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Preface

This book was written to make learning introductory algebraic geometry as
easy as possible. It is designed for the general first- and second-year graduate
student, as well as for the nonspecialist ; the only prerequisites are a one-year
course in algebra and a little complex analysis. There are many examples
and pictures in the book. One’s sense of intuition is largely built up from
exposure to concrete examples, and intuition in algebraic geometry is no
exception. I have also tried to avoid too much generalization. If one under-
stands the core of an idea in a concrete setting, later generalizations become
much more meaningful. There are exercises at the end of most sections so
that the reader can test his understanding of the material. Some are routine,
others are more challenging. Occasionally, easily established results used in
the text have been made into exercises. And from time to time, proofs of
topics not covered in the text are sketched and the reader is asked to fill in
the details.

Chapter I is of an introductory nature. Some of the geometry of a few
specific algebraic curves is worked out, using a tactical approach that
might naturally be tried by one not familiar with the general methods intro-
duced later in the book. Further examples in this chapter suggest other basic
properties of curves.

In Chapter II, we look at curves more rigorously and carefully. Among
other things, we determine the topology of every nonsingular plane curve in
terms of the degree of its defining polynomial. This was one of the earliest
accomplishments in algebraic geometry, and it supplies the initiate with a
straightforward and very satisfying result.

Chapter III lays the groundwork for generalizing some of the results of
plane curves to varieties of arbitrary dimension. It is essentially a chapter on
commutative algebra, looked at through the eyeglasses of the geometer.
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Preface

Algebraic ideas are supplied with geometric meaning, so that in a sense one
obtains a “dictionary” between commutative algebra and algebraic geom-
etry. I have put this dictionary in the form of a diagram of lattices; this
approach does seem to neatly tie together a good many results and easily
suggests to the reader a number of possible analogues and extensions.

Chapter 1V is devoted to a study of algebraic varieties in C" and P"(C)
and includes a geometric treatment of intersection multiplicity (which we
use to prove Bézout’s theorem in n dimensions).

In Chapter V we look at varieties as underlying objects upon which
we do mathematics. This includes evaluation of elements of the variety’s
function field (that is, a study of valuation rings), a translation of the funda-
mental theorem of arithmetic to a nonsingular curve-theoretic setting (the
classical ideal theory), some function theory on curves (a generalization
of certain basic facts about functions meromorphic on the Riemann sphere),
and finally the Riemann—Roch theorem on a curve (which ties in function
theory on a curve with the topology of the curve).

After the reader has finished this book, he should have a foundation from
which he can continue in any of several different directions—for example,
to a further study of complex algebraic varieties, to complex analytic
varieties, or to the scheme-theoretic treatments of algebraic geometry which
have proved so fruitful.

It is a pleasure to acknowledge the help given to me by various students
who have read portions of the book; I also want to thank Frank Lozier for
critically reading the manuscript, and Basil Gordon for all his help in reading
the galleys. Thanks are also due to Mary Blanchard for her excellent job in
typing the original draft, to Mike Ludwig who did the line drawings, and to
Robert Janusz who did the shaded figures. I especially wish to express my
gratitude to my wife, Joan, who originally encouraged me to write this book
and who was an invaluable aid in preparing the final manuscript.

Keith Kendig

Cleveland, Ohio
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CHAPTER 1

Examples of curves

1 Introduction

The principal objects of study in algebraic geometry are algebraic varieties.
In this introductory chapter, which is more informal in nature than those that
follow, we shall define algebraic varieties and give some examples; we then
give the reader an intuitive look at a few properties of a special class of
varieties, the “complex algebraic curves.” These curves are simpler to study
than more general algebraic varieties, and many of their simply-stated
properties suggest possible generalizations. Chapter 1T is essentially devoted
to proving some of the properties of algebraic curves described in this
chapter.

Definition 1.1. Let k be any field.
(1.1.1) The set {(x,, . .., x,)|x; €k} is called affine n-space over k; we
denote it by k", or by ky, . x,. Each n-tuple of k" is called a point.
(1.1.2) Let kfX,,...,X,] = k[X] be the ring of polynomials in n
indeterminants X , ..., X, with coeflicients in k. Let p(X) € k[ X]\k. The
set

V(p) = {(x) ek"|p(x) = 0}

is called a hypersurface of k", or an affine hypersurface.
(1.L.3) If {p,(X)} is any collection of polynomials in k[ X, the set

V({p.}) = {(x) € k"|each p,(x) = 0}

is called an algebraic variety in k", and affine algebraic variety, or, if the
context is clear, just a variety. If we wish to make explicit reference to the
field k, we say affine variety over k, k-variety, etc.; k is called the ground
field. We also say V({p,}) is defined by {p,}.



I: Examples of curves

(1.1.4) k? is called the affine plane. If p € k[ X, X,]\k, V(p) is called a
plane affine curve (or plane curve, affine curve, curve, etc., if the meaning is
clear from context)

We will show later on, in Section IIL,3, that any variety can be defined
by only finitely many polynomials p,.
Here are some examples of varieties in R2

EXAMPLE 1.2

(1.2.1) Any variety V(aX? + bXY + cY? + dX + eY + f) where q, .. .,
Sf€ R. Hence all circles, ellipses, parabolas, and hyperbolas are affine algebraic
varieties; so also are all lines.

(1.2.2) The “cusp” curve V(Y? — X3); see Figure 1.

(1.2.3) The “alpha” curve V(Y2 — X2(X + 1)); see Figure 2.

Y Y

Figure 1 Figure 2

(1.2.4) The cubic V(Y% — X(X2 — 1)); see Figure 3. This example shows
that algebraic curves in R? need not be connected.

(1.2.5) If V(p,) and V(p,) are varieties in R2, then so is V(p,) U V(p,); it is
just V(p; - p,), as the reader can check directly from the definition. Hence one
has a way of manufacturing all sorts of new varieties. For instance,
(X2 + Y2 - 1)(X? 4+ Y2 — 4) =0 defines the union of two concentric
circles (Figure 4).

(1.2.6) The graph V(Y — p(X)) in R? of any polynomial Y = p(X)e R[X]
is also an algebraic variety.

1.2.7) If py, p,€RLX, Y], then V(p,,p,) represents the simultaneous
solution set of two polynomial equations. For instance, V(X, Y) =
{(0,0)} = R?, while V(X2 + Y? — 1, X — Y)is the two-point set

V2V (V22
{59 (-5

2

in R2,



1: Introduction

N
N

Figure 3 Figure 4

(1.2.8) In R, any conic is an algebraic variety, examples being the sphere
V(X?+ Y? + Z%? — 1), the cylinder V(X2 + Y? — 1), the hyperboloid
V(X? — Y? — Z? — 1), and so on. A circle in R? is also a variety, being
represented, for example, as V(X2 + Y? + Z2 — 1, X) (geometrically the
intersection of a sphere and the (Y, Z)-plane). Any point (a, b, c) in R? is the
variety V(X — a, Y — b, Z — ¢) (geometrically, the intersection of the three
planes X = g, Y= b,and Z = ¢).

Now suppose (still using k = R) that we have written down a large number
of sets of polynomials, and that we have sketched their corresponding
varieties in R". It is quite natural to look for some regularity. How do alge-
braic varieties behave? What are their basic properties?

First, perhaps a simple “dimensionality property” might suggest itself.
For our immediate purposes, we may say that V< R" has dimension d if V
contains a homeomorph of R?, and if V is the disjoint union of finitely many
homeomorphs of R’ (i < d). Then in all examples given so far, each equation
introduces one restriction on the dimension, so that each variety defined by
one equation has dimension one less than the surrounding space—i.c., the
variety has codimension 1. (In k", “codimension” means “n — dimension.”)
And each variety defined by two (essentially different) equations has dimen-
sion two less than the surrounding (or “ambient ”) space (codimension 2), etc.
Hence the sphere V(X? + Y2 + Z2? — 1) in R? has dimension 3 — 1 = 2,
the circle V(X2 + Y2 + Z% — 1, X) in R? has dimension 3 — 2 = 1, and the
point V(X — a, Y — b, Z — ¢) in R? has dimension 3 — 3 = 0. This same
thing happens in R" with homogeneous linear equations—each new linearly
independent equation cuts down the dimension of the resulting subspace by
one.

But if we look down our hypothetical list a bit further, we come to the
polynomial X? + Y?2; X2 + Y? defines only the Z-axis in R>. This one
equation cuts down the dimension of R* by two—that is, the Z-axis has co-
dimension two in R3. And further down the list we see X2 + Y? + Z2; the

3



1: Examples of curves

associated variety is only the origin in R3. And if this is not bad enough,
X? 4+ Y2 + Z% + 1 defines the empty set ¥ in R®! Clearly then, one
equation does not always cut down the dimension by one.

We might try simply restricting our attention to the “good” sets of poly-
nomials, where the hoped-for dimensional property holds. But one “good”
polynomial together with another one may not yield a “good” set of poly-
nomials. For instance, two spheres in R® may not intersect in a circle (co-
dimension 2), but rather in a point, or in the empty set.

Though things might not look very promising at this point, mathe-
maticians have often found their way out of similar situations. For instance,
mathematicians of antiquity thought that only certain nonconstant poly-
nomials in R[X] had zeros. But the exceptional status of polynomials having
only real roots was removed once the field R was extended to its algebraic
completion, C = field of complex numbers. One then had a most beautiful
and central result, the fundamental theorem of algebra. (Every nonconstant
polynomial p(X)e C[X] has a zero, and the number of these zeros, when
counted with multiplicity, is the degree of p(X).) Similarly, geometers could
remove the exceptional behavior of “parallel lines” in the Euclidean plane
once they completed it in a geometric way by adding “points at infinity,”
arriving at the projective completion of the plane. One could then say that
any two different lines intersect in exactly one point, and there was born a
beautiful and symmetric area of mathematics, namely projective geometry.

For us, we may find a way out of our difficulties by using both kinds of
completions. We first complete algebraically, using C instead of R (each set of
polynomials py,...,p, with real or complex coefficients defines a variety
V(p1,...,p,) in C"); and we also complete C" projectively to complex pro-
Jective n-space, denoted P*(C). The variety V(p, ..., p,)in C" will be extended
in P%(C) by taking its topological closure. (We shall explain this further in a
moment.) By extending our space and variety this way, we shall see that all
exceptions to our “dimensional relation” will disappear, and algebraic
varieties will behave just like subspaces of a vector space in this respect.

Hence, although in R?, X? + Y2 — 1 defines a circle but X> + Y?2 only
a point and X? + Y? + 1 the empty set, in our new setting each of these
polynomials turns out to define a variety of (complex) codimension one in
P%(C), independent of what the “radius” of the circle might be. (The “com-
plex dimension” of a variety V in C" is just one-half the dimension of ¥ con-
sidered as a real point set; we shall see later that as a real point set, the dimen-
sion is always even. Also, even though the locus in C? of X2 + Y2 = 1 does
not turn out to look like a circle, we shall continue to use this term since the
C3-locus is defined by the same equation. Similarly, we shall use terms like
curve or surface for complex varieties of complex dimension 1 and 2, respec-
tively.)

In general, any nonconstant polynomial turns out to define a point set of
complex codimension one in P(C), just as one (nontrivial) linear equation
does in any vector space. A generalization of this vector space property is:

4



2: The topology of a few specific plane curves

If L, and L, are subspaces of any n-dimensional vector space k"
over k, then
cod(L,; n L,) < cod(L,) + cod(L,)

(cod = codimension).

For instance, any two 2-subspaces in R® must intersect in at least a line. In
PYC) this basic dimension relation holds even for arbitrary complex-
algebraic varieties. Certainly nothing like this is true for varieties in R2. One
can talk about disjoint circles in R?, or disjoint spheres in R*. These phrases
make no sense in P?(C) and P3(C), respectively; the points missing in R? or
R3 simply are not seen because they are either “at infinity,” or have complex
coordinates. (This will be made more precise soon.) Hence it turns out that
what we see in R" is just the tip of an iceberg—a rather unrepresentative slice
of the variety at that—whose “true” life, from the algebraic geometer’s view-
point, is lived in P*(C).

2 The topology of a few specific plane curves

Suppose we have added the missing “points at infinity” to a complex alge-
braic variety in C", thus getting a variety in P"(C). 1t is natural to wonder what
the entire “completed” curve looks like. We consider here only curves in
C? and in P?(C); complex varieties of higher dimension have real dimension
>4 and our visual appreciation of them is necessarily limited. Even our
complex curves live in real 4-space; our situation is somewhat analogous to
an inhabitant of “Flatland” who lives in R?, when he attempts to visualize
an ordinary sphere in R3. He can, however, see 2-dimensional slices of the
sphere. Now in X2 + Y? + Z? = 1, substituting a specific value Z, for Z
yields the part of the sphere in the plane Z = Z,. Then ifhe lets Z = T =
time, he can “visualize” the sphere by looking at a succession of parallel plane
slices X2 + Y2 =1 — T? as T varies. He sees a “moving picture” of the
sphere; it is a point when T = — 1, growing to ever larger circles, reaching
maximum diameter at T = 0, then diminishing to a point when T = 1.
Our situation is perhaps even more strictly analogous to his problem of
visualizing something like a “warped circle” in 3-space (Figure 5). The

Figure 5



I: Examples of curves

Flatlander’s moving picture of the circle’s intersections with the planes
Z = constant will trace out a topological circle for him. He may not appre-
ciate all the twisting and warping that the circle has in R3, but he can see
its topological structure.

To get a topological look at our complex curves, let us apply this same idea
to a hypersurface in complex 2-space. In C?, we will let the complex X-
variable be X = X, + iX,; similarly, Y = Y; + iY,. We will let X, vary
with time, and our “screen” will be real (X4, Y;, Y;)-space. The intersection
of the 3-dimensional hyperplane X, = constant with the real 2-dimensional
variety will in general be a real curve; we will then fit these curves together
in our own 3-space to arrive at a 2-dimensional object we can visualize. As
with the Flatlander, we will lose some of the warping and twisting in 4-space,
but we will nonetheless get a faithful topological look, which we will be con-
tent with for now.

Since our complex curves will be taken in P%(C), we first describe intuitively
the little we need here in the way of projective completions. Our treatment is
only topological here, and will be made fuller and more precise in Chapter IL
We begin with the real case.

P!(R): As a topological space, this is obtained by adjoining to the topo-
logical space R (with its usual topology) an “infinite” point, say P, together
with a neighborhood system about P. For basic open neighborhoods we take

UnP) = {P}U {reR||r|>N} N=123,....

We can visualize this more easily by shrinking R! down to an open line
segment, say by x — x/(1 + |x|). We may add the point at infinity by ad-
joining the two end points to the line segment and identifying these two points.
In this way P(R) becomes, topologically, an ordinary circle.

P%(R): First note that, except for Ry, the 1-spaces L, = V(X + aY) of
Ryy are parametrized by «; a different parametrization, L, = V(&'X + Y),
includes Ry (but not Ry). Then as a topological space, P*(R) is obtained
from R? by adjoining to each 1-subspace of R?, a point together with a
neighborhood system about each such point.

If, for instance, a given line is L, , then for basic open neighborhoods
about a given P, we take

UN(Pa0)= | L|) I/N({Pa} U{(X,Y)ELa“(X,)’)|>N}) N: 1’293a'-‘a
a—apl <
where [(x, y)| = x| + |yl.

Similarly for lines parametrized by o’. (When « and «’ both represent the
same line L,, = L,;, the neighborhoods Un(P,,) and Uy(P,;) generate the
same set of open neighborhoods about P,, = P,,.)

Again, we can see this more intuitively by topologically shrinking R?
down to something small. For instance,

X y
(x,y)—>( ; )
L+ /x2+y2 1+ /x2+)?




2: The topology of a few specific plane curves

Figure 6

maps R? onto the unit open disk. Figure 6 shows this condensed plane
together with some mutually parallel lines. (Two lines parallel in R? will
converge in the disk since distance becomes more “concentrated” as we
approach its edge; the two points of convergence are opposite points. If,
as in P!(R), we identify these points, then any two “parallel” lines in the
figure will intersect in that one point. Adding analogous points for every
set of parallel lines in the plane means adding the whole boundary of the
disk, with opposite (or antipodal) points identified. All these “points at
infinity” form the “line at infinity,” itself topologically a circle, hence a
projective line P(R). Since this line at infinity intersects every other line in
just one point, it is clear that any two different projective lines of P*(R)
meet in precisely one point.

PYC): Topologically, the “complex projective line” is obtained by
adjoining to C an “infinite” point P; for basic open neighborhoods about
P, take

Un{P} = {P} U {zeC||z| > N} N=123,....

Intuitively, shrink C down so it is an open disk, which topologically is also
a sphere with one point missing (just as R is topologically a circle with one
point missing). Adding this point yields a sphere.

P2(C): As in the real case, except for the X-axis Cy, the complex 1-spaces
of C? = Cyy are parametrized by a:

X +aY =0 whereaeC,;

another parametrization, «’ X + Y = 0, includes Cy but not Cy. Then P*(C)
as a topological space is obtained from C? by adjoining to each complex

7



I: Examples of curves

l-subspace L, = V(X + aY) (or L, = V(¢'X + Y)) a point P, (or P,). A
typical basic open neighborhood about a given P, is

UN(Pao)z | L|) 1/N({Pa} % {(ZI’ZZ)ELa“(Zl’ZZ)| > N}) N= 172337-"a
where |(z4, z,)| = |z,| + |z,|; similarly for neighborhoods about points Py;.

Intuitively, to each complex 1-subspace and all its parallel translates, we
are adding a single “point at infinity,” so that all these parallel lines intersect
in one point. Each complex line is thus extended to its projective completion,
P'(C); and all points at infinity form also a P'(C). As in P%(R), any two dif-
ferent projective lines of P%(C) meet in exactly one point.

The reader can easily verify from our definitions that each of R, R2, C, C2
is dense in its projective completion; hence the closure of C? in P%(C) is
P?(C), and so on. We shall likewise take the projective extension of a complex
algebraic curve in C? to be its topological closure in P2(C).

We next consider some examples of projective curves using the slicing
method outlined above.

ExamPpLE 2.1. Consider the circle V(X? + Y2 — 1). Let X = X, + iX, and
Y=Y, +iY,. Then (X, + iX,)> + (Y, + iY,)*> = 1. Expanding and
equating real and imaginary parts gives
X2-X2+12-Y2=1, XX, + 1,Y,=0. (H
We let X, play the role of time ; we start with X, = 0. The part of our complex
circle in the 3-dimensional slice X, = 0 is then given by
XIZ + le - Y22 = 1, Y1Y2 = O. (2)

The first equation defines a hyperboloid of one sheet; the second one, the
union of the (X, Y;)-plane and the (X, Y,)-plane (since Y; - ¥, = 0 implies
Yy = 0or Y, = 0). The locus of the equations in (2) appears in Figure 7. It is

Y,
> v
¥
X]
Vg N
Figure 7



2: The topology of a few specific plane curves

P

Pl

Figure 8

the union of the real circle X,> + Y;2 = 1 (when Y, = 0) and the hyperbola
X? — Y, = 1 (when Y, = 0). The circle is, of course, just the real part of
the complex circle. The hyperbola has branches approaching two points at
infinity, which we call P, and P,.

Now the completion in P?(R) of the hyperbola is topologically an ordinary
circle. Hence the total curve in our slice X, = 0 is topologically two circles
touching at two points; this is drawn in Figure 8. The more lightly-drawn
circle in Figure 8 corresponds to the (lightly-drawn) hyperbola in Figure 7.

Now let’s look at the situation when “time” X, changes a little, say
to X, = ¢ > 0. This defines the corresponding curve

X12+Y12—'Y22=1+82, £X1+Y1Y2=0.

The first surface is still a hyperboloid of one sheet; the second one, for ¢
small, in a sense “looks like” the original two planes. The intersection of
these two surfaces is sketched in Figure 9. The circle and hyperbola have
split into two disjoint curves. We may now sketch these disjoint curves in on
Figure 8; they always stay close to the circle and hyperbola. If we fill in all

Figure 9
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P

Figure 10

such curves corresponding to X, = constant, we will fill in the surface of a
sphere. The curves for nonnegative X, are indicated in Figure 10.

For X, < 0, one gets curves lying on the other two quarters of the sphere.
We thus see (and will rigorously prove in Section I1,10) that all these curves
fill out a sphere. We thus have the remarkable fact that the complex circle
V(X% + Y2 — 1) in PXC) is topologically a sphere.

From the complex viewpoint, the complex circle still has codimension 1 in
its surrounding space.

ExampLE 2.2. Now let us look at a circle of “radius 0,” V(X? + Y?). The
equations corresponding to (1) are

XIZ—X22+Y12_Y22——-0, X1X2+Y1Y2—_—0. (3)

The part of this variety lying in the 3-dimensional slice X, = 0 is then given
by
X12+ le_ Y22 =0, Y1Y2 =0 (4)

The first equation defines a cone; the second one defines the union of two
planes as before. The simultaneous solution is the intersection of the cone and
planes. This consists of two lines (See Figure 11). The projective closure of
each line is a topological circle, so the closure of the two lines in this figure
consists of two circles touching at one point. This can be thought of as the
limit figure of Figure 8 as the horizontal circle’s radius approaches zero.
When X, = ¢, the saddle-surface defined by X, + Y, Y, = O intersects
the one-sheeted hyperboloid given by X,? + Y;? — Y,? = ¢2. As before,
their intersection consists of two disjoint real curves, which turn out to be
lines (Figure 12); just as in the first example, as X, varies, the curves fill out
a 2-dimensional topological space which is like Figure 10, except that the
radius of the horizontal circle is 0 (Figure 13). To keep the figure simple, only
curves for X, = 0 have been sketched; they cover the top half of the upper

10
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I: Examples of curves

sphere and the bottom half of the lower sphere, the other parts being covered
when X, < 0. Hence: The complex circle of “zero radius” V(X? + Y?) in
P%(C) is topologically two spheres touching at one point.

In the complex setting, we see that instead of the dimension changing as
soon as the “radius” becomes zero, the complex circle remains of codimension
1,50 that one equation X2 + Y? = O still cuts down the (complex) dimension
by one.

Incidentally, here is another fact that one might notice: In Example 2.1,
V(X? + Y2 — 1), the sphere is in a certain intuitive sense “indecomposable,”
while in Example 2.2, the figure is in a sense “decomposable,” consisting of
two spheres which touch at only one point. But look at the polynomial
X? + Y% — 1; it is “indecomposable” or irreducible in C[X, Y].! And the
polynomial X2 + Y? is “decomposable,” or reducible—X? + Y% =
(X +iY)(X — iY)!In fact, X> + Y? + 7 is always irreducible in C[X, Y] if
y # 0. (A proof may be given similar in general spirit to that in Footnote 1.)
Hence we should suspect that any complex circle with “nonzero radius”
should be somehow irreducible. We shall see later that in an appropriate
sense this is indeed true. By the way, X? + Y? = (X + iY)(X — iY)
expresses that V(X? + Y?)is just the union V(X + iY) u V(X — iY). Each
of these last varieties is a projective line, which is topologically a sphere; and
any two projective lines touch in exactly one point in P2(C). This is a very
different way of arriving at the topological structure of V(X2 + Y?).

ExampPLE 2.3. Let us look next at a circle of “pure imaginary radius,”
V(X? + Y? + 1). Separating real and imaginary parts gives

XIZ_X22+Y12_Y22=_1’ X1X2+Y1Y2=O. (6)

At X, = 0 this defines the part common to a hyperboloid of two sheets and
the union of two planes. This is a hyperbola. Its two branches start approach-
ing each other as X, increases, finally meeting at X, = 1 (the hyperboloid
of two sheets has become the cone X ;2 + Y;2 — Y, = 0). Then for X, > 1,
we are back to the same kind of behavior as for V(X? + Y2 — 1) when
X, > 0. Figure 14, analogous to Figures 10 and 13, shows how we end
up with a sphere. Later we will supplement this result by proving:
Topologically, V(X2 + Y? + ) in P?(C) is a sphere iff y # 0.

VIf X2 + Y? — 1 were factorable into terms of lower degree, it would have to be of the form

1 1 1
X2+Y2—1=(aX+bY+c)<fX+BY—7> a, b, c #0; )
a ¢

this follows from multiplying and equating coeflicients. Also, equating X-terms yields 0 =

—(a/c) + (c/a), or c* = a*. Similarly, ¢? = b?,s0 a> = b2, which in turn yields a term +2XY on
the right-hand side of (5), a contradiction.

12



2: The topology of a few specific plane curves

Figure 14

Do other familiar topological spaces arise from looking at curves in
P2(C)? For instance, is a torus (a sphere with one “handle”—that is, the
surface of a doughnut) ever the underlying topological space of a complex
curve? More generally, how about a sphere with g handles in it (topological
manifold of genus g)? Let us consider the following example:

ExampLE2.4. The real part of the curve V(Y? — X(X? — 1)), frequently
encountered in analytic geometry, appears in Figure 3. (The reader will
learn, at long last, what happens in those mysterious “excluded regions”
—0o<X<—-land0< X < 1)

Separating real and imaginary parts in Y? — X(X? — 1) = 0 gives

Y12 - Y22 = X13 - 3X1X22 - Xy

(7)
2Y1Y2 = 3X12X2 - X23 - Xz.

When X, = 0, this becomes
-2 =X.?-X, VY, =0.

Then either ¥; = 0 or Y, = 0. When Y, = 0, the other equation becomes
Y,? = X, — X,. The sketch of this is of course again in Figure 3—that is,
when X, = Y, = 0 we get the real part of our curve. When Y; = 0, we get a
“mirror image” of this in the (X, Y,)-plane. The total curve in the slice
X, = 0 appears in Figure 15.

Note that in the right-hand branch, Y, increases faster than X, for X,
large, so the branch approaches the Y;-axis. Similarly, the left-hand branch
approaches the Y,-axis. But in P?(C), exactly one infinite point is added to
each complex 1-space, and the (Y;, Y,)-plane is the 1-space Y = 0. Hence the

13



I: Examples of curves

X

-

Figure 15

two branches meet at a common point P,,. We may topologically redraw
our curve in the 3-dimensional slice as in Figure 16.

By letting X, = ¢ in (7) and using continuity arguments, one sees that
the curves in the other 3-dimensional slices fill in a torus. In Figure 17,
solid lines on top and dotted lines on bottom come from curves for X, > 0.
The rest of the torus is filled in when X, < 0. The real part of the graph
of Y2 = X(X? — 1) is indeed a small part of the total picture!

We now generalize this example to show we can get as underlying topo-
logical space, a “sphere with any finite number of handles”; this is the most
general example of a compact connected orientable 2-dimensional manifold.
Such a manifold is completely determined by its genus g. (We take this up
later on; Figure 19 shows such a manifold with g = 5.)

Figure 16
14



2: The topology of a few specific plane curves

Figure 17

ExXaMPLE25. V(Y? — X(X* — 1)- (X2 — 4)-...-(X? — g?). For purposes
of illustration we use g = 5. The sketch of the corresponding real curve
appears in the (X, Y;)-plane of Figure 18. The whole of Figure 18 represents
the curve in the slice X, = 0.

Note the analogy with Figure 15. As before, the branches in Figure 18
meet at the same point at infinity. This may be topologically redrawn as in
Figure 19, where also the curves for X, = 0 have been sketched in.

We now see that looking at “loci of polynomials” from the complex
viewpoint automatically leads us to topological manifolds! Incidentally,
these last manifolds of arbitrary genus are intuitively “indecomposable”
in a way that the sphere was earlier, so we have good reason to suspect that
any polynomial Y? — X(X? — 1)-(X? — 4)-...-(X? — ¢g?) is irreducible in

Figure 18

15



I: Examples of curves

Figure 19

C[X, Y]. This is in fact so. Note, however, that a polynomial having as re-
peated factors an irreducible polynomial may still define an indecomposable
object. (For example, V(X — Y) = V((X — Y)?) is topologically a sphere
in P?(C).) We also recall that if we take a finite number of irreducible poly-
nomials and multiply them together, the irreducibles’ identities are not
obliterated, for we can refactor the polynomial to recapture the original
irreducibles (by “uniqueness”). The same behavior holds at the geometric
level; each topological object in P*(C) coming from a (nonconstant) poly-
nomial p € C(X, Y) is 2-dimensional, but it turns out that objects coming
from different irreducible factors of p touch in only a finite number of points,
and that removing these points leaves us with a finite number of connected,
disjoint parts. These parts are in 1:1 onto correspondence with the distinct
irreducible factors of p. For instance, V(p), with

p=(Y*=X(X? - 1DX*—4) Y (Y - 1),

Figure 20
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2: The topology of a few specific plane curves

turns out to look topologically like Figure 20; it falls into three parts, the
two spheres corresponding to the factors Y and (Y — 1), and the manifold
of genus 2, corresponding to the 5" degree factor. The spheres touch each
other in one point, and each sphere touches the third part in 5 points.

ExaMPLE 2.6. We cannot leave this section of examples without at least
briefly mentioning curves with singularities; an example is given by the
alpha curve V(Y? — X%X + 1)) (Figure 2). Separating real and imagi-
nary parts of Y2 — X*(X + 1) = 0 and setting X, = 0 gives us a curve
sketched in Figure 21. The two branches again meet at one point at infinity,
P, and the other curves X, = constant fit together as in Figure 22. Topo-
logically this is obtained by taking a sphere and identifying two points.
Note that Y2 — X(X + 1) is just the limit of Y? — X(X — ¢)(X + 1) as
¢ — 0. One can think of Figure 22 as being the result of taking the topological
circle in Figure 17 between the roots 0 and 1 and “squeezing this circle
to a point.” Also note that this “squeezing” process not only introduces a
singularity, but has the effect of decreasing the genus by one; the genus of
V(Y? — X(X? — 1))is 1, while V(Y? — X*(X + 1))is a sphere (genus 0) with
two points identified. One may instead choose to squeeze to a point, say, the
circle in Figure 17 between roots —1 and O; this corresponds to
V(Y% — X)X — 1)). Its sketch in real (X,, Y;)-space is just the “mirror
image” of Figure 2. Squeezing this middle circle to a point gives a sphere
with the north and south poles identified to a point; the reader may wish
to check that these two different ways of identifying two points on a sphere
yield homeomorphic objects.

What if one brings together all three zeros of X(X + 1)(X — 1)? That is,
what does V(lim,.,[Y? — X(X + &)(X — ¢&)]) = V(Y2 — X?3) look like?
Of course its real part is just the cusp of Figure 1; the origin is again an
example of a singular point. As it turns out, V(Y? — X?) is topologically a
sphere (Exercise 2.2).

Figure 21
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Figure 22

After seeing all these examples, the reader may well wonder:

What is the most general topological object in P?(C) defined by a
(nonconstant) polynomial p € C[X, Y]?

The answer is:

Theorem 2.7. If pe C[X, YI\C is irreducible, then topologically V(p) is
obtained by taking a real 2-dimensional compact, connected, orientable
manifold (this turns out to be a sphere with g < oo handles) and identifying
finitely many points to finitely many points; for any p € C[X, Y]\C, V(p)
is a finite union of such objects, each one furthermore touching every other
one in finitely many points.

We remark that a (real, topological) n-manifold is a Hausdorfl space M
such that each point of M has an open neighborhood homeomorphic to an
open ball in R". For definitions of connectedness and orientability, see
Definitions 8.1 and 9.3, and Remark 9.4 of Chapter II.

One of the main aims of Chapter Il is to prove this theorem.

ExaMPLE 2.8. In Figure 23 a real 2-dimensional compact, connected, orien-
table manifold of genus 4 has had 7 points identified to 3 points (3to 1,2to 1,
and 2 to 1).

Remark 2.9. We do not imply that every topological object described
above actually is the underlying space of some algebraic curve in P%(C).
However, one can, by identifying roots of Y2 — X(X% — 1)...(X% — g2,
manufacture spaces having any genus, with any number of distinct “2to 1”
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3: Intersecting curves

Figure 23

identifications. But how about any number of “3 to 17, or “4 to 1” identifica-
tions, etc.? And in just how many points can we make one such “inde-
composable” space touch another? Even partial answers to such questions
involve a careful study of such things as Bézout’s theorem, Pliicker’s formulas,
and the like.

EXERCISES

2.1 Show, using the “slicing method” of this section, that the completion in P*(C) of
the complex parabola V(Y — X?) and the complex hyperbola V(X2 — Y2 — 1)
are topologically both spheres.

2.2 Draw figures corresponding to Figures 7-10 to show that the completion in
PXC) of V(Y? — X?)is a topological sphere. Compare your figures with those for
V(Y? — X¥(X + ¢)), as ¢ > 0 approaches zero.

2.3 Establish the topological nature of the completion in P%(C) of V(X2 — Y2 + 5),
as r takes on real values in [— 1, 1].

3 Intersecting curves

The fact that any two “indecomposable” algebraic curves in P?(C) must
intersect (as implied by the description in the last section), follows at once
from the dimension relation

cod(V(p) N V(py) < cod V(p) + cod V(p)),
which means, in our case, cod(V(p;) » V(p;) < 2, or

dim(V(p;) n V(p;) = 0. Hence V(p;) n V(p;) # & (dim & = —1).

ExampLE 3.1. For two parallel complex lines in C2, the above amounts to a
restatement that these lines must intersect in P?(C).
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ExaMPLE 3.2. Any complex line and any complex circle in P?(C) must intersect.
One can actually see, in Figure 7, how any parallel translate of the complex
Y-plane along the X,-axis still intersects the circle V(X2 + Y? — 1),
either in the (X, Y;)-plane (as we usually see the intersection), or in the
hyperbola in the (X, Y,)-plane, for | X,| > 1.

ExaMPLE 3.3. Another case may be of some interest. Let us consider one curve
which is a complex line, say V(Y). Let another curve be V(Y — ¢(X)), where g
is a polynomial in X alone. Then the graph of Y = g(X) in Cyy is homeo-
morphic to Cy; one can then easily check that V(Y — ¢(X)) is a topological
sphere in P*(C), as is V(Y). By our dimension relation, these spheres must
intersect, perhaps as in Figure 24.

Figure 24

Does this result sound familiar? It is very much like the fundamental
theorem of algebra (every nonconstant g(X) e C[X] has a zero in C). This
famous result can now be put into the P?(C) setting. If we do this, then in
stating the fundamental theorem of algebra,

(a) Thereisno need to assume g(x) € C[ X]is nonconstant; if it is constant,
we will have two lines which either coincide or which intersect at one point at
infinity.

(b) There is no need to assume the given line is V(Y)(=Cy). Any line, in
any position, will do as well.

(c) There is no need to assume one polynomial is linear (thus describing
a line), or that the other one must be of such a very special form as Y — ¢(X)
(describing the graph of a function: C — C). The loci of any two curves in
P%(C) must intersect.

Of course, the reader might argue that our dimension relation fails to give
us certain other information which the fundamental theorem of algebra
readily provides. For instance, the fundamental theorem can be stated more
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3: Intersecting curves

informatively as: “ Any nonzero polynomial g(X) € C[X] has exactly deg g(X)
zeros when counted with multiplicity.” However, our dimension relation can
be extended in an analogous way.

To see how, first consider g(X) again. We may look at the multiplicity
r; of the zero ¢; in g(X) = (X — ¢y)"*-...- (X — ¢)* in the following geo-
metric way. Let a € C\ {0}, and let L, be the complex line Y = g in Cy. Then
the following holds for all a sufficiently small:

Of those points in which L, intersects the graph of Y = g(X), there
are exactly r; of them clustered close to the point (c;, 0), where
r; is the multiplicity of the zero ¢; in g(X).

(A proof of a more general version of this fact will be provided in Section I'V,6.)

ExampLE 3.4. The point 0 € C is a double root of the polynomial equation
Y = ¢(X) = X*. Fora # 0, L, intersects the parabola in two distinct points.
(They have complex X-coordinates if a ¢ R*.) See Figure 25.

Y
S~ 1 7 La
X
Figure 25

For small q, these two points cluster close to (0, 0); in this way our zero of
multiplicity two can be looked at as the limit of two single points which have
coalesced. The fundamental theorem says that the sum of all the multi-
plicities r; at all zeros cy, ..., ¢, of the polynomial g(X) is deg q(X). The
situation of two curves C,, C, in C? is very much the same; if P is an isolated
point of intersection of C; and C,, there will be a certain integer np so that
the following holds:

(3.5) For most sufficiently small translates of C, or C,, of those
points in which the translated curves intersect, there will be exactly
np distinct points clustered close to P.
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I: Examples of curves

The meaning of “most” above will be made precise in Chapter IV. The
reader can get the basic idea via some examples. The integer np is called the
intersection multiplicity of C, and C, at P.

EXAMPLE 3.6. Consider the intersection at (0, 0) € C* of the two alpha
curves C; = V(Y2 — X*X + 1)) and C, = V(X% — YXY + 1)) (Figure
26). In Figure 27 C, has been translated upward a little; there are four
distinct points clustered about (0, 0). One can see that “most” translates will
yield four points this way. In certain special directions one can get fewer
than four points (but never more, nearby). Figure 28 gives an example of
this. But in a certain sense the topmost of these clustered points is still
“multiple”—that is, a little push up or down of either curve will further
separate that point so we again end up with a total of four points.

Y Y

Figure 26 Figure 27

Figure 28
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3: Intersecting curves

Of course, in most cases, the intersection points have complex coordinates;
the above example is quite special in the respect that all intersection points
are real. Also, we have not shown by our real pictures that there cannot
be more than four points clustered near (0, 0); for this, we need to deter-
mine from the equations of the curves all possible simultaneous solutions
near (0, 0). But we can translate this geometric idea of “perturbing one
curve slightly to separate the points” into algebraic terms; this is done in
Chapter IV when we take up intersection multiplicity formally.

An extension of the dimension relation for curves which corresponds to
our geometric form of the fundamental theorem of algebra is then the
following:

Let Py,..., P, be all the points of intersection of two curves
V(p;) and V(p,) in P*C), where p; and p, have no repeated
factors, and no factor in common. Then the total number of
points of intersection of V(p,)and V(p,), counted with multiplicity,
is (deg p;)- (deg p,). (Often the number of points counted with
multiplicity is called the degree of the intersection and one writes

deg(V(p;) n V(p,)) = (deg p,) - (deg p,).)

This elegant and central result is known as Bézout’s theorem, after its
discoverer, the French mathematician E. Bézout (1730-1783).

Remark 3.7. We must assume p; is a polynomial of lowest degree defining
V(py), i.e,, that p; does not have repeated factors. For instance the X and Y
axes, which are V(Y)and V(X?), intersect in just one point instead of 1 - 2 = 2
points. However, using V(X) yields 1-1 = 1 point. The assumption that
p1 and p, have no factor in common is of course needed to make V(p,) N
V(p,) finite.

EXAMPLE 3.8. Assuming (3.5), we can now see more precisely the relation
between Bézout’s theorem and the fundamental theorem of algebra. Assume,
in Y = p(X), that p is not constant. Then Y eventually increases like X to a
positive power; hence the graph V(Y — p(X)) cannot intersect the X-axis
at infinity—that is, all intersections take place in Cyy. Secondly, since p is
nonconstant, deg(Y — p(X)) = deg p(X). Finally the X-axis, ie, Y =0,
has degree 1. Hence the number of intersections of the graph in Cy, with
Cy is 1 - deg p(X) = deg p(X).

ExAMPLE 3.9. Consider two ellipses as in Figure 29. Each ellipse is defined
by a polynomial of degree two, and the total number of intersection points
is 2-2 = 4. As the horizontal ellipse is translated upward, we get first one
double point at top, and two single points; then two complex points and two
real ones; then 2 complexes and 1 real double; and finally, as the ellipses
separate entirely in the real plane, we have four complex points of inter-
section.
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I: Examples of curves

Figure 29

ExaMmpLE 3.10. Consider the curves V(Y2 — 5X*X + 1))and V(Y? — X — 1).
Their degrees are 3 and 2, so there should be a total of six intersection points.
In Figure 30 four single intersections and one double intersection appear.

Figure 30

EXERCISES

3.1 Suppose that curves C; and C, in P*(C) have exactly p points of intersection
(counting multiplicity), where p is a prime. Show that either C, or C, must be a
topological sphere. (Assume Bézout’s theorem.)

3.2 Consider the curves V(Y2 — X3) and V(Y? — 2X7) in Cyy. Find all points of
intersection in Cyy near (0, 0), after one curve is given an arbitrarily small nonzero
translation. How many points of intersection (counted with multiplicity) are there
at the “line at infinity” of Cyy ?

3.3 Consider the complex circles V(X? + Y2 — 1) and V(X2 + Y2 — 4) in P*C).
Where are their points of intersection? Are all four points of intersection distinct?
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4: Curves over Q

4 Curves over

Perhaps enough has been said about plane curves to give the reader a first
bit of intuition about them. Let us now look in perspective at what we’ve
done so far. We started out using R as our groundfield, and were led to C
as a ground field where varieties were better able to express an important
side of their nature. We then saw topologically, just what certain complex
curves look like, and we got a look at how they behave under intersection.
This immediately suggests many more questions: What do varieties of
arbitrary dimension in P*(C) look like? How do they behave under inter-
section? Under union? Can one “multiply” varieties as one does topological
spaces to get product varieties? Are there natural maps from one variety
to another, as there are continuous maps from one topological space to
another? How do they behave? Can one put more structure on an algebraic
variety (as one does with topological spaces) to arrive at “algebraic groups,”
etc.? An important part of algebraic geometry consists in exploring such
questions. Also, if going from ground field R to C allowed varieties a fuller
expression of a certain aspect of their nature; might possibly using other
ground fields allow varieties to express a different side of their nature? This
is indeed so, and no introductory tour of algebraic varieties would be
complete without at least mentioning varieties over ground fields other than
R and C.

For purposes of illustration, let us consider the field Q of rational numbers.
Even asking for the appearance of a few specific curves in @ will show us a
totally new aspect of algebraic varieties. For many curves defined by poly-
nomials in Q[X, Y], their appearance is the “same” as in R*—that is, if C
is the locus in R? of p(X, Y) € Q[X, Y], then C n Q? is dense in C. But for
other curves the appearances of C in @? versus R? are completely different.

ExaMpPLE 4.1. V = V(Y — X?) c Q2; with the usual topology of R?, this
V is dense in the variety V' = V(Y — X?) = R?, so V “looks like” the
parabola V' in R2 The density of V is easily verified because y = x? is
a continuous function, @ is dense in R, and x € Q implies (x, x?) € V < Q2

ExampLE 4.2. In a similar way, one sees that if p(X) € Q[X], then the “graph-
variety” V(Y — p(X)) in Q2 is dense in the corresponding graph in R

ExaMpPLE43. V = V(Y? — X3) < Q% is dense in V' = V(Y% — X3) = R?,
so V also looks like the cusp V' in R2. This is true because the squares of
rational numbers form a dense subset of R* ; if s is a square of a rational, then
(s, ts¥?) eV < Q2

ExampLE 4.4. The “rational circle” V = V(X2 + Y? — 1) = Q2 also turns
out to be dense in the corresponding real circle of R?, but this time the
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reasoning is more subtle. Let (r,s)e V(X? + Y2 — 1) = @2 We may
assume without loss of generality that r and s have the same denominator,
r = ajc,s = b/c, a, b, c, integers. Then r? + s = 1 implies a* + b? = ¢2, ie.,
that (a, b, c) is a Pythagorean triple, meaning that |a|, |b|, | c| form the lengths
of the sides of a right triangle (a Pythagorean triangle). Now the number-
theoretic problem of finding all Pythagorean triangles was solved already by
Euclid’s time. The solution says, in essence:

All Pythagorean triples (a, b, ¢) are obtained from

a v:—u? b 2up

¢ u?+v? ¢ ur+ 0¥

where u, v range through all integers (u, v not both zero).

The question of whether the points (r, s) = (a/c, b/c) are dense in the real
circle is evidently the same as:

Can the slope e a p2 — 2

B/—c—b_ 2uv

be made arbitrarily close to any preassigned slope m € R?

But

v — u?

~m implies

<=

~ 2m,

e

2uv

meaning that for some rational x = u/v, x — (1/x) ~ 2m. This implies
x* — 2mx — 1 =~ 0 which further implies x ~ m + ./m? + 1. But surely any
m + /m* + 1€ R can be approximated to any degree of accuracy by a
rational number.

Geometrically, the density of the rational circle in the ordinary real one

says that there are Pythagorean triangles arbitrarily close in shape to any
given right triangle.

ExAMPLE 4.5. The last example involved a solution to an honest prob-
lem in number theory. Finding out exactly what the rational curve
V(X" + Y" — 1) = Q? looks like for all integers n > 2 is probably the most
famous unsolved problem in all mathematics; it is equivalent to Fermat’s
last theorem. This conjecture says that in Q, foranyn > 2 V(X" + Y" — 1)
consists of just the four points {(1, 0)} U {(0, 1)} U {(—1,0)} U {(0, —1)}ifn
is even, and consists of just the two points {(1, 0)} U {(0, 1)} if n is odd. This
is vastly different from the corresponding real curves (Figures 31 and 32).
It looks more and more square-shaped as n becomes large and even (Figure
31), and looks like the sketch in Figure 32 for n large and odd.
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Figure 31 Figure 32

From just these few examples, the reader has perhaps already guessed that
by using @ as ground field, varieties express a strong number-theoretic
aspect. (This is true also of algebraic extensions of Q and finite fields). In fact,
much of the modern work in number theory, including looking anew at some
of the old classical problems, has been done by looking at number theory
geometrically from the vantage point of algebraic geometry.

In this chapter we have tried to give the reader a little feeling for algebraic
varieties, mostly by example. A large part of algebraic geometry consists in
rigorizing and extending these ideas, not only to arbitrary complex varieties
in P*(C) or to arbitrary varieties in an analogous P"(k), but also to finding
appropriate analogues when k is replaced by quite general commutative
rings with identity. From our examples of switching from R to C or to Q, the
reader may be somewhat convinced that such generalization is not just for
generalization’s sake, but frequently leads to important connections with
other areas of mathematics.

EXERCISES

4.1 Is the set V(X2 — Y2 — 1) = Q? dense in V(X% — Y2 — 1) = R?? What about
the curves V(X" — Y" - 1), for n > 2?

4.2 [s the alpha curve V(Y? — X2(X + 1)) « @2 dense in the corresponding curve
in R??

4.3 Find an ellipse V(aX? + bY? — 1) (a, b € @\ {0}) whose graph in Q? is the empty
set. [Hint: Any solution X; = x; in Z of n, X > + n, X,> + n*X;2 =0 (n;€ 2)
implies, for every integer n, a solution in Z/(n) of n X > + n; X,2 + n3X32 =0
(mod n).] Can we assume a = b?
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CHAPTER 1II

Plane curves

1 Projective spaces

This section is devoted to projective spaces. The question of defining “pro-
jective space” is akin to defining “sphere” in that both terms are used at
several different levels. By “sphere” one can mean a topological sphere, or
sphere as a differential manifold, or, more strictly, as the set V(X2 + Y2 +
Z? — 1)in R3. This last object has the most structure of all; for instance, it is
also a real algebraic variety. In turn, one can take this specific object, with its
multitude of properties, and isolate certain of its properties to get other
notions of “sphere.” Its equation is defined by a sum of squares, so one has
the n-dimensional real sphere V(X,? + ...+ X, — 1). We also have,
analogously, complex n-spheres, when k = C; Q-spheres, when k = Q;
and so on.

In this book we use a quite specific object in defining projective space. This
means there will be quite a bit of structure in our object, and we can bring out
various facets of it as needed. To motivate this definition, we start with one of
the topological definitions of the last section; by a succession of topologically
equivalent definitions we arrive at a definition which will at once suggest a
simple definition for any P"(k). It will also give us an easy way to pass between
affine spaces and projective spaces.

We begin with P*(R) as in Chapter I. The disk with antipodal points
identified may also be considered, topologically, as an ordinary hemisphere
with opposite equatorial points identified (Figure 1). This hemisphere can
in turn be looked at as an entire sphere with all pairs of antipodal points
identified. This last is very symmetric! In one stroke, the “line at infinity”
has lost its special status. The topological space P*(R) is just an ordinary
sphere with antipodal points identified. But we can go even further and
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Figure 1

identify to one point all the points on the line-minus-origin through any two

antipodal points. And by centering the sphere at the origin of R?, we see the

points of P%(R) become identified in a natural way with the 1-subspaces of R3.
We now make the following general

Definition 1.1. Let k£ be any field. Then, as a set, n-dimensional projective space
over k, written P"(k), is the set of all 1-subspaces of the vector space k" !.
Each 1-subspace is called a point of P"(k); the set of all 1-subspaces in an
(r + 1)-subspace of k"*! comprises an r-dimensional projective subspace
Pr(k) of P"(k). P'(k) has codimension n — r in P"(k).

If the field is in addition a topological field then k induces on P"(k) a
topology as follows: First, k induces on k"*?! the usual product topology.
Then a typical open set of P"(k) consists of all 1-subspaces of k"*! inter-
secting an arbitrary open set of k"*1.

Remark 1.2. If R and C are given their usual topologies, then P*(R) and
P*(C) are compact. See Exercises 1.1-1.3.

One advantage of Definition 1.1 is that it at once gives us the general
n-dimensional analogue of the basic relation: Any two projective lines in
P?(R) must intersect. This may be equivalently expressed as: If L,, L, are pro-
jective lines in P%(R), then cod(L; » L,) < cod L, + cod L,. (This is the
“projective” analogue of the subspace theorem for vector spaces, noted in
Chapter 1.) The generalization is as follows:

Lemma 1.3. Let S, and S, be any two projective subspaces of P"(k). Then

cod(S; n S,) < codS; +codS,.

PrROOF. Any subspace kK"*! has codimension n — r in k"*!; therefore the
associated subspace P'(k) has the same codimension n — r in P"(k). Then
apply the corresponding vector space theorem. O

Hence any two projective 2-spaces in P*(R) intersect in at least a line, and
so on. We show later that this dimension relation holds for any two algebraic
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varieties in P"(C) (Section 1V,3); we prove it for projective curves in P(C) in
Section IL6.

Another advantage of Definition 1.1 is that it allows us to define coordi-
nates on P"(k). This will be extremely useful later on.

Definition 1.4. Let P be a point of P"(k), and L, the corresponding 1-subspace
of k"*1, The (n + 1)-tuple of coordinates (ay,...,a,,,) of any non-
zero point in Lp is called a coordinate set of P. More informally, we say
that (aq, . . . , a,+,) are coordinates of P.

Remark 1.5. Coordinate sets of P are never uniquely determined, unless k is
the two-element field ; however, any two coordinate sets of P differ by a scalar
multiple.

Definition 1.6. Two nonzero (n + 1)-tuples (a,, ..., a,.)and (by, ..., b, 1)
of k"*! are equivalent if

(bl"*-’ bn+1) = (Ca19"-acan+l)

for some nonzero c € k. (Hence all coordinate sets of any P e P*(k) are
equivalent.)

Now let us relate, in a more direct way, Definition 1.1 to our definition of
P%(R) in Chapter I. The same kind of arguments we use now will enable us to
see how the general definition reduces to those in Chapter I for the special
cases considered there.

First, using Definition 1.1 and an (X, X,, X ;)-coordinate system of R?,
we see the points of P?(R) fall into two classes—those having zero as last
coordinate, and those with nonzero last coordinate. If a triple (ay, a,, as)
satisfies az # 0, then dividing by a; yields a triple (b,, b5, 1). All such points
of R3 constitute the 2-plane V(X3 — 1), and this establishesa 1: 1 correspond-
ence between a part of P*(R) and the plane V(X3 — 1) (since two triples
(by, by, 1) and (b, b, 1) are equivalent iff b, = b’ and b, = b}.

Now if a point of P?(R) has last coordinate zero, say (by, b,, 0), then all
scalar multiples of it form a line L in Ry x,. Then L + (0, 0, 1) is a line in our
hyperplane through (0, 0, 1). Hence the points with zero last coordinate
may be identified in a natural way with the set of all lines through (0, 0, 1)
within the plane V(X3 — 1), while the points with nonzero last coordinates
correspond to the points of the plane V(X; — 1). Hence the set P*(R),
according to Definition 1.1, is in 1:1 onto correspondence with the points
of R?, together with all 1-subspaces of R, But this is precisely the way R? was
completed in Chapter I—to R? we added one new element for each different
1-subspace of R2. It is straightforward to check that either definition yields
the same open sets on P%(R); hence both definitions yield the same topological
space. We can now apply precisely the same kind of reasoning to show that
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Figure 2

Definition 1.1 reduces to the ones in Chapter I for the special cases there.

There is yet another advantage of Definition 1.1—it gives a very nice way
of passing between the “affine” and the “projective.” Let P"(k) be as above;
any n-dimensional subspace W of k"*! then defines an (n — 1)-dimensional
projective subspace P"~ !(k) of P"(k). We may choose this subspace to play the
role of “projective hyperplane at infinity,” P_"~ (k) = P"(k). What does the
set of remaining points of P*(k) look like? If we parallel-translate the subspace
W through a fixed vector vy in k" 1\ W, obtaining

U0+ W= {U0+W|We W},

then each 1-subspace in k"* '\ W meets v, + W in exactly one point. This sets
up a 1:1 onto correspondence between the points of P*(k)\P_"~ !(k) and the
points of k"; Figure 2 indicates a typical situation for k = R, n = 2.

Definition 1.7. We call the set P"(k)\ P,," ! (k) the affine part of P"(k) relative
to the hyperplane at infinity P_" (k).

Any affine n-space may be regarded as the affine part of a P"(k) relative to
some P "~ (k) by taking a parallel translate of an n-dimensional subspace W
of k"*', and identifying each point P of this parallel translate with the 1-
subspace of k"*! through P.

There are n + 1 particularly simple choices of P_"~(k), namely the pro-
jective hyperplanes defined by each of the n + 1 hyperplanes X; = 0 where
i=1,...,n+ 1. The following important observation will be particularly
useful in the sequel:

The corresponding n + 1 affine parts of P*(k) completely cover P"(k).

This is true since the affine part corresponding to X, = 0 covers all of
P"(k) except those points represented by the 1-subspaces contained in X, = 0;
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the union of the affine parts corresponding to X, = Oand X, = Othen covers
all of P"(k) except those points represented by the 1-subspaces in the inter-
section of X; = 0 and X, = 0; and so on. Clearly there are no 1-subspaces
in k**! common to X; = X, =...= X,.; = 0, so the union of all these
n + 1 affine parts covers all of P"(k).

We have seen how an arbitrary (n — 1)-dimensional subspace can be the
hyperplane at infinity of P"(k). It is fair to ask why one would want to do this
in the first place. Why not just stick to one standard affine n-space, letting its
points be the finite points, and the added points always be the points at
infinity ? One answer is this: There is often much important geometry going on
“at infinity,” and many times one needs to know more precisely what is
happening there. It is helpful in this to be able to “move” the line at infinity
so that the infinite points become finite ; these points then become points in an
ordinary affine variety, where methods developed for affine varieties can be
applied.

ExaMpLE 1.8. Consider the cubic curve V(Z — X3)in P2(C). It is of degree 3,
so by Bézout’s theorem any projective line must intersect this projective
curve in 3 points, counted with multiplicity. Now it happens that if the pro-
jective line contains a line in the real part of Cy, then all three of these points
are “real ”—that is, they are all in the projective completion P?(R) of the real
part of Cy,. Figure 8¢ shows the part of this curve in P?(R). Since Z in-
creases much faster than X for large X, the branches approach the Z-axis,
and both meet at the infinite point of the Z-axis. The completed Z-axis
should intersect the cubic in 3 points. The origin is clearly one point, the
point at infinity, another. So far we have two points. But let’s look more
closely at what happens at infinity—in fact, let us try to get an explicit equa-
tion describing the curve near this infinite point.

First, represent the points of V(Z — X?) in P%(R) by 1-subspaces of R>.
The usual (X, Z)-coordinate system is naturally induced in the plane Y = 1;
that is, a point (x, z) corresponds to (x, 1, z). Through each point of this
translate Y = 1 of the subspace Y = 0, there is a unique 1-subspace of R>.
The corresponding picture of Z = X3, when looked at as a collection of 1-
subspaces, is a surface in R?; it is a kind of generalized “cone through the
origin” (cf. Figure 7).

To determine the equation of this surface, let (a, 1, a’) be a typical point of
the curve as embedded in the hyperplane Y = 1. Now the symmetric equa-
tions of the 1-space through (a, 1, ') are

X_Y_Z'
a 1 d°
hence
X Z
= -— d /=—
a Y and a 7
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But we know @’ — g =0, so
V4 xX\3
Z_(Z) =o,

ZY? - X*=0.

that is,

Hence each point of our surface satisfies this equation. Furthermore, no
other points of R*\ Ry satisfy it, because if (b, b’, b") is any point satisfying it,
then clearly so does (ch, cb’, cb”) for each ceR. Hence the intersection
of the 1-space through (b, b', b”) with the plane Y = | satisfies it. Since this
point is on the original curve Z — X3 (Y = 1), (b, b', b") is on one of the lines
of our surface.

Hence the whole algebraic variety V(ZY? — X3) = R? coincides pre-
cisely with our surface on the “affine part,” that is, on the l-subspaces of
R? in R3\Ry;. (So far, we’ve “homogenized” V(Z — X3) to the variety
V(ZY? — X?*). We take this up formally in the next section.)

Now let us choose a new line at infinity so the original point at infinity is
no longer infinite; we can do this by letting the hyperplane Z = 0 of R define
the new line at infinity. We can get a picture of the new affine part by translat-
ing this hyperplane to Z = 1 and looking in this plane at the intersections with
the 1-subspaces of R3. Such intersections of 1-subspaces in our surface
ZY?* — X? = 0 are then determined by setting Z = 1 in this equation. This
yields the curve Y2 — X* = 0, as in Figure I,1. Note that the infinite point in
Figure 8e is now the new origin. One can see that the set of points constituting
the original Z-axis in Figure 8¢ now corresponds to the new Y-axis.

But this Y-axis intersects the cusp with multiplicity two! Hence we do
indeed have a total of 3 points of intersection, as Bézout’s theorem promises.

This example perhaps gives the reader some feeling for why changing the
roles of hyperplanes is important—sometimes essentially all the interesting
geometry of a curve or variety takes place “at infinity,” and one must be
able to deal with this situation.

EXERCISES

1.1 Let S be a set and let T be a collection of mutually disjoint subsets of S whose union
is S.If x € S, denote by n(x) that set of T containing x. (This is an identification map.)
Now if S has a topology, define the corresponding identification topology on T as
follows: An open set of T is any set @ = T such that 7~ '(0) is open in S. Note that
is continuous with respect to this topology.

Let S be the real sphere V(X,2 + ... + X5,42° — 1) in Ry, .y, ., =C"""
Show that the intersections with S of the complex l-subspaces of C"*! form a
mutually disjoint set of subsets (circles) of S whose union is S. Using the continuity
of the corresponding identification topology and the compactness of S relative
to the usual topology on R2"*?, conclude that P*(C) is compact.

1.2 Prove that P"(R) is compact.
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1.3 Let B be a closed unit »-ball in R, supplied with the usual topology. Identify to a
point each pair of antipodal points on B’s boundary. Show that the resulting space
is topologically the same as PR). Can you analogously identify appropriate
subsets to points on the surface of a real 2n-ball to arrive at P*(C)?

2 Affine and projective varieties; examples

In this section we look at projective varieties and some general facts about
passing from the “affine” to the “projective” and back again; we illustrate
these facts with some examples.

Let k be an arbitrary field.

Definition 2.1. A homogeneous subset of k" is any subset S of k" satisfying

x e S impliescxeS forall cek.

Hence a set is homogeneous iff it is ¢, {0}, or consists of a nonempty
union of 1-subspaces of k". In view of Definition 2.1, a homogeneous set in k"
can be regarded as a set of points in P"~!(k). (One regards {0} = k" as

& < P (k).

Definition 2.2. A homogeneous set in k" represents a set in P"~!(k). Any
subset of a projective space is a projective set; a projective set in P"~ (k)
is represented by the corresponding homogeneous set in k"

Definition 2.3. A nonzero polynomial g = g(X,,..., X,)ek[X,, ..., X,]
is homogeneous (and ¢ is called a form) if all its terms have the same total
degree; if this degree is d, then g is homogeneous of degree d. Any poly-
nomial p of degree s can be written as a sum of polynomials p, + p, +
...t ps, where p; is 0 or a homogeneous polynomial of degree i; if p; is
nonzero, then p; is called the homogeneous component of degree i of p.

EXAMPLE 24. ¢(X,Y)= X° + 2X?Y?® — 3XY* + Y® is homogeneous of
degree 5; q(X, X,,..., X,) = lek[X, ..., X,] is homogeneous of degree
0; by convention, the zero polynomial in k[ X, ..., X,] has degree 0.

Definition 2.5. A homogeneous variety in k" is an algebraic variety which is a
homogeneous set.

Theorem 2.6. Let k be infinite. An algebraic variety V in k™ is homogeneous iff
it is defined by a set of homogeneous polynomials. (We agree that the variety
defined by the empty set of polynomials is k".)
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2: Affine and projective varieties; examples

Proor. Since the theorem is trivial if V = k", assume V & k".

<=: Let the variety be V = V(q,, ..., q,), where each g;€ k[ X, ..., X,]
is homogeneous of degree d;. Now xe Viff g(x) =0for i =1,...,r. But
for any t € k, q{(tx) = t%g{x), so x € V implies tx € V for all t e k.

=: Suppose V = V(q,, ..., q,) is homogeneous. Now V' may be homo-
geneous without every (or even any) g; being homogeneous. (Example:
{0} = R? is homogeneous, yet it is the intersection of two parabolas, {0} =
V(Y + X2, Y — X?).) However, we shall manufacture from {q,, ..., ¢,} a set
of homogencous polynomials defining V'; this set is just the set of all homo-
geneous components of all the g;. (Thus, {0} = V(Y, X2 Y, — X?) = V(Y, X?).)

Let x, be a fixed point in V; then each g,(x,) = 0. Now let t be an arbitrary
element of k,and write g; = )_ g;;, where g,;is the homogeneous component of
degree j of g;. Then

qi{txo) = Z tjqu‘j(xo)l (1)

since x, is fixed and ¢ is arbitrary, the polynomial in (1) may be looked at as a
polynomial in an indeterminant T, namely g{Tx,) € k[T]. Since V is homo-
geneous, q(Tx,) is O for each T = t: because k is infinite, g,(Tx,) is the zero
polynomial in k[ T]. Hence each coefficient of q(Tx,) is 0—that is, each
qgifxo) = 0. Hence x, € V implies g;{x,) = 0 for each g;; above, or g;; is 0 at
each point of V. Hence V' = V({g;;}). But obviously each g;{x,) = 0 implies
each gx,) = 0, so V({g;;}) = V. Therefore V = V({g;;}), so “="is proved.

d

Definition 2.7. A projective variety V' in P"(k) is a subset of P"(k) represented
by a homogeneous variety in k"*!. If q;ek[X,,..., X,+,], where
i=1,...,r, are homogeneous polynomials, then by abuse of language,
V(q;, - - ., q,) denotes the projective variety in P"(k) represented by the
homogeneous variety V(qy, ..., q,) in k"*1,

It is clear that the intersection of any number of homogeneous varieties in
k"*1 is a homogeneous variety; likewise for projective varieties in P"(k).
Hence for any subset of PP"(k) there is a smallest projective variety in P"(k)
containing that subset.

Definition 2.8. Let k" < P"(k), and let V be a variety in k". The smallest
projective variety in P"(k) containing V is called the projective completion
of V in P"(k) and is denoted by V*; sometimes notationally it is preferable
to refer to the homogeneous variety H(V) in k"* ! representing V¢, and we
then also denote V° by H(V).

Definition 2.9. Let p(X,, ..., X,)ek[X, ..., X,] be of degree d, and write
p=po+ Py + ...+ pgasin Definition 2.3. Then

PoXns 1t + D1 X o pack[X o X X1
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is homogeneous of degree d and is called the homogenization of p; we
denote it by Hy_ . (p), H,+(p), or by just H(p), depending on context. If
pek[X,,..., X ..., X,+ ], the homogenization Hx(p) = H{p)of pat X
is defined analogously.

Remark 2.10. Suppose k = C. It turns out that if V(p,, ..., p,) = C", then

V¢ is represented by the homogeneous variety

V(Hn+1(p1)""’ Hn+1(pr)) < C"+l- (2)

Also we shall see that V¢ is the topological closure of V in P*(C). Neither of
these statements is true in general for varieties over R (see Example 2.22).
However, any projective variety V < P(R) is topologically closed. H(V)is the
intersection of hypersurfaces, and each hypersurface is the inverse image under
a polynomial function of the closed set {0} — R; hence each hypersurface is
closed. (We note, of course, that our canonical map from R"*! to P*(R) sends
closed sets to closed sets.) Thus if the topological closure of V in PYR) is a
variety, it is the projective completion of V; this will be of use to us in the
examples of this section.

We have homogenized both polynomials and varieties; those operations,
when k = C, are related in (2). We can also reverse the process:

Definition 2.11. Let V = P"(k) be a projective variety, and P_"~ (k) a choice
of hyperplane at infinity. The part of V in P"(k)\P "~ !(k) is called the
dehomogenization of V at P,""!(k), or the affine part of V relative to
P (k).

The n + 1 canonical choices of hyperplanes described in the last section
(defined by X, =0,..., X,,; =0 in k"*') induce n + 1 canonical de-
homogenizations of P*(k), and also of any projective variety V in P"(k). As
before, V is covered by the n + 1 corresponding affine parts of V.

Notation 2.12. We denote the dehomogenization of Vat P "~ ! by Dp, "~ (V).
or by D(V) if the hyperplane P,""! is clear from context. We denote
the above canonical dehomogenizations of any V by D(V), ..., D+ (V).

Just as there are n + 1 canonical dehomogenizations of P"(k), there are
also n + 1 canonical dehomogenizations of any homogeneous polynomial
pek(Xy, ..., X, 411

Definition 2.13. Let ¢(X 4, ..., X, 1) €k[X,, ..., X,+ ] be a homogeneous
polynomial. The polynomial

q(Xl,"-aXi—b 1’ Xi+1a--~,Xn+l)
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is called the dehomogenization of ¢( X, . . ., X, +,) at X;; we denote it by
Dy (g), by D{q), or by D(g) if clear from context.

Lemma 2.14. Let qy,...,q,€k[X, ..., X, 1] be homogeneous,; let
V41, - .- q,) = P(k) be the projective variety defined by q,, ..., q,. Then

D(V(g1, ..., q)) = V(Dqy), - .., Ddg,). &)

ProoF. The variety V(Di(q,), ..., Di(g,) can be looked at as the intersection
of the variety V(q,, ..., g,) with the plane given by X; =1 in k**1. [

Here are some relations between D and H:

Lemma 2.15. Let p e k{X,, . . ., X,]]. Then
D (H;(p)) = p.
PrOOE. Obvious from the definitions of D; and H;. O

Lemma 2.16. Let g be a homogeneous polynomial in k[ X4, . . . , X,]. Then for
any i = 1,..., n, it can happen that

Hi{D«q) # q.

PROOF. Let Q(Xl’ Xz) = XIXZ' Thel’l Dl(q) = Xz, and Hl(Dl(q)) = X2 #
X, X,. Similarly, H,(D,(¢)) = X, # X,X,. O

Lemma 2.17. Let P " (k) be a hyperplane at infinity of P"(k), and let
V c k" = P(k)\P,"" (k). Let H(V) be the projective completion of V,
and D the operation of dehomogenizing HV) at P_"" . Then

D(H(V)) = V. )

But if Vis a variety in P"(k), then it can happen that
H(D(V)) # V. &)
PrOOF. We leave verification of (4) as an easy exercise. (5) follows from
Lemma 2.16 by letting V be V(X X,). More generally, if V is any variety in

P"(k) not containing P ,"~ !(k), then (5) holds for the variety ¥ U P "~ (k).
O

We now give some illustrations of the above ideas. Many of the essential
features can be brought out using real varieties; in fact we can learn much
from real curves in R? and P2(R). The reader will see that various ways of
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looking at P2(R) (1-subspaces in R3, sphere with identified antipodal points,
disk with antipodal boundary points identified) will all be valuable in under-
standing the nature of projective curves, of homogenization, and of de-
homogenization.

In the first four examples (Examples 2.18-2.21) we start with an affine
variety V = V(p) € Ryy, pe R[X, Y]. The homogenized polynomial H,(p)
then defines a homogeneous variety H,(V) = H(V) in Ryy,, the original
affine part in Ryy being represented by the 1-spaces of H(V) in Ryy;\Ryy. In
each of these examples we note that

[H(V) N (Ryyz\Rxy)]™ = H(V).

(The bar denotes topological closure in Ryy,.) Since H(V) is a variety, by our
earlier observation (Remark 2.10), H(V) represents the projective completion
Veof V.

ExampLE 2.18. Consider the real circle V(X2 + Y2 — 1) = R2. The homo-
genized polynomial X2 + Y2 — Z? e R[X, Y, Z] determines the cone in
Figure 3 as well as the circles in Figure 4. (Since antipodal points are identified,
this is just one circle.)

Figure 3 Figure 4

We may dehomogenize at an arbitrary P *(R) by choosing an appro-
priate 2-space in Ryy,. Since the intersection of the cone with a parallel
translate of this 2-space yields a copy of the affine part of the curve with
respect to P '(R), we see the various affine parts of the circle in P?(R) are
conic sections. Thus, dehomogenizing at the plane in Ryy, with Z-axis
as normal gives a circle, and as we vary the normal, we get ellipses, a
parabola, and hyperbolas. Likewise, dehomogenizing X2 + Y? — Z2 to
X*+Y*—1,toX*+1—Z%andto1 + Y? — Z? yields a circle and two
hyperbolas, respectively.
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2: Affine and projective varieties; examples

We may also get specific equations for affine curves induced in 2-spaces
other than in the above canonical way. For example, let the 2-space in R*
given by X = Z define the line at infinity; this subspace intersects our cone in
just one 1-subspace L. Hence in P*(R) the curve touches this line at infinity in
exactly one point. An affine representative with respect to this infinite line is
obtained by intersecting the cone with a parallel translate of the plane
X =Z,say X = Z + 1. What is the polynomial describing this affine re-
presentative ? It may easily be found by choosing new coordinates X', Y', Z’
of R* so the new Z'-axis is the 1-subspace L. This may be done by setting

X=X +7Z, Y=Y, Z=17.

The plane X = Z + 1 then becomes X’ = 1; the equation of the cone in
these coordinates becomes

(X')? +2X'Z +(Y')? =0.
In the affine plane X' = 1 this equation becomes
142Z +(Y)»=0
which is a parabola. The sketches of the affine curve in V(X' — 1) appears in

Figure 5. (We identify V(X' — 1) with Ry.;..) The sketch of the entire pro-
jective curve appears in Figure 6.

Figure 5 Figure 6

Our projective circle now touches the line at infinity in just one point, but
by making this point finite, we can easily show it does so with multiplicity
two.

From what we have said so far, the reader can see that from a projective
viewpoint, the difference between circles, ellipses, parabolas and hyperbolas
is simply a matter of where the line at infinity is chosen, and these affine curves

39



II: Plane curves

all correspond to one projective curve. Hence, from the complex viewpoint,
the extension to P?(C) of any real conic section is still topologically a sphere.

EXAMPLE 2.19. We return to the curve V(Y2 — X3). Homogenizing Y? — X*
gives Y2Z — X3; Figure 7 shows the homogeneous surface V(Y2Z — X3).
The surface is, of course, the union of lines through the origin. In Figure
8a-c we sketch the curves in R? after dehomogenizing at the planes Z = 0,
Y =0, and X = 0; the reader can see these are just the intersections of the
surface of Figure 7 with parallel translates of the (X, Y), (X, Z), and (Y, Z)
planes, respectively. Figure 8d-f show the corresponding completions in the
disk with opposite boundary points identified. The points P and Q correspond
to two points on the projective curve, the cusp point and flex point.

Figure 7
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2: Affine and projective varieties; examples

ExampLE 2.20. We next consider the alpha curve V(Y? — X%(X + 1))
< R?. Homogenizing the polynomial gives

Y2Z — XX + Z) = 0;

the intersection of V(Y2Z — X*(X + Z)) with a sphere centered at (0, 0, 0) is
shown in Figure 10. Figure 9a-c¢ show the affine parts after dehomo-
genizing at Z, Y, and X, respectively; Figure 9d—f are the corresponding
completions in the disk. Three points, P, Q, R of the projective curve are
indicated. The loop between P and Q forms a topological circle, as do the
two arcs between P and R. It is instructive to trace out a cycle around each of
these two loops, as well as the figure 8 pattern, in the six sketches and on the
sphere. These two real loops are the ones between — 1 and 0, and between 0
and P, appearing on the pinched torus of Figure 1,22.

