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'I can't believe thaU' said Alice. 'Can't you?' the Queen said in 
a pitying tone. 'Try again: draw a long breath and shut your 
eyes.' Alice laughed. 'There's no use trying,' she said: 'One 
can't believe impossible things. ' 'I daresay you haven't had much 
practice, ' said the Queen. 

LEWIS CARROLL, Through the Looking Glass. 



Preface 

My intention in writing this book is to provide mathematicians and math­
ematically literate computer scientists with a brief but rigorous introduc­
tion to a number of topics in the abstract theory of computation, other­
wise known as computability theory or recursion theory. It develops major 
themes in computability, such as Rice's Theorem and the Recursion The­
orem, and provides a systematic account of Blum's abstract complexity 
theory up to his famous Speed-up Theorem. 

A relatively unusual aspect of the book is the material on computable 
real numbers and functions, in Chapter 4. Parts of this material are found 
in a number of books, but I know of no other at the senior/beginning 
graduate level that introduces elementary recursive analysis as a natural 
development of computability theory for functions from natural numbers 
to natural numbers. 1 This part of the book is definitely for mathematicians 
rather than computer scientists and has a prerequisite of a first course in el­
ementary real analysis; it can be omitted, without rendering the subsequent 
chapters unintelligible, in a course including the more standard topics in 
computability theory found in Chapters 4-6. 

I believe, against the trend towards weighty, all-embracing treatises (vide 
the typical modern calculus text), that many mathematicians would like to 
be able to purchase books that give them insight into unfamiliar branches 
of the subject in a relatively short compass and without requiring a ma­
jor investment of time, effort, or money. Following that belief, I have had 
to exclude from this book many topics-such as detailed proofs of the 
equivalence of various mathematical models of computation, the theory of 
degrees of unsolvability, and polynomial and nonpolynomial complexity­
whose absence will be deplored by at least some of the experts in the field. 
I hope that my readers will be inspired to pursue their study of recursion 
theory in such major works as [9, 24, 28, 29]. 

A number of excellent texts on computability theory are primarily aimed 
at computer scientists rather than mathematicians, and so do not always 
maintain the level of rigour that would be expected in a modern text on, 
say, abstract algebra. I have tried to maintain that higher level of rigour 

lSome of the work in this book-notably, Proposition (4.28) and the applica­
tion of the Recursion Theorem preceding Exercises (5. 14)-appears to be original. 
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throughout, even at the risk of deflecting the interest of mathematically 
insecure computer scientists. 

Ideally, all mathematics and computer science majors should be exposed 
to at least some of the material found in this book. It horrifies me that in 
some universities such majors can still graduate ignorant of the theoretical 
limitations of the computer, as expressed, for example, by the undecidabil­
ity of the halting problem (Theorem (4.2)). A short course on computabil­
ity, accessible even to students below junior level, would comprise Chapters 
1-3 and the material in Chapter 4 up to Exercises (4.7). A longer course 
for more advanced undergraduates would also include Rice's theorem and 
the Recursion Theorem, from Chapter 5, and at least parts of Chapter 6. 
The entire book. including the difficult material on recursive analysis from 
Chapter 4, would be suitable for a course for bright seniors or beginning 
graduate students. 

I have tried to make the book suitable for self-study. To this end, it 
includes solutions for most of the exercises. Those exercises for which no 
solutions are given have been marked with the asterisk (*); of varying levels 
of difficulty, they provide the instructor with material for homework and 
tests. The exercises form an integral part of the book and are not just there 
for the student's practice; many of them develop material that is used in 
later proofs, which is another reason for my inclusion of solutions. 

I\Iy interest in constructive mathematics [5] leads me to comment here 
on the logic of computability theory. This is classical logic, the logic used by 
almost all mathematicians in their daily work. However, the use of classical 
logic has some perhaps undesirable consequences. Consider the following 
definition of a function f on the set N of natural numbers: for all n, f(n) 
equals 1 if the Continuum Hypothesis is true, and equals 0 if the Con­
tinuum Hypothesis is false. 2 Since 'most mathematicians are formalists on 
weekdays and Platonists on Sundays', at least on Sundays most of us would 
accept this as a good definition of a function f. According to classical logic, 
f is computable because there exists an algorithm that computes it: that 
algorithm is either the one which, applied to any natural number n, outputs 
L or else the one which, applied to any natural number n, outputs O. But 
the Continuum Hypothesis is independent of the axioms of ZFC (Zermelo­
Fraenkel set theory plus the axiom of choice), the standard framework of 
mathematics, so we will never be able to tell, using ZFC alone, which of 
the two algorithms actually is the one that computes f. 

It appears from this example, eccentric though it may be, that the stan­
dard theory of computation does not exactly match computational practice, 

2Thc Continuum Hypothesis (CH) says that the smallest cardinal number 
greater than ~o, the cardinality of N, is 2No , the cardinality of the set of all 
subsets of N. The work of Cohen [13] and G6del [17] shows that neither CH nor 
its negation can be proved within Zermelo-Fraenkel set theory plus the axiom of 
choice: see also [3], pages 420-428. 
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in which we would expect to pin down the algorithms that we use. A face­
tious question may reinforce my point: what would happen to an employee 
who, in response to a request that he write software to perform a certain 
computation, presented his boss with two programs and the information 
that, although one of those programs performed the required computation, 
nobody could ever tell which one? 

With classical logic there seems to be no way to distinguish between 
functions that are computed by programs which we can pin down and 
those that are computable but for which there is no hope of our telling 
which of a range of programs actually performs the desired computation. 
To handle this problem successfully, we need a different logic, one capable of 
distinguishing between existence in principle and existence in practice. For 
example, with constructive (intuitionistic) logic the problem disappears,3 
since f is then not properly defined: it is only properly defined if we can de­
cide the truth or falsehood of the Continuum Hypothesis (which we cannot) 
and therefore which of the two possible algorithms computes f. 

Having said this, let me stress that, despite the inability of classical 
logic to make certain distinctions of the type I have just dealt with, I have 
followed standard practice and used classical logic throughout this book. 

Not only the logic but also most of the material that I have chosen is 
standard, although some of the exercises and examples are new. I have 
drawn on a number of books, including [34] for the treatment of Turing 
machines in Chapter 1; [20] for the first parts of Chapters 4 and 5; and [9, 
14, 29] for parts of Chapter 7. 

The origins of my book lie in courses I gave at the University of Bucking­
ham (England), New Mexico State University (USA), and the University 
of Waikato (New Zealand). I am grateful to the students in those classes 
for the patience with which they received various slowly improving draft 
versions.4 Special thanks are due to Fred Richman for many illuminating 
conversations about recursion theory; to Paul Halmos for his advice and 
encouragement; and to Cris Calude, Nick Dudley Ward, Graham French, 
Hazel Locke, and Steve Merrin, all of whom have read versions of the text 
and made many helpful corrections and suggestions. As always, it is my 
wife and children who suffered most as the prolonged birth of this work 
took so much of my care and attention; I present the book to them with 
love and gratitude. 

May 1993 Douglas S. Bridges 

3For a development of computability theory using intuitionistic logic see Chap­
ter 3 of [8]. 

4The first drafts of this book were prepared using the r3 Scientific Word 
Processing System. The final version was produced by converting the drafts to 
rEX and then using Scientific Word. r3 and Scientific Word are both products 
of TCI Software Research, Inc. The diagrams were drawn with Aldus Freehand 
v. 3.1 (©Aldus Corporation). 
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Preliminaries 

Throughout this book we assume familiarity with the standard notations 
and basic results of informal set theory, as found in [18]. We use the fol­
lowing notation for sets of numbers. 

The set of natural numbers: N == {a, 1, 2, ... }. 

The set of rational numbers: Q == {±m/n : m, n EN, n f= a}. 

The set of real numbers: R. 

For n ~ 1 we write xn for the n-fold Cartesian product X x X x ... x X (n 
factors) of X, and Pt for the ith projection of Xn-that is, the mapping 
from xn onto X defined byl 

We denote by (xn);;:"=o, or (Xo, Xl, .. . ), or even just (xn), the sequence whose 
terms are indexed by N and whose nth term is X n . 

We shall be particularly interested in what happens when a computer is 
programmed to compute natural number outputs from inputs in Nn. Since 
the execution of a program may fail to terminate when the machine is run 
with certain inputs-for example, a program for computing the reciprocal 
of a natural number will not normally output a natural number if it is run 
with the input a-we are forced to deal with functions that are defined on 
subsets of N n and not necessarily on the entire set Nn. This leads us to the 
notion of a partial function rp from a set A to a set B : that is, a function 
rp whose domain is a subset of A and which takes values in B; the domain 
of rp may be empty and is usually not the entire set A. We refer to such 
a function rp as the partial function rp : A -+ B; we write domain ( rp) for 
its domain, and range(rp) for its range. We also say that rp(x) is defined if 
X E domain(rp), and that rp(x) is undefined if X E A and X (j. domain(rp). 
A partial function from A to B whose domain is the entire set A is called, 
oxymoronically, a total partial function from A to B. 

There is an unwritten convention (not followed by all authors) that uses 
Greek letters to denote partial functions and Roman letters to denote total 
ones. We shall usually follow that convention, although some partial func-

IThe symbol == means is defined as or is identical to. 
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tions that are not initially known to be total and are therefore denoted by 
Greek letters will eventually turn out to be total. 

\Ve often give explicit definitions of partial functions, of the following 
form 2 : 

<p(n) Vn 
undefined 

if n is a perfect square, 
otherwise. 

In this example, <P is a partial function from N to N, and 

domain( <p) = {n EN: n is a perfect square}. 

We also describe <p as the partial function n f-+ Vn from N to N. We use 
the arrow ---7 as in 'the partial function <p : A ---7 B', and the barred arrow 
f-+ as in 'the partial function x f-+ sin x on R'. If, for example, <l> is a partial 
function from N 2 to N, then for each mEN we also denote the partial 
function n f-+ <l>(m, n) on N by <l>(m, .). 

Partial functions can be operated on in the obvious ways. For example, 
if <p, 1/J are partial functions from N to N, then their sum, product, and 
composite are defined respectively as follows: 

(cp + 1/J)(n) cp(n) + 1/J(n) if cp(n), 7jJ(n) are both defined, 
undefined otherwise; 

(<p ·1{i)(n) <p(n) ·1{i(n) if <p(n), 7jJ(n) are both defined, 
undefined otherwise; 

cpo't/J(n) <p(w(n)) if 7jJ(n) is defined and belongs 
to domain( <p), 

undefined otherwise; 

In general, if a partial function <l> : Nm ---7 N n is defined in terms of already 
constructed partial functions <Pi : Nm ---7 N (1 :S i :S j) and \[I : Nj ---7 Nn 
by an equation of the type 

it is assumed that the left hand side is defined if and only if the right hand 
side is defined; thus 

domain( <l» 

Likewise, when we write 

{u E Nm : u E ni=l domain(<pi) and 

(<Pl(U), ... ,<Pj(u)) E domain(\[I)}. 

<p(n) :S k, 

2Here and throughout the book, we use Vn to denote the nonnegative square 
root of a nonnegative real number. 
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where 'P : N ----* N is a partial function, we imply that 'P( n) is defined and 
less than or equal to k. 

For computational purposes a natural number n is usually represented 
by a string of symbols drawn from some suitable set. For example, 5 may 
be represented by the string aaaaa whose symbols are drawn from the 
singleton set {a}, by the binary string 101, by the single decimal digit 5, 
and so on. Strings appear so frequently in the early chapters of our book 
that it is a good idea to give a formal definition of them here. 

By a string of length n over the set X we mean an element (Xl, ... , xn) 

of the n-fold Cartesian product xn == X x· .. x X (n factors); the elements 
Xl,' .. , Xn are called the terms of the string, Xk being the kth term. When 
we consider (Xl, ... , Xn) as a string over X, we usually omit the parentheses 
and commas, and simply write Xl ... X n . We assume that there is a unique 
empty string A of length 0 over X; informally, A is the unique string with 
no terms over X. We denote by X* the set of strings over X, and by lui 
the length of the string u E X*. 

Strings u, v over X can be combined to form a string U· v, usually written 
uv, by the operation of concatenation. Informally, this involves writing 
one string next to another. The following is a formal inductive definition: 
for all strings u, v over X, and all elements X of X, 

A·u 

(xu) . v 
u, 

X(u· v). 

It is a simple exercise in induction to show that concatenation has the 
properties you would expect it to have. For example, the length of uv is 
the sum of the lengths of u and v; u(vw) = (uv)w (so we write either side 
as uvw); and 

Au = u = uA. 

In the context of computability and formal language theory a nonempty 
finite set X is often called an alphabet, and a subset of X* a language 
over X. (The set of words defined in the Oxford English Dictionary is a 
language over the alphabet {a, b, c, ... , z}; British readers might argue that 
this is the English language!) The following are useful constructions with 
languages A, B over a finite alphabet X : 

• The concatenation of A and B : 

A· B == {uv : U E A, v E B}. 

• The iterate (or Kleene star) of A : 

In this context the union of A and B is often written A + B, rather than 
AUB. 
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For example, if X = {O,l,2}, A = {O, l}*, and B = {2}, then A· B 
consists of the string 2, together with all strings of the form Xl ... xn2 with 
Xi E {O, I} for 1 :::;i :::; n; A * = A, and B* consists of all finite (possibly 
empty) strings with each term equal to 2; and A + B consists of all binary 
strings together with the single string 2. 

There are common shorthand notations which avoid cumbersome expres­
sions for combinations of languages. For example, we write AB instead of 
A· B, 

010*1*0 instead of {Ol}· {O}*· {l}*· {OJ, 

and 

abb(ab)* + (a + b)*ba* instead of {aM} . {ab}* + {a, b} * . {b} . {a} *. 



1 

"What Is a Turing Machine? 

A Tu'ring machine is ... the ultimate personal computeT', since 
only pencil and paper are needed ... at the same time, it i8 a8 
powerful as any real machine. ([34], p. 280) 

We begin our study of computability by describing one of the earliest 
mathematical models of computation, one for which the underlying infor­
mal picture is especially easy to understand the Turing machine. 

In that picture (see Figure 1), a Turing machine consists of an infinite 
tape, and a read/write head connected to a control mechanism. The tape 
is divided into infinitely many cells, each of which contains a symbol from 
an alphabet called the tape alphabet; this alphabet includes the special 
symbol B to signify that a cell is blank (empty). The cells are scanned, one 
at a time, by the read/write head, which can move in both directions as 
long as it does not move off the tape (which would happen if, for example, 
the tape was bounded on the left and the read/write head moved left from 
the leftmost cell). At any given time, the machine (or, more properly, its 
control mechanism) will be in one of a finite number of possible states. The 
behaviour of the read/write head, and the change, if any, of the machine's 
state, are governed by the present state of the machine and by the symbol 
in the cell under scan. 

The machine operates on words over an input alphabet which is a subset 
of the tape alphabet. The symbols forming such a word are written, in 
order, in consecutive cells from the left of the tape. 'When the machine 
enters a state, the read/write head reads the symbol in the cell against 
which it rests, and writes in that cell a symbol from the tape alphabet; it 
then moves one cell to the left, or one cell to the right, or not at all; after 
that, the machine enters its next state. 

In this model there is no direct counterpart to the memory registers of a 
com puter. However, information is stored in the sequence of states through 
which the machine passes. For example, if we want a Turing machine to 
transfer the content of a certain cell to the adjacent cell on the right, we 
"memorise" the symbol 8 read from the first cell by passing to a different 
state for each possible choice of s. 

We now give a formal definition of some of these notions. Let X, Y be 
finite alphabets with X c Y, and B a distinguished blank element of 



6 1. What Is a Turing Machine'? 

input/work tape 
cell being scanned 

\\ 

LJ ........ -Ll_·· ----'-------"~-L-.-_···-'--r~_L .. r_·· ----'--------.l..-_~ 

,cadl";;;;~h~~~-' 1 
I finitec~~trol I 

FIGURE 1. A Turing machine. 

Y\X. A Turing machine with tape alphabet Y and input alphabet 
X is a quadruple Ai == (Q, 6, go, gF) consisting of 

• a finite set Q of states, 

• a partial function {y : Q x Y -> Q x Y x {L, R, A} -the state tran­
sition function, 

.. a start state go E Q, and 

• a halt state qF E Q, 

where b(qF,Y) is undefined for all y in 1".1 We interpret the symbols L,R, 
and A as left move, right rnove, and no move, respectively. 

\Ve shall discuss examples of Turing machines later in the chapter. Our 
next task is to clarify our informal picture of the behaviour of a Turing 
machine. 

In order to start a computation, the symbols of the input word 

W == Xl ... XN E ){* 

lTlUbt be written in the leftmobt N cells of the tape, and A1 must be in 
the state qo, with the read/write head against the leftmost cell. If M reads 
the symbol U in the state q, it computes (gl, yl, D) = 6(q, y), provided this 
quantity is defined. It then writes yl: moves left if D = L, right if D = R, 
Hot at all if D = i\.; and paSbes to the state q'. If M reaches the state 

IStrictly speaking, we have defined here a deterministic Turing nlachine. 
This should be contrasted with a nondeterministic one, in which there is a choice 
of several actions when the machine reads a given symbol in a given state. Since 
we shall not be concerned with nondeterministic Turing machines, we shall use 
the shorter phrase Turing machine, rather than deterministic Turing machine, 
throughout this book. 
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qF, its activity stops and the final output of its computation is read from 
the symbols remaining on the tape. (Actually, we need to be more careful 
about characterising the moves, halting behaviour, and outputs of M; we 
will return to this matter shortly.) 

Suppose that at a given instant our Thring machine M is in the state q; 
that the symbols in the cells on the left of the read/write head form the 
string u E Y*; that the terms of a string v E Y* lie in the cells at, and to 
the right of, the read/write head; and that all cells to the right of 1) are 
blank. Thus the leftmost cells of the tape contain the string uv, and all cells 
to the right of this are blank. Then the instantaneous configuration of the 
machine is fully described by the triple (u, q, v), and the state transitions 
of M can be described by the sequence of triples giving the configurations 
of M at successive instants of the computation. 

In order to formalise these ideas, we introduce two intuitively computable 
functions from Y* to Y : 

lend(v) H if v = A, 
c if v = cw, c EO: Y, and W E Y*, 

rend(v) H if v = A, 
c if v = wc, cE Y, and w E Y*. 

(Thus if v is a nonempty string over Y, then lend( v) is the leftmost sym­
bol, and rend(v) is the rightmost symbol, of v.) Next, we define a con­
figuration of M to be a triple (u, q, v), where u E Y*, either v = A or 
v E Y*(Y\{H}), and q E Q.2 We say that the configuration (u',q',v') is 
reached in one step from (u, q, v) if 

8(q, lend(v)) = (q', b, D) E Q x Y x {L, R, A} 

is defined (so, in particular, q :f. qF), and if the following conditions obtain. 

(i) If D = L, then u = u'rend( u) and 

v' A if b = H, rend(u) = H, and 
either v = A or v = lend(v), 

if b = H, rend(u) of H, and 
either v = A or 1) = lend(v), 

rend(u)bw if wE Y', v = lend(v)w, and 
either b oj, B or 10 of A. 

2 As it stands, this definition does not completely capture our intuitive con­
ception of a configuration, since it does not preclude the possibility of nonblank 
symbols lying to the right of the string v on the tape. However (see Exercise 
(1.2.2)), this situation does not arise when the configuration (u, q, v) is part of a 
computation, according to the strict notion of computation that we shall intro­
duce shortly. 
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(ii) If D = A, then u' = u and 

v' A ifv=Aandb=B, 
b if v = A and b =f. B, 
bw if v =f. A and v = lend(v)w, where w E Y*. 

(iii) If D = R, then u' = ub and 

v' A if v = A, 
w if v =f. A and v = lend(v)w, where w E Y*. 

We then write 
(u,q,v) f-- (u',q',v'). 

Figures 2 and 3 illustrate some of the cases of this rather complicated 
definition; in each case, v =f. A, a = rend(u), c = lend(v), and b =f. B. 

(1.1) Exercise 

* Draw diagrams to illustrate the remaining cases of the definition of 
reached in one step. 

For configurations C, C' and a positive integer i, we define the relation 
f--i inductively as follows: C f--i C' if 

either i = 1 and C f-- C', 

or i > 1 and there exists C" such that C f--i-l C" and C" f-- C'. 

If C f--i C', then C' is reached in i steps from C. 
We say that a configuration (u, q, v) of M is admissible if 

either u =f. A, 

or u = A and Pr(8(q, lend(v))) =f. L; 

otherwise, we say that the configuration is inadmissible. A computation 
by M is a finite sequence (Co, C l , ... , Cn) of admissible configurations such 
that 

Co = (A, qo, v) for some v E X*, 

Ci f-- CHI for each i, 

and Cn is of the form (A, qF, v') for some v' E X*. 

We then call v the input, v' the output, Co the initial configuration, 
and Cn the final configuration of the computation; and we say that M 
completes the computation (Co, C l , ... , Cn) on the input v. 

In allowing only admissible configurations in the definition of computa­
tion, we have in mind the model where the TUring machine has its tape 



D=L: 

becomes 

D=A: 

becomes 
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.. u--I--v--
I I I I I I la I c I I I I I I I ~ 
-u' ctW~ 

- u' ---1-- v' ----

I I I I la I bl I I I I I I ~ +-w-­
cb 

.. u--I--v--
I I I I I I Ie I I I I I I 11 

ctW~ 

.. u--I--v'--
I I I I I I I bl I I I I I I ~ +-w--

cb 
FIGURE 2. Two cases of passage from one configuration to another when 
v::f. A, a = rend(u), c = lend(v), and b::f. B. 
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D=R: 

u--I--v 

I I I I Ie I I I I 1 

becomes 

- u'----I- v'=w--

-u---- + 
cb 

FIGURE 3. Another case of passage from one configuration to another when 
v # A, a = rend(u), c = lend(v), and b # B. 

bounded on the left. In that model the input is written in the leftmost 
cells of the tape, and it is impossible to move left of the leftmost cell. The 
restriction to such Turing machines is not as drastic as it may seem, for it 
can be shown that to each Turing machine with tape extending infinitely 
in both directions there corresponds a Turing machine with tape bounded 
on the left that performs the same computation (usually using a different 
algorithm); see Section 6.4 of [34]. 

If v E X* and there does not exist a computation by M with input 
v, we say that M fails to complete a computation on the input v. 
To see how such a failure can happen, let Co == (A, qo, v), with volA. 
If pl(8(qo,lend(v))) = L, then Co is inadmissible; otherwise, there is a 
(possibly finite) sequence Co, C l , ... of configurations such that Ci ~ Ci+1 

for each i. Either that sequence is infinite, in which case none of the states 
Pr(Ci ) is qF; or the sequence is finite, with last term Cn == (un, qn, vn ), say. 
In that event we have the following three possibilities: Ci is inadmissible 
for some i; qn =1= qF and 8(qn,lend(vn )) is undefined; qn = qF. Only in the 
last case can M complete a computation-namely, (Co, C l ,.·., Cn)-on 
the input v; even then, it only does so if Un = A. 

In general, if v E X* and there is a finite sequence (Co, C l , ... , Cn) of 
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admissible configurations such that 

Co = (A,qo,v), 

Ci f- CHI for each i, 

and Cn is of the form (Vi, qF, Vi) for some Vi, Vi E Y*, 

we say that M halts on the input v. (Recall that qF is the halt state of 
M.) If Cn is of the form (A, qF, Vi) for some Vi, we say that ivl halts with 
the read/write head on the left, or that M parks the read/write 
head; in which case, if also v' E X', then M completes the computation 
(Co, C1 , ... , Cn) on the input v. 

Many authors would not make the parking of the read/write head nec­
essary for the completion of a computation: they would consider a compu­
tation (Co, C1 , ... , Cn) to be completed if Cn has the form (v', qF, Vi) for 
some strings u/, Vi in X*. We prefer to require the parking of the read/write 
head as this makes it easier to perform certain tasks such as the joining 
together of Turing machine modules3 in the construction of a large Turing 
machine. 

(1. 2) Exercises 

.1 Consider a Turing machine A1 with start state qo and halt state qF. 

Suppose that from the initial configuration (A, qo, v), where v is a 
string over the input alphabet X of M, ./\.11 follows a sequence of 
state transitions that eventually leave it in its halt state with the 
read/write head on the left, and with a string Vi E X*, followed by 
a blank, in the leftmost cells of the tape. Can we decide whether M 
has completed a computation with output Vi? In other words, can we 
determine whether there are nonblank symbols in cells of the tape to 
the right of Vi? 

.2* Prove that if the configuration CI == (Vi, ql, Vi) is reached in one step 
from the configuration C == (v,q,v), and if, when the configuration 
of M is C, all cells to the right of the string vv are blank, then, after 
the transition from C to C', all cells to the right of u'v' are blank. 

The time has come to give some examples to clarify the many complicated 
definitions we have introduced above. To begin with, consider the Turing 
machine M == (Q, 8, qo, qF) where 

3\Vhen we refer to a Turing machine module, we have in mind the Turing 
machine equivalent of a procedure or subroutine in a programming language. 
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FIGURE 4. The state diagram of the Turing machine jVi. 

and b is given by the following state transition table, in which, for 
example, the entry at the int.ersection of row ql and column 1 is b(ql' 1) : 

.. --.-.. ----... - .. -

0 1 B 

qo (ql,LR) (q2.B, R) (qF,B,L) 

ql (ql, 1, R) (ql, 0, R) (qF,B,L) 

q2 (q3, B, R) (q2, 1, A) undefined 

q3 (ql,l,R) undefined undefined 

qF undefined undefined undefined 

A more perspicuous representation is given by a directed graph known as 
the state diagram of Ai; see Figure 4. In such a diagram the encircled 
nodes represent the states of the Turing machine. The initial state is dis­
tinguished as the one at the head of a curved arrow with no state at its 
tail, and the halt state by double encircling. An arrow bearing the label 

y/y'. D 

and joining a state q to a state q' indicates that y) = (q', y', D). 
Now consider the behaviour of M when given the input 0011. The infor­

mal picture is given in Figure 5. A more formal description of the behaviour 
of M is given by the configuration sequence 



1. What Is a Turing Machine'? 13 

(A, qo, 0011) ~ (l,ql,Oll) 
~ (11, ql, 11) 

~ (110, ql, 1) 

~ (1100,ql,A) 

~ (110,QF,O). 

[[LoLHl; Iii 1 1 

~ 

i1l11111i 1 1 iL~ 

~ 
! ql I 
~ 

Ili11oloi 1 1 iLL 

~ 

FIGURE 5. The behaviour of .,'\.·1 on the input 0011. 

Next, consider what happens when the input of M is 11; the informal 
picture is given in Figure 6. 

Thus the machine loops, reading 1 in state Q2, writing 1, and remaining 
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11111 I I I I I I 

ct 
I 111 I I I I I I I 

ct 
I 111 I I I I I I I 

ct 
FIGURE 6. The behaviour of M on the input 0011. 

in state q2. The corresponding configuration sequence is 

(A,qo,ll) f- (B,q2,1) 

f- (B,q2,1) 

f- (B, q2, 1) 

f-

Finally, note that if M is given the empty input A, then the initial 
configuration (A,qo,A) is inadmissible, since Pl(8(qo,lend(A))) = L. So 
M fails to perform a computation on the input A. 

For our second example, we design a Turing machine T, with input 
alphabet {O, I}, that removes the leftmost symbol of the input word and 
shifts the resulting word one space to the left on the input tape. Here is 
an informal, high-level description of T. It has states qo, ql, q2, q3, q4, qF, 
where qo is the start state and qF the halt state. Assume that the symbols 
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of a binary input string w == Xl ... X N are written in the leftmost N cells of 
the tape, and that T is in the state qQ, with the read/write head scanning 
the leftmost cell. If N = 0, so that w = A and the symbol in the leftmost 
cell is B, T 

writes B, 
does not move, and 
enters the halt state qF. 

If N 2:: 1 and therefore w i= A, T first 

reads Xl, 

writes B, 
moves right, and 
enters the state ql. 

Now assume that T is in the state ql, and that the cell on the left of the 
one scanned by the read/write head contains B. If the symbol scanned is 
an element X of {O, I}, T 

writes B, 
moves left, and 
enters a state that depends on X (and thereby "m.emorises" x). 

T then reads B, 
writes x, 
moves two cells right, and 
enters the state ql. 

If, on the other hand, T is in the state ql, and the read/write head is 
scanning a cell that contains B, T 

writes B, 
does not move, and 
enters the halt state qF. 

Note that if the input string contains more than one term, T will not 
park the read/write head before entering its halt state. (You are invited to 
remedy this defect.) 

The state transition table for T is given below; the state diagram is found 
in Figure 7. 

0 1 B 

qa (ql,B,R) (ql,B,R) (qF, B, A) 

ql (q2, B, L) (q3,B, L) (qF, B, A) 

q2 undefined undefined (q4, 0, R) 

q3 undefined undefined (q4, 1, R) 

q4 undefined undefined (ql,B,R) 

qF undefined undefined undefined 
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FIGURE 7. The state diagram for our second Turing machine example. 

Notice that, as in this example, a state diagram always provides a concise 
description of a Thring machine. In general, such a description may not 
be as transparent as a high-level one. If the tape alphabet contains more 
than a handful of elements, it may be physically impossible to draw the 
corresponding state diagram clearly. 

Referring to any of these descriptions of T, we see that the input 0110 
leads to the configuration sequence 

(A, qo, 0110) I- (B, ql, 110) 

I- (A, q3, BBIO) 

I- (1, q4, BlO) 

I- (lB, Ql, 10) 

I- (1,Q3, BBO) 

I- (11, Q4, BO) 

I- (I1B, Ql, 0) 

I- (11, Q2, A) 

r'" (110, Q4, A) 
I- (110B,Ql,A) 

I- (HOB, QF, A). 

(1.3) Exercises 

.1 Let v E X*, and suppose that there is an infinite sequence 

Co == (A,qo,v),C1 ,C2 , .•. 

of admissible configurations such that C i I- Ci+l for each i. Must 
there exist distinct m, n such that Cm = Cn (in which case we say 
that M loops on the input v)? 
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.2 Design a Turing machine, with input alphabet {a, I}, that shifts a 
nonempty input word one place to the right, writes a blank in the 
leftmost cell of the input tape, and parks the read/write head . 

• 3 Design a Turing machine M with input alphabet {a, I} and tape 
alphabet {a, 1, B} such that if M is started in its start state, with 
the read/write head on the left and with a string v E OB* 11 * in the 
leftmost cells of the tape, then M shifts all the 1 's to the left of the 
tape and parks the read/write head. (This Turing machine will be 
used in the solution to Exercise (2.7.1).) 

.4 Design a Turing machine, with input alphabet {a, I}, that executes 
a cyclic left shift by one cell: that is, if the input word is Xl ... X N, 

with each Xi E {a, I}, then the output word is X2 ••• XNXl and is 
written in the leftmost N cells of the input tape. As part of your 
design, make the Turing machine halt with the read/write head on 
the left . 

. 5* Design a Turing machine that duplicates a nonvoid input word over 
{a, I} : that is, if the input word is w, then the output word is ww, 
with its first symbol in the leftmost cell of the input tape. Make the 
Turing machine halt with the read/write head on the left . 

. 6* Design a Turing machine that compares two binary strings, outputs 
1 if the strings are equal, outputs ° if the strings are unequal, and 
parks the read/write head. 



2 

Computable Partial Functions 

As you may have discovered while doing the exercises at the end of Chapter 
1, designing TUring machines to perform particular tasks can be quite an 
addictive activity. However, that activity is not the object of this book, 
which is to investigate the theory, rather than the practice, of computation. 
That investigation is based upon the notion of a partial function computed 
by a TUring machine, to which we now turn our attention. 

Let M == (Q, 8, qo, qF) be a TUring machine with tape alphabet Y and 
input alphabet X, and let S be a subset of X*. We define as follows the 
partial function <p : S --; X* computed by M : if M completes a com­
putation on the input s E S, then <pes) is the output of that computation; 
otherwise, <pes) is undefined. 

For example, consider the computation of the addition function 

plus: N 2 --; N, 

defined by 
plus(m, n) == m + n. 

We first identify the natural number n with its unary representation 
r n l-a string of n + 1 terms each equal to 1.1 We then identify the pair 
(m,n) of natural numbers with the string rm10rn1 in l{l}*Ol{l}*. Thus 

N is identified with 1 {I} * , 

N 2 is identified with l{l}*Ol{l}*. 

The computation of plus will be carried out using a binary Turing ma­
chine M-that is, a TUring machine with input alphabet {O, I} and tape 
alphabet {O, 1, B}; plus will be the total partial function from l{1}*Ol{1}* 
to {O, 1}* computed by M, and will have values in 1{1}*. 

Here is a high-level description of the behaviour of M when the initial 
configuration is (A,qoJ m10rnl), with qo the start state and m,n E N. To 

lNormally we shall not distinguish between a natural number n and its unary 
representation r n 1. However, there are situations, such as the proof of Theorem 
(2.8), where we make that distinction in order to avoid confusion. 
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. IIl,R 

. 
111J"R_~ (qt". .!lfB, L 

',,--Y 
/ ~ 

.. 011 ,R 

II1,L 

.!lILA 

FIGURE 8. A binary Turing machine that computes plus. 

begin with, M 

writes B in the leftmost cell: 
moves right, reading and rewriting l's, until it reads 0; 
replaces 0 by 1: and 
continues moving right, reading and rewriting l's, until it reads B; 

It then 

moves left and deletes 1; 
moves left again and deletes I; 
continues moving left. reading and rewriting l's. until it reads B; 
writes 1: and 
halts. 

M has then completed a computation, and has i (m -+ n) la string of 
(m -+ n + 1) terms each equal to I-in the leftmost cells of the tape. all 
other tape cells being blank. 

Here is the state transition table for M : 

0 1 B 

qo undefined (ql. B, R) undefined 

!jl (q),I,R) (ql,l,R) (q2, B, L) 

q2 undefined (q3, B, L) undefined 

q3 undefined (q4, B, L) undefined 

q4 undefined (qq, 1. L) (qF.l,A) 

1]1" undefined undefined undefined 
---------------------------------------_._,..-. 

For the state diagram of Ai see Figure 8. 
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(2.1) Exercises 

.1 Design a Thring machine that computes the empty partial function 
E: {a, 1}* --+ {O, l}*, where 

E ( s) == undefined for all s . 

. 2 Design a Turing machine that computes the partial function erase: 
{a, 1}* --+ {O, I}*, defined by 

erase(s) == A for all s . 

. 3 Design Thring machines that compute the Boolean functions /I., V, 
and ---, on {a, l}*, where for each w E {O, l}*, 

/1.( w) 1 if each bit of w is 1, 

° otherwise; 

V(w) 1 if some bit of w is 1, 
(] otherwise; 

and ---, is defined inductively by the relations 

---, (A) 
-{wO) 
---,(wI) 

A, 
(---,w) 1, 
(---,w)O . 

.4* Design a Thring machine that computes the multiplication function 
times : N x N --+ N, defined by 

times(m, n) == m x n . 

. 5* Design a Thring machine M that adds two natural numbers in the 
following way: if the numbers have binary representations 

N N 

a==Lak2kand b==Lbk 2k , 
k=O k=O 

and if .A1 is started with the input word aObOa1b1 ••. aNbN on the left 
of the tape, then it completes a computation with output COC1 ... CK, 

",K .-
where a + b = L..,j=o cj 21 . 

The computation of plus : N 2 --+ N preceding Exercises (2.1) typifies our 
approach to the computation of partial functions from Nn to N. Identifying 

N with I{l}*, 

Nn with l{l}*OI{I}*O··· 01 {l}*, 
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we say that a partial function ip : N" --> N is Turing machine com­
putable if it is the partial function from Nn to N computed by some binary 
Turing machine .lVI. If m > 1, we say that a partial function ip : Nn -> Nm 
is Turing machine computable if the functions PJ: 0 ip : Nr1 -+ N (k = 
1, .... m) are Turing machine computable. 

Our definition of l'uring machine computable partial Junction from NrL 
to Nm is not as restrictive as it may seem: the following lemma will enable 
us to prove that a partial function ip : N"·, Nut is Turing machine 
computable if it is computed by some Turing machine whose input alphabet 
includes {O, I}. 

(2.2) Lemma. If M is a Turing machine whose input alphabet X con­
t(rlnS at least two elements, then the're is a Turing machine that computes 
the same partial functions as Ai and thai. has input alphabet X and tape 
alphabet X U {B}. 

Proof. \Ve illustrate the proof by sketching the argument in the case 
where X = {O, I} and the tape alphabet Y of .;\'1 is {O, L 2, B}. Let 

be the set of states of JVI, where qo is the start state and (iF the halt 
state. The idea of the proof is to design a Turing machine ,.VI', with input 
alphabet X and tape alphabet )Ie U {B}, that mimics the action of M on 
any string over Y by operating on a binary encoding of that string. The 
set Q' of states of M' will include Q as a proper subset. 

vVhen started in its start state, with the input word 

in the cells on the left of the tape, and with the read/write head against 
the leftmost cell, }vt' first encodes w according to the following scheme: 

code(O) 
code(l) 
code(2) 
code(w:r) 

00, 
Ol. 
10. 
code(w)· code(x) (w E (Y\{B})*, :1: E Y\{B}), 

where the symbol· denotes the concatenation operation on strings. To do 
so, A'l' first moves the entire input string two places to the right and writes 
blank symbols in the leftmost two cells. It then moves X2, ... ,XN one space 
right and writes B in the cell to the right of Xl; moves Xa, ... , X N one space 
right and writes B in the cell to the right of :1:2; and so on, until the string 
on the left of the input tape is 
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and the read/write head is against XN. Next, the read/write head 

moves left until it ha.<; read two successive blanks, 
moves two cells right, and 
reads Xl' 

Using states to "memorise" that it read Xl, M' next 

writes B, 
moves left, and 
writes the right bit of code(xd. 

The string on the tape at this stage is 

where r is the right bit of code(xd in the cell being scanned by the 
read/write head. A1' now 

moves the read/write head three cells to the right, 
reads X2 (and memorises this by entering the 

appropriate state), 
writes B, 
moves two cells left, 
writes the left bit of code(x2), 
moves right, and 
writes the right bit of code( X2). 

