the weakest topology that
makes these projections continuous. (Note that both subspaces are trivially
locally compact with respect to this topology.)

If X is a Borel subset of V, then pr,,(X) and pry,.(X) are Borel subsets of W
and W', respectively.

Let x4 and 4’ be Haar measures on W and W', respectively. Show that the
product u(pry, (X)) u'(pry,.(X)) is a Haar measure on V.

Conclude that for each aek, mod, (@)= mod,, (a) mod,.(a).

Let X be a finitely generated extension of transcendence degree 1 of the
finite field F. (Hence X is a global field.) Show that there exists an element
u in K such that X is a finite separable extension of the function field F(u).

Let K/F be a finite Galois extension of global fields, and let P be a prime of
F. Show that G=Gal(K/F) acts transitively on the set of primes of X lying
above P. [Hint: Let Q and Q' liec above P and suppose that o(Q) does not
equal (and therefore is not contained in) Q' for all oeG. What, then, can
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one say about [T, o(Q)? Does this product not lie in P? Must it not also
then lie in the prime ideal Q'?]

(Hensel’s Lemma) Let F be a non-Archimedean local field with ring of
integers o,={aeF:|a| < 1} and prime ideal P={xeF:|x| < 1}. Let feo.[x]
be such that for some a<o,,

f(@)=0 (mod P) but f(a)#0 (modP) .

Show that there exists beog such that f(b)=0. Use this to show that ¥
contains all of the gth roots of unity for g=Card(o./P).

(Krasner’s Lemma) Let be a llon-Archimedean local field with algebraic
closure F. Suppose that o, S F satisfy

|8 - a|<|ra-a| VreHom(F(a),F)
and that g is separable over F(a). Show that F(a)c F( /).

Let F be a non-Archimedean local field and let fe F]x] be a monic, irreduc-
ible, separable polynomial. Let g be another monic polynomial in Flx] of
the same degree. Identifying fand g as points in the metric space F(de/+D),
show that if g is close enough to £, then g is also irreducible. Show also that
there is a bijection {a,} <> {f,} between the roots of f and those of g such
that F(a)=F(B) for all i. [Hint. Use the previous problem.]

Let F be a global field with non-Archimedean completion F,,, and let E/F,
be a finite extension of degree d. Show that there exists an extension K/F
of degree d such that K embeds densely in E. [Hint: Use the previous exer-
cises.]

Let F be a non-Archimedean local field. Show (i) that for every n=1 there
exists a unique unramified extension F, of degree n. Now let F** denote the
maximum unramified extension of F in its algebraic closure. Prove (ii) that
we have the following isomorphism of topological groups:

Gal(F**/F)=Z=1lim(Z/nZ) -
(See also Section 1.3.)
Let F be a non-Archimedean local field with prime ideal P and let E/F be a

totally ramified extension of degree e. Show that any uniformizing element
# of E satisfies an Eisenstein equation over F;, i.e., an equation of the form
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12.

13.

(@

®

e
Yax’' =0 (a,e0,,9;a,=1;a,=0 mod P,Vj < e—1; a,%0 mod P?) .
J=0

Show that for all n>1, a non-Archimedean local field has only a finite
number of extensions of degree less than or equal to n. [Hint: Use the pre-
vious three exercises.]

Let K/F be a finite separable extension of non-Archimedean local fields,
with respective rings of integers o and o, and uniformizing parameters 7,
and 7. We define the inverse different (or codifferent) D,},’F of K over F'to
be 7%, where d is the largest integer such that trg (7%, ) S0, The
different D is then given by

—d
Dyip = MOk
and the discriminant A, by
Agr= Ner (T5) 05

where Ny, is the norm map. Thus A is an ideal of o,. (See Appendix
B.2 for a more general treatment in the case of a Dedekind domain.)

REMARK. When F is either Qp or F ((#), one drops the expression “over
F” and simply writes 2, and A, for the different and the discriminant, re-
spectively.

Let n=[K:F]. We know from the elementary theory of principal ideal do-
mains that there exist elements e, ...,e, €0, that constitute a basis for o,
over o,. Use this fact to obtain the formula

A= Dpipley,....e,) 0p

where
Apleg,....e) = det(trK,F(e,.ej)lsl.,jS")eoF .

Use part (a) to show that K/F is unramified (that is, if e,,=1) if and only if
Ay s a unit in o [Hint: Show that the discriminant is a unit in o, if and
only if its image in 0,/7;0, is nonzero, and that this in turn occurs if and
only if 0,/70, is a field. Then apply Corollary 4-26.]
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One says that K/F is tamely ramified if the residual characteristic p does
not divide e(K/F). Show that K/F is tamely ramified if and only if v (2,
(this is the exponent d occurring in the definition of the different) is pre-
cisely e(K/F)-1. [Hint. Show that these conditions are equivalent to having

0=ty (0p).]

Let L/K also be finite separable extension. Show that

Dyp= @) @)

and that
[L:K]
Arp =Nep(ALg)Agr

Let K/F be a finite separable extension of global fields. The inverse differ-
ent of K over F is defined by

D = {x €K : trep(x0, ) 0}

This is a fractional ideal of K, whence we set Dy, the different of K over
F, to be its inverse fractional ideal. (Again see Appendix B, both for a dis-
cussion of fractional ideals and for a more general treatment of the notions
under discussion here.) Define the discriminant Ay, to be the ideal of o,
generated by N (D).

REMARK. As above, we abbreviate the notation for the different and the
discriminant to 2, and A, respectively, when F is a prime global field.

Moreover, in the case of a number field we write d, for the integer defined
up to sign by A,=d, Z and loosely refer to this number as the discriminant.

Show that D), is the largest fractional ideal J of K such that try,.(J) <0,

Prove the final part of the previous exercise in this global setting.

Let P be a prime ideal in o;. Show that

AypOp, = H AKQ/FP
[l

where the product is taken over the primes of o, that lie above P. Conclude
that P is unramified in X if and only if it does not divide A,/
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Suppose that o is a principal ideal domain. Show, as in part (a) of the pre-
vious exercise, that

Agr=Bpeys..ne,) 0p

where {e;},, is an o -basis for o,. If 0,=Z, show that A=A, (e, ...,e,) is
independent of the choice of o.-basis.

Show that every finite extension K of Q must be ramified at some prime p.
[Hint; Use the previous two parts. ]

In light of the previous exercises, we shall now examine cyclotomic exten-
sions.

Let K=Q[e?™/?"]. Show that Z[e27/P"] is the ring of integers in K.

Let K be as above. With the A, as in the fourth part of the previous exer-
cise, show that

ifp" =4 orp” =3 mod4

Ay :(—l)’p”n-l«p"l)"'l) where r = L ]
otherwise.

[Hint: Use Exercise 13 and evaluate
2xikm/p"
det(e Dosks(p-1)p™, me@pzy

the so-called Vandermonde determinant.]

For m21, let K, =Q[e?™™], and let A,, denote the corresponding discrimi-
nant. Show that if m and r are relatively prime integers, then

A=A, .
Conclude that the ring of integers in K, is Z[e?*™].

With K as above, show that for any m21, the prime p ramifies in X, if
and only if p|m.



5
Adeles, Ideles, and the Class Groups

To do harmonic analysis on a global field F, one needs to introduce two locally
compact abelian groups: A, the adele group, and I, the idele group. From one
perspective, if we view F as a discrete group, it is of great interest to determine
its Pontryagin dual F , which we know must be compact. Recall that for the
particular discrete group Z, its dual is simply the quotient R/Z. We shall see in
our analysis that the adele group plays the role of R, in the sense that F' natu-
rally embeds discretely in A, with compact quotient A./F, which ultimately
can be identified with £. For F= Q, one has a canonical surjection AQ—->R,
which induces a covering map A,/Q—>R/Z with totally disconnected fibers.
This is discussed, after some preliminaries on approximations, in Section 5.3.

The adele group of a global field F, which is moreover a topological ring, is
defined as the “restricted direct product” of the additive groups of the various
local completions F,. The restriction is that an element (x,) of A, must satisfy
the condition that almost all of its coordinates x, lie in the ring o, of integers of
F,, for v finite. The notion of a restricted direct product is in fact more general,
as developed in Section 5.1, and applies again when the additive group is re-
placed by the multiplicative group, leading to the construction of I, the idele
group. This was first introduced by C. Chevalley as a generalization of the no-
tion of an ideal in F. It turns out that F* embeds discretely in I, but is not co-
compact. The quotient C.=I./F* is called the idele class group of F. We shall
see in Section 5.4 that there exists an important compact abelian group C} such
that Cy is isomorphic as a topological group to C} x RY if F has characteristic
zero, and to C’F x Z if F has positive characteristic. Moreover, the classical
ideal class group and the ray class group relative to an ideal reveal themselves
to be quotients of Cp,.

From the vantage point of number theory, the role of A, and I, at least ini-
tially, was to provide an efficient derivation of the classical results of algebraic
number theory, as we shall now see. We discuss its further impact on class field
theory in Chapter 6. The important later work of Tate, building on the work of
Matchett, expanded this role immeasurably, and entered—at the suggestion of
E. Artin—analytic number theory as well. Suddenly there surfaced a radical
new way to derive Hecke’s results on a class of zeta functions, and it led to an
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explicit formula for the “root number” occurring in their functional equations.
These issues are fully dealt with in Chapter 7.

In many modern applications not discussed in this book, one replaces the
multiplicative group of A, with G(Ap), where G is a general “reductive” matrix
group such as GL,. The groups G(A,) are locally compact, and the quotients
G(F)\G(Ap) are important homogeneous spaces. If Z denotes the center of G,
then X;=G(F)Z(Ap\G(Ap) has finite volume, and the harmonic analysis on
LA(X, ) relative to the right action of G(Ap) holds the key, according to the
general philosophy of Langlands, to understanding the nonabelian extensions
of F.

5.1 Restricted Direct Products, Characters, and Measures

Let J ={v} be a set of indices, and let J_ be a fixed finite subset of J. Assume
that for every index v we are given a locally compact group G, not necessarily
abelian, and that for all veJ_ , we are further given a compact open (hence
closed) subgroup /7, of G,

DEFINITION. We define the restricted direct product of the G, with respect to
the H, as follows:

[16G. ={(x,):x, €G, withx, eH, for all but finitely many v} .
veJ

Note that the /, are concealed in this notation; this will cause no confusion.

Let G denote the restricted direct product of the G, with respect to the /.
Clearly G is a subset of the ordinary set-theoretic direct product of the G, and,
moreover, a subgroup of the group-theoretic direct product. (In fact, G lies be-
tween the direct product and the direct sum of the component groups.)

We define a topology on G by specifying a neighborhood base of the identity
consisting of sets of the form 1V, where N, is a neighborhood of 1 in G, and
N,=H, for all but finitely many v. Note that this topology is not the product
topology; it is best understood in terms of the following construction.

Let S be any finite subset of J that contains J,, and consider the subgroup G
of G defined by

Gs=][G. x]]H, -

veS veS

Then G is the product of a finite family of locally compact groups with a com-
pact group; hence Gg is locally compact in the product topology. Now here is
the key point: the product topology on Gy is identical to that induced by the
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topology defined in the previous paragraph. Hence each subgroup of the form
Gq is locally compact with respect to the topology of the restricted direct prod-
uct. Since every xeG belongs to some subgroup of this form, it follows at once
that G is locally compact.

One verifies at once that G is a topological group with respect to the indi-
cated group structure and topology. Hence we have proven the first part of the
following result:

5-1 PROPOSITION. Let G, and H, be as above, and let G be the restricted direct
product of the G, with respect to the H . Then

(i) G isalocally compact group.

(ii) A subset Y of G has compact closure if and only if YCIIK, for some
Jamily of compact subsets K ,c G, such that K = H, for all but finitely
many indices v.

PRrROOF. As noted, we need only argue the second part. Suppose that X, the clo-
sure of Y, is a compact subset of G. Since subsets of the form G cover G and
since subsets of this form are clearly open, a finite number of G cover K. But a
finite union of Gy is obviously contained in a single subset of this form, whence
we conclude that K¢ GS(J for some finite collection of indices S,. From this we
can draw two conclusions:

(a) Let p, denote the projection from G onto G,. Since the topology of G in-
duces the product topology on G - each map p, is continuous. Hence p,(K)
is compact for all v.

®) p,(K)cH, for all but finitely many v.

It follows at once that K, and hence Y, is contained in a product JIK, of the
required form. The converse is obvious. a

Finally, note that for each v we have a topological embedding

G, > G
x (.., LLLxLLL...) .

1
vth component

Since the image of G, under this embedding evidently lies in Gy,)» which en-
joys the topology of pointwise convergence, it follows that each G, may be
identified with a closed subgroup of G.
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Characters

The material in the remainder of this section, while logically belonging to the
current discussion, will not be used until Chapter 7. Since our immediate con-
cern is with characters, in this subsection we restrict our attention to abelian
groups.

Assume that G is the restricted direct product of the locally compact abelian
groups G, with respect to the open subgroups /. As usual, if yeG, we write y,
for the projection of y onto the factor G, and, as addressed above, we identify
G, with a closed subgroup of G.

5-2 LEMMA. Let yeHom  (G,C*). Then y is trivial on all but finitely many
H,. Consequently, for yeG, y(y,)=1 for all but finitely many v, and

200=[1x0.) .

PROOF. We can obviously choose a neighborhood U of 1 in C* such that U
contains no subgroups of C* other than the trivial subgroup. Let N=[1V, be an
open neighborhood of the identity of G such that y(N)g U, with N =H, for all
v lying outside some finite subset S of the full index set. Then

[1H4.eN
veS

whence

xJ[HH<cU .
veS

But the left-hand side is a subgroup of C*, and so

2JTH)=41}.

veS

In particular, y(H )={1} for all v¢S. Now given yeG, we can factor it into a
product y, y, y; where
Yy, is the finite product of the projections of y that lie outside of any H ;

¥, is the finite product of the projections of y that lie in some H,, for v a
member of the index set S identified above;

Y, comprises the remaining projections of y, all of which lie in some A, for v
not lying in S,

This shows that y is trivial on all but finitely many projections of y; the product
formula follows at once. a
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5-3 LEMMA. For each v let y, lie in Hom (G, C*) and assume that x|, =1

Jor all but finitely many v. Then y=I1y, lies in Hom_ (G, C¥).
PROOF. Let S be a finite set of indices such that z,|,; =1 for veS, and let m be
the cardinality of S. As in the previous proof, y=ITy, is well-defined (i.e.,
amounts to a finite product), and thus the only issue is continuity. Let U be a
neighborhood of 1 in C*. Choose a second neighborhood ¥ such that ¥™cU.
For each veS there is a neighborhood N, of the identity of G, such that
X,V It follows that

I~ x]]H,
veS veS

is a neighborhood of the identity in G that lies in the inverse image of U under
7. Hence y is continuous, as required. a

Given an arbitrary G,, as usual we can form its dual group év. If moreover,
veJ, then define X(G,,H,) to be the subgroup of characters on G, that restrict
to the trivial map on H,,. Recalling from Section 3.1 the construction of the
compact open topology on the dual group, we see that if U is a sufficiently
small neighborhood of 1€S", then, as above, K(G,,H )=W(H,U). (The point
again is to choose U so small that it contains no nontrivial subgroups of C*.)
Hence K(G,,H,) is at least open in év. Now let y€K(G,,H,), and consider the
following commutative diagram:

X

G,———— S
N

G,/H,

This shows that the assignment x> 7 defines a mapping from K(G ,H) to
(G,/H,))". One shows easily that this is in fact an isomorphism of topological
groups. Since H, is open in G,, it follows that G /H, is discrete, and hence
(G,/H )" is compact. Thus K(G,,H,) is likewise compact, and it makes sense to
form the restricted direct product of the groups év with respect to the sub-
groups K(G,,H).

5-4 THEOREM. Let G, H, be as above, and let G be the restricted direct prod-
uct of the G, with respect to the H,. Then as topological groups,
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where the restricted direct product on the right is taken with respect to the
subgroups K(G,,H,) defined above.

PRrOOF. Consider the mapping

mé 5é

AL I EA

In view of the two previous lemmas, this is clearly an isomorphism of abstract
groups. Hence it remains to show that ¢ is bicontinuous, and for this it is
enough to establish bicontinuity at the identity.

Let U be a neighborhood of 1 in C* and let X be a compact neighborhood of
the identity of G. We know that K=J1X,,, where X is a compact neighborhood
of the identity of G, and K =H, for all but finitely many indices v. A character
x on G lies in the open neighborhood W(K,U) of the trivial character if and
only if (K)=ITx(K,)cU. Suppose that the subset S of indices for which y is
nontrivial on K, has cardinality m. As previously, we can find a neighborhood
Vof 1 in C* such that V™ c U. Then if

() eN=[[WK,.V)x[]K(G@G,.H,)
veS veS

it follows at once that p(y,)e W(K,U). But since by definition of the restricted
direct product topology N is an open neighborhood of the identity in its ambient
group, ¢ is continuous.

Finally, with the notation as above, let N=TTW(K ,U) be an open neighbor-
hood of the identity in the restricted product H'Gv. Then clearly W(I1K,,U) is
contained in ¢(), and hence ¢ is open as well as continuous. a

Measures

We shall now show how to define measures on restricted direct products of lo-
cally compact groups and, in the abelian case, on their Pontryagin duals.

5-5 PROPOSITION. Let G=IT1,_,G, be the restricted direct product of locally

ve v

compact groups G, with respect to the family of compact subgroups
H,cG, (for veJ, ). Let dg, denote the corresponding (left) Haar measure

v
on G, normalized so that

Idgv =1

Hy
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Jor almost all veJ . Then there is a unique Haar measure dg on G such
that for each finite set of indices S containing J,, the restriction dgg of dg
to

Gs=[]G, <[] H.

veS veS
is precisely the product measure.

ProoOF. Choose a set S as indicated and define a measure dgg by taking the
product of the measures dg,. The normalization of these measures forces the
volume of the compact group I1,, ¢, to be finite, as needed, and one checks
easily that dgg is indeed a Haar measure on Gg. Suppose now that 7S is a
larger finite set of indices. Then, of course,

s=([16G.x [T HIx(]H)<(]G,x []G)H)x(]H,) =G,

veS vel~-S vel veS vel-S vel

Moreover, by construction,

dgs =([1dg, x ] dg,)x(J]dz.)

veS vel-S vel
and

dgr =([ 1 dg, x []dg.)x(I]ds.)

veS veT-S vel

We conclude at once from this that dg coincides with the restriction of dg; to
the subgroup Gq.

