

Graduate Texts in Mathematics 146
Editorial Board

J.H. Ewing F.W. Gehring P.R. Halmos

Graduate Texts in Mathematics

1 T AKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
2 OXTOBY. Measure and Category. 2nd ed.
3 SCHAEFFER. Topological Vector Spaces.
4 HILTON/STAMMBACH. A Course in Homological Algebra.
5 MAc LANE. Categories for the Working Mathematician.
6 HUGHES!PIPER. Projective Planes.
7 SERRE. A Course in Arithmetic.
8 TAKEUTI/ZARING. Axiometic Set Theory.
9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.

10 COHEN. A Course in Simple Homotopy Theory.
11 CONWAY. Functions of One Complex Variable. 2nd ed.
12 BEALS. Advanced Mathematical Analysis.
13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
14 GOLUBITSKy/GUILEMIN. Stable Mappings and Their Singularities.
15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
16 WINTER. The Structure of Fields.
17 ROSENBLAIT. Random Processes. 2nd ed.
18 HALMOS. Measure Theory.
19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
20 HUSEMOLLER. Fibre Bundles. 3rd ed.
21 HUMPHREYS. Linear Algebraic Groups.
22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
23 GREUB. Linear Algebra. 4th ed.
24 HOLMES. Geometric Functional Analysis and Its Applications.
25 HEWIIT/STROMBERG. Real and Abstract Analysis.
26 MANES. Algebraic Theories.
27 KELLEY. General Topology.
28 ZARISKI/SAMUEL. Commutative Algebra. Vol. I.
29 ZARISKI/SAMUEL. Commutative Algebra. Vol. II.
30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.
33 HIRSCH. Differential Topology.
34 SPITZER. Principles of Random Walk. 2nd ed.
35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
36 KELLEY!NAMIOKA et al. Linear Topological Spaces.
37 MONK. Mathematical Logic.
38 GRAUERT!FRITZSCHE. Several Complex Variables.
39 ARVESON. An Invitation to C·-Algebras.
40 KEMENY/SNELl)KNAPP. Denumerable Markov Chains. 2nd ed.
41 ApOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
42 SERRE. Linear Representations of Finite Groups.
43 GILLMAN/JERISON. Rings of Continuous Functions.
44 KENDIG. Elementary Algebraic Geometry.
45 LoEvE. Probability Theory I. 4th ed.
46 LoEVE. Probability Theory II. 4th ed.
47 MOISE. Geometric Topology in Dimensions 2 and 3.

continued qfter Index

Douglas S. Bridges

Computability
A Mathematical Sketchbook

With 29 Illustrations

Springer Science+Business Media, LLC

Douglas S. Bridges
Department of Mathematics
University of Waikato
Private Bag 3105
Hamilton, New Zealand

Editorial Board

J .H . Ewing
Department of

Mathematics
Indiana University
Bloomington, IN 47405
USA

F. W. Gehring
Department of

Mathematics
University of Michigan
Ann Arbor, MI 48109
USA

Mathematics Subject Classifications (1991): 03Dxx

Library of Congress Cataloging-in-Publication Data
Bridges, D.S. (Douglas S.), 1945-

P.R. Halmos
Department of

Mathematics
Santa Clara University
Santa Clara, CA 95053
USA

Computability : a mathematical sketchbook / Douglas S. Bridges .
p. cm. - (Graduate texts in mathematics)

lncludes bibliographical references and index.
ISBN 978-1 -4612-6925-0 ISBN 978-1 -4612-0863-1 (eBook)
DOI 10.1007/978-1-4612-0863-1
1. Computable functions. 1. Title. Il. Series.

QA9.59.B75 1994
511.3-dc20

Printed on acid-free paper.

93-21313

© 1994 Springer Science+Business Media New York
Originally published by Springer-Verlag New York,lnc in 1994
Softcover reprint of the hardcover 1 st edition 1994
AII rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher Springer Science+Business Media, LLC,
except for brief excerpts in connection with reviews or scholarly
analysis . Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereaf­
ter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
byanyone.

Production managed by Hal Henglein; manufacturing supervised by Vincent Scelta.
Photocomposed pages prepared from the author's LaTeX file.

987654321

ISBN 978-1-4612-6925-0

For Vivien, Jain, Hamish, and Catriona

'I can't believe thaU' said Alice. 'Can't you?' the Queen said in
a pitying tone. 'Try again: draw a long breath and shut your
eyes.' Alice laughed. 'There's no use trying,' she said: 'One
can't believe impossible things. ' 'I daresay you haven't had much
practice, ' said the Queen.

LEWIS CARROLL, Through the Looking Glass.

Preface

My intention in writing this book is to provide mathematicians and math­
ematically literate computer scientists with a brief but rigorous introduc­
tion to a number of topics in the abstract theory of computation, other­
wise known as computability theory or recursion theory. It develops major
themes in computability, such as Rice's Theorem and the Recursion The­
orem, and provides a systematic account of Blum's abstract complexity
theory up to his famous Speed-up Theorem.

A relatively unusual aspect of the book is the material on computable
real numbers and functions, in Chapter 4. Parts of this material are found
in a number of books, but I know of no other at the senior/beginning
graduate level that introduces elementary recursive analysis as a natural
development of computability theory for functions from natural numbers
to natural numbers. 1 This part of the book is definitely for mathematicians
rather than computer scientists and has a prerequisite of a first course in el­
ementary real analysis; it can be omitted, without rendering the subsequent
chapters unintelligible, in a course including the more standard topics in
computability theory found in Chapters 4-6.

I believe, against the trend towards weighty, all-embracing treatises (vide
the typical modern calculus text), that many mathematicians would like to
be able to purchase books that give them insight into unfamiliar branches
of the subject in a relatively short compass and without requiring a ma­
jor investment of time, effort, or money. Following that belief, I have had
to exclude from this book many topics-such as detailed proofs of the
equivalence of various mathematical models of computation, the theory of
degrees of unsolvability, and polynomial and nonpolynomial complexity­
whose absence will be deplored by at least some of the experts in the field.
I hope that my readers will be inspired to pursue their study of recursion
theory in such major works as [9, 24, 28, 29].

A number of excellent texts on computability theory are primarily aimed
at computer scientists rather than mathematicians, and so do not always
maintain the level of rigour that would be expected in a modern text on,
say, abstract algebra. I have tried to maintain that higher level of rigour

lSome of the work in this book-notably, Proposition (4.28) and the applica­
tion of the Recursion Theorem preceding Exercises (5. 14)-appears to be original.

Vlll Preface

throughout, even at the risk of deflecting the interest of mathematically
insecure computer scientists.

Ideally, all mathematics and computer science majors should be exposed
to at least some of the material found in this book. It horrifies me that in
some universities such majors can still graduate ignorant of the theoretical
limitations of the computer, as expressed, for example, by the undecidabil­
ity of the halting problem (Theorem (4.2)). A short course on computabil­
ity, accessible even to students below junior level, would comprise Chapters
1-3 and the material in Chapter 4 up to Exercises (4.7). A longer course
for more advanced undergraduates would also include Rice's theorem and
the Recursion Theorem, from Chapter 5, and at least parts of Chapter 6.
The entire book. including the difficult material on recursive analysis from
Chapter 4, would be suitable for a course for bright seniors or beginning
graduate students.

I have tried to make the book suitable for self-study. To this end, it
includes solutions for most of the exercises. Those exercises for which no
solutions are given have been marked with the asterisk (*); of varying levels
of difficulty, they provide the instructor with material for homework and
tests. The exercises form an integral part of the book and are not just there
for the student's practice; many of them develop material that is used in
later proofs, which is another reason for my inclusion of solutions.

I\Iy interest in constructive mathematics [5] leads me to comment here
on the logic of computability theory. This is classical logic, the logic used by
almost all mathematicians in their daily work. However, the use of classical
logic has some perhaps undesirable consequences. Consider the following
definition of a function f on the set N of natural numbers: for all n, f(n)
equals 1 if the Continuum Hypothesis is true, and equals 0 if the Con­
tinuum Hypothesis is false. 2 Since 'most mathematicians are formalists on
weekdays and Platonists on Sundays', at least on Sundays most of us would
accept this as a good definition of a function f. According to classical logic,
f is computable because there exists an algorithm that computes it: that
algorithm is either the one which, applied to any natural number n, outputs
L or else the one which, applied to any natural number n, outputs O. But
the Continuum Hypothesis is independent of the axioms of ZFC (Zermelo­
Fraenkel set theory plus the axiom of choice), the standard framework of
mathematics, so we will never be able to tell, using ZFC alone, which of
the two algorithms actually is the one that computes f.

It appears from this example, eccentric though it may be, that the stan­
dard theory of computation does not exactly match computational practice,

2Thc Continuum Hypothesis (CH) says that the smallest cardinal number
greater than ~o, the cardinality of N, is 2No , the cardinality of the set of all
subsets of N. The work of Cohen [13] and G6del [17] shows that neither CH nor
its negation can be proved within Zermelo-Fraenkel set theory plus the axiom of
choice: see also [3], pages 420-428.

Preface IX

in which we would expect to pin down the algorithms that we use. A face­
tious question may reinforce my point: what would happen to an employee
who, in response to a request that he write software to perform a certain
computation, presented his boss with two programs and the information
that, although one of those programs performed the required computation,
nobody could ever tell which one?

With classical logic there seems to be no way to distinguish between
functions that are computed by programs which we can pin down and
those that are computable but for which there is no hope of our telling
which of a range of programs actually performs the desired computation.
To handle this problem successfully, we need a different logic, one capable of
distinguishing between existence in principle and existence in practice. For
example, with constructive (intuitionistic) logic the problem disappears,3
since f is then not properly defined: it is only properly defined if we can de­
cide the truth or falsehood of the Continuum Hypothesis (which we cannot)
and therefore which of the two possible algorithms computes f.

Having said this, let me stress that, despite the inability of classical
logic to make certain distinctions of the type I have just dealt with, I have
followed standard practice and used classical logic throughout this book.

Not only the logic but also most of the material that I have chosen is
standard, although some of the exercises and examples are new. I have
drawn on a number of books, including [34] for the treatment of Turing
machines in Chapter 1; [20] for the first parts of Chapters 4 and 5; and [9,
14, 29] for parts of Chapter 7.

The origins of my book lie in courses I gave at the University of Bucking­
ham (England), New Mexico State University (USA), and the University
of Waikato (New Zealand). I am grateful to the students in those classes
for the patience with which they received various slowly improving draft
versions.4 Special thanks are due to Fred Richman for many illuminating
conversations about recursion theory; to Paul Halmos for his advice and
encouragement; and to Cris Calude, Nick Dudley Ward, Graham French,
Hazel Locke, and Steve Merrin, all of whom have read versions of the text
and made many helpful corrections and suggestions. As always, it is my
wife and children who suffered most as the prolonged birth of this work
took so much of my care and attention; I present the book to them with
love and gratitude.

May 1993 Douglas S. Bridges

3For a development of computability theory using intuitionistic logic see Chap­
ter 3 of [8].

4The first drafts of this book were prepared using the r3 Scientific Word
Processing System. The final version was produced by converting the drafts to
rEX and then using Scientific Word. r3 and Scientific Word are both products
of TCI Software Research, Inc. The diagrams were drawn with Aldus Freehand
v. 3.1 (©Aldus Corporation).

Contents

Preface vii

Preliminaries 1

1 What Is a Turing Machine? 5

2 Computable Partial Functions 19

3 Effective Enumerations 35

4 Computable Numbers and Functions 47

5 Rice's Theorem and the Recursion Theorem 75

6 Abstract Complexity Theory 93

Solutions to Exercises 117
Solutions for Chapter 1 118
Solutions for Chapter 2 120
Solutions for Chapter 3 130
Solutions for Chapter 4 136
Solutions for Chapter 5 156
Solutions for Chapter 6 166

References 173

Index 176

Preliminaries

Throughout this book we assume familiarity with the standard notations
and basic results of informal set theory, as found in [18]. We use the fol­
lowing notation for sets of numbers.

The set of natural numbers: N == {a, 1, 2, ... }.

The set of rational numbers: Q == {±m/n : m, n EN, n f= a}.

The set of real numbers: R.

For n ~ 1 we write xn for the n-fold Cartesian product X x X x ... x X (n
factors) of X, and Pt for the ith projection of Xn-that is, the mapping
from xn onto X defined byl

We denote by (xn);;:"=o, or (Xo, Xl, .. .), or even just (xn), the sequence whose
terms are indexed by N and whose nth term is X n .

We shall be particularly interested in what happens when a computer is
programmed to compute natural number outputs from inputs in Nn. Since
the execution of a program may fail to terminate when the machine is run
with certain inputs-for example, a program for computing the reciprocal
of a natural number will not normally output a natural number if it is run
with the input a-we are forced to deal with functions that are defined on
subsets of N n and not necessarily on the entire set Nn. This leads us to the
notion of a partial function rp from a set A to a set B : that is, a function
rp whose domain is a subset of A and which takes values in B; the domain
of rp may be empty and is usually not the entire set A. We refer to such
a function rp as the partial function rp : A -+ B; we write domain (rp) for
its domain, and range(rp) for its range. We also say that rp(x) is defined if
X E domain(rp), and that rp(x) is undefined if X E A and X (j. domain(rp).
A partial function from A to B whose domain is the entire set A is called,
oxymoronically, a total partial function from A to B.

There is an unwritten convention (not followed by all authors) that uses
Greek letters to denote partial functions and Roman letters to denote total
ones. We shall usually follow that convention, although some partial func-

IThe symbol == means is defined as or is identical to.

2 Preliminaries

tions that are not initially known to be total and are therefore denoted by
Greek letters will eventually turn out to be total.

\Ve often give explicit definitions of partial functions, of the following
form 2 :

<p(n) Vn
undefined

if n is a perfect square,
otherwise.

In this example, <P is a partial function from N to N, and

domain(<p) = {n EN: n is a perfect square}.

We also describe <p as the partial function n f-+ Vn from N to N. We use
the arrow ---7 as in 'the partial function <p : A ---7 B', and the barred arrow
f-+ as in 'the partial function x f-+ sin x on R'. If, for example, <l> is a partial
function from N 2 to N, then for each mEN we also denote the partial
function n f-+ <l>(m, n) on N by <l>(m, .).

Partial functions can be operated on in the obvious ways. For example,
if <p, 1/J are partial functions from N to N, then their sum, product, and
composite are defined respectively as follows:

(cp + 1/J)(n) cp(n) + 1/J(n) if cp(n), 7jJ(n) are both defined,
undefined otherwise;

(<p ·1{i)(n) <p(n) ·1{i(n) if <p(n), 7jJ(n) are both defined,
undefined otherwise;

cpo't/J(n) <p(w(n)) if 7jJ(n) is defined and belongs
to domain(<p),

undefined otherwise;

In general, if a partial function <l> : Nm ---7 N n is defined in terms of already
constructed partial functions <Pi : Nm ---7 N (1 :S i :S j) and \[I : Nj ---7 Nn
by an equation of the type

it is assumed that the left hand side is defined if and only if the right hand
side is defined; thus

domain(<l»

Likewise, when we write

{u E Nm : u E ni=l domain(<pi) and

(<Pl(U), ... ,<Pj(u)) E domain(\[I)}.

<p(n) :S k,

2Here and throughout the book, we use Vn to denote the nonnegative square
root of a nonnegative real number.

Preliminaries 3

where 'P : N ----* N is a partial function, we imply that 'P(n) is defined and
less than or equal to k.

For computational purposes a natural number n is usually represented
by a string of symbols drawn from some suitable set. For example, 5 may
be represented by the string aaaaa whose symbols are drawn from the
singleton set {a}, by the binary string 101, by the single decimal digit 5,
and so on. Strings appear so frequently in the early chapters of our book
that it is a good idea to give a formal definition of them here.

By a string of length n over the set X we mean an element (Xl, ... , xn)

of the n-fold Cartesian product xn == X x· .. x X (n factors); the elements
Xl,' .. , Xn are called the terms of the string, Xk being the kth term. When
we consider (Xl, ... , Xn) as a string over X, we usually omit the parentheses
and commas, and simply write Xl ... X n . We assume that there is a unique
empty string A of length 0 over X; informally, A is the unique string with
no terms over X. We denote by X* the set of strings over X, and by lui
the length of the string u E X*.

Strings u, v over X can be combined to form a string U· v, usually written
uv, by the operation of concatenation. Informally, this involves writing
one string next to another. The following is a formal inductive definition:
for all strings u, v over X, and all elements X of X,

A·u

(xu) . v
u,

X(u· v).

It is a simple exercise in induction to show that concatenation has the
properties you would expect it to have. For example, the length of uv is
the sum of the lengths of u and v; u(vw) = (uv)w (so we write either side
as uvw); and

Au = u = uA.

In the context of computability and formal language theory a nonempty
finite set X is often called an alphabet, and a subset of X* a language
over X. (The set of words defined in the Oxford English Dictionary is a
language over the alphabet {a, b, c, ... , z}; British readers might argue that
this is the English language!) The following are useful constructions with
languages A, B over a finite alphabet X :

• The concatenation of A and B :

A· B == {uv : U E A, v E B}.

• The iterate (or Kleene star) of A :

In this context the union of A and B is often written A + B, rather than
AUB.

4 Preliminaries

For example, if X = {O,l,2}, A = {O, l}*, and B = {2}, then A· B
consists of the string 2, together with all strings of the form Xl ... xn2 with
Xi E {O, I} for 1 :::;i :::; n; A * = A, and B* consists of all finite (possibly
empty) strings with each term equal to 2; and A + B consists of all binary
strings together with the single string 2.

There are common shorthand notations which avoid cumbersome expres­
sions for combinations of languages. For example, we write AB instead of
A· B,

010*1*0 instead of {Ol}· {O}*· {l}*· {OJ,

and

abb(ab)* + (a + b)*ba* instead of {aM} . {ab}* + {a, b} * . {b} . {a} *.

1

"What Is a Turing Machine?

A Tu'ring machine is ... the ultimate personal computeT', since
only pencil and paper are needed ... at the same time, it i8 a8
powerful as any real machine. ([34], p. 280)

We begin our study of computability by describing one of the earliest
mathematical models of computation, one for which the underlying infor­
mal picture is especially easy to understand the Turing machine.

In that picture (see Figure 1), a Turing machine consists of an infinite
tape, and a read/write head connected to a control mechanism. The tape
is divided into infinitely many cells, each of which contains a symbol from
an alphabet called the tape alphabet; this alphabet includes the special
symbol B to signify that a cell is blank (empty). The cells are scanned, one
at a time, by the read/write head, which can move in both directions as
long as it does not move off the tape (which would happen if, for example,
the tape was bounded on the left and the read/write head moved left from
the leftmost cell). At any given time, the machine (or, more properly, its
control mechanism) will be in one of a finite number of possible states. The
behaviour of the read/write head, and the change, if any, of the machine's
state, are governed by the present state of the machine and by the symbol
in the cell under scan.

The machine operates on words over an input alphabet which is a subset
of the tape alphabet. The symbols forming such a word are written, in
order, in consecutive cells from the left of the tape. 'When the machine
enters a state, the read/write head reads the symbol in the cell against
which it rests, and writes in that cell a symbol from the tape alphabet; it
then moves one cell to the left, or one cell to the right, or not at all; after
that, the machine enters its next state.

In this model there is no direct counterpart to the memory registers of a
com puter. However, information is stored in the sequence of states through
which the machine passes. For example, if we want a Turing machine to
transfer the content of a certain cell to the adjacent cell on the right, we
"memorise" the symbol 8 read from the first cell by passing to a different
state for each possible choice of s.

We now give a formal definition of some of these notions. Let X, Y be
finite alphabets with X c Y, and B a distinguished blank element of

6 1. What Is a Turing Machine'?

input/work tape
cell being scanned

\\

LJ -Ll_·· ----'-------"~-L-.-_···-'--r~_L .. r_·· ----'--------.l..-_~

,cadl";;;;~h~~~-' 1
I finitec~~trol I

FIGURE 1. A Turing machine.

Y\X. A Turing machine with tape alphabet Y and input alphabet
X is a quadruple Ai == (Q, 6, go, gF) consisting of

• a finite set Q of states,

• a partial function {y : Q x Y -> Q x Y x {L, R, A} -the state tran­
sition function,

.. a start state go E Q, and

• a halt state qF E Q,

where b(qF,Y) is undefined for all y in 1".1 We interpret the symbols L,R,
and A as left move, right rnove, and no move, respectively.

\Ve shall discuss examples of Turing machines later in the chapter. Our
next task is to clarify our informal picture of the behaviour of a Turing
machine.

In order to start a computation, the symbols of the input word

W == Xl ... XN E){*

lTlUbt be written in the leftmobt N cells of the tape, and A1 must be in
the state qo, with the read/write head against the leftmost cell. If M reads
the symbol U in the state q, it computes (gl, yl, D) = 6(q, y), provided this
quantity is defined. It then writes yl: moves left if D = L, right if D = R,
Hot at all if D = i\.; and paSbes to the state q'. If M reaches the state

IStrictly speaking, we have defined here a deterministic Turing nlachine.
This should be contrasted with a nondeterministic one, in which there is a choice
of several actions when the machine reads a given symbol in a given state. Since
we shall not be concerned with nondeterministic Turing machines, we shall use
the shorter phrase Turing machine, rather than deterministic Turing machine,
throughout this book.

1. What Is a Turing Machine? 7

qF, its activity stops and the final output of its computation is read from
the symbols remaining on the tape. (Actually, we need to be more careful
about characterising the moves, halting behaviour, and outputs of M; we
will return to this matter shortly.)

Suppose that at a given instant our Thring machine M is in the state q;
that the symbols in the cells on the left of the read/write head form the
string u E Y*; that the terms of a string v E Y* lie in the cells at, and to
the right of, the read/write head; and that all cells to the right of 1) are
blank. Thus the leftmost cells of the tape contain the string uv, and all cells
to the right of this are blank. Then the instantaneous configuration of the
machine is fully described by the triple (u, q, v), and the state transitions
of M can be described by the sequence of triples giving the configurations
of M at successive instants of the computation.

In order to formalise these ideas, we introduce two intuitively computable
functions from Y* to Y :

lend(v) H if v = A,
c if v = cw, c EO: Y, and W E Y*,

rend(v) H if v = A,
c if v = wc, cE Y, and w E Y*.

(Thus if v is a nonempty string over Y, then lend(v) is the leftmost sym­
bol, and rend(v) is the rightmost symbol, of v.) Next, we define a con­
figuration of M to be a triple (u, q, v), where u E Y*, either v = A or
v E Y*(Y\{H}), and q E Q.2 We say that the configuration (u',q',v') is
reached in one step from (u, q, v) if

8(q, lend(v)) = (q', b, D) E Q x Y x {L, R, A}

is defined (so, in particular, q :f. qF), and if the following conditions obtain.

(i) If D = L, then u = u'rend(u) and

v' A if b = H, rend(u) = H, and
either v = A or v = lend(v),

if b = H, rend(u) of H, and
either v = A or 1) = lend(v),

rend(u)bw if wE Y', v = lend(v)w, and
either b oj, B or 10 of A.

2 As it stands, this definition does not completely capture our intuitive con­
ception of a configuration, since it does not preclude the possibility of nonblank
symbols lying to the right of the string v on the tape. However (see Exercise
(1.2.2)), this situation does not arise when the configuration (u, q, v) is part of a
computation, according to the strict notion of computation that we shall intro­
duce shortly.

8 1. What Is a Thring Machine?

(ii) If D = A, then u' = u and

v' A ifv=Aandb=B,
b if v = A and b =f. B,
bw if v =f. A and v = lend(v)w, where w E Y*.

(iii) If D = R, then u' = ub and

v' A if v = A,
w if v =f. A and v = lend(v)w, where w E Y*.

We then write
(u,q,v) f-- (u',q',v').

Figures 2 and 3 illustrate some of the cases of this rather complicated
definition; in each case, v =f. A, a = rend(u), c = lend(v), and b =f. B.

(1.1) Exercise

* Draw diagrams to illustrate the remaining cases of the definition of
reached in one step.

For configurations C, C' and a positive integer i, we define the relation
f--i inductively as follows: C f--i C' if

either i = 1 and C f-- C',

or i > 1 and there exists C" such that C f--i-l C" and C" f-- C'.

If C f--i C', then C' is reached in i steps from C.
We say that a configuration (u, q, v) of M is admissible if

either u =f. A,

or u = A and Pr(8(q, lend(v))) =f. L;

otherwise, we say that the configuration is inadmissible. A computation
by M is a finite sequence (Co, C l , ... , Cn) of admissible configurations such
that

Co = (A, qo, v) for some v E X*,

Ci f-- CHI for each i,

and Cn is of the form (A, qF, v') for some v' E X*.

We then call v the input, v' the output, Co the initial configuration,
and Cn the final configuration of the computation; and we say that M
completes the computation (Co, C l , ... , Cn) on the input v.

In allowing only admissible configurations in the definition of computa­
tion, we have in mind the model where the TUring machine has its tape

D=L:

becomes

D=A:

becomes

1. What Is a 'lUring Machine? 9

.. u--I--v--
I I I I I I la I c I I I I I I I ~
-u' ctW~

- u' ---1-- v' ----

I I I I la I bl I I I I I I ~ +-w-­
cb

.. u--I--v--
I I I I I I Ie I I I I I I 11

ctW~

.. u--I--v'--
I I I I I I I bl I I I I I I ~ +-w--

cb
FIGURE 2. Two cases of passage from one configuration to another when
v::f. A, a = rend(u), c = lend(v), and b::f. B.

10 1. What Is a Turing Machine?

D=R:

u--I--v

I I I I Ie I I I I 1

becomes

- u'----I- v'=w--

-u---- +
cb

FIGURE 3. Another case of passage from one configuration to another when
v # A, a = rend(u), c = lend(v), and b # B.

bounded on the left. In that model the input is written in the leftmost
cells of the tape, and it is impossible to move left of the leftmost cell. The
restriction to such Turing machines is not as drastic as it may seem, for it
can be shown that to each Turing machine with tape extending infinitely
in both directions there corresponds a Turing machine with tape bounded
on the left that performs the same computation (usually using a different
algorithm); see Section 6.4 of [34].

If v E X* and there does not exist a computation by M with input
v, we say that M fails to complete a computation on the input v.
To see how such a failure can happen, let Co == (A, qo, v), with volA.
If pl(8(qo,lend(v))) = L, then Co is inadmissible; otherwise, there is a
(possibly finite) sequence Co, C l , ... of configurations such that Ci ~ Ci+1

for each i. Either that sequence is infinite, in which case none of the states
Pr(Ci) is qF; or the sequence is finite, with last term Cn == (un, qn, vn), say.
In that event we have the following three possibilities: Ci is inadmissible
for some i; qn =1= qF and 8(qn,lend(vn)) is undefined; qn = qF. Only in the
last case can M complete a computation-namely, (Co, C l ,.·., Cn)-on
the input v; even then, it only does so if Un = A.

In general, if v E X* and there is a finite sequence (Co, C l , ... , Cn) of

1. What Is a Turing Machine? 11

admissible configurations such that

Co = (A,qo,v),

Ci f- CHI for each i,

and Cn is of the form (Vi, qF, Vi) for some Vi, Vi E Y*,

we say that M halts on the input v. (Recall that qF is the halt state of
M.) If Cn is of the form (A, qF, Vi) for some Vi, we say that ivl halts with
the read/write head on the left, or that M parks the read/write
head; in which case, if also v' E X', then M completes the computation
(Co, C1 , ... , Cn) on the input v.

Many authors would not make the parking of the read/write head nec­
essary for the completion of a computation: they would consider a compu­
tation (Co, C1 , ... , Cn) to be completed if Cn has the form (v', qF, Vi) for
some strings u/, Vi in X*. We prefer to require the parking of the read/write
head as this makes it easier to perform certain tasks such as the joining
together of Turing machine modules3 in the construction of a large Turing
machine.

(1. 2) Exercises

.1 Consider a Turing machine A1 with start state qo and halt state qF.

Suppose that from the initial configuration (A, qo, v), where v is a
string over the input alphabet X of M, ./\.11 follows a sequence of
state transitions that eventually leave it in its halt state with the
read/write head on the left, and with a string Vi E X*, followed by
a blank, in the leftmost cells of the tape. Can we decide whether M
has completed a computation with output Vi? In other words, can we
determine whether there are nonblank symbols in cells of the tape to
the right of Vi?

.2* Prove that if the configuration CI == (Vi, ql, Vi) is reached in one step
from the configuration C == (v,q,v), and if, when the configuration
of M is C, all cells to the right of the string vv are blank, then, after
the transition from C to C', all cells to the right of u'v' are blank.

The time has come to give some examples to clarify the many complicated
definitions we have introduced above. To begin with, consider the Turing
machine M == (Q, 8, qo, qF) where

3\Vhen we refer to a Turing machine module, we have in mind the Turing
machine equivalent of a procedure or subroutine in a programming language.

12 1. What Is a Turing Machine?

FIGURE 4. The state diagram of the Turing machine jVi.

and b is given by the following state transition table, in which, for
example, the entry at the int.ersection of row ql and column 1 is b(ql' 1) :

.. --.-.. ----... - .. -

0 1 B

qo (ql,LR) (q2.B, R) (qF,B,L)

ql (ql, 1, R) (ql, 0, R) (qF,B,L)

q2 (q3, B, R) (q2, 1, A) undefined

q3 (ql,l,R) undefined undefined

qF undefined undefined undefined

A more perspicuous representation is given by a directed graph known as
the state diagram of Ai; see Figure 4. In such a diagram the encircled
nodes represent the states of the Turing machine. The initial state is dis­
tinguished as the one at the head of a curved arrow with no state at its
tail, and the halt state by double encircling. An arrow bearing the label

y/y'. D

and joining a state q to a state q' indicates that y) = (q', y', D).
Now consider the behaviour of M when given the input 0011. The infor­

mal picture is given in Figure 5. A more formal description of the behaviour
of M is given by the configuration sequence

1. What Is a Turing Machine'? 13

(A, qo, 0011) ~ (l,ql,Oll)
~ (11, ql, 11)

~ (110, ql, 1)

~ (1100,ql,A)

~ (110,QF,O).

[[LoLHl; Iii 1 1

~

i1l11111i 1 1 iL~

~
! ql I
~

Ili11oloi 1 1 iLL

~

FIGURE 5. The behaviour of .,'\.·1 on the input 0011.

Next, consider what happens when the input of M is 11; the informal
picture is given in Figure 6.

Thus the machine loops, reading 1 in state Q2, writing 1, and remaining

14 1. What Is a Turing Machine?

11111 I I I I I I

ct
I 111 I I I I I I I

ct
I 111 I I I I I I I

ct
FIGURE 6. The behaviour of M on the input 0011.

in state q2. The corresponding configuration sequence is

(A,qo,ll) f- (B,q2,1)

f- (B,q2,1)

f- (B, q2, 1)

f-

Finally, note that if M is given the empty input A, then the initial
configuration (A,qo,A) is inadmissible, since Pl(8(qo,lend(A))) = L. So
M fails to perform a computation on the input A.

For our second example, we design a Turing machine T, with input
alphabet {O, I}, that removes the leftmost symbol of the input word and
shifts the resulting word one space to the left on the input tape. Here is
an informal, high-level description of T. It has states qo, ql, q2, q3, q4, qF,
where qo is the start state and qF the halt state. Assume that the symbols

1. What Is a Turing Machine? 15

of a binary input string w == Xl ... X N are written in the leftmost N cells of
the tape, and that T is in the state qQ, with the read/write head scanning
the leftmost cell. If N = 0, so that w = A and the symbol in the leftmost
cell is B, T

writes B,
does not move, and
enters the halt state qF.

If N 2:: 1 and therefore w i= A, T first

reads Xl,

writes B,
moves right, and
enters the state ql.

Now assume that T is in the state ql, and that the cell on the left of the
one scanned by the read/write head contains B. If the symbol scanned is
an element X of {O, I}, T

writes B,
moves left, and
enters a state that depends on X (and thereby "m.emorises" x).

T then reads B,
writes x,
moves two cells right, and
enters the state ql.

If, on the other hand, T is in the state ql, and the read/write head is
scanning a cell that contains B, T

writes B,
does not move, and
enters the halt state qF.

Note that if the input string contains more than one term, T will not
park the read/write head before entering its halt state. (You are invited to
remedy this defect.)

The state transition table for T is given below; the state diagram is found
in Figure 7.

0 1 B

qa (ql,B,R) (ql,B,R) (qF, B, A)

ql (q2, B, L) (q3,B, L) (qF, B, A)

q2 undefined undefined (q4, 0, R)

q3 undefined undefined (q4, 1, R)

q4 undefined undefined (ql,B,R)

qF undefined undefined undefined

16 1. What Is a Turing Machine?

FIGURE 7. The state diagram for our second Turing machine example.

Notice that, as in this example, a state diagram always provides a concise
description of a Thring machine. In general, such a description may not
be as transparent as a high-level one. If the tape alphabet contains more
than a handful of elements, it may be physically impossible to draw the
corresponding state diagram clearly.

Referring to any of these descriptions of T, we see that the input 0110
leads to the configuration sequence

(A, qo, 0110) I- (B, ql, 110)

I- (A, q3, BBIO)

I- (1, q4, BlO)

I- (lB, Ql, 10)

I- (1,Q3, BBO)

I- (11, Q4, BO)

I- (I1B, Ql, 0)

I- (11, Q2, A)

r'" (110, Q4, A)
I- (110B,Ql,A)

I- (HOB, QF, A).

(1.3) Exercises

.1 Let v E X*, and suppose that there is an infinite sequence

Co == (A,qo,v),C1 ,C2 , .•.

of admissible configurations such that C i I- Ci+l for each i. Must
there exist distinct m, n such that Cm = Cn (in which case we say
that M loops on the input v)?

1. What Is a Turing Machine? 17

.2 Design a Turing machine, with input alphabet {a, I}, that shifts a
nonempty input word one place to the right, writes a blank in the
leftmost cell of the input tape, and parks the read/write head .

• 3 Design a Turing machine M with input alphabet {a, I} and tape
alphabet {a, 1, B} such that if M is started in its start state, with
the read/write head on the left and with a string v E OB* 11 * in the
leftmost cells of the tape, then M shifts all the 1 's to the left of the
tape and parks the read/write head. (This Turing machine will be
used in the solution to Exercise (2.7.1).)

.4 Design a Turing machine, with input alphabet {a, I}, that executes
a cyclic left shift by one cell: that is, if the input word is Xl ... X N,

with each Xi E {a, I}, then the output word is X2 ••• XNXl and is
written in the leftmost N cells of the input tape. As part of your
design, make the Turing machine halt with the read/write head on
the left .

. 5* Design a Turing machine that duplicates a nonvoid input word over
{a, I} : that is, if the input word is w, then the output word is ww,
with its first symbol in the leftmost cell of the input tape. Make the
Turing machine halt with the read/write head on the left .

. 6* Design a Turing machine that compares two binary strings, outputs
1 if the strings are equal, outputs ° if the strings are unequal, and
parks the read/write head.

2

Computable Partial Functions

As you may have discovered while doing the exercises at the end of Chapter
1, designing TUring machines to perform particular tasks can be quite an
addictive activity. However, that activity is not the object of this book,
which is to investigate the theory, rather than the practice, of computation.
That investigation is based upon the notion of a partial function computed
by a TUring machine, to which we now turn our attention.

Let M == (Q, 8, qo, qF) be a TUring machine with tape alphabet Y and
input alphabet X, and let S be a subset of X*. We define as follows the
partial function <p : S --; X* computed by M : if M completes a com­
putation on the input s E S, then <pes) is the output of that computation;
otherwise, <pes) is undefined.

For example, consider the computation of the addition function

plus: N 2 --; N,

defined by
plus(m, n) == m + n.

We first identify the natural number n with its unary representation
r n l-a string of n + 1 terms each equal to 1.1 We then identify the pair
(m,n) of natural numbers with the string rm10rn1 in l{l}*Ol{l}*. Thus

N is identified with 1 {I} * ,

N 2 is identified with l{l}*Ol{l}*.

The computation of plus will be carried out using a binary Turing ma­
chine M-that is, a TUring machine with input alphabet {O, I} and tape
alphabet {O, 1, B}; plus will be the total partial function from l{1}*Ol{1}*
to {O, 1}* computed by M, and will have values in 1{1}*.

Here is a high-level description of the behaviour of M when the initial
configuration is (A,qoJ m10rnl), with qo the start state and m,n E N. To

lNormally we shall not distinguish between a natural number n and its unary
representation r n 1. However, there are situations, such as the proof of Theorem
(2.8), where we make that distinction in order to avoid confusion.

20 2. Computable Partial Functions

. IIl,R

.
111J"R_~ (qt". .!lfB, L

',,--Y
/ ~

.. 011 ,R

II1,L

.!lILA

FIGURE 8. A binary Turing machine that computes plus.

begin with, M

writes B in the leftmost cell:
moves right, reading and rewriting l's, until it reads 0;
replaces 0 by 1: and
continues moving right, reading and rewriting l's, until it reads B;

It then

moves left and deletes 1;
moves left again and deletes I;
continues moving left. reading and rewriting l's. until it reads B;
writes 1: and
halts.

M has then completed a computation, and has i (m -+ n) la string of
(m -+ n + 1) terms each equal to I-in the leftmost cells of the tape. all
other tape cells being blank.

Here is the state transition table for M :

0 1 B

qo undefined (ql. B, R) undefined

!jl (q),I,R) (ql,l,R) (q2, B, L)

q2 undefined (q3, B, L) undefined

q3 undefined (q4, B, L) undefined

q4 undefined (qq, 1. L) (qF.l,A)

1]1" undefined undefined undefined
---------------------------------------_._,..-.

For the state diagram of Ai see Figure 8.

2. Computable Partial Functions 21

(2.1) Exercises

.1 Design a Thring machine that computes the empty partial function
E: {a, 1}* --+ {O, l}*, where

E (s) == undefined for all s .

. 2 Design a Turing machine that computes the partial function erase:
{a, 1}* --+ {O, I}*, defined by

erase(s) == A for all s .

. 3 Design Thring machines that compute the Boolean functions /I., V,
and ---, on {a, l}*, where for each w E {O, l}*,

/1.(w) 1 if each bit of w is 1,

° otherwise;

V(w) 1 if some bit of w is 1,
(] otherwise;

and ---, is defined inductively by the relations

---, (A)
-{wO)
---,(wI)

A,
(---,w) 1,
(---,w)O .

.4* Design a Thring machine that computes the multiplication function
times : N x N --+ N, defined by

times(m, n) == m x n .

. 5* Design a Thring machine M that adds two natural numbers in the
following way: if the numbers have binary representations

N N

a==Lak2kand b==Lbk 2k ,
k=O k=O

and if .A1 is started with the input word aObOa1b1 ••. aNbN on the left
of the tape, then it completes a computation with output COC1 ... CK,

",K .-
where a + b = L..,j=o cj 21 .

The computation of plus : N 2 --+ N preceding Exercises (2.1) typifies our
approach to the computation of partial functions from Nn to N. Identifying

N with I{l}*,

Nn with l{l}*OI{I}*O··· 01 {l}*,

22 2. Computable Partial Functions

we say that a partial function ip : N" --> N is Turing machine com­
putable if it is the partial function from Nn to N computed by some binary
Turing machine .lVI. If m > 1, we say that a partial function ip : Nn -> Nm
is Turing machine computable if the functions PJ: 0 ip : Nr1 -+ N (k =
1, m) are Turing machine computable.

Our definition of l'uring machine computable partial Junction from NrL
to Nm is not as restrictive as it may seem: the following lemma will enable
us to prove that a partial function ip : N"·, Nut is Turing machine
computable if it is computed by some Turing machine whose input alphabet
includes {O, I}.