The string on the tape is now 

and the read/write head lies against the right bit of code(x2)' Carrying on 
in this way, we arrive at a configuration with the string 

Br . code(x2) ... code(xN) 

in the leftmost cells of the input tape, and the read/write head against 
the right bit of code(xN)' M' then reads the blanks in the three cells to 
the right of code(xN); these three blanks indicate that it should complete 
its ta.<;k by moving the read/write head left until it reads the leftmost B, 
at which point it writes the left bit of code(xl) and enters the state QO.2 

2Note that at each stage the module stores relevant information by means of 
the state the machine enters. For example, when the read/write head reads :1;1 

prior to moving left and writing the right bit of code(xI), the machine enters a 
different state for each of the possible values of Xl. 
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Renaming the states of M' used so far, we can ensure that none of those 
states except qo belongs to Q. 

We next arrange for M' to imitate the passage from one configuration 
of M to the next. If 

8: Q x Y ---t Q x Y x {L, R, A} 

is the state transition function of M, M' imitates the transition represented 
by 8(q,y) = (q',y', D) as follows. Suppose that M' is in the state q, that 
y E {a, 1, 2}, and that the read/write head of M' lies against the left bit 
of code(y). M' reads that bit, moves right (using states as memory), and 
registers that the two bits just read form code(y); it then moves left, writes 

B if y' = B, 
the left bit of code(y') if y' E Y\{B}, 

and uses states to remember q', y', and D. M' then moves right, reads the 
right bit of code(y), writes 

moves 

B if y' = B, 
the right bit of code(y') if y' E Y\ {B}, 

three places left if D = L, 
one place left if D = A, 
one place right if D = R, 

and passes to the state q'. 
If, on the other hand, y = Band M' is in the state q with the read/write 

head against B, then M' proceeds as follows. It reads B, moves right (using 
states as memory), and registers that the symbol against the read/write 
head is B. M' then moves left, writes 

B if y' = B, 
the left bit of code(y') if y' E Y\ {B}, 

and uses states to remember q', y', and D. M then 

moves right, 
reads B, 
writes 

B if y' = B, 
the right bit of code(y') if y' E Y\ {B}, 

moves 
three places left if D = L, 
one place left if D = A, 
one place right if D = R, 
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FIGURE 9. The Turing machine M in Exercise (2.4.1). 

and passes to the state q'. Finally, if q' = qN, the halt state of M, we 
require M' to halt on entering q'. 0 

(2.3) Proposition. If rp is a partial Junction from Nn to N that is 
computed by some Turing machine whose input alphabet contains {O, I}, 
then rp is Turing machine computable. 

Proof. To make sense of this proposition we must remember that we 
are identifying each natural number with its unary representation. Given a 
Turing machine A'l, with input alphabet X ::) {O, I} and start state qo, that 
computes rp, we construct a binary Turing machine M' as follows. First, 
we delete from the state diagram of A1 any arrows representing transitions 
of the form 

8(qo, y) = (q', y', D) 

with y E X\ {O, I}. Next, we restrict the input alphabet to {O, I}, and use 
Lemma (2.2) to construct a binary Turing machine M' that computes the 
same partial functions from {O, I} * to {O, I} * as does M. In particular, 
when started in its start state with with the input word koOk1 n .. . Okn on 
the left of the tape, where ki E N for each i, M' completes a computation 
with output rp(k1 , ... , kn ). 0 

(2.4) Exercises 

.1 * Carry out the construction in the proof of Lemma (2.2) to design a 
binary Turing machine T that computes the same partial functions 
as the Turing machine M with input alphabet {n, I}, tape alphabet 
{O, 1, 2, B}, and the state diagram described in Figure 9. (This Tl1ring 
machine adds 1 to the rightmost projection of an input string from 
Nn.) 
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FIGURE 10. The Turing machine Ai in Exercise (2.4.2) . 

. 2 Let 'P be the partial function from N to N computed by the Turing 
machine.Vi with input alphabet {O, 1, 2}, tape alphabet {O, 1, 2, 3, B}, 
and the state diagram described in Figure 10. Carry out the con­
struction in the proof of Proposition (2.3) to design a binary Turing 
machine that computes 'P . 

. 3* Fill in the details of the proof of Proposition (2.3). 

The year 1936 marks the beginning of the modern era of the theory of 
computation, with the introduction of three mathematically precise notions 
attempting to capture the informal idea of a computable partial function 
from Nn to N. These notions are Turing machines, Kleene's partial re­
cursive functions [20, 23], and Church's lambda calculus [2]. It was shown 
subsequently that these three and all other attempts to characterise com­
putable partial functions give rise to the same class of computable partial 
functions from Nn to N--namely, those that are Turing machine com­
putable; see [23], Chapter 1. 

Nevertheless, partial recursive functions and the lambda calculus are of 
interest in their own right. Both are significant in the theory and practice 
of programming languages. In particular, the lambda calculus (which we 
shall not discuss further) underpins the language LISP. On the other hand, 
the concepts and methods of recursive function theory have permeated 
mathematics and logic to such an extent. that all mathematicians should 
be aware of what a recursive function looks like; for this reason we now 
make a short detour to look more closely at those functions. 

"Ve begin with the cla"ss of base functions, which comprises 

• the natural numbers 0,1,2, ... (considered as functions of zero vari­
ables); 

• the zero function 0: N···,·> N, defined by O(n) == 0; 
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• the successor function scsr : N ---> N, defined by scsr(n) == n + 1; 

• the projection functions Pj : Nn ---> N, defined by 

For n ~ 1, the partial function <p : Nn ---> N is obtained from the partial 
functions '¢ : Nn-I ---> Nand () : Nn+I ---> N by primitive recursion if 
for all k, k2 , ... , kn in N, 

and 
<p(k + 1, k2 , ... , kn ) = ()(k, <p(k, k2 , ... , kn ), k2 , ... , kn ). 

(Recall that in such a definition it is understood that the left-hand side is 
defined if and only if the right-hand side is defined.) In particular, the total 
function f : N ---> N is obtained from the constant c E N and the total 
function h : N 2 ---> N by primitive recursion if f(O) = c and f(k + 1) = 
h(k, f(k)) (k EN). 

The set P of primitive recursive functions over N is defined induc­
tively by the following conditions, where m, n ~ 1 : 

• P contains all the base functions. 

• If 9 : Nm ---> Nand hk : Nn ---> N (k = 1, ... , m) belong to P, then 
the composite function go (hI, ... , hm ) : Nn ---> N belongs to P. 

• If the functions 9 : Nn-I ---> Nand h : Nn+I ---> N belong to P, then 
so does the function f : Nn ---> N obtained from 9 and h by primitive 
recursion. 

For example, the functions plus and times on N 2 (introduced earlier in 
this chapter) are primitive recursive: for 

plus(O, k) 

plus(j + 1, k) 

times(O, k) 

times(j + 1, k) 

(2.5) Exercise 

Pf(k), 
scsr 0 pt(j, plus(j, k), k), 

0, 

plus 0 (Pt, pl)(j, times(j, k), k). 

Prove that P is the set of all functions obtained from the base func­
tions by finitely many applications of composition and primitive re­
cursion. 
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The application of recursion or composition to total functions on NT! 
always produces total functions. In order to construct from the elements of 
P an appropriate class of partial functions on NT!, we introduce one more 
method of obtaining new functions from old. 

An element (k1 , ... ,kn ) of NT! is admissible for minimisation relative 
to the partial functionll) : Nn+1 ---> N if 

{m EN: (i, k1 , ... , kn ) E domain('lj;) (0 S; 

is; m) and w(m, k1 ,· .. , kn ) = O} 

is nonempty. The partial function tp : Nn ---> N is obtained from "IjJ by 
minimisation iEthe domain of tp is the set of those (kl, ... ,kn ) E Nn that 
are admissible for minimisation relative to '1/;, and 

for each (k j ,. _', kn ) E domain(tp). In that case we write 

The set R of partial recursive functions over N is defined inductively 
by the following four conditions, where m, n ;::0: 1 : 

III R contains all the base functions . 

• If tp : Nm ---> Nand Wk : N n ---> N (k = 1, ... , m) belong to R, then 
the composite function tp 0 (7£'1, ... , Wm) : Nn --> N belongs to R. 

III If"IjJ : Nn-1_, Nand e : Nn+l ---> N belong to R, then the partial 
function tp : Nn ---> N obtained from '1/; and e by primitive recursion 
belongs to R . 

.. If the partial function I/; : Nn+l -_._, N belongs to R, then so does the 
partial function tp : Nn ---t N obtained from W by minimisation. 

Thus (cf. Exercise (2.5)) R is the set of all partial functions obtained from 
the base functions by finitely many applications of composition, primitive 
recursion, and minimisation. Clearly, PeR. 

(2.6) Exercises 

.1 Prove that the factorial function n f-...,. n! is primitive recursive on 
N . 

. 2 Prove that the function power: N 2 ---> N, defined by 

power(Tn,n) == n m , 
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is primitive recursive. Does 

power'(m,n) == mn 

define a primitive recursive function? What about the function n f-+ 

n m , where mEN is fixed? 

.3 Prove that the cutoff subtraction function, defined by 

cutoff(m, n) m - n if m 2.' n, 
o otherwise, 

is primitive recursive on N 2 . (Hint: First prove that the function m f-+ 

cutoff(m, 1) is primitive recursive on N.) Prove also that (m, n) f-+ 

1m - nl is a primitive recursive function, where I . I denotes absolute 
value . 

. 4 Prove that the partial function sqrt : N -> N, defined by 

sqrt(n) Vii 
undefined 

if n is a perfect square, 
otherwise, 

belongs to n. (Recall that 0 denotes the nonnegative square root.) 

.5* Let cp : N 2 -> Nand 'lj; : N -> N be partial recursive functions, and 
for each n define 

Prove that 

8(n) 

S(n) == {k EN: cp(n, k) ~ 'lj;(n)}. 

min S(n) 
undefined 

if S(n) is nonempty, 
otherwise 

defines a partial recursive function from N to N. We often write 

8(n) = mink[cp(n,k) ~ 'lj;(n)]. 

The following exercises take much of the sting out of the proof that 
every function in n is Turing machine computable. Note that we take each 
natural number, considered as a function of zero variables, to be computable 
by convention. 

(2.7) Exercises 

.1 Prove that each of the base functions is Turing machine computable. 
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.2 Let 'ljJ : N m ----7 Nand 81 , ... , 8m : Nn ----7 N be Turing machine 
computable partial functions. Prove that the composite function r.p == 
'ljJ a (81 , ... ,8m ) is a Turing machine computable partial function from 
Nn to N . 

. 3 Let 'ljJ be a Turing machine computable partial function from N n +1 to 
N. Prove that the partial function obtained from 'ljJ by minimisation 
is Turing machine computable. 

(2.8) Theorem. Every partial recursive function r.p : Nn ----7 N is Tur­
ing machine computable. 

Proof. Given Turing machine computable partial functions 

'ljJ : N n - 1 ----7 N, 8: N n +1 ----7 N, 

define the partial function r.p : Nn ----7 N recursively by 

r.p(i, u) 'ljJ( u) 
8(i - 1, r.p(i - 1, u), u) 

if i = 0, 
if i ~ 1. 

In view of Exercises (2.7), we need only describe a binary Turing machine 
M that computes r.p; for simplicity, we take the case n = 2. Let i, j be 
natural numbers, and consider the behaviour of M when it is started in 
the start state with the input string f i 1 Of j 1 on the left of the tape. M 
begins by reading and rewriting 1 in the leftmost cell, moving one square 
right, and entering a special "checking" state q. If it then reads 0 in the 
second cell on the left (in which case i = 0), it calls a module that writes 
f 'ljJ(j) 1 in the leftmost cells, leaves all the other cells blank, and parks the 
head. If, on the other hand, M, in the state q, reads 1 in the second cell on 
the left (in which case i ~ 1), it moves the input string filOfjl one place 
to the right, writes B in the leftmost cell, and writes OOf (i - 1)10 f j 1 on the 
right of f j 1. Leaving each of the zeroes unchanged in position on the tape, 
M then calls a module that 

leaves the tape unchanged at and to the left of the rightmost 
copy of f jl, 

writes OOlOf'ljJ(j)l on the right of that copy of fjl, 
leaves the read/write head against the cell immediately to the 

right of the leftmost instance of 00, and 
enters a special state q1. 

Now assume that M is in the state q1 with the read/write head against 
the cell immediately to the right of the leftmost instance of 00; that the 
leftmost cells of the tape contain 
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Br i l Or j 1 OOwso r j loor k lor <p(k, j) 1 

where 0 :::; k < i, w E {1}*, s E {B}*, and the number of cells occupied 
by ws is i; and that the rest of the tape is blank. M then calls a Turing 
machine module T that first examines the left symbol of ws. If that bit 
is I-so that lsi < i-then T changes the rightmost bit of w to B; thus 
ws = w' s', where 

w' E {1}*, s' E {B}*, 

Iw'l = Iwl- 1, Is'l = lsi + 1, and Iw's'l = Iwsl = i. 
T then writes Orjl on the right of the string r<p(k,j)l on the right of the 
tape, and places the read/write head against the cell to the right of the 
rightmost instance of 00. Next, T calls a module that, leaving the tape 
unchanged to the left of the string rklOr<p(k,j)lOrjl, 

replaces that string with r (k + 1) lOr (}(k, <p(k, j), j) 1, 
leaves the read/write head against the cell immediately to the 

right of the leftmost instance of 00, and 
enters the special state q1. 

This completes the action of the module T and leaves M ready for a further 
call of that same module. 

On the other hand, if, on its initial examination of the left symbol of ws, 
T discovers that that symbol is B, then w = A and lsi = i; in that case, T 
(and therefore M) moves right, replacing each B that it reads by 0, until 
it reaches the rightmost instance of o. It then 

copies the string <p( i, j) from the right to the far left of the tape, 
leaving all other tape cells blank, and 

halts with the read/write head parked on the left (cf. Exercise (1.3.3)). 

(M recognises the leftmost cell on the tape by the blank it deposited there 
early in its execution.) In that case, M has completed a computation with 
output <p(i,j). 0 

You should note that as long as Exercises (2.7) have been carried out 
correctly, Theorem (2.8) provides an effective method of obtaining a binary 
Turing machine that computes a given partial recursive function from N n 

to N. 
Designing binary Turing machines to carry out even simple computa­

tional tasks such as the addition of two integers can be an intricate busi­
ness; indeed, in its need for careful attention to fine details, Turing machine 
design is reminiscent of machine language programming. Fortunately, in 
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theoretical studies of computability it is customary to believe the over­
whelming mass of evidence that supports the Church-Markov-Turing 
thesis3 : 

A partial function 'P : Nn -+ N is computable (in any accepted 
informal sense) if and only if it is computable by some binary 
Turing machine--that is, if and only if'P = 'Pk for some k. 

By accepting this thesis, as we shall do from now on, we are able to dispense 
with a formal proof of Turing machine computability, provided that the 
partial function under consideration is clearly computable in some informal 
sense. 

For example, if (p : N -+ N is a Turing machine computable partial 
function, then in order to prove that the composite partial function 'P 0 'P is 
Turing machine computable, we first note the following informal algorithm 
for computing 'P 0 'P( k) : choose a binary Turing machine J\-1 that computes 
'P. and run .M on the input r k 1; if A1 completes a computation, run M 
again, this time with the input r 'P(k) 1. We then invoke the Church-Markov­
Turing thesis. 

We shall use such informal arguments, with an (often unstated) appeal to 
the Church-Markov-Turing thesis, throughout the remainder of this book. 
Nevertheless, there will be situations where a given partial function is not 
obviously computable in any informal sense; in such circumst.ances we shall 
confirm the function's computability by describing a Turing machine that 
computes it. 

lt is important to realise that the Church-Markov-Turing thesis is not 
susceptible of proof: it is an unsubstantiable claim that all notions, formal 
and informal, of a computable partial function from Nn to N are equivalent 
to the formal notion of a Turing maehine computable partial function. Our 
willingness to accept the Chureh-Markov-Turing thesis is based on 

• the fact, mentioned above, that all attempts to formalise the intuitive 
notion of a computable partial function from N" to N have led to 
the same class of functions, and 

• the absenee of any convincing example of a computable partial func­
tion that is not Turing machine computable. 4 

Theorem (2.8) proves part of the identification of the partial recursive 
functions with the Turing machine computable functions; for the remainder 
of that proof, and proofs of other such identifications, see Chapter 1 of [23]. 

:lThis is commonly known as Church '5 thesis; but our name for it reflects more 
accurately its origins. 

4 [19] contains an argument against the Church-Markov-Turing thesis; this is 
discussed briefly on page 142 of [25]. 
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We shall not pursue those proofs here, since we are primarily interested 
in the consequences of the Church-Markov-Turing thesis, rather than the 
detailed justification of the thesis itself. 

We end this chapter with an observation about the cla.<;ses P and R. 
Although the extension from P to R was made in order to accommodate 
partial functions within Kleene's theory of computation, there are total 
partial recursive functions over N that are not primitive recursive. A stan­
dard example of such a function is Ackermann's function A : N 2 ----+ N, 
defined by the equations 

A(O, n) 

A(m+1,0) 

A(m.+1,n+1) 

n+ 1, 

A(m,1), 

A(m, A(m + 1, n)). 

It is intuitively clear that A is computable, and hence, by the Church­
Markov-Turing thesis, that it is partial recursive. Thus the function A' 
N ----+ N given by 

A'(n) == A(n, n) 

is a total partial recursive function on N. But, as is shown by an involved 
argument that can be found on pages 11-21 of [9], to each primitive recursive 
function f : N ----+ N there correspond m and k such that A(m, n) > fen) 
whenever n 2:: k. It follows from this that A', and therefore A, cannot be 
primitive recursive; see Exercise (2.9.2). 

(2.9) Exercises 

.1 Prove that Ackermann's function is a total function on N 2 . 

. 2* Prove each of the following statements about Ackermann's function. 

(i) A(m, n) > n. 

(ii) A(m, n + 1) > A(m, n). 

(iii) A(m + 1, n) > A(m, n). 

(iv) If n 2:: 2, then A(m, A(m, n)) > 2A(m, n). 

(v) A(m -+ 1, n) = A(m, A(m, ... , A(m, 1) ... )), where A appears 
n + 1 times on the right-hand side. 

Use (iii) and the observation in the paragraph preceding these exer­
cises to show that to each primitive recursive function f : N ----+ N 
there corresponds a natural number n such that A' (n) > f (n) . 

. 3 Prove that 

A( 4, n) = 22 - 3, 

where there are n + 3 instances of the symbol 2 on the right-hand 
side. (Hint: First find expressions for A(l, n), A(2, n), and A(3, n).) 
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Effective Enumerations 

Is every subset of N the domain of some computable partial function? If 
not, can we characterise those subsets of N that are domains of computable 
partial functions'? 

\Ve begin this chapter by introducing the fundamental notions of effective 
enumeration and Tec'u,Tsively enumerable set and applying them to answer 
the latter question affirmatively (the discussion of the former being deferred 
until Chapter 4). We then define recursive sets and describe an algorithm 
that enables us to identify Turing machines of a certain type as the elements 
of a recursive set of natural numbers. Taken with the Church-Markov­
Turing thesis, this provides us with an effective enumeration of the set 
of all computable partial functions from Nn to N. Using the language of 
sonata form, we might say that this enumeration is the transition from 
the exposition in Chapters 1 and 2 to the development of the subject of 
computability; that development begins with the s-m-n theorem towards 
the end of this chapter. 

Let X be a set, and S a subset of X. We say that S is countable if 
either S = 0 or there exists a total function f from N onto S; in the latter 
case the function f is called an enumeration of S. Such an enumeration 
it is often described by, and identified with, the list 

f(O), f(l), ... 

of its values. 
Now suppose that we have defined the notion of a computable partial 

function from N into X. By an effective enumeration of S we mean 
a total computable function f from N onto S, which is then said to be 
effectively enumerable (by .f). Of particular importance is the case X = 

N, when we also say that f is a recursive enumeration of S and that S 
is recursively enumerable (by .f). 

Following mf]vention, we also call the empty subset of X effectively enu­
merable or, in the case X = N, nxuTsively enum.erable. 

(3.1) Exercise 

Prove that the union and the intersection of two recursively enumer­
able subsets of N are recursively enumerable. 
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(3.2) Proposition. If S is a recursively enumerable subset ofN, then 
the partial function r.p : N ~ N defined by 

is computable. 

r.p(n) 1 ifnES, 
undefined if n ~ S 

Proof. If S is empty, then r.p is the empty partial function on N, which 
is computable by Exercise (2.1.1); so we may suppose that Sis nonempty. 
Then there exists a total computable function f from N onto S. The basic 
idea underlying the construction of a Turing machine M that computes 
r.p is simple: we compare the input n with f(O), f(I), f(2), ... in turn, and 
output 1 if we come across kEN such that n = f(k). More precisely, 
let M have input alphabet {O, I} and tape alphabet {O, 1, B}.With initial 
configuration (A, qo, n), where qo is its start state and n is (the unary form 
of) a nonnegative integer, M first writes B as a left-end marker in the 
leftmost cell. Without affecting the remaining units of n, M then writes 
the string OBOn in the cells on the right of the tape, and enters a special 
state q, with the read/write head scanning the rightmost instance of O. 

Now let k be either B or (the unary form of) a natural number. Suppose 
that the leftmost cells of the tape contain the string Bn'OkOn and that all 
other cells are blank, where n' is the string formed by deleting the leftmost 
unit of n. Suppose also that M is in the state q, with the read/write 
head scanning the rightmost instance of O. M then calls a Turing machine 
module M' that, without changing the content of the cells at and to the 
left of n, 

copies Ok to the right of n, 
calculates f(k) and writes Of(k) in the cells to the right of n, and 
checks whether the unary strings nand f (k) are equal. 

If n = f(k), M then writes blank symbols in every tape cell except the 
leftmost one, where it writes 1; finally, it passes to its halt state and parks 
the read/write head. If n =I- f(k), then, without changing the content of 
the cells at and to the left of the leftmost 0, M 

deletes the string on the right of k, 
calculates k + 1, 
writes (the unary form of) k + 1, followed by On, 

on the right of the leftmost 0, 
moves left until it reads the rightmost 0, 
rewrites 0, and 
passes to the state q. 

The construction of M completes the proof that r.p is a computable partial 
function on N. 0 
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Let C == (u, q, v) be a configuration of a Turing machine M, qo the 
start state of M, and w a string over the input alphabet of M. We say 
that M reaches the configuration C in k steps on the input w if 
(A, qo, w) I-k C. If also q is the halt state of M, we say that M halts in 
k steps on the input w. If, for some k ::; n, M halts in k steps on the 
input w, we say that M halts in at most n steps on the input w. 

These notions prepare us for the proof of a very important characteriza­
tion of recursively enumerable sets. 

(3.3) Theorem. A subset S ofN is recursively enumerable if and only 
if it is the domain of a computable partial function on N. 

Proof. In view of Proposition (3.2), we need only consider the suffi­
ciency of the stated condition. Accordingly, consider a subset S of N that is 
the domain of a computable partial function rp : N -+ N. We may assume 
that S is nonempty. Fixing an element a of S, let M be a Turing machine 
that computes rp, and define a total computable function h from N2 onto 
S as follows: 

h(i, j) i if M completes a computation in at 
most j steps on the input i, 

= a otherwise. 

If we now follow the arrows through the diagram 

h(O,O) ----> h(O,l) h(0,2) ----> h(0,3) 
,/ / ,/ 

h(l,O) h(l,l) h(1,2) 
1 / ,/ 

h(2,0) h(2,1) 
,/ 

h(3,0) 
1 

we obtain an effective enumeration 

h(0,0),h(0,1),h(1,0),h(2,0),h(1, 1),h(0,2), ... 

of S; whence S is recursively enumerable. 0 

(3.4) Exercises 

.1 Why is the function h defined in the above proof computable? 



38 3. Effective Enumerations 

.2 Prove that a subset of N is recursively enumerable if and only if it is 
the range of a computable partial function from N to N. 

We call a subset 5 of N recursive if its characteristic function XS : 
5 ----> N, defined by 

xs(n) 1 if n E 5, 
o ifn tJ. 5, 

is a total computable function on N. Thus 5 is recursive if and only if there 
is an algorithm for deciding whether any given element of N belongs to S. 
For example, N is recursive, since each element of N belongs to N; and the 
empty subset 0 of N is recursive, since each element of N is not in 0. 

(3.5) Exercises 

.1 Prove that if 5 is an infinite recursive subset of N, then there exists a 
strictly increasing (and therefore one-one) total computable function 
f from N onto 5. Prove also that 

'P(n) f-l(n) 
undefined 

if n E 5, 
if n tJ. 5 

defines a computable partial function 'P : N ----> N . 

. 2 Prove that a recursive subset of N is recursively enumerable . 

. 3 Prove that a subset 5 of N is recursively enumerable if and only if 
there exists a computable partial function 'P : N ----> 5 whose domain 
is a recursive subset of N and whose range is 5. 

Proposition (3.2) and Theorem (3.3) enable us to shed more light on 
the distinction between recursive and recursively enumerable sets: for they 
show that a subset 5 of N is recursively enumerable if and only if the 
partial function 'P : N ----> N defined by 

'P(n) 1 ifn E 5, 
undefined if n tJ. 5 

is computable. On the other hand, 5 is recursive if and only if we can 
replace undefined by 0 in the definition of 'P and still obtain a computable 
(now total) function on N. There remains, however, the possibility that this 
distinction is illusory and that every recursively enumerable set is recursive. 
We shall see in the next chapter that this is not the case; meanwhile, we 
turn our attention to the encoding of Turing machines as natural numbers. 

A binary Turing machine is said to be normalised if there exists a 
natural number N such that the Turing machine has states 0,1,2, ... , N, 
with initial state 0 and halt state N. Note that, in contrast to our usual 
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practice of identifying natural numbers with their unary representations, 
we describe a state of a normalised binary Thring machine by its minimal 
decimal representation-that is, the decimal representation with the fewest 
digits. We denote by N the set of all normalised binary Thring machines. 

We now describe an algorithmic encoding procedure which will enable 
us to identify N with a recursive subset of N. To begin with, we set up 
an encoding of the decimal digits and the symbols B, .1 ("undefined"), L 
(left move), R (right move), A (no move), and / (auxiliary separator), as 
follows: 

a code(a) 

° 10000 
1 10001 
2 10010 
3 1O0ll 
4 10100 
5 10101 
6 10110 
7 10111 
8 11000 
9 1l00l 
B 1l01O 
.1 1l01l 
L Ill00 
R IllOl LL 1l1l0 
/ lllll 

If mk ... mlmO is the minimal decimal form of a natural number m, we 
define 

code(m) == code(mk)'" code(md . code(mo). 

For each triple t == (q,y,D) with q E N, y E {O, 1,B}, and D E {L,R,A}, 
we define 

code(t) == code(q)· code(/) . code(y) . code(/) . code(D). 

Now consider any normalised binary Turing machine 

where, for some natural number N, Q = {O, 1, 2, ... ,N}, qo = 0, and qp = N. 
M is completely specified by the integer N and the values 8(i,j) (0::; i::; 
N - 1) of the transition function 

8: {O, 1, ... ,N} x {O, 1, B} -> {O, 1, ... , N} x {O, 1, B} x {L, R, A}. (3.1) 
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To encode At, first form the string 

N /8(0,0)/8(0,1)/8(0, B)/8(1, 0)/8(1,1)/8(1, B)/ ... /8(N - 1, B) (3.2) 

and then encode it by concatenating the codings of its various parts. This 
defines a mapping "I from the set of normalised binary Turing machines 
into N, where 

code(N) . code(/) . code(8(0, 0)) . code(/) 
·code(8(0, 1)) . code(/)··· code(8(N - 1, B)). 

For a given nonnegative integer v we can decide whether or not v belongs to 
range("(); in other words. range("() is a recursi ve set. To make this decision, 
we first note that 0 is not in the range of ), since all our encodings have 
leftmost bit equal to 1; so we may assume that v 2 1. Identifying v with 
its minimal binary representation (the one with the fewest bits), we check 
whether the number of bits of v is a multiple of 5; if it is not, then 1) cannot 
belong to range("(). If the number of bits of /) is a multiple of 5, we split 
v into 5-bit blocks and attempt to decode each of these blocks using the 
inverse of the map code(·) defined above. If the attempt succeeds, and if the 
resulting string has the form (3.2) for some nonnegative integer N, then 
lJ = 'Y(M) for the normalised binary Turing machine M == (Q, 8, 0, N), 
where Q == {OJ 1, ... ,N} and the transition function (3.1) is given by the 
values 8(i,j) (O:s: i :s: N - 1) read from (3.2); otherwise, v ~ range("(). 

From now on. we identify N with range("() whenever it is convenient to 
do so. Accordingly, we say that a partial function !.(J : N -7 N (respectively 
~! : /'If ----t N) is computable if the partial function "I O!.(J : N -7 N 
(respectively '1' 0 "1- 1 : N .-, N) is computable. In line with the definition 
on page 35. a total computable function f : N -+ N is also called an 
effective enumeration of the subset range(f) of N. 

(3.6) Theorem. There exists a one-one effective enumeration of N 
with computable inver'se. 

Proof. By Exercise (3.5.1), there is a strictly increasing total com­
putable function f from N onto the (clearly infinite) recursive set range("(). 
The composite function "1- 1 0 f is a one-one effective enumeration of N. 
Moreover, 

!.(J(n) f- 1 (n) 
undefined 

if n E rangeCr), 
if n ~ range("() 

defines a computable partial function !.(J : N --> N, so the inverse !.(J 0 "I of 
"1- 1 0 f is a total computable function from N onto N. 0 

In the remaindeT of this book, n f----+ Mn will denote a fixed one-one total 
computable function fmm N onto N with computable inverse; thus 
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M o,Mt,M2,'" 

is an effective enumeration of N. The inverse of this mapping corresponds to 
an algorithm which, applied to any given normalised binary Turing machine 
M, produces a unique natural number v, called the index of M, such that 
M=MI/' 

By renaming the states, we can turn any given binary Turing machine 
into a normalised one. Denoting by ~in) the partial function from Nn to 
N computed by M i , and invoking the Church-Markov-Turing thesis, we 
therefore see that 

(n) (n) (n) 
~o '~l '~2 , ... (3.3) 

is an enumeration, which we call the canonical enumeration, of the set 
of all computable partial functions from N n to N. For convenience, we 
usually denote ~il) by ~i. 

The natural number v is known as an index of ~~n). Note that to each 
Turing machine computable partial function ~ : Nn -4 N there correspond 
infinitely many distinct indices i such that ~ = ~in). For, given a normalised 
binary Turing machine M that computes ~, we can construct, as follows, 
distinct normalised binary Turing machines To == M, 1i, T2, ... , each of 
which computes ~ : if the halt state of'T;. is m, rename m as m + 1, adapt 
the state transition function of 'T;. accordingly, and adjoin to 'T;. a new state 
m that cannot be entered from any other state; the resulting normalised 
binary Turing machine is 'T;.+l' 

The canonical enumeration (3.3) is effective in the informal sense that 
for each n 2:: 1 there is an algorithm which, applied to an input pair (i, u) E 

N x Nn, computes ~in)(u) : simply run Mi on the input UIOU20 ... Oun , 
where U == (ut, U2, ... , un). Thus the enumeration (3.3) should be the prime 
example of any satisfactory formal notion of an effective enumeration of a 
set of computable partial functions. 

Let i I--> ()i be an enumeration of a set S of computable partial functions 
from Nn into N; we say that this is an effective enumeration of S if 
there exists a total computable function f : N -4 N such that ()i = ~j(~) for 
each i. Taking f(i) == i, we see immediately that the canonical enumeration 
is, indeed, effective in this formal sense. 

(3.7) Exercises 

.1 Construct the encoding of the normalised binary Turing machine de­
scribed in Figure II. 

.2 In each case describe the Turing machine, if there is one, of which 
the given binary number is the encoding according to the scheme 
preceding Theorem (3.6). 
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FIGURE 11. The Turing machine in Exercise (3.7.1). 

(a) 10011 11111 10001 11111 10001 11111 11101 11111 
11011 11111 10001 

(b) 10011 11111 10001 11111 1101011111 1110111111 
1001011111 10001 11111 11101 11111 11011 11111 
10011 11111 HOlO 11111 11100 lllll 11011 11111 
11011 lll11 10010 11111 10000 lll11 11101 Hll1 
1O0ll ll111 11010 11111 ll1O0 1111111011 

(c) 1O0ll l11ll 10001 111ll 10000 lllll 11101 11111 
11011 11111 1000011111 10001 11111 lll00 

.3 Let S be a recursively enumerable subset of N, and i E N. Prove 
that the partial function ip : N --+ N defined by 

ip(n) 

is computable. 

ipi(n) 
undetlned 

if n E S, 
otherwise 

An interesting application of the Church-Markov-Turing thesis yields 
the existence, for each positive integer n, of a universal Turing machine 
for n-ary computable partial functions: that is, a Turing machine Un 

which, given an input iOk1 Ok2 0 .. . Okn with i, kl' ... , kn EN, computes the 
output ip~n) (k1 , ... , kn ). The existence of Un follows from the computability 
of the partial function <I> : N n + 1 --+ N detlned by 

Of course, using the Church-Markov-Turing thesis to establish the existence 
of Un is a great deal simpler than writing down the state transition table 
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or the state diagram of Un. Details of the construction of U1 can be found 
in Section (6.5) of [34] or the Appendix to [27]. 

We frequently identify the universal Turing machine Un with the partial 
function 

that it computes. 
Given a computable partial function 0 : N -+ N, for future reference we 

define 
'P~(1) == Un(O(i),') (i EN). 

This definition accords with our intuition that the partial function 'P~(1) 
should be everywhere undefined if i rt. domain( 0). 

Another consequence of the Church-Markov-Turing thesis is that there 
exists a total function 8 : N2 -+ N such that for all i, j in N, 

(2) ( .) 'Pi ',) = 'Ps(i,j)· 

Indeed, we can take 8( i, j) to be the smallest index of the computable partial 
function 'P~2)(.,j) : N -+ N. However, this choice does not provide a com­
putable function 8.1 The following theorem, a cornerstone of computability 
theory, shows that we can arrange for 8 to be a computable function from 
N 2 to N. Note that, in this theorem and elsewhere, Nn x Nm is identified 
with Nm+n via the mapping 

(3.8) The s-m-n theorem.2 For each pair (m, n) of positive integers 
there exists a total computable function s : N x Nm -+ N such that 

(n) (m+n)() 
'Ps(i,v) = 'Pi " V 

In other words, for all i E N and v E Nm, 

domain('P~(l,v)) = {u E N n : (u, v) E domain('P~m+n))} 

and 
(n) () _ (m+n) ( ) 

'P s(i,v) U - 'Pi u,v 

whenever either side of this equation is defined. 

lyou are asked to prove this in Exercise (5.7.3). 
2The unimaginative name of this theorem, which is also known as the 

parametrisation theorem, originates with Kleene's notation s~ for the func­
tion s. 
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Proof. \Ve sketch the proof for the case Tn = n = 1. Given i,j E N, 
we first construct a binary Turing machine module that, on the input r k i . 
where kEN, completes a computation with 'k10ijl as the output: we 
can easily arrange that this module T(j) is defined uniquely by j and has 
no states in common with Mi. \\Te now append Mi to the end of T(j), 
replacing the halt state of T(j) by the start state of Mi' The index B(i,j) 
of the resulting Turing machine can be computed uniquely from i and j. 
For all kEN we dearly have 

(k) = cp~2) (k, j), 

where the expressions on the left and right of this equation are defined if 
and only if (k,j) E domain(cp)2)). D 

(3.9) Corollary. If <I> : N 2 ---+ N is a computable partial function, then 
ther-e exists a total computable function f : N --+ N such that 'Pf(i) = <I>(i,·) 
for' eachi E N. 

Proof. By the s--m--n theorem with Tn = n = 1, there exists a total 

computable function 8 : N 2 --> N such that 'Ps(k.;,) = (-, i) for all k and 
i. Let v be an index of the computable partial function (j, i) f-----+ <1>( i, j) on 
N 2 , and set f(i) == s(v,i) for each i. Then 

(2) ('J I ('. . '~f(' =,0 ( ') ="~' ',1 =() l·J y~) r8,v,~ 'Yv .' ~ ;" [J 

As we shall see in the remaining chapters, the s-m-n theorem is one of 
the most useful and important tools of computability theory. The first of 
the next set of exercises gives some idea of how it is applied. 

(3.10) Exercises 

.1 Prove that there exists a total computable function F : N 2 --> N 
such that 'P F(i,j) 0 'Pi 0 'Pj for all i, j eN. (This result tells us not 
only that the composite of two computable partial functions from N 
to N is computable but also how to compute the index of a Turing 
machine that computes that composite.) 

.2* Prove that for each positive integer n there exists a one-one total 
computable function c from Nn onto N with the following property: 
if!j;~n) == (Pi 0 c for each i, then 

,.)' (n) ",)(n) ",)(n) 
.j 0 ,<, 1 • </2 

is an effective enumeration of of the set of all Turing machine com­
putable partial functions from NT> to N. 
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An enumeration ~)o, ~)l"" of the set of all computable partial functions 
from N to N is called an acceptable programming system if it has the 
following properties3 : 

• s-m-n property: for each computable partial function <1> : N 2 -+ N 
there exists a total computable function f : N -+ N such that 'l/Jf(i) = 
<1>( i, .) for each i. 

• universal property: the partial function (i, j) -+ 

computable. 
(j) on N 2 is 

Theorem (3.8) and the work on page 42 together show that the canonical 
enumeration 'Po, 'P], 'P2, ... is an acceptable programming system. 

Exercises (3.11) 

.1 Prove that if'I/Jo, 'l/J1 , . .. and 'l/Jb, 'I/J't, . .. are acceptable programming 
systems, then there exists a total computable function f : N -+ N 
such that = 'l/Jj(n) for each n. (According to Rogers' isomor­
phism theorem, which we shall not prove here, we can further ar­
range for the function f to be one-one; see (3.4.7) of [23].) 