Figure 10

ExAMPLE 2.21. Let ¥V = R? consist of n distinct parallel lines. If the lines are
L,...,L, givenby,say,Y =1,Y =2,...,Y = n, then the union of these
lines is given by p(X,Y)=(Y — I)(Y —2)-...-(Y — n) = 0. Since the
projective completion of each line intersects any other projective line in one
point, it might be guessed that the union of the n projective lines should
intersect any other distinct line in n points, counted with multiplicity. This is
obvious except when the line is the line at infinity, or if the line is parallel to
the X-axis. To explore these cases, we homogenize and then dehomogenize so
the intersection point (at infinity) becomes the new origin.
Homogenizing p(X, Y) gives us

Hyp) = (Y — 2)-(Y =2Z)-...-(Y —nZ) =0

this describes the union of n planes containing the X-axis in Ryy, ; its inter-
section with a sphere centered at (0, 0, 0) consists of n great circles (Figure
11a). Dehomogenizing at X = 0 yields Figure 11b; the original line at
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(b) (©)
Figure 11

infinity is the great circle corresponding to Z = 0, which appears as the Y-
axis in Figure 11b; the n lines intersect the Y-axis at the origin with multi-
plicity n. And any other distinct line parallel to the X-axis in the original
(X, Y)-plane appears as a distinct line through the origin in the (Y, Z)-plane,
so again will intersect the n lines in one point with multiplicity n. Of course
since the degree of p(X, Y)=(Y — 1)-(Y — 2)-...-(Y — n) is n, Bézout’s
theorem tells us that in the extension to P?(C), the n complex projective lines
intersect any other line in n points, counted with multiplicity. All these points
turn out to be real in our example.
The affine part after dehomogenizing at Y = 0 appears in Figure 11c.

In all our examples so far the projective completion described by the
homogenization of the polynomial has turned out to be just the topological
closure in P?(R) of the original affine variety. As mentioned earlier, this does
not always hold when k = R. We now illustrate this exceptional behavior.

ExaMPLE 2.22. If an isolated point is part of the real curve and this point is at
infinity in P*(R), then dehomogenizing at any line through this point yields an
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2: Affine and projective varieties; examples

affine curve whose topological closure leaves that point out. We can easily
manufacture a curve in Ryy having an isolated point. Consider the curve

V(Y2 = (X + DX)(X — 1))

(see Figure 1,3); if we let the zero — 1 in the polynomial approach 0, the topo-
logical circle between —1 and O is squeezed to a point, and the curve’s
equation becomes

Iim(Y? — (X + (X)X — 1)) = Y> - X}(X — 1) =0;
=0
see Figure 12.
We can now make the origin an infinite point. First, the homogenized poly-

nomial is Y?Z — X*(X — Z); the reader can easily sketch the resulting
surface by letting the plane of Figure 12 be the plane Z = 1, drawing

Y

Figure 12

1-subspaces of R* through this curve, and looking separately at the 1-sub-
spaces in the plane Z = 0. Note that the Z-axis is in a sense an “isolated”
line.

Now dehomogenizing at X gives us the desired equation of our curve:

Y2Z-(1-2)=0

The curve in R? is sketched in Figure 13; Figure 14 shows the whole projective
curve in the disk.

Next note that Hy(Y?Z — (1 — Z)) is irreducible in R[X, Y, Z]. (First,
Y? — X*(X — 1) is irreducible in R[X, Y] for since it has no Y-term, any
factorization would have to be of the form (Y + f(X)(Y — f(X)) =
Y? — f2(X). However, X% (X — 1) is not the square of any polynomial.
Second, one can easily check that Y? — X2(X — 1) irreducible implies
Hz(Y? — X*(X — 1)) irreducible, so Hy(Y%Z — (1 — Z)), which equals
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P,
VA
Y
P,
Figure 13 Figure 14

HAY? — X*)(X — 1)), is irreducible.) We show in Exercise 4.3 of Chapter III
that if p is irreducible, then V(p) is irreducible in the sense that it is never the
union of two properly smaller varieties. Hence the part in P*(R) excluding this
isolated point is the topological closure of the affine part, but is not a variety
in P3(R).

Topologically, the extension to P?(C) of this curve turns out to be the
limit of Figure 1,16 as the circle between — 1 and 0 shrinks to a point; this is
a “pinched sphere.” The point where, say, the north and south poles of a
sphere are identified, is the isolated point in the real curve, and the equator
can be taken to correspond to the branch. Recall (Remark 2.10) that we stated
that for k = C the topological closure always gives the projective completion.
But our isloated point is no longer isolated in the curve’s complex extension
to P%(C)! Hence the topological closure in P%(C) of the pinched sphere with-
out this one point is again the whole pinched sphere.

EXERCISES

2.1 Sketch six figures corresponding to the six parts of Figure 8 or 9 for the curve
V(XY?2 — Y — X). How many points of the curve are on Ryy’s line at infinity?
Are there additional points of the curve on Cyy’s line at infinity ?

2.2 Do the same as above for the curve V(X2Y? + X% — Y?).

2.3 For any positive integer n, find an algebraic curve C, in Ryy whose topological
closure in P?(R) omits n points of C,’s real projective completion.

3 Implicit mapping theorems

In Chapter 1 we stated that a topological copy of any complex-algebraic
curve can be obtained by taking a compact connected orientable 2-manifold
and identifying a finite number of points to a finite number of points. Part
of the proof of this fact (given in the next section) uses an “implicit mapping
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3: Implicit mapping theorems

theorem.” Since implicit mapping theorems are important in their own right
and are used frequently in algebraic geometry, we devote a section to them.

There are quite a number of implicit mapping theorems; they occur at
various levels; for instance in the real case there are “differentiable” and
“analytic” implicit mapping theorems. The ones of greatest importance in
algebraic geometry are “complex-analytic.” To gain a little perspective, we
state some of these mapping theorems in various forms; we then prove an
analytic version needed in the next section.

We begin by recalling the following standard

Definition 3.1. Let U be an open set of Ry, .. A function f: U — Ry is
differentiable at (a) = (a;,...,a,)e U provided there is a real n-plane
through (a,, ..., a,, f(a)) given by, say,

Y=fla+c(X;—a)+...+c(X,—a,) 6)
such that
i L0 L@ vy —a) + o alxy = a] _
(x)= () [x1 —ail + ...+ |x, — a,l

where (x) = (xy, ..., x,) € U\(a).

The function f is called differentiable on U if it is differentiable at each
point of U, and amap f = (f; ... f,):U — R™ is differentiable at a point
of U, or on U, if each f; is. If all partial derivatives

afi
.0X;

Jn

6Xj| ..
of each f; exist and are continuous at (a) or on U, then we say fis smooth at
(a), or smooth on U.

Remark 3.2. The hyperplane in (6) is the “tangent hyperplane to the graph
of f at (a, f(a))”; by letting (x) — (a) in the direction of the coordinate axis
Ry,, we see that in (6),

¢ = (0f /0X)(a).

For more than one variable (n > 1), the definition of real-differentiability
represents a great difference from only requiring the partials df /X, to exist.
Definition 3.1 says that f: U — R is “uniformly close” to the n-plane. Hence
knowledge of the partials of f at (a) € R"is enough to determine its directional
derivatives in every direction.

The definition of complex-differentiability for a function f(X,, ..., X,):
U—Cy,, . y,(UopeninCy,  x )may be taken to be verbatim the same as
in Definition 3.1, except everywhere we replace “real” and “R” by “complex”
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and “C”, respectively, and | | becomes the usual complex norm. For
instance, in the special case of f: Cy — Cy the definition is

Definition 3.3. f(X):Cy — Cy is complex-differentiable at a = a, + ia, € Cy
if there exists ¢ € C such that

L 00— [f(@ + el — a)] _

x—a |x — al

0.

Remark 3.4.1f a function f: Ry, x, — R is real-differentiable at (a), then the
derivatives along two different real lines through (a) determine the derivative
in any real direction through (a). But in the complex case, the derivative along
one real line through (a) determines the same derivative in all real directions
through (a). This is a stringent condition, and leads at once to the Cauchy-
Riemann equations. Also, this definition of complex-differentiability for f
at all points in a neighborhood of (a) € Cy, . x, implies in particular that at
(a) all partials d"f/(0X ;)" exist, which means f is analytic in each variable
separately—that is, for each i, f(b; ... b;_1, X, b1, ... b,) is analytic at a; for
each b;near a;,j=1,...i — L,i+ 1,...n This in turn implies f itself is
analytic; this is a central result due to Hartogs. (See, e.g., [Bochner and
Martin, Chapter VII, Section 4].) (Recall that if U is an open setin Cy, .,
then a complex-valued function f(X,,...,X,) on U is defined to be
complex-analytic, or analytic, at (a) = (a;, ..., a,) € U provided that f is
represented at all points of U in some neighborhood of (a) by a power series
in X, —ay,..., X, — a,. The function is analytic in U if it is analytic at
each point of U.) Thus complex-differentiability is equivalent to analyticity;
in developing the theory of several complex variables, one usually simply
starts with the concept of analyticity.

Now let us look at implicit function theorems. They are often useful in
investigating the local nature of zero-sets. Essentially, they give conditions
under which a zero-set may be considered as the graph of an appropriate
function. This is important, because since a function is essentially its graph,
differentiability or analyticity of a function are perfectly reflected in its graph.
In contrast to this, the “niceness” of one or several functions often has little
to do with the “niceness” of the corresponding zero-set. For example, any
closed set in R”, no matter how “wild,” is nonetheless the zero-set of some
differentiable (even infinitely differentiable!) function f:R" — R (see Exercise
3.1). Thus although f(X, Y) = Y? — X?e R[X, Y] is smooth, the corre-
sponding zero-set consists of two intersecting lines. However, we can write
V(Y? — X¥) = V(Y — X) u V(Y + X); each part (being the graph of a nice
function) is therefore smooth.

We now state a general implicit mapping theorem at the complex level.
All these theorems are local—they make a statement about points near an
arbitrary but fixed point. Without loss of generality we let this point be the
origin.
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3: Implicit mapping theorems

Theorem 3.5 (Implicit complex-analytic mapping theorem). Suppose:

(3.5.1) C-valued functions fi, ..., f, are complex-analytic in a neighborhood
of (0eCy, . x,=Cx;
(3.52) f1(0) = ... = f(0) = O (i.e., the origin of C" is in the zero-set of
oo f1)s
(3.5.3) The q x n Jacobian matrix
o dh
0X, T 0X,
J(j)t='](f1?’fq)x: N .
U Yy
oX, X,

has constant rank r throughout some C"-open neighborhood of (0).

Then there exist subspaces C" ™" and C" (C"~" n C" = (0)), neighborhoods
U'™" = C" " and U < C" about (0), and a unique complex-analytic map
¢ =(pr,...,0): U "> U"
such that within U"™" x U", the graph of ¢ coincides with the zero-set of

Ut oo fob-

We will prove this theorem in Section IV.2. In fact we will show more
precisely that if the independent variables X; are remembered so that
the last r columns of J(f), are linearly independent for each (x) in a neigh-
borhood of (0), then C"™" may be taken to be Cy,  , ,, and C" to
be Cyx, .., ..x, Then the conclusion of Theorem 3.5 says that within
U"™" x U’, the equations

filXy oo X Y,...,%)=0 i=1...,9
may be “solved” for Y,, ..., ¥, in a unique way, say

Y'l = ¢1(X1’ T Xn—r)a

Y =¢Xy,..., X,-)).

Special cases of the above theorem

1. Often the rank of J(f), is the same as the number of functions f;—that
is, r = q. (Geometrically this means that the zero-sets of fi, ..., f, intersect
“transversally.”) Let the last r columns of J(f) be linearly independent at (0),
and denote the determinant of the associated r x r matrix by det(J(f)).
Since this determinant is continuous in X at (0), (3.5.3) can be simplified to

det(J(fNx=(0 # 0.
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2. Sometimes there is given just one function f (that is, ¢ = 1). Then if at
(0) not every partial of f is zero (say (9f /0X;)(0) # 0), the implicit mapping
theorem tells us that near (0), the zero-set in Cy,  x, of f forms the graph
of an analytic function ¢:Cx, _ x,_, x..,....x. = Cx,. (Thus, about (0) € Ryy,
the zero-set of Y2 — X does not form a graph of a function from Cy to Cy,
but it does from Cy to Cyx. But about (0) there exists no coordinate system
relative to which the zero-set of, say, Y2 — X?, is the graph of a function.)

3. The implicit mapping theorem can be used to give a condition for the
existence of inverse mappings. Let f = (fy, ..., f,)map(0)e Cx, . x, = Cx
to (0)e Cy,.....y,, = Cy and let f be complex-analytic at (0). First, look at the
graph of f as the zero-set of m analytic functions sy, . . ., h,, onancighborhood
of (0) in C?™ = Cyy, where

h{X,Y) = Y, — fiX).

We know the common zero-set of the h; forms the graph of a function having
domain in Cy. (And of course the last m columns (the “Y-columns”) of
J(h) = J(hy, ..., h,) are linearly independent, forming the identity matrix.)
Now f has an inverse at (0) € Cy if the same zero-set forms the graph of a
function with a neighborhood in Cy as domain, instead. This will be satisfied
if the first m columns (the “ X columns ) of them x 2m Jacobianofh,, ..., h,,
are linearly independent. Since 0h;/0X; = 0f;/0X;, the implicit mapping
theorem becomes in this case:

If f is analytic at (0)e Cy, . x, and f(0) =0eCy, vy, then
f has a unique analytic inverse in a neighborhood of (0) e Cy, |y,

provided
of; >
det # 0.
<0X, X=(0)

A very simple case of this is when f:C — C is analytic at, say, x, e C.
If f'(x,) # 0, then f has an analytic inverse in a neighborhood of f(x,).

We now prove the following case of the implicit mapping theorem which is
used in the next section. The proof readily extends to one for the full Theorem
3.5 which we present when needed, in Section IV.2. To keep formulas
compact, we will use subscripts for partial differentiation, e.g., py for dp/0Y.

Theorem 3.6. Let p(X, Y)e C[X, Y] satisfy

(3.6.1) p(0, 0) = 0, and
(3.6.2) py(0,0) # O.

Then within some neighborhood of (0, 0), those points (x, y) satisfying p(x, y)
= 0 form the graph of a function Y = ¢(X) analytic at (0) e Cy.
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3: Implicit mapping theorems

In proving this theorem we assume the following standard integral
theorems of complex variables. For our purposes it suffices to state them
“in a disk.” (See, e.g., [Ahlfors, Chapter IX] for fuller statements and
generalizations.)

Definition 3.7. Let f(X) be analytic at a point a € Cy. Then a is a zero of
multiplicity n, or a zero of order n, if f(X) = (X — a)"h(X), where h(X)
is analytic at a, and h(a) # 0; we also say f has order 7 at a.

Theorem 3.8 (Two basic integral theorems). Let f(X) be a function analytic
at each point of an open set containing a closed disk A in C with boundary
0A, and suppose that within A = A\OA there are exactly N zeros of f(X),
counted with multiplicity. Then:

(3.8.1) Cauchy integral formula:
For any point b € A,
! f(X)
- L Iax = .
2ni ;.AX—bd J®);
(3.8.2) Argument principle:
If f(X) # 0 on ¢A, then

L f&X)

2ni Jaa f(X)

PROOF OF THEOREM 3.6. That the zero-set of p(X, Y) near (0, 0) forms the
graph of some function Y = ¢(X) will follow easily from the argument
principle; it will then be our task to prove that ¢ is analytic.

To show the zero-set forms a graph, we first note that the definition of
multiplicity of a zero shows that the hypotheses p(0, 0) = 0 and py(0, 0) # 0
together form a way of expressing that the polynomial p(0, Y) e C(Y) has
Y =0 as a zero of multiplicity 1. Hence if A is a sufficiently small open
disk about (0) € Cy with boundary JA, then

1 pY(07 Y)
— Y =1. 7
2mi L p(0, Y) d g

Now p and py are continuous in X and Y; since p(0, Y) is bounded away
from O on the compact set 0A, the values on JA of the above integrand
vary continuously in X. Thus for all sufficiently small ¢ € Cy,

L pY(Ca Y)d
27i Jyeea plc, Y)

dX = N.

)

is close to 1. But by the argument principle the value of the integral is always
an integer, so the expression in (8) always equals 1 for all ¢ sufficiently small.
Since this integral counts the number of zeros in dA, for each ¢ near 0 € Cy,
plc, Y) = 0 has exactly one solution near 0 € Cy; we denote this unique
solution by ¢(c). Hence the zero-set of p(X, Y) near (0, 0) does indeed form
the graph of a function Y = ¢(X).
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We now show that ¢(X) is analytic at X = 0. First, the assumption
py(0,0) # O easily implies the existence of an open disk A = Cy and a
neighborhood U of 0 € Cy such that for each ¢ € U, p(c, Y) has ¢(c) € A as a
zero of multiplicity 1. Expanding py(c, Y)/p(c, Y)about Y = ¢(c) then gives us

pric, ¥) 1+ ay(Y = ¢(c)) + ax(Y — §(c)* +

= ;€ Q).
P, 1) Y~ 90 (e
Therefore
1 Ypylc, Y) _ L Y+ a, Y(Y - )+ ...
2 o e 1y = 2 v g0 0

By the Cauchy integral formula, the value of the right-hand integral in (9)
is just the numerator of the integrand evaluated at ¢(c), which of course is
$lo).

Now p(X, Y) # 0 for all X sufficiently small and for all Y € 0A. Hence
for U sufficiently small, we may represent Ypy(X, Y)/p(X, Y) as a power
series Y = ga(Y)X", where each coefficient g,(Y) is analytic on dA and where
this power series converges uniformly on U x dA. We may therefore
integrate termwise: For each ¢ € U, we have

_ YpY(C’ Y) . i
¢(c)—LAWdY— Z(L g,,Y)dY) Zbc (b, € C).

n=0

Thus ¢(X) is indeed analytic at 0 € Cy. O

The theorem we have just proved tells us something important about the
nature of a complex algebraic curve: Since we can just as well state Theorem
3.6 with the roles of X and Y reversed, we have at once

Corollary 3.9. At any point (xg,yo) of C = V(p(X,Y)) where either
Px(X0, ¥o) # 0 or py(xo, Vo) # 0, C is locally the graph of an analytic
Sunction.

Remark 3.10. We say that C is locally an analytic manifold at such a point.

We have now proved a first fact about the structure of an arbitrary com-
plex curve. We shall see in the next section that for a given curve C, p(X, Y)
may without loss of generality be chosen so that there are only finitely many
points where the hypothesis of Corollary 3.9 fail to hold.

One can give a “real-variable” proof that at any (x,,y,) where
Px(Xo, ¥o) # 0 or py(xo,yo) # 0, C is locally the graph of a real-analytic
mapping. (That is, C is a real-analytic manifold at (x,, y,).) We do this in
Lemma 3.11, next. In proving Lemma 3.11, we shall assume that the real
analogue of Theorem 3.5 has been proved. (Actually, it suffices for our
purposes to know that ¢,, ..., @, in Theorem 3.5’s conclusion have first
order partial derivatives. In this form, the result is found in most books on
advanced calculus.)
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Lemma 3.11. Let p(X, Y)eC[X, YI\C. Then C = V(p(X, Y)) is a real-
analytic manifold at any point (x,, yo) where either py(xo, yo) # 0 or
py(Xo, yo) # 0.

PrROOF. Suppose without loss of generality that py(x,, yo) # 0. Writing
p(X, Y)as p(X, Y) + ip,(X, Y) gives

piXy + X5, Y, +iY,) = py(X, + iX,, Y, +iY,) = 0;
for convenience we write this as
pi(Xy, X5, Y, Y,) =0, p2(X1, X5, Y, ) = 0. (10)

Then (p,, p;):R* - R? plays the role of f in the real-analytic form of
Theorem 3.5 withn =4andg=r = 2.
Let us now look at the determinant of our Jacobian

py Opy

aY, oY,
det(J(py, p2)) =

op2 0p>

Y, 0Y,

This is
op, @p, dp, apz,

using the Cauchy-Riemann equations

oy _ %> Opy . Opy
Yy, Yy’ oY, Y,

we obtain
opy 0py , Opy 0py

det(J(py, p2)) = 7525 +

: = 2 2
av, oy, "oy, ay, — |pnlt=Ipl

By our initial assumption, this is nonzero at (x,, y,). Therefore the zero-set
of p(X, Y) = 0 in a neighborhood of (0) e R* is described by unique real-
analytic functions

Y1 = ¢1(X1’ Xz), Yz = ¢2(X1a Xz)- O

One can even push the above real-variable approach a little further to
show that C in Lemma 3.11 is complex-analytic at (x4, y,). (See Exercise 3.5.)

EXERCISES

3.1 Show that any closed subset S of R" is the zero-set of an infinitely-differentiable real
function. [Hint: Cover R"\ S with closed n-cubes (of various sizes) whose interiors
are mutually disjoint. Then for each cube construct an infinitely-differentiable
function which is never zero on that cube, but which attains nonzero values on only
finitely many cubes. (Remember the e~ 1/**-type function).]
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3.2 Find functions f;, ..., f, satisfying hypotheses (3.5.1) and (3.5.2), but not satisfying
the conclusion of Theorem 3.5.

3.3 In what sense is Gauss elimination for linear systems over C a special case of
Theorem 3.5?

3.4 Show that there isn’t an “implicit complex polynomial mapping theorem”—that
is, if f},..., f; in Theorem 3.5 are polynomials, one cannot in general conclude
that each ¢; is a polynomial.

3.5 Show that C in Lemma 3.11 is actually complex-analytic at (xq, y,) by showing
that if Y, = ¢,(X,, X,) and Y, = ¢,(X,, X,) are the real-analytic functions of
Lemma 3.11, then Y = Y; + iY, is a complex-analytic function of X = X + iX,.
[Hint: Verify the Cauchy-Riemann equations

oY, oy, oY, aY,

ox, X, X, X,

by differentiating the equations in (10) partially with respect to X, and X,.]

4 Some local structure of plane curves

In Chapter I we stated Theorem 1,2.7 which says in part that a topological
copy of any complex algebraic projective curve may be obtained by identify-
ing finitely many points in some appropriate compact connected orientable
2-manifold.

In this section we prove part of this result for curves in P(C). First, the
topological space obtained by taking finitely many open disks, selecting one
point in each disk and then identifying these selected points to one point
will be called the one-point union of finitely many open disks. Figure 15
shows the one-point union of three (topological) disks.

We shall prove the following part of Theorem 2.7 of Chapter 1.

Figure 15

54



4: Some local structure of plane curves

Lemma 4.1

(4.1.1) Any complex algebraic curve C in P*(C) is compact.

(4.1.2) Let Up be a neighborhood of P € C. Then at all but finitely many
points P of C, for a sufficiently small Up, C n Up is topologically an
open disk.

(4.1.3) At each of the remaining points of C, for a sufficiently small Up,
C n Up is the one-point union of finitely many open disks.

We shall devote this section to a proof of this lemma. The proof of
compactness is immediate; proofs of the other two statements are longer.
Actually, our proofs of (4.1.2) and (4.1.3) lead in a natural way to some
concepts and results which are important in their own right. In proving
(4.1.2) we meet the notions of resultant and discriminant, used throughout
algebraic geometry; in proving (4.1.3) we meet fractional-power series.
Rather than presenting these new ideas separately and in isolation, we show
how a working mathematician might naturally meet them in determining the
structure of curves in P2(C). Thus, instead of striving for the shortest proofs,
we will take a little time along the way to present these new notions.

PROOF OF (4.1.1). Recall that any curve in P%(C) is definable in C? by some
nonconstant homogeneous polynomial, say g(X, Y, Z), and that the curve
is covered by the three affine representatives defined by ¢(1, Y, 2), ¢(X, 1, Z),
and ¢(X, Y, 1). Since each of ¢(1, Y, Z), q(X, 1, Z) and ¢(X, Y, 1) is con-
tinuous, each affine representative is closed in its affine space; since these
three open subsets of P*(C) cover P%(C), the whole curve is closed in P?(C).
Thus, since P%(C) is compact (Exercises 1.1 and 1.2), so is the curve. O

Since (4.1.2) and (4.1.3) involve only small neighborhoods, it clearly
suffices to prove these local statements in each of the three affine repre-
sentatives. Without loss of generality, we work in Cy, with the polynomial
q(X, Y, 1) (which we henceforth denote by p(X, Y)), and with C = V(p(X, Y))
< Cyy. Though it may happen that p is a nonzero constant (when ¢(X, Y, Z)
= Z"), p would then define ¢ = Cyy, and there would be nothing to prove
in Cyy. We therefore assume in this section that p is nonconstant.

Now it is immediate from Lemma 3.9 that topologically an affine curve
C = V(p(X, Y))islocally a disk at any point (x,, yo) € C which satisfies either
Px(Xo, ¥o) # 0 or py(xy, yo) # O (or both). Thus (4.1.2) follows from

4.1.2) p(X, Y) may be chosen so there are only finitely many points
(X0, ¥o) € Cxy where p(xy, yo) = py(xo, yo) =0.

And (4.1.3) becomes

(4.1.3) About any such (x,, y,) there is some neighborhood U = C,y such
that C » U is the one-point union of finitely many open disks.
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We now begin the proof of (4.1.2"). If C = V(p), let p = p,"* -...-p,™
be p’s factorization into irreducibles in C[ X, Y]; then

Vip) = Vp,") v ... u V(p,™) = V(py) v ...u V(p,) = V(p,-...-p,)

Therefore from those polynomials defining C, we may choose one which
is a product of distinct irreducible factors. It is easily proved that for a given C,
this polynomial is uniquely determined up to a nonzero constant multiple
(Exercise 4.1); henceforth by p in C = V(p), we shall mean this unique poly-
nomial.

Now clearly the topological structure of C — Cyy is an intrinsic property
in the sense that a coordinate change in C,y does not alter the topology of C.
As a matter of convenience, throughout the remainder of the proof of
(4.1.2') we make without loss of generality the following

Assumption 4.2. Coordinates (X, Y) in Cyy have been chosen so that if
deg p(X, Y) = n, then p is of the form

pX,Y)=Y"+ a(X)Y"" ! + .. + afX),

where a(X) € C[ X], and where either deg a(X) < i, or a{X) = 0.

(If this assumption is not already satisfied in Cyy, new coordinates
defined by

X=X +cY, Y=Y

can be chosen so that the coeflicient of the new (Y’)"-term is a nonzero poly-
nomial in ¢; hence the coefficient is nonzero for all but finitely many choices
of ¢. We shall continue to denote these new coordinates by (X, Y).)

To prove (4.1.2), we need a condition telling just where the two poly-
nomials py and py can have common zeros. As it turns out, one can easily
answer a much more general question. First, one can look at py or py as be-
longing to D[ X'], where D is the unique factorization domain C[ Y]. One can
then ask, given any two polynomials f, g € D[ X], is there an a € D such that
f(a) = g(a) = 0?

We now begin our first side trip. Recall that for any f(X)e D[X] and
aeD, f(a) = 0iff (X — a) is a factor of f. Therefore one answer to the above
question is: f, g € D[ X'] have a common zero iff they have a common factor
of the form X — a.

But one can generalize this question even further: When do f and g have
any factor in common? The answer to this (Theorem 4.4) is not very hard to
come by; it will be of use to us several times throughout the book and will at
once yield (4.1.2).

A preliminary form of the criterion is the following
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4: Some local structure of plane curves

Lemma 4.3. Let D be any unique factorization domain. Let two polynomials
in D[ X] be
fX)=ac X"+ ... + a,,
gX)=byX"+ ...+ b,.

We assume that at least one of ay, by is nonzero. Then f(X) and g(X) have a
nonconstant factor in common iff there are polynomials F(X), G(X)e D[ X]
such that

/G = gF, (11)
where deg F < m and deg G < n.

PROOF. Since D is a unique factorization domain, so is D[X], by Gauss’
lemma. Let the unique factorizations of f and g be

f=d- M g=egM g (12)

d,eeD, f;, g; irreducible in D[ X].

Suppose that f and g have a nonconstant common factor, say f;. Then
F = f/f; and G = g/f, satisfy the equations in (12), and deg F < deg f,
deg G < deg g.

Conversely, suppose f and g have no nonconstant factors in common, and
suppose ao # 0 (i€, deg f = m). If fG = gF, then by the uniqueness of
factorizations in (12), every f7* must appear in F’s decomposition, hence
deg F > m, a contradiction. If a, = 0, then b, # 0 and one similarly derives
deg G = n. |

Lemma 4.3 may easily be translated into a statement about the coef-
ficients of f and g. Write

f(X) = a()Xm + ale-l + ...+ am,
9(X)=bo X"+ b, X" "'+ ... +b,,

where a, # 0 or by # 0. If deg F < m and deg G < n, then F and G may be
written as

FX)= Ao X" "+ ...+ A,_,,
G(X)=By X" '+...4+B,_,.

Hence f and g have a common nonconstant factor precisely when one can
find coefficients Ay, ..., A,,_, By, ..., B,_ (not all of them zero) such that

(ap X"+ ...+ a ) Bo X" '+ ...+ B,_))
=(ho X"+ ...+ D) A X" L+ .+ A,_,). (13)

57



II: Plane curves
Now two polynomials are equal iff their coefficients are equal. Hence
multiplying out each side of (13) and equating coefficients yields

aoBo = by Ay
alBO + aoBl blAO + b()Al

amBn—l = bnAmfl'

This is a homogeneous linear system of m + n equations in the m + n
unknowns Ag, ..., Ap-1, By, - - -» By 1. This system has a nonzero solution
in D iff the determinant of the coefficient matrix is zero, i.e., iff

dag —by
a, ag —b, —b,
a a ao —b, —b, —by
—by
d,, ay —b, =0
a, .h,, —b,
a
a, —.b,,

(The blank entries are understood to be 0). If we multiply each of the “b”

columns by —1 and interchange rows with columns, we may express this
result as

Theorem 4.4. Let D be a unique factorization domain, and let

f(X)=apX™+ a; X" '+ ... + a,,
g(X) = by X"+ b X"+ ...+ b,

be two polynomials in D[ X]. Assume that the leading coefficients a, and b,
of f(X) and g(X) are not both zero. Then f(X) and g(X) have a nonconstant
common factor iff the following determinant is zero:
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4: Some local structure of plane curves

ap, a; 4y - - -a,
ap ay - - - - - a,
ap - A
a, a, a, - (14)
by by b, b,
by by - - - o - .- b,
bo. b,
.bo by by - - - - - b,

w

where there are n rows of “a” entries and m rows of “b” entries.

Definition 4.5. The determinant in (14) is called the resultant of f and g; we
denote it by #(f, g). If f, g e D[ Xy, ..., X.], then for any i,

fo9€eD[Xy, ..., Xio1, Xigy, .., X J[X] = D'[X];

the corresponding resultant is called the resultant of f and g with respect to
X;, denoted by Zx (f, g). For any f € D[X], one can define the formal
derivative df/dX € D[ X] using the relations

dlau) du dwv)  dv du
X~ %% 5% —ud—X+vd—X (@ae D, u,ve D[X]).

Then the resultant Z(f, f') of fe D[X] and its derivative df/dX =
f' € D[X]is called the discriminant of f, denoted 2(f);if f € D[ X, ... D,],
then %y (f, 0f/0X,) is called the discriminant of f with respect to X,
denoted Dy (f). If f e C[ X4, ..., X,], then the variety

V(gx,-(f)) < Cxl,...,xi_l,x.»n,...,xt =C!

is called the discriminant variety of 2 (f).

Remark 4.6. 1t is easily checked that Zy(aX? + bX + ¢) is essentially the
familiar “b2? — 4ac” (Exercise 4.2).
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The following will be used frequently in the sequel:

Lemma 4.7. Let D be any unique factorization domain of characteristic zero.
Then f € D[X] has a repeated (nonconstant) factor iff f and f' have a
common factor. Thus

[fhas a repeated factor iff 2(f) = 0.
In particular:

IfD = C[Xl, “ee ,Xi_l, Xi+1" cey Xl‘:|5 l‘henf(X,)GD[X,] haS
a repeated factor (involving X)) iff Dx(f) = 0.
PRrOOF. First, suppose that f has no repeated factors. Then f = p,p,, ..., p,,
where the p; are distinct irreducible polynomials. Differentiating, we obtain
S =P1P2s---s P+ P1P2s s Det o+ P1P2s s P

All terms except the ith are divisible by p;, but the ith term is not divisible
by p;. Indeed, p; } p; in characteristic zero, since p; # 0 and deg p; < deg p;.
Hence p; ¥ f', so f and f’ have no common factors.

Conversely, suppose that f has a repeated factor, say f = g°h, where
s = 2. Then f' = sg° 'g’h + g°K’, so g is a common factor of f and f'. [

Lemma 4.8. Suppose p(X, Y)e C[X, Y] satisfies Assumption 4.2, p having
(total) degree n. Then the points x, € Cy at which p(x,, Y) has fewer than n
zeros are precisely the zeros of the polynomial 9,(p) € C[X].

PROOF. Let x, € Cx. Then deg p(x,, Y) = n,and from the form of the resultant
in (14) it is evident that

Dy(p(X, Y)x=xo = D(p(xo, Y)).
This, together with Lemma 4.7, gives the result. O

Remark 4.9. Note that the conclusion of Lemma 4.8 need not hold if
Assumption 4.2 on p(X, Y) is not satisfied. For instance, p(X, Y) = Y — X2
does not satisfy the condition, and

2y(p) = Ry[1Y + (- X?)Y%1Y] = 1.

And for each X = x,, p(x,, Y) has only one zero (Y = x,?), not two. (One
can think of “the other zero” as lying on the line at infinity.)

This completes our detour into resultants and discriminants. We now
return to the proof of (4.1.2). We are almost done.
Let us write, in accordance with Assumption 4.2,

pX,Y)=Y"+ ... + a,(X),
g—z(X, Y) = py(X,Y) = bo(X)Y" "' + ... + b, _1(X),
where a,(X), b(X) € C[X], deg a(X) < i (or a(X) = 0), and by(X) = n # 0.
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If p and O0p/0Y have a common zero at X = x,, the determinant
2y(p) € C[X] must vanish at X = x,. If this discriminant polynomial is not
the zero polynomial, there are, of course, only finitely many values x,, for
which p(x,, Y) and (0p/0Y)(x,, Y) could possibly possess a common zero.
Thus, to prove there are only finitely many points (x,, y,) € Cyy satisfying

0
p(xo, Yo) = %(XOMVO) =0,

there remain only these two things to clear up:

(4.10) Z,(p) is not the zero polynomial.
(4.11) At any zero x, € Cy of @y(p), there are not infinitely many
solutions to p(xq, Y) = (0p/0Y)(xq, Y) = 0.

First, (4.10) follows at once from the assumption that p has no repeated
irreducible factors (Lemma 4.7).

Second, (4.11) holds since for any x,, p(x,, Y) is a nonzero polynomial
in Y having at most n zeros.

We have thus completed the proof of (4.1.2'). O

We now turn to the proof of (4.13). First recall the following standard
fact from complex analysis:

Theorem 4.12 (Riemann extension theorem). Let Q be a nonempty open
subset of C, let ¢ be an arbitrary point of Q and let h(X) be single-valued and
analytic at each point of Q\{c}. Then if h is bounded at c (i.e., if there is an
M € R such that [W(X)| < M, for all X near c), h may be uniquely extended
to a function holomorphic on all of Q (i.e., there is a unique h*, analytic on Q
with restriction h*|Q\ {c} = h.)

In proving (4.1.3), we continue to assume that p is a product of distinct
factors.

Let (xo, yo) be a point of Cyy satisfying, without loss of generality, p(x,, y,)
= (0p/0Y)(xg, yo) = 0. Then y, is a multiple root of p(xy, Y) = 0. Let
r > 1 be its multiplicity, and let A = A(y,, ¢) be a disk in Cy centered at y,,
whose closure contains no other y,;. By the argument principle (see Theorem
3.8), we have

L. pr(Xo, Y)dY =r:
27t Jaa p(xo, Y)
we now reason as before in the proof of Theorem 3.6.

Since p(x,, Y) is never zero on JA, a small change in x, to x,, yields a

small change in the integrand, hence in the integral. Thus the integral

1
**‘J. pY(xh Y)dY
2mi Joa plxy, Y)
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II: Plane curves

has value r for all x, € Cy sufficiently near x,. We then see that for a suf-
ficiently small disk A(y,, £) = Cy centered at y,, there is a sufficiently small
disk A'(x,, 8) = Cy about x, so that for each x; € A'(x,, 6)\{x,} there are
exactly r zeros of p(x,, Y) in A(y,, ¢), counted with multiplicity. But for
AN'(xy, 6) sufficiently small, x, € A'(xy, 6)\{x,} is never in the discriminant
variety V(2y(p(X, Y))) = Cy; hence each zero is of multiplicity one. Thus,
for x' € A'(xq, 0)\{xo}, there are exactly r distinct zeros of p(x,, Y) in A(y,, €).
Let these distinct zeros be y, 1, Y125+ -5 Vir-

We now fix our attention on one fixed but arbitrary zero, say y,,. Starting
at x,, let us travel once around the circle in Cy centered at x,. Since py(X, Y)
# 0 on A'(xq, 6)\{x,}, the implicit function theorem (Theorem 3.6) tells us
that the part of C in a Cyy-neighborhood about any point in (A'(xq, )\ {xo})
x {yo} is the graph of a holomorphic function. Thus, y,,; depends holomor-
phically on X, and as X moves around the circle, y,, varies continuously,
always staying within A(y,, ¢). It therefore must return to one of y, 1, y15,. - -,
y1, (not necessarily to y,,). If this new y,; is not y, ;, let us go around the circle
a second time; we will end up at another one of the zeros. Obviously the
process of starting with each y, ; and following its image as we make exactly
one revolution, defines a permutation of {y,q, yy2,...,y;,}. Hence after
some number m(<r) of trips around the circle, we must return to y,, for
the first time.

Now set X — x, = T™. The part of C about any (x,, y;;) forms the graph
of a function, and this function, considered as a function of T, extends to a
single-valued function Y;; throughout some neighborhood of C; about
0 € C;. This is because values of X traverse a circle about x, m times when
values of T go once around a circle centered at 0 € C. This function is of
course analytic at each point of some neighborhood of 0 € Cr, except possibly
at 0 itself. But since this function is bounded, by the Riemann extension
theorem (Theorem 4.12), it has a unique analytic extension to a neighborhood
of 0 e C,. We still denote this function by Y;;; its value at O is y,.

Let this function’s expansion about 0 be

Yli=y0+a1T+a2T2+....
Now since T™ = X — x,, all the m roots of X — x,, are given by
g(X — xo)t/m (15)

where ¢ is a primitive m'™ root of unity, say ¢ = e?™™ (i = —1). We thus get
m different corresponding fractional-power series
Yy = Vo + €a,(X — xo)™ + e%lay(X — xo)*™ + ..., (16)
i=01...,m—1.

For any given x € A'(x,, 0), 0 sufficiently small, the m y-values when X = x,
are m distinct zeros of p(x, Y). These zeros again form a cyclic set, i.e., are
cyclically permuted by going around the circle centered at x, and containing
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x. The equations in (16) for i =0,...,m — 1 each describe the same set
S; © Cyxy in a neighborhood of (x,, y,). We denote by Y, some arbitrarily
chosen Y;; in (16).

Now set m = m;. We may denote by y, ,,,+ one of the zeros of p(x,, Y)
not in the cyclic set y,,, ..., y,,,- Repeating the above argument produces
another cyclic set of m, distinct zeros; it is clear from that argument that the
sets containing y,; and y, ,, +, are disjoint. Continuing in this way, we get a
finite number N of disjoint cyclic sets of zeros; if each set contains m; zeros, we
have

m +my+...+my=r.

For each of these cyclic sets there is a corresponding set of fractional-power
series like (16); selecting one fixed series from each of these N sets gives
representatives Yi, ..., Yy. This result is a very central one in the theory
of plane algebraic curves, and represents a generalization of the implicit
function theorem (Theorem 3.6). Let us state it formally:

Theorem 4.13. Let p(X, Y)=Y"+ a(X)Y" ' + ... + a,(X) e C[X, Y]
(n > 0) have no repeated nonconstant factors. Let (xq, yo) be a point of
C = V(p(X, Y)) « Cxy. Then the set of points of C lying in a sufficiently
small open neighborhood U of (xq, yo) is the union of N different point sets
S;, where S; is the set of points in U satisfying the fractional-power series

Y=o + ai(X — xo)'"™ + ajp(X — x0)™ + ..., (17)

where my + ... + my = r = multiplicity of the zero y, in p(xq, Y). For U
sufficiently small, S; ' S; = {(xq, yo)} if i # J.

Remark 4.14.1f(0p/0Y)(xq, yo) # O, then by the implicit function theorem
there is just one S; (i.e., N = 1), the fractional-power series becomes an
ordinary power series (i.e., m; = m; = 1),and r = 1.

Theorem 4.13 can now be used to give us the topological structure of C
at each of the finitely many points (xq, yo) € C where (0p/6X)(xo, Vo) =
©@p/oY)(xo, yo) = 0, for the topology of C about (x,, yo) is known once we
know the topology of each S;. Since (xy, yo) is an isolated point of inter-
section of the S; through (x,, yo), we at once have Statement 4.13’ (that C is
topologically locally the one-point union of finitely many disks) if we can
show:

(4.15) For some neighborhood U about (x,, y,) € C, each §; is
homeomorphic to a disk.

We first observe that any fractional-power series

Y = yo + ay(X — xo)'""™ + ax(X — xo)?™ + ...
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is the composition h = h, o h; of
h(X) =T = (X — xo)''"" (18)
hz(T)=Y2y0+a1T+a2T2+.... (19)

Let us look at the “graph” in C? defined by h;. We may just as well look at the
inverse X — x, = T", or, by translation of the X-coordinate, at X = T".
What is the effect of this map on an open disk A about 0 e C;? As a point
travels once around a circle centered at 0 € C, the image point goes n times
around a circle about 0 e Cy. Hence the part of the graph over A, namely
{(T, T")|T € A} = Cyy, can then be looked at this way: Consider A as being
made of rubber. Slit A along the positive real axis, and, keeping the lower
edge fixed, rotate the upper edge n times about O (this forms a kind of “spiral
ramp ”); and then sew the slit edges back together. This particular construc-
tion (which sets up a 1 : 1-onto map between the disk and “ramp”) cannot be
realized in R* without self-intersections, but Figure 16 gives the idea for

Figure 16

n = 3. If we perform our sewing so that the same points are identified before
as after the slit, one can then define a topology on this image by taking as
open sets the images of the open sets of A. The “ramp” is thus homeomorphic
to a disk.

Now to see the topological nature of S; itself, note that h, sends a spiral
ramp into an ordinary disk, thus setting up a homeomorphism between
two topological disks. As for h,, let a,, be the first nonzero coefficient in
(19). Then

Y = a, TM(1 + higher powers of T).

Within a very small disk about 0 € C;, the contribution of the higher powers
is very small compared with the T™ term. Hence as a point goes around
0 e C; one time, the image point goes around 0 € Cy M times, and we end up
with a spiral ramp as before. Thus h, also sets up a homeomorphism from a
sufficiently small disk to a disk ; hence so does h = h; o h;. But the graph of a
homeomorphism between two disks is surely itself topologically a disk.
Hence each §; is a disk, as desired. Hence we have proved (4.15), therefore
(4.1.3), and therefore (4.1.3). Since we have also established (4.1.1) and
(4.1.2), Lemma 4.1 is proved in its entirety. tl
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We close this section by stating an important generalization of Theorem
4.13, namely Theorem 4.16. Since the proof of Theorem 4.16 is a little long,
and since a nice account appears in [ Walker, Chapter IV, Theorem 3.1], we
do not reproduce it here. First, let C(X)* denote the set of all fractional-power
series Y i2; a; X" with arbitrary coefficients from C (that is, “formal”
fractional-power series); for a given such fractional-power series, n is an
arbitrary but fixed positive integer, and iy € Z. (Thus, for example, X +
XYV 4+ XU% 4+ XVU8 4 | is not in C(X)*.) We define X!/! = X, and, for
integers a, ¢ and positive integers b, d, we define X** = X iff a/b = c/d.
Two such series are equal if they are equal termwise; similarly, one adds and
subtracts these formal series termwise. (The sum ) ; a; X7 + Y ; b; X/™ is
a series Y, ¢, X*™.) Multiplication is similar to multiplication of poly-
nomials. The quotient A/B (B # 0) is the series C such that 4 = BC, C’s
coeflicients being (uniquely) determined by equating terms of like degree in
C and AB. With these definitions, it is easily seen that C(X)* forms a field. We
note that if x, € C, then C(X) = C(X — x,), and all the above considerations
apply equally well to fractional-power series in (X — x,). The basic result
about these series is

Theorem 4.16. C(X)* is algebraically closed.

The proof of Theorem 4.16 in [Walker] is actually constructive—that is,
it supplies a general algorithm for constructing the power series factors of
any polynomial over not only C(X)*, but over the analogous field k(X)*,
where k is any field.

Corollary 4.17. Let p(X, Y) be any polynomial in C[ X, Y] of degree nin Y and
monic in Y. Then for any fixed x, € Cx, p(X, Y) factors into a product

pX,Y) = ﬁ <Y - <Z ag(X — xo)i/mk>>§ (20)

k=1

this factorization is unique up to order of the factors.

Corollary 4.18. Let x, be an arbitrary point of Cx. Each of the n series in
(20) converges in a neighborhood of x,.

PrOOF. Each of the m series in (16) converges in a neighborhood of x,. Of
course these m series are only the ones corresponding to an m-fold ramp at
(X0, yo). Considering now the totality of all the series analogous to (16)
corresponding to all the roots of p(x,, Y) = 0, we see that there are alto-
gether n = deg p of them. By the uniqueness of the factorization in (20), we
see that the factors in (20) must be just these n convergent series. O

From the uniqueness of the factors in (20), we see that any method
yielding the formal factors in (20) supplies a method of obtaining the Y’s of
(16). We look at some specific examples of this in Exercises 4.3 and 4.4.
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EXERCISES

4.1 Show that the product of distinct irreducible polynomials defining a given curve
C < Cyy is unique.

4.2 Compare Px(aX? + bX + ¢) with b* — 4ac.
4.3 In (a) and (b), find the unique factorization of the form given in (20).

(@ Y2 — XX — 1), xo = (0).
(b) Y2 — X(X? — 1), xo = (0).

4.4 If one knows m,, ..., m, in (20), then one can substitute Y ; d; X”/™ for Y in
p(X, Y) =0 and solve for the a;. Find the first few fractional-power series terms
in each factor of:

(@) (X2 + Y?%? 4+ 3X2Y — Y3, x, = (0). This polynomial defines a three-leaved
rose in Ry, (see Figure 17). [Hint: Note that all four branches through points
on Cy appear, in Ryy, to possibly be described by functions analytic in X. Hence
trym, = my, = my =my = 1.]

Figure 17

(b) (X? + Y?)? + 3XY2 — X3, xo = (0). (This is the result of interchanging axes
in (a).) [Hint: Only two arcs through points on Ry appear possibly analytic
in X. Near (0, 0) € Ryy. the other one looks something like a parabola tangent
at (0) to Ry. This suggests tryingm, = m, = 1, my = m, = 4.]

Note: The real part of the curve does not always geometrically suggest what
the values of m,, ..., m, are. For further discussion, see [Walker, Chapter 1V,
Sections 3.2 and 3.3].

5 Sphere coverings

In the last section we looked at the local structure of general plane curves.
We may use these ideas to help establish the overall, or global, structure of a
plane curve. In Chapter I we got a look at the overall appearance of a few
curves using the “slicing” method; this is very direct and gives some in-
formation about how the curve lies in its surrounding space. However, even
for quite simple curves this method can become very involved; furthermore,
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our treatment was more on an intuitive level —in a more rigorous treatment
one would, for instance, have to make sure that the same curves couldn’t
somehow fit together in a different way to form a different topological
object.

In this section we look at the question of the global topology of a curve
from the new viewpoint of sphere coverings. This approach, though less
informative about the precise way the curve lies in an affine representative,
does give us purely topological information quite easily; this method also
readily generalizes, and has important applications. For instance, we use it in
establishing the genus formula in Section 10 of this chapter. The present
section consists mostly of definitions and examples.

The general idea is this: Somewhat as the graph of a function projects
onto its domain (the graph thus forming a “one-valued” or “one-sheeted”
cover of the domain), the points of a curve C = P?(C) will form an “s-sheeted
cover” of a subspace P!(C) or P?*(C), except possibly over finitely many
points of P}(C). The s sheets are attached at these finitely many points in a
way suggested by the last section—as “ramps,” or as the one point union of
disks; from this one can then derive the topological structure of a given
curve.

We next make some definitions. Disk will mean “topological image of an
open disk in R?”; a connected component of a topological space is any maxi-
mal connected subset of that topological space. (See Definition 8.1.) A topo-
logical space is locally compact if for each point in the space, there is an open
neighborhood of that point whose closure is compact. Recall (Section I,2)
that a topological 2-manifold M is a Hausdorfl space in which each point has
a disk as an open neighborhood.

Definition 5.1. Let M be a topological 2-manifold and let 4 be a locally
compact topological space. Suppose that there is a continuous map
7n: A — M satisfying these properties:

(5.1.1) misonto; »

(5.1.2) For each point p € M, there is some disk A(p) = M about p such
that each connected component of n~!(A(p)) is a disk A,(p).
Furthermore, each such disk is open in 4;

(5.1.3) Foreachdisk A,(p), the restricted map n| A,(p) is a homeomorphism
between A (p) and A(p).

Then A is called a covering of M, the triple (4, M, ) is called a cover, and
n, the covering map. A cover (4, M, 7) is an s-sheeted cover if for each
p € M, there is some disk A(p) = M about p such that n~ }(A(p)) consists of
exactly s disjoint disks.

A triple (4, M, f)is a “near cover” if it is a cover except over finitely many
points of M. More precisely,
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Definition 5.2. Let A, M be as above, let P, . .., P, be finitely many points of
M, and let f:4 — M be a (not necessarily onto) map. Then the triple
(A, M, f)is called a near cover and A, a near covering of M if

(ANSf (P ..., P MNUPy, .., P, fIANS TPy, .., P)
is a cover. If this last triple is an s-sheeted cover, (4, M, f) is a near s-sheeted
cover.
Notation 5.3. Let S and T be sets. The map n:S x T — S is defined by:
nr{(s,t)) =s foreach(s,t)eS x T.
It is called the projection of S x T on S along T. Similarly we define ng by
nsl(s, 1)) = t.

If A is a subset of S x T, and if no confusion can arise, we also denote the
restrictions ng| 4 and n4 | A by ng and iy respectively. The map nic, :Cxy —
Cy is denoted by 7y, and n¢, : Cxy — Cy, by my, etc.

In the literature, 7’s subscript usually denotes the space into which we
project, instead of along which we project. For the purposes of this book,
our notation will result in somewhat smoother exposition later on.

EXAMPLE 5.4. Let A be an open disk of Ryy, let R have the usual topology,
and let Z (integers) have the discrete topology (every point is open). Then
(A x Z, A, nz) is a cover. However, (A x R, A, mg) is not a cover, since
g (A) is itself connected; since it is of dimension 3, it is not a disk.

EXAMPLE 5.5. If A = V(Y? — X) < Cyy, then (V(Y? — X), Cy, my) is a near
2-cover.

EXAMPLE 5.6. If A = V(Y(X? — Y?)) < Cyy, then (V(Y(X? — Y?)), Cy, ny)
is a near 3-cover.

EXAMPLE 5.7. A very important general example is expressed in the following:

Lemma 5.8. Let p(X, Y) be a polynomial with no repeated factors,

X, Y) = ap(X)Y" + a,(X)Y"™ ! + ... + a(X), 21
where a(X)e C[X], aq # 0,and n = 1. Then
(V(p)’ CX,nY)

is a near n-sheeted cover.

PROOF. As we saw in the last section, the discriminant Zy(p) € C[X] is not the
zero-polynomial since p has no repeated factors; hence the discriminant
variety V(2y(p)) = Cy consists of only finitely many points. There are thus n
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5: Sphere coverings

distinct zeros y 4, . . ., Yo. of p(xg, Y) at all but finitely many values x,. When
these n zeros are distinct at x, then (9p/0Y)(xq, yoi) # 0,i = 1,...,n. Hence
by the implicit function theorem (Theorem 3.6), the part of V(p) near each
such (x4, yo;) forms the graph of an analytic function Y = h(X). Thus the con-
nected components of C lying above a sufficiently small disk A(x,) about x,
in Cy are all disks A,(x,), and = induces on each A,(x,) a homeomorphism
with A(x,). This being true at all but finitely many points of Cy, one sees that
(V(p), Cy, my) is a near n-sheeted cover. O

Now, in what sense may a curve in P?(C) be regarded as a sphere covering?
To answer this, let P!(C) denote any fixed projective 1-subspace of P*(C), and
let P, be any point of P2(C) not on P*(C). Clearly each point of P*(C) is con-
tained in some line through P, ; also, any two distinct lines in the set of all
lines through P, intersect in exactly P, so they are disjoint in P(C)\ P, , so
the parts of these lines within P*(C)\ P, are disjoint. Finally, each line in this
set intersects P'(C) in just one point, and distinct lines through P, intersect
P(C) in distinct points. There is thus defined in a natural way a projection
n: P2(C)\{P,} — PY(C) mapping any point P € P>(C)\{P,} to that point
in which the line through P and P, intersects P'(C) (see Figure 18).

Figure 18

Now let C be any curve in P?(C). We may without loss of generality sup-
pose that coordinates in C* have been chosen so that after dehomogenizing
at Z, C is the completion of the curve in Cyy defined by a polynomial of the
form given in (21) (no repeated factors, a, # 0, and n > 1). By Lemma 5.8,
(V(p), Cy, my) is a near n-sheeted cover. If P*(C) is the projective 1-subspace
of P%(C) containing Cy = Cyy, if P, is the point completing Cy, and if 7
is as above, then

(C\{P,},P(C),m)

is also a near n-sheeted cover.
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II: Plane curves

If P ¢ C, we have succeeded in representing all of C as a near covering of
the sphere P!(C). If P, € C, this point is not part of the covering, but we can
put back this missing point by taking the “one-point compactification” of

C\{Py}.

Definition 5.9. Let T be a topological space, and let P be an abstract point
not in T. The one-point compactification T* of T is the space described
as follows:

(5.9.1) The underlying set of T* is T L {P};
(5.9.2) A basis for the open sets is given by:
(a) the open sets of T;
(b) subsets U of T u {P} such that (T v {P}\U is a closed com-
pactset of T.

ExAaMPLE 5.10

(5.10.1) The one-point compactification R* of R (with the usual topology)
is a real circle (that is, the topological space P'(R)).

(5.10.2) (R?*)* = sphere.

(5.10.3) The one-point compactification of a sphere with finitely many
points P,, ..., P, missing is the sphere with P, ..., P, all identified to one
point.

(5.10.4) The one point compactification of a compact set T is T together
with an extra closed, isolated point.

Lemma 5.11. Let T be a compact Hausdorff space, and let P be any point of T.
Then

(T\{PY*=T.

The proof is a strightforward exercise and is left to the reader.

One can now see the following:

If C is any curve in P%(C) and if P!(C) any subspace of P*(C), then C is
either a near s-sheeted covering of P!(C), or the one-point compactification
of such a covering.

Remark 5.12. If we dehomogenize P?(C) at any 1-subspace through P,
and choose linear coordinates X, Y in the resulting affine space, then the
part of C in this Cyy is V(p), for some p(X, Y) € C[X, Y]. If degy p = n, then
(C,Cy, my) is a near s-sheeted cover, where s < n. If degy p = 0, then
p(X, Y)is in C[X], and C is simply the completion of finitely many parallel
lines X = a constant in Cyy.

Now if we are given any such representation of C as a near cover, and if we
know the nature of C about each of the finitely many exceptional (dis-
criminant) points, then in practice it is fairly easy to determine the topology of
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5: Sphere coverings

the whole curve. We now illustrate this with a few specific examples; in
Section 1110 we use sphere coverings to obtain a more general result, the
topological nature of an important class of curves.

ExampLE 5.13. We first reconsider from this new viewpoint the circle
C = PXC) defined by V(X? + Y2 — Z?) < Cyy,. Let PY(C) and P, be
represented in Cyy, by Cx, and Cy, respectively. (Hence relative to the
affine part Cyy, P'(C) contains Cy = Cy, and P, completes C,.) Now
X%+ Y? — Z? evaluated at (0, 1, 0) e Cy < Cyy, is nonzero, so P, ¢ C.
And by looking at affine representatives of C in dehomogenizations at Z
and X, we see that C is a near 2-covering of P*(C). There are two exceptional
points of P'(C) above which there are fewer than two points of C\{P_}:
these are bothin Cy, at X = +1.

What is the nature of C above each of these two points? Let us first expand
X2 + Y? — 1 about the point X = 1, Y = 0, or, what is the same, set X’ =
X — land Y’ = Y and expand about X’ = 0, Y’ = 0. This gives (X’ + 1)? +
(Y2 —1=0,0r

(Y2 = —X'Q2 + X)).

Whatis the effect of going once around a small circle in Cy. centered at X' = 07
Set X' = re®, r small. Then

Y = +./re?2 + re)\/?;

as 0 increases from 0 to 27, "2 changes from +1 to — 1, while for r suf-
ficiently small, the factor (2 — re'?)!/? remains the same. Hence one circuit
about a circle of small radius r cannot lead us from one zero of (Y') + r(2 + r)
(when 6 = 0) back to itself, so one circuit must lead to a different zero.
However two circuits obviously do lead back to the original zero. Thus the
part of C near (X'. Y') = (0, 0) behaves like (Y')> = —2X", and one gets a
2-ramp about (X, Y) = (1, 0). Similarly, there is another such 2-ramp about
(X,Y)=(-1,0).

One can construct a double covering of P!(C) having 2-ramps above any
two distinct points P,, P, € P!(C) as follows: Take two concentric spheres
and make two slits, one above the other. Let the edges of the cut inner sphere
be E, and E,, and of the outer sphere be E; and E,, where Ej lies above E,,
and E, above E,. Now sew E, to E, and E, to E;. (This amounts to first
switching the edges, then sewing.) This construction gives us a 2-ramp at
each of P, and P,.

At the top of Figure 19 we have separated the two cut spheres. We may
easily see the topology of our curve C if we perform the sewing as indicated
in the rest of Figure 19. We thus see from this new viewpoint that the com-
plex circle C is topologically a sphere.
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ExaMPLE 5.14. The representation of a given curve C as a near covering can
change markedly as we vary P!(C) and P, . For instance in Example 5.13, one
might choose for P, a point in the circle. This can be done, for example, by
picking coordinates in Cyy, so that dehomogenizing at Z gives, in affine
space Cyy, the complex parabola V(Y — X?). Let P!(C) be the 1-subspace
containing Cy < Cyy,and let P, be the point of P?(C) completing Cy (< Cyy).
Then (0, 1, 0) is a point in the 1-space Cy, of Cyy, (Cy represents P, ), and
YZ — X? evaluated at (0, 1, 0) is zero, so P, € C.

Now V(Y — X?)isanear 1-covering of P!(C) and a I-covering of Cy since
there is exactly one point of C over each point of Cy. Thus C is topologically
the one-point compactification of a 1-sheeted covering of Cy. It is ecasily
seen that a 1-sheeted cover of Cy is itself homeomorphic to Cy; since the one-
point compactification of C is a sphere, we again end up with a sphere as
underlying topological space of C.

ExAMPLE 5.15. Choosing the same P'(C) and P, as in Example 5.14 but
writing the parabola as V(Y? — X) again represents a change in the relative
position of P!(C), P, and the curve. The variety ¥ now describes a near 2-
sheeted cover of Cy; there are two distinct points above each point of Cy
except at 0. The homogenization Y? — XZ evaluated at (0, 1, 0) is nonzero, so
P, ¢ V. The graph in Cyy of Y? = X near (0, 0) is, of course, a 2-ramp. What
about above the infinite point P!(C)\C4? Dehomogenizing Y> — XZ at
X = I places this point at the origin, the new affine representative being given
by Y? — Z = 0; in Cy, it is C, whose completion is P*(C). Then Y2 = Z
describes another 2-ramp (a “ramp at infinity” from the viewpoint of our
original Cyy). We thus have a near 2-sheeted covering of a sphere, with two
ramps at the exceptional points, thus bringing us back to the situation of
Example 5.13. Hence we again get a sphere as the underlying space.

EXAMPLE 5.16. One can derive the topology of a curve in P?(C) by looking at
any affine part of it (though if the line at infinity is in the curve, one must put it
back again after analyzing the topological closure of the affine part). The
alpha curve C defined in Cyy, by Y2Z — X*(X + Z) is an interesting
example of how looking at different affine representatives leads to the same
topological result.

Dehomogenizing Y?Z — X*(X + Z)at YgivesZ — X3 — X?Z.Equating
this to zero yields

X3

Z=—-"__
1- X2

(22)

The real part of the graph of (22) appears in Figure 9b. Let P(C) be
the projective completion of Cy in the affine part Cy,, and let P_ be the point
P in Figure 9e. Then (22) describes, in the obvious way, a near l-sheeted
cover of P!(C). Exceptional points are at X = + 1, above which there are
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II: Plane curves

no points of C\{P,}. Dehomogenizing Y2Z — X% X + Z) at X shows
there is also one point (Q, in Figure 9¢) of C\{P_,} above P'(C)\Cy. Hence
the part of C in P*(C)\{P,} is represented as a sphere with two points
missing. Moreover P € C, since the homogeneous polynomial is zero at
0,0, 1) € Cxy,. (Note that P, is represented in Cyy, by the subspace C,.)
Thus C is topologically the one-point compactification of a sphere with two
points missing. This is just a sphere with two points identified, which agrees
with our earlier result (Figure 1,22).

Now let us look at the part of our projective curve in Cyy, namely
V(Y? — X*)(X + 1)). Choose P}(C)and P, as in Example 5.13. This time our
covering is quite different. First, P e C, since Y2Z — X*(X + Z) is
zero at (0, 1, 0), but now we have a near 2-sheeted covering of P!(C). Excep-
tional points occur when Y = O (that is, when X = —1 and when X = O in
Cy), and possibly at PY(C)\Cy. There is only one point of C\P,, above
X = —1 and above X = 0; the points of PXC)\P,, above P!(C)\Cy are
represented in Cyy, by 1-subspaces through (1, a, 0) (a€ C), and Y?Z — X2
(X + Z) is never zero at any such point. Therefore there are no points of
C\P,, above the point P}(C)\Cy.

Now let us look at the part of C about (0, 0). We argue as in Example 5.13,
setting X = re', r small. Then

Y = +re /e + 1.

As 0 increases from 0 to 27, e varies continuously, starting and ending up at

1; one then sees that starting from either of the zeros i\/ir (corresponding
to 0 = 0), we end up at the same zero after one revolution about the circle.
Hence the two disks of the near cover do not attach in a ramp fashion, but
rather as a one-point union.

Next, expanding Y2 = X?(X + 1) about (X, Y) = (—1, 0) (or expanding
about (X', Y') = (0, 0) after setting X' = X + 1l and Y’ = Y), we get

(Y) = X'(X' - 1)>.

As in Example 5.13, the part of C near (X, Y) = (—1, 0) then forms a 2-ramp.
Hence C\P,,, as a near 2-cover of this P'(C), consists of two concentric
spheres with points missing above the point P*(C)\ Cy, attached by means of a
1-point union above X = 0, and attached rampwise above X = —1. But
constructing a ramp involves making a slit. How shall we do this? It can be
done in a way consistent with all our requirements on a near cover by cutting
the sheets leftward to infinity, starting from the point X = —1, and then
reattaching the edges after switching them, as before. Then C is topologically
the one-point compactification of this construction. It is easily seen that this
construction induces a ramp at infinity, too, for the infinite point is just the
other “end” of the slit. Hence we have two slit spheres touching at one
point, these slits to be attached in a way similar to what was done in Figure
19. One thus gets, again, a single sphere with two points identified to one.
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6: The dimension theorem for plane curves

One could also look at the projective alpha curve as a 3-sheeted covering
by using, in the same affine part Cyy, the completion of Cy < Cyy as PY(C),
and the point at infinity of Cy as P_. We leave this as an exercise for the
reader.

EXERCISES
5.1 Prove Lemma 5.11.

5.2 Derive the topology of the completion of V(Y2 — X*(X + 1)) in P%(C) by choosing
PYC) and P, as suggested at the end of Example 5.16.

5.3 Show that the completion C in P*C) of the curve V(Y? — X?3) is topologically a
sphere by looking at C as a near 2-sheeted covering of some P!(C), and then as a
near 3-sheeted covering of some P(C).

5.4 Determine the topology of the completion in P*C) of V(XY? — Y — X). (Cf.
Exercise 2.1.)

5.5 Determine the topology of the completion in P%(C) of V(X* + Y* — 1).
5.6 Using sphere coverings, show that the completion in P?(C) of
V(Y2 — X(X2 = 1)-...- (X% — ¢?)

has genus g.

6 The dimension theorem for plane curves
In Chapter I we stated that for any two varieties V, and V, in P*(C),
cod(Vy n V,) < cod V; + cod V.

In this section we prove this fundamental dimension relation for curves.
Our proof will be of importance, for it points the way to a proof for arbitrary
dimension (Section IV,3).

We shall give definitions of dimension for arbitrary varieties in Section
1V,2. For now, we briefly describe the situation for plane curves. First, note
that at all but finitely many points of a curve C in C? or P(C), C is locally
homeomorphic to an open set of C!; in this sense we say C has complex
dimension one. Similarly C? and P?(R) have complex dimension two. (These
agree with the dimensions assigned by the general definition in Chapter I1V.)
Therefore for curves C,; and C, in P*(C), our dimension statement becomes
cod(C; n C,) < 2. Since by definition, dim(Z) = —1,in C2 or P*(C) cod()
is 3, so in this case we may rephrase our result this way:

Theorem 6.1. Let C, and C, be algebraic curves in P?(C). Then
Cl M Cz #* @.

This is the result we prove in this section.
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II: Plane curves

Our main tool will be Theorem 6.2. Recall that two polynomials p(X, Y),
q(X, Y)e C[X, Y] which are nonconstant in Y and which satisfy the con-
ditions in Theorem 4.4 with D = C[X], have intersecting zero-sets
(V(p) N V(g) # ) iff the resultant polynomial Zy(p, q) € C[ X] has a zero—
that is, if #y is not a nonzero constant. But of course there are many cases in
which two curves in C? don’t intersect, having instead all intersection points
on the line at infinity. Two parallel lines in C?, given, say, by X + Y =0
and X + Y —1=0, or the two parabolas given by Y> — X =0 and
Y? — X — 1 = 0 are examples. This behavior is reflected in the resultants

1 X
AR X+ YX+Y—-1)= ’1 X — 1‘= —1, a nonzero constant;
and
1 0 -X 0
0 1 0 -X
2 2 _ -1 = = 1.
RAY X,Y X ) 1 0 —X -1 0 1
0 1 0 -X -1

However the corresponding pairs of homogeneous surfaces (given by
X+Y=0X+Y—-Z=0,andby Y>? - XZ=0,Y>—-XZ - Z>=0)
each intersect in a 1-subspace of Cyy, (that is, in a point of P%(C)); the first
pair intersects in the 1-subspace through (1, — 1, 0), and the second pair, in the
1-subspace through (1, 0, 0). Compare this with these resultants of each pair
of homogenized polynomials:

1 X
%Y(X+Y,X+Y—Z)—’l X—Z}=_Z’
and
RW(Y> — XZ,Y? - XZ - 7%
1 0 -XZ 0
_ 0 1 0 -XZ _ g
1 0 —XZ-2* 0 ’
0 1 0 -Xz -7

In each case the resultant does indeed have a zero. One might note in passing
that the degree of the first resultant is 1 - 1 = 1, the degree of the second one is
2.2 = 4, which corresponds precisely to the “multiplication of degrees”
property stated in Chapter 1. See Bézout’s theorem (Theorem 7.1 of
Chapter IV).
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We shall prove Theorem 6.1 by looking at resultants from the homo-
geneous viewpoint; the main fact we use is this:

Theorem 6.2. Let p and q be homogeneous polynomials in C[X,, ..., X,] of
positive degree m and n, respectively. Write

pPXo,.... X)) =poX," + ...+ pu  (m>0,p,eC\{0})
4dXo,.... X)) =qX,"+...+4q, (n>0,g9,eC\{0})

where fori = 1, each p;, q;€ C[ Xy, ..., X,_] is either the zero polynomial
or is homogeneous of degree i. Then the resultant Ry _is either the zero poly-
nomial or is homogeneous of degree mn.

Remark 6.3.If py and q, are not both different from 0, the resultant may be
nonzero but of degree different from mn. For example, in the parabolas
above, p=Y? - XZ and q= Y? — XZ — Z?, so mn = 4; but the co-
efficient of X? in both polynomials is zero, and

-Z Y?

—_ 3
-7 Y*-27? =2z

e@x(P, q) = ’

A nice proof of Theorem 6.2 can be given by looking at homogeneity in a
slightly different way. This alternate point of view is expressed in the follow-
ing criterion.

Lemma 6.4. A polynomial pe C[X,, ..., X,] is homogeneous of degree m (or
else is the zero polynomial) iff for a new indeterminate T,

n(TX,,...,TX,) = T"p(X,,...,X,) (23)
holds in C[T, X, ..., X,]
PROOF
=: Obvious.

<=: Assume p is not the zero polynomial; suppose p has degree k and that p
satisfies (23). Write

P=po+p1+ ...+ D

where p, # 0and p; = p(X,, ..., X,)is either 0 or is homogeneous of degree
i. Then from (23), we have

Tmp = T'"po + ...+ Tmpk = Topo + ...+ Tkpk. (24)
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Since two polynomials are equal iff their coefficients agree, (24) implies
that m = k, and that there is only one p;; it has degree m—that is, p is homo-
geneous of degree m. l

We now use the above lemma in the

PROOF OF THEOREM 6.2. Denote (X,, ..., X,) by X, and (T X,, ..., TX,) by
TX.Then

po T'py- - -T"py
Po Tlpl N * * Tmpm
Rrx p(TX), g(TX)) = .
po T'pv- - - T"py
qo qul - . - . . . . T"qn
qo qul . . . . . . . an"
do qul e e e Ty,

For each column, we may make all entries in that column appear with the
same power of T by multiplying the i'" row of p entries by T'~*, and the j*"
row of g entries by T/~ 1. The effect of this is to multiply the determinant by a
total of T to the power

Ot14. +-1)+O+1+.. +m—1="0D mm=D

2 2 ’
we then have:
Tl D= 2gp (p(TX), g(TX)
Po Tlpl : ) - Tmpm
TlpO . . . . . Tm+1pm
Tn—lpo . . A . rTm+n—1pm
qo qul . . . . . . ann
qu() . . . . . . . . T”+lq"
Tm_lqo . . . . . - . - Tm+n_1q"
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This determinant is the same as Zx, (p(X), (X)) with the i column multiplied
by T'~ . In all, the power of T thus introduced into %y, is

_(m+nm+n-—1)
= 3 .

1+42+...+m+n—-1)

Hence this last determinant expression may be written as
Rrx,(P(TX), g(TX)) = T rmemen=Diz=ine=Lrmen=DI2 g, (p(X), g(X)).

The exponent of T simplifies to mn; Lemma 6.4 then implies that %y _is
either the zero polynomial or is homogeneous of degree mn. O

Our dimension theorem for curves in P2(C), namely Theorem 6.1, follows
at once from

Lemma 6.5. Let p, qe C[X,, ..., X,] (r = 2) be nonconstant homogeneous
polynomials. Then p and q have a common zero other than (0, .. ., 0).

Proor. With notation as before, let
p=YpX " q= ) X" "
i=0 i=0

By performing a linear change of coordinates if necessary, we may assume
that p, # 0 and g, # 0. (The argument is essentially the same given for
Assumption 4.2.) Since p and q are nonconstant, they are both of positive
degree (m and n) in X,, hence by Theorem 6.2 either #x, € C[X,, ..., X, _4]
is the zero polynomial, or

deg(#x,) = mn > 0.

Now r > 2. Suppose without loss of generality that £ = 0 or the degree of
Ay in X, _, is positive; choose ay, . . ., a,—, where g; € C and not all g; = 0,
in such a way that the polynomial #,_evaluated at Xy = a¢,..., X,_, =
a,_, is the zero polynomial or a nonconstant polynomial in X, _,;it then has
a zero, say a,_,. Then since C is algebraically closed, there is a common
zero a, of plag,...,a,_, X,) and qlay,...,a,_, X,), since they have a
common nonconstant factor. Since not every a; = 0, Lemma 6.5 is proved.

O

We can now at once prove our dimension theorem:

PROOF OF THEOREM 6.1. We have r = 2. Let C and C’ be defined in Cyy; by
nonconstant homogeneous polynomials p and q. By homogeneity, a common
nonzero solution to p and g implies that V(p) N V(g) consists of at least a
1-subspace of Cyy,, i.e., that C and C’ have at least one point in common. []
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EXERCISES

6.1 Suppose, in Theorem 6.2, that p, and g, are both constants, but not necessarily
nonzero. Can we still conclude that Z4, is homogeneous?

6.2 Redo Exercise 3.3 of Chapter I using the ideas of this section.

6.3 Prove that a nonempty proper subvariety of an irreducible curve in C? or in P%(C)
consists of finitely many points.

6.4 It is tempting to try for a quick proof of Bézout’s theorem for curves in P*(C),
this way:

Let C, and C, = P%(C) be two curves defined by homogeneous polynomials
P1» P2 € C[X, Y, Z], where p, and p, have no repeated factors, and no common
factors. Assume without loss of generality that P%(C) is the completion of Cyy, that
C, and C, have no points of intersection on the line at infinity, and that no two
distinct points of C; n C, lie on the same translate of Cy in Cyy. Then define the
multiplicity of intersection of C, and C, at (a, b) € Cyy to be the multiplicity of the
root a in #y(p,, p,) = 0. Theorem 6.2 easily implies that with this choice of co-
ordinates, deg(4y(p,, p,)) = deg p, - deg p,, thus proving Bézout’s theorem.

