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Preface 

This is a book about physics, written for mathematicians. The readers we have 
in mind can be roughly described as those who: 

I. are mathematics graduate students with some knowledge of global 
differential geometry 

2. have had the equivalent of freshman physics, and find popular accounts 
of astrophysics and cosmology interesting 

3. appreciate mathematical elarity, but are willing to accept physical motiva
tions for the mathematics in place of mathematical ones 

4. are willing to spend time and effort mastering certain technical details, 
such as those in Section 1.1. 

Each book disappoints so me readers. This one will disappoint: 

1. physicists who want to use this book as a first course on differential 
geometry 

2. mathematicians who think Lorentzian manifolds are wholly similar to 
Riemannian ones, or that, given a sufficiently good mathematical back
ground, the essentials of a subject !ike cosmology can be learned without 
so me hard work on boring detaiis 

3. those who believe vague philosophical arguments have more than historical 
and heuristic significance, that general relativity should somehow be 
"proved," or that axiomatization of this subject is useful 

4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], 
Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into 
the subject than we do; see also the survey article, Sachs-Wu [1]). 

5. mathematicians who want to learn quantum physics or unified fieId theory 
(unfortunateIy, quantum physics texts all seem either to be for physicists, 
or merely concerned with formaI mathematics). 

v 



Preface 

While using this book in classes, we fo und that our canonical reader can 
learn nonquantum physics rather quickly. Indeed, equipped with geometric 
intuition and a facility with abstract arguments, he is in a position to deal 
directly with the general, currently accepted models used in relativity without 
being handicapped by the prejudices that inevitably come with years of 
Newtonian training in the standard physics curriculum. However, this short
cut does involve a price: one cannot really see the diversity of special cases 
behind the deceptively simple foundation without spending more time than a 
mathematics student normally can or should. 

We have felt for a long time that a serious effort should be made by 
physicists to communicate with mathematicians somewhat along the line of 
this book. We started with the aim ofkeeping the physics honest, keeping the 
mathematics honest, and keeping the logieal distinction between the two 
straight. But we were iII-prepared for the attendant trauma of such an under
taking. In particular, the third point proved to be a veritable nightmare. 
We managed to emerge from our many moments of doubt to complete this 
book with the original plan intact, not the least because we were sustained 
from time to time by the encouragement of some of our friends and colleagues, 
particularly S. S. Chern and B. O'Neill. Nevertheless, we are pessimistic about 
further attempts at explaining genuine physics to mathematicians using only 
prerequisites familiar to them. 

Many people believe that current physics and mathematics are, on balance, 
contributing usefully to the survival of mankind in a state of dignity. We 
disagree. But should humans survive, gazing at stars on a clear night will 
remain one of the things that make existence nontrivial. We hope that at some 
point this book will remind you of the first time you looked up. 

Through the several drafts of this book as dassroom notes, we were 
fortunate to have the excellent secretarial assistance of Joy Kono, Nora Lee, 
and Marnie MeElhiney. A philosophical remark from Professor S. S. Chern 
was responsible for an overhaul of our overall presentation. Many minor and 
quite a few major improvements were due to suggestions by J. Arms, J. Beem, 
K. Sklower and T. Langer. But for the warm hospitality of the DAMTP of 
Cambridge University and the unswerving support of Kuniko WeItin under 
rather trying circumstances, the final stage of the book-writing would have 
been interminable and insufferable. Finally, support from the National 
Scienee Foundation greatly faeilitated the preparation of the manuseript. 
To all of them, we wish to express our deep appreciation. 
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Guidelines for the reader 

1. All indented fine-pr int portions of the book are optional; they may be 
skipped without loss of mathematieal eontinuity. Some of these fine
print paragraphs are proofs that we eonsider noninstruetive. But the 
majority of them eontain eomments that presuppose a knowledge of 
physies (and on a few oeeasions, of mathematies) beyond the level of 
our formai prerequisites. Nevertheless, we urge the reader to at least glanee 
through those dealing with physies; they may be read with the assuranee 
that eaeh has been revised many times to minimize distortion of the physies. 

2. The remainder of the text should be treated as straight mathematies, though 
one sh ou Id keep in mind the following peeuliarity: There will be no all
eneompassing mathematieal abstractions; instead, the emphasis through
out is on simple definitions and propositions that have a multitude of 
physieal implieations. 

Physies attempts to deseribe eertain aspeets of nature mathematieally. 
Now, nature is not a mathematical objeet, mueh less a tlJ,eorem. There is 
no overriding mathematieal strueture that eovers all of physies. Sinee the 
subjeet matter of this book is physies, the reader will find here not a 
eoherent and profound mathematieal study of general Lorentzian mani
folds eulminating in a Hauptsatz, but rather a disjointed eollection of 
propositions about a speeial dass of four-dimensional Lorentzian mani
folds. Mathematies plays a subordinate role; it is a tool rather than the 
ultimate objeet of interest. For example, in Chapter 3 the emphasis is not 
on the eoordinate-free version of Stokes' theorem, whieh is taken for 
granted. Instead, this theorem is used to define and analyze many physieal 
eoneepts: the eonservation of eleetrie eharge; the creation and annihilation 
of matter; the hypothesis that magnetic monopoles don't exist; relativistie 
versions of Gauss' law for eleetric flux, Faraday's law of magnetie 
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Guidelines for the reader 

induction, and Maxwell's displacement current hypothesis; the special 
relativistic laws for conservation of energy, momentum, and angular 
momentum; and so on. These concepts in turn apply to a very rich variety 
of known phenomena. Our aim in discussing the theorem is merely to 
indicate how it can manage to say so much about the world so concisely. 

In brief: economy will be central, mathematical generality will be 
irrelevant. 

The reader wishing to pursue the deeper mathematical theorems of 
relativity should consult Hawking-Ellis [lJ. 

3. The expository st yle of the book is strictly mathematical: all concepts are 
explicitIy defined and all assertions precisely proved. Now, in a serious 
physics text basic physical quantities are almost never explicitly defined. 
The reason is that the primary definitions are actually obtained by showing 
photographs, by pointing out of the window, or by manipulating laboratory 
equipment. The more mathematicaIly explicit a definition, the less accurate 
it tends to be in this primary sense. The reader is therefore forewarned that 
on this one point we have intentionally distorted an essential feature of 
physics in order to accommodate the mathematician's intolerance of 
theorems about mathematically undefined terms. 

4. The exercises at the end of each section are, at least in principle, an integraI 
part of the text. We have been very conscientious in making sure that each 
is workable within a reasonable amount of time. 

5. Chapters 0 through 5 are meant to be read consecutively. The remaining 
chapters are independent. 
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Preliminaries o 

This chapter is intended mainly to e1ear the boards for action. A reader with 
a solid background might try just skimming the chapter. Section 0.0 reviews 
some of the differential geometry we shall need. Section 0.1 gives so me 
physics background. Section 0.2 gives an intuitive discussion of the transition 
from Newtonian physics to relativity. Areader who has never studied relativ
ity should work all the exercises for Section 0.2. 

0.0 Review and notation 

This section sets the notation. Definitions not explicitly stated and theorems 
not explicitly proved are all discussed, for example, in the text by Bishop 
and Goldberg [I], referred to as Bishop-Goldberg throughout. We follow the 
Bishop-Goldberg notation as eloselyas feasible. 

0.0.1 Seis, maps, and lopology 

Suppose A and B are sets, and i: A --+ Bis a map, the image of a E A is written 
either ia or i(a). For example, suppose e is aset and k: B --+ e is a map; 
then (k 0 i)(a) = (k 0 i)a = k(ia) = kia with k(ia) preferred. Suppose D is a 
subset of A. We write D e A and write A - D = {a E Ala ~ D}; il D is the 
restriction of i to D. Suppose E e B; we write i-lEe A for the complete 
inverse image. Suppose A above is a topological space; then D- and aD will 
denote the elosure and boundary, respectively, of D. 

7L denotes the integers and IR the reaIs. If g e IR is connected and open, we 
sometimes write 6' = (a, b), with a = -oo and/or b = oo allowed. J: e --+ IR 
is called positive affine iffJu = cu + d, where e > 0 and d E IR. 



o Preliminaries 

0.0.2 Tensor algebra 

If V is a veetor space (always understood to be over IR), V* denotes its dual. 
The image of v E V under w E V* is denoted by w(v) or wV. By a subspaee of 
V we mean a veetor subspace. If VI"", VN are finite dimensional veetor 
spaces, then VI EEl· .. EEl VN will denote their direet sum and V~ ® ... ® vt 
the veetor space of multilinear maps VI x ... X VN -IR. The space of (r, s) 
tensors over VI is T/(VI ) = VI ® ... ® VI ® V~ ® ... ® V~, where there 
are r unstarred and s starred faetors. (r, s) is the type of eaeh tensor in 
T/( VI)' Suppose S E T,r( VI) and TE T/(Vl); then T ® S E T; '::(VI) denotes 
the tensor produet. 

We are following the convention of Bishop-Goldberg in placing the 
contravariant variables in front of all the covariant variables for each 
tensor in r:( VI)' This is aimed at facilitating any discussion conceming 
tensors when no mention of indices is allowed. 

0.0.3 Inner produets 

Let V be a finite dimensional veetor space. A nondegenerate symmetric 
bilinear form g on V is ealled an inner produet on V (Bishop--Goldberg 2.21). 
Let S = {Wj W is asubspace of V and gjw is negative definite}. The index I 
of g is the integer I = maxWES (dimension W). Define the norm of v E Vas 
j vi = [I g(v, V)IP/2; define v E Vas a unit veetor iff Ivi = I; define v, W E V 
as orthogonal iff g(v, w) = O. 

Let N = dim V, B = (el> ... , eN) be an ordered basis of V, and (el, ... , ell) 
be the dual basis of V*. B is ealled (" ordered," "semi-") orthonorma! iff g = 
L~;; I eA ® eA - L~ = N -1+ 1 eA ® eA, where the appropriate sum is zero if 
I = 0 or J = N. Equivalently, B is orthonormal iff: g(eA, eA) = I for 1 ~ 
A ~ N - J, g(eA' eJ = -I for N - I + 1 ~ A ~ N, and g(eA' eB) = 0 for 
A #- B. A basis of pairwise orthogonal unit veetors can always be made an 
orthonormal basis by appropriate reordering. If e E V is a unit veetor, there 
exists an orthonormal basis that eontains e. 

We shall eall the pair (V, g) a Lorentzian veetor spaee and g a Lorentzian 
inner produet iff dim V ~ 2 and I = I. 

2 

This is the case of main interest. The reader should not assume it is 
essentially similar to the positive definite case. The differences are 
central in physies, as the rest of this book shows. For example, suppose 
g is an inner produet on V. The subset {v E V I g(v, v) < O} has two 
conneeted components iff (V, g) is Lorentzian. Locally, these com
ponents eorrespond to the physical past and physical future. When the 
algebraie strueture of a Lorentzian (V, g) is unwrapped from tangent 
spaces into a manifold, a rieh structure results (Penrose [I], Hawking 
and Ellis [1]). See Optional exercises 8.3. 



0.0 Review and notation 

0.0.4 Ca> Manifolds and maps 
Uniess specifically denied, all manifolds, all objects on tbem, and all maps 
from one manifold into another will be C"'; however, we sometimes redun
dantly write "a C'" manifold," and so on, for emphasis. A manifold M 
introduced by a definition need not be connected, but will always be finite
dimensional, real, Hausdorff, and paracompact. Throughout the remainder 
of this book, Mis a manifold. Mx denotes the tangent space at x E M. The 
tangent bundle TM is {(x, X) I x E M and X E Mx} with its standard C'" 
manifold structure (Bishop-Goldberg 3A); the projection Il: TM -+ M has 
the rule Il(x, X) = x. As in Bishop-Goldberg, Mx will be identified with the 
fibre Il -1 X over x. 

LetNbe amanifold and</>: N -+ Mbe a map. Then the map </>.: TN -+ TM 
between tangent bundies denotes the differential and </>. denotes the pulIback. 
Thus (</> 0 rp)* = rp* 0 </>*. </> is an immersion iff "In E N, </>. restricted to Nn is 
one-one. An immersion </> is an imbedding iff </>N, with the topology induced by 
that of M, is homeomorphic to N under </>. Then </> is one-one and </>N is 
caIled an imbedded submanifold. Any open subset of M is an imbedded 
submanifold. A dijJeomorphism is an onto imbedding. 

0.0.5 Tensor fields 
Let Ts' M be the bundle of (r, s) tensors over M, and P: Ts' M -+ M be the 
standard projection (Bishop-Goldberg 3A). An (r, s)-tensor field B on 
0/1 e M is a map B: 0/1 -+ Ts' M such that P 0 B = identity on 0/1. Thus for 
each x E 0/1, Bx E T;(Mx ). If 0/1 is a submanifold of M, then B being C'" 
makes sense, and this property will then be automatically assumed by our 
convention. 

We follow the standard definitions of the usual tensor formalism (Bishop
Goldberg 2, 3, 4). For example, suppose f: M -+ IR is a function on M; V 
and Ware vector fields on M; and 'P and", are I-forms on M. Then: (a) Lv 
denotes the Liederivative withrespectto V; (b) V/ = d/CV) = Lv/isafunction 
onM;(c)[V, W] denotesthe Lie bracket so that [V, W] = LvW;(d)'P 1\ '" = 
1('P 0 '" - '" 0 tp); and (e) 2dtp(V, W) = Vtp(W) - Wtp(V) - 'P([V, W]). 
A q-form t' on Mis called c/osed iff dt' = 0, exact iff there is a (q - l)-form 
Il on M such that t' = dll. An exact q-form is e1osed. 

We use the usual swindle for domains of definition. For example, let g be 
a (0,2) tensor field on M, and V be a vector field on M; suppose W E Mx 
for some x E M. Then g(V, W) means gx(Vx, W) E IR and g(., W) means 
gx(-, W) E M:. As another example, if U is a vector field defined on an 
open submanifold .AI of M, then g( U, V) means g 1".y(U, VI".y), which is a 
function on .AI: 

An n-dimensional manifold M is caIled orientable iff there is a nowhere 
zero n-form (J) on M; any such (J) is called avolume element and determines 
an orientation (Bishop-Goldberg 3C and p. 185). If M is an oriented mani
fold and 0/1 e M is open, we a1ways assign the consistent orientation to 0/1. 

3 
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If, furthermore, 0011 is a submanifold of M, the n oUJ/ inherits an induced 
orientation from M in the following manner: if x E oUJ/ and {xl, ... , xn} are 
eoordinate funetions in an open set .sl containing x such that UJ/ Il.sl = 
{Xl < O} and dx l /\ ... /\ dxn is eonsistent with the orientation of M, then 
dx2 /\ ••• /\ dxn restrieted to oUJ/ is eonsistent with the indueed orientation 
on OUJ/. 

0.0.6 eurves 

Let tff e IR be an interval, whieh may be infinite, and y: tff -+ Ma map. y wiIl 
always be understood to be CctJ in the following sense: there exists an open 
set e e IR containing tff and a CctJ map 9: J -+ M such that YJ.r = y. Such a 
C'" map y: tff -+ Mis eaIled a curve in M. We denote the inclusion funetion 
tff -+ IR by s, t, or u and the distinguished veetor field on tff by d/ds, and so on. 
For example, du(d/du) = I. For eaeh u E tff, y*u denotes the tangent veetor at 
yu; th us y*u = [y.(d/du)](u) E Myu • 

A eurve y: tff -+ M is eaIled inextendib!e iff any other eurve ,::F -+ M 
satisfying tff e :F and 'I", = y is the eurve y: tff -+ Mitself. A eurve '::F -+ M 
is eaIled an (orientation-preserving) reparametrization of y: tff -+ M if there 
exists an onto map a: tff -+:F with positive derivative such that y = , 0 a. 
If a is positive affine, then , is eaIled a positive affine reparametrization of y. 

If X is a veetor field on M, the maximal integral curve of X through 
x E M is the unique eurve y: (a, b) -+ M, -oo::; a < b::; oo, such that 
(a) yO = x; Cb) y*u = X(yu) Vu E (a, b); and (e) y is inextendible (Bishop
Goldberg 3.4). The ftow of X wiIl be denoted by {IL.}. For example, if X is 
complete, p..: M ->- M is obtained by moving each x E M s parameter units 
along the maximal integral eurve through x (Bishop--Goldberg 3.5). 

0.0.7 Metrics and isometries 
Let g be a symmetrie (0, 2) tensor field on M. g is called a metric tensor with 
index I on M iff gx is nondegenerate and index (gx) = IV x E M. Then 
(M, g) is eaIled a Riemannian manifold iff I = 0, semi-Riemannian otherwise. 
We wiII call a semi-Riemannian manifold Lorentzian iff I = I and the 
dimension of M is at least 2. 

Let (M,g) and (N, h) be Riemannian or semi-Riemannian manifolds. A 
map q,: M -+ N is ealled an isometry iff q, is one-one, onto, and q,*h = g. 
Then q, is a diffeomorphism. (M, g) is then caIled isometric to (N, h) under q,. 
A map tfi: M -+ N is defined as a !oca! isometry iff tfi*h = g. 

0.0.8 Geodesics 
Throughout Seetion 0.0.8, (M, g) is a Riemannian or semi-Riemannian 
manifold. The Levi-Civita connection D of (M, g) is that ("linear," "affine") 
eonneetion on M characterized by: (a) symmetry, DyW - DwV = [V, w] 
for all veetor fields V, Won M; and (b) compatibility, Dyg = 0 for all such 
V (Bishop-Goldberg 5.11). A eurve y: tff -+ M is a geodesic of (M, g) iff it is 
a geodesic of D on M (Bishop--Goldberg 5.12). We shaIl not eount a constant 

4 
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eurve, whieh has yg = X E M, as a geodesie. If y is a geodesie of (M, g), 
there is an a E IR such that g(y.u, y.u) = a Vu E g. y is ealled a maximal (or 
inextendible) geodesic iff it is both a geodesie and an inextendible curveo Note 
that if a geodesic y is a reparametrization of another geodesic g, then y is 
necessarily a positive affine reparametrization of g. Let X be a nowhere zero 
vector field. X is ealled a geodesic vector field iff D xX == O. Thus X is geodesic 
iff each of its integral curves is a geodesie. 

The exponential map expx at x E M maps a subset ilIIx e Mx into M as 
foIIows. The zero veetor 0 E Mx is in ilIIx and expx 0 = x. A nonzero veetor 
X E Mx is in ilIIx iff there is a geodesic y: [0, 1]--* M such that YO = x and 
r.O = X. For X E ilIIx , X # 0, y is unique and expx X = yl. ilIIx is open and 
expx is C"". For eaeh x E M, there is an open neighborhood "yx e ilIIx of 0 
such that expxlrx is a diffeomorphism. (M, g) is complete iffilllx = MxVx E M. 
(M, g) is eomplete iff every geodesie y: g --* M ean be extended to a geodesie 
IR --* M (Bishop-Goldberg 5.13). 

0.0.9 Bases and coordinate maps 
Assume dimension M = n ~ I. An ordered set {Xl' ... , Xn} of veetor fields 
on Mis calIed a basis of veetor fields on M iff {XAx} is a basis of MxVx E M. 
A basis {roA} of I-forms on M is defined similarly. Bases {XA} and {roA} are 
ealIed dual iff roBXA = SAB VA, B E {I, ... , n}. Any basis uniquely determines 
a dual basis. If M is oriented, we assign the consistent orientation to eaeh 
tangent space; uniess explieitly denied, eaeh basis used wiII then have the 
eonsistent orientation. A basis {XA } on a Riemannian or semi-Riemannian 
manifold (M, g), and its dual, are calIed orthonormal iff {XAx} is an ortho
normal basis of MxVx E M (ef. Exercise 0.0.15). On a given M there usually 
does not exist a basis of veetor fields or I-forms. However, one can always 
find such a basis in each coordinate neighborhood, and if g is also given, one 
ean even ehoose this basis to be orthonormal. 

We define IRN = IR x ... x IR, where there are N factors. uA : IRN --* IR 
denotes projeetion onto the Ath factor. Thus {duA} is a basis of I-forms on 
any open submanifold of IRN; the dual basis will be denoted by {aA}. If 
ilII e M and x: ilII --* IRN is a eoordinate map, xA = UAlx'i' 0 x denotes the 
Ath coordinate funetion. The basis on ilII dual to {dxA} will be denoted also by 
{ aA}. 

The unit (N - I)-sphere (g'N-I, h, ,) is g'N-l = {x E IRNllxl = I}, re
garded as a C"" manifold, together with the standard induced metric h on 
g'N-l and the standard volume element' on g'N-l. Thus if I: g'N-l --* IRN 
is the indusion, h = I·C~:~ ~ 1 duA c>?l duA). N ote that .51'0 is just the two 
points {-I, I} e IR. 

EXERCISE 0.0.10 

Let V be a finite dimensional vector space. When V is regarded as a e <xl manifold, 
it can be canonically identified with any of its tangent spaces. A basis-free method 
is part (a) following. (a) Regard w E V· as a function ii>: V ->- IR. Show that for 

5 
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eaeh v E V there is preeisely one isomorphism "'v: Vv ->- V such that w("'vw) = 
dMw)vw E Vv and w E V*. (b) Let g be an inner produet on V, and g: V ->- ~ be 
the funetion determined by g(v) = g(v, v). Show dg(w) = 2g(r/>vw, v)Vw E Vv and 
v E V. (e) Let (V, g) be a Lorentzian veetor space and define a (0, 2) tensor field 
g on V by g(w, z) = g("'vw, "'vz)Vv E V and w, Z E Vv. Show (V, g) is a Lorentzian 
manifold. 

EXERCISE 0.0.11 

Let V be an N-dimensional veetor spaee, g be an inner produet on V, and W e V 
be a K-dimensional subspaee. We define WL = {v E V I g(v, w) = 0 'tw E W}; if 
w spans W, we shall also write wL == WL. Show: (a) WL is an (N - K)-dimen
sionai subspaee. (b) WH = W. (e) V = W ij;) WL iff glw is nondegenerate. 

EXERCISE 0.0.12 

If M is a manifold, show: (a) "li e TM open implies II "li e Mis open; (b) 'i'" e M 
open implies II -l'i'" e TM is open. 

EXERCISE 0.0.13 

(a) Show that for Riemannian or semi-Riemannian manifolds, the relation "is 
isometrie to" is an equivalenee relation. (b) Let (M, g) and (M, g) be Riemannian 
or semi-Riemannian manifolds. Show that "': M ->- Mis aloeal isometry iff each 
x E M has an open neighborhood "li e M sueh that ("li, gl<fl) is isometrie to 
("'''li. ild><fI) under "'I<fI. (e) Let "': M ->- M be aloeal isometry as in (b) and let 
y: ef! ->- M be a geodesie of (M, g). Show that y = '" 0 y is a geodesic of (M, g). 
(d) Show that the set '§M of isometries of a Riemannian or semi-Riemannian 
manifold (M, g) onto itself forms agroup. 

EXERCISE 0.0.14 

Let V be a finite dimensional vector space and"': V ---+ V· a given isomorphism. 
(a) Show that for r, s E Z, r > 0, s ~ 0, '" ean be extended uniquely to an iso
morphism (to be denoted by the same symbol) "': T/( V) ---+ p.:; H V) such that 
"'(Vl 181···181 vr 181 w l 181··· 181 w') = Vl 181···181 Vr-l 181 "'(Vr) 181 w l 181··· 181 w" 
'tVlo ... , Vr E Vand w l , ... , w' E V·. (b) Show by induetion that there is a unique 
isomorphism "'s': T,'( V) ---+ T~ +B(V) for all nonnegative integers r, s such that 
"'.'(Vl 181'" 181 Vr 181 w l 181··· 181 W S) = "'(Vl) 181··· 181 "'(Vr) 181 w l 181··· 181 w'. (e) 
Suppose p, q and r. s are nonnegative integers sueh that p + q = r + s. For 
A E Tl( V) and B E T/( V). define: A is t/>-equivalent to B (in symbols: A ~ B) iff 
t/>/(A) = t/>,r(B). Show that ~ is an equivalence relation. 

EXERCISE 0.0.15 

Let V be a finite dimensional veetor space and g be an inner product on V. 
(a) Show that t/>: V ->- V· defined by (t/>v)w = g(v, w) 'tv, w EVisan isomorphism. 
We shall eall this t/> the metric isomorphism (induced by g). (b) Show that the map 

6 



0.1 Physics baekground 

g: V· x V· ---+ IR defined by g(w, w') = g(</>-lw, rp-lw'), Vw, W' E V·, is an inner 
produet on V·. (e) Show that index g = index g. (In partieular, g is Lorentzian 
iff g is.) (d) Let {el.' .. , eN} be an orthonormal basis of V with respeet to g, and 
let {el, ... , eN} be its du al basis. Show that {el, ... , eN} is orthonormal with respeet 
to g. (This justifies the terminology of .. orthonormal basis of l-forms" intro
dueed in Seetion 0.0.9.) (e) Show that g, considered as a (2,0) tensor, is "'
equivalent to g in the sense of Exercise 0.0.14(e). (f) Show that the element of V 
</>-equivalent to an w E V· is given by g(w, .). 

EXERCISE 0.0.16 

Let V be a finite dimensional veetor space, ,p: V ---+ V be a given isomorphism, 
and ,p.: V· ---+ V· be the adjoint isomorphism. Show that for all nonnegative 
integers r, s there is a unique extension of ,p to an isomorphism ,ps': Ts'( V) ---+ 

Ts'( V) such that (,p" A)(wl, ... , w', Vl. ••• , v,) = A(,p·wl, ... , ,p·w', ,pVl. ... , ,pvsW A 
E Ts'( V), w l , •.. , w' E V·, and Vl. . .. , Vs E V. 

0.1 Physics background 

0.1.1 General relativity 
No well-defined current physical theory claims to model all nature; each 
intentionaIly neglects some effects. Roughly, general relativity is amodel of 
nature, especiaIly of gravity, that neglects quantum effects. Its central assump
tion is that space, time, and gravity are all aspects of a single entity, caIled 
spacetime, which is modelled by a 4-dimensional Lorentzian manifold. It 
analyzes spacetime, electromagnetism, matter, and their mutual infiuences. 
It is used mainly in the study of large-scale phenomena: dense stars, the 
universe, and so on. 

Now in microphysics, gravity counts as a very minor effect. For example 
the electric repulsion between two eleetrons is believed to be more than 1040 

times as large as their mutual gravitational attraction. But gravity is long 
range and eumulative. In the realm of stars and galaxies it can dominate. For 
example, the discovery of pulsars has now made it virtually certain that there 
are some stars that manage to resist total collapse caused by their own gravity 
only by a last-ditch effort, at a radius of perhaps 10 miles. For such stars, 
and for the universe as a whole, general relativity is the best available theory. 
It is also believed that there are stars for whieh gravity has triumphed com
pletely, eollapsing the star to a black hole. If so, general relativity will become 
very exciting du ring the next decade. 

Since we are giving a mathematical exposition of general relativity, the 
basic postulates of this branch of physics are of necessity disguised as def
initions. The key definitions are given in Sections 1.3.1, 3.3.1, 3.4.2, 3.5, 
3.7.1, and 4.1.1. These definitions, not theorems, are central. Such definitions 
carry the connotation "nature is really somewhat like that," so they require 
more motivation than purely mathematica! definitions. But we shall soft
pedal motivations. Genuine motivations caonot be given piecemea!; they 
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refer to nature as a whole and a physical theory as a whole. Moreover, com
pletely convineing motivations can never be given. Physical theories are 
guessed, not deduced; if only deductions were required, every competent 
hack could be an Einstein or a Feynman. 

0.1.2 Physical theories 

Newtonian physics can handIe weak gravitational effects; it cannot adequately 
handie strong gravitational effects, or high-speed effects which occur when 
relative speeds comparable to the speed of light are involved. Speeial rela
tivity can handIe high-speed effects but not gravitational ones. General 
relativity incorporates Newtonian physics and special relativity into a theory 
that can handIe both high-speed effects and gravitational effects of any 
strength. We give a table that shows the main theories of current physics and 
serves to interrelate some physics terms here treated as undefinable. The 
parenthetical phrases merely refer to certain ambiguities in the current 
physics literature and will often be omitted. 

Gravity High- Quantum 
speed 

.~ (Nonquantum) General relativity Yes Yes No 
~ ---------------------------------------------------------------------_. < (Special-relativistic) Quantum theory No Yes Yes 

~ _~~~~~~~~~~~~ _________ ~_~~~i~_~~I~~~~i_t: ____ ~ ~ ______ ~ ~~ ______ ~_~ __ _ 
'C 
Q) 

el 
Newtonian physics Weak 

l:I:i (Nongravitational) Quantum mechanics No 

No No 

No Yes 

Each A implies two Bs by appropriate limiting processes. We shall use 
relativilY to mean (nonquantum) general relativity or (nonquantum) speeial 
relativity, or both. Very roughly, "quantum" refers to the "fuzzy, jumpy" 
behavior of small objects; we attempt no further definition of "quantum." 

As indicated, the two basic theories are quantum theory and general 
relativity. No one really knows how to combine these, though many attempts 
have been made. We indicate roughly the domain of validity that these two 
theories are believed to have in the following table; the table also intro
duces some more physics terms here treated as undefinable. In the table, 
"NUC" is an abbreviation for" the strong (nuelear) interaetion or eleetro
magnetism or the weak interaetion or some eombination" (cf. Weinberg [2]). 
For an expIanation of the seaIe in terms of light-seeonds, see Seetion 0.1.4. 
In B to D preeise dividing lines-for exampIe, between "maerophysies" and 
" microphysies "-are intentionally omitted. 
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0.1 Physics background 

Scale 10- 24 10- 3 1018 

(light-seconds) t t t 

Observable 
A. System Nucleus Moon universe 

B. Dominant Force NUC Electromagnetism Gravitational 

C. Domain Microphysics Macrophysics 

General 
D. Theory Quantum theory relativity 

0.1.3 Historyand current status of 
general relativily 

Special relativity was introduced around 1905 by Einstein, Lorentz, Poincare, 
Minkowski, and others. Some 10 years later, Einstein introduced general 
relativity, generalizing from fiat to nonfiat 4-dimensional Lorentzian mani
folds to inc1ude gravity in the models. Special relativity and special re1ativistic 
quantum theory have been checked literally billions of times. But for many 
years only small and poorly measured effects within the solar system indicated 
that general relativity gave better answers than combining its special re1ativis
tic and Newtonian Iimits ad hoc. 

Today, more accurate measurements within the solar system, the tentative 
success of general relativistic models for white dwarf stars and pulsars, the 
possible discovery of the black holes and of the gravitational radiation pre
dicted by general relativity, and the tentative success of general relativistic 
cosmology have given general relativity a somewhat firmer empirical founda
tion (Weinberg [1 n. No doubt it will eventually have to be scrapped for a more 
general theory that somehow unifies quantum theory and general relativity. 
However, its main ideas wiII almost certainly be instrumental in the formu
lation of this more accurate theory. This book analyzes (nonquantum) general 
relativity. 

0.1.4 Un its 
Let e = speed of light ~ 3 x 1010 cm second -1 and let G = Newtonian 
gravitational constant ~ 6.67 x 10- 8 cm3 second -2 g-l. We shall use units 
such that e = I = 87TG. 

In our system of units, it is possible to quote numerical results in 
[seconds]N, and this avoids dimensional juggling. In case the reader is famihar 
with different systems of units, we give three examples of how ours works. 
First, speed s are dimensionless. For example, the speed s of the earth with 
respeet to the center of our galaxy is roughly 10- 3 . This means s ~ 10- 3 = 
10- 3 e ~ 3 x 107 cm second-l. The advantage of writing s ~ 10- 3 is that 
one sees explicitly that s is small (compared to e); s ~ 10 - 3 correetly suggests 

9 



o Preliminaries 

that eosmological observations made by a hypothetical observer here, at rest 
with respeet to the center of our galaxy, would not differ very signifieantly 
from those we aetualIy make. Next, distances ean be expressed in seeonds; 
for example, the radius RGl of the earth is roughly 2 x 10- 2 seeonds = 
(2 x 10- 2 seeonds) e = 2 x 10- 2 light-seeonds ~ 6 x lOs cm. Writing dis
tanees in second s ineorporates general relativity's unifieation of space and 
time into the numerieal estimates. Finally, the mass M Gl of the earth is about 
4 x 10- 10 seeonds = (4 x 10- 10 second s) x (c3 j87TG) ~ 6 x 1027 g. Writing 
M Gl ~ 4 X 10- 10 seeonds makes the estimate M Gl « RGl meaningful. 
M Gl « 8Tr RGl is needed to show that the earth ean in most diseussions be 
analyzed by Newtonian physies (see Seetion 0.1.10). 

In our units, 1 second ~ 3 x lOs m ~ 1.5 x 1034 kg. 

0.1.5 Newtonian physics 

No relativistie model ean be dedueed from any Newtonian mode!. No funda
mental physies ean be dedueed from Newtonian physics. The logieal and 
mathematical strueture of Newtonian physies is surprisingly complieated, 
probably more complicated than that of reIativity. AlIowing Newtonian 
concepts into a discussion of relativity obscures the mathematics. On the 
other hand, Newtonian physies is quite indispensable for heuristie and 
empirieal diseussions. Henee we sh all inelude some Newtonian physics but 
keep it carefully isolated from the mathematies. 

Alonso and Finn [I] is a straightforward freshman text on Newtonian 
physics. Feynman et al. [1] is a brilliant presentation, ostensibly for fresh
men. Such modem texts are careful to avoid assigning a distinguished origin 
to Euelidean 3-space. But since we only use Newtonian physics heuristically 
and isoIate it from the mathematics, we shall adopt a drastic simpIification. 
We take (Newtonian) space to mean (1R3, L~=l duu 181 duU), with all the 
strueture of 1R3 impIied, ineluding a distinguished origin. When we do use 
Newtonian physics, we use the notation and terminoIogy of the above texts 
without further apoIogy. For exampIe, we write (1R3 , L~ = 1 duP 181 duU ) == 
(1R3, dx· dx). SimilarIy "D" ean mean D E 1R3, or D E lRa~ for x E 1R3, or a vector 
fieId D: 1R3 ~ T1R3, or a I-form D: 1R3 ~ Tl OIR3, or a veetor field tangent to a 
eurve r: e ~ 1R3 , and so on, depending on context. 

0.1.6 Newtonian point partides 

The Newtonian time axis is T:; IR. V, with components (ojox\ ojox2 , ojox3), 

is the gradient operator. A point partiele (;, m) is a eurve ;: e ~ 1R3 and an 
inertial-mass mE (0, oo). For t E e e T, ret) E 1R3 is the position of the 
partiele at time t. m is measured by eollision experiments that do not involve 
gravity (Alonso and Finn [I J, Chapter 7). ; is the path, f == v the velocity 
Ivi the speed, i the aeeeleration, mv the momentum, and tmlvl 2 the kinetie 
energy. Let Y: T ~ 1R3 be a eurve. Then replacing; above by; - Y gives path, 
velocity, and so on, relative to Y; for example i - Y is the partiele's accelera
tion relative to y. m = mc2 is sometimes called the rest energy, although 
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0.1 Physics background 

Newtonian physics does not really use this concept. Let Ebe the (Newtonian) 
force on (f, m) (Alonso and Finn [I], Chapter 7). Then E = mi. 

0.1.7 Time-independent Newtonian 
gravitationa! forees 

In Newtonian physics, the gravity of a time-independent souree is deseribed 
by a function 4>: 1R3 ~ IR, the gravitational potential. - Vrf, is the gravitational 
field. 4> and ~: 1R3 ~ IR describe the same gravitational effect iff V4> = V~. 
Every point partide (f, m) can be assigned a passive-mass mE (0, oo) such 
that the (Newtonian) gravitational foree on (f, m) is E = -mV4>. m is 
measured by comparing, in a given time-independent gravitational field, the 
weight of(f, m) with the weight of a standard partide. Thereafter, (f, m)can be 

used to determine V4> in other situations (Alonso and Finn [I], Chapter 13). 
Experiments indieate that mlm = 1 ± 10- 11 (Oieke [I]). We henceforth 
assume m = m. Then mf = F = -mV4> gives"i = -V4>. Thus gravitational 
acceleration depends only on 4>; m is irrelevant. In general relativity one never 
introduces any quantity analogous to m in the first place, although one does 
use quantities analogous to inertial-mass m and to the active-mass iii dis
cussed below. 

0.1.8 Typiea! Newtonian gravitationa! potentia!s 
In our units 4> is dimensionless and 14>1 is typically mu ch less than 1. For ex
ample, one usually takes 4> = (looo cm second - 2)h near the surfaee of the 
earth, where h is height in cm; suppose h = 9 cm. Then in our units 4> = 
9000 cm2 second -21c2 ~ 10- 17• Let 4>, ~ be gravitational potentials. Then 
V4> = V$ iff 4> = $ + constant. Uniess explicitly denied, we heneeforth 
assume the constant has been so chosen that 4> ~ ° at spatial infinity. This is 
consistent if the sources of the gravitational field are confined in a compact 
region (Alonso-Finn [I]). 

0.1.9 Newtonian aetive-mass 
Consider an isolated, spherically symmetric, static body centered at the 
origin of 1R3. One can assign an active-mass mE (0, oo) to the body such that 
the gravitational potential outside the body is 4> = -Gm/lxi. mis measured 
by measuring V4>. For example, a point partide half-way between sun and 
earth suffers a Newtonian gravitational force from the sun about 3.3 x 105 

as great as that from the earth; so that one assigns the sun an active-mass 
3.3 x 105 times that of the earth. Usually such a gravitating body can be 
regarded as a point partide with inertial-mass m. Experiments indicate that 
mlm = 1 ± 10 - 4. If one has n partides per unit volume, each of active
mass iii, Poisson's equation for 4> is 'f;P4> = 41TGnm = -tnm. 

0.1.10 Limitations of Newtonian theory 
As long ago as 1799, Laplace suggested there might be bodies so heavy and 
dense that light could not escape from their surface; a translation of this first 
"black hole" paper is given in Hawking and Ellis [I]. Though the Newtonian 
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arguments Laplace used are no longer regarded as appropriate, we outline 
briefly so me Newtonian theory, which will facilitate interpretations of the 
general relativistic models to be presented later. 

Consider a spherically symmetric body in 1R3, centered at the origin and 
with Euclidean radius a E (0, co). Let p: 1R3 -+ [0, co) be a e oo function, inter
preted as Newtonian active-mass per unit Euclidean volume. Because of 
spherical symmetry, we regard p as a function p: IR -+ [0, co) with pei) = 
p(lil). Thus the total Newtonian ac~ive-mass m is m = 4n- f~ p(r)r 2dr. 
Define f: 1R3 -+ [0, iii/81T] by f(i) = t f:' p(r )r2dr. Thus 81Tf(i) is the active 

mass within a sphere of radius Iil. Poisson's equation 'i!24> = lP, together 
with the boundary conditions and smoothness requirements mentioned 
a~ove for the Newtonian gravitational potential 4>, is equivalent to 4>(i) = 
f~' r- 2f(r)dr (Alonso and Finn [I]). Thus for Iil ~ a,4>(i) = -iii/81Tlil· 
In particular, at the surface, 4> = - iii/81Ta. Laplace pointed out that for large 
iii and small a, 4> < - 1- He argued that then light could not escape from the 
surface. Note that for the earth, iii « 81Ta (see the end of Section 0.1.4) so that 
14>1 « I and Laplace's comment is not relevant. 

In general, unIess a Newtonian mode! predicts 14>1 « 1 everywhere and 
Ivi « 1 for all speed s of interest, the model should not be taken seriously. 
For example, consider a star so dense that Newtonian physics predicts 4> :=; 
- (I/2) at the surface. Then Laplace's comment is relevant. But nowadays one 
regards the Newtonian mode! as self-defeating. In fact, in such a case, one 
should not attempt to use any Newtonian concept, especially not T, 
(1R3, di· di), or 4>. For example, in a general relativistic black hole model 
(Sectjons 1.4 and 7.5), the only quantity that could reasonably be regarded 
as Newtonian time is also the only quantity that could reasonably be re
garded as Newtonian radius. Both Newtonian concept s are then so mis
leading they are worse than useless. 

0.2 Preview of relativity 

Spacetimes form the" universe of discourse" for general relativity. A space
time is a 4-dimensional Lorentzian manifold (M, g) satisfying certain techni
eal requirements to be specified in Chapter I; it usually carries additional 
structures that mode! e!ectromagnetism, matter, and so on. By using M, we 
can describe the complete history of a physical process, viewed as a whole. 
g carries the essential information about space, time, and gravity. In going 
from Newtonian physics to relativity, physicists had to forget various 
Newtonian concepts; g somehow remembers the right things and forgets the 
wrong ones. Concepts of causality, distance, time, velocity, speed, acce!era
tion, rotation, rigidity, simultaneity, orthogonality, gravity, and so on, are 
derived from g to the extent they are retained at all. g therefore must play 
many roles; its unifying power is remarkable. 

More specifically, general relativity models an ordinary point particle as a 
curve y: e -+ M and arest-mass m E (0, co) (ef. Section 3.1.l). When analyz
ing a particle, g is used in each of the following ways: (a) together with one 

12 



0.2 Preview of relativity 

choice between "+" and "-", g supplies M with a sense of "future" and 
"past" (Seetions 1.2, 5.0.1, and 8.3); (b) g supplies y with a kind of are
length; this are-Iength models time on a doek moving with the partide 
and replaees, to the extent anything does, Newtonian time (Chapter 2); 
(e) g replaees the Eudidean metrie of ordinary 3-spaee (Seetion 2.1); (d) 
g replaees the Newtonian gravitational potential (Chapters I to 4); (e) g 
and its Levi-Civita eonneetion supply aloeal sense of "no rotation" for 
the axis of a gyroseope the partide earries (Seetion 2.2); (f) let y.u be the 
curve tangent at u E tC; the condition g(y.u, y.u) < 0 replaees the New
toni an eondition that the partide speed be less than the speed of light; in 
faet, y is parametrized so that g(y.u, y.u) = _m2 'tu E Iff; y.u the n replaees 
and unifies the ordinary energy and momentum of the partide (Section 3.1). 
And so on. 

In this seetion we give a heuristie diseussion of a spacetime of partieular 
importanee in physics-Minkowski space. To simplify matters, we shall 
eonsider a mode! with onlyone space dimension. For this purpose, imagine a 
small body moving in a straight line in the absenee of gravity. In Newtonian 
physies, the body is assigned an inertial-mass m E (0, oo). Its motion is de
scribed by a funetion x: IR ~ IR, with x(t) the position at Newtonian time t. 
By our eonventions, x is C"'. v = dxJdt is the ve!oeity, Ivi is the speed. In our 
units (Seetion 0.1.4), Iv(t)1 < I iff the speed at t is less than that of light; 
suppose Iv(t)1 < I for all t. 

To get a relativistie model now requires three steps: (a) x: IR ~ IR is re
plaeed by a eurve into 1R2 (mueh as one replaees a funetion by its graph in 
freshman ealeulus); (b) the essential strueture on 1R2 is assembled into a 
Lorentzian metrie and a "future" on 1R 2 ; (e) extraneous strueture is thrown 
away. We first perform steps (a) and (b). 

g = du l 0 du l - du2 0 du2 is a Lorentzian metrie on 1R2• For q E 1R2, we 
eall W E 1R2 qfuture pointing iff g(W, W) ~ 0 and g(02' W) < O. For example, 
at any q, O2 + tOl is future pointing while O2 + 2(\ and - O2 + tOl are not. 
When supplied with this sense of future pointing, (1R2, g) is ealled 2-dimen
sionai Minkowski space. Let y: Iff ~ 1R2 be a eurve. For brevity, we write 
i = ut 0 y, i = 1,2, so that y = (yl, y2). To avoid irrelevant ambiguities, we 
demand that y be inextendible, that 0 E Iff, and that y 20 = O. Let x and m be 
the Newtonian quantities above. 

Proposition 0.2.1. For each pair (x, m) there is a unique y: Iff ~ 1R2 with 
closed image ylff such that 'tu E Iff: (a) y.u isfuture pointing; (b) yl = x 0 y2; 
(e) g(y.u, y.u) = _m2. 

PROOF. Suppose (x, m) is given. The following are asserted or demanded for 

all t E IR andJor u E Iff. Define s: IR ~ IR by s(t) = (IJm) I~ [I - v(y)2]1 /2dy. 
Then dsJdt = (i - v2)1/2Jm. Since Iv(t)1 < I, dsJdt > O. Thus s is a diffeo
morphism from IR onto s(IR). Sinee seO) = 0, we have s-leO) = O. Now define 
Iff = s(IR), and define y: Iff ~ 1R2 by yu = «x 0 S-l)U, S-lU). Then y20 = 
S-10 = 0 as required. Moreover, (y 0 s)t = (x(t), t), so y<ff is the graph of a 
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funetion defined on the whole x2·axis. Henee ye is c10sed and y is inextend· 
ible. By definition of y, yl = X 0 y2, so (b) holds. For (a) and (e), we eompute 
y*u: with u = s(t) E e, y*s(t) = (mv(t)/[I - V(t)2]l/2, m/[I - V(t)2]l/2) E IR~Y's)t. 

Thus (dy2/du)u = m/[I - V(tY]l/2 > 0, whieh is equivalent tOg(02' y*u) < O. 
Furthermore, g(y*u, y*u) = - [(dy2/du)U]2 + [(dyl/du)U]2 = _m2/[1 - V(t)2] 
+ m2v(t)2/[1 - V(t)2] = -m2 < O. Thus (a) and (e) both hold. 

Finally, we eonsider uniqueness. Let y: j -+ 1R2 obey (a) to (e) with y re· 
plaeed by y. Writing y = (Yl, y2), we see from (a) that dy2/du > 0, where u 
denütes the eoürdinate funetion on i. Sinee for y = (yl, y2) as above, 
dy2/du > 0, y2 is a diffeomorphism from e onto IR. Let a = (y2)-1 0 y2, then 
y2 = y2 0 a; note that da/du > O. From (b) we have yl = X 0 y2 and from 
(e), _(dy2/du)2 + (dyl/du)2 = -m2. Thus we obtain _(dy2/du)2(da/du)2 + 
(dx/dt)2(dy2/du)2(da/dl2}2 = -m2 by the ehain rule, or equivalently, 

(da/du)2{ _(dy2/du)2 + (dx/dt)2(dy2/du)2} = _m2. 

However, we also know that 

_(dy2/du)2 + (dyl/du)2 = _m2 => {_(dy2Jdu)2 + (dx/dt)2(dy2/du)2} = _m2. 

Consequently, (da/du)2 = I, and sinee da/du > 0, da/du = 1. From y2 = 
y2 0 a, we see that y2 and y2 differ by a translation. Sinee y2 is also assumed 
inextendible and y20 = y20 = 0, y2 = y2 and j = e. Sinee y = (x 0 y2, y2) 
and y = (x 0 y2, y2), we conelude y = y. 0 

The proof of the following is now left as an exercise. It is the eonverse of 
Proposition 0.2.1 and shows x ean indeed be replaced by a eurve. 

Propositioo 0.2.2. Let y: e -+ ~2 be an inextendible curve with closed image 
ye such that Proposition 0.2.Ja and 0.2.Jc hold with m E (0, oo). Then there 
is a unique x: ~ -+ IR such that 0.2.Jb also hoids; moreover, then I (dx/dt)(t) I 
< 1 Vt E IR. 

The following figure capsulizes the preceding discussion via a eoncrete 
example. 

A. Newtonian B. Transition C. Relativistic 

x: R -+ Il • x(t) = <i-J sin trl 

x -+ 

Figure 0.2.3. Three descriptions of motion in a straight line; note the simplicity 
of C. 
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0.2 Preview of relativity 

These propositions and Figures 0.2.3A and 0.2.3B show roughly the way 
relativity uses 4 dimensions and some of the roles the Lorentzian metric g 
plays. But if u1 and u2, respectiveIy, could be identified with Newtonian 
position and time, we would have nothing new. To get to relativity, we must 
forget. 

Let ~ = {(q, W) E TIR 2 1 W is future pointingl. Now regard 1R2 as a mani
fold M; for example 1R2 has a distinguished origin and M does not. (M, g, ~) 
is the real structure of interest. Now one can start afresh by defining a particle 
(y, m) as arest-mass m E [0, oo) and aeurve y: tff ~ M such thatg(y.u, y.u) = 

- m2 and (yu, y.u) E ~ 'rIu E C. Then S = «M, g, ~), (y, m» is a genuine, 
though very simple, relativistic model (compare Figure 0.2.3c). In principle, 
amodel like S must be interpreted and related to measurements by referring 
to relativistic physics, not to Newtonian physics as in Proposition 0.2.1. For 
example u2 cannot be canonically recovered from (M, g, ~) so we have lost 
the Newtonian sense of absolute time (Exercise 0.2.7). One can consider a 
cIock moving with the partide to get some sense of time beyond the very 
quaIitative information in ~ (Exercise 0.2.8). But such a time is dependent 
on the partide, quite uniike Newtonian time. By ruthlessly exploiting the 
Lorentzian structure, we shall gradually deveIop the concepts necessary to 
interpret relativistic models. 

In addition to defining, via g(y.u, y.u) < 0, what is meant by a speed less 
than the speed of light, g can also replace the Newtonian gravitational 
potential. Roughly, the idea is the following. Consider a small body isolated 
from all external influences exeept gravity. Galileo was surprised to find that 
all such bodies aecelerate at the sam e rate in a given gravitational field 
(ef. Section 0.1.7). Their motion thus depends only on their initial position 
and veIoeity, not on their composition or other properties. But the inextend
ible geodesics of a Lorentzian manifold have a similar property. They are 
uniquely determined by an initial point and an initial tangent vector. Noticing 
this similarity, Einstein suggested modeIIing such bodies as appropriate 
geodesics. Then the Lorentzian metrie replaces the Newtonian gravitational 
potential. Proposition 0.2.1 aetually shows the key idea, albeit in the trivial 
case of no gravitational field: a wholly isolated small body hilS no Newtonian 
aeeeleration, so d 2x/dt 2 = 0, and the reader may eheck that the latter eo n
dition is both necessary and sufficient for the y of Proposition 0.2.1 to be a 
geodesie. 

EXERCISE 0.2.4 

This exercise shows how ".u in Proposition 0.2.1 unifies Newtonian kinetic 
energy and Newtonian momentumo To this end, suppose 1 v(t)1 « 1. Show thatthen: 

(a) du1(".s(t)) = mv(t) + O(v3 ); 

(b) du2(".s(t)) = mc2 + tmv(t)2 + O(v4.). 

For the interpretations of the Newtonian quantities on the right, compare 
Section 0.1.6. 
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o Preliminaries 

EXERCISE 0.2.5 

In Newtonian physics, partides traveHing at the speed of light are hard to diseuss. 
In relativity, one simply uses g. To see roughly how, suppose in Proposition 0.2.1 
that Iv(t)1 = 1 instead of Iv(t)1 < 1 VtE IR; let aE(O, oo) be given. Show that 
Proposition 0.2.1 remains valid if 0.2.1 e is replaeed by g(y.u, y.u) = 0 and 0.2.1 a 
is replaeed by du2(y.u) = a. Thus g(y.u, y.u) = 0 becomes the key eondition. 
(Here a eorresponds to energy; see Seetion 3.1). 

EXERCISE 0.2.6 

(a) In 2-dimensional Minkowski space, let .r = {(q, W) E TIR2 1 g(W, W) < O}. 
Show.r has two eonneeted components. (b) Show that g(y.u, y.u) ~ 0 has the 
geometric interpretation: y.u makes an angle 2: 45° with the ul axis. 

EXERCISE 0.2.7 

Let (1R2, g) be 2-dimensional Minkowski spaee. For (} E IR, define zil: 1R2 ~ IR and 
ii2 : 1R2 ~ IR by ZI' = (eosh (J)u' + (sinh (J)u2 , ii2 = (sinh (J)u l + (eosh (J)u2 • (a) 
Show that g = dii' 0 dü' - dü2 0 dü2 and that WÜ2 > 0 for all future-pointing 
veetors W. (b) In Proposition 0.2.1 show v(t) = du'(y.s(t»/du2(y.s(t». (e) Define 
6(t) = dii'(y.s(t))/du2(y.s(t)). Show that for each t E IR, there is exaetly one (} 
sueh that 6(t) = O. (d) Show that in (e) the same (J will work for all t iff y is a 
geodesie. (e) In Exereise 0.2.5 show that lu(t)1 = 1 Vt, (J E IR. 

In popularizations, the above results are sometimes referred to as 
follows: (a) "Space and time are relative." (e) "(Newtonian) velocity is 
relative." (d) "(Nongravitational) aecelerations are absolute." (e) "The 
speed of light is absolute." 

EXERCISE 0.2.8 

In Proposition 0.2.1, let u = ms. (a) Show that if y is reparametrized by u then 
its tangent beeomes a unit veetor so that u is a kind of are-Iength. (b) Show 
lu(t)1 ~ Itl VtE IR, where equality holds "IlE IR iff v(t) = OVtE IR. (e) Give an 
example of an x sueh that tff #; IR. 
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u models time measured on a doek moving with the partide. (h) is 
sometimes ealled the time dilation effeet-"if the partide is moving, it 
ages less rapidly." 

Forgetting extraneous strueture is genuinely painful. Phrases such 
as those below Exereises 0.2.7 and 0.2.8, or sueh as "twin-paradox," 
.. Lorentz contraction," and so on, have essentially the same meaning 
as "oueh!" 



Spacetimes 1 

We focus attention on Lorentzian manifolds in this chapter. After a brief 
mathematical review, the fundamental notions of causality and time orient
ability are introduced. Spacetimes are then defined and several examples of 
spacetimes important in physics are discussed. These examples will be every
where dense in this book and we urge the reader to master them before 
proceeding further. 

1.0 Review and notation 

Let (M, g) denote an N-dimensional Riemannian or semi-Riemannian mani
fold; as usual, Mx denotes the tangent space of M at x E M. 

1.0.1 Physical equivalence 

We will analyze an equivalenee relation for tensor fields; various physical 
quantities will later be represented by corresponding equivalenee dasses. 
First recall from Exereise 0.0.15a that Vx E M the inner product gx on Mx 
induees the metrie isomorphism <Px: Mx ~ M: determined by (<Pxv)w = 

g(v, w) Vv, W E Mx. By Exercise 0.0.14, the metric isomorphism <Px gives rise 
to an equivalenee relation '" among tensors in {T;(MJlr + s = a fixed 
integer} as follows. Suppose r + s = P + q, A E T/(Mx), and B E Ts'(Mx). 
Then A '" B iff <Px/(A) = <Px;(B), where tPxl and rPx; are, respectively, the 
isomorphisms induced by rPx of Tl(Mx) and T:(Mx) onto Tro+.(MJ. 

Now let A and B be two tensor fields defined in UII e M. By definition, 
A is physically equiz:alent to B iffAx '" Bx Vx E UII. As an example, a vector 
field X and al-form c1) are physieally equivalent iff c1) = g(X, .) (Exercise 
0.0.15f). For two veetor fields X and Y, the tensor fields physically equivalent 
to X (9 Yare precisely: g(X, .) (9 Y, X (9 g(Y, .), and g(X, .) (9 g(Y, .). In 
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I Spacetimes 

relativity, all tensor fields in a physieal equivalence dass have the same 
physieal interpretation. 

The generie symboI of a tensor field physieally equivalent to a given tensor 
field A will be Ä or J, but there will be oecasional deviations. 

In dassical terminology, two tensor fields are physically equivalent 
iff one is obtained from the other by "raising and/or lowering indices." 
Compare Section 3.6 following. The term "physically equivalent" is 
fully appropriate only when (M, g) is a spacetime (Section 1.3 following). 
However, weshall use the mathematical concept in other situations as weil. 

1.0.2 Curvature (Bishop-Goldberg 5.1 1) 
Let D be the Levi-Civita eonneetion of (M, g). The eurvature operator of 
(M, g) assigns to eaeh ordered pair of vector fields (X, Y) on M an operator 
Rn on veetor fields as follows: RnZ = DxDyZ - DyDxZ - Du:.y,Z. The 
eurvature tensor R of (M, g) is the (I, 3) tensor field R sueh that R(ro, Z, X, Y) 
= ro(RnZ), VI-form ro and for all veetor fields X, Y, Z. The Rieci tensor of 
(M, g) is a contraction of R: suppose X E Mx, Y E Mx, {XA} is any basis of 
Mx and {w A} is the dual basis, then Rie (X, Y) = L~ = 1 R(wA, X, XA, Y). 
Rie is a symmetrie (0, 2) tensor field on M. The sea/ar eurvature (" Rieci 
sealar") S: M -+ IR of (M,g) is the contraction of the (I, I) tensor field 
physically equivalent to Rie. The Einstein tensor G of(M,g) is G = Rie - -tSg. 
G is a symmetrie (0, 2) tensor field sinee Rie and g are. (M, g) is flat iff R = 0, 
Rieei flat iff Rie = 0. 

Let il be the (0, 4) tensor field physieally equivalent to R on (M, g). Then 
R(W, Z, X, Y) = g(RnZ, W). R obeys: Ca) R(X, Y, Z, W) = - R(X, Y, W, Z) 
=R(Y, X, W, Z); (b) R(X, Y, z, W) + R(X, z, W, Y) + R(X, W, Y, Z) = 0; 
(e) R(X, Y, z, W) = R(Z, W, X, Y) (Bishop-Goldberg 5.11). 

We have followed the conventions of Bishop-Goldberg, 5.10, but have 
altered certain signs for agreement with the physics Iiterature as weil as 
common usage in geometry. These signs have the following consequence: 
positive scalar curvature will later correspond to a "pulling together" 
of the interesting geodesics-namely, the timelike and lightlike ones
and to a positive mass density. 

In case (M, g) is a spacetime (Section 1.3), both R and il are inter
preted as "gravitational field gradients" (ef. Chapter 4). A Newtonian 
analogue of R and il is {- ö2</>/öx"ÖXV I /-" v = 1,2, 3}, where </> is the 
Newtonian gravitational potential (Section 0.1.8). A Newtonian ana
logue of G (the Einstein tensor) is then 2L:~=1 ö2</>/(ÖX")2 (ef. Section 
9.3). 

1.0.3 Computations 
The following computational formulae will suffice for Chapters 1 and 2. Let 
(M, g) be a 4-dimensional Lorentzian manifold, {roj} be aloeal basis of 1-forms 
on M, {Xi} the dual basis, and D the Levi-Civita connection. The connectian 
forms {roJ'} for {roi} are charaeterized by 

4 

Dx,X, = L ro/(Xj)Xk , 
k=1 

18 



1.0 Review and notation 

Vi,j = 1, ... ,4 (Bishop-Goldberg 5.7). If X and Yare veetor fie1ds on M, 
DKYean be computed as follows: 

(a) 

The curvature forms U/ for (M, g) are defined by 

(b) U/ = 2( dro/ + ~l rokl /\ roi'), 

Vi,j = 1, ... ,4. The curvature tensor R can be computed as follows (Bishop
Goldberg 5.10): 

(e) R = ± XI ® oi 0 U/. 
I,J= 1 

If {rol} is an orthonormal basis, the eonnection forms are uniquely deter
mined by the following two eonditions: 

4 

(d) drol = - 2: ro / /\ roj i=I, ... ,4; 
J=1 

(e) /-L,)I = 1,2,3. 

Equations (d) and (e) are very convenient in computations. 
If relative to a basis of l-forms {rol} R is expressed as 

4 

R = 2: RJklXj ® oi 0 rok 0 rol, 
I,J,k,l= 1 

h h R· . . R' "4 "4 Rt J I W '11 . t en teleel tensor IS: IC = L.J.I=1 L.1=l mro ® ro. e WI WTite 
(Ric)jl for Lt=l R}H' To get a formula for the sealar curvature S, let us write 
the metric tensor g as g = Lt,i = 1 gljro l 0 roi, and the (2, 0) tensor field g 
physically equivalent to g as g = Lt. f = 1 glJXI 181 Xf' From Exercise 0.0.15e, 
we know that 2,1=1 glJgik = Skl (Kronecker delta). Then 

4 

S = 2: gil(Ric)Jl' 
J.I= 1 

EXERCISE 1.0.4 

Suppase: (M, g) is a Lorentzian manifold with sealar eurvature S and Einstein 
tensor G; sirnilarly for (M, gl, S and G; and r/>: M -+ M is an isornetry. Show 
S = So</>, r/>*G = G. 

EXERClSE 1.0.5 

Let (M, g) be a Lorentzian rnanifold, f: M ->- ~ be a funetion, X be the veetor 
field on M physically equivalent to dj Show that if g(X, X) is a eonstant, DKX 
= O. 
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1 Spacetimes 

EXERCISE 1.0.6 

Let Mx be a tangent space to a Lorentzian manifold (M, g), L: Mx ->- Mx be a 
linear transformation. Recall that L is self-adjoint (respeetively, skew-adjoint) 
with respeet to gx iff g(LX, Y) = g(X, L Y) (respeetively, g(LX, Y) = 
- g(X, LY» 'v X, Y E Mx. Show L ean be regarded as LE T1l(Mx) and is then self
adjoint (respeetively, skew-adjoint) iff it is physieally equivalent to a symmetric 
(respeetively, skew-symmetric) tensor S E T2°(Mx ). 

1.1 Causal character 

In this seetion we investigate an N-dimensional Lorentzian veetor space 
(V, g) (Seetion 0.0.3). The strueture is subtler than in the positive definite ease; 
many of the deeper results in relativity hinge on seemingly rather trivia! 
properties of such spaces. 

Definitioo 1.1.1. Let Wc V be asubspace. The causa! character of Wis: 
(a) space/ike iff g is positive definite on W; (b) lightlike iff g is positive semi
definite but not positive definite on W; (e) timelike otherwise. Suppose 
v E V; the causa! character of v is that of span v; v is defined as causa! iff 
v is not spaeelike. 

EXAMPLE 1.1.2. The definition implies: (a) The zero veetor is spacelike; a non
zero veetor v E V is spacelike iff g(v, v) > 0, lightlike iff g(v, v) = 0, and time
!ike iff g(v, v) < O. (b) Asubspace W e V is: spacelike iff all its veetors are 
spaeelike, lightlike iff it eontains a lightlike veetor but no timelike veetor, 
timelike iff it eontains a timelike veetor. (e) None of the above cases are 
empty. 

Causal eharaeter is important for physics: a single relativistic concept 
usually eorresponds to two or more Newtonian coneepts; it is usually 
eausal eharacter which sorts out the various Newtonian analogues. 
For example, regard 2-dimensional Minkowski space as a Lorentzian 
veetor space and let Loo a l-dimensional subspaee: 

Newtonian analogue. If L is spacelike, L is like a straight line in Euclidean 
space. If L is timelike, L is like the complete history of an undisturood 
Newtonian point particle. If L is lightlike, L is like the complete history 
of an undisturood light signal. Our subsequent discussion will similarly 
unify many sets of Newtonian coneepts: (energy, momentum); (electrie 
field, magnetic field); (simultaneity, orthogonality in Euclidean 3-space); 
and so on. Physies students usually find such unifications very satisfying. 

Propositloo 1.1.3. Let Wc V be asubspace. (a) W timelike -= W.L spacelike, 
and W spacelike -= W.L timelike. (b) W light/ike -= W n W.L '" {the zero 
vector} -= W.L Iightlike. 

PROOF. The notation W.L is defined in Exercise 0.0.11, and we will make use 
of this exercise without further eomments in the following. 

Now, W timelike => Weontains a timelike veetor => Weontains a unit 
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1.1 Causal character 

timelike vector w => there exists an orthonormal basis {el> ... , eN -l> w}. Since 
W.L e span {ed i = I, ... , N - I} and g is positive definite on this span, W.L 
is spaeelike. Conversely, suppose W.L is spaeelike. Then V = W EEl W.L. Let 
v E V be timelike; then v = w + w for so me w E W, W E W.L, and g(w, w) = 

g(v, v) - g(w, w) < O. Thus wis timelike and hence Wis timelike. The rest of 
(a) follows from Wl.L = W. 

Next, W lightlike implies W contaius a lightlike veetor wo, but no time
like veetor. Then Va E IR and Vw E W, g(w + awo, w + awo) = g(w, w) + 
2ag(w, wo) ~ O. Sinee a was arbitrary, we have g(w, wo) = 0 Vw E W, => Wo E 

W.L => W n W.L "# {O}. Conversely ifO "# Wo E W n W1, the n Wo is lightlike. 
Sinee W cannot contain a timelike vector by (a), Wis lightlike by Example 
1.1.2b and the fact that Wo E W. The rest of (b) follows from W l.L = W. D 

CoroUary 1.1.4. w E Wis timelike iff w.L e V is spacelike. 

CoroUary 1.1.5. Two lightlike vectors are orthogonal iff they are proportional. 

PROOF. Let v, w E V be lightlike, e E V be timelike, and suppose g(v, w) = O. 
Then g(e, v) "# 0 by Corollary 1.1.4, so that for some a E IR g(e, w + av) = O. 
Then w + av is spacelike, again by Corollary 1.1.4. But g(w + av, w + av) = 
g(w, w) + 2ag(v, w) + g(v, v) = 0, so w + av = 0 and the veetors are pro
portiona!. The converse is trivia!. D 

The physical interpretation of orthogonality is surprisingly subtle. It 
depends on the dimension and causa! character of the subspaces in
volved. We shaIl discuss it systematicalIy when we have available the 
concept of an observer in Chapter 2. We shall use the following special 
case of Proposition 1.1.3 and Corollary 1.1.5 when we discuss waves 
travelling at the speed of light. The special case is quite hard to under
stand intuitively. 

EXAMPLE 1.1.6. Let W e V be an (N - I )-dimensional lightlike subspace. 
Then W.L is lightlike and l-dimensional. Moreover, W.L e W. If w E W 
and w rt W 1, then w is spacelike. 
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Newtonian analogue. Suppose N = 4. Then W is like the eomplete 
history of a Euelidean plane that travels at the speed of light in the 
Euclidean direction perpendieular to itself. W.!. is Iike the complete 
history of a dot painted on the plane. In the preeeding diagrams, we 
take W.!. oriented for vividness. Also we have suppressed one dimension 
in dra wing W. 

Let (M, g) be a Lorentzian manifold and let,p: N --!>- M be an immersion 
of a manifold N. If ,p*Nx e M,px has the same eausal character '<Ix E N, that 
causal character is assigned to the immersion ,p and to its image ,pN. The 
corresponding definitions are used for curves into M, veetor fie1ds on M, 
and so on. In particular, a veetor field X defined on liIJ e M is timelike 
(respeetively, space/ike, lightlike) ilf '<Ix E 1iIJ, Xx is timelike (respectively, 
spaeelike, lightlike). Let (J) be al-form defined on ;/1 e M and X the veetor 
field physieally equivalent to (J). If X possesses a causal eharaeter, this causa I 
character is assigned to (J). For instanee, if X is li. time1ike veetor field, then 
g(X, .) is a timelike I-form. 

One can also define the causal charaeter of al-form direetly by making 
use of the (2, 0) tensor field g physically equivalent to g. See Exercise 
l.Ul. 

The set .po e V of all lightlike veetors in V is ealled the lightcone in V. 
We can regard (V, g) as a Lorentzian manifold (V, g) (see Exercise 0.0.10) 
and investigate whether 2'0 has a causal character. 

Proposition 1.1.7. The Iightcone 2 0 is a Iightlike submanifold. 

By taking V to be a 3-dimensional Lorentzian veetor space and 
drawing a picture of 2'0, one ean easily eonvinee oneself that indeed 
2'0 is Iightlike; for in this case, any tangent plane to 2'0 is a 2-
dimensional veetor subspace containing a generator of the eone 2'0 and 
clearly such asubspace eannot contain any timelike veetors (ef. Example 
1.1.8). 

Proo! Suppose v E 2'0; then g(v, v) = 0 and v 'I- O. Let ~ be a neigh
borhood of v that does not contain the origin and define g: ~ ->- IR by 
gw = g(w, w)'<Iw E~. Then 2a (") ~ is defined by g = O. Moreover, dg 
is nowhere zero on ~ beeause g is nondegenerate (Exereise 0.0.10). 
Thus 2'0 is a submanifold by the implicit function theorem. To show 
2'0 is lightlike, suppose that w E Vv for some v E 20, and let 1>v: Vv ->- V 
be the canonical isomorphism of Exereise 0.0.10. Then w is in the 
tangent space (2'o)v iff wg = 0, iff g(1)vw, v) = 0, and iff g(w, 1>v -lV) = O. 
Thus (2'o)v = (1)v -lV).!. e Vv. But 1>v -lV E Vv is lightlike because 
g(1)v -lV, 1>v -lV) = g(v, v) = 0, hence (2o)v is lightlike by Proposition 
I.I.3b. Since this holds for all v E 2'0, 2'0 is lightlike. 0 

EXAMPLE 1.1.8. Let N = 3 and {el' e2, e3} be an orthonormal basis. Then 
v E.Po ilf its components obey (V3)2 = (V I)2 + (V2)2 > O. Thus 2'0 is actually 
represented by a cone with the apex deleted, as shown. The timelike veetors 
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obey (V3)2 > (V1)2 + (V2)2; they are represented by the points inside .!l'o and 
are shown as yo + and yo -. 

This figure correctly suggests many features of the general case. Indeed 
(see Exercise 1.1.9), for an arbitrary N-dimensional Lorentzian vector space, 
the set yo of timelike vectors is an open submanifold with two connected 
components, yo + and yo -, each diffeomorphic to IRN, and for N ;:: 3 the 
lightcone .Pa also splits into two connected components, .!l'o + and .!l'o -, each 
diffeomorphic to IR x y>N-2. 

Newtonian analogue. Suppose N = 4. Then one eomponent of -2'0 is like 
the eomplete history of an .. information-gathering" sphere in 1R3 whieh 
eontraets with the speed of light. Again, one dimension is suppressed in 
the following diagram of 20 - . 

R3 

v 

A 

EXERCISE 1.1.9 

Let e e V be timelike. Use an orthonormal basis to prove the following results. 
(a) The set of timelike veetors, 9'"0, is an open submanifold with two eonnected 
components 9'"0 + = {v e 9'"olg(e, v) < O} and 9'"0- = { V E Sõlg(e, v) > O}; eaeh 
eomponent is diffeomorphie to IRN. (b) If N ~ 3, the lighteone -2'0 has two con
nected components -2'0 + = {v E -2'olg(e, v) < O} and -2'0 - = {v E -2'olg(e, v) > O}, 
and eaeh eomponent is diffeomorphic to IR x gN-2, where gN-2 is the unit 
(N - 2)-sphere. (e) If N ~ 2, and v e -2'0 + v 9'"0 +, W e 20 + v sõ +, then g(v, w) 
.:5 O. Equality holds iff v e -2'0 + and w is proportional to v. 
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EXERCISE 1.1.1 0 

(a) Let v E V, W E V be causa!. Show that the Schwarz inequality now .. goes the 
wrong way": Ig(v, w)1 ~ Ivllwl, and equality holds iff v and w are proportiona!. 
(b) Let (M, g) be a Lorentzian manifold, X a timelike vector in Mx, and w E M: 
a timelike I-form. Show: IwXI ~ IwIIXI, and equality holds iff w and aX are 
physicalJy equivalent for some a E IR. [The norm Iwl is taken with respeet to the 
Lorentzian inner product gx on Ml (Exercise 0.0.15b).] 

EXERCISE I.l.lI 

Let (M, g) be a Lorentzian manifold and let X E Mx and w E Mt be physically 
equivalent. Show that the causal character assigned to X by gx is the same as the 
causal character assigned to w by gx, where gx is the Lorentzian inner product 
on Mt given in Exercise 0.0.15. 

EXERCISE 1.l.l2 

Let (M, g) be a Lorentzian manifold, N a manifold, and rp: N ->- Man immersion . 
.p*g is called the metric induced on N by .p iff .p*g is a metrie on N. Show rp*g is 
a metrie on N iff .pN is timelike or spacelike. 

EXERCISE 1.1.13 

Suppose mE(O, co). Define 9'"om e V by :Tom = {VE Vlg(v,v) = _m2}. 

Assuming V is 4-dimensional and regarding (V, g) as a Lorentzian manifold, 
show :Tom is a spaeelike 3-submanifold. 

EXERCISE 1.1.14 

Show: the elosure of 9'"0 + is the disjoint union of 9'"0 + , ~ ... , and the zero veetor; 
the boundary of :To'" is 2 0 + u {Q}. 

Some other algebraie properties of (V, g) are given in Optional exereises 
8.1. 

1.2 Time orientability 

We now consider the concepts of "past" and "future." Let (M, g) be a 
connected Lorentzian manifold, TM be its tangent bundIe and il: TM --+ M 
be the projeetion. The causa/ character of (x, X) E TM is the causal character 
of XEMx • 

PropositioD 1.2.1. The set ff e TM of time/ike points is an open submanifold. 
ff has either one (connected) component or two. 

PROOF. Define K: TM --+ ~ by K(x, X) = g(X, X). Then K is e"". As the 
complete inverse image of( -00,0) under K, ff is open. Letd be a component 
of ff. If .jJ: ff --+ ff denotes the homeomorphism defined by .jJ(x, X) = 
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(x, - X), then ~.SI is also a component of .r. We will show .r = .sl u ~.sI. 
Let f!4 = .sl u ~.SI, ~ = .r - f!4. f!4 is open and cIosed in .r, and hence both 
f!4 and ~ are open and closed in .r. It folIows that f!l and ~ are open in TM. 

We cIaim TIf!4 () TI~ = 0. If not, then there exist (x, Z) E f!l and (x, Y) E ~ 

for some x E M. Let qy e Mx be that one of the two components of Mx () .r 
in which (x, y) lies (Exercise 1.1.9a); the n ~ () qy #: 0. Since ~ is a union of 
components of.r, this implies qy e ~. Now either (x, Z) or (x, -Z) is in qy, 
while both are in f!4 by definition of f!4. Thus f!l () qy #: 0, and hence also 
qy e f!4 because f!4 is a union of components. It folIows that f!4 () ~ #: 0, a 
contradiction. 

We therefore have TIf!4 () TI~ = 0 and TIf!4 u TI~ = M. Since M is 
connected, TI~ = 0, => ~ = 0, =>.r = .sl u ~.SI. If .sl () ~.SI = 0, .r has 
two components. Otherwise, .sl = ~.SI. 0 

üne can also give a proof of this proposition using the notion of 
parallei translation induced by the Levi-Civita connection of g. Indeed, 
the timelike vectors of each My split into two components f/y + and f/y -

(Exercise 1.1.9b). Now fix an x E M, and let.9/+ be the union of all 
the components of f/., '<ly E M, which are the images of :Y'x + under 
parallei translation along some curve from x to y. Similarly, define.9/-. 
Identifying .9/ + and .9/- with subsets of :Y' e TM in the obvious 
manner, we see that both.9/+ and.9/- are connected and f/ = .9/+ v.9/- . 
The details are left as an exercise (üptional exercise 8.2.3). 

Definition 1.2.2. The connected Lorentzian manifold (M, g) is calIed time 
orientable iff .r has two components. 

EXAMPLE 1.2.3. Let M = ,<71 X IR, the cylinder; we regard M as being 
obtained from 1R2 by identifying (ul, u2) with (ul, u2 + 1T). We will consider 
two different Lorentzian metrics on M. First, define on 1R2 I-forms (J) = 
eos (u 2)du l + sin (u 2)du2 and 1= -sin (u2)du1 + eos (u 2)du2 • Then i = 
(J) @ (J) - I @ I is a Lorentzian metric on 1R2 and the mapping 1R2 -+ 1R2 

defined by (ut, u2) -+ (ut, u2 + 1T) leayes g unchanged. Thus i determines a 
Lorentzian metric g on M. Then (M, g) is Lorentzian and orientable, but not 
time orientable, as the following figure indicates. 

~ 
y= ll' 

+ 
~ ligh lcone, 

4 
1 y- o 
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On the other hand, the Lorentzian metricCl = dul 0 dul - du2 0 du2 on 
1R 2 is also invariant under the mapping (ul, u2) ~ (ul, u2 + 1T), so it too defines 
a Lorentzian metric, say gl' on M. (M, gl) is visibly time orientable. 

Thus time orientability involves the Lorentzian metrie and not just the 
underlying C'" steueture. However, if M is simply eonneeted, then 
(M, g) is time orientable for all Lorentzian metrics g on M (ef. Seetion 
8.2.3). 

Suppase (M, g) is time orientable. (M, g) is time ariented iff one component 
of .r is labelled .r + and caIJed the future. The complement of .r + in .'T, to 
be denoted by .r-, is then caIJed the past. Suppose there is a causal vector 
field X on (M, g). Then (x, W) ~ g(W, X) defines a Ca:> onto function 
!fo:.r ~ (-00,0) u (0, oo) (Exercise 1.1.9c). Thus .r is not connected and 
(M, g) is time orientable. If we designate !fo -l( -oo, 0) as .r + , we say (M, g) 
is time ariented by X. In this case, the future is the component of .r whose 
elosure contains Xx Vx E M. 

Let (M, g) be a time-oriented Lorentzian manifold with dimension 
M:?: 3. For each x E M, define.r" + = .r+ n 1T- 1X e Mx. The correspond
ing component (Exercise 1.1.9) .fi' x + of the lightcone in Mx is eaIJed the 
future lightcane ~ + in Mx. X E Mx is called future painting iff X E .r" + u ~ + . 
A vector field X defined on CW e Mis calledfuture painting iff each Xx E Mx 
is future pointing, x E CW. A I-form (JJ defined on CW eMisfuture painting iff 
the vector field physically equivalent to (JJ is future pointingo Past lightcane and 
past painting are defined dually. 

EXERCISE 1.2.4 

Let (M, g) be a time-oriented Lorentzian manifold and suppose W, V E ff" + • 

Show: (a) canvexity, i.e., if a E [0, oo) and b E (0, oo), then aV + b W E ff" + ; 

(b) wrang-way triangle inequality-that is, I V + WI ~ I VI + I WI; (e) the in
equality in (b) is equality iff span V = span W; (d) that (a) remains valid for V E 

elosure of Y" + and that (b) remains valid if V, W E elosure of Y" + (ef. Exereise 
I.I.I4). 

EXERCISE 1.2.5 

Suppose (M, g) is a Lorentzian manifold. Show: (a) If x E M, there is an open 
neighborhood till of x such that (till, g 1<11) is time orientable. (b) If (M, g) is not time 
orientable, there is a double eovering rp: M -+ M (Bishop-Goldberg 3.C.3) such 
that (M, rp*g) is time orientable. 

EXERCISE 1.2.6 

Show that .. isometrie by an orientation and time-orientation-preserving iso
metry" is an equivalenee relation for oriented and time-oriented Lorentzian 
manifolds. 
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EXERCISE 1.2.7 

Let (M, g) be a time-oriented Lorentzian manifold. (a) Show that a causal vector 
field on M must be either past pointing or future pointingo (b) Show that if y: tf->

Mis a causa I curve then either y.u is future pointing Vu E tf or y.u is past pointing 
Vu E tf. Then y and y8 are said to be future pointing or past pointing, as the case 
may be. 

1.3 Spacetimes 

DefinitioD 1.3.1. A spacetime (M, g, D) is a eonnected 4-dimensional, 
oriented, and time-oriented Lorentzian manifold (M, g) together with the 
Levi-Civita eonneetion D of g on M. 

In context, we shall sometimes write (M, g) or just M for (M, g, D). A 
general relativistic gravitational jield [(M, g)] is an equivalence dass of 
spacetimes where the equivalenee is defined by orientation and time-orienta
tion-preserving isometries (Exercise 1.2.6). Each (M, g, D) E [(M, g)] is a 
represelltative of [(M, g)]. Physically, all representatives of [(M, g)] model 
the same situation. We shall normally work with one representative, but focus 
attention on properties shared by all representatives in the same gravitational 
field. 

We diseuss some motivations. 
The spacetimes of significance in physics are all models of (a part of) the 

history of (some portion of) the universeo The dimension of a spacetime is 
intuitively aceounted for by the three spatial dimensions of the known 
universe and an extra dimension of time. Since spacetimes model histories, 
.. disconnected" would connote .. always was, is, and always will be dis
connected." Thus one assumes M connected. The requirement of time orient
ability is suggested by our knowledge of thermodynamical processes on the 
earth, now. The second law of thermodynamics implies that one can dis
tinguish past direetions from future direetions on earth by measuring the 
increase in entropy. It seems somewhat reasonable to assume that thermo
dynamics will smoothly determine future direetions in the whole universeo 
N 0 one knows if this is true, but if we ever really met beings going the wrong 
way in time, trying to communicate with them would presumably be as 
confusing as trying to talk to some of the regents of the University of Cali
fornia. Orientability of M is also a plausible condition to impose because the 
noneonservation of parity is now established for a whole dass of experi
ments (the so-called .. weak interactions "). On earth, we can thus intrinsically 
distinguish between right-handed and left-handed coordinate systems in 
ordinary 3-space. Thus (M, g, D) can at least be oriented in the region 
surrounding the earth, now, in the following way: in each coordinate 
neighborhood, the 4-form dx1 1\ dx2 1\ dx2 1\ dx4 is consistent with the 
orientation iff (a) each dxl, dx2 , dx3 is spacelike and {dxl, dx2 , dx3} is dual to 
a right-handed spatial coordinate system of the tangent space at each point, 
and (b) dx4 is future pointing and timelike. Again, the extrapolation of this 
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property to other part s of the universe for all time involves some guesswork 
but is standard practice. 

To a geometer, that M should be a C'" manifold is perhaps the most 
acceptable and the most obvious requirement. However, this is probably the 
most mystifying requirement on a deeper level. Why should all macroscopic 
physical phenomena-past, present and future-be regarded as occurring 
on a smooth structure? Offhand, one would think that nature might use 
something 10gicaIIy simpler-say, piecewise linear manifolds or more general 
topological spaces. Perhaps she does. The internaI contradictions of present 
special relativistic quantum theory are severe. These contradictions may stern 
from trying to force a "jumpy" quantum world into a C'" manifold. 

Many modifications of Definition 1.3.1 have been suggested. For ex
ample, one might use a metric connection with torsion in place of the 
Levi-Civita connection. There are perhaps a thousand such modifi
cations of variaus kinds which have appeared in print. We shall not 
consider them here. 

Although we have not done so, many physicists would include stable 
causality (Hawking-Ellis [1]) in the definition of a spacetime. On the 
at her hand, a geometer approaching the same subject would most likely 
require M to be complete. This we have not done for the simple reasan 
that even the weaker requirement of infinite extendibility of all non
spacelike geodesics would exclude most of the spacetimes of current 
interest (Section 1.4 and Chapters 6 and 7). For example, in the standard 
cosmological models particles enter the universe with a big bang 
(Chapter 7) and the history of such a particle is represented by an 
inextendible timelike geodesic whose parameter is bounded from below 
(compare Corollary 1.4.6 following). Whether incompleteness is a 
property of nature or a misleading feature of current models is a highly 
controversial question. We rema rk that infinite extendibility of spacelike 
geodesics has no direct physical interpretation. 

Newtonian analogue. Let "'(1) be a time-independent Newtonian 
gravitational potential (Section 0.1.8). In our units (Section 0.1.4), 
max le/>I ~ to- 6 within the solar system. Whenever max le/>I « 1, 
Newtonian space, time, and gravitational potential can be replaced by a 
crude spacetime model as follows. Let M = IR'. Define ~: M -->- IR by 
~x = ",(u1x, u2x, u3x)Vx E M. Let g = (I - 2~) L~=l du" @ du" -
(I + 2~)du· @ du'. Take 04 as future pointing and orient M by 
du1 1\ ••• 1\ du4• Then (M, g, D) is a spacetime. Using it for a general 
relativistic model, and following the rules of Chapters 2 and 3, gives re
suits at worst as inaccurate as the corresponding Newtonian model (cf. 
Seetion 9.3). Roughly, g replaces e/> and D replaces the Newtonian 
gravitational field - Ve/>. However, even when 1"'1 « 1 in Newtonian 
theory, more accurate general relativistic models are sometimes needed. 
Moreover, some spacetimes model situations altogether beyond the 
scope of Newtonian physics, such as black holes (Example 1.4.2 and 
Section 7.5) and gravitational waves (Section 7.6). 

Let (M, g) and (N, h) be spacetimes. Define (N, h) to contain (M, g) iff M 
is an open submanifold of N, hl M = g, and (M, g) has the induced orientation 
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and time orientation. Define (M, g) as maximal iff each spacetime that con
tains (M, g) is (M, g). In physics, one prefers in principle to work with 
maximal spacetimes. However, one is sometimes too lazy to work out the 
properties ofspacetime in regions where "matter" is present; moreover, one 
sometimes suspeets that in some regions conditions may be so extreme that 
current physics cannot adequately describe them. Then one works with a 
spacetime that is not maximal. Compare Sections 7.3 to 7.5. 

Proposition 1.3.2. Suppose (N, h) contains (M, g) but, V lightlike geodesic 
A: tff ~ N such that (Atff) n M ~ rp, AC e M. Then M = N. 

Roughly, the proposition says that a spacetime is maximal iff one 
cannot see into it or out of it. Like many other results, it indicates the 
key role played by lightlike geodesics. The proof uses techniques more 
advanced than have been discussed here. The idea is to assume a point 
p on the boundary of M and show that to each point in a sufficiently 
small neighborhood of p there is a once-broken Iightlike geodesic 
from p. We omit the details (but see Exercise 5.2.7). 

EXERCISE 1.3.3 

Show that a complete spacetime is maximaI. 

EXERCISE 1.3.4 

Suppose M = ~2, g = dul 0 dul - du2 0 du2 , h = dul 0 dul - (exp u2)du2 0 
du2 • Show (M, g) is maximal and (M, h) is not. 

Sections 8.2 to 8.4 outline some global properties of spacetimes. 

1.4 Examples of spacetimes 

The spacetimes most important in current physics are given in the next three 
examples. We define them mathematicaIly now. They will be used to illustrate 
various mathematical and physical concepts as they arise. We wiIl discuss in 
detail the physicaI applications of Schwarzschild spacetimes (Example 1.4.2) 
in Chapter 7, and of Einstein-de Sitter spacetime (Example 1.4.3) in Chapter 6. 

EXAMPLE 1.4.1. MINKOWSKI SPACE. On ~4 define g = L~=l du" @ du" -
du4 @ du4 ; time orient (~4, g) by i\ and orient ~4 by dul " du2 " du3 " du4• 

The Levi-Civita eonneetion of g is then uniquely determined by Dö/jJ = 0 
Vi,j = I, ... ,4 (Bishop-Goldberg 5.6). (~\ g, D) is a spacetime; it is caIled 
Minkowski space. The gravitational field [(M, g )], which contaios Minkowski 
space, is the trivial gravitational jie/d; (nonquantum) speciaI relativity and 
(special relativistic) quantum theory use the triviaI gravitational field. The 
triviaI gravitational field [(M, g)] is used iII gravity is negligible. 
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Special relativistic concept s are important eve n in analyzing nontrivial 
gravitational fields because any tangent space to any point in a space
time has a structure isomorphic to that of Minkowski space. Many 
measuring devices are very small compared to the size of regions on 
which curvature becomes important. Such measuring devices are 
normally modelled as objects on a tangent space rather than objects on 
a manifold; special relativity is then used to analyze them. For example, 
a protractor is regarded as an object on a langent space, not in a space
time, when one is discussing nontrivial gravitational fields (ef. Section 
2.1). 

EXAMPLE 1.4.2. SCHWARZSCHILD SPACETIMES. The spacetimes most important 
in current physics, apart from Minkowski space, were found by Schwarzs
child in 1916 when he was studying the gravitional field outside a spherically 
symmetric body. 

Let (9'2, h, ,) be the unit 2-sphere (Section 0.0.9). Let p. E (0, oo) be given. 
Define.sl e 1R2 by.sl = (Ul)-l[(O, 2p.) U (2p., oo)]; here (Ul)-l denotes the 
complete inverse image. Then.s1 is open and has two connected components. 
Define M = 9'2 X .sl, with P: M ~ 9'2 and Q: M~.sI as the natural 
projections. Define r = u l 0 Q: M ~ (0, 2p.) U (2p., oo) and t = u20 Q: M 
~ IR. Thus (I - (2p./r» is a Cal function from M onto (-00,0) U (0, 1). 
We define a Lorentzian metric g on M by g = (I - (2p./r» -Idr ~ dr + 
r 2P*h - (I - (2p./r »dt ~ dt. Also define veetor fields %t and %r on M by: 

P*(%t) = ° = P*(%r) and Q*(%t) = 0I, Q*(%r) = 02. 
Now define N e M by N = r- I(2p., oo). N is connected, and glN is a 

Lorentzian metric. Relative to g IN, (%t)IN is timelike. When (N, g IN) is time 
oriented by (Ojot)IN and oriented by (dr 1\ p*, 1\ dt)IN, it is caIled the 
normal Schwarzschild spacetime of active mass m = 81TP.. We shall often omit 
the subscript N and write (N, g) for (N, g IN), and so on. As usual, the Levi
Civita connection is implied and the gravitational field that contains (N, g), 
rather than merely (N, g) itself, is the structure of interest. 

A rough physical interpretation of N is the following. Consider a spheric
ally symmetric stable star of radius ro, with active mass m, where ro » m. 
Then the open submanifold 0/1 of N defined by r > ro is an excellent model 
for the complete history of the exterior of the star. However, the interior of the 
star is not modelled by any submanifold of (M, g). 

9'2 parametrizes angles; on 0/1, r is a kind of radius and t is a kind of 
time (Chapter 7). However, one must be very careful to interpret via intrinsic 
geometric properties and appropriate physical measurements; for example, 
on part of M, t is not in any sense whatsoever a time (ef. Exercise 1.4.8 and 
Chapter 7). 

We next define D e M by D = r-l(O, 2p.). Then D is connected and 
(%,)IB is timelike relative to the Lorentzian metricglB onD.(D,gIB), time 
oriented by (%r)IB and oriented by (dr 1\ p*, 1\ dt)IB' is a spacetime called 
the Schwarzschild black hole of active mass m = 81TP.. To get a rough in
tuitive picture of (D, g IB), imagine that you notice gravity getting stronger 
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and stronger; imagine that there is no escape; that no matter what you do 
you are forced to head for the future, where infinite curvature is Iying in 
wait. 

Roughly, r IB is a kind of radius, and - r IB is a kind of time, while t IB 
is neither. These for the moment rather confusing interpretations, 
models in which a black hole is .. glued to" a normal Schwarzschild 
spacetime, and the collapsed stars whose exteriors are modelled by such 
spacetimes, will all be discussed in Chapter 7. 

We sketch PM x rM below. Three points should be noted. First, 
we do not sketch M, merely a 3-dimensional sl ice. Second, M contains 
no point x such that rx = 2p. and nothing we have said so far justifies 
our putting PN x rN right next to PB x rB, but we anticipate the re
suits of Chapter 7 by so doing. Third, M contains no point x for which 
rx = 0; there is no valid reason to regard r = 0 as a point, and we 
sketch r = 0 as a sphere. 

This exterior is PN X rN, 
nonnal Schwarzschild. 

not in PM X rM 

PB X rB black holc 

~p~~';;,:T-r = 0 not in PM X rM 

not in PM X rM 

Schwarzschild spacetimes are geodesically incomplete, Ricci flat, 
but not fiat (Chapter 7). A group theoretic characterization of Schwarz
schild spacetimes is outlined in Optional exercises 8.4. 

EXAMPLE 1.4.3. EINSTEIN-DE SITTER SPACETIME. Our final example is used 
more often in physics than any spacetime except those al ready discussed, is 
mathematically simple, and is just complicated enough to iIIustrate many 
of the concepts that will be introduced in Chapters 2 to 4. 

Define M to be M = 1R3 X .fF, where :!F is an open interval in IR. Let 
R: :!F -')0 (0, oo) be a function and define g on M by considering M as a subset 
of 1R4 and letting 

g = {(R 0 U4)2 .i duu ® dUu} - du4 ® du4• 
usl 

Then g is a Lorentzian metric on M and 04 is a timelike vector field on 
(M, g). (M, g, D) time oriented by 04 and oriented by du1 " ••• " du4 is a 
spacetime, called a simple cosmological spacetime. Such a spacetime is called 
Einstein-de Sitler spacetime iff :!F = (0, oo) and R is given by R(u) = U2/3 , 

and this will be the case of main interest to us in our later discussion of 
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cosmology. The gravitational field containing the Einstein~e Sitter space
time is called the Einstein-de Sitter gravitationaI field. We shall now compute 
the curvature tensor of Einstein~e Sitter spacetime to show Einstein~e 
Sitter spacetime is not Ricci fiat and is irremediably incomplete. Indeed, 
whenever someone simply hands you a spacetime, you should first compute 
the curvature tensor and some of the geodesics. 

Actually you should first find out whether you are dealing with some 
kind of a nut, as can happen in cosmology. On the contrary, the 
Einstein-de Sitter gravitational field was first found by Friedman and 
later singled out and rediscovered by Einstein and de Sitter. They used 
symmetry arguments and the Einstein field equation (Chapter 4). 
Roughly, if we assume a spacetime has the same symmetries as 
EucIidean space (Optional Exercises 8.4.4 and 8.4.5) and that the 
matter of the universe has a particular form, then the Einstein field 
equation leads to the Einstein-de Sitter gravitational field. In Chapter 
6, we will see that current cosmological observations can be fitted by a 
model using the Einstein-de Sitter gravitational field, although the 
observations are not sufficiently preeise to excIude other modeIs. In the 
physics Iiterature, the metric g above with an arbitrary R is called the 
k = 0 Robertson-Walker metric (ef. Exercise 6.2.14). 

Newtonian analogue. Imagine 1R3 filled uniformly with a gas. Suppose the 
gas is expanding in the sense that any two gas particIes are running 
apart along the line joining them. Suppose this expansion rate is decreas
ing due to the gravity ep of the gas. Then (M, g) is Iike the complete 
history of (1R3, dx·d~, ep). 

The following proposition gives an explicit formula for the Einstein tensor 
G of Einstein~e Sitter spacetime (compare Section 1.0.2). In case the 
reader has never computed a curvature tensor, we give some gory details. 
Hereafter, curvature computations will be left to the exercises. In the follow
ing, (U4)-1 means the real-valued function defined by (U4)-IX = l/u4x, and 
not the complete inverse image. 