Now, since G is locally compact, we know it has a Haar measure, which
restricts to a Haar measure on any Gg. Accordingly, we may fix any set S of
indices containing J_, and define a Haar measure dg on G to be the Haar
measure that restricts to dgg. That this measure is independent of S and unique
follows from the conclusion of the first paragraph: given two sets of indices S
and S, the measure dg constructed relative to S uniquely picks out the product
measure on G, .. and hence also on Gg,. a

Henceforth we write

dg=]]de,

for the (left) Haar measure on G defined by the proposition. We refer to this as
the measure induced by the factor measures. We shall next learn how to inte-
grate nice functions on G relative to dg.
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5-6 PROPOSITION. Let G be a restricted direct product of locally compact
groups as above, with induced measure dg.

(i) Let fbe an integrable function on G. Then
[ 7(e)dg =1im [ 1(g5)des -
G Gs

If f is only assumed to be continuous, this formal identity still holds,
provided that we allow the indicated integral to assume infinite val-
ues.

(ii) Let S, denote any finite set of indices including J,, and those v for
which Vol(H,,dg )#1, and suppose that for each index v we are given

a continuous integrable function f, on G, such that f|; =1 for all
veS,. For g=(g,)€q, define

r@=I1r@) .

Then f is well-defined and continuous on G. If S is any finite set of in-
dices including S, we have

[ r(gs)dzs =T1(| 5 (2.)dz,) - ¢.1)
Gs

vesS G,

Moreover,

[r@de =TT (] (2.,
G v G,

and feL\(G), provided that the right-hand product is finite.

(iii) Let { f,} and f be as in the previous part, with the added condition that
J, is the characteristic function of H, for almost all v. Then f is inte-
grable. Moreover, in the abelian case, the Fourier transform of f is
likewise integrable and in fact given by

f@=T1/.) . (.2)
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PRrROOF. (i) Certainly

[ £(e)dg = tim [ 1(g)de
G C

where the limit is taken over compact subsets C of G. But any such C is con-
tained in some G, and the limit formula follows. Clearly, the identity holds
formally for f continuous, but not necessarily integrable.

(ii) Since £, |, =1 for almost all v and since g=(g,)€G has (by definition) almost
all of its components g, in /7, [1f,(g,) is in fact a finite product for all such g,
and f'is well-defined. The continuity of f follows easily from the continuity of
each f, because a base for G can be given in the form [TN x[1H,, where the
first factor is a finite product containing all of the components of G on which
the corresponding function f is nontrivial. Hence f may be computed locally as
a finite product of continuous functions.

Now fix any S satisfying the hypothesis of part (ii). Then by the definition of
Gy and the assumption that f|;; =1 and Vol(H,,dg,)=1 for all v not in S, it is
clear that Eq. 5.1 holds since dgg is precisely the product measure on Gg. To
prove the second statement, note that by part (i), fis integrable if and only if

lim [ /(g5)dgs <o

Gg

where the limit is taken over larger and larger S. But Eq. 5.1 implies that this
limit exists if and only if

ves allv

tim [T ([ fi(e.)de,) =TT (] (g,)de,) <0
G, G,

which is true by hypothesis.

(iii) Since f; is the characteristic function of /1, for almost all v,

[T 5e)de) =TT ([ f(g,),)
v G, veS G

\4

for some finite set S, and is hence convergent. Therefore fis integrable on G.

In the abelian case, to establish the assertions about the Fourier transform,
let x=(x,) denote a character of G, and for each f,, define 4, to be the product
Jf,x,. Define h as I1 &,. Then A is integrable, since y is unitary, and the asser-
tions of part (ii) applied to # immediately yield Eq. 5.2. a
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Assume henceforth that our groups are abelian. The final goal of this section
is to build a product measure on the group

that is dual to dg=]1,,dg, in the sense defined by the Fourier inversion theorem
(Theorem 3-9), where we again assume that the measures dg, have been nor-
malized so that /7, has volume 1 for almost all v. For each v, let

dy,=(dg,)

denote the dual measure to dg, on f;v . For each v and feL'(GV), we have by
definition that

)= [ £.(2)7.(8.)dz, .

Gy

If £, is the characteristic function of A, which is clearly integrable and of posi-
tive type on G, we deduce from the orthogonality relations that in fact

Vol(H,) if x|y, =1
0 otherwise.

Fx)= [ x.(8,)d, ={
H

v

In other words, if H* is the subgroup of év consisting of characters trivial on
H, [that is, what we have previously denoted K(G,,H,)], then f’v( Z,)is the
characteristic function of H) times the volume of H,. From this observation
and the Fourier inversion formula, it follows that

Vol(H,)Vol(H*)=1

where the first volume is computed relative to dg, and the second relative to
dy,. Consequently the latter measure also gives volume 1 to HF for almost all
v, and we can define dy = (dg)” as above.

5-7 PROPOSITION. The measure dy so defined is dual to dg. That is,

1@ =7y
G

Jor all feV'(G).
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PrOOF. Since we seck only to determine a normalization factor, it suffices to
check the formula given above for the product functions /=1 f, with £, equal to
the characteristic function of H, for almost all v. The left hand-side is I1/,(g,),
while according to the previous proposition, the right-hand side is

1 [ fnedz, -
v g

v

But since dy, is the dual measure to dg,,

1480 = [f)x.(e,)dz,
é

v

for each v, and the assertion follows. Q

5.2 Adeles, Ideles, and the Approximation Theorem

Let XK be a global field and let X, be the completion of K at a place v. Then
(K,,+) is a locally compact additive group, which in the case of an algebraic
number field is either R, C, or a p-adic field. For all finite places v, K, admits o,
as an open compact subgroup. The restricted direct product of the X, over all v
with respect to the subgroups o, (v finite) is called the adele group of K and
denoted A,.. Note that we have an algebraic embedding

K-o>A,
x> (x,x,x,..) .

This map is well-defined because K always embeds in K, for all absolute values
v and every element of X is a local integer for all but finitely many places.

Along the same lines, for all places v of K, we can consider the locally com-
pact multiplicative groups (K *, - ). Here the local units o} (v finite) constitute
an open compact subgroup, and hence we may form the restricted direct prod-
uct of the K * with respect to the subgroups o} . This is called the idele group
of K and denoted I.. Again we have an algebraic embedding

K* > 1,
x B (x,x,x,...)

which is clearly well-defined.

REMARK. The adele group A, admits an obvious ring structure, and we have an
algebraic isomorphism I, =A,* that identifies the idele group with a subset of
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the adele group. However, this is not a topological embedding: the topology on
the idele group as a restricted direct product is in fact stronger than the relative
topology induced by the full adele group. We can see this easily in the case
K=Q. Let S be any finite collection of primes including the infinite prime, and
let N, be any neighborhood of 1 in Q, for peS. Then

(Iv,x[1z,)n1g 2R x[]2, .
peS pesS p<o

The point is that we can construct a point x=(x,) in the product appearing on
the left such that for some pgS, x, is a p-adic integer but not a p-adic unit; this
does not exclude x from I, but it does exclude it from the open set displayed
on the right. Hence the neighborhood base of the relative topology on I, in-
duced from the adele group cannot in general accommodate the open sets in the
idele topology, which consequently is stronger. (We leave it to the reader to
observe that every set open in the relative topology is also open in the idele to-
pology.) Despite this dissonance, these topologies are related by an algebraic
map, as shown in Exercise 1.

Fix K and let S, denote the set of infinite places of X. Note that S =S, in
characteristic zero. We write A | for the open subgroup Asmof the adele group
A, Hence A  consists of elements of the adele group all of whose components
at finite places have absolute value less than or equal to one.

5-8 THEOREM. (The Approximation Theorem) For every global field K,

Ac=K+A, .

Moreover, KnA = o,.

ProOOF. Here, of course, we identify X with the diagonal subset of its adele
group. We must show that given x€A,,, there exists xeK such that each com-
ponent of the difference x— 4 is a local integer. We give the argument for K an
algebraic number field; the modifications for a function field are obvious.

Let p be a prime ideal of o, and assume that p lies over the rational prime p.
Then multiplying any nonzero element of the associated completion by p cer-
tainly reduces its p-adic absolute value, so that eventually it lies in the corre-
sponding ring of integers. This shows that there exists some finite rational
integer m such that mx is integral at all finite primes. Let {p,,...,p,} be the set
of primes of X that divide m (clearly this set must include all the primes at
which the corresponding component of x fails to be integral), and let ny,...,n,
be a sequence in N. By the Chinese remainder theorem (see Exercise 2 below),
we can find Aeo, such that
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mx,;=A (modp;)

where X; is the component of the adele x corresponding to p;. Let pu=Alm. If we
choose each n; at least as large as the exponent of P occurring in the factoriza-
tion of the ideal (m) in o, then x— y=m"!(mx-2) is by construction integral at
each of the primes p,,...,p,. At other primes, its absolute value is identical to
that of mx—A, and hence it remains integral. This establishes the first assertion;
the second is trivial. a

5-9 COROLLARY. Let A denote the adele group of Q. Then

A=Q+A, =Q+(Rx[]Z,).

pprime

Moreover, QnA_=Z. Q

5.3 The Geometry of Ax/K

Let K denote a global field. Before describing the structure of the quotient of A,
by K, we must first investigate how the adeles behave under base change.

5-10 LEMMA. Let E/K be a finite extension, and fix a K-basis {u,,...,u,} of E.
Then the natural map

a:ﬁAK —>Ag

J=1

((xv,j)v)j i Zuj(xv,j)v
J

is an isomorphism of topological groups.

ProoOF. The map « is certainly a vector space isomorphism, so the question is
only one of continuity. For every place v of X, define

E,=]]E,

wlv

where w runs through the places of E lying above v. This is, of course, not a
field, but certainly a vector space over K, in which K|, itself embeds diagonally.
We have shown in Section 4.5 (Proposition 4-39) that E, admits {u),...,u} as
a K -basis, and thus an algebra isomorphism
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a,:[[X,>E,
J=l
(x;) Zx U
By Proposition 4-13, a, is also a topological isomorphism.

Define a subset o of E, by
op, =[] ok, -

Then again by Proposition 4-39 there exists a finite set of places S, of X, in-
cluding the Archimedean ones, such that for every vesS, the map «, defined
above induces by restriction an isomorphism

n
a,:[Jox, >og, .
A1

Now for any given finite set S that contains S, consider the products

Ai:HKva"K and A2=HEV><H0E .

ves veS Vv veS veS Y
Then from what we have seen so far,
n n
S ~ _ S
[TA% =ITdI& [ Tox,)=]1E, <[ Ios, = A -
J=1 Jj=1 veS§ vesS vesS v

Thus for each such set of places S, the collection {¢,} induces a map
a’:[[Ax > A
Jj=1

which, according to the analysis of the previous paragraph, is a topological
isomorphism and by construction agrees with the restriction of o. Since this is
true for every S containing S, and the open sets A3 cover A,, we deduce that &
itself must be a topological isomorphism. Q

5-11 THEOREM. K is a discrete, cocompact subgroup of A.
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ProOF. Let K, denote Q [respectively, the function field F (£)] if X is of char-
acteristic zero [respectively, of characteristic p]. Put n=[K:K,]. Then by the
preceding lemma we have the following commutative diagram of topological
groups, for which the top and bottom rows are isomorphisms:

H AKo
F=]

Ay
K

fIKo °l
=

Consequently, A, /K is compact if and only if (AKO/KO)" is compact, which in

turn is true if and only if A, /K is compact; similarly for discreteness. Thus we

may replace K by K, and assume for the remainder of the proof that X is either

QorF q(t). In the former case, let o denote the Archimedean place; in the latter

case, let « denote the place defined by (¢!). Put o, equal to Z or F 4111, accord-

ingly. We shall now exhibit a compact fundamental domain for X in A,
Define a subset C of the adele group by

C={xeAg:|x.), <5 and |x,|,<1Vy#co} .

It now suffices to show that C~K={0} and that A, =C+K.

Suppose that xeK also lies in C. Then xeo,, since xeo, for all v#co. In the
rational case, the requirement that |x_| <1/2 certainly forces x to be zero. Now
consider the function field case. Then

which cannot be less than 1/2 for nonzero elements of Fq[t]. This shows that
indeed C~K={0}.

It remains to show that A, is covered by translates of K by elements in C,
and we do this in two steps. First we claim that if y is an adele of X, then we
may choose €KX such that y —Jeo, for every finite place v of K. We only need
to worry about a finite set S of places, and for each veS, we may construct an
element y=u(v)eK such that y—u is integral at v, and u is integral at all finite
places different from v. To see this we need merely note that for any irreducible
element 7 in o, positive 7, and integral elements a and b relatively prime to 7,
we can always find a third integral element ¢ such that
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a C

br" &

n

is integral at z, because the congruence a=bc (mod 7”) is clearly solvable for c.
Thus §=Z_ c(v) meets our needs, and this completes the first step.
Continuing with y and & as above, we claim that we can next choose d’eo,
such that | y ~J6-0'| <1/2. If K=Q, the number ¢’ is just the integer nearest to
(y,—0); ifK =Fq(t), then &' is just the part of (y_~J) that is a polynomial in ¢.
(The remainder is a polynomial in #~! with no constant term, and hence of in-
finity norm less than ¢!, a value patently less than or equal to 1/2.) Now by
construction, both (y,—&) and ¢’ lie in o, for all finite places v. Thus

|y,~6-8',<1 and |y,-8-8'| <172

whence x=y—&-6'eC. This clearly suffices, since by construction, x+5+8'=y
and 6+5'eK. a

If K is a number field, then the preceding result is the adelic version of the
well-known fact that o, is a discrete, cocompact subgroup of K =I1K,, where
the product is taken over all Archimedean w. Moreover, in the case K=Q we
can apply the approximation theorem to yield the following beautiful descrip-
tion of the quotient of Ay, by Q.

5-12 PROPOSITION. There exists an isomorphism of topological groups
Ao/Q>lim R/nZ .
«

The projective limit is, of course, taken over the positive integers as a directed
set with respect to divisibility.

PROOF. For each positive integer n set
C,={xeAy x,=0andx, epord"(")Zp for p <0} .

Clearly each C, is a compact subgroup, and moreover, the intersection of the C,
over all n is {0}. This yields an identification

limAy/C, > Aq

((fp,n)p )n g (ll'ltn xl’,")P
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where the ordinary limit on the right is also taken over the positive integers as a
directed set with respect to divisibility. (The point is that if we fix a prime p,
the sequence that results from taking the pth components of the indexed set of
adeles that constitute an element of the projective limit must converge in Q,)
This isomorphism in turn induces an identification of quotients

A,/Q=limA4/(Q+C,) .
Now consider the map

@, -R/nL—>A,/(Q+C,)

given by sending x to the class of the adele with x as the Archimedean compo-
nent and zero as the finite component. This map is well-defined, because for all
products na, acZ, we have the decomposition

(na0,0,...)=(na, na, na,...)+(0,-na,—na,...) eQ+C,

Tt
o 2 3

It is immediate that g, is injective. The surjectivity follows from the approxi-
mation theorem, the proof of which may be readily extended to show that the
finite part of A_ may in fact be replaced by C,. From the existence of these
isomorphisms ¢,, we now deduce that

A,/Q=limA,/(Q+C,) =lim R/nZ
and this completes the proof. a

REMARK. Thus A,/Q is an inverse limit whose nth component corresponds to
the unique covering of R/Z of degree n, n21. Since 7,(R/Z)=Z has Z/nZ as its
unique quotient of order »n for each n>1, every finite cover of S! is obtained
from AQ/Q Thus AQ/Q may be thought of as the “algebraic universal covermg
space” of S', analogous to R as the “topological universal covering space” of
S!. The Ga101s group of the covering A,/Q—>S", !, namely Z may be thought of
as the “algebraic fundamental group” of S'. This is a simple instance of
Grothendieck’s general construction of the algebraic fundamental group for
algebraic varieties, a notion that arose in connection with the following situa-
tion: Let X be a smooth projective algebraic curve over C, so that the set of
complex points X(C) defines a Riemann surface; i.e., a complex manifold of
dimension 1. Suppose that Y is a finite covering of X(C). Then by the Riemann
existence theorem, Y corresponds to a smooth projective algebraic curve X' with
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Y=X'(C). But if Y is an infinite cover, it will not be algebraic, and therefore
one needs to restrict to finite covers to remain in the algebraic category.

5.4 The Class Groups

In this section, we reverse the historical order and begin with the definition of
the idele class group C,, of a global field K. We analyze its properties and then
show how the usual ideal class group C/, and, more generally, any ray class
group relative to an ideal, is a factor of the compact part of Cp. (In the function
field case, the class group C/, is usually called the Picard group and denoted
Pico,.)

Let K be an algebraic number field or a finitely generated function field in
one variable over a finite ficld F, where g=p°. Just as K embeds discretely in
A, K* identifies with a discrete subgroup of the idele group I, via the diagonal
map. (See Exercise 3.) Since I, is abelian, its quotient by K* under the quotient
topology acquires the structure of a topological group [cf. Proposition 1-4, (v)].

DEFINITION. The topological group
Cy = L/K*
is called the idele class group of K.

Since A, /K is compact, one might hope that C is also compact. But this is
not true, as follows from the existence of a nontrivial absolute value that will be
defined shortly. But first we must standardize our absolute value functions:

DEFINITION. Let & be a local field. Then the normalized absolute value |- |, on k
is defined as follows:

(i) Ifk=R, then ||, is the usual absolute value function.

(ii) Ifk=C, then |z|,=2zZ, the square of the usual absolute value function.

(iii) If k is non-Archimedean with uniformizing parameter 7, then
1
|7)e=—
q

where g is the order of the residue field o,/z-0,. This clearly extends
uniquely to k. Note well that for the infinite place associated with a func-
tion field of positive characteristic in the indeterminate ¢ (so that the uni-
formizing parameter is in fact #-!), this normalized absolute value function
amounts to the formula | f(#)| _=q98/ for polynomials f(f). (Hence the infi-
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nite place described in Chapter 4 was represented precisely by the corre-
sponding normalized absolute value function.)

The following lemma shows how these normalized absolute values behave
with respect to finite extensions of local fields. Recall that if /k is a finite ex-
tension of arbitrary fields, then every element xe/ defines, by multiplication, an
endomorphism p, of / as a vector space over k; this is just the regular represen-
tation. In this context, the norm of x over &, denoted N, (x), is the determinant
of p,. For a Galois extension, this reduces to the product of the conjugates of x;
in any case, NV, is multiplicative.

5-13 LEMMA. Let l/k be a finite extension of local fields. Then for all xeE, we
have

|x|1= |N1/k(x)|k .

Proor. This is clear in the Archimedean cases. So let £ be non-Archimedean
with uniformizing parameter z,. It suffices to prove the lemma for x=zx,, the
uniformizing parameter for /. Let n=[/:k]. Recall from Proposition 4-23 that
the ramification index and residual degree for the extension are defined by the
relations

m,=um;, (UED))

¢/= Card(o/m" 0))

and that n=ef. We may certainly replace 7, with u~'z,, so that z, = 7. Ac-
cordingly,

Ny(n)=7n;

and it follows that
R 1
[Ny ()= _q,f .

