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Preface

This book is intended for mathematicians. Its origins lie in a course of
lectures given by an algebraist to a class which had just completed a sub-
stantial course on abstract algebra. Consequently, our treatment of the sub-
ject is algebraic. Although we assume a reasonable level of sophistication
in algebra, the text requires little more than the basic notions of group, ring,
module, etc. A more detailed knowledge of algebra is required for some of
the exercises. We also assume a familiarity with the main ideas of set theory,
including cardinal numbers and Zorn’s Lemma.

In this book, we carry out a mathematical study of the logic used in
mathematics. We do this by constructing a mathematical model of logic and
applying mathematics to analyse the properties of the model. We therefore
regard all our existing knowledge of mathematics as being applicable to the
analysis of the model, and in particular we accept set theory as part of the
meta-language. We are not attempting to construct a foundation on which
all mathematics is to be based—rather, any conclusions to be drawn about
the foundations of mathematics come only by analogy with the model, and
are to be regarded in much the same way as the conclusions drawn from
any scientific theory.

The construction of our model is greatly simplified by our using univer-
sal algebra in a way which enables us to dispense with the usual discussion
of essentially notational questions about well-formed formulae. All questions
and constructions relating to the set of well-formed formulae are handled by
our Theorems 2.2 and 4.3 of Chapter 1. Our use of universal algebra also
provides us with a convenient method for discussing free variables (and
avoiding reference to bound variables), and it also permits a simple neat
statement of the Substitution Theorem (Theorems 4.11 of Chapter II and
4.3 of Chapter IV).

Chapter I develops the necessary amount of universal algebra. Chapters
II and III respectively construct and analyse a model of the Propositional
Calculus, introducing in simple form many of the ideas needed for the more
complex First-Order Predicate Calculus, which is studied in Chapter IV. In
Chapter V, we consider first-order mathematical theories, i.e., theories built
on the First-Order Predicate Calculus, thus building models of parts of math-
ematics. As set theory is usually regarded as the basis on which the rest of
mathematics is constructed, we devote Chapter VI to a study of first-order
Zermelo-Fraenkel Set Theory. Chapter VII, on Ultraproducts, discusses a
technique for constructing new models of a theory from a given collection
of models. Chapter VIII, which is an introduction to Non-Standard Analysis,
is included as an example of mathematical logic assisting in the study of
another branch of mathematics. Decision processes are investigated in Chap-
ter IX, and we prove there the non-existence of decision processes for a num-
ber of problems. In Chapter X, we discuss two decision problems from other
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Vi Preface

branches of mathematics and indicate how the results of Chapter IX may
be applied.

This book is intended to make mathematical logic available to mathema-
ticians working in other branches of mathematics. We have included what
we consider to be the essential basic theory, some useful techniques, and some
indications of ways in which the theory might be of use in other branches
of mathematics.

We have included a number of exercises. Some of these fill in minor gaps
in our exposition of the section in which they appear. Others indicate aspects
of the subject which have been ignored in the text. Some are to help in under-
standing the text by applying ideas and methods to special cases. Occasion-
ally, an exercise asks for the construction of a FORTRAN program. In such
cases, the solution should be based on integer arithmetic, and not depend
on any special logical properties of FORTRAN or of any other programming
language.

The layout of the text is as follows. Each chapter is divided into numbered
sections, and definitions, theorems, exercises, etc. are numbered consecu-
tively within each section. For example, the number 2.4 refers to the fourth
item in the second section of the current chapter. A reference to an item in
some other chapter always includes the chapter number in addition to item
and section numbers.

We thank the many mathematical colleagues, particularly Paul Halmos
and Peter Hilton, who encouraged and advised us in this project. We are
especially indebted to Gordon Monro for suggesting many improvements
and for providing many exercises. We thank Mrs. Blakestone and Miss
Kicinski for the excellent typescript they produced.

Donald W. Barnes, John M. Mack
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Chapter 1

Universal Algebra

§1 Introduction

The reader will be familiar with the presentation and study of various
algebraic systems (for example, groups, rings, modules) as axiomatic systems
consisting of sets with certain operations satisfying certain conditions. The
reader will also be aware that ideas and theorems, useful for the study of
one type of system, can frequently be adapted to other related systems by
making the obvious necessary modifications.

In this book we shall study and use a number of systems whose types
are related, but which are possibly unfamiliar to the reader. Hence there is
obvious advantage in beginning with the study of a single axiomatic theory
which includes as special cases all the systems we shall use. This theory is
known as universal algebra, and it deals with systems having arbitrary sets
of operations. We shall want to avoid, as far as possible, axioms asserting
the existence of elements with special properties (for example, the identity
element in group theory), preferring the axioms satisfied by operations to
take the form of equations, and we shall be able to achieve this by giving
a sufficiently broad definition of “operation”. We first recall some elementary
facts.

An n-ary relation p on the sets 44, ..., 4, is specified by giving those
ordered n-tuples (ay, . . . , a,) of elements a; € A; which are in the relation p.
Thus such a relation is specified by giving those elements (ay, . . ., a,) of the
product set A; x - -+ x A, which are in p, and hence an n-ary relation on
Ay, ..., A, is simply a subset of 4; x ‘- x A,. For binary relations, the
notation “a;pa,” is commonly used to express “(a;, a,) is in the relation p”,
but we shall usually write this as either “(ay, a,) € p” or “p(ay, a,)”, because
each of these notations extends naturally to n-ary relations for any n.

A function f: A — B is a binary relation on 4 and B such that, for each
a € A, there is exactly one b € B for which (a, b) € f. It is usual to write this
as f(a) = b. Afunction f(x, y) “of two variables” x € A, y € B, with valuesin C,
is simply a function f:4 x B - C.Foreachae Aandbe B,(a,b)e A x B
and f((a, b)) € C. It is of course usual to omit one set of brackets. There are
advantages in retaining the variables x, y in the function notation. Later in
this chapter, we will discuss what is meant by variables and give a definition
which will justify their use.

Preliminary Definition of Operation. An n-ary operation on the set A is
a function t: A" — A. The number n is called the arity of t.

1



2 I Universal Algebra

Examples

1.1. Multiplication in a group is a binary operation. The *-product of
two elements a, b is written axb or simply ab instead of the more systematic
*(a, b).

1.2. 1Inagroup G, we can define a unary operation i:G — G by putting
i(a) = a™ 1.

1.3. A 0O-ary operation on a set A4 is a function from the set 4° (whose
only element is the empty set &) to the set 4, and hence can be regarded as
a distinguished element of 4. Such an operation arises naturally in group

theory, where the 0-ary operation e gives the identity element of the group G.

One often considers several different groups in group theory. If G, H
are groups, each has its multiplication operation: #5:G x G - G and
xp:H x H — H, but one rarely uses distinctive notations for the two multi-
plications. In practice, the same notation * is used for both, and in fact
multiplication is regarded as an operation defined for all groups. The defini-
tion of operation given above is clearly not adequate for this usage of the
word.

Here is another example demonstrating that our preliminary definition
of operation does not match common usage. A ring R is usually defined
as a set R with two binary operations +, x satisfying certain axioms. A
commonly occurring example of a ring is the zero ring where R = {0}. In
this case, there is only one function R x R — R, and so +, x are the same
function, even though + and x are still considered distinct operations.

We now give a series of definitions which will overcome the objections
raised above.

Definition 1.4. A type 7 is a set T together with a function ar: T —» N,
from T into the non-negative integers. We shall write 7 = (T, ar), or, more
simply, abuse notation and denote the type by T. It is also convenient to
denote by T, the set {t € Tlar(t) = n}.

Definition 1.5. An algebra A of type T, or a T-algebra, is a set A together
with, for each t € T, a function t4: A*® — A. The elements t € T, are called
n-ary T-algebra operations.

Observe that each t4 is an operation on the set A in the sense of our pre-
liminary definition of operation. As is usual, we shall write simply t(a;, . . . , a,)
for the element ¢4(ay, . . . , a,), and we shall denote the algebra by the same
symbol A as is used to denote its set of elements.

Examples

1.6. Rings may be considered as algebras of type T = ({0, —, +, -}, ar),
where ar(0) = 0,ar(—) = 1,ar(+) = 2,ar(-) = 2. We do not claim that such
T-algebras are necessarily rings, we simply assert that each ring is an example
of a T-algebra for the T given above.



§1 Introduction 3

1.7. If R is a given ring, then a module over R may be regarded as a
particular example of a T-algebra of type T = ({0, —, +} U R, ar), where
ar(0) = 0, ar(—) = 1, ar(+) = 2, and ar(d) = 1 for each A€ R. The first
three operations specify the group structure of the module, while the re-
maining operations correspond to the action of the ring elements.

1.8. Let S be a given ring. Rings R which contain S as subring may
be considered as T-algebras, where T = ({0, —, +,-} U S, ar), ar(0) = 0,
ar(—) = 1, ar(+) = 2, ar(-) = 2, and ar(s) = 0 for each s € S. The effect of
the S-operations is to distinguish certain elements of R.

Definition 1.9. T-algebras A, B are equal ifand onlyif A = Bandt, = tg
forallte T.

Exercise 1.10. Give an example of unequal T-algebras on the same set
A.

Definition 1.11. If A is a T-algebra, a subset B of A is called a T-
subalgebra of A if it forms a T-algebra with operations the restrictions to
B of those on A4, i.e., if for all n and for all t € T, and b;4, . . ., b, € B, we have
tuby,...,b,)e€B.

Any intersection of subalgebras is a subalgebra, and so, given any subset
X of A, there is a unique smallest subalgebra containing X—namely, the
subalgebra N{U|U subalgebra of 4, U 2 X}. We call this the subalgebra
generated by X and denote it by (X ), or if there is no risk of confusion,

by (X).

Exercises

1.12. A is a T-algebra. Show that & is a subalgebra if and only if
To = . Show that for all T, every T-algebra has a unique smallest sub-
algebra.

Many familiar algebraic systems may be regarded as T-algebras for more
than one choice of T. However, the subsets which form T-subalgebras may
well depend on the choice of T.

1.13. Groups may be regarded as special cases of T-algebras where T' =
({*}, ar) with ar(x) = 2, or of T'-algebras, where T' = ({e, i, *}, ar), ar(e) = 0,
ar(i) = 1, ar(*) = 2. Show that every T'-subalgebra of a group is a subgroup,
but that not every non-empty T-subalgebra need be a group. Show that if
G is a finite group, then every non-empty T-subalgebra of G is itself a group.

Definition 1.14. Let A, B be T-algebras. A homomorphism of A into B is
afunction ¢:A4 — Bsuchthat,forallte Tandallay,...,a,€ A(n = ar(t)),
we have

(p(tA(ala ] an)) = tB((p(al)a R (p(an) )

This condition is often expressed as “@ preserves all the operations of T”.



4 I Universal Algebra

Clearly, the composition of two homomorphisms is a homomorphism.
Further, if ¢: 4 — B is a homomorphism and is invertible, then the inverse
function ¢ ':B — A is also a homomorphism. In this case we call ¢ an
isomorphism and say that A and B are isomorphic.

§2 Free Algebras

Definition 2.1. Let X be any set, let F be a T-algebra and let 6: X — F
be a function. We say that F (more strictly (F, 0)) is a free T-algebra on the
set X of free generators if, for every T-algebra 4 and function 7:X — A4,
there exists a unique homomorphism ¢:F — A such that po = 1:

g

X

v
\"'1

Observe that if (F, o) is free, then o is injective. For it is easily seen that
there exists a T-algebra with more than one element, and hence if x;, x, are
distinct elements of X, then for some A4 and t we have t(x;) # (x,), which
implies a(x;) # o(x,).

The next theorem asserts the existence of a free T-algebra on a set X, and
the proof is constructive. Informally, one could describe the free T-algebra
on X as the collection of all formal expressions that can be formed from X
and T by using only finitely many elements of X and T in any one expres-
sion. But to say precisely what is meant by a formal expression in the
elements of X using the operations of T is tantamount to constructing the
free algebra.

Theorem 2.2. For any set X and any type T, there exists a free T-algebra
on X. This free T-algebra on X is unique up to isomorphism.

Proof. (a) Uniqueness. We show first that if (F, o) is free on X, and if
@:F — F is a homomorphism such that o = ¢, then ¢ = 1, the identity
map on F. To show this, we take A = F and 7 = ¢ in the defining condition.
Then 15:F — F has the required property for ¢, and hence by its uniqueness
is the only such map.
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Now let (F, o) and (F’, ¢') be free on X.

X Z —F

?/ ¢’
//
//

Fl

Since (F, o) is free, there exists a homomorphism ¢:F — F’ such that
¢@o = a'. Since (F', ¢') is free, there exists a homomorphism ¢": F’ — F such
that ¢'c’ = o. Hence ¢'po = ¢'c’ = o, and by the result above, ¢'¢p = 1.
Similarly, ¢’ = 1p. Thus ¢, ¢’ are mutually inverse isomorphisms, and so
uniqueness is proved.

(b) Existence. An algebra F will be constructed as a union of sets F,
(n eN), which are defined inductively as follows.

(i) Fy is the disjoint union of X and T,,.
(ii) Assume F, is defined for 0 < r < n. Then define

k
F, = {(t, a,...,a)te T,ar(t) = k,a;€F,, ), r; =n — 1}.
i=1

(iii) Put F = U F,.
neN
The set F is now given. To make it into a T-algebra, we must specify the
action of the operations t € T.

(iv) If te Ty and ay,...,a € F, put t(ay,...,a) = (t,ay,...,q) In
particular, if ¢ € Ty, then ¢ is the element ¢ of F,,.

This makes F into a T-algebra. To complete the construction, we must
give the map o: X — F.

(v) Foreach x € X, put 6(x) = x € F,,

Finally, we have to prove that F is free on X, i.e., we must show that if 4
is any T-algebra and 7:X — A any map of X into A, then there exists a
unique homomorphism ¢:F — A such that ¢o = 7. We do this by con-
structing inductively the restriction ¢, of ¢ to F, and by showing that ¢,
is completely determined by t and the ¢, for k < n.

We have Fy = Ty U X. The homomorphism condition requires @q(tr) =
t4 for t € Ty, while for x € X we require ¢@o(x) = 7(x), and so we must have



6 I Universal Algebra

@o(x) = t(x). Thus @y:Fy — A is defined, and is uniquely determined by the
conditions to be satisfied by ¢.

Suppose that ¢, is defined and uniquely determined for k < n. An
element of F, (n > 0) is of the form (t,q, ..., a;), where t € T}, g; € F,, and

k

Y ri=n — 1. Thus ¢,(a) is already uniquely defined for i = 1,...,k.
i=1
Furthermore, since (¢, a5, ..., a) = t(ay, - . . , @), and since the homomor-
phism property of ¢ requires that

(P(t, Agy ...y ak) = t((p(al)9 ey (P(ak) )’

we must define

@ult, ay, . . . a) = U@y (ar)s . . ., @rlar)).

This determines ¢, uniquely, and as each element of F belongs to exactly
one subset F,, on putting ¢(a) = ¢,(«) for a € F, (n = 0), we see that ¢ is a
homomorphism from F to A satisfying ¢pa(x) = @o(x) = 1(x) for all xe X
as required, and that ¢ is the only such homomorphism. []

The above inductive construction of the free T-algebra F fits in with its
informal description—each F, is a collection of “T-expressions”, increasing
in complexity with n. The notion of a T-expression is useful for an arbitrary
T-algebra, so we shall formalise it, making use of free T-algebras to do so.

Let A be any T-algebra, and let F be the free T-algebra on the set X, =
{x1,...,x,}. For any (not necessarily distinct) elements ay,...,a,€ 4,
there exists a unique homomorphism ¢: F - Awitho(x;) = q;(i=1,...,n).
If we F, then @(w) is an element of 4 which is uniquely determined by
ai, . .., a, Hence we may define a function w,: A" — A by putting wu(ay, . . .,
a,) = @(w). We omit the subscript A and write simply w(ay, ..., a,). If in
particular we take A = F and a; = x; (i = 1,.. ., n), then ¢ is the identity
and w(xq, ..., X,) = w.

Definition 2.3. A T-word in the variables x4, ..., x, is an element of
the free T-algebra on the set X, = {xy,. .., x,} of free generators.

Definition 2.4. A word in the elements ay, . . ., a, of a T-algebra A4 is an
element w(ay, . . ., a,) € A, where w is a T-word in the variables x, . .., X,.

We have used and even implicitly defined the term “variable” in the above
definitions. In normal usage, a variable is “defined” as a symbol for which
any element of the appropriate kind may be substituted. We give a formal
definition of variable, confirming that our variables have this usual property.

Definition 2.5. A T-algebra variable is an element of the free generating
set of a free T-algebra.

Among the words in the variables x;, . . ., x, are thewords x; (i = 1, ..., n),
having the property that x;(as, ..., a,) = a;. Thus variables may also be
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regarded as coordinate functions. The concept of a coordinate function
certainly provides the most convenient definition of variable for use in
analysis. For example, when we speak of a function f(x, y) as a function of
two real variables x, y, we have a function f, defined on some subset of
R x R, together with coordinate projections x(a, b) = a, y(a, b) = b(a,b e R),
and f(x, y) is in fact the composite function f(a, b) = f(x(a, b), y(a, b)).

Exercises

2.6. T consists of one unary operation, and F is the free T-algebra on a
one-element set X. How many elements are there in F,? How many elements
are there in F?

2.7. If Tisemptyand X is any set, show that X is the free T-algebra on X.

2.8. T consists of a single binary operation, and F is the free T-algebra
on a one-element set X. How many elements are there in F?

2.9. If T consists of one 0-ary operation and one 2-ary operation, and
if X = (&, then the free T-algebra F on X is countable.

2.10. T is finite or countable, and contains at least one 0-ary operation
and at least one operation t with ar(t) > 0. X is finite or countable. Prove
that F is countable.

§3 Varieties of Algebras

Let F be the free T-algebra on the countable set X = {x;, x5,...} of
variables. Although each element of F is a word in some finite subset X, =
{x1, ..., X}, we shall consider sets of words for which there may be no bound
to the number of variables in the words.

Definition 3.1. An identical relation on T-algebras is a pair (u, v) of
elements of F.

There is an n for which u, v are in the free algebra on X,, and we say
that (u, v) is an n-variable identical relation for any such n.

Definition 3.2. The T-algebra A satisfies the n-variable identical relation
(u,v),0or (u,v)is a law of 4, fu(ay,...,a,) = v(ay,...,a,) foralla,,...,a,€ A.

Equivalently, (u, v) is a law of 4 if p(u) = ¢(v) for every homomorphism
¢ F - A

Definition 3.3. Let L be a set of identical relations on T-algebras. The
class V of all T-algebras which satisfy all the identical relations in L is called
the variety of T-algebras defined by L. The laws of the variety are all the
identical relations satisfied by every algebra of V.

Note that the set of laws of the variety includes L, but may be larger.
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Examples

3.4. T consists of a single binary operation *, and L has the one element
(x1*#(x2%x3), (x1*x,)*x3). If A satisfies this identical relation, then ax(bxc) =
(axb)xc for all a, b, c € A. Thus the operation on A is associative and A4 is a
semigroup. The variety defined by L in this case is the class of all semigroups.

3.5. T consists of 0-ary, 1-ary and 2-ary operations e, i, * respectively.
L has the three elements

(1 *(x2%x3), (x1*X,)*x3),
(exx4, X4),
(i(x1)xxy, €).
The first law ensures that * is an associative operation in every algebra
of the variety defined by L. The second shows that the distinguished element

e is always a left identity, while the third guarantees that i(a) is a left inverse
of the element a. Hence the algebras of the variety are groups.

Exercises

3.6. Show that the class of all abelian groups is a variety.

3.7. Ris aring with 1. Show that the class of unital left R-modules is a
variety.

3.8. Sisacommutative ring with 1. Show that the class of commutative
rings R with 1z = 15 and which contain S as a subring is a variety.

3.9. Is the class of finite groups a variety?

§4 Relatively Free Algebras
Let V be the variety of T-algebras defined by the set L of laws.

Definition 4.1. A T-algebra R in the variety V is the (relatively) free
algebra of V on the set X of (relatively) free generators (where a function
¢:X — R is given, usually as an inclusion) if, for every algebra 4 in V and
every function 7:X — A, there exists a unique homomorphism ¢:R — 4
such that po = 1.