Propositioo 1.4.4. The Einstein tensor G of Einstein-de Sitter spacetime is 
G = (4/3)(U4)-2du4 ® du4• 

PROOF. Let (M, g) be Einstein~e Sitter spacetime. The following are 
asserted or demanded Vi,j = 1, ... ,4, and Vp" v = 1,2,3. Define w4 = du\ 
w" = (U4)213du". Then {Wl} is an orthonormal basis of I-forms on M. dw4 = 0 
and dw" = (2/3)(u4) - 113du4 /\ du" = (2/3)(u4) -1W4 /\ w". Now define {w/} by 
W44 = 0 = w/, w/ = (2/3)(U4)-1W" = W4". Then {w/} is the set ofconnec
tion forms for {Wl} since {w/} obey Equations 1.0.3d and e. We have dW44 = 

o = dw/, and 
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Algebra now gives for the eurvature forms (Equation l.0.3b) D44 = 0, 
D,/ = -(4/9)(U4)-2W 4 A W U = Dl,andD/ = (8/9)wU A wY = -D,:. Thus 
the eurvature tensor 1.0.3e is 

R = (4/9)(U4)-2{ i 2Xp 0 wa 0 (wQ A wa) 
p,(J~l 

- i (Xp 0 w4 + X4 0 wP) 0 (w4 A W P)} , 

p=l 

where {XI} is the basis of veetor fields dual to {Wl}. Ric ean be obtained by 
contraetion. For example, the relevant eontraetion of X4 0 W U 0 (w4 AW") 
= (l/2)X4 0 W U 0 (w4 ® w" - W U ® ( 4 ) is 

(I/2){W4(X4 )WU ® WU - wU(X4 )WU 0 w4 } = 0/2)wU ® WU• 

Algebra gives Ric = (2/3)(u4) - 2 L~ = 1 wk ® wk • The (1, 1) tensor field physie
a1ly equivalent to Ric is thus 

Contraeting gives for the sealar eurvature S = (4/3)(u4)-2. Algebra now gives 
G = (4/3)(U4)-2du4 ® du4• D 

CoroUary 1.4.5. Let Z be afuture-pointing unit timelike vector field on Einstein
de Sitter spacetime which is an eigenvector of G in the following sense: 
G(Z,.) =fg(Z, ·)forsomefunctionf ThenZ= 04' 

PROOF. Suppose G(Z, .) = fg(Z, .). At eaeh point, du4(Z)du4 = ag(Z, .) for 
some a E IR. du4(Z) "# 0 sinee both du4 and Z are timelike (Exereise 1.1.l0b). 
Thus du4 = bg(Z, .) for some b E IR, b #- O. This implies Z = eo. for some 
e E IR. Since Z is unit and future pointing, Z = 04' D 

Thus Z = 04 is eanonically distinguished in the sense that it ean be de
fined solely in terms of g and the time orientation without referring to 
struetures that 1R4 has but M does not; we shall eall it the comoving referenee 
frame. 

The concept s of "referenee frarne" and "eomoving reference frarne" 
are meaningful in a wider context. They will be defined in full generality, 
respeetively, in Sections 2.3 and 3.13. 

In the following eorollary, we use the notation of Proposition 1.4.4 and 
Corollary 1.4.5; (M, g) is Einstein--<le Sitter spacetime. 

CoroUary 1.4.6. Let (M, g) be a spacetime and 4>: M ~ M an isometry of 
(M, g) onto (4)M, i Id>M)' Then (M, i) is ineomplete. In partieular, Einstein
de Sitter spacetime is ineomplete. 
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PROOF. By Section 1.0.3 and the proof of Proposition 1.4.4, 

4 4 

DzZ = L Z(WIZ)X1 + L w/(Z)wf(Z)X1 = (ZI)X~ + ° = 0. 
1=1 1,1=1 

Thus each integral curve of Z is a geodesic. Now y: (0, oo) -+ M defined by 
yu = (0,0,0, U) E M is an integral curve of Z; moreover, the scalar curvature 
obeys limu~o S(yu) = oo. If (M, i) were complete, then (Section 0.0.13) 
tP 0 y: (0, oo) -+ M could be extended to a geodesic ,p: (-oo, oo) -+ M. Then 
(Exercise 1.0.4) for S the scalar curvature of (M, i), 

lim S(,pu) = lim (S 0 tP -1),pU = lim S(yu) = oo. 
u-o+ u-o+ u-o 

This is a contradiction and establishes the corollary. 

Actually a stronger result holds: Einstein-de Sitter spacetime is maxi
maI. The proofis a straightforward application ofProposition 1.3.2 once 
the lightlike geodesics 5.2.2 have been computed. Both Proposition 
1.4.4 and Corollary 1.4.6 show that the Einstein-de Sitter gravitational 
field is not the trivial one. According to the comments below Definition 
1.3.1, Corollary 1.4.6 and its proof shows that undisturbed partic1es 
can enter Einstein-de Sitter spacetime. 

o 

Results Iike the proof of Corollary 1.4.6 can often be made more vivid by 
using spacetime diagrams. In a spacetime diagram, the Iightcone in at least 
one tangent space is sketched with one dimension suppressed. A future 
pointing timelike direction in that tangent space is sketched as an arrow. 
The diagram itself represents M with one or two dimensions suppressed. Thus 
a spacetime diagram for Corollary 1.4.6 is the following. 
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_____ --'--'-_____ {u 4 ~ Oj rt M 

Spacetime diagrams have two advantages. First, they can be used to 
indieate properties of a gravitational field rather than merely pro
perties of one of its representatives. Second, all of us unfortunately 
have a vi vid sense of simultaneity. When we think of a physical process, 
we automatically think of a series of still-lives, representing the process 
.. at one time," then .. at a slightly later time," and so on. This habit is 



lA Examples of spacetimes 

utterly misleading for relativity. The only way to break this habit is to 
play with lots of spacetime diagrams. 

üf eourse, we must also be aware of the limitations of a spacetime 
diagram: we eannot hope to faithfully portray a nonfiat 4-dimensional 
Lorentzian manifold on a fiat 2-dimensional Riemannian sheet of paper. 

EXERCISE 1.4.7 

Let il be the (l, 1) tensor field physieally equivalent to the Einstein tensor G on 
a spacetime. Show: (a) The sealar eurvature S obeys S = - eontraetion (J. 
(b) Ric = 0 iff G = O. 

EXERCISE 1.4.8 

Let (M, g), N, B, r, and t be as in Example 1.4.2. Show that drlN is spaeelike and 
dt IN is timelike but that on B the opposite behavior holds. 

EXERCISE 1.4.9 

If x and x are points in Minkowski space (M, g), then there is a geodesie y: [a, b] 
-7 M such that ya = x, yb = x. Define k(x, x) = J~ Iy.sl ds. (a) Show that 
k(x, x) is the same for all such y. (b) Find two geodesies "': IR -7 M and ~: IR -7 M 
such that ",IR Il ~IR = 0, but k(x, x) = A E IR V X E "'IR, "Ix E ~IR, where A is inde
pendent of x and x. 

As a hint, we mention that'" and'" must be lightlike. This exereise and 
üptional exereise 8.1.12 indieate that many properties of Lorentzian 
manifolds are antiintuitive; often the most important cases for physies 
are those that are least like the results for Riemannian manifolds. 

EXERCISE 1.4.10 

The results of Bishop-Goldberg 5.6 and of our üptional exereises 8.4.1 show that 
a spacetime (M, g, D) is in the trivial gravitational field iff (M, g) is: (a) complete, 
(b) fiat, and (e) simply eonneeted. In the present exereise, you are asked to show 
that if any of the eonditions (a) to (e) is dropped, (M, g) need not be isometrie to 
Minkowski space. 

Thus (a) to (e) are a sharp eharaeterization of the trivial gravitational 
field. Corresponding eharaeterizations for nontrivial gravitational fields 
rely heavily on group theory. Some are given in üptional exereises 804. 
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2 Observers 

If you aetually ask an astronomer for data, he will not normally give you just 
some numerieal tables and photographie plates. Often he will present his 
observations in roughly the following form: "If Newtonian physies were 
valid, this would be the most obvious explanation of my results." For 
example, the statement that the earth is about 93 million miles from the sun 
implieitly assumes (an amazing amount of) Newtonian physies. Presented 
with observations in this form, the theorist must translate them into relativis
tic terrns. The most convenient way to do this is to use the concept of an 
observer. This chapter is concerned with the precise relativistic formulations 
of observers, neighboring observers, and whether or not a frame of reference 
is rotating. 

2.0 Mathematical preliminaries 

In this section, M, N denote e <xl manifolds. 

2.0.1 Tensor fields over maps 
Let y: rff --+ M be a curveo In Seetion 0.0.6 we defined y.u to be the tangent 
vector to y at yU. One is tempted to say that the assignment yu --+ y.u Vu E e 
defines a vector field on ye, to be called the tangent vector field of y. Un
fortunately this will not be well-defined if, say. YU l = YU2 for two distinet Ul 

and U2 and y erosses itself transversaily there; for in that ease, y.Ul # Y.U2 
and the assignment yu --+ Y.U beeomes (at least) double-valued at yUl' The 
following mild extension of the concept of a vector field (and more generally 
a tensor field) remedies the situation. 

Let 1>: N --+ M be a e <xl map and let Ts' M be the bundie of (r. s) tensors 
over M with projection P: Ts' M --+ M (Section 0.0.5). An (r. s) tensor field 
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2.0 Mathematical preliminaries 

over ep is a map A: N - TsT M such that P 0 A = ep. We also define afunction 
over ep to be just a funetion I: N - IR. The two cases of particular interest 
to us are: (a) N = M and ep = identity; in this ease, a tensor field over ep is 
just an ordinary tensorfield (Seetion 0.0.5). (b) ep: N - M is a eurve y: tff _ M; 
in this ease, the assignment u - y.u Vu E ef is by definition the tangent vector 
fie Id of y, and is denoted by y •. 

For a map ep: N - M as above, tensor fields over ep arise most naturally 
in the following ways. (a) If B is a eontravariant tensor field on N, then the 
assignment y - ep.(By) Vy EN defines a tensor field over ep, whieh wiIl be 
denoted by ep.B. In partieular, given any veetor field X on N, ep.X is always a 
well-defined veetor field over ep, even if there is no veetor field in M ep-related 
to X. (b) If C is an arbitrary tensor field on M, then the assignment y
C(epy) Vy E N defines a tensor field over ep, whieh wiIl be denoted by Co ep. 
This is ealled the restriction of C to ep. 

If '" is an imbedding with cIosed image then, sinee M is paracompact, 
every tensor field over '" is the restriction of some tensor field on M to rp. 
This can be proved by using a partition of unity (Kobayashi-Nomizu 
[1], p. 58). 

Suppose (M,g) is a Riemannian or semi-Riemannian manifold. For 
ep: N - M as above, two tensor fields A and B over ep are physical/y equivalent 
iffAx '" Bx Vx E N (see Seetion 1.0.1 for the definition of ",). 

A derivation of tensor fields over ep is an assignment of a tensor field DA 
over ep to eaeh tensor field A over ep such that: (a) DA is of the same type as 
A; (b) D(C @ A) = DC @ A + C @ DA V tensor field C over ep; (e) 
D(aA + bB) = aDA + bDB Va, b E IR and V tensor field B over ep. Note that 
by our eonvention, D is e'" in the sense that DA is e'" ve'" tensor field A 
over ep. This definition of derivation stiil makes sense jf we require that, in 
the above notation, A and B should be veetor fields or funetions over </>, and 
C should be a funetion over ep; then we eal! such a D a derivation allunetions 
and veetor jields over ep. Suppose a derivation D of funetions and veetor 
fields over ep is given; then there is a unique extension of D to a derivation of 
tensorfields over ep whieh eommutes with eontraetion (Bishop-Goldberg 3.6.8). 

We give an example to illustrate the meaning of .. D eommutes with 
eontraetion." Let X, V be vector fields over '" and w al-form over rp. 
For a derivation D, we have: 
D(X 0 V 0 w) = DX 0 V 0 w + X 0 DV 0 w + X 0 V 0 Dw. 

If D eommutes with eontraetion, then 
D«wV)X) = (wV)DX + (w(DV»X + «Dw)V)X, 

and 
D«wX)V) = (w(DX»V + (wX)D V + «Dw)X)V. 

2.0.2 Conneerions over maps 
Let ep: N - M be a e'" map. A connectian D over ep is an assignment to eaeh 
veetor field X on N of a derivation DJ( of tensor fields over ep such that: (a) If 
I is a funetion over ep, then DJ(I = XI; (b) DJ( is linear in X with respeet to 
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ees) funetions on N; (e) DJ. eommutes with eontraetion. Again we are prim
arily interested in two special cases: (a) N = M and rp = identity; in this ease, 
a eonneetion over rp is just a eonneetion on M in the usual sense. (b) rp: N -,)- M 
is a eurve 1': tff -,)- M. If Jj is a eonneetion on M and rp: N -,)- M as above, then 
Jj gives rise to a eonneetion over rp as follows: the induced cannectian rp* Jj 
is the unique eonneetion over rp such that 

(rp * JjMA 0 rp) = Jjd>.xA 

V X E Nx , "Ix E N, and V tensor field A on M (Bishop-Goldberg 5.7.1). 
Now let (M, g, D) be a spacetime and let 1': tff -,)- M be a eurve. Because 

the induced eonnection 1'* D in this special case appears so often in the re
mainder of the book, we want to introduce some natatjanal abbreviations: 
we shall write 

Dy.A for (1'* D)dlduCA 0 1'), 

where A is a tensor field on M, and 

for 

where X is a veetor field over y. In the same context, we shall also write 

g(y., X) for (g 0 1')(1'*, X oy) 

and 

for I(g 0 1')(1'., 1'.)1· 

In this notation, the acceleration Ay of y is by definition the vector field over 
I' such that Ay = Dy.Y •. Then y is a geodesie iff Ay = O. 

In the language of fibre bundles, tensor fields over a map "': N ->- M 
are sections of the induced tensor bundIes {",*Ts' M}, and a connection 
over '" is a connection in the induced tangent bundIe "'*TM. The con
cepts of vector fields over a map and conneetions over a map are often 
needed in ditferential geometry proper whenever hand-waving is for
bidden-for instance, in the computations of the first and second 
variations of arc-Iength in Riemannian geometry. However, if '" is an 
imbedding with c10sed image all computations may be regarded as 
taking place on M (Kobayashi-Nomizu [I], pp. 58, 67). This special 
case, which is conceptually simpler and computationally more manage
able, usually suffiees to yield the correct information even for the general 
case where '" is not an imbedding. 

2.0.3 Lie paralle/ veetor fields over 
integral eurves 

In physics, the intuitive concept of "infinitesimally nearby" observers is 
important. We will presently modify standard results on Lie derivatives 
(Bishop-Goldberg 3.6) to formalize this intuitive concept. Throughout this 
subsection, X is a veetor field on M, {iL.} is its flow, and y: tff -,)- M is an 
integral curve of X. 
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2.0 Mathematical preliminaries 

Let e E e and W E My. be given. Suppose first there exists a veetor field 
V on M such that Vye = Wand the Lie derivative Lx V vanishes. Then, for 
each pair s E IR and Y E M such that I-'.Y is defined, (1-',)* Vy = VI-',Y. In 
partieular, if y = yu for u E e, we get: (a) Vy(u + s) = (1-'.)* Vyu (ef. Bishop
Goldberg 3.6). 

Now in general there need not exist such a V, mueh less a unique one (ef. 
Exercise 2.0.5 following). But (a) suggests the following definition: A veetor 
field W over y is Lie parallei (with respeet to X) iff W(u + s) = Cf'.)*Wu 
whenever u E e and u + s E e. Then, using the results of Bishop-Goldberg 
5.8.1, one gets both existenee and uniqueness: (b) For eaeh pair eEe, 
W E My. there is a unique Lie parallei veetor field W over r such that We = W. 

More generally, one ean introduce a Lie derivative Lx that acts on tensor 
fields over y; then Lx W = 0 iff Wis Lie parallei (Exercise 2.0.6). More
over, (d) below remains valid when X has zeros. But we are here empha
sizing the special cases we need later. 

Suppose now X is nowhere zero. Then, loeally, we have nothing new. In 
faet there exists a eoordinate map x: ilIt -+ IRN such that X!<I/ = 01 and yeE ilIt 
(Bishop-Goldberg 3.5). A veetor field V on ilIt obeys Lx V = 0 iff V = 

2.~ = 1 JAo A' where eaeh JA is a funetion on ilIt such that XJA = 0 (Bishop
Goldberg 3.6). Let {aA} be the constants for whieh W = 2.~ = 1 aA( 0 Aye) in 
(b) and define V = 2.~ = 1 aAo A' Thus Lx V = O. Let .fF e e be the largest 
eonneeted interval such that e E.fF and that (y.fF) (\ ilIt is eonneeted. Applying 
the uniqueness assertion in (b) to ylF and using (a) we get: (e) Suppose X is 
nowhere zero. Then W: rff -+ TM is Lie parallei with respeet to X iff, for 
eaeh e E e, there is a neighborhood .fF of e, a neighborhood ilIt of ye, and a 
veetor field Von ilIt such that Lx V = 0 and W = V 0 Y on .eF. 

Next we apply the standard geometrie interpretation of Lie braekets 
(Bishop-Goldberg 3.8) to our ease. The interpretation will be needed only for 
eomparison with intuitive physies, not in proofs, so we will be somewhat 
informaI. 

Suppose Xis nowhere zero. Let x: ilIt -+ IRN and WIF = 2~=1 aA(oA 0 ylF) 
be as above. We may write ilIt = {(Xl, ... , xN)llxAI < e VA} and assume ylF 
is given by yu = (u, 0, 0, ... ), sinee XI<I/ = 01' There is a smooth one
parameter family of integral euryes of X determined by 

(u, t) -+ (u + alt, a2t, a3t, ... ). 

Here t = 0 gives ylF; t equal to any appropriate eonstant gives another 
integral eurve; and the interesting ease is where WIF and X 0 y!F are linearly 
independent so that different eurves have different images. This family 
uniquely determines WIF as its transversal veetor field. Specifieally, (Wf)u = 
[(%t){f(u + alt, a2t, a3t, .. . )}]t=o for eaeh f: ilIt -+ IR and eaeh u E.eF. 
Conversely, given W!F the family is determined by the stated eondition up 
through first order in t, in the sense of a Taylor series expansion in t. In this 
sense : (d) A veetor field W over an integral eurve r of X is Lie parallei with 
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respeet to X iff W is the linearized (or "infinitesimal") version of a one
parameter family of integral eurves of X near y. 

Finally, we need aresult related to the Gauss Lemma of Riemannian 
geometry. Let X be a veetor field on a spacetime (M, g). (e) Suppose: X is 
geodesie, g(X, X) is eonstant on M, and Wis a veetor field, Lie paralleI with 
respeet to X, over an integral eurve y: tff -+ M of X. Then g(y., W) = 
eonstant and g(Dy.W, y.) = 0 = g(Dy.Dy.W, y.). 

Proo! Suppose e E 8. Sinee X is geodesic, X is nowhere zero (Section 
0.0.8) so we ean take d/t, §" as in (e). Define y = yl3'; let W be a veetor 
field on d/t sueh that W 0 ii := WI.9' and LxW = o. Sinee D is sym
metric (Section O.O.Sa), DxW - D;;,-X = LxW = O. Moreover, 

Xg(X, W) = g(DxX, W) + g(X, DxW) 
= g(X, DxW) 
= g(X, DwX) 
= tWg(X, X) = 0, 

where the last equality holds becauseg(X, X) is eonstant byassumption. 
Restrieting this equation to 51, we see that (dldu)g(y., W) = o. Since e 
is arbitrary and rff is eonneeted, g(y., W) is a eonstant. Furthermore, 
from the seeond line of the preceding string of equalities, we also have 

g(X, Dx W) = O. 

Now using the definition of the indueed eonneetion y. D (Seetion 2.0.2) 
and after restrieting this equation to y, we see that 

g(y., Dy.W) = O. 

Similarly g(X, DxDxW) = XXg(X, W) = o. Restrieting to y gives 
g(y., Dy.Dy.W) = o. D 

EXERCISE 2.0.4 

Let X be a timelike geodesic veetor field of eonstant norm in a spacetime M and 
let W be a veetor field over one of its integraI eurves y: 8 ---+ M. Let pW denote 
the veetoe field over y sueh that Vu E 8, (pW)u = the oethogonal projeetion of 
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Wu into (Y.U)l c: M yu • Show that if W is Lie paralleI with respeet to X, so is 
pW. 

EXERCISE 2.0.5 

Consider the eylinder IR x [/1 obtained by identifying (u 1, u2 ) with (u 1, u2 + 1) 
on IR x [0, 1]. Take X = (exp U1)02' (a) Show a veetor field V on IR x :71 

obeys Lx V = 0 iff V = aX, a E IR. (b) Take y: IR -T IR X :71 as yu = (0, u mod I) 
and let W = 01yO. Show y is an integral eurve of X and find the W whose exist
enee is asserted in Seetion 2.0.3b. 

EXERCISE 2.0.6 

Let X be a veetor field on M, {iL.} be its fiow, and y: tf -T M be one of its integral 
euryes. (a) Show there is a basis {WA } for veetor fields over i' such that eaeh WA 

is a veetor field over y Lie paralleI with respeet to X. (b) Let!be any funetion over 
y, and W = 2:~ = 1 JA WA be any veetor field over y, where eaeh JA is a funetion 
over y. Define Lx! = /" the derivative, and define LxW = 2:JA'WA • Show there 
is a unique derivation Lx of tensor fields over y which obeys these eonditions for 
eaeh {WA ) as in (a) and eommutes with eontraetions. (e) Show LxW = 0 iff Wis 
Lie paralleI with respeet to X. (d) Show 

(LxW)u = \im Wu - (JL.).W(u - s) 
S~O S 

for eaeh u E tf. 

2.1 Observers and instantaneous observers 

Throughout this seetion, (M, g, D) is a spacetime. 
We now define observers. Offhand, one might let the observer sit at a 

point of (M, g) and" observe" by using his exponential map. But a physical 
observer inexorably moves into the future and thus, intuitively speaking, 
eonsists of a eontinuum of points. Therefore, one models observers by eurves. 
Formally, an observer in M is a future-pointing timelike eurve y: e _ M 
such that ly*1 = I. 

The "timelike" requirement of this definition is a mathematieal trans
lation of the assumption that eaeh observer travels slower than light (ef. 
Seetions 0.2 and 2.1.3.). The normalization ly*1 = 1 is imposed purely for 
eonvenienee and may be eompared with the cIassical theory of euryes of 
Frenet and Serret where only unit speed euryes need be used. 

Let y: e - M be an observer. The image ye may model his history from 
age six until he dies or beeomes a eonsultant for the Pentagon. It is ealled his 
world /ine. U E e is his proper time. It models time measured on any good 
cIoek whose history is ye but has no simple relation to time measured on a 
cIoek with a different history. It can be computed as an arcIength since 

f Iy*slds = f ds = u - a. 
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The proper time might be measured by a very small box full of cold 
dilute radium gas, with N(u) radium atoms present at yu. Since radium 
atoms decay at a definite rate, u can be measured by counting and 
using N(u) = N(uo) exp[ -a(u - uo)] for some universal constant a; a 
sets the scale of time. 

,,* is the observer's world velocity (or 4-velocity) and Ay (= Dy.".) his or 
her world acceleration (Seetion 2.0.2). Fromg("., ".) = -1, we infer g(A y, ')'.) 

= O. The observer is jreely ja/ling iff ')' is a geodesie. The physieal interpre
tation of a freely falling observer is that he experienees no external infiuenee 
except perhaps gravity. The reader is not freely failing. The fioor you are 
standing on or the ehair you are sitting on exerts a non-gravitational foree 
on you, thereby pushing you off a geodesie. However, a falling apple is, to 
good approximation, freely falling. (Compare the end of Seetion 0.2.) 

EXAMPLE 2.1.1. THE TWIN "PARADOX." On Minkowski space (1R4, g, D) 
(Example 1.4.1), take any three freely falling observers ')'l! ')'2, ')'a with world 
lines Al, A2 , Aa, respeetively, as shown; here {x, y, z} e 1R4. Since Minkowski 
space is flat and eaeh Ai is a geodesie, we may work veetorially. The wrong 
way triangle inequality (Exercise 1.2.4) gives: 

IA1 1 > IA 21 + IA3 1· 

future 

y 

x 

Reealling that proper time ean be computed as arcIength, we have (')'l'S 

proper time from x to z) > (Y2'S proper time from x to y) + (')'3'S proper 
time from y to z). Einstein dramatized the inequality by saying that ')'1 has 
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aged more than a twin who first moves with Y2 and then, by world accelerating 
near y, hops into Y3'S rockel. 

There exist many such examples where the mathematics is simple, but the 
physical interpretation is rather striking. So me are found in Exercises 2.1.8 
to 2.1.10; additionaI ones are given later. 

The effect of the twin paradox has been measured to high aeeuraey, 
though not on people. Contrary to popularizations: (a) The detaiis of 
the world aceeleration near y are not essential in the computation sinee 
the particular behavior of the twin near y ean be made to approximate 
as c10sely as we please the behavior as depicted in the above figure. 
(b) The effeet is eorreetly predieted by special relativity. One needs 
general relativity in the analysis only if the" turning near y" happens to 
be due to gravity. In that ease our above discussion must be modified 
(ef. Seetion 8.3.9b). 

For many purposes, such as Newtonian interpretation of reIativistic eon
eepts, it is not necessary to have the full foree of the definition of an observer. 
Often the tangent vector to the observer at a point suffices. This leads to the 
following concept. An instantaneous observer is an ordered pair (z, Z), where 
z E M and Z is a future-pointing timeIike unit vector in M •. An approximate 
example is (z, Z) = you-now. We give so me examples of observers and 
instantaneous observers that arise naturally. 

Let (N, g) be the normal Schwarzschild spacetime (Example 1.4.2). If W 
denotes the future-pointing timelike unit vector fieId everywhere proportional 
to %t, the n an integral curve of Wis called a stationary observer. Each 
(x, Wx) for x E N is then called an instantaneous stationary observer. 

Let (M, g) be the Einstein-de Sitter spacetime. Then Z = 04 is a future
pointing unit timelike vector field in M. An integral curve of Z is called a 
comoving observer, and each (x, Zx) for x E M is called an instantaneous 
comoving observer. Note that each comoving observer is (a subset of) the 
positive portion of a u4-coordinate curve. According to Corollary 1.4.5, 
"comoving observer" and" instantaneous comoving observer" are concepts 
meaningful for the Einstein-de Sitter gravitational fieId. 

Hoth "stationary observer" and "eomoving observer" are definable in 
a wider context. See Chapters 7 and 6, where the reader wiII al so find a 
motivation for the terminology. For example, "stationary" refers to 
the faet that eaeh element of the flow of %t is an isometry. Assume the 
world line of the center of your room is an integral eurve of W. The 
existenee of the isometries makes it reasonable, or at least eonsistent, 
to hope that the room wiII be essentially unchanged after eight proper 
hours have gone by. 

Throughout the rest of this section (z, Z) is an instantaneous observer. 
We shall indieate by some preliminary examples howand what (z, Z) 
observes. 
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2.1.2 Mathematics vs. physics; infinitesimals and 
negligible curvature 

Now, whenever one diseusses aetuaI measurementsasurprisingly largenumber 
of mathematieaIly rather trivial but coneeptuaIly somewhat puzzling issues 
intrude. Some of these have al ready been touched on in the Guidelines for 
the Reader and in Seetion 0.1.1; a keyone will be illustrated in a moment; 
one will be diseussed in Seetion 2.1.6; the rest will be cireumvented. Most are 
summarized by a eomment of Einstein's, here quoted from Misner-Thorne
Wheeler [I]: "As far as the laws of mathematies refer to reality, theyare not 
eertain; and as far as they are eertain, they do not refer to reaIity." 

In partieular, it is often eonvenient to interpret mathematieally rigorous 
versions of "infinitesimal," such as a tangent space or a Lie transported 
veetor field (Seetion 2.0.3), as applying to spacetime points whieh are at a 
"finite but very small separation." More speeifically it often happens that 
our instantaneous observer (z, Z) ean negleet eurvature in anaIyzing his 
apparatus and ean regard a small part of spacetime M as part of Mz ; this 
parallels the preseription in Riemannian geometry for actually measuring, 
for example, the angle between two interseeting euryes on the sphere. For 
example, suppose (M, g) is Einstein-de Sitter spacetime (Seetion 1.4) and 
z E M models here-now. Then it is appropriate to assume u4z is about 1010 

years ~ 3 x 1017 seeonds (Chapter 6). By Seetion 1.4 the scalar eurvature Sz 
is about 10- 35 seeonds- 2• Now suppose we observe a distant-early gaIaxy 
through a teleseope of intrinsie length L = 10 - 8 seeonds ~ 3 m; suppose the 
actuaI observation requires T = 1000 seconds of our proper time. Then the 
dimensionless number /; = LTSz is about 10- 40 • But a hopping ftea lOO miles 
away probably distorts an aetual telescope by at least one part in 1040• Thus 
/; = 10- 40 very strongly suggests one should model the teleseope as an object 
on M z' neglecting curvature. Sinee (M., gz), regarded as a spacetime, mod el s 
the trivial gravitational field, the analysis of the teleseope is then at least 
redueed to a problem in special relativity (Seetion 1.4). The inftuence of 
curvature on the light as it eomes to z from the distant-early gaIaxy can be 
anaIyzed separately. 

Of course one can improve on the argument. In view of Einstein's 
comment and the existence of fleas, we do not wish to encourage this, 
but the following comments may be useful to areader who disagrees. 
(a) Given a point in a Riemannian manifold, one can make preeise the 
concept of a neighborhood so small the curvature tensor is negligible to 
order e. (b) Given a point z in spacetime, (a) can fail, mainly because 
the set {X E M. I g(X, X) = -I} is not compact. (e) Given (z, Z), 
(a) can be resurrected. Very roughly, this is the" principle of equi
valence." 

In the rest of this section we assume all measuring devices ean be regarded 
as objects on a tangent space and analyzed speeial relativisticaIly. But suppose 
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2.1 Observers and instantaneous observers 

(z, Z) does not know special relativity. Of course he tries to hire a graduate 
student who does, and in principle this is the best solution. In practice (z, Z) 
usually takes advantage of the fact that (Z 1, g I z"), regarded as a Riemannian 
manifold, is simply Euelidean 3-space (Sections 0.1.5 and 1.1). Roughly, 
(z, Z) then regards Zl as "(Euelidean 3-space)-now" and uses "almost 
Newtonian" concepts. 

2.1.3 Newtonian veloeity 

For example, suppose X E Mz is future pointing causal; a special case would 
be when y: ~ ---+ M is a (different) observer, yu = z and Y.U = X. We have 
the unique orthogonal decomposition X = eZ + p, e E IR, P E z.I.. e = 
- g(X, Z) and, by the results in Section 1.2, e > O. p/e is by definition the 
Newtonian veloeity (of X or y) observed by (z, Z), our instantaneous observer. 
Ipl/e is by definition the Newtonian speed observed by (z, Z). The reader may 
check for himself that the Newtonian speed is never greater than 1 and that 
Y.U being timelike is equivalent to the Newtonian speed being less than the 
speed of light. The idea behind these definitions is that if (z, Z) proceeds 
naively, Iplle is like Euelidean distance divided by Newtonian time (ef. 
Sections 0.2 and 2.1.5 following). 

We now set up so me machinery appropriate for such interpretations, give 
another example, and add so me warnings. 

2.1.4 Terminology 

(z, Z) is an instantaneous observer. Span Z is his local time axis, a I-dimen
sional timelike subspace of Mz • Zl is his 'ocal rest space. The direet sum 
M z = (Zl) ~ (span Z) is his associated orthogona' decomposition. We wiII 
often write R = Z.L, T = span Z and denote by p: M. ---+ R the orthogonaI 
projeetion. If y: C ---+ M is an observer, corresponding terms are used for 
the instantaneous observer CYu, y.u). For example Ru = (Y.U)l is the obser
ver's loca' rest space at proper time u. Thus the world acceleration Ayu lies 
in the local rest space Rv Tfu E C. 

2.1.5 Projection tensor 

Our next example concems angles. An instantaneous observer (z, Z) deter
mines a projection tensor h as follows: Let p: M z ---+ R be the orthogonaI 
projection into the local rest space. Then by definition: 

h(X, Y) = g(pX,pY), 

Tf X, Y E Mz• his a symmetrie bilinear form on Mz such that: (a) hl x = gzlx; 
Cb) h(Z, .) = 0; (e) h(X, .) = g(X, .) <:> g(X, Z) = 0; (d) contraction ii = 3, 
where ii is the (I, I) tensor physieally equivaIent to h; and (e) li = p. 

Suppase X E M .. Y E Mz ; the case of main interest will be when neither 
X nor Y is spacelike. The Newtonian angle between X and Y observed by 
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(z, Z) is determined as follows: use gl Rand ordinary Eudidean geometry to 
determine the angle e between pX E Rand pYE R. Thus 

eos e = h(X, Y)j[h(X, X)h( Y, y)]1/2. 

Note that e depends on Z, not just on X and Y. Similarly, the Newtonian 
length of X observed by (z, Z) is defined to be [h(X, X)]1/2. 

This rather Newtonian concept of the angle between two tangent 
vectors X and Y in a spacetime is often regarded as a fundamental 
interpretation rule for relativity. Physics books normally do not bother 
to state the above definition explicitly, overoptimistically assuming the 
idea is obvious. When X and Yare lightlike, the dependence of 8 on Z 
corresponds to the astronomer's concept of" aberration" (ef. Exercise 
5.1.4). 

Anticipating more systematic later diseussions, we mention that at a given 
point Z EMa "partide of light" corresponds to a future-pointing lightlike 
vector Y E Mz (ef. the definition of a photon in Example 3.1.4). Regard 
yourself as an instantaneous observer (z, Z) and suppose the partide Y of 
light enters your eye. By algebra, as above, there is a unique e > 0 and unique 
unit veetor V E Z 1. such that Y = e(Z - V). Intuitively speaking, V is the 
direction from which you see the light eoming within your private version 
Z 1. of 3-spaee. For example, given two such partides Y, Y' the Newtonian 
angle 8 you observe between them is given by g(V, V') = eos 8. e eorre
sponds, among other things, to the color, as discussed in Chapter 5. Roughly, 
the bigger e the bluer the light. Note onee again that someone whizzing past 
you at ameasured Newtonian speed (Seetion 2.1.3) half that of light may see 
quite a different color, sinee e = - g( Y, Z) depends on Z as weil as on the 
intrinsie model Y. Now look up from the book for just one instant. You saw 
an enormous number of sueh Y, with various direetions and colors. Seeing a 
eoIleetion {(e, V)} is your main eontaet with the real world; this holds not 
only for people but also for astronomers and cosmologists. 

2.1.6 Logic vs. history 

We are systematieaIly regarding nonquantum general relativistie eoneepts
for example, the world veloeity Y. of an observer-as primary; speeial rela
tivity is treated as a speeial ease; prerelativistie eoncepts-for example, 
Newtonian speed (Seetion 2.1.3)-are usually viewed as annoying anaehron
isms. This keeps the mathematies simple. But historieally it is quite inaeeurate; 
moreover, it often fails to take advantage of whatever physies baekground 
the reader may have; and the historicaIly primary concepts are often very 
eonvenient (though never strietly necessary) when diseussing aetual measure
ments. Thus some Newtonian eoneepts will eontinue to erop up from time 
to time and the Optional exercises give details; the warnings in Seetion 0.1.5 
then apply. 
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In his book, Gravitation and Cosmology [1], Weinberg argues for a 
more quantum theoretieal approaeh to relativity. However, his opening 
paragraph applies also to the present case. "Physies is not a finished logi
eal system. Rather, at any moment it spans a great eonfusion of ideas, 
some that survive like folk epics from the heroic periods of the past, 
and others that arise like utopian novels from our dim premonitions of 
a future grand synthesis. The author of a book on physies ean impose 
order on this eonfusion by organizing his material in either of two ways: 
by reeapitulating its history, or by following his own best guess as to the 
ultimate logical strueture of physieal law. Both methods are valuabte; 
the great thing is not to eonfuse physies with history, or history with 
physies." 

2.1.7 Spatial isotropy 

We give one more example. Astronomers on earth have long observed that 
the distribution of galaxies in the sky is, roughly, uniform in all direetions. 
Thus to a terrestrial observer, "the universe is isotropie." We now give the 
mathematieal definition of spatial isotropy. 

Let (z, Z) be an instantaneous observer. Define: 

Thus each .p E @3 is linear (ef. O'Neill [I)). Let .p E @3, and let Mz = R Ef> T 
be the associated orthogonal decomposition of M z• Sinee .plr = identity, .p 
is completely determined by .pIll' Thus ep is isomorphic to the group of 
automorphisms of R whieh preserve the positive definite inner produet gzlll 
of R. In other words, @3 is isomorphie to the rotation group of ~3. 

For each .p E (1)3, let .p;: T;(MJ -+ T;(Mz) be the unique extension of .p 
(Exereise 0.0.16). TE T;(Mz) is ealled spatia/ly isotropic for (z, Z) iff .ps'T = 

TV.p E@3. 

Offhand, one might want to define a tensor T to be isotropie iff T is teft 
invariant by the full group of automorphisms of M z that preserve gz
that is, the Lorentz group (Seetion 8.4.2). However, the weaker restric
tion of spatial isotropy is the more important one in general relativity. 

In Chapter 4, we will see that the distribution of matter in the universe 
determines a (2, O)-tensor field T. TheTefore the astronomieal observa
tion of isotropy suggests the requirement that for (z, Z) = us-now, 
.po2Tz = Tz V.p as above. 

Now let ~: M -+ M be an isometry that is orientation and time orientation 
preserving, and such that </>z = z, </>.Z = Z; then </>. Et!J3. (M, g) is called 
spatia/ly isotropic for (z, Z) iff given any two unit veetors Xl' X2 E R 
[= local rest space of (z, Z)], there is an isometry ~: M -+ M as above such 
that ~.Xl = X2 • Minkowski space is spatially isotropie for every instantan
eous observer and Einstein-de Sitter spacetime is spatially isotropie for every 
instantaneous comoving observer; the proofs of these facts use only linear 
algebra and wilJ be left as an exercise (Exereise 2.1.11). 

47 



2 Observers 

In the following list of exereises, the first three deal with sorne effeets that 
were diseussed in the early days of relativity. They are designed to farniliarize 
the reader with physical interpretations of tirnelike and spacelike veetors. 

EXERCISE 2.1.8 (TIME OILATION) 

In 2-dirnensional Minkowski space (Section 0.2) let )'1 and )'2 be two freely 
falling observers sueh that )'10 = )'20 = x. For Sl, S2 > 0, let y = )'lSl. Z = )'2S2; 

assurne that the geodesic joining y to z is orthogonal to the world line of )'1 at 
y. (a) Show Sl > S2. (b) If v is the Newtonian velocity of )'2 observed by ()'1).0, 
show that Sl/S2 = 1/(1 - IvI 2)112• 

y 

Aeeording to the diseussion given after Exereise 2.1.13, we ean interpret 
y and z as events taking place simuJtaneously as observed by (y, ("l).Sl). 

The faet that there is a differenee between the proper times of "1 and "2 
(Le., Sl > S2) was therefore regarded as a eurious diserepaney in the 
early days of relativity. 

EXERCISE 2.1.9 

Let "1, "2, "3 be observers in 2-dimensional Minkowski space whose world lines 
interseet at x = )'10 = )'20 = )'30. Let Sjl be the Newtonian speed of)'j observed 
by (x, ("1).0). (a) Show Sjj = Slj. (b) (Einstein addition law) Verify S31 = (S21 + S32) 

(1 + S21S32)-1 or (S21 - sdO - S21S32)-1. (e) Let (M, g) be a spacetime and let "1. )'2, )'3 be observers in (M, g). Retaining the preeeding notation, show that 
Su = Slj and that when )'1 observes a 90° Newtonian angle between the other 
two, S322 = S31 2 + S212 - S312S212 < 1. 

EXERCISE 2.1.10 (LORENTZ CONTRAcnON) 

Let {el, e2} be an orthogonal basis of the Lorentzian veetor space ~2 and let an 
infinite strip ff be defined by {al el + a2e2 Ilall ~ Ll. a2 E ~}. Let "1 and "2 be 
two freely falling observers defined by: "lU = ue" "2U = u(b1el + b2e2), where 
u E ~, b 12 - b 22 = -I, and bl :jc. O. Let the geodesie orthogonal to "2 at the 
origin 0 meet the boundary of ff at A and B, and let L2 = Lorentzian length of 
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2.l Observers and instantaneous observers 

AO or OB. (a) Show L2 < L l • (b) If Ivi is the Newtonian speed of Y2 observed by 
(0, (Yl).O), eompute Ll /L2 in terms of Ivi. 

1'1 

t 1'2 

I 
/ 

/ 

/ 
/ 

B 

[/' represents the eomplete history of a rigid rod. Yl is an observer at 
rest with respeet to the rod and Y2 is moving relative to the rod. Then 
the length of the rod measured by Yl is strietly greater than that for Y2. 

EXERCISE 2.1.11 

Show that Minkowski space is spatially isotropie for every instantaneous observer 
and that Einstein-de Sitter spacetime is spatially isotropie for every instantaneous 
eomoving observer. 

EXERCISE 2.1.12 

Show that TE T2°(M.) is spatially isotropie for an instantaneous observer (z, Z) 
iff T = o(gz) + bh where 0, b E IR, and h is the projeetion tensor of Seetion 
2.1.5. 

EXERCISE 2.1.13 

Let W, VC M. be l-dimensional subspaees orthogonal to eaeh other. Show four 
cases ean oeeur: (a) W spaeelike, V timelike; (b) W, V both spaeelike; (e) W 
lightlike, V spaeelike; (d) W, V both lightlike. 

With the availability of instantaneous observers, the concept of ortho
gonality ean now be interpreted. In eaeh ease the physieal interpretation 
is different, as follows. (a) In general, an instantaneous observer is sup
posed to regard eaeh point of a spaeelike W as "simultaneous with" 
the origin of M. iff W e R [= loeal rest space of (z, Z)]. Thus assuming 
V = T [= loeal time axis of (z, Z)], all the points of W are events 
taking place simultaneously as observed by (z, Z). (b) Consider a (z, Z) 
such that W, V e R. Then W, Vare orthogonal in M. iff they are ortho
gonal in R relative to gzlR. Even measuring orthogonality with respeet to 
gzlR involves unexpeeted deviees, such as a "radar set" (Chapter 5), 
but at least orthogonality with respeet to gzlR has the obvious analogue 
of Euclidean orthogonality. (e) Consider a (z, Z) such that V e Rand 
let p: M. -+ R be the orthogonal projection. Then a short computation 
shows that p W and Vare orthogonal in R with respeet to gz I R iff V, W 
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are orthogonal. The projection p W can be interpreted. For example, if 
W is the spacetime propagation direction of an eleetromagnetic wave 
(compare the figure in the fine-print section of Example 1.1.6), then p W 
is interpreted by (z, Z) as the spatial direction the wave moves. (d) Two 
lightlike veetors are orthogonal ilf they are proportional (Corollary 
1.1.5). Thus, in this case, W = V. Rather artifidal interpretations ean 
be given, but let us simply regard this case as trivial. 

EXERCISE 2.1.14 

Two observers at a laboratory on the equator have exactly the same age. Observer 
1 hops on ajet going 1000 miles per hour due west and returns to his laboratory 
after one cireumnavigation (Iet us say that the earth rotates at a rate of 1000 miles 
per hour on the equator). Negleet the gravitational field of the earth and the sun; 
take the world line of the earth center as the u4-axis of Minkowski space; take into 
account the earth's rotation about its axis. (a) Sketeh the world !ines of the earth 
center and of both observers. (b) How much older is I than 2 after the cireum
navigation? (Answer: about 10- 7 seconds. This experiment was recently per
formed.) 

2.2 Gyroscope axes 

To make observations, an observer y must be able to decide when a unit 
vector X in his Iocal rest space at proper time u has "the same spatiaI direc
tion" as a unit vector g in his Iocal rest space at another proper time u. 
Put another way, how can an observer deteet "rotation" in his IocaI rest 
space? In prerelativistic physics, the problem has a simple solution: Newton 
pointed out that lack of rotation in the above sense is aloeal requirement 
that can be imposed operationally without observation of distant matter. A 
gyroscope axis is often used in practice to determine this absence of rotation. 

In Newtonian physics the eharaeteristic property of an inertial referenee 
frame is that Newton's laws hold in an inertial referenee frame; the 
eharacteristic property of a gyroseope axis is that it makes a eonstant 
angle with eaeh eoordinate axis of eaeh inertial reference frame. (A 
gyroseope is a rigid body, with axial symmetry, rotating around the 
axis of symmetry with one point on that axis constrained.) Thus 
suppose a Newtonian observer earries three gyroseopes whose axial 
direetions are linearly independent. A given spatial direction then 
undergoes rotation ilf the direction angles of this spatial direction with 
respeet to the three gyroseope axes are not all constant. 

In reIativity, if the observer y is freeIy falling, then one can formally define 
X, g above to have the same spatial direction iff X is a paralleI transport of 
g along y. If y is world accelerated, then X E Ru no longer implies that the 
parallei transport of X is in the local rest space at u. The following modifi
cation of parallei transport is then needed. 

For the rest of this section, let (M, g, D) be a spacetime. Let y: tff --+ M be 
an observer, and let Myu = Ru EB Tu be the associated orthogonal de-
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2.2 Gyroseope axes 

eomposition of (yu, y*u). Let Pu: Myu --* Ru and qu: Myu --* Tu be the ortho
gonal projeetions. If X is a veetor field over I' (Seetion 2.0.1), then pX and 
qX are veetor fields over I' whieh are defined by: (pX)u = Pu(Xu), (qX)u = 

qu(Xu) (ef. Seetion 2.1.4 for the notation). 

Propositioo 2.2.1. There is precisely one connectian F over I' such that FyX = 

[p(y* D)yp + q(y* D)yq lX V vector field Yon {f and V vector field X over y. 

PROOF. FyX is ~-linear in X and linear (with respeet to e'" funetions over 1') 

in Y. Moreover, iffis a e'" funetion over 1', then Fy(fX) = fFyX + (Y!) . 
(p2 + q2)X = fFyX + (Y!)x. If we demand Fyf = Yj, then there is pre
eisely one derivation of tensor fields over I' that eommutes with eontraetions 
and agrees with Fy on veetor fields and funetions over I' (Seetion 2.0.1). D 

F is ea1led the Fermi- Walker connectian over y. We shall agree to write 

(Compare the end of Seetion 2.0.2 for notation.) The main properties of F 
are summarized in Proposition 2.2.2; the proofs eonsist of straightforward 
eomputations. 

Propositioo 2.2.2. Let X, Y be vector fields over y. The Fermi-Walker con
nection F over I' satisfies the following,' 

(a) 

where Ay is the world acceleration of y. In particular, F = 1'* D iff I' is 
free/y lalling. 

(b) 

(e) 

(d) If 
then 
and 

d 
dug(X, Y) = g(Fy,X, Y) + g(X, Fy,Y). 

Fy,y* = O. 
Xu E Ru, Yu E Ru Vu E tff, 

Fy,X E Ru, Fy, Y E Ru Vu E tff, 

g(Fy,X, Y) = g(Dy,X, Y). 

Sinee I' is a curve, a standard property of eonneetions tells us that if 
V E M yu for some u E tff, then there is a unique F-parallel veetor field V over 
I' such that Vu = V (Bishop-Goldberg 5.7). Thus, if Uo E C and {Xt} is a 
basis of M yuO' the n there is preeisely one set of F-parallel veetor fields {XI} 
over I' such that XIUO = XI> for i = 1, ... ,4. In partieular, if {XI} is ortho
normal, then (b) of Proposition 2.2.2 implies that {Xtu} is orthonormal 
Vu E C. If furthermore X4 = y*uo, then X4 = y* by (e) of the same proposi
tion. {Xau} for f1 = 1,2,3 then span Ru Vu E C. Xau is then interpreted 
as "the unit veetor at proper time u along the axis of the f1th gyroseope 
carried by 1'." Two unit veetors Xl E Rul' X2 E RU2 are defined to have the 
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same spatial direction iff for some real numbers al' a2, a3 , Xl = La aa(Xaul), 
and X2 = La aaCXaU2), or in other words, iff Xl is the F-paralIel transport 
of X2 • 

Let y be the observer whose world line is the history of the eenter of a 
physieal gyroseope. Then, though we shall not prove this here, the axis 
of the gyroseope traces out (with the passage of time) a veetor field over 
y that is F-parallel. 

We have thus defined the lack ofrotation, mathematically, in terms of 
g and D. In general relativity, g and D are "influenced by distant 
matter" in the sense of the Einstein field equations (Chapter 4). Although 
there is no known preeise sense in whieh g and D are .. determined by 
distant matter," general relativity thus slightly modifies Newton's 
assumption of the strietly loeal eharaeter of the absenee of rotation. 

EXERCISE 2.2.3 

Suppose W E (0, I). In Minkowski space (~4, g, D), let y: ~ ....... ~40 be defined by 
yu = (l - w2)-lf2(eos wU, sin wU, 0, u). (a) Show that y is an observer. (b) For 
w« I, use the first two terms of the binomial expansion of yu to find the approxi
mate solution V of the equations Fy• V = 0 and g(y., V) = 0, where F is the 
Fermi-Walker eonneetion on y. (e) Use the isomorphism of Exereise 0.0.10 to 
compare V(21J'/w) with VO and show that the two veetors differ slightly. 

Physical interpretation. y is the eomplete history of an orbiting el eet ron 
around the nudeus of a hydrogen atom, say. Sinee y(21J'/w) and YO 
deseribe the eleetron at the same point spatially, but at different times, 
the difference between V(27T/W) and VO is, from a Newtonian stand
point, a rotation of the electron's axis of spinning. The effeet is (in
directly) observed and is ealled the Thomas precession. The experiment 
provides one eheek on the use of the Levi-Civita eonneetion D and on 
the identifieation of Fermi-Walker transport with lack of rotation. 

2.3 Reference frames 

A single observer is so local that only cooperation between observers gives 
much information. In this section, we give the mathematical definition of a 
family of observers. Let (M, g, D) be a spacetime. 

Definition 2.3.1. A reference frame Q on a spacetime Mis a vector field each 
of whose integraI curves is an observer. 

Newtonian analogue. A referenee frame is like a doud of Newtonian 
point partides that move without eollisions but otherwise arbitrarily. 
The reader should not assume that a general referenee frame is in any 
sense" rigid " or .. irrotational"; compare the diseussions given later in 
this seetion, especially Exercise 2.3.12. 

Thus a veetor field Q is a reference frame iff g(Q, Q) = -I and Q is 
future pointingo In accordance with the terminology for a veetor field intro-
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dueed in Seetion 0.0.8, Q is ageodesie refereneeframe iffin addition DQQ = 0. 
Let Q be a referenee frame in the rest of this seetion. 

The integral eurves of Q are ealled observers in Q. All observers in a 
geodesie referenee frame are freely falling. Let w be the I-form physically 
equivalent to Q. If 1': e ~ M is an observer in Q, the n du = -y*w sinee 
(y*w)(d/du) = w(y*) = g(Q,y*) = g(y*, 1'*) = -1. Thus geometrie pro
perties of w can be related to the proper times of the observers in Q, as in the 
following diseussion. 

Q is called: foeally synehronizabfe iff w /\ dw = 0, foeally proper time 
synehronizabfe iff dw = 0, synehronizabfe iff there are e co funetions hand t 
on M such that h > ° and w = -hdt, and proper time synehronizable iff 
w = -dt. Sinee -hdt /\ d( -hdt) = 0, a synehronizable referenee frarne is 
locally synchronizable; similarly w = -dt => dw = 0, so that a proper time 
synchronizable reference frame is loeally proper time synehronizable. Con
versely, if Q is 10caIly synchronizable (respectively, locally proper time 
synehronizable) the n the restriction of Q to every suffieientIy small open set 
is a synehronizable (respeetively, a proper time synchronizable) referenee 
frame (Exercise 2.3.11). If Q is synehronizable or proper time synchronizable, 
respeetively, any funetion t as above is eaIled a time funetion or a proper 
time funetion for Q, respeetively. If a time function exists, it is not unique. 
If a proper time funetion exists, it obeys du = y*dt 'rl observer y in Q. 

If Q is synehronizable, the n all the level hypersurfaees of the time funetion 
tare orthogonal to Q, and henee also orthogonal to all the observers in Q. 
Conversely, if Q is an arbitrary referenee frarne on M and t is a function on 
M such that (I) dt is nowhere zero and (2) the level hypersurfaees of tare 
everywhere orthogonal to Q, then Q is synchronizable and ± t is a time 
function for Q. 

From a mathematical point of view, the terminology used in the above 
definitions is easily understood: If Q is proper time synehronizable, let fa 
be the level hypersurfaee of a proper time funetion t for Q defined by t = a. 
For simplicity, let us consider only the case where each observer in Q meets 
eaeh Sa exactly onee. Then every observer 1': e ~ M in Q can adjust his 
"atomie c\oek" e so that his proper time is ° when his world line intersects 
So. Sinee du = y*dt, it foIlows that when the proper time of each observer in 
Q is a, his world line intersects fa. In this way, a proper time function for a 
proper time synchronizable Q aehieves a uniform synehronization arnong all 
observers in Q. If Q is only synehronizable but not proper time synehronizable 
and t is a time function for Q, then du = (h 0 y)y*dt for eaeh observer I' in 
Q. Since h 0 I' is not identically equal to I, toy no longer equals u up to an 
additive constant, but is nevertheless explicitIy expressible in terms of u by 
toy = f (dulhyu). Thus if eaeh observer agrees to use a modified time, co
operation among observers beeomes comparatively eonvenient. 

From a physical point of view, the reason for the above terminology is 
somewhat more profound. Using photons, which will be systematically 
discussed in Chapter 5, we shall show in Seetion 5.3 how the observers in a 
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synchronizable (respectively, proper time synchronizable) reference frarne 
can experimentally correlate by "radar" to arrive at a compromise time 
(respectively, genuine synchronization of their proper times). 

Synchronizability has no nontrivial Newtonian analogue. 
We next formalize the concept of "neighboring observers" in a referenee 

frarne Q. Let y: tff ....". M be an observer in Q and let p and q be the projection 
operators defined above Proposition 2.2.1. 

DefinitioD 2.3.2. A vector field W over y is caIled a neighbor of y in Q iff 
there exists a vector field W' over y such that p W' = W and La W' = 0 
(Section 2.0.3 and Exercise 2.0.6). 

Let F be the Fermi-Walker connection over y. Fy.W is caIled the neigh
bor's 3-velocity relative to y, and Fy•2 W( == Fy.Fy. W) is caIled the neighbor's 
3-acceleration relative to y. Both (Fy• W)u and (Fy•2 W)u lie in the local rest 
space of (yu, y.u)'Vu E tff (which accounts for the" 3" in these definitions) 
because, according to Proposition 2.2.2b and 2.2.2c, denoting the 3-velocity 
by V for the moment, pW = Wand qW = 0 => V = pDy.pW (Proposition 
2.2.1) => pV = V, and similarly for the acceleration. 

Newtonian analogue. Let x(t) be the path of a point partide in Eudidean 
3-space and y(t) be another such path with n(/) = ji(/) - X(/) small 
Vt E Newtonian time axis. Regard n(t) as an element of the langent 
space at X(/). Then W, Fy.W, and Fy.2W are, respeetively, !ike n, 
dn/dt, d 2n/dt 2 • 

In Definition 2.3.2, the key quantity is W'. We have chosen to caIl W 
(instead of W') a neighbor simply because for teehnical discussions, such as 
Newtonian interpretations, it is more eonvenient to have the property that 
a neighbor always lies in the loeal rest space s of y. Moreover, if Q is geodesic, 
then a neighbor W of y in Q must himself satisfy LQ W = 0 (Exercise 2.0.4). 
ConceptuaIly, one thinks of a neighbor as an "infinitesimaIly nearby" 
observer in Q (compare Section 2.0.3, especially (d)). 

A neighbor replaees the more eumbersome concept of a one-parameter 
family of neighboring observers, in the same way that Jaeobi fields 
replaee a one-parameter family of geodesies in Riemannian geometry. 
Our next proposition in faet shows that a neighbor in a geodesic referenee 
frame neeessarily satisfies the Lorentzian version of the Jaeobi equation. 
Compare the remarks in Section 2.1.2. 

We need some notation for the next two propositions, which give mathe
matical interpretations of a neighbor's 3-aeceleration and 3-veloeity, re
spectively. Let (z, Z) be an instantaneous observer and let M, = R EEl T be 
his associated orthogonal decomposition. Denoting the curvature tensor of 
(M, g, D) by R as usual, we define a linear transformation .pz: R ....". R by 
.pzX....". RzxZ, V X E R. That, in fact, .pzR e R follows from: g(.pzX, Z) = 
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g(RzxZ, Z) = 0 V X E R, beeause Rzx is skew-adjoint (Seetion 1.0.2 and 
Exereise 1.0.6). I/lz is se1f-adjoint with respeet to gzlx beeause VV, W E R, 
g(l/lzV, W) = g(RzvZ, W) = R(W,Z,Z, V) = R(V,Z,Z, W) = g(RzwZ, V) = 

g(l/lz W, V), where R is the (0, 4) tensor fie1d physically equivalent to R 
(Seetion 1.0.2). 

Propositioo 2.3.3. Let Q be a geodesie referenee frame and let W be a neighbor 
of an observer y: e -+ M in Q. Then the 3-aeeeleration of W relative to y 

satisfies: Fy,2W = I/lW, where (I/lW)u = l/ly,u(Wu) Vu E C. 

PROOF. By Exereise 2.0.4 LQW = O. Fix a u E C, and let W be a veetor field 
defined in so me neighborhood of yu such that [W, Q] = 0 and Wo y = W 
(Section 2.0.3). Now DQ2 W = DQDQW = DQ(Df;Q + [Q, W]) = DQDf;Q = 
RQwQ + DwDQQ + D1Q.w,Q = RQwQ; the last equality is because DQQ = 0 
by assumption. Restrieting to y, we have D y.2 W = Ry.wY •. Since y is a geo
desic, the Fermi-Walker connection F coincides with y. D (Proposition 
2.2.2a). Thus the preceding equation is equivalent to Fy•2 W = Ry,wY. 

=I/lW D 

Proposition 2.3.3 indicates the basic way to check, when inside a 
freely falling elevator, whether one is in the trivial gravitational field: 
Take two freely falling apples in the elevator; if they have nonvanishing 
relative 3-accelerations, then Ri-O and spacetime is not isometric to 
Minkowski space. 

For Proposition 2.3.4, reeall that given an observer y: e -+ M, Ru denotes 
y's local rest space at u. 

Propositioo 2.3.4. Let Q be a referenee frame and let y: e -+ M be an observer 
in Q. The assignment X -+ - DxQ then defines a Iinear transformation 
AQ : Ru -+ Ru whieh assigns to eaeh neighbor of y in Q the negative of his 
3-veloeity relative to y. 

The negative sign in the definition AQX = - DxQ has no special 
significance; it is merely a convention universaIly adopted by ditTeren
tial geometers (ef. Seetions 8.1.9 and 8.1.10 for mo re on AQ). 

Prool 01 2.3.4. We first show that AQRu e Ru• This is beeause g(AQX, Q) 
= -g(DxQ, Q) = - !Xg(Q, Q) = !XI = 0, VXE Ru. Next let Wbe a 
neighbor of y in Q. We have to show that Vu E ef, Fy.uW = DwuQ. 
This is equivalent to showing g(Fy.uW, V) = g(DwuQ, V)VVE Ru. By 
Proposition 2.2.2d, g(Fy.uW, V) = g(Dy,uW, V). Thus it suffices to 
show: 

g(Dy.uW, V) = g(DwuQ, V) 

V V E Ru. Let W' be a vector field over y sueh that p W' = W and 
LQW' = O. Write W' - W = lY. for so me C'" function f over y, and 
let W' be a veetor field defined in some neighborhood OU of yu sueh 
that W' 0 y = W' and [W', Ql = 0 (Seetion 2.0.3). We may assume OU 
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is so small that there exists aC'" funetion F: <:ft ->- IR such that Fo Y = f 
Define a veetor field IV in <:ft by JIf = W' - FQ; then W 0" = W. 
Now, 

At u, this beeomes 

D-,;Q = DaW + [W, Q] 
= Da"" + [W' - FQ, Q] 
= DaW - [FQ, Q] 
= DaW + (QF)Q. 

DwuQ = Dy.uW + !'(u)".u, 

where!, denotes the derivative of f as usual. This immediately implies 
that 
g(Dy.uW, V) = g(DwuQ, V) 'v'VE Ru, as desired. 0 

Q is ealled irrotational at x = yu iff Aa is self-adjoint with respeet to 
gxl Ru ' rigid at x iff Aa is skew-adjoint with respeet to gxl Ru ' and irrotational or 
rigid iff it is irrotational or rigid at every x E M (ef. Seetion 8.1.10). The 
terminoIogy intentionally paralleIs that of Newtonian hydrodynamies and 
can be motivated mathematieally, as follows. We have seen that a neighbor 
of an observer y in Q corresponds to a one-parameter family of y's neigh
boring observers in Q. Proposition 2.3.4 therefore impIies that Aa: Ru --r Ru 

is the aIgebraic objeet that gives a complete infinitesimal description at 
yu = x of the behavior of y's neighboring observers in Q relative to y itself. 
Suppose Q is irrotationaI at x; then relative to a suitable orthonormal basis 
of Ru, the matrix of Aa is adiagonaI matrix. Thus in a small neighborhood of 
x, the observers in Q near y exhibit no overall rotation. This absenee of 
infinitesimal rotation aecounts for the te rm "irrotational." On the other hand, 
let Q be rigid at x. Then relative to a suitabIe orthonormal basis {Xl' X2, X3} 

of Ru, the matrix of Aa is 

[ 
0 r 0] 

-r 0 0 . 
000 

This is the infinitesimal generator of a rotation of Ru around the X3-axis. 
Thus is a small neighborhood of x, the observers in Q near x revolve rigidly 
around y, but do not approaeh or recede from y. Hence the term "rigid." 
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Physical interpretation. In Newtonian physies, eonsider any point fixed 
on a rotating wheel. If the point obstinately regards itself as at rest, it 
sees infinitesimally neighboring points of the wheel revolving around 
itself. Proposition 2.3.4 makes this pieture preeise, makes it relativistie, 
and generalizes it to indude" expansion" or .. shearing" if the wheel 
is not rigid (ef. Seetion 8.1.10). 

It would not be useful to eonsider only irrotational, only proper 
time synehronizable or, worst of all, only rigid referenee frames. We 
live in a nearJy rigid, slowly rotating earth and have relative speeds 
mueh less than the speed of light. Those facts inftuenee our intuition in 
a very misleading way. 



2.3 Referenee frames 

Newtonian analogue. Consider a eloud of gas partieles in Euelidean 
3-spaee. Suppose at Newtonian time t, the gas partiele at x has New
tonian velocity v(x, 1). Let vl(x, t) be the eomponents of v. Then AQ is 
like {ovifoxill ~ i,j ~ 3}. "Irrotational" and "rigid" are aetually used 
in Newtonian hydrodynamies and aerodynamies to mean, respeetively, 
the matrix {ovl I oxi} is symmetrie, respectively, antisymmetrie. 

High-precision modern astronomy is somewhat eomplicated by the 
faet that one cannot synehronize eloeks on the rotating earth, as indi
cated by Proposition 2.3.5. 

Propositioo 2.3.5. A referenee frame is irrotational iff it is loeally synchroniz
able. 

Proo/. Let Q be the reference frame as usual and let w be the I-form 
physically equivalent to Q. In a sufficiently small neighborhood, let 
X, Y be vector fields such that g(Q, X) = g(Q, Y) = 0 everywhere. 
Then in this neighborhood w 1\ dw = 0 ..... dw(X, Y) = 0 for all such 
veetor fields X and Y, by virtue of the definition of the exterior product, 
..... w([X, Y)) = 0 for all such X and Y, by virtue of the formula for dw 
(Seetion 0.0.5e), ..... g(Q, [X, Y)) = 0 for all such X and Y, by de-
finition of w, ..... g(DxQ, Y) = g(DyQ, X) for all such X and Y, 
beeause DxY - DyX - [X, Y] = 0 and g(Q, X) = g(Q, Y) = 0, ..... 
g(AQX, Y) - g(X, AQY) = O. 0 

EXAMPLE 2.3.6. Let (M, g, D) be Einstein-de Sitter spacetime (Example 
1.4.3), and let Z = 04 be the eomoving referenee frame (ef. the diseussion 
after CorolIary 1.4.5). Then Z is indeed a referenee frame in the sense of 
Definition 2.3.1 (ef. Seetion 2.1). 

Let y be a eomoving observer-that is, an observer in Z (Seetion 2.1). 
As an example of a neighbor, eonsider W = CL~=l auou) 0 y, where al> a2' aa 
E IR. We c1aim that Wis a neighbor of y in Z. Indeed, we have g(iJu, Z) = 
o VfL = 1,2, 3, so that g(W, y.) = (g(2u auou, Z» 0 y = O. In addition, 
LzW = (Lz(Lu auou» 0 y = (Lu au[04, ou)) 0 y = 0, thereby proving our 
claim. Sinee y is (part of) a u4-eoordinate eurve, we may write yu = (bl , b2 , ba, u) 
for so me bu E IR (fL = 1,2,3) and u > O. In this ease, we ean exhibit a one
parameter family of eomoving observers near y corresponding to W (in the 
sense of Seetion 2.0.3): if t is the parameter (t E IR), then the neighboring 
observers in question are given by u --+ (alt + b1, a2t + b2, a3 t + ba, u). We 
leave as an exereise to show that in faet every neighbor of a eomoving 
observer in Z is such a W for appropriate ehoiees of al' a2, a3 E IR (Exereise 
2.3. lOa). 

Some of the basie properties of Z are summarized in Proposition 2.3.7. 

Propositioo 2.3.7. Let Z be the camaving referenee frame, y an observer in Z, 
and Wa neighbor of y in Z. Then: (a) Z is proper time synehronizable. 
(b) Z is geodesie. (e) W's 3-ve/oeity relafive to y is (2j(3u»W. (d) W's 3-
aeeeleration relative to y is ( - 2j(9u2» W. 
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Prao/. (a) The I-form physically equivalent to Z is - du4, so u· is a 
proper time funetion for Z. (b) was proved in Corollary 1.4.6. (e) Let 
W = (2:~=1 0.8.) 0 r (Exereise 2.3.1 Oa). Then (b) and Proposition 
2.2.2a imply that: W's 3-velocity relative to r = Dy , W = (2:. a.Da. 8.) 0 r 
= (2/(3u»W, where we have used the formulas given in the proof of 
Proposition 1.4.4; the details are left as an exereise (Exereise 2.3.10b). 
(d) As in (e), W's 3-aeeeleration relative to r = Dy, 2 W = Dy ,{(2/(3u»W} 
= -(2/(3u2»W + (2/(3u»D y,W = (- 2/(9u2»W. D 

Note that by virtue of Proposition 2.3.5, (a) implies that Z is irrota
tional. However, (e) gives a mueh stronger resuit. For, aeeording to 
Proposition 2.3.4, the linear operator Az is then a pure eontraetion: 
AzX = (- 2/(3u»X, V X E Ru [= loeal rest space of (ru, r.u)]. 

Aeeording to the interpretation of a neighbor as a one-parameter family of 
neighboring observers, the faet that W's 3-veloeity relative to y is always a 
positive multiple of W means that the nearby observers in Z are reeeding 
from y, and the faet that W's 3-aeeeleration relative to y is always a negative 
multiple of W means that the reeession is slowing down. Sinee this is true for 
eaeh eomoving observer y, one ean express this phenomenon as: "the eo
moving referenee frame is expanding but the relative aeeeleration is inward." 
Roughly: "the universe expands." 

EXERCISE 2.3.8 

Suppose Wis a neighbor of an observer r in a referenee frame Q and suppose 
W'and W" are two veetorfields overysatisfyingpW' = pW* = W,andLQW' = 

LQW· = 0, where p is the usual orthogonal projeetion into the loeal rest spaees 
of r. (a) Show W' - W* = ar. for some 0 E IR. (b) If W E Ru (= loeal rest space 
of r at u) is given, show that there exists one and onlyone neighbor W of r in 
Q such that Wu = W. 

EXERCISE 2.3.9 

Let r be an observer in a geodesic referenee frame Q. If Wis a veetor field over r 
such that LQW = 0 and g( Wu, r.u) = 0 for one u, then Wis a neighbor of rin Q. 

EXERCISE 2.3.10 

Let r be a eomoving observer in Einstein-de Sitter spacetime and let W be a 
neighbor of r in the eomoving referenee frame Z. (a) Show that for some 
01,0203 E IR, W = (2:~=1 0.8.) 0 r. (b) Give a detailed proof that the 3-velocity 
of W relative to i' equals (2/(3u»W. 

EXERCISE 2.3.11 

(a) Let Q be a loeally synehronizable (respeetively, loeally proper time syn
ehronizable) referenee frame and suppose x E M. Then the restrietion of Q to 
a suffieientIy small neighborhood of x is synehronizable (respectively, proper 
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time synehronizable). (b) Show that on a simply eonneeted spacetime, every 
locally proper time synehronizable reference frame is proper time synchronizable. 

EXERCISE 2.3.12 

Reeall that a tensor field S on M is para/le/ (== covariant constant) iff DxS = 
o 'rl veetor X. (a) Show 04 and (1/3)(504 + 4(1) are both paralleI referenee frames 
on Minkowski space. (b) Show from Definition 1.0.2 of the eurvature tensor that 
if Z is a paralleI referenee frame on M, Ric (Z, X) = 0 'rl X. (e) Show there exists 
no paralleI referenee frame on Einstein-de Sitter spacetime. (d) (diffieult) Show 
that in general there is no rigid referenee frame defined in any neighborhood of a 
spacetime point. 

Referenee frames as in (a) are ealled .. inertial" in physics texts. (e) Shows 
it would not be useful to introduce this concept in general: when gravity 
is not negligible there is usually no referenee frame that has all the pro
perties .. inertial" suggests. (d) Is one reason why a .. rigid meter stick" 
is not a very useful concept in general relativity. 

EXERCISE 2.3.13 

Let Q be a referenee frame and w be the physiealIy equivalent I-form. (a) Show 
dw = 0 iff Q is geodesic and irrotational (iff Q is 10ealIy proper time synehroniz
able, by definition). (b) On a normal Sehwarzschild spacetime (Example 1.4.2) 
find a rigid, irrotational referenee frame that is not geodesie. 

EXERCISE 2.3.14 

Let Q be a geodesie referenee frame on M and let {OI} be eoordinate veetor fields 
defined in some neighborhood CfI in M. Let Q = LI QI OI in cfI, and for fixed i, j, 
define a funetion /., on CfI by /.1 = g(Do, Q, OI) - g( Oh Do,Q). (a) Show that for 
an observer y: <ff ~ CfI in Q, 

(/.1 0 YY + 2: {(OIQk) 0 y}(fkl 0 y) + 2: {(oIQk) 0 y}(ltk 0 y) = 0, 
k k 

where the prime denotes differentiation. (b) Observing that Q is irrotational at 
YUo iff (It, 0 y)uo = 0 'r/i, j, deduee from (a): if Q is irrotational at YUo, Uo E <ff, then 
it is irrotational at yU 'rIu E 8. (e) Show that if X E Mx is any given timelike unit 
veetor, then there is an open neighborhood CfI of x such that there is a geodesie 
irrotational referenee frame Q on CfI with Qx = ± X. 

EXERCISE 2.3.15 

On a neighborhood of the origin in Minkowski space, define Q = [l - (u1 )2] -112 
. [04 + U1"2]' Show: (a) Q is a referenee frame. (b) Q is not irrotational and 
thus not loeally synchronizable. 
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3 
Electromagnetism and matter 

In this chapter, we shall analyze electromagnetism, matter, their mutual in
fluences, and the influence of spacetime on each. Chapter 4 wiII c\ose the web 
by analyzing the influence of electromagnetism and matter on spacetime. 

Mathematicians notoriously find discussions of matter difficult. We have 
thus split this chapter into three parts. Part One emphasizes basic definitions, 
simple examples, and intuition. Part Two, on interactions, attempts to sum
marize all the underlying laws normally covered in a six-year physics curricu
lum, except those of quantum and statistical physics. Part Three is merely 
technical. MathematicalIy, the material is rather routine. But there are serious 
conceptual probIems. Some that have already been mentioned-for example, 
in Section 2.I-will recur here. In addition, we wilI be plagued throughout 
by the fact that one needs" matter" as a general concept but has no honest 
formaI definition available. 

The concept of a spacetime is simpler than the Newtonian concepts it 
replaces, primarily because g unifies the structure. Similarly the relativistic 
law s of electromagnetism, discussed in Sections 3.4 and 3.7, are far simpler 
than their Newtonian counterparts. Unfortunately, however, relativistic 
matter modeis are no simpler than Newtonian ones. In any case, we have no 
matter model from which all other useful matter models can be deduced. 
Presumably, this rather sad fact just reflects our ignorance. Perhaps quantum 
theory will eventually provide a precise matter model applicable to all the 
rich structures one can see if one looks around. But at present we must work 
with many intuitively interrelated yet mathematically independent modeIs. 
Some mathematical presentations circumvent the resulting mess by flatly 
refusing to discuss matter in any detail. The gain in elegance is the n large, 
but the loss in physical relevance is larger. In Section 3.1, and following, we 
attempt to take the bull by the horns. The use of intuitively interrelated, 
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mathematically independent models is puzzling, so we now discuss an 
example and some generalizations. 

Suppose we have many small identical bodies and want to describe where 
they are "now." We can use two Newtonian modeIs. We can say that at 
Newtonian time t = 0, a point particule is at Xl E 1R3, another is at X2 E 1R3, 
and so on. Or we can give a smooth function n: 1R3 --? [0, oo) with n(x) inter
preted as the number of bodies per unit volume at X E 1R3 when t = O. 
Neither model is physically precise; for example, both negleet quantum 
effects. IntuitiveIy, the second model is obtained from the first by "averag
ing," by "adding up and smoothing out in position space." Sometimes one 
can regard the first model as a special case of the second by allowing n to be 
an appropriate distribution of slow growth (generalized function in the sense 
of L. Schwartz). But in general neither model can be regarded as a con
sequence of the other. On the other hand, one must remember the intuitive 
interreIation, since both models are supposed to approximate a single 
situation. 

When similar modeI pairs occur in general relativity, there is a superficial 
problem and a serious one. The superficial problem is that tensors above 
different tangent spaces cannot directly be added, so one sometimes has to 
do a little extra work to assign even a vague meaning to" averaging." Norm
ally one can just use past light cones in an appropriate way. The serious 
problem is the sam e as in Newtonian theory: Attempts to make one mod el a 
mathematical consequence of the other are usually shipwrecked by the 
physical inaccuracies of both modeIs. 

In Section 3.2, and following, we make the formaI independence of our 
matter models explicit, indicating their heuristic interrelation by phrases such 
as those in quotes aboveo We shaIl define partides, consistent partide sets, 
and models obtained by "adding up contributions from many partides and 
smoothing out in M." In Chapter 5, we consider more sophisticated models 
obtained by "adding up and smoothing out in TM-in position and In 

energy-momentum space." 
Throughout this chapter, (M, g, D) is a spacetime. 

PART ONE: BASIC CONCEPTS 

3.0 Review and notation 

3.0.1 Integration 

If N is an oriented Riemannian or semi-Riemannian manifold, the n there is 
a distinguished volume element, called the metric volume element (Bishop
Goldberg 4.6). The metric volume element n on M is the unique 4-form on 
M such that if {Xl"'" X4 } is a consistently oriented orthonormal basis of 
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Mx, the n n(Xl> .. . , X 4 ) = (4!)-1. The faetorial arises from the Bishop-
Goldberg eonventions. 

For the rest of the book, n will always denote the metric volume element, 
and any basis of vector fields {Xl> ... , X4 } on lJIt e M will always be assumed 
to be consistent with the orientation determined by n. 

Let {XI' ... , X 4) be a basis of vector fields in lJIt e M and let {Wl, ... , w4} 

be the dual basis. Denoting g(Xb Xj) by gli> we let g = Idet {g,,}1 (det = 
determinant). It follows directly from the definition of n and an algebraic 
manipulation that in 1JIt, 

(a) 

In partieular: 

(b) If {Wl, ... , w4} is an orthonormal basis of l-forms in lJIt e M (consistent 
with the orientation of M), then n = wl /\ .•• /\ w4• 

Being a nowhere zero top degree form, n enjoys a useful algebraic prop
erty. Recall first that if X is a veetor field, the interior product operator 
i(X) is defined by: if w is a q-form, q > 0, then i(X)w is the (q - I)-form 
such that 

i(X)W(Zl' ... ' Zq-l) = qw(X, Zl' .. ·' Zq-l), 

V vector fields ZI' ... ' Zq_1 (Bishop-Goldberg 4.4). Now algebra gives: 

(e) If two vector fields X and W defined in lJIt e M satisfy i(X)n = i(W)n, 
then X = W in 1JIt. 

The metrie volume element enables us to integrate functions: if I is a con
tinuous function on M and K e M is an open set with compaet elosure K-, 

then JKln is defined. 
Let w be ap-form on M and let VY be an imbedded, compaet, oriented 

(p + I)-dimensional topologieal manifold with boundary ovY (Bishop
Goldberg). For the purpose of integration, it suffkes to assume that VY and 
ovY are piecewise COO in the sense that VY (respeetively, ovY) is a COO manifold 
outside a eompact subset which is a finite union of COO manifolds of di
mension ::; p (respeetively, ::; p - I). Sinee VY is oriented, OVY has an 
indueed orientation (Seetion 0.0.5). Stokes' theorem then states that, assump
tions as above, 

f dw = [ w. 
% -ö% 

Using Stokes' theorem, standard arguments show that if Jö% w = ° for 
every such f, then w is e1osed. However, one ean draw the same eonelusion 
while restrieting attention to a speeial e1ass of such f, as deseribed below. 

First reeall that for an arbitrary d e M, an arbitrary mapping <fo: d -'>- N 
into another manifold N is said to be C <x) iff <fo can be extended to a C <x) 

mapping rP: .sl -'>- N where .sl is an open set containing d. Now eonsider the 
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standard cylinder .,..vD in Minkowski space (1R4, g, D) which is defined to be 
.,..vo = {(ur, ... , u4) I L:~=l uV ~ I, lu41 ~ I}. The boundary manifolds of.,..vo 
are the following five imbedded submanifolds of 1R4: 

!!Jl = {eur, u2, u3 , -I) I f uV < I}, 
!!J2 = {eur, u2, u3, 1) I f uV < I}, 

f!43 = {<ut, u2, u3, u4) I f uV = I, lu41 < I}, 
'tfl = {eur, u2 , u3 , -1) I f uV = 1}' 

'tf2 = {(ur, u2, u3, I) I f uV = l}-

!!J3 is timelike; the rest are spacelike. A causal box in Mis then defined to be a 
e'" imbedding ep: .,..vo --+ M which preserves orientation, time orientation, 
and the causal character of each of the boundary manifolds of .,..vo. By the 
usual abuse of language, we also refer to .,..v == ~.,..vo as a causal box. Using 
the picture as shown, we give an explicit description of the relevant data of 
.AI: We denote the interior of.,..v by d and denote ~h ep!!J2, and so on by 
f!4r. f!42, and so on. 

Causal 
Submanifold Topology Orientation character elosure 

d 

LSj (i = 1,2) 
/!J3 

'tf, (i = 1,2) 

3 2 
1R4 from M timelike d- = d U /!Jj U 'tfi 

!=l j=1 

1R3 from d spacelike!!Jj - = !!Jj U ~ 
IR X [/'2 from d timelike /!J3 - = !!J3 U 'tfl U 'tf2 

[/' 2 from /!Jj (not /!J3) spacelike 'tf, - = ~ 
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3 Electromagnetism and matter 

Newtonian analogues. 811 is \ike an open solid ball in EucIidean 3-space 
at one Newtonian instant. However, one can al so imagine that two 
distinct points in 811 are at slightly different Newtonian times provided 
the Newtonian time difference is so small light cannot reach either from 
the other quickly enough. In general, when M is not tlat it is neither 
possible nor necessary to distinguish between these two intuitive pictures 
(ef. Exercise 2.3.12) . .91 is \ike a history of such a ball, assuming the 
ball wobbles, expands or contracts so slowly each point in it moves at 
less than the speed of light. In the simplest cases, one may imagine the 
ball rigid during the history but in general this is neither possible nor, 
when possible, particularly useful. Analogous interpretations hold for 
the other submanifolds (ef. Section 9.1). 

Let ~ denote the oriented manifold-with-boundary §/2 - = §/2 U 16'2, 
where the orientation is the one specified above. We shalI calI such a ~ a 
space-section. Note that due to the difference in orientation, §/l - is not a 
space-section. 

(d) A 3-form (JJ is cIosed iff Iu (JJ = 0 for all causal boxes .A""; a 2-form '" is 

cIosed iff IÕfJ '" = 0 for all space-seetions ~. 

We indieate the idea of the proof by considering the case of a O-form, 
Le., a C'" funetionJ: M --+ IR. Then for 1': [a, b] --+ Macurve we have: 

f dJ(y.u)du = /yb - /ya. 

This corresponds to Stokes' theorem stated above. 
By continuity, we have [yb - [ya = 0 V such curve y iff dJ( W) = 0 V 

vector W, i.e., iff dj = O. Now suppose we restrict the causal character 
by considering only timelike curves (the spaeelike case is similar). Then 
/yb = /ya"lt timelike y iff dJ( W) = o "It timelike W. Suppose dJ( W) = 0 V 
timelike W, take x E M, W E Mx timelike and X E Mx. Sinee the set of 
timelike vectors in Mx is open, there exists an a E (0, oo) such that 
W + aX is timelike. Then 0 = dJ(W + aX) = a·dJ(X). Sinee (x, X) 
was arbitrary, we have dj = O. Thus/yb - /ya = o "It timelike y iff dj = 0, 
eorresponding to assertion (d). 

The proof of (d) itself is similar (ef. Bishop-Goldberg 4.8 and 4.9). 

3.0.2 Conservation laws for vector fields 
Let X be a veetor field on spacetime M. Then d[i(X)n] is a 4-form. This 
implies that there is a unique C'" function, whieh we denote by div X: M ~ IR 
and define as the divergence of X, such that d[i(X)n] = (div X)n. Let Lx 
denote the Lie derivative; then Lx = i(X)d + di(X) (Bishop-Goldberg 
p. 172). dn = 0 sinee the only S-form on M is the zero S-form. Thus we also 
have Lxn = (div X)n. 

A veetor field X is said to obey a differential conservatian law iff div X = 0; 

it is said to obey an integral conservalian law iff fiJ.Y i(X)U = 0 for all eausal 

boxes.A"". The definition of div X and Section 3.0.1 imply: X obeys a differen
tial eonservation law iff it obeys an integral conservation law. 
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3.0 Review and notation 

There are many Newtonian analogues; the following is typical. 
Suppose water molecules and water ions are present in amoving fluid. 
Let n(x, t) be the number of water molecules per unit volume at X E 1R3 
and Newtonian time t; let v(x, I) be the Newtonian fluid velocity. Take 
Minkowski space (1R4, g, D). n and v may be regarded as defined on 
([R4, gl. Now define a vector field X = n04 + n 2:~=l v"o. on ([Ri, g) 
where v = (vI, v2 , v3 ). A computation show s that div X = 0in + 
2:~=I einv·), which in Newtonian notation becomes on/oI + V.(nv) 
(Section 9.0.1). Thus div X = 0 iff on/ot + V.(nv) = O. This last equa
tion (the so-ca Ile d equation of continuity) holds in Newtonian physics iff 
no net creation of water molecules out of water ions or vice versa occurs. 
Thus a differential conservation law for X corresponds to the conserva
tion of matter in physics. 

Integral conservation laws are physically relevant because integral 
quantities, such as total electric charge, are often more directly related 
to observation. We will give a direct interpretation of JaA'" i(X)U = 0 by 
using the standard cylinder %0 in Minkowski space ([R4, g, D) and by 
using the above vector field X. We will use the notation associated with 
%0 (Section 3.0.1) without comment. Thus %0 is the history of the 
closed unit ball ~ in 1R3 from time -1 to time 1. Similarly, ~3 is the 
history of the boundary O~ of ~ from time -1 to 1. 

Since n = du I " ••• " du*, a computation gives: 

r i(X)U = - r nn l + i nn2 + r "', 
JaA'"o Jill il~ • ila 

where nl = dul " du2 " du3 (respectively, n2 = du2 " du I " du3 ) is 
the metric volume element of fJlI (respectively, fJl2) in the induced 
orientation and 

'" = {nvl du2 " du3 " du4 - nv2dul " du3 " du4 + nv3dul " du2 " du.}. 

Now Sil l nn! = Sil n(i, -I)dV, where dV is the ordinary volume 
element of 1R3. Thus Jf.lI, nn, = total amount of water in fJI at time 
-1. Similarly, Jf.lI2 nn2 = total amount of water in fJI at time 1. Also, 
by the definition of '" in terms of nv(i, I) and the interpretation of u4 

and ~3 as Newtonian time and the history of ofJI, respectively, f"'3 '" = 
total amount of water which escapes through ofJI from time - 1 to 1. 
Thus, an integral conservation law faA'"o i(X)n = 0 in this case means: 
(amount of water in fJI at time -1) = (amount of water in fJI at time 1) 
+ (amount of water escaping through ö~ from time - 1 to 1). This then 
directly justifies the use of the term "conservation law." 

Note once more that a relativistic expression J i(X)n can have 
different Newtonian analogues, depending on the causal character. 

3.0.3 Certain tensor fields 
We shall frequently need tensor fields physically equivalent to a (0, 2)-tensor 
field and shall set up a few conventions. Let S be a (0, 2)-tensor field on 
spacetime M; suppose x E M, X, Y E Mx, X (respectively 1/1) E Mx· is physic
ally equivalent to X (respectively Y), (Xl>"" X4) is a basis for Mx and 
(wl,. 0 0' w4) is the dual basis. Thus the physically equivalent (I, I)-tensor 
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3 Eleetromagnetism and matter 

field S obeys S(x, Y) = S(X, Y) (note the order). If Z is a veetor field on M 
we will denote by SZ that veetor field for whieh x(SZ) = S(x, Z) Vx E Mx *, 
Vx E M. The (2,0) tensor field S physically equivalent to S and S obeys 
S(x, if;) = S(X, Y). For example, S is symmetric iff S is and similarly for 
skew-symmetry. We define traces as follows: trace S = trace S = trace S = 
contraction S. Thus (trace S)(x) = '2.t=1 S(wl, X,); moreover, if(Xl, ... , X4) 
is orthonormaI, (trace S)(x) = '2.~=1 S(xP, xP) - S(X4, X4). The above 
notation, including the way in which " -" and "A" are used and the obvious 
analogues for an S defined only on a subset of M, will be used rather often. 

EXERCISE 3.0.4 

Show that the metric volume element n satisfies Dn = o. 

EXERCISE 3.0.5 

Let (1R2, dul 0 dul - du2 0 du2) be the 2-dimensional version (Seetion 0.2) of 
Minkowski space. Thus w = dul A du2 is the metric area element. For a E 

[-1, IJ, P = C2 + aCl is a future-pointing vector field. Now suppose a finite 
number of inextendible integral euryes of P are "oceupied "-for example, 
represent the histories of small bodies actually present, as sketched. Suppose so 
manyare occupied that you prefer to "smooth out" by introducing the" number 
density" of oeeupied eurves. (a) Show that the concept "number of euryes 
crossing an orthogonal eurve per unit length of the orthogonal curve" would not 
be appropriate for a = ± I. (b) Argue that the following is appropriate. There is 
a e <xl world-density T}: 1R2 -- [0, oo) of euryes, interpreted by saying that V(x, X) E 

TIR2,(7)x)lw(P, X)I is (approximately) the number of occupied P curves which 
eross a curve of tangent X per unit parameter interval of the latter. The key 
point is that one ean take T}X to be independent of the direction of X. 

EXERCISE 3.0.6 

Let n be the metric volume element, X be a veetor field, w is a I-form. Show 
w A [i(X)D] = w(X)D. 

3.1 Particles 

To model the history of a small object we need a eurve. Suppose m E [0, oo) 
is given. 
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3.1 Partides 

Definition 3.1.1. A partiele of rest-mass m is a future-pointing eurve y: e -'>- M 
such that g(y., y.) = _m2 (ef. Seetion 0.2). 

Here m is the analogue of a Newtonian inertial-mass (Seetion 0.1.6). The 
main differenee is that m = 0 is allowed in the relativistie ease. For m i= 0 
the term "rest-mass" refers to one partieular way m ean be measured (ef. 
Feynman [I]). For m = 0, the term "rest-mass" is misleading. We sometimes 
write (y, m) for a partide y of rest-mass m. 

Atoms are often modelled as m f. 0 partides; so are galaxies. We 
do not use the concept of a "mass that increases as the partide's speed 
increases," which is not basis-free and is thus obsolete. 

If y is a partide of nonzero rest-mass, there exists a positive affine re
parametrization y' such that y' is an observer (Seetions 0.0.6 and 2.1). The 
terminology for observers is thus taken over for such partides; for example, 
the are-Iength of y is also referred to as proper time. Similarly, let y be any 
partide. y is freely falling iff y is geodesie, as interpreted in Seetion 0.2. 

In the simplest cases, the Newtonian equation ? = - v q, of Section 
0.1.7 for motion in a gravitational potential is an approximation to the 
geodesic condition Dy.r* = 0; see Section 9.3 for an example. How
ever, the geodesic condition is applicable also to situations where New
tonian concepts are useless. 

The tangent y. is defined as the energy-momentum of y. Historically 
speaking, energy-momentum unifies and replaees two different eoncepts
namely, energy and momentumo To make this explicit we now give some 
auxiliary definitions and results. Aetually, all the resuIts merely follow from 
the basic equation g(y., y.) = -m2 (ef. Seetion 2.1.6). 

3.1.2 Auxiliary concepts 

Let y: e -'>- M be a partide of rest-mass m. Let (z, Z) be an instantaneous 
observer with z = yu, U E <fo Then we have the orthogonal deeomposition 
y.u = eZ + p of the energy-momentum, with e = - g(y.u, Z) E ~ and 
p EZ1.. e is defined as the energy (z, Z) measuresfor y at U. By Seetion 1.1, 
this measured energy is positive, eve n when m = O. p is the 3-momentum 
(z, Z) measures for y at U. Denote the Newtonian veloeity (z, Z) observes for 
y.u by V, where the arrow is added merely for vividness; thus v = p/e E Z J. 

(2.1). From Exereise 0.2.4 and Seetions l.1 and 2.1 the reader ean eheek the 
following. (a)O ~ Ivi ~ I, as usual. (b) Supposem i= 0; then e = m/(l - Ivj2)1/2, 
p = mv/(1 - IvI 2)1/2. (e) Suppose Ivi « l. Then m i= 0 and e ~ me2 + -!-mlvI 2, 

p ~ mv, where e = 1 is the speed of light. In this sense e indudes rest-mass 
energy mc2 and Newtonian kinetie energy ,mll"W while p replaees Newtonian 
momentum mv (ef. Seetion 0.2). (d) In any ease, e2 = m2e4 + I p12C2; thus 
Einstein's famous e = me2 here holds iff p = 0 iff v = O. 
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3 Eleetromagnetism and matter 

But within relativity, an energy-momentum Y. is interpreted directly, via 
the eollision eonservation law of Seetion 3.8, following. Suppose no observer 
is aetually observing. Then it is only Y.U, not energy e, nor 3-momentum p, 
nor even the pair (p, e), nor mv, and so on, whieh models something present 
in nature. 

3.1.3 Electric charge 
Eaeh particle in Definition 3.1.1 is assigned an eleetric eharge e E IR, measured 
essentially as in Newtonian physies. Empirieally, one finds e = 0 whenever 
m = O. This ean be partially explained by quantum theory but will here be 
assumed ad hoe. We shall sometimes write (y, m, e) for a particle y of rest
mass m and e1eetric eharge e with (m, e) E [0, oo) x IR the type olY. 

EXAMPLE 3.1.4. PHOTONS. Two kinds of rest-mass zero particles have been 
observed: photons (" particles of light") and neutrinos; in all likelihood a 
third kind, gravitons, exists. However, we sh all not really need the latter two 
here and thus formally define a photon as a particle of zero rest-mass. For 
example the e1eetrie eharge of a photon is zero (Seetion 3.1.3). All of Chapter 
5 eoneerns photons. 

To really pin down a particIe type one needs some mierophysieal, 
quantum theoretie parameters: baryon number, eleetron-Iepton number, 
mu-Iepton number, and spin. For example neutrinos are distinguished 
from photons by having ditferent lepton numbers and a ditferent spin. 
We shall not need sueh quantum theoretical parameters in this book, 
but we briefly outline the significance of baryon and lepton numbers. 

As far as is known, every body in nature could be in prineiple be built 
by using a few basic eonstituents. We need a SOUTee or sink for baryon 
number, say a box with protons and antiprotons in it. (The protons in 
the box should be kept away from the antiprotons.) Two similar boxes, 
say one with eleetrons and antielectrons and one with mu-mesons and 
anti-mu-mesons ean aet as SOUTees or sinks for lepton numbers. A box 
of pi-minus mesons eould aet as a SOUTee or sink for eleetrie eharge. 
Finally, a box of photons eould be a souree of sink of energy and 
angular momentumo If we used these eonstituents to buiid, say, a 
neutron or a baseball, we eould proeeed in various ways. But no matter 
in whieh order we proceeded, the total number of protons used minus 
the total number of antiprotons used would always be the same. This 
differenee is the baryon number of the construeted particIe: 1 for the 
neutron, about 1025 for the baseball. The two lepton numbers have a 
similar signifieanee, as does the eleetrie eharge. 

EXERelSE 3.1.5 

Let y: tff ->- M be a particIe. Show m#;O iff y is timelike, iff one instantaneous 
observer observes a Newtonian speed less than 1 for y, iff all instantaneous 
observers on ytff observe a Newtonian speed less than 1 (" when m#;O even an 
observer who runs head on at the particIe as fast as he can stiil measures a collision 
speed less than the speed of light "). 
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3.2 Partide f10ws 

EXERCISE 3.1.6 

(a) Suppose x E M, X, Y E Mx. Show that any one of the following three con
ditionsimplies X = Y: w(X) = w( Y)'v'w E M:; w(X) = w(Y)'v'timelike w E M:; 
g(X, Z) = g( Y, Z) 'v' instantaneous observer (x, Z). (b) In practice, it can happen 
that an instantaneous observer has available a device-for example, aset of 
Geiger counters-for measuring the energy of partides but not one for measuring 
3-momentum. Thus in Section 3.1.2, suppose z = yu and we have instantaneous 
observers (z, Z), (z, Z'), ... at z. Let e, e', ... , respectively, be the energy each 
measures for y. Show from (a) that given sufficiently many such measured values 
there exists at most one corresponding energy-momentum y.u E M.; that in 
practice there exists exactly one can be regarded as a law of macrophysics. 

EXERCISE 3.1.7 

Suppose g' is a Lorentzian inner product on Mx, x E M. Show: (a) If g'(X, X) = 
g(X, X) 'v' causal XE Mx, then g' = gx. (b) g'(X, X) = 0'1 lightlike XE Mx iff 
g' = agx for some a E (0, (JJ). 

3.2 Partide flows 
Without yet attempting to describe matter models in general we give an 
example. Suppose we have an enormous number of partides, each having 
the same rest-mass m E [0, oo). Suppose, intuitively speaking, there is no 
"random motion" so that all the energy-momenta near any one point are 
nearly equal. Examples are a very cold gas streaming smoothly in space 
(m #- 0) or a laser beam (m = 0). Then the following idealization is often 
useful. 