Thus taking eth roots of this equation and recalling the definition of ||, we
obtain

1
|”1|1=q—f=|N1/k(”1)|k

as required. a
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We now apply our construction of normalized absolute values to make the
following definition. Again let X be global field.

DEFINITION. Let ||, denote the normalized absolute value on the completion
K,. Then define the absolute value ||, : I, — R} by the formula

|x|AK =H|xvlv
14
where as usual, x=(x,).

CruciAL REMARK. From the analysis of local fields in Chapter 4, it follows that
for any idele x, the value of |x|,, is precisely the module of the automorphism
y+> xy as defined on the locally compact abelian group A,. (See the discus-
sion preceding Proposition 4-17.) This explains the choice of normalization at
the non-Archimedean places and, moreover, why the normalized absolute value
on C has been chosen as the square of the usual absolute value.

5-14 THEOREM. Let K be a global field. Then

(i) For every xeK* we have | x IAK= 1.

(i) The absolute value map |- |, is surjective if char(K)=0 and has im-
age of the form p™Z if char(K) =p, where m,, is an integer different
from 0.

The first part of this result is known as Artin’s product formula.

PrOOF. (i) Suppose that E/K is a finite separable extension. Then according to
the lemma, for every xe E, we may write

IxIAE= H H [xl,

ueF, veFy,vlu

= H H INEV/Ku(x)Iu .

ueF, vedFy,vlu

But appealing to the isomorphism of Proposition 4-40, £ ®KKu;I'Iv|u E,, we sce
that

H Ng,k,(X)=Ng(x) .

viu

Thus
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leAE=H|NE/K(x)Iu

and so the truth of the assertion for K will imply it for E. Since we have shown
that every global field is a finite separable extension of either Q or F (D), we
have now reduced the argument to these two cases. Moreover, since |- | Ak is
multiplicative, it suffices to establish the product formula for integral irreduci-
bles.

Suppose that K=Q and p is a rational prime. We may take p to be positive,
since it is clear that |-1] =1 for all v. Then p has nontrivial absolute value at
only two places and hence

Plag = Pl lPl,=p P =1 .

This establishes the product formula for Q. For K=Fq(t), we must consider an
irreducible polynomial f1 (t)qu[t], and again this has nontrivial absolute value
at only two places. For the infinite place,

L/, = g7

as noted above, while at the finite place,

| /0l= q e/

since of course, Card(F [/ Fq[t]) is g%8/. Thus once more the product for-
mula holds.

(i) First assume that X is a number field, so that there is at least one Ar-
chimedean place w. For any positive real number £, we can pick some yeK *
such that |y| =f. Let x denote the idele whose w-component is y with all other
components equal to 1. Clearly, | x|, =|y|,=¢, whence|-| o, IS surjective.

Next let K be a function field over a finite field, and let v be a place of K
with corresponding residue field F_, where g=p™ Then the normalized absolute
value of a uniformizing parameter 7 of K, is g~!. Accordingly, given neZ, the
absolute value of the idele x=(1,...,1,77,1,...) is p™. The upshot is that the
image of each component of A, under the adelic absolute value is p™Z, and
hence the total image is p™Z for some nonzero integer m,. This completes the
proof. a

We next use the absolute value |-|, . O Ay to define a subgroup of I into
which K* does embed cocompactly. The key is to trivialize the absolute value.

DEFINITION. Let K be an algebraic number field or a finitely generated function
field in one variable over a finite field F, where g=p“. Then we define
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Iy =Ker(|-l4,)
(the ideles of norm one) and
Cy =L, /K* .
This quotient is called the norm-one idele class group of K.

Note that Cy is well-defined, since K*I}; by the Artin product formula.
Moreover, we have a short exact sequence

15C. 5 C, 5>VI)>1
K K K

where according to the characteristic of K, V(I,)=Im(] - | AK) is either Rf or of
the form p™Z,

5-15 THEOREM. For all global fields K, the quotient

Cp =T /K*

is compact.

PROOF. Recall from the proof of Theorem 5-11 that there is a compact subset @
of A, such that A,=K+®. Since A, is locally compact, there exists a Haar
measure 4 on A, which we shall now fix; of course, x(®) is finite. Choose a
compact subset Z of A, such that x(Z)>u(®). Construct two subsets of differ-
ences and products of elements in Z as follows:

Z,={z,-2,:2,,2,€Z}

Z,={z,2,: z,2,€Z}

These sets are also compact by the continuity of subtraction and multiplication.
Since X is discrete in Ay, KNZ, is finite, with nonzero elements, say, y,,...,y,.
Now set

Y= U&‘({(u, y;'v)iuvez})
J=1

where & is the embedding of I, into A, x A, that sends x to (x,x!). (See Exer-
cise 1.) Since § is a homeomorphism onto its image, ‘¥ is a compact subset of
I, whence the theorem is a consequence of the following claim:
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Cram. I c K*Y.

PROOF OF CLAIM. First recall that for any yel,., | y| ae= 11,1, is the module of
the automorphism of A, given by multiplication by y. Now pick any x eI, .
Since | x|, =1, we see that the compact sets xZ and x'Z have the same volume
as Z. Since u(Z2)>u(d), it follows from Exercise 4 that there exist elements
21,25,23,24€Z, 2\#2,, Z3#2,, such that @=x(z,-z,) and f=x"!(z,~z,) are both in
K. Then aff=(z)-z,)(z5~2,) evidently belongs to K*Z,={y,,....y,}. In other
words, (z,-2,)(z;-2,) yj" =1, for some j<r. Thus

OxP)=06(25-2,)=(25-2,, (2)-2)y;VeZ\x 2,y .
This shows that xfe'¥ and completes the proof. a

It is useful to have S-versions of the groups we have been discussing, for any
finite set S of places of X containing S, the set of Archimedean places. Of
course, there are no such Archimedean places if charX is positive. (This nota-
tion is unfortunately conventional, although not entirely sensible: it excludes
the infinite places for a function field. Let the reader beware.)

DEFINITION. Let K and S5, be as above. Then define the S-ideles of K by

I s ={x=(x,)el;:x, €0}, eS} .

Equivalently,
IK,S = HKV*X HO: .
veS veS

5-16 LEMMA. Iy ¢ is open in 1., it is compact if and only if S=@, which can
occur only in positive characteristic.

PRrOOF. That I ¢ is open in I, is clear, because the restricted direct product to-
pology on I is the same as the relative topology induced by the product T K *.
(See Section 5.1.) Since K * is not compact for any v, I ¢ is compact if and
only if S is empty. But in characteristic zero, we require that S contain the
nonempty set of Archimedean places, so this can happen only in positive char-
acteristic, as claimed. a

DEFINITION. Let K and SoS_ be as above. Then

I}(,s = I‘K g s
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denotes the set of S-ideles of norm one.

According to the lemma, I ¢ is an open subgroup of I} in the relative to-
pology induced by the full idele group.

DEFINITION. The ring of S-integers of X is defined to be

Ry=Kn Ay
where

Ay 5= {xeAy:x 0, VveS} .
The definition above in particular gives o, as Rg_for K a number field, and

ogas Rg for K a function field, where in the latter case S, denotes the set of
infinite places of X. Also note that

Ry =K*nIgs=K*nI;s .
This is because I ¢ is the group of invertible elements in A, ; and
AK,S = HKV X H!)v
veS veS

5-17 PROPOSITION. Let S be a finite set of places of K containing S, . The fol-
lowing statements hold:

(i) The quotient le,s/ R§" is compact.
(ii) There exists an isomorphism
Ry =y x L'
where . is the group of roots of unity in K and
r(S) = sup{0,Card(S)-1} .
PROOF. (i) Since Iy g is open in I, its image I} ¢/Ry* is an open (hence
closed) subgroup of I\, / K*. But according to our previous theorem, the ambi-

ent space is compact, and hence the assertion.

(ii) Since we know this for the special case S= (see Exercise 5), we may as-
sume that S is nonempty. Put
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c=1]c,

where the product is taken over all places and C,={x, €K :|x,| =1}. This “adelic
circle” is a compact subgroup of I, ;. We have a short exact sequence of topo-
logical groups

1>Co I s> [[&)C,)->1 .

veS

Note that

log
k*/c =|RI =R, ifvis Archimedean
Z, ifvis non-Archimedean.

Writing r=r,+r,, where r, is the number of Archimedean places in S and 7, is
the remainder, this yields the sequence

1>C—>Iy s >R"%Z" .

Since, again by Exercise 5, CnK*=y, and also I}(’snK* =Ry, we get the
short exact sequence

1> >R >L—>1

where L is the image of K* inR"'x Z" . Since K* is discrete and cocompact in
le,s , an application of Exercise 6 below (with A=]]|-| ) shows that L is iso-
morphic to Z"®, a

REMARK. Part (i) implies in particular that Ry is finitely generated as an abe-
lian group, a fact that is not obvious from the definition. For K a number field
and 5=S_, this was established by Dirichlet and Minkowski.

We now introduce S-versions of the idele class group, which have a critical
property when S is nonempty.

DEFINITION. The S-class group of K is defined by

Crs=L/&* L) .
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The critical property is this; The inclusion map of norm-1 ideles into the full
idele group always induces an injection of quotients

L /K¥* T s > L/ K¥ s .

However, if S#, this map is moreover an isomorphism, because we can then
always represent any idele class on the right with an idele of norm one by ad-
justing a component corresponding to a place in S. If S is empty, then we are in
characteristic p>0, and the map has cokernel isomorphic to Z by Theorem 5-
14, part (ii).

5-18 THEOREM. The S-class groups of K have the following properties:

(i) In the case that S is nonempty, Cy ¢ is a finite group.

(ii) In the case that S is empty, Cy. ., is isomorphic to the direct product
of Z with a finite group.

PROOF. We have seen that the image of I ¢ in I} is open. Since I /K* is
compact, the quotient I/K*I}, ; must then be finite. The theorem now follows
from the preceding analysis of the injection of I}/K*I, g into Cy . a

The Traditional Class Group

A global field X is the field of fractions of the Dedekind domain R=0,, the
ring of integers of K. A frractional ideal of K is a nonzero finitely generated R-
submodule of X. Thus in particular, the ordinary nonzero ideals of R are frac-
tional ideals of K. One knows from the basic theory of Dedekind domains that
J, the set of fractional ideals of K, constitutes a group under multiplication of
(fractional) ideals and, moreover, that J, is a free abelian group on the prime
ideals of R. This is to say that we may write every fractional ideal aeJ,
uniquely as

a=[]pr>
P

where the product is taken over all prime ideals P of R and n,, is zero for almost
all P. (See Appendix B.) We sometimes write v,(a) for the exponent n, defined
by this factorization, and similarly define v,(x) for nonzero xeK. More pre-
cisely, vp(x)=vp(xR)=ord (x), where 7 is a uniformizing parameter for R,. We
call v, the discrete valuation associated with P.

Fractional ideals of the form Ra, aeK*, are called principal fractional ideals,
and these constitute a subgroup P, of J, that includes the nonzero principal
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ideals of R. The quotient group J,./P, is the traditional ideal class group of K,
here denoted Clj. If aeJ,, then [a] denotes its projection into the class group.

As previously, S denotes the set of infinite places of a global field K. Hence
S, is either S for a number field or S, for a function field.

5-19 PROPOSITION. Let K be a global field. Then there is a natural isomor-

phism
Cys,=Cl .
PROOF. Define a map
a: I, -»Cl,
x> [n p"p(xp)]
P

with v, as above. Then & is a well-defined homomorphism. Moreover, if
xeK*, then

(x) = H P
P

is the principal fractional ideal generated by x, and so a(x)=1. Since a(x)
depends only on the components of x corresponding to the finite places, a is
trivial on I'I(VE s,,,)Kv*- Finally, & is trivial on IT, 0%, since o,*cKer(vy) for all
P. In summary, o is trivial on K* I 5, and hence induces a homomorphism

a:Cys —>Cle

sending the class of x to a(x).

Suppose that aeJy.. Then v,(a) is nonzero for only a finite number of P. Ac-
cordingly, we may define an idele x by requiring that x be nonzero at the infi-
nite places and x,= 7,"»® for the places corresponding to primes P, where 7, is
the associated uniformizing parameter. Then by construction a([x])=[a], and
thus «a is surjective.

Finally, suppose that a([x])=1 for some xel,. Then there is a yeK* such
that

()’) — H PVP(XP) )
P

This implies that for all P, v (y)=vp(x,), and so we may choose u=(up) € [To,*
such that (xu),=yp, for all P. Then xu and y differ by an element of [, ¢ \K,*;
that is, x and y differ by an element of I, ¢ . Consequently, xeK* I S0’ which
means that its class [x] in Cy ¢ _is trivial. Hence a is also injective.
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REMARK. By saying that « is natural we mean that it is functorial for the inclu-
sion of fields in one direction and for the norm map in the other.

Ray Class Groups

Again let X be a global ficld, the fraction field of R=A K, with fractional
ideal group J.. Let M be a nonzero integral ideal of R, so that we may factor A/
uniquely as

M= HRVP(M

v finite

where P, is the prime corresponding to the finite place v of K, with associated
discrete valuation v,. Let S be the set of finite places where v,(A)>0.

DEFINITION. An element aeK* is said to be congruent to 1 mod M if the fol-
lowing conditions hold at every veS:

(i) aevo,
(i) vp(@-1)2v,(M)

The set of all such « is denoted Kiz15 one checks easily that this constitutes a
subgroup of K*.

DEFINITION. Let X and A be as above. Then define
JM)y={IleJ,: (I, M)=R} .

That is, J,(M) consists of the fractional ideals of K that are comaximal with
respect to M. In particular, if aek,,, then aReJ(M). We may thus further
define

CleM) = JM) /Ky, -

We call Ci,(M) the (wide) ray class group of K relative to A (or with conduc-
tor M),

ExaMPLE. Consider the case K=Q. Then R=Z is a principal ideal domain,

R*={%1}, and each nonzero integral ideal M takes the form mZ for some
unique positive integer m. Define a map

@ : Cly(M)—> (Z/mZ)™/ {1}
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that sends the class of a fractional ideal (a/b)Z (with both numerator and de-
nominator prime to m) to the double residue class +[a][]~!. This map is well-
defined on Jp (M) and factors through Cl (M) because (a/b)Z maps to the
identity if and only if a=1b (mod m) in the elementary sense. Since @ is clearly
surjective, it is in fact and isomorphism.

More generally, for a number field X this construction is usually extended to
include the signs at the real places. Let {w,,...,w;} be a set of real embeddings
representing inequivalent real places (not necessarily exhaustive), and put

M=(M,w,...w)
where M is an integral ideal.
DEFINITION. An element aeK* is said to be congruent to 1 mod M if the fol-
lowing conditions hold at every veS:
(i) a=1 (mod M), as above
(ii) wj(a) >0,vj=1,...,1

The set of all such a is denoted X -

i1 » and as previously, this constitutes a sub-
group of K*,

DEFINITION. We define the quotient
Cl(M)=J(M)/K

When {w,,...,w,} comprises the entire set of real places of X, then this is called
the narrow ray class group of K relative to M.

ExAMPLE CONTINUED. Again consider the case K=Q. Let M= (M ,), with M
generated by m>0 as before. We can now in a sense refine our map ¢ to an iso-
morphism

Cl (M) = (Z/mZ)*

The point is that by using the narrow ray class group, we can distinguish signs
in (Z/mZ)*. More particularly, given any ideal xZ in J (M), we take x=a/b,
with a and b uniquely given positive integers relatively prime to m and to each
other, and then map xZ to [a][b]-!. This map is clearly a surjective homomor-
phism with kernel X i
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Exercises

1. Let K be a global field, and let A% have the product topology. Show that
the mapping

I, > A2

x P (x,x™

is a topological isomorphism onto its image (under the relative topology
induced by that of the codomain).

2. Let 4 be an integral domain for which all prime ideals are maximal. Show
that if P, and P, are distinct prime ideals of 4, then

R+ P =4

for all positive integers m and n. [Hint. Prove this directly for all m when
n=1, and then proceed by induction.]

3. Let K'be a global field. Use the discrete embedding of X into the associated
adele group and Exercise 1 to show that K* embeds discretely in the asso-
ciated idele group.

4. Let G be a locally compact abelian group with Haar measure x. Suppose
that I" is a subgroup of G and that @ is a compact subset of G such that
G=T'+®. Show that if X is a compact subset of G such that x(X)>u(®D),
then there exist distinct elements x,,x,€X such that x,—x,eT".

5. Let K'be a global ficld. Show that |x| =1 at every place v of X if and only if
x is a root of unity in X.

6. Let G be a topological group isomorphic to R"x Z**'~" for some integers s>
r=0, and let A: G— R be a nontrivial, continuous homomorphism such that
when r>0, A is in particular nontrivial on R". Assume that I is a discrete,
cocompact subgroup of Ker(4). Show that '=Z*,

7. Let K be a global field. Show that the isomorphism a:Cy = Cly is natu-
ral in the sense of the remark following Proposition 5-19.

8. Let K be a global field and let S be a finite, nonempty set of places of X
containing the infinite ones. Show that Rg[=KnA, (), the ring of S-
integers of K, is a Dedekind domain. [Hint: Appeal to the case S=S,,
where we know this to be true by Appendix B.]
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Exercises 209

For any Dedekind domain R with fraction field X, define Pic(R) to be the
group of invertible fractional ideals of X modulo the principal ones. With
this definition and the preceding exercise in mind, prove the following S-
version of Proposition 5-19:

Let K be a global field, and let S be a finite nonempty set of places of K
containing the infinite ones. Then there is an isomorphism Cy. ;= Pic(Ry).

Show also that for S large enough, Cy ¢ is trivial.

Let K be a number field.
Show that an element xeK™* is a unit of o, if and only if Ny, (x)=%1.

Assume for the remainder of this exercise that X is a quadratic number
field, that is, K=Q(J5), where 52=d, a square-free integer.

Show that

Z[5]  ifd=23 (mod4)

0, =
K Z[l“;—‘s] if d =1 (mod 4).

Assuming that d is negative, list the units of o,.

Assuming that d is positive and congruent to either 2 or 3 modulo 4, show
that the units of o, are precisely those numbers a+54 such that the integer
pair (a,b) satisfies Pell’s equation a? — db? = +1. Show, moreover, that
there is a fundamental unit u,=a,+b 6, a;,b,>0, such that every unit in o,
is of the form +u" for some neZ. The pair (a,,b,) is called a fundamental
solution to Pell’s equation.