.2 Prove that an enumeration ~)o, 'l/Jl, ... of the set of all computable 
partial functions from N to N is an acceptable programming system 
if and only if there exist total computable functions f : N -+ Nand 
9 : N -+ N such that 'l/Jn = 'P fen) and 'Pn = 1/;g(n) for each n. 

Acceptable programming systems can be used as the basis for a more 
abstract development of computability theory than ours; sec, for example, 
[23]. We shall only refer to acceptable programming systems once more, in 
Chapter 5, where they are used to show that a certain consequence of the 
recursion theorem cannot be improved upon. 

3This is one of several equivalent definitions of an acceptable programming 
system; see pages 94-97 of [23]. 
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Computable Numbers and 
Functions 

We begin this chapter by studying in some detail a proof of the fundamental 
result of computability theory: the undecidability of the halting problem. 
This will lead us into a discussion of computable real numbers, d-ary ex­
pansions, and the elements of computable analysis. You are encouraged to 
limber up by trying the following exercises. 

(4.1) Exercises 

.1 Design a TUring machine M with input alphabet {O} and the follow­
ing property: starting on the left of its tape, M scans the tape for 
the first instance of 0; if there is one, M deletes it and halts with the 
read/write head on the left; otherwise, M does not halt . 

. 2 Prove that there is no TUring machine M with tape alphabet {O, B} 
and the following property: when M is in its start state, with the 
read/write head scanning the leftmost cell, it moves along the tape 
looking for all instances of 0; if there is a finite positive number of 
zeroes on the tape, M deletes them all and halts with the read/write 
head on the left; otherwise, M does not halt. 

Computability theory (which, for reasons that will become apparent, 
might better be called noncomputability theory) deals with such questions 
as the following: 

The Halting Problem: Is there an algorithm for deciding whether or 
not a given Turing machine halts on a given input word? 

The Equivalence Problem: Is there an algorithm for deciding whether 
or not two given Turing machines compute the same partial function 
from N to N? 

The Decidability Problem: Is every recursively enumerable subset of 
N recursive? 

Each of these is an example of a decision problem. In such a problem, we 
consider a property P(x) applicable to elements x of a given set S, and we 
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liLA 

BIB,L 

FIGURE 12. The Turing machine module for the proof of Theorem (4.2). 

seek an algorithm that will decide, for any given x in S, whether or not P(x) 
holds; equivalently, we seek a total computable function f : S -+ {O, l} such 
that f(:1:) = 1 if and only if P(x) holds. If there is such an algorithm, we 
say that the problem, or the property P(x), is decidable; otherwise, it is 
undecidable. When S = N, the property P(x) is decidable if and only if 
{x EN: P(x)} is a recursive set. 

What makes the above questions interesting is the fact that, under the 
Church-Markov-Turing thesis, the answer in each case is no. The basic fact 
about noncomputability is the undecidability of the halting problem, with 
which we begin. 

(4.2) Theorem. The total function f : N -+ {O, I} defined by 

is not computable. 

f(n) 1 if n E domain(ipn), 
o otherwise 

Proof. Assume that f is computable. Then by the Church-Markov­
Turing thesis, f is computable by some normalised binary Turing machine 
T. Now replace the halt state N of T by the Turing machine module 
described in Figure 12. Let ip : N -+ N be the partial function computed 
by the resulting normalised binary Turing machine M. It is easy to see that 
ip(n) is defined if and only if If(n)1 = 1: that is, if and only if f(n) = O. 
N ow let II be the index of M, so that ip = ipv' Then 

v E domain(ip) {=> f(v) = 0 

{=> ip( v) is undefined. 

This contradiction completes the proof. 0 

It follows from Theorem (4.2) that the halting problem is undecidable. 
It is convenient to give here the standard notation for two sets of prime 

importance in computability theory: 

K == {n EN: n E domain(ipn)} 
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and its complement 

k == {n EN: n tJ. domain(<pn)}. 

Theorem (4.2) immediately leads to the following important result. 

(4.3) Corollary. K is not a recursive set. 0 

This corollary enables us to answer, negatively, the question: Can every 
computable partial function from N to N be extended to a total computable 
function? 

(4.4) Proposition. There is a computable partial function, with do­
main K, that cannot be extended to a total computable function. 

Proof. Define a computable partial function <p, with domain K, as 
follows: 

<pen) k if Mn halts in k steps on the input n, 
undefined otherwise. 

Suppose there is a total computable function f : N --+ N such that fen) = 
<pc n) for each n in K, and consider any n EN. By our choice of f, if <Pn (n) 
is defined, then it is computed by Mn in fen) steps. By running Mn on 
the input n and observing whether it halts and has computed <pn(n) in 
exactly fen) steps, we can therefore decide whether or not n belongs to K. 
Hence K is recursive. This contradicts Corollary (4.3). 0 

(4.5) Exercises 

.1 Prove that K is recursively enumerable. (Hint: Use step counting.) 

.2 Prove that k is not recursively enumerable. (Hint: Assume that k 
is recursively enumerable and use Theorem (3.3).) 

.3 Prove that a subset S of N is recursive if and only if both Sand N\S 
are recursively enumerable. Use this result to give another proof that 
K is not recursive. 

To clarify the proof of Theorem (4.2), let us look more closely at the be­
haviour of its putative Turing machine M. Consider the following diagram, 
in which the unparenthesised arrow in position (i,j) (at the intersection of 
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row i and column j) represents the behaviour of the Turing machine Mi 
on the (unary form of) the input j; a downward directed arrow says that 
Aii halts, and an upward directed arrow says that Mi fails to halt, when 
given the input j. 

a 1 2 11 

At/ o 1 (1) 1 1 T 
)\lh 1 1 (T) T 1 
M2 1 1 (1) T 

Mn 1 T T(1) 

The parenthesised arrows indicate the behaviour of M; (1) indicates that 
M halts, and (1) that. A1 fails to halt; thus (1) at position (2,2) indicates 
that .Ai fails to halt on the input 2. This example from the diagram il­
lustrates a general feature of the construction of our Turing machine M: 
when given the input 11, Mn and M have precisely the opposite halting 
behaviour; if Ain halts, then A1 fails to halt, and if lvln fails to halt, then 
.;\;1 halts. It follows that M differs from each of the Turing machines in the 
list ,\,10 I JV/ 1, J\;12, ... As this list contains all the normalised binary 'lur­
ing machines, we conclude that M) and hence the required algorithm for 
deciding the halting problem, cannot possibly exist. 

An argument of the type just described, in which the entries along the 
top-left-to-bottom-right diagonal of a two-by-two array are manipulated to 
secure a contradiction from certain hypotheses, is called a diagonal argu­
ment. Diagonal arguments were first used, towards the end of last century. 
by the German mathematician Georg Cantor to answer the question: Can 
we list all the real numbers? The negative answer to this question is an 
immediate consequence of Cantor's Theorem: 

(4.6) Theorem. If (an):=l is a seq1wnce of rml numbers, then in any 
nondegenerate interval of R there exists a real number x such that x of an 
for each n. 

Proof. Let 10 be a nondegenerate interval of R; we may assume that 
In is closed. \Ve construct a sequence 10 , h, h" .. of closed intervals such 
that for each n :::- 1. 
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(i) In is either the left third or the right third of In-I; 

(ii) ak rf- In for k = 1, ... ,n. 

Assuming that we have constructed 10, It, ... , In - 1 with the relevant prop­
erties, let Jo be the left third, J1 the middle third, and h the right third, 
of In-I. Either an rf- Jo, in which case we set In == Jo; or else an rf- hand 
we set In == J2 . This completes the inductive construction of In. 

For each k choose a rational number Xk within Ihl/6 of the midpoint of 
h. It follows from (i) that 

1 1 1 5 5 -k 
IXk+l - xkl :s: 3"lhl + 61hl + 61h+11 = 9 Ihl = 93 1101. 

So for m > n, 

m-l 
< L IXk+l - xkl 

k=n 
m-l 

< L ~3-k 1101 
k=n 

00 

< ~ 1101 L 3- k 

k=n 

158 110 13-n +1 

----> 0 as n ----> 00. 

Hence (Xn)~=1 is a Cauchy sequence and therefore converges to a limit 
x E R. Moreover, for each n, since Xm E In whenever m 2: n, and since In 
is closed, we see that x E In; whence, by (ii), x =1= an. 0 

The construction of Xn in the above proof need not have been so com­
plicated: it would have sufficed, and would have made the rest of the proof 
simpler, if we had taken Xn as the midpoint of In. We could also have fol­
lowed Cantor's original approach, which uses decimal expansions. However, 
by constructing Xn as a rational number we have made it possible to use the 
above proof mutatis mutandis to establish a related result about sequences 
of computable real numbers; see Exercise (4.11.2). Why we chose not to 
use decimal expansions will be made clear later in this chapter. 

A diagram may help to clarify the argument used in our proof of Cantor's 
Theorem: 
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1 2 3 n 

al R(L) 

a2 L(R) 

In this illustration, if the unparenthesised symbol in position (n, n) is R, 
then an is not in the left third of In-I; if it is L, then an is not in the right 
third of In-I' Since we are only interested in the diagonal entries of this 
array, these are the only ones we have given. The parenthesised symbol in 
position (n,n) is L if Xn is in the left third of In-I, and R if Xn is in the 
right third of In-I. Again we see the fingerprint of a diagonal argument: 
the construction of Xn in the proof of Theorem (4.6) is such that Xn is in 
a third of the interval I n - 1 that does not contain an. 

( 4. 7) Exercises 

.1 Construct a mapping of the set of subsets of N onto the closed interval 
[0,1]. (Hint: Consider binary expansions.) Hence show that the set of 
all subsets of N is uncountable . 

. 2 Use the Church-Markov-TUring thesis to prove that the set of all 
recursively enumerable subsets of N is countable. Use this fact and 
Exercise (4.7.1) to give another proof that there exist subsets of N 
that are not recursively enumerable. (cf. Exercise (4.5.2)). 

What connection, other than the methodological one, exists between the 
halting problem and Cantor's Theorem that the real numbers cannot be 
listed? To answer this question, we discuss computable partial functions 
with values in Q, and define the notion of a computable real number. 

By following the arrows through the diagram at the end of this para­
graph (overleaf), we obtain an algorithmic enumeration of Q. Moreover, 
we can remove repetitions from this list to obtain an algorithmic one-one 
enumeration q of Q. By a computable partial function from N n to 
Q we mean a partial function 'ljJ : Nn ----> Q such that the partial function 
q-l o'ljJ : N n ----> N is computable. Hence, by the Church-Markov-TUring 
thesis, 

(n) (n) (n) 
q 0 tpo , q 0 tpl ,q 0 tp2 , ... 
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is an algorithmic enumeration of the set of computable partial functions 
from NT! to Q. 

0 ---> 
-1 1 ---> -2 

I 1 I 1 
,/ / ,/ 

0 -1 1 
'2 ""2 '2 
1 / 
0 1 
"3 3" 

,/ 
0 
4: 
1 

By abuse of language and notation, when the context makes it convenient 
to do so, we shall identify 'P~n) with q 0 'P~n) (and 'Pi with q 0 'P") and refer 

to 'P~n) as a computable partial function from NT! to Q. 
In elementary analysis courses we learn that every real number is the 

limit of a sequence of rational numbers; in other words, to each real number 
x there corresponds a total function s : N ---> Q such that Ix - s(n)1 ---> 

o as n ---> 00. We say that x is a computable real number if there 
is a total computable function 8 : N ---> Q, called a computable real 
number generator, such that Ix - s(n)1 :s: 2-n for each n; otherwise, :1: 

is a noncomputable real number. 
We denote by Rc the set of computable real numbers. 

(4.8) Exercises 

.1 * Prove that (i) rational numbers, (ii) square roots of positive integers, 
and (iii) 1f are computable. (Hint for (iii): use a series expansion from 
calculus.) 

.2 Prove that if x is a computable real number, then so is eX . 

. 3 Prove that the sum, difference, and product of two computable real 
numbers are computable . 

.4 Prove that if x '" 0 is a computable real number, then l/x is com­
putable . 

. 5* Prove that jf 'Pi: N ---> {a, I} js total, then 

00 

2::( -l)nT"'Pi(n) 
n=O 

is a computable real number. 
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.6 Let 'P, '!p be computable partial functions from N to Q. Describe an 
algorithm which, applied to any n E domain( 'P) n domain( 'lj!), decides 
whether 'P(n) =l/J(n) or 1'lj!(n) . 

. 7 Let 8 be a computable real number generator converging to an irra­
tional computable real number :r, and let f be a total computable 
function from N to Q. Prove that 

(i) for each n there exists k such that Is(k) - f(n)[ > 2- k : 

(ii) if 8(k) - f(n) > 2- k , then:r > fen); 

(iii) if s(k) - f(n) < 2-"', then x < f(n). 

Describe an algorithm which, for each 11, decides whether x > f(n) 
or x < f(n). 

The foregoing set of exercises shows that there is a plentiful supply of 
computable real numbers. What about noncomputable numbers? 

(4.9) Theorem. There crist noncompu.table real numbcT8; in fact, 
each nondcgenerate inteTval of R contains noncomp'utable Teal number-so 

Proof. Let S be the set of those i E N such that 'Pi is total and such 
that Ix - q 0 'Pi(n)1 S 2-n for some computable real number :r and for all 
n. Clearly, there is an enumeration io, iI, i2 , ... of S. Then 

is an enumeration of the set of all computable real numbers. The required 
conclusion follows immediately from Cantor's Theorem 0 

In principle, the procedure used in the proof of Cantor's Theorem would 
enable us to construct an explicit example of a noncomputable real number. 
In practice, such a number is more easily constructed using the undecid .. 
ability of the halting problem. First we need a lemma. 

(4.10) Lemma. There exists a total computable function 8 : N-, N 
stich that if f : N -+ {O, 2} is a total function, and 'Pi is a computable Teal 
ntl'mber genemtoT' converging to I::~o f(n)3- n , then f = 'Ps(i) (so that. in 
particu.laT, f is comp1ltable). 

Proof. To begin with, consider a total function f N -+ {O,2} such 
that 

:r = L f(n)3- n 

n=(J 
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is computable. If 'Pi is a computable real number generator converging to 
:1;, then for each n, 

If f(N) = 0, then 

N····l N-I 

L f(n)3- n ::;:r::; L f(n)3- n + 3- N , 

n=O n=O 

so 
N-I 

'Pi(2N + 2) < L f(n)3-" + 3-N +l /2. 
n=O 

Similarly, if f(N) = 2, then 

N-I 

'Pi(2N + 2) > L f(n)3- n + 3-N + l /2. 
n=O 

These observations motivate the details of the rest of the proof. 
The core of the proof is the definition of a computable partial function 

\[! : N 2 --> {0,2} such that for each i, if 'Pi is a computable real number 
generator converging to a computable real number with a ternary expansion 
L~=o dn 3-n where each dn belongs to {O,2}, then \[!(i, n) = dn . To this 
end, given i E N, define \[!(i, 0) == O. Having computed \[!(i, 0), ... , \[!(i, N-
1), we define \[!(i, N) by 

\[!(i,N) ° 
2 

if 'Pi(2N + 2) < L~':Ol \[!(i, n)3-n + 3-N + I /2, 

if 'Pi(2N + 2) > L~':Ol \[!(i, n)3-n + 3- N + I /2, 

undefined otherwise. 

\[! is computable in view of Exercise (4.8.6). By the s-m-TL theorem, there 
exists a total computable function t : N --> N such that 'Pt(i) = \[!(i,·) for 
each i. With :r:, f, and 'Pi as in the observations at the beginning of the 
proof, we see that 'Pt(i) is total and that 'Pt('i)(n) = f(n) for each n. Hence 

00 

x = L 'Pt(i)(n)3-n . 

n=O 

This completes the proof. D 

"We are now in a position to show that the real number 

00 

x == L XK(n)3- n , 

71,=0 
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which is well defined since the series on the right converges by comparison 
with L~=o 3-n , is noncomputable. Indeed, if x were computable, then, 
by Lemma (4.10) applied to 2x, the total function 2Xl( : N -+ {0,2}, 
and therefore Xl(, would be computable, which would contradict Corollary 
( 4.3). 

In order to understand this number :r a little better, consider how we 
might try to calculate its ternary expansion. To produce the nth ternary 
digit of x, we give the Turing machine lvtn the input n and see what 
happens. If we are lucky, Mn will halt on the input n fairly quickly, and 
we will be able to write down 1 as the nth ternary digit of x; if, however, 
we are unlucky, Mn may carryon executing longer than the life of the 
universe, and we will have no way of knowing whether it carries on for ever 
or halts some time after we are no longer interested in the affair. 

It is important to realise that the noncomputability of x is not a matter 
of inadequate computing power, precision, or memory: :r is noncomputable 
in principle as well as in practice. 

(4.11) Exercises 

.1 Give a diagonal argument to prove Cantor's Theorem using decimal 
expansions. (Reduce to the case where each term of the given sequence 
of real numbers is between 0 and 1. It will help if you then prove the 
following lemma: If a == ao . al a2 ... and b == bo . b1 b2 ... are decimal 
expansions of real numbers such that an and bn differ by at least 2 
modulo 10 for some n, then a =I b.) 

.2 Let f be a total computable function from N to Q such that !.p fin) 
is a computable real number generator for each n. Prove that there 
exists v such that !.pv is a computable real number generator and such 
that 

for all n . 

. 3 Give at least two proofs that an increasing binary sequence is com­
putable. 

We say that a partial function 8 : N --+ Rc is computable if there exists 
a computable partial function 0: N -+ N such that if i E domain(8), then 
i E dornain(O) and !.p1J(i) is a computable real number generator converging 
to 8(i). (Note that O(i) may be defined even if !.p1J(i) is not a computable 
real number generator.) Similar definitions apply to notions such as that 
of a computable partial function from Q to Rc and that of a computable 
partial function from Rc into N; the formulation of these definitions is left 
to Exercise (4.14.1). 
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We now see from Exercise (4.11.2) that if (an) is a computable sequence 
of computable real numbers, then there is a computable real number a 
such that a =I- an for all n. Thus although, as we observed in the proof 
of'Theorem (4.9), the set of computable real numbers can be enumerated, 
there is no effective enumeration of that set. 

We say that a partial function 8 : Rc -+ Rc is computable if there 
exists a computable partial function () : N -+ N such that if 'Pi : N -+ Q 
is a computable real number generator that converges to a limit x in the 
domain of 8, then i E domain(O) and 'Pe(i) is a computable real number 
generator that converges to 8(x). Related notions of computable partial 
function, such as one from Rc x Rc to R c, are defined analogously in the 
obvious way. 

Naturally, we hope that our definitions of computable real number and 
computable partial function from Rc x Rc to Rc will enable us to prove 
that the elementary arithmetic operations on computable real numbers are 
performed by computable partial functions. Our approach to computable 
real numbers, through computable rational approximating sequences rather 
than computable decimal expansions, was chosen to ensure that this is, 
indeed, the case. 

(4.12) Proposition. The total functions plus, minus, and times, 
defined on Rc x Rc by 

are computable. 

plus(x, y) 

minus(x, y) 

times(x, y) 

Proof. Exercise (4.14.2). 0 

A little more difficult to prove is 

x+y, 

x -y, 

xy, 

(4.13) Proposition. The partial function div: Rc xRc -----, Rc:, defined 
by 

div(x, y) == x/y whenever y =I- 0, 

is computable. 

Proof. In view of the computability of the function times (Proposition 
(4.12)) and of the composition of computable partial functions from Rc to 
Rc (Exercise (4.14.4)), it will suffice to prove that there exists a total 
computable function f : N -+ N such that if 'Pm is a computable real 
number generator converging to a nonzero computable real number, then 
'Pf(m) is a computable real number generator and 
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limn~oo 'Pf(m)(n) = 1/ limn~oo'Pm(n). 

To this end, for each mEN define 

'Ij!(m) = IIlink [k?: 2 and l'Pm(k)1 > T k + 2 ]. 

By Exercises (2.6.5) and (2.7.3), 7j! is a computable partial function from 
N to N. Next, define a computable partial function \If : N 2 -+ N by 

\If(m,n) 1/'Pm(21p(m) + n - 2) if 'Pm (21jJ(m) + n - 2) is 
defined and nonzero, 

= undefined otherwise. 

Applying Corollary (3.9) to \If, we can find a total comput.able function 
f : N -+ N such that (fJf(m) = IJJ(m,·) for each m. Consider any mEN such 
that 'Pm is a computable real number generator converging to a nonzero 
limit x. Since x is nonzero, w(m) is defined; also. for all k ?: 7jJ(m) we have 

l'Pm(k)1 > l'Pm(ljJ(m))I -Ix - 'Pm(7jJ(m))i -Ix - 'Pm(k)1 
> 2-1P(m)+2 _ 2-';'(m) _____ 2-k 

> 2---1jJ(m)+2 ____ 2-';,(m) _ 2-w(m) 

2- II'(m)+1: 

whence Ixl-- l :S. 2 lii (mJ-l. Since 1p(mJ ?: 2, for each n E N we have 

27jJ(m) + n - 2 ?:I/J(m) 

and therefore 

'Pm (21/{m) + n - 2) > 2-w(rnJ-I-l: 

whence 'Pf(m)(n) is defined and 

Il/x - 'P.f(m)(n) I 
Ixll l'Prn(2'lj)(m.) + n - 2)1- 1 Ix - 'Pm (21p(m) + n - 2)1 

< 2<;J(m) ---l24"(m)-12- 21jJ (rn)-n+2 

This shows that 'P.f(m) , each of whose values is certainly rational, is a 
computable real number generator converging to l/x. 
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(4.14) Exercises 

.1 Formulate the definition of a computable partial function (i) from Re 
to N, (ii) from Q to ReI and (iii) from N x Re to Re . 

. 2 Prove Proposition (4.12) . 

. 3 Explain why, in the proof of Proposition (4.13), the partial function 
\.II : N 2 ---; N is computable . 

. 4 Prove that if 8 : Re ---; ReI \.II : N ---; ReI and \.II' : Re ---; Re are 
computable partial functions, then so are the composite functions 
8 0 \.II and 8 0 \.II' . 

. 5 Prove that if 8 : Re x Re ---; N is a computable partial function, 
then for each a E Re the partial function x t----* 8(x, a) from Re to N 
is computable . 

. 6 Let 8 : N ---; Re be a partial function, and define a corresponding 
partial function 8* : Re ---; Re by 

8*(x) 8(x) if x E N, 
= undefined if x tj N. 

Prove that 8* is computable if and only if 8 is computable. This 
example reconciles two apparently different notions of a computable 
partial function from N into Re that arise from the definitions on 
pages 56-57. 

If you have completed Exercise (4.11.1), you may be wondering why 
we chose not to define computable real numbers in terms of decimal or 
other expansions. The following definition and results prepare us for the 
explanation of that choice. 

Given an integer d ~ 2, we say that a real number x has a computable 
d-ary expansion ifthere exist j E {O, I} and a total computable function 
f : N ---; N such that f(n) E {O, 1, ... , d - I} for all n ~ 1 and such that 
x = (-I)j 2:::=0 f (n )d-n . It is a simple exercise to prove that if a real 
number x has a computable d-ary expansion, then x is a computable real 
number. In fact, we can prove more. 

(4.15) Proposition. If d ~ 2 is an integer, then there exists a total 
computable function g : N 2 ---; N with the following property: if 

00 

(-1)r:~= 'Pm(k)d- k 

k=O 

is the d-ary expansion of a real number x I then 



60 4, Computable Numbers and F'unctions 

fur each n (where 'Pg(j,m) is considered as a function from N to Q). In 
particular, 'Pg(j,m) is a computable real number- genemtor conver:qing to x. 

Proof. Define a total computable function F : N3 ---> N by 

n+1 

F(j, m, n) = (-IF L 'Pm(k)d k . 

k=O 

By the s-m-n theorem, there exists a total computable function g : N 2 ---> N 
such that 'Pg(j,m) = .F(j, m,') for all j, Tn E N. If (-1)1 L~o 'Pm(k)d- k is 
the d-ary expansion of a real number x, then for each n we have 

Ix - 'Pg(j,m)(n) I < 
k=n+2 

k=n+2 

The final statement of the theorem follows because d- n :s; 2-". [] 

As we shall show subsequently, the following is the best we can hope for 
by way of a general converse of Proposition (4.15). 

(4.16) Proposition. If d:::-: 2 is an integer-, then each computable rml 
number- x has a computable d-ary expansion. 

Proof. It is a routine exercise in elementary school arithmetic to show 
that if x is rational, then it has a computable d-ary expansion: indeed, 
choosing j E {O, I}, a natural number m, and a positive integer 11 such 
that x = (-l)jm/n, and working relative to the base d, we carry out the 
long division of m by 11 and then multiply by (-I)j. So we may assume 
that x is a computable irrational number. By Exercise (4.8.7), we can then 
decide, for each integer 11, whether x: < n or x > n; so we may assume that 
0< x < 1. Now suppose that we have found natural numbers 110 == 0, ... , nk 
such that 0 :s: nj :s: d ---- 1 (1 :s: j :s: k), and such that 

k k-1 

L TI'1 d- j < x < L njd- j + (nk + l)d- k . 
j=O j=O 

Again applying Exercise (4.8.7), we can find a unique t E {O, ... ,d - l} such 
that 

k k 

L njd- j + td- k - 1 < x < L njd- j + (t + l)d- k --I. 

]=0 j=O 
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we then take nk+l equal to this value t. Setting f(k) == nk for each k, we 
have described the inductive construction of a total, dearly computable, 
function f : N ~ N such that f(k) E {O, ... ,d -1} for each k ~ 1 and such 
thatx=L.~of(k)d-k. 0 

(4.17) Exercises 

.1 Given an integer d ~ 2, prove that there exist total computable func­
tions r : N ~ N, s : N ~ {O, 1} such that for each i, 'Pr(i) is a total 
computable function from N to {O, ... , d - 1} and 

00 

q(i) == (_1)S(i) L'Pr(i)(n)d-n , 

n=O 

where q is the one-one total computable function from N onto Q 
introduced on page 52 . 

. 2 Given an integer d ~ 2, prove that there exists a total computable 
function s : N ~ N such that if 'Pi is a computable real number 
generator converging to a positive irrational number x ERe, then 
'Ps(i) is a total computable function from N to {O, ... , d - 1} and 

00 

x = L 'Ps(i) (n)d- n . 

n=O 

(Hint: Model your proof on that of Proposition (4.16), with reference 
to Exercise (4.8.7).) 

Although each computable real number x has a computable d-ary expan­
sion, in the proof of Proposition (4.16) the algorithm for computing that 
expansion depends on whether x is rational or irrational. This is unavoid­
able. For if there were a single algorithm, applicable to each computable 
real number x, that computed a d-ary expansion of x, then there would be 
a total computable function f : Re ~ N such that for each x ERe, f(x) 
was the integer part of a binary expansion of x; as we now aim to show, no 
such computable function f exists. It is for this reason that we described 
Proposition (4.16) as the best possible converse of its predecessor. 

(4.18) Lemma. There exists a total computable function F : N 2 ~ 
{O, 1} such that 

(i) for each m there is at most one n such that F(m, n) = 1; 
(ii) if t is a total computable function from N to {O, 1 }, then there 

exist m and k in N such that F(m, 2k + t(m») = 1. 
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Proof. Set 

F(m,n) 1 if Mm halts in k st.eps on the input rn, and 
either n = 2k and c,:.~rn(m) = 0, or n = 2k + 1 
and 'Prnlm) > 0, 

o otherwise. 

Clearly, F : N 2 -+ {O, I} is total and computable, and satisfies (i). Given 
a total computable function t : N -+ {O, I}, choose m such that t = 'Pm, 
and then k such that Mm halts in k steps on the input rn. If t(ln) 1, 
then (Pm (m) = 1 and therefore F(m, 2k + 1) = 1; whereas if t(m.) = O. then 
'Pm(m) ·····0 and therefore F(m, 21,·) = O. Thus F satisfies (ii). 0 

A moment's reflection should convince you of the improbability of finding 
an algorithm which, applied to a computable binary sequence with at most 
one term equal to 1, shows either that all the even-indexed terms of the 
sequence are 0 or that all the odd-indexed terms are O. The next proposition 
confirms that cOllviction. 

(4.1 g) Proposition. Ther'e is no computable partial function 0 : N ---> 

{O, I} such that if 'Pi : N -> {O, I} is total and 'Pi (n) = 1 for at most one 
n. I;hen 

Ii) i E domaill(O), 
(ii) eli) = 0 =} 'Pi(n) = 0 for all even n, and 
(iii) O(i) = 1 =} 'Pdn) = 0 for all odd n. 

Proof. Let F be as in Lemma (4.18), and. using Corollary (3.9), con­
struct a total computable function s : N ---> N such that 'P8{i) = F(i,·) for 
each i. Suppose there exists a computable partial function 0 : N .... ·, N with 
the properties described in the statement of this proposition. Then eo 8 is 
a total computable function from N into {O, I}; whence, by Lemma. 18), 
there existm, k such that F(rn, 2k + O(s(rn))) = 1. If O(s(m)) = 0, then 
F'(m,2k) = 1; also, by the assumed property of 0, F(m, nl .... , I.P8(m)(n) = 0 
for all even n a contradiction. Similarly_ if e(s(m)) = 1, then F(m, 2k + 
1) = 1, and F ( rn . n)= fl for all odd nagain a contradiction. 0 

(4.20) Lemma. There is no computable partial function 0 N-> 
{O, 1} such that if 'Pi : N ---> {O, I} is total. then 

(i) i E clornain(e) , and 
ex.) 

(ii) e(i) is the integer part ofl -+ I: (-1)n2- n4)i(n). 
n=(] 
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Proof. Suppose such a computable partial function B exists. Consider 
any i such that 'Pi is a total computable function from N to {O, I}, and 
such that 'Pi (n) = 1 for at most one n. If 'Pi (k) = 1 for an even k, then 

00 

1 + 2:( -l)nTn'Pi(n) = 1 + Tk > 1 
n=O 

and so B(i) = 1. Thus if B(i) = 0, then 'Pi(k) = ° for all even k. Similarly, 
if B(i) = 1, then 'Pi(k) = ° for all odd k. These conclusions contradict 
Proposition (4.19). 0 

(4.21) Proposition. There is no total computable function F : Re x 
Re ---- Q such that for all x, y in R e, F(x, y) is the integer part of a binary 
expansion of x + y. 

Proof. Suppose such a function F exists. Then, in view of Exercises 
(4.14.1) and (4.14.5), there exists a computable partial function '!/J : N ---- N 
such that if 'Pk is a real number generator converging to the computable real 
number x, then k E domain('!/J) and '!/J(k) = F(x, 1). Define a computable 
partial function G : N 2 ---- N by 

j 

G(i,j) = 2:( _l)nTn max{O, min{l, 'Pi(n)}}. 
n=O 

By Corollary (3.9), there exists a total computable function s : N ---- N such 
that 'Ps(i) = G(i,·) for each i. Let B == '!/Jos, and consider any i such that 'Pi 
is a total computable function from N into {O, I}. A simple computation 
shows that 'Ps(i) is a computable real number generator converging to the 
computable real number L:=o( _1)n2-n'Pi(n); so i E domain(B) and 

This contradicts Lemma (4.20). 0 

It follows from Proposition (4.21) that there is no total computable func­
tion f : Re ---- N such that for each x ERe, f(x) is the integer part of 
a binary expansion of x. This completes the justification of our claim, on 
page 61, that the algorithm for computing the binary expansion of x E Re 
depends on x. 
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(4.22) Proposition. There is no computable partial function a : N 2 ....... 

N such that if 'Pi, 'Pj are total computable functions from N to {O, 1}, then 
(i,j) E domain(a) and 

00 00 

n=O n=O 

Proof. The idea underlying this proof is quite simple. Given a binary 
sequence (an) with ao = 0 and with at most one term equal to 1, set 
Xo = Yo = 0, and for n ?:: 1 define 

Setting 

xn 1 if ak = 0 for each odd k :::; n, 
o otherwise, 

Yn 0 if ak = 0 for each even k :::; n, 
1 otherwise. 

00 

x == 2:= x n 2-n , 

n=O 

00 

we see that x + Y > 1 if an = 1 for an even value of n, and x + Y < 1 if 
an = 1 for an odd value of n. So by looking at the integer part of x + y we 
can tell whether an = 1 for an even value of n or an = 1 for an odd value 
of n. 

To make this idea more precise, define computable partial functions 
8, III : N 2 ....... N as follows: 

8(i,0) = ll1(i, 0) = 0, 

and for each n ?:: 1, 

8(i, n) 1 if 'Pi (k) is defined for all k :::; n, and 
'Pi(k) = 0 for all odd k :::; n, 

0 if 'Pi (k) is defined for all k :::; n, and 
'Pi(k) = 1 for some odd k :::; n, 

undefined otherwise. 

ll1(i,n) 0 if 'Pi (k) is defined for all k :::; n, and 
'Pi(k) = 0 for all even k :::; n, 

1 if 'Pi (k) is defined for all k :::; n, and 
'Pi(k) = 1 for some even k :::; n, 

undefined otherwise. 
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Note that if 'Pi is a total function from N into {O, I}, then 8(i, n) and 
W(i, n) are defined for all n. By the s-m-n theorem, there exist total com­
putable functions s, t : N -t N such that 'Ps(i) = 8(i,·) and 'Pt(i) = W(i,·) 
for each i. Now suppose there exists a computable partial function (J : 

N 2 -t N with the stated properties. Define a computable partial function 
(J: N -t {O, I} by 

(J(i) == 'Pao(s,tHi) (0). 

Consider any index i such that 'Pi : N --.. {O, I} is total and such that 
'Pi(n) = 1 for at most one value of n. Let 

00 

x == L 'Ps(i) (n)TTI, 
71=0 

co 

Y == L 'Pt(i) (n)Tn. 
71=0 

Then (J( i) is defined, and 

co 

X + Y = L 'Po-o(s,t)(i) (n )2-n. 
71=0 

If 'Pi(2j) = 1, then x = I:~=o2-n, y = I:~=2j 2-71 , X + y > I, and so 

e(i) = 1; whereas if 'Pi(2j + 1) = 1, then x = I:;;~o 2-71 , Y = 0, x + y < 1, 
and so (J(i) = O. Thus if (J(i) = 0, then 'Pi(n) = 0 for all even n; and if 
(J(-i) = 1, then 'Pi(n) = 0 for all odd n. This contradicts Proposition (4.19). 

D 

It should now be clear why we chose not to define computable real num­
bers in terms of binary (or d-ary) expansions: had we done so, we would 
have had the unsatisfactory situation in which the addition of x and y could 
not be performed by a computable partial function of the indices of total 
computable functions giving the binary digits of x and y. 

(4.23) Exercises 

In the following exercises remember our identification of 'Pi with q 0 'Pi, 
where q : N -t Q is the effective enumeration of Q introduced on page 52 . 

. 1 Prove that there is no computable partial function e : N -t N such 
that if 'Pi : N -t {O, I} is total, then i E domain(e), 

8(i) = 0 =* 'P;(n) = 0 for all n, and 
()( i) = 1 =* there exists n such that 'Pi (n) = 1. 
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.2 Prove that there is no computable partial function () : N -> {O, 1 } 
such that if ~?i is a computable real number generator, then i E 
domain( fJ), 

fJ(i) = 0 =} 

8( i) = 1 =} 

limn->CXJ 'Pi(n) < 0, and 
limn + CXJ 'Pi (n) ?: O . 

. 3 Prove that there is no total computable function f Rc -> {O, I} 
such that 

f(x)=O =} 

f(x)=l =} 

x = 0, and 
x # O. 

(Hint: Consider binary expansions of the form I:~=o 2-n 'Pi(n), where 
'Pi is a total computable function from N into {O, I}.) Thus there is 
no algorithm which, applied to any computable real number x I will 
decide whether x = 0 or x # O. Is there an algorithm which, applied 
to any 'rational number x, will decide whether x = 0 or x # O? 

.,1 Prove that there is no algorithm for deciding whether or not a given 
real number is rational; more precisely, prove that there is no total 
computable function f : Re -+ {O, I} such that 

f(x) =0 =} 

f(x)=l =} 

x is rational, and 
x is irrational. 

(Hint: Consider real numbers of the form I:~=o 'P;(n)/n!, where 'Pi : 
N -+ {O, I} is total and increasing. 1 ) 

So far, we have discussed only the most basic properties of the com­
putable real number line Rei which stands at the entrance to the remark­
able world of computable, or recursive, analysis. We end this chapter by 
taking a few steps into the interior of that world. 

In recursive mathematics we work with effective analogues of the stan­
dard notions and properties found in traditional mathematics. For example, 
when we are dealing with the convergence of sequences,we work with an 
effective notion of convergence in which the rate of convergence to the limit 
is expressed by a computable function; to be precise, we say that a sequence 
(xn) of real numbers converges effectively to a real number x if there 
exists a total computable function h : N -+ N such that - xl :::: 2-N 

whenever n ?: h(N). 
fbr the following exercises we define a computable sequence of com­

putable partial functions from Rc to Rc to be a sequence (fn)~=o of 

l\Ve say that a partial function :p : Rc -.~ Rc is increasing if :p(.r) ::; :p(:c') 
whenever x, x' E dornain(:p) and x < x'. Some authors would describe such a 
function :p as nondecl'easing. 
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such functions with the property that the partial function (n, x) f---+ f n (x) 
from N x Rc to Rc is computable. Thus (fn)':'=o is a computable sequence 
if and only if there exists a computable partial function e : N 2 ---. N such 
that if 'Pi is a computable real number generator converging to a point x 
of domain(fn), then (n, i) E domain(O) and 'P&(n,i) is a computable real 
number generator converging to fn(x). 

(4.24) Exercises 

.1 Prove that the limit of an effectively convergent computable sequence 
of computable real numbers is a computable real number . 

. 2 Prove Specker's Theorem: There exists a strictly increasing com­
putable sequence (an) of rational numbers in [0,1] that does not con­
verge effectively. (Hint: Let f : N ---. K be an effective enumeration 
of K, and define an == 2:::=02-!(m)-1.) 