Definition 3.2.1. A partic/e flow (P, 7]) of rest-mass m is a function 7]: M -)0 

[0, oo), called the world density, and an energy-momentum vector field 
P: M -)0 TM such that each integral curve of P is a partide of rest-mass m. 

Thus P is future pointing and g(P, P) = - m2• The integral curves of P are 
called partic/es (potentially) in the partide flow. The main idea is that the 
world density 1) specifies, in a "smoothed-out" way, how many partides are 
actualIy present (Exercise 3.0.5). To make this explicit, suppose p) is a space
section (Section 3.0.1). Then N = J2) i(1)P)U is defined as the total number of 
partic/es in !!). In the cases of interest N» I 'Ip) of interest so one does not 
demand N be an integer. 

Suppose, intuitively speaking, no partides in (P, 1)) are being created
for example, from other kinds of partides-or destroyed, for example, by 
radioactive decay. Then it is appropriate to demand the integral conservation 
law Ja.;/" i(1)P)U = 0 for all causal boxes .;v or, equivalently, the differential 
conservation law div (1)P) = 0 (Section 3.0.2). One says the partide world 
density 1) is conserved iff div (1)P) = O. 
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3 Electromagnetism and matter 

EXAMPLE 3.2.2. Let (1R4, g) be Minkowski space, 1): 1R4....,.. (0, oo) be COO, and 
suppose m E (0, oo). Then (m04' 1)) = (P, 1)) is a partide flow of rest-mass m. 
The total number of partides in the space-section 2} given by 

{u4 = a, Jl (U/l)2 ~ I} 
is m f91)(U\ u2, u3, a)dul du2du3• 1) is conserved iff div (1)0 4) = 0 iff (41) = 0; 
in this case the above total number is independent of a. 

For purposes of Newtonian analogues one might regard mT), rather 
than T), as number density, as the example suggests. But for m = 0 
this does not work. eT) would work but depends on a gratuitously 
introduced instantaneous observer who measures e. T) is best. 

GeneraIIy, and roughly, speaking the equations of physics are supposed 
to have the property that in so me sense" the present determines the future." 
As an example we analyze div (1)P) = O. Suppose (M, g) and P are given, 
with P a future-pointing vector fie1d and g(P, P) = -m2, mE [0, oo). 
Suppose .p: N....,.. M is a spacelike imbedding, with N a 3-manifold. Suppose 
each inextendible integral curve y: rff....,.. M of P intersects.pN for exactly one 
u E I!. Suppose we are given, as initial data, aC'" function 1)0: N....,.. [0, oo). 

Propositloo 3.2.3. There is at most one partide flow (P, 1) such that div (1)P) 
= 0 and 1) o.p = 1)0. 

PROOF. Suppose x E M. There is exactly one y as above such that: (a) YO E .pN, 
and (b) yu1 = x for at least one u1 E C. In fact, u1 is then unique: since y is 
an integral curve of a vector fie1d, yul = yu2 implies y(u2 - Ul) = yO E .pN, 
which in turn implies u2 - ul = 0 by our hypotheses. 

Now suppose 1) exists and define functions f = 1) 0 y: e....,.. IR and j = 

(div P) 0 y: e ....,..IR. We have div (TJP)fl = d[i(TJP)fl] = d[1)i(P)fl] = dTJ 1\ 

[i(P)fl] + TJ(div P)fl = [dTJ(P) + TJ div P]fl (Exercise 3.0.6). Hence 0 = 

div (TJP) = dTJ(P) + TJ div P; restricting to y gives f' + Jj = 0 and we also 
have f(O) = TJo1> -lyO, say f(O) = a E [0, oo). Since e is connected we can 
simply integrate the ordinary differential equationf' + Jj = 0 to get 

TJx = fu l = a exp r - f1j(U)dU l 
Thus if an TJ exists its value at each x E Mis uniquely determined by (M, g), 
P, and TJO. 0 
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In fact an T) does exist, but showing this requires, among other 
things, a C'" proof here omitted; in later examples we shalI give existence 
proofs. 

In a physical context, it may not be kosher to assume (M, g), much 
less P, given since (P, T)) may "influence spacetime" (Chapter 4). For 
the moment we are sticking to the simplest formulation. 

Given (M, g) and P there need not exist an imbedding "': N -+ M 



3,3 Stress-energy tensors 

meeting our conditions. However, in the simplest special cases-for 
example, when (M, g) is globally hyperbolic as defined in Section 8.3-,p 
always exists. For example, if M is Minkowski space or Einstein-de Sitter 
spacetime, choosing ,pN as the level surface u4 = 1 works for any P. 

3.2.4 Electric charge and photon beams 
If (P, 7]) is a partide fiow of rest-mass m we shall heneeforth assume eaeh 
partide (potentially) in (P,7]) has the same eleetrie eharge e E IR. We some
times write (m, e, P, 7]), with e the electrie eharge of and (m, e) the type of the 
partide flow. In particular we define a photon beam as a partide fiow of type 
(0,0). 

EXERCISE 3.2.5 

Let (M, g) be a simple cosmological spacetime (Example 1.4.3) with :F = (0, oo), 
n: (0, oo) ->- (0, oo) be a e <xl function; and suppose mE (0, oo). Set P = m04, 
1J = (ljm)n 0 u4 • (a) Show (P, 1J) is a partide ftow of rest-mass m. (b) Show 1J is 
conserved iff there is an a E (0, oo) such that n = aR - 3. (c) In the Einstein
de Sitter case-that is, Ru = u2J3-interpret n = aR-3 physically in terms of 
integrals over appropriate space-sections (Section 3.0.1) and the "expansion of 
the universe" (Proposition 2.3.7). (An answer: "no partides appear or disappear 
so their world density must decrease as the comoving observers run apart".) 

3.3 Stress-energy tensors 

We now introduce a conceptually difficult, mathematically easy concept 
which will dominate the later chapters. The conventions of Seetion 3.0.3 are 
in foree; for example, if t is a (2, O)-tensor field on M, the physically equi
valent (0, 2)-tensor field is denoted by E. 

3.3.1 Formai dejinition 
Formally, a stress-energy tensor on spacetime M is merely a symmetric 
(2, O)-tensor field t on M such that t(w, w) ~ 0 V causal I-form w E Mx, 
"Ix E M. Physically, more is involved, as we now discuss. 

3.3.2 Earlier concepts 
A stress-energy tensor replaces and unifies the following prerelativistic con
cepts. Energy of eleetromagnetism and/or matter, induding rest-mass contri
butions as in Section 3.1.2, per unit 1R3 volume; momentum per unit 1R3 
volume; energy fiux; and momentum fiux, which eorresponds to stress, in 
fact to the pair (pressure, anisotropic stress). Henee the term "stress-energy" 
(or in some references "energy-momentum") as an abbreviation. The pre
relativistic quantities were found independently. They are observer-dependent 
and quite messy even in simple situations, as illustrated in üptional exercises 
9.1.9 and 9.1.10. But around 1905, physicists realized, with glee, that if one 
interrelates the measurements made by observers in relative motion, a single 
coneept suffiees, as follows. 
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3 Electromagnetism and matter 

3.3.3 Measured energy density 
Suppose any instantaneous observer (z, Z) actually measures the energy in 
any unit 3-volume of his local rest space Z l (the method is indicated more 
explicitly in Definition 3.3.5 below). He is supposed to get E(Z, Z), where E 
is physically equivalent to a stress-energy tensor (Seetion 3.3.1) which is the 
same for all instantaneous observers. Thus when E is a stress-energy tensor, 
E(Z, Z) is defined as the energy density (z, Z) measures for E. That the 
observations aetually eorrespond to E(Z, Z) can be regarded as a basie law 
of macrophysics; a priori one might have found, for example, measured 
energy density = 8(Z, Z, Z) with 8 a (0, 3)-tensor on M (ef. Exereise 3.3.9); 
but one does not. In partieular, eaeh measured energy density is nonnegative, 
corresponding to E(w, w) ~ ° in Seetion 3.3.1. The measurements determine 
E uniquely in the following sense. 

PropositioD 3.3.4. Let E, E' be symmetric (0, 2) tensor fields on M and 
suppose E(Z, Z) = E'(Z, Z)V instantaneous observer (z, Z). Then E = E'. 

PROOF. Fix an instantaneous observer (z, Z). V future pointing timelike 
X E Mz, E(X, X) = E'(X, X) sinee (z, X/I XI) is an instantaneous observer 
at z. Now the set yx + e Mx of aH such X is open and eontains Z (Seetion 
1.1). Thus VW E Mx, there exists b E (0, oo) such that Z + uW E yx + Vu E 

[0, b) and then E(Z + u W, Z + u W) = E'(Z + u W, Z + u W). Differentia
ting twice with respeet to u we findE (W, W) = E'(W, W) VW E Mz• By 
symmetry (Seetion 3.3.1) Ez = E' z. But z was arbitrary. D 

Thus E(Z, Z) = measured energy density V(z, Z) can serve as an opera
tionaI definition of a stress-energy tensor E (ef. Exereise 3.1.6). Now this 
operational definition, though as general and preeise as anything else in 
maerophysies, refers to aetual measurements so it eannot be used in mathe
matieal proofs (Seetion 2.1.2). But as soon as a mathematically preeise 
matter model on Mis given, the operational definition leads to a natural way 
to a mathematieally preeise formulation. We now iIIustrate, using the only 
example as yet available to us. 

Within physics Definition 3.3.5 and the motivation below would 
count as a proposition and a proof, rather than a definition and a 
motivation, so we use the corresponding format (cf. Section 0.1.1). But 
we shall need to regard part of a tangent space as part of physical 
spacetime, and no amount of formaI machinery can really bridge this 
gap (Section 2.1.2). 

DefinitioD 3.3.5. Let (P, TJ) be a partide flow on spacetime M. The slress-
energy tensor of (P, TJ) is f = TJP @ P. 

MOTIVATION. f = TJP @ P is symmetric and C"'; V I-form w E Mx f(w, w) = 

TJx[w(P)J2 ~ 0; thus f is a stress-energy tensor (Section 3.3.1). We must 
show in what sense the measured energy density is T(Z, Z) V instantaneous 
observer Z. 

Let (z, Z) be an instantaneous observer, Xl' X2 , X3 E Zl be linearly inde-

72 



3.3 Stress-energy tensors 

pendent, and K e Z J. be the parallelipiped defined by Xl> X2, X3• By the 
definition of the matrie volume element Il (and by Seetion 2.1.2), the 3-
volume of K is V = IIl(Xl> X2, X3, Z)I > O. By the definition of to tal 
partide number in Seetion 3.2 (and by Seetion 2.1.2), the number of partides 
in K is N = (1}z)IU(Xl> X2, X3 , P)I ~ O. The energy (z, Z) measures for eaeh 
partide is e = - g(P, Z) > 0 (Seetions 3.1 and 3.2). The measured energy 
density is th us NejV (ef. Definition 3.8.4a for the motivation for simply 
adding all the energies). But pz = eZ + p, where p E span (Xl> X2, X3) 

= ZJ.. Sinee n is antisymmetrie this gives NejV = (1}z)e2 = 1}z[g(P, Z)J2 
for the measured energy density, deverly independent of the partieular 
parallelipiped chosen. 

On the other hand f = 1}P ® P al so implies T(Z, Z) = (1}z)[g(P, Z)]2. 
The argument holds V instantaneous observer (z, Z) so by the uniqueness 
Proposition 3.3.4, f = 1}P ® P as was to be motivated. 

Onee we have a formaI definition like 3.3.5 available we are baek in 
business mathematieally. We give an example. 

Propositioo 3.3.6. Let f be the stress-energy tensor of a partide flow and X 
be a causai vector field. Then T(X, X) - l(traee T)g(X, X) ~ O. 

PROOF. T(X, X) - l(traee T)g(X, X) = 1}{[g(X, P)J2 - 19(P, P)g(X, X)}. 1} 

is nonnegative by definition and the faetor in eurly braekets is nonnegative 
by the wrong-way Sehwarz inequality (Seetion 1.1). D 

As we sh all discuss, the algebraie property Proposition 3.3.6 holds 
very generally for the stress-energy tensors that arise in nonquantum 
physics and its geometric and physical consequences are very far 
reaching (cf. Exereise 4.3.7 and Section 6.2). 

EXERCISE 3.3.7 

Let Ebe a symmetric (0, 2)-tensor field on M such that E(Z, Z) is nonnegative V 
instantaneous observer (z, Z). Show E is a stress-energy tensor (Definition 3.3.1) 
onM. 

EXERCISE 3.3.8 

(a) Let J and J' be vector fields on M such that g(J, Z) = g(J', Z) V instantaneous 
observer (z, Z). As in Exercise 3.1.6 and Proposition 3.3.4, show J = J'. (b) Let 
F, F' be 2-forms on M. Thus, in the notation of Section 3.0.3, F X E Mx V X E Mx. 
Suppose jz = F'ZV instantaneous observer (z, Z). Show, much as in (a), that 
F= F'. 

EXERCISE 3.3.9 

Let (~., g) be Minkowski space and suppose that at z E~· we are given four 
instantaneous observers determined by Z = 04Z, Z± = (l/3)(504z ± 401z), and 
Z' = (1/4) X (504 z + 3iJ1z). Suppose each actually measures an energy density 
and the measured values are, respectively, U = 1, U+ = (5/3)2 = U-. and 
U' = 3. Assuming all four competent, show general relativity (and thus current 
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macrophysics) is wrong-that is, no stress-energy tensor which corresponds to 
these measurements exists. 

EXERCISE 3.3.10 

Use the definitions in Section 3.1 and the methods of Definition 3.3.5 to motivate 
in detail the following definition. Let t be the stress-energy tensor of a particIe 
fiow, (z, Z) be an instantaneous observer. 1z E M. is the energy-momentum 
density (z, Z) measures. The same definition is used for an arbitrary stress-energy 
tensor. 

3.4 Electromagnetism 

Nonquantum relativistie eleetromagnetie theory is perhaps the most elegant 
part of physies. Though it is formally simple, its applieations are weil nigh 
endless: on a human seal e eleetromagnetism is the most important of the 
four known interactions (Seetion 0.1.2). But in this book we need the theory 
primarily for baekground. In our applieations the e1eetromagnetic field will 
normally be zero, and we shall not analyze the praetieal applieations. This 
seetion merely gives two basic definitions and a little history. 

3.4.1 Charge-current density 
Formally, a charge-current density on spacetime M is just a veetor field J on 
M. But, historieally speaking, J replaees and unifies two prerelativistie eon
eepts: eleetrie eharge per unit 1R3 volume, and eleetrie eurrent density (eharge 
flux; for details on these two, see Seetion 9.1). Moreover, mueh as in Seetion 
3.3.3, we need a preseription for measuring. Suppose any instantaneous 
observer (z, Z) aetually measures e1eetrie eharge (Seetion 3.1.3) per unit 3-
volume of Zl. He is supposed to get -g(Z, J), where J is a eharge-current 
density on M. The appropriate uniqueness resuIt then holds (Exereise 3.3.8a). 
So we ean regard this prescription both as an operational definition and as a 
physical law (ef. Exereise 3.3.9). Almost exaetly as in Definition 3.3.5 one 
can motivate the following definition. Let (m, e, P, "I) be a particIe flow; the 
charge-current density of the particIe flow is J = e'TJP. For example, suppose 
the world density "I is conserved; then J obeys the differential eonservation 
law div J = 0 ("eharge doesn't get lost"). 

In the above, and throughout Chapters 3 and 4, it is useful to keep 
the following heuristic analogy in mind. J is .. a source" for electro
magnetism; a stress-energy tensor is .. a source" for gravity. The 
formaI similarities will be very strong. 

DefinitioD 3.4.2. Formally, an electromagnetic field on spacetime M is a 2-
form on M. 

In the end, only this formaI definition is essential. But an eleetromagnetie 
field replaees and unifies two prerelativistie quantities: an e1eetrie field i and 
a magnetie field li. Indeed, the simplifieation thereby aehieved was one of 
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the main original motivations for introdueing spacetimes. Reversing the 
historieal order, we now indieate the sense of the unifieation. Let F be an 
eleetromagnetie field on M, and (z, Z) be an instantaneous observer; we use 
the eonventions in Seetion 3.0.3. 

Sinee F is antisymmetrie, iz E Z 1.. E = iz is defined as the eleetrie 
veetor (z, Z) measures for F. It is kosher to imagine (z, Z) measuring the 
eleetrie veetor in Z J.. by essentially Newtonian methods-for example, using 
a "test eharge" (Alonso-Finn [2]). Now by exterior algebra there is a unique 
veetor B E Z1. such that 4! n(X, Y, B, Z) = F(X, Y) \I X, Y E Z\ where n is 
the metrie volume element (ef. the diseussion of Hodge duality in Bishop
Goldberg). B is defined as the magnetie veetor (z, Z) measures for F. 

EXAMPLE 3.4.3. Let (1R4, g) be Minkowski space. Thus there exist parallei 
referenee frames-for example, °4 ; this faeilitates the interpretations in this 
speeial ease (ef. Exereise 2.3.12). Suppose E and B are e ctJ funetions 1R4 ~ IR. 
Then F = 2Edul 1\ du4 + 2Bdu3 1\ du l is an eleetromagnetie field on Min
kowski space. UnraveHing the definitions, we find that \lz E 1R4 the eleetrie 
veetor (z, 04Z) measures for F is Eolz while his magnetie veetor is B02z. Thus 
the veetor fields EOl and B02 are, respeetively, eaHed the eleetric field and 
magnetiefield in the refereneeframe 01' Now suppose E = 0 and Bis nowhere 
zero. Then the eleetrie field in the referenee frame 04 is identieaIly zero. But 
'rIz E IR\ (z, [1/3][50 4z + 40 l z]) is an instantaneous observer who measures 
a nonzero eleetrie veetor. One thus often says: "An observer moving in a 
magnetie field observes an eleetrie veetor"; or "eleetrie and magnetie fields 
are merely two aspeets of the same thing"; or "eleetrie veetors are not 
physieaHy well-defined in the sense that two different observers at the same 
point may not eve n be able to agree on whether the eleetrie veetor is zero, 
but eleetromagnetie fields are intrinsie." 

Though thus a little unphysieal, and considerably more eomplicated 
than the relativistic theory, the 19th-century theory of eleetrie and 
magnetie fields has eonsiderable elegance in its own right. Seetion 9.1 
outlines it, and its relation to the relativistic theory, rather systematie
ally. But we suggest the reader not al ready familiar with upper-division 
physies courses on eleetromagnetism foeus attention on the simpler 
relativistic version. 

Returning now to the general ease, we note that the appropriate uniqueness 
result holds for the measured eleetrie veetor iz (Exereise 3.3.8b). For ex
ample if z is given and iz = 0 for every instantaneous observer (z, Z) at z, 
then Fz = 0, and eaeh such observer measures zero magnetie veetor as weil. 
Thus our definition of measured eleetrie veetors ean serve as an operational 
definition of an eleetromagnetic field F on spacetime M. 

A fully intrinsie, relativistie interpretation of F, which dispenses with 
instantaneous observers, is given by the Lorentz world-foree law of 
Section 3.8. 
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EXERCISE 3.4.4 

Let F be an eleetromagnetie field on M, and (z, Z) be an instantaneous observer. 
(a) Show that the measured eleetric veetor iz is zero iff F(Z, X) = 0 V X E ZL. 
(b) Show Fz = 0 iff F(Z, X) = 0 = F(X, Y) V X, Y E ZL. (e) Show that if both the 
eleetrie veetor and the magnetie veetor (z, Z) measures are zero then Fz = 0, and 
viee versa. (d) Show that one eould also regard measuring magnetie veetors as 
the primary operation-for example, that if every instantaneous observer (z, X) 
at z E M measures zero magnetie veetor, then Fz = O. 

EXERCISE 3.4.5 

On Minkowski space, suppose 
3 

F = 2 L Eadlfl " du" + 2[B1du2 " du3 + B2du3 " du1 + B3du1 " du2], 
a=l 

where Va E (I, 2, 3), Ea and na are funetions. Show that Vz E IR., (z, 04Z) measures 
eleetric and magnetie veetors E = L~ ~ 1 Ea 0az and B = L~ ~ 1 Ba 0az, respeetively. 

3.5 Matter and relativistic models 

The basie objeet of interest in mathematical general relativity is a relativistic 
model, defined as a triple (M, viI, F), where Mis a spacetime (Definition 1.3.1), 
F is an eleetromagnetie field (Definition 3.4.2) on M, and VII is a matter mod el 
onM. 

But what on earth is a maHer model on M? Sinee, as already indieated, 
there exists no precise, universal, overriding model for matter even in current 
mierophysies, let alone in maerophysics, no fully satisfaetory answer can be 
given. Willy nilly we shall have to proceed by enumeration. To make this less 
vague we now give a matter model that can be treated as generic in most 
arguments. 

It merely consists of a collection VII = {(mA' eA, PA' 7)A)!A = I, ... , N} of 
N partide flows (Section 3.2.4) on M where N is a nonnegative integer. For 
example, suppose we have two theatre spotlight beams that eross; a pair VII 
of photons beams is a reasonable mode!. By making N suffieiently large, one 
can mode! al most any form of matter. Moreover, all our other matter 
models-for example, a perfect fluid-wiII be obtained from such a collection 
by abstraction. Thus we will systematically use such a collection VII to 
ilIustrate properties shared by all matter models used in this book and by 
most used in general relativity. We now give two examples of such properties . 
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.,I{ similarly leads to more sophisticated modeis than we shall need: 
im perfect ftuids, m ~ 0 gases, plasmas, solids, and so on. Sometimes 
the physies involved is then quite tricky. For example, to get any 
reasonably detailed, fundamental model, general relativistie or not, of 
an every day objeet, such as your chair, is diffieult. Fortunately, the 
very large objeets of main interest in gravitational theory are often less 
trieky. Semiempirical models apart, we (probably) know far more about 
the inner eore of the star Sirius than we do about the eement in your 
driveway. 



3.5 Matter and relativistic models 

In the last few years, serious and fascinating attacks on the problem 
of combining quantum matter models with general relativity have been 
initiated. These models cannot be obtained from Jt above. It will be a 
long time before such models are brought into a form a mathematician 
would consider reasonably precise-probably this cannot be done unt il 
one can go whole hog and in some sense quantize spacetime itself. 

Finally, various other matter models are sometimes used mere ly for 
convenience or mathematical elegance. Most of these cannot be moti
vated by Jt, or by any other physically plausible argument either. We 
ignore them. 

3.5.1 Matter stress-energy tensors and 
charge-current densWes 

Let (M, .A, F) be a relativistic mode!. Then one always gets a matter stress
energy tensor and a charge-current density for .A. For example, suppose .A 
is a finite coIlection {(mA> eA' PA' 7)A)IA = I, ... , N} of partide flows on M. 
Then f = L~;l 'TJAPA 0 PA is a stress-energy tensor (Section 3.3.1) on M; by 
definition f is the stress-energy tensor of.lt; the motivation is as in Definition 
3.3.5. Similarly, J = L~=l eA'TJAPA is the charge-current density of.A. 

Proposition 3.5.2. Let (M,.A, F) be a relativistic model with .It a finite 
collection of particle jlows, f be the stress-energy tensor of .A. Then 
1(Z, Z) = 0 for one instantaneous observer (z, Z) iff fz = 0 iff 'TJAZ = 0 
holds for the world density 'TJA of each particle jlow in .A. 

PROOF. 1(Z, Z) = L ('TJAZ)[g(PA, Z)]2. VA, 'TJAZ is nonnegative by definition, 
and eA = -gePA' Z) > 0 as usual. D 

Suppose N #- O. The condition 'TJAZ = 0 VA is interpreted as no partides at 
Z (Section 3.2). Generalizing, suppose (M, .It, F) is any relativistic model and 
f is the stress-energy tensor of .A. We henceforth interpret fz = 0 to mean 
matter-vacuum at z: "no matter at z except perhaps 'test matter' which 
responds but does not influence." 

EXERCISE 3.5.3 

Let (M, Jt, F) be a relativistic model with Jt a partide flow (m, e, P, '1). Suppose 
(M, g) E [(M, g)], the spacetime equivalence dass; thus there is an isometry 
op: M ->- M that preserves orientation and time orientation. Let F = op. F, 
~ = 'I) 0 op, P = OP. -lP,.ii = (m, e, P, -ii). Show (M,.li, F) is a relativistic mode\. 
It models the same physical situation as (M, Jt, F); more generally, relativistic 
models are regarded as defined only up to isomorphism. 

PART TWO: INTERACTIONS 

Having introdueed the basic concepts, we now consider how electromagne
tism and matter interact and how they respond to spacetime. Heneeforth we 
sh all take the following attitude toward a relativistic model (M, .A, F). In 
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maerophysies, the spacetime M, matter model vii, and eleetromagnetie field 
F are equal partners, eaeh influeneing the others. 

3.6 Some mathematical methods 

Although we work exclusively in a spacetime (M, g) in this seetion, most of 
the resuIts and their proofs are valid for arbitrary semi-Riemannian manifolds. 

3.6.1 Indiees and the summation convention 
In the previous chapters we have managed to avoid the use of indiees. How
ever, in general relativity, the emphasis is often on very detailed properties 
of spacetimes rather than general theorems about manifolds. The amount of 
computation required sometimes make indiees indispensable, and the 
Einstein summation convention (Bishop-Goldberg 2.3) then becomes a 
convenient tool. 

Hereafter, if a lower-case Latin index, say i, appears precisely onee in eaeh 
additive term of an equation (except perhaps the term "0"), the equation 
holds for every i = I, ... , 4. If such an index appears twice in any additive 
term, onee as a subseript and onee as a superseript, a sum from I to 4 is 
impIied. We give some examples and make some simpIe observations. 

(a) /tw' = Ilw1 + 12w2 + 13w3 + hw4 = jjw' = Ikwk. 

In the remainder of Seetion 3.6.1, let {Xi} be a basis of veetor fields on an 
open set OU e M, and let {w'} be the dual basis. 

(b) Let g" = g(Xh Xj); Vi,j = 1, ... ,4, gij is a e'" funetion on OU. Let g be 
the (2,0) tensor physieaJly equivalent to g, and let g" = g(ro', roi). Then 
eaeh gH is also aC'" funetion on OU and gijg jk = Sik (ef. Exereise 0.0.I5e). 
Moreover, g 1'fI = gijWi 0 w' and g 1'fI = gifXi 0 X,. The symmetry of g 
is equivaIent to g" = g" or gil = gil Vi,j. Suppose {Xi} is orthonormal. 
Then VIL, v = 1,2,3, guv = S/ = gUV, gu4 = 0 = gU\ and gH = -I 
= gH. 

(e) Any tensor field e of type (p, q) ean be expressed in terms of {Xi} and 
{roi} 10eaIly in OU. For exampIe, 

e = et,,,.lpj, ... i.Xt, 0· .. 0 Xt, 0 roi, 0· .. 0 roi •. 

{et'''.!'" ... i.} wiJI be eaIled Ihe companents 01 e relalive 10 {XtJ, Let R be 
the eurvature tensor and Ric be the Rieei tensor. Then on OU, R = 

R}klXt 0 roi 0 rok 0 rol and Ric = Rijrot 0 roj, where Rtj = Rl/j' More
over, with gt, as in (b), the sealar eurvature on OI/ is S = gt, Rt,. 

(d) We introduee a notation for the components of the covariant derivatives 
of a tensor. If a tensor e = etikXi 0 roi 0 rok (say), then we write its co
variant differential as DC = C'iklmXt 0 roi 0 rok 0 rom, so that Dxrne = 
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Qklmx, (:9 wl (:9 wk• Thus the second Bianchi identity of the eurvature 
tensor ean be written as 

R}kllm + R}lmlk + R}mk\l = 0 

(Bishop-Goldberg p. 235). 

(e) Let {w/} ge the eonneetion form s for {w'} (Seetion 1.0.3). Then it is 
eustomary to write 

w/ = rlkjW\ 

where eaeh rk,' is a C'" funetion on 'PI. In this notation, we have 

DXk = rljkx, (:9 wi, 

and using the faet that eaeh Dx, is a derivation eommuting with eontrae
tion (Section 2.0.2c), we have 

Dw' = - rljkwj (:9 wk • 

As an example, we see that for C = CljkXI (:9 wl (:9 wk as in (d), 

C~kll = X/CliI,; + Cmjkrllm - Clmkrmjl - C'/mrmkl 

(ef. Bishop-Goldberg 5.9). 

(f) Components of physieally equivalent tensors (Seetion 1.0.1) are ob
tained from eaeh other by "raising" or "lowering" indiees. For in
stance, given a (1,3) tensor field P = PjklXI (:9 wj (:9 wk (:9 wl, the n when 
using components the (0, 4) tensor field P physically equivalent to it will 
be written as fo = P'jklWI (:9 wj (:9 wk (:9 wl, where P'jkl = g,mP1'icI' As 
another example, the (l, I) tensor field G physieally equivalent to the 
Einstein tensor G (Seetion 1.0.2) is GljXI (:9 wl , where Glj = glmRmi -
10'jS = Rl! - 10'jS, 

The reader should note the notational convention implicitIy adopted in 
the above: the components of g are gl! and not gl!, those of fo are Plikl 
and not P'jkh those of G are G'! and not {}jt and so on. 

(g) Let T be a (2,0) tensor field on M. Then (Section 3.0.3) 

(traee 1')1<11 = TlIg'j == T', == Tjj. 

A basis of vector fields {Xi} is said to be normal at x E M iff {X,x} is 
orthonormal and (DX,)x = 0 Vi. By (e), this is equivalent to requiring 
{wlx} orthonormal and (Dwi)x = 0 Vi. Given any x E M, loeally there 
exist eoordinate veetor fields {(JI} whieh are normal at x (ef. Bishop
Goldberg, Proposition 5.13.1, and Problem 5.13.1). 

(h) Let {(Ji} be coordinate veetor fields around x E M and let gl; = g( (Jb (Jj). 
Then {(Ji} is normal at x iff VfJ-, v E (I, 2,3) gllvx = Oll" 0 = gll4X = g41lX' 
g44X = -I, and «(Jkgjj)X = 0 Vi,j, k. 

Proo/. The algebraie part is straightforward. In addition, we only have 
to show: (Okg,j)X = 0 is equivalent to (Do,)x = O. If (Do,)x = 0 Vi, 
then (Okgfl)X = [okg( 0" Oj)]x = [g(Da k 0" Oj) + g( 0" Da k Oj)]x = O. 
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Conversely, suppose (o/cglf)x = OW,j, k. For rl/cl defined by D~kCIc = 
rtl/co" it is dassical that rl/ct = tgtl( o/cgl/ + 0lg/c/ - c/g/CI) (ef. Bishop
Goldberg, formula 5.11.5). Thus (o/cgt,)x = 0 Vi, j, k => rtl/cx = 0 Vi, j, k 
=> (Dot)x = OVi. D 

(i) If {XI} is a basis of veetor fields, {ro'} its dual basis, and" is a p-fonn, then 

tbt = ro l /\ D"t'" 

Proo! AIgebra shows that the right side is independent of the choice of 
{Xt}, and is hence globally defined on M. Thus both sides are tensor 
fields on M and it suffices to prove equality at each x E M. We may 
then assume that {Xt} is a basis of coordinate veetor fields normal at x. 
In this case, both sides equal 

(OtTJh ... I.)dxl 1\ dXf1 1\ ••• 1\ dxf • 

at the point x. D 

(j) Let 1) be al-form, 2-fonn, and 3-fonn suceessively. Then 

(dIJ)" = !(1)JII - 1)llf)' 

(dIJ)lfk = t(1)fJlk + 1)kllf + "IfkII), 

(d")lfkl = t("Iifkll - "IfJllk - "liiki' - "I/Jkll)' 

This is just a specialization of (i). 

3.6.2 Divergence 

Let C be a skew-symmetric (p, O)-tensor field on M, where we regard each 
function (p = 0) and eaeh veetor field (p = I) as skew-symmetrie. For p ~ 1 
we generalize Section 3.0.1 b, defining the interior product operator i( C) for 
C as follows. Let ro be a q-form, q ~ p, and Iet Zl' ... , Zp be arbitrary vector 
fields. Then by definition, i(Zl /\ ... /\ Zr,)ro is the (q - p)-form sueh that 

[i(Zl /\ ... /\ Zp)ro](W1, ... , Wq_p) 

q' 
'( ~ )' ro(Zr. ... , Zp, Wr. ... , Wq _ p), p. q p. 

for all veetor fields W1 , •• • , Wq _ p • i(C)ro is then defined for a general C by 
foreing i(C)ro to be linear in C with respeet to C'" funetions. For p = 0, 
that is, C is a funetion-we define i(C)ro = Cro. 

Let C be a (p, O)-tensor field, p ~ 1. The divergence of C, denoted by 
div C, is the (p - 1, 0) tensor field obtained from C by eontracting the last 
two variables of DC. Equivalently, if {XI} is a basis of veetor fields in olf e M 
and {rol} is the dual basis, then 

div C(lj/l, ... , '1'1'-1) = DC(lj/l, ... , '1'1'-1, roi , X,), 

for all I-forms '1'1, ... , '1'1'-1 in Olf. From the definition of div C, it follows 
that if C is skew-symmetrie, so is div C. 

Sinee M happens to be orientable, there is an altemate deseription of 
div C available when C is skew-symmetrie (ef. Section 3.0.2). Let D be the 
metrie volume element. We c1aim: If C is a skew-symmetrie (p, 0) tensor field, 
p ~ 1, then d(i(C)D) = i(div C)D. 
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Proo/. We wiII verify this equaIity at an arbitrary x E M. Choose loeal 
eoordinates {Xl, ... , x·} so that {Of} is normal at x. Sinee both sides of the 
inequality are linear in C over ~, it suffiees to eheek the equality for 
C = JOf1 II •.. II Ofp where il < ... < ip and J is some C'" funetion in 
this eoordinate neighborhood. 

From this point on, the proof is a silly eomputation involving the 
eombinatorial properties of permutations on the indiees il, . .. , ip. It 
would therefore be more enlightening if we illustrate this proeedure by 
a speeial ease. Thus let p = 2 and assume for definiteness that C = 
JOl 1\ 02. By definition of exterior produet (ef. Seetion O.O.5d and 
Bishop-Goldberg 2.18), we have 

C = tJ( 01 @ 02 - 02 @ 01)' 

In view of the normality of {Of} at x and the formulas in Seetion 3.0.le, 

(div C)x = [t(od)ol - tCOd)02]X. 

Now flx = (dx l 1\ ••• 1\ dxf)x, so 

i(div C)n) = t[( od)dx2 II dx3 1\ dx· + (od)dx1 II dx3 II dx']x. 

On the other hand, 

[i(C)n]x = t(fdx3 II dxf)x 
so that 

d(i(C)n)x = t([( off)dxf] II dr II dx")x 
= t[( oIl)dx1 II dx3 1\ dx" + (od)dx2 II dx3 II dx4 ]x. D 

3.6.3 Killing veetor fields 
A veetor field X on M is a Killing veetor field iff Lxg = O. 

(a) X is KilIing iff eaeh member of its ftow is loeally an isometry (Bishop
Goldberg 5.11.5). In partieular, a one-parameter group of isometries 
always induees a KilIing veetor field (Bishop-Goldberg 3.5). 

(b) X is KilIing iff g([X, W), Z) + g(W, [X, Z)) = Xg(W, Z) for all veetor 
fields W, Z. 

This is an immediate eonsequenee of the faet that Lxg = 0 and the faet 
that Lx is a derivation of tensor fields eommuting with eontraetion. 

(e) X is Killing iff g(DwX, Z) + g(W, DzX) = 0 '<IW, Z E Mx, '<Ix E M. 

This follows from (b) and the faet that if W, Z are veetor fields which 
extend W, Z to a neighborhood, then DxW - DwX - [X, W] = 0 = 
DxZ - DzX - [X, Z] and Xg(W, Z) = g(DxW, Z) + g(W, DxZ). 

(d) X parallei => X Kiliing. This follows from (e) (ef. Exereise 2.3.12). 

(e) If y: ~ - M is a geodesie and X is Kiliing, the n g(y., X) is a eonstant. 

Indeed, aeeording to Proposition 2.2.2, YUO E~, [(d/du)g(y., X)]uo = 
g(Dy.uoY.' X) + g(y., Dy.u~X) = g(y., Dy.uoX) = 0, where the last equality 
is by (e). 

81 



3 Eleetromagnetism and matter 

EXERCISE 3.6.4 

(a) Let T be a (p, q)-tensor field on M with p > O. Let the eomponents of T be 
Ttl" .. tPI1 ... lq' We define div T to be the (p - I, q )-tensor field given in eom
ponents by 

(div T)tl· .. tp-liI ... lq = Ttl· .. tp-lklt ... lqlk' 

Show that for q = 0, this eoineides with the definition given in Seetion 3.6.2. 

(b) Show from the second Bianehi identity (Seetion 3.0.1 d) that if G is the (2, 0) 
tensor field physieally equivalent to the Einstein tensor G, then div G = O. 

(e) Let ebe a (p, O)-skew-symmetrie tensor field. If p 2: 2, show div div e = o. 

Suppose w is ap-form, p 2: I. Let w be the (I, p - 1 )-tensor field 
physieally equivalent to w. Then div ei) is equal to ow (up to a universal 
eonstant), where 0 is the eo-differential of Hodge theory whieh lowers the 
degree of forms by 1. 

(d) Suppose that 'VA E (1,2), 17A is a funetion M -+ ~4 and PA is a veetor field. 
Use the definitions, the ~ linearity and Leibnitz properties of a eovariant 
derivative and (a) to show: 

div (171Pl Q9 Pl + 172P2 Q9 P2) 
= [div (171Pl)]Pl + [div (172P2)]P2 + 171DplPl + 172 Dp2P2 • 

EXERCISE 3.6.5 

Let Z = ztxt be a veetor field on tlIJ e M, where {Xt} is a basis ofveetor fields on 
tlIJ; thus (Section 3.6.1f) Zt = gt/Zf. Show Z is Killing iff Zil! + Zm = O. 

EXERCISE 3.6.6 

Let X be a Killing veetor field. Show that if X vanishes on an open set, it vanishes 
identically. 

EXERCISE 3.6.7 

Let y: ef -->- M be a geodesie and let X be a Killing veetor field on M. Writing 
W = X 0 y, prove that Dy,2W = Ry,wY., where R is the eurvature tensor of M 
(ef. Proposition 2.3.3.). 

EXERCISE 3.6.8 

Show: (a) In loeal eoordinates al is Killing iff OlgU = O. (b) On Minkowski 
space at is Killing Vi. (e) On Einstein-de Sitter spacetime au is Killing V iL E (I, 2, 3). 
(d) On a normal Sehwarzschild spacetime or Schwarzschild black hole, %t is 
Kiliing; moreover, V Killing veetor field on the ordinary 2-sphere (Seetion 0.0.9), 
there exists a "eorresponding" spacetime Killing veetor field. (e) In (b) and (e) 
there are Killing veetor fields that are ~-Iinearly independent of the ones mentioned 
(hint: eonsider rotations). (f) (Hard) In (d) every Killing vector field is ~

linearly dependent on those mentioned. 
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EXERCISE 3.6.9 

Show that if X and Yare Killing veetor fields, then so is [X, Y]. 

3. 7 Maxwell's equations 

We ean now analyze the inHuenee of spacetime M and of matter on eleetro
magnetism. Thus let (M, .A, F) be a relativistie model (Seetion 3.5), J be the 
eharge-eurrent density 3.5.1 of the matter model .A. We use the notation of 
Seetion 3.0.3 for the e1eetromagnetie field F. The basie laws for the inHuenee 
of M and .A on F are as follows. 

Definition 3.7.1. (M, .A, F) obeys Maxwell's equations iff: (a) F is cIosed
that is, dF = 0; and (b) div F = 4rrJ. One then ealls J the source of F 
and also says the triple (M, F, J) obeys Maxwell's equations. 

Historieally speaking Definitions 3.7.1a-b replaee and unify the four 
e1assical Maxweil equations: the Biot-Savart-Ampere-Maxwell law 
V x jj = - j + (1/c)(oElot) for the magnetie field jj generated by 
eurrents and displaeement eurrents and three further equations. Readers 
already familiar with the e1assieal versions may find it useful to see, from 
Seetion 9.1, how they relate to the simpler equations in Definition 3.7.1. 

Sometimes one ean regard M and J as given ab initio, by negleeting the 
inHuenee of F on M and on .A. Then Maxwell's equations beeome eon
ditions that help determine F. We give two examples. 

EXAMPLE 3.7.2. A CONSTANT MAGNETIC FIELD. In Example 3.4.3 set E = O. 
Thus F = 28du3 1\ du1 is an eleetromagnetie field on Minkowski space 
(1R4, g), 8 is a funetion on 1R4, and the eleetrie field in the eovariant eonstant 
(paralleI, .. inertial") referenee frame i\ is everywhere zero. dF = 0 iff 
d8 1\ du3 1\ du l = 0 iff ;\8 = 0 = 02 8. Suppose dF = O. Then (M, F, J) 
obeys Maxwell's equation for zero souree J iff div F = 0 iff d[i(F)D] = 0 iff 
d(8du2 1\ du4 ) = 0 iff °38 = 0 = °18 iffthere is a eonstant Bo E IR such that 
F = Bodu3 1\ dul iff F is paralleI iff the magnetic field = 802 in the referenee 
frame 04 is eovariant eonstant, speeifieally b= Bo02 • 

In physies notation, jj = Boey = eonstant (Seetion 9.1). 
Such eonstant magnetie fields are very useful in physies. Roughly, the 

reasons are the following. Suppose we have any eleetromagnetie F on 
any spacetime M. Near Z E M we ean often approximate M by Min
kowski spacetime, and approximate F by a paralleI (covariant eonstant) 
tensor, in the sense of Taylor series expansion. Moreover the observed 
eleetrie veetor is often negligible sinee opposite eleetrie charges have a 
strong tendeney to eaneel out eaeh other's eleetrie effeets by eoming e10se 
together. When all these idealizations are appropriate 

F = 2[B3du l 1\ du2 + Bl du2 1\ du3 + B2du3 1\ dul ], Ba E IR 
(ef. Seetion 9.1). Choosing appropriate "spatial" axes now leads to 
F = Bodu3 1\ dul as in the example. 
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3 Electromagnetism and matter 

EXAMPLE 3.7.3. WAVES. Let (lR4,g) be Minkowski space. Suppose we have a 
situation that observers in the (paralleI) reference frame 04 would describe, 
intuitively, as folIows. Near the origin of 3-space are some e1ectric charges 
that move back and forth in the 01 direction of 3-space. An electromagnetic 
field is generated. At points on or near the u3 axis of 3-space, very far from 
the charges, where the wavefronts are nearly plane, the electromagnetic field 
is observed. We now give an e1ectromagnetic field appropriate in the observa
tion region ("wave zone"); it is not appropriate at or near the charges. Let 
f: IR --* IR be e <xl and not identicalIy zero. Define t/; = (u3 - u4): 1R4 --* IR and 
F = 2(fo t/;)dt/; 1\ du l • Thus F is an electromagnetic field (Section 3.4). We 
now show (1R4, F, 0) obeys MaxweII's equations and indieate why F is caIIed 
a plane, Iinearly polarized electromagnelic wave on Minkowski space. 

More generally, this term is applied to a 2-form F' on Minkowski 
space iff there is an isometry "': ~* ~ ~4 such that "'*F' = F, F as 
above. 

A special case, which may be famiIiar to some readers, islu = A sin wu, 
A, w E (0, co). Introducing the electric and magnetic fields (Section 3.4) 
and using physics notation (Seetion 9.0) this gives E = Aex sin w(z - et), 
ii = Aey sin w(z - et). Then A is called the amplitude, and w the 
angular Irequeney of the wave, with the paralleI (inertial) referenee frame 
04 understood. 

In fact we have dF = (f' 0 t/;)dt/; 1\ dt/; 1\ du1 = O. Moreover, F = 2(f 0 t/;) 
x (03 + (4) 1\ 01' Our definition 3.6 of div thus gives div F = Ol(f 0 t/;) -

(03 + (4)(fo C/» = 0 - 0 = O. Thus (~\ F, J) obeys Maxwell's equations 
with souree J = O. 

By the definitions in Example 3.4.3, the e1ectric and magnetic fields in the 
reference frame 04 are, respectively, e = f(u 3 - U4)01 and b = f(u 3 - U4)02' 
Neither depends on u l or u2 ; hence the term "plane." e is everywhere pro
portional to the eovariant eonstant veetor field °1 ; hence the term "Iinearly 
polarized." f is an arbitrary function on ~-it might be sinusoidal, for 
example-hence the te rm "wave." Note that 03, e, and b are pairwise ortho
gonal and lei = Ibl, a behavior sketched in elementary physics texts. 
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The observers in 04 regard the wave as travelling in the 03 direction. 
To see roughly why, suppose that Uo E~, thatluo > 0, and thatlhas a 
loeal maximum at uo. Then lei = 1/ 0 "'I will have aloeal maximum at 
the points for whieh u3 = u· + uo. In the (u3, ü*) plane these points form 
a line along whieh du3Jdu 4 = 1 = speed of light. The same argument 
applies to any other identifiable feature of I-say a point of infleetion. 
In this sense the observers in 04 see the wave pattem moving at the 
speed of light in the 03 direction. If J is sinusoidal, the pattem is sinu
soidal in u· for fixed u3 and sinusoidal in u3 for fixed u4 • 

By a nasty ealeulation the reader ean eheek that analogous results 
are obtained by using any other paralleI referenee frame on (~\ g, D). 
The referenee-frame-independent struetures of mai n interest are: the 
span of the lightlike veetor field Y = 03 + 04; the lightlike level 
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hypersurfaces of t/>; and the "spacetime polarization plane" Y " 0h 
which determines a two-dimensional lightlike subspace in each tangent 
space. 

We now introduce the stress-energy tensor E of an electromagnetic field F 
on M. E is by definition the (0, 2)-tensor field on M whose components are 
given by Ef} = (l/41r)[FtmFt - (l/4)gtfP"Fml] (Section 3.6.la,b,f). Once we 
have investigated the influence of electromagnetism on matter we sh all show 
how E heI ps one keep track, roughly speaking, of the way energy flows back 
and forth between matter and F. For the moment we de al only with the formaI 
properties of E. Notation is as in Sections 3.0.3 and 3.6.1. 

Proposition 3.7.4. (a) t is symmetric and trace t = O. (b) t(w, w) ~ 0 for 
every causal l-form w. (e) Jf (M, F, J) obeys Maxwell's equations, then 
div t = -jJ. 

PROOF. (a) is straightforward. For (b), we first show that teen, en) ~ 0 'rl 
timelike I-form en. Replacing en by en/lenl if necessary, we may assume that 
lenl = I. Locally, choose an orthonormal basis of I-forms {ent} so that 
en4 = en. Observe that relative to {ent}, gaD = gaD = ~aD' ga4 = ga4 = 0 for 
I ~ a, f3 ~ 3, and gH = gH = -I (Section 3.6.lb). Hence paB = FaB = 
FaB = FaB for I ~a, f3 ~ 3, while pt = -P4 and F4t = -F\ In the 
following argument, we let a, {3, y run from I to 3 and such a repeated Greek 
index (even if both are superscripts or subscripts) will imply summation 
from I to 3. The skew-symmetry of F will be used without comment. 

41rt(en, en) = 41rEH = PllF\ + tFmllFmll 
= paF\ + t(P"F41I + FallFall) 
= paF4a + HpaF4a + FnaFna) 
= F4a F4a + t( - F4a F4a + F4a F4a + FBa FDa) 
= F4aF4a + H _paF4a _ paF4a + FBapa) 
= l F4a F4a + tpa FDa ~ O. 

Thus (b) is proved if en is timelike. To prove (b) in general, it suffices to show: 
if w E Mx· and w is lightlike, then t(w, w) ~ O. There exists a sequence of 
timelike Wt in Mx· such that w, eonverges to w as i ~ oo (compare Seetion 1.2). 
We already know that Vi, t(wj, w,) ~ O. Thus 

t(w, w) = lim t(wj, w,) ~ o. 
1-'" 

Finally, we prove (e). We have to show E'f li = - F'mJm. By Section 3.6.lj, 
dF= o = Ff}lk + Fjkll + Fki1i = O. Moreover,div/= 41TJ=F~1J = -41rJm 
(Exereise 3.6.4a). Thus, using gli 1k = 0, we have: 

41rE"ji = (Ffmpm)[f - t(g" FmnFmn)li 
= F~lipm + P mpmli - tg'f pmlllJFmn - ag" FmllFmllli 

-41TJmpm + pmlJPm -lg"FmllFmnli 
= -41TpmJm + g'kFkmliFim -lg'kFmilkFmi. 
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3 Eleetromagnetism and mattel' 

Now, glkFkm"FJm = !glkFkm,,(FJm - Fm') = _!glkFmJ(FkmlJ - FkJ1m). 
Thus, 

EIJI! = ~ {_4npm Jm - !glkFmJ(FkmlJ - FkJlm + Fmi1k)} = - PmJm. 0 

By Proposition 3.7.4a,b, E is a stress-energy tensor (Seetion 3.3.1) on M. 
It is defined as the stress-energy tensor of the eleetromagnetie field F. 

The reader may eheek from Seetion 3.4 and the proof just given 
that V instantaneous observer (z, Z) the measured energy density 
E(Z, Z) is (l/81T)(IEI2 + IBI2), where E and B are the eleetric and 
magnetie veetors (z, Z) measures. In faet E unifies and replaees the 
classical energy density (l/81T)(E2 + jj2), Poynting veetor (l/41T)E x jj 
and Maxweil stress tensor (Seetion 9.1). 

There are elegant integral versions of Maxwell's equations, as follows. Let 
J be a veetor field on M, D be the metrie volume element on M (Seetion 
3.0.2), and F be a 2-form on M. 

Propositioo 3.7.5. (M, F, J) obeys Maxwel/'s equations iff: (a) Ja~ i(I')D = 
47T J~ i(J)D for every space-section ~; and (b) Ja~ F = 0 for every space
section [l)./n that case: (e) div J = 0 and, equivalently, L~=l JaJ, i(J)D = 0 

for every causal box (Sec/ion 3.0.1). 

PROOF. div F = 4711 iff d[i(F)D] = 4ni(J)D iff (a) holds; dF = 0 iff (b) holds 
(Seetions 3.0.1 and 3.6.2). Moreover, if div F = 47rJ then 

div J = (l/47r) div div F = 0 

(Exereise 3.6.4c); by Seetion 3.0 div J = 0 is equivalent to the integral eon
servation law stated. D 

When J is any eharge-eurrent density and ~ is a spaee-seetion J~ i(J)D 
is defined as the electric charge in [l) for J (ef. Seetion 3.2). (a) Says that when 
Maxwell's equations hold, the eleetromagnetie field cIeverly registers on the 
boundary of p2 the eleetrie eharge in P2. The differential and integral eon
servation laws in (e) are interpreted as eonservation of eleetric eharge. 
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One pre-relativistie analogue of (a) is Gauss' law of eleetrie flux 
Q = fE· dÄ (" measure eleetric eharge in avolume by eounting eleetric 
flux lines through the boundary 2-surfaee"); one such analogue of (e) 
states "the e1eetric eharge in avolume at a later time is that at an 
earlier time minus what has been earried through the surfaee"; see 
Seetion 9.1 for these and other analogues of a-e. Beeause of the simil
arity between (a) and (b), dF = 0 is often referred to as the hypothesis 
that there are no magnetie monopoles. Reeent experiments suggest 
this hypothesis may possibly need modifieation. 
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EXERCISE 3.7.6 

Let (M, g) be Minkowski space with the u4-axis deleted. Let r: M ->- (0, oo) be 
defined by r = (2:~=1 UVUV)1!2, and, for eE~, define F = (41T)-ler- 2dr" du4 • 

(a) Show that (M, F,O) obeys Maxwell's equations. (b) Let re e M be an im
bedded submanifold homeomorphic to the 2-sphere. Show that if re is contraet

ible, f~ i(hn = O. (e) Give an example of a re such that f~ i(F)n = e. (d) Give 
an example of an instantaneous observer who observes a nonzero magnetic 
veetor. (e) Show that no instantaneous observer observes zero eleetric veetor. 

F in Exereise 3.7.6 is the electrie field of a point charge at rest; the 
deleted u4-axis eorresponds to the history of the point eharge. (d) Shows 
that" an observer moving in an eleetric field observes a magnetie field." 

EXERCISE 3.7.7 

1 
(a) Show that for the plane wave F of Example 3.7.3, ~ = 41T (fo .J»2Y (9 Y, 

where Y = 03 + 04' 

Note from Section 3.3 that the stress-energy tensor of a photon beam 
likewise has the form t = '1 Y (9 Y, where '1 is nonnegative and Y is 
lightlike. Electromagnetic waves and photon beams are intuitively 
related, mathematically independent models for light. However, the 
intuitive interrelation involves quantum theory, so we shall not discuss 
it in detail. 

EXERCISE 3.7.8 

Let (M, g) and (M, g') be spacetimes. They are conJormal iff g' = Jg for some 
C'" funetionJ: M ->- (0, oo). (a) Suppose «M, g), F, 0) obeys Maxwell's equations 
and (M, g') is conformai to (M, gl. Show «M, g'), F,O) obeys Maxwell's 
equations. (b) Let (M, g) be Einstein-de Sitter spacetime. By considering u = 
3(U4 )1/3, show (M, g) is conformai to the open submanifold ~3 x (0, oo) of 
Minkowski space with J = (U*)'I3. (e) Use (a), (b), and Example 3.7.3 to find an 
F on Einstein-de Sitter spacetime (M, g) such that (M, F, 0) obeys Maxwell's 
equations. Show that then the energy density E(Z, Z) a comoving instantaneous 
observer (z, Z) measures is small (for a given value of J in Example 3.7.3) when 
the" eosmologieal time" u4z is large. 

Such waves have apparently been wandering around the universe 
sinee very early times, and observing them is our main empirieal 
handie on eonditions near a big bang. (e) says, roughly, that the wave 
gets weaker as the universe expands. In our detailed diseussion (Chapter 
6) of these effects we will use photons, rather than waves, but a wave 
model gives equivalent results; eompare the preceding fine print 
comment. 

EXERCISE 3.7.9 

Suppose E(w, w) = 0"1 causal w E M •. Show Ez = 0 = Fz. 
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3.8 Partide dynamics 
In nonquantum relativity there are three basie laws for partides: the Lorentz 
world-force lawand two eonservation laws. We now diseuss them. 

Throughout the seetion E is a given electromagnetie field on spacetime 
M and the eonventions in Section 3.0.3 are used. Thus if y: tff -+ M is a 
partide (Seetion 3.1), Fy* is a vector field over y with Fy*u E (y*u).l Vu E .c. 

Since then g(y*, y*) = -m2, we also have (Dy.y*)(u) E (y*u).l. The inftuence 
of (M, g, D) and E on y is given by the following replacement for Newton's 

F = ma. 
Definition 3.8.1. A partide (y, m, e) on M oheys the Lorentz world-force law 

with respeet to E iff eFy* = Dy.y*. 

The simplest, and physiealIy most fundamental, way to interpret the law 
is by using it directly, as in Proposition 3.8.2, Theorem 3.8.3, and so on. 
But, historically speaking, the law ineorporates the effects of electric, mag
netic, and gravitational forces. To see roughly what was involved, suppose y 

obeys the lawand assume for brevity the rest-mass of y is one. Then y is an 
observer (Seetion 2.1) with world-acceleration Dy.y*. Moreover, Vu E.c, the 
electrie vector the instantaneous observer (yu, y*u) measures is E = Fy*u; 
thus eFy* in Definition 3.8.1 corresponds to the electrie Cou10mb force eE of 
elementary physics. Now one ean (but need not) rewrite this Cou10mb foree 
eE in terms of the eleetrie and magnetie veetors some other instantaneous 
observer (yu, Z) at yu measures. It then takes one a more eomplicated form, 
first pointed out by H. A. Lorentz in 1897 (and written out explicitly in 
Section 9.2.4). Thus the law reads: (Coulomb-Lorentz foree) = (unit mass) 
(world-aeeeleration). Hence the term "Lorentz world-force law." Finally, 
recall that gravity is built in automatically, mainly via D. For example, if 
e = 0 the partide is freely falling. 

EXAMPLE 3.8.2. The following special ease of the Lorentz world-foree law is 
used in discussing nudear magnetie moments, radio signals from quasars, 
and many other processes. It is thus relevant from nudear physies to eos
mology-from lengths of 10- 24 second s to those of 1018 seeonds (42 powers 
of 10). 

Suppose (~\ g) is Minkowski space, Bo E (0, oo) and E = 2Bodul 1\ du2• 

Then (M, E, 0) is a key example of an (M, E, J), whieh obeys Maxwell's 
equation (Example 3.7.2). Let (y, m, e) be a partide on ~4 with nonzero 
rest-mass m. Define w = (eBo/m) E ~. 

Proposition 3.8.2.a y: tf -+ ~4 obeys the Lorentz wor/d-jorce law with respect 
to E iff there is a y E ~4 and a, b, <fo E ~ such that Vu E tf, 

yu = y + (a sin [wmu + <fo J, a eos [wmu + <fo J, bmu, II + a2w2 + b2 I l /2mu). 

88 



3.8 Partide dynamics 

PROOF. Abbreviate d(u' 0 y)/du by jf and d2(u' 0 y)/du2 by y'. Substitutingg = 

L~=l duP l8l duP - du4 l8l du\ F = 2Bodu1 1\ du2 , and Da,c, = 0 into the 

Lorentz world-force law Dy.Y. = el"y., we get by algebra: 

By elementary integration, using the fact that m :/: 0, we obtain: there exist 
y E ~4 and a, b, e, .fo E ~ such that 

yu = y + [a sin (wmu + .fo), a cos (wmu + .fo), bmu, emu], 

Vu E C. Since g(y •• Y.) = -m2 is equivalent to 

3 

(j4)2 = m2 + L ~yP, 
p=l 

D 

To get an intuitive picture of this result, we take C = ~, and tabulate the 
world-line y~. its projection IX into {(ul, u2 , u3 , O)}, and its projection f1 into 
{(ut, u2 , 0, O)}. 

t 
1 )~ 
~ 

I ' 
I " : \ 
I \ 

d/-, i ' .... 
... 

I ... , 

I ' 
I 

I o 
a=O=b a=O:/:b a:/:O=b a=l=O:/:b 

y~ straight line straight line helix helix 
IX point straight line eirele heJix 

f1 point point eirele eirele 
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R3 

R' 
(R' is hard to draw in this case) 

a is the path Newtonian intuition assigns to the partieule; in the 
general ease a :F 0 #- b, one therefore says the particle spirals around 
the direction W of the magnetie field Iines (Example 3.7.2). For example, 
eharged particles in the magnetie field of the earth spiral from pole to 
pole. Similar motions are also observed in laboratory plasmas and 
inferred for eleetrons in a metal subjeeted to an external magnetie field. 

Note that the proper time ds required to go onee around the eircle 
is ds = mdu = 21T/W. W = 21T/ds is ealled the (angular) "synehrotron 
frequency." The term refers to stiil another applieation-namely, eertain 
high-energy-particle aceelerators that use a magnetie field. Now suppose 
our radio teleseopes reeeive radio waves from a quasar. It is basically 
the synehrotron frequeney of eharge particles moving in a magnetie field 
near the quasar that determines the (angular) frequeney of the received 
radio waves. However, complicated corrections for the .. frequency 
ratio" (to be defined in Chapter 5) are required to get the actual 
answers. 

The way in whieh the Lorentz world-force law here interrelates 
different aspects of nature is satisfying. Perhaps Nature's mottos are 
"unity in diversity," "Iess is more." Perhaps her use of Lorentzian 
metrics and the Lorentz world-force laware prime examples. Perhaps, 
on the other hand, not. She is every san e human's delight, but no man's 
whore. 

We now give a "present determines the future" resuIt (ef. Proposition 
3.2.3). For a partide, the appropriate formulation is to take as given: 
(M, g, D), a partide type (m, e), an eleetromagnetie field F on M, an x E M, 
and a future-pointing W E Mx such that g(W, W) = _m2 • 

Thoorem 3.8.3. (a) There is precisely one inextendible curve y: tff -+ M such 
that (1) YO = x, (2) 1'.0 = W, and (3) Dr.y. = eFy •. (h) (I', I WI, e) is a 
partide on M. (e) I' depends on W in a Coo manner, in the following sense: 
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Let W be aC'" vector field defined in aC'" imbedded submanifold .% and 
let Y~ be the inextendible curve of (a) such that (Yy).O = Wy. Then given 
any x E %, there exists a neighborhood oll of x in .% and an e > 0 such that 
the assignment (u, y) -+ y~u is a well-defined Coo mapping: (-e, e) X 

oll -+ M. 



3.8 Partide dynamics 

The neatest proof uses the properties of a second-order differential 
equation X: TM ----+ TTM (Bishop-Goldberg p. 246). We give a more 
elementary version. 

Prao! We first prove (a). Let {Xl} be eoordinate funetions around x such 
that xl(x) = O'<li, and let W = WI(ÖIX), F = F\jdxl <9 dx' (FII = -FII). 

If y is the sought-for eurve, let us write: yl == Xl 0 y, yl == dyl/du, 
yl == d2ylJdu2 • Then (1)-(3) are, respectively, equivalent to: 

(la) ylO = 0, 
(2a) riO = WI, 
(3a) '92 + (riik 0 y)ylyk = e(F'/ o yW, 

where the riik are the eonneetion eoeffieients defined by 

DÖjÖk = PiköI. 

(3.6.1e). (3a) is a system of ordinary differential equations satisfied by 
{yl} with preseribed initial eonditions (la) and (2a). Thus both loeal 
existenee and uniqueness are guaranteed by the basie theorem of such 
equations. Equivalently, loeal existence and uniqueness of ay satisfying 
(1)-(3) of (a) are now established. The existenee of an inextendible such 
y follows by standard arguments using Zorn's lemma. 

We next prove (b). From (a) we know ly.OI = 1 WI. It suffiees then 
to show that 

d 
dt g (Y., Y.) = O. 

The left side equals 

g(Dr,y., Y.) + g(y., Dr,y.) = 2g(Dr,y., Y.) = 2g(eiy., Y.) 
= 2eF(y., Y.) = 0, 

where we have used (3) of (a) and the skew-symmetry of F. This proyes 
(b). 

(e) follows from the proof of (a) together with the observation that 
solutions of ordinary differential equations are known to depend on 
their initial eonditions in a C'" manner. 0 

In addition to being kicked around by M and F, particles also influence 
each other, in collisions. Even the emission of light by your lamp can be 
regarded as due to collisions in which photons are created. We now give the 
appropriate definitions. 

Suppose, in pool, a eue ball hits the eight ball. In the simplest ease, 
eaeh just flies off in a new direction. But one ean also have situations 
where they blow eaeh other to smithereens. The laws we shall give 
apply equally to both possibilities. In order to state the laws in full 
generality one takes the following view toward the simple ease. At the 
eollision point the ineoming balls are both destroyed, a new eue ball is 
ereated, and a new eight ball is ereated. Then the smithereeos ease is 
wholly similar exeept that what is ereated are the fragments. Our laws 
will imply, inter alia, that at a spacetime point a partide eanoot simply 
appear (or disappear) without any other partides being around. How
ever, they will not predude partides from sneaking into or out of 
spacetime" at the edges" (ef. Example 1.4.3). 
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3 Electromagnetism and matter 

Let y: 1- M be a future-pointing curve and set b = lub I, with -oo < b 
~ oo. X E M is a future endpoint of y iff yu approaches x as u approaches b. 
Since M is Hausdorff, y has, at most, one future endpoint. Even if b is finite 
it may have none. Past endpoints are defined dually. y is endless iff it has 
neither a future nor past endpoint. 

Let [JJ be a finite collection {ey, m, e)} of partides. To avoid the physically 
uninteresting possibility of partides that "wiggle themselves to death" 
assume that each y E [JJ that has a future endpoint also contains it-that is, 
if y: e - M has a future endpoint then lub e E e, in particular lub e < oo. 
Assume the dual condition on past endpoints holds. Then x E M is defined 
as a coJ/ision event for [JJ iff x is an endpoint, future or past, for some rE fJ'. 
Suppose x is a collision event for fJ'. r E [JJ is destroyed (== incoming) at x iff 
x is the future endpoint of y. In that case yb = x for b = max I, and r.b is 
well-defined. Similarly, r E [JJ is created (== outgoing) at x iff x is the past 
endpoint of y and then r.a, a = glb e, is weil defined. Given x, we denote the 
subset of partides destroyed at x by in(x) e [JJ and define out(x) dually. 

out 

in 

Definition 3.8.4. A finite collection f!jl = {ey, m, e)} of partides on M is 
consistent iff the above restrictions on endpoints hold and for each collision 
event x for f!jl the following conditions hold: 
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(a) CoJ/ision conservalion law of energy-momentum, Lln<X) y.b = Lout<x)y.a; 
(b) Collision conservalian law of electric charge, Lln<x) e = Lout<x) e. 

The eollision eonservation law of e1eetrie charge is intuitively related 
to the ditferential eonservation law div J = 0 in Seetion 3.7, but 
mathematieally independent of it. 
Newtonian analogue. Definition 3.8.4a is Iike three Newtonian laws: 
mass eonservation, energy eonservation, and momentum eonservation. 
But Definition 3.8.4a is an improvement: it agrees with observations, 
is observer-independent, and ean be applied to rest-mass zero partides. 
Compare Seetion 3.1 and üptional exercise 9.2.3. 



3.8 Partide dynamics 

From a mieroseopie point of view, a eollision is often a eomplieated pro
cess. The eonservation laws in Definitions 3.8.4a and b are very important 
beeause they lead to predietions even when a eollision is imperfeetly under
stood. For example, in 1930--31 eollisions were observed that appeared to 
violate Definition 3.8.4a. Pauli postulated a new kind of particle, the neutrino, 
whieh eould balanee Definition 3.8.4a as an outgoing particle. More than 
twenty-five years later, neutrinos were first observed "direetly,"-that is, as 
ineoming particies. 

EXAMPLE 3.8.5. A eollision with onlyone ineoming particle is a decay. The 
simplest interesting eollision is the deeay of a pi-nought meson into two pho
tons. One particle (IT, m, 0) is incoming, with m = 273 eleetron rest-masses. 
Two photons a and f3 are outgoing. In the following, Z E M is the eollision 
event and all vectors lie in M z• We c1aim: Definitions 3.8.4a and b hold iff 
there is a spaeelike unit vector W E Mz such that g(7T., W) = 0, a. = (7T.j2) 
+ (mWj2), and f3. = (7T.j2) - (mWj2). 

The "if" assertion is trivia!. To show the eonverse, ehoose an instantan
eous observer (z, Z) with Z E span 7T •. Let e", ea, eB and p", Pa, PB be the 
respeetive energies and 3-momenta observed by (z, Z); note that Z E span 7T. 
<0> p" = O. Algebra shows that Definition 3.8.4a and b hold iff e" = m = 
ea + eB, ea = I Pal > 0; eB = I Pol > 0, Pa = - PB' More algebra gives 
ea = mj2 = eB, and then the general solution claimed. 

In practice, one usually regards the incoming energy momentum 11". 
as known and wants to solve for a. and f3 •• Since W is not unique, the 
collision conservation laws do not give a unique answer. They also do 
not predict various other features; for example, what is the average 
proper time /lü a pi-nought meson lasts before decaying as above? 
Most of the conservation laws we have introduced and shall later 
introduce are .. essentially universal" but, as here, .. give only partial 
information ... 

To get more detailed information, one must use experiments and/or 
quantum theory. For example, both observation and quantum theory 
indieate that the above decay oceurs isotropiealIy in the sense that 
each possible W is equally probable (cf. Section 2.1). Moreover, 
observations show /lü ~ 10 - 16 seconds; quantum theory ean be used 
to estimate this value, but not to ealeulate it preeisely. 

3.8.6 Remarks 
(a) In our applieations all particles introdueed will obey the Lorentz world
foree law. The reason is that in relativity it is not useful to introduce forees 
ad hoc, as the .. push of a rigid rod" is introdueed in Newtonian theory 
without worrying too mueh about the physies involved. UnIess one stieks to 
the aetual forees found in nature, the danger of producing nonsense-for 
example, by implicitIy assuming influences that ean trave! faster than light
is too large. But the only known forees in nature are gravity, eleetromag
netism, and those that require quantum models (Seetion 0.1). The Lorentz 
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3 Electromagnetism and matter 

world-foree ineorporates the first two; the two eollision eonservation laws 
above ineorporate quantum laws to the extent that quantum laws ean be 
systematieally ineorporated into maerophysies. 

(b) The only particle sets of fundamental interest are the eonsistent ones. 
Almost every observed process ean be modelled, at Jeast roughly, by aset 
(M, F, &'), where &' is a eonsistent particle set and eaeh particle in &' obeys 
the Lorentz world-foree law with respeet to F. In partieular, eomparing such 
models to observations supplies the main motivation for using a Lorentzian 
metric g, an electromagnetic field F, and the Lorentz world-force law; it al so 
indicates how g and F are in principle measured. 

A sufficient (though not necessary) condition for such amodel to be 
useful is that none of the following plays a dominant role in the process 
being modelled: the (strong) nudear interactions (Section 0.1.2); the 
weak interactions (Section 0.1.2); and a quantum effeet known as the 
Pauli exdusion principle (Messiah [I)). 

We give an example of how the use of such models relates to the 
measurement of g and F. Roughly, the idea is the following. V partide 
type the Lorentz world-force law determines a second-order differential 
equation X: TM ~ TTM (ef. Bishop-Goldberg, p. 246). Imagine, say, 
that the electric charge is zero. Then one can appeal to a theorem in 
geometry (Ambrose, Palais, and Singer [I]; Dombrowski [I)) that X de
termines at most one symmetric affine connection. If X determines a 
symmetric affine conneetion, and if that eonneetion eomes from at least 
one Lorentzian metric g, one gains confidenee in the theory and in 
addition has a good handIe on the actual g. 

EXERCISE 3.8.7 

Verify Theorem 3.8.3 for the special case of Example 3.8.2 by exhibiting y 
explicitly in terms of x and W. 

EXERCISE 3.8.8 

To analyze collisions, one often uses a "center of mass frame." Let 9' be a con
sistent partide set, Z E M be a collision event, (z, Z) be an instantaneous observer, 
and {p} be the set of 3-momenta observed by (z, Z). Z is called a center of mass 
frame at Z iff 210 (l) P = o. (a) Show that there exists no center of mass frame at 
Z iff all (y, m, e) E in (z) u out (z) have m = 0 and all their energy-momenta at 
z are proportional to each other. (b) Show that if a center of mass frarne exists, 
it is unique. (e) Show that the center of mass frame eould be defined by the 
alternate condition 20ut (z) P = o. (d) Suppose m :I: 0 for every incoming partide 
at z; write the center ofmass frameZ as a weighted average of{y.b/ly.bll yE in (z)}. 
[The center of mass frame is sometimes al so called the average world-velocity of 
in (z).] (e) For (y, m, e) in in(z) and Z the center of mass frame, let V E Z.t be the 
partide's Newtonian velocity observed by (z, Z) (ef. Seetion 2.1.6). It is called the 
random 3-velocity of the particle. Let e be the energy observed by Z. Show 
2ID(Z) e = LID(ZJ m/(l - I V/ 2)ll2 ~ LIn(z) m. (f) Find the center of mass frame in 
Example 3.8.5. 
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3.9 Matter equations: an example 

EXERCISE 3.8.9 

Only in one speeial ease ean the concept of partide energy be extended to indude 
what might be ealled gravitational and eleetromagnetie potential energy. This 
speeial ease provides an instruetive exereise that will be used in Seetion 3.11 to 
analyze diffieulties with the concept of total energy in general relativity. Let IX be 
a I-form, and X be a future-pointing timelike Killing veetor field such that 
L"IX = O. (a) Show that dIX is an eleetromagnetic field F on M which satisfies 
LxF = O. (b) Let (y, m, e) be a partide that obeys the Lorentz world-force law 
with respeet to F. Show that - g(y., X) - (e!2)(IXX) 0 y: tff -->- IR is a eonstant. 
(e) Let fJ' be a eonsistent partide set, eaeh of whose partides obeys the Lorentz 
worId-foree law relative to F and let x be a collision event. For each (y, m, e) E 9, 
let ey be the eonstant in (b). Show LtD (x) ey = LOU~(X) ey. 

If I X I -->- I at "spatial infinity," ey is sometimes called the "total 
energy" of (y, m, e), which indudes its rest-mass energy, its kinetie 
energy, its gravitational potential energy, and its electromagnetic 
potential energy. One then has in mind a (z, Z) such that z E y and 
Z E span (Xz), so that - g(y •• Xz)!1 Xzl (= - g(y., Z» is the partide 
energy observed by (z, Z), and -(e/2)(IIX)z/IXzl (= -(e/2)IXZ) is by 
definition the eleetric energy for y observed by (z. Z). The Newtonian 
analogue of - (e/2)IXZ is the Newtonian electric energy !e<p, where <p is 
the Newtonian eleetrostatic potential (ef. Seetion 9.3). 

3.9 Matter equations: an example 

To model the influenee ofspacetime, electromagnetism, and matter on matter 
one needs matter equations. Postponing a general discussion until Section 
3.12. we start with an example. Throughout this seetion (M,.It, F) is a rela
tivistic model, with.lt = {(mA' eA, PA. '7,J I A = I, ... , N} a finite colleetion of 
partide flows. 

3.9.1 The simple matter equations 

In view of the comments in Section 3.8.6, it is often appropriate to assume 
VA that each partide (potentially) in the Ath partide flow obeys the Lorentz 
world-foree law. Since eaeh integrai eurve of PA is such a partide, the formal 
condition is: (a) DpAPA = eA/PA VA = I, ... , N. 

Suppose in addition there is no creation or destruetion of any of the 
partides (potentially) in any of the flows-no eollisions, in partieular no 
deeays, no direet influenee of matter on matter at all (Seetion 3.8). This might 
occur, for example, for a dilute mixture of hydrogen, helium, and photons 
in intergalactic space. Then, as in Seetion 3.2, it is appropriate to assume: 
(b) div (7]APA) = 0 VA = I, ... , N. We shall say (M,.It, F) obeys the simple 
matter equations iff (a) and (b) hold. 

Let f be the stress-energy tensor of .It, and P. be that of F. To motivate the 
discussion in the next seetion, we need the following result. 
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3 Eleetrornagnetisrn and rnatter 

Proposition 3.9.2. Suppose (M, ,,(f, F) obeys the simple matter equations and 
Maxwell's equation. Then 

div(t + t) = o. 
PROOF. div t = -iJ = -12. eATJAPA (Seetions 3.7 and 3.5). div t = (by 
Seetion 3.5) div 2. TJAPA Q9 PA = (by Exercise 3.6.4<1) 2. {[div (TJAPA)]PA + 
TJADpAPA} = (by Seetion 3.9.1) 0 + 2. TJAeAFPA. Thus div (f + t) = O. D 

EXERCISE 3.9.3 

Let J oo the charge eurrent density of ..K E (M, ..K, F). Show: (a) if (M, .,(f, F) 
obeys the sirnple rnaUer equatioDs, div J = 0; (b) if (M,..K, F) oOOys Maxwell's 
equations, div J = O. 

3.10 Energy-momentum 'conservation' 

This seetion analyzes a point relevant to our later diseussion of matter 
equations. Throughout the seetion (M,,,(f, F) is a relativistie mode!; we 
abbreviate by writing D = t + t, where t is the stress-energy tensor of "I{ 
and t is that of F. It follows that D is a stress-energy tensor on M. From the 
example of the previous seetion we know that div D = 0 in at least one 
re!evant situation. But sinee D is a symmetrie (2, O)-tensor, there is in general 
no natural way to integrate JJ or interpret div JJ = 0 via integral eonserva
tion laws, in eontrast to the situation in Seetions 3.2 and 3.7. We begin with 
the proposition which, for a long time, led physieists to overlook or slur over 
this distinctly unweleorne difference. Notation is as in Seetions 3.0.3 and 
3.6.1. 

Proposition 3.10.1. Let X be a KiIling veetor jield and suppose div D = O. 

Then div (DX) = O. 

PROOF. Sinee JJ is symrnetrie, DI! = DU. We have 

div (DX) = (DljX!) I I = (DU Xj)11 = DHuXj + DU Xm 
= D!IUXj + !(DH + D!I)Xm = 0 

since Djlll = 0 by div D = 0, while XIIi + Xiii = 0 (Exercise 3.6.6). D 

3.10.2 Energy conservation in special relativity 
Suppose M is Minkowski space. Then there exists a parallei (covariant 
eonstant) referenee frarne X; for example, X = i)4' Eaeh such referenee 
frame is Killing (Seetion 3.6.3). We have div JJ = 0 iff g(X, div D) = 0 V such 
X (ef. Exercise 3.1.6) iff div (DX) = 0 V such X (ef. Proposition 3.10.1) iff the 

following integral conservation law holds V such X: L~ = 1 Iil. i(DX)D = 0 V 

causa I box (Section 3.0.2). Now given any spaee-seetion ~, in particular 812 

above, and any parallei referenee frame X, f!'J i(DX)!J. is defined and inter-
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3.10 Energy-momentum' eonservation' 

preted as the total energy in p) of Jt and F for the referenee frame X. The 
reader ean eheek that if p) happens to be everywhere orthogonal to X this 
eorresponds directly to our Definition 3.3.3 of measured energy density. 
With this interpretation, there is overwhelming theoretieal and empirieal 
evidence that the above integral eonservation law, ealled the to tal energy 
conservation law, always holds when gravity is negligible. Thus one always 
assumes div D = 0 when Mis Minkowski space-that is, in speeial relativity. 

A eonerete example of eonservation of total energy is that of an 
antenna, where the energy of the eleetromagnetic field gets eonverted 
to the kinetie energy of the motion of eleetrons. Although we have 
formally interpreted the physieal signifieance of div DX = 0 only for a 
timelike X, this equation al so has signifieanee for a spaeelike X. Indeed, 
in Minkowski space, there are four KilIing veetor fields eorresponding to 
translations (04 timelike, {01, 02, 03} spacelike) and six Killing vector 
fie\ds U'Ol + U104' and so on, eorresponding to a natural basis of the 
Lie algebra of the Lorentz group SO(3, 1). The ten corresponding 
integral eonservation laws are then divided into: one law of total 
energy conservation, three laws of total momentum conservation 
(these four correspond to the translations), three laws interpreted as a 
statement about the center of mass of a system, and three laws of 
total angular momentum conservation (these six correspond to the 
Lorentz group). As far as is known, there are no fully analogous con
servation laws in general relativity, as we now diseuss. 

3.10.3 Energy-momentum • conservation' 

In general there are no nonzero Killing veetor fields on M. Similarly, suppose 
Mis Einstein-de Sitter spacetime (Example 1.4.3); then there are no timelike 
ones. To see this let S be the sealar eurvature. Then X KilIing ~ (by Seetion 
3.6.3a) dS(X) = 0 ~ (by the expression of S) du4(X) = 0 ~ (by the form of 
g) X spaeelike. In the absenee of KilIing veetor fields the argument in Seetion 
3.10.2 fails miserably. 

Nonetheless, in a systematic treatment one always demands div D = 0 
anyway. Among the interrelated motivations are the following. (a) In a 
region so small eurvature is negligible (Seetion 2.1.2), the laws of speeial rela
tivity are observed to hold. (b) When spacetime has one of several speeial 
properties-for example, has a timelike Killing veetor field, an integral 
formulation ean be ressureeted (ef. Example 3.8.9). (e) Proposition 3.9.2 and 
ahost of analogous results. (d) The eollision eonservation law (Definition 
3.8.4a). (e) If one postulates Einstein's field equation (Chapter 4), div D = 0 
is a eorollary. div D = 0 is ealled the differential energy-momentum • con
servation' law, where we have added single quotes as a reminder that no 
honest integral eonservation law is in general implied. 

The interrelation between (e), (d), and (e) is very similar to that 
between Exereise 3.9.3a, Definition 3.8Ab, and Proposition 3.7.5c for 
the case of a charge-current density. 
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3 Electromagnetism and maUer 

As mentioned in Seetion 3.8, eonservation laws have great pre
dictive power. It is a shame to lose the special relativistic total energy 
conservation law (Seetion 3.10.2) in general relativity. Many of the 
attempts to resurreet it are quite interesting; manyare simply garbage. 

EXERCISE 3.10.4 

Suppose: M is Einstein-de Sitter spacetime;.,I{ = (m, 0, mZ, 1]) is a partide How 
with m t= 0 and Z the comoving reference frame; and F = O. (a) Show t = 

pZ lZi Z, where p = m21] is the energy density a comoving instantaneous observer 
measures for t. (b) (M,.,(t, F) obeys the differential energy-momentum 'con
servation' law iff p = (u')-2h where h:M-+[O,oo) is a function such that 
Zh = 0 (" the matter energy density decreases as the universe ages "). 

3.11 Two initial value theorems 

We state two theorems similar to Proposition 3.2.3 and Theorem 3.8.3 and 
prove the harder one. The second, easier, theorem is needed to iIIustrate one 
point in the next seetion. Mathematieally, none of the material in the present 
seetion will be used at all later. The first theorem eoncerns Maxwell's 
equations. 

Suppose the following data are given: (a) a spacetime M; (b) a charge
eurrent density J on M such that div J = 0; (e) a eoordinate neighborhood 
0/1 c: M ; (d) an imbedded three-dimensional spaeelike submanifold C/J: il" -+ 0/1. 

In order to state the final item of the given data, we need some notation. 
Let a 2-form Fo over.p be given. Define a 2-form ,p*Fo in il" by: (,p*Fo}x = 

c/J*(Fox), "Ix E il". Let 10 be the (2, O)-tensor field over C/J physically equivalent 
to Fo (Section 2.0.1) and let D be the volume element of M; one similarly 
defines c/J*[i(/o)(D 0 C/J)] (ef. Section 2.0.1) as a 2-form in il". Suppose that we 
are al so given (e) a 2-form Fo over C/J which satisfies: (el) d(c/J*Fo) = 0 in il" 
and (e2) d(.p*[i(/o)(D 0 C/J)] = %.p*[i(J)D] in il". 

Theorem 3.11.1. Given (a)-{e). For 0/1 sufficiently small, there exists a unique 
2-/orm F on 0/1 such that F 0 C/J = Fo and (0/1, F, J) obeys Maxwel/'s equations. 
Conversely, if(o/I, F, J) obeys Maxwell's equations andJor 4>: il" -+ 0/1 as in 
(d), we define Fo = Fo 4>, then (el) and (e2) are valid. 
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(el) and (e2) are called constraint equations. It is mainly the fact 
that one must cope with these equations which makes the theorem 
trickier than most similar ones that arise in physics. 

Newtonian analogue. Suppose M is Minkowski spacetime and use the 
Newtonian notation (Section 9.0) for the electric field E(i, t), magnetic 
field B(x, t), charge density u, and current density j. Let 11" be a small 
open set of the hyperplane ui. = 0, regarded as an open set 11" in Euclid
ean 3-space. From Section 9.1 the reader may check the following: 

(el) - (V. B)(x, 0) = OVi E if". 
(e2) - (V. E)(x, 0) = 41TU(i, O)Vi E if". 



3.11 Two initial value theorems 

The first part of the theorem says that if j, u are given for all time t 
and they obey the equation of continuity, and if E, E are known "Ix E 11' 
at t = 0 and they satisfy the equations V. E = 0 and V. E = 41TU at 
t = 0, then there exist unique E(x, t) and E(x, t), defined for It I < e, 
such that E(x, 0) and E(x, 0) agree with the given values and such that all 
eight classical Maxwell's equations for E(x, t) and E(x, t) are satisfied 
for Itl < e. 

We rema rk that the following proof uses some mathematical back
ground which is not in Bishop-Goldberg [1]. 

Proof of Theorem 3.11.1. Let us first dispose of the second statement. 
Suppose (crt, F, J) obeys Maxwell's equations. Since Fo = Fo"', 
"'* Fo = "'* F, where the right side is just the usual pull-back of forms. 
Thus 0 = "'*(dF) = d("'*F) = d(",*Fo), whieh is (el). Since div t = 41TJ, 
Section 3.6.2 =oo d(i(F)D) = 41Ti(J)D. Applying "'. to both sides and 
using the fact that "'*(i(F)D) = i(Po)(D 0 "'), we obtain (e2). 

To prove the first part of the theorem, we have to introduce special 
coordinates around ",'"lY. Because "'11' is spacelike, the exponential map 
of the normal bundie of ",11' in crt is nonsingular at each x E '"lY. Taking 
"'11' to be sufficientIy small, we obtain a nonsingular one-one map 
.fo: "'11' x (- e, e) ~ crt such that "Ix E 1If, the image of {x} x (- e, e) 
is a timelike geodesic with unit tangent vectors orthogonal to ",'"lY. We 
may as welllet crt be the image of .fo so that .fo becomes a diffeomorphism. 
Introducing coordinates {Xl, x2, x3 } in 1If, we obtain coordinates 
{xl, ... , Xi} in crt via .fo such that each x4-coordinate curve is a timelike 
geodesic with unit tangent vectors orthogonal to all the level hyper
surfaces Xi = constant, and "'11' is the hypersurface Xi = O. 

In the remainder of the proof, we adopt two notational conventions. 
First we sh all agree to identify 11' with the hypersurface Xi = 0, and 
simply regard '" as the inclusion map. Second, lower-case Greek indiees 
a, {3, y, IL, v will run from 1 to 3, and any such repeated Greek index 
(even when both are superscripts or subscripts) will imply summation 
from 1 to 3. 

Now observe that the coordinate vector fields {OI} satisfy g( 04, (4) 
= -I and g( Oa, (4) = o. Let {Xd be an orthonormal basis ofvector fields 
such that X 4 = 04. Then there exist e'" funetions {apa} in crt such that 

Xa = a/op. 

Moreover, each Xa 0 '" is tangent to '"lY. Let us write the unknown 2-form 
Fas 

F = Fljrol <9 rol (FIj = - F;I), 

where {rol} is the basis of I-forms dual to {XI}. Also, let the given charge
current density J be 

J= JIXI. 

Observe that Fap = Fl = FaP, Faf = Fai = -Fat, Ja = Ja, and 
J4 = -J •. 

Retuming to Maxwell's equations, we see that dF = 0 and div F = 
41TJ are, respectively, equivalent to: 

Fljlk + Flkll + Fklll = 0, 

FI111 = 41TJI. 
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lOO 

See Section 3.6.lj and Exercise 3.6.4a. Now Fo in "lY is given. If F is to 
satisfy Fo'" = Fo, then 

"'*Fo = "'*F = (Faswa 181 wR) 0 "', 

10 = (FIiXI 181 X,) 0 "'. 

Thus making use of Fap = Fas, Fa4 = -Fa·, and so on, we see that 
(el) and (e2) are, respectively, equivalent to: 

(icI) FaPIY + Fpyla + F yalP = 0 in ir, 
(ic2) F 4ala - 4fTJ4 = 0 in il'". 
Next, we note that (ao) is equivalent to the following two groups of 
equations: 

(al) FaSly + F pyla + F yalS = O. 

(a2) FaPI4 + Fp41a + F4alP = O. 

Similarly, (bo) is equivalent to the following two groups of equations: 

(b l ) F4ala - 4fTJ4 = O. 

(b2) Fa41 • - FaSIS + 4fTJa = O. 

Thus (ici) [respectively (ic2)] is just the restriction of (al) [respeetively 
(b l )] to il'". 

Noting that div J = 0 = glkJllk = 0, we can now state the first part 
of the theorem in the following form: Given C oo functions {h ... , J.} in 
'fI, which satisfy glk J llk = 0, and given C oo functions {FI2 , ••• , F34} in 
ir, which satisfy (iCI) and (iC2)' Then for 'fI sufficiently small, there 
exists a unique set of C oo functions {FI2 , .•• , F34} in %' which assumes the 
given values in "lY and satisfies equations (ao) and (bo). 

The mai n step consists of demonstrating the existence and uniqueness 
of aset of COO functions {F12 • •••• F3 .} satisfying the initial conditions 
and only (a2) and (b2) in 'fI. Before making this preeise, let us make a 
further reduction. Let {w/} be the connection forms for {wl} so that 

DXI = X,18I w/, 
w/ = r'kIWk. 

See Section 3.6.le. Then again by Seetion 3.6.1e, 

F lilk = XkFIi - Fmjrmlk - Flmrm'k' 

Substituting this into (a2) and (b2), and using X4 = Õ4, Xa = alõs, 
we see that (a2) is equivalent to: 

(a3) õ.Fas = - a/ õyFp• + a/ õ yFa4 + ZOT, 

where ZOT (zeroth order term) is a generic symbol for any expression 
that is linear in the {}j,} and that does not involve any derivatives of 
{F,j}. Similarly, (b2) is equivalent to: 

(b3) õ4Fa4 = a/ õyFas + ZOT - 4fTJa• 

Now, our precise assertion is: let {Jh" .,J.} be arbitrary COO 
functions in 'fI, and let {F12, ••• , F34} be arbitrary COO functions in il'". 
If 'fI is sufficiently small, then there exists a unique set of C'" functions 
{FI2 , ..• , F34} in 'fI which assumes the prescribed values in "lY and 
satisfies (a3) and (b3). 

For its proof, introduce two column matriees of functions by: 

f = [F12 Fl3 F23 F 14 F24 F34)t, 
j = [0 0 0 J1 J2 J3 )t, 



3.10 Energy-momentum' conservation' 

where t denotes transposeo Define three (6 x 6)-matrices at, 0 2, 0 3 of 
e oo functions by: 

a2a 
-ala 

o 
o 
o 

o 
o 
o 
o aa = [ ~ 

o -ala -a2a 

for a = 1, 2, 3. Note that each aa is symmetric. Then a short calculation 
shows that (aa) and (ba) are equivalent to the following matrix equation: 

~ f = aa (~f) + bf - 41Tj ox' axa . ' 
where b is a (6 X 6)-matrix of COO functions coming from ZOTs, and 
the middle two terms are understood in the sense of matrix multipli
cation. Since each aa is symmetric, this is a symmetric hyperbolic 
system of partial differential equations in the sense of Friedrichs [1 J. 
Since {aa}, b, and j are all C." the fundamental theorem of such systems 
gu aran tees that, given j and the values of f on the hypersurface ir, a 
unique C oo solution f satisfying the initial values on iii' exists in UU 
provided UU is sufficiently small (Lax [1 J and Friedrichs [1 n. This 
proyes our assertion. 

Thus we have a unique 2-form F = F,!(JJ' 0 (JJ! (F,! = - F!,) whose 
components {F,,} satisfy (a2 ) and (b2) everywhere in UU as weil as (icI) 
and (iC2) in iii'. It remains to show that, knowing div J = 0, we can 
deduce (al) and (bl). First, define " = dF. From Seetion 3.6.1j and 
(a2) and (icI), we have 

"laP4 = 0 in 'fI, 
"laPY = 0 in iii'. 

We want to prove "lapy = 0 everywhere in 'fI. Since d" = d(dF) = 0, 
we have (again by Seetion 3.6.Ij): 

'1aR.14 = '1aR41. - '1ablR + '148.la = O. 
But 

"laPyl4 = X4"laPY - r'a4"l'PY - r'p4"la'y - r'Y4"laP' 
= Ö4'7japy - r# a4"l~PY - r# p4"la~. - r~ y4"laP~' 

Thus restricting to each x'-coordinate curve in UU, the functions {"laPY} 
satisfy a homogeneous system of ordinary differential equations (with 
x· as the variabIe). Since "laRY = 0 in ir, the basic uniqueness theorem 
governing such systems implies that hap.} vanish identically on each 
x4-coordinate curve. Hence "laP. = 0 everywhere in 'fI, proving (al)' 

The proof of (bl) is similar. Indeed, define a vector field H by 
H = div t - 411'/, where as usual t is the (2, O)-tensor field physically 
equivalent to F. Now div H = 0 because div div t = 0 (Exercise 
3.6.4c) and div J = 0 (by assumption). Thus H'u = O. But (b2) ~ 
Ha = 0 and (ic2) ~ H 4 = 0 on iii'. Thus H· 14 = 0 in 'ft and H4 = 0 
in iii'. Observe that 

H4 14 = 0 ~ X4H4 + r'41H' = 0 
~ Ö4H' + r'41H4 = O. 

Hence H4 satisfies a homogeneous ordinary differential equation on 
each x4-coordinate curve, with zero initiaI condition. Thus H4 = 0, 
which is equivalent to (bl). 0 
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Our second theorem concems matter equations. It involves neglecting the 
influence of matter on spacetime and electromagnetism so let F be a given 
electromagnetic field on M. Let (m, e) be a partide type. Suppose also given 
an imbedded 3-dimensional spacelike submanifold rp: "II' --+ M, a Coo 
veetor field PO over rp such that Poy is future pointing 'tIy E "II' andg(Po, Po) = 
-m2, and a positive COO funetion 7]0 over rp. Fix W E rp"ll' and let '11 be an 
open neighborhood of M containing w. 

Theorem 3.11.2. For '11 sufficiently small, there exists a unique Coo veetor field 
P on '11 and a unique Coo funetion 7]: '11--+ (0, oo) sueh that: (a) P 0 rp = Po 
and 7] 0 rp = 7]0; (b) .d = (m, e, P, 1J) is a partide fiow on ('11, gl<fl); and 
(e) ('11, vIt, F/<fI) obeys the simple matter equations. 

The ideas needed for the proof are in Proposition 3.2.3, Theorem 3.8.3, 
and Theorem 3.11.1; it is left as an exereise. 

3.12 Appropriate matter equations 

Let (M, .d, F) be a relativistic mode\. In general, deeiding on appropriate 
matter equations for the model involves an intricate mixture of empirical 
and theoretieal arguments, as illustrated in Chapter 6 on cosmology. More
over, in the absence of a universal matter mode!, the phrase" appropriate 
matter equations" can be made precise only on a case-by-case basis, as in 
Section 3.9 and the rest of this chapter. However, two universal criteria are 
used: 

(a) When combined with Maxwell's equations, appropriate matter equations 
always imply the differential energy-momentum 'conservation' law 
(Sections 3.9 and 3. JO). 

(b) Whenever M and F can be regarded as given, one always has a "present 
determines the future" theorem, as illustrated by Theorem 3.11.2. 

EXAMPLE 3.12.1. Suppose .d eonsists of a pair of partide flOW5, with Pl = 
2P2, whenee mi = 2m2, and with el = 2e2 . Retaining the Lorentz world
force law equations DpAPA = eA/PA as matter equations we now assume 
that the partides of type (mi, el) are decaying into partides of type (m2, e2). 
Then it is sometimes appropriate to replace the assumption in Proposition 
3.9.2 that the world densities 1Jl and "12 are conserved by the following 
matter equations: 

(a) k E (0, oo). 