This definition differs from the earlier definition of a free algebra only in
that we consider here only algebras in V.

Definition 4.2.  An algebra is relatively free if it is a free algebra of some
variety.

Theorem 4.3.  For any type T, and any set L of laws, let V be the variety of
T-algebras defined by L. For any set X, there exists a free T-algebra of V on X.
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Proof: Let (F, p) be the free T-algebra on X. A congruence relation
on F is defined by putting u ~ v (where u, v € F) if ¢(u) = ¢(v) for every
homomorphism ¢ of F into an algebra in V. Clearly ~ is an equivalence
relation on F. If now t € T, and u; ~ v; (i = 1, ..., k), then for every such
homomorphism ¢, ¢(4;) = ¢(v;), and so

O(tuy, ..., w)) = He(uy), ..., ou)) = t(@®y), ..., W) = e(tvy, ..., 1)),

verifying that ¢ is a congruence relation.

We define R to be the set of congruence classes of elements of F with
respect to this congruence relation. Denoting the congruence class con-
taining u by %, we define the action of t € T} on R by putting (#, .. ., %) =
t(uy, . . . , ). This definition is independent of the choice of representatives
Uy, ..., u of the classes 7y, . . . , i, and makes R a T-algebra. Also, the map
u — u is clearly a homomorphism #:F — R. Finally, we define 0:X — R
by a(x) = p(x).

We now prove that (R, o) is relatively free on X. Let 4 be any algebra in
V, and let t: X — A be any function from X into 4. Because (F, p) is free,
there exists a unique homomorphism :F — A such that yp = 7.

X P —
\ //
R /
o
‘ e/
|

For 1 e R, we define ¢(@) = ¥(u). This is independent of the choice of
representative u of the element %, since if # = 7, then Y(u) = Y(v). The map
@:R — Aisclearly a homomorphism,and o = onp = Yyp = 1. If o:R - A4
is another homomorphism such that ¢'c = 1, then ¢'p = 7 and therefore
¢'n = . Consequently for each element 7 € R we have

o'@) = o'nu) = Y(u) = @),

and hence ¢’ = ¢. []

When considering only the algebras of a given variety V, we may redefine
variables and words accordingly. Thus we define a V-variable as an element
of the free generating set of a free algebra of V, and a V-word in the V-variables
X1,...,Xn as an element of the free algebra of ¥ on the free generators

{X1y .+ Xn}e
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Examples

44. T consists of a single binary operation which we shall write as
juxtaposition. Let V be the variety of associative T-algebras. Then all
products in the free T-algebra obtained by any bracketing of x,, ..., x,,
taken in that order, are congruent under the congruence relation used in our
construction of the relatively free algebra, and correspond to the one word
X1Xy -+ X, of V. We observe that in this example, all elements of the abso-
lutely free algebra F, which map to a given element x; x, - - - x, of the relatively
free algebra, come from the same layer F,_; of F.

4.5. T consists of a 0-ary, a 1-ary and a 2-ary operation. V is the variety
of abelian groups, defined by the laws given in Example 3.5 together with the
law (x1x,, x,x;). In this case, the relatively free algebra on {x,. .., x,} is
the set of all x1!x% - - - x;» ( or equivalently the set of all n-tuples (ry, . .., 1,))
with r; € Z. Here the layer property of Example 4.4 does not hold, because,
for example, we have the identity ee Fo, x; ' € Fy, x; '*x, € F, and yet
e = X1 I*xl.

Exercises

4.6. K is a field. Show that vector spaces over K form a variety V of
algebras, and that every vector space over K is a free algebra of V.

4.7. Risacommutative ring with 1 and V is the variety of commutative
rings S which contain R as a subring and in which 1 is a multiplicative
identity of S. Show that the free algebra of V on the set X of variables is the
polynomial ring over R in the elements of X.



Chapter 11

Propositional Calculus

§1 Introduction

Mathematical logic is the study of logic as a mathematical theory.
Following the usual procedure of applied mathematics, we construct a
mathematical model of the system to be studied, and then conduct what is
essentially a pure mathematical investigation of the properties of our model.
Since this book is intended for mathematicians, the system we propose to
study is not general logic but the logic used in mathematics. By this restriction,
we achieve considerable simplification, because we do not have to worry
about precise meanings of words—in mathematics, words have precisely de-
fined meanings. Furthermore, we are free of reasoning based on things such as
emotive argument, which must be accounted for in any theory of general
logic. Finally, the nature of the real world need not concern us, since the world
we shall study is the purely conceptual one of pure mathematics.

In any formal study of logic, the language and system of reasoning needed
to carry out the investigation is called the meta-language or meta-logic.
As we are constructing a mathematical model of logic, our meta-language
is mathematics, and so all our existing knowledge of mathematics is available
for possible application to our model. We shall make specific use of informal
set theory (including cardinal numbers and Zorn’s lemma) and of the uni-
versal algebra developed in Chapter 1.

For the purpose of our study, it suffices to describe mathematics as cop-
sisting of assertions that if certain statements are true then so are certain
other statements, and of arguments justifying these assertions. Hence a
model of mathematical reasoning must include a set of objects which we call
statements or propositions, some concept of truth, and some concept of a
proof. Once a model is constructed, the main subject of investigation is the
relationship between truth and proof. We shall begin by constructing a model
of the simpler parts of mathematical reasoning. This model is called the
Propositional Calculus. Later, we shall construct a more refined model
(known as the First-Order Predicate Calculus), copying more complicated
parts of the reasoning used in mathematics.

§2 Algebras of Propositions

The Propositional Calculus considers ways in which simple statements
may be combined to form more complex statements, and studies how the
truth or falsity of complex statements is related to that of their component

11
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statements. Some of the ways in which statements are combined in mathe-
matics are as follows. We often use “and” to combine statements, and we
write p A g for the statement “p and ¢”, which is regarded as true if and only
if both the statements p, g are true. We frequently assert that (at least) one of
two possibilities is true, and we write p v g for the statement “p or ¢”, which
we consider to be true if at least one of p, q is true and false if both p and ¢
are false. We often assert that some statement is false, and we write ~p
(read “not p”) for the statement “p is false”, which is regarded as true if and
only if p is false. Another common way of linking two statements is through
an assertion “if p is true, then so is g”. For this we write “p = ¢ (read “p
implies ¢”), which, in mathematical usage, is true unless q is false and p is true.

We want our simple model to imitate the above constructions, so we
want our set of propositions to be an algebra with respect to the four opera-
tions given above. This could be done by taking the free algebra with these
operations, but we know that in ordinary usage, the four operations are not
independent. Thus a simpler system is suggested, in which we choose some
basic operations which will enable us to define all the above operations. This
may be done in many ways, some of which are explored in exercises at the
end of Chapter III, where they may be studied more thoroughly. We choose
a way which is perhaps not the natural one, but which has advantages in
that it simplifies the development of the theory. Our choice rests on the fact
that in mathematics, a result is often proved by showing that the denial of
the result leads to a contradiction. We introduce into our notation a symbol
for a contradiction by specifying that our algebra will have a distinguished
element (i.e., a O-ary operation) F, which we will think of as a contradiction
or falsehood.

Definition 2.1. Let T = {F, =}, where F is a 0-ary operation and =
is a binary operation. Any T-algebra is called a proposition algebra.

Definition 2.2. The proposition algebra P(X) of the propositional calculus
on the set X of propositional variables is the free T-algebra on X.

Example 2.3. The algebra Z, of integers mod 2 can be made into a
proposition algebra by defining Fz, =0 and m=n =1 + m(l + n).
We shall make frequent use of this example.

In any proposition algebra, we introduce the further operations ~, v,
A, < by defining
~p=p=F
pva=(~p)=¢q
pag= ~(~pv~q)
p<>q=(p=4q)r(q=p)
We point out that the above are not statements in our proposition
algebras, because the symbol = is not an operation in our proposition
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algebras. The first equation says that ~ p is a notation for the element p = F
of our algebra. We shall often omit brackets, as we did above in writing

~p v ~qfor(~p)v(~q).

Exercises

2.4. Show that our definitions of ~, v, A, <> conform to normal usage.
2.5. Express ~, v, Ain Z, in terms of multiplication and addition.
2.6. Is Z, a free proposition algebra?

§3 Truth in the Propositional Calculus

Having determined the form of our algebra of propositions, we must now
find a meaning for the concept of truth applied to our propositions. We are
guided here by the observation that in ordinary mathematical usage, the
truth or falsity of the compound statement p = ¢ is determined completely
once the truth or falsity of each of p, g is specified. Every simple statement
is given a value—true or false—and the truth or falsity of any compound
statement depends on and is determined by the truth values of its components.
This leads us to consider valuations on P(X), i.e., functions which assign to
each element p € P(X) one of two possible values, which for convenience are
denoted by 0, 1. We are then considering functions v: P(X) — Z,, interpreting
v(p) = 1 as meaning “p is true”, and v(p) = 0 as “p is false”. In order that a
valuation act properly on compound propositions, the functions v must be
proposition algebra homomorphisms.

Definition 3.1. A valuation of P(X) is a proposition algebra homomor-
phism v: P(X) — Z,. We say that p € P(X) is true with respect to vif v(p) = 1,
and that p is false with respect to v if v(p) = 0.

Since X is a set of free generators of P(X), the values v(x) for x € X may
be assigned arbitrarily. These values, once assigned, determine the homomor-
phism v uniquely and so determine v(p) for all p € P(X).

In ordinary usage, the interesting and important notion relating the truth
values of statements is that of consequence—a statement q is a consequence
of statements py, ..., p, if g is true of every mathematical system in which
D1, - - -, P are all true. This idea is incorporated in our model by considering
valuations which assign the value 1 to all of p4, .. ., p,.

Definition 3.2. Let 4 =< P(X) and g € P(X). We say that g is a conse-
quence of the set A of assumptions, or that A semantically implies q,if v(q) = 1
for every valuation v such that v(p) = 1 for all p e 4. We shall write this
A = g, and we shall denote by Con(A4) the set {p € P(X)|4 = p} of all con-
sequences of A.
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Definition 3.3. Let p € P(X). We say that p is valid, or is a tautology, if
v(p) = 1 for every valuation v of P(X).

Thus p is a tautology if & = p. We shall write this simply as = p. Note
that 4 = p is not a proposition (i.e., not an element of P(X)), but simply a
statement in the meta-language about our model.

Examples

34. {q} Ep = q.Forifvisany valuation with v(q) = 1, then
up=q) =vp)=vlg =vp)=>1=1+up)l+1) =1

3.5. E p= p. Forifoisany valuation, then

olp=p) = v(p) = vp) =1 + up)(1 + (p)) =1,

since x(1 + x) = Ofor all x € Z,.

Exercises

3.6. Show that {F} = p for all p € P(X).

3.7. Showthat{p,p = q} E gand {p, ~q = ~p} = qforallp,q € P(X).

3.8. Show thatp = (¢ = p),(p = (¢ =1)) = ((p=¢q) = (p=7r))and
~ ~p = p are tautologies, for all p, q, r € P(X).

Lemma 3.9. Con is a closure operation on P(X), that is, it has the
properties

(i) A = Con(4),

(ii) If A; = A,, then Con(4,) < Con(4,),

(iii) Con(Con(4)) = Con(A).

Proof :

(1) Trivial.

(i) Suppose g € Con(A;). Let v be any valuation such that v(4,) =
{1}. Then »(4,) < {1} and so v(q) = 1 since g € Con(A4,). Hence
g € Con(A4,).

(iif) Suppose g € Con(Con(A4)), and let v be a valuation such that v(4) <
{1}. For all p € Con(A4), we have v(p) = 1 by the definition of Con(A).
Thus v(Con(4)) < {1} and so v(g) = 1. Thus g € Con(4). []

§4 Proof in the Propositional Calculus

A mathematical system is usually specified by certain statements called
assumptions, which describe certain characteristic features of the system. A
proof of some other property of the system consists of a succession of state-
ments, ending in a statement of the desired property, in which each statement
has been obtained from those before it in some acceptable manner. Apart
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from the particular assumptions of the system, which are considered accept-
able at any step in a proof, we distinguish two methods which permit the
addition of a statement to a given acceptable string of statements. There is a
specific collection of statements which are considered acceptable additions in
any mathematical proof—they can be regarded as underlying assumptions
common to every mathematical system—and which we formalise as certain
specified propositions which may be introduced at any stage into any proof.
Such propositions are called the axioms of our model. The other permissible
method consists of rules which specify, in terms of those statements already
set down, particular statements which may be adduced. Rules of this kind,
when formalised, are called the rules of inference of our model.

For the propositional calculus on the set X, we take as axioms all elements
of the subset & = o/, U &, U 5 of P(X),

where &/, = {p = (¢ = p)|p, g € P(X)},

Ay ={p=@=r)=(p=9=(p=r)pqrePX)},
and
oAy ={~~p=ppe P(X)}.

As our one rule of inference, we take the rule known as modus ponens:
from p and p = ¢, deduce q. We may now give a formal definition of a proof.

Definition 4.1. Let g€ P(X) and let A = P(X). In the propositional
calculus on the set X, a proof of q from the assumptions A is a finite sequence
P1is P2, - - - » P Of elements p; € P(X) such that p, = g and for each i, either
pie & U A or for some j, k < i, we have p, = (p; = p;).

Definition 4.2. Letge P(X)andlet A = P(X). We say that q is a deduc-
tion from A, or q is provable from A, or that 4 syntactically implies g, if there
exists a proof of g from A. We shall write this A |- g, and we shall denote by
Ded(A) the set of all deductions from A.

Definition 4.3. Let p € P(X). We say that p is a theorem of the proposi-
tional calculus on X if there exists a proof of p from .

Thus p is a theorem if & | p, which we write simply as |- p.

Lemma 4.4. (i) If q € Ded(A), then q € Ded(A’) for some finite subset A’
of A.
(ii) Ded is a closure operation on P(X).

Proof: (i) Thisholds because a proof of g from 4, being a finite sequence
of elements of P(X), can contain only finitely many members of A.

(i) The first two requirements for a closure operation are obviously met
by Ded. Suppose now that g € Ded(Ded(4)). Then there exists a proof
D1, ..., Pu Of g from Ded(A). In this proof, certain (perhaps none) of the p;,
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say pi,, - - -, p;, arein Ded(A4). Let p; 1, pi;, 2, - - - » Pi),r; b€ @ proof of p;, from
A. Replace each of the p;; in py,..., p, by its proof p;, 1,..., pi,,, The
resulting sequence is a proof of g from 4. []

Examples

4.5. }p = p. For any p € P(X), the following sequence p;, ..., ps is a
proof of p = p:

pr=p=((p=p) =p) (o)
p2=(p=((p=p=p)=(p=0@=p)=(p=0) ()
ps =(p=(p=p)=(p=Dp), (p2 = p1 = p3)
pa=p=(p=Dp), (€2
DPs = p=D. (p3 = pa = ps)

The proof is the sequence py, . . ., ps. These have been written on succes-
sive lines for ease of reading. We have placed notes alongside each step to
explain why it can be included at that stage of the proof, but these notes
are not part of the proof.

4.6. {q} p=>q. Aproofofthisisq=(p=¢q),q,p=q.

4.7. FF = q. For any q € P(X), the following is a proof:

pr=(~~q=q=(F=(~ ~q=9q), (€]
p2=~ ~q=gq, (3)
p3 = F=(~ ~q=g), (p1 = p2 = p3)
Pa=F=>(~~qg=¢q)=(F=>~ ~q = (F=q), ()
ps =(F= ~ ~q) = (F = g), (pa = p3 = ps)
Pe = F=>(~q=F)=F =~ ~q, (/1)
pr=F=gq (Ps = ps = p7)

48. | ~p=(p=¢q). A proof of this is the sequence py, ..., p; of
Example 4.7, followed by

ps = (F=¢q)=(p=(F=gq) (1)
ps =p=(F=gq), (ps = p7 = po)
pio=(p=F=¢9)=(p=F)=(p=9q), ()
pu=(p@=F)=(p=q=~p=(p=9q) (P10 = po = p11)

The length of the proof needed for such a trivial result as ~p = (p = q)
may well alarm a reader familiar with mathematical theorems and proofs.
Ordinary mathematical proofs are very much abbreviated. For example,
(allegedly) obvious steps are usually omitted, and previously established
results are quoted without proof. Such devices are not available to us, because
of the very restrictive nature of our definition of proof in the propositional
calculus. We could reduce the lengths of many proofs if we extended our
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definition to include further rules of inference or abbreviative rules, but by
doing so, we would complicate our study of the relationship between truth
and proof, which is the principal object of the theory. We remark that in
order to show that ~p = (p = q) is a theorem of the propositional calculus,
it suffices to argue as follows: we have -F = ¢, and the sequence p-, . . ., p1;
is a proof of ~p = (p = g) from the assumption {F = g}. Thus

~p = (p = q) € Ded({F = ¢}) = Ded(Ded(&)) = Ded(2),

hence | ~p = (p = q).

This is a mathematical proof of the existence of a proof in the proposi-
tional calculus. It is not a proof in the propositional calculus. We shall
find other ways of demonstrating the existence of proofs without actually
constructing them formally.

Exercises

4.9. Show that Ded(A4) is the smallest subset D of P(X) such that
D 2 o/ U A and such that if p, p = q € D, then also g € D.

4.10. Construct a proof in the propositional calculus of p = r from the
assumptions {p = ¢, ¢ = r}.

We close this chapter with a useful algebraic result.

Theorem 4.11. (The Substitution Theorem). Let X, Y be any two sets,
and let ¢:P(X) — P(Y) be a homomorphism of the ( free) proposition algebra
on X into the (free) proposition algebra on Y. Let w = w(xy, ..., X,) be any
element of P(X) and let A be any subset of P(X). Put a; = ¢(x;).

(a) If A |- w, then @(A) w(ay, . .., a,).

(b) If AEw, then (A) Ew(ay, . .., a,).

Proof: (a) Suppose py, ..., p, is a proof of w from A. If p; € 4, then
trivially ¢(p;) € ¢(A4). Since ¢ is a homomorphism, it follows that if p; is an
axiom of the propositional calculus on X, then ¢(p;) is an axiom of the
propositional calculus on Y. For the same reason, if p, = (p; = p;), then
@(pe) = @(p; = p:) = @(p;) = @(p:). Thus @(py), . .., @(p,) is a proof in the
propositional calculus on Y of @(w) from ¢(A4). Since p(w) = w(ay, ..., a,),
the result is proved.

(b) Suppose 4 = w. Let v:P(Y) - Z, be a valuation of P(Y) such that
(@(A)) = {1}. Then the composite map vp:P(X) — Z, is a valuation of
P(X), and vp(A4) <= {1}. Since A = w, we have vp(w) = 1, i.e. v(p(w)) = 1.
Thus ¢(A4) E o(w). [] :
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Properties of the Propositional Calculus

§1 Introduction

The properties of the Propositional Calculus that are of interest are those
that arise in studying the relation between truth and proof. These properties
are important features in the study of any formal system of reasoning, and
we begin with some general definitions.

Definition 1.1. A logic & is a system consisting of a set P of elements
(called propositions), a set ¥~ of functions (called valuations) from P into
some value set W, and, for each subset 4 of P, a set of finite sequences of
elements of P (called proofs from the assumptions A).

For example, the logic called the Propositional Calculus on the set X,
and henceforth denoted by Prop(X), consists of the set P = P(X) (the free
proposition algebra on X), the set ¥~ of all homomorphisms of P(X) into Z,,
and, for each subset 4 of P(X), the set of proofs as defined in §4 of Chapter II.

The concepts of semantic implication and syntactic implication in &
are defined in terms of valuation and proof respectively, in some manner
analogous to that used for the propositional calculus, and the notations
A E p, A |- p will again be used to denote respectively “p is a consequence
of A”, “p is a deduction from A4”. p is a tautology of Z if J = panditisa
theorem of & if & |- p. The logic & for which these assertions are made will
always be clear from the context.

Definition 1.2. A logic % is sound if A |- p implies A E p.
Definition 1.3. A logic & is consistent if F is not a theorem.

Definition 1.4. A logic & is adequate if A = p implies A | p.

Choosing 4 = &, we see that a sound logic has the desirable property
that theorems are always true, and an adequate logic has the equally desirable
property that valid propositions can be proved. While soundness and ade-
quacy each express a connection between truth and proof, consistency is an
expression of a purely syntactic property that any logic might be expected
to have, namely that one cannot deduce contradictions.