What nontrivial geometric fact would one have to prove to get a proof using
this idea?

7 A Jacobian criterion for nonsingularity

In Section 4 we saw that the points P of a curve C = P#(C) fall into two
classes. In one class, the points of C about P form a topological disk (or are
topologically nonsingular); a neighborhood of C about any other point con-
sists of the 1-point union of finitely many disks. (Such points are topologically
singular.)

A little inspection of the topologically nonsingular points of C will reveal
that they themselves fall into two quite different classes—points at which
C is “smooth,” and points where C is not. For instance, the parabola
V(Y — X?) = Cyy, being the graph of the smooth function Y = X?, is
smooth at each of its points. But what about, for instance, “ramp points”?
From the winding nature of ramps, one might suspect for a minute that these
are examples par excellence of points where C is nonsmooth. As it turns out,
there are both smooth and nonsmooth ramps. We first look at some examples,
then we shall prove a simple criterion for a topologically nonsingular point
to be smooth (Theorem 7.4).

ExampLE 7.1. The point (0, 0) of the parabola V = V(Y? — X) < Cyy is a
ramp point relative to the covering (V, Cy, ny) (ny, my as in Notation 5.3).
Yet relative to the cover (V, Cy, ny), V becomes the graph of the smooth
function X = f(Y) = Y2 Hence the “ramp” nature of the point changes as
we change the direction of projection.
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7: A Jacobian criterion for nonsingularity

Other ramp points are, however, essentially “ramplike;” these turn out
to be the nonsmooth topologically nonsingular points.

ExampLE 7.2. Consider the curve V = V(Y? — X3) < Cyy. If we start from
a point of V and travel in a circle about 0 € Cy, the Y-coordinate describes a
circle in Cy. The argument of the point in Cy increases 3/2 as fast as the argu-
ment of the point in Cy, since for increasing 6 and fixed r, X = re describes
acircle in Cy, and Y = r¥2¢03/2% describes the corresponding circle in Cy.
Thus after one revolution in Cy, (1, 1)e V is led into (1, —1)e V' —that is,
one revolution leads to a new point of V. Since (V, Cx, ny) is a near 2-cover of
Cy, V forms a 2-ramp about (0, 0) relative to my.

Now let us look at V as a cover of Cy relative to ny. The argument of the
point in Cy now increases just 2/3 as fast as the argument of a point in Cy;
hence after one revolution in Cy, the point (1, 1) € Vis led to (¢'?/>", 1); after
two revolutions, to (e“/*™, 1); and after three times, to (e'*/>", 1) = (1, 1).
Hence (V, Cy, ny) is a near 3-covering, and V forms a 3-ramp about (0, 0)
relative to this covering. Hence although the “order” of the ramp changes, it
is still a ramp.

One can even choose arbitrary linear coordinates about (0, 0) e Cyy,
given say by

X=aX +bY and Y =cX +dY’;

substituting these into Y? — X3 = 0 yields a polynomial p(X’, Y’) of order 2
at (0, 0), having (up to a nonzero constant factor) either (Y')* or (Y’)? as
lowest-degree term of the form (Y’)™, so there are at least two distinct small
Y’-values satisfying p(X’, Y’) = 0 for any sufficiently small X’ # 0. Thus it is
surely not locally a graph at (0, 0), much less the graph of a smooth function.
(We formalize this argument in the proof of Theorem 7.4.) The point (0, 0) of
V(Y? — X?3)is therefore in an essential way less well behaved than the point
(0,0) of V(Y% — X).

In this section we look at such behavior more carefully, viewing the points
of C less through the eyeglasses of a topologist, and more through those of an
analyst (who takes differentiability and smoothness into account). Through-
out this section, the ideas of Section 3 play an important role. We prove here
one main theorem, a criterion which relates a geometric notion of non-
singularity (“smoothness”) with an algebraic notion of nonsingularity. We,
of course, state this theorem for curves, but our argument happens to general-
ize easily to varieties of any dimension.

First, recall Definition 3.1 of smoothness of a function f: U — R™(U open
in R").

Definition 7.3. A set M — R" is smooth at P e M if in some neighborhood
about P, for some choice of linear coordinates, M is the graph of a smooth
function. The set M is smooth if it is smooth at each point.
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II: Plane curves

Our main criterion is then

Theorem 7.4. Let p(X,Y)e C[X, Y] have no repeated factors. Then
V(p) = Cyy is smooth at P € V(p) iff at least one of the following holds:

op op
55(7(1’)7é0, 5'17(13)#0-

In view of this theorem we make the

Definition 7.5. Let C be any curve in Cyy, and let p be the polynomial of
C[X, Y] having no repeated factors, for which C = V(p). Then with
notation as in Theorem 7.4, V(p) is singular at P if (Op/0X)(P) =(0p/0Y)(P)
= 0, and is nonsingular at P otherwise. We then say P is a singular (or
nonsingular) point of C.

Before giving the proof of Theorem 7.4, recall that in Definition 3.1 of
differentiability of a function, the tangent plane at (a, f(a)) to the graph of a
smooth function f : U —» Ry (U = Ry, . x,)is given by

n af
Y = o X, —a).
fla) + j§1<6Xj (a)>( j a})
If f=(0f---sfw:U—> Ry, _ y, of Definition 3.1 is differentiable at a,
we have in R**™ m hyperplanes through (a, f(a)), namely

" of.
Y, = fila) + _;1 a—?(a)(Xj —ay) i=1...,m). (25)

Since these equations are linearly independent, the planes intersect in a real
n-plane through (a, f(a)), which is the tangent planeto V = V(Y; — f},...,
Y, — f.) at(a, f(a)); it coincides with the set of limits of secant lines through
(a, f(a)) and nearby points of V.

PROOF OF THEOREM 7.4

<= This is just Corollary 3.9.

=: We prove this half by contradiction. The strategy is this: Assume that
V(p) is smooth at P and that (dp/0x)(P) = (0p/0y)(P) = 0. Then we shall
find a neighborhood and coordinate system about P relative to which:

(a) V(p) smooth at P implies V(p) is locally at P a graph of some function.
(b) (0p/0x)(P) = (Op/dy)(P) = Oimplies V(p)is locally at P not a graph of any
function.
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7: A Jacobian criterion for nonsingularity

First, write Cyy = Ry,x,v,v, = R*. Without loss of generality, let
P = (0) € R* and let the part of V(p) near (0) be the graph of some smooth
function f = (f1, f3), i.e.

(Y1, 1) = (fi(X1, X), fo(X1, X,): U > U

for some open sets U and U’ containing 0 in Ry x, and Ry,y, respectively.
Since f; and f, are smooth, there are in R* real 3-spaces

Yi=cu X1 +cX, and Y, = X, + ¢ X,

which locally approximate f; and f,, these 3-spaces intersecting in a real
tangent plane T. (T will be our new “(X,, X,)-space” in a moment.)
We note two things about the plane T':

(7.6) This real 2-space is actually a complex 1-space;

(7.7) Let F; = Y, — f{Xy, X,),i =1, 2. For each real line in T
through (0), the corresponding directional derivative at (0) of each
F; is zero.

PROOF OF (7.6). Since V(p) is smooth at (0) € R*, the tangent plane to V(p)
at (0, 0) is given by

_ 9
T 0X,

%

Y, O(X, —0) + O, -0 (=12);

this is the limit as (@) = (a,, a,) = 0 of

of.
%= o) = 5 @0 = a) +

;i
0X,

@(X; —a) (=12 (26)

Hence in this sense, the tangent plane T at (0) is the limit of tangent planes
T(P) to the graph at points P of V(p) near (0).

Since surely the limiting position of a sequence of complex lines in C2 is a
complex line, it suffices to show that for P # (0) near (0), each such T(P) is a
complex line. Now if (8p/0X)(0) = (0p/0Y)(0) = 0, then by Lemma 3.9,
in some neighborhood of any P # (0),(Pin V(p) and P sufficiently close to (0)),
the part of V(p) near P is the graph of the analytic function

Y = f(X) (f = fi +if2)

The complex line through (g, b) € Cxy in the corresponding complex defini-
tion of differentiability is

Y =f)+ fa)(X — a).
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By equating real and imaginary parts of this equation and making use of the
Cauchy-Riemann equations, one may now verify that this real plane in Cyy
is the same as that defined by the corresponding real equations in (26), so
each such tangent plane is a complex line.

PRrROOF OF (7.7). Since f; is differentiable there are planes

Y, =cu X, + i X, (i=12)

so that
T Jilx g, x3) — (€1 xq + €i2X5) -0 (=12
(X1.x2)>0 x| + |x2] >
This means
lim i — filxy, x2)) = (i — (CarXq + €i2X3)) 50 (=12
(x1,X%2,¥1,¥2)—~0 |x1| + |x2| ’

Now y; — (¢;yx; + ¢iz x,)iszerofor(xy,x,,y,,y,) € T,s01f(x1,x5,y1,y,) = 0
along points in T, the above limit becomes

lim Vi — flx1, X5) N

(x1,x2,y1,y2)~0 lel + |X2|

2

hence approaching along points in T, we have

llm Fi(xl’ X25 V1 YZ) - Fi(Os 0’ 0’ 0) -
oL xnyny—o X1l F1x2] + [yl + [y2l

Therefore (7.7) is proved. O

To continue with the proof of “=>" in Theorem 7.4, note that the rank
at (0) of the Jacobian matrix

X, 0X, oY, oY,

OF, 0OF, OF, OF,
0X, 0X, 0Y, oY,

is two (the last two columns form an identity matrix). We now choose new
coordinates in C? about (0) as follows: Let Cy. = T be the tangent space to
V(p) at (0, 0), and let Cy. be any other complex 1-subspace of C2. If J' denotes J
after changing to a new real basis with vectors in Cy. and Cy., then rank (J')
= 2, since the rank of a matrix is unchanged by a change of basis. Now
derivatives at (0) in any direction in Ry,y, are all zero (by (7.7)), so the
Y’-columns of J' are linearly independent; hence by the implicit function
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7: A Jacobian criterion for nonsingularity

theorem (Theorem 3.6), the part of V(p) near (0) is also a graph of a function
relative to these new coordinates.

Now, if (6p/0X)(0) = (6p/0Y)(0) = 0, then p has zero derivative in any
direction, so if X =aX' + Y and Y = yX' + 0Y’, then p(aX' + BY’,
yX' + 8Y') = p*( X', Y')satisfies (Op*/0X’) = (0p*/0Y’) = 0. Hence p*(X’, Y')
expanded about (0, 0) has order s > 2.

Now let us, in particular, choose Cy. so that (Y')* is a term of p*(X', Y')
when expanded about (0, 0). (A proof of this is similar to that of Assumption
4.2; for “almost all” choices of ¢, X' = X" + ¢Y”and Y’ = Y” will bring this
about.) We continue to denote these new coordinates by X’ and Y'. We note
that if a polynomial has no repeated factors it will continue to have no
repeated factors after a linear change of coordinates. Therefore 2y.(p*(X’,Y"))
# 0—that is, at all but finitely many values of x', p*(x’, Y’) has exactly
n (= degree p) zeros. But we know p*(0, Y') has Y’ = 0 as a zero of order
s = 2 since p*(0, Y’) is a polynomial in Y’ of order s.

Now one can apply the argument principle of Theorem 3.8 (much as in
the proof of Theorem 3.6, or as in Section 4 where we determined the structure
of C at the finitely many exceptional points) to conclude that there are
neighborhoods Ay. and Ay about 0 in Cy. and Cy. respectively, such that for
each x’ € Ay, there are within Ay. exactly s zeros of p*(x’, Y’); these zeros are
distinct for x’ different from 0. Hence the part of V(p)in Ay, x Ay cannot be a
graph of a function with respect to axes Cy. and Cy., a contradiction. Hence
“=>" of Theorem 7.4 is proved. O

Remark 7.8. A statement analogous to Theorem 7.4 does not hold for real
curves. That is, a real curve V(p) < Ryy may be singular at P in the algebraic
sense that (Op/0X)(P) = (Op/0Y)(P) = 0, yet it may be smooth there. For
instance, p(X, Y)= (X% + Y?)(Y — X?) has no repeated factors, and
describes the union of the sets V(X2 + Y?) and V(Y — X?) in R2. This
set is the real parabola V(Y — X?), since V(X2 + Y?) is only the origin
of R2. The parabola is of course perfectly smooth everywhere, yet (3p/0X)(0, 0)
= (0p/0Y)(0,0) = 0. But if we look at all this in Cy, the lack of smoothness
guaranteed by the vanishing of the partials becomes strongly manifested—
V(p) = Cyy is not even topologically a manifold, but is instead the union of a
complex parabola with two distinct complex lines, X = iY and X = —iY.
Topologically the part near (0, 0) is the one-point union of three disks.

We conclude this section with the important global analogue of Definition
7.5.

Definition 7.9

(7.9.1) Let C be a curve in Cyy. Then C is nonsingular if each point P € C
is a nonsingular point of C.

(79.2) Let C be a curve in P*(C). Then C is nonsingular if each point
P € Cisanonsingular point in some affine representative of C containing P.
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II: Plane curves

Remark 7.10. Tt is easy to check that in (7.9.2), if P € C is nonsingular in
some affine representative of C containing P, then it is nonsingular in all
affine representatives of C containing P. (Cf. Exercise 7.1; also, cf. Section
1V,4 where we prove this in a more general setting.)

EXERCISES

7.1 It is evident from Definition 7.3 that smoothness at P of a given curve C = Cyy
is a geometric notion—that is, it is independent of the choice of coordinates X, Y in
C2. From Theorem 7.4 we then conclude that singularity and nonsingularity at P
are also geometric notions. Prove directly from Definition 7.5 that singularity and
nonsingularity at points of C are properties independent of the linear coordinates
chosen in C2.

7.2 Suppose curves C,, C, = Cxy have no common components. Show that any point
of intersection of C, and C, is singular in C; U C,.

7.3 Show that if the curve C < P?(C) is nonsingular, then C can be defined by an
irreducible homogeneous polynomial in C[X, Y, Z].

7.4 By squeezing to points appropriate topological circles in the projective completion
of C, = V(Y2 — X(X — 1)(X — 2%)-...-(X — g?) = Cyy, find the equation of
an irreducible curve having n > 0 singular points which are “topologically non-
singular,” and m > O other singular points which are “topologically singular.”
Note that for g > 1, C, has a singular point.

7.5 Find an irreducible polynomial p(X, Y) e C[X, Y] such that V(p) is singular at
(0, 0), but such that the part of V(p) N Ry, near (0, 0) is the graph Y = f(X) of a
smooth function f.

8 Curves in P?(C) are connected’

In this and the next two sections, we look at the global topology of curves
in P2(C). In this section we answer this global question: Is it possible for an
algebraic curve in P?(C) to consist of separate parts, like two disjoint tori,
or must “all parts touch,” as in Figure 1.20? Theorem 8.4, the main result
of this section, tells us that all parts must touch, ie., that the curve is
connected.

First, recall the following definition and basic facts:

Definition 8.1. A subset 4 of a topological space S is connected if A4 cannot be
decomposed into a union A = B u C satisfying
B+#g, C#,
BNC=BnC=(g
(the bar means topological closure in S).

! This section requires more background in complex analysis than we assume elsewhere.
Therefore on first reading, the student may read up to Theorem 8.4 and skip the remainder of
the section.
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8: Curves in P%(C) are connected

Lemma 8.2. If connected subsets A and B of S intersect,then A U Bis connected.
Lemma 8.3. If A is a connected subset of S, so is its topological closure A.

Now at this stage, we do know this much: If C = P?*(C) is defined by the
homogeneous variety V(g(X, Y, Z)) ¢ Cyyz, and if ¢ = ¢,"* -...- q," is the
factorization of g into irreducibles (so that V(g) = V(g,) U ... U V(q),
then if we know each projective curve C; defined by V(g,) is connected, we
know that their union is too. (Any two of the V(g;,) intersect by the dimension
theorem, Theorem 6.1, so Lemma 8.2 applies.) But it is still quite conceivable
that C; itself is not connected. In fact this can happen for real varieties. For
example, V(ZY? — X(X? — Z%) = P*([R) consists topologically of two
disjoint real circles, but in P*(C) it forms one connected piece, a torus.
(See Example 2.4 of Chapter I.) This is always true in the complex setting,
and our main result of this section is

Theorem 8.4. Any complex algebraic curve C < P?(C) is connected.

Besides assuming g(X, Y, Z) is irreducible, we may further reduce the
problem to considering only affine varieties: If we dehomogenize with respect
to a projective line containing a point of P%(C) not in C (say, without loss
of generality, at Z), then C intersects this line in a proper algebraic variety
(that is, in a finite number of points—see Exercise 6.3). But from Lemma 4.1,
C has no isolated points, so

C = V(g(X, Y, 1)

hence by Lemma 8.3, if V(¢(X, Y, 1)) = Cyy is connected, so is C.
By a linear change of coordinates in C,y we may also assume g is monic
in Y. Therefore, to prove Theorem 8.4 it suffices to prove

Theorem 8.5. Let
pX,Y)=Y"+a(X)Y" ' +... +a(X)e C[X, Y] n=1

be irreducible. Then V(p) = Cyy is connected.

Our general strategy in proving Theorem 8.5 is this: We prove that for a
particular finite set of points {P;}, V(p)\{P;} is connected (which implies,
by Lemma 8.3, that the closure V(p) = Cyy is also connected). In fact, we
show V(p)\{P;} is connected in an even stronger sense—that it is chainwise
connected (Definition 8.7). This will be done by contradiction: The assump-
tion that V(p)\{P;} is not chainwise connected will imply the existence of a
polynomial ¢ € C[X, Y] of Y-degree less than n, having a nonconstant
factor in common with p; but this is impossible since p is assumed irreducible.

Let my denote, as usual, the natural projection along the Y-axis:
Cx x Cy — Cy, and let & be the discriminant variety

2 = V(Zyp(X, Y)) c Cy.
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II: Plane curves

Because p(X, Y) is irreducible, 2 consists of only finitely many points. In
our proof we shall be looking at V(p)\{P;} as the cover

(V\7y ™ {(2), C\2, my).

Note that since above any point of Cy there are only finitely many points of
V(p), ty~ }(2) removes only finitely many points from V(p).
We now give some definitions and facts used in the proof of Theorem 8.5.

Definition 8.6. Let S be a topological space; a finite sequence of connected
open subsets (0, O,,...,0,) such that ¢O; n O,,, is connected and
nonempty (i = 1,...,m — 1), is called a chain in S, a chain from O, to
0,,, or a chain. If P, and P, are points in @, and 0,,, respectively, we say
(©,,...,0,)is achain from P, to P,,.

From Lemma 8.2 we see that ©; U ... U 0,, is a connected subset of S.

Definition 8.7. Two connected open sets ¢, (' in S are chain connectible if
there is a chain from ¢ to (. Two points P, P’ € S are chain connectible if
there is a chain from P to P'. If every two points P, P’ € S are chain
connectible, then S is chainwise connected.

Lemma 8.8. Any chainwise connected topological space S is connected.

Proor. If § is not connected, then for two nonempty subsets B and C we have
S=BuCwhereBNnC=BnC=.Lethe B,ce C,andlet(C,,...,0,)
be a chainfrombtoc. Then® = 0, u ... U 0, is a connected set containing
band c. But 0 =0nS=(0nB)yu(@nC), since ®~nB<B and
O N C < C, it follows that

OB nNn(ONC)=(OnB)n(0nNC)= .

Since @ N B and O n C are nonempty, 0 is not connected, a contradiction.
Ul

Definition 8.9. Let (4, M, ) be a near cover (Definition 5.2). A connected
open set ¢ = M is said to be liftable to A if there is an open set ¢ = A
such that n|(¢ is a homeomorphism from ¢ to @; @ is then a lifting of (.
If P € ¢ we say ( is a lifting through P, and that ¢ lifts © through P.

A chain (0, ..., 0,)in M is liftable to A if there is a chain (¢, ..., 0,)
in A such that each ¢;is a lifting of @;. Then (¢, . . ., @,,) is called a lifting of
(O, ..., 0,),and a lifting through Pif Pe 0, u... U 0,,.

Definition 8.10. Let ¢ be a connected open subset of C = Cy. The graph in
O x Cy of a function single-valued and complex-analytic on @, is called an
analytic function element. Note that an analytic function element describes
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in a natural way a lifting of O; we therefore write ¢ to denote such a
function element. If P € ¢, then ( is an analytic function element through P.
Achain(@,, ..., ¢,,)ofanalyticfunction elementsliftinga chain(0,, ..., 0,)
of C is called the analytic continuation from (¢, to ¢,, along (O, ...,0,),
or the analytic continuation of ¢, along (0,,...,0,);if Pe 0, and P € (,,,
(C..... @,.) is the analytic continuation from P to P’ along (¢, ..., 0,).

Relative to the cover of special interest to us, namely (V(p)\ny  }(2),
C\ 2, my), there is about each point of C\ 2 a connected open neighborhood
O which has a lifting ¢0. Any such lifting is the graph of a function analytic
on (" (from Theorem 3.6)—that is, any such ( is an analytic function element.

When considering chains in our proof of Theorem 8.5, it will be of technical
convenience to restrict our attention to connected open sets @; of C\Z
which are liftable through each point of n, ™ !(¢;) (Which means that 7y ~ }(0))
consists of n (=degy p) functional elements. Note that there is such an
O about each point of C\ 2.

Definition 8.11. Relative to (V(p)\ny~ }(2), C\ 2, ny), any connected open set
O of C\ @ which lifts through each point of ny ~}(®) is an allowable set.
Any chain of allowable open sets is an allowable chain.

Lemma 8.13 below is used in our proof of Theorem 8.5 and gives an
important class of allowable open sets.

Definition 8.12. An open set Q < C is simply connected if it is homeomorphic
to an open disk.

Examples are: C itself; C\ (nonnegative real axis); C\®, where @ is any
closed, non-self-intersecting polygonal path that goes out to the infinite
point of P!(C) (see Figure 20).

Figure 20
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Lemma 8.13. Relative to (V(p)\ny ™ {(2D), C\2, ny), any simply connected open
subset of C\ 2 is allowable.

This is an immediate consequence of the familiar “monodromy theorem”
(proved in most standard texts on elementary complex analysis). To state it,
we use the following ideas: First, let U be a nonempty open subset of C. A poly-
gonal path in U is the union of closed line segments P;, P;,, c U(i =0, ...,
r — 1) connecting finitely many ordered points (P, ..., P,)(P; # P;,,)in U.
Now suppose ¢ is an analytic function element which is a lifting of a connected
open set @ = U. We say ¢ can be continued along a polygonal path
Py,PyU...UP,_,P, inUif Pye O and if there is a chain ¢, @, ..., 0, in
U such that P;, P;,; € ©;, (i =0,...,r — 1), and such that there is an
analytic continuation of ¢ along O, ..., 0,.

Theorem 8.14 (Monodromy theorem). Let Q be a simply connected open set in
C, and suppose an analytic function element ( is a lifting of a connected open
set O = Q. If (O can be analytically continued along any polygonal path in Q,
then () has a unique extension to a (single-valued) function which is analytic
at each point of Q.

For a proof of Theorem 8.14, see, e.g., [Ahlfors, Chapter VI, Theorem 2].
To prove Lemma 8.13, we need only verify that in our case, the hypothesis
of Theorem 8.14 is satisfied, i.e., that for any simply connected open subset
Q of C\ 2, we can analytically continue any analytic function element along
any polygonal path in Q. The argument is easy, and may be left to the exercises
(Exercise 8.1). O

We now prove that V(p)\ny~ '(2) is chainwise connected by contradic-
tion. Suppose P and Q are two points of V(p)\ 7y~ }(2) such that there is no
analytic continuation from P to Q along any allowable chain in C\ 2.

Choose a non-self-intersecting polygonal path ® in C connecting the
finitely many points of 2, and the infinite point of P!(C) = Cy U {0}, as
suggested by Figure 20. We can obviously choose ® so it does not go
through ny(P) or ny(Q). The “slit sphere” P}(C)\® is then topologically
an open disk of C, and is therefore simply connected. Now each point of C
above any point of C\ @ is contained in an analytic function element, and by
Lemma 8.13 each such function element extends to an analytic function on
C\®. Since there are n points of C above each point of C\®, there are just n
such functions f; on C\®. Call their graphs F, . . ., F,. Suppose, to be specific,
that Pe F;and Q€ F,.

Now let P and P’ be two points of C lying over C\ @, and suppose that we
can analytically continue from P to P’ along some allowable chain (¢/,.. .., 0,)
in C\@. Choose open sets such that ¢y, 0,,, =« C\®,Pe, < ¢, and
Pe0,,, o0, Since C\® is simply connected, it is allowable by Lemma
8.13. Hence its subsets O, ¢, , , are also allowable, and therefore (C\®, O,
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04...,0,,0,,,, C\®) is an allowable chain. Thus we may assume without
loss of generality that any such analytic continuation in C\ & from a point
P € C to any other point P’ € C, where ny(P) and ny(P’) € C\®, is the lifting of
some allowable chain from C\® to C\®. If Pe F; and P’ € F;, then this same
chain also defines a continuation from any point in F; to any point in F ;. Now
consider any F,. This chain also lifts to an analytic continuation from F,
to some one of F,...,F,—that is, it defines a mapping p from the set
{Fy,..., F,} into itself. Clearly if this chain defines a continuation from F;
to F;, then the “reverse chain” (C\®, 0, ,,, 0,,...,0,, Oy, C\®) defines a
continuation from F; to F;. Hence p has an inverse and is therefore 1:1 and
onto—that is, p is a permutation. The set of all allowable chains in C\ 2
from C\® to C\® then defines a set of permutations (actually a group of
permutations, as the reader may check for himself).

Let us consider again the points P and Q; we are assuming they are not
connectible by an allowable chain. If P € F| and Q € F,, then no point of F,
can be so analytically continued to any point of F,; hence the permutations
permute F together with possibly some other elements of {F, F,,...,F,},
say {F,...,F,}, to form a closed cycle. The function F, is not in this cycle
(but is of course permuted within its own disjoint cycle).

We can now get a contradiction as follows: Let ¢ be any polynomial
in C[X, Y] which vanishes on all of F,, ..., F,,, m < n. Then the resultant
polynomial Z(p, ¢) € C[X] is zero at each point of C\®, so must itself be
the zero polynomial. Hence p and ¢ have a common (nonconstant) factor
(Theorem 4.4). But p is irreducible, so ¢ must have p as a factor. Hence
¢ is of degree =n in Y. We shall get our contradiction by constructing such a ¢
of degree less than n in Y.

For this, first consider the (C-valued) function

Y -/f).. (Y =7 (m<n),

defined on (Cx\®) x Cy. Its coefficients are, of course, symmetric functions
of fi,.-., fm, namely,

o(X) = 1
01(X) = —(fi(X) + ... + fu(X)),
6,(X) = filX): fo(X) + ... + fuo (X)) fu(X),

X)) = (= 1" £1(X) .. [ X).

Hence the functions g; are all analytic at each point of C\®. Let Q be any
point of ®\Z. There are then m distinct points of F,,..., F,, above Q (the
bar means topological closure in Cyy), and m analytic function elements
through these m points. Obviously the symmetric functions of these function
elements agree with the o; near Q. In this way the functions s; may be ex-
tended to functions analytic on C\2. (We still denote the extension of
g; bya;)
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But g; even extends analytically to all of C. First note that if we analytically
continue any o; from P € C\ 2 back to P along an allowable chain in C\ &,
we must arrive at the same value for ¢;. For the worst that can happen to the
points above P of the F;’s under such a continuation, is that they are permuted
among themselves; each symmetric function o(P) of these values is left
unchanged by any such permutation. Hence each o; is single valued and
analytic in C\%. Now we may apply the Riemann extension theorem
(Theorem 4.12), for since p(X, Y) is monic in Y, the n zeros of p near any P € 9
are all bounded, so the same is true of the functions ;. Hence they are
analytic at each P € &, and therefore single valued and analytic in all of C.

All that is left to check is that each 6(X) is actually a polynomial. For this,
write

o(X) = Z c,-ij. 27)

Set X = 1/X". Then for X’ small but nonzero,
1 1

[— )= . 28

a,<X,) %:c., X'y (28)

represents o; at points close to X = P, = PY(C)\Cy. Now the zero-set of

1 1
Y" + a1<?>Y"“1 + ...+ an<?> =0 (29)

for small X' # 0 gives that part of V(p) near the line PC)\Cyy. Let
max(deg(a;)) = M. Multiplying each side of the equation in (29) by (X')M"
gives

X™MYY + by(XH)XMY)Y ' + ...+ b(X) =0,

where each b; is a polynomial in X". Since this is a monic polynomial in the
variable X'MY, from Theorem 4.13 the solutions about (X’ = 0, X'MY = 0)
are given by finitely many fractional-power series

(X"MY); = a fractional-power series in X'.

Then each Y; is a fractional-power series with at most finitely many negative-
power terms. Hence any symmetric function o;, being a sum of products of
the functions Y, likewise has only finite many negative-power terms. Hence
all but finitely many coefficients c;; in (28) are zero—that is, the expansion in
(27) is finite. Therefore each 6 (X) is in C[ X ], and we have found a polynomial

HX,Y)=Y"+ o,(X)Y" ' + ... + a(X)

vanishing on F, u ... U F,, with degy¢ = m < n. We have thus obtained
the promised contradiction; hence Theorems 8.4 and 8.5 are proved. d
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9: Algebraic curves are orientable

EXERCISES
8.1 Prove Lemma 8.13.

8.2 Although we have shown that any irreducible curve in P*(C) is connected, it is
still conceivable that, for instance, the one-point union of two topological spheres
is the underlying space of an irreducible curve, so that the irreducible curve would
in this sense split up. Prove this can never happen by showing that the underlying
space of each irreducible component of a curve C < P*(C)is the topological closure
of a connected component of C\ S, where S is the set of those points of C which are
not smooth.

9 Algebraic curves are orientable

We stated in Theorem 2.7 of Chapter 1 that any curve in P%(C) is obtainable
from a compact connected orientable real 2-manifold by identifying finitely
many points to finitely many points. We will at last have a proof of this after
considering orientability, which we do in this section.

First, what is an orientable 2-manifold? Intuitively, it is a 2-manifold on
which one can specify in a consistent way a direction of spinning in the
manifold at each of its points, much as suggested by Figure 21 the division

Figure 21

of the manifold into parallelograms (triangles can be used just as well) may be
made as fine as desired. If a 2-manifold is orientable, it has two possible
orientations, which we may call positive and negative.

Not all 2-manifolds are orientable; one example is the Mobius strip
(without boundary points), a model being obtained by taking a long rec-
tangular strip of paper and pasting its ends together after giving one end a
180° twist. This is indicated in Figure 22. Note that if one starts from the
point P with a given orientation and travels once along the dotted line, one
arrives at P with the opposite orientation. Intuitively, we see one cannot make
the orientations at the various points fit together in a compatible way.
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I1: Plane curves

Figure 22

We can, however, orient R? in our intuitive sense. We can arrive at a
precise definition of orientation for R? very easily: If {v,, v,} is a basis of
R2, we can order this basis in two different ways, as the ordered pair (v;, v,)
and as (v,, vy). Each ordering specifies an orientation at the origin; for
(vq, v7) this is done as follows (the case of (v, vy) is treated similarly): Within
R?, we can rotate (or spin) the first vector v, into the second one v, in less than
180° in exactly one of two ways—counterclockwise or clockwise; if counter-
clockwise we say R? together with (v,, v,) is positively oriented, otherwise
negatively oriented. By parallel translation of the basis vectors there is
induced an orientation at each point of R?. Thus for R? it suffices to work
only at the origin. As an example, if in R? = Ryy, v, =(1,0), v, =
(ay, az) (a, # 0), then (v, v,) defines a positive orientation if a, > 0, and a
negative one if a, < 0. One can of course associate to this basis the matrix

1 0
a a; ’
1 O
det( )
a, a;

is positive or negative according to whether the orientation is positive or
negative. Furthermore any basis can be rotated so that one vector lies
along Ry, this rotation being given by a proper orthogonal matrix

cos sinf
—sin@ cosf)
Since this has determinant 1, rotating any ordered basis leaves the associated

determinant unchanged. The above definition of orientation of R? relative
to a basis (v,, v,) can therefore be recast as follows:

Since its determinant is a,,
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9: Algebraic curves are orientable

Definition 9.1. Let (v,, v,) be an ordered basis of R?, where v, = (a;4, a;5),
v, = (azy, a3;), and A = (a;;). Then (v,, v,) defines a positive orientation
on R? if det A is positive, and a negative orientation if det 4 is negative.’

Now evidently any nonsingular linear transformation T of an oriented
R? induces an orientation (Tv,, Tv,) on its image space. If T maps R? into
itself, the new orientation may well be different. For instance if Ry, is flipped
about its X-axis by T :(x, y) — (x, —y), then the canonical basis v; = (1, 0),
v, = (0, 1) is mapped into T(v;) = (1, 0), T(v,) = (0, —1);(T(v,), T(v,)) now
defines the opposite orientation on Ry,. If B is any nonsingular matrix
representing such a linear automorphism, then the new basis is given by AB,
and the sign of det AB = det A - det B is preserved or reversed according to
whether det B is positive or negative.

We can easily extend these ideas to smooth manifolds. Let U, U’ be open
neighborhoods of an arbitrary point (0, 0) € Ry, x,,and suppose ¢:U — U’isa
smooth map (Definition 3.1) given by real-valued functions X; = ¢(X,, X 5),
where ¢; is smooth for i = 1, 2, and where ¢(0, 0) = 0. For U sufficiently
small, this map is well approximated by the linear map

01 092
0X, 0X,
(X1, X3) = (X, X, 06, 06, = (X1, X,)J 40, 0).

aXZ aXZ (X1.X2)=(0.0)

We now make the

Definition 9.2. Let U, U’ be open sets in Ry,y, = Ry. A smooth map ¢ =
(¢1, ¢2):U — U is orientation preserving at (x) = (x,, x,) € U if

0
det<an>X=Jc = det J4(x) > 0;
¢ is orientation reversing at x if det J4(x) < 0. The map ¢:U — U is
orientation preserving if it is orientation preserving at each point of U
(that is, if det J 4(x) > O for each x € U).

We can now give the following

Definition 9.3. A smooth real 2-manifold M is a real 2-manifold together with
an open cover {U,} of M by open neighborhoods U,, such that inter-
secting neighborhoods U, attach to each other smoothly —that is, there

! We can in an analogous way define an orientation on any R". To any ordering of the vectors
in a basis {v;} = {(a;1, .., a;)} of R”, one may associate det A = det(a;;) # 0. Then the ordered
basis orients R" positively if det 4 > 0, and negatively otherwise. Note that switching two
vectors in any ordering of the basis switches two rows of 4, thus changing the sign of the deter-
minant and so also the orientation of R".
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II: Plane curves

are homeomorphisms ¢, from open sets of R*> to U, such that each
homeomorphism ¢;~ ! o @,:, (U, N Ug) = ¢~ (U, N Uy) is smooth.
The manifold M is orientable if each such ¢;~! o ¢, is orientation pre-
serving—that is, if

det(J4,-: o4,(x)) > 0 for each x € ¢,~ (U, n Up).

Remark 9.4. This definition generalizes in the obvious way to real n-mani-
folds (that is, Hausdorff spaces in which each point has an open neighborhood
homeomorphic to an open ball in R"). Also, the hypothesis of smoothness
allows us the convenience of an “analysis-type” definition of orientability;
this will be useful, as we see in the proof of Lemma 9.5. In a certain sense
this definition is like specifying an orientation on “infinitely small” paral-
lelograms or triangles of M. The reader familiar with combinatorial topology
will recognize that if M is any (not necessarily smooth) topological 2-
manifold, one can more generally define orientability using triangles of
finite size (or n-simplices in the case of topological n-manifolds).

Lemma 9.5. Let C = P?(C), and let {P;} be the(finite) set of singular points
of C. Then C\{P;} is an orientable real 2-manifold.

Corollary 9.6. If C = P*(C) is nonsingular, it is orientable.

PRrROOF OF LEMMA 9.5. By Theorem 3.6, for each P € C\{P;}, the part U(P)
of C within a small C2-neighborhood of P, forms the graph of a function fp
analytic in U(P). The set of U(P) where pe C\{P;}, covers C\{P,;} and
will serve as the open cover of Definition 9.3. If the domain of f is an open set
of, say R? = Cy, then the functions ¢» mapping a neighborhood of R? to
U(P) are defined by

p(x) = (x, f(x))  (x = (x1, x3) € Cy). (30)
Now let P be a fixed point of C\{P;}, and let U(Q) and U(Q’) be any two

of the above neighborhoods which contain P (Q, Q' € C\{P;}). We want to
show that

bo " o dgide {UQ) N UQ)) — do~ '(UQ) N UWQ)

is orientation-preserving. Any point in U(Q) » U(Q’) has two sets of real
coordinates—one relative to the system about Q (say (X, X)) transferred
from a neighborhood of Cy = Ry, x, by the homeomorphism ¢4; and the
other system relative to the coordinates about Q' (say (X, X3) induced by
¢¢ - Then, from (30) we see that ¢~ ° ¢o becomes a map from an open
setin Cy = Ry, x,toonein Cy. = Ry,x,. We are to show this map is orienta-
tion preserving, that is, writing

Do o Po(X) = ¢(X 4, X,) = ¢1(X 4, X,) + id(X 4, X3)

(where ¢, and ¢, are real valued), we want to show det J = det(d¢;/0X )) is
positive at each point of ¢~ (U(Q) n U(Q'). We first show that ¢ is analytic.
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10: The genus formula for nonsingular curves

Figure 23

For this, let (X, Y) be coordinates in C? about Q with respect to which
U(Q) is the graph of an analytic function Y = f5(X); similarly, let (X', Y') be
coordinates about Q' with respect to which U(Q’) is the graph of an analytic
function Y’ = f,(X’). Now the projection ny. along Y’ to Cy. is analytic;
since Py ' e g =My 0 Pg, P = P "' o Py is analyticin ¢y~ (U(Q) N U(Q)).
Similarly, ¢~ ! is analytic in ¢o.~ (U(Q) N U(Q")). Now det(d¢;/0X ) is non-
zero at each point of ¢, (U(Q) n U(Q")), since ¢ is invertible there. By the
proof of Lemma 3.11, this determinant is just |d¢/dX |2, so it is positive. We
have therefore established Lemma 9.5. d

Now let us turn to the whole topological space C. Suppose P is a topo-
logically singular point—that is, suppose there is some neighborhood U(P)
about P such that U(P) n C is the one-point union of at least two disks.
Then U(P) n (C\{P}) consists of the union of a finite number of punctured
disks, A\ P. To each such punctured disk let us add a new point Q; and let
a typical small neighborhood about Q; consist of Q; together with A\P
intersected with a small open set (in P?(C)) containing P. This in effect
“separates” the one-point union of disks into disjoint disks; this new
topological space is now a manifold M. We have shown this manifold is
orientable except possibly at finitely many points {Q;, Q5. ...}. But we can
extend an orientation of M\ {Q,, Q,,...} to all of M in a way suggested by
Figure 23, which shows a neighborhood of Q;. Since C is obtained from M by
identifying finitely many points to finitely many points, we see that C is
obtained from a compact connected orientable 2-manifold by identifying
finitely many points to finitely many points.

10 The genus formula for nonsingular curves

We have seen that topologically, any irreducible curve C = P?(C) may be
obtained from a compact connected orientable 2-manifold by identifying
finitely many points to finitely many points. If C is in addition nonsingular
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in the sense of Definition 7.9, then it is just a compact connected orientable
2-manifold. Now there is a basic classification theorem for such manifolds.
It says that any such manifold is a sphere with a finite number g of “handles,”
g being the genus of the manifold, and that any two such surfaces are homeo-
morphic iff they have the same genus. For a proof of this classification
theorem, see, for instance [Massey, Chapter I] or [Cairns, Chapter 2].

Now suppose that C = P*(C) is nonsingular, defined by the polynomial
p(X,Y) c C[X, Y] or by its homogenization H,(p) = ¢(X. Y, Z) (p, g, of
degree n). Certainly the topology of C is determined once p or q is specified.
It is therefore reasonable to ask if there is any way of finding the genus g
directly from p or ¢, without recourse to a careful geometric investigation of
the curve. There indeed is—it is given directly by a “genus formula™; the
main object of this section is to prove this formula. Even at this stage in our
study of algebraic geometry, we can give a fairly complete proof of this
formula. In this section we prove this formula, except that the treatment
of some purely topological facts (proved in many standard texts) is more
informal here, and a few details at the end of the proof will be left to
exercises later in the book (Exercises 6.9 and 7.4 of Chapter 1V), when
establishing them will be both easy and natural.

Before stating the formula, first note that if C = P?(C) is nonsingular, then
C can be defined by an irreducible homogeneous polynomial in C[ X, Y, Z]
(Exercise 7.3).

Theorem 10.1 (Genus formula). Let C = P%(C) be a nonsingular projective
curve defined by the irreducible polynomial p(X, Y). If deg p = n, then the
genus g of C is

(=12
9=""53

The basic outline of the proof is this:

First, we note that any compact connected orientable 2-manifold M may
be looked at, topologically, as a polyhedron having g handles.

Second, we recall the basic fact that one can compute g from M looked at
as any polyhedron having V vertices, E edges, and F faces. (Specifically,

_|_V-E+F
g = 2 s

sometimes called Euler’s formula.)

Finally, we look at C as a near n-sheeted covering of the sphere P!(C) =
Cy U {o0}; we in turn regard P!C) as a polyhedron, its set of vertices con-
taining the set of discriminant points of the covering. Then above each
face, edge and vertex of P!(C) lie n faces, n edges, and n vertices, except that
over any discriminant point there are fewer than n vertices. Using some facts
about discriminants, we will find out just how many fewer, and from this
information we will be able to compute g grom Euler’s formula.
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10: The genus formula for nonsingular curves

The first two parts above are purely topological in nature, and are
included in a number of standard texts on topology. We therefore consider
these two points more informally.

To begin with the first part of the proof, a (topological triangulated)
polyhedron will mean, for us, a compact connected orientable real 2-manifold
M together with a covering of M by finitely many closed subsets {S;, ..., S,},
and a corresponding set of homeomorphisms S; <> T;, where each T; is a
triangle in R? (that is, a compact subset of R? whose boundary consists
of three line segments). The subsets of S; homeomorphic to the interiors of the
triangles T; are called the faces of the polyhedron; the subsets of S; homeo-
morphic to the edges (=open line segments) of T;, and to the vertices of T;,
are still called the edges and vertices of the polyhedron, respectively. Finally,
we require that any two different S; and S; be disjoint, or have exactly one
vertex in common, or have exactly one edge (and its two vertices) in common.
It turns out that the set consisting of all edges and vertices of a polyhedron is
connected.

We now give an outline of the proof of the second topological assertion,
Euler’s formula.

Lemma 10.2. Let M be any polyhedron in the above sense, having V vertices,
E edges, and F faces. Suppose that M has genus g. Then

V—-E+F=2-2
(Or equivalently,g = 1 — 3)(V — E + F))

PROOF. We first consider the case g = 0. Therefore, assume M is a sphere.
Let e be any edge of M; e belongs to some closed polygonal curve C con-
sisting of edges and vertices of M. The union of e and the two faces on either
side of e is a single connected open set, which we continue to call a face;
the subset e is no longer an edge, or, loosely, e has been “removed.” In this
operation, E and F have each decreased by 1, and V — E + F remains
unchanged. Also, the system of edges and vertices is still connected, for one
can travel from one vertex of e to the other by going around the remaining
edges and vertices of C.

Now remove in the same way another edge ¢’ belonging to a closed
polygonal curve C’ selected from the edges and vertices remaining after e
was removed; as before, the new ¥V — E + F remains unchanged and the
system of edges and vertices is still connected. Continue this process until
no remaining edge is an edge of a closed polygonal curve. At this stage, (a) the
system of edges and vertices is connected; (b) there must be some vertex
which is the vertex of only one edge, since if every vertex were the vertex of at
least two edges, one could continue traveling, eventually traversing a closed
path. Remove this vertex and edge; V — E + F remains unchanged. This
process yields no new closed polygonal curves, and the system of edges and
vertices still remains connected. Continue this process until there are no
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II: Plane curves

Figure 24

more edges; we are left with one vertex and obviously only one face, whence
V — E + F = 2. Thus Lemma 10.2 is proved wheng = 0.

To prove it for any g, note that any surface of our type of genus g may be
transformed to a polyhedral sphere with polyhedral handles. Figure 24
shows an example for g = 1. In transforming the surface to such a poly-
hedron, it may be necessary to add some extra vertices, edges, and faces,
but it is easy to check that this can be done leaving V' — E + F unchanged.
It may also be assumed that the handles and sphere are joined along edges
of the polyhedron. Now cut each handle at one of the two places where it
joins the sphere (see Figure 25). If there are g handles, then the new figure is

Figure 25
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homeomorphic to a spherical polyhedron with 2g faces missing. These
missing faces then make our formula read

V—E+F=2-2. O

With these topological preliminaries taken care of, we now turn to the
third part of our argument.
We will use the following definition and lemma.

Definition 10.3. Let f be a function complex analyticat(a,,...,a,) € Cx,  x,.
Then f has order s in X; at(a,,...,a,) iff(ay,....a;_1, Xisaiv1»- .- a,) has
order s at a;.

In Cy, .. x,, any product A; x ... x A, of disks A; = Cy, is called a
polydisk.

Lemma 104. Let f :Cx,  x, — C be complex analytic at a = (ay, ..., a,),
and suppose it has order s in X; at a. Then there is an open polydisk about
ain C", Al@) = A=A x...x A, (A;, an open disk in Cy, centered at
a;, and f analytic in A) such that for each point

’ ! !’ ’
@)y oo s @iy iy ) EAL X ... X Aj_y X Ajyy X ..o XA,

flay, ..., ai—1, Xi, @iy, - ., ay): Cx, = C has exactly s zeros in A;, these
zeros being counted with multiplicity.

Proor. The proof exactly parallels part of the proof of the implicit function
theorem, Theorem 3.6: The hypothesis that f'has order s in X at a just says
that f(a%,...,ai-1, X, @iy, --.,ay) has a as a zero of order s. Hence if A; is
sufficiently small with boundary 0A;, then by the argument principle
(Theorem 3.8.2) we have

L in(alla---,a;—la Xiaa:'+1,-~-,a;|)
27[i 0A; f(a,lv'~5a;—19Xi,a:'+1’-'-sa:r)

dXi=S

Now f and fy, are continuous in X;; since f(a’,...,a;—1, X, @iy 1,...,a) is
bounded away from zero on the compact set dA;, the values on JA; of the
above integrand vary continuously in X;. Hence as we vary each a; within
sufficiently small disks A;, the integral still has value nearly s. But this integral
is always an integer, so it is exactly s—i.e., the argument principle says that for
A, sufficiently small, there are exactly s zeros of f'in A above any point of a
sufficiently small neighborhood A; X ... x A;_;{ X Ajyy X ... X A,. O

We may now indicate how the proof of the genus formula can be carried
out. First, we look at C as the near n-cover {C, Cx U {20}, ny}. Next, look at
PYC) = Cy v {0} as a polyhedron. We may assume that all the points
where 9y(p) vanishes are included in the finite set of vertices of the poly-
hedron. (If {v,, v,,...} is the set of discriminant points in a given face, we
may draw edges, starting from v,, to the vertices of the face, these edges not
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touching v,, v5... ; we may continue this way until all discriminant points
are made vertices of a polyhedron.) For any face f and any edge e of P'(C),
ny " '(f) and =y~ '(e) consist of n faces and edges, respectively. And for a
vertex v of P*(C), =~ !(v) consists of n vertices if Zy(p) does not vanish at v, and
fewer than n vertices if it does vanish at v. If the number of distinct points
of C above v is n — m, it is natural to say that we have “lost” m points.
If we knew how many were lost in this way, we could compute the genus of
C as follows: If ¥V, E, F are the number of vertices, edges and faces of P'(C),
then V — E + F = 2. Also, the number of edges and faces of C are nE and
nF. If we can show that the number of vertices of C is nV — n(n — 1)—i.e.,
that n(n — 1) vertices were lost, then the genus of C would be

_(nV—n(n—l))—nE+nF
2

2n—mh -1 _ (n—1n-2)
2 B 2 ’

which would establish Theorem 10.1.

Now in Exercises 6.9 and 7.4 of Chapter IV, we will show that coordinates
in C? can be selected so that relative to these coordinates, the order with respect
to Y of P at any point P € C, is either one or two. We see from Lemma 10.4
that we lose one point in our covering at precisely those points P e C
where the order is two. It follows directly from Definition 10.3 that the points
P of order two are just the intersection points of V(p) with V(py). Since p
and py have (total) degree n and n — 1, respectively, by Bézout’s Theorem
(Theorem IV, 7.1), they intersect in n(n — 1) points, counting multiplicity.
But an easy argument (Exercise 6.1 of Chapter IV) will show that each such
intersection is of multiplicity one; hence the total number of points lost in our
covering is exactly n(n — 1), thus proving Theorem 10.1. ]

g=1

=1
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CHAPTER III

Commutative ring theory
and algebraic geometry

1 Introduction

In Chapter II, all our results were proved for plane algebraic curves. It is
natural to try to extend these results to arbitrary complex-algebraic varieties
in affine or projective n-space. What do arbitrary varieties look like in the
neighborhood of a point ? How does one prove a general dimension theorem ?
What can be said about the connectedness or orientability of arbitrary
varieties? Can we get topological invariants (like the genus) directly from a
defining set of polynomials instead of analyzing each variety separately?

In answering these questions for curves, we made constant use of p(X, Y)
(or the homogeneous polynomial g(X, Y, Z)) defining the curve. We factored
p and g into irreducibles; we used facts like

Vipy= V(p,"-...-p™) = V(p,")Y v ... U V(p™)
='Vp)u...u V() = V(py-... o)

so that p could be assumed to have no repeated factors; we used the degree
of a polynomial, the discriminant, the argument principle, and the implicit
function theorem for p, to name just a few of our tools.

Now in any attempt to generalize our plane-curve results to arbitrary
varieties in P*(C), we immediately run into a difficulty: An arbitrary variety
in P%C) cannot in general be defined by only one polynomial. In fact it
can be easily shown, using the implicit mapping theorem (Theorem 3.5 of
Chapter IT), that one (nonconstant) polynomial p(X 4, ..., X,) always defines
a subset of complex codimension one in C", or in P*(C). The reader may well
ask: “What’s so bad about not being able to define a variety by just one
polynomial?” Let us see what happens when we try to prove something like
“Any irreducible variety is connected.” In Chapter II, we took for an irreduc-
ible variety a curve V(p), where p is nonconstant and irreducible, and found
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it to be connected. Suppose a variety V requires at least s > 2 polynomials
to define it, say V = V(p4, ..., p,). We are now faced with deciding whether
the collection of polynomials {p,, ..., p,} is in some sense irreducible. The
reader may reply: “Why not say the collection is irreducible if each member
p; is irreducible?” Let us try this. For example, let p,(X,Y) = X — 1 and
po(X, Y)=Y? — X; both p, and p, are irreducible. Now consider
V = V(p;, p,) = C2. This variety cannot be defined by just one polynomial,
for it consists of two distinct points (1, 1) and (1, —1). It is thus the union
of two point-varieties V(X — 1, Y — 1) U V(X — 1, Y + 1), and is therefore
not connected. Geometrically, there is certainly nothing irreducible about
V(p,, p,). Obviously, one meets even greater difficulties in trying to generalize
the notion of factorization to a collection of polynomials. Other examples
show that defining the degree, or the discriminant of a collection of poly-
nomials, cannot be handled by looking individually at each polynomial.

What is needed is a whole new approach, a new language and new
machinery to handle what is algebraically a quite different type of question
from that of the “one-polynomial” theory. That is the object of this chapter—
to introduce this new approach.

To begin, let us consider the specific problem of defining a circle in 3-space.
For ease of illustration, let us look at the case of a real circle in the R y-plane
of Ryyz. This circle C might be looked at as the intersection of the plane
Ryy (=V(Z2)) and a cylinder through C-—algebraically as, say,
V(Z, X? + Y? — 1). But C could just as well be defined by the plane and
a sphere V(Z, X*+ Y? +Z?>—1), or by a cylinder and sphere,
V(X2 + Y2 —1, X%+ Y2+ Z% — 1). One could also intersect ellipsoids,
paraboloids, hyperboloids, and so on, to get C.

There are many pairs which have equal claim to being the “most natural”
pair of defining equations. A more symmetric approach is simply to consider
the collection of all the polynomials whose zero-set contains C! That is,
we consider this subset of R[ X, ¥, Z]:

a={pX,Y, Z)|p(a, b, ¢) = 0 for every point (a, b, ¢) € C}.

It is an all-important fact that a is an ideal in R[ X, Y, Z]. (Recall that a
subset a of a commutative ring R is an ideal if it is closed under subtraction
and has the “absorption property”—that is, r; € a and r, € R implies
rir, € a,). For if p e a and g € q, then p(a, b, ¢) = g(a, b, ¢) = 0 implies that
(p — 9)(a, b, ¢c) = pla, b, ¢) — gla, b, ¢) = O—that is, p — g € a. Similarly, for
any polynomial re R[X, Y, Z], (p-r)(a, b, ¢)=pla, b, ¢)-r(a, b, ¢) =
0-r(a, b, c) = 0—that is, p - r € a. Hence a is an ideal. Of course conversely,
any ideal of R[X, Y, Z], being a set of polynomials, also defines a variety in
Ryyz- We have thus associated an ideal to an algebraic variety, and an
algebraic variety to an ideal.

But this can be extended much further. For instance, we will see that
“irreducible polynomial” generalizes to “prime ideal,” and that factoriza-
tion of a polynomial generalizes to a “decomposition of an ideal.” One can
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also generalize to the ideal-theoretic setting the important assumption that
a polynomial has no repeated factors (i.e., that the ideal is its own “radical,”
as in Definition 1.1).

We now make these ideas a little more precise. First, essentially everything
we did in Chapters I and II involved the polynomial ring in one, two, or
three variables over R or C. However, most of the generalizations we consider
here make sense in the commutative ring k[ X, ..., X,] = k[X] (k any
field), so we shall state them at this level. We now look at translations
into ideal theory of a few concepts from the “one-polynomial” theory of
Chapter 11.

Let p(Xy, ..., X,) = p(X) be any polynomial of k[X]. Then the set
(p) = {pq|q € k[X]} = k[X] is an ideal of k[X], the principal ideal of
k[ X] generated by p.

Thus to each polynomial p corresponds the ideal (p). More generally, if
{p.} is any collection of polynomials in k[X], the set ({p,}) of all finite
sums {rp; + ... + ryp|ri€ k[X], p; € {p,}} is an ideal in k[X7], the ideal
generated by {p,}. Hence to each collection of polynomials we associate
an ideal.

How is the product p - g of two polynomials p, g € k[ X] related to their
ideals (p) and (¢q)? We may define the product of principal ideals by

() - (@ = (pg).

(This definition is independent of the choice of generators of (p) and of (g).)
More generally, if a and b are ideals of any commutative ring R, we may
define their product by a-b = {all finite sums of products a - b, where
a € a, b eb}. It is easy to check that a - b is an ideal.

We note that if p, g € k[ X] have no factors in common, then

() (@ = (p) N (g)

Proor. “ <=7 follows directly from the definitions of ideal and product
ideal. For “ > ”, note that r € (p) N (q) implies both p and ¢ divide r. Now
k[X] is a unique factorization domain, so since p and q are relatively prime,
p - ¢ must be a factor of r. O

‘e

Next, suppose p € k[ X] is irreducible. Then (p) is a prime ideal in the
usual sense. Thus if r, ¢ (p) and r, ¢ (p), then ry - r, ¢ (p). For otherwise,
ry - r, = pr3,meaning that either r, orr, has p as a factor, which is impossible.

Finally, let us look at the assumption we made so often in Chapter II,
that p has no repeated nonconstant factors. Let its decomposition into
irreducibles be

p=p"-...-p;  then
p*=pi--oDs

is the corresponding polynomial having no repeated factors. Ideal-theoreti-
cally, how do we go from (p) to (p*)? Certainly (p) < (p*). Now let a be any
element of (p*). It is clear that a™ € (p) for some sufficiently high power a™ of
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II1: Commutative ring theory and algebraic geometry

a. Conversely, suppose a ¢ (p*). Then at least one polynomial p; is not a
factor of a, hence no power of a is divisible by p,—that is, a™ ¢ (p), all m.
Thus (p*) consists precisely of those elements of k[ X] some power of which
is in (p). A generalization of this idea is

Definition 1.1. For any ideal a in a commutative ring R, the radical of a

(written \/E) is

\/E = {a € R|a™ € q, for some positive integer m}.

It is easily checked that \/a is an ideal.

As we develop the theory we shall see that these translations into ideal
theory turn out to be the “correct” ones. Later on we consider translations
of other concepts. For instance, the fundamental theorem of algebra may
be generalized to the so-called “Hilbert zero theorem,” or “ Nullstellensatz”
(Theorem 5.1). And in working with higher dimensional varieties, it is
important to be able to deal satisfactorily with subvarieties and projections
of these subvarieties. We never brought this facet out explicitly for the
algebraic curves of Chapter II, because the only proper subvarieties of
irreducible algebraic curves are collections of finitely many points, and these
are essentially of a trivial nature.

Our new language, then, will be that of commutative ring and ideal theory.
This whole area is a large one, and we will not be able to generalize to ideal
theory all the ideas used in Chapter II. However, we will make a start.

2 Some basic lattice-theoretic properties of
varieties and ideals

In this section we establish some lattice-theoretic properties of varicties
and ideals. We begin with a brief review of a few basic notions from lattice
theory. We will ultimately use the language of lattices to put our “dictionary”
into a quite compact form (cf. Diagrams 3.3 and 3.4). Also, just as point-set
topology helps to unify various notions of convergence, and group theory
unifies various different geometries, in algebraic geometry lattice theory
unifies various “dictionaries” (for instance at the “local” and “analytic”
levels). We begin with partially ordered sets.

Definition 2.1. A partially ordered set or p.o. set (T, <) is a set T together
with a binary relation < (called the partial order) so that any three elements
a, b, c of T satisfy: a < a (identity); if a < b and b < a, then a = b (anti-
symmetry; if a < b and b < ¢, then a < c (transitivity). (If, in addition,
a < bor b < afor any two elements of T, then T is totally ordered (t.0.).)
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A sub-partially ordered set (U, <) of (T, <) is any subset U of T with the
partial order induced from <. Finally, if (T, <) and (T’, <’) are any two
p.o. sets, then a p.o. homomorphism from (7, <) to (7", <') is a mapping ¢
from T to T” such that if x < y (x, y € T), then ¢(x) <’ ¢(y). The mapping
¢ is a p.o. isomorphism if it is 1: 1-onto, and x < y iff P(x) <’ P(y).

A particular kind of homomorphism of a p.o. set into itself (which will be
of importance to us a little later) is the closure map. A closure map on a p.o.
set (T, <) is a function a — a from T to T satisfying: For any two elements
a,bof T, we have a < @,a = a, and a < b implies @ < b. (Note that the last
condition says that a closure map is a p.o. homomorphism of T into itself.)

In a number of areas of mathematics, and in algebraic geometry at all
levels in particular, there is a general notion of “decomposition into ir-
reducibles.” For instance at the one-polynomial level, there is unique
factorization into irreducible polynomials of any p € k[ X, ..., X,], where
k is any field. (This follows from the well-known Gauss lemma.) As men-
tioned earlier, we want as much as possible to be able to manipulate the
ideals occurring in algebraic geometry like polynomials; as an example, we
would like to “decompose any ideal into irreducible ideals.” We now lead up
to a general necessary condition for this.

First, any unique factorization domain D must satisfy a “divisor con-
dition ”—that is, for any element a € D, any “strict chain”

a, >a; > a3 > ...

must be of finite length, where a; > a;, , means that a; , is a proper divisor of
a; (that is, a; = na;, , for some non-invertible element n € D). Now for poly-
nomials p, g € k[ X4, ..., X, ], p > q iff (p) & (g); then by unique factoriza-
tion, any “strict chain”

P)EP)EP)E ...

must be of finite length. This condition may be translated into a chain
condition on general ideals in a ring R—that is, every chain of ideals
a, & a, & ... (where a; = R) is of finite length. We will be able to unify
a number of decomposition theorems by generalizing this still further to
the following definition:

Definition 2.2. Let (7, <) be a p.o. set.

(2.2.1) (T, <) satisfies the ascending chain condition (a.c.c.) iff there is
no infinite strictly ascending chain of elements from T—that is, any
chain a, < a, < ... (where g; € T) must terminate after finitely many
steps; dually,

(2.2.2) (T, <) satisfies the descending chain condition (d.c.c) iff any
strictly descending chain b; > b, > ---must terminate after finitely
many steps.
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III: Commutative ring theory and algebraic geometry

The reader may easily find examples showing that the a.c.c. and d.c.c. are
independent conditions—that is, the a.c.c. may hold or not, independent of
whether the d.c.c. holds.

We now give an alternate form of the a.c.c. (and of the d.c.c.) which we will
need later on. Recall that if (T, <) is a p.o. set, and if U is a subset of T,
then an element a € U is maximal in U if no other element of U is larger than
a—that is, if for t € U, a < t implies a = t; similarly, b € U is minimal in U if
for t € U, t < b implies b = ¢. Then an easy contrapositive argument shows
that (T, <) satisfies the a.c.c. (d.c.c.) iff in each nonempty subset U of T there
is some maximal (minimal) element. (We then say (T, <) satisfies the maximal
(minimal) condition.)

We shall also use the notions of upper and lower bounds: An element
x € T is called an upper bound of two elements a, b € T provided that a < x
and b < x. Ifin addition,foranyz e T,a < zand b < zimplies x < z, then x is
called the least upper bound of ¢, b. An element y € T is a lower bound or the
greatest lower bound of g, b if analogous conditions hold with > in place of <.
We write x = Lu.b.(a, b), or x =a V b, and y = glb.(a, b), or y = a A b.
The element a V b is sometimes called the join of a and b, and a A b, the
meet of g and b.

It is clear that if there is a least upper bound of two elements, then it must
be unique, for if x and y are both L.u.b.’s of @ and b, then we obviously have
x < yand y < x; hence x = y. Similarly, the greatest lower bound must be
unique when it exists.

Definition 2.3. A lattice is a p.o. set (L, <) in which any two elements of L
have a least upper bound and a greatest lower bound. Depending on
context, lattices will be denoted by L, M, (L, <), (L, V, A),(L, <, V, A\),
etc. A sublattice (M, <) of (L, <) is a sub-p.o. set M of L, such that any
a,be M have a glb. and Lub. in M, and these coincide with the glb.
and lLu.b. of g, b in L. Finally, a mapping ¢ from lattices (L, <, A, V) to
(L', <’y A, V') is alattice homomorphism provided:

For any two elements q, b € L,
(2.3.1) ¢(a A b) = Ppla) N\ ¢d(b)
(2.3.2) ¢la V b) = P(a) V' P(b).
If in addition ¢ is 1 : 1 onto and ¢~ ! is a lattice homomorphism, then ¢ is a
lattice isomorphism and L and L’ are lattice-isomorphic, or simply iso-
morphic. A mapping { from lattices (L, <, A, V) to (L', <', A’, V) is
said to be a lattice-reversing homomorphism provided:
(2.3.3) {(a A b) = L(a) V' L(b)
(2.3.4) La V b) = La) N L(b).
If in addition { is 1: 1 onto and { ! is a lattice-reversing homomorphism,

then ( is a lattice-reversing isomorphism, and L and L’ are reverse iso-
morphic.

108



2: Some basic lattice-theoretic properties of varieties and ideals

Remark 2.4. The requirement in (2.3.1) implies that ¢ is a p.o. homo-
morphism. This follows at once from the easily-established relation a < b iff
a A b = a. Similarly, the requirement in (2.3.2) implies that ¢ is a p.o.
homomorphism, and requirements (2.3.3) and (2.3.4) each imply that { is, in
the obvious sense, a p.o.-reversing homomorphism.

ExaMPLE 2.5. The set .# of all ideals of any commutative ring forms a lattice
(#, =, N, +). We see this as follows: (#, <) is surely a p.o. set. Since the
intersection of any two ideals a,, a, is an ideal, a; N a, = g.l.b.(a;, a,). Now
Lu.b.(a;, a,) is the smallest ideal containing a, and a,; since any ideal is
closed under addition, the l.u.b. contains the set

a, +a,={a; +a,la,€a; and a,ea};

but this is already an ideal, so Lu.b.(ay, a;) = a; + a,.
There is an important way of obtaining new lattices from old ones:

Lemma 2.6. Any lattice (L, <, V., A) together with a closure map a — a
on the underlying p.o. set determines a new lattice (L', <, V', N'); L' is
a sub-p.o. set of L (but not a sublattice in general). For the elements of L',
we take the closed elements of L—that is, the elements a such that a = a.
The new Lu.b. and g.Lb. on L' are then the following: For a,be L/,

aV'b=aVb

a/N'b=aAlb.
PrROOF. V': Let ¢ be any closed upper bound of a and b. Then a V b < ¢,
therefore a V b < ¢ = ¢. But a V b is itself an upper bound of a and b, so it

is the least closed one—that is,a V'b =a V b.
AN:alNb<a, soaAb <a=a; similarlya—/\—b <b. Hence a A b <

alNb. But of course a Ab<aAb, so aAb=aAbeL —that is,
alN'b=aAlb. Il

Definition 2.7. A lattice (L, V, A) is distributive provided: For every
a,b,cel,

RIaANbBVc)=(@Ab)V(aAc)and
272)aVBAc)=@VbA@Veo.

Remark 2.8. We show in Exercise 2.7 that (2.7.1) holds iff (2.7.2) does.
Hence in checking a lattice for distributivity, it is enough to check just one
of these properties. Also note that any sublattice of a distributive lattice
is distributive. (One may say distributivity is “inherited” by sublattices.)

As indicated earlier, lattice theory allows us to state decomposition
theorems in a very general form, thus unifying the statements of a number of
other decomposition theorems in mathematics. Statements of such theorems
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in algebraic geometry are special cases of the general lattice theorems. The
proofs of the general theorems are simple; but showing that the hypotheses
are satisfied at more concrete levels may of course be much more difficuit.

Definition 2.9. An element x of a lattice L = (L, V, A) is said to be V-
irreducible if x =a V b implies x =a or x=b (a, be L); and ye L
is A-irreducible if y = ¢ A d implies y = cory =d (c,d € L).

Definition 2.10. A representation a = a, V ... V a, of an element g in a
lattice (L, V, A) is irredundant if no proper subset of {a,, ..., a,} has
join equal to a. A representation b = b; A ... A b, is irredundant if no
proper subset of {b,, ..., b,} has meet equal to b. In either case, the
representation is redundant if it is not irredundant.

Theorem 2.11 (Basic decomposition theorem for lattices). Let (L, V, A)

be a lattice.

(2.11.1) If L satisfies the a.c.c., then there exists an irredundant representa-
tion of any a € L as the meet a = a; N ... N\ a,, of N-irreducible elements
a; € L. Dually, if L satisfies the d.c.c., then any b € L is an irredundant
joinb=>b; V...V b,of V-irreducibles b; € L.

(2.11.2) If L is distributive, then if either of the above representations
exists, it is unique (up to order of the irreducibles).

A number of examples of this theorem are indicated in Exercise 2.1; two
particularly important examples for us are the lattices of ideals of those rings
occurring in algebraic geometry, and the lattice of algebraic varieties
(under U and ). Although the lattice of ideals of an arbitrary ring generally
satisfies neither chain condition (and isn’t distributive either), it will turn out
that many (but not all) of the rings arising in algebraic geometry satisfy the
a.c.c.; and, as we will see just after Definition 4.5, the “closed ideals” of many
of these rings form distributive lattices as well as do the zero-sets of their
ideals. There are thus a number of basic decomposition theorems at each
level of our dictionary—affine, projective, and local. '
We now give the

PROOF OF THE BASIC DECOMPOSITION THEOREM (THEOREM 2.11)

(2.11.1): By symmetry it suffices to prove only one of the statements in
(2.11.1). Therefore assume that L satisfies the a.c.c. If ais A -irreducible we are
done; if not we may write a = a; \ a,, where a < a,, a < a,. We may
similarly split up any reducible g; into a;; A a;,. Continuing in this way,
we get a strict sequence a; < a; < a;; < .... This process must end after
finitely many steps, otherwise L wouldn’t satisfy the a.c.c. One can make
the resulting representation into irreducibles irredundant by simply erasing
as many of the irreducible elements in the decomposition as possible,
until the representation becomes irredundant.
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(2.11.2): Again, it is enough to prove (2.11.2) for only the “A” part.
Suppose a =a; A ...a, =ay N ... \ a, are two irredundant decompo-
sitions into irreducibles. Then

azaN...Na, (i=1...m),
SO
a;=a; Vi, N...N\a).
Now use distributivity:
a;=(a; Vay)N...N(@aV ay

Therefore, since a; is A-irreducible, a; = a; V aj for some j. Hence a) < a;.
By symmetry, also a, < a}, somek,soa;, < g;. Ifq, < a;, the first decomposi-
tion would not be irredundant. Therefore a, = a;. Since aj is sandwiched
between a, and d;, a; = a;. Hence each g; equals some g;, and no two different
a; equal the same g;. by irredundancy of a; A ... A a,. Similarly, each
aj equals some a;, and no two different a/’s equal the same a;. We thus obtain
uniqueness up to order. tJ

We now begin our exploration of some lattice-theoretic properties of
varieties and ideals. First, we make the

Convention: ALL RINGS IN THIS BOOK ARE COMMUTATIVE AND
HAVE AN IDENTITY ELEMENT.

We start with this general setting: Let:

(a) S be any set;

(b) k be any field;

(c) R be any ring of k-valued functions defined on S. We assume that the
identity element of R is the function identically 1 on S.

The operations of R are pointwise--that is, for any f, g € R and any
PeS,wedefinef + gandf -g by

(S + 9)(P) = f(P) + ¢(P),
(S -9)(P) = f(P)-g(P).

Now let A be any collection of functions f'€ R; A defines a subset V(4)
of S as follows:

V(A) = {se S| f(s) = Oforall fe 4};

we call V(A) the variety defined by the collection A, we say A defines V(A),
and write A - V(A). Conversely, given any subset B of S, B defines an ideal
J(B) of R as follows:

J(B) = {f e R| f(s) = O for each s € B};
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we call J(B) the ideal defined by the subset B, we say B defines J(B), and write
B — J(B).

Throughout this book, sans-serif print (V, Jd, etc) will always connote an
operation.

One can now ask:

(a) Given A, what does V(A4) look like?
{b) Given B, what can we say about J(B)?

We shall usually take S to be C" or R", k to be C or R, and R to be a finitely
generated extension of C or R. However, much of what we do in this section
holds in the general setting.

We denote the set of all ideals of R by #(R), or by .# if reference to R is
clear, and we denote the set of all varieties V(4) < S by ¥(R) or by #". Note
that (¢, <)and(¥", <)are p.o.sets. The functions d and V are order-reversing
homomorphisms in the sense that

a, < a, implies V(a;) > V(a,), and
Vi < V, implies J(V;) 2 J(V,):

these facts follow directly from the definitions.

Do the functions J and V have other nice properties? We show now that
Jis 1:1 on 77(R), but not in general onto.

Jisl:1on?7(R):Let V, Wbetwo different varieties. We show J(V) # J(W).
Since V # W, there is a point s in one of the varieties not in the other, say
seVand s¢ W. Now W is the zero set of some set of polynomials, so it is
the zero set of J(W). Then for some f € J(W), f(s) # 0; yet for each g € J(V),
g(s) = 0. Hence J(W) # J(V).

J is not always onto #(R): For instance, taking S = C, k = C, and
R = C[X], the origin in C defines (X) in C[X]. But no subset of C maps
onto any of (X?), (X3),....

Similarly, the map V is obviously onto ¥(R); the above example shows
itisnot 1:1 on #(R).

The next lemma says that by looking at a subset of .#, we may make
both V and J 1:1-onto.

Lemma 2.12. Let a, be .#, and suppose that N(a) - b. Then a < b, and
b—- V@ —>b- V() —....

PrOOF. That a < b is obvious. This in turn implies V(a) > V(b). But from
V(a) = b, s e V(a) implies f(s) = O for each f €b; hence V(a) = V(b). Thus
V(a) = V(b), which proves the lemma. O

Of all those ideals defining V(a) above, b is clearly the unique largest;
Lemma 2.12 then tells us there is a 1: /-onto correspondence between varieties
and their largest defining ideals. The subset of # of largest defining ideals is
denoted by #(R) or by _# ;note that J sends sets to elements of ,#. We continue
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to denote the restrictions V| ¢ and J|¥ by V and J, resp. (The meaning of V
and of J will be clear from context.) These restricted functions are both
1:1-onto and are inverses of each other. One may easily verify

Lemma 2.13. J and V are both p.o.-reversing isomorphisms between (¥, <)
and ( ¢, <); furthermore d = V™1,

If Ve v and b e ¢ correspond under the above map, we say V and b
are associated.