.3 Let (fn) be a computable sequence of total computable functions 
from Re to R e, and for each n let Sn == 2::~=0 fk. Prove that (sn) is a 
computable sequence of total computable functions from Re to Re . 

. 4 Let F, Fo, Fl , ... be total functions from R to R. Suppose that there 
exists a total computable function h : N ---. N such that 

whenever x E Rand n ;::: h(N); in which case we say that the se­
quence (Fn) converges effectively and uniformly to F. Let f, fn 
be respectively the restrictions of F,Fn to Re. Prove that if (fn)~o 
is a computable sequence of total computable functions from Re to 
R e, then f is a total computable function from Re to Re . 

. 5 Let Fo, Fl , ... be total functions from R to R, and for each n let fn be 
the restriction of Fn to Re. Suppose that each fn maps Re to R e, and 
that (fn)::::'=o is a computable sequence of total computable functions 
from Re to Re. Prove that for each computable sequence (Xk)~O of 
computable real numbers there exists a computable double sequence 
(rn,k)~k=O of rational numbers such that Ifn(Xk) - rn,kl ::; 2-k for 
all nand k. 

We shall return to effective convergence at the end of this chapter. In the 
meantime, we examine the recursive content of the Heine-Borel Theo­
rem: every open cover of [0,1] contains a finite subcover. 

By an effective sequence of open intervals in R we mean a total 
computable function f : N ---. Re x Re; informally, we identify the ordered 
pair 

(pf 0 f(n), pi 0 f(n)) 
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of computable real numbers with the open interval 

{:r; E R : pf 0 f (n) < x < pJ 0 f (n)} 

in R. 

(4.25) Theorem. For each E > 0 there e;rists an effective sequence 
(In)~~o of bounded open intervals in R with rational end points, such that 

(i) Rc C U~=o In, and (ii) L~=o IInl < E for each N. 

Proof. In this proof we consider 'Po, 'PI, ... to be an effective enumer­
ation of the set of computable partial functions from N to Q. Choose a 
positive integer k such that 2- k+3 < E. For each pair (m, n) of positive 
integers set 

if ./\,1m completes a computation in n+ 1 steps on the input m+k; otherwise, 
set .1m •n == 0. Note that for each m there is at most one n such that .1m ,n 

is nonempty. It is a simple exercise to prove that 

= 
Rc C U .1m ,n. 

-rn.n=O 

By following the arrows through the diagram below and deleting all occur­
rences of 0, we obtain an effective sequence 10, h, ... of open intervals in 
R with rational end points such that (i) holds . 

.10 .0 ---? .10 ,1 .10 ,2 -+ .10.3 
/7' 

.11.0 J1,1 .h,2 
1 / / 

h.o h,l 
/ 

h.o 
1 

On the other hand, for each positive integer N we have 

IV ::::0 (Xl 

'II I < 'IJ I < , 2~rn~k+2 = 2~k+3 < E, 
~ n - L..t m,n - L..-t ' 
n=O tn,n=O m=O 

which proves (ii). 0 
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At first sight, there is nothing surprising about Theorem (4.25). For, as 
we have already remarked, Re is countable and so can be covered by a se­
quence of open intervals with rational endpoints and with arbitrarily small 
total length. However, Re is not effectively enumerable, so there remains 
the possibility that we cannot find an effective sequence of open intervals 
that covers Re and has arbitrarily small total length. Theorem (4.25) shows 
that this possibility is not realised. 

The following corollary clearly demonstrates the failure of the Heine­
Borel theorem in a recursive context. 

(4.26) Corollary. In the notation of Theorem (4.25), if ° < E < 1, 
then the set 

N 

CN == {x E Re n [0,1] : x r¢: U In} 
n=O 

is nonempty for each N. 

Proof. It is a simple exercise to express the union of the finitely many 
intervals Io, ... ,IN as the union of at most N pairwise disjoint open intervals 
Jo, ... ,Jv , each with rational, and therefore computable, end points. Since 

v N 

L IJnl ::::; L IInl < E < 1, 
n=O n=O 

there exists a point x E [0, 1J such that x r¢: U~=O I n . If x is 0,1, or an end 
point of some interval J k, then it belongs to C N. Otherwise, there exists 
r > ° such that the open interval (x - r, x + r) is contained in both [0,1 J and 
the complement of U~=O I n , in which case any rational point of (x-r, x+r) 
belongs to C N . 0 

Since Ren[O, 1J is countable, it has Lebesgue measure 0. Does this destroy 
all prospect of a recursive development of measure theory for subsets of Rc? 
It does not: there is such a development in which the recursive measure of 
Re n [0, 1J is 1, as we would certainly want it to be; see Chapter 3 of [8]. 

We now investigate the relationship between computability and continu­
ity for functions from Re to Re. We say that a partial function f : R -+ R 
is effectively continuous if for each x E domain (f) there exists a total 
computable function h : N -+ N such that if y E domain(f), n E N, and 
Ix - yl ::::; 2-h (n), then If(x) - f(y)1 ::::; 2-n . On the other hand, we say 
that f is effectively uniformly continuous if the function h can be cho­
sen independent of x; that is, if there exists a total computable function 
h : N -+ N such that if x, y E domain (f) , n E N, and Ix - yl ::::; 2-h (n), 

then If(x) - f(y)1 ::::; 2-n . 
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We state, without proof, the fundamental result relating continuity and 
computability for functions on Re-the Kreisel-Lacombe-Schoenfield­
Ceitin Theorem: 

(4.27) Theorem. Every total computable function f Re ----t Re is 
effectively continuous. 

Proof. For a proof see [8], [11], or [22]. D 

Here is an interesting partial converse of this theorem. 

(4.28) Proposition. Let f : R ----t R be a total function that maps Re 
into Rc and is effectively uniformly continuous on R. Then the restriction 
of f to Re is computable. 

Proof. For each n E N let Sn : R ----t R be the total function that takes 
the value 1 throughout [-n, n], vanishes outside [-n -1, n+ 1], and is linear 
in each of the intervals [-n - 1, n], tn, n + 1]. It is straightforward to show 
that each Sn maps Re into R e, that (Sn)~=l (and therefore (J sn)~=o) is 
a computable sequence of total computable functions from Re to R e, and 
that there exists a total computable function h : N 2 ----t N such that if x, y E 
R, if n, kEN, and if Ix - yl :::; 2-h(n,k), then l(fsn)(x) - (fsn)(Y)1 :::; 2-k; 
the details are left to Exercise (4.29.3). By the Weierstrass Approximation 
Theorem, there exists a double sequence (Pn,k)::;:k=l of polynomial functions 
with rational coefficients such that 

sup{l(fsn)(x) - Pn,k(x)1 : -n - 2:::; x:::; n + 2} :::; T k- 1 

for all nand k. Moreover, a close inspection of Bernstein's proof of that 
theorem shows that the polynomials Pn,k can be chosen so that the total 
function (n, q, k) f---+ Pn,dq) is computable on N x Q x N; see Exercise 
(4.29.5). Now define a computable partial function 111 : N3 ----t Q by 

1l1(n, i, k) Pn,k 0 i.fJi 0 h(n, k + 1) if h(n, k + 1) E domain(i.fJi) and 
li.fJi 0 h(n, k + 1)1 :::; n + 2, 

o 

undefined 

if h(n, k + 1) E domain(i.fJi) and 
li.fJioh(n,k+1)1 >n+2, 
otherwise. 

Construct a total computable function g : N 2 ----t N such that i.fJg(n,i) 
1l1(n, i,') for all n, i. We prove that if i.fJi is a computable real number 
generator converging to x ERe, then i.fJg(n,i) is a computable real number 
generator converging to (fsn)(x). To this end, consider any n, kEN, and 
first note that 

Ix - i.fJi 0 h(n, k + 1)1 :::; Th(n,k+l) :::; 1; 
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so if l<pi 0 h(n, k + 1)1> n + 2, then Ixi > n + 1 and 

We may therefore assume that l<pi 0 h(n, k + 1)1 ::; n + 2; whence 

l<Pg(n,i)(k) - (fsn)(X) I 
IPn,k 0 <Pi 0 h(n, k + 1) - (fsn)(x)! 

< IPn,k 0 <Pi 0 h(n, k + 1) - (f Sn)(<Pi 0 h(n, k + 1))1 

+ I (fsn)(<Pi 0 h(n, k + 1)) - (fsn)(X) I 
< 2-- k - 1 + 2·- k - 1 

2--- k . 

Thus <Pg(n,i) is a computable real number generator converging to (fsn)(x). 
Now define computable partial functions a, B : N ---7 N as follows: 

a(i) minn[l<pi(O)I<n-1J, 

B(i) g(a(i), i). 

Consider a computable real number generator <Pi converging to x ERe. 
Since 

Ixi ::; l<pi(O)1 + 1 < a(i), 

we see that 

for each k; whence <POei) is a computable real number generat.or converging 
to f(x). 0 

An elementary theorem of classical analysis states that a continuous 
function from a compact interval to R att.ains its infimum; from which it 
follows immediat.ely that a continuous, everywhere positive function on a 
compact interval has positive infimum. In sharp contrast, there is a total 
computable function f : Rc ---7 Re that is positive and effectively uniformly 
continuous on R e, and whose infimum on Re n [-1,1] is O. 

To prove this, construct, as in Theorem (4.25), an effective sequence 
(In)~=o of bounded open intervals in R with rational end points, such that 
Re C U~=oIn and L:':=o IInl < 1/2 for each N. For each n let tn : R ---7 R 
vanish outside In) equal 1 at the mid-point of In) and be linear in each 
half of In. Then (tn ) is a sequence of effectively uniformly continuous total 
functions from R to [0,1] such that for each n, tn maps Rc into Re. It is 
left to you to show, in Exercise (4.29.6) below, that the sum t of the series 
L~~o 2-n tn is an effectively uniformly continuous total function on R, and 
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that the restriction of t is a total computable function f from Rc to Re. 
For each x E Rc n [-1,1] there exists n such that x E In; whence 

On the other hand, by Corollary (4.26), for each N E N there exists a 
computable real number XN that belongs to [-1,1]\ U;;=o In and therefore 
satisfies 

x ex.! 

f(:rN)= L rntn(XN):S: L r"=rN. 
n=N+l n=N+l 

Thus inf f = O. 

(4.29) Exercises 

.1 * Let f : R -, R be an effectively continuous partial function that 
maps Qn domain(f) into Q. Prove that f maps Ren domainCf) into 
Re . 

. 2 Let (fn) be a sequence of total functions from R to R such that 
for each n, fn maps Q into Q, and let gn be the restriction of 
fn to Re· Suppose that there exists a total computable function 
h : N 2 -t N such that for all nand k, if Ix - yl :s: 2-h(n,k), then 
Ifn(x) -- fn(Y) :s: 2-k . Prove that (gn) is a computable sequence of 
computable functions from Re into Re . 

. 3 Dnder the hypotheses of Proposition (4.28), and using the notation 
of the proof of that result, prove that each Bn maps Re into Rc; 
that (B n );;o=1 is a computable sequence of total computable functions 
from Re to Rc; and that there exists a total computable function 
h : N 2 -t N such that if x, y E R, ifn, kEN, and if Ix-YI :s: 2-h(n,k), 

then 1(f8,,)(;];)---- (fsn)(y)1 :s: 2- k . 

.4 Let (fn)':::=1 be a sequence of total functions from R to R such that 
each fn maps Rc into Rc and such that (fn) is a computable sequence 
of total computable functions from Rc to Re. Suppose also that there 
exists a total computable function h : N 2 -t N such that if x, Y E R, 
n,k E N, and Ix - yl :s: 2-h (n,kl, then Ifn(x) - fn(y)1 :s: 2- k . Prove 
that there exists a total computable function b : N 2 -t N such that 

lin(x)1 :s: b(m, n) (m, n E N, _2m - 1 :s: x :s: 2m - I ). 

(Hint: Consider the values of in on a certain finite subset of the 
interval [_2m-I, 2m- 1 j.) 

.5* The following version of the Weierstrass Approximation Theo­
rem is proved on pages 18-20 of [31]: Let f be a continuous mapping 
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of [0, 1] into R; let 6,8 be positive numbers such that if a :; x, y :; 1 
and Ix - YI :; 8, then If(x) - f(y)1 :; 6; and let M > a be such that 
If(x)1 :; M for all x E [0,1]. Then 

if(X) - ~ (7)f(i/n)x i (1- x)n-ii :; 6 

for all x E [0,1] and all n 2: M/c82 . 

Using this information, prove that in the proof of Proposition (4.28) 
the polynomials Pn,k can be chosen such that their coefficients are 
computable, and such that the total function (n, q, k) 1--+ Pn,k(q) is 
computable on N x Q x N. (Hint: First define total mappings G : 
N x R --+ Rand H : N x R --+ R by 

G(N, x) == N + 2 , 
2x -1 

-x 1 
H(N,x) == 2(N + 2) 2 

For all N, n E N construct2 rational numbers rn,i (0 :; i :; n) such 
that the functions fN,n : R --+ R defined by 

map Rc into R c, (fN,n)'N',n=O is a computable sequence of total com­
putable functions from Rc into R e , and 

for each x E [0,1]. Next prove that 

(N,q,n) 1--+ fN,n(q) 

is a total computable function from N x Q x N to Re. Using Exercise 
( 4. 29.4), construct a total computable function At : N --+ N such 
that l(fsN)(x)1 :; M(N) whenever N E Nand -N -2:; x:; N +2. 
Then, using the version of the Weierstrass Approximation Theorem 
stated above, construct a computable subsequence (fN,nk)'N,k=O of 
(fN,n) such that 

l(fsN) oG(N,x) - h.r,nk(x)l:; T k - 1 (N,k E N, x E [0,1]). 

2For this construction, note Exercise (4.24.5). 
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Finally, set 

PN,k == iIV,nk 0 H(N,·) 

for all n, k.) 

.6 Let (tn)~=o be a sequence of effectively uniformly continuous total 
functions from R into [-1, 1J. Prove that the series L:~=o 2-"tn con­
verges effectively and uniformly on R, and that its sum t is an ef­
fectively uniformly continuous total function from R to R. Suppose 
also that each tn maps Rc to Rc; that (tn ) is a computable sequence 
of total computable functions from Rc to Rc; and that there exists 
a total computable function h : N 2 --+ N such that if x, y E R c , if 
n, N E N, and if Ix - YI :::; 2- h (N,n), then ItN(x) -tN(y)1 :::; 2-". 
Prove that the restriction of t to Rc is a total computable function 
from Rc to Re . 

. 7* With reference to Exercise (4.29.6), complete the details of the exam­
ple preceding this set of exercises . 

. 8 Give an example of a total computable function 9 : Rc -+ Rc that 
is effectively continuous, but whose restriction to Rc n [0, 1 J is not 
uniformly continuous. Thus the recursive analogue of the classical 
uniform continuity theorem is false (c:f. (3.16.5) of [15]). 

For further information about recursive analysis, see [1], [4], and [26]. A 
rather different approach to algorithmic aspects of analysis, using a non­
classical logic, is found in [5] and Chapter 3 of [8]. 



5 

Rice's Theorem and the 
Recursion Theorem 

In this chapter we turn back from our study of computable real numbers and 
take a path that will lead to two of the major theorems in computability 
theory. The first of these, Rice's Theorem, characterises a large class of 
nonrecursive subsets of N; the second, the Recursion Theorem, has many 
applications, some of which appear at the end of this chapter, and some, 
in perhaps unexpected contexts, in later chapters. 

Since there is an enumeration of the set of all computable partial func­
tions from N to N, there is an enumeration of the set of all total computable 
functions from N to N. However, as we now prove using another diagonal 
argument, no enumeration of the set of total computable functions from N 
to N can be effective. 

(5.1) Proposition. If fa, iI, 12,··· is an effective enumeration of a 
sequence of total computable f11,nctions from N to N, then there exists a 
total computable function f : N --> N such that f =/: fn for each n. 

Proof. Define a total computable function f : N --> N by 

f(n) == fn(n) + 1. 

For each n we then have f(n) =/: fr,(n) and therefore f =/: fn. 0 

(5.2) Corollary. The set {n E N 
enumerable and hence is not reC'u7'sive. 

(5.a) Exercise 

Prove Corollary (5.2). 

'Pn is total} is not recursively 
o 

We now discuss the second of the three questions posed in Chapter 4 at 
the start of our discussion of computability theory. To this end, we prove 
that there is no algorithm for deciding whether a given computable partial 
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function on N is equal to the identity function id : N ....... N. This requires 
a lemma. 

(5.4) Lemma. If ip : N ....... N is a computable partial function, then 
the partial function W : N2 ....... N defined by 

W(i,j) 

is computable. 

ip(j) 

undefined 
if j E domain(ipi) n domain(ip), 
otherwise 

Proof. Choose v so that My computes ip. For each i E N modify 
Mi to create a binary Turing machine ~ with the following properties. 
Given an input j E N, ~ first replaces j on the left of the tape by BjBj. 
~ then calls a module that, without affecting the cells to the left of the 
rightmost instance of j, mimics the action of Mi on that instance of j. 
If j E domain(ipi), this module will arrive at a configuration in which the 
tape contains BjBipi(j) and the read/write head is against the leftmost 
symbol of ipi(j). ~ then 

deletes ipi (j); 
moves each unit of j one place to the left on the tape, leaving 

blanks everywhere else; 
places the read/write head against the leftmost cell; and 
calls a module that mimics the action of My on j. 

It is easy to see that ~ computes the partial function W. D 

(5.5) Theorem. The set {i EN: ipi = id} is not recursive. 

Proof. By Lemma (5.4) and the s-m-n theorem, there exists a total 
computable function s : N ....... N such that 

ipS(i)(j) j 
undefined 

if j E domain(ipi), 
otherwise. 

Suppose the total function f : N ....... N, defined by 

f(i) 1 ifipi=id, ° otherwise, 

is computable. Then the composite function f 0 s : N ....... {O, I} is total and 
computable. But 

f(s(i)) = 1 {:} ips(i) = id, 
{:} ipi is total. 
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It follows that f 0 s is the characteristic function of 

{i EN: 'Pi is total}, 

which is therefore a recursive set. This contradicts Corollary (5.2). 0 

We can now prove the unsolvability of the equivalence problem. 

(5.6) Corollary. There is no total computable function F N2 -? 

{O, I} such that F( i, j) = 1 if and only if 'Pi = 'Pj. 

Proof. Suppose such a function F exists. Then, choosing j such that 
id = 'Pj, we see that the total computable functioni ....... F( i, j) on N is 
the characteristic function of {i EN: 'Pi = id}. This contradicts Theorem 
(5.5). 0 

(5.7) Exercises 

.1 Define the total function stat: N -? N by 

stat(n) == the number of st.ates in Mn. 

Why is stat computable? Prove that the total function f : N -? N 
defined by 

f(n) == min{stat(k) : 'Pk = 'Pn} 

is not computable. (Hint: What partial functions are computed by 
normalised binary Turing machines with exactly one state?) 

.2* Prove that the total function !index: N -? N defined by 

lindex(n) == min{i EN: 'Pi = 'Pn} 

is not computable. l 

.3 Define a total function s : N 2 -? N by 

s(k,n) == min{i: 'Pi = 'P[J(-,n)}. 

Prove that s is not computable (cf. the remarks preceding the state­
ment of the s-m-n theorem in Chapter 3). 

1 A similar function is used by Chaitin in his work on LISP program-size 
complexity [12]. 
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At first sight, our next lemma may be rather surprising. 

(5.8) Lemma. Let f : N ....• N be the empty partial function, and 
cp : N -> N a computable partial function with nonempty domain. Then 
there is a. total computable function f : N -> N such that 

cp if i E K, 
E otherwise. 

Proof. Consider any i E N, and design a Thring machine T; as fonows. 
Given the (unary form of) n as input, T; first moves each unit of none 
place to the right, leaving B in the leftmost cell. It then 

writes Bi on the right of the rightmost unit of n; 
places the read/write head against the leftmost symbol of i; 
without affecting the cells to the left of i, simulates the action of Mi 

on the input i, but replaces the halt state of Mi by a Turing machine 
module that 

moves each unit of n one cell to the left, leaving blanks 
everywhere else on the tape, 

moves the read/write head to the leftmost cell, and 
simulates a Turing machine that computes cp. 

It is clear that we can construct T; so that it is normalised and depends 
uniquely on i. Thus the total, and clearly computable, mapping f that 
carries i to the index of T; has the desired properties. D 

(5.9) Exercise 

Let cp be a computable partial function with nonempty domain, and 
define a computable partial function \Ii : N 2 -> N such that 

\Ii(i,j) cpU) if i E K, 
undefined otherwise. 

Use this function to give an alternative proof of Lemma (5.8). 

The arguments we have used to prove many of the results of this and 
the previous section provide a good grounding in the techniques of com­
putability theory. However, several of those results, and many others, can 
be obtained as simple consequences of the following very general theorem. 

(5.10) Rice's Theorem. If I is a nonempty proper recnr.sive subset 
of N, then there exist i, j such that i E I, j E NV, and CPi = :py. 

2Recall that a subset S of a set X is proper if S Ie 0 and S Ie X. 
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Proof. Suppose the contrary, so that 'Pi =1= 'Pj whenever 'i E I and 
j E N\I. Interchanging I and N\I if necessary, we may assume that I 
contains an index (and therefore all indices) of some computable partial 
function 'P with nonempty domain, and that N\I contains an index (and 
therefore all indices) of the empty function E. Define the total function 
I : N -t N as in Lemma (5.8), and let X be the characteristic function of 
1. Then X 0 I : N -> {O, I} is a total computable function. If 'P f(i) = f, then 
I(i), being an index of f, belongs to N\I; so if I(i) E I, then 'Pf(i) =1= f and 
therefore 'Pf(i) = 'P. On the other hand, if 'Pf(i) = 'P, then I(i), being an 
index of 'P, belongs to 1. Hence 

x(f(i)) = 1 {=? 'Pf(;) = 'P 

{=? iEK. 

Since X 0 I is computable, K is recursive. This contradicts Corollary (4.3). 
o 

Bearing in mind the effective indentification of a normalised binary Tur­
ing machine with its index, we see that Rice's Theorem admits the following 
interpretation: if P is a decidable property that holds for some but not all 
normalised binary TUring machines, then there are TUring machines Mi 
and M j , one with the property P and one without P, that compute the 
same partial function; so the information we need in order to decide whether 
or not a normalised binary TUring machine M has the property P is not 
provided solely by the partial function computed by M. 

We say that a subset I of N respects indices if j E I whenever 'Pj = 'Pi 
for some 'i E I (or, equivalently, if 'Pi =1= 'Pj whenever'i E I and j tic 1). This 
definition leads immediately to a useful re-expression of Rice's Theorem. 

(5.11) Coronary. A nonernpty proper subset olN that respects indices 
is not recursive. 0 

This corollary enables us to prove the undecidability of the problems 
associated in the obvious way with the following subsets of N, each of 
which respects indices: 

{i : 'Pi = 'Pj}, where j is a given natural number, 

{i : 'Pi is total}, 

{i : a E domain('Pi)}, where a is a given natural number, 

{i : 'Pi is a constant function}, 

{i: domain('Pi) is finite}. 

The undecidability of the first two of these problems also follows from 
Corollaries (5.6) and (5.2), respectively. 
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Note that the undecidability of the halting problem is not a direct conse­
quence of Rice's Theorem: for, as the next theorem will enable us to prove, 
K does not respect indices. 

(5.12) Exercise 

Without using Rice's Theorem, prove that the decision problems as­
sociated with the sets 

(i) {i : a. E domain('Pi)}, where a. is a given natural number, and 
(ii) {i: 'Pi is a constant function}, 

are undecidable. (Hint jor (i): Consider the partial function \Ii : N 2 ---> 

N, where \Ii(m, n) = 1 if n = a and m E K, and \Ii(m, n) is undefined 
otherwise. ) 

Each computable partial function e : N ---> N gives rise to an associated 
sequence of computable partial functions from Nn to N : namely, 

(n) (n) (n) 
'PO(O) , 'PO(l)' 'PO(2) , ... 

(Recall that 'P~(~) == Un(e(k), .), where Un is the universal Turing machine 
for n-ary computable partial functions, discussed on page 42; so if e(k) is 

undefined, then 'P~(~) is the empty partial function from Nn to N.) The s-

m-n theorem shows that the mapping k f-+ 'P~('~) is an effective enumeration 
of its range. It follows that the effective enumerations of sets of computable 
partial functions from Nn to N are precisely the listings of the form 

(5.1) 

where kEN. 
Note that for each k, the kth term of the diagonal effective enumer­

ation 
. (n) (n) . (n) 
'P"'o(O)' 'P",,(l)' 'P"'2(2)"" (5.2) 

is the same as the kth term in the sequence (5.1). 

(5.13) The Recursion Theorem. For each n E N, and each total 

computable junction j : N ---> N, there exists i E N such that 'P~n) = 'P~(~,. 

Proof. To each total computable function j : N ---> N there cor­
responds a natural effective enumeration derived from the diagonal one 
(5.2) namely, 
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Choosing an index v of the mapping k f-+ fO'Pk(k), we see from the remark 

immediately preceding this theorem that 'P~~(v) = 'Pj:~v(v); so it appears 
that we can complete the proof by taking i == 'Pv(v). However, this will 
not quite do, as we have no guarantee that 'Pv (v) is defined. To get round 
this obstacle, we invoke the s-m-n theorem, to obtain a total computable 

function s : N -+ N such that 'P~(l) = 'Pj:~i(i) for each i. We then choose 
an index m of s and set i == 'Pm (m) to obtain 

(n) _ (n) _ (n) _ (n) _ (n) 
'Pi - 'Pcpm(m) - 'Ps(m) - 'PfoCPm(m) - 'Pf(i)" o 

Taking n = 1 and f(k) = k + 1 in Theorem (5.13), we immediately 
see that there exists i such that 'Pi = 'PHI. The proof of the following 
partial generalisation of this result provides a more illuminating example 
of the application of the Recursion Theorem: for each computable partial 
function'P : N -+ N and each positive integer k, there exists i such that if 
'Pi(n) is defined, then so are 'P(n) and 'PHj(n) (1 ::; j ::; k), and 

'Pi(n) = 'PHI(n) = ... = 'PHk(n) = 'P(n). 

To prove this, given 'P and k, define a computable partial function 111 
N 2 -+ N by 

m+k 
1l1(m,n) == 'Pm(n) + L l'Pj(n) - 'P(n)l· 

j=m 

By the s-m-n theorem, there exists a total computable function s : N -+ N 
such that 1l1(m,·) = 'Ps(m) for all m. Applying the Recursion Theorem, 
compute i such that 'Pi = 'Ps(i); then 

Hk 

'Pi = 'Pi + L l'Pj - 'PI· 
j=i 

If 'Pi(n) is defined, then so are 'P(n) and 'PHj(n) (1 ::; j ::; k) , 

Hk 

L l'Pj(n) - 'P(n)1 = 0, 
j=i 

and therefore 

'Pi(n) = 'PHI(n) = ... = 'PHk(n) = 'P(n). 

The procedure used in the above illustration is typical of many applica­
tions of the Recursion Theorem: we first define an appropriate computable 
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partial function \[J of two variables, then use the s-m-n theorem to "pull 
back" to functions tps(m) of one variable, and finally apply the Recursion 
Theorem to the total computable function s. This procedure is used in 
several of the next set of exercises. 

(5.14) Exercises 

.1 * For a given natural number n draw the state diagram of a Turing 
machine Tn that computes the partial function tp : N -+ N defined 
by 

tp(i) 1 ifi=n, 
undefined otherwise. 

Your solution to this exercise should provide an algorithm for con­
structing Tn uniquely from n . 

. 2 Prove that there exists an index n such that domain(tpn) = in}. 
(Hint: Use either Exercise (5.14.1) or the s-m-n theorem; then apply 
the Recursion Theorem.) Use this to prove that K does not respect 
indices . 

. 3 Prove that (i) there exists an index i such that i E domain(tpi) = K, 
and (ii) there exists an index j such that j rJ. domain(tpj) = K. 

.4 Given a proper recursive subset I of N, choose i in I and j in N\I, 
and define a total function ! : N -+ N by 

f ( n ) j if n E I, 
i if n rJ. I. 

Show that f is computable. Applying the Recursion Theorem to f, 
give another proof of Rice's Theorem. Can you see any advantage of 
this proof over the previous one? 

.5 Use the Recursion Theorem to prove that K is not recursive . 

. 6* Suppose there is a total computable function f : N -+ {a, I} such 
that for each m, 

f(m) = 1 {=> domain(tpm) =1= 0. 

Define a partial function \[J : N 2 -+ N as follows: for all m, n E N, 

\[J(m,n) 1 if!(m) =0, 
undefined if f ( m) = 1. 

Use the s-m-n theorem and the Recursion Theorem to deduce a con­
tradiction. 
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.7 Let f : N - • N be a total computable function. Prove that there are 
infinitely many values of i such that !Pi = !Pf(i)' 

.8 In the Recursion Theorem we cannot choose the index i such that 
!Pi is total and !Pi = !Pf(;): to see this, find an example of a total 
computable function f : N -.,> N such that if !Pn is totaL then !PICn) 

is total and distinct from !pT!' 

.9 Prove the Extended Recursion Theorem: For each n > 1 there 
exists a total computable function t : N -+ N such that if !p~n) is 
total, then 

(n) _ (n) 
rpt(k) - rp<pdt(k»)" 

(Thus, in the notation of Theorem (5.13), the index i can be obtained 
as a computable function of an index of f.) 

.10 Recalling the definition of an acceptable progmmming system (page 
45), prove the following generalisation of the Recursion Theorem: 
For each acceptable progmTnrning system 'l/Jo, 'Ih, . " and each total 
computable function f : N -+ N there exists i E N such that 
wJ(;) . 

. 11 Give examples of the following: 

(a) An acceptable programming systeml/Jo, 1!h" .. such that there 
does not exist i with 1/;; = 1/)Hl = 1/)i+2. 

(b) An acceptable programming system 1/)0, ~)l' ... such that for each 
computable partial function rp : N --? N and each positive inte­
ger k there exists i such that rpi = !PHI = ' .. = rpitk = rp. 

What do these examples, taken with Exercise (5.14.10), tell you about 
the application of the Recursion Theorem given before this set of 
exercises? 

.12 Prove the Double Recursion Theorem: Ij F, G : N 2 -+ N are total 
computable junctions, then there exist i,j such that rpi = rpF(i,j) and 
rpj = !PC(i,j)' (Hint: First show that there exists a total computable 
function h : N --? N such that rpF(h(i),i) = rph(i) for each i.) 

Since our proof of the Recursion Theorem depends on neither (i) the 
nonrecursiveness of K nor (ii) Rice's Theorem, and since, according to 
Exercises (5.14.4,5), both (i) and (ii) can be derived as consequences of the 
Recursion Theorem, we see that the name of that theorem properly reflects 
its status as perhaps the central result of computability theory. 

\Ve round off this discussion of the Recursion Theorem with a mis­
chievous application, the construction of a self-replicating virus-that is, a 
Turing machine M that, when given any natural number as input, com­
pletes a computation that outputs the same Turing machine M, in encoded 
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form, on the tape.3 To obtain a formal definition of this notion, recall the en­
coding function "( defined before Theorem (3.6), and let F : N ........ N be the 
composition of the function n f-> Mn with "(. By a self-replicating virus 
we mean a normalised binary TUring machine M" such that 'P,,(n) = F(v) 
for each n E N. 

Since F is computable, so is the partial function (i,j) f-> F0'Pi(j) on N 2 . 

By the s-m-n theorem, there exists a total computable function s : N ........ N 
such that 'Ps(i) = F0'Pi for each i. Another application of the s-m-n theorem 
yields a total computable function f : N ........ N such that 'Pf(i)(n) = sCi) for 
all i, n E N. By the Recursion Theorem, there exists an index i such that 
'Pi = 'Pf(i); set v == sCi) for this i. Then for all n we have 

'Pv(n) = 'Ps(i)(n) = F 0 'Pi(n) = F 0 'Pf(i)(n) = F 0 sCi) = F(v). 

Thus Mv is a self-replicating virus. 

(5.15) Exercise 

* Prove that 

{n EN: Mn is a self-replicating virus} 

is not a recursive subset of N. 

Rice's Theorem characterises the nontrivial recursive subsets of N. In the 
remainder of this chapter we show how Rice's Theorem can be extended 
in several ways to provide necessary conditions for a subset of N to be 
recursively enumerable. 

We begin with a generalisation of Lemma (5.8). 

(5.16) Lemma. If 'P, 'I.jJ : N ........ N are computable partial functions 
with'I.jJ C 'P, then there exists a total computable function f : N ........ N such 
that for all mEN, 

'Pf(m) 'P ifm E K, 
'I.jJ ifm~K. 

Proof. Define a total computable function H : N3 ........ N by 

H(i, n, k) 1 if Mi computes 'Pi(n) in k + 1 steps, 
o otherwise. 

3 An informal discussion of two types of computer virus, including the one 
discussed here, is found in [16]. 
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Choosing an index 1I for ¢, next define a computable partial function \II : 
N 3 --t N by 

\II(m, n, k) ¢(n) if H(lI,n,k) = 1 and 
H(m,n,j) = 0 for 0 ~ j < k, 

= cp(n) if H(m,m,k) = 1 and 
H(lI,n,j) = 0 for 0 ~ j < k, 

undefined otherwise. 

As ¢ c cP, this is an unambiguous definition of a function. Noting that, 
for given m and n, there is at most one value of k such that (m, n, k) E 
domain(\II), define computable partial functions a: N 2 --t N and B : N 2 --t 

N as follows: 

a(m,n) = k if (m,n,k) Edomain(\II), 

and 

Then 

undefined otherwise 

B(m,n) == \II(m,n,a(m,n)). 

B(m, n) = cp(n) if mE K, 
= ¢(n) if m tt K. 

An application of the s-m-n theorem completes the proof. 0 

(5.17) Exercises 

.1 Explain why the definition of the function \II in the above proof is 
unambiguous and why \II is computable . 

. 2 Does Lemma (5.16) hold without the hypothesis that ¢ c cp? 

Recall from Exercise (4.5.2) that the subset K of N is not recursively 
enumerable. 

(5.18) Proposition. Let I be a recursively enumerable subset of N 
that respects indices. Ifi E I, j EN, and CPi C CPj, thenj E I. 

Proof. We may assume that I is nonempty. By Proposition (3.2), there 
exists 1I such that I = domain(cpv). Consider i E I and j E N such that 
CPi C CPj· According to Lemma (5.16), there exists a total computable 
function f : N --t N such that for all mEN, 

CPf(m) CPj if mE K, 

= CPi if m tt K. 
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Suppose that j tJ. I. Since I respects indices, we see that if rn tJ. K, then 
fern) E I, and that if rn E K, then fern) tJ. I. It follows that the domain 
of the computable partial function 'PI.' 0 f : N -f N is k,which is therefore 
recursively enumerable, by Theorem (3.3). This contradiction shows that 
j E I. 0 

Proposition (5.18) deals with extensions of computable partial functions; 
the next proposition, which will be used in the proof of our extension 
(5.27) of Rice's Theorem, deals with finite restrictions of computable partial 
functions. 

If 'P, 'I/! are partial functions on N such that domain( 'P) is finite and 
'P C 'I/!, then we say that 'P is a finite subfunction of 'I/!. 

(5.19) Proposition. If I is a recursively enumerable subset ofN that 
respects indices, then for each n E I there exists i E I such that 'Pi is a 
finite subfunction of 'Pn· 

Proof. Given n E I, first apply the s-m-n theorem to construct a total 
computable function s : N -f N such that for all i and j, 

undefined if Mi computes 'Pi(i) in at 
most j + 1 steps, 

otherwise. 

Note that if i E k, then 'Ps(i) = 'Pn, and therefore, since I respects indices, 
sCi) E I. Suppose that if 'Pk is a finite subfunction of 'Pn, then k tJ. I. If 
i E K, then 'Ps(i) is a finite subfunction of 'Pn, so sCi) tJ. I. Hence i E k 
if and only if sCi) E I. Using Proposition (3.2) to construct a computable 
partial function () with domain I, we now see that domain(()os) = k. Since 
() 0 s is computable, it follows from Theorem (3.3) that k is recursively 
enumerable, a contradiction. 0 

Although the stated form of Proposition (5.19) is sufficient for most 
applications, there is an interesting strong version of that theorem whose 
proof we leave as a (hard!) exercise. 

(5.20) Proposition. There exists a total computable function f : 
N2 -f N with the following property: if domain( 'Pm) respects indices, then 
for all n E domain('Pm), fern, n) E domain('Pm) and 'Pf(m,n) is a finite 
subfunction of 'Pn. 0 

(5.21) Exercises 

.1 Prove that S == {i EN: 'Pi = E} is not recursively enumerable. Is 
N\S recursively enumerable? 
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.2* For which computable partial functions 'P : N --+ N is {n EN: 'Pn = 
'P} recursively enumerable? 

.3 Use Proposition (5.18) to give another proof of Rice's Theorem . 

.4 * Prove that neither S == {i EN: 'Pi is total} nor N\S is recursively 
enumerable. Thus, in a very strong sense, there is no algorithm for 
deciding whether or not a computable partial function is total. 

.5 Prove Proposition (5.20). 

We now describe an encoding of finite subsets of N as natural numbers. 
Consider any element S of the set F of all finite subsets of N. If S is 
empty, define /-l(S) == 0; if Sis nonempty, let no, ... , nk be the elements of 
S written in a strictly increasing finite sequence, and define /-l( S) to be the 
binary integer uOOu10 ... OUk, where for each j, Uj is the unary form of nj. 
Then /-l is a one-one mapping of F into N. We shall identify S with /-l(S) 
when it is convenient to do so. 

By a computable partial function from N into F we shall mean a 
partial function 'P : N --+ F such that the corresponding partial function 
/-l 0 'P : N --+ N is computable. In other words, 'P is computable if and only 
if it is computable when considered as a mapping that carries a natural 
number into the encoding of a finite subset of N. 

(5.22) Exercises 

.1 Find the subset of N whose encoded form is 11011110111111. 

.2 Prove that the mapping n t--> {n, n2 } of N into F is computable. 