Roughly: the bigger "Il' the more decays take place. These two equations 
are perhaps the simplest matter equations that take into account adireet 
influence of matter on matter. 
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3.13 Examples 

This is a (highly overidealized) model for the deeay of beryllium-8 
nudei into helium-4 nudei which oeeurs during "element cooking" in 
hot stars and probably in the early universe (Weinberg [1]). The pro
portionality eonstant k is determined by mierophysies. 

EXERCISE 3.12.2 

In Example 3.12.1, let J be the eharge-eurrent density of Jt, and () = t + i be 
as in Seetion 3.10. (a) Show div J = 0 (" partides are being ereated and destroyed 
but eleetric eharge is not "). (b) Show the universal eriterion (a) of this section holds 
-that is, if (M, Jt, F) also obeys Maxwell's equations, div tJ = O. (e) Motivate 
the faetor "2" in Example 3.12.1a direetly from the eollision eonservation laws 
of Seetion 3.8. (d) State and prove a theorem that shows that our other universal 
eriterion is al so valid, in partieular that 'ljl eannot .. overshoot" and beeome 
negative. 

PART THREE: OTHER MATIER MODELS 
In order to faeilitate access to the physics Iiterature we sh all later use so me 
other standard matter models. We now define and motivate them. This whole 
part should be treated as reference materialonly. 

3.13 Examples 

Let (M, Jt, F) be a relativistic model, f be the stress-energy tensor of .II, 
and J be the charge-current density (Section 3.5). 

EXAMPLE 3.13.1. DUST. Let (m, 0, P, 7]) be a particle flow on M with m.ll 0 
and 7] nowhere zero. Then Z = m-lp is a referenee frame on M and p = 
m- 2'TJ is a function: M -+ (0, oo). One can abstract from the examples of 
Seetions 3.5.1 and 3.9.1, throwing away the particle type (m,O), to get the 
following definitions. (M, Jt, F) is defined as a dust iff: Jt = (Z, p), where Z 
is a reference frame on M and p: M -+ (0, oo) is a e <xl function; (b) f = pZ (>9 Z 
and J = o. Z is then defined as the eomoving referenee frame. Vz E M, the 
instantaneous observer (z, Zz) measures energy density T(Z, Z)z = pz so 
p is defined as the (comoving) energy density. (M, Jt, F) obeys the dust 
matter equations iff div (pZ) = 0 = DzZ. 

Newtonian analogue. In Seetion 0.1.10 we introdueed Newtonian active
mass per unit euclidean volume, p: 1R3 --+ [0, oo), without specifying 
the mass of the individual partides whose .. smoothing out" leads to 
this p. 

EXAMPLE 3.13.2. COMPLETE MATTER VAeUUM. The preceding example is ob
tained from our canonical example of a collection of N particle flows by 
considering the case N = I, m"l nowhere zero. For N = 0 we can "abstract" 
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to get a completemallervacuum model (M,.It,F):.ltis the empty set; 
1 = 0 = J; and the matter "equations" eonsist of the remark that no 
matter is created from gravity or eIectromagnetism. Comptete matter vacuum 
is interpreted as absenee of all matter, induding "test matter" (cf. Section 
3.5). If al so F = 0, one has complete vacuum. 

EXAMPLE 3.13.3. SUPERPOSITIONS. If (M, .ltb F) and (M, .lt2, F) are reIativ
istie modeIs, then it makes sense to define their superposition (M,.It, F): 
.;I( is the pair {.;I(b .lt2}; and, in the obvious notation, 1 = 11 + 12, J = 

J l + J2 • Then .ltl and .lt2 are the components of .It. If we are given some 
matter equations for (M, .itA' F), A = I, 2, it makes sense formally to re
quire that (M, .It, F) obey the same matter equations. The superposition is 
then defined as collision-free and this corresponds to assuming no direct 
interaction between .ltl and .lt2• The generalization to the finile superposition 
of N ;;:: I relativistic modeIs with M and F fixed is the obvious one; the 
canonical examples are given by Sections 3.5.1 and 3.9.1 as before. 

The addition of stress-energy tensors and charge-eurrent densities 
is ultimately motivated by the eollision eonservation laws of energy
momentum and of eharge (Definition 3.8.4a and b). In Chapter 5, we 
shall show how to superimpose an infinite number of relativistie modeis. 

EXAMPLE 3.13.4. QUASI-GAS. For brevity, we refer to.lt as a quasi-gas on M 
iff .It is a finite superposition of partide flows on M (Section 3.5) obeying 
the following two "generic" conditions: (a) .It is a nonempty set; (b) V 
particle-flow in .;1(, the world density is nowhere zero. Here" quasi" refers 
to the fact that a true gas is, roughly speaking, described by an infinite collec
tion of particle flows (ef. Seetion 5.7). 

EXERCISE 3.13.5. 

Let (M,.H, F) be a dust with co-moving referenee frame Z and stress-energy 
tensor f, (z, X) be an instantaneous observer. Show X = Zz iff T is spatially 
isotropie for (z, X) as defined in Seetion 2.1, iff the energy density (z, X) measures 
for f is smaller than the energy density any other instantaneous observer at z 
measures for f. 

3.14 N ormal stress-energy tensors 

When analyzing eomplicated situations it is often useful, and correct, to 
assume that a stress-energy tensor singles out a referenee frame in a natural 
way. For example, we do not know a fully detailed, realistie matter mode! 
for the earth. But for eaeh point in the history of the earth, the concept of 
being at rest with respeet to the matter at that point pretty dearly has at 
least one preeise formulation (ef. Exereise 3.13.5). We now give some eorre
sponding formai results. 
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3.14 Normal stress-energy tensors 

Let f be a stress-energy tensor on M and suppose x E M. f is defined to 
be normal at x iff lx is timelike Veausal X E Mx. For example, the matter 
stress-energy tensor of a dust (Example 3.13.1) is normal at eaeh x E M. 
A nonzero X E Mx is ealled an eigenvector 01 t at x iff ix = aX for so me 
a E IR. 

~oposition 3.14.1. If a stress-energy f is norma/ at x E M, then t has a time
!ike eigenvector which is unique up to nonzero mu/tip/es. 

PROOF. Let .ef be the unit sphere on Mx relative to an arbitrary positive 
definite inner produet on Mx. Let d be the set of nonspaeelike one-dimen
sionaI subspaees of Mx. Then d n .ef has two eomponents, eaeh diffeo
morphie to the cIosed unit ball in 1R3 (Exereise 1.1.9). Take one of these 
eomponents and eall it rl. By assumption, the endomorphism i: Mx -?- Mx 
earries d into itself and henee t induees a eontinuous map I of rl into itself. 
By Brouwer's fixed point theorem,j: rl-+ rl has a fixed point, say X. Sinee 
t is normal at x, the image I consists only of timelike veetors. Henee X is 
timelike, and it follows from the definition of I that tx = aX for some 
a E IR. 

It remains to show that X is unique up to a nonzero multiple. Suppose 
not, let Z be another timelike veetor in Mx such that tz = bZ and {X, Z} 
are linearly independent. Let T be the (0, 2)-tensor field physieally equivalent 
to f as usual. Then using the symmetry of f, we have 

ag(X, Z) = g(iX, Z) = T(X, Z) = T(Z, X) = g(iZ, X) 
= bg(X, Z). 

Sinee g(X, Z) < 0 (Exereise 1.1.ge), a = b. Thus W = span {X, Z} is a 
two-dimensional timelike subspaee on whieh t aets as a pure magnifieation 
by a faetor of a. In partieular, if Y is a lightlike veetor in W, then t Y = aY, 
eontradieting the normality of f. D 

Needless to say, the preeeding proposition could be proved directly 
by linear algebra without reeourse to Brouwer's fixed point theorem. 
The result al so foJlows from Exercises 3.14.4 and 3.14.5, or else ean be 
deduced immediately from the eanonieal forms of a stress-energy tensor 
(Optional exercise 8.1.5). 

Normality is one of several standard conditions to impose on a 
stress-energy tensor. Exereises 3.14.4, 3.14.5, Section 4.3, and Optional 
exereises 8.1 give some of the other eonditions and their interrelations. 

A stress-energy tensor f on M is ealled norma/ iff it is normal at every 
x E M. A nowhere zero veetor field X on M is ealled an eigenvector field 01 

f iff there is a funetion I on M such that tx = IX; I is then called the 
eigenfunction of f eorresponding to X. 
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CoroUary 3.14.2. A normal stress-energy tensor T on M possesses a unique 
Juture-pointing unit timelike eigenvector field. 

For a dust (Example 3.13.1) the eigenveetor field is just Z. 

Proo! First note in Proposition 3.14.1 that the solution X of 
(T/ - 8/a)X' = 0 is unique (up to sealar multipies). For if we assume 
a second Iinearly independent solution, say Z, considering span {X, Z} 
again gives a eontradietion. 

Now define a (not neeessarily e"') veetor field X on M and a (not 
neeessarily eal) funetion lon M by: Xx is the unique future pointing 
unit timelike eigenveetor of T at x, and lx is the eorresponding eigen
value. It suffiees to prove that X and I are e"'. 

Fix x E M and let dIJ be a eoordinate neighborhood around x with 
eoordinate funetions {xl, ... , x4}. In dIJ, let t = Tlj al 0 0J, where the 
{TU} are e'" funetions. Sinee (1 - f)X = 0, det {T/ - 8/J} = 0 iden
tieally in dIJ. Sinee Xz is the unique solution of the homogeneous system 
of linear equations (T/z - 8Hz)(XJz) = 0, where z E dIJ and i = 
1, ... ,4, {T/z - 8Hz} is a matrix of rank 3 and henee Iz is a simple 
root of the eharacteristic equation in >.: det {T/z - 8/>'} = O. Sinee the 
eoeffieients of this polynomial equation are e'" funetions of z (beeause 
the {T/} are), a standard theorem about polynomials says that a simple 
root must al so be a e'" funetion of Z. Thus I is a e'" funetion of z in dIJ. 
Sinee being e'" is aloeal property,fis eal on M. 

Standard arguments using the faet that the above matrix has rank 3 
now show X is also eal. 0 

EXERCISE 3.14.3 

Let (m, e, P, '7) be a particJe flow on M, and let t be its stress-energy tensor. 
Suppose w E Mo·, '7z '# 0 w is eausal and t(w, w) = O. Show that pz is then 
physieally equivalent to aw for some a E IR and m = O. 

EXERCISE 3.14.4 

Let t be a stress-energy tensor on M. Thus for x E M 1x: Mx -- Mx is self
adjoint with respeet to gx (Exereise 1.0.6). Show t is normal at x iff there is an 
orthonormal basis (Xl. X2 , X3 , Z) of Mx such that tx = 2~=1 PuXu <9 Xu + 
pZ 0 Z with p" E IR and p > Ip,,1 Vp. E (1, 2, 3). 

EXERCISE 3.14.5 

Let t be a symmetrie (2, O)-tensor on a Lorentzian veetor space V and let 
t: V -+ V have the usual meaning. Reeall that asubspace W of V is an invariant 
subspace 01 t iff tw e W. Show: (a) If W is an invariant subspaee of t, so is 
W~. (b) If Wis a spaeelike invariant subspaee of t, then tl w is diagonalizable. 
(e) If W is a lightlike invariant subspaee of t, then tl w possesses a Iightlike 
eigenveetor. (d) t possesses an in variant subspaee W of dimension 1 or 2. 
[Hint: If a + v'=tb is an eigenvalue of t, let (v + v'=t w) be a eorresponding 
complex eigenveetor, where v, w E V. Then W = span {v, w} would do.] (e) 
t(w, w) > 0 Veausal w E v· iff t has a unique timelike invariant subspaee and 
t(w, w) ~ 0 V such w. 
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3.15 Perfect fluids 

3.15 Perfect fluids 

A perfect f1uid matter mode! ean be obtained by abstraeting from a quasi
gas (Example 3.13.4) of a eertain kind. We use the notation of Seetion 3.0.3 
and define a stress-energy tensor t on a spacetime M to be spatially isotropic 
at z E M iff there is one instantaneous observer (z, Z) for whom T is spatiaJly 
isotropie (Seetion 2.1.7). 

Proposition 3.15.1. Let Jt be a quasi-gas on M whose stress-energy tensor f 
is spatiaUy isotropic at each Z E M. Then: 

(a) f is normal. 
(b) f = pZ ® Z + p(g + Z ® Z), where Z is the referenee frame whieh 

is an eigenveetor jie/d of T, g is the (2, O)-tensor jield physieally equiva
lent to g, and p, p are funetions on M such that p > 0 and p ~ 3p ~ O. 
T is spatially isotropie for (z, Z) i.ff Z = Zz. 

(e) The following are equivalent: (I) pz = 3pz for one z E M; (2) p = 3p; 
and (3) eaeh component of Jt has zero rest-mass. 

Proo/. Fix a z E M and let (z, Z) be an instantaneous observer for 
whom T is spatiaJly isotropic. By Exercise 2.1.12, 

(i) tz = aZ @ Z + b", where a, b E IR and " is physieaJly equivalent 
to the projection tensor (Seetion 2.1.5). On the other hand, See
tion 3.5.1 gives: 

(ii) t = L T}APA @ PA' 

Comparing (i) and (ii) gives the foJlowing results. 

(iii) a = T(Z, Z) > 0 (Section 3.3.1, Proposition 3.5.2). 
(iv) -a + 3b = traee Tz = L(T}Az)(-mA2); 

sinee T}AZ > 0 VA this implies a ~ 3b, where equality holds iff mA = 
OVA. 

(v) 3b = hIITu = L (T}Az)h(PA, PA) (Seetion 3.6.1, Exereise 3.1.5); 

sinee Z J.. is spaeelike this gives b ~ O. 
We ean now dispose of the proposition. Suppose X E Ma. (i) im

plies 

lx = (a + b)g(X, Z)Z + bX. 

Suppose X is causa!. Then 

g(IX, lX) = [-(a + W + 2b(a + b)][g(X, Z)]2 + b2g(X, X) 
= (-a2 + b2)[g(X, Z)]2 - b21XI2 < 0 

sinee a > b by (iii) and (iv), while g(X, Z) is nonzero as usua!. Thus 
lx is timelike V nonspacelike X. This implies t is normal at z V Z E M, 
thereby proving (a). By Corollary 3.14.2, t has a unique eigenvector 
field Z which is a referenee frame. Since the above expression of lx 
implies Iz = - aZ, Z is a unit timelike future-pointing eigenvector of 
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t at z. Therefore Z = Zz by uniqueness. Sinee this holds Vz E M, the 
above expression of tz implies 

t = pZ @ Z + p(g + Z @ Z), 

where p and p are the (not necessarily C"') funetions on M such that, in 
the preceding notation, pz = a and pz = b at eaeh such z E M. Sinee 
tz = - pZ, - p is the eigenfunetion of t eorresponding to Z and is 
therefore C"'. Sinee traee T = - p + 3p by (iv), ( - p + 3p) is also C"', 
and henee so is p. The previous inequalities for a and b now give: 
p > 0, P ~ 3p ~ 0, and p = 3p ilf mA = 0 VA = 1, ... , N. This proyes 
(b). This also proyes that in (e), (1) ...... (3). (2) ~ (1) trivially. If (1) 
holds, then in our notation, a = 3b, ~ mA = 0 VA ~ (3). 0 

For 1 as in the preeeding proposition, let T be the (0, 2)-tensor field 
physicaIIy equivalent to 1. Then Vz E M, pz = T(Zz, Zz) = the energy den
sity of 1 observed by (z, Zz) (see discussion after Definition 3.3.4). Accord
ingly, we define p to be the energy density of the quasi-gas Jt. p is caIIed the 
pressure of the quasigas Jt. We refer the reader to Exereise 3.15.6 for a 
physical interpretation of the pressure p in terms of "random velocities." 

Retaining our preceding assumptions on Jt, suppose the relativistic 
model (M, Jt, F) obeys MaxweII's equations and the differential energy
momentum 'conservation' law, while the eharge-current density J of Jt is 
zero. Then, by Proposition 3.7.4c, div 1 = O. We now abstract, mueh as 
in the case of dust, to get the foIIowing. 

Definition 3.15.2. A re1ativistic model (M, .A, F) is a perfect jluid model iff 
the foIIowing hold. (a) Jt = (Z, p, p), where Z is a reference frame on 
M, and p, p are e'" funetions on M with p > 0 and p ~ 3p ~ O. (b) The 
charge-current density J of Jt is zero and the stress-energy tensor of 
Jt is 1 = pZ 181 Z + p(g + Z 181 Z). Then by definition: .,II is a perfect 
jluid on M; Z is the comoving referenee frame; p is the energy density, 
and p is the pressure of Jt. By definition: (M, Jt, F) obeys the perfect 
jluid maller equations iff div 1 = 0; and Jt is rest-mass zero iff p = 3p. 

The motivation for the terminology follows Proposition 3.15.1 and 
our discussion line by line. 
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The intuitive picture of a perfect fluid is that an enormous number of 
partide flows are present, with lots of random eollisions. Now random 
eollisions tend to establish isotropy; the following heuristie argument 
will serve as an iIIustration. 

In Newtonian physics, imagine two billiard balls which eollide; 
suppose the initial velocities are vand - v. If the eollision is head on, the 
ball s simply reeoil, with final velocities - jj and v. But if the eoIlision is 
slightly olf center, the balls fly olf in direetions dilferent from span v. 
In general, random coIlisions take us from a highly anisotropie situa
tion (all velocities in span jj) to a more nearly isotropic one (given any 
direction there is some chanee a final velocity lies along that direction). 

Thus, the stress-energy tensor t of a perfect fluid comes out spatiaIly 
isotropie at eaeh point of the spacetime. Roughly, t is obtained by 
averaging the energy momenta of all eomponents at eaeh point. 



3.15 Perfect ftuids 

We now analyze the matter equation div t = 0 aboveo Let Z be a refer
enee frame on M, and let p and p be funetions on M satisfying p + P > O. 
Define a (2, O)-tensor by 

t = pZ ® Z + p(g + Z ® Z). 

Let grad p denote the veetor field physically equivalent to dp. 

Propositioo 3.15.3. div t = 0 iff: (a) div (PZ) = -p div Z; and (b) DzZ = 

-ep + p)-l{(Zp)Z + gradp}. 

PROOF. div t = 0 

<> (pZ'ZI + pgl! + pZ'Z')li = 0, 
<> Z'li(pZ') + Z'(pZ')11 + PiigI! + PliZ'Zi + pZ'liZf + pZ'Zili = 0, 
<> pDzZ + (d iv pZ)Z + gradp + (Zp)Z + pDzZ + p(div Z)Z = 0, 
<> {d iv (pZ) + p div Z}Z + {ep + p)DzZ + grad p + (Zp)Z} = O. 

Note that the sum inside the second set of braees is orthogonal to Z, for 
the following reasons: g(DzZ, Z) = 1Zg(Z, Z) = 1Z1 = O. Moreover 
g(grad p + (Zp)Z, Z) = g(grad p, Z) + (Zp)g(Z, Z) = Zp - Zp = O. 
Thus the above equation holds iff the sum inside each set of braces vanishes 
separately. In other words, div t = 0 <> (a) and (b) hold. 0 

Very roughly, Equation 3.15.3a says that energy densities are in
creased or deereased in a way determined by the work pressure does; 
very roughly, Equation 3.15.3b says that mass density times aceeleration 
is a pressure gradient. 

Unfortunately the matter Equations 3.15.3 do not lead to an initial 
value theorem except in special cases such as that discussed in Exercise 
3.15.7 below. They must be supplemented by .. equations of state" 
whose strueture depends on the details of the physics; a huge number 
of special cases ariseo We will not eonsider or need them. 

EXERCISE 3.15.4 

Let l' be a normal stress-energy tensor on M. Show: (a) t is spatially isotropie 
at every x E M iff there exists a referenee frame Z on M and funetions p and p 
on M satisfying p > Ipl and p + P > 0, sueh that t = pZ 0 Z + p(g + Z 0 Z). 
(b) If l' is spatially isotropic, then t(w, w) > 0 V nonspaeelike I-form W. 

EXERCISE 3.1 5.5 

Show that there exists a spacetime M and a quasi-gas Jt on M whose stress-energy 
tensor is spatially isotropic at every x E M and whose pressure is nowhere zero. 
(Hint: The simplest case is a quasi-gas on Minkowski space with six eomponents.) 

EXERCISE 3.15.6 

Let Jt be a quasi-gas on M whose components all have the same partide-type 
(m, e), and whose stress-energy tensor t is spatially isotropic at every x E M. 
Let ')lA: cfA ->- M be a partide potentially in the Ath component and let Z be the 
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3 Eleetromagnetism and matter 

referenee frame guaranteed by Proposition 3.14.1. The random 3-velocity VA 
01 the Ath partide flow at z E M is by definition the Newtonian velocity of YA 
observed by (z, Zz); the energy eA 01 Ath partide flow is the energy of YA ob
served by (z, Zz) (Seetions 2.1 and 3.2). Note that eA > 0 beeause of the wrong
way Sehwarz inequality (Exereise 1.1.10). Denote the world density of the Ath 
component by 'lA, and the pressure and energy-density of the quasi-gas by p 
and p, respectively. Show: 

Roughly speaking, this exercise says: 

3p = p·laverage random 3-veloeityI2, 

whieh eorresponds to the intuitive notion that random veloeity creates 
pressure. In eosmology, the random 3-veloeity of the galaxies can be 
observed and typically I VAI < 10- 2 • Thus p « p. This exercise should 
be eompared with Exercise 3.8.8. 

EXERCISE 3.15.7 

For a perfect fluid with rest-mass zero, formulate and prove an initial value 
theorem analogous to Theorem 3.11.2. 

EXERCISE 3.15.8 

(a) Show that a perfect fiuid with zero pressure is a dust. (b) Let Jt be a quasigas 
on M and W be a referenee frame on M. Suppose that the energy-momentum 
PA of each component of Jt satisfies PA = lAW' where/A > O. Show that Jt' = 
(W, 'IIA2'1A) is a dust on M. 

EXERCISE 3.15.9 

Proposition 3.15.3 ean be generalized to inelude eleetromagnetie interaetions. 
Suppose.At is as in Definition 3.15.2 exeept that J = aZ, where a: M -IR is 
a C'" funetion. Suppose (M, F, J) obeys Maxwell's equations and we have the 
equation div (t + E) = 0, where E is the stress-energy tensor of F. Find, and 
interpret roughly, the way in which Proposition 3.15.3 is modified. 
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The Einstein fie1d equation 4 

We now eonsider the inftuenee of matter and eleetromagnetism on space
time. 

4.0 Review and notation 

Throughout this ehapter (M, vii, F) is a relativistic model (Section 3.5); 
G = Rie - !gS is the Einstein tensor of the spacetime M (Seetion 1.0.2); 
ii is the (2, O)-tensor field physieally equivalent to G (Seetion 1.0.1); f is 
the stress-energy tensor of the matter model VII (Seetion 3.5); and t is the 
stress-energy tensor for the electromagnetie field F (Seetion 3.7). T and E 
are the (0, 2) tensor fields physically equivalent to f and t, respectively. 

4.1 The Einstein field equation 

Einstein argued that the stress-energy of matter and electromagnetism 
inftuences spacetime. His specific postulate is summarized in the following 
definition. 

DefinitioD 4.1.1. (M, vii, F) obeys the Einsteinjield equation iff G = T + E. 

Although many modifieations of Einstein's field equation have been sug
gested, it is generally accepted as a basie postulate of current maerophysies. 
Many motivations for it have also been suggested. None of the motivations 
is wholly eonvineing or simpler than the postulate itself. 

Detailed discussions of the motivations are given by Misner-Thorne
Wheeler [I J and by Weinberg [I J. We briefty outline some of the mai n 
ones. 
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4 The Einstein field equation 

(a) In an appropriate Iimit the Einstein field equation beeomes the 
Poisson equation V2</> = p/2, whieh governs gravity in Newtonian 
physics (Optional exercise 9.3.2). 

(b) Assuming the equation leads to results eonsistent with observation 
(Seetion 4.2, Chapters 6 and 7). 

(e) The equation has the following eonsisteney property: div G = 0 (Ex
ereise 3.6.4b) and, for appropriate matter equations, div (1 + t) = 0 
(ef. Sections 3.9 and 3.10). 

(d) If T and E are regarded as given, G = T + E is a system of second
order quasilinear partial dilferential equations (for the components 
of the metrie tensor g; see Exercise 4.1.5). This is a standard situa
tion in physics. 

(e) The equation G = 0, corresponding to a vacuum model (Example 
3.13.2), eomes from a variational principle and leads to a "present 
determines the future" theorem (Misner-Thorne-Wheeler [Il, 
Weinberg [1]). Both of these properties are also typieal in physies. 
Generalizations to the nonvaeuum ease exist (ef. Liehnerowiez [1]). 

We shall here emphasize the physieal eonsequences and geometrie inter
pretation of Einstein's field equation, rather than historieal or philosophieal 
arguments. Seetion 4.2 indicates how loeal measurements of relative aeeelera
tions ("tidal forees") can be used to eheck the equation empirieally. Section 
4.3 diseusses a basic efIect the equation predicts: gravity tends to pull causal 
geodesics together. 

EXERCISE 4.1.2 

Suppose (M,.It, F) obeys Einstein's equation. Using Proposition 3.7.4, show 
traee 1 = -s. 

EXERCISE 4.1.3 

In special relativity, one often uses models of the following kind. ME (M, .It, F) 
is Minkowski space, F -:F 0, and T = O. Show that then the model does not obey 
the Einstein field equation. 

The idea is that the influenee of F on M is negligibly small. Gener
ally speaking, one does not have a fully systematic model uniess the 
model obeys: (a) Maxwell's equations (Definition 3.7.1); (b) Einstein's 
field equation; and (e) appropriate matter equations (Seetion 3.12). 
Only then is one taking into aeeount all the mutual influenees. But 
it is often eonvenient to be less systematie, just as one often neglects 
Jupiter's gravity when analyzing the motion of the earth around the sun. 

EXERCISE 4.1.4 

Suppose (M, .It, F) obeys Einstein's equation, F = 0, and .It is a partide ftow 
(Definition 3.2.1) with a nowhere zero world density. Show that the model 
obeys the simple matter equations in Section 3.9.1. 
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4.2 Ricci flat spacetimes 

Generalizing from this and similar cases, it is sometimes asserted 
that Einstein's and Maxwell's equations .. imply the matter equations." 
This is very misleading. In more complicated cases, some of the matter 
equations are independent of Einstein's and Maxwell's equations. This 
occurs, for example, in the models of Section 3.9.1 when N exceeds one. 

EXERCISE 4.1.5 

Show that in local coordinates the components of G can be expressed as sums 
and products of the components of g and g, first derivatives of the components 
of g, and the second derivatives of the components of g. Show that the second 
derivatives of the components of g appear linearly. 

4.2 Ricci flat spacetimes 

We now analyze how Einstein's field equation is in principle checked em
pirically. For brevity we take the special case where the equation becomes 
the geometric condition that spacetime be Ricci flat. Using the notation of 
Section 4.0, we have the following more physical characterization of this 
case. 

Proposition 4.2.1. Suppase (M, Jt, F) abeys Einstein's equatian. M is Ricci 
fiat iff T = 0 = F. 

PROOF. Suppose T = 0 = F. Then E = 0, so G = 0; by Exercise 1.4.7, 
Ric = O. Conversely, suppose 0 = G = T + E. Suppose x E M, and let 
w E Mx· be causa!. Then 1(w, w) + t(w, w) = O. By Definition 3.3.1, 
1(w, w) ~ 0, and by Proposition 3.7.4b, t(w, w) ~ o. Thus 1(w, w) = 0 = 
t(w, w) 'rl causal w E Mx·. By Exercise 3.3.4, T = 0 = E at each x E M. 
It then follows that T = 0 = F (Exercise 3.7.9). D 

Thus Ric = 0 in a region corresponds to vanishing stress-energy and 
negligible influence of matter and electromagnetism there on spacetime. 
Vacuum models (Example 3.13.2) which obey the Einstein field equation 
are the main examples. We thus define a spacetime as vacuum iff its Ricci 
tensor vanishes identically. We now show how freely falling observers can 
measure whether or not Ric = o. 

The dass of Ricci flat spacetimes is quite extensive. Minkowski 
space is flat and hence Ricci fiat. The Schwarzschild spacetimes of 
Example 1.4.2 are Ricci fiat but not fiat (Chapter 7). 

Assuming Einstein's field equation, the nonvanishing of the Ricci 
tensor implies T + E = G ,p 0 (Exercise 1.4.7) and hence matter or an 
electromagnetic field would be present. For this reason, the analysis of 
a non-Ricci flat spacetime often requires detailed discussions of matter 
theories. It is therefore sometimes convenient to focus attention on a 
Ricci fiat open submanifold (of a larger spacetime which may be not 
Ricci fiat). 

As an example, the normal Schwarzschild spacetime is simple and 
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4 The Einstein field equation 

can be used to get a good model for the history of the exterior of the 
earth. However, a complete model for the region including the interior 
and exterior of the earth would require a detailed knowledge of terres
trial matter composition, temperature variations in the earth's core, 
ferromagnetism, and so on. Things then become complicated. 

Let Q be a geodesic reference frame defined on an open subset llII e M. 
For Z E 1lII, set Z = Qz and let M z = RED T be the associated orthogonal 
decomposition (Section 2.1.3). Thus R is the local rest space for the instan
taneous observer (z, Z). Let I{Iz : R ~ R be the self-adjoint linear transforma
tion defined above Proposition 2.3.3. Thus if y: tf ~ M is an observer in 
Q with YO = Z and Wis any neighbor of y in Q, then I{Iz W(O) is the 3-accelera
tion of W relative to y at proper time zero. We define the mean relative
aeeeleration of Q to be the function a: llII ~ ~ with rule az = (l/3) trace I{Iz 
'rl (z, Z) as aboveo The next proposition gives a geometric interpretation of a. 

There is a conceptually more satisfactory definition of a explicitly 
showing it as a mean over the unit sphere //2 of R. Let , denote the 
standard volume element of //2 (Seetion 0.0.9) and let (j be the vol
ume of //2-that is, (j = J!/,2 , = 4'IT. Then one may define: 

aZ = ! r g(rPzX, X)C. 
(j. Xe!/,2 

(See üptional exercise 8.1.11.) 

Proposition 4.2.2. The mean relative-aceeleration of a geodesie referenee frame 
Q equals -(1/3) Ric(Q, Q). 

PROOF. For (z, Z) as above, let {XI} be an orthonormal basis of M z such 
that X4 = Z; let {wl } be the dual basis and R be the curvature tensor. Then 
for the rest space we have R = span {Xl' X2 , Xa}; we also have R(w\ Z, Z, X4) 

= R(w\ Z, Z, Z) = O. Using the definitions of I{Iz and Ric we now get: 
az = (1/3) trace I{Iz = (1/3) L:~=l wIJCl{lzXu) = (J/3) L:~=l R(wlJ , Z, Z, Xu) = 
(l/3) L:t=l R(w" Z, Z, Xi) = -(1/3) Ric (Z, Z). Since this holds for each 
z E 1lII, a = -(1/3) Ric (Q, Q). D 

Put intuitively, the situation is this. Imagine you are at the center of a 
big, freely falling e1evator. There is a whole bushel of freely falling apples 
floating around the elevator. The Newtonian velocity of an apple does not 
matter; what counts is the apple's observed relative 3-acceleration toward 
you or away from YOU. Now look at all those apples that are at un it distance; 
average the observed acceleration over apples. Out pops the Ricci tensor
specifically, -(J/3) Ric (Z, Z), where Z is your own world velocity. 

Proposition 4.2.3. Ric = 0 iff the mean relative-aeeeleration of every loeally 
defined geodesie referenee frame vanishes. 
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Proof. The .. only if" half follows directly from Proposition 4.2.2. 
Conversely, suppose a = 0 'rl Q as aboveo By Proposition 3.3.4, it suf
fices to show Ric (Z, Z) = 0 V unit timelike vector Z E M z , 'rl Z E M. 



4.2 Ricci fiat spacetimes 

Let .;Ii be a 3-dimensional spacelike submanifold through z such 
that the given Z is orthogonal to .;Ii at z. Let Z be a unit vector field 
defined on.;li such that Zz = Z and Zy is orthogonal to.;li at y'<ly E JV: 
Define a map tf>:.;Ii x (- e, e) ->- M by tf>(y, t) = yt, where y is the 
geodesic issuing from y with YO = y and y.O = Zy. tf> is a e'" map by 
virtue of the e'" dependence of solutions of ordinary differential equa
tions on their initial conditions (ef. the pro of of Theorem 3.8.3). At 
(z,O), tf>. is the identity on .;Iiz and carries (d/dt) onto Z. Thus rp. is 
nonsingular at (z, 0). By the inverse function theorem, tf> is a diffeo
morphism in a neighborhood of (z, 0). We may assume .;Ii and e to 
be so small that tf> is a diffeomorphism on .;Ii x (-e, e) itself. Let 
Q = rp.(d/dt). Then Q is a geodesic reference frame in image rp, and 
QI.A" = Z. Let a be the mean relative-acceleration of Q. By Proposition 
4.2.2 and by hypothesis, 

Ric(Z,Z)= -3(az)=O, 
as desired. o 

Thus in vacuum we should have zero mean relative-acceleration. 
Experimentally this result has been checked, directlyand indirectly. In 

some cases, such as the gravitational field of the sun, accuracies as high as 
one part in ten million are attained. However, in these same cases the New
tonian Iimit, discussed below, agrees with the relativistic results to almost 
as high an aecuracy. Thus the Einstein field equation is known to be an ex
tremely accurate approximation; but the deviations from Newtonian theory 
it predicts have at best been observed to an accuracy of 1'70' 

I 

l 

Figure 4.2.4a 
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4 The Einstein fieId equation 

On an intuitive level, the above physical interpretation of Ric = 0 can 
al so be given in Newtonian physics. Imagine four Newtonian point particIes 
placed at Newtonian rest in the Newtonian gravitational field of the earth 
(Figure 4.2.4a). We assume that 0 and I are collinear with the center of 
the earth, while the plane determined by 0, 2, 3 is perpendicular to the line 
joining 0 and l. We further assume that the lines joining 0, 3 and 0, 2 are 
perpendicular. Now all ow all four particIes to fall freely. Because 0 is cIoser 
to the earth than I, 0 (Newtonian) accelerates more than 1 and outruns l. 
On the other hand, since 0, 2, and 3 follow converging lines toward the 
earth center, both 2 and 3 accelerate toward O. Suppose 0 regards herself as 
at rest, then she sees the pattern in Figure 4.2.4b of the accelerations of her 
neighbors relative to herself. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

!o 
/ "-/ , 

./ , 
/ , 

3// '''-2 
Figure 4.2.4b 

Suppose we let au (fL = 1,2,3) be the Newtonian acceleration of fL rela
tive to 0 and let eu be the unit vector from 0 pointing toward fL. Then we 
see from the diagram that the dot products obey: al·el > 0, a2·e2 < 0, 
and a3· e3 < o. It is the n not unreasonable to expect that, if I, 2, and 3 are 
equidistant from 0, the sum of these dot products should be zero. In fact, 
a computation using Newton's inverse square law shows that then, 
-al· el = -!a2· e2 = 1a3· e3 > 0, which implies Lu au· eu = O. This is the 
intuitive Newtonian analogue of Proposition 4.2.3. 
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We now generalize to show that with in Newtonian theory one has 
the following: aetive mass density negligible iff V2,p = 0 (eorresponding 
to stress-energy negligible iff Ric = 0, Proposition 4.2.1); and V2,p = 0 
iff Newtonian mean relative-aeeelerations zero (eorresponding to the 
relativistic resuit, Proposition 4.2.3). 

In raet, Poisson's equation V2,p = 1nm gives: nm negligible iff 
V2</> = 0 (Section 0.1.9; we will use Sections 0.1.5 to 0.1.1 0 throughout 
the following; see also Section 2.1.2). 



4.3 Gravitational aUraction and the phenomenon of collapse 

For the second Newtonian resuit, suppose X, y: ~ ---->- ~3 are freely 
falling Newtonian point partides. Thus (Section 0.1.7): 

Let ii = Y - x and assume that the partides are nearby-that is, that 
liil is so small th~ Ta~.Ior ~~ries following are applicable. For the rela
tive acceleration ii = Y - x we have, in components: 

na = - (:~)(X1 + nt, x2 + n2, x3 + n3) 

- (:~)(xt, x2 , x3 ) 

-± (~)(X1 x2 x3)n8 + SMALL 
/1=1 Oua OU8 " • 

where SMALL is the finite Taylor series correction term. Thus for 
each t E ~, to first order: 

fl(t) = - \f'1 n(t), 

where \f't is that Iinear transformation whose matrix element s are 

(02rp/oUa OU8)(X1(t), x2(t), x3(t». 

Thus 0/3) trace \f't is the Newtonian me an relative-acceleration for 
freely falling partides near x at time t. Now trace 'rt = (V 2rp)[x(t)]. 
Thus we have: V2", = 0 iff trace 'rt = 0 for all x and all t as above. 
Thus Proposition 4.2.3 has a full analogue within Newtonian theory. 
In this sense empirical eheeks of Newtonian theory also check Ein
stein's field equation. 

EXERCISE 4.2.5 

Show that the curvature tensor of a spacetime can be completely determined 
by relative-acceleration measurements. Specifically, suppose x E M and gx are 
given. Let RE T3 1(Mx ) and R' E T31(Mx ) both have the algebraic properties of 
a curvature tensor (Section 1.0.2). Show that if RzxZ = R' zxZ 'rl unit timelike 
ZE Mx and V XEZJ. e Mx, then R = R'. 

EXERCISE 4.2.6 

Show that for each instantaneous observer (z, Z) E TM there exists a geodesic, 
irrotational reference frame Z, defined on some sufficiently small open neighbor
hood of z, such that Zz = Z. (Hint: See the proof of Proposition 4.2.3). 

4.3 Gravitational attraction and the 
phenomenon of collapse 

Newtonian intuition says that gravity aUraets, rather than repeIs. The 
Einstein field equation makes two corresponding predictions. First, for most 
of the matter models used in physics, the mean relative-acceleration (Section 
4.2) of any geodesic reference frame is negative (" inward OO). This section wiII 
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4 The Einstein field equation 

start by giving a specific example. Second, under certain circumstances, the 
attraction leads to a catastrophic coIIapse. To formulate precisely, let alone 
prove, the mai n theorems on coIIapse requires rather sophisticated global 
techniques, due mainly to Penrose, Hawking, and Geroch (Hawking-EIIis 
[I], Chapters 8 to 10). In this section we give instead an earlier coIIapse theo
rem, due to Raychaudhuri (ibid.), which exhibits some of the mai n ideas in 
their simplest form. 

Optional exercises 8.3 are intended as an introduction to the global 
techniques used in the general theorems. 

4.3.1 Assumptions 

Throughout this section, (M, .;({, F), G, Ric, S, T, E, f, E, and G are as in 
Section 4.0. To see explicitly in what sense gravity attracts, we now assume 
that (M, .;({, F) is a perfect ftuid (Definition 3.15.2) which obeys the Einstein 
field equation, leaving the similar resuIts for other cases to Exercise 4.3.7. 
Thus the matter variables are the energy density p, the pressure P, and the 
comoving reference frame Z. We have p > 0, p ~ 3p ~ 0, and G = 
(p + p)Z @ Z + PK + E. Let Q be any geodesic reference frame defined 
on an open subset 1111 e M; let a: 1111 ~ IR be the mean relative-acceleration 
of Q. Gravitational attraction shows up by the fact that a is negative. 

Propositioo 4.3.2. a ~ -(lj6)(p + 3p) - (lj3)E(Q, Q) < 0: moreover, at 
Z E 1111, the first inequality becomes an equality iff Qz = Zz. 

PROOF. Since trace E = 0 (Proposition 3.7.4), trace ii = -p - p + 4p = 

3p - p. Section 1.0.2 and Exercise 1.4.7 give Ric = (p + p)w @ w + 
t(p - p)g + E, where w is physically equivalent to Z. Thus Ric (Q, Q) = 

tp{[w(Q)]2 + [W(Q)]2 - I} + p{[W(Q)]2 + t} + E(Q, Q). By the wrong
way Schwarz inequality (Exercise 1.1.10), [w(Q)J2 ~ I, where equality holds 
iff ZI", = Q; since E is a stress-energy tensor, E(Q, Q) ~ 0, By Proposition 
4.2.3, a = -t Ric (Q, Q). Both halves of the proposition now foIIow 
algebraically. 0 
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Note that if Qz :f- Zz, the mean relative acceleration at z is even 
more negative than if Qz = Zz. Roughly, the reason is the following. 
If Qz :f- Zz, the partides in the fiuid have, on the average, some extra 
Newtonian velocity in the rest frame (Qz).l (ef. Exercise 3.8.8). From 
the point of view of (z, Qz), this corresponds, very roughly, to extra 
kinetic energy, extra activc-mass, and thus extra gravity. 

Note that the pressure contributes a negative term in Proposition 
4.3.2. This contradicts our Newtonian intuition that pressures tend to 
push things apart. The following gives a rough explanation. 

It is indeed often true that a pressure gradient grad p (Section 3.15) 
tends to push things apart. This can best be made plausible by ana-



4.3 Gravitational attraction and the phenomenon of collapse 

lyzing Proposition 3.15.3b in some special cases, but the following 
shows the idea. Suppose we have a gas in a tube with a moveable 
piston and have air outside. Then it is the pressure difference between 
air and gas-corresponding to a pressure gradient-rather than the 
air pressure alone or gas pressure alane which determines how the 
piston moves. 

But general relativity, unlike Newtonian theory, predicts that a 
pressure per se has an additional, quite different role. Roughly, such a 
pressure corresponds to so me extra kinetic energy (ef. Exercise 3.8.8) 
which generates an attractive gravitational field. Now in typical labora
tory situations, p is negligible compared to p but grad p dominates. 
Then our Newtonian intuition gives qualitatively correct results. But in 
extreme collapse situations it can (presumably) happen that the general 
relativistic, attracting, gravitational effeet of p indicated by Proposi
tion 4.3.2 is more important than the standard effects of grad p. Then 
a higher pressure merely speed s up the collapse. 

To analyze eollapse in a speeifie situation, we now eonsider the speeial 
ease of Proposition 4.3.2 where the pressure p is zero (hence .It is a dust; 
see Exercise 3.15.8) and the comoving reference frame Z is irrotational 
(Seetion 2.3). Roughly the idea is that the n there is neither a pressure gradient 
grad p nor a "centrifugal" effect of rotation to counterbalance the attrac
tion effects (Proposition 4.3.2) of gravity (see the interpretation of irrota
tionality after Proposition 2.3.4). This gives a drastic simplifieation, which 
obviates the need for global hypothesis in the elementary collapse theorem 
(Theorem 4.3.4, below) we want to proveo Formally then we have the follow
ing simplifieations (assuming zero electromagnetie field heneeforth): 

DzZ = 0 and div (pZ) = 0 (Proposition 3.15.3; in particular, all the 
observers in Z are geodesies); Z is irrotational (Section 2.3); and S = p 
(Exereise 4.1.2). 

Lemma 4.3.3 

(a) Z(div Z) ~ - pj2 - (div Z)2j3. 
(b) Zp = - p(div Z). 

In Optional exercise 8.1.10, we indieate an alternate, slick proof of the 
lemma. 

PROOF. To prove (a) let {Xl> X2 , X3} be veetor fields defined on an open 
set ÕIf of M such that {Xl' X2 , X3 , Z} is orthonormal in õIf. It suffiees to verify 
the inequality in õIf. In the following, Greek letters a, {3, IL, v will run from 
I to 3, and any sueh repeated index will imply summation from 1 to 3. 
Also, .L will stand for "is orthogonal to." 

We first note that Dx.Z.L Z, and [Z, Xa] .L z. Indeed, Z being a geo
desie referenee frame implies: 

g(DzXa, Z) = Zg(Xa, Z) - g(Xa, DzZ) = 0, 
g(Dx.Z, Z) = lXag(Z, Z) = 0, 
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and 

g([Z, Xal, Z) = g(DzXa - Dx.Z, Z) = O. 

In partieular, we may write 

Dx.Z = faoXo 

for some funetions {f/} in ~. Let {mI, m2 , m3, m} be the dual basis of 
{Xl> X2 , X3 , Z}. Then eaeh ma is physieally equivalent to Xa and m is physi
eally equivalent to - Z. This implies: 

or 

div Z = ma(Dx.Z) + m(DzZ) 
= g(Dx.Z, Xa), 

div Z = Jaa. 

Finally, if X is a veetor field on ~, denote the veetor field - DxZ by 
AzX. Thus AzXa = - flXo' Note that this notation is eonsistent with that 
of Proposition 2.3.4. By that proposition, X 1. Z => AzX 1. z. Moreover, 
sinee Z is irrotational, g(AzX, W) = g(X, AzW) V X, W 1. Z. In partieular, 
this impliesfoa = fao. With these preparations, we have: 

Z(div Z) = Zg(Dx.Z, Xa) 
= g(DzDx.Z, Xa) + g(Dx.Z, DzXa) 
= g(Rzx.Z + Drz.x.1Z, Xa) + g(Dx.Z, DzXa) 
= - Ric (Z, Z) + g(Drz.x.1Z, Xa) + g(Dx.Z, DzXa) 
= - Ric (Z, Z) - g(Az[Z, Xal, Xa) + f/g(Xo, DzXa) 
= -Rie (Z, Z) - g([Z, Xal, AzXa) + fa8g(DzXa, xo) 
= - Ric (Z, Z) + faOg([Z, Xal, Xo) + faOg(DzXa, X/l) 
= -Ric (Z, Z) + fa8g(DzXa + [Z, Xal, X/l) 
= - Ric (Z, Z) - flg(DxaZ, Xp) + 2fa8g(DzXa, Xo), 

the last equality is because [Z, Xal = DzXa - Dx.Z. Since {Xa} is ortho
normal, g(DzXa, X8) = Zg(Xa, Xp) - g(Xa, DzXo) = -g(DzXo, Xa), so 
that g(DzXa, XO) is skew-symmetrie in et and {3. But we have already observed 
thatfl is symmetrie in et and {3. Thus the sumf/g(DzXa, Xp) must vanish. 
Consequently, 

Z(div Z) = -Ric (Z, Z) - faoJl 
= -Ric(Z, Z) - {(N)2 + (f22)2 + (f3 3)2} - L (faO)2 

a~O 

~ - Ric (Z, Z) - {U/Y + (f22)2 + (fa3)2) 
~ - Ric (Z, Z) - Hfa a)2 (Sehwarz inequality) 
= -Ric (Z, Z) - t(div Z)2 
~ -lP - t(div Z)2 

where the last inequality follows from Propositions 4.2.2 and 4.3.2. 
For (b) we note that div (pZ) = Zp + p div Z (Seetion 3.0.2). D 

To interpret the lemma, we need an interpretation of div Z. Let Az be 
the linear transformation of Proposition 2.3.4 which assigns negative 3-
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velocities to neighbors. The preceding proof (or a computation using the 
definition of divergence in Section 3.0.3) shows that div Z = -trace Az. In 
this sense div Z measures how much the dust is expanding (compare the 
definition of mean relative-acceleration in Section 4.2 and Optional exercise 
8.1.11). More specifically, div Z > 0 in <?f e M indicates that the observers 
in Z are (on the average) spreading apart in <?f; similarly div Z < 0 indi
cates coming together. The two halves of the lemma can now be interpreted 
as follows: (a) the gravity generated by the energy density p of the dust drives 
the expansion-measuring function (div Z) toward less positive or more 
negative values; (b) as the dust expands or contracts, the energy density 
decreases or increases correspondingly. 

Now, retaining all our above assumptions, let y: e --J> M be an observer 
in Z. Then by Lemma 4.3.3a, (d/du)[(div Z)yu] < o. Thus there is at most 
one u E e for which (div Z)yu = O. Suppose (div Z)yu > 0 for all u E e. By 
introducing the spacetime with the opposite time orientation one can reduce 
this, mathematicalIy, to the case (div Z)yu < O. However, the preceding 
interpretation of (d iv Z) means that physicalIy there is a big difference. 
Indeed, the positive divergence case is of interest primarily in cosmology, 
where one is considering expansion from indefinitely large energy densities 
near the big bang (ef. CoroIlary 1.4.6, Example 2.3.6, and Proposition 2.3.7); 
the case where the divergence is negative for at least one proper time u is 
relevant when analyzing matter collapsing toward a black hole. But formaIly, 
we can and shaIl assume 0 E e and (div Z)yO < 0 without essential loss of 
generality. 

Then a rather grim future awaits the freely falIing observer y. Even if M 
is maximal, he must leave M in a given finite proper time. Moreover, his 
last moments may be plagued by unbounded energy density and scalar 
curvature. All these interpretations follow from the next theorem. 

Tboorem 4.3.4. Let y: [0, a) --J> M be an observer in Z with (div Z)yO = 

b E (- 00,0). Then a ::; 3/lbl .. moreover, if a = 3/lbl, 

!im fYYU = oo = lim Syu. 
"-+a. " ...... a 

PROOF. LetJ = div Z 0 y and let h = p 0 y. ThenJand h are functions defined 
on [0, a), with h > O. By Lemma 4.3.3: 

f' < -tr, (In h)' = -J 
where prime denotes differentiation. Since JO < 0 and f' < 0, J < 0 on 
[0, a). Thus (l/!Y = -f'/P> t. For U E [0, a) integrating this inequality 
from 0 to u gives -(ijb) + [11f(u)] > u/3. Thus J(u) < 3b/(3 + bu). 
limu~3/lbl 3b/(3 + bu) = - oo; since Jis defined on [0, a), this gives a ::; 3/lbl. 

Suppose nowa = 3/lbl. We have (In h)'(u) = -J(u) > -3b/(3 + bu) = 
- 3[ln (3 + bu»)' for all u E [0, a). Thus In [h(u)/h(O)] > 3 In [3/(3 + bu)] 
and thus h(u) > h(0)[3/(3 + bu)J3. Thus limu~a pyu = limu~3/b h(u) = oo. 
Since S = p, the scalar curvature also approaches infinity. D 
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4 The Einstein field equation 

The eoneeptual eontent of this theorem and its proof from the point 
of view of Riemannian geometry is the foIlowing. Notation as above, 
suppose y is infinitely extendible in both direetions in terms of its 
parameter. Sinee Z is irrotational, it is loeally synehronizable (Proposi
tion 2.3.5). Henee there exists a funetion h defined in a neighborhood 
of x = YO such that eaeh of its level sets {h = eonstant} is an imbedded 
spaeelike hypersurfaee everywhere orthogonal to Z. Let .Y be such a 
hypersurfaee passing through x. The integral euryes of Z are just geo
desies orthogonal to .Y. Sinee Z is a nowhere zero veetor field, its 
integral euryes "do not erowd together": the exponential map exp of 
the normal bundIe N(.Y) of.Y is everywhere nonsingular on the fibre 
(span Zx) of N(.Y) over x. In partieular, if Y is the (4, O)-tensor field 
in N(.Y) dual to the eanonieal volume element of N(.Y) and if YO 
denotes exp. Y, then YO is nowhere zero on y. A eomputation reveals 
that LZYo = (div Z)Yo• Thus the funetion f = (div Z) 0 y is defined 
over !Jt However, the basie inequality in the above proof leads to 
f' < -tr on IR, which implies (I1f)' > t on IR. By an integration, 
this lead s to the faet that f must be infinite or - oo at a finite value, 
eontradiction. 

One should also note that div Z at y E.Y is just the traee of the 
second fundamental form of .Y at y with respeet to Zy. Using this 
faet and the positivity of Ric (Z, Z), the reader famiIiar with the Morse 
theory of foeal points (ef. Bishop-Crittendon [ID ean al so write out 
adireet proof showing f eannot be nowhere zero. Indeed, if, say, 
(div Z)x < 0 and YO = x, then the index form on ylO, b) for a suffi
eientIy large b must be negative on a suitably chosen veetor field along 
yon [0, b); compare the usual proof of Myers Theorem. Then .Y has a 
foeal point e along y before b. This impliesf(c) = oo, by definition of 
the exponential map of N(.Y). Contradiction. 

EXERCISE 4.3.5 

Let M be a spacetime and let Z be a geodesic irrotational referenee frame on M 
such that Ric (Z, Z) ~ O. Show: (a) If Ric (Z, Z)x > 0 for some x E M, then 
an observer in Z through x eannot have all of IR as his proper time domain. 
(b) If Z is eomplete, then Ric (Z, Z) = 0 = div Z. 

EXERCISE 4.3.6 

Let Z be an irrotational geodesie referenee frame on a spacetime M. At each 
x E M, if R denotes the local rest space of (x, Zx), then we have the self-adjoint 
linear transformation Az : R ->- R of Proposition 2.3.4 defined by AzX = - DxZ. 
Now define a (not neeessarily C"') funetion h: M ->- [0, oo) by hx = 2~=1 Aa2 , 

where Pa} are the eigenvalues of Az . (a) Show that h is C"'. (b) Elaborate on the 
proof of Lemma 4.3.3 to prove the following speeial case of the Raychaudhuri 
equation: 

Z(div Z) = -Ric (Z Z) - h. 

(e) Use (b) and Exercise 4.3.5b to show that if Z is complete and Ric (Z, Z) ~ 0, 
then Z is a paralleI veetor field. 
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the following geometrie theorem: Suppose M is a spacetime whieh 
admits a geodesie irrotational referenee frame Z whieh is eomplete and 
has the property that Rie (Z, Z) ~ 0, then loeally M is isometrie to a 
direet produet M' x 1I\l, where M' is a 3-dimensional Riemannian 
manifold. If M is simply eonneeted and eomplete, then M is globally 
isometrie to adireet produet as above. 

EXERCISE 4.3.7 

Let t be a stress-energy tensor on a spacetime M. Define Il' = t - -!(trace t)g, 
where Il is the (2,0)-tensor field physieally equivalent to g; Il' is then a sym
metrie (2, O)-tensor field. We say t obeys the timelike convergence condUion iff 
W(w, w) > 0 'rl timelike I-form w. Show: (a) The stress-energy tensor of a 
quasigas (Example 3.13.4) obeys the timelike eonvergenee eondition. (b) Let 
(M, Jt, F) be a relativistie model whieh obeys the Einstein field equation, and 
let t obey the timelike eonvergenee eondition. Then Ric (Z, Z) > 0 'rl timelike 
veetor field Z. (e) Assumption as in (b), let Z be a geodesie irrotational referenee 
frame on M. Then no observer in Z ean have all of lI\l as domain. 

(e) aeeounts for the nomenclature of "timelike eonvergenee." Indeed, 
from a geometrie standpoint (as expounded in the fine-print seetion 
after the proof of Theorem 4.3.4), (e) holds beeause the neighboring 
geodesies of eaeh timelike geodesie y tangent to Z must eonverge on y 
"sooner or later." 
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5 
Photons 

Most of our information about the solar system, stars, galaxies, and the 
universe as a whole comes from observing photons. This chapter analyzes 
the lightlike objects-vectors, curves, submanifolds, and so on-used in 
interpreting photon observations. Throughout the chapter, (M, g) is a space
time. We sh all say a curve y: e -+ M goes Jrom x E M to y E M iff tff = 
ra, b), x = ya and y = yb. 

5.0 Mathematical preliminaries 
5.0.1 Causalily 

Suppose x, Z E M. By definition, x chronologically precedes Z iff there exists 
a future-pointing timelike curve y from x to z. Here "chronologicaIly" refers 
to the fact that the arc1ength of y models comoving c10ck time (Section 2.1). 
We th us get a binary chronology relation « on M, with x « Z iff x chrono
logically precedes z. SimilarIy, define a causality relation by x :$ z iff x = z or 
there exists a future pointing (and thus causal) curve from x to z. Intuitive1y, 
x :$ z iff z can get some information about x. Given Z E M, the chronological 
(respective1y, causal) past oJ z is the set of points in M that chronologicaIly 
(respective1y, causally) precede z. In discussions of chronology and causality 
we will, as a mnemonic, generally use alphabetical order-for example, 
x :$ y « z. 

Formally, « is a subset of:$ which in turn is a subset of M x M. Locally, 
both « and :$ have many of the properties suggested by the notation; 
globally, both can be extremely subtle, with « always beautiful and :$ 
often messy (Section 8.3). Computationally both are often calculated via 
the following trick. Suppose (M, g') is conformaI to (M, g); then g' = Jg, 
J> 0, and a given curve y is future pointing for (M, g) iff it is future pointing 
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for (M,g') (Exercise 3.7.8). Thus ;:5; = ;:5;'; similarly « = «'. One says 
both relations are conformally invariant. 

In discussions of chronology and causality, one generally has dual defini
tions-for example, chronologically follows, corresponding to reversing the 
time orientation of (M, g), and dual results. These will generally be taken for 
granted. 

5.0.2 Geodesics 
Let I' : tff -+ M be a geodesic, 1'- be a positive affine reparametrization of I' 
(Section 0.0.6); the n 1'- is a geodesic. Let [I'] denote the corresponding equiva
lence dass of geodesics. For example suppose I' is a 1 - I future-pointing 
geodesic and 1'- is a curve; 1'- E [1'] iff 1'- is a future-pointing geodesic whose 
image in M coincides with that of y. If we fail to single out a representative in 
an equivalence dass [1'] of causal geodesies the connotation will be that some 
kind of genuine equivalenee is involved. For example, in Chapter 6 the 
eosmologieal red shift is the same whether one is observing radio, microwave, 
visible, or x-ray photons, and this corresponds to the faet that eosmologieal 
red shift is a property of a whole equivalenee dass of lightlike future-pointing 
geodesics (ef. Sections 5.4 and 6.0.7). 

Let 1': tff -+ M be an inextendible causa I geodesic. Then Y. is nowhere 
zero and the following hold: 

a. g(y., y.) = eonstant. 
b. g(y., K) = eonstant V Killing veetor field K (Section 3.6.3). 
c. rp 0 y is an inextendible geodesic V isometry rp : M -7 M. 
d. Given u E tff, the initial data (yu, y.u) determines I' uniquely. 
e. Suppose an isometry rp leaves the initial data invariant-that is, rpyu = yu, 

rp.y.u = y*u. Then rp 0 y = y by (e) and (d). We shall manage to avoid 
eomputing eonneetion eoeffieients in finding the explieit geodesies needed 
here by systematic use of (a)-(e). 

In spacetimes less highly idealized than our examples, the isometry 
group <.§ M is trivial (Section 8.4), and (b), (e), and (e) become useless. 
Then one must normally fall back on local basis computations as in 
the proof of Theorem 3.8.3. 

5.0.3 The Gauss Lemma 
Suppose b > a > 0, e E (0, oo). Let 2j e 1R2 be the subset ra, b] x [- e, e], 
a: f!) -+ M be a C'" map-that is, there is a C'" extension with open domain. 
Then TI = a. 01 and T2 = a. i}2 are vector fields over a (Section 2.0). 
Assume: (a) J Tlj = constant; (b) Vv E [-e, e], av: ra, b] -+ M, defined by 
avu = a(u, v), is a geodesie. The Gauss Lemma asserts that then g(Tl> T2) 

is constant along each geodesic av (compare Section 2.0.3e). 

Since many of the standard texts give the proof only for the case that 
II is an imbedding, we give the general proof. Sinee [a, b] is connected 

125 



5 Photons 

it suffiees to show that c1lg[T1, T2 ] = 0. Let D* be the induced con
neetion a* D. Then o,g(TI, T2) = g(D*~l TI, T2) + g(TI, D·Ct T2) = 
(by b)g(T1 , D·~J2)' Now sinee D is symmetrie and [OI, 02] = 0, 
D·~lT2 = D*82Tl (ef. Bishop-Goldberg p. 231). Thus 01g(T1, T2) = 
g(T1, DÕ2 T1) = (Ij2) 02g(Th T1) = (by a) O. 0 

5.0.4 Simply convex neighborhoods 
We review without proof eertain properties of the exponential map (Seetion 
0.0.8). A good referenee is Helgason [I], pp. 32-36. 

Suppose x E M. An open neighborhood OlIo of the origin in Mx is defined 
as normal iff: (a) expxl<wo is defined and is a diffeomorphism on to its image; 
and (b) if 0 :5 I :5 I then IX E OlIo V X E OlIo. A simply eonvex neighborhood 
in M is a nonempty open set oll e M such that, "Ix E Oll, oll = expx q10 for 
some normal neighborhood OlIo e Mx. The Whitehead Lemma asserts that 
given x E M and a neighborhood if'" of x there is a simply eonvex neighbor
hood oll of x such that oll e "II'". For example, the simply eonvex neighbor
hoods in Minkowski spacetime are just the nonempty open subsets that are 
eonvex in the 1R4 sense. More generally, suppose oll e M is a simply eonvex 
neighborhood, x, Z E Oll, and x =1= z. Then our definitions above imply there 
is a unique geodesie of the form y: [0, I] - oll from x to z. 

5.0.5 The geometric energy function 
We give some results need ed in diseussing eausality and photons. Through
out this subseetion, (OlI,g) is a spacetime such that oll itselfis simply eonvex; 
"Ix E Oll, 4>x denotes the diffeomorphism 4>x = (expx I'i'o) -I: 0lI_ OlIo, OlIo as 
in Seetion 5.0.4. Treating oll as a spacetime in its own right (temporarily) 
reHeves us of the worry that a C'" eurve might leave oll and then sneak baek 
in. For example, V pair of distinet points x, Z E oll there is nowa unique 
equivalenee dass (Seetion 5.0.2) of geodesies from x to z. Reeall that the 
funetion K: TOlI- IR, defined by K(x, X) = g(X, X) as in Proposition 
1.2.1, is C"'. Moreover OlIt = {(x, 4>xz) I x, Z E Oll} is an open subset of TOlI 
and exp: OlIt _ oll X Oll, defined by exp (x, X) = (x, expx X), is a diffeo
morphism (ef. Bishop-Crittenden [I], p. 109). 

Thus the function <1> = K 0 (exp)-l: oll x Oll-IR is C"'. <1>(x, x) = 
o "Ix E Oll. Let x, Z E oll be distinet, and Iet y: [0, I] -+ oll be the unique geo
desic from x to z. Directly from the definitions we have: 

(a) <1>(x, z) = g(4)xz, 4>xz) = J: g(y*u, y.u) du = <1>(z, x). 
(b) <1>(x, z) is negative, zero, or positive aceording as y is timelike, lightlike, 

or spacelike, respeetively. 
We define <1> as the geomelrie energy Junetion. 
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The term "energy," appropriate in geometrie versions of prerelativistic 
mechanies, is misleading in relativity. SpecificalIy, the spacelike case 
411 > 0 is of no interest as usual, so assume i' future pointingo Then i' 
is a particJe (Definition 3.1.1) and (a) gives 4lI(x, z) = - m2 , where m 
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is the rest-mass of y. Even arest-mass ean be interpreted as total energy 
only in one very speeial ease (Seetion 3.1.2), and m2 is not in any sense 
an energy. (b) indicates "eausality" funetion would be the right term 
in relativity, but we stiek to the standard te rm with" geometrie" added 
as areminder. 

Now fix x E l5If and let <!lx: ilIt -+ IR be the C'" funetion K 0 4>x-that is, 
<!lxz = <!l(x, z). We have d<!lx = (4)x)* dK, which implies, via the algebraie 
results in Exereise 0.0.10 and the faet that 4>x is a diffeomorphism, that d<!l" 
is different from zero everywhere exeept at x. Denote by R the veetor field 
physieally equivalent to d<!lx. Roughly speaking, R is "radial." For example, 
suppose x is the origin of Minkowski space. The reader may eheek that then 
<!lx = (Ul)2 + (U2)2 + (U3)2 - (U4)2 whenee d<!lx = 2(ul dul + ... - u4 du4) 
and R = 2 '2.t:l ut Oi' More generally, suppose x, z, and y are as in (a); 
we get: 

(e) Rz = 2y*l. 

Proo! d<IJ"z -:f; 0 so there is, loeally, a C" imbedded 3-submanifold 
!!4 e OU whieh is a level surfaee of <IJ" and eontains z. Let W E OU. be 
tangent to !!4. Then g(R, W) = d<IJx(W) = W<IJ" = 0; thus Rz is 
orthogonal to !!4. 

y.l E OU. is nonzero; we c1aim y.l is likewise orthogonal to !!4. 
Indeed, given Was above, let "'I: [-e, e] --+!!4 be a C" eurve, where 
e > 0, such that "'10 = z and "'1.0 = W. In the notation of Seetion 5.0.3, 
define f2 = [0, 1] x [- e,.J. Define a map 0-: f2 --+ OU by o-(u, v) = 
exp" [u<p"C"'/v)]. Thus 0-(0, v) = X and 0-(1, v) = "'Iv. The reader may 
eheek (shrinking e for eonvenienee if he likes) that all the hypotheses of 
the Gauss lemma (Seetion 5.0.3) are satisfied, with T2(0, 0) = 0, 
T2(1,0) = W, g(Tt, Tl ) = <lJxz = eonstant, and Tl (1, 0) = y.1. Thus 
g( w, y.l) = g(O, y.O) = O. This holds V W so y.l is orthogonal to !!4. 
Sinee :J4 is 3-dimensional, we get Rz = ay. I , a -:f; O. It remains to show 
a = 2. 

Suppose y is not lightlike. Then <IJ"z -:f; 0, say <IJ"z = b. On unravel
ling the definitions we get (<IJ" 0 y)(u) = bu2 Vu E [0, I] and g(y., y.) = b. 
Thus ab = g(Rz, y.l) = d<IJ,,(y.l) = (<I>x 0 y)'(I) = 2b. Sinee b -:f; 0, 
a = 2. If y is lightlike, a = 2 by eontinuity. 0 

5.0.6 No escape 

The study of "who ean eommunieate with whom," espeeially the study of 
the ehronology relation (Seetion 5.0.1), is central in many of the deeper 
eurrent applieations (ef. the referenees in Seetion 8.3). One relevant lemma 
says, roughly speaking, that there is no way to eseape from the ehronologieal 
future of a point. We now state and prove a simple loeal version of this 
lemma. As is typieal, one starts with an algebraie result from Seetions l.l 
and 1.2. Let ~ + e Mx be the set of future-pointing timelike veetors at 
x E M, with ~ - defined dually. Then Y X + has the following properties: 
(a) it is open; (b) its boundary eonsists of the zero veetor and the set !fx + 

of future-pointing lightlike veetors; (e) its elosure interseets the elosure of 
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Y X - only at the zero veetor and y", + (', y", - is empty; (d) if X EY", + and 
YE~+ uY",+, X+ YEy"'+. 

Now let (cpj,g) be a geodesieally eonvex spacetime and 'VXEcpj define 
Ix ± = expx {y", ± (', (<Pxcpj)}, notation as in Seetion 5.0.5. Then the topo
logieal properties (a) and (e) go through verbatim with y", ± replaeed by 
Ix ± and the zero veetor replaeed by x sinee expx is a homeomorphism on 
its domain <Pxcpj. An analogue of (b) and (d) is the following. 

Lemma. Let P: (a, c) ~ cpj be a Juture pointing time/ike curve whose image 
does not contain x, and suppose y = Pb, b E (a, c). Then: (b') y is on the 
houndary oJ Ix + iff the unique geodesic et: [0, I] ~ cpj Jrom x to y is Juture 
pointing lightlike. (d') Suppose such a y exists, then 'Vu E (h, c) z = pu 
oheys Z E Ix + -that is, the unique geodesic y: [0, I] ~ cpj Jrom x to Z is 
Juture pointing timelike. (e) Thus y and h are unique. 

x 

The generalization to the case where x lies on the image of f3 will be left 
as part of Exercise 5.0.10. 

In (d') we have x ::; Y« z. The generalization of (d') to arbitrary space-
time reads: x « z iff there exists ay such that x ::; y« z (Section 8.3). 

PROOF. (b') follows directly from the algebraie result (b) and the fact that 
<Px, expx are homeomorphisms. Suppose now such ay exists. Then <I>(x, y) = 0 
by Seetion 5.0.5b. Define the funetion J = <I>x 0 p: (a, c) ~ lR.fh = 0 and 
f'h = (<I>x 0 P)'(b) = d<I>xCP.h) = g(Ry, P.b) < 0 sinee P.h is timelike and Ry 
is lightlike, with both future pointing (Sections 1.1 and 5.0.5). Thus there is 
a d E (h, c) such that Ju < 0 'Vu E (h, d); indeed, choosing d so that d - b 
is suffieiently small we have pu E Ix + 'Vu E (h, d), since Ju < 0 implies pu E 

lx + u lx - by Seetion 5.0.Sb and we have pu ~ lx - for u sufficientIy e10se to 
b by (e) above and the faet that expx is a homeomorphism. Suppose there 
were a lub d of those u E (h, e) for whieh pu E I x +. Then we would have Pd 
on the boundary of lx + and thus Jd = O. But then f'u = g(Rf3u, f3.u) < 
o 'Vu E (h, d) so Jd < O. Contradiction. Thus f3u E lx + 'Vu E (b, e). Thus (d') 
holds: (e) is now trivial. D 
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EXERCISE 5.0.7 
Suppose (~\ g) is Minkowski space and x, Z E ~'. Show x« z iff 

Lt1 (u"z - U"X)2f'2 < u4z - u4x, 

and x :5 z iff the same eondition with " < " replaeed by " :5" holds. 

In view of Exereise 3.7.8 and our remarks on conformai invarianee 
in Seetion 5.0.1, this result is applieable in a less trivial ease (Seetion 
6.0.13). 

EXERCISE 5.0.8. GEODESICS AND REFLECTIONS 

Let (M, g) be Einstein-de Sitter spacetime and suppose z = (0, 0, 0, a) E M, 
aE(O, oo). (a) Show that the "spatial refleetion" (u 1, u2, u3, u4)-+( -ul, u2, u3, u') 
determines an isometry q,: M -+ M with (q,z, q,. 04Z) = (z, 04Z). (b) Show from 
(a) and Seetion 5.0.2 that if y: (0, oo) -+ M is a geodesie and (yb, y.b) = (z, 04Z) 
for some b E (0, oo) then /l1 0 Y = O. (e) Generalizing, show in (b) that u2 0 y = 
o = u3 0 y as weil. (d) Now show, without eomputing eonneetion eoeffieients 
but using Seetion 5.0.2a instead, that eaeh integral eurve of 04 in Einstein
de Sitter spacetime is a geodesie. (e) Let '\: <ff -+ M be a geodesie such that for 
one u E tI, du2(,\.u) = 0 = du3(,\.u); show that du 2(,\.) = 0 = du3(,\.) by 
generalizing the "reHeelion" argument just given. Thus if ,\ starts out tangent 
to a (u1 , u4) plane it remains in this plane. (f) By similar arguments show there 
exist "purely radial" geodesies on a normal Sehwarzsehild spaeetime-for 
example, P 0 y = North Pole in [/'2. 

EXERCISE 5.0.9. GEODESICS AND CONSTANTS OF THE MOTION 

(a) Let y: ~ -+ ~2 be a smooth eurve. Suppose du1(y.) and du2(y.) are known 
funetions on ~. Show that then y is uniquely determined by its initial values 
1'0. (b) Let y, 1" be euryes (0, oo) -+ M, where M is Einstein-de Sitter space
time. Suppose (yl, 1'.1) = (y'l, y'.1) and u20 y = 0 = u2 0 1", u3 0 I' = 0 = 
u3 0 1'" Suppose I' is a freely falling partide (ef. Exereise 5.0.8e). (i) Show from 
Seetion 5.0.2 that g(y., y.) = - m2 and sinee 01 is Killing g(y., (1) = eonstant = a 
(say). (ii) Suppose g(y'., 1".) = _m2 and g(y'., (1) = a; show y' = y. Thus, 
in this ease, Seetion 5.0.2a-e suffiees to determine the geodesies. (e) In Exereise 
5.0.8f state and prove a similar uniqueness theorem, using the Killing veetor 
field %t. 

EXERCISE 5.0.10 
In Seetions 5.0.5 and 5.0.6 show: x « z iff z E lx + iff x E Iz - iff Rz is timelike 
future pointingo 

5.1 Photons 
Reeall that a photon is a partide with zero rest-mass (Definition 3.1.1). Thus 
suppose y: t/ -+ M is a partide. y is a photon iff y is lightlike iff one instan
taneous observer on yC observes Newtonian speed e = I iff all instantaneous 
observers on yC observe un it Newtonian speed (" eve n an observer who runs 
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away from the photon as fast as he can stiil observes the overhauling speed 
as the speed of light "). 

5.1.1 Freefall 
The electric charge of a photon is zero (Example 3.1.4). Thus the only 
photons of interest are geodesic-that is, freely falling (Section 3.8.6; 
"electromagnetic fields do not interact directly with photons; other matter 
can influence a photon only by destroying it; thus each photon of interest 
is subject only to gravity"). 

5.1.2 Emission and absorption 
Let '\: e -'>- M be a photon. Suppose ,\ is created with in spacetime rather 
than having been always around-that is, the curve ,\ has a past endpoint 
x E M (Section 3.8). Then one sometimes says ,\ is emitted or sent out at x; 
these redundant synonyms for "created" in Section 3.8 are just part of 
the colorful language developed for dealing with these colorful partides. 
Similarly, one sometimes says A is emitted by, for example, an instantaneous 
observer or star at x. If ,\ has a future endpoint Z EMA is absorbed and re
ceived at Z as weil as being destroyed there. 

Additional terms-for example, "scattering"-will not be needed 
except in informal comments. Within our framework "seattering" just 
refers to a collision in whieh one photon is destroyed and one is created. 

5.1.3 Pointwise concepts 
(a) Let '\: e -'>- M be a 1 - 1 photon and Y = A*U be its energy-momentum 
at x = Au, U E C. Suppose an instantaneous observer (z, Z) is actually present 
and observing; then the existence of a distinguished local time axis, span Z, 
gives rise as usual to a number of auxiliary concepts. We have Y = e(Z - U), 
where e = - g( Y, Z) > 0 is the energy (Section 3.1.2) that (z, Z) measures 
and U E Zl. is the sparial direction (z, Z) measures for Y and for A. Intuitively, 
U is the direction from whieh (z, Z) sees A eoming. The eollection of all 
such U is (z, Z)'s private celestial sphere yz = {U E Zl.J g( U, U) = I}. yz is 
isometric, in the natural way, to the unit 2-sphere (Seetion 0.0.9). To get an 
intuitive pieture of your eelestial sphere, go out at night and look at .. the 
bowl of the sky." Exereise 5.1.4 eoneerns the interrelation between different 
celestial spheres at the same Z. 

z 

130 



5.1 Photons 

(b) Let h ~ (6.3 X 10- 43 seconds)2 be the universal constant called 
Planck's constant. We define the jrequency (z, Z) measures for Yas f = ejh. 
The wavelength (z, Z) measures is" = f- 1• 

The terms "frequency" and" wavelength" are motivated by aIter
nate, wave models for light (ef. the comment below Exercise 3.7.7). 

Following a suggestion of Planck, Einstein postulated e = ht in 
1905. Here we have reversed the historieal order, defining t in terms of 
e. tA = 1 = speed of light merely corresponds to the usual relation 
between frequeney, wavelength, and speed of any wave motion. 

The above number vh = 6.43 x 10- 43 seeonds is regarded as the 
natural time scale for quantum gravity. For example, in current cos
mology one usually assumes quantum gravitational effects can be 
negleeted at times later than about 10- 42 seeonds after a big bang (ef. 
Section 6.6.5). 

(e) Ifthe frequency f measured by (z, Z) is less than about 109 (seconds)-l, 
this corresponds to radio waves for (z, Z); the range 109 (second)-l $ f $ 

3 X 1014 (second s) -1 eorresponds to microwaves, millimeter radiation, and 
infrared radiation; 3 x 1014 (seconds) -1 $ f $ 1015 (seconds) -1 corresponds 
to visible light (= optical radiation) for (z, Z), with light that is red for 
(z, Z) having a smaller f, and thus a larger ", than light that is blue or violet 
for (z, Z); and at stiil larger frequencies one has ultraviolet radiation, then 
x-rays and finally y rays. We shall use radiation or electromagnetic radiation 
or sometimes simply light to refer generically to all ranges. 

(d) Let A, Y, and (z, Z) be as in (a). To say, for example, that A is "blue" 
w0uld be sheer nonsense, even in a pointwise argument, since there will 
always exist some instantaneous observer at z for whom the measured 
frequency corresponds to red. But suppose Y' is future pointing with span 
Y' = span Y. Then by the above definitions the ratio fjf' of measured fre
queneies is the same for all instantaneous observer at z so " Y is bluer than 
Y'," meaning f > f' V instantaneous observer at z, ean make sense. 

To extend these pointwise coneepts to the world line of one observer we 
need only take into account the behavior of gyroscopes (Section 2.2). For 
example, suppose you see a shooting star sending out orange photons; in 
what sense do you see it move? Regard yourself as an observer y: 6 --i> M. 
Thus you have a collection of celestial spheres {~.u e (y*u).L I u E 6}. By 
using gyroscopes-that is, Fermi-Walker parallelism-you can identify all 
these celestial spheres to get a single copy, say ~. In principle an actual 
gyroscope, a Foucault pendulum, or your ear fluids are used; in practice, 
reference to the "fixed earth" gives a good approximation. By correlating 
proper times of arrival of orange photons with their direetions (Section 
5.l.3a) you get a eurve on ~ and th us perceive motion. 

EXERCISE 5.1.4 
Let (9"2, h) be the unit 2-sphere (Seetion 0.0.9). A diffeomorphism rp: [1'2 --r [1'2 

is conJormal iff rp*h = Jh where J: 9"2 ~, (0, CXJ); compare Exereise 3.7.8. (a) Let 
(z, Z), (z, Z') be instantaneous observers, and let 9"z, Yz. e Mo: be their 
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eelestial spheres. Show there exists a conformaI diffeomorphism rp: yz --+ Yz, 
whieh, for eaeh photon energy-momentum Y E Mz, earries the spatial direction 
(z, Z) measures for Y to that whieh (z, Z') measures for Y. (H Aberration," if 
Z' is "rushing forward" he sees the pattem H bunehed up" ahead and H thinned 
out" behind, in a systematie way.) (b) (Optional.) Show the eolleetion of eon
formaI diffeomorphisms [1'2 ->- [1'2 is a six-dimensional Lie group. 

The eonneeted eomponent of the identity is isomorphie to that of the 
Lorentz group (Seetion 8.4.2b). 

EXERCISE 5. 1.5 

Let M be Minkowski space, y be an observer, and ,\ be a freely falling photon. 
Show: (a) Both eurves are 1 - 1; they interseet at most on ee. (b) If y is an 
inextendible geodesie and x is not on the world line of y then there is exaetly 
one '\: [0, 1] ->- M from x to a point ,\\ on the world line of y. Then u4 is smaller 
at emission than at reeeption. (e) Dually, there is exactly one such ,\ from y's 
world line to x. (d) In (b) suppose y is not a geodesic but is endless (Seetion 3.8). 
Show no ,\ from y's world line to x need exist. Hint: Look at the pieture here. 

We now indieate that the situation need not be so simple. Aetually, in 
general, almost anything ean happen (Seetion 8.3). 

EXERCISE 5.1.6 
(a) Suppose (M, g') is conformai to (M, g) (Exereise 3.7.8) and ,\ is a lightlike 
geodesie for (M, g). Show there is a reparametrization of ,\ whieh is a lightlike 
geodesie of (M, g'). (b) Use (a) and Exereises 5.0.7 and 3.7.8 to show the follow
ing. In Exereise 5.1.5 let M be Einstein-de Sitter spacetime, y be an inextendible 
eomoving observer. Then Exereise 5.1.5a and b go through verbatim but in 
(e) Hexaetly one" must be replaeed by Hat most one." Thus y ean get informa
tion from any point if he waits long enough but there are points bIithely unaware 
of his existenee. 

EXERCISE 5.1.7 
Let [,\] be a geodesie equivalenee dass (Seetion 5.0.2) of freely falling photons 
with eaeh ,\ E [,\] a 1 - 1 eurveo Suppose z E M is on the image. Give examples 
of relevant physieal quantities whieh are defined: (a) given an instantaneous 
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observer (z, Z) but no distinguished representative in [>.]; Cb) given >. E [>'] but 
no distinguished Z; (e) given both. Answers: (a) The spatial direction (z, Z) 
measures for [>.]; often this is the most important measurement. (b) Only the 
energy-momentum >' •• (e) Energy, 3-momentum, frequency, wavelength, color, 
spatial direction. 

5.2 Light signals 
Define a light signal as an equivalence dass (Section 5.0.2) of freely falling 
photons; the motivations are indicated in Section 5.1.1 and Exercise 5.1. 7b. 

EXAMPLE 5.2.1. Let (~4, g) be Minkowski space. Each inextendible light 
signal has exactly one representative A: ~ ~ ~4 of the form AU = (v, 0) + 
u(w, I) where v, w E ~3 and W· w = I (~3 inner product). Conversely, V pair 
(v, W) E ~3 X 1R3 with W· W = 1 there is a unique light signal, say [Al<.,W)' 
For example one here has a new equivalence relation among the light signals 
themselves: [,\ lv. w) ""' [,\ ](V', w') iff W = w' and (v - v')· w = O. 

Two light signals are said to meet at infinity iff they are equivalent in 
this sense. This concept can be extended to certain kinds of nontlat 
spacetimes and is then very useful (Hawking-ElIis [1]). 

EXAMPLE 5.2.2. Let (M, g) be Einstein--de Sitter spacetime (Section 1.4). 
Thus M = ~3 X (0, oo), g = (U4)4/3 L~=l du~ ® du~ - du4 ® du4• There 
exist light signals Iying entirely with in the (0,0, u3 , u4 ) plane (Exercise 
5.0.8). As inspection of g suggests, analyzing one of these suffices to give 
complete information on all freely falling photons in (M, g) (Exercise 5.2.5 
following). 

Define '\: (0, oo) ~ M by '\u = (0,0, 3U l/5 , U3/5). We daim A is an in
extendible, freely falling photon. 

PROOF. ,\ is C"" and future pointingo Moreover, g('\., ,\.) = (u4 0 ,\)4/3 X 

[du3(,\.W - [du4(,\.)]2. Now u4,\u = U3/5, [du3(,\.)](u) = (3/5)u- 4/5 and 
[du4(,\.)](u) = (3/5)u- 2/5 • Thus g('\., ,\.) = 0; thus ,\ is a photon. To see 
that ,\ is geodesic, note that 03 is a KiIling veetor field (Seetion 3.6.3) and 
g('\., (3) = (u4 0 ,\)4/3[du3(,\.)] = 3/5, a constant. By Exereise 5.0.9, this 
suffiees. Finally, ,\ is inextendible sinee the sealar eurvature obeys S>'u ~ oo 
uu~~ D 

We define ,\ as the standard photon on (M, g), its equivalence dass (Sec
tion 5.0.2) as the standard light signai. 

Let f3: g ~ M be an observer on a spacetime M. From which points can 
f3 receive light signals and to which ones can he sen d them? For Minkowski 
space the situation is simple (Exercise 5.1.5); for Einstein-de Sitter spacetime 
it is a little more eomplicated (Exercise 5.1.6); in a black hole situation 
there are points that can receive light signals from "outside" observers, 
but eannot send any (Seetion 7.5); and so on. Locally, the situation remains 
simple, as the following proposition shows. 
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Proposition 5.2.3. Suppase UJ E rff' is given. There exists an open interval 
:7 e tS containing UJ and an open neighborhood ir of f3u J such that, 
Vx E ir - f3:7 the following holds. There exist uo, U2 E!F, a light signal 
[Alfram x to f3U2 and a light signal [A'] from f3uo to x; uo, u2, [A] and [A'] 
are unique. 

PROOF. Let 0/./ be a simply convex open neighborhood of f3uJ. la, e] be an 
interval in rff' containing UJ as an interior point such that f3[a, e] e 0/./. 

Regard (0/./, g) as a spacetime as in Sections 5.0.5 and 5.0.6, and adopt the 
notation of those subsections. 

Let 11'" = (Inc -) n (Ioa +). Thus ir is an open neighborhood of f3(a, e), 
in particular of f3u 1 (Exercise 5.0.10). Define :7 = (a, e). We cIaim ir and 
:7 have the required property. 

In faet, suppose x E 11'" - f3.fF. Then f3e E Ix + since x E Ipe -. SimilarJy 
f3a E Ix -, in partieular f3a ~ cIosure Ix +. Sinee f3 is continuous, the lemma in 
Seetion 5.0.6 shows there exists a unique U2 E (a, e) such that the geodesic 
A: [0, I] -+ °ll from x to f3U2 is future pointing lightlike. Thus U2, [A] exist 
and are unique. The dual argument proves Uo, [A'] exist and are unique. 0 

EXAMPLE 5.2.4. RADAR. Let (M, g) be two-dimensional Minkowski space 
(Section 0.2), y: IR -+ M be the observer defined by yu = (0, u). For J, /1 E 

(0, co), y: IR -+ M, defined by yu = (I - u sinh 0, u eosh 8), is another ob
server. y can use radar to observe y as folIows. At proper time uo, y emits 
a light signal [A'] which travels to x E ylR, is "refleeted" there, and returns 
to y at proper time U2 as a light signal [A]. Working algebraicalIy, the reader 
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can check that if [A'] is emitted prior to the collision event z, U2 = uoe- 29 + 
21e- B cosh e. Thus if y knows a priori that y is freely falling, two radar 
measurements (uo, U2), (uo', U2') suffice to fix I and e and thus to determine 
the world line of y. 

-
'y 

In more general cases y may need a whole funetion U2(UO) and must also 
observe direetions (Seetion 5.1.3). Since meter stieks do not really make 
sense in general relativity and are not used in aetual astronomical 
measurements, one regards a radar set as the basie distanee measuring 
deviee (ef. Exereise 2.3.12d and the eomment below it). 

EXERCISE 5.2.5 

Let (M, g) be Einstein-de Sitter spacetime; thus M = 1R3 X (0, co). Show: 
(a) If IP: 1R3 ~ 1R3 is a Euc\idean isometry, op: M ~ M, defined by op(v, t) = 

(~v, t), is an isometry. (b) If y: g -->- Mis a geodesie there is an isometry op: M ~ M 
such that yo op Hes in the plane u1 == 0 == u2 • (e) If y in (b) is an inextendible, 
freely falIing photon there exists a op such that [y 0 op] == [A],'\ as in Example 5.2.2. 
(Hint: See Seetion 6.0.5 if you get stuek.) 

EXERCISE 5.2.6 ORTHOGONALITY AND RADAR 

Let y: g ~ M be an observer, Ul E tff, "f{/' be a neighborhood of yUl with the 
properties in Proposition 5.2.3, a: [0, a) ->- "f{/' be a curve whieh interseets y's 
world line at the parameter value 0 with aO = yUl. Define a function!: (0, a) ->- IR 
by! = Ul - 1-(U2 + uo), where U2 and Uo are as in Proposition 5.2.3 with x = aS 

135 



5 Photons 

"Is E (0, a). (a) Suppose Mis Minkowski spacetime and y, aare geodesies. Show 
f = 0 iff y and aare orthogonal. (b) Dropping the geodesie restrietion on both 
show that Iim._of(s) = 0 and show that Iim._of'(s) = 0 iff g(y.], a.O) = O. 
(c) Show that (b) remains valid when M is an arbitrary spacetime. 

EXEReISE 5.2.7 

(a) Given x E M, show there exists an open neighborhood <11 of x with the 
following property. Vz E <11, there exists y E <11 such that there exists a lightlike 
geodesic from x to y and there exists a lightlike geodesic from y to z. (b) Suppose 
N e M is an open proper submanifold. Show there exists a point x on the 
boundary of N. (e) By combining (a) and (b), prove Proposition 1.3.2. (d) Use 
Proposition 1.3.2, Example 5.2.2, and Exercise 5.2.5 to show Einstein-de Sitter 
spacetime is maxirna!. 

5.3 Synchronizable reference frames 
In Section 2.3 we defined synchronizable reference frames without making 
explicit the empirical significance of synchronizability. Now that we have 
light signals at our disposal, we can fill in this gap. Throughout the section 
Z is a referenee frame on spacetime M and , is the physically equivalent 
I-form. 

Recall the following resuIts from Seetion 2.3: Z is locally proper time 
synehronizable iff Z is geodesie and irrotational, proper time synchronizable 
iff there is a function I: M ~ ~ such that' = -dl. Moreover, suppose Z 
is proper time synchronizable and I is as above. (a) Each level surfaee of I 
is a 3-manifold everywhere orthogonal to Z. (b) The funetion t is unique up to 
a single additive eonstant. (e) Let y: e ~ M be an inextendible integral curve 
of Z; thus y is an observer in Z. Then there is a eonstant ay E IR such that 
Iyu = u - ay-that is, I 0 Y agrees with proper time u up to a constant. Hence 
the term proper time funetion for I in Section 2.3. 

If Z is proper time synchronizable, aset {y} of observers in Z can empiri
cally synchronize their c1ocks, by radar, as follows. Suppose first that by 
sheer luck the observers already have ay = 0 Vy and for one I. Consider any 
two suffieiently nearby observers y, y' E {y}. Here" sufficiently nearby" means 
Proposition 5.2.3 is applicable. It al so means so nearby that the approximation 
uJ' = !(uo + U2) below holds to within other empirical inaecuracies. 

Sinee we are diseussing aetual measurements the standard mathematies 
vs. physics ambiguity (Section 2.1.2) on infinitesimals here comes into 
playand Einstein's eomment applies. To make the discussion mathe
matieally rigorous, we would need to as sume an infinite number of 
observers present. Rather than adopt this wild ly unrealistic approach 
we couch the discussion in physicists' language. 

Suppose y and y' communicate by radaro Say y emits his light signal at 
his proper time Uo = Iyuo, the signal strikes y' at his proper time u/ = 
ty'u l ' and returns to y at U2 = tyU2 (ef. the figure in Proposition 5.2.3). By 
the orthogonality property (a) above and Exercise 5.2.6, u/ is the average: 
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Ul' = l(uo + U2) within the limit of empirical accuracy. By subsequent com
munication y and y' learn that this consistency condilion held. Now imagine 
each observer in Z continually performing measurements of this kind with 
each nearby neighbor. By noting that the consistency condition always holds 
in this large set of interlocking measurements they can conelude that ortho
gonal surfaces t = constant must exist and that t is indeed a proper time 
function. 

In the more general case that ay, =F 0 for some of the observers in Z, all 
that is required is that one observer, say y, take the lead. y autocratically 
decides that Iyu = u. He transmits his fiat to his neighbors-for example, 
by demanding tY'Ul' above be given by ty'uI' = l(uo + U2)' They in turn 
inform their neighbors, and so on. This deterrnines a function t on (part of) 
M. Somewhat angry at first, the other observers find that at worst they need 
only change the origin of their own proper time to get agreement with t 
and that now all further radar measurements as above give consistency. 

EXERCISE 5.3.1 

Generalize the above discussion to the case that Z is synchronizable but not 
proper time synchronizable by assuming one autocrat " and other observers who 
regard the consistency condition, II = !(to + (2) V nearby radar measurement, 
as more important than insisting on their own proper time. 

In practice, " may have some justification-for example, as the "ob
server" in the center ofa star or as an "observer at infinity." Note that 
unIess the chronological future {z E M I x « z for some x on ,,'s world 
line} is all of M, t is not radar deterrnined on all of M by signals that 
travel no faster than light. 

EXERCISE 5.3.2 
Take a rotating reference frame on Minkowski spacetime and show explicitly 
how the radar measurements can lead to an inconsistency with the assumption 
that a time function exists (cf. Exercise 2.3.15). 

5.4 Frequency ratio 
Suppose we observe a photon from a star. By measuring its energy we can 
assign it a frequency (Section 5.1). Suppose we see first one photon, then 
another, then another, and so on. By counting how many photons arrive 
during one second of our own proper time we get a conceptionally different 
"frequency": number per unit proper second. We now show these two con
cepts are consistent. In practice, both kinds of measurement are key tools 
in analyzing, roughly speaking, "how fast the star is moving" or "how 
mu ch gravity is between us and it." 

Formally, the situation of interest is the following. We have a rectangle 
~ = [a, b] x [-e, e] and a map a: ~ -? M as in Section 5.0.3. "Iv E [-e, e] 
the curve av: [a, b] -? M is a freely falling photon (" from the star to us "). 
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Moreover the euryes rA: [-e, e] ~ M, defined by rAv = a(A, v) for A = a 
or b, are future-pointing timelike. Intuitively, Ya deseribes the history of the 
star and rb deseribes our history; we are not insisting either be parametrized 
via proper time (arclength). In partieular, we the n have that ao is a freely 
faliing photon from aoa = raO = a(a, 0) to aob = rbO = a(b, 0). Moreover, 
ZA = rA.O/IYA.OI is an instantaneous observer at aoA VA = a or b. 

'Ib 

a, 

'I. 

Now given any freely faIling photon A: ra, b] ~ M and any pair of in
stantaneous observers (Aa, Za), (Ab, Zb), the respeetive frequeneies measured 
are fA = -g(A.A, ZA)/h (Seetion 5.1.3.b). Moreover, the reader ean eheek 
that the ratio, fa/fb' of frequencies at emission and reeeption comes out the 
same if A is replaeed by any other photon in the light signal [A]. Thus V triple 
A, Za, Zb as above we define the jrequency ratio jor ([A], Za, Zb) as 
-t = g(A.a, Za)Jg(A.b, Zb) (= fa/fb; sometimes the more explieit phrase 
ratio oj emitted to observed jrequency is used). What we will show is that 
when there also exists a reetangle as above with A = ao, the frequeney ratio 
-t ean also be interpreted via a more geometrie eounting experiment. 

In faet, suppose a is as above and some finite number of the euryes av 

are oeeupied by aetual photons, say ao, ad, a2d, ... with d = 10- 6 e. Re
garding the image of rb as our own history, we then eount 106 photons in 
the parameter interval [0, e), eorresponding to our proper time J~ Irb.vl dv. 
Similarly an observer on the star eounts 106 photons in his proper time 

J~ Ira·vl dv. Thus the proper time ratio for equal photon numbers is 

J~ Ira·vl dv/J~ Irb·vl dv, independent of whieh photon euryes are aetually 
oeeupied. Applying the mathematies versus physies comments in Section 
2.1.2, we may take the limit e ~ 0 to get the proper time ratio jor a at 
ao as IYa.Olllrb.OI E (0, oo). 
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Proposition 5.4.1. The frequency ratio t for [(aa], Za, Zb) is the inverse of the 
proper time ratio for a at aa. 

PROOF. ~ = [g(ao.a, Ya.O)jg(ao.b, Yb.O)][IYb.OljIYu.Olj. The first square bracket 
is one, by Gauss' lemma (Seetion 5.0.3). 0 

In general, one simply has ameasured frequeney ratio interpreted as 
above. In some (very speeial) cases one can also interpret ~ via" motion" 
or "cosmological red shift" or a "photon losing energy as it struggles up
ward in a gravitational field," and so on. We give two examples, emphasizing 
the extra strueture one needs before such additional interpretations become 
legitimate. 

EXAMPLE 5.4.2. DOPPLER EFFECT IN 2-D1MENSIONAL MINKOWSKI SPACE. When 
(M, g) is Minkowski space, distant parallelism makes sense-that is, there 
exists a global basis consisting of covariant eonstant veetor fields (Exereise 
2.3.12). In this ease, and reallyonly in this ease, ean one talk of two instan
taneous observers, (za, Za) and (Zb' Zb) with Za =F Zb, being at re st or moving 
with respeet to eaeh other. Then the frequeney ratio being different from I 
indieates motion, as we now ilIustrate, in the simplest case. 