(2.2) Lemma. If M is a Turing machine whose input alphabet X con­
t(rlnS at least two elements, then the're is a Turing machine that computes
the same partial functions as Ai and thai. has input alphabet X and tape
alphabet X U {B}.

Proof. \Ve illustrate the proof by sketching the argument in the case
where X = {O, I} and the tape alphabet Y of .;\'1 is {O, L 2, B}. Let

be the set of states of JVI, where qo is the start state and (iF the halt
state. The idea of the proof is to design a Turing machine ,.VI', with input
alphabet X and tape alphabet)Ie U {B}, that mimics the action of M on
any string over Y by operating on a binary encoding of that string. The
set Q' of states of M' will include Q as a proper subset.

vVhen started in its start state, with the input word

in the cells on the left of the tape, and with the read/write head against
the leftmost cell, }vt' first encodes w according to the following scheme:

code(O)
code(l)
code(2)
code(w:r)

00,
Ol.
10.
code(w)· code(x) (w E (Y\{B})*, :1: E Y\{B}),

where the symbol· denotes the concatenation operation on strings. To do
so, A'l' first moves the entire input string two places to the right and writes
blank symbols in the leftmost two cells. It then moves X2, ... ,XN one space
right and writes B in the cell to the right of Xl; moves Xa, ... , X N one space
right and writes B in the cell to the right of :1:2; and so on, until the string
on the left of the input tape is

2. Computable Partial Functions 23

and the read/write head is against XN. Next, the read/write head

moves left until it ha.<; read two successive blanks,
moves two cells right, and
reads Xl'

Using states to "memorise" that it read Xl, M' next

writes B,
moves left, and
writes the right bit of code(xd.

The string on the tape at this stage is

where r is the right bit of code(xd in the cell being scanned by the
read/write head. A1' now

moves the read/write head three cells to the right,
reads X2 (and memorises this by entering the

appropriate state),
writes B,
moves two cells left,
writes the left bit of code(x2),
moves right, and
writes the right bit of code(X2).

The string on the tape is now

and the read/write head lies against the right bit of code(x2)' Carrying on
in this way, we arrive at a configuration with the string

Br . code(x2) ... code(xN)

in the leftmost cells of the input tape, and the read/write head against
the right bit of code(xN)' M' then reads the blanks in the three cells to
the right of code(xN); these three blanks indicate that it should complete
its ta.<;k by moving the read/write head left until it reads the leftmost B,
at which point it writes the left bit of code(xl) and enters the state QO.2

2Note that at each stage the module stores relevant information by means of
the state the machine enters. For example, when the read/write head reads :1;1

prior to moving left and writing the right bit of code(xI), the machine enters a
different state for each of the possible values of Xl.

24 2. Computable Partial Functions

Renaming the states of M' used so far, we can ensure that none of those
states except qo belongs to Q.

We next arrange for M' to imitate the passage from one configuration
of M to the next. If

8: Q x Y ---t Q x Y x {L, R, A}

is the state transition function of M, M' imitates the transition represented
by 8(q,y) = (q',y', D) as follows. Suppose that M' is in the state q, that
y E {a, 1, 2}, and that the read/write head of M' lies against the left bit
of code(y). M' reads that bit, moves right (using states as memory), and
registers that the two bits just read form code(y); it then moves left, writes

B if y' = B,
the left bit of code(y') if y' E Y\{B},

and uses states to remember q', y', and D. M' then moves right, reads the
right bit of code(y), writes

moves

B if y' = B,
the right bit of code(y') if y' E Y\ {B},

three places left if D = L,
one place left if D = A,
one place right if D = R,

and passes to the state q'.
If, on the other hand, y = Band M' is in the state q with the read/write

head against B, then M' proceeds as follows. It reads B, moves right (using
states as memory), and registers that the symbol against the read/write
head is B. M' then moves left, writes

B if y' = B,
the left bit of code(y') if y' E Y\ {B},

and uses states to remember q', y', and D. M then

moves right,
reads B,
writes

B if y' = B,
the right bit of code(y') if y' E Y\ {B},

moves
three places left if D = L,
one place left if D = A,
one place right if D = R,

2. Computable Partial Functions 25

1I1,R 2/2,R

~\ /l
~~(,/ C, @ ~15--->-@ B/l,L

('\

r I
\ I
,~/

O/O,R

111,L
(~\\

\)
r;;~ 2/1,A !Fa:s . &- '{!dl
! \ ~~
(\,

\ !
\..~._/

O/O,L

FIGURE 9. The Turing machine M in Exercise (2.4.1).

and passes to the state q'. Finally, if q' = qN, the halt state of M, we
require M' to halt on entering q'. 0

(2.3) Proposition. If rp is a partial Junction from Nn to N that is
computed by some Turing machine whose input alphabet contains {O, I},
then rp is Turing machine computable.

Proof. To make sense of this proposition we must remember that we
are identifying each natural number with its unary representation. Given a
Turing machine A'l, with input alphabet X ::) {O, I} and start state qo, that
computes rp, we construct a binary Turing machine M' as follows. First,
we delete from the state diagram of A1 any arrows representing transitions
of the form

8(qo, y) = (q', y', D)

with y E X\ {O, I}. Next, we restrict the input alphabet to {O, I}, and use
Lemma (2.2) to construct a binary Turing machine M' that computes the
same partial functions from {O, I} * to {O, I} * as does M. In particular,
when started in its start state with with the input word koOk1 n .. . Okn on
the left of the tape, where ki E N for each i, M' completes a computation
with output rp(k1 , ... , kn). 0

(2.4) Exercises

.1 * Carry out the construction in the proof of Lemma (2.2) to design a
binary Turing machine T that computes the same partial functions
as the Turing machine M with input alphabet {n, I}, tape alphabet
{O, 1, 2, B}, and the state diagram described in Figure 9. (This Tl1ring
machine adds 1 to the rightmost projection of an input string from
Nn.)

26 2. Computable Partial Functions

2/2,A
,r\, 11l,R

(~"
\ \
I, \,

OIO,R

3/3,R
(\

OIO,L

FIGURE 10. The Turing machine Ai in Exercise (2.4.2) .

. 2 Let 'P be the partial function from N to N computed by the Turing
machine.Vi with input alphabet {O, 1, 2}, tape alphabet {O, 1, 2, 3, B},
and the state diagram described in Figure 10. Carry out the con­
struction in the proof of Proposition (2.3) to design a binary Turing
machine that computes 'P .

. 3* Fill in the details of the proof of Proposition (2.3).

The year 1936 marks the beginning of the modern era of the theory of
computation, with the introduction of three mathematically precise notions
attempting to capture the informal idea of a computable partial function
from Nn to N. These notions are Turing machines, Kleene's partial re­
cursive functions [20, 23], and Church's lambda calculus [2]. It was shown
subsequently that these three and all other attempts to characterise com­
putable partial functions give rise to the same class of computable partial
functions from Nn to N--namely, those that are Turing machine com­
putable; see [23], Chapter 1.

Nevertheless, partial recursive functions and the lambda calculus are of
interest in their own right. Both are significant in the theory and practice
of programming languages. In particular, the lambda calculus (which we
shall not discuss further) underpins the language LISP. On the other hand,
the concepts and methods of recursive function theory have permeated
mathematics and logic to such an extent. that all mathematicians should
be aware of what a recursive function looks like; for this reason we now
make a short detour to look more closely at those functions.

"Ve begin with the cla"ss of base functions, which comprises

• the natural numbers 0,1,2, ... (considered as functions of zero vari­
ables);

• the zero function 0: N···,·> N, defined by O(n) == 0;

2. Computable Partial Functions 27

• the successor function scsr : N ---> N, defined by scsr(n) == n + 1;

• the projection functions Pj : Nn ---> N, defined by

For n ~ 1, the partial function <p : Nn ---> N is obtained from the partial
functions '¢ : Nn-I ---> Nand () : Nn+I ---> N by primitive recursion if
for all k, k2 , ... , kn in N,

and
<p(k + 1, k2 , ... , kn) = ()(k, <p(k, k2 , ... , kn), k2 , ... , kn).

(Recall that in such a definition it is understood that the left-hand side is
defined if and only if the right-hand side is defined.) In particular, the total
function f : N ---> N is obtained from the constant c E N and the total
function h : N 2 ---> N by primitive recursion if f(O) = c and f(k + 1) =
h(k, f(k)) (k EN).

The set P of primitive recursive functions over N is defined induc­
tively by the following conditions, where m, n ~ 1 :

• P contains all the base functions.

• If 9 : Nm ---> Nand hk : Nn ---> N (k = 1, ... , m) belong to P, then
the composite function go (hI, ... , hm) : Nn ---> N belongs to P.

• If the functions 9 : Nn-I ---> Nand h : Nn+I ---> N belong to P, then
so does the function f : Nn ---> N obtained from 9 and h by primitive
recursion.

For example, the functions plus and times on N 2 (introduced earlier in
this chapter) are primitive recursive: for

plus(O, k)

plus(j + 1, k)

times(O, k)

times(j + 1, k)

(2.5) Exercise

Pf(k),
scsr 0 pt(j, plus(j, k), k),

0,

plus 0 (Pt, pl)(j, times(j, k), k).

Prove that P is the set of all functions obtained from the base func­
tions by finitely many applications of composition and primitive re­
cursion.

28 2_ Computable Partial Functions

The application of recursion or composition to total functions on NT!
always produces total functions. In order to construct from the elements of
P an appropriate class of partial functions on NT!, we introduce one more
method of obtaining new functions from old.

An element (k1 , ... ,kn) of NT! is admissible for minimisation relative
to the partial functionll) : Nn+1 ---> N if

{m EN: (i, k1 , ... , kn) E domain('lj;) (0 S;

is; m) and w(m, k1 ,· .. , kn) = O}

is nonempty. The partial function tp : Nn ---> N is obtained from "IjJ by
minimisation iEthe domain of tp is the set of those (kl, ... ,kn) E Nn that
are admissible for minimisation relative to '1/;, and

for each (k j ,. _', kn) E domain(tp). In that case we write

The set R of partial recursive functions over N is defined inductively
by the following four conditions, where m, n ;::0: 1 :

III R contains all the base functions .

• If tp : Nm ---> Nand Wk : N n ---> N (k = 1, ... , m) belong to R, then
the composite function tp 0 (7£'1, ... , Wm) : Nn --> N belongs to R.

III If"IjJ : Nn-1_, Nand e : Nn+l ---> N belong to R, then the partial
function tp : Nn ---> N obtained from '1/; and e by primitive recursion
belongs to R .

.. If the partial function I/; : Nn+l -_._, N belongs to R, then so does the
partial function tp : Nn ---t N obtained from W by minimisation.

Thus (cf. Exercise (2.5)) R is the set of all partial functions obtained from
the base functions by finitely many applications of composition, primitive
recursion, and minimisation. Clearly, PeR.

(2.6) Exercises

.1 Prove that the factorial function n f-...,. n! is primitive recursive on
N .

. 2 Prove that the function power: N 2 ---> N, defined by

power(Tn,n) == n m ,

2. Computable Partial Functions 29

is primitive recursive. Does

power'(m,n) == mn

define a primitive recursive function? What about the function n f-+

n m , where mEN is fixed?

.3 Prove that the cutoff subtraction function, defined by

cutoff(m, n) m - n if m 2.' n,
o otherwise,

is primitive recursive on N 2 . (Hint: First prove that the function m f-+

cutoff(m, 1) is primitive recursive on N.) Prove also that (m, n) f-+

1m - nl is a primitive recursive function, where I . I denotes absolute
value .

. 4 Prove that the partial function sqrt : N -> N, defined by

sqrt(n) Vii
undefined

if n is a perfect square,
otherwise,

belongs to n. (Recall that 0 denotes the nonnegative square root.)

.5* Let cp : N 2 -> Nand 'lj; : N -> N be partial recursive functions, and
for each n define

Prove that

8(n)

S(n) == {k EN: cp(n, k) ~ 'lj;(n)}.

min S(n)
undefined

if S(n) is nonempty,
otherwise

defines a partial recursive function from N to N. We often write

8(n) = mink[cp(n,k) ~ 'lj;(n)].

The following exercises take much of the sting out of the proof that
every function in n is Turing machine computable. Note that we take each
natural number, considered as a function of zero variables, to be computable
by convention.

(2.7) Exercises

.1 Prove that each of the base functions is Turing machine computable.

30 2. Computable Partial Functions

.2 Let 'ljJ : N m ----7 Nand 81 , ... , 8m : Nn ----7 N be Turing machine
computable partial functions. Prove that the composite function r.p ==
'ljJ a (81 , ... ,8m) is a Turing machine computable partial function from
Nn to N .

. 3 Let 'ljJ be a Turing machine computable partial function from N n +1 to
N. Prove that the partial function obtained from 'ljJ by minimisation
is Turing machine computable.

(2.8) Theorem. Every partial recursive function r.p : Nn ----7 N is Tur­
ing machine computable.

Proof. Given Turing machine computable partial functions

'ljJ : N n - 1 ----7 N, 8: N n +1 ----7 N,

define the partial function r.p : Nn ----7 N recursively by

r.p(i, u) 'ljJ(u)
8(i - 1, r.p(i - 1, u), u)

if i = 0,
if i ~ 1.

In view of Exercises (2.7), we need only describe a binary Turing machine
M that computes r.p; for simplicity, we take the case n = 2. Let i, j be
natural numbers, and consider the behaviour of M when it is started in
the start state with the input string f i 1 Of j 1 on the left of the tape. M
begins by reading and rewriting 1 in the leftmost cell, moving one square
right, and entering a special "checking" state q. If it then reads 0 in the
second cell on the left (in which case i = 0), it calls a module that writes
f 'ljJ(j) 1 in the leftmost cells, leaves all the other cells blank, and parks the
head. If, on the other hand, M, in the state q, reads 1 in the second cell on
the left (in which case i ~ 1), it moves the input string filOfjl one place
to the right, writes B in the leftmost cell, and writes OOf (i - 1)10 f j 1 on the
right of f j 1. Leaving each of the zeroes unchanged in position on the tape,
M then calls a module that

leaves the tape unchanged at and to the left of the rightmost
copy of f jl,

writes OOlOf'ljJ(j)l on the right of that copy of fjl,
leaves the read/write head against the cell immediately to the

right of the leftmost instance of 00, and
enters a special state q1.

Now assume that M is in the state q1 with the read/write head against
the cell immediately to the right of the leftmost instance of 00; that the
leftmost cells of the tape contain

2. Computable Partial Functions 31

Br i l Or j 1 OOwso r j loor k lor <p(k, j) 1

where 0 :::; k < i, w E {1}*, s E {B}*, and the number of cells occupied
by ws is i; and that the rest of the tape is blank. M then calls a Turing
machine module T that first examines the left symbol of ws. If that bit
is I-so that lsi < i-then T changes the rightmost bit of w to B; thus
ws = w' s', where

w' E {1}*, s' E {B}*,

Iw'l = Iwl- 1, Is'l = lsi + 1, and Iw's'l = Iwsl = i.
T then writes Orjl on the right of the string r<p(k,j)l on the right of the
tape, and places the read/write head against the cell to the right of the
rightmost instance of 00. Next, T calls a module that, leaving the tape
unchanged to the left of the string rklOr<p(k,j)lOrjl,

replaces that string with r (k + 1) lOr (}(k, <p(k, j), j) 1,
leaves the read/write head against the cell immediately to the

right of the leftmost instance of 00, and
enters the special state q1.

This completes the action of the module T and leaves M ready for a further
call of that same module.

On the other hand, if, on its initial examination of the left symbol of ws,
T discovers that that symbol is B, then w = A and lsi = i; in that case, T
(and therefore M) moves right, replacing each B that it reads by 0, until
it reaches the rightmost instance of o. It then

copies the string <p(i, j) from the right to the far left of the tape,
leaving all other tape cells blank, and

halts with the read/write head parked on the left (cf. Exercise (1.3.3)).

(M recognises the leftmost cell on the tape by the blank it deposited there
early in its execution.) In that case, M has completed a computation with
output <p(i,j). 0

You should note that as long as Exercises (2.7) have been carried out
correctly, Theorem (2.8) provides an effective method of obtaining a binary
Turing machine that computes a given partial recursive function from N n

to N.
Designing binary Turing machines to carry out even simple computa­

tional tasks such as the addition of two integers can be an intricate busi­
ness; indeed, in its need for careful attention to fine details, Turing machine
design is reminiscent of machine language programming. Fortunately, in

32 2. Computable Partial Functions

theoretical studies of computability it is customary to believe the over­
whelming mass of evidence that supports the Church-Markov-Turing
thesis3 :

A partial function 'P : Nn -+ N is computable (in any accepted
informal sense) if and only if it is computable by some binary
Turing machine--that is, if and only if'P = 'Pk for some k.

By accepting this thesis, as we shall do from now on, we are able to dispense
with a formal proof of Turing machine computability, provided that the
partial function under consideration is clearly computable in some informal
sense.

For example, if (p : N -+ N is a Turing machine computable partial
function, then in order to prove that the composite partial function 'P 0 'P is
Turing machine computable, we first note the following informal algorithm
for computing 'P 0 'P(k) : choose a binary Turing machine J\-1 that computes
'P. and run .M on the input r k 1; if A1 completes a computation, run M
again, this time with the input r 'P(k) 1. We then invoke the Church-Markov­
Turing thesis.

We shall use such informal arguments, with an (often unstated) appeal to
the Church-Markov-Turing thesis, throughout the remainder of this book.
Nevertheless, there will be situations where a given partial function is not
obviously computable in any informal sense; in such circumst.ances we shall
confirm the function's computability by describing a Turing machine that
computes it.

lt is important to realise that the Church-Markov-Turing thesis is not
susceptible of proof: it is an unsubstantiable claim that all notions, formal
and informal, of a computable partial function from Nn to N are equivalent
to the formal notion of a Turing maehine computable partial function. Our
willingness to accept the Chureh-Markov-Turing thesis is based on

• the fact, mentioned above, that all attempts to formalise the intuitive
notion of a computable partial function from N" to N have led to
the same class of functions, and

• the absenee of any convincing example of a computable partial func­
tion that is not Turing machine computable. 4

Theorem (2.8) proves part of the identification of the partial recursive
functions with the Turing machine computable functions; for the remainder
of that proof, and proofs of other such identifications, see Chapter 1 of [23].

:lThis is commonly known as Church '5 thesis; but our name for it reflects more
accurately its origins.

4 [19] contains an argument against the Church-Markov-Turing thesis; this is
discussed briefly on page 142 of [25].

2. Computable Partial Functions 33

We shall not pursue those proofs here, since we are primarily interested
in the consequences of the Church-Markov-Turing thesis, rather than the
detailed justification of the thesis itself.

We end this chapter with an observation about the cla.<;ses P and R.
Although the extension from P to R was made in order to accommodate
partial functions within Kleene's theory of computation, there are total
partial recursive functions over N that are not primitive recursive. A stan­
dard example of such a function is Ackermann's function A : N 2 ----+ N,
defined by the equations

A(O, n)

A(m+1,0)

A(m.+1,n+1)

n+ 1,

A(m,1),

A(m, A(m + 1, n)).

It is intuitively clear that A is computable, and hence, by the Church­
Markov-Turing thesis, that it is partial recursive. Thus the function A'
N ----+ N given by

A'(n) == A(n, n)

is a total partial recursive function on N. But, as is shown by an involved
argument that can be found on pages 11-21 of [9], to each primitive recursive
function f : N ----+ N there correspond m and k such that A(m, n) > fen)
whenever n 2:: k. It follows from this that A', and therefore A, cannot be
primitive recursive; see Exercise (2.9.2).

(2.9) Exercises

.1 Prove that Ackermann's function is a total function on N 2 .

. 2* Prove each of the following statements about Ackermann's function.

(i) A(m, n) > n.

(ii) A(m, n + 1) > A(m, n).

(iii) A(m + 1, n) > A(m, n).

(iv) If n 2:: 2, then A(m, A(m, n)) > 2A(m, n).

(v) A(m -+ 1, n) = A(m, A(m, ... , A(m, 1) ...)), where A appears
n + 1 times on the right-hand side.

Use (iii) and the observation in the paragraph preceding these exer­
cises to show that to each primitive recursive function f : N ----+ N
there corresponds a natural number n such that A' (n) > f (n) .

. 3 Prove that

A(4, n) = 22 - 3,

where there are n + 3 instances of the symbol 2 on the right-hand
side. (Hint: First find expressions for A(l, n), A(2, n), and A(3, n).)

3

Effective Enumerations

Is every subset of N the domain of some computable partial function? If
not, can we characterise those subsets of N that are domains of computable
partial functions'?

\Ve begin this chapter by introducing the fundamental notions of effective
enumeration and Tec'u,Tsively enumerable set and applying them to answer
the latter question affirmatively (the discussion of the former being deferred
until Chapter 4). We then define recursive sets and describe an algorithm
that enables us to identify Turing machines of a certain type as the elements
of a recursive set of natural numbers. Taken with the Church-Markov­
Turing thesis, this provides us with an effective enumeration of the set
of all computable partial functions from Nn to N. Using the language of
sonata form, we might say that this enumeration is the transition from
the exposition in Chapters 1 and 2 to the development of the subject of
computability; that development begins with the s-m-n theorem towards
the end of this chapter.

Let X be a set, and S a subset of X. We say that S is countable if
either S = 0 or there exists a total function f from N onto S; in the latter
case the function f is called an enumeration of S. Such an enumeration
it is often described by, and identified with, the list

f(O), f(l), ...

of its values.
Now suppose that we have defined the notion of a computable partial

function from N into X. By an effective enumeration of S we mean
a total computable function f from N onto S, which is then said to be
effectively enumerable (by .f). Of particular importance is the case X =

N, when we also say that f is a recursive enumeration of S and that S
is recursively enumerable (by .f).

Following mf]vention, we also call the empty subset of X effectively enu­
merable or, in the case X = N, nxuTsively enum.erable.

(3.1) Exercise

Prove that the union and the intersection of two recursively enumer­
able subsets of N are recursively enumerable.

36 3. Effective Enumerations

(3.2) Proposition. If S is a recursively enumerable subset ofN, then
the partial function r.p : N ~ N defined by

is computable.

r.p(n) 1 ifnES,
undefined if n ~ S

Proof. If S is empty, then r.p is the empty partial function on N, which
is computable by Exercise (2.1.1); so we may suppose that Sis nonempty.
Then there exists a total computable function f from N onto S. The basic
idea underlying the construction of a Turing machine M that computes
r.p is simple: we compare the input n with f(O), f(I), f(2), ... in turn, and
output 1 if we come across kEN such that n = f(k). More precisely,
let M have input alphabet {O, I} and tape alphabet {O, 1, B}.With initial
configuration (A, qo, n), where qo is its start state and n is (the unary form
of) a nonnegative integer, M first writes B as a left-end marker in the
leftmost cell. Without affecting the remaining units of n, M then writes
the string OBOn in the cells on the right of the tape, and enters a special
state q, with the read/write head scanning the rightmost instance of O.

Now let k be either B or (the unary form of) a natural number. Suppose
that the leftmost cells of the tape contain the string Bn'OkOn and that all
other cells are blank, where n' is the string formed by deleting the leftmost
unit of n. Suppose also that M is in the state q, with the read/write
head scanning the rightmost instance of O. M then calls a Turing machine
module M' that, without changing the content of the cells at and to the
left of n,

copies Ok to the right of n,
calculates f(k) and writes Of(k) in the cells to the right of n, and
checks whether the unary strings nand f (k) are equal.

If n = f(k), M then writes blank symbols in every tape cell except the
leftmost one, where it writes 1; finally, it passes to its halt state and parks
the read/write head. If n =I- f(k), then, without changing the content of
the cells at and to the left of the leftmost 0, M

deletes the string on the right of k,
calculates k + 1,
writes (the unary form of) k + 1, followed by On,

on the right of the leftmost 0,
moves left until it reads the rightmost 0,
rewrites 0, and
passes to the state q.

The construction of M completes the proof that r.p is a computable partial
function on N. 0

3. Effective Enumerations 37

Let C == (u, q, v) be a configuration of a Turing machine M, qo the
start state of M, and w a string over the input alphabet of M. We say
that M reaches the configuration C in k steps on the input w if
(A, qo, w) I-k C. If also q is the halt state of M, we say that M halts in
k steps on the input w. If, for some k ::; n, M halts in k steps on the
input w, we say that M halts in at most n steps on the input w.

These notions prepare us for the proof of a very important characteriza­
tion of recursively enumerable sets.

(3.3) Theorem. A subset S ofN is recursively enumerable if and only
if it is the domain of a computable partial function on N.

Proof. In view of Proposition (3.2), we need only consider the suffi­
ciency of the stated condition. Accordingly, consider a subset S of N that is
the domain of a computable partial function rp : N -+ N. We may assume
that S is nonempty. Fixing an element a of S, let M be a Turing machine
that computes rp, and define a total computable function h from N2 onto
S as follows:

h(i, j) i if M completes a computation in at
most j steps on the input i,

= a otherwise.

If we now follow the arrows through the diagram

h(O,O) ----> h(O,l) h(0,2) ----> h(0,3)
,/ / ,/

h(l,O) h(l,l) h(1,2)
1 / ,/

h(2,0) h(2,1)
,/

h(3,0)
1

we obtain an effective enumeration

h(0,0),h(0,1),h(1,0),h(2,0),h(1, 1),h(0,2), ...

of S; whence S is recursively enumerable. 0

(3.4) Exercises

.1 Why is the function h defined in the above proof computable?

38 3. Effective Enumerations

.2 Prove that a subset of N is recursively enumerable if and only if it is
the range of a computable partial function from N to N.

We call a subset 5 of N recursive if its characteristic function XS :
5 ----> N, defined by

xs(n) 1 if n E 5,
o ifn tJ. 5,

is a total computable function on N. Thus 5 is recursive if and only if there
is an algorithm for deciding whether any given element of N belongs to S.
For example, N is recursive, since each element of N belongs to N; and the
empty subset 0 of N is recursive, since each element of N is not in 0.

(3.5) Exercises

.1 Prove that if 5 is an infinite recursive subset of N, then there exists a
strictly increasing (and therefore one-one) total computable function
f from N onto 5. Prove also that

'P(n) f-l(n)
undefined

if n E 5,
if n tJ. 5

defines a computable partial function 'P : N ----> N .

. 2 Prove that a recursive subset of N is recursively enumerable .

. 3 Prove that a subset 5 of N is recursively enumerable if and only if
there exists a computable partial function 'P : N ----> 5 whose domain
is a recursive subset of N and whose range is 5.

Proposition (3.2) and Theorem (3.3) enable us to shed more light on
the distinction between recursive and recursively enumerable sets: for they
show that a subset 5 of N is recursively enumerable if and only if the
partial function 'P : N ----> N defined by

'P(n) 1 ifn E 5,
undefined if n tJ. 5

is computable. On the other hand, 5 is recursive if and only if we can
replace undefined by 0 in the definition of 'P and still obtain a computable
(now total) function on N. There remains, however, the possibility that this
distinction is illusory and that every recursively enumerable set is recursive.
We shall see in the next chapter that this is not the case; meanwhile, we
turn our attention to the encoding of Turing machines as natural numbers.

A binary Turing machine is said to be normalised if there exists a
natural number N such that the Turing machine has states 0,1,2, ... , N,
with initial state 0 and halt state N. Note that, in contrast to our usual

3. Effective Enumerations 39

practice of identifying natural numbers with their unary representations,
we describe a state of a normalised binary Thring machine by its minimal
decimal representation-that is, the decimal representation with the fewest
digits. We denote by N the set of all normalised binary Thring machines.

We now describe an algorithmic encoding procedure which will enable
us to identify N with a recursive subset of N. To begin with, we set up
an encoding of the decimal digits and the symbols B, .1 ("undefined"), L
(left move), R (right move), A (no move), and / (auxiliary separator), as
follows:

a code(a)

° 10000
1 10001
2 10010
3 1O0ll
4 10100
5 10101
6 10110
7 10111
8 11000
9 1l00l
B 1l01O
.1 1l01l
L Ill00
R IllOl LL 1l1l0
/ lllll

If mk ... mlmO is the minimal decimal form of a natural number m, we
define

code(m) == code(mk)'" code(md . code(mo).

For each triple t == (q,y,D) with q E N, y E {O, 1,B}, and D E {L,R,A},
we define

code(t) == code(q)· code(/) . code(y) . code(/) . code(D).

Now consider any normalised binary Turing machine

where, for some natural number N, Q = {O, 1, 2, ... ,N}, qo = 0, and qp = N.
M is completely specified by the integer N and the values 8(i,j) (0::; i::;
N - 1) of the transition function

8: {O, 1, ... ,N} x {O, 1, B} -> {O, 1, ... , N} x {O, 1, B} x {L, R, A}. (3.1)

40 3. Effective Enumerations

To encode At, first form the string

N /8(0,0)/8(0,1)/8(0, B)/8(1, 0)/8(1,1)/8(1, B)/ ... /8(N - 1, B) (3.2)

and then encode it by concatenating the codings of its various parts. This
defines a mapping "I from the set of normalised binary Turing machines
into N, where

code(N) . code(/) . code(8(0, 0)) . code(/)
·code(8(0, 1)) . code(/)··· code(8(N - 1, B)).

For a given nonnegative integer v we can decide whether or not v belongs to
range("(); in other words. range("() is a recursi ve set. To make this decision,
we first note that 0 is not in the range of), since all our encodings have
leftmost bit equal to 1; so we may assume that v 2 1. Identifying v with
its minimal binary representation (the one with the fewest bits), we check
whether the number of bits of v is a multiple of 5; if it is not, then 1) cannot
belong to range("(). If the number of bits of /) is a multiple of 5, we split
v into 5-bit blocks and attempt to decode each of these blocks using the
inverse of the map code(·) defined above. If the attempt succeeds, and if the
resulting string has the form (3.2) for some nonnegative integer N, then
lJ = 'Y(M) for the normalised binary Turing machine M == (Q, 8, 0, N),
where Q == {OJ 1, ... ,N} and the transition function (3.1) is given by the
values 8(i,j) (O:s: i :s: N - 1) read from (3.2); otherwise, v ~ range("().

From now on. we identify N with range("() whenever it is convenient to
do so. Accordingly, we say that a partial function !.(J : N -7 N (respectively
~! : /'If ----t N) is computable if the partial function "I O!.(J : N -7 N
(respectively '1' 0 "1- 1 : N .-, N) is computable. In line with the definition
on page 35. a total computable function f : N -+ N is also called an
effective enumeration of the subset range(f) of N.

(3.6) Theorem. There exists a one-one effective enumeration of N
with computable inver'se.

Proof. By Exercise (3.5.1), there is a strictly increasing total com­
putable function f from N onto the (clearly infinite) recursive set range("().
The composite function "1- 1 0 f is a one-one effective enumeration of N.
Moreover,

!.(J(n) f- 1 (n)
undefined

if n E rangeCr),
if n ~ range("()

defines a computable partial function !.(J : N --> N, so the inverse !.(J 0 "I of
"1- 1 0 f is a total computable function from N onto N. 0

In the remaindeT of this book, n f----+ Mn will denote a fixed one-one total
computable function fmm N onto N with computable inverse; thus

3. Effective Enumerations 41

M o,Mt,M2,'"

is an effective enumeration of N. The inverse of this mapping corresponds to
an algorithm which, applied to any given normalised binary Turing machine
M, produces a unique natural number v, called the index of M, such that
M=MI/'

By renaming the states, we can turn any given binary Turing machine
into a normalised one. Denoting by ~in) the partial function from Nn to
N computed by M i , and invoking the Church-Markov-Turing thesis, we
therefore see that

(n) (n) (n)
~o '~l '~2 , ... (3.3)

is an enumeration, which we call the canonical enumeration, of the set
of all computable partial functions from N n to N. For convenience, we
usually denote ~il) by ~i.

The natural number v is known as an index of ~~n). Note that to each
Turing machine computable partial function ~ : Nn -4 N there correspond
infinitely many distinct indices i such that ~ = ~in). For, given a normalised
binary Turing machine M that computes ~, we can construct, as follows,
distinct normalised binary Turing machines To == M, 1i, T2, ... , each of
which computes ~ : if the halt state of'T;. is m, rename m as m + 1, adapt
the state transition function of 'T;. accordingly, and adjoin to 'T;. a new state
m that cannot be entered from any other state; the resulting normalised
binary Turing machine is 'T;.+l'

The canonical enumeration (3.3) is effective in the informal sense that
for each n 2:: 1 there is an algorithm which, applied to an input pair (i, u) E

N x Nn, computes ~in)(u) : simply run Mi on the input UIOU20 ... Oun ,
where U == (ut, U2, ... , un). Thus the enumeration (3.3) should be the prime
example of any satisfactory formal notion of an effective enumeration of a
set of computable partial functions.

Let i I--> ()i be an enumeration of a set S of computable partial functions
from Nn into N; we say that this is an effective enumeration of S if
there exists a total computable function f : N -4 N such that ()i = ~j(~) for
each i. Taking f(i) == i, we see immediately that the canonical enumeration
is, indeed, effective in this formal sense.

(3.7) Exercises

.1 Construct the encoding of the normalised binary Turing machine de­
scribed in Figure II.

.2 In each case describe the Turing machine, if there is one, of which
the given binary number is the encoding according to the scheme
preceding Theorem (3.6).

42 3. Effective Enumerations

1I0,L
B/O,R
/~

/ '
\ i (

OIl,R

FIGURE 11. The Turing machine in Exercise (3.7.1).

(a) 10011 11111 10001 11111 10001 11111 11101 11111
11011 11111 10001

(b) 10011 11111 10001 11111 1101011111 1110111111
1001011111 10001 11111 11101 11111 11011 11111
10011 11111 HOlO 11111 11100 lllll 11011 11111
11011 lll11 10010 11111 10000 lll11 11101 Hll1
1O0ll ll111 11010 11111 ll1O0 1111111011

(c) 1O0ll l11ll 10001 111ll 10000 lllll 11101 11111
11011 11111 1000011111 10001 11111 lll00

.3 Let S be a recursively enumerable subset of N, and i E N. Prove
that the partial function ip : N --+ N defined by

ip(n)

is computable.

ipi(n)
undetlned

if n E S,
otherwise

An interesting application of the Church-Markov-Turing thesis yields
the existence, for each positive integer n, of a universal Turing machine
for n-ary computable partial functions: that is, a Turing machine Un

which, given an input iOk1 Ok2 0 .. . Okn with i, kl' ... , kn EN, computes the
output ip~n) (k1 , ... , kn). The existence of Un follows from the computability
of the partial function <I> : N n + 1 --+ N detlned by

Of course, using the Church-Markov-Turing thesis to establish the existence
of Un is a great deal simpler than writing down the state transition table

3. Effective Enumerations 43

or the state diagram of Un. Details of the construction of U1 can be found
in Section (6.5) of [34] or the Appendix to [27].

We frequently identify the universal Turing machine Un with the partial
function

that it computes.
Given a computable partial function 0 : N -+ N, for future reference we

define
'P~(1) == Un(O(i),') (i EN).

This definition accords with our intuition that the partial function 'P~(1)
should be everywhere undefined if i rt. domain(0).

Another consequence of the Church-Markov-Turing thesis is that there
exists a total function 8 : N2 -+ N such that for all i, j in N,

(2) (.) 'Pi ',) = 'Ps(i,j)·

Indeed, we can take 8(i, j) to be the smallest index of the computable partial
function 'P~2)(.,j) : N -+ N. However, this choice does not provide a com­
putable function 8.1 The following theorem, a cornerstone of computability
theory, shows that we can arrange for 8 to be a computable function from
N 2 to N. Note that, in this theorem and elsewhere, Nn x Nm is identified
with Nm+n via the mapping

(3.8) The s-m-n theorem.2 For each pair (m, n) of positive integers
there exists a total computable function s : N x Nm -+ N such that

(n) (m+n)()
'Ps(i,v) = 'Pi " V

In other words, for all i E N and v E Nm,

domain('P~(l,v)) = {u E N n : (u, v) E domain('P~m+n))}

and
(n) () _ (m+n) ()

'P s(i,v) U - 'Pi u,v

whenever either side of this equation is defined.

lyou are asked to prove this in Exercise (5.7.3).
2The unimaginative name of this theorem, which is also known as the

parametrisation theorem, originates with Kleene's notation s~ for the func­
tion s.

.cf4 3. Effective Enumerations

Proof. \Ve sketch the proof for the case Tn = n = 1. Given i,j E N,
we first construct a binary Turing machine module that, on the input r k i .
where kEN, completes a computation with 'k10ijl as the output: we
can easily arrange that this module T(j) is defined uniquely by j and has
no states in common with Mi. \\Te now append Mi to the end of T(j),
replacing the halt state of T(j) by the start state of Mi' The index B(i,j)
of the resulting Turing machine can be computed uniquely from i and j.
For all kEN we dearly have

(k) = cp~2) (k, j),

where the expressions on the left and right of this equation are defined if
and only if (k,j) E domain(cp)2)). D

(3.9) Corollary. If <I> : N 2 ---+ N is a computable partial function, then
ther-e exists a total computable function f : N --+ N such that 'Pf(i) = <I>(i,·)
for' eachi E N.

Proof. By the s--m--n theorem with Tn = n = 1, there exists a total

computable function 8 : N 2 --> N such that 'Ps(k.;,) = (-, i) for all k and
i. Let v be an index of the computable partial function (j, i) f-----+ <1>(i, j) on
N 2 , and set f(i) == s(v,i) for each i. Then

(2) ('J I ('. . '~f(' =,0 (') ="~' ',1 =() l·J y~) r8,v,~ 'Yv .' ~ ;" [J

As we shall see in the remaining chapters, the s-m-n theorem is one of
the most useful and important tools of computability theory. The first of
the next set of exercises gives some idea of how it is applied.

(3.10) Exercises

.1 Prove that there exists a total computable function F : N 2 --> N
such that 'P F(i,j) 0 'Pi 0 'Pj for all i, j eN. (This result tells us not
only that the composite of two computable partial functions from N
to N is computable but also how to compute the index of a Turing
machine that computes that composite.)

.2* Prove that for each positive integer n there exists a one-one total
computable function c from Nn onto N with the following property:
if!j;~n) == (Pi 0 c for each i, then

,.)' (n) ",)(n) ",)(n)
.j 0 ,<, 1 • </2

is an effective enumeration of of the set of all Turing machine com­
putable partial functions from NT> to N.

3. Effective Enumerations 45

An enumeration ~)o, ~)l"" of the set of all computable partial functions
from N to N is called an acceptable programming system if it has the
following properties3 :

• s-m-n property: for each computable partial function <1> : N 2 -+ N
there exists a total computable function f : N -+ N such that 'l/Jf(i) =
<1>(i, .) for each i.

• universal property: the partial function (i, j) -+

computable.
(j) on N 2 is

Theorem (3.8) and the work on page 42 together show that the canonical
enumeration 'Po, 'P], 'P2, ... is an acceptable programming system.

Exercises (3.11)

.1 Prove that if'I/Jo, 'l/J1 , . .. and 'l/Jb, 'I/J't, . .. are acceptable programming
systems, then there exists a total computable function f : N -+ N
such that = 'l/Jj(n) for each n. (According to Rogers' isomor­
phism theorem, which we shall not prove here, we can further ar­
range for the function f to be one-one; see (3.4.7) of [23].)

.2 Prove that an enumeration ~)o, 'l/Jl, ... of the set of all computable
partial functions from N to N is an acceptable programming system
if and only if there exist total computable functions f : N -+ Nand
9 : N -+ N such that 'l/Jn = 'P fen) and 'Pn = 1/;g(n) for each n.

Acceptable programming systems can be used as the basis for a more
abstract development of computability theory than ours; sec, for example,
[23]. We shall only refer to acceptable programming systems once more, in
Chapter 5, where they are used to show that a certain consequence of the
recursion theorem cannot be improved upon.