From Example 2.5, we see that (#, =, n, +) is a lattice. It is natural to
ask if (¥”, <) also has a lattice structure, and if so, to what extent we can get
a lattice generalization of Lemma 2.13. The next lemma gives information
about this.

Lemma 2.14. For any a,, a, < R, we have
(2.14.1) V(a; n a,) = V(a; - a;) = V(a;) U V(a,),
(2.14.2) V(a, + a,) = V(a;) n V(a,).

Remark 2.15. We will not use the V(a, - a,) part of (2.14.1) right away.
but it will be important later, and it is efficient to include its proof here.

PrOOF OF (2.14.1). < : We show
V(a; N a;) = V(a;) u V(ay),
V(a; - a;) © V(a;) v V(ay).
Since a; -a, < a; N a,,
V(a; N a,) < V(a, - a,).

Now suppose s ¢ V(a,) U V(a,), ie., s¢ V(a;) and s¢ V(a,). Then there
are functions f; € a; such that fi(s) # 0, for i = 1, 2. Then f(s) - f>(s) # 0. But
fi- fo€a,-0a,,50 s¢ V(a, -a,). This proves the second of our inclusions,

V(a; - a;) = V(a;) U V(ay).
From this the first inclusion follows, because V(a; N a,) = V(a, - a,).
o : We show
V(a,) U V(a,) < V(a; N ay),
V(a,) U V(ay) = V(a; - a,).

Suppose se V(a;). Now a; D a; na, and a; D a, -a,. Thus V(a;) =
V(a;, na,) and V(a,) < V(a,-a,). Similarly, V(a,) € V(a; na,) and
V(a,) < V(a, - a,). Thus V(a;) U V(a,) = V(a; N a,), and V(a;) u V(a,) =
V(a, - a,).
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PROOF OF (2.14.2)
c: Let se V(a; + a,). Then fi(s) + fi(s) = O for any f; € a;. Choosing
f> = 0 shows s € V(a,); choosing f; = 0 shows s € V(a,), hence

s€ V(a;) n V(ay).

o: Let s e V(a,) n V(ay). Then fy(s) = O for any f; € a;. Hence f;(s) +
fo(s) = 0,ie,s € V(a; + a,). Thus Lemma 2.14 is proved. O

Lemma 2.14 implies that (¥v", <, N, V) is a lattice, for it shows that
V(a;) U V(a,) and V(a,;) n V(a,) are the varieties defined by a; n a, and
a, + a, respectively; hence (¥, <) is closed under n and ©. Since < is
our p.o., the Lub. ¥} V V, of V; and V, by definition contains at least
Vi u V,; but since V; U V, is already in ¥7, V; V V, is exactly V; U V,.
Similarly, Vi AV, =V, n V.

Lemma 2.14 together with the fact that V is a p.o.-reversing homo-
morphism from (£, <) to (¥, =) implies

Lemma 2.16. V is a lattice-reversing homomorphism from (£, <, N, +) fo
(¥, =, 0, V).

Since V is not in general 1: 1, it is natural to ask if we can try the same
trick as in Lemma 2.13, using the subset # of .# to get a 1: 1-onto lattice-
reversing map between _# and ¥". We can do this, but not directly, since £ is
not in general a sublattice of (£, <, N, +).

ExampLE 2.17. Let S = R, k = R, and R = R[X, Y]. We show that there
are ideals a;, a, in ¢ such that a; + a, ¢ #. Let a; = (Y), a, = (Y — X?).
Now Y and Y — X? are both irreducible in R[ X, Y]; this implies that (Y)
and (Y — X?) are the largest defining ideals of their varieties, for if a poly-
nomial p vanishing on all of, say, V(Y) were not in (Y), then p would be
relatively prime to Y. Then Zy(p, Y) # 0, and one sees that V(p) n V(Y)
would consist of only finitely many points. Hence p could not vanish on all of
V(Y). Therefore (Y) € #. Likewise (Y — X?) e #.

We now show that (Y) + (Y — X?) ¢ #. First, V(Y) + (Y — X?)) =
V((Y)) n V(Y — X?)) = {(0, 0)} = R*. Now a typical element of (Y) +
(Y + X?)is of the form q(X, Y)Y + q,(X, Y)(Y — X?); it is easily checked
that the polynomial X is not of this form. Yet V(X) surely contains (0, 0).
Hence the ideal ((Y)+ (Y — X?)) + (X) which is strictly larger than
(Y) + (Y — X?), also defines {(0, 0)}. (Incidentally, note that (Y) + (Y — X?))
+ (X)is just (X, Y).)

Figure I, 25 gives a justification of this kind of behavior. A small upward
translate of V(Y) intersects V(Y — X?) in two points; correspondingly,
V(Y) and V(Y — X?) intersect in a “double point.” In a sense, the chain
2{(0, 0)} is “bigger” than {(0, 0)}, and ought to correspond to a smaller ideal
than the one defined by {(0, 0)}. This is exactly what happens. For instance
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2: Some basic lattice-theoretic properties of varieties and ideals

the axes V(X) and V(Y) intersect with multiplicity one, and the ideal
(X) + (Y) (=(X, Y)) turns out to be the largest defining ideal of {(0, 0)}.
Ideals like (Y) + (Y — X3) or (Y) + (Y — X*) differ even further from
(X, Y); they correspond to 3{(0, 0)} and 4{(0, 0)}, respectively.

We return to the question of getting a 1:1-onto lattice-reversing map
between ¥~ and _#. The way out of the above difficulty is actually very simple.
We first note

Lemma 2.18. The map a — @ = J(V(a)) is a closure map on the p.o. set (S, <).

Proor. It follows immediately from Lemma 2.12 that a = @ and @ = a.
If a, < a,, then V(a,) = V(a,), which means J(V(a,)) = J(V(a,))—that is,
a, < a,. O

In view of Lemmas 2.12 and 2.18 we shall often refer to elements of # as
defined ideals or closed ideals.

Although # with =, n,and + is not in general a sublattice of (f, =, N, +),
we see from Lemma 2.6 that ¢ equipped with¢; A ¢, =¢;neyande; Ve,
=1t + ¢, (“closed sum”) is a lattice. We denote this new lattice by
(¢, =, n, +). Of course the maps J and V are still p.o.-reversing isomor-
phisms between (¥7, <) and (¢, ). We now prove

Theorem 2.19. Jd and V are lattice-reversing isomorphisms between (¥, <, N, L)
and (7, <, N, +).

PrOOF. We need only show that for ¢, ¢, € #,
(2.19.1) V(c; N ¢y) = V(cp) v V(cy)
(2.19.2) V(c; + ¢3) = V(cp) N (cy).

(2.19.1): This follows from Lemma 2.14.1.
(2.19.2): Lemma (2.14.2) implies V(c; + ¢;) = V(¢;) n V(c,). This, with
Lemma 2.12, yields

G+ o Ve)n V()= +)=c + > Vi) n V(i) - ...
Hence (2.19.2) follows. O

EXERCISES

2.1 In each case, show that the set with the indicated A and V forms a lattice. Then
find what specific decomposition theorems Theorem 2.11 yields for each of the
lattices.

(a) All subsets of a finite set, using N and u.
(b) All complements of finite subsets of any given set S, using N and u.
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(c) All subspaces of a finite-dimensional vector space, using meet and join of
subspaces.

(d) Any totally-ordered set, using “min” and “max.”

(e) The natural numbers, using “least common multiple” and “greatest common
divisor.”

Let the set S consist of three points, and let #(S) denote the set of all real-valued
functions on §; #(S) becomes a commutative ring with identity when supplied
with pointwise addition and multiplication. (Geometrically, #(S) is R*® with
componentwise addition and multiplication.)

(a) Describe, geometrically, the ideals of £ (S), and show that they form a lattice
in a natural way.

(b) Establish a lattice-reversing isomorphism between the lattice of ideals of Z(S)
(with V = + and A = n) and the lattice of subsets of § (with V = U and
A =n)

Let R = C[X], and let a = (p," -...- p,”) be an arbitrary ideal of R (where the
polynomials p; are distinct irreducibles and the integers n; are positive). Show that

\/a=(pl""'pr)'

Let § = C, k = C, and R = C[X]. Explicitly describe .#(R) and ¥"(R). Show that
there are always infinitely many different ideals defining any subvariety (other
than ¥ and C) of C. What additional information are these ideals trying to give us?
We supply an answer as follows:

First, define a positive point chain in C to be any finite formal sum
n{c;} + ... + ncg}, n; nonnegative integers and {c;} € C. Show how to define
equality on these point chains so that

nfc + ...+ nde o (X —c)™ - (X — ™)

describes a natural 1:1-onto correspondence between the set of all positive point
chains in C, and the set of all nonzero ideals in C[X].
Prove that for arbitrary ideals (p) and (g) of C[ X], we have:

)N (g) = (plem. q)

() + (@) = (pgcd. q),
where p l.c.m. g is the least common multiple of p and ¢, and p g.c.d. q is the greatest
common divisor of p and gq.

Next, denote by C(p) the chain corresponding to (p); then the 1:1-onto cor-
respondence between ideals and chains translates to the following: If C(p) =

Zi m;{c;} and C(q) = Zi ni{c;}, then
C(p) N () = Y (m; max n)){c;} (1)

i
and

Clp) + (@) = z (m; min n;) {c;}. 2

i

Also, we may define a partial order on €, the set of all chains of C, by

Y mic} <Y nfc) iff my<n alli
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3: The Hilbert basis theorem

We may define the maximum of two chains by the right-hand side of equation (1),
and the minimum by the right-hand side of equation (2). Show that the set .# of
all nonzero ideals of C[X] forms a lattice using <, N, +, and that the set € forms a
lattice with the above partial order, maximum, and minimum. Show that these
lattices are reverse isomorphic.

One may ask about the operations of “product” and “taking the radical” for ideals.
These, too, have geometric translations.

(a) Show that the product of two ideals corresponds to the sum of their chains in
the sense that

Clp-q) = C(p) + Clq) = X (m; + m){c;}.

(b) Show that taking the radical of an ideal corresponds to taking the “support”
of the chain, or the “variety of the chain,” namely, if C(p) = Y ; m{c;}, where
each m; > 0, then

CW/p) = X Heids

this last sum may be identified with { ); {c;}; that is, with V(p).

An ideal a « C[X,..., X,] is called homogeneous iff it is generated by a set of
homogeneous polynomials. (We agree that the empty set of polynomials defines
the 0 ideal) If a = ({p,}) is a homogeneous ideal, its dehomogenization Dy (a)
at X, is defined to be ({Dy(p,)}). Show that the set of all homogeneous ideals
of C[Xy,..., X,] forms a lattice under N and + ; show that the set of homogeneous
varieties of Cx, . x, forms a lattice under U and n; show that the set of defined
homogeneous ideals forms a lattice under n and closed sum. State and prove
homogeneous (or projective) analogues of Lemma 2.16 and Theorem 2.19.

Let a, b, ¢ be arbitrary elements of a lattice (L, V, A). Prove that
aVbAc)=@VbA@Vec 3)
implies
aANbVey=@Ab)ViaAco 4)
by justifying each of the following steps:

aANbVey=aA[@aVc)ABV)]
=[aANb)ValA[(aNb)V c]
=(@Ab)V (Ao

Then prove that (3) holds iff (4) does.

3 The Hilbert basis theorem

In Theorem 2.11 we saw that if a lattice satisfies the ascending or descending
chain condition, then each element decomposes into irreducibles, and the
decomposition is unique if the lattice is distributive. Let S, k, R be as in the
last section; since (£, <, N, +), (£, <, N, +) and (¥, =, N, V) are all
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lattices, it is natural to ask in specific cases if these lattices satisfy any chain
conditions or are distributive. We can then formulate possible decomposition
theorems. In this and the next section we do this for an important class of
rings occurring in algebraic geometry.

Definition 3.1. Let R be a ring and suppose the associated p.o. set (#, <)
satisfies the a.c.c.—that is, each strictly ascending chain of ideals of R,
a, & a, & ..., terminates after finitely many steps. Then by abuse of
language, we say that R satisfies the a.c.c. Similarly, R satisfies the d.c.c.
if (#, <) does.

We now turn our attention to proving that the a.c.c. holds for polynomial
rings over a field. We begin by giving an equivalent formulation of the a.c.c.
on R (Lemma 3.3).

Definition 3.2. A basis (or base) for an ideal a in R is any collection {a,}
of elements a, € a (y in some indexing set I') such that

a={r,a, +...+r,a,lr,eRand y;e [}

Tk TV

We write a = ({a,}), or a=(a;,a,,...) if T is countable, and
a=(ay,...,a,) if I is finite. If we can write a = (ay, ..., a,), we say a
has a finite basis.

Lemma 3.3. R satisfies the a.c.c. iff every ideal of R has a finite basis.

PROOF. =: Suppose some ideal a did not have a finite basis. Then one could
find a sequence of elements a,, a,. ... (a, € a) such that

(a)=@,a)& ...,

and R would not satisfy the a.c.c.
<: Suppose R did not satisfy the a.c.c.; let a; & a, & ... be an infinite
strict sequence. Then a = Uj a; is an ideal. The ideal a cannot have a finite

basis ay, ..., a,, since surely a, € a;, for some j;, a, € a;, for some j,, ...,
and so on. This would mean | J;i_, a; = a, so the ideals a; could strictly
increase at most up to aj, . O

This explains the commonly-used alternate

Definition 3.4. A ring satisfying the a.c.c. is said to satisfy the finite basis
condition; such a ring is further called Noetherian. (This term is named
after the German mathematician Emmy Noether (1882-1935), the
daughter of Max Noether (1844-1921). M. Noether was the “father of
algebraic geometry.” E. Noether was a central figure in the development
of modern ideal theory.)
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3: The Hilbert basis theorem

If R is any ring, then R[ X] as usual denotes the ring of all polynomials
in X with coefficients in R.

Our main result of this section is
Theorem 3.5 (Hilbert basis theorem). If R is Noetherian, so is R[X].
Before proving it, let us note

Corollary 3.6. If k is a field, then k[ X , ..., X,] is Noetherian.

ProoFr. Certainly & satisfies the a.c.c. since it has only two ideals. Then by
repeated application of Theorem 3.5, k[ X ], k[X,]1[X,] = k[ X,, X1, ...,
k[X,,...,X,_11[X,] = k[X,,..., X,] must all be Noetherian. O

Remark 3.7. In the next section we apply the Hilbert basis theorem to get
at once decomposition into irreducibles in .#, and unique decomposition
in # and in ¥".

Remark 3.8. The Basis Theorem does not have a dual—that is, no poly-
nomial ring R[X,, ..., X,] where n > 1 ever satisfies the d.c.c.; one strictly
descending sequence is always

XD2XH2XH)=2....

Note on the Hilbert basis theorem

The basis theorem lies at the very foundations of algebraic geometry; it
shows there are “fundamental building blocks,” in the sense that each
variety is uniquely the finite union of irreducible varieties (Theorem 4.4).
This is very much akin to the fundamental theorem of arithmetic, which lies
at the foundations of number theory; it says that every integer is a product
of primes (the “building blocks”), and that this representation is unique (up
to order and units.) The essential idea of the basis theorem, though couched
in older language, led at once to a solution of one of the outstanding unsolved
problems of mathematics in the period 1868-1888, known as “Gordan’s
problem” (in honor of Paul Gordan).

Gordan’s computational abilities were recognized as a youth, and he
became the world’s leading expert in unbelievably extended algorithms in
a field of mathematics called invariant theory. In 1868 he found a long,
computational proof of the basis theorem for two variables which showed,
in essence, how to construct a specific base for a given ideal. Proving the
generalization to n variables defied the attempts of some of the world’s
most distinguished mathematicians. All their attempts were along the same
basic path that Gordan followed and, one by one, they became trapped in a
dense jungle of complicated algebraic computations.
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Now it was Hilbert’s belief that the trick in doing mathematics is to start
at the right end, and there can hardly be a more beautiful example of this than
Hilbert’s own solution to Gordan’s problem. He looked at it as an existence
problem rather than as a construction problem (wherein a basis is actually
produced). In a short notice submitted in 1888 in the Nachrichten he showed
in the n-variable case the existence of a finite basis for any ideal. Many in
the mathematical community reacted by doubting that this was even mathe-
matics; the philosophy of their day was that if you want to prove that
something exists, you must explicitly find it. Thus Gordan saw the proof as
akin to those of theologians for the existence of God, and his comment
has become forever famous: “Das ist nicht Mathematik. Das ist Theologie.”
However, later Hilbert was able to build upon his existence proof, and he
actually found a general constructive proof. This served as a monumental
vindication of Hilbert’s outlook and began a revolution in mathematical
thinking. Even Gordan had to admit that theology had its merits. Hilbert’s
philosophy, so simple, yet so important, may perhaps be looked at this way:
If we see a fly in an airtight room and then it hides from us, we still know
there is a fly in the room even though we cannot specify its coordinates.
Acceptance of this broader viewpoint has made possible some of the most
elegant and important contributions to mathematics, and mathematicians of
today would find themselves hopelessly straitjacketed by a reversion to the
attitude that you must find it to show it exists. (For an absorbing account of
Hilbert’s life and times, see [Reid].)

The following proof is essentially Hilbert’s—his language was a bit
different, and he took R to be the integers, but the basic ideas are all the same.

PROOF OF THE Basis THEOREM. We show that if R satisfies the finite basis
condition, then so does R[X]. First, if ro X"+ ... +r, (ro # 0) is any
nonzero polynomial of R[ X7], we call r, the leading coefficient of the poly-
nomial. Now let A be any ideal of R[ X]. Then U induces an ideal a in R,
as well as smaller ideals a, in R, as follows:

Let a consist of 0 together with all leading coefficients of all polynomials
in 2. (We show that this is an ideal in a moment.) Since R is Noetherian, for
some N, a = (a,,...,ay), where a;, € R. Let p(X) e U have a; as leading co-
efficient and let m* = max (deg p;, ..., deg py). Then for each k < m*, let
a, consist of 0 together with all leading coefficients of all polynomials in A
whose degree is equal to or less than k.

We now show a is an ideal. (The proof for a, is similar.) First, a is closed
under subtraction, for a, b € a implies that there are polynomials p(X) =
aX™ +3m ¢ X" " and g(X)=bX"+ Y7, d;X""" in A. Then m >n
implies that p(X) — (X" "¢(X))eU; if a =b, then a — b =0€qa, and if
a#b, then a—bea since a — b is then the leading coefficient of
p(X) — (X" "q(X)).

Second, a has the absorption property, for if r € R, then r # 0 implies
that the leading coefficient of rp(X)is ra € a, and r = O implies thatra = O e a.
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Now write a; = (@ky, - - - » Gkn)» and let g4(X), ..., gu(X) be polynomials
of A whose leading coeflicients are the basis elements g;; of the ideals
ay,...,0,._;. We claim that

QI:‘(pla"'spN’qla"w‘IM)- (5)

Let us denote (py, ..., Pn»G1s---»qdu) by AT; we show A = A'. Since all
polynomials p; and ¢; were chosen from 2, obviously AT < A. We show
A = A' by assuming At & A and deriving a contradiction. Thus if AT & A,
let p be any polynomial of lowest degree which is in % but not in A*. We may
write p’s leading coefficient as a = Y - | r;a;. Now surely either deg p > m*
or deg p < m*. Suppose first that deg p > m*. This would imply there are
monomials m(X) € R[X] such that ) ; m;p; has the same leading term as p.
(Specifically, if we take m; to be r(X €7~ 9 ) then

Y riXdeermoeerp, (6)

has leading term aX %€ ?, The effect of X &7~ 9 Pi js to “jack up” the degree
of each p; so that all the N summands in (6) have the same degree. This is
possible since deg p — degp; = Oforeachi = 1,..., N.) We thus get

deg((}, m;p;) — p) < deg p.

But p is a polynomial of lowest degree which is in % and not in A*. Thus
(). m;p;) — p e A'. But surely also ) m;p; € A', so p e A, a contradiction.

Now suppose deg p < m*. Now we may use the g;! For some monomials
v{X) € R[X], we have

deg((}_ v:q;) — p) < deg p,

so as before, p € A",
Thus p cannot exist, (5) holds, and the basis theorem is proved. 4

EXERCISES

3.1 Follow through the proof of the basis theorem for the ideal A < Z[X], where A is
generated by the set {2nX + 3m|n and m positive integers} to arrive at A = (2X, 3).

3.2 Let the ideal A = C[X] be generated by {n + X"|ne Z*}. Use the proof of the
basis theorem to find a single generator of 2.

4 Some basic decomposition theorems
on ideals and varieties

Now that we have proved the Hilbert basis theorem we may apply it,
together with the basic decomposition theorems of lattice theory, to reap
some of the important decomposition results of algebraic geometry.
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In any lattice of ideals (.#, =, N, +) one may make the following

Definition 4.1. An ideal a in any ring R is irreducible if a = a; » a, implies
a=aqa;o0ra=a,.

For the rest of this chapter we shall state our results over the field C;
in this section we shall always use the ring C[X,, ..., X,]. Later on homo-
morphic images and “localizations” of C[ X ;,. . ., X, ] will become important,
but generalizations of our decomposition results to these cases will be very
easy.

Applying the basis theorem and Theorem 2.11 gives us at once this
important

Theorem 4.2. Every ideal a < C[X,, ..., X,] is a finite irredundant inter-
section a = a; N ... N agof irreducible ideals q;.

The above representation need not be unique (see Exercise 4.4).
Let us now look at decompositions from a geometric viewpoint. In
(¥, <, n, V), irreducibility becomes

Definition 4.3. A variety V is irreducible if V=V, U V, implies V =V,
or V = Vz.

Since for C[X, ..., X,] the corresponding (¥, =, N, +) satisfies the
a.c.c. and since for closed ideals a; and a, we have a; & a, iff V(a;) 2 V(a,),
(¥, =, n, U) must satisfy the d.c.c. But in this case we know even more:
Because varieties are subsets of a set, (¥, =, N, U) is distributive. Hence we
have this basic result:

Theorem 4.4. Each variety V < C" is a finite irredundant union V =
Vi v ... U W of irreducible varieties V;; this decomposition is unique up
to order of the V..

Definition 4.5. We call the V; in Theorem 4.4. the irreducible components of
V, or simply the components of V.

Now (¥", <, n, U) is reverse isomorphic to the lattice of closed ideals
(#, =, n, +), so (in great contrast to .#) ¢ is distributive, and we have

Theorem 4.6. Every closed ideal ¢ < C[X,, ..., X,] is the irredundant inter-
section ¢ = ¢; N ... N ¢ of finitely many irreducible closed ideals; any
irredundant representation of ¢ by irreducible closed ideals is unique up
to order.

Of course, under the isomorphism between ¥~ and ¢, irreducible varieties
correspond to irreducible closed ideals.
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At this point it is fair to ask if there is some direct way of deciding when an
ideal of C[X 4, ..., X,] is irreducible and closed. It turns out there is a simple
characterization of these ideals: They are precisely the prime ideals of
CLXy, ..., X,)

Remark 4.7. The behavior of ideals in .# is quite different; not every
irreducible ideal is prime in .#! For example if n > 1, then (X") = C[X] is
nonprime; however, it is irreducible, because the only ideals larger than
(X™) are (X™) where m < n, and these can never intersect to give (X™).

It is easy to show that in C[ X, ..., X,] every irreducible closed ideal
is prime. (We do this next in Lemma 4.8.) But it is conceivable that other ideals
besides irreducible closed ones are prime, too. Showing that this is not so is a
somewhat longer story; we answer this question in the next section
(Corollary 5.9 and Theorem 5.11). The following lemma is actually valid
in the general “S, k, R” setting of Section 2.

Lemma 4.8. Every irreducible closed ideal in C[X 4, ..., X,] is prime.

Proor. Let ¢ be irreducible and closed in C[ X, ..., X,], and suppose it is
not prime—say a;, a, € C[X,, ..., X, ]J\c¢ satisfy a, -a,€c. Now ¢, =
¢+ (a,) and ¢, = ¢ + (a,) are both strictly larger than ¢. If ¢ — V, then
ag-Vi&EVand ; -V, & V. Hence V, UV, c V. Since a - a, € ¢, any
product

(cy +riay) - (c; + r2ay) = cycy + cyraay + cyriaq + rirzaa, (cie )

isin ¢, hence ¢, - ¢, < ¢. But by Lemma 2.14 it follows that ¢, - ¢; — V; U 1,
so¢-g>ViulV,>V.Hence V=V, UV, V, # V,and V, # V which
contradicts the fact that ¢ is an irreducible closed ideal (i.e., that V is
irreducible). O

As soon as we prove that every prime ideal is irreducible and closed (in
Theorem 5.11 and Corollary 5.9), we will have

Theorem 4.9. Each closed ideal of C[X,,...,X,] is a finite irredundant
intersection of prime ideals, this representation being unique up to order.
Conversely, every finite intersection of prime ideals is closed. Hence distinct
irredundant intersections of prime ideals define distinct closed ideals.

EXERCISES

4.1 “Each ideal (X — i) (i € Z) is irreducible in C[X], and defines the point i e C.
Therefore ()22 ,, (X — i) defines Z = C.” What is wrong with this argument?

i=—ow

4.2 Show that no proper algebraic subvariety V of C" is intersection-irreducible.

123



III: Commutative ring theory and algebraic geometry

43 Let pe C[X}4, ..., X,] be irreducible. Show that V(p) = C" is irreducible.

4.4 Show that decompositions in Theorem 4.2 may not be unique by showing that
(X2, XY) has two different irredundant decompositions into irreducibles. [Hint:
Show that (X2, XY) = (X) n (X%, Y) = (X) n (X2, X + Y). Then show that (X),
(X2, Y)and (X%, X + Y) are irreducible, and that there are no containment rela-
tions between any of these irreducibles.

4.5 Although Remark 4.7 shows that in a Noetherian ring not every irreducible
ideal need be prime, it is true that in a Noetherian ring, every irreducible ideal is
primary in the following sense: An ideal a in any ring R is primary provided (x ¢ a
and xy € a) = (y™ € a for some m € Z%). Prove the italicized statement as follows:
First, if a, b are ideals of any ring R, define the “quotient” a: bto be {x € R|xb < a}.

(a) Show that a:bis an ideal of R, and that a — a:b.
In (b)-(d) assume that R is Noetherian, and that a is not primary.

(b) Show that there are elements x, y € a with xy € a, y" ¢ a,forallme Z*.

(c) Show that there is an my € Z* such that a: (y™) = a:(y™*?).

(d) Show that a = (a, x) N (a, y™).

(e) Show how (b)-(d) imply that in a Noetherian ring, every irreducible ideal is
primary.

4.6 State and prove the homogeneous (i.e. projective) analogues of the results in this
section.

4.7 Prove the statement in Remark 2.10 of Chapter I1.

4.8 (a) Prove that a variety ¥V < C" is irreducible iff its projective completion is
irreducible.
(b) Is a projective variety W in P*(C) irreducible iff a given affine part of it is irre-
ducible? Is W irreducible iff all affine parts of it are irreducible?

5 The Nullstellensatz: Statement
and consequences

As mentioned before, in order to generalize the results of Chapter 1II to
arbitrary varieties in n-space we want, as much as possible, to generalize to
ideals various concepts and operations on polynomials. One of the most
central facts about polynomials in C[X] is the fundamental theorem of
algebra. In this section we generalize this to ideals, getting the Nullstellensatz
(Theorem 5.1) We then look at some consequences. Its proof is given in
Section 6.

Geometrically, the fundamental theorem of algebra says that any non-
constant polynomial p(X) € C[X] has a zero in Cy. Since C[ X] is a principal
ideal domain, every ideal of C[X] is of the form (p), for some p. Hence in
ideal language, the fundamental theorem of algebra becomes: “The variety
in Cy defined by any proper ideal of C[X] contains at least one point.”
We may also phrase this as: “Every proper ideal in C[X] has a zero in Cy.”
We would thus like to prove more generally that the variety defined by any
proper ideal of C[X,, ..., X,] contains at least one point. We may also
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generalize the notion of “zero of a polynomial”: A zero of an ideal a is
any point (a) = (a,,...,a,) such that p(a) = 0 for each p e a. With this
terminology our ideal-theoretic generalization of the fundamental theorem
of algebra becomes

Theorem 5.1 (Hilbert Nullstellensatz, or zero theorem). Every proper ideal
of C[Xy,..., X, has a zeroin Cx _ x,.

Remark 5.2. Our proof will show that Theorem 5.1 holds if C is replaced
by any algebraically closed field. The hypothesis of algebraic closure is
necessary, for when n = 1, the theorem reduces to the fundamental theorem
of algebra, and we know X? + 1 e R[X] has no zero in R.

Just as the fundamental theorem of algebra has a number of equivalent
forms and many important implications, so does the Nullstellensatz. We
devote the remainder of this section to looking at some of them.

First, since C[X,, ..., X,] is Noetherian, its set of ideals satisfies the
maximal condition (see the discussion after Definition 2.2); hence every
properideal of C[ Xy, ..., X,]is contained in a maximal ideal. This yields this
equivalent form of the Nullstellensatz:

Theorem 5.3. Every maximal ideal of C[X,, ..., X,] has a zero in C".

Corollary 5.4. There is a 1:1-onto correspondence between points of C"
and maximal ideals of C[X {, . .., X,,]. The maximal ideal corresponding to
(cl’ ...,C,,)E C"is ((Xl - Cl)’ -Ha(Xn - Cn))'

We shall denote the maximal ideal corresponding to P € C" by mp.

ProOF OF COROLLARY 5.4. First note that in C" any single point is irreducible,
but any finite union of two or more points is reducible. Then Theorem 2.19
implies that J restricted to points defines a 1:1 onto correspondence between
points of C" and closed maximal ideals. It follows from Theorem 5.3 that
every maximal ideal is closed, so the first assertion of the corollary is proved.
To show that for any (cq,...,c,)€C" Jcy,- o) =X —cy).. .,
(X — c,)), we need only show that a = (X — ¢,),...,(X — ¢,)) is maximal;
this follows from C[ X4, ..., X, ]/a = C.

The above corollary leads to some other important facts. If P and Q
are two points of C", then the closed ideal of the variety {P} U {Q} is of course
mp N my,. Since we require in a lattice only that the lLu.b. and g.lb. of
finitely many elements exist, the isomorphism J in Theorem 2.19 says
nothing about preserving operations under, for example, infinite intersection.
However if Vis a variety in C", it is natural to ask whether J(V) is the same
as ()peymp. Now since any p € (\peymp lies in each mp, by Corollary 5.4
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III: Commutative ring theory and algebraic geometry

p vanishes at each point of ¥; hence ()p., mp = J(V). Conversely, any
g ¢ (\pev mp fails to be in some mp, say mp_, where P, € V. Then g(P,) # 0,
s0 g also could not be in J(V'), so the reverse inclusion holds. Hence we indeed
have
J(V) = () mp.
PeV

Now suppose a — V. Then the point P defined by an arbitrary maximal ideal
m lies in V iff m contains a. (m > a implies {P} < V; conversely, if m % q,
then there is a polynomial p € a, p ¢ m, meaning that p vanishes on all of V,

but not at P.)
We summarize these facts in

Corollary 5.5. If a is any ideal in C[X,, ..., X,], then the closure @ of a is
the intersection of all maximal ideals containing it—that is,

a= ()m

m>a

The next theorem gives another equivalent form of the Nullstellensatz.
The German letter p always denotes a prime ideal.

Theorem 5.6. Let a be any ideal of C[ X4, ..., X,]. Then

Nrp=1m

poa m>a

This is a very useful form of the Nullstellensatz, and is called the “strong
form” of the theorem, though, of course, it is no stronger than Theorem 5.1
(which is often referred to as the “weak form”); the strong form easily
gives, for instance, a proof of Theorem 4.9. In a moment we prove Theorem
5.6, assuming Theorem 5.1. That Theorem 5.6 implies Theorem 5.1 follows
immediately from Theorem 5.8.

The above ideal ﬂn 5 o P turns out to be the radical \/5 of a(Definition 1.1).
We prove this next (Lemma 5.7); we will then not be far from a proof of
Theorem 5.6.

Lemma 5.7. Let R be any ring and let a be any ideal of R. Then
Ja=(»p
poa
Proor

\/E < (Vpoab: Ifre\/&, then r" € a for some n, so r" is in each p > a.
Since p is prime, r itself is in each p > a, hence r € ﬂp -aP.

ﬁ ) ﬂp:,a p: Suppose r¢\/a; we show r¢ ﬂ,:,a p by showing
that there is a prime ideal p* containing a but such that r ¢ p*. Now r ¢ \/E
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means that for each positive integer n, "¢ a; we may write this as
an {r,r?r ...} = & By Zorn’s lemma there is an ideal p* such that

1. p*2a
2.9 {rnrir,.. ) =,
3. there is no ideal strictly larger than p* satisfying (1) and (2).

(If one assumes that R is Noetherian, one may replace the reference to
Zorn’s lemma by the maximal condition, given just after Definition 2.2.)
We now show p* is prime. Suppose s, ¢ p* and s, ¢ p*. We show s, - 5, ¢ p*.
First, since the ideals p* + (s;) and p* + (s,) are strictly larger than p*,
they both must intersect the set {r, r% r, ...} —that is, there are elements
r™, r"? such that

r=a, +ris;ep*+(sy) and " =a, + rys; € p* 4 (sy)
Now r"i*m2 e {r, 2, ¢3,...}; however
ny+ny __
r = a1a2 =+ a1r282 + azrlsl + rlrzsISZ.

If s,-s, were in p* then clearly r"**" e p* too, meaning that r"*" e
p* n {r,r%, r3, ...}, which is impossible. Thus s, - s, ¢ p*, as promised. [J

PROOF OF THEOREM 5.6, assuming Theorem 5.1

That ﬂp I et ﬂm - o M s trivial since any maximal ideal is prime.

To show the reverse inclusion, let p be a nonzero element of (), -, M.
In view of Lemma 5.7 it suffices to show that p™ € a, for some m > 0. For this,
consider,in C[X,,..., X,, X,+1], theideal (a, 1 — X, ,, - p). Now a defines
a variety V= V(a)in Cx,  x,...and V(a,1 — X,,, - p)is a subset of this
V;also,p=0on V,so 1 — X, - p is nonzero at each point of V. Hence
V(a, 1 — X, -p) = &. Therefore by Theorem 5.1, 1€ (a,1 — X, - p)—
that is,

1 =erqj+s(1—X,,+1~p) (gjear;,seC[X,,..., Xps1]: (7)

Now set X,,,; = 1/pin (7). Then s(1 — (1/p) - p) = 0, and (7) becomes
1 =Y Fq;, wherefe C|:X1, ey X, %]
Clearing this equation of denominators yields an equation
pr = ;(p’"r"j)qj (p"r e CLXy, ..., X, D
But each g; € q, so this equation implies p™ € a, as desired. O

Corollary 5.5, Theorem 5.6, and Lemma 5.7 together yield the Nuli-
stellensatz in a more explicit form, and is essentially the way Hilbert stated it:

Theorem 5.8. Suppose a > V, where a < C[X,...X,] and V< C" If p
is any polynomial vanishing on V, then p" € a for some n > 0.
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We next note that Corollary 5.5 and Theorem 5.6 at once imply

Corollary 5.9. Every prime ideal of C[ X4, ..., X,] is closed.

Remark 5.10. This important corollary of the Nullstellensatz will establish
Theorem 4.9 (as soon, of course, as we prove the Nullstellensatz itself,
in the next section). All that remains to prove in Theorem 4.9 is the assertion,
“Every prime ideal is an irreducible closed ideal.” Now since from Corollary
5.9 every prime ideal is closed, we need only show:

Theorem 5.11. In any ring, every prime ideal is irreducible.

PROOF. Suppose a = a; N a,;, a; 2 a, and a, 2 a. Surely we cannot have
a; < a, or a, < a,. Hence let aea,, a¢a,, and bea,, b¢a,. Then a¢a
and b¢a. But aea; implies abea, while bea, implies ab € a,, so
ab € a; N a, = a. Hence a could not be prime. O

EXERCISES
5.1 Prove that the strong form of the Nullstellensatz implies the weak form.
5.2 Show that if q is primary in any ring R (cf. Exercise 4.5), then \/a is prime.

5.3 Show that if q is any irreducible ideal in a Noetherian ring R, then \/a is prime.
[Hint: Use Exercise 4.5.]

5.4 Show that taking the closure \/E of an ideal a is actually a closure operation (as
defined after Definition 2.1).

5.5 Show that in any ring R, for any two ideals a, b we have \/anb = \/E N \/B, and

Jatb=/Jat b

6 Proof of the Nullstellensatz

We prove the Nullstellensatz in this form:
Every maximal ideal m of C[ X, ..., X, ] has a zero in C".

Although we state it using C, any algebraically closed field can be used
in place of C. Our proof will use the concepts of transcendental and algebraic
extension of a field.

First, since m is maximal, C[X,,..., X,]/m is a field. Suppose we were
able to prove that C[X,, ..., X,]/m is isomorphic to C, i.c., that the images
X; + m may be identified in the natural way with elements of C, say
X;+ m=ga;eC. Then under the evaluation map X;— gq; mapping
C[Xy,....X,] to C, each polynomial pem maps to 0 e C—that is,
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6: Proof of the Nullstellensatz

play, ..., a,) = 0. Thus (ay, ..., a,) would be a zero of m. Now suppose we
could establish the following result:

Lemma 6.1. Let k be any field. If an extension k[y,, ..., y,] of k is a field,
then each y; must be algebraic over k.

Then using k = C and y; = X; + m we see that each y; is algebraic over C,
hence y; € C, thus proving the Nullstellensatz. We therefore next give the

PROOF OF LEMMA 6.1. We prove this by induction on n. For n = 1 the lemma
is obvious—if y, were not algebraic over k, k[y,] would be a polynomial
ring, which surely is not a field.

Now assume the lemma is true for n — 1; we prove it for n. Suppose, then,
that k[y,, ..., y,} is a field. We may look at this as k(y,)[yy, ..., Yu— 1], since
the field k(y,) is a subfield of k[y,,...,y,]. (But we cannot assume
k(y,) = k[y,] since, a priori, y, might be transcendental over k.) By our
induction hypothesis, each of y, ..., y,_ is algebraic over k(y,). If we prove
y, is algebraic over k then, by transitivity, it follows that each of y,, ..., y,
is algebraic over k. Our proof that y, is algebraic is by contradiction; the
remainder of this section is devoted to proving this.

Suppose, therefore, that in (6.1.1)-(6.1.2), each y,, ..., y,- is algebraic
over k(y,) and that y, is transcendental over k.

(6.1.1) If an element z in k(y,) satisfies
"+ pi)2" T+ ) =0 ) kD], (8)
then z € k[y,]—that is, z is a polynomial.

PROOF. Write z = z,/z,, where z,, z, € k[y,] and where z,, z, are relatively
prime. Then (8) becomes

) = -poa(2) - = pata o
2 Z2

zy" = _Zz[Pl(,Vn)Zlm_l +...+ Pm()’n)zzm_ll

Hence z, is a divisor of z,. But since the z; are relatively prime, z, must
be a unit in k[y,]; therefore z = z,/z, € k[y,]. O

In (8), z is, of course, algebraic over k[y,]. But in addition the leading
coefficient is 1. (Recall that for an integral domain D, any element w satisfying
an equation

w+aw '+...+4a,=0 (a;e D)
is called integral over D.)
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Continuing towards our goal of a contradiction, we show next

(6.1.2) There is a polynomial p(y,) € k[y,] so that each of
p(yn) B ST P(Yn) *Yn-1 is integral over k[Vn]

PRroOF. Let the equations satisfied by y; (i = 1,...,n — 1) be

PioWn) - Y™ + oo+ Pimfyn) = 0. 9

Then let p(y,) = [[/=! pio; each p(y,) - y; is integral over k[y,], as can be
seen at once by multiplying each side of the equation in (9) by the polynomial
P™(¥.)/Pio(ys); thus (6.12) is proved. U

Now let f(y,) be any element of k(y,); since k(y,) < k[yy, -, Yuls f()
is actually a polynomial g(y, ..., y,) (involving some or all of y,, ..., y,).
Let d be its total degree in y,,...,y,_;, and let p(y,) be as in (9). Then
(P - q(yys - -5 y) can be looked at as a polynomial in p(y,)- y,,. ..,

p(y) - yn—1 with coefficients in k[y,], for multiplying q(y,, - .., y,) by p(y,)°
transforms a monomial y,*' - ... - y,* of g(y,, ..., y,) to

P =TT () -y M e [P+ Y I

Now if we knew that the integral elements formed a ring, we could
complete the proof of the Nulistellensatz as follows: By (6.1.2), each
Py, ..., P(Yn)ya— is integral over k[y,]; by what we have just said,
p’q is a polynomial in p-y,, ..., p-y,_,. Thus if f(y,) = q(yy, ..., y,) is
any element of k(y,), then p%q (which is a sum of products of p-y,, ...,
P - Yn—1, and elements of k[y,]) would also be integral over k[y,]. Hence by
(6.1.1), p’q would be an element of k[y,]—that is,

P - f(a) = P(y,) € k[yal.

But surely if y, is transcendental, not every element of k(y,) is of the form

P(y,)/p(y,), where p(y,) is a fixed polynomial. Hence y, cannot be transcen-

dental over k; hence it is algebraic over k, and the induction is complete.
Our remaining task, then, is to establish the following

Lemma 6.2. Let D = D* be Noetherian integral domains. The elements of D*
which are integral over D form an integral domain.

(In the application above, D* = k[y,,...,y,], D = k[y,].)

PrOOF OF LEMMA 6.2. It is clearly enough to show that if elements a, b € D*
are integral over D, then so are a — b and ab. For this, note that w is integral
over D if

w'=ag w1+ ... +a,;

130



6: Proof of the Nulistellensatz

that is, w is integral over D if some (positive) power of w is a linear combina-
tion of lower powers with coefficients in D. Hence if u, v are integral over D,
we want to show:

For some integer N > 0 and b; € D,

- = ¥ blu— v (10)

similarly for uv.
Now suppose the equations for u and v are

n—1 . m—1 .
= Zciu' and " = Zdjv’.

Then all powers u", u" . are expressible as linear combinations of 1, u,

u" "1 likewise for the analogous powers of v. Therefore all positive powers of
u — v and uv are expressible as linear combinations of u'v’, where 0 < i <
n — 1l and 0 < j < m — 1. But to show that, e.g., u — v is integral, we want
all higher powers of u — v to be expressed in terms of lower powers of u — v,
not the u'v’! For this, consider the set of all D-linear combinations of the
u't’. This is an example of the important notion of module over D (which
generalizes the notion of vector space).

Definition 6.3. A module M over a ring R is a commutative group (M, +)
together with a map from R x M to M satisfying:
Foranym,ne M and r, s € R,

6.3.1) (r + sym = rm + sm
6.3.2) rfm + n) = rm + rn
(6.3.3) r(sm) = (rs)ym

(634) forleR,1-m=m

A submodule M’ is any subgroup of M closed under the above multipli-
cation by elements of R. The submodule generated by a subset T < M
is the set

(T) = {Z rotylr.,€ R and t, € T},
each sum of course being a finite sum.

In our case, M is the additive group of k[y,, ..., y,], and R = D, the ring
kLynl.

Now the submodules M, = (u — v), M, = ((u — v),(u — v)?),...obviously
form an increasing sequence of submodules of M. If we had an a.c.c. on
submodules of M so that all the M; were equal after some stage, then we
could write (u — v)¥ = Y X' b{u — v)', which is just the equation in (10),
with a similar equation for u - v. This would prove Lemma 6.1 and with it, the
Nulistellensatz.
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Now in our case, R = k[y,] is Noetherian,and M = (u°°,...,u" " ™" 1)
is finitely generated. It turns out that any finitely generated module over a
Noetherian ring does indeed satisfy the a.c.c. The proof of this is essentially
the same as that of the Hilbert Basis Theorem. We outline its analogous
proof in Exercises 6.1 and 6.2.

EXERCISES

6.1 Prove that a module M over any ring R satisfies the “a.c.c. for submodules” iff
every submodule of M is finitely generated.

6.2 Using the above exercise, prove that any finitely generated module M over a
Noetherian ring R satisfies the a.c.c. as follows:

Let {a;, ..., a,} be a basis of a finitely generated module M, and let M’ be any
submodule of M. The leading coefficients r; of all those elements of M’ of the form
rid; + rio1@i—y + ...+ ra, form an ideal I; of R; say I; = (s;y, ..., 5;). Let
My, ..., m;; be elements of M" whose a;-coefficients are s,;, ..., s;;, respectively.
Show that {m;} is a basis of M’, where i runs from 1 to n.

7 Quotient rings and subvarieties

We have established a lattice-reversing isomorphism between the closed
ideals of C[X, ..., X,] and the varieties of C". From the standpoint of
dictionary building, closed ideals thus translate into varieties, intersection
and closed sum- translate into union and intersection, and prime ideals
correspond to irreducible varieties. There are many other operations on
C[X,,..., X,] and its ideals, and on C" and its subvarieties; it is natural to
seek the geometric meaning of operations on algebraic objects, and the alge-
braic translation of operations on geometric objects. For example, one can
ask for the effect on the subvarieties of C" of taking a homomorphism of
C[X,,...,X,]. Or one can look for the geometric meaning of the direct sum
of various polynomial rings, or of their tensor product. One could instead
start with a geometric operation—for instance, one might restrict attention
to the subvarieties of a fixed subvariety V of C”, and ask what this means in
algebraic terms. Again, one might take the Cartesian product V x W < C**™
of varieties ¥V = C" and W < C™. Is this product again a variety? If so,
how does this multiplication translate into algebraic language? And so on.
We investigate some of these questions in the remaining sections of this
chapter. In this section and the next, we consider the algebraic effect of
restricting attention to an irreducible subvariety of C".

First, thering C[ Xy, ..., X, ]is called the affine ring of Cy, . x,;it consists
of all polynomial functions on Cy, . x,. Since C[X,..., X,] is determined
by the canonical affine coordinate functions X, ..., X,,, it is also called the
affine coordinate ring of C". Now if we restrict our attention from C” to a
fixed irreducible variety ¥ in C", one would also like a corresponding notion
of affine or coordinate ring on V.
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We begin with an example—the parabola V(Y — X?) = C?. We want
something corresponding to the notion of “all distinct polynomial functions
on V(Y — X?).” Now from the viewpoint of an observer restricting his
attention to only V, he cannot distinguish, €.g., the function 0 € C[ X, Y] from
Y — X% eC[X, Y],since they are both identically zero on V. More generally,
any polynomial in the ideal J(V') is identically zero for him, while any poly-
nomial outside J(V) is not identically zero for him. Two polynomials p, g are
the “same” for him iff p — g€ J(V); he thus lumps together polynomials
in a coset of J(V) in C[ X, Y]. We therefore have some justification in calling
the quotient ring C[X, Y]AY — X?) the “coordinate ring of V(Y — X?).”

We now make the

Definition 7.1. Let p be any prime ideal of C[X,, ..., X,], and let
V= V(p) = C, . x,. Then CLX,, ..., X,]/p is the affine coordinate
ring of V' (or, commonly, the affine ring of V' or the coordinate ring of V);
we denote it by R,. More generally, any domain having the form
C[xy,.-..,x,] is called an affine coordinate ring over C, a coordinate ring
over C, etc.

Remark 7.2. Since any coordinate ring C[x,, ..., x,] may be written as
C[X4, ..., X,1/p for some prime ideal p, any coordinate ring is the co-
ordinate ring of some irreducible variety.

Remark 7.3. Definition 7.1 generalizes to any coefficient field k.

We may now ask the very same questions concerning correspondences
between V and C[X,,..., X,]J/J(V) = R, as we did between C" and
C[Xy, ..., X,]. For example, instead of asking for a lattice-reversing iso-
morphism between subvarieties of C" and closed ideals of C[X 4, ..., X,],
we might ask for an appropriate definition of closed ideal in R, so that there
is a corresponding lattice-reversing isomorphism between the subvarieties
of ¥V and the closed ideals of Ry . Also, since it is easily verified that R,
satisfies the a.c.c., one might ask about expressing its closed ideals as the
intersection of prime ideals. We look at these questions next. The remainder
of this section is devoted to proving Lemmas 7.4-7.8 below.

Lemma 7.4. If h, is the natural homomorphism
hp:C[Xl’ ey Xn] - C[Xla B ] Xn]/p,

then h,”' induces a natural lattice-embedding a — h,”'(a) of
(HCIXy, ..., X Ip), =, n, +)into (F(C[Xy, ..., X, D), =.n, +).

PROOF. Let a, # a, be distinct ideals of C[ X, ..., X,]/p; say p € a, but
p ¢ a,. Then for any g € {h,” '(p)}, we have that g € h,”*(a;)and g ¢ h,” '(a,)
—that is, h,” '(a,) # h,” (a,). Hence the mapping is 1:1 on the set of ideals.
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Next, for any two ideals a,, a, of C[X,, ..., X,])/p, we have
h,”Ya; N ay) = h,"Yay) N k" Yay), (11)
h,,_l(al + az) = hp_l(ﬂl) + hp_ l(az); (12)

these follow at once from the definitions of h,”!, N, and +. Hence the
embedding preserves the lattice structure. Cl

For an analogous _¢-result, we need to define closed ideal of
C[Xy ..., X, 1/p =Ry.
Since #(C[X,,..., X,]) is a subset of
J(C[X,,---, X)),

it would seem natural to define the closed ideals of R, by means of Lemma
7.4—that is, to be simply the ideals corresponding under h, ! to the closed
ideals of C[X,,..., X,]. But there is a problem: C[X,,..., X,]/p can be
represented in many different ways as a quotient ring of C[X,,..., X,.],
for some m. We would have to show this definition of closed ideal is
independent of this ring’s representation as a quotient ring. However, since
the closed ideals of C[ X, ..., X,] are precisely intersections of prime ideals
(Theorem 4.9), one possible definition is

Definition 7.5. An ideal in C[ X, ..., X,]/p is closed if it is the intersection
of some set of prime ideals in C[ X ,,..., X,]/p.

For any ideal a = C[X,,..., X,]/p, the map a — \/(; = (poa Pis a
closure map. Thus we see (from Lemma 2.6) that for closed ideals ¢,, ¢,
C[X,,...,X,)/p, defining + by ¢; + ¢, = /¢, + ¢,, makes the set ¢ of
closed ideals into a lattice (#(C[Xy,..., X,1/p), N, +).

That these closed ideals do indeed correspond under h,” ! to the closed
ideals of C[ X, ..., X,] containing p is shown by

Lemma 7.6. h,~ ! defines a natural lattice-embedding of

(j(C[XI’ ] Xn]/p)9 n, +)
into (F(C[Xy,..., X, ]), N, +).
ProoF. Clearly h,”! defines a set-injection of #(C[X,, ..., X,]/p) into
J(C[X,,..., X,]). That this injection is actually into #(C[X,,..., X,]),
ie, that h,”! embeds #(C[X,,...,X,]/p) into #(C[X,,...,X,]), may be
seen as follows: First note that for any ideal a > p in C[X, ..., X,], h,"!
induces a 1:1-onto map B — h,” () from the set of prime ideals P of

C[X,,..., X,1/p containing a/p, to the set of prime ideals of C[X, ..., X, ]
containing a. (Note that h,~ ! preserves primality of ideals in

C[Xl,' . 9Xn]/p,
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as does h,, for those ideals of C[X,,..., X,] containing p.) Now let ¢ be any
ideal in #(C[X,,..., X,]/p); then

hp—l(c):h;1<m sn>= NG @)= ®

B>c Poc PBohp~ie)

= WV hp_l(c) € f(C[Xl’ ey Xn])
It is easy to see that this embedding preserves lattice structure, for h,™"

preserves intersection (from (11)); it also preserves +, that is, for closed ideals
€1, €2,

hy ' e+ ) = hy T ) + ke
This follows since h, ! preserves sum (from (12)) and radical. O]

Now that we have shown that h,”! induces lattice embeddings, it is
natural to ask if it likewise preserves decomposition of ideals into irreducibles.
It does indeed. Since any homomorphic image of a Noetherian ring is
Noetherian, the p.o. set #(C[X, ..., X,]/p) satisfies the a.c.c., so a fortiori
F(C[X, ..., X,]/p) does too. Hence any element in either of these sets has
an irredundant decomposition into irreducibles. This decomposition is
unique in the case of #(C[X,,..., X,]/p) since it is distributive. It is
isomorphic to a sublattice of #(C[X,,..., X,]), which itself is isomorphic
to the distributive lattice of subvarieties ¥ (C[ Xy, ..., X, ])-

Now ifa = C[X,..., X,]/p is irreducible, then h,” (a) = C[ X}, ..., X,]
is too; this is obvious from the definition of irreducibility. Therefore if
a=a;Nn...na, is a decomposition of ae HC[X,, ..., X,]/p) into
irreducibles, then

hy™Ya) = h,"Yay) N ... by Ha,)

is a decomposition of h,” !(a) into irreducibles in C[X,, ..., X,]. And if
ae #(C[X,, ..., X,]/p), then since #(C[X, ..., X,]) is distributive, this
decomposition is unique.

Notice that in the proof of Lemmas 7.4 and 7.6, no use was made that one
of the rings was of the specific form C[ Xy, ..., X,]; as the reader can easily
verify, the proofs go through verbatim using any coordinate ring R and
natural homomorphism h, to R/p. The same comments apply to unique
decomposition of h,” !(a), for any ideal a in R/p. Since we refer later to the
more general forms of these lemmas, we state them explicitly:

Lemma 7.7. Let R be any coordinate ring, p any prime ideal of R, and h,,, the
natural homomorphism h,:R — R/p. Then h,” " induces a natural lattice-
embedding a — h,”'(a) of (F(R/P), N, +) into (J(R), N, +).

Lemma 7.8. h, ™! above defines a natural lattice-embedding of (,#(R/p), N, +)
into (F(R), N, +).
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In this section we have so far made no mention of a lattice
“Y(C[Xy,..., X, 1P, N, V).

Since #(C[X,..., X,]/p) is embedded in #(C[X,,..., X,]), it is natural
to ask if in some sense we can make a statement like “¥(C[X,,..., X,]/p)
is embedded in ¥(C[X,,...,X,]).” For this we need an appropriate
definition of ¥ (C[ Xy, ..., X,.]/p). As we saw at the beginning of this section,
C[X}, ..., X,]/p may be looked at as a ring of functions on the subvariety
V(p) in Cx,  x.; V(C[Xy,...,X,]/p) then becomes the lattice of sub-
varieties of V(p). In this way the embedding statement would indeed hold.

But there arises a question: We were able to produce the above V(p)
because the coordinate ring was presented in the particular form
C[X,, ..., X,]/p. However there are many ways of writing a given co-
ordinate ring R as a quotient ring of some C[ X, ..., X,,], and for each such
representation one would in general end up with a different variety, hence
a priori a different lattice of subvarieties, too. (See Example 8.1.) To make the
notion “¥7(R)” well-defined we shall in the next section develop a notion of
isomorphism of varieties, so that varieties with isomorphic coordinate rings
are isomorphic, and so that their associated lattices of subvarieties are also
isomorphic.

EXERCISES
7.1 Prove that any homomorphic image of any Noetherian ring is Noetherian.

7.2 Let R, and R, be coordinate rings over C. Supply the cartesian product R, x R,
with componentwise addition and multiplication, thus obtaining a new com-
mutative ring with identity. (This new ring is never an integral domain.) What
algebraic variety (or varieties) can be naturally associated with R, x R, ? Interpret
the existence of zero-divisors geometrically.

7.3 The cartesian product Cy, . x, X% Cy, .y has as coordinate ring the tensor
product C[X,, ..., X,, Yy, ..., Y,] of the coordinate rings C[X, ..., X,] and
C[Y;,. ... Y,]. Generalize this to more arbitrary affine varieties and their coordinate
rings. (Cf. Theorem 2.24 of Chapter IV.)

8 Isomorphic coordinate rings and varieties

In Section 7 we attached to each irreducible affine variety V a coordinate
ring Ry. For a good dictionary, we want our correspondences to be as
faithful as possible. Hence we ask if isomorphic coordinate rings determine
in some sense the “same” variety. In this book, “isomorphic coordinate
rings” will always mean “C-isomorphic coordinate rings”—that is, our
isomorphisms are the identity on C.
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ExaMpPLE 8.1. These coordinate rings are all isomorphic:

ClX,Y] C[X,Y] _ CIX,YZ]
Y) (Y—-X3) (Y-XLX+2)

In Example 8.1 the first coordinate ring is that of Cy in Cy; the second is
that of Cy in Cyy; the third, that of the parabola V(Y — X?) in Cyy; and
the last is the coordinate ring of the space curve V(Y — X%, X + Z) in
Cyyz. Hence isomorphic rings surely need not determine identical varieties!
Of course one could simply say that two varieties are isomorphic iff their
coordinate rings are. But there is then the obvious question of how isomorphic
varieties are related from a geometric viewpoint. We would like a correspond-
ing geometric definition of isomorphism of varieties, so that isomorphic co-
ordinate rings determine geometrically isomorphic varieties, and conversely.

As it turns out, such a definition can be looked at as an analogue of
corresponding differentiable or analytic notions. Write X = (X, ..., X,)
and Y = (Y,, ..., Y,). Then recall, for instance, that if ¢ is a 1:1-onto map
from R" to R", say

C[X] ~

$:(X) = (91(X), ..., 9,(X)) = ¢(X) = Y,

with inverse
¢ =yY) > i(Y),... . ¥(Y) = X,

then ¢ is a topological, differentiable, analytic, or linear isomorphism if the
¢; and y; are continuous, differentiable, analytic, or linear, respectively.
Since we are studying varieties defined by polynomials, it is natural to ask for
a “polynomial isomorphism.” We say that such a 1:1-onto map ¢:R" - R"
is a polynomial isomorphism if the ¢; and y; are all polynomials over R.
We analogously define polynomial isomorphisms from C" to C". For
polynomial isomorphisms, we will use the more suggestive letters p and ¢
in place of ¢ and ¥. (A more general, formal definition of polynomial iso-
morphism will be given in Definition 8.6.)

ExamPLE 8.2. Let
X1, X,) = (X, X2 + Xp) = (Yy, V)
map Ry x, to Ry,y,. Then
ph(YL )= (Y, - Y2+ 1) =X, — X2+ (X2 + X)) = (X1, X))
is the inverse of p, so p is a polynomial isomorphism. Under p, the horizontal

lines X, = constant map into parabolas.

As for subvarieties, given a polynomial isomorphism p and subvariety V
of C" (or R"), it is natural to define V to be polynomially isomorphic with its
image p(V). But if, as in Example 8.1, Cyx in Cyy is to be isomorphic to the
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space curve V(Y — X2, Y + Z) in Cyyz, we furthermore want a notion of
when varieties in spaces of different dimensions are isomorphic.

One may start by recalling various kinds of embeddings (say of R" into
R™ where m > n). For instance a 1:1 map ¢:R" —» R” is a differentiable
(analytic, linear, etc.) embedding iff the inverse ¢~ ' = y:(R") > R" has
at each point P € ¢(R") a differentiable (analytic, linear, etc.) extension—
that is, if for some open neighborhood Up < R™ of P, there is such a map
Wp:Up — R agreeing with ¥ on ¢(R") n Up. Since the values of a poly-
nomial on any open subset of R™ or C™ determine its values in all of R™ or
C™, in the polynomial case we may just as well take Up to be all of m-space.
We thus say that a 1:1 map p:R" » R™ is a polynomial embedding if the
components of both p and some g*:R™ — R" are polynomials such that
(g*| p(R™ o p is the identity map on R”, with a corresponding definition for C.

ExaMpLE 8.3. p:(X) — (X, X?) = (Y}, Y,) is a polynomial embedding of Ry in
Ry,y,- We have p;(X) = X = Y, and p,(X) = X? = Y,; hence the image of
Ry is the parabola V = V(Y, — Y;?) < Ry y,. Let ¢*:Ry,y, = Ry be the
projection map (Y;, Y;) > ¥; = X € Ry. Clearly g*|V is the inverse of p, so
p is a polynomial embedding of Ry in Ry,y,. We will say that Ry and the
parabola are isomorphic (see Definition 8.6); this fits in nicely with the fact
that R[X] ~ R[Y,, Y,]J/Y, — Y;?),noted (in the complex setting) in Example
8.1.

ExampLE 84. Let p:(X)—> (X, X2, —X)=(Y;, Y,, Y;) map Ry to
Ry,y,r,- Eliminating the parameter X from ¥, = X, Y, = X%, Y, = —X
yields

YZ_YIZZO Y1+Y3:0;

this defines the real part of the space curve of Example 8.1. Define g* by
q*(Y,, Y,,Y;) =Y, = X. Then p is a polynomial embedding, and our
space curve is isomorphic with Ry and the parabola above.

ExaMPLE 8.5. Here is an example of a 1:1 map of Ry into Ry,y, defined by
polynomials, which is not a polynomial embedding. Let ¢:(X) — (X?, X3) =
(Y,, Y,). The image ¢(Ry) = Ry,y, of ¢ isthe cusp curve ¥, = X2, ¥, = X°—
thatis, Y;> = Y,2. The graph in Ryy,y, of ¢ consists of more than finitely many
points, and is the real part of a complex curve; we call it a real curve. It is
easy to check, by taking secant lines through (0, 0, 0) and points of the graph
near (0, 0, 0), that Ry is the unique line tangent to the curve at (0, 0, 0). Now
the graph of any function W(Y;, Y,) from Ry,y, to Ry whose restriction to
¢(Ry) defines the inverse of ¢, must surely contain the graph of ¢. Since ¢’s
graph is tangent to Ry, the derivative at (0, 0) of ¥(Y;, Y;) approaching
(0, 0) along the cusp in Ry,y,, is infinite. Hence ¥ cannot be a polynomial
function.
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It is natural to call a space isomorphic to any polynomially embedded image
of it, and different embedded images of the same space should themselves be
called “isomorphic.” The following definition expresses this idea, and includes
our previous informal definitions. We state it for varieties over C, but it
extends to varieties over an arbitrary field; it also yields in R" and C” the
corresponding differentiable or analytic notions, using the arbitrary neighbor-
hood Up in place of all R" or C".

Definition 8.6. Let V < C" and W < C™ be irreducible affine varieties. A
mappingp: V — W whichis1:1from V onto W is a polynomial isomorphism
if there are polynomial maps

p*:C"->C" and g¢*.C" - C"
such that
p*|V=p and g¢*W=p " (13)

We then say V and W are isomorphic.

We now come to the result which is the main rationale of this section,
namely

Theorem 8.7. Two irreducible affine varieties V < Cy, . x, and W<
Cy,.....v,, are isomorphic iff their coordinate rings are C-isomorphic.

Before giving the proof, let us first note that a representation of any co-
ordinate ring R as R = C[z,,...,z] = C[Z,,...,Z,]/p, where p is a prime
ideal and z; = Z; + p, determines the variety V(p) in C,, . . We regard
(z15 ..., 2z,) as an ordered k-tuple; the points of the variety are precisely those
¢y, ..., c) € C* such that (Z, — ¢y, ..., Z, — ¢,) is a maximal ideal of
C[Z,, ..., Z,] containing p—that is, those points (c;, ..., ¢;) such that
(zy — ¢45 - -5 Zx — ¢) is a maximal ideal of C[z,, ..., z,], or, what is the
same, those points (¢, . . ., ¢;) such that when we substitute ¢; for z{i = 1,.. .,
k), we obtain a single-valued mapping from C[z,, ..., z] to C. For any
such ¢ = (¢y, ..., ¢), we may denote this “evaluation mapping” by ¢,;
for any q € C[zy, ..., z], ¢.qg) = g(c). It is clear that ¢, is a C-ring homo-
morphism—that is, a ring homomorphism on C[z,, ..., z,] which is the
identity map on C. Because of the importance of this ring homomorphism,
we make the following

Definition 8.8. A mapping of k-tuples (z;, ..., z) = (¢y, ..., ¢;) is a C-
specialization, or a C-specializationof(z, . . ., z;),if it defines a single-valued
mapping from C[z,,..., z,] to C, via substitution. This mapping is then
a C-ring homomorphism. If reference to C is clear, we abbreviate the term
to specialization. The point (cy,...,¢;) is called a specialization point
(of (z4,...,2z)). The set of all specialization points of (z,, ..., z,) forms a
variety in C¥; (z,, ..., z,) is called a generic point of this variety.
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PROOF OF THEOREM 8.7

<: Let C[x] = C[xy, ..-» X1 ~C[yy, ..., ym]l = C[y] be a given
isomorphism. Then of course each y; € C[y,, ..., y,,] corresponds under this
isomorphism to some element of C[x,,...,x,]—that is, there is a poly-
nomial p¥(X) such that y; = p¥(x,, ..., x,). Similarly, for each x; there is a
polynomial g§(Y) such that x; = qi{(ys, ..., ¥m) € C[)s, - -, ym]- (Note that

p¥ and g} are not necessarily uniquely determined.) Write (X, . .., X,) = (X)
and (Y, ..., Y,) = (Y), and define the polynomial maps p*:Cy — Cy and
g*:Cy - Cx by

p*(X) = (p1(X), ..., pH(X)) and g%(Y) = (@¥(Y),...,quY)). (14

We now show that p*|V = (g*|W)~! (which just says that thereis a 1:1-
onto map from ¥ to W such that it and its inverse have polynomial extensions
to Cy and Cy, respectively). For this, let (a) = (a4, . . ., a,) be any point of V.
Then (a) has the associated maximal ideal m = (x; — ay, ..., X, — a,) in
C[xy,...,x,]. As noted above, the points of Vare in 1: 1-onto correspondence
with the maximal ideals of C[x], and the points of W are in 1:1-onto cor-
respondence with the maximal ideals of C[y]. But the isomorphism
C[x] =~ C[y] links the maximal ideals m of C[x] with those in C[y] in a
1:1-onto way—say m (< C[x]) maps under the isomorphism to m’
(< C[y])—so there is defined a natural 1: 1-onto correspondence between the
points of V and those of W, which we may write as

xp+m,...,x,+m)=(@ «—— (y,+m,...,y, + m)= (D).

Since each y; corresponds to p¥(x), then (a) € V corresponds to (p}(a), ...,
p¥(a)) € W—that is, (a) « p*(a). Similarly for (b) e W, (b) <> q*(b). Hence
p*|V defines our 1:1-onto map from V to W and g*|W is its inverse, so
“<«=” is proved.

=>: Assume that V (which is a subvariety of Cx, x, = Cx) and W (a
subvariety of Cy, .y, = Cy) are isomorphic—that is, that Y = p*(X) and
X = g*(Y) are polynomial maps from Cy to Cy and Cy to Cy, respectively,
and that p*|V and g*|W are 1:1-onto and mutual inverses. We show that
Ry, = C[x]isisomorphic to Ry = C[y]. For this, define z; by z; = p#(x), and
let W’ be the variety in Cy having coordinate ring Ry = C[zy, ..., z,] =
C[z]. We show Ry, = Ry, by showing R, = Ry (that is, that C[x] = C[z]),
and then that W' = W.

By hypothesis, for any (a) € V, we have (a) = g*(p*(a)). Hence each
X; agrees with g¥(p*(x)) on V. Therefore X; and g¥(p *(X)) differ only by an
element of J(V); thus x; = X; + J(V) = q¥(p(X)) + J(V) = q¥(p*(x)). Hence
with (z) = p*(x), we have (x) = ¢*(z). Therefore C[x] = C[z] = C[x], so
CLx] = C[z]1.

We now show W' = W. For W < W', let (b) be a typical point of W.
Then (b) = p*(a) for a unique (a) € V. Now we know (x) — (a) is a specializa-
tion of C[x]; thus z = p*(x) — p*(a) is a specialization of C[z] and this in
turn means that (b) = (p*(a)) € W'. Hence W = W'.
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For W' < W, let (b') be a typical point of W’; then z — (b’) is a specializa-
tion of C[z]. Now we have just seen that x = g*(z), so x = g*(z) » q*(b’) is
a specialization of x, meaning that g*(b’) € V; therefore p*(q*(b')) = (b') e W.
Hence W < W. O

As we have seen, whenever a coordinate ring R is represented as R =
Clxy, .- ., x,], there is induced a corresponding variety of specializations
in C" of (x4, ..., x,); each way of so expressing R yields a variety in some C”,
and all such varieties are isomorphic. For example, C[X] may be rewritten
in the redundant form C[X, X], which may be thought of as
CLX, YJ/Y — X). The ring C[X] defines the whole space Cy of Cy, and
C[X, X] yields the set V(Y ~ X) = {(c, c)]c € C} < Cyy; Cy is isomorphic
to V(Y — X) via the polynomial map X — (X, X). Likewise, C[X] may be
represented in any of the following forms; the associated varieties are all
isomorphic: C[X, X, X] (a complex 1-space in C3); C[X, X?] (the parabola
V(Y — X?) = Cyy); C[X, X2, X?] (a space curve in C3). Note that inter-
changing the order of the x; in C[xy, ..., x,] yields in general a different,
but isomorphic, variety.

So far we have not answered the question of what is the variety associated
with a given coordinate ring—we have only constructed a bunch of mutually
isomorphic varieties, each embedded in some surrounding space. Toward this
end, first notice that for any C-ring homomorphism ¢:C[x,, ..., x,] = C
defined by ¢(x;)) =c;(i=1,...,n), ¢’s kernel m = (x; — ¢y, ..., X, — Cp)
completely determines ¢. Let ¥V = C" be the variety of specializations of
(x15...,x,),and let W < C™ be the variety of specializations of p*(x,, ..., x,).
Now ¢(x;) = c; implies that ¢(p¥(x,, ..., x,)) = p¥(cy, ..., c,), so if m defines
the point (cy, ..., ¢,) in V, then it defines the point p*(c, ..., c,) in W. The
ideal m thus connects corresponding points of varieties isomorphic under the
equations in (14). Looked at this way, m takes on the role of “the essential
notion of point.” Let us now formalize this idea.

Definition 8.9. Let R be a coordinate ring. We call the set of all maximal
ideals of R the abstract variety of R, and denote it by Vz; any maximal
ideal m of R will be called an abstract point, or a point of V. If a is any
ideal of R, we call the set of maximal ideals of R containing a the abstract
subvariety of V; defined by a, and denote it by V(a). If W is any such
abstract subvariety of Vg, the ideal (),,.w m of R is called the ideal
defined by W and is denoted by J(W).

Remark 8.10. A point of C" is in a variety V(a) = C" if and only if the
corresponding maximal ideal contains a; this is the justification of the last
parts of the above definition.

Definition 8.11. Let C[x,, ..., x,] be any representation of a coordinate
ring R. The variety Vin Cy, . x, of all C-specializations of (x4, ..., x,)

veey
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From Theorem 8.7, we see that any two concrete models are isomorphic.

Now let ¥(C[x;, ..., x,]) be our lattice of subvarieties of Ve, . 13
and let J be the isomorphism from ¥ (C[x,, ..., x,]) to Z(C[x,, ..., x,])
The restriction of J to the point varieties of Vg, .. ,; maps these points
to abstract points of Ve, ... ., —that is, to maximal ideals of C[x,, ..., x,].
This map is 1:1 and onto Vg, ... x,- (First, Jis a lattice isomorphism, hence
1:1 on the points; second, the map is onto since every maximal ideal m
in C[xy, ..., x,] defines a specialization point in Vg, . ;) We may
extend this restricted map to arbitrary subsets S of V¢, .., in the usual
manner: S = {m = J({P})|P€ S}. As with any 1:1 map from one set to
another, this map preserves unions and intersections—that is, for any
subsets S, T of Vg, ... x,; We have

SuT->SuT and SAT->SnT.

Hence such concepts in Vg, .., as subvariety, irreducibility, decompo-
sition, or topology, may all be transferred to the set V¢,,. ., of abstract
points. One can easily see that all these notions are well defined on Vg,
since any two concrete models of a given coordinate ring are isomorphic.
In particular, one may define (¥ (R), =, n, U) to be the lattice of subvarieties
of the abstract variety Vy.

Now that we’ve introduced abstract varieties, the reader may well ask,
“Since the abstract definition is an invariant notion, independent of any sur-
rounding space or any particular representation of R, shouldn’t we now
simply abandon the notion of concrete variety and just work in the abstract
setting?” Not at all. Both forms are useful. In stating results, it is frequently
neater and more natural to use an abstract formulation, but in proving
these results it is often convenient to use a concrete model.

EXERCISES

8.1 Find the coordinate ring of each of the three canonical dehomogenizations of the
variety in P%(C) defined by V(aX + bY) = Cxy (a, b € C). Show that all three
coordinate rings are isomorphic iff ab # 0. Interpret this fact geometrically.

8.2 Show that the transcendence degree over C of the coordinate ring of any irreducible
curve in C? is one.

8.3 Let R and R be the coordinate rings of irreducible plane curves C and C'. Show
that the quotient fields of R and R, may be isomorphic without C and C’ being
polynomially isomorphic.

8.4 If ¢ is a polynomial isomorphism from an irreducible plane curve C to another
irreducible plane curve C’, show that P € C is nonsingular iff ¢(P) € C' is.
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8.5 Find an irreducible curve C = Cyy and an element x of C’s coordinate ring which
tends to infinity at some, but not all, of C’s points at infinity. Is it possible to choose
an irreducible C c Cyy and a nonconstant x in C’s coordinate ring so that x tends
to infinity at none of C’s points at infinity?