For our extensions of Rice's Theorem we require a special effective enu­
meration of the set of computable partial functions from N to N with finite 
domain. 

(5.23) Lemma. There exist a one-one effective enumeration 

'l/Jo, 'l/Jl, ... 

of the set of all computable partial functions from N to N with finite do­
main, and a total computable function d : N --+ F, such that 

(i) den) = domain('l/Jn) for each n, 

(ii) {n EN: den) =I- 0} is a recursive set. 

Proof. Define a computable partial function W : N3 --+ N by 

w(m, n, k) = 'Pm(k) if k :S nand Mm computes 'Pm(k) 
in at most n + 1 steps, 

= undefined otherwise. 
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By running Mm for at most n + 1 steps on each of the inputs 0, ... , n, 
we can compute, from the pair (m, n), the (code for the) finite domain 
Dm,n of W (m, n, .). Also, we can decide, for all m, m', n, and n', whether 
the computable partial functions W (m, n, .) and W (m' , n' , .) from N to N 
are equal. Following the arrows through the diagram below and deleting 
all repetitions, we obtain a one-one total computable function 

n f-+ ('lj!n, domain ( 'lj!n») 

on N, where 'lj!n : N -+ N is a computable partial function and domain('lj!n) 
is finite; moreover, each computable partial function from N to N with 
finite domain equals 'lj!n for exactly one n EN. 

(W(O, 0, .), Do,o) -+ (W(O, 1, .), DO,I) (W(O, 2, .), DO,2) -+ 

,/ / 
(W(I, 0, .), D1,o) (w(l, 1, .), DI,t} 

1 / 
(W(2, 0, .), D2,o) 

To show that the enumeration 'lj!o, 'lj!l,'" is effective, we simply apply the 
s-m-n theorem to the (informally) computable partial function (n, k) f-+ 

'lj!n(k) on N 2 . Finally, we describe an algorithm for deciding, for a given n, 
whether den) is empty. First compute i,j such that 'lj!n = W(i,j, .). Then 
check whether Mi completes a computation in at most n + 1 steps on any 
of the inputs 0, ... ,j. If it does, then den) is nonempty; otherwise, den) is 
empty. 0 

From now on, we shall take the effective enumeration 'lj!o, 'lj!l, ... of the 
set of computable partial functions from N to N with finite domain, and 
the mapping d : N -+ N, as in Lemma (5.23). We shall also let trans be a 
total computable function from N to N such that 'lj!n = <Ptrans(n) for all 
n E N; as noted in the proof of Lemma (5.23), the existence of trans is a 
consequence of the s-m-n theorem. 

(5.24) Exercises 

.1 Prove that J == {j EN: domain('lj!j) =1= 0} is recursively enumerable . 

. 2 Let B : N -+ N be a computable partial function, and define a partial 
function 'lj! : N -+ N by 

'lj!(n) = maxd(B(n) 
= undefined 

if n E domain(B) and d(B(n» =1= 0, 
otherwise. 

Explain why 'lj! is computable. 
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.3 For this exercise we recall the Goldbach Conjecture: 

GC Every even integer ~ 4 is the sum of two primes. 

(Nobody knows if this conjecture is true.) Consider the following 
definition of a set S : 

S = 0 
{I} 

if GC is true, 
if GC is false. 

What is wrong with the following argument? Since S is finite, there 
exists n such that S = den); according to Lemma (5.23), we can decide 
whether or not den) is empty; so we can either prove or disprove the 
Goldbach Conjecture. 

It is important to realise that, as the following exercises show, there is no 
computable partial function () with the following property: if 'Pi has finite 
domain, then (}(i) is defined and 'Pi = '¢()(i). In other words, there is no 
algorithm which, applied to any computable partial function 'P with finite 
domain, enables us to find the unique position of'P in the list '¢o, '¢1, ... 

(5.25) Exercises 

In these two exercises, F == {i EN: domain ( 'Pi) is finite} . 

. 1 Let () : N -+ N be a computable partial function whose domain 
includes F. Prove that there exists n E F such that domain( 'Pn) is 
both nonempty and disjoint from domain('¢()(n»). Hence prove that 
there is no computable partial function 'Y : N -+ N such that 

(i) F c domain("() and 
(ii) 'Pn = '¢'Y(n) for each n E F. 

.2 Let () : N -+ N be a computable partial function whose domain 
includes F. Prove that there exists n E F such that domain('Pn) = 
{(}(n)+l}. (It follows that there is no algorithm which, applied to any 
computable partial function 'P with finite domain, will compute an 
upper bound for the domain of 'P.) Use this to give another solution 
to the second part of Exercise (5.25.1). 

We have already made implicit use of the case n = 2 of the following 
lemma on several occasions. 

(5.26) Lemma. For each positive integer n there exists a one-one 
effective enumeration of Nn. 



90 5. Rice's Theorem and the Recursion Theorem 

Proof. This is trivial in the case n = 1. Assume, therefore, that there 
is a one-one total computable function f from N onto Nn. Following the 
arrows through the diagram below and deleting all repetitions, we obtain 
a one-one effective enumeration of Nn x N: 

(f(0),0) --> (f(0),1) (f(0), 2) --> 

./ / 
(f(1),0) (f(1),1) 

1 / 
(f(2),0) 

Composing this with the one-one total computable mapping 

of Nn x N onto Nn+l, we obtain an effective one-one enumeration of Nn+l. 

o 

In spite of Exercise (5.21.3), it is not Proposition (5.18) but the following 
two theorems, taken together, which are known as the Extended Version 
of Rice's Theorem. 

(5.27) Theorem. There exists a total computable function f : N --> N 
such that for each mEN, 

(i) domain('Pf(m») = {j EN: trans(j) E domain('Pm)}, and 

(ii) if domain('Pm) respects indices, then n E domain('Pm) if and 
only if there exists k E domain('Pf(m») such that 'lj;k C 'Pn. 

Proof. Apply the s-m-n theorem to construct a total computable func­
tion f : N --> N such that 'Pf(m) = 'Pmotrans for each m. Clearly, (i) is 
satisfied. Consider any mEN such that domain( 'Pm) respects indices. If 
n E domain('Pm), then by Proposition (5.19), there exists i E domain('Pm) 
such that 'Pi is a finite subfunction of 'Pn; choosing j such that 

'Pi = 'lj;j = 'Ptrans(j)' 

we see that as domain( 'Pm) respects indices, 

trans(j) E domain('Pm)i 

whence j E domain('Pf(m»). On the other hand, if j E domain('Pf(m»), then 
trans(j) E domain('Pm); if also 'Pn ::) 'lj;j = 'Ptrans(j)' then Proposition 
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(5.18) ensures that n E domain(<pm). This completes the proof of (ii). 
o 

(5.28) Theorem. Let I be a subset ofN, and suppose there is a recur­
sively enumerable subset J of N such that i E I if and only if there exists 
j E J with '¢j C <Pi. Then I is recursively enumerable and respects indices. 

Proof. It is immediate that I respects indices. If J is empty, then so 
is I, which is therefore recursively enumerable. If J -=J: 0, then, choosing a 
total computable function t from N onto J, for all m, n, kEN define 

\]I(m, n, k) = m if either d(t(n)) = 0; or else d(t(n» -=J: 0 and for 
each j E d(t(n», Mm halts in at most k + 1 steps 
on the input j, and <Pm(j) = '¢t(n)(j), 

= -1 otherwise. 

In view of Lemma (5.23), we see that \]I is a total computable function 
from N 3 into N U {-I}. By Lemma (5.26), there exists a one-one effective 
enumeration F of N 3 . To obtain a recursive enumeration of I, we need only 
delete all entries equal to -1 from the list \]I(F(O», \]I(F(l»),.... 0 

(5.29) Exercises 

.1 Complete the detailed justification of the last sentence in the proof 
of Theorem (5.28) . 

. 2* Use Exercise (5.24.1) and Theorem (5.28) to prove that {i EN: <Pi -=J: 

E} is recursively enumerable . 

. 3 Let () : N -> N be a computable partial function whose domain 
includes {i EN: domain(<pi) is finite}. Prove that there exists n such 
that (i) domain(<pn) is nonempty and finite, and (ii) if domain('¢o(n) 
is nonempty, then '¢O(n) ct <Pn (cf. Exercise (5.25.2» . 

.4 Prove that the following putative extension of Proposition (5.19) and 
Theorem (5.27) does not hold: for each recursively enumerable set 
I that respects indices there exists a total computable function s : 
N -> N such that 

(i) if n E I, then '¢s(n) = <Pk for some k E I; and 

(ii) n E I if and only if '¢s(n) C <Pn. 

(Hint: Use Exercises (5.29.2) and (5.29.3).) 
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Abstract Complexity Theory 

So far, we have only concerned ourselves with computability in principle, 
without regard for the efficiency of the computations under discussion. In 
this chapter we introduce Blum's axiomatic treatment of the theory of 
the complexity, or cost, of a computation. In practice, this cost is a mea­
sure of the amount of some appropriate resource-such as time, space, or 
memory-used in a computation. The beauty of Blum's axioms is that, in 
spite of their simplicity and brevity, they enable us to prove a remarkable 
range of theorems about complexity in the most general context. These the­
orems hold independently of their interpretation in any model of computa­
tion, such as the Turing machine model; our abstract theory of complexity 
is machine independent. 

Nevertheless, the basic models for complexity theory are connected with 
Turing machine computations. For example, we can measure the cost of 
the computation of <pi(n) by counting the number of steps taken by Mi to 
complete a computation (if it does) on the input n. A different measure of 
the cost is given by the number of distinct cells visited by the read/write 
head when Mi computes <pi(n). In either example, if <pi(n) is undefined, 
we consider the corresponding cost to be undefined. 

Following Blum [6], we abstract from these examples a general notion of 
cost. A complexity measure is an infinite sequence 

of computable partial functions Ii : N --+ N that satisfies Blum's axioms: 

Bl For each i, domain(,i) = domain(<pi). 

B2 The function costs: N3 --+ {O, I} defined by 

costs(i, n, k) = 1 if li(n) = k, 
= 0 otherwise 

is computable. 

The computable partial function Ii is called the complexity function, or 
cost function, associated with <Pi. 

Blum's axioms are certainly satisfied by the examples of complexity func­
tions described in the second last paragraph. The first of the following exer­
cises proves that the axioms are independent, in the sense that neither can 
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be deduced from the other; the second shows that the axioms are satisfied 
by some rather unexpected candidates for the title complexity measure; and 
the last three contain elementary results to which we shall refer later. 

(6.1) Exercises 

.1 Give examples of sequences r == 1'0,1'1,1'2, ... of computable partial 
functions such that 

(i) r satisfies axiom Bl but not B2; 
(ii) r satisfies axiom B2 but not Bl. 

.2 Let r == 1'0, I'll 1'2, ... be a complexity measure, let S be a recursive 
subset of N, and choose j such that 'Pj is the characteristic function 
of S. Show that 

1': 0 if i = j, 
I'i if i =f. j 

defines a complexity measure r' == I'b, I'i, I'~, .... Why is it reasonable 
to call this complexity measure pathological? (Hint: What if S is the 
set of all prime numbers?) 

.3 Given a complexity measure r == 1'0,1'1,1'2, ... and a total computable 
function f : N -+ N, define 

I'~==I'i+f0'Pi (iEN). 

Prove that r' == I'b, I'i, I'~, ... is a complexity measure . 

. 4 Given a complexity measure r == 1'0,1'1,1'2, ... and a total computable 
function t : N -+ N, define a total function G : N3 -+ N by 

G(i, n, k) 

Prove that G is computable . 

1 if I'i(n) S t(k), 
o otherwise. 

. 5 Given a total computable function v : N -+ N, construct a total 
computable function s : N -+ N such that 

whenever either side of this equation is defined. Define a total function 
G : N 4 -+ N as follows: 

G(n, i,j, k) I'S(i)(n) 
o 

Prove that G is computable. 

if I'i(v(n» = j and I''Pi ov(n)(n) = k, 
otherwise. 
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From now on, we shall assume that 

and 
r' == 'Yb, 'Y~ , 'Y~, ... 

are complexity measures, and that costs (respectively, costs') is the func­
tion associated with r (respectively, r') as in axiom B2. 

Our first proposition about complexity shows that the index of a cost 
function associated with 'Pi can be obtained as a computable function of i. 

(6.2) Proposition. There exists a total computable function s : N ~ 
N such that 'Yi = 'Ps(i) for each i. 

Proof. In view of the s-m-n theorem, it suffices to observe that the 
partial function <1> : N 2 ~ N defined by <1>(i, n) == 'Yi(n) is computable. 

o 
(6.3) Exercise 

It is clear that the function <1> in the proof of Proposition (6.2) is 
computable in the case where 'Yi (n) is the number of steps taken by 
Mi in the computation of 'Pi(n). But why is <1> computable for an 
arbitrary complexity measure r? 

Let P be a property applicable to some, but not necessarily all, natural 
numbers n. We say that P(n) holds almost everywhere, or for almost 
all values of n, if there exists v such that P(n) holds whenever n ::::: v and 
P is applicable to n. On the other hand, we say that P(n) holds infinitely 
often if there exist infinitely many values of n such that P(n) holds. 

For example, given natural numbers i and j, we say that 'Pi(n) ::; 'Pj(n) 
almost everywhere if there exists v such that 'Pi (n) ::; 'P j (n) for all n ::::: v 
in domain('Pi)ndomain('Pj). 

The first major result of this section, the Recursive Relatedness The­
orem for complexity measures, reveals a pleasing symmetry almost ev­
erywhere in the expression of recursive bounds for the functions in one 
complexity measure in terms of their counterparts in another. 

(6.4) Theorem. For any two complexity measures rand r' there ex­
ists a total computable function F : N 2 ~ N such that 'Yi(n) ::; F(n, 'YHn» 
and 'YHn) ::; F(n,'Yi(n) for all n::::: i in domain('Pi). 

Proof. Define a total function G : N 3 ~ N as follows: 

G(i, n, k) if either 'Yi(n) ::; k or 'Y~(n) ::; k, 
otherwise. 
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FIGURE 13. The Turing machine Tn. 

Note that, by B1, if either I'i(n) or I':(n) is defined, then so is the other 
and hence their sum. On the other hand, Exercise (6.1.4) ensures that G 
is computable. Therefore 

F(n, k) == max;$;n G(i, n, k) 

defines a total computable function F : N2 -> N. If n E domain(CPi) and 
n 2: i, then 

I'i(n) ::; I'i(n) +I'~(n) = G(i,n,I'Hn)) ::; F(n,I'Hn)). 

To complete the proof we need only interchange the roles of rand r'. 
o 

There are two obvious ways in which we might seek to improve upon 
Theorem (6.4): in the first of these we try to remove the almost everywhere 
condition; in the second we try to replace F by a total computable function 
f of one variable to obtain the inequalities I'i(n) ::; fbHn)) and I'Hn) ::; 
fb;(n)) almost everywhere for each i. We now show that the first of these 
proposed improvements is impossible; the impossibility of the second is left 
as Exercise (6.5.2). 

Define the complexity measures rand r' by setting! 

I'i(n) the number of distinct cells of Mi visited by the 
read/write head when Mi computes CPi(n), 

I'~(n) I'i(n) + i. 

Using Exercise (6.1.3), we see that r' is a complexity measure. For each 
natural number n the normalised binary Turing machine Tn in Figure 13 
computes the identity function id : N -> N; morever, for each k the number 
of distinct cells of Tn visited by the read/write head during the computation 
of id(k) is 1. 

1 In such definitions it is taken for granted that I'i (n), for example, is undefined 
if Mi fails to complete a computation on the input n. 
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For each n let hen) be the index of 7;., so that Tn = Mh(n). Let F: N 2 -+ 

N be a total computable function, and choose n so large that 1 + hen) > 
F(O, 1). Setting i == hen), we have 1'i(O) = 1 and 

1'~(O) = 1 + i > F(O, 1) = F(O, 1'i(O». 

Since F is arbitrary, we conclude that the almost everywhere condition 
cannot be removed from the conclusion of Theorem (6.4). 

(6.5) Exercises 

.1 Prove that for each complexity measure r there exists a complexity 
measure r' with the following property: for each total computable 
function F : N 2 -+ N there exists v such that 1'~(n) > F(n,1'v(n)) 
for all n E domain(tpv). (Hint: Define 1'~ == 1 + 1'i + tpd Can you 
explain the apparent contradiction between this result and Theorem 
(6.4)? 

.2* With 1'i, 1': as in the example preceding this set of exercises, show that 
for each total computable function f : N -+ N there exists i such that 
1'Hn) > fbi(n» for all n. Thus in the conclusion of Theorem (6.4) 
we cannot replace F by a total computable function f : N -+ N 
such that for each i, 1'i(n) ~ fbHn)) and 1'Hn) ::; fbi(n» almost 
everywhere. 

Our next result shows that there is a computable bound, independent of 
i, for the values of tpi in terms of the values of 1'i. 

(6.6) Proposition. There exists a total computable function F : N 2 -+ 

N such that tpi(n) ::; F(n, 1'i(n» for all i and for all n :::=: i in domain(tpi). 

Proof. Define a total function H : N 3 -+ N by 

H(i, n, k) = tpi(n) if 1'i(n) = k, 
= 0 otherwise. 

This is computable in view of Blum's axioms. It follows that 

F(n,k) == max{H(i,n,k): i::; n} 

defines a total computable function F : N 2 -+ N. Also, for all i, and all 
n :::=: i in domain(tpi), 

F(n,1'i(n» :::=: H(i,n,1'iCn» = tpiCn). 0 
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In contrast to Proposition (6.6), there is no computable bound, inde­
pendent of i, for the values of "Ii in terms of the values of 'Pi; that is, 
there is no total computable function F : N 2 --+ N such that for each 
i,"Ii(n) S; F(n,'Pi(n)) almost everywhere. See Exercise (6.11.2). 

The first two of the following exercises reveal the limitations of Proposi­
tion (6.6). 

(6.7) Exercises 

.1 Construct a complexity measure r with the following property: for 
each total computable function F : N 2 --+ N there exists i such that 
'Pi(O) > F(O, "Ii(O)). (Hint: First construct a one-one total computable 
function h : N --+ N, with recursive range, such that for each k, h(k) 
is the index of a Turing machine that computes the constant function 
nf-4k.) 

.2* Define the complexity measure r == "10, "11, ... by 

"Ii (n) == the number of distinct cells of Mi visited by the 
read/write head when Mi computes 'Pi(n). 

Prove that there exists i such that 'Pi is total, and such that for 
each total computable function J : N --+ N, 'Pi(n) > Jbi(n)) almost 
everywhere . 

. 3* Construct a complexity measure r such that 'Pi(n) S; "Ii(n) for all i 
and n. 

We now have an abstract expression of the common experience that it is 
possible to construct programs that compute a given partial function and 
have arbitrarily high cost. To be precise, we show that for each pair (f, t) 
of total computable functions there exists a computation of J whose cost, 
at each input, is greater than t. Before doing so, we define the index set 
of a computable partial function 'P : N --+ N to be 

IND('P) == {i EN: 'P = 'Pd· 

(6.8) Proposition. Let t : N --+ N be a total computable function. 
Then for each total computable function f : N --+ N there exists i E 

IND(f) such that 'Yi(n) > ten) for all n. 

Proof. Given a total computable function J : N --+ N, define a total 
function H : N 2 --+ N as follows: 

H(k,n) 'Pk(n) + 1 
fen) 

if 'Yk(n) S; ten), 
otherwise. 
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In the notation of Exercise (6.1.4) we have 

H(k, n) = 'Pk(n) + 1 if G(k, n, n) = 1, 
= f(n) ifG(k,n,n) =0. 

Since, by that exercise, G is computable, so is H. By the s-m-n theorem, 
there exists a total computable function s : N ---+ N such that for each k, 
'Ps(k) equals H(k, .) and is therefore total. Applying the Recursion Theorem, 
we obtain i such that 'Ps(i) = 'Pi. For each n, since 'Pi(n) i= 'Pi(n) + 1, the 
definition of H shows that 

'Pi(n) = 'Ps(i)(n) = H(i, n) = f(n) 

and that 'Yi(n) > t(n). 0 

The following exercise shows that if t : N ---+ N is a total computable 
function, then there is a total computable function f such that for each 
Thring machine M (no matter how well designed) that computes f, the 
cost of computing f(n) using M is greater than t(n) for some values of n. 

(6.9) Exercise 

Construct a total computable function v : N ---+ N such that for 
each kEN there are infinitely many values of n with v(n) = k. 
Given a total computable function t : N ---+ N, define a total function 
f : N ---+ N as follows: 

f(n) 'Pv(n)(n) + 1 if 'Yv(n)(n) :::; t(n), 
o otherwise. 

Prove that f is computable and that 'Yv(n)(n) > t(n) whenever v(n) E 
IND(f). 

The next result is a strengthening of the preceding exercise. 

(6.10) Theorem. Let t : N ---+ N be a total computable function. Then 
there exists a total computable function f : N ---+ {O, 1} such that for each 
i E IND(f), 'Yi(n) > t(n) almost everywhere. 

Proof. For each pair j, n of natural numbers and each partial function 
'P : N ---+ N define the property P as follows: 

P(j, n, 'P) <=? 'Yj(n):::; t(n) and there is no k < n such that 
'Yj(k) ::; t(k) and 'Pj(k) i= 'P(k). 
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Note that P(j,n,'Pj) if and only if 'Yj(n) ::::: t(n). Now define a partial 
function 0 : N ---> N and a total function f : N ---> {O, I} simultaneously by 
the following conditions: 

B(n) 

and 

o 
undefined 
min{j ::::: n : P(j, n, f)} 

if n = 0 and 'Yo(O) ::::: t(O), 
if n = 0 and -'("(0(0) ::::: t(O)), 
if n ~ 1, 

f(n) = 0 if n E domain(O) and 'PO(n)(n) = 1, 
= 1 otherwise. 

Then domain(O) is a recursive set, by Exercise (6.1.4), and 0 is a computable 
partial function on N. Moreover, the definition of B ensures that if O(n) is 
defined, then so are 'YO(n)(n) and (by axiom Bl) 'PO(n) (n); in which case we 
can decide whether 'PO(n)(n) equals 1, so that f(n) is defined. On the other 
hand, if n ~ domain(O), then f(n) = 1, by definition. Hence f is a total 
computable function on N. 

We claim that B is injective. Indeed, if 0 is not injective, then there 
exist m, n in domain( 0) with the following properties: m < n, O( m) = 
O(n), 'YO(m)(m) ::::: t(m), 'YO(n)(n) ::::: t(n), and there is no k < n such that 
'YO(n)(k) ::::: t(k) and 'PO(n)(k) =I- f(k). It follows that 

'PO(m)(m) = 'PO(n)(m) = f(m), 

which contradicts the definition of f(m). 
Now assume that there exists i E IND(f) such that 'Yi(n) ::::: t(n) in­

finitely often. Then P( i, n, f) holds for infinitely many values of n, since 
f = 'Pi· For each such n we have O(n) ::::: i, by the definition of 0; but this is 
absurd, since 0 is injective. Hence, in fact, 'Yi (n) > t( n) for all sufficiently 
large n. 0 

(6.11) Exercises 

.1 Define a complexity measure r by setting 

'Yi (n) the number of steps taken by Mi 
to compute 'Pi(n). 

Prove that for each n E N there exists a total computable function 
b : N ---> N with the following property: for each total computable 
function f : N ---> {O, I} there exists i E IND (f) such that 'Yi (k) ::::: 
b(k) for k = 0, ... , n. It follows that the almost everywhere restriction 
cannot be removed from the conclusion of Theorem (6.10). 
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.2* Prove that for each total computable function F : N 2 ~ N there 
exists a total computable function f : N ~ N such that for each 
i E IND(f), l'i(n) > F(n, rpi(n» almost everywhere. (Define t(n) == 
F(n,O) + F(n, 1) and apply (6.10).) This exercise shows that there 
is no computable bound almost everywhere for the values of the cost 
function l'i in terms of the values of the corresponding computable 
partial function rpi. 

To each total computable function f there corresponds a unique com­
plexity class Cf, consisting of all computable partial functions rp : N ~ N 
with the following property: there exists i E IND( rp) such that l'i (n) 5 f (n) 
almost everywhere. 2 Our next aim is to study some basic properties of com­
plexity classes and to prove two fundamental theorems: the gap theorem 
and the compression theorem. 

Define a partial order -< on the set of complexity classes as follows: 

Cf -< Cg if and only if Cf C Cg and Cf =1= Cg' 

lt follows from Theorem (6.10) that for each total computable function f 
there exists a total computable function 9 such that Cf -< Cgj thus there 
exists an infinite ascending sequence C fo -< C h -< C h -< ... of complexity 
classes. 

(6.12) Exercise 

Is the intersection of two complexity classes a complexity class? What 
about the union of two complexity classes? 

If f : N ~ N and 9 : N ~ N are total computable functions and 
f(n) 5 g(n) almost everywhere, then Cf C Cg' Can we be sure that if 9 
is much larger than f almost everywhere, then Cf -< Cg? The following 
Gap Theorem will show us that, no matter how much larger than f is 
g, we may not have Cf -< Cgj indeed, there may be no index i such that 
l'i(n) > f(n) infinitely often but l'i(n) 5 g(n) almost everywhere. 

(6.13) Theorem. Let F : N 2 ~ N be a total computable junction such 
that F(j, k) > k for all j and k. Then for each total computable function 
t : N ~ N there exists a total computable function f : N ~ N such that 

(i) f(n) 2: t(n) for all n, and 
(ii) if f(n) 5 l'i(n) 5 F(n,J(n), then n 5 i. 

2Note that for ip to belong to Of it is not required that all algorithms for 
the computation of ip have complexity bounded by f almost everywhere. Such a 
requirement would be absurd in view of Proposition (6.8). 
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Proof. Let t : N -+ N be a total computable function. Define a total 
function G : N 2 ---t {O, l} by 

G(k, 71) o ift(n):::; k and Ifi < n bi(n) < k 
or -'bi(71) :::; F(n, k))), 

1 otherwise. 

By Exercise (6.1.4), G is computable. (Note that if -+y;(71) :::; F(71, k)), it 
does not follow that li(71) > F(71, k), as li(71) need not be defined.) Given 
71 EN, we prove that 

D(n) == {k EN: G(k,n) c= O} 

is nonempty. To this end, define 

k } t(n) 
F(n. kj1 ) 

if j = 0, 
if j 2: 1. 

Then t(n) = ko < kl < .... Since there are at most n values ,;(71) with 
o :::; i < n, there exists r (0 :::; r :::; 271 + 1) such that for all i < 71, 
,;(71) ¢C [kr' kr+1]: see Exercise (6.15.1). For this r, either ,;(71) < kr or 

(71) :::; k r +1 cc F(n,A:r )), so kr E D(71). It now suffices to let f: N --"* 
N be the total function obtained from G by minimization over its first 
variable, 

f(n) == mink [G(k,nl = 0] (n EN), 

which was proved computable in Exercise (2.7.3). 0 

(6.14) Corollary. Under the hypotheses of Theorem (6.13), Cf 

CFo (J\',f)' 

Proof. Since f(n) :<.: F(n, f(n)) for all n, 

C f C CFo!P' fl' . \ l' .I 

On the other hand, if CPi E CPO (P,',f) , there exists N such that if 71 2: Nand 
n E domain(<.p;), then ,;(n) :::; F(n, f(n)). Consider any n > max{i, N} in 
dornain(<.p;). If f(n) :::; li(n), then n Si, by (6.13); so li(17,) < f(17,). Thus 
I;(n) :::; f(n) almost everywhere, and so CPi E Cf. 0 

To appreciate the force of this corollary, take, for example, F(m, n) 
22": there exists a tota.l computable function f : N ---t N such that if 

2 f (n) . . 
li(n) :::; 2 almost everywhere, then li(n) :::; f(n) almost everywhere! 
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(6.15) Exercises 

.1 * Let ko < kl < ... < k2n+2 and Cl,"" Cn be real numbers. Prove that 
there exists r (0 ~ r ~ 2n + 1) such that Cj ~ [kr, kr+1J for each j. 
(This is used in the proof of (6.13).) 

.2* Let s : N -> N be a total computable function such that sen) > n for 
all n. Prove that for each total computable function t : N -> N there 
exists a total computable function f : N -> N such that 

(i) fen) ~ ten) for all n, and 
(ii) Gf = Gsof · 

(Several authors call this theorem the Gap Theorem.) 

.3 Prove the following Uniform Version of the Gap Theorem: Let 
F : N 2 -> N be a total computable function such that F(j, k) > k for 
all j and k. Then there exists a total computable function s : N -> N 
such that if 'Pm is total, then 

(i) 'Ps(m) is total, 
(ii) 'Pm(n) ~ 'Ps(m)(n) for all n, and 
(iii) if 'Ps(m)(n) ~ l'i(n) ~ F(n,'Ps(m)(n)), then n ~ i. 

There is an interesting interpretation of Exercise (6.15.2) in which each 
step executed by a Turing machine takes one unit of time, and l'i(n) mea­
sures the number of steps executed by Mi in the computation of 'Pi(n). 
Thus for each total computable function f : N -> N, G f consists of all 
computable partial functions 'P : N -> N such that for some i E IND('P), 
and for all but finitely many n E domain('P), the computation of 'Pi(n) 
by Mi takes time at most fen). Imagine that because of restrictions on 
the funds available to us for the purchase of computer time, the only par­
tial functions that we can compute in practice are those which belong to 
Gf . Now imagine also that the restrictions on our funds are relaxed sub­
stantially, so that for some very rapidly growing total computable function 
s : N -> N, we can afford to compute any partial function 'P : N -> N 
that satisfies the following condition: for some i E IND('P), and for all but 
finitely many n E domain('Pi), the computation of 'P(n) by Mi takes time 
at most s(f(n)). It is natural to hope that if sen) grows sufficiently rapidly 
with n, there will be functions that we could not afford to compute un­
der the old funding regime but whose computation is practicable under the 
new one. Alas, the gap theorem shows that if the initial funding conditions, 
represented by f, are unfavourable, then the increase of funds, represented 
by so f, will not enable us to compute any additional functions within our 
still restricted time resources! 
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(6.16) Exercise 

Let f, f' be complexity measures such that 'YHn) ~ ~(i(n) for all i 
and for all n E domain ( 'Pi), and let Of denote the corresponding 
complexity class associated with f. Prove that for each total com­
putable function t : N ---; N there exists a total computable function 
f : N ---; N such that (i) fen) ~ ten) almost everywhere and (ii) 
Of = Of· (Hint: Use Theorems (6.4) and (6.13).) 

The last exercise has an interpretation in which we consider 'Yi(n) and 
'Y~(n) to be the respective times required to compute 'Pi(n) by implement­
ing simulations of Mi on two different computers 0 and 0': however fast 
the processor of 0' is, compared with that of 0, there exist arbitrarily 
large total computable functions whose associated complexity classes with 
respect to 0 and 0' are the same. In other words, increasing the speed of 
a processor will not necessarily augment the class of partial functions that 
can be computed within a given time. 

If we consider the complexity class of a cost function 'Yi, then the picture 
presented by the gap theorem is totally transformed: a consequence of the 
following Compression Theorem is that there exists a total computable 
function F of two variables such that if the complexity bound is increased 
from 'Yi to F(','Yi('», then the class of partial functions that can be com­
puted in practice is enlarged to include a computable partial function that 
is relatively small (in that it is bounded by the identity function through­
out its domain) and for which each algorithm costs more almost everywhere 
than 'Yi. 

(6.17) Theorem. There exist total computable functions s : N ---; N 
and F : N 2 ---; N such that for each i, 

(i) domain('Pi) = domain('Ps(i); 
(ii) 'Ps(i)(n) ~ n for each n E domain('Pi); 
(iii) for each j E IND('Ps(i), 'Yj(n) > 'Yi(n) almost everywhere; 
(iv) 'Ys(i)(n) ~ F(n,'Yi(n» almost everywhere. 

Proof. Define predicates P and Q by 

P(i,j, n) 
Q(i,k,n) 

{:} j < nand 'Yj(n) S 'Yi(n), 
{:} k -=J 'Pj(n) for all j such that P(i,j, n). 

You are invited, in Exercise (6.19), to show that 

\lI(i, n) = min{k: Q(i,k,n)} 
= undefined 

if 'Pi (n) is defined, 
otherwise 

defines a computable partial function on N 2 , and that if \lI( i, n) is defined, 
then \lI(i, n) ~ n. Using the s-m-n theorem, construct a total computable 
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function s : N -+ N such that 'Ps(i) = W(i,·) for each i. Clearly, both (i) 
and (ii) hold. 

Let j E IND('Ps(i))' and consider any n > j such that 

'Pj(n) = 'Ps(i)(n) = w(i,n) 

is defined. The definition of W ensures that Q(i,'Pj(n),n). It follows from 
the definition of Q that --,P(i,j, n); whence 'Yj(n) > 'Yi(n). This proves (iii). 

For all i, n, and k, axiom B2 enables us to decide whether or not 'Yi(n) 
equals k; if 'Yi(n) = k, then, by axiom Bl, 'Pi(n) is defined; whence, by the 
foregoing and Bl, both 'Ps(i)(n) and are defined. Thus 

H(i, n, k) = 'Ys(i)(n) if 'Yi(n) = k, 
= 0 otherwise 

defines a total computable function H N3 -+ N. Now define a total 
computable function F : N 2 -+ N by 

F(n, k) == max{H(i, n, k) : i :5 n}. 

Consider any i and n with n 2: i. From the foregoing we see that 'Yi(n) is 
defined if and only if 'Ys(i)(n) is defined; in which case, 

Thus (iv) obtains, and our proof is complete. 0 

(6.18) Corollary. Under the hypotheses of Theorem (6.17), 

for each i E N. 

Proof. It follows from (iii) and (iv) of Theorem (6.17) that for each i, 

and 

(6.19) Exercise 

Show that, in the proof of (6.17), the function W is computable, and 
that if W(i, n) is defined, then W(i, n) :5 n. 
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We end this chapter by discussing the most famous and startling result 
of Blum's complexity theory: 

(6.20) The Speed-up Theorem [7]. If F : N2 -> N is a total 
computable function such that F(m, n) ~ F(m, n + 1) for all m and n, 
then there exists a total computable function f : N -> N that satisfies 
f(n) ~ n for each n and that has the following speed-up property: for 
each i E IND(f) there exists j E IND(f) such that F(n,"Ij(n)) ~ "Ii(n) 
almost everywhere. 

In interpreting this theorem we will find it helpful to think of F(m, n) 
as a very rapidly growing function of its second argument n, and of "Ii(n), 
when defined, as measuring the time taken by Mi to compute 'Pi (n). The 
theorem then says that there exists a total computable function f of one 
variable, such that, whatever Turing machine Mi we choose to compute 
f, there always exists a Turing machine M j that computes f and almost 
everywhere does so in a time "Ij(n) that satisfies F(n,"Ij(n)) ~ "Ii (n). So 
there is no algorithm that, for this particular function f and infinitely 
many values of n, computes the value f(n) more rapidly than any other 
algorithm. 

For example, taking F( m, n) == 2n , we obtain a total computable function 
f : N -> N and a sequence io, i l , ... in IND(f), such that for each k, 
"Iik+t (n) ~ log 2"1i k (n) almost everywhere. Thus 

and so on. 

"Iit(n) 

"Ii2 (n) 

"Ii3 (n) 

< log 2"1io (n) almost everywhere, 

< log 2 log 2"1io (n) almost everywhere, 

< log 2 log 2 log 2"1io (n) almost everywhere, 

There is another way of looking at the Speed-up Theorem. Consider, for 
example, two computers, one of which runs a million times as fast as the 
other. Applying the Speed-up Theorem with F(m, n) == 106n , we obtain a 
total computable function f with the following property: to each program 
P that computes f there corresponds another program pI that computes 
f, such that for almost all values of n it is at least as quick to compute 
f(n) using program pIon the slower computer as using program P on the 
faster one. 

The proof of the Speed-up Theorem depends on the following prelimi­
nary result known as the Pseudo-speed-up Theorem. 

(6.21) Theorem. Let F : N 2 -> N be a total computable function, 
and fix a total computable function s : N -> N such that 

_ (2)(. ) 'Ps(i,j) - 'Pi ], . (i,jEN). 
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Then there exists an index e such that, with 

fi == ip~2)(i,.) (i EN), 

the following properties hold: 

(i) ip~2)is a total function on N 2 , and ip~2)(i, n) S n for all i, n; 
(ii) for each i, fi = f almost everywhere; 
(iii) ifiE IND(f) , thens(e,i+1)E IND(fHl), and 

F(n,'Ys(e,i+l)(n» S 'Yi(n) for all n > i. 

(6.1) 

Proof. To begin with, we define a partial function C from N3 into 
peN) (the power set of N) as follows. For each (e, i, n) E N 3 , if i ~ n, 
then C(e, i, n) is defined to be 0. If i < n, if C(e, i, m) is defined whenever 
Os m < n, and if 'Ys(e,Hl)(n) is defined whenever i S j < n, then 

C(e,i,n) == {j EN: i S j < n, j rJ. U:::.~loC(e,i,m), 
and 'Yj(n) < F(n,'Ys(e,j+l)(n)}. 

Otherwise, C(e, i, n) is undefined. 3 We note the following facts about C 
whose proofs are left to Exercises (6.22): 

• If C(e, i, n) is defined, then it is a finite recursive set . 

• If n ~ 0, and C(e, i, n) is defined, then 

C(e,i,n) = C(e,O,n) n {i,i + 1, ... ,n -1}. 

IfC(e,i,n) is defined and empty, set Cf>(e,i,n) == 0; ifC(e,i,n) is defined 
and nonempty, set 

Cf>(e, i, n) == min{m : Vj E C(e, i, n) (m =f. ipj(n»)}; 

otherwise, Cf>(e, i, n) undefined. We prove that the partial function Cf> : N 3 --> 

N is computable. Clearly, in seeking to compute Cf>( e, i, n) we may assume 
that ° ::::: i < n. Noting that Cf>(e, i, 0) = 0, and that if Cf>(e, i, n) is defined, 
then so are the values Cf>(e, i, 0), ... , Cf>(e, i, n -1), suppose that these values 
are defined and have been computed. We compute Cf>(e, i, n) by following 
these instructions: 

[> Run the Turing machines Ms(e,j+l) (i ::::: j < n) simultaneously on the 
input n. 