3This is one of several equivalent definitions of an acceptable programming
system; see pages 94-97 of [23].

4

Computable Numbers and
Functions

We begin this chapter by studying in some detail a proof of the fundamental
result of computability theory: the undecidability of the halting problem.
This will lead us into a discussion of computable real numbers, d-ary ex­
pansions, and the elements of computable analysis. You are encouraged to
limber up by trying the following exercises.

(4.1) Exercises

.1 Design a TUring machine M with input alphabet {O} and the follow­
ing property: starting on the left of its tape, M scans the tape for
the first instance of 0; if there is one, M deletes it and halts with the
read/write head on the left; otherwise, M does not halt .

. 2 Prove that there is no TUring machine M with tape alphabet {O, B}
and the following property: when M is in its start state, with the
read/write head scanning the leftmost cell, it moves along the tape
looking for all instances of 0; if there is a finite positive number of
zeroes on the tape, M deletes them all and halts with the read/write
head on the left; otherwise, M does not halt.

Computability theory (which, for reasons that will become apparent,
might better be called noncomputability theory) deals with such questions
as the following:

The Halting Problem: Is there an algorithm for deciding whether or
not a given Turing machine halts on a given input word?

The Equivalence Problem: Is there an algorithm for deciding whether
or not two given Turing machines compute the same partial function
from N to N?

The Decidability Problem: Is every recursively enumerable subset of
N recursive?

Each of these is an example of a decision problem. In such a problem, we
consider a property P(x) applicable to elements x of a given set S, and we

48 4. Computable Numbers and Functions

liLA

BIB,L

FIGURE 12. The Turing machine module for the proof of Theorem (4.2).

seek an algorithm that will decide, for any given x in S, whether or not P(x)
holds; equivalently, we seek a total computable function f : S -+ {O, l} such
that f(:1:) = 1 if and only if P(x) holds. If there is such an algorithm, we
say that the problem, or the property P(x), is decidable; otherwise, it is
undecidable. When S = N, the property P(x) is decidable if and only if
{x EN: P(x)} is a recursive set.

What makes the above questions interesting is the fact that, under the
Church-Markov-Turing thesis, the answer in each case is no. The basic fact
about noncomputability is the undecidability of the halting problem, with
which we begin.

(4.2) Theorem. The total function f : N -+ {O, I} defined by

is not computable.

f(n) 1 if n E domain(ipn),
o otherwise

Proof. Assume that f is computable. Then by the Church-Markov­
Turing thesis, f is computable by some normalised binary Turing machine
T. Now replace the halt state N of T by the Turing machine module
described in Figure 12. Let ip : N -+ N be the partial function computed
by the resulting normalised binary Turing machine M. It is easy to see that
ip(n) is defined if and only if If(n)1 = 1: that is, if and only if f(n) = O.
N ow let II be the index of M, so that ip = ipv' Then

v E domain(ip) {=> f(v) = 0

{=> ip(v) is undefined.

This contradiction completes the proof. 0

It follows from Theorem (4.2) that the halting problem is undecidable.
It is convenient to give here the standard notation for two sets of prime

importance in computability theory:

K == {n EN: n E domain(ipn)}

4. Computable Numbers and Functions 49

and its complement

k == {n EN: n tJ. domain(<pn)}.

Theorem (4.2) immediately leads to the following important result.

(4.3) Corollary. K is not a recursive set. 0

This corollary enables us to answer, negatively, the question: Can every
computable partial function from N to N be extended to a total computable
function?

(4.4) Proposition. There is a computable partial function, with do­
main K, that cannot be extended to a total computable function.

Proof. Define a computable partial function <p, with domain K, as
follows:

<pen) k if Mn halts in k steps on the input n,
undefined otherwise.

Suppose there is a total computable function f : N --+ N such that fen) =
<pc n) for each n in K, and consider any n EN. By our choice of f, if <Pn (n)
is defined, then it is computed by Mn in fen) steps. By running Mn on
the input n and observing whether it halts and has computed <pn(n) in
exactly fen) steps, we can therefore decide whether or not n belongs to K.
Hence K is recursive. This contradicts Corollary (4.3). 0

(4.5) Exercises

.1 Prove that K is recursively enumerable. (Hint: Use step counting.)

.2 Prove that k is not recursively enumerable. (Hint: Assume that k
is recursively enumerable and use Theorem (3.3).)

.3 Prove that a subset S of N is recursive if and only if both Sand N\S
are recursively enumerable. Use this result to give another proof that
K is not recursive.

To clarify the proof of Theorem (4.2), let us look more closely at the be­
haviour of its putative Turing machine M. Consider the following diagram,
in which the unparenthesised arrow in position (i,j) (at the intersection of

50 4. Computable Numbers and Functions

row i and column j) represents the behaviour of the Turing machine Mi
on the (unary form of) the input j; a downward directed arrow says that
Aii halts, and an upward directed arrow says that Mi fails to halt, when
given the input j.

a 1 2 11

At/ o 1 (1) 1 1 T
)\lh 1 1 (T) T 1
M2 1 1 (1) T

Mn 1 T T(1)

The parenthesised arrows indicate the behaviour of M; (1) indicates that
M halts, and (1) that. A1 fails to halt; thus (1) at position (2,2) indicates
that .Ai fails to halt on the input 2. This example from the diagram il­
lustrates a general feature of the construction of our Turing machine M:
when given the input 11, Mn and M have precisely the opposite halting
behaviour; if Ain halts, then A1 fails to halt, and if lvln fails to halt, then
.;\;1 halts. It follows that M differs from each of the Turing machines in the
list ,\,10 I JV/ 1, J\;12, ... As this list contains all the normalised binary 'lur­
ing machines, we conclude that M) and hence the required algorithm for
deciding the halting problem, cannot possibly exist.

An argument of the type just described, in which the entries along the
top-left-to-bottom-right diagonal of a two-by-two array are manipulated to
secure a contradiction from certain hypotheses, is called a diagonal argu­
ment. Diagonal arguments were first used, towards the end of last century.
by the German mathematician Georg Cantor to answer the question: Can
we list all the real numbers? The negative answer to this question is an
immediate consequence of Cantor's Theorem:

(4.6) Theorem. If (an):=l is a seq1wnce of rml numbers, then in any
nondegenerate interval of R there exists a real number x such that x of an
for each n.

Proof. Let 10 be a nondegenerate interval of R; we may assume that
In is closed. \Ve construct a sequence 10 , h, h" .. of closed intervals such
that for each n :::- 1.

4. Computable Numbers and Functions 51

(i) In is either the left third or the right third of In-I;

(ii) ak rf- In for k = 1, ... ,n.

Assuming that we have constructed 10, It, ... , In - 1 with the relevant prop­
erties, let Jo be the left third, J1 the middle third, and h the right third,
of In-I. Either an rf- Jo, in which case we set In == Jo; or else an rf- hand
we set In == J2 . This completes the inductive construction of In.

For each k choose a rational number Xk within Ihl/6 of the midpoint of
h. It follows from (i) that

1 1 1 5 5 -k
IXk+l - xkl :s: 3"lhl + 61hl + 61h+11 = 9 Ihl = 93 1101.

So for m > n,

m-l
< L IXk+l - xkl

k=n
m-l

< L ~3-k 1101
k=n

00

< ~ 1101 L 3- k

k=n

158 110 13-n +1

----> 0 as n ----> 00.

Hence (Xn)~=1 is a Cauchy sequence and therefore converges to a limit
x E R. Moreover, for each n, since Xm E In whenever m 2: n, and since In
is closed, we see that x E In; whence, by (ii), x =1= an. 0

The construction of Xn in the above proof need not have been so com­
plicated: it would have sufficed, and would have made the rest of the proof
simpler, if we had taken Xn as the midpoint of In. We could also have fol­
lowed Cantor's original approach, which uses decimal expansions. However,
by constructing Xn as a rational number we have made it possible to use the
above proof mutatis mutandis to establish a related result about sequences
of computable real numbers; see Exercise (4.11.2). Why we chose not to
use decimal expansions will be made clear later in this chapter.

A diagram may help to clarify the argument used in our proof of Cantor's
Theorem:

52 4. Computable Numbers and Functions

1 2 3 n

al R(L)

a2 L(R)

In this illustration, if the unparenthesised symbol in position (n, n) is R,
then an is not in the left third of In-I; if it is L, then an is not in the right
third of In-I' Since we are only interested in the diagonal entries of this
array, these are the only ones we have given. The parenthesised symbol in
position (n,n) is L if Xn is in the left third of In-I, and R if Xn is in the
right third of In-I. Again we see the fingerprint of a diagonal argument:
the construction of Xn in the proof of Theorem (4.6) is such that Xn is in
a third of the interval I n - 1 that does not contain an.

(4. 7) Exercises

.1 Construct a mapping of the set of subsets of N onto the closed interval
[0,1]. (Hint: Consider binary expansions.) Hence show that the set of
all subsets of N is uncountable .

. 2 Use the Church-Markov-TUring thesis to prove that the set of all
recursively enumerable subsets of N is countable. Use this fact and
Exercise (4.7.1) to give another proof that there exist subsets of N
that are not recursively enumerable. (cf. Exercise (4.5.2)).

What connection, other than the methodological one, exists between the
halting problem and Cantor's Theorem that the real numbers cannot be
listed? To answer this question, we discuss computable partial functions
with values in Q, and define the notion of a computable real number.

By following the arrows through the diagram at the end of this para­
graph (overleaf), we obtain an algorithmic enumeration of Q. Moreover,
we can remove repetitions from this list to obtain an algorithmic one-one
enumeration q of Q. By a computable partial function from N n to
Q we mean a partial function 'ljJ : Nn ----> Q such that the partial function
q-l o'ljJ : N n ----> N is computable. Hence, by the Church-Markov-TUring
thesis,

(n) (n) (n)
q 0 tpo , q 0 tpl ,q 0 tp2 , ...

4. Computable Numbers and Functions 53

is an algorithmic enumeration of the set of computable partial functions
from NT! to Q.

0 --->
-1 1 ---> -2

I 1 I 1
,/ / ,/

0 -1 1
'2 ""2 '2
1 /
0 1
"3 3"

,/
0
4:
1

By abuse of language and notation, when the context makes it convenient
to do so, we shall identify 'P~n) with q 0 'P~n) (and 'Pi with q 0 'P") and refer

to 'P~n) as a computable partial function from NT! to Q.
In elementary analysis courses we learn that every real number is the

limit of a sequence of rational numbers; in other words, to each real number
x there corresponds a total function s : N ---> Q such that Ix - s(n)1 --->

o as n ---> 00. We say that x is a computable real number if there
is a total computable function 8 : N ---> Q, called a computable real
number generator, such that Ix - s(n)1 :s: 2-n for each n; otherwise, :1:

is a noncomputable real number.
We denote by Rc the set of computable real numbers.

(4.8) Exercises

.1 * Prove that (i) rational numbers, (ii) square roots of positive integers,
and (iii) 1f are computable. (Hint for (iii): use a series expansion from
calculus.)

.2 Prove that if x is a computable real number, then so is eX .

. 3 Prove that the sum, difference, and product of two computable real
numbers are computable .

.4 Prove that if x '" 0 is a computable real number, then l/x is com­
putable .

. 5* Prove that jf 'Pi: N ---> {a, I} js total, then

00

2::(-l)nT"'Pi(n)
n=O

is a computable real number.

54 4. Computable Numbers and Functions

.6 Let 'P, '!p be computable partial functions from N to Q. Describe an
algorithm which, applied to any n E domain('P) n domain('lj!), decides
whether 'P(n) =l/J(n) or 1'lj!(n) .

. 7 Let 8 be a computable real number generator converging to an irra­
tional computable real number :r, and let f be a total computable
function from N to Q. Prove that

(i) for each n there exists k such that Is(k) - f(n)[> 2- k :

(ii) if 8(k) - f(n) > 2- k , then:r > fen);

(iii) if s(k) - f(n) < 2-"', then x < f(n).

Describe an algorithm which, for each 11, decides whether x > f(n)
or x < f(n).

The foregoing set of exercises shows that there is a plentiful supply of
computable real numbers. What about noncomputable numbers?

(4.9) Theorem. There crist noncompu.table real numbcT8; in fact,
each nondcgenerate inteTval of R contains noncomp'utable Teal number-so

Proof. Let S be the set of those i E N such that 'Pi is total and such
that Ix - q 0 'Pi(n)1 S 2-n for some computable real number :r and for all
n. Clearly, there is an enumeration io, iI, i2 , ... of S. Then

is an enumeration of the set of all computable real numbers. The required
conclusion follows immediately from Cantor's Theorem 0

In principle, the procedure used in the proof of Cantor's Theorem would
enable us to construct an explicit example of a noncomputable real number.
In practice, such a number is more easily constructed using the undecid ..
ability of the halting problem. First we need a lemma.

(4.10) Lemma. There exists a total computable function 8 : N-, N
stich that if f : N -+ {O, 2} is a total function, and 'Pi is a computable Teal
ntl'mber genemtoT' converging to I::~o f(n)3- n , then f = 'Ps(i) (so that. in
particu.laT, f is comp1ltable).

Proof. To begin with, consider a total function f N -+ {O,2} such
that

:r = L f(n)3- n

n=(J

4. Computable Numbers and Functions 55

is computable. If 'Pi is a computable real number generator converging to
:1;, then for each n,

If f(N) = 0, then

N····l N-I

L f(n)3- n ::;:r::; L f(n)3- n + 3- N ,

n=O n=O

so
N-I

'Pi(2N + 2) < L f(n)3-" + 3-N +l /2.
n=O

Similarly, if f(N) = 2, then

N-I

'Pi(2N + 2) > L f(n)3- n + 3-N + l /2.
n=O

These observations motivate the details of the rest of the proof.
The core of the proof is the definition of a computable partial function

\[! : N 2 --> {0,2} such that for each i, if 'Pi is a computable real number
generator converging to a computable real number with a ternary expansion
L~=o dn 3-n where each dn belongs to {O,2}, then \[!(i, n) = dn . To this
end, given i E N, define \[!(i, 0) == O. Having computed \[!(i, 0), ... , \[!(i, N-
1), we define \[!(i, N) by

\[!(i,N) °
2

if 'Pi(2N + 2) < L~':Ol \[!(i, n)3-n + 3-N + I /2,

if 'Pi(2N + 2) > L~':Ol \[!(i, n)3-n + 3- N + I /2,

undefined otherwise.

\[! is computable in view of Exercise (4.8.6). By the s-m-TL theorem, there
exists a total computable function t : N --> N such that 'Pt(i) = \[!(i,·) for
each i. With :r:, f, and 'Pi as in the observations at the beginning of the
proof, we see that 'Pt(i) is total and that 'Pt('i)(n) = f(n) for each n. Hence

00

x = L 'Pt(i)(n)3-n .

n=O

This completes the proof. D

"We are now in a position to show that the real number

00

x == L XK(n)3- n ,

71,=0

56 4. Computable N umbers and Functions

which is well defined since the series on the right converges by comparison
with L~=o 3-n , is noncomputable. Indeed, if x were computable, then,
by Lemma (4.10) applied to 2x, the total function 2Xl(: N -+ {0,2},
and therefore Xl(, would be computable, which would contradict Corollary
(4.3).

In order to understand this number :r a little better, consider how we
might try to calculate its ternary expansion. To produce the nth ternary
digit of x, we give the Turing machine lvtn the input n and see what
happens. If we are lucky, Mn will halt on the input n fairly quickly, and
we will be able to write down 1 as the nth ternary digit of x; if, however,
we are unlucky, Mn may carryon executing longer than the life of the
universe, and we will have no way of knowing whether it carries on for ever
or halts some time after we are no longer interested in the affair.

It is important to realise that the noncomputability of x is not a matter
of inadequate computing power, precision, or memory: :r is noncomputable
in principle as well as in practice.

(4.11) Exercises

.1 Give a diagonal argument to prove Cantor's Theorem using decimal
expansions. (Reduce to the case where each term of the given sequence
of real numbers is between 0 and 1. It will help if you then prove the
following lemma: If a == ao . al a2 ... and b == bo . b1 b2 ... are decimal
expansions of real numbers such that an and bn differ by at least 2
modulo 10 for some n, then a =I b.)

.2 Let f be a total computable function from N to Q such that !.p fin)
is a computable real number generator for each n. Prove that there
exists v such that !.pv is a computable real number generator and such
that

for all n .

. 3 Give at least two proofs that an increasing binary sequence is com­
putable.

We say that a partial function 8 : N --+ Rc is computable if there exists
a computable partial function 0: N -+ N such that if i E domain(8), then
i E dornain(O) and !.p1J(i) is a computable real number generator converging
to 8(i). (Note that O(i) may be defined even if !.p1J(i) is not a computable
real number generator.) Similar definitions apply to notions such as that
of a computable partial function from Q to Rc and that of a computable
partial function from Rc into N; the formulation of these definitions is left
to Exercise (4.14.1).

4. Computable Numbers and Functions 57

We now see from Exercise (4.11.2) that if (an) is a computable sequence
of computable real numbers, then there is a computable real number a
such that a =I- an for all n. Thus although, as we observed in the proof
of'Theorem (4.9), the set of computable real numbers can be enumerated,
there is no effective enumeration of that set.

We say that a partial function 8 : Rc -+ Rc is computable if there
exists a computable partial function () : N -+ N such that if 'Pi : N -+ Q
is a computable real number generator that converges to a limit x in the
domain of 8, then i E domain(O) and 'Pe(i) is a computable real number
generator that converges to 8(x). Related notions of computable partial
function, such as one from Rc x Rc to R c, are defined analogously in the
obvious way.

Naturally, we hope that our definitions of computable real number and
computable partial function from Rc x Rc to Rc will enable us to prove
that the elementary arithmetic operations on computable real numbers are
performed by computable partial functions. Our approach to computable
real numbers, through computable rational approximating sequences rather
than computable decimal expansions, was chosen to ensure that this is,
indeed, the case.

(4.12) Proposition. The total functions plus, minus, and times,
defined on Rc x Rc by

are computable.

plus(x, y)

minus(x, y)

times(x, y)

Proof. Exercise (4.14.2). 0

A little more difficult to prove is

x+y,

x -y,

xy,

(4.13) Proposition. The partial function div: Rc xRc -----, Rc:, defined
by

div(x, y) == x/y whenever y =I- 0,

is computable.

Proof. In view of the computability of the function times (Proposition
(4.12)) and of the composition of computable partial functions from Rc to
Rc (Exercise (4.14.4)), it will suffice to prove that there exists a total
computable function f : N -+ N such that if 'Pm is a computable real
number generator converging to a nonzero computable real number, then
'Pf(m) is a computable real number generator and

58 4. Computable Numbers and Functions

limn~oo 'Pf(m)(n) = 1/ limn~oo'Pm(n).

To this end, for each mEN define

'Ij!(m) = IIlink [k?: 2 and l'Pm(k)1 > T k + 2].

By Exercises (2.6.5) and (2.7.3), 7j! is a computable partial function from
N to N. Next, define a computable partial function \If : N 2 -+ N by

\If(m,n) 1/'Pm(21p(m) + n - 2) if 'Pm (21jJ(m) + n - 2) is
defined and nonzero,

= undefined otherwise.

Applying Corollary (3.9) to \If, we can find a total comput.able function
f : N -+ N such that (fJf(m) = IJJ(m,·) for each m. Consider any mEN such
that 'Pm is a computable real number generator converging to a nonzero
limit x. Since x is nonzero, w(m) is defined; also. for all k ?: 7jJ(m) we have

l'Pm(k)1 > l'Pm(ljJ(m))I -Ix - 'Pm(7jJ(m))i -Ix - 'Pm(k)1
> 2-1P(m)+2 _ 2-';'(m) _____ 2-k

> 2---1jJ(m)+2 ____ 2-';,(m) _ 2-w(m)

2- II'(m)+1:

whence Ixl-- l :S. 2 lii (mJ-l. Since 1p(mJ ?: 2, for each n E N we have

27jJ(m) + n - 2 ?:I/J(m)

and therefore

'Pm (21/{m) + n - 2) > 2-w(rnJ-I-l:

whence 'Pf(m)(n) is defined and

Il/x - 'P.f(m)(n) I
Ixll l'Prn(2'lj)(m.) + n - 2)1- 1 Ix - 'Pm (21p(m) + n - 2)1

< 2<;J(m) ---l24"(m)-12- 21jJ (rn)-n+2

This shows that 'P.f(m) , each of whose values is certainly rational, is a
computable real number generator converging to l/x.

4. Computable Numbers and Functions 59

(4.14) Exercises

.1 Formulate the definition of a computable partial function (i) from Re
to N, (ii) from Q to ReI and (iii) from N x Re to Re .

. 2 Prove Proposition (4.12) .

. 3 Explain why, in the proof of Proposition (4.13), the partial function
\.II : N 2 ---; N is computable .

. 4 Prove that if 8 : Re ---; ReI \.II : N ---; ReI and \.II' : Re ---; Re are
computable partial functions, then so are the composite functions
8 0 \.II and 8 0 \.II' .

. 5 Prove that if 8 : Re x Re ---; N is a computable partial function,
then for each a E Re the partial function x t----* 8(x, a) from Re to N
is computable .

. 6 Let 8 : N ---; Re be a partial function, and define a corresponding
partial function 8* : Re ---; Re by

8*(x) 8(x) if x E N,
= undefined if x tj N.

Prove that 8* is computable if and only if 8 is computable. This
example reconciles two apparently different notions of a computable
partial function from N into Re that arise from the definitions on
pages 56-57.

If you have completed Exercise (4.11.1), you may be wondering why
we chose not to define computable real numbers in terms of decimal or
other expansions. The following definition and results prepare us for the
explanation of that choice.

Given an integer d ~ 2, we say that a real number x has a computable
d-ary expansion ifthere exist j E {O, I} and a total computable function
f : N ---; N such that f(n) E {O, 1, ... , d - I} for all n ~ 1 and such that
x = (-I)j 2:::=0 f (n)d-n . It is a simple exercise to prove that if a real
number x has a computable d-ary expansion, then x is a computable real
number. In fact, we can prove more.

(4.15) Proposition. If d ~ 2 is an integer, then there exists a total
computable function g : N 2 ---; N with the following property: if

00

(-1)r:~= 'Pm(k)d- k

k=O

is the d-ary expansion of a real number x I then

60 4, Computable Numbers and F'unctions

fur each n (where 'Pg(j,m) is considered as a function from N to Q). In
particular, 'Pg(j,m) is a computable real number- genemtor conver:qing to x.

Proof. Define a total computable function F : N3 ---> N by

n+1

F(j, m, n) = (-IF L 'Pm(k)d k .

k=O

By the s-m-n theorem, there exists a total computable function g : N 2 ---> N
such that 'Pg(j,m) = .F(j, m,') for all j, Tn E N. If (-1)1 L~o 'Pm(k)d- k is
the d-ary expansion of a real number x, then for each n we have

Ix - 'Pg(j,m)(n) I <
k=n+2

k=n+2

The final statement of the theorem follows because d- n :s; 2-". []

As we shall show subsequently, the following is the best we can hope for
by way of a general converse of Proposition (4.15).

(4.16) Proposition. If d:::-: 2 is an integer-, then each computable rml
number- x has a computable d-ary expansion.

Proof. It is a routine exercise in elementary school arithmetic to show
that if x is rational, then it has a computable d-ary expansion: indeed,
choosing j E {O, I}, a natural number m, and a positive integer 11 such
that x = (-l)jm/n, and working relative to the base d, we carry out the
long division of m by 11 and then multiply by (-I)j. So we may assume
that x is a computable irrational number. By Exercise (4.8.7), we can then
decide, for each integer 11, whether x: < n or x > n; so we may assume that
0< x < 1. Now suppose that we have found natural numbers 110 == 0, ... , nk
such that 0 :s: nj :s: d ---- 1 (1 :s: j :s: k), and such that

k k-1

L TI'1 d- j < x < L njd- j + (nk + l)d- k .
j=O j=O

Again applying Exercise (4.8.7), we can find a unique t E {O, ... ,d - l} such
that

k k

L njd- j + td- k - 1 < x < L njd- j + (t + l)d- k --I.

]=0 j=O

4. Computable Numbers and Functions 61

we then take nk+l equal to this value t. Setting f(k) == nk for each k, we
have described the inductive construction of a total, dearly computable,
function f : N ~ N such that f(k) E {O, ... ,d -1} for each k ~ 1 and such
thatx=L.~of(k)d-k. 0

(4.17) Exercises

.1 Given an integer d ~ 2, prove that there exist total computable func­
tions r : N ~ N, s : N ~ {O, 1} such that for each i, 'Pr(i) is a total
computable function from N to {O, ... , d - 1} and

00

q(i) == (_1)S(i) L'Pr(i)(n)d-n ,

n=O

where q is the one-one total computable function from N onto Q
introduced on page 52 .

. 2 Given an integer d ~ 2, prove that there exists a total computable
function s : N ~ N such that if 'Pi is a computable real number
generator converging to a positive irrational number x ERe, then
'Ps(i) is a total computable function from N to {O, ... , d - 1} and

00

x = L 'Ps(i) (n)d- n .

n=O

(Hint: Model your proof on that of Proposition (4.16), with reference
to Exercise (4.8.7).)

Although each computable real number x has a computable d-ary expan­
sion, in the proof of Proposition (4.16) the algorithm for computing that
expansion depends on whether x is rational or irrational. This is unavoid­
able. For if there were a single algorithm, applicable to each computable
real number x, that computed a d-ary expansion of x, then there would be
a total computable function f : Re ~ N such that for each x ERe, f(x)
was the integer part of a binary expansion of x; as we now aim to show, no
such computable function f exists. It is for this reason that we described
Proposition (4.16) as the best possible converse of its predecessor.

(4.18) Lemma. There exists a total computable function F : N 2 ~
{O, 1} such that

(i) for each m there is at most one n such that F(m, n) = 1;
(ii) if t is a total computable function from N to {O, 1 }, then there

exist m and k in N such that F(m, 2k + t(m») = 1.

62 4. Computable Numbers and Functions

Proof. Set

F(m,n) 1 if Mm halts in k st.eps on the input rn, and
either n = 2k and c,:.~rn(m) = 0, or n = 2k + 1
and 'Prnlm) > 0,

o otherwise.

Clearly, F : N 2 -+ {O, I} is total and computable, and satisfies (i). Given
a total computable function t : N -+ {O, I}, choose m such that t = 'Pm,
and then k such that Mm halts in k steps on the input rn. If t(ln) 1,
then (Pm (m) = 1 and therefore F(m, 2k + 1) = 1; whereas if t(m.) = O. then
'Pm(m) ·····0 and therefore F(m, 21,·) = O. Thus F satisfies (ii). 0

A moment's reflection should convince you of the improbability of finding
an algorithm which, applied to a computable binary sequence with at most
one term equal to 1, shows either that all the even-indexed terms of the
sequence are 0 or that all the odd-indexed terms are O. The next proposition
confirms that cOllviction.

(4.1 g) Proposition. Ther'e is no computable partial function 0 : N --->

{O, I} such that if 'Pi : N -> {O, I} is total and 'Pi (n) = 1 for at most one
n. I;hen

Ii) i E domaill(O),
(ii) eli) = 0 =} 'Pi(n) = 0 for all even n, and
(iii) O(i) = 1 =} 'Pdn) = 0 for all odd n.

Proof. Let F be as in Lemma (4.18), and. using Corollary (3.9), con­
struct a total computable function s : N ---> N such that 'P8{i) = F(i,·) for
each i. Suppose there exists a computable partial function 0 : N ·, N with
the properties described in the statement of this proposition. Then eo 8 is
a total computable function from N into {O, I}; whence, by Lemma. 18),
there existm, k such that F(rn, 2k + O(s(rn))) = 1. If O(s(m)) = 0, then
F'(m,2k) = 1; also, by the assumed property of 0, F(m, nl , I.P8(m)(n) = 0
for all even n a contradiction. Similarly_ if e(s(m)) = 1, then F(m, 2k +
1) = 1, and F (rn . n)= fl for all odd nagain a contradiction. 0

(4.20) Lemma. There is no computable partial function 0 N->
{O, 1} such that if 'Pi : N ---> {O, I} is total. then

(i) i E clornain(e) , and
ex.)

(ii) e(i) is the integer part ofl -+ I: (-1)n2- n4)i(n).
n=(]

4. Computable Numbers and Functions 63

Proof. Suppose such a computable partial function B exists. Consider
any i such that 'Pi is a total computable function from N to {O, I}, and
such that 'Pi (n) = 1 for at most one n. If 'Pi (k) = 1 for an even k, then

00

1 + 2:(-l)nTn'Pi(n) = 1 + Tk > 1
n=O

and so B(i) = 1. Thus if B(i) = 0, then 'Pi(k) = ° for all even k. Similarly,
if B(i) = 1, then 'Pi(k) = ° for all odd k. These conclusions contradict
Proposition (4.19). 0

(4.21) Proposition. There is no total computable function F : Re x
Re ---- Q such that for all x, y in R e, F(x, y) is the integer part of a binary
expansion of x + y.

Proof. Suppose such a function F exists. Then, in view of Exercises
(4.14.1) and (4.14.5), there exists a computable partial function '!/J : N ---- N
such that if 'Pk is a real number generator converging to the computable real
number x, then k E domain('!/J) and '!/J(k) = F(x, 1). Define a computable
partial function G : N 2 ---- N by

j

G(i,j) = 2:(_l)nTn max{O, min{l, 'Pi(n)}}.
n=O

By Corollary (3.9), there exists a total computable function s : N ---- N such
that 'Ps(i) = G(i,·) for each i. Let B == '!/Jos, and consider any i such that 'Pi
is a total computable function from N into {O, I}. A simple computation
shows that 'Ps(i) is a computable real number generator converging to the
computable real number L:=o(_1)n2-n'Pi(n); so i E domain(B) and

This contradicts Lemma (4.20). 0

It follows from Proposition (4.21) that there is no total computable func­
tion f : Re ---- N such that for each x ERe, f(x) is the integer part of
a binary expansion of x. This completes the justification of our claim, on
page 61, that the algorithm for computing the binary expansion of x E Re
depends on x.

64 4. Computable Numbers and Functions

(4.22) Proposition. There is no computable partial function a : N 2

N such that if 'Pi, 'Pj are total computable functions from N to {O, 1}, then
(i,j) E domain(a) and

00 00

n=O n=O

Proof. The idea underlying this proof is quite simple. Given a binary
sequence (an) with ao = 0 and with at most one term equal to 1, set
Xo = Yo = 0, and for n ?:: 1 define

Setting

xn 1 if ak = 0 for each odd k :::; n,
o otherwise,

Yn 0 if ak = 0 for each even k :::; n,
1 otherwise.

00

x == 2:= x n 2-n ,

n=O

00

we see that x + Y > 1 if an = 1 for an even value of n, and x + Y < 1 if
an = 1 for an odd value of n. So by looking at the integer part of x + y we
can tell whether an = 1 for an even value of n or an = 1 for an odd value
of n.

To make this idea more precise, define computable partial functions
8, III : N 2 N as follows:

8(i,0) = ll1(i, 0) = 0,

and for each n ?:: 1,

8(i, n) 1 if 'Pi (k) is defined for all k :::; n, and
'Pi(k) = 0 for all odd k :::; n,

0 if 'Pi (k) is defined for all k :::; n, and
'Pi(k) = 1 for some odd k :::; n,

undefined otherwise.

ll1(i,n) 0 if 'Pi (k) is defined for all k :::; n, and
'Pi(k) = 0 for all even k :::; n,

1 if 'Pi (k) is defined for all k :::; n, and
'Pi(k) = 1 for some even k :::; n,

undefined otherwise.

4. Computable Numbers and Functions 65

Note that if 'Pi is a total function from N into {O, I}, then 8(i, n) and
W(i, n) are defined for all n. By the s-m-n theorem, there exist total com­
putable functions s, t : N -t N such that 'Ps(i) = 8(i,·) and 'Pt(i) = W(i,·)
for each i. Now suppose there exists a computable partial function (J :

N 2 -t N with the stated properties. Define a computable partial function
(J: N -t {O, I} by

(J(i) == 'Pao(s,tHi) (0).

Consider any index i such that 'Pi : N --.. {O, I} is total and such that
'Pi(n) = 1 for at most one value of n. Let

00

x == L 'Ps(i) (n)TTI,
71=0

co

Y == L 'Pt(i) (n)Tn.
71=0

Then (J(i) is defined, and

co

X + Y = L 'Po-o(s,t)(i) (n)2-n.
71=0

If 'Pi(2j) = 1, then x = I:~=o2-n, y = I:~=2j 2-71 , X + y > I, and so

e(i) = 1; whereas if 'Pi(2j + 1) = 1, then x = I:;;~o 2-71 , Y = 0, x + y < 1,
and so (J(i) = O. Thus if (J(i) = 0, then 'Pi(n) = 0 for all even n; and if
(J(-i) = 1, then 'Pi(n) = 0 for all odd n. This contradicts Proposition (4.19).

D

It should now be clear why we chose not to define computable real num­
bers in terms of binary (or d-ary) expansions: had we done so, we would
have had the unsatisfactory situation in which the addition of x and y could
not be performed by a computable partial function of the indices of total
computable functions giving the binary digits of x and y.

(4.23) Exercises

In the following exercises remember our identification of 'Pi with q 0 'Pi,
where q : N -t Q is the effective enumeration of Q introduced on page 52 .

. 1 Prove that there is no computable partial function e : N -t N such
that if 'Pi : N -t {O, I} is total, then i E domain(e),

8(i) = 0 =* 'P;(n) = 0 for all n, and
()(i) = 1 =* there exists n such that 'Pi (n) = 1.

66 4. Computable Numbers and Functions

.2 Prove that there is no computable partial function () : N -> {O, 1 }
such that if ~?i is a computable real number generator, then i E
domain(fJ),

fJ(i) = 0 =}

8(i) = 1 =}

limn->CXJ 'Pi(n) < 0, and
limn + CXJ 'Pi (n) ?: O .

. 3 Prove that there is no total computable function f Rc -> {O, I}
such that

f(x)=O =}

f(x)=l =}

x = 0, and
x # O.

(Hint: Consider binary expansions of the form I:~=o 2-n 'Pi(n), where
'Pi is a total computable function from N into {O, I}.) Thus there is
no algorithm which, applied to any computable real number x I will
decide whether x = 0 or x # O. Is there an algorithm which, applied
to any 'rational number x, will decide whether x = 0 or x # O?

.,1 Prove that there is no algorithm for deciding whether or not a given
real number is rational; more precisely, prove that there is no total
computable function f : Re -+ {O, I} such that

f(x) =0 =}

f(x)=l =}

x is rational, and
x is irrational.

(Hint: Consider real numbers of the form I:~=o 'P;(n)/n!, where 'Pi :
N -+ {O, I} is total and increasing. 1)

So far, we have discussed only the most basic properties of the com­
putable real number line Rei which stands at the entrance to the remark­
able world of computable, or recursive, analysis. We end this chapter by
taking a few steps into the interior of that world.

In recursive mathematics we work with effective analogues of the stan­
dard notions and properties found in traditional mathematics. For example,
when we are dealing with the convergence of sequences,we work with an
effective notion of convergence in which the rate of convergence to the limit
is expressed by a computable function; to be precise, we say that a sequence
(xn) of real numbers converges effectively to a real number x if there
exists a total computable function h : N -+ N such that - xl :::: 2-N

whenever n ?: h(N).
fbr the following exercises we define a computable sequence of com­

putable partial functions from Rc to Rc to be a sequence (fn)~=o of

l\Ve say that a partial function :p : Rc -.~ Rc is increasing if :p(.r) ::; :p(:c')
whenever x, x' E dornain(:p) and x < x'. Some authors would describe such a
function :p as nondecl'easing.

4. Computable Numbers and Functions 67

such functions with the property that the partial function (n, x) f---+ f n (x)
from N x Rc to Rc is computable. Thus (fn)':'=o is a computable sequence
if and only if there exists a computable partial function e : N 2 ---. N such
that if 'Pi is a computable real number generator converging to a point x
of domain(fn), then (n, i) E domain(O) and 'P&(n,i) is a computable real
number generator converging to fn(x).

(4.24) Exercises

.1 Prove that the limit of an effectively convergent computable sequence
of computable real numbers is a computable real number .

. 2 Prove Specker's Theorem: There exists a strictly increasing com­
putable sequence (an) of rational numbers in [0,1] that does not con­
verge effectively. (Hint: Let f : N ---. K be an effective enumeration
of K, and define an == 2:::=02-!(m)-1.)

.3 Let (fn) be a computable sequence of total computable functions
from Re to R e, and for each n let Sn == 2::~=0 fk. Prove that (sn) is a
computable sequence of total computable functions from Re to Re .

. 4 Let F, Fo, Fl , ... be total functions from R to R. Suppose that there
exists a total computable function h : N ---. N such that

whenever x E Rand n ;::: h(N); in which case we say that the se­
quence (Fn) converges effectively and uniformly to F. Let f, fn
be respectively the restrictions of F,Fn to Re. Prove that if (fn)~o
is a computable sequence of total computable functions from Re to
R e, then f is a total computable function from Re to Re .

. 5 Let Fo, Fl , ... be total functions from R to R, and for each n let fn be
the restriction of Fn to Re. Suppose that each fn maps Re to R e, and
that (fn)::::'=o is a computable sequence of total computable functions
from Re to Re. Prove that for each computable sequence (Xk)~O of
computable real numbers there exists a computable double sequence
(rn,k)~k=O of rational numbers such that Ifn(Xk) - rn,kl ::; 2-k for
all nand k.

We shall return to effective convergence at the end of this chapter. In the
meantime, we examine the recursive content of the Heine-Borel Theo­
rem: every open cover of [0,1] contains a finite subcover.

By an effective sequence of open intervals in R we mean a total
computable function f : N ---. Re x Re; informally, we identify the ordered
pair

(pf 0 f(n), pi 0 f(n))

68 4. Computable Numbers and Functions

of computable real numbers with the open interval

{:r; E R : pf 0 f (n) < x < pJ 0 f (n)}

in R.

(4.25) Theorem. For each E > 0 there e;rists an effective sequence
(In)~~o of bounded open intervals in R with rational end points, such that

(i) Rc C U~=o In, and (ii) L~=o IInl < E for each N.

Proof. In this proof we consider 'Po, 'PI, ... to be an effective enumer­
ation of the set of computable partial functions from N to Q. Choose a
positive integer k such that 2- k+3 < E. For each pair (m, n) of positive
integers set

if ./\,1m completes a computation in n+ 1 steps on the input m+k; otherwise,
set .1m •n == 0. Note that for each m there is at most one n such that .1m ,n

is nonempty. It is a simple exercise to prove that

=
Rc C U .1m ,n.

-rn.n=O

By following the arrows through the diagram below and deleting all occur­
rences of 0, we obtain an effective sequence 10, h, ... of open intervals in
R with rational end points such that (i) holds .

.10 .0 ---? .10 ,1 .10 ,2 -+ .10.3
/7'

.11.0 J1,1 .h,2
1 / /

h.o h,l
/

h.o
1

On the other hand, for each positive integer N we have

IV ::::0 (Xl

'II I < 'IJ I < , 2~rn~k+2 = 2~k+3 < E,
~ n - L..t m,n - L..-t '
n=O tn,n=O m=O

which proves (ii). 0

4. Computable Numbers and Functions 69

At first sight, there is nothing surprising about Theorem (4.25). For, as
we have already remarked, Re is countable and so can be covered by a se­
quence of open intervals with rational endpoints and with arbitrarily small
total length. However, Re is not effectively enumerable, so there remains
the possibility that we cannot find an effective sequence of open intervals
that covers Re and has arbitrarily small total length. Theorem (4.25) shows
that this possibility is not realised.

The following corollary clearly demonstrates the failure of the Heine­
Borel theorem in a recursive context.