9 Induced lattice properties of coordinate
ring surjections; examples

In this section we consolidate some of the earlier results of this chapter; this
will lead to some further questions whose answers will extend our algebra—-
geometry dictionary in an important way.

First, recall that to any variety ¥ < C" there is associated a coordinate
ring Ry = R and three lattices—(¥"(R), <, N, V), (#(R), =, N, +), and
(#(R), <, n, +); these lattices may be put into a sequence in a natural way
(Diagram 1),

FR), <, 0, +) == (JR), <, +) <—+> #(R), <, A, L)

Diagram 1

where f and iare the radical and embedding maps, respectively, and V, J
are the lattice-isomorphisms of Theorem 2.19. Conversely, any coordinate
ring R determines a variety, hence also a sequence of the form in Diagram 1.
Therefore such a sequence may be generated by either a variety or by a
coordinate ring.

Now if two varieties (or two coordinate rings) are related in some way, it is
natural to ask if there are corresponding relations between the associated
sequences. Since so many of the important relations between rings may be
defined via ring homomorphisms, we make the following definition, which
will be used throughout the book:

Definition 9.1. Let R, R* be commutative rings with identity. Let h: R — R*
be a ring homomorphism. For any ideal a = R, the ideal (h(a)) = R*
generated by the set h(a) = {h(a)|a € a} is called the extension of a in R*
(or just the extension of a if no confusion can arise) and is denoted by a®.
For anyideal b = R*, the inverse image h~ !(b) is an ideal in R and is called
the contraction of b (in R) and is denoted by b“.

We saw a special case of an induced relation on two sequences in Section 1
—there we looked at a coordinate ring C[x,, ..., x,] = Ry = R related
to Ry, = R* = R/p by the natural homomorphism h,, and this implied that
(7" (R/p), =, N, v) = ¥ (R*)is lattice-embedded in (¥ (R), , N, U) = ¥(R).
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The homomorphism h, induces maps from the lattices in one sequence to
those in the other as follows:

(@): h, induces the extension map ( )*:a—a + p = a° from #(R) to
J(R/p) = #(R*); h,” ! induces the contraction map ( )°:b — h~!(b) = b°
from #(R*) to #(R).

(b): h, induces the “closed extension”

a- . Ja+p = \/E
from #(R) to #(R*); h,~ ' defines the contraction
b—h, '(b) = b

from #(R*) to #(R). We continue to denote this restriction of ( )°in (a) to
FR*) by ().

Note that in the closed extension, the radical is necessary (Example 2.17);
in the contraction, h,” '(b) is already closed (Lemma 7.6).

(c): Let V and J be the lattice-reversing isomorphisms between ¥°(R)
and _#(R), and let V* and J* be the lattice-reversing isomorphisms between
¥ (R*) and #(R*). Then h, and h,” ' induce maps

V= V¥e () od(V) = V¥U(V)))
from 7°(R) to ¥"(R*), and
V* = Vo ( ) od*(V*) = V(J*V™))

from ¥(R*) to ¥"(R).

Under these two maps, objects in #(R) and #"(R) which correspond under
V or J map to objects in #(R*) and ¥"(R*) which correspond under V*
or J*

Leta =« R = C[xy, ..., x,]. Then V(a) is a subvariety of the variety V; of
specializations in C" of (x, ..., x,). Since a maps under closed extension to

a+p, V¥o /( )?odJ maps V(a) to V(a) n V(p)—that is, to V(a)’s inter-
section with V(p). Similarly, since b (= R/p) maps under contraction to
h=1(), Vo( )°odJd* embeds V(b) (< Vksp) in Vg; we denote this embedding
by ¢<. We then get a double sequence of lattices as in Diagram 2:

v v

(J(R)’ <, M, +) IZ (j(R), <, N, +) ? (V(R), <, N, U)

( )"H( ¥ VI )"H( ¥ Intersection with V(p)Hi

(F(R*), <, N, +) (—L (FR¥, =, N, +) r}——» (¥R*), <, A, U)
l* *
Diagram 2
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A number of previous and future results are incorporated in this diagram.
Certain results tell us that various maps are well defined; others essentially
make comments on how much lattice structure or decomposition into
irreducibles is preserved. For instance, various results earlier in this chapter
(for instance, in Section 2) make comments about the horizontal maps.
Lemmas 7.4 and 7.6 tell us that the three upward maps (contraction of ideals,
contraction of closed ideals, and embedding ¢ are all lattice-embeddings.
The downward maps preserve + and + of ideals and intersection of varieties
in the respective lattices, but need not preserve lattice structure. For more
about this, and the question of preserving decomposition into irreducibles,
see Exercise 9.1.

So far we have looked only at onto homomorphisms. Since the double
sequence in Diagram 2 contains so much information, one may wonder if
considering more general ring homomorphisms might represent a new
and important way of extending our geometric knowledge. This is indeed
the case.

Besides onto homomorphisms, other important homomorphisms are the
1: 1 homomorphisms, or embeddings.

Note that for a fixed coordinate ring R, any coordinate ring R* which is an
onto image of R is simply R modulo a prime ideal of R; but in the case of
1:1 homomorphisms, R* can be any ring containing R. In a sense, then, there
are more possible choices for R* in the 1:1 case. In this and the next three
sections we look at some of these. We devote the remainder of this section to
examples; these will give us an idea of the direction our development will
take.

ExaMPLE 9.2. The natural embedding h: C[X] < C[X, Y]. First note that
for any embedding R — R*, contraction becomes just intersection with
R—that is, a* < R* implies A~ '(a*) = (a*)* = an R.

Now in C[ X, Y], any maximal ideal is of the form (X — ¢, Y — d) where
¢, d e C, so the contraction (X — ¢, Y —dfis (X —¢, Y —d)nC[X] =
(X — ¢). Of course the isomorphisms V and J between maximal ideals in
F(C[X]) and points in ¥ (C[X]) are given by

(X —o¢) *—Z_—) [N
the analogous correspondences at the V*-J* level are
(X —c, Y —d) —a“d’_ (c, d).
Hence (X — ¢, Y — d) n C[X] = (X — ¢) defines the projection 7y(c, d) =
c € Cy of the point (¢, d)e Cyy—that is, Vo () o J* my-projects Cyy to Cy.
Now let us look at h, which induces the map a — (h(a)) = a®fora = R. In
C[X], any maximal ideal is of the form (X — ¢), so a° is just the principal

ideal (X — ¢)inC[X, Y].Butin Cyy, V(X — ¢)istheline X — ¢,s0 V(X — ¢)
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consists of the set of all points of Cyy my-projecting to ¢ € Cx. It is thus the
largest variety in Cyy projecting onto c. Note that the principal ideal (X — ¢)
in C[X, Y] is the smallest ideal of C[ X, Y] whose intersection with C[X']
is the ideal (X — ¢) in C[X ]! Theorems 10.1 and 10.8 easily imply a basic
generalization of this phenomenon.

ExaMpLE 9.3. In the preceding example we looked at the effect of h and h™!
on only maximal ideals of C[X] and C[X, Y] (or, geometrically, the effect of
V*o . /( )¥od and of Vo( ) od* on point varieties in Cy and Cyy). It is
natural to ask about the corresponding effects on more general ideals and
subvarieties.

For instance, consider the ideal

a*=(X—CI,Y—d1)('\(X—CZ,Y—d2)

in C[X, Y]. This defines the variety in Cyy consisting of the points (¢, c;)
and (d,, d,). Then

h™Ya*) = (a*) = an C[X]
=(X —c, Y=d)nCLXD 0 (X — ¢z, Y — dy) n C[X])
=X —c)n(X — ) = C[X],

so geometrically, V o () o J* projects {(cy, dy), (c2, d3)} to {cy, c2}.
Similarly, if b* = (Y — X?)in C[X, Y], then

(0¥ =(Y — X*) n C[X] = (0),

so Vo( ) odJ* projects the parabola V(Y — X*) onto Cy—that is, con-
traction in this instance again has the geometric effect of projecting onto Cy.

In both cases extension corresponds geometrically to sending the variety
into the largest variety lying above it: The ideal (X — ¢;) N (X — ¢,)in C[X]
extends to (X — ¢;) " (X — ¢,)in C[X, Y], and this defines in Cyy the union
of the lines X = ¢, and X = c,. In the parabola example, (Y — X?)° = (0);
(0 = (0) in C[X, Y], which defines Cyy, this being the set of all points of
Cyy lying above Cy.

The reader can also easily verify that the ideal

F= (X4 Y- L, X2+ Y24+ 2Z2—4)

in C[X, Y, Z] defines in Cyy; two circles (the intersection of a cylinder and
sphere); clearly ¢* n C[X, Y] = (X2 + Y? — 1); this defines the circle in
Cyy which is the projection of the two circles in Cyyz. And (X* + Y2 — 1)
in C[X, Y, Z] defines the largest variety of Cyy, lying above the circle,
namely, the cylinder above the circle.

Let us look again at contraction. First, we have the following

Lemma 9.4. For any two embedded coordinate rings R = R*, if m* is maximal
in R*, then m* N R = m is maximal in R.

146



9: Induced lattice properties of coordinate ring surjections; examples

PrOOF. Write R = C[xy, ..., x,] and R* = C[xy, ..., x,,] where m = n.
Then m* is of the form

(X1 — dyy ey Xy — Q)

so R*/m* is isomorphic to Cl[ay, ..., a,] = C. Since R/(m* " R) is in a
natural way isomorphic to a subring of R*/m*, we see that R/(m* n R) < C.
But also clearly C = R/(m* n R), so R/(m* N R)is isomorphic to the field C,
hence m* N R is maximal in R. O

From this lemma and the behavior of Vo () o J* in our examples so far,
one might guess that the “projected variety” Vo( ) oJ*V*) of any
variety V* in Cyy, is just the union of the projections on Cy of each of the
points in V*, or equivalently, that the function V o () o J* sending varieties
to varieties is induced by its restriction to the point varieties. Recall that any
function f:D — D* automatically induces a function &(D)— &(D*)
from the set of all subsets #(D) of D to the set of all subsets #(D*) of D*.
We just define the map so it preserves union, ie., for S = U {P} < D, let
f(u{P}) = U{f(P)} (that is, f(S)= {f(P)|PeS}). Now obviously an
arbitrary function defined on the set of subsets of a set D is not in general
induced by its restriction to the singleton subsets. However, since for any
a*, b* = R*,

(@*nb*)"R =(a*"R)n(b* " R)

(that is, contraction preserves intersections), and since the #- and ¥"-lattices
are reverse-isomorphic, we see that Vo( ) odJ* preserves unions, so it
would seem that Vo( ) odJ* is induced by its restriction to the point
varieties—that is, by a function on Cy,.

But let us consider V = V(XY — 1); if our guess were correct, then

Vo( )odJd¥V)wouldequal {J{Veo( )odJd*P). 8]

PeV

The first expression we know is Cy, since (XY — 1) n C[X] = (0). The
second is just the set-theoretic projection of ¥ on Cy, and this not Cy, but
Cx\{0}! (This is not even a variety in Cyx.)

What went wrong? Since V = | Jp.y {P}, we see that to have equality
in (5), Vo( )odJ* would have to preserve infinite union. But we have
proved only that Vo( ) odJ* is a lattice homomorphism, meaning that it
preserves union and intersection of two (and hence, by induction, finitely
many) varieties. In general, the g.1.b. and l.u.b. of an arbitrary collection of
elements in a lattice need not exist; even when they do, one can find many
examples showing that a lattice homomorphism may not preserve g.l.b. and
l.u.b. of infinite sets. In extending such finite operations to infinite ones,
one often meets topological notions. In our case, the set-theoretic projection
Cx\{0} is in a topological sense close to the variety-theoretic projection
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Veo( )od¥V)=Cy, for Cx\{0} is dense in Cy. More generally, the set-
theoretic projection always turns out to be dense in the variety-theoretic
projection; this follows at once from Theorem 10.8.1.

One thing we have learned from this is that the wvariety projection
Vo( ) odJ*is essentially a map from varieties to varieties, not from points
to points.

ExAamPLE 9.6. In Examples 9.2 and 9.3 we took both R and R* to be coordinate
rings of the very simple form C[X, ..., X,]. Now let us consider arbitrary
embedded coordinate rings R = R*. For R and R* as in Example 9.3, for any
maximal ideal m* < R*, m* n R is maximal in R; hence a point m* of Vg.
maps to the point m = m* N R of V. Then the question arises: Can this
map be looked at as a projection, as in Examples 9.2 and 9.3? To answer this,
let us write R < R* as

Clxyy--esxp] © Clxgs oo vy Xl (m = n).

By so writing R and R* we have, of course, selected affine models Vz = C"and
Ve« = C™ of Vi and Vg.. The model V. consists of all specialization points
(cys .., c)in Cx, . x, of (x4, ..., x,,), the maximal ideal in C[x,, ..., x,,]
corresponding to (cy, ..., ¢,) being m* = (x; — ¢4, ..., Xpm — Cp)-

Let us now note the general

Lemma 9.7. Let C[x,, ..., x,] = C[xy, ..., x,,] where m = n. For any
maximal ideal m* = (x; — ¢y, ..., Xy — C) < C[x4, ..., X,,], we have

(X1 —Cppeves X — ) N Cxps ey X ] = (6 — Cpy e vy X — €)= MW
m is maximal in C[x,, ..., x,].

Proor. Since C[x,, ..., x,J/(x — ¢y, ..., X, —¢) ~C[cy, ..., ¢,] = C,
(xy = ¢g5-.., X, — cy)is clearly maximal in C[x,..., x,]. From Lemma 9.4
we see that m* N C[x,, ..., x,] is maximal in C[x,, ..., x,]. Obviously
(xy = ¢15..., X, — ¢,) is contained in the maximal ideal m* n C[x,,..., x,],
so these two maximal ideals of C[x;, ..., x,] must coincide. O

Since (x; — ¢y, ..., X, — c,) corresponds to (cy, ..., ¢) € Veuy, .o xpo
Lemma 9.7 shows that (m*)* = m* n C[x,,..., x,] does indeed define a
projection of the points in Vg, to those in Vg, . ;- We therefore
make the following

vers Xm)

vees

Definition 9.8. Let m™ and m be points in the abstract varieties Vg« and Vy of
embedded coordinate rings R = R*; then m* is said to lie above m if
m = m* N R; we write m = g(m*) and call ¢ the natural projection from
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9: Induced lattice properties of coordinate ring surjections; examples

Vg+ to Vg. For V(a*) = {m*lm* > a*}, the set-theoretic projection
®(V(a*) is {m(m*)|m* € V(a*)}.

Thus, for example, R = C[X] is embedded in R* = C[X, 1/X], C[X]
determines the affine model Cy, while C[X, 1/X] defines the hyperbola
consisting of all points (c, 1/c) in Cxy. Each maximal ideal m* of C[ X, 1/X]
is of the form (X — ¢, (1/X) — (1/¢)) where ¢ # 0, and m* " Ris (X — ¢) =
C[X]; hence any point (¢, 1/¢) € Cxy projects to ¢ € Cy.

What happens if we use a trivial embedding, for instance C[X] <
C[X, X*], in which the two rings are actually the same? Then C[X] has
Cy for an affine model, and C[ X, X?] defines the parabola V(Y — X?) = Cyy.
Each maximal ideal (X — ¢, X? — ¢?) intersects C[X] in (X — ¢); this
defines the projection (c, c?) — c. Hence the parabola set-theoretically
projects onto Cy. Note that since C[X] = C[X, X?], Cy and the parabola
are just different models of one and the same abstract affine variety Vepx =
Veix, x2- Our projection defines an isomorphism between the two models;
the points ¢ and (c, ¢?) correspond via the one maximal ideal (X — ¢) =
X —¢, X? — ) < C[X].

Likewise, C[X] = C[X, X3] defines a projection of the cubic

V(Y - X3) < CXY intO Cx,

this projection being an isomorphism. And C[X] < C[X, X2, X?] defines
a projection (which is also an isomorphism) from a curve in Cyy; onto Cy.
Note that in the parabola above, the projection of it into Cy is all of Cy, which
is isomorphic to the parabola; but the projection is not 1:1 and does not
define an isomorphism.

In each of Examples 9.2 and 9.3, (h(a)) = a® = R* defines the largest
subvariety of V¢ lying above V(a) « V. Even for C[X] = C[X, 1/X] having
as a model the hyperbola V(Y — (1/X)) = Cyy, we see that above 0 € Cy
there lies no point of V(Y — (1/X)); correspondingly, the set of all points
above 0 € Cy is the empty set in V(Y — (1/X)). This is reflected in the fact
that (X)° in C[X, 1/X] is actually all of C[X, 1/X] (since X - (1/X) =
1 €(X)?). Of course the ideal (1) = C[X, 1/X] defines the empty set in
V(Y — (1/X)). In the next section we prove that the set of all points of V.
projecting into a given subvariety V(a) of YV is a subvariety of Vg. (Theorem
10.1) and that this subvariety is defined by a® < R*,

EXERCISES

9.1 In Diagram 2, how much lattice structure is preserved by each of the three down-
ward maps? Show that for none of the three downward maps is irreducibility
preserved.

9.2 Let W be a subvariety of Cy, . x,. Find, for any m > 0, a variety V in Cy,
whose natural set-theoretic projection on Cy,  x,is Cx . x \W.

v Xnem

149
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10 Induced lattice properties of
coordinate ring injections

In the last section, an onto homomorphism Ak, : R — R* generated the double
sequence of Diagram 2. More generally, any coordinate ring homo-
morphism h: R — R* generates a double sequence as shown in Diagram 3.
In this and the next section, we will consider the important case when # is
one-to-one.

To begin with, any homomorphism & : R —» R* yields

(F(R), =, N, +) é (£(R), ©, N, +) ‘f—’ (¥ (R), =, N, V)

1

( )”H( ¥ ¢WH( ) Ve o )%gﬂyo( ) o J*

*

(F(R*), <, N, +) ? (Z(R*), <, N, +) — (¥ (R*), <, n, V)

el i<

Diagram 3

where extension () and contraction () are as in Definition 9.1. The
lattice ¥"(R) may be looked at as the lattice of subvarieties of either the
abstract variety Vg, or of some concrete model of it; likewise for ¥"(R*).
The maps in Diagram 3 are pretty much self-explanatory, except that in
two of the upward maps, we must show that ( ) actually does map a closed
ideal in R* to a closed ideal in R—that is, that ( ) = \/( ). This is easy:
If ¢* is a closed ideal in R*, it suffices to show that if a € R\h™'(c*), then
a" € R\h™ !(c*), for all positive integers n. For this, note that a € R\h~(¢*)
implies that h(a) € R*\c*. Therefore (h(a))" € R*\¢* for all n > 0, which
implies that h(a") € R*\¢* for all n > 0. Since distinct elements of R* map
under h™! to distinct cosets of h~1(0), h(a") € R*\ c* implies that any element
in 1~ '(h(a™) must be in R\h~ !(c*). Obviously a" is such an element.

Now if his 1: 1, then contraction is just intersection with R. Extension is
a® = aR*fora = R,and ¢® = . /¢R* for ¢ closed in R. Note that this radical is
actually necessary—that is, if ¢ is closed in R, cR* may not be closed in R*.
From a geometric standpoint, we might expect this to happen if, for example,
above a point of multiplicity one there lies exactly one point of multiplicity
greater than one. For instance there are two distinct points of the parabola
V(Y? — X) = Cyy my-lying above any point X # 0 in Cy. At X = O these
two points coalesce to one double point. The coordinate rings of Cy and
V(Y? — X)are C[X]and C[X, X'/?3] = C[X!/2]. The origin of Cy is defined
by m = (X) = C[X], and m*®is (X)in C[ X /?]. The extended ideal m® is not
closed; the only maximal ideal containing (X) in C[X*/*] is (X!/?), so (X/?)
is the closure of (X).
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10: Induced lattice properties of coordinate ring injections

We next prove the important facts that when his 1:1, V¥o  /( )od
and V o () o J* become “inverse projection” z~ ! and “closed projection”
7, respectively. These will fit in with our examples in Section 9.

For the statement of the next theorem, recall Definition 9.8.

Theorem 10.1. Let R = R* be coordinate rings, and let a be any ideal of R.
The set of all points in Vg lying above V(a) < Vg is the variety N(a®).
(Hence V(a®) = 1t~ (V(a)), where 1t is the natural projection of Definition
9.8.)

PRrROOF. First recall from Definition 8.9 that for any ideal b in any coordinate
ring R, V(b)is the subset of V consisting of all maximal ideals in R containing
b. In particular,

(10.2) V(a®)istheset {m*} of all maximal ideals of R* containing

ae

Now from Example 9.6 we know that any maximal ideal m" in V(a®) lies above
the point m* N R in Vg ; thus from (10.2) we know that m' lies above V(a)
if m* 7" R > a. Therefore

The set of points in Vg. lying above V(a) is just the set {m'} of
maximal ideals m' in R* satisfyingm' " R o a.

Hence we will have proved Theorem 10.1 once we show that {m*} = {m'}.
But this is easy; both {m*} < {m'} and {m'} = {m*} follow at once from
the fact that a“ is the smallest ideal in R* containing a. ]

Before stating the next theorem we make the following definitions:

Definition 10.3. The natural topology on any affine abstract variety Vj is the

Cx,. ..x,(viathemapm=(x; —c¢y,..., %, — ) = (C1s ..., CH)) ’

Remark 10.4. The above topology is well defined since any two concrete
models are isomorphic; hence in particular they are homeomorphic relative
to the topologies induced on them from their surrounding spaces.

The next definition is an extension of Definition 9.8.

Definition 10.5. Let a = R and b* < R* be ideals in coordinate rings R < R¥,
let V(a) € Vg and V(b*) = V. be the associated abstract varieties, and
let ¢ be the natural projection m* — m* N R from V. onto Vg. If the set
n(V(b*)) is dense in V(a) relative to V(a)’s natural topology, we say that
the variety V(b*) lies over the variety V(a).
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The corresponding concrete-model form of this is:

Definition 10.6. Let © be the natural projection of C" x C™ onto the first
factor. A variety V* < C" x C™ lies over a variety V < C" if the set
(V*)is dense in V.

Definition 10.7. Let R = R* be coordinate rings. An ideal a* — R* is said to
lie over an ideal a — Rif a = a* N R.

Our next theorem connects the above geometric and algebraic notions of
lying over as follows:

Theorem 10.8. Let R = R* be coordinate rings, and let 1t be the natural pro-
Jjection m* — m* N R from Vg« to Vg.
(10.8.1) If a and a* are ideals in R and R* respectively, if a defines
W (= Vp), and if a* defines W* (< Yg.) then

(a* lies over a) = (W* lies over W).

(10.8.2) If W and W* are varieties in Vg and V. respectively, if W
defines ¢ (< R), and if W¥* defines ¢* (< R¥*), then

(W* lies over W) = (c* lies over c).
In proving Theorem 10.8 we shall assume the following fact:

Lemma 10.9. Let V be any irreducible variety in C", and let V' be a proper
subvariety of V. Then V\V' is dense in V.

This says that any proper subvariety of V is in a sense much smaller than
V. Proving this lemma here would somewhat disrupt the continuity of our
development; it will fit in easily and naturally in Chapter IV (Exercise 2.6 in
Chapter IV).

Remark 10.10. Lemma 10.9 need not hold for reducible varieties, e.g.,
(Cx U Cy\Cy is not dense in Cy U Cy = Cyy. Also note that it need not
hold for real irreducible varieties. For example, let V = V(Y2 — X3(X — 1))
< Ryy, and let V' = origin of Ry,. (The origin is an isolated point of V)

PrOOF OF THEOREM 10.8. We prove (10.8.1) first for a = (0) = R and a* =
(0) = R*. That is; we show that g(V*) is dense in V. First, clearly t(V*) = ¥,
for as noted above, m* maximal in R* implies that m* n R is maximal in R.
To prove density, let us choose without loss of generality arbitrary concrete
models of V and V* by letting, for instance, R = C[x;, ..., x,] and R* =
C[xq, ..., xn] where m = n; let V < C" and V* = C™ be the associated
varieties of specializations, with 7n:Cy,  x, — Cx, . x, the natural
projection. We shall show that n(V*) is dense in V.
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For this, let (¢y, . . . , ¢,) be any point of V. Now there is a point (cy, ..., ¢,,)

of V* above (cy, ..., ¢, iff mapping each x; to ¢; (i = 1, ..., m) defines a
homomorphism from C[x,,...,x,] to C. We suggestively write
Clxgs-os Xm] = Cley, ..o, ¢y] for this homomorphism; of course

Clc¢ys, - - -, cm] = C. Using analogous notation, we see that there is a homo-
morphism C[x,...,x,] = Clcy,...,cn] iff we can successively extend the
homomorphism

Clxs.- 5 x.] — Cley, ... 5]
to
Clx1y s Xpr 11 = Clers - osCnaids
then to
Clxgse e Xns 15 Xnr2d = Clens oo, Cuvpy Carals
and so on, up to the full homomorphism
Clxy -5 Xmd = Cley, -+ o5l

Let us denote the variety of specializations of C[x,,...,%,,...,X,+;] in
Cx,,....xn...xn.., by Vi.(Hence V, = Vand V,,_, = V*)
Now if x,,; is transcendental over C[x;,...,x,], then any choice of

¢n+1 € C yields a homomorphism C[x,,...,x,.;] — Clcy,-..,Chs1], SO in
this case the first extension can always be made. If x,,; is algebraic over
C(xy, - . ., Xp), let its minimal polynomial be

plO(xl’- "axn)Xvn+1Nl + ...+ plNl(xh- . 'axn) (Pw # 0) (15)

Since N, > 0, if pyo(cy,--.,c,) # O, then there is a root of the equation

plO(Cla' "7cn)Xvn+1N1 + ...+ plNl(Cb'- "Cn) = Oa (16)

and any of its roots ¢, ; yields a homomorphism x,,; = ¢,;,. The only
time anything can go wrong, therefore, is when the leading coefficient
Piolcy, ..., c,) is zero, for then there may be no zero of the polynomial in (15).
(For example if the polynomial is XY — 1, the leading coefficient is X ; when
X =0 we get 0Y — 1 = —1, which has no zero.) Hence we can make this
first extension except possibly when (cy, . . ., ¢,) lies in the zero-set of the non-
zero polynomial p,y(x;, ..., x,), so the points of V not in ny . (V;) are
contained in the zero-set of py4(x,, ..., x,). This zero-set is a proper sub-
variety W, of V;since V is irreducible, V\ W, is dense in V (Lemma 10.9), so
n,. (V1) is dense in V.
We can similarly extend

(I:[xl’ e ’xn+1] - C[cl’ e ’cn+1]
to a homomorphism
C[xb- '°’xn+2] - C[Cl""’cn+2]
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for all (cy,. .., c,+1) €xcept possibly off a proper subvariety W, of V;; hence
the set-theoretic projection my . (V,) is dense in V;. This means that
Ty, ., ° Tx,,(Va) = Tix,, x...(V2)is also dense in ¥, because, more generally,
if f:8§ > Tandg: T — U are continuous maps, if f(S)isdensein T, and if g(T)
is dense in U, then g - f(S) is dense U. (PROOF: An arbitrary open neighbor-
hood of any point P in U contains points of g(T); since there are points of f(S)
arbitrarily close to any given point of T, continuity implies there are points
of g o f(S) arbitrarily close to any point of g(T'), hence arbitrarily close to P.)

Likewise, 7y, , x,.. ,x..,(V3) is dense in V'; continuing in this fashion, we
are finally led to the result that ny ., x (V._.) = 7x,,,. x,(V*) is dense
in V.

This argument generalizes at once to the case when a* is any prime ideal
p*, for R/(p* n R) may in a natural way be looked at as a subring of R*/p*.
Then W* and W are defined by the O-ideals in R*/p* and R/(p* n R),
respectively. This brings us back to the case just considered.

Finally, suppose a* is an arbitrary ideal in R*. Now if a* lies above a, then

</ a* lies above \/E—that s,

a* N R = aimplies ./a* " R = \/E.
(The proof of this fact is easy: a € \/E means that g" € a for some n, so ¢" € a*
and a € R—that is, a € \/a* n R. Conversely, b € \/a* n R implies b" € a*

for some m, so also b€ a* "R = a, hence be\/a.) We may now factor
/a* into prime ideals (by Theorem 4.9):

JaE=pFoL . npk

The preceding argument then applies to each prime separately:

Ja¥ defines V(pFu...u V()
and
\/E defines V(p¥fn R)u...uU V(pF N R);

hence
T X V(@) = 7y 5 (V(PT) U ... L V(pY))
=Ty, x (VP L. U Ty xn V().

Thus ny_, . x.(V(a*)) is dense in V(a) = V(pF " R) U ... U V(p¥ N R) since
each my ., x,(V(p¥)) is dense in V(p¥ n R). Thus (10.8.1) is proved.

We now prove (10.8.2). By hypothesis, W* lies over W—that is,
n(W*) = W; also W = V(c) since W defines ¢ implies that ¢ defines W.
Likewise ¢* defines W*, so by (10.8.1), W* lies over V(c* n R)—that is,
(W*) = V(c* n R). Therefore

V() = V(c* A R).
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11: Geometry of coordinate ring extensions

Since ¢ and ¢* are both closed, so is ¢* n R (proved at the beginning of this
section). We know _#(R) is lattice reverse-isomorphic to ¥(R), so ¥Y(c) =
V(c* N R) implies that ¢ = ¢* n R—that is, ¢* lies over c. This completes the
proof of (10.8.2) and therefore of Theorem 10.8. O

It is natural to ask next just how much lattice structure in Diagram 3 is
preserved under an embedding h: R = R*. Some elementary results, valid
for arbitrary coordinate rings R < R* are outlined in Exercise 10.1. We shall
henceforth assume these very easily-established results. Other results hold
only for specific types of extensions. We look at these in the next section.

EXERCISE

10.1 In this exercise we look at properties of Diagram 3 when R is embedded in R*.
The following letters denote typical ideals and varieties in the diagram: a,b € .#(R);
a* b* e #(R¥);c,d € #(R);c*, b* € #(R*); Wy, W, € ¥(R); and W¥, W% e ¥ (R*).
(a) Show that all six vertical maps are p.o. homomorphisms.

(b) Prove that the three upward maps, from left to right, preserve n, n, and U,
respectively, but yield only inclusions, e.g., (a* + b*)° = (a*)° + (b*), for
+, + and N, respectively. Show by example that we cannot strengthen these
inclusions to equalities. [Hint: Find simple varieties W;, W, such that
(W, n W,) & T(W,) N 7(W,), then translate into ideal language.]

(c) Prove that the three downward maps, from left to right, preserve +, +, and
N, respectively. Show that (a N b)° = a® n b, Show that (¢ N D)* = ¢* N D°
and that = }(V(c) u V(1)) = z~1(V(c)) U =~ }(V(D)). (Hint: Use the “¥ — ¢~
lattice isomorphism.)

(d) Prove that the three upward maps preserve primality of ideals and irreducibility
of varieties; show by example that the downward maps need not.

(e) Do the three upward maps preserve decomposition into primes or irreducibles?
Show that in general, irredundancy in the decomposition is not preserved.

11 Geometry of coordinate ring extensions

We now turn our attention to the geometry of specific kinds of coordinate
ring extensions. From elementary algebra, we know that if a domain D* is a
finitely generated extension of a domain D, it may be looked at as a pure
transcendental extension followed by a pure algebraic extension. The
geometric effect of any coordinate ring extension can be determined once
we know the effects of these pure extensions. In this section we study these
two types of extensions.

Pure transcendental extensions

Let an arbitrary coordinate ring R = C[xy,...,x,] define the variety
V< Cy,. .. x,,and let Y be a transcendental element over R. Each maximal
idealof Risof the formm = (x; — ¢q,...,X, — Cy),Wherex; = c,...,Xp = Cp
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defines a homomorphism of R to C; and the maximal ideals m* of R* =
C[xy,...,X, Y] are (x; — ¢y,...,X, — ¢y, Y — d), where d € C may be chosen
arbitrarily. (Since Y is transcendental, for any d € C, x, > ¢y,...,x, = ¢,,
Y — d defines a homomorphism of R* — C.) Hence the set of all points in
Cx,,..., x., v lying above a given (cy,...,c,)€ Vis {(cy, ..., c,,d)|d € C}. Thus
n~ (V) is the “product variety” V x Cy < Cy,_._ x..y. (We briefly introduce
product varieties in Section IV,2.) Similarly, one sees that for a pure trans-
cendental coordinate ring extension R[Y,..., ¥,] of R, above each point
(cy, ---> c)) €V lies the set {(cy, ..., ¢, dy, ..., dp)|d;i€C,i=1,..., m};
hence the extension defines the variety V x C" < C"*™ Likewise, for any
ideal a = R, a° ¢ R[Y,, ..., Y,] defines in C"*™ the variety V(a®) consisting
of all points in C"*™ set-theoretically projecting into V(a); thus V(a®) =
V(a) x C" < C"*m,

Under the assumption that R* is a pure transcendental extension
R[Y,,..., Y, ] of R, we can easily sharpen some of our results about the
behavior of ideals under extension. (See Exercise 11.1.) For instance, the
inclusion in Exercise 10.1(c) becomes equality, and unique irredundant
decomposition is preserved. (Exercise 11.1(d).) However, under contraction
from R[Y,, ..., ¥,] to R, the results of Exercise 10.1(b) cannot be improved,
as is shown by the example of {(1, 1)U (1, —1)} < Cy,y,, which projects
to {1} = Cy,.

Algebraic extensions

We next turn to the geometric significance of finite algebraic extensions of
coordinate rings, and of a particularly important kind of algebraic extension,
the integral extensions. We shall assume that the reader is familiar with the
basic definitions and properties of algebraic and integral extensions. In
particular, recall that for integral domains R, S, T, if S is algebraic (or integral)
over R, and T is algebraic (or integral) over S, then T is algebraic (or integral)
over R. If k = K < L are algebraic field extensions, then one has the degree
relation

[L:k]=[L:K]-[K:k]. 17)

We shall also use the important theorem of the primitive element.

The basic geometric facts about algebraic and integral coordinate ring
extensions which we prove in this section are contained in the following
theorem. To make our arguments a bit more intuitive, we use concrete models,
though of course everything can be translated into the abstract setting. If R
is any integral domain, R denotes its quotient field.

Theorem 11.1
(11.1.1) Let R = R* be a finite algebraic extension, where R and R* are
coordinate rings, and let V.= Vi and V* = Vi. be concrete models of R
and R*. Let [R*:R] = D. Then there is a proper Subvariety W of V such
that above any point of V\W, there are precisely D distinct points of V*.
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11: Geometry of coordinate ring extensions

(11.1.2) If, furthermore, R* is integral over R, then over each point of W
there are k distinct points, where 1 < k < D.

Notation 11.2. In proving our theorern, it turns out that there are fewer
notational difficulties if we stick to one basic letter for the various generic
points. Therefore we let (xi,...,x,) = (x) be a generic point of V =
Cx,...x, = Cx, and let (xy,...,X,+m) = (x,X) be a generic point of
V* « Cx x = C"*™ We shall further write (x) = (x’, x"), where x' =
(x4,...,x,)1is a transcendence base of C[x].

PrOOF OF (11.1.1). Let us first consider the special case when R is a pure
transcendental extension of C—that is, when R = C[x] = C[x"]. Now if m
happens to be 1, meaning that V* has generic point (x, x, ), then R* is
isomorphic to C[x, X, ,1/((X, X,+1)), where p(X, X,+,)eC[x, X, ] is
a minimal polynomial of x,,,; over C(x); hence V* is simply the variety
Vip(X, X,+,) = C" L If [C(x, x4 1) : C(x)] = D, then deg p = D, so there
are exactly D points of V(p) over each point of Cy off the proper discriminant
variety W = V(Zy, . (D).

To extend this result to an arbitrary algebraic extension R* = C[x, X]
of the same ring R = C[x], we may use the theorem of the primitive element
to reduce the problem to the above. Extending our result to the full statement
of (11.1.1) will then be trivial.

Let us therefore write C(x)[x] as C(x)[y], where y is a single quantity (a
primitive element) algebraic over C(x). Let V' be the variety in Cy yx, .,
with generic point (x, y). Now there are two natural maps between our generic
points of ¥* and V: the first map is from (x, X) to (x, y), defined by sending
(x) to itself and (X) to y. Since y is a primitive element, y can be looked at
as a polynomial in x,,, ..., X,+» With coefficients in-C(x); the nonzero
coefficients will be denoted by f;. The second-map is the inverse of the first—(x)
maps to (x), and y maps to (¥)-Each of x,,, , ..., X,+mn IS a polynomial in y
with coefficients g;, # 0 in C(x).

Now V* consists of the set of all C-specializations of (x, X), and V' is the
set of specializations of (x, y). The above mutually inverse maps of generic
points may not induce (via specialization) 1 : 1-onto maps between all the
points of ¥* and V', since the f; and g (€ C(x)), after reducing to lowest
terms, may still have denominators which are zero at certain points of Cy.
However at any point (a) of Cx not in the union of the zero sets of the de-
nominators of all the finitely many f; and g;,, any point (a, a) € V* corresponds
in a one-to-one manner to a point (a, b) € V' via our relation between the
generic points. Hence over any point of Cx not in this union, there lie just
as many points of V*(c Cy ) as there lie points of V' (cCy ., ,). Now if g
is the minimal polynomial over R(x) of y, then removing from Cy the dis-
criminant variety V(Zy, . (q)), as well as the above union, leaves us with a
subset of Cy over which there are exactly D (=deg g) distinct points. We have
thus proved our theorem in this case if we let W be V(Zy, , ,(¢)) together with
the above union.
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The full statement of (11.1.1) may now be easily established. Recall
Notation 11.2. If [R*: R] = D,and [R: C(x)] = d, then [R*: C(x')] = D -d,
and there is a proper subvariety W' of Cy, . x = Cj. so that over each point
of Cx.\ W’ there lie exactly d points of ¥ < Cy and exactly D -d points of
V* < Cyx. Now there is a point (a, @) € V* lying over (a) € V iff we can extend
the specialization C[x] — C[a] to C[x, X] — C[a, a]. It is clear that since
[R*: R] = D, for a fixed point (a) € V there can be at most D such extensions.
But since there are exactly D -d points of V* over any (¢') = (ay, ..., a)
e Cx\ W', the maximum number D of extensions must be attained above
any (a) € V which lies over (a'). Thus, letting W= (W’ x Cx,,, . x)NnV,
we see that (11.1.1) is proved. O

ProOOF OF (11.1.2). Let (a) € V. We know that a point (a, @) is in V* iff the
specialization C[x] — C[a] extends to a specialization C[x, X] — C[aq, a];
this holds, of course, iff we can successively extend the homomorphism

Clxps o os Xpsi-1] = Clag, -, @y i-1]

to
C[xla""xn+i]—)C[ala'--7an+i] (1=1,,m)

Now if R* = C[x, X] is integral over R = C[x], then in particular x,.; is
integral over C[x,,...,x,+;— ]fori = 1,...,m;hence the leading coefficient
of a polynomial p over C[xy, ..., x,+;_,] such that p(x,,;_;) = 0, may be
taken to be 1. Now p; is a multiple of x,,;’s minimal polynomial m; over
C(xy, ..., Xy+i-1) Say deg m; = d;. Since every zero of m; is a zero of p;, and
since at any (ay, ..., a,+;_ ) there are deg p; zeros (counted with multiplicity)
of p;, there are at (ay, . . ., a,+;_ ;) d; zeros of m;. There is therefore at least one
extension of our homomorphism, and no more than d; of them. Hence for
any fixed (a) € V there is at least one choice, but no more than d; choices for
the (n + i)™ coordinate of V*. Therefore there is at least one, but there are
no more thand, -...-d,, points of V* above (a) € V; by (17),d,-...-d,, = D.
Thus (11.1.2) is proved, and therefore Theorem 11.1. O

ExaMPLE 11.3. If R* is algebraic but not integral over R, then the number of
points of V* over W may vary more wildly. For example, consider V* =
V(X, X3 — X,) = Cy x,x,- The coordinate ring of V* is

ClX 1 X2, X31J/(X, X5 — X))~ C[X, X,, X /X, ]

C[X,, X,, X,/X,] is an algebraic extension of C[ X, X,]; X,/X, satisfies
the minimal polynomial

qY)=X,Y - X,.
The discriminant with respect to Y of g is

9Y(q) = XZ’
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11: Geometry of coordinate ring extensions

so W in Theorem 11.1 is Cy, (=Cy,x, = V). Above the point X; = 0 in
Cy, there are infinitely many points of V*. Above any other point of Cy,
there are no points of V*.

Now clearly any coordinate ring R is an algebraic extension of some
polynomial ring C[X, ..., X,]. In view of Theorem 11.1 we see that this
says, geometrically, that any irreducible variety may be looked at as a kind
of near cover of C". We call X4, ..., X, a transcendence base of R. Although
for a fixed co-ordinate ring R, any two transcendence bases have the same
number of elements, R of course has many different transcendence bases;
for instance in the ring C[X,, X,, X,/X,] of Example 11.3, we chose X,
and X, to play this role. But we could just as well have selected X /X, and
X,.Then X, is algebraic over C[X,/X,, X,]since (X;)' — X, - X /X ,(X,)°
= 0. In general, as we change the transcendence base we change the way in
which the variety is a cover of C". Thus with respect to the new base Y; =
X,/X,, Y, = X,, our affine model of the coordinate ring of Example 11.3
becomes Z = Y, Y,, a hyperboloid set-theoretically projecting onto Cy y,.
For certain choices of base the associated cover may be simpler than for
others; in view of (11.1.2) of Theorem 11.1, we might expect to get a par-
ticularly pleasant situation if R turns out to be integral over C[ X, ..., X,].

Our next result is the important normalization lemma, which tells us we
can in fact always choose a transcendence base X, ..., X, of R so that R is
integral over C[ X4, ..., X,]. We shall begin by looking at an example which
will point the way to a proof.

ExampLE 11.4. Consider the hyperbola V = V(XY — 1) € Cyy. There is
no point of V m,-lying over the origin of Cy; this fits in with the fact that
XY — 1 =0 does not define an integral equation for Y over C[X]. Now
Figure 1 suggests that if we tilt the Y-axis a bit, this bad behavior disappears
relative to the new coordinate system—every line parallel to the Y’-axis in

(5
Y
Cy

Figure 1
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R? intersects V in exactly two points. The new Y’-axis is the line X' =
X —aY =0, for some a # 0. The coordinate change from axes Cy and C,
to Cx = Cx- and Cy. is given by

X' =X —-aY (a #0),
Y=Y

Then the equation XY — 1 = 0 becomes
(X' 4+aY)Y —1=0, ora(Y) + XY —1=0. (18)

Tilting the Y-axis in effect adds a leading Y'*-term to X'Y’ — 1, thus making
Y’ integral over C[X'].

Essentially, our proof of the normalization lemma amounts to tilt-
ing enough of the axes to remove the bad behavior. Before stating this
lemma, note that the coordinate axes Cy, in Cy, . x, are just the varieties
V(X5 ooos Xics Xivry ---5 X, If XY, ..., X, are linearly independent
C-linear combinations of Xy, ..., X,, then C[X,,..., X,] = C[X},..., X,],
and X are new coordinates in C". Now in Cy x,, X} = X; —aX,, X}, = X,
represents a tipping of Cy,. More generally, in Cy, . x the analogous
coordinate change which tips one axis (say Cy, ) and leaves the others fixed is

X’l = Xl _alX"

X1 =Xooy — ap1 X, (19)
X, =X, (a; e C).

In an arbitrary coordinate ring

R = C[xy,...,x,] = C[X,..., X, 1/p,

the relations

X] = Xy — a;x,
x;l'—l = Xp—1 T Qp—1Xy
Xp = Xy
are induced by the coordinate change given in (19) in the surrounding space
Cx,. ... x,- Note that
Clxy,-.-5x,] = Cx%, .- .5 X0

ceey

We now state and prove the normalization lemma. Recall the notion of
transcendence degree.
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Lemma 11.5 (Normalization lemma). If R = C[x,,...,x,] has transcendence
degree d over C, then there are elements y,, ..., y, in R such that R is
integral over CLy,, ..., ys). The y, may be chosen to be C-linear combi-
nations of the x;.

ProoF. If d = n, then we may take y; = x;, and the lemma is trivially
true. Thus suppose without loss of generality that x, is algebraic over
Clxy, ..., x,—1] Let g(X,, ..., X,) be a polynomial of lowest degree D (in
X, ..., X,) for which g(x,, ..., x,_;, X,) is a minimal polynomial of x,
over C(xy, ..., x,—1). Now tilt Cx . In the new coordinates X given by
(19), g¢(X 4, ..., X,) becomes

‘I(X& + aIXm ety X;l—l + an—-an’ Xn)7 (20)

which is still of degree D. Substituting x; for X; yields a polynomial for x,
over C[x},...,X,_];if we can make the coefficient of X,” a nonzero constant,
x, will be integral over C[x}, ..., x,_;]. Now the coefficient of X,” in
(20) is just the coefficient of X,? in (20) with each of X7, ..., X/,_, set equal
to 0—that is, of X,” in g(a,X,, ..., ap-1X,, X,). f K(X,, ..., X,) is the
homogeneous polynomial of all D-degree terms of g(X,, ..., X,), then
the D-degree term of g(a, X,,, ..., ay_ 1 X, X)) is (a1 X,y o5 Gy 1 Xy, Xp) =
X,Ph(ay, ...,a,_, 1); hence the coefficient of X, is h(a, . .., a,_, 1) which
may be made nonzero for an appropriate choice of the a;, since h is not the
zero polynomial. Hence if d = n — 1, we have proved the lemma with
Vi =Xpsees Yuo1 = Xpoq.

Now if n = d — 2 choose x, ..., x,-, as above, and with no loss of
generality assume that x;_, is algebraic over xj, ..., x,_,. The same argu-
ment as above shows that x;,,_, is integral over C[x], ..., x,_,] for analogous
C-linear combinations x7, ..., X,_, of x}, ..., x,_ . (Since the x| are linear
combinations of x,, ..., x,, the x; are then also linear combinations of
X1,...5X,.) Now R is integral over C[x}, ..., x,_;], which in turn is integral
over C[x1,...,x,_,];hence R is integral over C[x1,. .., x,_,], so our lemma

is proved for d =n —2 with y, = x{, ..., y,—, = Xx//_,. Proceeding by
induction, we establish the lemma for any transcendence degreed,0 < d < n.

|
EXERCISES

11.1 Suppose the coordinate ring R* is a pure transcendental extension of a coordinate
ring R. For these rings, establish the following:

(a) Extension on #(R) preserves intersections (cf. Exercise 10.1(c)).

(b) If pis prime in R, then p€ is prime in R*.

(c) Leta c Rbeclosed,and write a° = a[Y,,..., Y, ] = R[Y;,...,Y,] = R* where
the Y, are independent transcendental elements over R. Show that arbitrary
powers of elements in R*¥\a° are in R*\a® and thus conclude that ( )° maps
FR)to Z(R*).(Thus( )= \/ ()¢ if R* is pure transcendental over R.)

(d) If a € #(R)has the unique irredundant decompositiona = p, N ... " p,,show
that a° has the unique irredundant decomposition p;° N ... N p,°
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11.2 With notation and assumptions as in (11.1.2) of Theorem 11.1, show that for any
positive integer k < D, there is a subvariety W, & V of V so that there are <k

distinct points of V'* above each point in W,, and >k distinct points of V* above
each point of V\W,.

11.3 Let R = C[X, 1/X?]. Use the proof of the normalization lemma to find:
(a) a C-linear combination y, of X and 1/X? so that R is integral over C[y,];
(b) an integral equation for 1/X? over C[y,].
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CHAPTER 1V

Varieties of arbitrary dimension

1 Introduction

In this chapter we generalize some of the results of Chapter II to varieties of
arbitrary dimension. Let us begin by putting into perspective some of the
results of Chapter II. A curve C in C2 or P?(C) defines a topological space, its
topology being induced from that of C? or P?(C). If, in particular, C is non-
singular, then it is a topological 2-manifold (cf. the discussion after Theorem
2.7 of Chapter I). In fact, it is actually an analytic manifold, in the sense that
all the homeomorphisms ¢, ' o ¢, of Definition 9.3 of Chapter II are
analytic.

Now one can study curves locally or globally. In a local study, attention is
focused on properties in the neighborhood of a point. An example of this is
Theorem 4.13 of Chapter II giving the topological structure of any plane
curve in the neighborhood of a point. In fact, in proving this theorem we
actually obtained the analytic structure of a plane curve at any point.

In a global study one asks for results about the overall structure (in this
case, topological or analytic). For example Theorem 8.4 of Chapter II, which
says that any curve C in P%(C) is connected, is a global theorem, in the sense
that one cannot deduce that a topological space is connected by looking only
at arbitrarily small neighborhoods of each point. Orientability is another
global notion—small neighborhoods around any point of P*(R) are topo-
logically just like those of a sphere, yet the sphere is orientable and P2(R) is
not. (The reader may check that P*(R)is not orientable by pushing an oriented
circuit across the line at infinity) Theorem 2.7 of Chapter I is another
global result; it describes the overall topological structure of any curve
in P?(C). And for a nonsingular plane curve C = P*(C) we have a particularly
beautiful global result—we know that C is a compact connected orientable
2-manifold, its genus being very easily determined by the genus formula in
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Theorem 10.1 of Chapter II; the genus then determines the overall topo-
logical structure of the curve in the sense that any two nonsingular curves
of the same genus are homeomorphic. The manifold property is a local
property, but compactness, connectedness, and orientability are all global.
The genus (or, equally well, the Euler characteristic) is a “global invariant.”

It is natural to seek generalizations of these results to an irreducible variety
V of arbitrary dimension in P"(C). Some of these generalizations are quite
straightforward. For instance, showing that V is compact is trivial. Also, any
irreducible variety V is connected (Theorem 5.1); this is easy to prove once
connectedness is established for irreducible curves. See (5.2). The equivalence
between smoothness and nonsingularity is established for arbitrary dimen-
sion in Theorem 4.1. And for a nonsingular variety, the definition and proof of
orientability is straightforward (Theorem 5.3). The dimension theorem for
curves (Theorem 6.1 of Chapter II) is another global result—two curves must
intersect somewhere in P%(C). The general dimension theorem for varieties
V, W < P*C) says that cod(V n W) < cod V + cod W. Hence if dim V +
dim W > n, V and W must intersect somewhere in P"(C); furthermore, at
each point of intersection the dimension of V n W is at least dim V +
dim W — n. We prove these facts in Theorem 3.1, Corollary 3.2, and
Theorem 3.8.

In Chapter I we briefly looked at Bézout’s theorem for curves in P*(C),
and saw how it represents an important generalization of the fundamental
theorem of algebra. In this chapter we prove Bézout’s theorem for varieties
in P*(C) (Theorem 7.1); this both generalizes the fundamental theorem of
algebra and extends the dimension theorem. In Section 6 we develop the
fundamental notions of order and multiplicity used in stating and proving
Bézout’s theorem.

Now when we try to generalize to varieties in P*(C) the structure results of
curves in Chapter 11, we meet a much more difficult problem, both at the local
and global levels. For instance locally, one can have very bad singularities.
(For example, if V= C" is any affine variety, its homogenization in C** ! has a
singularity at the origin which has essentially the same complexity as V
itself.) But even if one assumes a trivial local structure (for instance, if the
variety is nonsingular) the corresponding global problem is no easy matter.
The problem then becomes one of finding invariants that do for arbitrary
nonsingular varieties what the genus does for nonsingular curves. Much work
has been done towards finding the precise topological (and also analytic)
structure; however, given a prime ideal p < C[ X4, ..., X,] (corresponding
to an irreducible polynomial p(X) € C[X] in the case of a plane curve), there
is no analogously simple formula yielding a complete set of invariants which
fully determines the topological structure of the corresponding underlying
manifold in P%C). In the case of curves, one invariant (for instance, the
genus) suffices. But for higher dimensional manifolds, it in general requires
more than one such number, as a reader familiar with Betti numbers will
recognize. Even though Betti numbers, homology, cohomology, and homo-
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topy all shed light on the topological structure, such information need not
entirely determine the global topology. In fact, A. Markov ([Markov]) has
proved that for closed, connected, compact manifolds of real dimension >4,
it is impossible to get a general algorithm producing a complete set of topo-
logical invariants (so that two manifolds are homeomorphic iff they have the
same set of invariants).

In this chapter, then, we generalize to varieties in C" and in P*(C) some of
the results of Chapters I and II which can be proved in a chapter of reasonable
length.

We remark that in Section 1,4, we mentioned the usefulness of working
over ground fields other than C. In fact, one of the most productive directions
recently taken in algebraic geometry is, even more generally, to replace the
coordinate ring k[x,, ..., x,] by an arbitrary Noetherian commutative ring
R with identity; one can then let maximal ideals of R be “zero-dimensional
points” of a kind of “variety,” and can let the other prime ideals of R
represent “higher-dimensional points,” which are essentially “ higher-dimen-
sional irreducible subvarieties.” It turns out that much of algebraic geom-
etry can be treated in such a purely ring-theoretic fashion. Because of the
growing importance of these ideas, we include in this and the next chapter
some examples to give the reader some familiarity with them, and to let the
reader see some translations from one level to another. In this chapter, the
concept of dimension provides a nice example of how one can shift from
the purely geometric, visual, notion to a purely algebraic notion; the algebraic
form can then be used in settings far removed from the limited range of the
“visual” definition, and the algebraic form can provide a more geometric way
of looking at areas formerly thought to have little geometric content. As
examples of the ring-theoretic viewpoint, in Section 2 of this chapter we
include a ring-theoretic characterization of dimension; in Section V 4, we
show how nonsingularity translates into ring-theoretic terms; and in Section
V,5, the ring-theoretic forms of both dimension and nonsingularity are used
to provide an example par excellence of a complete dictionary between ideals
and geometric objects (chains).

2 Dimension of arbitrary varieties

In this section we look at the notion of dimension of varieties. We do this from
three viewpoints. We begin by looking at dimension in a very geometric way,
for complex varieties. (Definitions 2.3 and 2.7). For an irreducible variety,
one can also look at dimension as the transcendence degree of its coordinate
ring. For complex varieties, this is shown to be equivalent to the first defi-
nition (Theorem 2.14); it is perhaps less pictorial, but has the advantage of
yielding a nice definition for varieties over any field. Finally, we show how to
base the notion of dimension on sequences of prime ideals. This can be used as
a definition of dimension for yet more general kinds of “variety” (cf. Section
V,5) and is useful in purely ring-theoretic treatments of algebraic geometry.
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We now turn to the geometric definition of dimension. First, we shall take
for granted certain well-known facts about dimension: We assume that C” has
complex dimension n at each of its points, and that open subsets of C”, as
well as all homeomorphic images of open subsets of C", are of complex
dimension n.

In defining dimension of a variety, we begin with a definition of dimension
at a point of a variety, then extend this to a definition for the entire variety.
Now in defining dimension at a point, we shall see that there are certain points
having a V-open neighborhood which is indeed a homeomorphic image of an
open subset of some C"—in fact, each sufficiently small such neighborhood is a
subset of the graph of a complex-analytic function; this will follow from the
general implicit mapping theorem (Theorem 3.5 of Chapter II), which we
prove in this section. We then show that any point of ¥ is a limit point of these
“nice” ones, and then define the dimension of V at P to be the largest of all
such limiting dimensions (Definitions 2.3 and 2.7). For example, the complex
dimension which one would naturally assign at (0, 0, 0) to the subvariety
Cx v Cyz of Cyyz is 2; Definitions 2.3 and 2.7 are just generalizations of
this idea. Because of the fundamental role the general implicit mapping
theorem plays in this definition, we prove this theorem next.

PrOOF OF THEOREM 3.5 of Chapter I1. We first prove the theorem for the case
q = r = 1; then more generally, for any g = r. We then consider the full
theorem g = r. (Of course, we never have g < r.)

Case g = r = 1. With notation as in the statement of the theorem, let
f=hfi=fpsayf= f(Xy, ..., X,—1, Y) with £4(0, ..., 0) # 0. The proof
for this case is, aside from minor modifications, the same as our proof of
Theorem 3.6 of Chapter II. For the hypothesis

fO,...,00=0, f0,...,00#0

expresses that the function f(0,...,0, Y)in Y alone has Y = 0 as a zero of
multiplicity one. Then the proof of Theorem 3.6 of Chapter II works
essentially verbatim, with f(0,...,0, Y), (¢cy,...,co—y), and (X4, ..., X,_,)
in place of p(0, Y), (c), and (X), respectively.

Case q = r. The theorem in this case gives us certain information about the
zero-set V' = V(fi, ..., f;) = C" In proving it we shall replace the functions
/; by other functions (which still define the same zero-set), so that the Jacobian
becomes simplified; in this way we shall reduce the theorem’s proof to a
relatively simple induction.

We modify the functions f; in two different ways:

First, if A is any nonsingular (g x ¢) matrix (entries in C), then f; may be
replaced by g;, where

G199 = A(S1s -, 1)

here ¢t denotes transpose. Each g; is thus an invertible linear combination
of the functions f;, and V(f3, ..., f)) = V(g;, ..., g,)
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Second, if C" has coordinates X = (X, ..., X,), then any nonsingular
(n x n) matrix B over C induces a coordinate change to (Z4, ..., Z,) = Z via

X = ZB;
thus

V(gy(X), ..., gX)) = V(gi(ZB), ..., g/ZB)) = V(gT(Z), ..., g7(2)).

Hence we may replace the f(X) by the g¥(Z).

To get our desired simplification, we choose 4 and B as follows: Let
J(f)x=o be asin the theorem’s statement ; write this as J,. Then by elementary
matrix theory, we may let 4 and B be nonsingular matrices of order ¢ and n,
respectively, so that in the (¢ x n) matrix AJ, B, the last ¢ columns of AJ, B
form the (g x q) identity matrix, and the first n — g columns are all zero
columns. If we let (gy, ..., g,) = A(f1,..., f),and X = ZB, then

f; _ 0g;
(ix)-(%)

and therefore

*
- <Z Qg_'.%>3 (chain rule)

(The last equality follows from the fact that X = ZB = (0Z,/0X;)B =
(0X,/0X ;) = 1) Therefore at (X) = (Z) = (0), we have

*
AJ B = <ai>
0Z;)z= )

Since V(fy,....f) = Vig}, ..., g¥), we may just as well have used the
functions g¥ to begin with; thus, writing f; for g¥,

(2.1) We may assume that the last q columns of J(f)x— ) form the
unit matrix.

We now complete the proof of the case ¢ = r using induction on g.
We have already established it for ¢ = 1. Now suppose it has been established
for g — 1;let fy,..., f,—, be g — 1 functions. To prove it for g, let f, be a
¢ function. By (2.1), we may assume that (9f,/0X,)(0,...,0) # 0, so the
theorem for a single function tells us that there are neighborhoods U"~ ! and
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IV: Varieties of arbitrary dimension

U' of (0)in Cy,, . x,_, and Cy, respectively, and a function O X1, X))
holomorphic in U"~! such that in U"~! x U! the zero-set of f is the graph
of the function X, = ¢(X,, ..., X,_).

Now consider

hi(Xl""’Xn—l) = f;'(Xl"",Xn—la ¢q(X19"'5Xn~l))

where i = 1,...,q — 1; each of these ¢ — 1 functions is holomorphic in a
neighborhood of (0) € C*~ . The fact that X, = ¢,(X,,..., X,_,) near (0)
means that a point (¢) = (cy,...,c,) near (0)eC" is in V(f},..., f) iff
Ch = @ cy,...,cpo)and hfcy,...,c,—y) =0fori=1,...,q — 1(thatis, iff
(0)is in V(f), and in V(f}, ..., f;-,)). So far, we have made the variable X,
“explicit.” Our aim is to represent V(fi, ..., f;) locally as the graph of a
function from U"~?to U, so we want to simultaneously make all the variables
Xp—g+15---» X, explicit.

To do this, we apply our induction hypothesis to the functions h;; we show
that our simplifying assumption (2.1) on fi, .. ., f, implies that a correspond-
ing simplifying assumption holds for the new functions h;. First, by the chain
rule, we have

oh,  of; _a_X1+ ofi 0X,._,
0X; 0Xx, ox; T 0X,., 0X;

J
_ O, % o
ox; ' ox, 0X;

)
X, 0X,

This, together with the hypothesis that (9f;/0X, 4+ )(0) = ;; (where §;; = 1
if i = j and O otherwise), implies that (9f;/0X,)0)=0fori=1,...,q9 — L
Hence

oh;

o,
)=z — (=6
%O O

ijs

$0 (2.1) is satisfied for h,, ..., h,_ ;. Hence there are functions ¢, ..., ¢,_,
holomorphic in a neighborhood of (0)e Cy, . . o, M—q=(Mn—1)—
(@ — 1)) so that in a neighborhood of (0)e Cy, . x, ., V(hy, ..., h_y)
is the graph of the function (¢,, ..., ¢,_,). Thus near (0) e C*, V(f}, ..., 1))
= V(hy, ..., h,—y, f;) is the graph of

(¢l’ st d)q—l’ ¢q(X1, AR Xn—q’ ¢19 ] ¢q—1))'

We have thus proved the theorem when g = r.

Case q > r. Suppose that the first r rows of (9f;/0X ;) are linearly indepen-
dent; denote V(fy, ..., f,) by V. We shall show that V(f,, ..., f;) = V. Thus
since near (0), V is the graph of an analytic function (¢, ..., ¢,): U "> U"
(notation as before), near (0) V(f}, ..., f;) would be the graph of the same
analytic function, which would prove this case.

168



2: Dimension of arbitrary varieties

We prove V(fj, ..., f;) = V by showing that for each i > r, V(f}) > V—
that is, f; vanishes on V for i > r. But it is easy to evaluate these f; on V,
since V is described near (0) by (¢, . . ., ¢,). The evaluated function is just

f;'(Xl’ "',Xn—n ¢1(X1’ e Xn—r)’ ""¢r(X1, ~~~aXn—r));

we shall denote this by F;. We want to show that F; = 0 for each i > r. (Note
that trivially, F; = 0 for i < r).
Since F4(0) = 0, it suffices to prove that for each i > r,

oF, _ OF,

i = =0
oX, ox,_,

throughout a neighborhood of (0) e Cy, . x,_,, since then each F; would be
the constant 0. For this, we need only use the chain rule together with the fact
that the last ¢ — r rows of the Jacobian matrix at (0) are linear combinations
of the first r, say

% _ v O .

L= A = L...,q).
an l;all an (l r+ s ‘I)
We thus have, fori >rand 1 <j<n—r:

OFy ST o 0%y 5 3 Oy
0X; 210X, 0X; =1 0X, 0X;

af c d f a¢k+r n
1
~(fade) e B (Eeik)
d afl - aﬁ a¢k+r—-n _ : aFl
= a "(ax L. ax, ox, )~ ,;““a_x,.’
where all the partials of f; are evaluated at (X,,..., X,_,,¢,,..., ®,).

The last equality is simply the chain rule applied to dF,/0X ;. Now for [ = 1,
.1, F;=0,500F/0X;=0forl=1,...,r Henceforeachi>r,

% = _ OF _ 0
ox, T 0X,.,
throughout a neighborhood of (0) e Cy, . . _.,as desired. O

Now that we have proved this theorem, we can easily show that any
variety in P"(C) or C" has a dimension at each of its points. We begin with the
following convenient

Notation 2.2. Let V< Cy, . x, be a variety, and let P be any point of V. We
denote by

rank(J(V)p)
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IV: Varieties of arbitrary dimension

the number of linearly independent rows of the Jacobian array (0p,/0X ,
..., 0p,/0X,)p of polynomials evaluated at P; there are infinitely many
rows (corresponding to some indexing by a of the polynomials in J(V) =
C[X,, ..., X,]), and n columns. Note that this rank is the same as the
rank of any (m x n) submatrix, where {p,,..., p,} is a basis of J(V)
(cf. Definition 3.2 of Chapter III). In the sequel it will be convenient to
denote any such Jacobian array by J(V), though, of course, the order in
which the rows are written is not uniquely determined.

Our first definition of dimension will be based on the notion of “local
analytic manifold points™ of a variety. A local analytic manifold point of a
variety V is any point Q of V' near which V can be represented, as in Theorem
3.5 of Chapter I, as the graph of an analytic function. (Thus any point Q
having a V-neighborhood throughout which rank (J(¥)) is constant, is such a
point.) Note that there are local analytic manifold points Q arbitrarily near
each point P of a variety Vin C" or P"(C). To see this, let r be the largest integer
that rank(J(V),) attains, as Q runs over all points of V arbitrarily close to P.
Let Q, be any point such that rank(J(V),,) = r. This rank cannot increase at
points of V close to Q,, for Q, sufficiently close to P; nor can it decrease,
by continuity of the entries of any r linearly independent rows of the array.
Hence the rank is constant throughout a neighborhood in V of Q,, so the
hypotheses of Theorem 3.5 of Chapter II are satisfied.

Definition 2.3. Let V be a nonempty variety in C". The (complex) dimension
of Vat apoint P € ¥, writtendim, V,is maxy(dimy, V), or equivalently,n —
ming(rank(J(V),)), where Q ranges over the local analytic manifold
points of V arbitrarily near P, and where dim,, V' is the complex dimen-
sion of the part of ¥ near Q. The dimension of V, written dim V, is
maxp.y(dimp V). By convention, dim ¢ = —1.

In view of our comments above, we have

Theorem 2.4. If V < C" is any variety, then every point P of V has a dimension,
as does V itself.

We may also define dimension for projective varieties. Certainly the
dimension at a point P of an affine variety should not change simply by
taking the projective completion of the variety. Similarly, we would expect
that the dimension at a point P € ¥V < P*(C) should agree with the dimension
of any dehomogenization of V containing P. We connect this idea with the
above affine definition of dimension as follows. Let H(V) be the homogeneous
variety in C"*! corresponding to ¥ < P*(C), and let L, be the 1-subspace of
C"*! corresponding to P. If H is any (complex) hyperplane of C"*! whose
intersection with L, is a point other than 0 € C"* !, then H defines a dehomog-
enization of V containing P. The intersection H(V) n H is a variety in H
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2: Dimension of arbitrary varieties

(that is, in a copy of C") representing this dehomogenization of V, and
L, n H is the point of H(V) n H corresponding to P € V. The intersection
H(V) n H is an affine representative of J relative to H, and L, n H is an
affine representative of P relative to /. In a moment we shall prove:

(2.5) The dimension of the affine representative H(V) n H at
Ly n H is independent of the choice of any H such that 0 ¢ H and
&f # Lp n H.

This shows that we can base a definition of dimension of projective
varieties on Definition 2.3. One can equally well define dimension using the
homogenization H(V) instead of V. Since 1-subspaces of C"*! correspond to
projective points in V, we might guess that H(V), as an affine varicty, has
dimension one greater than that of the projective variety V. This is true; this
and (2.5) easily follow from the following lemma:

Lemma 2.6. With notation as immediately above and as in Notation 2.2, we
have

rank(J(H(V))pnn) = rank(J(H(V) N H)ppn)s

where H(V) n H is regarded as a subvariety of H, where 0 ¢ H, and where
L,nH# .

Proor. Since these ranks are unaffected by any nonsingular change of co-
ordinates in C"*!, we may assume that H is defined by X,,, = 1, and that
LpnH=(0,...,0,1). Since relative to these coordinates, any Jacobian
array for H(V)~ H < C" consists of just the first n columns of the cor-
responding array for H(V) = C"*!, to prove the lemma, it suffices to show
that in these coordinates, the (n + 1)* column of any Jacobian array for
H(V), is zero at the point (0, ..., 0, 1). For this, let p = p(X,, ..., X,+) be
any polynomial in J(H(V)); to show that py . ,(0,...,0,1) =0, use the
familiar Euler Theorem for homogeneous polynomials:

(deg p)p = Xipx, + ... + Xpi1Px,, -
Since p(0, ..., 0, 1) = 0, we have, at (0, ..., 0, 1),
0=0py, + ... +0px, + Ipx,., = Px,.., O
PROOF OF (2.5). Proving (2.5) is equivalent to showing that
rank(J(H(V) » H)p,nn)

is independent of the choice of any H satisfying0 ¢ Hand L, N H # (. For
all such H, these ranks are equal to rank (J(H(V))L,..x), and they are all the
same since H(V) is homogeneous, which obviously implies that the rank of
J(H(V)) is constant on points (other than the origin) of any 1-subspace
Lp of H(V).
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IV: Varieties of arbitrary dimension

From Lemma 2.6, it is now easily seen that for any H as above, and any
QeH(V) n H,dimg H(V) is one greater than dimyH(V) N H).

Using Definition 2.3 for the dimension of affine varieties, we now define
the dimension of projective varieties as follows:

Definition 2.7. Let V < P%C) be a nonempty variety and let P be any
point of V. The dimension of V at P, written dim, V, is the dimension of
any affine representative of V at the corresponding affine representative
of P. Or, equivalently, dimp V = (dimg H(V)) — 1, where H(V) is the
homogeneous variety in C**! corresponding to V, and Q is any nonzero
point on the 1-subspace of C"*! corresponding to P. The dimension of V,
written dim ¥ is maxp.(dim, V). (Again, we define dim &5 to be —1.)

We then obviously have

Theorem 2.8. If V = PYC) is a projective variety, then V has a dimension at
each point and a dimension.

If V is irreducible, we can prove more:

Theorem 2.9. If V is any irreducible variety of P"(C) or C", then every point of
V has the same dimension.

Corollary 2.10. Let V be a variety of P(C) or C", and let P be any point of V.
Then dimp V is the largest of the dimensions of those irreducible components
of V which contain P; dim V is the largest of the dimensions of Vs irre-
ducible components.

Proor oF THEOREM 2.9. Since for a projective variety V < P%C), any two
points of V lie in some one affine representative of V, it clearly suffices to
assume that V is affine. Thus let V < C”, and let r = maxp .y (rank(J(V)p)).
Then our theorem says that the set of points of ¥V where the rank is r, is dense
in V. Now the set of points P where rank(J(V)p) is strictly less than r forms a
proper subvariety of V, since these points form the zero-set of the collection of
(r x r) minors of our “(c0 x n)” array, and each such minor is a polynomial
in X,,..., X,. Hence it suffices to show that for any subvariety W of an
irreducible variety V, V\W is dense in V; or, equivalently, if a subvariety V'
of an irreducible variety V contains an open set of V, then V = V’. This
follows at once from Theorem 2.11.

Theorem 2.11 (Identity theorem for irreducible varieties). Let V,, V, be
irreducible varieties (in P*(C) or in C"), and let U be any open set (in P"(C)
or C". If

thenl/lez.

172



2: Dimension of arbitrary varieties

ProoF OF THEOREM 2.11. Since any variety in P*(C) may be represented by an
affine variety in C"*!, we may without loss of generality consider only the
affine case. For this, it suffices to prove that any polynomialin C[ X, ..., X,]
which is zero on an open subset of V; is zero on all of V,, for then, likewise, it
is zero on all of V,, hence V, < V. Similarly, V; < V,,so V; would equal V,.

Since the value at any point in V; of an arbitrary polynomial in
C[X,, ..., X,] coincides with the value of that polynomial mod J(V}), it is
enough to show this: Let p be any element in V;’s coordinate ring
C[Xy, ..., X, () = C[xy, . .., x,] which vanishes on an open subset of
V;; then p vanishes on all of V. Now from Theorem 2.4, any open set of V;
contains some point (0) of dimension d, such that after renumbering co-
ordinates if necessary, the part of ¥, near (0) is the graph of a function
analytic in a neighborhood of (0)e Cy, . x, (cCy, . x) Hence the
natural projection on Cy, . x, of the part of V| near (0) is an open set of
Cx,. ... x,- We want to show that p = p(x,, ..., x,) is the zero polynomial.

A point (ay, ..., a,) is in V; iff (x, ..., x,) = (a4, - - ., a,) defines a C-homo-
morphism of C[x,, ..., x,]; by hypothesis, for each (a,, ..., a,) € V; near (0),
play, ..., a,) = 0—that is, p is in the kernel of each such specialization

of C[xy,...,x,]. It is easily seen that we may assume {x,,..., x,} is a
transcendence base of C[x,, ..., x,]. (Note that within some neighborhood
N of (0) e C", above each point of N n Cy, . x, there my,, .. x.-lies just
one point of V;; a higher transcendence degree would yield, for any N,
infinitely many points above most points of N n Cy, . x,.) If p were not
the zero polynomial, it would satisfy a minimal equation

gp"+ ...+ q.=0, where q;eC[xq,...,x4]; (1)

note that by minimality,
(2.12) g,, cannot be the zero polynomial.