3 A common name for C(e, i, n) in the literature of complexity theory is the 
set of indices cancelled at stage n by e and i. 
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l> If each of these computations is completed, then use Exercise (6.1.4) to 
check whether 

')'j(n) < F(n, ')'s(e,j+l)(n) (i:::; j < n). (6.2) 

l> If condition (6.2) is not satisfied, then ep(e,i,n) is undefined. 

l> If condition (6.2) is satisfied, then from those j such that i :::; j < n 
and ')'j(n) < F(n, ')'s(e,j+l) (n), select those that do not belong to 

U~--==~ C (e, i, m). (This selection can be done algorithmically, smce 
C(e, i, m) is a recursive set for ° :::; m < n.) 

l> If there are no such j, then output epee, i, n) = 0. Otherwise, compute 
'Pj (n) for each of the selected j, compute the least natural number m 
distinct from each of those values 'Pj(n), and output epee, i, n) = m. 
(For each selected j, 'Pj(n) is defined in view of axiom B1.) 

If epee, i, n) is defined, then it is at most n, since there are at most n values 
'Pj(n) with j E C(e, i, n). 

Using the s-m-n theorem and the Recursion Theorem, we now fix the 
value of e as one satisfying 

ep(e,·,·) = 'P~2). 

The foregoing shows that 'P~2)(i,n) :::; n for all i,n. Define I and Ii (i 2: 0) 
as in equation (6.1). In proving that I is total we actually prove that for 
each n, 

'P~2)(i,m) is defined for all i and for 0:::; m:::; n. (6.3) 

This is trivially true for n = 0: in fact, 'P~2) (i, 0) = 0, as C( e, i, 0) is defined 
but empty. Assume, for the purpose of induction, that condition (6.3) holds 
for all n < v, and consider the case n = v. If i 2: v, then C(e, i, v) is defined 

and empty, so 'P~2) (i, v) is defined and equals 0. If i < v, then, noting that 

'P~2) (v, v) is defined, suppose that 

'P~2)(k + 1, v) = 'Ps(e,k+1) (v) is defined for i :::; k < v. 

Axiom B 1 then ensures that ')' s( e,k+ 1) (V) is defined for i :::; k < v. Since, as 
readily follows from our original induction hypothesis, C(e, i, m) is defined 
for 0:::; m :::; v-I, we now see that C(e, i, v) is defined; whence epee, i, v)­
that is, 'P~2) (i, v)-is defined. This completes the (forwards and backwards) 

inductive proof that 'P~2) : N 2 ----> N is total. 
It now follows that C(e, i, n) is defined, and therefore a finite recursive 

set, for all i, n. Since, by construction, 

C(e,O,m) nC(e,O,n) = 0 (0:::; m < n), 
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for each j there exists at most one n such that j E C (e, 0, n). Hence for each 
i there exists4 Ni such that if ° :s j < i and j E C(e, 0, n), then n ::; Ni. So 
if n > Ni , then 

C(e,O,n) C {i,i + 1, ... ,n -I} 

and therefore 

C(e,i,n) = C(e,O,n) n {i,i + 1, ... ,n -I} = C(e,O,n). 

It follows from our choice of e, and the relevant definitions, that 

hen) = <I>(e,i,n) = <I>(e,O,n) = fo(n) (n > N i ), 

so conclusion (ii) of Theorem (6.21) holds. 
It remains to prove (iii). Given an index i for f, we have 

'Ps(e,Hl) = 'P~2) (i + 1, .) = fHI' 

so see, i + 1) E INDUHl). Suppose that F(n,ls(e,Hl)(n)) > li(n) for 
some n > i, and consider the least such value of n. If i E C(e, 0, m) 
for some m < n, then, by the definition of C(e, 0, m), i < m < n and 
F(n, Is(e,i+l)(m)) > li(m), which contradicts our choice of n. Thus 

i~C(e,O,m) (m<n). 

Our choice of n now ensures that i E C(e, 0, n); whence 

fen) = 'P~2)(0,n) = <I>(e,O,n) -1= 'Pi(n), 

by the definition of <1>. This contradicts our choice of i as an index of f, so 
we must have 

F(n,ls(e,Hl)(n)) ::; li(n) (n > i). 

Our proof of the Pseudo-speed-up Theorem is now complete. 0 

(6.22) Exercises 

.1 Prove that if C(e, i, n) is defined, then it is a finite recursive set. (Hint: 
Use induction on n.) 

.2* Prove that if n ~ 0, and C(e, i, n) is defined, then 

C(e,i,n) = C(e,O,n) n {i,i + 1, ... ,n -I}. 

4As will be shown below, we may not be able to compute this value N i . 
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(6.23) Corollary. Let F and s be as in Theorem (6.21). Then the 
index e can be chosen so that all the conclusions of Theorem (6.21) hold, 
except that (iii) is replaced by the following: if i E IND(f), then s( e, i+ 1) E 
IND(fHl) , and 

F(n, Is(e,Hl) (n) + n) ~ li(n) for all n > i. 

Proof. It suffices to show that 

I~(n) == li(n) + n 

defines a complexity measure r' == Ib, I~' ... , and then to replace Ii by I~ 
in Theorem (6.21). The details are left as an exercise (cf. Exercise (6.1.3)). 

o 

We now turn to the long-awaited 

Proof of the Speed-up Theorem. We first prove the theorem in the 
special case where the complexity measure is 10, Ii, ... , defined as follows: 

li(n) the number of distinct cells of Mi visited by the 
read/write head when Mi computes 'Pi(n). 

With f as in Corollary (6.23), fix a normalised binary TUring machine 
T that computes f. Consider any i E IND(f) and set k == see, i + 1). 
There exists N such that 'Pk(n) = fen) for all n ?: N. We modify Mk as 
follows, to produce a normalised binary TUring machine M that computes 
f. If, in its start state, M is given the input n E N, it first checks to see 
whether n < N. If that is the case, M calls T as a module and completes 
a computation with output fen); otherwise, M calls Mk as a submodule 
and again completes a computation with output fen). Let j be the index 
of M. Clearly, we can arrange the construction of M so that there exists 
a constant c > 0, depending on k and n, such that 

Ij(n) ::; Ik(n) + c (n EN). 

We assume that this has been done. Since F is an increasing function of 
its second variable, for n ?: c we have 

F(n"j(n» ~ F(n"k(n) +c)::; F(n"k(n) +n). 

But F(n"k(n)+n) ::; li(n) almost everywhere, by Corollary (6.23). Hence 
F( n, ,; (n» ::; Ii (n) almost everywhere, so the proof of our special case of 
the Speed-up Theorem is complete. 
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We use the Recursive Relatedness Theorem (6.4) to prove the general 
case. Accordingly, let 1'0,1'1, ... be any complexity measure, 1'0, 1'i, ... the 
particular complexity measure defined above, and G : N2 --> N a total 
computable function such that 

1't(n) ~ G(n,1'i(n» and 1'i(n) ~ G(n,1't(n» 

whenever n E domain('Pi) and n ~ i. Replacing G(m, n) by 

n + max G(m, k) 
OS;kS;n 

if necessary, we may assume that G(m, n) < G(m, n + 1) for all m and n. 
Now let f be the function produced by- our special case of the theorem, 
with F replaced by the function 

(m,n) t-+ G(m,F(m,G(m,n»). 

Given an index i of f, we obtain j such that 'Pj = f and 

G(n, F(n, G(n, 1'j(n»» ~ 1't(n) almost everywhere. 

Thus almost everywhere we have 

G(n, F(n, 1'j(n») < G(n, F(n, G(n, 1'j(n»» 

< 1't(n) 

< G(n,1'i(n». 

Since G is a strictly increasing function of its second argument, it follows 
that F( n, 1'j (n» ~ 1'i (n) almost everywhere. This completes the proof of 
the general case of the Speed-up Theorem. 0 

Let F : N 2 --> Nand f : N --> N be total computable functions. We 
say that f is F-speedable (relative to the complexity measure r) if for 
each i E IND(f) there exists j E IND(f) such that F(n, 1'j(n» ~ 1'i(n) 
almost everywhere. The Speed-up Theorem says that if F is an increasing 
function of its second argument, then there exist F -speedable functions. 

(6.24) Exercises 

.1 Give an example of a total computable function f : N --> N and a 
complexity measure r with the following property: if F : N2 --> N is 
a total computable function such that F(m, n + 1) ~ F(m, n) for all 
m and n, then f is not F-speedable relative to r . 

• 2* Show that under the hypotheses of the Speed-up Theorem, the con­
clusion holds for some total computable function f that assumes only 
the values 0 and 1. 
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.3 Show that the almost everywhere condition cannot be removed from 
the conclusion of the Speed-up Theorem. 

Our proof of the Pseudo-speed-up Theorem is constructive, in that it 
shows how to compute both e and the index s( e, i+ 1) of the Turing machine 
that, relative to M i , speeds up the computation of f. But our proof of 
the full Speed-up Theorem is not constructive: in the special case where 
'Yi = 'Y; it does not tell us how to find the index j of the faster Turing 
machine. This defect is not confined to that particular proof. Blum [7] has 
proved that if F : N2 -; N is a total computable function, and f : N -; N 
an F -speedable total computable function, then there is no computable 
partial function r : N -; N such that for each i E IND(f), rei) is defined, 
rei) E IND(f), and F(n, 'YT(i) (n)) ~ 'Yi(n) almost everywhere. The next 
lemma will enable us to obtain a weak version of this result. 

(6.25) Lemma. Let v : N -; Nand s : N -; N be total computable 
functions such that 

'Ps(i)(n) = 'P'Piov(n)(n) 

whenever either side of this equation is defined. Then there exists a total 
computable function H : N2 -; N such that 

'Ys(i)(n) ~ H(n,'Y'P,ov(n)(n)) + H(i,'Yi(v(n))) 

whenever both sides of this inequality are defined. 

Proof. Define the total computable function G : N 4 -; N as in Ex­
ercise (6.1.5). Define also total computable functions T : N 2 -; Nand 
H:N2 -;Nby 

T(p, q) _ max{G(n, i,j, k) : n, k ~ Pi i,j ~ q}, 

H(m,n) = max{T(p,q): p,q ~ max{m,n}}. 

A routine calculation shows that for all n, i, j, k we have 

G(n, i,j, k) < T(max{n, k}, max{i,j}) 
< H(n,k)+H(i,j). 

Since, by the definition of G, 

'Ys(i)(n) = G(n,i,'Yi(v(n)),'Yl"iov(n)(n)), 

we complete the proof by taking j == 'Yi(v(n)) and k == 'Y'Piov(n) (n). 0 

(6.26) Proposition. There exists a total computable function F : 
N 2 -; N, increasing in its second argument, with the following prop­
erty: for each F -speedable function f there is no total computable function 
t : N -; N such that 
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(i) t(i) E IND(f) for each i E N,and 
(ii) for each i E IND(f),F(n,1't(i)(n)) :$1'i(n) almost everywhere. 

Proof. Let v : N --+ N be a total computable function such that for 
each i E N there exist infinitely many n with v(n) = i (cf. Exercise (6.9)). 
By the s-m-n theorem, there exists a total computable function s : N --+ N 
such that 

Cf?s(i) (n) = Cf?'Piov(n) (n) 

whenever either side of this equation is defined. Construct H as in Lemma 
(6.25), and choose a total computable function F : N 2 --+ N such that 

F(n, k + 1) ~ F(n, k) > n + H(n, k) (n, kEN). (6.4) 

The Speed-up Theorem guarantees the existence of F-speedable functions. 
Let f : N --+ N be anyone of those, and suppose there exists a total 
computable function t : N --+ N with the desired properties relative to F 
and f. Choose an index k for t. Then 

Cf?s(k)(n) = Cf?'Pkov(n)(n) = Cf?tov(n)(n) = f(n) (n EN), 

so s(k) E IND(f). On the other hand, since 

1's(k)(n) :$ H(n,1'tov(n)(n)) + H(k,1'k(v(n))) (n EN), 

we see from our choice of v that there exist infinitely many values of n such 
that 

1's(k)(n) :$ H(n,1'tos(k)(n)) + H(k,1'k(S(k))). 

So for infinitely many sufficiently large values of n we have 

1's(k)(n) < F(n,1'tos(k)(n)) - n + H(k,1'k(S(k))) 
(by inequality (6.3)) 

< F(n,1'tos(k)(n)). 

Since s(k) E IND(f), we have arrived at a contradiction. 0 

There is another sense in which the Speed-up Theorem is not con­
structive. If F grows rapidly enough, there is no total computable func­
tion b : N --+ N with the following property: for each F-speedable binary 
function f and each index i of f there exists an index j of f such that 
F(n,1'j(n)) :$ 1'i(n) whenever n ~ b(i). In other words, there is no com­
putable bound b(i) for the exceptional values of n in the speed-up of f. 
This result is a simple consequence of the first exercise in the next set. 5 

5Despite a number of references to this result in the literature, its proof does 
not appear to be published anywhere (although a related result is proved in 
[30]). A proof of the full theorem, and the solutions to Exercises (6.27), will be 
published as "On recursive bounds for the exceptional values in speed-up", by 
Cristian Calude and the author, in Theoretical Computer Science. 
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(6.27) Exercises 

.1 * Prove that there exists a total computable function B : N ~ N with 
the following property: if F : N 2 ~ N is a total computable function, 
increasing in its second argument, such that F(n,O) > B(n) for each 
n, if sEN, and if f : N ~{O, I} is an F-speedable function such that 
~ s (i) is defined for each i E IND(f), then there exist an index k of 
f, and a natural number m > ~8(k), such that Ik(m) < F(m"j(m)) 
for all j E IND(f). (Hint: Define a computable partial function E : 
N 5 ~ N by 

E( u, V, i, z, s) == 1 + max{ i, z, S, ~8(U), ~s( v), IS( u), IS(V)}, 

and use the Double Recursion Theorem (Exercise (5.14.12)) to obtain 
total computable functions gt : N 3 ~ N (t = 0, 1) such that 

Then define 

t 
~i(n) 

if n = E(goCi, z, s),gl(i, z, s), i, z, s), 
otherwise. 

B(n) 1 + max{')'g,(i,z,s)(n) : t = 0, 1; i, z, sEN; 

E(go(i,z,s),gl(i,z,s),i,z,s) = n}.) 

.2* Prove that if F : N2 ~ N is a total computable function, increasing in 
its second argument, then for each F-speedable function f and each 
index i of f there exists an index j of f such that F(n, Ij(n)) S li(n) 
whenever n > j. (Hint: First consider the acceptable programming 
system 

with corresponding complexity measure 

.3* With B as in Exercise (6.27.1), let F : N2 ~ N be a total computable 
function, increasing in its second argument, such that F(n, 0) > B(n) 
for each n, and let f : N ~{O, I} be an F-speedable function. Prove 
that there is no computable partial function () : N ~ N with the 
following property: for each index i of f, ()( i) is defined and there 
exists j :s: ()(i) such that (i) ~j = f and (ii) F(n,'j(n)) :s: li(n) for 
all n ~ ()(i). (This result should be compared with the theorem of 
Schnorr [30].) 
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As the complicated, even pathological, construction used to prove the 
Pseudo-speed-up Theorem suggests, speedable functions are hard to find. 
Does this mean that the Speed-up Theorem, fascinating though it may be 
in theory, is devoid of practical significance? Not necessarily: for a given 
total computable function F : N2 ---- N, increasing in its second argument, 
the F-speedable functions form a set that, in a Baire categorical sense, is 
much larger than its complement in the set of all total computable functions 
from N to N [10]; so speedable functions are much commoner than those 
that are not speedable! 

The relationship between the set of F -speed able functions and its com­
plement is similar to that between the set of irrational numbers and Q: 
although, to the numerically naive, irrational numbers seem thinner on the 
ground than rationals, the set of irrational numbers has larger cardinal­
ity than Q; this is clearly shown by the fact that Q n [0,1] has Lebesgue 
measure 0, whereas the irrational numbers in [0, 1] form a set of Lebesgue 
measure 1. 

Epilogue 

... all experience is an arch wherethrough 
Gleams that untravelled world, whose margin fades 

For ever and for ever when I move. 
How dull it is to pause, to make an end, 
To rust unburnished, not to shine in use! 

As though to breathe were life! 

ALFRED, LORD TENNYSON, Ulysses 



Solutions to Exercises 

And suppose we solve all the problems ... ? What happens? We 
end up with more problems than we started with. Because that's 
the way problems propagate their species. A problem left to itself 
dries up or goes rotten. But fertilize a problem with a solution­
you'll hatch out dozens. 

N.F. SIMPSON, A Resounding Tinkle, Act I, Sc. I 
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Solutions for Chapter 1 

(1.2.1) Yes. Examining the sequence of configurations followed by M 
when the initial configuration is (A, qo, v), we can determine the rightmost 
cell c visited by M before it halts. We can then check whether there are 
any symbols, other than blanks, in the cells to the right of v' up to and 
including c. If there are, then M has not completed a computation on the 
input v; otherwise, it has and the output of that computation is v'. 

(1.3.1) No. Consider the Turing machine with input alphabet {I} and 
the state diagram in Figure 14. The following sequence of admissible con­
figurations has no two terms the same: 

(A, qo, 1), (B, ql, A), (BB, ql, A), (BBB, ql, A), ... 

(1.3.2) The Turing machine M has four states. Given the input w == 
Xl ... X N in {O, I} *, it reads Xl in the start state qo, writes B, moves R, 
and passes to the state 

ql if Xl = 0, 
q2 if Xl = 1. 

On reading X E {O, I} in the state qi (i = 1,2), M writes 

° if i = 1, 
1 if i = 2, 

moves R, and passes to the state 

ql if X = 0, 
q2 if x=1. 

FIGURE 14. The state diagram for solution (1.3.1). 
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0010J< 

@ 

~ ~OOO~ 
l@ 1/0,R O/I,R ® B/B,A. @ 

~ \ I / \::JI/I,L 
l/B,R ~ /B/l,A 

@ 

01/1,. 

FIGURE 15. The state diagram for solution (1.3.2). 

If M reads B in state qi (i = 1,2), it writes 

o if i = 1, 
1 if i = 2, 

does not move, and passes to the state q3. If M reads either 0 or 1 in the 
state q3, it leaves that symbol untouched, moves L, and remains in the 
state q3. If M reads B in the state q3, it leaves B untouched, does not 
move, and passes to the halt state qp. 

The state diagram for M is given in Figure 15. 

(1.3.3) In its start state qo, M reads and rewrites the leftmost symbol 
o of the word v E OB* 11 *, moves R, and enters the state ql. In that state it 
continues moving right, reading and rewriting B, until it reads 1, at which 
stage it rewrites 1 and moves R into the state q2. 

Now suppose M reads 1 in the state q2. Remaining in that state, it 
continues moving right, reading and rewriting 1, until it reads B in the 
cell immediately to the right of the string v. It then writes B and moves L 
into the state q3; reads 1, writes B, and moves L into the state q4; reads 
1, writes 1, and, remaining in the state q4, moves L. If, at this stage, M 
reads B, then there remain 1 's to be shifted left on the tape, so M writes 
1 and moves R into the state q2, ready to read 1. On the other hand, if M 
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BIB,R 11l,R 

(q~ .. O/O,R 
.,-~ 

1Il,L 

FIGURE 16. The state diagram for solution (1.3.3). 

reads 0 in the state Q4, then it writes 1, does not move, and enters its halt 
state QF. 

The state diagram for M is given in Figure 16. 

(1.3.4) A Thring machine M with the required property behaves as 
follows. VVhen started in its start state qo with the input word 

reads Xl ("memorising" it by entering an appropriate state), 
writes B, and 
moves right, one cell at a time, until a blank symbol is reached. 

It then moves left, reads and memorises x N, and writes Xl; moves left, 
reads and memorises :r; N -1, and writes X N; and so on. When the left blank 
is reached, it writes X2 and passes to its halt state qF. Figure 17 fills in the 
details. 

Solutions for Chapter 2 

(2.1.1) The Thring machine in Figure 18 can neither leave its start 
state nor enter its halt state, and so computes the empty partial function 
f: N --> N. 
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FIGURE 17. The state diagram for solution (1.3.4). 

FIGURE 18. A Turing machine that computes E. 
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OIB,R 

OIO,R 0 
(~ 
~@~®~ 

1I1,R ~ 
IIB,R 

BIB,A BIB,L 

OIB,A 

~ ® @ 
~\~ 

IIB,A ~BIB,L 

FIGURE 19. A TUring machine that computes erase. 

(2.1.2) See Figure 19. 

(2.1.3) (i) The Turing machine for 1\ is described in Figure 20. 

(2.1.3) (ii) The Turing machine for V is described in Figure 21. 

(2.1.3) (iii) The effect of the negation function ---, on a binary string w 
is to convert the l's to O's, and the O's to l's. The Turing machine in Figure 
22 performs this task. 

(2.4.2) We first delete the arrows representing state transitions of the 
form 

{j ( qo, y) = (q', y' , D) 

where y t/:. {O, I}. This leaves us with the state diagram in Figure 23. We 
could execute at this stage an encoding, etc., corresponding to the proof 
of Lemma (2.2). However, a smarter way to proceed is to observe that the 
arrow labelled 3/3, R and joining the state q2 to itself makes no contribution 
to the computation if the input is a word over the alphabet {O, I}. Thus, for 
our present purpose, we may delete that arrow from the diagram in Figure 
23. If we do this, and then restrict the input and tape alphabets to {O, I} 
and {O, 1,2, B}, respectively, we are left with the same Turing machine as 
we dealt with in the preceding exercise. Reference to that exercise completes 
our solution of this one. 

(2.5) First note that the base functions are obtained from the base 
functions by 0 applications of composition and primitive recursion. Sup-
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Uffi
$ 0 BIB~ 

OIB,R @ BIB,L • ® 

;;/ ~ 
l@ ______ B_IO-=-'A _______ ~ ~ 

~ 
C;/iiJ BIB~ 

Iffi,R C 
OIB,R 

OIO,A 

1/0,A 

FIGURE 20. A 'lUring machine for 1\. 

Iffi$ \) 00(8$ 0 BIB~ 
~~llB=,R--lI-/ll-"RR-/--+@ BIB,L . ®~1I1'A 

/ O/l,A~ \ 
l@ _____ ---=B.:...;:./O=,A'--_____ .@j 

~ /-'---_______ @ _~B:::.:IB~,=:L __ • ® 

00(8$ ORm,L 
FIGURE 21. A 'lUring machine for V. 
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FIGURE 22. A Turing machine for '. 

1I1,R 2/2,R 3/3,R 1/1,L 

\jQ \j0 
1I2,R • ® B/1,L • @ 211,A. ® 

U U 
O/O,R O/O,L 

FIGURE 23. An intermediate stage in solution (2.4.2). 
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pose that, for some natural number k, all functions obtained from the base 
functions by at most k applications of the operations of composition and 
primitive recursion are in P. Consider a function I : Nn - N obtained 
from the base functions by at most k + 1 applications of those operations. 
If, for example, the last of those applications in the construction of I is one 
of primitive recursion using functions 9 : Nn-l _ N and h : Nn+l _ N, 
then both 9 and h can be obtained from the base functions by at most k 
applications of composition and primitive recursion, so they belong to P, 
by our induction hypothesis; hence I belongs to P by the definition of P. A 
similar argument disposes of the case where the last application of compo­
sition or primitive recursion in the construction of I is one of composition. 
Thus, by induction, P contains all functions that are constructed from the 
base functions by finitely many applications of composition and primitive 
recursion. 

The reverse inclusion is an immediate consequence of the inductive defi­
nition of P. 

(2.6.1) The following recursion scheme shows that the factorial func­
tion is primitive recursive: 

o! 
(n + I)! 

= 1, 

times 0 (scsr 0 Pr, Pi)(n, n!). 

(2.6.2) For each kEN let !k be the constant function n 1--+ k. We 
have the following recursion scheme for the power function: 

power(O, n) = !I(n), 
power(m + 1, n) = times 0 (P], Pr)(m, power(m, n), n). 

It follows that power' is also primitive recursive, as 

power' = power 0 (P?, Pf). 

Finally, if mEN is fixed, then for each n E N we have 

nm = power 0 Um, Pf)(n). 

As power, 1m, and pI are primitive recursive, so is the function n 1--+ nm. 

(2.6.3) First note the following recursion scheme for the function 

onN: 

m 1--+ cutoff(m, 1) 

cutoff(O,l) 

cutoff(m + 1, 1) 

= 0, 

= P'f(m, cutoff(m, 1». 



126 Solutions to Exercises 

FIGURE 24. A TUring machine that computes the zero function. 

() l/I,R 

C @ _llB~,,-R--.. @ B/l,L 

O/I,L 
.@ BII,A .® 

FIGURE 25. A TUring machine that computes scsr. 

Now define an element F of P by the recursion scheme 

F(O, n) 

F(m+1,n) 

Pl(n), 

cutoff(P~(m, F(m, n), n), 1). 

It is easy to show that F(m, n) = cutoff(n, m); so the cutoff subtraction 
function is F 0 (Pi, Pf), which certainly belongs to P. 

Since 
1m - nl = plus(cutoff(m, n), cutoff(n, m)) 

and each of the functions plus, (m,n) I-> cutoff(m,n), and (m,n) I-> 

cutoff(n, m) is primitive recursive, so is the function (m, n) I-> 1m - nl. 

(2.6.4) By Exercise (2.6.2), the function sq : N -t N, defined by 
sq(n) == n2 , is primitive recursive. Since, by Exercise (2.6.3), the function 
(m, n) I-> 1m - nl is primitive recursive, it follows that the function f : 
N 2 -t N defined by f(m, n) == 1m2 - nl is primitive recursive. It is easy to 
show that sqrt is the partial function obtained from f by minimization. 
Hence sqrt E R. 

(2.7.1) As stated in the text, we take the natural numbers, considered 
as functions of zero variables, to be computable by convention. 

The binary Turing machine in Figure 24 computes the zero function on 
N. 

The one in Figure 25 computes scsr : N -t N. 
Consider the computation of PT(k1 , ... , kn ), where, for example, 1 < 

j < n. The desired binary Turing machine M behaves as follows. Suppose 
the input string k 10k20 ... Okn , with each k i EN, is written in the left cells 
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IIB,R IIB,R IIB,R 

l@ 
0 0 0 

1I0,R .@ OIB,R .® OIB,R .@ OIB,R , 

IIB,R 1I1,R OIB,R BIB,L 

0 0 0 0 
·0 OIB,R '@ OIB,R .(jJ) OIB,R .~ BIB,L .@ OIO,A 

U U 
IIB,R 1I1,L 

FIGURE 26. A Turing machine that computes PP(k1 , ••• , kn ). 

of the tape, that M is in its start state qQ, and that the read/write head 
scans the leftmost cell. M first writes 0 as a left end marker, and moves 
right, writing blanks, until it reads and deletes the (j - I)th instance of 0 
from the original input string. It then continues moving right, leaving the 
content of each cell unchanged, until it reads the next instance of 0, which 
it deletes before moving right. It continues moving right, this time deleting 
all symbols until it reads B. At that stage it moves left, leaving the content 
of each cell unchanged, until it reaches the 0 in the leftmost cell. It then 
copies the symbols of k j onto the left of the tape, deletes all remaining 
nonblank symbols, and parks the read/write head. 

M is described by the state diagram in Figure 26, in which the large 
square is a Turing machine module which moves the symbols of k j to the 
left of the tape (cf. Exercise (1.3.3». 

(2.7.2) Let 'Ii be a binary Turing machine that computes Oi (I ~ i ~ 
m), and let T be a binary Turing machine that computes 'IjJ. A binary 
Turing machine M that computes the composite function 'IjJ 0 (01 , ... , Om) 
behaves as follows. Let (kl , ... ,kn ) E Nn. Assume that klO .. . Okn is writ­
ten in the left cells of the tape, that the read/write head scans the leftmost 
cell, and that M is in its start state. To begin with, M shifts klO ... Okn 
one place right, writing B in the leftmost cell (to act as a left end marker), 
copies OOklO .. . Okn to the right of the tape, and places the read/write head 
against the cell Cl to the right of 00. It then calls a Turing machine module 
that, without affecting the cells to the left of Cll imitates the action of 11 on 
the rightmost instance of the string klO ... Okn ; if 01 (kl' ... , kn ) is defined, 
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the module writes it in the cells on the right of 00 and places the read/write 
head against C1. Copying 00k10 ... Okn on the right of 01 (k1, ... ,kn ) so that 
the tape contains the string 

M then places the read/write head against the cell C2 to the right of the 
rightmost instance of 00 and calls a module that, without affecting the cells 
to the left of C2, imitates the action of 72 on the rightmost instance of the 
string k10 ... Okn; if 02(k1 , ... ,kn) is defined, the module writes it in the 
cells on the right of the rightmost instance of 00 and places the read/write 
head against C2; the string on the tape at this stage is 

Carrying on in this way, if 01 (k1 , ... , kn ), 02(k1 , •.. , kn ), ... , Om(k1 , ... , kn ) 

are all defined, M eventually arrives at a configuration in which the string 
on the tape is 

and the read/write head is scanning the cell to the right of the rightmost 
instance of 00. M now moves left, leaving each cell unchanged, until it reads 
B on the far left. It replaces this by 0 and moves right, writing blanks in 
each cell, until it reads the leftmost unit of Ol(kt, ... , kn ) (following the 
first instance of 00 on the tape). It then writes the string 

on the left of the tape (cf. the solution to Exercise (1.3.3)) and places the 
read/write head against the leftmost cell. 

Finally, M calls a module that imitates the action of T on that string; 
so if 

'ljJ 0 (01(k1, ... , kn ), 02(k1 , .•. , kn)' ... ' Om(kt, ... , kn )) 

is defined, it is written on the left of the tape and M parks the read/write 
head. 

(2.7.3) Let T be a binary Thring machine that computes 'ljJ. A bi­
nary Thring machine M that computes the function <p obtained from 'ljJ 
by minimization behaves as follows. Let (k1 , ... , kn ) E N n . Assume that 
k10 .. . Okn is written in the left cells of the tape, that the read/write head 
scans the leftmost cell, and that M is in its start state. To begin with, M 
shifts k10 ... Okn one place right, leaving B in the leftmost cell and placing 
the read/write head against that cell. It then writes 001 on the right of 
k10 ... Okn , leaves the read/write head scanning the cell C on the right of 
00, and enters a special state q. 
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Now suppose that for some j EN the tape contains the string 

and that M is in the state q with the read/write head scanning the cell 
c. ,/\,1 then calls a module that, without affecting the cells to the left of c, 
writes Ok] 0 .. . Okn on the right of the tape and enters another special state 
q', with the read/write head against c. M now calls a module that, again 
without affecting the cells to the left of c, imitates the action of T on the 
string jOk1 ° ... Ok". If 

this module writes jOO'lj;(j, kI, ... ,kn ) on the right of 00 and places the 
read/write head against the cell c' immediately to the right of the rightmost 
instance of 00. M then calls a module that, without affecting the cells to the 
left of c', checks whether 'Ij;(j, kl' ... , kn ) equals O. If 'Ij;(j, kl' ... ,kn ) =I 0, 
this module writes j + 1 in c and the cells to its right, leaves all cells further 
to the right blank, places the read/write head against c, and enters the state 
q. If 'Ij;(j, kl' ... , kn ) = 0, the module writes j in c and the cells to its right, 
leaves blanks in all cells to the right of that, and puts M in a special state 
q" with the read/write head scanning c. 

Finally, suppose that M is in the state q", with the read/write head 
scanning the cell c, and with a string of the form j, where j E N, written 
in c and the cells to its right. M then calls a module that copies j onto the 
left of the tape, leaves all other cells blank, and halts with the read/write 
head on the left. 

(2.9.1) A(O, n) is certainly defined for all n. Suppose that A(m, n) is 
defined for all n; then A(m + 1,0) = A(m, 1) is defined. Now suppose that 
A(m + 1, k) is defined; then 

A(m + 1, k + 1) = A(m, A(m + 1, k)) 

is defined. Hence, by induction, A(m + 1, n) is defined for all n. In turn, it 
follows by induction that A(m, n) is defined for all m and n. 

(2.9.3) We first have 

A(l,O) 

A(l,l) 

A(1,2) 

A(O,l) 

A(O, A(l, 0)) 

A(O, A(l, 1)) 

2, 

A(0,2) 

A(0,3) 

and generally, by a simple induction argument, 

A(1,n)=n+2. 

3, 

4, 
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Next, 
A(2,0) A(1,1) 3, 

A(2,1) A(1, A(2, 0)) A(1,3) = 5, 

A(2,2) A(1, A(2, 1)) A(1,5) 7, 

and, generally, 
A(2, n) = 2n + 3. 

Likewise, 

A(3,0) A(2,1) 5, 

A(3,1) A(2, A(3, 0)) A(2,5) 13, 

A(3,2) A(2, A(3, 1)) A(2,13) 29, 

and, again by induction on n, 

A(3,n) = 2n +3 - 3. 

It follows that 
22 

A(4,0) = A(3, 1) = 13 = 2 - 3. 

Now suppose that, for some n, 

2 

A(4, n) = 22. - 3, 

where there are n + 3 instances of 2 on the right hand side. Then 

.2 

A(4, n + 1) = A(3, A(4, n)) = 2A (4,n)+3 - 3 = 22 - 3, 

where there are (n + 1) + 3 instances of 2 on the far right of these equations. 
This completes an inductive proof of the desired result. 

Solutions for Chapter 3 

(3.1) Let S, T be recursively enumerable subsets of N. If either S or 
T is empty, then it is immediate that both S U T and S n T are recursively 
enumerable; so we may assume that both Sand T are nonempty. Thus there 
exist total computable functions s, t from N onto S and T, respectively. 
Define a total computable function J on N as follows: for each n, J(2n) == 
sen) and J(2n + 1) == ten). Then J maps N onto S U T, which is therefore 
recursively enumerable. An effective listing of the elements of S U T is 

J(O), J(1), J(2), J(3), ... ; 

that is, 
s(0),t(0),s(1),t(1), .... 
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To construct an effective listing of the elements of S n T, follow the ar­
rows through the diagram below, deleting all pairs (8(i), t(j)) with unequal 
components and listing the first components of the remaining pairs. 

(s(O), teO)) -? (8(1), teO)) (8(2), teO)) -? (8(3), teO)) 
,/ ,/ 

(s(O),t(1)) (s(l), tel)) (8(2), tel)) 
1 ,/ 

(s(O), t(2)) (s(1), t(2)) 
,/ 

(s(O), t(3)) 
1 

(3.4.1) To compute h(i,j), we run the TUring machine M on the input 
i and check whether it halts in at most j steps. If it does, we set h( i, .1) == i; if 
it does not, we set h(i, j) == a. Intuitively, this procedure gives an algorithm 
for computing h. It follows from the Church-Markov-TUring thesis that h 
is computable. 

(3.4.2) By the definition of recursively enumemble, the empty subset 
of N, which is the range of the empty partial function 1 on N, is recursively 
enumerable, and each nonempty recursively enumerable subset of N is the 
range of a total computable function on N. Conversely, suppose SeN is 
the range of a computable partial function r.p from N to N; we may assume 
that r.p is not the empty partial function. By Theorem (3.3), there exists a 
total computable function f : N -? N that maps N onto domain( r.p). Since 
r.p 0 f is a total computable function mapping N onto S, it follows that S 
is recursively enumerable. 

(3.5.1) Let S be an infinite recursive subset of N. Define a total func­
tion f : N -? N inductively, as follows: 

f(O) == the least 11 such that n E S, 

and for each kEN, 

f(k + 1) == the least n such that 11 > f(k) and n E S. 

lRecall from Exercise (2.1.1) that the empty partial function from N to N is 
computable. 
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Since 8 is recursive, f is computable, by the Church-Markov-Turing thesis. 
Also, f is strictly increasing and therefore one-one. It is clear that if s E 5, 
then s = f(k) for some k ~ s; so f maps N onto 5. Moreover, r.p is 
informally computable: to compute r.p(n), we first check whether or not n 
belongs to S; if it does, then, by examining the values f(O), ... , fen), we 
can find f-l(n). By the Church-Markov-Turing thesis, r.p is computable. 

(3.5.2) Let S be a recursive set. If 8 = 0, then it is certainly recur­
sively enumerable. If 8 =J 0, choose an element a of S and define a total 
computable function f from N onto S by 

f (n) n if n E S, 
a if n 1. S. 

Then f is a recursive enumeration of S, which is therefore recursively enu­
merable. 

(3.5.3) Since the empty subset of N is recursively enumerable and 
since it is both the domain and the range of the (computable) empty partial 
function on N, we may restrict our attention to a nonempty subset S of 
N. Suppose there exists a computable partial function r.p : N --l> N whose 
domain is a recursive subset of N and whose range is S. Fixing a E 5, 
define 

fen) = r.p(n) if n E domain(r.p), 
= a if n 1. domain(r.p). 

Then f is a total computable function from N onto 8, which is therefore re­
cursively enumerable. The converse is a trivial consequence of the definition 
of recursively enumerable. 

(3.7.1) First form the state transition table: 

0 1 B 

0 (1,0, R) undefined undefined 

1 (3,1, R) (l,O,L) (2,0, R) 

2 undefined undefined (2,0, R) 

(Note that we do not need a row corresponding to the halt state 3.) Next 
form the string 

a == 3/(1,0,R)1 .. L 1 ~ 1(3, 1,R)/(1,0,L)/(2,0,R)1 ~ 1 ~ 1(2,0,R). 

Then encode a : 
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10011 11111 10001 11111 10000 11111 11101 11111 
3 / 1 / 0 / R / 

11011 11111 11011 11111 10011 11111 10001 11111 
1- / 1- / 3 / 1 / 

11101 11111 10001 11111 10000 11111 11100 11111 
R / 1 / 0 / L / 

10010 11111 10000 11111 11101 11111 11011 11111 
2 / 0 / R / 1- / 

11011 11111 10010 11111 10000 11111 11101 
1- / 2 / 0 / R 

(3.7.2) (i) 

10011 11111 10001 11111 10001 11111 
3 / 1 / 1 / 

11101 11111 11011 11111 10001 
R / 1- / 1 

The string is not in range(')'), as the last symbol, 1, of its decoded form is 
part of an uncompleted triple. 