(4.26) Corollary. In the notation of Theorem (4.25), if ° < E < 1,
then the set

N

CN == {x E Re n [0,1] : x r¢: U In}
n=O

is nonempty for each N.

Proof. It is a simple exercise to express the union of the finitely many
intervals Io, ... ,IN as the union of at most N pairwise disjoint open intervals
Jo, ... ,Jv , each with rational, and therefore computable, end points. Since

v N

L IJnl ::::; L IInl < E < 1,
n=O n=O

there exists a point x E [0, 1J such that x r¢: U~=O I n . If x is 0,1, or an end
point of some interval J k, then it belongs to C N. Otherwise, there exists
r > ° such that the open interval (x - r, x + r) is contained in both [0,1 J and
the complement of U~=O I n , in which case any rational point of (x-r, x+r)
belongs to C N . 0

Since Ren[O, 1J is countable, it has Lebesgue measure 0. Does this destroy
all prospect of a recursive development of measure theory for subsets of Rc?
It does not: there is such a development in which the recursive measure of
Re n [0, 1J is 1, as we would certainly want it to be; see Chapter 3 of [8].

We now investigate the relationship between computability and continu­
ity for functions from Re to Re. We say that a partial function f : R -+ R
is effectively continuous if for each x E domain (f) there exists a total
computable function h : N -+ N such that if y E domain(f), n E N, and
Ix - yl ::::; 2-h (n), then If(x) - f(y)1 ::::; 2-n . On the other hand, we say
that f is effectively uniformly continuous if the function h can be cho­
sen independent of x; that is, if there exists a total computable function
h : N -+ N such that if x, y E domain (f) , n E N, and Ix - yl ::::; 2-h (n),

then If(x) - f(y)1 ::::; 2-n .

70 4. Computable Numbers and Functions

We state, without proof, the fundamental result relating continuity and
computability for functions on Re-the Kreisel-Lacombe-Schoenfield­
Ceitin Theorem:

(4.27) Theorem. Every total computable function f Re ----t Re is
effectively continuous.

Proof. For a proof see [8], [11], or [22]. D

Here is an interesting partial converse of this theorem.

(4.28) Proposition. Let f : R ----t R be a total function that maps Re
into Rc and is effectively uniformly continuous on R. Then the restriction
of f to Re is computable.

Proof. For each n E N let Sn : R ----t R be the total function that takes
the value 1 throughout [-n, n], vanishes outside [-n -1, n+ 1], and is linear
in each of the intervals [-n - 1, n], tn, n + 1]. It is straightforward to show
that each Sn maps Re into R e, that (Sn)~=l (and therefore (J sn)~=o) is
a computable sequence of total computable functions from Re to R e, and
that there exists a total computable function h : N 2 ----t N such that if x, y E
R, if n, kEN, and if Ix - yl :::; 2-h(n,k), then l(fsn)(x) - (fsn)(Y)1 :::; 2-k;
the details are left to Exercise (4.29.3). By the Weierstrass Approximation
Theorem, there exists a double sequence (Pn,k)::;:k=l of polynomial functions
with rational coefficients such that

sup{l(fsn)(x) - Pn,k(x)1 : -n - 2:::; x:::; n + 2} :::; T k- 1

for all nand k. Moreover, a close inspection of Bernstein's proof of that
theorem shows that the polynomials Pn,k can be chosen so that the total
function (n, q, k) f---+ Pn,dq) is computable on N x Q x N; see Exercise
(4.29.5). Now define a computable partial function 111 : N3 ----t Q by

1l1(n, i, k) Pn,k 0 i.fJi 0 h(n, k + 1) if h(n, k + 1) E domain(i.fJi) and
li.fJi 0 h(n, k + 1)1 :::; n + 2,

o

undefined

if h(n, k + 1) E domain(i.fJi) and
li.fJioh(n,k+1)1 >n+2,
otherwise.

Construct a total computable function g : N 2 ----t N such that i.fJg(n,i)
1l1(n, i,') for all n, i. We prove that if i.fJi is a computable real number
generator converging to x ERe, then i.fJg(n,i) is a computable real number
generator converging to (fsn)(x). To this end, consider any n, kEN, and
first note that

Ix - i.fJi 0 h(n, k + 1)1 :::; Th(n,k+l) :::; 1;

4. Computable Numbers and Functions 71

so if l<pi 0 h(n, k + 1)1> n + 2, then Ixi > n + 1 and

We may therefore assume that l<pi 0 h(n, k + 1)1 ::; n + 2; whence

l<Pg(n,i)(k) - (fsn)(X) I
IPn,k 0 <Pi 0 h(n, k + 1) - (fsn)(x)!

< IPn,k 0 <Pi 0 h(n, k + 1) - (f Sn)(<Pi 0 h(n, k + 1))1

+ I (fsn)(<Pi 0 h(n, k + 1)) - (fsn)(X) I
< 2-- k - 1 + 2·- k - 1

2--- k .

Thus <Pg(n,i) is a computable real number generator converging to (fsn)(x).
Now define computable partial functions a, B : N ---7 N as follows:

a(i) minn[l<pi(O)I<n-1J,

B(i) g(a(i), i).

Consider a computable real number generator <Pi converging to x ERe.
Since

Ixi ::; l<pi(O)1 + 1 < a(i),

we see that

for each k; whence <POei) is a computable real number generat.or converging
to f(x). 0

An elementary theorem of classical analysis states that a continuous
function from a compact interval to R att.ains its infimum; from which it
follows immediat.ely that a continuous, everywhere positive function on a
compact interval has positive infimum. In sharp contrast, there is a total
computable function f : Rc ---7 Re that is positive and effectively uniformly
continuous on R e, and whose infimum on Re n [-1,1] is O.

To prove this, construct, as in Theorem (4.25), an effective sequence
(In)~=o of bounded open intervals in R with rational end points, such that
Re C U~=oIn and L:':=o IInl < 1/2 for each N. For each n let tn : R ---7 R
vanish outside In) equal 1 at the mid-point of In) and be linear in each
half of In. Then (tn) is a sequence of effectively uniformly continuous total
functions from R to [0,1] such that for each n, tn maps Rc into Re. It is
left to you to show, in Exercise (4.29.6) below, that the sum t of the series
L~~o 2-n tn is an effectively uniformly continuous total function on R, and

72 4. Computable Numbers and Functions

that the restriction of t is a total computable function f from Rc to Re.
For each x E Rc n [-1,1] there exists n such that x E In; whence

On the other hand, by Corollary (4.26), for each N E N there exists a
computable real number XN that belongs to [-1,1]\ U;;=o In and therefore
satisfies

x ex.!

f(:rN)= L rntn(XN):S: L r"=rN.
n=N+l n=N+l

Thus inf f = O.

(4.29) Exercises

.1 * Let f : R -, R be an effectively continuous partial function that
maps Qn domain(f) into Q. Prove that f maps Ren domainCf) into
Re .

. 2 Let (fn) be a sequence of total functions from R to R such that
for each n, fn maps Q into Q, and let gn be the restriction of
fn to Re· Suppose that there exists a total computable function
h : N 2 -t N such that for all nand k, if Ix - yl :s: 2-h(n,k), then
Ifn(x) -- fn(Y) :s: 2-k . Prove that (gn) is a computable sequence of
computable functions from Re into Re .

. 3 Dnder the hypotheses of Proposition (4.28), and using the notation
of the proof of that result, prove that each Bn maps Re into Rc;
that (B n);;o=1 is a computable sequence of total computable functions
from Re to Rc; and that there exists a total computable function
h : N 2 -t N such that if x, y E R, ifn, kEN, and if Ix-YI :s: 2-h(n,k),

then 1(f8,,)(;];)---- (fsn)(y)1 :s: 2- k .

.4 Let (fn)':::=1 be a sequence of total functions from R to R such that
each fn maps Rc into Rc and such that (fn) is a computable sequence
of total computable functions from Rc to Re. Suppose also that there
exists a total computable function h : N 2 -t N such that if x, Y E R,
n,k E N, and Ix - yl :s: 2-h (n,kl, then Ifn(x) - fn(y)1 :s: 2- k . Prove
that there exists a total computable function b : N 2 -t N such that

lin(x)1 :s: b(m, n) (m, n E N, _2m - 1 :s: x :s: 2m - I).

(Hint: Consider the values of in on a certain finite subset of the
interval [_2m-I, 2m- 1 j.)

.5* The following version of the Weierstrass Approximation Theo­
rem is proved on pages 18-20 of [31]: Let f be a continuous mapping

4. Computable Numbers and Functions 73

of [0, 1] into R; let 6,8 be positive numbers such that if a :; x, y :; 1
and Ix - YI :; 8, then If(x) - f(y)1 :; 6; and let M > a be such that
If(x)1 :; M for all x E [0,1]. Then

if(X) - ~ (7)f(i/n)x i (1- x)n-ii :; 6

for all x E [0,1] and all n 2: M/c82 .

Using this information, prove that in the proof of Proposition (4.28)
the polynomials Pn,k can be chosen such that their coefficients are
computable, and such that the total function (n, q, k) 1--+ Pn,k(q) is
computable on N x Q x N. (Hint: First define total mappings G :
N x R --+ Rand H : N x R --+ R by

G(N, x) == N + 2 ,
2x -1

-x 1
H(N,x) == 2(N + 2) 2

For all N, n E N construct2 rational numbers rn,i (0 :; i :; n) such
that the functions fN,n : R --+ R defined by

map Rc into R c, (fN,n)'N',n=O is a computable sequence of total com­
putable functions from Rc into R e , and

for each x E [0,1]. Next prove that

(N,q,n) 1--+ fN,n(q)

is a total computable function from N x Q x N to Re. Using Exercise
(4. 29.4), construct a total computable function At : N --+ N such
that l(fsN)(x)1 :; M(N) whenever N E Nand -N -2:; x:; N +2.
Then, using the version of the Weierstrass Approximation Theorem
stated above, construct a computable subsequence (fN,nk)'N,k=O of
(fN,n) such that

l(fsN) oG(N,x) - h.r,nk(x)l:; T k - 1 (N,k E N, x E [0,1]).

2For this construction, note Exercise (4.24.5).

74 4. Computable Numbers and Functions

Finally, set

PN,k == iIV,nk 0 H(N,·)

for all n, k.)

.6 Let (tn)~=o be a sequence of effectively uniformly continuous total
functions from R into [-1, 1J. Prove that the series L:~=o 2-"tn con­
verges effectively and uniformly on R, and that its sum t is an ef­
fectively uniformly continuous total function from R to R. Suppose
also that each tn maps Rc to Rc; that (tn) is a computable sequence
of total computable functions from Rc to Rc; and that there exists
a total computable function h : N 2 --+ N such that if x, y E R c , if
n, N E N, and if Ix - YI :::; 2- h (N,n), then ItN(x) -tN(y)1 :::; 2-".
Prove that the restriction of t to Rc is a total computable function
from Rc to Re .

. 7* With reference to Exercise (4.29.6), complete the details of the exam­
ple preceding this set of exercises .

. 8 Give an example of a total computable function 9 : Rc -+ Rc that
is effectively continuous, but whose restriction to Rc n [0, 1 J is not
uniformly continuous. Thus the recursive analogue of the classical
uniform continuity theorem is false (c:f. (3.16.5) of [15]).

For further information about recursive analysis, see [1], [4], and [26]. A
rather different approach to algorithmic aspects of analysis, using a non­
classical logic, is found in [5] and Chapter 3 of [8].

5

Rice's Theorem and the
Recursion Theorem

In this chapter we turn back from our study of computable real numbers and
take a path that will lead to two of the major theorems in computability
theory. The first of these, Rice's Theorem, characterises a large class of
nonrecursive subsets of N; the second, the Recursion Theorem, has many
applications, some of which appear at the end of this chapter, and some,
in perhaps unexpected contexts, in later chapters.

Since there is an enumeration of the set of all computable partial func­
tions from N to N, there is an enumeration of the set of all total computable
functions from N to N. However, as we now prove using another diagonal
argument, no enumeration of the set of total computable functions from N
to N can be effective.

(5.1) Proposition. If fa, iI, 12,··· is an effective enumeration of a
sequence of total computable f11,nctions from N to N, then there exists a
total computable function f : N --> N such that f =/: fn for each n.

Proof. Define a total computable function f : N --> N by

f(n) == fn(n) + 1.

For each n we then have f(n) =/: fr,(n) and therefore f =/: fn. 0

(5.2) Corollary. The set {n E N
enumerable and hence is not reC'u7'sive.

(5.a) Exercise

Prove Corollary (5.2).

'Pn is total} is not recursively
o

We now discuss the second of the three questions posed in Chapter 4 at
the start of our discussion of computability theory. To this end, we prove
that there is no algorithm for deciding whether a given computable partial

76 5. Rice's Theorem and the Recursion Theorem

function on N is equal to the identity function id : N N. This requires
a lemma.

(5.4) Lemma. If ip : N N is a computable partial function, then
the partial function W : N2 N defined by

W(i,j)

is computable.

ip(j)

undefined
if j E domain(ipi) n domain(ip),
otherwise

Proof. Choose v so that My computes ip. For each i E N modify
Mi to create a binary Turing machine ~ with the following properties.
Given an input j E N, ~ first replaces j on the left of the tape by BjBj.
~ then calls a module that, without affecting the cells to the left of the
rightmost instance of j, mimics the action of Mi on that instance of j.
If j E domain(ipi), this module will arrive at a configuration in which the
tape contains BjBipi(j) and the read/write head is against the leftmost
symbol of ipi(j). ~ then

deletes ipi (j);
moves each unit of j one place to the left on the tape, leaving

blanks everywhere else;
places the read/write head against the leftmost cell; and
calls a module that mimics the action of My on j.

It is easy to see that ~ computes the partial function W. D

(5.5) Theorem. The set {i EN: ipi = id} is not recursive.

Proof. By Lemma (5.4) and the s-m-n theorem, there exists a total
computable function s : N N such that

ipS(i)(j) j
undefined

if j E domain(ipi),
otherwise.

Suppose the total function f : N N, defined by

f(i) 1 ifipi=id, ° otherwise,

is computable. Then the composite function f 0 s : N {O, I} is total and
computable. But

f(s(i)) = 1 {:} ips(i) = id,
{:} ipi is total.

5. Rice's Theorem and the Recursion Theorem 77

It follows that f 0 s is the characteristic function of

{i EN: 'Pi is total},

which is therefore a recursive set. This contradicts Corollary (5.2). 0

We can now prove the unsolvability of the equivalence problem.

(5.6) Corollary. There is no total computable function F N2 -?

{O, I} such that F(i, j) = 1 if and only if 'Pi = 'Pj.

Proof. Suppose such a function F exists. Then, choosing j such that
id = 'Pj, we see that the total computable functioni F(i, j) on N is
the characteristic function of {i EN: 'Pi = id}. This contradicts Theorem
(5.5). 0

(5.7) Exercises

.1 Define the total function stat: N -? N by

stat(n) == the number of st.ates in Mn.

Why is stat computable? Prove that the total function f : N -? N
defined by

f(n) == min{stat(k) : 'Pk = 'Pn}

is not computable. (Hint: What partial functions are computed by
normalised binary Turing machines with exactly one state?)

.2* Prove that the total function !index: N -? N defined by

lindex(n) == min{i EN: 'Pi = 'Pn}

is not computable. l

.3 Define a total function s : N 2 -? N by

s(k,n) == min{i: 'Pi = 'P[J(-,n)}.

Prove that s is not computable (cf. the remarks preceding the state­
ment of the s-m-n theorem in Chapter 3).

1 A similar function is used by Chaitin in his work on LISP program-size
complexity [12].

78 5. Rice's Theorem and the Recursion Theorem

At first sight, our next lemma may be rather surprising.

(5.8) Lemma. Let f : N• N be the empty partial function, and
cp : N -> N a computable partial function with nonempty domain. Then
there is a. total computable function f : N -> N such that

cp if i E K,
E otherwise.

Proof. Consider any i E N, and design a Thring machine T; as fonows.
Given the (unary form of) n as input, T; first moves each unit of none
place to the right, leaving B in the leftmost cell. It then

writes Bi on the right of the rightmost unit of n;
places the read/write head against the leftmost symbol of i;
without affecting the cells to the left of i, simulates the action of Mi

on the input i, but replaces the halt state of Mi by a Turing machine
module that

moves each unit of n one cell to the left, leaving blanks
everywhere else on the tape,

moves the read/write head to the leftmost cell, and
simulates a Turing machine that computes cp.

It is clear that we can construct T; so that it is normalised and depends
uniquely on i. Thus the total, and clearly computable, mapping f that
carries i to the index of T; has the desired properties. D

(5.9) Exercise

Let cp be a computable partial function with nonempty domain, and
define a computable partial function \Ii : N 2 -> N such that

\Ii(i,j) cpU) if i E K,
undefined otherwise.

Use this function to give an alternative proof of Lemma (5.8).

The arguments we have used to prove many of the results of this and
the previous section provide a good grounding in the techniques of com­
putability theory. However, several of those results, and many others, can
be obtained as simple consequences of the following very general theorem.

(5.10) Rice's Theorem. If I is a nonempty proper recnr.sive subset
of N, then there exist i, j such that i E I, j E NV, and CPi = :py.

2Recall that a subset S of a set X is proper if S Ie 0 and S Ie X.

5. Rice's Theorem and the Recursion Theorem 79

Proof. Suppose the contrary, so that 'Pi =1= 'Pj whenever 'i E I and
j E N\I. Interchanging I and N\I if necessary, we may assume that I
contains an index (and therefore all indices) of some computable partial
function 'P with nonempty domain, and that N\I contains an index (and
therefore all indices) of the empty function E. Define the total function
I : N -t N as in Lemma (5.8), and let X be the characteristic function of
1. Then X 0 I : N -> {O, I} is a total computable function. If 'P f(i) = f, then
I(i), being an index of f, belongs to N\I; so if I(i) E I, then 'Pf(i) =1= f and
therefore 'Pf(i) = 'P. On the other hand, if 'Pf(i) = 'P, then I(i), being an
index of 'P, belongs to 1. Hence

x(f(i)) = 1 {=? 'Pf(;) = 'P

{=? iEK.

Since X 0 I is computable, K is recursive. This contradicts Corollary (4.3).
o

Bearing in mind the effective indentification of a normalised binary Tur­
ing machine with its index, we see that Rice's Theorem admits the following
interpretation: if P is a decidable property that holds for some but not all
normalised binary TUring machines, then there are TUring machines Mi
and M j , one with the property P and one without P, that compute the
same partial function; so the information we need in order to decide whether
or not a normalised binary TUring machine M has the property P is not
provided solely by the partial function computed by M.

We say that a subset I of N respects indices if j E I whenever 'Pj = 'Pi
for some 'i E I (or, equivalently, if 'Pi =1= 'Pj whenever'i E I and j tic 1). This
definition leads immediately to a useful re-expression of Rice's Theorem.

(5.11) Coronary. A nonernpty proper subset olN that respects indices
is not recursive. 0

This corollary enables us to prove the undecidability of the problems
associated in the obvious way with the following subsets of N, each of
which respects indices:

{i : 'Pi = 'Pj}, where j is a given natural number,

{i : 'Pi is total},

{i : a E domain('Pi)}, where a is a given natural number,

{i : 'Pi is a constant function},

{i: domain('Pi) is finite}.

The undecidability of the first two of these problems also follows from
Corollaries (5.6) and (5.2), respectively.

80 5. Rice's Theorem and the Recursion Theorem

Note that the undecidability of the halting problem is not a direct conse­
quence of Rice's Theorem: for, as the next theorem will enable us to prove,
K does not respect indices.

(5.12) Exercise

Without using Rice's Theorem, prove that the decision problems as­
sociated with the sets

(i) {i : a. E domain('Pi)}, where a. is a given natural number, and
(ii) {i: 'Pi is a constant function},

are undecidable. (Hint jor (i): Consider the partial function \Ii : N 2 --->

N, where \Ii(m, n) = 1 if n = a and m E K, and \Ii(m, n) is undefined
otherwise.)

Each computable partial function e : N ---> N gives rise to an associated
sequence of computable partial functions from Nn to N : namely,

(n) (n) (n)
'PO(O) , 'PO(l)' 'PO(2) , ...

(Recall that 'P~(~) == Un(e(k), .), where Un is the universal Turing machine
for n-ary computable partial functions, discussed on page 42; so if e(k) is

undefined, then 'P~(~) is the empty partial function from Nn to N.) The s-

m-n theorem shows that the mapping k f-+ 'P~('~) is an effective enumeration
of its range. It follows that the effective enumerations of sets of computable
partial functions from Nn to N are precisely the listings of the form

(5.1)

where kEN.
Note that for each k, the kth term of the diagonal effective enumer­

ation
. (n) (n) . (n)
'P"'o(O)' 'P",,(l)' 'P"'2(2)"" (5.2)

is the same as the kth term in the sequence (5.1).

(5.13) The Recursion Theorem. For each n E N, and each total

computable junction j : N ---> N, there exists i E N such that 'P~n) = 'P~(~,.

Proof. To each total computable function j : N ---> N there cor­
responds a natural effective enumeration derived from the diagonal one
(5.2) namely,

5. Rice's Theorem and the Recursion Theorem 81

Choosing an index v of the mapping k f-+ fO'Pk(k), we see from the remark

immediately preceding this theorem that 'P~~(v) = 'Pj:~v(v); so it appears
that we can complete the proof by taking i == 'Pv(v). However, this will
not quite do, as we have no guarantee that 'Pv (v) is defined. To get round
this obstacle, we invoke the s-m-n theorem, to obtain a total computable

function s : N -+ N such that 'P~(l) = 'Pj:~i(i) for each i. We then choose
an index m of s and set i == 'Pm (m) to obtain

(n) _ (n) _ (n) _ (n) _ (n)
'Pi - 'Pcpm(m) - 'Ps(m) - 'PfoCPm(m) - 'Pf(i)" o

Taking n = 1 and f(k) = k + 1 in Theorem (5.13), we immediately
see that there exists i such that 'Pi = 'PHI. The proof of the following
partial generalisation of this result provides a more illuminating example
of the application of the Recursion Theorem: for each computable partial
function'P : N -+ N and each positive integer k, there exists i such that if
'Pi(n) is defined, then so are 'P(n) and 'PHj(n) (1 ::; j ::; k), and

'Pi(n) = 'PHI(n) = ... = 'PHk(n) = 'P(n).

To prove this, given 'P and k, define a computable partial function 111
N 2 -+ N by

m+k
1l1(m,n) == 'Pm(n) + L l'Pj(n) - 'P(n)l·

j=m

By the s-m-n theorem, there exists a total computable function s : N -+ N
such that 1l1(m,·) = 'Ps(m) for all m. Applying the Recursion Theorem,
compute i such that 'Pi = 'Ps(i); then

Hk

'Pi = 'Pi + L l'Pj - 'PI·
j=i

If 'Pi(n) is defined, then so are 'P(n) and 'PHj(n) (1 ::; j ::; k) ,

Hk

L l'Pj(n) - 'P(n)1 = 0,
j=i

and therefore

'Pi(n) = 'PHI(n) = ... = 'PHk(n) = 'P(n).

The procedure used in the above illustration is typical of many applica­
tions of the Recursion Theorem: we first define an appropriate computable

82 5. Rice's Theorem and the Recursion Theorem

partial function \[J of two variables, then use the s-m-n theorem to "pull
back" to functions tps(m) of one variable, and finally apply the Recursion
Theorem to the total computable function s. This procedure is used in
several of the next set of exercises.

(5.14) Exercises

.1 * For a given natural number n draw the state diagram of a Turing
machine Tn that computes the partial function tp : N -+ N defined
by

tp(i) 1 ifi=n,
undefined otherwise.

Your solution to this exercise should provide an algorithm for con­
structing Tn uniquely from n .

. 2 Prove that there exists an index n such that domain(tpn) = in}.
(Hint: Use either Exercise (5.14.1) or the s-m-n theorem; then apply
the Recursion Theorem.) Use this to prove that K does not respect
indices .

. 3 Prove that (i) there exists an index i such that i E domain(tpi) = K,
and (ii) there exists an index j such that j rJ. domain(tpj) = K.

.4 Given a proper recursive subset I of N, choose i in I and j in N\I,
and define a total function ! : N -+ N by

f (n) j if n E I,
i if n rJ. I.

Show that f is computable. Applying the Recursion Theorem to f,
give another proof of Rice's Theorem. Can you see any advantage of
this proof over the previous one?

.5 Use the Recursion Theorem to prove that K is not recursive .

. 6* Suppose there is a total computable function f : N -+ {a, I} such
that for each m,

f(m) = 1 {=> domain(tpm) =1= 0.

Define a partial function \[J : N 2 -+ N as follows: for all m, n E N,

\[J(m,n) 1 if!(m) =0,
undefined if f (m) = 1.

Use the s-m-n theorem and the Recursion Theorem to deduce a con­
tradiction.

5. Rice's Theorem and the Recursion Theorem 8:)

.7 Let f : N - • N be a total computable function. Prove that there are
infinitely many values of i such that !Pi = !Pf(i)'

.8 In the Recursion Theorem we cannot choose the index i such that
!Pi is total and !Pi = !Pf(;): to see this, find an example of a total
computable function f : N -.,> N such that if !Pn is totaL then !PICn)

is total and distinct from !pT!'

.9 Prove the Extended Recursion Theorem: For each n > 1 there
exists a total computable function t : N -+ N such that if !p~n) is
total, then

(n) _ (n)
rpt(k) - rp<pdt(k»)"

(Thus, in the notation of Theorem (5.13), the index i can be obtained
as a computable function of an index of f.)

.10 Recalling the definition of an acceptable progmmming system (page
45), prove the following generalisation of the Recursion Theorem:
For each acceptable progmTnrning system 'l/Jo, 'Ih, . " and each total
computable function f : N -+ N there exists i E N such that
wJ(;) .

. 11 Give examples of the following:

(a) An acceptable programming systeml/Jo, 1!h" .. such that there
does not exist i with 1/;; = 1/)Hl = 1/)i+2.

(b) An acceptable programming system 1/)0, ~)l' ... such that for each
computable partial function rp : N --? N and each positive inte­
ger k there exists i such that rpi = !PHI = ' .. = rpitk = rp.

What do these examples, taken with Exercise (5.14.10), tell you about
the application of the Recursion Theorem given before this set of
exercises?

.12 Prove the Double Recursion Theorem: Ij F, G : N 2 -+ N are total
computable junctions, then there exist i,j such that rpi = rpF(i,j) and
rpj = !PC(i,j)' (Hint: First show that there exists a total computable
function h : N --? N such that rpF(h(i),i) = rph(i) for each i.)

Since our proof of the Recursion Theorem depends on neither (i) the
nonrecursiveness of K nor (ii) Rice's Theorem, and since, according to
Exercises (5.14.4,5), both (i) and (ii) can be derived as consequences of the
Recursion Theorem, we see that the name of that theorem properly reflects
its status as perhaps the central result of computability theory.

\Ve round off this discussion of the Recursion Theorem with a mis­
chievous application, the construction of a self-replicating virus-that is, a
Turing machine M that, when given any natural number as input, com­
pletes a computation that outputs the same Turing machine M, in encoded

84 5. Rice's Theorem and the Recursion Theorem

form, on the tape.3 To obtain a formal definition of this notion, recall the en­
coding function "(defined before Theorem (3.6), and let F : N N be the
composition of the function n f-> Mn with "(. By a self-replicating virus
we mean a normalised binary TUring machine M" such that 'P,,(n) = F(v)
for each n E N.

Since F is computable, so is the partial function (i,j) f-> F0'Pi(j) on N 2 .

By the s-m-n theorem, there exists a total computable function s : N N
such that 'Ps(i) = F0'Pi for each i. Another application of the s-m-n theorem
yields a total computable function f : N N such that 'Pf(i)(n) = sCi) for
all i, n E N. By the Recursion Theorem, there exists an index i such that
'Pi = 'Pf(i); set v == sCi) for this i. Then for all n we have

'Pv(n) = 'Ps(i)(n) = F 0 'Pi(n) = F 0 'Pf(i)(n) = F 0 sCi) = F(v).

Thus Mv is a self-replicating virus.

(5.15) Exercise

* Prove that

{n EN: Mn is a self-replicating virus}

is not a recursive subset of N.

Rice's Theorem characterises the nontrivial recursive subsets of N. In the
remainder of this chapter we show how Rice's Theorem can be extended
in several ways to provide necessary conditions for a subset of N to be
recursively enumerable.

We begin with a generalisation of Lemma (5.8).

(5.16) Lemma. If 'P, 'I.jJ : N N are computable partial functions
with'I.jJ C 'P, then there exists a total computable function f : N N such
that for all mEN,

'Pf(m) 'P ifm E K,
'I.jJ ifm~K.

Proof. Define a total computable function H : N3 N by

H(i, n, k) 1 if Mi computes 'Pi(n) in k + 1 steps,
o otherwise.

3 An informal discussion of two types of computer virus, including the one
discussed here, is found in [16].

5. Rice's Theorem and the Recursion Theorem 85

Choosing an index 1I for ¢, next define a computable partial function \II :
N 3 --t N by

\II(m, n, k) ¢(n) if H(lI,n,k) = 1 and
H(m,n,j) = 0 for 0 ~ j < k,

= cp(n) if H(m,m,k) = 1 and
H(lI,n,j) = 0 for 0 ~ j < k,

undefined otherwise.

As ¢ c cP, this is an unambiguous definition of a function. Noting that,
for given m and n, there is at most one value of k such that (m, n, k) E
domain(\II), define computable partial functions a: N 2 --t N and B : N 2 --t

N as follows:

a(m,n) = k if (m,n,k) Edomain(\II),

and

Then

undefined otherwise

B(m,n) == \II(m,n,a(m,n)).

B(m, n) = cp(n) if mE K,
= ¢(n) if m tt K.

An application of the s-m-n theorem completes the proof. 0

(5.17) Exercises

.1 Explain why the definition of the function \II in the above proof is
unambiguous and why \II is computable .

. 2 Does Lemma (5.16) hold without the hypothesis that ¢ c cp?

Recall from Exercise (4.5.2) that the subset K of N is not recursively
enumerable.

(5.18) Proposition. Let I be a recursively enumerable subset of N
that respects indices. Ifi E I, j EN, and CPi C CPj, thenj E I.

Proof. We may assume that I is nonempty. By Proposition (3.2), there
exists 1I such that I = domain(cpv). Consider i E I and j E N such that
CPi C CPj· According to Lemma (5.16), there exists a total computable
function f : N --t N such that for all mEN,

CPf(m) CPj if mE K,

= CPi if m tt K.

86 5. Rice's Theorem and the Recursion Theorem

Suppose that j tJ. I. Since I respects indices, we see that if rn tJ. K, then
fern) E I, and that if rn E K, then fern) tJ. I. It follows that the domain
of the computable partial function 'PI.' 0 f : N -f N is k,which is therefore
recursively enumerable, by Theorem (3.3). This contradiction shows that
j E I. 0

Proposition (5.18) deals with extensions of computable partial functions;
the next proposition, which will be used in the proof of our extension
(5.27) of Rice's Theorem, deals with finite restrictions of computable partial
functions.

If 'P, 'I/! are partial functions on N such that domain('P) is finite and
'P C 'I/!, then we say that 'P is a finite subfunction of 'I/!.

(5.19) Proposition. If I is a recursively enumerable subset ofN that
respects indices, then for each n E I there exists i E I such that 'Pi is a
finite subfunction of 'Pn·

Proof. Given n E I, first apply the s-m-n theorem to construct a total
computable function s : N -f N such that for all i and j,

undefined if Mi computes 'Pi(i) in at
most j + 1 steps,

otherwise.

Note that if i E k, then 'Ps(i) = 'Pn, and therefore, since I respects indices,
sCi) E I. Suppose that if 'Pk is a finite subfunction of 'Pn, then k tJ. I. If
i E K, then 'Ps(i) is a finite subfunction of 'Pn, so sCi) tJ. I. Hence i E k
if and only if sCi) E I. Using Proposition (3.2) to construct a computable
partial function () with domain I, we now see that domain(()os) = k. Since
() 0 s is computable, it follows from Theorem (3.3) that k is recursively
enumerable, a contradiction. 0

Although the stated form of Proposition (5.19) is sufficient for most
applications, there is an interesting strong version of that theorem whose
proof we leave as a (hard!) exercise.

(5.20) Proposition. There exists a total computable function f :
N2 -f N with the following property: if domain('Pm) respects indices, then
for all n E domain('Pm), fern, n) E domain('Pm) and 'Pf(m,n) is a finite
subfunction of 'Pn. 0

(5.21) Exercises

.1 Prove that S == {i EN: 'Pi = E} is not recursively enumerable. Is
N\S recursively enumerable?

5. Rice's Theorem and the Recursion Theorem 87

.2* For which computable partial functions 'P : N --+ N is {n EN: 'Pn =
'P} recursively enumerable?

.3 Use Proposition (5.18) to give another proof of Rice's Theorem .

.4 * Prove that neither S == {i EN: 'Pi is total} nor N\S is recursively
enumerable. Thus, in a very strong sense, there is no algorithm for
deciding whether or not a computable partial function is total.

.5 Prove Proposition (5.20).

We now describe an encoding of finite subsets of N as natural numbers.
Consider any element S of the set F of all finite subsets of N. If S is
empty, define /-l(S) == 0; if Sis nonempty, let no, ... , nk be the elements of
S written in a strictly increasing finite sequence, and define /-l(S) to be the
binary integer uOOu10 ... OUk, where for each j, Uj is the unary form of nj.
Then /-l is a one-one mapping of F into N. We shall identify S with /-l(S)
when it is convenient to do so.

By a computable partial function from N into F we shall mean a
partial function 'P : N --+ F such that the corresponding partial function
/-l 0 'P : N --+ N is computable. In other words, 'P is computable if and only
if it is computable when considered as a mapping that carries a natural
number into the encoding of a finite subset of N.

(5.22) Exercises

.1 Find the subset of N whose encoded form is 11011110111111.

.2 Prove that the mapping n t--> {n, n2 } of N into F is computable.

For our extensions of Rice's Theorem we require a special effective enu­
meration of the set of computable partial functions from N to N with finite
domain.

(5.23) Lemma. There exist a one-one effective enumeration

'l/Jo, 'l/Jl, ...

of the set of all computable partial functions from N to N with finite do­
main, and a total computable function d : N --+ F, such that

(i) den) = domain('l/Jn) for each n,

(ii) {n EN: den) =I- 0} is a recursive set.

Proof. Define a computable partial function W : N3 --+ N by

w(m, n, k) = 'Pm(k) if k :S nand Mm computes 'Pm(k)
in at most n + 1 steps,

= undefined otherwise.

88 5. Rice's Theorem and the Recursion Theorem

By running Mm for at most n + 1 steps on each of the inputs 0, ... , n,
we can compute, from the pair (m, n), the (code for the) finite domain
Dm,n of W (m, n, .). Also, we can decide, for all m, m', n, and n', whether
the computable partial functions W (m, n, .) and W (m' , n' , .) from N to N
are equal. Following the arrows through the diagram below and deleting
all repetitions, we obtain a one-one total computable function

n f-+ ('lj!n, domain ('lj!n»)

on N, where 'lj!n : N -+ N is a computable partial function and domain('lj!n)
is finite; moreover, each computable partial function from N to N with
finite domain equals 'lj!n for exactly one n EN.

(W(O, 0, .), Do,o) -+ (W(O, 1, .), DO,I) (W(O, 2, .), DO,2) -+

,/ /
(W(I, 0, .), D1,o) (w(l, 1, .), DI,t}

1 /
(W(2, 0, .), D2,o)

To show that the enumeration 'lj!o, 'lj!l,'" is effective, we simply apply the
s-m-n theorem to the (informally) computable partial function (n, k) f-+

'lj!n(k) on N 2 . Finally, we describe an algorithm for deciding, for a given n,
whether den) is empty. First compute i,j such that 'lj!n = W(i,j, .). Then
check whether Mi completes a computation in at most n + 1 steps on any
of the inputs 0, ... ,j. If it does, then den) is nonempty; otherwise, den) is
empty. 0

From now on, we shall take the effective enumeration 'lj!o, 'lj!l, ... of the
set of computable partial functions from N to N with finite domain, and
the mapping d : N -+ N, as in Lemma (5.23). We shall also let trans be a
total computable function from N to N such that 'lj!n = <Ptrans(n) for all
n E N; as noted in the proof of Lemma (5.23), the existence of trans is a
consequence of the s-m-n theorem.

(5.24) Exercises

.1 Prove that J == {j EN: domain('lj!j) =1= 0} is recursively enumerable .

. 2 Let B : N -+ N be a computable partial function, and define a partial
function 'lj! : N -+ N by

'lj!(n) = maxd(B(n)
= undefined

if n E domain(B) and d(B(n» =1= 0,
otherwise.

Explain why 'lj! is computable.

5. Rice's Theorem and the Recursion Theorem 89

.3 For this exercise we recall the Goldbach Conjecture:

GC Every even integer ~ 4 is the sum of two primes.

(Nobody knows if this conjecture is true.) Consider the following
definition of a set S :

S = 0
{I}

if GC is true,
if GC is false.

What is wrong with the following argument? Since S is finite, there
exists n such that S = den); according to Lemma (5.23), we can decide
whether or not den) is empty; so we can either prove or disprove the
Goldbach Conjecture.

It is important to realise that, as the following exercises show, there is no
computable partial function () with the following property: if 'Pi has finite
domain, then (}(i) is defined and 'Pi = '¢()(i). In other words, there is no
algorithm which, applied to any computable partial function 'P with finite
domain, enables us to find the unique position of'P in the list '¢o, '¢1, ...

(5.25) Exercises

In these two exercises, F == {i EN: domain ('Pi) is finite} .

. 1 Let () : N -+ N be a computable partial function whose domain
includes F. Prove that there exists n E F such that domain('Pn) is
both nonempty and disjoint from domain('¢()(n»). Hence prove that
there is no computable partial function 'Y : N -+ N such that

(i) F c domain("() and
(ii) 'Pn = '¢'Y(n) for each n E F.

.2 Let () : N -+ N be a computable partial function whose domain
includes F. Prove that there exists n E F such that domain('Pn) =
{(}(n)+l}. (It follows that there is no algorithm which, applied to any
computable partial function 'P with finite domain, will compute an
upper bound for the domain of 'P.) Use this to give another solution
to the second part of Exercise (5.25.1).

We have already made implicit use of the case n = 2 of the following
lemma on several occasions.

(5.26) Lemma. For each positive integer n there exists a one-one
effective enumeration of Nn.

90 5. Rice's Theorem and the Recursion Theorem

Proof. This is trivial in the case n = 1. Assume, therefore, that there
is a one-one total computable function f from N onto Nn. Following the
arrows through the diagram below and deleting all repetitions, we obtain
a one-one effective enumeration of Nn x N:

(f(0),0) --> (f(0),1) (f(0), 2) -->

./ /
(f(1),0) (f(1),1)

1 /
(f(2),0)

Composing this with the one-one total computable mapping

of Nn x N onto Nn+l, we obtain an effective one-one enumeration of Nn+l.

o

In spite of Exercise (5.21.3), it is not Proposition (5.18) but the following
two theorems, taken together, which are known as the Extended Version
of Rice's Theorem.

(5.27) Theorem. There exists a total computable function f : N --> N
such that for each mEN,

(i) domain('Pf(m») = {j EN: trans(j) E domain('Pm)}, and

(ii) if domain('Pm) respects indices, then n E domain('Pm) if and
only if there exists k E domain('Pf(m») such that 'lj;k C 'Pn.