Let (1R2, g) be 2-dimensional Minkowski space, '\: [0, 1] ~ 1R2 be a freely 
falling photon, ('\0, Zo) and ('\1, ZJ be instantaneous observers. Without 
loss of generality, we may suppose '\1 = (0,0) E 1R2, Zl = c2,\I, and ,\* = 
(a, a) E 1R2"u, a E (0, oo) (ef. Section 0.2). Then '\0 = (-a, -a) E 1R2 and, 
for some 8 E IR, Zo = (sinh 8, eosh 8) E 1R2AQ. Then, identifying 1R2AQ with 
IR\!O which is kosher when distant parallelism is defined, the Newtonian 
velocity Zl observes for Zo is tanh 8 = v. Note that here 8 < 0 iff v < 0 
iff, intuitively speaking, Zo is reeeding from Zl in the sense of the pieture. 
On the other hand f1 = -g('\*, Zl)jh = ajh and fo = -g('\*, Zo)jh = 
a(cosh 8 - sinh 8)jh. Thus the frequeney ratio for (['\j, Zo, Zl) is ~ = 

cosh 8 - sinh 8 = [(I - v)/(I + V)]l/2. In particuIar, the ratio of emitted 
to observed frequency is bigger than 1 iff Zo is "receding" from Zl' 

139 



5 Photons 

EXAMPLE 5.4.3. Let A: la, b] ~ M be a restrietion of the standard photon 
on Einstein-de Sitter spacetime. Thus (Aa, i14Aa) and (Ab, i14Ab) are instan
taneous eomoving observers at emission and reeeption. We eompute the 
frequeney ratio -t for ([A], i14Aa, i14Ab) in terms of the emission time la = 
u4 Aa and reeeption time Ib = u4 Ab; note Ib > la > 0 by Exereise 5.1.6. 

We have Au = (0,0, 3U l15, U315) Vu E la, b] with b> a> o. Thus A.u = 
(3/5)[u- 415 i13(Au) + U- 215 i14(Au)] and u4Au = U315. Thus g(A.u, (1 4 ) = 
-(3/5)u- 215 = -(3j5)(u4 Au)-213. By the definitions ~ = fa/fb = (lb/ta)213 > 1. 

Intuitively speaking, -t > 1 is eonsistent with the "expansion of the 
universe" (Proposition 2.3.7c), since in Example 5.4.2, -t > 1 eorre
sponds to reeession. However, this intuitive argument eannot be made 
preeise, exeept in a neighborhood so small the eurvature is negligible 
(Seetion 2.1.2), sinee there are no eovariant eonstant timelike veetor 
fields on Einstein-de Sitter spacetime (Exereise 2.3.12) and thus no 
wholly natural way to define "relative veIoeity" for distant instan
taneous observers. This last eomment applies also to interpreting the 
"gravitational red shift" of Chapter 7 as "due to gravity rather than to 
relative motion." 

EXERCISE 5.4.4 

Let A: [0, b] --+ M be a freely falling photon, (Aa, Z,,) and (Ab, Zb) be instan
taneous observers. Show that a map u: fJ --+ M as in this seetion exists in the 
following three cases. (a) A[a, b] is contained in a simply eonvex neighborhood. 
(b) M is Einstein-de Sitter spacetime and Z", Zb are comoving as in Example 
5.4.3. (e) M is a normal Schwarzschild spacetime, ,\ is "purely radial" (i.e., 
p 0 A = eonstant) and Z", Zb are stationary as defined in Seetion 2.1. (d) (Hard.) 
Pind a ease where no sueh u exists. 

EXERCISE 5.4.5 

Let yo, Yl: (0, oo) --+ M be eomoving observers on Einstein-de Sitter spacetime 
with YoU = (0, 0, e, u), e E (0, oo), and Y1U = (0, 0, e + 8, u), 8 E (0, oo). Let 
A: [0, b] --+ M be a freely faIling photon, from some point on YO's world line, 
which is received by Yl ("us-now") at proper time Ul E (0, oo). Show: (a) IAa = 
(ul'3 - 8/3)3 > 0; (b) -t = [3ui'3/(3ui'3 - 1l)]2 > l; (e) Ul > 83/27. (Hint: ef. 
Example 5.2.2 and Exercise 5.2.5.) 

(e) Says that Yl eannot reeeive any light signal from yo until Ul gets 
big enough. Il should not be regarded as in any sense a distancc nor 
even as a direetly observable quantity. 

5.5 Photon distribution funetions 
Astronomers observe many photons from eaeh known star, many stars, 
many photons from extended sourees such as gas c10uds in our galaxy, 
many photons whieh have no identifiable souree and seem to be just wander
ing around the universe, and so on. The total number of photons involved is 
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so large that the models of Chapter 3-for example, a finite collection of 
photons or superposition of photon beams-are sometimes inconvenient. 
We devote the rest of Chapter 5 to a powerful alternate mode!. In the pres
ent, very informai section we specify how a single instantaneous observer 
analyzes nearby photons using the mode!. The generalization to an observer
independent description of photons on all of M wiII require considerable 
formai machinery, given in the next two sections. 

Thus through this section let (z, Z) be an instantaneous observer, .!if, + be 
the future lightcone in M" Z~ be (z, Z)'s rest space, and yz be (z, Z)'s celes
tial sphere. To each photon energy-momentum Y E !l'. +, (z, Z) can assign 
a measured energy e = - g( Y, Z) E (0, oo) and measured spatial direction 
U E yz (Section 5.1). We therefore introduce (z, Z)'s direction-energy space 
Pz = yz x (0, oo) and denote the projection onto the second faetor by 
e: Pz -+ (0, oo). 

We will presently use integrals on Pz to represent-for example, the 
energy density (Section 3.3.3) due to many photons-so we next make some 
remarks on integration. 

5.5.1 Integration 

(a) Let N be a e'" manifold and let A be avolume element on N. Thus N 
orientable. We take N. and open submanifolds of N, as oriented via A. 
Define an integration region in N to be a compact subset f e N such that 
the interior fO is nonempty and .Jf', of are piecewise e'" (Section (3.0.1). 

This is sufficient to insure that J,,. JA is a well-defined real number whenever 

J: N -+ IR is eontinuous (Bishop-Goldberg, Section 4.8). The integral is 
nonnegative if J is. (b) If f e yz is an integration region, the area il of f 

is defined as the solid angle of :fr. Thus il = Ix" where , is the natural 

volume element of Yz, obtained by regarding (Zü glz~) as Euclidean 3-space 
(cf. Sections 0.0.9 and 2.1.2). (c) On (z, Z)'s direction-energy space Pz the 
natural volume element is 1tz = , /\ e2 de; the extra factor e 2 merely corre
sponds to a transition from rectangular to spherical coordinates (Exercise 
5.5.6c). We take Pz oriented by 1tz. 

Now to analyze nearby photons, (z, Z) can choose in Z.l an ordinary 
solid ball B, centered at the origin of Z.l and so small that B can also be 
regarded as a subset of M (cf. our comments in Seetion 2.1.2 !f. on actual 
measurements, tangent spaces, and negligible curvature). If a photon's 
world line intersects B, the tangent Y can be regarded as a veetor in M. 
(Exercise 0.0.10). Then YE!l'.+ so (z,Z) measures a point (U,e)EPz for 
Yas in Section 5.1.3. If f x [0, b] e P z is given where f is an integration 
region in Yz, then (z, Z) can count the number of incoming photons with 
measured energies e in the range [0, b 1 and measured spatial direetions U 
in:fr. Knowing this for all f and for all [0, b], (z, Z) completely determines 
the distribution of incoming photons relative to his own direction-energy 
space. 
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If the number of photons interseeting the solid ball B is enormous, then 
the preeeding clumsy eounting procedure must be replaeed by a "smoothed
out" idealization in mueh the same way the world density of a particle flow 
is used to deseribe the distribution of moleeules in a cold, streaming gas 
(see Seetion 3.2). Thus we introduee a photon distributionfunctionfor (z, Z), 
whieh is formally defined as a funetion Fz : Pz -+ [0, oo). Physieally, e2Fz 
models the number of photons per unit spatial volume per unit solid angle 
per unit energy interval. The rest of this seetion will be devoted to a dis
eussion of this funetion, to be denoted exclusively by Fz. 

Imagine you are in your baekyard on a beautiful sunny day. All 
around you light of many eolors is whizzing about in all direetions. 
Even the tiny fraction that enters your eye presents a rich pieture. Fz is 
essentially that pieture. Indeed, suppose z is the center of your eye at 
one moment, that Z is tangent to your history, that B models your whole 
eye, while U points toward a rose and e corresponds to the color red 
(Section 5.1). Then e3 Fz( U, e) is essentially the brightness of the rose as 
perceived by you (compare Exereises 5.5.6 and 5.5.7 following). 

Suppose we replace a large eolleetion of Newtonian point particles 
bya Newtonian number density (ef. Chapter 3). Then we have in mind 
averages over regions large enough to contain many particles but so 
small that conditions do not change drastically within one region. In 
addition to the restrietion of negligible eurvature already mentioned 
above, the solid ball B should be neither too large nor too small in 
roughly the sense just indieated. If no such B exists, (z, Z) should use 
a different model. 

We are using Fz to model photons irrespeetive of "polarization." 
As aresult, some of our equations below will differ from those found 
in some texts by a faetor of 2. 

5.5.2 Physical interpretation 
The following definition indieates somewhat more speeifiealIy how Fz is 
measured. Let $' e ~ be an integration region. Then with 0 < a < b < oo 

Jt' = $' x ra, b] e Pz is al so an integration region so ?t = fK Fz7Cz is a 
finite, nonnegative number. It is defined as the number of photons (z, Z) 
measures per unit spatial volume with measured energies in the range a ~ e ~ b 
and measured spatial direetions in the region $' of his eelestial sphere. For 

example, suppose Fz vanishes outside Jr, then ?t = fpz Fz7Cz = the total 

number of photons (z, Z) measures per unit spatial volume, irrespeetive of 
energies or direetions. In this ease, if the ordinary 3-volume of the B of 
Seetion 5.5.1 is 7, then n would be (approximately) ~ of the total number 
of photons whose world lines interseet B. The basie interpretation just given 
leads to an enormous number of derived coneepts and definitions. The rest 
of the seetion is denoted to a few of the most important, and to some exam
ples. However, we emphasize that, given (z, Z), there is reallyonly one basie 
quantity involved, namely Fz. 
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On this view literally billions of man-hours have been spent measuring 
Fz, and no other funetion of 3 variables deseribes as mueh of nature. 
Hence the plethora of auxiliary eoncepts that follow. 

Our definition (Seetion 5.5.2) in effeet makes precise the earlier phrase 
"per unit energy interval per unit solid angle." For a more preeise ver
sion of "per unit spatial volume" see Exercise 5.7.7b. 

Z). x Pz is often called (z, Z)'s "phase space"; compare Exercise 
5.5.6. 

Much as in Seetion 3.2, we do not require that nY, where V is the 
ordinary 3-volume of B, be an integer. 

5.5.3 Energy density and spectra 
(a) According to our interpretation (Section 5.5.2), eFz is the energy per 
unit volume of Z.l x Pz. More specifieally, for eaeh interval ra, b] e (0, oo), 
define a nonnegative number u[a, b] by 

u[a, b] = i eFz7Cz = r 'f be3Fz de, 
'f/'z x ra. bl J.9'z" 

where the second equality eomes from Seetion 5.5.le and Fubini's tbeorem. 
Then u[a, b] is interpreted as the measured energy density (Seetion 3.3.3) 
of those photons described by Fz that have measured energies in the range 
ra, b J. Sinee Fz is nonnegative, the double limit lima_o.b_ oo u[a, b J exists and 
is either oo or a nonnegative number; eall this limit u. u is then interpreted 
as the total energy density (z, Z) measuresfor the photons mode/led by Fz. 

In practice, the assumption that u is finite fails only for certain 
models suggested by quantum theory but usually regarded as patho
logieal. Thus in the more formaI treatment of Section 5.7, we shall 
build this assumption into the definition. 

(b) Primarily for historieal reasons, the integrand e3 Fz : Pz -+ [0, oo) in 
(a) is al so given a special name, being defined as the specijic intensity (z, Z) 
measures for the photons. A slight variation of this funetion is, however, 
very useful. Reeall from Section 5.1.3 that e = hf, where f is the frequeney 
(z, Z) measures for the photon and h is Planek's eonstant. Thus e3Fz(V, e) = 

113f3 Fz( V, hf). This leads to the definition: for a fixed V E Yz, S: (0, oo) -+ 

[0, oo) is defined to bc 

S(f) = h4f3Fz(V, hf). 

In other words, Sjh is just the speeifie intensity restrieted to {V} x (0, oo). 
The funetion S is defined as the energy spectrum (z, Z) measures in the V 
direction. The term eomes from the fact that if S is independent of V, 

41T f: Sdf is, by the equations in (a), the energy density u. 

(e) An enormous amount is known about the energy speetra produeed 
by various kinds of physieal proeesses-for example, emission or absorp
tion of photons by a gas or by electrons moving in a magnetic field. Con
versely, suppose (z, Z) measures an energy spectrum in the V direction and 
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finds many sharp local maxirna and minirna (" spectral lines") as in the 
figure. Often he can determine in detail what the physical conditions at the 
emitter and in the intervening spacetime must be in order to produce 
the observed energy spectrum. Most of our information about the physics 
of stars is obtained in this way. 

st 

f-+ 

(d) Often (z, Z) can assign an empirical frequency ratio ~ to a distant
early galaxy, roughly as foIlows. He measures the spectrum S for U in the 
direction toward the galaxy center. From the general shape of S he infers 
what physical process produced a particular local maximum. He can the n 
work out what frequency fo a hypothetical observer at the galaxy, at rest 
with respeet to the galaxy, would have measured for the photons at that 
local maximum. Comparing with the actually observed frequency f gives ~ 
as fo/fo Nowa frequency ratio is the same for all the photons in a given light 
signal (Section 5.4). Thus -t typically comes out independent of which par
ticular local maximum (z, Z) uses. This serves as a check on the argument, 
in particular on the implicit assumption that local physics at the galaxy is 
the same as local physics near here-now. 

EXAMPLE 5.5.4. PLANCK PHOTaN DISTRIBUTION FUNCTIONS. The most im
portant examples of photon distribution functions are those that correspond, 
intuitively speaking, to thermaI equilibrium. We define them, compute their 
energy density and add some heuristic comments on the concept of thermaI 
equi)ibrium. (a) Define the Planck Junclion P: (0, oo) ~ (0, oo) by Pu = 
2h- 3 [(exp u) - 1]-\ where h is Planck's constant. Let k be the universal 
constant called Boltzmann's constant; in our units k ~ 10- 74 second s per 
Kelvin. Fz is defined as Planck with temperature T iff Fz(U, e) = P(e/kT) 
V(U, e) EPz and for some TE (0, oo). 
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A Planck distribution function with temperature Tean be produced
for example, by a gas that is held at temperature T while it emits light. The 
main properties of Planck distribution functions were known by 1900 from 
experiments and preliminary theoretieal arguments, but it was Planek who 
first guessed the above explicit expression of the funetions themselves. In 
1901, he gave a deeper theoretieal analysis. He applied statistieal arguments 
to an intentionally oversimplified model of atoms emitting and absorbing 
light and found that the empirieal formula ean be derived by introdueing his 
constant hand introducing the concept of a photon. His analysis assumed 
that collisions in which photons are ereated or destroyed ean oceur freely. 

Nowadays, various equivalent terms are used for Planek distribution 
functions: "thermal [equilibrium] speetrum," "blackbody radiation," and 
so on. The term "blackbody" refers, roughly speaking, to the faet that if 
a photon of any frequency can be destroyed in a collision at the surfaee of 
a body, the body may absorb all ineident light and appear black. 

(b) Let Fz be Planek with temperature T. The graph shows its speeific 
intensity 1= e3P(e/kT) as a function of e. 4rr times the enclosed area is 
the energy density (Seetion 5.5.3a)-that is, 

u = r eFz1Tz = 4rrJ,OO I de 
Jpz 0 

= 87Th- 3 i'" e3 de 
o [exp (e/kT)] - 1 

i'" U3 du 
= 87Th - 3(kD4 = a T4 

o (exp u) - 1 0, 

where ao is the blackbody conslanl, ao = 87T5k4/{l5h3) ~ 1.4 X 10- 41 

(seeonds)-2 (Kelvin)-4 in our units. If the x and y axes are, respectively, 
stretched and contraeted by a (multiplieative) factor h, the graph beeomes 
that of the energy speetrum (Seetion 5.S.3b). In observations, the charac
teristic shape of such a Planek spectrum stands out, literally, like a sore 
thumb (ef. Seetion S.5.3c). 

2.9SkT 
e-+ 
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(e) Speaking very generally, and rather vaguely, some equilibrium pat
tern of partide motions tends to form whenever many partides undergo 
frequent eollisions; one ean then define the concept of the temperature of the 
system of partides. The eollisions not only tend to establish spatial isotropy, 
exemplified in our ease by the faet that a Planek Fz is independent of direc
tion U. They also tend to share out the available energy aeeording to a 
simple, standard, "thermal equilibrium" pattern whieh depends only on 
the type of partides involved and a few parameters-for example, tempera
ture, "chernieal potential" for eleetrie eharge, and so on (ef. Ehlers [I]). 
For example, the entire graph in (b) for photons in thermal equilibrium is 
uniquely determined given a single parameter, the temperature T. 

An intuitive reason why eollisions tend to establish a standard energy 
pattern ean be roughly seen from the billiard ball example we used 
below Definition 3.15.2 to indieate why collisions tend to establish 
spatial isotropy. Indeed, whenever two bilIiard balls collide, the one 
with the larger (Newtonian kinetie) energy tends, on the average, to 
give the other a bit of its own energy. Thus imagine a bilIiard table 
with negligible frietion and a number of ball s on it. Suppose onlyone 
ball is moving: a thoroughly nonthermal-equilibrium pattem. It is 
intuitively rather c1ear that after many collisions most of the balls will 
be moving with energies c10se to the average energy, with minor devia
tions from the average energy not too infrequent. Then the situation 
approximates the thermal equilibrium energy pattern for billiard balls. 

Onee such a thermal equilibrium pattern is set up it tends to maintain 
itself whether or not eollisions oeeur until so me variable-for example, the 
density of partides-is ehanged. Then, if eoIlisions oeeur often enough, a 
thermal equilibrium pattern at a new temperature quiekly emerges. 

5.5.5. Astrophysical quantities 

For later referenee we deseribe a few basie eoneepts in astronomy. Suppase 
(z, Z) is observing photons from a speeifie objeet, say the moon, a star or a 
distant-early galaxy. 

(a) Physieally, the absolute luminosity L > 0 of the objeet is defined as 
the total energy it sends out in photons during one second of its own proper 
time. A preeise mathematieal model, in a speeial ease, is given in Seetion 6.7 
following. 

(b) Let .Jt be a matter model whieh represents the photons from the 
objeet and let t be the stress-energy tensor of .,/{. The apparent luminosity t 
(z, Z) measures for the objeet is the energy density (z, Z) measures for t 
(Seetion 3.3.3)-that is, t = T(Z, Z). In very simple situations the absolute 
luminosity is typieally 41Tt, where t is the apparent luminosity measured by 
an instantaneous observer .. at rest" with respeet to the objeet and at unit 
distanee from it (ef. Exereise 6.7.7). 

(e) To your eye, the moon appears as an extended pateh on the sky, but 
a star looks like a point. Assume, as is normally an excellent idealization, 
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that there exists a smallest integration region Jf( e yz with the property 
that an observed photon eomes from the particular object only if the corre
sponding spatial direction U is in x: Then the sol id angle subtended by Jf( 

is defined as the apparent size of the object for (z, Z) [and also as the" sol id 
angle it subtends" for (z, Z)]. Thus when you observe a star, Jf( is so small 
that your eye cannot distinguish Jf( from a point. 

(d) (z, Z) has many different photon detection devices available-his 
eyes, an optical telescope combined with a photographic plate, a radio 
telescope, an x-ray counter, and so on. Each such device responds to photons 
in a somewhat different way. To be more specific, fix Jf( and suppose .,I{ 

in (b) can be regarded, as far as (z, Z) is concerned, as a photon distribu
tion function Fz, with Fz = ° outside of Jf( x (0, oo). Then if (z, Z) simply 
looks at the object corresponding to this:lf, his eye typicalIy responds rather 
directly to tv, the apparent luminosity in the visible, defined by tv = 

f.,e,o. [a,bl eFz1Cz, where ra, b] corresponds to the visible range-that is, (alh) ~ 
3 x 1014 (seconds) -1, (blh) ~ 1015 (second s) -1 (Section 5.l.3c). Very 
roughly, the eye simply "adds up" all the photon energies in an appropriate 
energy range, corresponding to the integral just given. For comparison, 
note here that the apparent luminosity for (z, Z) is given by Sections 5.5.3a 

and 5.5.5b as t = JJ/'"' (0. oc) eFz1Cz = U ~ tv· 

On the other hand some detection devices respond rather directly to the 
specific intensity (Section 5.5.3b). And a radio telescope looking at a quasar 
typically responds to another quantity: Ve E (0, oo) the specijic flux is 

Fe = e3 JJ/'" FzCU, e){. The radio telescope is usually "tuned" to a specific 

frequeney f and responds to Fh,• And so on for other detectors, ad nauseam 
(cf. Emming [I]). 

EXERCISE 5.5.6 

Let Pz = ~ x (0, co) be (z, Z)'s direetion-energy space. (a) Define a map 
1TZ: Pz -+ M z by 1TZ(U, e) = e(Z - U)V(U, e) E ~ x (0, co) (ef. Seetion 5.1.3). 
Show 1TZ is a diffeomorphism onto the future lightcone ~ + • (b) Define a map 
p: Pz -- Zl by p = Vz 0 7rz, where Vz: M z -+ Zl is the orthogonal projeetion 
along Z-that is, vzW = W + g(Z, W)ZVWE M z• Show p(U, e) = -eU, and 
show p is a diffeomorphism onto Zl - tO}. (e) In (b) show that, regarding Zl 
as ~3, we have p*(du1 " du2 " du3 ) = -, " e2 de = - 7fz. 

We mention, without attempting to explain in detail a few of the 
further phrases used to deseribe Fz in the literature. It is photon num
ber .. per mode" or .. per unit volume in phase space" or .. per unit 
spatial volume per unit volume in 3-momentum space Zl_{O}." Or it 
is" photon oeeupation number." Moreover, whenever the term .. per unit 
spatial volume" oeeurs in the interpretations, it ean be replaeed by 
.. per unit perpendieular area per unit time." The idea then is that, 
since photons travel at unit speed (Seetion 3.1), all the photons in a 
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unit spatial cube cross a unit spatial 2-area perpendicular to their 
travel direction in unit time (provided they are not destroyed in the 
interirn). 

EXERCISE 5.5.7 

Suppose there is a very large, finite coIlection {(PA, 'lA)} of photon beams that 
model the sam e physical situation that Fz deseribes at z. Then, roughly, Fz is 
world density per unit volume in 3-momentum space (ef. Exercise 5.5.6). More 
specifically, let f e ~ x (0, oo) be an integration region and define K = 
{A I PAZ E 1Tzf}, where 1TZ is defined in Exercise 5.5.6a. The following approxi
mate equalities cannot be proved since our two intuitively related models are 
mathematicaIly independent; trying to demand exact equality Vf would be 
nonsense. But try to make both approximate equalities plausible to yourself 
using Definition 3.2.1, Section 5.2.2, and some pictures: 

(a) 

(b) 

where tA is the stress-energy tensor of (PA' 1)A)' 

5.6 Integration on lightcones 

Suppose Fz is a photon distribution function for the instantaneous observer 
(z, Z). Fz deserihes only those photons near z. Worse, we do not yct know 
even how the photon distribution function for a different instantaneous 
observer (z, Z') at z is related to Fz. We need an intrinsie, genuinely rela
tivistic model, which does not single out any one instantaneous ohserver. 
This section sets up the formalism. The next gives the mode!. Both sections 
use the notation of the previous one. Thus if (x, X) is an instantaneous 
observer, PX denotes his direction-energy space, 1tx is the natural volume 
element on PX (Section 5.5. le), and 'Trx:Px-+!fx+ is the natural diffeo
morphism onto the future lightcone !fx + at x (Exercise 5.5.6a). 

We begin by analyzing intrinsie volume elements on lightcones. Let 
(1R4, g) be Minkowski space. We regard the origin, but not the axes, as dis
tinguished since we actually have in mind the tangent space to a point in a 
general spacetime. Let n be the metrie volume element du l " ••• " du4• 

Let l!) be the" radial" I-form ul dul + u2 du2 + u3 du3 - u4 du4 ; l!) is intrin
sie (Seetion 5.0.5). Let 9'0 + be the set of all points to which the origin ean 
send a light signal-that is, 

9'0 + = {(Ul, ... , u4) E 1R41 u4 > 0, /l~ (U/l)2 = (U4)2}. 

Let ,: 2'0 + -+ 1R4 be the inclusion map. Thus , is an imbedding (Proposition 
1.1.7) and u4 0' > O. 
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5.6 Integration on lightcones 

Propositioo 5.6.1. The 3-form Ao = t*[(I/u4) dul /\ du2 /\ du3 ] on .!l'o + can 
be intrinsically characterized as follows. 'rl 3-form X over t such that 
(m 0 t) /\ X = nOt, Aow = t*(xw) 'rIw E ZO +. 

Proof There exists at least one such x; for example, the 3-form 

X = [(1/u4 ) du l II du2 II du3 ] 0 t 

works by our above expressions for w, Ao, and n. We must show 
uniqueness of Ao• Let X, X' be 3-forms over , with (w 0 ,) 1\ X = no,. 

Then (w 0 ,) 1\ X' = no, iff (w 0 ,) 1\ (x - X') = 0 iff X - X' = 
(w 0 ,) 1\ " for some 2-form " over , (Bishop-Goldberg p. 95). But 'rl W 
tangent to ~o + at w E ~o, w(W) = 0 (Section 5.0.5). Thus if X and X' 
both obey the stated conditions, '*(xw) = '*(X'w) 'rIw E ~o +. Thus Ao is 
unique. 0 

We can now get an intrinsie voIume element on the future lightcone at a 
point in any spacetime M. The factor e- l in the following corollary corre
sponds to (U4)-1 in Proposition 5.6.1; the factor is essential in an observer 
independent treatment. 

CoroUary 5.6.2. Suppose x E M. Then there is a unique volume element Ax 
on ~ + such that, 'rl instantaneous observer (x, X) at x, 1Tx*Ax = e-l7rx. 

PROOF. Let {Xl> ... , X4} be an orthonormal basis of Mx, and let T: Mx -+ 1R4 
be the diffeomorphism given by T(LI a1X1) = (al, ... , a4). Then T~ + = .?a + ; 

let TO: ~ + --+ ZO + denote the diffeomorphism induced by T. The preceding 
proposition shows that TO* Ao is avolume element on ~ + independent of 
the orthonormal basis chosen. Write Ax = - TO * Ao. Observe that if 
v: ZO + --+ 1R3 denotes the restriction to Zo + of the canonical projection 
1R4 --+ 1R3 such that (al, ... , a4) --+ (al, a2, a 3), then Ao = v*(f du 1 /\ du2 /\ du3), 

where f = [(u1 y + (U2)2 + (U3)2] - 1/2. 

Now if (x, X) is given, we may assume X = X4• Let p: PX --+ 1R3 be the 
mapping of Exercise 5.5.6b. Then p = v 0 TO 01Tx. Exercise 5.5.6c then gives 
1Tx*Ax = -p*(fdu1 /\ du2 /\ du3) = e- l7rx· 0 

~ + is not compact and improper integrals, analogous to the limit in 
Section 5.5.3a, will arise. We give some machinery for dealing with them. 
As in Section 5.5.la, let A be avolume element on a manifold N. Recall 
that Z+ denotes the positive integers. Define a sequence Jf"b Jf"2' ••. of 
integration regions in N to be exhaustive iff Jft e Jf"P +1 (the interior of 
x; + 1) Vi E Z + and UdJt'; 1 i E 1: +} = N. For example, suppose (z, Z) is an 
instantaneous observer and N = ~ +. Then Jt'; = {Y E ~ + 1 i ~ Ig( Y, Z)I ~ 
(i + I)-l} determines an exhaustive sequence ofintegration regions in N. 

Since N is paracompact (Section 0.004) there always is an exhaustive 
sequence for N. The simplest way to see this is to invoke the Whitney 
imbedding theorem and standard Morse theory to prove the existence 
of a C'" function h: N ---+ [0, oo) such that h- 1 [0, i] is compact Vi ~ 0 
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and such that the critical points of h (= the points at which dh = 0) 
form a discrete set (ef. Milnor [I], p. 36). We may assume 0 E hN. Now 
define ~ = h- 1 [0, i]. The sequence {~} is then an exhaustive sequence. 
In fact, in this case each o~ is an imbedded C'" submanifold of N 
except at a finite number of points. 

SupposeJ: N -;.IR is continuous. Suppose that for some a, -oo ~ a ~ oo, 

limi_OO Jx-/A = a V exhaustive sequence {Jt;} of integration regions in N. 

Then by definition JNJA exists and equals a, and we write JNJA = a. For 

example, suppase N is Minkowski space, n is the metric volume form and 

J = I. Then JMJn exists and equals oo. As anather example, suppose J 
vanishes outside some compact set X e N. Then V such exhaustive sequence 
{Jt;} , there is an i E 71.+ such that X e .;r;, since Jt;°+l ;:) Jt; Vi E 71.+ and 

Ut Jt; = N. This implies that JNJA exists and is a finite number. More 

generaIly, we have: 

Propositioo 5.6.3. Suppase J keeps sign-that is, J is either nonnegative or 

nonpositive-then JN JA exists. 

PROOF. We may assume J nonnegative. Let {Jt;} be an exhaustive sequence. 

Then Jx-1JA, Jx-2 JA, ... is a nondecreasing sequence of nonnegative num

bers and hence must approach alimit, say a E [0, oo J. Let {Jf;} be a second 

exhaustive sequence; we must show JJI"I JA -;. a. 
Define a map II: 7z+ -7L+ by induetion as follows. v(I) = j, where j is 

such that X j ;:) ~; vi = 2, 3, ... , take ilU) such that Jf"V(1) ;:) ~ and that 

ilU) > II(k) Vk = I, ... , i - I. J"? 0 now implies J- JA ~ J..v JA and thus 
.nt .Jt vCf) 

lim t _", fJl"/A ~ a. Reversing the roles of {~} and {Jt;} in the argument, 

we have a ~ lim t _ al JJI"/A. D 

Proposition 5.6.3 is all we shall really need, and the above approach to 
improper integrals is the shortest for our purposes. It is by no means the 
most natural. The most natural approach begins with the definition of 
f<fl JA for a function j defined on a coordinate neighborhood 'PI and 
having compact support. Then one can introduce a Borel measure on 
N and take over the whole machinery of measure theory. No detailed 
elementary exposition of this approach seems to be available, but Hel
gason [I], pp. 361-5, gives some of the main ideas. 

We next specify the functions of interest. Suppose J: ~ + -;. [0, oo) is a 
function; thusJis Cal (Section 0.0.4). Reeall that eaeh w E M x* determines 
a function w: ~ + _ IR via its natural action on Mx (Exercise 0.0.10). The 
wrong way Schwarz inequality shows that if w is causal, w keeps sign. 

Thus V nonnegative integer N, J:t>x + (w)NJA x exists. We define J to be of 

rapid decay iff f:t>x + (w)NJA x is finite V such N and V causal w E Mx *. 
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5.6 Integration on lightcones 

EXAMPLE 5.6.4. Let (x, X) be an instantaneous observer and define 
J: fEX + -;. (0, co) by J( r) = exp (-u)/u, where u = -g(X, Y). We c1aim J 
is of rapid decay. Note that Jo 1Tx = e-1exp(-e). To estimate integrals 
involving (w)NJ we need bounds on w. V Y E fEX + we have Y = e(X - U), 
e E (0, co), U E Y'x e Xl.. Suppose W E Mx * is causal and decompose w 

similarly-that is, w = ax + a, where a E IR, X E Mx * is physically equivalent 
to X and aEMx* with a(X) = 0. Then VYEfEx+ wY= w(Y) = -e x 
[a + a(U)]. Moreover, [a(U)]2 $ lal 2 1UI 2 = lal 2 by the usual Schwarz 
inequality applied to Xl.. Thus setting b = lal + lal we have Iwl $ eb on 
all of fEX +. Thus with N a nonnegative integer 

b- N IL ... wNJA x I = I ix (w 0 1Tx)Ne -2 exp (-e)7l'x I b- N 

$ i 'i~N-2[eXP(-e)]e2de 
fl'x 0 

= 4rr L'" eN exp (-e) de < co. 

Thus f..~ .. + wNfA x not only exists but is al so finite. w was any causal I-form 
at x and N was any nonnegative integer, so f is of rapid decay, as claimed. 

The generalization of these pointwise considerations to all of M will here 
require onlyone simple result on the tangent bundle TM. Define the future 
lighteone in TM as ff+ = {ey, Y) E TM I g( Y, Y) = ° and Y is future 
pointing}. Define the past lighteone ff- in TM duallyand take ff = ff+ V 

ff-. ff+ is an open subset of ff in the topology induced on ff by that of 
TM since for any reference frame Z, ff+ = H- 1( -co, 0), where H: ff-;.IR 
is the (COO) function determined by H(r) = g(Z, Y). 

Propositloo 5.6.5. The future lighteone ff+ in TM is a 7-dimensional imbedded 
submanifold. 

Prao! As usual, let K: TM -+ IR be defined by K(x, X) = g(X. X). 
Let TM' = TM - {(x. 0) E TM}. TM' is an open submanifold of TM 
and dK is nowhere zero on TM' (Exercise 0.0.10). Since !.t' is the level 
set K = 0 in TM', !.t' is an imbedded submanifold of TM' and hence 
of TM. !.t' + being open in !.t', the proposition follows. D 

Let F: ff+ -;. [0, co) be a function. We define F to be of rapid vertieal 
deeay iff both the following conditions hold. (a) Vx E M, the restriction of 
Fto fEX· is of rapid decay. (b) V causall-form w on M and each nonnegative 
integer N, the function on M defined by x-;. f.!l'x+ [(wx)-]NFA x is Coo, 
where (wx)- denotes the function on Mx induced by wx in the sense of 
Exercise 0.0.10. 

Here" vertical" refers to the restriction to a fibre of the tangent bundle. 
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EXERCISE 5.6.6. FUNCTlONS OF RAPID DECA Y 

Let (x, X) be an instantaneous observer, x E Mx· be physieally equivalent to X, 
1Tx: PX -+ ~ +, and Ax be as in this seetion. (a) Suppose t: (0, oo) ->- (0, oo) is a 
funetion such that, for all non-negative integers L, N, fo'" eNldL(et)/deL I de < oo. 
With a, b E (0, oo), define J = at 0 ( - bx): ~ + ->- (0, oo); thusJ( Y) = ae( - bg(X, Y» 
V Y E ~ +. Show J is a funetion of rapid decay. (b) Let Fx be a photon distribu
tion funetion for (x, X); suppose Fx is Planek. Show from (a) that Fx 0 1TX-1 

is a funetion of rapid decay. (e) Let J: 2'x + ->- [0, oo) be a funetion of rapid deeay 
and suppose w E Mx·. Show that w ean be written as the sum of two eausal 
I-forms and then that f.2"x+ wJAx exists and is finite. (d) In (e) show Jo 1Tx is a 
photon distribution funetion for (x, X) and that the total energy density 
lima_o.b_", u[a,b] in Seetion 5.5.3a is finite. (e) In (e) suppose 'lEMx·. Show 
fzx + wiiJAx exists and is finite. (f) In (e) suppose J is not identieally zero on 

~ + and both w and 'I are future pointingo Show fzx + wijJAx > 0 (roughly: 
wij is zero only on aset of measure zero). 

EXERCISE 5.6.7. FUNCTIONS OF RAPID VERTICAL DECAY 

Suppose X is a referenee frame and g: M ->- (0, oo), j: M ->- (0, oo) are funetions. 
Define a funetion F: 2' + ->- (0, oo) by requiring the restrietion of F to ~ + to 
equal f, where J is as in Exereise 5.6.6a with X = Xx, a = gx, and b = jx. 
Show F is of rapid vertieal decay. (b) Let H: 2' + ->- [0, oo) be of rapid vertieal 
decay, and let w and '1 be I-forms on M. Show there exists a funetion h: M -+ ~ 

defined pointwise by hx = fzx + (wx)-('1x)- HA x (what is required is to show 
h is C"'). 

5.7 A photon gas 

We ean now define the model often used to analyze such physieal processes 
as the seattering of light by our atmosphere, the refleetion of light by the 
moon and planets, the emission of light by the sun, the absorption of light 
by large gas c\ouds in our galaxy, the transmission of radio waves from 
a distant-early galaxy to here-now through the intervening spacetime, 
the time evolution of the microwave radiation (whieh seems to be a relie 
from an early epoeh in the history of our universe; ef. Seetion 6.5), and 
so on. 

Let!e+ e TM be the future lighteone; thus!e+ is a 7-manifold (Proposi. 
tion 5.6.5). A photon gas on M is a funetion F:!t'+ -+ [0, co) of rapid ver
tieal decay. Throughout this seetion F is a photon gas on M. Roughly 
speaking, F(y, y) represents the probability of finding a photon with energy
momentum Y at y E MV(y, Y) E!t'+; henee the requirement that F be non
negative. Requiring F to be of rapid vertieal deeay guarantees, inter alia. 
that a photon gas has a weIl-defined stress-energy tensor; to c\arify this, we 
now make our interpretation more speeifie. 

152 



5.7 A photon gas 

In more advanced treatments one imposes additional restrietions on 
F. These are stated and applied in the üptional exereises (Seetion 8.6). 

The reader familiar with nonrelativistie one-particle kinetie theory 
will find that the diseussion that follows merely adapts the ideas of that 
theory to the ease of photons in general relativity. 

The reader familiar with the geometrie formulation of Hamiltonian 
mechanies, as deseribed for example in Chapter 6 of Bishop-Gold
berg [1], may find it useful to transeribe the diseussion that follows 
into the language of that theory. We mention three mildly trieky 
features that then arise. (a) We are working on a submanifold!C'+ of 
TM, rather than working on all of T* M. (b) F is not interpreted as a 
dynamic vari abI e associated with a single photon; rather, F eorre
sponds to the "density of photons in phase space." (e) Let K be the 
geometrie energy funetion (Seetion 5.0.5). Thus K = 0 on fR+, and K 
is not interpreted physically as energy (Seetion 5.0.5). Nevertheless the 
restrietion of dK to fR + plays mueh the same role that the exterior 
derivative of the Hamiltonian plays in the ordinary geometrie theory 
of Hamiltonian mechanies. 

5.7.1 Physical interpretations 

Let (x, X) be an instantaneous observer and let 1Tx: PX -7 yx + be the 
natural diffeomorphism of Exereise 5.5.6a. Then Fx = F 01Tx is a photon 
distribution funetion for (x, X) sinee F2+ e [0, oo). 

(a) The physieal interpretation of F is that, no matter whieh instantaneous 
observer (x, X) we eonsider, the operational definition indieated in Seetion 
5.5.2 applies to Fx = FO 1Tx. Thus the other interpretations of Seetion 5.5 
al so apply. For example, F is defined as Planck with temperature T for the 
instantaneous observer (z, Z) iff F 01TZ is Planek with temperature T. 

Here the truly remarkable feature is that a single funetion ean sum
marize the observations made by all instantaneous observers. If (x, X') 
is an instantaneous observer whizzing past (x, X) at half the speed of 
light, he does not agree with (x, X) on measured photon energies; nor 
do they even agree on rest spaees, let alone on measured spatial diree
tions for photons. But they measure the same value for a given photon 
energy-momentum Y, namely, F(x, Y). This observer-independenee of 
F is best regarded as a law of nature (ef. Seetion 3.3). However, it ean 
be made plausible by eomparing a photon gas to a mathematieally 
independent, intuitively related model eonsisting of a large eoJleetion 
of photons (Ehlers [1 n. Exereise 3.0.5 for the ease a = 1 outlines the 
plausibility argument in its simplest form. 

(b) Mueh as in Seetion 3.3, our interpretation of F leads to a stress-energy 
tensor for the photons deseribed by F. By our assumption that F restrieted 
to yx + is of rapid decay, the energy density (x, X) measures for the photons-

namely, U = fpx eFx1Cx (Seetion 5.5.3a), exists and is finite (Exereise 5.6.6d). 

The following proposition shows more explieitly how u is determined by F; 
compare Exereise 5.5.7b. 
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Proposition 5.7.2. Notation as in Sections 3.0.3 and 5.6. There exists a unique 

symmetric (2,0)-tensor field I on M such that I(w, w) = f~x + w2FA x 
Vw E Mx * Vx E M. Moreover, the following properties ho!d: 

(a) I is a stress-energy tensor; 
(b) lx is norma! un/ess F == 0 on 2x + ; 

(c) trace I = 0; and 

(d) V instantaneous observer (x, X), T(X, X) = fpl< e(F 07Tx)1fx = U. 

Proo/. Suppose x E M. Sinee F restrieted to ~ + is of rapid decay, 
there exists a function T: M x* ~ ~ defined by w ~ f üj2FA x (Exereise 
5.6.6e); here, and throughout this proof, the domain of integration 
will be ~ + unIess indieated otherwise. Sinee T is a quadratic function, 
it determines a unique symmetrie tensor Tx E To2(Mx ) such that 

Tx(w, 'T/) = I wljFAx. 

We note the following properties. (a') Tx<w, w) ~ OVw E M x*, sinee F 
is nonnegative. (b') If F is not identieally zero on yx + and W E Mx is 
eausal, then Tx Wis timelike. In fact suppose w, 'T/ E Mx * are future point
ingo Then Tx<w, 'T/) > 0 (Exereise 5.6.6). Thus if wis physieally equiva
lent to W, 'YJ(TxW) = Tx{7J, w) > O. Thus TxW is orthogonal to no 
eausal veetor in Mx and hence is timelike. (e') Trace t x = O. For, let 
K be the geometric energy funetion and let {wl } be an orthonormal 
basis for M x*. We have: 

3 

trace Tx = L Tx<w", w") - T,.{w f , w4) 
#=1 

= f Lt (w")2 - (w4)2] FAx 

= J KFA x = 0, 

where the last equality is beeause K is zero on yx +. (d') Let (x, X) be an 
instantaneous observer, x be physieally equivalent to X. Then 

Tx(X, X) = TAx, x) = I x2FAx 

= r e2(F 0 7TX)(7TX* Ax ) 
JPl< 

= r eFx1Cx. Jpx 
Now since F is of rapid vertical deeay there exists a (C"') tensor 

field T on M defined pointwise by tx = t x , with t x as above. t then 
obeys (a)-(d) by virtue of (a'Hd'). 0 

f in Proposition 5.7.2 is defined as the stress-energy lensor of the photon 
gas F. We now examine the behavior of I in a speeial case whieh will play 
an important role in our later diseussion of eosmology. Let (z, Z) be an 
instantaneous observer, fjJ be the group of isometries from M z onto itself 
leaving Z fixed, as defined in Seetion 2.1.7. F is defined as spatially isotropic 
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for (z, Z) iff F(z, I/J Y) = F(z, Y)VI/J E (!J3 and V Y E ~ +. For exarnple, the 
reader may eheek that if F is Planek for (z, Z) the n F is spatially isotropie 
for (z, Z). 

Propositioo 5.7.3. Jf F is spatially isotropie for (z, Z) the stress-energy tensor 
of F is spatially isotropie for (z, Z). 

Prao! Suppose u E (f)3 and denote the extension of u to (r, s) tensors 
by us': Ts'(M.) -+ Ts'(M.) (Exereise 0.0.14). Then U20(gZ) = gz and u 
preserves the time orientation (Seetion 2.1.7). u is therefore a diffeo
morphism of the future lighteone .p, + onto itself. By Proposition 5.6.1 
the natural volume element Az of .p, + must obey (u- 1 )* A. = A •. Thus 
V w E M. *, we have (integration over .p, + will be understood in the 
following) : 

(uo2 T)(w, w) = T(UIOW, Ul0W) 

= f [(uIOw)-]2FA. 

= f w2(F 0 u-1)[(u-1)*A.l 

= f w2 FA. = T(w, w). 

Thus uo2 T = T-that is, T is spatially isotropie for (z, Z). D 

Corollary 5.7.4. Suppase there exists a referenee frame Z sueh that F is 
spatially isotropie for (x, Zx) "Ix E M. Then the stress-energy tensor of F 
is t = (p/3)(g + 4Z ® Z), where p = T(Z, Z). 

Prao! If F is spatially isotropie for (x, Zx) "Ix E M, the same then holds 
for T. SO we have 'i = pZ <21 Z + p(g + Z <21 Z) with p a funetion 
on M and p = T(Z, Z) (Exereise 3.15.4). Traee 'i = 0 now gives 
p = p13. D 

EXAMPLE 5.7.5. Let F::l'+ --+ (0, oo) be defined as in Exereise 5.6.7a in 
terms of funetions g, j: M --+ (0, oo), a funetion t, and a referenee frarne X. 
F is a photon gas; we eompute its stress-energy tensor. F is spatially isotropie 
for eaeh instantaneous observer (x, Xx), so by CoroIlary 5.7.4, it suffiees 
to find px = T(Xx, Xx)Vx E M. Write X = Xx. Then Proposition 5.7.2d 
gives 

px = f e(gx)t[(jx)e]7rx = (gx) r ,JOO e3f[(jx)e] de 
Jpx of/x 0 

= 417(gX)(jX)-4 {OO u3t(u) du. 

Thus t = (p/3)(g + 4X ® X), where p = Agj-4 with A = 417 J: u3t{u) du E 

(0, oo). 
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In partieular, suppose there is a funetion T: M ~ (0, oo) such that F is 
Planek for (x, Xx) with temperature Tx Vx E M. Taking g = I, j = (kT)-l 
and t = P, the Planek funetion, we get p = OO T\ where Oo is the blackbody 
eonstant (Example 5.5.4b). 

A pho~on gas is a matter model; we now define the simplest matter equa
tions used for it. Let .\: tff ~ M be a lightlike geodesie. Then .\ determines 
a eurve Ä: tff ~.p+ via Ä(u) = (.\u, .\.u) Vu E tff. Suppose.Id e M is a sub
set. A photon gas F is defined as conserved on .Id iff F 0 Ä is a eonstant V 
lightlike geodesic .\ whose image lies wholly in .Id. Roughly, this means 
collisions in .Id do not affect F. We now give somewhat more speeific inter
pretations and indieate in what sense the requirement that F be eonserved 
is a matter equation. 

Let L be that veetor field on It' + abtained by restrieting the geo
desie spray of the tangent bundIe (ef. Bishop-Goldberg, Seetion 5.12) 
to It'+. F is eonserved on M iff LF = o. Compare Seetion 8.6, whieh 
al so gives more general-and more eonvineing-motivations and 
interpretations for this maUer equation than does the next subseetion. 

5.7.6 Conserved photon gases 

(a) Suppose F models a situation where no collisions involving photons 
oceur: no emission, absorption, seattering, and so on. Then one demands 
F be conserved on M. More generally, suppose that collisions do not affeet 
the average behavior of the photons-for example, that, on the average, 
whenever a photon is destroyed a photon of the same energy-momentum is 
ereated at the same loeation. Then one again assumes F is eonserved on M. 
We now give some examples that iIIustrate the interpretations. 

(b) Let M be Minkowski space, X be a paralleI referenee frame on M 
(e.g., X = (4) and j: M ~ (0, oo) be a funetion. Define a photon gas F on 
M by F(y, y) = exp [Uy)g(X, Y)] (ef. Exereise 5.6.7). Suppose F is eon
served on M; we will show j is a eonstant and then diseuss in what sense 
j = constant is consistent with the interpretations in (a). 

y 

y 

x 

x 
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5.7 A photon gas 

Suppose x, Z E M. There exists a y E M such that there is a lightlike 
geodesic A from x to y and a lightlike geodesic from y to Z (Exercise 5.2.7; 
the sketches give two examples). Since X is timelike and Kiliing, Ig(X, A.)I 
is a positive constant, say a (Section 3.6.3e). Since F is conserved on M, 
exp [-aUx)] = exp [-a(jy)]-that is, jx = jy. Similarly, jy = jz. Since x 
and z were arbitrary, j is a constant. 

Now the stress-energy tensor of F is t = (811")j-4(g + 4X ~ X) (Corol
lary 5.7.4). Since X is paraIlel,j = constant implies div t = O. The discussion 
of the equation div t = 0 in Section 3. JO therefore lend s weight to the 
terminology (that F is conserved) as weil as to the interpretation given in (a). 

On physical grounds, one always expects the stress-energy tensor t of a 
photon gas F to satisfy div t = 0 whenever F is conserved. Indeed, the 
electric charge of a photon is zero (Section 5.1), so a photon gas does not 
exchange energy-momentum directIy with any electromagnetic field (cf. 
Section 3. JO). Now if, for example, no collision occur, F does not directly 
exchange energy-momentum with other forms of matter either, so one 
should find div t = 0 (Sections 3. JO and 3.12). This heuristic argument 
actuaIly leads to a correet mathematieal resuit: under quite general condi
tions, F eonserved => div t = 0 (Seetion 8.6). The eonverse is however not 
true (Exereise 5.7.8). 

(e) Suppose there exists a subset 14 e M such that eaeh inextendible 
lightIike geodesie interseets 14exaetly onee. A level surfaee of u4 in Minkowski 
space or in Einstein-de Sitter space is an example. Then the following unique
ness result holds. Given a funetion Fo: Z+ II (II -186') ~ [0, oo), there is at 
most one photon gas that is eonserved on M and coineides with Fo on Z+ II 
(II -114). 

Indeed, suppose (y, Y) E Z+. Let A be the inextendible lightlike geodesie 
determined by ('\0, '\.0) = (y, Y). By assumption, there is a U E IR such 
that Au E 86'. If there exists a photon gas F such that our requirements hold, 
F(y, Y) = Fo(AU, A.u). Since (y, Y) was any point in Z+, there exists at 
most one such F. Thus, in this case, one has a "present determines the 
future" type of result, as one would expeet of appropriate matter equations 
(Section 3.12). 

EXERCISE 5.7.7. NUMBER DENSITY 

A good way to review our resuIts on t is to derive very similar results for a 
slightly simpler, slightly less important quantity, as foIlows. (a) Show there is a 
unique veetor field N on M such that N(w) = I2 .. + WFA x Vw E M,!, "Ix E M. 
(b) Show that for each instantaneous observer (x, X), g(N, X) = - Ipx (F 0 1Tx)7tx. 
In view of this result and the interpretations in Sections S.S.2a and 5.7.Ia, N is 
defined as the number density of the photon gas F; if !!I e M is a space-section 
and D is the volume form of M, II .. i(N)DI is defined as the total number 0/ 
photons in !!I. (e) Show Nx is future pointing timelike unIess F is zero on ~ +. 

(d) Show that if F is spatially isotropic for (z, Z), N is also. (e) Suppose F is 
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Planek for (z, Z) with temperature T. Show Nz = bT3Z, where b is a universal 
constant. (f) In Section 5.7.6b, show div N = O. 

EXERClSE 5.7.8 

Generally speaking, a photon gas F has many properties in addition to those 
properties described by its stress-energy tensor t and number density N. You 
are asked to construct two examples, as follows. (a) Find photon gases F, F' on 
Minkowski space such that F # F', t = t', and N = N'. (b) Find a photon 
gas F on Minkowski space M such that div t = 0 = div N but F is not con
served on M. 

EXERClSE 5.7.9 

Suppose that, "Ix E M, the restriction of F to ~ + is somewhere nonzero. (a) 
Show F is spatially isotropie for (z, Z) iff F 0 1TZ is independent of the direction 
U in yz and that then F is not spatially isotropie for (z, Z') if Z' # Z. (b) Show 
t obeys the timelike eonvergenee eondition. (e) Suppose there is a referenee 
frame X such that, "Ix E M, F is spatially isotropie for (x, Xx); define p = T(X, X). 
Show (p, p/3, X) is arest-mass zero perfect fluid with the same stress-energy 
tensor as F. 
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Suppase one wants to deseribe light. Then, depending on the situa
tion, any one, or any eombination, of the following mathematieally 
independent but intuitively related models is used. A eolleetion of 
photons (Section 3.8); a finite superposition of photon beams (Sections 
3.2 and 3.13); a photon gas; a finite superposition of rest-mass zero 
perfect fluids; an eleetromagnetie field (Seetion 3.4); a "statistieal 
superposition" of such fields; a quantum eleetrodynamies model 
(Messiah [1]); or a verbal deseription. No wonder a mathematieian, 
aeeustomed to regarding a mathematical framework as primary, finds 
the plethora of alternatives eonfusing. The physies view is that nature 
is primary, and that even the most eareful, mathematieally rigorous 
mathematical models are at best approximations to nature. So the 
physicist finds nothing odd in having to switeh models oeeasionally, 
and indeed revels in the intuitive arguments needed to decide which 
mod el is least inaceurate physically. 



Cosmology 6 

The universe in the large is fascinating. Its study will here supply an example 
of how the basic assumptions of macrophysics, especially the Einstein field 
equation, are actually applied. 

Some skepticism is called for. Cosmology is eve n further from being exact 
than is most of physics. In discussing it, such conceptual problems as the 
"mathematics vs. physics" or "logic vs. history" ones mentioned in Section 
2.1 are particularly acute. At present, all our cosmological models have severe 
limitations. Cranks to the contrary, a fully satisfactory model is not yet in 
sight. So the game is to use intentionally oversimplified models to understand 
qualitatively which physical effects are dominant, then gradualIy sneak up 
on the actual universe by considering ever more detailed and sophisticated 
modeIs. 

Section 6.0 reviews Einstein-de Sitter spacetime. Section 6.1 outlines some 
relevant empirical facts, using as few theoretical assumptions as possible. 
Broadly speaking, the data suggests two things: (a) near here-now the 
universe seems to be simpler than was thought likely ten years ago, so the 
dassical cosmological spacetimes are probably better approximations than 
more sophisticated modem alternatives; (b) however, there probably is a 
hot, dense, high-curvature region in the history of the universe, "near the 
big bang," where rather sophisticated matter models are needed. 

Though the universe's apparent predilection for simple spacetimes and 
complicated matter strikes geometers as misguided, Sections 6.2 to 6.5 
present some models that respect it. Section 6.2 outlines the assumptions of 
nonquantum general relativistic cosmology and then defines the most 
naive-and most important-special case: the Einstein-de Sitter model, 
constructed from the Einstein-de Sitter spacetime. In Section 6.3 we shaJl 
find that this model fits the data better than such a crude model has any right 
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to, though not to high precision. Section 6.4 discusses one of the model's 
worst drawbacks: it predicts matter was very dense in the eariy universe but 
is itself not applicable to spacetime regions where the density is mare than 
about a biIIion times the average cosmological density near here-now. We 
next show how this disease can be partially cured by using a mare detailed 
matter made!. Then in Section 6.5 we can outline current opinion on the 
history of our cosmos, from such times as a few minutes after a big bang, 
which reeent data and theories actually seem to have brought within our 
grasp, to about ten billion years later. The chapter concludes with a few 
comments on the things we must learn before we can llnderstand more deeply 
the profound drama the heavens present to Ollr view. 

Throughollt this chapter and the next we adopt the attitude that if the 
underlying physical ideas are c1early explained using the simplest available 
modeis, our mathematician reader will have little trouble with mathematically 
more complicated models in the literatllre. 

6.0 Review, notation and mathematieal 
preliminaries 

Throughollt the chapter, the notation summarized in Section 4.0 holds. In 
particular, (M, g) is a spacetime with Einstein tensor G and scalar curvatllre 
S, f is the stress energy tensor of a matter model Jt on M, and T is the 
(0, 2)-tensor fie/d physically eqllivalent to t. 

6.0.1 Einstein-de Sitter space/ime 
This section reviews the key example, Einstein-de Sitter spacetime. Thus let 
M = ~3 X (0, oo) and let g = -du4 ® du4 + (R2 0 u4) :g=l du# ® du#, 
where Ru = U 2/3 throughout the rest of the section (cf. Example 1.4.3). 
(M, g) is maximal (Exercise 5.2.7), but not geodesically complete (cf. Section 
1.4 and Example 5.2.2). Suppase x E M. Since M = [R3 X (0, oo) we will 
sometimes write, for example, x = (w, t) with W E [R3 and t = u4x E (0, oo); 
on rare occasions we will write x = (xl, x 2, x 3, x 4), with Xi = uix, i = 

I, 2, 3, 4. Times, and thllS al so distances, will be measured in years, u4 will 
be assigned the dimension of time. 

6.0.2 The comoving referenee frame 
(a) i\ is a reference frame on (M, g). It can be canonically distinguished 
from other reference frames by either of the following criteria: (I) for each 
x E M, (34X is an eigenvector of the Einstein tensor (Corollary 1.4.5); (2) the 
I-form physically equivalent to (34 is proportional to dS (Section 1.4). Recall 
that (34 is designated the eomoving referenee frame and, 'Ix E M, (x, c4x) is 
the eomoving instantaneous observer at x. 

In addition to its purely geometric meaning above, the term "comoving" 
has important, slightly subtle empirical connotations. These will be discussed 
in Section 6.2, after we have discussed the observations and introduced a 
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matter model. For the moment, the reader may think of CJ4 as, roughly 
speaking, comoving with the centers of galaxies. 

One should not regard 04 as comoving with all the individual 
partides in a nearly rigid body such as a rock. If, in a model, the center of 
the rock follows an integral curve of 04, then a grain on the outside 
would not quite follow such an integral curve, though the deviation 
would not be very significant for a billion years or so. Similarly, a star, 
the solar system, and our own galaxy do not share in the expansion 
mentioned below, which refers to the running apart of different galaxies. 

(b) The eomoving reference frame CJ 4 is geodesic and proper time synehron
izable while u4 is a proper time function for CJ4 (Proposition 2.3.7). CJ4 is 
irrotational (Proposition 2.3.5). It is not rigid anywhere (Seetion 2.3). It is 
expanding in the sense of Proposition 2.3.7c and the expansion is slowing 
down in the sense of Proposition 2.3.7d. 

6.0.3 Cosmological time 
As was shown in the course of proving Proposition 1.4.4, u4 is eanoniealIy 
defined as the function u4 = (4/(38»1/2; other eharaeterizations are outlined 
in Exereise 6.0.14. u4 is defined as the cosmoJogicaJ time for M. u4 -+ 0 is 
referred to as approaching the big bang since then 8 -+ oo. If Z E M models 
here-now, we use "near the big bang" or "early universe" to mean u4 « u4z. 

6.0.4 Space slices 
Eaeh level surfaee of eosmological time u4 is calIed a space slice. From the 
form of (M, g) the level surfaee u4 = a is a spacelike 3-submanifold 1R3 e M 
with induced metrie a4/3 [du l ® dul + du2 ® du2 + du3 ® du3 ] (ef. Exereise 
1.l.l2). Thus such a level surface is isometrie to Euclidean 3-space 
(1R3 , L~ ~ 1 du" cg, du"), via u" -'»- a2/3u". 

It is drastieally misleading to foeus attention, as many popularizations do, 
on the properties of space slices. Indeed, a space sliee cannot be observed 
physieally (ef. the figure in Section 6.0.11). Moreover, M has a nonzero 
eurvature which tends to focus causal geodesics (ef. Seetion 4.3 and Seetion 
6.3.9); the fact that each space slice is flat has almost no relevanee to this 
erueial foeusing effeet. 

6.0.5 Isometries 
We now analyze the isometries of Einstein-de Sitter spacetime more syste
matieally than was done in Exereise 5.2.5. Roughly speaking, the isometries 
are simply the translations, rotations, and refleetions of Euclidean 3-space. 
More speeifieally, let.p: M -'»- M be an isometry. Then: (a) u4 o.p = u4 sinee 
8 o .p = 8 (Exereise 1.0.4); (b) .p*du4 = du4 by (a); (e) .p preserves the time 
orientation by (b); (d) thus .p*CJ4 = CJ4 by the eharaeterizations of e4 in 
Seetion 6.0.2; (e) thus y is an integral eurve of CJ 4 iff.p 0 y is. It now follows 
that the obvious isometries are the only ones, in the sense of the following 
proposition. 
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Proposition 6.0.5f • .jJ: M ---',> M is an isometry iff there is a Euclidean isometry 
~: 1R3 ---',> 1R3 sueh that 1/;(1'.', t) = (~w, t) V(w, t) E M (ef Seetion 6.0.1 for 
the notation). 

Proo! Let IP be a Euelidean isometry from 1R3 to 1R3 and define y, as in 
the proposition. Clearly y, is then a diffeomorphism. With h = L~ = l duO 
@ duo on 1R3 we have ~*h = h; th us y,*h = h, where h is now regarded 
as a tensor on M. Moreover, y,*du· = du'. Thus y,*g = g and y, is an 
isometry. 

Conversely, let x: M ~ M be an isometry and designate the level 
surface u4 = I by [!J. We may regard [!J together with the Riemannian 
metrie induced on [!J by g as (1R3, h). Moreover, if we denote the 
restriction of X to [!J by ~, ~ is a diffeomorphism from [!J to [!J, by (a) 
above. Sinee X is an isometry, (~)*h = h and IP is a Euclidean isometry 
on [!J. Define y, as before, then X and y, are isometries of M which agree 
on [!J. We will show they agree everywhere, thus eompleting the proof. 

Let y be an inextendible integral eurve of 04 whieh intersects [!J at x. 
Then both X 0 Y and y, 0 y are inextendible integral euryes of 04 by (e) 
and they interseet [!J at the same point XX = y,x and at the same 
parameter value. Thus X 0 y = y, 0 y. But Vx = (I'.', t) E M, I'.' E 1R3 is 
uniquely determined by the inextendible integral eurve of 04 on whieh 
xlies. Thus the results X 0 Y = Y, 0 y Vy as above together with u4 0 X = 
u' = u4 0 y, imply X = y,. D 

(g) For X E M, denote by {!}x3 that subgroup of the isometry group '#M whieh 
leaves x thed-that is, I/;x = x for eaeh I/; E {!}x3 • By Proposition 6.0.5f, {!}x3 

is isomorphie to the ordinary rotation group of 1R3 and coineides with the 
group {rp, diseussed in Seetion 2.1.7 which guarantees Einstein-de Sitter 
spacetime is spatially isotropie for every instantaneous eomoving observer. 
We wiII eall.jJ a spatial rotation around x iff I/; E {!}x 3. (h) We give some examples 
of isometries. Suppose z = (zr, Z2, Z3, Z4) E M. Then for any a E IR, there is 
an isometry I/; such that I/;z = (0, 0, a, Z4), obtained by ehoosing an appro
priate EucIidean translation 1/;. Thus given any pair x and z there exists an 
isometry I/; such that I/;z = (0, 0, 0, Z4) and 

.jJx = (0,0, [(a l )2 + (a2)2 + (a3)2J1/2, x4), 

where aD = zP - xD. (i) Note that for x, y E M, u4x = u4y iff there is an 
isometry I/; sueh that .jJx = y. 

We now turn to the quantities that are of prime importanee in analyzing 
aetual data: photons, light signals, frequency ratios, and the causality 
relation. 

6.0.6 Photons and light signals 
(a) Suppose x, z E M. There exists a freely falling photon from x to z iff 
there is a unique light signal from x to z (er. Exereise 5.1.6 and Seetion 5.2). 
(b) The standard photon A is given by: Au = (0,0, 3U1/S, U3/S) Vu E (0, oo). It 
has the property that u ---',> u4 Au is a monotonieally inereasing funetion from 
(0, oo) to (0, oo). (e) Any freely falling photon ean be obtained from the 
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standard photon by using isometries, reparametrizations, and restrictions 
(Exercise 5.2.5). 

With x and z assumed to lie on the standard photon, we sketch the situa
tion in (a) above using a spacetime diagram. Here, and subsequently, it will 
sometimes be convenient to add "boundaries" pietorially to our spacetime 
diagrams. Thus the u3 axis in the picture does not really represent the level 
surface u4 = 0 since M contains no such surfaee; indeed S --+ oo as u4 --+ 0 
(Seetion 1.4). 

u J _ 

"big bang," u4 = 0 (noI in M) 

However, there is a systematic way to assign such boundaries, the 
causa) boundary method, whose mai n ideas are outlined in Hawking 
and Ellis [I]. The boundaries we add pictorially will be consistent with 
these causal boundaries. For Einstein-de Sitter spacetime the causa I 
boundary construction gives a space homeomorphic to UP for the 
"big bang, u4 = 0" part of the boundary, as our spacetime diagram 
suggests. 

In particular, the spacetime diagram suggests that the" big bang" 
in the Einstein-de Sitter spacetime is not merely a single point. This is 
intentional. Popularizations to the eontrary, it is not at all useful to 
regard the big bang, in this and similar modeis, as one point. One 
reas on will crop up in Section 6.3.12, which will indicate that, roughly 
speaking, only part of the big bang is visible to any one instantaneous 
observer. 

6.0.7 The cosmological redshifl 

Suppose x, Z E M and there exists a light signal, whieh we shall designate [Al, 
from x to z. Then the frequeney ratio 1 for ([Al, i\x, 04Z) is defined as the 
cosmologicalfrequency rafio for (x, z). If z represents here-now, 1 may usually 

163 



6 Cosmology 

be regarded as directly measurable (ef. Seetion 5.5.3d). The term cosmological 
refers mainly to the faet that [.\] and the instantaneous eomoving observers 
04X, 04Z are eanonieally determined given x and z (ef. Seetions 6.0.1 and 
6.0.6a). Thus an instantaneous observer at z need not always regard t as 
giving primarily information about the world velocity of the emitter as 
would normally be the ease; he may assume this world velocity is 04X and 
regard ~ as giving eosmologieal information on the loeation of x and the 
properties of the intervening spacetime. We will often write t(x, z) for the 
eosmological frequency ratio for (x, z). 

Define the cosmological redshift for (x, z) to be z = 1 - I. Here "red" 
refers to the faet that, as the next proposition shows, z > 0 and thus ~ > I; 
~ > I corresponds to redder light at reeeption than at emission (ef. Seetion 
5.1). 

Proposition 6.0.8. Suppose x, Z E M and there exists a light signalfrom x to z. 
Then the cosmologicalfrequency ratiofor (x, z) is ~(x, z) = R(u4z)jR(u4x) = 
(U4zju4X)213 > I. 

Remarks. The idea of the proof is to use an isometry to simplify the 
ealeulation; this idea will often be used later. We therefore isolate two lemmas. 
Ineidentally, there is a slicker proof (Exercise 6.0.17d). 

Lemma 6.0.9. If 0/: M ~ M is an isometry, then ~(~x, ~z) = ~(x, z). 

Lemma 6.0.10. If.\ is the standard photon and a E (0, oo) then 1(.\U, .\a) = 
(u4 .\aju4 .\u)213 "tu E (0, a). Furthermore, for u E (0, a), u ~ t(.\u, .\a) defines 
a monotonical/y decreasing function onto (I, oo). 
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Prool 01 Lemmo 6.0.9. Let '\: [0, b]->- M be a freely falIing photon from 
x to z. Since .p is an isometry it preserves the time orientation (Seetion 
6.0.5) and thus .p 0 ,\ is a freely falIing photon from .px to .pz. Now we 
use the definition of 1(X, z) in Section 6.0.7, the definition of frequency 
ratio in Section 5.4, and the properties in Section 6.0.5 of.p to get: 
t(.px, .pz) = g«.p 0 '\).b, 04.pZ)/g«.p 0 '\).0, 04.pX) = g(.p.,\.b, (.p.04).pZ)/ 
g(.p.'\.a, (.p_ (4).pX) = .p*g(,\.b, 04Z)j.p-g('\.a, 04X) = g('\.b, 04Z)/ 
g(,\.a, o.x) = ~(x, z). D 

Prool 01 Lemma 6.0.10. t('\u, '\a) = (u4'\a/u4 '\u)2/3 by Example 5.4.3. 
Now u ->- u4 ,\u is monotonicalIy increasing (Section 6.6.6b) so u-? 
t('\u, '\a) is monotoniealIy deereasing. Moreover, we have u4 >'a > u' >'u 
> 0, and u' AU -,Oas u -+ 0 by Example 5.4.3, so the image of (0, a) is 
(1, co). D 

Prool 01 Proposition 6.0.8. Let [AO] be the light signal from x to z. 
There exists an isometry .p such that ["'AO] is the standard light signal 
(Exercise 5.2.5). Thus 

l(X, z) = l("'X, "'z) = (u"Z/U i X)2/3 > 

by Section 6.0.5a and the two preeeding lemmas. D 
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6.0.1 J The causal past 2-dimensionally 
For vividness, suppose Z E M models here-now. Then the spacetime region 
from which we can receive signals, that is, particles, is the causal past of z 
(cf. Section 5.0.1 and Exercise 6.0.15c). This is of course, the region of mai n 
interest-the "observable universe." Assuming for the moment z lies in the 
standard photon, and temporarily focusing attention on the (u3 , u4)-plane 
we sketch the result of Proposition 6.0.13 below on a spacetime diagram. 
Here the image of the standard photon is shown as the curve u4 = (u3J3)3, 
u3 > 0 (Section 6.0.6b). The other photon shown is given by reflection of the 
standard photon; specifically ILU = (0,0, 2u3z - 3Ul15, U315 ). The dotted 
region labelled "our causal past" is determined by: 3(U4)113 ~ u3 ~ 2u3z 
_ 3(U4)1/3. 

comovillg instan taneous observer 

space sl i e here-now -------------------------

u3 __ 
u' = 0 (not in M) 

6.0.12 An auxiliary function 
To analyze 4-dimensionally the causal past of Z E M, we will need an auxiliary 
function. For each pair x, Z E M, define õ(x, z) = {2~=1 (UUz - UUX)2PI2. 

Thus õ(x, z) = õ(z, x) ~ O. Note that: (a) If .p: M -'>- M is an isometry 
/)(t/Jx, t/Jz) = õ(x, z) (Section 6.0.5). (b) Denote the level surface u4 = 1 by 111. 
Let x' be the point at which the inextendible integral curve of 04 through x 
intersects 111. Define z' similarly. Then õ(x, z) is the distance, within 111, 
between x' and z'. 

Despite its formaI similarity to the distance function of 1R3, /) has no im
portant physical interpretation: (b) above is not only clumsy but also refers 
to a distance that cannot be measured directly. Thus /) neither deserves nor 
gets a special name in the physics literature. Formally, however, its invariance 
property (a) makes it quite useful. 

We now state and prove the generalization of the result sketched pictori
alIy in Section 6.0.11. 

Propositioo 6.0.13. Suppose x, z E M. Then x causally precedes z iff Il(x, z) ~ 
3(u4z)JI3 _ 3(U4X)113. 
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Prao! Define the funetion u = 3(U4)113 on M. Then du = (u4 )- 213du\ 
so g = (U4)413{ - du 0 du + L~ ~ 1 du" 0 du"). In view of our eomments 
on conformaI invarianee in Seetion 5.0.1 and the behavior of the 
eausality relation for Minkowski space (ef. Exereise 5.0.7), this gives 
x :5 z iff 0 :5 ö(x, z) :5 uz - lIX. Thus x :5 Z iff 3{(U.Z)113 - (U4X)113) ~ 

ö(x, z). 0 

EXERCISE 6.0.14. CHARACTERIZA T10NS 

In addition to reviewing Proposition 6.0.5, this exereise gives so me eharaeteriza
tions that, as will be seen in later seetions, are e10ser to observations than the 
geometrie eharaeterizations in Seetions 6.0.2 and 6.0.3. (a) Extend Exereise 2.1.11 
by showing Einstein-de Sitter spacetime is spatially isotropie for an instantane
ous observer (x, X) iff X = i\x. (b) Show the Einstein tensor Gx is spatiaIIy 
isotropie for (x, X) iff X = 04X. (e) Show u· is the unique time funetion for o. 
whose image is (0, oo). (d) For Z E M, show u·z is the" longest timelike distanee 
to the big bang" in the following sense. No future-pointing timelike eurve with 
future endpoint z has arelength less than u·z but the past endless 0 4 integral 
eurve with future endpoint z has arelength u·z. 

(d) will be quite useful. The reversal of" longest" and" shortest" here, 
so anti-intuitive for a Riemannian geometer, of eourse stems from the 
wrong-way eharaeter of the wrong-way triangle inequality (Exereise 
1.2.4). 

EXERCISE 6.0.15. CHRONOLOGY AND CAUSALIIY 

Suppose x, z E M. Using the methods of Exereise 5.1.6 and the proof of Pro
position 6.0.13, show the following properties of eausality and ehronology 
(Section 5.0.1). (a) x« z iff 8(x, z) < 3[(lh)"3 - (1I4X)li3]. (b) Let y be the 
future endless integral eurve of o. with past endpoint x. There exists a light signal 
to z from some point y on y other than x iff z lies in the ehronologieal future J/t of 
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x with the image of y deleted (figure). Moreover UIJ is open. (e) x :s z iff x = z or 
there is a partide from x to z. (d) x :s z iff x = z or there is a freely falling partide 
from x to z. 

(e) is true for any pair of points in any spacetime (Penrose [I]). 
However (d) is very speeial; for example, by removing one point from 
Minkowski space one gets a spacetime where (d) is falseo 

EXERCISE 6.0.16 

Suppose x, z E M and 8(x, z) f:. 0 (Seetion 6.0.12). With ~z3 the group (See
tion 6.0.5g) of spatial rotations about z, denote by [I> the set {YI y = .px for some 
.p E ~~}. (a) Show [I> is a spaeelike 2-submanifold, diffeomorphie to [1>2 and given 
explieitly by: y E [I> iff u·y = u~x and 8(x, z) = 8(y, z). (b) Show the indueed 
metrie on [I> is that for a sphere of radius (u· X)2/38(x, z) in 1R3. (Hint: regard [I> 

as a submanifold of the level surfaee u~ = u·x). 

z. 

------------ ---
//--

/ 
I 

EXERCISE 6.0.17 

Let (N, h) be a simple eosmologieal spacetime (Example 1.4.3). (a) Show that 
eaeh Eudidean isometry ~ gives rise to an isometry rP: N ---+ N just as in Pro
position 6.0.5f. (b) Find an example where '§ N is larger than the Eudidean 
isometry group of 1R3 • (e) Show from (a) and Seetion 3.6.3a that c. is a Killing 
veetor field Vp- E (1, 2, 3). (d) Suppose there exists a light signal [>.] from x E N 
to z E N. Show that the frequeney ratio for ([>.], c4x, c4z) is -t = Ru~zIRu~x. 
(Hint: use (e), Seetion 3.6.3e, g(>.., >..) = 0, and algebra; you do not have to find 
>. explieitly by integrating.) 

EXERCISE 6.0.18 

Let (M, g) and (M', g') be simple eosmologieal spacetimes; thus Mis deter
mined by R: § --'> (0, oo), M' by R': §' -+ (0, oo). (a) Suppose § = ~' and 
R = aR', a E (0, oo). Use the diffeomorphism determined by u~ ---+ u4 and u·-,; 
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au" VI-' E (I, 2, 3) to show (M, g) is isometric to (M', g'). (b) Suppase the trans
formation T given by u -')0 U + a, a E (0, oo) carries;Y; onto;Y;' and that R 0 T = R'. 
Show again that both spacetimes are isometric. [In both cases (M, g) and 
(M', g') beIong to the same spacetime equivaIence dass. Later, when (M, g) is 
suppIied with a matter modeI and other structures, there wiII of course be a 
corresponding equivaIence reIation, with equivaIent modeIs representing the same 
physicaI situation.J 

6.1 Data 

This section summarizes some resuIts of observational cosmology. Most of 
the data is low precision, but so much is now available, owing mainly to 
work during the last 15 years, that at least the spacetime region near here
now may be considered reasonably weil understood. The most important, 
and most nearly precise observational resuIts are the Hubble law (Section 
6.1.7) and the isotropy of the microwave radiation (Section 6.1.9). Both 
suggests a surprising overall simplicity. The order-of-magnitude agreement 
between various independently measured time scales for the universe is 
encouraging (Section 6.1.8). The most annoying of the many observational 
uncertainties is that we are not sure what forms of matter are present in 
significant amounts (cf. Peebles [I] and Section 6.1.10). On the other hand, 
the possibility exists that the observed helium content (Section 6.1.2) together 
with the microwave photons (Section 6.1.9) may be giving us rather detailed 
information about the state of the universe a few minutes after the big bang. 
For more detaiis on the observational data than is given here, see, for ex
ample, Weinberg [I], Peebles [I], or Longair and Rees [I]. 

6.1.1 Circular reasoning 

Cosmology (!ike the rest of physics) is circular reasoning in the following 
sense: one cannot really discuss the empirical data coherentIy without using, 
explicitIy or implicitly, some tentative theoretical model; one cannot sensibly 
choose even a tentative theoretical model without some referenee to the 
empirieal data. For the moment, we shall break into this eirele mainly by 
using various terms rather intuitively and broadly (e.g., "observable uni
verse," "spatial isotropy," etc.) without assuming a speeifie mode!. On the 
other hand, we will assume standard general relativity, ineluding its New
toni an limit, throughout this section. 

6.1.2 Galaxies 

(a) The observable universe contains about 1011 galaxies. Naively, imagine 
all these now distributed with in a big sphere having here as center and radius 
of about 1010 years (i.e., 1010 light years). Imagine them running away from 
each other. There is some e1umping. The biggest e1umps of galaxies may be 
about 108 years aeross and contain perhaps a milIion galaxies. Our own 
galaxy is part of a small loeal group which in turn is part of a big e1ump. 
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However, on seales stiil larger than 108 years the distribution seems to be 
rather uniform (approximate "spatial homogeneity"). (b) Though some 
idealizations are involved, it makes sense to talk of the random 3-veloeities 
of galaxies (ef. Exercises 3.8.8 and 3.15.6 and the eomments in Seetion 2.1.2 
on replaeing a small part of a spacetime by part of a tangent space). The 
measured random 3-veloeities are quite small in magnitude eompared to the 
speed oflight: usually considerably less than 0.01. Thus we shall ignore these 
random 3-veloeities throughout. (e) There are various kinds of galaxies, 
identified by their shape and their color (speetrum) (ef. Seetion 5.5). Our 
own is a spiral galaxy. Giant elliptical galaxies are among the most useful in 
eosmologieal observations, not only beeause they are large and bright but 
also beeause the brightest giant elliptic galaxies all seem to be similar. Thus 
if an astronomer observes a very distant duster of galaxies, he would feel 
eomparatively confident that the intrinsie brightness of the biggest giant 
elliptical galaxy in the duster is comparable to the intrinsie brightness of the 
biggest relatively dose giant eIIiptie galaxies. The latter brightness ean be 
estimated by a beautiful series of steps known as the eosmologieal distanee 
ladder (Weinberg [I], Tamman [ID. SO the intrinsie brightness of the very 
distant giant ellipticaI galaxy ean be regarded as approximately known. Then 
its apparent Iuminosity gives us a handIe on how distant-early it is. A similar 
diseussion appIies to the intrinsie and apparent sizes. Some galaxies are called 
radio galaxies beeause they send out very strong radio signals in addition to 
visible light. Quasars, whieh are probably very dense galaxies, al so emit both 
visible light and radio signals. (d) The most important physieal property of 
an individual galaxy is beauty; the reader should look at some color siides 
or photographs. A typieal galaxy has arest-mass of the order of (l/ 1 0) year 
or less in our units (Seetion 0.1.4), and a diameter of perhaps 50,000 years. It 
contains several billion stars, some gas, some dust, and other eonstituents 
that are minor in the sense that their eontribution to the to tal rest-mass is 
small. Whether a significant number of black holes is present in addition is 
not known. Hydrogen is the predominant element. But about 30% of the 
rest-mass is in helium, which seems to be rather uniformly distributed, and 
traces of most elements are present. 

Typically, the center of a galaxy is very dense, small, and easy to identify 
observationaIIy. 

6.1.3 Idealizations 

The numbers quoted in Seetion 6.1.2 suggest several eonvenient idealizations. 
(a) Sinee an individual galaxy is much smaller than the observable universe, 
we will often regard a galaxy as a (point) partide-that is, model its history 
as a curve (Definition 3.1.1). (b) Even when we eonsider a galaxy as an ex
tended body we will model the center of the galaxy as a partide. Moreover, 
an observed galaxy history is also small compared to the spacetime region 
over which spacetime curvature becomes important (ef. Seetion 2.1.2). Thus, 
when considering the intrinsie properties of a single galaxy we will often have 
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in mind an (hypothetieal) instantaneous observer (x, X) in the galaxy center 
with X tangent to the history of the center, and amodel of the galaxy on Mx. 
Then various Newtonian, Euclidean, and speeial relativistie eoneepts beeome 
applieable: the galaxy history interseets X~ in a region with a certain Euclidean 
volume and the plane eross-seetions of that region have a well-defined 
Euclidean area; the Newtonian speed measured by (x, X) for a star in the 
galaxy is well-defined (Seetion 2.1.3); and so on. (e) These idealizations apply 
to our own galaxy. Moreover, the speed of the earth relative to the center of 
our galaxy is less than 0.00 I. Thus we ean and shall idealize as follows: 
(z, Z) will denote an instantaneous observer on spacetime M, with z inter
preted not only as here-now but alsoas an appropriate point on the history 
of the center of our galaxy; Z will be interpreted not only as tangent to the 
history of an actual telescope but al so to the history of the center of our 
galaxy. In the remainder of Section 6. I we use the symbol (z, Z) or the phrase 
"aetual observer" only if we have this interpretation in mind. Roughly, 
(z, Z) is "at rest" with respeet to our galaxy. 

6.1.4 Local physics there-then 

Let x represent a moderately distant-early point in the observable universe
for example, x is halfway or less of the way back in time toward the big ba ng 
in the sense of the figure in Section 6.0. I 1 or of Exercise 6.0. I 5. There is 
considerable empirical evidence that the basic laws of local physies at x are 
the same as those at z (ef. Seetion 5.5.3d); general relativity assumes this, as 
indieated by the fact that in stating the laws we have never referred to a 
distinguished spacetime point; we assume it throughout. 

6.1.5 Redshilts 

The observed frequency ratio 1, of galaxies and quasars, determined by the 
method mentioned in Seetion 5.5.3d, is greater than I. The onlyexceptions 
are a few eomparatively very nearly galaxies whose random velocities happen 
to mask this systematic effect, the latter being small for nearby galaxies 
(Seetion 6.1.7). We heneeforth leave the exceptions out of all diseussions. 
Mainly for historieal reasons one again introduees the observed eosm%giea/ 
red shift ,z = .~ - I; the interpretations and comments in Seetion 6.0.7 apply. 
Many texts even introduce another quantity v = (~2 - l)j(t 2 + I). v is then 
called the observed reeessian ve/aeity since it would measure an honest 
recession speed in the case of 2-dimensional Minkowski spacetime (Example 
5.4.2). Note that for 0 < ,z « 1, t' ~ 'z. 
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In iP.tuitive discussions, when no particular model is explicitly 
assumed, observational astronomers normally identify v or even ,z with 
outward speed. When analyzing galaxies in a sufficiently small neigh
borhood of here-now this is a legitimate and useful way to think. But 
we shall soft-pedal it since it has the misleading features mentioned in 
the fine print comment below Example 5.4.3. 



6.1 Data 

Until quite recently the largest redshift observed for a galaxy was ;t = 
0.465, observed by R. Minkowski in 1960 for the radio galaxy 3C295 (i.e., 
number 295 in the third Cambridge catalogue of radio sources). Only during 
the past year have techniques for measuring the red shifts of galaxies for 
which;t > 0.5 become available (Gunn and Oke [I); Spinrad [I)). But for 
quasars, redshifts as large as 3.5 have now been measured (Lang et al. [I)). 
Even ;t = 0.465 corresponds to l' = 0.36 x (the speed of light), and in 
typical models this corresponds to looking almost halfway back in time 
toward a big bang and very far out in space;;t = 3.5 similarly corresponds to 
going about 95'70 of the way back in time; see the arrows marked" galaxy" 
and" quasar" in Figure 6.5.2b following. 

6.1.6 Spatial distance 

Suppose (z, Z) observes a distant-early galaxy. Typically it appears as a 
very small, dim patch on the night sky. 

(a) Let ! be the apparent luminosity (z, Z) measures (Section 5.5.5b). 
Assume the absolute luminosity L > 0 is known (at least approximately; 
ef. Seetions 6.1.2e and 6.1.4). Abstraeting from the elementary result that 
the apparent brightness of a small distant light souree is inversely pro
portional to the square of the distanee, one may define a luminosity 
distance dL E (0, oo) operationally by 417t = LJdL2 (ef. Seetion 5.5.5b and 
Exereise 6.7.5). 

(b) In the sense of Seetion 6.l.3b, let A be the intrinsic cross-sectional area 
of (the observable part of) the galaxy. Ignoring several serious teehnieal 
problems (briefly described in Weinberg [I]), assume A is (approximately) 
known. Let il E (0, 417) be the apparent size of the galaxy for (z, Z). 
(Section 5.5.5c.) Assuming il « 47T as is in practice the case, we may 
again abstract, defining an area-distance dA operationally by il = A/dA 2 . 

Often dA is called "distanee by apparent size" in the literature, and the 
.. distanee by apparent angular diameter" of so me texts is also in effeet dA' 

(e) In prineiple, many further operationally defined spatial distanee coneepts 
are available-"parallax distanee," "radar distance," and so on (Wein
berg [I]). We shall not need these. Moreover, given a modei, one can 
usually define even other spatial distanee (e.g., I WI in Seetion 6.3.3, d in 
Proposition 6.3.4, etc.) In general there are no simple interrelations arno ng 
all these spatial distances; too mueh depends on the properties of the 
intervening spacetime. However, there are two exceptions as follows. 

(d) Under rather general eircumstances dL = J2dA, where I is the frequeney 
ratio (cf. Ellis [I]). 

We shall prove this only in a special case (Proposition 6.7.3). 
Physically, it is a rather deep result-somehow the properties of the 
intervening spacetime c1everly cancel out of the ratio dddA • The 
simplest formai proof is based on the assumption that a eonserved 
photon gas models the light from the galaxy (ef. Section 5.7). 
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The observations are consistent with this resull (Longair and Rees 
[1 ]). 

(e) There exists a neighborhood OU of z so small that, for (z, Z), spacetime 
curvature within 0/1 is negligible compared to empirical inaccuracies 
(Sections 2.1.2 and 6.l.3b). Within OU one may normally identify dL, dA 

and the other spatial distance concepts mentioned, provided all relative 
speeds relevant to the measurements are negligible compared to I. Then 
one can regard eaeh as "Newtonian distanee" dN or as Euclidean distanee 
within a flat 3-dimensional submanifold 1R3 e M" where 1R3 is paralleI 
to Z 1. More speeifieally, if dL < 108 years, we may take dL = dA = dN 

to weil within the Iimits of empirieal aeeuraey. 

6.1.7 The Hubble lawand Hubble time 

Suppose we observe a distant galaxy, measuring a recession velocity v as in 
Section 6.1.5 and a distanee-say, dL to be speeifie-as in Seetion 6.1.6. Then 
we can also assign a time t via dL = vt. Interpreted naively, t measures how 
long ago the distant galaxy was right on top of us. 

The empirieal Hubble law states there is some one time tH E (0, oo), the 
empirical Hubble time, sueh that t = tH' to good approximation, for all 
galaxies; thus the observed t is spatially isotropic in the sense that it does not 
depend noticeably on the direction of observation. Moreover, t is also more 
or less independent of dL , at least for a large range-for example, 5 x 106 

years < dL < 2 X 109 years. 

IR' 
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For technical reaons, it is easier to check that there is just one number tH 

involved than to measure the aetual numerical value. The presently accepted 
value is tH = 18 billion years ± 15% (Tamman [I]). 
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A Newtonian deseription of the Hubble law is the following. Our own 
galaxy is at rest at the origin of [R3. If another galaxy is eentered at W E [R3, 

then it is running away from us with Newtonian veloeity v = HW, where H 
is independent of whieh other galaxy is being considered. On regarding Ivi, 
lifti, and H, respeetively, as v, dL, and tH -1, the deseription eorresponds to the 
empirieal Hubble law. 

I i/ is ealled the Hubble conslanl (sometimes, sareastieally, the 
Hubble variable sinee the empirieal estimate has changed so often) in 
the literature. Contrary to what the picture may suggest, the law does 
not indieate a distinguished origin, as diseussed in Exereise 6.1.12. 

6.1.8 Other time sea/es 
One ean obtain time seales by other methods: radioaetive dating of old roeks 
in the solar system; estimating the age of old stars in our galaxy; applying a 
dimensional argument to the observed stress-energy density diseussed below; 
and in several other ways. Some of these measurements are diffieult and eon
troversial. However, eaeh usually gives a time of somewhat more than IO lO 

years, so the re is some kind of rough, overall eonsisteney. 

6.1.9 The microwave radiation 

We observe many photons with measured wavelengths between 0.1 and 
10 cm. These are called microwave photons. They have three remarkable 
properties, whose discovery, interpretation, and implieations have been 
central in cosmology during the last decade. 

First, they do not eome from identiflable diserete sourees such as stars or 
galaxies. Probably the ones we see were created slightly later than 105 years 
after a big bang. In this sense observing them probably involves looking 
backward in time al most 99.999'70 of the way and thus also almost to the 
very edge of the observable universe; compare Figure 6.5.2b following. 

Second, the observed pattem is spatially isotropie to an aeeuracy of 
considerably better than 0.1 %. This counts as extremely high precision in 
cosmology. In view of the first property, it seems to indieate a surprisingly 
high uniformity of the whole observable universeo Moreover, the observed 
spatial isotropy indieates not only a symmetry of nature but also that an aetual 
observer (z, Z) is moving towards the future in a very special way (ef. Exercise 
6.1.13). Roughly speaking, (z, Z) is "almost at rest with respeet to the 
universe," assuming the mierowave radiation gives some overall measure of 
the universe's average motion. That the observer at rest with respeet to our 
galaxy (Section 6.1.3) should also be almost at rest with respect to the micro
wave radiation is really pretty, though not unexpeeted. Reeent measurements 
are almost precise enough to detect residual effeets due to the slight residual 
veloeity presumably due to the sun's motion with respeet to the center of our 
galaxy, that of our galaxy with respect to our local group, and so on; com
pare Seetions 6.1.2a and 6.1.13e. 
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Third, the spectrum of the microwave radiation is, to good approxima
tion, Planck (H thermal equilibrium," "blackbody"; cf. ExampIe 5.5.4) for 
(z, Z). The temperature is slightly higher than 2.7 Kelvin. Near here-now, 
there seems to be no photon source sufficientIy strong and dose to thermaI 
equilibrium to account for the observed characteristic Planck spectrum. 
However, big bang models can explain the spectrum in a reasonably plausible 
way (see Section 6.5). Thus the microwave data are generally regarded as the 
most nearly convincing of a number of observational results which indicates 
that something like a big bang actually occurred. 

6.1.10 Stress energy 
Before summarizing some observations on matter near here-now we give 
some background comments. (a) Let t be the stress-energy tensor of matter, 
let (z, Z) be the actual observer (Section 6.l.3c), and adopt the notation of 
Section 3.0.3 for tensors physically equivalent to a (2, 0) tensor. Let us take 
advantage ofadditivity (Example 3.13.3) to write T = Tg + Tp + T', where 
Tg is due to the matter in galaxies, Tp is due to the microwave photons 
(Section 6.1.9), and r indudes the contribution of all other forms of 
matter-for example, of neutrinos (cf. Example 3.1.4), and of protons in 
intergalactic space. (b) In building models, one must, willy nilly, neglect some 
contributions to T + E in the Einstein field equation G := T + E for the 
influence of matter and electromagnetism on spacetime. If a cosmologist 
tried to indude such small contributions as the stress-energy tensor of the 
electromagnetic field in your TV set, he would have a long row to hoe. 
(e) Near here-now we observe a galaetie energy density Tg{Z, Z) of roughly 
(1010 years)-2. Here it is understood that the average value over a "very 
small" spacetime volume-say, 107 years across-has been taken. The 
observations, based on estimating how mueh matter is needed to produee the 
observed amount oflight from a galaxy or alternately on estimating how mueh 
nearby galaxies pull on eaeh other gravitationally, are difficult. TiZ, Z) may 
be less than the value quoted above by a factor of 10 or even 30 (Longair and 
Rees [I J). In any case, near here-now Tg al most certainly dominates. Tp(Z, Z) 
is about 10- 4 x (1010 years)-2 (Exereise 6.1.14); E(Z, Z) is similarIy negli
gible. reZ, Z) is probably also negligible (Longair and Rees [I J). (d) Finally, 
we remark that even when a particular form of matter is being negIected in 
Cb), one often indudes this form in an overall model as "test matter," whieh 
.. responds to, but does not influenee, spacetime" (ef. Seetion 3.5). 

A word of eaution about (e). Some forms of matter are very difficult to 
deteet directly, so one is not eertain if reZ, Z) is negligible (ef. Section 
6.6.4); moreover, extrapolations suggest Tp and r are very important near 
the big bang (Sections 6.4 and 6.5). 

6.1.11 Other data 
Many other measurements reIevant to cosmology have been made. For 
exampIe, one can try to eount the number N of all observed gaIaxies whose 
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luminosity distanee is less than a eertain value do. On a naive Newtonian 
model one would expeet N = (4rrJ3)ndo3, where n is the number of galaxies 
per unit [R3 volume near here-now. One job of a eosmologieal model is to 
make a eorresponding predietion. Seetion 6.3 gives the canonieal example 
and outlines the data. 

As another example, various high-energy partides C" eosmie rays," in
cluding protons and high-energy photons sueh as x-rays or gamma rays) 
eome from outside our galaxy to us. The information they earry must be 
fitted into any sensible model, at least in a qualitative way. We shall not 
diseuss these particles or ahost of other observed phenomena here. But we 
mention that the observations are indeed eonsistent, in a number of nontrivial 
ways, with the models we shall present (ef. Seiama [I] and Longair-Rees 

[I n· 

EXERCISE 6.1.12. SPA IIAL HOMOGENEITY 

In Seetion 6.1.7, show that the Newtonian model for the Hubble law is spatially 
homogeneous in the following sense. If an observer on any other galaxy center 
regards herself as at rest, and thus uses loeations W' and veloeities jj' relative to 
herself (Seetion 0.1.6) she will find jj' = HW' exaetly as we do, with the same 
value of H. 