Since p(ay,...,a;) =0, (1) implies that g,(a;,...,a;) = 0. But since
{xy,..., x4} is a transcendence base (a, ..., a;) may be arbitrarily chosen
in this specialization, so ¢,, = 0 throughout some neighborhood of
(0)e Cy,. ... x,. Itis then easily proved that g, is the zero polynomial, and this
is a contradiction to (2.12). Therefore p is the zero polynomial in C[x, .. ., x,],
which is what we wanted to prove. Hence Theorem 2.11 is proved, and there-
fore also Theorem 2.9. (|

We next translate dimension into purely algebraic terms, based on the
transcendence degree of an affine irreducible variety’s coordinate ring
(Theorem 2.14). This characterization often yields simple proofs of dimen-
sional properties, and extends naturally to a definition for varieties over an
arbitrary field (where ideas like “ smoothness” may not be so readily available).
To prove Theorem 2.14, we use the following result (cf. Lemma 104 of
Chapter II).
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IV: Varieties of arbitrary dimension

Theorem 2.13. Let V = Cy, . x,. be a nonempty irreducible variety. Suppose
V’s coordinate ring C[x, . .., x,] has transcendence base {x,, ..., x;}. Let
(0) be a typical point of V, and suppose that V n Cyx,, , .. x, consists of only
finitely many points. Recall that any product of disks a polydisk. Then for
each polydisk A"~ ¢ = Cy,,,.. x,. centered at (0), there is a polydisk
A? c Cy,. ... x, centered at (0) such that above each point a in A° there is a

veey

pointof Vina x A" ™4,

ProOOF. Note that if V is of codimension 1, the theorem follows immediately
from Lemma 10.4 of Chapter II. For arbitrary codimension, the proof can
easily be reduced to the codimension-one case, as follows: First, the standard
proof of the theorem of the primitive element (as given, for instance, in
[van der Waerden, Vol. I, Section 40]) shows that some C-linear combination
of x44+4,...,X, is a primitive element for the extension C(x,, ..., x,) over
C(xy, ..., xg). Without loss of generality, assume that coordinates in
Cx.,......x, have been chosen so that x,. , is such a primitive element. Then
eachof x,, ,, ..., x, s a rational function of x,, ..., x4, ;. If V' is the variety
in Cy, . x,., With generic point (x;,..., x4+,;), then over each point of
V'’ near (0) there ny,,, .. x,-lies just one point of V. We are thus led back to
the codimension-one case. O

We may now prove Theorem 2.14, which translates dimension into purely
algebraic terms. First, if R is any integral domain containing a field k, the
transcendence degree over k of R is the usual transcendence degree over k
of R’s quotient field, and is denoted by tr deg R/k. In this book, k will be C
unless noted otherwise. We denote the transcendence degree over C of R
by tr deg R.

Theorem 2.14. Let the irreducible variety V < Cy, . x, have coordinate
ring C[x,, ..., x,]. Then

dim V = tr deg C[x,, ..., x,].

Proor. Let {x,,..., x;} be a transcendence base of C[xy,..., x,] over C.
Let g441(X451), .-+ » gu(X,) be minimal polynomials over C(x,,..., x,;) of
X441, - - - » Xn, T€spectively, with coefficients in C[x;, ..., x,]. Then since V
consists of the set of specializations of (x,, ..., x,), it is clear that V is con-
tained in V' = V(g4 1,...,q,). Since each of ¢, ..., q, is irreducible and
nonconstant, each discriminant polynomial

0q;
0X;
is nonzero; hence all the V(2y(q;) are proper subvarieties of Cy,  x,,
as is their union D. Let (0) be a typical point of V myk,,, .. x,-lying above
Cx,....x,\D. Then since (0¢;/0X;)(0) # 0 and (0q;/0X;) =0 for j # i and
i,j=d+1,...,n, we see that at each point of V' near (0), the rank of the

gxi(‘h) = e@x.(‘h, >E Clxy, . -5 x4]
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2: Dimension of arbitrary varieties

Jacobian matrix J(0q;/0X;) d+1<i<n 1<j<n)is n—d. Let V*
be any irreducible component of V' containing V; V* then contains a
point of dimension d. If we could show that for some C"-open neighborhood
U, V*n U =V n U, then Theorems 2.9 and 2.11 would imply that V has
dimension d, thus proving our theorem.

First, we obviously have V = V* < V'; hence for any C"-open neighbor-
hood U of (0),

VAaUcV*nUc VAU

We show that these inclusions cannot be strict as follows: First, for some U
about (0), V' ~ U is the graph of a function defined on Cx,....x, 0 U since
the rank of J(V1)isn — d at all points of V' near (0); therefore for some U, the
natural set-theoretic projection of V' n U on Cy, 4, is Cx,. ..x,n U.By
the single-valuedness of functions, no proper subset of V' n U projects onto
allof Cy,  x,n U.Nextobserve that since the Jacobian matrixof X 4,..., X,
da+1>---»>q, has rank n, (0) has dimension zero in V' n Cy,,, . 4., and is
thereforeisolatedin V' n Cy, ., . x,;hence(0)isisolatedin V N Cxyurnxo
too; hence Theorem 2.13 implies that the natural projection of V n U on
Cx,...x,i8Cx, . x, 0 U.Thus ¥V n U cannot be a proper subset of V' n U,
and therefore not of V* n U, either. O

We now turn to the third approach to dimension; it is purely ring theoretic
and based on sequences of prime ideals. The main result is Theorem 2.18; our
proof of it depends on Theorem 2.15, which we prove next, and which is
interesting in its own right.

Theorem 2.15. If V is an irreducible subvariety of P"(C) or of C", and if W is any
proper subvariety of V, then dim W < dim V.

PrOOF. We may assume without loss of generality that V is affine, and that
W # (. Also, since dim W is the largest of the dimensions of its irreducible
components, we may assume that W is irreducible. Let C[x,, ..., x,] and
C[y1, .- ., ya] be the coordinate rings of V and W, respectively. We want to
show that the transcendence degree of C[y,, ..., y,] is strictly less than that
of C[xy, -5 X,].

Now if W = V(p), then C[y,,...,y,] = C[xy, ..., x,]/p, where » is a
nonzero proper prime ideal of C[x,,..., x,]. Let {x,,..., x,} be a tran-
scendence base of C[x,,...,x,] over C (d = dim V); suppose that under
the natural homomorphism induced by p, x; maps to y,fori = 1,..., n. Now
Xa4+1,--+» X, satisfy algebraic equations over C[x,,...,x,]; it is easy
to check that each of y;,4, ..., y, must be algebraic over C[y,, ..., y.]-
Hence the transcendence degree of C[yy,..., y,] is no greater than that of
Clxy, ..., x,). To show it must be strictly less, suppose it is the same; we
derive a contradiction. Hence suppose {y,, ..., y4} is a transcendence base of
Clyy, .-+, ya). This implies that C[x, ..., x,] is isomorphic to C[y,, - - ., ¥4]-
Thus the homomorphism C[xi,...,x,] = Cly,...,y,] extends to a
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homomorphism C(x;, ..., X)) [Xg415-+->Xn] = CO1s -5 Y Wit 15+ » Vul-
But both these last two rings are fields, so the kernel of this homomorphism is
the zero ideal (0). This kernel obviously contains p, so p = (0), whereas above
we saw that p # (0). We thus have our contradiction. O

There are existence results which add to the information supplied by
Theorem 2.15, and which are useful in formulating a purely ring-theoretic
definition of dimension. For example, for any variety V, there is always a
subvariety of V of exactly one less dimension. This implies that there is a chain
of varieties starting at ¥ and descending one dimension at a time, to a zero-
dimensional variety. This in effect allows us to get the dimension of a
variety by counting the varieties in such a chain. Because the dimension of a
variety is equal to the maximum of the dimensions of its components, we may
assume all these proper subvarieties are irreducible. Notice that if V and the
other varieties in the descending chain are all irreducible, then the chain is
maximal in the sense that no further (nonempty) irreducible subvarieties of V
can be added to the chain, still keeping it strict.

Now the usual distance in R from the first to the last of any n + 1 con-
secutive integers is n; in a similar spirit, we say that the length | of a chain
Vo 2 V1 2 ... 2 W of irreducible varieties is one less than the number of
varieties in that chain. Hence our maximal chain above haslengthd = dim V.
One can prove even more: All maximal strict chains of nonempty irre-
ducible subvarieties of ¥ have the same length. We prove these facts for affine
varieties in the following theorem; this theorem may be extended to include
projective varieties, too (cf. Definition 2.7).

Theorem 2.16. Let V < C" be any nonempty irreducible variety of dimension
d,and let V; 2 ... 2 V,, be any strict chain of nonempty irreducible sub-
varieties of V. This chain can be extended (or refined) to a maximal chain of
irreducible varieties

V=Vo2Vi2...2V, (Vi# Q)

where each variety in the original sequence appears in the extended sequence.
Furthermore, any two such maximal chains have the same length.

Remark 2.17. One may recognize an analogy with the Jordan-Holder
refinement theorem for groups or modules.

Theorem 2.16 tells us that we could equally well define the dimension of a
nonempty irreducible variety V as the length of any maximal strict chain of
nonempty irreducible subvarieties of V. Of course we may use instead a
maximal chain of prime ideals;if R, = C[x,, ..., x,] is the coordinate ring of
V, then the dimension of V is the length [ of any maximal strict chain of prime
ideals

O=poEPm&E--- &N (p: # Ry).
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(Note that just as we used only nonempty varieties in Theorem 2.16, we use
here only prime ideals of Ry different from Ry.)

Since Ry = C[X, ..., X,J/J(V), this length is, in turn, the same as the
length of any maximalstrictly ascendingchain of primeidealsin C[ X ,, ..., X, ]
which starts with the prime ideal J(V). Now since the dimension of an ar-
bitrary variety ¥ < C" is the maximum dimension of its irreducible com-
ponents, if we write J(V) as the unique irredundant decomposition J(V) =
q; N ... N q,, then Vs dimension is the maximum length of all those strictly
ascending chains of prime ideals in C[ Xy, ..., X,,] which start from any of
41, --.,q,. Since by irredundancy, any prime ideal smaller than q; properly
intersects J(V'), we see that the dimension of V is thus just the length of the
longest strictly ascending chain of prime ideals in C[ X, ..., X,] containing
J(V). Finally, we know that for any ideal a = C[X, ..., X,], \/& is the
intersection of those prime ideals which contain a (hence also of those
minimal prime ideals which contain a). We thus have this fact:

Theorem 2.18. Let a « C[ X4, ..., X,]. Then dim V(a) is the length of the
longest strict chain of a-containing prime ideals in C[X,, ..., X,].

Let us now prove Theorem 2.16.

PrOOF OF THEOREM 2.16. It suffices to show that if W; — W, are irreducible
nonempty subvarieties of V of dimension d, and d, respectively, then thereis a
strict chain of irreducible varieties from W, to W, oflengthd, — d,; or what is
the same, that there is a strict chain of prime ideals of length d, — d, in the co-
ordinate ring Ry, = C[x,,..., x,], starting from (0) and ending in p,
where Ry,/p = Rw, = C[yy, ..., ¥,). (This will ensure maximality, since
for any irreducible variety V, any strict chain of irreducible varieties of
length d = dim V starting with V' and ending in a point must be maximal;
otherwise, from Theorem 2.15 dim ¥V would be greater than d.) Now the
transcendence degree of Ry, is d,, and that of Ry, is d; ; we assume without
loss of generality that d, > d,, and that {x,,..., x,,} and {y,..., ys,} are
transcendence bases of Ry, and Ry, respectively. We may also assume that
the elements x; and y; have been numbered so that the image ring of the
homomorphism

C[-xla---’xd1+1axd1+2a~--9xdz] g C[yl,---’yd1+l,xd,+2,---’xdz] (2)

has transcendence degree d, — 1 over C. (Note that y,, ,, is algebraic over
Clyi, - - -» Ya,)» therefore also over Clyy, ..., Yap» Xay+25 - - -» Xg,])- Now for
i=d,+1,...,n, let a minimal polynomial over C[x,,..., x4,] of x; be
qix1, - . .» Xa,, X;); since C[xy,...,x,] = CLyy,...,y,] is a ring homo-
morphism, g{yy, - - -, ¥4,» X;) has positive degree in X;. Therefore so does
4i(V1s - -5 Yay 410 Xay+25 - - - » Xap» X;); hence (2) extends to a homomorphism
¢ of C[x,,...,x,]; the transcendence degree of this image ring Ry,
of Ry, is of course still d, — 1. Let p be the kernel of this homomorphism;
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IV: Varieties of arbitrary dimension

certainly p # (0). We have now completed the first step in an induction argu-
ment: We similarly construct a homomorphism ¢’ of Ry, so the image
¢'(Ry;) has transcendence degree d, — 2 over C; the kernel of ¢’ ¢ is
a prime ideal p’ = Ry, with p’ 2 p. Continuing in this manner, we get
the desired chain of prime ideals, hence also of varieties. Ol

We now make a few observations about dimension which we use in the
sequel.

Definition 2.19. A variety in P*(C) or C" is said to have pure dimension if the
variety has the same dimension at each of its points.

Definition 2.20. A variety in P*(C) or C” of pure dimension 1 is called a curve.

Remark 2.21. From Theorem 2.18 we see that an irreducible variety V in
C" is an irreducible curve iff every nonzero proper prime ideal of Ry is
maximal. We use this in Section V5.

Definition 2.22. A variety is a hypersurface in P*(C) (or in C”) if it can be
defined by a single nonconstant homogeneous polynomial in C[ X, ...,
X, +1] (or by a single nonconstant polynomial in C[ X4, ..., X,]).

Theorem 2.23. 4 variety in P"(C) or C" is a hypersurface < it is of pure dimen-
sionn — 1.

PRrROOF. Since any variety in P*(C) is represented by a homogeneous variety
in C"*1, it suffices to prove the result in the affine case.

=: Suppose V = V(p) < Cy, . ., where p is nonconstant in
C[X,,...,X,]. Assume first that p is irreducible. Then V(p) has pure di-
mension, and for some i, dp/0X; is not identically zero; hence dp/dX; cannot
vanish on V, for otherwise it would have to be in the prime ideal (p) (that is, a
multiple of p), while deg dp/0X; < deg p. Therefore the rank of J(V) =
(@p/0X,,...,0p/0X,) attains the maximum of 1 at a point of V; hence
dim V = n — 1. Since any hypersurface is a union of irreducible hyper-
surfaces, the dimension is pure.

<=: Suppose V < C" has pure dimension n — 1; we want to show that
V = V(p) for some polynomial p. If this is true for irreducible varieties of
dimensionn — 1, then it is true for arbitrary varieties of pure dimensionn — 1.
Therefore assume V is irreducible, say

V = V(p;, ..., p,), where all p; are nonconstant.
Now consider p,.If p; = py, - ... pisisafactorization of p; into irreducibles,
then V(p;) = V(p;) U ... U V(py,). Hence V < V(p,;) for some i. Since p,; is
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2: Dimension of arbitrary varieties

irreducible, we have V = V(p,;) (Exercise 4.3 of Chapter III). Since p,; is
nonconstant, V = V(p, ;) is a hypersurface. a

Just as one considers products of sets in set theory and products of spaces
in topology, one also has products of varieties. Later on we shall need them,
together with a basic dimensionality property of “product varieties.” We
begin with products of affine varieties.

Theorem 2.24. Let V < Cy, . x,and W < Cy v, be two varieties.
(2.24.1) The set-theoretic product V x W < Cy,  x 'y, ..y, iS a
variety. (We call it a product variety.)
(2.24.2) Let V and W be irreducible with generic points (x) = (X, ..., X,)
and (y) = (y1, ..., Yy, respectively, and suppose that C[x] n C[y] = C.
Then V x W is irreducible and has (x, y) as a generic point.
(2243)dim ¥V x W = dim V + dim W.

Proor. The proof of (2.24.1) may be reduced to the case when V and W
are both irreducible, since obviously (| J; Vi) x ({J; W) = (i, ; Vi x W,. This
case then follows at once from (2.24.2) which is itself obvious. (2.24.3) is
immediate from Theorem 2.14. O

It is natural to also ask about products of projective spaces and varieties.
Just as with affine spaces, we can form the set product P™(C) x P*C), and
endow it with the product topology. One might guess that this is in some
sense the same as P™*(C). But it turns out that except when m or n is zero,
P™C) x PYC) # P™*"(C). In fact, at a purely topological level, it turns out
that the product of any two spaces homeomorphic to P™(C) and P*C),
where m, n > 0, is never homeomorphic to any P¥C). We indicate the gist of
a proof for those who know some homology theory. It is known (see, for
instance, [ Vick, Prop 2.7, p. 49]) that the homology groups (over the integers)
of PXC) are:

Z fori=0,24,...,2k;
0 otherwise.

H{(PXC) = {

The Kiinneth formula then tells us that

HyP"C) x PC) = Y (HPHC)@H{PC)=2Z

i+j=2

(where Z and @ denote direct sum, and ® denotes tensor product over Z);
but this is not a homology group of any PX(C).

Yet products of projective spaces and varieties do naturally arise, as we
will see later in this chapter when we use them (or what is the same, “multi-
homogeneous varieties ) in defining at the variety-theoretic level notions like
order and multiplicity, and in proving Bézout’s theorem.
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IV: Varieties of arbitrary dimension

We call any product P"(C) x ... x P"(C) a multiprojective space, an
s-way projective space, or most precisely, an (n,, . .., ny)-projective space, this
product being looked at as the set of all (n; + 1) + ... + (ny + 1))-tuples

((all" . ’al,n1+1)’ e ’(asly- .. aas,n +1)); (3)

each such point is identified with

((Clall’ e ’Clal,n1+l)’ e ’(Csasb e ’csas,n +l))’ (4)

where ¢y, ..., ¢, are arbitrary elements of C\ {0}. In analogy with homoge-
neous sets, we say that a subset § of C™* D*-+@s* 1 ig myltihomogeneous
(or s-way homogeneous, or (n, + 1,...,n; + 1)-homogeneous) if whenever a
point of the form in (3) is in S, then the corresponding point in (4) is also in S.

In Theorem 2.6 of Chapter II, we proved that a variety V < C" is homog-
eneous iff it is definable by a set of homogeneous polynomials. A proof
analogous to that of Theorem 2.6, Chapter II, shows that an algebraic variety
is (ny,...,n,)-homogeneous in Cy,, . x, iff it is defined by polynomials
(X .... X,,) which are (n,,.... ns)-h(;mogeneous—that is, for each of
i=1,...,s, it is homogeneous in the set of indeterminants {X;,..., X;, }.
An (n, + 1,...,n, + 1)-homogeneous variety in C™*D*--+@+1D) then
defines a set in P* = P"(C) x ... x P"(C) which we call a variety (if no
confusion can arise), a multiprojective, s-way, or (ny,...,n,)-projective,
variety in P*. The reader may check that the basic lattice and decomposition
properties of ordinary varieties continue to hold for multiprojective varieties.
Note that for varieties V; = P"(C) wherei = 1,...,s, V] x ... x V,is s-way
projective in P*,

One may also “multidehomogenize” in the obvious way. If C" denotes a
particular dehomogenization of P*(C), then C" x ... x C" is the corre-
sponding multidehomogenization of P*; any variety V in P* then has a
corresponding multi-dehomogenization which we call an affine representa-
tive of V. (This includes the case when V' is a point P.)

Definition 2.25. Let V' be multiprojective. The dimension at P of V, written
dim; V, is the dimension of any affine representative of } at an affine
representative of P. The dimension of V, written dim ¥, is max, dim, V.
It is clear that the above notion of dimension is well defined.

In terms of the multihomogeneous variety H(V)in C™* 9 x ... x C=*1D
corresponding to V < P*, we clearly have dim V' = dim H(V') — s. Finally,
by using multi-dehomogenizations, we get at once the basic dimensionality
property:

Theorem 2.26. If V and W are multiprojective varieties, then

dimV x W =dim V + dim W.
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3: The dimension theorem

EXERCISES

2.1 Show that a variety V # ¢J in P*C) or C" consists of finitely many points iff
dim V = 0.

2.2 If for varieties ¥, and V, in P"(C) or C" we have V| < ¥, and dim V; = dim V,,
show that V| and V, must have an irreducible component in common. What can
one conclude if in addition V; is of pure dimension?

2.3 Show that for any nonempty variety ¥ in P*(C) or C, there is a subvariety W with
dim W < dim V, such that V is locally an analytic manifold at each point P € V\ W.

2.4 Let ay, a, be any two homogeneous ideals of C[X, Y, Z] such that neither a, nor
a, properly contains a nonzero prime ideal. Show that a, + a, & (X, Y, Z).

2.5 Let V < C" be a variety; let 7 be the closed projection of V along Cx,...x, tO
Cx,.1....x,- Show that dim 7(V) < dim V. Reformulate this result in ring-theoretic
terms.

2.6 Prove Lemma 10.9 of Chapter III.

2.7 Let V be a variety in P*(C), and let P"~ '(C) be a choice of hyperplane at infinity not
containing any component of V. Show that V is the topological closure in P*(C) of
V\P"~}(C). (Thus the projective completion of an affine variety in PYC)\ P"~ }(C)
is its topological closure in P*(C).)

2.8 Let V be any nonempty variety in P*(C) or C", and let P be an arbitrary point of V.
Find a ring-theoretic characterization of dim, V.

3 The dimension theorem

In Theorem 6.1 of Chapter II we proved that any two curves C, and C, in
P?(C) have a nonempty intersection. Equivalently, this says

cod(C; N C,) <cod C, + cod C,. (5)

Our proof of this ultimately depended on showing that there is a nonzero
root of a resultant polynomial of p, and p,, where C; defines the homo-
geneous ideal (p;) = Cy x,x,. Now in extending results, it is often helpful to
look for possible mild extensions, and then to generalize bit by bit. As an
example, one can easily extend the proof of (5) to arbitrary hypersurfaces
of P(C). If these hypersurfaces are defined by nonconstant homogeneous
polynomials p,, p, e C[X, ..., X, ], then in a way analogous to the proof
in Chapter II, we may assume coordinates in C"* ! are such that . (py, p,)
is homogeneous of degree deg p, - deg p, > 0, meaning that V(Zy, , ) is a
homogeneous hypersurface in Cy,  x, (in which case V(%y,,,) will have
dimensionn — 1). The argument may then be completed by noting that above
each point of V(Zy , ) there is a point of V(p;) n V(p,), and that this inter-
section must then be of dimension at least n — 1—that is, it must have
codimension at most 2in C"* !. (The fact that Z__ . is of degree deg p, -deg p,
will fit in with a general Bézout theorem in Section 7.)
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IV: Varieties of arbitrary dimension

One may also ask if there is an extension of this projective result to include
affine hypersurfaces as well. Surely many sets of affine varieties do not satisfy
the codimension relation by virtue of the fact that the varieties fail to
intersect, while in fact there are points of intersection in their projective
completions. But if they do intersect in affine space, must this intersection
then satisfy the codimension relation ? The answer is yes. In fact Theorem 3.1,
which we prove next, extends this even further to irreducible affine varieties of
arbitrary dimension in C" (therefore also to arbitrary affine varieties ¥; and
V, in C" provided some highest-dimensional irreducible component of V;
intersects some highest-dimensional irreducible component of V). This
fact at once implies that any pair of varieties V;, V, in P*C) satisfies the
codimension relation

cod(Vy, nV,) <cod V, + cod V,,

since the irreducible components of the corresponding homogeneous varieties
alwaysintersect at the origin (hence they must satisfy the codimension relation),
and since the codimension of a variety in C" is the same as that of its homog-
enization in C"*!, In the projective case, if any of V;, V,, or V, n V, are
empty, we define dim (7 to be —1 so that the inequality still holds.

It turns out that working with the affine form gives us a little more flexibility
since we need not remain within the domain of homogeneous varieties.

In this section we begin by proving

Theorem 3.1. Let V] and V, be any two irreducible varieties in C", and suppose
Vi nV, # . Then
cod(V; n V,) < cod V, + cod V,.

In view of the discussion above, we have at once the

Corollary 3.2. If V; and V, are any two varieties in P"(C), then
cod(V; n V,) < cod V; + cod V.
Remark 3.3. It turns out (Exercise 6.6) that in a certain sense, intersecting
pairs of varieties V;, V, usually give equality in Theorem 3.1 and Corollary

3.2. The assumption of equality will be used often in the sequel; we formalize
it here:

Definition 3.4. If V; and V, are any two intersecting irreducible varieties in
P*C) or in C", then V; and V, intersect properly provided
cod(V; n V,) =cod V; + cod V,.

Arbitrary varieties V, and V, in P%(C) or in C" intersect properly provided
that each irreducible component of V; properly intersects each irreducible
component of V.
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3: The dimension theorem

PROOF OF THEOREM 3.1. In attempting to prove this theorem, one might
naturally begin by trying to generalize to ideal theory our earlier polynomial
concept of resultant. Let us see where this leads us. Suppose ¥, and V,
define the C[X,,...,X,}-ideals a; = (p,...,p,) and a, =(qy,...,q),
respectively. Then a point is in V; n V; if and only if it is in each of V(p;, q))
wherei = 1,...,randj = 1,...,s. With respect to appropriate coordinates
this means that there is a point of V; n V, my -lying over a given point
PeCy, . x, ., onlyif Pisin the variety determined by the ideal generated by
{Zx,(pi»q)li=1,...,randj = 1,..., s}. One thus might define Zy (a,, a,)
to be the ideal generated by {%y (p, q)|p € a, and g € a,}.

Unless a; and a, are both principal, we meet two serious problems in
this approach. First, it may happen that there lie no components of V; n V,
over any highest-dimensional components of V(% (a,, a,)), and therefore we
cannot directly use V(% (a,, a,)) to get a lower bound on dim V; n V. But
even if this problem didn’t arise, we still don’t know very much about
dim V(%y (a4, a,)). In the case of intersecting hypersurfaces defined by non-
constant polynomials p, and p, € C[X,,..., X,], the all-important fact is
that %y, (py, p») is also a polynomial (either nonconstant, or the zero poly-
nomial). To prove the codimension relation in this case, we then capitalized
on the fact that such a polynomial defines a subvariety of codimension 0 or 1
inCy, _ x._,

This strongly suggests trying to arrange things so that our generalized
resultant turns out to be a polynomial. For instance, let us begin by assuming
that only one of the varieties ¥, = C" has arbitrary dimension d, and that
V, = V(p) = C" is a hypersurface. Then by an appropriate choice of co-
ordinates, we may assume that V; set-theoretically projects onto some d-
subspace C? of C" (using the normalization lemma (Lemma 11.5 of Chapter
III)). Our theorem asserts that if V; and V, intersect, they do so in dimension d
ord — 1;V; n V, projects onto C* or a hypersurface of C¢, and it is C? or this
hypersurface of C? which ought to end up being the variety of a generalized
resultant polynomial.

Before pursuing this idea let us satisfy ourselves that we will actually be
able to push this further to a full proof of Theorem 3.1—that is, that we can
prove the theorem once we know this:

(3.5) If V < C" intersects a hypersurface of C", then some com-
ponent of intersection has dimension dim ¥V or dim V' — 1.

First, note that if each hypersurface cuts down the dimension by at most
one, then Theorem 3.1 holds for any varieties of dimension d which are the
intersection of n — d hypersurfaces. However, there are d-dimensional
varieties which are not the intersection of any set of n — d hypersurfaces;
sometimes more than n — d hypersurfaces are required to get the given
variety. (For instance, Cy x, U Cx,x, © Cx,x,x,x, 1S not the intersection
of any two hypersurfaces in Cy, x,x.x,. See [Eisenbud and Evans].) But
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IV: Varieties of arbitrary dimension

the following trick allows us to get around this difficulty: Let V; and V,
be any two varieties in C". Regard V| as a variety in Cx,  x,.,and V, asa
variety in Cy, y,. Then V, x V, c Cx, . x v, ..y, has dimension
dim ¥V, + dim V,.

Now the diagonal variety

A={ay,...,a,a,...,a)lay,...,a,)eC"} = C*"

is an n-dimensional subspace of C*", and is indeed the intersection of 2n — n
hypersurfaces, namely

A=VX, - Y. X, — Y)=VX, - Y)A-...-0 VX, — Y,).

Now looking at V; n V, as a subvariety of A in the natural way, we see that a
point is in V; n V; if and only if it is in (V; x V,) n A. This is the essential
idea, for then V; n V, is the intersection of ¥V, x V, with the n hypersurfaces
V(X; — Y); if each hypersurface cuts down the dimension by at most one,
then

dim(V; n V,) 2 dim V; + dim V, — n,
or

cod(V, n V) < n — (dim V, + dim V, — n)
=(n — dim V}) + (n — dim V;) = cod V; + cod V,.

Hence we will have proved Theorem 3.1 if we can establish (3.5); we do this
now.

First, we may without loss of generality assume that V in (3.5) is
irreducible. Let (x) = (x4,..., x,) be a generic point of V. We may also
assume that coordinates have been chosen so that {x,,..., x,} is a tran-
scendence base of V’s coordinate ring C[x] = C[x,, ..., x,], and so that
C[x] is integral over C[x,,...,x,]. Let the nonconstant polynomial
peC[X,,...,X,] define our hypersurface. We now find a “resultant
polynomial” Ry, ... x,(V, p) = #, which we also write as #(x,, ..., Xx,)),
such that %(a,,...,a,) is 0 if and only if there is a point of V ~ V(p)
Txyer.... x-lying above (ay, ..., ag).

Since V' n V(p) consists of precisely those points of V where p vanishes,
let us consider the restriction of p to V—that is, let us consider p(x) e C[x],
which represents p(X,, ..., X,) restricted to V. We want those points of
Cx,....x, above which p(x) = 0 has at least one root. Of course p(x) = 0
has at least one root above (a) = (a;,...,a,)€Cx,  x,if and only if the
product of all p(x)’s values at points of V above (a), is equal to zero. But since
p(x) € C[x] is integral over C[x,, ..., x,], the product of these values is just
the value at (ay, . . ., a,) of the zero-degree term of p(x)’s monic minimal poly-
nomial over C(x,,..., x;). (Note that the zero-degree term of p’s monic
minimal polynomial over C(X,,...,X,) is actually in C[X,,..., X,].
For if it were in C(X,,..., X, \C[X,,..., X ], there would be points
in Cy,. .. x, above which some zeros of p would “escape to infinity.” This
can never happen for p integral over C[X,,..., X ], as the reader can
easily verify.) This zero-degree term is then our desired resultant poly-
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nomial # = A(xy,...,xz). (See Remark 3.7) The assumption that V
and V(p) intersect implies that % is not a nonzero constant; hence
V(%) < Cy,, .. x, is either all of Cy, ., or a hypersurface of Cy, . x.,
and the projectionof V' n V(p)on Cy, . x,isprecisely V(#). Since projection
does not increase dimension (Exercise 2.5), V n V(p) has dimension at least
d — 1—that is, V(p) cuts down V’s dimension by at most one. We have
therefore proved Theorem 3.1. O

Remark 3.6. It is reasonable to ask how the resultant of this section com-
pares with the resultant of two polynomials in Chapter II. First, note the
following lemma, which is important in its own right. Its proof is straight-
forward and is indicated in Exercise 3.6.

Lemma 3.7. For any two nonconstant polynomials in C[ X]

P X)=(X —=by)-...-(X —b,) and (6)
pAX)=(X —cy)e.. (X — ¢y (7
the resultant of p, and p, is the “difference product”
Axpip) = 1 bi-c) ®)
j=1.ms

(Notice that #x(py, P2) = —Rx(p2> P1).)

Now let p; and p, be two nonconstant polynomials in C[ X, ..., X,]
defining hypersurfaces V;, = V(p,) and V, = V(p,); we assume that p, is
irreducible, and that coordinates have been chosen so that X,%#P' and
X, %#P2 are terms of p, and p,, respectively. Let (a) = (ay,...,a,_,) be any
point of Cy,  x, ,, and let the r = deg p, points of V; lying over (a) be
(a, by), ..., (a, b,). From the definition of £ in this section, we see that at (a),
Rx,(V(py), p2) is the product p,(a, by)-...:p,a, b,). Now for a fixed b,,
p2(a, b;) is just the polynomial p,(a, X,) evaluated at X, = b;. But p,(a, X,)
factors in the form

pl(aa Xn) = (Xn - C'l)""'(Xvn - CS),

(where s > 1 and ¢; € C), so we have p,(a, b;) = k(b; — ¢;)-...-(b; — c).
Therefore

paa,by)- ... pala, b) = [T (b: - ¢)).

ij

From this, we see that this last difference product is just the difference
product in (8). This of course means that the resultant Zy (p,, p,) of Chapter I1
vanishes precisely when 2y (V(p,), p,) of this section does.
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A natural question arises in connection with Theorem 3.1: Though we have
shown that cod(V; n V,) < cod V] + cod V,, is it necessarily true that
every component of V; n V, must have codimension < cod V| + cod V,?
In the case of curves this is trivially true since the component varieties of
Vi n V, are no smaller than points. But in varieties V; and V, of higher
dimensions, it is conceivable that some components of ¥; n V, might have
codimension larger than cod V; + cod V,. It turns out, however, that this
can never happen. This is the strongest result we prove in this section.

Theorem 3.8. If V| and V, are irreducible varieties in C", then each component
of Vi n V, has codimension at most cod V; + cod V,.

Our proof will essentially consist in looking at one component of V; N V,
at a time; we do this by “removing” all but the one under consideration.
“Removing” a subvariety V' from an affine variety V will, for us, mean map-
ping V to another affine variety in such a way that V' is mapped into the
hyperplane at infinity, thus “escaping” from the affine part, but so that the
remaining points of V' do not escape to infinity. An example will help to
clarify this idea.

ExaMpPLE 3.9. Let X = ¢ be any point of C; then there is a natural map from
the variety C having generic point (x), to the complex hyperbola in C?
having generic point (x, 1/(x — ¢)); this map is defined by (a) — (a, 1/(a — ¢)).
Itis 1:1 and onto between C\ {c} and the hyperbola; c itself has no image in
C?2. More generally, if ¢y, . . ., ¢,, are m distinct points of C, then we may send
any number of these to infinity, while keeping all the rest finite. For instance,
for k < m, (x) > (x, 1/(x — ¢y)-...-(x — ¢,)) maps the first k of these points
to infinity, the remaining points mapping to points of C2. Similarly, one can
remove the parabola V(Y — X?) from Cyy using the map

1
(x,y) = (x, YT x2>’

note that in the subvariety of Cyy, having generic point (x, y, 1/(y — x?)),
none of its points 7 -lie above the parabola in Cyy.
With this as background, let us now turn to the

ProOF OF THEOREM 3.8. First, in view of our argument about writing V; n V,
as (V; x V,) n A, we see that it suffices to let only one variety V < C"
be of arbitrary dimension d, and the other a hypersurface V(p), where
V n V(p) # . Without loss of generality, assume that V is irreducible; let
(x) = (xq,..., X, be a generic point of V. Suppose the components of
V n V(p)are W,, ..., W,; we show that an arbitrary W, say W;, has dimension
d — 1. Let a generic point of W, be (z) = (z;, ..., z,), and let g,, ..., g, be
polynomials identically zero on W,, ..., W, respectively, but not identically
zero on W, (that is, g;€ J(W)\J(W;)). Then (x, 1/q,(x)-...-q{x)) is a
generic point of a variety V* in C"*! =Cy, _ x Note that since

n+1°
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4: A Jacobian criterion for nonsingularity

1/q,(x)-. . .-q{x) € C(x), we have tr deg C[x] = tr deg C[x, 1/g,(x) - ... q{(x)]
so dim V = dim V*.

Now since C[z] is a homomorphic image of C[x], it follows that
Clz, 1/g,5(2) - . . .- q{2z)] is a homomorphic image of C[x, 1/g,(x)-.. .- q4x)];
this is so since for i = 2, ..., s, q{z) does not vanish on all of W,. Therefore
g{z) is a nonzero element of C[z]—that is, g,(z)-...- q4z) # 0. Thus
(z, 1/g,(2) - .. .- q{z)) is a generic point of a variety W* < C4, . x, ., suchthat
dim W* = dim W,. Now pe C[ X, ..., X,] can be looked at as an element
of C[X,, ..., X,+1]; p then defines the hypersurface V(p)* = V(p) x Cy, .,
in Cy, . x,.., Since each of W,,..., W, is “mapped to infinity” under
V — V*, the intersection of V* with V(p)* consists of only the single com-
ponent W*. Thus dim W* = dim (V* n V(p)*) = d — 1. But dim W* =
dim W, so dim W, > d — 1, which is what we wanted to prove. il

EXERCISES
3.1 Is the assumption that V is irreducible in Theorems 3.1 and 3.8 necessary?

3.2 Let V < C" be irreducible. Show that there is a complex subspace L of C* with
dim L = cod V so that every parallel translate of L intersects V properly. Can we
replace “dim L = cod V” by “dim L > cod V?

3.3 In the fifth sentence of Theorem 3.1’s proof, suppose that “only if ” is replaced by
“provided that.” Is this converse statement true?
3.4 Generalize Exercise 2.4 to homogeneous ideals in C[ X4, ..., X,].
35 Rephrase Theorems 3.1 and 3.8 and Corollary 3.2 as statements about ideals.
3.6 Prove Lemma 3.7. [Hint: Replace the constants b; and c; in (6) and (7) by indeter-
minates ¥; and Z;, obtaining
X-Y)....X-Y)elCX.Y,...,Y] (9)
X—-2Z)-...(X-2)eC[X,Z,,...,Z] (10)

Show that the resultant with respect to X of these new polynomials is homo-
geneous of degree rs. Now substitute Z; in (10) for an arbitrary Y; in (9), and con-
clude that an appropriate resultant is divisible by ¥, — Z;, and therefore also by
[Ti<i<r1<j<s (i = Z)). Obtain equality by comparing suitable terms on each
side of (8).]

3.7 Suppose that in Theorems 3.1 and 3.8 “C"” is replaced by “an irreducible variety
V,” and suppose “cod W” means “dim V — dim W.” Are the new statements still
true? Is the similar analogue of Corollary 3.2 true?

4 A Jacobian criterion for nonsingularity

In this section we prove Theorems 4.1 and 4.3, which give a “Jacobian”
characterization of smoothness at a point P of an affine or projective variety.
We prove it for irreducible varieties; the extension to arbitrary varieties is
straightforward (Exercise 4.6). These results generalize the one for curves
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IV: Varieties of arbitrary dimension

(Theorem 7.4 of Chapter II). Recall the definition of smoothness, Definition
7.3 of Chapter 11. With notation as in Notation 2.2, we have for the affine
case:

Theorem 4.1. Let V < C" be an irreducible variety.
V is smooth at P € V < rank(J(V)p) = cod V.

Before proving this theorem, we note that it easily implies a projective
analogue. For this, consider Pe V < PC); if some affine representative
W < C" of V is smooth at P (that is, smooth at the corresponding affine
representative Q of P), then any affine representative of V containing P is
smooth at P. We see this as follows: Let H(}) be the homogeneous variety in
C"*?! corresponding to V. Without loss of generality, assume coordinates
X,...,X,;; in C"*! are such that W= HV)nV(X,,, — 1) and
Q=HP)nV(X,,; —1). Then, as in Lemma 2.6, rank(J(H(V))y) =
rank(J(W),). Also, cod H(V) (in C**') is equal to cod W (in V(X,,; — 1)),
for one may assume that the intersection with V(X,,, — 1) is proper.
(IfHV)NV(X,;, — 1) = V(X,,+, — 1), then V = P%C); the result is trivial
in this case.)

Assuming Theorem 4.1, we thus see that W is smooth at Q iff H(V) is smooth
at Q. But then clearly H(¥) is smooth at any nonzero point on the 1-subspace
of C"*! through Q. Similarly, for any affine representative W’ of V at the
corresponding affine representative Q' of P, rank(J(H(V))y) = rank(J(W')y),
and cod H(V) (in C"*') = cod W’ (in a copy of C"); hence Theorem 4.1
implies that W’ is smooth at Q. Thus Theorem 4.1 implies that the following
notion of smoothness is well defined :

Definition 4.2. An irreducible variety V' < P"(C) is smooth at P € V if some
affine representative of V' is smooth at the corresponding affine represen-
tative of P.

Then Theorem 4.1 implies the following projective analogue:

Theorem 4.3. Let P be any point of an irreducible variety V < P*(C), let H(V)
be the corresponding homogeneous variety in C**!, and let Q be any non-
zero point on the 1-subspace H(P) of C"* 1. Then V is smooth at P iff

rank(J(H(V))o) = cod H(V).

In view of Theorems 4.1 and 4.3 we make this definition, which extends
Definition 7.5 of Chapter II:

Definition 4.4. With notation as in Theorem 4.1, any irreducible variety
V < C" is nonsingular at P (or P is nomsingular in V) if rank(J(V)p) =
cod V;if V < PYC) is irreducible, then V is nonsingular at P if it is non-
singular in some affine representative of V containing P. Such a V in C"
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4: A Jacobian criterion for nonsingularity

or P*(C) is singular at P (or P is singular in V) if it is not nonsingular there;
V is nonsingular if it is nonsingular at each of its points.

Proor oF THEOREM 4.1. We assume without loss of generality that P is the
origin (0)e C".

<: If rank(J(V)) = cod ¥, then there are cod V' rows in J(V) which
are linearly independent at (0). Since cod V equals the largest rank of J(V')
at points of V, its rank is never larger than cod V'; and at all points of V' near
(0), its rank is never smaller than cod V since the entries of J(V') are con-
tinuous functions. Hence the hypotheses of the general implicit mapping
theorem (Theorem 3.5 of Chapter IT) hold. Since we have already established
Theorem 3.5 of Chapter II, we have also established <.

=: Our general strategy is this: We reduce the problem to the case when
V is a hypersurface, for then one can proceed with exactly the same kind of
argument used in Theorem 7.4 of Chapter I1. If Vis not already a hypersurface,
we shall see that we may take as our hypersurface the (closed) projection of V
on an appropriate subspace of C" having dimension dim V + 1.

Denote cod V by r, and rank(J(V),,) by s. We use a contrapositive argu-
ment. Therefore assume s < r (we never have s > r), and assume V is smooth
at (0)—that is, relative to coordinates (X, Y)=(X,,..., X,-,, 11,..., ¥)
and neighborhoods Uy < Cy and Uy, = Cy, about (0), there are smooth,
complex-valued functions f;: Ux — Uy, (i = 1, ..., r) such that the part of V
near (0) is the zero-set of F;, = Y, — f}, ..., F, = Y, — f,. We will obtain a
contradiction.

First, it can be easily verified, just as in the proof of Theorem 7.4 of
Chapter II, that the tangent space T to V at (0) is a complex subspace of C"
(rather than only a real subspace of R?"), for T is the limit of tangent planes
T, at nonsingular points Q;€ V as Q; — (0). Also, as in the proof of
Theorem 7.4 of Chapter II, we may assume our coordinates (X, Y) in C"
have been chosen so that Cy is T. In fact, we may write the 2r x 2n
Jacobian matrix at (0) of the real and imaginary parts of the functions
F,; with respect to the 2n real and imaginary axes of the X and Y coordin-
ates, so that the last 2r columns are the “Y” columns, which furthermore
form a 2r x 2r identity matrix. These columns are thus linearly independent.
Note that the derivative at (0) of (F,,..., F,) along any real 1-subspace
of Cy is a nonzero vector, while the derivative along any real 1-subspace
of T is the zero vector. (This last statement is true because any real 1-
subspace of T is the limit of real secant lines L; through (0) and points
P;eV (P;— (0), where the F(P; all have the constant value zero.)
Therefore if g is any complex-valued differentiable function on C" such that
g’s zero-set includes V, then the derivative of g at (0) along any complex 1-
subspace of T must be zero. This is, of course, true for each polynomial
p € J(V); hence all the vectors

o o
X, 0X,_, Y, Y, )
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IV: Varieties of arbitrary dimension

lie in Cy. But since s < r, even more is true-—by an appropriate choice of

coordinates Y;,..., Y, in Cy, all these vectors may be taken to lie in
Cy,. ...y, Hence for any polynomial p vanishing on ¥, we have

op  _ dp _Ip 0

ox, T oXx,., oy,

We now assume our coordinates satisfy the above conditions; we may
assume in addition that

P~YC)n V = (0), (11)

where P"~!(C) denotes the projective completion of Cy, .y, in P"(C). With
respect to these coordinates, let (V) denote the closed projection of V on
Cyx x Cy,. (Therefore #(V) is a hypersurface in Cx x Cy,.) Since V is rep-
resented near (0) as the graph of Y; — f1,..., Y, — f,, for a sufficiently small
neighborhood U of (0)in Cx x Cy, Yy — f; describes (V) N U. The condition
(11) on our coordinates ensures that the graph of Y; — f; really does describe
all of W(V) n U; that is, there is no part of Vin U x Cy, _ y, other than that
given by the graphof Y, — f;,..., Y, — f,,so V’s projection into U consists
of exactly the graph of Y; — f;.

Since @(V) is a hypersurface in Cy x Cy,, it is of the form 7(V) = V(g) for
some polynomial g € C[ X, Y;]. We may assume that g has no nonconstant
repeated factors. Now we are at a point analogous to the third paragraph
from the end in the proof of Theorem 7.4 of Chapter II. On the one hand the
hypersurface V(q) is locally the graph of a function; on the other hand,

5q _ _ aq _ 6_‘1 =0
ox, T oXx,., oy,
This last means that the order of g at (0) must be >2; one may now easily

extend the argument for curves in Theorem 7.4 of Chapter II to show that in
these coordinates V¥ could not be the graph of a function, a contradiction. []

Corollary of Theorems 4.1 and 4.3. The set of all singular points in an irre-
ducible variety V in C" or in PY(C) is a proper subvariety of V.

PrOOF. The rank of any matrix is the largest of the ranks of its square sub-
matrices, and the determinant of any square matrix is a polynomial in the

entries of that matrix. O
EXERCISES
4.1 Let py, ..., p,e C[X,, ..., X,] define an irreducible variety V in Cy, 4., and

suppose that the r x n Jacobian (0p;/0X ;) has at P € V rank strictly less than cod V.
Why does this not imply that V must be singular at P?

4.2 Let V; and V, be irreducible varieties in C" or in P%(C), and suppose neither variety
is contained in the other. If P € V; n V,, show that V; U ¥, is not smooth at P.
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5: Connectedness and orientability

4.3 Show that a pure-dimensional reducible variety ¥ < P*C) cannot be smooth if
dim V = n/2.

44 If V = C"and W c C™ are nonsingular, is V x W < C"*" nonsingular? Can the
product of complex affine varieties with singular points be nonsingular?

4.5 Let P be a point in an irreducible variety ¥V < C". We say that a complex line in C"
through P is tangent to V at P if it is, in the obvious sense, the limit of some sequence
of complex lines through P and Q; € V, as Q; — P (Q; # P). If Vis nonsingular at P,
show that the set of all complex lines tangent to V at P forms a linear variety in C” of
dimension equal to dimp V. We call this linear variety the tangent space to V at P.

4.6 Generalize the definitions and results in this section to include reducible varieties.
[Hint: Use an appropriate definition of local codimension.] Test your results on
different types of concrete examples, such as Cyy U Cy, = Cyyz, V(Y — XU
V(Y) c Cyy, etc.

5 Connectedness and orientability

In Section 1 we stated that arbitrary irreducible complex varieties are
connected and orientable. We prove these two facts in this section. In this
section and throughout the remainder of this book, we will use phrases like
“Property A holds almost everywhere (or at almost each point) on an irreducible
(or, more generally a pure-dimensional) variety IV if Property A holds at
all points of V off some subvariety W of V, where dim W < dim V.

Theorem 5.1. Let V be any irreducible variety in C" or in P"(C). Then V is
connected.

Proor. We prove the theorem by showing that for any two points P,, P, € V,
there is a connected subset of V containing P, and P, (Lemma 8.8 of Chapter
I1) If Vis projective, we may dehomogenize P"(C) at a hyperplane containing
neither P, nor P,; therefore without loss of generality, we assume V is affine.
We also assume dim V' = 1, since an irreducible variety of dimension zero
consists of only one point, and ¢ is trivially connected.

We begin by showing this:

(5.2) Any irreducible curve C in C" = Cy, . is connected.

To prove (5.2), let the coordinate ring of C be R¢ = C[x, ..., x,]; R¢’s
transcendence degree over C is 1. We may assume that x; = X, is transcen-
dental over C, and that x, is a primitive element in R of C(xy, ..., x,) over
C(x,); thus each of x5, ..., x, is a rational function of x,, x, . Therefore if C’
is the irreducible curve in Cy, x, with generic point (x;, x,), then over almost
each point of C', there my,  x -lies just one point of C.

Now if g; is a minimal polynomial of x; over C[x;] fori = 2, ..., n, then
the union of the discriminant varieties, | )7 ., V(24 (q:), consists of only
finitely many points of Cy,. Also note that over no point of Cy, are there
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IV: Varieties of arbitrary dimension

infinitely many points of C or C’, for then all of C or C’ (they are both irre-
ducible) would lie above that point, and x, would not be transcendental over
C. Finally, note that for each gq;, the conditions of Corollary 3.9 of Chapter II
are satisfied at any point of V(g;) = Cy,x, not lying over a point of
U, v@ x{4:))- These facts imply that at almost every point P of C, the part
of C near P is the graph of an analytic function

X =v¥{X,) i=2...,n).

We shall write ¢ = ({5, ..., ¥,). Likewise, at almost every point Q of C’,
the part of C’' near Q is given by the graph of

X, = Wz(Xx)-

There is thus a homeomorphism h, given by (a,, a,) — Y¥(a,) from C'\ {finitely
many points} to C\ {finitely many points}. Since C’ is an irreducible plane
curve, C"\ {finitely many points} is connected. (See Exercise 8.2 of Chapter II.)
Since a connected set has connected closure (Lemma 8.3 of Chapter II), and
since C is the closure in C” of the image under h of C'\ {finitely many points},
we see C is connected. Thus (5.2) is proved.

We may now easily complete the proof of Theorem 5.1. Let P, and P, be
any two points of an irreducible variety V < C" = Cy, .. We shall prove
our theorem by showing that there is an irreducible curve C < V containing
P, and P,; we do this by finding a generic point of a curve in ¥ such that P,
and P, are specialization points of that generic point. First, choose Cy, so it
passes through P, and P,, with Cy, -coordinates 0 and 1, respectively. Let
Clxy, ..., x,] be the coordinate ring of ¥; then x, is transcendental over
C. (If x, were algebraic over C, then x, € C, and x, could not attain both the
values 0 and 1.) Now assume the axes Cy,,..., Cy, have been chosen
so that {xy, ..., x,} forms a transcendence base of C[x;, ..., x,] over C; by
tipping the axes Cy,, ,,..., Cx, a bit as in the proof of the normalization
lemma (Lemma 11.5, of Chapter I1I), we may further assume that C[ x,,..., x,]
is integral over C[x,,..., x;}. Now the map x; - x;,x, »0,...,x,— 0
defines a homomorphism of C[x,, ..., x,]. The argument used in proving
Theorem 11.1.2 of Chapter III shows that this map can be successively
extended to a homomorphism of C[x,, ..., x,]. Let the image of this extended
homomorphism be R = C[x,,0,...,0,y444,...,y,]. This ring has trans-
cendence degree 1 over C (each y; is algebraic over C(x,); since P, = 0e Cy,
and P, = 1 € Cy, are in ¥V, we know that (0,...,0) and (1,0, ..., 0) define
specializations of R. Thus the generic point (x,,0,...,0, y441s..-, V)
defines an irreducible curve C in V which passes through P, and P,, as
promised. O

We now turn to the question of orientability. We prove that irreducible
nonsingular varieties are orientable. As noted in Remark 9.4 of Chapter II,
the definition of a smooth orientable manifold of dimension n is exactly
that for dimension 2 (Definition 9.3 of Chapter II) with 2 replaced by n.
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We see that any irreducible nonsingular variety of dimension d is a smooth,
real 2d-manifold.

Theorem 5.3. Let V be an irreducible d-dimensional nonsingular variety in
PYC) or C". Then V is orientable as a real 2d-manifold.

ProOF. The proof is a generalization of that for curves in Chapter II. First,
we know from Theorem 4.1 that the part of I about an arbitrary point Pe V
is locally the graph of an analytic function. Then, just as in the proof for curves,
there are V-neighborhoods U(Q) and U(Q’) containing P, and associated
analytic maps ®, and ®,., defining homeomorphisms from neighborhoods
of R4 to U(Q) and to U(Q'), respectively; we want to show that for any such
neighborhoods and maps, ® = @, ~! o @, is orientation preserving. That is,
writing Z; = X, +iX,,...,Z;= X541 + iX54,and © = O(X4,..., X,,)
= (@, + iD,), ..., (®yy—; + i®;,), we want to show that det(0®;/0X;) > 0
at each point of ®,~'(U(Q) n U(Q'). As in the case of curves, this deter-
minant is nonzero at each such point, since ® is invertible. To prove it is
positive, we put (0®,/0X ;) into a different form, without changing its deter-
minant. First, d pairwise interchanges of (0®;/0X ;)’s columns, and another d
such interchanges of the rows, totalling an even number of pairwise switches,
leave the value of det(0®;/0X ;) unchanged. We may therefore assume that the
®; and the X; appear in this order: (®;, @;,..., Dyy_, Py, Dy, ..., Dyy),
and (X, X3,..., X241, X3, X4, ..., X5,). Hence the real parts of the @,
and X; are in the first d rows and d columns, respectively. The Cauchy-
Riemann equations directly show that the matrix is now of the form

(-3 %)

where 4 and B are d x d matrices. If I is the identity matrix of order d, then

1oty (1
o 1) ™ Vo 1

both have determinant 1. Multiplying by these elementary matrices defines
row and column operations on 2d x 2d matrices. In particular, we have

I —il A B\(I il\ (A+iB 0\
0 I)\=B AJ\0 1/ \ —B A—iB)

The determinant of thisis

det(4 + iB)-det(4 — iB) = det(A + iB)-det(4 + iB) > O. O

6 Multiplicity

In this section we consider the notion of degree of a variety and the related
concept, multiplicity of intersection of properly intersecting varieties. In the
next section we prove the basic Bézout Theorem which relates these notions.
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The word degree perhaps brings to mind the degree of a polynomial. For a
nonzero polynomial of one variable p € C[X], the fundamental theorem of
algebra tells us that p has deg p zeros, counted with multiplicity; we may say,
geometrically, that the graph of Y = p(X) intersects Cy in deg p points
“counted with multiplicity.” We may think of the multiple points as becom-
ing separated by translating the line Y = 0 a bit. Thus, rather than inter-
secting the graph of Y — p(X) with the line Y = 0, if we intersect it with a
translate Y = ¢, we are then looking at the zeros of p(X) = ¢. Now p(X) — ¢
has a multiple zero at a point a € Cy iff both p(a) — ¢ = 0 and p'(a) = 0. But
there are only finitely many points a such that p’(a) = 0, and, of course, for
each such q, there is only one c such that p(a) = ¢. Hence for all but finitely
many points ¢, p(X) — ¢ has distinct zeros—that is, almost all lines ¥ = ¢
intersect the variety V(Y — p(X)) in deg p distinct points.

There are a number of generalizations of this. For instance, one can suit-
ably parametrize all complex lines in Cy, and then prove that almost all these
lines intersect V(Y — p(X))in exactly deg p points;one can also prove various
higher-dimensional generalizations of this, as well as projective analogues.
In this way we will be led to a geometric definition of degree for any variety.
An analogous route will lead us to a way of counting multiple components of
intersection of properly-intersecting varieties.

In the example above we translated (or in a sense “perturbed ”) one of the
intersecting varieties to separate multiple points. A basic idea that we use
again and again is to appropriately perturb varieties having a zero-
dimensional intersection so that any multiple points of intersection are
separated and can be counted, thus allowing us to make notions such as
degree and multiplicity precise. We shall modify varieties using linear changes
in the variables of the polynomials defining them. Such linear changes, when
nonsingular, are so mild that they don’t change the degree of any polynomial;
the “singular perturbations” are important too, for they can simplify varieties
by changing them into unions of linear varieties, where counting intersection
points is an easy matter. (We use this last idea in Section 7.)

In this section, we first briefly describe these linear changes; we then give a
sequence of definitions of “order” and “multiplicity,” each based on a cor-
responding theorem. For an arbitrary irreducible complex variety, we will
have both “local” and “global” definitions which respectively generalize the
local notion of order at a point X = x, of p(X) € C[X], and the global notion
of total degree (or total order) of p(X). We then define multiplicity of inter-
section for components of properly-intersecting varieties, which leads
to a fundamental homomorphism property of degree (Bézout’s theorem,
Theorem 7.1). Our definitions are essentially geometric and, as one might
expect, they can all be translated into purely algebraic terms.

We now turn to the linear perturbations. Since many of our considerations
will take place in projective space, we work in a projective or homogeneous
variety setting; it will be seen that most of these results hold in a general affine
setting, too.
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First, consider P*C) as the set of 1l-subspaces in Cy,  x.., = Cy.
Any (n + 1) x (n + 1) matrix A4, with coefficients in C, defines a linear trans-
formation X — XA of the variables X = (X,,..., X,,1), which in turn
transforms any homogeneous polynomial p(X) into another homogeneous
polynominal p(XA4) = p*(X). This transforms any homogeneous variety
V = V(I) into another homogeneous variety V* = V(I'*), where

I* = {p*(X) = p(X4)|p(X) e I}. (12)

In this way A4 induces a transformation on any projective variety in P*C).
If A is nonsingular, it is easily checked that for any homogeneous variety
V < Cn+ 1’

V¥=VA '={xeC""|x4eV}. (13)

Note that the two (n + 1) x (n + 1) matrices (a;;) and (ca;;) (c € C\{0})
induce the same transformation on projective varieties in P"(C).

ExAMPLE 6.1

(6.1.1) Any projective subspace L" < P"(C)(given by an (r + 1)-subspace of
C"*1) is transformed by any (n + 1) X (n + 1) matrix 4 into a projective
subspace of dimension >=r. If 4 is nonsingular, the transformed space has
dimension exactly r.

(6.3.2) In P%(C), the circle defined by X ;> + X,2 — X2 is transformed by

1 0 0
A=10 | 1),
0 1 -1

into another nondegenerate quadratic curve (a parabola relative to Cy, x,).
Note that the circle can be degenerated into two lines by a matrix such as
0 00
0 1 0},
0 0 1

which changes X > + X,* — X3%into X,? — X3 = (X, + X3)(X, — X3),
whose variety is the union of two projective 1-subspaces of P%(C). Of course
this method of degenerating a circle can easily be extended to any quadratic
hypersurface in P"(C); for example, any such variety can be degenerated to
a union of two hyperplanes in P*(C).

Often we want to consider all possible “linear changes” of a variety, or at
least all “small ” changes (those whose matrices are entrywise near the identity
matrix). For this purpose, it is natural to use matrices U = (U;;) with (n + 1)*
algebraically independent indeterminant entries U;;. Any homogeneous
variety V < C"*! together with all its “linear transforms” of the type we are
considering, then forms a 2-way, or bihomogeneous variety in C"*1* x C"*1
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(homogeneous in (X4, ..., X,,), and homogeneous in the entries U;;); over
each point of C* 1 lies a transform of V. When considering intersections of
several varieties, we often want to perturb each V; independently in order to
separate any multiple components of intersection. (By counting the separated
components, we then arrive at the multiplicity of intersection.) For instance, to
consider all independent transforms of each of two intersecting varieties V;
and ¥, = P*(C), we may use 2(n + 1)? indeterminants ((n + 1) in each of two
matrices), thus getting a 3-way homogeneous subvariety of C"*1* x
C+D? » C"*1; over each point of C"+D* x C"*V” Jies the intersection of
two independent transforms V| and V7, respectively.

Suppose varieties V,, . . ., V; = P(C) are independently transformed, these
independent transformations being specified by points of C*"*1? Tt often
happens that a property holds for almost all these transforms, in the sense that
it holds for all s-tuples of varieties corresponding to points off a proper
subvariety of C*®*1°, When we use a phrase such as almost all linear trans-
forms, or perturbations, of a set of varieties V}, ..., V,, we shall mean it in the
above sense. In the special case of all transforms of a projective subspace
L™ < P%C), we may use without ambiguity the phrase almost all transforms
of any r-dimensional projective subspace of P"(C), since any two projective
r-subspaces of P*(C) are related by some nonsingular (n + 1) x (n + 1)
matrix.

We now turn to our first theorem which allows us to define the degree of an
arbitrary variety (Definition 6.3).

Theorem 6.2
(6.2.1) For any variety V in PYC) or in C" of pure dimension r, almost all
linear transforms of any projective subspace L"~" — P"(C), or of any affine
subspace L"~" < C", intersect Vin a common, fixed number of distinct points.
(6.2.2) If V in (6.2.1) is a hypersurface defined by a product p of distinct
irreducible polynomials in C[X,,...,X,4+.], or in C[X4,...,X,], then
this common number is deg p.

Definition 6.3. For any affine or projective variety of pure dimension, the
number given in Theorem 6.2 is called the degree of V; we denote this
degree by deg V.

PROOF OF THEOREM 6.2

(6.2.1).Let {U;}} (i, j = 1,...,n + 1)be(n + 1)* algebraically independent
indeterminates. Then the bihomogeneous variety consisting of all transforms
of some projective subspace L"™" (say L"™" = V(I(X)), where the I, are
linearin X = (X,..., X, 1) 1is

VT = V(XU (14)

If V is projective, let V(X, ., — 1) in C"*! define a hyperplane in P*(C)
intersecting V properly, and let V' be the dehomogenization
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H(V)n V(X,,, — 1) in C"** where H(V) is the homogeneous variety in
C"*! corresponding to V;if V < C"is affine, let V' be a copy of this variety in
V(X,+: — 1). Then the subvariety

Vi A (@t x V) (15)

of C"*1? x Cr*1 has only finitely many points over almost each point of
€+ D* (Exercise 6.1). At almost every point of C** 1’ these finitely many
points correspond to all points of Vs intersection with the corresponding
transform of L"~". Now, applying Theorem 11.1.1 of Chapter III to each
component of ¥ n (C®*Y* x V') projecting onto C*"* 1? we see that over
almost every point of C"* 1’ there is a fixed number of points, which means
that almost every transform of L™~ " intersects V in a fixed number of points.

(6.2.2). Tt suffices to show that over each point in some open neighbor-
hood of C* D* there lie exactly deg p points of VT A (C"*D* x V). In this
case, L" ™" is a complex line L. Let

X, =c,T—ay, ... . Xpo=¢,T —aq,

be a parametrization of any line Lin C" = V(X,,, — 1) = C"*'. The zeros of
p*(T) = p(c,T — ay,...,c,T — a,) (or of plc;T — ay,...,¢,T —a,, 1) in
the homogeneous case) give those points in which L intersects V(p). We may
choose (¢4, ..., Cy» Ay, - - - » Gy) SO that these conditions are satisfied:

(a) deg p*(T) = deg p. (Obvious.)

(b) p*(T) has deg p distinct zeros.

(The coefficient of T%%? in p*(T) is a nonzero polynomial in
CiyevsCpy Qys-..,ay; the discriminant 2.(p™ (T)) is a poly-
nomial in ¢,,..., ¢y, ay,...,a, too, and is nonzero since p is a
product of distinct irreducibles.)

Clearly, if a fixed 2n-tuple (cy, ..., C, a5, - - -, Gp)o satisfies (a) and (b), so
do all nearby 2n-tuples. If P, is any point in C"*"* over which lies the
line L, determined by (cy,...,Ca»dy, - - ay)o, then all points in C**V?
near P, correspond to lines “near” L,, which therefore also intersect
V(p) in deg p distinct points. Hence above each point in an open neighbor-
hood of C®*+1? there lie exactly deg p points of V1 ~ (C** 1 x V). O

Theorem 6.2 and Definition 6.3 are global in the sense that they refer to
a property of the entire variety. Now, for example, note that although the
graph in Cyy of Y — [(X —c¢)™-...-(X —¢)™] (cy5---, ¢, distinct)
intersects the line Y = 0 in one point at each point (c;, 0), small translates
Y = ¢ intersect the graph in m; distinct points near (c;, 0). We thus see a
geometric meaning to “the order of p(X) at ¢;.” It is therefore natural to ask
if, for arbitrary varieties of pure dimension, there is a local analogue of the
global notion of degree defined above.
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IV: Varieties of arbitrary dimension

For such a notion, we would want this: Given a variety V* of pure dimen-
sion in P"(C) or C”, given a point P € V", and given any projective or affine
subspace L,""" properly intersecting V" at P, for almost all subspaces L"~"
near Ly" "', there is a common, constant number of distinct points of inter-
section near P. This would be the local degree or order of V at P in the
direction L,"~". One could then further consider all subspaces L"~" of P*(C)
or C" through P and ask if in fact we get the same order in the direction
L""" for almost all these subspaces L"~". This would then represent the order
at P of V (rather than the order in a particular direction. (Example: At (0, 0),
the variety V(Y — X?) < Cyy has order 2 in the Cy-direction, but order 1
in all other directions, so the order at (0, 0) of V(Y — X?)is 1)

The answer to each of the above queries is “yes”: There is a local order at
each point of any variety relative to a direction as well as one in an absolute
sense. Our treatment will be essentially parallel to that of the (global)
degree defined above: Theorems 6.6 and 6.8 allow us to extend the local
definitions of relative and absolute order of a polynomial to local relative and
absolute order of a variety (Definitions 6.7 and 6.9).

We begin with algebraic definitions of relative and absolute order of a
polynomial at a point; we then will have local results (Theorems 6.6.2 and
6.8.2) which translate these definitions into geometric terms.

Definition 6.4. If pe C[X ,, ..., X, ] is expanded about (a,, ..., a,) so that a
typical term of p is a nonzero constant times (X, — a,)* -...- (X, — a,)*,
then the lowest total degree of all such terms of p is called the total order, or
orderin Xy, ..., X,,,orsimply the orderof pat (a,, . . ., a,,). More generally,
p has at each point (a,, ..., a,) an order with respect to any affine sub-
space A of C" through(a,, . . ., a,,), in the following way : If 4 has dimension
r and is parametrized by

Xi=a; + zcij’I} i=1,...,m),
i=1

then the order with respect to 4 (or in the direction of A) of p = p(X,, ..., X,,)
at(a,,...,a,) isthe orderin T3, ..., T, of

p<a1 + YT a, + Zc,,,ﬂ})
j=1 ji=1

at (0,...,0). (Given 4 and (ay, ..., a,,), this order is easily seen to be
independent of the choice of the coefficients c; ; parametrizing A4.) In the
special case when A4 lies in the direction of a coordinate subspace, for
instance if Aisgivenby X, ., = a,,,,..., X,, = a,, (or parametrically, by
Xi=a;+ Tifori=1,...,rand X; =a;fori=r + 1,..., m), then the
order with respect to 4 of p at (ay,...,a,) is called the order in
Xy, ..., X,ofpat(a,, ..., a,).Itisevidentlyequal totheorderin X ,, . .., X,
of p(Xy,.... X,,8,41,...,a,)at(ay, ..., a,).(Cf. Definition 10.3 of Chapter
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I1) Finally, if pe C[X 4, ..., X,u+ 1] is homogeneous and if 4 is any linear
subspace of Cy,. . x,.., through (a,, ..., an. ), it is easily checked that
the order with respect to 4 of p at (ay, . .., dy+1) is the same as the order
at (cay, ..., Cam+1) (c € C\{0}). Since (ay, ..., ap+) and (cay, . .., CAp 4+ 1)
both define the same point in P™(C), there is, in P™(C) with homogeneous
coordinates (X, . . . , X,,+ 1), a well-defined notion of order with respect to
a projective subspace L = P™(C) of a homogeneous polynomial p € C[X,,

vvs X e 1] at P € P™(C). It is a straightforward exercise to verify that the
order in the projective setting is the same as the order in any fixed de-
homogenization of P, P™(C) and p (such that P is not a point at infinity).

EXAMPLE 6.5

(6.5.1) The polynomial X? — X e C[X] has degree 2, and has order 1in X
at (0); since X2 — X = (X — 1)> + (X — 1), it also has order 1 in X at (1).
Expansion about any other point (a) yields order O at (a).

(6.5.2) The polynomial p(X,Y)= Y* — X*® — X? (defining an alpha
curve) has degree 3, and has (total) order 2 at (0, 0); it has order 1 at any other
point of the curve, and order 0 at any point off the curve. It has order 3 in
X at (0, 0) in the directions Y = + X and order 2 at (0, 0) with respect to
any other direction.

We next state the local form of Theorem 6.2. First, note that if V' is any
projective or affine variety in P*(C) or C", then in the variety of all linear
transforms of V, V lies above the identity matrix. We shall say that V7 is near
V if VT is the transform of V by a matrix T, all of those entries are close to
the corresponding entries of the identity matrix. Since all matrices near the
identity matrix are nonsingular, any V7 close to V has the same dimension
as V.

Theorem 6.6
(6.6.1) Let P be a point of a pure-dimensional variety V" in P*(C) or C",
and let L be a projective or affine (n — r)-subspace of P*(C) or C" properly
intersecting V at P. Then for almost every linear transform L' of L"™"
sufficiently near L, there is a common fixed number of distinct points of

V n L’ arbitrarily near P.

(6.6.2) If V is a projective or affine hypersurface in P"(C) or C" defined by
a product p of distinct, irreducible polynomials (homogeneous in C[X,,
-+, X+ 1] in the projective case, or ordinary polynomials in C[ Xy, ..., X, ]
in the affine case), and if L is any projective or affine line properly inter-
secting V at P, the number given in (6.6.1) is the order with respect to L

of patP.

Definition 6.7. The number in Theorem 6.6 is called the order with respect to L
of V at P, or the multiplicity of intersection of V' and L at P; we denote it

by i(V, L; P).
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Note that for any fixed point P € P*(C), the set S of all matrices transform-
ing a given projective subspace L” = P*C) to a subspace containing P
(or P-containing subspace) forms a subspace of C”"*V* For if 4 and B
are matrices in S, if a = (ay,. .., a, ) are homogeneous coordinates for P,
and if /(X,, ..., X,+) is any linear function in the homogeneous ideal
defined by L", we have /(a(A + B)) = £(ad) + /(aB) = 0 + 0 = 0. Hence S
is closed under addition. Similarly, it is closed under scalar multiplication by
elements in C. Thus S is a subspace of C* V* It is obvious that S is proper if
L™ ¢ PY(C). (Similar statements hold in the affine case.) One thus sees that
there is a well-defined concept of “almost all P-containing transforms” of a
projective or affine subspace.

Corresponding to the relative Theorem 6.6, we have this absolute result:

Theorem 6.8

(6.8.1) Let P be any point of a pure r-dimensional variety V = V' in
PYC) or C". For almost all P-containing transforms L' of an (n — r)-
dimensional projective or affine subspace L of P*C) or C", iV, L'; P) is
defined and has a common, fixed value.

(6.8.2) If V in PY(C) or C" is defined by a product p of distinct, irreducible
polynomials (in C[X,,...,X,+1] or C[X4,..., X, ], respectively), this
common number is the order of p at P.

We then have

Definition 6.9. The number given by Theorem 6.8 is called the order of V at P,
or the multiplicity of V' at P; we denote it by m(V'; P).

Our proofs of Theorems 6.6 and 6.8 will run along the same lines as that
of Theorem 6.2, and for this reason we need corresponding local forms of
Theorem 11.1.1 of Chapter III.

The analogue of Theorem 11.1.1 of Chapter III we use in proving Theorem
6.6 is contained in the following

Theorem 6.10. One may, in Theorem 2.13, replace the concluding phrase
“above each point a in A’ there is a point of V ina x A"~ %” by the phrase
“above almost each point a in A? there is a common, fixed (positive) number
of points of Vina x A"~%”

The proof is the same as the proof of Theorem 2.13.

PROOF OF THEOREM 6.6

(6.6.1) The proof is essentially the same as the proof of Theorem 6.2;
one need only replace the reference to Theorem 11.1.1 of Chapter II1 by a
reference to Theorem 6.10, applied at a point of C®*1* x C"*! correspond-
ing to the point Pof V n L.
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(6.6.2) We may assume that V is affine. Therefore let P = (a,,...,a,) € C*;
then with respect to any of L’s parametrizations X; — a; = ¢;T(i=1,...,n),
pleiT,...,¢,T) has a zero of multiplicity m at T = 0, where m is the order
with respect to L of p at (ay,...,a,). But since p(X,..., X,) is a product
of distinct irreducibles, its zeros are all distinct on almost every line in
C" (Theorem 6.2), hence also on almost every line near L. Applying Lemma
10.4 of Chapter II together with Theorem 6.10 to the variety corresponding
to (15) shows that for every L' sufficiently near L, there are exactly m distinct
points of V n L’ arbitrarily near P. O

Let us now see what is involved in proving Theorem 6.8. In Theorem 6.6
we showed that the number of points near P of V" n L’ is the same for
all L' near a fixed L = L"™" properly intersecting V" (that is, the same for
all points near that point of C"*D* corresponding to L). We want to
generalize from one space L through P, to all transforms of L"™" passing
through P (that is, from one point of C"*»* to a whole subspace of
C"* 1), For this, we shall appropriately generalize Theorem 6.10s0 “(0) e V'
can be replaced by “irreducible subvariety of V. First, from Theorem 6.10,
we know that if V° < Cy, 4, is an irreducible variety of dimension s
variety-theoretically projecting onto Cy,  x, , then at every point P€ V,
it is true that for each sufficiently small polydisk A""%(P) < Cy,,, .. x.
centered at P, there is a polydisk AS(P) = Cy, . x, centered at P so that
over almost each point Q € A%(P), there is a common, fixed number n(P)
of points of ¥V n (A%(P) x A" %(P)). We shall use the following result:

Theorem 6.11. Let V° and n(P) be as immediately above, and let W be any
irreducible subvariety of V°. The numbers n(P) assume the same value at
almost all points P € W.