Proof. Apply the s-m-n theorem to construct a total computable func­
tion f : N --> N such that 'Pf(m) = 'Pmotrans for each m. Clearly, (i) is
satisfied. Consider any mEN such that domain('Pm) respects indices. If
n E domain('Pm), then by Proposition (5.19), there exists i E domain('Pm)
such that 'Pi is a finite subfunction of 'Pn; choosing j such that

'Pi = 'lj;j = 'Ptrans(j)'

we see that as domain('Pm) respects indices,

trans(j) E domain('Pm)i

whence j E domain('Pf(m»). On the other hand, if j E domain('Pf(m»), then
trans(j) E domain('Pm); if also 'Pn ::) 'lj;j = 'Ptrans(j)' then Proposition

5. Rice's Theorem and the Recursion Theorem 91

(5.18) ensures that n E domain(<pm). This completes the proof of (ii).
o

(5.28) Theorem. Let I be a subset ofN, and suppose there is a recur­
sively enumerable subset J of N such that i E I if and only if there exists
j E J with '¢j C <Pi. Then I is recursively enumerable and respects indices.

Proof. It is immediate that I respects indices. If J is empty, then so
is I, which is therefore recursively enumerable. If J -=J: 0, then, choosing a
total computable function t from N onto J, for all m, n, kEN define

\]I(m, n, k) = m if either d(t(n)) = 0; or else d(t(n» -=J: 0 and for
each j E d(t(n», Mm halts in at most k + 1 steps
on the input j, and <Pm(j) = '¢t(n)(j),

= -1 otherwise.

In view of Lemma (5.23), we see that \]I is a total computable function
from N 3 into N U {-I}. By Lemma (5.26), there exists a one-one effective
enumeration F of N 3 . To obtain a recursive enumeration of I, we need only
delete all entries equal to -1 from the list \]I(F(O», \]I(F(l»),.... 0

(5.29) Exercises

.1 Complete the detailed justification of the last sentence in the proof
of Theorem (5.28) .

. 2* Use Exercise (5.24.1) and Theorem (5.28) to prove that {i EN: <Pi -=J:

E} is recursively enumerable .

. 3 Let () : N -> N be a computable partial function whose domain
includes {i EN: domain(<pi) is finite}. Prove that there exists n such
that (i) domain(<pn) is nonempty and finite, and (ii) if domain('¢o(n)
is nonempty, then '¢O(n) ct <Pn (cf. Exercise (5.25.2» .

.4 Prove that the following putative extension of Proposition (5.19) and
Theorem (5.27) does not hold: for each recursively enumerable set
I that respects indices there exists a total computable function s :
N -> N such that

(i) if n E I, then '¢s(n) = <Pk for some k E I; and

(ii) n E I if and only if '¢s(n) C <Pn.

(Hint: Use Exercises (5.29.2) and (5.29.3).)

6

Abstract Complexity Theory

So far, we have only concerned ourselves with computability in principle,
without regard for the efficiency of the computations under discussion. In
this chapter we introduce Blum's axiomatic treatment of the theory of
the complexity, or cost, of a computation. In practice, this cost is a mea­
sure of the amount of some appropriate resource-such as time, space, or
memory-used in a computation. The beauty of Blum's axioms is that, in
spite of their simplicity and brevity, they enable us to prove a remarkable
range of theorems about complexity in the most general context. These the­
orems hold independently of their interpretation in any model of computa­
tion, such as the Turing machine model; our abstract theory of complexity
is machine independent.

Nevertheless, the basic models for complexity theory are connected with
Turing machine computations. For example, we can measure the cost of
the computation of <pi(n) by counting the number of steps taken by Mi to
complete a computation (if it does) on the input n. A different measure of
the cost is given by the number of distinct cells visited by the read/write
head when Mi computes <pi(n). In either example, if <pi(n) is undefined,
we consider the corresponding cost to be undefined.

Following Blum [6], we abstract from these examples a general notion of
cost. A complexity measure is an infinite sequence

of computable partial functions Ii : N --+ N that satisfies Blum's axioms:

Bl For each i, domain(,i) = domain(<pi).

B2 The function costs: N3 --+ {O, I} defined by

costs(i, n, k) = 1 if li(n) = k,
= 0 otherwise

is computable.

The computable partial function Ii is called the complexity function, or
cost function, associated with <Pi.

Blum's axioms are certainly satisfied by the examples of complexity func­
tions described in the second last paragraph. The first of the following exer­
cises proves that the axioms are independent, in the sense that neither can

94 6. Abstract Complexity Theory

be deduced from the other; the second shows that the axioms are satisfied
by some rather unexpected candidates for the title complexity measure; and
the last three contain elementary results to which we shall refer later.

(6.1) Exercises

.1 Give examples of sequences r == 1'0,1'1,1'2, ... of computable partial
functions such that

(i) r satisfies axiom Bl but not B2;
(ii) r satisfies axiom B2 but not Bl.

.2 Let r == 1'0, I'll 1'2, ... be a complexity measure, let S be a recursive
subset of N, and choose j such that 'Pj is the characteristic function
of S. Show that

1': 0 if i = j,
I'i if i =f. j

defines a complexity measure r' == I'b, I'i, I'~, Why is it reasonable
to call this complexity measure pathological? (Hint: What if S is the
set of all prime numbers?)

.3 Given a complexity measure r == 1'0,1'1,1'2, ... and a total computable
function f : N -+ N, define

I'~==I'i+f0'Pi (iEN).

Prove that r' == I'b, I'i, I'~, ... is a complexity measure .

. 4 Given a complexity measure r == 1'0,1'1,1'2, ... and a total computable
function t : N -+ N, define a total function G : N3 -+ N by

G(i, n, k)

Prove that G is computable .

1 if I'i(n) S t(k),
o otherwise.

. 5 Given a total computable function v : N -+ N, construct a total
computable function s : N -+ N such that

whenever either side of this equation is defined. Define a total function
G : N 4 -+ N as follows:

G(n, i,j, k) I'S(i)(n)
o

Prove that G is computable.

if I'i(v(n» = j and I''Pi ov(n)(n) = k,
otherwise.

6. Abstract Complexity Theory 95

From now on, we shall assume that

and
r' == 'Yb, 'Y~ , 'Y~, ...

are complexity measures, and that costs (respectively, costs') is the func­
tion associated with r (respectively, r') as in axiom B2.

Our first proposition about complexity shows that the index of a cost
function associated with 'Pi can be obtained as a computable function of i.

(6.2) Proposition. There exists a total computable function s : N ~
N such that 'Yi = 'Ps(i) for each i.

Proof. In view of the s-m-n theorem, it suffices to observe that the
partial function <1> : N 2 ~ N defined by <1>(i, n) == 'Yi(n) is computable.

o
(6.3) Exercise

It is clear that the function <1> in the proof of Proposition (6.2) is
computable in the case where 'Yi (n) is the number of steps taken by
Mi in the computation of 'Pi(n). But why is <1> computable for an
arbitrary complexity measure r?

Let P be a property applicable to some, but not necessarily all, natural
numbers n. We say that P(n) holds almost everywhere, or for almost
all values of n, if there exists v such that P(n) holds whenever n ::::: v and
P is applicable to n. On the other hand, we say that P(n) holds infinitely
often if there exist infinitely many values of n such that P(n) holds.

For example, given natural numbers i and j, we say that 'Pi(n) ::; 'Pj(n)
almost everywhere if there exists v such that 'Pi (n) ::; 'P j (n) for all n ::::: v
in domain('Pi)ndomain('Pj).

The first major result of this section, the Recursive Relatedness The­
orem for complexity measures, reveals a pleasing symmetry almost ev­
erywhere in the expression of recursive bounds for the functions in one
complexity measure in terms of their counterparts in another.

(6.4) Theorem. For any two complexity measures rand r' there ex­
ists a total computable function F : N 2 ~ N such that 'Yi(n) ::; F(n, 'YHn»
and 'YHn) ::; F(n,'Yi(n) for all n::::: i in domain('Pi).

Proof. Define a total function G : N 3 ~ N as follows:

G(i, n, k) if either 'Yi(n) ::; k or 'Y~(n) ::; k,
otherwise.

96 6. Abstract Complexity Theory

CD VI,A • CD IIl,A IIl,A .0)

FIGURE 13. The Turing machine Tn.

Note that, by B1, if either I'i(n) or I':(n) is defined, then so is the other
and hence their sum. On the other hand, Exercise (6.1.4) ensures that G
is computable. Therefore

F(n, k) == max;$;n G(i, n, k)

defines a total computable function F : N2 -> N. If n E domain(CPi) and
n 2: i, then

I'i(n) ::; I'i(n) +I'~(n) = G(i,n,I'Hn)) ::; F(n,I'Hn)).

To complete the proof we need only interchange the roles of rand r'.
o

There are two obvious ways in which we might seek to improve upon
Theorem (6.4): in the first of these we try to remove the almost everywhere
condition; in the second we try to replace F by a total computable function
f of one variable to obtain the inequalities I'i(n) ::; fbHn)) and I'Hn) ::;
fb;(n)) almost everywhere for each i. We now show that the first of these
proposed improvements is impossible; the impossibility of the second is left
as Exercise (6.5.2).

Define the complexity measures rand r' by setting!

I'i(n) the number of distinct cells of Mi visited by the
read/write head when Mi computes CPi(n),

I'~(n) I'i(n) + i.

Using Exercise (6.1.3), we see that r' is a complexity measure. For each
natural number n the normalised binary Turing machine Tn in Figure 13
computes the identity function id : N -> N; morever, for each k the number
of distinct cells of Tn visited by the read/write head during the computation
of id(k) is 1.

1 In such definitions it is taken for granted that I'i (n), for example, is undefined
if Mi fails to complete a computation on the input n.

6. Abstract Complexity Theory 97

For each n let hen) be the index of 7;., so that Tn = Mh(n). Let F: N 2 -+

N be a total computable function, and choose n so large that 1 + hen) >
F(O, 1). Setting i == hen), we have 1'i(O) = 1 and

1'~(O) = 1 + i > F(O, 1) = F(O, 1'i(O».

Since F is arbitrary, we conclude that the almost everywhere condition
cannot be removed from the conclusion of Theorem (6.4).

(6.5) Exercises

.1 Prove that for each complexity measure r there exists a complexity
measure r' with the following property: for each total computable
function F : N 2 -+ N there exists v such that 1'~(n) > F(n,1'v(n))
for all n E domain(tpv). (Hint: Define 1'~ == 1 + 1'i + tpd Can you
explain the apparent contradiction between this result and Theorem
(6.4)?

.2* With 1'i, 1': as in the example preceding this set of exercises, show that
for each total computable function f : N -+ N there exists i such that
1'Hn) > fbi(n» for all n. Thus in the conclusion of Theorem (6.4)
we cannot replace F by a total computable function f : N -+ N
such that for each i, 1'i(n) ~ fbHn)) and 1'Hn) ::; fbi(n» almost
everywhere.

Our next result shows that there is a computable bound, independent of
i, for the values of tpi in terms of the values of 1'i.

(6.6) Proposition. There exists a total computable function F : N 2 -+

N such that tpi(n) ::; F(n, 1'i(n» for all i and for all n :::=: i in domain(tpi).

Proof. Define a total function H : N 3 -+ N by

H(i, n, k) = tpi(n) if 1'i(n) = k,
= 0 otherwise.

This is computable in view of Blum's axioms. It follows that

F(n,k) == max{H(i,n,k): i::; n}

defines a total computable function F : N 2 -+ N. Also, for all i, and all
n :::=: i in domain(tpi),

F(n,1'i(n» :::=: H(i,n,1'iCn» = tpiCn). 0

98 6. Abstract Complexity Theory

In contrast to Proposition (6.6), there is no computable bound, inde­
pendent of i, for the values of "Ii in terms of the values of 'Pi; that is,
there is no total computable function F : N 2 --+ N such that for each
i,"Ii(n) S; F(n,'Pi(n)) almost everywhere. See Exercise (6.11.2).

The first two of the following exercises reveal the limitations of Proposi­
tion (6.6).

(6.7) Exercises

.1 Construct a complexity measure r with the following property: for
each total computable function F : N 2 --+ N there exists i such that
'Pi(O) > F(O, "Ii(O)). (Hint: First construct a one-one total computable
function h : N --+ N, with recursive range, such that for each k, h(k)
is the index of a Turing machine that computes the constant function
nf-4k.)

.2* Define the complexity measure r == "10, "11, ... by

"Ii (n) == the number of distinct cells of Mi visited by the
read/write head when Mi computes 'Pi(n).

Prove that there exists i such that 'Pi is total, and such that for
each total computable function J : N --+ N, 'Pi(n) > Jbi(n)) almost
everywhere .

. 3* Construct a complexity measure r such that 'Pi(n) S; "Ii(n) for all i
and n.

We now have an abstract expression of the common experience that it is
possible to construct programs that compute a given partial function and
have arbitrarily high cost. To be precise, we show that for each pair (f, t)
of total computable functions there exists a computation of J whose cost,
at each input, is greater than t. Before doing so, we define the index set
of a computable partial function 'P : N --+ N to be

IND('P) == {i EN: 'P = 'Pd·

(6.8) Proposition. Let t : N --+ N be a total computable function.
Then for each total computable function f : N --+ N there exists i E

IND(f) such that 'Yi(n) > ten) for all n.

Proof. Given a total computable function J : N --+ N, define a total
function H : N 2 --+ N as follows:

H(k,n) 'Pk(n) + 1
fen)

if 'Yk(n) S; ten),
otherwise.

6. Abstract Complexity Theory 99

In the notation of Exercise (6.1.4) we have

H(k, n) = 'Pk(n) + 1 if G(k, n, n) = 1,
= f(n) ifG(k,n,n) =0.

Since, by that exercise, G is computable, so is H. By the s-m-n theorem,
there exists a total computable function s : N ---+ N such that for each k,
'Ps(k) equals H(k, .) and is therefore total. Applying the Recursion Theorem,
we obtain i such that 'Ps(i) = 'Pi. For each n, since 'Pi(n) i= 'Pi(n) + 1, the
definition of H shows that

'Pi(n) = 'Ps(i)(n) = H(i, n) = f(n)

and that 'Yi(n) > t(n). 0

The following exercise shows that if t : N ---+ N is a total computable
function, then there is a total computable function f such that for each
Thring machine M (no matter how well designed) that computes f, the
cost of computing f(n) using M is greater than t(n) for some values of n.

(6.9) Exercise

Construct a total computable function v : N ---+ N such that for
each kEN there are infinitely many values of n with v(n) = k.
Given a total computable function t : N ---+ N, define a total function
f : N ---+ N as follows:

f(n) 'Pv(n)(n) + 1 if 'Yv(n)(n) :::; t(n),
o otherwise.

Prove that f is computable and that 'Yv(n)(n) > t(n) whenever v(n) E
IND(f).

The next result is a strengthening of the preceding exercise.

(6.10) Theorem. Let t : N ---+ N be a total computable function. Then
there exists a total computable function f : N ---+ {O, 1} such that for each
i E IND(f), 'Yi(n) > t(n) almost everywhere.

Proof. For each pair j, n of natural numbers and each partial function
'P : N ---+ N define the property P as follows:

P(j, n, 'P) <=? 'Yj(n):::; t(n) and there is no k < n such that
'Yj(k) ::; t(k) and 'Pj(k) i= 'P(k).

100 6. Abstract Complexity Theory

Note that P(j,n,'Pj) if and only if 'Yj(n) ::::: t(n). Now define a partial
function 0 : N ---> N and a total function f : N ---> {O, I} simultaneously by
the following conditions:

B(n)

and

o
undefined
min{j ::::: n : P(j, n, f)}

if n = 0 and 'Yo(O) ::::: t(O),
if n = 0 and -'("(0(0) ::::: t(O)),
if n ~ 1,

f(n) = 0 if n E domain(O) and 'PO(n)(n) = 1,
= 1 otherwise.

Then domain(O) is a recursive set, by Exercise (6.1.4), and 0 is a computable
partial function on N. Moreover, the definition of B ensures that if O(n) is
defined, then so are 'YO(n)(n) and (by axiom Bl) 'PO(n) (n); in which case we
can decide whether 'PO(n)(n) equals 1, so that f(n) is defined. On the other
hand, if n ~ domain(O), then f(n) = 1, by definition. Hence f is a total
computable function on N.

We claim that B is injective. Indeed, if 0 is not injective, then there
exist m, n in domain(0) with the following properties: m < n, O(m) =
O(n), 'YO(m)(m) ::::: t(m), 'YO(n)(n) ::::: t(n), and there is no k < n such that
'YO(n)(k) ::::: t(k) and 'PO(n)(k) =I- f(k). It follows that

'PO(m)(m) = 'PO(n)(m) = f(m),

which contradicts the definition of f(m).
Now assume that there exists i E IND(f) such that 'Yi(n) ::::: t(n) in­

finitely often. Then P(i, n, f) holds for infinitely many values of n, since
f = 'Pi· For each such n we have O(n) ::::: i, by the definition of 0; but this is
absurd, since 0 is injective. Hence, in fact, 'Yi (n) > t(n) for all sufficiently
large n. 0

(6.11) Exercises

.1 Define a complexity measure r by setting

'Yi (n) the number of steps taken by Mi
to compute 'Pi(n).

Prove that for each n E N there exists a total computable function
b : N ---> N with the following property: for each total computable
function f : N ---> {O, I} there exists i E IND (f) such that 'Yi (k) :::::
b(k) for k = 0, ... , n. It follows that the almost everywhere restriction
cannot be removed from the conclusion of Theorem (6.10).

6. Abstract Complexity Theory 101

.2* Prove that for each total computable function F : N 2 ~ N there
exists a total computable function f : N ~ N such that for each
i E IND(f), l'i(n) > F(n, rpi(n» almost everywhere. (Define t(n) ==
F(n,O) + F(n, 1) and apply (6.10).) This exercise shows that there
is no computable bound almost everywhere for the values of the cost
function l'i in terms of the values of the corresponding computable
partial function rpi.

To each total computable function f there corresponds a unique com­
plexity class Cf, consisting of all computable partial functions rp : N ~ N
with the following property: there exists i E IND(rp) such that l'i (n) 5 f (n)
almost everywhere. 2 Our next aim is to study some basic properties of com­
plexity classes and to prove two fundamental theorems: the gap theorem
and the compression theorem.

Define a partial order -< on the set of complexity classes as follows:

Cf -< Cg if and only if Cf C Cg and Cf =1= Cg'

lt follows from Theorem (6.10) that for each total computable function f
there exists a total computable function 9 such that Cf -< Cgj thus there
exists an infinite ascending sequence C fo -< C h -< C h -< ... of complexity
classes.

(6.12) Exercise

Is the intersection of two complexity classes a complexity class? What
about the union of two complexity classes?

If f : N ~ N and 9 : N ~ N are total computable functions and
f(n) 5 g(n) almost everywhere, then Cf C Cg' Can we be sure that if 9
is much larger than f almost everywhere, then Cf -< Cg? The following
Gap Theorem will show us that, no matter how much larger than f is
g, we may not have Cf -< Cgj indeed, there may be no index i such that
l'i(n) > f(n) infinitely often but l'i(n) 5 g(n) almost everywhere.

(6.13) Theorem. Let F : N 2 ~ N be a total computable junction such
that F(j, k) > k for all j and k. Then for each total computable function
t : N ~ N there exists a total computable function f : N ~ N such that

(i) f(n) 2: t(n) for all n, and
(ii) if f(n) 5 l'i(n) 5 F(n,J(n), then n 5 i.

2Note that for ip to belong to Of it is not required that all algorithms for
the computation of ip have complexity bounded by f almost everywhere. Such a
requirement would be absurd in view of Proposition (6.8).

102 6. Abstract Complexity Theory

Proof. Let t : N -+ N be a total computable function. Define a total
function G : N 2 ---t {O, l} by

G(k, 71) o ift(n):::; k and Ifi < n bi(n) < k
or -'bi(71) :::; F(n, k))),

1 otherwise.

By Exercise (6.1.4), G is computable. (Note that if -+y;(71) :::; F(71, k)), it
does not follow that li(71) > F(71, k), as li(71) need not be defined.) Given
71 EN, we prove that

D(n) == {k EN: G(k,n) c= O}

is nonempty. To this end, define

k } t(n)
F(n. kj1)

if j = 0,
if j 2: 1.

Then t(n) = ko < kl < Since there are at most n values ,;(71) with
o :::; i < n, there exists r (0 :::; r :::; 271 + 1) such that for all i < 71,
,;(71) ¢C [kr' kr+1]: see Exercise (6.15.1). For this r, either ,;(71) < kr or

(71) :::; k r +1 cc F(n,A:r)), so kr E D(71). It now suffices to let f: N --"*
N be the total function obtained from G by minimization over its first
variable,

f(n) == mink [G(k,nl = 0] (n EN),

which was proved computable in Exercise (2.7.3). 0

(6.14) Corollary. Under the hypotheses of Theorem (6.13), Cf

CFo (J\',f)'

Proof. Since f(n) :<.: F(n, f(n)) for all n,

C f C CFo!P' fl' . \ l' .I

On the other hand, if CPi E CPO (P,',f) , there exists N such that if 71 2: Nand
n E domain(<.p;), then ,;(n) :::; F(n, f(n)). Consider any n > max{i, N} in
dornain(<.p;). If f(n) :::; li(n), then n Si, by (6.13); so li(17,) < f(17,). Thus
I;(n) :::; f(n) almost everywhere, and so CPi E Cf. 0

To appreciate the force of this corollary, take, for example, F(m, n)
22": there exists a tota.l computable function f : N ---t N such that if

2 f (n) . .
li(n) :::; 2 almost everywhere, then li(n) :::; f(n) almost everywhere!

6. Abstract Complexity Theory 103

(6.15) Exercises

.1 * Let ko < kl < ... < k2n+2 and Cl,"" Cn be real numbers. Prove that
there exists r (0 ~ r ~ 2n + 1) such that Cj ~ [kr, kr+1J for each j.
(This is used in the proof of (6.13).)

.2* Let s : N -> N be a total computable function such that sen) > n for
all n. Prove that for each total computable function t : N -> N there
exists a total computable function f : N -> N such that

(i) fen) ~ ten) for all n, and
(ii) Gf = Gsof ·

(Several authors call this theorem the Gap Theorem.)

.3 Prove the following Uniform Version of the Gap Theorem: Let
F : N 2 -> N be a total computable function such that F(j, k) > k for
all j and k. Then there exists a total computable function s : N -> N
such that if 'Pm is total, then

(i) 'Ps(m) is total,
(ii) 'Pm(n) ~ 'Ps(m)(n) for all n, and
(iii) if 'Ps(m)(n) ~ l'i(n) ~ F(n,'Ps(m)(n)), then n ~ i.

There is an interesting interpretation of Exercise (6.15.2) in which each
step executed by a Turing machine takes one unit of time, and l'i(n) mea­
sures the number of steps executed by Mi in the computation of 'Pi(n).
Thus for each total computable function f : N -> N, G f consists of all
computable partial functions 'P : N -> N such that for some i E IND('P),
and for all but finitely many n E domain('P), the computation of 'Pi(n)
by Mi takes time at most fen). Imagine that because of restrictions on
the funds available to us for the purchase of computer time, the only par­
tial functions that we can compute in practice are those which belong to
Gf . Now imagine also that the restrictions on our funds are relaxed sub­
stantially, so that for some very rapidly growing total computable function
s : N -> N, we can afford to compute any partial function 'P : N -> N
that satisfies the following condition: for some i E IND('P), and for all but
finitely many n E domain('Pi), the computation of 'P(n) by Mi takes time
at most s(f(n)). It is natural to hope that if sen) grows sufficiently rapidly
with n, there will be functions that we could not afford to compute un­
der the old funding regime but whose computation is practicable under the
new one. Alas, the gap theorem shows that if the initial funding conditions,
represented by f, are unfavourable, then the increase of funds, represented
by so f, will not enable us to compute any additional functions within our
still restricted time resources!

104 6. Abstract Complexity Theory

(6.16) Exercise

Let f, f' be complexity measures such that 'YHn) ~ ~(i(n) for all i
and for all n E domain ('Pi), and let Of denote the corresponding
complexity class associated with f. Prove that for each total com­
putable function t : N ---; N there exists a total computable function
f : N ---; N such that (i) fen) ~ ten) almost everywhere and (ii)
Of = Of· (Hint: Use Theorems (6.4) and (6.13).)

The last exercise has an interpretation in which we consider 'Yi(n) and
'Y~(n) to be the respective times required to compute 'Pi(n) by implement­
ing simulations of Mi on two different computers 0 and 0': however fast
the processor of 0' is, compared with that of 0, there exist arbitrarily
large total computable functions whose associated complexity classes with
respect to 0 and 0' are the same. In other words, increasing the speed of
a processor will not necessarily augment the class of partial functions that
can be computed within a given time.

If we consider the complexity class of a cost function 'Yi, then the picture
presented by the gap theorem is totally transformed: a consequence of the
following Compression Theorem is that there exists a total computable
function F of two variables such that if the complexity bound is increased
from 'Yi to F(','Yi('», then the class of partial functions that can be com­
puted in practice is enlarged to include a computable partial function that
is relatively small (in that it is bounded by the identity function through­
out its domain) and for which each algorithm costs more almost everywhere
than 'Yi.

(6.17) Theorem. There exist total computable functions s : N ---; N
and F : N 2 ---; N such that for each i,

(i) domain('Pi) = domain('Ps(i);
(ii) 'Ps(i)(n) ~ n for each n E domain('Pi);
(iii) for each j E IND('Ps(i), 'Yj(n) > 'Yi(n) almost everywhere;
(iv) 'Ys(i)(n) ~ F(n,'Yi(n» almost everywhere.

Proof. Define predicates P and Q by

P(i,j, n)
Q(i,k,n)

{:} j < nand 'Yj(n) S 'Yi(n),
{:} k -=J 'Pj(n) for all j such that P(i,j, n).

You are invited, in Exercise (6.19), to show that

\lI(i, n) = min{k: Q(i,k,n)}
= undefined

if 'Pi (n) is defined,
otherwise

defines a computable partial function on N 2 , and that if \lI(i, n) is defined,
then \lI(i, n) ~ n. Using the s-m-n theorem, construct a total computable

6. Abstract Complexity Theory 105

function s : N -+ N such that 'Ps(i) = W(i,·) for each i. Clearly, both (i)
and (ii) hold.

Let j E IND('Ps(i))' and consider any n > j such that

'Pj(n) = 'Ps(i)(n) = w(i,n)

is defined. The definition of W ensures that Q(i,'Pj(n),n). It follows from
the definition of Q that --,P(i,j, n); whence 'Yj(n) > 'Yi(n). This proves (iii).

For all i, n, and k, axiom B2 enables us to decide whether or not 'Yi(n)
equals k; if 'Yi(n) = k, then, by axiom Bl, 'Pi(n) is defined; whence, by the
foregoing and Bl, both 'Ps(i)(n) and are defined. Thus

H(i, n, k) = 'Ys(i)(n) if 'Yi(n) = k,
= 0 otherwise

defines a total computable function H N3 -+ N. Now define a total
computable function F : N 2 -+ N by

F(n, k) == max{H(i, n, k) : i :5 n}.

Consider any i and n with n 2: i. From the foregoing we see that 'Yi(n) is
defined if and only if 'Ys(i)(n) is defined; in which case,

Thus (iv) obtains, and our proof is complete. 0

(6.18) Corollary. Under the hypotheses of Theorem (6.17),

for each i E N.

Proof. It follows from (iii) and (iv) of Theorem (6.17) that for each i,

and

(6.19) Exercise

Show that, in the proof of (6.17), the function W is computable, and
that if W(i, n) is defined, then W(i, n) :5 n.

106 6. Abstract Complexity Theory

We end this chapter by discussing the most famous and startling result
of Blum's complexity theory:

(6.20) The Speed-up Theorem [7]. If F : N2 -> N is a total
computable function such that F(m, n) ~ F(m, n + 1) for all m and n,
then there exists a total computable function f : N -> N that satisfies
f(n) ~ n for each n and that has the following speed-up property: for
each i E IND(f) there exists j E IND(f) such that F(n,"Ij(n)) ~ "Ii(n)
almost everywhere.

In interpreting this theorem we will find it helpful to think of F(m, n)
as a very rapidly growing function of its second argument n, and of "Ii(n),
when defined, as measuring the time taken by Mi to compute 'Pi (n). The
theorem then says that there exists a total computable function f of one
variable, such that, whatever Turing machine Mi we choose to compute
f, there always exists a Turing machine M j that computes f and almost
everywhere does so in a time "Ij(n) that satisfies F(n,"Ij(n)) ~ "Ii (n). So
there is no algorithm that, for this particular function f and infinitely
many values of n, computes the value f(n) more rapidly than any other
algorithm.

For example, taking F(m, n) == 2n , we obtain a total computable function
f : N -> N and a sequence io, i l , ... in IND(f), such that for each k,
"Iik+t (n) ~ log 2"1i k (n) almost everywhere. Thus

and so on.

"Iit(n)

"Ii2 (n)

"Ii3 (n)

< log 2"1io (n) almost everywhere,

< log 2 log 2"1io (n) almost everywhere,

< log 2 log 2 log 2"1io (n) almost everywhere,

There is another way of looking at the Speed-up Theorem. Consider, for
example, two computers, one of which runs a million times as fast as the
other. Applying the Speed-up Theorem with F(m, n) == 106n , we obtain a
total computable function f with the following property: to each program
P that computes f there corresponds another program pI that computes
f, such that for almost all values of n it is at least as quick to compute
f(n) using program pIon the slower computer as using program P on the
faster one.

The proof of the Speed-up Theorem depends on the following prelimi­
nary result known as the Pseudo-speed-up Theorem.

(6.21) Theorem. Let F : N 2 -> N be a total computable function,
and fix a total computable function s : N -> N such that

_ (2)(.) 'Ps(i,j) - 'Pi], . (i,jEN).

6. Abstract Complexity Theory 107

Then there exists an index e such that, with

fi == ip~2)(i,.) (i EN),

the following properties hold:

(i) ip~2)is a total function on N 2 , and ip~2)(i, n) S n for all i, n;
(ii) for each i, fi = f almost everywhere;
(iii) ifiE IND(f) , thens(e,i+1)E IND(fHl), and

F(n,'Ys(e,i+l)(n» S 'Yi(n) for all n > i.

(6.1)

Proof. To begin with, we define a partial function C from N3 into
peN) (the power set of N) as follows. For each (e, i, n) E N 3 , if i ~ n,
then C(e, i, n) is defined to be 0. If i < n, if C(e, i, m) is defined whenever
Os m < n, and if 'Ys(e,Hl)(n) is defined whenever i S j < n, then

C(e,i,n) == {j EN: i S j < n, j rJ. U:::.~loC(e,i,m),
and 'Yj(n) < F(n,'Ys(e,j+l)(n)}.

Otherwise, C(e, i, n) is undefined. 3 We note the following facts about C
whose proofs are left to Exercises (6.22):

• If C(e, i, n) is defined, then it is a finite recursive set .

• If n ~ 0, and C(e, i, n) is defined, then

C(e,i,n) = C(e,O,n) n {i,i + 1, ... ,n -1}.

IfC(e,i,n) is defined and empty, set Cf>(e,i,n) == 0; ifC(e,i,n) is defined
and nonempty, set

Cf>(e, i, n) == min{m : Vj E C(e, i, n) (m =f. ipj(n»)};

otherwise, Cf>(e, i, n) undefined. We prove that the partial function Cf> : N 3 -->

N is computable. Clearly, in seeking to compute Cf>(e, i, n) we may assume
that ° ::::: i < n. Noting that Cf>(e, i, 0) = 0, and that if Cf>(e, i, n) is defined,
then so are the values Cf>(e, i, 0), ... , Cf>(e, i, n -1), suppose that these values
are defined and have been computed. We compute Cf>(e, i, n) by following
these instructions:

[> Run the Turing machines Ms(e,j+l) (i ::::: j < n) simultaneously on the
input n.

3 A common name for C(e, i, n) in the literature of complexity theory is the
set of indices cancelled at stage n by e and i.

108 6. Abstract Complexity Theory

l> If each of these computations is completed, then use Exercise (6.1.4) to
check whether

')'j(n) < F(n, ')'s(e,j+l)(n) (i:::; j < n). (6.2)

l> If condition (6.2) is not satisfied, then ep(e,i,n) is undefined.

l> If condition (6.2) is satisfied, then from those j such that i :::; j < n
and ')'j(n) < F(n, ')'s(e,j+l) (n), select those that do not belong to

U~--==~ C (e, i, m). (This selection can be done algorithmically, smce
C(e, i, m) is a recursive set for ° :::; m < n.)

l> If there are no such j, then output epee, i, n) = 0. Otherwise, compute
'Pj (n) for each of the selected j, compute the least natural number m
distinct from each of those values 'Pj(n), and output epee, i, n) = m.
(For each selected j, 'Pj(n) is defined in view of axiom B1.)

If epee, i, n) is defined, then it is at most n, since there are at most n values
'Pj(n) with j E C(e, i, n).

Using the s-m-n theorem and the Recursion Theorem, we now fix the
value of e as one satisfying

ep(e,·,·) = 'P~2).

The foregoing shows that 'P~2)(i,n) :::; n for all i,n. Define I and Ii (i 2: 0)
as in equation (6.1). In proving that I is total we actually prove that for
each n,

'P~2)(i,m) is defined for all i and for 0:::; m:::; n. (6.3)

This is trivially true for n = 0: in fact, 'P~2) (i, 0) = 0, as C(e, i, 0) is defined
but empty. Assume, for the purpose of induction, that condition (6.3) holds
for all n < v, and consider the case n = v. If i 2: v, then C(e, i, v) is defined

and empty, so 'P~2) (i, v) is defined and equals 0. If i < v, then, noting that

'P~2) (v, v) is defined, suppose that

'P~2)(k + 1, v) = 'Ps(e,k+1) (v) is defined for i :::; k < v.

Axiom B 1 then ensures that ')' s(e,k+ 1) (V) is defined for i :::; k < v. Since, as
readily follows from our original induction hypothesis, C(e, i, m) is defined
for 0:::; m :::; v-I, we now see that C(e, i, v) is defined; whence epee, i, v)­
that is, 'P~2) (i, v)-is defined. This completes the (forwards and backwards)

inductive proof that 'P~2) : N 2 ----> N is total.
It now follows that C(e, i, n) is defined, and therefore a finite recursive

set, for all i, n. Since, by construction,

C(e,O,m) nC(e,O,n) = 0 (0:::; m < n),

6. Abstract Complexity Theory 109

for each j there exists at most one n such that j E C (e, 0, n). Hence for each
i there exists4 Ni such that if ° :s j < i and j E C(e, 0, n), then n ::; Ni. So
if n > Ni , then

C(e,O,n) C {i,i + 1, ... ,n -I}

and therefore

C(e,i,n) = C(e,O,n) n {i,i + 1, ... ,n -I} = C(e,O,n).

It follows from our choice of e, and the relevant definitions, that

hen) = <I>(e,i,n) = <I>(e,O,n) = fo(n) (n > N i),

so conclusion (ii) of Theorem (6.21) holds.
It remains to prove (iii). Given an index i for f, we have

'Ps(e,Hl) = 'P~2) (i + 1, .) = fHI'

so see, i + 1) E INDUHl). Suppose that F(n,ls(e,Hl)(n)) > li(n) for
some n > i, and consider the least such value of n. If i E C(e, 0, m)
for some m < n, then, by the definition of C(e, 0, m), i < m < n and
F(n, Is(e,i+l)(m)) > li(m), which contradicts our choice of n. Thus

i~C(e,O,m) (m<n).

Our choice of n now ensures that i E C(e, 0, n); whence

fen) = 'P~2)(0,n) = <I>(e,O,n) -1= 'Pi(n),

by the definition of <1>. This contradicts our choice of i as an index of f, so
we must have

F(n,ls(e,Hl)(n)) ::; li(n) (n > i).

Our proof of the Pseudo-speed-up Theorem is now complete. 0

(6.22) Exercises

.1 Prove that if C(e, i, n) is defined, then it is a finite recursive set. (Hint:
Use induction on n.)

.2* Prove that if n ~ 0, and C(e, i, n) is defined, then

C(e,i,n) = C(e,O,n) n {i,i + 1, ... ,n -I}.

4As will be shown below, we may not be able to compute this value N i .

110 6. Abstract Complexity Theory

(6.23) Corollary. Let F and s be as in Theorem (6.21). Then the
index e can be chosen so that all the conclusions of Theorem (6.21) hold,
except that (iii) is replaced by the following: if i E IND(f), then s(e, i+ 1) E
IND(fHl) , and

F(n, Is(e,Hl) (n) + n) ~ li(n) for all n > i.

Proof. It suffices to show that

I~(n) == li(n) + n

defines a complexity measure r' == Ib, I~' ... , and then to replace Ii by I~
in Theorem (6.21). The details are left as an exercise (cf. Exercise (6.1.3)).

o

We now turn to the long-awaited

Proof of the Speed-up Theorem. We first prove the theorem in the
special case where the complexity measure is 10, Ii, ... , defined as follows:

li(n) the number of distinct cells of Mi visited by the
read/write head when Mi computes 'Pi(n).

With f as in Corollary (6.23), fix a normalised binary TUring machine
T that computes f. Consider any i E IND(f) and set k == see, i + 1).
There exists N such that 'Pk(n) = fen) for all n ?: N. We modify Mk as
follows, to produce a normalised binary TUring machine M that computes
f. If, in its start state, M is given the input n E N, it first checks to see
whether n < N. If that is the case, M calls T as a module and completes
a computation with output fen); otherwise, M calls Mk as a submodule
and again completes a computation with output fen). Let j be the index
of M. Clearly, we can arrange the construction of M so that there exists
a constant c > 0, depending on k and n, such that

Ij(n) ::; Ik(n) + c (n EN).

We assume that this has been done. Since F is an increasing function of
its second variable, for n ?: c we have

F(n"j(n» ~ F(n"k(n) +c)::; F(n"k(n) +n).

But F(n"k(n)+n) ::; li(n) almost everywhere, by Corollary (6.23). Hence
F(n, ,; (n» ::; Ii (n) almost everywhere, so the proof of our special case of
the Speed-up Theorem is complete.

6. Abstract Complexity Theory 111

We use the Recursive Relatedness Theorem (6.4) to prove the general
case. Accordingly, let 1'0,1'1, ... be any complexity measure, 1'0, 1'i, ... the
particular complexity measure defined above, and G : N2 --> N a total
computable function such that

1't(n) ~ G(n,1'i(n» and 1'i(n) ~ G(n,1't(n»

whenever n E domain('Pi) and n ~ i. Replacing G(m, n) by

n + max G(m, k)
OS;kS;n

if necessary, we may assume that G(m, n) < G(m, n + 1) for all m and n.
Now let f be the function produced by- our special case of the theorem,
with F replaced by the function

(m,n) t-+ G(m,F(m,G(m,n»).

Given an index i of f, we obtain j such that 'Pj = f and

G(n, F(n, G(n, 1'j(n»» ~ 1't(n) almost everywhere.

Thus almost everywhere we have

G(n, F(n, 1'j(n») < G(n, F(n, G(n, 1'j(n»»

< 1't(n)

< G(n,1'i(n».

Since G is a strictly increasing function of its second argument, it follows
that F(n, 1'j (n» ~ 1'i (n) almost everywhere. This completes the proof of
the general case of the Speed-up Theorem. 0

Let F : N 2 --> Nand f : N --> N be total computable functions. We
say that f is F-speedable (relative to the complexity measure r) if for
each i E IND(f) there exists j E IND(f) such that F(n, 1'j(n» ~ 1'i(n)
almost everywhere. The Speed-up Theorem says that if F is an increasing
function of its second argument, then there exist F -speedable functions.

(6.24) Exercises

.1 Give an example of a total computable function f : N --> N and a
complexity measure r with the following property: if F : N2 --> N is
a total computable function such that F(m, n + 1) ~ F(m, n) for all
m and n, then f is not F-speedable relative to r .

• 2* Show that under the hypotheses of the Speed-up Theorem, the con­
clusion holds for some total computable function f that assumes only
the values 0 and 1.