EXERCISE 6.1.13. SPATIAL ISOTROPY AND PREFERRED 

INSTANTANEOUS OBSERVERS 

Spatial isotropy not only indieates some physieal or geometrieal symmetry but 
normally, as in Proposition 3.15.1b, Exereise 5.7.9, and Exercise 6.0.14 a and b, 
singles out a preferred instantaneous observer at a point. This exereise gives 
another, simpler example of this kind of uniqueness. Suppose (~2, go) is two
dimensional Minkowski space and Z E 1R2. Using the notation of Seetion 5.1, 
Y± = hf( 02 ± o,)(z) determines two photon energy-momenta at z. (a) Show 
the instantaneous observer (z, 02Z) observes the same frequeney, namely f, for 
both photons. (Thus, intuitively speaking, this instantaneous observer sees the 
same eolor sky whether he looks East or West.) (b) Show that no other instan
taneous observer (z, X) at z sees East-West spatial isotropy as in (a). (e) Find the 
Newtonian speed (Seetion 2.1.3) of (z, X) observed by (z, 02Z) in terrns of 
f+ jf-, where f± is the frequeney (z, X) measures for Y±. 

EXERCISE 6.1.14 

Notation as in Seetion 6.1.10 and assume Tp is due to a photon gas Planck for 
(z, Z) with temperature 2.75 Kelvin (Seetion 6.1.9). (a) Show from Example 
5.7.5 that Tp(Z, Z) ~ 10- 4 X (10'0 years)-2 as claimed in Seetion 6.1.10. 
(b) Assume Tgz = (10'0 years)-~Z 181 Z [i.e., dust with pz = 10- 20 (years)-2]. 
Show from the wrong-way Sehwarz inequality that Tp(X, X) « Tg(X, X) for all 
instantaneous observers (z, X), and not just for (z, Z). 
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(b) eertainly suggests Tpz is negligible and more detailed models 
(e.g., that of Proposition 6.4.5) bear this out. 

EXERCISE 6.1.15 

Using freshman opties (i.e., assuming Newtonian physies, Euclidean geornetry, 
etc.) and the following figure, diseuss the reason for the assumption il« 41T 
made in our definition (Seetion 6.l.6b) of area distanee. 

A 

6.2 Cosmological models 

To get a eoherent pieture of the universe, we need models that ean unify 
the data in Seetion 6.1. After some general comments, we state our assump
tions and then analyze a simple example that wiIl eoneern us for some time. 

6.2.1 General remarks 

Sinee our treatment of eosmological models will be highly selective, we make 
some comments on our approach. A precise definition of a "eosmological 
model" will be given in Section 6.2.5. For the purpose of the informal 
discussion in this section, this term may be taken to mean a relativistie model 
consistent with the data in Section 6.1. 

(a) In practice, the eonstruetion of a cosmological mode! goes roughly like 
this (ef. Sections 2.1 and 6.1.1). The theorist summarizes the known data, 
guesses at a systematic model that seems to be roughly consistent with the 
data, uses the mode! to analyze the data more e1osely, correspondingly 
refines his model, makes further adjustments if necessary when new data 
comes in, and so on. Sometimes amodel must be discarded as heyond 
repair; often one is kept but only with a specifie qualification as to its 
range of applieability. Then new mod el s are sought, and the whole pro
eess begins afresh. In physics, this tentative, groping character of the 
models is a way of life. Therefore we shall not attempt the (hopeless) task 
of writing down the" most general" viable cosmological model. Instead, 
Sections 6.2 to 6.6 present canonical examples of this step-by-step 
procedure of retining modeIs. 
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(b) As we proeeed, and again in Section 6.6, we sh all emphasize the limita
tions and diseases our modeis have. For example, all general relativistic 
models normally considered are self-defeating in the following sense: each 
predicts a big bang and simuItaneously predicts that its own assumptions 
become physieally unrealistie in the region suffieiently e10se to the big 
bang (ef. Proposition 6.4.2 and Section 6.6.5). 

(e) By now, literally thousands of eosmologieal models have been rather 
intensively investigated. An introductory treatment, espeeially one for 
mathematicians who do not plan to speeialize in eosmology, must thus 
proeeed by example rather than by exhaustion, as was attempted in older 
texts and popularizations. 

(d) In older discussions of cosmology, interest focused on the choice of a 
spacetime. Nowadays, as the data in Seetion 6.1 perhaps suggests, one is 
more interested in another problem: ehoosing matter models to represent 
the many constituents of the universeo Our treatment-for example, in 
Sections 6.4 and 6.5, will emphasize this point; there we shalI only con
sider a simple cosmologieal spacetime (Example 1.4.3). For the analysis of 
the region near here-now, we will even confine attention to the Einstein
de Sitter spacetime (see Seetion 6.3). 

(e) Popularizations of eosmology usually take the concept of" 3-space" for 
granted and e1assify eosmologieal spacetimes into three eategories accord
ing as "3-space" has constant positive curvature, zero curvature, or 
constant negative curvature (cf. Exercise 6.2.14). This famous and vivid 
popular trichotomy is obsolete: many current models belong to none of 
the three categories; focusing attention on "3-spaee" is rather silly 
from an observational standpoint (cf. Section 6.0.4); (a)-(d) above 
su'ggest quite a different approach; and so on. In fact, when one actually 
uses the modeis of Exercise 6.2.14 to analyze observable effects (Weinberg 
[I]), one finds all three types make surprisingly similar predietions rather 
than grossly different ones as the triehotomy suggests. Thus our deeision 
to eoneentrate solely on simple eosmologieal spacetimes, whose space 
slices have zero eurvature, will not result in exeluding anything really 
essential. 

(f) For similar reasons many other famous eoncepts will here get short 
shrift. We mention a few: "ultimate eolJapse"; "spatial" eompaetness; 
.. Mach's prineiple"; the .. eosmologieal eonstant" (always in effeet 
taken as zero in this book); .. tired light" cosmologies; torsion in eos
mology; and nonquantum "unified field theory" cosmologies. Perhaps 
some of these have some interest. But we feel none has enough to warrant 
emphasis in an introduetory treatment. Omitting them wilJ leave room for 
a diseussion of other topics more e10sely related to present observations
for example, the microwave radiation and the primordial fireball (Seetions 
6.4 and 6.5). 

(g) Despite so me differenees in detail, our attitude towards models will thus 
be very similar to that expressed by Weinberg [I]: 
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"Of eourse the standard model may be partly or wholly wrong. However, 
its importanee lies not in its eertain truth but in the faet that it provides a 
common meeting ground for an enormous variety of observational data. By 
diseussing these data in the context of a standard eosmologieal model, we 
begin to appreeiate their eosmologieal relevanee, whatever model ultimately 
proyes eorreet." 

In view of Seetion 6.2.1 d, we begin with a proposition that indieates the 
matter models normally used and motivates the assumptions we shall pre
sently make on matter. 

Reeall that if a relativistie model (M, vii, F) is a finite superposition of 
relativistie modeIs, then the matter model VII is a eolleetion of N ~ 1 eom
ponents .II], ... , .AN, eaeh of whieh is itself a matter model on M. 

Propositioo 6.2.2. Suppase (M, vii, F) is a finite superposition of relativistic 
models and each component is either a partic/e jfow, or a perfect jfuid, or a 
photan gas. Suppose at least one of the following generality conditions holds 
for the superposition: (a) One component is a perfect jfuid; or (b) "Ix E M 
one componen! is a photon gas not identically zero on !fx + ; or (e) "Ix E M 
there is a component that is a partic/e jfow (m, e, P, 7) with m7)(x) =f. O. 
Then the stress-energy tensor t of the matter model Jt is norma! and obeys 
the timelike convergence condition. 
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Prao! We will prove T is norma!. The pro of that T obeys the timelike 
eonvergenee eondition is similar, easier and will be left as an exereise 
(Exercise 6.2.12a). 

In the notation of Seetion 3.0.3, we have t = t, + ... + tN, where t, 
is the stress-energy tensor of the ith eomponent, and we must show T X is 
timelike for eaeh eausal X E Mx, "Ix E M. We first note the following: 

(d) Suppose W, E .YX + and W2, ... , W N Iie in the dosure of .YX +

that is, W, is future pointing timelike and eaeh of the others is 
either zero or future pointing causa!. Then W, + ... + WN E.Yx + 

(Exercise 1.2.4). 

Now fix x E M and let X E Mx be past pointing causa!. Designate 
the eomponent whieh obeys (a), (b) of (e) at x as .At]. Setting W, = T,X, 
we will show W, E.Yx + and W, Edosure.Yx + Vi. In faet, suppose first 
.At, is a partide flow (m, e, P, 1). Then W, = g(P, X)1)(x)P. 1)(x) ~ 0 
and P is future pointing causal; by the usual argument, g(P, X) > 0, 
so W, Edosure .YX +. If m # 0, g(P, X) ~ 0 and Px E .YX +; thus if 
in addition 1)(x) # 0, then W, E .YX +. Therefore W, Edosure .YX + and 
W] E.Yx + in ease (e). 

Similarly, if .At, is a perfect fluid then W, E.Yx + ; the argument that 
W, is timelike repeats the proof of Proposition 3.15.la verbatim, with 
pz = 0, pz = b. W, must be future pointing since T,(X, X) < 0 is impos
sible (Definition 3.3.1). Finally if .At, is a photon gas, W, E elosure ~~ + 

and W, E.Yx + if (b) holds (Proposition 5.7.2b). 
We have thus shown that in all cases (a) to (e), the eonditions in (d) 

hold. Thus t X is timelike for eaeh future-pointing causa I veetor X E Mx. 
Thus t X is timelike for each eausal X E Mx. Thus Tx is norma!. This 
argument applies "Ix E M, so t is norma!. D 



6.2 Cosmologieal models 

We ean now make explieit some basie assumptions, interpretations, and 
motivations often taken for granted and left implieit in diseussions of 
eosmology. 

6.2.3 Nonquantum general relativistic cosmology 

Formally, the basie assumptions are the following: (a) The universe is de
seribed by a relativistie mod el (M, vIt, F) whieh obeys Einstein's and Max
well's equations. (b) The spacetime M is maxirna!. (e) The stress-energy 
tensor f of the matter modelvlt is normal and obeys the timelike eonvergenee 
eondition. 

By assumption (b) and Corollary 3.14.2 there is a unique eigenveetor 
referenee frame Zfor f. We shall eall Zthe camaving refereneeframe for the 
mode!. The final assumption now reads: (d) There exists a distinguished 
instantaneous observer (z, Z), designated the aetual observer with z designated 
here-now, who enjoys the properties Z = Zz and div Z(z) > O. 

Assumption (e) seems reasonable sinee there is a lot of matter wandering 
around the universe (Seetion 6.1) and any reasonably general nonquantum 
matter model has a normal stress-energy tensor whieh obeys the timelike 
eonvergenee eondition (Proposition 6.2.2). The name for Z and assumption 
(d) will both be motivated in Seetion 6.2.5. 

Roughly speaking, assumptions (a) to (d) just mean that one is using non
quantum general relativity. This is a reasonable thing to try but one must 
expeet that negleeting quantum effeets may impose Iimitations on the applie
ability of the results (ef. Seetion 6.2.la). And so it does (ef. Seetion 6.6.5). 

6.2.4 A simplijying assumption 
The observations indieate that near here-now the electromagnetie field F 
does not contribute significantly to the total stress-energy tensor. Except in 
very detailed, sophisticated models one usually takes F = 0 outright. Though 
this assumption is less fundamental than those in Seetion 6.2.3, it is eonvenient, 
and will be adopted here. 

The formaI assumptions above must be supplemented by various inter
pretation rules. The latter eount as an essential part of a mode!. But one 
eannot even give a full list or state the rules in fully preeise mathematieal 
terrns, mueh less prove them (ef. Einstein's eomment quoted in Section 
2.1.2). We now state and motivate the most important interpretation rule. 

6.2.5 The eomoving referenee frame 

The eomoving referenee frame Z in Seetion 6.2.3 is, intuitively speaking, 
eomoving with the matter of the universe (ef. Exereises 3.8.8 and 3.15.6). 
Now, at least near here-now, galaxies seem to form the predominant form 
of matter (Seetion 6.1. 10). Thus, taking advantage of the fact that galaxy 
random velocities are small (Seetion 6.1.2), one makes the interpretation rule 
that the history of each gafaxy is modelJed by an integraf curve of Z. We add 
some eomments and qualifieations. (a) In some arguments a galaxy must be 
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treated as an extended objeet. Then its center is stiil modelled by an integral 
eurve of Z (ef. Seetion 6.1.3). (b) Of eourse not every integral eurve of Z 
models some galaxy center (ef. Seetion 6.3.12 and the beginning of Seetion 
6.4), nor is any of the relevant euryes neeessarily inextendible. In partieular, 
if there is a hot, dense, violent region in the history of the universe "near a 
big bang," no galaxies are present in that region. (e) The interpretation rule 
(a) motivates the assumption Z = Zz in Seetion 6.2.3d sinee (z, Z) is (to 
good approximation) "at rest" in our own galaxy (Seetion 6.1.3). (d) The 
assumption div Z(z) > 0 now merely eorresponds to the faet that the empiri
eal Hubble law (Seetion 6.1.7) indieates, at least qualitatively, expansion (ef. 
the interpretation of div below Lemma 4.3.3). 

With the preeeding interpretation rule and qualifieations understood, we 
define a cosmological model to be a triple (M, Jt, z), where M is a spacetime, 
z E M and J( is a matter model on M, such that: if F is taken to be zero and 
z is here-now, then all the assumptions in Seetion 6.2.3 are satisfied (ef. 
Seetion 6.2.4). The more eorreet appelIation of "nonquantum general 
relativistie eosmologieal model with zero eleetromagnetie field" wilI not be 
employed here, for obvious reasons. A large number of such eosmologieal 
models are known. We now proeeed to eharaeterize, motivate, and indieate 
the limitations of the most naive one. 

ReealI that if (M, g) is a simple eosmologieal spacetime the n M = 
~3 X § and g = R2(U4) L~ = 1 duU ® duU - du4 ® du\ where R > O. In 
this ease denote by Rand R the first and second derivatives. 

Lemma 6.2.6. Le! (M,g) be a simple cosmological spacetime. (a) The metric 
volume element is !l = R3(u4)du1 /\ du2 /\ du3 /\ du4. (b) The Einstein 
tensor is G = POdu4 ® du4 + poeg + du4 ® du4), where Po = 3(RIR)2 0 u4 
and Po = - [2(RIR) + (RIR)2] 0 u4. (e) div 04 = 3(RIR) 0 u4. 

Here (a) folIows directly from Seetion 3.0.1 b sinee (Rdu1, Rdu2, Rdu3, du4) 
is a (eonsistently oriented) orthonormal basis. The proof of (b) follows the 
proof of Proposition 1.4.4 almost verbatim and is left to the reader as per an 
earlier agreement. To prove (e) note thati( 04)!l = _(R3 0 u4)du1 /\ du2 /\ du3 

so d[i(04)!l] = [3(RIR) 0 u4]!l, that is, div 04 = 3(RIR) 0 u4. D 

Proposition 6.2.7. Let (M, Jt, F) bearelativistic model, (z,Z) be an instantaneous 
observer on M. Suppose: (a) The nonquantum general reJafivistic cosmology 
assumptions Section 6.2.3 hold and F = 0; (b) M is a simple cosmological 
spacetime; and (e) Jt is a dust (Z, p) on M. Then, up to equivalence (Exercise 
6.0.18), M is Einstein-de Sitter spacetime, Z = 04' ana P = (4/3)(U4)-2. 

6.2.8 Remarks 
Before giving the proof we make some remarks. 

The very speeifie assumptions (b) and (e) above are two-edged. On the 
one hand, (b) seem s fairly reasonably ab initio in view of the eorrespondenee 
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between the isometries (Exercise 6.0.17a) of a simple cosmological spacetime 
and the observed, approximate spatial homogeneity and isotropy of the 
universe near here-now (ef. Sections 6.1.2, 6.1.7,6.1.9, and 6.1.11 and Exercise 
6.1.12, and the heuristic discussions of the" cosmological principle" in such 
standard texts as Weinberg [I]). Moreover, (e) seems to be a reasonable 
idealization: near here-now galaxies, are apparently the dominant form of 
matter (Seetion 6.1.10); they have small random veloeities (Seetion 6.1.2b), 
thus eorresponding to dust (Exercises 3.15.6 and 3.15.8). Therefore, ehoosing 
a dust to model the matter in galaxies (pIus intergalactic matter whieh has 
small random veloeities, if any is present in signifieant amounts) should be a 
good approximation, at least near here-now. 

Indeed assumptions 6.2.7b,c lead to a powerful, eonvenient, and reason
ably accurate though intentionally oversimplified model for the universe near 
here-now (Section 6.3). On the other hand, both are too naive to be more than 
zeroth order approximations, and the resulting model has at best a restrieted 
domain of validity (ef. Sections 6.2.1, 6.4, 6.5, and 6.6). 

PROOF OF PROPOSITION 6.2.7. Since F = 0, the Einstein field equation G = 

T + E beeomes POdu4 @ du4 + poeg + du4 @ du4) = pID @ ID, where ID is 
the I-form physically equivalent to Z and we have used Lemma 6.2.6b. At 
x E M, choose a nonzero X E Mx such that du4(X) = 0 = ID(X); X is spaee
like. Then the preceding equation implies Pog(X, X) = O. Since g(X, X) "# 0, 
Po = O. 

We now have POdu4 @ du4 = pID @ ID with p nowhere zero since Jt is a 
dust. This implies ID = fdu4 for some function f on M; since both ID and 
-du4 are unit and future pointing,f = -1. Thus ID = -du4-that is, Z = 04 

as claimed. Moreover we also have p = Po = 3(R/R)2, by Lemma 6.2.6b 
again. To finish the proof, we return to the conclition Pa = O. 

This reads 2R = -R2/R. For any constants A and B, Ru = A(u - B)2/3 
is a solution whenever u "# B; by the standard uniqueness theorem and the 
faet that R > 0, eaeh solution has this form. Without loss of generality, we 
may take B = 0 (Exereise 6.0.18b). Since R > 0 and M is maximal, we must 
have either: (i).eF = (0, oo) and A > 0, or (ii).eF = (-00,0) and A < O. We 
exclude (ii) (which gives a relativistic model all right but a eollapsing one) by 
using the assumption 6.2.3d that div c4 is somewhere positive. By Lemma 
6.2.6, div 04 = 3(R/R) 0 u4 = 2(U4)-1. In ease (ii), this is everywhere negative 
so we must have ease (i). Sinee A > 0, we may take A = I without loss of 
generality (Exercise 6.0.18a). Now Ru = U2/3 , so M is Einstein-de Sitter 
spacetime and p = 3(R/R)2 = (4/3)(U4)-2. D 

6.2.9 Einstein-de Sitter madel 

Let M be Einstein-de Sitter spacetime; thus Mis maximal (Exereise 5.2.7). 
Define p = (4J3)(U4)-2, so that Jt = (c4, p) is a dust on M. Choose any 
point Z E M. The triple (M, Jt, z) is then a eosmological model, as the reader 
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may check by a routine verification using the equations given in the proof of 
Proposition 6.2.7 and the definition in Section 6.2.5. 

On comparing the direct data (Section 6.1.8) on the age of objects in our 
solar system or galaxy with the meaning (Exercise 6.0.14c,d) of u\ it is 
reasonable to guess u4z is a bit more than 10 billion years. Since the data are 
uncertain and the mode! intentionally oversimplified, no significance is 
attached to the exact value chosen. All one can really say is that in all like!i
hood 8 x 109 < u4z < 15 X 109 if the mode! applies at all. 

With M, vi! as above and with z chosen so that u4z = 1010 years, we shall 
call (M, vIf, z) the Einstein-de Sitter mode! . .It here is so naive that it is hard 
to teil the difference between the Einstein-de Sitter model and the Einstein
de Sitter spacetime; one may note nevertheless that the defining property 
.. u4 z = 1010 years" belongs to the model and not to the spacetime. In later 
models-for example, that of Proposition 6.4.5-..11 will be more compli
cated. 

A more detailed analysis of the Einstein-de Sitter model will occupy us 
in Section 6.3. 

Using II or 12 billion years in the choice of u4z would aetually give 
a slightly better fit to almost all the data. But we prefer to use the 
rounded-off value of 10 billion, handieapping the model a little, to 
emphasize its intentional naivete. u4z = 1.2 X 1010 years would suggest 
a precision that neither the model nor the data possesses. 

6.2.10 Adjustable parameters 
By adjustable parameters, we mean the indeterminate constants in a cos
mological mod e\. As an example, we note that in the Einstein-de Sitter model 
the numerieal value of the cosmological time u4z at here-now is not pre
determined in any mathematieally natural way. Next to vague philosophy, 
gratuitous adjustable parameters are the biggest eurse of theoretical eos
mology. One main reason the Einstein-de Sitter model is more fun than other 
eosmologieal models is that the others have adjustable parameters that 
observations do not, as yet, determine to reasonable aeeuraey. 

EXERCISE 6.2.11. THE PURE RADIA nON UNIVERSE 

Replace assumption (e) of Proposition 6.2.7 by the assumption that ..It is a rest
mass zero perfect fluid (physics texts refer to this as .. pure radiation") and show 
the following. (a) .'F has a finite lower bound but no finite upper bound. (b) Up 
to equivalence (Exercise 6.0.[8): .'F = (0, oo), Ru = u1/2, Z = 04, and p = 

3(Rj R)2 0 u4 = ~(1I4) - 2. (e) With .'F = (0, oo), G/G/ -. oo as 1/4 --+ 0, where we 
use the index notation of Seetion 3.6. [f. Since G,'G/ is a bona-fide funetion on M, 
this result again indicates the existence of a big ba ng. 
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event that neutrinos are dominant even near here-now, the model above 
with p interpreted as the energy density of neutrinos would be more 
important than the Einstein-de Sitter model (ef. Seetions 6.1.10 and 
6.6.4). 

EXERCISE 6.2.12 

Assumptions as in Proposition 6.2.2, show: (a) t obeys the timelike eonvergenee 
eondition (ef. Seetion 4.3.7a). (b) Let t be the stress-energy tensor of F. Then 
t + t is a normal stress-energy tensor which obeys the timelike eonvergenee 
eondition. (e) If t = pZ (9 Z for some referenee frame Z-that is, if t has the 
form of a dust stress-energy tensor, then: no component of vlt is a photon gas 
F unIess F ;: 0; if any component is a perfect fluid, it is a dust with referenee 
frame Z; and if any component is a partide flow (P, 1), m, e) with 1) somewhere 
nonzero, then m ;f. 0 and P = mZ wherever 1) ;f. O. 

EXERCISE 6.2.13 

Let M be a simple eosmologieal spacetime with Einstein tensor G. Suppose 
G = T, where t is a stress-energy tensor whieh is normal and obeys the timelike 
eonvergenee eondition. Suppose div 0. is somewhere nonnegative. Show the 
following generalizations of results in Seetion 6.0. (a) 0. is again eanonically 
determined-for example, as the eigenveetor referenee frame of t. The results in 
Seetion 6.0.2 on the expansion, synehronizability, and so on, of 0. remain valid 
verbatim. R satisfies R > O. (b) ~ again has a finite lower bound, whieh ean be 
taken as 0 without loss of generality. Then u· is again the maximum proper time 
sinee the beginning, in the sense of Exereise 6.0.14d. (e) The isometry group '§ M 
is again isomorphie to the isometry group of Eudidean 3-spaee (eontrast Exereise 
6.0.17b.) 

EXERCISE 6.2.14. ROBERTSON-WALKER SPACETIMES 

Though we will not use them in an essential way, we give some very famous 
examples of models with extra adjustable parameters. Let (IR', go) be Minkowski 
spacetime, H e IR' be the subset defined by (U·)2 = 1 + 2:~ = 1 (U D)2 and u' > O. 
(a) Show that H is a three-dimensional submanifold homeomorphie to 1R3 and 
that ga induees a Riemannian metrie h on H. Show that the Riemannian 3-
manifold (H, h) satisfies Ric (X, X) = - 2 V unit veetor X. (b) Let M = H x §, 
where :F is an open interval in IR. Denote the projeetions by Tr: M -'> Hand 
u4: M -'> §, and let R: ~ -, (0, OJ). Then g = -du' (9 du' + (R 0 u')2Tr*h de
fines a Lorentzian metrie on M. (M, g), oriented and time-oriented in the obvious 
way, is called a Roberlson- Walker spacelime of negalive spalial curvalure; here 
.. negative" refers to the minus sign in Ric (X, X) = - 2. Roberlson- Walker 
spacetimes of positive spatial curvature are defined correspondingly, with (H, h) 
replaeed by (9'3, h) where h is the metrie induced on the unit 3-sphere by the 
Euclidean metrie of IR' (ef. Seetion 0.0.9). Those of zero spatial curvature are 
merely simple eosmologieal spacetimes. 
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For a 3-dimensional Riemannian manifold, eonstaney of the Rieci 
eurvature is equivalent to eonstaney of the seetional eurvature. (H, h) 
above is then a Riemannian manifold of seetional eurvature - I. The 
Robertson-Walker spacetimes may therefore be eharaeterized as those 
of the form M x :F, where ~ is an open interval, M is a simply eon
neeted space form (ef. J. A. Wolf [I J), and the Lorentzian metrie is 
-du4 @ du4 + (R 0 U4 )21T*h in the above notation exeept h is now the 
Riemannian metric of M. 

Now replaee assumption (h) of Proposition 6.2.7 by the requirement that M 
be a Robertson-Walker spacetime of negative spatial eurvature. Show from 
the Einstein field equation that without loss of generality one may take ~ = 
(0, oo) and take R to be a funetion defined by: R(u) = A(eosh t - I), where t is 
implieitly defined by u = A(sinh t - t), and A E (0, oo). A is the extra adjustable 
parameter mentioned. (e) Derive the analogous result for the positive eurvature 
ease. (d) For a Robertson-Walker spacetime with R ;j; 0, define the deceleration 
parameter q = - RR/ R2• Show that in Einstein-de Sitter spacetime, q = t and 
ean be interpreted as a measure of deeeleration in the sense that q = jaj/jvj2, 
where a and vare the relative 3-aeeeleration and relative 3-velocity, respeetively, 
of Proposition 2.3.7. Show also that in ease (b) above ° < q < t, and in ease 
(e), t < q. 

Robertson-Walker spacetimes are eharaeterized as the spatially 
homogeneous isotropie spacetimes in the following sense: if a spacetime 
loeally admits a 6-dimensional group of loeal isometries whose orbits 
are spaeelike, then it is loeally isometrie to a Robertson-Walker 
spacetime; the eonverse is obvious. In view of the strong empirical 
evidenee for spatial homogeneity and isotropy (Seetion 6.1), these 
spacetimes are c1early the most reasonable zeroth order approximations 
to try. 

Despite the differenees in geometry and topology, all the Robertson
Walker spacetimes whose Einstein tensor equals a dust stress-energy 
tensor as above make similar predictions for all observable effeets (ef. 
Seetion 6.2.le). The eausal past of here-now is topologieally trivial in 
ease (e), even though the spacetime itself is not. (OO We have not yet had 
time to see even half-way around the universe.") In a realistie treatment, 
one should regard all these spacetimes as a single one-parameter set, 
with Einstein-de Sitter spacetime as a typieal representative, eharae
terized by the faet that the deeeleration parameter is 1/2. 

6.3 The Einstein-de Sitter model 

6.3.1 Plan 

Mathematieally, the natural approach might now be to prove some general 
theorems about cosmological models. Instead we continue the zig-zag pro
cedure of model building outlined in Section 6.2.1 a. 

More specifically, let (M, vIt, z) be the Einstein-de SiUer model (Section 
6.2.9) throughout the rest of Section 6.3. We will compare (M, Jt, z) to the 

184 



6.3 The Einstein-de Sitter model 

data and outline its virtues; then, in subsequent sectioos, discuss its inade
quacy for handling events near the big bang and go on to present so me le ss 
idealized models. Overall, we shall demonstrate that, while not all of M is an 
exact model for all of physical spacetime, at least an open submanifold of M 
is a useful zeroth order approximation for part of the history of the universe. 

In view of Z = 04 in Section 6.2.5, our model predicts that the cosmologi
cal frequency ratio '" is ~ = (U4ZJU4X)2/3 > I (Proposition 6.0.8), in qualitative 
agreement with ~ > I for the observed ~ (Section 6.1.5). AIso, rather trivially, 
note that our comment in Section 6.2.8 about the match between empirical 
and predicted symmetries applies. For recall that each isometry ~ of M 
onto itself obeys ~*04 = 04 and u4 0 ~ = u4 , and hence such an isometry is 
an automorphism of the whole model (M,.It, z)-that is, .It = (Z, p) = 
(~*Z, p 0 ,p), and U4~Z = u4z. 

6.3.2 Energy densUy 
In view of Proposition 6.2.7, the model predicts the observed energy density 
should be T(Z, Z) = p[du4( (4)]2(Z) = pz = (4J3)(U4Z)-2 = (4J3)(lQlo years)-2. 
The observed energy density has a very uncertain value which is roughJy 
comparable (Section 6.1.10). This counts as a significant achievement of the 
mode!. 

Not as a major triumph, since current estimates favor a rather 
lower value of the observed energy density. Among models with extra 
adjustable parameters, those in Exereise 6.2.1 b, using Robertson
Walker spacetimes of negative spatial curvature, ean fit any observed 
lower value by adjusting the extra parameter (Exereise 6.4.12b). 

6.3.3 The Hubble law for neighbors 
By using the interpretation Seetion 6.2.5a that the history of a galaxy is 
modelled by an integral curve of 04 , we ean get a preliminary comparison of 
the Einstein-de Sitter model's predictions with the empirieal Hubble Law. 
Proeeeding naively for the moment, we regard a moderately nearby galaxy 
as a neighbor W of our own galaxy (ef. Sections 2.0.3 and 2.1.2 and Definition 
2.3.2); we than have from Proposition 2.3.7 that the 3-veloeity of the galaxy 
relative to us, now, is v = [2J(3u4z)] W. 

Suppose I WI < 108 years. Then we may make the following identifications 
(Section 6.1.6), (a) Our local rest-space Z 1 is [R3 and the figure in Section 6.1.7 
applies (ef. Section 2.1.2). (b) I WI = I WI = dL = dA, where W is the 
Euclidean vector of Section 6.1.7, while dL and dA are luminosity and area 
distanee, respeetively; and I vi = liJl = v in the notation of Section 6.1.5 and 
Exercise 6.1.7. Thus we can compare the prediction I WI = (3u4z/2)lvl of our 
model with the empirical result dL = tHv when I WI « 1010 years. We have 
3u4zJ2 = 15 billion years and tH ~ 18 billion years. In view of the uncertain
ties in measuring tH (Seetion 6.1.7) and in guessing u4z = 1010 years (Section 
6.2.9), the approximate agreement is quite encouraging for this model (and 
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for similar ones). We heneeforth write t for the predicted Hubble time of the 
Einstein-De Sitter model-that is, t = 3u4z/2 = 15 billion years. 

The naive ealculation just given is somewhat unsatisfying: it works with 
spaeelike veetors in a tangent space while the aetual physies involved is 
modeIled by lightlike euryes in the manifold itself. 

We now begin an analysis that is more realistie, beeause it works with 
photons; it leads to a sharper eonfrontation between theory and observations, 
beeause it applies also to galaxies so distant-early that they eannot be re
garded as neighbors-that is, ! W! < lOs need not be assumed. 

Suppose a galaxy at x E M ean send a photon to z (Figure 6.3.4a). Let d 
be the distanee, within the level surfaee u4 = u4z, between z and the point y 
where the inextendible 04 integral eurve through x interseets the level surfaee. 
Of eourse d is not directly observable; for example, if the galaxy blows up 
at x' and thus fails to reaeh y altogether, we shall not learn of the eatastrophe 
for many millions of years. But the next proposition shows that in our model 
the eosmologieal frequeney ratio ~(x, z) of Proposition 6.0.8 ean replaee d. 
The proposition al so shows that ~ ean replaee the eosmologieal time differ
enee u4z - u4x and that for :t' = ~ - 1 much less than 1, z is directly pro
portional to both d and u4z - u4x. 

y .... ----"------. z = here-now 

x 

Figure 6.3.4a 

history of 
our galaxy 

In contrast to d, u4z - u4x is in principle rather directly measurable. 
For example, by analyzing the spectrum (color; ef. Section 5.5.3) of a 
galaxy, it should be possible to infer howold the stars in that galaxy are. 
One would then usually guess that u4x should be about the same number 
or perhaps a little larger. In practice, this kind of measurement is as 
yet almost wholly useless (eL Gunn and Oke [ID. 

Propositioo 6.3.4. Let t be the predicted Hubble time, and d be as above. Then: 
(a) d = d(~), where d: (1, oo) -7 (0, 2t) is the increasing function d(u) = 
2t(l - U- 1/2). (b) u4z - u4x = (2t/3)(1 - ~-3{2). (e) For z « I, d(i) ~ 
tz ~ u4z - u4x. 
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PROOF. By Seetion 6.0.3, we have d = (U4Z)23Ö(X, z), where we use the nota
tion of Seetion 6.0.12. Now for any isometry ~ we know that u4 0 ~ = u\ 
ö(tj;x, tj;z) = ö(x, z), and i(tj;X, tj;z) = i(X, z) (Seetion 6.0). It thus suffiees to 
prove the proposition for the ease where x and z lie on the standard light 
signal of Example 5.2.2. In that ease wc ean determinc u4z, u4x, S(x, z), and 
finally d in terms of t and i via the following ehain of results: (d) u4z = 2t/3 
(Seetion 6.3.3). (e) u4x = i -312U4Z (Proposition 6.0.8). (f) S(x, z) = 
3[(U4Z)113 - (U4X)113] (Exereise 5.4.5a). 

Thus 

d = (U4ZY/3Ö(X, z) = (2t/3)2 133[(21/3)113 - i -1/2(2t/3)1/3] 
= 2t(1 - i- 1/2) 

as claimed in (a). The image of i is (I, oo) by Lemma 6.0.10. Trivially, d(u) = 

2t(1 - u -112) is inereasing and has range (0, 2t). Thus (a) holds. 
(d) and (e) together imply (b). Finally, (e) follows from the faet that the 

funetions of i in (a) and (b) are analytie for i E (0, oo) and ean thereforc bc 
approximated by using Taylor series. For example, I - i -112 = I -
(I + x) - 1 12 = tx + O(x2 ) so 2t(l - t -112) ~ lx for x « I. 0 

Now observing the frequeney ratio for various distant galaxies does not by 
itself eheek a model or the Hubble law. One needs some independent measure
ments. In the next three subseetions, we shall deseribe a partieular set of 
measurements that ean bring about a c10ser eonfrontation between the 
Einstein-de Sitter model and data. These involve measuring the luminosity 
distanee dL (Seetions 5.5.5 and 6.1.6a) of a galaxy and the solid ·angle the 
galaxy subtends on our eelestial sphere (Seetion 5.1.3). To analyze what the 
Einstein-de Sitter model prediets, we sh all first diseuss a relationship between 
the intrinsie eross-seetional area of a galaxy and that of its image on the 
eelestial sphere. 

6.3.5 An auxiliary 2-sphere 

y 
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Suppose x E M and there exists a light signal from x to z = here-now (figure 
above). Fixing x and z, we define.'/' e M by: .'/' = {y I i(Y, z) = i(X, z) and 
there is a light signal from y to z}, where 1 is the eosmologieal frequeney ratio. 
Thus, roughly speaking, the astronomer identifies .'/' by looking for all 
galaxies whose observed red shift is the same as that of the galaxy at x. 

Propositioo 6.3.5a. y E .'/' iff there is a spatial rotation around z, ifi: M --* M, 
such that ifix = y. 

Prao! Suppose such a .p exists. Then .p preserves the time orientation 
(Section 6.0.5e) as weil as geodesies. By the definition of a light signal 
(Section 5.2), .p preserves light signals. Thus there is a light signal from y 
to z and, by Lemma 6.0.9, 1(X, z) = 1(#, .pz) = 1(y, z). Henee y Ef/'. 

Conversely suppose y E f/'. Let .py be an isometry that earries the 
light signal from y to z into the standard light signal (Exereise 5.2.5). 
Define .px similarly. Then u4.pxZ = u4z = u4.pyZ (Seetion 6.0.5); sinee 
u4 increases monotonieally along the standard photon, this implies 
.pxz = .pyz. Similarly the faet that 1 is monotonie along the standard 
photon (Lemma 6.0.10) implies .pxx = .pyy. Thus the isometry .p = 
.py -1 0 .px obeys .pz = z and .px = y . .p is by definition a spatial rolalion 
around z. 0 

Corollary 6.3.5b. y E.'/' iff u4y = u4x and 8(x, z) = 8(y, z). Moreover, .'/' is 
a space/ike 2-manifold diffeomorphic to .'/'2. The metric induced on .'/' by g 
is that of a 2-sphere in 1R3 with radius (u4x)2/38(x, z). 

The proof is immediate from Exereise 6.0.16. 
Define a map X from our eeleslial sphere yz into .'/' as follows. For eaeh 

W E Yz, Z - W is a future-pointing lightlike veelor and thus determines a 
unique inextendible light signal through z. By the definition of .'/' this light 
signal interseets .'/' at the unique point, say y, where 1(X, z) = 1(Y, z); then 
y = XW, by definition. X is one-one sinee Z - W = a(Z - W') with 
W, W' E Z.l. implies W = W'. Denote the metric of yz by hz (ef. Seetion 
5.1.3). Then a short argument, left as Exereise 6.3.19 following, gives: 

(e) x: yz --* .'/' is a diffeomorphism and X*h = [(U4X)2/38(x, z)]2hz. 

6.3.6 Idealizations 
Now eonsider a distant galaxy. Suppose as before that for so me point x on 
the history of its center, there is a light signal from x to z. We now make so me 
idealizations and approximations. 

(a) Assume that the galaxy history interseets .'/' of Section 6.3.5 in an inte
gration region t..'/' e .'/' (er. Seetion 5.5.1) and assume the area A of 
t..Cf' is known from observations (ef. Seelion 6.1.2 and 6.1.6, and Exereise 
6.1.l5). 

(b) Assume we get a light signal from the distant galaxy iff that light signal 
contains here-now and interseets t.Y. 
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By our assumptions, the set LlYz = x- 1(LlSO) of those points on our 
eelestial sphere at whieh we see the galaxy has a well-defined area il E (0, 4rr). 
By Seetion 6.3.5e, iljA = 4rrjA, where A is the intrinsie area of SO-that is, 
A = 4rr(U4X)41382(X, z). Now as the next proposition shows more explieitly, 
A ean be expressed in terms of the cosmologieal frequency ratio -t for (x, z) 
and the predieted Hubble time t; moreover, A was assumed known. Thus the 
model makes a predietion, whieh ean in prineiple be ehecked directly, for 
il at a given eosmological red shift.z = -t - I, as follows; the notation is as 
in Proposition 6.3.4a, with d = d(-l). 

Proposition 6.3.7. ilJA = (~jd)2-that is, the area-distance is dA = djt. 

Proo! A = 41T(U4X)41382(X, z). Using the results in the proof of Pro
position 6.3.4, we have: 

A = 41T-l-2(~r/3 .9[ (~r3 - -l-112(~rT 
= 161Tt- 2[t(1 - -l-112)]2 = 41T-l-2d2(r). 

Thus OJA = 41TjA gives OJA = (-l/d)2. By our operational definition 
(Section 6.1.6b), dA = (AjO)112 = dj~. D 

Proposition 6.3.8. (a) The luminosity distance is dL = ~d. (b) Regarded as a 
function of ~, dL is an increasing onto funetion: (I, oo) --+ (0, oo). 

Remarks. We shall postpone the (long winded) proof of(a) to the Appendix 
of this chapter (Theorem 6.7.5). However, note that the mueh more general 
result dL = l2dA quoted (without proof) in Seetion 6.1.6 gives (a) direetly 
from Proposition 6.3.7. Given (a), (b) is immediate from Proposition 6.3.4. 

6.3.9 Focusing 

f1./A 

I 
"2 

i 1 
4 2 

2 

Before eommenting on the relation of these two resuIts to observations, we 
make a few comments. Recall .z = -t - I. (a) For .z --+ 0, Proposition 6.3.7 
with A fixed formally gives il --+ oo. This merely means that if a galaxy were 
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right on top of us, our assumption D « 417 would fail and our definition of 
dA would be inapplieable (see Exereise 6.1.15). (b) Using Propositions 6.3.4 
and 6.3.7, we find for DIA the preeeding graph, with a minimum at ~ = 5/4. 
Thus, if we imagine observing galaxies of the same intrinsie area A, and eould 
do the observation for red shifts greater than 5/4, we should find that D is 
an inereasing funetion of ~ for ~ = ~ + I > 9/4. 

photon 

hcrc-now ~--.------------------w ga laxy-thcn 

Intuitively speaking, the reason n is big is foeusing. We give an 
intuitive pieture in .. space," and also suppress one" spatial" dimension. 

The dotted lines on the left are tangent to the world lines of the 
ineoming photons as shown, and the heavy are marked off on ~ 
represents the apparent size of the galaxy according to the actual 
observer at here-now. We draw the photon lines eurved to indicate 
intuitively that spacetime curvature tends to focus lightlike geodesics in 
Einstein-de Sitter spacetime (that the curvature of a space slice vanishes 
is irrelevant). Since ~ is in a tangent space, it is the tangents at here
now that determine ~~. As the picture perhaps suggests, the net effeet 
is to make the area of ~~ .. bigger than it should be." The more 
spacetime there is between us and the galaxy, the more focusing. 

6.3.10 Comparison with observations 
For almost half a eentury, an enormous amount of work has been done in 
trying to compare such predietions as Propositions 6.3.8 and 6.3.7 to the 
observations (ef. Tamman [I J). At present the situation is this. (a) For galaxies, 
eonsiderable data are available in the range 0 < ~ < 0.465. (b) For ~ « I, 
Propositions 6.3.8 and 6.3.7 give dL ~ dA ~ t~ in view of Proposition 6.3.4c. 
The model therefore makes a predietion for the value of t onee {dA'~} or 
{dL , ~} are determined. Here, in eontrast to Seetion 6.3.3, the relevant quan
tities (dA , dL and~) ean be regarded as direetly measurable. Thus we have now 
justified more earefully our earlier eomments in Seetion 6.3.3 on the satis
facto ry agreement between the observed value tH ~ 18 billion years and the 
model's predietion t = 15 billion years. (e) The graph below shows the red 
shift ~ at luminosity distanee dL for more than 50 galaxies with eomparatively 
large red shifts (ef. Seetion 6.1.5). The data are from Gunn and Oke [I]. The 
highest dot is the radio galaxy 3C 295 mentioned in Section 6.1.5. 

The upper eurve is the predietion of the Einstein-de Sitter model. The 
lower eurve was obtained using a Robertson-Walker spacetime of negative 
spatial eurvature, with the extra adjustable parameter ehosen so that the 
deeeleration parameter here-now is 1/4 (ef. Exereise 6.2.14). As the figure 
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suggests, eurrent data on galaxy red shifts and· luminosities are eompatible 
with various models, incIuding the Einstein-de Sitter mode! (Sandage and 
Tamman [I], Gunn and Oke [I]). The same statement holds for the further 
data on dA (ef. the graph on p. 173 in Peebles [I ]). (d) The quasar data goes to 
mueh higher redshifts, where the predietions of different models differ eon
siderably (ef. Lang et al. [I]). However, for quasars, dL is harder to find beeause 
of uneertainties about the absolute luminosity L; in many cases dA eannot 
eve n be estimated. (e) One of the most serious problem s is trying to correet 
for evolutionary effeets. We are looking so far baek in time that the gaIaxies 
or quasars may not yet be suffieiently similar to more familiar ones cIoser to 
here-now for our estimates of dL or dA to be reasonably aeeurate. (f) On 
balanee, the Einstein-de Sitter mode! fits the galaxy and quasar observations 
aImost as we\l as any other model, and better than most, even though the 
others have extra adjustable parameters. 

10-2~ __________________ ~ __________________ -J 

0.1 10 

Iumino ity distancc d/. (bi llion ycars) 

Arnong rnodels with such pararneters, the current data seem to favor 
the negative spatial curvature Robertson-Walker rnodels over the 
positive spatial curvature ones. A few years ago the situation was the 
opposite. 

We now consider another kind of observation. Suppose one restriets 
attention to galaxies of a partieular kind-for example, radio galaxies whose 
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absolute luminosity is in some given range and whose speetrum obeys some 
given restrietions. Suppose one eounts all those whose luminosity distanee 
dL is less than some given value do. The answer aeeording to the Einstein
de Sitter model is given by Proposition 6.3.13 below; it re places the naive 
guess N = (4rr/3)ndo 3 in Seetion 6.1.11. We begin with some preparatory 
material. 

6.3.11 Number counts: the matter model 
(a) Let us assume that the galaxies of interest ean be modelled by a partide 
flow (P, 1]) of rest-mass m, where m is the average rest-mass of one such 
galaxy and P = mi)4' The idea is that our dust matter model .It of Seetion 
6.2.9 is itself a superposition of many such partide flows, all having P pro
portional to i)4 (ef. Exereise 3.l5.8b); the preeise value of m will be irrelevant 
here. (b) Let us further assume 7J is "spatially homogeneous" in the sense 
that 7J 0 .p = 7J for all isometries .p of M into itself. Thus by Seetion 6.0.5h, 7J 
"depends only on time"-that is, there exists a funetion n: (0, oo) ~ [0, oo) 
such that 7J = (I/m)(n 0 u4). The faetor (Ilm) has been inserted so that neu) 
may have the intuitive interpretation of "number of galaxies per unit 3-volume 
at eosmologieal time u"; compare Example 3.2.2. (e) Finally, let us assume 
that galaxies of the chosen type are eonserved-that is, div (7JP) = O. This 
assumption is unrealistie if galaxies are subjeet to strong evolutionary effeets. 
For then a galaxy ean ehange its parameters (e.g., its totalluminosity or its 
speetrum) so mueh in billions of years that it "drops out" of the given 
partide flow (P, 1]) and joins another. The relevant time period is that 
between x of Figure 6.3.4a, when the galaxy sends us light, and y in that 
figure, when the galaxy is supposed to make its due eontribution to n(u4z) 
above. Similarly, neweomers joining our partide flow would violate div hP) 
= O. Our eomparison to observations below thus involves not only the Ein

stein-de Sitter model but also the homogeneity and eonservation assumptions 
just made. 

6.3.12 Number counts; geometry 

no 
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Suppose z = here-now lies on the standard light signal [A]. Given our maxi
mum luminosity distance dL = do, there is a unique frequency ratio ~o E 

(I, oo) such that do = t od(1o) by Proposition 6.3.8, and thus by Proposition 
6.0.10 a unique point x on [A] such that the luminosity distance dL (z, Z) 
measures for a galaxy at x is do. Then by the same two propositions a galaxy 
whose history intersects the standard light signal contributes to our counted 
number iff the intersection point is between x and z (figure). Thus the actual 
situation of interest is that depicted pictorially below, once with two dimen
sions suppressed and then with less detail but onlyone dimension suppressed. 

no 

I 
u4 = u4 X ---------~--------.::IIII ----------

x 

Here st is that compact subset of our causal past (Proposition 6.0.13) for 
which u4 ::::: u4x; formally, Y E st iff u4z::::: u4y ::::: u4x, and S(z, y) ~ 
3[(U4Z)1/3 - (U4X)1/3J. The boundary of st consists of the following submani
folds: a submanifold 81, diffeomorphic to the open un it 3-ball, given explicitly 
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by u4y = u4x together with S(y, z) < S(x, z); the 2-sphere!/ ofSeetion 6.3.5; 
a (Iightlike) 3-submanifold ga', diffeomorphie to !/2 x IR, given explieitly by 
u4z > u4y > u4x together with 8(z, y) = 3[(U4Z)113 - (U4y)1I3]; and z itself. 
As usual we assign ga and ga' the orientation indueed from that of .sl. 

By the definition of total number in Seetion 3.2 the number N of galaxies 
whose luminosity distanee is less than or equal to do is N = f~, T)i(P)Il. 

Propositioo 6.3.13. Suppose do E (0, oo) and let lo be the unique cosmological 
jrequency ratio such that lod(lo) = do. (Notation as in Proposition 6.3.4). 
Then N = (4-rr/3)n(u 4z)do3 = [4-rrn(u4z)/3]do3/103, where do = d(lo). 

Proo! Sinee div ("1P ) = 0, N = - f~ "1i(p)n by Stokes' theorem. By 
Exereise 3.2.5, "1 = (I Jm)n(u4z)(u4 z)2(u4 ) -2. Now i(p)n = mi( 04)n = 
- m(u4 )2du1 /\ du2 /\ du3, where we have used Lemma 6.2.6 for n. 
Together we get: 

N = n(u4z)(u4z)2 f~ du l /\ du2 /\ du3. 

Since f!j ean be regarded as the ball around the origin in 1R3 with radius 
3[(lh)113 - (U4X)113], the last integral over f!j equals 

(41T/3){3[(u'Z)113 - (U·X)113]}3. 
Replaeing u4z by 21/3 and u-x by lÕ 312 • 21/3 (ef. the proof of Proposition 
6.3.4), we obtain: 

41Tn(u·z) 41T 
N = --3- [21(1 - 1Õ I12)j3 = T n(u4z)d 3(lo), 

Proposition 6.3.8 finishes the proof. D 

6.3.14 Remarks 

no 

"big bang" (not in M) 

(a) For A: « 1, we ean regard d as the Newtonian distanee dN (ef. Seetion 
6.1.6) and then the result given eoineides with the naive Newtonian result 
N = (4-rr/3)ndN3. Of eourse then we also have do ~ do, sinee 1 ~ I. However, 
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for x » I the results of the Einstein-de Sitter model are different. In partie
ular, for x -+ oo, N -+ (47T/3)n(u4z)(2t)3 by Proposition 6.3.4, so we ean in 
prineiple eount at most a eertain finite number of galaxies (ef. the figure and 
Exereise 6.3.19). (b) Note in the figure that the observer y in the referenee 
frame 04 has not yet had a chanee to eommunieate with us sinee the big bang. 

6.3.15 Comparison with observations 
Proposition 6.3.13 relates N both to the maximum luminosity distanee do and 
to the red shift eorresponding to do. 80th kinds of predietions have been 
intensively investigated. Looking at quasars and other radio sourees with 
radio teleseopes is the key measurement. At lea st for the quasars, red shifts 
as large as x ~ 3.5 are involved. One suspeets that some of the sourees with 
unknown red shift may have even larger values of x. Despite heated eontro
versies it seems reasonably c1ear, and we shall assume, that these large red 
shifts are eosmologieal (Seetion 6.0.7), rather than being due to weird physies 
in objeets within \08 years of here-now (ef. Longair [I]). Then the radio 
observations penetrate very far baek in time indeed (see Figure 6.5.2b 
following). 

The data seem to eontradiet every reasonable known rnodel whieh assurnes, 
as we did in Seetion 6.3.11 b,e above, the eonservation of sourees and spatial 
hornogeneity (Longair [I J, Petrosian [I]). In partieular there seerns to be very 
strong evidenee that there were more bright radio sourees billions of years 
ago than there are near here-now. Thus the resuIts suggest the universe was 
different in the past, as one rnight indeed expeet if something like a big bang 
oeeurred. 

Although this is not eertain, the noneonservation of sourees in the early 
universe, rather than spatial nonhomogeneity, is believed to be aeeountable 
for the contradiction of the data with Proposition 6.3.13. This would mean it is 
Assumption 6.3.lle, and not neeessarily the Einstein-de Sitter model itself, 
that is at fault. For instanee, one ean get a roughly eonsistent pieture using 
the Einstein-de Sitter model if one assumes, instead of div (-ryP) = 0, a 
suitable modifieation that eorresponds to the gradual fizzling out of radio 
galaxies and quasars since the universe was about one-tenth of its present 
age. However, the uneertainties about the kind of evolution that oeeurred 
preclude any attempt to single out just one mode! using the number eount 
data (Rees [I]). Thus the uneertainties about matter models are erueial, here 
as elsewhere. 

The famous steady-state eosmology requires both spatial homo
geneity and, on the average, lack of SOUTee evolution. The number eount 
data seems definitely ineonsistent with the steady-state eosmology. 
Nowadays, the microwave data (Section 6.1.9) are considered even 
stronger evidenee against the steady-state cosmology by most authors. 
At least for the present, this unusually beautiful model, so enticing 
because of its absolute minimum of adjustable parameters, is dead as a 
doomai!. 
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6.3.16 Less is more 
Before shooting down the Einstein-de Sitter mode! in Seetion 6.4, we owe it 
a tribute. As we have tried to indieate by a few examples, it does aetually pro
vide" a common meeting ground for an enormous variety of observational 
data" (Seetion 6.2.lg). Basie, very intuitive, mathematieally instruetive, 
perhaps as accurate physieally near here-now as any other extensively 
analyzed eosmologieal model, and mellowed by 55 years of vigorous give
and-take, it focuses on essentials and is free of all faney frills. Regarding it 
as an exact model of nature would be sheer nonsense; but it is a truly e1egant 
zeroth-order approximation. 

EXERCISE 6.3.17 

In Exereise 6.2.11 on the "pure radiation universe," assume uiz = 1010 years. 
(a) Using an argument similar to that of Seetion 6.3.3, show the predieted Hubble 
time is 2 x 1010 years. (b) Find expressions for the area-distanee as a funetion of 
eosmologieal frequency ratio (i.e., modify Proposition 6.3.7) and for the number 
eount N as a funetion of area-distanee (ef. Propositian 6.3.13). (e) Generalizing 
(a), eonsider a simple eosmologieal spacetime M such that R > 0 and model 
galaxy eenters by integral euryes of ö •. With z = here-now, show that the pre
dieted value of the Hubble time is (R/R)(u4z). (d) Generalizing further, show that 
(e) remains valid if M is replaeed by any Robertson-Walker spacetime for whieh 
R> O. 

EXERCISE 6.3.18 
Prove Corollary 6.3.5e, either by brute foree or by using the rotation group (!J3 
suitably. 

EXERCISE 6.3.19 

Let (M, Jt, z) be the Einstein-de Sitter model and suppose in Seetion 6.3.11 
(mö., m-ln 0 u') is a partide ftow that models all galaxies simultaneously (not 
just one kind as in Seetion 6.3.11; thus m > 0 should now be the average rest
mass for all kinds of galaxies). (a) Assume that within the level surfaee u' = 1010 

years, the average distanee between galaxy eenters is 107 years. Using the integrals 
in Seetion 3.2, argue that n(lOl0) = 1O- 2l(years)-3. (b) Assume galaxies are eon
served (Seetion 6.3.1 le) and assume we ean see all the way baek to the big bang. 
Show that the observable universe then eontains about 1011 (lOO billion) galaxies. 
(e) For what value of m does the stress energy tensor f of (mö4, m-ln 0 u4) obey 
T(Z, Z) = (1010 years)-2 (ef. Seetion 6.1.I0)? 

6.4 Simple cosmological models 
Following our plan of Seetion 6.3.1, we now diseuss why the Einstein-de 
Sitter model is inadequate near the big bang and discuss an improved model 
(Definition 6.4.4). The discussion centers on the microwave radiation 
(Section 6.1.9) and lead s up to some rather exciting current speculations on 
the early universeo 

196 



6.4 Simple cosmological models 

Let (M, vi!, z) be the Einstein-de Sitter mode!. JI is a dust, so we cannot 
regard Jt as including the microwave photons (Section 6.2.8; Exercise 
6.2.12). Nevertheless, we can stiil hope that minor ad hoc modifications of 
the model would suffice to account for the microwave data (Section 6.1.9). 
In making these modifications, one could go so far as ignoring, if necessary, 
one or more of the original assumptions (Section 6.2.3) of a cosmological 
model; compare the discussion of Section 6.2.1 a concerning model-building 
at this point. We give a typical modified model below (Section 6.4.1) and then 
show that, unfortunately, it completely breaks down at earIy times (Pro
position 6.4.2), thus indicating that the whole Einstein-rle Sitter model is 
beyond salvage near the big bang. 

6.4.1 The microwave photons 
Let (M, .A, z) be the Einstein-rle Sitter model and let t be the stress-energy 
tensor of vi!. Now define a matter model .Ao on M to be the superposition 
(Example 3.13.3) of the dust .A and arest-mass zero perfect fluid .Ap = 
(pp, -!Pp, (4), with pp yet to be determined. Let t p be the stress-energy tensor 
of .Ap, so that tp = (ppj3)[404 0 04 + i] (ef. the notation and discussion in 
Section 6.1.10) . .Ap models the microwave photons; the motivation is given 
by the spatial isotropy of M itself and the observed isotropy of the micro
wave radiation on the one hand, and the discussions in Sections 3.15 and 5.7 
on the other. To specify pp, we assume: (a) pp is spatially homogeneous in the 
sense that o#PP = 0 Vp. = 1,2,3. This again matches the isometries of M and 
is also suggested by the (rough) spatial homogeneity of various observed 
quantities (Section 6.1). There is strong, thou gh not quite decisive, empirical 
evidence that near here-now photon co liisi ons have a negligible effect on Tp 

(Peebles [I]; Weinberg [I]). We therefore make assumption (b): div t p = 0 
(ef. Proposition 3.9.2 with E = 0 = F). Then (M, .Ao, z), together with the 
matter equations (a) and (b) above, is our modified Einstein-de Sitter mode!. 

To arrive at our estimate that near here-now div t p = 0 holds to good 
approximation, one must first try to think through all the possible collisions 
a photon can undergo, using the laws of microphysics. For example, one has 
available weil known microphysical models for collisions in which electrons 
and photons are incoming. Similarly, the microphysics governing photon
photon collisions is weil enough understood that one can predict such 
collisions are exceedingly rare near here-now. For each possible kind of 
collision allowed by microphysics one must then estimate, using the available 
knowledge ofwhat matter is present near here-now, whether Tp is significantly 
affected by such collisions. Having done this, one finally arrives at the idealiza
tion mentioned (ef. Sciama [I]). The entire argument is tricky, because we 
are not really sure of our matter models even near here-now, and leaves a few 
cosmologists skeptical. 

When extrapolating to early times, as we plan to do, the assumption 
div t p = 0 also has limitations to be discussed in the next two sections. 
Very generally speaking, in building models of the early universe, one usually 
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begins with some very simple matter equations [assumption (b) in the present 
case; Section 6.3.llc is another example]. These give a preliminary idea how 
the relevant quantities (pp in the present case) behave. Then one can gradually 
work out more realistic matter models and equations. Section 6.5 illustrates 
this procedure. If one tries instead to consider all possible forms of matter 
and all possible matter-matter interactions ab initio, one gets a hopeless mess. 
Compare our comments in Section 6.2.1. 

In the present context, the details of our assumptions are not so 
critical since all we are trying to do is to shaot down the Einstein-de 
Sitter mode\. It turns out that modifying, for example, assumption 
(b) merely alters the way in which the model gets shot down; no 
reasonable set of assumptions can save the mode\. 

(M, .ito, z) differs from the Einstein-<le Sitter model in having one mare 
component in the matter model.ito and in having two extra matter equations. 
Moreover, the stress-energy tensor of .ito is 1 + lp = P04 ® 04 + 
(pp/3)[404 ® 04 + iJ (see Example 3.13.3), and therefore the Einstein field 
equation for (M, .ito, z) does not hold (Section 6.2.9 and the proof of Pro
position 6.2.7). Assumption 6.2.3a not being valid in it, (M, .ito, z) is not a 
cosmological model according to the definition in Section 6.2.5. However, the 
Einstein field equation would hold for (M, .ito, z) if one agreed to neglect the 
contribution of the rest-mass zero perfect fluid to the stress-energy tensor 
(proof of Proposition 6.2.7)-that is, if one neglects the effects of the micro
waves on the spacetime M (cf. Sections 3.9 and 3.12). Thus if we insist on the 
validity of the Einstein field equation, we may regard (M, A o, z) as a "cos
mological model" in which the rest-mass zero perfect fluid is "test matter" 
(Section 6.1.1 Od). Near here-now, this idealization is reasonable (Exercise 
6.1.14); in early epochs it is not, as we shall now show. 

Proposition 6.4.2 shows precisely in what sense the modified Einstein
de Sitter model (M, A o, z) is self-defeating: after neglecting the contribution 
of Tp to the Einstein equation, it goes on to predict that for early times Tp 

actually dominates the stress-energy tensor of its own matter mode!. In the 
proposition the relevant value of a is about a = 10- 4 (Section 6.1.10). Lemma 
6.4.3, which is used in proving the proposition, adopts the notation of Lemma 
6.2.6 and says, roughly speaking, that as we go backwards in time toward a 
big bang everything gets denser at least as fast as R- 3 • It can be applied both 
to "test matter" and to matter that significantly influences spacetime, so it 
will be rather useful when we introduce the generalizations the proposition 
suggests. A preliminary motivation for the assumption it. > 0 in Lemma 
6.4.3 is given by Exercise 6.2.13a. 

Propositloo 6.4.2. (M, vlto, z) as above, let P = T( i)4, i)4) be the energy density 
of the dust .it. Define a E (0, oo) by a = ppz/pz. Then PP = a(u4z/u4 )213p; 
in particular T( i)4, (4) « Tp( i)4' (4)-that is, p « pp-lI'henever u4 « a312 x 
1010 years. 
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Lemma 6.4.3. Suppase !VI is a simple cosmological spacetime with R > O. Let 
.It = (p, p, (4) he a perfect jfuid on !VI such that 0uP = 0 = 0uP for,.,. = 
I, 2, 3, and that the stress-energy tensor 1 of.lt oheys div 1 = O. Then: 
(a) "ly E M, the inequalities 

( R(u4y))3 < .E... < (R(U4y))4 
R 0 u4 - py - R 0 u4 

hold in the region determined by u4 ~ u4y. Moreover: (b) The first (re
spectively, second) inequality is an equality valid on all of !VI ifJwe have the 
dust case p = 0 (respectively, 1tst-mass zero case p = pj3). 

Prool 01 Lemma 6.4.3. div t = 0 implies div (pa4) = - p div a. (Pro
position 3.15.3), which is equivalent to a4 P = -ep + p) div a4 • Now 
diva4 = 3(R/R) 0 u' (Lemma 6.2.6c) and 0 < p ~ p + p ~ (4/3)p 
(Definition 3.15.2). Wethus get - 3(R/R) 0 u· ';? (04P)/ P ';? -4(R/R) 0 u'. 
Since aup = OVp. = 1,2,3 and R > 0, an elementary integration gives 
(a). (b) follows from the fact that the first (respectively, second) in
equality is an equality in 

4 
P ~ P + P ~ 3 P, 

and thus in the other conditional inequalities above, iff p = 0 (re
spectively, p = p/3). D 

Prool 01 Proposition 6.4.2. By (b) of the lemma, we obtain: 
P = (pz)[R(u4z)]3(R 0 U4)-3, 

Pp = (ppz)[R(u4z)]4(R 0 U4)-4. 

D, 'd' / 1 R 0 u4 

IVI mg, we get p Pp = a- R(u4z)' D 

In view of P « Pp for u4 « 1010 in Proposition 6.4.2, we cannot systematic
ally analyze the microwave photons or the early universe until we generalize 
the Einstein-de Sitter model's assumption that the matter model is a dust. 
The following generalization has been very intensively investigated during the 
last 20 years; attempts have been made to apply it to times as early as 10- 42 

seconds after a big bang. 

The number 10-42 is that suggested by the value of Planck's quan
tum constant; compare the fine-print comment be10w Section 5.1.3. 

Of course the attempts are speculative. If the reader takes the view 
that any attempt to extrapolate to times earlier than 2000 D.C. are ex
tremely dubious, he will have the enthusiastic support of many obser
vational astronomers and the (possibly grudging) respect of thoughtful 
theorists. However, it does seem c1ear that to explain the universe 
near here-now one must investigate the early universe and there seems 
to be no natural stopping place alo ng the route of this strange journey 
into the past. There is something awesome, even frightening about the 
conjecture that our current theories may conceivably apply to such 
early times. 
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Definition 6.4.4. A simple cosmological model is a eosmologieal model 
(M, v1t, z) such that: (a) (M, g) is a simple eosmologieal spacetime, (b) 
M = 1R3 X (0, oo) and R ~ 0 as u4 ~ 0; (e) u4z = 1010 years. 

Here the motivations for, and Iimitations of, assumption (a) have already 
been outlined (Seetions 6.2.3 and 6.2.8). In (b), taking~ = (0, a), a E (0, oo], 
involves no further loss of generality given (a) and the assumptions (Seetion 
6.2.3) of a eosmologieal model (Exercise 6.2.13b). The remaining parts of (b) 
are that a = oo and that R ~ 0 as u4 ~ O. Both of these ean usually be 
proved onee a suffieiently detailed matter mode! is chosen (ef. Proposition 
6.2.7 and Exercise 6.2.11 for two examples). Thus (b) in effeet aets as an 
extremely general assumption on .;/{, whieh replaces the very specifie require
ment that.;/{ be a dust. 

For a perfect ftuid that obeys the requirements of Lemma 6.4.3, our 
assumption (b) implies that the energy density P ~ oo as u4 ~ O. For this 
(and other) reasons we ean again regard u4 ~ 0 as approaeh to a big bang 
and expeet that, qualitatively speaking, matter is becoming ever denser in 
this limit. Then, in view of Exereise 6.2.13, u4 ean again be interpreted as 
maximum proper time since the big bang. Thus the motivations for, and 
limitations of, the final assumption u4z = 1010 years are just as before 
(Seetion 6.2.9). 

Let (M, v1t, z) be a simple eosmological mode!. We again designate u4 as 
the cosmological time. Exereise 6.2.13 shows that the eomoving referenee 
frame is 04, that i\ is expanding, and that R > O. 

We can now use a simple cosmologieal model to cure the partieular disease 
indieated by Proposition 6.4.2. The resulting model, detailed in Proposition 
6.4.5, is superior to the Einstein-de Sitter model or the modified Einstein
de Sitter model of Seetion 6.4.1 in that the microwave radiation is built into 
this model from the beginning in the form of arest-mass zero perfect fluid. 
In particular, as a eonsequenee of the inftuence of this rest-mass zero perfect 
fluid on spacetime (via the Einstein field equation), the resulting spacetime 
is no longer the Einstein-de Sitter spacetime. Of eourse, even this model has 
its own limitations (Seetions 6.2.la,b and 6.6). 

Proposition 6.4.5. Let (M,.,It, z) be a simple cosmological model such that: 
Ca),,{f is a superposition oJ a dust Jtl = (Pb (4) and arest-mass zero perJect 
ftuid Jtz = (Pz, pz/3, (4); (b) the stress-energy tensor t z oJ .;/{Z obeys 
div t 2 = 0; (e) 0upz = 0, Jor p. = 1,2,3. Let a be the positive number 
defined by P2Z = ap1z. Then, up to equivalence (Exercise 6.0.18) theJoffowing 
hold: (d) R is the Junclion determined implicitly by u = [R(u) + bJl/2 x 
[R(u) - 2b] + 2b3/z, where b = a{(u4z)f[(1 - 2a)(a + 1)1 /2 + 2a3/2 ]12/3; 

(e) Pl = (4R- 3 j3) 0 u4 ; and (f) pz = (4bR- 4j3) 0 u4• 

6.4.6 Remarks 
Before giving the proof we make a few eomments. 
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(a) The interpretation of interest here is that viII models the matter in galaxies 
and .;{{2, as mentioned above, models the microwave photons. In this context, 
a is about 10 - 4 and all three assumptions in Proposition 6.4.5. have been 
motivated earlier in this section. However, the proposition has other appI i
cations (cf. Section 6.6.4). (b) Note that conditions 6.4.5d-f determine 
(M, .A, z) uniquely if it exists. We are thus presenting our model in the 
form of a uniqueness theorem; Exercise 6.4.10 states the corresponding 
existence result and gives hints on its proof. (e) Note that as a --+ 0, one has 
b --+ 0, P2 --+ 0, and R(u) --+ U213 ; thus the whole model approaches the 
Einstein-de Sitter model, as one would expect. 

Prool 01 Proposition 6.4.5. Let (M, z) be a simple eosmologieal model 
such that Assumptions 6.4.5a-c hold. The Einstein fie\d equation 
G = TI + T2 implies div t l = 0, beeause of (b) and div G = 0; it 
also implies il.Pl = 0 V li E (I, 2, 3), beeause of (e) and Lemma 6.2.6b. 
Thus Lemma 6.4.3 implies both Pl = (4b l /3)(R 0 U4 )-3 and P2 = 
(4/3)b(R 0 U4)-4 for some bb b E (0, oo). Using the diffeomorphism 
determined by u4 ~ u\ u· --'> (b l ) -113U• for li = I, 2, 3, we ean and 
shall assume bl = I without loss of generality (ef. Exereise 6.0.18a). 
Thus (e) and (f) hold. Using Lemma 6.2.6b again we now get 3(R/R)2 = 

(4/3)(R-3 + bR- 4 ). Since R --'> 0 as u4 --'> 0 we can integrate to obtain 
u4 = 3/2 S: vdv/(v + b)112 = (R + b)112 (R - 2b) + 2b312• To eomplete the 
proof of (d), we note from (e) and (f) that P2Z = apIZ iff b = aR(u4z) iff 
b = a{1010/[(l + a)1f2(1 - 2a) + 2a312 ]}2/3. 0 

Now that we have amodel (Proposition 6.4.5) that takes into account the 
inftuence of the microwave photons on spacetime, we must next make sure 
that, if we abandon the Einstein-de Sitter model we are not throwing out the 
baby with the bath water-that for the observations analyzed in Section 6.3 
the model (Proposition 6.4.5) is no worse than the Einstein-de Sitter mode!. 

In fact such is the case. The observations mentioned in Section 6.3 con
cern only red shifts less than nine, in most cases very much less. Thus we are 
eoneerned with at most the u4 range determined by OjIO)R(u4 z) ~ R(u4 ) ~ 

R(u4z) (Exereise 6.0.17); here R is given by Proposition 6.4.5d with a ~ 10- 4 

and u4z = IO lD years. Numerieal estimates (using Taylor series) show that 
throughout this entire ,,4 range R(u4 ) differs from (U4 )213 (the Einstein-de 
Sitter behavior) by less than I '70' The same then holds for all the predicted 
effects in Seetion 6.3 and such small changes are negligible eompared to the 
empirical uneertainties. 

As an example, note from Proposition 6.4.5d that a = 10- 4 gives 
b ~ 10- 4 X 1020/3 and thus R(IOIO) ~ (I + 10- 4)1020/3 • The pre
dicted value of the Hubble time is now t = (R/ m(I 010) (Exereise 6.3.17e). 
The model gives R/R = R(du4JdR) = (3J2)R2(R + b)-1/2 (Pnposition 
6.4.5d). Thus t ~ (3/2)(1 + 1.10- 4 ) x 1010-that is, the predieted 
Hubble time differs from that predieted by the Einstein-de Sitter model 
by a bit more than 0.01 '70' Compared to the 15'70 observational in
aeeuraey of the Hubble eonstant (Seetion 6.1.7), and the stiil larger 
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uncertainty in choosing u4z = 1010 years (Section 6.2.9), a discrepancy 
of (3j2) x 10- 4 is grotesquely small. 

Thus the mode! (Proposition 6.4.5) shares the crude but important virtues 
of the Einstein--de Sitter model without having the disease diagnosed at the 
start of this section. Why didn't we use it ab initio? Because it is much c1um
sier than the Einstein-de Sitter model, is no better near here-now and, as we 
shall see shortly, has diseases of its own. 

EXERCISE 6.4.7. THE BIG BA NG 

Let (M, .,I{, z) be a simple cosmological mode! such that .,I{ is a superposilion of 
perfect ftuids {(PA, PA, OA) I A = 1, ... , N}. (a) Generalize Lemma 6.4.3 by show
ing L~=1 PA ->- oo as u4 ->- O. (Intuitively; "overall, matter gets denser as we 
approach the big bang".) (b) Use Example 3.12.1 to construct a case where 
N = 2 and P2 ->- 0 as u4 ->- O. 

(b) Shows that not every matter component need be present at the 
big bang "u4 = 0"; some may be made later. In fact probably helium 
and deuterium are made later (Section 6.5). There is some indication 
that when quantum made Is are used for very early times in some general 
models (a) can fail; conceivably all forms of matter were made, by 
quantum process, after the big bang. See Misner [1]. 

EXERCISE 6.4.8. PHOTONS 

Let (M, .K, z) be a simple cosmological mode!. (a) Show that the causality and 
chronology relations for M can again be found from those on Minkowski space
time by using conformai invariance. (b) Let A; ef --- M be an inextendible, freely 
falling photon. Show; ef = (a, oo), a E IR; and u ->- u4 Au determines an increasing 
function from (a, oo) anta (0, oo). 

EXERCISE 6.4.9. MAXIMALlTY 

In Exercise 6.2.13, suppose:F = (0, oo) and Ru ->- 0 as u ->- O. Show Mis maxi
maI by the following steps; (In R)(u) ->- -oo as u ->- 0; (RjR)(u) ->- oo as u ->- 0; 
G( °4 , (4) ->- oo as u -'>- 0; and each inextendible future-pointing Iightlike geodesic 
has the form A: (a, oo) -->- M where u4 >.U -'>- 0 for u -'>- a (ef. Propositian 1.3.2 and 
Exercise 5.2.7). 

EXERCISE 6.4.10. EXISTENCE 

To show the existence of a model that obeys all the conditions in Propositian 
6.4.5, proceed as follows. '<Ib E (0, oo) define a C'" anta function u; (0, oo) ->- (0, oo) 
by u(R) = (3/2) S: vdvj(v + b)I/2. Since u' > 0, its inverse function R; (0, 00)--->

(0, oo) also satisfies R' > O. Now let M be the simple cosmological spacetime 
characterized by;:F = (0, oo) and R is as aboveo Then with Pl = (4R- 3j3) 0 u4 

and P2 = (4R- 4j3) 0 u\ .Kl = (Pl' 0, (4) and .,I{2 = (p2' P2/3, (4) are perfect 
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fluids on M. Let .,{{ be the superposition of .,{{l and .,{{2 and ehoose Z E M so that 
u4z = 1010 years. (a) Show (M, "({, z) is a simple eosmologieal mode!. (Hint: To 
eheek the Einstein field equation use Lemma 6.2.6; to eheek maximality use 
Exercise 6.4.9.) (b) Show that assumptions 6.4.5a-e hold. (Hint: For div 1'2 = 0, 
use Proposition 3.15.3.) (e) Finally show by algebra that if b is chosen as in 
Proposition 6.4.5d, then P2Z = apIZ. 

EXERCISE 6.4.11 

Show with a poeket ealeulator (and/or Taylor series) that, in Proposition 6.4.5d 
with a = 10-\ R(lO-s years)/R(l010 years) ~ 10- 10. 

EXERCISE 6.4.12 

(a) Let (M,"{{, z) be a simple cosmological model and let l' be the stress-energy 
tensor of M. Show that T(Z, Z) = 3t- 2 , where t = (R/R)(u4z) is the predieted 
Hubble time (Exercise 6.3.17c). (b) In Definition 6.4.4, replaee the assumption 
that M be a simple eosmologieal spacetime by the assumption that M be a 
Robertson-Walker spacetime of negative spatial eurvature. Show that then 
T(Z, Z) = 3at- 2 , where t = (R/R.)(u4z) is the predicted Hubble time (Exercise 
6.3.l7c) and a can be adjusted to have any value in the range (0, 1) even if"{( is 
assumed to be a dust. 

6.5 The early universe 

We outline the most nearly standard eurrent model for the history of the 
universe from the early epoch where, as one now helieves, helium was 
formed by nucIeosynthesis until the present. (M, vii, z) is a simpIe cosmologi
eal spacetime throughout. What we shaII aetuaIIy use is the subset of M 
determined by 10- 6 years s; u4 s; 1010 years. 

10- 6 years ~ 30 seconds. What happened stiil earlier-a big bang or 
some completely different behavior governed by as yet unknown 
physics-is irrelevant provided"{{ obeys certain assumptions on our sub
seto Moreover, replacing M by some other appropriate Robertson
Walker spacetime leads to a similar mode!. 

One main stimulus for current investigations of the early universe eomes 
from the faet that near here-now there seems to he no meehanism that ean 
produee the observed Planek speetrum of the mierowave radiation (Seetion 
6.1.9). We thus start with a famous result that indieates that this Planek 
speetrum may be a relie from a mueh earlier epoch. 

Let us model the microwave radiation by a photon distribution funetion 
F on the spacetime M of a simple eosmologieal mode! (M, vii, z). Assume F 
is eonserved on 1R3 x rt e M, where rt is an interval in (0, oo). ,Diseussions 
in Seetions 5.7.6 and 6.4.1 indieate the motivations for, and limitations of, 
this assumption. 
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Proposition 6.5.1. Suppose there exist constants a EO e and Ta EO (0, oo) such 
that F is Planck with temperature Ta for (x,o"x) whenever x EO M and 
u4x = a. Then F is Planck lI'ith temperature T = [R(a)/R(u4y)]Tajor(y, 04Y) 
dIenever y EO ~3 X C. 

Proo! Suppose y EO 1R3 X tff and Y EO ~ +. Let '\:!F ~ M be the in
extendible freely falling photon for whieh '\0 = y and ,\.0 = Y. Then 
there is a unique b EO IR such that u4'\b = a, and '\[0, b] e 1R3 x tff 
(Exereise 6.4.8b). F(y, Y) = F('\b, '\.b) sinee F is eonserved in 1R3 x r!!. 
Now since F is Planck for (Ab, 04'\b), F('\b, '\.b) = P(e'JkTa), where 
P is the Planck function (Example 5.5.4), k is the Boltzmann eonstant 
and e' is the energy ('\b, 04'\b) measures for '\. Henee F(y, Y) = 
P(e'JkTa). But g('\.b, 04'\b) = [R(u4y)jR(a)]g(04Y' Y) (Exereise 
6.0.17d), so e' = - g(>o .• b, 04'\b) = [R(u4y)j R(a)]e, where e is the 
energy (y,04Y) measures for '\. Thus with T = [R(a)jR(u4y)]Ta, 

F(y, Y) = P(ejkT). This holds V Y EO ~ +, so F is Planck for (y, 04Y) with 
temperature T. 0 

Thus, if we can somehow explain why F should be Planek at some early 
eosmologieal time u4 = a and eoIIision-free for u4 ~ a, the proposition yields 
an explanation for the observed Planek spectrum. Now assuming F Planck 
for early times is plausible. At early times matter was denser (Lemma 6.4.3, 
Exereise 6.4.7); high densities favor coIIisions, which in turn tend to establish 
thermal equilibrium (Example 5.5.4c). But more details on the matter model 
are needed to make this explanation stick. 

To get more details on the matter in the universe at early times, one 
needs at lea st a crude, preliminary estimate of the temperature in order to 
estimate what kinds of matter were present (ef. Seetion 6.5.2e). Then one 
ean, in partieular, see if our argument above for the Planek spectrum holds 
water. 

To make such a erude estimate of the temperature we ean, for example, 
use Propositions 6.4.5 and 6.5.1. Choosing the early time as a = 10- 6 years 
for definiteness, Proposition 6.5.1 gives the estimate T(I0-6 years) = 

[R(IOIO years)/R(l0-6 years)]T(lOIO years). Thus by the data in Seetion 6.1.9 
and by Exereise 6.4.11, T(I0-6 years) ;;;: 1010 x 2.7 Kelvins is our estimate. 
Considering how simple-minded the assumptions of Propositions 6.4.5 
and 6.5.\ actually are, the estimate is tolerably aeeurate. The currently 
accepted value, obtained only after a long process of model-building and 
using a fair amount of microphysics (Weinberg [I)), is roughly a factor of 
10 less. 
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One intuitive reason the temperature is lower at earJy times in the 
more aeeurate estimate is that the latter takes into aeeount the photons 
that have been emitted in eoJJisions meanwhile. This gives a higher 
temperature now for a given early photon temperature or, equivalently, 
a lower photon temperature earlier for a given photon temperature 
now. By neg leeti ng eoJJisions above we have thus overestimated the 
early photon temperature. 



6.5 The early universe 

6.5.2 The primordial fireball 
The reader will have noticed that trying to understand the early universe by 
building modeis bears an unfortunate resemblance to trying to read a book 
backwards. We now outline the main results, proeeeding forward in time for 
vividness. 

To do this concisely we shall have to postpone doubts and seruples till 
Section 6.6. For the moment, we assume that a simple cosmological model 
(M, vIt, z) applies and that the simplest version of the current party line on 
the early universe is substantially correet. Proofs will be omitted and, where 
convenient, terms such as "temperature," "anti-neutrinos," and so on, will 
be used without further explanation. 

(a) To specify the simple cosmological spacetime ME (M, vIt, z) compIetely, 
one finds the function R by integrating the Einstein field equation, using 
the matter model VIt much as in Proposition 6.2.7, Exercise 6.2.11, and 
Proposition 6.4.5. In practice, VIt is so complicated that computer inte
grations or the kind of rough estimates indicated by Exercise 6.5.3 
following are used. For our purposes, it will suffiee to reeall that R is 
increasingo We now turn to Jt. 

(b) The following spacetime diagram summarizes the results. It shows M 
and the eausal past of here-now, much as in Sections 6.0.12 and 6.3.12. 

herc- l1ow 

~2-- ~,;il quasar 

galaxics form ,Il (<il') • 

our causal pa I 

pholOn eol lisions negligiblc 

::;:::::;~::::::::::::::::::::::::::::::::~::~:::~::::~:::::::::::::;~:~::::::::::::::~:::::~:~::::~~:::~::::~:~::::~:::::::::::::~::::::::;::::;::::;::~:::::: ; ::: 

310111S form 

always coo ling and expanding 

photon collisions dominan I 

---- - - - - -helil1m forI11S - - -- -- - --

1t1/i1 hot dense gas 11i1!i 

T = 2.7 

~ = 1.2 

%=4 

T = 4000 

T = 2X108 

T = 2 X 109 

Figure 6.5.2b. The observable universe and the primordial fireball. 
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However, the vertieal seale is taken to be proportional to log u4 rather 
than u4 as otherwise all features of interest would be squeezed into an 
illegibly thin layer next to the big bang; the interval 10- 4 < u4 < 105 

has been shortened. The horilOntal axis is u3 ; two spatial dimensions are 
suppressed as before. For four temperatures, measured in Kelvins as 
always, and two red shifts, we have indieated the eorresponding space 
sliee. 

(e) We begin our diseussion of the diagram at the bottom, u4 = 10- 6 years 
~ 1- minute after the big bang. The matter is a hot, dense gas, the primor
dial fireball. Protons, neutrons, eleetrons, and photons are present. 
These are eolliding very frequently and are all in thermaI equilibrium. 
The temperature is about 2 billion Kelvins. Other partieles are also 
present, notably neutrinos and antineutrinos. 

In prineiple, the partieles ean combine. A proto n and an eleetron ean eome 
together to form an ordinary hydrogen atom, with the proton as nueleus; 
a proton and neutron ean combine to form a deuterium (H heavy hydrogen ") 
nueleus: two protons and two neutrons ean combine (in several steps) to 
form an ordinary helium nueleus; adding two eleetrons would then give an 
ordinary helium atom; and so on. 

But at 2 billion Kelvins these eompound bodies do not last long. For 
example, almost the instant a proton and neutron combine to form a deuter
ium nueleus they are blown apart again by a eollision with, say, a high-energy 
photon. Thus the total amount of hydrogen atoms, helium nuelei, and so on, 
is negligible. 

It is in trying to settle such points that one needs crude preliminary 
estimates of the temperature before trying to chaase a matter made/. 

(d) As u4 increases, the temperature and the densities deerease, roughly in 
the way given by Proposition 6.5.1 and by Lemma 6.4.3 or Exereise 6.4.7. 
Now nueleosynthesis beeomes possible. For at lower temperatures and 
densities, eollisions are less violent and less frequent. Deuterium and 
helium nuelei have a higher life expeetancy. In fact, at about u4 = 3 
minutes many helium nuelei are formed and eontrive to survive until 
further eooling and expansion end the danger of their wholesale de
struction. This is the helium creation epoch, sketched on the diagram. 

Caleulations show, remarkably enough, that shortly after this epoch, say 
at 1/4 = 10- 5 years ~ 5 minutes, the proportion of helium nuelei to protons 
is about that actually observed near here-now (Weinberg [I], Wagoner [I)). 
The gas now also contains electrons, photons, small amounts of deuterium 
and other nuelei, and other partieles. Cosmological nueleosynthesis stops at 
this point. Mueh later, stars form, and in their interiors one again has the 
extreme eonditions required for element cooking; but that is another story. 
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6.5 The early universe 

If one allows an extra parameter, one ean of eourse fit the nuelear 
abundanee data more elosely. Onee again, the data give preferenee to 
the Robertson-Walker spacetimes of negative spatial eurvature over 
those of positive spatial eurvature (Wagoner [1)). 

(e) Somewhat later, at u4 = 10- 4 years, the temperature has dropped to a 
few hundred million Kelvins. Atoms eannot withstand such temperatures, 
though nudei ean. Thus the electrons are stiil wandering around freely, 
rather than being captured by nudei to make atoms. Collisions between 
these free eleetrons and protons are stiil so frequent that the photons 
must have a Planck speetrum (Sunyaev [I]; ef. Example 5.5.4c). 

(f) However, the mixture continues to expand and cool. After a com pa ra
tively long time, when u4 is about three hundred thousand years, as 
shown on the diagram, hydrogen and helium atoms form. Thereafter, 
say at u4 = 106 years, the searcity of free eleetrons means that collisions 
involving photons become and remain negligible as far as their effeet on 
the photon distribution function is coneerned. Thus, in view of Proposition 
6.5.1, we ean explain the observed Planek speetrum (Seetion 6.1.9) if we 
can explain why the photon distribution function should be Planck at 
u4 = 106 years. In view of our comments in (e), it only remains to discuss 
the period between u4 = 10- 4 years and u4 = 106 years, during whieh 
collisions involving photons are neither completely dominant nor wholly 
negligible. That requires a separate, rather detailed, argument (Sunyaev 
[I]) whose outeome is favorable for the proposed explanation. Thus our 
big bang model does furnish a reason for the observed Planek spectrum. 
The observed numerieal value of slightly more than 2.7 degrees is consistent 
with the nudear abundance argument (d). 

The whole argument is by no means airtight. But, as often happens 
in astrophysics, the absenee of plausible alternatives lends it foree. 

(g) One can ask, on this model, how far back in time and out in space we are 
looking when we measure the microwaves. The answer is indicated by 
the two heavy dots on the space slice labelled T = 4000 in the diagram. 
These dots represent a 2-sphere. In effeet, we are looking from inside at 
the surface of the primeval fireball, behind which (in time) lurks the big 
bang. 

(h) In our picture, galaxies and quasars form from the hydrogen and helium 
gas at a cosmological time of about I billion years (ef. Section 6.3.15 
for the evidenee on this point). We have shown a quasar about as distant
early as any whose red shift has been observed as weil as the galaxy 
3C295 mentioned in Seetion 6.1.5. 

In all this awesome panorama, only a tiny region near here-now is known 
to contain beings capable of compassion, reason, and the shoek of reeognition. 
Let us hope that, despite our insanities, the region extends further into the 
future than current estimates suggest. 
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EXERCISE 6.5.3 

Let (M, vI{, z) be a simple cosmological mode\. Lemma 6.4.3 gave qualitative 
results on matter by using the limiting cases p = 0 and p = tp. A similar resull 
holds for spacetime, as follows. Let VI{ be a perfect fiuid. Denote the subset 
1/4 ~ u4z of M by N. Recall that t = (R/R)(u4z) denotes the predicted Hubble 
time (Exercise 6.3.l7c). Show that on N, 

( 3U4)213 ~ R 0 u4 ~ (2U4)112, 
2t Ru4 z t 

where the first (respectively, second) equality holds on N iff VI{ is a dust (re
spectively, rest-mass zero perfect fiuid) on N. 

6.6 Other models 

We briefly discuss those further models that can be motivated as attempts to 
cure some specific disease of the simple cosmological modeIs. In principle, 
this will carry our plan (Section 6.3.1) of gradually getting a more and more 
aceurate overall pieture of our universe to the Iimits set by the gaps in our 
eurrent theoretieal and empirieal knowledge of mierophysies and maero
physies. However, for brevity we will be quite vague at this stage. 

6.6.1 Robertson-Walker models 
When more data eome in, it will eventually be neeessary to use models that 
have extra adjustable parameters. For example, in all simple eosmological 
models the predieted Hubble time t is related to the predieted value Pa of the 
total energy density an actual observer measures by Po = 3t - 2 (Exercise 
6.4.l2a). Sooner or later Pa and t will both be measured to such high aceuracy 
that the idealization Pot2 = 3 will become inappropriate (no one in his right 
mind expeets exaet equality). Then one will need at least one extra parameter. 
Similar comments apply to the other data. Models using Robertson-Walker 
spacetimes are the natural generalization if one wants exaetly one further 
adjustable parameter (ef. Exercise 6.2.14b). 

The negative spatial curvature case is at the moment favored over 
the positive spatial curvature case by a number of independent results; 
see Sections 6.3.2, 6.3.10, and 6.S.2d. As yet, this is very far from 
decisive; compare the comments in Rees [I]. 

6.6.2 Electromagnetic fields 
Galaxies and quasars have magnetie fields that may be cosmological, rather 
than local, in origin. Thus models that drop our assumption (Section 6.2.4) 
that F = 0 eontinue to reeeive a little attention. 

6.6.3 /nhomogeneities 
The actual universe has no exact symmetries; for example, there are fairly big 
c1umps of galaxies. But in typical cosmological models, the spacetime has a 
nontrivial isometry group. Various attempts have been made to cure this 
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serious disease. Elegant global theorems, applicable to more nearly generic 
spacetimes, have been found (Hawking and Ellis [I)). And linearized per
turbations without symmetries have been studied in great detail (ef. Wein
berg [I], Fischer and Marsden [I)). The linearized perturbation theory has 
proved valuable-for example, in the discussion of the origin of galaxies (see 
Longair [I], especially the sUfveys by Silk and by Doroshkevich et al., 
and see Jones [I)). 

In addition, many cosmological spacetimes whose isometry group, thou gh 
stiil nontrivial, is at least smaller than the isometry group of Proposition 
6.0.5 have been analyzed (MacCallum [I]; Ryan and Shepley [I)). Most of 
these are of interest primarily as mathematical examples. 

6.6.4 Dther maller models 

As emphasized earlier, our empirical information on the matter content of 
the universe has serious gaps, so altemate matter models must be analyzed. 
For example, detecting neutrinos is very difficult (ef. Section 3.8). Even if the 
energy density due to neutrinos is larger here-now than all the other contri
butions mentioned in Seetion 6.1.1 Oc, we would not neeessarily be able to 
deteet the neutrinos directly via eollision experiments. If neutrinos are 
dominant near here-now, we should be using the pure radiation universe of 
Exercise 6.2.11 and Seetion 6.3.17 or the model ofProposition 6.4.5 with a > 1 
or some similar mode!. 

However, models of the very early universe, obtained for example by 
considering u4 ~ 10- 12 years in amodel similar to that discussed in 
Section 6.5.2, suggest that the neutrino contribution to the energy 
density T'(Z, Z) in Section 6.1.10 is even smaller than the photon 
contribution Tp(Z, Z) in Section 6.1.10 (ef. Weinberg [I]). Thus if 
standard extrapolations backward in time are even roughly accurate, 
neglecting the neutrino contribution near here-now, as done in the 
text, is a highly accurate approximation. 

Many similar uncertainties have been discussed, particularly as regards the 
matter content of the early universe, and corresponding matter models 
different from that outlined in Section 6.5.2 have been investigated. 

Some of these models assume that in a sufficiently large region the 
number of anti-protons equals the number of protons, though the 
latter predominate near here-now; others postulate that at early times 
much of the matter was in the form of" superbaryons" -partides whose 
baryon number is much larger in magnitude than one (see Section 3.8 
for a brief description of baryon number); and so on (see Weinberg [I] 
and Wagoner [1] for brief comments and further references). One must 
al so consider models in which black holes form the dominant matter 
component at early times though there are some indieations to the 
contrary (ef. Carr [1]). 
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6.6.5 Quanturn effects 
For hot, dense matter quantum effects are dominant. Moreover, recall that 
Planck's quantum constant has the value h = (6 X 10- 43 seconds)2. One 
believes that if the scalar curvature S (or some other curvature measure such 
as G(i:J4 , i:J 4) in a simple cosmological spacetime) becomes as large as h- 1, 

quantum gravitational effects should become important. On both counts the 
nonquantum assumptions used in defining simple cosmological modeis 
become physically unrealistic near the big bang these models predict. For this 
reason, even if for no others, the models are inapplicable for u4 sufficiently 
small. 

The usc of quantum matter modcls (DeWitt [I)) and/or quantum gravita
tional models (ef. Misner [I]) is the indicated cure for this disease; as yet no 
definitive results have emerged. 

Finally, we mention that there are many eosmologieal modeis that are 
motivated by other eonsiderations and many more that are not motivated by 
any physieally plausible arguments. 

6.7 Appendix: luminosity distance in the 
Einstein-de Sitter mode! 

For eompleteness, we now outline how the relation dL = td of Proposition 
6.3.8 for luminosity distanee dL , whieh we used in eomparing the Einstein
de Sitter model to observations, ean be proved. (M, Jt, z) is the Einstein
de Sitter model throughout this seetion. 

We shall need amodel for a galaxy emitting light, and ehoose the simplest 
detailed one available. Intuitively speaking, our model will eonsist of a point 
souree sendi ng out photons of a given color equally in all direetions. 

Using a galaxy model eorresponding to an extended body is possible, 
though much less convenient, and gives equivalent results. 

6.7.1 An ernitting galaxy; assurnptions 
The reader may find the example ofSeetion 6.7.2 helpful in reading the present 
seetion. 

(a) We regard the history of the galaxy as an integral eurve y of i:J4 (ef. 
Seetions 6.1.3a and 6.2.5). To take into aeeount the faet that the galaxy 
was presumably formed at so me time, rather than having been around 
ever sinee the big bang, we assume y has a past endpoint XE M (as defined 
in Seetion 3.8). For eonvenienee we do not take the image of y to indude 
x (thou gh the dosure must) and we assume y has no future endpoint. 
To model the photons ernitted we shall use a photon beam-that is, a 
partide flow (P, 7]) of rest-mass zero. 

(b) P and 7] will be defined only on the region i1It obtained by deleting the 
image of y from the ehronologieal future of x (shown dotted in the 
figure). 
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Indeed, this open region consists of points to whieh y ean aetually send 
freely falling photons (ef. Exereise 6.0.15). The exeision of y is al so needed 
mathematieally, to insure that P of Proposition 6.7.3 is a well-defined 
veetor field (also compare the figure). 

x 

(e) y models the emitter, so we insist that eaeh inextendible integral curve of 
P have a past endpoint on y (this is consistent with (b); ef. Seetion 3.8). 

(d) Since we are dealing with photons, we demand DpP = 0 (motivation in 
Section 5.1.I). 

(e) We demand that photons be conserved after they are emitted-that is, 
div (7JP) = O. This assumption is known to be slightly unrealistic, since 
in practice, for example, c10uds within our own galaxy will absorb some 
of the photons before they reach here-now. However, a half century of 
hard observational work indieates that to take absorption into account 
one need simply make certain standard corrections to the photon
conserved model; thus we can afford to ignore this point. 