Theorem 6.11 is an immediate consequence of

Theorem 6.12. Let V° < Cy, . be an irreducible variety of dimension s
variety-theoretically projecting onto Cyx, . x., and let W be an irreducible
subvariety of V*. Then for each integer k = 0, the set of points Q of W such
that n(P) = k forms a subvariety W, of W.

PROOF. Suppose, first, that V* is a hypersurface. Without loss of generality,
letp e C[X,,..., X,] beirreducible; then from Theorem 6.6.2, the order with
respect to Cx, of V* = V(p) at (ay,...,a,) € V(p) is just the order in X, of
pat(ay,...,a,). Now it is easily seen that the orderin X, of pe C[X, ..., X,]
at (ay,...,a,), is =k iff its first k — 1 partial derivatives with respect to X,
vanish there. This condition obviously defines a subvariety of V(p), and
therefore also of W.

The proof for arbitrary irreducible V* is very similar to the proof of
Theorem 6.10 for arbitrary V; we therefore leave it as an easy exercise
(Exercise 6.2). O
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PROOF OF THEOREM 6.8

(6.8.1) The proof is basically the same as that of Theorem 6.2.1, except that
we apply Theorem 6.11 (instead of Theorem 11.1.1 of Chapter III). For
the variety V* in Theorem 6.11, we take the variety V' n (C"*V* x 1)
appearing in (15). V¢ < C"*D* x C" x {1} =« C"*D* x C"*1)is “algebraic”
over C*V* (in the sense that the coordinate ring of V* is algebraic over
that of C*"* 1), Now consider the subspace S of C*? parametrizing those
P-containing transforms L' of L; the subvariety in C"*D* x C**! con-
sisting of those points of the variety in (15) which lie above S is easily seen
to have as an irreducible component the translate S x {P} x {1} of S.
(All our transforms of the given L contain the fixed point P € V") Let
this translate be W in Theorem 6.11. For almost every transformation
T €S, dim(L)" = n —r, and for each such T, i(V",(L)"; P) equals n(Q)
(as defined immediately before Theorem (6.11), where Q € W corresponds to
(L)T. This completes the proof of (6.8.1).

(6.8.2) We assume without loss of generality that V is affine and that
P = (0)eCy, . x,. We may write p = p,, + pp+1 + ..., where p; is 0 or
homogeneous in X ,,..., X, of degree i, and where p,, # 0. The order of p
at (0) is then m, and under the substitution X; = ¢; T parametrizing a typical
line L through (0),

pm(CI’T; e ,C" T) = Tmpm(cls e Cn)a

which is thus either zero or still homogeneous of degree m. It is zero only at
points (¢4, ..., c,) € V(p,,), and V(p,,) is proper in C"; when it is of degree m,
i(V, L; (0)) = m. Hence for almost all (0)-containing transforms (L)" of
some L, i(V, L)T;(0)) is the order of p at (0). Thus (6.8.2) is proved, and
therefore also Theorem 6.8. O

We can generalize the notion of order or multiplicity of a variety at a
point, to order or multiplicity of a variety at, or along, an irreducible sub-
variety.

Theorem 6.13. Let X be an irreducible subvariety of a pure-dimensional variety
V in PYC) or C". For almost every point P on X, m(V; P) has a common,
fixed value.

PrROOF. The proof is essentially the same as the proof of Theorem 6.8.1;
assume without loss of generality that X is affine, and in place of the
translate S x {P} x {1}), use § x X x {1}. This gives an “almost all”
statement on points of X instead on only P. O

Definition 6.14. The number in Theorem 6.13 is called the multiplicity of
along W, denoted by m(V; W). More generally, if any V has multiplicity
k at almost every point of a pure-dimensional subvariety W, then k,
denoted by m(V; W), is the multiplicity of I along W.
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We now turn to the definitions of degree and of intersection multiplicity
of properly-intersecting varieties. As before, we use linear transformations.
Thus, let V; and V, in P(C) or C" be properly-intersecting varieties of
pure dimensions r and s, respectively. We assume r + s > n. (Therefore
dim(V, n V,) > 0.) Then C”*D? parametrizes the set of linear transforms of
V,, another copy of C"*V” independently parametrizes those of ¥, and a
third parametrizes transforms of some L®~7*"~9 By the dimension
theorem, any subspace of dimension (n — r) + (n — s) intersecting V; N V,
properly does so in dimension zero. (Note that we are independently
changing all three varieties, whereas earlier, with two varieties V' and
L, we transformed only L. We could in fact just as well have independently
transformed both V and L earlier, and we could here independently transform
only two of the three varieties, leaving the third one fixed. For example if
T =(ay), T'=(aj), and T" = (a;) are nonsingular transformations on
V,, Vs, and L respectively, then for the transformations S’ = (aj;)(a;) ™"
and 8" = (a})(a;)” ", the number of points in V,* N V,7 ~n L™ is the same
as the number of points in V; n V,5 n L%")

Let V({p(X)}), (k = 1, 2, 3) be the respective homogeneous varieties in
C"*! corresponding to V; and V,, and a projective (n — r) + (n —s)-subspace
of P"(C). Then in self-explanatory notation, the variety

Vi = V{pau(XU)}) Gj=1,....,n+ 1;k=1,2,3) (16)

is 4-way homogeneous in C3"*1* x C"*!, The variety V' thus generalizes
to three independent transformations the variety V' in (14).

Now V(X,,,)inCy, . x,,,defines a hyperplane in P*(C). Then, just as in
the proof of Theorem 6.2.1,

Vit A (€D x VX, — 1)

variety-theoretically projects onto C3®*1” and every component variety-
theoretically projecting onto C3"*D* is algebraic over C3®*V* Hence
above almost each point of C3®*V? there is a common, fixed number of
points. Translating this back to Vi, V,, and L gives us

Theorem 6.15. Let V, and V, in P*(C) or C" be of pure dimension r and s,
respectively, and let L be any (2n — r — s)-dimensional subspace of P"(C).
Then for almost every transform Vi™ of Vi, V," of V,, and L™ of L,
V," O V,T LT consists of a common, fixed number of points.

Definition 6.16. Let pure-dimensional varieties ¥, and V, in PC) or C"
intersect properly; the fixed number in Theorem 6.15 is the degree of
intersection of V; and V,, written as deg(V; - V,).

Remark 6.17. Note that deg(V, - V,) is not in general the same as
deg(V; N V,), in Definition 6.3. See Example 6.26. The notation deg(V; - V5)
will be further illuminated in Remark 6.25.
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Theorem 6.18. Let V; and V, in P"(C) or C" be of pure dimensions r and s,
respectively, and let L" "*®~9 = L, be linear of dimension 2n — r — s.
If Vi, V,, and L intersect properly at a point P, then for almost every
transform V,T near V,, V,T' near V,, and L"" near L, there is a common,
fixed number of distinct points of V;T A V,7 n L™ near P.

Proor. The proof is entirely analogous to that of Theorem 6.15, except we
use Theorem 6.10 instead of Theorem 11.1.1 of Chapter III. ([

Definition 6.19. The fixed number of Theorem 6.18 is the intersection multi-
plicity, or multiplicity of intersection, of V;, V,, and L at P; it is denoted by
i(vy, V5, L; P).

Theorem 6.20. Let V, and V, in PYC) or C" be of pure dimensions r and s,
respectively. If they intersect properly at a point P, then for almost every
P-containing transform L’ of a linear variety L™~ "*"~9_i(V,, V,, L'; P) is
defined and has a common, fixed value.

ProOF. The proof is similar to that of Theorem 6.8.1. The “V*” used in that
proof is now

VA (C D X V(X — D),

which is algebraic over a copy of C3"*1* As noted just before the statement
of Theorem 6.8, there is a proper subspace S of C*V* parametrizing the
P-containing transforms of L"~"*®~%: we again take W to be the translate
S x {P} x {1}. The proof may now be completed, making the obvious
changes in the proof of Theorem 6.8.1. O

Definition 6.21. The fixed number in Theorem 6.20 is the intersection multi-
plicity, or multiplicity of intersection, of V| and V, at P; it is denoted by
l( Vla VZ’ P )

Theorem 6.22. Let V, and V, in P"(C) or C" be of pure dimension, and suppose
they intersect properly. If C is an irreducible component of Vi N V,, then
at almost every point P € C, i(Vy, V,; P) has a common, fixed value.

ProOOF. The proof is like that of Theorem 6.20; assume C is affine, and in
place of S x {P} x {1} for W, use § x C x {1}. This gives the “almost
all” statement over C instead of just at P. O

Definition 6.23. The fixed number in Theorem 6.22 is the multiplicity of
intersection of V; and V, along C, and is denoted by i(V;, V,; C).

Definition 6.24. Let V; and V, be two properly-intersecting pure-dimensional
varieties in P%C) or C" The formal sum »’_, i(V;, V,; C))C; of the
distinct irreducible components C,,...,C, of Vi nV, is called the
intersection product of V; and V,, and is denoted by V; - V.
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Remark 6.25. Tt is natural to define the degree of V;-V, to be
Yt _ iV, Va; C;)-deg C;. If we do this, then we see that the symbol
“deg(V; - V,)” in Definition 6.16, is in fact what its notation indicates—
it is the degree of V; - V.

EXaMPLE 6.26. Rotating the circle V(X — r)? + Z2? — s?) = Ry, (r,s€ R,
r > s > 0) about R, in Ryy, describes a real torus defined by the fourth-
degree polynomial

PX, Y, Z)= (X2 + Y2 + 22+ r? — %) — 4%(X2 + Y?);

it “rests on a tabletop” in the sense that it is tangent to V(Z — s) = Ryy;.
The corresponding complex varieties V(p) and V(Z — s) in Cyy;, are surfaces
of degree 4 and 1, respectively. The variety C = V(p) n V(Z — s) has degree 2
(since it is a circle), and i(V(p), V(Z — s); P)=2 at each Pe(C, so
i(V(p), V(Z — 5); C) = 2. Thus

V(p) - V(Z — s5) = 2C,
and
deg(V(p) - V(Z — 5)) = 2deg(V(p) n V(Z — 5)) = 4.

Note that C and V(p) are nonsingular. Thus m(C; P) = 1 for each P e C,
m(V(p); Q) = 1 for each Q € V(p), and m(V(p);C) = L.

EXERCISES

6.1 With notation as in the proof of Theorem 6.2, show that for almost every point
P e C"* 1’ there lic above P only finitely many points of the variety in (15).

6.2 Prove Theorem 6.12 for any irreducible variety V* < C".

6.3 Let ¥V and W be properly-intersecting varieties in C”, and let P be any point
of V.~ W.If T is a nonsingular linear transformation of C", show that i(V, W; P) =
{T(V), TW); T(P)).

6.4 For any variety V in C" or P"(C), show that V is nonsingular at P € Viff m(V; P) = 1.
Generalize to the case where P is replaced by an irreducible subvariety of V.

6.5 Let V < C" be irreducible of dimension r = n/2, let L< C" be a linear variety of
dimension r properly intersecting V, and let P € V n L be a nonsingular point of V.
Show that L is the tangent space to V at P iff i(V, L; P) > 1 (cf. Exercise 4.5).

6.6 (a) Let V; and V;, be varieties in P*(C) such that dim V; + dim V, > n. Show that
for almost every linear transform VT of ¥, VT and V, intersect properly.
(b) State and prove an analogous result in the affine setting.

6.7 The class of perturbations considered in this section is not the only one that can be
used to arrive at multiplicity and multiplicity of intersection. For instance, if
V = V(p)  Cy,. ... x, = C"is a hypersurface, it turns out that one can use the one-
dimensional family of level surfaces {V(p(X) — ¢)|c € C;} to replace the set of
linear transforms of V. Assume and use this fact in (a) and (b) below.
(a) Show that the multiplicity of intersection at (0, 0) of V(XY) < Cxy with any
1-subspace other than Cy or Cy, is two.
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(b) Let (X) =(Xy,...,X,), let g(X)e C[X]\C, and let a linear variety L = Cy
properly intersect V(g). Show that at an arbitrary point (0) € V(g) n L, inter-
secting the level curves of the hypersurface V(Y — ¢(X)) = Cxy with L yields
the order with respect to L of g at (0).

Let C and V(p) (p € C[X, Y]\C) be two properly-intersecting curves in Cyy = C2.
For almost every ce C V(p — ¢) " C is a finite set 4,; the number of points in A4,
clustered near an arbitrary point (0) € V(p) n C, for ¢ arbitrarily small, turns out to
be i(V(p), C; (0)). Let S; be any one of the subsets of C near (x4, yo) = (0) in Theorem
4.13 of Chapter II, and suppose that the points of S; are parametrized near (0) by, say,
X = X(T)and Y = Y(T). Those points near (0) of A, on that S; are then given by
the set of all T such that p(X(T), Y(T)) = c; the number of such points as ¢ — 0 is
of course just the order with respect to T of p(X(T), Y(T)). Since each factor in
(20) of Chapter II gives a parametrization of (a representative of)a branch of C
through (0) (namely, a parametrization of the form X = T™ and Y = f(T)), we
have another way of finding the multiplicity of intersection of two properly-
intersecting plane curves. Assume and use this method in the following.

(@) InCyxy = C%letCy = V(Y2 - X3),C, = V(X? — Y3),and Cy = V(Y2 - 2X?).
Find {C,, C,;(0)) and i{C,, C5; (0)).

(b) Let C;,C,, and C; be as in (a). By homogenizing and dehomogenizing
to take care of points at infinity, directly verify Bézout’s theorem for the com-
pletions in P2(C) of C, and C,, and also for the completions of C, and C;.

(c) Find the multiplicity of intersection at the origin of the two curves in Exercise
4a, b, Section 11, 4.

(a) Let Y7o, ¢;;X;X; define a conic in P*C), where c;; = c;; € C. Show that
the conic consists of either two distinct lines or one “double” line (in the obvious
sense) iff the determinant |¢;;| = 0. (Such a conic in P?(C) is called reducible.)

(b) Let F = F(X,, X,, X3) be homogeneous, let (a) = (a,, a,, a;) be a point of
P*(C), and let X; = ;S + b; T (b;€ C, i = 1, 2, 3) be parametric equations for
a line L in P*(C) through (a). Show that the order with respect to L of F at (a)
is at least three iff

b i0j . ( 1
(a a) ‘ =p ( ) )
(See Definition 64)

For any ¢ in C\ {0}, (17) obviously holds iff it holds with cb; in place of b;
(i = 1,2, 3). Thus if (17) holds, then for any value assigned to (X ;, X,, X ;) such

that
3 [(oF
P [(6&) (a)]Xi -

we also have at that same value, )7, ,[(0°F/0X;0X }a)]X,;X;=0.
Geometrically, this says that the line
e

[
3 (25 Yaon-o

is a component of the conic
L
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7: Bézout’s theorem

that is, this conic is reducible. Thus by (a), det[(3*F/0X;0X )(a)] = 0. We
therefore conclude that any point P of V(F) = P*(C) having order 3 along some
line through P, is a point of V(F, det(0*F/0X;0X ) = P%(C). Prove that this
can happen for only finitely many points P and only finitely many lines L in
P%(C).

7 Bézout’s theorem

In this section we prove Bézout’s theorem for varieties in P*(C).

Theorem 7.1 (Bézout’s theorem). Suppose two pure-dimensional varieties V
and W in P*(C) intersect properly. Then

deg(V - W) =deg V - deg W.

We shall prove this theorem by showing that it can be reduced to the case
when one variety, say V, is of an especially simple form, namely when it is a
union of deg V distinct projective subspaces of dimension dim V. From
Theorem 6.2 and Definition 6.3 we know that W, almost every projective
subspace of dimension dim V, and almost every projective subspace of
dimension n — dim ¥V — dim W intersect in deg W points, counted with
multiplicity; replacing the one subspace of dimension dim V by a union of
deg V' such subspaces then yields deg V - deg W points, counted with
multiplicity.

As an example, the variety V < Cy y, consisting of the two lines X, = +1
has order 2; since the parabola W = V(X,? — X,) intersects each line
X, = land X; = —1in two distinct points, it intersects Vin deg V- deg W
= 4 distinct points. (Note that the completions of V and W don’t intersect at
the line at infinity, so there are still exactly four points of intersection in
P2(C).)

If V is not of such a simple form, we will show that it can be changed,
by means of projective transformations, so that it is ; of course we need to show
that in so modifying V, its degree of intersection with W doesn’t change, so
that computing the order of intersection using our simpler. variety really
does yield the right number, deg(V - W).

Let us begin by looking at the question of simplifying varieties via pro-
jective transformations.

ExaMmpLE 7.2. Consider the circle in P*(C) defined by V(X ,? + X, — X3?).
Replacing (X, X,, X3) in X, + X,*> — X;? by (X, X,, X3)(U,;;), where
(U is a 3 x 3 matrix of indeterminants, yields a variety V' in C° x C?
(Cf. (14)); an arbitrary projective transformation of V' is obtained by evalu-
ating (U;;) at an arbitrary point (a;;) € C°. If U;; = 0 whenever i # j, then
(X1, X5, X3) maps to (U, X4, U,,X,, U33X3); any choice a;; of the Uy;
simply amounts to a change in the coefficients of X, X,, and X5 in
X% + X,% — X;2 If exactly one of these coefficients g;; is zero, the poly-
nomial breaks up into distinct factors. For instance when a,, = 0 and
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IV: Varieties of arbitrary dimension

a,, = a3 = 1, the polynomial becomes X, — X;2 = (X, + X3)(X, — X3),
so the circle is transformed into two lines in P?(C) under

000
01 0}
0 01

Often it is necessary to make more than one coefficient zero to fully reduce,
or “degenerate” a variety to a union of linear varieties. For instance
V(X% + X,% + X;32 — X,2), which defines a complex sphere in P3(C),
becomes the cylinder V(X,2 + X532 — X, %) witha;; = 0 and a,, = a33 =
a4 = 1, but it reduces to two planes V(X5 — X,) U V(X3 + X,) upon also
setting a,, = 0.

The general result we shall use is this:

Lemma 7.3. With respect to appropriate coordinates, any pure-dimensional
variety V < P™(C) can be reduced to a union of deg V distinct subspaces of
dimension r = dim V by means of a projective transformation defined by an
(n+ 1) x (n + 1) matrix

0

0

1

where r of the entries on the main diagonal are O and n — r + 1 entries are 1.

PrOOF. Let H(V) = Cy, . x,., be the homogeneous variety representing V.
Without loss of generality we may suppose coordinates have been
chosen so that Cyx,  , . ., intersects H(V) in deg V distinct l-subspaces
Ly,...,Lyegv. Foreach i =1,...,deg ¥V, let S; be the (r + 1)-subspace of
C*"*Y spanned by L; and Cy, . These deg V subspaces are all distinct;
their union V' will turn out to be our simplified variety.

NotethatCy ., x.., = V(Xy,...,X,),s0if H(V) = V(a), then the union
of the subspaces L, is the common zero-set of a and Xy, ..., X,. Thus

ULi = CXr+1,...,X,,+1 N V({p(O,---,O, Xr+la""Xn+l)|p€ a})a

and V'is V({p(O,...,0, X, 1., X,s1)|p € a}).
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7: Bézout’s theorem

We now see that the union V' of the §; is the transform of V under the
(n + 1) x (n + 1) matrix

0

(Uij) =

0

1

where r of the entries on the main diagonal are 0 and n — r + 1 entries are 1.
U

We show next that the reduced variety V' actually does yield deg(V - W)
points when intersected with W and an appropriate linear variety.

Notation 7.4. Let V(<= P*(C)) and coordinates X,,...,X,,; of C"*! beasin
Lemma 7.3. Let Pe C"* 1D denote the matrix of Lemma 7.3, and let V"
denote the transform of Vunder P. Let W < P*C) be of pure dimension,
let L be a subspace of P*(C) for which V' n W~ L is proper and consists of
deg V - deg W distinct points, and let I be the identity matrix of ordern + 1.
(Then P x I x IeC3®*V* corresponds to the set of varieties {V’, W, L}.)
As in (16), let the set {U;;} (G,j=1,...,n+1 and k=1,2,3) be
3(n + 1)? (algebraically independent) indeterminants parametrizing the
set of independent projective transformations of V, W, and L; denote
(X1, X,e) by X. If V, W, and L are defined by ideals a, = {p,}
(k = 1,2, 3) respectively, let V™" = V({p(X(U;)})-

According to Definition 6.16, we see that Bézout’s theorem says this:

(7.5) For almost every point Q € C3"*1” therearedeg V - deg W
distinct points of V! above Q.

The matrix P is a point of C"* 1’ so {P} x C2>®*V* js an irreducible
subvariety of C*®* 1’ Now above almost each point of {P} x C2®*V” there
are exactly deg V -deg W points of V*''. However, it is conceivable that
{P} x C2"* 17 s jtself an exceptional subvariety of C>"*V*; for instance, a
priori, there might be more than deg V - deg W points of V' above points of
C3®*1? pear {P} x C2"*1’ We show this cannot happen by proving
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IV: Varieties of arbitrary dimension

Lemma 7.6. Let V, W, P, and V'' be as in Notation 7.4. There is a point Q,
in {P} x C** 1’5o that there are exactly deg V - deg W distinct points of
V' ny-lying above Q,, and so that if Q¥ is an arbitrary one of these
deg V-deg W points, then for each Q € C3™*V* gyfficiently near Q,,
there is exactly one point of V! arbitrarily near Q¥ which ny-lies above Q.

ExaMpLE 7.7. Let the completions in P?(C) of a complex circle and parabola in
CX\Xz be V= V(X12 + X22 - X32) and W= V(X2X3 - Xlz). At

0 00
P=|0 1 0jecl+”
0 0 1

the transform of Vis V(X ,2 — X;2), which intersects Windeg V -deg W = 4
points. We may therefore let P x I x I be the point Q, in Lemma 7.6. Then
P x I x I describes the reduced circle ¥’ (two lines) and W. A point Q near
Q, corresponds to “slightly perturbed curves”; the elongated ellipse and
tilted parabola in Figure 1 indicate a possibility in the real affine part

Figure 1

Ry,x,. We want to show that arbitrarily near any point of V' n W, there is
exactly one intersection point of W with any projective transform of V
sufficiently near V’, as suggested in Figure 1. If this is true, then each inter-
section corresponding to points in an open neighborhood of C**+1* (and
therefore over almost all points of C3®* 1) consists of the same number of
distinct points as does the intersection of the reduced circle with the original
parabola, so the degree of V - W is indeed deg V - deg W, as desired.
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7: Bézout’s theorem

PROOF OF LEMMA 7.6. Let A = A3"*1D® 5 A"*1 be a neighborhood in
C3+ D 5 C"*1 about Q¥. We prove the lemma by showing that for some
such A, V11 A A is the graph of an analytic map from A3"*+Y* to A"*!, For
this, we apply the Implicit mapping theorem (Theorem 3.5 of Chapter II).

To show the hypotheses of Theorem 4.1 are satisfied, we proceed as
follows (cf. Notation 7.4). First, it is easy to see that we may choose coordinates
in C"*1! so that above the point P x I x I C3®*V’ W is nonsingular at
each of the deg V -deg W distinct points in which V’ intersects W n L.
Now let J(V')bean “c0 x (n + 1)matrix” (0p/0X ;) (wWhere p runs through all
elements of J(V') for i = 1, ..., n+ 1) with analogous meanings for J(W)
and J(L). Let J* be a matrix whose set of rows consists of the sets of rows
of J(V'), J(W), and J(L).

By Theorem 4.1, at each point QF of V' n W n L we have rank(J(W)g:) =
cod W and rank(J(L)ys) = cod L. One may further choose L and V"’ so that
ateachQfe V' n Wn L, V', Wand L intersect “transversally ” in the sense
that rank(J}) is cod V' + cod W + cod L = n + 1. Write Y, = 3, U3 X,
and Y, = (Yy,..., Y, ). In analogy with J(V'), J(W), and J(L), let J(V''")
bean “co0 x (3(n + 1)> + n + 1) matrix,” where one takes partials of all the
P Y) with respect to all variables X and U. At each Qf, the X, ..., X, -
columns of J(V'') coincide with the columns of J* (for an appropriate
ordering of the rows of J*); this follows from the chain rule. Writing p = p,.
we have:

op(Y)
X,

op(X)
X =Yy [ i

op(X)
7 0X;

Q35 Q35

Q§eP x I x1IxCyx _ x.,)

We have seen that rank (J§;) =n + 1, so rank(J(V'")ys) = n + 1. We
actually have equality, for the remaining 3(n + 1) columns of J(V'') are
linearly dependent on the X4, ..., X,, ;-columns; this again follows from
the chain rule:

op(Yy)
6U,-jk

op(X)
X,

. X,] ,
X=Y, [oF}

which is a constant times dp(X)/0X;|gs. By continuity of the entries of
J(V), we see that rank(J(V'') = n + 1 throughout a sufficiently small
An+1.

The hypotheses of Theorem I1,3.5 are now satisfied; hence for A =
A3FTD? 5 An* 1 sufficiently small, V't A A is the graph of an analytic
map from A3+ V% to A"t 1, as desired. O

Q3

Corollary 7.8. If two curves in P*(C) of degrees n and m interscct in more than
nm points (counted with multiplicity), then the two curves have at least one
irreducible component in common.
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EXERCISES

7.1

7.2

7.3

7.4

7.5

7.6

212

Let two “concentric spheres” S; and S, in P*(C) be defined by
VX2 +...+X,2—1) and V(X,2+...+ X2 —4).

In what variety and with what multiplicity do S, and S, intersect?

(a) Let F,, F, e C[X, Y, Z]\C be homogeneous of degree n. Show that for every
¢y, ¢, €C, V(e Fy + ¢, F,) contains V(F;) n V(F,).

(b) Suppose V(F;) n V(F,) = P*C) consists of n? distinct points; suppose that
H e C[X, Y, Z]\C is homogeneous and irreducible of degree m < n, and that
V(H) = P*(C) contains mn points of V(F,) n V(F,). Show that for some choice
of ¢, and ¢,, V(¢ F, + ¢, F,) contains V(H) as a component.

Using Exercise 7.2 above, prove Pascal’s theorem: Let C be an irreducible conic in
P(R), and let L, ..., Lg be the real projective lines extending successive sides of
a (not necessarily convex) hexagon inscribed in C; then the three points L, n L,
L, Ls,and L3 n Lg are collinear.

Using Exercise 6.9, complete the proof of the genus formula (Theorem 10.1 of
Chapter II) by proving the existence of coordinates in C? described in the last
paragraph of Section II, 10.

In this exercise we use Definition 5.14 of Chapter V, which gives mild generalizations

of the notions of curve and intersection multiplicity. Let V and W (< C?) consist,

respectively, of n and m lines (counted with multiplicity) through an arbitrary, fixed
point P e C2. If each line in V is different from each line in W, then obviously

iV, W; P) = nm. Show that this can be generalized as follows:

(@) Let g € C[X, YJ\C have order m at P—that is, suppose that the homogeneous
polynomial g* consisting of all the lowest-degree terms of ¢ when expanded
about P, has (total) degree m. (C(q*) then consists of m lines with multiplicity
through P;V{(g*) is often called the tangent cone to V(q) at P.) Show that if
V(g*) and the above V intersect properly, then i(V, C(q); P) = mn.

(b) Let notation be as in (a). We show that V can be replaced by n “smooth analytic
arcs” in the following sense. Let p € C[X, YJ\C; suppose that ordp p = n,
and that each of p’s n fractional-power series expansions about P (as in Corollary
4.17 of Chapter II) is actually an ordinary power series in X. Under these
conditions, show that if V(p*) and V(g*) intersect properly, then i(C(p), C(q); P)
= nm. (If V(p*) and V(g*) intersect properly, we say that V(p) and V(q) intersect
transversally at P.)

(c) Let notation be as in (a) and (b), and let p satisfy the conditions in (b). Suppose
that P is a singular point of V(p), and that all the linear factors of p* are distinct.
Then V(p) is said to have an ordinary singularity at P. Show that if V(p) has an
ordinary singularity at P, and if V(p) and Cy intersect transversally at P, then

'(C C(ap>'P> - 1
U (P), ﬁ H = n(n - )

It is natural to ask if the genus formula for nonsingular plane curves can be extended
to more general curves. It can; in this exercise we prove one such generalization.
First, we have the following basic definition:



7: Bézout’s theorem

Definition. Let S be any topological space obtained from a compact connected
orientable topological 2-manifold M by identifying finitely many points to
finitely many points. The genus of S is defined to be the genus of M.

It is easily checked that this definition assigns a well-defined integer to S.

Now, using Exercise 7.5, prove this generalization of Theorem II, 10.1:

Let C = P%C) be an irreducible curve of degree n. Suppose that C has only
ordinary singularities, say Py, ..., P,, and suppose that the multiplicity of C at
each such P; is r;. Then the genus g of C is equal to

n—1n-—2
2

ri— 1)
3 .

) g
i=1
7.7 Let g be an arbitrary nonnegative integer. Find a curve C = P%(C) having genus g.

7.8 Let C « PYC) and C’' = P™(C) be irreducible curves which are birationally iso-
morphic. Show that C and C’ have the same genus. [ Hint: Establish a homeomor-
phism between C\ {finitely many points} and C’\ {finitely many points}.] (This
result says that the genus of an irreducible curve is a “birational invariant”; see
Exercise 6.12 of Chapter V.)
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CHAPTER V

Some elementary mathematics
on curves

1 Introduction

So far our efforts have principally been directed toward getting information
about algebraic varieties. But one can regard varieties themselves as “spaces
on which one does mathematics.” The reader has met this idea before. For
instance one can transfer analysis on R to analysis on the more general real
variety R", getting, for example, multivariable calculus. And in complex
analysis one regards the variety C (or more generally C") as a carrier of
analytic functions; one then studies differentiation and integration of these
functions, and so on. One can also do analysis on real differentiable
manifolds or complex analytic manifolds. (See, for instance, [ Narasimhan],
[Spivak], or [Wells].) Such a study in turn often sheds new light on the
underlying space; algebraic geometry is no exception in this respect. In such
questions, algebraic varieties occupy a special position; they have so much
structure that one can transfer to them many ideas not only from analysis,
but also from number theory, and these generalizations interconnect with
and enrich each other. Transferring differentials and integration to non-
singular complex varieties is particularly natural, and in fact in its early
days, algebraic geometry was regarded as a part of complex analysis (by
Abel (1802-1829), Riemann (1826-1866), Weierstrass (1815-1897), etc.).
More recently, attempts to transfer notions from topology and analysis to
appropriate generalizations of algebraic varieties have met with varying
degrees of success, and have for example already shed new light on some old
problems in number theory. In applying algebraic geometry to other fields
in this way, one often needs to translate classical geometric results into
ring-theoretic terms.

We begin, in Section 2, with the notion of the field K, of rational
functions on an irreducible variety V, together with evaluation of these
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2: Valuation rings

functions. Evaluation turns out to be an essentially new idea, since there
may be points on ¥V at which the value of a rational function is “indeter-
minate.” We resolve this question geometrically (using modes of approach
to a point of V); we also translate into ring-theoretic terms obtaining valu-
ation subrings of K,. Closely related to valuation rings are local rings
which essentially extend consideration from modes of approach to a point,
to arbitrarily small neighborhoods of a point; the properties which we need
are outlined in Section 3.

In Section 4 we give a ring-theoretic characterization of nonsingularity
which, besides being important in its own right, leads us to Section 5 where
we apply the idea of abstract algebraic variety to arrive at abstract nonsingular
curves. Here we present a fundamental decomposition theorem which
generalizes both the fundamental theorem of algebra and the fundamental
theorem of arithmetic. This decomposition theorem affords a very nice
example of a geometry-versus-ring theory dictionary—it yields an iso-
morphism between all point chains on the curve, and all nonzero ideals of the
corresponding coordinate ring.

In Section 6 we extend to irreducible curves in P%(C) some of the familiar
global results of analytic function theory on the Riemann sphere (C U {o0});
we also introduce differentials, and establish some of the differential analogues
of these function-theoretic results. This lays the groundwork for Section 7,
where we prove the famous Riemann-Roch theorem for nonsingular curves
in P?(C). This theorem provides a measure of how many rational functions
and differentials there are having at most a prescribed set of poles on the
curve. This result spotlights the close connection between function theory on
the curve and the structure of the curve itself for, conversely, knowing how
many such rational functions and differentials there are determines the
genus (that is, the topology) of the curve.

2 Valuation rings

Let V < Cy,, . x, beanirreducible variety with coordinate ring Cx,,. . ., x, ]
= C[x]. The value of a polynomial p(x) € C[x] at a point x, € V' is p(x,,) which,
ring-theoretically, is just the image of p(x) in C[x]/m, where m is the maximal
ideal of C[x] corresponding to x,. We also know that a variety V(p) < C"
has C[ X4, ..., X, J/p as coordinate ring and that two affine varieties are
(polynomially) isomorphic iff their coordinate rings are isomorphic. Just as we
regard C[x] as the ring of polynomials on V, we may regard C(x) as a field of
rational functions on V. The field C(x) is called the function field of V, and is
also denoted by K. It is natural to seek C(x)-analogues of the properties of
C[x] just mentioned. These properties are not merely trivial extensions of
those of C[x], as our next examples show.

ExAMPLE 2.1, Let ¥V = Cyy. The function field of V is C(X, Y). What is the
value of Y/X at the origin? We cannot directly assign a definite value, even
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infinity, to 0/0. The origin is then a point of indeterminancy for Y/X. We can,
however, approach (0, 0) along different directions in Cyy; for various
directions we get different values. For instance, approaching (0, 0) along Cx
(parametrized by X = T and Y = 0) gives the value limy_, (0/T) = 0;
approaching along Cy yields oo, and approaching (0, 0) along, the line
X =aT,Y = bT (a # 0) yields the value b/a.

Of course one can approach (0, 0) in a much more arbitrary way than
along lines; however one might conjecture that approaching (0, 0) along
smooth curves all having the same tangent at (0, 0) would yield the same
value at a point of indeterminancy. Consider this example:

ExaMmpLE 2.2. The origin (0, 0) € Cyy is a point of indeterminancy for the
rational function Y/X? € C(X, Y). Approaching (0, 0) along Cy again yields
the value 0. Every parabola V(Y — cX?)(c € C\{0}) is tangent to Cy. Along
Y = ¢X?, Y/X? becomes cX%/X? = c, and we get a different value for each
of these tangent parabolas.

Example 2.2 shows the importance of considering modes of approach
other than lines. Yet we cannot admit just any mode of approach, for we
can again end up with indeterminancy.

ExaMmpLE 2.3. Consider Y/X € R(X, Y); suppose that we approach (0,0) € Ryy
along the curve C defined by

1
c: Y=Xsin§ X#0

Y=0 X =0.

Values of Y/X oscillate between +1 and —1 as we approach (0, 0) e C, and
Y/X is again assigned no unique value at (0, 0).

From these examples, it is evident that we must be judicious in how we
approach a point of indeterminancy to arrive at a well-defined value. Since
we are dealing with algebraic varieties, it might seem reasonable to restrict
our approach along points in an irreducible algebraic curve. (Approaching
on a subvariety of dimension > 2 can obviously again lead to indeterminancy,
as Example 2.1 shows.) Note that C in Example 2.3 is not algebraic. (No
algebraic curve intersects a line in infinitely many discrete points by Bézout’s
theorem.) Restricting our approach along irreducible algebraic curves is
still not quite good enough, as we see next:

ExampLE 2.4. The alpha curve V(Y? — X*(X + 1)) < Cyy is irreducible,
but near the origin it “splits up” into two parts which turn out to have
V(Y — X) and V(Y + X) as tangents at (0, 0). Approaching (0, 0) along
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these parts separately (even within R?) assigns the two values +1 and —1
to y/x € C(x, y), where C[x, y] = C[X, YJ/(Y? — X*(X + 1)).

We shall see that one always gets single-valuedness by restricting attention
to parts of algebraic curves which in a certain sense “cannot be split up.”
In the example above, each of the two “parts” or “branches” through
(0, 0) of the alpha curve defines a mode of approach to (0, 0); selecting one of
these branches will determine a unique limit for every element of C(x, y).

In the plane, such branches turn out to be just the parts of algebraic curves
given by the fractional-power series representations of Theorem 4.13 of
Chapter 11, where we split up a neighborhood of a point on a curve into the
one-point union of topological disks. In the plane, we will see that these
fractional-power series determine, on a function field, the most general map
satisfying the basic properties one would expect “evaluation at a point”
to have. These branches may have singularities (for instance V(Y2 — X3)
at (0, 0)).

We now turn to a more precise description of mode of approach. Let
C(xy, ..., x,) be the rational function field of an irreducible variety V <
Cy,. ... x> and let (O)e V be an aribtrary point of V. In the familiar case of
V = Cy (X a single indeterminate), when the function field is C(X), the
evaluation at (0) is well defined and presents no problems—each f e C(X),
when written in reduced form p/q, assumes the unique value p(0)/g(0)e C u
{oo0}. (We never have p(0) = g(0) = 0 if f is in reduced form.) If f, g € C(X)
and f(0), g(0)e C, then (f + g)(0) is of course f(0) + g(0); (f -¢)(0) =
f(0)-g(0); and f(0) = w0 iff 1/f(0) = 0. For V < C" with coordinate ring
C[x4, ..., x,], in any way of extending the natural evaluation of elements of
Clxy, ..., x,] at (0) e V to elements of C(x,, ..., x,), we would expect at the
very least this same kind of behavior—that is, each f € C(x,, ..., x,) would be
assigned a unique value in C u {oo} satisfying these two conditions:

(2.5.1) If f and g are assigned finite values a, b€ C, then f + ¢
and f - g are assigned values a + b and a - b, respectively;
(2.5.2) f is assigned the value oo iff 1/f is assigned the value 0.

It turns out that even these rudimentary assumptions on an “evaluation”
of elements in C(x4, . . ., x,) yield important information. First, it is immediate
that the set of all elements of C(x, ..., x,) which are given finite values
forms a subring R. We know that any coordinate ring C[x,, ..., x,] = C[x]
determines an affine variety V (unique up to isomorphism) whose coordinate
ring Ry is, in turn, isomorphic to C[x]. Analogously, one may ask:

(2.6) Does R determine in a natural way some geometric object
having a “coordinate” ring isomorphic to R?

The answer to this is yes in many important cases, and the object turns
out to isolate the essential idea of mode of approach. To get a more precise
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notion of this, consider an example: Let f be a real-valued function on
R\ {0} and suppose limy_, f(X) exists. Now f surely need not have all of
R\ {0} as domain to evaluate limy_, o f(X). Even for a fixed neighborhood N
of 0, N\ {0} is more than is needed. Yet since f is not defined at 0, more than
the single point 0 is required. We want an object expressing “arbitrary
nearness to a point.” This leads us to the germ of a set at a point (Definition
2.7). In the above example, one object containing the basic notion of arbitrary
nearness to (0) is the set of all neighborhoods about (0). This is the germ of R
at (0). Another example: In R?, let L be a line through (0); the germ of L at (0)
is the set of all subsets of R? coinciding with L throughout some R2-neighbor-
hood of (0). Note that if S is any one of these subsets, then the germ of L at (0)
is the same as the germ of § at (0)—that is, we identify S and L iff they agree
at all points sufficiently close to (0). This, of course, is all that matters in
asking for the limit of a function along S or L. It is in this way that germ
incorporates the idea of “nearness,” and will be used in making precise our
idea of mode of approach.

Definition 2.7. Let 7 be a topological space, let S be a subset of 7, and let
P be a point of 7. The germ of Sat P is the set of all subsets T of 7~ which
coincide with S on some  -neighborhood of P; that is, T is a member of
the germ iff there is some open neighborhood U about P such that
SN U = T n U.This germis denoted by S, ~. P is called the center of S, ~,
and any member of S,™ is called a representative of S,~. If there is some
open neighborhood U about P for which § N U = ¢, then the germ of
S at P is called the empty germ at P.

It is clear that any point P € 7 partitions the set of all subsets of J into
equivalence classes, any two subsets of J being equivalent iff they have the
same germ at P. Note that for any P€ J and any two subsets S, ' = .7,
Sp” =87 iff Sn U =8 n U for some neighborhood U of P.

Just as on sets we may define functions, on germs of sets we may define
germs of functions:

Definition 2.8. Let 7 be a topological space, let P € 7, and let f be any
function on some 4 -neighborhood of P. The germ of f at P is the set of
all functions g defined on neighborhoods of P which coincide with f on
some neighborhood of P. We denote the germ of f at P by fp™~; we-call
fp~ afunction germ.

As with germs of sets, function germs may be looked at as equivalence
classes of functions, two functions being equivalent iff they have the same
germ at P. Note that for functions f and g, fp~ = g~ iff f and g agree in a
neighborhood of P. Operations on sets and on functions induce analogous
operations on germs of sets and on function germs. With notation as in
Definition 2.7, we have
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Definition 2.9. The germs Sp~ U Sp'~ and Sp~ U Sp'~ are defined to be
(Su S~ and (S n §)p"~, respectively. (It is easy to see that these notions
are well defined.)

Similarly, we have

Definition 2.10. Let fand g be any two functions defined on a neighborhood
of Pe J with values in a field; we define fp~ + gp~ by (f + 9)p~,
fp T rgp~ by (f-g)p~,and —(fp~) by (—f)p~. If there is a neighborhood
of P on which f is never zero, then we define 1/~ by (1/f);™ . (These are
clearly well defined.)

Definitions 2.8-2.10 are very general; one can consider important classes
of germs at different “levels,” for instance the set of subsets S of 7 closed at P
(that is, S closed within a sufficiently small neighborhood of P); if further-
more 7 is C supplied with the usual topology, we can replace closed at P by
analytic at P (that is, S coincides throughout some neighborhood of P with
the zero-set of a function analytic at P € C). One then speaks of closed germs,
analytic germs, etc. And for functions, one may, for instance, consider
functions continuous, differentiable, or analytic at a point. Definition 2.10
shows that the set of all function germs in any such fixed level in general
forms a ring. We may, more generally, consider any ring R of functions,
each function being defined on some neighborhood of a fixed point P of a
topological space 7. The set Rp™ = {fp~| f€ R} forms the induced set of
function germs at P. In view of Definition 2.10 we see that  — f,~ is a ring
homomorphism, and R;" is in general a proper homomorphic image of R.

EXAMPLE 2.11. Let R be the ring of all real-valued functions on R which are
constant in a neighborhood of (0). The elements of R,~ are collections of
functions, and each collection can be represented by a constant function.
Rp" isin this case isomorphic to R. As another example, consider polynomials
or functions analytic at (0) € C. There is essentially only one function in
each germ (from the familiar “identity theorem” for power series).

The main applications of this section in the rest of the chapter, are to
curves. In Theorem 2.28 we prove the following: Suppose (i) P is any point
of an irreducible curve C = Cy, . x, with coordinate ring C[x,, ..., x,] and
function field C(x, ..., x,) = K, (ii) there is given an evaluation at P of
each function f € K coinciding with the natural evaluation of C[x,, ..., x,]
at P and satisfying properties (2.5.1) and (2.5.2), and (iii) R is the subring of
K assigned finite values. Then we can conclude that there is canonically
associated with R a germ B~ (B for “branch”) such that R can be regarded
in a natural way as a ring of function germs on Bp~, and such that for any
f € R, its initially-given evaluation at P will be the value of f,~ at P. Before
proving Theorem 2.28 we establish a number of basic results.
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We first look at some properties of the above ring R. We begin with an
example. Consider C = Cy; at (0) the corresponding ring R = C(X) of
functions assigned finite values at (0) consists of the functions p/q, where
p and g are polynomials and ¢(0) # 0. The ring R can be naturally regarded
as a ring of functions on C,~. There is but one point of C common to all
sets in C,~. If, as suggested earlier, R is to act like a “coordinate ring”
on Cy,~, then we might conjecture that R has but one maximal ideal,
corresponding to the point (0). This is indeed so; in fact we show, more
generally (Theorem 2.12 and its corollary), that the ring R of all elements
in any field K assigned values satisfying properties (2.5.1) and (2.5.2), has a
unique maximal ideal.

We start with the following simple characterization, which leads to
Definition 2.13.

Theorem 2.12. Let K and k be fields; if each element in K is assigned a value in
k v {oo}, and if this assignment satisfies properties (2.5.1) and (2.5.2), then
the set of elements assigned finite values forms a subring R of K, and for
each a € K, a ¢ R implies 1/a € R. Conversely, let K be a field; if R is any
subring of K such that for each a € K, a ¢ R implies 1/a € R, then there is a
field k such that each element of K is assigned a value in k U {0}, this
assignment satisfying (2.5.1) and (2.5.2).

Proor. The first half is obvious. For the converse, assume without loss of
generality that R # K, and let m be the set of elements a of R such that
1/a ¢ R. We show that m is a maximal ideal in R. Then properties (2.5.1) and
(2.5.2) follow at once for the field R/m.

We first show that m is an ideal. m is closed under addition. For let
a, bem. If a or b is 0, then a + b € m. Therefore assume a # 0, b # 0. We
show a + b € m. By hypothesis on R, either a/b € R or (a/b)"! = b/a e R.
Suppose a/b € R. Now 1 € R (if not, then 1/1 = 1 € R); hence because R is
assumed to be aring, 1 + (a/b) = (b + a)/b € R. Toshow a + b € m, suppose
a + b¢m.Then1/(a + b)e R,and since Risaring, [(b + a)/b][1/(a + b)] =
1/b € R. But this is impossible, since we assumed from the outset that b € m;
by m’s definition, b € m implies 1/b ¢ R. Next, m has the absorbing property,
for suppose a € R, b € m but that ab ¢ m. Then 1/ab € R, hence a/ab = 1/beR,
again giving us a contradiction.

It is now easy to see that m is maximal, since any ideal a = R containing
an element ¢ € R\ m must also contain ¢ - (1/c¢) = 1 (c € R\ m implies 1/c € R),
which implies that a = R. Thus there can be no proper ideal of R larger than
m. O

Note that if a field K is given an evaluation satisfying (2.5.1) and (2.5.2), the
subring R of elements assigned finite values in turn determines the same
evaluation (up to an isomorphism of k = R/m) via a - a + m(if ae R), and
a— o (ifa¢ R).
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In view of Theorem 2.12 we make the following

Definition 2.13. A subring R of a field K is called a valuation ring if, for each
a € K, either a € R or 1/a € R. If R contains a subfield k of K, then R is
called a valuation ring over k.

Remark 2.14. Henceforth, the term valuation ring in this book will always
mean valuation ring over C unless stated otherwise.

Corollary to Theorem 2.12. Every valuation ring R has a unique maximal
ideal.

ProoF. Any maximal ideal other than m = {a€ R|1/a¢ R} would have to
contain an element of R\ m, and we saw this is impossible. O

There is an important side to evaluation which we have not touched
upon yet. We begin with an example. Consider the field K = C(X). In
addition to assigning at a point P a value f(P) € C u {00} to each f € C(X),
we may also assign an order, ordp(f); it is a straightforward generalization
of the definition for polynomials: We define, for f = p/q (p, g € C[X]),

ordp(f) = ordp<§> = ordy(p) — ordp(q), for any P e C. 1

It is obvious that ordp( f) is well defined. Observe that if p/q (written in lowest
terms) is expanded about P (e.g., expand p and g about P and use “long
division™), the exponent of the lowest-degree term is just ordp(p/q); this
fits in with the term order. (For ¢ € C\ {0}, ordp(c) = 0; ordp(0) = oo, by
definition. We assume oo is greater than any element of Z.) As with poly-
nomials, ord, for elements of C(X) satisfies

(a) ordp(f + g) = min(ordp(f), ordg(g)),
(b) ordp(f - g) = ordp(f) + ordp(g) for arbitrary f, g € C(X)\{0}.

These two properties may be taken as basic for a more general definition.
Definition 2.15. Let K be any field and let ord be a function from K\ {0}
onto the set of all integers Z such that for any a, b € K\ {0}, we have

(2.15.1) ord(a + b) = min{ord(a), ord(b)}
(2.15.2) ord(a - b) = ord(a) + ord(b).

Then ord is called a discrete rank one valuation of K ; if k is a subfield K
and ord(a) = 0 for all a € k\ {0}, we say ord is a discrete rank one valuation
of K over k. For a given ord on K, we say a € K has order n if ord(a) = n.

As the reader might guess from the above terminology, there are more
general valuations, not necessarily discrete or rank one; although at the end
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of this section we show how discrete valuations of rank > 1 arise in evalua-
tions on more general fields, in the sequel we will not use valuations more
general than discrete rank one.

Note that for any ord on a field K,

ord(1) =0 2

since ord(l) = ord(l - 1) = ord(1) + ord(1). Also, for any nonzero a€K,
ord(a(1/a)) = ord(a) + ord(l/a) = 0; hence

ord(%) = —ord(a) (0 # a e K). (3)

This in turn implies that

ord(%) = ord(a) — ord(b) (4)

which generalizes (1).

For a given ord on K, R = {0} U {a € K|ord(a) > 0} is a ring (immediate
from (2.15.1) and (2.15.2)); if a ¢ R, then 1/a € R (since ord(1/a) = —ord(a)).
Hence ord defines a valuation subring of K.

Definition 2.16. Let K be any field and let ord be any discrete rank one
valuation of K. The ring R = {0} U {a € K|ord(a) > 0} is the valuation
ring of ord; it 1s called a discrete rank one valuation ring.

Remark 2.17. Tt is easy to see that all functions ord determining a given
discrete rank one valuation ring R of K, may be identified in a canonical
way with the function defined by K\ {0} - (K\{0})/%, where % = R\ m
is the multiplicative subgroup of elements of K having order 0. In this way
any discrete rank one valuation ring itself determines an essentially unique
discrete rank one valuation on K.

Discrete rank one valuation rings have many nice properties. In the case
of the function field C(x,, .. .. x,) of a curve C, there is a fundamental con-
nection between discrete rank one valuation rings of C(x,, . . ., x,), and modes
of approach to points of C. Basic to this is the following

Lemma 2.18. Any proper valuationring R (C < R)of a field K = C(x4,...,X,)
having transcendence degree one over C is discrete rank one.

The idea of the proof is quite simple, and is given in Exercise 2.2.

Definition 2.19. Let R be a discrete rank one valuation ring of a field, and let a
be any ideal of R. Define ord(a) by

ord(a) = min{ord(a)|a € a}.
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Lemma 2.20. Let R be a discrete rank one valuation ring of a field. For any
ideal a = R,

a = {a € R|ord(a) > ord(a)}.

Proo¥. First, for each nonnegative integer n, a contains at least one element
of order ord(a) + n. For let a be any element of a such that ord(a) = ord(a),
and let b be any element of R of order 1. (The number 1 is the smallest positive
ord-value of elements in K, since ord is onto Z.) Then ord(ab”) = ord(a) + n.

Second, if a contains at least one element ¢ of order m, it contains all
the elements of R of order m. For if d is any element of R of order m, then
ord(d/c) = 0, hence d/c € R by the definition of R. Therefore c(d/c) =d e a
since a is an ideal. O

Corollary 2.21. Every discrete rank one valuation ring is a principal ideal ring.

PrROOF. Let a be any nonzero ideal of R, and let a be an element of least order
in a. From the proof of Lemma 2.20 we see that (a) consists of all elements of
R of order = ord(a); but so does a, so a = (a). a

Corollary 2.22. Every discrete rank one valuation ring is Noetherian.

ProOOF. Every principal ideal ring R is Noetherian. (Let a;, < a, = --- be an
ascending sequence of ideals of R. Then ( );a; = (a) for some aeR. But
aca;, for somei Hencea; =a;,;, =---)) O

Corollary 2.23. Let a be any proper ideal in a discrete rank one valuation ring R.
Then ﬂ,ﬁ’: 1 a™ = (0).

Proor. If ()2-; a™ # (0), then ()x-, a™ = (b) for some b # 0. If ord(a) = r
and ord(b) = s, then mr > s for sufficiently large m; hence b ¢ a™, a contra-
diction. O

Remark 2.24. More generally, for any Noetherian domain R, if a is a proper
ideal of R, then ﬂ,“,‘,; . a™ = (0). This is Krull’s theorem. For a proof see, for
example, [Zariski and Samuel, Vol. I, p. 216].

Corollary 2.25. The unique maximal ideal of a discrete rank one valuation
ring R is generated by any element of order 1, and consists of all the elements
of R having order > 1.

Our next result, Theorem 2.26, will lead us to a geometric interpretation of
valuation subrings of fields of curves. We know that any function f(X) =
P(X)/q(X) € C(X) where X is a single indeterminant, is analytic at any point P
where g(P) # 0. Theorem 2.26 generalizes this, in that for any discrete rank
one valuation subring R of the function field of any curve, Theorem 2.26
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allows us to regard each element of R as an appropriate analytic function
germ.

To identify elements of R with infinite sums of elements of R, we need a
topology on R. We use a natural topology induced by R’s maximal ideal m.
This topology is rather weak —the “formal” power series which we construct
will automatically converge relative to this weaker topology. We will show
separately that the power series obtained this way do in fact converge in the
usual, stronger sense of complex analysis.

We define the natural topology on a discrete, rank one valuation ring R
by means of a basis for open subsets of R, as follows: Let R’s maximal ideal
be m. For each a € R and positive integer n,a + m" is a subset of R which we
take to be a typical open set of our basis.

Since ()%, m" = (0), we may translate equality “a = b” in R into the
useful topological form, “a — b e m” for all sufficiently large n.” Also, note
that for arbitrary a, b € R,

@+mH+bB+m")=(a+b)+m" (
@+m")-b+m")=ab+m" (

)s
).

m
m

NN

n
n

From this it is easy to check that addition and multiplication are continuous
with respect to this topology. (R thus forms a “topological ring.”) This
topology may be extended to a topology on R’s quotient field K by replacing
the above a,be R by a, be K.

We say that an element x € R has a power series representation » >, c;r'
if, given any N > 0, we have x — Y7, ¢;r' e m" for all sufficiently large n.
In this sense we may consider that x equals Y 2, c;r'—that is, it is identified
with an element of R. It is easy to verify thatif x = ), ¢;r'and y = Y ;d;r,
then x + y, x — y, xy and x/y (y # 0) are the sum, difference, product, and
quotient of the corresponding power series. Operations on power series are
performed in a way similar to those on polynomials (cf. Section II,4).

We may now state our theorem.

Theorem 2.26. Let R be a valuation subring of a field C(x,, ..., x,) having
transcendence degree 1 over C (C = R). Then R is discrete, rank one, and
for any element T € R of order one, each x € R has a power series representa-
tionx = Y 2o ¢; T". If the symbol T is considered as a complex variable, then
Y2 ¢; T is analytic at (0) € Cy.

PrOOF. Let m be R’s maximal ideal. Then R/m is a field containing C. Now T
isa generator of m;since T ¢ C and C is algebraically closed, T is transcenden-
tal over C. Therefore R/m is algebraic over C (hence is C itself) as the following
argument shows: If u € R is any element whose image is a given ¢ € R/m, then
since C(x,, ..., x,)’s transcendence degree over C is 1, u is algebraic over
C(T), and therefore satisfies an irreducible polynomial equation

T + ...+ p(T) =0 (p{T) € C[T]).
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Under R - R/m, T maps to 0 and u maps to ¢, hence po(0)c" + ... + p,(0) = 0;
since each p,(0) € C, and since not every p(0) = 0, ¢ is algebraic over C, hence
in C. Thus R/m = C.

This shows that any element y of R may be writtenas y = ¢ + rT, for some
ceC and reR; in fact it shows that if xem”, then x = ¢T" + rT"*!
(ce C and reR), for surely x = y'T" where y'€R, and y' in turnis ¢ + rT
for some ¢ € C and r € R. It is now easy to prove the existence of the power
series representation. Let x be any element of R. Then there exist ¢;e C
and r; € R such that

x=cog+r,T (hence x — ¢, e m)
x—co=0c,T+rT? (hence x — ¢o — ¢, T e m?)
Xx—co—c;T=c;T>+r,T> (hencex — ¢y — ¢; T — ¢, T? e m?)

The limit of the sequence x — ¢y — ¢, T — ¢, T? — ... is therefore in

® , m" = (0), whence we have x = Y 2, ¢;T". Now let us show that this
formal power series is actually analytic at (0). Surely T is transcendental
over C. Let p(T, X) be the minimal polynomial for x over C(T). Now
(T, Y2oc;T) = 0; we see this as follows: Y 1o ;T = x — Y, ;T
hence p(T, Y=o ¢; TY) = p(T, x — Y ;> ¢; T); the right-hand side is easily
checked to be p(T, x) + «,(=ua,), where for n sufficiently large, «, is in any
preassigned power of m. By the uniqueness part of Corollary 4.17 of Chapter
I1 it follows that X — Y 2, ¢; T® corresponds to one of the factors in (20)
appearing in that corollary. By Corollary 4.18 of Chapter II the series

® o ¢; T'is analytic at T = (0). O

With notation as in Theorem 2.26, we have

Corollary 2.27. Each element x of C(x4, ..., x,) has a Laurent series develop-
ment x = Z{“;no ¢; T' (ng € Z) convergent, except possibly at zero, in some
neighborhood of (0) € Cy.

PROOF. Write x as y/z, where y and z are in R. For some n >0, z =

T+ iy TP+ ... = Tc, + cye T +...) where ¢, # 0; since the
reciprocalof ¢, + ¢, T + ...is analytic at (0), y/z is the product of T ™" and
a power series analytic at (0). O

Let C(x,..., x,) have transcendence degree 1 over C, let R be a valuation
ring of C(x;, . . ., x,) over C, and suppose the maximal ideal m of R intersects
C[xy, ..., x,] in a maximal ideal. Let C be an affine curve with coordinate
ring C[x,, ..., x,], and let P € C correspond to m n C[x,, ..., x,]. Then
Theorem 2.26 implies that R yields a subset Bp < C (a representative of a
branch of C at P) containing P so that for each element x € C(x, ..., X,),
this holds: At all points of Bp sufficiently near P, R assigns to x a unique
value in C u {00}, this assignment satisfying (2.5.1) and (2.5.2). The set Bp
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will serve as a mode of approach to P. This is done as follows: Let C = C"
have (x4, ..., x,) as generic point. Since x; € R, for any T € R of order 1,
each x; has a power series representation x; = ) 2o c;T' (i=1,...,n),
convergent in some common neighborhood N of (0) € C;. Any t, € N thus
determines a specialization of (x, . .., x,), namely

(xl’ et xn) - <Z Cljt()j’ s Z ant0j>9
j i

and therefore defines a subset of C, consisting of all specialization points of C
as t, ranges throughout N. Let Bp be this subset. We say that Bp is “analytic
at P,” in the sense that it is, within a sufficiently small C"-neighborhood U
of P, the zero set of a set of functions analytic throughout U. The point
(€105 - - - » Co) corresponding to t, = 0 is P. Note that the germ Bp™ of Bp is
independent of the choice of the order-1 element of R. (If T" is any other
order-1 element of R, we may write T = Y 2 ; a(T')* where a, # 0; this
establishes a homeomorphism between neighborhoods of (0) in C; and C.,
so Y ;c;; T and Y ; ¢; X aT’)Y describe the same set in C near P as T and
T’ vary near (0) in C; and C;., respectively.) Now let x be any element of
C(xy, --.» X,)- If x € R, then it has a power series representation Zj ¢; T/,
and the value at P, corresponding to T = 0, is just ¢,.

The set of elements of R having constant term 0 in the power expansion
evidently forms m — R. The value of any element x € R at (¢;¢....,Cno)
is thus x + me R/m = C. An ¢lement x € C(x,, ..., x,) is therefore assigned
the value 0iff x € m, and is assigned the value oo iff x ¢ R. Thus the properties
(2.5.1) and (2.5.2) are satisfied.

The neighborhood of P in B, throughout which we guarantee the above
assignment depends on x. The natural, well-defined object determined by R
is thus the germ B, ; the elements of R are then analytic function germs
on B,"~. The center P of Bp™~ is the image (¢,q, .. -, Cao) Of the center of the
power series expansion. In view of these observations, we now have:

Theorem 2.28. Let P be a point of an irreducible curve C = C"with coordinate
ring C[xy, ..., x,] and function field K = C(x,, ..., x,); let the elements
of K be given an evaluation at P extending the natural evaluation at P of
elements in C[x,,...,x,], and satisfying (2.5.1) and (2.5.2). Then the
associated valuation ring R defines an analytic germ Bp~ at P, and the
elements of R may be regarded as analytic function germs on Bp~, the
evaluation of any f € R at P coinciding with the value of fp~ at P.

The following definitions will be used in the sequel:

Definition 2.29. The maximal ideal m of a valuation ring R is called the center
of R. If R is a valuation ring in a field C(x,, . .., x,) of transcendence degree
one over C, and if m intersects the coordinate ring C[x,, ..., x,] of an
irreducible curve C = Cy, . x, in a maximal ideal, then the associated
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point P € C is the center of the germ By~ determined by R, and is called
the center of R on C. Any such B~ is called a branch of C centered at P
(or through P, or at P).

Definition 2.30. If C = Cy, .y, is anirreducible curve, then an element U in
C’s function field is called a uniformizing parameter (or uniformizing
variable) at P € C if the part of C about P can be represented by power
series in U':

<ZC1jUj,...,ZanUj>,
j J
where P = (C195 - - - » Co)-

This next result will be needed later; it gives a simple geometric way of
getting uniformizing parameters of a plane curve at any nonsingular point.
It is essentially a corollary of Theorem 3.6 of Chapter II.

Theorem 2.31. Let P = (0, 0) be an arbitrary nonsingular point of an irreducible
plane curve C = V(p) < Cyy,and suppose V(X)(=Cy = Cyy)isnot tangent
to C at P. Then X (or more precisely, the image of X in the coordinate
ring C[X, Y)/Ap(X, Y)) of C) is a uniformizing parameter for C at P.

PrOOF. Assume without loss of generality that coordinates have been chosen
so the tangent line to C at (0, 0) is Cy (= V(Y)). Then px(0, 0) = 0, so by
nonsingularity, py(0,0) # 0. By Theorem 3.6 of Chapter II, C is locally
described by Y = g(X) where g is analytic at 0. Hence X is a uniformizing
parameter for C at (0, 0), since the part of C near (0, 0) is represented by the
power series (X, g(X)). O

So far we have not considered any concrete examples of valuation rings,
except very simple ones—those in C(X) which contain C. A natural question
is this: Are there other valuation rings? To answer this, note that we have
shown so far that at a point P of an irreducible affine curve C having co-
ordinate ring C[x,, ..., x,] and function field K- = C(x,,..., x,), if one has
an evaluation on K satisfying properties (2.5.1) and (2.5.2) and coinciding
with the natural one on C[x,, ..., x,] at some P € C, then there is an
associated branch B~ serving as a mode of approach to P along which each
element of K. has a well-defined limiting value in C U {oo}. However, it is
conceivable that there could be points on C at which there is no such evalua-
tion of K (points at which one can of course evaluate elements in the co-
ordinate ring, but cannot extend the evaluation to all of K). This can never
happen. At each point of C, any evaluation on C[x4, ..., x,} always extends in
at least one way to an evaluation on K. We prove this fundamental fact for
plane curves in Theorem 2.32. This confirms the geometrically intuitive guess
that valuation rings abound in algebraic geometry.
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Theorem 2.32. Let P be an arbitrary point of an irreducible plane curve
C < Cyy having coordinate ring C[x, y] and function field K. = C(x, y).
Then there is an evaluation of the elements of K satisfying (2.5.1) and
(2.5.2) and coinciding with the natural evaluation of C[x, y] at P.

ProoF. If at P we could express both x and y as convergent power series in an
element T € K of order one, then every element f € K. would be a Laurent
seriesin T, f(x, y) = cuT™ + Cma  T™ + ... If (x, y) evaluated at T = 0
is P € C, then assigning to f the value

¢y fm=0
{0 ifm>0
o ifm<0

defines an evaluation of the required kind.

We can get power series representations for x and y as follows: Let p(X, Y)
be an irreducible polynomial (monic in Y) defining C; suppose degy p = n,
and take P = (0, 0). Let the distinct zeros of p(0, Y) be y,, ..., y,, and let
Y denote the * Y;;” extending (16) in Section I1,4 corresponding to the zero y;.
Then the product

[1(Y = Y3 5)

Jiik
is a polynomial in Y of degree n with fractional-power series coefficients;
from the discussion following (16) in Section 1,4 we see that for each value
x € C sufficiently near (0), the product agrees with p(x, Y). Since the coeffi-
cients of p(x, Y) are polynomials in the zeros of p(x, Y), the fractional-power
series coeflicients of this product agree in a neighborhood of (0) e Cy with
the polynomial coefficients of the Y* in p(X, Y). Thus (5) represents, near
(0) e Cy, a factorization of p(X, Y) into fractional-power series. If the frac-
tional-power series in any factor Y — Y, is a power series in X'/ then this
factor yields, upon setting T = X!/™ the parametrization

x=X=T" (©6)
y = ¢g(T), ¢ analytic at (0)e Cy.

For at least one of the n such parametrizations, T = 0 corresponds to (0, 0).

Each such parametrization defines an extension to K of the natural evaluation

of C[x, y] at P. U

Theorem 2.32 can be generalized to a purely ring-theoretic setting—
namely, if R is any subring of any field K, and h: R — k is a ring homo-
morphism of R into any algebraically closed field k (thus h assigns values in
k to elements in R), then h may be extended to an evaluation of the elements
of K satisfying (2.5.1) and (2.5.2). Such an evaluation is also called a place;

228



2: Valuation rings

since this more general theorem extends the evaluation h to a place, the
theorem is often referred to as the place extension theorem. For proofs,
see, for example, [Lang, Chapter I, Theorem 1] or [Zariski and Samuel,
vol II, Chapter VI, Theorem 57].

The power series representation in (6) is not so special as it appears; by a
change of uniformizing parameter, every power series representation for
(x, y) (cf. Theorem 2.26) can be put into this form. This is important, for it
allows us to connect up arbitrary power series representations with the
factorization of the irreducible polynomial defining C.

Theorem 2.33. Let C — Cyy be an irreducible curve with coordinate ring
Clx, y] and function field C(x, y). Let P be a given point of C, let R be a
valuation ring with center P on C, and let Bp™ be the associated branch at
P of C. Then a representative of By~ (and therefore, in an obvious sense,
B," itself) can be represented by power series of the form

x=T" (m a positive integer)

y = f(T) (f analytic at (0)e Cy) %

PrOOF. Assume without loss of generality that P = (0,0) e Cy, and that
x ¢ C. Then the order in R of x is m = 1. From Theorem 2.26 we have, for
some U of order 1 in R,

x=UMco +c,U+..) (co #0),
y=d,U" + ... (n > 0).

For some power series a, + a,U + ... analytic at U = 0, we have
Co + CIU + ... =(ao +a1U + ...)m.

(Equating coefficients of like powers of U one gets a,™ = ¢o, may™ " 'a; = c;,
may™ 'a, + (mm — 1)/2)ay™ 2a,*> = c,,.... It is easily checked that for
each i > 0, g; can be expressed rationally in terms of ¢; and the preceding
dg, --., a;—1. The series ay, + a;U + ... converges in a neighborhood of
(0)e Cy, for otherwise its m™ power co + c;U + ...would not.) If we
write T = aoU + a,U? + ..., we then have x = U™coy + c,U +..) =
(agU + a;U* + ..)" = T™ Because a, # 0, T is order 1 in U, so by
Theorem 3.6 of Chapter II, we can write U = g(T) where g is analytic at
(0)e C; hence y is analytic in T. Thus x and y can be written in the simple
form

x=T"
y = f(T) (f analytic at (0)e Cy). O

We now summarize our results connecting evaluations at P of elements of
C(x, y), with modes of approach to P.
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V: Some elementary mathematics on curves

Let C « Cyy be an irreducible curve defined by an irreducible polynomial
X, Y); let (x, y) be a generic point of C, and let P be any point of C. Then:

(2.34.1) There is always at least one evaluation of C(x, y) extending
the natural evaluation of C[ x, y] at P, the evaluation being defined
by power series of the simple form given in (7).

(2.34.2) Every evaluation of C(x, y) extending the natural one on
C[x, y] at P gives rise to a discrete rank one valuation ring, hence
to a power series representation of (x, y) (Theorem 2.26) and there-
fore also to a power series representation of By~ ; this represen-
tation can be furthermore assumed to be of the simple form given
in (7).

(2.34.3) By uniqueness of the fractional-power series factorization
in (5), we see that the extensions to C(x, y) of the natural evalua-
tion on C[x, y] at P are given by precisely the fractional-power
series factors Y — Yj; of p(X, Y) (as in (5)).

So far in this section, all our considerations have been in the affine set-
ting. Since there is often much important geometry at infinity (including
evaluating at infinity the elements of a variety’s function field), it is important
to extend the definitions of function field, center of valuation ring, and the
like, to the projective case.

To begin, we define the function field Kpnc, of P"(C) to be the zero ele-
ment together with the O-forms of C(X,,..., X, . )—that is, elements
Xy, Xps1)a(X 4, ..., X4 1), where p and g are forms of equal degree.
The value of each such quotient is constant along “subspaces-minus-the-
origin” of Cy, . x,.,,, and therefore yields a well-defined function on the
points of P*(C). The set consisting of the zero element together with all such
0-forms constitutes a subfield of C(X 4, ..., X, + ;) isomorphicto C(X y, ..., X,).
(Note that

p(X19"',Xn+l)=p(Xl/Xn+19--"1)=p(Y1’---s )lnal)
q(Xl""’Xn+l) q(Xl/XrH-l,--"l) Q(Yla"', Y;vl)

for indeterminates Y; = X,/X,,,.) Since this subfield of C(X,,..., X,,,) is
unchanged by nonsingular linear transformations of X, ..., X,:1,
dehomogenizing P"(C) at any hyperplane still yields a field isomorphic to
CXy, ..., X,).

One can next define the function field K, of an irreducible variety V < P*(C)
to be the field of restrictions to V of functions on Kpnc)- HC[xy,..., X4 1] =
C[Xy..or X,411/d(V) where J(V) = V’s homogeneous ideal, then one
can easily check that K, is isomorphic to the field consisting of 0 together
with quotients p(x;, ..., Xp+1)/q(X1s - . - » Xp+1), Where p(X4, ..., X, +,) and
q(Xy,--., X,+ ) are forms of equal degree. And, as with Kpn(c,, we see that
K is equal to the quotient field of any affine representative of V.
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2: Valuation rings

We can generalize to the projective setting the notion in Definition 2.29
of center of a valuation ring R of an affine curve C = Cy, . x,. Definition
2.29 is somewhat restrictive in that it applies only when R’s maximal ideal m
intersects C’s coordinate ring in a maximal ideal. Although it is obvious that
m intersects C’s coordinate ring in a prime ideal, it is not always true that it
intersects it in a maximal ideal.

ExaMPLE 2.35. Consider C with coordinate ring C[X]; O and the set of all
p(X)/q(X) such that deg p < deg(q), form a valuation subring R = C(X). The
maximal ideal m of R consists of 0 and those p(X)/q:X) € R for which deg p <
deg q. Clearly m n C[X] = (0), which is not maximal in C[ X]. Thus Defini-
tion 2.29 fails to assign to R a center on C. Its “centcr” turns out to be at
infinity; we make this precise by next extending the notion of center of a
valuation ring to include the projective case.

For our purposes, let C < P%C) be any irreducible curve, let its homo-
geneous variety have coordinate ring C[x,, ..., X,4 ], and assume R is a
valuation ring of K. Then ord is well defined by R. Assume without loss of
generality that x,, , ; is such that foreachi = 1,...,n + 1, ord(x,/x, ;) = 0—
that is, each x;/x, ., € R. Denote the image of x;/x, ; under R - R/m by q;.
Then (x,/X,+ 15 - - - » 1) specializes to a point (a) = (a,,. .., a,, 1) € C"* 1\{(0)}:
(a) defines a point Pg e V, for if p is any homogeneous polynomial cf J(V),
then p(x,, ..., x,+) = 0, hence p(x,/x,+1,-.., 1) = 0, therefore p(a;. .... i)
= 0. Any other x; such that ord(x;/x;) > Ofori = 1,...,n + 1 will det« "mine
the same point Py in V—that is, it will determine (a) up to a nonzero mu. tinle,

because
Xy Xn+1 X1 Xp+i Xn+1 ).
— e, = . R ;
X; X; Xpe1  Xj X;

since ord(x,+ 1/x;) = 0, its image in R/m is a nonzero constant. It is easily seen
that the point Py € V thus depends only on R; we call it the center of RonV.
If ord(xi/x;) > 0 (i = 1,...,n + 1), then P may obviously be regarded as
the center of R on D(V), where D(V) is the dehomogenization of V relative
to X;. The maximal ideal of R intersects each such coordinate ring
C[xy/Xj, ..., Xn+1/x;] in a maximal ideal. For any X, such that ord(x,/x, )
> 0, the center of R on V lies on the hyperplane at infinity, V(X).

Now let us return to Example 2.35. The function ord is “—deg”
(deg p/q = deg p — deg q € Z), so R is a discrete rank one valuation ring of
C(X). Let the homogeneous variety corresponding to P!(C) be Cy,y,,
and let Cy, represent the point at infinity of P*(C). Since Cy,x,’s coordinate
ring is C[X ,, X, ], the affine part of P*(C) has coordinate ring C[X /X ,, 1],
or C[X](denoting X ,/X, by X). With the order of Example 2.35 on C(X) =
C(X,/X,), we see that X,/X, = X ¢ R. This means that ord(X,/X,) > 0;

[

231



V: Some elementary mathematics on curves

the center of R on P'(C) lies on the point at infinity corresponding to
V(X,) = Cy,.