For this part, we assume that the reader is familiar with continued frac-
tions. Assume that d is as in the previous part, and let [a,,a,,...,q,,...] be
the (simple) continued fraction expansion of § with “convergents”

A,/B, = laya,,....a,] .
Show that for some n, the pair (4,,B,) constitutes a fundamental solution

to Pell’s equation. Check in particular that when d=2 (respectively, 3), the
fundamental unit of K=Q(J) is 1+ (respectively, 5+26).
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Let R be a Dedekind domain, for example the ring of integers in a number
field.

Suppose that Pic(R), the class group of the fraction field of R, is trivial.
Show then that R is a unique factorization domain; that is, every nonzero
element of R is expressible as the (finite) product of irreducible elements
and that this factorization is unique up to order and associates. [Hint. Show
that any two elements a,beR, not both zero, have a greatest common divi-
sor by looking at the intersection of aR with bR.]

Show that every integral ideal / in R can be written as the intersection of a
finite number of principal ideals.

Prove the converse of part (a): if R is a unique factorization domain, then
Pic(R) is trivial. [Hint: To show that every integral ideal is principal, show
first that having unique factorization forces the intersection of any two
principal ideals to be principal, and then appeal to part (b).]

MOoRAL. The class number &, of a number field measures the failure of
unique factorization in o.

(Artin) This exercise develops an explicit description of the connected
component of Cy. Let K be a number field of degree n=r,+2r,, where r,
and r, are, respectively, the number of real and nonconjugate complex em-
beddings of K into C. Recalling that o} has rank r=r +r,—1, fix a set
{u,,...,u,} of multiplicatively independent units in o,.. Put

V=ROZ
and embed Z in V' by the diagonal map that sends m to (m,m). Write
I, =13 xI

where the elements in Iy (respectively, IZ) have only trivial finite
(respectively, infinite) components.

Show that for any y elﬁ and x ei, the expression y* makes sense. [Hint:
1/ has a fundamental system of neighborhoods of unity consisting of sub-
groups of finite index.]

Show that for any z I{( and f € R, the expression z! makes sense, and that
it can be normalized to obtain real values at real places.
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For j=1,...,r, and t€R, let ¢() denote the idele with component 2™ at
the jth complex place and 1 everywhere else. Define a map 4 by

A:VOR: > I,

)= G Aitiret, ) s [ T 160
=1 =l

Show that A(4, ) is a principal idele if and only if every 4; and every ¢, lies
inZ.

Let A:V" @R — Cy denote the induced map to the idele class group.
Show that V/Z is compact, connected, and infinitely and uniquely divisible.
Conclude that D=Im(4) is compact, connected, and infinitely divisible.

Show that every infinitely divisible element of Ck lies in the closure of D,
and hence lies in D itself.

Show that D contains the connected component of Cy, and conclude that
in fact D is the connected component of Cy. [Hint: Use that D contains the
image of I3 ~1% ]

Let R be a commutative ring with unity. Define the Heisenberg group of R
as follows:

1 a b
H(R)=<|0 1 ¢|:a,b,ceR
0 01

Show that for any global field, H(K) embeds as a discrete, cocompact sub-
group of H(A,).

Continuing in the context of the previous problem, show that the abeliani-
zation map

HA,) - Al
1 a b
0 1 c|—(abd)
0 01

induces a continuous surjective map
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7 HAY/HK) - (A /K)?
whose fibers identify with A /K.
15. Let X be a global field.
(a) Show that GL,(K) embeds as a discrete subgroup of GL,(A,).

(b) Show that the corresponding quotient space—not quotient group, for this
embedding is not normal—is not compact.

(c) Let Z(*) denote the subgroup of GL,(-) consisting of scalar matrices. Show
that the quotient space GL,(A,)/Z(A)GL,(K) is still not compact.



6
A Quick Tour of Class Field Theory

One could argue that the principal goal of number theory is to understand the
integral or rational solutions of systems of Diophantine equations; that is, poly-
nomial equations with integral coefficients. Nineteenth-century mathemati-
cians, mainly riding the impetus provided by attempts to tackle the Fermat
equation x"+y”=z" (n2>3), realized the benefits of studying the solutions in
extended number systems R, as opposed to confining one’s attention to only Z
and Q, and this led eventually to global and local fields and their rings of inte-
gers. Such an extension often was made to allow for the presence of suitable
roots of unity in R, which provided desirable factorizations, such as

n-1
x"+y" = H(x+e2’”f/”y) )

J=0

Two related problems immediately arose, the first associated with the general
failure of unique factorization in R, leading to the class group, and the second
pertaining to the question of how rational primes factor, or split, in R. The lat-
ter problem was first solved in its entirety, in the guise of the study of quadratic
forms, for quadratic fields F=Q(J), where 62=D is an integer that is not a
square in Q. It was established that an odd prime p splits in F if and only if D
is a quadratic residue—that is, a square—mod p, and that the set X}, of primes
for which D is a quadratic residue mod p completely determines the extension
F/Q. (In modern parlance, one says that the set X, defines a canonical open
subgroup of the idele class group Cy,.) Of special importance here is the quad-
ratic reciprocity law, which for primes p and g gives a precise relationship be-
tween the status of p as a quadratic residue mod g and the status of ¢ as a
quadratic residue mod p. Further progress followed on cyclotomic and Kummer
extensions, and, perhaps most significantly, an assertion of Kronecker led to
the realization of all abelian extensions of Q as subextensions of the cyclotomic
ones.

By the early twentieth century, the central problem of algebraic number
theory had become that of describing the splitting of primes in finite abelian
extensions (“class fields”) L of an arbitrary number field X in terms of struc-
tures associated with K itself. A particular subclass that was well understood
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early on was the maximal unramified abelian extension H(X), called the Hil-
bert class field of K, whose Galois group Gal(H(K)/K) turned out to be isomor-
phic to the ideal class group C/,. In the 1930s, Takagi gave a general solution
to the problem and established in the process an abstract isomorphism of the
Galois group of any finite abelian extension L of K with a ray class group of X.
(As we have seen in Chapter 5, every ray class group is a quotient of the idele
class group.) A completely satisfactory understanding of abelian extensions L/K
was finally achieved with the revolutionary work of E. Artin, who proved a
general reciprocity law. Artin reciprocity, on the one hand, vastly extends
Gauss’s law of quadratic reciprocity and, on the other, gives a canonical iso-
morphism between Gal(L/K) and the relevant ray class group. The key tool is a
crucial homomorphism called the Artin map.

In this chapter, after introducing the required technical preliminaries on
Frobenius elements, the Tchebotarev density theorem—a huge generalization of
Dirichlet’s theorem on primes in arithmetic progressions—and the transfer
map, we summarize (without proof) the main results of abelian class field the-
ory a la Artin. While we state everything for idele class groups rather than ray
class groups, the reader may consult Section 5.4 for the relevant dictionary.
Putting matters in adelic language might seem an unnecessary complication,
but it is absolutely essential if we are to apply the techniques of harmonic
analysis. We end the chapter with an explicit description of the abelian exten-
sions of Q and Qp, including a proof of the Kronecker-Weber theorem.

SPECIAL NOTES. (i) The results of this chapter are not prerequisite for the proof
of Tate’s thesis in the following chapter, but they will play a role in some of our
applications. (ii) In the exercises for Chapter 7, we shall develop a proof of the
Tchebotarev density theorem as reformulated in terms of Dirichlet density.
Since this proof in fact relies on Artin reciprocity, it is important to stress here
that Artin’s law is itself independent of the Tchebotarev density theorem. While
Artin was inspired by ideas in Tchebotarev’s proof, his actual argument does
not depend upon it, and hence we introduce no latent circularities.

6.1 Frobenius Elements

The goal of this section is to introduce a family of special elements—or, more
properly, of special conjugacy classes—in the Galois groups of global ficlds.
We fix a global field F, and for any Galois extension K/F denote the corre-
sponding Galois group Gal(X/F).

We shall first consider the case of a finite Galois extension K/F with
G=Gal(K/F). Let Q) be a prime of o,. Then Q lies above some prime P in o,
and we let F denote the residue field o,/P. Recall from Section 4.3 that we then
define the decomposition group of Q in G to be
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Dy={oeG: o(Q)=0} .

Let the residue field o,/Q be identified with the finite field F,. Then we have a
canonical homomorphism

Pyt DQ - Gal(Fq/F)

that associates with oe DQ the map (x modQ — o(x) modQ) for all xeo,. As
proven previously, the map Py is always surjective and is in fact an isomor-
phism if and only if P is unramified in K. Moreover, each e D, extends to an
automorphism of the completion KQ that is trivial on the subfield F}; the in-
duced map

Jo 1 Dg = Gal(K,/Fp)
is unconditionally an isomorphism.

One knows from elementary field theory that Gal(Fq/F) is cyclic, generated
by the Frobenius map

x> x?’
where Card(F)=p/. With this in mind, we make the following definition.

DEFINITION. Let P be unramified in K. Then the Frobenius element g, in
Dyc G associated with Q/P is defined by

_ S
Porp =Pgl(x'—>xp ) .

Note that this element unfortunately depends on the choice of Q over P. In-
deed, suppose that Q' is another prime dividing P. Note first that D, is conju-
gate to D,. Explicitly, we know that we can find #€G such that £(Q")=0, and
consequently #~' a3 preserves Q' for each oeD,.

6-1 LEMMA. The maps Porp and Pgyp are conjugate in the Galois group G.
PROOF. Choose #eG as above so that ﬂDQ,,B" = D,,. Then by definition,
| 4
Poip _pQ'(x Px? ).

To show that this is conjugate by S to ¢, we explicitly compute as follows:
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B logpBx+Q)=B"0gp(B(x)+Q)
= (Bx"")+0)
=x"+ ¢

=@gp(x+Q') .
This completes the proof. a

DEFINITION. The Frobenius class in G corresponding to P, denoted @, ./ OF
(P,K/F), is the conjugacy class of the Frobenius element Porp -

This is well-defined by the previous lemma. The notation (P, K/F) is some-
times called the Artin symbol of P relative to K/F. We shall next analyze the
functorial properties of these Frobenius classes.

6-2 PROPOSITION. The Artin symbol has the following properties:

(i) Let MJIF be a finite Galois extension and K/F a normal subextension,
5o that the restriction map N, from Gal(M/F) to Gal(K/F) induces
an isomorphism between Gal(M/F)/Gal(M/K) and Gal(K/F). Then for
any prime P unramified in M,

Nyyx(P,MIF) = (P,KIF) .

(i) Let K and K’ be two finite Galois extensions of F that are, moreover,
linearly disjoint over F. Then for every prime P unramified in KK', we
have that ceGal(KK'/F) lies in the Frobenius class (P,KK'/F) if and
only if (ol , ol )e(P,KIF)x(P,K'[F).

(iii) Let K/F be a finite Galois extension, and let L be an intermediate
field, not necessarily normal over F, with [K:L]=m. Let P be a prime
of F unramified in K, and suppose that Q is a prime of L that divides P
and that P is a prime of K that divides Q. Then we have that Ly=Fpif
and only if ¢g,, €Gal(K/L). Moreover, the number of primes Q of L
lying over P such that LQ=F p is given by the formula

iCard( {o€Gal(K/F):0ps,07 €Gal(K/L) }).
m

REMARK. A prime Q of L dividing P such that L,=F) is called a degree-one
prime over F. When L/F is normal, (P,K/F) is a subset of Gal(K/L) if and only
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if ¢5,, €Gal(K/L) for some Frobenius element defined over P, and in this case
P splits completely in L into a product of primes of degree 1.

PROOF. (i) Let P’ be a prime of X above P, and P" a prime of M above P'. Let k,
k', and k" denote the corresponding residue fields. Then we have the following
diagram:

M > Mp20 —> k"
I |

K o> Kpoop - K
I |

F > Foo0p - k

Let k=F,, and let o’'eGal(k/k) and o"eGal(k'/k) denote, respectively, the
Frobenius automorphisms of &’ and k" over k. Both o' and o” are given by the
assignment x - x%, and thus it is clear that ¢’ is no more than the restriction
of o”. Moreover, since P is unramified in M, the decomposition groups
Dp,.c Gal(M/F) and D,.c Gal(K/F) are, respectively, isomorphic to Gal(k"/k)
and Gal(k'/k). Since by construction @,.,€Gal(M/F) and @, ,€Gal(K/F) are
the preimages of o’ and o under these isomorphisms, we see also that @, is
the restriction of @,.,. The same then holds for the associated conjugacy
classes, and hence (i) holds.

(ii) Let
y:Gal(KK'/ F) > Gal(K / F)x Gal(K' / F)

o (o, 0,)

denote the canonical homomorphism. This is in fact an isomorphism because X
and K’ are assumed linearly disjoint over F. Now let P denote a prime of KK’
lying above P. Then Q = P ~o, and Q'=P no,. are, respectively, primes of
K and K’ lying under P and over P. One checks easily that

P5,plk = Pop and @5 |k =@gp .

Conversely, any pair of intermediate-level Frobenius maps must arise via y
from a conjugate of ¢, because y is an isomorphism. This proves (ii).

(iii) Let the primes P, O, and P be as shown:
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2 0g

u

=0 — v

K
I
L o o, D
l
F o o 2

Again we must keep in mind two elementary, but crucial facts: the Frobenius
map 7 = @5, lies in the decomposition group Ds c Gal(K/F), and

Dp = Gal(K5/Fy)

where this isomorphism is nothing more than extension of an automorphism of
K over F to one of Kyover F,. Now if Q is in fact a degree-one prime, which is
to say that L,=Fy, then the corresponding extension of 7 is ipso facto trivial on
Ly, and therefore on L. Thus reGal(K/L). Conversely, if reGal(K/L) and
q,=Card(o./P), then it follows that a%=a (modQ) for aeo,, from which we
deduce at once that the residue fields of L and F are identical. Accordingly
LQ=FP, as required. This proves the first statement of (iii).

To conclude, we establish the formula. We know now that the number of
primes P of K dividing P such that P ~ o, is of degree one over P is exactly
the number of Frobenius elements defined over P that lie in Gal(K/L); this is
just Card((P,K/F)~Gal(K/L)). Now the number of such primes lying over any
single given degree-one prime in L is always m/f, where f be the residual de-
gree associated with P . (Clearly f is the same whether computed with respect
to L or F and is therefore independent of P ~ o, , provided that this intermedi-
ate prime is indeed of degree one.) Thus the number of degree-one primes in L
is f/m times the cardinality of (P,K/F)~ Gal(K/L). But every element of this
intersection is represented exactly f times in the form o¢;,0"' =@ _;, as o
runs over Gal(K/F), and from this the formula follows at once. a

Arbitrary Unramified Extensions

Recall that an extension E/F is called unramified at a place » of F if there exists
a chain

F=E0§E1§"‘QE=UE,'

of finite extensions such that each E,/E, | is unramified (in particular, finite
and separable) at every place of E,_, lying above u.



6.2. The Tchebotarev Density Theorem 219

DEFINITION. Let Fbea glogal field and P a prime in F. Then F*(P) denotes the
maximal subextension of F/F that is unramified at P. This is called the maxi-
mal unramified extension of F at P.

It is easy to check that F*(P) exists (see Exercise 1 below) and is a Galois
extension of F. For we have seen that each step in the tower that defines an
unramified extension is the splitting field of a polynomial of the form x"-1, and
hence is itself Galois over F. Clearly,

Gal(F*(P)/F)=limK/F

where K runs over finite Galois extensions of F contained in F*'(P). The previ-
ous proposition shows that the Frobenius classes ¢,,=(P,K/F) patch nicely to
give a class (P, F"(P)/F) in Gal(F“(P)/F).

It is perhaps disappointing that we cannot define the Frobenius class in the
absolute Galois group Gal(F¥/F), but we point out without proof that if

p:Gal(F/F)—> GL,(Q))

is a continuous representation arising from the /-adic cohomology of a smooth
projective variety over F (with / a prime different from the characteristic of F),
then p is unramified at all P outside a finite set S of primes. In other words, o
factors through Gy, ¢, the Galois group of the maximal extension of F'in F that
is unramified outside S. Since Gal(F*"(P)/F) maps onto G ¢, we see that p(@,)
is well-defined at every PgS.

6.2 The Tchebotarev Density Theorem

Given a finite Galois extension K/F of global ficlds, we have seen how to define
a map

Q=@ p: Zp —Sg,r = Gal(K/F)*
P oy

where I denotes the set of places of F, S, denotes the (finite) union of the
Archimedean places and the finite places that ramify in X, and Gal(K/F)" is the
space of conjugacy classes of Gal(K/F). A natural question to ask is whether
every conjugacy class is ¢, for some P. The answer is yes, as affirmed by the
following beautiful result, given here without proof.
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6-3 THEOREM. (Tchebotarev) Let G=Gal(K/F). Then for every conjugacy class
C in G there exist infinitely many primes P such that p,=C. More pre-
cisely,

lim Card{P:N(P)<x,pp =C} _ Card(C)
x>o  Card{P:N(P)< x} Card(G)

Here, N(P), the (absolute) norm of the prime P, is the cardinality of the as-
sociated residue field. The limit on the left side of the equality is called the
natural density of the set described in the numerator. (As noted above, we
prove a reformulation of this theorem in terms of Dirichlet density in the exer-
cises for Chapter 7.)

An illuminating special case of this theorem arises when F=Q and
K=Q(<,), the field of mth roots of unity over Q, for some m>1. Then one
knows that the Galois group G of K/F is abelian, and in fact isomorphic to
(Z/mZ)*. Explicitly, each a relatively prime to m gives rise to an element

of G. For every prime p not dividing m, this extension is unramified (proved for
m prime in Section 4.3). Now let C be a conjugacy class in G, so that in the
present case C corresponds to a singleton subset {a}c(Z/mZ)*. Then one can
deduce that

qpp={0'a} < p=a(modm).

Thus Tchebotarev’s theorem becomes the well-known theorem of Dirichlet on
primes in arithmetic progressions, namely that there are infinitely many primes
p congruent to ¢ modulo m, and, more specifically, that the density of such
primes is 1/p(m).

6.3 The Transfer Map

In preparation for the statement of the Artin reciprocity law, we now introduce
a subtle and entirely group-theoretic construction that is of interest in its own
right. The subtlety lies in that in general there is no homomorphism from a
group to a subgroup.

Let G be any group, with H a subgroup of finite index. Let (G, G) denote the
commutator subgroup; i.c., the subgroup generated by the products sts~'t!
where s and ¢ vary over G. Since conjugation by any element is an automor-
phism of G, the commutator subgroup is normal in G, and the corresponding
quotient group G**=G/(G,G) is called the abelianization of G. The homomor-
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phism in question is the transfer map, also called die Verlagerung by German
aficionados,

V:G®—>H®

and is defined as follows.