Since the theorems and tautologies of a logic are each of significance,
the following decidability properties are also important.

18
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Definition 1.5. A logic £ is decidable for validity if there exists an
algorithm which determines for every proposition p, in a finite number of
steps, whether or not p is valid.

Definition 1.6. A logic % is decidable for provability if there exists an
algorithm which determines for every proposition p, in a finite number of
steps, whether or not p is a theorem.

§2 Soundness and Adequacy of Prop(X)

Theorem 2.1. (The Soundness Theorem) Let A < P(X), p e P(X). If
A | p, then A = p.

Proof: Suppose there exists a proof py, ..., p, of p from A. We have
to show p is a consequence of A.

Let v:P(X) » Z, be a valuation for which v(4) = {1}. We shall use
induction over the length n of the proof of p from A4 to show that v(p) = 1.
Suppose that n = 1. Then p e 4 U &, and since every axiom is a tautology
(Exercise 3.8 of Chapter II), we have v(p) = 1.

Suppose now n > 1, and that v(q) = 1 for every g provable from A
by a proof of length < n. Then v(p;) = v(p,) = - - - = v(p,—1) = 1. Either
p.€ AU o and v(p,) = 1, as required, or for some i, j < n, we have p; =
p;j = Pn- In the latter case, v(p;) = v(p; = p,) = 1, and the homomorphism
property of v requires v(p,) = 1. []

Corollary 2.2. (The Consistency Theorem) F is not a theorem of Prop(X).

Proof : If F-F, then =F by the Soundness Theorem. Since axioms are
tautologies, v(F) = 1 for every valuation v, contradicting the definition of
valuation. This implies that there are no valuations. But P(X) is free and
every map of X into Z, can be extended to a valuation. []

Exercise 2.3. Show that Con(4) is closed with respect to modus ponens
(ie., if p, p = q € Con(A), then q € Con(A)). Use Exercise 4.9 of Chapter II to
prove that Con(A4) = Ded(4). This is another way of stating the Soundness
Theorem.

The proof of adequacy for Prop(X) is more difficult, and we first prove a
preparatory result of independent interest.

Theorem 2.4. (The Deduction Theorem) Let A < P(X), and let p,
ge P(X). Then A\ p=>q if and only if AU {p} | q.

Proof: (a) Suppose A |- p=gq.Letpy,...,p,beaproofofp, =p=gq
from A. Then py, ..., p,, p, q is a proof of g from 4 U {p}.

(b) Suppose A U {p} |- q. Then we have a proof py, ..., p, of g from
A v {p}. We shall use induction over the length n of the proof.
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If n=1, then ge o/ U AU {p}. If ge & U A, then q, g = (p = q),
p = q is a proof of p = g from A. If ¢ = p, then |- p = p (Example 3.4 of
Chapter II),andso A | p = q.

Suppose now n > 1. By induction, A p=p;fori=1,2,...,n— 1,
and we may suppose q ¢ &/ U A U {p}. For some i, j < n, we have p; =
pi=q.Thus A +p=p;, A p=(p; = q), and there exists a proof q, . . ., gy,
g+ 1 from A with

qx = P = Djs
Ge+1 = p = (pj=q)
We put
G2 = (p=(p;=q) = ((p=p) = (p = 9)), (2)
q+3 = (p=pj) = (p = 9), (Gr+2 = Gee1 = Ge+3)
qx+4 = D = 4. (G+3 = Gk = i+ a)

Thengqy, ..., qi+4 18 a proof of p = g from A. []

The Deduction Theorem is useful in establishing a result of the form
A |- p =q, because it is usually much easier to show 4 U {p} |- ¢q. Even if a
proof in Prop(X) of p = g from A is required, the method used in proving
the Deduction Theorem can be applied to convert a proof of g from 4 U {p}
into a proof of p = g from A.

Example 2.5. Weshow {p = ¢q,q = r} |- p = r.First weshow {p,p = ¢,
q = r} b r, and a proof of this is p, p = q, q, ¢ = r, r. It follows from the
Deduction Theorem that {p = g, g =>r} Fp=r.

We now convert the proof of r from {p, p = g, ¢ = r} into a proof of
p=r from {p = g, ¢ = r}. We shall write the steps of the original proof
in a column on the left. Alongside each, we then write a comment on the
nature of the step, and then the corresponding steps of the new proof.

P Proposition to p=((p=p)=Dp)
be deleted from | (p=((p=p)=p))=((p=(p=p))=(p=D),
the assumptions | (p=(p=p))=(=p,p=(=p),p=0p

p=4q | Retained p=q(p=9=p@={P=9)p=(p=9.
assumption
q Modus ponens (p=(=q9)=(p=p=(=9)
p=p=@=9pr=4
q=r | Retained qg=r(@=r=@=(@=r)p=(@=7)
assumption
r Modus ponens p=@=n=>(p=>9=>pP=r),

(p=>qg=@=r,p=>r
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Of course, the proof we have constructed can be abbreviated, because
the first 11 steps serve only to prove the retained assumption p = q.

Exercises

2.6. Show that p = re Ded{p = q, p = (¢ = r)}. Hence show that if
P = q,p = (q = r) e Ded(A4), then p = r € Ded(A4), and so prove the Deduc-
tion Theorem without giving an explicit construction for a proof in Prop(X).
2.7. Show that |- p = ~ ~p and construct a proof of p= ~ ~p in
Prop(X). (Hint: show {p, ~p} I F and use the Deduction Theorem twice.)
2.8. Show that the following are theorems of Prop(X),

@ p=pvyg ®) g=pvaq,
© (pva=I(qvp), (d) prg=p,
() prg=g, (f) (pAq) =(qnp).

Definition 2.9. Let A < P(X). We say that A is consistent if F ¢ Ded(A4).
A is called a maximal consistent subset if A is consistent and if every subset
T < P(X) which properly contains A4 is inconsistent.

Lemma 2.10. The subset A = P(X) is maximal consistent if and only if
(i) F¢ A, and

(ii) A = Ded(A), and

(iii) for all p € P(X), either pe A or ~p € A.

Proof: (a) Let A be maximal consistent. Since A is consistent, F ¢
Ded(A) and therefore F ¢ A. Since Ded(Ded(4)) = Ded(A4), Ded(A4) is con-
sistent. As 4 < Ded(A4), 4 = Ded(4) by the maximal consistency of A.
Finally, suppose p ¢ A. Then F € Ded(4 u {p}), i.e. 4 U {p} I F. By the
Deduction Theorem, A |- p = F, ie., ~p e Ded(A4).

(b) Suppose A has the properties (i), (ii), (iii). Then F ¢ Ded(A). If T prop-
erly contains A, then there exists pe T such that p ¢ 4. By (iii), ~p € A4,
hence p, ~pe T, and p, ~p, F is a proof of F from T. Thus A4 is maximal
consistent. []

Lemma 2.11. Let A be a consistent subset of P(X). Then A is contained
in a maximal consistent subset.

Proof: LetZ = {T < P(X)|T 2 A, F ¢ Ded(T)}.Since A€ X, % # (.
Suppose {T,} is a totally ordered family of members of X, and put T = J, T,
Clearly T < P(X), T = A. If F is provable from T, F is provable from a
finite subset of T, and this subset is contained in some T,, contraryto T, € X.
Hence F ¢ Ded(T), and X is an inductively ordered set. By Zorn’s Lemma,
X has a maximal member say M. This M is the required maximal consistent
subset. []

The next result is the key to the Adequacy Theorem.

Theorem 2.12. (The Satisfiability Theorem) Let A be a consistent subset
of P(X). Then there exists a valuation v:P(X) — Z,, such that v(A) < {}.
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Proof: Let M be a maximal consistent subset containing A. For
pe P(X),put v(p) = 1if pe M and v(p) = 0if p¢ M. We now prove vis a
valuation.

Certainly »(F) = 0, because F ¢ M. It remains to show v(p = q) =
v(p) = v(g). If g € M, then p = g € M because {g} -p =g, and v(p = q) =
1 =uv(p)=1u(q). If p¢ M, then p=ge M because {~p}}p=gq, and
p=q)=1=uvp)=v(q. If pe M and q¢ M, then p=q¢ M, and
up=q) =0=1up) =g [

Theorem 2.13. (The Adequacy Theorem) Let A < P(X), pe P(X). If
A E pin Prop(X), then A |- p in Prop(X).

Proof: Suppose A = p, so that v(4) = {1} implies v(p) = 1 for every
valuation v. If A U {~p} is consistent, it follows from the Satisfiability
Theorem that there is a valuation v such that v(4 U { ~p}) = {1}, which is
not possible. Hence F € Ded(4 U {~p}),ie, A U {~p} I F. By the Deduc-
tion Theorem, A  ~p = F. Since -~ ~p = p, we have 4 |- p. []

Exercise 2.14. Show that if A = p, then 4, = p for some finite subset
A of A. (This result is known as the Compactness Theorem.)

§3 Truth Functions and Decidability for Prop(X)

Each valuation v of P(X) determines a natural equivalence relation r,
on P(X) given by pr,q if v(p) = v(q), and which is in fact a congruence relation
on P(X). That is, each r, satisfies the condition that if pr,p, and gr,q,, then
(p = 9)r,(p1 = q1). The intersection of the relations r, for all valuations v
of P(X) is therefore a congruence relation on P(X), which we call semantic
equivalence and denote by|. Since p = ¢ if and only if v(p) = v(q) for every
valuation v of P(X), we see that p =g if and only if {p} = g and {q} = p.

Definition 3.1. The set of congruence classes of P(X) with respect to =]
is an {F, =}—algebra called the Lindenbaum algebra on X and denoted
by L(X).

Let X, = {xy, ..., X,}. Clearly L(X,) is a homomorphic image of P(X,,).
If w=w(xy,...,x,)eP(X,) is any word in x,, ..., X,, then its image in
L(X,) is the congruence class W = W(x;, . .., X,) say, of all words congruent
to w under the relation |=. Our aim is to show that #w can be regarded as a
function w:Z% — Z,.

For any w(x;,...,x,) € L(X,), choose a representative w(xy, ..., X,) € P(X,).
If (zq, . . ., z,) € ZY, then there is a unique valuation v: P(X,) — Z, such that
v(x;) = z; for i = 1,..., n. We define w(zy, ..., z,) = v(w(xy, ..., x,)), ob-
serving that this definition is independent of the choice of representative w
of W, because if w; is another representative, then wi=w; and v(w) = v(w,).
In this way we associate with each element w of L(X,) a function Z% — Z,,
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but, before we identify w with this function, we must show that if w and w,
have the same associated function, then w = w;.
Suppose that w and Ww; have the same associated function, so that

W(zZyy ..., 2a) = Wilzy, ..., zp)forall(zy, ..., z,) € Z5. Let w, w; be represen-
tatives of w, w, respectively. Then Ww(zy, ..., z,) = v(w), where v is the valua-
tion for which v(x;) = z; (i = 1,..., n), and we have v(w) = v(w;). The last

equation holds for every valuation v, hence w=w, and w = w;. We may
therefore identify the elements of L(X,) with their associated functions.

Definition 3.2. A function f:Z%5 — Z, is called a truth function.

Theorem 3.3. L(X,) is the set of all truth functions f:7Z5 — Z,.

Proof: The constant functions0, 1 € L(X,)since0 = Fand 1 = (F= F).
Thus the result holds for n = 0.

If f, g are truth functions Z% — Z,, we define the truth function f = ¢
by (f=>9)z1,...,2) = flzy,...,2s) = g(2z1, ..., 2,). For convenience of
notation, we denote the ith coordinate function by u;. We have u; = X;€ L(X,).

We now suppose n > 0, and shall use induction over n to complete the
proof. Let f = f(uy, ..., u,) be a truth function of n variables. Put

g(uly-..,un—l) = f(ul,-..,u"—l,()), h(ul,...,u,,_l) = f(ul,”_’un_17 1)'
Then g, he L(X,_,) < L(X,). The function k:Z% — Z,, defined by
k(ug, ... u,) = (~tp = gy, ooy ty—1)) A (U = h(uyg, .., Uy—y))
is in L(X,), and
k(g ... ty—1,0) = (1 = gluy, ..., up—1)) A (0= hluyg, ..., u,—1))
= g(ul""’un—l) /\l
= g(ul, R un—l)
= flug, ..., Us—1,0).

Similarly, one obtains k(uy, ..., u,—, 1) = f(uy, ..., uy,—1, 1). Thus k = f
and f e L(X,). []

We now apply truth functions to settle the question of decidability for
Prop(X).

Lemma 3.4. Let w = w(xy, ..., X,) € P(X). Then = w if and only if its
associated truth function w:Z% — Z, is the constant 1.

Proof: Supposew = 1.Letv:P(X) — Z, be any valuation of P(X). Put
a; = v(x;). Then the restriction of v to P(X,) is a valuation of P(X,), and
v(w) = w(ay,...,a,) = 1. Thus v(w) = 1 for every valuation v of P(X),
ie., Ew.

Suppose conversely that w is valid. Let (ay, . . ., a,) € Z5. There exists a
valuation v of P(X) with v(x;) = a;. (We may assign arbitrarily values for
elementsof X — {x, ..., x,;.) Then the restriction of v to P(X,,) is a valuation
of P(X,), and w(ay,...,a,) = v(w) = 1. Thusw = 1. []



24 IIT Properties of Prop(X)

Theorem 3.5. Prop(X) is decidable for validity.

Proof: We give an algorithm for deciding if w € P(X) is valid. The ele-
ment w is a word w(x, . . ., X,) in some finite set x4, . . ., x, of variables. Let
w = w(uy, ..., u,) be the associated truth function. For each (ay, ..., a,) € Z%,
we calculate w(ay, . .., a,). By Lemma 3.4, w is valid if and only if all these
values are 1. []

Corollary 3.6. Prop(X) is decidable for provability.
Prbof . Anelement p € P(X) is a theorem if and only if it is valid. []

Exercises

3.7. Show that every truth function Z% — Z, can be expressed in terms
of the coordinate functions and the one operation |defined by w,|w, =
~ (W1 A Wy).

3.8. A truth function f(u,, ..., u,) is said to be in disjunctive normal
formifitis expressed in one oftheforms f = 0,f = l,orf = v; v, v - vy
for 0 < k < 2", where each vj = uy; Auyj A+ AUy, , and u;; = u, Or ~u,
for some r.

Show that every truth function is expressible in disjunctive normal form,
and specify a procedure for associating with each truth function Z%5 - Z, a
unique disjunctive normal form.

3.9. (a) Let pe P(X). Find a p’ € P(X), expressible in a form involving
no operations other than ~, A and v, such that = p < p'.

(b) Let p, g € P(X). Find truth functions for ~(p v q) <> (~p A ~q) and
~(pArg)<=(~pv~qg).

(c) p and p’ are related as in (a). Let p* be the statement obtained from
p’ by replacing each v by A, each A by v, and each x € X by ~ x. Prove that
£ ~p<p*

3.10. A truth function f(u;, ..., u,) is said to be in conjunctive normal
formifit expressed inone of theforms f = 0,f = l,orf = vy A v, A- - A D,
for 0 < k < 27, where each v; = uy; v uz; v -~ - v u,, and u;; = u, or ~u,
for some r. Use Exercises 3.8 and 3.9 to specify a procedure for associating
with each truth function 7% — 7, a unique conjunctive normal form.

3.11. Let p, p’ and g, ¢ be related as in Exercise 3.9(a). Let p?, ¢° be the
statements obtained from p’, ¢’ by replacing each v by A and each A by v.
Show that = p if and only if = ~ p?. Deduce that if |- p = ¢, then |- ¢¢ = p%.
(This result expresses a duality principle for Prop(X).)

3.12. Write a FORTRAN program to decide if w(x,, x,, x3) € P(X5)
is valid.

3.13. Show that Prop(X) is decidable for {p,, ..., p,} Eq, wherep,,...,
Pm 4 € P(X).

3.14. Construct a propositional calculus Prop,(X) with P,(X) the
free {=, ~}-algebra. Show that there is a {=, ~}-homomorphism ¢:
Py(X) - P(X) which is the identity on X. Is ¢ a monomorphism? Is ¢ an
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epimorphism? Does there exist a {=>, ~ }-homomorphism y: P(X) — P,(X)
which is the identity on X ? (Hint: Consider the images of F and of F = F
(= ~F))

Show that there exists a {=>, F }-homomorphism 6: P(X) — P(X) which
is the identity on X, taking as element F of P;(X) the element ~(x; = x4).
Show that w € P,(X) is valid if and only if ¢(w) is valid. Show that p € P(X)
is valid if and only if 6(p) is valid. Establish the Consistency, Adequacy and
Decidability theorems for Prop,(X).

3.15. Using the method of 3.14 investigate the following propositional
calculi:

(a) Prop,(X) with P,(X) free of type {~, v},

(b) Prop5(X), with P5(X) relatively free of type { ~, v}, with the identical
relationp v g = q v p,

(c) Props(X) with P;3(X) free of type {|} (see 3.7),

(d) Prop5(X) with P3(X) relatively free of type {|}, with the identical
relation plg = q|p.



Chapter IV

Predicate Calculus

§1 Algebras of Predicates

The initial step in our development of the Propositional Calculus was
the construction of proposition algebras, which formalise the way in which
a given collection of “primitive” statements is enlarged by combining state-
ments. The Propositional Calculus does not analyse the original primitive
statements. Our aim now is to construct a more complicated model of
mathematical reasoning, which incorporates more of the ordinary features
of this reasoning.

Mathematics is usually about something, that is, there is usually some
set % of objects under discussion and investigation. A typical statement in
such a discussion would be “u has the property p”, where ue % and p is
some property relevant to elements of %. A convenient notation for this
statement is p(u). Such a statement depends on the element u, and may be
thought of as a function of u. The phrase “has the property p” is known as a
predicate, and p (as used in the notation p(u)) is known as a predicate symbol.
More generally, if r is an n-ary relation on %, the statement “(uy, ..., u,) is
in the relation r” is denoted by r(u, . . . , u,), and ris called an n-ary predicate.
A O-ary predicate is a statement which does not depend on any elements of
9, and so corresponds to an unanalysed statement.

If p, q are properties, then p(u) A q(u) is true for just those elements u
with both properties. Denoting by P the subset of % consisting of those
elements with property p, and by Q the subset of % of elements with property
g, we see that P n Q is the subset of those elements u for which p(u) A q(u)
is true. Similarly, P U Q is the subset of elements u for which p(u) v g(u) is
true, while the set of elements u satisfying ~ p(u) is the complement of P
in%.

Another common form of statement in mathematical discussion is “For
all ue , p(u)”. If % were a finite set, say % = {uy, ..., u,}, then this could
be expressed as p(u;) A p(uz) A - A p(u,), but it is not possible to do this
if % is an infinite set. We thus introduce the notation (Vu)p(u) for the above
statement. (Wu) is called the universal quantifier. Note that the u in (Vu) is
only a dummy—(Vu)p(u) is in no way dependent on u, and is the same
statement about % as (Vv)p(v). We do not need additional notations to deal
with a limited use of “for all” as in statements such as “For all u such that
p(u), we have q(u)”. This can be expressed as (Vu)(p(u) = q(u)).

Statements of the form “There exists u € % with the property p” are also
common in mathematics. We write this statement as (Ju)p(u). The existential

26
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quantifier (Ju) is, however, related to the universal quantifier (W u), as follows.
When we say “There does not exist u with property p”, we are in fact asserting
(Vu)(~p(u)). Thus (u)p(u) has the same meaning' as ~((Vu)(~p(u)), and
we have no need to include the existential quantifier in the construction of
our model. We shall define (Ju) to mean ~(Vu)~.

We now set up an appropriate analogue of a proposition algebra. Prop-
osition algebras are built upon underlying sets of propositional variables.
We begin here with an infinite set V whose elements will be called individual
variables, and with a set # (whose elements will be called relation or predicate
symbols) together with an arity function ar:# — N. The individual variables
may be thought of as names to be given to mathematical objects, and the
relation symbols as names to be given to relations between these objects.
The set of generators we shall use to construct our set P of propositions must
clearly contain each element r(xy, ..., x,) for each re Z and (x4, ..., x,) € V",
where n = ar(r). It is also clear that P must be an {F, =}—algebra, and
that for each x € V, we shall need a function (Vx):P — P.