(f) The requirement that the emission be the same in all direetions can be 
formalized by re,!uiring that for each spatial rotation !/J around x (as 
defined in Section 6.0.5g) !jJ*P = P and 71 o !jJ = 71; note here that 
ifiõlf = ÕIf. 

(g) Finally, the condition that each emitted photon have the same color can 
be imposed by requiring that, for some e E (0, oo), Iimn _ oo - g(Pxn, il4x n) 

= e whenever X n E M and limn _ oo X n exists and is a point on (the image of) 
y. Here e is interpreted physieally as the energy y measures at emission 
sinee il4x n approaehes the tangent to y at limn _ oo Xn ; that e is the same 
at each past endpoint in (e) means that at emission eaeh photon has the 
same color (ef. Section 5.1). 

Given x and e, these conditions fix y and P uniquely (Exercise 6.7.6). 
However, they do not fully determine 71. Intuitively, the reason is that we 
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have not yet specified how many photons y emits during any one given 
second of y's proper time: have not yet said how bright y is intrinsically at 
any instant. Now suppose we count all the photons present at cosmological 
time b-that is, in the level surface u4 = b, and also count these present at 
a slightly later cosmological time b + e. Since photons are conserved, it is 
intuitively plausible that the difference is the number of photons y emitted 
during the interval e and the product of this difference with the energy e of 
one photon is the total energy y sent out during that interval, a measure of 
y's absolute luminosity. 

More formally, for each U E (a, oo), let f!4u be the intersection of the level 
surface u4 = II with the region OJI defined in part (b) aboveo Then (Seetion 

3.2) the number N(u) of photons in f!4u is N(u) = - fatu i(7]P)!l We require 

that this (improper) integral exist (ef. Seetion 5.6) and be a smooth funetion 
of u. We define the ahsolute luminosity of y at proper time u E (a, oo) to be 
L(u) = edN/du. By the heuristic diseussion above, L(u) indeed eoineides 
with the absolute luminosity as deseribed verbally in 5.5.5. Exereise 6.7.7 
discusses the identifieation more systematically. 

We now give an example of our model for a galaxy emitting light. 

6.7.2 An emitting galaxy: an example 
Suppose y: (a, oo) -')0 Mis given by yu = (0,0,0, u). Thus our requirement 
on y in Seetion 6.7.la holds with x = (0,0,0, a). In Seetion 6.7.lb, 151' is 
determined by: y E OJI iff u4y > u4x and ° < ö(x, y) < 3 [(u4y) 1 13 - (U4X)113] 

(Exercise 6.0.15). One obtains an example of a photon beam (P, "I) obeying 
the conditions in Section 6.7.1 by integrating the equations DpP = ° = 
div (7]P) subject to suitable auxiliary eonditions, much as in Proposition 
3.2.3, Theorem 3.8.3, and Theorem 3.11.2. Rather than go through the whole 
process once more, we pull the final result out of a hat and check that it 
works-that is, give an existence proof. The integration process, disguised 
as a uniqueness proof, will be left as Exercise 6.7.6. To state the final result, 
we will use two auxiliary funetions on Oll: r = [2~ = 1 (uD?FI2 and T = 

(U4)113 - r/3. Note that on i5II, both functions are C"", that the image of i5II 
under r is (0, oo) and that the image of i5II under T is (a lI3 , oo). 

From a physieal point of view, T3 will act as a kind of "retarded 
time" or "phase" (sornewhat analogous to the phase rp of an electro
magnetic plane wave Section 3.7.3) in the sense that an instantaneous 
observer (x, X) who measures the partide flow gets information on the 
behavior of the source y, not at time u = u~x, but at y's earlier proper 
time u = T3X. 

r is merely il of Section 6.0.12 with one argument heI d fixed, and 
the comments there on il also apply to r. 

Proposition 6.7.3. Let x, y, OJI, rand T be as above, let L = (a, oo) -')0 (0, oo) be 
a C"" funetion, and suppose e E (0, oo). On 1511, define the funetion 7J = 
(I/4ne 2)(L 0 T3)(U4) - 413r - 2 and define P as the veetor field physically equiv-
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alent to -d(eT3). Then (P, 1J) is a photon beam on 0/1 which obeys the require
ments Seetion 6.7.lc-g; moreover, L(u) is the absolute luminosity of y at 
proper time u. 

Proo! From the definition of r, dr = r- 1 L~ = 1 uPduD• Using the form 
of g we find that the veetor field physieally equivalent to dr is (U4)- 213 il, 
where ril = (U")-213 L~=1 uPilp and thus g( il, il) = 1. The definition of 
P now gives P = eT2(u4 )-213(il. + e). Thus g(P, P) = O. Thus P is a 
Iightlike future-pointing veetor field on I'IJ; sinee in addition "I is a 
smooth, nonnegative funetion I'IJ, (P, "I) is a photon beam on I'IJ as 
asserted. We now eheck the eonditions of Section 6.7.1. 

Exercise 1.0.5 shows directly that the geodesic condition (d)-that is, 
DpP = 0, holds. To prove the spatial isotropy condition (f) note that 
for eaeh spatial rotation ." about x, u4 0 ." = u' (Section 6.0.5a) and 
r 0 ." = r (Seetion 6.0.12a). Thus we also have To." = T and "I 0 ." = "I 
as requ i red ; moreover To." = T, ,p*dT = dTand ,p*g = g give .,,*P = P 
in view of the definition of P as physically equivalent to d(eT3). Thus 
Section 6.7.1f holds. To verify that the "energies equal" eondition 
6.7.1g holds, note that - g( il", P) = eT2(u")-213 on I'IJ and that whenever 
we approach the image of y from within I'IJ, r ~ 0 and thus T ~ (U4)113. 
Hence - g( il4 , P) ~ e as required. Checking the remaining two con
ditions (Section 6.7.1c and e) is a bit harder. 

To prove the conservation condition div ("IP) = 0, we first note the 
auxiliary result that (il. + il)T = dT( e. + il) = [(u4)213je2T4]g(P, P) 
= O. Applying Exercise 3.6.4d several times we now have 

41Te div ("IP) 

= div [(L 0 T3)T2(u4r)-2(il. + il)] 
= (u'r)-2(il4 + il)[(LoT3)T2] + (Lo T3)T2 div [(u'r)-2(il. + il)] 
= 0 + (L 0 T3)T2{(u4)-2il.[r- 2] + r- 2 div [(u·r 2il.] 

+ r- 2il[(u4)-2] + (U')-2 div (r- 2ö)} 
= T2(L 0 T3)r- 2 div [(u·)-2il.] + T2(L 0 T3)(U4)-2 div (r- 2ö). 

We c1aim hoth of these last two divergences vanish. In fact div [(U·)-2 Ö.] 

= il.[(U·)-2] + (U4 )-2div ö. = -2(U·)-3 + 2(U')-3 = Owherewehave 
used Lemma 6.2.6c. Similarly 

d[;(r- 2 ö)U 
= d[,-3(u1du2 1\ du3 - u2du1 1\ du3 + u3du1 1\ du2) 1\ du'] = 0 

by our earlier expression for dr, so div (r-2ö) = O. Combining, we have 
div (-'IP) = 0 as required. 

To check the condition in Section 6.7.1c, let ~ be an inextendible 
integral curve of P in I'IJ and we must show ~ has a past endpoint. 
Because P is spatially isotropie, we may use a rotation around x to 
reduce considerations to the case: u1(M) = u2(M) = 0 and u3(M) > 0 
for some I E R An explicit integration of P then shows: there exists 
b E (a513 , oo) such that '\: (b, oo) -, M and '\s = (5eb215 j3) (0, O. 3S 115 -
3b1 /5 , S3/5). Thus ~ has the past endpoint (0,0,0, b3 /S) on y, as required. 

Thus our example obeys all the conditions in Section 6.7.1. It re
mai ns to identify L as the absolute luminosity. Notation as in Section 
6.7.1, fix u E (a, oo) and let f14. be the intersection of the level hyper
surface u' = u with I'IJ. Denoting the inclusion f!4. ~ M by T, we have 
T*dll· = O. Thus 

T*[;(7JP)U] = (-41Te)-1(L 0 T3)·T2r - 2du1 1\ du2 1\ du3 
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by Lemma 6.2.6c. Using the natural area form on ,72 (Section 0.0.9) 
we now have 

N(u) = - (, i(lJP)!l 
• iB. 

JU1l3 

= (3/e) vZL(v)dv. 
a U3 

Hence edN/du = (3/e)(e/3)u-ZI3uZI3L(u) = L(u). D 

6.7.4 The Newtonian limit 
In our example, the stress-energy tensor of the partide fiow (P, 1]) is f = 

l]P ® P = (4rr)-l(L 0 T3)T4(U4)-413d . [(il4 + il) ® (il4 + il)], where d = 

(U4)213r is the distance analyzed in Proposition 6.3.4. Hence the energy density 
t = T(il4x, il4x)-that is, the apparent luminosity, measured by any co
moving instantaneous observer (x, il4x) on OU-is t = (4rr)-l(L 0 T3) x 
[(U4)-ll3T]4d- 2. Note that as we approach y-that is, for an instantaneous 
comoving observer very near the source-the following computational and 
conceptual simplifications occur: T -+ (U4)ll3; (u4) -ll3T -+ I; (x, il4x) is 
nearly at rest with respeet to y; and dean be conceptually identified with 
Newtonian distance dN • Thus our general relativistic mode! duly recaptures 
the Newtonian result t = L/4rrdN 2 in the appropriate limit-that is, when 
relative velocity and spacetime curvature can be negleeted. 

We are now finally in a position to discuss the law with which the Einstein
de Sitter model replaces this Newtonian one. Suppose the actual observer 
(z, Z) measures the apparent luminosity t of a distant-early giant elliptical 
galaxy, modelled as we have just indicated. Without essential loss of gener
ality, we may use the model of Proposition 6.7.3 directly (Exercise 6.7.6), 
taking z E OU. Suppose the absolute luminosity L evaluated at (TzP is known 
(Sections 6.1.2 and 6.1.6). Writing Lo for L([TzJ3), we now get the following 
result, equivalent to Proposition 6.3.8a via the definition t = L/(4rrdLZ) in 
Section 6.1.6a. 

Theorem 6.7.5. t = (Lo/4rr)[id(i)]-2. 

PROOF. Let y be the point on y such that there is a light signal from y to z. 
Then i = (U4Z/U4y)213 and the function rez) of Proposition 6.7.3 = 8(y, z) = 
3[(U4Z)ll3 - (u4y)113]-that is, T(z) = (u4y)1/3. We now have from Section 
6.7.4 and Proposition 6.3.4 that 

t = {(Lo/4rr)[(U4)-113T]4d- 2}(z) = (Lo/41T)(U4X/U4Z)413d-2(i) 
= (Lo/4rr)[td(i)]-2. 0 
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6.7 Appendix: luminosity distance in the Einstein-de Sitter model 

EXERCISE 6.7.6 

Show that the photon beam of Proposition 6.7.3 is actually the general case in the 
following sense. If (y', P', '1/', e) is a quadruple that obeys the assumptions in 
Section 6.7.1, then there is an isometry .p such that (y, P, '1/, e), defined to be 
(.p 0 y, .p.p', T}' 0 .p, e), is given by the explicit equations of Proposition 6.7.3. 

EXERCISE 6.7.7 

The method we used at the end of Section 6.7.1 to identify the absolute luminosity 
physically depends in a crucial way on the assumption (Section 6.7.le) that 
photons are conserved after emission. We give an alternate identification method, 
which is easier to generalize to the case that photon collisions are allowed. 
Specifically, show that L(u) = 41T lim [d 2 T(X, X)] where: (a) the limit is take n 
for any sequence of instantaneous observers (x, X) in Il/i, with x approaching the 
point y on y for which u'y = u and X approaching the tangent to y at y; (b) d is 
the" spatial distance" from x to y-in the limit it will not matter which concept 
of spatial distance in Section 6.1.6 is used. 
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7 
Further applieatjons 

7.0 Review and notation 

Throughout this ehapter, (5"2, h, ,) is the unit sphere in IlP (Seetion 0.0.9) 
and (M, g, D) is a spacetime. 

Suppose x E 5"2. Then there is preeisely one Killing veetor field Kx on 5"2 
such that: (a) Kxx = O. (b) Let" be the I-form physieally equivalent to Kx 

with respeet to h-that is, ,,(X) = h(Kx , X) V X tangent to 5"2. Then d" is 
eonsistent with the orientation of 5"2-that is, d" = R for some nonnegative 
funetion J on 5"2. (e) max h(Kx , K x ) = 1, where the maximum is taken over 
all points of 5"2. 

This Kx eorresponds, up to sign, to rotations around the axis determined 
by x and the origin of 1R 3 • For example, let I: 5"2 ~ 1R3 be the incIusion and 
suppose lx = (1,0,0). Then I*Kx = (U203 - U302) 0 I. We eall Kx the 
generator oJ rotations around the x-axis. 

EXERCISE 7.0.1 

Suppase x E [/'2 and 'I is as above. Show that there exist y, Z E [/'2 such that h = 
11 0'1 + , 0' + 8 08, where ',8 are, respeetively, the I-forms physieally 
equivalent to Ky and Kz • 

EXERCISE 7.0.2 

Let (N, g, D) be a normal Schwarzschild spacetime (Section 1.4.2) and let 
P: N -+ [/'2 be the projectian. Let y: tff -+ N be a eurve such that, for every 
generator of rotations Kas above, h(P.y., KoP 0 y) = constant. Show that the 
eurve P 0 y: tff -+ [/'2 lies in a great eirele. 
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7.1 Preview 

7.1 Preview 

In this chapter we briefly discuss applications of general relativity to the solar 
system, to black holes, and to gravitational waves. As in Chapter 6, we 
analyze simple models intensively, rather than try to surveyall models of 
current interest. 

Each topic we shall discuss is related, directly or indirectly, to stars. 
Sections 7.2 to 7.4 are applicable mainly to a norma I star, such as our sun. 
Section 7.5 concerns "collapsed" stars. Possible sources for the gravitational 
waves analyzed in Section 7.6 are very dense stars in violent motion. 

To get reasonably realistic models-Newtonian or relativistic-for the 
history of the inside of a star requires a more sophisticated analysis of matter 
than we have given in Chapter 3. Such models are discussed by Weinberg [I] 
and by Misner, Thome, and Wheeler [I]. We shall content ourselves with 
models for the history of the region outside a star. To place our modeis in 
perspective, we now informally outline current ideas on stellar life cycles and 
end-states. 

7.1.1 The history of a star 
A star is born when a large cloud of gas pulls itself together gravitationally. 
As the cloud gets denser, it heats up. Eventually, it gets so hot and dense 
that nuclear buming begins. Usually the most important nuclear reaction is 
the conversion of hydrogen to helium, mentioned in Chapter 6. 

The star now settles down in a state of near equilibrium. It is held together 
by gravity. It is held apart by pressure effects, which arise because the core is 
very hot and denseo Like most observed stars, our sun is in such a near
equilibrium state. It will remain so for another 6 x 109 years approximately. 
In some stars one can directly see the above conflict between gravity and 
pressure: the star throbs periodically as one side or the other temporarily 
gains the upper hand. 

Nowastar in such a near-equilibrium state is living on borrowed time. 
Photons and other particles escape from its surface. This tends to co 01 the 
star and thus decrease the pressure effects mentioned. Nuclear burning is 
required to prevent cooling and maintain pressure. Sooner or later the normal 
nudear fuels run out, while the gravity never gives up. Then what? 

Sometimes, in fact probably most of the time, the result is very violent. 
The star begins to collapse rapidly and its temperature rises. New kinds of 
nuclear fuel, hitherto too cool or dilute to burn, catch fire. Flinging these last 
resources into the fight, the star explodes. In some cases the explosion re
mains as bright as a galaxy of 1011 norma I stars for several days. 

But the gravity is stiil there. Even ifthe star has fragmented, each fragment 
will collapse under its own gravity uniess it somehow contrives to hold itself 
apart. Thus we are led to discuss stellar end-states: states that are either in 
true equilibrium or at least do not change significant1y in a time of 1010 

years. 
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7.1.2 Stellar end-states 

The end-state of a star or fragment is determined primarily by three kinds of 
effects: gravitational effects, electromagnetic interactions between individual 
partieles in the star, and a quantum effect known as the Pauli exelusion prin
ciple. Roughly, the gravity tends to colIapse the object while the other two 
effects tend to keep it apart. If the object is very dense, nuelear forces (cf. 
Section 0.1) also play an important role whose details are currently not 
wholIy understood. In a detailed analysis one must also take into account the 
rotation of the object and the net electric charge on it. However, throughout 
this chapter, we confine attention to the case of negligible rotation and 
negligible net electric charge. 

The parameter that determines the end-state is then the active mass of the 
object. An object more massive than the moon but not much more massive than 
J upiter simply becomes a "planet" with a density comparable to the density 
of the earth. For active masses considerably larger than that of Jupiter and 
less than 3/2 that of the sun the typical end-state is a white dwarf star, with a 
density perhaps 106 the density of water. The gravity just outside a white 
dwarf star is sufficiently intense that discrepancies of about one part in 104 

between Newtonian models and general relativistic models arise. 
For active masses somewhat larger than that of the sun the end state may 

be a neutron star, such as the pulsar at the center of the Crab nebula. The 
density is about 1015 the density of water, comparable to the density of an 
atomic nueleus; the radius is perhaps 10 miles (~ 5 x 10- 5 seconds). As far 
as is known, the best available model for the exterior of an irrotational neutron 
star with no net electric charge is an appropriate submanifold of a normal 
Schwarzschild spacetime. Newtonian models are not very useful. 

Suppose the active mass is twice that of the sun, or more. Current non
quantum models predict that a black hole must be formed. Roughly speaking, 
the gravity wins; the star collapses to densities beyond the scope of current 
physics, perhaps to infinite density. No signals can escape from it. In the 
models of Section 7.5, the star's only influence on the rest of the universe is 
its gravitational field, left behind like the grin of the Cheshire cat. As we 
write, there is a vigorous controversy on whether or not black holes have 
been detected (cf. the artiele by Thorne and Zeldovich in DeWitt and 
DeWitt [ID. 

We now turn to the general relativistic modeIs. 

7.2 Stationary spacetimes 

Many of the gravitational fields important in physics are, intuitively speaking, 
time-independent. For example, the gravitational field of the earth is time
independent to the extent that we neglect vibrations of the earth and other 
small effects. Now, even an observer near the earth can arrange to measure a 
changing local geometry merely by, say, moving from a point very near the 
earth to a more distant point. Thus one cannot define time independence of 

218 
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a gravitational field in terms of arbitrary observers. Instead, one characterizes 
time independenee by postulating the existenee of a referenee frame whose 
observers do not experience any ehanges in the loeal geometry. The preeise 
definition follows. 

Let Z be a referenee frame on M (Seetion 2.3.1). Z is defined as stationary 
iff there is a positive funetion I on M such that IZ is a KilIing veetor field 
(i.e., the Lie derivative L,zg vanishes; ef. Seetion 3.6.3). Z is defined as static 
iff Z is stationary and irrotational. M is stationary (respeetively, static) iff 
there exists on M a stationary (respeetively, statie) referenee frame Z. An 
observer 1': Iff -+ M is stationary iff he is in some stationary referenee frame. 

Stationary spacetimes were originally defined as spacetimes such that 
04gJJ = 0 in at least one coordinate system. Some coordinate versions 
of the above definitions are outlined in Optional exereise 8.4.9. 

While a stationary spacetime eorresponds to the gravitational field 
generated by a time-independent souree, .. statie" usually means that in 
addition the souree does not rotate. The existenee of a statie referenee 
frame is thus an extreme idealization (ef. Exercise 7.2.2a). 

Let Z be a stationary referenee frame and 1': Iff -+ M be an observer in Z. 
Then, with I as above, X = IZ is Kiliing, and Y. = Z 0 I' = [111 0 y](X oy). 
Suppose u, U E If and lill e Mis a suffieiently small open neighborhood of yu. 
Then the re exists an element ,p of the flow of X whose domain eontains lill and 
such that ,pyu = yu. Let rp = ifJ I 'i" Then rp: 1ilI-+ rplill is an isometry and 
rp.(y.u) = Y.u. In this sense I' always observes the same loeal geometry as 
his proper time increases and, intuitively, feels he is .. not moving with 
respeet to the gravitational tieId." We define a stationary referenee frame on 
M as absolute iff there are no other stationary referenee frames on M. We 
define an observer in M to be at rest iff I' is in an absolute, stationary ref
erenee frame. UnIess Mis quite speeial, no observer in M is at rest; but the 
speeial spacetimes are important in practice. 

You, the reader, probably do have the intuitive feeling you are at rest 
even though you are not (we hope) freely falling. In simple models of 
the earth, a person sitting in aroom is in ract at rest in the technieal sense 
defined above. 

If there is an absolute, stationary referenee frame on M, one ean make 
preeise the eoneept of" gravitational redshift," whieh is often used in physies. 
Let Z be a stationary referenee frame, and let '\: [a, b]-+ M be a freely falling 
photon. Then the frequeney ratio) for ([,\], Z'\a, Z'\b) is ) = g('\.a, Z'\a)1 
g('\.b, Z'\b) (see Seetion 5.4). Now, in general, there may be many freely 
falling photons going from '\a to '\b with distinet worldlines (ef. Exereise 
7.2.3). The following proposition shows that) is in faet independent of these 
photons in question, and depends only on '\a and '\b. 
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Propositioo 7.2.1. ~ = IX,\bl/IX'\al. 

PROOF. 

t = g('\*a, Z,\a)/g(,\*b, Z'Ab) = ClX,\bl/IX'\al) . [g('\*a, X'\a)/g(,\*b, X'\b)]. 
Since X is Killing and ,\ is geodesic, (g 0 ,\)(,\*, X 0 ,\) = constant (see Seetion 
3.6.3). 0 

Jn particular, suppose Z above is absolute, (x, y) E M x M, and there 
exists at least one freely faJJing photon ,\ sueh that '\a = x and 'Ab = y. Then 
the frequency ratio ~ above is uniquely determined by (x, y). ~ - I is then 
defined as the gravitational redshifl for x observed al y. 

Newtonian analogue. In the Newtonian limit 1- - 1 is the gravitational 
potential differenee between x and y (Optional exereise 9.3.3). If x is 
"lower down" than y, 1- - 1 is, roughly, the fraetional energy loss the 
photon suffers as it c1imbs upward against gravity. 

EXERCISE 7.2.2 

Show: (a) Einstein-de Sitter spacetime is not stationary; (b) (I - 2p.!r)-1/2iJ!iJt 
is a statie referenee frame on a normal Schwarzschild spacetime (Section 1.4.2). 

EXERCISE 7.2.3 

Let N be a normal Schwarzschild spacetime, and let q E ,Y'2 and q E ,Y'2 be anti
podal, and x E N be the point determined by (tx, rx, Px) = (0, b, q). Show that 
there is a b such that for some y E N: ry = b, Py = q and more than one photon 
worldline goes from x to y. 

EXERCISE 7.2.4 

Let Z be a static referenee frame on a simply connected spacetime M. Show that 
there exists a funetion h: M --->- IR such that Zh = 0 and g(DyZ, .) = g( Y, Z)dh 'rl 
veetor field Y on M. 

7.3 The geometry of Schwarzschild 
spacetimes 

Throughout this section, the notation wiJJ be as in Seetion 1.4.2 exeept that 
we shaJJ let U denote the disconnected manifold N U B. Thus 87TJL is an active 
mass E (0, oo); N is a normal Schwarzsehild spacetime; Bis a Schwarzschild 
black hole; drl N is spacelike, while -drl 8 is timelike future pointingo 

Jn later sections we shall use Sehwarzsehild spacetimes to analyze the 
solar system and to discuss coJJapsed objects. The way in which they will be 
used is roughly indicated by Figure 7.3.1. 
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~c 

a. History of the Sun 

~CN 1 
1 I 
I I 
I . 9 s 'e sl r:7 I 

r =2~ i ___ ~ 
t- ' 1 
1 -- -- .... 1 

I 

b. History of a collapsing star 

singulari ty 

Figure 7.3.1. Applications of Schwarzschild spacetimes. 

In Figure 7.3.la "Interior" indicates the history of the sun's interior, with 
the worldline of the center shown as a dotted line. The" cross sections" are 
diffeomorphic to the un it ball in 1R3 ; they are shown as discs. We sh all use an 
open submanifold fr of N to mode! the history of the vacuum region outside 
"Interior." Figure 7.3.1 b indicates the history of a colIapsing object. Our 
model for the unshaded region will be an open submanifold N' of N "glued 
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onto" an open submanifold B' of B. In neither ease wiII amodel for" in
terior" be given. 

This seetion analyzes the geometric properties of U = N U B. We need 
geometrie interpretations of t and r to make precise our comment in Section 
1.4.2 that, on N, t is a kind of time and r a kind of radius. We also need 
information on freely falling partides. As in Proposition 1.4.4, we start by 
computing curvatures. 

Define a tensor fieldj: U ~ T2°U by j = g - r 2P*h. Define a tensor field 
T: U ~ T4°U as follows. VXE U and VX1, X2, X3, X4 E Ux : T(Xlo X2, X3, X4) = 

(l/4){U(X1 , X3)(P*h)(X2 , X4) - (I <0> 2)] - [3 <0> 4]}, where (I <0> 2) and 
[3 <0> 4] denote interchanges-for example, if FE T2°(Ux ), F(Xh X2) -

(I <0> 2) == F(Xh X2) - F(X2 , Xl)' Then T has all the symmetry properties 
stated in Section 1.0.2a--c. Let R: U ~ TioU be physically equivalent to the 
curvature tensor of U. 

Proposition 7.3.2. il. = (4JLjr 3)[2(dr 1\ dt) ® (dr 1\ dt) - r 2T + 2r 4(p*,) ® 
(P*')]. 

Proo/. Sinee the reader has worked through eaeh step of Propositian 
1.4.4 an outline will suffiee. Let (Xl, x2) be an orthonormal basis of 1-
forms on a nonempty open subset of [/2. Then loeally on N, wA = rp·xA, 
w3 = (I - 2p./r)- lf2dr, wi. = (l - 2p./r) lf2dt, A E (1, 2), is an ortho
normal basis of I-forms. Seetion l.O.3d,e imply that the nonzero eon
neetion forms are: 
W3i. = W43 = [(1 - 2p./r)lf2]'w4; WA3 = -W3A = -(1 - 2/L/r)lf2P·xA; 

and WB A = P·XBA , where ' denotes d/dr and {XBA } are the eonneetion 
forms for (11,12). Seetion l.O.3b,c give, loeally on N: 

il = (4p./r3){2(wi. A w3) <9 (w' A w3) + A.il 2(wA A wB) <9 (wA A wB ) 

- i Cw' A WA) <9 (w' A WA) + (w3 A WA) <9 (w3 A WA)}. A-l 
The Proposition for N now follows. The proof for B is identieal apart 
from appropriate sign ehanges. 0 

CoroUary 7.3.3. Both N and B are vacuum but not fiat. 

PROOF. R(ojot, %r, %t, %r) = {p./r 3)[dr(0/or)dt(0/ot)]2 = p./r 3 =F 0 by 

Propositian 7.3.2. Thus RIN =F 0 =F RIB' and neither N nor B is flat. 
Computing Ric by algebraic manipulations similar to those in Proposition 
1.4.4 gives Ric = O. By Exercise 1.4.7b, Ric = 0 implies that the Einstein 
tensor G vanishes. D 

It seems intuitively dear that r ~ oo corresponds to approaehing spatial 
infinity on N. But Lorentzian manifolds are trieky and such intuitive argu
ments can be misleading, so we give a formai definition. In the notation of 
Section 3.6.1, define f: U ~ IR by f = RiIkiRiIki' Roughly speaking, f 
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measures the overall magnitude of the curvature; even observers in an opaque 
box can determineflocally by relative acceleration measurements(Proposition 
2.3.3). A particle or observer y: (0, b) - M is said to escape to infinity iff 
limu~dyu = O. Roughly, z E Mis "near infinity" ifffz is "very smalL" The 
following eorollary of Proposition 7.3.2 eharaeterizes r/p.1/3 and shows, 
among other things, that y above eseapes to infinity iff limu~b ryu = oo. 

CoroUary 7.3.4.f = 144p.2/r 6. 

PROOF. Let j be the (4,0)-tensor field physieally equivalent on U to T in 
Proposition 7.3.2; let A be the (2, O)-tensor field physieally equivalent to p·C. 
Using the Lorentzian metric g we find that the (4, 0) tensor field i physieally 
equivalent to ii on U is given by 

i = (4p./r 3)[2(0/or /\ %t) ® (%r /\ %t) - r- 21 + 2r- 4A ® A]. 

Taking the appropriate four traees of il ® il: M - T44M gives the desired 
result. 0 

We now introduee a eanonically determined static referenee frame on N, 
eharaeterize dtl N, and eharaeterize (%t)IN' We emphasize that the following 
geometrie and physieal interpretations of t IN are not valid for t IB' Let X be a 
veetor field on N. 

CoroUary 7.3.5. X is Kil/ing and future pointing ifJ there exists an 0 E (0, oo) 
such that a%t = X. 

PROOF. Suppose X = a%t, 0 E (0, oo). Then X is future pointingo More
over, each element in the flow of X is an isometry N-N. Thus X is Killing 
(ef. Seetion 3.6.3). 

To prove the eonverse, assume henceforth that X is Kiliing. Then each 
element .p: o/i - N in the flow of X is an isometry .p: o/i - .po/i. Thus if i, il, 
and f are as in Corollary 7.3.4, we have: (.p·R)x = iiXVXEo/i; (.p.i)x = 

ix "Ix E .po/i; and thusf 0 .p = fli/l'i" Thus Xf = 0, which implies Xr = 0 and 
thus Lx" = 0, where Lx is the Lie derivative. Since Lxd = dLx, we now get 
L x[(l - 2p./r)-1dr] = O.Since %r is physically equivalent to [(1- 2p./r)]-1dr 
and Lxg = 0, we get Lx(%r) = O. We now exploit the two conditions 
Lxr = 0 = Lx(%r). 

Xr = 0 implies there exists a e oo function t: N _ IR and a vector field 
Y: N-TN such that Q.Y = 0 and X = t(%t) + Y. We now have 
Lx(%r) = 0 => La/8rX = 0 => (%r)t = 0 and L8/8rY = 0 => D8/DrY = 

D·i%r). Using the explieit expressions of the conneetion forms in the 
proof of Proposition 7.3.2, we obtain Dy%r = rY. This implies D8/fJrY = 

rY, => (ojor){r- 2g(Y, Y)} = O. Thusg(X, X), whichequals _t2(1 - 2p./r) + 
r 2[r- 2g(Y, Y)], becomes positive for r sufficiently large uniess g(Y, Y) = O. 
Assume now X is future pointingo Then g(Y, Y) = 0 and, since Y is spacelike, 
Y = O. Thus X = t(%t). The following lemma then concludes the pro of. 
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Lemma. Let W be a nowhere zero KilIing veetor field and let I be aC"" funetion. 
If IW is al so a Ki/ling field, then I is a eonstant. 

PROOF. Suppose x E M. By Seetion 3.6.le, g(DiIW), y) + g(X, Dy(IW)) = 
o = (Xt)g(W, Y) + (Yt)g(X, W) v X, Y E Mx. Suppose g(X, W) = O. Sinee 
Wx =1= 0 we ean ehoose Y such that g( Y, W) i' 0 and conelude XI = O. 
Suppose g(X, W) i' O. Choosing Y = X gives XI = 0 again. Thus XI = 

o V X E Mx. Sinee Mis eonneeted and x was arbitrary, I = eonstant. D 

This lemma remains valid so long as W is not identieally zero. 
See Exercise 7.3.14. 

Note that for a = I, X = %t has the following additional property: V 
observer y: (b, oo) -7 N who eseapes to infinity, g(X 0 y, X 0 y) -7 -I as 
u E (b, oo) approaehes infinity. Define Z = (I - 2p-/r)-1/2(0/ot). We now 
eharaeterize dt IN' 

Corollary 7.3.6. Z is a statie, absolute referenee frame on N; i: N -7 IR is a 
timefunetionfor Z sueh that Zi -7 I as, -7 oo iff dr = dt IN; an observer y 
in N is at rest iff roy = eonstant E (2p-, oo) and P 0 y = eonstant E Y'2. 

PROOF. Chase down the definitions. D 

Note that Z is synchronizable but not proper time synehronizable. Thus 
Z is not geodesie, and an observer in N who is at rest is not freely falling. An 
observer y in Z can compare the compromise, radar synchronized time t 
(ef. Seetion 5.3.1) with his own proper time u. For r very large, the explicit 
form given above shows d/(Z) ~ I; then u ~ toy + b, b E IR. But for obser
vers at rest at small values of r, and for observers not at rest, t and the proper 
time in general disagree. 

Suppose a E (2p-, oo) and b E IR. Define Y' = (,-la) () (t- 1b) e N, where 
r- 1 and t- 1 denote eomplete inverse images. The reader should verify the 
following properties. 

(a) V a, b as above, Y' is an imbedded, spaeelike 2-submanifold diffeo
morphie to Y'2; the indueed metrie on Y' is a2h so the intrinsie area of Y' 
is 47Ta2 • 

(b) By Corollaries 7.3.4 and 7.3.6 the eolleetion of all such Y' is eanonieally 
defined in any representative of the gravitational field represented by N, 
even if, and t are not given ab initio. 

(e) V p E N, there exists preeisely one such Y' that eontains p. Thus we have 

charaeterized r IN (rp = v' AJ47T Vp E N, where A is the area of the sphere 
Y' which eontains p). rl B has a wholly similar charaeterization. 
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missible to think of t IN as the time, canonically determined up to an 
addilive conslant, and 10 Ihink of r as the (area-) radius. To measure 
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r(p) one ean, in principle, measure the area of f/' above by ordinary 
surveying techniques. 

To discuss observations in the solar system, we shall need information on 
freely falling partides in Schwarzschild spacetimes. Let y: <ff -+ V be a future
pointing causa I geodesic. Then S = P 0 y is a curve in //2 and we can regard 
roy: e -+ (0, co) as a function-say, p-over S. '<Ix E //2, let Kx be the 
generator of rotations about the x axis (Section 7.0). Define i3 = (i3/i3t) 0 

y: e -+ TV. Proposition 7.3.7 gives "first integrals" ("constants of the 
motion") for y. 

Propositioo 7.3.7. There exist unique numbers E E IR, J E [0, co), Jx E [-J, JJ 
such that: 

(a) g(y., (3) = - E; 
(b) p4h(S., S.) = J2; 
(e) p2h(S., Kx) = Jx • 

PROOF. Sinee i3/i3t is Kiliing, (a) follows from Section 3.6.3e. Similarly, the 
vector field V: V -+ TV determined by P. V = Kx and Q. V = 0 is Killing 
and p2h(S., Kx ) = g(V, y.), so (e) follows for Jx E IR. (b) and Jx E [-J, J] 
now follow from Exercise 7.0.1. D 

Newtonian analogues. In Newtonian physies, a freely falling partide in 
a spherieally symmetrie gravitational field has conserved angular 
momentum J. If the gravitational field is time-independent, the partide 
al so has eonserved energy E, eonsisting of its Newtonian kinetie 
energy and its Newtonian gravitational potential energy. For the ease 
of a particle y: g ->- N with nonzero rest mass m, E above is analogous 
to E + m (ef. Optional exercise 9.3.3). Now h(8., 8.), from its de
finition, ean be interpreted as the veloeity of the eurve i' projeeted on 
the unit sphere; the reader may consult the fine-print paragraph in 
Seetion 7.4.4 for further details of this interpretation. Thus the New
tonian analogue of h(8., 8.) is w2 , where w is the Newtonian angular 
veloeity. The Newtonian analogue of p is rN, which is the radial funetion 
of the Newtonian partide in terms of angle. Sinee Newtonian physies 
gives IJI = rN2w (Alonzo-Finn [1]), the Newtonian analogue of the 
quantity p4 h(8., 8.) is IJI2. By (b) of Proposition 7.3.7, the Newtonian 
analogue of J is then IJI. lx is analogous to the first eomponent of J. 

7.3.8 Auxiliary terms 

Many Newtonian eoncepts that eannot be applied to general spacetimes ean 
be applied to Sehwarzschild spacetimes. To avoid ambiguities we list some 
definitions. Let y: tff -+ V be a partide or observer in N or B, and let et: e -+ N 
be a partide or observer. Let Kx be as in Seetion 7.0. Define J: <ff -+ [0, co) 
by J2 = (r 0 y)4h(P *y*, P *y*). Ju is ealled the total angular momentum of y 
at u E <ff. The funetion J x = (r 0 y)2h(P *y*, KJ: <ff -+ IR defines the angular 
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momentum in (" around") the x direction; note that - J :$ Jx :$ J (Exercise 
7.0.1). Define E: 1-+ (0, oo) by E = -g(cx., %t); Eu is ealled the total energy 
of cx at u E I. Note that Eu > 0 since (O/ot)IN is future pointingo If r 
(respective\y cx) is freely falling, then J and Jx (respectively, E) are constants, 
by Proposition 7.3.7. 

r is said to maintain direction iff J = O. cx is said to: (a) go in, maintain 
height, go out, respectively, iff dr(cx.) < 0, dr(cx.) = 0, dr(cx.) > 0, respec
tively; (b) go directly in, hover, go directly out, respeetively, iff cx maintains 
direction and goes in, maintains height, goes out, respeetively; (e) eirele iff cx 
maintains height and (P 0 cx)1 e .9'2 is an arc of a great cirele. 

7.3.9 Freely falling photons in normal 
Schwarzschild spacetime 

A complete e1assifieation of freely falling partieles in N or B using Proposition 
7.3.7 is e1umsy. In this subseetion, we give a eomplete description of the 
freely falling photons in normal Sehwarzsehild spacetime that maintain 
direction. Exercise 7.3.10 diseusses one other special case that admits a 
simple description. 

Thus let q E .9'2 be fixed throughout this discussion. We will show that any 
inextendible freely falling photon A: e -+ N such that P 0 A = q and dr(A.e) 
> 0 for so me e E e is equivalent (in the sense of Section 5.0.2) to the curve 
u -+ (PAu, rAu, tAU) = (q, u, U + 2p. In u)Vu E (2p., oo). The two eonditions of 
P 0 A = q and dr(A.) > 0 somewhere therefore determine a light signal [A] 
that goes direetly out (Seetion 7.3.8). To see this, note that since %t is 
Killing by Corollary 7.3.5, we have by virtue of Seetion 5.0.2 that, for 
A: e-+N as above:g(A., A.) = Oandg(A., %t) = a E IR. Nowa < Osinee 
A. and iJ/ot are both future pointing and %t is timelike (Exereise 1.1.ge). 
These two equations give: 

:U(rAu) = ±(1 - ::U)[:U(tAU)l 

( 1 - 2p.)[!!... (tAU)] = -a. rAU du 

Integrating, using dr(A.e) > 0 and using a positive affine reparametrization 
gives the representative stated above. It may be observed that the light signal 
observes a "eoordinate singularity" in a finite parameter interval-that is, 
the above representative of [A] obeys roA -+ 2p. and i(dt, dr) 0 A -+ oo as 
U -+ 2p.. By Proposition 1.3.2, this suggests that (N, g) may not be maxirna!. 
In faet, (N, g) is not maximal, as we shall see in Seetion 7.5. 

Suppose in the above, instead of requiring dr(A.e) > 0 for some e E e, we 
require dr(A.e) < 0 for some e E e. Then we would obtain a unique light 
signal that goes direetly in and is represented by u-+(q, - u, U - 2p. In ( - u» Vu 
E (-oo, - 2p.). These two light signals are ealled, respeetively, the directly 
outgoing and directly incoming standard light signais in N. 
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EXERCISE 7.3.10 

Verify the details in the following table which summarizes the freely falling 
particles 1': ~ --->- N in normal Schwarzschild spacetime with rest-mass m, total 
angular momentum J, total energy E and the indicated properties. For the nota
tion, {J: (-CXJ, CXJ) ->-,</'2 is a unit speed great circle, while H E [3fL, CXJ) and ~ = 
fLl H E (0, t] are constants. 

N (r 0 y)s (P 0 y)s (1 0 y)s m J E Property 

(2fL, oo) s q E [1'2 s+21' In s 0 0 Directly 
in 

(-00,-2fL) -s q E [1'2 s-21' In (-s) 0 0 Directly 
out 

(-oo, oo) H ~(Jsl H2) s 10- 3~)"21 (fLH)'12 1-2~ CircIes 

Newtonian analogue. For a particle with inertial mass unity in a circular 
orbit at height Iil above the center of the sun (ef. the preceding fine
print section), the third row of the table gives very similar resuits when 
Iil = H» 3fL. But when H = 3fL, we have m = 0, corresponding 
to a photon circling; Newtonian physics cannot handie such situations. 

EXERCISE 7.3.11 

Let 1': ~ ->- N be an observer, let A: ~ ->- TN be 1"s world acceleration, and let 
a: (c, d) ->- N be a freely falling particle with rest-mass m. Show the following. 

(a) l' is at rest iff l' hovers iff l' maintains height and direction, which implies 
A = [(fLlr 2)(olor)]o1', which implies lAI = fLl[r 2 (1 - 2fLlr)]oy, which 
implies l' is not freely falling. Thus to stay at rest the observer must world 
accelerate (H upward "). 

(b) y maintains direction iff there exists q E y2 such that P 0 y = q. 
(e) a maintains height iff a circles and P 0 a is constant speed. 
(d) The total energy E of a is constant; moreover, a escapes to infinity iff d = CXJ 

and E > m. 

Newtonian analogues. Consider a rocket of unit inertial mass that 
hovers above the North Pole of the earth at distance lxi from the 
center of the earth. To balance the earth's gravity the rocket motor 
must exert a constant upward force F of magnitude Itl = fLlr 2 , where 
81TfL is the Newtonian activeomass of the earth. In general relativity only 
t, not the earth's gravity, would count as a foree. lAI in part (a) may be 
regarded as the corresponding upward acceleration, with 2fLlr a general 
relativistic correction term. In (d) the condition E > m corresponds to 
the Newtonian statement that a particle has escape velocity iff its total 
Newtonian energy E, analogous to E - m, is greater than zero. 

EXERCISE 7.3.12 

Let Nt be a spacetime that represents the gravitational field represented by N. 
Show there exists a projection P: Nt ->-,</'2 with properties corresponding to 
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those of P: N -'>- :/,2. Show that if x, y E M, Px, and Py are given and Px "# Py, 
then P is uniquely determined. 

EXERCISE 7.3.13 

Let M e N be defined by M = ,-l(a, oo) with a E (2JL, oo). Show Mis a space
time and, with Z as in Corollary 7.3.6, Z/M is an absolute, static referenee frame 
on M. 

EXERCISE 7.3.14 

(a) A submanifold N of M is called totally geodesic iff any geodesic of M tangent 
to N at one point must lie completely in N. Show that the zero set of a Killing 
vector field is a totally geodesic submanifold (possibly disconnected). (b) Use (a) 
and Exereise 3.6.6 to show that the lemma of Corollary 7.3.5 remains valid if W 
is only required to be nonzero at one point. 

7.4 The solar system 

7.4.1 Idealizations 

In this section we use the norrnaI Schwarzschild spacetime N to analyze 
certain observable effects in the solar system. Let's regard the history of the 
solar system autside the sun as a spacetime together with variaus observers 
and variaus photons. The observers idealize planets, moons, rockets, distant 
stars, and so on, as weil as actual observers on earth. Some of the photons are 
emitted by the sun (or a terrestrial radar set), bounee olf a planet, and hit a 
photographic plate on earth; other photons come to us from a distant star 
through the sun's gravitational field, and so on. To get a theory of the solar 
system, astronomers take a large number of photon observations and some 
comparatively simple model with a few adjustable parameters. They get a 
set of best-fit values for the parameters (or a clear-cut inconsistency). In the 
rest of this seetion we will sometimes talk as if some speeifie observation deter
mines one speeific parameter, some other observation indicates that a general 
relativistic model is better than a Newtonian one, and so on. These are over
simplifieations; really the game is to look for overall consisteney. 

Let a = 2.32 seconds, J.k = 4.92 X 10- 6 seconds. Then 47Ta2 is approxi
mately the surfaee area of the sun and 87TJ.k is approximately the active mass 
of the sun. Let N be the norrnaI Schwarzschild spacetime of aetive mass 
m = 87TP.. Note that 2p. « a. Throughout the rest of this seetion (M, g, D) 
will be the spacetime determined by setting M = ,-1(a, oo), an open sub
manifold of N. Using M to model the history of the solar system autside the 
sun involves negleeting the gravity of the planets and many other small 
effeets (ef. Seetion 2.1.2). We will talk as if M were a physieally exaet model; 
moreover, we will analyze measurements by using the absolute, statie re
ferenee frame Z on M (ef. Exereise 7.3.13). 
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Newtonian analogues. Newtonian deseriptions of the solar system 
usually use an oversimplified model of the sun and use .. the inertial 
referenee frame which is at rest with respeet to the center of the sun." 
Often the detailed physieal definition of that referenee frame is treated, 
overoptimistieally, as intuitively obvious. 

7.4.2 Operational definitions and 
relativistic effects 

It is in principle possible to determine the folIowing structures on M by 
measuring techniques already discussed. 

(a) The absolute, statie referenee frame Z (Section 7.2, Exercise 7.3.13). 
(b) 1: M -7 IR, given one choice of time origin by one observer in Z (Pro-

position 2.3.5, Sections 5.3 and 7.2, and Corollary 7.3.6). 
(e) r: M -7 (a, oo), for example as an area-radius (Section 7.3). 
(d) I' above, for example by applying Proposition 2.3.3 and Corollary 7.3.4. 
(e) P: M -7 [/2, given two referenee direetions (Exereise 7.3.12). 

Other predietions of the model, such as the aceelerations (Exereise 
7.3.1Ia) frequeney ratios (Seetion 7.2), and planetary or photon worldlines 
(Section 7.3.9) ean then in prineiple be tested by observations. In the rest of 
this seetion we deseribe some tests partieularly important for relativity. It 
will be eonvenient to define ~: M -7 (0, /-,/a) by ~ = /-,/r. Thus ~(x) < 
1O- 6 'v'x E M. Often Newtonian results and relativistie ones differ by terms of 
order ~. In partieular, unIess one has observations aeeurate to one part in a 
million, no harm is done if r and/or tare measured by Newtonian teehniques 
different from the ones outlined above. But when small relativistie eorreetions 
are of interest, the exact meaning of rand t beeomes crueia!. 

7.4.3 Gravitational redshilts 

Suppose there is a photon A from x E M to Y E M. By Proposition 7.2.1 and 
Corollary 7.3.5, the frequeney ratio 1 for ([A], Zx, Zy) is 

1 = [I - n(y)]1/2j[1 - 2~(X)P/2. 

For x on the surfaee of the sun we have, by Seetion 7.4.1, ~(x) ~ 2 x 10- 6 ; 

for y = here-now using the distanee of the earth from the sun gives ~(y) ~ 
10- 6 • Thus t ~ I + 2 X 10- 6 in this case. This prediction is consistent with 
the observations. However, the surface of the sun is quite messy, and the 
interpretation of the observations is controversia!. More eonvineing measure
ments of the redshift effeet under discussion use the gravitational field of a 
white dwarf star or of the earth rather than that of the sun. The latter gives 
resuIts eonsistent with a eorresponding model of the earth, the aceuraey 
being better than 1% (Weinberg [I]). Unfortunately, no such frequency ratio 
observation can be eounted as a sharp test of general relativity. Almost all 
eompeting theories give the same prediction to first order in ~ (Misner
Thorne-Wheeler [I]). 
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The fact that -t > I in the above is usually not regarded as a re
cession of Zx from Zy; compare the fine-print paragraph in Example 
5.4.3. Rather, people say that the sun's gravity fields robs the c1imbing 
photon of some kinetic energy, thereby decreasing its frequency by the 
time it gets up to the earth. Compare the fine-print paragraph after 
Proposition 7.2.1. 

7.4.4 Radar 

Radar measurements have reeently beeome quite useful tests. The simplest 
case is the following. Consider observers y, y in the absolute referenee 
frame Z. Suppose P 0 y = P 0 y, and roy < roy. You may imagine both 
observers hovering above the same point on the sun with y higher. Suppose y 

erni ts a photon Al whieh bounees off y and returns as a photon A2 • In the 
terminology of Seetion 7.3.9, [Ad and [A2 ] are, respeetively, direetly outgoing 
and directly ineoming standard light signals. y ean measure the proper time 
differenee U2 - Ul' 

Let b = roy, b = roy. Seetion 7.3.9 and some algebra show that (t 0 Y)U2 
- (t 0 y)ul = 2[b - b + 2p. In (hlb)]. Now 

U2 - Ul = [I - 2p.lbP/2[(t 0 Y)U2 - (t 0 y)uJ, 

sinee Z = (1 - 211) -1/2( oi ot). Thus if J-L, b, and h are known to y he can eheek 
his observed value of U2 - Ul against the predieted value 
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Newtonian theory would give simply the limiting behavior for b and h very 
large-namely: 

time-Iag = U2 - U1 = 2(6 - b) = 2 . distance = 2·(distance/speed of light). 

Measurements of the effect in more complicated analogues of the situation 
here discussed indicate that the predicted deviations from the Newtonian 
result are correct; the accuracy is about 5% (Misner-Thorne-Wheeler [ID. 

Of course the simplest use of radar measurements is actually not in 
checking general relativity, but in determining, say, 6, given b and IL. But 
when one has enough interrelated radar measurements, so me of them serve 
as a check on general relativity. 

Some other measurements are interpreted by analyzing "partide orbits," 
which are easier to observe than partide worldlines. Roughly, a partide 
orbit is determined by giving the radius as a function of angle. Specifically, 
let (1', m) be a freely falling partide of rest-mass m with inextendible geodesic 
1': ef -;.. M, total energy E E (0, oo) and total angular momentum J E [0, oo) 
(cf. Section 7.3.8). The character of ef e IR will depend on the detaiis of the 
partide motion. For example, if the partide is ejected from the sun's surface 
and eventually escapes to infinity (Exercise 7.3.1 Id), then ef = (d, oo), with 
d E (-oo, oo) and (r 0 y)e -;.. a = 2.32 seconds as e approaches d. In the 
following discussion we shall, however, restrict attention to the case ef = IR. 
As will be seen more explicitly in an example below, assuming ef = IR is 
consistent only if J is sufficiently large; in particular, we henceforth assume 
J:F O. 

By Proposition 7.3.7c and Exercise 7.0.2 (P 0 y)ef e //2 is contained in a 
great eirele; moreover, J :F 0 implies (P 0 1'). is nowhere zero. Thus there is a 
diffeomorphism K: (-e, e) -;.. ef(e ~ oo) such that pOl' 0 K: (-e, e) -;.. //2 is 
an are of a unit speed great eirele in (9'2, II). If K is any such diffeomorphism, 
the function y defined by y = roy 0 K: (-e, e) -;.. (a, oo) is calIed an orbit 
funetion for (1', m). 

Without essential loss of generality, we may assume (PYK)O is the 
North Pole of the unit sphere. Then, since the curve (P 0 Y 0 K): (-e, e) 
-+ [/2 is unit speed and lies in a great eirde of the un it sphere, we may 
think of each </> E ( - e, e) as the (oriented) angle that y</> makes with the 
North Pole (see figure). 

Moreover, in view of the faet that t1 in Proposition 6.4.2 is very small 
everywhere on M we may regard y</> - a as, to good approximation, the 
height of the partide above the surface of the sun when the partide 
has angle </> with respeet to the North Pole. 

Newtonian analogue. In Newtonian physies, eonsider a spherically 
symmetric body centered at the origin of 1R3. A partide moving in the 
body's gravitational fie1d will remain with in some 2-plane 1R2 e 1R3 
(Alonzo and Pinn (1]). Let (rN, </» be standard polar coordinates for 
1R2 • ii is like rN(</», whieh speeifies the partide path without direet 
referenee to time. 
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I North pole = (P,,/K)O 

[1" 

Let ~, y, y, K, E, and J be as above. For convenience definel = ~ 0 y 0 K; 
a = (p.m/J)2 E (0, oo) and b = [(ftE/J)2 - al E (- a, oo). Note that 1= ft/Y 
and that 1« I. The following proposition is basic to the study of partide 
orbits in the solar system. 

Propositioo 7.4.5.lobeys the ordinary differential equation (/')2 = b + 2al -
12 + 2f3. 

PRooF.Ifwewritey. = alo + a2(%r)oy + 8.,whereeachaiE~ando = 

(%t) 0 y as in Proposition 7.3.7 and Q.o. = 0, then a2 = dr(y.) = (r 0 yY 
and Proposition 7.3.7a implies that al = E(I - 2.:\ 0 y)-l. Hence, 

_m2 = g(y., y*) 
J2 

= -a/(I - 2.:\ 0 y) + a22(I - 2.:\ 0 y)-l + -( )2' roy 

where the last term is a consequence of Proposition 7.3.7c. Substituting the 
values of al and a2 into this equation and using some algebra, we get 

J2 
-m2 = (I - 2~ 0 y)-l( - E2 + [(r 0 y)']2) + -( )2' roy 

Composing both sides on the right with K and using the definition of f, 
we obtain 

J2P _m2 = (I - 2f)-1(-f2 + [(r o y)'oK]2) + -2' 
IL 

Multiplying both sides by (I - 2/)(p.jJY and substituting the values of a and 
b yield: 
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It remains to identify the right side with (f')2. By the definition of K, P 0 y 0 K 

is a unit speed curve in (.'1'2, h). This means 1 = [h(S*, S*) 0 K]'(K')2 = 
(JK')2/'l. Moreover, ii' = [(r 0 y)' 0 K]K'. Henee 

Since j« 1, the (2[3) term may be dropped from Proposition 7.4.5 
in a first order approximation. Thus the differential equation of 
Proposition 7.4.5 reads: 

(f')2 = b + 2aj - F. 
Newtonian analogue. Notation and set-up as in the preeeding fine-print 
section, Newtonian physics shows that 'N(</» satisfies the following 
equation: 

where a, b are constants. Since j = p./ii and ii is like 'N, one may regard 
this Newtonian equation as a first-order approximation to Proposition 
7.4.5. 

7.4.6 Bending of light 

D 

One applieation of Proposition 7.4.5 is the computation of how mu ch the 
sun's gravity "bends" light rays. 

Let y: tff -- N be a freely falling photon, f, b, and a = 0 be as aboveo 
Thus (f'Y = b - f2 + 2J3. Sinee we are only considering the ease tff = IR, 
we may interpret y as a photon "corning from infinity and going olf to 
infinity" without running into the sun (ef. Seetion 7.3.11). Sinee f« I, one 
may simplify and consider first the approximate equation (f'Y = b - f2, 
with maximal salution f(q,) = (b)112 eos q,. Thus the orbit funetion 

\ 
\ 

\ 
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y:(-e,e)--+(a, oo) equals y(</» = fL«b)112eos</»-1. Sinee y is a C'" fune
tion, we see that (- e, e) = (-n/2, n/2). From y(</» eos </> = eonstant, one 
reeognizes that y deseribes a straight line (see figure). Note that the photon 
does not hit the sun iff fL/(b)112 > a, or equivalently, iff J2 > Pa. 

Intuitively, if a light signal has a straight-line orbit unbent by the sun, 
then its complete orbit subtends a total angle of n at the solar center. Just 
as intuitively, if f (and th us y) is defined on ( - e, e) with e > nl2, the n the 
angle subtended by the light signal is 2e > n. One then interprets this as the 
bending of the light signal by the gravity of the sun, the total bending angle 
being 2e - n (see Figure 7.4.6a). 

q 

I 
I 
I 
I 
I 

/.J _____ 
e I -e 

I 

sun 

Figure 7.4.6a 

We now prove, eompletely within the mathematieal framework, that if 
f: ( - e, e) --+ (0, /LIa) is the maximal solution of the differential equation 

(*) f' = (b - /2 + 2f3)112 

of Propositian 7.4.5, then e > n/2. It will be neeessary to first make explieit 
those assumptions on / that are dietated by the underlying physics: (i) 
f < 1/4, (ii) f is twice continuously differentiable, and (iii) b > O. Indeed, 
for the solar system, (i) is implied by / = fLlY < fL/a ~ 2 x 10- 6 , (ii) is im
plied by 'ii being C'" and nowhere zero, and (iii) is implied by b = (fLE/J)2 > 0 
since we have already assumed E > 0 throughout. 
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Note that sinee we shall deal with! in the following proof only as a 
solution of (*), it is necessary to have assumptions like (i) to (iii) before 
physically meaningful eoncIusions about! ean be drawn. For instanee, 
the funetion (x, y) ->- (b - y2 + 2y3)112 not being Lipsehitzian at (0, p), 
where p is a real root of the polynomial (b - y2 + 2y3), a priori (*) will 
have several distinet solutions; one solution is furnished by the eon
stant funetion!(r/» = p. 

Note also that under assumptions (i) to (iii), (*) defines a unique 
elliptie funetion. However, we shall not make use of this faet in the 
following in order to keep the diseussion elementary. 
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The proof of e > 7Tj2 is broken into several steps: Ca) f" < 0 on C - e, e). 
(b) J is an even funetion with a zero derivative exaetly at O. [Reeal! that J 
even means JC</» = J( -</»V</> E (-e, e).] Ce) J attains its absolute maximum 
at 0 andI' > 0 on (-e, 0),/' < 0 on (0, e). 

In the physieal context, (a) to (e) are intuitively obvious. Indeed, 
we have already made the Newtonian interpretation of ii: ( - e, e) ->

(a, oo) as the parametrization by azimuthal angle of the radial distanee 
of the photon from the solar center. The assertions (a) to (e) about 
[= /i/ii may therefore be immediately read off from Figure 7.4.6a. 
For instanee, (e) is just the statement that the photon attains a unique 
absolutely minimal distanee from the solar center at q = iiO, and that 
on either side of q, the photon either monotonely approaehes the sun 
or monotonely reeedes from it. However, this kind of argument is not a 
substitute for the proofs given below sinee it is based on Newtonian 
physies. 

Proo[ o[ (a). Let J be the open subset of ( - e, e) on which b - J2 + 
2[3 # O. In J, the right-hand side of (*) is then differentiable so that 
/" = [(3[ - 1) < 0 by assumption (i). If I # (-e, e), let g E OI, the 
boundary of I. Then b - [W2 + 2[W3 = 0, => [W # 0 by assump
tion (iii). By assumption (ii),/"W = limx~~/"(x) = [W[3[W - 1] # O. 
Thus /" < 0 on the elosure 1- of I. Suppose J- # (- e, e); let J be 
the eomplement of J in (- e, e). J is open and, by the definition of I, 
b - J2 + 2[3 vanishes identieally on J. Henee [' = 0 on J beeause of 
(*) and hence also /" = 0 on J. Continuity of /" then implies that 
/" = 0 on oJ. Thus for g E oJ (') 01 (= oJ = 01), /"W is both zero 
and nonzero, a contradiction. Hence 1- = (- e, e) and [H < 0 every
where. D 

Proo[ o[ (b). First suppose ['(0) # O. Then b - [(0)2 + 2[(0)3 # 0 so 
that (*) has a Lipsehitzian right-hand side near [0,[(0)]. Define a 
funelion g by g(c/J) = f( - C/J); then g(O) = [(0), and g also satisfies (*). 
The uniqueness theorem on ordinary differential equations then im
plies that [= g, or equivalently, that [is even. But every differentiable 
even funetion must have zero derivative at 0, and this eontradiets 
['(0) # O. Henee ['(0) = O. By (a), 0 is the only zero of f'. 

Now /" < 0 and['(O) = 0 together imply that[has a striet maximum 
at O. Henee by the eontinuity of I at 0, V sequenee of negative numbers 
{an} converging monotonely to 0, there exists a sequence of positive num
bers {bn} such that bn .j, 0 and I(bn} = I(an) for all large n. Disearding a 
finite number of terms if neeessary, we may assume the preceding to be 
true V n. Define now V n two funetions 

kn, hn : [0, e - max {-an, bn}) ->- (0, /i/al 
such that kn(</>} = [(an - </» and hn(</>} = [(bn + </». Then kn(O) = 
hn(O) and both kn and hn satisfy (*). Since[' is nonzere at an and bn, the 
right-hand side of (*) is Lipsehitzian at (0, kn(O» = (0, hn(O». Thus 
the same uniqueness theorem of differential equations implies that 
hn = k n in their common domain of definition. Letting n ->- oo, we get 
[(</» = [( - </>)'<I</> E (- e, e). D 

Prool o[ (e). Immediate from (a) and (b). o 
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To conelude the proof of e > ",/2, we observe that by (b), we may restrict 
attention to ( - e, 0). On this interval, (e) implies that f is strietly inereasing 
and has a differentiable inverse, which we shall al so denote for eonvenience 
by 4>. Thus 4>: (0,j(0» ->- ( - e, 0) and 4> ° f = identity on (- e, 0). From 
ealeulus,!, = IWof Thus (*) implies: 

4>' of= (b - J2 + 2f3)-1/2. 

In addition, since 0 = l('(OW = b - f(O) + 2f(0)3, we have: 

4>' of= l(oy - f2 - 2f(0)3 + 2f3]-l!2. 

Multiplying both sides by!, and integrating from -e to 0, we get the basie 
formula: 

AIthough this is an elliptic integral, it is a simple matter to get the quali
tative estimate e> ",/2. In fact, VI E (0,j(0», [-2f(0)3 + 2/ 3] < O. Thus 
upon dropping this term from the integrand, we obtain: 

e> 1(0)2 - 12]- 1/2dl = ~. 1[(0) 

o 2 D 

For observational purposes, it is important to be able to make a quanti
tative estimate of the lower bound of e. We proeeed as follows. For I E 

(0,j(0», let X = f(0)2 - t 2 and Y = f(0)3 - 13 ; note that X > 0, Y > O. 
Since in the case of the solar system, f:;:;; 2 x 10 - 6, we have (2 Y/ X) < 1. 
Thus we may take only the first two terms of the binomial expansion of 
[I - (2Y/X)]-1/2 to get 

[I - (2;) rl/2 > I + (~) = I + 1 + 1 ~j;O)' 
where the inequality is beeause eaeh term in this binomial series is positive. 
Since the integrand in the above formula for e equals X- 1 /2 [1 - (2 YI X)]-1/2, 
we obtain finally: 

1[(0) 

e> 0 1(0)2 - 12]-1/2(1 + 1 + f(0)2[/ 2 + f(0)]-1)dl 

= ~ + 2f(0). 

This admits the physieal interpretation that when a light signal passes 
by the sun, it gets bent by a total angle of 2e - '" > 4f(0) = (4/L/rmin)' This 
effect has been measured for light signals from stars during eclipses (most 
recently in 1973) and for light signals from quasars by radio astronomy 
techniques. The resuits are consistent with the theory. The quasar observa
tions are eonsiderably more aeeurate; their estimated observational aecuraey 
is about 1%. 
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7.5 Black holes 

EXERCISE 7.4.7 

(Hard) One of the most sensitive tests of general relativity is the measurement of 
what is called planetary perihelion precession, particularly for Mercury. Let 
(y, m) be a freely falling partiele with rest-mass m f:. 0, total angular momentum 
J f:. 0, and total energy E < m. Assume the domain ef of y is ef = IR and that 
(y, m) does not cirele (Section 7.3.8). Let 'ii be the orbit function. Show that 'ii 
is periodic. Write the period P as P = h + ~<I>; ~<I> is called the perihelion 
preeession. Compute ~<I> for parameters appropriate to Mercury using appro
priate approximations. If N is the number of times Mercury goes around the 
sun in one earth century, show N ~<I> ~ 43 seconds of arc. 

For a brief general review of current solar system data see Thorne [I]. A more 
detailed discussion is in Weinberg [1]. 

7.5 Black holes 

We now discuss the simplest spacetimes used in analyzing complete gravita
tional collapse. The reader may wish to review the background material in 
Section 7.1.2 on stellar end-states before embarking on the technical details. 
We shall define and analyze a maximal, vacuum spacetime (K, g) that con
tains two normal Schwarzschild spacetimes and two Schwarzschild black 
holes. The main interest in K lies in these open submanifolds. We give a 
very brief review of current ideas on black holes in general at the end of the 
section. 

As in Sections 7.3 and 7.4, suppose fL E (0, oo). Let e = 2.7· .. be the 
base of natural logarithms and 2 e 1R2 be the region determined by 
(U1q)(U2q) < 2fL/e Vq E 2. Define K = 2 X .'1'2; let Q: K ~ 2 and P: K ~.'I'2 
be the projections. Define functions u = u20 Q and v = u1 0 Q on K. K is 
connected and orientable; assign K the orientation determined by du /\ 
dv A p*C. 

We c1aim that (r - 2fL) exp [(r - 2fL)/2fL] = -uv defines, implicitly, a 
C'" function r: K ~ (0, oo). In fact, note that for a E (0, oo) the C'" funetion 
IR ~ IR given by u ~ u exp (u/a) has positive derivative Vu > -a; the result 
follows. With r thus defined 

is a Lorentzian metric on K. Let Ube the veetor field on K physically equiva
lent to -du. Then Vx E K, Ux OF 0 and g(Ux, Ux) = o. Thus U determines 
a time orientation for (K, g). Thus time-oriented by U, (K, g) is a spacetime 
ealled the Kruskal spacetime of active mass 87TfL. Some features of a Kruskal 
spacetime are indicated in Figure 7.5.1. Note that while r is C"', dr = 0 at 
u = 0 = v, so r is not a coordinate function on K. 

Now there is an isometry K ~ K determined by u ~ - u, v ~ -v. The 
existence of this isometry will enable us to foeus attention on the region 
S'/ e K determined by u 2:: 0 without essentialloss of generality. Moreover, 
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/I 
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Figure 7.5.1. Some properties of a Kruskal spacetime. K is dilfeomorphic to 
g'2 x {the two-dimensional region shown in a). In b and c only the "top half" 
of K is sketched. 

we have d = elosure (MI U Mu), where MI and Mu are the open sub
manifolds determined respectively by: (u > 0, v > 0) and (u > 0, v < 0). 
We now show in what sense K glues together norrnai Schwarzschild space
times and Schwarzschild black holes. The reader is asked to review the dia
grams in Example 1.4.2 and Section 7.3 at this point. 

Proposition 7.5.2. (Mr. glMI) is isometric to the normal Schwarzschild space-
time of active mass 87TP.. 

PROOF. Let t = 2p.[ln u - In (-v)lIMI. Then t is Ca) and maps MI onto 
(-oo, oo). Let .p: MI -+ (-oo, oo) x (2p., oo) x [/2 be given by .pn = 
(tn, rn, Pn) for every n E MI . .p is onto and there is a C'" inverse determined 
by u = (r - 2p.) exp [(r - 2p. + t)/4p.l, v = (r - 2p.) exp [(r - 2p. - t)/4p.l. 
Thus .p is a dilfeomorphism. Moreover, dt = 2p.(dv/v - du/u) and dr = 

2p.(1 - 2p./r)(dv/v + du/u) on MI so that 

-(I - 2p./r)dt IS! dt + (I - 2p./r)-ldr IS! dr 

= _8p.2,-1 exp [(2p. - r)j2JL1(du IS! dv + dv IS! du) 

on MI. Hence.p is an isometry. D 

Proposition 7.5.3. (Mu, g I Mn) is isometric to the Schwarzschild black hale of 
active mass 87TJL. 

PROOF. Define t = 2p.(In u - In v) on MIl. The calculation now duplicates 
that of Proposition 7.5.2 except for the change in domains. D 

Define f: K -+ IR by f = RiiklRiikl. 
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CorolJary 7.5.4. 

(a) j = I 441L2/ r 6. 

(b) K is vacuum, noI fial, and noI slalionary. 

PROOF. By Corollary 7.3.4 and Proposition 7.5.2, j and 1441L2/r6 eoineide 
on the open submanifold MI of K. Sinee both are real-analytie funetions 
on K, they eoineide. That K is vaeuum and not ftat follows by a similar 
argument. 

Now suppose X: K -+ TK is Kiliing. Using Proposition 7.5.2, the proof 
of Proposition 7.3.5 al ready implies that dr(X) = 0 in MI' By the same 
analytieity argument as above, dr(X) = 0 in K. But by the proof of Proposi
tion 7.5.2, dr is timelike on Mn. Thus X must be spaeelike on Mn. Thus K 
is not stationary (and a jorliori not statie). D 

Roughly, the gravity in the blaek hole region Mn is so large that even a 
photon going direetly outward eannot eseape to infinity (ef. Seetion 7.1.2). 
Speeifieally, suppose y: {f -+ K is a partide or observer sueh that for some 
So E e, YSo E Mn. Define C = {s E e I s ~ so}. 

Propositloo 7.5.5. yC e MII' 

PROOF. Let V be the veetor field physieally equivalent to -dv. Then 
g(V, V) = 0 and g(U, V) < 0, so V is future pointing, lightlike, and no
where parallel to U. We eompute (dlds )(r 0 y): On MII, dr = 2,..(I - 2,..lr) x 
(dulu + dv/v), where u > 0, v > 0 and (I - 2,../r) < O. Thus (dlds)(r 0 y) = 
dr(y*) = -2,..(1 - 21Llr 0 y)[(llu 0 y)g(U, y*) + (I/v 0 y)g(V, y*)] < 0, and 
therefore roy is strietly deereasing. Since the boundary of MII e K is 
determined by r = 2,.. and MII e {r < 2,..}, the result follows. D 

On the other hand, it is quite easy to enter MII' For example, eaeh maximal 
integral eurve of U in {u > O} is a freely falling photon whieh starts from 
infinity (in the sense of Seetion 7.3), goes through the normal Sehwarzschild 
region MI> and the n enters MII' Observers ean also fall into Mn. Figure 
7.5.6 shows a typical situation. 

y and y are observers hovering above the north pole in the normal 
Sehwarzsehild spacetime region MI at r = 51L. At x, y turns olf his motor. 
The freely falling photons I to 5 earry the following eonversation. 

I. "Why are you wasting fuel ?" 
2. "Put your mator baek on, you idiat!" 
3. "I put my motor baek on, but I seem to be in a funny gravitatjonal 

field. " 
4. "Stop!" 
5. "Help!" 
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7.5 Black holes 

Photon 4 will never reach y; no one outside MII will ever receive photon 5. 
In this sense K is an excellent model for the complete history of the twentieth 
century. 

1/ 

u 

MI MII 

Figure 7.5.6 

In more realistic models of uncharged, spherically symmetrie black holes, 
the entire region below the l' axis in Figure 7.S.la, and part of the region 
above the v axis, is replaeed by a nonvacuum spacetime. Attention is focused 
on the behavior of partides in the region MI' For example, such partides 
may undergo violent collisions near MII and create photons that (barely) 
escape to infinity in the sense of Section 7.3. As we write there is a possibility 
that Cygnus X I may be an observed black hole. Roughly, the active mass fL 

is judged from the gravitational field in the region MI> which inftuences a 
companion star. Photons are observed from the system, which may corre
spond to partides flowing from the companion star to the black hole, and 
eolliding as aboveo 

R. Kerr, E. Newman, W. Israel, B. Carter, and many other physicists 
have developed a theory for black holes that have a net electric charge 
and/or angular momentum but are, like the black holes modeled by K 
above, "stationary near infinity." R. Penrose, S. Hawking, and others have 
developed an extremely dever global theory for more general black hole 
spacetimes without the restriction that the re be a timelike Killing veetor 
field on some open submanifold. A comprehensive survey of current theory 
and observations of black holes is given in DeWitt and DeWitt [1]. 
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EXERCISE 7.5.7 
Let y be a freely falling observer in a Kruskal spacetime. Suppose y starts at 
, = '0 > 2p. in MI and goes directly in with so me energy E (ef. Seetion 7.3). 
How long will y live before he gets destroyed .. at" , = 0 by infinite "tidal 
forees" ? 

EXERCISE 7.5.8 
Show that a Kruskal spacetime is maximal. 

EXERCISE 7.5.9 
Let {( be a Kruskal spacetime and S = ,-la e K be the level hypersurfaee of, 
for a E (0, oo). 

(a) Show that Sean be regarded as an immersed 3-submanifold whieh is im
bedded iff a 'I 2p.. 

(b) Show that S ean contain a photon worldline iff a = 3p. or a = 2p.. For 
a = 2p., we ean regard the photon as one which runs outward as fast as it 
ean in order to remain stiil. 

(e) In (a) let a = 2p. and suppose "': [1'2 ~ S is any imbedding. Show'" is 
spaeelike and that the intrinsie 2-area of "'[1'2 e K is 41TP.2 no matter what 
shape "'[1'2 has! [Hint: compare Exercise 1.4.9 for part (e).] 

7.6 Gravitational plane waves 
We now analyze spacetimes that model gravitational radiation in regions 
far from the source of the radiation. The spacetimes are very simple formally, 
but the key role played by lightlike quantities makes the interpretations 
tricky. 

Throughout this section: (1R4, h) is Minkowski space (Example 1.4.1) 
f: IR -+ IR and g: IR -+ IR are eco functions such that f2 + g2 is not iden
tieally zero; 4>: 1R4 -+ IR is 4> = u4 - u3 ; and F: 1R4 -+ IR is 

F = !(fo 4>H(U1)2 - (U2)2] + (g 04»·U1U2. 

For comparison, we first define an electromagnetic field 1 on Minkowski 
space by 1 = d~, where ~ = - [(f 0 4»u l + (g 0 4»u2]d4>. The reader may 
verify the following two points: (a) 1 is a linearly polarized, electromagnetic 
plane wave (Example 3.7.3) iff f and g are linearly dependent over ~ (Le., 
iff there exist a, b E ~ such that af + bg = 0). (b) «~\ h), 1,0) obeys 
Maxwell's equations. In what follows, ~ and 1 should be compared to the 
metric g and the curvature tensor A, respectively. 

Define g = h + 2Fd4> @ d4> and Y = a4 + a3 on ~4. We claim g is a 
Lorentzian metric and Y is lightlike on (~\ g). In fact, define on ~4 the 
vector fields Xl = 01' X2 = 02, Xa = Y, X4 = (1/2)(04 - Oa) + FY. Then 

o I 0 0 II 0 0 01 
[g(Xh Xj)] = ~ ~ _ ~ _ ~ 
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7.6 Gravitational plane waves 

by direet computation; this immediately yields both results. Orient 1R4 as 
usual and time orient (1R4, g) by Y. Then (1R4, g) is a spacetime, called a 
gravitational plane wave spacetime. Such a spacetime is Iinearly polarized 
iff J and g are linearly dependent over IR. It is monochromatic iff there exist 
real numbers a, b, e, d, w such that J(t) = a eos wt + b sin wt and g(t) = 

e eos wt + d sin wt, t E IR; in this case w is its Jrequeney. 

In Newtonian physics, if a sound wave is detected at a location 
many wavelengths away from a small source such as a whistle, it is 
usual to approximate the" wavefronts" as 2-planes and the wave as a 
plane sound wave (ef. Examples 1.1.6 and 3.7.3). According to general 
relativity, a collapsing star will send out gravitational waves with wave
lengths typically not mueh larger than the active mass of the star. Thus 
if we observe gravitational radiation from a star of aetive mass 10- 4 

seconds located at a distanee of perhaps 1010 second s (about 300 light 
years), (~\ g) should be a reasonable model for the wave near us. 

To get at intrinsie properties of (1R4, g) we start, as usual, by computing 
curvatures. 

Propositioo 7.6.1. (1R4, g) is vaeuum but not fiat. 

PROOF. Let {Wi} be the basis dual to {Xi} above. By algebra, w1 = du!, 
w2 = du2, w3 = !(du4 + du3) - Fd</>, w4 = d</>. To compute the conneetion 
forms note that (wt, w2, (w3 - ( 4)/2, (w3 + ( 4)/2) is an arthonormai basis; 
Section 1.0.3 now shows that the only nonvanishing eonnection forms for 
the {Wi} basis are WA3 = -(iJAF)w4 = wl A E (1,2). Thus, in the notation 
of Seetion 3.6.1, w/ /\ w/ = 0 and the curvature tensor is R = - 2Xi ® 
wj ® dw/ = -2 2:tB=l [iJiiJBF)](XA ® w4 + X3 ® WA) ® (wB /\ ( 4 ). 

R(w1 ; X4 , Xl> X4 ) = -iJ12F = -Jo</> and R(w1 ; X4 , X2 , X4) = -g 0 </>, so 
R is not identically zero and (1R4 , g) is not Hat. On the other hand, Ric = 

-[i\(oJ) + 02(02F)](w4 ® ( 4) = 0, so the Einstein tensor vanishes and 
(IR\ g) is vaeuum. D 

Let R be the (0, 4) tensor field physieally equivalent to R. 

Corollary 7.6.2 

- R/4 = (fo </»[(w1 /\ ( 4) ® (w1 /\ ( 4 ) - (w2 /\ ( 4 ) ® (w 2 /\ ( 4 )] 

+ (g 0 </»[(w1 /\ ( 4) ® (w2 /\ ( 4 ) + (w2 /\ ( 4) ® (w1 /\ ( 4 )]. 

PROOF. Algebra. o 
Note that the eieetromagnetie field 1 above is 1 = (fo </»w4 /\ w1 + 

(g 0 </»w4 /\ w2. This formai similarity and the interpretations assigned in 
Example 3.7.3 suggest ealling J and g the amplitudes oJ (lR4,g). We will 
justify this term in more detail presently and will use it henceforth. 
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The formai similarity between (IR\ g) and «IR\ h), X) has a deeper 
reason. Let q M be the isometry group of (1R4 , g), and let '§ be the 
natural automorphism group ~Ij = {.fo: 1R4 ---T 1R4/.fo*h = hand .fo*x = X}. 
Uniess J and g above are chosen in a very special way, the following 
results hold: q M is isomorphic to '§; '§ Mis a certain five-parameter Lie 
group; and each orbit of '§ M in (1R4, g), like each orbit of q in (1R4 , h), 
is 3-dimensional and lightlike (cf. üptional exercise 8.4.8). Moreover, 
each maximal vacuum spacetime whose isometry group is <'§ M is iso
metric to a gravitational plane wave. 

Thus, conceptually, a gravitational plane wave is a vacuum space
time with" plane wave symmetry" where the familiar case of electro
magnetic plane waves on Minkowski spacetime can be used to define 
the concept of plane wave symmetry. 

We ean now charaeterize the "travel direction" and "wavefronts" of 
(1R4, g). Both are lightlike. 

Proposition 7.6.3. A vector field X is paralleI iff X = aY for some a E IR. 

PROOF. Suppose X = aY. Then V(z, Z) E TM, 

DzX = a{Z[wi(Y)] + w/(Z)wf(Y)}X; = aW3i(Z)X; = 0, 

where we have used Section 3.6.le and the proof of Propositian 7.6.1. 

Conversely, suppase DX = O. Then R(·, X, ., .) = 0 by the definition of a 
eurvature tensor (Section 1.0.2). There exists an open eonnected region 
eri e M sueh that f2 + g2 is nowhere zero on :lIt. Algebra and Corollary 
7.6.2 then show that on {)7t, X = jY where j: J/I ---* IR is a cm function. Now 
on 0//, 0 = DX = jDY + Y (2) dj = Y ® dj. Thus dj = 0 and j is a con
stant, say j = a. We now have that X - aY is parallei and (X - aY)lu = 0; 
eonsequently by Section 3.6.3d and Exercise 7.3.14, X = aY. D 

Since Y is parallei, its integral curves are (future-pointing, lightlike) geo
desies and Y is Killing (Section 3.6.3d). We eall Y the spacetime propagation 
direction. Since there is in general no natural distinetion between Y and aY 
Va E (0, oo), this te rm would more properly apply to the set {a Y I a E (0, oo)}, 
but we have followed standard terminology. Now note that V(z, Z) E TM, 
g(Z, Y) = 0 iff Z</> = O. Thus the level hypersurfaees of</> are intrinsically 
determined as those maximal imbedded submanifolds whieh are everywhere 
orthogonal to some nonzero, parallei veetor field. Preeisely one such level 
hypersurface, say 11~ contains any given Z E 1R4 • We call il' the spacetime 
Il'avefront through z. YI'1" is orthogonal to il' and is lightlike, so il' is 
lightlike (ef. Seetion 1.2). On the other hand, Y</> = 0, so YI,I' is also tan
gent to "fl' (see figure below). 
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The ambiguity in the positive constant a of {a Y} ean be eliminated 
only by an ad hoc choice for each discussion. The reader may have 
noted that the definitions of amplitude and frequency given earlier in 
this section as weil as all other associated quantities are in fact also 
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indeterminate up to (a function of) this constant a. This ambiguity 
corresponds to the fact that for a monochromatic gravitational plane 
wave, one cannot speak of .. the" frequency without introdueing some 
observer (ef. Exereise 7.6.5). Similarly, one cannot diseuss .. the" energy 
of a photon uniess an instantaneous observer is specified (Sections 3.1 
and 5.l). 

The term "spacetime propagation direction" can be motivated by 
Newtonian and speeial relativistie analogues (ef. Examples 1.1.6 and 
3.7.3) or directly by the following argument. Suppose z, i E JR4 lie on the 
same integral eurve of Y, and ~ is an open neighborhood of z. Sinee 
Y is Killing there exists an open neighborhood qJ of i and an isometry 
I{l: ~ -+ oi (ef. Section 3.6.3). Thus any .. information" the amplitudes 
f and g .. register" on qJ is registered identieally on ~. In this sense 
.. information propagates along Y." 

The Newtonian analogue (Example 1.1.6) of a spacetime wavefront 
il' is a Euclidean 2-plane travelling at the speed of light in the Euclidean 
direction perpendieular to itself. il' contains, and is orthogonal to, 
integral eurves of Y. il' might be ealled a .. hypersurface of constant 
phase" since ePl1/' = constant, or a .. hypersurfaee of eonstant ampli
tudes" sinee fo eP and g 0 eP are constant on il'. With rJ M as in the 
previous fine-print eomment, eaeh il' is an orbit of rJ M. Appropriate 
observers thus observe .. homogeneity" for il'. On balanee, such 
(rather difficult) intrinsie interpretations are better than the referenee 
frame dependent interpretations of Example 3.7.3. 

In order to try to deteet a gravitational wave, one sometimes uses a metal 
bar and tries to observe how the wave excites vibrations of the metal bar. 
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The histories of the molecules of this metal bar can be regarded as a family 
of observers filling up a small open subset N of the spacetime; alternately, 
one may regard these observers as the integral curves of a reference frame 
defined on N. For this reason, a detector is modeled by a reference frame 
defined on a small open submanifold of spacetime. We first discuss the 
geodesic case for simplicity. Thus consider a local geodesie referenee frame 
Z-that is, there exists an open submanifold N of M such that Z is a geo
desic reference frarne on (N, g IN). We want to compute the 3-accelerations 
of the neighbors of an observer in Z (Section 2.3). Roughly, these 3-accelera
tions correspand to the vibrations in the detector due to the excitation by 
the gravitational plane wave (M, g). 

Let y be an observer in Z, let Ru be his local rest space at proper time u, 
and let il'" be the spacetime wavefront that contains yu. Let P = "fI/,u Il Ru; 
P is a (2-dirnensional) plane in Ru • Let W3 E Ru be the unique unit veetor 
obtained by normalizing the projection of Y(yu) into R u (see figure). A 
simple algebraic computation shows that W3 and P are orthogonal. Roughly, 
y sees the wave moving in the spatial direction W3 with 2-dimensional wave
front P (ef. Example 1.1.6 and 3.7.3). We shall now compute relative accelera
tions, using a basis suggested by W3 and P. First define E = -g(y.u, Y); 
E> O. 
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Although general relativity cannot at present be systematicaIIy com
bined with quantum theory, physicists often think about" gravitons." 
Roughly, a graviton is related to a gravitational plane wave as a photon 
is related to an electromagnetic plane wave (ef. Exercise 3.7.7). Now 
suppose (1I\l" g) is monochromatic as defined at the beginning of this 
section. Then one can think of (1I\l\ g) roughly as a graviton particle 
flow with energy-momentum vector field P = aY, where a E (0, co) 
depends on w. For a = 1, E above is roughly the energy of a graviton 
observed by (yu, y.u), corresponding to the observed energy of a par
ticle with energy-momentum Y(yu). 



7.6 Gravitational plane waves 

Define a basis {Wa} for Ru by WA = oiyu) - E-1g(y.u, oJY(yu), 
A E (I, 2), and Wa = - E- 1 Y(yu) + y.u. Algebra shows that {Wa} is ortho
normalfor(Ru,gIR.)and thatP = span{Wl> W2 }. Let!fu be the lineartrans
formation Ru - Ru, whieh assigns to eaeh neighbor W of y in Z the relative 
3-aeeeleration !fuW E Ru (Proposition 2.3.3). More algebra using Corollary 
7.6.2 shows that the matrix of tPu in the {Wa} basis is 

(A B 0) 
[tPul = B -A 0 

000 

A = E2(f4>Y)u E IR 
B = E2(g4>Y)u E IR 

Thus the observer measures a "transverse" wave: all relative aecelerations 
are orthogonal to Wa, lying in the plane P. He does not directly measure 
the amplitudes f and g, but measures E2f and E2g instead. However, note 
that sinee Y is Killing and y is geodesie, E is eonstant along y's world line 
(Seetion 3.6.3e). Moreover, 4> 0 y is a linear funetion of proper time u, since 
(dJdu)(4> 0 y) = -g(y.u, Y) = E. Thus the observer ean measure the graphs 
of f and g, with a eonstant stretching of ordinate and abseissa that depends 
on E. f and g are distinguished from eaeh other by the direetions of the 
observed relative aecelerations. We plot the relative acceleration patterns 
in the prineipal direetions of tPu for two speeial cases: 

I' 
(a) B = 0, A > 0, (b) A = 0, B > 0, 

'\ /. 
OI • • • A A • 

1, y ~ 
R" 

W2 

Figure 7.6.4 
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7 Further applications 

The faet that .fu has traee zero is implied by the Einstein field equation 
(ef. Proposition 4.2.2). In Figure 7.6.4, traee .fu = 0 shows up via the faet 
that the relative aeeelerations of neighbors whose direetions differ by 90° 
have opposite signs. The figure suggests, eorreetly, that the wave will exeite 
"shear modes" of a deteetor, rather than" expansion modes." For example, 
a spherieally symmetric detector would be set in a vibration that distorts 
its shape in the eourse of the vibration (" shear") rather than a spherically 
symmetrie pulsation in whieh only the radius ehanges ("expansion"). In 
prineiple, this predietion is a sharp test of general relativity. 

The faet that .fu is a tensor, and that the pattems in Figure 7.6.4 
are more complicated than the corresponding diagrams for an electric 
field of an electromagnetic plane wave (Example 3.7.3), corresponds 
to the quantum theoretical statement that a .. graviton has spin 2," as 
opposed to "spin I" for a photon. There are only two amplitudes J 
and g, and two" polarization modes" (Figure 7.6.4a, b). The corre
sponding quantum resul! is that every rest-mass zero field has two 
possible spin states, regardIess of the total spin (Messiah [I]). 

Some deteetors must be modeled by referenee frames that are not geo
desic, sinee each observer (molecule) is subjeet to nongravitational forees 
from neighbors. However, onee the response (Figure 7.6.4) of a geodesic 
referenee frame is known, the response of an actual detector can be inferred 
from standard Newtonian physies and solid state physies (Weber [I]). 

A vigorous eontroversy on whether or not gravitational waves have been 
detected is taking place as we write. It seems likely that once a highly sensi
tive, supereooled deteetor bei ng designed at Stanford beeomes operative, 
some waves should be observed, but even this is by no means certain. 

To design a detector one needs aguess as to the typical frequencies 
and amplitudes one might expect. Suppose the source is a star with 
active mass in ~ 10 - ~ seconds at a distance L. A typical frequency 
might be w ~ Ijm and a typical amplitude might be J ~ Ij(lOOmL) 
under the most favorable eircumstances. 

Throughout the following exereises, (M, g) is a gravitational plane wave 
spacetime with amplitudes f and g. The first two exereises are designed to 
demonstrate in a quantitative way the faet that amplitude and frequency 
are observer-dependent. 

EXERCISE 7.6.5 

Suppose A E IR, w E (0, oo), J(t) = A eos wt, g = 0, and y: tf -> M is a freely 
falling observer. Show that U4>Y)u = A E2 eos (Ewu + 4>o}VU E tf, where 4>0 E IR. 
Remark: Thus if relative to y, E = I, then the frequeney of this monoehromatie 
gravitational plane wave is w by definition; if, however, E = 7 relative to y, 
then the frequeney is 7w. 
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7.6 Gravitational plane waves 

EXERCISE 7.6.6 

Say (z, i) = us-now observes the wave in Exereise 7.6.5 and obtains a measure
ment of ~w = 104 (seeonds)-l. An instantaneous observer (z, Z) moving direetly 
toward the souree of the wave measures instead Ew = 1010 (second s) - 1. What 
Newtonian speed do we observe for (z, Z) (ef. Seetion 2.1.6)? 

EXERCISE 7.6.7 

In Exereise 7.6.5 show X == 01 has the following properties. (a) lXI = I. (b) 
Vz E M, ~ == span {Xz, Yz} is Iightlike. (e) D(X A Y) = O. (d) V geodesie ob
server y: <f ->- M, and Vu E <f, a prineipal direction of the relative aeeeleration 
transformation .pu is the line (~u) () Ru e Ra e M yu • Remark: Here (M, g) is 
linearly polarized; (d) identifies ~u e M yu as the spacetime pofarization pfane; 
and (e) shows this plane is "eonstant" (parallei). 

EXERCISE 7.6.8 

Let y: <f ->-1R4 be a geodesie observer, and let W be a unit veetor field over y such 
that Wu is a prineipal direction for.pu Vu E <fo Show W is paralleI V such observer 
iff (M, g) is Iinearly polarized. 

EXERCISE 7.6.9 

Suppose J has eompaet support and g = o. Show (M, g) is eomplete (and henee 
maximaI). 
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8 Optional exercises: relativity 

In the previous ehapters we have tried to stiek to topi es that are essential, 
require no mathematieal baekground beyond the seeond-year graduate level, 
and require no physies baekground beyond the freshman level. This and the 
next ehapter are primarily intended to round out our presentation somewhat 
by outlining some topies that fail to meet one or more of these eriteria. 
(M, g) is a spacetime throughout this ehapter. 

8.1 Lorentzian aIgebra 

This seetion eovers some detaiIs on Lorentzian veetor spaces. 

8.1.0 Notation 
Throughout this seetion: Z is a reference frame on M; Z E M; Z = Zz; 
{EM,* is physieally equivalent to -Z; g =gzET2°(Mz); and ~+ = 

{X E Mz I X is timelike and {(X) > O} (ef. Exereise 1.1.9). Thus (Mz, g) is 
a Lorentzian veetor space (Seetions 0.0.3 and I. I) and Z is a unit veetor in 
~ +. We shall be eoneerned primarily with the algebraie properties of 
(M., g, ~+, Z). 

8.1.1 References 
We give so me eross-references and references that indieate how the algebra 
beI ow is applied. The eoneepts of a wider metrie (Seetion 8.1.2) and an 
Alexandrov basis (Seetion 8.1.3) are used in the study of topology and 
eausality (ef. Seetions 8.2, 8.3, and the further referenees given there). The 
algebra of stress-energy tensors (Seetions 8.1.4 to 8.1.8), referenee frames 
(Seetions 8.1.9 and 8.1. JO), and lightlike geodesie veetor fields (Seetion 
8.1.12) is important in the study of eollapse (Seetion 4.3; Hawking-Ellis [I D 
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8.1 Lorentzian algebra 

of eosmology (Chapter 6; Ellis [ID and of theoretieal modeJs for black 
holes (ef. DeWitt and DeWitt [ID. The algebra of eurvature tensors (See
tion 8.l.13) is important in various contexts, such as analyzing groups of 
isometries (ef. MaeCallum [I]) and diseussing "asymptotieally flat" space
times (ef. Penrose-Rindler [I J). 

We remark that there is a powerful maehine, the two-eomponent spinor 
formalism, for doing Lorentzian algebra neatly (Penrose and Rindler [I]). 

8.1.2 INNER PRODUCTS 

A Lorentzian inner produet g on M. is defined as wider than g iff g( Y, Y) < 0 V 
causa I Y E M.. Let h = g + a' 0 , with a E ~ and , as in Seetion 8.1.0. 
Show that on M.: (a) h is a positive definite inner produet iff a > 1; (b) h is a 
Lorentzian inner produet narrower than g iff 0 < a < 1; (e) h is a Lorentzian 
inner produet wider than g iff 0 > a. 

8.1.3 TOPOLooy 

(a)VX, YEM. define <X, y) = {VEMzl(Y- V)E.r,,+ and (V- X)E.r,,+}. 
Show {<X, Y)} is a basis for the standard topology of M.; it is eaIled the Alexan
drov basis. (b) "le> 0 and VYEM. define B.Y= {XEM.IIY- XI < e}. 
Show {B. Y} is not a basis for the standard topology of M •. 

8.1.4 SELF-ADJOINT LINEAR TRANSFORMATIONS 

Suppose TE To2(M.) is syrnrnetrie; thus the physicaIly equivalent linear trans
forrnation 1': M. -')0 Mz is self-adjoint with respeet to g (ef. Exereise 1.0.6 and 
Seetion 8.1.0). ReeaIl that a veetor subspace Wc M. is an invariant subspace of 
l' iff 1'w e W and an eigenvalue of f is any solution (real or not) of the eharac
teristic equation. In this and the following exereise we work with IR, rather 
than the cornplex nurnbers C, unIess explieitly indicated otherwise. Show the 
following results. (Hint: the results extend to a Lorentzian vector space of any 
finite dirnension except that (h) can fail if the dirnension is less than 4.) 

(a) W is lightlike iff W Il W.L is Iightlike iff dirnension (W Il W.L) ~ 1 iff 
dirnension (W Il W.L) = I. 

(b) If dirnension W ~ 2 then Wis tirnelike iff Weontains two Iinearly indepen-
dent lightlike veetors. 

(e) W is an invariant subspace of l' iff W.L is. 
(d) If Wis a spacelike invariant subspace of l' then 1'1 w is diagonalizable. 
(e) If 1'Y E.r" + Veausal Y E M. then: T(w, w) < 0 Veausal w E M.·; rnoreover 

l' is diagonalizable-that is, each eigenvalue of l' is real and there exists an 
orthonorrnal basis of eigenveetors. 

(f) If Wis a lightlike invariant subspaee, 1'1 w has a lightlike eigenvector. 

(g) I f a + v-=1 b is an eigenvalue of l' and X + v-=1 Y is a corresponding 
eigenvector, span (X, Y) is an invariant subspace of 1'. 

(h) l' has a spacelike eigenvector. [Hint: use (dHg).] 
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8 Optional exercises: relativity 

8.1.5 NORMAL FORMS 

In Section 8.1.4 show exactly one of the following holds. (Hint: one proof uses 
Jordan normal forms for the endomorphisms of a vector space over C.) 