First choose a section s: H\G—G; that is, a set of representatives for A\G,
the set of right cosets of H in G. Put

hey = S(F)xs(w)” e H
where yx denotes the effect of right translation on a coset y in /\G. (Of course,

H\G is a G-set!) Clearly, h, ; measures the failure of s(y)x to equal s(jx);
that is, the failure of s to be a G-map. Next define

V(x)= []hey; mod(H,H).

FeH\G
Thus the right-hand side is the natural image of the given product in H®,

6-4 PROPOSITION. The map V.Go>H"isa group homomorphism independent
of the choice of the section s:G—>H\G.

PROOF. First we show that ¥ is independent of the choice of section. Let s’ be
another section. Then there is a function 7: /\G— H such that

s'(y)=ny)s(y)
for each y e H\G. Given xeG, the direct calculation
[Tsxs' ()™ = [ [P)s(Pn()s(™
y y

= [Tns(mxs(Gxy™ m(5)”
y

shows that we may calculate V(x) using either section and obtain the same re-
sults modulo the commutator subgroup (7, /).

We may make a similar calculation to see that Visa group homomorphism:
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V(xx,)= I;]s( P)x,x,5(7x,x,)”" mod(H, H)
= I;Is(y)xls(fx, )7 s(x, )x,5(7%x,)” mod(H, H)
= 1;[s(7)xls(foc, )" I;IS()'fx. )x,5(7%,x,)" mod(H, H)
=V(x)V(x,) .

In moving from the second line to the third, we note that the indicated trios of
factors all lie in H, whence all of the right hand-trios can be accumulated
modulo (/, H) into a single product. In moving from the third to the fourth, we
note that as y varies over /\G, so does yx,. a

In consequence of this proposition, it follows from the universal property of
the abelianization of a group that V" induces a unique map

V-G®—> H®

which we call the fransfer map. We also write V;; ,; for this map to emphasize
the domain and codomain. From the previous proposition it follows that the
transfer map is completely intrinsic to G and A, and independent of the choice
of section. Moreover, it satisfies a kind of transitivity:

6-5 PROPOSITION. (Transitivity of the Transfer Map) If HCKc G, then

Vou=Ven°Vox -
Proor. Exercise. Q

In his book The Theory of Groups, M. Hall gives an alternative development
of the transfer map via monomial representations (1959, pp. 201-203).

6.4 Artin’s Reciprocity Law

One of the major success stories in number theory this century has been the
work of Takagi and Artin on the description of abelian extensions of global
fields. This is codified elegantly and concisely by the Artin reciprocity law. In
this section we shall, without proof, state this law simultaneously for global and
local fields and indicate its associated functorial properties. We begin with a
few preliminary considerations.

Let F'be a global or local field. Put

Cp =

F* if F is local
I./F* if Fis global.



6.4. Artin’s Reciprocity Law 223

We know that this is a locally compact abelian group. Moreover, if K/F is a
finite extension, we will be concerned with two natural homomorphisms:

Jyp:Cr—=>Cy and Nppp: Cp—>Cp .

The first map is simply that induced by inclusion. The second is the norm ho-
momorphism, which in the global case is induced by

), = IV

v|u

where N, :K,—F, is the ordinary norm. Observe that this idele class version of
the norm is well-defined: the ordinary version maps integers to integers (cf.
Appendix B, Section 2), and Proposition 4-39 shows that elements of X map to
elements of F. Note also that according to Exercise 3 below, the image of Ny,
is an open subgroup of Cy..

Next fix a separable algebraic closure F and put

[',=Gal(F/K)

for any extension K/F with K F. To describe the functoriality of Artin reci-
procity, we shall also need two maps on the Galois side. The first is simply the
inclusion

Iy T =>Tp .
The second, which goes in the opposite direction, is the more subtle transfer
map
.ab b
V.r® 1
defined as above on the abelianizations of the domain and codomain.
Before stating Artin’s reciprocity law, let us take note of the relationship

between the cokernel of the norm map and the Galois group for four particular
extensions K/F.

CasE 1. Let F=R and K=C. Then Gal(C/R)={1, p}, where p denotes complex
conjugation. Moreover, the cokernel of the norm map

Neg : C*>R*
is simply the quotient of R* by the nonzero squares, which is to say the cyclic

group of order 2. Hence there is a unique abstract isomorphism between
R*/N(C¥*) and Gal(C/R) sending the class of -1 to p.
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CASE 2. Let F=C. Then since the complex numbers are algebraically closed, X
must also equal C, and both the cokernel of the norm map and the Galois group
are trivial.

Cask 3. Let p be an odd prime, and let F=Q, and K=Q,(0), where & 2=2. Then
Nyp(K*) = {re Q:‘ :r=x2-2)2, for some x,yeQ,} .

It is a good exercise to check that this norm subgroup has index 2 in Q:. of
course, Gal(K/F) is also cyclic of order 2.

CASE 4. Let F=F_, and let K be any finite extension. Note that the norm map
from K* to F;‘ is always surjective, and hence has trivial cokernel. Hence the
situation here is very different from that of a local or global field.

6-6 THEOREM. (Artin Reciprocity) Let F be a global field or a local field. Then
there exists a homomorphism, called the Artin map,

0 : Cp - Gal(FIF)® =T
satisfying each of the following two groups of assertions:
PART ONE—The Artin Map for Abelian Extensions

(i) For every finite abelian extension K/F, let 6, denote the composition
of @ with the natural projection I — Gal(K/F). Then O is sur-
Jjective with kernel Ni.,.(C,).

(ii) Conversely, given any open subgroup N of Cy of finite index, there
exists a finite abelian extension K/F such that N=Ker(8,). In par-
ticular,

Cr./N = Gal(K/F) .

(iii) Let K/F be a finite abelian and unramified extension of the non-
Archimedean local field F with residual extension k'lk. Then we have
explicitly

gK/F(x) = ¢V(x)

where @ is the Frobenius element of Gal(K/F)=Gal(k'/k)=(p).
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(iv) Let K/F be a finite abelian extension of global fields, and let P be a

Jfinite prime in F that is unramified in K. Denote by x, the class in Cp,
defined by the idele

=Q0....Lr1..,1)
T
place P

all of whose components are 1 except at the place defined by P, where
the component is a uniformizing parameter n. Then we have

0K/p(x p) = ¢p

where @,=(P,K/F). [Note that since K/F is abelian, the Frobenius
conjugacy class @, is in fact a single element of Gal(K/F).]

PART TWo—Functoriality

Let K/F be a finite separable extension, not necessarily abelian (with F
either global or local). Then we have the following two commutative dia-
grams:

®
C 0K ab
X —> Iy
Neir d kiF
(ii)
C 0K ab
X — Iy
Jeir T %

Moreover, if K|/F is an abelian extension with subextension K/F, then we
have a further commutative diagram
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(iii)

O,/

proj |, J proj

F*/Ngp(K¥) ——— Gal(K/F)
O /F

Note well that the inclusion-induced map on the class group side corre-
sponds to the transfer map on the Galois side and that the inclusion map on the
Galois side corresponds to the norm map on the class group side. In the abelian
case, we may simply identify the projections.

6.5 Abelian Extensions of Q and Qp

In this section, working over either Q or Qp, we consider class field theory in a
particular and concrete setting. We prepare with some general field-theoretic
notions.

Let F be a field, for which we implicitly fix an algebraic closure. If X and
K, are Galois extensions of F, then so is their compositum X, K,, and in fact we
have an embedding

Gal(K,K,/F) - Gal(K,/F) x Gal(X,/F)
o B (0lk,,0lk,)

which is an isomorphism if K, and X, have intersection F. Thus if K, and K,
are morcover abelian extensions, so again is their compositum. Thus there ex-
ists a maximal abelian extension F*° of F, which is precisely the compositum of
all abelian extensions of F within its algebraic closure.

Henceforth, for any n>1, F, denotes the field obtained by adjoining the nth
roots of unity to F' (again, within its fixed algebraic closure). We shall soon see
that this is always a finite Galois extension of . We further let | denote the
compositum of all of the F , n>1.

We now state the main theorems of this section.

6-7 THEOREM. Let F be a local or global field. Then for all n, F, is a finite
abelian extension. Moreover, the following assertions hold:

(i) IfF=Q, then Gal(F,/F)=(Z/nZ)* by an isomorphism that associates
ae(Z/nZ)* with the automorphism of F, induced by o> o°, where @
is a primitive nth root of unity. Consequently, F. C F*™.
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(ii) IfF= Qp and n is relatively prime to p, then F,/F is unramified, with
Gal(F, /F) cyclic. In fact, every finite unramified extension of Qp oc-
curs as some F,, with (p,n)=1.

(iii) If F=Q, and n is a power of p, then F,|F is totally ramified, with
Gal(F,/F)y=(Z/nZ).

6-8 THEOREM. (Kronecker-Weber) Let F be either Q or Qp. Then F =F ab,

REMARK. Let F=Q. Then by the Kronecker-Weber theorem, given any finite
abelian extension K of F, we can find a positive integer » such that X is con-
tained in the field F,=Q(e?*/"). Thus one can think of K as being generated by
the values of the function 7% at rational arguments. Kronecker’s Jugendtraum
(youthful dream) was to hope that any finite abelian extension of a number field
F could be generated by values at algebraic arguments of a suitably chosen set
of transcendental functions. This dream is realized for imaginary quadratic
fields F, where the abelian extensions are all generated by the values of elliptic
functions at “division points.” Further progress has been made by Shimura and
others. Kronecker’s dream has in fact influenced much of modern number the-

ory.

PROOF OF THEOREM 6-7. We begin with some basic Galois theory. Let F be any
field with separable algebraic closure F. For positive n, consider the equation

S =x"-1

over F. Then its splitting field is precisely F,. If char(F)=p>0, then there are
no nontrivial p-power roots of unity in . Thus if we write n=p’m, with m
prime to p, the nth roots of unity in F are the same as the mth roots of unity.
Therefore, in the case of positive characteristic p, we can and shall assume that
n is prime to p.

Let @ be a primitive nth root of unity in F, so that =1, but w™=1 for any
positive m smaller than n. Indeed, such an @ must exist because the formal de-
rivative of f

£ =nxr!

is nonzero for nonzero x—after all, » is assumed prime to p in positive charac-
teristic—and therefore f must have # distinct roots in . Hence this necessarily
cyclic group of solutions must have order »n and, of course, a generator @. From
this we see at once that F,=F(w) and that F,, is the splitting field of a separable
polynomial over F. Accordingly, F, is a finite Galois extension of F.

Fix a primitive nth root of unity @ Then @’ is again a primitive nth root of
unity if and only if » is an integer prime to n. In this way we obtain exactly
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@(n) primitive roots. Now if ceG=Gal(F,/F), it must send @ to another prim-
itive nth root of unity. Thus we must have

o(w) = w%
for some a_e(Z/nZ)*. Moreover, for 0,7€G,
o= (o1)(w) = o(w?) = @ .
Thus a_ ,=a_a,, and so we have a homomorphism of groups
7:G—>(Z/nZL)~ .

Since o is the identity of G if and only if w?< is w itself, which is to say, if and
only if a_=1 in (Z/nZ)*, it follows that y is injective and that G is abelian.

Keeping in mind that  generates F, over F, each element ae(Z/nZ)* con-
versely gives rise to an automorphism o, of F, defined by

o(®) = w® .

However, this might not be an element of G by virtue of its failure to restrict to
the identity on F, and this will indeed occur if some power of w lying in F is
moved by o,. Hence in general y is not surjective.

Before specializing to Q or Qp, we observe that for any d|n, we may define a
factor f,(x) of f(x) by setting

fi(x)= H(x_wbn/d)'

be(Z/dZ.)*

Then clearly,
SO =11/

d|n

with f}(x)=(x—1). We customarily call f, the nth cyclotomic polynomial. Since

o x"-1
L § 7O

d|n,dzn

we see inductively that each cyclotomic polynomial lies in F[x]. Moreover,
since each is monic, it follows from the Euclidean algorithm that its coefficients
in fact lie in the subring of F generated by 1. In this sense, the cyclotomic poly-
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nomials are generic over any field, although they may or may not be irreducible
depending upon F.

With these preliminaries in hand, let us now proceed to each of the three
statements of the first theorem.

(i) Now let F=Q. Then for n>3, F contains no nth root of unity, and therefore
®° does not lie in F for any a prime to n. Moreover, F), is simply the splitting
field of the cyclotomic polynomial f,, and elements of G permute the primitive
roots of unity. Thus to show that y is an isomorphism, it suffices to show that
J,(x) is irreducible, for then the order of G will be the degree of f,, which is
clearly @(n), the order of (Z/nZ)>.

Let g(x) be the irreducible factor of f,(x) that is the minimal polynomial of @
over F. Since g is the product of linear factors of the form (x—-w?), its coeffi-
cients are both rational and integral over Q, which is to say that g(x)eZ[x]. We
claim that it is enough to show that for every prime p not dividing »n, @? is also
a root of g. For this implies by iteration that & is a root of g for all @ prime to
n, thus forcing g=f, . Write

J(x) = gx)h(x)

with & necessarily having integral coefficients because g is monic. If g(w?) is
not zero, then ~(w”) must be, and therefore w is a root of A(x?), which is con-
gruent to s(x)? modulo p. So, g and # have a common root when reduced
modulo p, contradicting the separability of f, modulo p that obtains whenever p
does not divide n. This contradiction shows that w” is indeed a root of g, as
claimed.

To summarize, we have the isomorphism

y: G5 (Z/InZy
oa,

in the case F=Q.

(ii) In the case that F= Qp, we know by Proposition 4-25 that a finite extension
of F'is unramified if and only if it is of the form F,,, with n relatively prime to
p. Such extensions are moreover cyclic by Lemma 4-24,

(iii) Finally, we assume that F= Q, and that n=p’. We still have the injective
homomorphism from G=Gal(F,/F) into (Z/nZ)* that we constructed previ-
ously. As in part (i), to show that this map is morcover an isomorphism, it suf-
fices to show that the order of G is again ¢(n).



230 6. A Quick Tour of Class Field Theory

Let  be a primitive nth root of unity in F,, so that in fact F,=F(w), and set
¢=a?

Then ¢ is a primitive pth root of unity. Now define

el r-1
fx)=Y x?

Jj=0

Note that f(x) is irreducible because g(x)=f(x+1) is an Eisenstein polynomial.
[That is, the leading coefficient of g(x) does not lie in the unique prime ideal of
Zp, but all of the other coefficients do, and the constant term does not lie in the
square of this ideal.] It follows that

al

gl r-1 -1 :
f@)=Y 0" =3¢'=0

J=1 1

-~
[

whence f is the irreducible polynomial of @ over F. But of course

deg f=(p-Dp™' = p(n)

showing that the degree of the extension F,/F, and hence the order of G, is
precisely @(n), as required.

It remains only to show that F,/F is totally ramified. To begin, let 7=w-1,
so that x is a root of the irreducible polynomial g(x), which, too, has degree
@(n) over F. Then F,=F(7)=F|[x]/(g(x)). The residual extension F, is still
generated over F, by the image x of x. But happily

Bx)=x""

where g(x) is the reduction of g(x) modulo p, whence ¥ =0. (Eisenstein!)
This implies that F(n)= F, showing that F /F is totally ramified, as required. O

Proof of the Kronecker-Weber Theorem: The Local Case

We first consider the local situation, so that F'= Qp. By the previous theorem,
we have the following inclusions:

Q,=FcF“= |JF,cF,cF®
(p.n)=1
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where F,, F_, and F ® are as above, and F“ is the maximal unramified exten-
sion of F in the given algebraic closure.

Recall that according to our statement of Artin reciprocity, for every finite
abelian extension K/F there is a canonical isomorphism between Gal(K/F) and
F*/N,,-(K¥). Moreover, every open subgroup of F* is a norm subgroup; that is,
is of the form N, (K*) for some finite abelian extension K of F. Consequently,
since F*® is the compositum (and hence direct limit) of such extensions K, we
can identify

Gal(F™/F) = lim Gal(K/F)
K

with the projective completion of F*; that is,
Gal(F*/F) =lim F¥/N
N
where the limit is taken over open subgroups N of F*. Next recall that we have
a short exact sequence

v
1-> 0% - F* 5Z 50 6.1)

which splits once we choose a uniformizing parameter 7z, via w:Z—>F*,
w(n)=r". For every open subgroup N of F*, this yields another split short exact
sequence

v,
1505 /05 AN —> F¥IN>Z/nZ -0 .

With the existence of a left inverse for v, in hand, we can take the corre-
sponding profinite limits to obtain

1> 0% - Gal(F¥/F) > Z — 0 6.2)

which defines a projection ¢ from Gal(F*®/F) onto Z (From the proof of Theo-
rem 1-14, we know that a profinite group is the projective limit of its quotients
by open normal subgroups. Since the subgroups 0 "N are cofinal among the
open subgroups of o7, the projective limit of the corresponding quotients is
precisely oy itself.) And we have a final short exact sequence

1 Gal(F®F™) - Gal(F*/F) 5 Z >0 (6.3)
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derived from the projection p from Gal(F ®/F) onto Gal(F*/F) via the natural
identification of Gal(F*/F) with Gal(F/F)=Z, where F=Fp is the residue
field of F.

6-9 LEMMA. The projection ¢ defined in sequence 6.2 may be identified with
the natural projection p of Gal(F*™/F) onto Gal(F*/F). Consequently we
have an isomorphism Gal(F*™/F*)= o} .

To prove the main statement, we must produce a compatible family of homo-
morphisms from

the quotients v, (F*/N), N open, that appear as factors of the projective
limit that constitutes the cokernel in sequence 6.2

to

the groups Gal(K/F), K unramified, that appear as factors of the projec-
tive limit that constitutes the cokernel in sequence 6.3

such that the induced map on the respective projective limits is an isomorphism
a satisfying p=a o ¢. The following lemma contains the technical key:

6-10 LEMMA. Let K be a finite abelian extension of F with ring of integers oy.
Then the following statements are equivalent:

(i) The extension K/F is unramified.

(ii) Nygp(og)=of.

Moreover, in this case F¥/Ny,(K*) is a quotient of v (F*).
PrOOF. Let F'/F be the residual extension corresponding to X/F, and as usual,
put f=[F":F] and n=[K:F]=ef, where e is the ramification index. Let 7, and

7, denote, respectively, the uniformizing parameters for o, and o,.. Then from
sequence 6.1 we get

F*=0;xZ and K*= 0y xZ

and this is compatible with the group action from Gal(K/F). Recalling that the
norm of 7. is 7}, one then easily obtains

F¥ Ny o (K¥) = 0% [N (03 )% (ZISZ) .
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Since F*/N, (K*) is isomorphic to Gal(K/F), its order is n. Thus K/F is un-
ramified if and only if n=f, which is to say, if and only if N, .(0;)=0%. The
final statement is now obvious.