Let I~’(V, ) be the free algebra on the set {(r, xy,. .., x,,)‘r ER, x;€V,
n = ar(r)} of free generators, of type { F, =, (Vx)|x € V}, where F is a O-ary
operation, = binary, and each (Vx) unary. We call P = P(V, %) the full
first order algebra on (V, #). We use the more usual notation r(xy, ..., X,)
for the generator (r, xy, ..., Xx,), and we put #, = {re ﬂiar(r) = n}.

We could use this algebra P as our algebra of propositions, but it is
more convenient to use a certain factor algebra. If w e P, then w is a word
in the free generators of P, each of which has the form r(xy, ..., x,). If
X1, ..., X, are the distinct individual variables occurring in w, then we can
think of w as a function w(x, ..., X,,) of these variables. Now we regard
(Vxy)w(xy, ..., xn) as being essentially the same as (Wy)w(y, X2, ..., Xm),
provided only that y ¢ {x,,..., x,,}. The reason for this has been pointed
out before, and is that the x; in (Vx{)w(xy,..., X,) is a dummy, used as
an aid in describing the construction of the statement. It serves the same
purpose as the variable ¢t does in the definition of the gamma function as
I(x) = [§e 't 1t

We shall construct a factor algebra of P, in which these elements,
considered above as being essentially the same, will be identified. Further
identifications are possible. The question of which identifications are made
is purely one of convenience. The congruence relation on P which we use
needs some care in its construction, and we begin by defining two functions
on P.

Definition 1.1. Let w € P. The set of variables involved in w, denoted by
V(w), is defined by

V(iw) = n{U|U < V,we B(U, ®)}.

! This is very different to the concepts of existence used in other contexts such as “Do flying
saucers exist?” or “Does God exist?” or “Do electrons exist?”.
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Exercise 1.2. Show that

(i) V(F) = &.
(i) If re R, ar(r) = n, and x;,...,x,€V, then V(r(xy,...,x,)) =
{X1s.. 0y Xn}

(iii) If wy, wa € P, then V(w; = wy) = V(wy) U V(wy).
(iv) If x e V and w € P, then V((Vx)w) = {x} U V(w).
Show further that (i)—(iv) may be taken as the definition of the function V(w).

Definition 1.3. Let w e P. The depth of quantification of w, denoted by
d(w), is defined by

(i) d(F) = 0,d(r(x1, ..., x,)) = O for every free generator of P.

(i) d(w; = w,) = max(d(w,), d(w,)).

i) d((Vx)w) = 1 + d(w) (xe V).

Our desired congruence relation on P may now be defined.

Definition 1.4. Let w,, w, € P. We define w; ~ w, if
(@) d(wy) = d(w,) = 0and wy = w,, or
(b) d(wy) = d(w;) > 0,w; = a; = by,w, = a,=b,,a; ~ a,andb; ~ b,,0r
() wy = (Vx)a, w, = (Vy)b and either

(i) x =yanda ~ b, or

(ii) there exists ¢ = c(x) such that ¢(x) ~ a, ¢(y) ~ b and y ¢ V(c).

We remark that in part (c) (ii), the notation ¢ = c¢(x) indicates the way
the element concerned is a function of x, and ignores its possible dependence
on other variables. We use it so we can represent the effect of substituting
y for x throughout. It is therefore unnecessary for us to impose the condition
x ¢ V(c(y)). The notation does not imply V(c(x)) = {x}, hence we must
impose the condition y ¢ V(c(x)). Thus the condition (c) (ii) is symmetric,
and = is trivially reflexive. The proof that it is transitive is left as an exercise.

Exercise 1.5.

(1) Given that z¢ V(w,) U V(w,), show by induction over d(w,) that
the element ¢ = ¢(x) in (c) (ii) can always be chosen such that z ¢ V(c).

(ii) If u(x) ~ v(x) and y ¢ V(u(x)) U V(v(x)), show by induction over
d(u(x)) that u(y) =~ v(y).

(iii) Prove that ~ is transitive.

Since the relation ~ is an equivalence which is clearly compatible with
the operations of the algebra, it is a congruence relation on P(V, &).

Definition 1.6. The (reduced) first-order algebra P(V, ®) on (V, R) is
the factor algebra of P(V, #) by the congruence relation ~ .

The elements of P = P(V, &) are the congruence classes. If w e P and
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[w] is the congruence class of w, then

(Vx)[w] = [(Vx)w],
and

[wi] = [w2] = [w; = w2],

Definition 1.7. Let we P. We define the set var(w) of (free) variables
of w by putting var(w) = var(#), where % € P is some representative of the
congruence class w, and where var(#) is defined inductively by

(i) var(F) = &,
(i) var(r(xy,...,%,)) = {X1,...,x,} forre &, x;,...,x, €V,
(iii) var(w, = W,) = var(Ww,) U var(W,),

(iv) var((Vx)Ww) = var(®) — {x}.

Definition 1.8. Let A = P. Put
var(4) = |J var(p).

peA
Exercises

1.9. Show that if w; ~ W,, then var(#,) = var(w,), and conclude that
var(w) is defined for w € P.

1.10. Show that for any w e P, there is a representative W of w such
that no variable x € V appears in # more than once in a quantifier (Vx),
and no x € var(w) appears at all in a quantifier (i.e., W has no repeated dummy
variables, and no free variables also appear as dummies).

We assume henceforth that any w € P is represented by a % € P having
the form described in Exercise 1.10. We shall also usually abuse notation
and not distinguish between p € P and [p] € P.

§2 Interpretations

We want to think of the elements of V' as names of objects, and the ele-
ments of Z# as relations among those objects. If we take a non-empty set U,
and a function ¢: V — U, then we can think of x € V as a name for the element
o(x) € U. Of course, not every element u € U need have a name, while some
elements u may well have more than one name. Next we take a function ¥,
from £ into the set of all relations on U, such that if r € &,,, then Y/(r) is an
n-ary relation. It will be convenient to write simply ¢x for ¢(x), and yr for
Y(r). As for valuations, these again should be functions v:P — Z, which
will correspond to our intuitive notion of truth. Since our interpretation of
the element r(x,..., x,) € P in terms of U, ¢, Y must obviously be the
statement that (x4, ..., @x,) € Yr, we shall require of v that
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(a) ifre #,and xq,...,x,€ V,then v(r(xy,...,x,) = Lif(pxq,..., px,) €
yr, and is 0 otherwise, while we still require that

(b) vis a homomorphism of {F, =}-algebras.

It remains for us to define truth for a proposition of the form (Vx)p(x)
in terms of our understanding of it for p(x), and so we use an induction over
the depth of quantification. Let Pi(V, #) be the set of all elements p of
P(V, #) with d(p) < k. If we take some new variable ¢, then intuitively, we
consider (Vx)p(x) (=(V1)p(t)) to be true if p(t) is true no matter how we
choose to interpret t. This leads to a further requirement for v, namely:

(cx) Suppose p = (Vx)q(x) has depth k. Put V' = V U {t} where t¢ V. If
for every extension ¢": V' — U of ¢ and for every vi_;:P,_{(V’, R) —> Z,,
such that (¢’, Y, vy, - 1) satisfy (a), (b) and (¢;) for all i < k, we have v _,(q(t)) =
1, then v(p) = 1, otherwise v(p) = 0.

Exercise 2.1. Given U, ¢, ¥, prove that there is one and only one
function v: P — Z, satisfying (a), (b) and (c;) for all i.

Briefly, the above exposition of the components of an interpretation of
P(V, #) can be expressed as follows.

Definition 2.2. An interpretation of P = P(V, %) in the domain U is a
quadruple (U, ¢, ¥, v) satisfying the conditions (a), (b) and (c) for all k.

As before, we write A= pif A = P, pe P and v(p) = 1 for every inter-
pretation of P for which v(4) < {1}. We denote by Con(A) the set of all p
such that A4 = p. We write = p for J E p, and any p for which £ p, is called
valid or a tautology.

Exercises
2.3. Let w(uy,...,u,) be any tautology of Prop({uy,...,u,}). Let
Pis-- > Dn € P(V, R). Prove that = w(p4, ..., p,).
24. A< P(V,%) and p(x)e A for all x € V. Does it follow that
A FE(Vx)p(x)?

§3 Proof in Pred(V, %)

To complete the construction of the logic called the First-Order Predicate
Calculus on (V, £#), and henceforth denoted by Pred(V, £), we have to
define a proof in Pred(V, %).

Definition 3.1. The set of axioms of Pred(V, #) is the set o =
& U U s, where
Ay ={p=(q=p)lp,ge PV, R)},
Ar={p=@=n)=p=>9=(p=r)pqrePV,R)
A3 ={~ ~p=plpe P(V, R},
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Ay = {(¥Vx)p=q) = (p=((Vx)q9)|p,q€ PV, R), x ¢ var(p)},
s = {(Vx)p(x) = p(y)|p(x) € P(V, &), ye V}.

We remind the reader that these axioms are stated in terms of elements of
the reduced predicate algebra. In .o/, for example, the substitution of y for
x in p(x) implies that we have chosen a representative of [(WVx)p(x)] in which
(Vy) does not appear.

In addition to Modus Ponens, we shall use one further rule of inference,
which will enable us to formalise the following commonly occurring argu-
ment: we have proved p(x), but x was any element, and therefore (Vx)p(x).
The rule of inference called Generalisation allows us to deduce (Vx)p(x)
from p(x) provided x is general. The restriction on the use of Generalisation
needs to be stated carefully.

Definition 3.2 Let 4 < P, pe P. A proof of length n of p from A4 is a
sequence py,...,p, of n elements of P such that p, = p, the sequence
Pis---» Pn—1 18 a proof of length n — 1 of p,—; from A, and

(@) ppe U A, o1

(b) pi = pj = paforsomei,j < n,or

(©) p» = (V¥x)w(x) and some subsequence py,, ..., P, Of p1, ... po—1 18
a proof (of length < n) of w(x) from a subset A, of A such that x ¢ var(4,).

This is an inductive definition of a proof in Pred(V, %). As for Prop(X),
we require a proof to be a proof of finite length. The restriction x ¢ var(4,)
in (c) means that no special assumptions about x are used in proving w(x),
and is the formal analogue of the restriction on the use of Generalisation in
our informal logic.

As before, we write A |- p if there exists a proof of p from 4. We denote by
Ded(A) the set of all p such that 4 | p. We write |-p for & | p, and any p for
which Fp is called a theorem of Pred(V, ).

Example 3.3. We show {~(3x)(~p)} | (Vx)p for any element p € P.
(Recall that (3x) is an abbreviation for ~(W¥x)~.) The following is a proof.

p1 = ~ ~(V¥x)(~ ~p) = (V¥x)(~ ~p), (3)
P2 = ~ ~(Vx)(~ ~p), (assumption)
ps = (Vx)(~ ~p), (p1 = p2=>p3)
pa = (VX)(~ ~p(x)) = ~ ~p(y), (/5)

Note that by (<), the y in p, may be chosen to be any variable. To permit
a subsequent use of Generalisation, y must not be in var(~(3Ix)(~p(x))). A
possible choice for y is the variable x itself.

ps = ~ ~p(y), (ps = p3 = ps)
ps = ~ ~p(y) = p(y), (o 3)
p7 = p(y), (p6 = ps = p-)

s = (Y )p(y). (Generalisation, y ¢ var(~(3x)(~p(x)) )
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Exercises

3.4. Show that every axiom of Pred(V, #) is valid.
3.5. Construct a proof in Pred(V, #) of (Vx)(Vy)p(x, y) from

{(Y)(Vx)p(x, y)}.

§4 Properties of Pred(V, #)

We have now constructed the logic Pred(V, £). Its algebra of proposi-
tions is the reduced first order algebra P(V, %), its valuations are the valua-
tions associated with the interpretations of P(V, #) defined in §2, and its
proofs are as defined in §3.

We can immediately inquire if there is a substitution theorem for this
logic, corresponding to Theorem 4.11 of the Propositional Calculus. There,
substitution was defined in terms of a homomorphism ¢:P; — P, of one
algebra of propositions into another. If Py, P, are first order algebras, then
as the concept of a homomorphism from P; to P, requires these algebras to
have the same set of operations, it follows that they must have the same set
of individual variables. Even in this case, a homomorphism would be too
restrictive for our purposes, for we would naturally want to be able to inter-
change two variables x, y, so mapping elements p(x) of the algebra to
o(p(x)) = p(y), but unfortunately such a map is not a homomorphism. For
if p(x) € P is such that x € var(p(x)), y ¢ var(p(x)), then

P((Vx)p(x)) = (Vy)p(y) = (Vx)p(x),
(Vx)o(p(x)) = (Vx)p(y).

Since y € var((Vx)p(y)) but y ¢ var((Vy)p(y)), these elements are distinct
and ¢ is not a homomorphism.

Definition 4.1. Let P, = P(Vy, ZY) and P, = P(V,, #?). A semi-
homomorphism (a, B):(Py, Vi) = (P2, V) is a pair of maps a:P; — P,,
B:Vi = V, such that

(a) (W) is infinite,

(b) ais an {F, =}-homomorphism, and

(© «(Vx)p) = (Vx')o(p), where x = B(x).

Lemma 4.2. Let (o, f):(Py, V) = (P3, V,) be a semi-homomorphism. Let
p € P, and suppose x € V; — var(p). Then f(x) ¢ var(e(p)).

Proof: We observe first that if x # y, then (Vx)p = (Vy)p if and only
if neither x nor y is in var(p).

Since f(7}) is infinite, there is an element y’ € B(V;) such that y' # B(x)
and y’ ¢ B(var(p)). Choosing y € V; so that f(y) = y/, it follows that (Wx)p =
(Vy)p. If x' = B(x), then we have

(Vx)(p) = a((WYx)p = «((Vy)p) = (Vy)lp),
and it follows again that x' ¢ var(a(p)). []
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Theorem 4.3. (The Substitution Theorem). Let (o, §):(Py, Vi) — (Pa, V5)
be a semi-homomorphism. Let A < P, pe P,.

(@) If A - p, then «(A) | o(p).
(b) If A = p, then o(A) E ofp).

Proof: (a) Letpy, ..., p, beaproof of p from 4. We use induction over
n to show that a(p,), ..., a(p,) is a proof of a(p) from a(A4).

If a = (Wx)(p = q)) = (p = (V¥x)g) is an axiom of type A,, then by
Lemma 4.2, the condition x ¢ var(p) is preserved by the semi-homomorphism
(o, B), and so a(a) is again an axiom. In all other cases, it is clear that the
image of an axiom is an axiom. Thus if p € /Y U A4, then a(p) € L@ U a(A),
where /@ is the set of axioms of Pred(V; #"). Hence our desired result
holds for n = 1.

Forn > 1, we may suppose by induction that a(p,), . . . , a(p,— 1) is a proof
ofa(p,— 1) fromo(A).If p; = p; = p,forsomei,j < n,then a(p;) = a(p;) = a(py),
and the result holds. It remains only to consider the case that p, = (Vx)q,
where some subsequence gy, . . . , g, of py, . . ., pu—1 is a proof of q from some
subset A = A with x ¢ var(Ao). By induction, a(q,), . . . , ®(qx) is a proof of
a(q) froma(A4,). Foreach w € Ao, x ¢ var(w),and by Lemma 4.2, x" ¢ var(a(w)),
where x" = f(x). Thus x’ ¢ var(o(4o)), and a(py), . . . , A(pa-1), (WX)x(q) is a
proof. Since (Vx')a(q) = a((Vx)q) = a(p), the result is completely proved.

Part (b) is an easy consequence of (a) once we have proved the Adequacy
Theorem, so we omit a proof. We leave as an exercise a direct proof of (b). []

Exercises

(The following exercises lead to a direct proof of part (b) of the Substitu-
tion Theorem. Throughout, P; = P(V,, #%) and (o, f):(Py, V;) = (P,, V,)is a
semi-homomorphism.)

4.4. Show that (Wx)p(x) = (Vx)g(x) if and only if p(x) = g(x).

45. Weput V¥ =V, u {y} and P} = P(V}¥, #?), where y is some new
variable (y ¢ V; U V). Show that for each p(y) € Pf — P,, there is a unique
q(y) € P% such that «((Vx)p(x)) = (Vx')g(x’) for some x € V;, x & var(p(y))
and x' = B(x). Hence show that there is a unique semi-homomorphism
(o*, B*):(P¥, V¥) — (P%, V%), extending (o, f), such that *(y) = y. Generalise
to the addition of n new variables yy, ..., y,.

4.6. Let (U, ¢, ¥, v) be an interpretation of P,. For each r e 2", we
define an n-ary relation y/;r on U as follows. Take new variables yy, ...,
put V¥ = V; U {1, ..., ya}, and construct the extension (a*, *) of («, p) as
in 4.5. Given (uy, ..., u,) € U", the mapping of y; to u; defines a unique
extension of (U, ¢, ¥, v) to P%, and so assigns a value v*(q) to each ¢ € P%.
We define (uy, . . ., u,) € Yy if and only if v*(@*(H(yy, ..., ys)) = 1.

Show that (U, @f, ¥4, va) is an interpretation of P;. Hence prove part (b)
of the Substitution Theorem.

Theorem 4.7. (The Soundness Theorem). Let A = P(V, ®), p € P(V, ).
If A} p, then A E p.
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Proof: Let py, ..., p, be a proof of p from A. Let (U, ¢, ¢, v) be an
interpretation of P(V, #)such that v(4) < {1}. We have to show that vo(p) = 1,
and we shall use induction on n to prove it. If n = 1, pe &/ U A and then
v(p) = 1. Suppose by induction that n > 1 and the result holds for proofs of
length less than n. If p; = p; = p, for some i, j < n, then v(p;) = v(p;) = 1,
and it follows that v(p) = 1.

Suppose finally that p, = (Vx)q(x) and that g;(x), ..., gi(x) is a proof
of g(x) from the subset A, of 4 with x ¢ var(4,). We must use condition (c,)
in the definition of interpretation, where r is the depth of p,. Thus we take
anew variable t,weput V' = V U {t},and we consider extensions ¢": V' — U
of ¢ and maps v, ;:P,_(V', #) — Z,, as given in condition (c,). We have
to prove that in every case, v,_;(q(¢)) = 1. But each v,_; extends uniquely
to a valuation v': P(V', #) — Z, such that (U, ¢', ¥, v') is an interpretation of
P(V', #). By the Substitution Theorem (Theorem 4.3 (a)), q4(t), . . ., gi(t) is a
proof of q(¢) from A,, and so by induction (since k < n), v'(g,(t)) = 1. Thus
y((Vx)g(x)) = 1 and the theorem is proved. []

Corollary 4.8. (The Consistency Theorem). F is not a theorem of
Pred(V, 2).

Proof: Let U be any non-empty set, ¢:V — U any function, and i any
function on £ such that if r € £,, then Y(r) is an n-ary relation on U. Then
there exists v: P(V, #) —» Z, such that (U, ¢, ¥, v) is an interpretation. For
every interpretation, and in particular for the one constructed above, o(F) =
0. The existence of one interpretation for which v(F) = 0 shows that F is
not valid. The Soundness Theorem now shows that F is not a theorem. []

Theorem 4.9. (The Deduction Theorem). Let A < P = P(V, &) and let
p.qe P. Then At p = qifandonlyif A v {p} Fq.

Proof: If A} p = g, then it follows, as in the case of the Propositional
Calculus, that A U {p} I q. Suppose A U {p} |- gq. We shall again use induc-
tion over the length of the proof. The argument used for the case of the
Propositional Calculus again applies except in the case where ¢ is obtained by
Generalisation. So we suppose q = (Vx)r(x) and Ay | r(x), where 4, =
A v {p} and x ¢ var(4,).

(i) p¢ Ao. Then Ay = A and we have a proof of g from A,. Follow this
proof with the steps g = (p = q), p = ¢ to obtain a proof of p = ¢ from A.

(i) p e Ao. We have a proof of r(x) from A, and so by induction on the
proof length, we have A, |- p = r(x), where A; = Ay — {p}. By Generalisa-
tion, a proof of p = r(x) from 4, may be followed with (Vx)(p = r(x)). As
p € Ao and x ¢ var(A4,), it follows that x ¢ var(p). We continue the proof with

(Vx)(p = rx)) = (p = (Vx)r(x)) A
and

p = (Vx)r(x),
completing the proof and establishing the theorem. []
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Example 4.10. As we did before, we use the techniques of the proof of
the Deduction Theorem to convert the proof ~p, (Vx) (~p), ~(Vx)(~p), F
of F from {(Ix)p, ~p} (x ¢ var(p)), into a proof of ~ ~p from {(Ix)p}, so
proving p from {(Ix)p}.