112 6. Abstract Complexity Theory

.3 Show that the almost everywhere condition cannot be removed from
the conclusion of the Speed-up Theorem.

Our proof of the Pseudo-speed-up Theorem is constructive, in that it
shows how to compute both e and the index s(e, i+ 1) of the Turing machine
that, relative to M i , speeds up the computation of f. But our proof of
the full Speed-up Theorem is not constructive: in the special case where
'Yi = 'Y; it does not tell us how to find the index j of the faster Turing
machine. This defect is not confined to that particular proof. Blum [7] has
proved that if F : N2 -; N is a total computable function, and f : N -; N
an F -speedable total computable function, then there is no computable
partial function r : N -; N such that for each i E IND(f), rei) is defined,
rei) E IND(f), and F(n, 'YT(i) (n)) ~ 'Yi(n) almost everywhere. The next
lemma will enable us to obtain a weak version of this result.

(6.25) Lemma. Let v : N -; Nand s : N -; N be total computable
functions such that

'Ps(i)(n) = 'P'Piov(n)(n)

whenever either side of this equation is defined. Then there exists a total
computable function H : N2 -; N such that

'Ys(i)(n) ~ H(n,'Y'P,ov(n)(n)) + H(i,'Yi(v(n)))

whenever both sides of this inequality are defined.

Proof. Define the total computable function G : N 4 -; N as in Ex­
ercise (6.1.5). Define also total computable functions T : N 2 -; Nand
H:N2 -;Nby

T(p, q) _ max{G(n, i,j, k) : n, k ~ Pi i,j ~ q},

H(m,n) = max{T(p,q): p,q ~ max{m,n}}.

A routine calculation shows that for all n, i, j, k we have

G(n, i,j, k) < T(max{n, k}, max{i,j})
< H(n,k)+H(i,j).

Since, by the definition of G,

'Ys(i)(n) = G(n,i,'Yi(v(n)),'Yl"iov(n)(n)),

we complete the proof by taking j == 'Yi(v(n)) and k == 'Y'Piov(n) (n). 0

(6.26) Proposition. There exists a total computable function F :
N 2 -; N, increasing in its second argument, with the following prop­
erty: for each F -speedable function f there is no total computable function
t : N -; N such that

6. Abstract Complexity Theory 113

(i) t(i) E IND(f) for each i E N,and
(ii) for each i E IND(f),F(n,1't(i)(n)) :$1'i(n) almost everywhere.

Proof. Let v : N --+ N be a total computable function such that for
each i E N there exist infinitely many n with v(n) = i (cf. Exercise (6.9)).
By the s-m-n theorem, there exists a total computable function s : N --+ N
such that

Cf?s(i) (n) = Cf?'Piov(n) (n)

whenever either side of this equation is defined. Construct H as in Lemma
(6.25), and choose a total computable function F : N 2 --+ N such that

F(n, k + 1) ~ F(n, k) > n + H(n, k) (n, kEN). (6.4)

The Speed-up Theorem guarantees the existence of F-speedable functions.
Let f : N --+ N be anyone of those, and suppose there exists a total
computable function t : N --+ N with the desired properties relative to F
and f. Choose an index k for t. Then

Cf?s(k)(n) = Cf?'Pkov(n)(n) = Cf?tov(n)(n) = f(n) (n EN),

so s(k) E IND(f). On the other hand, since

1's(k)(n) :$ H(n,1'tov(n)(n)) + H(k,1'k(v(n))) (n EN),

we see from our choice of v that there exist infinitely many values of n such
that

1's(k)(n) :$ H(n,1'tos(k)(n)) + H(k,1'k(S(k))).

So for infinitely many sufficiently large values of n we have

1's(k)(n) < F(n,1'tos(k)(n)) - n + H(k,1'k(S(k)))
(by inequality (6.3))

< F(n,1'tos(k)(n)).

Since s(k) E IND(f), we have arrived at a contradiction. 0

There is another sense in which the Speed-up Theorem is not con­
structive. If F grows rapidly enough, there is no total computable func­
tion b : N --+ N with the following property: for each F-speedable binary
function f and each index i of f there exists an index j of f such that
F(n,1'j(n)) :$ 1'i(n) whenever n ~ b(i). In other words, there is no com­
putable bound b(i) for the exceptional values of n in the speed-up of f.
This result is a simple consequence of the first exercise in the next set. 5

5Despite a number of references to this result in the literature, its proof does
not appear to be published anywhere (although a related result is proved in
[30]). A proof of the full theorem, and the solutions to Exercises (6.27), will be
published as "On recursive bounds for the exceptional values in speed-up", by
Cristian Calude and the author, in Theoretical Computer Science.

114 6. Abstract Complexity Theory

(6.27) Exercises

.1 * Prove that there exists a total computable function B : N ~ N with
the following property: if F : N 2 ~ N is a total computable function,
increasing in its second argument, such that F(n,O) > B(n) for each
n, if sEN, and if f : N ~{O, I} is an F-speedable function such that
~ s (i) is defined for each i E IND(f), then there exist an index k of
f, and a natural number m > ~8(k), such that Ik(m) < F(m"j(m))
for all j E IND(f). (Hint: Define a computable partial function E :
N 5 ~ N by

E(u, V, i, z, s) == 1 + max{ i, z, S, ~8(U), ~s(v), IS(u), IS(V)},

and use the Double Recursion Theorem (Exercise (5.14.12)) to obtain
total computable functions gt : N 3 ~ N (t = 0, 1) such that

Then define

t
~i(n)

if n = E(goCi, z, s),gl(i, z, s), i, z, s),
otherwise.

B(n) 1 + max{')'g,(i,z,s)(n) : t = 0, 1; i, z, sEN;

E(go(i,z,s),gl(i,z,s),i,z,s) = n}.)

.2* Prove that if F : N2 ~ N is a total computable function, increasing in
its second argument, then for each F-speedable function f and each
index i of f there exists an index j of f such that F(n, Ij(n)) S li(n)
whenever n > j. (Hint: First consider the acceptable programming
system

with corresponding complexity measure

.3* With B as in Exercise (6.27.1), let F : N2 ~ N be a total computable
function, increasing in its second argument, such that F(n, 0) > B(n)
for each n, and let f : N ~{O, I} be an F-speedable function. Prove
that there is no computable partial function () : N ~ N with the
following property: for each index i of f, ()(i) is defined and there
exists j :s: ()(i) such that (i) ~j = f and (ii) F(n,'j(n)) :s: li(n) for
all n ~ ()(i). (This result should be compared with the theorem of
Schnorr [30].)

6. Abstract Complexity Theory 115

As the complicated, even pathological, construction used to prove the
Pseudo-speed-up Theorem suggests, speedable functions are hard to find.
Does this mean that the Speed-up Theorem, fascinating though it may be
in theory, is devoid of practical significance? Not necessarily: for a given
total computable function F : N2 ---- N, increasing in its second argument,
the F-speedable functions form a set that, in a Baire categorical sense, is
much larger than its complement in the set of all total computable functions
from N to N [10]; so speedable functions are much commoner than those
that are not speedable!

The relationship between the set of F -speed able functions and its com­
plement is similar to that between the set of irrational numbers and Q:
although, to the numerically naive, irrational numbers seem thinner on the
ground than rationals, the set of irrational numbers has larger cardinal­
ity than Q; this is clearly shown by the fact that Q n [0,1] has Lebesgue
measure 0, whereas the irrational numbers in [0, 1] form a set of Lebesgue
measure 1.

Epilogue

... all experience is an arch wherethrough
Gleams that untravelled world, whose margin fades

For ever and for ever when I move.
How dull it is to pause, to make an end,
To rust unburnished, not to shine in use!

As though to breathe were life!

ALFRED, LORD TENNYSON, Ulysses

Solutions to Exercises

And suppose we solve all the problems ... ? What happens? We
end up with more problems than we started with. Because that's
the way problems propagate their species. A problem left to itself
dries up or goes rotten. But fertilize a problem with a solution­
you'll hatch out dozens.

N.F. SIMPSON, A Resounding Tinkle, Act I, Sc. I

118 Solutions to Exercises

Solutions for Chapter 1

(1.2.1) Yes. Examining the sequence of configurations followed by M
when the initial configuration is (A, qo, v), we can determine the rightmost
cell c visited by M before it halts. We can then check whether there are
any symbols, other than blanks, in the cells to the right of v' up to and
including c. If there are, then M has not completed a computation on the
input v; otherwise, it has and the output of that computation is v'.

(1.3.1) No. Consider the Turing machine with input alphabet {I} and
the state diagram in Figure 14. The following sequence of admissible con­
figurations has no two terms the same:

(A, qo, 1), (B, ql, A), (BB, ql, A), (BBB, ql, A), ...

(1.3.2) The Turing machine M has four states. Given the input w ==
Xl ... X N in {O, I} *, it reads Xl in the start state qo, writes B, moves R,
and passes to the state

ql if Xl = 0,
q2 if Xl = 1.

On reading X E {O, I} in the state qi (i = 1,2), M writes

° if i = 1,
1 if i = 2,

moves R, and passes to the state

ql if X = 0,
q2 if x=1.

FIGURE 14. The state diagram for solution (1.3.1).

Solutions for Chapter 1 119

0010J<

@

~ ~OOO~
l@ 1/0,R O/I,R ® B/B,A. @

~ \ I / \::JI/I,L
l/B,R ~ /B/l,A

@

01/1,.

FIGURE 15. The state diagram for solution (1.3.2).

If M reads B in state qi (i = 1,2), it writes

o if i = 1,
1 if i = 2,

does not move, and passes to the state q3. If M reads either 0 or 1 in the
state q3, it leaves that symbol untouched, moves L, and remains in the
state q3. If M reads B in the state q3, it leaves B untouched, does not
move, and passes to the halt state qp.

The state diagram for M is given in Figure 15.

(1.3.3) In its start state qo, M reads and rewrites the leftmost symbol
o of the word v E OB* 11 *, moves R, and enters the state ql. In that state it
continues moving right, reading and rewriting B, until it reads 1, at which
stage it rewrites 1 and moves R into the state q2.

Now suppose M reads 1 in the state q2. Remaining in that state, it
continues moving right, reading and rewriting 1, until it reads B in the
cell immediately to the right of the string v. It then writes B and moves L
into the state q3; reads 1, writes B, and moves L into the state q4; reads
1, writes 1, and, remaining in the state q4, moves L. If, at this stage, M
reads B, then there remain 1 's to be shifted left on the tape, so M writes
1 and moves R into the state q2, ready to read 1. On the other hand, if M

120 Solutions to Exercises

BIB,R 11l,R

(q~ .. O/O,R
.,-~

1Il,L

FIGURE 16. The state diagram for solution (1.3.3).

reads 0 in the state Q4, then it writes 1, does not move, and enters its halt
state QF.

The state diagram for M is given in Figure 16.

(1.3.4) A Thring machine M with the required property behaves as
follows. VVhen started in its start state qo with the input word

reads Xl ("memorising" it by entering an appropriate state),
writes B, and
moves right, one cell at a time, until a blank symbol is reached.

It then moves left, reads and memorises x N, and writes Xl; moves left,
reads and memorises :r; N -1, and writes X N; and so on. When the left blank
is reached, it writes X2 and passes to its halt state qF. Figure 17 fills in the
details.

Solutions for Chapter 2

(2.1.1) The Thring machine in Figure 18 can neither leave its start
state nor enter its halt state, and so computes the empty partial function
f: N --> N.

Solutions for Chapter 2 121

FIGURE 17. The state diagram for solution (1.3.4).

FIGURE 18. A Turing machine that computes E.

122 Solutions to Exercises

OIB,R

OIO,R 0
(~
~@~®~

1I1,R ~
IIB,R

BIB,A BIB,L

OIB,A

~ ® @
~\~

IIB,A ~BIB,L

FIGURE 19. A TUring machine that computes erase.

(2.1.2) See Figure 19.

(2.1.3) (i) The Turing machine for 1\ is described in Figure 20.

(2.1.3) (ii) The Turing machine for V is described in Figure 21.

(2.1.3) (iii) The effect of the negation function ---, on a binary string w
is to convert the l's to O's, and the O's to l's. The Turing machine in Figure
22 performs this task.

(2.4.2) We first delete the arrows representing state transitions of the
form

{j (qo, y) = (q', y' , D)

where y t/:. {O, I}. This leaves us with the state diagram in Figure 23. We
could execute at this stage an encoding, etc., corresponding to the proof
of Lemma (2.2). However, a smarter way to proceed is to observe that the
arrow labelled 3/3, R and joining the state q2 to itself makes no contribution
to the computation if the input is a word over the alphabet {O, I}. Thus, for
our present purpose, we may delete that arrow from the diagram in Figure
23. If we do this, and then restrict the input and tape alphabets to {O, I}
and {O, 1,2, B}, respectively, we are left with the same Turing machine as
we dealt with in the preceding exercise. Reference to that exercise completes
our solution of this one.

(2.5) First note that the base functions are obtained from the base
functions by 0 applications of composition and primitive recursion. Sup-

Solutions for Chapter 2 123

Uffi
$ 0 BIB~

OIB,R @ BIB,L • ®

;;/ ~
l@ ______ B_IO-=-'A _______ ~ ~

~
C;/iiJ BIB~

Iffi,R C
OIB,R

OIO,A

1/0,A

FIGURE 20. A 'lUring machine for 1\.

Iffi$ \) 00(8$ 0 BIB~
~~llB=,R--lI-/ll-"RR-/--+@ BIB,L . ®~1I1'A

/ O/l,A~ \
l@ _____ ---=B.:...;:./O=,A'--_____ .@j

~ /-'---_______ @ _~B:::.:IB~,=:L __ • ®

00(8$ ORm,L
FIGURE 21. A 'lUring machine for V.

124 Solutions to Exercises

FIGURE 22. A Turing machine for '.

1I1,R 2/2,R 3/3,R 1/1,L

\jQ \j0
1I2,R • ® B/1,L • @ 211,A. ®

U U
O/O,R O/O,L

FIGURE 23. An intermediate stage in solution (2.4.2).

Solutions for Chapter 2 125

pose that, for some natural number k, all functions obtained from the base
functions by at most k applications of the operations of composition and
primitive recursion are in P. Consider a function I : Nn - N obtained
from the base functions by at most k + 1 applications of those operations.
If, for example, the last of those applications in the construction of I is one
of primitive recursion using functions 9 : Nn-l _ N and h : Nn+l _ N,
then both 9 and h can be obtained from the base functions by at most k
applications of composition and primitive recursion, so they belong to P,
by our induction hypothesis; hence I belongs to P by the definition of P. A
similar argument disposes of the case where the last application of compo­
sition or primitive recursion in the construction of I is one of composition.
Thus, by induction, P contains all functions that are constructed from the
base functions by finitely many applications of composition and primitive
recursion.

The reverse inclusion is an immediate consequence of the inductive defi­
nition of P.

(2.6.1) The following recursion scheme shows that the factorial func­
tion is primitive recursive:

o!
(n + I)!

= 1,

times 0 (scsr 0 Pr, Pi)(n, n!).

(2.6.2) For each kEN let !k be the constant function n 1--+ k. We
have the following recursion scheme for the power function:

power(O, n) = !I(n),
power(m + 1, n) = times 0 (P], Pr)(m, power(m, n), n).

It follows that power' is also primitive recursive, as

power' = power 0 (P?, Pf).

Finally, if mEN is fixed, then for each n E N we have

nm = power 0 Um, Pf)(n).

As power, 1m, and pI are primitive recursive, so is the function n 1--+ nm.

(2.6.3) First note the following recursion scheme for the function

onN:

m 1--+ cutoff(m, 1)

cutoff(O,l)

cutoff(m + 1, 1)

= 0,

= P'f(m, cutoff(m, 1».

126 Solutions to Exercises

FIGURE 24. A TUring machine that computes the zero function.

() l/I,R

C @ _llB~,,-R--.. @ B/l,L

O/I,L
.@ BII,A .®

FIGURE 25. A TUring machine that computes scsr.

Now define an element F of P by the recursion scheme

F(O, n)

F(m+1,n)

Pl(n),

cutoff(P~(m, F(m, n), n), 1).

It is easy to show that F(m, n) = cutoff(n, m); so the cutoff subtraction
function is F 0 (Pi, Pf), which certainly belongs to P.

Since
1m - nl = plus(cutoff(m, n), cutoff(n, m))

and each of the functions plus, (m,n) I-> cutoff(m,n), and (m,n) I->

cutoff(n, m) is primitive recursive, so is the function (m, n) I-> 1m - nl.

(2.6.4) By Exercise (2.6.2), the function sq : N -t N, defined by
sq(n) == n2 , is primitive recursive. Since, by Exercise (2.6.3), the function
(m, n) I-> 1m - nl is primitive recursive, it follows that the function f :
N 2 -t N defined by f(m, n) == 1m2 - nl is primitive recursive. It is easy to
show that sqrt is the partial function obtained from f by minimization.
Hence sqrt E R.

(2.7.1) As stated in the text, we take the natural numbers, considered
as functions of zero variables, to be computable by convention.

The binary Turing machine in Figure 24 computes the zero function on
N.

The one in Figure 25 computes scsr : N -t N.
Consider the computation of PT(k1 , ... , kn), where, for example, 1 <

j < n. The desired binary Turing machine M behaves as follows. Suppose
the input string k 10k20 ... Okn , with each k i EN, is written in the left cells

Solutions for Chapter 2 127

IIB,R IIB,R IIB,R

l@
0 0 0

1I0,R .@ OIB,R .® OIB,R .@ OIB,R ,

IIB,R 1I1,R OIB,R BIB,L

0 0 0 0
·0 OIB,R '@ OIB,R .(jJ) OIB,R .~ BIB,L .@ OIO,A

U U
IIB,R 1I1,L

FIGURE 26. A Turing machine that computes PP(k1 , ••• , kn).

of the tape, that M is in its start state qQ, and that the read/write head
scans the leftmost cell. M first writes 0 as a left end marker, and moves
right, writing blanks, until it reads and deletes the (j - I)th instance of 0
from the original input string. It then continues moving right, leaving the
content of each cell unchanged, until it reads the next instance of 0, which
it deletes before moving right. It continues moving right, this time deleting
all symbols until it reads B. At that stage it moves left, leaving the content
of each cell unchanged, until it reaches the 0 in the leftmost cell. It then
copies the symbols of k j onto the left of the tape, deletes all remaining
nonblank symbols, and parks the read/write head.

M is described by the state diagram in Figure 26, in which the large
square is a Turing machine module which moves the symbols of k j to the
left of the tape (cf. Exercise (1.3.3».

(2.7.2) Let 'Ii be a binary Turing machine that computes Oi (I ~ i ~
m), and let T be a binary Turing machine that computes 'IjJ. A binary
Turing machine M that computes the composite function 'IjJ 0 (01 , ... , Om)
behaves as follows. Let (kl , ... ,kn) E Nn. Assume that klO .. . Okn is writ­
ten in the left cells of the tape, that the read/write head scans the leftmost
cell, and that M is in its start state. To begin with, M shifts klO ... Okn
one place right, writing B in the leftmost cell (to act as a left end marker),
copies OOklO .. . Okn to the right of the tape, and places the read/write head
against the cell Cl to the right of 00. It then calls a Turing machine module
that, without affecting the cells to the left of Cll imitates the action of 11 on
the rightmost instance of the string klO ... Okn ; if 01 (kl' ... , kn) is defined,

128 Solutions to Exercises

the module writes it in the cells on the right of 00 and places the read/write
head against C1. Copying 00k10 ... Okn on the right of 01 (k1, ... ,kn) so that
the tape contains the string

M then places the read/write head against the cell C2 to the right of the
rightmost instance of 00 and calls a module that, without affecting the cells
to the left of C2, imitates the action of 72 on the rightmost instance of the
string k10 ... Okn; if 02(k1 , ... ,kn) is defined, the module writes it in the
cells on the right of the rightmost instance of 00 and places the read/write
head against C2; the string on the tape at this stage is

Carrying on in this way, if 01 (k1 , ... , kn), 02(k1 , •.. , kn), ... , Om(k1 , ... , kn)

are all defined, M eventually arrives at a configuration in which the string
on the tape is

and the read/write head is scanning the cell to the right of the rightmost
instance of 00. M now moves left, leaving each cell unchanged, until it reads
B on the far left. It replaces this by 0 and moves right, writing blanks in
each cell, until it reads the leftmost unit of Ol(kt, ... , kn) (following the
first instance of 00 on the tape). It then writes the string

on the left of the tape (cf. the solution to Exercise (1.3.3)) and places the
read/write head against the leftmost cell.

Finally, M calls a module that imitates the action of T on that string;
so if

'ljJ 0 (01(k1, ... , kn), 02(k1 , .•. , kn)' ... ' Om(kt, ... , kn))

is defined, it is written on the left of the tape and M parks the read/write
head.

(2.7.3) Let T be a binary Thring machine that computes 'ljJ. A bi­
nary Thring machine M that computes the function <p obtained from 'ljJ
by minimization behaves as follows. Let (k1 , ... , kn) E N n . Assume that
k10 .. . Okn is written in the left cells of the tape, that the read/write head
scans the leftmost cell, and that M is in its start state. To begin with, M
shifts k10 ... Okn one place right, leaving B in the leftmost cell and placing
the read/write head against that cell. It then writes 001 on the right of
k10 ... Okn , leaves the read/write head scanning the cell C on the right of
00, and enters a special state q.

Solutions for Chapter 2 129

Now suppose that for some j EN the tape contains the string

and that M is in the state q with the read/write head scanning the cell
c. ,/\,1 then calls a module that, without affecting the cells to the left of c,
writes Ok] 0 .. . Okn on the right of the tape and enters another special state
q', with the read/write head against c. M now calls a module that, again
without affecting the cells to the left of c, imitates the action of T on the
string jOk1 ° ... Ok". If

this module writes jOO'lj;(j, kI, ... ,kn) on the right of 00 and places the
read/write head against the cell c' immediately to the right of the rightmost
instance of 00. M then calls a module that, without affecting the cells to the
left of c', checks whether 'Ij;(j, kl' ... , kn) equals O. If 'Ij;(j, kl' ... ,kn) =I 0,
this module writes j + 1 in c and the cells to its right, leaves all cells further
to the right blank, places the read/write head against c, and enters the state
q. If 'Ij;(j, kl' ... , kn) = 0, the module writes j in c and the cells to its right,
leaves blanks in all cells to the right of that, and puts M in a special state
q" with the read/write head scanning c.

Finally, suppose that M is in the state q", with the read/write head
scanning the cell c, and with a string of the form j, where j E N, written
in c and the cells to its right. M then calls a module that copies j onto the
left of the tape, leaves all other cells blank, and halts with the read/write
head on the left.

(2.9.1) A(O, n) is certainly defined for all n. Suppose that A(m, n) is
defined for all n; then A(m + 1,0) = A(m, 1) is defined. Now suppose that
A(m + 1, k) is defined; then

A(m + 1, k + 1) = A(m, A(m + 1, k))

is defined. Hence, by induction, A(m + 1, n) is defined for all n. In turn, it
follows by induction that A(m, n) is defined for all m and n.

(2.9.3) We first have

A(l,O)

A(l,l)

A(1,2)

A(O,l)

A(O, A(l, 0))

A(O, A(l, 1))

2,

A(0,2)

A(0,3)

and generally, by a simple induction argument,

A(1,n)=n+2.

3,

4,

130 Solutions to Exercises

Next,
A(2,0) A(1,1) 3,

A(2,1) A(1, A(2, 0)) A(1,3) = 5,

A(2,2) A(1, A(2, 1)) A(1,5) 7,

and, generally,
A(2, n) = 2n + 3.

Likewise,

A(3,0) A(2,1) 5,

A(3,1) A(2, A(3, 0)) A(2,5) 13,

A(3,2) A(2, A(3, 1)) A(2,13) 29,

and, again by induction on n,

A(3,n) = 2n +3 - 3.

It follows that
22

A(4,0) = A(3, 1) = 13 = 2 - 3.

Now suppose that, for some n,

2

A(4, n) = 22. - 3,

where there are n + 3 instances of 2 on the right hand side. Then

.2

A(4, n + 1) = A(3, A(4, n)) = 2A (4,n)+3 - 3 = 22 - 3,

where there are (n + 1) + 3 instances of 2 on the far right of these equations.
This completes an inductive proof of the desired result.

Solutions for Chapter 3

(3.1) Let S, T be recursively enumerable subsets of N. If either S or
T is empty, then it is immediate that both S U T and S n T are recursively
enumerable; so we may assume that both Sand T are nonempty. Thus there
exist total computable functions s, t from N onto S and T, respectively.
Define a total computable function J on N as follows: for each n, J(2n) ==
sen) and J(2n + 1) == ten). Then J maps N onto S U T, which is therefore
recursively enumerable. An effective listing of the elements of S U T is

J(O), J(1), J(2), J(3), ... ;

that is,
s(0),t(0),s(1),t(1),

Solutions for Chapter 3 131

To construct an effective listing of the elements of S n T, follow the ar­
rows through the diagram below, deleting all pairs (8(i), t(j)) with unequal
components and listing the first components of the remaining pairs.

(s(O), teO)) -? (8(1), teO)) (8(2), teO)) -? (8(3), teO))
,/ ,/

(s(O),t(1)) (s(l), tel)) (8(2), tel))
1 ,/

(s(O), t(2)) (s(1), t(2))
,/

(s(O), t(3))
1

(3.4.1) To compute h(i,j), we run the TUring machine M on the input
i and check whether it halts in at most j steps. If it does, we set h(i, .1) == i; if
it does not, we set h(i, j) == a. Intuitively, this procedure gives an algorithm
for computing h. It follows from the Church-Markov-TUring thesis that h
is computable.

(3.4.2) By the definition of recursively enumemble, the empty subset
of N, which is the range of the empty partial function 1 on N, is recursively
enumerable, and each nonempty recursively enumerable subset of N is the
range of a total computable function on N. Conversely, suppose SeN is
the range of a computable partial function r.p from N to N; we may assume
that r.p is not the empty partial function. By Theorem (3.3), there exists a
total computable function f : N -? N that maps N onto domain(r.p). Since
r.p 0 f is a total computable function mapping N onto S, it follows that S
is recursively enumerable.

(3.5.1) Let S be an infinite recursive subset of N. Define a total func­
tion f : N -? N inductively, as follows:

f(O) == the least 11 such that n E S,

and for each kEN,

f(k + 1) == the least n such that 11 > f(k) and n E S.

lRecall from Exercise (2.1.1) that the empty partial function from N to N is
computable.

132 Solutions to Exercises

Since 8 is recursive, f is computable, by the Church-Markov-Turing thesis.
Also, f is strictly increasing and therefore one-one. It is clear that if s E 5,
then s = f(k) for some k ~ s; so f maps N onto 5. Moreover, r.p is
informally computable: to compute r.p(n), we first check whether or not n
belongs to S; if it does, then, by examining the values f(O), ... , fen), we
can find f-l(n). By the Church-Markov-Turing thesis, r.p is computable.

(3.5.2) Let S be a recursive set. If 8 = 0, then it is certainly recur­
sively enumerable. If 8 =J 0, choose an element a of S and define a total
computable function f from N onto S by

f (n) n if n E S,
a if n 1. S.

Then f is a recursive enumeration of S, which is therefore recursively enu­
merable.

(3.5.3) Since the empty subset of N is recursively enumerable and
since it is both the domain and the range of the (computable) empty partial
function on N, we may restrict our attention to a nonempty subset S of
N. Suppose there exists a computable partial function r.p : N --l> N whose
domain is a recursive subset of N and whose range is S. Fixing a E 5,
define

fen) = r.p(n) if n E domain(r.p),
= a if n 1. domain(r.p).

Then f is a total computable function from N onto 8, which is therefore re­
cursively enumerable. The converse is a trivial consequence of the definition
of recursively enumerable.

(3.7.1) First form the state transition table:

0 1 B

0 (1,0, R) undefined undefined

1 (3,1, R) (l,O,L) (2,0, R)

2 undefined undefined (2,0, R)

(Note that we do not need a row corresponding to the halt state 3.) Next
form the string

a == 3/(1,0,R)1 .. L 1 ~ 1(3, 1,R)/(1,0,L)/(2,0,R)1 ~ 1 ~ 1(2,0,R).

Then encode a :

Solutions for Chapter 3 133

10011 11111 10001 11111 10000 11111 11101 11111
3 / 1 / 0 / R /

11011 11111 11011 11111 10011 11111 10001 11111
1- / 1- / 3 / 1 /

11101 11111 10001 11111 10000 11111 11100 11111
R / 1 / 0 / L /

10010 11111 10000 11111 11101 11111 11011 11111
2 / 0 / R / 1- /

11011 11111 10010 11111 10000 11111 11101
1- / 2 / 0 / R

(3.7.2) (i)

10011 11111 10001 11111 10001 11111
3 / 1 / 1 /

11101 11111 11011 11111 10001
R / 1- / 1

The string is not in range(')'), as the last symbol, 1, of its decoded form is
part of an uncompleted triple.

(3.7.2) (ii)

10011 11111 10001 11111 11010 11111 11101 11111
3 / 1 / B / R /

10010 11111 10001 11111 11101 11111 11011 11111
2 / 1 / R / 1- /

10011 11111 11010 11111 11100 11111 11011 11111
3 / B / L / 1- /

11011 11111 10010 11111 10000 11111 11101 11111
1- / 2 / 0 / R /

10011 11111 11010 11111 11100 11111 11011
3 / B / L / 1-

134 Solutions to Exercises

/ "\
i ,

i I
\)
VOIO,R

FIGURE 27, The Turing machine decoded in solution (3,7,2)(ii),

If this string is the encoded form of a normalised binary Turing machine)\1,
then lvt has states 0,1,2,3, with start state 0 and halt state 3, Starting
from the third symbol, 1, of the decoding, we form the state transition
table below, (Of course, the row corresponding to the halt state ~) does not
appear in the string encoding M,)

0 1 B

0 (1, B, R) (2,1, R) undefined

1 (3, B, L) undefined undefined

2 (2,0, R) (:3,B,L) undefined

3 undefined undefined undefined

VJe now see that our string represents the normalised binary Turing ma­
chine described in Figure 27.

(3.7.2) (iii)

10011 11111 10001 11111 10000 11111 11101 11111
3 / 1 / 0 / R /

11011 11111 10000 11111 10001 11111 11100
.1 I 0 / 1 / L

I
I

This number is not in range ('I), as there is not suffieient information to
encode a 4-by-3 transition table (corresponding to 4 states).

Solutions for Chapter 3 135

(3.7.3) By Proposition (3.2), the partial function () : N ----+ N defined
by

e(n) 1 ifn E S,
undefined if n 1- S

is computable. Hence the product ()'Pi is computable. But

'P;(n) ifnES,
undefined if n 1- S.

(3.10.1) Define a partial function W : N3 ----+ N by

whenever the right side exists. Then W is computable: to compute wen, i, j),
first run M j on the input n; if this computation halts, run /'v't; on the input

'Pj(n). Now choose v E N such that W = 'PS'). By the S-Tn-n theorem, there
exists a total computable function s : N 3 ----+ N such that

_ (3) (. .)
'Ps(k,i,j) - 'Pk ·,Z,).

Defining a total computable function 9 : N 2 ----+ N by g(i,j) == s(v, i,j), for
all i and j we have

'Pg(i,j) = 'Ps(l/,i,j) = 'PP)(·,i,j) = Wei,j) = 'Pi 0 'Pj.

(3.11.1) Since 'l/Jo, '1/JI, ... has the universal property, the partial func­
tion W : N 2 ----+ N defined by W(n, k) == 'l/Jn(k) is computable. Using the
8-Tn-n property of 'l/Jb, 'I/J~ , ... , we now see that there exists a total com­
putable function f : N ----+ N such that

'l/Jj(n) = W(n,·) = 'l/Jn

for each n.

(3.11.2) The necessity of the stated condition follows from Exercise
(3.11.1). To prove its sufficiency, let 'l/Jo, 'l/Jl,'" be an enumeration of the
set of all computable partiaJ functions from N to N, and suppose that
there exist total computable functions f : N ----+ Nand 9 : N -> N such
that 'l/Jn = 'P fen) and 'Pn = 'l/Jg(n) for each n. Since the partial function
(n, k) f---> 'Pf(n)(k) on N 2 is computable (why?), '1/)0, 'l/Jl,'" has the universal
property. On the other hand, if <P : N2 ----+ N is a computable partial
function, then, by Corollary (3.9), there exists a total computable function
s : N ----+ N such that 'Ps(n) = <P(n,·) for each n. Setting t == go s, we see
that t is a total computable function on N such that 'ljJt(n) == <P(n,·) for
each n; hence 'l/Jo, '1/JI, ... has the 8-m-n property.

136 Solutions to Exercises

Solutions for Chapter 4

(4.1.1) Such a Turing machine is given by the state diagram in Figure
28.

(4.1.2) Suppose there exists such a Turing machine M, and consider
its behaviour when, in its start state, it is given a nonempty input string
wE {O}*. Since A1 halts on the input w, there is a positive integer N > Iwl
such that, during the computation in question, M never reads a cell beyond
the Nth from the left. Now consider what happens when the left of the tape
contains w, followed by blanks in all cells up to and including the Nth, and
o in the (N + l)th cell. When st.arted on the left, M will mimic its behaviour
on reading/v; so M will never reach the (N + 1)th cell, and therefore will
not delete the 0 contained therein. This contradiction completes the proof.

(4.5.1) Define a total computable function h : N 2 -+ N by

h(n,k) 1 if Ai" halts in at most k steps on the input 71,

a otherwise.

By following the arrows in the diagram at the top of the next page, we can
produce a recursive enumeration of the range of h.

h(O,O) -+ h(O,1) h(0,2) -+ h(0,3)
/ /

h(l, 0) h(l,l) h(l,2)
1 / /

h(2,0) h(2,1)
/

h(3,0)
1

If we go through this list and delete all terms h(71, k) with the value 0, we
obtain a list, say

h(no, ko), h(nl, kd, h(n2, k2), ... ,

of all the values hen, k) equal to 1. Then 710,711, n2, .. . is a recursive enu­
meration of K.

(4.5.2) Suppose K is recursively enumerable. By Theorem (3.3), K =
domain(!pv) for some 1/. Then

a contradiction.

1/ E K {=} !PI/ (1/) is defined

{=} uEK

{=} utl-K,

Solutions for Chapter 4 137

O/B,A O/B,L

0)_. _0c:..:..::/B:...c:..::,A=--_ 0

~Bm'L
FIGURE 28. The Turing machine for solution (4.1.1).

(4.5.3) If S is recursive, then so is N\S, as the characteristic function
of the latter is 1 - xs, which is certainly computable. Then, as recursive
implies recursively enumerable (Exercise (3.5.2», both S and N\S are re­
cursively enumerable.

Conversely, suppose that both S and N\S are recursively enumerable.
If either of these sets is empty, then the other is N and both are certainly
recursive. So we may assume that both Sand N\S are nonvoid; whence
there exist total computable functions I, 9 on N such that range(f) = Sand
range(g) = N\S. An informal description of an algorithm for computing
Xs goes as follows. Given n E N, compare it in turn with

1(0), g(O), 1(1), g(I), ...

until either we find k with I(k) = n, in which case we set the output equal
to 1, or else we find k such that g(k) = n, in which case we set the output
equal to O. Since

range(f) U range(g) = N

and
range(f) n range(g) = 0,

for each n E N exactly one of the two alternatives for the algorithm's
behaviour must occur.

Now suppose that K is recursive. Then R is recursively enumerable,
by the foregoing; but this contradicts Exercise (4.5.2). Hence K is not
recursive.

138 Solutions to Exercises

(4.7.1) Let P(N) denote the power set of N-that is, the set of all
subsets of N. For each subset S of N let F(S) be the number with binary
expansion

0·xs(0)xs(1)xs(2)

Note that F maps P(N) onto [0,1]: for if x E [0,1] and 0·XOXIX2 ... is a
binary expansion of x, then x = F(S), where S == {i EN: Xi = I}.

Now suppose that P(N) is countable. Then there exists a mapping 9 of
N onto P(N); so Fog is a mapping of N onto [0,1], and therefore [0,1] is
countable. This contradicts Cantor's Theorem (4.6).

(4.7.2) By definition, a nonempty recursively enumerable subset S of
N is the range of some total computable function on N. Since the set of all
computable partial functions from N to N is countable, the set of all total
computable functions from N to N is also countable. Let

io,h,h,···

be a listing2 of all the total computable functions from N to N. Then

0, range(fo), range(h), range(h),··.

is a listing of all tlie recursively enumerable subsets of N; so the set of
recursively enumerable subsets of N is countable. By Exercise (4.7.1), the
set of all subsets of N is uncountable. Hence not all subsets of N are
recursively enumerable-that is, there exists a subset of N that is not
recursively enumerable.

(4.8.2) Let x be a computable real number; so there exists a total
computable function s : N ---. Q such that Ix - s(k)1 S; 2-k for each k.
Given a natural number k, first compute a positive integer N such that

lex - txn/n!1 S; Tk-l.

n=O

Next compute a positive integer m such that if Ix - tl s: 2-m , then

2Note that this enumeration is not effective: see Proposition (5.1).

Solutions for Chapter 4 139

Then r(k) == I::=o s(m)n In! is a rational number, and

lex - r(k)1 ::; lex - I::=o xn In!1

+ 1I::=o xn In! - I::=o s(m)n In!1

< 2-k - 1 + 2-k - 1

2-k •

We have described (informally) an algorithm for computing a total function
r : N -+ Q such that lex - r(k)1 ::; 2-k for each k. Hence eX is a computable
real number.

Additional Exercise: Show in detail how r(k) can be constructed as a
computable function of k.

(4.8.3) Let x and y be computable real numbers, and choose total
computable functions s : N -+ Q and t : N -+ Q such that Ix - s(n)1 ::;
2-n and Iy - t(n)1 ::; 2-n for each n. Define total computable functions
U,v: N -+ Q by

u(n) == s(n + 1) + t(n + 1),

v(n) == s(n + 1) - t(n + 1).

For each n we have

I(x + y) - u(n)1 < Ix - s(n + 1)1 + Iy - t(n + 1)1
< 2-n - 1 + 2-n - 1

2-n

and similarly
I(x - y) - v(n)1 ::; Tn.

Hence x + y and x - yare computable.
To handle the product xy, first compute a positive integer m such that

if either Ix - zl ::; 1 or Iy - zl ::; 1, then Izl ::; 2m. For each n we have

Setting

Ixy - s(n) . t(n)1 < Ix - s(n)I'lyl + Iy - t(n)I'ls(n)1
< 2-n2m + 2-n2m

2m-n+l.

r(n) == s(m + n + 1) . t(m + n + 1),

we see that r : N -+ Q is a total computable function such that Ixy - r(n) I ::;
2-n for each n.

140 Solutions to Exercises

(4.8.4) There exists a total computable function s : N ---+ Q such
that Ix - s(n)1 ::; 2-n for each n. Choose a positive integer m such that
Ixl > 2-m . Then Is(n)1 > 2-m - 1 for all n > m. For such n we have

Setting

11/x -l/s(n)1 Ixl-l Is(n)I- 1 Ix - s(n)1

< 2m 2m +l2-n

22m-n+l.

r(n) == 1/s(2m + n + 1),

we see that r is a total computable function from N to Q and that

11/x - r(n)1 ::; Tn

for each n.

(4.8.6) Choosing indices i, j for cp and 'ljJ, respectively, run Mi on the
input n. If it completes a computation, store cp(n) and run M j on the input
n. If that also completes a computation, call a Turing machine module
T that compares the stored value of cp(n) with 'ljJ(n) to decide whether
cp(n) = 'ljJ(n) or cp(n) =1= 'ljJ(n).