REMARK. We have the following commutative diagram with exact rows:

1 > l+mgo, > o > F* 5 1

i i LN

1 » 1l+#,0, —> 05 > F* 5 1
FYF F

Since the norm map on the (finite) residue fields is always surjective, it follows
readily that N(o;)=o0j if N(1+m,0,)=1+7,0,. Thus if the norm fails to be
surjective, it already fails at this level.

PROOF OF LEMMA 6-9. Suppose that X, is a finite abelian extension of F and
that X is any Galois subextension contained therein. From the diagram

F*/Ngn(K*) = 05/ Ny (0%,) % vp(F®/vp(Ny 1 (05,)
N N2 2
F*INgp(K*) = 0%/ Ngp(0%) x ve(F¥)/vp(Ngp(0%))

we see that the canonical projection on the left decomposes into the direct
product of the two canonical projections indicated on the right. In the case that
K is the maximal unramified subextension of X, it follows from the previous
lemma that Gal(K/F)=F*/N, (K*) is in fact isomorphic to the right-hand
factor on the second line. Moreover, since K/K is then totally ramified, the
projection on the right is the identity map, and hence we have an isomorphism

A, Ve (F* IN g p (K¥) 5 Gal(KIF) .

If K| is another finite abelian extension of F that contains K| with maximum
unramified subextension K'/F, we have a diagram

9

pr
FF(F*/NKI,F(KI* ) « VF(F*/NK‘,,F(KI’*))

1 s
Ve(F*/Ngip(K*))  « Vp(F*INgyp(K'™))
\ 1

Gal(K/F) « Gal(K'/F)
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where the vertical sequences constitute ¢, and Ak respectively. To show
that these maps are compatible with the projective systems is to show the
commutativity of this diagram, which easily reduces to the commutativity of the
lower square. But if we unwind the definitions and identifications, this follows
at once from the explicit description of the Artin map given for local fields in
Part One, statement (iii), of the Artin reciprocity law (Theorem 6-6).

From this analysis we see that the maps %, indeed induce an isomorphism
a of projective limits

@ 1im ¥, (F*/Ny ;(K#) - lim Gal (K /F) = Gal (F/ F')

where the limit on the left is taken over all finite abelian extensions of F" and
the limit on the right over all finite unramified extensions of F. In view of the
remarks immediately following the statement of the lemma, it now suffices to
show that o moreover satisfies the condition p=a o @, where p and ¢ are de-
fined by sequences 6.2 and 6.3 above. This amounts to checking the commuta-
tivity of the diagram

F*INg r (X5¥) - Gal(X,/F)

2 {
F*INyz(K*) — Gal(K/F)

where the vertical maps are the canonical projections and the horizontal maps
are the isomorphisms 6, . and 6. But this is no more than an element of the
functoriality of the Artin map. [See Theorem 6-6, Part Two, diagram (iii).] O

We now return to the proof of the Kronecker-Weber theorem. By the first
lemma, which holds for arbitrary local F, we have

Gal(F**/F*) = o}, .

(The compositum of local fields is local by Zorn’s Lemma.) Now let F=Q_, and
consider the diagram

N
\/
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where F . is the extension of F obtained by adjoining all roots of unity of order
a power of p. One checks easily that F o and F ' are linearly disjoint over F. (It
suffices to verify this for finite totally ramified and unramified extensions; see
Exercise 2 below.) Thus from Theorem 6-7, part (iii), we may deduce that

Gal(F,/F*) = Gal( F../F) = lim(Z/p"Zy = Z .

Accordingly, the Galois groups of both | and F' ® over F** are isomorphic to
the p-adic units, and since F*cF, cF™, we get an identification of F,, with
F® once we prove the following:

6-11 LEMMA. Any surjective (continuous) homomorphism u:Z}, —>Z; is an
isomorphism. a

The proof of this lemma is left as an exercise. (One approach is to use that
Z7 is isomorphic to F;," xZ , and that Zp is Noetherian as a module over Z.)
Thus we have established that every abelian extension of Q, is cyclotomic. U

Proof of the Kronecker-Weber Theorem: The Global Case

We now consider the global case F=Q. By Artin reciprocity (Theorem 6-6),
cvery finite abelian extension K/Q determines a canonical open subgroup
U=UF) of Cy=1,/Q* such that Co/U identifies, via the Artin map, with
Gal(X/Q). For each m=>1, let U,, denote the open subgroup associated with the
mth cyclotomic extension F,,=Q(e?"™). Since the first part of the reciprocity
law implies in particular that the correspondence between open subgroups and
finite abelian extensions is bijective and inclusion-reversing, we need only
show that U contains U, for some m. To do this, we must first understand open
subgroups of I, and I,/Q* somewhat better. The following result is key:

6-12 PROPOSITION. The idele group admits a decomposition as a direct prod-
uct of topological groups

IQ=Q"‘><RfL><ix

where 7~ = lim(Z/mZ)* = HZ’; . Hence C, = R} x YAl
r )

PROOF. Define a map £:1,—>Q* by

&0x) =sgn(x )] [ 1,1’
P
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for x=(xw,x2,x3,...,xp,...)elq. If m is a nonzero rational integer with prime
factorization

r
m= iH p}z"
J=1

then

r
g&m=+]]1p,;2 .
J=1

But the normalized absolute value of each p; with respect to itself is pj—‘, and so
in fact, £(m)=m. From this we deduce that £(x)=x for all nonzero rational x; in
other words, & provides a continuous group-theoretic section to the diagonal
embedding Q*—>IQ. Thus we have IQ=Q*><Ker(éj). Finally, it is obvious that

Ker(®) =R x[]Z}
P

whence the assertion follows. Q

We return to the proof that for any finite abelian extension K of F=Q, the
associated open subgroup U of C, contains U, for some m=1. By the propcisi-
tion above, any such U can be identified with an open subgroup of R} x Z*.
Since the positive reals admit no nontrivial open subgroups, U must be of the
form R} x U , where the latter factor is an open subgroup in Z*. But an ex-
amination of the local base for the topology of Z* at the identity—and the Chi-
nese remainder theorem—reveals at once that U must contain some U, the
unique subgroup of Cy, corresponding to Gal(X,, /K).

This completes the proof of the Kronecker-Weber theorem. a

The Characters of Cq

We conclude this section by describing all of the (continuous) characters of the
idele class group of Q.

6-13 PROPOSITION. Every character of 1, that is trivial on Q* is a product of
the form x|-|., where y is a character of finite order and s is a complex
number.

PROOF. Let weHom
phism

(Ig,C*) with @|g,=1. We have a topological isomor-

cont
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C* > R xS'

z=re" (r,e")

which we regard as an identification. Accordingly, we can decompose @ as the
product @, @, with ,:1, - R} and ,:1, > S'. By the previous proposition,
we may view @ as a continuous character of R’ x Z*. Since the second factor is
compact and totally disconnected, its complex characters are of finite order.
(See Chapter 3, Exercise 14. This is not true if, for example, we consider p-adic
characters!) Thus o, |ix =1, while (o,,li>< must be o{ finite order. Now put
x(x)=wu(p(x)2, where p is the projection of I, onto Z*. Since w, is trivial on
both Q* and Z*, it factors through the projection

I, > R;

x> |x|y

and so @,(x)=4(|x|,) for a continuous homomorphism £:R} — R . Let df3 be
the “differential” of 8; that is, df(f)=log S(e*). Since this map is linear, it must
be equivalent to multiplication by a real number y. Exponentiating, we get

o,(x)=|x[} .

By a similar argument, we see that any continuous homomorphism »:R* — S"
must be of the form a > a” for some teR. Putting all of this together, we get
o= wo,o, with

@,(x) =[x and @,(x)=|x]; 2(x)
for some y, teR. Hence the assertion of the proposition holds with s=y+it. 0O

REMARK. A character y on I, that factors through C,, and has finite order must
accordingly be trivial on the R’ component of the idele class group and hence
is neither more nor less than a character of Z*. Moreover, y further factors
through some component (Z/nZ)* of Z*. This follows by continuity: for every
rational prime p,

2L = 4(Zip"L)"
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for some n,, where we have implicitly embedded the quotient into the inverse
limit in the obvious way. Hence, since y has finite image,

2@ = x([1Z3) =2(@/ ™+ pFLY°)
P

for some finite collection of primes p;. Thus the idele class character y induces
a Dirichlet character, which is to say a character of (Z/nZ)* for some positive
n. (Dirichlet characters are customarily extended to all of Z/nZ by assigning
zero to elements not invertible modulo »n.) The smallest » that affords such a
factorization is called the conductor of y. Moreover, this association is patently
reversible: given any Dirichlet character, we can certainly pull it back to a
character of the group Z*, and hence to a unique idele class character on I,,.
Thus the rational idele class characters of finite order lie in a natural bijective
correspondence with the Dirichlet characters.

Exercises

1. Let Fbe a global field and P a prime of F. Show that F*(P) exists and is in
fact given as the compositum of all finite, unramifed extensions of K/F in a
fixed algebraic closure F. [Hint: This is an exercise in cardinality. How
many such X are there?]

2. Let F be a local field with finite extensions K and L that are, respectively,
totally ramified and unramified. Show that X and L are linearly disjoint
over F. [Hint. Choose a basis B for L over F such that (i) Bco, and (ii) B
projects onto a basis of the corresponding residue fields. What happens to a
linear dependence relation over o, when reduced modulo the unique prime
of the compositum of X and L? Keep in mind that the residue extension
corresponding to K/F is trivial. Conclude that B remains linearly inde-
pendent over X and hence that K and L are linearly disjoint over F']

3. Let Fbe aglobal field.

(a) Show, for every place u of F" and for every positive integer n, that (F*)"is
an open subgroup of F*. [Hint: First show that a subgroup G of F* of fi-
nite index is open if and only if it is closed.]

(b) Show, for every place « of F and for every finite extension L of F, that the
image of L* under the norm map N, . is an open subgroup of F*. [Hint.
Note that if n=[L:F,], then (F*)"is a subgroup of NL/Fu(L*)']
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Let K/F be a finite extension. Show, for any place u of F, that the map

[k} > Ff

v|u

*,) - [Nk, )

v|u

has open image.

Let K/F be a finite extension. show that N,,.(C,) is an open subgroup of
Cy. [Hint: First analyze the map Ny .. I, —>1I..]

Let F be a local field, and let 6, : C;, — I'2® be the Artin map. Recall that
Cp is just F* in this local case.

Show that &, (o%) lies in the inertia group
I =Ker(T} - Gal(F,/F,))
where F_ is the residue field of F.

Using Part One, statement (ii), of Theorem 6-6, show that &, induces an
isomorphism of oy with I.

Show that the natural topology of oy is identical to that induced by the
norm subgroups.

Let F be a global field, and let g, : C, — T'2 be the Artin map.

Show that if F is a number field, then 6 is surjective with kernel equal to
the connected component of the identity of C.

(Artin-Tate) Show that if F is a function field over a finite ficld F 2 then @,
is injective with dense image. Show, moreover, that each automorphism in
the image restricts to an integral power of the Frobenius map x> x?
on Fq .

R SRR SR SR S S

SpECIAL NOTE. It is beyond us to compose problems on class field theory and
the relationship of Artin’s reciprocity law to the classical power residue sym-
bols, prime decompositions, etc., equal to the amazing ones found in Algebraic
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Number Theory by Cassels and Frohlich (1968, pp. 348-364). We encourage
the reader to try all of these wonderful and productive exercises.



7
Tate’s Thesis and Applications

It is well known that much information on rational primes is encoded in the
Riemann zeta function £(s), which is defined by the absolutely convergent se-
ries

(=X

n2l

for complex numbers s such that Re(s)>1. Moreover, this function admits an
analytic continuation to the whole s-plane, except for a simple pole at s=1, and
satisfies the functional equation

&s)=£1-5)

where
&s)= n"’zr(gx(s) :

One establishes this analytic continuation and the functional equation by mak-
ing use of the Mellin transform of the theta function

(2
0(2) = ZeZmn 4
neZ

and the well-known identity

Ze—ﬂnzlz - t_] ze—ﬂnz/lz (7. l)
nel

nel

for t>0.
Euler was the first to study £(s), but only for s real. He established the Euler
product expansion [in fact valid in the domain Re(s)>1]

1
=115
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where p runs over the rational primes. He also realized that the assertion £{(s)
approaches infinity as s—1* is equivalent to the infinitude of primes in Z. One
could greatly generalize the zeta function with the introduction of the Dirichlet
series. Given a multiplicative sequence {a,}.,, which is to say that a,,=a,a,
whenever m and n are relatively prime, one can form the series

L=

n
B
nzt 1

which is absolutely convergent in some right half-plane. Two very important
examples are (i) L(s)=Zy(n)n~*, where y is a Dirichlet character (for instance,
as derived from the Legendre symbol), and (ii) L(s)=X y(a)(Na)=, where a runs
over the nonzero ideals of the ring of integers of a number field K and y is a
character of the ideal class group C/,.. (In the latter example, when y=1, the
resulting series is called the Dedekind zeta function of K.) A simultaneous gen-
eralization of these two is the L-function L(s, ¥) associated with a (continuous)
character y of the idele class group C, of any number field K. A substantial
achievement of E. Hecke was to establish the analytic continuation and the
functional equation of L(s, y) for any idele class character y by an enormously
complicated application of generalized theta functions and the higher analogues
of Eq. 7.1, which we now understand as consequences of the Poisson summa-
tion formula. One thing that Hecke’s method could not describe satisfactorily
was the nature of the global constant #(y), the so-called root number, appear-
ing in the functional equation of L(s, ). Then, circa 1950, following a sugges-
tion of his erstwhile thesis advisor E. Artin, J. Tate made use of Fourier
analysis on adele groups to re-prove both the analytic continuation and the
functional equation of L(s, 7). In the process, Tate also established local func-
tional equations along with a factorization of the “abelian” root number, for
which he gave an explicit formula.

The basic idea of Tate was to realize the local factors and the global L-
functions of y as the greatest common divisor of a family of zeta integrals, with
a consequent generalization of Gauss sums. The key is to take a nice topologi-
calring Rsuchas Q _, R, or AQ , and to consider integrals of the form

2(2.9) = [ 2(x)p(x)dx

where y is a character of R* and ¢ is a nice function on R. The functional
equation reflects the Fourier duality between (y,¢) and (y,9), where ¢ is the
Fourier transform of g and (u|-|°)" = z|-|"* if xis a unitary character of R*.
Note that in the formally analogous case R=F,, y is of order dividing (p-1),
and every function @ on R is a linear combination 2c, v, where y runs over
the characters of the additive group of R; that is, elements of Hom(Fp,C*). So,
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as suggested above, in this case, z(y,¢) becomes Xc,g(z, ¥), where each
2(x, w) is the Gauss sum

1
ix(a)ebn'ab(y/)/p

a=1

for some integer b(yw). When R is a local field or the adele ring of a global
field, the characters y of R are oscillatory and z(y, y) will not converge. Here
the zeta integrals make sense only for suitable functions ¢ and may have sin-
gularities; the true analogue of the Gauss sum turns out to be the epsilon factor
&(y, ¢) occurring in the functional equation. When R is the adele ring of a
global field F, the multiplicative characters y of interest will always be trivial
on F* and thus will define idele class characters.

In his thesis, Tate used some ad hoc spaces of functions over local and
global fields. Here we will systematically use the spaces of Schwartz-Bruhat
functions.

We end this chapter with applications, and, in particular, with a proof of the
characterization of idele class characters y via their local components z,, for p
running over a set of primes of density greater than one-half.

7.1 Local {-~Functions

Let F be a local field with absolute value |- | and Haar measure dx. Define

d¥*x = c-ix—
x|

for some fixed real number ¢>0, which we always normalize to c=1 for F Ar-
chimedean. Then d*x is a Haar measure on F*, When F is non-Archimedean,
let o denote its ring of integers, P=Py, its maximal ideal, 7 the uniformizing
parameter, and F p the corresponding residue ficld. Recall that F* is the direct
product U, x G, where U, is the subgroup of F* consisting of elements of unit
absolute value and S is the valuation group; that is,

Sp={ye R} : y=|x|, for some xeF*}.

Then S, equals R} if F is Archimedean and g otherwise. (Note that Uy is just
the usual group of units in o in the non-Archimedean case.)

Let X(F*)=Hom_, (F* C*) denote the space of continuous group homo-
morphisms from F* to C*. In this chapter, we refer to elements ye X(F*) as
characters of F*, These have sometimes been called quasi-characters. Char-
acters with codomain given as S! are here distinguished as unitary characters.
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Hence unitary characters of F* are ordinary group characters in the sense of
Chapter 3. (Admittedly, the term has been overworked.) We see that every
e X(F*) factors into the product

x=ulF

where y is the pullback of a unitary character on U,c F*, uniquely defined by
the restriction of z, and s is a complex number. This is because the compact-
ness of Up, forces its characters to be unitary, while the characters of G are all
of the form ¢+ ¢* for some seC. A straightforward calculation shows that
while s may not be uniquely determined by this factorization—examine the
non-Archimedean case—nonetheless, Re(s), the real part of s, always is. Ac-
cordingly, we call Re(s) the exponent of y.

The object of this section is to introduce the local L-factor L(y) associated
with an arbitrary character y of F* and to realize it as the greatest common
divisor of some local zeta integrals.

We say that y e X(F*) is unramified if z| Up=1' If F is non-Archimedean, set

(1- z(zx)™"  if y is unramified
1 otherwise.

L(x)= {

If F=C, then U is S', and y takes the form

Ko re'l i rie'?

for some uniquely defined seC and neZ. (Recall that the dual group of S' is
the discrete group Z; for arbitrary real n, the map e'® - ¢’ is not continuous.)
We then set

ol
L(ls,n)zrc(s+|"21_l)=(2ﬂ') ¢ 2)F(S+.|Lzl’.l)

where I'(s) is the traditional I'-function

I(x)= j et dt
0

and I'(s)=2(27)~I'(s). Finally, for F=R, in which case Up={%1}, we may
write = |- |°, with both 4 and s uniquely defined. Letting sgn denote the sign
character x 1= x/|x|, we set
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Tp($)= 2" (s/2) ifpu=1
L( Z) = R( ) ( ) i #
Ig(s+1) if p=sgn.
Given a character 7 of F* and a complex number s, the product z|-|* of
course also defines a character, and one customarily writes L(s, ) for L(x||*).
Moreover, we define the shifted dual of y by

2 =21
so that

Lx|-F ) =Lad~s2T").