(a) There is an orthonormal basis (Xl. X2 , Xa, X4 ) for Mz such that t = 
2:~ = I PaXa @ Xa + pX4 @ X4 , where Ph P2, Pa, p E ~. 

(b) There is a basis as in (a) such that 

t = 2:t=1 A,X, @ X, + q(Xa @ X4 + X4 @ Xa), 

where At. q E ~ and (A4 - A3)2 < 4q2. 
(e) There is an ordered basis (Xl, X 2 , Ylo Y2 ) such that: VA E {J, 2}XA is un it 

spaeelike and YA is lightlike; Xl. X2 , and span f YI, Y2 } are pairwise orthog
onal; g( Ylo Y2 ) = ± 1 ; and the matrix representing f in this basis is 

[

Al 0 0 
f,., 0 A2 0 

o 0 Aa 
000 

(d) There is a basis as in (e) such that 

8.1.6 STRESS-ENERGY TENSORS 

In Section 8.1.5 show thas the basie algebraie property of a stress-energy tensor
that is, t(w, w) ~ OV causai w E M z·, iff either: (a) ease 8.1.5a holds with 
p ~ 0 and p ~ -Pa Va E (1,2,3); or (b) ease 8.1.5e holds with Aa :5 0, Aa -
Al :5 0 and Aa - A2 :5 O. 

8.1.7 CONDITIONS ON STRESS-ENERGY TENSORS 

In Seetions 8.1.4 to 8.1.6, suppose t = tz, where t is a stress-energy tensor on 
M. tis said to obey the slrong energy condilion iff t(w, w) ~ --l(traee f)lwl 2 V 
eausal w E M z·, and is said to obey the dominant energy condilion iff f Y is 
eausal Veausal Y E M z • 

(a) Show that if t obeys the timelike eonvergenee eondition (Exereise 4.3.7), 
then t obeys the strong energy eondition. 

(b) Assume case 8.1.6a holds. Show t: obeys the strong energy condition iff 
p ~ - 2:~= I Pa; obeys the timelike convergence condition iff it obeys the 
st rong energy condition and is nonzero; obeys the dominant energy con
dition iff p > 0 and p ~ IPalVa E {I, 2, 3}; and is normal iff p > IPalVa E 

{I, 2, 3}. 
(e) Give corresponding results for ease 8.1.6c. 
(d) Show the stress-energy tensor for a perfect fluid obeys all rour eonditions 

(strong and dominant energy, timelike convergence, and normaley). 
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8.1 Lorentzian algebra 

8.1.8 ELECTROMAGNETIC STRESS ENERGY TENSORS 

Let: F be an eleetromagnetie field on M; E be its stress-energy tensor; F = 
Fz E T2°(Mz); t = Ez E T02(Mz); and E (respeetively, B) be the eleetrie (respee
tively, magnetic) field measured by (z, Z). Compare Seetion 3.4. Suppose F t 0; 
show: 

(a) g(E, B) = 0 iff F /\ F = 0; 
(b) g(E, E) = g(B, B) iff PIF'1 = 0 (ef. Seetion 3.6.1); 
(e) f is diagonalizable iff t obeys the dominant energy eondition iff either 

g(E, B) t 0 or g(E, E) t g(B, B); 
(d) t is not normal but obeys the timelike eonvergenee eondition and the strong 

energy eondition. 

8.1.9 DECOMPOSITIONS OF (2, 0) TENSORS 

We use the notation of Seetion 8.1.0. Suppose S E To2(Mz ); I, = g + Z l8i Z is 
physieally equivalent to the projeetion tensor (Seetion 2.1.5); and R is the 
rest space Zl. 

(a) Show there exist: unique a, eE IR; unique X, YE R; a unique symmetrie 
tensor a E R l8i R, traee-free with respeet to glll = hill; and a unique skew
symmetrie tensor w E R l8i R such that the following deeomposition of S 
holds. 

S = aZ l8i Z + Y l8i Z + Z l8i X + a + w + tel,. 
(b) Write out the eomponents in (a) using an orthonormal basis (Xl. X 2 , X 3 , Z) 

and its dual. 
(e) Show the quantitites in (a) ean equivalently be defined by the following 

eonditions. Va, {1 E M z• such that a(Z) = 0 = {1(Z): 

a = Sa, ,), e = traee S + a; 
a(X) = sa, al, a( Y) = S(a, ,); 

w{a, fJ) = HS{a, fJ) - S(f1, al]; 
a{a, /3) = t[S(a, /3) + S(/3, al] - t9h{a, fJ). 

8.1.10 ACCELERATION, EXPANSION, ROTATION AND 

SHEAR OF A REFERENCE FRAME 

Let S be the (2, O)-tensor physieally equivalent to (DZ)z (ef. Seetion 8.1.0). 

(a) Show S algebraically determines the relative velocity Iinear transformation 
(Az)z: Zl ~ Zl (ef. Proposition 2.3.4). 

(b) Show that in Seetion 8.1.9 S = X l8i Z + a + w + tel, with - X = (DzZ)z 
(the aeeeleration) and e = (d iv Z)z. In this ease e is ealled the expansion, 
a the shear, and w the rotation of the referenee frame Z at z. Now show: 

(e) Z is irrotational at z iff w = 0; 
(d) Z is rigid at z iff a = 0 = 9; 
(e) If Z is proportional to a Killing veetor field, Z is rigid. 
(f) Show by an example that in general there is no shear free referenee frame 

on any open neighborhood of a given point in a given spacetime. (Hint: in 
loeal eoordinates, the requirement a = 0 beeomes five independent eondi
tions on the eomponents of Z.) 
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8 üptional exereises: relativity 

(g) Imagine an "infinitesimal" solid sphere in Z 1. Sketeh the intrinsie shape 
of the slightly distorted sphere after an .. infinitesimal" proper time, assuming 
it is dragged along by the f10w of Z (ef. Seetions 2.0.3 and 2.3); identify 
8, w, and a on your figure. (You may assume X = 0 for simplieity.) 

(h) Show ZIIiZJI! = allal! - wljWI! + 182 (ef. Seetion 3.6.1). 
(i) In (h) showallal! = 0 implies al! = 0 and WI!Wfj = 0 implies WII = O. 
(j) Use eomponent notation (Seetion 3.6.1) and the above to simplify the proof 

of Lemma 4.3.3. (Hint: in eomponent notation the eurvature tensor R obeys 
Zlilk - Z1klj = R~!kzm, as follows from its definition in Seetion 1.0.2.) 

(k) Show the Iinear transformation R -- R physieally equivalent to a (respee
tively, w) is self-adjoint (respeetively, skew-adjoint). 

8.1.11 A VERAGES OVER DlRECTlONS 

Let //2 be the unit sphere in the rest space R (ef. Seetion 8.1.0). 

(a) Show Rie (Z, Z) = (3/47T) IxeSl'2 Kxl;, where I; is the standard volume ele
ment and Kx is the seetional eurvature (Bishop-Goldberg 5.14) ofspan {X, Z}. 

(b) For X E R, let ax be the relative 3-aeeeleration of that neighbor W of an 
observer y in Z through z such that Wy-lz = X (ef. Seetion 2.3). Let 
a: M -- IR be the mean relative-aeeeleration of Z (ef. Seetion 4.2). Show 
aZ = (1/47T) IxeSl'2 g(ax, X)I;. 

(e) Using the relative veloeity linear transformation of Section 2.3, express 
(d iv Z)z as an average similar to those in (a) and (b). 

8.1.12 LIGHTLIKE GEODESICS 

(Hard) Let Y be a future-pointing Iightlike geodesie veetor field on M. Give a 
deeomposition of (D Y)z, similar to that of Seetion 8.1.10, as follows: Introduee 
a projeetion operator that project s orthogonally into the 2-spaee [span {Yz, Z}F 
and there deeompose into a shear, rotation, and expansion. Analyze in detail 
to what extent the various bits of the deeomposition depend on the arbitrarily 
chosen instantaneous observer (z, Z). Give geometrie and physieal interpreta
tions for eaeh intrinsie bit. (ef. Ellis [I] and Hawking-Ellis [I]; there is a very 
large literature on such veetor fields Y and such deeompositions.) 

8.1.13 CURVATURE TENSORS 

Suppose Ric = O. (M, g) is defined to have the Petrov type N at z iff the eurvature 
tensor Rz is nonzero and there exists a nonzero LE M. such that R( T, L, X, Y) = 
o VT E M.· V X, Y E M •. Show that then L is lightlike. (For a systematie diseussion 
of Petrov types, ef. Penrose-Rindler [I].) 

8.2 Differential topology and geometry 
When standard methods of differential topology and geometry are applied 
to Lorentzian manifolds, speeial features oeeur. This seetion and the next 
outline some. 

To work all the exereises in Seetions 8.2 to 8.3, partieularly to find the 
various examples and eounterexamples, the reader will probably need to 
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8.2 Differential topology and geometry 

consult Penrose [1] and Hawking-ElIis [1]. Many of the reeent results are 
due to Penrose, Hawking, or Geroch. 

8.2.1 PARACOMPACTNESS 

In this exereise, and only in this exereise, we take" manifold" to mean manifold 
in the sense of Kobayashi-Nomizu [l]-that is, second eountability is dropped 
from the list of defining axioms. (Contrast the Bishop-Goldberg [1] definition 
of manifold and Seetion 0.0.4). Let N be a eonneeted, Hausdorff, real, C'" mani
fold of finite dimension ~ 2. 

(a) Show N is second eountable iff N is Lindeloff iff N is paraeompaet iff N is 
metrizable iff there is a Riemannian metrie on N. 

(b) Suppose N is a Lie group. Show there is a Riemannian metrie on N. 
(e) Suppose there is a Lorentzian metrie g on N. Let ON be the bundIe of 

Lorentzian orthonormal frames above (N, g). Show there is a Riemannian 
metrie on ON. (Hint: See Seetions 8.1.2a and 8.2.1b). 

(d) Show that if there is a Lorentzian metrie on N then N is paraeompaet. 

8.2.2 LoRENTZIAN MANIFOLOS 

Let N be a manifold (Seetion 0.0.4). Thus N is real, Hausdorff, finite-dimensional, 
paraeompaet and C"'. 

(a) Show there exists a Lorentzian metrie on N iff there exists a nowhere zero 
veetor field on N iff there exists a Lorentzian metrie g on N such that (N, g) 
is time orientable. 

(b) Suppose N is eonneeted, orientable, and 4-dimensional. Show there exists 
a spacetime (N, g) iff there is a nowhere zero veetor field on N. 

(e) Suppose N is eonneeted, orientable, not eompaet and 4-dimensional. Show 
there exists a spacetime (N, g). 

8.2.3 TIME ORIENTABILITY 

Let (N, g) be a eonneeted Lorentzian manifold. Show: 

(a) (N, g) is time orientable iff there is a eausal veetor field on (N, g) iff there is 
a timelike veetor field on (N, g) iff, V eurve y: [0, 1] ~ M with YO = yl, 
paralleI transport with respeet to the Levi-Civita eonneetion of any time

. like veetor in M yo along y gives a veetor in the same eonneeted eomponent of 
9:,0 e M yo (ef. Seetion 1.1). 

(b) If N is simply eonneeted, (N, g) is time orientable. 

8.2.4 SOME COUNTEREXAMPLFS 

Let (N, g) be a eonneeted Lorentzian manifold. Show by examples that eaeh of 
the following is possible: 

(a) N is orientable but (N, g) is not time orientable. 
(b) (N, g) is time orientable but N is not orientable. 
(e) N is not orientable and (N, g) is not time orientable. 
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8 üptional exereises: relativity 

(d) (N, g) is time orientable but there is a timelike eurve into N whieh is not 
1 - I. 

(e) Eaeh timelike eurve into N is 1 - 1 but (N, g) is not time orientable. 

8.2.5 SPACETIMES 

Let (M, g) be a spacetime. Show: 

(a) There is a referenee frame Z on M. 
(b) If M is eompaet, M is not simply conneeted. (Hint: use Poincare duality. 

Remarks: thus one ean work with a noneompaet covering space; indeed, 
eompaet spacetimes are almost never considered in relativity.) 

(e) If wis al-form physically equivalent to a referenee frame on M; g + 2w \3) w 
is a Riemannian metrie on M. 

(d) There is avolume element 1. on M such that IM 1. = I. (Remarks: 1. is not 
unique; for suitable A E (0, oo) and M = Minkowski space, 

1. = A exp [- ± (UI)2] du1 /\ ••• /\ dui 

1-1 

is an example.) 

8.2.6 MORE COUNTEREXAMPLES 

Let (M, g) be a spacetime. Show by examples that eaeh of the following is 
possible. 

(a) (M, g) is eompaet but not eomplete. 
(b) There exists an inextendible lightlike geodesic y: (- 00,0) ->- M whose 

image is the (eompaet) set y[ - 2, -1 l. 
(e) (M, g) is eomplete but there are distinet points x, y E M such that no geo

desie goes from x to y. 
(d) Eaeh inextendible eausal geodesie has domain ~ but (M, g) is not eomplete. 
(e) There is no Iightlike veetor field on (M, g). 

8.2.7 SECOND FUNDAMENTAL FORMS 

Let B be a 3-manifold and let fj: B ->- M be a spaeelike imbedding. Thus with 
b = fj*g, (B, b) is a Riemannian manifold. (a) Show B is orientable. (b) Show 
there exists a unique symmetrie (0, 2)-tensor field k on B with the following 
property. Let fL: tff ->- B be a geodesie of (B, b), v = f3 0 fL. Then D .. v* = 
k(fL*, fL*)Z, where Z is a future-pointing unit timelike veetor field over v whieh is 
orthogonal to fjB. k is defined as the second fundamental form of fj. Note that k 
measures, roughly speaking, how much geodesies of B are eurved in M, whieh 
is an indieation of how B is inserted into M; k is thus sometimes ealled the 
extrinsic curvature of f3: we are using the sign convention standard in physics tests. 

(e) Let Z be a referenee frame on M such that the physieally equivalent 
I-form (obeys f3*( = O. Show that k = - f3*(D(). Thus k also measures, roughly 
speaking, how mueh the unit normal to B tiits as we move around on B. (d) Let 
s be the (0, 2)-tensor field on M such that sz is physically equivalent to the shear 
of Z at z Vz E M; 0 be the expansion of Z. Show - k = f3*s + !(Oof3)b. (e) Now 
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8.3 Chronology and causality 

assume Z is geodesic. Show k = - fi*Lz(g + , ® e), where Lz is the Lie der iva
tive. (f) Interpret (d) and (e). 

8.3 Chronology and causality 
We outline some properties of the causality and chronology relations. 
Penrose [I] gives a systematic presentation. Hawking-Ellis [I] and DeWitt
DeWitt [I] give the mai n applications to black hole theory, collapse theorems, 
cosmology, and other areas. This section merely states a few of the mai n 
definitions and standard lemmas. 

8.3.1 BASIC PROPERTIES 

(a) Show « 0 « = «, where "0" denotes composition of relations. (Thus, in 
particular, « is transitive.) 

(b) By definition (M, g) obeys the chronology condition ilf no point in M ehrono
logieally precedes itself. (Roughly: aneestoreide is impossible.) Show a 
Kruskal spacetime obeys the chronology condition. 

(e) Find a spacetime such that x « x '<Ix E M. 
(d) Show :5 = « 0 :5 = :5 0 « = :5 0 :5. 

8.3.2 CHRONOLOOY, CAUSALITY AND TOPOLOOY 

(a) Denote the chronological (respectively, causal) past of z E M by [- {z} 
(respeetively, by J-{z}). Show [-{z} is perfect ly open-that is, 

Interior [Closure /- {z}] = [- {z}. 

Show ClosureJ-{z} = Closure [-{z} = {x E MI [-{x} e [-{z}}. Give an 
example where J- {z} is neither open nor elosed. 

(b) '<Ix, y E M, define <x, y) = {Z E M I x « z « y}. Show {<x, y)} is a base for 
a topology on M. (This topology is ealled the Alexandrov topology; ef. 
Section S.1.3a.) 

(e) Suppose M is eompaet in the Alexandrov topology; show (M, g) does not 
obey the ehronology eondition. 

(d) Suppose M is eompaet in its ordinary topology; show (M, g) does not obey 
the chronology eondition. 

(e) (Penrose) Show the Alexandrov topology is the ordinary topology ilf the 
Alexandrov topology is Hausdorlf. Spacetimes that obey this eondition are 
defined as strongly causal. 

(f) Show a strongly eausal spacetime obeys the ehronology eondition; give an 
example to show the eonverse ean fai!. 

8.3.3 PERTURBED METRICS 

A Lorentzian metrie II' on M is defined as wider than g ilf wx is wider than 
gx '<Ix E M (ef. Seetion 8.1.2). 

(a) Show there exist spacetimes (M, 11') and (M, n) such that II' is wider than g 

and g is wider than n. 
(b) Suppose (M, g) obeys the ehronology eondition; show in (a) that (M, n) 

obeys the ehronology eondition. 
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(e) Show by an example that (M, g) ean obey the ehronology eondition even 
if (M, w) violates the ehronology eondition 'V1fI wider than g. (Roughly, this 
shows that the ehronology eondition does not have the kind of stability 
whieh one usually demands for physieally aeeeptable restrietions; the next 
exereise diseusses a more plausible restrietion.) 

8.3.4 STABLE CAUSALITY 

(Hawking) (M, g) is defined as stably causal iff there is a spacetime (M, 1fI) such 
that lfI is wider than g and (M, 1fI) obeys the ehronology eondition. 

(a) Show a stably eausal spacetime is st rong ly eausal but the eonverse ean fai!. 
(b) Choose any of the spacetimes defined in Seetion 1.4 or Chapter 7 and show 

it is stably causa\. 

8.3.5 Co GLOBAL TIME FUNCTlONS 

A Co funetion T: M -+ ~ is a global time /unction iff T is monotonie inereasing 
along eaeh future-pointing eurve. Show (M, g) is stably eausal iff there is a Co 
global time funetion on M. 

8.3.6 CAUSAL CONTlNUlTY 

Let X be avolume element on M such that SM X = 1 (ef. Seetion 8.2.5d). Define 
two funetions, not neeessarily Co, Tx*: M -+ (0, I] by Tx*x = ± II'{x) X'VXE M. 

(a) By removing a c10sed subset of Minkowski space, give an example where 
Tx • is not Co. 

(b) (M, g) is defined as causally continuous iff there exists a X as above such that 
Tx + and Tx - are Co global time funetions. Show (M, g) is eausally eon
tinuous iff (M, g) is strongly eausal and, 'Vx, y E M, x E Closure /- {y} iff 
y E Closure J+{x}. Show that then Tx• is a Co global time funetion 'Vx as 
above. 

(e) Show that a eausally eontinuous spacetime is stably eausal but the eonverse 
need not hold. 

8.3.7 GLOBAL HYPERBOLICITY 

(M, g) is defined as globally hyperbolic iff there exists a subset PA e M such that 
eaeh endless timelike eurve interseets !M exaetly onee. PA is then ealled a Cauchy 
sur/ace. Let (M, g) be a globally hyperbolie spacetime, PA e M be a Cauehy 
surfaee. Show: 

(a) PA is a Co imbedded submanifold. 
(b) Eaeh inextendible lightlike geodesie interseets PA in a eompaet sel. 
(e) (M, g) is eausally eontinuous, but a eausally eontinuous spacetime need not 

be globally hyperbolie. 
(d) Mis homeomorphie to PA x ~ and eaeh Cauehy surfaee is homeomorphic 

to PA. 
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8.3.8 EXAMPLES 

(a) Show Minkowski space, Einstein-de Sitter spacetime, and any Kruskal 
spacetime are globally hyperbolic. 

(b) Find a complete spacetime that is not globally hyperbolic. 
(c) Show that in Minkowski space there is a 3-dimensional, spacelike imbedded 

submanifold that is complete in its induced metric but is not a Cauehy 
surfaee. 

8.3.9 PROPER TIME 

V timelike future pointing y: [a, b] --->- M let L, = Sab Iy.ul du be the arc1ength; 
thus L, > O. Define the proper time function t:« --->- (0, CX)] by: t(p, q) = 
lub {L, I y is a future-pointing timetike eurve from p to q} Vp, q E M such that 
p« q. 

(a) Give an example to show t need not be eontinuous. 
(b) Show t obeys the global version of the wrong-way triangle inequality (Exer

cise 1.2.4b)-that is, t(x, z) ~ t(x, y) + t(y, z)Vx, y, Z E M such that 
x« y« z. 

8.3.10 EXISTENCE OF GEODESICS 

Let (M, g) be a globally hyperbotie spacetime, and let t be the proper time 
funetion. 

(a) Show t(p, q) is finite V(p, q) E «. 
(b) Show that tp: J+ rp} ->- (0, CX)), defined by tpq = t(p, q), is eontinuous. 
(e) Show that V(p, q) E« there is a future-pointing timelike geodesie y from 

p to q such that L, = t(p, q). 

8.3.11 COLLAPSE THEOREMS 

Let (M,.It, F) be a relativistic model such that the Einstein field equation 
(Definition 4.1.1) holds and the matter stress-energy tensor obeys the dominant 
energy eondition at eaeh point in M. Suppose there is an imbedded, spacelike 
Cauehy surfaee such that the traee of the second fundamental form of the 
imbedding is everywhere less than some fixed negative number. Show the space
time is not eomplete. (Roughly, this says that ir the galaxies are now diverging 
there must have been a big bang.) 

8,4 Isometries and characterizations of 
gravitational fields 

How can one, starti ng from some intuitive physical picture, find an appro
priate spacetime model? How can one eharacterize a gravitational field 
intrinsically? In general, neither of these two related questions has a straight
forward answer. This section indicates the mai n ideas used to obtain and 
characterize the examples used in the text. Throughout the section: ~ M is 
the isometry group of (M, g) and Jt' e '!JMis asubgroup. For each x E M 
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the orbit of ;R through x is {y E MI there exists <p E;R such that .fox = y}. 
Each orbit of;R is a submanifold (Kobayashi-Nomizu [1]). 

8.4.1 MINKOWSKI SPACE 

Show (M, g) represents the trivial gravitational field iff (M, g) is simply con
nected, complete, and flat (cf. the Ambrose-Hicks theorem---e.g., in Wolf [I]; 
or use the results of Bishop-Goldberg sections 5.6-5.12). 

8.4.2 THE POINCARE GROUP 

(a) Let (M, g) be Minkowski space. Show ~M is a ten-dimensional Lie group 
with four connected components; this ~ M is called the Poincarl! group; 
it is often considered the most basic object in theoretical physics. 

(b) In (a), suppose x E M and let ~ = {C/> E ~ MI c/>x = xl. Show ~ is a six
dimensional Lie group; it is called the (H homogeneous ") Lorentz group. 

(c) Show the spacetime (M, g) is isometric to Minkowski space iff ~M is iso
morphic to the Poincare group. 

8.4.3 REMARKS 

We shall now mention some characterizations similar to Section 8.4.2c. The 
use of isometry groups corresponds to the physicist's concept of symmetry. 
A really detailed, realistic spacetime model normally has no symmetry: '§ M 
is the trivial group. But models simple enough to analyze explicitly usually 
have a nontrivial isometry group. The characterizations usually al so involve 
algebraic conditions on the Ricci or Einstein tensor. These eorrespond to 
assuming particular matter models and assuming the Einstein field equa
tion (cf. Chapters 3 and 4). The main trick required for the exercises below 
is the introduction of local coordinates adapted to group orbits, similar to 
the eoordinates adapted to an integrable distribution (ef. Bishop-Goldberg 
3.11 and 3.12). 

8.4.4 THE SIMPLEST EXAMPLE 

Let (N, h) be a 2-dimensional connected Lorentzian manifold. Suppose the 
isometry group contains a subgroup ~ isomorphic to the additive group IR, 
and suppose each orbit of ~ is one-dimensional and spacelike. 

(a) Show there exists a smooth function (Jl: IR -> (0, iX) such that (N, h) is 
loeally isometric to (1R2 , «(Jl2 0 u2)du1 0 du 1 - du2 0 du2). (Hint: use co
ordinates such that, locally, each orbit is a level hypersurface of u2 and con
sider the orthogonal trajectories to the orbits.) 

(b) Show that N is diffeomorphic either to 1R2 or to IR x [/1 or to [/1 x [/1. 

8.4.5 SIMPLE COSMOLOGICAL SPACETIMES 

Suppose that ~ M is isomorphic to the (6-dimensional Lie) isometry group of 
EucIidean 3-space and that each orbit of ~ M is 3-dimensional spacelike. Show 
(M, g) is locally isometrie to a simple cosmologieal spacetime. 
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8.4.6 SPHERICAL SYMMETRY 

Define (M, g) as spherical/y symmetric iff c§ M contains asubgroup .J'f with the 
following two properties: .J'f is isomorphic to the group [f'eJ3 of proper rotations 
of Euc\idean 3-space, and each orbit of.J'f is spacelike and at most 2-dimensional. 

(a) Show that the n an orbit diffeomorphic to the 2-sphere has the intrinsie 
geometry of a 2-sphere in Euc\idean space. 

(b) Show that then no orbit of.J'f is one-dimensional. 
(c) Show that each spacetime defined in Section 1.4 is sphericalIy symmetric. 
(d) Suppose (M, g) is Einstein-de Sitter spacetime and .J'f is one of the subgroups 

with the above properties. Show there are O-dimensional orbits, and that all 
these orbits Iie on one integral curve of 0 •• (Roughly: each such orbit is a 
"center of rotation.") 

(e) Suppose (M, g) is a normal Schwarzschild spacetime or a Schwarzschild 
black hole, and let .J'f be as aboveo Show there is no O-dimensional orbit 
(no "center"; in spherically symmetric models of stable stars one replaces 
part of a normal Schwarzschild spacetime with a different spacetime, using 
some appropriate matter model; then there is a timelike geodesic-the 
history of the center of the star--each point on which is a zero-dimensional 
orbit). 

(f) Show by an example that there exists a sphericalIy symmetric spacetime such 
that each orbit of .J'f is diffeomorphic to a projective plane. (This case is 
sometimes exc\uded by delinition.) 

(g) Show by an example there is a spacetime such that c§ M is isomorphic to 
[f'eJ3 but each orbit is 3-dimensional. (Hint: consider [f'eJ3 x IR = M.) 

8.4.7 SCHWARZSCHILD AND KRUSKAL SPACETIMES 

Let (M, g) be a Ricci-flat, spherically symmetric spacetime that is not flat. 

(a) Show (M, g) is 10calIy isometric to a Kruskal spacetime. 
(b) Give a glob,i1 version of (a). 

8.4.8 PLANE WAVES 

Suppose: (M, g) is Ricci flat but not flat; there are subgroups ~ J, such that 
.J'f => J; J is isomorphic to the additive group IR and has one-dimensional 
Iightlikc orbits; and .J'f is Abelian, 3-dimensional, and has 3-dimensional light
!ike orbits. (Despite their c\umsiness, the conditions on .J'f and J merely make 
precise the idea that we have a wave with plane wavefronts travelling at the 
speed of light.) 

(a) Show (M, g) is 10calIy isometric to a gravitational plane wave. 

(b) Suppose (M, g) is complete and diffeomorphic to IR'. Show (M, g) is a plane 
wave and c§ M is a Lie group with dimension ~ 5. 

8.4.9 STATlONARY AND STATlC SPACETIMES 

Suppose Z is an absolute stationary reference frame on M. Show: 

(a) "Ix E M, there is a coordinate neighborhood iJIf of x such that on iJIf Z is 
proportional to c. and 04gtl = O. 

(b) (M, g) is static iffVx we can lind such a coordinate neighborhood with the 
additional property that g4a = 0 Va. E (1,2, 3). 
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8.5 The Einstein field equation 

The exercises of this section state so me results on the Einstein field equa
tion. We emphasize the vacuum condition Ric = 0, interpreted in Section 4.2. 

8.5.1 THE CONSTRAINT EQVATIONS 

Let B be a 3-manifold, let ~: B -+ M be a spacelike imbedding, and let k be the 
second fundamental form of ~; write b = ~.g. Thus (B, b) is a Riemannian 

3-manifold. Denote its scalar curvature by b: B -+ ~ and let ii be the (I, 1)
tensor field on B physically equivalent to k via b. (a) Show that if (M, g) has 
zero Ricci tensor the triple (B, b, k) obeys the constraint equations: 

b = (trace ii)2 - trace [contraction ii 0 ii]; 

and 

div ii = detrace ii). 

Here the Levi-Civita connection of b is used to form the divergence div; and 

contraction k 0 ii has components L~=l ko"ko" in local coordinates. (b) Con
versely, suppose the constraint equations hold whenever ~ is such an imbedding. 
Show (M, g) is Ricci fiat. 

As the next exercise indicates, the constraint equations play for the 
equation Ric = 0 a role analogous to that played for Maxwell's equa
tion by the constraint equations of Theorem 3.11.1. 

8.5.2 THE INITIAL VALVE PROBLEM 

This exercise (ef. Bruhat [I]) states a "present determines the future" resuit, 
similar to those in Chapter 3, for the Einstein vacuum condition. For con
venience, we restrict attention to spacetimes that have a compact Cauchy sur
face. Let (B, b) be a Riemannian 3-manifold with B compact and orientable, 
k be a symmetric (0, 2)-tensor field on B. Suppose the triple (B, b, k) obeys the 
constraint equations (Section 8.5.1 a). 

(a) Show that 'tI sufficiently small a E (0, oo) there exists a Ricci fiat spacetime 
(M, g) that is the time deve(opment of (B, b, k) in the following sense. M = 
B x (- a, a); the map 13: B -+ M given by f3b = (b, 0) 'tIb E B is a spacelike im
bedding; b = f3*g; and k is the second fundamental form of 13. (b) Suppose such 
a sufficiently small a is given; show the spacetime equivalence class [(M, g)] is 
uniquely deterrnined. 

8.5.3 LINEARIZED EQVATIONS 

An enormous arnount of work has been done, especially in cosmology and in 
black hole theory, on comparatively simple linear equations related to the 
Einstein field equation in roughly the way the equation for the tangent plane to 
a surface in ~3 at a point is related to the equation for the surface. This exercise 
outlines some of the ideas involved in the case of the vacuum equations Ric = O. 
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8.5 The Einstein field equation 

(a) Suppose 0 < a < e and 'Vu E (a, e) we have a Lorentzian metric gu on 1R4• 

Assume that 'Vi,j E (1, ... ,4) the function gil: 1R4 x (a, e) -->- IR defined by 
gtj(x, u) = giolx, 0IX) is C"'. We may, and shall, regard (M, gu) as a 
spacetime 'Vu E (a, e). With b E (a, e), abbreviate gb by g. Note that h = 
'Ltl=l (ogll/oU)u=bdul @ du l is a symmetrie (0,2)-tensor field on 1R4; in
tuitively speaking, g + (u - b)h is a linear approximation to gu for Ib - ul 
sufficiently small. Show that if each spacetime (1R4, gu) is Ricci fiat, h obeys 
the following equation. 

gtl(hklllll - hklllll - hUlkl1 + hiilkli) = ° 
where we use the notation of Seetion 3.6.1. 

(b) Let (M, g) be a Rieci fiat spacetime, and let h be a symmetrie (0, 2)-tensor 
field on M. By definition, h obeys the vaeuum Einstein equation linearized 
about (M, g) iff h obeys the equation at the end of (a) in eaeh local eoordinate 
system. An example ean be eonstructed as follows. Let (M, gu) be the Kruskal 
spacetime of aetive mass u. By formally differentiating gu with re~peet to u, 
find an h on M which obeys the vaeuum Einstein equation linearized about 
(M, gl). 

In this case we do not really need the linear approximation gl + 
(u - l)h, sinee we have gu available. However, in applications it often 
happens that one can find many solutions h of the Iinearized vacuum 
equations without being able to find eorresponding eolleetions {(M, gu) I 
U E (a, e)} ("eurves in the space of Lorentzian metrics") explieitly. 
Then, given h, one should ask whether at least one eorresponding eurve 
exists. In certain cases-for example, when M has a compact Cauehy 
surfaee-an extremely elegant existenee result ean be stated and proved 
using appropriate infinite dimensional manifolds (ef. Fiseher-Marsden 
[I] and Monerief [I]). In this case the result is, roughly, that there is at 
least one curve for eaeh solution h iff (M, g) has no Killing veetor 
field other than the zero veetor field. 

8.5.4 GAUGE TRANSFORMATIONS 

In Section 8.5.3a, let s: 1R4 x (a, e) -->- 1R4 be a Ca) map such that Vu E (a, e) 
su: 1R4 -->- 1R4 defined by su(x) = s(x, u) is a diffeomorphism, with Sb the identity. 
Thus with gu' = Su ·gu, (IR\ gu') is a Ricei fiat spacetime Vu E (a, e). (a) Show 
there is a unique vector field V on M such that df( V) = [aU 0 su)/ou]u= b V 
funetion f on M. (b) Defining h' by analogy with Seetion 8.5.3a, show h' = 
h + LI' g, where LI' is the Lie derivative. (e) In Seetion 8.5.3b, let V be a veetor 
field on M and define h' = h + L"g. Show h' obeys the vaeuum Einstein equa
tion Iinearized about (M, g) iff h does. Here h' is defined as the transform of h 
under the gauge transformation determined by V. In view of (b) above one regards 
h' and h as equivalent: they differ merely via diffeomorphisms. 

8.5.5 VARIATIONAL PRINCIPLE 

Let (1R4, g) be a spacetime. Regarding the eomponents g( 0" oI) as fields to be 
varied, show the Einstein vacuum field equation Ric = 0 is equivalent to the 
Euler-Lagrange equations for the action J sn, where S is the scalar curvature 
and n is the metric volume element. 
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8.5.6 

Generalize Seetions 8.5.1 to 8.5.5 to the ease of relativistie models (M, .Jt, F) 
whieh obey the Einstein field equation and Maxwell's equation with vlt a eom
plete matter vaeuum matter mode\. (ef. Misner-Thorne-Wheeler [I] for the 
generalization of Seetion 8.5.5.) 

8.6 Gases 
We oudine some of the geometric methods used when discussing gases, in 

particular photon gases. Throughout the section: il: TM - M is the pro
jection, K: TM _ IR is the function of Section 5.0.5, 2+ e TM is the 

future light cone, 2 is the restriction of il to 2+, and T/x E M, A x is the 
natural volume element of ff'x + = 2+ n Mx as defined in Section 5.6. 

8.6.1 HORIZONTAL VECTOR FlELDS 

Let I: TM -... TM be the identity map. Thus we ean regard I as a veetor field I 
over the projeetion n (ef. Seetion 2.0). Similarly we regard the restrietion 10 of 
I to 2+ as a veetor field over 2. A veetor field H on TM is defined as horizontal 
iff (n * D)HI = 0 (ef. Bishop-Goldberg [I], Seetion 5.12). SimilarIy a veetor field 
H: 2+ -... T2+ is horizontal iff (2* D)H/o = O. Let H be a horizontal veetor 
field on TM. (a) Show that dK(H) = O. (b) Suppose v E 2+. Show H(v) is 
tangent to 2+. (e) Show there exists a unique horizontal veetor field G on TM 
such that n.G = J. (d) Show: if y is an integral eurve of G, n 0 y is a geodesie; 
if a: fff -... M is a geodesie, a.: fff -... TM is an integral eurve of G. G is defined 
as the geodesic spray. By (b) we may regard the restrietion of G to 2+ as a 
vector field L:.!e + ---+ T.!e +. F ol!owing physics terminology we wil! eal! L the 
Liouville operator on 2+. 

8.6.2 LOCAL UNIFORM BOUNDEDNESS 

Let F: 2+ -... [0, oo) be a funetion; thus F is Ca> (Seetion 0.0.4). Suppose T/x E M 
there exists an open neighborhood Ok'x e M of xsueh that, on 2- I Ok'x, sup/äN HLF/ < 
oo whenever: a is a I-form on Ok'x with ii: 2+ -...[R the eorresponding funetion; 
N is a positive integer; H is a horizontal veetor field on 2 -10k' x whieh is 2 re
lated to some veetor field on Ok'x; L is a nonnegative integer; and HL denotes 
the Lth derivative-that is, HOF = F, HIF = dF(H), H2F = {d[dF(H)])(H), 
and so on. (a) Prove F is a photon gas. (b) Show F is eonserved on M iff LF = 0, 
where L is the Liouville operator on .!e + • (e) Suppase F is eonserved on M. 
Show the partide number density N of F obeys div N = 0 and the stress-energy 
tensor T of F obeys div T = O. [Hint: suppase x E M; the easiest way to show 
(d iv N)(x) = 0 is to introduee in a neighborhood of x eoordinates normal at 
x and eorresponding eoordinates in a neighborhood of Mx e TM.] 

8.6.3 CONSERVED PHOTON GASES 

This exereise outlines the motivatian for the physieal interpretation of the eon
servation eondilion in Seetion 5.7. (a) Show there is a unique 3-form A on 2+ 
such that: i(H)A = 0 T/ horizontal veetor field H on 2+ ; and A(X, Y, Z) = 
Ax(X, Y, Z)T/ X, Y, Z E 2x +, T/x E M, where Ax is the natural volume element of 
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2 x +, X is X regarded as a veetor field on 2x + (ef. Exercise O.O.lOa), and similarly 
for Y, Z. 

(b) Define the 7-form w = A /\ (s·n) on 2+, where A is defined in (~), 

and n is the Lorentzian volume element of M. Show w is avolume element on 
2+ with the following property. If w' is any 7-form on TM whose pullbaek to 
2+ e TM equals w then w' /\ dK = g·(d8 /\ d8 /\ d8 /\ dO), where 0 is the 
eanonieal I-form on the eotangent bundle T* M (Bishop-Goldberg [I J, Section 
6.3) and g: TM -,>- T· M is the bundle isomorphism that sends eaeh veetor to its 
physieallyequivalent I-form. (e) Let LL be the Lie derivative with respeet to the 
Liouville operator L. In (b) show Liouville's theorem: LLw = O. Show 
LL[i(L)w J = O. 

(d) Let.Ai e 2+ be an imbedded 6-submanifold whose dosure is an integra
tion region interseeted at most onee by each integral eurve of L, and let F be 
a photon gas on M. Then IL+- Fi(L)wl is defined as the total number of photons 
iII (" crossing ") .Ai. Show this definition is eonsistent with the definition in 
Exereise 5.7.7b. Use various speeial choiees of.Ai to motivate the various inter
pretations given for F in Section 5.5. (e) Give a heuristie argument for our 
interpretations in Exereise 5.7.7a along the following lines. Under the flow of 
the LiouvilIe operator no 6-volume gets lost (8.6.3e); therefore if no photons 
get lost no photons per un it 6-volume get lost (ef. Ehlers [I]). 

8.6.4 GASES WITH NONZERO REST-MASS 

Let (M, Jt, F) be a relativistie model. (a) Let K: ~ -,>- M be a partide with rest
mass m of 0 and electric charge e. Suppose K obeys the Lorentz world-foree 
law with respeet to F. Show K.: ~ -+ TM is an integral eurve of a veetor field 
X on TM uniquely defined by II.X = I, (II· D)xl = (e/m)(F 0 II)/, where we 
use the notation of Section 3.0.3 and of Exercise 8.6.1. (b) In (a), show X is a 
second-order differential equation, is not in general a spray, (ef. Dombrowski 
[I]), and obeys Lx[g·(dO /\ dO /\ dO /\ dO)] = 0 (ef. Exereise 8.6.3). (c) Generalize 
our diseus~ion of a photon gas to get a model that deseribes a large collection 
of partides all having the same rest-mass and eleetrie eharge. 
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9 Optional exercises: Newtonian 
analogues 

9.0 Review and notation 
Throughout this chapter the notation in Sections 0.1.4 to 0.1. 10 wiII be 
used. Thus T = ~ is the Newtonian time axis, and Newtonian space is ~3, 
supplied with all its structures. In our (oversimplified) version of Newtonian 
physics it becomes consistent to regard 19th century electromagnetic theory 
as part of Newtonian physics; for brevity we shall do so. The reader interested 
in Newtonian physics per se or in its history should consult the references 
given in Section 0.1.5; the emphasis here will be on the intuition it supplies. 

9.0.1 Some physics notation 
A Ca:> time-dependent scalar field q,: ~3 x T---+ ~ will be written q,(x, t) or 
simply q,. The summation eonvention, for Greek indiees a, p, ... E (1,2,3), 
will be used throughout. J(x, t) == J == Ul,P,P) == rea == pex + pey + pez, 

with ja = ja(x, t) Va E (I, 2,3), denotes a time-dependent vector field. Here 
el = ex is the unit vector in the u1 = x direction of ~3, and so on. Similarly, 
with q, as above, (fPq,jox·oxy)e. 0 ey is the fime-dependent tensor field 
whose components in the standard basis are {02q,joX·oxY }. When integrating: 

d 3x denotes an ~3 volume element, dÄ an area element, di a line element 
(ef. Alonso-Finn [1]). 

9.0.2 Naive spacetimes 
To faeiIitate comparisons of naive Newtonian physics and relativity, we 
shall always work with a spacetime (~\ g), naive in the sense that all the 
distinguished structures of ~4 are here implied. 04 will always be timelike 
future pointing; often 04 will be unit norm. The summation convention 
(Seetion 3.6.1) for Latin indiees will be used throughout. 
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9.1 Maxwell's equations 

9.0.3 1R3 and 1R4 

Let rP and j be as in Seetion 9.0.1. rP ean and will be regarded as a funetion 
on the naive spacetime (Seetion 9.0.2), with TUle rPw = rP(ulw, u2w, u3w, u4w) 
VWE 1R4; similarly for eaehr. Thusj =roa ean and will be regarded as a 
veetor field on 1R4 with the speeial property du4(j) = O. Conversely, suppose 
J is a veetor field on 1R4. Then J = JIOh where]l: 1R4 ~ IR Vi E (1, ... ,4). 
J4 ean and will be regarded as a time-dependent sealar field J4(X, t); simi
larly j = (Jl, J2, J3) is a time-dependent veetor field. A stress-energy tensor 
f = T'Jo, @ oJ thus beeomes a time-dependent sealar field T 44(x, t), two 
equal time-dependent veetor fields p4ea = paea, and a time-dependent 
tensor field Pllea @ ell' And so on. 

9.0.4 GALILEAN INVARIANCE 

Show Newton's law fo = mi (Section 0.1.6) is invariant under the Galilean 
ve/ocity trans/ormations x ~ x + vt, F ~ F, t ~ t, f ~ f + vt, m ~ m; V E 1R3. 
(These transformations do not carry 1R3 into itself pointwise; for example 
origin ~ vt. It is mainly by ignoring these transformations that we are here 
oversimplifying Newtonian physics.) 

9.1 Maxwell's equations 

9.1.0 Conventions 

Throughout this seetion: the eonventions in Seetion 9.0 hold; (1R4, g) is 

Minkowski space; E and jj will be interpreted as the Newtonian eleetrie 
and magnetie fields; F = 2E1dul /\ du4 + ... 2B 3 dul /\ du2 is a 2-form on 

1R4 related to i; and jj in the usual way (Exereise 3.4.5); a(x, t) is the New
toni an eleetric eharge density (eharge per unit volume); j(x, t) is the New
tonian e1eetric eurrent density (eharge per unit area per unit time; ef. Alonso
Finn [I]). Thus 04 is a referenee frame and J = ]I Oj = raa + a 04 is a 
veetor field on (1R4, g). 

9.1.1 THE CONSERVATlON CONDITION 

Show that the divergence of J vanishes iff the Newtonian equation of continuity 
au/at + V.j = 0 holds. 

9.1.2 EQUATIONS FOR jj 

Show dF = 0 iff the following two cJassical Maxweil equations hold: V. Ii = 0 
and f x E + ali/at = o. 

9.1.3 EQUATIONS FOR E 
Show div F = 41TJ iff the other two dassical Maxweil equations hold-that is, 
V·E = 471U and V x li - oE/ot = 471j. 
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9 Optional exereises: Newtonian analogues 

9.1.4 CHARGE CONSERVATION 

Suppose the two classical Maxwell's equations (Seetion 9.1.3) hold. Give two 

proofs that o%t + V.j = 0, one using only Newtonian physics, the other using 
Seetions 9.1.3 and 9.1.1. 

9.1.5 INTEGRATIaN REGIONS 

Let ';va = .w" UP= 1 tlIt UT= 1 fCj be the standard eylinder (Seetion 3.0.1), 9 e IR' 
be a spaee-seetion, fC e tlI3 be topologically trivial. In this exereise you will not 
need to give proofs, just to draw some 1R3 and IR' pictures ... Show": 

(a) tlI1 is the open unit ball e 1R3 at t = - l. 
(b) fC1 is the un it sphere e 1R3 at t = - l. 
(e) .w" is the history of tlI1 during (-1,1). 
(d) tlI3 is the history of fC1 during (-1, 1). 
(e) If 9 is contained in a level hypersurfaee of u' then P} is an oriented, topo

logically trivial, relatively eompaet, open region p} e 1R3 with smooth 
oriented boundary oP} diffeomorphie to [/'2. 

(f) If fC is chosen appropriately it is the history during (a, b) e T of an oriented, 
imbedded, relatively eompaet, 2-submanifold A e 1R3 with smooth oriented 
boundary oA diffeomorphie to [/'1, 

9.1.6 MAXWELL'S EQUATIONS IN INTEGRAL FORM 

Proposition 3.7.5 has many Newtonian analogues. We here state the simplest 
ones. In eaeh ease you are asked to give two proofs, one Newtonian and one 
using relativistie results, so that the various facets of Propositions 3.7.5a to e 
will become c1ear. Throughout the exercise; 'ii' 10 2J and A are as in Section 9.1.5b, 
e, and f; tE T; and (a, b) e T. Thus Q(~) = f9 od3x is the Newtonian charge 
in ~ regarded as a subset of Euclidean 3-spaee. Show: 

(a) The eontinuity equation o%t + V.j = 0 holds iff (d/dt) f9 od3x = 

fC9 j·dÄVt, ~ iff f9 Od3X]:~:!:~ = f: dt fiJ9j.dÄV!'i, (a, b). (ef. Proposition 
3.7.5e; intuilively: if eharge appears or disappears in an 1R3 region it must 
eross the boundary.) 

(b) V' E = 41TO iff 41TQ(~) = fiJ9 E·dA V~, t. (ef. Proposition 3.7.5a; intuitively: 
Gauss's law that the total eharge in an 1R3 region generates an eleetric field 
whose flux through the boundary provides a measure of the eharge.) 

(e) V.jj = 0 iff fiJ9 jj·dj{ = OVt,~. (ef. Proposition 3.7.5b; eomparing this 
result and Seetion 9.1.2 with (b), one sees explieitIy the sense in which dF = 0 
eorresponds to no magnetie eharge,) 

(d) V x E+ojj/ot=OiffteAE.dl= -(d/dt)Ljj·d;{VA,tiff.f:dttoAE.di= 
- L jj·dÄ]I~~ VA, (a, b). (ef. Proposition 3.7.5b; intuitively: Faraday's law 
of magnetie induetion that a time-dependent magnetie flux through a sur
faee generates an electromotive force in the bounding loop.) 

(e) V x jj - oE/ot = 41Tj iff teA jj.dr= 41T fAj·dj{ + (d/dt)fA E·dÄVA, t. (ef. 
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Proposition 3. 7.5a; intuilively: Maxwell's displacement eurrent hypothesis 
that a time-dependent electric field in, say, a eapacitor gap acts as an extra 
current.) 



9.2 Partides 

9.l.7 A GENERALlZATION 

Find a causal box "': %0 -+ ~i. such that "'%0 corresponds to part of the history 
of a solid ball in ~3 which expands at half the speed of light. State, prove, and 
heuristically interpret a Newtonian analogue of Proposition 3.7.5c in this case. 

9.1.8 PLANE WAVES 

Show directly that the Newtonian analogues of the plane waves (ExampIe 3.7.3)
namely, E = f(z - t)ex and ii = f(z - t)ey-obey the four dassicaI Maxweil 
equations (Sections 9.1.2 to 9.1.3) with a = 0 = j. 

9.1.9 STRESS-ENERGY 

Let E be the stress-energy tensor of F. 
Using the conventions in Section 9.0.3 show E becomes: the Newtonian 

eIectromagnetic energy density U = (I/8,,)(\E\2 + \ii\2); the Poynting veetor S = 
(l/4,,)(E x jj); and the Maxweil stress tensor i, whose components are 

ta~ = - 41" [PE~ + BaB~ - loa~(\E\2 + \11\2)]. 

9.1.10 CONSERVATION LAWS 

In Section 9.1.9, suppose the dassicaI Maxweil equations (Sections 9.1.2 and 
9.1.3) hoId with a = 0 =]. Use two different computations-one Newtonian 
and one invoIving the relativistic result div E = O--to show: (a) oU/ot = 
-V. S (energy conservation); (b) oS/OI = -V'f(momentum conservation) (ef. 
AIonso-Finn [I)). 

9.1.11 INITIAL VALVE THEOREM 

Use the four classical Maxweil equations to prove the Newtonian version of 
Theorem 3.11.1. Give a second proof by specializing the theorem itself appro
priately. 

9.1.12 FIELDS OF A POINT CHARGE 

(a) Show that the fields (Example 3.7.6) of a point charge are ii = 0 and E = 
- eV(\/lij). 

(b) Show directly that these fields obey the dassical Maxweil equations with 
a = 0 = j for Iil ;f. O. 

9.2 Partides 

9.2.0 Conventions 
Throughout this section the conventions of Sections 0.1.4 to 0.1.10, 9.0, and 
9.1.0 hold. (y, m, e) wilI be a partide with rest-mass m -=1= 0 and with 
y: tff -+ 1R4. Define ~ e T, the Newtonian time interval for y, by ~ = u4ytff. 
Define r: ~ -+ 1R3 by: ret) = (U1Y(U4y)-lt, u2Y(U4y)-lt, u3Y(U4y)-lt), Vt E fF. 
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9 Optional exereises: Newtonian analogues 

9.2.1 NEWTONIAN PARnCLES 

Show (1, m) is a Newtonian point partide (Seetion 0.1.6) and If(/)1 < speed of 
light Vt E:;;: 

9.2.2 CONsERvAnoN LAWS 

Let pl' be a eonsistent partide set (ef. 3.8). Suppose eaeh partide in pl' has non
zero restmass. Consider a eollision event such that L1D m = Lout m (Newtonian 
eonservation of inertial mass). Express the eonsisteney eondition (Definition 
3.8.4) in the form: 

t L mlfl 2 = t L mlfl 2 + RC (Newtonian energy eonservation); 
In out 

(Newtonian momentum eonservation); 
In out 

where "Re" denotes "relativistie eorreelion terms," small if Ifl « 1 for eaeh 
partide involved. 

9.2.3 ENERGY AND 3-MOMENTUM 

For U E ef, let Y.u = e 04YU + P be the usual deeomposition into energy and 3-
momentum (ef. Seetion 3.1.2). With RC as in 9.2.2, show: 

mT . 
p +-+ (1 _ If12)l/2 = mT + RC. 

9.2.3 LORENTZ WORLD-FORCE LAW 

(a) Show (y, m, e) obeys the Lorentz world-foree law with respeet to F iff (T, m) 
obeys the elassieal Lorentz foree law-namely, mf = eel + f x jj) 0 T. 

(b) Show that then (d/dlmmlfI 2 ] = eE·f. (Give two proofs, one Newtonian 
and one that uses relativity. Intuitively this equation says that the rate of 
ehange of the Newtonian kinetie energy is the power eE) the eleetrie field 
imparts to the partide.) 

9.2.5 ENERGY CONSERVAnON 

Suppose jj = 0, oE/oI = 0, and Maxwell's equations hold. In both part s of 
this exercise you are asked to give two proofs-one Newtonian and one that 
uses relativity. Show: 

(a) There is a funetion '1': 1R3 -+ IR such that E = - Vp. 
(b) If the dassieal Lorentz foree law holds, then tmlfl 2 + ep 0 T is a eonstant 

funetion on:;;: (This is the energy conservation law for a partide in Newtonian 
eleetrostaties.) 

9.2.6 SPIRALLlNG 

Translate all of proposition 3.8.2 into Newtonian notation, starti ng from the 
classical Lorentz force law (Seetion 9.2.4). You may as sume Ifl « 1 Vt E g; for 
brevity. 
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9.3 Gravity 

9.2.7 COLLISIONS 

Suppose two Newtonian point partides (f, m) and (f', m') eollide. Suppose two 
partides are outgoing, eaeh having inertial mass (m + m')j2. Assume the Re 
terms in Seetion 9.2.2 are negligible. State what else needs to be known about 
the outgoing partides in order to determine both outgoing momenta unique\y 
from the eollision eonservation laws. [Hints: two appropriately chosen angles 
ean be used; it is simplest to work in the center of mass frame (Exereise 3.8.8).] 

9.3 Gravity 

9.3.0 Conventions 
Throughout this section the eonventions in Section 9.0 hold. We will use a 
naive spacetime (1R4, g) (Section 9.0.2) with g = -(I + 2ef»du4 ® du4 + 
(J - 2ef» L~=l dua ® dua, where ef>: 1R3 -+ IR will be interpreted as a time
independent Newtonian gravitational potential (ef. Section 0.1.7 and the 
fine-print remarks in Section 1.3). We shall regard ef> as so small compared 
to unity that all quadratic terms, such as ef>2, ef>(oef>/oxa), ef>(02ef>/OXa ox8), 
and so on, are negligible. 

9.3.1 TIME INDEPENDENCE 

(a) Show 04 is a timelike Killing veetor field and (1R4, g) is static. 
(b) Show that, in the approximation indieated above, Z = (1 - </» 04 is a 

referenee frame. (The observers in Z regard themselves as "at rest with 
respeet to the sourees of the gravitational field"; ef. Seetion 7.2.) 

(e) Show that in the approximation indieated a suitable diffeomorphism of a 
normal Sehwarzsehild spacetime gives a spacetime of the form of Seetion 
9.3.0. 

9.3.2 CURVATURE AND TIDES 

Let il be the (0, 4)-tensor field physieally equivalent to the eurvature tensor 
(Section 1.0.2) of (IR·, gl. 
(a) Show, using Seetions 9.0.3 and 9.3.0, that R corresponds to 

-(o2</>jox"oxV)i" ~ ev. 
the tidal foree tensor of Newtonian physies (ef. Seetion 4.2). 

(b) Show Ric (04, (4) = V2 </> (ef. Seetion 4.2). 
(e) Show that, in the sense of the eonventions in Seetion 9.0.3, the Einstein 

tensor G beeomes 2V2</>. 

9.3.3 CONSERVATION OF ENERGY 

Let (y, m, e) and (f, m) be as in Section 9.2.0. Suppose \,1(t)\ « 1 Vt E tf. 

(a) Show that to first order of an appropriate formaI approximation seheme, 
y is a geodesie iff the Newtonian equation for motion in a gravitational field, 
ji = -(V</» 0 f, holds. 
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9 üptional exercises: Newtonian analogues 

(b) Show from Section 9.3.1 and independently from a Newtonian computation 
that then lmlfl2 + mt/> 0 f = constant. 

(e) Generalize from (b) and Section 9.2.5b to show that under appropriate 
assumptions and approximations lmlfl2 + eg> 0 f + m4> 0 f = constant. The 
constant is interpreted as the total Newtonian energy of the partide. 

(d) Let '\: tff -7 IR be a freely falling photon. Deline a function e over ,\ by the 
following condition: \;ju E tff, eu = photon energy observed by the instan
taneous observer ('\u, Z'\u), Z as in Section 9.3.1. Show e(l + t/> 0 1) = 
constant, the" Newtonian" equation for how the energy (and thus the fre
quency) of a photon changes as it dimbs up or falls down in a gravitational 
lieid. 
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Glossary of symbols 

E 

v 
o 
e 

=> 

means "belonging to" or "is a member of" 

means "for every" or (very rarely) "for all" 

denotes "the empty set" 

means "a subset of" or "is contained in" 

means "implies" 

means "is equivalent to" or "if and only if" 

means "is approximately equal to" 

For two real numbers a and b, a « b means "a is much less than b." 

For two points x and y in a spacetime, x « y means "x chronologically 
precedes y" (see Section 5.0) and x :-::; y means "x causally precedes y" (also 
see Section 5.0). 

As usual, "if and only if" is abbreviated to "ifL" 
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Index of basic notations 

(A)-(L) below summarize some of the general eonventions in our notationai 
seheme. A list of the basie notations then follows; the Latin eharaeters preeede 
the Greek ones, and the numbers at the end of eaeh item refer to the seetions in 
whieh they first oeeur. 

(A) Boldfaee eharaeters, e.g., G, n, P, 0 are reserved for tensor fields on 
manifolds; in partieular, boldfaee Greek eharaeters, e.g. n, w, A, are reserved for 
differential forms. 

(B) j and g are generie symbols for real-valued funetions. 
(C) x, y, and z are generic symbols for points in manifolds. 
(D) y and ~ are generie symbols for euryes in manifolds; their tangent veetor 

fields are denoted by Y. and ~ •. 
(E) a, b, c, and d usually denote real numbers. 
(F) d denotes exterior derivative, e.g., dj, dw; /I denotes exterior produet, 

e.g., w1 /I w2 • 

(G) Charaeters with arrows above them, e.g. X, B, denote veetorial quantities 
in Newtonian physies. 

(H) If S is an (r, s) tensor field in a spacetime, then S will generically denote 
either the purely (r + s )-fold eontravariant tensor field or the purely (r + s )-fold 
eovariant tensor field physieally equivalent to S. If S is of type (2, 0) or (0, 2), then 
S denotes the (I, I) tensor field physieally equivalent to S. 

(I) X, Y, Z are reserved for veetors in a tangent space of a spacetime; Y is 
usually reserved for lightlike veetors. 

(J) (x, X) and (z, Z) are generic symbols for instantaneous observers in a 
spacetime; in Chapter 6, (z, Z) is used exelusively to denote the aetual observer. 

(K) 9,:F denote intervals in the real line. 
(L) If A is a subset of a manifold, A - denotes it elosure, oA its boundary, and 

AO its interior. 

A intrinsie eross-seetional area of a galaxy (6.1.6) 
AQ (I, 1) tensor field indueed by a referenee frame Q (2.3) 
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Index of basic notations 

E 
e 
e 
expx 
F 
F 
F 
Fz 
f 

G 
<;gM 
g 
h 

h 
i(C) 

J 

J 
K 
Kx 

k 

L 
2+ 
~+ 

Lx 
t 

~,g) } 
(M,g, D) 

.It 
Mx 
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world acceleration of the observer y (2.1) 
blackbody constant (5.5.4) 
Schwarzschild black hole (1.4.2) (7.3) 
Levi-Civita connection (0.0.8) 
stress-energy tensor of a relativistic model (3.10) 
space-section (3.0.1) 
distance within a level hypersurface of Einstein-de Sitter spacetime 
(6.3.3) 
a special function (6.3.4) 
ith coordinate vector field in Euclidean space (0.0.9) 
area-distance (6.1.6) 
luminosity distance (6.1.6) 
divergence (3.0.2) (3.6.2) 
total energy of a particle in a normal Schwarzschild spacetime 
(7.3.8) 
stress-energy tensor, usually of an electromagnetic field (3.3) (3.7) 
electric charge (3.1.3) 
energy of a particle relative to an observer (3.1.2) 
exponential map at x E M (0.0.8) 
Fermi-Walker connection on a curve (2.2) 
photon gas (5.7) 
electromagnetic field (3.4) 
photon distribution function for (z, Z) (5.5.1) 
frequency relative to an observer (5.1.3) 
Einstein tensor (1.0.2) (4.0) 
isometry group of M (0.0.13) 
metric tensor (0.0.7), usually of a spacetime (1.3) 
Planck's constant (5.1.3); on rare oecasions al so a real-valued 
function 
standard metric on the unit sphere (0.0.9) 
interior product with respeet to the tensor field C (3.0.1) (3.6.2) 
total angular momentum of a particle in a normal Schwarzschild 
spacetime (7.3.8) 
charge-current density (3.5.1) 
Kruskal spacetime (7.5) 
generator of rotations on the unit sphere around the x-axis (7.0) 
Boltzrnann's constant (5.5.4); on rare occasions also a real-valued 
function 
absolute luminosity (5.5.5) 
future lightcone in the tangent bundle of a spacetime (5.6) 
future lightcone in the tangent space Mx (1.2) 
Lie derivative with respeet to the vector field X (0.0.5) 
apparent luminosity (5.5.5) 

spacetime (1.3) 

matter model (3.5) 
tangent space to M at x (0.0.4) 



(M,.It, F) 
(M,.It, z) 
m 
ni 
(m, e, P, 1) 

N 
(!J3 

P 
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Pz 
(P,1) 

P 
P 
Q 
R 

R 
R 
~ 
~n 

Ric 
r 
-t 

-t(x, z) 
S 
[I' 

S 
g>n 

,<;/'z 

T 
9'" 
T 

T 
9'"x 
TM 

tH 
U 

w 
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Index of basic notations 

relativistic model (3.5) 
cosmological model (6.2.5) 
rest-mass of a partide (3.1) 
active mass of a Schwarzschild spacetime (1.4.2) 
partide How (3.2.4) 
normal Schwarzschild spacetime (1.4.2) (7.3) 
A group isomorphic to the rotation group of Eudidean 3-space 
(2.1. 7) 
Planck function (5.5.4) 
energy-momentum of a partide How (3.2) 
a finite collection of partides (3.8) 
direction-energy space of (z, Z) (5.5) 
partide How (3.2) 
pressure of a quasi-gas or perfect Huid (3.15) 
3-momentum of a partide relative to an observer (3.1.2) 
referenee frame (2.3) 
coefficient of the metric tensor of a simple cosmological spacetime 
(1.4.3) 
an instantaneous observer's local rest space (2.1.4) 
curvature tensor (1.0.2) 
real number field (0.0.1) 
Eudidean n-space (0.0.9) 
Ricci tensor (1.0.2) 
function canonically defined on Schwarzschild spacetimes (1.4.2) 
frequency ratio (5.4) 
cosmological frequency ratio (6.0.7) 
energy spectrum of a photon distribution function (5.5.3) 
auxiliary 2-sphere (6.3.5) 
scalar curvature (1.0.2) 
un it sphere in Eudidean (n + 1)-space (0.0.9) 
eelestial sphere of (z, Z) (5.1.3) 
an instantaneous observer's local time axis (2.1.4) 
timelike vectors in the tangent bundle of a spacetime (1.2) 
temperature of a Planck function (5.5.4) 
stress-energy tensor, usually of a partide How (3.3) (3.5) 
timelike vectors in the tangent space Mx (1.2) 
tangent bundle of the manifold M (0.0.4) 
a special coordinate function on Schwarzschild spacetimes (1.4.2) 
predicted Hubble time (6.3.3) 
empirical Hubble time (6.1.7) 
total energy density of a photon distribution function relative to an 
observer (5.5.3) 
ith coordinate function in Eudidean space (0.0.9) 
observed recession velocity (6.1.5) 
neighbor of an observer in a referenee frame (2.3) 
comoving referenee frame (2.3.6) (6.2.3), but sometimes a general 
referenee frame 
ring of integers (0.0.1) 
positive integers (5.6) 
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(z, Z) 
;t: 

(y, m, e) 
l1 
l1Y 

o , 
'7 

.11" 
A 
[A] 
A 
p. 

Il 
1Cz 

p 
{rot} 
{ro/} 
n 
D 
{D/} 
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instantaneous observer (2.1.3) 
cosmological redshift (6.0.7) (6.1.5) 
particle of rest-mass m and electric charge e (3.1.3) 
(7.4.2) 
integration region in the auxiliary 2-sphere determined by a galaxy 
(6.3.6) 
auxiliary (distance) function (6.0.12) 
standard volume element of Y" (0.0.9) 
world density of a particle fiow (3.2) 
volume element in .!l'" + (5.6) 
photon, usually freely falling (5.1.2) 
light signal containing the freely falling photon A (5.0.2) (5.2) 
wavelength relative to an observer (5.1.3) 
constant associated with Schwarzschild spacetimes (1.4.2) and 
Kruskal spacetimes (7.5) 
canonical projection of the tangent bundle (0.0.4) 
natural volume element on Pz (5.5.1) 
energy density of a quasi-gas or perfect fiuid (3.15) 
local basis of I-forms (1.0.3) 
connection forms (1.0.3) 
solid angle (5.5.1); also, apparent size of a galaxy (6.1.6) 
metric volume element of a spacetime (3.0.1) 
curvature forms (1.0.3) 



Index 

Definitions are indicated by boldface. 

.. Aberration" ,46, 132 
Absolute luminosity, 146 
ofg~axy,212,214,215 

Acceleration. 38, 253 
Active mass, 30,218,237 
Actualobserver, 170, 173, 179 
Adjustable parameters. 182 
Alexandrov 

basis.251 
topology, 257 

Amplitude 
of electromagnetic wave, 84 
of gravilalional plane wave, 243 

Apparent luminosity, 146,169,214 
Apparent luminosity in the visible, 147 
Apparent size, 147 
Approaching the big bang, 161 
Appropriate matter equations, 102- 103. 

112 
Area-distance. 171, 185 
Area-radius, 224, 229 
Associated orthogonal decomposition, of 

instantaneous observer, 45 
At rest, 139, 146, 170, 173, 180,214 

observer, in stationary spacetime. 219 
.. Atomic c1ock" , 53 
Average world velocity, 94 

Baryon number, 68 
Basis, of a vector space, 2 

dual,5 
ordered, 2 
orthonormal,2 

Bending of light, see solar system 
Bianchi identity, 79 
Big bang, 28, 163 
Blackbody constant. 145, 156 
Blackbody radiation, 145 
Black hole. 7, 218, 237-242 

Cygnus X I, as a candidate for, 241 
Schwarzschild. 30 

Boundary 
manifolds of standard cylinder, 63 
of aset, I 

Brouwer's fixed point theorem. 105 

Cambridge catalogue of radio sources. 171 
CJ\Jchy ,urface, see spacetime 
Causal 

box, 63, 269 
character,20-24 
curve, 22 
I-form, 22 
vector, 20, 24 
vector field, 22 

Causality relation, 124, 257 
conformal invariance of, 125,202 
in Einstein-de Sitter spacetime, 166-167 

Causally continuous spacetime, .lee spacetime 
Causal past, 124 

in Einstein-de Sitter spacetime, 165 
Celestial sphere, 130 
Center of mass frame, 94 
Charge-current density, 74 

electric charge of. 86 
of matter model, 77 
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Index 

Chronological 
future, 210 
past, 124 

Chronologically follows, 125 
Chronologically precedes, 124 
Chronology condition, see spacetime 
Chronology relation, 124, 257 

confonnal invariance of, 125, 202 
in Einstein-de Sitterspacetime, 166-167 

Closure of aset, I 
Collision event, 92-95 

particIe created in, 92 
particIe destroyed in, 92 

Collision-free superpositions, 104 
Comoving instantaneous observer, 43 
Comoving observer, 43, 57 
Comoving referenee frame 

in cosmological modeis, 179- 181 
in dust, 103 
in Einstein-de Sitter spacetime,33, 57 ,160 
in perfect !luid, 108 

Complete 
matter vacuum, 104 
Riemannian manifold, 5, 28 
semi-Riemannian manifold, 5, 28 
vacuum, 104 

Complete spacetime, see spacetime 
Components 

of matter modeis, 104 
of superpositions, 104 
of tensors, 78 

Conformai 
diffeomorphism, 131 
spacetimes, 87 

Conformally invariant, 125 
Connection 

compatabilityof, with a metric, 4 
fonns, 18 
induced,38 
of a metric, 4 
over a map, 37 
symmetry of, 4 

Conservation 
of charge, 268 
of electric charge at collision, 92 
of energy, 269, 270- 271 
of energy in special relativity, 96-97 
of energy-momentum at collision, 92 
of momentum, 269, 270 
of photons, 211 
of total energy, 97 

Conservation law for vector fields, 64-65 
differentiaI. 64 
integraI. 64 
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.. Conservation" of energy-momentum, 
96-98 

differential lawof, 97 
Conserved 

photon gas, 156 
world density of particIe !low, 69 

Consistency condition of time 
measurement, 137 

Consistent particIe set, 92 
average world velocity of, at collision 

event, 94 
center of mass frame of. at collision 

event, 94 
conservation laws of. 92 

Constants of motion, 129, 225 
Constraint equations, 98, 262 
Convexity, of causal regions, 26 
Coordinate function, 5 
Cosmic rays, 175 
Cosmological,l64 
Cosmological constant, 177 
Cosmological frequency ratio, 163, 186, 

194 
Cosmological model, 176-184,180 

automorphism of. 185 
electromagnetic field in, 179,208 
comoving reference frame in, 179 
interpretation rule for, 179 
intuitive diseussion of. 176- 178 
mattermodel in. 159, 178, 197-201,203 
quantum effects on, 210 

Cosmological nucIeosynthesis, 206 
.. Cosmological principle", 181 
Cosmological redshift, 164 

observed, 170 
Cosmological time, 161 

in simple cosmological model, 200 
Cosmology, 110, 159-215 

data of. 168- 175 
nonquantum general relativistic, 179 
stress-energy tensor in, 174 

Cou10mb foree, 88 
Crab nebula, 218 

pulsar in, 218 
Curvature, 18 

fonn, 19 
infinitesimal and negligible, 44-45 
operator, 18 
Ricci, 18, 114ff. 254 
scalar, 18 
tensor, 18 

Curve,4 
endpoint of causal, 92 
future-pointing causal, 27 



inextendible. 4 
orientat ion-preserving reparametrization 

of. 4 
past-pointing causal, 27 
posilive affine reparametrizalion of, 4 
reparametrization of, 4 

Cygnus X I, see black hole 

Decay, 93 
Deceleration parameter, 184, 190 
Density 

charge-current.74 
energy, 72, 108 
energy-momentum, 74 
world. 66 

de Rham decomposition theorem. 122 
Derivation,37 
de Sitter. W., 32 
Deuterium, 206 
Diffeomorphism.3 

conformaI. 131 
Differential form, sel' form 
Direction-energy space, 141 
Displacement current hypothesis of 

Maxwell,268 
Distance 

area-. 171 
by apparent angular diameter, 171 
by apparent size, 171 
luminosity, 171 
Newtonian, In 
parallax, 171 
radar. 171 
spatiaI. 171~ln, 215 

Divergence 
of tensor field, 80 
of vector field. 64 

Dominant energy condition, .11'1' 

stress-energy tensor 
Doppler effect, 139 
Dust.103, 110, 119~121. 181. 198~ 199, 

200 
matter equations of. 103 

Early universe, 203ff 
primordial fireball in, 205~208 

Eigenvalue, see linear transformation 
Eigenvector 

of Einstein tensor, 33 
of norma I stress-energy tensor. 105 

Einstein, A .. 8. 9, 32, 42,44,131,136, 
179 

Einstein addition law. 48 

Index 

Einstein~de Sittcr gravitational field, 32 
43 ' 

Einstein~de Sitter model, 182, 184~ 195, 
200 

energy density of, 185 
luminosity distance in, 21 O~ 215 
modified, 197~ 198,200 
predicted Hubble time of, 186 

Einstein~de Sitter spacetime, 31 ~34, 47, 
49,57, 133, 135, 160, 180~ 182,220, 
259 

characterization of. 180~ 181 
comoving observer in, 43, 57 
comoving reference frame in, 33, 57 
curvatures of. 32~33 
focusing effect in, 189~ 190 
isometries of, 161 ~ 162 
Killing vector fields in, 82 
light signals in, 162~ 163 
number counts of galaxies in, 192~ 195 
photons in. 133, 162~ 163, 164 

Einstein field cquation, 52, 111~ 123, 
179~180. 198,200.247.259, 
262~264 

linearized vacuum, 263 
Einstein tensor, 18,33,35, III, 180, 

184 
eigenvector of. 33 

Electric charge 
in space-section, 86 
of particle, 68 
of particle flow, 86 

Electric field, in Minkowski space, 75 
Electromagnetic field, 74~ 76 

electric vector of, 75 
in cosmological modeis, 179,208 
magnetic vector of. 75 
source of, 83 
stress-energy tensor of, 85 

Electromagnetic radiation, 131 
Electromagnetic stress-energy tensor. see 

stress-energy tensor 
Electromagnetic wave, plane linearly 

polarized, 84 
Electromagnetism, 66~ 78, 83~ 106 
Electron-Iepton number, 68 
Endless causal curve, 92 
Endpoint of causal curve 

future, 92 
past, 92 

Energy 
density of a quasi-gas, 108 
density of a stress-energy tensor. 72 
of a particle. 67 
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Energy [COlii.) 
spectrum of a photon distribution 

function, 143 
Energy-momentum 

density of a particIe tlow, 74 
of a partide, 67 

Entropy,27 
Equation of continuity, 65, 267 
Equilibrium spectrum, 145 
Equivalence 

of tensors, 6 
cf>-,6 
physical, 17 

Equivalent modeis, 168 
Exhaustive sequence, 149 
"Expansion of the universe", 58,140 
Exponential map, 5, 126 

Faraday's law, 268 
Fermi- Walker 

connection, 51-52 
parallelism, 131 

Feynman, R. P., 7 
Flat manifold, 18 
Focusing effeet in Einstein-de Sitter 

spacetime, 189- 190 
Form 

elosed,3 
connection, 18 
curvature, 19 
exact,3 

Freely falling 
observer, 42 
photon, 130 

Freely falling partiele, 67,115-117 
Frenet-Serret theory of curves, 41 
Frequency of photon, 131 
Frequency ratio, 137 -140, 138 

cosmological, 163 
Frequency, ratio of emitted to observed, 138 
Friedmann, A., 32 
Function, over a map, 37 
Function, of rapid decay, 150 

photon distribution, 142 
Planck, 144 
of rapid vertical dee ay , 151 

Future Iightcone: in tangent bundle, 151 
in tangent space, 26 

Future endpoint, 92 
Future-pointing 

causal curve, 27 
I-form, 26 
vector, 13, 26 
vector field, 26 
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Galaxies, 168- 169 
random 3-velocity of. 110 

Galax)' 
absolute luminosity of, 212 
elliptic, 169 
emitting, 210-214 
idealizations of, 188 
intrinsie cross-sectional area of, 187, 189 
model for the history of. 179 
radio, 169, 195 
spiral, 169 

Galilean 
invariance, 267 
velocity transformation, 267 

Gamma rays, 131 
Gauge transformation, 263 
Gauss' law of electric tlux, 86, 268 
Gauss Lemma, 40, 125 
General relativity, 7-8 

historyand current status of, 9 
previewof, 12-16 

Generator of rotations on 2-sphere, sel' 

rotations 
Geodesic, 4, 5,125, 129,254,259 

inextendible,5 
maximal,5 
referenee frame, 53, 59, I 14- 117 
spray, 264 
vector field, 5 

Geometric energy function, 126-127 
Global hyperbolicity, see spacetime 
Global time funetion, 258 
Gravitational collapse, 117-123,237, 

259 
Gravitational field, 27 

gradient, 18 
representati ve of. 27 
trivial,29 

Gravitational plane wave, 242-249, 243, 
261,269 

amplitudes of, 243 
curvatures of, 243 
Iinearly polarized, 243 
linearly polarized, spacetime polarization 

plane of, 249 
monochromatic, 243 
monochromatic, frequency of, 243 
spacetime propagation direction of, 244 
spacetime wavefront of, 244 

Gravitational wave. 242, 245, 248 
detector, 247 

Graviton, 68. 246, 247 
Gyroscope,50 

axes, 50-52 



Hamiltonian mechanics, 153 
Helium creation epoch, 206 
Here-now, 179 
Horizontal vector field, 264 
Hubble 

constant, 173 
law, 168,172-173, 185 
time, empirical, 172 
time, predicted, 186,208 

Idealizations in cosmology, 169- 170 
Imbedding, 3 
Immersion, 3 
Improper integral, existence of, 150 
Incoming particle, 92 
Inextendible 

curve, 4 
geodesic, 5 

Infrared radiation. 131 
Inilial value theorem. 98, 102. 109, 110, 

262. 269 
Inner product, 2 

index of, 2 
Lorentzian,2 

Instantaneous observer, 43, 45-46 
associated orthogonal decomposition of, 

45 
comoving. 43 
local rest space of, 45 
local time axis of, 45 
projection tensor of, 45 
stationary. 43 

Integration on light cones. 148ff 
Imegration region, 141,268 

exhaustive sequence of. 149 
Interior (of aset), 141, 149 
Interior product operator, 62, 80 
Interpretation rule, for cosmological 

models, 179 
Invariant subspace, see linear 

transformation 
Isometry, 4 

group, of spacetime, 259 
group, orbit of, 260 
local,4 

Killing vector field, 81-83, 95,125,216, 
223 

Kelvins (degrees Kelvin), 144 
Kruskal spacetime, 237, 242, 259 

characterization of, 261 
relation to Schwarzschild spacetimes, 

239 

Laplace, P. S., II, 12 
Levi-Civita connection, 4 
Lie parallei 

tensor field, 41 
vector field, 39 

Light, 131 
Lightcone, 22, 148- 149, 150-151 

future, in tangent bundle, 151 
future, in tangent space, 26 
in tangent bundle, 151 
integration on, 148-152 
past, in tangent bundle, 151 
past, in tangent space, 26 
volume element on, 149 

Lightlike 
I-form, 22 
submanifold,22 
subspace, 20 
vector, 20, 24 
vector field, 22 

Light signal, 133-136, 162-163 
standard, in Einstein-de Sitter 

spacetime, 133 
standard, in norma I Schwarzschild 

spacetime.226 

Index 

Linearized Einstein equation, see Einstein 
field equation 

Linear transformation 
eigenvalue of, 251 
in variant subspace of, 106,251 
self-adjoint.20 
skew-adjoint,20 

Liouville 
operator. 264 
theorem, 265 

Local 
isometry,4 
rest space of (z,Z), 45 
time axis of (z,Z), 45 

"Logic vs. history", 46-47,159 
Longest timelike distance to the big bang, 

166,183 
Lorentz, H. A., 9, 88 
Lorentz 

contraction, 48 
force law, 88, 270 
group, 260 
world force law, 88-95, 265, 270 

Lorentzian 
inner product, 2 
manifold,4 
vector space, 2 

Lorentzian metric, 4 
wider, 257 
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Luminosity 
absolute, 146 
apparent, 146 

Luminosity distance, 171,185, 189. 193. 
210-215 

Mach's principle, 177 
Magnetic field 

constant,83 
in Minkowski space, 75 

Magnetic induction. lawof, .11'1' Faraday's 
law 

Magnetic monopole. hypothesis of 
nonexistence of. 86 

Manifold.3 
complete.5 
Lorentzian, 4 
Lorentzian, time orientability of. 25, 255 
Lorentzian, time oriented, 26 
orientable,3 
paracompactness of, 255 
piecewise COO , 62 
Riemannian, 4 
semi-Riemannian.4 
tangent bundle of, 3 

Mass 
active, 30, 218,237 
rest-, 67, 69 

.. Mathematics vs. physics'·. 44-45. 159 
Matter, 66-73, 76-78, 88-98, 103-110 
Matter equations, 95-96, 102-103 

appropriate, 102-103, 112 
dust, 103 
perfect !luid, 108 
simple, 95, 102 

Matter mode!, 76, 103-110 
charge-current density of, 77 
in eosmologieal model, 159, 178, 

197-201, 203 
stress-energy tensor of, 77 
superposition of, 104, 178 

Maximal 
geodesic, 5 
spacetime,29 

Maxwell's displaeement current 
hypothesis, 268 

Maxwell's equations, 83-87,98-102, 
110,112,179,267-269 

e1assical, 267 
Maxweil stress tensor, 86, 269 
Mean relative-acceleration, 114- 117 

Newtonian, 115- 117 
Meson, pi-nought, 93 
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Metric 
induced,24 
isomorphism, 6 
Lorentzian, 4 
Riemannian, 4 

Metric tensor, 4 
index of, 4 

Microwave photons, 173 
in simple cosmologieal mode!, 197-198, 

201 
Microwave radiation, 152, 173- 174 

isotropyof, 168 
Planek speetrum of, 174,203,207 

Microwaves, 131 
Millimeter radialion, 131 
Minkowski, H., 9 
Minkowski space, 29, 47, 49,75,96-97, 

133,259 
characterization of, 260 
2-dimensional, 13, 16, 134, 139 

Morse theory, 122 
Mu-Iepton number, 68 
Myers' theorem, 122 

Neighbor 
of observer in referenee frame, 54 
3-acceleration of, 54 
3-velocity of, 54 

Neutrino. 68. 93 
Newtonian 

active mass. II 
angle. relative to, (z,l). 45-46 
black hole theory, 11- 12 
electromagnetic energy density, 86,269 
gravitational foree, II 
gravitational potential. II 
length. relative to (z,l), 45 
mean relative-acceleration, 117 
physics, 10 
point partieles. 10- I I 
speed. relative to (z,l), 45 
velocity, relative to (z,lj, 45 

Noescape, 127-128 
Nonconservation of parity, 27 
Normal 

at a point, for a basis of vector fields, 79 
neighborhood, 126 

Normal Schwarzschild spacetime, 30, 113 
directly ineoming standard light signals 

in, 226 
direetl y outgoing standard light signals 

in, 226 
eseape to infinity in. 223 



geometry of, 220-228 
Killing veetor fields in, 82, 223 
spatial infinity of, 222 
statie absolute referenee frames in, 224 

Normal stress-energy tensor, 104-106,105 
eigenfunetion of, 105 
eigenveetor field of, 105 
eigenveetor of, 105 

Number density of photon gas, 157 
Numberofphotons measured by (z,Z), 142 

"Observable universe", 168 
Observed eosmologieal redshift, 170 
Observed reeession velocity, 170 
Observer, 41-50, 52-59 

aetual. 170, 173,179 
eomoving, 43 
eomoving instantaneous, 43, 160 
4-veloeity of, 42 
freely falling, 42 
in a referenee frame, 53 
"infinitesimally nearby", 38, 54 
in Sehwarzehild spacetimes, see particle 

in Schwarzschild spacetime 
instantaneous, 43 
instantaneous comoving, 43, 160 
proper time of, 41 
stationary, 43, 219 
world aeceleration of, 42 
world line of, 41 
world velocity of, 42 
See also instantaneous observer 

Optieal radiation, 131 
Orientation, of a manifold, 3 

induced,4 
time. 24-27 

Orthogonality, relativistic interpretation of, 
49-50 

Orthogonal veetors, 2 
Orthonormal basis, 2, 5 
Outgoing particle, 92 

ParalleI tensor field, 59 
Particle, 66-69, 67, 269-271 

ereated at collision event, .92 
destroyed at eollision event, 92 
electric eharge of, 68 
energy momentum of, 67 
energy of, relative to (z,Z), 67 
freely failing, 67 
incoming, 92 
outgoing, 92 
potentially in particle flow, 69 

proper time of. 67 
random 3-veloeity of, 94 
rest-mass of, 67 
total Newtonian energy of, 272 

Partide flow, 69-71, 178 
charge-current density of, 74 
electric charge of, 71 
energy momentum density of, 74 
energy momentum of. 69 
particles potentially in, 69 
rest-mass of. 69 
stress-energy tensor of, 72 
type of, 71 
world density of, 69 

Particle in Schwarzschild spacetimes 
angular momentum in x direction, 

225-226 
circling, 226 
going directly in, 226 
going directly out, 226 
going in, 226 
going out, 226 
hovering, 226 
maintains height, 226 
maintains direction, 226 
total angular momentum of, 225 
total energy of, 226 

Particle set. 92 
consistent, 92, 270-271 

Past endpoint, 92 
Past lightcone 

in tangent bundle, 151 
in tangent space, 26 

Past pointing, 26 
causal curve, 27 

Pauli exclusion principle, 218 
Pauli, W .. 93 

Index 

Perfect fluid, 107-110, 108, 118ff, 158, 
178,199,200 

comoving referenee frame of, 108 
energy density of, 108 
matter equations, 108 
pressure of, 108 
rest-mass zero, 108 

Perihelion precession, 237 
Petrov type, of a spacetime, 254 
"Phase space". 143 
Photon, 68, 129- 133, 162-163 

absorbed, 130 
beam, 71, 210,213,215 
emitted, 130 
freely falling. 130 
frequencyof, 131 
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Photon [com.) 
reeeived, 130 
sent out, 130 
spatial direction of, measured by (z,Z), 

130 
standard, 133,162-163 
wavelength of, 131 

Photon distribution funetion, 142-147 
Planek, 144-146, 152ff 

Photon gas, 152-158, 178, 264-265 
conserved, 156,157,264-265 
number density of, 157 
Planek, with temperature T. 153 
spatially isotropie, 154 
stress-energy tensor of. 154 

Photon occupation number, 147 
Photons, specifie intensity of. 143 
Photons. total energy density of. 143 

in Einstein-de Sitter spacetime. 133. 
162-163 

microwave. 173 
IOtal number of (in space-sections). 157, 

265 
Physieal equivalence, 

of tensor fields. 17 
of tensor fields over a map, 37 

Physical theories. 8-9 
Planck function. 144, 156 
Planck, M., 131. 145 
Planck photon distribution funetion. 

144-146 
temperature of. 144 

Planek speetrum. 145 
of the microwave radiation, 174. 203. 

207 
Planek's eonstant. 131, 143. 199 
Plane eleetromagnetic wave. 84 

amplitude of. 84 
angular frequency of. 84 

Poincare group. 260 
Poincare. H .• 9 
Poisson equation, 112 
Positive affine 

function. I 
reparametrization of a curve. 4 

Poynting veetor, 86, 269 
Predieted Hubble time. 186, 189 

of a simple cosmologieal model. 208 
of Einstein-de Sitter modei, 186 

.. Present determines future". 70, 90, 98. 
102. 157,262 

Pressure 
of perfect f1uid. 108 
of quasi-gas. 108 
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Pressure gradient. 118, 119 
Primordial fireball, 205-208 
Projection tensor. relative to (z.Z). 45 
Proper time funetion: 

of proper time synehronizable referenee 
frame.53 

on general spacetime. 259 
Proper time ratio, 138 
Pulsar, 7. 218 
Pure radiation universe. 182, 196, 209 

Quantum effeets, on eosmological modeIs, 
210 

Quantum theory, 8-9 
Quasar, 147, 169, 195,207 
Quasi-gas, 104 

energy density of, 108 
energy of eomponent in, 110 
pressure of. 108 
random 3-velocity of a component 

in, llO 

Radar, 134-135, 230 
Radiation, 131 

blackbody, 174 
microwave, 173-174 
Planek. 174 
thermai equilibrium, 174 

Radio waves, 131, 152 
Random 3-velocity, 94 
Rapid decay, funetion of. 150, 152 
Rapid veI1ical decay, funetion of. 151, 152 
Raychaudhuri equation, 122,254 
"Receding", one observer from another, 

139 
Redshift 

cosmologieal,l64 
gravitational, 219, 220, 229 
observed cosmological, 170 

Referenee frame, 52-59 
absolute, 219, 224 
acceleration of. 253 
eomoving, 33, 57, 103, 108, 160. 

179-181 
expansion of. 253 
geodesie, 53, 59, 114-117 
inertial. 59 
"infinitesimally nearby" observer in, 54 
irrotational, 56 
loral geodesic, 246 
loeally proper time synehronizable, 53 
mean relative-aeeeleration of. 114ff. 254 
observers in, 53 
proper time synchronizable, 53 



rigid,56 
rotation of, 253 
shear of. 253 
static, 219, 224 
stationary,219 
synchronizable, 53, 136-137 

Retlections, 129 
Relativistic model, 76 
Relativity, see general relativity; speeial 

relativity 
Rest-mass, 67, 69 
Ricci: 

curvature, 18, 1141'1',254 
scalar. 18 
tensor, 18 

Ricci tlat: 
manifold, 18 
spacetime, ,lee spacetime 

Riemannian manifold, 4 
"Rigid meter stiek", 59 
Robertson- Walker model, 208 
Robertson - Walker spacetimes, 32, 

183-184, 185,208 
of negative spatial eurvature, 183, 190, 

191, 208 
of positive spatial curvature, 183, 191, 

208 
of zero spatial curvature, 183 

"Rotation", 50-52 
Rotations 

generator of. on 2-sphere, 216, 225-226 
spatiaL in Einstein-de Sitter spacetime, 

162, 188 

Schwarzsehild black hole, 30 
geometry of. 220- 228 
Killing vector fields in, 82 

Schwarzschild spacetimes, 30 
characterization of. 261 
eurvatures of, 222 
geometry of. 220- 228 
,1('1' (//.10 normal Schwarzschild 

spacetime; particles in Schwarzschild 
spacetimes; Schwarzschild black hole 

Second fundamental form, 122,256 
Second order differential equation, 91, 265 
Self-adjoint linear transformation, 20 
Simple cosmological model, 196-202, 

200 
microwave photons in, 197-198 

Simple cosmological spacetime, 31, 
167-1.68,180,183,200-201 

characterization of. 260 
Simple matter equations, 95, 102 

Index 

Simply convex neighborhood, 126 
Skew-adjoint Iinear transformation, 20 
Solar system, 228-237 

bending of light in, 233-236 
idealizations of. 228 
orbit function of particle in, 231 
particle orbits in, 231-233 
perihelion precession of planets in, 

237 
total bending angle of light signal in, 234, 

236 
Solid angle, 141 
"Solid angle" subtended by object, 147 
Space form, 184 
Spacelike: 

I-form, 22 
submanifold,22 
subspace, 20 
veetor, 20, 24 
vector field, 22 

Space-section, 64, 157 
total number of photons in, 157 

Space slice, 161 
Spacetime, 27, 256 

Cauchy surface in, 258 
causally continuous, 258 
chronology condition on, 257 
complete, 28, 256 
conformaI. 87 
containing another, 28 
globally hyperbolic, 258 
maximaL 29 
Ricci tlat, 31, 113-117, 262 
spherically symmelric, 261 
stably causaL 258 
static, 219, 261 
stationary, 218-220,219,261 
strongly causaL 257 
,11'1' (//.10 black hole; Einstein-de Sitter 

spacetime; gravitational plane wave; 
Kruskal spacetime; Minkowski space; 
norma I Schwarzschild spacetime; 
Schwarzschild black hole; 
Schwarzschild spacetimes; simple 
eosmologieal spacetime 

Spacetime diagram, 34 
Spatial direction (z, Z) measures for photon, 

130 
Spatial distances, 171-172 
"Spatial homogeneity", 169, 175, 192 
Spatial infinity, 95, 222 
Spatial isotropy, 47, 175 
"Spatial retleclion", 129 
Spatial rotation around x, 162, 188 
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Index 

Spatially isotropic 
photon gas, 154, 158 
spacetime,47 
stress-energy tensor, 107-109 
tensor for (z, Z), 47 

Speeial relativity, 8, 29 
Specific tlux, 147 
Specific intensity of photons, 143 
Spectrum 

energy, 143 
equilibrium, 145 
Planck, 145 
thermai equilibrium, 145 

Spin, 68, 247 
Spray, 264, 265 
Stably causal, .11'1' spacetime 
Standard cylinder, 63 

boundary manifolds of, 63 
Standard light signal 

in Einstein-de Sitter spacetime, 133 
in normal Schwarzschild spacetimes, 

226 
Standard photon, in Einstein-de Sitter 

spacetime, 133, 164 
Star 

end -states of. 218 
history of, 217 
neutron, 218 

Statil' 
referenee frame, see referenee frame 
spacetime, .lee spacetime 

Stationary 
observer, .11'1' observer 
referenee frame, see referenee frame 
spacetime, see spacetime 

Steady state cosmology, 195 
Stokes' theorem, 62 
Stress-energy tensor, 71-73, 104- 106 

dominant energy condition on, 252 
electromagnetic, 85, 86, 253 
energy density of, 72 
in cosmology, 174 
normal,105 
of matter model, 77 
of partic le tlow, 72 
of photon gas, 154 
spatially isotropic, 107-109 
strong energy condition on, 252 
timelike convergence eandition on, 123, 

158, 179, 183, 252 
Strong energy condition, see stress-energy 

tensor 
Strongly causal. .Iee spacetime 
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Submanifold, 3 
extrinsic curvature of, 256 
imbedded,3 
totall y geode sie, 228 

Subspace, 2 
invariant, 251 

Summatian convention, 78-80 
Superposition of matter modeis, 104 

collision-free, 104 
components of, 104 
finite, 104 

Symmetric hyperbolic system, of partial 
differential equations, 101 

Symmetry condition, of Levi-Civita 
connection, 4 

Synchotron frequency, 90 
Synchronizable referenee frame, see 

referenee frame 

Tangent bundle, of a manifold, 3 
Tangent veetor field, of a eurve, 37 
Temperature of a Planck funetion, 144 
Temperature of a system of partides, 146 
Tensar,2 

algebra, 2 
Einstein, 18, III, 180, 184 
metric, 4 
Rieei, 18 

Tensor field, 3 
components of, 78 
covariant constant, 59 
derivation of, 37 
divergence of, 80 
over a map, 36-37 
parallel,59 
physical equivalence of, 17,37 
restriction of, 37 

"Test matter". 77. 174. 198 
Thermal equilibrium. 145-146 
Thermai spectrum. 145 
Thermodynamics. second lawof, 27 
Thomas precession, 52 
3-momentum space. 147. 148 
3-spaee,l77 
"Tidal foree". 112,242,271 
Time-dependent veetor field, 266 
Time development, in Ricci-tlat spacetime, 

262 
Time dilation. 48 
Time function, 53 

proper. of proper time synchronizable 
referenee frame. 53 

proper, on general spacetime. 259 



Timelike 
I-form. 22 
submanifold.22 
subspace, 20 
veetor, 20, 24 
vector field, 22 

Timelike convergence condition. 123, 158, 
179, 183. 252, see li/SO stress-energy 
tensor 

Time orientability, 24- 27, 255 
Time orientable Lorentzian manifold, 25 
Time oriented. by veetor field. 26 
Total energy density of photons, 143 
Total energy. in Minkowski space, 97 

conservation law of, 97 
TOlal number 

of particies, 69 
of photons, 157, 265 

Trivial gravitational field. 29 
Twentieth century, model of the history 

of,241 
Twin "paradax", 42-43 
Type, of partide !low. 7l 

Ultraviolet radiation, 131 
Unit 

sphere.5 
vector. 2 

Units. physical. 9- 10 
Univer~e 

early, 203ff 
early, nonconservation of sourees in, 195 
expansion of, 140 
inhomogeneityof. 195, 208 

University of California. regents of. 27 

Index 

Vacuum. 113, 115,222, 237.240, 243 
complete.l04 

Variational principle, 263 
Veclor 

causal.20 
norm of, 2 
orthogonal, 2 
unit, 2 

Vector fields 
conservation laws for, 64 
derivation of, 37 
di vergence of. 64 
Lie bracket of. 3 
Lie parallei. over a curve. 39 
lightlike, 22 
spacelike,22 
timelike.22 

Visible light, 131 
Volume element. 3 

metric, 61 
on lightcone, 149 

Wavelength of photon. 131 
Weak interactions, 27 
Whitehead Lemma. 126 
World density. 66 

conservation of. 69 
of particle !low. 69 

World veloeity. average, 94 
Wrong-way Sehwarz inequality, 24 
Wrong-way triangle inequality, 26, 

259 

X-rays.131 
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