Given )
proof Comment Corresponding Steps of Constructed Proof
~p Assumption | ~p=((~p= ~p)= ~p),

to be (~p=((~p=~p)=~p)=((~p=(~p=~p)=(~p=~p)),
eliminated |(~p=(~p= ~p))=(~p= ~p), ~p=>(~p= ~p), ~p=>~p.

(Vx)(~p) |General-  [(Wx)(~p= ~p),(Vx)(~p= ~p))=(~p=(Vx)(~D)),
isation ~p=(Vx)(~p)

~(Vx)(~p)|Retained | ~(Vx)(~p), (~(Vx)(~p))=(~p= ~(Vx)(~D)),
assumption | ~p = (~(Vx)(~p)).

F Modus (~p=((¥x)(~p)=F))=((~p=(Vx)(~p)) = (~p=TF)),
ponens (~p=(VX)(~p))=(~p=F), ~~p.

Extension |~ ~p=>p,p.
to prove p

Exercises

4.11. Convert the proof (Wx)p(x), ((Vx)p(x)) = p(x), p(x), (Wx)(p(x) =
q(x)), (WX)(p(x) = g(x) ) = (p(x) = g(x) ), p(x) = q(x), q(x), (¥ x)q(x) of (V¥ x)g(x)
from {(Wx)(p(x) = g(x)), (Wx)p(x)} into a proof of (Vx)p(x) = (V¥x)q(x) from
{(Vx)(p(x) = q(x))}-

4.12.  Prove {(Vx)(p(x) = q(x)} I~ @x)p(x) = (Ix)q(x).

We now prove some lemmas which we shall need in establishing the
Satisfiability Theorem. As for Prop(X), a subset A is consistent if F ¢ Ded(4).

Lemma 4.13. Let A be a consistent subset of P(V, #). Suppose (Ix)p(x) € A,
and t ¢ Var(A). Then F ¢ Ded(4 U {p(t)}).

Proof: Suppose F € Ded(A U {p(t)}). Then by the Deduction Theorem,
~ p(t) € Ded(A). Since t ¢ Var(4), we may apply Generalisation and obtain
(Vx)(~p(x))e Ded(4). But (Ix)p(x) = ~(Vx)(~p(x))€ A,and so F € Ded(4),
contrary to assumption. []

Lemma 4.14. Let A be a consistent subset of P(V, #). Then there exist
V* 2 Vand A* 2 A, where A* = P(V*, R), such that
(i) F ¢ Ded(A*), and
(ii) for all p e P(V*, R), either p e A* or ~p e A*, and
(iti) if @Ax)p(x) € A*, then for some t € V*, p(t) € A *.
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Proof: PutV, =V, Ay = A, Py = P(V, #). We construct inductively
Vi, P; = P(V,, #), A; and A4, for i > 0. Taking a new variable ¢{ for each
p € A; of the form p = (Ix)q(x), we put

Vier = ViU {t9|p € A;, p = (Ix)q(x) for some ¢(x)},
Aivy = A0 {qtD)|pe A, p = @x)g(x), g(x) € P;}.

Suppose that F ¢ Ded(4;). If F € Ded(4;,,), then F € Ded(4; U {q,(t?),
<+, q,(t9)}) for some finite set {q,(t%), . .., ¢,(t)}, which is impossible by
Lemma 4.13. Thus F ¢ Ded(4;, ), and by Lemma 2.11 of Chapter II, there
exists A;,; 2 A}, such that 4, , satisfies (i) and (ii). For each i > 0, choose?
such an 4;. Put V* =), ¥}, 4* = |}: 4:.

Since any finite subset of A* is contained in some A4,, it follows that V'*
and A4* satisfy (i), (ii) and (iii). []

Theorem 4.15. (The Satisfiability Theorem). Let A be a consistent subset
of P(V, R). Then there exists an interpretation (U, @, Y, v) of P(V, R) such that

u(A) € {1}.

Proof: If V* 2 Vand P(V* %) =2 A* 2 A, then any interpretation of
P(V*, ®) for which v(4*) < {1} clearly restricts to an interpretation of
P(V, #) with v(4) = {1}. We may therefore suppose, without any loss of
generality, that V, A satisfy the conditions (i), (ii) and (iii) of Lemma 4.14.
To construct our interpretation, we take U = V, and ¢:V — U the identity
map. For each r € &, we put Yr = {(xy, ..., x,) € V"|r(xy, ..., x,) € A}. For
each pe P(V, #), we put v(p) = 1if pe A and v(p) = 0 otherwise. It is easily
checked that (U, @, ¥, v) satisfies the conditions (a), (b) of the definition of an
interpretation, and we are left with showing that the condition (c,) is satisfied
for all k.

Let ¢t be some new variable, and let p = (Wx)q(x) have depth k + 1.
Suppose first that p € 4. Let ¢’ be any extension of ¢ to V' = V v {t}, and
let vi: Py (V', #) —» Z, be as required for condition (c;4;). Put y = ¢'(¢).
Since, by induction, v satisfies (c;) for i < k, it follows that for all w(x) e P,,
v(w(t)) = v(w(y)). Now (Vx)q(x) € A4, therefore ¢(y) € Ded(4) = A, since A
is a maximal consistent subset, and this holds for all y € V. Thus v’ (q(t)) =
v(¢q(y)) = 1 and condition (¢4 ,) is satisfied in this case.

Suppose that p = (Vx)q(x) ¢ 4. As { ~(Ix)(~q(x))} F (Vx)q(x), it follows
that ~(3Ix)(~gq(x)) ¢ A. Hence (Ix)(~q(x)) € A, and so for some ye V,
~q(y) € A. Consider the extension ¢’ of ¢ to V' with ¢’ (t) = y, and the
corresponding vy : P(V', #) — Z,. Then v'(q(t)) = v(q(y)) = 0. As v(p) = 0,
we see again that condition (¢, ;) is satisfied. []

Theorem 4.16. (The Adequacy Theorem). Let A = P(V, %), p € P(V, R).
If A= p,then A - p.

2 The proof of Lemma 2.11 involved an application of Zorn’s Lemma. We also use the
(countable) axiom of choice here to select the A4;.



§4 Properties of Pred(V, Z) 37

Proof: If F ¢ Ded(4 U {~p}), then by the Satisfiability Theorem, there
exists an interpretation (U, @, , v) of P(V, %) such that v(4 U {~p}) = {1},
which contradicts the hypothesis 4 = p. Therefore A U {~p} - F. Hence,
by the Deduction Theorem, A - ~ ~ p, and the result follows. []

Corollary 4.17. (The Compactness Theorem). If 4 = p, then A, = p for
some finite subset A, of A.

The Soundness Theorem and the Adequacy Theorem together show that
ifA < P(V,#)and pe P(V, #), then A = p if and only if A |- p. This result
is usually called Godel’s (or the Godel-Henkin) Completeness Theorem.
It was first proved by Godel in 1930. The method of proof we have used,
depending on the Satisfiability Theorem, is due to Henkin.

We have now established for Pred(V,-#) all the properties previously
established for Prop(X), with the exception of decidability. We have good
reason for not attempting to prove Pred(V, #) is decidable. If £ contains at
least one relation symbol of arity greater than 1, then Pred(V, #) is un-
decidable. The precise meaning of this statement, and its proof (which is due
to Church and Kalmar), are given in Chapter IX.

Exercise 4.18. An element p € P(V, ) is said to be expressed in prenex
normal form when it is expressed in the form p = 9,0, - - - Q,q, where Q;
is either (Vx;) or (3x;), x4, ..., X; are distinct, and g is a quantifier-free
element of P(V, #). Give an algorithm which constructs from any p € P(V, &),
an element p’ in prenex normal form such that |- (p = p') A (p' = p).



Chapter V
First-Order Mathematics

§1 Predicate Calculus with Identity

In this chapter, we shall reconstruct some parts of ordinary mathematics
within the logical system constructed in Chapter IV. A piece of mathematics
constructed within the first-order predicate calculus will be called a first-
order theory. By comparing a first-order theory with the informal theory on
which it is modelled, we may gain insight into the influence of our logical
system on our mathematics.

One feature common to all mathematical theories is the concept of
equality or identity. A statement of the form a = b always means that a and
b denote the same mathematical object. A consequence of a = b is that, in
any statement involving a, we may replace any of the occurrences of a by b
without altering the truth or falsity of the statement. We therefore begin by
investigating how to formalise in Pred(V, #) the concept of identity. We
clearly require a binary relation symbol .# € #,. As the axioms of identity,
we take the set I = P(V, %) consisting of (Vx).#(x, x) and the elements
(Vx1)"'(Vxn)(VJ’)(j(xj, y):(r(xla" .,X,,):V(Xl,.. '7xj-1» Vs Xj+15- ..,Xn))),
forallre #,, all n,and all j < n.

Exercises

1.1. Provel | #(x, y) = H(y, x).

1.2. Prove I |- #(x, y) = (H(y, 2) = J(x, 2)).

1.3. Let w(x, z) be any element of P, possibly involving other variables
besides x, z. Show that I |- #(x, y) = (wW(x, x) = w(y, x)). (Hint: use induc-
tion over the number of steps in the construction of w(x, y) from V and £.)

1.4. Let (U, o, Y, v) be an interpretation of P(V, £) such that y.# is
the identity relation on U. Let U’ be any set containing U, and let n: U’ - U
be any function such that n(u) = uforallue U. Let ¢": ¥V — U’ be the com-
position of ¢ with the inclusion map U — U'. For each r € #,, define the
n-ary relation y'r on U’ by (u},...,u,)ey'r if and only if (n(u}),...,
n(u,)) € Yr. Show that this defines an interpretation (U’, ¢, ¥/, v') of P(V, %),
and that for p e P(V, %), we have v'(p) = v(p). Show that y'.# is an equi-
valence relation on U’, but that, no matter what the interpretation (U, ¢,
Y, v), U’ and & can be constructed such that y'.# is not the relation of identity
inU'.

According to Exercise 1.4, no matter what subset I' = I of P(V, %) we
choose as our axioms of identity, we cannot thereby force y.# to be the
relation of identity in every interpretation of P(V, #) such that o(I') = {1},

38
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unless of course we have F € Ded(I') and so exclude the existence of such
interpretations. We overcome this by constructing a modified form of the
first-order predicate calculus, in which the only interpretations allowed will
be those for which .# is the identity relation.

Definition 1.5. Suppose .# € #Z,. A proper interpretation of P(V, &) is
an interpretation (U, @, ¥, v) such that .7 is the relation of identity on U.

Definition 1.6. Pred,(V, %) is the logic with algebra of propositions
P(V, % v {J}), valuations those arising from proper interpretations, and
with proof of p from A in Pred/(V, %) defined as a proof of p from I U A4
in Pred(V, 2 U {4}).

We shall always assume .# € %, and so have P(V, %) as the algebra of
propositions. We write A |- ,p and p € Ded/(A) to indicate that p is provable
from A in Pred,(V, &), i.e,, that A U I |- p or equivalently p € Ded(4 v I).
We say that p is a proper consequence of A, written A= ,p or p€e Con,(A)
if u(p) =1 for every proper interpretation of P(V, %) with ©(4) = {1}.
Because of the restriction on the interpretations considered, 4 £ ,,;p would
appear to be weaker than 4 U I = p. We shall see shortly that they are in
fact equivalent.

Theorem 1.7. (The Satisfiability Theorem) Suppose F ¢ Ded,(A). Then
there exists a proper interpretation of P(V, #) with v(A) < {1}.

Proof: Since F ¢ Ded(A v I), there exists an interpretation (U, ¢, ¥, v)
of P = P(V, #) such that (4 U I) = {1}. The relation y.# is an equivalence
relation on U. For ue U, denote by % the equivalence class {u' € U|(u,u) e Y5},
and let U be the set of all these equivalence classes. Define p:V — U by
?(x) = o(x) for all x e V. For each re %,, yr has the property that
if (u;, uj) e ., then (uy, ..., u,) € Yr if and only if (v}, ..., u,) € Yr. Hence
we can define a relation yr on U by putting (4, . .., %,) € yr if and only if
(ug, ..., u,) e yr. This defines a function ¢ from 2 into the relations on
U, and it is easily checked that (U, @, ¥, v) is a proper interpretation of

P(V, #). The valuation v is unchanged, consequently we have a proper
interpretation with v(4) = {1}. [J

Corollary 1.8.

(i) Cony(A4) = Con(4 v I)

(i) If A E, p, then A 4 p.

The soundness and consistency of Pred,(V, #) both follow immediately
from the corresponding properties of Pred(V, %).

§2 First-Order Mathematical Theories

A branch of mathematics is defined by listing the properties and relation-
ships to be studied and by listing the assumptions (usually known as the
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axioms of the branch of mathematics) made about them. For example, in
plane projective geometry, the only properties considered are those of being
called a point or line (the actual nature of the objects is irrelevant, only the
way they are divided into the two classes matters) and we are concerned with
the one relationship of a point lying on a line. (It is taken for granted that
we also use the relationship of identity.) The axioms of plane projective
geometry are that through any two distinct points there is one and only one
line, that any two distinct lines have one and only one common point, and the
non-triviality axiom that there exist four points such that no three of them
are collinear.

We shall define a mathematical theory in terms of lists of relations and
axioms. It is convenient also to include a list of any special objects named in
the axioms.

Definition 2.1. A first-order mathematical theory is a triple J =
(A, A, C) where £ e #, A < P(V, ®) for some V o> C such that V — C is
infinite, and var(4) = C. The set A is called the set of (mathematical) axioms
of 7, the set C is called the set of (individual) constants of J, while the
language' of 7 is the subset £(7) = {p e P(V, R)|var(p) =C} of P(V, R).
A theorem of 7 is an element p € #(J) such that A | ,p.

We point out that the set V is not specified in 7, and that any suitable
set ¥ may be taken. The set #(7) is independent of the choice of V. Later,
we shall occasionally need a standardised set V' of variables, such that
V — C is countably infinite. We select as standard variable set the set V, =
C v {x;|i € N}, where the x; are disjoint ffom C.

Definition 2.2. The algebra of J is the set P() = P(V,, &), where V,
is the standard variable set. An element p e P(J), such that var(p) =
{x1,...,x,} U C,is called an n-variable formula of 7.

The following notations will be used in discussing first-order theories .
If U< P(V,%) and pe P(V, ), then we write U |-5p for A u U}l ,p,
T Fplor | 4p) for A ,p, and U £ ;p, T Eplor = 4p), for AU U | ,p
and A | ,p respectively.

Examples

2.3. (First-order plane projective geometry) We take two unary predi-
cate symbols p, ¢, interpreting p(x) as “x is a point”, and £(x) as “x is a line”.
We take a binary predicate symbol €, and interpret e(x, y) as “x lies on y”.
These express the basic concepts of plane projective geometry, so we take
2 = {p,{, € F}. Our axiom set is the set 4 = {ay, ..., a¢}, where

ay = (V) ((p(x) v £(x)) A ~ (p(x) A £(x))),

! The reader is warned that most authors use this term for P(V, %).
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a; = (VX)( 3y) e(x, y) = p(x)),

as = (Vx)((3y) &y, x) = £(x)),

ag = (VX)(V)(p(x) A p(y) A ~F(x, y) = (F2)(E(x, 2) A &), 2)
A VO e(x, 1) A e(y, 1) = F(z, 1)),

as = (Vx)(V)(€(x) A U(y) A ~F(x, y) = (32)(E(z, x) A €(z, y)
A (VO(elt, x) A elt, y) = H(z, 1)),

ag = (Ix;)(3@x2)(3x3)Fxa)(p(x1) A Plx2) A p(x3) A Plxg) A ~F(xy, X;) A
~I(xy, X3) A ~I(Xg, Xa) A ~I(Xg, X3) A ~ I (X, Xg) A ~F(X3, X4)

A ~c(Xq, Xg, X3) A ~C(X1, Xz, Xg) A ~C(Xyq, X3, X4) A ~C(X5, X3, x4))

where in the non-triviality axiom ag, c(x;, X,, x3) denotes (3z)(e(x;, 2)
A €(X,, 2) A €(x3, 2)). The axiom a; says that each object is either a point or
a line, but not both. Axioms a, and a5 say that € is a relation between a point
and a line, while axioms a, and as are the usual incidence axioms. For this
theory, the set C = J.

There is a very useful notation which abbreviates axioms such as a, and
as. We write (3!x)w(x) for (Ix)(w(x) A (Vy)w(y) = F(x, y))), where w(x) is
any element of P(V, ). (3!x)w(x) may be read “There exists a unique x such
that w(x)”. In this notation, we have

as = (V)(VY)(p(x) A p(y) A ~I(x, y) = (A2)(Ex, 2) A &, 2)))-

2.4. (Elementary group theory) We take # = {.#, m}, where m is a
ternary relation symbol. We interpret m(x, y, z) as “xy = z”. For axioms,
we take 4 = {ay, ..., a,}, where

= (Vx)(V3!2)mlx, y, 2),
(V)(VY(V2)(Va) VD)V )V d)(m(x, y, a) » m(a, z, b)
A m(y, z, ¢) A m(x, ¢, d) = F(b, d)),
)m
)

az = (Vx)m(e, x, x),
(

= (Vx)3y)m(y, x, e).

Axiom a, asserts that m defines a function, a, is the associative law, a;
asserts that e is a left identity and a, asserts the existence of left inverses. We
have C = {e}. We could reformulate the theory without individual constants
by replacing a3 and a4 by (Je)(as A ay).

This theory is too restrictive for the study of group theory. Within it, we
can prove results such as that e is a right identity or that the identity is unique.
But we have no way of expressing properties of subsets, so we cannot discuss
subgroups. Nor can we discuss relationships between groups. We called this
theory elementary group theory because it is restricted to the relationships
between elements of a group (as distinct from the relationships between sub-
sets of a group). We shall use the word “elementary” with this meaning in
relation to other theories.
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Exercises

2.5. Show that (Vx)m(x, e, x), (Ve)((Vx)m(e, x, x) = Fl(e, ¢)),
(VWx)(Vy)(m(y, x, e) = m(x, y, e)) are theorems of the elementary group
theory of Example 2.4.

2.6. Show that the formal analogue of the statement “There exist four
distinct lines, no three of which are concurrent” is a theorem of the first-
order plane projective geometry of Example 2.3.

27. T = (A, A,CQC) is a first-order theory and (o, f):(P(V, X), V) -
(P(V, R), V) is a semi-homomorphism such that a(4) < DedyA). If 7 | p,
prove that 7 |- a(p).

2.8. 7 is the first-order plane projective geometry of Example 2.3. The
dual w of an element w e P(V, %) is the element obtained from w by inter-
changing p and ¢ and replacing €(x, y) by €(y, x) (all x, y € V) throughout
Show that if a is the map a(w) = W, and if § is the identity map, then (a, ff)
is a semi-homomorphism (in fact an automorphism) of P(V, %), satisfying
the condition of Exercise 2.7. Hence prove that the dual of a theorem of I
is a theorem of

The examples given above show how particular mathematical systems
may be used to construct first-order theories. We regard the concept of a
first-order theory as fundamental to our study of the relationship between
reasoning and mathematics, and our direction is set firmly by the next defini-
tion. We denote by rel(M) the set of all relations on a set M.

Definition 2.9. A model of the first-order theory 7 = (%, A4, C) is a set
M together with functions v:C —» M, :# — rel(M), such that for some
set V of variables (VV o C, V — C infinite), there exists a proper interpreta-
tion (M, @, Y, v) of P(V, &) for which ¢|c = v and »(4) = {1}.

We think of a model (M, v, y) of the theory  as the essential part of a
proper interpretation of 7 for which the axioms of ™ are true (i.e., for which
v(A) < {1}). Although the valuation v of P(V, £) is determined by ¢ and ,
the restriction v| 4 is completely determined by v and y, and is independent
of the choice of V and the interpretation. Hence there is a well-determined
valuation v of #(J) corresponding to each model (M, v, ) of 7, and we
say that p e £(7) is true for the model (M, v, y) of 7 if v(p) = 1. We shall
refer to the model (M, v, ) of 7 as the model M of 7, whenever this abuse
of notation does not lead to confusion.