Fix a nontrivial additive character y of F’, that is, a nontrivial clement of
F =Hom(F,S"), the ordinary dual group of (F,+). One can show that if v’ is
any other additive character on F, then

y'(x) = y(ax)

for some aeF. (See Exercise 1 below.) We will denote this character y,. It fol-
lows from this that map a — y, is an isomorphism of topological groups from
the additive group F to the dual group F, and hence we have the following
result, which we shall later extend to adele groups:

7-1 PROPOSITION. Any local field F viewed as an additive locally compact
topological group is isomorphic to its (unitary) dual. In fact, given any
nontrivial character y of F, the mapping

F——)I:‘
al—)l//a

is an isomorphism of topological groups. a

In a case such as this of a self-dual, locally compact abelian group, we may
speak of a Haar measure dx as being self-dual if it is equal to its own dual
measure in the sense defined by the Fourier inversion formula (Theorem 3-9).

We will say that a complex-valued function fon F (or F*) is smooth if it is
#* for I Archimedean, and locally constant otherwise; that is, f(x)=/(x,) for
all x sufficiently close to x,. In the Archimedean case, a Schwartz function f on
F is a smooth function that goes to zero rapidly at infinity; more precisely,

pX)f(x) >0
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as x—oo for all polynomials p(x). A Schwartz-Bruhat function is a Schwartz
function if F is Archimedean, and a smooth function with compact support in
the non-Archimedean case. We let S(¥) denote the space of Schwartz-Bruhat
functions; this is clearly a complex vector space.

Given feS(F) and the fixed additive character y, we may define the Fourier
transform of f by

o) =[rewepydr.
F

Note that in this chapter it is convenient to drop the traditional conjugation of
the second factor of the integrand; accordingly, this conjugation reappears in
the Fourier inversion formula. While this is well-defined and in fact again lies
in S(F), it nonetheless depends on the choice of the pair (y,dx). In his thesis,
Tate normalizes his measure to be self-dual relative to y, so that the identity

S = f(~x)

holds. We shall avoid this normalization at least for the local non-Archimedean
case.

Given feS(F) and ye X(F*), we define the associated Jocal zeta function, or
local zeta integral, to be

2(f,0= [ f@xex)d*s .
o

The main result of this section is the following:

7-2 THEOREM. Let feS(F) and y=u|-|° with y unitary of exponent o=Re(s).
Then the following statements hold:
() Z(f ) is absolutely convergent if o is positive.

(ii) If oe€(0,1), there is a functional equation

2, 2 = 7w, d) 2(f, %)

Jor some ¥y, y,dx) independent of f, which in fact is meromorphic as
a function of s.

(iii) There exists a factor £(y,y,dx) that lies in C* for all s and satisfies
the relation

Lx")

W, dx) = e(x,y,dx )
r(x.v.dx)=e(x, ¥ )L(z)
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According to part (i), Z( f' ,x") converges for o<1, and so part (ii) immedi-
ately yields a meromorphic continuation of Z(f, )=Z(f, u,s) to the whole s-
plane, although initially this function is defined and holomorphic only for
Re(s)>0. Moreover, from parts (i) and (iii) we deduce that

LOZ(Sfx") = e, v, LX) 2 ) -

Since the zeta factor on the left is absolutely convergent to the left of 1 and the
epsilon factor on the right is a nonzero complex number, this implies that the
poles of Z(f, ) are no worse than those of L(y), which is independent of £, We
will see later that the “local L-factor” is given as L(y)=Z(f,, ) for some suit-
able f;.

PROOF. (i) Since y=u|-|* and x is unitary, we need to show that

I(f.0)=c [If(xl"" dr <o .

F-{0}

First suppose that F is Archimedean. Then, since fis a Schwartz function, the
integrand goes to zero rapidly as x approaches infinity. Also, as x approaches
zero, the behavior of the integral is governed by the fact that |x|°-! is integrable
around zero for any positive o. Thus the integral is finite, and we may pass to
the second and final case.

Suppose next that F is non-Archimedean. Since fis then locally constant
with compact support, it factors through a finite quotient group of the form

m n
Apog | TpdL

for some integers m and n. Hence by linearity and the translation invariance of
the Haar measure, it suffices to check the assertion for functions f that are
merely the characteristic functions of the various ideals 770, . But from the
decomposition

mhog —{0} =) #hoj
k=j
it follows that
1(f.o)=c [I/@)x"" dx

F-{0}

= {17 |xI° d*x
A
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= Vol(o},d*x) Y q7*
k2j
T
—-q

Jo

= Vol(o}, d*x) 4 —

1

which is finite for o positive. This completes part (i).

(ii) Choose an auxiliary function heS(F). Tate’s key idea is first to prove the
following;:

7-3 LEMMA. For all y with exponent o€(0, 1), we have

201, 0)2Zh, ") = Z(f *)Z(h, ).

PRrOOF. Note that these zeta functions are well-defined at least for such o by
part (i). We may write

2,02k 2) = [[ &R 2™yl d*cd*y

F*<xF*

Since d*xd*y is the product (Haar) measure on F*xF* and hence invariant
under the translation (x, y) (x,xy), this double integral becomes

[[ 1@z Mixyld*ed*y = [(f.BM2G NIyl dYy  (1.2)
F*xF* F*

where
.m0 = [ fGhG)|x|d* .
F*
Both steps are justified by Fubini’s theorem. The symbol {f,4} in fact has a
critical property:

CLam. { £, h}={h, [}.

Indeed, since c-dx=|x|d*x, we have by definition of h that

- =c [[ e (xyz)dz dx

FxF
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which by Fubini’s theorem equals
¢ [ h(2) ] (y2)dz = th, ()
F

and thus the claim is established. The full lemma of course follows at once from
Eq. 7.2. Q

Let us now return to the proof of part (ii) of Theorem 7-2. Fix a function
Jo€S(F) and put

Z(fo2")

=y(y.w,dx) = )
() =r(x.y,dx) )

Then by the preceding lemma, y is independent of the choice of f, and we have

22 =y d) 2, 2)

as asserted. As noted above, since Z(f; 7) is defined for all y with positive expo-
nent, while Z( f" ,x") is defined for all y with exponent less than unity, we will
get the requisite meromorphic continuation of Z(f, 7) if we can show that ()
is meromorphic everywhere. This will follow as a byproduct of the proof of the
final assertion, where we will in fact compute y( x) for a suitable f.

(iii) We shall choose a special function (or family of functions) f for each of the
three cases defined below. The computations are done for the standard measure
dx (to be defined), which is self-dual for a standard choice of y. In Exercise 8
below we shall indicate the ensuing changes for an arbitrary pair (dx, p).

CASE ONE: F=R. We take dx to be the usual Lebesgue measure and choose our
standard character to be

V/(x) = g—27ix
As we have observed previously, every character yeHom  (R*, C*) must be of

the form |- |* or sgn|-|%, where sgn is the sign character. Suppose first that
2=|"|°. Then take

fx)=e™
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which is clearly in S(R). Then

2/, )= [ Ixl' d*x =2 e xdx
R 0

Putting = 7x2, the integral reduces to

Z(f, Z) = ”—:/ZJ'e—uusﬂ—ldu - ﬂ,—s/2l-(s/2)
0

since in general,

I'(s/2)= j e u"du .
0

Checking this against the definition of L(7), we have shown that Z(f, 2)=L(»)
for all characters y of this form. Next recall that

F)=[e™ e oax = f(x).
R
(This classical formula can be proven by contour integration.) Thus we have
Z(f, 2= [ f@)r (x)d*
R‘

which equals L( ") by what was just shown. So for y=| - |*, we have

_Lx)
y(x) L(2)

and we may put e(Y)=£(g, y,dx)=1.
For F real, there still remains the possibility that y=sgn |- |*. Under these
circumstances take

f(x)= xe™ .

Then since sgn(x)=x/|x|, we find that
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—x? X s
Z(f, )= [xe™ x| d*x
LT
= j e""‘zlxl‘M d*x
R‘

s+1

=)

where the last line follows by the first computation. Thus again Z(f, y)=L(y) by
definition. But contour integration also shows that

~ _x 2
S =iye™
and so

p, v . -t X -5 . v
2.2 =1 3™ e =L,
R‘

Thus for y=sgn | - |* we have &(3)=¢&(z, v, dx)=i.

CaAse Two: F=C. We take the measure on C to be dzdz =2dxdy, which is
twice the ordinary Lebesgue measure and self-dual with respect to our standard
complex character

—27i(z+2)

y(z)=e

Furthermore, we adjust the norm on C to agree with the module; that is, for
purposes of these calculations, set

|z|=2zZ .
As we have seen above, since C*=R’ x S', every character of C* takes the
form
xs,n :re.‘o N rseino

for some uniquely defined complex s and integral n. Put

Q2n)'z%e ™ forn>0
@r)'z7" ™ forn<0.

o]
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One can show that the Fourier transform of f, is then given by

L@=Qo) i (2)

for all n. Note finally that d*z=(2/r)drd6. We may then compute for » positive
or Zero;

Z( o )= [ 1D 2, (D)%
Ct

-1 Iz" "e 2™ (22) e d*z
C#
127t00 2o 2 1
= —I jr"e‘ Y —drd@
Ty r
—(:+£)m _2ar? 5 s+2
=Q2x) 2 je Q2nrey 2 4zrdr .
0

The result cries out for the substitution =272, whence

—(s+£) 2
Z(fo Xsw)=Qm) 2 je“t 2 gt
0

—n T+ %)
=L(%;0) -

Repeating the calculation for negative n shows that in fact,

]
~(s+20) n
2t =0m) 2T+ B - 1y,)
for all n. Since clearly
Z;jn = Il—s,—n

it follows from the linearity of this calculation and from the formula for the
Fourier transform of £, given above that

- ~(1-s+12)) |n|
Z(f, 20, =i"@2r) 2r(1—s+7)=il"'L(x;").
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Consequently,
Am L)
}/(an) = Ilnl—,
’ L(%,n)
and
&, ) =il".

This completes the proof for the complex case.

CASE THREE: F is a non-Archimedean local field. We shall treat only the case
of characteristic zero; see Exercise 5 for positive characteristic. Thus we as-
sume that F is a finite extension Q, for a fixed rational prime p. We have a
standard additive character v, on Q, defined by the following composition:

e27i()

v,=[Q, > Q,/Z, > Q/Z - §'].

(Exercise 3 gives an explicit construction.) This character induces a standard
additive character y;, on F via the trace map from F to Qp. Thus for xeF,

We®) = Y, (tr(x)) .

Note that y is clearly trivial on o,. We know, moreover, that any additive
character of F takes the form

Y (x) = yplax) = y(tr(zx))

for some zeF. (Likewise, in positive characteristic we can define a standard
character ¥ in the local case such that y is trivial on the associated ring of
integers; again, see Exercise 3.)

Fix a nontrivial additive character y and the corresponding self-dual meas-
ure dx. For these calculations, i need not be the standard character. Define an
integer constant m as follows:

m=inf{reZ: yl=1}

where P is the unique prime of F, and here we understand P° to be o,. Note
that m is indeed finite because y is assumed continuous and takes the value one
at zero. We call P™ the conductor of y. For the trivial character, one custom-
arily takes the conductor to be o.

For a multiplicative character y:F*— C* we define the conductor to be P”,
where U,=1+P" (n>0) is the largest subgroup of this form on which y is triv-
ial. In the case that n is zero, we take U, to be o and say that y is unramified.
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Consider again the trace map tr: F— Qp, which is nondegenerate; indeed,
the nondegeneracy of the trace map characterizes finite separable extensions.
We can define a subset o of F, called the dual of o, as follows:

op ={xeF:tr(x-0p)cZ,}.

One sees at once that o is a Z,-submodule of F, and since F is a local field,
there exists an integer d such that

v __ —d
Op =7 Of.

Note that by construction, the standard character on F has conductor o, which
accordingly has exponent —d. We now define =2, the different of F, by

D=(0)" =g 0.

Thus the different of F is the inverse of the dual of o, with respect to the trace
map. (See Appendix B, Section 2, and also the exercises from Chapter 4 for
more information on the different.)

Write y, , for the map

x B |x]F o(x/|x|)

where @ is a unitary character of conductor P”. Certainly every multiplicative
character of F is of this form, and while the indices do not completely deter-
mine z, ,, they do suffice to determine the ensuing computations. Now define f
by

w(x) ifxeP™"

. (7.3)
0 otherwise

f(x)={

where again P" is the conductor of y. We shall now compute Z(f, 7, ,) sepa-
rately for n equal to zero and for » positive.

CaASE n=0. This is a routine calculation. We need only keep in mind that y is
trivial on its conductor P™, @ is trivial everywhere, and P™-{0} is the disjoint
union of the sets 7% 0} for k>m. Accordingly, we compute
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Z(f Xom) = [ L) 2on(x)d*x
F*

= [IxFd*
P™_{0}
=Vol(o},d*x) Y g7 7.4)
kxm

—ms

q

= Vol(oF, d*x)
l1-q

=g"" Vol(oy,d*x) L(s,1)
where of course, L(s, 1)=L(¥, o).

CASE n>0. One sees at once that

2o x)= Y, a7 Jyr*uow)dt .

k>m-n D;‘,

To resolve this expression, we resurrect in modern form one of the classic con-
structions of number theory. For any multiplicative character w:0}->S' and
additive character A1: oF—-+S', we define the associated Gauss sum to be

g(w,A)= jw(u)l(u)d*u .
%

Then

Z(f 2n)= 2.9 "0y ,)

k2m-n
where again y,(x)= y(fx).

7-4 LEMMA. Let @ and A have conductors P" and P’, respectively. Then the
Jollowing statements hold:

(i) Ifr<n, then g(am, A)=0.
(ii) Ifr=n, then |g(e, A)|*=cVol(o,dx)Vol(U,,d*x).
(iii) If r>n, then |g(e@, A)|>=cVol(op,dx) [Vol(U,,d*x)—q ' Vol(U

r

_pd*0)].
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PROOF. Write U=0} as a disjoint union of cosets modulo U,=1+P’, and note
that Ma(1+x'b))y=Ua) A(n"ab)= A(a) by definition of the conductor. Thus

g(w, )= Z l(a)w(a)jw(u)d*u .
U,

Ui,

But if #<n, then o) u, is nontrivial, and the indicated integral is zero by the or-
thogonality of the characters. This proves part (i).

Now suppose that r>n. We have
|2(@,)* = [ [@(xy™)A(x - y)d*xd*y
uvu
= [ w(2)h(z)d*z
U
where

h(z)= [ Az -1)d*y = c[ A((z-1)dy .
U u

(The second equality holds because c-dx=|x|d*x and |y|=1 whenever y lies in
the unit group U.) Thus

W(z)=c [ Mp(z-D)dy—cf Ap(z-1)dy
Op P

c(1-g Y Vol(oy,dx) ifvp(z=1)=r
—cq' Vol(op,dx)  ifvp(z-D=r-1

0 otherwise.
From this we get
c(1-¢7") Vol(o, dx) Vol(U, d*x) if0=r(=n)
|g(w,A)*=
¢ Vol(og, dx)[Vol(U,,d*x) - q" j(o(z)d*z] ifO<r
Ur—l
and parts (ii) and (iii) now follow at once. Q

Resuming the computation of Z(f, 7, ), we deduce from the first part of the
lemma and the equation that precedes it that for n positive,
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Z(f, Xn) =9 " 2O (.5

But now we see from part (ii) of the lemma that since the conductor of both @
and y_ .-, have exponent n, the second factor on the right-hand side of this
equation cannot be zero. Thus in this case Z(f, 7, ,) is essentially an exponential
function, with neither zeros nor poles—which is well, because by definition
L(x, ,)=1for n>0.

Next we make ready for the other half of the calculation, and for this we
need to compute a Fourier transform.

7-5 LEMMA. For the function f defined by Eq. 1.3, the Fourier transform of f is
given as Vol(P™~",dx) times the characteristic function of v for n=0 and
as Vol(P™~",dx) times the characteristic function of P"-1 for n>0.

PROOF. By definition,

f)= j fEyeyyde= [ yx(y+D)ds.

Pm—n

Let n=0. Then since the conductor of y is P™, by orthogonality f’ () is zero if
y does not lie in o,. When y does lie in o, then f (»)=Vol(P™"). Now sup-
pose that » is positive. Then if y is not in P"-1, then v,(y+1)<n-1, and thus
the product x(y+1) occurring in the integrand does not lie in P". Accordingly,
¥,., is a nontrivial character of P™™", and by orthogonality, f (y) is zero.
When y does lie in P"-1, then again f ( »)=Vol(P™"). a

With this fundamental technical lemma in hand, we are now prepared to
compute the value of Z(f,2,,).

CASE n=0. Using the last lemma and the by now familiar decomposition of
integers of F into the disjoint union of subsets of a given valuation, we find that

Z(f . 250) = Vol(P™,dx) [ xYo(»)d*y

op~{0}

= Vol(P™,dx)y" g™ [ d*y
k>0 o
F

1

= Vol(P™,dx) Vol(0},, d*x) ——i=
1-q

= Vol(P™, dx) Vol(0}.,d*x) L(x) -
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Thus we find from this and Eq. 7.4 that

L(Z;/ 0)
¥(Xe0)=9q" VOl(P”,dx)—=——=

0 L(%,0)
and

6(2’3,0’ v, dx) = qm: VOI(P’", ‘h) .

CAse n>0. Again the lemma applies, and we have at once that

Z(f, 2,) = Vol(P™™", dx) [@(u)d*u
P
= Vol(P™",dx) [ @(-u)d*u
1+P"
= Vol(P™ ", dx) Vol(1+ P", d*x) ax(~1)

since the conductor of @ is identical to that of its conjugate. The result is a con-
stant, as it should be, since L(y,,)=1 for n positive. Accordingly, it follows
from Eq. 7.5 that

g™ Vol(P™™", dx) Vol(1 + P", d*x) ax(~1)
8(0, ¥ 1) '

E XV, AX) =Y (X W, AX) =

Now one sees easily that
@,y nn)=0(-Dg(@,y, )

and since the conductor of ¥ _n, is P", by combining the formulas above for the
epsilon factor with part (ii) of Lemma 7-4, we get the following compact for-
mula:

(m—-n)(s-1)

1 —
g(l:,n’ y/’ dx) = 'Eq g(w’ '//”m—n ) .

Here we have also used that Vol(P™") = ¢"™ - Vol(op,).

To conclude our analysis, we observe that in all three cases the poles of
Z(f, z) are given by the zeros of the now clearly meromorphic function

L)

w,dx)=e(y,w,dx
vy, dx)=e(x, v )L(x)
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because the regions of absolute convergence of Z(f,z) and Z( f ,x)are, re-
spectively, Re(s)>0 and Re(s)<1. Moreover, the zeros of ¥ must coincide with
the poles of L(¥), since L(y) and L( V) have no zeros. This finishes the proof of
Theorem 7-2. a

The Root Number

Let F be a non-Archimedean local field of characteristic zero. From Exercise 7
below we have the following result:

Suppose that y/(x)=;//p(tr(x)), the standard nontrivial character of F.
Then the associated self-dual measure dx on F is the one that satisfies
the relation Vol(o,,dx)=N(Dp)"?=q~92, where D,= zf o, is the differ-
ent of F, as described above.