(4.8.7) Choose indices i, j for sand f, respectively. Given n EN, first
run M j on the input n, to compute and store fen). For k = 0, 1, ... use Mi
to compute s(k), and then call a Turing machine module that compares
s(k) with fen) (cf. the solution of Exercise (4.8.6)). If s(k) - fen) > 2- k ,

then
x - fen) > s(k) - fen) -Ix - s(k)1

> 2- k - 2-k

o
and so x> fen); in that case we stop the computation. If f(n)-s(k) > 2-k ,

then a similar argument shows that fen) > x; in which case we stop the
computation. On the other hand, if Is(k) - f(n)1 ::; 2-k , we carryon with
the computation of s(k + 1). Note that we are guaranteed to find a value
k such that either s(k) - fen) > 2-k or fen) - s(k) > 2-k : for as x is
irrational, there exists k such that Ix - f(n)1 > 2-k+l and therefore

Is(k) - f(n)1 > Ix - f(n)I-lx - s(k)1
> 2- k+l _ 2- k

2- k .

Thus we can be certain that our algorithm terminates.

Solutions for Chapter 4 141

(4.11.1) Suppose we have a list rl, r2,'" of all numbers in the closed
interval [0,1]. Write each ri as a decimal, and define a nonnegative real
number

by setting

d; 9 if the ith decimal digit of ri is less than 5,
o otherwise.

As x differs from 'fi by 5 in the ith decimal place, it cannot be in the list
rl,r2, ... (see the lemma below). But this list includes all numbers in [0,1];
so we have a contradiction from which Cantor's Theorem follows.

A diagram should help to make Cantor's argument clear:

ro ·2 5 6 3

·0 6 7 4

·7 8 1 8

·6 1 0 3

With the listing suggested by this diagram, since the first decimal place of
rl is less than 5, we make the first decimal place of x equal to 9; since the
second decimal place of r2 is greater than 4, we make the second decimal
place of x equal to 0; and so on. Thus

x = ·909 ... 9 ... ,

where the nth decimal place is 9 as 7'i has nth place equal to 3. Clearly, x is
different from each rio

The lemma referred to in the above solution is the following.

Lemma. Let a == aO·ala2 ... and b == bO'b1b2 ... be decimal expansions
of two 7'eal numbers, and suppose that there exists n such that an and bn

differ by at least 2 (modulo 10). Then a 'I b.

Proof. Suppose first that lao - bol 2: 2, and without loss of generality
take ao 2: bo + 2. Then

142 Solutions to Exercises

whence a -I- b.

00

a-b ao-bo+2:(ai-bi)lO-i
i=1

00

> 2 - 2: lai - bi llO-i

i=1

00

> 2 - 2: 9.1O- i

i=1

2 - (9/10)(1 + 1/10 + 1/102 + ...)
2 9/10 - l'

- 1-1/10 - ,

In general, if an and bn differ by at least 2, then the integer parts of lOna
and lOn b differ by at least 2; so, by the case discussed above, lOn a -I- lOn b,
and therefore a -I- b.

(4.11.2) Apply the proof, suitably adapted, of Cantor's Theorem given
in the main body of the text.

(4.11.3) First proof. Since f is increasing, there exists N such that
fen + 1) = fen) for each n 2: N. Hence

00

x == L 2f(n)3-n

n=O

has a recurring ternary expansion and is therefore rational. By Exercise
(4.8.1), x is computable. It follows from Lemma (4.10) that the function
2f, and therefore f itself, is computable.

Second proof. For each N E N let fN be the total computable func­
tion defined on N by

fN(n) = 0 if n :::; N,
= 1 if n > N.

Clearly, fN is computable. Since f = fN for some value of N, f is com­
putable.

(4.14.1) (i) A partial function 8 : Rc ---+ N is computable if there
exists a computable partial function () : N ---+ N such that if !.pi is a com­
putable real number generator converging to a limit x in the domain of 8,
then i E domain(() and 8(x) = ()(i).

Solutions for Chapter 4 143

(4.14.1) (ii) Let q : N -t Q be the one-one mapping of Q onto N
introduced on page 52. A partial function 8 : Q -t Re is computable if
there exists a computable partial function 0 : Q -t N such that if i E N
and q(i) E domain(8), then q(i) E domain(O) and <PO(q(i)) is a computable
real number generator converging to 8(q(i)).

(4.14.1) (iii) A partial function 8 : N x Re -t Rc is computable if
there exists a computable partial function 0 : N x N -t N such that if
i EN, and <pj is a computable real number generator converging to a limit
x such that (i, x) E domain(8) , then (i,j) E domain(O) and <Pe(i,)) is a
computable real number generator converging to 8(i, x).

(4.14.2) Define a computable partial function \Ji : N 3 -t N as follows.

\Ji(i,j, n) <Pi(n + 1) + <pj(n + 1) if <Pi(n + 1), <pj(n + 1) are
both defined,

undefined otherwise.

By the s-m-n theorem, there exists a total computable function .9 : N 2 -t N
such that \Ji(i,j,.) = <Ps(i,j) for all i,j. Now consider computable real num­
ber generators <Pi, <pj converging to computable real numbers x and y, re­
spectively. The solution to Exercise (4.8.3) shows that <Ps(i,j) is a com­
putable real number generator converging to x + y. It follows that the
addition function plus : Rc x Rc -t Rc is computable.

A similar argument proves the computability of minus: Rc x Rc -t Re.
It remains to deal with times: Rc x Re -t Re. To this end, we first
observe that if <Pi, <pj are computable real number generators converging to
computable real numbers x and y, respectively, then for each k,

Ixy - <Pi (k)<pj (k)1 < Ix - <Pi(k)l· Iyl + Iy - <pj(k)I'I<pi(k)1

< 2- k (l<pj(k)1 + 1) + 2- k l<Pi(k)1

2- k (1 + l<Pi(k)1 + l<pj(k)!).

Define a partial function \Ji : N3 -t N by

\Ji(i,j,n) == mink [2-k(1 + (k)1 + l<pj(k)l) S; 2-n j.

\Ji is computable in view of Exercises (2.6.5) and (2.7,3). Thus

(i,j,n) f--> <pi(W(i,j,n))' <pj(\Ji(i,j,n))

is a computable partial function from N3 to Q. By the 8-m-n theorem,
there exists a total computable function f : N 2 -t N such that

144 Solutions to Exercises

'PfCi,j) = 'Pi(W(i,j, .)) . 'Pj(W(i,j, .))

for all i, j.
Now consider computable real number generators 'Pi, 'Pj converging to

computable real numbers x and y, respectively. Since

1 + !'Pi(k)1 + l'Pj(k)! < 1 + (Ixl + 2- k) -f- (Iyl + 2-k)

< Ixl + Iyi + 3,

we see that

It follows that 'P f(i,j) is a total computable function on N. Moreover, by
the observation above,

Ixy - 'Pj(i,j)(n)1 Ixy - 'Pi(W(i,j,n))' 'Pj(W(i,j,n))1

< 2---lJ!(i,j,n) (1 + l'Pi(W(i,j,n))1 + l'Pj(W(i,j,n))I)

< 2-n

for each n. Hence 'P f(i,j) is a computable real number generator converging
to xy.

(4.14.3) Let M be a normalised binary Turing machine that computes
~. To compute W(m, n), first run /vl on the input m. If J\It completes the
computation, run Mm on the input 2~(m) + n - 2. If that computation
is completed, run a Turing machine module that checks whether or not
'Pm(24{m) + n - 2) = 0; finally, if 'Pm(2~(m) + n - 2) of 0, run a Turing
machine module that computes 1/'Pm(2~(m) + n - 2).

(4.14.4) There exist computable partial functions (;J N ---; Nand
~ : N ---; N such that

(i) if 'Pi is a computable real number generator converging to a
computable real number x E domain(8), then i E domain«(;J)
and 'POO) is a computable real number generator converging
to 8(x):

(ii) if i E domain(W), then i E domain(~) and 'P,p(i) is a comput­
able real number generator converging to W(i).

If i E domain(8o 'II), then i E domain(W) and W(i) E domain(8). So
i E domain('1/)) and 'P,p(i) is a computable real number generator cOIlverging
to the computable real number W(i); whence ~(i) E domain«(;J) and 'PfJ(1j)(i»

is a computable real number generator converging to the computable real
number 8(W(i)). Thus 8 0 'II is a computable partial function from N to
Re.

Solutions for Chapter 4 145

On the other hand, there exists a computable partial function 1jJ' ; N ---+

N such that if 'Pi is a computable real number generator converging to a
computable real number x E domain(IJi'), then i E domain(1jJ') and 'P1j;f(i)

is a computable real number generator converging to 1Ji'(x). Let 'Pi be a
computable real number generator converging to :c E domain(8 0 1Ji/). Then
i E domain(1jJ'), 'P,pf(i) is a computable real number generator converging
to 1Ji'(x), and 1Ji'(x) E domain(8). Hence 1jJ'(i) E domain(B) and 'P&(,pf(i)) is
a computable real number generator converging to 8(IJi'(i)). Thus 8 0 1Ji'
is a computable partial function from Rc to Re.

(4.14.5) First note that (d. Exercise (4.14.1)) a partial function 8 ;
Rc x Re ---+ N is computable if there exists a computable partial func­
tion B ; N 2 ---+ N with the following property: if 'Pi, 'Pj are computable
real number generators converging to computable real numbers x and y,
respectively, such that (x, y) E domain(8) , then (i,j) E domain(B) and
B(i,j) = 8(x,y).

Now let 8 : Rc x Rc ---+ N be a computable partial function, fix a ERe)
and let IJi be the partial function x I---> 8(x, a) on Re. Choose the com­
putable partial function B : N2 -----? N as above, let 1/ be an index of a com­
putable real number generator that converges to a, and define a computable
partial function 'P : N ---+ N by 'P == B(·, v). If 'Pi is a computable real num­
ber generator converging to a computable real number x E domain(lJi),
then i E domain ('P) and

'P(i) = B(i, 1/) = 8(x,a).

Hence B is computable.

(4.14.6) To begin with, suppose that 8 is computable; so there exists
a computable partial function (J : N ---+ N such that if i E domain(8), then
i E domain(8) and 'Pe(i) is a computable real number generator converging
to 8(i). Define a computable partial function, : N ---+ N by

,(j) == mink [!'Pj(2) - k! < 1/2].

Define also a computable partial function IJi : N 2 ---+ N by

lJi(j,n) == 'Pe(--y(j)) (n).

Choose a total computable function s : N ---+ N such that w(j,.) = 'P8(j)
for each j. Let 'Pj be a computable real number generator converging to
i E N. Then as !i - 'Pj(2)! < 1/2, we see that ,(j) = i. Thus

'PsUl = 'Pe(--y(j)) = 'Pe(i),

which is a computable real number generator converging to 8* (i). Hence
8* is computable.

146 Solutions to Exercises

Conversely, suppose that (0* is computable, and choose a computable
partial function B* : N -'> N such that if i.(Jj is a computable real number
generator converging to i E domain(8*), then j E domain(8*) and i.(J1)*(j)

is a computable real number generator converging to 8* (i). Define a total
computable function F : N 2 -'> N by

F(i,n) == i (i,n EN).

Applying the s-m,-n theorem. construct a total computable function t :
N---.; N such that F(i,·) = for each i. Let B == B* 0 t: then B is a
computable partial function from N to N. If i E domain(8), then i.(Jt(i)

is, trivially, a computable real number generator converging to i, so t(i) E

domain(B*) and i.(JO(i) is a computable real number generator converging to
f)* (i) = 8U). Hence 8 is computable.

(4.17.1) It is clear from the definition of the mapping q on page 52
that there exist total computable functions f : N -'> N, g : N -'> N, and
s: N ----7 {O, I} such that for each i,

q(i) = (-1)s(;) f(i)/g(i).

Given i E N, and working relative to the number base d, we now divide g(i)
into f(i) by the standard long division algorithm from elementary school
to produce successively the digits of a d-ary expansion of Iq(i)l. Thus

<P(i, n) the (n + 1) th digit produced by the long
division of f(i) by g(i)

defines a total computable function <P : N~ ----> N. Using the s-m-n theorem,
we now obtain a total computable function r : N -'> N such that

00

q(i) = (-1),,(') L i.(Jr(i) (n)d- n

n=O

for each i.

(4.17.2) We begin with the following observation from Exercise (4.8.7):
If i.(Ji is a computable real number generator converging to an irrational
compntable real n1LTnbeT x, and f : N ------> Q is a total computable function,
then

(i) for each n EN there exists k such that li.(Ji(k) - f(n)1 > 2-k ;

(ii) if ,pi(k) - f(n) > 2- k • then J.: > f(n);
(iii) ~r f(n) - i.(J;(k) > 2- k , then J: < f(n).

The solution of the present exercise is modelled on the proof of Propo-
sition 16). We define simultaneously computable partial functions a :

Solutions for Chapter 4 147

N3 -t Nand W : N 2 -t N as follows. First set

o:(O,i,n)

W(i,O)

min m [I'Pi(m) - nl > 2-- m] ,

min n [n - 'Pi (0:(0, i, n)) > 2-<>(0,i,n) 1 - 1.

Having defined w(i, j) (0 :s: j :s; k), if t E {O, ... , d - I} set

o:(k + 1, i, t) == minm ['Pi(m) - t Wei, j)d- j - (t + 1)d k - 1

j=O

otherwise set
o:(k + 1, i, t) == undefined.

Define also

W(i,k+1)

min t [t E {O, ... , d - I} and I:~=o W(i, j)d- j +- (t + 1)d-k - 1

-'Pi(cx(k + 1, i, t)) > 2-<>(k+1,i.t)] ____ 1.

Using the 8-m-n theorem, choose a total computable function s : N -t N
such that 'Ps(i) = W(i,') for each i. Now consider i E N such that 'Pi

is a computable real number generator converging to a positive irrational
number x ERe. Taking f(n) == n in the observation at the start of this
solution, we see that 0: (0, i, .) is a total function on N and that W (i, 0) is
the unique natural number N such that N < x < N + l. Now suppose that
the values W(i,j) (0 :s: j :s: k) have been computed so that

Taking

f(t)

W(i,j) E {O, 1, ... , d - I} (IS; j :s; k).

if ° :s; t :s; d - 1,

ift ~ d,

and applying the observation at the start of this solution, we see that
o:(k + 1, i, t) is defined for each t E {O, ... , d - I} and that i¥(i, k + 1) is
the unique t E {O, ... ,d - I} such that

k k

L W(i,j)d- J + td- k --1 < X < L W(i,j)d- j + (t + 1)d-k - 1 .

j=O j=O

It follows that

00 co

n=O n=O

148 Solutions to Exercises

(4.23.1) Define a total computable function H : N 2 --t {O, I} by

H(m,n) 1 if /vim computes 'Pm(m) in at most n steps, ° otherwise.

By Corollary (3.9), there exists a total computable function s : N --t N such
that 'Ps(m) = H(m,·) for each mEN. Suppose there exists a computable
partial function () with the stated properties. For each i, 'Ps(i) is a total
computable function from N into {O, I}, so s(i) E domain(O). If O(s(i)) = 0,
then (n) = 0 for all n, so 'Pi(i) is undefined. If O(s(i)) = 1, then there
exists n such that 'Ps(i)(n) = 1, so iPi(i) is defined. Thus K is recursive,
which contradicts Corollary (4.3).

Comment: It is easily seen that there is no computable partial function
o : N ---+ N such that if 'Pi : N --t {O, I} is an incr'(;asing total function,
then i E domain(0) and

O(i) = ° ::=} 'Pi (n) = ° for all n,

8(i) = 1 =? there exists n such that 'Pi (n) = 1.

(4.23.2) Suppose there exists a computable partial function 8 : N --t

N with the stated properties. Given i such that 'Pi is a total function from
N into {O, I}, define

x=: - L 2-n 'Pi(n).
n=O

Then (cf. Exercise (4.8.5)) x is a computable real number, and

k

s(k) :=--- L 2-"'Pi(n) (kEN)
n=O

defines a computable real number generator s converging to :1:. Choose m
such that s = q 0 'Pm. If B(m) = 0, then x < 0, so there exists n such that
'Pi(n) = 1. If B(m) = 1. then x ;:::: 0, so 'Pi(n) = ° for all n. It follows that
the value of B(m) is independent of the index m of 8 and that

1/J(i) := 1-- 8(m)

defines a computable partial function 'ljJ : N -> {O, l} such that if 'Pi is a
total function from N into {O, I}, then i E dornain(1/J),

'Ij)(m) = ° =? 'Pi(n) = ° for an n, and

1/J (m) = 1 =? there exists n such that 'Pi (n) = l.

This contradicts Exercise (4.23.1).

(4.23.3) Suppose such a total computable function f exists. Thus
there ex.ists a computable partial function~) : N ---+ {O, I} such that if

Solutions for Chapter 4 149

<Pk is a computable real number generator converging to a computable real
number x, then k E domain('ljJ) and 'ljJ(k) = f(x). Define a computable
partial function \If : N 2 -+ N by

k

\If(i, k) == LTn<pi(n).
n=O

Using the s-m-n theorem, construct a total computable function s : N -+

N such that <Ps(i.) = \If(i,·) for each i. Then 0 == 'ljJ 0 s is a computable
partial function from N to {O, I}. If <Pi : N-----, {O, I} is total, then <Ps(i)

is a computable real number generator converging to the computable real
number

00

x == LTn<pi(n),
n=O

so s(i) E domainCI/J), i E domain(8), and O(i) = 'ljJ(s(i)) = f(x). If O(i) = 0,
then x = 0, so <pi(n) = 0 for all n; if 8(i) # 0, then x # 0, so <pi(n) = 1 for
some n. This contradicts Exercise (4.23.1).

There is no algorithm which, applied to any rational number x, will
decide whether x = 0 or x # O. To see this, suppose there is such an
algorithm. Then there exists a total computable function g : Q -+ {O, I}
such that

g(x)=O =} x=O,

g(x) = 1 =} x # o.
If <P.i is an increasing total computable function from N to {O, I}, then

00

x == LTn<pi(n)
n=O

has a recurring binary expansion and so is rational. By considering g(x),
we can decide whether <pi(n) = 0 for all n or there exists N such that
<Pi (N) = 1. This contradicts the comment at the end of the solution of
Exercise (4.23.1). (The details are left to you.)

(4.23.5) Suppose such a function f exists. Then there exists a com­
putable partial function 'ljJ : N ---+ {O, I} such that if <Pm is a computable
real number generator converging to the computable real number x, then
m E domain('ljJ) and 'ljJ(m) = f(x). Choose a strictly increasing sequence
(lIdk=O such that

150 Solutions to Exercises

Define a computable partial function <I> : N2 -+ N by

1..Ik

<I>(i, k) == L 'Pi(n)/n!
n=O

By the s-m-n theorem, there exists a total computable function s : N -+ N
such that 'Ps(i) = <I>(i,·) for each i. Let e == 7/10 S (a computable partial
function from N to {O, I}). Given i such that 'Pi : N -+ {O, I} is total
and increasing, we see that 'Ps(i) is a computable real number generator
converging to the computable real number

00

x == L 'P;(n)/n!
n=O

Note that x is irrational if and only if there exists N such that 'Pi(N) = 0
and 'Pi(N + 1) = 1. For if there is no such N, then 'Pi(n) = 0 for all n, and
therefore x = 0; on the other hand, if such N exists, then

N

X = e - L(l/n!),
n=O

which, being the difference of an irrational number and a rational number,
is irrational. Since s(i) E domain(tP). i E domain(e). If e(i) = 0, then
f(x) = ~)(s(i» = 0; so x is rational, and therefore 'Pi(n) = 0 for all n. If
e(i) = 1, then f (x) i' 0; so x is irrational, and therefore there exists n such
that 'Pi (n) = 1. This contradicts the comment at the end of the solution of
(4.23.1).

(4.24.1) Let (xn)~=o be a computable sequence of computable real
numbers that converges effectively to a real number x. So there exist total
computable functions f : N -+ Nand h : N -----> N such that for each n,

(i) 'Pf(n) is a computable real number generator converging
to Xn, and

(ii) if k 2> h(n), then Ix - :r:kl ::; 2-".

Define a total computable function 9 : N -+ Q by

Then

g(n) == 'Pfoh(n+l)(n + I).

ix - g(n) I < IJ; - :r:h(n+l) 1+ IXh(n-t-l) - 'P foh(n+1) (71, + 1) 1
< 2-n1 +2- n -- 1

Hence :r is a computable real number.

Solutions for Chapter 4 151

(4.24.2) Referring to Exercise (4.5.1), choose a total computable func­
tion f from N onto K. Define

n

an == L 2-!(m)-l (n = 0,1,2, ...).
m=O

Then each an is rational and therefore computable, and ao < al <
Suppose that (an) converges effectively to a real number a, and let 9 :
N -> N be a total computable function such that la - ani :s: 2-k whenever
n 2:: g(k). If n > g(i + 2), then

2-- f (n)-1 <
<

an - ag (i+2)

Ian - al + la - ag (i+2) I
< 2- i - 2 + 2- i - 2

< 2- i - 1

so f(n) > i. It follows that i E K if and only if there exists n :s: g(i + 2)
such that f(n) = i. Comparing i with

f(l), ... , f(g(i + 2))

in turn, we can decide whether i E K. Hence K is recursive. This contra­
diction completes the proof that (an) does not converge effectively.

Comments:

.. A fundamental theorem of classical analysis is the monotone se­
quence principle: An increasing sequence of rwl numbers that 'is
bounded above converges to its least upper bound. Specker's Theorem
shows that the natural recursive analogue of that principle fails to
hold .

• Proofs of the following strong version of Specker's Theorem can be
found as Theorem (5.4) of [1] and Theorem (3.1) of [8]: There exist
a strictly increasing computable sequence (an) of rational numbers in
[0,1]' and total computable functions F : Rc x N --+ Nand h : N ->

N, such that Ix - ani 2:: 2--- h (m) whenever x E Rc and n 2:: F(x, m).

(4.24.3) Choose a computable partial function 0 : N 2 -t N such that
if 'Pi is a computable real number generator converging to x E Reo then
(n, i) E domain(O) and 'Pe(n,i) is a computable real number generator con­
verging to fn(x). Define a computable partial function W : N 3 -> Q by

n

w(n, i, m) = L 'Pe(k,i)(m + k + 1).
k=O

152 Solutions to Exercises

Using the s-m-n theorem, construct a total computable function 9 : N 2 --->

N such that 'Pg(n,i) = W(n, i,') for all nand i. Consider a computable real
number generator 'Pi converging to x ERe. For each n, 'Pg(n.i) is a total
computable function from N to N; so for all rn,

n

< L l!k(x) - 'PO(k,i)(rn + k + 1)1
k=O

n
< L 2-rn -- k ---- 1

k=O

< 2- m .

Thus 'Pg(n,i) is a computable real number generator converging to sn(x). It
follows that (s,,) is a computable sequence of total computable functions
from Rc to Rc.

(4.24.4) Assume that (fn) is a computable sequence of total com­
putable functions from Rc to Re. So there exists a total computable func­
tion () : N 2 ---> N such that if 'Pi is a computable real number generator
converging to x E Rei then (n, i) E domain(O) and 'PO(n,i) is a computable
real number generator converging to fn(x). Define a computahle partial
function W : N 2 ----_, Q by

Wei, n) == 'PO(hCn+l),i)(n + 1),

and use the s-m-n theorem to construct a total computable function s
N ---> N such that 'Ps(i) = W(i,·) for each i. Let x be a computable real
number, and 'Pi a computable real number generator converging to x. Then
for each n we have

I'PS(i)(n) - f(x)1 < l'PO(h(n+l),i)(n + 1) - ih(n+1)(x)1

+ Ifh(nH) - f(x)1

< 2-- n - 1 + 2

Thus 'PsCi) is a computable real number generator converging to f(x). It
follows that f is a total computable function from Re to Re.

(4.24.5) There exists a total computable function s ; N ---> N such that
for each k, 'Ps(k) is a computable real number generator converging to Xk.

Also, there exists a computable partial function 0 : N2 ---> N such that if 'Pi
is a computable real number generator converging to J: ERe, then for each

Solutions for Chapter 4 153

71" (71" i) E domain(B) and 'P(}(n,i) is a computable real number ge~erator
converging to in(x). Now define a total computable function '1' : N 3 -+ N
by

T(n, k, i) == 'PO(n,s(k))(i),

and set
Tn.k == T(n, k, k) (71" kEN).

Then (Tn,k)~k=O is a computable double sequence ofrational numbers, and
for all n,k E N,

(4.29.2) Since in maps Q to Q,

<I>(n, i, k) == in 0 1{Ji 0 hen, k)

defines a computable partial function <I> : N3 -+ Q. Choose a total com­
putable function s : N 2 N such that 'Ps(n,i) = <I>(n, i,') for all n, i.
Consider a computable real number generator 'Pi converging to x ERe.
For all nand k, since

Ix -1{Ji 0 hen, k)1 :s: Th(n,k),

we have
lin(X) - 'P8(n,i)(k)1 :s: Tk.

Hence 'Ps(n,i) is a computable real number generator converging to in(x).
This shows both that in maps Rc into Re and that (n,x) f---+ in(x) is a
computable partial function from N x Rc into Re.

(4.29.3) We may assume that h takes only positive integer values. For
all m, n E N let

_ 2m-1 + k 2m
Xm,k = - 2h(n,1)

and
b(m,n) == 1 + max{lin(xm,k)1 : 0 :s: k :s: 2h (n,1)}.

Then b is a total computable function from N 2 to N. (Additional exercise:
provide a detailed proof that b is computable.) Given m,n E N and a real
number x with _2m - 1 :s: x :s: 2m - I , choose k such that 0 :s: k :s: 2h (n,1)

and Ix - xm.kl :s: 2- h (n,1). Then

154 Solutions to Exercises

(4.29.4) It readily follows from the definition of Sn that Sn maps Q
into Q. Noting that

jSn(X) - sn(y)j :s; jx -- yj (n E N, x E R),

we see immediately from Exercise (4.29.2) that each Sn maps Rc into R c,
and that (sn)~=o is a computable sequence of total computable functions
from Rc to Re. Since f is effectively uniformly continuous, there exists a
total computable function 9 : N ---+ N such that if kEN, if x, y E R,
and if Ix - yj :s; 2- g (k), then If(x) - f(y)j :s; 2- k . Also, applying Exercise
(4.29.3) with fn == f for each n, we can construct a total computable
function b: N ---+ N\ {O} such that

jf(x)1 :s; b(71) (71 EN, x E [-71,71]).

Define a total computable function h : N 2 ---+ N by

h(71, k) == min m [Tm :s; min{Tg(k+l), Tk-1b(n + 3)-1}] .

Consider n, kEN and real numbers x, y such that Ix - yl :s; 2-h (n,k). We
have

j(fSn)(X) - (fsn)(y)1 < If(:1;) - f(y)I' ISn(x)1
+ ISn(x) - sn(y)l· If(y)1

< 2- k - 1 + Ix - yl . If(y)l·

If x E [-71 - 2,71 + 2], then y E [-71 - 3, 71 + 3], so that

l(fsn)(x) - (fsn)(Y) I :s; T k - 1 + Th(n,k)b(n + 3) :s; Tk.

On the other hand, if x 1- [-n - 2,71 + 2], then Ixl > n + 1 and jyl > n + 1,
so sn(x) = 0 = sn(Y) and therefore

(4.29.6) For each x E R the series 2:::=0 2-n t n (x) converges by com­
parison with 2::~~() 2-n ; moreover, since

I
t(X) - f Tntn(:r)l:s; f 2-n :s; 2· .. N (m 2 N),

n=O n=m+l

the series converges effectively and uniformly to t on R. Assuming the
additional hypotheses for the second part of this exercise, now define a
total computable function H : N ---+ N by

H(N) == max{h(n, N + 2) : 0 :s; n :s; N + 2}.

Solutions for Chapter 4 155

If N E N, X,Y E R, and Ix - yl :::; 2-H (N), then

It(x) - t(y)1 < !t(x) - 2:::02 2-ntn(x)!

+ !2:::02 2-ntn(x) - 2:::02 2-ntn(y)1

+ !t(y) - 2:::; 2-ntn(y)!

< 2-N- 2 + 2:::02 2-n Itn(x) - tn(y)1 + 2-N- 2

< 2-N-1 + "N+2 2-n2-N- 2
~n=O

< 2-N .

Hence t is effectively uniformly continuous on R.
It remains to prove that t maps Re into Re. Choose a computable partial

function 0 : N 2 ~ N such that if 'Pi is a computable real number generator
converging to x ERe, then (n, i) E domain(O) and 'P1J(n,i) is a computable
real number generator converging to tn (x). Define a computable partial
function W : N 2 ~ N by

m+l

W(i,m) == I: Tn'PlJ(n,i)(m + 1).
n=O

Using the s-m-n theorem, construct a total computable function s : N ~
N such that 'Ps(i) = W(i,·) for each i. Given a computable real number
generator 'Pi converging to x ERe, for each N E N we have

It(x) - 'Ps(i)(N)1 < !t(x) - 2:::012-ntn(X)!

+ 12:::012-ntn(X) - 2:::012- n'PlJ(n,i)(N + 1)1

< 2- N- 1 + 2:::012- n Itn(x) - 'P1J(n,i)(N + 1)1

< 2-N- 1 + "N+1 2- n2-N-l
~n=O

< 2-N .

Hence 'Ps(i) is a computable real number generator converging to t(x). We
now see both that t(x) is a computable real number, and that t is a total
computable function from Re to Re.

(4.29.8) Let f : Re ~ Re be the function constructed in the example
immediately preceding this set of exercises, and define 9 == 1/ f on Re. Then
9 maps Re into Re and is computable (why?); so, by Theorem (4.27), 9 is
effectively continuous. Suppose that the restriction h of 9 to Re n [0,1] is
uniformly continuous. Since each rational number is computable, Re n [0, 1]
is dense in [0,1]; whence, by a standard classical theorem «3.15.6) of [15]),

156 Solutions to Exercises

h extends to a uniformly continuous function from [0,1] into R. Another
standard theorem ((3.17.10) of [15]) now shows that there exists M > 0
such that Ih(x)1 ~ M for all x E [0,1]. But this is absurd, since, using the
notation used at the end of the discussion of the function f on page 72, we
have

for each N.

Solutions for Chapter 5

(5.3) If
T == {n EN: 'Pn is total}

is recursively enumerable, then, by Proposition (5.1), there exists a total
computable function f : N -+ N such that f #- 9 for all gET; this is
absurd.

(5.7.1) The mapping n I--> Mn is computable. Also, there is an in­
formally computable mapping which, given a normalised binary Turing
machine M as input, outputs the number of states of M. Composing these
two mappings, we obtain stat, which is therefore computable.

Now consider f : N -+ N defined by

f(n) == min{stat(k) : 'Pk = 'Pn}.

The only normalised binary Turing machine with exactly one state is
({O}, 0, 0, 0), which computes the identity mapping id on N. Choose an
index v for id, and let

1== {n EN: 'Pn = id}.

Then 'Pn = id if and only if f(n) = 1. So if f is computable, then I is
recursive. This contradicts Theorem (5.5).

(5.7.3) Choose an index v for the computable partial function (m, n) I-->

'Pn(m) on N 2 . Then

s(v,n) = min{i: 'Pi = 'PS2)(·,n)} = lindex(n)

for each n. Therefore if s is computable, so is lindex. This contradicts
Exercise (5.7.2).

(5.12) (i) Let

S == {i EN: a E domain('Pi)}.

Solutions for Chapter 5 157

The partial function W : N2 --'> N defined by

W(m,n) 1 if n = a and m E K,
= undefined otherwise

is computable (why?). By Corollary (3.9), there exists a total computable
function 9 : N --'> N such that 'Pg(m) = w(m, .). Then for all mEN we
have

Xs 0 g(m) = 1 {::} a E domain('Pg(m»
{::} (m, a) E domain(W)

{::} mE K;

whence xsog = XK. It follows that ifXs is computable, then K is recursive,
which contradicts Corollary (4.3).

(5.12) (ii) Let

s == {i EN: 'Pi is a constant function}.

Define a computable partial function W : N 2 --'> N by

W(m, n) 1 ifm E K,
undefined otherwise.

By the s-m-n theorem, there exists a total computable function 9 : N --'> N
such that 'Pg(m) = w(m, .). For any mEN we have

Xs 0 g(m) = 1 {::} 'Pg(m) is a constant function

{::} W (m, .) is a constant function

{::} mE K,

so Xs 0 9 = XK· It follows that if xs is computable, then K is recursive-a
contradiction.

Comment: The technique used in each of the parts of the solution
of Exercise (5.12) is known as reduction of the given problem to the
undecidability of the halting problem.

(5.14.2) Composing the mapping n 1--+ 7;", defined in Exercise (5.14.1),
with the mapping that assigns to each normalised binary Turing machine
its index in the enumeration M o, M 1, . .. we obtain a total computable
function f : N --'> N such that for each n EN,

'P!(n) (i) = 1 ifi=n,
undefined otherwise.

158 Solutions to Exercises

By the Recursion Theorem, there exists n E N such that 'Pn = 'Pf(n). For
this n we have

i E domain('Pn) {:} i E domain('Pf(n»)

{:} i = n,

so domain('Pn) = {n}.
Now recall from page 41 that to each computable partial function 'P

there correspond infinitely many normalised binary Turing machines that
compute 'P. In particular, computing n as in the last paragraph, we see
that there are infinitely many values of m =1= n such that 'Pm = 'Pn. For any
such m,

m 1- {n} = domain('Pm),

so 'Pm(m) is not defined, and therefore m 1- K. Hence K does not respect
indices.

Alternative proof of the first part of (5.14.2). Define a com­
putable partial function W : N 2 -+ N by

W(i,j) 1 if j = i,
undefined otherwise.

Using Corollary (3.9), we can find a total computable function s : N -+ N
such that 'Ps(i) = W(i,·) for each i. By the Recursion Theorem, there exists
n such that 'Pn = 'Ps(n). Clearly, domain('Pn) = {n}.

(5.14.3) (i) Define a computable partial function W : N2 -+ N by

W(m,n) ifm = n,
if m =1= n.

Using Corollary (3.9), construct a total computable function s : N -+ N
such that 'Ps(m) = W(m,·) for each m. By the Recursion Theorem, there
exists i such that 'Pi = 'Ps(i). Then domain('Pi) = K U {i}; but 'Pi (i)
W(i,i) = 0, so

i E K = domain('Pi).

(5.14.3) (ii) This time define the computable partial function W
N 2 -+ N by

W(m, n) = undefined if m = n,
'Pn(n) if m =1= n.

By Corollary (3.9) and the Recursion Theorem, there exists an index j such
that 'Pj = w(j, .). In this case,

domain('Pj) = {n E K : n =1= j},

Solutions for Chapter 5 159

so CPj (j) is undefined. Hence

(5.14.4) Since XI is computable, so is f =]xl + i(l - XI). By the
Recursion Theorem, there exists v such that CPv = CPf(v). If v E I, then
CPv = CPf(v) = CPj; if v E N\I, then CPv = CPf(v) = CPi· Thus in either case
there exist m E I and n E N\I such that CPm = CPn.

Unlike the proof of Rice's Theorem given in the main body of the text,
the above proof is fully constructive; that is, it embodies an algorithm for
computing m and n such that m E I, n E N\I, and CPm = CPn. (Note that,
as you should verify for yourself, our proof of the Recursion Theorem is
also fully constructive.)

(5.14.5) Suppose K is recursive. Then, choosing an index i of the
empty partial function E on N, and an index j of the identity function on
N, we see that

fen) = i if n E K,
= j ifn¢K

defines a total computable function f : N -+ N. By the Recursion Theorem,
there exists v such CPf(v) = CPV' But

v E domain(cpf(v») => CPf(v) =1= E

=> f(v) = j

=> v¢K

=> v ¢ domain(cpv) = domain(cpf(v»),

which is absurd.

(5.14.7) Given a natural number N, choose an index j such that CPj =1=

CPn for all n :::; N. Define a total computable function 9 : N -+ N by

g(i) j
= f(i)

if i:::; N,
if i > N.

Using the Recursion Theorem, we can find i such that CPi = CPg(i)' By our
choice of N, i > N and therefore g(i) = f(i). Thus for each natural number
N there exists an index i > N such that CPi = CPf(i)'

(5.14.8) Define a computable partial function 111 : N -+ N by

1I1(i,j) = CPi(j) + 1 (i,j EN).

160 Solutions to Exercises

Choose a total computable function f : N ~ N such that 'Pf(i) = 'It(i,·)
for each i. If 'Pi is total, then so is 'Pf(i), and 'Pf(i)(i) f:. 'Pi(i).

(5.14.9) Define a computable partial function () : N ~ N by

B(n) = 'Pn(n) if n E K,
= undefined otherwise.

Next, define a computable partial function 'It : Nn+1 ~ N by

By the s-m-n theorem, there exists a total computable function s : N ~ N
such that

(n) _ ,T,(·) _ (n)
'Ps(i) - 'I' z,· - 'P1J(i)

for each i. Another application of the s-m-n theorem now yields a total
computable function 9 : N ~ N such that 'Pg(i) = 'Pi 0 s for each i. Let t
be the total computable function so 9 : N ~ N, and consider any k such
that 'Pk is total. We have

(n) (n)
'Pt(k) 'P s(g(k))

(n)
'P1J(g(k))

(n)
'P 'P9(k) (g(k))

= (n)
'P 'Pk (s(g(k)))

= (n)
'P'Pk(t(k))"

(5.14.10) As was shown in Exercise (3.11.2), there exist total com­
putable functions s : N ~ N and t : N ~ N such that 'Pi = 'l/Jt(i) and
'l/Ji = 'Ps(i) for each i. Let f be a total computable function from N to
N. Then 9 == s 0 f 0 t is a total computable function from N to N; so,
by the Recursion Theorem, there exists m such that 'Pm = 'Pg(m). Setting
i == t(m), we have

'l/Ji = 'l/Jt(m) = 'Pm = 'Ps(f(t(m)) = 'l/Jf(i).

(5.14.11) (i) Writing 0 (resp. 1) to denote the constant function on N
with each term equal to 0 (respectively 1), for each kEN define

'l/J3k == 0, 'l/J3k+1 == 'Pk, 'l/J3k+2 == 1.

Choosing indices no, nl of 0 and 1, respectively, for each kEN define

f(3k) = no, f(3k + 1) = k, f(3k + 2) == nl, and g(k) == 3k + 1.

Solutions for Chapter 5 161

Then f and 9 are total computable functions from N to N; moreover, '¢n =
'Pf(n) and 'Pn = ,¢g(n) for each n. Hence, by Exercise (3.11.2), '¢o, '¢I, '¢2, ...
is an acceptable programming system. Clearly, no three successive terms of
this system are equal.

(5.14.11) (ii) The desired acceptable programming system is given by
the sequence

in which the pattern of indices is

01 001120001112230000111122233400000111112222333445

Clearly, there exist total computable functions f, g : N - N such that '¢n =
'Pf(n) and 'Pn = '¢g(n) for each n; so, by Exercise (3.11.2), the foregoing
enumeration of the set of all computable partial functions from N to N is
an acceptable programming system. (You are invited to provide an exact
description of the functions f and g.)

To appreciate the significance of the foregoing examples of acceptable
programming systems, first note that, in view of Exercise (5.14.10), the ar­
gument used in the example preceding Exercises (5.14), on page 81, applies
equally well when the canonical enumeration 'Po, 'PI, ... is replaced by any
acceptable programming system. Thus for each acceptable programming
system '¢o, '¢1,.'" each computable partial function ,¢, and each positive
integer k, there exists i such that if'¢i(n) is defined, then so are ,¢(n) and
'¢i+j(n) (1 ::; j ::; k), and

'¢i(n) = '¢i+l(n) = ... = '¢i+k(n) = '¢(n).