(3.7.2) (ii) 

10011 11111 10001 11111 11010 11111 11101 11111 
3 / 1 / B / R / 

10010 11111 10001 11111 11101 11111 11011 11111 
2 / 1 / R / 1- / 

10011 11111 11010 11111 11100 11111 11011 11111 
3 / B / L / 1- / 

11011 11111 10010 11111 10000 11111 11101 11111 
1- / 2 / 0 / R / 

10011 11111 11010 11111 11100 11111 11011 
3 / B / L / 1-
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/ "\ 
i , 

i I 
\ ) 
VOIO,R 

FIGURE 27, The Turing machine decoded in solution (3,7,2)(ii), 

If this string is the encoded form of a normalised binary Turing machine )\1, 
then lvt has states 0,1,2,3, with start state 0 and halt state 3, Starting 
from the third symbol, 1, of the decoding, we form the state transition 
table below, (Of course, the row corresponding to the halt state ~) does not 
appear in the string encoding M,) 

0 1 B 

0 (1, B, R) (2,1, R) undefined 

1 (3, B, L) undefined undefined 

2 (2,0, R) (:3,B,L) undefined 

3 undefined undefined undefined 

VJe now see that our string represents the normalised binary Turing ma­
chine described in Figure 27. 

(3.7.2) (iii) 

10011 11111 10001 11111 10000 11111 11101 11111 
3 / 1 / 0 / R / 

11011 11111 10000 11111 10001 11111 11100 
.1 I 0 / 1 / L 

I 
I 

This number is not in range ( 'I), as there is not suffieient information to 
encode a 4-by-3 transition table (corresponding to 4 states). 
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(3.7.3) By Proposition (3.2), the partial function () : N ----+ N defined 
by 

e(n) 1 ifn E S, 
undefined if n 1- S 

is computable. Hence the product ()'Pi is computable. But 

'P;(n) ifnES, 
undefined if n 1- S. 

(3.10.1) Define a partial function W : N3 ----+ N by 

whenever the right side exists. Then W is computable: to compute wen, i, j), 
first run M j on the input n; if this computation halts, run /'v't; on the input 

'Pj(n). Now choose v E N such that W = 'PS' ). By the S-Tn-n theorem, there 
exists a total computable function s : N 3 ----+ N such that 

_ (3) ( . .) 
'Ps(k,i,j) - 'Pk ·,Z,). 

Defining a total computable function 9 : N 2 ----+ N by g(i,j) == s(v, i,j), for 
all i and j we have 

'Pg(i,j) = 'Ps(l/,i,j) = 'PP)(·,i,j) = Wei,j) = 'Pi 0 'Pj. 

(3.11.1) Since 'l/Jo, '1/JI, ... has the universal property, the partial func­
tion W : N 2 ----+ N defined by W(n, k) == 'l/Jn(k) is computable. Using the 
8-Tn-n property of 'l/Jb, 'I/J~ , ... , we now see that there exists a total com­
putable function f : N ----+ N such that 

'l/Jj(n) = W(n,·) = 'l/Jn 

for each n. 

(3.11.2) The necessity of the stated condition follows from Exercise 
(3.11.1). To prove its sufficiency, let 'l/Jo, 'l/Jl,'" be an enumeration of the 
set of all computable partiaJ functions from N to N, and suppose that 
there exist total computable functions f : N ----+ Nand 9 : N -> N such 
that 'l/Jn = 'P fen) and 'Pn = 'l/Jg(n) for each n. Since the partial function 
(n, k) f---> 'Pf(n)(k) on N 2 is computable (why?), '1/)0, 'l/Jl,'" has the universal 
property. On the other hand, if <P : N2 ----+ N is a computable partial 
function, then, by Corollary (3.9), there exists a total computable function 
s : N ----+ N such that 'Ps(n) = <P(n,·) for each n. Setting t == go s, we see 
that t is a total computable function on N such that 'ljJt(n) == <P(n,·) for 
each n; hence 'l/Jo, '1/JI, ... has the 8-m-n property. 
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Solutions for Chapter 4 

( 4.1.1) Such a Turing machine is given by the state diagram in Figure 
28. 

(4.1.2) Suppose there exists such a Turing machine M, and consider 
its behaviour when, in its start state, it is given a nonempty input string 
wE {O}*. Since A1 halts on the input w, there is a positive integer N > Iwl 
such that, during the computation in question, M never reads a cell beyond 
the Nth from the left. Now consider what happens when the left of the tape 
contains w, followed by blanks in all cells up to and including the Nth, and 
o in the (N + l)th cell. When st.arted on the left, M will mimic its behaviour 
on reading/v; so M will never reach the (N + 1)th cell, and therefore will 
not delete the 0 contained therein. This contradiction completes the proof. 

(4.5.1) Define a total computable function h : N 2 -+ N by 

h(n,k) 1 if Ai" halts in at most k steps on the input 71, 

a otherwise. 

By following the arrows in the diagram at the top of the next page, we can 
produce a recursive enumeration of the range of h. 

h(O,O) -+ h(O,1) h(0,2) -+ h(0,3) 
/ / 

h(l, 0) h(l,l) h(l,2) 
1 / / 

h(2,0) h(2,1) 
/ 

h(3,0) 
1 

If we go through this list and delete all terms h( 71, k) with the value 0, we 
obtain a list, say 

h(no, ko), h(nl, kd, h(n2, k2 ), ... , 

of all the values hen, k) equal to 1. Then 710,711, n2, .. . is a recursive enu­
meration of K. 

(4.5.2) Suppose K is recursively enumerable. By Theorem (3.3), K = 
domain(!pv) for some 1/. Then 

a contradiction. 

1/ E K {=} !PI/ (1/) is defined 

{=} uEK 

{=} utl-K, 
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O/B,A O/B,L 

0)_. _0c:..:..::/B:...c:..::,A=--_ 0 

~Bm'L 
FIGURE 28. The Turing machine for solution (4.1.1). 

(4.5.3) If S is recursive, then so is N\S, as the characteristic function 
of the latter is 1 - xs, which is certainly computable. Then, as recursive 
implies recursively enumerable (Exercise (3.5.2», both S and N\S are re­
cursively enumerable. 

Conversely, suppose that both S and N\S are recursively enumerable. 
If either of these sets is empty, then the other is N and both are certainly 
recursive. So we may assume that both Sand N\S are nonvoid; whence 
there exist total computable functions I, 9 on N such that range(f) = Sand 
range(g) = N\S. An informal description of an algorithm for computing 
Xs goes as follows. Given n E N, compare it in turn with 

1(0), g(O), 1(1), g(I), ... 

until either we find k with I(k) = n, in which case we set the output equal 
to 1, or else we find k such that g(k) = n, in which case we set the output 
equal to O. Since 

range(f) U range(g) = N 

and 
range(f) n range(g) = 0, 

for each n E N exactly one of the two alternatives for the algorithm's 
behaviour must occur. 

Now suppose that K is recursive. Then R is recursively enumerable, 
by the foregoing; but this contradicts Exercise (4.5.2). Hence K is not 
recursive. 
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(4.7.1) Let P(N) denote the power set of N-that is, the set of all 
subsets of N. For each subset S of N let F(S) be the number with binary 
expansion 

0·xs(0)xs(1)xs(2) .... 

Note that F maps P(N) onto [0,1]: for if x E [0,1] and 0·XOXIX2 ... is a 
binary expansion of x, then x = F(S), where S == {i EN: Xi = I}. 

Now suppose that P(N) is countable. Then there exists a mapping 9 of 
N onto P(N); so Fog is a mapping of N onto [0,1], and therefore [0,1] is 
countable. This contradicts Cantor's Theorem (4.6). 

(4.7.2) By definition, a nonempty recursively enumerable subset S of 
N is the range of some total computable function on N. Since the set of all 
computable partial functions from N to N is countable, the set of all total 
computable functions from N to N is also countable. Let 

io,h,h,··· 

be a listing2 of all the total computable functions from N to N. Then 

0, range(fo), range(h), range(h),··. 

is a listing of all tlie recursively enumerable subsets of N; so the set of 
recursively enumerable subsets of N is countable. By Exercise (4.7.1), the 
set of all subsets of N is uncountable. Hence not all subsets of N are 
recursively enumerable-that is, there exists a subset of N that is not 
recursively enumerable. 

(4.8.2) Let x be a computable real number; so there exists a total 
computable function s : N ---. Q such that Ix - s(k)1 S; 2-k for each k. 
Given a natural number k, first compute a positive integer N such that 

lex - txn/n!1 S; Tk-l. 

n=O 

Next compute a positive integer m such that if Ix - tl s: 2-m , then 

2Note that this enumeration is not effective: see Proposition (5.1). 



Solutions for Chapter 4 139 

Then r(k) == I::=o s(m)n In! is a rational number, and 

lex - r(k)1 ::; lex - I::=o xn In!1 

+ 1I::=o xn In! - I::=o s(m)n In!1 

< 2-k - 1 + 2-k - 1 

2-k • 

We have described (informally) an algorithm for computing a total function 
r : N -+ Q such that lex - r(k)1 ::; 2-k for each k. Hence eX is a computable 
real number. 

Additional Exercise: Show in detail how r(k) can be constructed as a 
computable function of k. 

(4.8.3) Let x and y be computable real numbers, and choose total 
computable functions s : N -+ Q and t : N -+ Q such that Ix - s(n)1 ::; 
2-n and Iy - t(n)1 ::; 2-n for each n. Define total computable functions 
U,v: N -+ Q by 

u(n) == s(n + 1) + t(n + 1), 

v(n) == s(n + 1) - t(n + 1). 

For each n we have 

I(x + y) - u(n)1 < Ix - s(n + 1)1 + Iy - t(n + 1)1 
< 2-n - 1 + 2-n - 1 

2-n 

and similarly 
I(x - y) - v(n)1 ::; Tn. 

Hence x + y and x - yare computable. 
To handle the product xy, first compute a positive integer m such that 

if either Ix - zl ::; 1 or Iy - zl ::; 1, then Izl ::; 2m. For each n we have 

Setting 

Ixy - s(n) . t(n)1 < Ix - s(n)I'lyl + Iy - t(n)I'ls(n)1 
< 2-n2m + 2-n2m 

2m-n+l. 

r(n) == s(m + n + 1) . t(m + n + 1), 

we see that r : N -+ Q is a total computable function such that Ixy - r( n) I ::; 
2-n for each n. 
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(4.8.4) There exists a total computable function s : N ---+ Q such 
that Ix - s(n)1 ::; 2-n for each n. Choose a positive integer m such that 
Ixl > 2-m . Then Is(n)1 > 2-m - 1 for all n > m. For such n we have 

Setting 

11/x -l/s(n)1 Ixl-l Is(n)I- 1 Ix - s(n)1 

< 2m 2m +l2-n 

22m-n+l. 

r(n) == 1/s(2m + n + 1), 

we see that r is a total computable function from N to Q and that 

11/x - r(n)1 ::; Tn 

for each n. 

(4.8.6) Choosing indices i, j for cp and 'ljJ, respectively, run Mi on the 
input n. If it completes a computation, store cp(n) and run M j on the input 
n. If that also completes a computation, call a Turing machine module 
T that compares the stored value of cp(n) with 'ljJ(n) to decide whether 
cp(n) = 'ljJ(n) or cp(n) =1= 'ljJ(n). 

(4.8.7) Choose indices i, j for sand f, respectively. Given n EN, first 
run M j on the input n, to compute and store fen). For k = 0, 1, ... use Mi 
to compute s(k), and then call a Turing machine module that compares 
s(k) with fen) (cf. the solution of Exercise (4.8.6)). If s(k) - fen) > 2- k , 

then 
x - fen) > s(k) - fen) -Ix - s(k)1 

> 2- k - 2-k 

o 
and so x> fen); in that case we stop the computation. If f(n)-s(k) > 2-k , 

then a similar argument shows that fen) > x; in which case we stop the 
computation. On the other hand, if Is(k) - f(n)1 ::; 2-k , we carryon with 
the computation of s(k + 1). Note that we are guaranteed to find a value 
k such that either s(k) - fen) > 2-k or fen) - s(k) > 2-k : for as x is 
irrational, there exists k such that Ix - f(n)1 > 2-k+l and therefore 

Is(k) - f(n)1 > Ix - f(n)I-lx - s(k)1 
> 2- k+l _ 2- k 

2- k . 

Thus we can be certain that our algorithm terminates. 
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(4.11.1) Suppose we have a list rl, r2,'" of all numbers in the closed 
interval [0,1]. Write each ri as a decimal, and define a nonnegative real 
number 

by setting 

d; 9 if the ith decimal digit of ri is less than 5, 
o otherwise. 

As x differs from 'fi by 5 in the ith decimal place, it cannot be in the list 
rl,r2, ... (see the lemma below). But this list includes all numbers in [0,1]; 
so we have a contradiction from which Cantor's Theorem follows. 

A diagram should help to make Cantor's argument clear: 

ro ·2 5 6 3 

·0 6 7 4 

·7 8 1 8 

·6 1 0 3 

With the listing suggested by this diagram, since the first decimal place of 
rl is less than 5, we make the first decimal place of x equal to 9; since the 
second decimal place of r2 is greater than 4, we make the second decimal 
place of x equal to 0; and so on. Thus 

x = ·909 ... 9 ... , 

where the nth decimal place is 9 as 7'i has nth place equal to 3. Clearly, x is 
different from each rio 

The lemma referred to in the above solution is the following. 

Lemma. Let a == aO·ala2 ... and b == bO'b1b2 ... be decimal expansions 
of two 7'eal numbers, and suppose that there exists n such that an and bn 

differ by at least 2 (modulo 10). Then a 'I b. 

Proof. Suppose first that lao - bol 2: 2, and without loss of generality 
take ao 2: bo + 2. Then 
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whence a -I- b. 

00 

a-b ao-bo+2:(ai-bi)lO-i 
i=1 

00 

> 2 - 2: lai - bi llO-i 

i=1 

00 

> 2 - 2: 9.1O- i 

i=1 

2 - (9/10)(1 + 1/10 + 1/102 + ... ) 
2 9/10 - l' 

- 1-1/10 - , 

In general, if an and bn differ by at least 2, then the integer parts of lOna 
and lOn b differ by at least 2; so, by the case discussed above, lOn a -I- lOn b, 
and therefore a -I- b. 

(4.11.2) Apply the proof, suitably adapted, of Cantor's Theorem given 
in the main body of the text. 

(4.11.3) First proof. Since f is increasing, there exists N such that 
fen + 1) = fen) for each n 2: N. Hence 

00 

x == L 2f(n)3-n 

n=O 

has a recurring ternary expansion and is therefore rational. By Exercise 
(4.8.1), x is computable. It follows from Lemma (4.10) that the function 
2f, and therefore f itself, is computable. 

Second proof. For each N E N let fN be the total computable func­
tion defined on N by 

fN(n) = 0 if n :::; N, 
= 1 if n > N. 

Clearly, fN is computable. Since f = fN for some value of N, f is com­
putable. 

(4.14.1) (i) A partial function 8 : Rc ---+ N is computable if there 
exists a computable partial function () : N ---+ N such that if !.pi is a com­
putable real number generator converging to a limit x in the domain of 8, 
then i E domain(() and 8(x) = ()(i). 
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(4.14.1) (ii) Let q : N -t Q be the one-one mapping of Q onto N 
introduced on page 52. A partial function 8 : Q -t Re is computable if 
there exists a computable partial function 0 : Q -t N such that if i E N 
and q(i) E domain(8), then q(i) E domain(O) and <PO(q(i)) is a computable 
real number generator converging to 8(q(i)). 

(4.14.1) (iii) A partial function 8 : N x Re -t Rc is computable if 
there exists a computable partial function 0 : N x N -t N such that if 
i EN, and <pj is a computable real number generator converging to a limit 
x such that (i, x) E domain(8) , then (i,j) E domain(O) and <Pe(i,)) is a 
computable real number generator converging to 8(i, x). 

(4.14.2) Define a computable partial function \Ji : N 3 -t N as follows. 

\Ji(i,j, n) <Pi(n + 1) + <pj(n + 1) if <Pi(n + 1), <pj(n + 1) are 
both defined, 

undefined otherwise. 

By the s-m-n theorem, there exists a total computable function .9 : N 2 -t N 
such that \Ji(i,j,.) = <Ps(i,j) for all i,j. Now consider computable real num­
ber generators <Pi, <pj converging to computable real numbers x and y, re­
spectively. The solution to Exercise (4.8.3) shows that <Ps(i,j) is a com­
putable real number generator converging to x + y. It follows that the 
addition function plus : Rc x Rc -t Rc is computable. 

A similar argument proves the computability of minus: Rc x Rc -t Re. 
It remains to deal with times: Rc x Re -t Re. To this end, we first 
observe that if <Pi, <pj are computable real number generators converging to 
computable real numbers x and y, respectively, then for each k, 

Ixy - <Pi (k)<pj (k)1 < Ix - <Pi(k)l· Iyl + Iy - <pj(k)I'I<pi(k)1 

< 2- k (l<pj(k)1 + 1) + 2- k l<Pi(k)1 

2- k (1 + l<Pi(k)1 + l<pj(k)!). 

Define a partial function \Ji : N3 -t N by 

\Ji(i,j,n) == mink [2-k(1 + (k)1 + l<pj(k)l) S; 2-n j. 

\Ji is computable in view of Exercises (2.6.5) and (2.7,3). Thus 

(i,j,n) f--> <pi(W(i,j,n))' <pj(\Ji(i,j,n)) 

is a computable partial function from N3 to Q. By the 8-m-n theorem, 
there exists a total computable function f : N 2 -t N such that 
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'PfCi,j) = 'Pi(W(i,j, .)) . 'Pj(W(i,j, .)) 

for all i, j. 
Now consider computable real number generators 'Pi, 'Pj converging to 

computable real numbers x and y, respectively. Since 

1 + !'Pi(k)1 + l'Pj(k)! < 1 + (Ixl + 2- k ) -f- (Iyl + 2-k ) 

< Ixl + Iyi + 3, 

we see that 

It follows that 'P f(i,j) is a total computable function on N. Moreover, by 
the observation above, 

Ixy - 'Pj(i,j)(n)1 Ixy - 'Pi(W(i,j,n))' 'Pj(W(i,j,n))1 

< 2---lJ!(i,j,n) (1 + l'Pi(W(i,j,n))1 + l'Pj(W(i,j,n))I) 

< 2-n 

for each n. Hence 'P f(i,j) is a computable real number generator converging 
to xy. 

(4.14.3) Let M be a normalised binary Turing machine that computes 
~. To compute W(m, n), first run /vl on the input m. If J\It completes the 
computation, run Mm on the input 2~(m) + n - 2. If that computation 
is completed, run a Turing machine module that checks whether or not 
'Pm(24{m) + n - 2) = 0; finally, if 'Pm(2~(m) + n - 2) of 0, run a Turing 
machine module that computes 1/'Pm(2~(m) + n - 2). 

(4.14.4) There exist computable partial functions (;J N ---; Nand 
~ : N ---; N such that 

(i) if 'Pi is a computable real number generator converging to a 
computable real number x E domain(8), then i E domain«(;J) 
and 'POO) is a computable real number generator converging 
to 8(x): 

(ii) if i E domain(W), then i E domain(~) and 'P,p(i) is a comput­
able real number generator converging to W(i). 

If i E domain(8o 'II), then i E domain(W) and W(i) E domain(8). So 
i E domain( '1/)) and 'P,p( i) is a computable real number generator cOIlverging 
to the computable real number W(i); whence ~(i) E domain«(;J) and 'PfJ(1j)(i» 

is a computable real number generator converging to the computable real 
number 8(W(i)). Thus 8 0 'II is a computable partial function from N to 
Re. 
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On the other hand, there exists a computable partial function 1jJ' ; N ---+ 

N such that if 'Pi is a computable real number generator converging to a 
computable real number x E domain(IJi'), then i E domain(1jJ') and 'P1j;f(i) 

is a computable real number generator converging to 1Ji'(x). Let 'Pi be a 
computable real number generator converging to :c E domain(8 0 1Ji/). Then 
i E domain( 1jJ'), 'P,pf(i) is a computable real number generator converging 
to 1Ji'(x), and 1Ji'(x) E domain(8). Hence 1jJ'(i) E domain(B) and 'P&(,pf(i)) is 
a computable real number generator converging to 8(IJi'(i)). Thus 8 0 1Ji' 
is a computable partial function from Rc to Re. 

(4.14.5) First note that (d. Exercise (4.14.1)) a partial function 8 ; 
Rc x Re ---+ N is computable if there exists a computable partial func­
tion B ; N 2 ---+ N with the following property: if 'Pi, 'Pj are computable 
real number generators converging to computable real numbers x and y, 
respectively, such that (x, y) E domain(8) , then (i,j) E domain(B) and 
B(i,j) = 8(x,y). 

Now let 8 : Rc x Rc ---+ N be a computable partial function, fix a ERe) 
and let IJi be the partial function x I---> 8(x, a) on Re. Choose the com­
putable partial function B : N2 -----? N as above, let 1/ be an index of a com­
putable real number generator that converges to a, and define a computable 
partial function 'P : N ---+ N by 'P == B(·, v). If 'Pi is a computable real num­
ber generator converging to a computable real number x E domain(lJi), 
then i E domain ( 'P) and 

'P(i) = B(i, 1/) = 8(x,a). 

Hence B is computable. 

(4.14.6) To begin with, suppose that 8 is computable; so there exists 
a computable partial function (J : N ---+ N such that if i E domain(8), then 
i E domain(8) and 'Pe(i) is a computable real number generator converging 
to 8(i). Define a computable partial function, : N ---+ N by 

,(j) == mink [!'Pj(2) - k! < 1/2]. 

Define also a computable partial function IJi : N 2 ---+ N by 

lJi(j,n) == 'Pe(--y(j)) (n). 

Choose a total computable function s : N ---+ N such that w(j,.) = 'P8(j) 
for each j. Let 'Pj be a computable real number generator converging to 
i E N. Then as !i - 'Pj(2)! < 1/2, we see that ,(j) = i. Thus 

'PsUl = 'Pe(--y(j)) = 'Pe(i), 

which is a computable real number generator converging to 8* (i). Hence 
8* is computable. 
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Conversely, suppose that (0* is computable, and choose a computable 
partial function B* : N -'> N such that if i.(Jj is a computable real number 
generator converging to i E domain(8*), then j E domain(8*) and i.(J1)*(j) 

is a computable real number generator converging to 8* (i). Define a total 
computable function F : N 2 -'> N by 

F(i,n) == i (i,n EN). 

Applying the s-m,-n theorem. construct a total computable function t : 
N---.; N such that F(i,·) = for each i. Let B == B* 0 t: then B is a 
computable partial function from N to N. If i E domain(8), then i.(Jt(i) 

is, trivially, a computable real number generator converging to i, so t(i) E 

domain(B*) and i.(JO(i) is a computable real number generator converging to 
f)* (i) = 8U). Hence 8 is computable. 

(4.17.1) It is clear from the definition of the mapping q on page 52 
that there exist total computable functions f : N -'> N, g : N -'> N, and 
s: N ----7 {O, I} such that for each i, 

q(i) = (-1)s(;) f(i)/g(i). 

Given i E N, and working relative to the number base d, we now divide g(i) 
into f(i) by the standard long division algorithm from elementary school 
to produce successively the digits of a d-ary expansion of Iq(i)l. Thus 

<P(i, n) the (n + 1) th digit produced by the long 
division of f(i) by g(i) 

defines a total computable function <P : N~ ----> N. Using the s-m-n theorem, 
we now obtain a total computable function r : N -'> N such that 

00 

q(i) = (-1),,(') L i.(Jr(i) (n)d- n 

n=O 

for each i. 

(4.17.2) We begin with the following observation from Exercise (4.8.7): 
If i.(Ji is a computable real number generator converging to an irrational 
compntable real n1LTnbeT x, and f : N ------> Q is a total computable function, 
then 

(i) for each n EN there exists k such that li.(Ji(k) - f(n)1 > 2-k ; 

(ii) if ,pi(k) - f(n) > 2- k • then J.: > f(n); 
(iii) ~r f(n) - i.(J;(k) > 2- k , then J: < f(n). 

The solution of the present exercise is modelled on the proof of Propo-
sition 16). We define simultaneously computable partial functions a : 
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N3 -t Nand W : N 2 -t N as follows. First set 

o:(O,i,n) 

W(i,O) 

min m [I'Pi(m) - nl > 2-- m ] , 

min n [n - 'Pi (0:(0, i, n)) > 2-<>(0,i,n) 1 - 1. 

Having defined w( i, j) (0 :s: j :s; k), if t E {O, ... , d - I} set 

o:(k + 1, i, t) == minm [ 'Pi(m) - t Wei, j)d- j - (t + 1)d k - 1 

j=O 

otherwise set 
o:(k + 1, i, t) == undefined. 

Define also 

W(i,k+1) 

min t [t E {O, ... , d - I} and I:~=o W(i, j)d- j +- (t + 1)d-k - 1 

-'Pi(cx(k + 1, i, t)) > 2-<>(k+1,i.t)] ____ 1. 

Using the 8-m-n theorem, choose a total computable function s : N -t N 
such that 'Ps(i) = W(i,') for each i. Now consider i E N such that 'Pi 

is a computable real number generator converging to a positive irrational 
number x ERe. Taking f(n) == n in the observation at the start of this 
solution, we see that 0: (0, i, .) is a total function on N and that W ( i, 0) is 
the unique natural number N such that N < x < N + l. Now suppose that 
the values W(i,j) (0 :s: j :s: k) have been computed so that 

Taking 

f(t) 

W(i,j) E {O, 1, ... , d - I} (IS; j :s; k). 

if ° :s; t :s; d - 1, 

ift ~ d, 

and applying the observation at the start of this solution, we see that 
o:(k + 1, i, t) is defined for each t E {O, ... , d - I} and that i¥(i, k + 1) is 
the unique t E {O, ... ,d - I} such that 

k k 

L W(i,j)d- J + td- k --1 < X < L W(i,j)d- j + (t + 1)d-k - 1 . 

j=O j=O 

It follows that 

00 co 

n=O n=O 
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(4.23.1) Define a total computable function H : N 2 --t {O, I} by 

H(m,n) 1 if /vim computes 'Pm(m) in at most n steps, ° otherwise. 

By Corollary (3.9), there exists a total computable function s : N --t N such 
that 'Ps(m) = H(m,·) for each mEN. Suppose there exists a computable 
partial function () with the stated properties. For each i, 'Ps(i) is a total 
computable function from N into {O, I}, so s(i) E domain(O). If O(s(i)) = 0, 
then (n) = 0 for all n, so 'Pi(i) is undefined. If O(s(i)) = 1, then there 
exists n such that 'Ps(i)(n) = 1, so iPi(i) is defined. Thus K is recursive, 
which contradicts Corollary (4.3). 

Comment: It is easily seen that there is no computable partial function 
o : N ---+ N such that if 'Pi : N --t {O, I} is an incr'(;asing total function, 
then i E domain( 0) and 

O(i) = ° ::=} 'Pi (n) = ° for all n, 

8( i) = 1 =? there exists n such that 'Pi (n) = 1. 

(4.23.2) Suppose there exists a computable partial function 8 : N --t 

N with the stated properties. Given i such that 'Pi is a total function from 
N into {O, I}, define 

x=: - L 2-n 'Pi(n). 
n=O 

Then (cf. Exercise (4.8.5)) x is a computable real number, and 

k 

s(k) :=--- L 2-"'Pi(n) (kEN) 
n=O 

defines a computable real number generator s converging to :1:. Choose m 
such that s = q 0 'Pm. If B(m) = 0, then x < 0, so there exists n such that 
'Pi(n) = 1. If B(m) = 1. then x ;:::: 0, so 'Pi(n) = ° for all n. It follows that 
the value of B(m) is independent of the index m of 8 and that 

1/J(i) := 1-- 8(m) 

defines a computable partial function 'ljJ : N -> {O, l} such that if 'Pi is a 
total function from N into {O, I}, then i E dornain( 1/J), 

'Ij)(m) = ° =? 'Pi(n) = ° for an n, and 

1/J (m) = 1 =? there exists n such that 'Pi (n) = l. 

This contradicts Exercise (4.23.1). 

(4.23.3) Suppose such a total computable function f exists. Thus 
there ex.ists a computable partial function~) : N ---+ {O, I} such that if 
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<Pk is a computable real number generator converging to a computable real 
number x, then k E domain('ljJ) and 'ljJ(k) = f(x). Define a computable 
partial function \If : N 2 -+ N by 

k 

\If(i, k) == LTn<pi(n). 
n=O 

Using the s-m-n theorem, construct a total computable function s : N -+ 

N such that <Ps(i.) = \If(i,·) for each i. Then 0 == 'ljJ 0 s is a computable 
partial function from N to {O, I}. If <Pi : N-----, {O, I} is total, then <Ps(i) 

is a computable real number generator converging to the computable real 
number 

00 

x == LTn<pi(n), 
n=O 

so s(i) E domainCI/J), i E domain(8), and O(i) = 'ljJ(s(i)) = f(x). If O(i) = 0, 
then x = 0, so <pi(n) = 0 for all n; if 8(i) # 0, then x # 0, so <pi(n) = 1 for 
some n. This contradicts Exercise (4.23.1). 

There is no algorithm which, applied to any rational number x, will 
decide whether x = 0 or x # O. To see this, suppose there is such an 
algorithm. Then there exists a total computable function g : Q -+ {O, I} 
such that 

g(x)=O =} x=O, 

g(x) = 1 =} x # o. 
If <P.i is an increasing total computable function from N to {O, I}, then 

00 

x == LTn<pi(n) 
n=O 

has a recurring binary expansion and so is rational. By considering g(x), 
we can decide whether <pi(n) = 0 for all n or there exists N such that 
<Pi (N) = 1. This contradicts the comment at the end of the solution of 
Exercise (4.23.1). (The details are left to you.) 

(4.23.5) Suppose such a function f exists. Then there exists a com­
putable partial function 'ljJ : N ---+ {O, I} such that if <Pm is a computable 
real number generator converging to the computable real number x, then 
m E domain('ljJ) and 'ljJ(m) = f(x). Choose a strictly increasing sequence 
(lIdk=O such that 
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Define a computable partial function <I> : N2 -+ N by 

1..Ik 

<I>(i, k) == L 'Pi(n)/n! 
n=O 

By the s-m-n theorem, there exists a total computable function s : N -+ N 
such that 'Ps(i) = <I>(i,·) for each i. Let e == 7/10 S (a computable partial 
function from N to {O, I}). Given i such that 'Pi : N -+ {O, I} is total 
and increasing, we see that 'Ps(i) is a computable real number generator 
converging to the computable real number 

00 

x == L 'P;(n)/n! 
n=O 

Note that x is irrational if and only if there exists N such that 'Pi(N) = 0 
and 'Pi(N + 1) = 1. For if there is no such N, then 'Pi(n) = 0 for all n, and 
therefore x = 0; on the other hand, if such N exists, then 

N 

X = e - L(l/n!), 
n=O 

which, being the difference of an irrational number and a rational number, 
is irrational. Since s(i) E domain(tP). i E domain(e). If e(i) = 0, then 
f(x) = ~)(s(i» = 0; so x is rational, and therefore 'Pi(n) = 0 for all n. If 
e( i) = 1, then f (x) i' 0; so x is irrational, and therefore there exists n such 
that 'Pi (n) = 1. This contradicts the comment at the end of the solution of 
(4.23.1). 

(4.24.1) Let (xn)~=o be a computable sequence of computable real 
numbers that converges effectively to a real number x. So there exist total 
computable functions f : N -+ Nand h : N -----> N such that for each n, 

(i) 'Pf(n) is a computable real number generator converging 
to Xn, and 

(ii) if k 2> h(n), then Ix - :r:kl ::; 2-". 

Define a total computable function 9 : N -+ Q by 

Then 

g(n) == 'Pfoh(n+l)(n + I). 

ix - g(n) I < IJ; - :r:h(n+l) 1+ IXh(n-t-l) - 'P foh(n+1) (71, + 1) 1 
< 2-n1 +2- n -- 1 

Hence :r is a computable real number. 
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(4.24.2) Referring to Exercise (4.5.1), choose a total computable func­
tion f from N onto K. Define 

n 

an == L 2-!(m)-l (n = 0,1,2, ... ). 
m=O 

Then each an is rational and therefore computable, and ao < al < .... 
Suppose that (an) converges effectively to a real number a, and let 9 : 
N -> N be a total computable function such that la - ani :s: 2-k whenever 
n 2:: g(k). If n > g(i + 2), then 

2-- f (n)-1 < 
< 

an - ag (i+2) 

Ian - al + la - ag (i+2) I 
< 2- i - 2 + 2- i - 2 

< 2- i - 1 

so f(n) > i. It follows that i E K if and only if there exists n :s: g(i + 2) 
such that f(n) = i. Comparing i with 

f(l), ... , f(g(i + 2)) 

in turn, we can decide whether i E K. Hence K is recursive. This contra­
diction completes the proof that (an) does not converge effectively. 

Comments: 

.. A fundamental theorem of classical analysis is the monotone se­
quence principle: An increasing sequence of rwl numbers that 'is 
bounded above converges to its least upper bound. Specker's Theorem 
shows that the natural recursive analogue of that principle fails to 
hold . 

• Proofs of the following strong version of Specker's Theorem can be 
found as Theorem (5.4) of [1] and Theorem (3.1) of [8]: There exist 
a strictly increasing computable sequence (an) of rational numbers in 
[0,1]' and total computable functions F : Rc x N --+ Nand h : N -> 

N, such that Ix - ani 2:: 2--- h (m) whenever x E Rc and n 2:: F(x, m). 

(4.24.3) Choose a computable partial function 0 : N 2 -t N such that 
if 'Pi is a computable real number generator converging to x E Reo then 
(n, i) E domain(O) and 'Pe(n,i) is a computable real number generator con­
verging to fn(x). Define a computable partial function W : N 3 -> Q by 

n 

w(n, i, m) = L 'Pe(k,i)(m + k + 1). 
k=O 
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Using the s-m-n theorem, construct a total computable function 9 : N 2 ---> 

N such that 'Pg(n,i) = W(n, i,') for all nand i. Consider a computable real 
number generator 'Pi converging to x ERe. For each n, 'Pg(n.i) is a total 
computable function from N to N; so for all rn, 

n 

< L l!k(x) - 'PO(k,i)(rn + k + 1)1 
k=O 

n 
< L 2-rn -- k ---- 1 

k=O 

< 2- m . 

Thus 'Pg(n,i) is a computable real number generator converging to sn(x). It 
follows that (s,,) is a computable sequence of total computable functions 
from Rc to Rc. 

(4.24.4) Assume that (fn) is a computable sequence of total com­
putable functions from Rc to Re. So there exists a total computable func­
tion () : N 2 ---> N such that if 'Pi is a computable real number generator 
converging to x E Rei then (n, i) E domain(O) and 'PO(n,i) is a computable 
real number generator converging to fn(x). Define a computahle partial 
function W : N 2 ----_, Q by 

Wei, n) == 'PO(hCn+l),i)(n + 1), 

and use the s-m-n theorem to construct a total computable function s 
N ---> N such that 'Ps(i) = W(i,·) for each i. Let x be a computable real 
number, and 'Pi a computable real number generator converging to x. Then 
for each n we have 

I'PS(i)(n) - f(x)1 < l'PO(h(n+l),i)(n + 1) - ih(n+1)(x)1 

+ Ifh(nH) - f(x)1 

< 2-- n - 1 + 2 

Thus 'PsCi) is a computable real number generator converging to f(x). It 
follows that f is a total computable function from Re to Re. 

(4.24.5) There exists a total computable function s ; N ---> N such that 
for each k, 'Ps(k) is a computable real number generator converging to Xk. 

Also, there exists a computable partial function 0 : N2 ---> N such that if 'Pi 
is a computable real number generator converging to J: ERe, then for each 
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71" (71" i) E domain(B) and 'P(}(n,i) is a computable real number ge~erator 
converging to in(x). Now define a total computable function '1' : N 3 -+ N 
by 

T(n, k, i) == 'PO(n,s(k))(i), 

and set 
Tn.k == T(n, k, k) (71" kEN). 

Then (Tn,k)~k=O is a computable double sequence ofrational numbers, and 
for all n,k E N, 

(4.29.2) Since in maps Q to Q, 

<I>(n, i, k) == in 0 1{Ji 0 hen, k) 

defines a computable partial function <I> : N3 -+ Q. Choose a total com­
putable function s : N 2 ...... N such that 'Ps(n,i) = <I>(n, i,') for all n, i. 
Consider a computable real number generator 'Pi converging to x ERe. 
For all nand k, since 

Ix -1{Ji 0 hen, k)1 :s: Th(n,k), 

we have 
lin(X) - 'P8(n,i)(k)1 :s: Tk. 

Hence 'Ps(n,i) is a computable real number generator converging to in(x). 
This shows both that in maps Rc into Re and that (n,x) f---+ in(x) is a 
computable partial function from N x Rc into Re. 

(4.29.3) We may assume that h takes only positive integer values. For 
all m, n E N let 

_ 2m-1 + k 2m 
Xm,k = - 2h(n,1) 

and 
b(m,n) == 1 + max{lin(xm,k)1 : 0 :s: k :s: 2h (n,1)}. 

Then b is a total computable function from N 2 to N. (Additional exercise: 
provide a detailed proof that b is computable.) Given m,n E N and a real 
number x with _2m - 1 :s: x :s: 2m - I , choose k such that 0 :s: k :s: 2h (n,1) 

and Ix - xm.kl :s: 2- h (n,1). Then 
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(4.29.4) It readily follows from the definition of Sn that Sn maps Q 
into Q. Noting that 

jSn(X) - sn(y)j :s; jx -- yj (n E N, x E R), 

we see immediately from Exercise (4.29.2) that each Sn maps Rc into R c, 
and that (sn )~=o is a computable sequence of total computable functions 
from Rc to Re. Since f is effectively uniformly continuous, there exists a 
total computable function 9 : N ---+ N such that if kEN, if x, y E R, 
and if Ix - yj :s; 2- g (k), then If(x) - f(y)j :s; 2- k . Also, applying Exercise 
(4.29.3) with fn == f for each n, we can construct a total computable 
function b: N ---+ N\ {O} such that 

jf(x)1 :s; b(71) (71 EN, x E [-71,71]). 