Example 2.10. Let G be a group with multiplication written as juxta-
position and with identity element 1. We put v(e) = 1, and we put ym =
{(x, y,2) € G*|xy = z}. y# will of course be the identity relation. Then

= (G, v, ¥) is a model of the elementary group theory of Example 2.4. A
model of the elementary group theory is essentially a group.

Given a model (M, v, ) of the theory .7, some relations on the set M are
derived naturally from 7, in the following manner. Let p(x,, ..., x,) be an
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n-variable formula of 7. For any my, ..., m, € M, there is an interpretation
(M, @, v) of P(7) such that ¢|c = vand ¢(x;) = m;fori = 1,..., n These
conditions on ¢ determine v(p), and if v(p) = 1, we say that (my, ..., m,)
satisfies p(xy, ..., x,), or (by abuse of language) that p(m,, ..., m,) is true
in M. Hence p(xy, . . . , x,) defines an n-ary relation on M, which (by abuse of
notation) we denote by ¥/(p):

Y(p) = {(my,...,m,)e M"p(my, ..., m,)istrue in M}.
This leads to the following definition.

Definition 2.11. The n-ary relation p on the model M of 7 is said to be
definable in 7 if p = Y(p) for some n-variable formula p of 7. The function
f:M" - M is called a definable function if there is an (n + 1)-variable formula
p of 7 such that

(i) forallay,...,a,beM, f(ay,...,a,) = bifandonlyifp(a,,...,a,b)

is true, and

(i) 7 F(Vx1) - (Vx)3)p(xys - s Xy Y).
Example 2.12. Conjugacy is a definable relation in elementary group
theory. It is defined by the formula
p(x1, X2) = (Ax3)@xa)Axs)(mlx3, X4, €) A M(x3, X1, X5) A M(X5, X4, X3))-
Inverse is a definable function, defined by the formula

q(-xl, xZ) = m(x27 X1, e)'

§3 Properties of First-Order Theories

Definition 3.1. The first-order theory .7 is called consistent if F is not
a theorem of 7.

The Soundness and Satisfiability Theorems for Pred,(V, #) immediately
give the following result.

Theorem 3.2. The theory I is consistent if and only if there exists a
model of 7.

Definition 3.3. The theory J is called complete if, for every p e L(7),
either 7 FporJ F ~p.

Elementary group theory is not complete, for consider p = (Vx).#(x, e) €
L(T). If p were a theorem of the theory, it would be true for every model.
But p is true for the group G if and only if the order of G is 1. As there are
groups of order greater than 1, p cannot be a theorem. As there are groups of
order 1, ~p cannot be a theorem.

Theorem 3.4. The first-order theory  is complete if and only if every
p € L(J) which is true in one model of I is true in every model of T .
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Proof: The result is trivial if J is inconsistent, so we suppose J con-
sistent. Suppose that 7 is complete, and that p € £(7) is true in the model
M. Since ~ pis false for M, it is not a theorem of 7, and, since J is complete,
it follows that J |- p. Therefore p is true in every modcl of 7

Suppose conversely that for all p e #(J), p true in one model imples p
true in every model. Take some model M of 7, and let p e £(J). If p is true
in M, then p is true in every model, i.e., 7 £ p, and hence by the Adequacy
Theorem J | p. If p is false in M, then ~p is true in M and so I |- ~p.
Thus 7 is complete. []

Examples of complete theories are easily produced, as we now show.

Theorem 3.5. Let I = (&, A, C) be a consistent theory. Then there
exists A < L(T), with A’ 2 A and such that (R, A', C) is consistent and
complete.

Proof: Since 7 is consistent, it hasa model M say. Put A’ = {pe £(J)|p
true in M}. Then A’ has the required properties. []

Definition 3.6. Let (M, vy, ;) and (M3, v,, ¥,) be models of the the-
ory J. We say that M, is isomorphic to M, if there exists a bijective map
o:M; - M, such that av; = v, and (my,...,m,) ey, r if and only if
(my), . .., m,)) € Yor for all re R,, all my,..., m,e My, and all neN.

Definition 3.7. The theory J is called categorical if all models of I
are isomorphic.

Examples

3.8. Two models Gy, G, of elementary group theory are isomorphic
as models if and only if they are isomorphic in the group theoretic sense.
Since there exist groups Gy, G, which are not isomorphic, elementary group
theory is not categorical.

3.9. We form trivial group theory by adding the further axiom
(Wx)H#(x, e) to elementary group theory. A model of trivial group theory is a
group of order 1. Any two such groups are isomorphic, thus trivial group
theory is categorical.

Observe that if M;, M, are isomorphic models of the theory J and if
p e ZL(7)is true for My, then it is true for M,. The definition of categoricity,
together with Theorem 3.4, immediately yields the next theorem.

Theorem 3.10. If the theory  is categorical, then I is complete.
We now generalise the concept of categoricity. We shall denote the
cardinal of any set X by |X]|.

Definition 3.11. The cardinal of a model M = (M, v, ) is the cardinal
|M| of the set M, and will be denoted by |M|.

Note that isomorphic models have the same cardinal.
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Definition 3.12. Let y be a cardinal number. The theory J is called
L-categorical or categorical in cardinal y if all models of J which have
cardinal y are isomorphic.

Example 3.13. Elementary group theory is categorical in cardinal 1.
It is not categorical in cardinal 4, because there are two distinct isomorphism
classes of groups of order 4.

Provided that y is a finite cardinal, there is in the language #(J") of any
theory J an element which specifies y as the cardinal of a model of
For if we denote by al(n) the proposition

(Jay) - - (aan)(Nj(al’ az) A ~Hay, az) A A ~Fay, a)

A~F(az az) A A ~F(An-1, ay)),

then any model of 4 in which al(n) is true has at least n elements. Any model
in which al(n) A ~al(n + 1) is true has exactly n elements.

Theorem 3.14. Suppose the theory I has models of arbztrartly large
finite cardinal. Then I has an infinite model.

Proof: Let I = (X, A, C), and put ' = (%, A, C) where A’ =
A v {al(n)|ne N*}. We show that 7" is consistent. If A’ |-, F,then 4 U N |, F
for some finite subset N of {al(n)jne N*}. Let n, = max {nfal(n) € N}. By
hypothesis, there exists a model M of 7 with [M| > n,. This M is a model of
(2, AU N, C), which contradicts the hypothesis 4 U N |, F. Hence I’
is consistent, and so it has a model. Any model M of 7' must satisfy |[M| > n
for all n e N*, hence |[M| is infinite. []

Exercises

3.15. R s aring with 1. Construct an elementary theory (i.e., one con-
cerned with elements and not with subsets or maps) Modp, of unital (left)
R-modules, such that the models of the theory are precisely all unital R-
modules. (Hint: take each r € R as a binary relation symbol, interpreting
r(my, my) as rm; = m,.)

3.16. Construct an elementary theory of fields with constants 0, 1. In
the language #(%) of this theory %, construct a proposition char(n), which
asserts that the characteristic divides n (n e N*). Hence construct a theory
F , of fields of characteristic 0 such that (% ;) = (%) and the set A, of ax-
ioms of &, includes the set 4 of axioms of &#. Show that for each theorem p
of #, there is a number 1, € N such that p is true for all fields of characteristic
greater than n,. Show that no set 4, of axioms, such that #(#) 2 4, 2 4
and A, contains only finitely many elements of #(%#) — A, can axiomatise
fields of characteristic 0.

Definition 3.17. The cardinal |7 | of the theory 7 = (%, 4,C)is|# v A|
7 is called finite if Z U A is finite. 7 is called finitely axiomatised if A is
ﬁmte.
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Since each element of C is a variable of some axiom, and since each
axiom involves only finitely many variables, we have either that C and 4
are both finite, or that |C| < |A]. If 2 U A is infinite, then | £(7)| = |2 U A,
while £(7) is countable if Z U A is finite. We remark that a relation symbol
not occurring in any axiom would be of little interest, as it could be inter-
preted as any relation and so could occur in a theorem of J only in an
essentially trivial way. It would not be a serious restriction to require every
relation symbol to appear in some axiom, in which case we would have either
2 and A finite or |#| < |4| = |2 U A|. When A4 is finite, the actual value of
|A| is of no real interest, because an axiom set A = {ay, ..., a,} can always
be replaced by A" = {a; A - - A a,} without making any essential change
in the theory.

The following theorem is the main result of the present chapter, and is in
fact the fundamental theorem of model theory.

Theorem 3.18. (Lowenheim-Skolem Theorem). Let J be a first-order
theory of cardinal y, and let X be any infinite cardinal such that X > y. Suppose
T has an infinite model. Then I has a model of cardinal N.

Proof: Suppose I = (&, A, C). Choose some set ¥, o C such that
|Vo — C| = X. Then |P(V,, #)| = N. Put

o=TuAu{~F(xy)

This gives a theory ' = (&, Ay, V,) which we prove consistent. If 7 'is in-
consistent, then F is provable from A and some finite subset of { ~.4(x, y)|
x,y € Vo — C,x # y}, which contradicts the hypothesis that 7 has an infinite
model. Therefore 7' is consistent.

We follow the method used to prove the Satisfiability Theorem (cf Lemma
4.14 of Chapter IV), and construct inductively sets V,, 4, and A,. We put

Vier = Vo U {tQla(x) € P(V,, A), @x)g(x) € 4,},
A, v {q(t)]q(x) € P(V,,, R), @x)q(x) € A},

x,yeVy — C,x # y}.

n+1
and take for A,,; a maximal consistent subset of P(V,,,, %#) containing
i1 Weput V* = |J, V,, 4* = |, 4., P* = PV*, R) = |, PV, B).

Since A, 2 Ay is a maximal consistent subset of P(V;,, £), and since
|P(Vo, #)| = N, we have |4y| = X. Then, from |P(V,, %) = |4,| = R, it
follows that |V, ;| = N, and so that |P(V,, , %#)| = |4,+:| = N. By induc-
tion, |P(V,, #)| = N for all n, and therefore |[P¥| = N.

As in the proof of the Satisfiability Theorem, we construct an interpre-
tation (P*, @, ¥, v) for which v(4*) = {1}. In this interpretation, y.# is an
equivalence relation, and by replacing clements of P* by their equivalence
classes, we obtain a proper interpretation (P*/yr.#, @, ¥, v). Restricting @ to
L(T) gives a model M of 7. Since |[P*| = N, |M| = |[P*/y#| < N. But the
construction of Af ensures that any model of 9 has cardinal at least N.
Therefore |[M| = X. Restricting to #(J") converts M into a model of 7. []
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Corollary 3.19. If'the first-order theory I has an infinite model, then I
is not categorical. (Proof obvious.)

Corollary 3.20. Suppose the theory I has cardinal y, and has only infinite
models. Suppose also that  is categorical in some infinite cardinal N > y.
Then I is complete.

Proof: Let pe £(J), and suppose that neither p nor ~p is a theorem
of 7 = (%, A, C). Since ~p is not a theorem, J has a model (infinite) in
which p is true, and so the theory 7' = (%, A U {p}, C) has an infinite
model. Since |7 | < N, 7 has a model M’ of cardinal N. Similarly 7" =
(2, A U {~p}, C) has a model M" of cardinal X. But M’ and M" are each
models of 7 of cardinal ¥, and hence are isomorphic, contrary to p being
true in M’ and false in M". []

Exercises

3.21. A dense linearly ordered set is a non-empty set with a binary
relation < such that

(a) for all x, y, exactly one of x < y, x = y, y < x holds,

(b) if x < yand y < z, then x < z,

(c) if x < y, then there exists z such that x < z < y,

(d) for each x, there exist y, zsuch that y < x < z.

Using a binary relation symbol ¢, with £(x, y) to be thought of as x < y,
and also ., construct a finite theory 2 whose models are precisely the dense
linearly ordered sets. Show that every model of 2 is infinite. Prove that & is
categorical in cardinal N,. (Hint: given two countable models of &, enumer-
ate each domain, and then define inductively a mapping, preserving <. Show
that this map is onto by proving that there can be no first element in any
omitted subset of the range space.) Deduce that & is a complete theory.

3.22. The theory 7 = (%, A, C) has a finite model of cardinal y. Show
that there exists p € #(7) such that the models of 7' = (R, 4 L {p}, C)
are precisely those models of 4 which have cardinal y.

3.23. The theory I = (%, A, C) has a model of infinite cardinal y.
Show that there is no subset T of (I )suchthat 7' = (#,Au T,C)isa
consistent theory, all of whose models have cardinal y.

3.24. K is a field. Construct an elementary theory ¥k of vector spaces
over K, and, by adding extra axioms, an elementary theory ¥"% of infinite
vector spaces over K. Show that ¥  is categorical in any infinite cardinal
greater than |K|. Hence show that 7" is complete. Show that ¥7g is not
complete.

3.25. 7 = (4, A, C) is a complete theory, which has a finite model
M = (M, ¢, ¥) of cardinal n.

(i) Prove that every model of J has cardinal n.

Let M' = (M, ¢', /') be another model of 7, and let a:M — M’ be
bijective. We say o preserves constants if ap(c) = ¢'(c) for all c € C. We say
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that o preserves the relation r e &, if, for all (m,, ..., m)e M', we have
(my, ..., m)e yrifand only if (amy, . . ., am,) € Y'r. We say that o preserves
the subset & of Z if it preserves every r € &.

(ii) Show that a bijective map a:M — M’ is an isomorphism of models
if and only if it preserves constants and preserves %.

Letay, ..., a,be the elements of M, so numbered that o(C) = {ay, ..., @},
and let ¢y, ..., ¢, € C be such that ¢(c;) = a;.

(iii) Show that a bijective map o preserves constants if and only if a(a;) =
Q'(c)fori=1,...,k

Forre #,and (iy, ..., i) € Z}, we put

X .. x)if(a,...,a)€yr,

Glin, oo h) = {fvr(xil, cenxy)if (@, ..., @) & Y,
and r*xg, oo X)) = N\ qliy, ...,
( it)

By oo ey 173

Write dist(xy, ..., X,) for ~4(x;, x3) A ~F (X1, X3) A" A ~F(X1, X,)
At A ~I (X1, Xp).
(iv) Show that

(axk+ 1) e (axn)(diSt(Cl’ ce s Cpo Xt g5 o v v s X,,) A
P¥(Cty v vy Clo Xpt 15 + -+ 5 X))

is a theorem of 7, and hence show that there exists a: M — M’ which is
bijective, preserves constants and preserves r. Extend this argument to show
for any finite subset & of £, that there is a bijective map «:M — M’ pre-
serving constants and <.

(v) Using the fact that there are only finitely many bijective maps
a:M — M’, and observing that if some given o preserving constants is not
an isomorphism, then there is some r € # not preserved by a, prove that
M and M’ are isomorphic. Hence prove that J is categorical.

§4 Reduction of Quantifiers

In any study of the decidability properties of a theory 7 = (£, A4, C),
one expects those elements g € P(7) which involve no quantifiers to pose
the least difficulty. If g € P(J) is quantifier-free, it is a propositional com-
bination of primitive propositions r(vy, ..., v,) (r € &Z,, v € V), whose truth
or falsity for any given interpretation of P is easily determined. Truth func-
tions then decide the truth or falsity of ¢. There are theories 4 having the
property that, for any p € P(J), a quantifier-free element g € P(J) can be
found such that 7 |- p < g and var(q) < var(p). Such a process of quantifier
elimination could be useful in investigating the completeness or decidability
of . In practice, it is rarely possible to eliminate quantifiers completely,
and one must be content with a quantifier-reduction procedure. The resulting
element g is then a propositional combination of relatively simple proposi-
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tions which possibly involve quantifiers. We shall call these “simple” elements
of P(J") primary propositions.

Definition 4.1. Let IT = P(J). We say that J admits II-reduction of
quantifiers if there is a process which assigns to each p € P(J") an element
q € P(9) such that

(i) g is a propositional combination of elements of IT ,

(i) var(g) < var(p),
and

(i) I Fp<=q.

The utility of such a reduction procedure for any investigation depends
on the relative simplicity of the elements of IT compared to the elements
of P(J). Every theory admits the useless reduction given by IT = P(J) and
q = p. We give a more helpful example.

Example 4.2. Let & = ({#}, &, &) be the theory of equality, with
V =V, = {x,JneN}. We write #(x, y) as x = y, and ~F(x, y) as x # ).
As the set of primary propositions, we take

IT = {al(n)|neN} U {x; = xjli,j € N}.

We introduce an abbreviation which we shall use in describing the
reduction process. For 1 < r < s, put

dist,(xy, ..., %) = \/( N (o # Xg)) A . /S\ (\r/ (Xa = xaj)>>,

a i<j<r i=r+1 \J=1
where a ranges over the permutations («y, . . ., &) of (1, . . ., s). Observe that
dist,(xy, . .., Xs) is true in an interpretation if and only if the interpretation
of xy, ..., X, gives exactly r distinct elements of the model. Now put

only(xy, ..., x) = \/ (dist(xy,...,x) A ~al(r + 1)),
r=1
and observe that this is true for an interpretation if and only if the interpre-
tations of x4, . . ., x, are all the elements of the model. (Thus, only(x, . . . , X;)
is true if and only if (Vx)((x = x1) v(x = x3) v - v (x = x,)) is true.)
It is clear that only(xy, ..., X,) is a propositional combination of elements
of IT.
The following set of instructions constitutes the reduction process:

Step 0. If p is quantifier-free, put ¢ = p and stop. Otherwise, express p
in prenex normal form (see Exercise 4.18 of Chapter IV) Q;Q, - - - Q,p,, where
the Q; are quantifiers and p, is quantifier-free (and hence a propositional
combination of elements of the form x; = x;).

Step I. We have p = Q,Q, - - Q,p,, where the Q; are quantifiers and
p, is a propositional combination of elements of I. If r = 0, put ¢ = p and
stop. If Q, is a universal quantifier (¥x), proceed to Step 2. If 0, is an existen-
tial quantifier (3x), then replace Q, by ~(Vx)~.
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Step 2. We have p = Q(Vx)p;, where Q consists of a (possibly empty)
string of quantifiers and possibly a negation, and p, is a propositional com-
bination of elements of I1. If x ¢ var(p,), replace p by Qp, and begin again
at Step 1. If x € var(p,), express p, in conjunctive normal form (see Exercise
3.10 of Chapter I1I):

P1 = ay Ady AN NGy,

where a; = 41 jvdyv v ;o witt} F:ach d;; either a primary proposition
or the negation of a primary proposition.

k nj
Step 3. We have p = Q(Vx)py, with p; = /\ \/ d;;, where each d;; is
j=1i=1
primary or the negation of a primary proposition. For eachj = 1,2, ...k,
delete a; from p, if there is an i such that d;; = (v = v) for some v € V, unless
this holds for all j, in which case replace (Vx)p, by F = F and begin again

at Step 1.
k nj
Step4. We have p = Q(Vx)p,, with p; = /\ \/ d;j, where d;; is pri-

j=1i=1
mary or the negation of a primary proposition. For each j = 1,2, ...k,
delete from a; every d;; of the form (v # v) with v € V, unless for some j every

d;; has this form, in which case replace (Vx)p, by F and begin again at Step 1.
k n;
Step 5. We have p = Q(Vx)p,, with p; = /\ \/ d,;, where d;; is pri-

j=1i=1
mary or the negation of a primary proposition, and where no d;; has the
form (v = v) or the form (v # v). Put aj = \/{dij|x € var(d;;)}, and af =
\/{dyj|x ¢ var(d;;)}, so that a; = a} v a]. Since the only elements 7 of IT for
which x e var(n) are the elements x = v for v € V] it follows that each non-
empty a; has the form

aGg=x=v)vx=v)v - v(x=v) V(X F#w) V- -Vv(x#wW

for elements vy, ..., v, wy, ..., w, of ¥ — {x}. (Terms x = x or x # x are
excluded by Steps 3, 4.) For each j such that a} is non-empty, then

(a) if t = 0, replace a; by only (v, . . ., vy).
(b) ift = 1and s = 0, replace aj by F.
(c) if t > Oand (s, t) # (0, 1), replace a; by
Wy # wa) vi(wg # wa) v vi(wg # w) V(g =wy) v v, = wy).

Finally, delete (Vx). Now return to Step 1.