Part (i) of this exercise shows that we cannot drop the words if '¢i(n) is
defined from the hypotheses of this last result; in fact, we cannot prove

(A) If '¢o, '¢1, '¢2," .is an acceptable programming system, then there ex-
ists i such that '¢i = '¢i+l = '¢i+2.

On the other hand, part (ii) shows that we cannot prove

(B) If'¢o, '¢1, '¢2," .is an acceptable programming system, then there exists
m > 2 such that no m consecutive terms '¢i are equal.

Formalising our mathematics within Zermelo-Fraenkel set theory plus the
Church-Markov-Turing thesis, we conclude that each of (A) and (B) is
independent of the axioms of that formal theory.

(5.17.1) Given m and n, start Mv on the input n and simultaneously
start Mm on the input m. If Mv halts before Mm and computes '¢(n), we

162 Solutions to Exercises

ignore the continuing computation by Mm and read the output 'lj;(n) on
the tape of Mv. If Mm halts before Mv and computes 'Pm(m), we ignore
the continuing computation by Mv and apply to the input n a Turing
machine that computes 'P. If Mv and Mm complete computations in the
same number of steps, we read the output 'Ij!(n) on the tape of M,,; there
is no ambiguity involved here, since in this case m E K, n E domain('lj;),
and 'lj;(n) = 'P(n).

(5.17.2) No. To see why not, take 'lj;(n) == 0 and 'PCn) == 1 for all
n E N. Suppose there exists a total computable function f : N, N such
that for all m,

C{}f(m) 'P if rn E K,
'lj; if rn ~ K.

Then rn l-t 'Pf(m) (0) is a total computable function on N. Since this func­
tion is XK, we see that K is recursive, a contradiction.

(5.21.1) First note that if a proper subset of N respects indices and
contains indices of E, then it cannot be recursively enumerable: for if it
were recursively enumerable, then, by Proposition (5.18), it would contain
the indices of all extensions of E and would therefore equal N. It follows
immediately that

,5 == {i EN: 'Pi = E}

is not recursively enumerable.
On the other hand, N\5' is recursively enumerable. To see this, for each

i E N define a total computable function h : N 2, N by

hi(rn, n) o if Mi completes a computation in rn + 1 steps
on the input n,

1 otherwise.

Let F be a total computable mapping of N onto N 2 , and define a com­
putable partial function 'P : N, N by

Then domain(C{})

enumerable.

cp(i) == min k [hi(F(k)) = 0].

N\5' and so, by Theorem (3.3), N\S is recursively

(5.21.3) Let 5' be a proper subset of N that respects indices, and
assume that 5' is recursive. By Exercise (4.5.3), Sand N\S are proper
recursively enumerable subsets of N; clearly, they both respect indices, and
one of them contains all indices of the empty function E. The observation
at the beginning of the solution of Exercise (5.21.1) shows that this is
impossible.

Solutions for Chapter 5 163

(5.21.5) Applying the s-m-n theorem, first construct a total com­
putable function 9 : N 2 ---+ N such that for all m, n, and k,

tpg(m,n)(k) = undefined if Mm computes tpm(m) in
at most k + 1 steps,

otherwise.

Another application of the s-m-n theorem produces a total computable
function h : N2 ---+ N such that tph(m,n) = tpm(g(·, n» for all m and n. Let
f : N ---+ N be the total computable function defined by

f(m, n) == g(h(m, n), n).

Note that

f(m, n) E domain(tpm) {=> tpm(g(h(m, n), n» = tph(m,n) (h(m, n))

is defined

{=> h(m, n) E K.

Consider mEN such that 1== domain(tpm) respects indices. Given n E I,
suppose that h(m, n) (j. K. Then our choice of 9 ensures that

tpf(m,n) = tpg(h(m,n),n) = tpn;

so as n E I and I respects indices, f(m, n) E I. The foregoing now shows
that h(m, n) E K -a contradiction. We conclude that h(m, n) must belong
to K, and hence that f(m, n) E I. Let Mh(m,n) compute tph(m,n) (h(m, n))
in N + 1 steps. It follows from the definitions of f and 9 that

tpf(m,n)(k) = tpn(k)
= undefined

if k:::; N,
otherwise.

Hence tpf(m,n) is a finite subfunction of tpn.

(5.22.1)
11 0 1111 0 111111
1 3 5

The encoded set is {I, 3, 5}.

(5.22.2) Let tp : N ---+ :F be given by tp(n) == {n, n2}. Then Jl(tp(n»
is the binary number consisting of (n + 1) l's, followed by 0, followed by
(n2 + 1) l's; that is,

n2 n2+n+2
Jl(tp(n» = L 2k + L 2k.

k=O k=n2+2

So Jl 0 tp is clearly computable.

164 Solutions to Exercises

(5.24.1) In the notation of Lemma (5.23), we can decide, for each n,
whether d(n) = 0 or d(n) =f. 0. We can therefore follow the one-one effec­
tive enumeration Wo, WI, ... , deleting the unique term with empty domain,
to obtain an effective enumeration Wno' Wn, , . .. of the set of nonempty
computable partial functions from N to N. The list no, nl , ... is then an
effective enumeration of J.

(5.24.2) First note that we can extract from the proof of Lemma (5.23)
an algorithm which, applied to kEN, computes the code for d(k). Now
choose an index 1/ of O. Given n, to compute w(n) we run Mil on the
input n. If Mil completes a computation, we then compute the code c for
d(O(n») and decide whether or not d(O(n)) is empty. If d(O(n) is nonempty,
we decode c and read off the largest element of d(O(n».

(5.24.3) The flaw in the argument stems from the phrase there exists
n such that S = d(n): although such n must exist, there is no algorithm
which, applied to a finite subset X of N, will enable us to compute k such
that X = d(k).

(5.25.1) Define a computable partial function 111 : N 2 -+ N by

1I1(i,j) = 1 if i E domain(O) , and
either d(O(i» = 0 and j = 0,
or d(O(i» =f. 0 and j = 1 + max domain(WO(i),

= undefined otherwise.

To confirm that 1I1(i,j) can be computed in the case d(O(i)) =f. 0, see the so­
lution to Exercise (5.24.2). Choose a total computable function s : N -+ N
such that 'Ps(i) = 1I1(i,·) for each i. By the Recursion Theorem, there exists
n such that 'Pn = 'Ps(n). Clearly, domain('Pn) is disjoint from domain(Wo(n).
Since domain('Pn) is finite, O(n) is defined, so domain('Pn) is nonempty.

Now suppose that there exists a computable partial function 'Y : N -+ N
with properties (i) and (ii) of the statement of this exercise. The foregoing
ensures that there exists n E F such that domain('Pn) is nonempty and
disjoint from domain(W-y(n).This contradicts property (ii) of 'Y.

(5.25.2) Define a computable partial function 111 : N 2 -+ N by

1I1(i,j) = 1 ifiE domain(O)andj=O(i)+l,
= undefined otherwise.

By the s-m-n theorem, there exists a total computable function s : N -+ N
such that 'Ps(i) = 1I1(i,·) for each i. Applying the Recursion Theorem to
compute n such that 'Pn = 'Ps(n)' we see that n E F and that domain('Pn) =
{O(n) + I}.

Solutions for Chapter 5 165

Now let "I : N ----; N be a computable partial function with the proper­
ties (i) and (ii) described in Exercise (5.25.1). Define a computable partial
function () : N ----; N by

()(11,) max domain (1f!,(n»)
o
undefined

if 11, E domain("() and d("((11,)) ::f 0,
if n E domain(,,() and d("((11,)) = 0,
otherwise.

Then domain(8) :J domain("() =) F. By the first part of this exercise, there
exists 11, E F such that domain('Pn) = {O(11,) + I}. If d("(11,)) = 0, then
'Pn has domain {I}; if d("((11,)) ::f 0, then domain('Pn) contains a single
element, which is greater than each element of d("(n)). Hence in either
case, 'Pn ::f 1f!,(n) -------a contradiction.

(5.29.2) By Exercise (5.24.1),

J == {j EN: domainClj;j)::f 0}

is recursively enumerable. Clearly, i E N\S if and only if there exists
j E .J such that 1f!j C 'Pi. Hence, by Theorem (5.28), N\S is recursively
enumerable.

(5.29.3) Define a computable partial function W : N 2 ----; N by

W(i,j) 1 if i E domain(O), d(O(i)) = 0, and j = 0,
1f!O(i)(j) + 1 if i E domain(O) and j E d(O(i)),
undefined otherwise.

Choose a total computable function s : N ----; N such that 'Ps(;) = W(i,')
for each i. By the Recursion Theorem, there exists 11, such that 'Pn = 'Ps(n).

Clearly, domain('Pn) = domain(w(n, .)) is finite; so 8(n) is defined, and
therefore domain('Pn) is nonempty. Also, if j E domain (1f!1J(n»), then 'Pn (j)
is defined and 'Pn(i) = 1f!O(n)(j) + 1; whence 1/JIJ(n) ct 'Pn·

(5.29.4) The set
I == {i EN: 'Pi ::f E}

is recursively enumerable, by Exercise (5.29.2), and respects indices. Sup­
pose there exists a total computable function s with the stated proper­
ties relative to I. Then, by Exercise (5.29.3), there exists 11, such that
domain('Pn) is nonempty and finite, and such that either 1f!s(n) = E or
1f!s(n) ct 'Pn· Since 11, E I, there exists k E I such that 1f!s(n) = 'Pk; so
1f!s(n) ::f E, and therefore 1f!s(n) ct 'Pn. This contradicts the assumed prop­
erty (ii) of s.

166 Solutions to Exercises

Solutions for Chapter 6

(6.1.1) (i) Take Ii == 'Pi for each i. Then BI is automatically satisfied.
But if B2 holds, then {i EN: 'Pi(O) = O} is a recursive set; since this
set clearly respects indices, is nonempty, and is a proper subset of N, this
contradicts Rice's Theorem.

(ii) Take ~ri(n) == 0 for all i and n.

(6.1.2) It is clear that Bl is satisfied. On the other hand, the function
costs' : N:3 -+ N. defined by

costs'('i, n, k) costs(i, n, k)
I

if i i= j,

o

is computable, and

costs' (i, n, k)

So r' satisfies B2.

if i = j and k = 0,
ifi = j and k ~ 1,

I if ,: = k,
o otherwise.

Using r' as our complexity measure, we see that the cost of computing
'Pj (n) is 0; in other words, it costs nothing to decide whether or not n
belongs to the recursive set S. In the particular case where S is taken as
the set of all prime numbers, this situation certainly does not reflect reality:
it is well known that testing integers for primality is an extremely costly
business. Indeed, all known algorithms for primality testing have cost that
grows exponentially as a function of the size, in bits, of the integer under
test. For further information on this topic, see Chapter 4 of [:33].

(6.1.3) It is clear from axiom BI, applied to 'Pi and Ii, that

domainb:) = domain('Pd.

On the other hand, given positive integers nand k, and using axiom B2, we
can decide whether or not there exists j ::; k such that Ii (n) = .i. If such
j exists, then, by BI, 'Pi(n) is defined, so I~(n) is defined; moreover, by
comparing !('Pi(n)) with k - j we can decide whether or not ,;(n) equals
k. If, however, no such j exists, then it is impossible for ~fHn) to equal k.
Thus the function costs' : N -+ N, defined by

costs' (i, n, k)

is computable.

1 ifl;(n) = k,
o otherwise,

Solutions for Chapter 6 167

(6.1.4) We have

t(k)

G(i,n,k) = Lcosts(i,n,j).
j=O

Since t and costs are total computable functions, so is G.

(6.1.5) The existence of s is a simple consequence of the s-m-n the­
orem. We compute G(n,i,j,k) as follows. Compute first v(n) and then
costs(i,v(n),j). If the latter equals 1, then 'Yi(v(n» = j, cpi(v(n» is de­
fined, and we can compute costs(cpi(v(n»,n,k); if that equals 1, then
cps(i)(n) = CPcp;ov(n)(n) is defined and we set G(n, i,j, k) = 'Ys(i) (n). On the
other hand, if

either costs(i,v(n),j) = 0
or costs(i,v(n),j) = 1 and costs(cpi(v(n»,n,k) = 0,

we set G(n,i,j,k) = O.

(6.3) Since

cI>(i,n) = mink[costs(i,n,k) = 1],

the computability of cI> follows from Exercise (2.7.3).

(6.5.1) Define
1': = 1 + 'Yi + CPi;

then, by Exercise (6.1.3), r' = 'Yb,'YL 'Y~, ... is a complexity measure. Let
F : N2 ~ N be a total computable function. By the s-m-n theorem, there
exists a total computable function s : N ~ N such that

cps(i)(n) = F(n,'Yi(n»

for each i and for all n E domainbi). Applying the Recursion Theorem,
we obtain an index 1/ such that CPs (v) = CPV' Thus

'Y~ = 1 + 'Yv + CPs(v) = 1 + 'Yv + F(·, 'Yv(-),

so 'Y~(n) > F(n,'Yv(n» for all n E domain(cpv).
Despite appearances, this result does not contradict Theorem (6.4), since

it does not guarantee that 'Y~(n) > F(n,'YII(n» infinitely often. Indeed, it
follows from Theorem (6.4) that domain (CPII) must be finite.

168 Solutions to Exercises

~~,

(\'llB,R ,
\ /

FIGURE 29. The Turing machine Tk in solution (6.7.1).

(6.7.1) Let

ii (n) the number of distinct cells visited by Mi
during the computation of <pi(n).

For each k let ~ be the TUring machine described in Figure 29. Then Tk
computs the constant mapping n I---> k on N. There is a one-one total com­
putable function h : N ---'> N such that ~ = Mh(k) for each k. Moreover, as
is easily verified, the range of h is a recursive subset of N, and the partial
function <P : N ---'> N defined by

<p(i) h-l(i) if i E range(h),
undefined if i '/:. range(h)

is computable (d. Exercise (3.5.1)). Now define

max{O, i\(n) - <p(i) - 2}
i;(n)

if i E range(h),
if i '/:. range(h).

It is straightforward to verify that r == 1'0,1'1, ... is a complexity measure.
Given a total computable function F : N 2 ---'> N, choose k > F(O,O) and
set i == h(k). Then 1i(O) = k + 2, so that

1';(0) = max{O, k + 2 - <p(h(k)) - 2} = 0,

and therefore
<Pi(O) = k > F(O,O) = F(O,I'i(O)).

(6.9) The total computable function v : N ---> N, with values v(n)
equal to

0,0,1,0,1,2,0,1,2,3,0,1,2,3,4, ...

Solutions for Chapter 6 169

for n = 0, 1, 2, ... , has the property that for each kEN there are infinitely
many values of n with v(n) = k. 3

Given a total computable function t : N ---+ N, and defining the total
function f : N ---+ N as in the statement of this exercise, we see from B1 and
Exercise (6.1.4) that f is computable. For each n such that v(n) E IND(f),
<t'v(n) = f is total, as is therefore 1'v(n). Since <t'v(n)(n) -:f. <t'v(n)(n) + 1, we
have 1'v(n)(n) > t(n).

(6.11.1) Fix the natural number n. For each element u of {O, l}n+1
define a 'lUring machine module T(u) as follows. If (the unary representa­
tion of) an input kEN is written in the leftmost cells of the tape, and if
T(u) is in its start state, with the read/write head against the leftmost cell,
T(u) first compares k with n. If k ::; n, then T(u) writes 1 in the leftmost
cell if p;:+1(u) = 0, 11 in the two leftmost cells if p;:+l(u) = 1; leaves
all other cells blank; and parks the read/write head. If k > n, then T(u)
writes (the unary representation of) k in the leftmost cells, leaves all other
cells blank, and enters a special state qu which is not its halt state or its
start state, and from which there are no transitions. It is easy to see that
the construction of T(u) can be carried out so that the number of steps
it requires to complete its computation on the input k ::; n is bounded by
b(k) for some total computable function b: N ---+ N that depends on n but
is independent of k and u.

Given a total computable function f : N ---+ {O, I} and an index v of f,
let

u == (f(0), ... , f(n)) E {o,l}n+l.

Renaming the states of My, we may assume that qu is the start state of
My, and that T(u) and My have no other state in common. We then
append My to T(u), and add transitions that ensure that if the resulting
'lUring machine enters the halt state of My, it does not halt immediately
but, without moving the read/write head, passes to the halt state of T(u)
and then halts. Finally, we rename the states of this 'lUring machine to
obtain a normalised binary 'lUring machine Mi such that i E IND(f) and
such that 1'i(k) ::; b(k) for k = 0, ... , n.

(6.12) For all total computable functions f, 9 from N to N we have

(')'i(n) ::; f(n) and 1'i(n)::; g(n)) ¢:} 1'i(n) ::; min{f(n),g(n)};

whence
Of n Og = Omin{f,g}.

3Calude, in a private communication, has suggested that the mapping v be
known as the Halmos sequence, since it is the sequence in which Halmos recom­
mends the writing of chapters in a book. (See the latter's article in How to Write
Mathematics, American Mathematical Society, Providence R.I., 1973.)

170 Solutions to Exercises

Now define
fen) = 1 ifniseven,

= ° if n is odd,

and set 9 == 1 - f. Given a complexity measure r, construct a new com­
plexity measure r' as follows: choosing i E IND(f), j E IND(g), and an
index k for the constant function 1, define

I~ In ifn~{i,j,k},
f if n = i,
9 if n = j,

= 1 if n = k.

(You should verify that r' is a complexity measure.) For each total com­
putable function h : N --+ N let C;. denote the complexity class of h relative
to r'. Suppose Cf U C~ = C;.. Then f E C;., so h(n) ;::: 1 for all sufficiently
large even n; and 9 E C;., so hen) ;::: 1 for all sufficiently large odd n. Hence
hen) ;::: 1 almost everywhere, so that 'Pk E C;., and therefore either 'Pk E C,
or else 'Pk E C~. This is plainly absurd. Thus there does not exist a total
computable function h : N --+ N such that Cj u C~ = C;..

(6.15.1) The intervals [ki' ki+2) (i = 0,2,4, ... , 2n) are disjoint, and
there are n + 1 of them. So there exists at least one i such that [ki' ki+2)
does not contain any point Cj. For this i and all j (1 $ j $ n), we have
Cj ~ [ki ,ki+2), so Cj ~ [ki,ki+ll.

(6.15.3) For convenience write

P(m, k, n) ¢} 'Pm(n) $ k and
Vi < n bien) < k or ...,bi(n) $ F(n, k»).

Define a computable partial function function X : N 3 --+ N by

x(m, k,n) ° if P(m, k, n),
1 if n E domain('Pm) and ...,P(m, k, n),
undefined otherwise.

We prove that if 'Pm is total, then for each n,

V(m,n) == {k EN: x(m,k,n) = o}

is nonempty. To this end, define a computable partial function K : N3 --+ N
by

K(m,j, n)

If 'Pm is total, then

'Pm(n) if j = 0,
F(n, K(m, j - 1, n) if j ;::: 1.

'Pm(n) = K(m, 0, n) < K(m, 1, n) <

Solutions for Chapter 6 171

Since there are at most n values I'i(n) with 0 :::; i < n, Exercise (6.15.1)
shows that there exists r (0 :S: r :S: 2n + 1) such that for all i < n,

li(n) rf- [1I;(m, r, n), lI;(m, r + 1, n)]

and therefore either I'i(n) < lI;(m, r, n) or

Hence P(m, lI;(m, r, n), n) holds, and therefore lI;(m, r, n) (: D(rn, n).
We now see from Exercise (2.7.3) that

w(m, n) == mink [x(m, k, n) = OJ

defines a computable partial function W : N2 -> N. By the s-m-n the­
orem, there exists a total computable function s : N -> N such that
'Pa(m) = w(m, .). If 'Pm is total, then, by the foregoing, 'Ps(m) is total,
and P(m,'Pa(m)(n),n) holds for each n; whence 'Pm(n):S: 'Ps(m)(n) and

So if 'Ps(m)(n) :S: I'i(n) :S: F(n, 'Ps(m) (n», then n :S: i.

(6.16) Using Theorem (6.4), construct a total computable function
F : N 2 -> N such that I'i(n) :S: F(n,I':(n» almost everywhere. We may
assume that

n < F(m, n) < Fern, n + 1)

for all m and n. According to Theorem (6.13), for each total computable
function t : N --+ N there exists a total computable function f : N -> N
such that fen) ~ ten) for all n, and such that if fen) :S: I'i(n) :S: F(n, fen»~,
then n :::; i. Consider any i, n such that n > i, IHn) :S: fen), and li(n) :S:
F(n,I'Hn». If fen) :S: I'i(n), then

fen) :S: I'i(n) :S: F(n, I'~(n» :S: F(n, fen»~,

so n :S: i, a contradiction; hence I'i(n) < fen). It follows that Cf' C Cf·
The reverse inequality follows from the hypothesis that 1': (n) :S: Aii (n) for
aU i and all n E domain('Pi).

(6.19) If 'Pi(n) is defined, then, by BI, so is I'i(n). So, using Exercise
(6.1.4), we can decide, for each j < n, whether or not P(i, j, n) holds. There
will be at most n values of j < n for which P(i,j,n) holds, and therefore
at most n corresponding values 'Pj (n). Straightfoward computations enable
us to find k, from among the n + 1 values 0,1, ... , n, such that k i- 'PjCn)
for all j < n for which P(i,j, n) holds. (Note that in view of BI, 'Pj(n) is
defined for each such j.) Hence Wei, n) is defined and at most n.

172 Solutions to Exercises

(6.22.1) If n ::; i, then C(e, i, n) is defined to be 0, which is certainly
both finite and recursive. In particular, C(e, i, 0) is defined, finite, and re­
cursive. Assume that for 0::; m < n, if C(e, i, m) is defined, then it is finite
and recursive. If C (e, i, n) is defined, then in order to complete our inductive
proof we need only deal with the case i < n. Then C(e, i, m) is defined­
and therefore both finite and recursive--for 0 ::; m < n, and Is(e,j+l)(n) is
defined whenever i ::; j < n. Given j E N, we can decide whether or not
i ::; j < n. Moreover, using our induction hypothesis and Exercise (6.1.4),
we can decide, for each j with i ::; j < n, whether or not

n-l

j rt U C(e,i,m) and Ij(n) < F(n, Is(e,j+l) (n));
m=O

so C(e, i, n), which is obviously finite, is recursive.

(6.24.1) Let f be the identity function id : N -. N. Then f is com­
puted by the normalised binary Turing machine M == {{O}, 0, 0, O} (cf.
the solution to Exercise (5.7.1)). Let v be the index of M, and define a
complexity measure r == 10, II, ... by

li(n) == ,:(n) + Iv - ii,

where ,: is defined as in the proof of the Speed-up Theorem. Consider any
total computable function F : N2 -. N such that F(m, n + 1) 2: F(m, n)
for all m, n. For each j E IND(f) with j I- v, and for all n E N, we have

F(n, Ij(n) 2: IJ(n) + Iv - jl > IJ(n) ~ 1 = Iv(n).

Hence f is not F -speedable relative to the complexity measure r.

(6.24.3) Let r be any complexity measure, and take F(m, n) == n +
1 for all m, n E N. Then F-speedable functions exist, by the Speed-up
Theorem. Let f be anyone of them. Since

is a set of nonnegative integers, it has a least member; that is, there exists
v E IND(f) such that

IV(O) = minhi(O) : i E IND(f)}.

For all j E IND(f) we have

F(O, Ij (0)) = Ij (0) + 1 > IV(O).

References

[1] Aberth, Oliver: Computable Analysis. New York: McGraw-Hill 1980.

[2] Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics.
Amsterdam: North-Holland 1981.

[3] Barwise, J. (ed.): Handbook of Mathematical Logic. Amsterdam:
North-Holland 1977.

[4] Beeson, Michael J.: Foundations of Constructive Mathematics. New
York-Heidelberg-Berlin: Springer-Verlag 1985.

[5] Bishop, Errett, and Bridges, Douglas S.: Constructive Analysis
(Grundlehren der math. Wissenschaften 279). New York-Heidelberg­
Berlin: Springer-Verlag 1985.

[6] Blum, M.: A machine-independent theory of the complexity of recur­
sive functions. J. Assoc. Comput. Mach. 14,322-336 (1967).

[7] Blum, M.: On effective procedures for speeding-up algorithms. ACM
Symposium on Theory of Computing, 43-53 (1969).

[8] Bridges, D.S., and Richman, Fred: Varieties of Constructive Mathe­
matics (London Mathematical Society Lecture Notes 97). Cambridge:
Cambridge University Press 1987.

[9] Calude, C.: Theories of Computational Complexity. Amsterdam:
North-Holland 1988.

[10] Calude, C., and Zimand, M.: Recursive Baire classification and speed­
able functions, Zeitschr. math. Logik Grundlagen Math. 38, 169-178
(1992).

[11] Ceitin, G.S.: Algorithmic operators in constructive complete separable
metric spaces (Russian). Doklady Akad. Nauk 128, 49-52 (1959).

[12] Chaitin, G.: Lisp Program-size Complexity. Appl. Math. and Comput.
49, 79-93 (1992).

[13] Cohen, Paul J.: Set Theory and the Continuum Hypothesis. New York:
Benjamin 1966.

174 References

[14J Cutland, N.J.: Computability, an Introduction to Recursive Function
Theory. Cambridge: Cambridge University Press 1980.

[15J Dieudonne, J.: Foundations of Modern Analysis. New York: Academic
Press 1960.

[16J Dowling, W.F.: Computer Viruses: diagonalization and fixed points.
Notices Amer. Math. Soc. 37(7), 858-861 (1990).

[17J G6del, Kurt: The Consistency of the Continuum Hypothesis (Ann.
Math. Studies 3). Princeton: Princeton University Press 1940.

[18J Halmos, P.R.: Naive Set Theory. New York-Heidelberg-Berlin:
Springer-Verlag 1974.

[19] Kalmar, L.: An argument against the plausibility of Church's thesis. In:
Heyting, A. (ed.), Constructivity in Mathematics (Proceedings of the
Colloquium at Amsterdam, 1957). Amsterdam: North-Holland 1959.

[20] Kfoury, A.J., Moll, R.N., and Arbib, M.A.: A Programming Approach
to Computability. New York-Heidelberg-Berlin: Springer-Verlag 1982.

[21J Ko, Ker-I: Complexity Theory of Real Functions. Boston-Basel-Berlin:
Birkhaiiser 1991.

[22] Kreisel, G., Lacombe, D., and Schoenfield, J.: Partial recursive func­
tions and effective operations. In: Heyting, A. (ed.), Constructivity in
Mathematics (Proceedings of the Colloquium at Amsterdam, 1957).
Amsterdam: North-Holland 1959.

[23J Machtey, M., and Young, P.: An Introduction to the General Theory
of Algorithms. Amsterdam: North-Holland 1978.

[24J Odifreddi, P.: Classical Recursion Theory, Volume 1. Amsterdam:
North-Holland 1990.

[25] Peter, Rozsa: Recursive Functions in Computer Theory. Chichester:
Ellis-Horwood 1981.

[26J Pour-EI, Marian B., and Richards, Jonathan I.: Computability in Anal­
ysis and Physics. New York-Heidelberg-Berlin: Springer-Verlag 1988.

[27] Rayward-Smith, V.J.: A First Course in Computability. Oxford:
Blackwell Scientific Publications 1986.

[28J Rogers, Hartley Jr.: Theory of Recursive Functions and Effective Com­
putability. New York: McGraw-Hill 1967.

[29J Salomaa, Arto: Computation and Automata. Cambridge: Cambridge
University Press 1985.

References 175

[30] Schnorr, C.P.: Does the computational speed-up concern program­
ming? In Nivat, M. (ed.): Automata, Languages and Programming.
Amsterdam: North-Holland 1973.

[31] Todd, John: Introduction to the Constructive Theory of Functions.
Basel: Birkhaiiser Verlag 1963.

[32] Weihrauch, Klaus: Computability. New York-Heidelberg-Berlin:
Springer-Verlag 1987.

[33] Wilf, H.S.: Algorithms and Complexity. Englewood Cliffs, New Jersey:
Prentice-Hall Inc. 1986.

[34] Wood, Derick: Theory of Computation. New York: Harper & Row
1987.

If you are interested in pursuing the study of computability, try reading
[28], [29], or [24]. The first of these is rather dated, but certainly a classic;
the other two are likely to become classics. Other references for computabil­
ity are [14], [20], [23], [27], [32], and [34]. A comprehensive account of ab­
stract complexity theories, including several not mentioned in this book,
is given in [9]. For an authoritative account of the complexity-theoretic
analysis of real variables see [21]. Accounts of recursive and constructive
mathematics using informal intuitionistic logic are found in [4], [5], and [8].

Index

A
acceptable programming system, 45,

83, 161
Ackermann's function, 33, 129
admissible, 8
admissible for minimisation, 28
almost all, 95
almost everywhere, 95
alphabet, 3

B
Baire category, 115
base functions, 26, 125
blank,5
Blum's axioms, 93
Boolean functions, 21, 122

C
canonical enumeration, 41
Cantor's Theorem, 50
Cartesian product, 1
characteristic function, 38
Church's thesis, 32
Church-Markov-Turing thesis, 32, 161
classical logic, ix
code, 39
completes a computation, 8
complexity, 93
complexity class, 101, 170
complexity function, 93
complexity measure, 93
composite, 2
composition, 125
Compression Theorem, 104
computable d-ary expansion, 59
computable analysis, 66
computable partial function, 22, 40,

52, 56-57, 87, 145
computable real number, 53

computable real number generator,
53

computable sequence, 66
computation, 8
concatenation of sets, 3
concatenation of strings, 3
configuration, 7
configuration, reaches, 37
constructive logic, ix
Continuum Hypothesis, viii
converges effectively, 66
converges effectively and uniformly,

67
cost function, 93
costs, 93, 166-167
countable, 35
cutoff, 29, 125
cyclic left shift, 17

D
Decidability Problem, 47
decidable, 48
decision problem, 47
defined, 1
diagonal argument, 50
div,57
domain, 1
Double Recursion Theorem, 83

E
effective enumeration, 35, 40-41
effective enumeration, diagonal, 80
effective sequence of open intervals,

67
effectively continuous, 69
effectively enumerable, 35
effectively uniformly continuous, 69
empty partial function, 21, 120
empty string, 3

encoding, 39, 87
enll rneration, 35
Equivalence Problem, 47
erase, 21
erase, 122

F
factorial function, 28, 125
fails to complete a computation, 10
final configuration, 8
finite 8ubfunction, 86

G
Gap Theorem, 101, 103
Gap Theorem, Uniform Version, 103
Goldbach Conjecture, 89

H
Halmos, 169
halt, 11
halt state, 6
Halting Problem, 47
halts in k steps, 37
halts in at most n steps, 37
Heine-Borel Theorem, 67

I
identity function, 76
inadmissible, 8
increasing, 66
IND,98
index set, 98
index, of a Turing machine, 41
index of <pSn), 41
infinitely often, 95
initial configuration, 8
input, 8
input alphabet, 6
intuitionistic logic, ix
iterate of a set, 3

K
K,48
K,49
Kleene star, 3
Kreisel-Lacombe-Schoenfield-Ceitin

Theorem, 70

L
lambda calculus, 26
language, 3

Index 177

Lebesgue measure, 115
lend,7
length of a string, 3
lindex, 77, 156
LISP, 26, 77
loops, 13, 16

M
minimisation, 28
minus, 57, 143
monotone sequence principle, 151
moves of a Turing machine, 6

N
natural numbers, 1
noncomputable real number, 53
normalised binary Turing machine,

38

o
output, 8

P
P(N),138
parametrisation theorem, 43
park,l1
partial function, 1
partial function, computed, 19
partial recursive function, 26, 28
plus, 19, 27, 57, 126, 143
power', 29, 125
power, 28, 125
power set, 138
primitive recursion, 27, 125
primitive recursive functions, 27
product, 2
projection, 1
projection function, 126
projection functions, 27
proper subset, 78
Pseudo-speed-up Theorem, 106

R
R c ,53
range, 1
rational numbers, 1

178 Index

reached in i steps, 8
reached in one step, 7
real numbers, 1
Recursion Theorem, 80
Recursion Theorem, Extended, 83
recursive, 38
recursive analysis, 66
recursive enumeration, 35
recursively enumerable, 35
reduction, 157
rend,7
respects indices, 79
Rice's Theorem, 78
Rice's Theorem, Extended Version,

90
Rogers' isomorphism theorem, 45

S
scsr, 27, 126
self-replicating virus, 84
sequence, 1
s-m-n property, 45, 135
s-m-n theorem, 43
Specker's Theorem, 67
speed-up property, 106
Speed-up Theorem, 106, 110
sq, 126
sqrt, 29, 126
stat, 77, 156
start state, 6
state, 6
state diagram, 12
state transition function, 6
state transition table, 12

string, 3
successor function, 27
sum, 2

T
tape alphabet, 6
term of a string, 3
times, 21, 27, 57, 143
total partial function, 1
trans, 88
Turing machine computable, 22
Turing machine module, 11
Turing machine, binary, 19
Turing machine, deterministic, 6
Turing machine, formal definition, 6
Turing machine, informal description,

5
Turing machine, nondeterministic, 6

U
unary representation, 19
undecidable, 48
undefined, 1
universal property, 45, 135
universal Turing machine, 42

W
Weierstrass Approximation Theorem,

70,72

Z
Zermelo-Fraenkel set theory, viii, 161
zero function, 26, 126

Graduate Texts in Mathematics

conUnuedJrom page it

48 SACHS/WU. General Relativity for Mathematicians.
49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
50 EDWARDS. Fermat's Last Theorem.
5! KLINGENBERG. A Course in Differential Geometry.
52 HARTSHORNE. Algebraic Geometry.
53 MANIN. A Course in Mathematical Logic.
54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
55 BRowN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
56 MASSEY. Algebraic Topology: An Introduction.
57 CROWELJ)FOX. Introduction to Knot Theory.
58 KOBLITZ. p-adic Numbers, p-adic Analysis. and Zeta-Functions. 2nd ed.
59 LANG. Cyclotomic Fields.
60 ARNOLD. Mathematical Methods in Classical Mechanics. 2nd ed.
61 WHITEHEAD. Elements of Homotopy Theory.
62 KARGAPOWV!MERUJAKOV. Fundamentals of the Theory of Groups.
63 BOLWBAS. Graph Theory.
64 EDWARDS. Fourier Series. Vol. I. 2nd ed.
65 WELLS. Differential Analysis on Complex Manifolds. 2nd ed.
66 WATERHOUSE. Introduction to Affine Group Schemes.
67 SERRE. Local Fields.
68 WEIDMANN. Linear Operators in Hilbert Spaces.
69 LANG. Cyclotomic Fields II.
70 MASSEY. Singular Homology Theory.
71 FARKAS/KRA. Riemann Surfaces. 2nd ed.
72 STILLWELL. Classical Topology and Combinatorial Group Theory. 2nd ed.
73 HUNGERFORD. Algebra.
74 DAVENPORT. Multiplicative Number Theory. 2nd ed.
75 HOCHSCHILD. Basic Theory of Algebraic Groups and Lie Algebras.
76 IrrAKA. Algebraic Geometry.
77 HECKE. Lectures on the Theory of Algebraic Numbers.
78 BURRIs/SANKAPPANAVAR. A Course in Universal Algebra.
79 WALTERS. An Introduction to Ergodic Theory.
80 ROBINSON. A Course in the Theory of Groups.
81 FORSTER. Lectures on Riemann Surfaces.
82 BOlT/TU. Differential Forms in Algebraic Topology.
83 WASHINGTON. Introduction to Cyclotomic Fields.
84 IRELAND/ROSEN. A Classical Introduction to Modern Number Theory. 2nd ed.
85 EDWARDS. Fourier Series. Vol. II. 2nd ed.
86 VAN LINT. Introduction to Coding Theory. 2nd ed.
87 BROWN. Cohomology of Groups.
88 PIERCE. Associative Algebras.
89 LANG. Introduction to Algebraic and Abelian Functions. 2nd ed.
90 BRONDSTED. An Introduction to Convex Polytopes.
91 BURDON. On the Geometry of Discrete Groups.
92 DIESTEL. Sequences and Series in Banach Spaces.
93 DUBRovIN!FOMENKO!NOVIKOV. Modern Geometry--Methods and Applications. Part I. 2nd ed.
94 WARNER. Foundations of Differentiable Manifolds and Lie Groups.
95 SHIRYAYEV. Probability, Statistics. and Random Processes.
% CONWAY. A Course in Functional Analysis.

97 KOBLITZ. Introduction to Elliptic Curves and Modular Forms. 2nd ed.
98 BROCKER/TOM DIECK. Representations of Compact Lie Groups.
99 GROVE/BENSON. Finite Reflection Groups. 2nd ed.

100 BERG/CHRISTENSEN!RESSEL. Harmonic Analysis on Semigroups: Theory of Positive
Definite and Related Functions.

101 EDWARDS. Galois Theory.
102 V ARDARAJAN. Lie Groups, Lie Algebras and Their Representations.
103 LANG. Complex Analysis. 3rd ed.
104 DUBRovIN!FOMENKO/NOVIKOV. Modern Geometry--Methods and Applications. Part II.
105 UNG. SL2(R).
106 SILVERMAN. The Arithmetic of Elliptic Curves.
107 OLVER. Applications of Lie Groups to Differential Equations. 2nd ed.
108 RANGE. Holomorphic Functions and Integral Representations in Several Complex Variables.
109 LEHTo. Univalent Functions and Teichmiiller Spaces.
110 LANG. Algebraic Number Theory.
111 HusEMOLLER. Elliptic Curves.
112 LANG. Elliptic Functions.
113 KARATZAS/SHREVE. Brownian Motion and Stochastic Calculus. 2nd ed.
114 KOBLITZ. A Course in Number Theory and Cryptography.
115 BERGER/GOSTIAUX. Differential Geometry: Manifolds, Curves, and Surfaces.
116 KELLEy/SRINIVASAN. Measure and Integral. Vol. 1.
117 SERRE. Algebraic Groups and Class Fields.
118 PEDERSEN. Analysis Now.
119 ROTMAN. An Introduction to Algebraic Topology.
120 ZIEMER. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded

Variation.
121 LANG. Cyclotomic Fields I and II. Combined 2nd ed.
122 REMMERT. Theory of Complex Functions.

Readings in Mathematics
123 EBBINGHAUS!HERMES et a!. Numbers.

Readings in Mathematics
124 DUBROVIN!FOMENKO/NOVIKOV. Modern Geometry--Methods and Applications. Part III.
125 BERENSTEIN/GAY. Complex Valiables: An Introduction.
126 BOREL. Linear Algebraic Groups.
127 MASSEY. A Basic Course in Algebraic Topology.
128 RAUCH. Partial Differential Equations.
129 FuLTON/HARRIS. Representation Theory: A First Course.

Readings in Mathematics
130 DODSON/POSTON. Tensor Geometry.
131 LAM. A First Course in Noncommutative Rings.
132 BEARDON. Iteration of Rational Functions.
133 HARRIS. Algebraic Geometry: A First Course.
134 ROMAN. Coding and Information Theory.
135 ROMAN. Advanced Linear Algebra.
136 ADKINS!WEINTRAUB. Algebra: An Approach via Module Theory.
137 AxLER/BoURDON/RAMEY. Harmonic Function Theory.
138 COHEN. A Course in Computational Algebraic Number Theory.
139 BREDON. Topology and Geometry.
140 AUBIN. Optima and Equilibria. An Introduction to Nonlinear Analysis.
141 BECKER/WEISPFENNING/KREDEL. Grobner Bases. A Computational Approach to

Commutative Algebra.
142 LANG. Real and Functional Analysis. 3rd ed.
143 DOOB. Measure Theory.
144 DENNlS!FARB. Noncommutative Algebra.
145 VICK. Homology Theory: An Introduction to Algebraic Topology. 2nd ed.
146 BRIDGES. Computability: A Mathematical Sketchbook.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