So far, we have dealt with extending from coordinate rings to function
fields certain notions related to evaluation. We can do the same for iso-
morphism. We know that two coordinate rings Ry, and Ry, of irreducible
affine varieties V, and V, are isomorphic iff ¥; and V, are polynomially
isomorphic (Theorem 8.7 of Chapter III). If function fields Ky, and Ky, of
irreducible varieties ¥, and V, are isomorphic one can ask, analogously,
whether V; and V, are then “isomorphic.” Surely they cannot in general be
polynomially isomorphic—for instance, Cy and the curve V(Y2 — X3)
Cxy are not polynomially isomorphic since Cy is nonsingular and the cusp
curve is not. However, the corresponding function fields C(X) and C(X, X !/?)
= C(X'/?) are isomorphic. But one can ask for a more relaxed notion of
isomorphism of varieties in which irreducible affine or projective varieties are
isomorphic iff their function fields are isomorphic over C. This broader

equivalence is called birational equivalence, since if C(x,,...,x,) is C-
isomorphic to C(yy, ..., y,.), then each y; corresponds to a rational function
of the quantities {x;, ..., x,}, and each x; corresponds to a rational function
of the quantities (y,, ..., y,,}. As in the case of isomorphic coordinate rings,

this leaves the obvious question: What is the translation of birational equiva-
lence into geometric terms? Our connection between valuation rings and
germs will help to answer this.

First of all, an isomorphism between K, and K, induces in a natural
way a 1:1-onto correspondence between the set of all valuation rings of
Ky, and all those of K,,. Now suppose V; and V, are irreducible curves
C, and C, respectively. An isomorphism K, ~ K¢, then induces a 1 : 1-onto
correspondence between the branches of C; and those of C,. Since several
branches may be centered at the same point P, this correspondence does not
imply a 1:1 correspondence between the points of C, and the points of C,.
However, if P is a given point in C,, there are only finitely many valuation
rings having P as center on C, (Exercise 2.4). Each of these valuation rings
has a well-defined center on C,. Hence the 1:1 correspondence between
valuation rings of K., and K, induces a correspondence between finite
sets of pointsin C and finite sets of points in C, (that is, between 0-dimensional
subvarieties of C; and of C,). An important special case is when the iso-
morphism is the identity map (that is, when K, = K, = K). In this case,
let affine coordinate rings of C, and C, be R, and R,, respectively, let R be a
given valuation ring in K, and let m be R’s maximal ideal. Then (R, n m and
R, nm maximal in R)=(R; nm and R, nm are in corresponding
0-dimensional varieties).

In evaluating elements of function fields, we have thus far worked mainly
with curves. We now briefly look at evaluations of function field elements on
varieties having arbitrary dimension. Recall that endowing a field with a
discrete rank one valuation yields a discrete rank one valuation ring R of
K ;furthermore, if K has transcendence degree 1 over C, we saw that R/m ~ C,

232



2: Valuation rings

so evaluation may be thought of as taking place in C. However, in the case of
varieties of arbitrary dimension, we cannot conclude that a discrete rank one
valuation ring yields values in C. In fact, here is an example to the contrary:

ExaMPLE 2.36. Let ord(p(X, Y)) denote the total order at (0, 0) of a poly-
nomial pe C[X, Y];asin (1), if f(X, Y) = p(X, Y)/q(X, Y) is any element of
C(X, Y), we define ord(f) to be ord(p) — ord(g), this obviously being well
defined. This definition satisfies (2.15.1) and (2.15.2), thus defining on C(X, Y)
a discrete rank one valuation. Now not only does every nonzero element
¢ € C have order 0, but so also does X /Y, for example. The elements X/Y and ¢
cannot possibly represent the same coset in R/m, for their difference (X/Y) — ¢
would then be in m; this is not so since ord((X/Y) — ¢) = ord((X — cY)/Y) =
1 — 1 = 0. One easily checks that R/m is C(X/Y). Hence the discrete rank
one valuation ring takes elements in C(X, Y) and assigns values in a field of
transcendence degree one over C.

Geometrically, discrete rank one valuation rings can be regarded as
giving an evaluation at or along an entire irreducible subvariety of codimen-
sion 1 in an irreducible variety (thus generalizing evaluation at points in the
case of an irreducible curve). In the above example, C(X/Y) is the function
field of that codimension-1 subvariety.

This suggests repeating the process. For instance, a discrete rank one
valuation subring of C(X/Y) will yield values in C. We illustrate the situation:

ExampLE 2.37. In C(X,Y), let R = {p(X, Y)/q(X, Y)|q(X,0) # 0} (p,q
relatively prime in C[ X, Y]). The ring R consists of the set of all elements in
C(X, Y) having nonnegative order in Y at Y = 0. Thus, looking at elements
of C(X, Y) as elements of K(Y) (K = C(X)), we see that every element
f(X,Y)eC(X, Y)hasat Y = 0 a well-defined value f(X, 0) in C(X) U {c0},
and we may regard f(X, 0) as limy_, f(X, Y). We may suggestively look
at this as letting theline Y = aapproachtheline Y = 0inC,y;thelineY = a
gives the value f(X, a) to f(X, Y), and f(X, 0) is the limit of these values.
To arrive at a value in C at (0, 0), the natural thing to do now is to write
f(X,0) in reduced form (as a quotient of relatively prime polynomials), then
let X approach 0. This will assign to f(X, Y) at (0, 0) a well-defined value in
C u{o0}.

In the above example, we approached first in the Y-direction, then in
X-direction to get a value in C U {o0}. It is reasonable to next ask whether
we get the same value by approaching first in the X-direction, then in the
Y-direction. In general, we do not.

ExampLE 2.38. For Y/XeC(X,Y), we have limy_,(Y/X)= oo and
limy_,¢(00) = co0. But limy_,(Y/X) = 0 and limy_4(0) = 0.
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V. Some elementary mathematics on curves

We want a kind of “order” that reflects the asymmetry of the above situ-
ation. If for instance we approach in the X-direction first, we are looking at
f(X, Y)e C(X, Y) as an element of K(X), where K = C(Y). Hence any non-
zero f(X, Y) has an order in X, and any nonzero element of C(Y) has order
0 in X. Thus in this case the order of X is greater than that of Y, hence Y/X
has negative order, and its assigned value at (0, 0) is indeed co. More generally,
we see that if the order at (0, 0) in X of p(X, Y) is greater than that of g(X, Y),
then p/q is assigned the value O when (0, 0) is approached first along the
X-direction. But what about two elements having the same order in X at
(0,0)say X + Y and X + Y??If the order in X were all that mattered, then
(X + Y>)/(X + Y) would have order 0 at (0,0), and we would expect
the value assigned at (0,0) to be a nonzero element of C. But in fact
limy_o(X + Y?)AX + Y) =Y and limy_, Y = 0; the same method of
evaluation gives the value oo to (X + Y)/(X + Y?). Hence, relative to this
method of evaluation, we should consider that the order of X + Y?is greater
than that of X + Y. Relative to this particular method of evaluation, we
may more generally infer that if X-ord(p) > X-ord(g) (where “X-ord”
denotes order in X at (0, 0)), then the order of p is strictly greater than the
order of g. But if X-ord(p) = X-ord(q), then the order of p is equal to or
greater than the order of g iff Y-ord(p) = Y-ord(q). Hence when comparing
two elements of C(X, Y), it is only when their X-orders agree that the Y-order
becomes important. One thus gets an order with values not in Z, but in
countably many copies of Z, these copies being strung out, one after the other,
to form a big totally ordered set. It is natural to assign coordinates (X, Y) to
points in this big set, as follows:

(i) The X-coordinate answers, “ What copy does it belong to?”
(ii) The Y-coordinate answers “Where is it in that copy?”

The points in our set may just as well be represented as the product set
Zy x Zy. It forms a group with componentwise subtraction, and is ordered
as follows:

For any (n,, n,), (my, my) € Zy x Zy we have (ny, n,) = (m,, m,) provided
either

ny > my, Or
n; = m, and n, = m,.

This type of total order is called lexicographic order. (A lexicographer
who alphabetically arranges words in a dictionary is essentially assigning
coordinates to each word; the first coordinate of a word—that is, its first
letter—is the most important, and so on.)

If we approach along the Y-direction first, then the lexicographic order
would be Z, x Zy, where the Y-component takes precedence over the
X-component.
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3: Local rings

To get evaluation in C U {oo} at points in Cy, _ ,, the corresponding
order function would take values in a product of n copies of Z, say
Z; x ...x Z,, (supplied with the lexicographic order), where we approach
first in the X, -direction, then in the X,-direction, etc.

EXERCISES
2.1 Prove that for ord in Definition 2.15, ord(a) < ord(b) implies ord(a + b) = ord(«).

2.2 Prove Lemma 2.18 as follows:

(a) First consider C(X), where X is an element of K transcendental over C. Show
that R n C(X) is a valuation ring in C(X).

(b) Show that (C(X)\{0})/%, -) is group-isomorphic to (Z, +), where % is the
multiplicative subgroup (R\m) n C(X) of C(X)\{0}, and hence conclude that
R ~ C(X) is a discrete rank one valuation ring of C(X).

(c) ShowthatZinPart(b)isinanaturalwayasubgroupof G = (K\{O})/(R — m), ),
and that there are only a finite number N of cosetsof Zin G. [Hint: Let y,, ..., ym
be elements in K representing different cosets of Z in G. Since K is finite algebraic
over C(X), it suffices to show that the y; are linearly independent over C(X), for
then there could be only finitely many elements y; representing these different
cosets. In Y ¢;y; = 0 (c; €K), if some ¢; # 0, then at least two of yis ovvs Vm
have the same order. (Use the above Exercise 2.1.) Conclude from this that these
two elements represent the same coset, which gives a contradiction.]

(d) Show that (G, -) is isomorphic to (Z, +). [Hint: Consider the map g — g%,
ge G.]

2.3 Isthe condition in Theorem 2.31 that V(X) not be tangent to C at P necessary? Why?

2.4 If P is a point of an irreducible curve C, show that there are only finitely many
valuation rings of K having P as center on C, and thus show that there are only
finitely many branches of C through P.

2.5 Find a valuation subring R of C(X, Y) which is not Noetherian. Exhibit explicitly
an infinite strictly increasing sequence of ideals in R.

3 Local rings

In the last section, the search for a way to evaluate rational functions at a
point P on an affine curve C led in a natural way to valuation rings. A
valuation ring corresponds to an analytic mode of approach to P. The elements
of C’s rational function field may then be regarded in a natural way as
function germs, these function germs taking on values in C U {oo}; the ones
assuming only finite values constitute the valuation ring.

We saw that such a mode of approach on a curve C did not in general
correspond to all the points of C near P, but only to an “analytic arc” in C
through P. But often it is important to consider all points of C (or more
generally, of any variety V) about a point—for instance, in asking whether
the variety is singular or nonsingular there, or what its order is there, or for
the multiplicity of intersection with another variety at that point, and so on.
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The analytic arcs of the last section may not tell the whole story. For example,
any representative of each of the two branches through (0, 0) of the curve
V(Y2 — X)X + 1)) = Cyy turns out to be nonsingular at (0, 0) in the
sense that it is smooth there (Definition 7.3 of Chapter II, yet their union,
giving all points of the curve near (0, 0), is singular there.

We thus ask: Given a germ V"~ of V, is there in Vs function field a subring
whose elements naturally form “the coordinate ring of function germs on
Vp~7? There indeed is; such a ring will express properties of a variety in a
neighborhood of a point while, in effect, throwing away the excess baggage
corresponding to the local behavior at other points of the variety which do
not concern us at the moment. Such local rings allow us to get useful ring-
theoretic characterizations of local data such as nonsingularity, order, and
the like.

In the case we are considering in this section, that is, germs of the set of all
points in ¥ near a point P, the germ notion can be put into a slightly simpler
form. We first note this fact:

Theorem 3.1. Let V, and V, be varieties in P(C) or in C", each of whose ir-
reducible components contains a given point P; if there is an open neighbor-
hood U of PYC) or C" about P suchthat Vi n U =V, n U, then V; = V.

Proor. If V| and V, are both irreducible, then the theorem follows at once
from Theorem 2.11 of Chapter IV. In the general case, we note that each
irreducible component of ¥, contains a point P e U which is in no other
irreducible component of V,, and in precisely one of V,’s irreducible com-
ponents; these two components agree near P, so again they are identical.
Hence every irreducible component of V; coincides with one of V,’s, and con-
versely (by symmetry). O

Theorem 3.1 implies that arbitrary varieties V; and V, have the same
germ at P iff the set of irreducible components of V] through P is the same as
the set of irreducible components of V, through P. There is thus a smallest
variety in P%(C) (or in C") having a given germ at P; the set of unions of
irreducible varieties through P may thus be identified in a natural way with
the set of germs at P of algebraic varieties. Lattice and decomposition
structures are immediately seen to be the same. Given a variety V in P*(C) (or
in C") and a point P € V, we may therefore think of V™~ as an ordered pair
(Vip), P), where Vp, is the subvariety of V consisting of the union of those
irreducible components of ¥ which contain P. We shall denote this ordered
pair by V;, and we may say that V, = V5 iff P = P’ and Vp, = V{p,, and
that Vp < Vp iff P = P’ and Vjp, < V{p; we define Vp N Vi to be (VN V')p
and Vp U Vp to be (V U V')p. (We formalize these notions in Definition 3.3.)

Our ring associated with V; (that is, with ¥,~) will be analogous to the co-
ordinate ring of V. Notice that for any irreducible V = Cy, . x,, V’s co-
ordinate ring R = C[x,, ..., x,] consists precisely of those elements of
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C(x4, ..., x,) which are defined and finite at all points of V'—that is, it con-
cists of all those rational functions which can be written in the form p/q
(p, g€ R) such that g is never zero on V. (PROOF : For any element of
C(xy, .. . » x,) there is either a way of writing it as a quotient p/q (p, g€ R)
where 1/q € R, or for every representation as a quotient p/q (p, g € R), we
have 1/q ¢ R. In the first case p/q € R and p/q is everywhere well defined and
finite on V. In the second case, ¢ is not a unit in R, so for the ideal (g), we have
(9) & R; hence it has a zero in V, by the Nullstellensatz (Theorem 5.1 of
Chapter III). Thus q itself has a zero in V, so p/q is not both well defined and
finite at all points of V.)

Now let P be a point of ¥V < C". Let R = C[xy, ..., x,] be the coordinate
ring of V and m, the maximal ideal corresponding to P. The set of all those
elements of C(x, ..., x,) which are defined and finite at P is

r

We call this the localization of R at P, or at m, and denote it by R,,.

Just as valuation rings contain exactly one maximal ideal (corresponding
to the center of the valuation ring), so also R,, has just one maximal ideal IR,
and it corresponds to P. This ideal is the set of all nonunits of R,, (that is,
all elements of R,, which do not have multiplicative inverses in R,,), namely

%:{3
q

It is clear that since any other element of R,, is of the form r/s where r and
s € R\, any ideal containing such an r/s must contain (r/s)(s/r) = 1, that is,
it must be R, itself. Hence since 9 is obviously an ideal, it is maximal. Any
other maximal ideal M would, of course, have to contain an element not in
M, hence N would have to be R,, itself, which is not maximal.

A particularly important generalization of this idea is when m is replaced
by any prime ideal p of R. The following definition is basic.

pER,qeR\m}.

pem,qeR\m}.

Definition 3.2 Let R be any domain. For any prime ideal p of R, let R, be

p
.

R, is called localization of R at p.

PER, qeR\p}.

As before, R has a unique maximal ideal.

In just the same way that we considered an irreducible subvariety as
generalizing the notion of point (hence we speak of order of a variety “at”
or “along” an irreducible subvariety), so here, too, we will see that localizing
a coordinate ring R to R, will geometrically correspond to restricting our
attention to those irreducible components of ¥ which contain V(p). The
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definitions given earlier centering around F} can be correspondingly general-
ized. We now make this formal.

Definition 3.3. Let V and V'’ be two affine or two projective varieties; let
subvarieties W< V and W' = V' be irreducible. Then Vj denotes the
ordered pair (Vw,, W), where ¥y, is the union of those irreducible com-
ponents of V containing W. (Viy, = & if there are no irreducible com-
ponents of V containing W.) We define =, <, n, and U as follows:
Vw=Vy it W=W and V)= Vg Wwe Vy if W=W and
Vin S Vi Vw o Vg =V o Vgiand Vy O Vi = (V U V). (It is
clear that V;, n Vy and Vy, U Vi, are well defined.) Also, Vy, is irreducible
iff vy = Viy v Vi implies Vi = Vi or Vi = Vi,

An example of the way in which R, expresses a property of V along V(p)
will be given in the next section, where we give a local ring characterization
of nonsingularity along an irreducible subvariety. Rings having a unique
maximal ideal are useful in studying local properties of geometric objects at
many different levels (topological, differentiable, analytic, algebraic), and have
been given special names. For instance, any ring (commutative, with identity)
having a unique maximal ideal is called a quasi-local ring. Many (though not
all) quasi-local rings occuring in algebraic geometry are Noetherian (Cf.
Exercise 2.5). We make the following

Definition 3.4. A Noetherian ring (commutative with identity) having a
unique maximal ideal is called a local ring.

We shall show presently (Lemma 3.9) that for any Noetherian ring R and
prime ideal p of R, R, is a local ring. (Also Cf. Exercise 3.1.) For purposes of
exposition

we shall for the remainder of this section assume that R is a co-
ordinate ring (hence Noetherian), and that p is a fixed prime ideal
of R. (Hence R is embedded in R,.)

We include for future use the following important definitions:

Definition 3.5. If R is the coordinate ring of an irreducible variety V < C”,
and if p = J(W) is the prime ideal of an irreducible subvariety W of V,
then the local ring R, is called the localization of 1 at W (or along W), or
the local ring of Vat W; in this case R, is also denoted by o(W; V).

Definition 3.6.Let V < P*(C)beirreducible, and let K, be V’s function field —
that is, the set of quotients of equal-degree forms in x, ..., x, 1, where
Clxgy s Xpe1] = C[X4, .oy Xpe 1 JW(V). If W is an irreducible sub-
variety of V, then the set of all elements of K, which can be written as p/q,
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3: Local rings

where p and g are forms in x,, ..., x4, of the same degree, and where
q is not identically zero on W, forms a subring of Ky ; it is called the
local ring of V at W, and is denoted by o(W; V).

Remark 3.7. 1f W < V are irreducible varieties in P*(C), and if R is the
coordinate ring of any dehomogenization D(V) of V (where W is not con-
tained in the hyperplane at infinity), then o(W; V) is the localization R, =
o(D(W); D(V)) of R at D(W) = V(p); this follows from the fact that if we with-
out loss of generality dehomogenize at X, , ;, then

p(xla <o Xpt 1) — p(xl/xn+19 tee 1)
q(xla""xn+1) q(xl/xn+1’~~s1)'

The left-hand side is an element of o(W; V), while the right-hand side belongs
to R,.

Many of the basic algebraic and geometric relations between R and R,
may be compactly expressed using a double sequence, as in Diagrams 2 and
3 of Chapter III. We explore this next. Again, for expository purposes we
select a fixed variety V < Cy, . x, having R = C[xy, ..., x,] as coordinate
ring, and we let W = V(p) be an arbitrary, fixed irreducible subvariety of V.

Our sequence is given in Diagram 1.

e
SR) —— J({R) ———*<‘J'_ ¥ (R)

oo

*

j(Rp) Z* j(Rp) T g(Rp)

Diagram 1.

In this diagram, #(R,) denotes the lattice (¥(R,), =, N, +) of ideals of
R, and ¢ (R,) denotes the lattice (#(R,), =, N, +) of closed ideals of R,.
Closure in #(R,) is with respect to the radical of Definition 1.1 of Chapter II1;
by Lemma 5.7 of Chapter III the radical of an ideal a in R, will be seen to be
the intersection of all prime ideals of R, which contain q, since R, is
Noetherian (Lemma 3.9). This radical is not in general the intersection of
the a-containing maximal ideals of R,, since R, has but one maximal ideal.
Continuing the explanation of symbols in Diagram 1, 4(R,) denotes the
lattice (9(R,), =, N, V) of all ¥, where V € # and W is fixed, with =, n, and
v as in Definition 3.3. The letter % reminds us that these ordered pairs Vy, are
identified with germs (We remark that there exists an analogous sequence
at the analytic level, where one uses germs instead of representatives, since
there is not in general a canonical representative of each “analytic germ,”
as is the case with algebraic varieties, where there is a unique smallest
algebraic variety representing a given “algebraic germ.” One can even push
certain aspects to the differential level.) It is easily seen that 4(R,) actually is a
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V: Some elementary mathematics on curves

lattice, using Definition 3.3 together with the fact that ¢ and the subvarieties
of V containing V(p) form a lattice.

As for the various maps, ( )°and ( )° are just contraction and extension
of ideals. Since R — R, is an embedding, ( ) reduces to intersection with R.
In contrast to extension in Section II1,10, we shall see that ( )° maps closed
ideals in .#(R) to closed ideals in #(R;). The map ( )y sends V into V,,,
and ¢ assigns to each Vj, the variety <(Vyy) = Viw,. (Thus ¢ simply removes
from ¥V}, reference to the “center” W.) Finally, the bottom horizontal maps i*

and f are the embedding and radical maps; G* and J* will be defined
in terms of the other maps, and will turn out to be mutually inverse lattice-
reversing isomorphisms.

In establishing properties of these maps, extension and contraction between
#(R) and #(R,) play a basic part; we look at them first.

( ):4(R)—> F(Ry)

This map is onto #(R;); in particular, each ideal a* — R, comes from the
ideal a** = R—that is,
For each a* e R,

a* = q*°° (8)

PROOF. That a*¢ < a* is obvious, since a* € a** implies that a* = a/m for

some g € a*° and some m € R\p. To show a* < a** let a* € a*. Then a* € R,,

which implies a* = a/m for some a € R and m € R\p; also a = ma*, so a € a*,

which means a € a* n R = a*‘. Hence a* = a/m € a*, O
Next note that () is not necessarily 1: 1, since

a® = R, foreveryideal a & p. &))]

(a < p implies that there is an m € a N (R\p), hence m/m = 1 €a®))
However,

(3.8) () is 1:1 on the set of contracted ideals of .#(R).
For if a = a* and b = b*‘, and if a° = a** = b® = b**, then a* = b*, so
a=a* =b=Db*
( ):4Ry) - F(R)

This map is not necessarily onto, because a*¢is either R or is contained in p.
(If a*¢ is not contained in p, then a* = a® = R, whence a** = R))
Next note that () is 1:1, for if a*¢ = b*‘, then a**° = b** = a* = b*,
In general a # a*, but we always have
ac a* (10)

(Theorem 3.14 will supply geometric meaning to (10), and also to Theorem
3.10 below.)
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3. Local rings

The following characterization of a* is useful:
a® = {a€ R|ame€ q, for some m € R\p}. (11)

PROOF

< : Each element of a° is a sum of quotients of elements in a by elements in
R\p; obviously such a sum is itself such a quotient. Hence an element « is
in a® iff it is in R and is of the form a = a'/m where a’ € a. Hence am = d’ € q,
proving the inclusion.

> :Any a on the right-hand side of (11) can be written as a = am/m = a'/m
where a’ € a, hence a € a®; but also ae R, so ae a®. O

An immediate corollary of the injectivity of () is this basic fact, referred
to earlier:

Lemma 3.9. The ring R, is Noetherian.

ProOOF. ( )°is 1:1 onto the set of contracted ideals of R; since () preserves
inclusion, any infinite strictly ascending sequence of ideals in R, would map,
under ()%, to an infinite strictly ascending sequence in R, which is not
possible. O

In establishing lattice properties of ( )¢ and ( )¢ we shall use the next
result, which gives a case where a = a®, instead of only a = a*.

Theorem 3.10. Let R and p be as above. Then q= q° for any irreducible ideal

qcep.
PrOOF. Let x be any element of R, and let (x) be the principal ideal of R
generated by x; define the quotient ideal q:(x) to be q:(x) = {re R|xr e q}.
(This is a special case of the quotient ideal in Exercise 4.5 of Chapter IIL) It
then follows at once from (11) together with the definition of q: (x) that we
may express the conclusion g = q*inthe form“Foreachx € R\p,q = q:(x).”
We therefore prove that q = q:(x) for each x € R.

a < q:(x): This is obvious from the definition of quotient.

q:(x) < q: First, we see that from the definition of q: (x), we have

(a:(x)(x) =q. (12)

Suppose q:(x) & q;let ye(q:(x))\q, and let z € (x)\\/a . (\/E is prime from
Exercise 5.3, of Chapter 111, and \/a < p.) Then from (12) we have yzeq.
Now q is primary (Exercise 4.5 of Chapter III), so since y ¢ q, we have z" € q

for some m. But z¢f ; because \/a is prime, this means z"¢q, a
contradiction. O

We now look at how much lattice structure is preserved by ( )*and ()~
We first consider ( )°: #(R) — #(R,).
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V: Some elementary mathematics on curves

It is immediate from definitions that extension from any ring into any
other ring preserves sums.
Though extension need not preserve intersections for arbitrary rings, in

our case it does:

(anb) =a*Nbe (13)
ProoF. It suffices to prove that for any finite intersection of irreducibles g;
in R,

@n...nq)=q,°Nn...Nnq° (14)
For if this holds, then if

a=()q, b= ()q;, and amb=< qi)r\(ﬂq})
i=1 ji=1 i=1 j=1

11

are decompositions into irreducibles, we have

e =((Qa) () = (D)o (fr) oo

We now prove (14). The inclusion “ < ” follows at once from the definition
of extension. For “>,” let a* be an arbitrary element of q,° ... N q,°;
assume that g; cp fori=1,...,k, and that q; ¢ p fori=k +1,...,r.
Since by (9), ° = R, fori =k + 1,...,r, we see that

Gn...ng=q°Nn...ngqg°"

(“*>7in (14) holds trivially if every q; ¢ p.) Since q,°n... N q° = R,,
a*€q,°n...nq° is of the form a* = a/m, for some ae R and me R\p.
Using the fact that each ideal in #(R,) is the extension of its contraction
(from (8)), @ may be further assumed to be in (q,° n ... " q,°°; this last
ideal is q; N ... N q; since ( ), being intersection with R, preserves
intersections. Now apply Theorem 3.10: For each i = 1, ..., k, we have
q; = p,50q, (i = 1,..., k). Itfollows thata* = g/mforsomeaecq, n... N q,
and me R\p. Now (R\p)n@g,,;N...Nnq, # ; for any m' in this
intersection, am'€q, n...nq,. Thus a* = am’/mm’, which means
a*e(q; N ... q,); thus “>” is proved, and therefore also (13). O

We next consider ( )°: #(R,) = #(R).

This map obviously preserves intersections, being just intersection with R.

It does not in general preserve sums, though from the definition of ()
we see at once that

a* + b¥ < (a* + b¥).

Thus at the geometric level (notation as in Definition 3.3), if Vp = Gy P)
and V5 = (Vp), P) then, although by definition ¥, N Vp = (V N V')p, it may
happen that Vp N Vip) 2 (V N V')p,. This can occur since Vjp, N V(p, may

242



3: Local rings

have components not containing P, whereas every component of (V N V') p,
contains P. Guided by geometry, one can now easily construct many examples
in which ( )° does not preserve sums. We give one here.

EXAMPLE 3.11. In Cxyif P = (0,0),if V = V(Y — X),andif V' = V(Y — X?),
then Vp = (V(Y — X),(0,0))and V) = (V(Y — X?),(0,0)). Thus(V N V')p =
({(0,0)}, (0, 0) & (V(Y — X)n V(Y — X?), (0, 0) = ({0, 0} L {1, 1}, (0, 0)).
We can then translate this geometric fact into ideal language (Cf. Theorem
3.14): Let o* and b* be the principal ideals (Y — X) and (Y — X?) in the
localization C[X, Y] .y, of C[X, Y] at (0, 0). Then

a* =(Y - X) = C[X,Y] and b* =(Y — X?) < C[X,Y];
then
(@* + %) = (X, Y) = C[X, Y],
since (a* + b*)° contains
(Y - XH)—(Y - X) _(Y—XZ)—X(Y—X)
- x and Y = T~ x .

Thus a*¢ + b* = (Y — X) + (Y — X?) is strictly smaller than (a* + b*)",
since

X—_—

VX, Y) S V(Y — X) + (Y — X?).

We conclude this discussion of our two maps between .#(R) and .#(R,) by
observing that although (  )° preserves sums and intersections, and although
it defines a 1 : 1-onto map from the set of contracted ideals of .#(R) to #(R,)
(from (3.8)) it is not in general a lattice isomorphism, since the set of contracted
ideals in £y is not itself always a lattice—it is not in general closed under
addition. For instance, the ideal (Y — X) + (Y — X?), in the example above,
is not contracted, for its variety contains a component other than {(0, 0)}.

We now turn to extension and contraction at the ¢-level. Our first task
is to check that ( )° and () actually do map into #(R,) and into ¢ (R),
respectively. For ()%, this of course says that the extension of a closed ideal
is still closed. To see this, note that for a = R, a® = {a/m|a € aand me R\p}.
If gis any prime ideal of R, then either q intersects R\ p(in whichcase ¢° = R,),
or g n(R\p) = . In this last case one easily shows that any quotient
r/m, where r € R and m € R\p, is in q° iff r € g. (Note that r ¢ g and r/m = g/m’
imply that rm’ = gm; then rm’ ¢ q, but gm € q, a contradiction.) This implies
at once that q° is prime in R,. Since extension preserves intersection, any
finite intersection of primes in R extends to either R, or an intersection of
primes. In either case the extended ideal is closed.

It is immediate that ( )° maps from ¢(R,) to #(R), since contraction is
Jjust intersection with R, and therefore preserves intersection and primality;
hence the contraction of any intersection of prime ideals is an intersection of
prime ideals.
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We next consider 1:1 and onto properties.

( ) maps #(R) onto F#(R,) since (8) tells us that any a* e F(R,) is an
extension of a closed ideal—that is, a* = (a*°), and a*‘ e _#(R).

( )?is not necessarily 1: 1 from _#(R), just as it wasn’t from .# (R), and for
the same reasons. (It is still 1 : 1 on the contracted ideals.)

() is not necessarily onto #(R) for the same reasons as in the .#-case.

( )isl:1on #(R;)sinceitis 1:1o0n #(R,).

Now we come to the lattice properties.

(3.12) ( )*: #(R) = #(R,) preserves both sums and intersections.

PROOF. ( )° preserves intersections since it does so on #(R) (from (13)).
( )° preserves sums—that is, (a + b)* = a® + b, or

/a+ b =./a°+ b" 15)
We show this as follows:

< : Since a® 4+ b = (a + b)°, the inclusion (\/a + by c \/a" + b? be-
comes (/a + b)* = /(a + b)°. But this last inclusion is easily established,
since for any ideal ¢ in a ring we have (\ﬁ)" c \/c—‘” .(ce \/Z implies that
¢" € cfor some n. Then m ¢ p implies that m" ¢ p, so c"/m" € ¢, i.e.,c/m € \/cT’.)

>: Certainly /a + b > a + b, hence (\/a + b)° = (a + b)* = a® + b¢,

therefore
/a+b) > /a° + b°

Since ( )° maps closed ideals into closed ideals,

vi/a+ b)Y =(/a+ by,

so “ > 7 is established, and therefore also (3.12). ]

3.13) ( ): #(R,) > #(R) preserves intersections but not neces-
sarily sums.

This is obvious from our comments in the #-case.

Finally, as in the .#-case, () defines an onto homomorphism from _#(R)
to #(R,) which is 1: 1 on the set of contracted ideals of #(R); but it is not
generally a lattice isomorphism since the contracted ideals of #(R) need not
form a lattice.

We now consider the remaining two vertical maps, ( ), and <. The
following properties are all immediate:

( Jw: 7 (R) > %(R,) is onto, but not in general 1 : 1. Its restriction to the
image <(%(R,)) = ¥'(R) is the inverse of <. ( )y preserves N and U.

<:9R,) > ¥ (R)is 1:1, but not in general onto. It preserves U, but need
not preserve N, as Example 3.11 shows.
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As for the horizontal maps, it is easily seen that the embeddingi* : #(R,) —»
#(R,) s 1:1, that \/- :4(R,) = #(R,) is onto, and that both these maps
preserve intersections. Sums are preserved by \/_ , but not in general by i*
(see Exercises 3.3 and 3.4.).

The two maps left to consider are G* and J*. They turn out to be mutually
inverse lattice-reversing isomorphisms, and are the local analogues of V
and J. In dealing with these maps we shall use this basic fact:

Theorem 3.14. For each ideal a€ #(R), a* is the intersection of those prime
ideals which contain a and which are contained in p. (The intersection of an
empty set of prime ideals is defined to be R.) Thus if a « R = Ry, defines
the subvariety X of V (and p defines W), then a*° defines X yy—that is, the
mapping a — a* geometrically corresponds to taking the germ at W of X.
In particular, the image of #(R,) under contraction consists precisely of R
together with those ideals in #(R) which are intersections of prime ideals
contained in p.

PrOOF. Write a = p; n ... p, where each p; is prime in R. It follows at once
from Theorem 3.10 that p;* = p; iff p; = p. If p; & p, then clearly p = R,,
so p;* = R. Since ( )°and ( ) preserve intersections, we have

— mpiec: ﬂpl D

i=1 picp

We now define 6* and J*; we shall do this using already-established
“paths” in Diagram 1.

Definition 3.15. G*: #(R,) — %(R,) is the composition of the maps

FR,) —— JR) —— ¥(R) 5 @(R,);
J*:9(R,) - #(R,) is the composition of the maps
%R,) —— Y(R) —1— FR) — F(Ry).

That is, G*(a*) = (V(a*‘))y and J*(Xy) = (J((Xw)) for a* € #(R,) and
Xwe9R,).

The maps G* and J* are both 1 : 1-onto and mutual inverses; this is easily
verified by using the characterization in Theorem 3.14 and facts already
established concerning 1:1 and onto properties of the maps used to define
G* and J*.

We will have established the lattice-reversing isomorphism between
%(R,) and #(R,) once we prove
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Theorem 3.16. Let a*, b* be any two ideals in #(R,), and Xy, Yy any two

elements of 9(R,). Then

(3.16.1) G*(a* N b*) = G*(a*) U G*(b*)

(3.16.2) G*(a*+ b*) = G*(a*) N G*(b*)

(3.163) J¥ Xy U Yy) = J*(Xy) N J*(Yy)

(3.16.4) J¥ Xy N Uy) = I¥Xy) + J*(Yy)
PRroOOF (3.16.1): This is easy, since () preserves M, V is lattice-reversing, and
( )w preserves U.

(3.16.3): This holds, since ¢ preserves U, J is lattice-reversing, and ()¢
preserves N.

(3.164) For this, we want to show that /(Xy N Yy) and (X u) N <«(Yy),
which will in general be different, nonetheless have the same image in #(R,)
under J followed by (). In fact, from the definition of X, » Yy we see that

AXw) 0 é(Yy) = dXw N Yy) U Z,
where Z < V is some variety which does not contain W, Thus
JEXw) N id(Yy)) = J(AXw N Yy)) N e (16)

where ¢ € #(R) is an ideal not contained in p. We know ( )° preserves inter-
sections on these ideals (from 3.12), and that ¢¢ = R,; hence applying ( )° to
both sides of (16) gives

WX w) N d(T))* = I*( Xy 0 Ty).

But J(4(Xy) N 4 Yy)) = J( (X)) + J(£(Yy)); since ()¢ preserves + (from
(3.12)), we then have (3.16.4).

(3.16.2): We want to show that (a* + b*)° and a*¢ 4+ b** (which may be
different) have the same image in %(R,) under V followed by ( )y . It clearly is
enough to show that in the irredundant decompositions into prime ideals of
(a* + b*) and of a** + b*“, those prime ideals contained in p are the same for
both these ideals. In view of Theorem 3.14 it suffices to show that

((a* + B¥) = (a* + b*o).
We do this by showing
(a* + b*)® = (a*° + b*9)". 17
From (8), we see that the left-hand side of (17) is
(a* + b*)¢ = a* 4 b* = \/a*ce + b¥ce = \/(a*c + b*).
This will equal the right-hand side of (17) if we show
€ = (Joy for any ce S(R). (18)

For this, let ¢ = q; N ... N q, be an irredundant decomposition into irre-
ducibles. Then

\/c72=\/(q1r\...mqs)e=\/qlem...mqse= qler\...r\\/qte.
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If we can show \/c—g,; = (\/q-i)", (18) will follow at once. If q; is not contracted,
then Theorem 3.10 implies that it intersects R\p, because if \/q; intersects
R\p, say x€./q; n (R\p), then so does every x", hence also q; intersects
R\p. Hence \/? = (\/’q',-)e = R,. If q; is contracted, write q; = (q¥)". Then

Vol = Vare = o = (abre = (e = (a.

This establishes (18), and therefore (3.16.2). We have now completed the
proof of Theorem 3.16. O

EXERCISES

3.1 Let R be a Noetherian domain, and let M be a nonempty subset of R\ {0} which is
closed under multiplication. (M is then called a multiplicative system in R.) Is the
ring Ry, = {r/m|re R, me M} Noetherian?

3.2 Use Theorem 3.14 to give a geometric interpretation to (10) and to Theorem 3.10.

3.3 Show that for any ideals a and b in any ring R, we have \/a + b = \/\/E + \/B

[Hint: Observe thata + b < \/a + \/I;, that \/& + \/B < /a + b, and that f

is a closure map.]
3.4 Show that the embedding i* .# (R,) = #(R,) does not in general preserve sums.

3.5 Let W < V be two irreducible varieties in P*(C) or C". Let [(o(W ; V)) be the length
of the longest chain of prime ideals in o(W; V). Show that the local ring of V at
W “regards W as a point” (i.e., regards W as having dimension zero) in the sense
that l(o(W; V)) = dim V — dim W.

3.6 Show that the local ring at any point of C! is a valuation subring of C(X). Show
that this is not true for arbitrary plane curves; give a geometric justification of this
fact.

3.7 Let K, = C(x,, ..., x,) be an algebraic extension of K, = C(x,, ..., x,); let
R = C[x,,..., X,], be alocal ring in K, and let R*(< K ,) be a finitely-generated
integral extension of R. Show that although R* may not be a local ring, it has only
finitely many maximal ideals, and these all lic over the maximal ideal of R. Interpret
this result geometrically. What can happen if R* is only a finitely-generated
algebraic extension of R?

3.8 Let Y2 — X define an integral extension K of C(X) (where X is a single indeter-
minate); find a ring R* in K containing a local subring R of C(X), such that R*
has exactly two maximal ideals lying over a maximal ideal of C[ X]. Find generators
for these two maximal ideals.

3.9 Is a transcendental extension of a local ring R(c C(x;, ..., x,)) still local? If K isa
subfield of C(x,,...,x,) containing C, is R n K local? Interpret your answers
geometrically.

3.10 Although a local ring R has only one maximal ideal, it may have infinitely many
prime ideals. Find a geometric interpretation of this fact.
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4 A ring-theoretic characterization
of nonsingularity

In this section we give a ring-theoretic characterization of nonsingularity.
Singularity or nonsingularity of a point P in a variety V is a local property,
that is, whether V is singular or nonsingular at a point P € V can be deter-
mined by looking at the part of ¥ within an arbitrarily small P*(C)- or C"-open
neighborhood about P; correspondingly, our rings will be local, too. Such a
purely ring-theoretic characterization is useful for a number of reasons. For
instance, it allows us to generalize the ideas of singularity and nonsingularity
in important ways. We shall see an application of this in the next section,
where we give a generalization of the fundamental theorem of arithmetic.
Also, for any nonsingular curve C. such a characterization gives us a way of
connecting arbitrary nonzero ideals of C’s coordinate ring with “point
chains” on C. (Cf. Exercise 2.4 of Chapter III.) In another direction, we have
seen how an irreducible subvariety can serve as a kind of * generalized point,”
and we speak of an irreducible subvariety as being singular or nonsingular;
again, local rings come into play. Finally, such a characterization gives a
very easy way of showing that polynomial isomorphism of varieties preserves
nonsingularity (Exercise 4.2).

Our first goal is to get a satisfactory definition of nonsingular irreducible
subvariety W of an irreducible variety V. Although we state our definitions
and results for irreducible varieties ¥ and W, they can be extended to include
arbitrary varieties. Let us begin by recalling that the set of all points which are
singular in a variety V forms a proper subvariety S(V) of V (this is a corollary
of Theorems 4.1 and 4.3 of Chapter IV). Any irreducible subvariety W of V not
contained in S(V') intersects S(V) in a proper subvariety of W, so that almost
every point of W is nonsingular in V. In general we must expect W to contain a
proper subvariety of points singular in V. If we do not wish to rule out too
many subvarieties, we should consider a subvariety W of V' to be nonsingular
in V if almost every point of W is nonsingular in V. The following definition
reflects this idea. (See Theorem 4.2.)

Definition 4.1. Let V' < C" be an irreducible variety of dimension r, and let
W < V be an irreducible subvariety with generic point (y) = (yq, ..., y,).
Then W is nonsingular in V provided

rank(J(V),) =n —r.

J(V)y is the “c0 x n matrix” (dp/0X),,, where p runs through J(V) for
i=1,...,n (Cf. Notation 2.2 of Chapter IIL) If V = P"(C) is irreducible,
and W is an irreducible subvariety of V, then W is nonsingular in V if some
nonempty affine part D(W) of it is nonsingular in D(V) (see Definition 4.2
of Chapter 1V).
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4: A ring-theoretic characterization of nonsingularity

This definition reduces to Definition 4.4 of Chapter IV when dim W = 0,
that is, when W is a point. To tie Definition 4.1 in with the discussion before it,
we have

Theorem 4.2. Let W be an irreducible subvariety of an r-dimensional irreducible
variety V in C" or P*(C). Then W is nonsingular in V iff almost every point
P e W is nonsingular in V.

ProoF. It suffices to assume that V is affine. Let (y) be a generic point of W.

=:Some (n — r) x (n — r) submatrix of J(V),, has nonzero determinant.
This determinant is an element of C[y]—that is, it is a polynomial
g(X)e C[X] evaluated at (y). Now J(W) consists of all those polynomials
p(X)eC[X,, ..., X,] such that p(y) = 0; hence g ¢ J(W), so V(q) intersects
W properly. Consequently ¢ is nonzero at almost every point P € W, so
rank J(V)p, = n — r for almost every P € W. Thus V is nonsingular at almost
every P e W.

< If the determinant g(y) of some (n — r) x (n — r) submatrix of J(V),
is nonzero at almost every point of W (in fact, even at one point of W),
then g(y) # 0, so the rank of J(V),,, is atleast n — r. Butn — ris the maximum
rank of J(V)p over points P € W;if J(V),, had rank >n —r, there would be
points of W where J(V) has rank > n — r. Thusrank J(V),) =n —r, and W
is nonsingular on V. U

We next turn to the question of a ring-theoretic characterization of non-
singularity. The following idea leads to an understanding of this characteriza-
tion. First, given any s-dimensional subvariety W of an r-dimensional V' < C",
one can find r — s hypersurfaces V(p,), ..., V(p,-,) whose intersection with
V is an s-dimensional variety containing W (cf. the proof of Lemma 4.6).
When V and W are irreducible, then for the local ring o(W; V) = Ry, of V
at W, we have the following:

Let (x) be a generic point of V. If W’ is any s-dimensional variety containing
W,then Wi, = Wy, = (W, W). Thus theidealn = (py(x), ..., p,—(x)) = Ryw,
defines Wiy, and /h is just the maximal ideal m of R,. Now any irreducible
subvariety W of V is nonsingular in V iff it has multiplicity 1 in V (Exercise 6.4
of Chapter IV). Based on a hope that our correspondence between ideals
and geometric objects (chains) is faithful enough, we might conjecture that W
is nonsingular in V iff for some choice of py, ..., p,—s, we have n = m. This
conjecture turns out to be true, and its local-ring formulation is our char-
acterization of nonsingularity in Theorem 4.8.

Before turning to the formal statements, we consider some examples to
clarify the above idea.

ExAMPLE 4.3. Consider the parabola V = V(Y — X?) = Cyy, and the
nonsingular point W = (0,0)e V. Here r = 1, s = 0. The 1-hypersurface
V(X)intersects Vin W = (0, 0)(1 = r — s). From the standpoint of the local
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ring of Vat (0, 0), we have the following: The coordinate ring of Vis C[ X, X?]
= C[X], its local ring at (0, 0) is C[X],x,; the unique maximal ideal is clearly
principal since it is generated by the single element X, son = m.

ExampPLE 4.4. In contrast to the parabola above, consider the curve V =
V(Y% — X3) = Cyy, and the singular point (0, 0). Again, the hypersurface
Cy intersects V in W = (0, 0). The curve’s coordinate ring is C[ X, X /2], the
maximal ideal in C[X, X*?] corresponding to (0, 0) is p = (X, X*?), and
the local ring at (0, 0) is C[X, X*?],. In this local ring, m = (X, X*?) and
n = (X); clearly n ¢ m. Our characterization in Theorem 4.8 will show that
for any variety V(p) having (0, 0) as an isolated point of intersection with
V(Y? — X3) we always have n ¢ m.

ExaMPLE 4.5. For a higher-dimensional example, we may consider the cusp
curve’s “cylindrization” V* = V(Y? — X3) < Cyy;. The set of singular
pointsis C,. Since we are now dealing with a surface, we need two hypersurfaces
V(p,) and V(p,) to intersect V* in a set of dimension 0. For instance, V'* n
V(X) N V(Z) = (0,0, 0); V*s local ring at (0, 0, 0) is C[X, X3/2, Z] x x52 4.
In this local ring we have (X, Z) < \/(X, Z) = (X, x*?, Z). One has an anal-
ogous result when the 0-dimensional singular subvariety W = (0, 0, 0) is
replaced by a higher-dimensional subvariety, for example C,. Then one can
intersect V* down to C, using only one hypersurface, for instance Cy, =
V(X). As in Example 44, n = (X) ¢ m = (X, X3?).

We now make precise the general idea expressed just before Example 4.3.
We begin with

Lemma 4.6. Let W < V be irreducible varieties of C" of dimensions s and r
respectively, and let m be the maximal ideal of the local ring of W in V.
Then there exist r — s elements ay, ..., a,_, of m such that

@y...,a,_)=m

Proor. It suffices to find r — s polynomials p,,...,p,_,€ C[X,,..., X,]
such that ¥V~ V(p,) n... n V(p,_,) is an s-dimensional variety containing
W. For this, write p=J(V) and q=J(W) < C[X,,..., X, ] f W gV,
then p < q;in this case choose for p, any polynomial in q\p. Then each com-
ponent Vy,..., ¥, of V n V(p,) is of dimension r — 1; let their associated
prime ideals be p,, ..., p,. We want to choose for p, any polynomial of q
which is not in any of p,,..., p,, for V(p,) would then intersect each of
Vi, ..., V; in dimension r — 2, and the lemma’s proof could easily be com-
pleted using induction. But such a choice is easy: Since there are no proper
containment relations among p,, ..., p,, we may, for each pair p;, p; of
distinct prime ideals, find an element p;; of q not in p; but in p;. Then

p¥ =PDir* -+ Pii-1"Pi,i+1° -+ Pis
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is not in p;, but is in every one of the other ¢t — 1 ideals. It is easily seen that
P2 = Y.i=y p¥isin g, but in none of p,, ..., p,. This proves the lemma. [J

Remark 4.7. In the language of germs, Lemma 4.6 implies that any pure
r-dimensional “germ” V, (where dim V;; means dim V) is the proper
intersection of n — r (n — 1)-dimensional germs at W. It is a kind of germ-
theoretic converse to the already-established projective result that any proper
intersection of r hypersurfaces of P"(C) has pure dimension n — r. As noted
in Section I'V,3, it is not true that this projective result has a converse—that is,
not every projective (or even affine) variety of pure dimension r is the inter-
section of n — r appropriately-chosen hypersurfaces. It may happen that
there are always extra components in the intersection, additional hyper-
surfaces being needed to remove them. At the level of germs, we are in effect
ignoring these extra components.

Wenow come to the promised local-ring characterization of nonsingularity.

Theorem 4.8. Let W < V be irreducible varieties in C" of dimensions s and r,
respectively, and let m be the maximal ideal of the local ring R = o(W; V)
of V at W. Then W is nonsingular in V iff m is R-generated by some set of
r — s elements. (The local ring o(W; V) is then said to be regular.)

Remark 4.9. Theorem 4.8 easily implies a projective analogue. See
Exercise 4.1.

PrOOF OF THEOREM 4.8. We first establish the theorem for V = C"; we then
use this result to prove the full theorem.

First,notefrom Definition 4.1 that anyirreducible variety W < C"isalways
nonsingular in C"; in fact, each point of W is nonsingular in C”, because
J(C" is the zero ideal, so rank J(C")p = n — n = O for each P € C". (Of course
there may be points of W singular in W.) In this case “ <" of Theorem 4.8 is
trivial. We now prove “="; i.e., that m is generated by a set of n — s elements
of R.

Assume (x) = (x;,...,Xx,) is a transcendence base of W’s function field;
we may clearly choose the first s coordinates of a generic point for C" to be
(x), too. We shall write (x, y) and (x, z) for generic points of C" and W, re-
spectively, where (y) = (yy, ..., Yu—s) and (z) = (zy, . . ., 2,_). Our local ring
is

p(x, y)

R = C[x, ylyw) = {m ‘q(x, z) # 0}-

Any nonzero ¢(x, y) involving only (x) of course satisfies g(x, z) # 0; hence if
we denote C(x) by k, we can rewrite R as

R £

) p*, q* €k[y] and g*(z) # 0}.
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We shall choose for our n — selements, polynomials p%, ..., p¥_, € m n k[y];
clearly it suffices to show that these polynomials generate m N k[y] over
k{y].

We take p¥_; to be any polynomial in k[y,,...,y,_,] monic in y,_,,
and such that p¥_(z,,...,z,-c—1, yo_s) is the irreducible polynomial of
Z,-soverkl[z,, ..., z,__,].(Thislastringisafield,sinceeachofz,, ..., z,_,_,
is algebraic over k.) Then p¥_(z,, ..., z,_) = 0, s0 p*_(y)e m n k[y], since
m N k[y] = {p*ek[y]Ip*(z) = 0}.

Now let g*(y) be any element of m N k[y]. We may write

4.10) q*) = pr-Wt*(y) + r*)

for some t*, r*ek(y, ..., Voos—1)[Vn-s], Where either r* =
0€k(yy, ..., Ypos—1)[¥n-s] or deg r* < degp}_, (degree in
Vn-s)-

Now r*(zy, ..., Zy,—s—1, Vn_s) is the zero polynomial in y,_,. This is so since
we do not have degr* < degp}., which in turn is true because
(@) r*(z) = 0 (from (4.10) and the fact that g*(z) = p*_(z) = 0), and (b)
Pr-oZ1, -5 Zy_s— 1, Yu-s) is already a polynomial in k[zy, ..., Z,—s_ 1, Vsl
of least degree in y,_, such that p¥_(z) = 0. Thus each coefficient

p:—sj € k[)’n vy Vn-s— 1]
of the term y,_J/ in r*(y) satisfies

p:—SJ{Zl’ ceesZp—s— 1) = 0,
soeach p¥_ (v, ..., Vo—s—1)iSiInm A k[yy,..., ¥u_s— 1] In view of this, the
problem of showing that p¥,...,p¥  generate m m k[y,,...,y,_.] over
k[y1, ..., Yu-s] has been reduced to showing that p¥,..., p¥_,_, generate
mok[y,...,Y,—s— 1] over k[yy,...,¥,__ 1] In this way we complete the
proof of the case V' = C" using induction.

Now let us indicate the basic strategy for the proof of the full theorem. We
shall prove that if W is nonsingular in ¥V, then m is R-generated by some set of
r — s elements. The proof of the converse is essentially just the reverse of the
half we prove; we leave it for the exercises (Exercise 4.4).

Our proof basically consists in changing the problem from one con-
cerning the number of generators of m, to one concerning the dimension of
a vector space in which finding generators is easier. We do this in several
steps. The overall goal is to show there are elements x,, ..., x,_,€ m such
that m = xR + ... + x,_ R. The following result describes the first trans-
formation of the problem. Notation is as in Theorem 4.8.

Lemma 4.11. For any elements x,, ..., x,_,em,
m=x;R+...+x,_R)<(m=x;R+...+ x,_R + m?.

We give the proof of this lemma after indicating the basic idea of Theorem
4.8’s proof.
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4: A ring-theoretic characterization of nonsingularity

This changes the problem from requiring that x,, ..., X, generate m, to
requiring only that x;, ..., x,_ together with m?, generate m.

Next, note that m/m? forms in a natural way a vector space over R/m.
In view of this, the reader may easily verify the next lemma; it describes the
next transformation of our problem.

Lemma 4.12. For any elements x,,...,X,_sem,m= xR + ... + x,_ R + m?
iff m/m? has dimension r — s over R/m, with basis elements x; + m?, ...,
xr—s + mz'

Assuming Lemma 4.12, we see that our task is to show that m/m? has
dimension over R/m no greater thanr — s. We further transform our problem
by expressing m/m?” in terms of ideals in the local ring R* of Win C" (rather
than in V), which will in effect bring us back to the case of our theorem already
proved. For this, let the prime ideals of ¥ and W be pand q (= C[X4,..., X,]),
respectively. Assume without loss of generality that the first s components of
the generic points of V and of W are the same—say the generic point of V is
(Xgs -+ vy Xg» Vis -+ +» Yn_s), and that of Wis(xy, ..., X, 24, ..., Z,—)- Thelocal
ring of W in C" is then R* = C[X,, ..., X,],. The extended ideal p* < R*
generated by p is prime; the map (Xy,..., X)) 2 (X1, ..oy Xgo Vs - 5> Vams)
then defines an isomorphism from R*/p* to R. If m* is the maximal ideal of
R*, then

m o= m*/p* (19)

As for m2, (19) shows that a typical element of m? is (m + p*)-(m' + p*)
(where m and m’ € m*), which is mm’' + p*; hence m? = (m*)* + p*)/p*.
Our final transformations are then given by:

m*/(m*)2
((m*)? + p*)/(m*)?

m*/p*
= (™ + pryp* m¥/(m* + p¥) =

Note that all of these are vector spaces over
R*/p*
m/p*

(20)

m/m

R/m ~ ~ R*/m¥*,
The two isomorphisms in (20) follow from the familiar second law of iso-
morphism for groups (with operators). Thus to prove Theorem 4.8, we want
to show that the last expression in (20) has dimension at most r — s over
R*/mt*,

As for the numerator m*/(m*)?, applying the case of Theorem 4.8 already
proved to W (which is nonsingular in C") shows that dim (m*/(m*)?) = n — s.
Hence our final task is to prove:

(4.13) If W is nonsingular in V, then
dim[(m*)? + p*)/(m*)*] = n —r.
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For if we know (4.13), then the final quotient in (20) has dimension no
greaterthan(n — s) ~(n ~r)=r — s.

Now that we’ve given the overall strategy, let us fill in the missing pieces
(the proofs of Lemma 4.11 and (4.13)).

PROOF OF LEMMA 4.11

=: Obvious.

<: We prove this by showing that m/(Rx, + ... + Rx,_,) is the zero
module over R. For brevity, denote Rx; + ... + Rx,_, by n. Assume m =
m? + n. This implies that m/n ~ (m? + n)/n ~ (m + n)(m + n)/n =
((m + n)/m)? = (m/n)2. The ring R/n is Noetherian, since R is; therefore the
ideal m/n is R-generated by some finite set {y,, ..., y,} of elements in m/n.
Since m/n = (m/n)?, we can write

t
W= Z Yiz; (vi> zze m/m).
i=1

Therefore, with obvious notation, we have
t—1
ydl — z) = Zyizi~
i=1

We know 1/(1 — z,) € R/n, so we may write
t—1

2
V=Y Yi-

=11 —z

Hence {y,, ..., v,_} is a generating set for m/n, too. Repeating this argument
shows us that {y,} is a generating set, and for this we have y,(1 — z;) = 0.
Thus y, = 0, hence m/n = (0); therefore m = n, as desired.

PROOF OF 4.13

Let W have generic point (y); since W is nonsingular in V, Definition 4.1
tells us that after appropriately reindexing Xy, ..., X, if necessary, there are
polynomials py, ..., p,_,in p so that

0p;

da(') £0 G j=1,....,n—n. 21)
an o)

We claim that {p, + (m*)?,..., p,—, + (m*)?} are R*/m*-linearly independ-

ent elements of (p* + (m*)?)/(m*)*. First, since each p; is obviously in the

maximal ideal of R*, its constant term is 0; Thus we may write

pi=au X, + ...+ a, X, + {terms of higher order}. (22)

Hence p; + (m*)? =a; X, + ... + a;, X, + (m*)?>, where a;;€C. Now
{apnX, + ...+ apu X, + m*?} (i = 1,...,n — r) are linearly independent
over R*/m* provided

n—r

Y cdan X, + ... + a,X,) € (m*)?

i=1

implies ¢, =...=¢,_,=0 (CiER*/ﬁt*) (23)
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The only linear combination of the X; which is in (m*)? is the zero linear
combination, so (23) implies that {a;; X, + ... + a4, X,} i=1,...,n —7r)
are linearly independent over R*/m*; this happens, of course, iff the n — r
vectors (a;y, ..., a;,) are linearly independent over R*/m*. But from (22)
we see that dp,/0X; evaluated at (y) is just a;;, so (21) says the vectors
(@1, - - - » a;,) are indeed linearly independent over R*/m*. O

Remark 4.14. At several places in the sequel, we will use the local ring at a
point P of a nonsingular curve C (in C? or P?(C)). In this case, the local ring
o(W; V) = o(P; C) of Definition 3.5 or 3.6 is regular, and hence a principal
ideal ring. If the maximal ideal m of o(P; C) is m = (m), then assigning the
integer n to elements of the form m"u (u a unit) defines in a natural way an
order on K, which we denote by ordp. This order clearly satisfies (2.15.1)
and (2.15.2). (Thus o(P; C) is a discrete rank one valuation ring.) This order
obviously generalizes the ordp in (1) defined on K. = C(X). If C = C2, then
(cf. Theorem 2.31) for all but finitely many choices of coordinate axes Cy and
Cy, the function x € C[x, y] = C[ X, Y]/J(C) is a uniformizing parameter for
C at P—say y = g(x). It is then easily seen that for any ¢(x, y)e C[x, y],
ordp q is the smallest exponent of x in the power series g(x, g(x)).

EXERCISES

4.1 Show that Theorem 4.8 implies the corresponding projective theorem.

4.2 Let ¢:V; —» V, be a polynomial isomorphism between two affine varieties V;
and V,. Use Theorem 4.8 to show that for any point P € V,, P is nonsingular in ¥,
iff ¢(P) is nonsingular in V,. Does this generalize to any irreducible subvariety
W < V, in place of P?

4.3 Reversing the stepsin the proofof “=,” prove the “ <= half of Theorem 4.8, assuming
“<«="for V = C". [Hint: Prove it first when W is a point; for the general case, use
W’s function field as ground field.]

5 Ideal theory on a nonsingular curve

In building up our algebra-geometry dictionary, we have succeeded in
getting an isomorphism only between closed ideals and varieties. As hinted
in Exercise 2.4 of Chapter 111, there is further geometric information hiding
in arbitrary ideals. In this section we consider a certain type of coordinate
ring for which one can get a faithful geometric interpretation of all nonzero
ideals.

We briefly looked at zero dimensional “ varieties-with-multiplicity ” (that
is, point chains) in Exercise 2.4 of Chapter III; there we saw that for the very
simple variety V = C, there is a lattice isomorphism between the lattice of
all nonzero ideals and the lattice of all positive point chains. A natural
question arises: To what extent can we generalize this result to more general
varieties? Another question is suggested by the results of Exercises 2.4 and
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2.5(a) of Chapter III, which may be regarded in a natural way as a geometric
translation of the fundamental theorem of algebra; the analogy between the
fundamental theorems of algebra and arithmetic leads one to speculate that
there might possibly be a unified framework into which all these results fit.
It is at this point that extending results in the classical C-setting to more
general commutative rings begins to pay off.

First note that C, as a variety, is nonsingular of complex dimension one.
Now the coordinate ring of C is C[X], and C may be identified in a natural
way with the set of all maximal ideals of C[X]. Then from the more general
vantage point of commutative rings we have:

(5.1.1) Every nonzero proper prime ideal of C[X] is maximal—
that is, every point of C has dimension one at each of its points
(cf. Theorem 2.18 of Chapter IV);

(5.1.2) Since C is nonsingular, the local ring in C(X) of each point
of C is regular (cf. Theorem 4.8) which in our case means that the
local ring’s maximal ideal is principal.

One arithmetic analogue of C[X] is Z; one may apply the definition of
abstract variety (Definition 8.9 of Chapter III) to any commutative
Noetherian ring R with identity, getting a very general kind of abstract
variety Vi (which is usually supplied with a topology). In this sense V; is
the set of maximal ideals of Z, which can be identified with a countable set
of points corresponding to the set of positive prime integers {2, 3, 5,7, ...}.
(This is an example of the usefulness of the abstract-variety idea. Actually,
the set of all prime ideals of R, denoted by Spec R, is another kind of “ variety”
having even greater flexibility than the set of maximal ideals. In such a
broadened concept of variety, notions such as order, multiplicity of inter-
section, or nonsingularity along or at an irreducible subvariety (prime ideal)
have equal standing with those notions at a point (maximal ideal).)

In Z, just as in C[ X], every nonzero proper prime ideal is maximal; corre-
spondingly, we take the dimension of the variety V7 to be one. Now the local
ring at any maximal ideal (p), where p is a prime, is in analogy with C[X],

the set
n
Ly = {;

It is clear that the maximal ideal of Z,, is generated by p, so Z,, is regular;
hence, looking at Theorem 4.8 as a criterion for nonsingularity, we may
consider V; to be nonsingular.

Thus the fundamental theorem of arithmetic can be translated into
geometric terms in just the same way as in the C[X] case:n = p,™* ... - p/™
corresponds to a point chain in ¥, and we again have a lattice isomorphism
between the nonzero ideals of Z and the positive point chains of V; (that is,
point chains all of whose coefficients are nonnegative).

n,meZ and p,}’m}CQ.
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In this section we prove, in Theorem 5.12, that for any “irreducible non-
singular abstract curve V;” defined by a Noetherian domain R satisfying
(5.1.1) and (5.1.2) there is a corresponding “fundamental theorem” establish-
ing an isomorphism between the nonzero ideals of R and the positive point
chains of V4.

Such an isomorphism will yield a unique decomposition into irreducibles.
Note that we are of course dealing with the whole lattice .#(R) of ideals in R.
From the examples of C[X] and Z, one might wonder if one could simply
dispense with ideals and generalize to arbitrary Noetherian domains by
seeking a unique decomposition of elements into products of irreducibles.
For certain special domains, this was, historically, the approach taken
(Euclidean domains being one example). But without extra assumptions, one
cannot in general get uniqueness, once one has existence. For instance, in
the domain Z[/—-5],3-7=(1 + 2./ =51 — 2,/ -5) are two different
decompositions of 21 into irreducibles. (See, e.g., [Borevich and Shafarevich,
pp. 167, 168].)

Though in the case of Z or C[ X ] we can translate unique decomposition
from elements to the associated principal ideals, the ideal-theoretic approach
offers no particular advantage since each ideal in Z and in C[ X is principal,
so that ideals don’t introduce anything essentially new. But for instance in
Z[/ —5], not every ideal is principal, since every principal ideal domain
is a unique factorization domain. Since every element of Z[./— 5] defines
a principal ideal, but not every ideal is principal, the ideals thus represent
objects more general than elements or “numbers” of Z[,/ —5].

Larger ideals, which in a sense correspond to “smaller ideal numbers,”
will represent the pieces into which we will factor elements of such domains.
Thus for 6 = 2 -3 € Z, (2) and (3) both contain (6), and each of (2) and (3)
represents an “irreducible piece” into which 6 factors. This same idea
applies equally well to coordinate rings of ordinary nonsingular, irreducible
curves in C2. An example may give the reader a geometric idea of how the
introduction of nonprincipal ideals reinstates uniqueness.

ExampLE 5.2. Let us consider the complex circle C = V(X% + Y? - 2) <
Cyy, its coordinate ring being C[x, y] = C[X, Y]/(X? + Y? — 2). Any
nonzero ideal of C[x, y] defines & or a finite set of points in C. The sets of
points in C defined by the principal ideals a; = (x — 1) and a, = (x + 1)
of Clx, y] are {(1,1),(1, —1)} and {(—1, 1),(—1, —1)}, respectively. (See
Figure 1))

The totality of these four points is V(a;) U V(ay) = V(a; na,) =
V(a, - a;), and may also be looked at as the union V(b,) UV(b,), where
b; = (1 — y)and b, = (1 + y). It turns out that the elements x — 1, x + 1,
1 — y,and 1 + y are all irreducible in C[x, y]; since x? 4+ y* = 2, we have
(x — D(x+ 1)=(1 + y)(1 — y), representing two distinct factorizations of
an element of C[x, y]. However, though these four elements of C[x, y]
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V(a,)

Figure 1

are irreducible in C[x, y], the associated principal ideals are not irreduc-
ible in C[x, y], in the sense that (x — 1) breaks up into the product
(x — 1,1 —y)-(x — 1,1 + y) of two ideals corresponding to the points
(1, 1) and (1, — 1) of V(x — 1). We thus get four different prime ideals which
represent the true building blocks for unique factorization, namely

pp=(x—1L1-y, p=x-11+y)
p3=(x+11-y) pa=Kx+1,1+y.
The ideal (x — 1) is the same as the ideal
c=p - Pp=C—-L1-y-x-1L1+y)
=(x — D% (x = DA+ ) (x = DA = p), 0 =+ ),

because x — 1 = (1/2)[(x — DA + y) + (x — (1 — y)]ec,s0 (x — s
And ¢ < (x — 1), since (x — 1)% (x — 1)(1 + y), (x — )(I — y)and (1 — y)-
(1 + y)(=(x — 1)(x + 1)) are all in the ideal (x — 1). Similarly,

(x + 1) = p3- Py (1-y)=pi-p3, and (1 +y)=p;-ps
Hence, since
(py - P2) - (3 - Pa) = (P1 - P3)- (P2 - Pa),

breaking up principal ideals generated by irreducible elements into products
of prime ideals, does give us unique factorization in this case.

In our generalizations of the fundamental theorems of algebra and
arithmetic to an arbitrary nonsingular irreducible algebraic curve, the
nonzero ideals will correspond to point chains on the curve; a nonzero
proper prime ideal p will correspond to a single point on the curve, and a =
p,™ -...-p,™ will correspond to a chain P,™ + ... + P.,™ on the curve
(where P; = V(p))).
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Actually, the fundamental theorems of algebra and arithmetic generalize
at once to the quotient fields Q and C(X). (Elements of C(X) are “mero-
morphic functions” on C; meros is a Greek combining form meaning
fraction.) In each case the elements are quotients of products of irreducibles
from Z or C[X], each representation being unique when reduced to lowest
terms. There is a corresponding generalization of ideal to fractional ideal;
we begin our formal considerations in this section with this concept.

We begin with an example in Q: Given a fraction a/b € Q, the corre-
sponding “fractional ideal of Z” consists of all multiples of a/b by elements
in Z ; analogously for C(X). Note that in Q, each element of a given fractional
ideal can be expressed as n/d, with ne Z and d, being a common, fixed
element of Z; analogously for C(X). Note also that each of these fractional
ideals forms a module over Z or C[X]; for instance in the case of Z, a frac-
tional ideal forms a subring of Q closed under multiplication by arbitrary
clements of Z. We now make the following general

Definition 5.3. Let R be any integral domain, and let K be its quotient field.
Then a fractional ideal of R is any sub-R-module R’ of K satisfying these
properties:

(5.3.1) There exists a dg € R such that each element of R’ can be written
in the form r/d, where r € R.
(5.3.2) ae R" and r € R implies ar € R'.

Any d, satisfying Property 5.3.1 is called a universal denominator of the
fractional ideal. If d, can be chosen to be 1 for a fractional ideal, we call
the ideal an integral ideal. A principal fractional ideal of R consists of all R-
multiples of a fixed element a of K. Instead of using notation like R’, we will
continue to denote fractional ideals by German letters a, b, 2, etc.

Remark 5.4. It is easily checked that any fractional ideal of R is of the form

I
do

where a is an ordinary ideal of R. Hence the ordinary ideals of R are just the
integral ideals of R, and ordinary principal ideals of R are the integral
principal ideals of R.

It follows at once from Definition 5.3 that the intersection of two fractional
ideals of R is again a fractional ideal of R; one can define sum and product
of fractional ideals a, beR by a+b={a+ blaca and beb} and
a - b = {all finite sums of products ab, where a € a and b € b}. From these
definitions it is easy to see that sums and products of fractional ideals are still
fractional ideals.

Any element of Q is a quotient of two integral elements; it is fair to ask if,
analogously, any fractional ideal of R is a “quotient” of two integral ideals.

r € a,d, fixed in R},
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This is indeed so. First, the quotient of any a € Q@ by any be Q\ {0} is that
element x of Q satisfying bx = a; the following definition generalizes this
idea:

Definition 5.5. Let a and b be fractional ideals of R. Then the set of all
elements x € K satisfying xb — aforms a fractional ideal called the quotient
of a by b, denoted a:b. A fractional ideal a is called invertible if there
exists a fractional ideal b such that a.-b = R; then b is the inverse of q,
and is denoted by a™ ! or 1/a.

Remark 5.6. When a and b are both ordinary ideals of R, Definition 5.5
yields a larger set than the “a:b” of Exercise 4.5 of Chapter 11 since in that
exercise we restrict x to be in R. One thus must make clear in which sense one
is taking the quotient. For the remainder of the book, we shall always mean
it in the sense of Definition 5.5.

We can now easily see that any fractional ideal is the quotient of two
integral ones: Let A be any fractional ideal of R, and let d, € R be a universal
denominator of . Then a = A N R and (d,) are integral ideals of R, and
A = a:(dy). (Each of “=” and “>” of the last equality follows directly
from the definitions of fractional ideal and of a: (d,).)

Using fractional ideals, we will be able to see the essentially identical
nature of point chains on an irreducible nonsingular curve and nonzero
ideals of its coordinate ring R (Theorem 5.12). Theorem 5.12 says that every
integral ideal a of R is uniquely the product a = p,™* - ... p,™ of finitely
many (ordinary) prime ideals of R, and every fractional ideal of R can be
uniquely written as p,"™ -...-p,"/q," -...-q," (where the ideals p; and
q; are prime, and no p; equals any q).

Before stating Theorem 5.12 formally, we shall convert the local ring
translation of nonsingularity, namely, (5.1.2), to a form which will allow us
to state Theorem 5.12 in a somewhat more standard form, and will simplify
the proof of the result. Specifically, we convert (5.1.2) to (5.12.2). (We need not
convert (5.1.1)—condition (5.12.1) is simply (5.1.1) stated in the more general
setting of Theorem 5.12.) The key concept here is that of normal domain.
We begin with the following result.

Lemma 5.7. Suppose R is a Noetherian domain with quotient field K, and
let m be any maximal ideal of R; if the maximal ideal M of R,, is principal,
then R, is a valuation ring.

PROOF. Suppose MM = (m). We first show this:

(5.8) Each element a of R,, can be written as a = um” for some
unit # € R, \I and some nonnegative integer n.

If m does not divide a (that is, if for no x € R,,, do we have a = xm) then g
cannot be in M, hence a is a unit of R,, (a = u - m°). If m does divide a, write
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= x,;m. If m divides x,, then a = x,m?, etc. Since R,, is Noetherian, this
process must terminate after a finite number n of steps, a = x,m", otherwise
we would have a strictly ascending sequence of ideals(a) < (x1) S (x2) & -- ..
(This sequence would be strict, for if there were an i such that (x;) = (x;;)—
that is, if x;,; = rx; for some re R, —then a = x;m' = x;, m*! =
rx;m'*!. Cancelling x;m' gives 1 = rm, so (m) = R,,, a contradiction.)
Since a doesn’t divide x,, x, is a unit of R,,,, and (5.8) follows.

It is now easily seen that R, is a valuation ring of K, for if b is any nonzero
element of K, we may write b = ¢/d, where ¢, deR; if c = um", d = v'm",
thenb = u’m" ™" (u, u’,and " unitsof R,,). Ifn — n’' > 0,ce R,,;ifn — n’ <0,
1/c € R,,. Hence Lemma 5.7 is proved. O

Now recall the notion of an element being integral over a domain (after
the proof of (6.1.1) in Chapter III).

Definition 5.9. Let R be an integral domain with quotient field K. If each
element of K integral over R is already in R, then we say R is integrally
closed in K, or that R is normal.

ExaMmpPLE 5.10. The ring Z is a canonical example of a normal domain.
Every element a of Q satisfies an equation bx — ¢ =0, with b, ce Z
Clearly a = ¢/b is integral over Z iff b may be taken to be 1. In a similar way
we see C[X] is normal. The coordinate ring C[X, Y]/(Y? — X3) =
C[X, X3?] of the cusp curve V