In the above procedure, each step replaces the given proposition by
one equivalent to it (ie., true for precisely the same interpretations). In
Step 5, for example, we note that (Wx)(a; A - - A @) is equivalent to
(Wx)ay A (Wx)az A~ A (Vx)a, and consider each (Vx)a; separately. At
each return to Step 1, the number of quantifiers in the prefix has been reduced,
so the process must stop.

We illustrate the use of quantifier reduction by proving that & is decidable.
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Theorem 4.3. The theory & = ({F}, &, &) is decidable.

Proof. Let pe #(&). The reduction process described above gives an
element ¢, equivalent to p, which is a propositional combination of elements
of IT such that var(q) < var(p). Since var(p) = &, q is a propositional
combination of elements of the form p, = al(n + 1) (n > 1). Hence g is a
propositional combination of py, p,, . .., px for some k. Let [:Z% — Z, be
the corresponding truth function. Then & |- g if and only if f(x, ..., x) = 1
for all (xq, ..., x,) € Z% such that, forsome n (0 < n < k), x; =x, = =
x, =land x,,; = X,4, = " - = x;, = 0. This is so because these are the
only possible combinations of truth values for py, . . ., p, in models of &. []

We note that there is no need for a formal definition of decidability of a
first-order theory when one is proving constructively that a particular theory
is decidable—the proof is self-sufficient. Formality is required if one is to
show the nonexistence of a decision process, as we shall do in Chapter IX.
We also remark that the above result, on the decidability of the theory of
equality, is not in conflict with the theorem of Kalmar mentioned in Chapter
IV and proved in Chapter IX. Although the theory of equality involves a
binary predicate symbol, it also includes the axioms of identity.

Exercise 4.4. Show that the theory & (Exercise 3.21) of dense linear
order admits IT-reduction of quantifiers with IT = {(x; = x;), (x; < x;)|
i, j eN}. Hence show that & is decidable and complete.



Chapter VI
Zermelo-Fraenkel Set Theory

§1 Introduction

All the ordinary mathematical systems are constructed in terms of sets.
If we wish to study the reasoning used in mathematics, our model of mathe-
matics must include some form of set theory, for otherwise our study must
be restrictive. For example, Elementary Group Theory formalises almost
nothing of group theory. The pervasive role of set theory in mathematics
implies that any reasonable model of set theory will in effect contain a
model of all of mathematics (including the mathematics of this book).

The informal way in which properties of sets are used in mathematics
often means that one is aware of some of the more useful axioms of set
theory without necessarily having seen or studied sets as an axiomatic theory.
In those parts of mathematics where a careful account of set theory is
needed, the axiomatisation usually chosen is the one known as Zermelo-
Fraenkel Set Theory. We shall set out the axioms of this theory (which we
denote by ZF) with some brief comments on the significance of the various
axioms. We shall then see how this theory ZF may be formalised within
Pred,(V, ). Finally, we shall consider the significance of some of the results
of Chapter V for our formalised set theory. The reader interested in a more
detailed account of ZF is referred to [4].

§2 The Axioms of ZF

ZF is the study of a single type of object. Objects of this type will be
called sets. We shall admit another type of object, called a property of a set,
but the objects which make up any set will themselves be sets. Since one
customarily forms sets whose members are mathematical or physical objects
of diverse types, the requirement that members of sets must themselves be
sets may theretore seem restrictive. Experience has shown that with some
exceptions (which can be accommodated by an extension of the theory), all
the objects used in mathematics can be constructed as sets, while we can
avoid the need to form sets of physical objects by assigning mathematical
names to the objects and using the set of names.

In ZF, we study a single relationship! between sets. This relationship is
called membership and will be denoted by €. Thus x € y is read “(the set) x

! We cannot formalise this relationship as a set of pairs, for we are after all just beginning to
define our set theory. Later, when we have constructed ZF, we shall see that the collection of
pairs involved cannot be a set within ZF.

52
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is a member of (the set) y”, or “x belongs to y”. We also study property
relationships, which are of the form “the set x has the property n”.

In the list of axioms of ZF which follows, some are described as axioms,
others as axiom schemas. The distinction will be explained when we construct
First-Order ZF.

(ZF1) Axiom of Extension. Ifaand b are sets, and if for all sets x we have
xeaifandonly ifx € b, thena = b.

Thus two sets are equal if and only if they have the same members. We
shall write a < b if x € a implies x € b.

(ZF2) Axiom Schema of Subsets. For any set a and any property ., there
is a set b such that x € b if and only if x € a and has the property m.

By (ZF1), this set is unique. We denote it by {x € a|x has n}. Assuming
that at least one set a exists, we can form the set & = {x € a|x # x}. Then for
all x we have x ¢ . This set &, which is called the empty set, is independent
of the choice of the set a used in its construction. By (ZF1), {x € a;|x # x} =
{x€a,|x # x}. It is clear that for all sets b, & < b.

(ZF?2) restricts the way in which a property may be used to form a set,
and thereby, the Russell paradox is avoided. It used to be assumed that, for
any property 7, one could form the set of all objects with that property.
Russell considered the property of not being a member of itself. If b is the
set of all sets which are not members of themselves, then consideration of
whether or not b is a member of itself leads at once to a contradiction. Using
(ZF2), one can only form b = {x € a|x ¢ x} starting from some given set a.
We then find that b € b is impossible, hence b ¢ b and so b ¢ a. The argument
does not lead to a contradiction, but instead proves that for any a, there is
a b such that b ¢ a. Thus there is no set of all sets.

(ZF3) Axiom of Pairing. Ifa and b are sets, then there exists a set ¢ such
thataecandbec.

Using (ZF2) with this set ¢, we can form the set {x € ¢|x = a or x = b}.
This is independent of the particular set ¢ having a and b as members, and
we call {x € c|x = a or x = b} the unordered pair whose members are a and
b, and denote it by {a, b}. In the special case where a = b, (ZF2) asserts the
existence of a set having a as a member. The unordered pair {a, a} has only
the one member a, and we denote it by {a}. The ordered pair (a, b) is now
defined to be {{a}, {a, b}}.

Exercise 2.1. If (a,b) = (c,d), prove a = ¢ and b = d. Make sure that
your proof allows for the possibility that a = b.

For any two sets a, b, we can form a n b = {x € a|x € b}. For any non-
empty set ¢, we can form nc¢ = {x € b|x € a for all a € ¢}, where b is some
member of ¢. Nc is, of course, independent of the choice of b.

Exercise 2.2. Provethatanb =bna = n{a,b}.
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Although the axioms already given allow the formation of intersections,
the formation of unions requires a further axiom.

(ZF4) Axiom of Union. For every set c, there exists a set a such that, if
xeband bec, then xea.

We can now form uc = {x€ alx € b for some b € ¢} where ais as in (ZF4).
uc is again independent of the particular a used, so we write simply Uc =
{x|x € b for some b e c}. For any sets a and b, we can form a U b = U{a, b}.

Exercise 2.3. Show that the ordered pairs (a, b) for which a€ b do not
form a set. (Assume that there is a set e = {(q, b)la € b} and show that U(uUe)
is the set of all sets.)

The formation of ordered pairs is permitted by the axioms so far given,
but not the formation of the set of all ordered pairs of members of given
sets. The next axiom remedies this deficiency.

(ZF5) Axiom of the Power Set. For each set a, there exists a set b such
that,if x < a, then x € b.

Using (ZF2), we obtain the existence of the power set of a: Pow(a) =
{x e b|x = a} = {x|x = a}, which is clearly independent of the choice of b.

(ZF5) allows formation of the cartesian producta x b = {(x, y)]x €aand
y € b}. To show this, we need only produce a set ¢ whose members include
all the required ordered pairs (x, y). But (x, y) = {{x}, {x, y}}, {x} S au b,
{x, y} = a U b,and so both {x} and {x, y} are members of Pow(a U b). Thus
{{x}, {x, y}} = Pow(a U b), and consequently (x, y) € Pow(Pow(a U b)) for
allxeaand yeb.

With the cartesian product available, we can now define a relation be-
tween two sets a, b as a subset of a x b, and then a function f:a > b as a
special type of relation. The set of all functions from a to b can be con-
structed as a subset of Pow(Pow(a x b)). For a set ¢, we define the cartesian
product (of the members) of ¢ by [ ¢ = {f:¢ - uc|f(x)e x for all x e c}.

Exercises

2.4. Whatis [[&?
2.5. For any set a, prove that there is no surjective function f:a —
Pow(a). (Consider b = {x € alx ¢ f(x)}.)

Definition 2.6. The successor of the set x is the set x* = x U {x}. The
set a is called a successor set if & € aand x*™ e a for all x € a.

(ZF6) Axiom of Infinity. There exists a successor set.

This is the first axiom asserting unconditionally that sets exist. In par-
ticular, it asserts the existence of & as this is used in the definition of a
successor set. We can now define the set w of natural numbers:

o = {x|x € a for every successor set a},
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using (ZF2) and some successor set. We use the usual symbols

0=g,
1=0"=gu{d} ={d} =1{0},
2=1"=10{1} ={0,1},
3=2*={0,11u {2} ={0,1,2},

and so on. The set w together with the usual operations of addition and
multiplication will be denoted by N.

Exercises

2.7. The set n is called transitive if x € y and y € n imply that x € n.
Show that if n is transitive, then so is n™*.

2.8. Ifsis a successor set, show that {n € s|n is transitive} is a successor
set. For all n € w, prove that n is transitive.

2.9. Given that n = {x e w|x = n} and that ne€ w, show that n* =
{x € w|x = n*}. Hence prove for all n € w that

(@) n = {xewlx < n},
(b) n¢n,
(c) forallxenn & x.

(acbmeansa < band a # b.)
2.10. Show that0,1, 2, ... are all different.

(ZF7) Axiom of Choice. For each set a, there »x.sts a function f:{x €
Pow(a)|x # &} — a, such that for every non-empty suvset x of a, f(x) € x.

The function f, called a choice function, selects from each non-empty
subset of a, a member of that subset.

(ZF8) Axiom Schema of Replacement. If 7 is a property of pairs of sets
such that for all x € a, (x, y) and (x, z) both having w implies that y = z, then
there exists a set b such that y € b if and only if there is an x € a such that
(x, y) has 7.

Intuitively, the property © defines a function on some subset of a, and b
is the set of images under this function. . 1t a function f:a — b is a subset of
a x b, and this requires b to be a set. The point of this axiom is that although
we are not given a function in the formal sense, the type of correspondence
it considers does in fact define a function.

(ZF9) Axiom Schema of Restriction. If 7 is any property of sets and if
there exists a set with m, then there exists a set a with m such that for all x € a,
x does not have 7.

(ZF9) excludes the possibility of an infinite sequence ajy, a,, ... of sets such
that a;+, € g; for all i. To see this, simply take = to be the property of being
the first member of some such sequence. By (ZF9), if there exists a set with
this property =, then there exists a set a with = such that no member of a
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has n. But then a is the first member a; of some such sequence a; 34a;, 3" -,
and clearly a, € a and has n. Thus there can be no sets with this property.

Exercises

2.11. Show that (ZF9) implies the Axiom of Regularity: For any set
a # &, there exists be asuch that b na = &.

2.12. From the Axiom of Regularity, prove that for every set a, a ¢ a.

2.13. Provethatifa = a x a,thena = &.

§3 First-Order ZF

We formalise ZF as a first-order theory, which we shall denote by &.
We take as relation symbols just .#, €, both binary. We shall use no individual
constants in our construction. Where axioms are obvious formalisations of
the corresponding informal axioms, we set them down without comment. For
ease of understanding, we shall write x € y and x = y rather than the formally
correct €(x, y) and #(x, y), and the negations of these statements will be
written x £ y and x # y.

(ZF1) (Ya)(Vb)(((Vx)(xea<>xeb))=a =b).

In the informal version of (ZF2), we used a property = of sets. The in-
formal statement “x has property 7.” becomes for us the predicate n(x), where
7 is an element of P(V, #), the notation n(x) simply describing the depen-
dence of 7 upon x. (The notation n(x) does not imply that var(n(x)) = {x}.)
For given 7(x), (ZF2) becomes

(Va)@b)(Vx)(x€b <> (xear n(x))),

but we must clearly restrict this by requiring that b gwvar(n(x) ). Moreover, the
theory & is to be without constants, and var(n(x)) could have members
other than g and x. Thus, if x4, ..., x, are these other variables, we take as
our axiom

(Vx1) - (Vx)(Va)@D)Vx)(xeb < (xea A n(x))).

To simplify the notation, we introduce the convention that if p € P(V, %)
and var(p) = {x,..., X}, then (V)p denotes (Vx,) - - - (V¥x,)p. The order in
which x;,..., x, are taken will not matter in any use we make of this nota-
tion. Using this convention, the axiom schema becomes

(ZF2) (V) (Va)3b)(Vx)(xeb<(xea A n(x))) for all n(x)e P(V, R)
such that b ¢ var(m(x)).

Unlike (ZF1), which was a single element of P(V, ), (ZF2) is an infinite
collection of axioms, one for each n(x) € P(V, &) satisfying b ¢ var(n(x)). This
is the reason for calling (ZF2) an axiom schema.
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Exercise 3.1. Some later axioms of % will have the form (V)(3a)(Vx)
(p(x) = x € a) for certain elements p(x) € P(V, #). Show that {(V)(3a)(Vx)
(p(x) = xea)} F H(V)3Fa)(Vx)(p(x) = x € a).

We introduce further useful abbreviations. We write a < b for (Wx)(x €
a=xeb),a = {x|p(x)} for (Wx)(xea<p(x)),a = {ay,...,a,} for (Wx)(x e
a<>(x =a;v- - vx=a,))andc = (ab)for c = {{a}, {a, b}}, which itself
is an abbreviation whose meaning has been explained. In particular, a = &
is an abbreviation for (Vx)(x ¢ a). We may now write down relatively con-
cise formal versions of four more axioms.

(ZF3) (Va)(Vb)Jc)aeca bec).

(ZF4) (V)@Ea)(Vx)(((3b)(xebabec)) = xea)

(ZF5) (Va)@b)(Vx)(x = a= xeb).

(ZF6) (3a)(((3A)b = A bea)) A (Vx)(xea=
@)y =x v {xjAyea))

Exercises

3.2. Prove & } (Va)(Vb)3c)(c = {a, b}).

3.3. Formalise and prove the formal result that if (a, b) = (c, d), then
a=candb = d.

34. Prove ¥ | ¢ # & = (A)(Vx)(xed <= (Vy)yec=xey))

In (ZF6), y = x U {x} is of course an abbreviation for (Vz)(z € y <
(z =xvzex)). We further preserve our informal notations for certain
sets by writing b = Pow(a) for (Vx)(xeb<>x S a) and ¢ = a x b for
(Vx)(xec<3y)F2)(x = (y,2) Ay€anzeb)).

To make possible a formal version of (ZF7) of reasonable length, we
introduce three more abbreviations. We shall write (3!x)p(x) for(3x)(p(x) A
(Vy)(p(y) = y = x)) (as in Chapter V), f:a — b for

(Fo)((c =a x b)a(f < ¢))
A(Vx)(xea= QY)((yeb) )z = (x,y) A z€f))),

and y = f(x) for (Iz)(z = (x, y) A z € f).

(ZF7) (Va)(V¥b)((b = {x|(x = a) n (x # &)}) = Af)N(f:b = a)a
(VI(V2)(z = f(y) = z€ y))).

(ZF8) For every p(x, y) € P(V, ), W)((WVx)(V)(V2)((x€a A p(x, y) A
p(x, 2)) = y = 2)) = @) Vy)(ye b= @)k ean plx, »))).

(ZF9) For every p(x)€ P(V, %),

(W)(@x)p(x) = @a)(pla) A (Wx)(x € a = ~p(x)))).

This completes the formalisation of the axioms of our informal set theory,
and so completes the list of mathematical axioms of our first-order theory .
By its construction, & is clearly a consistent theory if our informal set
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theory is consistent, because any proof of F in % has an informal equivalent.
Since this book (and also much of mathematics) is written in the context of
the informal set theory of ordinary mathematics, and since all of this is
destroyed if that set theory is inconsistent, we assume the consistency of
informal set theory. With this assumption, & is a consistent theory.

We now observe that the language #(¥) is in fact independent of the
choice of the infinite set V of variables used, for if ¥} is a countable subset of
V, and if p e P(V, Z#) has var(p) = &, then p € P(V,, %), and the result fol-
lows on recalling that there are no individual constants in our construction
of . We may therefore suppose that V is countable. Since Z = {4, €}, it
follows that P(V, #) is countable and hence that % is countable. By the
Lowenheim-Skolem Theorem, . has a countable model.

A theorem of ordinary set theory asserts the existence of uncountable sets,
and this theorem (with its proof) can be formalised in the theory . Hence
there exists a countable model of a theory which has as a theorem the exis-
tence of uncountable sets! The paradox is resolved when we realise that it
arises by using the word “set” in two ways. Let us distinguish words used in
their ordinary sense from the same words used in the sense of the model by
using the adjectives real or model respectively. “% has a countable model”
then becomes “% has a real countable model”, i.e., there is a real function
from the real set of natural numbers onto the underlying set of the model.
For this model, every model set is at most real countable. But a model set is
model countable only if there is a model function from the model set of
natural numbers onto it, and the real function which counts it need not be
a model function.

§4 The Peano Axioms

We have seen how the natural numbers may be constructed in terms of
set theory. We now give an axiomisation of the natural numbers, and study
the relationship between this axiomatic system and Zermelo-Fraenkel set
theory.

Since addition and multiplication can be defined in terms of the successor
function?, it is sufficient to axiomatise this function. We denote the successor
of x by s(x). The Peano axioms for the natural number system N are:

Py: 0is a natural number.

P,: If x is a natural number, then s(x) is a uniquely determined natural
number (i.e., s is a function s: N - N).

P;: If x, y are natural numbers and if s(x) = s(y), then x = y.

P.: For each natural number x, s(x) # 0.

Ps: If mis any property such that O has n, and such that if x has = then s(x)
has m, then every natural number has m.

2 However, addition and multiplication are not definable within the theory .2 we are about
to construct. To be able to formalise their definitions, we have to add to # relation symbols for
addition and multiplication. See Exercises 4.2-4.10.
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It is a well-known theorem that these axioms determine the system N to
isomorphism, i.e., if sets A, A’, with functions s, s’ respectively, each satisfy
the axioms, then there exists a bijective function f: 4 — A4’ such that f(0) =
and f(s(a)) = s'(f(a)) for all a € A. An informal proof of this runs as follows.
We define f(0) = 0', and, if f(a) = o, define f(s(a)) = s'(a’). Taking n(a) to
be the property that f(a) is uniquely defined by this rule, Ps then gives the
result that f is a function from A to A’. Similarly, we obtain a function
g:A' > A. Taking now 7(a) to be g(f(a)) = a, Ps gives the result that gf is
the identity. Similarly fg is the identity, and so f'is the required isomorphism.

The Peano axioms are easily formalised as a first-order theory 2. We
take one unary relation symbol 6, with 6(x) to mean x = 0, and one binary
relation symbol s, with s(x, y) to mean x is the successor of y. The axioms
then become

Py: (A'x)0(x).

Py (Wx)(3y)s(y, x).

Py (VX)NV)(V2)((s(z, X) A s(z, y)) = x = y).

Py: (Vx)(Vy)(s(x, y) = ~0(x)).

Ps: (V)((@)O(x) A n(x)) A (Vy)(V2)(x(2) A s(y, z) = 1(y))) = (Vy)r(y)),
for all n(x) € P(V, &) such that y, z & var(n(x)).

2 is clearly a countable theory, and has N as a model. By the Lowenheim-
Skolem Theorem, £ is not categorical. This result appears to contradict the
theorem that the Peano axioms determine N to isomorphism. But in for-
malising Ps, we have restricted the application of the axiom to those prop-
erties © which are expressible in terms of s and 6, and the properties 7 used
in the uniqueness proof are certainly not of this form. This argument is how-
ever only part of the whole story.