For a multiplicative character w, one defines the root number W(w) by
W(@) = &(o|* %, y,dx) .

One can show (see Exercise 9 below) that W(w) is of absolute value 1. If the
conductor of @ has exponent » and A is any additive character whose con-
ductor also has exponent », one sees readily that

g(@,A)=cVol(P") Y &(x)A(x) .

xeU/Up,

The sum on the right is the usual Gauss sum. Now suppose that y is the
standard character and dx the self-dual measure. Then it follows immedi-
ately from the eformula above and the preceding expansion that

Ww)=q"" Y a@x)y@Er ") . (7.6)
xeU/Uy

7.2 The Riemann-Roch Theorem

A basic result of abelian harmonic analysis, both in the classical and adelic
settings, is the Poisson summation formula, which relates the averages over a
lattice of a nice function and its Fourier transform. The Riemann-Roch theorem
provides a nontrivial and valuable extension. In the function field case, it can
be interpreted as giving the “usual” Riemann-Roch theorem for curves over F_,
whence its name.

We begin with some notation. Let K be a global field. Then define

S(A;)=®'S(X,)
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where the restricted tensor product of the Schwartz-Bruhat spaces S(X|) con-
sists of functions of the form

S=8f,.f, €S(K,)Vv and f,|, =1, foralmostallv.

We shall call such an f an adelic Schwartz-Bruhat function; in this case it
makes sense to write

F&=T11&)

for all x=(x,)€A,. Let dx denote a Haar measure on A, and define L2(AK) us-
ing this measure. It is easy to see that S(A,) is dense in LYAp).

Fix a nontrivial (continuous) unitary character w on A, such that y/|K=1.
(See Exercises 4 and 6 for the existence of such characters.) Define the adelic
Fourier transform on any feS(A,) by

J0= [ fxw)ds.

Ag

Here we normalize dx to be the self-dual measure for y. In Exercise 12 below
we shall deduce that the mapping f — f” defines an automorphism of S(A,)
that moreover extends to an isometry of L2(AK).

We are interested in functions on A, that are invariant with respect to
translation by elements of K. One example is . An obvious approach to find-
ing others is to take an average over K. To elaborate, set

P(x)= o(y +x)

rek
for peS(Ay). When this function is convergent for all x, we sec that for all

deK it satisfies the relation

PO+x)= Y ey +8+x)=D (¥ +x) =@(x)

yek r'ek
where p'=y+6. Thus 9(S+x) = p(x), as desired.
DEFINITION. Let f be complex-valued on A, such that both 7and f are nor-

mally convergent; that is, both are absolutely and uniformly convergent on
compact subsets. Then we say that fis admissible.
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7-6 LEMMA. Every function feS(A,) is admissible.

PROOF. Let feS(A,). We have to show the absolute and uniform convergence of
J over any compact subset C of A,. By enlarging C, we may assume without
loss of generality that C takes the form

C,x[[R> xHov

ves ves

where S is a finite set of finite places including those at which f o, %1
Cm = H Cv
veS,

is a compact set in the product K =TIK, taken over the set S_ of infinite places,
and n, is an integer for all veS. We may enlarge S to contain S and assume
that ] is the characteristic function of P for all veS—S_. Note that such
functions generate S(A,). Define a fractional ideal J in o, by

1= T]R"

vesS-S,

where k =inf{n ,m }. Suppose that f(y+2)#0 for some zeC and y€K. Then y
lies in P, for all veS-S_, and in o, for all veS. Thus

1@ Y1 folr +2,)]

yel
where

fw = va ES(Km) and Zo =(zv)ves,,, .

veS,,

But / is a discrete subgroup of K, (this follows, for instance, from the discrete-
ness of K in A,), and the Schwartz-Bruhat function /, has a uniform absolute
bound over the compact set C,, with the further property that the value of
| fo{¥+2,)| decreases rapidly with z,, in the number field case, while /, has
compact, hence finite, support in the function field case. Thus for a number
field, the number of y that occur in any shell of radius B and thickness AB can
grow at most as a power of B, while |f,| goes to zero faster than any polyno-
mial; for a function field, the number of terms in the summation is finite. The
normal convergence of f follows. Since this extends at once to its Fourier
transform, which also lies in S(A,), the proof is complete. a
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7-7 THEOREM. (Poisson Summation Formula) Let feS(A,). Then f = f’ ; that
is,

S ra+x)=Y f(r+x)

rek rek

Jor all xeA.

PrOOF. Every K-invariant function ¢ on A, induces a function, again denoted
@, on A, /K. For all zeK we set

o) = [p(y(z)dr
Ag/K

where. dt is the quotient measure on A, /K induced by df on A,. This is to say
that dt is characterized by the relation

[Ffoya= [ Cra+nyde= jf(r)dt

Ag/K Ag/Kk rekK

for all continuous functions f on A, with appropriate convergence properties.
(The integration variable ¢, as it occurs on the left and in the middle, takes val-
ues in the quotient group A,/K; nonetheless, the indicated expressions are well-
defined.) We shall need two lemmas.

7-8 LEMMA. For every function fin S(A,), we have
Jle=Te -
PRrOOF. Fix zeK. By definition,

Fa= [Foved

Ag/K

= [ Cro+owe .

Ag/K reK

Since we assume that the unitary character y has the property y|x=1, we have
that

w(iz) =y ((y +)2)
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for all yeK. Accordingly, by definition of the quotient measure (relative to the
counting measure on K) it follows that

J@= [ (Cro+nyr+n))d

Ag/K reK

= [rowaa
Ak

=f@)
and this completes the proof. a

7-9 LEMMA. Let feS(A,). Then for every xeK, we have

7= Y F v,

rek

PROOF. By the previous lemma, f Ik = 7|  on K. Hence the summation

S fnwrx)

rekK

is normally convergent. In particular,

I l<o0

rek

and so the Fourier inversion formula applies. (Since the Pontryagin dual of the
quotient A, /K is K itself under the discrete topology, the indicated summations
correspond to the appropriate integrals.) The assertion of the lemma follows. O

We are now prepared to deduce the Poisson summation formula. Indeed, if
we put x=0 into the second lemma and then apply the first, we have on the one
hand that

70 =S Fn= i,

rek rek

But on the other hand, by definition,
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7O=Y 1

yek

and this suffices. Q

It is of interest in number theory to understand the average

Y f(yx)

yek

for an idele x. [Note that the absolute convergence of this summation follows
from that of ¥ f(y), which is implicit in the admissibility of £.] One cannot get
this information from the previous theorem, and one needs instead the follow-
ing stronger result.

7-10 THEOREM. (Riemann-Roch) Let x be an idele of K and let f be an element
of S(Ap). Then

1
||

Y faxy .

yek

2 S(rx)=

rek

PROOF. Fix x€A,, and for arbitrary yeA,, define A(y)=f(yx). Clearly,
heS(A,). Thus, by the Poisson summation formula,

Y b= hr) .

rek rek
But

hp)= [ FOWry)dy
Ag

=L [ rowon
] -

=L f.
x|

The theorem now follows immediately. Q

The Riemann-Roch Theorem for Algebraic Curves

When X is a function field in one variable over F_, the previous theorem can be
interpreted to yield the perhaps more familiar Riemann-Roch theorem of alge-
braic geometry. We shall explain this after some preliminaries.
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A divisor on K is a formal linear combination
D= vav
v

where the sum runs over all places v of K and each coefficient #n, is an integer
that is zero for almost all v. The divisors on K naturally form an additive group,
denoted Div(K). The degree of a divisor D=2n y is defined by

deg(D) = ) n, deg(v)

where deg(v) is the degree (over F) of the residue field F, atv. Thus
g, =N()=g"*".

Since deg(D+D")=deg(D)+deg(D'), we see that the degree map defines a
homomorphism deg:Div(K)— Z, the kernel of which is denoted Div®(X), the
group of divisors of degree zero.

Given any feK*, we can associate a divisor, called a principal divisor, by
setting

div(f)= 2 v(f)v

where v(f) of course denotes the valuation of fat v. [In geometry, it is custom-

ary to write ord (/) rather than v(/).] Since v(f) can be nonzero only at a finite

number of places, div()/) is a bona fide divisor. Moreover, it is obvious that

div(fg)=div())+div(g). The quotient Div(K)/div(K*) is denoted Pic(X) and

called the Picard group of K. Elements of Pic(K) are called divisor classes.
Recall that Artin’s product formula says that for all feK*,

|fla, =TTl =1
But

LSl = q—v(f ) = q—v(f )deg(v)
v v
for all v, so

deg(div(f)) = ) v(/)deg(v)=0.

Thus we see that div(K*) < Divo(K).
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Now suppose that div(f)=div(g) for fand g in K*. Then div(f/g)=0, and
the quotient a=f/g is a unit of o, for all v. From Chapter 5, Exercise 5, we
know that any such o must lie in F_*. To summarize, we have the following
exact sequence of groups:

div
1 > F} > K* > Div’(K) - Pic’(K) > 0

where Pic®(K), the Picard group of degree zero, of course denotes the quotient
Divo(K)/div(K*). Clearly, deg induces a homomorphism, again denoted deg, on
Pic(K), with kernel Pic°(K). Elements of Pic%(K) are called divisor classes of
degree zero.

We next introduce the partial ordering on Div(K) defined by
D=vav2D' =Zn;v if n,2n, Vv.

With this, to each divisor D one may associate the following /inear system of D:
L(D) = {0}u{ feK*:div(f)=-D} .

Since div(/) has degree zero for feK*, we have at once that L(0)=Fq. One may
further deduce from the Artin product formula that L(D)={0} if deg(D)<O0.

Note that L(D) is clearly closed under scalar multiplication from F 4+ More-
over, it is closed under addition by the ultrametric inequality:

v(f+g) 2 inf{v(/),v(®)} .

Hence L(D) is in fact a vector space over F o and one writes /(D) for the dimen-
sion of this space. One sees immediately from our previous observations that
1(0)=1 and /(D)=0 if deg(D)<O0. It is not a priori clear, however, that in gen-
eral this number is finite.

7-11 PROPOSITION. For any divisor D, the number I(D) is finite.

PROOF. The first step is to extend the divisor map to ideles. Accordingly, we
define

div : I, - Div(K)
(x,)— Zv(xv)v .

It is easy to sce that this extended map is surjective. Moreover, we have the
following set of equalities:



7.2. The Riemann-Roch Theorem 267
Ker(div)=] oy =Xxp  I(/K*; 5 =Pic(K)
div(I}) = Div°(K) Iy /K*I; 5 = Pic’(K)

Next let /=@, f,eS(A,) be defined by requiring that each component func-
tion £, be the characteristic function on o,. Given any divisor D=%Xn v, we may
associate an idele x(D) such that v(x(D), )=n, for all v. Then, by construction,
we have for all yeK* that

1 ifv(yx(D),)20 Wy
D)) =
S x(D) {0 otherwise.
In other words, for nonzero y, we have that f(yx(D)) is nonzero if and only if
yeL(D). Note also that f(0)=1.

Since feS(Ay), f is admissible, as defined previously, and accordingly, the
following sum converges:

Y f(rx(D)).

rek

But from our analysis above of f(yx(D)) as a function of 7, we see that this sum
is exactly Card(L(D))=q"'®. Hence /(D) is finite, as claimed. a

7-12 THEOREM. (Riemann-Roch, Geometric Form) Let K be a function field in
one variable over F . Then there exists an integer g20 (called the genus
of K) and a divisor x of degree 2g—2 (called the canonical divisor of K),
such that

I(D) - (x-D) =deg(D)-g+1
Jor every divisor D.

Before deducing this from the earlier, harmonic analysis version, of the Ri-
emann-Roch theorem, let us note two important consequences.

7-13 COROLLARY. If deg(D)>2g-2, then I(D)=deg(D)-g+\. In particular, if
K is a rational function field (that is, if K has genus zero), then for any
pair of distinct places v and V', there exists a function feK* with a simple
zero at v and a simple pole at v'.

PRrROOF. Since deg(D)>2g-2=deg(x), deg(x-D)<0, and, by an earlier obser-
vation, /(x=D)=0. So by the Riemann-Roch formula, /(D)=deg(D)-g+1. If,
moreover, g=0 and v and v' are distinct places, consider the divisor D=v-v',
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We may assume that deg(v)=deg(v'), whence deg(D)=0 and so /(D)=1. Thus by
definition there exists a nonzero fe L(D) that satisfies the assertion. a

7-14 COROLLARY. For the canonical divisor x we have that I(x)=g.

PrROOF. This follows at once from the special case D=0, since clearly,
deg(0)=0, and as we have seen, /(0)=1. a

PROOF OF THEOREM. Pick any nontrivial character y:A,~>S' that is trivial on
K. (For instance, the standard character; see Exercise 6.) At each place v, let
the conductor of y, be P,™. Since m,, is zero for almost all v, we get a divisor
by setting

K==y my .
v

One knows also that if y' is another nontrivial character of A, that is trivial on
K, then there exists aeK* such that y'(x)= y(ax) for all xeA,.. Moreover, one
checks easily that if the divisor %' is constructed relative to ', then

X'=x+ div(a)

and thus %" is uniquely determined modulo principal divisors.

Now let /=8, f,€S(A;) be defined as above, so that again each component
function f; is the characteristic function on o,. We have already seen that for
any divisor D=%n v,

g® =3 f(yx(D))

yek

with x(D) defined as above. This is one side of the identity given in the earlier
version of the Riemann-Roch theorem (Theorem 7-10). Note also that

) i (X ny deg(v)) .
(D) = [Iqrr=¢q" = q*¥®

So in light of the previous version, it remains only to show that

Y f(rx(D))=g'F D&t (7.7)

yek

Recall that the Fourier transform is taken relative to the self-dual measure dx
on A, defined by y. It follows from Exercise 7 below that for all v,
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f.=N (P™ )" the characteristic function of P™ .

Note that
N(Pvmv )1/2 = q:-"lv/z = q+deg(v)mv/2

so that

HN(va )]/2 - q—deg(x)/2 = ql—g .

Thus we have for all yeK* that
1-g -
- _ q if v(y)2m,+n
f x(D 1 - v v
(r=(DY7) 0  otherwise
and Eq. 7.7 follows at once by definition of /(x~D).
Note that the formula in the theorem shows at once that g must be an inte-
ger, which, as we have seen above, must be /(). Thus g is indeed a nonnega-
tive integer, as asserted. a

REMARK. One learns in basic algebraic geometry that given any function field X
over F_ as above, there is a smooth projective curve X defined over F, such that
K identifies with the field of rational functions on X. Thus the Riemann-Roch
theorem provides valuable geometric insight into X,

7.3 The Global Functional Equation

Let K again be a global field with integers o, and different 2=2,.. Note that the
different is defined just as in the local case, but here it is not generated by a
power of a uniformizing parameter. (See Appendix B, Section 2.) The local
versions of the integers and different at a finite prime P will be denoted o, and
Dp, and in fact, the global different is determined by these local versions.

We shall now construct a standard character for the adele group A,. At each
place v of K, let y, denote the standard character and dx, the associated self-
dual measure. We recall from Section 7.1 that for a number field X, these char-
acters are given explicitly by

y,(tr(x)) v finite, v|p

x)= .
v.(¥) {e_z’m’(") v infinite

where tr denotes the trace map from X, to Q,, and y, is the familiar composi-
tion Qp—>Qp/ Zp—>Q/Z-—>S 1. (Refer to Exercises 3 and 5 for the function field
casec.) Now set
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v =[]w.(x,)

for all adeles x=(x,). Then y; is well-defined, because y,=1 on o, for almost
all v, and hence y, is a nontrivial character. Moreover, if F denotes either Q or
F (1) depending upon whether we are dealing with a number field or a function
field, the standard character on A, clearly factors through the trace map from
A, to A, defined by

tr:tAy > Ap
(xv)v i (Z trl(",/F‘“(xv))u

viu

where u ranges over all of the places of F. This is to say that

Yidx) = y(tr(x))

for all adeles x of K.
As in the local case, we have a continuous homomorphism

A, —)AK
Y = WK,y

where ;. y(x)=|//K( yx) and the product yx is taken componentwise. One shows
easily that the given map is an isomorphism of topological groups. We record
this and related elementary facts about the characters of the adele group in the
following result, the proof of which we leave as an exercise.

7-15 PROPOSITION. Let K be a global field with standard character y, on the
group A,. Then the following four assertions hold:

(i) The group Ay is self-dual by the isomorphism y> yy .
(i) yy istrivial on K and hence induces a character on A, /K.

(iii) The Pontryagin dual of A /K (respectively, K) may be naturally
identified with K (respectively, A, /K). Explicitly, this can be real-
ized by the map that sends xeK to y, .€(A/K)". Hence by the self-
duality of the full adele group, the translation y of Yy is trivial
on K if and only if yek.,

(iv) If yis any character of Ay /K, then v, has conductor o, for almost
all places v of K. a

Let dx denote the Haar measure on A, defined by the product measure [T, dx,
on [T K. One knows from Section 5.1 that this measure is self-dual with re-
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spect to our standard character y;, and one can show easily that dx moreover
satisfies the relation

d(ax) = |a|dx

for all ideles ael = Aut(A,).

The Global Zeta Function

Let y denote any C*-valued character of I, that is trivial on K*; in other
words, an idele-class character. For feS(A,), we define the global zeta function

2(£,0= [ f@z(x)d* .
Ix

A word about the normalization of d*x, which again is induced by the product
measure [1,d*x, on [T, K *: for each non-Archimedean place v, it will be con-
venient for us to take the corresponding constant factor c=c, (see Section 7.1)
such that

d¥y = dv 9%,

Y qv_l |xv| ,

We do this so that o] will get measure (V(2,))"2=¢-%2. Note again that d,=0
for almost all v.

One shows easily that Z(f, ) is normally convergent in o=Re(s) >1, where
x has factorization |- |° with g unitary, and that it defines a holomorphic
function there. Define 3V to be y!| - |, as in the local case.

7-16 THEOREM. (Meromorphic Continuation and Functional Equation) Z(f, 7)
extends to a meromorphic function of s and satisfies the functional equa-
tion

2, 0=2f.2").

The extended function Z(f,y) is in fact holomorphic everywhere except

when p=|-|7%, teR, in which case it has simple poles at s=it and

s=1+it with corresponding residues given by

~Vol(Cy)f(0) and Vol(Cy)/(0)

respectively.
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Here, as in Chapter 5, the symbol C, denotes the quotient I'./K*, which is the
compact part of the idele class group I,/K*. The volume of C}< is taken rela-
tive to the quotient measure on C;, defined by d*x and the counting measure on
K*. The computation of Vol( C} ) will b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>