Define a total computable function h : N 2 ---+ N by 

h(71, k) == min m [Tm :s; min{Tg(k+l), Tk-1b(n + 3)-1}] . 

Consider n, kEN and real numbers x, y such that Ix - yl :s; 2-h (n,k). We 
have 

j(fSn)(X) - (fsn)(y)1 < If(:1;) - f(y)I' ISn(x)1 
+ ISn(x) - sn(y)l· If(y)1 

< 2- k - 1 + Ix - yl . If(y)l· 

If x E [-71 - 2,71 + 2], then y E [-71 - 3, 71 + 3], so that 

l(fsn)(x) - (fsn)(Y) I :s; T k - 1 + Th(n,k)b(n + 3) :s; Tk. 

On the other hand, if x 1- [-n - 2,71 + 2], then Ixl > n + 1 and jyl > n + 1, 
so sn(x) = 0 = sn(Y) and therefore 

(4.29.6) For each x E R the series 2:::=0 2-n t n (x) converges by com­
parison with 2::~~() 2-n ; moreover, since 

I
t(X) - f Tntn(:r)l:s; f 2-n :s; 2· .. N (m 2 N), 

n=O n=m+l 

the series converges effectively and uniformly to t on R. Assuming the 
additional hypotheses for the second part of this exercise, now define a 
total computable function H : N ---+ N by 

H(N) == max{h(n, N + 2) : 0 :s; n :s; N + 2}. 
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If N E N, X,Y E R, and Ix - yl :::; 2-H (N), then 

It(x) - t(y)1 < !t(x) - 2:::02 2-ntn(x)! 

+ !2:::02 2-ntn(x) - 2:::02 2-ntn(y)1 

+ !t(y) - 2:::; 2-ntn(y)! 

< 2-N- 2 + 2:::02 2-n Itn(x) - tn(y)1 + 2-N- 2 

< 2-N-1 + "N+2 2-n2-N- 2 
~n=O 

< 2-N . 

Hence t is effectively uniformly continuous on R. 
It remains to prove that t maps Re into Re. Choose a computable partial 

function 0 : N 2 ~ N such that if 'Pi is a computable real number generator 
converging to x ERe, then (n, i) E domain(O) and 'P1J(n,i) is a computable 
real number generator converging to tn (x). Define a computable partial 
function W : N 2 ~ N by 

m+l 

W(i,m) == I: Tn'PlJ(n,i)(m + 1). 
n=O 

Using the s-m-n theorem, construct a total computable function s : N ~ 
N such that 'Ps(i) = W(i,·) for each i. Given a computable real number 
generator 'Pi converging to x ERe, for each N E N we have 

It(x) - 'Ps(i)(N)1 < !t(x) - 2:::012-ntn(X)! 

+ 12:::012-ntn(X) - 2:::012- n'PlJ(n,i)(N + 1)1 

< 2- N- 1 + 2:::012- n Itn(x) - 'P1J(n,i)(N + 1)1 

< 2-N- 1 + "N+1 2- n2-N-l 
~n=O 

< 2-N . 

Hence 'Ps(i) is a computable real number generator converging to t(x). We 
now see both that t(x) is a computable real number, and that t is a total 
computable function from Re to Re. 

(4.29.8) Let f : Re ~ Re be the function constructed in the example 
immediately preceding this set of exercises, and define 9 == 1/ f on Re. Then 
9 maps Re into Re and is computable (why?); so, by Theorem (4.27), 9 is 
effectively continuous. Suppose that the restriction h of 9 to Re n [0,1] is 
uniformly continuous. Since each rational number is computable, Re n [0, 1] 
is dense in [0,1]; whence, by a standard classical theorem «3.15.6) of [15]), 
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h extends to a uniformly continuous function from [0,1] into R. Another 
standard theorem ((3.17.10) of [15]) now shows that there exists M > 0 
such that Ih(x)1 ~ M for all x E [0,1]. But this is absurd, since, using the 
notation used at the end of the discussion of the function f on page 72, we 
have 

for each N. 

Solutions for Chapter 5 

(5.3) If 
T == {n EN: 'Pn is total} 

is recursively enumerable, then, by Proposition (5.1), there exists a total 
computable function f : N -+ N such that f #- 9 for all gET; this is 
absurd. 

(5.7.1) The mapping n I--> Mn is computable. Also, there is an in­
formally computable mapping which, given a normalised binary Turing 
machine M as input, outputs the number of states of M. Composing these 
two mappings, we obtain stat, which is therefore computable. 

Now consider f : N -+ N defined by 

f(n) == min{stat(k) : 'Pk = 'Pn}. 

The only normalised binary Turing machine with exactly one state is 
({O}, 0, 0, 0), which computes the identity mapping id on N. Choose an 
index v for id, and let 

1== {n EN: 'Pn = id}. 

Then 'Pn = id if and only if f(n) = 1. So if f is computable, then I is 
recursive. This contradicts Theorem (5.5). 

(5.7.3) Choose an index v for the computable partial function (m, n) I--> 

'Pn(m) on N 2 . Then 

s(v,n) = min{i: 'Pi = 'PS2)(·,n)} = lindex(n) 

for each n. Therefore if s is computable, so is lindex. This contradicts 
Exercise (5.7.2). 

(5.12) (i) Let 

S == {i EN: a E domain('Pi)}. 
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The partial function W : N2 --'> N defined by 

W(m,n) 1 if n = a and m E K, 
= undefined otherwise 

is computable (why?). By Corollary (3.9), there exists a total computable 
function 9 : N --'> N such that 'Pg(m) = w(m, .). Then for all mEN we 
have 

Xs 0 g(m) = 1 {::} a E domain('Pg(m» 
{::} (m, a) E domain(W) 

{::} mE K; 

whence xsog = XK. It follows that ifXs is computable, then K is recursive, 
which contradicts Corollary (4.3). 

(5.12) (ii) Let 

s == {i EN: 'Pi is a constant function}. 

Define a computable partial function W : N 2 --'> N by 

W(m, n) 1 ifm E K, 
undefined otherwise. 

By the s-m-n theorem, there exists a total computable function 9 : N --'> N 
such that 'Pg(m) = w(m, .). For any mEN we have 

Xs 0 g(m) = 1 {::} 'Pg(m) is a constant function 

{::} W (m, .) is a constant function 

{::} mE K, 

so Xs 0 9 = XK· It follows that if xs is computable, then K is recursive-a 
contradiction. 

Comment: The technique used in each of the parts of the solution 
of Exercise (5.12) is known as reduction of the given problem to the 
undecidability of the halting problem. 

(5.14.2) Composing the mapping n 1--+ 7;", defined in Exercise (5.14.1), 
with the mapping that assigns to each normalised binary Turing machine 
its index in the enumeration M o, M 1, . .. we obtain a total computable 
function f : N --'> N such that for each n EN, 

'P!(n) (i) = 1 ifi=n, 
undefined otherwise. 
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By the Recursion Theorem, there exists n E N such that 'Pn = 'Pf(n). For 
this n we have 

i E domain('Pn) {:} i E domain('Pf(n») 

{:} i = n, 

so domain('Pn) = {n}. 
Now recall from page 41 that to each computable partial function 'P 

there correspond infinitely many normalised binary Turing machines that 
compute 'P. In particular, computing n as in the last paragraph, we see 
that there are infinitely many values of m =1= n such that 'Pm = 'Pn. For any 
such m, 

m 1- {n} = domain('Pm), 

so 'Pm(m) is not defined, and therefore m 1- K. Hence K does not respect 
indices. 

Alternative proof of the first part of (5.14.2). Define a com­
putable partial function W : N 2 -+ N by 

W(i,j) 1 if j = i, 
undefined otherwise. 

Using Corollary (3.9), we can find a total computable function s : N -+ N 
such that 'Ps(i) = W(i,·) for each i. By the Recursion Theorem, there exists 
n such that 'Pn = 'Ps(n). Clearly, domain('Pn) = {n}. 

(5.14.3) (i) Define a computable partial function W : N2 -+ N by 

W(m,n) ifm = n, 
if m =1= n. 

Using Corollary (3.9), construct a total computable function s : N -+ N 
such that 'Ps(m) = W(m,·) for each m. By the Recursion Theorem, there 
exists i such that 'Pi = 'Ps(i). Then domain( 'Pi) = K U {i}; but 'Pi (i) 
W(i,i) = 0, so 

i E K = domain('Pi). 

(5.14.3) (ii) This time define the computable partial function W 
N 2 -+ N by 

W(m, n) = undefined if m = n, 
'Pn(n) if m =1= n. 

By Corollary (3.9) and the Recursion Theorem, there exists an index j such 
that 'Pj = w(j, .). In this case, 

domain('Pj) = {n E K : n =1= j}, 
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so CPj (j) is undefined. Hence 

(5.14.4) Since XI is computable, so is f = ]xl + i(l - XI). By the 
Recursion Theorem, there exists v such that CPv = CPf(v). If v E I, then 
CPv = CPf(v) = CPj; if v E N\I, then CPv = CPf(v) = CPi· Thus in either case 
there exist m E I and n E N\I such that CPm = CPn. 

Unlike the proof of Rice's Theorem given in the main body of the text, 
the above proof is fully constructive; that is, it embodies an algorithm for 
computing m and n such that m E I, n E N\I, and CPm = CPn. (Note that, 
as you should verify for yourself, our proof of the Recursion Theorem is 
also fully constructive.) 

(5.14.5) Suppose K is recursive. Then, choosing an index i of the 
empty partial function E on N, and an index j of the identity function on 
N, we see that 

fen) = i if n E K, 
= j ifn¢K 

defines a total computable function f : N -+ N. By the Recursion Theorem, 
there exists v such CPf(v) = CPV' But 

v E domain(cpf(v») => CPf(v) =1= E 

=> f(v) = j 

=> v¢K 

=> v ¢ domain(cpv) = domain(cpf(v»), 

which is absurd. 

(5.14.7) Given a natural number N, choose an index j such that CPj =1= 

CPn for all n :::; N. Define a total computable function 9 : N -+ N by 

g(i) j 
= f(i) 

if i:::; N, 
if i > N. 

Using the Recursion Theorem, we can find i such that CPi = CPg(i)' By our 
choice of N, i > N and therefore g(i) = f(i). Thus for each natural number 
N there exists an index i > N such that CPi = CPf(i)' 

(5.14.8) Define a computable partial function 111 : N -+ N by 

1I1(i,j) = CPi(j) + 1 (i,j EN). 
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Choose a total computable function f : N ~ N such that 'Pf(i) = 'It(i,·) 
for each i. If 'Pi is total, then so is 'Pf(i), and 'Pf(i)(i) f:. 'Pi(i). 

(5.14.9) Define a computable partial function () : N ~ N by 

B(n) = 'Pn(n) if n E K, 
= undefined otherwise. 

Next, define a computable partial function 'It : Nn+1 ~ N by 

By the s-m-n theorem, there exists a total computable function s : N ~ N 
such that 

(n) _ ,T,(· ) _ (n) 
'Ps(i) - 'I' z,· - 'P1J(i) 

for each i. Another application of the s-m-n theorem now yields a total 
computable function 9 : N ~ N such that 'Pg(i) = 'Pi 0 s for each i. Let t 
be the total computable function so 9 : N ~ N, and consider any k such 
that 'Pk is total. We have 

(n) (n) 
'Pt(k) 'P s(g(k)) 

(n) 
'P1J(g(k)) 

(n) 
'P 'P9(k) (g(k)) 

= (n) 
'P 'Pk (s(g(k))) 

= (n) 
'P'Pk(t(k))" 

(5.14.10) As was shown in Exercise (3.11.2), there exist total com­
putable functions s : N ~ N and t : N ~ N such that 'Pi = 'l/Jt(i) and 
'l/Ji = 'Ps(i) for each i. Let f be a total computable function from N to 
N. Then 9 == s 0 f 0 t is a total computable function from N to N; so, 
by the Recursion Theorem, there exists m such that 'Pm = 'Pg(m). Setting 
i == t(m), we have 

'l/Ji = 'l/Jt(m) = 'Pm = 'Ps(f(t(m)) = 'l/Jf(i). 

(5.14.11) (i) Writing 0 (resp. 1) to denote the constant function on N 
with each term equal to 0 (respectively 1), for each kEN define 

'l/J3k == 0, 'l/J3k+1 == 'Pk, 'l/J3k+2 == 1. 

Choosing indices no, nl of 0 and 1, respectively, for each kEN define 

f(3k) = no, f(3k + 1) = k, f(3k + 2) == nl, and g(k) == 3k + 1. 
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Then f and 9 are total computable functions from N to N; moreover, '¢n = 
'Pf(n) and 'Pn = ,¢g(n) for each n. Hence, by Exercise (3.11.2), '¢o, '¢I, '¢2, ... 
is an acceptable programming system. Clearly, no three successive terms of 
this system are equal. 

(5.14.11) (ii) The desired acceptable programming system is given by 
the sequence 

in which the pattern of indices is 

01 001120001112230000111122233400000111112222333445 .... 

Clearly, there exist total computable functions f, g : N - N such that '¢n = 
'Pf(n) and 'Pn = '¢g(n) for each n; so, by Exercise (3.11.2), the foregoing 
enumeration of the set of all computable partial functions from N to N is 
an acceptable programming system. (You are invited to provide an exact 
description of the functions f and g.) 

To appreciate the significance of the foregoing examples of acceptable 
programming systems, first note that, in view of Exercise (5.14.10), the ar­
gument used in the example preceding Exercises (5.14), on page 81, applies 
equally well when the canonical enumeration 'Po, 'PI, ... is replaced by any 
acceptable programming system. Thus for each acceptable programming 
system '¢o, '¢1,.'" each computable partial function ,¢, and each positive 
integer k, there exists i such that if'¢i(n) is defined, then so are ,¢(n) and 
'¢i+j(n) (1 ::; j ::; k), and 

'¢i(n) = '¢i+l(n) = ... = '¢i+k(n) = '¢(n). 

Part (i) of this exercise shows that we cannot drop the words if '¢i(n) is 
defined from the hypotheses of this last result; in fact, we cannot prove 

(A) If '¢o, '¢1, '¢2," .is an acceptable programming system, then there ex-
ists i such that '¢i = '¢i+l = '¢i+2. 

On the other hand, part (ii) shows that we cannot prove 

(B) If'¢o, '¢1, '¢2," .is an acceptable programming system, then there exists 
m > 2 such that no m consecutive terms '¢i are equal. 

Formalising our mathematics within Zermelo-Fraenkel set theory plus the 
Church-Markov-Turing thesis, we conclude that each of (A) and (B) is 
independent of the axioms of that formal theory. 

(5.17.1) Given m and n, start Mv on the input n and simultaneously 
start Mm on the input m. If Mv halts before Mm and computes '¢(n), we 



162 Solutions to Exercises 

ignore the continuing computation by Mm and read the output 'lj;( n) on 
the tape of Mv. If Mm halts before Mv and computes 'Pm(m), we ignore 
the continuing computation by Mv and apply to the input n a Turing 
machine that computes 'P. If Mv and Mm complete computations in the 
same number of steps, we read the output 'Ij!(n) on the tape of M,,; there 
is no ambiguity involved here, since in this case m E K, n E domain( 'lj;), 
and 'lj;(n) = 'P(n). 

(5.17.2) No. To see why not, take 'lj;(n) == 0 and 'PCn) == 1 for all 
n E N. Suppose there exists a total computable function f : N ......, N such 
that for all m, 

C{}f(m) 'P if rn E K, 
'lj; if rn ~ K. 

Then rn l-t 'Pf(m) (0) is a total computable function on N. Since this func­
tion is XK, we see that K is recursive, a contradiction. 

(5.21.1) First note that if a proper subset of N respects indices and 
contains indices of E, then it cannot be recursively enumerable: for if it 
were recursively enumerable, then, by Proposition (5.18), it would contain 
the indices of all extensions of E and would therefore equal N. It follows 
immediately that 

,5 == {i EN: 'Pi = E} 

is not recursively enumerable. 
On the other hand, N\5' is recursively enumerable. To see this, for each 

i E N define a total computable function h : N 2 ......, N by 

hi(rn, n) o if Mi completes a computation in rn + 1 steps 
on the input n, 

1 otherwise. 

Let F be a total computable mapping of N onto N 2 , and define a com­
putable partial function 'P : N ......, N by 

Then domain( C{} ) 

enumerable. 

cp(i) == min k [hi(F(k)) = 0]. 

N\5' and so, by Theorem (3.3), N\S is recursively 

(5.21.3) Let 5' be a proper subset of N that respects indices, and 
assume that 5' is recursive. By Exercise (4.5.3), Sand N\S are proper 
recursively enumerable subsets of N; clearly, they both respect indices, and 
one of them contains all indices of the empty function E. The observation 
at the beginning of the solution of Exercise (5.21.1) shows that this is 
impossible. 
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(5.21.5) Applying the s-m-n theorem, first construct a total com­
putable function 9 : N 2 ---+ N such that for all m, n, and k, 

tpg(m,n)(k) = undefined if Mm computes tpm(m) in 
at most k + 1 steps, 

otherwise. 

Another application of the s-m-n theorem produces a total computable 
function h : N2 ---+ N such that tph(m,n) = tpm(g(·, n» for all m and n. Let 
f : N ---+ N be the total computable function defined by 

f(m, n) == g(h(m, n), n). 

Note that 

f(m, n) E domain(tpm) {=> tpm(g(h(m, n), n» = tph(m,n) (h(m, n)) 

is defined 

{=> h(m, n) E K. 

Consider mEN such that 1== domain(tpm) respects indices. Given n E I, 
suppose that h( m, n) (j. K. Then our choice of 9 ensures that 

tpf(m,n) = tpg(h(m,n),n) = tpn; 

so as n E I and I respects indices, f(m, n) E I. The foregoing now shows 
that h( m, n) E K -a contradiction. We conclude that h( m, n) must belong 
to K, and hence that f(m, n) E I. Let Mh(m,n) compute tph(m,n) (h(m, n)) 
in N + 1 steps. It follows from the definitions of f and 9 that 

tpf(m,n)(k) = tpn(k) 
= undefined 

if k:::; N, 
otherwise. 

Hence tpf(m,n) is a finite subfunction of tpn. 

(5.22.1) 
11 0 1111 0 111111 
1 3 5 

The encoded set is {I, 3, 5}. 

(5.22.2) Let tp : N ---+ :F be given by tp(n) == {n, n2}. Then Jl(tp(n» 
is the binary number consisting of (n + 1) l's, followed by 0, followed by 
(n2 + 1) l's; that is, 

n2 n2+n+2 
Jl(tp(n» = L 2k + L 2k. 

k=O k=n2+2 

So Jl 0 tp is clearly computable. 
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(5.24.1) In the notation of Lemma (5.23), we can decide, for each n, 
whether d(n) = 0 or d(n) =f. 0. We can therefore follow the one-one effec­
tive enumeration Wo, WI, ... , deleting the unique term with empty domain, 
to obtain an effective enumeration Wno' Wn, , . .. of the set of nonempty 
computable partial functions from N to N. The list no, nl , ... is then an 
effective enumeration of J. 

(5.24.2) First note that we can extract from the proof of Lemma (5.23) 
an algorithm which, applied to kEN, computes the code for d(k). Now 
choose an index 1/ of O. Given n, to compute w(n) we run Mil on the 
input n. If Mil completes a computation, we then compute the code c for 
d(O(n») and decide whether or not d(O(n)) is empty. If d(O(n) is nonempty, 
we decode c and read off the largest element of d(O(n». 

(5.24.3) The flaw in the argument stems from the phrase there exists 
n such that S = d(n): although such n must exist, there is no algorithm 
which, applied to a finite subset X of N, will enable us to compute k such 
that X = d(k). 

(5.25.1) Define a computable partial function 111 : N 2 -+ N by 

1I1(i,j) = 1 if i E domain(O) , and 
either d( O( i» = 0 and j = 0, 
or d(O(i» =f. 0 and j = 1 + max domain(WO(i), 

= undefined otherwise. 

To confirm that 1I1(i,j) can be computed in the case d(O(i)) =f. 0, see the so­
lution to Exercise (5.24.2). Choose a total computable function s : N -+ N 
such that 'Ps(i) = 1I1(i,·) for each i. By the Recursion Theorem, there exists 
n such that 'Pn = 'Ps(n). Clearly, domain('Pn) is disjoint from domain(Wo(n). 
Since domain('Pn) is finite, O(n) is defined, so domain('Pn) is nonempty. 

Now suppose that there exists a computable partial function 'Y : N -+ N 
with properties (i) and (ii) of the statement of this exercise. The foregoing 
ensures that there exists n E F such that domain('Pn) is nonempty and 
disjoint from domain(W-y(n).This contradicts property (ii) of 'Y. 

(5.25.2) Define a computable partial function 111 : N 2 -+ N by 

1I1(i,j) = 1 ifiE domain(O)andj=O(i)+l, 
= undefined otherwise. 

By the s-m-n theorem, there exists a total computable function s : N -+ N 
such that 'Ps(i) = 1I1(i,·) for each i. Applying the Recursion Theorem to 
compute n such that 'Pn = 'Ps(n)' we see that n E F and that domain('Pn) = 
{O(n) + I}. 
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Now let "I : N ----; N be a computable partial function with the proper­
ties (i) and (ii) described in Exercise (5.25.1). Define a computable partial 
function () : N ----; N by 

()(11,) max domain ( 1f!,(n») 
o 
undefined 

if 11, E domain("() and d("((11,)) ::f 0, 
if n E domain(,,() and d("((11,)) = 0, 
otherwise. 

Then domain(8) :J domain("() =) F. By the first part of this exercise, there 
exists 11, E F such that domain('Pn) = {O(11,) + I}. If d("(11,)) = 0, then 
'Pn has domain {I}; if d("((11,)) ::f 0, then domain('Pn) contains a single 
element, which is greater than each element of d("(n)). Hence in either 
case, 'Pn ::f 1f!,(n) -------a contradiction. 

(5.29.2) By Exercise (5.24.1), 

J == {j EN: domainClj;j)::f 0} 

is recursively enumerable. Clearly, i E N\S if and only if there exists 
j E .J such that 1f!j C 'Pi. Hence, by Theorem (5.28), N\S is recursively 
enumerable. 

(5.29.3) Define a computable partial function W : N 2 ----; N by 

W(i,j) 1 if i E domain(O), d(O(i)) = 0, and j = 0, 
1f!O(i)(j) + 1 if i E domain(O) and j E d(O(i)), 
undefined otherwise. 

Choose a total computable function s : N ----; N such that 'Ps(;) = W(i,') 
for each i. By the Recursion Theorem, there exists 11, such that 'Pn = 'Ps(n). 

Clearly, domain('Pn) = domain(w(n, .)) is finite; so 8(n) is defined, and 
therefore domain( 'Pn) is nonempty. Also, if j E domain ( 1f!1J(n»), then 'Pn (j) 
is defined and 'Pn(i) = 1f!O(n)(j) + 1; whence 1/JIJ(n) ct 'Pn· 

(5.29.4) The set 
I == {i EN: 'Pi ::f E} 

is recursively enumerable, by Exercise (5.29.2), and respects indices. Sup­
pose there exists a total computable function s with the stated proper­
ties relative to I. Then, by Exercise (5.29.3), there exists 11, such that 
domain( 'Pn) is nonempty and finite, and such that either 1f!s(n) = E or 
1f!s(n) ct 'Pn· Since 11, E I, there exists k E I such that 1f!s(n) = 'Pk; so 
1f!s(n) ::f E, and therefore 1f!s(n) ct 'Pn. This contradicts the assumed prop­
erty (ii) of s. 
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Solutions for Chapter 6 

(6.1.1) (i) Take Ii == 'Pi for each i. Then BI is automatically satisfied. 
But if B2 holds, then {i EN: 'Pi(O) = O} is a recursive set; since this 
set clearly respects indices, is nonempty, and is a proper subset of N, this 
contradicts Rice's Theorem. 

(ii) Take ~ri(n) == 0 for all i and n. 

(6.1.2) It is clear that Bl is satisfied. On the other hand, the function 
costs' : N:3 -+ N. defined by 

costs'('i, n, k) costs(i, n, k) 
I 

if i i= j, 

o 

is computable, and 

costs' (i, n, k) 

So r' satisfies B2. 

if i = j and k = 0, 
ifi = j and k ~ 1, 

I if ,: = k, 
o otherwise. 

Using r' as our complexity measure, we see that the cost of computing 
'Pj (n) is 0; in other words, it costs nothing to decide whether or not n 
belongs to the recursive set S. In the particular case where S is taken as 
the set of all prime numbers, this situation certainly does not reflect reality: 
it is well known that testing integers for primality is an extremely costly 
business. Indeed, all known algorithms for primality testing have cost that 
grows exponentially as a function of the size, in bits, of the integer under 
test. For further information on this topic, see Chapter 4 of [:33]. 

(6.1.3) It is clear from axiom BI, applied to 'Pi and Ii, that 

domainb:) = domain( 'Pd. 

On the other hand, given positive integers nand k, and using axiom B2, we 
can decide whether or not there exists j ::; k such that Ii (n) = .i. If such 
j exists, then, by BI, 'Pi(n) is defined, so I~(n) is defined; moreover, by 
comparing !('Pi(n)) with k - j we can decide whether or not ,;(n) equals 
k. If, however, no such j exists, then it is impossible for ~fHn) to equal k. 
Thus the function costs' : N -+ N, defined by 

costs' (i, n, k) 

is computable. 

1 ifl;(n) = k, 
o otherwise, 
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(6.1.4) We have 

t(k) 

G(i,n,k) = Lcosts(i,n,j). 
j=O 

Since t and costs are total computable functions, so is G. 

(6.1.5) The existence of s is a simple consequence of the s-m-n the­
orem. We compute G(n,i,j,k) as follows. Compute first v(n) and then 
costs(i,v(n),j). If the latter equals 1, then 'Yi(v(n» = j, cpi(v(n» is de­
fined, and we can compute costs(cpi(v(n»,n,k); if that equals 1, then 
cps(i)(n) = CPcp;ov(n)(n) is defined and we set G(n, i,j, k) = 'Ys(i) (n). On the 
other hand, if 

either costs(i,v(n),j) = 0 
or costs(i,v(n),j) = 1 and costs(cpi(v(n»,n,k) = 0, 

we set G(n,i,j,k) = O. 

(6.3) Since 

cI>(i,n) = mink[costs(i,n,k) = 1], 

the computability of cI> follows from Exercise (2.7.3). 

(6.5.1) Define 
1': = 1 + 'Yi + CPi; 

then, by Exercise (6.1.3), r' = 'Yb,'YL 'Y~, ... is a complexity measure. Let 
F : N2 ~ N be a total computable function. By the s-m-n theorem, there 
exists a total computable function s : N ~ N such that 

cps(i)(n) = F(n,'Yi(n» 

for each i and for all n E domainbi). Applying the Recursion Theorem, 
we obtain an index 1/ such that CPs (v) = CPV' Thus 

'Y~ = 1 + 'Yv + CPs(v) = 1 + 'Yv + F(·, 'Yv(-), 

so 'Y~(n) > F(n,'Yv(n» for all n E domain(cpv). 
Despite appearances, this result does not contradict Theorem (6.4), since 

it does not guarantee that 'Y~(n) > F(n,'YII(n» infinitely often. Indeed, it 
follows from Theorem (6.4) that domain ( CPII) must be finite. 
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FIGURE 29. The Turing machine Tk in solution (6.7.1). 

(6.7.1) Let 

ii (n) the number of distinct cells visited by Mi 
during the computation of <pi(n). 

For each k let ~ be the TUring machine described in Figure 29. Then Tk 
computs the constant mapping n I---> k on N. There is a one-one total com­
putable function h : N ---'> N such that ~ = Mh(k) for each k. Moreover, as 
is easily verified, the range of h is a recursive subset of N, and the partial 
function <P : N ---'> N defined by 

<p(i) h-l(i) if i E range(h), 
undefined if i '/:. range(h) 

is computable (d. Exercise (3.5.1)). Now define 

max{O, i\(n) - <p(i) - 2} 
i;(n) 

if i E range(h), 
if i '/:. range(h). 

It is straightforward to verify that r == 1'0,1'1, ... is a complexity measure. 
Given a total computable function F : N 2 ---'> N, choose k > F(O,O) and 
set i == h(k). Then 1i(O) = k + 2, so that 

1';(0) = max{O, k + 2 - <p(h(k)) - 2} = 0, 

and therefore 
<Pi(O) = k > F(O,O) = F(O,I'i(O)). 

(6.9) The total computable function v : N ---> N, with values v(n) 
equal to 

0,0,1,0,1,2,0,1,2,3,0,1,2,3,4, ... 
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for n = 0, 1, 2, ... , has the property that for each kEN there are infinitely 
many values of n with v(n) = k. 3 

Given a total computable function t : N ---+ N, and defining the total 
function f : N ---+ N as in the statement of this exercise, we see from B1 and 
Exercise (6.1.4) that f is computable. For each n such that v(n) E IND(f), 
<t'v(n) = f is total, as is therefore 1'v(n). Since <t'v(n)(n) -:f. <t'v(n)(n) + 1, we 
have 1'v(n)(n) > t(n). 

(6.11.1) Fix the natural number n. For each element u of {O, l}n+1 
define a 'lUring machine module T(u) as follows. If (the unary representa­
tion of) an input kEN is written in the leftmost cells of the tape, and if 
T(u) is in its start state, with the read/write head against the leftmost cell, 
T(u) first compares k with n. If k ::; n, then T(u) writes 1 in the leftmost 
cell if p;:+1(u) = 0, 11 in the two leftmost cells if p;:+l(u) = 1; leaves 
all other cells blank; and parks the read/write head. If k > n, then T(u) 
writes (the unary representation of) k in the leftmost cells, leaves all other 
cells blank, and enters a special state qu which is not its halt state or its 
start state, and from which there are no transitions. It is easy to see that 
the construction of T(u) can be carried out so that the number of steps 
it requires to complete its computation on the input k ::; n is bounded by 
b(k) for some total computable function b: N ---+ N that depends on n but 
is independent of k and u. 

Given a total computable function f : N ---+ {O, I} and an index v of f, 
let 

u == (f(0), ... , f(n)) E {o,l}n+l. 

Renaming the states of My, we may assume that qu is the start state of 
My, and that T(u) and My have no other state in common. We then 
append My to T(u), and add transitions that ensure that if the resulting 
'lUring machine enters the halt state of My, it does not halt immediately 
but, without moving the read/write head, passes to the halt state of T(u) 
and then halts. Finally, we rename the states of this 'lUring machine to 
obtain a normalised binary 'lUring machine Mi such that i E IND(f) and 
such that 1'i(k) ::; b(k) for k = 0, ... , n. 

(6.12) For all total computable functions f, 9 from N to N we have 

(')'i(n) ::; f(n) and 1'i(n)::; g(n)) ¢:} 1'i(n) ::; min{f(n),g(n)}; 

whence 
Of n Og = Omin{f,g}. 

3Calude, in a private communication, has suggested that the mapping v be 
known as the Halmos sequence, since it is the sequence in which Halmos recom­
mends the writing of chapters in a book. (See the latter's article in How to Write 
Mathematics, American Mathematical Society, Providence R.I., 1973.) 
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Now define 
fen) = 1 ifniseven, 

= ° if n is odd, 

and set 9 == 1 - f. Given a complexity measure r, construct a new com­
plexity measure r' as follows: choosing i E IND(f), j E IND(g), and an 
index k for the constant function 1, define 

I~ In ifn~{i,j,k}, 
f if n = i, 
9 if n = j, 

= 1 if n = k. 

(You should verify that r' is a complexity measure.) For each total com­
putable function h : N --+ N let C;. denote the complexity class of h relative 
to r'. Suppose Cf U C~ = C;.. Then f E C;., so h( n) ;::: 1 for all sufficiently 
large even n; and 9 E C;., so hen) ;::: 1 for all sufficiently large odd n. Hence 
hen) ;::: 1 almost everywhere, so that 'Pk E C;., and therefore either 'Pk E C, 
or else 'Pk E C~. This is plainly absurd. Thus there does not exist a total 
computable function h : N --+ N such that Cj u C~ = C;.. 

(6.15.1) The intervals [ki' ki+2) (i = 0,2,4, ... , 2n) are disjoint, and 
there are n + 1 of them. So there exists at least one i such that [ki' ki+2) 
does not contain any point Cj. For this i and all j (1 $ j $ n), we have 
Cj ~ [ki ,ki+2), so Cj ~ [ki,ki+ll. 

(6.15.3) For convenience write 

P(m, k, n) ¢} 'Pm(n) $ k and 
Vi < n bien) < k or ...,bi(n) $ F(n, k»). 

Define a computable partial function function X : N 3 --+ N by 

x(m, k,n) ° if P(m, k, n), 
1 if n E domain('Pm) and ...,P(m, k, n), 
undefined otherwise. 

We prove that if 'Pm is total, then for each n, 

V(m,n) == {k EN: x(m,k,n) = o} 

is nonempty. To this end, define a computable partial function K : N3 --+ N 
by 

K(m,j, n) 

If 'Pm is total, then 

'Pm(n) if j = 0, 
F(n, K(m, j - 1, n) if j ;::: 1. 

'Pm(n) = K(m, 0, n) < K(m, 1, n) < .... 
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Since there are at most n values I'i(n) with 0 :::; i < n, Exercise (6.15.1) 
shows that there exists r (0 :S: r :S: 2n + 1) such that for all i < n, 

li(n) rf- [1I;(m, r, n), lI;(m, r + 1, n)] 

and therefore either I'i(n) < lI;(m, r, n) or 

Hence P(m, lI;(m, r, n), n) holds, and therefore lI;(m, r, n) (: D(rn, n). 
We now see from Exercise (2.7.3) that 

w(m, n) == mink [x(m, k, n) = OJ 

defines a computable partial function W : N2 -> N. By the s-m-n the­
orem, there exists a total computable function s : N -> N such that 
'Pa(m) = w(m, .). If 'Pm is total, then, by the foregoing, 'Ps(m) is total, 
and P(m,'Pa(m)(n),n) holds for each n; whence 'Pm(n):S: 'Ps(m)(n) and 

So if 'Ps(m)(n) :S: I'i(n) :S: F(n, 'Ps(m) (n», then n :S: i. 

(6.16) Using Theorem (6.4), construct a total computable function 
F : N 2 -> N such that I'i(n) :S: F(n,I':(n» almost everywhere. We may 
assume that 

n < F(m, n) < Fern, n + 1) 

for all m and n. According to Theorem (6.13), for each total computable 
function t : N --+ N there exists a total computable function f : N -> N 
such that fen) ~ ten) for all n, and such that if fen) :S: I'i(n) :S: F(n, fen»~, 
then n :::; i. Consider any i, n such that n > i, IHn) :S: fen), and li(n) :S: 
F(n,I'Hn». If fen) :S: I'i(n), then 

fen) :S: I'i(n) :S: F(n, I'~(n» :S: F(n, fen»~, 

so n :S: i, a contradiction; hence I'i(n) < fen). It follows that Cf' C Cf· 
The reverse inequality follows from the hypothesis that 1': (n) :S: Aii (n) for 
aU i and all n E domain('Pi). 

(6.19) If 'Pi(n) is defined, then, by BI, so is I'i(n). So, using Exercise 
(6.1.4), we can decide, for each j < n, whether or not P(i, j, n) holds. There 
will be at most n values of j < n for which P(i,j,n) holds, and therefore 
at most n corresponding values 'Pj (n). Straightfoward computations enable 
us to find k, from among the n + 1 values 0,1, ... , n, such that k i- 'PjCn) 
for all j < n for which P(i,j, n) holds. (Note that in view of BI, 'Pj(n) is 
defined for each such j.) Hence Wei, n) is defined and at most n. 
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(6.22.1) If n ::; i, then C(e, i, n) is defined to be 0, which is certainly 
both finite and recursive. In particular, C(e, i, 0) is defined, finite, and re­
cursive. Assume that for 0::; m < n, if C(e, i, m) is defined, then it is finite 
and recursive. If C (e, i, n) is defined, then in order to complete our inductive 
proof we need only deal with the case i < n. Then C(e, i, m) is defined­
and therefore both finite and recursive--for 0 ::; m < n, and Is(e,j+l)(n) is 
defined whenever i ::; j < n. Given j E N, we can decide whether or not 
i ::; j < n. Moreover, using our induction hypothesis and Exercise (6.1.4), 
we can decide, for each j with i ::; j < n, whether or not 

n-l 

j rt U C(e,i,m) and Ij(n) < F(n, Is(e,j+l) (n)); 
m=O 

so C(e, i, n), which is obviously finite, is recursive. 

(6.24.1) Let f be the identity function id : N -. N. Then f is com­
puted by the normalised binary Turing machine M == {{O}, 0, 0, O} (cf. 
the solution to Exercise (5.7.1)). Let v be the index of M, and define a 
complexity measure r == 10, II, ... by 

li(n) == ,:(n) + Iv - ii, 

where ,: is defined as in the proof of the Speed-up Theorem. Consider any 
total computable function F : N2 -. N such that F(m, n + 1) 2: F(m, n) 
for all m, n. For each j E IND(f) with j I- v, and for all n E N, we have 

F(n, Ij(n) 2: IJ(n) + Iv - jl > IJ(n) ~ 1 = Iv(n). 

Hence f is not F -speedable relative to the complexity measure r. 

(6.24.3) Let r be any complexity measure, and take F(m, n) == n + 
1 for all m, n E N. Then F-speedable functions exist, by the Speed-up 
Theorem. Let f be anyone of them. Since 

is a set of nonnegative integers, it has a least member; that is, there exists 
v E IND(f) such that 

IV(O) = minhi(O) : i E IND(f)}. 

For all j E IND(f) we have 

F(O, Ij (0)) = Ij (0) + 1 > IV(O). 
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