Within 2, we cannot hope to formalise a proof of the uniqueness theorem.
We cannot even state the theorem in #(#). We need set theory for this, so
let us reformulate the Peano axioms within our formal set theory &, as a set
of assumptions on a triple (N, s, 0) of sets. We shall take Z(N, s, 0) to be the
subset of the first-order algebra of & consisting of the elements

P,: 0eN,
P,: s:N > N,
P3: (WVX)(V)(V2)((z = s(x) Az = s(y)) = x = y),
Py (Wx) ~ (0 = s(x)),
and all elements of the form
Ps: (W)((1(0) A (VX)AVY((y = s(x) A 7(x)) = n(y))) = (V2)n(2)),
where y, z ¢ var(n(x)).
We write (N, s, 0) ~ (N, s, 0') as an abbreviation for
ANSN->N)A(VI)VNV2)((z = f(X)nz= f(y)=x =)
AVx)(xe N = @)x = f(1)) A (VVI(VIVO((y = s(x)
nz=f) L= (1) =1 = s()).
It can be shown that (N, s, 0) U Z(N', s, 0') | 4«(N, s, 0) ~ (N, s, 0).
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Hence within %, the Peano axioms as now formulated in fact determine
N to isomorphism. The axioms of &, together with the assumptions (N, s, 0),
still do not determine N to isomorphism in the sense of our metalogic. There
are non-isomorphic models of &, and the systems of natural numbers within
these models may well be non-isomorphic. Our theorem asserts that models
of the natural numbers within a given model of & are isomorphic. Our
informal proof worked because we were working within an assumed set
theory.

Exercises

4.1. Rephrase our very informal proof of the uniqueness of the natural
numbers more carefully in terms of informal axiomatic set theory. (This may
be found in [12].) Note that the function f to be constructed is a subset of
N x N’ and must be constructed in a way permitted by the axioms. (The
inductive construction of f needs justification.) Set out the steps of the argu-
ment in sufficient detail for it to become clear that it can be formalised to give
a proof that (N, s, 0) U (N, s, 0) |- 4(N, s,0) ~ (N', s, 0').

4.2. Addition is usually defined in terms of the successor function by

(i) x + 0 = x, and
(1) x + s(y) = s(x + y).

Assuming the informal Peano axioms, show that (i) and (ii) define a func-
tion +:N x N — N, and that

@@ 0+ x=x,

(b) s(x) + y = s(x + ),
©)x+y=y+x
dx+y+z=x+(y+2),
() x + y = x + zimplies y = z.

Give a similar definition of multiplication in terms of addition and the
successor function, and establish its basic properties.

In the following exercises, x; = n (where n € N) is used as an abbreviation
for

(3yo)3y1) - @ya-1)O(y0) A s(y1, yo) A+ -+ AS(Xi, Yu-y)
if n > 0, and means 6(x;) if n = 0. The expression x; = x; + nmeans x; = X;
ifn =0, s(x; x;)ifn = 1, and
@y )@y2) - @Y= )1, X)) A (25 y1) A A (X, Y1)
ifn > 1.

4.3. 2* s the theory formed from £ by replacing the induction axiom
scheme P by

£, 0:(VX)(((VY) ~ s(x, y)) = 0(x)),
P% :(Wx)(x # x + n) (n > 0).
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M; =N v (Z x I),where I is some index set. For me M/, 6(m) is interpreted
as true if and only if m = 0 eN, and s(m,, m,) is true if and only if either
my,€e Nand m; = m, + 1, 0or my, = (z,i), where ze Z and i€ I, and m, =
(z + 1,i). Show that M; is a model of 2*, and that every model of 2* is
isomorphic to M, for some 1.

4.4. Prove that every theorem of 2* is a theorem of . Hence show that
every model of 2 is isomorphic to M, for some 1.

4.5. Show that #* admits I1-reduction of quantifiers, where

IT = {x; = x; + n,x; = nli, j,ne N}.

Hence prove that 2* is decidable and complete.
4.6. Let n(xg, Xq5 ..., X,) € P(#) = P(P*),and let a,, ..., a, € M;. Put

X = {me M|n(m, ay, . .., a,) is true in M,}.

Using the IT-reduction of quantifiers, show that X is either finite or has
finite complement in M;. Hence prove that M, satisfies the induction axiom
scheme P, and so is a model of Z.

4.7. From the completeness of #* and the fact that every theorem of
#* is a theorem of 2, deduce that every theorem of £ is a theorem of 2*.
Hence prove that every M, is a model of £.

4.8. (Proof that M, is a model of £ not using reduction of quantifiers.)
Show that £ and £* are a-categorical for every uncountable cardinal a,
and so are complete. As in 4.7, deduce that every M; is a model of 2.

4.9. The theory ./ consists of 2 together with a ternary relation symbol
a and the additional axioms

(Vx)(Vy)3lz)alx, y, z),
(VX)(Vy)(0(y) = a(x, y, x)),
(V)Y 2)VO(Vu)(s(z, p) A alx, y, 1) A alx, z, u) = s(u, 1)).
Show that there is no relation on Mj,, which, taken as ya, makes M, a model
of .«/. Hence show that addition is not definable in £.
4.10. Show that not every model of £ is embeddable in a model of
S (ZF set theory).
4.11. Taking x < y as an abbreviation for (3z)a(x, y, z), show that the
axioms$ of a total order are theorems of .</.



Chapter VII
Ultraproducts

§1 Ultraproducts

In many branches of mathematics, where one is studying a system of some
particular type, it is of interest to find out ways of forming new systems of the
given type from known examples. One useful method that can often be
applied is based on the cartesian product construction. In this section we
investigate this construction in the case where the underlying system is a
first-order theory 7 = (£, A4, C),and (M, v;, ;) for i € I is a family of models
of 7. We therefore investigate the possibility of making M = [ [, M; into a
model of 7, independently of the particular nature of 7.

An element of [ [i; M;is a function a:I - |J;; M; such that a(i) € M;. We
shall when convenient denote a(i) by a;, and call it the i-component of a. There
is now an obvious way to proceed. We define v: C — M by putting v(c); = vi(c),
and we define yr, for r € &, by putting (aV), . .., a®) e yrif (@, ..., a") e Y;r
foralliel.

This construction gives a model M of J in some cases. For example,
since a cartesian product of groups is a group, the method works for the case
of elementary group theory. However, the method does not work in the case
of elementary field theory, because a cartesian product of fields is a commuta-
tive ring with 1 having non-zero noninvertible elements. (This is easily seen,
because all operations are defined componentwise, and hence a € M has an
inverse if and only if each g; is invertible. Take an a in which some but not all
a; are invertible.) Hence the above construction must be modified if it is to
work for all theories 7. We shall have to define y: # — rel(M) in such a way
that for every p(xi, ..., x,) € P(V, %), the relation yp given by p on M
corresponds to the relations y;p given on the M; in precisely the way that
the yr for r € # correspond to the y;r.

We simplify notation and work only with one variable formulae p(x). (The
n-variable case is covered by regarding x as an n-tuple (x4, . . ., x,,).) We shall
modify the definition of by taking a € M to be in yp(x) if a; € Y;p(x) for all
i in some “suitable” subset of I, where we have yet to decide which subsets
of I are to be considered suitable. Since the definition is to apply to all p € P,
it applies to #(x, y). This means that if any subset other than I itselfis allowed,
.# will not be the identity relation on [ [;.; M;, but merely an equivalence
relation. Therefore we must reduce modulo ¥/.# in order to obtain a model
of 7 —the equivalence classes will be the elements of the model.

We now investigate the conditions a family of “suitable” subsets of I
must satisfy. Denote such a family by #. Let p(x), q(x) € P, a € [ [is M, and
let A = {ie I|g, satisfies p(x)}, B = {i € I|g; satisfies g(x)}. Since a formula

62
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should hold for some i if it is to hold at all, we have

(i) F¢F.
If A e #, then a satisfies p(x) and so must satisfy p(x) v g(x), whatever g(x)
may be. Thus forany B< I, Au Be # if Ae &#. Hence

(i) Every subset of I which contains a set of # belongs to #.
If Ae # and Be %, then a satisfies p(x) and g(x) and so must satisfy p(x) A g(x).
Thus A N Be & if A, B € #. Generalising to finite subfamilies of #, we have

(i) Every finite intersection of sets of &# belongs to &.
Finally, since a must satisfy exactly one of p(x) or ~ p(x), we have

(iv) For each A < I, exactly one of A and I — A belongs to #.

Definition 1.1. A set & of subsets of I satisfying the conditions (i), (ii)
and (iii) above is called a filter on I. A filter which satisfies (iv) is called an
ultrafilter.

The filters on I, being subsets of Pow([), are partially ordered by inclusion.
The ultrafilters are the maximal elements of the set of filters.

Examples

1.2. IfI # &, {I}isafilter on I.

1.3. Ifkisafixed element of I, F = {J < I|k € J} is an ultrafilter on I.
(Ultrafilters constructed in this way are called principal ultrafilters.)

1.4. If I is infinite, the complements of the finite subsets of I form a
filter. (When I = N, this filter is called the Fréchet filter.)

Exercise 1.5. % is an ultrafilter on I and J € &#. Prove that #; =
{An J|A € &} is an ultrafilter on J, and that for A = I, A € # if and only
if AnJeZ, (¥, is called the restriction of # to J.)

Leta, b € [ [i; M;and let # be an ultrafilter on I. We write a = bmod #
if {i e Ila; = b;} € #, and denote the congruence class containing a by a.7.
The set of all congruence classes is denoted by [ [;.; M;/#. For each r € &,
we define the relation yr on [[.; M;/F by aF e yrif {ieI|a;e Y} e Z.
(Here, a is an n-tuple if r € £,.) This definition is clearly independent of the
choice of representative of the congruence class. To complete the construc-
tion, we define v(c) for ¢ € C to be the congruence class of the function
I- U,.E, M; whose i-component is v;(c).

Theorem 1.6. [[..; M,/F is a model of T = (&, A, C). An element aF
of [lier Mi/F satisfies p(x) e P (where a, x may be n-tuples) if and only if
{i € I|a; satisfies p(x)} € F.

Proof: [ ie; M;/Z is clearly a model of 7' = (%, &, C). To show that
it is a model of I, we have to show that v(p) = 1 for all p € 4. Since for
pe A, {iellpistruein M;} = I e #, this will be an immediate consequence
of the second assertion of the theorem. We shall prove this latter assertion
by induction over the length of p.
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If p = r(x), where r € %, then the result holds by the definition of yr. If
P = q; = (, then v(p) = 0 if and only if we have v(q;) = 1 and v(g,) = 0.
By induction, this holds precisely when J; = {ieIlv(q,) = 1} and J, =
{ieI|v(q,) = O} arebothin #. Put J; = J, nJ,. If Jye #,thenJ, € F
and J, € # by condition (ii), while J;, € & and J, € & imply J; € # by
condition (iii). Thus v(p) = 0 if and only if J; = {ie I|vi(p) = 0} € #. By
condition (iv), o(p) = 1 if and only if I — J; = {ie I|v(p) = 1} € Z.

If p(x) = (Vy)q(x, y), then aF satisfies p(x) if and only if for every
bF €[ lic Mi/F, (aF, bF) satisfies q(x, y). By induction, the latter holds if
and only if for all b, {i € I|(a;, b;) satisfies q(x, y)} € Z. Let J = {iel|g
satisfies p(x)}. Suppose J € #. Then for all i € J and all b#, we have (a;, b;)
satisfies g(x, y) since a; satisfies (Vy)q(x, y). Thus aZF satisfies p(x). Suppose
J ¢ #. Then for each ie K = I — J, there exists an element b; € M; such
that (a;, b;) does not satisfy g(x, ). Thus there exists b € [ [i; M; such that,
for all i € K, (a;, b;) does not satisfy g(x, y). Since K € #, (a#, bF) does not
satisfy g(x, y) and aZ does not satisfy p(x). []

Definition 1.7. The model [ [;c; M;/# of 7 is called the ultraproduct of
the models M; with respect to the ultrafilter #.

Exercises

1.8. Let p; be the ith prime and let F; be a field of characteristic p;.
Let # be an ultrafilter on the set I of positive integers, such that no member
of # is a singleton. Prove that [ [;; F;/Z is a field of characteristic zero.

1.9. Z is an ultrafilter on I, M, (i € I) are models of the theory J, and
J e . Prove

l_[Mi/g; = I—[Mj/'g'.]’
iel JjeJ

where & is the restriction of & to J.

§2 Non-Principal Ultrafilters

Principal ultrafilters on I, as constructed in Exercise 1.3, are of no use
for the construction of new models, because an ultraproduct with respect to
a principal ultrafilter is always isomorphic to one of the factors.

Exercises
2.1. Ifkeland # = {J < I|keJ}, prove that
HMl/.O/’_ jad Mk'

iel
2.2. % is an ultrafilter on I and A € & is a finite subset of I. Prove
that & is principal.



§2 Ultrafilters 65

We now investigate conditions on a set S of subsets of I for the existence
of an ultrafilter # = S. By an appropriate choice of S, we shall be able to
ensure that every such ultrafilter is non-principal.

Definition 2.3. The set S of subsets of [ is said to have the finite inter-
section property if every finite subset of S has non-empty intersection.

Lemma 2.4. Let S be a set of 1. There exists a filter on I containing S
if and only if S has the finite intersection property.

Proof: The necessity of the condition is immediate, so we prove its
sufficiency. Suppose S has the finite intersection property, and put

T={UcI|U=J;n - nJ,forsomenand some J,,...,J, €S}

Let
= {F < I|F =2 U for some U € T}.

We prove that %, which clearly contains S, is a filter. By the finite intersection
property of S, & ¢ T and so & ¢ &. Also, condition (ii) for a filter is clearly

satisfied by &#. Finally, if Fy, ..., F,€ &#,thenfori = 1,...,n F; 2 ﬂ Jij
j=1
for some m; and J;4, . . ., Jim, € S. Hence.

n m
i ﬂ n ijo

1 i=1j=1

=

and so belongs to &. Thus condition (iii) is satisfied and & is a filter. []

Lemma 2.5. Let % be a filter on I. Then there exists an ultrafilter
F*x2Fonl

Proof: The set of filters containing & is an inductive set. By Zorn’s
Lemma, it has a maximal member & *. []

Exercises

2.6. Leta = |I|and supposea > B > N,o. Put S = {J = I||I — J| <f}.
Prove that S is a filter and that if & is an ultrafilter containing S, then no
niember of & has cardinal less than f.

2.7. An ultrafilter # on I is called uniform if |[J| = |I| for all J e #.
If # is a non-principal ultrafilter, show that there exists J € & such that
& ; is uniform.

2.8. Let I be a countable set, and & an untrafilter on I. If 6:1 — I is
a permutation, show that ¢ is also an ultrafilter on I. The collection
{oF|o a permutation of I} may be called the orbit of . Show that if #
is non-principal, its orbit contains exactly 2™ distinct ultrafilters.

2.9. A family o/ of infinite subsets of an infinite set X is called almost
disjoint (AD) if distinct members of &/ have finite intersection. o7 is called
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maximal almost disjoint (MAD) if it is maximal among the AD families.
Prove or disprove each of the following:

(a) Given any MAD family ./, there is a non-principal ultrafilter &
such that &/ and & are disjoint.

(b) Given any non-principal ultrafilter & there is a MAD family &/
such that o/ and & are disjoint.

§3 The Existence of an Algebraic Closure

We can now apply the theory of ultraproducts to prove a theorem of
considerable importance in algebra.

Theorem 3.1. Let F be afield. Then there exists an algebraic closure of F.

Proof: Let J be elementary field theory augmented by the addition of
the elements of F to the set of constants, and of all the relations a; + a, = a3,
b,b, = b; holding in F to the set of axioms. The models of J are the ex-
tension fields of F. Put R = F[x], the ring of polynomials over F. For each
r e R, let F, be a splitting field of r. Put

J, = {s e R|r splits over F}.

Since ryry - r,€J,, 0 J, N0, the set # = {J,|re R} has the
finite intersection property. By Lemmas 2.4 and 2.5, there exists an ultrafilter
& on R containing ¢. Put F* = [[,.g F,/#. Then F* is a model of 7 and
so0 is an extension field of &#.

Let r = x" + rix" ' + -+ + r, be a monic polynomial over F. We
prove that r splits over F*. We put

p=@a) - @a)(ay + -+ ay= —r))A(aya; + ayaz + -+ +
ap—104y, = r2) AN (ala2 o a, = (_l)nrn))'

Then p is true for precisely those models of J over which r splits. But
{seR|pis true in F;} = J, € #. By Theorem 1.6, p is true in F* and so
r splits over F*.

The proof of Theorem 3.1 is completed by the following purely algebraic
lemma.

Lemma 3.2. Let F* be an extension of the field F such that every monic
polynomial over F splits over F*. Let F be the set of all elements of F* which
are algebraic over F. Then F is an algebraic closure of F.

Proof: Let f(x) be a monic polynomial over F. Then f(x) = (x — a;) "
(x — a,) for some ay,...,a, in the splitting field of f(x) considered as a
polynomial over F*. But the a;, being algebraic over F, are algebraic over
F. Let m;(x) be the minimum polynomial of a; over F. Since m;(x) splits over
F*, its roots lie in F* and, being algebraic over F, are therefore in F. Thus
ai,...,a,€F and f(x) splits over F. Hence F is algebraically closed. []
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Exercises

3.3. [If Fis not algebraically closed, prove that the ultrafilter used in the
proof of Theorem 3.1 is not principal.

3.4. In the notation of the proof of Theorem 3.1, show that if F is finite,
then {se R|F, = F,} ¢ #.

3.5. If Fisnot algebraically closed, prove that F* (constructed as above)
is not algebraic over F. (If F is infinite, show that elements a, € F, can be
chosen such that g, and a; have the same minimum polynomial only forr = s.
If F is finite, show that the elements a, € F, can be chosen such that a, and q
have the same minimum polynomial only for those r, s for which F, = F,.)

3.6. F isa field. For all i e I, take F; = F and form the ultraproduct
K = [ Fi/# with respect to the ultrafilter #. Prove that K is a pure tran-
scendental extension of F.

§4 Non-trivial Ultrapowers

An ultraproduct [ [, M;/# in which M; = M for all i e I is called an
ultrapower of M and denoted by M/ . There is a natural embedding : M —
M'/F of M in M"/# given by O(m) = f,.F, where f,,:1 — M is the constant
function f,,(i) = m for all i € I. By identifying m with 6(m), we may regard M
as a subset of M'/#. (Alternatively, we may replace the theory 7 by the
theory 7' formed from Z by replacing C by C U M. By Theorem 1.6,
M'/Z is a model of 7. Since each element m € M is a constant of 7, this
also gives a map v:M — M!/F )

Exercise 4.1. Prove that the maps 0, v:M — M*/% coincide.

We shall always make this identification of M with (M), and we omit
specific mention of the map 6. The ultrapower M’/ is regarded as trivial if
M'/F = M, so we shall look for conditions which ensure non-triviality.

Exercise 4.2. If M is finite, prove that M'/# = M.

Definition 4.3. Let o be a cardinal. The ultrafilter &% on I is called o-
complete if, for every subset 4 = % of cardinal o, we have n% € #. Other-
wise, # is called a-incomplete. (It is usual in this context to denote [N| by w.)

Lemma 4.4. Let o be an infinite cardinal and let & be an a-incomplete
ultrafilter on 1. Then there exists a partition of I into o disjoint subsets, none
of which is in & .

Proof: The cardinal o is an ordinal, « = {B|p ordinal, § < o}. Since #
is a-incomplete, there exists ¥ = % such that |4]| = o« and N% ¢ F. We
index the members of ¢ with the ordinals less than o, so that ¥ = {G,|B < a}.
For each ordinal 8 < «, put X; = n{G,|y < B} (interpreting this for § = 0
to mean X, = I), and put Y; = X; — Xz, for p < a. For f = «, put
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Il

Y, = X,. Then {¥}|p < «} is a partition of I into « disjoint subsets. Since
Y, = n%, we have Y, ¢ #. Suppose Y; € # for some f < a. Then X, —

Xpi1€F. Since also Gye F, we have (X; — X;.1) N Gye F. But
(Xﬂ—Xﬂ+1)ﬁGp=g¢v9°-- a

Lemma 4.5. Let & be an a-complete ultrafilter on I. Then for every par-
tition of I into a set 4 of o disjoint subsets, some member of 4 is in F.

Exercise 4.6. Prove Lemma 4.5.

Theorem 4.7. Let & be an ultrafilter on I and let o = |M|. Then M =
M/ if and only if F is a-complete.

Proof: Suppose & is a-complete. An element of M/ is f # for some
f:I - M. For each me M, put J,, = {i € I|f(i) = m}. Then {J,lme M} is
a partition of I into « disjoint subsets. By Lemma 4.6, J,, € & for some me M.
This implies fF 